
Edmund K. Burke · Graham Kendall
 Editors

Search
Methodologies
Introductory Tutorials in Optimization
and Decision Support Techniques

 Second Edition

Search Methodologies

Edmund K. Burke • Graham Kendall
Editors

Search Methodologies

Introductory Tutorials in Optimization and
Decision Support Techniques

Second Edition

123

Editors
Edmund K. Burke
University of Stirling
Cottrell Building
Scotland, United Kingdom

Graham Kendall
Vice-Provost (Research

and Knowledge Transfer)
University of Nottingham, Malaysia

and University of Nottingham, UK
Jalan Broga, Semenyih, Malaysia

ISBN 978-1-4614-6939-1 ISBN 978-1-4614-6940-7 (eBook)
DOI 10.1007/978-1-4614-6940-7
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2013944229

© Springer Science+Business Media New York 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Foreword to the First Edition

This is not so much a foreword as a testimonial. As I embarked on the pleasant
journey of reading through the chapters of this book, I became convinced that this is
one of the best sources of introductory material on the search methodologies topic to
be found. The book’s subtitle, “Introductory Tutorials in Optimization and Decision
Support Techniques,” aptly describes its aim, and the editors and contributors to this
volume have achieved this aim with remarkable success.

The chapters in this book are exemplary in giving useful guidelines for imple-
menting the methods and frameworks described. They are tutorials in the way tuto-
rials ought to be designed. I found no chapter that did not contain interesting and
relevant information and found several chapters that can only be qualified as de-
lightful.

Those of us who have devoted a substantial portion of our energies to the study
and elaboration of search methodologies often wish we had a simple formula for
passing along the core notions to newcomers to the area. (I must confess, by the
way, that I qualify as a relative newcomer to some of the areas in this volume.)
While simplicity, like beauty, to some degree lies in the eyes of the beholder and no
universal or magical formula for achieving it exists, this book comes much closer
to reaching such a goal than I would have previously considered possible. It will
occupy a privileged position on my list of recommended reading for students and
colleagues who want to get a taste for the basics of search methodologies and who
have an interest in equipping themselves to probe more deeply.

If good books may be likened to ladders that help us ascend to higher rungs
of knowledge and understanding, we all know there are nevertheless many books
written in technical areas that seem to be more like stumbling blocks or at best
broken stepping stools that deposit us in isolated nooks offering no clear access to
continued means of ascent. Not so the present book. Its chapters lead to ideal sites
for continued exploration and offer compelling motivation for further pursuit of its
ideas and frameworks. If my reckoning is not completely amiss, those who read this
volume will find abundant reasons for sharing my conviction that we owe its editors
and authors a true debt of gratitude for putting this work together.

Boulder, CO, USA Fred Glover

v

Foreword to the Second Edition

It gives me great pleasure to write this short foreword to the second edition of this
outstanding book. The first edition established this volume as an important interna-
tional landmark in the exposition and explanation of computational search method-
ologies and associated issues. As its title indicates, it covers a broad and diverse
portfolio of search techniques from an interdisciplinary perspective in an extensive
and comprehensive way. In some ways, this is no surprise because the authors that
have been brought together in this volume truly represent a collection of the very
top figures in the field. It is an extremely impressive group of authors who have the
highest possible qualifications to present these chapters in a clear and authoritative
way.

As the editors have explained in the Introduction, decision support systems now
underpin the core of many modern management approaches in such diverse areas
as health care, commerce, industry, science, and government. In many everyday sit-
uations across many different working environments, the idea of taking important
managerial decisions without some kind of decision support system would be incon-
ceivable. Moreover, it is the techniques and methods that are introduced in this book
that often lie at the heart of the search engines upon which these decision support
systems depend. Thus, the book ideally fits the current needs of today’s increasingly
computer-driven world.

The aim of the book is clearly articulated in the Introduction. It aims to present
a series of well-written tutorials by the leading experts in their fields. Moreover, it
does this by covering practically the whole possible range of topics in the disci-
pline. It enables students and practitioners to study and appreciate the beauty and
the power of some of the computational search techniques that are able to effectively
navigate through search spaces that are sometimes inconceivably large.

I am convinced that this second edition will build on the success of the first
edition and that it will prove to be just as popular. Three main features of the volume
add significantly, in my opinion, to its appeal. These can be outlined as follows:

vii

viii Foreword to the Second Edition

• I have already referred to the set of excellent authors who have written the chap-
ters of the book, but I think that it is worth emphasizing how important this is.
All the authors are world-renowned experts in their field.

• There is full and complete coverage of the area of search methodologies. This
is complemented in the second edition by additional chapters on Scatter Search,
GRASP (Greedy Randomized Adaptive Search Procedures), and Very Large-
Scale Neighborhood Search. The choice of these additional chapters was inspired
and reflects the ever-changing nature and developing focus of the field.

• I particularly appreciate the uniform approach to the description of topics which
originate from such different disciplines as operations research, computer sci-
ence, mathematics, artificial intelligence, and others. Establishing this common
structure across such a large number of authors is testament to the skill and inter-
national standing of the editors. Their vision has been realized in an exceptional
introductory treatment of the field. I think that tricks of trade, examples, sources
of additional information, and the extensive list of appropriate references repre-
sent particularly useful resources, and I have regularly directed my own students
to them in the first edition. I expect to continue to do so with this new edition.
These features particularly add to the usefulness of the book either for self-study
or as the basis of a course in the topic.

To summarize, I highly recommend the book for those who require an introduc-
tion to the breadth of techniques and approaches that are represented by the field of
search methodologies. I have gained a lot of pleasure from reading through this new
edition, and I am sure that it will be a valuable resource to teachers, students, and
practitioners for many years to come.

Poznan, Poland Jacek Blazewicz

Preface to the First Edition

We first had the idea for this book over 3 years ago. It grew out of a one-day work-
shop entitled Introductory Tutorials in Search, Optimization and Decision Support
Methodologies (INTROS), which was held in Nottingham in August 2003. The aim
of the workshop was to deliver basic introductions to a broad spectrum of search
methodologies from across disciplinary boundaries. It was supported by the UK En-
gineering and Physical Sciences Research Council (EPSRC) and the London Math-
ematical Society (LMS) and was attended by over one hundred delegates from all
over the world. We were very fortunate to have 11 of the world’s leading scientists in
search methodologies presenting a range of stimulating and highly informative tu-
torials. All of the INTROS presenters have contributed to this volume, and we have
enhanced the content by inviting additional, specifically targeted, complementary
chapters. We are pleased to be able to present such a comprehensive, multidisci-
plinary collection of tutorials in this crucially important research area.

We would like to take this opportunity to thank the many people who have con-
tributed towards the preparation of this book. We owe a great debt of gratitude to
the authors of the chapters. As one would expect from such a distinguished group of
scientists, they have prepared their excellent contributions in a thoroughly reliable
and professional manner. Without them, of course, the book would not have been
possible. We are extremely grateful to our copy editor, Piers Maddox, who excelled
himself in bringing together, in one coherent structure, the various documents that
were sent to him. We are also very grateful to Gary Folven, Carolyn Ford, and their
staff at Springer who have provided us with invaluable advice and support during
every step of the way. We would like to offer our gratitude to Fred Glover for writing
the foreword for this book. His warm praise is particularly pleasing. A special thank
you should go to Emma-Jayne Dann and Alison Payne for all the administrative
support they have given us, both in the preparation of this volume and in the orga-
nization of the INTROS workshop that underpinned it. We are also very thankful
to EPSRC and LMS for the financial support they gave us to hold this workshop.
Finally, we offer a special thank you to the INTROS delegates for their enthusiasm
and their encouragement.

ix

x Preface to the First Edition

We hope you enjoy reading this volume as much as we have enjoyed putting it
together. We are already planning a second edition, and if you have any comments
which can help us improve the book, please do not hesitate to contact us. We would
welcome your advice.

Edmund K. Burke
Nottingham, UK Graham Kendall
Nottingham, UK

Preface to the Second Edition

The first edition of this book, which appeared in 2005, grew out of a 1-day work-
shop entitled Introductory Tutorials in Search, Optimization and Decision Support
Methodologies (INTROS), which was held in Nottingham, UK, in August 2003. It
had 19 chapters which gave broad coverage of the predominant search methodolo-
gies at the time.

This second edition contains updated versions of the chapters, and we have also
included three additional chapters (Scatter Search, Chap. 5; GRASP: Greedy Ran-
domized Adaptive Search Procedures, Chap. 11; and Very Large-Scale Neighbor-
hood Search, Chap. 13). These new chapters, along with the revised chapters, we
believe, provide significant insight to the most popular search methodologies that
are in use today.

There are many people that we need to thank. Without their help and support, this
book would not have been possible. We are grateful to Jacek Blazewicz for writing
such a generous and positive foreword for this second edition. We are deeply in-
debted to all the authors for their contributions and for their patience about the time
that it took to get this edition into press. The authors represent a distinguished group
of scientists who have all prepared, and updated, excellent contributions in a consci-
entious and professional way. We are also grateful to our excellent copy editor, Piers
Maddox. We recognize that we did not always provide him with the material in a
form that he would have preferred. However, he dealt with everything very quickly
and extremely dilligently. We would also like to extend our thanks to the staff at
Springer, particularly Matthew Amboy, who have supported the preparation of this
book from the very beginning.

We hope you enjoy reading this book and gain as much from it as we gained in
editing it.

Stirling, UK Edmund K. Burke
Nottingham, UK Graham Kendall

xi

Contents

1 Introduction . 1
Edmund K. Burke and Graham Kendall

2 Classical Techniques . 19
Kathryn A. Dowsland

3 Integer Programming . 67
Robert Bosch and Michael Trick

4 Genetic Algorithms . 93
Kumara Sastry, David E. Goldberg, and Graham Kendall

5 Scatter Search . 119
Manuel Laguna

6 Genetic Programming . 143
Riccardo Poli and John Koza

7 Artificial Immune Systems . 187
Uwe Aickelin, Dipankar Dasgupta, and Feng Gu

8 Swarm Intelligence . 213
Daniel Merkle and Martin Middendorf

9 Tabu Search . 243
Michel Gendreau and Jean-Yves Potvin

10 Simulated Annealing . 265
Emile Aarts, Jan Korst and Wil Michiels

11 GRASP: Greedy Randomized Adaptive Search Procedures 287
Mauricio G.C. Resende and Celso C. Ribeiro

xiii

xiv Contents

12 Variable Neighborhood Search . 313
Pierre Hansen and Nenad Mladenović

13 Very Large-Scale Neighborhood Search . 339
Douglas S. Altner, Ravindra K. Ahuja, Özlem Ergun,

14 Constraint Programming . 369
Eugene C. Freuder and Mark Wallace

15 Multi-objective Optimization . 403
Kalyanmoy Deb

16 Sharpened and Focused No Free Lunch and Complexity Theory 451
Darrell Whitley

17 Machine Learning . 477
Xin Yao and Yong Liu

18 Fuzzy Reasoning . 519
Costas P. Pappis and Constantinos I. Siettos

19 Rough-Set-Based Decision Support . 557
Roman Słowiński, Salvatore Greco, and Benedetto Matarazzo

20 Hyper-heuristics . 611
Peter Ross

21 Approximations and Randomization . 639
Carla P. Gomes and Ryan Williams

22 Fitness Landscapes . 681
Colin R. Reeves

Index . 707

and James B. Orlin

Chapter 1

Introduction

Edmund K. Burke and Graham Kendall

1.1 Inter-disciplinary Decision Support: Motivation

Search and optimization technologies underpin the development of decision support
systems in a wide variety of applications across industry, commerce, science and
government. There is a significant level of diversity among optimization and com-
putational search applications. This can be evidenced by noting that a small selection
of applications includes transport scheduling, bioinformatics optimization, person-
nel rostering, medical decision support and timetabling. Later in this introduction we
present some recent survey papers for some of these areas and more examples of rel-
evant applications are available in Pardalos and Resende (2002) and Leung (2004).
The potential impact of more effective and efficient decision support methodologies
is enormous and can be illustrated by considering just a few of the potential benefits:

• More efficient production scheduling can lead to significant financial savings;
• Higher-quality personnel rosters lead to a more contented workforce;
• Efficient healthcare scheduling will lead to faster treatment (potentially saving

lives);
• More effective cutting/packing systems can reduce waste;
• Better delivery schedules can reduce fuel emissions.

This research area has received significant attention from the scientific community
across many different academic disciplines. Looking at any selection of key papers

E.K. Burke (�)
Computational Heuristics, Operational Research and Decision Support Group, Division
of Computing and Mathematics, University of Stirling, Stirling, Scotland, UK
e-mail: e.k.burke@stir.ac.uk

G. Kendall
Automated Scheduling, Optimization and Planning Research Group, School of Computer Science,
University of Nottingham, Jubilee Campus, Nottinghamshire, UK

Automated Scheduling, Optimization and Planning Research Group, School of Computer Science,
University of Nottingham, Malaysia Campus, Jalan Broga, Semenyih, Malaysia

E.K. Burke and G. Kendall (eds.), Search Methodologies: Introductory Tutorials
in Optimization and Decision Support Techniques, DOI 10.1007/978-1-4614-6940-7_1,
© Springer Science+Business Media New York 2014

1

mailto:e.k.burke@stir.ac.uk

2 E.K. Burke and G. Kendall

which have impacted upon search, optimization and decision support will reveal that
the authors are based in a number of different departments including Computer Sci-
ence, Mathematics, Engineering, Business and Management (among others). It is
clearly the case that the investigation and development of decision support method-
ologies is inherently multi-disciplinary. It lies firmly at the interface of Operational
Research, Computer Science and Artificial Intelligence (among other disciplines).
However, not only is the underlying methodology inherently inter-disciplinary but
the broad range of application areas also cuts across many disciplines and indus-
tries. We firmly believe that scientific progress in this crucially important area will
be made far more effectively and far more quickly by adopting a broad and inclusive
multi-disciplinary approach to the international scientific agenda in this field.

This observation provides one of the key motivations for this book, which is
aimed primarily at first-year postgraduate students and final-year undergraduate
students. However, we have also aimed it at practitioners and at the experienced
researcher who wants a brief introduction to the broad range of decision support
methodologies that are in the literature. In our experience, the key texts for these
methodologies lie across a variety of volumes. This reflects the wide range of disci-
plines that are represented here. We wanted to bring together a series of entry-level
tutorials, written by world-leading scientists from across the disciplinary range, in
one single volume.

1.2 The Structure of the Book

The first edition of this book was initially motivated by the idea of being able to
present first-year PhD students with a single volume that would give them a basic
introduction to the various search and optimization techniques that they might re-
quire during their program of research. This remains a primary motivation for this
second edition.

The book can be read in a sequential manner. However, each chapter also stands
alone and so the book can be dipped into when you come across a technique with
which you are not familiar, or if you just need to find some general references on a
particular topic.

If you want to read the book all the way through, we hope that the way we have
ordered the chapters makes sense. In Chaps. 2 and 3 we introduce some classical
search and optimization techniques which, although not always suitable (particu-
larly when your problem has a very large search space), are still important to have in
your “tool box” of methodologies. Indeed, recent (highly effective) approaches have
hybridized such methods with some of the other techniques in this book. Many of the
other chapters introduce various search and optimization techniques, some of which
have been used for over 30 years (e.g. genetic algorithms, Chap. 4) and some which
are relatively new (e.g. artificial immune systems, Chap. 7). Some of the chapters
consider more theoretical aspects of search and optimization. The chapter by Dar-
rel Whitley, for example, introduces Sharpened and Focused No Free Lunch and
Complexity Theory (Chap. 16) whilst Colin Reeves considers Fitness Landscapes in
Chap. 22.

1 Introduction 3

One element of every chapter is a section called Tricks of the Trade. We recognize
that it is sometimes difficult to know where to start when you first come across a new
problem. Which technique or methodology is the most appropriate? This is a very
difficult question to answer and forms the basis of much research in the area. Tricks
of the Trade is designed to give you some guidelines on how you should get started
and what you should do if you run into problems. Although Tricks of the Trade is
towards the end of each chapter, we believe that it could be one of the first sections
you read.

We have also asked authors to include a section entitled Sources of Additional
Information. These sections are designed as useful pointers to resources such as
books and web pages. They are intended as the next place to investigate, once you
have read the chapter.

As this book is aimed primarily at the beginner (such as a first-year PhD student,
final-year undergraduate or practitioner/researcher learning a new technique) we
thought it might be useful to explain some basic concepts which many books just
assume that the reader already knows. Indeed, our own PhD students and final-
year undergraduates often make this complaint. We realize that the following list is
not complete. Nor can it ever be, as we are not aiming to write a comprehensive
encyclopedia. If you feel that any important terms are missing, please let the editors
(authors of this introduction) know and we will consider including them in future
editions. All of these concepts are, purposefully, explained in an informal way so
that we can get the basic ideas across to the reader. More formal definitions can
be found elsewhere (see the Sources of Additional Information and References),
including in later chapters of this book.

1.3 Basic Concepts and Underlying Issues

In this section we present a number of basic terms and issues and offer a simple
description or explanation. In explaining the concepts to beginners, we will restrict
the formal presentation of these concepts as much as possible.

1.3.1 Artificial Intelligence

Artificial intelligence (AI) is a broad term which can be thought of as covering the
goal of developing computer systems which can solve problems which are usually
associated with requiring human-level intelligence. There are a number of different
definitions of the term and there has been a significant amount of debate about it.
However, the philosophical arguments about what is or is not AI do not fall within
the remit of this book. The interested reader is directed to the following (small)
sample of general AI books: Negnevitsky (2005), Russell and Norvig (2009), Callan
(2003), Luger (2005), McCarthy (1996), Cawsey (1998), Rich and Knight (1991),
and Nilsson (1998).

4 E.K. Burke and G. Kendall

1.3.2 Operational Research (Operations Research)

These two terms are completely interchangeable and are often abbreviated to OR.
Different countries tend to use one or other of the terms but there is no significant
difference. The field was established in the 1930s and early 1940s as scientists
in Britain became involved in the operational activities of Britain’s radar stations.
After the war, the field expanded into applications within industry, commerce and
government and spread throughout the world. Gass and Harris, in the preface to their
excellent Encyclopedia of Operations Research and Management Science (Gass
and Harris 2001), present several definitions. However, as with Artificial Intelli-
gence, we are not really concerned with the intricacies of different definitions in
this book. The first definition they give says, “Operations Research is the applica-
tion of the methods of science to complex problems arising in the direction and
management of large systems of men, machines, materials and money in indus-
try, business, government and defense”. This presents a reasonable summary of
what the term means. For more discussion, and a range of definitions, on the topic,
see Bronson and Naadimuthu (1997), Carter and Price (2001), Hillier and Liberman
(2010), Taha (2010), Urry (1991), and Winston (2004). For an excellent and fasci-
nating early history of the field see Kirby (2003).

1.3.3 Management Science

This term is sometimes abbreviated to MS and it can, to all intents and purposes, be
interchanged with OR. Definitions can be found in Gass and Harris (2001). How-
ever, they sum up the use of these terms in their preface when they say, “Together,
OR and MS may be thought of as the science of operational processes, decision
making and management.”

1.3.4 Feasible and Infeasible Solutions

The idea of feasible and infeasible solutions is intuitive but let us consider the spe-
cific problem of cutting and packing, so that we have a concrete example which
can be related to. This problem arises in many industries: for example, in the tex-
tile industry where pieces for garments have to be cut from rolls of material, in the
newspaper industry where the various text and pictures have to be laid out on the
page and in the metal industry where metal shapes have to be cut from larger pieces
of metal. Of course, all these industries are different but let us consider a generic
problem where we have to place a number of pieces onto a larger piece so that the
smaller pieces can be cut out. Given this generic problem, a feasible solution can
be thought of as all the shapes being placed onto the larger sheet so that none of
them overlap and all the pieces lie within the confines of the larger sheet. If some of

1 Introduction 5

the pieces overlap each other or do not fit onto the larger sheet, then the solution is
infeasible. Of course, the problem definition is important when considering whether
or not a given solution is feasible. For example, we could relax the constraint that
says that all of the shapes have to be placed on the larger sheet, as our problem
might state that we are trying to cut out as many of the smaller shapes as possible,
but that it is not critical to include all the smaller pieces. A feasible solution is often
defined as one that satisfies the hard constraints (see below).

1.3.5 Hard Constraints

For any given problem, there are usually constraints (conditions) that have to be
satisfied. These are often called hard constraints. To continue with the cutting and
packing example from above, the condition that no pieces can overlap is an example
of a hard constraint. To take a new example, if we consider an employee rostering
problem, then an example of a hard constraint is the condition that no employee can
be allocated to two different shifts at the same time. If we violate a hard constraint,
it leads to an infeasible solution.

1.3.6 Soft Constraints and Evaluation Functions

A soft constraint is a condition that we would like to satisfy but which is not
absolutely essential. To elaborate on the employee scheduling example, we may
have a soft constraint that says that we would like employees to be able to express
preferences about which shifts they would like to work. However, if this constraint
is not fully met, a solution is still feasible. It just means that another solution which
does meet the condition more (i.e. more employees have their working preferences
met) would be of higher quality. Of course, there could be many competing soft
constraints, which may provide a trade-off in the evaluation function (measure of
the quality of the solution which is also sometimes known as the objective, fitness
or penalty function), as the improvement of one soft constraint may cause other
soft constraint(s) to become worse. This is the situation where a multi-objective
approach might be applicable (see Chap. 15).

Many problems have an evaluation function represented by a summation of the
penalty values for the soft constraints. Some problems simply ignore the hard con-
straints in the evaluation function and just disregard infeasible solutions. Another
approach is to set a penalty value for the hard constraints, but to set it very high so
that any solution which violates the hard constraints is given a very high penalty
value. Of course, the goal here would be to minimize the overall penalty value but it
is often the case that some search problems try to maximize an evaluation function.
A further possibility is to have dynamic penalties so that, at the start of a (minimiza-
tion) search, the hard constraints are given relatively low penalty values, so that the

6 E.K. Burke and G. Kendall

infeasible search space is explored. As the search progresses, the hard-constraint
penalty values are gradually raised so that the search eventually only searches the
feasible regions of the search space.

1.3.7 Deterministic Search

This term refers to a search method or algorithm which always returns the same
answer, given exactly the same input and starting conditions. Several of the methods
presented in this book are not deterministic, i.e. there is an element of random-
ness in the approach so that different runs on exactly the same starting conditions
can produce different solutions. Note, however, that the term non-deterministic can
mean something more than simply not being deterministic. See Chap. 16 for an
explanation.

1.3.8 Optimization

Within the context of this book, optimization can be thought of as the process of at-
tempting to find the best possible solution amongst all those available. Therefore, the
task of optimization is to model your problem in terms of some evaluation function
(which represents the quality of a given solution) and then employ a search algo-
rithm to minimize (or maximize, depending on the problem) that objective function.
Most of the chapters in this book describe methodologies which aim to optimize
some function. However, most of the problems are so large that it is impossible to
guarantee that the solution obtained is optimal. The term optimization can lead to
confusion because it is sometimes also used to describe a process which returns the
guaranteed optimal solution (which is, of course, subtly different from the process
which just aims to find the best solution possible).

1.3.9 Local and Global Optimum

Figure 1.1 illustrates the difference between a local and global optimum. A local op-
timum is a point in the search space where all neighboring solutions are worse than
the current solution. In Fig. 1.1, there are four local optima. A global optimum is a
point in the search space where all other points in the search space are worse than (or
equal to) the current one. Of course, in Fig. 1.1, we are considering a maximization
problem.

1 Introduction 7

Fig. 1.1 An illustration of
local optima and a global
optimum

Current

Solution

Global

Optimum

Local Optima

1.3.10 Exhaustive Search

By carrying out an exhaustive search, every possible solution is considered and the
optimal (best) one is returned. For small problems, this is an acceptable strategy,
but as problems become larger it becomes impossible to carry out such a search.
The types of problem that often occur in the real world tend to grow very large
very quickly and, of course, we can invent problems which are also too large to
allow us to carry out an exhaustive search in a reasonable time. We will illustrate
how problem sizes rise dramatically by considering a very well known problem:
the traveling salesman problem (often referred to as TSP). This can be thought of
as the problem of attempting to minimize the distance taken by a traveling sales-
man who has to visit a certain number of cities exactly once and return home. See
Johnson and McGeoch (1997), Lawler et al. (1985) or Laporte (2010) for more
details about the TSP. With a very small number of cities, the number of possi-
ble solutions is relatively small and an algorithm can easily check all possibilities
(the search space) and return the best one. For example, a problem with five cities
has a search space of size 12, so all 12 possibilities can be very easily checked.
However, for a 50-city problem (just 10 times the number of cities), the number of
solutions rises to about 1060. Michaelwicz and Fogel (2004), in their excellent book
on modern heuristics, consider exactly this 50-city problem. They say, “There are
only 1,000,000,000,000,000,000,000 [1020] liters of water on the planet so a 50-city
TSP has an unimaginably large search space. Literally, it’s so large that as humans,
we simply can’t conceive of sets with this many elements.”

Therefore, for large problems (and large does not have to be that large when con-
sidering the inputs), an exhaustive search is simply not an option. However, even if
it is a possibility (i.e. the search space is small enough to allow us to carry out an
exhaustive search) we must know how to systematically navigate the search space.
This is not always possible.

8 E.K. Burke and G. Kendall

1.3.11 Complexity

This term refers to the study of how difficult search and optimization problems are
to solve. It is covered in Chap. 16.

1.3.12 Order (Big O Notation)

This term and associated notation is used in various places in this book and so we
define it here. Suppose we have two functions f (x) and g(x) where x is a variable.
We say that g(x) is of the order of f (x) written g(x) = O(f (x)) if, for some constant
value K, g(x)≤ K f (x) for all values of x which are greater than K. This notation is
often used when discussing the time complexity of search algorithms. In a certain
sense, f (x) bounds g(x) once the values of x get beyond the value of K.

1.3.13 Heuristics

When faced with the kind of problem discussed in the exhaustive search section
above, we have to accept that we need to develop an approach to obtain high-quality
solutions—but optimality cannot be guaranteed (without checking out all the pos-
sibilities). Such an approach is called a heuristic. The following two definitions are
often useful:

A heuristic technique (or simply heuristic) is a method which seeks good (i.e. near-optimal)
solutions at a reasonable computation cost without being able to guarantee optimality, and
possibly not feasibility. Unfortunately, it may not even be possible to state how close to
optimality a particular heuristic solution is (Reeves 1996).

A “rule of thumb” based on domain knowledge from a particular application, that gives guid-
ance in the solution of a problem . . . Heuristics may thus be very valuable most of the time
but their results or performance cannot be guaranteed (Oxford Dictionary of Computing
1996).

There are many heuristic methods available to us. Some examples are Simu-
lated Annealing (Chap. 10), Genetic Algorithms (Chap. 4), Genetic Programming
(Chap. 6) and Tabu Search (Chap. 9). The term approximate is sometimes used in
connection with heuristic methods but it is important not to confuse it with approx-
imation methods (see Chap. 21)

1.3.14 Constructive Heuristics

Constructive heuristics refer to the process of building an initial solution from
scratch. Take university examination timetabling as an example. One way to gener-
ate a solution is to start with an empty timetable and gradually schedule examina-
tions until they are all timetabled. The order in which the examinations are placed

1 Introduction 9

onto the timetable is often important. Examinations which are more difficult to
schedule (as determined by a heuristic measure of difficulty) are often scheduled
first in the hope that the easier examinations can fit around the difficult ones.

Constructive heuristics are usually thought of as being fast because they often
represent a single-pass approach.

1.3.15 Local Search Heuristics

Local search can be thought of as a heuristic mechanism where we consider
neighbors of the current solution as potential replacements. If we accept a new
solution from this neighborhood, then we move to that solution and then consider
its neighbors—see Hill Climbing (below) for some initial discussion of this point.
What is meant by neighbor is dependent upon the problem-solving situation that is
being addressed. Some of the techniques described in this book can be described as
local search methods: for example, simulated annealing (Chap. 10) and tabu search
(Chap. 9). Hill climbing is also a local search method. For more information about
local search see Aarts and Lenstra (2003). Note the difference between a construc-
tive heuristic which builds a solution from scratch and a local search heuristic which
moves from one solution to another. It is often the case that a constructive heuris-
tic is used to generate a solution which is employed as the starting point for local
search.

1.3.16 Hill Climbing

Hill climbing is probably the most basic local search algorithm. It is easy to under-
stand and implement but suffers from getting stuck at a local optimum. In the
following discussion, we will assume that we are trying to maximize a certain value.
Of course, minimizing a certain value is an analogous problem, but then we would
be descending rather than climbing.

The idea behind hill climbing is to take the current solution and generate a neigh-
bor solution (see local search) and move to that solution only if it has a higher value
of the evaluation function. The algorithm terminates when we cannot find a better-
quality solution. The problem with hill climbing is that it can easily get stuck in a
local optimum (see above). Consider Fig. 1.1.

If the current solution is the one as shown in Fig. 1.1, then hill climbing will only
be able to find one of the local optima shown (the one directly above it in this case).
At that point, there will be no other better solutions in its neighborhood and the
algorithm will terminate.

Both simulated annealing (Chap. 10) and tabu search (Chap. 9) are variations of
hill climbing but they incorporate a mechanism to help the search escape from local
optima.

10 E.K. Burke and G. Kendall

1.3.17 Metaheuristics

This term refers to a certain class of heuristic methods. Fred Glover first used it and
he defines it as follows (Glover and Laguna 1997):

A meta-heuristic refers to a master strategy that guides and modifies other heuristics to
produce solutions beyond those that are normally generated in a quest for local optimality.
The heuristics guided by such a meta-strategy may be high level procedures or may em-
body nothing more than a description of available moves for transforming one solution into
another, together with an associated evaluation rule.

Osman and Kelly (1996) offer the following definition:

A meta-heuristic is an iterative generation process which guides a subordinate heuristic . . .

The study and development of metaheuristics has become an extremely impor-
tant area of research into search methodologies. In common usage, in the literature,
the term tends to be used to refer to the broad collection of relatively sophisticated
heuristic methods that include Simulated Annealing, Tabu Search, Genetic Algo-
rithms, Ant Colony methods and others (all of which are discussed in detail in this
book). The term is employed sometimes with and sometimes without the hyphen in
the literature. For more information about metaheuristics, see Glover and Kochen-
berger (2003), Osman and Kelly (1996), Voss et al. (1999), Ribeiro and Hansen
(2002), Resende and de Sousa (2004), Gendreau and Potvin (2010), and Rayward-
Smith et al. (1996).

1.3.18 Evolutionary Methods

Evolutionary methods can be thought of as representing a subset of the metaheuristic
approaches and are typified by the fact that they maintain a population of candidate
solutions and that these solutions compete for survival. Such approaches are inspired
by evolution in nature.

Some of the methods in this book are evolutionary. Chapter 4 (Genetic Algo-
rithms) represents perhaps the best known evolutionary approach but there are many
others including Genetic Programming (Chap. 6). In the scientific literature, many
metaheuristics are hybridized with other approaches (see, for example, Blum et al.
2011).

1.3.19 Exact Methods

This term is sometimes used to describe methods which can produce a solution that
is guaranteed to be optimal (or which can show that no feasible solution exists).

1 Introduction 11

1.3.20 Hyper-heuristics

Hyper-heuristics can be confused with metaheuristics but the distinction between
the two terms is simple. Hyper-heuristics are simply methods which search through
a search space of heuristics (or search methods). They can be defined as heuristics
to choose heuristics or heuristics which generate heuristics. Most implementations
of metaheuristics explore a search space of solutions to a given problem but they can
be (and sometimes are) employed as hyper-heuristics. The term hyper-heuristic only
tells you that we are operating on a search space of heuristics. It tells you nothing
else. We may be employing a metaheuristic to do this search and we may not. The
actual search space being explored may include metaheuristics and it may not (but
very little work has actually been done which includes metaheuristics among the
search space being addressed). Chapter 21describes hyper-heuristics in more detail
and readers are also referred to Burke et al. (2003, 2010, 2013).

1.3.21 Matheuristics

This term refers to methods that hybridize metaheuristics with mathematical pro-
gramming techniques. See Maniezzo et al. (2010) and Jourdan et al. (2009) for
more details.

Sources of Additional Information

The goal of this book is to present clear basic introductions to a wide variety
of search methodologies from across disciplinary boundaries. However, it will be
the case that many readers will be interested in a specific application or problem
domain. With this in mind, we provide a sample of domains, with a small selection
of references to survey and overview papers which might be of interest. Of course,
the list is far from exhaustive but its purpose is to point the interested reader to
overview papers for a small selection of well studied problem areas.

• Cutting and Packing: Bennell and Oliveira (2008, 2009), Dyckhoff (1990),
Dowsland and Dowsland (1992), and Wäscher et al. (2007).

• Employee Scheduling: Burke et al. (2004), Ernst et al. (2004), Gopalakrishnan
and Johnson (2005), and Kwan (2004).

• Educational Timetabling: Burke and Petrovic (2002), Lewis (2008), Qu et al.
(2009), Petrovic and Burke (2004), and Schaerf (1999).

• Healthcare Scheduling and Optimization: Cardoen et al. (2010) and Rais and
Viana (2011).

• Printed Circuit Board Assembly: Ayob and Kendall (2008, 2009).
• Air Transport Scheduling: Qi et al. (2004) and Gopalakrishnan and Johnson

(2005).

12 E.K. Burke and G. Kendall

• Sports Scheduling: Dinitz et al. (2007), Drexl and Knust (2007), Easton et al.
(2004), Kendall et al. (2010), Rasmussen and Trick (2008), and Wright (2009).

• Traveling Salesman Problem: Laporte 2010, Johnson and McGeoch (1997), and
Lawler et al. (1985).

• Vehicle Routing: Laporte (2009), Potvin (2009), Marinakis and Migdalas (2007),
and Bräysy and Gendreau (2005a,b).

In this section we will also provide a list of journals (in alphabetical order) across
a range of disciplines that regularly publish papers upon aspects of decision support
methodologies. This list is certainly not exhaustive. However, it provides a start-
ing point for the new researcher and that is the sole purpose of presenting it here.
We have purposefully not provided URL links to the journals as many will change
after going to press, but a search for a journal’s title will quickly locate its home
page.

• ACM Journal of Experimental Algorithmics
• Annals of Operations Research
• Applied Artificial Intelligence
• Applied Intelligence
• Applied Soft Computing
• Artificial Intelligence
• Artificial Life
• Asia-Pacific Journal of Operational Research
• Central European Journal of Operations Research
• Computational Intelligence
• Computational Optimization and Applications
• Computer Journal
• Computers & Industrial Engineering
• Computers & Operations Research
• Decision Support Systems
• Engineering Optimization
• European Journal of Information Systems
• European Journal of Operational Research
• Evolutionary Computation
• 4OR—A Quarterly Journal of Operations Research
• Fuzzy Sets And Systems
• Genetic Programming and Evolvable Machines
• IEEE Transactions on Computers
• IEEE Transactions on Evolutionary Computation
• IEEE Transactions on Fuzzy Systems
• IEEE Transactions on Neural Networks
• IEEE Transactions on Systems Man And Cybernetics Part A—Systems And

Humans
• IEEE Transactions on Systems Man And Cybernetics Part B—Cybernetics
• IEEE Transactions On Systems Man And Cybernetics Part C—Applications And

Review

1 Introduction 13

• IIE Transactions
• INFOR
• INFORMS Journal on Computing
• Interfaces
• International Journal of Systems Science
• International Transactions on Operational Research
• Journal of Artificial Intelligence Research
• Journal of Global Optimization
• Journal of Heuristics
• Journal of Optimization Theory And Applications
• Journal of Scheduling
• Journal of The ACM
• Journal of The Operational Research Society
• Journal of The Operational Research Society of Japan
• Knowledge-Based Systems
• Machine Learning
• Management Science
• Mathematical Methods of Operations Research
• Mathematics of Operations Research
• Mathematical Programming
• Naval Research Logistics
• Neural Computation
• Neural Computing & Applications
• Neural Networks
• Neurocomputing
• Omega—International Journal of Management Science
• Operations Research
• Operations Research Letters
• OR Spectrum
• RAIRO—Operations Research
• SIAM Journal on Computing
• SIAM Journal on Optimization
• Soft Computing
• Transportation Research
• Transportation Science

This bibliography presents a selection of volumes and papers which give an
overview of search and optimization methodologies and some well studied search/
optimization problems. More detailed bibliographies and sources of additional
information are presented throughout the book.

14 E.K. Burke and G. Kendall

References

Aarts E, Lenstra JK (eds) (2003) Local search in combinatorial optimization.
Princeton University Press, Princeton, New Jersey, USA (first published by Wiley
1997)

Ayob M, Kendall G (2008) A survey of surface mount device placement machine
optimisation: machine classification. Eur J Oper Res 186:893–914

Ayob M, Kendall G (2009) The optimisation of the single surface mount device
placement machine in printed circuit board assembly: a survey. Int J Syst Sci
40:553–569

Bennell JA, Oliveira JF (2008) A tutorial in nesting problem: the geometry. Eur J
Oper Res 184:397–415

Bennell JA, Oliveira JF (2009) A tutorial in irregular shape packing problems.
J Oper Res Soc 60:S93–S105

Blum C, Puchinger J, Raidl G, Roli A (2011) Hybrid metaheuristics in combinato-
rial optimization: a survey. Appl Soft Comput 11:4135–4151

Bräysy O, Gendreau M (2005a) Vehicle routing problem with time windows, part I:
route construction and local search algorithms. Transp Sci 39:104–118

Bräysy O, Gendreau M (2005b) Vehicle routing problem with time windows, part
II: metaheuristics. Transp Sci 39:119–139

Bronson R, Naadimuthu G (1997) Operations research, Schaum’s outlines, 2nd edn.
McGraw-Hill, New York

Burke EK, Petrovic S (2002) Recent research directions in automated timetabling.
Eur J Oper Res 140:266–280

Burke EK, Kendall G, Newall JP, Hart E, Ross P, Schulenburg S (2003) Hyper-
heuristics: an emerging direction in modern search technology. In: Glover F,
Kochenberger G (eds) Handbook of metaheuristics, chap 16. Kluwer, Dordrecht,
pp 457–474

Burke EK, De Causmaecker P, Vanden Berghe G, Van Landeghem R (2004) The
state of the art of nurse rostering. J Sched 7:441–499

Burke EK, Hyde M, Kendall G, Ochoa G, Ozcan E, Woodward JRA (2010) A Clas-
sification of hyper-heuristic approaches. In: Handbook of metaheuristics. Kluwer,
Dordrecht, pp 449–468

Burke EK, Gendreau M, Hyde M, Kerdall G, Ochoa G, Ozcan E, QUR
(2013) Hyper-heuristics: a survey of the state of the art. J Oper Res Soc,
doi:10.1057/jors.2013.71

Callan R (2003) Artificial intelligence. Palgrave Macmillan, London
Cardoen B, Demeulemeester E, Beliën J (2010) Operating room planning and

scheduling: a literature review. Eur J Oper Res 201:921–932
Carter MW, Price CC (2001) Operations research: a practical introduction. CRC,

Boca Raton
Cawsey A (1998) The essence of artificial intelligence. Prentice-Hall, Englewood

Cliffs

1 Introduction 15

Dinitz JH, Fronček D, Lamken ER, Wallis WD (2007) Scheduling a tournament. In:
Colbourn CJ, Dinitz JH (eds) Handbook of combinatorial designs, 2nd edn. CRC,
Boca Raton, pp 591–606

Dowsland KA, Dowsland WB (1992) Packing problems. Eur J Oper Res 56:2–14
Drexl A, Knust S (2007) Sports league scheduling: graph- and resource-based

models. Omega 35:465–471
Dyckhoff H (1990) A typology of cutting and packing problems. Eur J Oper Res

44:145–159
Easton K, Nemhauser GL, Trick MA (2004) Sports scheduling. In: Leung JT (ed)

Handbook of scheduling. CRC, Boca Raton, 52.1–52.19
Ernst AT, Jiang H, Krishnamoorthy M, Owens B, Sier D (2004) An annotated bib-

liography of personnel scheduling and rostering. Ann Oper Res 127:21–144
Gass SI, Harris CM (2001) Encyclopaedia of operations research and management

science. Kluwer, Dordrecht
Gendreau M, Potvin J-Y (eds) (2010) Handbook of metaheuristics, 2nd edn.

Springer, Berlin
Glover F, Kochenberger G (eds) (2003) Handbook of metaheuristics. Kluwer,

Dordrecht
Glover F, Laguna M (1997) Tabu search. Kluwer, Dordrecht
Gopalakrishnan B, Johnson EL (2005) Airline crew scheduling: state-of-the-art.

Ann Oper Res 140:305–337
Hillier FS, Liberman GJ (2010) Introduction to operations research, 9th edn.

McGraw-Hill, New York
Johnson DS, McGeoch LA (1997) The travelling salesman problem: a case study.

In: Aarts E, Lenstra JK (eds) (2003) Local search in combinatorial optimization.
Princeton University Press, Princeton, New Jersey, USA, pp 215–310

Jourdan L, Basseur M, Talbi E-G (2009) Hybridizing exact methods and metaheuris-
tics: a taxonomy. Eur J Oper Res 199:620–629

Kendall G, Knust S, Ribeiro CC, Urrutia S (2010) Scheduling in sports: an annotated
bibliography. Comput Oper Res 37:1–19

Kirby MW (2003) Operational research in war and peace: the British experience
from the 1930s to 1970. Imperial College Press, London

Kwan R (2004) Bus and train driver scheduling. In: Leung JY-T (ed) Handbook of
scheduling, chap 51. Chapman and Hall/CRC, Boca Raton

Laporte G (2009) Fifty years of vehicle routing. Transp Sci 43:408–416
Laporte G (2010) A concise guide to the traveling salesman problem. J Oper Res

Soc 61:35–40
Lawler EL, Lenstra JK, Rinnooy Kan AHG, Shmoys DB (eds) (1985) The travelling

salesman problem: a guided tour of combinatorial optimization. Wiley, New York
(reprinted with subject index 1990)

Leung JY-T (ed) (2004) Handbook of scheduling. Chapman and Hall/CRC, Boca
Raton

Lewis R (2008) A survey of metaheuristic-based techniques for university timetabl-
ing problems. OR Spectr 30:167–190

16 E.K. Burke and G. Kendall

Luger GFA (2005) Artificial intelligence: structures and strategies for complex
problem solving, 5th edn. Addison-Wesley, New York

Maniezzo V, Stützle T, Voss S (eds) (2010) Matheuristics. Springer, Berlin
Marinakis Y, Migdalas A (2007) Annotated bibliography in vehicle routing. Oper

Res 7:27–46
McCarthy J (1996) Defending AI research: a collection of essays and reviews. CSLI

Publications, Stanford
Michaelwicz Z, Fogel DB (2004) How to solve it: modern heuristics, 2nd edn.

Springer, Berlin
Negnevitsky M (2005) Artificial intelligence: a Guide to intelligent systems, 2nd

edn. Addison-Wesley, New York
Nilsson, N (1998) Artificial intelligence: a new synthesis. Morgan Kaufmann,

San Mateo
Osman IH, Kelly JP (eds) (1996) Metaheuristics: theory and applications. Kluwer,

Dordrecht
Oxford Dictionary of Computing (1996) Oxford dictionary of computing, 4th edn.

Oxford University Press, Oxford
Pardalos PM, Resende MGC (eds) (2002) Handbook of applied optimization.

Oxford University Press, Oxford
Petrovic S, Burke EK (2004) University timetabling. In: Leung JY-T (ed) (2004)

Handbook of scheduling, chap 45. Chapman and Hall/CRC, Boca Raton
Potvin J-Y (2009) Evolutionary algorithms for vehicle routing. INFORMS

J Comput 21:518–548
Qi X, Yang J, Yu G (2004) Scheduling problems in the airline industry. In: Leung JY-

T (ed) Handbook of scheduling, chap 51. Chapman and Hall/CRC, Boca Raton
Qu R, Burke EK, McCollum B, Merlot LGT, Lee SY (2009) A survey of search

methodologies and automated system development for examination timetabling.
J Sched 12:55–89

Rais A, Viana A (2011) Operations research in healthcare: a survey. Int Trans Oper
Res 18:1–31

Rasmussen RV, Trick MA (2008) Round robin scheduling—a survey. Eur J Oper
Res 188:617–636

Rayward-Smith VJ, Osman IH, Reeves CR, Smith GD (1996) Modern heuristic
search methods. Wiley, New York

Reeves CR (1996) Modern heuristic techniques. In: Rayward-Smith VJ, Osman IH,
Reeves CR, Smith GD (eds) Modern heuristic search methods. Wiley, New York,
pp 1–25

Resende MGC, de Sousa JP (eds) (2004) Metaheuristics: computer decision making.
Kluwer, Dordrecht

Ribeiro CC, Hansen P (eds) (2002) Essays and surveys in metaheuristics. Kluwer,
Dordrecht

Rich E, Knight K (1991) Artificial intelligence, 2nd edn. McGraw-Hill, New York
Russell S, Norvig P (2009) Artificial intelligence: a modern approach, 3rd edn.

Prentice-Hall, Englewood Cliffs
Schaerf A (1999) A survey of automated timetabling. Artif Intell Rev 13:87–127

1 Introduction 17

Taha HA (2010) Operations research: an introduction, 9th edn. Prentice-Hall,
Englewood Cliffs

Urry S (1991) An introduction to operational research: the best of everything.
Longmans, London

Voss S, Martello S, Osman IH, Roucairol C (eds) (1999) Meta-heuristics: advances
and trends in local search paradigms for optimization. Kluwer, Dordrecht

Wäscher G, Hauβner H, Schumann H (2007) An improved typology of cutting and
packing problems. Eur J Oper Res 183:1109–1130

Winston WL (2004) Operations research: applications and algorithms, 4th edn.
Duxbury, Pacific Grove

Wright MB (2009) Fifty years of OR in sport. J Oper Res Soc 60:S161–S168

Chapter 2

Classical Techniques

Kathryn A. Dowsland

2.1 Introduction

The purpose of this chapter is to provide an introduction to three classical search
techniques—branch and bound, dynamic programming and network flow programm-
ing—all of which have a well established record in the solution of both classical
and practical problems. All three have their origins in, or prior to, the 1950s and
were the result of a surge in interest in the use of mathematical techniques for the
solution of practical problems. The timing was in part due to developments in Op-
erations Research in World War II, but was also spurred by increasing competition
in the industrial sector and the promise of readily accessible computing power in
the foreseeable future. A fourth technique belonging to this class, that of Integer
Programming, is covered in Chap. 3. Given their age, it is not surprising that they
no longer generate the same level of excitement as the more modern approaches
covered elsewhere in this volume, and as a result they are frequently overlooked.
This effect is reinforced as many texts such as this omit them—presumably because
they have already been covered by a range of sources aimed at a wide variety of dif-
ferent abilities and backgrounds. In this volume we provide an introduction to these
well-established classics alongside their more modern counterparts. Although they
have shortcomings, many of which the more recent approaches were designed to ad-
dress, they still have a role to play both as stand-alone techniques and as important
ingredients in hybridized solution methods.

The chapter is meant for beginners and it is possible to understand and use the
techniques covered without any prerequisite knowledge. However, some of the ex-
amples in the chapter are based on problems in graph theory. In all cases the prob-
lems and specialist terms are defined in full, but a basic knowledge of graph theory
terminology such as that provided in Balakrishnan (1997) would be useful. Some of

K.A. Dowsland (�)
Gower Optimal Algorithms Ltd, Swansea, UK
e-mail: k.a.dowsland@btconnect.com

E.K. Burke and G. Kendall (eds.), Search Methodologies: Introductory Tutorials
in Optimization and Decision Support Techniques, DOI 10.1007/978-1-4614-6940-7_2,
© Springer Science+Business Media New York 2014

19

mailto:k.a.dowsland@btconnect.com

20 K.A. Dowsland

the examples also belong to a class of problems known as linear programs (LP) and
some of the discussion in the section on network flows makes use of the relation-
ship between network flow problems and linear programming problems. Although
knowledge of LPs is not necessary to understand the algorithms or examples as
these are all couched in purely combinatorial terms we start the chapter with a brief
introduction to linear programming. Further details can be found in Anderson et al.
(1997).

The chapter is organized as follows. The overview of linear programming is fol-
lowed by three sections introducing branch and bound, dynamic programming and
network flow programming. In each case an introductory description is followed by
two or more examples of their use in solving different problems, including a worked
numerical example in each case. Each section ends with a brief discussion of more
advanced issues. Section 2.6 looks at some problems that frequently occur as sub-
problems in the solution of more complex problems and suggests algorithms based
on the techniques covered in Sects. 2.3–2.5 for their solution. Section 2.7 takes a
brief look at potential future applications and Sect. 2.8 provides some hints and tips
on how to get started with each of the techniques. Additional sources of information
not covered in the references are given at the end of the chapter.

2.2 Linear Programming

2.2.1 Introduction

This section provides a brief overview of those aspects of linear programming (LP)
that are relevant to the remainder of this chapter. We start by outlining the basic
features of an LP model and then go on to look at an important concept of such
models—that of duality. We do not go into any detail with regard to solution algo-
rithms for two reasons. Firstly, they are not necessary in order to understand the ma-
terial presented in the remainder of the chapter. Secondly, LP packages and solution
code are available from a wide variety of sources so that it is no longer necessary
for a potential user to develop their own solution code.

2.2.2 The Linear Programming Form

A linear programming problem is an optimization problem in which both the
objective (i.e. the expression that is to be optimized) and the constraints on the
solution can be expressed as a series of linear expressions in the decision variables.
If the problem has n variables then the constraints define a set of hyper-planes in
n-dimensional space. These are the boundaries of an n-dimensional region that de-
fines the set of feasible solutions to the problem and is known as the feasible region.
The following example illustrates the form of a simple linear programming problem.

2 Classical Techniques 21

2.2.2.1 A Simple Example

A clothing manufacturer makes three different styles of T-shirt. Style 1 requires
7.5 min cutting time, 12 min sewing time, 3 min packaging time and sells at a profit
of £3. Style 2 requires 8 min cutting time, 9 min sewing time, 4 min packaging time
and makes £5 profit. Style 3 requires 4 min cutting time, 8 min sewing time and
2 min packaging time and makes £4 profit. The company wants to determine pro-
duction quantities of each style for the coming month. They have an order for 1,000
T-shirts of style 1 that must be met, and have a total of 10,000 man hours available
for cutting, 18,000 man hours for sewing and 9,000 man hours available for pack-
aging. Assuming that they will be able sell as many T-shirts as they produce in any
of the styles how many of each should they make in order to maximize their profit?

We can formulate the problem mathematically as follows. First we define three
decision variables x1, x2 and x3 representing the number of T-shirts manufactured in
styles 1, 2 and 3 respectively. Then the whole problem can be written as

Maximize 3x1 + 5x2+ 4x3 (2.1)

subject to 7.5x1 + 8x2 + 4x3 ≤ 10,000 (2.2)

12x1 + 9x2 + 8x3 ≤ 18,000 (2.3)

3x1 + 4x2+ 2x3 ≤ 9,000 (2.4)

x1 ≥ 1,000 (2.5)

x1,x2,x3 ≥ 0. (2.6)

Expression (2.1) defines the profit. This is what we need to maximize and is
known as the objective function. The remaining expressions are the constraints.
Constraints (2.2)–(2.4) ensure that the hours required for cutting, sewing and pack-
aging do not exceed those available. Constraint (2.5) ensures that at least 1,000
T-shirts of style 1 are produces and constraint (2.6) stipulates that all the decision
variables must be non-negative. Note that all the expressions are linear in the de-
cision variables, and we therefore have a linear programming formulation of the
problem.

2.2.2.2 The General LP Format

In general, a linear program is any problem of the form

maxormin
n

∑
i=1

cixi

such that
n

∑
i=1

a1ixi ∼ b1 (2.7)

...
n

∑
i=1

amixi ∼ bm

22 K.A. Dowsland

where ∼ is one of ≥, = or ≤.
The important point about a linear programming model is that the feasible region

is a convex space and the objective function is a convex function. Optimization the-
ory therefore tells us that as long as the variables can take on any real non-negative
values (possibly bounded above) then the optimal solution can be found at an ex-
treme point of the feasible region. It is also possible to derive conditions that tell us
whether or not a given extreme point is optimal. Standard LP solution approaches
based on these observations can solve problems involving many thousands of vari-
ables in reasonable time. As we will see later in this chapter there are special cases
where these techniques work even when the variables are constrained to take on in-
teger or binary values. The general case where the variables are constrained to be
integer, known as integer programming, is more difficult and is covered in Chap. 3.

Although it makes sense when formulating linear programmes to use the flexibil-
ity of the formulation above in allowing either a maximization or minimization ob-
jective and any combination of inequalities and equalities for the constraints, much
linear programming theory (and therefore the solution approaches based on the the-
ory) assume that the problem has been converted to a standard form in which the
objective is expressed in terms of a maximization problem, all the constraints apart
from the non-negativity conditions are expressed as equalities, all right-hand side
values b1 . . .bm are non-negative and all decision variables are non-negative. A gen-
eral formulation can be converted into this form by the following steps.

1. If the problem is a minimization problem the signs of the objective coefficients
c1 . . .cn are changed.

2. Any variable not constrained to be non-negative is written as the difference be-
tween two non-negative variables.

3. Any constraint with a negative right-hand side is multiplied by −1.
4. Any constraint which is an inequality is converted to an equality by the intro-

duction of a new variable, (known as a slack variable) to the left-hand side. The
variable is added in the case of a ≤ constraint and subtracted in the case of a ≥
constraint. The formulation is often written in matrix form:

max CX

s.t. AX = b (2.8)

X ≥ 0

where C = (c1 . . .cn), b = (b1 . . .bm)
T , X = (x1 . . .xn)

T and A = (ai j)mXx.

2.2.3 Duality

An important concept in linear programming is that of duality. For a maximization
problem in which all the constraints are ≤ constraints and all variables are non-
negative, i.e. a problem of the form

2 Classical Techniques 23

max CX

s.t. AX ≤ b (2.9)

X ≥ 0

the dual is defined as

min bTY

s.t. ATY ≥CT (2.10)

Y ≥ 0.

The original problem is known as the primal. Note that there is a dual variable
yi associated with each constraint in the primal problem and a dual constraint as-
sociated with each variable xi in the primal. (The dual of a primal with a more
general formulation can be derived by using rules similar to those used to convert a
problem into standard form to convert the primal into the above form, with equality
constraints being replaced by the equivalent two inequalities.)

The dual has the important property that the value of the objective in the optimal
solution to the primal problem is the same as the optimal solution for the dual prob-
lem. Moreover, the theorem of complimentary slackness states that if both dual and
primal have been converted to standard form, with s1 . . . sm the slack variables in the
primal problem and e1 . . .en the slack variables in the dual, then if X = (x1, . . . ,xn)
is feasible for the dual and Y = (y1, . . . ,ym) is feasible for the primal, X and Y are
optimal solutions to the primal and dual respectively if and only if siyi = 0 ∀i = 1,m
and e jx j = 0 ∀ j = 1,n. This relationship is an important feature in the specialist
solution algorithm for the minimum cost network flow algorithm presented later in
this chapter and underpins other LP based solution approaches.

2.2.4 Solution Techniques

Solution approaches for linear programming fall into two categories. Simplex type
methods search the extreme points of the feasible region of the primal or the dual
problem until the optimality conditions are satisfied. The technique dates from the
seminal work of Dantzig (1951). Since then the basic technique has been refined
in a number of ways to improve the overall efficiency of the search and to improve
its operation on problems with specific characteristics. Variants of the simplex ap-
proach are available in a number of specialist software packages, as a feature of
some spreadsheet packages, and as freeware from various web-based sources.

Although they perform well in practice simplex based procedures suffer from
the disadvantage that they have poor worst case time-performance guarantees. This
deficiency lead to the investigation of interior point methods, so called because they
search a path of solutions through the interior of the feasible region in such a way
as to arrive at an optimal point when they hit the boundary. Practical interior point

24 K.A. Dowsland

Fig. 2.1 Shortest path net-
work

methods can be traced back to the work of Kamarkar (1984), although Khachiyan
(1979) ellipsoid method was the first LP algorithm with a polynomial time guar-
antee. Recent interior point methods have proved efficient, in particular for large
LPs, and there has also been some success with hybridizations of interior point and
simplex approaches. While the choice of solution approach may be important for
very large or difficult problems, for most purposes standard available code based on
simplex type approaches should-suffice.

2.3 Branch and Bound

2.3.1 Introduction

When faced with the problem of finding an optimum over a finite set of alternatives
an obvious approach is to enumerate all the alternatives and then select the best.
However, for anything other than the smallest problems such an approach is com-
putationally infeasible. The rationale behind the branch and bound algorithm is to
reduce the number of alternatives that need to be considered by repeatedly parti-
tioning the problem into a set of smaller subproblems and using local information
in the form of bounds to eliminate those that can be shown to be sub-optimal. The
simplest branch-and-bound implementations are those based on a constructive ap-
proach in which partial solutions are built up one element at a time. We therefore
start by introducing the technique in this context before going on to show how it can
be extended to its more general form.

Assume that we have a problem whose solutions consist of finite vectors of the
form (x1,x2, . . . ,xk) where k may vary from solution to solution. Those combina-
tions of values that form feasible vectors are determined by the problem constraints.
The set of all possible solutions can be determined by taking each feasible value for
x1, then for each x1 considering all compatible values for x2, then for each partial so-
lution (x1,x2, . . .) considering all compatible x3, etc. This process can be represented

2 Classical Techniques 25

Fig. 2.2 Tree enumerating all simple routes

as a tree in which the branches at level i correspond to the choices for xi given the
choices already made for x1, . . . ,xi−1, and the nodes at level i correspond to the par-
tial solutions of the first i elements. This is illustrated with reference to Figs. 2.1 and
2.2. Figure 2.2 is the tree enumerating all simple routes (i.e. routes without loops)
from S to F in the network shown in Fig. 2.1. The branches at level 1 represent all
the possibilities for leaving S and the branches at lower levels represent all the pos-
sibilities for extending the partial solution represented by the previous branches by
one further link. The node at the top of the tree is sometimes referred to as the root,
and the relationship between a given node and one immediately below is sometimes
referred to as parent/child or father/son. All nodes that can be reached from the
current node by traveling down the tree are referred to as descendents and nodes
without any descendents are terminal nodes.

If we wish to search the tree in an ordered fashion we need to define a set of rules
determining the order in which the branches are to be explored. This is known as
the branching strategy. The two simplest strategies are known as depth-first search
and breadth-first search. Depth-first search (also known as branch and backtrack)
moves straight down a sequence of branches until a terminal node is reached before
backtracking up to the nearest junction. If there are any unexplored branches below
this junction it will select one of these, again continuing downwards until a terminal
node is reached. If all children of the current node have been explored the search
backtracks to the previous node and continues from there. In contrast, breadth-first
search enumerates all the branches at one level before moving on to the next level.
Depth-first search is likely to find a feasible solution early and it does not have
the vast storage requirements of breadth-first search. However, breadth-first search

26 K.A. Dowsland

allows comparisons to be made across the tree, facilitating removal of dominated
sub-solutions. In Fig. 2.2 the nodes are numbered in depth-first search order using a
strategy of ordering the branches at each level from left to right. For a breadth-first
search the search order would be 1, 2, 12, 22, 3, 13, 16, 19, 23, 29, 4, 11, etc.

As mentioned above, although it is possible to enumerate the whole tree in a
small example like this, the size of the tree grows explosively with problem size,
and for most real-life problems complete enumeration is not possible. For example,
complete enumeration of all feasible allocations of n tasks to n machines would re-
sult in a tree with n! terminal nodes, i.e.∼2.4×1018 terminal nodes for 20 machines.
The branch-and-bound process allows us to prove that some partial solutions can-
not lead to optimal solutions and to cut them and their descendants from the search
tree—a process known as pruning. This is achieved through the use of upper and
lower bounds satisfying lower_bound ≤ z ≤ upper_bound, where z is the optimal
solution obtained over all descendents of the current node. For a minimization prob-
lem the upper bound is a quantity UB such that we know we can do at least as well
as UB. This is usually the best feasible solution found so far. The lower bound at
node i, LBi, is an optimistic estimate of the best solution that can be obtained by
completing the partial solution at node i, i.e. we know that in exploring below node
i we cannot do better than LBi. Nodes where LBi ≥ UB need not be explored further
and we say that they are fathomed. When all nodes are fathomed the upper bound is
the optimal solution. For a maximization problem the roles of the upper and lower
bounds are reversed.

2.3.2 Branch and Bound Based on Partial Solutions

The success of a branch-and-bound implementation for a large problem depends on
the number of branches that can be pruned successfully. This is largely dependent on
the quality of the bounds, but the branching strategy can also have a significant effect
on the number of nodes that need to be explored. The basic branch-and-bound ap-
proach and the influence of bound quality and branching strategy will be illustrated
with reference to our shortest-path example.

2.3.2.1 Example 1: Finding the Shortest Path

We start by illustrating the use of simple bounds to prune the tree using the branch-
ing strategy defined by the node numbering. Our upper bound will be the cost of the
shortest path found to date. Thus at the start we have UB = ∞. For the local lower
bound at each node in the search tree we simply use the sum of the costs on the links
traveled so far. Figure 2.3 gives details of the order in which the nodes are visited
and the upper and lower bounds at each node.

The first seven branches correspond to the construction of the first path
SABCDEF and the lower bound column gives the cost incurred by the partial

2 Classical Techniques 27

Fig. 2.3 Using simple bonds to prune the tree

solution at each stage. Note that when we reach node 7 we have our first complete
path and so the upper bound is reduced to the cost of the path, i.e. 33. We now know
that the optimal solution cannot be worse than 33. From node 7 we backtrack via
nodes 6 and 5 to the junction at node 4 before continuing down the tree. Each time
a cheaper path is completed the upper bound is reduced but the local lower bounds
remain below the upper bound until we reach node 16. Here the cost of the partial
solution SCD = 16 and the upper bound = 15. Thus this node is fathomed, and we
backtrack immediately to node 12. Similarly, nodes 19, 27 and 29 are fathomed by
the bounds and the branches below them can be pruned. When the search is com-
plete the cost of the optimal solution = UB = 14 and is given by the path to node
26, SDCBF. All the branches represented by the dotted lines in Fig. 2.2 have been
pruned and the search has been reduced from 33 to 23 branches.

This is already a significant reduction but we can do better by strengthening
the bounds. The bound is based on the cost to date and does not make use of any
estimate of the possible future cost. This can easily be incorporated in two ways.
First, we know that we must leave the current vertex along a link to an unvisited
vertex. Thus, we will incur an additional cost of at least as much as the cost of the
cheapest such link. Similarly, we must eventually enter F. Thus, we must incur an
additional cost at least as great as the cheapest link into F from the current vertex or
a previously unvisited vertex. However, we cannot simply add both these quantities
to the original bound as at vertices adjacent to F this will incur double counting.
This highlights the need for caution when combining different bounds into a more
powerful bound. We can now define our new lower bound LBi as follows.

Let (x1, . . . ,x j) be the current partial solution. Define L1 = cost of path (x1, . . . ,x j),
L2 = cheapest link from x j to an unvisited vertex and L3 = cheapest link into F from
any vertex other than those in path (x1, . . . ,x j−1) Then LBi = L1 +L2 +L3 if x j is
not adjacent to F, and LBi = L1 +max(L2,L3) otherwise. Figure 2.4 gives details of
the search using this new bound.

Note how the lower bound is now higher at each node and a good estimate of the
cost of each path is obtained before the path is completed. Lower bounds of ∞ are

28 K.A. Dowsland

Fig. 2.4 Search using improved bounds

Fig. 2.5 Search using improved branching strategy

recorded whenever the branches from a particular node are exhausted. There is more
work incurred in calculating this bound, not only because the actual calculation
is more complex, but also because the bound at a given node may change when
returning to the node in a backtracking step. This strengthens the bound and reduces
the total number of branches searched to 19.

Finally, we consider the branching strategy. So far we have used simple depth-
first search taking the branches at each node in the given order. In general, the ef-
ficiency of the search will be increased if the upper bound can be reduced sooner,
or if the levels of the tree can be organized so as to incur high lower bounds closer
to the root of the tree. Here we apply a strategy that will favor the former, and
bias the search towards finding shorter routes first. This is achieved by exploring
the branches at each node in increasing cost order instead of from left to right.
Figure 2.5 shows the result of the search using this strategy.

Now the search starts by selecting the D branch from the root node and quickly
finds the optimal solution of 14. This results in early pruning of the nodes from the
other two branches and the whole search is completed in seven branches.

This example has illustrated how the size of the search tree is dependent on
both the quality of the bounds and the branching strategy. However, it should be
noted that this is not the most efficient way of solving the shortest-path problem
and better approaches are suggested in Sect. 2.5. Nevertheless, since early papers on
the technique in the early 1960s, it has proved successful in solving a wide range
of both classical and practical problems. Examples include algorithms for a range
of graph-theoretic problems, such as node coloring (Brown 1972; Zykov 1949),

2 Classical Techniques 29

clique and independent set problems (Bron and Kerbosch 1973), location problems
(Erlenkotter 1978; Jarvinen et al. 1972) and the TSP (Little et al. 1963; Held and
Karp 1970; Balas and Christofides 1981), and for several classical combinatorial
optimization problems such as knapsack problems (Martello and Toth 1981), set
covering and set partitioning (Garfinkel and Nemhauser 1969) and generalized as-
signment problems (Ross and Soland 1975). We use one of these, Brown’s graph-
coloring algorithm, to consolidate the ideas of the last section.

2.3.2.2 Example 2: Brown’s Algorithm for Graph Coloring

An example of a problem that has been tackled using a variety of branch-and-bound
approaches is that of graph coloring. The graph-coloring problem is that of min-
imizing the number of colors needed to color the vertices of a graph so that no
two adjacent vertices are given the same color. The graph-coloring problem is an
interesting example as it is the underlying model for many timetabling and schedul-
ing problems. Brown’s (1972) algorithm is an example of a branch-and-bound ap-
proach based on partial solutions. The algorithm is a straightforward application of
the branch-and-bound process using simple bounds. As with the shortest-path prob-
lem, its efficiency can be improved by applying some intelligence to the branching
strategy. However, the strength of the algorithm lies in its backtracking strategy that
essentially prunes away branches by backtracking up several levels at a time where
appropriate. The algorithm can be summarized as follows.

The branches in the tree correspond to the decision to color a given vertex in a
given color. In the simplest version, the vertices are pre-ordered and the branches
at level i correspond to choosing a color for the ith vertex. The colors are also or-
dered and the branches at each node are searched in color order. The upper bound
is given by the number of colors in the best solution to date and the lower bound on
each partial solution is given by the number of colors used up to that point. If the
upper bound is equal to Q, then when the search backtracks to a vertex vi for which
there are no unexplored branches corresponding to colors below Q in the ordering,
that node is obviously bounded and a further backtracking step must be executed.
Rather than simply backtracking to the previous node the search recognizes the fact
that in order to progress it is necessary for an alternative color to become free for vi.
This will only be achieved if a neighbor of vi is uncolored. Therefore, the search
backtracks up the tree until a neighbor of vi is encountered before attempting a for-
ward branch. If further backtracking, say at vertex v j, is required before vi has been
successfully re-colored then re-coloring a neighbor v j may also achieve the desired
result so v j’s neighbors are added to those of vi in defining a potential backtrack-
ing node. In order to manage this backtracking strategy in a complex search, those
vertices that are neighbors of backtracking vertices are stored in a queue in reverse
order and branching takes place from the first vertex in the queue. A formal defi-
nition of the algorithm is given below. The list of identifiers, J, is the set of nodes

30 K.A. Dowsland

which trigger the bounding condition and Queue is an ordered list of the neighbors
of elements in J:

Step 0. Define orderings
Order the vertices 1,2, . . . ,n and colors c1,c2, . . .
Γ−(i) denotes those neighbors of vertex i which precede i in the ordering.
Step 1. Find initial coloring
Color the vertices in order using the lowest indexed feasible color.
Step 2. Store new solution
Let q be the number of colors used. Set the upper bound equal to q and store the
current q-coloring.
Set list of identifiers, J = /0.
Step 3. Backtrack
3.1 Find first vertex corresponding to local LB = q
Let i∗ be the first vertex colored q.
3.2 Update list of backtracking vertices and corresponding queue of neighbors
Remove all j < i∗ from J.
Set J = J∪{i∗}.
Set Queue =

⋃
j∈J
Γ−(j) in reverse order.

3.3 Backtrack to level defined by first vertex on the queue
Let i′ be the first vertex on the queue. Let q′ be its color.
If i′ = k and vertices 1,2, . . . ,k are colored c1,c2, . . . ,ck then STOP. Stored
solution is optimal.
Otherwise uncolor all i≥ i′.
Step 4. Branch
4.1 Recolor i′

Color i′ in the first feasible color {q′+ 1,q′+ 2, . . . ,q− 1}.
If no feasible color set i∗ = i′ and goto 3.2.
4.2 Recolor remaining vertices
Attempt to color vertices i = i′+1,n in colors 1 to q−1 using first feasible color.
If vertex i requires color q then set i∗ = i and goto 3.2.
Otherwise go to step 2.

Note that Steps 1 and 4.2 amalgamate several forward branches into one step,
building on the partial coloring until the bounding condition is reached. Similarly,
in Step 3.3 several backtracking steps are amalgamated. Note also that the lower
bounds are not stored explicitly as the first node with a local lower bound of q will
always correspond to the point where color q was used for the first time.

The algorithm is illustrated with reference to the graph in Fig. 2.6 using the given
ordering of the vertices and colors in alphabetical order:

Step 1. Initial coloring = 1A,2B,3A,4C,5A,6D,7B,8D. q = 4.
Step 2. J = /0.
Step 3. i∗ = 6. J = {6}. Queue = {4,2,1}.

2 Classical Techniques 31

Backtrack to node 4. q′ =C. Partial coloring = 1A,2B,3A.
Step 4. Vertex 4 already colored in q− 1. i∗ = 4. goto 3.2.
Step 3. J = {6,4}. Queue = {3,2,1}.
Backtrack to node 3. q′ = A. Partial coloring = 1A,2B.
Step 4. Color 3 in color C and continue coloring 1A,2B,3C,4A,5B,6C,7A,8C.
q = 3.
Step 2. J = /0.
Step 3. i∗ = 3. J = {3}. Queue = {2}. Stopping condition reached and solution
with q = 3 is an optimal solution in three colors.

As with the shortest-path implementation, the efficiency of the search can be
improved by an intelligent ordering of the vertices to encourage good solutions to
be found more quickly. The simplest improvement is to pre-order the vertices in
decreasing degree order. However, there is no reason why the ordering of the vertices
should remain the same throughout the tree, and greater efficiency gains can be
obtained using some form of dynamic ordering such as selecting the vertex with
the largest number of colors already used on its neighbors to color next—a strategy
known as DSATUR. It is also worth considering the stopping condition in terms of
the vertex ordering. The condition is valid because backtracking beyond the point
where vertices 1 to k are colored in colors 1 to k will simply result in equivalent
colorings with a different permutation of colors. This condition will be achieved
more quickly if the ordering starts with a large clique. Thus a good strategy is to
find a large clique and place these vertices in a fixed order at the start and then to
use a dynamic ordering for the remaining vertices.

2.3.3 A Generalization

So far the discussion has focused on search trees based on building up partial so-
lutions. Such approaches have proved popular for a variety of problems. However,
they are just a special case of a more general strategy in which the branches cor-
respond to adding constraints to the problem. In the case of a partial solution the
constraints take the form xi = ai. The more general format underpins the branch-
and-bound strategy for integer programming and will be treated in detail in Chap. 3.
Therefore we will not go into detail here. Instead we will briefly illustrate the ap-
proach with an alternative tree search approach to the graph-coloring problem.

2.3.3.1 Zykov’s Algorithm for Graph Coloring

Consider any two non-adjacent vertices vi and v j. In any solution to the graph-
coloring problem there are two possibilities. Either they will be allocated the same
color or they will be allocated different colors. The optimal solution subject to them
being in the same color is the optimal coloring in a graph with vi and v j merged

32 K.A. Dowsland

Fig. 2.6 Coloring example

into a single vertex, while the optimal solution in the latter case is the optimal col-
oring in the original graph with edge (vi,v j) added. Obviously the better of these
two solutions is optimal with respect to the original problem. We also observe that
if we continue a sequence of adding edges and/or merging vertices in an arbitrary
graph then we will eventually be left with a complete graph (i.e. a graph in which
every vertex is adjacent to every other). A complete graph with n vertices obviously
requires n colors. These observations form the basis of Zykov’s algorithm (1949)
in which there are two branches at each level of the tree corresponding to the deci-
sion as to whether two non-adjacent vertices will be allocated the same or different
colors. The two child nodes represent the coloring problems in the two suitably
modified graphs and the terminal nodes will all be complete graphs. The smallest
complete graph defines the optimal coloring. This is illustrated in Fig. 2.7, which
shows the search tree that results from the problem of finding the optimal coloring
of the sub-graph defined by vertices 1, 2, 3, 4 and 6 of the graph in Fig. 2.6.

The left-hand branch at each level constrains two non-adjacent vertices to be the
same color and the child node is obtained by taking the graph at the parent node and
merging the two vertices. The right-hand branch constrains the same two vertices
to be different colors and the child is formed by adding an edge between the two
relevant vertices in the parent graph. Branching continues until the resulting child is
a complete graph. Here the terminal nodes reading from left to right are complete
graphs of size 4, 3, 4, 4 and 5 respectively. The optimal solution is given by the
complete graph on three vertices in which vertices 1 and 4 are allocated to one color,
3 and 6 to a second color and vertex 2 to the third.

A suitable upper bound is again the best solution found so far. A lower bound
on the optimal coloring in each sub-graph can be defined by the largest clique it
contains (a clique is a set of vertices such that each vertex in the set is adjacent to
every other). Finding the largest clique is itself a difficult problem but a heuristic can
be used to get a good estimate. In Fig. 2.7 using a depth-first search and exploring

2 Classical Techniques 33

Fig. 2.7 Zykov’s search tree for optimal coloring

the c(i) = c(j) branch first at each node, we might recognize that the parent of the
node representing the optimal solution contains two cliques of size 3. Similarly, its
parent contains cliques of size 3. Thus we can backtrack straight up to the route node
saving a total of four branches. Branching strategies can be designed to produce
dense sub-graphs quickly thereby increasing the chances of finding large cliques
early in the tree. More recent versions of the algorithm make use of theoretical
results that state that certain classes of graph, known as perfect graphs, are easy to
color. Branching strategies are designed to produce graphs belonging to one of the
classes of perfect graph as early in the tree as possible. These can then be colored
optimally, thus saving all the branches required in order to reduce them to complete
graphs. See Golumbic (1980) for a wide-ranging treatment of perfect graphs and
associated algorithms.

34 K.A. Dowsland

2.3.4 Other Issues

2.3.4.1 Bounds

The most important feature of a branch-and-bound algorithm is probably the qual-
ity of the bounds and it is usually worth putting considerable effort into ensuring
that these are as tight as possible. In the case of lower bounds this is often achieved
by exploiting as much information about the problem as possible. For example,
Dowsland (1987) used a clique model to solve a class of packing problems known
as the pallet loading problem. She combined the bounds in a published maximum
clique algorithm with bounds derived from geometric aspects of the physical prob-
lem and showed that the percentage of problems solved within a given time frame
rose from 75 to 95 %. In some cases a problem may become easy to solve if some of
the constraints are removed. This is a process known as relaxation and the solution to
the relaxed problem will always provide a valid bound on the solution to the original
problem. This approach was used by Christofides and Whitlock (1977) in their solu-
tion to a guillotine cutting problem in which a large stock-sheet of material must be
cut into a set of smaller rectangular pieces, using a sequence of guillotine cuts, so as
to maximize the value of the cut pieces. In their version of the problem the demand
for pieces of each dimension was constrained, whereas the unconstrained version of
the problem is relatively easy to solve. Their solution uses a tree search in which
each branch represents a cut, and the nodes define the set of rectangles in a partial
solution. Bounds are obtained by solving the unconstrained problems for each of
the sub-rectangles in the partial solution. Although such relaxation bounds can be
quite effective, there is often a gap between them and the solution to the constrained
problem. This gap can sometimes be reduced by incorporating a suitable penalty for
the violated constraints into the objective function. This is the basis of Lagrangian
relaxation, which has proved a popular bound for a variety of branch-and-bound
algorithms. For example, Beasley (1985) uses the approach for a non-guillotine ver-
sion of the cutting stock problem. In Lagrangian relaxation an iterative approach
is used to set parameters that will increase the tightness of the bound. Such an ap-
proach is obviously time-consuming but for moderately-sized problems in a wide
variety of application areas the computational effort is well worth the number of
branches it saves. Details of Lagrangian relaxation can be found in Fisher (1985).

The search efficiency is also affected by the upper bound. As we have seen,
pruning is more effective when good solutions are found early. Earlier pruning may
result if a heuristic is used before the start of the search to find a good solution that
can be used as an upper bound at the outset. Similarly, using a heuristic to complete
a partial solution and provide a local upper bound should also help in fathoming
nodes without branching all the way down to terminal nodes.

It is also worth noting that bounding conditions based on information other than
numeric upper and lower bounds may be useful in avoiding infeasible solutions or
solutions that are simply permutations or sub-sets of solutions already found. An
example of this approach is the maximal clique algorithm of Bron and Kerbosch

2 Classical Techniques 35

(1973) which includes bounding conditions based on relationships between the
branches already explored and those yet to be visited from a given node.

2.3.4.2 Branching

There are also issues concerning branching strategies that have not been discussed.
We have assumed that the search is always carried out in a depth-first manner. An
alternative that can be successful if the bounds are able to give a good estimate of
the quality of solutions below each branch is to use a best-first strategy, in which
nodes at different levels across the breadth of tree may be selected to be evaluated
next according to an appropriate definition of best. In our examples, the ordering
of branches was geared towards finding good solutions as early as possible. An
alternative strategy is to select branches that will encourage bounding conditions to
be satisfied sooner rather than later. This approach is taken by Bron and Kerbosch
in their branch-and-bound algorithm for finding cliques in a graph. At each node the
next branch is chosen so as to encourage the bounding condition to occur as early
as possible. Comparisons between this version and a version in which the branches
are selected in the natural order show that the advantage, in terms of computation
time, of using the more complex strategy increases rapidly with problem size.

2.3.4.3 Miscellaneous

Although good bounds and branching strategies have resulted in many successful
branch-and-bound algorithms, it should be noted that the size of the search tree
will tend to grow exponentially with problem size. It is therefore important to make
sure that the underlying tree is as small as possible. For example, thought should
be given to avoiding branches that lead to solutions that are symmetric to each other
if at all possible. It may also be possible to apply some form of problem reduction
in a pre-processing phase. For example, Garfinkel and Nemhauser (1969) outline a
set of reductions for both set-covering and set-partitioning problems. It should also
be noted that such a strategy may provide further reductions when applied to the
subproblems produced within the search itself.

Finally, it is worth noting that in many implementations the optimal solution is
found quickly and most of the search time is spent in proving that this is in fact the
optimal solution. Thus if there is insufficient time to complete the search, the best
solution to date can be taken as a heuristic solution to the problem. An alternative
that is useful if a heuristic solution with a performance guarantee is required is to
replace the upper bound with UB(1−α). The tighter bound should enable the search
to be completed more quickly and will guarantee a solution within α×100 % of the
optimum.

36 K.A. Dowsland

2.4 Dynamic Programming

2.4.1 Introduction

Like branch and bound, dynamic programming (DP) is a procedure that solves op-
timization problems by breaking them down into simpler problems. It solves the
problem in stages, dealing with all options at a particular stage before moving on
to the next. In this sense it can often be represented as a breadth-first search. How-
ever, unlike the levels of the tree in branch and bound which partition the problem
by adding constraints, the stages in DP are linked by a recursive relationship. The
name dynamic programming derives from its popularity in solving problems that
require decisions to be made over a sequence of time periods. Even when this is not
the case, the name dynamic programming is still widely used, but the term multi-
stage programming is sometimes used as an alternative.

The basis of DP is Bellman’s principle of optimality (Bellman 1957) states that
“the sub-policy of an optimal policy is itself optimal with regard to start and end
states”. As an illustration, consider the shortest-route problem. If we are told that in
Fig. 2.1 the optimal route from S to F goes via E then we can be sure that part of the
route from S to E is the optimal route between S and E, and that part from E to F
is the optimal route from E to F. In other words, each sub-path of the optimal path is
itself the shortest path between its start and end points. Any DP implementation has
four main ingredients. These are stages, states, decisions and policies. At each stage,
for each feasible state we make a decision as to how to achieve the next stage. The
decisions are then combined into sub-policies that are themselves combined into an
overall optimal policy. DP is a very general technique that has been applied at vary-
ing levels of complexity. These have been classified into four levels: deterministic,
stochastic, adaptive and residual. Our treatment here will be limited to deterministic
problems.

The design of a DP algorithm for a particular problem involves three tasks;
the definition of the stages and states, the derivation of a simple formula for the
cost/value of the starting stage/state(s) and the derivation of a recursive relationship
for all states at stage k in terms of previous stages and states.

The definition of the stages and states will obviously depend on the problem be-
ing tackled, but there are some definitions that are common. Stages are frequently
defined in terms of time periods from the start or end of the planning horizon, or in
terms of an expanding subset of variables that may be included at each stage. Com-
mon definitions of states are the amount of product in stock or yet to be produced,
the size or capacity of an entity such as stock sheet, container, factory or budget, or
the destination already reached in a routing problem.

2 Classical Techniques 37

2.4.2 Developing a DP Model

2.4.2.1 Forward Recursion and the Unbounded Knapsack Problem

We will first illustrate the concepts of DP by reference to a classical optimization
problem—the unbounded knapsack problem. The problem can be stated as follows.
Given a container of capacity b and a set of n items of size wi and value vi for i = 1,n
such that the number of each item available is unbounded, maximize the value of
items that can be packed into the container without exceeding the capacity.

The problem can be formulated as follows:

max
n

∑
i=1

vixi (2.11)

s.t.
n

∑
i=1

wixi ≤ b (2.12)

for xi ≥ 0 and integer, where xi equals the number of copies of item i in the solution.
We can formulate this problem as DP as follows. Define Fk(S) to be the maxi-

mum value for a container of capacity S using items of sizes 1 to k. Here the items
available represent the stages and the capacity available the states. F1(S) is the value
that can be obtained if the only pieces available are those of type 1.

This is given by

F1(S) =
∫ (

S

w1

)

v1. (2.13)

All that remains is to define a recursive relationship for Fk(S) in terms of previous
stages and states. This is achieved as follows. The optimal solution either makes use
of at least one item of type k, or it does not contain any items of type k. In the latter
case Fk(S) = Fk−1(S). In the former case one copy of item k takes up wk units of
capacity and adds vk units of value. Bellman’s principle tells us that the remaining
S−wk units of capacity must be packed optimally. This packing may contain further
items of type k and is given by Fk(S−wk). Thus we have for k > 1:

Fk(S) =max{Fk−1(S),Fk(S−wk)+ vk} for S ≥ wk

Fk(S) =Fk−1(S) otherwise.
(2.14)

The solution to the overall problem is given by Fn(b). We will illustrate the proce-
dure with the following example.

Let n = 3, b = 19, w1,w2, w3 = 3,5 and 7 respectively and v1, v2, v3 = 4,7 and
10 respectively.

The values of Fk(S) for k = 1,3 and S = 0,19 are given in Table 2.1. The values
in column k = 1 are first calculated using Eq. (2.3). Then the subsequent columns
are calculated in order starting from the top and working down using Eq. (2.4). For
S ≥ wk the appropriate value is obtained by comparing the value in row S in the
previous column with the sum of vk and the value in the current column wk rows up.

38 K.A. Dowsland

Table 2.1 Unbounded knapsack calculations

S/k 1 2 3 S/k 1 2 3
0 0 0 0 10 12 14 14
1 0 0 0 11 12 15 15
2 0 0 0 12 16 16 17
3 4 4 4 13 16 18 18
4 4 4 4 14 16 19 20
5 4 7 7 15 20 21 21
6 8 8 8 16 20 22 22
7 8 8 10 17 20 23 24
8 8 11 11 18 24 25 25
9 12 12 12 19 24 26 27

The value of 27 in row 19, column 3 tells us that the optimal value is 27. In order
to determine how this solution is achieved we need to work backwards. We need to
find out whether this value came from F2(19) or F3(19−7)+10. The latter option is
the correct one. We therefore record one item of type 3 and check the source of the
value 17 in F3(12). This is either F2(12) or F3(5)+ 10. Once again the latter option
is correct. We record a second item of type 3 and move to F3(5). F3(5) = F2(5) so
we check the source of the value of F2(5) = F2(0)+ 7. Thus we record an item of
type 2. As we have reached the top row of the table corresponding to capacity = 0
the solution is completed and is given by x1 = 0,x2 = 1,x3 = 2.

2.4.2.2 Backward Recursion and a Production Planning Problem

In the above example the recursion worked in a forward direction with the stages
corresponding to an increasing subset of variables. Our second example is taken
from the field of production planning and is typical of many multi-period problems
in that it is solved using backwards recursion, i.e. by working backwards from the
end of the planning period. The problem can be summarized as follows.

Production of a single product is to be planned over a fixed horizon of n time
periods. At the start there are S0 units in stock and no stock is required at the end.
Each time period ti has a known demand di which must be met. Up to Q units can
be produced in any one time period. The cost of making q units is given by c(q) and
economies of scale mean that c(q) is not linear in q. Surplus units can be stored from
one time period to the next at a warehousing cost of w per unit. There are natural
definitions of the stages and states for this problem in terms of the time periods
and stock levels. However, there is no simple formula for deciding what should be
done in time period 1. Instead we re-order the time periods in reverse order and
relate stage k to period (n− k). If we start the last period with S units in stock, then
we must meet the demand dn exactly as we are to finish without any surplus. Thus
we must produce dn − S units. The formula for the optimal policy at the starting
stage is therefore

2 Classical Techniques 39

Table 2.2 Production costs and demands
Production costs

Units 0 1 2 3 4 5
Cost (£1000s) 0 7 13 16 20 24

Demands
Period 1 2 3 4
Demand 3 6 1 2

F0(S) = c(dn− S). (2.15)

We now need to define a recursive formula for Fk(S) in terms of previous stages.
If we start period n− k with S units in stock and make q units we end with S+ q−
dn−k in stock. This will incur a warehousing cost and will define the starting stock
for the next time period. The optimal policy from this point on has already been
calculated as Fk−1(S+ q− dn−k). Thus the recursive formula is given by

Fk(S) = min
dn−k−S≤q≤Q

{c(q)+w(S+ q− dn−k)+Fk−1(S+ q− dn−p)}. (2.16)

The lower limit on q ensures that production is sufficient to meet demand.
We also need to define the set of states that need to examined at each stage k.

This can be limited in three ways. First, there is no point in having more stock than
can be sold in the remaining time periods. Second, it is not possible to have more
stock than could be produced up to that time period less that already sold. Third, it
is not feasible to have a stock level that will not allow demand in future periods to
be met. Thus for period n− k we have MINk ≤ S≤min{MAX1k,MAX2k}, where

MAX1k =
n

∑
i=n−k

di, MAX2k = S0 +
n−k−1

∑
i=1

(Q− di)

and

MINk = max

{

0, max
n−k≤ j≤n

{

j

∑
i=n−k

(di−Q)

}}

.

Once again we illustrate the formulation with a concrete example. Let n = 4, Q = 5,
S0 = 1, w = 2,000 and production costs and demands as given in Table 2.2. Working
in units of £1,000 the calculations for the stages are then

Stage 0:

MAX10 = 2, MAX20 = 6, MIN0 = 0
F0(0) = c(2) = 13, F0(1) = c(1) = 7, F0(2) = c(0) = 0.
Stage 1:

MAX11 = 3, MAX21 = 2, MIN1 = 0
F1(0) = min{c(1)+ 0 ·w +F0(0), c(2)+ 1 ·w+F0(1), c(3)+ 2 ·w+F0(2)}
= min{7+ 0+ 13, 13+ 2+ 7, 16+ 4+ 0}= 20

40 K.A. Dowsland

F1(1) = min{0+ 0+ 13, 7+ 2+ 7, 13+ 4+ 0}= 13
F1(2) = min{0+ 2+ 7, 7+ 4+ 0}= 9
Stage 2:

MAX12 = 9, MAX21 = 3, MIN1 = 1
F2(1) = min{24+ 0+ 20}= 44
F2(2) = min{20+ 0+ 20, 24+ 2+ 13}= 39
F2(3) = min{16+ 0+ 20, 20+ 2+ 13, 24+ 4+ 9}= 35
Stage 3: We do not need to calculate limits on S as we know that starting stock
equals 1:

F3(1) = min{16+ 2+ 44,20+ 4+ 39,24+6+35}= 62.

Note that in many cases the full range of values for q from S− dn−k to Q have
not been included in the minimization as they would lead to overstocking or un-
der stocking. For example, in calculating F1(0) we do not consider any value of q
above 3 as this would give more than two units at the start of the last time period.
Similarly, we do consider q less than 3 in F3(1) as we need at least one unit in stock
at the start of time period 2.

As with the knapsack problem, the calculations give the cost of the optimal so-
lution but we need to work backwards in order to derive the optimal solution. Start-
ing with F3(1) we note that the minimum value resulted from manufacturing three
units, which leaves one unit in stock once the demand for three units has been met.
Thus the policy from time period 2 onwards is given by F2(1). This is optimized
by producing five units, leaving zero in stock. We therefore move to F1(0) which
is optimized in two ways—producing 1 and leaving 0 in stock or producing 3 and
leaving 2 in stock. This implies that there are two optimal solutions. The former is
completed using F0(0) and the latter using F0(2). The two solutions are summarized
in Table 2.3.

2.4.3 Other Issues

One of the main criticisms of a DP approach is that the number of subproblems
that need to be solved is dependent not only on the stages but also on the states.
While the number of stages is usually related to the size of the problem in the tra-
ditional sense (i.e. as a function of the number of variables) the number of states
are frequently related to the size of the constants in the problem. For example, in
the knapsack problem the number of states depends on the capacity of the con-
tainer, while the number of states for the production planning problem is essentially
bounded by a function of the maximum production capacity Q. For real-life prob-
lems such quantities may be extremely large. This is often exacerbated by the fact
that the states may be multi-dimensional. For example in the standard DP formu-
lation for two-dimensional cutting problems the states are defined by rectangles of
dimension X×Y . Our two examples were also relatively simple in that the recursive

2 Classical Techniques 41

Table 2.3 The two optimal solutions

Production plan 1
Period Starting stock Make Sell Closing stock Cost (£)

production +
warehousing

1 1 3 3 3 18,000
2 1 5 6 0 24,000
3 0 3 1 2 20,000
4 2 0 2 0 0
Total 62,000

Production plan 2
Period Starting stock Make Sell Closing stock Cost (£)

production +
warehousing

1 1 3 3 3 18,000
2 1 5 6 0 24,000
3 0 1 1 0 7,000
4 0 2 2 0 13,000
Total 62,000

relationship relied only on the solutions at the previous stage. Many DP formula-
tions require recursive relationships that use all previous stages, thus necessitating
the results of all previous calculations to be stored, resulting in pressure on available
memory in addition to long computation times. It is therefore important that some
thought is given to reducing the number of states. Findlay et al. (1989) use a model
similar to our production planning example to plan daily production in an oil field
so as to meet a quarterly production target. The states at each stage are given by the
amount still to be produced before the end of the quarter. Thus in their basic model
the number of states is given by the number of days in the quarter multiplied by the
total quarterly target. However, there are upper and lower bounds on daily produc-
tion and by using these to produce three bounds on the feasible states at each stage,
the total size of the search space can be reduced to less than half its original size.

Although the need to calculate and store all sub-solutions is often seen as a draw-
back of DP, it can also be viewed as an advantage, as there is no need to carry out
a whole new set of calculations if circumstances change. For example, in the pro-
duction planning example, if for some reason we only managed to make two units
instead of three in the third period, we could adopt the optimal policy from that point
on simply by selecting the policy given by F1(1) instead of F1(2). This flexibility is
cited as one of the reasons for the choice of DP as a solution technique by Findlay
et al. (1989), as oil production is regularly affected by problems that may cause a
shortfall in production on a particular day. Another example of the usefulness of be-
ing able to access the solutions to all subproblems without additional computational
effort arises in the solution of two-dimensional cutting problems. The bounds used
by Christofides and Whitlock (1977) in their branch-and-bound algorithm cited in

42 K.A. Dowsland

the previous section are calculated using a DP approach. The bound at the root node
requires the solution to the unconstrained guillotine cutting problem in a rectangle
of dimensions X×Y and the bounds at the other nodes require solutions to the same
problem in smaller rectangles. These are precisely the problems solved in the vari-
ous stages. Therefore, once the bound at the root node has been calculated, bounds
for all the other nodes are available without further computation.

It is also worth emphasizing that DP is a very general approach. While this can
be regarded as one of its strengths, it can also be a drawback in that there are few
rules to guide a beginner in its use for a completely new problem. In many cases it
is relatively easy to define the stages of an implementation but it is more difficult
to find a suitable definition for the states. Although there are examples of DP being
used to solve a variety of problems, the vast majority still lie in the areas of multi-
period planning, routing and knapsack type problems where it is relatively easy
to adapt existing approaches. We have already mentioned the production planning
problem tackled by Findlay et al. (1989). Other examples are a multi-period model
for cricketing strategy (Clarke and Norman 1999), a model for optimizing the route
taken in orienteering (Hayes and Norman 1984), and a multiple-choice knapsack
model for pollution control (Bouzaher et al. 1990).

2.5 Network Flow Programming

2.5.1 Introduction

Network flow programming deals with the solution of problems that can be modeled
in terms of the flow of a commodity through a network. At first glance it appears
that such models might be very limited in their application, perhaps encompassing
areas such as the flow of current in electrical networks, the flow of fluids in pipeline
networks, information flow in communications networks and traffic flow in road or
rail networks. However, their scope is far wider. They not only encompass a wide
range of graph and network problems that appear to have little to do with flows, such
as shortest path, spanning tree, matching and location problems, but also model a
wide range of other problems ranging from scheduling and allocation problems to
the analysis of medical x-rays. Network flow problems can be categorized as integer
programming problems with a special structure. For the basic network flow models
that deal with homogeneous flows this structure impacts on the solution process in
two ways. First, the constraint matrix of the LP formulation has the property that
it is totally unimodular. This implies that any solution at the extreme points of the
feasible region will be integer valued. From a practical point of view this means
that as long as all the constants in a problem are integer valued then solution via
the simplex method will also be integer valued. Thus integer programs that have the
special structure of a network flow problem can be solved without recourse to any
of the specialist integer programming techniques described in Chap. 3. However the

2 Classical Techniques 43

structure of the problem also means that it can be solved directly by combinatorial
algorithms that are simpler to implement than the full simplex algorithm. The in-
spiration for and the verification of the optimality of these procedures is rooted in
the underlying LP theory. We will start by looking at the maximum flow problem,
the simplest but least flexible of the network flow formulations, in order to introduce
the basic concepts and building blocks that will be used in the solution of a more
flexible model, the minimum cost flow problem.

2.5.2 The Maximum Flow Problem

2.5.2.1 Introduction

The maximum flow problem is that of maximizing the amount of flow that can travel
from source S to sink T in a network with capacities or upper bounds on the flow
through each of its arcs. The problem can be stated as follows:

Let S = source, T = sink
xi j = flow in arc (i, j)
V = total flow from S to T
ui j = upper bound on arc (i, j)

maxV s.t. ∑
j

(i, j)∈A

xi j − ∑
k

(k,i)∈A

xki

⎧

⎨

⎩

= v if i = S
=−v if i = T
= 0 for all other i.

(2.17)

xi j ≤ ui j for all (i, j) ∈ A; xi j ≥ 0. (2.18)

Constraints (2.17) ensure that the total flow arriving at the sink and the flow leaving
the source are both equal to the objective V , while at all other nodes the amount of
flow entering the node is equal to that leaving.

As stated above, the problem could be solved by applying the simplex algorithm
to the above formulation. However, a simpler and more intuitive algorithm is the
Ford–Fulkerson labeling algorithm (Ford and Fulkerson 1956) which is based on
the idea of flow-augmenting chains. Given a feasible flow in a network (i.e. a flow
satisfying constraints (2.17) and (2.18)), a flow-augmenting chain from S to T is a
chain of arcs (in any orientation) such that the flow can be increased in forward arcs
and decreased in backward arcs. This concept will be illustrated with reference to
Fig. 2.8.

The two-part labels on the arcs represent the capacity and the flow respectively.
A total of seven units of flow travels from S to T. We can increase this flow along a
chain of arcs in two ways. We could take chain {(S,B), (B,C), (C,T)} made up en-
tirely of forward arcs and increase the flow by three units. The limit of the increase

44 K.A. Dowsland

Fig. 2.8 Maximum flow
principle

is three as any larger increase would violate the capacity of arc (C,T). Alternatively,
we could take the chain {(S,B), (A,B), (A,T)}, in which arc (A,B) is a backward
arc as it is oriented in the opposite direction to the chain. Using this chain we can
increase the flow by four units by increasing the flow in arcs (S,B) and (C,T) and
decreasing the flow in arc (A,B). This will have the effect of diverting four units
of flow from (A,B) to (A,T), thus allowing an additional four units to arrive at B
from S. The limit of four units derives from the fact that this will reduce the flow in
(A,B) to zero. Ford and Fulkerson proved the result that a flow is optimal if and only
if it has no flow-augmenting chain. This suggests that the maximum flow problem
can be solved by repeatedly finding a flow-augmenting chain and augmenting the
flows in the chain, until no flow-augmenting chain exists. The Ford–Fulkerson label-
ing algorithm provides a mechanism for doing this while guaranteeing to identify a
flow-augmenting chain if it exists. It builds up one or more partial chains by succes-
sively labeling nodes with a two-part label (pi,bi) where pi defines the predecessor
of node i in the chain and bi is an upper bound on the capacity of the chain up to node
i. The objective is either to reach node T in which case a flow-augmenting chain has
been found, or to terminate without reaching T, in which case no flow-augmenting
chain exists.

2.5.2.2 The Ford–Fulkerson Labeling Algorithm

For maximum flow from source S to sink T.
Notation:

• xi j is the current flow in arc (i, j)
• ui j is the capacity of arc (i, j).

Step 1. Find an initial feasible flow. (All flows = 0 will do.)
Find a flow-augmenting chain as follows.
Step 2. Label S (−,∞) and set all other nodes as unlabeled.
Step 3. Select a forward arc (i, j) from a labeled to an unlabeled node such that
ui j − xi j > 0, or select a backward arc (j, i) from an unlabeled node to a labeled
such that xi j > 0.

2 Classical Techniques 45

If no such arc exists STOP current flow is maximal.

Step 4. If forward arc label j (i, min{bi, ui j− xi j}).
If backward arc label i (− j,min{b j, xi j}).
Step 5. If T not labeled go to step 3.
Otherwise adjust flow as follows.
Step 6. Trace path back from T using labels pi to determine preceding node.
Increase flows in forward arcs on the path by bT and decrease flows in backward
arcs on the path by bT .
Step 7. Go to step 2.

We illustrate the algorithm with reference to Fig. 2.8. We start with the given
flow:

Labeling: S(−,∞), B(S,min(∞,8− 0) = 8), C(B,min(8,9− 4) = 5), T(C,min
(5,7− 4) = 3), bT = 3.

Thus we can augment the flow by three units. Using the labels pi and working
back from pT we get chain S, B, C, T. All arcs are forward so the flow is increased
by three units in each to give (S, A) seven units, (S, B) three units, (A, B) four units,
(A, T) three units, (B, C) seven units, (C, T) seven units.

Attempt to find a flow-augmenting chain given updated flows:

Labeling: S (−,∞), B(S, 5), C(B, 2), A(−B, 4), T(A, 4).

Note that in this small example we can see that labeling C will lead to a dead end.
However, we have labeled it here to show that in the general case all labeled nodes
need not appear in the final augmenting chain. The chain is given by SBAT where
the link from B to A is backward so that flow is decreased by four units on this link
and increased an all others. This gives: (S, A) seven units, (S, B) seven units, (A, B)
zero units, (A, T) seven units, (B, C) seven units, (C, T) seven units.

Attempt to find a flow-augmenting chain given updated flows:

Labeling: S (−,∞), B(S, 1), C(B, 1).

No further nodes are available for labeling. Thus the current flow of 14 units is
optimal.

2.5.3 Minimum Cost Flow Problem

2.5.3.1 Introduction

Having introduced the basic concepts via the maximum flow problem we now move
on to the more flexible model of the minimum cost flow in a closed network. This

46 K.A. Dowsland

problem consists of cyclic network, i.e. a network without a source and sink and has
upper and lower bounds on the capacities of the arcs as well as a cost associated
with each arc. The objective is to find a feasible flow in the network such that the
total cost is minimized. The LP formulation to the problem is as follows.

Let xi j, be the flow in arc (i, j), ui j the upper bound on arc (i, j), li j the lower
bound on arc (i, j) and ci j the cost:

min ∑
(i, j)∈A

ci jxi j such that ∑
(i, j)∈A

xi j− ∑
(k,i)∈A

xki = 0∀i (2.19)

xi j ≤ ui j,∀(i, j) ∈ A (2.20)

xi j ≥ li j∀(i, j) ∈ A (2.21)

xi j ≥ 0∀(i, j) ∈ A

Constraint (2.19) ensures that the flow into each node equals that flowing out, while
constraints (2.10) and (2.11) are the upper and lower bound constraints respectively.
As with the maximum flow problem this problem can be solved using the simplex
method, but there are also a number of specialist solution techniques. Here we in-
troduce one of these, the out-of-kilter algorithm.

2.5.3.2 The Out-of-Kilter Algorithm

The derivation of the out-of-kilter algorithm (Minty 1960; Fulkerson 1961) is based
on LP theory, but the algorithm can be implemented without any prior LP knowl-
edge. We associate a real number π(i) with each node i. These numbers are some-
times called node potentials and are simply the dual variables associated with the
flow balancing constraints (2.9). LP theory states that the solution is optimal if and
only if the following conditions are satisfied for each arc (i, j):

Complementary slackness or kilter conditions:

• If xi j = li j then ci j +π(i)−π(j)> 0
• If li j < xi j < ui j then ci j +π(i)−π(j) = 0
• If xi j = ui j then ci j +π(i)−π(j)< 0.

For a given arc we can represent these conditions diagrammatically by a two-
dimensional plot in which xi j is plotted on the x-axis and ci j +π(i)−π(j) is plotted
on the y-axis. The set of all points satisfying the kilter conditions form two vertical
lines defined by x = li j for y ≥ 0 and x = ui j for y ≤ 0, connected by a horizontal
line segment from (li j,0) to (ui j,0). This is called the kilter line and the diagram is
a kilter diagram. Figure 2.10 shows the six kilter diagrams relating to the arcs of the
network in Fig. 2.9.

2 Classical Techniques 47

Fig. 2.9 Minimum cost flow
problem (the three-part labels
are (li j, ui j , ci j))

The bold lines are the kilter lines. The markers on the diagrams are plots of
(xi j,ci j + π(i)−π(j)) for different flows and potentials. When the marker lies on
the kilter line the corresponding arc is said to be in kilter, if not it is said to be
out of kilter. We will refer to this figure again when we illustrate the out-of-kilter
algorithm.

The out-of-kilter algorithm works with solutions that satisfy the flow balance
constraints (2.19), but may violate the upper and lower bounds. By changing the
flows or the potentials it gradually moves each arc into kilter without moving any
other arc away from the kilter line in the process. It can be stated as follows.

Out-of-kilter algorithm for min. cost flow in a closed network:

Find an initial flow satisfying the flow balance equations and a set of node
potentials π(i)∀i. Let y(i, j) = ci j +π(i)−π(j) (note that all flows and potentials
equal to 0 will do).
If y(i, j) > 0, xmin(i, j) = min(xi j, li j), xmax = max(xi j, li j).
If y(i, j) = 0, xmin(i, j) = min(xi j, li j),xmax(i, j) = max(xi j,ui j).
If y(i, j) < 0, xmin(i, j) = min(xi j,ui j),xmax(i, j) = max(xi j ,ui j).
While any arcs out of kilter and procedure is successful do.
Attempt to update flows.
Select and out-of-kilter arc (p,q).
If x(p,q)> xmin(p,q) then set s = p, t = q, v = xpq− xmin(p,q).
If x(p,q)< xmax(p,q) then set s = q, t = p, v = xmax(p,q)− xpq.
Attempt to find a flow-augmenting chain from s to t to carry up to v additional
units of flow without using (p,q) and without exceeding xmax(i, j) in forward
arcs or falling below xmin(i, j) in backward arcs.
Note: this can be achieved by starting the labeling algorithm with s(−,v) and
respecting xmax and xmin when adjusting the flows.
If successful increase flow in the chain and increase/decrease flow in (p,q) by bt

Otherwise attempt to update node potentials as follows.
Let L be the set of all arcs (i, j) labeled at one end and not the other such that
li j ≤ xi j ≤ ui j.
For those arcs in L labeled at i: if y(i, j)> 0 set δi j = y(i, j), otherwise set δi j =∞.
For those arcs in L labeled at j: if y(i, j) < 0 set δij =−y(i, j), otherwise set
δi j = ∞.

48 K.A. Dowsland

Fig. 2.10 Kilter diagrams for Fig. 2.9 problem

2 Classical Techniques 49

Set δ= min{δi j : (i, j) ∈ L}.
If δ= 0 then stop—no feasible flow.
Otherwise set π(k) = π(k)+ δ for all unlabeled nodes and update y(i, j) for all
arcs labeled at one end and not the other.
Repeat.

When the algorithm terminates, either all the arcs are in kilter and the current
flows are optimal or no feasible solution exists.

We illustrate the algorithm with reference to the network in Fig. 2.9 and the kilter
diagrams in Fig. 2.10. Note that xmin and xmax are simply the minimum and maxi-
mum flow values that ensure that an arc never crosses or moves further away from
the kilter line in a horizontal direction and δ serves the same purpose for moves in a
vertical direction.

Initialization:

We start with all flows and potentials equal to zero. Thus ci j + π(i)− π(j) is
simply the arc cost for all arcs. This situation is given by the solid circles in Fig. 2.10.
Note that arcs (A, D) and (C, D) are already in kilter, but arc (D, A) is not, even
though its flow lies within its lower and upper bounds.
Iteration 1:

We select out-of-kilter arc (A, B).
We would like to increase the flow in this arc by three units. Thus v = 3, s = B,

t = A.
Labeling: B(−, 3), D(B, 3), A(D, 3).
Labeling has been successful. Therefore we increase flow in chain {(B, D),

(D, A)}and in arc (A, B) by three units and update xmin and xmax∀ updated arcs.
This is shown by the solid squares in Fig. 2.10.

Note that arc (A,B) is now in kilter.
Iteration 2:

Select out-of-kilter arc (B, C), s = C, t = B, v = 2.
Labeling: C(−,2) no further labeling possible as we cannot increase flow in

(C, D) without moving away from the kilter line.
L = {(C,D)} and as (C, D) is labeled at C δCD = 2. Note that this is the maximum

distance this arc can move down without leaving the kilter line.
Unlabeled nodes are A, B, D. Increase potentials on these nodes by two to give

π(A) = 2, π(B) = 2, π(C) = 0, π(D) = 2. This will change the y(i, j) values for
arcs (B, C) and (C, D) as shown by the solid triangles. Note that for (C, D) this also
changes xmax.
Iteration 3:

We try again with arc (B, C), s = C, t = B, v = 2.
Labeling: C(−,2), D(C, 2), A(D, 2) no further labeling possible as flow in (A, B)

is at full capacity and decreasing flow in (B, D) will move away from the kilter line.
L = {(A,B),(B,D)}. δAB = ∞, δBD = 3, δ= 3.

50 K.A. Dowsland

Unlabeled node B. Increase π(B) by 3 giving π(A) = 2, π(B) = 5, π(C) = 0,
π(D) = 2 and changing positions of arcs (A, B), (B, C) and (B, D) as given by the
solid diamonds. Arc (B, D) is now in kilter and has a new value for xmin.
Iteration 4:

We try again with arc (B, C) s = C, t = B, v = 2.
Labeling: C(−, 2), D(C, 2), B(−D, 2). t is labeled.
Adjust flows in chain {(C, D), (B, D)}and increase flow in (B, C) by two units as

shown by the unfilled triangles. Arc (B, C) is now in kilter.
Iteration 5:

Select only remaining out-of-kilter arc (D, A), s = A, t = D, v = 2.
Labeling; A(−, 2), D(A, 2). t is labeled. Increase flow in (D, A) and (A, D) by

two units as shown by the unfilled squares.
All arcs are in kilter, therefore solution is optimal. Flows are as given by the last

update for each arc, i.e. xAB = 3, xAD = 2, xBC = 2, xBD = 1, xCD = 2 and xDA = 5,
with a total cost of −13.

2.5.4 Other Issues

The previous sections introduced two relatively simple algorithms for the maximum
flow and minimum cost flow problems. The out-of-kilter algorithm also has the ad-
vantage that it is easy to find an initial solution as the upper and lower bounds do not
need to be satisfied. However, these are not necessarily the most efficient algorithms
in each case. For example, it possible to design pathological cases of the max flow
problem for which the number of iterations made by the Ford–Fulkerson algorithm
is only bounded by the capacity on the arcs. There are also inherent inefficiencies
in the algorithms in that subsequent iterations may need to recalculate labels al-
ready calculated in previous iterations. A more efficient algorithm is the network
simplex algorithm which can be found in Ahuja et al. (1993). The algorithm is so
called because it can be shown that the iterations used to improve an initial solution
correspond exactly to those computed by the simplex method, but the special struc-
ture of the problem means that the algorithm can be expressed purely in network
terms without recourse to the simplex tableau. For large problems the additional ef-
ficiencies of the network simplex algorithm may pay off, but for small to moderate
problems the out-of-kilter algorithm should be fast enough, and has the advantage
that it is easy to implement from scratch and that code is available from a number
of sources.

As already mentioned, the efficiency of network flow solution algorithms means
that it is worthwhile attempting to model any new problem as a network flow prob-
lem. A wide range of problems can be modeled using the two formulations already
given. However, the scope of network flow approaches is even wider when we con-
sider problems that can be modeled using the dual formulations of network flow
problems. Examples of this type of model include Mamer and Smith’s (1982) ap-
proach to an infield repair kit problem and Johnson’s (1968) open-cast mine plan-

2 Classical Techniques 51

ning problem. Even when the network model is not flexible enough to incorporate
all the constraints in a problem it may still provide an effective optimization tool.
For example Glover et al. (1982) model the problem of determining the allocation
of space on aircraft to different fare structures as a minimum cost flow problem.
Their model does not incorporate all the constraints needed to model the problem
and thus infeasible solutions may be returned. If this occurs, the solution is excluded
from the model and the solution process reiterated until a feasible solution results.
The authors comment that this was far more efficient than attempting to include all
such constraints directly into an IP model.

We have limited our focus to problems in which flows are homogeneous and there
is no gain or leakage of flow along an arc. Problems in which multiple commodities
share the arc capacities and problems where flow is not preserved along an arc have
also been widely studied. Unlike the simple problems covered here both these prob-
lems are NP-complete. Algorithms for solving such problems are beyond the scope
of this chapter but can be found in many network flow texts. Ahuja et al. (1993)
give a comprehensive treatment of network flows including models, algorithms and
practical applications.

2.6 Some Useful Models

The previous sections have outlined three general approaches to optimization prob-
lems. In this section we focus on two classes of problem that frequently occur as
subproblems in the solution of larger or more complex problems over a wide range
of application areas. In each case solution approaches based on the methods covered
in the previous sections are described.

2.6.1 Shortest-Path Problems: DP Approaches

The first class of common subproblems are those involving shortest paths. As ob-
served in Sect. 2.3.2, the branch-and-bound shortest-path algorithm presented there
is not the most efficient way of tackling such problems. In this section more effi-
cient approaches based on DP are presented. We start by considering the problem
of finding the shortest path from a source vertex s to all other vertices in a graph.

2.6.1.1 Bellman’s Shortest-Path Algorithm

This can be solved by Bellman’s shortest-path algorithm in which the stages are
defined by the number of links allowed in the path and the states are defined by
the vertices. The formulae for the starting state and the recursive relationship can be
defined as follows:

52 K.A. Dowsland

F0(v) = 0 if v = s, F0(v) = ∞ otherwise,

Fk(v) = min

{

Fk−1(v) min
w∈Qk−1,(w,v)∈E

Fk−1(w)+ cvw

}

,

where Qk is the set of vertices whose values were updated at stage k and E is the set
of links in the network.

Bellman’s shortest-path algorithm can then be stated as follows:

Set F0(v)∀v ∈V
While Qk
= /0 and k ≤ n do
Calculate Fk(v)∀v ∈V and determine Qk

End while

If Qk = /0 then Fk(v) defines the length of the shortest path from s to v∀v.
If k = n and Qk
= /0 then the network contains negative cost circuits and shortest

paths cannot be defined.
If paths from every vertex to every other are required then rather than execute

Bellman’s algorithm n times it is more efficient to use Floyd’s shortest-path algo-
rithm (Floyd 1962).

2.6.1.2 Floyd’s Shortest-Path Algorithm

This is also a DP type approach but in this case Fk(i, j) represents the shortest path
between i and j allowing only vertices 1 to k as intermediate points. The initial states
are given by F0(i, j) =Ci j, where Ci j is the cost of link (i, j), and the recursive re-
lationship by Fk(i, j) = min{Fk−1(i, j), Fk−1(i,k) + Fk−1(k, j)}. As Fk(i, i) = 0∀k
unless the network contains a negative cost circuit neither Fk(i,k) or Fk(k, j) will be
updated during iteration k. Therefore the subscript k is usually dropped in practice
and matrix F(i, j) is overwritten at each iteration. The algorithm can then be stated
as follows.

Floyd’s algorithm for the shortest path between all pairs of vertices in an arbitrary
graph:

Step 1

k = 0, F(i, j) = c(i, j)∀(i, j)
Step 2

∀k = 1,n
∀i = 1,n s.t. i
= k and F(i,k)
= ∞
∀ j = 1,n s.t. j
= k and F(k, j)
=∞
F(i, j) = min{F(i, j),F(i,k)+F(k, j)}
if F(i, i)< 0 for any i STOP. (negative cost circuit detected.)
end loops

2 Classical Techniques 53

It should be noted that if all costs are non-negative then an algorithm due to
Dijkstra (1959) is more efficient than Bellman’s algorithm. Dijkstra’s algorithm can
be found in most basic texts covering graph and network algorithms (e.g. Ahuja
et al. 1993).

2.6.2 Transportation Assignment and Transhipment Problems:

Network Flow Approaches

In this section we consider a second commonly occurring class of subproblems: the
family of transportation type problems, including the assignment and transhipment
problems. All three problems can be modeled as minimum cost flow problems. Once
the appropriate model has been derived, solutions can be obtained using the out-of-
kilter algorithm or any other minimum cost flow algorithm. The focus of this section
is therefore on defining appropriate models.

2.6.2.1 The Transportation Problem

The transportation problem is that of determining the amount of product to be sup-
plied from each of a given set of supply points to each of a given set of demand
points, given upper bounds on availability at each supplier, known demands at each
demand point and transportation costs per unit supplied by supplier i to demand
point j. The problem can be formulated as follows:

min
n

∑
i=1

m

∑
j=1

ci jxi j

s.t.
n

∑
i=1

xi j ≥ d j (2.22)

m

∑
j=1

xi j ≤ si.

We can model this problem as a minimum cost flow network by defining nodes,
arcs, lower and upper bounds and costs as follows:

Nodes:

A dummy source node S.
A dummy sink node T.
One node for each supplier, i = 1,n.
One node for each demand point j, j = 1,m.
Arcs:

An arc from each supplier node i to each demand node j with lower bound = 0,
upper bound = si and cost = ci j. Note if all ci j ≥ 0 then the upper bound
can be replaced by min{si,d j}.
An arc from S to each supplier node with lower bound = 0, upper bound = si

and cost = 0.

54 K.A. Dowsland

An arc from each demand node, j, to T with lower bound = d j upper bound
= M, where M is some suitably large number and cost = 0. Note if all ci j ≥ 0
then the upper bound can be replaced by d j.

An arc from T to S with lower bound = 0, upper bound =
n
∑

i=1
si, cost = 0.

The minimum cost flow in the network defined above will give the optimal solu-
tion to the transportation problem, and the flows in the arcs (i, j) define the value of
the variables xi j.

Many management science and operational research texts cover the stepping-
stone algorithm or MODI for the transportation problem. It is interesting to note
that the rules used by the MODI method for determining those xi j that should be
considered for increase are precisely the kilter conditions that define those arcs that
lie to the left of the kilter line in the network flow model, and that the stepping-stone
process for finding a suitable path to update the solution corresponds to finding a
flow-augmenting chain. Many texts also suggest a heuristic method known as Vo-
gel’s approximation method to obtain an initial solution. This approach can be taken
to find an initial flow in the above model, thus reducing the number of iterations re-
quired when compared with a starting solution of 0.

2.6.2.2 The Assignment and Transhipment Problems

Several relatives of the transportation problem are also encountered as subproblems.
Here we consider the assignment and transhipment problems.

The assignment problem is that of assigning tasks to resources. It is assumed
that there are n tasks and n resources and a cost ci j associated with the assignment
of task i to resource j. The objective is to assign each task to exactly one resource
and each resource to exactly one task such that the total cost of the assignments
is minimized. This problem can be regarded as a transportation problem in which
n = m and si = d j = 1∀i and ∀ j. Thus any assignment problem can be modeled
using the transportation model above with the appropriate values for si and d j.

The transhipment problem is a transportation problem in which goods may travel
from supplier to demand point via any or none of a set of intermediate points—
known as transhipment points. These points may also be supply points or demand
points in their own right. The network flow model for the transportation problem
can easily be adapted to the transhipment model by adding new nodes for the tran-
shipment points and adding arcs from each supply point and to each demand point
with appropriate bounds and transhipment costs. If a transhipment point is also a
supply point or demand point then it is also connected to S or T respectively.

2.6.2.3 Other Useful Models

The above classes of problem are two of the most frequently occurring subproblems
that can be solved using the methods covered in this chapter. Two other classes of

2 Classical Techniques 55

problem that deserve special mention are the binary and bounded knapsack prob-
lems and matching problems in bipartite graphs.

We have already presented a DP approach for the unbounded knapsack problem
in Sect. 2.3. The binary version of the problem occurs when at most one piece of
each type is available. An effective solution approach to this problem is a tree search
in which there are two branches from each node, one corresponding to fixing the
value of a variable xi at 0 and the other to fixing the same variable at 1. Upper and
lower bounds are easily obtained, simply by sorting the variables in vi/wi order and
fitting and adding each to the knapsack in turn, until the capacity exceeded. In its
basic form the algorithm is an implementation of the standard Integer Programming
branch-and-bound algorithm as discussed in Chap. 3. However, the bounds can be
improved by adding problem specific information. Martello and Toth (1990) give
details of several variants of the method and suggest a series of increasingly pow-
erful bounds. They also show how the method can be extended to the more general
case in which the variables are not binary, but are restricted by upper bounds.

Matching problems also occur widely. A matching in a graph is a set of edges no
two of which have a vertex in common. Maximum matching problems in arbitrary
graphs can be solved using the blossom algorithm due to Edmonds, and described
in Ahuja et al. (1993). However, if the graph is bipartite, i.e. the vertices can be
partitioned into two subsets such that there are no edges between any two vertices
in the same subset, then the problem can be solved more simply using network flow
type algorithms. Such models are useful in practice as bipartite graphs often appear
in allocation or scheduling problems.

2.7 Promising Areas for Future Application

In this section we outline some potential areas for the future application of the meth-
ods described in this chapter. All three approaches have been used extensively in the
solution of a broad range of problems for several decades. The increase in computer
power available to individuals and organisations since their introduction has lead to
a continuously expanding range of problems that can be solved to optimality within
a feasible amount of time. At the same time theoretical advances in potential ap-
plication areas have lead to improved bounds, once again increasing the scope of
branch-and-bound approaches. There are currently many researchers active in each
of the areas. Thus it is likely that we will continue to see new theoretical develop-
ments as well as new branch-and-bound or DP implementations for old problems
and the application of classical approaches to new practical problems. However,
there is also considerable potential for combining these techniques with some of
the more modern approaches covered elsewhere in this book. One option is to en-
hance the performance of a tree search algorithm by using a solution obtained by a
powerful heuristic to provide a good upper bound. Alternatively the techniques de-
scribed in both this chapter and Chap. 3 can be used to enhance the performance of
a heuristic approach. As evidenced by the survey article of Fernandes and Lourenço
(2007), this has developed into a popular and promising area of research. Such inte-

56 K.A. Dowsland

gration can be at one of three levels: pre- or post-processing, true hybridization and
cross-fertilization of ideas. We take a brief look at each of these in turn.

2.7.1 Pre- and Post-processing

The simplest form of integration is to use a classical approach as part of a staged
solution to a problem. Tree search approaches are often used to enumerate all the
variables required for the optimization phase of the problem. For example in crew
scheduling problems the set of feasible tours of duty satisfying all the necessary
constraints are enumerated first and then these are used as input to an optimization
algorithm, or in the case of timetabling and scheduling problems the allocation of
events to rooms may be carried out in a post-processing phase once the schedule
has been determined. In other cases pre-processing may be used to reduce the size
of the solution space. For example, Dowsland and Thompson (2000) solve a nurse
scheduling problem using tabu search. Before calling the tabu search routine they
use a tree search approach to solve a modified knapsack problem that enables them
to determine the precise number of additional nurses required to cover the weekly
demand on a ward. This allows them to minimize the size of the solution space and
to simplify the evaluation function in the tabu search part of the solution process.

2.7.2 True Hybrids

A greater degree of integration is provided by true hybrid approaches in which a
classical approach is embedded into a modern search tool or vice versa. Many re-
searchers have tried this. There are several instances of the integration of branch and
bound with genetic algorithms. For example Cotta et al. (1995) use a tree search to
find the best child from a set of possibilities given by a loosely defined crossover,
while Nagar et al. (1995) use a genetic algorithm to search out a promising set of
ranges on the values of a series of variables and then use a tree search to find the
optimal solution within the range. Classical techniques have also been embedded
into neighborhood search approaches such as simulated annealing, tabu search and
variable-depth search. For example, there are many problems in which the variables
can be partitioned into two sets, A and B, such that if the values of A are fixed the
problem of optimizing B reduces to a network flow problem. The size of the solu-
tion space can be reduced to cover only the variables in A, with each solution being
completed by solving for the variables in B. Network flow type problems are espe-
cially amenable to this sort of role, as neighborhood moves will typically involve
changing a cost or bound, or adding or deleting an arc. All of these changes can
be accommodated in the out-of-kilter algorithm using the previous solution to ini-
tialize the solution process for its neighbor(s), thus minimizing the computational
effort in resolving each new subproblem. Examples of this type of strategy include

2 Classical Techniques 57

Hindi et al. (2003) who solve transhipment subproblems to complete solutions in
their variable depth search approach to the lot sizing problem, and Dowsland and
Thompson (2000) who use a network flow problem to allocate nurses on days to
the morning or afternoon shifts. This reduces the number of variables in the search
space for each nurse by up to a factor of 32.

As discussed in other chapters, many neighborhood searches can be improved
by extending the size of the neighborhood. One way of doing this is to introduce
chains of moves. Rather than select a chain at random or enumerate all chains in
the neighborhood, it makes sense to find optimal or improving chains directly using
some form of shortest-path algorithm. For example, Dowsland (1998) uses a mix-
ture of tree search and Floyd’s algorithm to find improving chains of moves for a
nurse scheduling problem. More recently, Abdullah et al. (2007) have used a similar
strategy in a tabu search solution to a timetabling problem. Other forms of com-
pound moves may not involve chains. In such cases other techniques can be used to
find optimal moves. For example, Potts and van de Velde (1995) use DP to search
for good moves in neighborhoods made up of multiple swaps for the TSP. Gutin
(1999) also considers the TSP but utilizes a bipartite matching problem in order to
determine the best option from a neighborhood defined by removing and reinsert-
ing k vertices in the tour. Other researchers have worked with this neighborhood for
different definitions of k. Further examples can be found in Ahuja et al. (2002).

2.7.3 Cross-fertilization

As well as true hybrids such as those outlined above there are also examples of
cross-fertilization of ideas in which an ingredient from a classical approach has been
embedded into a more modern method. One example is the incorporation of bounds
into a heuristic search in order to avoid or leave non-promising areas of the solution
space. Hindi et al. (2003) use this strategy in their variable depth approach to avoid
wasting time in solving transhipment problems to complete solutions that can be
shown to be bounded, while (Dowsland 1998) uses bounds in combination with a
tabu list to avoid wasting time in areas of the search space that cannot lead to a better
solution than the best found so far. Similar approaches have been taken with genetic
algorithms by Tamura et al. (1994) and Dowsland et al. (2006) who use mutation
and crossover respectively to destroy partial solutions that exceed a tree search type
bound. A second example of cross-fertilization is in the use of ejection chains, a
concept suggested by Glover and Laguna (1997) which is a generalization of alter-
nating chains—a term used for the way in which flow is updated in certain classes
of network flow problems.

58 K.A. Dowsland

2.8 Tricks of the Trade

2.8.1 Introduction

For newcomers to the field the prospect of applying any of the above techniques to
a given problem can appear daunting. This section suggests a few tips on overcom-
ing this feeling and getting started on a basic implementation, and then going on
to identify possible areas for algorithm improvement. We start with a few general
observations that apply to all three techniques and follow this with more specialist
advice for each of the techniques in turn.

1. Get a basic understanding of the technique and how it might be applied to a
given problem. This involves reading suitable books and articles. Due to the rel-
atively long history of the techniques covered in this chapter there is a wealth
of introductory material available. Although some of the seminal material and/or
early texts in each field provide valuable insights and technical detail they often
use specialist terminology and can be difficult to understand. Therefore they are
probably best left until some practical experience has been gained, and the best
place to start would be one of the more up-to-date texts given in the References
and Sources of Additional Information at the end of this chapter. These will pro-
vide a thorough background but may not include examples that are closely related
to the reader’s own problem. It is therefore desirable to supplement these sources
with journal articles related to the relevant application area.

2. Don’t reinvent the wheel. There are many published articles describing imple-
mentations of these techniques to classical combinatorial optimization problems.
If your problem can be formulated as, or is closely related to, one of these prob-
lems then it is likely that an effective implementation has already been published,
and in many cases suitable code may also be readily available. Sometimes the
relationship to a classical problem is obvious from the problem definition, but
this is not always the case. It is therefore well worth considering different ways
of modeling a problem e.g. using graph-theoretic models or trying different LP
type formulations and comparing these with well-known classical problems.

3. Don’t be too pessimistic. Although the complexity of most branch and bound and
dynamic programming algorithms is likely to be exponential (or at best pseudo-
polynomial) they can still be effective tools for solving moderately sized prob-
lems to optimality, and may well compete with the more modern methods de-
scribed later in this book when used as heuristics. While there may be many
good practical reasons for selecting a heuristic rather than an exact approach to a
problem, many real-life NP-hard problems have proved amenable to solution by
both branch and bound and dynamic programming. However, this may require a
little ingenuity on the part of the algorithm designer. If the initial implementation
seems too slow or memory intensive it is well worth spending some time and
effort trying to make improvements. The situation with regard to network flow
programming is somewhat different in that the simple models covered in detail in

2 Classical Techniques 59

this chapter can all be solved to guaranteed optimality in polynomial time and are
the obvious first choice approaches for problems that have the required structure.

2.8.2 Tips for Branch and Bound

The issues arising in developing and implementing a branch and bound approach
can be broadly divided into three categories:

1. Representations. For most problems there are several different potential tree
search representations and search strategies each of which will impact differ-
ently on solution time and quality. In order to appreciate this it is worth reading
articles that use different representations for the same problem. Before starting
to code any implementation think about what you have read in relation to your
own problem. You should also think about whether you want to apply a depth-
first search or if there may be advantages in a more memory-intensive breadth or
best-first search.

2. Coding. Although it is relatively easy for a beginner to construct a tree search on
paper it can be difficult to translate this into computer code. We therefore recom-
mend finding code or detailed pseudo-code for a similar tree structure to the one
you are planning on and using it as a template for your own program structure. It
is also often helpful to code the three operations of branching, backtracking and
checking the bounding conditions separately. It is also a good idea to start with
very simple bounds and a branching strategy based on a natural ordering of the
vertices and test on a small problem, building up more sophisticated bounds and
branching strategies as necessary.

3. Performance. Once the basic code is working the following pointers will help in
getting the best out of an implementation.

Analyze the time taken to calculate the bounds and their effectiveness in cut-
ting branches and consider how the trade-off influences overall computation time.
While computationally expensive bounds or branching strategies are likely to in-
crease solution times for small problems they may well come into their own as
problem size grows.

In the same way as it is important to test heuristics for solution quality on
problem instances that closely match those on which they are to be used in terms
of both problem size and characteristics, so it is important to ensure that a branch
and bound approach will converge within a realistic time-scale on typical prob-
lem instances.

Remember that branch and bound can be used as a heuristic approach, either
by stopping after a given time or by strengthening the bound to search for solu-
tions that improve on the best so far by at least α%. In this case it is important
to consider whether you want to bias the search towards finding good solutions
early or precipitating the bounding conditions earlier.

60 K.A. Dowsland

2.8.3 Tips for Dynamic Programming

Due to its generality, getting started with dynamic programming can be difficult but
the following pointers may be of assistance:

1. Representation. When faced with a new problem simply deciding on the defini-
tion of stages and states that form the basis of a correct dynamic programm-
ing formulation can be difficult, and access to a successful formulation to a
similar problem can be invaluable. As a starting point it is worth considering
if the problem can be classified as a multi-period optimization problem, routing
problem, or knapsack type problem. If so then there are a wealth of examples in
standard texts or journal articles that should help.

Remember that the objective is to produce something that is considerably
more efficient than complete enumeration. Therefore it is important to ensure that
the calculations relating to the first stage are trivial, and that there is a relatively
simple recursive relationship that can be used to move from one stage to the next.
If there is no apparent solution when defining the stages in a forwards direction
then consider the possibility of backward recursion.

2. Performance. DP can be expensive both in terms of computational time and stor-
age requirements and the main cause of this is the number of states. Therefore
once a basic structure has been determined it is worthwhile considering ways
of cutting down on the number of states that need to be evaluated. It is also
worthwhile ensuring that only those stages/states that may be required for future
reference be stored. If the environment requires the solution of several similar
problems—e.g. if the DP is being used to calculate bounds or optimize large
neighborhoods—consider whether or not the different problems could all be re-
garded as subproblems of one large problem, thereby necessitating just one DP
to be solved as a pre-processing stage. As with branch and bound it is important
to ensure that the time and memory available are sufficient for typical problem
instances.

2.8.4 Tips for Network Flow Programming

The problems facing a beginner with network flow programming are different in
that there are standard solution algorithms available off-the-peg, so that the only
skill involved is that of modeling. Because these algorithms are readily available
and operate in polynomial time then it is certainly worth considering whether any
new problem might be amenable to modeling in this way. Some tips for recognizing
such problems are given below.

If the problem involves physical flows through physical networks then the model
is usually obvious. However, remember that network flow models simply define an
abstract structure that can applied to a variety of other problems. Typical pointers
to possible network flow models are allocation problems (where flow from i to j

2 Classical Techniques 61

represents the fact that i is allocated to j), sequencing problems (where flow from
i to j represents the fact that i is a predecessor of j), and problems involving the
selection of cells in matrices where flow from (i to j represents the selection of cell
(i, j)). However, this list is by no means exhaustive.

Other tips for modeling problems as network flows are to remember that network
links usually represent important problem variables and that even if the given prob-
lem does not have an obvious network flow structure the dual problem might. In
addition, although typical practical problems will be too large and complex to draw
the whole network it is worthwhile making a simplified sketch of potential nodes
and links. If the problem has complexities such as hierarchies of resources, multiple
pricing structures etc. this may be facilitated by simplifying the problem first and
then trying to expand it without compromising the network flow structure.

2.9 Conclusions

Although the classical techniques described in this chapter were developed to meet
the challenges of optimization within the context of the computer technology of
the 1950s they are still applicable today. The rapid rate of increase of computing
power per unit cost in the intervening years has obviously meant a vast increase
in the size of problems that can be tackled. However, this is not the sole reason
for the increase. Research into ways of improving efficiency has been continuous
both on a problem-specific and generic basis—for example all the techniques lend
themselves well to parallelization. Nevertheless, they do have drawbacks. The scope
of network flow programming is limited to problems with a given structure, while
the more general methods of branch and bound and DP may require vast amounts
of computer resource. DP solutions to new problems are often difficult to develop,
and it may not be easy to find good bounds for a branch-and-bound approach to
messy practical problems. Hence the need for the more recent techniques described
elsewhere in this volume.

However, it should be noted that these techniques have not eclipsed the classi-
cal approaches, and there are many problems for which one of the techniques de-
scribed here is still the best approach. Where this is not the case and a more modern
approach is appropriate it is still possible that some form of hybrid may enhance
performance by using the strengths of one approach to minimize the weaknesses of
another.

Sources of Additional Information

Basic material on dynamic programming and network flows can be found in most
undergraduate texts in management science and OR. Their treatment of branch and
bound tends to be limited to integer programming. The generic version of branch

62 K.A. Dowsland

and bound covered in this chapter can be found in most texts on combinatorial al-
gorithms/optimization, or in subject-oriented texts (e.g. algorithmic graph theory,
knapsack problems).

Below are a small sample of relevant sources of information:

• http://www2.informs.org/Resources/ (INFORMS OR/MS Resource Collection—
links to B&B, DP and Network Flow sources)

• http://people.brunel.ac.uk/mastjjb/jeb/or/contents.html (J. Beasley, Imperial
College)

• http://jorlin.scripts.mit.edu/ (J. Orlin, MIT)
• http://math.illinoisstate.edu/sennott/ (Sennott 1998)
• http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-

introduction-to-algorithms-sma-5503-fall-2005/ (Lectures and Videos on DP
and other algorithms)

• http://en.wikipedia.org/wiki/Dynamic_programming
• http://en.wikipedia.org/wiki/Branch_and_bound
• Bather, J. (2000). Decision Theory: An Introduction to Dynamic Programming

and Sequential Decisions. Wiley.
• Bellman, R. (2003). Dynamic Programming. Dover Publications.
• Christofides, N. (1975). Graph Theory—An Algorithmic Approach. Academic

Press.
• Hu, T. C. (1981). Combinatorial Algorithms. Addison-Wesley.
• Lawler, E. L. et al. (1990). The Travelling Salesman Problem. Wiley.
• Nemhauser, G. L., Wolsey, L. A. (1988). Integer and Combinatorial Optimisation.

Wiley.
• Papadimitriou, C. H. (1982). Combinatorial Optimisation: Algorithms and

Complexity. Prentice-Hall.
• Reingold, E. M. et al. (1977). Combinatorial Algorithms. Prentice-Hall.
• Sennott, L. I. (1998). Stochastic Dynamic Programming, Wiley.
• Taha, H. A. (2002). Operations Research. Prentice-Hall.

References

Abdullah S, Ahmadi S, Burke EK, Dror M and Mc Collum B (2007) A tabu-
based large neighbourhood search methodology for the capacitated examination
timetabling problem. J Oper Res Soc 58:1494–1502

Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows: theory, algorithms and
applications. Prentice-Hall, Englewood Cliffs

Ahuja RK, Ergun O, Orlin JB, Punnen AO (2002) A survey of very large-scale
neighbourhood search techniques. Discret Appl Math 123:75–102

Anderson DR, Sweeney DJ, Williams TA (1997) Introduction to management
science: quantitative approaches to decision making. West Publishing, Eagan

Balakrishnan VK (1997) Schaum’s outline of graph theory (Schaum’s Outline
Series). Schaum Publishers, Mequon

http://www2.informs.org/Resources/
http://people.brunel.ac.uk/ mastjjb/jeb/or/contents.html
http://jorlin.scripts.mit.edu/
http://math.illinoisstate.edu/sennott/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-
introduction-to-algorithms-sma-5503-fall-2005/
http://en.wikipedia.org/wiki/Dynamic_programming
http://en.wikipedia.org/wiki/Branch_and_bound

2 Classical Techniques 63

Balas E, Christofides N (1981) A restricted Lagrangian approach to the travelling
salesman problem. Math Prog 21:19–46

Beasley JE (1985) An exact two-dimensional non-guillotine cutting tree-search
procedure. Oper Res 33:49–64

Bellman R (1957) Dynamic programming. Princeton University Press, Princeton
Bouzaher A, Braden JB, Johnson GV (1990) A dynamic programming approach to

a class of non-point source pollution control problems. Manage Sci 36:1–15
Bron C, Kerbosch J (1973) Finding all cliques of an un-directed graph—alg 457.

Commun ACM 16:575–577
Brown JR (1972) Chromatic scheduling and the chromatic number problem.

Manage Sci 19:456–463
Christofides N, Whitlock C (1977) An algorithm for two-dimensional cutting

problems. Oper Res 25:30–44
Clarke SR, Norman JM (1999) To run or not?: some dynamic programming models

in cricket. J Oper Res Soc 50:536–545
Cotta C, Aldana JF, Nebro AJ, Troya JM (1995) Hybridising genetic algorithms

with branch and bound techniques for the resolution of the TSP. In: Poras CC et al
(eds) Proceedings of the international conference on artificial neural networks and
genetic algorithms, Ales, pp 277–280

Dantzig GB (1951) Maximization of a linear function of variables subject to linear
inequalities. In: Koopmans TC (ed) Activity analysis of production and alloca-
tion. Wiley, New York

Dijkstra EW (1959) A note on two problems in connection with graphs. Numer
Math 1:269

Dowsland KA (1987) An exact algorithm for the pallet loading problems. EJOR
31:78–84

Dowsland KA (1998) Nurse scheduling with tabu search and strategic oscillation.
EJOR 106:393–407

Dowsland KA, Thompson JM (2000) Solving a nurse scheduling problem with
knapsacks, networks and tabu search. J Oper Res Soc 51:825–833

Dowsland KA, Herbert EA, Kendall G (2006) Using tree search bounds to en-
hance a genetic algorithm approach to two rectangle packing problems. EJOR
168:390–402

Erlenkotter D (1978) A dual-based procedure for uncapacitated facility location.
Oper Res 26:992–1009

Fernandes S, Lourenço HR (2007) Hybrids combining local search heuristics with
exact algorithms. In: Rodriguez F, Mélian B, Moreno JA, Moreno JM (eds) Proc
V Congreso Español sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspira-
dos, MAEB’2007, Tenerife, 14–16 Feb 2007, pp 269–274

Findlay PL, Kobbacy KAH, Goodman DJ (1989) Optimisation of the daily
production rates for an offshore oil field. J Oper Res Soc 40:1079–1088

Fisher ML (1985) An applications oriented guide to Lagrangian relaxation.
Interfaces 15:10–21

Floyd RW (1962) Algorithm 97—shortest path. Commun ACM 5:345

64 K.A. Dowsland

Ford LR, Fulkerson DR (1956) Maximal flow through a network. Can J Math
18:399–404

Fulkerson DR (1961) An out-of-kilter method for minimal cost flow problems.
SIAM J Appl Math 9:18–27

Garfinkel RS, Nemhauser GL (1969) The set partitioning problem: set covering with
equality constraints. Oper Res 17:848–856

Glover F, Laguna M (1997) Tabu search. Kluwer, Dordrecht
Glover F, Glover R, Lorenzo J, Mcmillan C (1982) The passenger mix problem in

the scheduled airlines. Interfaces 12:73–79
Golumbic MC (1980) Algorithmic graph theory and perfect graphs. Academic,

New York
Gutin GM (1999) Exponential neighbourhood local search for the travelling

salesman problem. Comput OR 26, 313–320
Hayes M, Norman JM (1984) Dynamic programming in orienteering—route choice

and the siting of controls. J Oper Res Soc 35:791–796
Held M, Karp RM (1970) The travelling salesman problem and minimum spanning

trees. Oper Res 18:1138–1162
Hindi KS, Fleszar K, Charalambous C (2003) An effective heuristic for the CLSP

with setup times. J Oper Res Soc 54:490–498
Jarvinen P, Rajala J, Sinervo H (1972) A branch and bound algorithm for seeking

the p-median. Oper Res 20:173
Johnson TB (1968) Optimum pit mine production scheduling. Technical report,

University of California, Berkeley
Kamarkar NK (1984) A new polynomial-time algorithm for linear programming.

Combinatorica 4:373–395
Khachiyan LG (1979) A polynomial algorithm in linear programming. Dokl

Akad Nauk SSSR 244:1093–1096 (in Russian) (English transl.: Sov Math Dokl
20:191–194(1979))

Little JDC, Murty KG, Sweeney DW, Karel C (1963) An algorithm for the travelling
salesman problem. Oper Res 11:972–989

Martello S, Toth P (1981) A branch and bound algorithm for the zero-one multiple
knapsack problem. Discret Appl Math 3:275–288

Martello S, Toth P (1990) Knapsack problems: algorithms and computer implemen-
tations. Wiley, New York

Mamer JW, Smith SA (1982) Optimising field repair kits based on job completion
rate. Manage Sci 28:1328–1334

Minty GJ (1960) Monotone networks. Proc R Soc 257A:194–212
Nagar A, Heragu SS, Haddock J (1995) A meta-heuristic algorithm for a bi-criteria

scheduling problem. Ann OR 63:397–414
Potts CN, van de Velde SL (1995) Dynasearch—iterative local improvement by

dynamic programming. Part 1: the TSP. Technical report, University of Twente
Ross GT, Soland RM (1975) A branch and bound algorithm for the generalised

assignment problem. Math Prog 8:91–103

2 Classical Techniques 65

Tamura H, Hirahara A, Hatono I, Umano M (1994) An approximate solution
method for combinatorial optimisation—hybrid approach of genetic algorithm
and Lagrangian relaxation method. Trans Soc Instrum Control Eng 130:329–336

Zykov AA (1949) On some properties of linear complexes. Math Sb 24:163–188

Chapter 3

Integer Programming

Robert Bosch and Michael Trick

3.1 Introduction

Over the last 25 years, the combination of faster computers, more reliable data
and improved algorithms has resulted in the near-routine solution of many inte-
ger programs of practical interest. Integer programming models are used in a wide
variety of applications, including scheduling, resource assignment, planning, sup-
ply chain design, auction design, and many, many others. In this tutorial, we outline
some of the major themes involved in creating and solving integer programming
models.

The foundation of much of analytical decision making is linear programming.
In a linear program, there are variables, constraints, and an objective function.
The variables, or decisions, take on numerical values. Constraints are used to limit
the values to a feasible region. These constraints must be linear in the decision
variables. The objective function then defines which particular assignment of fea-
sible values to the variables is optimal: it is the one that maximizes (or minimizes,
depending on the type of the objective) the objective function. The objective func-
tion must also be linear in the variables.

Linear programs can model many problems of practical interest, and modern
linear programming optimization codes can find optimal solutions to problems
with hundreds of thousands of constraints and variables. It is this combination of
modeling strength and solvability that makes linear programming so important.

Integer programming adds additional constraints to linear programming. An int-
eger program begins with a linear program, and adds the requirement that some or
all of the variables take on integer values. This seemingly innocuous change greatly

R. Bosch
Oberlin College, Oberlin, OH, USA

M. Trick (�)
Carnegie Mellon University, Pittsburgh, PA, USA
e-mail: trick@cmu.edu

E.K. Burke and G. Kendall (eds.), Search Methodologies: Introductory Tutorials
in Optimization and Decision Support Techniques, DOI 10.1007/978-1-4614-6940-7_3,
© Springer Science+Business Media New York 2014

67

mailto:trick@cmu.edu

68 R. Bosch and M. Trick

increases the number of problems that can be modeled, but also makes the models
more difficult to solve. In fact, one frustrating aspect of integer programming is
that two seemingly similar formulations for the same problem can lead to radically
different computational experience: one formulation may quickly lead to optimal
solutions, while the other may take an excessively long time to solve.

There are many keys to successfully developing and solving integer programming
models. We consider the following aspects:

• Be creative in formulations
• Find integer programming formulations with a strong relaxation
• Avoid symmetry
• Consider formulations with many constraints
• Consider formulations with many variables
• Modify branch-and-bound search parameters.

To fix ideas, we will introduce a particular integer programming model, and show
how the main integer programming algorithm, branch-and-bound, operates on that
model. We will then use this model to illustrate the key ideas to successful integer
programming.

3.1.1 Facility Location

We consider a facility location problem. A chemical company owns four factories
that manufacture a certain chemical in raw form. The company would like to get into
the business of refining the chemical. It is interested in building refining facilities,
and it has identified three possible sites. The table below contains variable costs,
fixed costs, and weekly capacities for the three possible refining facility sites, and
weekly production amounts for each factory. The variable costs are in dollars per
week and include transportation costs. The fixed costs are in dollars per year. The
production amounts and capacities are in tonnes per week.

Site
Var. cost 1 2 3 Prod.
Factory 1 25 20 15 1,000

Factory 2 15 25 20 1,000

Factory 3 20 15 25 500

Factory 4 25 15 15 500

Fixed cost 500,000 500,000 500,000

Capacity 1,500 1,500 1,500

The decision maker who faces this problem must answer two very different types
of questions: questions that require numerical answers (e.g. how many tonnes of
chemical should factory i send to the site- j refining facility each week?) and ques-
tions that require yes–no answers (e.g. should the site- j facility be constructed?).
While we can easily model the first type of question by using continuous decision
variables (by letting xi j equal the number of tonnes of chemical sent from factory

3 Integer Programming 69

i to site j each week), we cannot do this with the second. We need to use integer
variables. If we let y j equal 1 if the site- j refining facility is constructed and 0 if it
isn’t, we quickly arrive at an integer programming formulation of the problem:

minimize 52 ·25x11+ 52 ·20x12+ 52 ·15x13

+ 52 ·15x21+ 52 ·25x22+ 52 ·20x23

+ 52 ·20x31+ 52 ·15x32+ 52 ·25x33

+ 52 ·25x41+ 52 ·15x42+ 52 ·15x43

+ 500,000y1+ 500,000y2 + 500,000y3

subject to x11 + x12 + x13 = 1,000
x21 + x22 + x23 = 1,000
x31 + x32 + x33 = 500
x41 + x42 + x43 = 500

x11 + x21 + x31 + x41 ≤ 1,500y1

x12 + x22 + x32 + x42 ≤ 1,500y2

x13 + x23 + x33 + x43 ≤ 1,500y3

xi j ≥ 0 for all i and j

y j ∈ {0,1} for all j.

The objective is to minimize the yearly cost, the sum of the variable costs (which
are measured in dollars per week) and the fixed costs (which are measured in dollars
per year). The first set of constraints ensures that each factory’s weekly chemical
production is sent somewhere for refining. Since factory 1 produces 1,000 tonnes
of chemical per week, factory 1 must ship a total of 1,000 tonnes of chemical to
the various refining facilities each week. The second set of constraints guarantees
two things: (1) if a facility it open, it will operate at or below its capacity, and
(2) if a facility is not open, it will not operate at all. If the site-1 facility is open
(y1 = 1) then the factories can send it up to 1,500y1 = 1,500× 1 = 1,500 tonnes of
chemical per week. If it is not open (y1 = 0), then the factories can send it up to
1,500y1 = 1,500× 0= 0 tonnes per week.

This introductory example demonstrates the need for integer variables. It also
shows that with integer variables one can model simple logical requirements (if a
facility is open, it can refine up to a certain amount of chemical; if not, it can’t do any
refining at all). It turns out that with integer variables one can model a whole host
of logical requirements. One can also model fixed costs, sequencing and scheduling
requirements, and many other problem aspects.

3.1.2 Solving the Facility Location IP

Given an integer program (IP), there is an associated linear program (LR) called
the linear relaxation. It is formed by dropping (relaxing) the integrality restrictions.
Since (LR) is less constrained than (IP), the following are immediate:

• If (IP) is a minimization problem, the optimal objective value of (LR) is less than
or equal to the optimal objective value of (IP).

70 R. Bosch and M. Trick

• If (IP) is a maximization problem, the optimal objective value of (LR) is greater
than or equal to the optimal objective value of (IP).

• If (LR) is infeasible, then so is (IP).
• If all the variables in an optimal solution of (LR) are integer valued, then that

solution is optimal for (IP) too.
• If the objective function coefficients are integer valued, then for minimization

problems the optimal objective value of (IP) is greater than or equal to the ceiling
of the optimal objective value of (LR). For maximization problems, the optimal
objective value of (IP) is less than or equal to the floor of the optimal objective
value of (LR).

In summary, solving (LR) can be quite useful: it provides a bound on the optimal
value of (IP), and may (if we are lucky) give an optimal solution to (IP).

For the remainder of this section, we will let (IP) stand for the facility location
integer program and (LR) for its linear programming relaxation. When we solve
(LR), we get

y1 y2 y3

x41 x42 x43

x31 x32 x33

x21 x22 x23

x11 x12 x13

Objective

=

2
3

2
3

2
3

· 500 ·
· 500 ·

1,000 · ·
· · 1,000

3,340,000

This solution has factory 1 send all 1,000 tonnes of its chemical to site 3, factory 2
send all 1,000 tonnes of its chemical to site 1, factory 3 send all 500 tonnes to site
2, and factory 4 send all 500 tonnes to site 2. It constructs two-thirds of a refining
facility at each site. Although it costs only 3,340,000 dollars per year, it cannot be
implemented; all three of its integer variables take on fractional values.

It is tempting to try to produce a feasible solution by rounding. Here, if we round
y1, y2 and y3 from 2/3 to 1, we get lucky (this is certainly not always the case!) and
get an integer feasible solution. Although we can state that this is a good solution—
its objective value of 3,840,000 is within 15% of the objective value of (LR) and
hence within 15% of optimal—we can’t be sure that it is optimal.

So how can we find an optimal solution to (IP)? Examining the optimal solution
to (LR), we see that y1, y2 and y3 are fractional. We want to force y1, y2 and y3 to be
integer valued. We start by branching on y1, creating two new integer programming
problems. In one, we add the constraint y1 = 0. In the other, we will add the con-
straint y1 = 1. Note that any optimal solution to (IP) must be feasible for one of the
two subproblems.

After we solve the linear programming relaxations of the two subproblems, we
can display what we know in a tree, as shown in Fig. 3.1.

Note that the optimal solution to the left subproblem’s LP relaxation is integer
valued. It is therefore an optimal solution to the left subproblem. Since there is no
point in doing anything more with the left subproblem, we mark it with an “×” and
focus our attention on the right subproblem.

3 Integer Programming 71

Fig. 3.1 Intermediate branch-and-bound tree

Both y2 and y3 are fractional in the optimal solution to the right subproblem’s
LP relaxation. We want to force both variables to be integer valued. Although we
could branch on either variable, we will branch on y2. That is, we will create two
more subproblems, one with y2 = 0 and the other with y2 = 1. After we solve the
LP relaxations, we can update our tree, as in Fig. 3.2.

Note that we can immediately “× out” the left subproblem; the optimal solution
to its LP relaxation is integer valued. In addition, by employing a bounding argu-
ment, we can also “× out” the right subproblem. The argument goes like this: Since
the objective value of its LP relaxation (3,636,666 2

3) is greater than the objective
value of our newly found integer feasible solution (3,470,000), the optimal value of
the right subproblem must be higher than (worse than) the objective value of our
newly found integer feasible solution. So there is no point in expending any more
effort on the right subproblem.

Since there are no active subproblems (subproblems that require branching), we
are done. We have found an optimal solution to (IP). The optimal solution has fac-
tories 2 and 3 use the site-1 refining facility and factories 1 and 4 use the site-3
facility. The site-1 and site-3 facilities are constructed. The site-2 facility is not. The
optimal solution costs 3,470,000 dollars per year, 370,000 dollars per year less than
the solution obtained by rounding the solution to (LR).

This method is called branch and bound, and is the most common method for
finding solutions to integer programming formulations.

72 R. Bosch and M. Trick

2
3

2
3

2
3

500

500

1000

1000

3340 000

y1=0 y1=1

1 1

500

500

500 500

1000

3730 000

1
1

3

2

3

500

500

1000

1000

3470 000

×

y2=0 y2=1

1 1

500

500

1000

1000

3470 000

1 1
1
3

500

500

1000

500 500

3636 666 2

3

××

Fig. 3.2 Final branch-and-bound tree

3.1.3 Difficulties with Integer Programs

While we were able to get the optimal solution to the example integer program
relatively quickly, it is not always the case that branch and bound quickly solves
integer programs. In particular, it is possible that the bounding aspects of branch
and bound are not invoked, and the branch and bound algorithm can then generate a
huge number of subproblems. In the worst case, a problem with n binary variables
(variables that have to take on the value 0 or 1) can have 2n subproblems. This expo-
nential growth is inherent in any algorithm for integer programming (unless P=NP)
due to the range of problems that can be formulated within integer programming.

Despite the possibility of extreme computation time, there are a number of tech-
niques that have been developed to increase the likelihood of finding optimal solu-
tions quickly. After we discuss creativity in formulations, we will discuss some of
these techniques.

3 Integer Programming 73

3.2 Be Creative in Formulations

At first, it may seem that integer programming does not offer much over linear
programming: both require linear objectives and constraints, and both have numer-
ical variables. Can requiring some of the variables to take on integer values sig-
nificantly expand the capability of the models? Absolutely . . . integer programming
models go far beyond the power of linear programming models. The key is the cre-
ative use of integrality to model a wide range of common structures in models. Here
we outline some of the major uses of integer variables.

3.2.1 Integer Quantities

The most obvious use of integer variables is when an integer quantity of a good is
required. For instance, in a production model involving television sets, an integral
number of television sets might be required. Or, in a personnel assignment problem,
an integer number of workers might be assigned to a shift.

This use of integer variables is the most obvious, and the most over-used. For
many applications, the added “accuracy” in requiring integer variables is far out-
weighed by the greater difficulty in finding the optimal solution. For instance, in
the production example, if the number of televisions produced is in the hundreds
(say the fractional optimal solution is 202.7) then having a plan with the rounded-
off value (203 in this example) is likely appropriate in practice. The uncertainty of
the data almost certainly means that no production plan is accurate to four figures!
Similarly, if the personnel assignment problem is for a large enterprise over a year,
and the linear programming model suggests 154.5 people are required, it is proba-
bly not worthwhile to invoke an integer programming model in order to handle the
fractional parts.

However, there are times when integer quantities are required. A production sys-
tem that can produce either two or three aircraft carriers and a personnel assignment
problem for small teams of five or six people are examples. In these cases, the addi-
tion of the integrality constraint can mean the difference between useful models and
irrelevant models.

3.2.2 Binary Decisions

Perhaps the most used type of integer variable is the binary variable: an integer
variable restricted to take on the values 0 or 1. We will see a number of uses of these
variables. Our first example is in modeling binary decisions.

Many practical decisions can be seen as “yes” or “no” decisions: should we con-
struct a chemical refining facility in site j (as in the introduction), should we invest
in project B, should we start producing new product Y? For many of these decisions,

74 R. Bosch and M. Trick

a binary integer programming model is appropriate. In such a model, each decision
is modeled with a binary variable: setting the variable equal to 1 corresponds to
making the “yes” decision, while setting it to 0 corresponds to going with the “no”
decision. Constraints are then formed to correspond to the effects of the decision.

As an example, suppose we need to choose among projects A, B, C and D. Each
project has a capital requirement ($1, $2.5, $4 and $5 million respectively) and an
expected return (say, $3, $6, $13 and $16 million). If we have $7 million to invest,
which projects should we take on in order to maximize our expected return?

We can formulate this problem with binary variables xA,xB,xC and xD repre-
senting the decision to take on the corresponding project. The effect of taking on
a project is to use up some of the funds we have available to invest. Therefore, we
have a constraint

xA + 2.5xB+ 4xC + 5xD ≤ 7.

Our objective is to maximize the expected profit:

Maximize 3xA + 6xB + 13xC + 16xD.

In this case, binary variables let us make the “yes–no” decision on whether to invest
in each fund, with a constraint ensuring that our overall decisions are consistent
with our budget. Without integer variables, the solution to our model would have
fractional parts of projects, which may not be in keeping with the needs of the model.

3.2.3 Fixed-Charge Requirements

In many production applications, the cost of producing x of an item is roughly linear
except for the special case of producing no items. In that case, there are additional
savings since no equipment or other items need be procured for the production. This
leads to a fixed-charge structure. The cost for producing x of an item is

• 0, if x = 0
• c1 + c2x, if x > 0 for constants c1,c2.

This type of cost structure is impossible to embed in a linear program. With
integer programming, however, we can introduce a new binary variable y. The value
y= 1 is interpreted as having non-zero production, while y= 0 means no production.
The objective function for these variables then becomes

c1y+ c2x,

which is appropriately linear in the variables. It is necessary, however, to add con-
straints that link the x and y variables. Otherwise, the solution might be y = 0 and
x = 10, which we do not want. If there is an upper bound M on how large x can be
(perhaps derived from other constraints), then the constraint

x≤My

3 Integer Programming 75

correctly links the two variables. If y= 0 then x must equal 0; if y= 1 then x can take
on any value. Technically, it is possible to have the values x = 0 and y = 1 with this
formulation, but as long as this is modeling a fixed cost (rather than a fixed profit),
this will not be an optimal (cost minimizing) solution.

This use of “M” values is common in integer programming, and the result is
called a Big-M model. Big-M models are often difficult to solve, for reasons we
will see.

We saw this fixed-charge modeling approach in our initial facility location
example. There, the y variables corresponded to opening a refining facility (incur-
ring a fixed cost). The x variables correspond to assigning a factory to the refining
facility, and there was an upper bound on the volume of raw material a refinery
could handle.

3.2.4 Logical Constraints

Binary variables can also be used to model complicated logical constraints, a
capability not available in linear programming. In a facility location problem with
binary variables y1,y2,y3,y4 and y5 corresponding to the decisions to open ware-
houses at locations 1, 2, 3, 4 and 5 respectively, complicated relationships between
the warehouses can be modeled with linear functions of the y variables. Here are a
few examples:

• At most one of locations 1 and 2 can be opened: y1 + y2 ≤ 1
• Location 3 can only be opened if location 1 is: y3 ≤ y1

• Location 4 cannot be opened if locations 2 or 3 are: y4 + y2 ≤ 1,y4 + y3 ≤ 1
• If location 1 is open, either locations 2 or 5 must be: y2 + y5 ≥ y1.

Much more complicated logical constraints can be formulated with the addition
of new binary variables. Consider a constraint of the form 3x1 +4x2 ≤ 10 OR 4x1 +
2x2 ≥ 12. As written, this is not a linear constraint. However, if we let M be the
largest either |3x1 + 4x2| or |4x1 + 2x2| can be, then we can define a new binary
variable z which is 1 only if the first constraint is satisfied and 0 only if the second
constraint is satisfied. Then we get the constraints

3x1 + 4x2 ≤ 10+(M− 10)(1− z)

4x1 + 2x2 ≥ 12− (M+ 12)z.

When z = 1, we get

3x1 + 4x2 ≤ 10

4x1 + 2x2 ≥ −M.

When z = 0, we get

76 R. Bosch and M. Trick

3x1 + 4x2 ≤ M

4x1 + 2x2 ≥ 12.

This correctly models the original nonlinear constraint.
As we can see, logical requirements often lead to Big-M type formulations.

3.2.5 Sequencing Problems

Many problems in sequencing and scheduling require the modeling of the order
in which items appear in the sequence. For instance, suppose we have a model in
which there are items, where each item i has a processing time on a machine pi.
If the machine can only handle one item at a time and we let ti be a (continuous)
variable representing the start time of item i on the machine, then we can ensure that
items i and j are not on the machine at the same time with the constraints

t j ≥ ti + pi IF t j ≥ ti

ti ≥ t j + p j IF t j < ti.

This can be handled with a new binary variable yi j which is 1 if ti ≤ t j and 0 other-
wise. This gives the constraints

t j ≥ ti + pi−M(1− y)

ti ≥ t j + p j−My

for sufficiently large M. If y is 1 then the second constraint is automatically satisfied
(so only the first is relevant) while the reverse happens for y = 0.

3.3 Find Formulations with Strong Relaxations

As the previous section made clear, integer programming formulations can be used
for many problems of practical interest. In fact, for many problems, there are many
alternative integer programming formulations. Finding a good formulation is key to
the successful use of integer programming. The definition of a good formulation is
primarily computational: a good formulation is one for which branch and bound (or
another integer programming algorithm) will find and prove the optimal solution
quickly. Despite this empirical aspect of the definition, there are some guidelines to
help in the search for good formulations. The key to success is to find formulations
whose linear relaxation is not too different from the underlying integer program.

We saw in our first example that solving linear relaxations was key to the ba-
sic integer programming algorithm. If the solution to the initial linear relaxation
is integer, then no branching need be done and integer programming is no harder

3 Integer Programming 77

than linear programming. Unfortunately, finding formulations with this property is
very hard to do. But some formulations can be better than other formulations in this
regard.

Let us modify our facility location problem by requiring that every factory be
assigned to exactly one refinery (incidentally, the optimal solution to our original
formulation happened to meet this requirement). Now, instead of having xi j be the
tonnes sent from factory i to refinery j, we define xi j to be 1 if factory i is serviced
by refinery j. Our formulation becomes

minimize 1,000 ·52 ·25x11+ 1,000 ·52 ·20x12+ 1,000 ·52 ·15x13

+ 1,000 ·52 ·15x21+ 1,000 ·52 ·25x22+ 1,000 ·52 ·20x23

+ 500 ·52 ·20x31+ 500 ·52 ·15x32+ 500 ·52 ·25x33

+ 500 ·52 ·25x41+ 500 ·52 ·15x42+ 500 ·52 ·15x43

+ 500,000y1+ 500,000y2+ 500,000y3

subject to x11 + x12 + x13 = 1
x21 + x22 + x23 = 1
x31 + x32 + x33 = 1
x41 + x42 + x43 = 1

1,000x11 + 1,000x21 + 500x31+ 500x41 ≤ 1,500y1

1,000x12 + 1,000x22 + 500x32+ 500x42 ≤ 1,500y2

1,000x13 + 1,000x23 + 500x33+ 500x43 ≤ 1,500y3

xi j ∈ {0,1} for all i and j

y j ∈ {0,1} for all j.

Let us call this formulation the base formulation. This is a correct formulation
to our problem. There are alternative formulations, however. Suppose we add to the
base formulation the set of constraints

xi j ≤ y j for all i and j.

Call the resulting formulation the expanded formulation. Note that it too is an
appropriate formulation for our problem. At the simplest level, it appears that we
have simply made the formulation larger: there are more constraints so the linear
programs solved within branch-and-bound will likely take longer to solve. Is there
any advantage to the expanded formulation?

The key is to look at non-integer solutions to linear relaxations of two formu-
lations: we know the two formulations have the same integer solutions (since they
are formulations of the same problem), but they can differ in non-integer solutions.
Consider the solution x13 = 1,x21 = 1,x32 = 1,x42 = 1,y1 = 2/3,y2 = 2/3,y3 = 2/3.
This solution is feasible to the linear relaxation of the base formulation but is
not feasible to the linear relaxation of the expanded formulation. If the branch-
and-bound algorithm works on the base formulation, it may have to consider this
solution; with the expanded formulation, this solution can never be examined. If
there are fewer fractional solutions to explore (technically, fractional extreme point
solutions), branch and bound will typically terminate quicker.

78 R. Bosch and M. Trick

Since we have added constraints to get the expanded formulation, there is no
non-integer solution to the linear relaxation of the expanded formulation that is
not also feasible for the linear relaxation of the base formulation. We say that the
expanded formulation is tighter than the base formulation.

In general, tighter formulations are to be preferred for integer programming
formulations even if the resulting formulations are larger. Of course, there are exce-
ptions: if the size of the formulation is much larger, the gain from the tighter for-
mulation may not be sufficient to offset the increased linear programming times.
Such cases are definitely the exception, however: almost invariably, tighter formula-
tions are better formulations. For this particular instance, the expanded formulation
happens to provide an integer solution without branching.

There has been a tremendous amount of work done on finding tighter formula-
tions for different integer programming models. For many types of problems, classes
of constraints (or cuts) to be added are known. These constraints can be added in
one of two ways: they can be included in the original formulation or they can be
added as needed to remove fractional values. The latter case leads to a branch and
cut approach, which is the subject of Sect. 3.6.

A cut relative to a formulation has to satisfy two properties: first, every feasible
integer solution must also satisfy the cut; second, some fractional solution that is
feasible to the linear relaxation of the formulation must not satisfy the cut. For in-
stance, consider the single constraint

3x1 + 5x2 + 8x3 + 10x4 ≤ 16,

where the xi are binary variables. Then the constraint x3 + x4 ≤ 1 is a cut (every
integer solution satisfies it and, for instance x = (0,0,0.75,1) does not) but x1 +
x2+x3+x4 ≤ 4 is not a cut (no fractional solutions removed) nor is x1+x2+x3 ≤ 2
(which incorrectly removes x = (1,1,1,0)).

Given a formulation, finding cuts to add to it to strengthen the formulation is not
a routine task. It can take deep understanding, and a bit of luck, to find improving
constraints.

One generally useful approach is called the Chvátal (or Gomory–Chvátal) proce-
dure. Here is how the procedure works for “≤” constraints where all the variables
are non-negative integers:

1. Take one or more constraints, multiple each by a non-negative constant (the con-
stant can be different for different constraints). Add the resulting constraints into
a single “≤” constraint.

2. Round down each coefficient on the left-hand side of the constraint.
3. Round down the right-hand side of the constraint.

The result is a constraint that does not cut off any feasible integer solutions.
It may be a cut if the effect of rounding down the right-hand side of the constraint is
more than the effect of rounding down the coefficients.

This is best seen through an example. Taking the constraint above, let us take the
two constraints

3 Integer Programming 79

3x1 + 5x2 + 8x3 + 10x4 ≤ 16
x3 ≤ 1.

If we multiply each constraint by 1/9 and add them we get

3/9x1 + 5/9x2+ 9/9x3+ 10/9x4 ≤ 17/9.

Now, round down the left-hand coefficients (this is valid since the x variables are
non-negative and it is a “≤” constraint):

x3 + x4 ≤ 17/9.

Finally, round down the right-hand side (this is valid since the x variables are integer)
to get

x3 + x4 ≤ 1

which turns out to be a cut. Notice that the three steps have differing effects on
feasibility. The first step, since it is just taking a linear combination of constraints
neither adds nor removes feasible values; the second step weakens the constraint,
and may add additional fractional values; the third step strengthens the constraint,
ideally removing fractional values.

This approach is particularly useful when the constants are chosen so that no
rounding-down is done in the second step. For instance, consider the following set
of constraints (where the xi are binary variables):

x1 + x2 ≤ 1

x2 + x3 ≤ 1

x1 + x3 ≤ 1.

These types of constraints often appear in formulations where there are lists of
mutually exclusive variables. Here, we can multiply each constraint by 1/2 and add
them to get

x1 + x2 + x3 ≤ 3/2.

There is no rounding down on the left-hand side, so we can move on to rounding
down the right-hand side to get

x1 + x2 + x3 ≤ 1,

which, for instance, cuts off the solution x = (1/2,1/2,1/2).
In cases where no rounding-down is needed on the left-hand side but there is

rounding-down on the right-hand side, the result has to be cut (relative to the incl-
uded constraints). Conversely, if no rounding down is done on the right-hand side,
the result cannot be a cut.

In the formulation section, we mentioned that Big-M formulations often lead to
poor formulations. This is because the linear relaxation of such a formulation often
allows for many fractional values. For instance, consider the constraint (all variables
are binary)

x1 + x2 + x3 ≤ 1,000y.

80 R. Bosch and M. Trick

Such constraints often occur in facility location and related problems. This constraint
correctly models a requirement that the x variables can be 1 only if y is also 1, but
does so in a very weak way. Even if the x values of the linear relaxation are integer, y
can take on a very small value (instead of the required 1). Here, even for x=(1,1,1),
y need only be 3/1,000 to make the constraint feasible. This typically leads to very
bad branch-and-bound trees: the linear relaxation gives little guidance as to the true
values of the variables.

Better would be the constraint

x1 + x2 + x3 ≤ 3y,

which forces y to take on larger values. This is the concept of making the M in
Big-M as small as possible. Better still would be the three constraints

x1 ≤ y

x2 ≤ y

x3 ≤ y,

which forces y to be integer as soon as the x values are.
Finding improved formulations is a key concept to the successful use of integer

programming. Such formulations typically revolve around the strength of the lin-
ear relaxation: does the relaxation well-represent the underlying integer program?
Finding classes of cuts can improve formulations. Finding such classes can be diffi-
cult, but without good formulations, integer programming models are unlikely to be
successful except for very small instances.

3.4 Avoid Symmetry

Symmetry often causes integer programming models to fail. Branch and bound can
become an extremely inefficient algorithm when the model being solved displays
many symmetries.

Consider again our facility location model. Suppose instead of having just one
refinery at a site, we were permitted to have up to three refineries at a site. We could
modify our model by having variables y j, z j and w j for each site (representing the
three refineries). In this formulation, the cost and other coefficients for y j are the
same as for z j and w j . The formulation is straightforward, but branch and bound
does very poorly on the result.

The reason for this is symmetry: for every solution in the branch-and-bound tree
with a given y, z and w, there is an equivalent solution with z taking on y’s values, w
taking on z’s and y taking on w. This greatly increases the number of solutions the
branch-and-bound algorithm must consider in order to find and prove the optimality
of a solution.

3 Integer Programming 81

It is important to remove as many symmetries in a formulation as possible.
Depending on the problem and the symmetry, this removal can be done by adding
constraints, fixing variables or modifying the formulation.

For our facility location problem, the easiest thing to do is to add the constraints

y j ≥ z j ≥ w j for all j.

Now, at a refinery site, z j can be non-zero only if y j is non-zero, and w j non-zero
only if both y j and z j are. This partially breaks the symmetry of this formulation,
though other symmetries (particularly in the x variables) remain.

This formulation can be modified in another way by redefining the variables.
Instead of using binary variables, let y j be the number of refineries put in location j.
This removes all of the symmetries at the cost of a weaker linear relaxation (since
some of the strengthenings we have explored require binary variables).

Finally, to illustrate the use of variable fixing, consider the problem of coloring a
graph with K colors: we are given a graph with node set V and edge set E and wish
to determine if we can assign a value v(i) to each node i such that v(i) ∈ {1, . . . ,K}
and v(i)
= v(j) for all (i, j) ∈ E .

We can formulate this problem as an integer programming by defining a binary
variable xik to be 1 if i is given color k and 0 otherwise. This leads to the constraints

∑k xik = 1 for all i (every node gets a color)
xik + x jk = 1 for all k,(i, j) ∈ E (no adjacent get same)

xik ∈ {0,1} for all i,k.

The graph-coloring problem is equivalent to determining if the above set of con-
straints is feasible. This can be done by using branch-and-bound with an arbitrary
objective value.

Unfortunately, this formulation is highly symmetric. For any coloring of graph,
there is an equivalent coloring that arises by permuting the coloring (that is, per-
muting the set {1, . . . ,k} in this formulation). This makes branch and bound very
ineffective for this formulation. Note also that the formulation is very weak, since
setting xik = 1/k for all i,k is a feasible solution to the linear relaxation no matter
what E is.

We can strengthen this formulation by breaking the symmetry through variable
fixing. Consider a clique (set of mutually adjacent vertices) of the graph. Each mem-
ber of the clique has to get a different color. We can break the symmetry by finding
a large (ideally maximum sized) clique in the graph and setting the colors of the
clique arbitrarily, but fixed. So if the clique has size kc, we would assign the colors
1, . . . ,kc to members of the clique (adding in constraints forcing the corresponding
x values to be 1). This greatly reduces the symmetry, since now only permutations
among the colors kc + 1, . . . ,K are valid. This also removes the xik = 1/k solution
from consideration.

82 R. Bosch and M. Trick

3.5 Consider Formulations with Many Constraints

Given the importance of the strength of the linear relaxation, the search for improved
formulations often leads to sets of constraints that are too large to include in the for-
mulation. For example, consider a single constraint with non-negative coefficients

a1x1 + a2x2 + a3x3 + · · ·+ anxn ≤ b,

where the xi are binary variables. Consider a subset S of the variables such that
∑i∈S ai > b. The constraint

∑
i∈S

xi ≤ |S|− 1

is valid (it isn’t violated by any feasible integer solution) and cuts off fractional
solutions as long as S is minimal. These constraints are called cover constraints.
We would then like to include this set of constraints in our formulation.

Unfortunately, the number of such constraints can be very large. In general, it is
exponential in n, making it impractical to include the constraints in the formulation.
But the relaxation is much tighter with the constraints.

To handle this problem, we can choose to generate only those constraints that are
needed. In our search for an optimal integer solution, many of the constraints aren’t
needed. If we can generate the constraints as we need them, we can get the strength
of the improved relaxation without the huge number of constraints.

Suppose our instance is

Maximize 9x1 + 14x2+ 20x3+ 32x4

Subject to
3x1 + 5x2 + 8x3 + 10x4 ≤ 16
xi ∈ {0,1}.

The optimal solution to the linear relaxation is x∗= (1,0.6,0,1) with objective 49.4.
Now consider the set S = (x1,x2,x4). The constraint

x1 + x2 + x4 ≤ 2

is a cut that x∗ violates. If we add that constraint to our problem, we get a tighter for-
mulation. Solving this model gives solution x = (1,0,0.375,1) and objective 48.5.
The constraint

x3 + x4 ≤ 1

is a valid cover constraint that cuts off this solution. Adding this constraint and
solving gives solution x = (0,1,0,1) with objective 46. This is the optimal solution
to the original integer program, which we have found only by generating cover
inequalities.

In this case, the cover inequalities were easy to see, but this process can be for-
malized. A reasonable heuristic for identifying violated cover inequalities would be

3 Integer Programming 83

to order the variables by decreasing aix∗i then add the variables to the cover S until
∑i∈S ai > b. This heuristic is not guaranteed to find violated cover inequalities (for
that, a knapsack optimization problem can be formulated and solved) but even this
simple heuristic can create much stronger formulations without adding too many
constraints.

This idea is formalized in the branch-and-cut approach to integer programming.
In this approach, a formulation has two parts: the explicit constraints (denoted
Ax ≤ b) and the implicit constraints (A′x ≤ b′). Denote the objective function as
Maximize cx. Here we will assume that all x are integral variables, but this can be
easily generalized:

Step 1 Solve the linear program “Maximize cx” subject to Ax ≤ b to get optimal
relaxation solution x∗.

Step 2 If x∗ integer, then stop. x∗ is optimal.
Step 3 Try to find a constraint a′x ≤ b′ from the implicit constraints such that

a′x∗ > b. If found, add a′x ≤ b to the Ax ≤ b constraint set and go to step 1.
Otherwise, do branch-and-bound on the current formulation.

In order to create a branch-and-cut model, there are two aspects: the definition of
the implicit constraints, and the definition of the approach in Step 3 to find violated
inequalities. The problem in Step 3 is referred to as the separation problem and is at
the heart of the approach. For many sets of constraints, no good separation algorithm
is known. Note, however, that the separation problem might be solved heuristically:
it may miss opportunities for separation and therefore invoke branch-and-bound
too often. Even in this case, it is often the case that the improved formulations are
sufficiently tight to greatly decrease the time needed for branch-and-bound.

This basic algorithm can be improved by doing cut generation within the branch-
and-bound tree. It may be that by fixing variables, different constraints become vio-
lated and those can be added to the subproblems.

3.6 Consider Formulations with Many Variables

Just as improved formulations can result from adding many constraints, adding
many variables can lead to very good formulations. Let us begin with our graph
coloring example. Recall that we are given a graph with vertices V and edges E and
want to assign a value v(i) to each node i such that v(i)
= v(j) for all (i, j) ∈ E . Our
objective is to use the minimum number of different values (before, we had a fixed
number of colors to use: in this section we will use the optimization version rather
than the feasibility version of this problem).

Previously, we described a model using binary variables xik denoting whether
node i gets color k or not. As an alternative model, let us concentrate on the set of
nodes that gets the same color. Such a set must be an independent set (a set of mu-
tually non-adjacent nodes) of the graph. Suppose we listed all independent sets of
the graph: S1,S2, . . . ,Sm. Then we can define binary variables y1,y2, . . . ,ym with the

84 R. Bosch and M. Trick

interpretation that y j = 1 means that independent set S j is part of the coloring, and
y j = 0 means that independent set S j is not part of the coloring. Now our formula-
tion becomes

Minimize ∑ j y j

Subject to
∑ j:i∈S j

y j = 1 for all i ∈V

y j ∈ {0,1} for all j ∈ {1 . . .m}.

The constraint states that every node must be in some independent set of the
coloring.

This formulation is a much better formulation that our xik formulation. It does
not have the symmetry problems of the previous formulation and results in a much
tighter linear relaxation. Unfortunately, the formulation is impractical for most
graphs because the number of independent sets is exponential in the number of
nodes, leading to an impossibly large formulation.

Just as we could handle an exponential number of constraints by generating them
as needed, we can also handle an exponential number of variables by variable gen-
eration: the creation of variables only as they are needed. In order to understand how
to do this, we will have to understand some key concepts from linear programming.

Consider a linear program, where the variables are indexed by j and the con-
straints indexed by i:

Maximize ∑ j cix j

Subject to
∑i ai jxi j ≤ bi for all i
x j ≥ 0 for all j.

When this linear program is solved, the result is the optimal solution x∗. In addition,
however, there is a value called the dual value, denoted πi, associated with each
constraint. This value gives the marginal change in the objective value as the right-
hand side for the corresponding constraint is changed. So if the right-hand side of
constraint i changes to bi +Δ, then the objective will change by πiΔ (there are some
technical details ignored here involving how large Δ can be for this to be a valid
calculation: since we are only concerned with marginal calculations, we can ignore
these details).

Now, suppose there is a new variable xn+1, not included in the original formu-
lation. Suppose it could be added to the formulation with corresponding objective
coefficient cn+1 and coefficients ai,n+1. Would adding the variable to the formulation
result in an improved formulation? The answer is certainly “no” in the case when

cn+1 <∑
i

ai,n+1πi.

3 Integer Programming 85

In this case, the value gained from the objective is insufficient to offset the cost
charged marginally by the effect on the constraints. We need cn+1−∑i ai,n+1πi > 0
in order to possibly improve on our solution.

This leads to the idea of variable generation. Suppose you have a formulation
with a huge number of variables. Rather than solve this huge formulation, begin
with a smaller number of variables. Solve the linear relaxation and get dual val-
ues π. Using π, determine if there is one (or more) variables whose inclusion might
improve the solution. If not, then the linear relaxation is solved. Otherwise, add one
or more such variables to the formulation and repeat.

Once the linear relaxation is solved, if the solution is integer, then it is optimal.
Otherwise, branch and bound is invoked, with the variable generation continuing in
the subproblems.

Key to this approach is the algorithm for generating the variables. For a huge
number of variables it is not enough to check all of them: that would be too time con-
suming. Instead, some sort of optimization problem must be defined whose solution
is an improving variable. We’ll illustrate this for our graph coloring problem.

Suppose we begin with a limited set of independent sets and solve our relaxation
over them. This leads to a dual value πi for each node. For any other independent
set S, if ∑i∈S πi > 1, then S corresponds to an improving variable. We can write this
problem using binary variables zi corresponding to whether i is in S or not:

Maximize ∑i πizi

Subject to
zi + z j ≤ 1 for all (i, j) ∈ E
zi ∈ {0,1} for all i.

This problem is called the maximum weighted independent set (MWIS) problem,
and, while the problem is formally hard, effective methods have been found for
solving it for problems of reasonable size.

This gives a variable generation approach to graph coloring: begin with a small
number of independent sets, then solve the MWIS problem, adding in independent
sets until no independent set improves the current solution. If the variables are inte-
ger, then we have the optimal coloring. Otherwise we need to branch.

Branching in this approach needs special care. We need to branch in such a way
that our subproblem is not affected by our branching. Here, if we simply branch on
the y j variables (so have one branch with y j = 1 and another with y j = 0), we end up
not being able to use the MWIS model as a subproblem. In the case where y j = 0 we
need to find an improving set, except S j does not count as improving. This means
we need to find the second most improving set. As more branching goes on, we may
need to find the third most improving, the fourth most improving, and so on. To
handle this, specialized branching routines are needed (involving identifying nodes
that, on one side of the branch, must be the same color and, on the other side of the
branch, cannot be the same color).

Variable generation together with appropriate branching rules and variable gen-
eration at the subproblems is a method known as branch and price. This approach
has been very successful in attacking a variety of very difficult problems over the
last few years.

86 R. Bosch and M. Trick

To summarize, models with a huge number of variables can provide very tight
formulations. To handle such models, it is necessary to have a variable generation
routine to find improving variables, and it may be necessary to modify the branching
method in order to keep the subproblems consistent with that routine. Unlike con-
straint generation approaches, heuristic variable generation routines are not enough
to ensure optimality: at some point it is necessary to prove conclusively that the
right variables are included. Furthermore, these variable generation routines must
be applied at each node in the branch-and-bound tree if that node is to be crossed
out from further analysis.

3.7 Modify Branch-and-Bound Parameters

Integer programs are solved with computer programs. There are a number of
computer programs available to solve integer programs. These range from basic
spreadsheet-oriented systems to open-source research codes to sophisticated com-
mercial applications. To a greater or lesser extent, each of these codes offers
parameters and choices that can have a significant affect on the solvability of integer
programming models. For most of these parameters, the only way to determine the
best choice for a particular model is experimentation: any choice that is uniformly
dominated by another choice would not be included in the software.

Here are some common key choices and parameters, along with some comments
on each.

3.7.1 Description of Problem

The first issue to be handled is to determine how to describe the integer program
to the optimization routine(s). Integer programs can be described as spreadsheets,
computer programs, matrix descriptors and higher-level languages. Each has advan-
tages and disadvantages with regards to such issues as ease of use, solution power,
flexibility and so on. For instance, implementing a branch-and-price approach is dif-
ficult if the underlying solver is a spreadsheet program. Using “callable libraries”
that give access to the underlying optimization routines can be very powerful, but
can be time consuming to develop.

Overall, the interface to the software will be defined by the software. It is gen-
erally useful to be able to access the software in multiple ways (callable libraries,
high-level languages, command line interfaces) in order to have full flexibility in
solving.

3 Integer Programming 87

3.7.2 Linear Programming Solver

Integer programming relies heavily on the underlying linear programming solver.
Thousands or tens of thousands of linear programs might be solved in the course
of branch-and-bound. Clearly a faster linear programming code can result in faster
integer programming solutions. Some possibilities that might be offered are pri-
mal simplex, dual simplex, or various interior point methods. The choice of solver
depends on the problem size and structure (for instance, interior point methods are
often best for very large, block-structured models) and can differ for the initial linear
relaxation (when the solution must be found “from scratch”) and subproblem lin-
ear relaxations (when the algorithm can use previous solutions as a starting basis).
The choice of algorithm can also be affected by whether constraint and/or variable
generation are being used.

3.7.3 Choice of Branching Variable

In our description of branch-and-bound, we allowed branching on any fractional
variable. When there are multiple fractional variables, the choice of variable can
have a big effect on the computation time. As a general guideline, more “important”
variables should be branched on first. In a facility location problem, the decisions on
opening a facility are generally more important than the assignment of a customer
to that facility, so those would be better choices for branching when a choice must
be made.

3.7.4 Choice of Subproblem to Solve

Once multiple subproblems have been generated, it is necessary to choose which
subproblem to solve next. Typical choices are depth-first search, breadth-first search,
or best-bound search. Depth-first search continues fixing variables for a single
problem until integrality or infeasibility results. This can lead quickly to an inte-
ger solution, but the solution might not be very good. Best-bound search works
with subproblems whose linear relaxation is as large (for maximization) as possi-
ble, with the idea that subproblems with good linear relaxations may have good
integer solutions.

3.7.5 Direction of Branching

When a subproblem and a branching variable have been chosen, there are multiple
subproblems created corresponding to the values the variable can take on. The order-
ing of the values can affect how quickly good solutions can be found. Some choices

88 R. Bosch and M. Trick

here are a fixed ordering or the use of estimates of the resulting linear relaxation
value. With fixed ordering, it is generally good to first try the more restrictive of the
choices (if there is a difference).

3.7.6 Tolerances

It is important to note that while integer programming problems are primarily
combinatorial, the branch-and-bound approach uses numerical linear programming
algorithms. These methods require a number of parameters giving allowable toler-
ances. For instance, if x j = 0.998 should x j be treated as the value 1 or should the
algorithm branch on x j? While it is tempting to give overly big values (to allow for
faster convergence) or small values (to be “more accurate”), either extreme can lead
to problems. While for many problems the default values from a quality code are
sufficient, these values can be the source of difficulties for some problems.

3.8 Tricks of the Trade

Faced with the contents of this chapter, all of which is about “tricks of the trade”,
it is easy to throw one’s hands up and give up on integer programming! There are
so many choices, so many pitfalls, and so much chance that the combinatorial ex-
plosion will make solving problems impossible. Despite this complexity, integer
programming is used routinely to solve problems of practical interest. There are a
few key steps to make your integer programming implementation go well.

• Use state-of-the-art software. It is tempting to use software because it is easy, or
available, or cheap. For integer programming, however, not having the most cur-
rent software embedding the latest techniques can doom your project to failure.
Not all such software is commercial. The COIN-OR project is an open-source
effort to create high-quality optimization codes.

• Use a modeling language. A modeling language, such as OPL, Mosel, AMPL,
or other language can greatly reduce development time, and allows for easy
experimentation of alternatives. Callable libraries can give more power to the
user, but should be reserved for “final implementations”, once the model and
solution approached are known.

• If an integer programming model does not solve in a reasonable amount of time,
look at the formulation first, not the solution parameters. The default settings
of current software are generally pretty good. The problem with most integer
programming formulations is the formulation, not the choice of branching rule,
for example.

• Solve some small instances and look at the solutions to the linear relaxations.
Often constraints to add to improve a formulation are quite obvious from a few
small examples.

3 Integer Programming 89

• Decide whether you need “optimal” solutions. If you are consistently getting
within 0.1 % of optimal, without proving optimality, perhaps you should declare
success and go with the solutions you have, rather than trying to hunt down that
final gap.

• Try radically different formulations. Often, there is another formulation with
completely different variables, objective and constraints which will have a very
different computational experience.

3.9 Conclusion

Integer programming models represent a powerful approach to solving hard prob-
lems. The bounds generated from linear relaxations are often sufficient to greatly cut
down on the search tree for these problems. Key to successful integer programming
is the creation of good formulations. A good formulation is one where the linear re-
laxation closely resembles the underlying integer program. Improved formulations
can be developed in a number of ways, including finding formulations with tight
relaxations, avoiding symmetry, and creating and solving formulations that have
an exponential number of variables or constraints. It is through the judicious com-
bination of these approaches, combined with fast integer programming computer
codes, that the practical use of integer programming has greatly expanded in the last
20 years.

Sources of Additional Information

Integer programming has existed for more than 50 years and has developed a huge
literature. This bibliography therefore makes no effort to be comprehensive, but
rather provides initial pointers for further investigation.

General Integer Programming

There have been a number of excellent monographs on integer programming rec-
ently. The classic is Nemhauser and Wolsey (1998). A more recent book updating
much of the material is Wolsey (1998). Schrijver (1998) is an outstanding reference
book, covering the theoretical underpinnings of integer programming. An unusual
resource on integer programming is a volume by Jünger et al. (2010) celebrating
50 years of integer programming. This volume contains a mix of classic papers
dating back to Dantzig et al.’s paper on solving the traveling salesman problem,
commentaries on those papers, and a selection of current surveys, including topics
such as reformulations, symmetry, nonlinear integer programming and much more.
The volume includes a DVD of presentations made at a 2008 conference held in
Aussois, France.

90 R. Bosch and M. Trick

Integer Programming Formulation

There are relatively few books on formulating problems. An exception is Williams
(1999). In addition, most operations research textbooks offer examples and exercises
on formulations, though many of the examples are not of realistic size. Some choices
are Winston (2003), Taha (2010), and Hillier and Lieberman (2009).

Branch and Bound

Branch and bound can be traced back to the 1960s and the work of Land and Doig
(1960). Most basic textbooks (see above) give an outline of the method (at the level
given here).

Branch and Cut

Cutting plane approaches date back to the late 1950s and the work of Gomory
(1958), whose cutting planes are applicable to any integer program. Jünger et al.
(1995) provides a survey of the use of cutting plane algorithms for specialized prob-
lem classes.

As a computational technique, the work of Crowder et al. (1983) showed how
cuts could greatly improve basic branch and bound.

For an example of the success of such approaches for solving extremely large
optimization problems, see Applegate et al. (2011).

Branch and Price

Barnhart et al. (1998) give an excellent survey of this approach.

Implementations

There are a number of very good implementations that allow the optimization of
realistic integer programs. Some of these are commercial, like IBM’s ILOG CPLEX
implementation, currently up to version 12.4.1 Bixby et al. (1999) give a detailed
description of the advances that this software has made.

1 http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/

http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/

3 Integer Programming 91

Another commercial product is FICO’s Xpress-MP (http://www.fico.com/en/
~Products/DMTools/Pages/FICO-Xpress-Optimization-Suite.aspx), with the text-
book by Gueret et al. (2002) providing a very nice set of examples and applications.

A final major commercial product is the code by Gurobi (http://www.gurobi.
com). While the initial version of this code was released in 2008, this product has
quickly become competitive with its older rivals.

COIN-OR (http://www.coin-or.org) provides an open-source initiative for op-
timization, including integer programming. Other approaches are described by
Ralphs and Ladanyi (1999) and Cordier et al. (1999).

References

Applegate DL, Bixby RE, Chvatal V, Cook WJ (2011) The traveling salesman prob-
lem: a computational study. Princeton University Press

Barnhart C, Johnson EL, Nemhauser GL, Savelsbergh MWP, Vance PH (1998)
Branch-and-price: column generation for huge integer programs. Oper Res
46:316

Bixby RE, Fenelon M, Gu Z, Rothberg E, Wunderling R (1999) MIP: theory and
practice—closing the gap. In: Proceedings of the 19th IFIP TC7 conference on
system modelling, Cambridge. Kluwer, Dordrecht, pp 19–50

Common Optimization INterface for Operations Research (COIN-OR) (2004)
http://www.coin-or.org

Cordier C, Marchand H, Laundy R, Wolsey LA (1999) bc-opt: a branch-and-cut
code for mixed integer programs. Math Program 86:335

Crowder H, Johnson EL, Padberg MW (1983) Solving large scale zero-one linear
programming problems. Oper Res 31:803–834

Gomory RE (1958) Outline of an algorithm for integer solutions to linear programs.
Bull Am Math Soc 64(5):275–278

Gueret C, Prins C, Sevaux M (2002) Applications of optimization with Xpress-MP
(trans: Heipcke S). Dash Optimization, Blisworth

Hillier FS, Lieberman GJ (2009) Introduction to operations research, 9th edn.
McGraw-Hill, New York

Jünger M, Reinelt G, Thienel S (1995) Practical problem solving with cutting plane
algorithms in combinatorial optimization. DIMACS series in discrete mathemat-
ics and theoretical computer science. AMS, Providence, p 111

Jünger M, Liebling T, Naddef D, Nemhauser G, Pulleyblank W, Reinelt G, Rinaldi
G, Wolsey L (2010) 40 years of integer programming 1958–2008. Springer,
Heidelberg

Land AH, Doig AG (1960) An automatic method for solving discrete programming
problems. Econometrica 28:83–97

Nemhauser GL, Wolsey LA (1998) Integer and combinatorial optimization. Wiley,
New York

http://www.fico.com/en/~Products/DMTools/Pages/FICO-Xpress-Optimization-Suite.aspx
http://www.fico.com/en/~Products/DMTools/Pages/FICO-Xpress-Optimization-Suite.aspx
http://www.gurobi.com
http://www.gurobi.com
http://www.coin-or.org
http://www.coin-or.org

92 R. Bosch and M. Trick

Ralphs TK, Ladanyi L (1999) SYMPHONY: a parallel framework for branch and
cut. White paper, Rice University

Schrijver A (1998) Theory of linear and integer programming. Wiley, New York
Taha HA (2010) Operations research: an introduction, 9th edn. Prentice-Hall,

New York
Williams HP (1999) Model building in mathematical programming. Wiley, New

York
Winston W (2003) Operations research: applications and algorithms, 4th edn.

Thomson, New York
Wolsey LA (1998) Integer programming. Wiley, New York

Chapter 4

Genetic Algorithms

Kumara Sastry, David E. Goldberg, and Graham Kendall

4.1 Introduction

Genetic algorithms (GAs) are search methods based on principles of natural selection
and genetics (Fraser 1957; Bremermann 1958; Holland 1975). We start with a brief
introduction of simple GAs and the associated terminologies. GAs encode the deci-
sion variables of a search problem into finite-length strings of alphabets of certain
cardinality. The strings which are candidate solutions to the search problem are re-
ferred to as chromosomes, the alphabets are referred to as genes and the values of
genes are called alleles. For example, in a problem such as the traveling salesman
problem (TSP), a chromosome represents a route, and a gene may represent a city.
In contrast to traditional optimization techniques, GAs work with coding of param-
eters, rather than the parameters themselves.

To evolve good solutions and to implement natural selection, we need a measure
for distinguishing good solutions from bad solutions. The measure could be an obj-
ective function that is a mathematical model or a computer simulation, or it can
be a subjective function where humans choose better solutions over worse ones.
In essence, the fitness measure must determine a candidate solution’s relative fitness,
which will subsequently be used by the GA to guide the evolution of good solutions.

K. Sastry
University of Illinois, Urbana-Champaign, IL, USA
Current Affiliation: Intel Corp.

D.E. Goldberg
ThreeJoy Associates, Inc. and University of Illinois, Urbana-Champaign, IL, USA

G. Kendall (�)
Automated Scheduling, Optimization and Planning Research Group, School of Computer Science,
University of Nottingham, Nottingham, UK

Automated Scheduling, Optimization and Planning Research Group, School of Computer Science,
University of Nottingham, Semenyih, Malaysia
e-mail: Graham.Kendall@nottingham.edu.my

E.K. Burke and G. Kendall (eds.), Search Methodologies: Introductory Tutorials
in Optimization and Decision Support Techniques, DOI 10.1007/978-1-4614-6940-7_4,
© Springer Science+Business Media New York 2014

93

mailto:Graham.Kendall@nottingham.edu.my

94 K. Sastry et al.

Another important concept of GAs is the notion of population. Unlike traditional
search methods, GAs rely on a population of candidate solutions. The population
size, which is usually a user-specified parameter, is one of the important factors
affecting the scalability and performance of GAs. For example, small population
sizes might lead to premature convergence and yield substandard solutions. On the
other hand, large population sizes lead to unnecessary expenditure of valuable com-
putational time.

Once the problem is encoded in a chromosomal manner and a fitness measure
for discriminating good solutions from bad ones has been chosen, we can start to
evolve solutions to the search problem using the following steps:

1. Initialization: The initial population of candidate solutions is usually generated
randomly across the search space. However, domain-specific knowledge or other
information can be easily incorporated in the generation of the initial population.

2. Evaluation: Once the population is initialized, or an offspring population is cre-
ated, the fitness values of the candidate solutions are evaluated.

3. Selection: Selection allocates more copies to solutions with better fitness values
and thus imposes the survival-of-the-fittest mechanism on the candidate solu-
tions. The main idea of selection is to prefer better solutions to worse ones, and
many selection procedures have been proposed to accomplish this idea, includ-
ing roulette-wheel selection, stochastic universal selection, ranking selection and
tournament selection, some of which are described in the next section.

4. Recombination: Recombination combines bits and pieces of two or more parent-
al solutions to create new, possibly better solutions (i.e. offspring). There are
many ways of accomplishing this (some of which are discussed in the next
section), and achieving competent performance depends on getting the recom-
bination mechanism designed properly; but the primary idea to keep in mind is
that the offspring under recombination will not be identical to any particular par-
ent and will instead combine parental traits in a novel manner (Goldberg 2002).

5. Mutation: While recombination operates on two or more parental chromosomes,
mutation, locally but randomly, modifies a solution. Again, there are many vari-
ations of mutation, but it usually involves one or more changes that are made to
an individual’s trait or traits. In other words, mutation performs a random walk
in the vicinity of a candidate solution.

6. Replacement: The offspring population created by selection, recombination,
and mutation replaces the original parental population. Many replacement tech-
niques such as elitist replacement, generation-wise replacement and steady-state
replacement methods are used in GAs.

7. Repeat steps 2–6 until one or more stopping criteria are met.

Goldberg (1983, 1999a, 2002) has likened GAs to mechanistic versions of cer-
tain modes of human innovation and has shown that, although these operators when
analyzed individually are ineffective, when combined together they can work well.
This aspect has been explained with the concepts of fundamental intuition and inno-
vation intuition. The same study compares a combination of selection and mutation
to continual improvement (a form of hill climbing), and the combination of selec-

4 Genetic Algorithms 95

tion and recombination to innovation (cross-fertilizing). These analogies have been
used to develop a design decomposition methodology and so-called competent ge-
netic algorithms — GAs that solve hard problems quickly, reliably, and accurately
— both of which are discussed in subsequent sections.

This chapter is organized as follows. The next section provides details of the
individual steps of a typical GA and introduces several popular genetic opera-
tors. Section 4.3 presents a principled methodology of designing competent GAs
based on decomposition principles. Section 4.4 gives a brief overview of designing
principled efficiency enhancement techniques to speed up genetic and evolutionary
algorithms.

4.2 Basic GA Operators

In this section we describe some of the selection, recombination and mutation oper-
ators commonly used in GAs.

4.2.1 Selection Methods

Selection procedures can be broadly classified into two classes (Goldberg 1989):
fitness proportionate selection and ordinal selection.

4.2.1.1 Fitness Proportionate Selection

This includes methods such as roulette-wheel selection and stochastic universal
selection. In roulette-wheel selection, each individual in the population is assigned
a roulette-wheel slot sized in proportion to its fitness. That is, in the biased roulette
wheel, good solutions have larger slot sizes than the less fit solutions. The roulette
wheel is spun to obtain a reproduction candidate. The roulette-wheel selection
scheme can be implemented as follows:

1. Evaluate the fitness, fi, of each individual in the population.
2. Compute the probability (slot size), pi, of selecting each member of the popula-

tion: pi = fi/∑
n
j=1 f j , where n is the population size.

3. Calculate the cumulative probability, qi, for each individual: qi = ∑i
j=1 p j.

4. Generate an uniform random number, r ∈ (0,1].
5. If r < q1 then select the first chromosome, x1, else select the individual xi such

that qi−1 < r ≤ qi.
6. Repeat steps 4–5 n times to create n candidates in the mating pool.

To illustrate, consider a population with five individuals (n = 5), with the fitness
values as shown in the table below. The total fitness, ∑n

j=1 f j = 28+ 18+ 14+ 9+

96 K. Sastry et al.

26= 95. The probability of selecting an individual and the corresponding cumula-
tive probabilities are also shown.

Chromosome # 1 2 3 4 5
Fitness, f 28 18 14 9 26
Probability, pi 28/95 = 0.295 0.189 0.147 0.095 0.274
Cumulative probability, qi 0.295 0.484 0.631 0.726 1.000

Now if we generate a random number r, say 0.585, then the third chromosome is
selected as q2 = 0.484 < 0.585≤ q3 = 0.631.

4.2.1.2 Ordinal Selection

Ordinal selection includes methods such as tournament selection (Goldberg et al.
1989) and truncation selection (Mühlenbein and Schlierkamp-Voosen 1993). In
tournament selection, s chromosomes are chosen at random (either with or without
replacement) and entered into a tournament against each other. The fittest individual
in the group of s chromosomes wins the tournament and is selected as the parent.
The most widely used value of s is 2. Using this selection scheme, n tournaments
are required to choose n individuals. In truncation selection, the top (1/s)th of the
individuals get s copies each in the mating pool.

4.2.2 Recombination Operators

After selection, individuals from the mating pool are recombined (or crossed over)
to create new, hopefully better offsprings. In the GA literature, many crossover
methods have been designed (Goldberg 1989; Booker et al. 1997) and some of them
are described in this section. Many of the recombination operators used in the lit-
erature are problem specific and in this section we will introduce a few generic
(problem independent) crossover operators. It should be noted that while for hard
search problems many of the following operators are not scalable, they are very
useful as a first option. Recently, however, researchers have achieved significant
success in designing scalable recombination operators that adapt linkage, which is
briefly discussed in Sect. 4.3.

In most recombination operators, two individuals are randomly selected and are
recombined with a probability pc, called crossover probability. That is, a uniform
random number, r, is generated and if r≤ pc, the two randomly selected individuals
undergo recombination. Otherwise, that is if r > pc, the two offspring are simply
copies of their parents. The value of pc can either be set experimentally, or can be
set based on schema theorem principles (Goldberg 1989, 2002).

k-point crossover: One-point and two-point crossovers are among the simplest
and most widely applied crossover methods. In one-point crossover, illustrated

4 Genetic Algorithms 97

111101

0 1 0

011

1 0 1

0 0 1

Offspring chromosomes

Uniform crossover

1 1 1

1 0111101

Parent chromosomes

Parent chromosomes

Offspring chromosomes

00001000

1010

0

Crossover points

Two point crossover

111101

0 0 0 1 0 0 1 1 1 1

0 0 0 1 0 0

0 0

1 0 0010

Parent chromosomes

Crossover point

Offspring chromosomes

One point crossover

Fig. 4.1 Illustration of one-point, two-point, and uniform crossover methods

in Fig. 4.1, a crossover site is selected at random over the string length, and the
alleles on one side of the site are exchanged between the individuals. In two-
point crossover, two crossover sites are randomly selected. The alleles between
the two sites are exchanged between the two randomly paired individuals. Two-
point crossover is illustrated in Fig. 4.1. The concept of one-point crossover can
be extended to k-point crossover, where k crossover points are used, rather than
just one or two.

Uniform crossover: Another common recombination operator is uniform cross-
over (Syswerda 1989; Spears and De Jong 1994). In uniform crossover, illus-
trated in Fig. 4.1, every allele is exchanged between a pair of randomly-selected
chromosomes with a certain probability, pe, known as the swapping probability.
Usually the swapping probability value is taken to be 0.5.

Uniform order-based crossover: The k-point and uniform crossover methods des-
cribed above are not well suited for search problems with permutation codes
such as those used in the TSP. They often create offsprings that represent in-
valid solutions for the search problem. Therefore, when solving search problems
with permutation codes, a problem-specific repair mechanism is often required
(and used) in conjunction with the above recombination methods to always create
valid candidate solutions.

98 K. Sastry et al.

Another alternative is to use recombination methods developed specifically for
permutation codes, which always generate valid candidate solutions. Several
such crossover techniques are described in the following paragraphs starting with
the uniform order-based crossover.

Fig. 4.2 Illustration of
uniform-order crossover

Child C1

Child C2

Parent P2

Parent P1

Template

E B AC D G F

A B ED C G F

0 1 1 0 0 1 0

E B D C F G A

A B C D E F G

Fig. 4.3 Illustration of order-
based crossover

Parent P2

Parent P1

Child C1

Child C2

Child C1

Child C2

F ABC EG D

FG E ? ???

? ??

F A GB

FG E

A B C D E F G

? C D E

C D E

C D A B

In uniform order-based crossover, two parents (say P1 and P2) are randomly sel-
ected and a random binary template is generated (see Fig. 4.2). Some of the genes
for offspring C1 are filled by taking the genes from parent P1 where there is a one
in the template. At this point we have C1 partially filled, but it has some “gaps”.
The genes of parent P1 in the positions corresponding to zeros in the template
are taken and sorted in the same order as they appear in parent P2. The sorted list
is used to fill the gaps in C1. Offspring C2 is created using a similar process (see
Fig. 4.2).

Order-based crossover: The order-based crossover (Davis 1985) is a variation of
the uniform order-based crossover in which two parents are randomly selected
and two random crossover sites are generated (see Fig. 4.3). The genes between
the cut points are copied to the children. Starting from the second crossover site,
copy the genes that are not already present in the offspring from the alternative
parent (the parent other than the one whose genes are copied by the offspring

4 Genetic Algorithms 99

in the initial phase) in the order they appear. For example, as shown in Fig. 4.3,
for offspring C1, since alleles C, D and E are copied from the parent P1, we get
alleles B, G, F and A from the parent P2. Starting from the second crossover
site, which is the sixth gene, we copy alleles B and G as the sixth and seventh
genes respectively. We then wrap around and copy alleles F and A as the first and
second genes.

Partially matched crossover (PMX): As well as always generating valid offspring,
the PMX operator (Goldberg and Lingle 1984) also preserves orderings within
the chromosome. In PMX, two parents are randomly selected and two random
crossover sites are generated. Alleles within the two crossover sites of a par-
ent are exchanged with the alleles corresponding to those mapped by the other
parent. For example, as illustrated in Fig. 4.4 (reproduced with permission from
Goldberg 1989), looking at parent P1, the first gene within the two crossover
sites, 5, maps to 2 in P2. Therefore, genes 5 and 2 are swapped in P1. Similarly
we swap 6 and 3, and 10 and 7 to create the offspring C1. After all exchanges
it can be seen that we have achieved a duplication of the ordering of one of the
genes in between the crossover point within the opposite chromosome, and vice
versa.

Cycle crossover (CX): We describe cycle crossover (Oliver et al. 1987) with the
help of a simple illustration (reproduced with permission from Goldberg 1989).
Consider two randomly selected parents P1 and P2 as shown in Fig. 4.5 that are
solutions to a TSP problem. The offspring C1 receives the first variable (repre-
senting city 9) from P1. We then choose the variable that maps onto the same
position in P2. Since city 9 is chosen from P1 which maps to city 1 in P2, we
choose city 1 and place it into C1 in the same position as it appears in P1 (fourth
gene), as shown in Fig. 4.5. City 1 in P1 now maps to city 4 in P2, so we place
city 4 in C1 in the same position it occupies in P1 (sixth gene). We continue this
process once more and copy city 6 to the 9th gene of C1 from P1. At this point,
since city 6 in P1 maps to city 9 in P2, we should take city 9 and place it in C1,
but this has already been done, so we have completed a cycle; which is where
this operator gets its name. The missing cities in offspring C1 are filled from P2.
Offspring C2 is created in the same way by starting with the first city of parent
P2 (see Fig. 4.5).

4.2.3 Mutation Operators

If we use a crossover operator, such as one-point crossover, we may get better and
better chromosomes but the problem is, if the two parents (or worse—the entire
population) have the same allele at a given gene then one-point crossover will not

100 K. Sastry et al.

Fig. 4.4 Illustration of par-
tially matched crossover

3 978 21 10 5 4 6

3 6

9 8 4 5 6 7 1 3 2 10

9 8 4 1 510 72

98 41 5 26 3710

Parent P2

Parent P1

Child C1

Child C2

Fig. 4.5 Illustration of cycle
crossover

Parent P2

Parent P1

Child C1

Child C1

Child C1

Child C1

Child C2

69 412 3 5 7 108

1 948 2 7 6 5 10 3

9 1 4 6

9 1 4

9 1

9 8 2 1 7 4 5 10 6 3

5 721 43 6 8 9 10

change that. In other words, that gene will have the same allele forever. Mutation is
designed to overcome this problem in order to add diversity to the population and
ensure that it is possible to explore the entire search space.

In evolution strategies, mutation is the primary variation/search operator. For an
introduction to evolution strategies see, for example, Bäck (1996). Unlike evolution
strategies, mutation is often the secondary operator performed with a low probability
in GAs. One of the most common mutations is the bit-flip mutation. In bit-flip mu-
tation, each bit in a binary string is changed (a 0 is converted to 1, and vice versa)
with a certain probability, pm, known as the mutation probability. As mentioned
earlier, mutation performs a random walk in the vicinity of the individual. Other
mutation operators such as those that swap genes and problem-specific ones can
also be developed and are often used in the literature.

4 Genetic Algorithms 101

4.2.4 Replacement

Once the new offspring solutions are created using crossover and mutation, we
need to introduce them into the parental population. There are many ways we can
approach this. Bear in mind that the parent chromosomes have already been selected
according to their fitness, so we are hoping that the children (which includes par-
ents which did not undergo crossover) are among the fittest in the population and so
we would hope that the population will gradually, on average, increase their fitness.
Some of the most common techniques are outlined below.

Delete-all: This technique deletes all the members of the current population and
replaces them with the same number of chromosomes that have just been created.
This is probably the most common technique and will be the technique of choice
for most people due to its relative ease of implementation. It is also parameter
free, which is not the case for those listed below.

Steady-state: This technique deletes n old members and replaces them with n new
members. The number to delete and replace, n, at any one time is a parameter
to this deletion technique. Another consideration for this technique is deciding
which members to delete from the current population. Do you delete the worst
individuals, pick them at random or delete the chromosomes that you used as
parents? Again, this is a parameter to this technique.

Steady-state-no-duplicates: This is the same as the steady-state technique but the
algorithm checks that no duplicate chromosomes are added to the population.
This adds to the computational overhead but can mean that more of the search
space is explored.

4.3 Competent GAs

While using innovation for explaining working mechanisms of GAs is very useful,
as a design metaphor it poses difficulty as the processes of innovation are themselves
not well understood. However, if we want GAs to successfully solve increasingly
difficult problems across a wide spectrum of areas, we need a principled, but mech-
anistic way of designing GAs. The last few decades have witnessed great strides,
not only toward the development of so-called competent genetic algorithms—GAs
that solve hard problems, quickly, reliably and accurately (Goldberg 1999a). From
a computational standpoint, the existence of competent GAs suggests that many
difficult problems can be solved in a scalable fashion. Furthermore, it significantly
reduces the burden on a user to decide on a good coding or a good genetic oper-
ator that accompanies many GA applications. If the GA can adapt to the problem,
there is less reason for the user to have to adapt the problem, coding or operators to
the GA.

In this section we briefly review some of the key lessons of competent GA design.
Specifically, we restrict the discussion to selectorecombinative GAs and focus on the

102 K. Sastry et al.

cross-fertilization type of innovation. Using Holland’s notion of a building block
(Holland 1975), the first author proposed decomposing the problem of designing a
competent selectorecombinative GA (Goldberg et al. 1992). This design decomposi-
tion has been explained in detail elsewhere (Goldberg 2002), but is briefly reviewed
in what follows.

Know that GAs process building blocks (BBs): The primary idea of selectore-
combinative GA theory is that GAs work through a mechanism of decomposi-
tion and reassembly. Holland (1975) identified well-adapted sets of features that
were components of effective solutions (BBs). The basic idea is that GAs (1)
implicitly identify BBs or sub-assemblies of good solutions, and (2) recombine
different sub-assemblies to form very high performance solutions.

Understand BB hard problems: From the standpoint of cross-fertilizing inno-
vation, problems that are hard have BBs that are hard to acquire. This may be
because the BBs are complex, hard to find, or because different BBs are hard to
separate, or because low-order BBs may be misleading or deceptive (Goldberg
1987, 2002).

Understand BB growth and timing: Another key idea is that BBs or notions
exist in a kind of competitive market economy of ideas, and steps must be taken
to ensure that the best ones (1) grow and take over a dominant market share of
the population, and (2) the growth rate is neither too fast nor too slow.
The growth in market share can be easily satisfied by appropriately setting the
crossover probability, pc, and the selection pressure, s (Goldberg and Sastry
2001)

pc ≤
1− s−1

ε
, (4.1)

where ε is the probability of BB disruption.
Two other approaches have been used in understanding time. It is not appropri-

ate in a basic text like this to describe them in detail, but we give a few example
references for the interested reader:

• Takeover time models, where the dynamics of the best individual is modeled
(Goldberg and Deb 1991; Bäck 1994; Sakamoto and Goldberg 1997; Cantú-
Paz 1999; Rudolph 2000).

• Selection-intensity models, where the dynamics of the average fitness of
the population is modeled (Mühlenbein and Schlierkamp-Voosen 1993; Bäck
1995; Thierens and Goldberg 1994; Miller and Goldberg 1995, 1996a).

The time models suggest that for a problem of size ℓ, with all BBs of equal
importance or salience, the convergence time of GAs is given by Miller and Gold-
berg (1995)

tc =
π

2I

√
ℓ, (4.2)

where I is the selection intensity (Bulmer 1985), which is a parameter dependent
on the selection method and selection pressure.

4 Genetic Algorithms 103

On the other hand, if the BBs of a problem have different salience, then the
convergence time scales up differently. For example, when BBs of a problem
are exponentially scaled, with a particular BB being exponentially better than
the others, then the convergence time of a GA is linear with the problems size

(Thierens et al. 1998):

tc =
− log2

log
(

1− I/
√

3
)ℓ. (4.3)

To summarize, the convergence time of GAs scale up as O
(√

ℓ
)

−O (ℓ) (see

Chap. 1 for an explanation of the O notation).
Understand BB supply and decision making: One role of the population is to

ensure an adequate supply of the raw building blocks in a population. Randomly
generated populations of increasing size will, with higher probability, contain
larger numbers of more complex BBs (Holland 1975; Goldberg et al. 2001). For
a problem with m building blocks, each consisting of k alphabets of cardinality
χ, the population size required to ensure the presence of at least one copy of all
the raw building blocks is given by Goldberg et al. (2001)

n = χk logm+ kχk logχ. (4.4)

Just ensuring the raw supply is not enough, decision making among different,
competing notions (BBs) is statistical in nature, and as we increase the popula-
tion size, we increase the likelihood of making the best possible decisions (Gold-
berg et al. 1992; Harik et al. 1999). For an additively decomposable problem with
m building blocks of size k each, the population size required to not only ensure
supply, but also ensure correct decision making is approximately given by Harik
et al. (1999)

n =−
√
π

2
σBB

d
2k√m logα, (4.5)

where d/σBB is the signal-to-noise ratio (Goldberg et al. 1992), and α is the
probability of incorrectly deciding among competing building blocks. In essence,
the population-sizing model consists of the following components:

• Competition complexity, quantified by the total number of competing BBs, 2k

• Subcomponent complexity, quantified by the number of BBs, m
• Ease of decision making, quantified by the signal-to-noise ratio, d/σbb

• Probabilistic safety factor, quantified by the coefficient − logα.

On the other hand, if the BBs are exponentially scaled, the population size scales
as (Thierens et al. 1998; Goldberg 2002)

n =−co
σBB

d
2km logα, (4.6)

where co is a constant dependent on the drift effects (Goldberg and Segrest 1987;
Asoh and Mühlenbein 1994).
To summarize, the population size required by GAs scales up as O

(

2k√m
)

−
O
(

2km
)

.

104 K. Sastry et al.

Identify BBs and exchange them: Perhaps the most important lesson of current
research in GAs is that the identification and exchange of BBs is the critical
path to innovative success. First-generation GAs, usually fail in their ability
to promote this exchange reliably. The primary design challenge to achieving
competence is the need to identify and promote effective BB exchange. The-
oretical studies using a facetwise modeling approach (Goldberg et al. 1993b;
Thierens 1999; Sastry and Goldberg 2003) have shown that while fixed recom-
bination operators such as uniform crossover, due to inadequacies of effective
identification and exchange of BBs, demonstrate polynomial scalability on sim-
ple problems, they scale up exponentially with problem size on boundedly dif-
ficult problems. The mixing models also yield a control map delineating the re-
gion of good performance for a GA. Such a control map can be a useful tool in
visualizing GA sweet-spots and provide insights into parameter settings (Gold-
berg 1999a). This is in contrast to recombination operators that can automati-
cally and adaptively identify and exchange BBs, which scale up polynomially
(subquadratically–quadratically) with problem size.

Efforts in principled design of effective BB identification and exchange mecha-
nisms have led to the development of competent GAs. Competent GAs are a class
of GAs that solve hard problems quickly, reliably and accurately. Hard problems,
are loosely defined as those problems that have large sub-solutions that cannot be
decomposed into simpler sub-solutions, or have badly scaled sub-solutions, or have
numerous local optima, or are subject to a high stochastic noise. While designing
a competent GA, the objective is to develop a GA that can solve problems with
bounded difficulty and exhibit a polynomial (usually subquadratic) scale-up with
the problem size.

Interestingly, the mechanics of competent GAs vary widely, but the principles of
innovative success are invariant. Competent GA design began with the development
of the messy genetic algorithm (Goldberg et al. 1989), culminating in 1993 with the
fast messy GA (Goldberg et al. 1993a). Since those early scalable results, a number
of competent GAs have been constructed using different mechanism styles. We cat-
egorize these approaches and provide some references for the interested reader, but
a detailed treatment is beyond the scope of this chapter:

• Perturbation techniques such as the messy GA (mGA) (Goldberg et al. 1989),
fast messy GA (fmGA) (Goldberg et al. 1993a), gene expression messy GA
(GEMGA) (Kargupta 1996), linkage identification by nonlinearity check/linkage
identification by detection GA (LINC/LIMD GA) (Munetomo and Goldberg
1999; Heckendorn and Wright 2004), and dependency structure matrix driven
genetic algorithm (DSMGA) (Yu 2006).

• Linkage adaptation techniques such as linkage learning GA (LLGA) (Chen 2004;
Harik and Goldberg 1997).

• Probabilistic model building techniques (Pelikan et al. 2006) such as population-
based incremental learning (PBIL) (Baluja 1994), the univariate model build-
ing algorithm (UMDA) (Mühlenbein and Paass 1996), the compact GA (CGA)
(Harik et al. 1998), extended compact GA (eCGA) (Harik 1999), the Bayesian

4 Genetic Algorithms 105

optimization algorithm (BOA) (Pelikan et al. 2000), the iterated distribution
estimation algorithm (IDEA) (Bosman and Thierens 1999) and the hierarchical
Bayesian optimization algorithm (hBOA) (Pelikan 2005).

4.4 Efficiency Enhancement of Genetic Algorithms

The previous section presented a brief account of competent GAs. These GA designs
have shown promising results and have successfully solved hard problems requiring
only a subquadratic number of function evaluations. In other words, competent GAs
usually solve an ℓ-variable search problem, requiring only O(ℓ2) number of func-
tion evaluations. While competent GAs take problems that were intractable with
first-generation GAs and render them tractable, for large-scale problems, the task
of computing even a subquadratic number of function evaluations can be daunting.
If the fitness function is a complex simulation, model or computation, then a single
evaluation might take hours, even days. For such problems, even a subquadratic
number of function evaluations is very high. For example, consider a 20-bit search
problem and assume that a fitness evaluation takes 1 hour. It requires about a month
to solve the problem. This places a premium on a variety of efficiency enhancement
techniques. Also, it is often the case that a GA needs to be integrated with problem-
specific methods in order to make the approach effective for a particular problem.
The literature contains a large number of papers which discuss enhancements of
GAs. Once again, a detailed discussion is well beyond the scope of the chapter, but
we provide four broad categories of GA enhancement and examples of appropriate
references for the interested reader:

Parallelization, where GAs are run on multiple processors and the computational
resource is distributed among these processors (Cantú-Paz 2000). Evolutionary
algorithms are by nature parallel, and many different parallelization approaches
such as a simple master–slave, coarse-grained fine-grained or hierarchical arc-
hitectures can be readily used. Regardless of how parallelization is done, the
key idea is to distribute the computational load on several processors thereby
speeding-up the overall GA run. Moreover, there exists a principled design theory
for developing an efficient parallel GA and optimizing the key facts of parallel
architecture, connectivity, and deme size (Cantú-Paz 2000).
For example, when the function evaluation time, Tf , is much greater than the
communication time, Tc, which is very often the case, then a simple master–slave
parallel GA—where the fitness evaluations are distributed over several proces-
sors and the rest of the GA operations are performed on a single processor—can
yield linear speed-up when the number of processors is less than or equal to
3
√

Tf
Tc

n, and an optimal speed-up when the number of processors equals
√

Tf
Tc

n,
where n is the population size.

Hybridization can be an extremely effective way of improving the performance
of GAs. The most common form of hybridization is to couple GAs with lo-
cal search techniques and to incorporate domain-specific knowledge into the

106 K. Sastry et al.

search process. A common form of hybridization is to incorporate a local search
operator into the GA by applying the operator to each member of the population
after each generation. This hybridization is often carried out in order to pro-
duce stronger results than the individual approaches can achieve on their own.
However, this improvement in solution quality usually comes at the expense of
increased computational time (e.g. Burke et al. 2001). Such approaches are often
called memetic algorithms in the literature. This term was first used by Moscato
(1989) and has since been employed widely. For more details about memetic al-
gorithms, see Krasnogor and Smith (2005), Krasnogor et al. (2004), Moscato and
Cotta (2003) and Moscato (1999). Of course, the hybridization of GAs can take
other forms. Examples include:

• Initializing a GA population (Burke et al. 1998; Fleurent and Ferland 1993;
Watson et al. 1999);

• Repairing infeasible solutions into legal ones (Ibaraki 1997);
• Developing specialized heuristic recombination operators (Burke et al. 1995);
• Incorporating a case-based memory (experience of past attempts) into the GA

process (Louis and McDonnell 2004);
• Heuristically decomposing large problems into smaller sub-problems before

employing a memetic algorithm (Burke and Newell 1999).

Hybrid GA and memetic approaches have demonstrated significant success in
difficult real-world application areas. A small number of examples are included
below (many more examples can be found in the literature):

• University timetabling: examination timetabling (Burke et al. 1996, 1998;
Burke and Newell 1999) and course timetabling (Paechter et al. 1995, 1996);

• Machine scheduling (Cheng and Gen 1997). Electrical power systems: unit
commitment problems (Valenzuala and Smith 2002);

• Electricity transmission network maintenance scheduling (Burke and Smith
1999); thermal generator maintenance scheduling (Burke and Smith 2000);

• Sports scheduling (Costa 1995);
• Nurse rostering (Burke et al. 2001);
• Warehouse scheduling (Watson et al. 1999).

While GA practitioners have often understood that real-world or commercial ap-
plications often require hybridization, there has been limited effort devoted to
developing a theoretical underpinning of genetic algorithm hybridization. How-
ever, the following list contains examples of work which has aimed to answer
critical issues such as

• The optimal division of labor between global and local searches (or the right
mix of exploration and exploitation) (Goldberg and Voessner 1999; Sinha
2003);

• The effect of local search on sampling (Hart and Belew 1996);
• Hybrid GA modeling issues (Whitley 1995).

4 Genetic Algorithms 107

The papers cited in this section are only a tiny proportion of the literature on
hybrid GAs but they should provide a starting point for the interested reader.
However, although there is a significant body of literature on the subject, there
are many research directions still to be explored. Indeed, considering the option
of hybridizing a GA with other approaches is one of the suggestions we give in
the Tricks of the Trade section at the end of the chapter.

Time continuation, where capabilities of both mutation and recombination are opt-
imally utilized to obtain a solution of as high quality as possible with a given
limited computational resource (Goldberg 1999b; Sastry and Goldberg 2004).
Time utilization (or continuation) exploits the tradeoff between the search for
solutions with large populations and a single convergence epoch or using a small
population with multiple convergence epochs.
Early theoretical investigations indicate that when the BBs are of equal (or nearly
equal) salience and both recombination and mutation operators have the linkage
information, then a small population with multiple convergence epochs is more
efficient. However, if the fitness function is noisy or has overlapping BBs, then
a large population with single convergence epoch is more efficient (Sastry and
Goldberg 2004). On the other hand, if the BBs of the problem are of non-uniform
salience, which essentially require serial processing, then a small population with
multiple convergence epochs is more efficient (Goldberg 1999b). Much work
needs to be done to develop a principled design theory for efficiency enhance-
ment via time continuation and to design competent continuation operators to
reinitialize population between epochs.

Evaluation relaxation, where an accurate but computationally expensive fitness
evaluation is replaced with a less accurate, but computationally inexpensive fit-
ness estimate. The low-cost, less-accurate fitness estimate can either be (1) ex-
ogenous, as in the case of surrogate (or approximate) fitness functions (Jin 2005),
where external means can be used to develop the fitness estimate, or (2) endoge-
nous, as in the case of fitness inheritance (Smith et al. 1995) where the fitness
estimate is computed internally based on parental fitnesses.
Evaluation relaxation in GAs dates back to the early, largely empirical, work of
Grefenstette and Fitzpatrick (1985) in image registration (Fitzpatrick et al. 1984)
where significant speed-ups were obtained by reduced random sampling of the
pixels of an image. Approximate models have since been used extensively to
solve complex optimization problems in many engineering applications such as
aerospace and structural engineering (Barthelemy and Haftka 1993; Dennis and
Torczon 1997).
While early evaluation relaxation studies were largely empirical in nature, design
theories have since been developed to understand the effect of approximate surro-
gate functions on population sizing and convergence time and to optimize speed-
ups in approximate fitness functions with known variance (Miller and Gold-
berg 1996b), in integrated fitness functions (Albert 2001), in simple functions
of known variance or known bias (Sastry 2001) and also in fitness inheritance
(Sastry et al. 2001, 2004; Pelikan and Sastry 2004).

108 K. Sastry et al.

Speed-up obtained by employing an efficiency-enhancement technique (EET)
is measured in terms of a ratio of the computation effort required by a GA when
the EET is used to that required by GA in the absence of the EET. That is, η =
Tbase/Tefficiency-enhanced . Speed-up obtained by employing even a single EET can po-
tentially be significant. Furthermore, assuming that the performance of one of the
above methods does not affect the performance of others, if we employ more than
one EET, the overall speed-up is the product of individual speed-ups. That is, if the
speed-ups obtained by employing parallelization, hybridization, time continuation
and evaluation relaxation be ηp, ηh, ηt , and ηe respectively. If one uses all these
EETs, then the overall speed-up obtained is

ηtotal = ηpηhηtηe.

Even if the speed-up obtained by a single EET is modest, a combination of two
or more EETs can yield a significant speed-up. For example, if we use a paral-
lel GA that yields linear speed-up with 10 processors, and each of the other three
EETs makes GAs 25% more efficient, then together they yield a speed-up of 10 ∗
1.253 = 19.5. That is evaluation relaxation, time continuation and hybridization
would give slightly more than 9.5 processors’ worth of additional computation
power. GAs designed using the decomposition principles and principled efficiency
enhancement outlined in this chapter have opened doors for efficiently solving rou-
tine billion-variable optimization in the increasingly large, complex problems of
science (Sastry et al. 2007).

Tricks of the Trade

In this section we present some suggestions for the reader who is new to the area of
GAs and wants to know how best to get started. Fortunately, the ideas behind GAs
are intuitive and the basic algorithm is not complex. Here are some basic tips.

• Start by using an “off the shelf” GA. It is pointless developing a complex GA, if
your problem can be solved using a simple and standard implementation.

• There are many excellent software packages that allow you to implement a GA
very quickly. Many of the introductory texts are supplied with a GA implemen-
tation and GA-LIB is probably seen as the software of choice for many people
(see below).

• Consider carefully your representation. In the early days, the majority of imple-
mentations used a bit representation which was easy to implement. Crossover
and mutation were simple. However, many other representations are now used,
some utilizing complex data structures. You should carry out some research to
determine what is the best representation for your particular problem.

• A basic GA will allow you to implement the algorithm and the only thing you
have to supply is an evaluation function. If you can achieve this, then this is the
fastest way to get a prototype system up and running. However, you may want

4 Genetic Algorithms 109

to include some problem-specific data in your algorithm. For example, you may
want to include your own crossover operators (in order to guide the search) or
you may want to produce the initial population using a constructive heuristic (to
give the GA a good starting point).

• In recent times, many researchers have hybridized GAs with other search methods
(see Sect. 4.4). Perhaps the most common method is to include a local searcher
after the crossover and mutation operators (sometimes known as a memetic alg-
orithm). This local searcher might be something as simple as a hill climber, which
acts on each chromosome to ensure it is at a local optimum before the evolution-
ary process starts again.

• There are many parameters required to run a GA (which can be seen as one of
the shortcomings). At a minimum you have the population size, the mutation
probability and the crossover probability. The problem with having so many pa-
rameters to set is that it can take a lot of experimentation to find a set of values
which solves your particular problem to the required quality. A broad rule of
thumb, to start with, is to use a mutation probability of 0.05 (De Jong 1975),
a crossover rate of 0.6 (De Jong 1975) and a population size of about 50. An
alternative method is to set these parameters based on facetwise models (see
Sect. 4.3). These three parameters are just an example of the many choices you
are going to have to make to get your GA implementation working. To provide
just a small sample: Which crossover operator should you use? Which mutation
operator? Should the crossover/mutation rates be dynamic and change as the run
progresses? Should you use a local search operator? If so, which one, and how
long should that be allowed to run for? What selection technique should you use?
What replacement strategy should you use? Fortunately, many researchers have
investigated many of these issues and the following section Additional Sources
provides many suitable references.

Sources of Additional Information

At the time of writing, a Google search for Genetic Algorithms returned over seven
million hits, so it is impossible to give a comprehensive list of all potentially useful
sources. Below, we have suggested a small selection of sources that you might want
to look at. We have split them into three areas, web sites, books and journal articles.
We apologise for any that we have missed but it is impossible to list every available
source.

Web Sites

Due to the nature of the internet, these URLs may not always be available and may
move. All those listed were last accessed on 11 November 2012. You should also be

110 K. Sastry et al.

wary of citing URLs as they often lack a peer review mechanism and the page could
be changed or disappear altogether.

• http://en.wikipedia.org/wiki/Genetic_algorithm/
• http://geneticalgorithms.ai-depot.com/
• http://illigal.org/
• http://lancet.mit.edu/ga/
• http://lancet.mit.edu/~mbwall/presentations/IntroToGAs/
• http://mathworld.wolfram.com/GeneticAlgorithm.html
• http://www.obitko.com/tutorials/genetic-algorithms/
• http://www.youtube.com/watch?v=ejxfTy4lI6I/

Books

• Coley, D. A. 1999. An Introduction to Genetic Algorithms for Scientists and
Engineers. World Scientific.

• Davis, L. D. (ed) 1987. Genetic Algorithms and Simulated Annealing. Pitman.
• Davis, L. D. (ed) 1991. Handbook of Genetic Algorithms. Van Nostrand Reinhold.
• Dawkins, R. 1976. The Selfish Gene. Oxford University Press.
• De Jong, K. 2002. Evolutionary Computation: A Unified Approach. MIT Press.
• Eiben, A. E., Smith, J. E. 2010. Introduction to Evolutionary Computing. Natural

Computing Series, Springer.
• Falkenauer, E. 1998. Genetic Algorithms and Grouping Problems. Wiley.
• Fogel, D. B. 1998. Evolutionary Computation The Fossil Record. IEEE Press.
• Fogel, D. B. 2000. Evolutionary Computation: Toward a New Philosophy of

Machine Intelligence. 2nd edn, IEEE Press.
• Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimization, and Machine

Learning. Addison-Wesley.
• Haupt, R. L., Haupt, S. E. 2004. Practical Genetic Algorithms. Wiley-

Interscience.
• Holland, J. H. 1975. Adaptation in Natural and Artificial Systems. University of

Michigan Press (a second edition was published in 1992).
• Michalewicz, M. 1996. Genetic Algorithms + Data Structures = Evolution Pro-

grams. Springer.
• Mitchell, M. 1998. An Introduction to Genetic Algorithms (Complex Adaptive

Systems). MIT Press.
• Munoz, A. R., Rodriguez, I. G. 2012. Handbook of Genetic Algorithms: New

Research. Mathematics Research Developments. Nova Science.
• Reeves, C. R., Rowe, J. E. 2002. Genetic Algorithms—Principles and Perspec-

tives: A Guide to GA Theory. Operations Research/Computer Science Interfaces
Series. Springer.

• Sivanandam, S. N. 2008. Introduction to Genetic Algorithms. Springer.
• Vose, M. 1999. The Simple Genetic Algorithm: Foundations and Theory (Com-

plex Adaptive Systems). MIT Press.

http://en.wikipedia.org/wiki/Genetic_algorithm/
http://geneticalgorithms.ai-depot.com/
http://illigal.org/
http://lancet.mit.edu/ga/
http://lancet.mit.edu/~mbwall/presentations/IntroToGAs/
http://mathworld.wolfram.com/GeneticAlgorithm.html
http://www.obitko.com/tutorials/genetic-algorithms/
http://www.youtube.com/watch?v=ejxfTy4lI6I/

4 Genetic Algorithms 111

Journal Articles

In this section, as well as providing some general references to the evolutionary
computation literature, we have also provided a few suggestions for review articles
in specific applications as these might be useful introductions which you may not
otherwise come across.

• Carter, J. N. 2003. Chapter 3, Introduction to using genetic algorithms. Develop-
ments in Petroleum Science, 51, 51–76.

• Chatterjee, S., Laudato, M., Lynch, L. A. 1996. Genetic algorithms and their
statistical applications: an introduction. Computational Statistics and Data Anal-
ysis, 22, 633–651.

• Cheng, R., Gen, M., Tsujimura, Y. 1999. A tutorial survey of job-shop schedul-
ing problems using genetic algorithms. Part II: Hybrid genetic search strategies.
Computers and Industrial Engineering, 36, 343–364.

• Forrest, S. 1993. Genetic algorithms: principles of natural selection applied to
computation. Science, 261, 872–878.

• Larrañaga, P., Kuijpers, C. M. H., Murga, R. H., Inza, I., Dizdarevic, S. 1999.
Genetic algorithms for the travelling salesman problem: A review of representa-
tions and operators. Artificial Intelligence Review, 13, 129–170.

• Salomon, R. 1996. Re-evaluating genetic algorithm performance under coordi-
nate rotation of benchmark functions. A survey of some theoretical and practical
aspects of genetic algorithms. Biosystems, 39, 263–278.

• Srinivas, M., Patnaik, L. M. 1994. Genetic algorithms: a survey. Computer, 27,
17–26.

• Zang, H., Zhang, S., Hapeshi, K. 2010. A review of nature-inspired algorithms.
Journal of Bionic Engineering, 7, S232–S237.

References

Albert LA (2001) Efficient genetic algorithms using discretization scheduling.
Master’s thesis, University of Illinois at Urbana-Champaign (also IlliGAL report
no 2002005)

Asoh H, Mühlenbein H (1994) On the mean convergence time of evolutionary
algorithms without selection and mutation. PPSN 3, pp 98–107

Bäck T (1994) Selective pressure in evolutionary algorithms: a characterization of
selection mechanisms. In: Proceedings of the 1st IEEE conference on evolution-
ary computation, Orlando, pp 57–62

Bäck T (1995) Generalized convergence models for tournament—and (µ,λ)—
selection. In: Proceedings of 6th international conference on genetic algorithms,
Pittsburgh, pp 2–8

Bäck T (1996) Evolutionary algorithms in theory and practice. Oxford University
Press, New York

112 K. Sastry et al.

Baluja S (1994) Population-based incremental learning: a method of integrating
genetic search based function optimization and competitive learning. Technical
report CMU-CS-94-163, Carnegie Mellon University

Barthelemy J-FM, Haftka RT (1993) Approximation concepts for optimum struc-
tural design—a review. Struct Optim 5:129–144

Booker LB, Fogel DB, Whitley D, Angeline PJ (1997) Recombination. In:
Bäck T, Fogel DB, Michalewicz Z (eds) The handbook of evolutionary com-
putation, chap E3.3. IOP Publishing/Oxford University Press, London/Oxford,
pp C3.3:1–C3.3:27

Bosman PAN, Thierens D (1999) Linkage information processing in distribution
estimation algorithms. In: Proceedings of the GECCO, Orlando, pp 60–67 (also
Technical report no UU-CS-1999-10)

Bremermann HJ (1958) The evolution of intelligence. The nervous system as a
model of its environment. Technical report no 1, Department of Mathematics,
University of Washington

Bulmer MG (1985) The mathematical theory of quantitative genetics. Oxford Uni-
versity Press, Oxford

Burke EK, Newell JP (1999) A multi-stage evolutionary algorithm for the
timetabling problem. IEEE Trans Evol Comput 3:63–74

Burke EK, Smith AJ (1999) A memetic algorithm to schedule planned maintenance
for the national grid. ACM J Exp Algor 4. doi:10.1145/347792.347801

Burke EK, Smith AJ (2000) Hybrid evolutionary techniques for the maintenance
scheduling problem. IEEE Trans Power Syst 15:122–128

Burke EK, Elliman DG, Weare RF (1995) Specialised recombinative operators for
timetabling problems. In: Fogarty T (ed) Evolutionary computing AISB work-
shop 1995. LNCS 993. Springer, Berlin, pp 75–85

Burke EK, Newall JP, Weare RF (1996) A memetic algorithm for university exam
timetabling. In: Burke EK, Ross P (eds) The practice and theory of automated
timetabling I. LNCS 1153. Springer, Berlin, pp 241–250

Burke EK, Newall JP, Weare RF (1998) Initialisation strategies and diversity in evo-
lutionary timetabling. Evol Comput J 6:81–103

Burke EK, Cowling PI, De Causmaecker P, Vanden Berghe G (2001) A mimetic
approach to the nurse rostering problem. Appl Intell 15:199–214

Cantú-Paz E (1999) Migration policies and takeover times in parallel genetic algo-
rithms. In: Proceedings of the GECCO, Orlando, p 775 (also IlliGAL report no
99008)

Cantú-Paz E (2000) Efficient and accurate parallel genetic algorithms. Kluwer,
Boston

Chen J-H (2004) Theory and applications of efficient multi-objective evolutionary
algorithms. Doctoral dissertation, Feng Chia University, Taiwan

Cheng RW, Gen M (1997) Parallel machine scheduling problems using memetic
algorithms. Comput Indust Eng 33:761–764

Costa D (1995) An evolutionary tabu search algorithm and the NHL scheduling
problem. INFOR 33:161–178

4 Genetic Algorithms 113

Davis L (1985) Applying algorithms to epistatic domains. In: Proceedings of the
international joint conference on artifical intelligence, Los Angeles, pp 162–164

De Jong KA (1975) An analysis of the behavior of a class of genetic adaptive
systems. Doctoral dissertation, University of Michigan (University microfilm no
76-9381)

Dennis JE, Torczon V (1997) Managing approximation models in optimization.
In: Alexandrov NM, Hussaini MY (eds) Multidisciplinary design optimization:
state-of-the-art. SIAM, Philadelphia, pp 330–347

Fitzpatrick JM, Grefenstette JJ, Van Gucht D (1984) Image registration by genetic
search. In: Proceedings of the IEEE southeast conference. IEEE Press, Piscat-
away, Louisville, KY, pp 460–464

Fleurent C, Ferland J (1993) Genetic hybrids for the quadratic assignment problem.
DIMACS series in mathematics and theoretical computer science. This DIMACS
workshop on Quadratic Assignment and Related Problems was held at DIMACS
16:173–188

Fraser AS (1957) Simulation of genetic systems by automatic digital computers. II.
Effects of linkage on rates under selection. Aust J Biol Sci 10:492–499

Goldberg DE (1983) Computer-aided pipeline operation using genetic algorithms
and rule learning. Doctoral dissertation, University of Michigan

Goldberg DE (1987) Simple genetic algorithms and the minimal deceptive problem.
In: Davis L (ed) Genetic algorithms and simulated annealing, chap 6. Morgan
Kaufmann, Los Altos, pp 74–88

Goldberg DE (1989) Genetic algorithms in search optimization and machine learn-
ing. Addison-Wesley, Reading

Goldberg DE (1999a) The race, the hurdle, and the sweet spot: lessons from genetic
algorithms for the automation of design innovation and creativity. In: Bentley P
(ed) Evolutionary design by computers, chap 4. Morgan Kaufmann, San Mateo,
pp 105–118

Goldberg DE (1999b) Using time efficiently: genetic-evolutionary algorithms and
the continuation problem. In: Proceedings of the GECCO, Orlando, pp 212–219
(also IlliGAL report no 99002)

Goldberg DE (2002) Design of innovation: lessons from and for competent genetic
algorithms. Kluwer, Boston

Goldberg DE, Deb K (1991) A comparitive analysis of selection schemes used
in genetic algorithms. Foundations of genetic algorithms. Morgan Kaufmann,
pp 69–93

Goldberg DE, Lingle R (1984) Alleles, loci, and the TSP. In: Proceedings of the 1st
international conference on genetic algorithms, Pittsburgh, pp 154–159

Goldberg DE, Sastry K (2001) A practical schema theorem for genetic algorithm
design and tuning. In: Proceedings of the GECCO, San Francisco, pp 328–335
(also IlliGAL report no 2001017)

Goldberg DE, Segrest P (1987) Finite Markov chain analysis of genetic algorithms.
In: Proceedings of the 2nd international conference on genetic algorithms, Cam-
bridge, MA, USA, pp 1–8

114 K. Sastry et al.

Goldberg DE, Voessner S (1999) Optimizing global-local search hybrids. In: Pro-
ceedings of the GECCO, Orlando, pp 220–228 (also IlliGAL report no 99001)

Goldberg DE, Korb B, Deb K (1989) Messy genetic algorithms: motivation,
analysis, and first results. Complex Syst 3:493–530 (also IlliGAL report no
89003)

Goldberg DE, Deb K, Clark JH (1992) Genetic algorithms, noise, and the sizing of
populations. Complex Syst 6:333–362 (also IlliGAL report no 91010)

Goldberg DE, Deb K, Kargupta H, Harik G (1993a) Rapid, accurate optimization
of difficult problems using fast messy genetic algorithms. In: Proceedings of the
international conference on genetic algorithms, Urbana, pp 56–64 (also IlliGAL
report no 93004)

Goldberg DE, Thierens D, Deb K (1993b) Toward a better understanding of mixing
in genetic algorithms. J Soc Instrum Contr Eng 32:10–16 (also IlliGAL report no
92009)

Goldberg DE, Sastry K, Latoza T (2001) On the supply of building blocks. In:
Proceedings of the GECCO, San Francisco, pp 336–342 (also IlliGAL report no
2001015)

Grefenstette JJ, Fitzpatrick JM (1985) Genetic search with approximate function
evaluations. In: Proceedings of the international conference on genetic algorithms
and their applications, Pittsburgh, pp 112–120

Harik G (1999) Linkage learning via probabilistic modeling in the ECGA (IlliGAL
report no 99010). University of Illinois at Urbana-Champaign

Harik G, Goldberg DE (1997) Learning linkage. Foundations of genetic algorithms
4, pp 247–262 (also IlliGAL report no 96006)

Harik G, Lobo F, Goldberg DE (1998) The compact genetic algorithm. In: Pro-
ceedings of the IEEE international conference on evolutionary computation, Pis-
cataway, pp 523–528 (also IlliGAL report no 97006)

Harik G, Cantú-Paz E, Goldberg DE, Miller BL (1999) The gambler’s ruin problem,
genetic algorithms, and the sizing of populations. Evol Comput 7:231–253 (also
IlliGAL report no 96004)

Hart WE, Belew RK (1996) Optimization with genetic algorithm hybrids using
local search. In: Belew RK, Mitchell M (eds) Adaptive individuals in evolving
populations. Addison-Wesley, Reading, pp 483–494

Heckendorn RB, Wright AH (2004) Efficient linkage discovery by limited probing.
Evol Comput 12:517–545

Holland JH (1975) Adaptation in natural and artificial systems. University of Michi-
gan Press, Ann Arbor

Ibaraki T (1997) Combinations with other optimixation problems. In: Bäck T,
Fogel DB, Michalewicz Z (eds) Handbook of evolutionary computation. In-
stitute of Physics Publishing and Oxford University Press, Bristol/New York,
pp D3:1–D3:2

Jin Y (2005) A comprehensive survey of fitness approximation in evolutionary
computation. Soft Comput J 9:3–12

4 Genetic Algorithms 115

Kargupta H (1996) The gene expression messy genetic algorithm. In: Pro-
ceedings of the international conference on evolutionary computation, Nagoya,
pp 814–819

Krasnogor N, Smith JE (2005) A tutorial for competent memetic algorithms:
models,taxonomy and design issues. IEEE Trans Evol Comput 9:474–488

Krasnogor N, Hart W, Smith JE (eds) (2004) Recent advances in memetic algo-
rithms. Studies in fuzziness and soft computing, vol 166. Springer, Berlin

Louis SJ, McDonnell J (2004) Learning with case injected genetic algorithms. IEEE
Trans Evol Comput 8:316–328

Miller BL, Goldberg DE (1995) Genetic algorithms, tournament selection, and the
effects of noise. Complex Syst 9:193–212 (also IlliGAL report no 95006)

Miller BL, Goldberg DE (1996a) Genetic algorithms, selection schemes, and the
varying effects of noise. Evol Comput 4:113–131 (also IlliGAL report no 95009)

Miller BL, Goldberg DE (1996b) Optimal sampling for genetic algorithms. Intelli-
gent engineering systems through artificial neural networks, ASME Press, New
York 6:291–297

Moscato P (1989) On evolution, search, optimization, genetic algorithms and mar-
tial arts: towards memetic algorithms. Technical report C3P 826, California Insti-
tute of Technology

Moscato P (1999) Part 4: Memetic algorithms. In: Corne D, Dorigo M, Glover F
(eds) New ideas in optimization. McGraw-Hill, New York, pp 217–294

Moscato P, Cotta C (2003) A gentle introduction to memetic algorithms. In: Glover
F, Kochenberger G (eds) Handbook of metaheuristics, chap 5. Kluwer, Norwell

Mühlenbein H, Paass G (1996) From recombination of genes to the estimation of
distributions I. Binary parameters. PPSN 4, pp 178–187

Mühlenbein H, Schlierkamp-Voosen D (1993) Predictive models for the breeder
genetic algorithm: I. Continous parameter optimization. Evol Comput 1:25–49

Munetomo M, Goldberg DE (1999) Linkage identification by non-monotonicity
detection for overlapping functions. Evol Comput 7:377–398

Oliver JM, Smith DJ, Holland JRC (1987) A study of permutation crossover opera-
tors on the travelling salesman problem. In: Proceedings of the 2nd international
conference on genetic algorithms, Cambridge, pp 224–230

Paechter B, Cumming A, Luchian H (1995) The use of local search suggestion lists
for improving the solution of timetable problems with evolutionary algorithms.
In: Fogarty T (ed) Evolutionary computing: AISB workshop 1995. LNCS 993.
Springer, Berlin, pp 86–93

Paechter B, Cumming A, Norman MG, Luchian H (1996) Extensions to a memetic
timetabling system. In: Burke EK, Ross P (eds) The practice and theory of auto-
mated timetabling I. LNCS 1153. Springer, Berlin, pp 251–265

Pelikan M (2005) Hierarchical Bayesian optimization algorithm: toward a new gen-
eration of evolutionary algorithm. Springer, Berlin

Pelikan M, Sastry K (2004) Fitness inheritance in the Bayesian optimization algo-
rithm. In: Proceedings of the GECCO 2, Seattle, pp 48–59 (also IlliGAL report
no 2004009)

116 K. Sastry et al.

Pelikan M, Goldberg DE, Cantú-Paz E (2000) Linkage learning, estimation distri-
bution, and Bayesian networks. Evol Comput 8:314–341 (also IlliGAL report no
98013)

Pelikan M, Sastry K, Cantú-Paz E (eds) (2006) Scalable optimization via proba-
bilistic modeling: algorithms to applications. Springer, Berlin

Rudolph G (2000) Takeover times and probabilities of non-generational selection
rules. In: Proceedings of the GECCO, Las Vegas, pp 903–910

Sakamoto Y, Goldberg DE (1997) Takeover time in a noisy environment. In: Pro-
ceedings of the 7th international conference on genetic algorithms, East Lansing,
pp 160–165

Sastry K (2001) Evaluation-relaxation schemes for genetic and evolutionary algo-
rithms. Master’s thesis, University of Illinois at Urbana-Champaign (also IlliGAL
report no 2002004)

Sastry K, Goldberg DE (2003) Scalability of selectorecombinative genetic algo-
rithms for problems with tight linkage. In: Proceedings of the GECCO, Chicago,
pp 1332–1344 (also IlliGAL report no 2002013)

Sastry K, Goldberg DE (2004) Let’s get ready to rumble: crossover versus mutation
head to head. In: Proceedings of the GECCO 2, Seattle, pp 126–137 (also
IlliGAL report no 2004005)

Sastry K, Goldberg DE, Pelikan M (2001) Don’t evaluate, inherit. In: Proceedings
of the GECCO, San Francisco, pp 551–558 (also IlliGAL report no 2001013)

Sastry K, Pelikan M, Goldberg DE (2004) Efficiency enhancement of genetic alg-
orithms building-block-wise fitness estimation. In: Proceedings of the IEEE inter-
national congress on evolutionary computation. Portland, OR, USA, pp 720–727

Sastry K, Goldberg DE, Llorà X (2007) Towards billion bit optimization via efficient
estimation of distribution algorithms. In: Proceedings of the GECCO, London,
pp 577–584 (also IlliGAL report no 2007007)

Sinha A (2003) Designing efficient genetic and evolutionary hybrids. Master’s the-
sis, University of Illinois at Urbana-Champaign (also IlliGAL report no 2003020)

Smith R, Dike B, Stegmann S (1995) Fitness inheritance in genetic algorithms. In:
Proceedings of the ACM symposium on applied computing. ACM, New York,
pp 345–350

Spears WM, De Jong KA (1994) On the virtues of parameterized uniform crossover.
In: Proceedings of the 4th international conference on genetic algorithms, San
Diego, pp 230–236

Syswerda G (1989) Uniform crossover in genetic algorithms. In: Proceedings of
the 3rd international conference on genetic algorithms, San Mateo, pp 2–9

Thierens D (1999) Scalability problems of simple genetic algorithms. Evol Comput
7:331–352

Thierens D, Goldberg DE (1994) Convergence models of genetic algorithm selec-
tion schemes. PPSN 3, Springer, Berlin/New York, pp 116–121

Thierens D, Goldberg DE, Pereira AG (1998) Domino convergence, drift, and the
temporal-salience structure of problems. In: Proceedings of the IEEE interna-
tional congress on evolutionary computation, pp 535–540

4 Genetic Algorithms 117

Valenzuala J, Smith AE (2002) A seeded memetic algorithm for large unit commit-
ment problems. J Heuristics 8:173–196

Watson JP, Rana S, Whitely LD, Howe AE (1999) The impact of approximate
evaluation on the performance of search algorithms for warehouse scheduling.
J Scheduling 2:79–98

Whitley D (1995) Modeling hybrid genetic algorithms. In: Winter G, Périaux J,
Galán M, Cuesta P (eds) Genetic algorithms in engineering and computer science.
Wiley, Chichester, pp 191–201

Yu T-L (2006) A matrix approach for finding extrema: problems with modularity,
hierarchy, and overlap. Doctoral dissertation, University of Illinois at Urbana-
Champaign (also IlliGAL report no 2007012)

Chapter 5

Scatter Search

Manuel Laguna

5.1 Introduction

Scatter search (SS) is an evolutionary approach for optimization. It has been applied
to problems with continuous and discrete variables and with one or multiple obj-
ectives. The success of SS as an optimization technique is well documented in a
constantly growing number of journal articles, book chapters (Glover et al. 2003a,
2003b, 2004; Laguna 2002) and a book (Laguna and Martí 2003). This chapter
contains some of the material that can be found in the aforementioned publications
but also contains some new ideas that are based on research that has been performed
and reported in recent years. The chapter focuses on the basic SS framework, which
is responsible for most of the outcomes reported in the literature. SS consists of five
methods:

1. Diversification generation
2. Improvement
3. Reference set update
4. Subset generation
5. Solution combination.

The diversification generation method is used to generate a set of diverse solu-
tions that are the basis for initializing the search. The most effective diversification
methods are those capable of creating a set of solutions that balances diversification
and quality. It has been shown that SS produces better results when the diversifica-
tion generation method is not purely random and constructs solutions by reference
to both a diversification measure and the objective function.

The improvement method transforms solutions with the goal of improving qua-
lity (typically measured by the objective-function value) or feasibility (typically

M. Laguna (�)
Leeds School of Business, University of Colorado, Boulder, CO, USA
e-mail: laguna@Colorado.EDU

E.K. Burke and G. Kendall (eds.), Search Methodologies: Introductory Tutorials
in Optimization and Decision Support Techniques, DOI 10.1007/978-1-4614-6940-7_5,
© Springer Science+Business Media New York 2014

119

mailto:laguna@Colorado.EDU

120 M. Laguna

measured by some degree of constraint violation). The input to the improvement
method is a single solution that may or may not be feasible. The output is a solution
that may or may not be better (in terms of quality or feasibility) than the original
solution. The typical improvement method is a local search with the usual rule of
stopping as soon as no improvement is detected in the neighborhood of the current
solution. There is the possibility of basing the improvement method on procedures
that use a neighborhood search but that are able to escape local optimality. Tabu
search, simulated annealing and variable neighborhood search qualify as candidates
for such a design. This may seem as an attractive option as a general approach for
an improvement method, however, these procedures do not have a natural stopping
criterion. The end result is that choices need to be made to control the amount of
computer time that is spent improving solutions (by running a metaheuristic-based
procedure) versus the time spent outside the improvement method (e.g. combin-
ing solutions). In general, local search procedures seem to work well and most SS
implementations do not include mechanisms to escape local optimality within the
process of improving a solution.

The reference set update method refers to the process of building and maintaining
a reference set of solutions that are used in the main iterative loop of any SS imple-
mentation. While there are several implementation options, this element of SS is
fairly independent from the context of the problem. The first goal of the reference
update method is to build the initial reference set of solutions from the population
of solutions generated with the diversification method. Subsequent calls to the refer-
ence update method serve the purpose of maintaining the reference set. The typical
design of this method builds the first reference set by blending high-quality solu-
tions and diverse solutions. When choosing a diverse solution, reference needs to
be made to a distance metric that typically depends on the solution representation.
That is, if the problem context is such that continuous variables are used to represent
solutions, then diversification may be measured with Euclidean distances. Other sol-
ution representations (e.g. binary variables or permutations) result in different ways
of calculating distances and in turn diversification. The updating of the reference set
during the SS iterations is customarily done on the basis of solution quality.

The subset generation method produces subsets of reference solutions which
become the input to the combination method. The typical implementation of this
method consists of generating all possible pairs of solutions. The SS framework
considers also the generation of larger subsets of reference solutions; however, most
SS implementations have been limited to operate on pairs of solutions. Clearly, no
context information is needed to implement the subset generation method.

The solution combination method uses the output from the subset generation
method to create new solutions. New trial solutions are the results of combining,
typically two but possibly more, reference solutions. The combination of reference
solutions is usually designed to exploit problem context information and solution
representation. Linear combinations of solutions represented by continuous vari-
ables have been used often since suggested by Glover (1998) in connection with
the solution of nonlinear programming problems. Several proposals for combining
solutions represented by permutations have also been applied (Martí et al. 2005).

5 Scatter Search 121

1. Diversification generation and improvement methods
2. while (stopping criteria not satisfied) {
3. Reference set update method
4. while(new reference solutions) {
5. Subset generation method
6. Combination method
7. Improvement method
8. Reference set update method
9. }

10. Rebuild reference set
11. }

Fig. 5.1 Scatter search framework

The strategy known as path relinking, originally proposed within the tabu search
methodology (Glover and Laguna 1997), has also played a relevant role in designing
combination methods for SS implementations.

The basic SS framework is outlined in Fig. 5.1. The search starts with the app-
lication of the diversification and improvement methods (step 1 in Fig. 5.1). The
typical outcome consists of a set of about 100 solutions that is referred to as the
population (denoted by P). In most implementations, the diversification generation
method is applied first followed by the improvement method. If the application of
the improvement method results in the shrinking of the population (due to more than
one solution converging to the same local optimum) then the diversification method
is applied again until the total number of improved solutions reaches the desired
target. Other implementations construct and improve solutions, one by one, until
reaching the desired population size.

The main SS loop is shown in lines 2–11 of Fig. 5.1. The input to the first exe-
cution of the reference set update method (step 3) is the population of solutions
generated in step 1 and the output is a set of solutions known as the reference set
(or RefSet). Typically, ten solutions are chosen from a population of 100. The first
five solutions are chosen to be the best solutions (in terms of the objective-function
value) in the population. The other five are chosen to be the most diverse with respect
to the solutions in the reference set. If the diverse solutions are chosen sequentially,
then the sixth solution is the most diverse with respect to the five best solutions that
were chosen first. The seventh solution is the most diverse with respect to the first
six and so on until the tenth one is added to the reference set.

The inner while-loop (lines 4–9) is executed as long as at least one reference so-
lution is new in the RefSet. A solution is considered new if it has not been subjected
to the subset generation (step 5) and combination (step 6) methods. If the reference
set contains at least one new solution, the subset generation method builds a list
of all the reference solution subsets that will become the input to the combination
method. The subset generation method creates new subsets only. A subset is new if it
contains at least one new reference solution. This avoids the application of the com-
bination method to the same subset more than once, which is particularly wasteful

122 M. Laguna

when the combination method is completely deterministic. Combination methods
that contain random elements may be able to produce new trial solutions even when
applied more than once to the same subset of reference solutions. However, this is
generally discouraged in favor of introducing new solutions in the reference set by
replacing some of the old ones in the rebuilding step (line 10).

The combination method (step 6) is applied to the subsets of reference solutions
generated in the previous step. Most combination methods are designed to produce
more than one trial solution from the combination of the solutions in a subset. These
trial solutions are given to the improvement method (step 7) and the output forms a
pool of improved trial solutions that will be considered for admission in the refer-
ence set (step 8).

If no new solutions are added to the reference set after the execution of the refer-
ence set update method, then the process exits the inner while-loop. The rebuilding
step in line 10 is optional. That is, it is possible to implement a SS procedure that
terminates the first time that the reference set does not change. However, most im-
plementations extend the search beyond this point by executing a RefSet rebuilding
step. The rebuilding of the reference set entails the elimination of some current ref-
erence solutions and the addition of diverse solutions. In most implementations, all
solutions except the best are replaced in this step. The diverse solutions to be added
may be either population solutions that have not been used or new solutions con-
structed with the generation diversification method. Note that only ten solutions out
of 100 are used from the population to build the initial reference set and therefore
the remaining 90 could be used for rebuilding purposes.

The process (i.e. the main while-loop in lines 2–11) continues as long as the
stopping criteria are not satisfied. Possible stopping criteria include number of re-
building steps or elapsed time. When SS is applied in the context of optimizing
expensive black boxes, a limit on the number of calls to the objective-function eval-
uator (i.e. the black box) may also be used as a criterion for stopping. We now
expand our description and provide examples of each of the SS methods.

5.2 Diversification Generation Method

The most effective form of diversification generation is one in which the solutions
are not only diverse but their collective quality is better than the outcome of a purely
random process. Campos et al. (2001) conducted an experimental study to determine
the effectiveness of ten different diversification generation methods. They used two
normalized measures to assess the quality and the diversity of the populations gen-
erated with each method. The methods varied from purely deterministic to purely
random. Most methods were based on semi-greedy constructions, popularized by
the first phase of GRASP (Feo and Resende 1995).

Figure 5.2 shows a summary of the results from this experiment. In this figure,
ΔC and Δd are values in the range from 0 to 1 that respectively represent the qual-
ity and diversity of the population generated by each method. Maximum quality

5 Scatter Search 123

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

DG05 DG04 DG02 DG01 DG09

Procedure

DG08 DG06 DG03 DG07 DG10

ΔC

Δd

ΔC+Δd

Δ

Fig. 5.2 Population diversity versus quality for ten diversification generation methods

or diversity is given by a value of 1 and therefore the maximum score for a
diversification method is 2. DG08 is a purely random diversification generation
method that achieves the highest level of diversity but also the lowest quality level.
DG09 is a purely deterministic method that is designed to achieve maximum di-
versity without considering the objective-function value during the generation of
solutions. The most effective methods, measured by the results achieved at the end
of the search, are DG07 and DG10. These methods show an almost perfect balance
between diversification and quality of the populations that they generate, as shown
by their ΔC and Δd values in Fig. 5.2. DG07 is a semi-greedy construction proce-
dure that uses six different randomized and adaptive functions to select elements to
add to a partial solution. DG10 also uses an adaptive function as well as frequency
memory to bias the selection of elements during the construction process.

We focus on semi-greedy construction procedures as the basis for developing
generation diversification methods. We assume that the problem to be solved con-
sists of minimizing f (x), where x is a solution to the problem. We do not restrict
the representation of the problem to any particular form. That is, x may be a vec-
tor of real, integer or binary numbers, a permutation, or a set of edges in a graph.
We assume, however, that the problem being solved is such that solutions can be
constructed by selecting elements one at a time. Selecting an element may refer to
choosing a value for a variable, adding an edge to a graph or a task to a sequence.
Figure 5.3 outlines the semi-greedy procedure to construct solutions.

Because we assume that the objective of the problem is to minimize a func-
tion f , adding elements to a partial solution results in a non-negative change in
the objective-function value. Therefore, the increase of the objective function value
caused by all the candidate elements is evaluated as the initialization step for the
construction process (see step 1 in Fig. 5.3). Following Resende and Ribeiro (2003),
let c(e) be the objective-function increase caused by adding element e to the partial
solution. Also let cmax and cmin be the maximum and minimum c values, respec-
tively. A purely greedy construction would select, at each iteration, the element e
such that c(e) = cmin.

124 M. Laguna

1. Evaluate incremental f values for candidate elements
2. while (construction is partial) {
3. Build the restricted candidate list (RCL)
4. Randomly choose an element from RCL
5. Add the selected element to the partial solution
6. Re-evaluate incremental f values
7. }

Fig. 5.3 Semi-greedy construction

The procedure in Fig. 5.3 is semi-greedy because the next element to be added
is randomly selected from a restricted candidate list (RCL). Candidate elements
are assumed to be ordered in such a way that the top candidate has an incremen-
tal objective-function value of cmin and the last candidate’s incremental objective-
function value is cmax. The RCL may be formed in two different ways:

• Cardinality-based: the top k candidate elements
• Value-based: all elements e such c(e)≤ cmin +α(cmax− cmin).

Both of these alternatives require a parameter value that controls the level of rand-
omization. For instance, if α= 1, the value-based procedure becomes totally random
because all candidate elements have the same probability of being chosen. If α= 0,
the value-based procedure is totally greedy and results in the same construction
every time that the procedure is executed.

A variation of the semi-greedy approach consists of adding a frequency memory
structure that is typical to tabu search implementations (Glover and Laguna 1997).
The main idea is to keep track of the number of times an element has been assigned
a certain value (or occupied a certain position). The frequency counts are then used
to modify the c values to discourage (in the probabilistic sense) an element to take
on a value that has often been assigned to it in previous constructions. Let q(e,v)
be the number of times element e has been given the value v (or has been assigned
to position v) in previous constructions, then the modified evaluation that measures
the attractiveness of choosing element e is given by

c′(e) = c(e)+β

(

q(e,v)

qmax

)

.

The value of β should create a balance between the increase in the objective-function
value and the importance given to moving the element away from values (or posi-
tions) that it has taken in past constructions. In this equation, qmax refers to the
maximum frequency count and is used to normalize the individual frequency counts
in order to facilitate the tuning of the β value. Note that we refer to an element
taken on a particular value v only as a way of simplifying our discussion. However,
this should be reinterpreted in each context. For instance, in nonlinear optimization
with continuous variables, v could be interpreted as a particular range of values from
which a variable should be moving away due to a frequency count that indicates that

5 Scatter Search 125

1. Current solution is the trial solution being improved
2. while (current solution improves) {
3. Identify the best neighbor of the current solution
4. if (neighbor solution is better than current solution)
5. Make neighbor the current solution
6. }

Fig. 5.4 Local search

such a variable has often taken values in the given range. Similarly, v could represent
a position in a permutation or a value that indicates whether or not an element (such
as an arc in a graph) has been part of the final construction.

When using frequency memory, the selection of elements in each step of the con-
struction does not require the RCL or random components. The first construction
results in the pure greedy solution because all frequency counts are zero and c′(e) =
c(e). However, as the frequency counts grow, the constructions start diverting from
the pure greedy solution. It is also possible, however, to include random compo-
nents and use the c′(e) to set probabilities proportional to the c′ values, where the
probability of choosing e increases as c′(e) decreases.

5.3 Improvement Method

As discussed in the introduction to this chapter, most improvement methods within
SS implementations consist of local search procedures. Problem context is relevant
to the design of an effective local search. The design process starts with the defini-
tion of a neighborhood that depends on the moves that may be applied to a solution
to transform it into another. Figure 5.4 shows the outline of a local search.

Identifying the best neighbor solution may have different meanings according to
the problem context and the current solution. For instance, for an unconstrained opt-
imization problem where all the solutions in the solution space generated by a par-
ticular solution representation are feasible, the best neighbor of the current solution
may be the one that locally minimizes the objective-function value. If the optimiza-
tion problem contains constraints, then the best neighbor may be either a feasible
one that minimizes the objective function, if at least one feasible neighbor exists,
or the one that minimizes a measure of infeasibility, if no feasible solutions can be
found in the current neighborhood. The local search outlined in Fig. 5.4 results in
either a better solution (either a feasible solution with a better objective-function
value or an infeasible solution with a smaller infeasibility value) or the unchanged
trial solution that was submitted to the improvement method. In either case, the
method guarantees finding a locally optimal solution with respect to the defined
neighborhood, because it stops only when the current solution cannot be improved
(line 2 in Fig. 5.4).

126 M. Laguna

1. Current solution is the trial solution being improved
2. while (current solution improves) {
3. Set k to 1
4. while k ≤ kmax {
5. Identify the best neighbor of the current solution in
6. neighborhood k
7. if (neighbor is better than current solution)
8. Make neighbor the current solution
9. Set k to 1

10. else

11. Make k = k+1
12. }
13. }

Fig. 5.5 Variable neighborhood descent

Variable neighborhood descent (VND) represents an attractive alternative for an
improvement method within SS. VND (Hansen and Mladenović 2003) operates
on a finite set of neighborhood structures that are systematically changed until no
improvement is obtained. Let k indicate the current neighborhood being explored
and kmax the maximum number of neighborhoods. The VND steps are outlined in
Fig. 5.5.

VND is the simplest form of the family of variable neighborhood search (VNS)
procedures. The basic VNS employs deterministic and stochastic rules for changing
the neighborhood that results in a randomized descent method with a first improve-
ment strategy. Extensions transform the basic VNS into a descent–ascent method
with first or best improvement strategies.

The appeal of VND as improvement method for SS is its deterministic orientation
and its natural termination criterion. As mentioned in the introduction, allowing
the improvement method to operate as a metaheuristic capable of escaping local
optimality poses the problem of balancing the time spent improving solutions versus
the time spent performing SS iterations. In other words, if the improvement method
is a metaheuristic in its own right, then there is a risk of diminishing the role of the
SS framework to a simple mechanism that provides starting points. Campos et al.
(2005), for instance, test the use of a tabu search with a simple short-term memory
that terminates after a number of iterations without improvement. This number is
set to a relatively small value (e.g. less than or equal to 10) to balance the amount of
computational effort spent in the improvement method and the other SS methods.

While the most effective improvement methods are designed for specific prob-
lems, it is also possible to develop generic or pseudo-generic local searches. Con-
sider, for instance, the improvement method developed by Campos et al. (2005).
In this work, SS is applied to a class of permutation problems. The improvement
method is given limited information about the problem instance. In particular, the
improvement method is provided only with a flag that indicates whether the objec-
tive function tends to be influenced more by the absolute positions of the elements
in the permutation (e.g. as in the linear ordering problem) than by their relative

5 Scatter Search 127

positions (e.g. as in the traveling salesman problem). The actual form of the objective
function is not known and therefore the improvement method operates as a black-box
optimizer, requiring a context-independent neighborhood search. For permutation
problems, a generic local search could consist of either all swaps of two elements or
the insertion of one element in every possible position in the permutation. A swap
of elements i and j in a permutation with n elements may be represented as follows:

(1, . . . , i− 1, i, i+ 1, . . . , j− 1, j, j+ 1, . . . ,n)

→ (1, . . . , i− 1, j, i+ 1 . . . , j− 1, i, j+ 1 . . . ,n).

An insertion of element i before element j produces the following changes in the
permutation:

(1, . . . , i− 1, i, i+ 1, . . . , j− 1, j, j+ 1, . . . ,n)

→ (1, . . . , i− 1, i+ 1, . . . , j− 1, i, j, j+ 1, . . . ,n).

Note that both neighborhoods are large, containing O(n2) moves, where n is the
number of elements in the permutation. To avoid exploring such a large neighbor-
hood (and in the SS spirit of using strategy instead of relying on randomness) fre-
quency information is used to create a list of promising insertion positions for an
element in the permutation. A promising position is one where historically (given
by a frequency count) the objective function has improved when the element was
placed there. The structure and updating of the frequency count depend on the gen-
eral class of permutation problem. Thus, for an absolute-position permutation prob-
lem a frequency count freq(i, p j) may indicate the number of times that the objective
function improved when moving (via a swap or an insert) element i to position p j.
Likewise, for a relative-position problem a frequency count freq(i, j) may indicate
the number of times that the objective function improved when moving (via a swap
or an insert) element i immediately before element j. When exploring a neighbor-
hood, the moves are limited to those where the frequency counts indicate that there
may be merit in placing an element under consideration.

5.4 Reference Set Update

The execution of the diversification generation and improvement methods in line 1
of Fig. 5.1 results in a population P of solutions. The reference set update method is
executed in two different parts of the SS procedure. The first time that the method
is called, its goal is to produce the initial RefSet, consisting of a mix of b (typically
ten) high-quality and diverse solutions drawn from P. The mix of high-quality and
diverse solutions could be considered a tunable parameter; however, most imple-
mentations populate the initial reference set with half of the solutions chosen by
quality and half chosen by diversity.

128 M. Laguna

Choosing solutions by quality is straightforward. From the population P, the best
(according to the objective-function value) b/2 solutions are chosen. These solu-
tions are added to RefSet and deleted from P. To choose the remaining half, an app-
ropriate measure of distance d(r, p) is needed, where r is a reference solution and p
is a solution in P. The distance measure depends on the solution representation, but
must satisfy the usual conditions for a metric, that is

d(r, p) = 0 if and only if r = p
d(r, p) = d(p,r)> 0 if r
= p
d(r,q)+ d(q, p)≥ d(r, p) triangle inequality.

For instance, the Euclidean distance is commonly used when solutions are repre-
sented by continuous variables:

d (r, p) =
(

∑
n

i=1 (ri− pi)
2
)

1
2
.

Likewise, the Hamming (1950) distance is appropriate for two strings of equal
length. The distance is given by the number of positions for which the correspond-
ing symbols are different. In other words, the distance is the number of changes
required to transform one string into the other:

d (r, p) =∑
n

i=1 vi vi =

{

0 ri = pi

1 ri
= pi.

This distance has been typically used for problems whose solution representation
is given by binary vectors (e.g. the max-cut and knapsack problems) and permuta-
tion vectors (e.g. the traveling salesman, quadratic assignment and linear ordering
problems).

The distance measure is used to calculate the minimum distance dmin(p) of a
population solution and all the reference solutions r:

dmin(p) = min
r∈RefSet

d(r, p).

Then, the next population solution p to be added to RefSet and deleted from P is
the one with the maximum dmin value. That is, we want to choose the population
solution p∗ that has the maximum minimum distance between itself and all the
solutions currently in RefSet:

p∗ =

{

p : max
p∈P

dmin(p)

}

.

The process is repeated b/2 times to complete the construction of the initial RefSet.
Note that after the first calculation of the dmin values, they can be updated as follows.
Let p∗ be the population solution most recently added to the RefSet. Then, the dmin

value for a population solution p is given by

dmin(p) = min(dmin(p),d (p, p∗)) .

5 Scatter Search 129

Alternatively, the diverse solutions for the initial reference set may be chosen by
solving the maximum diversity problem (MDP). The MDP consists of finding, from
a given set of elements and corresponding distances between elements, the most
diverse subset of a given size. The diversity of the chosen subset is given by the
sum of the distances between every pair of elements. The special version of the
MDP that must be solved includes a set of elements that have already been chosen
(i.e. the high-quality solutions). Mathematically, the problem may be formulated as
follows:

Maximize ∑(p,p′)∈P:p
=p′ d (p, p′)xpxp′

Subject to ∑p∈P xp = b
xp = 1 ∀p ∈ Re f Set
xp = {0,1} ∀p ∈ P.

The formulation assumes that a subset of high-quality solutions in P have already
been chosen and added to RefSet. The binary variables indicate whether a popula-
tion solution p is chosen (xp = 1) or not (xp = 0). The second set of constraints in
the formulation force the high-quality solutions to be included in the set of b so-
lutions that will become the initial RefSet. This nonlinear programming model has
been translated into an integer program for the purpose of solving it as well as for
showing that the MDP is NP-hard. Martí et al. (2009) embed the MDP in a SS pro-
cedure for the max-cut problem. Instead of solving the MDP exactly, they employ
the GRASP_C2 procedure developed by Duarte and Martí (2007). The procedure
was modified to account for the high-quality solutions that are chosen before the
subset of diverse solutions is added to the RefSet. The procedure is executed for 100
iterations and the most diverse RefSet is chosen to initiate the SS.

The reference set update method is also called in step 8 of Fig. 5.1. This step
is performed after a set of one or more trial solutions has been generated by the
sequential calls to the subset generation, combination and improvement methods
(see steps 5–7 in Fig. 5.1). The most common update consists of the selection of
the best (according to the objective function value) solutions from the union of the
reference set and the set of trial solutions generated by steps 5–7 in Fig. 5.1. Other
updates have been suggested in order to preserve a certain amount of diversity in the
RefSet. These advanced updating mechanisms are beyond the scope of this tutorial
chapter but the interested reader is referred to Laguna and Martí (2003, Chap. 5) for
a detailed description and to Laguna and Martí (2005) for experimental results.

5.5 Subset Generation

This method is in charge of providing the input to the combination method. This
input consists of a list of subsets of reference solutions. The most common subset
generation consists of creating a list of all pairs (i.e. all 2-subsets) of reference sol-
utions for which at least one of the solutions is new. A reference solution is new if
it hasn’t been used by the combination method. The first time that this method is
called (step 5 in Fig. 5.1), all the reference solutions are new, given that the method

130 M. Laguna

is operating on the initial RefSet. Therefore, the execution of the subset generation
method results in the list of all 2-subsets of reference solutions, consisting of a total
of (b2− b)/2 pairs. Because the subset generation method is not based on a sample
but rather on the universe of all possible pairs, the size of the RefSet in SS imple-
mentation must be moderate (e.g. less than 20). As mentioned in the introduction, a
typical value for b is 10, resulting in 45 pairs the first time that the subset generation
method is executed.

When the inner while-loop (steps 5–8 in Fig. 5.1) is executing, the number of new
reference solutions at the time that the subset generation method is called depends
on the strategies implemented in the reference set update method. Nonetheless, the
number of new solutions decreases with the number of iterations within the inner
while-loop. Suppose that b is set to 10 and that, after the first iteration of the inner
while-loop, six solutions are replaced in the reference set. This means that the refer-
ence set that will serve as the input to the subset generation method will consist of
four old solutions and six new solutions. Then, the output of the subset generation
method will be 39 2-subsets. In general, if the reference set contains n new solutions
and m old ones, the number of 2-subsets that the subset generation method produces
is given by

nm+
n2− n

2
.

The SS methodology also considers the generation of subsets with more than two
elements for the purpose of combining reference solutions. As described in Laguna
and Martí (2003), the procedure uses a strategy to expand pairs into subsets of larger
size while controlling the total number of subsets to be generated. In other words,
the mechanism does not attempt to create all 2-subsets, then all 3-subsets, and so on
until reaching the b− 1-subsets and finally the entire RefSet. This approach would
not be practical because there are 1,013 subsets in a reference set of size b = 10.
Even for a smaller reference set, combining all possible subsets would not effec-
tive because many subsets will be very similar. For example, a subset of size four
containing solutions 1–4 is almost the same as all the subsets with four solutions
for which the first three solutions are solutions 1–3. And even if the combination
of subset {1, 2, 3, 5}would generate a different solution than the combination of
subset {1, 2, 3, 6}, these new trial solutions would likely reside in the same basin
of attraction and therefore converge to the same local optimum after the application
of the improvement method. Instead, the approach selects representative subsets of
different sizes by creating subset types:

• Subset Type 1: all 2-element subsets.
• Subset Type 2: 3-element subsets derived from the 2-element subsets by aug-

menting each 2-element subset to include the best solution not in this subset.
• Subset Type 3: 4-element subsets derived from the 3-element subsets by aug-

menting each 3-element subset to include the best solutions not in this subset.
• Subset Type 4: the subsets consisting of the best i elements, for i = 5 to b.

Campos et al. (2001) designed an experiment with the goal of assessing the con-
tribution of combining subset types 1–4 in the context of the linear ordering prob-
lem. The experiment undertook to identify how often, across a set of benchmark

5 Scatter Search 131

problems, the best solutions came from combinations of reference solution subsets
of various sizes. The experimental results showed that most of the contribution
(measured as the percentage of time that the best solutions came from a particu-
lar subset type) could be attributed to subset type 1. It was acknowledged, however,
that the results could change if the subset types were generated in a different seq-
uence. Nonetheless, the experiments indicate that the basic SS that employs only
subsets of type 1 is quite effective and explains why most implementations do not
use subset types of higher dimensions.

5.6 Solution Combination

The implementation of this method depends on the solution representation. Problem
context can also be exploited by this method; however, it is also possible to cre-
ate context-independent combination mechanisms. When implementing a context-
independent procedure, it is beneficial to employ more than one combination method
and track their individual performance. Consider, for instance, the context-independ-
ent SS implementations for permutation problems developed by Campos et al. (2005)
and Martí et al. (2005). The following combination methods for permutation vectors
with n elements were proposed:

1. An implementation of a classical GA crossover operator. The method randomly
selects a position k to be the crossing point from the range [1,n/2]. The first
k elements are copied from one reference point while the remaining elements
are randomly selected from both reference points. For each position i (i = k+
1, . . . ,n) the method randomly selects one reference point and copies the first
element that is still not included in the new trial solution.

2. A special case of 1, where the crossing point k is always fixed to one.
3. An implementation of what is known in the GA literature as the partially mat-

ched crossover. The method randomly chooses two crossover points in one ref-
erence solution and copies the partial permutation between them into the new
trial solution. The remaining elements are copied from the other reference solu-
tion preserving their relative ordering (Michalewicz 1994).

4. A special case of what the GA literature refers to as a mutation operator, and
it is applied to a single solution. The method selects two random positions in a
chosen reference solution and inverts the partial permutation between them. The
inverted partial permutation is copied into the new trial solution. The remaining
elements are directly copied from the reference solution preserving their relative
order.

5. A combination method that operates on a single reference solution. The method
scrambles a sublist of elements randomly selected in the reference solution. The
remaining elements are directly copied from the reference solution into the new
trial solution.

6. A special case of combination method 5 where the sublist always starts in
position 1 and the length is randomly selected in the range [2,n/2].

132 M. Laguna

7. A method that scans (from left to right) both reference permutations, and uses
the rule that each reference permutation votes for its first element that is still
not included in the combined permutation (referred to as the incipient element).
The voting determines the next element to enter the first still-unassigned posi-
tion of the combined permutation. This is a min–max rule in the sense that if
any element of the reference permutation is chosen other than the incipient ele-
ment, then it would increase the deviation between the reference and the com-
bined permutations. Similarly, if the incipient element were placed later in the
combined permutation than its next available position, this deviation would also
increase. So the rule attempts to minimize the maximum deviation of the com-
bined solution from the reference solution under consideration, subject to the
fact that the other reference solution is also competing to contribute. A bias
factor that gives more weight to the vote of the reference permutation with
higher quality is also implemented for tie breaking. This rule is used when
more than one element receives the same votes. Then the element with highest
weighted vote is selected, where the weight of a vote is directly proportional to
the objective-function value of the corresponding reference solution. Additional
details about this combination method can be found in Campos et al. (2001).

8. A variant of combination method 7. As in the previous method, the two refer-
ence solutions vote for their incipient element to be included in the first still-
unassigned position of the combined permutation. If both solutions vote for the
same element, the element is assigned. But in this case, if the reference solutions
vote for different elements and these elements occupy the same position in both
reference permutations, then the element from the permutation with the better
objective function is chosen. Finally, if the elements are different and occupy
different positions, then the one in the lower position is selected.

9. Given two reference solutions r1 and r2, this method probabilistically selects
the first element from one of these solutions. The selection is biased by the
objective-function value corresponding to r1 and r2. Let e be the last element
added to the new trial solution. Then, r1 votes for the first unassigned element
that is positioned after e in the permutation r1. Similarly, r2 votes for the first
unassigned element that is positioned after e in r2. If both reference solutions
vote for the same element, the element is assigned to the next position in the new
trial solution. If the elements are different then the selection is proportionally
weighted by the objective-function values of r1 and r2.

10. A deterministic version of combination method 9. The first element is chosen
from the reference solution with the better objective-function value. Then ref-
erence solutions vote for the first unassigned successor of the last element as-
signed to the new trial solution. If both solutions vote for the same element,
then the element is assigned to the new trial solution. Otherwise, the “winner”
element is determined with a score, which is updated separately for each refer-
ence solution in the combination. The score values attempt to keep the propor-
tion of times that a reference solution “wins” close to its relative importance,
where the importance is measured by the value of the objective function. The
scores are calculated to minimize the deviation between the “winning rate” and
the “relative importance”. For example, if two reference solutions r1 and r2 have

5 Scatter Search 133

objective-function values of value(r1) = 40 and value(r2) = 60, then r1 should
contribute with 40 % of the elements in the new trial solution and r2 with the
remaining 60 % in a maximization problem. The scores are updated so that after
all the assignments are made the relative contribution from each reference sol-
ution approximates the target proportion. More details about this combination
method can be found in Glover (1994).

The form of these combination methods show that SS provides great flexibility
in terms of generating new trial solutions. That is, the methodology accepts fully
deterministic combination methods or those containing random elements that are
typically used in genetic algorithms (and labeled crossover or mutation operators).
At each execution of step 6 of Fig. 5.1, a combination method is randomly selected.
Initially, all combination methods have the same probability of being selected but,
as the search progresses and after a specified number of iterations, the probability
values increase for those combination methods that have been more successful. Suc-
cess is measured by the quality of the solutions that the methods are able to produce.
Suppose that the RefSet is ordered in such a way that the first solution is the best
and the bth solution is the worst (according to the objective-function value). Then
a score for each combination method is kept throughout the search. Initially, all the
scores are zero. If a combination method generates a solution that is admitted as the
jth reference solution, then a value of b− j+1 is added to the score of this combi-
nation method. The probability of selecting a combination method is proportional
to its score and therefore combination methods that generate high-quality solutions
accumulate higher scores and increase their probability of being chosen.

The same procedure is used by Gortazar et al. (2010) in the context of binary
problems. They develop seven combination methods that are probabilistically sel-
ected according to the success score. One of these combination methods is based on
the path relinking strategy. As described in Martí et al. (2006), the strategy of creat-
ing trajectories of moves passing through high-quality solutions was first proposed
in connection with tabu search by Glover (1998). The approach was then elaborated
in greater detail as a means of integrating intensification and diversification strate-
gies, and given the name path relinking (PR), in the context of tabu search (Glover
and Laguna 1997). PR generally operates by starting from an initiating solution,
selected from a subset of high-quality solutions, and generating a path in the neigh-
borhood space that leads toward the other solutions in the subset, which is called the
guiding solution. This is accomplished by selecting moves that introduce attributes
contained in the guiding solutions. PR variants consider the use of more than one
guiding solution as well as reversing the roles of initiating and guiding solutions
resulting in the approach known as simultaneous relinking.

Path relinking can be considered an extended form of the combination method.
Instead of directly producing a new solution when combining two or more origi-
nal solutions, PR generates paths between and beyond the selected solutions in the
neighborhood space. The character of such paths is easily specified by reference
to solution attributes that are added, dropped or otherwise modified by the moves
executed.

134 M. Laguna

Gortazar et al. (2010) apply path relinking to combine two binary vectors as
follows. The procedure gradually transforms the initiating solution into the guiding
solution by changing the value of the variables in the initiating solution with their
value in the guiding solution. If the value is the same in both solutions, then no
change is made and the procedure moves to the next variable. The procedure exa-
mines the variables in lexicographical order and in at most n steps (where n is the
number of variables) it reaches the guiding solution. The procedure uses a first-
improving strategy, meaning that if during the relinking process it finds an interme-
diate solution that is better than either the initiating or guiding solutions, then the
procedure stops. If no better solution is found, the solution that is most distant from
the initiating and guiding solutions is the combined solution resulting from the ap-
plication of this method. In addition, the procedure reverses the roles of the initiating
and guiding solutions and chooses the best solution found during both processes to
be the outcome of the combination method.

5.7 Multiobjective Optimization

Evolutionary procedures have enjoyed a fair amount of success in multiobjective
optimization, as documented by Coello et al. (2002). SS is starting to be applied
to this area. Molina et al. (2007) developed a tabu/SS hybrid for approximating the
efficient frontier of multiobjective nonlinear problems with continuous variables.
The method consists of two major phases:

1. Generation of an initial set of efficient points through various tabu searches;
2. Combination of solutions and updating of the efficient frontier approximation

via a SS.

As we have discussed above for single-objective problems, the RefSet contains a
mixture of high-quality and diverse solutions, where quality is measured with ref-
erence to the single objective function and diversity is measured by an appropriate
metric in the solution space. The role of the RefSet must be modified to deal with the
special characteristics of multiobjective optimization. In particular, solution quality
is measured considering multiple objective functions and solution diversity is mea-
sured in the objective-function space. The notion of diversity is related to the ability
of finding solutions that cover the efficient frontier. Hence, measuring diversity in
the objective-function space is an effective means to produce the desired results.

One of the key search mechanisms is the combination of solutions that are cur-
rently considered efficient and therefore belong to the best approximation of the
efficient frontier. The RefSet is a subset of efficient solutions of a size larger than the
number of objective functions in the problem and is initially constructed as follows:

• Select the best solution in the current approximation of the efficient froniter for
each of the objective functions and add them to RefSet. (Note that it is possible,
but unlikely, to select fewer solutions than the number of objective function if a
solution happens to be best for more than one objective function.)

5 Scatter Search 135

• Select additional solutions (up to a total of b) from the approximation of the
efficient frontier in order to maximize the distance between them and those solu-
tions already in the RefSet, where distance is measured in the objective-function
space.

The construction of the initial RefSet reveals that in the multiobjective implementa-
tion of SS, the population P is the best approximation of the efficient frontier. This
is an expanded role for P (when compared to single-objective optimization) because
it not only supports the diversification of the RefSet but also acts as a repository of
efficient solutions. A list of solutions that have been selected as reference points is
kept to prevent the selection of those solutions in future iterations. Therefore, every
solution that is added to the RefSet is also added to a TabuRefSet. The size of the
TabuRefSet increases as the search progresses because this memory function is an
explicit record of past reference solutions. The motivation for creating and main-
taining the TabuRefSet is that the final approximation of the efficient frontier must
have adequate density. To achieve this, the procedure must encourage a uniform
generation of points in the efficient frontier and avoid gaps that may be the result of
generating too many points in one region while neglecting other regions.

Combination methods operate in the solution space and therefore are similar to
their single-objective counterpart. Improvement methods, however, must consider
more than one objective and are typically based on concepts from compromise
programming. A global criterion is used to guide the search and the goal is to min-
imize a function that measures the distance to an ideal point. Given that the ideal
point consists of the optimal (or best known) values of the individual objective func-
tions, compromise programming assumes that it is logical for the decision maker to
prefer a point that is closer to the ideal point over one that is farther away.

The same framework has been adapted for multiobjective combinatorial opti-
mization. In particular, Caballero et al. (2011) tackled partitioning problems for
cluster analysis that requires the simultaneous optimization of more than one ob-
jective function. They considered two main classes of multiobjective partitioning
problems: (1) partitioning of objects using one partitioning criterion but multiple
dissimilarity matrices and (2) partitioning of objects using one dissimilarity ma-
trix but more than one partitioning criteria. The adaptation consists of formulating
an appropriate solution representation and employing the representation to develop
combination and improvement methods. Other methods (particularly those that op-
erate in the objective-function space) were applied with minor or no changes.

5.8 Tricks of the Trade

Tricks associated with implementing SS are extensively addressed in three tutorial
Chaps. (2–4) in Laguna and Martí (2003). We summarize a few here:

1. Effective diversification generation methods employ controlled randomization
and frequency-based memory to generate a set of diverse solutions. The use of
frequency-based memory is typical in implementations of tabu search.

136 M. Laguna

2. The diversification generation method is used at the beginning of the search to
generate a set of diverse solutions. In most SS applications, the size of this pop-
ulation of solutions is generally set at max(100,5 ∗ b), where b is the size of the
reference set.

3. While some solution generation is done without considering the objective func-
tion, in other words, some diversification generation methods focus on diversi-
fication and not on the quality of the resulting solutions, it is generally more
effective to design a procedure that balances diversification and solution quality
(such as those based on GRASP constructions).

4. Improvement methods must be capable of handling starting solutions that are
either feasible or infeasible. When encountering an infeasible solution, an im-
provement method should search for a feasible solution first and then launch a
search for improvement.

5. Whenever possible, the improvement method should be a known local search
procedure. For example, when using SS for nonlinear optimization, the improve-
ment method could be the well-known Nelder and Mead simplex procedure.

6. The reference set update method to try first is the so-called static update. Trial
solutions that are constructed as combination of reference solutions are placed
in a solution pool. After the application of both the combination method and the
improvement method, the pool is full and the reference set is updated. The new
reference set consists of the best b solutions (where b is the size of the reference
set) from the solutions in the current reference set and the solutions in the pool,
i.e. the updated reference set contains the best b solutions in the union of the
reference set and the pool.

7. The subset generation method should be limited to generating all solution pairs
first before trying more sophisticated designs to include more than two solutions
in each subset. Even when the combination method includes stochastic elements,
it is generally more effective to create only solution subsets that include at least
one new reference solution (i.e. a solution that has been added to the reference
set in the previous iteration).

8. The number of solutions created from the combination of two or more reference
solutions should depend on the quality of the solutions being combined. For in-
stance, the maximum number of solutions generated by the combination method
should happen when the two best solutions in the reference set are being com-
bined. Likewise, only one solution should be the result of combining the two
reference solutions with the worst objective-function value.

9. If SS is implemented to exploit problem context, the combination method should
take full advantage of the information associated with the problem being solved.
For instance, a combination method for the linear ordering problem should take
into consideration that the largest contribution to the objective-function value
comes from the items that are placed in the first positions of the permutation.

10. Employing multiple combination methods has been shown to be an effective
strategy. The combination methods are applied probabilistically, starting with
an equal probability of selecting any of the available methods. The probability
changes, with the success of each method, where success is typically defined

5 Scatter Search 137

as creating trial solutions that are admitted to the reference set because of their
quality. As the search progresses, the more effective (i.e. successful) methods
are chosen more often. This strategy is particularly useful when SS is used as a
black-box optimizer, where no context information is used to create combination
methods that are known to be effective for certain classes of problems.

5.9 Conclusions

The goal of this chapter is to introduce the SS framework at a level that would make
it possible for the reader to implement a basic but robust procedure. A number of
extensions are possible and some of them have already been explored and reported
in the literature. It is not possible within the limited scope of this chapter to detail
completely many of the aspects of SS that warrant further investigation. Additional
implementation considerations, including those associated with intensification and
diversification processes, and the design of accompanying methods to improve so-
lutions produced by combination strategies are found in several of the references
listed below.

5.10 Promising Areas for Future Research

SS is at the core of OptQuest, a popular commercial software package for global
optimization. OptQuest is implemented as a black-box optimizer that focuses on
searching for high-quality solutions to problems with expensive objective-function
evaluations (such as those characterized by a computer simulation). SS has shown
merit in applications where the optimization horizon (represented by a number of
objective function evaluations) is severely limited. This is a promising SS research
avenue, considering the importance of optimizing black boxes in general and simu-
lations in particular.

One way of creating effective heuristic search procedures with limited objective-
function evaluations is through the use of rough set theory. Rough sets have been
successfully adapted as a mechanism to combine solutions and to perform local opt-
imization in the context of multiobjective optimization. They have been hybridized
with search methods such as differential evolution (Hernández-Díaz et al. 2006),
particle swarm optimization (Santana-Quintero et al. 2006) and metamodels based
on radial basis functions (Santana-Quintero et al. 2007). Multiobjective optimization
results are encouraging, showing the effectiveness of the hybrid implementations in
obtaining dense approximations of the Pareto fronts. Additional details on the use
of rough sets in multiobjective optimization can be found in Hernández-Díaz et al.
(2008). These studies point to the merit of exploring the addition of mechanisms
based on rough sets to SS implementations for multiobjective optimization.

138 M. Laguna

While the merging of SS and rough sets for multiobjective optimization remains
to be explored, Laguna et al. (2010) employed a rough-set theory procedure as a
combination method within a SS for nonlinear optimization with a single multi-
modal objective function. The goal of this work was to find high-quality solutions to
difficult multimodal functions while limiting the number of objective-function eval-
uations. The search process was divided into two stages, starting from a coarsely
discretized solution space and ending at the original solution space represented by
continuous variables. The authors adapted the standard SS methodology to provide
the data that rough-set theory needs to identify promising areas in the solution space.
The implementation departed from the traditional SS framework in that a sampling
procedure was used to create subsets of solutions to which the rough-set combina-
tion method was applied. Similar mechanisms are worth exploring in order to create
innovative ways of combining solutions for both single-objective and multiobjective
optimization problems that are tackled with SS.

The experiments with 92 problems instances from the literature presented by
Laguna et al. (2010) showed the merit of the SS/rough-set combination when com-
pared to an existing method based on particle swarm optimization. A potential
extension to this work is in the area of simulation optimization. As mentioned above,
the evaluation of the objective function in this context typically requires a signifi-
cant amount of computational effort and is noisy. The use of rough sets to reduce the
number of evaluations required to identify promising regions in the solution space
may be of great advantage, particularly in situations where the number of objective-
function evaluations (i.e. calls to the simulation module) is limited to no more than
100 times the number of decision variables in the problem. Coupling rough sets,
metamodels and ranking and selection may result in a highly effective approach
for dealing with expensive and noisy objective functions. Also, given that rough
sets have been shown to be effective in multiobjective optimization (see Hernández-
Díaz et al. 2006, 2008), another promising research avenue is the development of
a SS/rough-sets for multiobjective simulation optimization, an area that has gener-
ated a fair amount of interest in engineering and science (Lee et al. 1996; Mebarki
and Castagna 2000; Yang and Chou 2005; Pasandideh and Niaki 2006; Rosen et al.
2007, 2008; Teng et al. 2007; Zhang 2008; Willis and Jones 2008).

Sources of Additional Information

The best source of information to get started with SS is the book by Laguna and
Martí (2003). This book contains three tutorials, including searches in continuous
spaces (nonlinear unconstrained optimization), constrained binary spaces (knapsack
problems) and combinatorial optimization (linear ordering problem). Advanced strat-
egies are also addressed and computer code is provided that can be easily modi-
fied to create basic and even advanced implementation of SS for other optimization
problems.

5 Scatter Search 139

Several SS tutorials have appeared in the literature and can be found at http://
leeds-faculty.colorado.edu/laguna. Some of these chapters and tutorials include im-
plementations that use path relinking as a mechanism to combine solutions within a
SS framework.

The Optsicom Website (http://heur.uv.es/optsicom/) contains the description of
several optimization procedures based on metaheuristics, including SS. Implemen-
tations of SS as black-box optimizer and for particular problem classes can be found
in this website.

References

Caballero R, Laguna M, Martí R, Molina J (2011) Scatter tabu search for multiob-
jective clustering problems. J Oper Res Soc 62:2034–2046

Campos V, Glover F, Laguna M, Martí R (2001) An experimental evaluation of a
scatter search for the linear ordering problem. J Glob Optim 21:397–414

Campos V, Laguna M, Martí R (2005) Context-independent scatter and tabu search
for permutation problems. INFORMS J Comput 17:111–122

Coello CA, Van Veldhuizen DA, Lamont GB (2002) Evolutionary algorithms for
solving multi-objective problems. Kluwer/Plenum, New York

Duarte A, Martí R (2007) Tabu search and GRASP for the maximum diversity prob-
lem. Eur J Oper Res 178:71–84

Feo TA, Resende MGC (1995) Greedy randomized adaptive search procedures.
J Glob Optim 6:109–133

Glover F (1994) Tabu search for nonlinear and parametric optimization with links
to genetic algorithms. Discret Appl Math 49:231–255

Glover F (1998) A template for scatter search and path relinking. In: Hao JK, Lutton
E, Ronald E, Schoenauer M, Snyers D (eds) Artificial evolution. Lecture notes in
computer science, vol. 1363. Springer, Berlin, pp 1–5

Glover F, Laguna M (1997) Tabu search. Kluwer, Boston
Glover F, Laguna M, Martí R (2003a) Scatter search. In: Ghosh A, Tsutsui S (eds)

Advances in evolutionary computation: theory and applications. Springer, New
York, pp 519–537

Glover F, Laguna M, Martí R (2003b) Scatter search and path relinking: advances
and applications. In: Glover F, Kochenberger G (eds) Handbook of metaheuris-
tics. Kluwer, Boston, pp 1–35

Glover F, Laguna M, Martí R (2004) New ideas and applications of scatter search
and path relinking. In: Onwubolu GC, Babu BV (eds) New optimization tech-
niques in engineering. Springer, Berlin, pp 367–383

Gortazar F, Duarte A, Laguna M, Martí R (2010) Context-independent scatter search
for binary problems. Comput Oper Res 37:1977–1986

Hamming RW (1950) Error detecting and error correcting codes. Bell Syst Tech J
26:147–160

http://leeds-faculty.colorado.edu/laguna
http://leeds-faculty.colorado.edu/laguna
http://heur.uv.es/optsicom/

140 M. Laguna

Hansen P, Mladenović N (2003) Variable neighborhood search. In: Glover F,
Kochenberger G (eds) Handbook of metaheuristics. Kluwer, Boston, pp 145–184

Hernández-Díaz AG, Santana-Quintero LV, Coello Coello CA, Caballero R, Molina
J (2006) A new proposal for multiobjective optimization using differential evolu-
tion and rough set theory. In: Proceedings of the genetic and evolutionary com-
putation conference. ACM, New York, Seattle, Washington, pp 675–683

Hernández-Díaz AG, Santana-Quintero LV, Coello Coello CA, Caballero R, Molina
J (2008) Improving multi-objective evolutionary algorithms by using rough sets.
In: Ligeza A, Reich S, Schaefer R, Cotta C (eds) Knowledge-driven computing:
knowledge engineering and intelligent computations. Studies in computational
intelligence, vol 102. Springer-Verlag Berlin Heidelberg, pp 81–98

Laguna M (2002) Scatter search. In: Pardalos PM, Resende MGC (eds) Handbook
of applied optimization. Oxford University Press, New York, pp 183–193

Laguna M, Martí R (2003) Scatter search: methodology and implementations in C.
Kluwer, Boston

Laguna M, Martí R (2005) Experimental testing of advanced scatter search designs
for global optimization of multimodal functions. J Glob Optim 33:235–255

Laguna M, Molina J, Pérez F, Caballero R, Hernández-Díaz A (2010) The challenge
of optimizing expensive black boxes: a scatter search/rough set theory approach.
J Oper Res Soc 61:53–67

Lee Y-H, Shin H-M, Yang B-H (1996) An approach for multiple criteria simu-
lation optimization with application to turning operation. Comput Indust Eng
30:375–386

Martí R, Laguna M, Campos V (2005) Scatter search vs. genetic algorithms: an
experimental evaluation with permutation problems. In: Rego C, Alidaee B (eds)
Metaheuristic optimization via adaptive memory and evolution: tabu search and
scatter search. Kluwer, Norwell, pp 263–282

Martí R, Laguna M, Glover F (2006) Principles of scatter search. Eur J Oper Res
169:359–372

Martí R, Duarte A, Laguna M (2009) Advanced scatter search for the max-cut prob-
lem. INFORMS J Comput 21:26–38

Mebarki N, Castagna P (2000) An approach based on Hotelling’s test for multicri-
teria stochastic simulation-optimization. Simul Pract Theor 8:341–355

Michalewicz Z (1994) Genetic algorithms + data structures = evolution programs.
Springer, Berlin

Molina J, Laguna M, Martí R, Caballero R (2007) SSPMO: a scatter search proce-
dure for non-linear multiobjective optimization. INFORMS J Comput 19:91–100

Pasandideh SHR, Niaki STA (2006) Multi-response simulation optimization using
genetic algorithm within desirability function framework. Appl Math Comput
175:366–382

Resende MGC, Ribeiro CC (2003) Greedy randomized adaptive search procedures.
In: Glover F, Kochenberger G (eds) Handbook of Metaheuristics. Kluwer Aca-
demic Publishers, pp 219–249

5 Scatter Search 141

Rosen SL, Harmonosky CH, Traband MT (2007) A simulation optimization method
that considers uncertainty and multiple performance measures. Eur J Oper Res
181:315–330

Rosen SL, Harmonosky CH, Traband MT (2008) Optimization of systems with
multiple performance measures via simulation: survey and recommendations.
Comput Ind Eng 54:327–339

Santana-Quintero LV, Ramírez-Santiago N, Coello Coello CA, Molina J,
Hernández-Díaz AG (2006) In: Runarsson ThP, Beyer H-G, Burke E, Merelo-
Guervós JJ, Whitley LD, Yao X (eds) Parallel problem solving from nature –
PPSN IX. Lecture notes in computer science, vol 4193. Springer, Berlin/New
York, pp. 483–492

Santana-Quintero LV, Serrano-Hernández VA, Coello Coello CA, Hernández-Díaz
AG, Molina J (2007) Use of radial basis functions and rough sets for evolutionary
multiobjective optimization. In: IEEE symposium on computational intelligence
in multicriteria decision making (MCDM 07), Seattle, Washington, pp 107–114

Teng S, Lee JH, Chew EP (2007) Multi-objective ordinal optimization for simula-
tion optimization problems. Automatica 43:1884–1895

Willis KO, Jones DF (2008) Multi-objective simulation optimization through search
heuristics and relational database analysis. Decis Support Syst 46:277–286

Yang T, Chou P (2005) Solving a multiresponse simulation-optimization problem
with discrete variables using a multi-attribute decision-making method. Math
Comput Simul 68:9–21

Zhang H (2008) Multi-objective simulation optimization for earthmoving opera-
tions. Automat Constr 18:79–86

Chapter 6

Genetic Programming

Riccardo Poli and John Koza

6.1 Introduction

The goal of getting computers to automatically solve problems is central to artificial
intelligence, machine learning, and the broad area encompassed by what Turing
called machine intelligence (Turing 1948, 1950).

In his 1983 talk entitled AI: Where It Has Been and Where It Is Going, machine
learning pioneer Arthur Samuel stated the main goal of the fields of machine learn-
ing and artificial intelligence:

[T]he aim [is] . . . to get machines to exhibit behavior, which if done by humans, would be
assumed to involve the use of intelligence.

Genetic programming (GP) is a systematic method for getting computers to aut-
omatically solve a problem starting from a high-level statement of what needs to
be done. GP is a domain-independent method that genetically breeds a population
of computer programs to solve a problem. Specifically, GP iteratively transforms a
population of computer programs into a new generation of programs by applying
analogues of naturally occurring genetic operations. This process is illustrated in
Fig. 6.1.

The genetic operations include crossover (sexual recombination), mutation and
reproduction. It may also include other analogues of natural operations such as gene
duplication, gene deletion and developmental processes which transform an emb-
ryo into a fully developed structure. GP is an extension of the genetic algorithm

R. Poli (�)
School of Computer Science and Electronic Engineering, University of Essex,
Colchester, Essex, UK
e-mail: rpoli@essex.ac.uk

J. Koza
Stanford University, Stanford, CA, USA
e-mail: john@johnkoza.com

E.K. Burke and G. Kendall (eds.), Search Methodologies: Introductory Tutorials
in Optimization and Decision Support Techniques, DOI 10.1007/978-1-4614-6940-7_6,
© Springer Science+Business Media New York 2014

143

mailto:rpoli@essex.ac.uk
mailto:john@johnkoza.com

144 R. Poli and J. Koza

Generate Population

of Random Programs
Run Programs and

Evaluate Their Quality

Breed Fitter Programs

Solution
for(i=1; i < 100; i ++)

{

x += 2.37 * i;

if (x > 1000)

return(i);

}

return(0);

Fig. 6.1 Main loop of genetic programming

Fig. 6.2 Basic tree-like program representation used in genetic programming

Fig. 6.3 Multi-tree program representation

(Holland 1975) in which the structures in the population are not fixed-length character
strings that encode candidate solutions to a problem, but programs that, when exe-
cuted, are the candidate solutions to the problem.

Programs are expressed in GP as syntax trees rather than as lines of code. For
example, the simple expression max(x*x,x+3*y) is represented as shown in
Fig. 6.2. The tree includes nodes (which we will also call points) and links. The
nodes indicate the instructions to execute. The links indicate the arguments for each
instruction. In the following the internal nodes in a tree will be called functions,
while the tree’s leaves will be called terminals.

In more advanced forms of GP, programs can be composed of multiple compo-
nents (e.g. subroutines). Often in this case the representation used in GP is a set of
trees (one for each component) grouped together under a special node called root, as
illustrated in Fig. 6.3. We will call these (sub)trees branches. The number and type
of the branches in a program, together with certain other features of the structure of
the branches, form the architecture of the program.

GP trees and their corresponding expressions can equivalently be represented
in prefix notation (e.g. as Lisp S-expressions). In prefix notation, functions always

6 Genetic Programming 145

precede their arguments. For example, max(x*x,x+3*y) becomes (max (*
x x)(+ x (* 3 y))). In this notation, it is easy to see the correspondence
between expressions and their syntax trees. Simple recursive procedures can convert
prefix-notation expressions into infix-notation expressions and vice versa. There-
fore, in the following, we will use trees and their corresponding prefix-notation
expressions interchangeably.

6.2 Preparatory Steps of Genetic Programming

Genetic programming starts from a high-level statement of the requirements of a
problem and attempts to produce a computer program that solves the problem.

The human user communicates the high-level statement of the problem to the GP
algorithm by performing certain well-defined preparatory steps.

The five major preparatory steps for the basic version of genetic programming
require the human user to specify:

1. The set of terminals (e.g. the independent variables of the problem, zero-argument
functions, and random constants) for each branch of the to-be-evolved program,

2. The set of primitive functions for each branch of the to-be-evolved program,
3. The fitness measure (for explicitly or implicitly measuring the quality of individ-

uals in the population),
4. Certain parameters for controlling the run, and
5. The termination criterion and method for designating the result of the run.

The first two preparatory steps specify the ingredients that are available to cre-
ate the computer programs. A run of GP is a competitive search among a diverse
population of programs composed of the available functions and terminals.

The identification of the function set and terminal set for a particular problem
(or category of problems) is usually a straightforward process. For some problems,
the function set may consist of merely the arithmetic functions of addition, subtrac-
tion, multiplication and division as well as a conditional branching operator. The
terminal set may consist of the program’s external inputs (independent variables)
and numerical constants.

For many other problems, the ingredients include specialized functions and ter-
minals. For example, if the goal is to get GP to automatically program a robot to
mop the entire floor of an obstacle-laden room, the human user must tell GP what
the robot is capable of doing. For example, the robot may be capable of executing
functions such as moving, turning and swishing the mop.

If the goal is the automatic creation of a controller, the function set may consist
of integrators, differentiators, leads, lags, gains, adders, subtractors and the like, and
the terminal set may consist of signals such as the reference signal and plant output.

If the goal is the automatic synthesis of an analog electrical circuit, the function
set may enable GP to construct circuits from components such as transistors, capac-
itors and resistors. Once the human user has identified the primitive ingredients for
a problem of circuit synthesis, the same function set can be used to automatically

146 R. Poli and J. Koza

synthesize an amplifier, computational circuit, active filter, voltage reference circuit,
or any other circuit composed of these ingredients.

The third preparatory step concerns the fitness measure for the problem. The
fitness measure specifies what needs to be done. The fitness measure is the primary
mechanism for communicating the high-level statement of the problem’s require-
ments to the GP system. For example, if the goal is to get GP to automatically
synthesize an amplifier, the fitness function is the mechanism for telling GP to syn-
thesize a circuit that amplifies an incoming signal (as opposed to, say, a circuit that
suppresses the low frequencies of an incoming signal or that computes the square
root of the incoming signal). The first two preparatory steps define the search space
whereas the fitness measure implicitly specifies the search’s desired goal.

The fourth and fifth preparatory steps are administrative. The fourth prepara-
tory step entails specifying the control parameters for the run. The most important
control parameter is the population size. Other control parameters include the prob-
abilities of performing the genetic operations, the maximum size for programs, and
other details of the run.

The fifth preparatory step consists of specifying the termination criterion and the
method of designating the result of the run. The termination criterion may include
a maximum number of generations to be run as well as a problem-specific success
predicate. The single best-so-far individual is then harvested and designated as the
result of the run.

6.3 Executional Steps of GP

After the user has performed the preparatory steps for a problem, the run of genetic
programming can be launched. Once the run is launched, a series of well-defined,
problem-independent steps is executed.

GP typically starts with a population of randomly generated computer programs
composed of the available programmatic ingredients (as provided by the human user
in the first and second preparatory steps).

GP iteratively transforms a population of computer programs into a new gener-
ation of the population by applying analogues of naturally occurring genetic oper-
ations. These operations are applied to individual(s) selected from the population.
The individuals are probabilistically selected to participate in the genetic operations
based on their fitness (as measured by the fitness measure provided by the human
user in the third preparatory step). The iterative transformation of the population is
executed inside the main generational loop of the run of GP.

The executional steps of GP are as follows:

1. Randomly create an initial population (generation 0) of individual computer pro-
grams composed of the available functions and terminals.

2. Iteratively perform the following sub-steps (called a generation) on the popula-
tion until the termination criterion is satisfied:

6 Genetic Programming 147

(a) Execute each program in the population and ascertain its fitness (explicitly or
implicitly) using the problem’s fitness measure.

(b) Select one or two individual program(s) from the population with a probability
based on fitness (with reselection allowed) to participate in the genetic opera-
tions in (c).

(c) Create new individual program(s) for the population by applying the following
genetic operations with specified probabilities:
• Reproduction: Copy the selected individual program into the new popula-

tion.
• Crossover: Create new offspring program(s) for the new population by rec-

ombining randomly chosen parts from two selected programs.
• Mutation: Create one new offspring program for the new population by

randomly mutating a randomly chosen part of one selected program.
• Architecture-altering operations: If this feature is enabled, choose an archi-

tecture-altering operation from the available repertoire of such operations
and create one new offspring program for the new population by applying
the chosen architecture-altering operation to one selected program.

3. After the termination criterion is satisfied, the single best program in the
population produced during the run (the best-so-far individual) is harvested and
designated as the result of the run. If the run is successful, the result will be a
solution (or approximate solution) to the problem.

Figure 6.4 is a flowchart of GP showing the genetic operations of crossover,
reproduction, and mutation as well as the architecture-altering operations. This flow-
chart shows a two-offspring version of the crossover operation.

The preparatory steps specify what the user must provide in advance to the GP
system. Once the run is launched, the executional steps as shown in the flowchart
(Fig. 6.4) are executed. GP is problem independent in the sense that the flowchart
specifying the basic sequence of executional steps is not modified for each new run
or each new problem.

There is usually no discretionary human intervention or interaction during a run
of GP (although a human user may exercise judgment as to whether to terminate
a run).

GP starts with an initial population of computer programs composed of functions
and terminals appropriate to the problem. The individual programs in the initial
population are typically generated by recursively generating a rooted point-labeled
program tree composed of random choices of the primitive functions and terminals
(provided by the user as part of the first and second preparatory steps). The initial in-
dividuals are usually generated subject to a pre-established maximum size (specified
by the user as a minor parameter as part of the fourth preparatory step). For exam-
ple, in the “Full” initialization method nodes are taken from the function set until
a maximum tree depth is reached. Beyond that depth only terminals can be chosen.
Figure 6.5 shows several snapshots of this process. A variant of this, the “Grow” ini-
tialization method, allows the selection of nodes from the whole primitive set until
the depth limit is reached. Thereafter, it behaves like the “Full” method.

148 R. Poli and J. Koza

Fig. 6.4 Flowchart of genetic programming

Fig. 6.5 Creation of a seven-point tree using the “Full” initialization method (t = time)

In general, after the initialization phase, the programs in the population are of dif-
ferent size (number of functions and terminals) and of different shape (the particular
graphical arrangement of functions and terminals in the program tree).

Each individual program in the population is either measured or compared
in terms of how well it performs the task at hand (using the fitness measure
provided in the third preparatory step). For many problems, this measurement
yields a single explicit numerical value, called fitness. Normally, fitness evalua-

6 Genetic Programming 149

Fig. 6.6 Example interpre-
tation of a syntax tree (the
terminal x is a variable hold-
ing the value −1)

Fig. 6.7 Typical interpreter
for genetic programming

tion requires executing the programs in the population, often multiple times, within
the GP system. A variety of execution strategies exist. The most common are
virtual-machine-code compilation and interpretation. We will look at the latter.

Interpreting a program tree means executing the nodes in the tree in an order
that guarantees that nodes are not executed before the value of their arguments (if
any) is known. This is usually done by traversing the tree in a recursive way starting
from the root node, and postponing the evaluation of each node until the value of
its children (arguments) is known. This process is illustrated in Fig. 6.6, where the
numbers to the right of internal nodes represent the results of evaluating the subtrees
rooted at such nodes. In this example, the independent variable x evaluates to −1.
Figure 6.7 gives a pseudo-code implementation of the interpretation procedure. The
code assumes that programs are represented as prefix-notation expressions and that
such expressions can be treated as lists of components (where a construct like expr(i)
can be used to read or set component i of expression expr).

Irrespective of the execution strategy adopted, the fitness of a program may be
measured in many different ways, including, for example, in terms of the amount
of error between its output and the desired output, the amount of time (fuel, money,
etc.) required to bring a system to a desired target state, the accuracy of the program

150 R. Poli and J. Koza

Fig. 6.8 Example of two-
child crossover between syn-
tax trees

in recognizing patterns or classifying objects into classes, the payoff that a game-
playing program produces, or the compliance of a complex structure (such as an
antenna, circuit, or controller) with user-specified design criteria. The execution of
the program sometimes returns one or more explicit values. Alternatively, the exe-
cution of a program may consist only of side effects on the state of a world (e.g. a
robot’s actions). Alternatively, the execution of a program may yield both return
values and side effects.

The fitness measure is, for many practical problems, multi-objective in the sense
that it combines two or more different elements. In practice, the different elements
of the fitness measure are in competition with one another to some degree.

For many problems, each program in the population is executed over a represen-
tative sample of different fitness cases. These fitness cases may represent different
values of the program’s input(s), different initial conditions of a system, or different
environments. Sometimes the fitness cases are constructed probabilistically.

The creation of the initial random population is, in effect, a blind random search
of the search space of the problem. It provides a baseline for judging future search
efforts. Typically, the individual programs in generation 0 all have exceedingly poor
fitness. Nonetheless, some individuals in the population are (usually) fitter than oth-
ers. The differences in fitness are then exploited by genetic programming. GP ap-
plies Darwinian selection and the genetic operations to create a new population of
offspring programs from the current population.

The genetic operations include crossover (sexual recombination), mutation, re-
production, and the architecture-altering operations (when they are enabled). Given
copies of two parent trees, typically, crossover involves randomly selecting a cross-
over point in each parent tree and swapping the subtrees rooted at the crossover
points, as exemplified in Fig. 6.8. Often crossover points are not selected with uni-
form probability. A frequent strategy is, for example, to select internal nodes (func-
tions) 90 % of the time, and any node for the remaining 10 % of the times. Tradi-
tional mutation consists of randomly selecting a mutation point in a tree and sub-
stituting the subtree rooted there with a randomly generated subtree, as illustrated
in Fig. 6.9. Reproduction involves simply copying certain individuals into the new
population. Architecture-altering operations are discussed later in this chapter.

6 Genetic Programming 151

Fig. 6.9 Example of subtree
mutation

The genetic operations described above are applied to individual(s) that are
probabilistically selected from the population based on fitness. In this probabilis-
tic selection process, better individuals are favored over inferior individuals. How-
ever, the best individual in the population is not necessarily selected and the worst
individual in the population is not necessarily passed over.

After the genetic operations are performed on the current population, the popu-
lation of offspring (i.e. the new generation) replaces the current population (i.e. the
now-old generation). This iterative process of measuring fitness and performing the
genetic operations is repeated over many generations.

The run of GP terminates when the termination criterion (as provided by the fifth
preparatory step) is satisfied. The outcome of the run is specified by the method
of result designation. The best individual ever encountered during the run (i.e. the
best-so-far individual) is typically designated as the result of the run.

All programs in the initial random population (generation 0) of a run of GP are
syntactically valid, executable programs. The genetic operations that are performed
during the run (i.e. crossover, mutation, reproduction and the architecture-altering
operations) are designed to produce offspring that are syntactically valid, executable
programs. Thus, every individual created during a run of GP (including, in particu-
lar, the best-of-run individual) is a syntactically valid, executable program.

There are numerous alternative implementations of GP that vary from the pre-
ceding brief description. We will discuss some options in Sect. 6.5.

6.4 Example of a Run of GP

To provide concreteness, this section contains an illustrative run of GP in which
the goal is to automatically create a computer program whose output is equal to the
values of the quadratic polynomial x2+x+1 in the range from−1 to +1. That is, the
goal is to automatically create a computer program that matches certain numerical
data. This process is sometimes called system identification or symbolic regression.

We begin with the five preparatory steps.
The purpose of the first two preparatory steps is to specify the ingredients of the

to-be-evolved program.

152 R. Poli and J. Koza

Because the problem is to find a mathematical function of one independent
variable, the terminal set (inputs to the to-be-evolved program) includes the inde-
pendent variable, x. The terminal set also includes numerical constants. That is, the
terminal set is T= {X, ℜ}, where ℜ denotes constant numerical terminals in some
reasonable range (say from −5.0 to +5.0).

The preceding statement of the problem is somewhat flexible in that it does not
specify what functions may be employed in the to-be-evolved program. One possi-
ble choice for the function set consists of the four ordinary arithmetic functions of
addition, subtraction, multiplication, and division. This choice is reasonable because
mathematical expressions typically include these functions. Thus, the function set
for this problem is F= {+, -, *, %}, where the two-argument +, -, * and % functions
add, subtract, multiply and divide, respectively. To avoid run-time errors, the divi-
sion function % is protected: it returns a value of 1 when division by 0 is attempted
(including 0 divided by 0), but otherwise returns the quotient of its two arguments.

Each individual in the population is a composition of functions from the specified
function set and terminals from the specified terminal set.

The third preparatory step involves constructing the fitness measure. The purpose
of the fitness measure is to specify what the human wants. The high-level goal of
this problem is to find a program whose output is equal to the values of the quadratic
polynomial x2 + x+ 1. Therefore, the fitness assigned to a particular individual in
the population for this problem must reflect how closely the output of an individual
program comes to the target polynomial x2 + x+ 1. The fitness measure could be
defined as the value of the integral (taken over values of the independent variable x
between−1.0 and+1.0) of the absolute value of the differences (errors) between the
value of the individual mathematical expression and the target quadratic polynomial
x2 +x+1. A smaller value of fitness (error) is better. A fitness (error) of zero would
indicate a perfect fit.

For most problems of symbolic regression or system identification it is not practi-
cal or possible to analytically compute the value of the integral of the absolute error.
Thus, in practice, the integral is numerically approximated using dozens or hun-
dreds of different values of the independent variable x in the range between −1.0
and +1.0.

The population size in this small illustrative example will be just four. In ac-
tual practice, the population size for a run of GP consists of thousands or millions
of individuals. In actual practice, the crossover operation is commonly performed
on about 90 % of the individuals in the population, the reproduction operation is
performed on about 8 % of the population, the mutation operation is performed on
about 1 % of the population, and the architecture-altering operations are performed
on perhaps 1 % of the population. Because this illustrative example involves an ab-
normally small population of only four individuals, the crossover operation will be
performed on two individuals and the mutation and reproduction operations will
each be performed on one individual. For simplicity, the architecture-altering oper-
ations are not used for this problem.

A reasonable termination criterion for this problem is that the run will continue
from generation to generation until the fitness of some individual gets below 0.01.

6 Genetic Programming 153

Fig. 6.10 Initial population of four randomly created individuals of generation 0

Fig. 6.11 The fitness of each of the four randomly created individuals of generation 0 is equal to
the area between two curves

In this contrived example, the run will (atypically) yield an algebraically perfect
solution (for which the fitness measure attains the ideal value of zero) after merely
one generation.

Now that we have performed the five preparatory steps, the run of GP can be
launched. That is, the executional steps shown in the flowchart of Fig. 6.4 are now
performed.

GP starts by randomly creating a population of four individual computer pro-
grams. The four programs are shown in Fig. 6.10 in the form of trees.

The first randomly constructed program tree (Fig. 6.10a) is equivalent to the
mathematical expression x + 1. A program tree is executed in a depth-first way,
from left to right, in the style of the LISP programming language. Specifically, the
addition function (+) is executed with the variable x and the constant value 1 as
its two arguments. Then, the two-argument subtraction function (−) is executed. Its
first argument is the value returned by the just-executed addition function. Its second
argument is the constant value 0. The overall result of executing the entire program
tree is thus x+ 1.

The first program (Fig. 6.10a) was constructed, using the “Grow” method, by first
choosing the subtraction function for the root (top point) of the program tree. The
random construction process continued in a depth-first fashion (from left to right)
and chose the addition function to be the first argument of the subtraction function.
The random construction process then chose the terminal x to be the first argument
of the addition function (thereby terminating the growth of this path in the program
tree). The random construction process then chose the constant terminal 1 as the
second argument of the addition function (thereby terminating the growth along
this path). Finally, the random construction process chose the constant terminal 0
as the second argument of the subtraction function (thereby terminating the entire
construction process).

154 R. Poli and J. Koza

Fig. 6.12 Population of generation 1 (after one reproduction, one mutation, and one two-offspring
crossover operation)

The second program (Fig. 6.10b) adds the constant terminal 1 to the result of
multiplying x by x and is equivalent to x2 + 1. The third program (Fig. 6.10c) adds
the constant terminal 2 to the constant terminal 0 and is equivalent to the constant
value 2. The fourth program (Fig. 6.10d) is equivalent to x.

Randomly created computer programs will, of course, typically be very poor at
solving the problem at hand. However, even in a population of randomly created
programs, some programs are better than others. The four random individuals from
generation 0 in Fig. 6.10 produce outputs that deviate from the output produced by
the target quadratic function x2 +x+1 by different amounts. In this particular prob-
lem, fitness can be graphically illustrated as the area between two curves. That is,
fitness is equal to the area between the parabola x2 + x+ 1 and the curve represent-
ing the candidate individual. Figure 6.11 shows (as shaded areas) the integral of the
absolute value of the errors between each of the four individuals in Fig. 6.10 and the
target quadratic function x2 + x+ 1. The integral of absolute error for the straight
line x+ 1 (the first individual) is 0.67 (Fig. 6.11a). The integral of absolute error
for the parabola x2 + 1 (the second individual) is 1.0 (Fig. 6.11b). The integrals of
the absolute errors for the remaining two individuals are 1.67 (Fig. 6.11c) and 2.67
(Fig. 6.11d), respectively.

As can be seen in Fig. 6.11, the straight line x+ 1 (Fig. 6.11a) is closer to the
parabola x2 + x+ 1 in the range from −1 to +1 than any of its three cohorts in
the population. This straight line is, of course, not equivalent to the parabola x2 +
x+ 1. This best-of-generation individual from generation 0 is not even a quadratic
function. It is merely the best candidate that happened to emerge from the blind
random search of generation 0. In the valley of the blind, the one-eyed man is king.

After the fitness of each individual in the population is ascertained, GP then
probabilistically selects relatively fitter programs from the population. The genetic
operations are applied to the selected individuals to create offspring programs. The
most commonly employed methods for selecting individuals to participate in the
genetic operations are tournament selection and fitness-proportionate selection. In
both methods, the emphasis is on selecting relatively fit individuals. An important
feature common to both methods is that the selection is not greedy. Individuals that
are known to be inferior will be selected to a certain degree. The best individual in

6 Genetic Programming 155

the population is not guaranteed to be selected. Moreover, the worst individual in
the population will not necessarily be excluded. Anything can happen and nothing
is guaranteed.

We first perform the reproduction operation. Because the first individual is the
most fit individual in the population (Fig. 6.10a), it is very likely to be selected to
participate in a genetic operation. Let us suppose that this particular individual is,
in fact, selected for reproduction. If so, 0 is copied, without alteration, into the next
generation (generation 1). It is shown in Fig. 6.12a as part of the population of the
new generation.

We next perform the mutation operation. Because selection is probabilistic, it
is possible that the third-best individual in the population (Fig. 6.10c) is selected.
One of the three nodes of this individual is then randomly picked as the site for
the mutation. In this example, the constant terminal 2 is picked as the mutation
site. This program is then randomly mutated by deleting the entire subtree rooted at
the picked point (in this case, just the constant terminal 2) and inserting a subtree
that is randomly grown in the same way that the individuals of the initial random
population were originally created. In this particular instance, the randomly grown
subtree computes the quotient of x and x using the protected division operation %.
The resulting individual is shown in Fig. 6.12b. This particular mutation changes the
original individual from one having a constant value of 2 into one having a constant
value of 1. This particular mutation improves fitness from 1.67 to 1.00.

Finally, we perform the crossover operation. Because the first and second individ-
uals in generation 0 are both relatively fit, they are likely to be selected to participate
in crossover. The selection (and reselection) of relatively fitter individuals and the
exclusion and extinction of unfit individuals is a characteristic feature of Darwinian
selection. The first and second programs are mated sexually to produce two off-
spring (using the two-offspring version of the crossover operation). One point of the
first parent (Fig. 6.10a), namely the + function, is randomly picked as the crossover
point for the first parent. One point of the second parent (Fig. 6.10b), namely its
leftmost terminal x, is randomly picked as the crossover point for the second parent.
The crossover operation is then performed on the two parents. The two offspring
are shown in Fig. 6.12c, d. One of the offspring (Fig. 6.12c) is equivalent to x and is
not noteworthy. However, the other offspring (Fig. 6.12d) is equivalent to x2 + x+1
and has a fitness (integral of absolute errors) of zero. Because the fitness of this in-
dividual is below 0.01, the termination criterion for the run is satisfied and the run
is automatically terminated. This best-so-far individual (Fig. 6.12d) is designated
as the result of the run. This individual is an algebraically correct solution to the
problem.

Note that the best-of-run individual (Fig. 6.12d) incorporates a good trait (the
quadratic term x2) from the second parent (Fig. 6.10b) with two other good traits
(the linear term x and constant term of 1) from the first parent (Fig. 6.10a). The
crossover operation produced a solution to this problem by recombining good traits
from these two relatively fit parents into a superior (indeed, perfect) offspring.

156 R. Poli and J. Koza

In summary, GP has, in this example, automatically created a computer program
whose output is equal to the values of the quadratic polynomial x2 + x+ 1 in the
range from −1 to +1.

6.5 Further Features of GP

Various advanced features of GP are not covered by the foregoing illustrative prob-
lem and the foregoing discussion of the preparatory and executional steps of GP. In
this section we will look at a few alternatives (a more complete and detailed survey
is available in Poli et al. 2008).

6.5.1 Automatically Defined Functions and Libraries

Human programmers organize sequences of repeated steps into reusable compo-
nents such as subroutines, functions and classes. They then repeatedly invoke these
components, typically with different inputs. Reuse eliminates the need to “reinvent
the wheel” every time a particular sequence of steps is needed. Reuse also makes it
possible to exploit a problem’s modularities, symmetries and regularities (thereby
potentially accelerating the problem-solving process). This can be taken further, as
programmers typically organize these components into hierarchies in which top-
level components call lower-level ones, which call still lower levels, etc. Automat-
ically defined functions (ADFs) provide a mechanism by which the evolutionary
process can evolve these kinds of potentially reusable components. We will review
the basic concepts here, but ADFs are discussed in great detail in Koza (1994).

When ADFs are used, a program consists of multiple components. These typi-
cally consist of one or more function-defining branches (i.e. ADFs), as well as one
or more main result-producing branches (RPBs). The RPB is the “main” program
that is executed when the individual is evaluated. It can, however, call the ADFs,
which can in turn potentially call each other. A single ADF may be called multiple
times by the same RPB, or by a combination of the RPB and other ADFs, allow-
ing the logic that evolution has assembled in that ADF to be re-used in different
contexts.

Typically, recursion is prevented by imposing an order on the ADFs within an
individual and by restricting calls so that ADFi can only call ADF j if i > j. Also, in
the presence of ADFs, recombination operators are typically constrained to respect
the larger structure. That is, during crossover, a subtree from ADFi can only be
swapped with a subtree from another individual’s ADFi.

The program’s RPB and its ADFs typically have different function and terminal
sets. For example, the terminal set for ADFs usually include arguments, such as
arg0 and arg1. Typically the user must decide in advance the primitive sets, the

6 Genetic Programming 157

number of ADFs and any call restrictions to prevent recursion. These choices can
be evolved using the architecture-altering operations described in Sect. 6.5.2.

There have also been proposals for the automated creation of libraries of func-
tions within GP. For example, Angeline and Pollack (1992) and Rosca and Ballard
(1996) studied the creation and use of dynamic libraries of subtrees taken from parts
of the GP trees in the population.

Naturally, while including ADFs and automatically created libraries makes it
possible for modular re-use to emerge, there is no guarantee that they will be used
that way. For example, it may be that the RPB never calls an ADF or only calls it
once. It is also possible for an ADF to not actually encapsulate any significant logic.

6.5.2 Architecture-Altering Operations

The architecture of a program can be defined as the total number of trees, the type
of each tree, the number of arguments (if any) possessed by each tree, and, finally, if
there is more than one tree, the nature of the hierarchical references (if any) allowed
among the trees (e.g. whether ADF1 can call ADF2) (Koza 1994).

There are three ways to determine the architecture of the computer programs that
will be evolved. Firstly, the user may specify in advance the architecture of the over-
all program, i.e. perform an architecture-defining preparatory step in addition to the
five steps itemized in Sect. 6.2. Secondly, a run of GP may employ the evolution-
ary design of the architecture (Koza 1994), thereby enabling the architecture of the
overall program to emerge from a competitive process during the run. Finally, a run
may employ a set of architecture-altering operations (Koza 1994, 1995; Koza et al.
1999a) which, for example, can create, remove or modify ADFs. Note that architec-
ture changes are often designed not to initially change the semantics of the program
and, so, the altered program often has exactly the same fitness as its parent. Never-
theless, the new architecture may make it easier to evolve better programs later.

6.5.3 Constraining Structures

Most GP systems require that all subtrees return data of the same type. This ensures
that the output of any subtree can be used as one of the inputs to any node. The basic
subtree crossover operator shuffles tree components entirely randomly. Type com-
patibility ensures that crossover cannot lead to incompatible connections between
nodes. This is also required to stop mutation from producing illegal programs.

There are cases, however, where this approach is not ideal. For example, there
might be constraints on the structure of the acceptable solutions or a problem do-
main might be naturally represented with multiple types. To apply GP in these cases
one needs to be able to use primitives with different type signatures. Below we will

158 R. Poli and J. Koza

look at three approaches to constraining the syntax of the evolved expression trees
in GP: simple structure enforcement, strongly typed GP and grammar-based con-
straints.

If a particular structure is believed or known to be important then one can mod-
ify the GP system to require that all individuals have that structure (Koza 1992).
Enforcing a user-specified structure on the evolved solutions can be implemented in
a number of ways. For example, one can ensure that all the initial individuals have
the structure of interest and then constrain crossover and mutation so that they do
not alter any of the fixed regions of a tree. An alternative approach is to evolve the
various (sub)components separately. A form of constraint-directed search in GP was
also proposed in Tsang and Li (2002) and Tsang and Jin (2006).

Since constraints are often driven by or expressed using a type system, a natural
approach is to incorporate types and their constraints into the GP system (Montana
1995). In strongly typed GP, every terminal has a type, and every function has types
for each of its arguments and a type for its return value. The process that generates
the initial, random expressions, and all the genetic operators are implemented so as
to ensure that they do not violate the type system’s constraints. For example, muta-
tion replaces subtrees with new randomly generated trees ensuring that the root of
the replacement tree has the same return type as the root of the excised tree. Simi-
larly, crossover only allows the swap of subtrees having the same return type. This
basic approach to types can be extended to more complex type systems (Montana
1995; Haynes et al. 1996; Olsson 1994; Yu 2001).

Another natural way to express constraints is via grammars, and these have been
used in GP in a variety of ways (Whigham 1996; Gruau 1996; Wong and Leung
1996; O’Neill and Ryan 2003; Hoai et al. 2003). In this sort of system, the grammar
is typically used to ensure that the initial population is made up of legal programs.
The grammar is also used to guide the operations of the genetic operators. Thus we
need to keep track not only of the program itself, but also the syntax rules used to
derive it.

What actually is evolved in a grammar-based GP system depends on the partic-
ular system. Whigham (1996), for example, evolved derivation trees, which effec-
tively are a hierarchical representation of which rewrite rules must be applied, and in
which order, to obtain a particular program. In this system, crossover is restricted to
only swapping subtrees deriving from a common non-terminal symbol in the gram-
mar. The actual program represented by a derivation tree can be obtained by reading
out the leaves of the tree one by one from left to right.

Another approach is grammatical evolution (GE) which represents individuals
as variable-length sequences of integers which are interpreted in the context of a
user-supplied grammar (Ryan et al. 1998; O’Neill and Ryan 2003). For each rule
in the grammar, the set of alternatives on the right-hand side are numbered from 0
upwards. To create a program from a GE individual one uses the values in the indi-
vidual to choose which alternative to take in the production rules. If a value exceeds
the number of available options it is transformed via a modulus operation.

6 Genetic Programming 159

6.5.4 Developmental GP

By using appropriate terminals, functions and/or interpreters, GP can go beyond
the production of computer programs. In cellular encoding (Gruau and Whitley
1993; Gruau 1994a,b), programs are interpreted as sequences of instructions which
modify (grow) a simple initial structure (embryo). Once the program has finished,
the quality of the structure it has produced is measured and this is taken to be the
fitness of the program.

Naturally, for cellular encoding to work the primitives of the language must be
able to grow structures appropriate to the problem domain. Typical instructions in-
volve the insertion and/or sizing of components, topological modifications of the
structure, etc. Cellular encoding GP has successfully been used to evolve neural
networks (Gruau and Whitley 1993; Gruau 1994a,b) and electronic circuits (Koza
et al. 1996a; Koza et al. 1996b; Koza et al. 1999b), as well as in numerous other do-
mains. A related approach proposed by Hoang et al. (2007) combines tree-adjoining
grammars with L-systems (Lindenmayer 1968) to create a system where each stage
in the developmental process is a working program that respects the grammatical
constraints.

One of the advantages of indirect representations such as cellular encoding is that
the standard GP operators can be used to evolve structures (such as circuits) which
may have nothing in common with standard GP trees. In many of these systems, the
structures being “grown” are also still meaningful (and evaluable) at each point in
their development. This allows fitness evaluation. Another important advantage is
that structures resulting from developmental processes often have some regularity,
which other methods obtain through the use of ADFs, constraints, types, etc.

6.5.5 Probabilistic GP

Genetic programming typically uses an evolutionary algorithm as its main search
engine. However, this is not the only option. This section considers work where the
exploration is performed by estimation of distribution algorithms (EDAs).

EDAs (Baluja and Caruana 1995; Larrañaga and Lozano 2002) are power-
ful population-based searchers where the variation operations traditionally imple-
mented via crossover and mutation in EAs are replaced by the process of random
sampling from a probability distribution. The distribution is modified generation
after generation, using information obtained from the fitter individuals in the popu-
lation. The objective of these changes in the distribution is to increase the probability
of generating individuals with high fitness.

There have been several applications of probabilistic model-based evolution in
the areas of tree-based and linear GP. The first EDA-style GP system was effectively
an extension of the work in Baluja and Caruana (1995) to trees called probabilis-
tic incremental program evolution (PIPE) (Salustowicz and Schmidhuber 1997). In
PIPE, the population is replaced by a hierarchy of probability tables organized into

160 R. Poli and J. Koza

a tree. Each table represents the probability that a particular primitive will be chosen
at that specific location in a newly generated program tree. At each generation a pop-
ulation of programs is created based on the current tree of probability tables. Then,
the fitness of the new programs is computed and the probability hierarchy is updated
on the basis of these fitnesses, so as to make the generation of above-average fitness
programs more likely in the next generation. More recent work includes Yanai and
Iba (2003), Looks (2007), Looks et al. (2005) and Poli and McPhee (2008b).

A variety of other systems have been proposed which combine the use of gram-
mars and probabilities (Shan et al. 2006). For example, Ratle and Sebag (2001) use
a stochastic context-free grammar to generate program trees where the probability
of applying each rewrite rule is adapted using an EDA approach. A probabilistic
L-system is used by Shan et al. (2003) while a tree-adjunct grammar is used by
Abbass et al. (2002) and Shan et al. (2002).

6.5.6 Bloat and Bloat Control

In the early 1990s, researchers began to notice that in addition to progressively
increasing their mean and best fitness, GP populations also showed another phe-
nomenon: very often the average size (number of nodes) of the programs in a pop-
ulation after a certain number of generations would start growing at a rapid pace.
Typically the increase in program size was not accompanied by any corresponding
increase in fitness. This phenomenon is known as bloat.

Bloat has significant practical effects: large programs are computationally ex-
pensive to evolve and later use, can be hard to interpret, and may exhibit poor gen-
eralization. Note that there are situations where one would expect to see program
growth as part of the process of solving a problem. For example, GP runs typically
start from populations of small random programs, and it may be necessary for the
programs to grow in complexity for them to be able to comply with all the fitness
cases. So, we should not equate growth with bloat and we should define bloat as
program growth without (significant) return in terms of fitness.

Numerous empirical techniques have been proposed to control bloat (Langdon
et al. 1999; Soule and Foster 1998). In the rest of this section we briefly review some
of the most important. In Sect. 6.7 we will review a subset of theoretical explanations
for bloat. More information can be found in Poli et al. (2008, 2010).

Rather naturally, the first and simplest method to control code growth is the use
of hard limits on the size or depth of the offspring programs generated by the genetic
operators. Many implementations of this idea (e.g. Koza 1992) apply a genetic oper-
ator and then check whether the offspring is beyond the size or depth limit. If it isn’t,
the offspring enters the population. If, instead, the offspring exceeds the limit, one of
the parents is returned. A problem with this implementation is that parent programs
that are more likely to violate the size limit will tend to be copied (unaltered) more
often than programs that don’t. That is, the population will tend to be filled up with
programs that nearly infringe the size limit, which is typically not what is desired.

6 Genetic Programming 161

However, the problem can be fixed by not returning parents if the offspring violates
a constraint. Instead, one should either return the oversize offspring, but give it a
fitness of 0 so that selection will get rid of it at the next generation, or declare the
genetic operation failed, and try again.

One can also control bloat by using genetic operators which directly or indi-
rectly have an anti-bloat effect. Size fair crossover and size fair mutation (Langdon
2000; Crawford-Marks and Spector 2002) achieve this by constraining the choices
made during the execution of a genetic operation so as to actively prevent growth.
In size-fair crossover, for example, the crossover point in the first parent is selected
randomly, as in standard crossover. Then the size of the subtree to be excised is cal-
culated. This is used to constrain the choice of the second crossover point so as to
guarantee that the subtree chosen from the second parent will not be “unfairly” big.
There are also several mutation operators that may help control the average tree size
in the population while still introducing new genetic material (e.g. see Kinnear Jr
1993, 1994b; Angeline 1996; Langdon 1998a).

As will be clarified by the size evolution equation presented in Sect. 6.7.2, in sys-
tems with symmetric operators, bloat can only happen if there are some longer-than-
average programs that are fitter than average or some shorter-than-average programs
that are less fit than average, or both. So, it stands to reason that in order to control
bloat one needs to somehow modulate the selection probabilities of programs based
on their size.

A technique known as the Tarpeian method (Poli 2003) controls bloat by acting
directly on selection probabilities. This is done by setting the fitness of randomly
chosen longer-than-average programs to 0. This prevents them being parents. By
changing how frequently this is done the anti-bloat intensity of Tarpeian control can
be modulated. An advantage of the method is that the programs whose fitness is
zeroed are never executed, thereby speeding up runs.

The well-known parsimony pressure method changes the selection probabilities
by subtracting a value based on the size of each program from its fitness (Koza 1992;
Zhang and Mühlenbein 1993, 1995; Zhang et al. 1997). Bigger programs have more
subtracted and, so, have lower fitness and tend to have fewer children. That is, the
new fitness function is f (x)− c× ℓ(x), where ℓ(x) is the size of program x, f (x) is
its original fitness and c is a constant known as the parsimony coefficient. Zhang and
Mühlenbein (1995) showed some benefits of adaptively adjusting the coefficient c at
each generation but most implementations actually keep the parsimony coefficient
constant.

Recently, a theoretically sound method for setting the parsimony coefficient in a
principled manner has been proposed (Poli and McPhee 2008a). This is called the
covariant parsimony pressure method. The method is easy to implement. It recal-
culates the parsimony coefficient c at each generation using c = Cov(ℓ, f)/Var(ℓ),
where Cov(ℓ, f) is the covariance between program size ℓ and program fitness f
in the population, and Var(ℓ) is the variance of program sizes. Using this equation
ensures that the mean program size remains at the value set by the initialization pro-
cedure. There is a variant of the method that allows the user to even decide what
function the mean program size should follow over time.

162 R. Poli and J. Koza

Table 6.1 Eight criteria for saying that an automatically created result is human-competitive

Criterion

A The result was patented as an invention in the past, is an improvement over
a patented invention, or would qualify today as a patentable new invention

B The result is equal to or better than a result that was accepted as a new
scientific result at the time when it was published in a peer-reviewed journal

C The result is equal to or better than a result that was placed into a database
or archive of results maintained by an internationally recognized panel of
scientific experts

D The result is publishable in its own right as a new scientific result—
independent of the fact that the result was mechanically created

E The result is equal to or better than the most recent human-created solu-
tion to a long-standing problem for which there has been a succession of
increasingly better human-created solutions

F The result is equal to or better than a result that was considered an achieve-
ment in its field at the time it was first discovered

G The result solves a problem of indisputable difficulty in its field
H The result holds its own or wins a regulated competition involving human

contestants (in the form of either live human players or human-written com-
puter programs)

6.6 Human-Competitive Results Produced by GP

Samuel’s statement (quoted in Sect. 6.1) reflects the goal articulated by the pioneers
of the 1950s in the fields of artificial intelligence and machine learning, namely to
use computers to automatically produce human-like results. Indeed, gettingmachines
to produce human-like results is the reason for the existence of the fields of artificial
intelligence and machine learning.

To make the notion of human-competitiveness more concrete, we say that a result
is “human-competitive” if it satisfies one or more of the eight criteria in Table 6.1.

As can be seen from Table 6.1, the eight criteria have the desirable attribute
of being at arms-length from the fields of artificial intelligence, machine learning
and GP. That is, a result cannot acquire the rating of “human competitive” merely
because it is endorsed by researchers inside the specialized fields that are attempting
to create machine intelligence. Instead, a result produced by an automated method
must earn the rating of “human competitive” independent of the fact that it was
generated by an automated method.

Since 2004, a competition has been held annually at ACM’s Genetic and Evolu-
tionary Computation Conference (termed the Human-Competitive awards—the Hu-
mies). The $10,000 prize is awarded to projects that have produced automatically-
created human-competitive results according to the criteria in Table 6.1. Table 6.2
lists 71 human-competitive instances where GP produced human-competitive re-
sults between 1998 and 2009. Each entry in the table is accompanied by the criteria
(from Table 6.1) that establish the basis for the claim of human-competitiveness or
by the Humies competition where they won a prize or received a honorable mention.

6 Genetic Programming 163

Table 6.2: Seventy-one instances of human-competitive results produced
by genetic programming

Claimed instance
Basis for
claim

1
Creation of a better-than-classical quantum algorithm for the
Deutsch–Jozsa “early promise” problem (Spector et al. 1998)

B, F

2
Creation of a better-than-classical quantum algorithm for
Grover’s database search problem (Spector et al. 1999b)

B, F

3
Creation of a quantum algorithm for the depth-two AND/OR
query problem that is better than any previously published
result (Spector et al. 1999a; Barnum et al. 2000)

D

4
Creation of a quantum algorithm for the depth-one OR query
problem that is better than any previously published result
(Barnum et al. 2000)

D

5
Creation of a protocol for communicating information
through a quantum gate that was previously thought not to
permit such communication (Spector and Bernstein 2003)

D

6
Creation of a novel variant of quantum dense coding (Spector
and Bernstein 2003)

D

7
Creation of a soccer-playing program that won its first two
games in the Robo Cup 1997 competition (Luke 1998)

H

8
Creation of a soccer-playing program that ranked in the mid-
dle of the field of 34 human-written programs in the Robo
Cup 1998 competition (Andre and Teller 1999)

H

9

Creation of four different algorithms for the transmem-
brane segment identification problem for proteins (Koza
1994, Sects. 18.8 and 18.10; Koza et al. 1999b, Sects. 16.5
and 17.2)

B, E

10
Creation of a sorting network for seven items using only 16
steps (Koza et al. 1999b, Sects. 21.4.4, 23.6, and 57.8.1)

A, D

11
Rediscovery of the Campbell ladder topology for lowpass
and highpass filters (Koza et al. 1999b, Sect. 25.15.1; Koza
et al. 2003, Sect. 5.2)

A, F

12
Rediscovery of the Zobel “M-derived half section” and “con-
stant K” filter sections (Koza et al. 1999b, Sect. 25.15.2)

A, F

13
Rediscovery of the Cauer (elliptic) topology for filters (Koza
et al. 1999b, Sect. 27.3.7)

A, F

14
Automatic decomposition of the problem of synthesizing a
crossover filter (Koza et al. 1999b, Sect. 32.3)

A, F

15
Rediscovery of a recognizable voltage gain stage and a Dar-
lington emitter–follower section of an amplifier and other cir-
cuits (Koza et al. 1999b, Sect. 42.3)

A, F

16
Synthesis of 60 and 96 decibel amplifiers (Koza et al. 1999b,
Sect. 45.3)

A, F

164 R. Poli and J. Koza

Claimed instance
Basis for
claim

17
Automatic synthesis of asymmetric bandpass filter (Koza
et al. 1996b)

18
Synthesis of analog computational circuits for squaring, cub-
ing, square root, cube root, logarithm, and Gaussian func-
tions (Koza et al. 1999b, Sect. 47.5.3)

A, D, G

19
Synthesis of a real-time analog circuit for time-optimal con-
trol of a robot (Koza et al. 1999b, Sect. 48.3)

G

20
Synthesis of an electronic thermometer (Koza et al. 1999b,
Sect. 49.3)

A, G

21
Synthesis of a voltage reference circuit (Koza et al. 1999b,
Sect. 50.3)

A, G

22
Automatic synthesis of digital-to-analog converter (DAC)
circuit (Bennett III et al. 1999)

23
Automatic synthesis of analog-to-digital (ADC) circuit (Ben-
nett III et al. 1999)

24

Creation of a cellular automata rule for the majority classi-
fication problem that is better than the Gacs–Kurdyumov–
Levin (GKL) rule and all other known rules written by hu-
mans (Andre et al. 1996; Koza et al. 1999b, Sect. 58.4)

D, E

25
Creation of motifs that detect the D–E–A–D box family
of proteins and the manganese superoxide dismutase fam-
ily (Koza et al. 1999b, Sect. 59.8)

C

26
Synthesis of topology for a PID-D2 (proportional, integra-
tive, derivative, and second derivative) controller (Koza et al.
2003, Sect. 3.7)

A, F

27
Synthesis of an analog circuit equivalent to Philbrick cir-
cuit (Koza et al. 2003, Sect. 4.3)

A, F

28 Synthesis of NAND circuit (Koza et al. 2003, Sect. 4.4) A, F

29
Simultaneous synthesis of topology, sizing, placement, and
routing of analog electrical circuits (Koza et al. 2003,
Chap. 5)

30
Synthesis of topology for a PID (proportional, integrative,
and derivative) controller (Koza et al. 2003, Sect. 9.2)

A, F

31
Rediscovery of negative feedback (Koza et al. 2003,
Chap. 14)

A, E, F, G

32
Synthesis of a low-voltage balun circuit (Koza et al. 2003,
Sect. 15.4.1)

A

33
Synthesis of a mixed analog-digital variable capacitor cir-
cuit (Koza et al. 2003, Sect. 15.4.2)

A

34
Synthesis of a high-current load circuit (Koza et al. 2003,
Sect. 15.4.3)

A

35
Synthesis of a voltage-current conversion circuit (Koza et al.
2003, Sect. 15.4.4)

A

6 Genetic Programming 165

Claimed instance
Basis for
claim

36
Synthesis of a cubic signal generator (Koza et al. 2003,
Sect. 15.4.5)

A

37
Synthesis of a tunable integrated active filter (Koza et al.
2003, Sect. 15.4.6)

A

38
Creation of PID tuning rules that outperform the Ziegler–
Nichols and Astrom–Hagglund tuning rules (Koza et al.
2003, Chap. 12)

A, B, D,
E, F, G

39
Creation of three non-PID controllers that outperform a
PID controller that uses the Ziegler–Nichols or Astrom–
Hagglund tuning rules (Koza et al. 2003, Chap. 13)

A, B, D,
E, F, G

40
An evolved antenna for deployment on NASA’s Space Tech-
nology 5 Mission (Lohn et al. 2004)

Humies
2004

41
Automatic quantum computer programming: a genetic
programming Approach (Spector 2004)

Humies
2004

42

Evolving local search heuristics for SAT using genetic
programming (Fukunaga 2004); automated discovery of
composite SAT variable-selection heuristics (Fukunaga
2002)

Humies
2004

43
How to draw a straight line using a GP: benchmarking evolu-
tionary design against nineteenth century kinematic synthe-
sis (Lipson 2004)

Humies
2004

44
Organization design optimization using genetic programm-
ing (Khosraviani et al. 2004)

Humies
2004

45
Discovery of human-competitive image texture feature pro-
grams using genetic programming (Lam and Ciesielski 2004)

Humies
2004

46
Novel image filters implemented in hardware (Sekanina
2003)

Humies
2004

47

Automated re- invention of six patented optical lens systems
using genetic programming: two telescope eyepieces, a tele-
scope eyepiece system, an eyepiece for optical instruments,
two wide-angle eyepieces, and a telescope eyepiece (Koza et
al. 2005, 2008)

Humies
2005

48
Evolution of a human- competitive quantum fourier trans-
form algorithm using genetic programming (Massey et al.
2005)

Humies
2005

49
Evolving assembly programs: how games help microproces-
sor validation (Corno et al. 2005)

Humies
2005

50

Attaining human-competitive game playing with genetic
programming (Sipper 2006); GP-Gammon: using genetic
programming to evolve backgammon players (Azaria and
Sipper 2005b); GP-Gammon: genetically programming
backgammon players (Azaria and Sipper 2005a)

Humies
2005

166 R. Poli and J. Koza

Claimed instance
Basis for
claim

51
GP-EndChess: using genetic programming to evolve chess
endgame (Hauptman and Sipper 2005)

Humies
2005

52
GP-Robocode: using genetic programming to evolve
robocode players (Shichel et al. 2005)

Humies
2005

53
Evolving dispatching rules for solving the flexible job-shop
problem (Tay and Ho 2008)

Humies
2005

54
Solution of differential equations with genetic programm-
ing and the stochastic Bernstein interpolation (Howard and
Kolibal 2005)

Humies
2005

55
Determining equations for vegetation-induced resistance us-
ing genetic programming (Keijzer et al. 2005)

Humies
2005

56 Sallen–Key filter (Keane et al. 2005)

57

Using evolution to learn how to perform interest point detec-
tion (Trujillo and Olague 2006a); Synthesis of interest point
detectors through genetic programming (Trujillo and Olague
2006b)

Humies
2006

58
Evolution of an efficient search algorithm for the mate-in-n
problem in chess (Hauptman and Sipper 2007)

Humies
2007

59

Evolving local and global weighting schemes in informa-
tion retrieval (Cummins and O’Riordan 2006b); An analy-
sis of the solution space for genetically programmed term-
weighting schemes in information retrieval (Cummins and
O’Riordan 2006a); Term-weighting in information retrieval
using genetic programming: a three-stage process (Cummins
and O’Riordan 2006c)

Humies
2007

60 Real-time, non-intrusive evaluation of VoIP (Raja et al. 2007)
Humies
2007

61
Automated reverse engineering of nonlinear dynamical sys-
tems (Bongard and Lipson 2007)

Humies
2007

62

Genetic programming approach for electron–alkalimetal
atom collisions (Radi and El-Bakry 2007; El-Bakry and Radi
2006); Prediction of non-linear system in optics using ge-
netic programming (Radi 2007); Genetic programming ap-
proach for flow of steady state fluid between two eccentric
spheres (El-Bakry and Radi 2007)

Humies
2007

63 Genetic programming for finite algebras (Spector et al. 2008)
Humies
2008

64
Automatic synthesis of quantum computing circuit for the
two-oracle AND/OR problem (Spector and Klein 2008)

65
Automatic synthesis of quantum computing algorithms for
the parity problem a special case of the hidden subgroup
problem (Stadelhofer et al. 2008)

6 Genetic Programming 167

Claimed instance
Basis for
claim

66
Automatic synthesis of mechanical vibration absorbers (Hu
et al. 2008)

67
Automatically finding patches and automated software re-
pair (Nguyen et al. 2009; Weimer et al. 2009)

Humies
2009

68
GP-Rush: using genetic programming to evolve solvers for
the rush hour puzzle (Hauptman et al. 2009)

Humies
2009

69

Learning invariant region descriptor operators with genetic
programming and the F-measure (Perez and Olague 2008);
Evolutionary learning of local descriptor operators for object
recognition (Perez and Olague 2009)

Humies
2009

70
Solution of matrix Riccati differential equation for nonlinear
singular system using genetic programming (Balasubrama-
niam and Kumar 2009)

71
Distilling free-form natural laws from experimental
data (Schmidt and Lipson 2009a,b)

Clearly, Table 6.2 shows GP’s potential as a powerful invention machine. There
are 31 instances where the human-competitive result produced by GP duplicated
the functionality of a previously patented invention, infringed a previously issued
patent, or created a patentable new invention. These include one instance where
GP has created an entity that either infringes or duplicates the functionality of a
previously patented nineteenth-century invention, 21 instances where GP has done
the same with respect to previously patented twentieth-century inventions, seven
instances where GP has done the same with respect to previously patented twenty-
first-century inventions, and two instances where GP has created a patentable new
invention. The two new inventions are general-purpose controllers that outperform
controllers employing tuning rules that have been in widespread use in industry for
most of the twentieth century.

6.7 Genetic Programming Theory

GP is a search technique that explores the space of computer programs. As discussed
above, the search for solutions to a problem starts from a group of points (random
programs) in this search space. Those points that are of above average quality are
then used to generate a new generation of points through crossover, mutation, rep-
roduction and possibly other genetic operations. This process is repeated over and
over again until a termination criterion is satisfied.

If we could visualize this search, we would often find that initially the population
looks a bit like a cloud of randomly scattered points, but that, generation after gen-
eration, this cloud changes shape and moves in the search space following a well-
defined trajectory. Because GP is a stochastic search technique, in different runs

168 R. Poli and J. Koza

we would observe different trajectories. These, however, would very likely show
clear regularities to our eye that could provide us with a deep understanding of how
the algorithm is searching the program space for the solutions to a given problem.
We could probably readily see, for example, why GP is successful in finding solu-
tions in certain runs and with certain parameter settings, and unsuccessful in/with
others.

Unfortunately, it is normally impossible to exactly visualize the program search
space due to its high dimensionality and complexity, and so we cannot just use our
senses to understand and predict the behavior of GP.

One approach to gain an understanding of the behavior of a GP system and pre-
dict its behavior in precise terms is to define and study mathematical models of
evolutionary search. There are a number of cases where this approach has been very
successful in illuminating some of the fundamental processes and biases in GP sys-
tems. In this section we will review some theoretical approaches to understanding
GP. The reader is referred to Langdon and Poli (2002) and Poli et al. (2008, 2010)
for more extensive reviews of GP theory.

6.7.1 Models of GP Search

Schema theories are among the oldest and the best known models of evolutionary
algorithms (Holland 1992; Whitley 1994). Schema theories are based on the idea
of partitioning the search space into subsets, called schemata. They are concerned
with modeling and explaining the dynamics of the distribution of the population over
the schemata. Modern genetic algorithm schema theory (Stephens and Waelbroeck
1997, 1999) provides exact information about the distribution of the population at
the next generation in terms of quantities measured at the current generation, without
having to actually run the algorithm. Exact schema theories are also available for GP
systems with a variety of genetic operators (Poli 2000a,b, 2001a; Langdon and Poli
2002; Poli et al. 2004; Poli and McPhee 2003a,b). Markov chain theory has also
started being applied to GP (Poli et al. 2001, 2004; Mitavskiy and Rowe 2006),
although so far this hasn’t been developed as fully as the schema theory.

Exact mathematical models of GP, such as schema theories and Markov chains,
are probabilistic descriptions of the operations of selection, reproduction, crossover
and mutation. They explicitly represent how these operations determine which ar-
eas of the program space will be sampled by GP, and with what probability. These
models treat the fitness function as a black box, however. That is, there is no repre-
sentation of the fact that in GP, unlike in other evolutionary techniques, the fitness
function involves the execution of computer programs on a variety of inputs. In other
words, schema theories and Markov chains do not tell us how fitness is distributed in
the search space. Yet, without this information, we have no way of closing the loop
and fully characterizing the behavior of a GP systems which is always the result of
the interaction between the fitness function and the search biases of the representa-
tion and genetic operations used in the system.

6 Genetic Programming 169

Fortunately, the characterization of the space of computer programs explored by
GP has been another main topic of theoretical research (Langdon and Poli 2002).
In this category are theoretical results showing that the distribution of functionality
of non-Turing-complete programs approaches a limit as program length increases.
That is, although the number of programs of a particular length grows exponen-
tially with length, beyond a certain threshold the fraction of programs implement-
ing any particular functionality is effectively constant. There is a substantial body
of empirical evidence indicating that this happens in a variety of systems. In fact,
there are also mathematical proofs of these convergence results for two important
forms of programs: Lisp (tree-like) S-expressions (without side effects) and machine
code programs without loops (Langdon and Poli 2002; Langdon 2002, 2003a,b,c,
2005). Also, recently, Langdon and Poli (2006) and Poli and Langdon (2006) started
extending these results to Turing-complete machine code programs.

6.7.2 Bloat

In Sect. 6.5.6 we introduced the notion of bloat and described some effective mech-
anisms for controlling it. Below we review a subset of theoretical models and
explanations for bloat. More information can be found in Poli et al. (2008, 2010)
and Langdon and Poli (2002).

There have been some efforts to approximately mathematically model bloat. For
example, Banzhaf and Langdon (2002) defined an executable model of bloat where
only the fitness, the size of active code and the size of inactive code were repre-
sented (i.e. there was no representation of program structures). Fitnesses of indi-
viduals were drawn from a bell-shaped distribution, while active and inactive code
lengths were modified by a size-unbiased mutation operator. Various interesting ef-
fects were reported which are very similar to corresponding effects found in GP
runs. Rosca (2003) proposed a similar, but slightly more sophisticated model which
also included an analogue of crossover.

A strength of these executable models is their simplicity. A weakness is that they
suppress or remove many details of the representation and operators typically used
in GP. This makes it difficult to verify whether all the phenomena observed in the
model have analogues in GP runs, and whether all important behaviors of GP in
relation to bloat are captured by the model.

In Poli (2001b) and Poli and McPhee (2003b), a size evolution equation for GP
was developed, which provided an exact formalization of the dynamics of average
program size. The equation has recently been simplified (Poli and McPhee 2008a)
giving

E[µ(t+ 1)− µ(t)] =∑
ℓ

ℓ× (p(ℓ, t)−Φ(ℓ, t)), (6.1)

where µ(t + 1) is the mean size of the programs in the population at generation
t + 1, E is the expectation operator, ℓ is a program size, p(ℓ, t) is the probability
of selecting programs of size ℓ from the population in generation t, and Φ(ℓ, t) is

170 R. Poli and J. Koza

the proportion of programs of size ℓ in the current generation. The equation applies
to a GP system with selection and any form of symmetric subtree crossover. (In
a symmetric operator the probability of selecting particular crossover points in the
parents does not depend on the order in which the parents are drawn from the pop-
ulation.) Note that the equation constrains what can and cannot happen size-wise in
GP populations. Any explanation for bloat has to agree with it.

In particular, Eq. (6.1) shows that there can be bloat only if the selection proba-
bility p(ℓ, t) is different from the proportionΦ(ℓ, t) for at least some ℓ. So, for bloat
to happen there will have to be some small ℓ for which p(ℓ, t) < Φ(ℓ, t) and also
some bigger ℓ for which p(ℓ, t)>Φ(ℓ, t) (at least on average).

We conclude this section with a recent promising explanation for bloat called
the crossover bias theory (Poli et al. 2007; Dignum and Poli 2007), which is based
on and is consistent with Eq. (6.1). The theory goes as follows. On average, each
application of subtree crossover removes as much genetic material as it inserts; con-
sequently crossover on its own does not produce growth or shrinkage. While the
mean program size is unaffected, however, higher moments of the distribution are.
In particular, crossover pushes the population towards a particular distribution of
program sizes, known as a Lagrange distribution of the second kind, where small
programs have a much higher frequency than longer ones. For example, crossover
generates a very high proportion of single-node individuals. In virtually all prob-
lems of practical interest, however, very small programs have no chance of solving
the problem. As a result, programs of above average size have a selective advantage
over programs of below average size, and the mean program size increases. Because
crossover will continue to create small programs, which will then be ignored by se-
lection (in favor of the larger programs), the increase in average size will continue
generation by generation.

6.8 Conclusions

In his seminal 1948 paper entitled Intelligent Machinery, Turing identified three
ways by which human-competitive machine intelligence might be achieved. In con-
nection with one of those ways, Turing (1948) said:

There is the genetical or evolutionary search by which a combination of genes is looked for,
the criterion being the survival value.

Turing did not specify how to conduct the “genetical or evolutionary search” for
machine intelligence. In particular, he did not mention the idea of a population-
based in conjunction with sexual recombination (crossover) as described in John
Holland’s 1975 book Adaptation in Natural and Artificial Systems. However, in his
1950 paper Computing Machinery and Intelligence, Turing (1950) did point out

We cannot expect to find a good child-machine at the first attempt. One must experiment
with teaching one such machine and see how well it learns. One can then try another and see
if it is better or worse. There is an obvious connection between this process and evolution,
by the identifications

6 Genetic Programming 171

Structure of the child machine = Hereditary material
Changes of the child machine = Mutations
Natural selection = Judgment of the experimenter.

That is, Turing perceived in 1948 and 1950 that one possibly productive approach
to machine intelligence would involve an evolutionary process in which a descrip-
tion of a computer program (the hereditary material) undergoes progressive modifi-
cation (mutation) under the guidance of natural selection (i.e. selective pressure in
the form of what we now call fitness).

Today, many decades later, we can see that indeed Turing was right. GP has
started fulfilling Turing’s dream by providing us with a systematic method, based
on Darwinian evolution, for getting computers to automatically solve hard real-life
problems. To do so, it simply requires a high-level statement of what needs to be
done (and enough computing power).

Turing also understood the need to evaluate objectively the behavior exhibited by
machines, to avoid human biases when assessing their intelligence. This led him to
propose an imitation game, now known as the Turing test for machine intelligence,
whose goals are wonderfully summarized by Arthur Samuel’s position statement
quoted in the introduction of this chapter.

At present GP is certainly not in a position to produce computer programs that
would pass the full Turing test for machine intelligence, and it might not be ready
for this immense task for centuries. Nonetheless, thanks to the constant technologi-
cal improvements in GP technology, in its theoretical foundations and in computing
power, GP has been able to solve tens of difficult problems with human-competitive
results (see Table 6.2) in the recent past. These are a small step towards fulfilling
Turing’s and Samuel’s dreams, but they are also early signs of things to come. It
is, indeed, arguable that in a few years’ time GP will be able to routinely and com-
petently solve important problems for us in a variety of specific domains of appli-
cation, even when running on a personal computer, thereby becoming an essential
collaborator for many of human activities. This, we believe, will be a remarkable
step forward towards achieving true, human-competitive machine intelligence.

Tricks of the Trade

Newcomers to the field of GP often ask themselves (and/or other more experienced
genetic programmers) questions such as the following:

1. Will GP be able to solve my problem?
2. What is the best way to get started with GP? Which books or papers should I

read?
3. Should I implement my own GP system or should I use an existing package? If

so, what package should I use?

In the rest of this section we will try to answer the first of these questions by
considering the ingredients of successful GP applications, while in the next section

172 R. Poli and J. Koza

we will review some of the wide variety of available sources on GP which should
assist readers who wish to explore further.

Based on the experience of numerous researchers over many years, it appears that
GP and other evolutionary computation methods have been especially productive in
areas having some or all of the following properties:

• The interrelationships among the relevant variables is unknown or poorly under-
stood (or where it is suspected that the current understanding may possibly be
wrong).

• Finding the size and shape of the ultimate solution is a major part of the problem.
• Significant amounts of test data are available in computer-readable form.
• There are good simulators to test the performance of tentative solutions to a prob-

lem, but poor methods to directly obtain good solutions.
• Conventional mathematical analysis does not, or cannot, provide analytic solu-

tions.
• An approximate solution is acceptable (or is the only result that is ever likely to

be obtained).
• Small improvements in performance are routinely measured (or easily measur-

able) and highly prized.

Sources of Additional Information

Key Books and Journals

There are more than 30 books written in English principally on GP or its applications
with more being written. These start with Koza’s 1992 book Genetic Programming
(often referred to as Jaws). Koza has subsequently published three additional books
on GP: Genetic Programming II: Automatic Discovery of Reusable Programs (1994)
deals with ADFs; Genetic Programming 3 (1999) covers, in particular, the evolution
of analog circuits; Genetic Programming 4 (2003) uses GP for automatic invention.
MIT Press published three volumes in the series Advances in Genetic Programm-
ing (Kinnear Jr 1994a; Angeline and Kinnear Jr 1996; Spector et al. 1999c). The
joint GP/genetic algorithms Kluwer book series now contains over 10 books start-
ing with Genetic Programming and Data Structures (Langdon 1998b). Apart from
Jaws, these tend to be for the GP specialist. The late 1990s saw the introduction of
the first textbook dedicated to GP (Banzhaf et al. 1998).

The 2008 book A Field Guide to Genetic Programming (Poli et al. 2008) provides
a gentle introduction to GP as well as a review of its different flavors and application
domains. The book is freely available on the Internet in PDF and HTML formats.

Other titles include Iba (1996), Jacob (1997, 2001), Wong and Leung (2000),
Nordin and Johanna (2003), Ryan (1999), Nordin (1997), Blickle (1996), Babovic
(1996), Balic (1999), Bhanu et al. (2005), Brabazon and O’Neill (2006), Brezoc-
nik (2000), Chen (2002), Dracopoulos (1997), Eiben and Smith (2003), Krawiec

6 Genetic Programming 173

(2004), Nikolaev and Iba (2006), Riolo and Worzel (2003), Rothlauf (2006), Sekan-
ina (2003) and Spector (2004).

Readers interested in mathematical and empirical analyses of GP behavior may
find Foundations of Genetic Programming (Langdon and Poli 2002) useful.

Each of Koza’s four books has an accompanying video. These videos are now
available in DVD format. Also, a small set of videos on specific GP techniques and
applications is available via online resources such as Google Video and YouTube.

In addition to GP’s own Genetic Programming and Evolvable Machines journal,
Evolutionary Computation, the IEEE transaction on Evolutionary Computation,
Complex Systems (Complex Systems Publication, Inc.), and many others publish
GP articles. The GP bibliography (Langdon et al. 1995–2012) lists several hundred
different journals worldwide that have published articles related to GP.

GP Implementations

One of the reasons behind the success of GP is that it is easy to implement own
versions, and implementing a simple GP system from scratch remains an excellent
way to make sure one really understands the mechanics of GP. In addition to being
an exceptionally useful exercise, it is often easier to customize (e.g. adding new,
application specific genetic operators or implementing unusual, knowledge-based
initialization strategies) a system one has built for new purposes than a large GP
distribution. All of this, however, requires reasonable programming skills and the
will to thoroughly test the resulting system until it behaves as expected.

This is actually an extremely tricky issue in highly stochastic systems such as GP.
The problem is that almost any system will produce “interesting” behavior, but it is
typically very hard to test whether it is exhibiting the correct interesting behavior.
It is remarkably easy for small mistakes to go unnoticed for extended periods of
time (even years). It is also easy to incorrectly assume that “minor” implementation
decisions will not significantly affect the behavior of the system.

An alternative is to use one of the many public domain GP implementations
and adapt this for one’s purposes. This process is faster, and good implementations
are often robust, efficient, well documented and comprehensive. The small price to
pay is the need to study the available documentation and examples. These often
explain how to modify the GP system to some extent. However, deeper modifi-
cations (such as the introduction of new or unusual operators) will often require
studying the actual source code and a substantial amount of trial and error. Good
publicly available GP implementations include Lil-GP (Punch and Zongker 1998),
ECJ (Luke et al. 2000–2013), Open Beagle (Gagné and Parizeau 2002) and GPC++
(Fraser and Weinbrenner 1993–1997). The most prominent commercial implemen-
tation remains Discipulus (RML Technologies 1998–2011); see Foster (2001) for a
review.

While the earliest GP systems were implemented in Lisp, people have since
coded GP in a huge range of different languages, including C/C++, Java, Python,

174 R. Poli and J. Koza

JavaScript, Perl, Prolog, Mathematica, Pop-11, MATLAB, Fortran, Occam and
Haskell. Typically, these evolve expressions and programs which look like simpli-
fied Lisp. More complex target languages can be supported, however, especially
with the use of more advanced tools such as grammars and type systems. Con-
versely, many successful programs in machine code or low-level languages have
also climbed from the primordial ooze of initial randomness.

Online Resources

Online resources appear, disappear, and move with great speed, so the addresses
here, which were correct at the time of writing, are obviously subject to change
without notice after publication. Hopefully, the most valuable resources should be
readily findable using standard search tools.

A key online resource is the GP bibliography (Langdon et al. 1995–2012) avail-
able from http://www.cs.bham.ac.uk/~wbl/biblio/. At the time of writing, this bibli-
ography contains over 8,000 GP entries, roughly half of which can be downloaded
immediately.

The GP bibliography has a variety of interfaces. It allows for quick jumps be-
tween papers linked by authors and allows one to sort the author list by the number
of GP publications. Full references are provided in both BIBTEX and Refer formats
for direct inclusion in papers written in LATEX and Microsoft Word, respectively. The
GP bibliography is also part of the Collection of Computer Sciences Bibliographies
(Achilles and Ortyl 1995–2012), which provides a comprehensive Lucerne syntax
search engine.

From early on there has been an active, open email discussion list: the GP-list
(Genetic Programming Mailing List 2001–2013). The EC-Digest (1985–2013) is a
moderated list covering evolutionary computation more broadly, and often contains
GP related announcements.

Koza’s http://www.genetic-programming.org/ contains a ton of useful informa-
tion for the novice, including a short tutorial on “What is Genetic Programming”
and the Lisp implementation of GP from Genetic Programming (Koza 1992).

References

Abbass H, Hoai N, McKay R (2002) AntTAG: a new method to compose computer
programs using colonies of ants. In: Proceedings of the CEC 2002, Honolulu,
pp 1654–1659

Achilles A-C, Ortyl P (1995–2013) The collection of computer science
bibliographies. Avaliable from http://liinwww.ira.uka.de/bibliography/

http://www.cs.bham.ac.uk/~wbl/biblio/
http://www.genetic-programming.org/
http://liinwww.ira.uka.de/bibliography/

6 Genetic Programming 175

Andre D, Teller A (1999) Evolving team Darwin united. In: Asada M, Kitano H
(eds) RoboCup-98: robot soccer world cup II. LNCS 1604. Springer, Berlin,
pp 346–351

Andre D, Bennett FH III, Koza JR (1996) Discovery by genetic programming of a
cellular automata rule that is better than any known rule for the majority classifi-
cation problem. In: Koza JR et al (eds) Proceedings of the 1st annual conference
on genetic programming, Stanford. MIT, Cambridge, pp 3–11

Angeline PJ (1996) An investigation into the sensitivity of genetic programming
to the frequency of leaf selection during subtree crossover. In: Koza JR et al
(eds) Proceedings of the 1st annual conference on genetic programming, Stan-
ford. MIT, Cambridge, pp 21–29

Angeline PJ, Kinnear KE Jr (eds) (1996) Advances in genetic programming 2. MIT,
Cambridge

Angeline PJ, Pollack JB (1992) The evolutionary induction of subroutines. In: Pro-
ceedings of the 14th annual conference of the cognitive science society. Lawrence
Erlbaum, Abingdon, Indiana University, Bloomington, pp 236–241

Azaria Y, Sipper M (2005a) GP-gammon: genetically programming backgammon
players. Genet Program Evol Mach 6:283–300. Published online: 12 Aug 2005

Azaria Y, Sipper M (2005b) GP-gammon: using genetic programming to evolve
backgammon players. In: Keijzer M et al (eds) Proceedings of the 8th European
conference on genetic programming, Lausanne. LNCS 3447. Springer, Berlin,
pp 132–142

Babovic V (1996) Emergence, evolution, intelligence; hydroinformatics—a study
of distributed and decentralised computing using intelligent agents. AA Balkema,
Rotterdam

Balasubramaniam P, Kumar AVA (2009) Solution of matrix Riccati differential
equation for nonlinear singular system using genetic programming. Genet Pro-
gram Evol Mach 10:71–89

Balic J (1999) Flexible manufacturing systems; development–structure–operation–
handling–tooling. Manufacturing technology. DAAAM International, Vienna

Baluja S, Caruana R (1995) Removing the genetics from the standard genetic al-
gorithm. In: Prieditis A, Russell S (eds) Proceedings of the 12th international
conference on machine learning, Tahoe City. Morgan Kaufmann, San Francisco,
pp 38–46

Banzhaf W, Langdon WB (2002) Some considerations on the reason for bloat. Genet
Program Evol Mach 3:81–91

Banzhaf W, Nordin P, Keller RE, Francone FD (1998) Genetic programming—an
introduction; on the automatic evolution of computer programs and its applica-
tions. Morgan Kaufmann, San Francisco

Barnum H, Bernstein HJ, Spector L (2000) Quantum circuits for OR and AND of
ORs. J Phys A 33:8047–8057

Bennett FH III, Koza JR, Keane MA, Yu J, Mydlowec W, Stiffelman O (1999) Evo-
lution by means of genetic programming of analog circuits that perform digital
functions. In: Banzhaf W et al (eds) GECCO 1999, Orlando, vol 2. Morgan Kauf-
mann, San Mateo, pp 1477–1483

176 R. Poli and J. Koza

Bhanu B, Lin Y, Krawiec K (2005) Evolutionary synthesis of pattern recognition
systems. Monographs in computer science. Springer, New York

Blickle T (1996) Theory of evolutionary algorithms and application to system syn-
thesis. PhD thesis, Swiss Federal Institute of Technology, Zurich

Bongard J, Lipson H (2007) Automated reverse engineering of nonlinear dynamical
systems. Proc Natl Acad Sci 104:9943–9948

Brabazon A, O’Neill M (2006) Biologically inspired algorithms for financial mod-
elling. Natural computing series. Springer, Berlin

Brameier M, Banzhaf W (2007) Linear genetic programming. Genetic and evolu-
tionary computation series, vol XVI. Springer, Berlin

Brezocnik M (2000) Uporaba genetskega programiranja v inteligentnih proizvodnih
sistemih. University of Maribor, Slovenia

Chen S-H (ed) (2002) Genetic algorithms and genetic programming in computa-
tional finance. Kluwer, Dordrecht

Corno F, Sanchez E, Squillero G (2005) Evolving assembly programs: how games
help microprocessor validation. IEEE Trans Evol Comput 9:695–706

Crawford-Marks R, Spector L (2002) Size control via size fair genetic operators in
the PushGP genetic programming system. In: Langdon WB et al (eds) GECCO
2002, New York. Morgan Kaufmann, San Mateo, pp 733–739

Cummins R, O’Riordan C (2006a) An analysis of the solution space for genetically
programmed term-weighting schemes in information retrieval. In: Bell DA (ed)
AICS 2006, Belfast

Cummins R, O’Riordan C (2006b) Evolving local and global weighting schemes in
information retrieval. Inf Retr 9:311–330

Cummins R, O’Riordan C (2006c) Term-weighting in information retrieval using
genetic programming: a three stage process. In: Brewka G et al (eds) The 17th
European conference on artificial intelligence, Riva del Garda. IOS, Amsterdam,
pp 793–794

Dignum S, Poli R (2007) Generalisation of the limiting distribution of program
sizes in tree-based genetic programming and analysis of its effects on bloat.
In: Thierens D et al (eds) GECCO 2007, London, vol 2. ACM, New York,
pp 1588–1595

Dracopoulos DC (1997) Evolutionary learning algorithms for neural adaptive con-
trol. Perspectives in neural computing. Springer, Berlin

EC-Digest (1985–2013). Available from http://ec-digest.research.ucf.edu/
Eiben AE, Smith JE (2003) Introduction to evolutionary computing. Springer, Berlin
El-Bakry SY, Radi A (2006) Genetic programming approach for electron–alkali–

metal atom collisions. Int J Mod Phys B 20:5463–5471
El-Bakry MY, Radi A (2007) Genetic programming approach for flow of steady

state fluid between two eccentric spheres. Appl Rheol 17:68210
Foster JA (2001) Review: discipulus: a commercial genetic programming system.

Genet Program Evol Mach 2:201–203
Fraser A, Weinbrenner T (1993–1997) GPC++ genetic programming C++ class li-

brary. Available from http://www0.cs.ucl.ac.uk/staff/ucacbbl/ftp/weinbenner/gp.
html

http://ec-digest.research.ucf.edu/
http://www0.cs.ucl.ac.uk/staff/ucacbbl/ftp/weinbenner/gp.html
http://www0.cs.ucl.ac.uk/staff/ucacbbl/ftp/weinbenner/gp.html

6 Genetic Programming 177

Fukunaga A (2002) Automated discovery of composite SAT variable selection
heuristics. In: Proceedings of the national conference on artificial intelligence,
Edmonton, pp 641–648

Fukunaga AS (2004) Evolving local search heuristics for SAT using genetic
programming. In: Deb K et al (eds) GECCO 2004, Seattle. LNCS 3103. Springer,
Berlin, pp 483–494

Gagné C, Parizeau M (2002) BEAGLE: a new C++ evolutionary computation
framework. In: Langdon WB et al (eds) Proceedings of the GECCO. Morgan
Kaufmann, San Mateo, New York, p 888

Genetic Programming Mailing List (2001–2013). Available at http://tech.groups.
yahoo.com/group/genetic_programming/

Gruau F (1994a) Neural network synthesis using cellular encoding and the genetic
algorithm. PhD thesis, Laboratoire de l’Informatique du Parallilisme, Ecole Nor-
male Superieure de Lyon

Gruau F (1994b) Genetic micro programming of neural networks. In: Kinnear KE
Jr (ed) Advances in genetic programming, ch 24. MIT, Cambridge, pp 495–518

Gruau F (1996) On using syntactic constraints with genetic programming. In: An-
geline PJ, Kinnear KE Jr (eds) Advances in genetic programming 2, ch 19. MIT,
Cambridge, pp 377–394

Gruau F, Whitley D (1993) Adding learning to the cellular development process: a
comparative study. Evol Comput 1:213–233

Hauptman A, Sipper M (2005) GP-endchess: using genetic programming to evolve
chess endgame players. In: Keijzer M et al (eds) Proceedings of the 8th European
conference on genetic programming, Lausanne. LNCS 3447. Springer, Berlin, pp
120–131

Hauptman A, Sipper M (2007) Evolution of an efficient search algorithm for the
mate-in-N problem in chess. In: Ebner M et al (eds) Proceedings of the 10th
European conference on genetic programming, Valencia. LNCS 4445. Springer,
Berlin, pp 78–89

Hauptman A, Elyasaf A, Sipper M, Karmon A (2009) GP-rush: using genetic
programming to evolve solvers for the rush hour puzzle. In: Raidl G et al (eds)
GECCO 2009, Montreal. ACM, New York, pp 955–962

Haynes TD, Schoenefeld DA, Wainwright RL (1996) Type inheritance in strongly
typed genetic programming. In: Angeline PJ, Kinnear KE Jr (eds) Advances in
genetic programming 2, ch 18. MIT, Cambridge, pp 359–376

Hoai NX, McKay RI, Abbass HA (2003) Tree adjoining grammars, language bias,
and genetic programming. In: Ryan C et al (eds) Proceedings of the EuroGP 2003,
Essex. LNCS 2610. Springer, Berlin, pp 335–344

Hoang T-H, Essam D, McKay RI, Nguyen XH (2007) Building on success in genetic
programming: adaptive variation and developmental evaluation. In: Proceedings
of the 2007 international symposium on intelligent computation and applications,
Wuhan. China University of Geosciences Press

Holland JH (1975) Adaptation in natural and artificial systems. University of Michi-
gan Press, Ann Arbor

http://tech.groups.yahoo.com/group/genetic_programming/
http://tech.groups.yahoo.com/group/genetic_programming/

178 R. Poli and J. Koza

Holland JH (1992) Adaptation in natural and artificial systems: an introductory anal-
ysis with applications to biology, control and artificial intelligence. MIT, Cam-
bridge. First published by University of Michigan Press 1975

Howard D, Kolibal K (2005) Solution of differential equations with genetic
programming and the stochastic Bernstein interpolation. Technical report BDS-
TR-2005-001, University of Limerick

Hu J, Goodman ED, Li S, Rosenberg R (2008) Automated synthesis of mechanical
vibration absorbers using genetic programming. Artif Intell Eng Des Anal Manuf
22:207–217

Iba H (1996) Genetic programming. Tokyo Denki University Press, Tokyo
Jacob C (1997) Principia Evolvica—Simulierte Evolution mit Mathematica.

dpunkt.verlag, Heidelberg
Jacob C (2001) Illustrating evolutionary computation with mathematica. Morgan

Kaufmann, San Mateo
Keane MA, Koza JR, Streeter MJ (2005) Human-competitive automated engineer-

ing design and optimization by means of genetic programming. In: Periaux J et al
(eds) Evolutionary algorithms and intelligent tools in engineering optimization.
WIT, Southampton

Keijzer M, Baptist M, Babovic V, Uthurburu JR (2005) Determining equations for
vegetation induced resistance using genetic programming. In: Beyer H-G et al
(eds) GECCO 2005, Washington, DC, vol 2. ACM, New York, pp 1999–2006

Khosraviani B, Levitt RE, Koza JR (2004) Organization design optimization using
genetic programming. In: Keijzer M (ed) Late breaking papers at GECCO 2004,
Seattle

Kinnear KE Jr (1993) Evolving a sort: lessons in genetic programming. In: Pro-
ceedings of the 1993 international conference on neural networks, vol 2. IEEE,
Piscataway, San Francisco, CA, pp 881–888

Kinnear KE Jr (ed) (1994a) Advances in genetic programming. MIT, Cambridge
Kinnear KE Jr (1994b) Fitness landscapes and difficulty in genetic programming. In:

Proceedings of the 1994 IEEE world conference on computational intelligence,
Orlando, vol 1. IEEE, Piscataway, pp 142–147

Koza JR (1992) Genetic programming: on the programming of computers by means
of natural selection. MIT, Cambridge

Koza JR (1994) Genetic programming II: automatic discovery of reusable programs.
MIT, Cambridge

Koza JR (1995) Two ways of discovering the size and shape of a computer pro-
gram to solve a problem. In: Eshelman L (ed) Proceedings of the 6th interna-
tional conference on genetic algorithms, Pittsburgh. Morgan Kaufmann, San Ma-
teo, pp 287–294

Koza JR, Andre D, Bennett FH III, Keane MA (1996a) Use of automatically
defined functions and architecture-altering operations in automated circuit syn-
thesis using genetic programming. In: Koza JR et al (eds) Proceedings of the
1st annual conference on genetic programming 1996, Stanford. MIT, Cambridge,
pp 132–149

6 Genetic Programming 179

Koza JR, Bennett FH III, Andre D, Keane MA (1996b) Automated WYWIWYG de-
sign of both the topology and component values of electrical circuits using genetic
programming. In: Koza JR et al (eds) Proceedings of the 1st annual conference
on genetic programming 1996, Stanford. MIT, Cambridge, pp 123–131

Koza JR, Bennett FH III, Andre D, Keane MA (1999a) The design of analog circuits
by means of genetic programming. In: Bentley P (ed) Evolutionary design by
computers, ch 16. Morgan Kaufmann, San Francisco, pp 365–385

Koza JR, Andre D, Bennett FH III, Keane MA (1999b) Genetic programming 3:
Darwinian invention and problem solving. Morgan Kaufman, San Mateo

Koza JR, Keane MA, Streeter MJ, Mydlowec W, Yu J, Lanza G (2003) Ge-
netic programming IV: routine human-competitive machine intelligence. Kluwer,
Dordrecht

Koza JR, Al-Sakran SH, Jones LW (2005) Automated re-invention of six patented
optical lens systems using genetic programming. In: Beyer H-G et al (eds)
GECCO 2005, Washington, DC, vol 2. ACM, New York, pp 1953–1960

Koza JR, Al-Sakran SH, Jones LW (2008) Automated ab initio synthesis of
complete designs of four patented optical lens systems by means of genetic
programming. Artif Intell Eng Des Anal Manuf 22:249–273

Krawiec K (2004) Evolutionary feature programming: cooperative learning for
knowledge discovery and computer vision, vol 385. Wydawnictwo Politechniki
Poznanskiej, Poznan

Lam B, Ciesielski V (2004) Discovery of human-competitive image texture feature
extraction programs using genetic programming. In: Deb K et al (eds) GECCO
2004, Seattle. LNCS 3103. Springer, Berlin, pp 1114–1125

Langdon WB (1998a) The evolution of size in variable length representations. In:
IEEE international conference on evolutionary computation, Anchorage. IEEE,
Piscataway, pp 633–638

Langdon WB (1998b) Genetic programming and data structures: genetic programm-
ing + data structures = automatic programming! Genetic programming, vol 1.
Kluwer, Boston

Langdon WB (2000) Size fair and homologous tree genetic programming
crossovers. Genet Program Evol Mach 1:95–119

Langdon WB (2002) Convergence rates for the distribution of program outputs.
In: Langdon WB et al (eds) GECCO 2002, New York. Morgan Kaufmann, San
Mateo, pp 812–819

Langdon WB (2003a) How many good programs are there? How long are they? In:
De Jong KA et al (eds) Foundations of genetic algorithms VII. Morgan Kauf-
mann, San Mateo, pp 183–202

Langdon WB (2003b) Convergence of program fitness landscapes. In: Cantú-Paz E
et al (eds) GECCO 2003, Chicago. LNCS 2724. Springer, Berlin, pp 1702–1714

Langdon WB (2003c) The distribution of reversible functions is normal. In: Riolo
RL, Worzel B (eds) Genetic programming theory and practise, ch 11. Kluwer,
Dordrecht, pp 173–188

180 R. Poli and J. Koza

Langdon WB (2005) The distribution of amorphous computer outputs. In: Stepney
S, Emmott S (eds) The grand challenge in non-classical computation: interna-
tional workshop, York

Langdon WB, Poli R (2002) Foundations of genetic programming. Springer, Berlin
Langdon WB, Poli R (2006) The halting probability in von Neumann architectures.

In: Collet P, Tomassini M, Ebner M et al (eds) Proceedings of the 9th European
conference on genetic programming, Budapest. LNCS 3905. Springer, Berlin,
pp 225–237

Langdon WB, Gustafson SM, Koza J (1995–2012) The genetic programming
bibliography. Available at http://www.cs.bham.ac.uk/~wbl/biblio/

Langdon WB, Soule T, Poli R, Foster JA (1999) The evolution of size and shape. In:
Spector L et al (eds) Advances in genetic programming 3, ch 8. MIT, Cambridge,
pp 163–190

Larrañaga P, Lozano JA (2002) Estimation of distribution algorithms, a new tool for
evolutionary computation. Kluwer, Dordrecht

Lindenmayer A (1968) Mathematic models for cellular interaction in development
I and II. J Theor Biol 18:280–299, 300–315

Lipson H (2004) How to draw a straight line using a GP: benchmarking evolutionary
design against 19th century kinematic synthesis. In: Keijzer M (ed) Late breaking
papers at GECCO 2004, Seattle

Lohn J, Hornby G, Linden D (2004) Evolutionary antenna design for a NASA space-
craft. In: O’Reilly U-M et al (eds) Genetic programming theory and practice II,
ch 18. Springer, Berlin, pp 301–315

Looks M (2007) Scalable estimation-of-distribution program evolution. In: Lipson
H (ed) GECCO 2007, London. ACM, New York, pp 539–546

Looks M, Goertzel B, Pennachin C (2005) Learning computer programs with the
Bayesian optimization algorithm. In: Beyer H-G et al (eds) GECCO 2005, Wash-
ington, DC, vol 1. ACM, New York, pp 747–748

Luke S (1998) Genetic programming produced competitive soccer softbot teams
for robocup97. In: Koza JR, Banzhaf W, Chellapilla K et al (eds) Proceedings
of the 3rd annual conference on genetic programming 1998, Madison. Morgan
Kaufmann, San Mateo, pp 214–222

Luke S, Panait L, Balan G et al (2000–2013) ECJ: a java-based evolutionary com-
putation research system. Available at http://cs.gmu.edu/~eclab/projects/ecj/

Massey P, Clark JA, Stepney S (2005) Evolution of a human-competitive quantum
Fourier transform algorithm using genetic programming. In: Beyer H-G et al (eds)
GECCO 2005, Washington, DC, vol 2. ACM, New York, pp 1657–1663

Mitavskiy B, Rowe J (2006) Some results about the Markov chains associated to
GPs and to general EAs. Theor Comput Sci 361:72–110

Montana DJ (1995) Strongly typed genetic programming. Evol Comput 3:199–230
Nguyen TV, Weimer W, Le Goues C, Forrest S (2009) Using execution paths to

evolve software patches. In: McMinn P, Feldt R (eds) International conference on
software testing, verification and validation workshops, Denver, pp 152–153

http://www.cs.bham.ac.uk/~wbl/biblio/
http://cs.gmu.edu/~eclab/projects/ecj/

6 Genetic Programming 181

Nikolaev N, Iba H (2006) Adaptive learning of polynomial networks genetic
programming, backpropagation and Bayesian methods. Genetic and evolutionary
computation, vol 4. Springer, Berlin

Nordin P (1997) Evolutionary program induction of binary machine code and its
applications. PhD thesis, der Universitat Dortmund am Fachereich Informatik

Nordin P, Johanna W (2003) Humanoider: Sjavlarande robotar och artificiell intel-
ligens. Liber, Stockholm

Olsson JR (1994) Inductive functional programming using incremental program
transformation and execution of logic programs by iterative-deepening A* SLD-
tree search. PhD thesis, University of Oslo

O’Neill M, Ryan C (2003) Grammatical evolution: evolutionary automatic
programming in a arbitrary language. Genetic programming, vol 4. Kluwer,
Dordrecht

Perez CB, Olague G (2008) Learning invariant region descriptor operators with ge-
netic programming and the F-measure. In: 19th international conference on pat-
tern recognition, Tampa, pp 1–4

Perez CB, Olague G (2009) Evolutionary learning of local descriptor operators for
object recognition. In: Raidl G et al (eds) GECCO 2009, Montreal. ACM, New
York, pp 1051–1058

Poli R (2000a) Hyperschema theory for GP with one-point crossover, building
blocks, and some new results in GA theory. In: Poli R et al (eds) Proceecings
of the EuroGP 2000 on genetic programming, Tübingen. LNCS 1802. Springer,
Berlin, pp 163–180

Poli R (2000b) Exact schema theorem and effective fitness for GP with one-point
crossover. In: Whitley D et al (eds) GECCO 2000, Las Vegas. Morgan Kaufmann,
San Mateo, pp 469–476

Poli R (2001a) Exact schema theory for genetic programming and variable-
length genetic algorithms with one-point crossover. Genet Program Evol Mach
2:123–163

Poli R (2001b) General schema theory for genetic programming with subtree-
swapping crossover. In: Proceedings of the EuroGP 2001 on genetic programm-
ing, Como. LNCS 2038. Springer, Berlin

Poli R (2003) A simple but theoretically-motivated method to control bloat in ge-
netic programming. In: Ryan C et al (eds) Proceedings of the EuroGP 2003 on
genetic programming, Essex. LNCS 3003. Springer, Berlin, pp 211–223

Poli R, Langdon WB (2006) Efficient Markov chain model of machine code pro-
gram execution and halting. In: Riolo RL et al (eds) Genetic programming theory
and practice IV. Genetic and evolutionary computation, vol 5, ch 13. Springer,
Berlin

Poli R, McPhee NF (2003a) General schema theory for genetic programming with
subtree-swapping crossover: I. Evol Comput 11:53–66

Poli R, McPhee NF (2003b) General schema theory for genetic programming with
subtree-swapping crossover: II. Evol Comput 11:169–206

Poli R, McPhee NF (2008a) Covariant parsimony pressure in genetic programming.
Technical report CES-480, University of Essex

182 R. Poli and J. Koza

Poli R, McPhee NF (2008b) A linear estimation-of-distribution GP system. In:
O’Neill M et al (eds) Proceedings of the EuroGP 2008, Naples. LNCS 4971.
Springer, Berlin, pp 206–217

Poli R, Rowe JE, McPhee NF (2001) Markov chain models for GP and variable-
length GAs with homologous crossover. In: Spector L et al (eds) GECCO 2001,
San Francisco. Morgan Kaufmann, San Mateo, pp 112–119

Poli R, McPhee NF, Rowe JE (2004) Exact schema theory and markov chain mod-
els for genetic programming and variable-length genetic algorithms with homol-
ogous crossover. Genet Program Evol Mach 5:31–70

Poli R, Langdon WB, Dignum S (2007) On the limiting distribution of program
sizes in tree-based genetic programming. In: Ebner M et al (eds) Proceedings of
the 10th European conference on genetic programming, Valencia. LNCS 4445.
Springer, Berlin, pp 193–204

Poli R, Langdon WB, McPhee NF (2008) A field guide to genetic programming.
Published via http://lulu.com and http://www.gp-field-guide.org.uk (with contri-
butions by J. R. Koza)

Poli R, Vanneschi L, Langdon WB, McPhee NF (2010) Theoretical results in genetic
programming: the next ten years? Genet Program Evol Mach 11:285–320. 10th
anniversary issue: progress in genetic programming and evolvable machines

Punch B, Zongker D (1998) lil-gp genetic programming system. Available at http://
garage.cse.msu.edu/software/lil-gp/

Radi A (2007) Prediction of non-linear system in optics using genetic programming.
Int J Mod Phys C 18:369–374

Radi AM, El-Bakry SY (2007) Genetic programming approach for positron colli-
sions with alkali-metal atom. In: Thierens D et al (eds) GECCO 2007, London,
vol 2. ACM, New York, pp 1756–1756

Raja A, Atif Azad RM, Flanagan C, Ryan C (2007) Real-time, non-intrusive evalua-
tion of voIP. In: Ebner M et al (eds) Proceedings of the 10th European conference
on genetic programming, Valencia. LNCS 4445. Springer, Berlin, pp 217–228

Ratle A, Sebag M (2001) Avoiding the bloat with probabilistic grammar-guided
genetic programming. In: Collet P et al (eds) Artificial evolution 5th interna-
tional conference on evolution artificielle, EA, Le Creusot. LNCS 2310. Springer,
Berlin, pp 255–266

Riolo RL, Worzel B (eds) (2003) Genetic programming theory and practice. Genetic
programming, vol 6. Kluwer, Boston

RML Technologies (1998–2011) Discipulus genetic programming software. Avail-
able from http://www.rmltech.com/

Rosca J (2003) A probabilistic model of size drift. In: Riolo RL, Worzel B (eds)
Genetic programming theory and practice, ch 8. Kluwer, Dordrecht, pp 119–136

Rosca JP, Ballard DH (1996) Discovery of subroutines in genetic programming. In:
Angeline PJ, Kinnear KE Jr (eds) Advances in genetic programming 2, ch 9. MIT,
Cambridge, pp 177–202

Rothlauf F (2006) Representations for genetic and evolutionary algorithms, 2nd edn.
Springer, Berlin. First published 2002, 2nd edn available electronically

http://lulu.com
http://www.gp-field-guide.org.uk
http://garage.cse.msu.edu/software/lil-gp/
http://garage.cse.msu.edu/software/lil-gp/
http://www.rmltech.com/

6 Genetic Programming 183

Ryan C (1999) Automatic re-engineering of software using genetic programming.
Genetic programming, vol 2. Kluwer, Dordrecht

Ryan C, Collins JJ, O’Neill M (1998) Grammatical evolution: evolving programs
for an arbitrary language. In: Banzhaf W et al (eds) Proceedings of the 1st Eu-
ropean workshop on genetic programming, Paris. LNCS 1391. Springer, Berlin,
pp 83–95

Salustowicz RP, Schmidhuber J (1997) Probabilistic incremental program evolution.
Evol Comput 5:123–141

Schmidt M, Lipson H (2009a) Distilling free-form natural laws from experimental
data. Science 324:81–85

Schmidt MD, Lipson H (2009b) Solving iterated functions using genetic programm-
ing. In: Esparcia AI et al (eds) GECCO 2009 late-breaking papers, Montreal.
ACM, New York, pp 2149–2154

Sekanina L (2003) Evolvable components: from theory to hardware implementa-
tions. Natural computing. Springer, Berlin

Shan Y, Abbass H, McKay RI, Essam D (2002) AntTAG: a further study. In: Sarker
R, McKay B (eds) Proceedings of the 6th Australia–Japan joint workshop on
intelligent and evolutionary systems, Canberra

Shan Y, McKay RI, Abbass HA, Essam D (2003) Program evolution with explicit
learning: a new framework for program automatic synthesis. In: Sarker R et al
(eds) Proceedings of the CEC 2003, Canberra. IEEE, Piscataway, pp 1639–1646

Shan Y, McKay RI, Essam D, Abbass HA (2006) A survey of probabilistic model
building genetic programming. In: Pelikan M et al (eds) Scalable optimization via
probabilistic modeling: from algorithms to applications. Studies in computational
intelligence, vol 33, ch 6. Springer, Berlin, pp 121–160

Shichel Y, Ziserman E, Sipper M (2005) GP-robocode: using genetic programm-
ing to evolve robocode players. In: Keijzer M et al (eds) Proceedings of the 8th
European conference on genetic programming, Lausanne. LNCS 3447. Springer,
Berlin, pp 143–154

Sipper M (2006) Attaining human-competitive game playing with genetic
programming. In: El Yacoubi S et al (eds) Proceedings of the 7th international
conference on cellular automata, for research and industry, Perpignan. LNCS
4173. Springer, Berlin, p 13. (invited lectures)

Soule T, Foster JA (1998) Effects of code growth and parsimony pressure on popu-
lations in genetic programming. Evol Comput 6:293–309

Spector L (2004) Automatic quantum computer programming: a genetic programm-
ing approach. Genetic programming, vol 7. Kluwer, Boston

Spector L, Bernstein HJ (2003) Communication capacities of some quantum gates,
discovered in part through genetic programming. In: Shapiro JH, Hirota O (eds)
Proceedings of the 6th international conference on quantum communication,
measurement, and computing, Cambridge. Rinton, Princeton, pp 500–503

Spector L, Klein J (2008) Machine invention of quantum computing circuits by
means of genetic programming. Artif Intell Eng Des Anal Manuf 22:275–283

184 R. Poli and J. Koza

Spector L, Barnum H, Bernstein HJ (1998) Genetic programming for quantum com-
puters. In: Koza JR et al (eds) Proceedings of the 3rd annual conference on genetic
programming 1998, Madison. Morgan Kaufmann, San Mateo, pp 365–373

Spector L, Barnum H, Bernstein HJ, Swamy N (1999a) Finding a
better-than-classical quantum AND/OR algorithm using genetic programm-
ing. In: Angeline PJ et al (eds) Proceedings of the CEC 1999, Washington, DC,
vol 3. IEEE, Piscataway, pp 2239–2246

Spector L, Barnum H, Bernstein HJ, Swamy N (1999b) Quantum computing app-
lications of genetic programming. In: Spector L et al (eds) Advances in genetic
programming 3, ch 7. MIT, Cambridge, pp 135–160

Spector L, Langdon WB, O’Reilly UM, Angeline PJ (eds) (1999c) Advances in
genetic programming 3. MIT, Cambridge

Spector L, Clark DM, Lindsay I, Barr B, Klein J (2008) Genetic programming for
finite algebras. In: Keijzer M et al (eds) GECCO 2008, Atlanta. ACM, New York,
pp 1291–1298

Stadelhofer R, Banzhaf W, Suter D (2008) Evolving blackbox quantum algorithms
using genetic programming. Artif Intell Eng Des Anal Manuf 22:285–297

Stephens CR, Waelbroeck H (1997) Effective degrees of freedom in genetic algo-
rithms and the block hypothesis. In: Bäck T (ed) Proceedings of the 7th interna-
tional conference on genetic algorithms, East Lansing. Morgan Kaufmann, San
Mateo, pp 34–40

Stephens CR, Waelbroeck H (1999) Schemata evolution and building blocks. Evol
Comput 7:109–124

Tay JC, Ho NB (2008) Evolving dispatching rules using genetic programming for
solving multi-objective flexible job-shop problems. Comput Ind Eng 54:453–473

Trujillo L, Olague G (2006a) Using evolution to learn how to perform interest point
detection. In: Tang XY et al (ed) ICPR 2006, Hong Kong, vol 1, pp 211–214

Trujillo L, Olague G (2006b) Synthesis of interest point detectors through genetic
programming. In: Keijzer M et al (eds) GECCO 2006, Seattle, vol 1. ACM, New
York, pp 887–894

Tsang E, Jin N (2006) Incentive method to handle constraints in evolutionary.
In: Collet P et al (eds) Proceedings of the 9th European conference on genetic
programming, Budapest. LNCS 3905. Springer, Berlin, pp 133–144

Tsang EPK, Li J (2002) EDDIE for financial forecasting. In: Chen S-H (ed) Genetic
algorithms and genetic programming in computational finance, ch 7. Kluwer,
Dordrecht, pp 161–174

Turing AM (1948) Intelligent machinery. National Physical Laboratory Report.
Reprinted in Ince DC (ed) (1992) Mechanical intelligence: collected works of A.
M. Turing, pp 107–127. North-Holland, Amsterdam. Also reprinted in Meltzer
B, Michie D (eds) (1969) Machine intelligence 5. Edinburgh University Press

Turing AM (1950) Computing machinery and intelligence. Mind 49:433–460
Weimer W, Nguyen T, Le Goues C, Forrest S (2009) Automatically finding patches

using genetic programming. In: Fickas S (ed) International conference on soft-
ware engineering, Vancouver, pp 364–374

6 Genetic Programming 185

Whigham PA (1996) Search bias, language bias, and genetic programming. In: Koza
JR et al (eds) Proceedings of the 1st annual conference on genetic programming
1996, Stanford. MIT, Cambridge, pp 230–237

Whitley LD (1994) A genetic algorithm tutorial. Stat Comput 4:65–85
Wong ML, Leung KS (1996) Evolving recursive functions for the even-parity prob-

lem using genetic programming. In: Angeline PJ, Kinnear KE Jr (eds) Advances
in genetic programming 2, ch 11. MIT, Cambridge, pp 221–240

Wong ML, Leung KS (2000) Data mining using grammar based genetic programm-
ing and applications. Genetic programming, vol 3. Kluwer, Dordrecht

Yanai K, Iba H (2003) Estimation of distribution programming based on bayesian
network. In: Sarker R et al (eds) Proceedings of the CEC 2003, Canberra. IEEE,
Piscataway, pp 1618–1625

Yu T (2001) Hierachical processing for evolving recursive and modular programs
using higher order functions and lambda abstractions. Genet Program Evol Mach
2:345–380

Zhang B-T, Mühlenbein H (1993) Evolving optimal neural networks using genetic
algorithms with Occam’s razor. Complex Syst 7:199–220

Zhang B-T, Mühlenbein H (1995) Balancing accuracy and parsimony in genetic
programming. Evol Comput 3:17–38

Zhang B-T, Ohm P, Mühlenbein H (1997) Evolutionary induction of sparse neural
trees. Evol Comput 5:213–236

Chapter 7

Artificial Immune Systems

Uwe Aickelin, Dipankar Dasgupta, and Feng Gu

7.1 Introduction

The biological immune system is a robust, complex, adaptive system that defends
the body from foreign pathogens. It is able to categorize all cells (or molecules)
within the body as self or nonself substances. It does this with the help of a dis-
tributed task force that has the intelligence to take action from a local and also a
global perspective using its network of chemical messengers for communication.
There are two major branches of the immune system. The innate immune system
is an unchanging mechanism that detects and destroys certain invading organisms,
whilst the adaptive immune system responds to previously unknown foreign cells
and builds a response to them that can remain in the body over a long period of
time. This remarkable information processing biological system has caught the at-
tention of computer science in recent years.

A novel computational intelligence technique inspired by immunology has emer-
ged, called Artificial Immune Systems. Several concepts from the immune system
have been extracted and applied for solution to real world science and engineering
problems. In this chapter we briefly describe the immune system metaphors that
are relevant to existing Artificial Immune Systems methods. We will then show
illustrative real-world problems suitable for Artificial Immune Systems and give
a step-by-step algorithm walkthrough for one such problem. A comparison of the
Artificial Immune Systems to other well-known algorithms, areas for future work,
tips and tricks and a list of resources will round this chapter off. It should be noted

U. Aickelin (�) • F. Gu
University of Nottingham, Nottingham, UK
e-mail: uwe.aickelin@nottingham.ac.uk

D. Dasgupta
University of Memphis, Memphis, TN, USA

E.K. Burke and G. Kendall (eds.), Search Methodologies: Introductory Tutorials
in Optimization and Decision Support Techniques, DOI 10.1007/978-1-4614-6940-7_7,
© Springer Science+Business Media New York 2014

187

mailto:uwe.aickelin@nottingham.ac.uk

188 U. Aickelin et al.

that as Artificial Immune Systems is still a young and evolving field, there is not yet
a fixed algorithm template and hence actual implementations might differ somewhat
from time to time and from those examples given here.

7.2 Overview of the Biological Immune System

The biological immune system is an elaborate defense system which has evolved
over millions of years. While many details of the immune mechanisms (innate and
adaptive) and processes (humeral and cellular) are yet unknown (even to immu-
nologists), it is, however, well known that the immune system uses multilevel (and
overlapping) defense both in parallel and sequential fashion. Depending on the type
of the pathogen, and the way it gets into the body, the immune system uses differ-
ent response mechanisms (differential pathways) either to neutralize the pathogenic
effect or to destroy the infected cells. A detailed overview of the immune system
can be found in many textbooks, for instance Goldsby et al. (2006). The immune
features that are particularly relevant to our tutorial are matching, diversity and dis-
tributed control. Matching refers to the binding between antibodies and antigens.
Diversity refers to the fact that, in order to achieve optimal antigen space coverage,
antibody diversity must be encouraged (Hightower et al. 1995). Distributed control
means that there is no central controller; rather, the immune system is governed by
local interactions among immune cells and antigens.

Two important groups of cells in this process are dendritic cells and white blood
cells, e.g. T-cells and B-cells. All of these originate in the bone marrow, but T-cells
pass on to the thymus to mature, before they circulate the body in the blood and
lymphatic vessels.

Dendritic cells (DCs) act as messengers between innate immune system and
adaptive immune system, as well as mediators of various immune responses. They
exist in one of three states, namely immature, semi-mature and mature. Initially
immature DCs keep collecting antigens and molecular information in tissue until
certain conditions are triggered. They then differentiate into either semi-mature or
fully mature DCs and migrate to lymph nodes where they interact with T-cells.

T-cells are of three types; helper T-cells which are essential to the activation of
B-cells, killer T-cells which bind to foreign invaders and inject poisonous chemicals
into them causing their destruction, and suppressor T-cells which inhibit the action
of other immune cells thus preventing allergic reactions and autoimmune diseases.

B-cells are responsible for the production and secretion of antibodies, which are
specific proteins that bind to the antigen. Each B-cell can only produce one par-
ticular antibody. The antigen is found on the surface of the invading organism and
the binding of an antibody to the antigen is a signal to destroy the invading cell as
shown in Fig. 7.1.

As mentioned above, the human body is protected against foreign invaders by a
multi-layered system. The immune system is composed of physical barriers such as
the skin and respiratory system; physiological barriers such as destructive enzymes

7 Artificial Immune Systems 189

(VII)

APC

MHC protein

Peptide

T-cell

Activated T-cell

B-cell

Lymphokines

Activated B-cell

(plasma cell)

(I)

(III)

(II)

(IV)

(V)

(VI)

Antigen

Fig. 7.1 Pictorial representation of the essence of the acquired immune system mechanism (Taken
from De Castro and Van Zuben 1999): I–II show the invade entering the body and activating T-
cells, which then in IV activate the B-cells, V is the antigen matching, VI the antibody production
and VII the antigen’s destruction

and stomach acids; and the immune system, which has can be broadly divided under
two heads—innate (non-specific) immunity and adaptive (specific) immunity, which
are inter-linked and influence each other. Adaptive immunity is further subdivided
under two heads—humoral immunity and cell-mediated immunity.

Innate immunity. Innate immunity is present at birth. Physiological conditions
such as pH, temperature and chemical mediators provide inappropriate living condi-
tions for foreign organisms. Also micro-organisms are coated with antibodies and/or
complement products (opsonization) so that they are easily recognized. Extracellular
material is then ingested by macrophages by a process called phagocytosis. Also
TDH cells influence the phagocytosis of macrophages by secreting certain chemical
messengers called lymphokines. The low levels of sialic acid on foreign antigenic
surfaces make C3b bind to these surfaces for a long time and thus activate alterna-
tive pathways. Thus MAC is formed, which puncture the cell surfaces and kill the
foreign invader.

Adaptive immunity. Adaptive immunity is the main focus of interest here as learn-
ing, adaptability, and memory are important characteristics of adaptive immunity.
It is subdivided under two heads—humoral immunity and cell-mediated immunity.

190 U. Aickelin et al.

Humoral immunity. Humoral immunity is mediated by antibodies contained in
body fluids (known as humors). The humoral branch of the immune system involves
interaction of B-cells with antigen and their subsequent proliferation and differen-
tiation into antibody-secreting plasma cells. Antibody functions as the effectors of
the humoral response by binding to antigen and facilitating its elimination. When an
antigen is coated with antibody, it can be eliminated in several ways. For example,
antibody can cross-link the antigen, forming clusters that are more readily ingested
by phagocytic cells. Binding of antibody to antigen on a micro-organism also can
activate the complement system, resulting in lysis of the foreign organism.

Cellular immunity. Cellular immunity is cell-mediated; effector T-cells gener-
ated in response to antigen are responsible for cell-mediated immunity. Cytotoxic
T-lymphocytes (CTLs) participate in cell-mediated immune reactions by killing al-
tered self-cells; they play an important role in the killing of virus-infected cells
and tumor cells. Cytokines secreted by TDH can mediate the cellular immunity,
and activate various phagocytic cells, enabling them to phagocytose and kill micro-
organisms more effectively. This type of cell-mediated immune response is espe-
cially important in host defense against intracellular bacteria and protozoa.

Whilst there is more than one mechanism at work (for more details see Farmer
et al. 1986; Kindt et al. Jerne 1973), the essential process is the matching of anti-
gen and antibody, which leads to increased concentrations (proliferation) of more
closely matched antibodies. In particular, idiotypic network theory, negative selec-
tion mechanism, and the clonal selection and somatic hypermutation theories are
primarily used in Artificial Immune System models.

7.2.1 Dendritic Cells

Dendritic cells (DCs) are exposed to various molecular information or signals and
antigens at their immature state in tissue. There are three main types of signals in-
volved, including pathogen-associated molecular patterns (PAMPs), danger signals
derived from uncontrolled cell death (necrosis), and safe signals resulting from pro-
grammed cell death (apoptosis).

If more PAMPs and danger signals are presented, DCs tend to differentiate into
fully mature state and report an anomalous status in tissue. Conversely, if more safe
signals are presented, DCs tend to differentiate into semi-mature state and report a
normal status in tissue. After entering the matured states, DCs migrates from tissue
to lymph nodes through blood vessels, to interact with T-cells.

Semi-mature DCs have suppressive effect on T-cells, this makes T-cells inhibited
and is vital for the tolerance property of the immune system. Mature DCs have active
effect on T-cells, they activate and bind with T-cells, so that they can circulate back
to tissue and initialize immune responses against potential threats caused by certain
antigens.

7 Artificial Immune Systems 191

7.2.2 Immune Network Theory

The immune network theory was proposed in the mid-1970s (Jerne 1973). The hy-
pothesis was that the immune system maintains an idiotypic network of intercon-
nected B-cells for antigen recognition. These cells both stimulate and suppress each
other in certain ways that lead to the stabilization of the network. Two B-cells are
connected if the affinities they share exceed a certain threshold, and the strength of
the connection is directly proportional to the affinity they share.

7.2.3 Negative Selection Mechanism

The purpose of negative selection is to provide tolerance for self cells. It deals with
the immune system’s ability to detect unknown antigens while not reacting to the
self cells. During the generation of T-cells, receptors are made through a pseudo-
random genetic rearrangement process. Then, they undergo a censoring process
in the thymus, called the negative selection. There, T-cells that react against self-
proteins are destroyed; thus, only those that do not bind to self-proteins are allowed
to leave the thymus. These matured T-cells then circulate throughout the body to
perform immunological functions and protect the body against foreign antigens.

7.2.4 Clonal Selection Principle

The clonal selection principle describes the basic features of an immune response to
an antigenic stimulus. It establishes the idea that only those cells that recognize the
antigen proliferate, thus being selected against those that do not. The main features
of the clonal selection theory are that

• The new cells are copies of their parents (clone) subjected to a mutation mecha-
nism with high rates (somatic hypermutation);

• Elimination of newly differentiated lymphocytes carrying self-reactive receptors;
• Proliferation and differentiation on contact of mature cells with antigens.

When an antibody strongly matches an antigen the corresponding B-cell is stim-
ulated to produce clones of itself that then produce more antibodies. This (hyper)
mutation, is quite rapid, often as much as “one mutation per cell division” (de Castro
and Von Zuben 1999). This allows a very quick response to the antigens. It should
be noted here that in the Artificial Immune Systems literature, often no distinction
is made between B-cells and the antibodies they produce. Both are subsumed un-
der the word antibody and statements such as mutation of antibodies (rather than
mutation of B-cells) are common.

There are many more features of the immune system, including adaptation, im-
munological memory and protection against auto-immune attacks, not discussed

192 U. Aickelin et al.

here. In the following sections, we will revisit some important aspects of these con-
cepts and show how they can be modeled in artificial immune systems and then
used to solve real-world problems. First, let us give an overview of typical problems
that we believe are amenable to being solved by Artificial Immune Systems.

7.3 Illustrative Problems

7.3.1 Intrusion Detection Systems

Anyone keeping up to date with current affairs in computing can confirm numerous
cases of attacks made on computer servers of well-known companies. These attacks
range from denial-of-service attacks to extracting credit-card details and sometimes
we find ourselves thinking, “haven’t they installed a firewall?” The fact is they often
have a firewall. A firewall is useful, but current firewall technology is insufficient to
detect and block all kinds of attacks.

On ports that need to be open to the internet, a firewall can do little to prevent
attacks. Moreover, even if a port is blocked from internet access, this does not stop
an attack from inside the organization. This is where Intrusion Detection Systems
come in. As the name suggests, Intrusion Detection Systems are installed to iden-
tify (potential) attacks and to react by usually generating an alert or blocking the
unscrupulous data.

The main goal of Intrusion Detection Systems is to detect unauthorized use, mis-
use and abuse of computer systems by both system insiders and external intrud-
ers. Most current Intrusion Detection Systems define suspicious signatures based
on known intrusions and probes. The obvious limit of this type of Intrusion De-
tection Systems is its failure of detecting previously unknown intrusions. In con-
trast, the human immune system adaptively generates new immune cells so that it
is able to detect previously unknown and rapidly evolving harmful antigens (Forrest
et al. 1994). This type of detection mechanism is known as anomaly detection where
the profile of normality is generated through training, and any new incoming data
that deviates from the normal profile up to certain threshold is classified as anoma-
lous. Thus the challenge is to emulate the success of the natural systems that utilize
anomaly detection mechanisms.

Solutions in Artificial Immune Systems related to negative selection and clonal
selection are demonstrated by Kim et al. (2007). Approaches derived from dendritic
cells are presented by Greensmith (2007), recent development and applications can
be found in Al-Hammadi et al. (2008) for Bot detection, Gu et al. (2009) for real-
time analysis of intrusion detection, and Oates et al. (2007) for robotic security.

7.3.2 Data Mining: Collaborative Filtering and Clustering

Collaborative filtering is the term for a broad range of algorithms that use simi-
larity measures to obtain recommendations. The best-known example is probably

7 Artificial Immune Systems 193

the “people who bought this also bought” feature of the internet company (Ama-
zon 2003). However, any problem domain where users are required to rate items is
amenable to collaborative filtering techniques. Commercial applications are usually
called recommender systems (Resnick and Varian 1997). A canonical example is
movie recommendation.

In traditional collaborative filtering, the items to be recommended are treated as
black boxes. That is, your recommendations are based purely on the votes of other
users, and not on the content of the item. The preferences of a user, usually a set
of votes on an item, comprise a user profile, and these profiles are compared in or-
der to build a neighborhood. The key decision is what similarity measure is used.
The most common method to compare two users is a correlation-based measure
like Pearson or Spearman, which gives two neighbors a matching score between
−1 and 1. The canonical example is the k-nearest-neighbor algorithm, which uses
a matching method to select k reviewers with high similarity measures. The votes
from these reviewers, suitably weighted, are used to make predictions and recom-
mendations.

The evaluation of a collaborative filtering algorithm usually centers on its ac-
curacy. There is a difference between prediction (given a movie, predict a given
user’s rating of that movie) and recommendation (given a user, suggest movies that
are likely to attract a high rating). Prediction is easier to assess quantitatively but
recommendation is a more natural fit to the movie domain. A related problem to
collaborative filtering is that of clustering data or users in a database. This is par-
ticularly useful in very large databases, which have become too large to handle.
Clustering works by dividing the entries of the database into groups, which contain
people with similar preferences or in general data of similar type.

7.4 Artificial Immune System Basic Concepts

7.4.1 Initialization/Encoding

To implement a basic Artificial Immune System, four decisions have to be made:
encoding, similarity measure, selection and mutation. Once an encoding has been
fixed and a suitable similarity measure has been chosen, the algorithm will then
perform selection and mutation, both based on the similarity measure, until stopping
criteria are met. In this section, we describe each of these components in turn.

Along with other heuristics, choosing a suitable encoding is very important for
the algorithm’s success. Similar to genetic algorithms, there is close inter-play be-
tween the encoding and the fitness function (the latter is in Artificial Immune Sys-
tems referred to as the matching or affinity function). Hence both ought to be thought
about at the same time. For the current discussion, let us start with the encoding.

First, let us define what we mean by antigen and antibody in the context of an
application domain. Typically, an antigen is the target or solution, e.g. the data item
we need to check to see if it is an intrusion, or the user that we need to cluster or

194 U. Aickelin et al.

make a recommendation for. The antibodies are the remainder of the data, e.g. other
users in the data base, a set of network traffic that has already been identified etc.
Sometimes, there can be more than one antigen at a time and there are usually a
large number of antibodies present simultaneously.

Antigens and antibodies are represented or encoded in the same way. For most
problems the most obvious representation is a string of numbers or features, where
the length is the number of variables, the position is the variable identifier and the
value (could be binary or real) of the variable. For instance, in a five-variable binary
problem, an encoding could be (10010).

As mentioned previously, for data mining and intrusion detection applications.
What would an encoding look like in these cases? For data mining, let us consider
the problem of recommending movies. Here the encoding has to represent a user’s
profile with regards to the movies he has seen and how much he has (dis)liked
them. A possible encoding for this could be a list of numbers, where each number
represents the “vote” for an item. Votes could be binary (e.g. Did you visit this web
page?), but can also be integers in a range (say [0, 5], i.e. 0—did not like the movie
at all, 5—liked the movie very much).

Hence for the movie recommendation, a possible encoding is

User = {{id1,score1} ,{id2,score2} . . .{idn,scoren}}

where id corresponds to the unique identifier of the movie being rated and score
to this user’s score for that movie. This captures the essential features of the data
available (Cayzer and Aickelin 2002).

For intrusion detection, the encoding may be to encapsulate the essence of each
data packet transferred, for example

[〈 protocol〉〈 source ip〉〈source port〉〈destination ip〉〈destination port〉],

example: [〈tcp〉〈113.112.255.254〉〈108.200.111.12〉〈25〉,

which represents an incoming data packet send to port 25. In these scenarios, wild-
cards like “any port” are also often used.

7.4.2 Similarity or Affinity Measure

As mentioned in the previous section, similarity measure or matching rule is one
of the most important design choices in developing an Artificial Immune Systems
algorithm, and is closely coupled to the encoding scheme.

Two of the simplest matching algorithms are best explained using binary encod-
ing: consider the strings (00000) and (00011). If one does a bit-by-bit comparison,
the first 3 bits are identical and hence we could give this pair a matching score of 3.
In other words, we compute the opposite of the Hamming distance (which is de-
fined as the number of bits that have to be changed in order to make the two strings
identical).

7 Artificial Immune Systems 195

Fig. 7.2 Illustration of the
idiotypic effect

Ab3

Ab2

Ab1
AG

Now consider this pair: (00000) and (01010). Again, simple bit matching gives us
a similarity score of 3. However, the matching is quite different as the three match-
ing bits are not connected. Depending on the problem and encoding, this might be
better or worse. Thus, another simple matching algorithm is to count the number
of continuous bits that match and return the length of the longest matching as the
similarity measure. For the first example above this would still be 3, for the second
example this would be 1.

If the encoding is non-binary, e.g. real variables, there are even more possibilities
to compute the distance between the two strings, for instance we could compute the
geometrical (Euclidian) distance, etc.

For data mining problems, like the movie recommendation system, similarity
often means correlation. Take the movie recommendation problem as an example
and assume that we are trying to find users in a database that are similar to the key
user who’s profile we are trying to match in order to make recommendations. In this
case, what we are trying to measure is how similar are the two users’ tastes. One
of the easiest ways of doing this is to compute the Pearson correlation coefficient
between the two users.

That is, if the Pearson measure is used to compare two user’s u and v, then

r =

n
∑

i=1
(ui− ū)(vi− v̄)

√

n
∑

i=1
(ui− ū)2

n
∑

i=1
(vi− v̄)2

,

where u and v are users, n is the number of overlapping votes (i.e. movies for which
both u and v have voted), ui is the vote of user u for movie i and ū is the average vote
of user u over all films (not just the overlapping votes). The measure is amended so
default to a value of 0 if the two users have no films in common. During our research
reported in Cayzer and Aickelin (2002a,b) we also found it useful to introduce a
penalty parameter (analogous to penalties in genetic algorithms) for users who only
have very few films in common, which in essence reduces their correlation.

196 U. Aickelin et al.

The outcome of this measure is a value between −1 and 1, where values close
to 1 mean strong agreement, values near to−1 mean strong disagreement and values
around 0 mean no correlation. From a data mining point of view, those users who
score either 1 or −1 are the most useful and hence will be selected for further treat-
ment by the algorithm.

For other applications, matching might not actually be beneficial and hence those
items that match might be eliminated. This approach is known as negative selection
and mirrors what is believed to happen during the maturation of B-cells who have to
learn not to match our own tissues as otherwise we would be subject to auto-immune
diseases.

Under what circumstance would a negative selection algorithm be suitable for an
Artificial Immune Systems implementation? Consider the case of intrusion detec-
tion as solved by Hofmeyr and Forrest (2000). One way of solving this problem is
by defining a set of self, i.e. a trusted network, our company’s computers, known
partners, etc. During the initialization of the algorithm, we would then randomly
create a large number of so-called detectors, i.e. strings that looks similar to the
sample intrusion detection systems encoding given above. We would then subject
these detectors to a matching algorithm that compares them to our self. Any match-
ing detector would be eliminated and hence we select those that do no match (neg-
ative selection). All non-matching detectors will then form our final detector set.
This detector set is then used in the second phase of the algorithm to continuously
monitor all network traffic. Should a match be found now the algorithm would re-
port this as a possible alert or nonself. There are a number of problems with this
approach, which we shall discuss further in the section Promising Areas for Future
Applications.

7.4.3 Negative, Clonal or Neighborhood Selection

The meaning of this step differs somewhat depending on the exact problem the
Artificial Immune Systems is applied to. We have already described the concept
of negative selection. For the film recommender, choosing a suitable neighborhood
means choosing good correlation scores and hence we perform positive selection.
How would the algorithm use this?

Consider the Artificial Immune Systems to be empty at the beginning. The tar-
get user is encoded as the antigen, and all other users in the database are possible
antibodies. We add the antigen to the Artificial Immune Systems and then we add
one candidate antibody at a time. Antibodies will start with a certain concentration
value. This value is decreasing over time (death rate), similar to the evaporation in
Ant Systems. Antibodies with a sufficiently low concentration are removed from
the system, whereas antibodies with a high concentration may saturate. However,
an antibody can increase its concentration by matching the antigen—the better the
match the higher the increase (a process called stimulation). The process of stimula-
tion or increasing concentration can also be regarded as “cloning” if one thinks in a
discrete setting. Once enough antibodies have been added to the system, it starts to

7 Artificial Immune Systems 197

iterate a loop of reducing concentration and stimulation until at least one antibody
drops out. A new antibody is added and the process repeated until the Artificial
Immune Systems is stabilized, i.e. there are no more drop-outs for a certain period
of time.

Mathematically, at each step (iteration) an antibody’s concentration is increased
by an amount dependent on its matching to each antigen. In the absence of match-
ing, an antibody’s concentration will slowly decrease over time. Hence an Artificial
Immune Systems iteration is governed by the following equation, based on Farmer
et al. (1986):

dxi

dt
= [antigens recognized− death rate] =

[

k2

(N

∑
j=1

m jixiy j

)

− k3xi

]

,

where

• N is the number of antigens
• xi is the concentration of antibody i
• y j is the concentration of antigen j
• k2 is the stimulation effect and k3 is the death rate
• m ji is the matching function between antibody i and antibody (or antigen) j.

The following pseudo-code summarizes the Artificial Immune Systems of the
movie recommender:

Initialize Artificial Immune Systems
Encode user for whom to make predictions as antigen Ag
WHILE (Artificial Immune Systems not Full) & (More Antibodies) DO

Add next user as an antibody Ab
Calculate matching scores between Ab and Ag
WHILE (Artificial Immune Systems at full size) & (Artificial Immune
Systems not Stabilized) DO

Reduce Concentration of all Abs by a fixed amount
Match each Ab against Ag and stimulate as necessary

OD
OD
Use final set of Antibodies to produce recommendation.

In this example, the Artificial Immune Systems is considered stable after iterating
for ten iterations without changing in size. Stabilization thus means that a sufficient
number of good neighbors have been identified and therefore a prediction can be
made. Poor neighbors would be expected to drop out of the Artificial Immune Sys-
tems after a few iterations. Once the Artificial Immune Systems has stabilized using
the above algorithm, we use the antibody concentration to weigh the neighbors and
then perform a weighted average type recommendation.

198 U. Aickelin et al.

7.4.4 Somatic Hypermutation

The mutation most commonly used in Artificial Immune Systems is very similar to
that found in genetic algorithms—for example, for binary strings bits are flipped,
for real value strings one value is changed at random, or for others the order of
elements is swapped. In addition, the mechanism is often enhanced by the somatic
idea—i.e. the closer the match (or the less close the match, depending on what we
are trying to achieve), the more (or less) disruptive the mutation.

However, mutating the data might not make sense for all problems. For instance,
it would not be suitable for the movie recommender. Certainly, mutation could be
used to make users more similar to the target; however, the validity of recommenda-
tions based on these artificial users is questionable and, if overdone, we would end
up with the target user itself. Hence for some problems, somatic hypermutation is
not used, since it is not immediately obvious how to mutate the data sensibly such
that these artificial entities still represent plausible data.

Nevertheless, for other problem domains, mutation might be very useful. For
instance, taking the negative-selection approach to intrusion detection, rather than
throwing away matching detectors in the first phase of the algorithm, these could
be mutated to save time and effort. Also, depending on the degree of matching the
mutation could be more or less strong. This was in fact one extension implemented
by Hofmeyr and Forrest (2000).

For data mining problems, mutation might also be useful, if for instance the aim is
to cluster users. Then the center of each cluster (the antibodies) could be an artificial
pseudo-user that can be mutated at will until the desired degree of matching between
the center and antigens in its cluster is reached. This is an approach implemented by
Castro and von Zuben (2001).

7.4.5 Dendritic-Cell-Based Approaches

One of the approaches based on the behavior of dendritic cells is known as the den-
dritic cell algorithm (DCA) (Greensmith 2007). It is a population-based algorithm
that incorporates a novel theory in immunology—danger theory, details of which
are discussed in Sect. 7.6. Here we focus on describing the algorithmic properties of
the DCA.

In the algorithm, there are two data streams, namely signals and antigens. Signals
are represented as real-valued numbers and antigens are categorical values of the
objects to be classified. The algorithm is based on a multi-agent framework, where
each cell processes its own environmental signals and collects antigens. Diversity is
generated within the cell population through the application of a migration thresh-
old—this value limits the number of signal instances an individual cell can process
during its lifespan. This creates a variable time window effect, with different cells
processing the signal and antigen input streams over a range of time periods. The
combination of signal/antigen correlation and the dynamics of a cell population are
responsible for the detection capabilities of the DCA.

7 Artificial Immune Systems 199

7.5 Comparison of Artificial Immune Systems to Genetic

Algorithms and Neural Networks

Genetic algorithms and neural networks have already been mentioned a number of
times. In fact, they both have a number of ideas in common with Artificial Immune
Systems and Table 7.1 highlights their similarities and differences (see Dasgupta
1999). Evolutionary computation shares many elements; concepts like population,
genotype phenotype mapping, and proliferation of the fittest are present in different
Artificial Immune System methods.

Artificial Immune System models based on immune networks resemble the struc-
tures and interactions of connectionist models. Some works have pointed out the
similarities and differences between Artificial Immune Systems and artificial neu-
ral networks (Dasgupta 1999; De Castro and Von Zuben 2002). De Castro has also
used Artificial Immune Systems to initialize the centers of radial basis function neu-
ral networks and to produce a good initial set of weights for feed-forward neural
networks.

It should be noted that some of the items in Table 7.1 are gross simplifications,
both to benefit the design of the table and so as not to overwhelm the reader. Some of
the points are debatable; nevertheless, we believe that this comparison is valuable to
show exactly how Artificial Immune Systems fit with genetic algorithms and neural
networks. The comparisons are based on a genetic algorithm used for optimization
and a neural network used for classification.

Table 7.1 Comparison of artificial immune systems to genetic algorithms (GAs) and neural net-
works (NNs)

GA (optimization) NN (classification) Artificial immune
systems

Components Chromosome strings Artificial neurons Attribute strings
Location of
components

Dynamic Pre-defined Dynamic

Structure Discrete components Networked
components

Discrete/networked
components

Knowledge storage Chromosome strings Connection strengths Component
concentration/network
connections

Dynamics Evolution Learning Evolution/learning
Meta-dynamics Recruitment/elimin-

ation of components
Construction/pruning
of connections

Recruitment/elimin-
ation of components

Interaction between
components

Crossover Network connections Recognition/network
connections

Interaction with
environment

Fitness function External stimuli Recognition/objective
function

Threshold activity Crowding/sharing Neuron activation Component affinity

200 U. Aickelin et al.

7.6 Extensions of Artificial Immune Systems

7.6.1 Idiotypic Networks: Network Interactions (Suppression)

The idiotypic effect builds on the premise that antibodies can match other antibodies
as well as antigens. It was first proposed by Jerne (1973) and formalized into a model
by Farmer et al. (1986). The theory is currently debated by immunologists, with no
clear consensus yet on its effects in the humoral immune system (Kindt et al.). The
idiotypic network hypothesis builds on the recognition that antibodies can match
other antibodies as well as antigens. Hence, an antibody may be matched by other
antibodies, which in turn may be matched by yet other antibodies. This activation
can continue to spread through the population and potentially has much explana-
tory power. It could, for example, help explain how the memory of past infections
is maintained. Furthermore, it could result in the suppression of similar antibodies
thus encouraging diversity in the antibody pool. The idiotypic network has been for-
malized by a number of theoretical immunologists (Perelson and Weisbuch 1997):

dxi

dt
=c [(antibodies recognized)− (I am recognized)+ (antigens recognized)]

− (death rate) = c

[

N

∑
j=1

m jixix j − k1

N

∑
j−1

mi jxix j +
n

∑
j=1

m jixiy j

]

− k2xi, (7.1)

where

• N is the number of antibodies and n is the number of antigens
• xi (or xi) is the concentration of antibody i(or j)
• yi is the concentration of antigen j
• c is a rate constant
• k1 is a suppressive effect and k2 is the death rate
• m ji is the matching function between antibody i and antibody (or antigen) j.

As can be seen from Eq. (7.1), the nature of an idiotypic interaction can be either
positive or negative. Moreover, if the matching function is symmetric, then the bal-
ance between “I am recognized” and “Antibodies recognized” (parameters c and k1

in the equation) wholly determines whether the idiotypic effect is positive or neg-
ative, and we can simplify the equation. We can also simplify Eq. (7.1) if we only
allow one antigen in the Artificial Immune Systems. In the new Eq. (7.2), the first
term is simplified as we only have one antigen, and the suppression term is normal-
ized to allow a like for like comparison between the different rate constants:

dxi

dt
= k1mixiy−

k2

n

n

∑
j=1

mi jxix j− k3xi, (7.2)

7 Artificial Immune Systems 201

where

• k1 is stimulation, k2 suppression and k3 death rate
• mi is the correlation between antibody i and the (sole) antigen
• xi (or xi) is the concentration of antibody i (or j)
• y is the concentration of the (sole) antigen
• mi j is the correlation between antibodies i and j
• n is the number of antibodies.

Why would we want to use the idiotypic effect? Because it might provide us
with a way of achieving diversity, similar to crowding or fitness sharing in a ge-
netic algorithm. For instance, in the movie recommender, we want to ensure that
the final neighborhood population is diverse, so that we get more interesting recom-
mendations. Hence, to use the idiotypic effect in the movie recommender system
mentioned previously, the pseudo-code would be amended by adding the following
lines in italic:

Initialize Artificial Immune Systems
Encode user for whom to make predictions as antigen Ag
WHILE (Artificial Immune Systems not Full) & (More Antibodies) DO

Add next user as an antibody Ab
Calculate matching scores between Ab and Ag and Ab and other Abs
WHILE (Artificial Immune Systems at full size) & (Artificial Immune
Systems not Stabilized) DO

Reduce Concentration of all Abs by a fixed amount
Match each Ab against Ag and stimulate as necessary
Match each Ab against each other Ab and execute idiotypic effect

OD
OD
Use final set of Antibodies to produce recommendation.

Figure 7.2 shows the idiotypic effect using dotted arrows whereas standard stim-
ulation is shown using black arrows. In the left diagram antibodies Ab1 and Ab3 are
very similar and they would have their concentrations reduced in the “Iterate Artifi-
cial Immune Systems” stage of the algorithm above. However, in the right diagram,
the four antibodies are well separated from each other as well as being close to the
antigen and so would have their concentrations increased.

At each iteration of the film recommendation Artificial Immune Systems the con-
centration of the antibodies is changed according to Eq. (7.2). This will increase the
concentration of antibodies that are similar to the antigen and can allow either the
stimulation, suppression, or both, of antibody–antibody interactions to have an ef-
fect on the antibody concentration. More detailed discussion of these effects on
recommendation problems is given by Cayzer and Aickelin (2002a,b).

202 U. Aickelin et al.

Antigens

Antibodies

Match, but

too far

away

Stimulation

Danger

Zone

Danger Signal

Damaged Cell

Cells

No match

Fig. 7.3 Danger theory illustration

7.6.2 Danger Theory

Over the last decade, a new theory has become popular amongst immunologists.
Called the Danger Theory, its chief advocate is Matzinger (1994, 2001, 2002).
A number of advantages are claimed for this theory; not least that it provides a
method of grounding the immune response. The theory is not complete, and there
are some doubts about how much it actually changes behavior and/or structure. Nev-
ertheless, the theory contains enough potentially interesting ideas to make it worth
assessing its relevance to Artificial Immune Systems.

However, it is not simply a question of matching in the humoral immune system.
It is fundamental that only the “correct” cells are matched as otherwise this could
lead to a self-destructive autoimmune reaction. Classical immunology (Kuby 2006)
stipulates that an immune response is triggered when the body encounters something
nonself or foreign. It is not yet fully understood how this self–nonself discrimination
is achieved, but many immunologists believe that the difference between them is
learnt early in life. In particular it is thought that the maturation process plays an
important role to achieve self-tolerance by eliminating those T- and B-cells that
react to self. In addition, a “confirmation” signal is required; that is, for either B-cell
or T (killer) cell activation, a T (helper) lymphocyte must also be activated. This
dual activation is further protection against the chance of accidentally reacting to
self.

Matzinger’s Danger Theory debates this point of view (for a good introduction,
see Matzinger 2002). Technical overviews can be found in Matzinger (1994, 2001).
She points out that there must be discrimination happening that goes beyond the
self–nonself distinction described above. For instance:

1. There is no immune reaction to foreign bacteria in the gut or to the food we eat
although both are foreign entities.

7 Artificial Immune Systems 203

2. Conversely, some auto-reactive processes are useful, for example against self
molecules expressed by stressed cells.

3. The definition of self is problematic—realistically, self is confined to the subset
actually seen by the lymphocytes during maturation.

4. The human body changes over its lifetime and thus self changes as well. There-
fore, the question arises whether defenses against nonself learned early in life
might be autoreactive later.

Other aspects that seem to be at odds with the traditional viewpoint are autoim-
mune diseases and certain types of tumors that are fought by the immune system
(both attacks against self) and successful transplants (no attack against nonself).

Matzinger concludes that the immune system actually discriminates “some self
from some nonself”. She asserts that the Danger Theory introduces not just new
labels, but a way of escaping the semantic difficulties with self and nonself, and
thus provides grounding for the immune response. If we accept the Danger Theory
as valid we can take care of nonself but harmless and of self but harmful invaders
into our system. To see how this is possible, we have to examine the theory in more
detail.

The central idea in the Danger Theory is that the immune system does not re-
spond to nonself but to danger. Thus, just like the self–nonself theories, it funda-
mentally supports the need for discrimination. However, it differs in the answer to
what should be responded to. Instead of responding to foreignness, the immune sys-
tem reacts to danger. This theory is borne out of the observation that there is no
need to attack everything that is foreign, something that seems to be supported by
the counter-examples above. In this theory, danger is measured by damage to cells
indicated by distress signals that are sent out when cells die an unnatural death (cell
stress or lytic cell death, as opposed to programmed cell death, or apoptosis).

Figure 7.3 depicts how we might picture an immune response according to the
Danger Theory (Aickelin and Cayzer 2002). A cell that is in distress sends out an
alarm signal, whereupon antigens in the neighborhood are captured by antigen-
presenting cells such as macrophages, which then travel to the local lymph node
and present the antigens to lymphocytes. Essentially, the danger signal establishes
a danger zone around itself. Thus B-cells producing antibodies that match antigens
within the danger zone get stimulated and undergo the clonal expansion process.
Those that do not match or are too far away do not get stimulated.

Matzinger admits that the exact nature of the danger signal is unclear. It may
be a positive signal (for example heat shock protein release) or a negative sig-
nal (for example lack of synaptic contact with a dendritic antigen-presenting cell).
This is where the Danger Theory shares some of the problems associated with
traditional self–nonself discrimination (i.e. how to discriminate danger from non-
danger). However, in this case, the signal is grounded rather than being some ab-
stract representation of danger.

How could we use the Danger Theory in Artificial Immune Systems? The Dan-
ger Theory is not about the way Artificial Immune Systems represent data (Aickelin
and Cayzer 2002). Instead, it provides ideas about which data the Artificial Im-
mune Systems should represent and deal with. They should focus on dangerous

204 U. Aickelin et al.

Table 7.2 Existing application areas of artificial immune systems

Major areas Minor areas

Clustering/classification Bio-informatics

Anomaly detection Image processing

Computer security Control

Numeric function optimization Robotics

Combinatorial optimization Virus detection

Learning Web mining

(i.e. interesting) data. It could be argued that the shift from nonself to danger is
merely a symbolic label change that achieves nothing. We do not believe this to be
the case, since danger is a grounded signal, and nonself is (typically) a set of feature
vectors with no further information about whether all or some of these features are
required over time. The danger signal helps us to identify which subset of feature
vectors is of interest. A suitably defined danger signal thus overcomes many of the
limitations of self–nonself selection. It restricts the domain of nonself to a man-
ageable size, removes the need to screen against all self, and deals adaptively with
scenarios where self (or nonself) changes over time.

The challenge is clearly to define a suitable danger signal, a choice that might
prove as critical as the choice of fitness function for an evolutionary algorithm. In
addition, the physical distance in the biological system should be translated into
a suitable proxy measure for similarity or causality in Artificial Immune Systems.
This process is not likely to be trivial. Nevertheless, if these challenges are met, then
future Artificial Immune System applications might derive considerable benefit, and
new insights, from the Danger Theory, in particular Intrusion Detection Systems.

7.7 Promising Areas for Future Application

It seems intuitively obvious that Artificial Immune Systems should be most suitable
for computer security problems. If the human immune system keeps our body alive
and well, why can we not do the same for computers using Artificial Immune Sys-
tems? Table 7.2 shows a recent survey of application areas of Artificial Immune Sys-
tems (Hart and Timmis 2008), some which are described in the following sections.

Earlier, we outlined the traditional approach to do this. However, in order to pro-
vide viable Intrusion Detection Systems, Artificial Immune Systems must build a
set of detectors that accurately match antigens. In current Artificial Immune Sys-
tem based Intrusion Detection Systems (Dasgupta and Gonzalez 2002; Esponda
et al. 2004; Hofmeyr and Forrest 2000), both network connections and detectors are
modeled as strings. Detectors are randomly created and then undergo a maturation

7 Artificial Immune Systems 205

phase where they are presented with good, i.e. self, connections. If the detectors
match any of these they are eliminated otherwise they become mature. These mature
detectors start to monitor new connections during their lifetime. If these mature de-
tectors match anything else, exceeding a certain threshold value, they become act-
ivated. This is then reported to a human operator who decides whether there is a
true anomaly. If so, the detectors are promoted to memory detectors with an indef-
inite life span and minimum activation threshold (immunization) (Kim and Bentley
2002). An approach such as the above is known as negative selection as only those
detectors (antibodies) that do not match live on Forrest et al. (1994). Earlier versions
of negative-selection algorithms used a binary representation scheme; however, this
scheme shows scaling problems when it is applied to real network traffic (Kim and
Bentley 2001). As the systems to be protected grow larger so do self and nonself.
Hence, it becomes more and more problematic to find a set of detectors that pro-
vides adequate coverage, whilst being computationally efficient. It is inefficient to
map the entire self or nonself universe, particularly as they will be changing over
time and only a minority of nonself is harmful, whilst some self might cause damage
(e.g. internal attack). This situation is further aggravated by the fact that the labels
self and nonself are often ambiguous and even with expert knowledge they are not
always applied correctly (Kim and Bentley 2002).

How might this problem be overcome? One way could be to borrow ideas from
the Danger Theory to provide a way of grounding the response and hence removing
the necessity to map self or nonself. In our system, the correlation of low-level alerts
(danger signals) will trigger a reaction. An important and recent research issue for
Intrusion Detection Systems is how to find true intrusion alerts from thousands and
thousands of false alerts generated (Hofmeyr and Forrest 2000). Existing Intrusion
Detection Systems employ various types of sensors that monitor low-level system
events. Those sensors report anomalies of network traffic patterns, unusual termina-
tions of UNIX processes, memory usages, the attempts to access unauthorized files,
etc. (Kim and Bentley 2001). Although these reports are useful signals of real intru-
sions, they are often mixed with false alerts and their unmanageable volume forces
a security officer to ignore most alerts (Hoagland and Staniford 2002). Moreover,
the low level of alerts makes it very hard for a security officer to identify advancing
intrusions that usually consist of different stages of attack sequences. For instance,
it is well known that computer hackers use a number of preparatory stages (rais-
ing low-level alerts) before actual hacking according to Hoagland and Staniford.
Hence, the correlations between intrusion alerts from different attack stages provide
more convincing attack scenarios than detecting an intrusion scenario based on low-
level alerts from individual stages. Furthermore, such scenarios allow the Intrusion
Detection Systems to detect intrusions early before damage becomes serious.

To correlate Intrusion Detection Systems alerts for detection of an intrusion
scenario, recent studies have employed two different approaches: a probabilistic
approach (Valdes and Skinner 2001) and an expert system approach (Ning et al.
2002). The probabilistic approach represents known intrusion scenarios as Bayesian
networks. The nodes of Bayesian networks are Intrusion Detection Systems alerts
and the posterior likelihood between nodes is updated as new alerts are collected.

206 U. Aickelin et al.

The updated likelihood can lead to conclusions about a specific intrusion scenario
occurring or not. The expert system approach initially builds possible intrusion sce-
narios by identifying low-level alerts. These alerts consist of prerequisites and con-
sequences, and they are represented as hypergraphs. Known intrusion scenarios are
detected by observing the low-level alerts at each stage, but these approaches have
the following problems according to Cuppens et al. (2002):

1. Handling unobserved low-level alerts that comprise an intrusion scenario
2. Handling optional prerequisite actions
3. Handling intrusion scenario variations.

The common trait of these problems is that the Intrusion Detection Systems can
fail to detect an intrusion when an incomplete set of alerts comprising an intrusion
scenario is reported. In handling this problem, the probabilistic approach is some-
what more advantageous than the expert system approach because in theory it allows
the Intrusion Detection Systems to correlate missing or mutated alerts. The current
probabilistic approach builds Bayesian networks based on the similarities between
selected alert features. However, these similarities alone can fail to identify a causal
relationship between prerequisite actions and actual attacks if pairs of prerequisite
actions and actual attacks do not appear frequently enough to be reported. Attackers
often do not repeat the same actions in order to disguise their attempts. Thus, the
current probabilistic approach fails to detect intrusions that do not show strong sim-
ilarities between alert features but have causal relationships leading to final attacks.
This limit means that such Intrusion Detection Systems fail to detect sophisticated
intrusion scenarios.

We propose Artificial Immune Systems based on Danger Theory ideas that can
handle the above Intrusion Detection Systems alert correlation problems. The Dan-
ger Theory explains the immune response of the human body by the interaction
between antigen presenting cells and various signals. The immune response of each
antigen presenting cell is determined by the generation of danger signals through
cellular stress or cell death. In particular, the balance and correlation between dif-
ferent danger signals depending on different cell death causes would appear to be
critical to the immunological outcome. The investigation of this hypothesis is the
main research goal of the immunologists for this project. The wet experiments of
this project focus on understanding how the antigen presenting cells react to the bal-
ance of different types of signals, and how this reaction leads to an overall immune
response. Similarly, our Intrusion Detection Systems investigation will center on
understanding how intrusion scenarios would be detected by reacting to the balance
of various types of alerts. In the human immune system, antigen presenting cells
activate according to the balance of apoptotic and necrotic cells and this activation
leads to protective immune responses. Similarly, the sensors in Intrusion Detection
Systems report various low-level alerts and the correlation of these alerts will lead
to the construction of an intrusion scenario. A resulting product is the dendritic cell
algorithm (Greensmith 2007), which is inspired by the function of the dendritic cells
of the innate immune system and incorporates the principles of danger theory. An
abstract model of natural dendritic cell behavior is used as the foundation of the

7 Artificial Immune Systems 207

developed algorithm. It has been successfully applied to real-world problems, such
as computer security (Al-Hammadi et al. 2008; Gu et al. 2008; Greensmith 2007),
robotics (Oates et al. 2007) and fault detection of real-time embedded systems (Lay
and Bate 2008).

7.8 Tricks of the Trade

Are Artificial Immune Systems suitable for pure optimization?
Depending on what is meant by optimization, the answer is probably no, in the

same sense as “pure” genetic algorithms are not “function optimizers”. One has to
keep in mind that although the immune system is about matching and survival, it is
really a team effort where multiple solutions are produced all the time that together
provide the answer. Hence, in our opinion Artificial Immune Systems are probably
more suited as an optimizer where multiple solutions are of benefit, either directly,
e.g. because the problem has multiple objectives, or indirectly, e.g. when a neigh-
borhood of solutions is produced that is then used to generate the desired outcome.
However, Artificial Immune Systems can be made into more focused optimizers by
adding hill climbing or other functions that exploit local or problem-specific knowl-
edge, similar to the idea of augmenting genetic algorithms to memetic algorithms.

What problems are Artificial Immune Systems most suitable for?
As mentioned in the previous paragraph, we believe that although using Arti-

ficial Immune Systems for pure optimization, e.g. the traveling salesman problem
or job shop scheduling, can be made to work, this is probably missing the point.
Artificial Immune Systems are powerful when a population of solution is essential
either during the search or as an outcome. Furthermore, the problem has to have
some concept of “matching”. Finally, because at their heart Artificial Immune Sys-
tems are evolutionary algorithms, they are more suitable for problems that change
over time and need to be solved again and again, rather than one-off optimizations.
Hence, the evidence seems to point to data mining in its wider meaning as the best
area for Artificial Immune Systems.

How does one set the parameters?
Unfortunately, there is no short answer to this question. As with the majority of

other heuristics that require parameters to operate, their setting is individual to the
problem solved and universal values are not available. However, it is fair to say that
along with other evolutionary algorithms Artificial Immune Systems are robust with
respect to parameter values as long as they are chosen from a sensible range.

Why not use a genetic algorithm instead?
Because you may miss out on the benefits of the idiotypic network effects.
Why not use a neural network instead?
Because you may miss out on the benefits of a population of solutions and the

evolutionary selection pressure and mutation.
Are Artificial Immune Systems learning classifier systems under a different

name?

208 U. Aickelin et al.

No, not quite. However, to our knowledge learning classifier systems are probably
the most similar of the better known meta-heuristic, as they also combine some fea-
tures of evolutionary algorithms and neural networks. However, these features are
different. Someone who is interested in implementing Artificial Immune Systems
or learning classifier systems is well advised to read about both approaches to see
which one is most suited for the problem at hand.

7.9 Conclusions

The immune system is highly distributed, highly adaptive, self-organizing in nature,
maintains a memory of past encounters, and has the ability to continually learn
about new encounters. The Artificial Immune System is an example of a system
developed around the current understanding of the immune system. It illustrates
how an Artificial Immune System can capture the basic elements of the immune
system and exhibit some of its chief characteristics.

Artificial Immune Systems can incorporate many properties of natural immune
systems, including diversity, distributed computation, error tolerance, dynamic learn-
ing and adaptation and self-monitoring. The human immune system has motivated
scientists and engineers to find powerful information processing algorithms that
have solved complex engineering tasks. Artificial Immune Systems are a general
framework for a distributed adaptive system and could, in principle, be applied to
many domains. Artificial Immune Systems can be applied to classification problems,
optimization tasks and other domains. Like many biologically inspired systems it is
adaptive, distributed and autonomous. The primary advantages of the Artificial Im-
mune Systems are that they only require positive examples, and the patterns learnt
can be explicitly examined. In addition, because it is self-organizing, it does not
require effort to optimize any system parameters.

To us, the attraction of the immune system is that if an adaptive pool of antibod-
ies can produce intelligent behavior, can we harness the power of this computation
to tackle the problem of preference matching, recommendation and intrusion detec-
tion? Our conjecture is that if the concentrations of those antibodies that provide a
better match are allowed to increase over time, we should end up with a subset of
good matches. However, we are not interested in optimizing, i.e. in finding the one
best match. Instead, we require a set of antibodies that are a close match but which
are at the same time distinct from each other for successful recommendation. This
is where we propose to harness the idiotypic effects of binding antibodies to similar
antibodies to encourage diversity. It is also advisable to develop hybrid Artificial
Immune Systems by incorporating with other existing techniques, which may result
better overall performance.

7 Artificial Immune Systems 209

Sources of Additional Information

The following websites, books and proceedings should be an excellent starting point
for those readers wishing to learn more about Artificial Immune Systems.

• Artificial Immune Systems and Their Applications, D. Dasgupta (ed), Springer,
1999.

• Artificial Immune Systems: A New Computational Intelligence Approach, L. de
Castro, J. Timmis, Springer, 2002.

• Immunocomputing: Principles and Applications by Tarakanov et al., Springer,
2003.

• Proceedings of the International Conference on Artificial Immune Systems
(ICARIS), Springer, 2003–2010.

• In Silico Immunology, D. R. Flower and J. and Timmis, Springer, 2007.
• Artificial Immune Systems Forum Webpage: http://www.artificial-immune

-systems.org/artist.htm
• Artificial Immune Systems Bibliography: http://issrl.cs.memphis.edu/

ArtificialImmuneSystems/ArtificialImmuneSystems_bibliography.pdf

References

Aickelin U, Cayzer S (2002) The danger theory and its application to artificial im-
mune systems. Research Report HPL-2002-244

Al-Hammadi Y, Aickelin U, Greensmith, J (2008) DCA for Bot detection. In: Pro-
ceedings of the IEEE WCCI, Hong Kong, pp 1807–1816

Amazon (2003) Recommendations. http://www.amazon.com/
Cayzer S, Aickelin U (2002a) A recommender system based on the immune net-

work. In: Proceedings of the CEC 2002, Honolulu, pp 807–813
Cayzer S, Aickelin U (2002b) On the effects of idiotypic interactions for recom-

mendation communities in artificial immune systems. In: Proceedings of the 1st
international conference on artificial immune systems, Canterbury, pp 154–160

Cuppens F et al (2002) Correlation in an intrusion process. In: SECI 2002, TUNIS,
TUNISIA

Dasgupta, D (ed) (1999) Artificial immune systems and their applications. Springer,
Berlin

Dasgupta D, Gonzalez F (2002) An immunity-based technique to characterize in-
trusions in computer networks. IEEE Trans Evol Comput 6:1081–1088

De Castro LN, Van Zuben FJ (1999) Artificial Immune Systems: Part 1 – basic
theory and applications, Technical Report 1

De Castro L N, Von Zuben FJ (2001) aiNet: An Artificial Immune Network for Data
Analysis, pp. 231–259. Idea Group Publishing

De Castro LN, Von Zuben FJ (2002) Learning and optimization using the clonal
selection principle. EEE Trans Evol Comput 6:239–251

http://www.artificial-immune
-systems.org/artist.htm
http://issrl.cs.memphis.edu/
Artificial Immune Systems/Artificial Immune Systems_bibliography.pdf
http://www.amazon.com/

210 U. Aickelin et al.

Esponda F, Forrest S, Helman P (2004) A formal framework for positive and nega-
tive detection. IEEE Trans Syst Man Cybern 34:357–373

Farmer JD, Packard NH, Perelson AS (1986) The immune system, adaptation, and
machine learning. Physica 22:187–204

Forrest S, Perelson, AS, Allen L, Cherukuri R (1994) Self–nonself discrimination in
a computer. In: Proceedings of the IEEE symposium on research in security and
privacy, Oakland, CA, USA, pp 202–212

Goldsby R, Kindt T, Osborne B (2006) Kuby Immunology: International Edition,
6th edition, W. H. Freeman, San Francisco

Greensmith J (2007) The dendritic cell algorithm. PhD thesis, University of Not-
tingham

Gu F, Greensmith J, Aickelin U (2008) Further exploration of the dendritic cell al-
gorithm: antigen multiplier and moving windows. In: Proceedings of the ICARIS,
Phuket, pp 142–153

Gu F, Greensmith J, Aickelin U (2009) Integrating real-time analysis with the
dendritic cell algorithm through segmentation. In: GECCO 2009, Montreal,
pp 1203–1210

Hart E, Timmis J (2008) Application areas of AIS: the past, the present and the
future. Appl Soft Comput 8:191–201

Hightower RR, Forrest S, Perelson AS (1995) The evolution of emergent organiza-
tion in immune system gene libraries. In: Proceedings of the 6th Conference on
genetic algorithms, Pittsburgh, pp 344–350

Hoagland J, Staniford S (2002) Viewing intrusion detection systems alerts: lessons
from snortsnarf. http://www.silicondefense.com/software/snortsnarf

Hofmeyr S, Forrest S (2000) Architecture for an artificial immune system. Evol
Comput 7:1289–1296

Jerne NK (1973) Towards a network theory of the immune system. Ann Immunol
125:373–389

Kim J, Bentley P (2001) Evaluating negative selection in an artificial immune
systems for network intrusion detection. In: GECCO 2001, San Francisco,
pp 1330–1337

Kim J, Bentley P (2002) Towards an artificial immune systems for network intru-
sion detection: an investigation of dynamic clonal selection. In: The Congress on
Evolutionary Computation 2002, Honolulu, pp 1015–1020

Kim J, Bentley P, Aickelin U, Greensmith J, Tedesco G, Twycross J (2007) Immune
system approaches to intrusion detection—a review. Nat Comput 6:413–466

Kindt T, Osborne B, Goldsby R (2006) Kuby immunology: international, 6th edn.
W. H. Freeman, San Francisco

Lay N, Bate I (2008) Improving the reliability of real-time embedded systems using
innate immune techniques. Evol Intell 1:113–132

Matzinger P (1994) Tolerance, danger and the extended family. Ann Rev Immunol
12:991–1045

Matzinger P (2001) The danger model in its historical context. Scand J Immunol
54:4–9

http://www.silicondefense.com/ software/snortsnarf

7 Artificial Immune Systems 211

Matzinger P (2002) The danger model: a renewed sense of self, Science
296:301–305

Ning P, Cui Y, Reeves S (2002) Constructing attack scenarios through correlation
of intrusion alerts. In: Proceedings of the 9th ACM conference on computer and
communications security, Washington, DC, pp 245–254

Oates B, Greensmith J, Aickelin U, Garibaldi J, Kendall G (2007) The application
of a dendritic cell algorithm to a robotic classifier. In: Proceedings of the ICARIS,
Santos, Brazil, pp 204–215

Perelson AS, Weisbuch G (1997) Immunology for physicists. Rev Mod Phys
69:1219–1267

Resnick P, Varian HR (1997) Recommender systems. Commun ACM 40:56–58
Valdes A, Skinner K (2001) Probabilistic alert correlation. In: Proceedings of the

RAID 2001, Davis, pp 54–68

Chapter 8

Swarm Intelligence

Daniel Merkle and Martin Middendorf

8.1 Introduction

The complex and often coordinated behavior of swarms fascinates not only
biologists but also computer scientists. Bird flocking and fish schooling are impres-
sive examples of coordinated behavior that emerges without central control. Social
insect colonies show complex problem-solving skills arising from the actions and
interactions of nonsophisticated individuals.

Swarm intelligence is a field of computer science that designs and studies
efficient computational methods for solving problems in a way that is inspired by the
behavior of real swarms or insect colonies (e.g. see Bonabeau et al. 1999; Kennedy
et al. 2001). Principles of self-organization and local or indirect communication
are important for understanding the complex collective behavior (Sumpter 2009).
Examples where insights into the behavior of natural swarms has influenced the
design of algorithms and systems in computer science are:

• Models for the division of labor between members of an ant colony were used
to regulate the joint work of robots and collective transport of ants has inspired
the design of controllers of robots for doing coordinated work (e.g. Labella et al.
2006);

• Brood sorting behavior of ants motivated several clustering and sorting
algorithms (e.g. Handl and Meyer 2002; Lumer and Faieta 1994);

D. Merkle
Department of Mathematics and Computer Science, University of South Denmark,
Odense, Denmark
e-mail: daniel@imada.sdu.dk

M. Middendorf (�)
Department of Computer Science, University of Leipzig, Leipzig, Germany
e-mail: middendorf@informatik.uni-leipzig.de

E.K. Burke and G. Kendall (eds.), Search Methodologies: Introductory Tutorials
in Optimization and Decision Support Techniques, DOI 10.1007/978-1-4614-6940-7_8,
© Springer Science+Business Media New York 2014

213

mailto:daniel@imada.sdu.dk
mailto:middendorf@informatik.uni-leipzig.de

214 D. Merkle and M. Middendorf

• The synchronized flashing behavior observed in some species of fireflies has
inspired algorithms for detecting non-operational robots in a swarm robotic
system (Christensen et al. 2009).

In this chapter we focus on swarm intelligence methods for solving optimization
and search problems. The two main areas of swarm intelligence that are relevant for
such problems are ant colony optimization (ACO) and particle swarm optimization
(PSO). A third emerging area is honey bee optimization (HBO).

ACO is a metaheuristic for solving combinatorial optimization problems. It is
inspired by the way real ants find shortest paths from their nest to food sources.
An essential aspect thereby is the indirect communication of the ants via pheromone,
i.e. a chemical substance which is released into the environment and that influ-
ences the behavior or development of other individuals of the same species. Ants
mark their paths to the food sources by laying trail pheromone along their way.
The pheromone traces can be smelled by other ants and lead them to the food source.

PSO is a metaheuristic that is mainly used for finding maximum or minimum
values of a function. PSO is inspired by the behavior of swarms of fishes or flocks
of birds to find a good food place. The coordination of movements of the individuals
in the swarm is the central aspect that inspires PSO.

HBO denotes a class of algorithms that are inspired by the collective behavior
of honey bees. In particular, bee’s mating behavior and related genetic principles,
bee’s foraging behavior, and their collective nest site selection behavior have been
utilized for algorithm design. Depending on their type HBO algorithms are used
for combinatorial optimization or function optimization. HBO is not covered in this
tutorial. More information on HBO can be found in the overview articles by Diwold
et al. (2011) and Karaboga and Akay (2009).

8.2 Ant Colony Optimization

A famous biological experiment called the double-bridge experiment was the
inspiring source for the first ACO algorithm (Dorigo 1992; Dorigo et al. 1991).
The double-bridge experiment (Deneubourg et al. 1990; Goss et al. 1989) was
designed to investigate the pheromone trail laying and following behavior of the
Argentine ant Iridomyrmex humilis. In the experiment a double bridge with two
branches of different lengths connected the nest of this species with a food source
(see Fig. 8.1). The long branch of the bridge was twice as long as the shorter branch.
In most runs of this experiment it was found that after a few minutes nearly all
ants use the shorter branch. This is interesting because Argentine ants cannot see
very well. The explanation of this behavior has to do with the fact that the ants
lay pheromone along their path. It is likely that ants which randomly choose the
shorter branch arrive earlier at the food source. When they go back to the nest they
smell some pheromone on the shorter branch and therefore prefer this branch. The
pheromone on the shorter branch will accumulate faster than on the longer branch so
that after some time the concentration of pheromone on the former is much higher
and nearly all ants take the shorter branch. Similar to the experiment with branches

8 Swarm Intelligence 215

Nest Nest Nest

FoodFood Food

Fig. 8.1 Double-bridge experiment

of different lengths, when both branches have the same length, after some min-
utes nearly all ants use the same branch. But in several repetitions it is a random
process which of the two branches will be chosen. The explanation is that when one
branch has got a slightly higher pheromone concentration due to random fluctua-
tions this branch will be preferred by the ants so that the difference in pheromone
concentration will increase and after some time all ants take this branch.

Inspired by this experiment Dorigo and colleagues designed an algorithm for
solving the traveling salesperson problem (TSP) (Dorigo 1992; Dorigo et al. 1991)
and initiated the field of ACO. In recent years this field of research has become quite
rich so that ACO algorithms have now been designed for various application prob-
lems and different types of combinatorial optimization problems including dynamic
and multi-objective optimization problems. Some progress has been made in the last
years on the theory of ACO algorithms (see Dorigo and Blum 2005; Gutjahr 2011
for an overview). An ACO metaheuristic has been formulated as a generic frame
that contains most of the different ACO algorithms that have been proposed so far
(see Dorigo and Di Caro 1999).

The idea of ACO is to let artificial ants construct solutions for a given
combinatorial optimization problem. A prerequisite for designing an ACO algo-
rithm is to have a constructive method which can be used by an ant to create different
solutions through a sequence of decisions. Typically an ant constructs a solution by
a sequence of probabilistic decisions where every decision extends a partial solution
by adding a new solution component until a complete solution is derived. The se-
quence of decisions for constructing a solution can be viewed as a path through
a corresponding decision graph (also called construction graph). Hence, an artifi-
cial ant that constructs a solution can be viewed as walking through the decision
graph. The aim is to let the artificial ants find paths through the decision graph
that correspond to good solutions. This is done in an iterative process where the
good solutions found by the ants of an iteration should guide the ants of following
iterations. Therefore, ants that have found good solutions are allowed to mark the
edges of the corresponding path in the decision graph with artificial pheromone.
This pheromone guides following ants of the next iteration so that they search near
the paths to good solutions. In order that pheromone from older iterations does not
influence the following iterations for too long, during an update of the pheromone
values some percentage of the pheromone evaporates. Thus, an ACO algorithm is
an iterative process where pheromone information is transferred from one iteration

216 D. Merkle and M. Middendorf

to the next one. The process continues until some stopping criterion is met, e.g. a
certain number of iterations has been done or a solution of a given quality has been
found. A scheme of an ACO algorithm is given in the following:

ACO scheme:
Initialize pheromone values

repeat

for ant k ∈ {1, . . . ,m}
construct a solution

endfor

forall pheromone values do

decrease the value by a certain percentage {evaporation}
endfor

forall pheromone values corresponding to good solutions
do

increase the value {intensification}
endfor

until stopping criterion is met

We illustrate how the general ACO scheme can be applied to a broad class of
optimization problems by means of three examples. In the first example a more
detailed ACO scheme is described and applied to the TSP. An alternative approach
is contained in the second example. The third example is an application of ACO to
a scheduling problem which is used in comparison to the first example to discuss
some additional aspects that have to be considered for designing ACO algorithms.

8.2.1 Example 1: Basic ACO and the TSP

The objective of ACO is to find good solutions for a given combinatorial optimiza-
tion problem (Dorigo 1992; Dorigo and Di Caro 1999; Dorigo et al. 1991). For an
easier description we restrict the following description to the broad class of opti-
mization problems which have solutions that can be expressed as permutations of
a set of given items. Such problems are called permutation problems and a famous
example is the TSP. After a definition of the TSP we describe the elements of the
ACO scheme that constitute an ACO algorithm, namely

• Pheromone information
• Solution construction
• Pheromone update: evaporation + intensification
• Stopping criterion

8.2.1.1 The TSP Problem

This problem is to find for a given set of n cities with distances di j between each
pair of cities i, j ∈ [1 : n] a shortest closed tour that visits every city exactly once.

8 Swarm Intelligence 217

Every such tour together with a start city can be characterized by the permutation of
all cities as they are visited along the tour. Vice versa, each permutation of all cities
corresponds to a valid solution, i.e. a closed tour.

8.2.1.2 Pheromone Information

An important part in the design of an ACO algorithm is to find a definition of the
pheromone information so that it reflects the most relevant information for the solu-
tion construction. The pheromone information for permutation problems can usually
be encoded in an n× n pheromone matrix [τi j], i, j ∈ [1 : n]. For the TSP problem
pheromone value τi j expresses the desirability to assign city j after city i in the per-
mutation. The pheromone matrix for the TSP problem is initialized so that all values
τi j with i
= j are the same. Note that the values τii are not needed because each city
is selected only once.

TSP-ACO:
Initialize pheromone values

repeat

for ant k ∈ {1, . . . ,m}{solution construction}
S := {1, . . . ,n} {set of selectable cities}
choose city i with probability p0i

repeat

choose city j ∈ S with probability pi j

S := S−{ j}
i := j
until S = /0

endfor

forall i, j do

τi j := (1−ρ) · τi j {evaporation}
endfor

forall i, j in iteration best solution do

τi, j := τi j +Δ {intensification}
endfor

until stopping criterion is met

8.2.1.3 Solution Construction

An iterative solution construction method that can be used by the ants is to start
with a random item and then always choose the next item from the set S of se-
lectable items that have not been selected so far until no item is left. Initially, the
set of selectable items S contains all items; after each decision, the selected item is
removed from S. Recall that in the case of the TSP the items are the cities. Every
decision is made randomly where the probability equals the amount of pheromone
relative to the sum of all pheromone values of items in the selection set S:

218 D. Merkle and M. Middendorf

pi j :=
τi j

∑z∈S τiz
∀ j ∈ S.

For most optimization problems additional problem-dependent heuristic infor-
mation can be used to give the ants additional hints on which item to choose next.
To each pheromone value τi j there is defined a corresponding heuristic value ηi j. For
the TSP a suitable heuristic is to prefer a next city j that is near to the current city i,
e.g. by setting ηi j := 1/di j. The probability distribution when using a heuristic is

pi j :=
ταi j ·η

β
i j

∑z∈S τ
α
iz ·η

β
iz

∀ j ∈ S, (8.1)

where parametersα and β are used to determine the relative influence of pheromone
values and heuristic values.

In order to more strongly exploit the pheromone information it has been proposed
that the ant follows with some probability q0 ∈ (0,1) the strongest trail, i.e. the edge
in the decision graph with the maximal product of pheromone value and correspond-
ing heuristic information (Dorigo and Gambardella 1997). For this case q0 is a pa-
rameter of the algorithm and with probability q0 an ant chooses next city j from the
selectable cities in S which maximizes ταi j ·η

β
i j. With probability 1−q0 the next item

is chosen according to the probability distribution determined by Eq. (8.1).

8.2.1.4 Pheromone Update

All m solutions that are constructed by the ants in one iteration are evaluated ac-
cording to the respective objective function and the best solution π∗ of the current
iteration is determined. Then the pheromone matrix is updated in two steps:

1. Evaporation: All pheromone values are reduced by a fixed proportion ρ ∈ (0,1):

τi j := (1−ρ) · τi j ∀ i, j ∈ [1 : n].

2. Intensification: All pheromone values corresponding to the best solution π∗ are
increased by an absolute amount Δ> 0:

τiπ∗(i) := τiπ∗(i)+Δ ∀ i ∈ [1 : n].

8.2.1.5 Stopping Criterion

The ACO algorithm executes a number of iterations until a specified stopping crite-
rion has been met. The most commonly used stopping criteria are (possibly used in
combination) that a predefined maximum number of iterations has been executed,
a specific level of solution quality has been reached, or the best solution has not
changed over a certain number of iterations.

8 Swarm Intelligence 219

Table 8.1 ACO variables and parameters

τi j Pheromone value
ηi j Heuristic value
m Number of ants per iteration
m̄ Number of ants per iteration allowed to increase pheromone
α Influence of pheromone
β Influence of heuristic
ρ Evaporation rate
Δ Amount of pheromone added during pheromone intensification

q0 Probability to follow the strongest trail
π∗ Best solution in the actual iteration
πe Best solution found so far (elitist solution)

A good comparison of the optimization behavior of different ACO implementa-
tions for the TSP problem can be found in Stützle and Hoos (2000). The parameters
and variables of ACO algorithms introduced in this section are summarized in
Table 8.1.

8.2.2 Example 2: Population-Based ACO and TSP

In standard ACO algorithms the information that is transferred from one iteration to
the next is the pheromone information—in the case of permutation problems this is
the pheromone matrix. An alternative approach is population-based ACO (P-ACO)
which was proposed by Guntsch and Middendorf (2002b). The idea of P-ACO is to
transfer a small amount of only the most important information from one iteration
to the next. This is done in the form of a small population of good solutions. An
advantage of P-ACO is that the population of solutions makes it possible to apply
operations from other metaheuristics to it, e.g. the crossover operation from genetic
algorithms which builds a new solution by combining properties of two solutions
that are already in the population. In this section we describe the differences be-
tween P-ACO and standard ACO for permutation problems. It has been shown that
P-ACO is competitive to the state-of-the-art ACO algorithms with the advantage of
finding good solution quality in a shorter computation time (Guntsch and Midden-
dorf 2002b; Oliveira et al. 2011). A scheme of a P-ACO algorithm for the TSP is
given in the following (compare with the scheme of ACO-TSP).

8.2.2.1 Information Transfer and Population Matrix

Instead of a complete pheromone matrix as in ACO, P-ACO transfers a small pop-
ulation P of the k best solutions that have been found in past iterations. Since each
solution for a permutation problem is a permutation of n items, the population can
be stored in an n×k matrix P= [pi j], where each column of P contains one solution.

220 D. Merkle and M. Middendorf

P-ACO-TSP:
P := /0
Initialize pheromone values

repeat

for ant k ∈ {1, . . . ,m}{solution construction}
S := {1, . . . ,n} {set of selectable cities}
choose city i with probability p0i

for i = 1 to n do

choose city j with probability pi j

S := S−{ j}
i := j
endfor

endfor

If |P|= k remove the oldest solution π̄ from
the population: P := P− π̄
Determine the best solution of the iteration and add it
to the population: P := P+π∗

Compute the new pheromone matrix from P
until stopping criterion is met

This matrix is called the population matrix. It contains the best solution of each of
the preceding k iterations. When employing an elitism strategy, the best solution
found so far in all iterations is—as in standard ACO—also always transferred to the
next iteration. In that case the population matrix contains an additional column for
the elitist solution.

8.2.2.2 Population Matrix Update

When the ants in an iteration have constructed their solutions the population (matrix)
is updated. The best solution of the current iteration is added to P. If, afterwards, P
contains k+1 solutions the oldest solution is removed from P. The initial population
is empty and after the first k iterations the population size remains k. Hence, for an
update only one column in the population matrix has to be changed. Additionally,
if elitist update is used and the best solution of the iteration is better than the elitist
solution, the corresponding column is overwritten by the new solution. Note that
each solution in the population has an influence on the decisions of the ants over
exactly k subsequent iterations. Other schemes for deciding which solutions should
enter/leave the population are discussed in Guntsch and Middendorf (2002a).

8.2.2.3 Construction of Pheromone Matrix

In P-ACO a pheromone matrix (τi j) is used by the ants for solution construction
in the same way as in standard ACO. But differently, in P-ACO the pheromone
matrix is derived in every iteration anew from the population matrix as follows.

8 Swarm Intelligence 221

Each pheromone value is set to an initial value τinit > 0 and is increased, if there are
corresponding solutions in the population:

τi j := τinit + ζi j ·Δ (8.2)

with ζi j denoting the number of solutions π ∈ P with π(i) = j, i.e. ζi j = |{h : pih =
j}|. Hence, in P-ACO a pheromone value is equal to one of the following possible
values τinit ,τinit +Δ, . . . ,τinit +k ·Δ (when using an elitist solution τinit +(k+1) ·Δ is
also possible). An update of the pheromone values is done implicitly by a population
update:

• A solution π entering the population, corresponds to a positive update:

τiπ(i) := τiπ(i)+Δ.

• A solution σ leaving the population, corresponds to a negative update:

τiσ(i) := τiσ(i)−Δ.

Note that a difference to the standard ACO algorithm is that no evaporation is used
to reduce the pheromone values at the end of an iteration.

8.2.3 Example 3: ACO for a Scheduling Problem

In this section the ACO approach is applied to a scheduling permutation problem
called the single machine total weighted tardiness problem (SMTWTP). The differ-
ences between the ACO algorithm for the SMTWTP and the TSP-ACO illuminate
two important aspects for the design of ACO algorithms, namely the pheromone
encoding and the pheromone evaluation (see Blum and Sampels 2002b; Merkle
and Middendorf 2002, 2005 for more results on the importance of the pheromone
model). Moreover, the proper adaptation of heuristics to be used for ACO is dis-
cussed. These aspects can be arranged as follows into the list of elements that con-
stitute an ACO algorithm:

• Pheromone information

– Pheromone encoding

• Solution construction

– Pheromone evaluation
– Adaptation of heuristics.

8.2.3.1 The SMTWTP Problem

For the SMTWTP n jobs are given that have to be scheduled onto a single machine.
Every job j ∈ [1 : n] has a due date d j, a processing time p j and a weight w j. If C j

222 D. Merkle and M. Middendorf

denotes the completion time of job j in a schedule, then L j = C j − d j defines its
lateness and Tj = max(0,L j) its tardiness. The objective is to find a schedule that
minimizes the total weighted tardiness of all jobs ∑n

j=1 w jTj.

8.2.3.2 Pheromone Encoding

When designing an ACO algorithm for an optimization problem it is important to
encode the pheromone information in a way that is suitable for the problem. For the
TSP it is relevant which cities are following each other in the permutation because
the distance between the cities determines the quality of the solution. Therefore,
pheromone values τi j are used to express the desirability that city j comes after i. For
the SMTWTP the relative position of a job in the schedule is much more important
than its direct predecessor or its direct successor in the schedule (see also Blum and
Sampels 2002a for other scheduling problems). Therefore pheromone values for
the SMTWTP are used differently than for the TSP. Pheromone value τi j expresses
the desirability to assign item j at place i of the permutation. Thus, this pheromone
matrix is of type place× item whereas the pheromone matrix used for the TSP is of
type item× item. For SMTWTP an ant starts to decide which job is the first in the
schedule and then always decides which job is on the next place. The pheromone
matrix for the SMTWTP problem is initialized so that all values τi j, i, j ∈ [1 : n]
are the same.

8.2.3.3 Pheromone Evaluation

Another important aspect of ACO algorithms is how the pheromone information
is used by the ants for their decisions. Real ants use trail pheromone only locally
because they cannot smell it over long distances. The artificial ants in TSP-ACO
also use the pheromone values locally which means that an ant at city i considers
only the pheromone values τi j that lead to a possible next city j ∈ S. In principle,
a local evaluation of the pheromone values is also possible for the SMTWTP (and
has been used so—Bauer et al. 1999). An ant that has to decide which job is in
the next place i in the permutation considers all values τi j , j ∈ S which indicates
how well the selectable jobs have performed in this place. But assume that for some
selectable job j ∈ S its highest pheromone value is τl j for an l < i. This indicates
that for job j place l in the schedule is very good. But this also means that job j
should not be placed much later than place l in order not to risk a due date violation.
Therefore, even when the value τi j is small the ant should choose job l with high
probability. Therefore, for SMTWTP a global pheromone evaluation rule has been
proposed which is called summation evaluation because an ant that has to decide
about place i of the permutation makes the selection probability for every selectable
job dependent on the sum of all pheromone values for this job up to place i (Merkle
and Middendorf 2003b):

8 Swarm Intelligence 223

Local evaluation

0

10

20

30

40

50

 0

 10

 20

 30

 40

 50

0

10

20

30

40

50

Global evaluation (Summation evaluation)

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0

10

20

30

40

50
0 10 20 30 40 50

0

10

20

30

40

50

 0

 10

 20

 30

 40

 50

0

10

20

30

40

50
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0

10

20

30

40

50
0 10 20 30 40 50

Fig. 8.2 Comparison between SMTWTP-ACO with local evaluation and summation evaluation:
pheromone matrices averaged over 25 runs in iterations 800, 1,500, 2,200 and 2,900 (left to right):
brighter gray colors indicate higher pheromone values

pi j =
(∑i

l=1 τl j)
α ·ηβi j

∑z∈S(∑
i
l=1 τlz)α ·ηβiz

∀ j ∈ S. (8.3)

To demonstrate the influence of the pheromone evaluation method and the change
of pheromone values in ACO we show results of a very simple SMTWTP test
instance (for more results and another global pheromone evaluation method see
Merkle and Middendorf 2003a). It consists of 50 jobs where job i ∈ [1 : 50] has
processing time pi = 1, due date di = i and weight wi = 1. Clearly, to place job i
on place i is the only optimal solution with total weighted tardiness 0. Figure 8.2
shows the average change of pheromone values for ACO-SMTWTP with local and
with global evaluation (no heuristic was used) for several runs with m = 10 ants per
iteration. The figure shows clearly that for this problem summation evaluation per-
forms much better than local evaluation. Compared to local evaluation the results
of summation evaluation depicted in Fig. 8.2 show a very symmetric behavior and
do not have the undesired property that some of the jobs with a small number are
scheduled very late.

Table 8.2 Influence of global pheromone evaluation and adapted heuristic on solution quality for
SMTWTP. Difference of total tardiness to total tardiness of best results from the literature average
over 125 instances (see Merkle and Middendorf 2003b for details); Σ with summation evaluation;
H with adapted heuristic (8.5)

ACO-ΣH ACO-Σ ACO-H ACO
79.5 200.0 204.5 1198.6

224 D. Merkle and M. Middendorf

8.2.3.4 Adaptation of Heuristics

For many (scheduling) problems there exist priority heuristics which can be used to
decide which job is next when building a schedule. An example for the unweighted
form of the SMTWTP is the modified due date rule (MDD), that is

ηi j =
1

max{T + p j,d j}
, (8.4)

where T is the total processing time of all jobs already scheduled. Observe, that
the heuristic prefers jobs with a small due date from all jobs that would finish be-
fore their due date when scheduled next. Furthermore, of all those jobs that will
finish after their due date, the jobs with short processing times are preferred. Some
care has to be taken when using standard priority heuristics for scheduling prob-
lems in an ACO algorithm because the heuristic values might not properly reflect
the relative influence they should have on the decisions of the ants. In the case of
the MDD heuristic the problem occurs that the values of max{T + p j,d j} become
much larger—due to T —when deciding about jobs to place further at the end of
the schedule. As a consequence, the heuristic differences between the jobs are, in
general, small at the end of the schedule. This means that the ants cannot really
differentiate between the various alternatives. To avoid this effect an accordingly
adapted heuristics should be used (Merkle and Middendorf 2003b), e.g.

ηi j =
1

max{T + p j,d j}−T
. (8.5)

To illustrate the effect of an adapted heuristic together with global pheromone
evaluation some test results for benchmark problems with n = 100 jobs from the
OR-Library (2012) are given. The ACO parameters used are m = 20 ants per gener-
ation α= 1, β= 1, ρ= 0.1, q0 = 0.9, and local optimization was applied to solutions
found by the ants (see Merkle and Middendorf 2003b for more details). Table 8.2
compares the behavior of the algorithm using non-adapted heuristic (8.4) and local
pheromone evaluation with the algorithms that use one or both of adapted heuris-
tic (8.5) and global pheromone evaluation. The results clearly show that using an
adapted heuristic (8.5) or the global pheromone evaluation improves the results sig-
nificantly, and using both is best.

8.2.4 Advanced Features of ACO

In this section several variations and extension of the ACO algorithms are described
that often lead to an increased search efficiency and better optimization results.

8 Swarm Intelligence 225

8.2.4.1 Variants of Pheromone Update

Several variations of pheromone update have been proposed in the literature:

• Quality-dependent pheromone update. In some ACO algorithms not only the best
solution, but the m̄ < m best solutions of each iteration are allowed to increase
the pheromone values. In addition the amount of pheromone that is added can
be made dependent on the quality of the solution so that the more pheromone
added, the better the solution is (Dorigo et al. 1996). For the TSP this means that
for shorter tours more pheromone is added.

• Rank-based pheromone update. Here the m̄ ≤ m best ants of an iteration are
allowed to increase the pheromone. The amount of pheromone an ant is allowed
to add depends on its rank within the m̄ best solutions and the quality of the
solution (Bullnheimer et al. 1999).

• Elitist solution pheromone update. It can be advantageous to enforce the influ-
ence of the best solution that has been found so far over all iterations, called
the elitist solution (Dorigo et al. 1996). This is done by adding pheromone dur-
ing pheromone intensification also according to this solution. Several variations
have been studied: e.g. to let randomly update either the iteration best or the eli-
tist solution with increasing probability for an elitist update (Stützle and Hoos
2000) or to apply elitist pheromone update but to forget the elitist solution after
several iterations by replacing it with the iteration best solution (Merkle et al.
2002).

• Best–worst pheromone update. This pheromone update method in addition to the
standard pheromone update reduces the pheromone values according to the worst
solution of an iteration provided that a pheromone value does not also correspond
to the elitist solution (Cordón et al. 2000). A problem for this method is that often
a decision which can lead to bad solutions can also lead to a very good solution.

• Online step-by-step pheromone update (Dorigo and Gambardella 1997; Dorigo
et al. 1991). This means that an ants adds or removes pheromone from an edge
in the decision graph it has chosen immediately after the decision was made (see
Dorigo and Di Caro 1999 for more details). One motivation to use online step-by-
step pheromone update in addition to the standard update is to remove pheromone
to increase the variability in the choices of the ants during an iteration.

• Moving-average pheromone update. A pheromone update scheme where each
constructed solution is allowed to update the pheromone (Maniezzo 1999). When
the actual solution is better than the average quality of the last k > 0 solutions
than it increases its corresponding pheromone values and otherwise it decreases
them.

• Minimum pheromone values. The use of minimum pheromone values was pro-
posed in order to guarantee that each possible choice always has a minimum
probability to be chosen (Stützle and Hoos 2000).

226 D. Merkle and M. Middendorf

8.2.4.2 Other ACO Variants

Several variants of ACO algorithms which do not use the pheromone update
have also been proposed (see Dorigo and Di Caro 1999 for an overview):

• Candidate lists. A candidate list defines for each decision a set of preferable
choices (Dorigo and Gambardella 1997). For the TSP a candidate list can be
defined for each city to determine the set of preferred successor cities. An ant
then chooses, if possible, the next city only from cities that are in the selection
set S and also in the candidate list.

• Lower bounds. The use of lower bounds on the cost of completing a partial
solution was proposed in Maniezzo (1999). The lower bounds give additional
heuristic information about the possible choices.

• Lookahead. A lookahead strategy was proposed by Michels and Middendorf
(1999) where for each possible choice of an ant the maximum ταi j ·η

β
i j value that

would result from this choice is evaluated and taken into account when actually
making a decision.

• Stagnation recovery. For longer runs of an ACO algorithm there is the danger
that after some time the search concentrates too much on a small search region.
Several authors have proposed methods for modification of the pheromone infor-
mation to counteract such stagnation behavior of ACO algorithms. When stagna-
tion is detected the approach of Gambardella et al. (1999) is to reset all elements
of the pheromone matrix to their initial values. Stützle and Hoos (1997) sug-
gested increasing the pheromone values proportionately to their difference to the
maximum pheromone value.

• Changing α, β values. Merkle et al. (2002) proposed reducing the value of β
during a run to increase the influence of the pheromone at later stages of the
algorithm. See item “Stagnation recovery” (above) for changing α values.

• Repelling pheromone. Some experiments with pheromone that allow the ants
to avoid choosing an edge have been performed by Kawamura et al. (2000)
and Montgomery and Randall (2002) in order to enforce ants (or different
colonies of ants) to search in different regions of the search space.

• Moving direction. The use of ants that “move in different directions” can improve
the optimization behavior (Michels and Middendorf 1999). For a permutation
problem this could mean that some ants decide first which item is in place one
of the permutation and other ants decide first which item is in the last place.
In general, it can be said that the ants should make important decisions early
(Merkle and Middendorf 2005).

• Local improvement of solutions. The use of local optimization strategies to
improve the solutions that have been found by the ants has been applied so
successfully (e.g. Dorigo and Gambardella 1997; Stützle et al. 2000) that most
state-of-the-art ACO algorithms use local improvement strategies. Two variants
of the use of local improvement strategies exist: (i) to determine how much
pheromone is updated for a solution, the quality or rank of the solution is com-
puted after the local improvement has been applied but the actual pheromone

8 Swarm Intelligence 227

update is done according to the original solution before the local improvement,
(ii) the same as (i) but the pheromone update is done according to the solution
after local improvement.

8.2.5 Promising Areas for Future Applications of ACO

An important area of research for practical applications of ACO is to create hybrid
algorithms that combine properties of ACO with other search heuristics. Other
promising fields like multiobjective optimization, dynamic and probabilistic op-
timization, hybrid algorithms, parallel and hardware algorithms, and theoretical
aspects cannot be covered in this introductory tutorial.

8.2.5.1 Hybrid ACO

The aim of hybrid search heuristics is to combine the advantages of different
types of search heuristics. In recent years hybrids between ACO and the following
metaheuristics have been designed: genetic algorithms (GAs), particle swarm op-
timization (PSO), simulated annealing (SA), scatter search, path relinking, greedy
randomized adaptive local search procedure (GRASP), tabu search, and others. The
International Workshop on Hybrid Metaheuristics is particularly devoted to the
study of this research field (see Blesa et al. 2009 for the latest proceedings).

8.3 Particle Swarm Optimization

The roots of the metaheuristic that is described in this section lay in computing
models that have been created by scientists in the last two decades to simulate bird
flocking and fish schooling. The coordinated search for food which let a swarm of
birds land at a certain place where food can be found was modeled with simple
rules for information sharing between the individuals of the swarm. These stud-
ies inspired Kennedy and Eberhart to develop a method for function optimization
that they called particle swarm optimization (Kennedy and Eberhart 1995). A PSO
algorithm maintains a population of particles (the swarm), where each particle rep-
resents a location in a multidimensional search space (also called problem space).
The particles start at random locations and search for the minimum (or maximum)
of a given objective function by moving through the search space. The analogy to
reality (in the case of a search for a maximum) is that the function measures the
quality or amount of the food at each place and the particle swarm searches for the
place with the best or most food. The movements of a particle depend only on its
velocity and the locations where good solutions have already been found by the par-
ticle itself or other (neighbored) particles in the swarm. This is again in analogy to

228 D. Merkle and M. Middendorf

bird flocking where each individual makes its decisions based on cognitive aspects
(modeled by the influence of good solutions found by the particle itself) and social
aspects (modeled by the influence of good solutions found by other particles). Note
that, unlike many deterministic methods for continuous function optimization, PSO
uses no gradient information.

In a typical PSO algorithm each particle keeps track of the coordinates in the
search space which are associated with the best solution it has found so far. The
corresponding value of the objective function (fitness value) is also stored. Another
“best” value that is tracked by each particle is the best value obtained so far by any
particle in its topological neighborhood. When a particle takes the whole population
as its neighbors, the best value is a global best. At each iteration of the PSO algo-
rithm the velocity of each particle is changed towards the personal and global best
(or neighborhood best) locations. But also some random component is incorporated
into the velocity update. A scheme for a PSO algorithm is given below.

PSO scheme:
Initialize location and velocity of each particle

repeat

for each particle
evaluate objective function f at the particles location

endfor

for each particle
update the personal best position

endfor

update the global best position
for each particle
update the velocity
compute the new location of the particle

endfor

until stopping criterion is met

PSO has become a very active field of research with several hundreds of publica-
tions per year. The main use of PSO is as function optimizer that is often embedded
into a more complex application context. An extensive overview on different fields
of applications is given in Poli (2008). Most applications of PSO are in the fields of
image and video analysis, control, distribution networks, power systems and plants
(Alrashidi and El-Hawary 2009; del Valle et al. 2008), electronics and electromag-
netics, design signal processing (Merkle and Middendorf 2008), biomedicine, com-
munication networks, data mining, fuzzy systems and neural networks. Some works
have also been done to apply PSO to discrete problems, e.g. scheduling problems.

In the following we describe in more detail how the PSO scheme can be applied
to optimization problems. The first example considers the typical use of PSO for
continuous optimization. A subset problem is addressed in the second example to
illustrate how PSO can be applied to other types of optimization problems.

8 Swarm Intelligence 229

8.3.1 Example 1: Basic PSO and Continuous Function

Optimization

In order to describe the PSO algorithm for function optimization we need some
notation. Let f be a given objective function over a D-dimensional problem space.
The location of a particle i ∈ {1, . . . ,m} is represented by a vector xi = (xi1, . . . ,xiD)
and the velocity of the particle by the vector vi =(vi1, . . . ,viD). Let ld and ud be lower
and upper bounds for the particles coordinates in the dth dimension, d ∈ [1 : D]. The
best previous position of a particle is recorded as pi = (pi1, . . . piD) and is called
pBest. The index of the particle with the so far best found position in the swarm is
denoted by g and pg is called gBest.

At each iteration of a PSO algorithm after the evaluation of function f the per-
sonal best position of each particle i is updated, i.e. if f (xi)< f (pi) then set pi = xi.
If f (pi)< f (pg) then i becomes the new global best solution, i.e. set g = i. Then the
new velocity of each particle i is determined during the update of velocity in every
dimension d ∈ [1 : D] as follows:

vid = w · vid + c1 · r1 · (pid − xid)+ c2 · r2 · (pgd − xid), (8.6)

where

• Parameter w is called the inertia weight, it determines the influence of the old
velocity; the higher the value of w the more the individuals tend to search in new
areas; typical values for w are slightly smaller than 1.0;

• c1 and c2 are the acceleration coefficients, which are also called the cognitive and
the social parameter respectively, because they are used to determine the influ-
ence of the local best position and the global best position respectively; typical
values are c1 = c2 = 2;

• r1 and r2 are random values uniformly drawn from [0,1].

After velocity update the new position of particle i is determined by

xid = xid + vid.

If there is a maximum range for the location in dimension d, i.e. xg ∈ [ld ,ud], then
the particle is reflected.

The behavior of PSO algorithms is usually studied and compared on a set of
standard test functions. Examples of the most prominent test functions are given in
Table 8.3. These functions represent different types of functions, e.g. the variables
in Sphere and Rastrigin are uncorrelated which is not the case for the other functions
in the table. Most of these functions are typically used for 10–100 dimensions.

As an example we consider a test run of the standard PSO with a swarm of
size m = 10 on the two-dimensional Sphere function (the PSO parameters used
are w = 0.729, c1 = c2 = 1.494). It can be seen from Fig. 8.3 (left) that the swarm
proceeds from initial random positions at iteration t = 0 towards the single minimum
value of the Sphere function. The velocity vectors of the particles at iteration t = 10
are shown in Fig. 8.3 (right).

230 D. Merkle and M. Middendorf

Table 8.3 Test functions
Sphere

f1(x) = ∑D
i=1 x2

i
Rastrigin

f2(x) = ∑D
i=1(x

2
i −10cos(2πxi)+10)

Rosenbrock

f3(x) = ∑D−1
i=1 (100(xi+1− x2

i)
2 +(xi−1)2)

Schaffer’s f6

f4(x) = 0.5− (sin
√

x2
1+x2

2)
2−0.5

(1+0.001(x2
1+x2

2))
2

Griewank

f5(x) =
1

4000 ∑
D
i=1 x2

i −∏D
i=1 cos(xi√

i
)+1

t=0 t=10 t=30

-100 -50 0 50 100
–100

–50

 0

 50

 100

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

–100 –50 0 50 100
–100

–50

 0

 50

 100
t=10

Fig. 8.3 Swarm on the two-dimensional Sphere function; particle positions at iterations t ∈
{0,10,30} (left); particle positions and velocity vectors at iteration t = 10 (right)

8.3.2 Example 2: Discrete Binary PSO for Subset Problems

Subset problems are a broad class of optimization problems where the aim is to
find a good subset of a given set of items. For many practical problems additional
restrictions will be given so that not all subsets of the given set are valid. A difference
to many permutation problems like the TSP is that subset problems allow solutions
of different sizes. As an example subset problem we consider a problem from the
financial sector where the earnings of a company have to be forecast. The forecast
is based on financial ratios that are generated from the companies results and other
economic indicators from the last quarters. We assume that a forecast method is
given that computes for each financial ratio a forecast and the final forecast is the
average of the forecasts for all given values. Since many different financial ratios
are in use, e.g. the book value per share or the total growth rate of a company, the
problem is to select a not-too-large subset of these so that the forecast method gives
good forecasts when applied to the selected financial ratios.

To solve a subset problem with PSO a particle can be encoded by a D-dimensional
vector where D = |M| equals the size of the given set M (in the example M is the

8 Swarm Intelligence 231

set of all considered financial ratios). Each dimension represents one binary bit that
determines whether the corresponding item respectively the corresponding finan-
cial ratio is selected to be member of the subset. The crucial part in the design of
the PSO algorithm is to connect the continuous movement of the particles to the
discrete solution space.

In the so-called discrete binary PSO algorithm this is done as follows (Kennedy
and Eberhart 1997). Similar as for the continuous PSO, the position of a particle
corresponds to a solution and the velocity has an influence on the new position. But
how the position is computed is different. Since the solution space is discrete and
a particle should not stay at the same place, a random component is used in the
computation of the new position. The idea is to let a high velocity in one dimension
give a high probability that the corresponding bit of the position vector is one.

Formally, the velocity of a particle is determined exactly as in Eq. (8.6). In order
to determine the probabilities for the computation of the position vector a function
is used that maps a velocity value onto the interval [0,1]. A function which is often
used is sig(vid) = 1/(1+exp(−vid)). To determine the dth bit of the position vector
of particle i a random number rid is drawn from the interval [0,1] and the dth bit is
set to one if rid < sig(vid) and otherwise it is set to zero.

The results of a comparative study between the discrete binary PSO and a GA
for the financial ratio selection problem are presented in Ko and Lin (2004). It was
shown for a problem of dimension D = 64 that PSO is faster and gives better results
than the GA.

8.3.3 Advanced Features of PSO

Many variations of the velocity update in PSO and extensions of the standard PSO
for a better control of the behavior of the swarm have been proposed in the literature
(see Sedighizadeh and Masehian 2009 for a taxonomy of the different PSO variants).
Only some extensions can reviewed in this section.

• Adaptive PSO. In Clerc (2002) a version of PSO was proposed where most val-
ues of the algorithms parameters are adapted automatically at run time. One ex-
ample parameter is the swarm size that varied during execution. A particle is
removed when it is the worst (with respect to the best solution found so far) of a
neighborhood of particles and the best particle in its neighborhood has improved
significantly since its creation. Other rules have been implemented for creating
new particles. A PSO that combines ideas of various other adaptive PSOs and
has several layers of adaptation has been proposed by Ritscher et al. (2010).

• Neighborhood best velocity update. Several PSO algorithms establish a neighbor-
hood relation between particles. In that case, instead of using the global best posi-
tion gBest for velocity update for each particle the best position of the particles in
its neighborhood is used. This position is called neighborhood best and is denoted
by lBest. A PSO variant where all particles in the neighborhood of a particle
have an influence on its velocity was proposed by Kennedy and Mendes (2003).

232 D. Merkle and M. Middendorf

The following formula describes such an-all-neighborhood-velocity-update of
particle i with neighborhood Ni in dimension d ∈ [1 : D] (note that a particle
is included in its own neighborhood):

vid = w · vid + ∑
j∈Ni

c · r j · (p jd − xid)

|Ni|
. (8.7)

A Hierarchical PSO where particles are particle within a hierarchy and neighbor-
hood is defined by the place within the hierarchy has been proposed in Janson
and Middendorf (2005).

• Simplified PSO. A PSO which does not use the personal best positions for ve-
locity update was suggested by Kennedy (1997) and has been called social only
PSO. A similar simplified PSO was investigated by Pedersen and Chipperfield
(2010) and was shown to perform well for optimizing artificial neural network
problems.

• Maximum velocity. A parameter vmax is introduced for some PSO algorithms
to restrict the size of the elements vid of the velocity vector so that vid ∈
[−vmax,vmax]. Hence, when the velocity of a particle becomes larger than vmax

during velocity update it is set to vmax. A typical range for values of vmax is
[0.1 · xmax,1.0 · xmax]. Observe that such values for vmax do not restrict the possi-
ble locations of a particle to [−xmax,xmax].

• Queen particle. The addition of a queen particle, which is always located at the
swarm’s actual gravity center was proposed in Clerc (1999). Since the gravity
center of the swarm might often be near a possible optimum, it is reasonable to
evaluate the objective function at this location. Experimental results have shown
that it depends on the type of function whether the introduction of a queen parti-
cle is advantageous.

• Convergence enforcement. Several authors have considered the problem of how
to improve the rate of convergence of PSO.

– A constriction coefficient K was introduced in Clerc and Kennedy (2002) to
reduce undesirable explosive feedback effects where the average distance be-
tween the particles grows during an execution. With the constriction coeffi-
cient as computed in Kennedy and Eberhart (1999) and Kennedy et al. (2001)
the formula for velocity update becomes

vid = K · (vid + c1 · r1 · (pid − xid)+ c2 · r2 · (pgd − xid)).

Note that the constriction factor is just another way of choosing parameters
w, c1 and c2. It can be shown that the swarm converges when parameter K is
determined as (Kennedy and Eberhart 1999)

K =
2

|2− c−
√

c2− 4c|

with c = c1 + c2, c > 4.

8 Swarm Intelligence 233

– Parameter w can be decreased over time during execution to diminish the
diversity of the swarm and to reach faster a state of equilibrium. A linear
decrease of w from a maximum value wmax to a minimum value wmin is used
by several authors (e.g. Kennedy et al. 2001). Typical values are wmax = 0.9
and wmin = 0.4.

– In Vesterstrøm et al. (2002) the concept of division of labor and specialization
was applied to PSO. Specialization to a task in this approach means for a
particle to search near the global best position gBest. A particle that has not
found a better solution for a longer time span is replaced by gBest in order
to start searching around it. To prevent too many particles searching around
gBest it was suggested to use a maximum number of particles that can switch
to gBest. Note that a similar approach to let particles that have not found good
solutions jump to the place of good particles is realized in the hybrid PSO,
described below.

• Controlling diversity. To prevent the swarm from converging too early to a small
area so that the particles become too similar, some methods have been proposed
to maintain the diversity of the swarm. A common measure for the diversity of
the swarm S in PSO is the “distance to average point”:

diversity(S) :=
1
|S| ·

|S|
∑
i=1

√

√

√

√

D

∑
j=1

(pi j− p̄ j)

where p̄ is the average vector of all pBest vectors pi. In order to make the diver-
sity measure independent of the range of the search space some authors use the
measure diversity(S)/|L| where |L| is the length of the longest diagonal in the
search space. Some methods to keep the diversity of the swarm high enough are
described in the following.

– Xie et al. (2002) proposed adding an additional random element to the move-
ment of the particles. In the new algorithm called dissipative PSO (DPSO),
immediately after velocity update and determination of the new position of the
particles the following computations are done to introduce additional “chaos”
to the system:

if rand()< cv then

vid = rand() · vmax,d {chaos for velocity}
if rand()< cl then

xid = rand(ld ,ud) {chaos for location}

where cv,cl ∈ [0,1] are parameters which control the probability to add chaos,
rand(a,b) is random number that is uniformly distributed in (a,b) (rand() is a
shortcut for rand(0,1)) and ld , ud are lower and upper bounds for the location
in dimension d. Observe, that if rand() < cl the dth dimension of the new
position is a random location within the search area.

234 D. Merkle and M. Middendorf

– The idea of using particles that have a spatial extension in the search space
was established in Krink et al. (2002) to hinder particles from coming too
close to each other and forming too dense clusters. In this variation of PSO
particles that come too close to each other bounce away. Preliminary experi-
mental results show that bouncing can be advantageous for complex objective
functions. For objective functions with a single optimum, clustering is not
a problem and bouncing is not advantageous. A similar approach to hinder
the swarm from collapsing uses an analogy to electrostatic energy. In this ap-
proach, so-called charged particles experience a repulsive force when they
come too close to each other (Blackwell and Bentley 2002). Swarms with
different ratios of charged particles have been studied.

– A strategy to explicitly control the diversity is to have two different phases
of the PSO algorithm that can increase (repulsion phase) or reduce (attraction
phase) the diversity of the swarm (Riget and Vesterstrøm 2002). Two thresh-
old values have been introduced that are used to determine when an exchange
between the two phases should take place. When the diversity becomes lower
than the threshold dlow the algorithm switches to the repulsion phase and when
the diversity becomes larger than threshold dhigh > dlow the algorithm changes
to the attraction phase. The only thing that happens when the phase of the al-
gorithm changes is that every velocity vector is changed so that it points in
the opposite direction. The authors have shown by experiments that nearly
all improvements of the global best solutions were found during the attrac-
tion phases. Therefore, they propose to do no function evaluations during the
repulsion phase to reduce the run time of the algorithm.

• Stagnation recovery. For multi-modal functions there is the danger of premature
convergence of standard PSO which results in suboptimal solutions. Stagnation
recovery means detecting such a situation and reacting accordingly.

– Re-initialization of the swarm is proposed in Clerc (1999) when the diameter
of the area that is actively searched by the swarm has become too small. The
new swarm is initialized around the previous best position.

8.3.4 Promising Areas for Future Applications of PSO

Complex multimodal functions that possess multiple and possibly similarly good
local optimal solutions occur in many applications. Often in such applications it is
not enough to know just a single of these local optimal solutions but several or all
of them are needed. Two areas of future PSO research that are relevant for optimiz-
ing such complex multimodal functions are: (i) to find additional operations on the
particles that can improve the optimization efficiency and (ii) to investigate how sev-
eral swarms can work cooperatively. We briefly review some works in both areas.
Other interesting application and research areas like multiobjective and dynamic op-

8 Swarm Intelligence 235

timization, hybrid algorithms, and theoretical aspects of PSO cannot be covered in
this introductory tutorial.

8.3.4.1 Operations on Particles

Several operations on particles other than velocity update have been proposed in
recent years. Examples are: (i) mutation operators that change the position of a
particle, (ii) interpolation operators that try to find a new good position between
the positions of several other particles, or (iii) operations that try to make particles
behave similarly to particles in quantum mechanics. Algorithms using the latter type
of operations are called quantum PSO algorithms (QPSOs) (Sun et al. 2004). In a
QPSO the state of a particle is described by a wavefunction, instead of a position
and a velocity. The wavefunction determines the probability of a particle appearing
at a certain position.

8.3.4.2 Cooperative Swarms

Cooperative swarms have been introduced in order to divide the work between sev-
eral swarms. One motivation is that it can be very difficult for a single swarm to solve
problems with large dimension D. An example is the Cooperative Swarm Optimizer
(CPSO) or Split Swarm that uses a set of swarms and splits the work equally be-
tween them in the following way (van den Bergh and Engelbrecht 2000). The vector
to be optimized is split across the swarms so that each swarm optimizes a different
part of the vector, i.e. the swarms optimize with respect to different dimensions of
the search space. Cooperation between the swarms is established in that for every
evaluation of a new position of some particle its partial vector is combined with
one partial vector from each of the other swarms so that the quality of the result-
ing position is best. Experiments with CPSO for function minimization and neural
network learning have shown that it is good for problems where the dependencies
between the component vectors are not too strong. Another motivation to use coop-
erative swarms is for solving multiobjective problems where several functions have
to be optimized so that the swarms optimize with respect to different functions. A
problem is then to find good methods for exchanging information about the best
positions between the swarms (see for example Parsopoulos et al. 2004).

A PSO method that intends to form subswarms of particles searching for the same
local minimum is proposed in Kennedy (2000). A standard k-means cluster method
was used to divide the swarm into several clusters of individuals. For velocity update
then each particle i uses the center of its cluster instead of its personal best position
pid (see Eq. (8.6)). Test results have shown that this velocity update modification
can be advantageous, especially for multimodal functions like the Rastrigin function
(see Table 8.3).

Niching techniques can also be used to promote the formation of subswarms
around different local optima. Niching is a concept that is inspired by the famous

236 D. Merkle and M. Middendorf

observation known from ecology that coexisting species can survive because they
occupy different niches, which roughly means that they have different tasks.
A niching technique for PSO that aims to find all good local minima was pro-
posed by Parsopoulos and Vrahatis (2001). It uses a function stretching method that
changes the objective function during execution as follows. Assume that a position
x has been found where the objective function f to be minimized has a small value.
Then f is transformed with the aim to remove local minima that are larger than
f (x) and a subswarm is created that searches for a local minimum near x on the
transformed function. In addition, a second transformation is applied to f which
increases the function values in the neighborhood of x. This function is then used
by the main swarm which will be repelled from the area around x and searches for
a different local minimum. Another niching approach for PSO was proposed by
Brits et al. (2002). The niching PSO starts with particles that move according to
the so-called cognition-only model where velocity update is done only according to
the personal best position of an individual (i.e. c2 = 0 in Eq. (8.6)). The particles
then basically perform local search. When the quality of a particle has not changed
significantly for several iterations it is assumed that is has reached the region of a
local minimum. To search for this minimum a subswarm is formed. Several rules
are used to define how other particles can enter a subswarm or how subswarms with
intersecting regions are merged.

8.4 Tricks of the Trade

For newcomers to the field of swarm intelligence it is an advantage that ACO and
PSO algorithms are relatively easy to implement so that one can devise one’s own
practical experience without too much initial effort. Often even the standard form
of ACO and PSO algorithms that do not use many problem-specific features work
reasonably well for different types of optimization problems. This is especially true
for certain types of problems, e.g. scheduling problems in the case of ACO and con-
tinuous function optimization in case of PSO. Clearly, such an early success should
not lead to the illusion that swarm intelligence is a field where good algorithms can
be obtained more or less for free, because principles are used that have been inspired
by successful strategies which occur in nature. The following hints might be helpful
for the newcomer to get a deeper understanding of swarm intelligence:

• Read those papers where swarm intelligence methods have been applied to prob-
lems that are similar to the problem you want to solve. Not less important is
the study of good papers where you can learn about specific aspects of swarm
intelligence methods or where carefully designed state-of-the-art algorithms are
described.

• Preferably, do not start with too complicated an algorithm that you do not under-
stand. Critically evaluate every step of your algorithm.

• Investigate how your algorithm behaves on different types of problem instances
and try to verify your explanations. Test your algorithm on benchmark instances,

8 Swarm Intelligence 237

if available, to make comparisons with the works of other researchers easier.
Ideally, use random instances and real-world instances for the tests. Random
instances have the advantage that their properties can be characterized by their
generation method. A disadvantage is that they are often too artificial to reflect
important characteristics of real-world problems. In addition, carefully designed
artificial problem instances can sometimes help to study special aspects of the
behavior of algorithms.

• Investigate how robust your algorithm is with respect to changes of the parame-
ters (e.g. parameters α, β, and ρ for ACO and parameters w, c2 and c2 for PSO).

• Consider the optimization behavior of your algorithm at different numbers of
iterations. Then you can find out for example whether the algorithm converges
too early.

For ACO the following hints should be considered:

• It is important to use pheromone information so that the ants are guided to good
solutions. Two connected aspects are important here: (i) the pheromone should
be used to encode properties of a solution that are most relevant in the sense
that they can be used to characterize the good solutions, and (ii) the pheromone
information should be interpreted by the ants in the best possible way.

• Find a solution construction process so that the ants make important decisions
early on and so that they can use a good (deterministic) heuristic. Such heuristics
can be found in the literature for many problems.

For PSO the following hint should be considered:

• For function optimization it is important to understand the characteristics of the
search landscape of the application functions. When there is basically a single
valley in the search space, a single swarm where convergence is enforced might
work. But for search landscapes with many valleys a more sophisticated approach
might be necessary, where the diversity of the swarm is controlled, stagnation
recovery mechanisms are introduced, or several cooperative swarm are used.

8.5 Conclusion

The field of swarm intelligence with the vision to learn from the behavior of natural
swarms for the development of new methods in optimization has produced with
ACO and PSO two successful metaheuristics that have found a increasing number
of applications in the last few years. The basic principles of swarm intelligence
methods and a selection of example applications have been explained in this tutorial.
New algorithmic principles, e.g. HBO, arise for swarm intelligence and there are
also a number of new application areas where swarm intelligence will play its part.
One promising concept are hybrid methods where swarm intelligence algorithms
work in line with other metaheuristics. Hopefully, this tutorial may be a starting
point for the reader to further explore the field of swarm intelligence.

238 D. Merkle and M. Middendorf

Sources Of Additional Information

• Good introductory books that cover various aspects of Swarm Intelligence are:
(i) Bonabeau, Dorigo, and Theraulaz, Swarm Intelligence: From Natural to Ar-
tificial Systems, 1999, Oxford University Press, (ii) Kennedy, Eberhart, and Shi,
Swarm Intelligence, 2001, Morgan Kaufmann.
Recent overview papers are Blum (2005) and Dorigo and Blum (2005) on ACO
and Banks et al. (2007) and Banks et al. (2008) on PSO.

• The following book is the ultimate reference book for ACO: Dorigo and Stützle,
Ant Colony Optimization, 2004, MIT Press. A good reference book on PSO
which also covers other parts of Swarm Intelligence is: Engelbrecht, Funda-
mentals of Computational Swarm Intelligence, 2005, Wiley. Anther recent book
on PSO is: Parsopoulos and Vrahatis, Particle Swarm Optimization and Intelli-
gence: Advances and Applications. 2010, Information Science Publishing (IGI
Global).

• Two journals that are devoted entirely to the field of Swarm Intelligence are:
Swarm Intelligence, Springer, and the International Journal of Swarm Intelli-
gence Research, IGI Global.

• Recent special issues of journals that are devoted to Swarm Intelligence are

– Special Issue on Swarm Intelligence Theory, Theoretical Computer Science
411(21), Bonabeau et al., guest editors, 2010.

– Special Issue on Swarm Intelligence, Natural Computing, Bonabeau et al.,
guest editors, 2010.

– Special Issue on Particle Swarm Optimization, Swarm Intelligence 3(4), Poli
et al., guest editors, 2009.

– Special Issue on Swarm Intelligence, IEEE Transactions on Evolutionary
Computation 13(4), Engelbrecht et al., guest editors, 2009.

– Special Issue on Ant Colony Optimization, Swarm Intelligence 3(1), Doerner
et al., guest editors, 2009.

• A valuable source of recent research papers are the proceedings of the follow-
ing conference series that focus on Swarm Intelligence: (i) International Con-
ference on Ant Colony Optimization and Swarm Intelligence (ANTS), (ii) IEEE
Swarm Intelligence Symposium (SIS) (the latest proceedings are Dorigo et al.
2008 and Kennedy and Shi 2009, respectively). Another new conference on the
topic is the International Conference on Swarm Intelligence (ICSI).

References

Alrashidi MR, El-Hawary ME (2009) A survey of particle swarm optimization
applications in electric power systems. IEEE Trans Evol Comput 13:913–918

Banks A, Vincent J, Anyakoha C (2007) A review of particle swarm optimization.
Part I: background and development. Nat Comput 6:467–484

8 Swarm Intelligence 239

Banks A, Vincent J, Anyakoha C (2008) A review of particle swarm optimization.
Part II: hybridisation, combinatorial, multicriteria and constrained optimization,
and indicative applications. Nat Comput 7:109–124

Bauer A, Bullnheimer B, Hartl RF, Strauss C (1999) An ant colony optimization
approach for the single machine total tardiness problem. In: Proceedings of the
CEC 1999, Washington, DC. IEEE, Piscataway, pp 1445–1450

Blackwell TM, Bentley PJ (2002) Dynamic search with charged swarms. In:
GECCO 2002, New York. Morgan Kaufmann, San Mateo, pp 19–26

Blesa MJ, Blum C, Di Gaspero L, Roli A, Sampels M, Schaerf A (eds) (2009) In:
6th international workshop hybrid metaheuristics, Udine. LNCS 5818. Springer,
Berlin

Blum C (2005) Ant colony optimization: introduction and recent trends. Phys Life
Rev 2:353–373

Blum C, Sampels M (2002a) Ant colony optimization for FOP shop scheduling: a
case study on different pheromone representations. In: Proceedings of the CEC
2002, Honolulu, pp 1558–1563

Blum C, Sampels M (2002b) When model bias is stronger than selection pres-
sure. In: Proceedings of the PPSN VII, Granada. LNCS 2439. Springer, Berlin,
pp 893–902

Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to
artificial systems. Oxford University Press, New York

Brits R, Engelbrecht AP, van den Bergh F (2002) A niching particle swarm
optimizer. In: Proceedings of the SEAL 2002, Singapore, pp 692–696

Bullnheimer B, Hartl RF, Strauss CA (1999) New rank based version of the ant
system: a computational study. Cent Eur J Oper Res Econ 7:25–38

Christensen A, O’Grady R, Dorigo M (2009) From fireflies to fault tolerant swarms
of robots. IEEE Trans Evol Comput 13:754–766

Clerc M (1999) The swarm and the queen: towards a deterministic and adaptive
particle swarm optimization. In: Proceedings of the CEC, Washington, DC. IEEE,
Piscataway, pp 1951–1957

Clerc M (2002) Think locally, act locally—a framework for adaptive particle swarm
optimizers. IEEE J Evol Comput 3:1951–1957

Clerc M, Kennedy J (2002) The particle swarm—explosion, stability, and conver-
gence in a multidimensional complex space. IEEE Trans Evol Comput 6:58–73

Cordón O, Fernandez I, Herrera F, Moreno L (2000) A new ACO model integrating
evolutionary computation concepts: the best-worst ant system. In: Proceedings of
the 2nd international workshop on ant algorithms, Brussels, pp 22–29

del Valle Y, Venayagamoorthy GK, Mohagheghi S, Hernandez J-C, Harley RG
(2008) Particle swarm optimization: basic concepts, variants and applications in
power systems. IEEE Trans Evol Comput 12:171–195

Deneubourg J-L, Aron S, Goss S, Pasteels JM (1990) The self-organizing ex-
ploratory pattern of the Argentine ant. J Insect Behav 32:159–168

Diwold K, Beekman M, Middendorf M (2011) Honeybee optimisation. In: Pani-
grahi BK et al (eds) Handbook of swarm intelligence—concepts, principles and
application. Springer, Berlin, pp 295–328

240 D. Merkle and M. Middendorf

Dorigo M (1992) Optimization, learning and natural algorithms (in Italian). PhD
thesis, Dipartimento di Elettronica, Politecnico di Milano

Dorigo M, Blum C (2005) Ant colony optimization theory: a survey. Theor Comput
Sci 344:243–278

Dorigo M, Di Caro G (1999) The ant colony optimization meta-heuristic. In: Corne
D et al (eds) New ideas in optimization. McGraw-Hill, New York, pp 11–32

Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative learning ap-
proach to the traveling salesman problem. IEEE Trans Evol Comput 1:53–66

Dorigo M, Maniezzo V, Colorni A (1991) Positive feedback as a search strategy.
Technical report 91-016, Politecnico di Milano

Dorigo M, Maniezzo V, Colorni A (1996) The ant system: optimization by a colony
of cooperating agents. IEEE Trans Syst Man Cybern B 26:29–41

Dorigo M, Birattari M, Blum C, Clerc M, Stützle T, Winfield AFT (eds) (2008) In:
Proceedings of the ANTS 2008, Brussels. LNCS 5217. Springer, Berlin

Gambardella LM, Taillard E, Dorigo M (1999) Ant colonies for the quadratic as-
signment problem. J Oper Res Soc 50:167–176

Goss S, Aron S, Deneubourg JL, Pasteels JM (1989) Self-organized shortcuts in the
Argentine ant. Naturwissenschaften 76:579–581

Guntsch M, Middendorf M (2002a) Applying population based ACO to dynamic
optimization problems. In: Proceedings of the 3rd international workshop ANTS
2002, Brussels. LNCS 2463. Springer, Berlin, pp 111–122

Guntsch M, Middendorf M (2002b) A population based approach for ACO. In: Pro-
ceedings of the EvoWorkshops 2002 on applications of evolutionary computing,
Kinsale. LNCS 2279. Springer, Berlin, pp 72–81

Gutjahr WJ (2011) Ant colony optimization: recent developments in theoretical
analysis. In: Auger A, Doerr B (eds) Theory of randomized search heuristics.
World Scientific, Singapore, pp 225–254

Handl J, Meyer B (2002) Improved ant-based clustering and sorting in a document
retrieval interface. In: Merelo Guervos JJ et al (eds) Proceedings of the PPSN VII,
Granada. LNCS 2439. Springer, Berlin, pp 913–923

OR-Library (2012). http://mscmga.ms.ic.ac.uk/jeb/orlib/wtinfo.html
Janson S, Middendorf M (2005) A hierarchical particle swarm optimizer and its

adaptive variant. IEEE Syst Man Cybern B 32:1272–1282
Karaboga D, Akay B (2009) A survey: algorithms simulating bee swarm intelli-

gence. Artif Intell Rev 31:61–85
Kawamura H, Yamamoto M, Suzuki K, Ohucke A (2000) Multiple ant colonies

algorithm based on colony level interactions. IEICE Trans Fundam 83A:371–379
Kennedy J (1997) The particle swarm: social adaptation of knowledge. In: Proceed-

ings of the CEC, Indianapolis, pp 303–308
Kennedy J (2000) Stereotyping: improving particle swarm performance with cluster

analysis. In: Proceedings of the CEC, La Jolla, pp 1507–1512
Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of

IEEE international conference on neural networks, Perth, pp 1942–1948
Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm

algorithm. Proc Conf Syst Man Cybern 5:4104–4109. IEEE, Piscataway

http://mscmga.ms.ic.ac.uk/jeb/orlib/wtinfo.html

8 Swarm Intelligence 241

Kennedy J, Eberhart RC (1999) The particle swarm: social adaption in information
processing systems. In: Corne D et al (eds) New ideas in optimization. McGraw-
Hill, New York, pp 379–387

Kennedy J, Mendes R (2003) Neighborhood topologies in fully-informed and best-
of-neighborhood particle swarms. In: Proceedings of the IEEE international
workshop on soft computing in industrial applications, New York

Kennedy J, Shi Y (eds) (2009) In: Proceedings of the 2009 IEEE Swarm Intelligence
Symposium, Nashville, IEEE

Kennedy J, Eberhart RC, Shi Y (2001) Swarm intelligence. Morgan Kaufmann, San
Francisco

Ko P-C, Lin P-C (2004) A hybrid swarm intelligence based mechanism for earning
forecast. In: Proceedings of the ICITA 2004, Harbin

Krink T, Vesterstrøm JS, Riget J (2002) Particle swarm optimisation with spatial
particle extension. In: Proceedings of the CEC 2002, Honolulu, pp 1474–1479

Labella TH, Dorigo M, Deneubourg J-L (2006) Division of labour in a group of
robots inspired by ants’ foraging behaviour. ACM Trans Auton Adapt Syst 1:4–25

Lumer ED, Faieta B (1994) Diversity and adaptation in populations of clustering
ants. In: Proceedings of the SAB 1994, Brighton. MIT, Cambridge, pp 501–508

Maniezzo V (1999) Exact and approximate nondeterministic tree-search procedures
for the quadratic assignment problem. Inf J Comput 11:358–369

Merkle D, Middendorf M (2002) Ant colony optimization with the relative
pheromone evaluation method. In: Proceedings of the EvoWorkshops 2001,
Como. LNCS 2279. Springer, Berlin, pp 325–333

Merkle D, Middendorf M (2003a) On the behavior of ACO algorithms: studies on
simple problems. In: Resende MGC, Pinho de Sousa J (eds) Metaheuristics: com-
puter decision-making. Kluwer, Dordrecht, pp 465–480

Merkle D, Middendorf M (2003b) An ant algorithm with global pheromone evalua-
tion for scheduling a single machine. Appl Intell 18:105–111

Merkle D, Middendorf M (2005) On solving permutation scheduling problems with
ant colony optimization. Int J Syst Sci 36:255–266

Merkle D, Middendorf M (2008) Swarm intelligence and signal processing. IEEE
Signal Process Mag 25:152–158

Merkle D, Middendorf M, Schmeck H (2002) Ant colony optimization for resource-
constrained project scheduling. IEEE Trans Evol Comput 6:333–346

Michels R, Middendorf M (1999) An ant system for the shortest common superse-
quence problem. In: Corne D, Dorigo M, Glover F (eds) New ideas in optimiza-
tion. McGraw-Hill, New York, pp 51–61

Montgomery J, Randall M (2002) Anti-pheromone as a tool for better exploration of
search space. In: Proceedings of the ANTS 2002, Brussels. LNCS 2463. Springer,
Berlin, pp 100–110

Oliveira SM, Hussin MS, Stützle T, Roli A, Dorigo M (2011) A detailed analysis of
the population-based ant colony optimization algorithm for the TSP and the QAP.
In: GECCO (Companion), Dublin, pp 13–14

242 D. Merkle and M. Middendorf

Parsopoulos KE, Vrahatis MN (2001) Modification of the particle swarm optimizer
for locating all the global minima. In: Kurkova V et al (eds) Artificial neural
networks and genetic algorithms. Springer, Berlin, pp 324–327

Parsopoulos KE, Tasoulis DK, Vrahatis MN (2004) Multiobjective optimization
using parallel vector evaluated particle swarm optimization. In: Proceedings of
the IASTED international conference on artificial intelligence and applications,
Innsbruck

Pedersen MEH, Chipperfield AJ (2010) Simplifying particle swarm optimization.
Appl Soft Comput 10:618–628

Poli R (2008) Analysis of the publications on the applications of particle swarm
optimisation. J Artif Evol Appl 1:1–10

Riget J, Vesterstrøm JS (2002) A diversity-guided particle swarm optimizer—the
ARPSO. Technical report no 2002-02, University of Aarhus

Ritscher T, Helwig S, Wanka R (2010) Design and experimental evaluation of multi-
ple adaptation layers in self-optimizing particle swarm optimization. In: Proceed-
ings of the CEC 2010, Barcelona, pp 1–8

Sedighizadeh D, Masehian E (2009) Particle swarm optimization methods, taxon-
omy and applications. Int J Comput Theor Eng 1:1793–8201

Stützle T, Hoos H (1997) Improvements on the ant system: introducing MAX(MIN)
ant system. In: Proceedings of the international conference on artificial neutral
networks and genetic algorithms. Springer, Berlin, pp 245–249

Stützle T, Hoos H (2000) MAX-MIN ant system. Future Gener Comput Syst J
16:889–914

Stützle T, den Besten M, Dorigo M (2000) Ant colony optimization for the total
weighted tardiness problem. In: Deb et al (eds) Proceedings of the PPSN-VI,
Paris. LNCS 1917. Springer, Berlin, pp 611–620

Sumpter DJT (2009) Collective animal behavior. Princeton University Press,
Princeton

Sun J, Feng B, Xu W (2004) Particle swarm optimization with particles having
quantum behavior. In: IEEE Proceeding of the CEC, San Diego, pp 325–331

van den Bergh F, Engelbrecht AP (2000) Cooperative learning in neural networks
using particle swarm optimizers. S Afr Comput J 26:84–90

Vesterstrøm JS, Riget J, Krink T (2002) Division of labor in particle swarm optimi-
sation. In: Proceedings of the CEC 2002, Honolulu, pp 1570–1575

Xie X-F, Zhang W-J, Yang Z-L (2002) A dissipative particle swarm optimization.
In: Proceedings of the CEC 2002, Honolulu

Chapter 9

Tabu Search

Michel Gendreau and Jean-Yves Potvin

9.1 Introduction

Over the last 25 years, hundreds of papers presenting applications of tabu search,
a heuristic method originally proposed by Glover (1986), to various combinatorial
problems have appeared in the operations research literature (see for example Glover
and Laguna 1997; Glover et al. 1993; Jaziri 2008; Pardalos and Resende 2002; Rego
and Alidaee 2005). In several cases, the methods described provide solutions very
close to optimality and are among the most effective, if not the best, to tackle the dif-
ficult problems at hand. These successes have made tabu search extremely popular
among those interested in finding good solutions to the large combinatorial prob-
lems encountered in many practical settings. Several papers, book chapters, special
issues and books have surveyed the rich tabu search literature (a list of some of the
most important references is provided at the end). In spite of this abundant litera-
ture, there still seem to be many researchers who, while they are eager to apply tabu
search to new problem settings, find it difficult to properly grasp the fundamental
concepts of the method, its strengths and its limitations, and to come up with effec-
tive implementations. The purpose of this chapter is thus to focus on the fundamental
concepts of tabu search. Throughout the chapter, two relatively straightforward, yet
challenging and relevant, problems will be used to illustrate these concepts: the job
shop scheduling problem and the capacitated plant location problem.

M. Gendreau
Département de mathématiques et de génie industriel, École Polytechnique de Montréal and
CIRRELT, Montréal, Canada

J.-Y. Potvin (�)
Département d’informatique et de recherche opérationnelle, Université de Montréal and CIRRELT,
Montréal, Canada
e-mail: potvin@iro.umontreal.ca

E.K. Burke and G. Kendall (eds.), Search Methodologies: Introductory Tutorials
in Optimization and Decision Support Techniques, DOI 10.1007/978-1-4614-6940-7_9,
© Springer Science+Business Media New York 2014

243

mailto:potvin@iro.umontreal.ca

244 M. Gendreau and J.-Y. Potvin

9.2 Illustrative Problems

9.2.1 The Job-Shop Scheduling Problem

The job shop scheduling problem is one of the most studied problems in combina-
torial optimization and a large number of papers and books deal with the numer-
ous procedures that have been proposed to solve it, including several tabu search
implementations. Although a large number of variants are found in the literature
(and even more in the real world), the classical problem can be stated as follows.
We first assume that n jobs must be scheduled on m machines. Each job corresponds
to a fixed sequence of m operations, one per machine, where each operation must be
processed on a specific machine for a specified duration. Note that the processing
order on the machines does not need to be the same from one job to another. Each
machine can process at most one operation at a time and, once started, an operation
must be completed without interruption. The goal is to assign operations to time
slots on the machines in order to minimize the maximum completion time of the
jobs, which is also known as the makespan. A solution to this problem can be seen
as a set of m permutations of the n jobs, one for each machine, with the associated
machine schedules (Anderson et al. 1997).

9.2.2 The Capacitated Plant Location Problem

The capacitated plant location problem is one of the basic problems in location
theory. It is encountered in many application settings that involve locating facilities
with limited capacity to provide services. The problem can be formally described
as follows. A set of customers I with demands di, i ∈ I, for some product are to be
served from plants located in a subset of sites from a given set J of potential sites.
For each site j ∈ J, the fixed cost of opening the plant at j is f j and its capacity is
K j. The cost of transporting one unit of the product from site j to customer i is ci j.
The objective is to minimize the total cost, i.e. the sum of the fixed costs for open
plants and the transportation costs.

Letting xi j (i ∈ I, j ∈ J) denote the quantity shipped from site j to customer i
(the xi j are the so-called flow variables) and y j (j ∈ J) be a 0–1 variable indicating
whether or not the plant at site j is open (the y j are the location variables), the
problem can be formulated as the following mathematical program:

Minimize z = ∑
j∈J

f jy j + ∑
i∈I
∑
j∈J

ci jxi j

subject to: ∑
j∈J

xi j = di, i ∈ I

∑
i∈I

xi j ≤ K jy j, j ∈ J

xi j ≥ 0, i ∈ I, j ∈ J
y j ∈ {0,1} , j ∈ J.

9 Tabu Search 245

Remark 9.1. For any vector ỹ of location variables, optimal (w.r.t. to this plant
configuration) values for the flow variables x(ỹ) can be retrieved by solving the
associated transportation problem:

Minimize z(ỹ) = ∑
i∈I
∑
j∈J

ci jxi j

subject to: ∑
j∈J

xi j = di, i ∈ I

∑
i∈I

xi j ≤ K j ỹ j, j ∈ J

xi j ≥ 0, i ∈ I, j ∈ J.

If ỹ = y∗, the optimal location variable vector, the optimal solution to the original
problem is simply given by (y∗,x(y∗)).

Remark 9.2. An optimal solution of the original problem can always be found at an
extreme point of the polyhedron of feasible flow vectors defined by the constraints

∑
j∈J

xi j = di, i ∈ I

∑
i∈I

xi j ≤ K j , j ∈ J

xi j ≥ 0, i ∈ I, j ∈ J.

This property follows from the fact that the capacitated plant location problem can
be interpreted as a fixed-charge problem defined in the space of the flow variables.
This fixed-charge problem has a concave objective function that always admits an
extreme point minimum. The optimal values for the location variables can easily be
obtained from the optimal flow vector by setting y j equal to 1 when ∑

i∈I
xi j > 0, and

to 0 otherwise.

9.3 Basic Concepts

9.3.1 Historical Background

Before introducing the basic concepts of tabu search, we believe it is useful to go
back in time to try to better understand the genesis of the method and how it relates
to previous work.

Heuristics, i.e. approximate solution techniques, have been used since the
beginnings of operations research to tackle difficult combinatorial problems. With
the development of complexity theory in the early 1970s, it became clear that, since
most of these problems were indeed NP-hard, there was little hope of ever finding
efficient exact solution procedures for them. This realization emphasized the role of
heuristics for solving the combinatorial problems that were encountered in real-life

246 M. Gendreau and J.-Y. Potvin

applications and that needed to be tackled, whether or not they were NP-hard. While
many different approaches were proposed and experimented with, the most popular
ones were based on hill climbing. The latter can roughly be summarized as an iter-
ative search procedure that, starting from an initial feasible solution, progressively
improves it by applying a series of local modifications or moves (for this reason,
hill climbing is in the family of local search methods). At each iteration, the search
moves to an improving feasible solution that differs only slightly from the current
one. In fact, the difference between the previous and the new solution amounts to
one of the local modifications mentioned above. The search terminates when no
more improvement is possible. At this point, we have a local optimum with regard
to the local modifications considered by the hill climbing method. Clearly, this is
an important limitation of the method: unless one is extremely lucky, this local op-
timum will often be a fairly mediocre solution. The quality of the solution obtained
and computing times are usually highly dependent upon the richness of the set of
transformations (moves) considered at each iteration.

In 1983, a new heuristic approach called simulated annealing (Kirkpatrick et al.
1983) was shown to converge to an optimal solution of a combinatorial problem,
albeit in infinite computing time. Based on analogy with statistical mechanics, sim-
ulated annealing could be interpreted as a form of controlled random walk in the
space of feasible solutions. The emergence of simulated annealing indicated that
one could look for other ways to tackle combinatorial optimization problems and
spurred the interest of the research community. In the following years, many other
new approaches, mostly based on analogies with natural phenomena, were proposed
such as tabu search, ant systems (Dorigo 1992) and threshold methods (Dueck and
Scheuer 1990). Together with some older ones, in particular genetic algorithms
(Holland 1975), they gained an increasing popularity. Now collectively known under
the name of meta-heuristics, a term originally coined by Glover (1986), these meth-
ods have become, over the last 25 years, the leading edge of heuristic approaches
for solving combinatorial optimization problems.

9.3.2 Tabu Search

In 1986 Fred Glover proposed a new approach, which he called tabu search, to
allow hill climbing to overcome local optima. In fact, many elements of this first
tabu search proposal, and some elements of later elaborations, had already been
introduced (Glover 1977), including short-term memory to prevent the reversal of
recent moves, and longer-term frequency memory to reinforce attractive compo-
nents. The basic principle of tabu search is to pursue the search whenever a local
optimum is encountered by allowing non-improving moves; cycling back to previ-
ously visited solutions is prevented by the use of memories, called tabu lists, that
record the recent history of the search. The key idea to exploit information to guide
the search can be linked to the informed search methods proposed in the late 1970s
in the field of artificial intelligence (Nilsson 1980). It is important to note that Glover

9 Tabu Search 247

did not see tabu search as a proper heuristic, but rather as a metaheuristic, i.e. a
general strategy for guiding and controlling inner heuristics specifically tailored to
the problems at hand.

9.3.3 Search Space and Neighborhood Structure

As just mentioned, tabu search extends hill climbing methods. In fact, the basic
tabu search can be seen as simply the combination of hill climbing with short-term
memories. It follows that the two first basic elements of any tabu search heuristic
are the definition of its search space and its neighborhood structure.

The search space is simply the space of all possible solutions that can be
considered (visited) during the search. For instance, in the job shop scheduling prob-
lem of Sect. 9.2.1, the search space could simply be the set of feasible solutions to
the problem, where each point in the search space corresponds to a set of m machine
schedules that satisfies all the specified constraints. While in that case the defini-
tion of the search space seems quite natural, it is not always so. Consider now the
capacitated plant location problem of Sect. 9.2.2: the feasible space involves both
integer location and continuous flow variables that are linked by strict conditions;
moreover, as already indicated, for any feasible set of values for the location vari-
ables, one can fairly easily retrieve optimal values for the flow variables by solving
the associated transportation problem. In this context, one could obviously use as a
search space the full feasible space; this would involve manipulating both location
and flow variables, which is not an easy task. A more attractive search space is the
set of feasible vectors of location variables, i.e. feasible vectors in {0,1}|J| (where
|J| is the cardinality of set J), any solution in that space being completed to yield a
feasible solution to the original problem by computing the associated optimal flow
variables. It is interesting to note that these two possible definitions are not the only
ones. Indeed, on the basis of Remark 9.2, one could also decide to search instead
the set of extreme points of the set of feasible flow vectors, retrieving the associated
location variables by simply noting that a plant must be open whenever some flow is
allocated to it. In fact, this type of approach was used successfully by Crainic et al.
(2000) to solve the fixed-charge multi-commodity network design problem, which
is a more general problem that includes the capacitated plant location problem as a
special case. It is also important to note that it is not always a good idea to restrict
the search space to feasible solutions. In many cases, allowing the search to move to
infeasible solutions is desirable, and sometimes necessary (see Sect. 9.4.3 for further
details).

Closely linked to the definition of the search space is that of the neighborhood
structure. At each iteration of tabu search, the local transformations that can be
applied to the current solution, denoted S, define a set of neighboring solutions in
the search space, denoted N(S) (the neighborhood of S). Formally, N(S) is a subset
of the search space defined by

N(S) = {solutions obtained by applying a single local transformation to S}.

248 M. Gendreau and J.-Y. Potvin

In general, for any specific problem at hand, there are many more possible (and even,
attractive) neighborhood structures than search space definitions. This follows from
the fact that there may be several plausible neighborhood structures for a given
definition of the search space. This is easily illustrated on our job shop scheduling
problem. In order to simplify the discussion, we assume in the following that the
search space is the feasible space.

Simple neighborhood structures for the job shop scheduling problem are obtained
by considering the sequence of jobs associated with a machine schedule, where the
position of a job in the sequence corresponds to its processing order on the machine.
For example, one can move a job at another position in the sequence or interchange
the position of two jobs. While these neighborhood structures involve only one or
two jobs, the neighborhoods they define contain all the feasible schedules that can be
obtained from the current one either by moving any single job at any other position
or by interchanging any two jobs. Examining these neighborhoods can thus be fairly
demanding. In practice, it is often possible to reduce the computational burden, by
identifying a restricted subset of moves that are feasible and can lead to improve-
ments. We refer the interested reader to Vaessens et al. (1996) and Anderson et al.
(1997) for a more detailed discussion of these issues.

When different definitions of the search space are considered for a given problem,
neighborhood structures will inevitably differ to a considerable degree. This can be
illustrated on our capacitated plant location problem. If the search space is defined
with respect to the location variables, neighborhood structures will usually involve
the so-called Add/Drop and Swap moves that respectively change the status of one
site (i.e. either opening a closed facility or closing an open one) and move an open
facility from one site to another (this move amounts to performing simultaneously
an Add move and a Drop move). If, however, the search space is the set of ex-
treme points associated with feasible flow vectors, these moves become meaning-
less. One should instead consider moves defined by the application of pivots to the
linear programming formulation of the transportation problem, where each pivot
operation modifies the flow structure to move the current solution to an adjacent
extreme point.

The preceding discussion should have clarified a major point: choosing a search
space and a neighborhood structure is by far the most critical step in the design of
any tabu search heuristic. It is at this step that one must make the best use of the
understanding and knowledge he/she has of the problem at hand.

9.3.4 Tabus

Tabus are one of the distinctive elements of tabu search when compared to hill
climbing. As already mentioned, tabus are used to prevent cycling when moving
away from local optima through non-improving moves. The key realization here
is that when this situation occurs, something needs to be done to prevent the search
from tracing back its steps to where it came from. This is achieved by making certain

9 Tabu Search 249

actions tabu. This might mean not allowing the search to return to a recently visited
point in the search space or not allowing a recent move to be reversed. For example,
in the job shop scheduling problem, if a job j has been moved to a new position
in a machine schedule, one could declare tabu moving that job back to its previ-
ous position for some number of iterations (this number is called the tabu tenure of
the move).

Tabus are stored in a short-term memory of the search (the tabu list) and usually
only a fixed and fairly limited quantity of information is recorded. In any given con-
text, there are several possibilities regarding the recorded information. One could
record complete solutions, but this requires a lot of storage and makes it expensive to
check whether a potential move is tabu or not; it is therefore seldom used. The most
commonly used tabus involve recording the last few transformations performed
on the current solution and prohibiting reverse transformations (as in the exam-
ple above); others are based on key characteristics of the solutions themselves or of
the moves.

To better understand how tabus work, let us go back to our reference problems.
In the job shop scheduling problem, one could define tabus in several ways. To con-
tinue our example where a job j has just been moved from position p1 to position p2,
one could declare tabu specifically moving back j to position p1 from position p2

and record this in the short-term memory as the triplet (j, p2, p1). Note that this type
of tabu will not constrain the search much, but that cycling may occur if j is then
moved to another position p3 and then from p3 to p1. A stronger tabu would involve
prohibiting moving back j to p1 (without consideration for its current position) and
be recorded as (j, p1). An even stronger tabu would be to disallow moving j at all,
and would simply be noted as (j).

In the capacitated plant location problem, tabus on Add/Drop moves should
prohibit changing the status of the affected location variable and can be recorded by
noting its index. Tabus for Swap moves are more complex. They could be declared
with respect to the site where the facility was closed, to the site where the facility
was opened, to both locations (i.e. changing the status of both location variables is
tabu), or to the specific swapping operation.

Multiple tabu lists can be used simultaneously and are sometimes advisable.
For example, in the capacitated plant location problem, if one uses a neighborhood
structure that contains both Add/Drop and Swap moves, it might be a good idea to
keep a separate tabu list for each type of move.

Standard tabu lists are usually implemented as circular lists of fixed length. It has
been shown, however, that fixed-length tabus cannot always prevent cycling, and
some authors have proposed varying the tabu list length during the search (Glover
1989, 1990; Skorin-Kapov 1990; Taillard 1990, 1991). Another solution is to ran-
domly generate the tabu tenure of each move within some specified interval. Using
this approach requires a somewhat different scheme for recording tabus, which are
usually stored as tags in an array. The entries in this array typically record the it-
eration number until which a move is tabu. More details are provided in Gendreau
et al. (1994).

250 M. Gendreau and J.-Y. Potvin

9.3.5 Aspiration Criteria

While central to the tabu search method, tabus are sometimes too powerful. They
may prohibit attractive moves, even when there is no danger of cycling, or they
may lead to an overall stagnation of the search process. It is thus necessary to use
algorithmic devices that will allow one to revoke (cancel) tabus. These are called
aspiration criteria. The simplest and most commonly used aspiration criterion, found
in almost all tabu search implementations, allows a tabu move when it results in a
solution with an objective value better than that of the current best-known solu-
tion (since the new solution has obviously not been previously visited). Much more
complicated aspiration criteria have been proposed and successfully implemented
(see, for example, de Werra and Hertz 1989, and Hertz and de Werra 1991), but they
are rarely used. The key rule is that if cycling cannot occur, tabus can be disregarded.

9.3.6 A Template for Simple Tabu Search

We are now in the position to give a general template for tabu search, integrating the
elements we have seen so far. We suppose that we are trying to minimize a function
f (S) (sometimes known as an objective or evaluation function) over some domain
and we apply the so-called best improvement version of tabu search, i.e. the version
in which one chooses at each iteration the best available move (even if this results
in an increase in the function f (S)). This is the most commonly used version of tabu
search.

Notation

• S, the current solution
• S∗, the best-known solution
• f ∗, value of S∗

• N(S), the neighborhood of S
• Ñ(S), the admissible subset of N(S) (i.e. non-tabu or allowed by aspiration)
• T , tabu list.

Initialization

Choose (construct) an initial solution S0.
Set S← S0, f ∗← f (S0), S∗← S0, T ← /0.

9 Tabu Search 251

Search

While termination criterion not satisfied do

– Select S in argminS′∈Ñ(S)[f (S
′)];

– If f (S)< f ∗, then set f ∗← f (S), S∗← S
– Record tabu for the current move in T (delete oldest entry if necessary)

Endwhile.

In this algorithm, argmin returns the subset of solutions in Ñ(S) that minimizes f .

9.3.7 Termination Criteria

Note that we have not specified in our template a termination criterion. In theory,
the search could go on forever, unless the optimal value of the problem at hand
is known beforehand. In practice, obviously, the search has to be stopped at some
point. The most commonly used stopping criteria in tabu search are

• After a fixed number of iterations (or a fixed amount of CPU time)
• After some number of consecutive iterations without an improvement in the

objective function value (the criterion used in most implementations)
• When the objective function reaches a pre-specified threshold value.

9.3.8 Probabilistic Tabu Search and Candidate Lists

Normally, one must evaluate the objective function for every element of the
neighborhood N(S) of the current solution. This can be extremely expensive from a
computational standpoint. In probabilistic tabu search, only a random sample N′(S)
of N(S) is considered, thus significantly reducing the computational overhead. An-
other attractive feature is that the added randomness can act as an anti-cycling mech-
anism. This allows one to use shorter tabu lists than would be necessary if a full
exploration of the neighborhood was performed. On the negative side, it is possible
to miss excellent solutions (see Sect. 9.6.3 for more detail). It is also possible to
probabilistically select when to apply tabu criteria.

Another way to control the number of moves examined is by means of candidate
list strategies, which provide more strategic ways of generating a useful subset
N′(S) of N(S). In fact, the probabilistic approach can be considered to be one in-
stance of a candidate list strategy, and may also be used to modify such a strat-
egy. Failure to adequately address the issues involved in creating effective candidate
lists is one of the more conspicuous shortcomings that differentiates a naive tabu

252 M. Gendreau and J.-Y. Potvin

search implementation from one that is more solidly grounded. Relevant designs for
candidate list strategies are discussed in Glover and Laguna (1997). We also discuss
a useful type of candidate generation approach in Sect. 9.4.4.

9.4 Extensions to the Basic Concepts

Simple tabu search as described above can sometimes successfully solve diffi-
cult problems, but in most cases, additional elements have to be included in the
search strategy to make it fully effective. We now briefly review the most important
of these.

9.4.1 Intensification

The idea behind the concept of search intensification is that, as an intelligent human
being would probably do, one should explore more thoroughly the portions of the
search space that seem promising in order to make sure that the best solutions in
these areas are found. In general, intensification is based on some intermediate-term
memory, such as a recency memory, in which one records the number of consecutive
iterations that various solution components have been present in the current solution
without interruption. For instance, in the capacitated plant location problem, one
could record how long each site has had an open facility. A typical approach to in-
tensification is to restart the search from the best currently known solution and to
freeze (fix) in it the components that seem more attractive. To continue with our ca-
pacitated plant location problem, one could freeze a number of facilities in sites that
have been often selected in previous iterations and perform a restricted search on
the other sites. Another technique that is often used consists of changing the neigh-
borhood structure to one allowing more powerful or more diverse moves. In the ca-
pacitated plant location problem, if Add/Drop moves were used, Swap moves could
be added to the neighborhood structure. In probabilistic tabu search, one could in-
crease the sample size or switch to searching without sampling. Intensification is
used in many tabu search implementations, although it is not always necessary. This
is because there are many situations where the normal search process is thorough
enough.

9.4.2 Diversification

One of the main problems of all methods based on local search, and this includes
tabu search in spite of the beneficial impact of tabus, is that they tend to be too local
(as their name implies), i.e. they tend to spend most, if not all, of their time in a

9 Tabu Search 253

restricted portion of the search space. The negative consequence of this fact is that,
although good solutions may be obtained, one may fail to explore the most interest-
ing parts of the search space and thus end up with solutions that are still far from
the optimal ones. Diversification is an algorithmic mechanism that tries to alleviate
this problem by forcing the search into previously unexplored areas of the search
space. It is usually based on some form of long-term memory of the search, such
as a frequency memory, in which one records the total number of iterations (since
the beginning of the search) that various solution components have been present in
the current solution or have been involved in the selected moves. For instance, in the
capacitated plant location problem, one could record the number of iterations during
which each site has had an open facility. In the job shop scheduling problem, one
could note how many times each job has been moved. In cases where it is possible
to identify useful regions of the search space, the frequency memory can be refined
to track the number of iterations spent in these different regions.

There are two major diversification techniques. The first, called restart
diversification, involves introducing a few rarely used components in the current
solution (or the best known solution) and restarting the search from this point. In the
capacitated plant location problem, one could thus open one or more facilities at lo-
cations that have seldom been used up to that point and resume searching from that
plant configuration (one could also close facilities at locations that have been used
the most frequently). In the job shop scheduling problem, a job that has not occupied
a particular position in a machine schedule can be forced to that position. The sec-
ond diversification method, called continuous diversification, integrates diversifica-
tion considerations directly into the regular searching process. This is achieved by
biasing the evaluation of possible moves by adding to the objective a small term re-
lated to component frequencies. An extensive discussion on these two techniques is
provided by Soriano and Gendreau (1996). A third way of achieving diversification
is strategic oscillation, which is discussed in the next section.

We would like to stress that ensuring proper search diversification is possibly the
most critical issue in the design of tabu search heuristics. It should be addressed with
extreme care fairly early in the design phase and revisited if the results obtained are
not up to expectations.

9.4.3 Allowing Infeasible Solutions

Accounting for all problem constraints in the definition of the search space often
restricts the searching process too much and can lead to mediocre solutions. In such
cases, constraint relaxation is an attractive strategy, since it creates a larger search
space that can be explored with simpler neighborhood structures. Constraint relax-
ation is easily implemented by dropping selected constraints from the search space
definition and adding to the objective, weighted penalties for constraint violations.
In the capacitated plant location problem, this can be done by allowing solutions
with flows that exceed the capacity of one or more plants. This, however, raises

254 M. Gendreau and J.-Y. Potvin

the issue of finding correct weights for constraint violations. An interesting way
of circumventing this problem is to use self-adjusting penalties, i.e. weights are
adjusted dynamically on the basis of the recent history of the search. Weights are
increased if only infeasible solutions were encountered in the last few iterations, and
decreased if all recent solutions were feasible; see Gendreau et al. (1994) for further
details. Penalty weights can also be modified systematically to drive the search to
cross the feasibility boundary of the search space and thus induce diversification.
This technique, known as strategic oscillation, was introduced in Glover (1977) and
used since in several successful tabu search procedures. An important early variant
oscillates among alternative types of moves, hence neighborhood structures, while
another oscillates around a selected value for a critical function.

9.4.4 Surrogate and Auxiliary Objectives

There are many problems for which the true objective function is quite costly to
evaluate, a typical example being the capacitated plant location problem when one
searches the space of location variables. Remember that, in this case, computing the
objective value for any potential solution entails solving the associated transporta-
tion problem. When this occurs, the evaluation of moves may become prohibitive,
even if sampling is used. An effective approach to handle this issue is to evaluate
neighbors using a surrogate objective, i.e. a function that is correlated to the true
objective, but is less computationally demanding, in order to identify a small set
of promising candidates (potential solutions achieving the best values for the sur-
rogate). The true objective is then computed for this small set of candidate moves
and the best one selected to become the new current solution. An example of this
approach is found in Crainic et al. (1993).

Another frequently encountered difficulty is that the objective function may not
provide enough information to effectively drive the search to more interesting areas
of the search space. A typical illustration of this situation is observed when the
fixed costs for open plants in the capacitated plant location problem are much larger
than the transportation costs. In this case, it is indicated to open as few plants as
possible. It is thus important to define an auxiliary objective function to orient the
search. Such a function must measure in some way the desirable attributes of the
solutions. In our example, one could use a function that would favor, for the same
number of open plants, solutions with plants having just a small amount of flow,
thus increasing the likelihood of closing them in subsequent iterations. It should
be noted that developing an effective auxiliary objective is not always easy and
may require a lengthy trial and error process. In some other cases, fortunately, the
auxiliary objective is obvious for anyone familiar with the problem at hand (for an
illustration, see the work of Gendreau et al. 1993).

9 Tabu Search 255

9.5 Promising Areas for Future Applications

The concepts and techniques described in the previous sections are sufficient to de-
sign effective tabu search heuristics for many combinatorial problems. Most early
tabu search implementations, several of which were extremely successful, relied in-
deed almost exclusively on these algorithmic components (Friden et al. 1989; Hertz
and de Werra 1987; Skorin-Kapov 1990; Taillard 1991). Nowadays, however, most
leading-edge research in tabu search makes use of more advanced concepts and
techniques. While it is clearly beyond the scope of an introductory tutorial such as
this to review this type of advanced material, we would like to give readers some
insight into it by briefly describing some current trends. Readers who wish to learn
more about this topic should read our survey paper (Gendreau 2002) and some of
the other references provided here.

A large part of the recent research in tabu search deals with various techniques
for making the search more effective. These include methods for better exploitation
of the information that becomes available during search and creating better starting
points, as well as more powerful neighborhood operators and parallel search strate-
gies. For more details, see the taxonomy of Crainic et al. (1997), the survey of Cung
et al. (2002) and the book of Alba (2005). The numerous techniques for utilizing
the information are of particular significance since they can lead to dramatic per-
formance improvements. Many of these rely on elite solutions (the best solutions
previously encountered) or on parts of these to create new solutions, the rationale
being that fragments of excellent solutions are often identified quite early in the
search process. However, the challenge is to complete these fragments or to recom-
bine them (Glover 1992; Glover and Laguna 1993, 1997; Rochat and Taillard 1995).
Other methods, such as the reactive tabu search of Battiti and Tecchiolli (1994), are
aimed at finding ways to move the search away from local optima that have already
been visited.

Another important trend is hybridization which is, in fact, a pervasive trend in
the whole metaheuristics field (for example, a series of workshops on hybrid meta-
heuristics has been held each year since 2004, see Blum et al. 2008). Tabu search has
been used in conjunction with many different solution approaches such as genetic
algorithms (Crainic and Gendreau 1999; Fleurent and Ferland 1996), Lagrangean
relaxation (Grünert 2002), constraint programming (Pesant and Gendreau 1999),
column generation (Crainic et al. 2000) and neural networks (Ateme-Nguema and
Dao 2009; Wang et al. 2009). A whole chapter on this topic is found in Glover and
Laguna (1997). Problem-specific information and simple heuristics can also be used
in conjunction with different components of tabu search. For example, in Burke et al.
(1998), problem-specific heuristics are used to realize diversification.

The literature on tabu search has also started moving away from its traditional
application areas (graph theory problems, scheduling, vehicle routing) to new ones:
continuous optimization (Rolland 1996), multi-objective optimization (Gandibleux
et al. 2000), stochastic programming (Lokketangen and Woodruff 1996), mixed int-
eger programming (Crainic et al. 2000; Lokketangen and Woodruff 1996), real-time

256 M. Gendreau and J.-Y. Potvin

decision problems (Gendreau et al. 2006), etc. These new areas confront researchers
with new challenges that, in turn, call for novel and original extensions of the method.

9.6 Tricks of the Trade

9.6.1 Getting Started

Newcomers to tabu search, trying to apply the method to a problem that they wish to
solve, are often confused about what they need to do to come up with a successful
implementation. Basically, they do not know where to start. We believe that the
following step-by-step procedure will help and provides a useful framework for
getting started.

A Step-by-Step Procedure

1. Read one or two good introductory papers to gain some knowledge of the
concepts and of the vocabulary (see the references provided in Sources of
Additional Information).

2. Read several papers describing in detail applications in various areas to see
how the concepts have been actually implemented by other researchers (see the
references provided in Sources of Additional Information).

3. Think a lot about the problem at hand, focusing on the definition of the search
space and the neighborhood structure.

4. Implement a simple version based on this search space definition and this neigh-
borhood structure.

5. Collect statistics on the performance of this simple heuristic. It is usually useful
at this point to introduce a variety of memories, such as frequency and recency
memories, to really track down what the heuristic does.

6. Analyze results and adjust the procedure accordingly. It is at this point that one
should eventually introduce mechanisms for search intensification and diversifi-
cation or other intermediate features. Special attention should be paid to diversi-
fication, since this is often where simple tabu search procedures fail.

9.6.2 More Tips

In spite of carefully following the procedure outlined above, it is possible to end
up with a heuristic that produces mediocre results. If this occurs, the following tips
may prove useful:

9 Tabu Search 257

1. If there are constraints, consider penalizing the violation of them. Letting the
search move to infeasible solutions is often necessary in highly constrained prob-
lems to allow for a meaningful exploration of the search space (see Sect. 9.4.3).

2. Reconsider the neighborhood structure and change it if necessary. Many tabu
search implementations fail because the neighborhood structure is too simple.
In particular, one should make sure that the chosen neighborhood structure allows
for a sensible evaluation of possible moves (i.e. the moves that seem intuitively
to move the search in the right direction should be the ones that are likely to be
selected); it might also be a good idea to introduce a surrogate objective (see
Sect. 9.4.4) to achieve this.

3. Collect more statistics. For example, recording the number and quality of
previously visited local optima can be useful to find a good trade-off between
intensification and diversification

4. Follow the execution of the algorithm step by step on some reasonably sized
instances. (For example: Is the algorithm behaving as expected on particular
solution configurations? Is the algorithm converging prematurely?)

5. Reconsider diversification. As mentioned earlier, this is a critical feature in most
tabu search implementations.

6. Experiment with parameter settings. Many tabu search procedures are extremely
sensitive to parameter settings; it is not unusual to see the performance of a proce-
dure dramatically improve after changing the value of one or two key parameters
(unfortunately, it is not always obvious to determine which parameters are the
key ones in a given procedure).

9.6.3 Additional Tips for Probabilistic Tabu Search

While probabilistic tabu search is an effective way of tackling many problems, it
creates difficulties of its own that need to be carefully addressed. The most impor-
tant of these occurs because, more often than not, the best solutions returned by
probabilistic tabu search will not be local optima with respect to the neighborhood
structure being used. This is particularly annoying since, when it happens, better
solutions can be easily obtained, sometimes even manually. An easy way to address
this is to simply perform a local improvement phase (using the same neighborhood
operator) from the best found solution at the end of the tabu search itself. One could
alternately switch to tabu search without sampling (again from the best found solu-
tion) for a short duration before completing the algorithm. A possibly more effective
technique is to add, throughout the search, an intensification step without sampling.
This will mean that the best solutions available in the various regions of the space
explored by the method will be found and recorded. This is similar to the method
proposed by Glover and Laguna (1993). They employed special aspiration criteria
for allowing the search to reach local optima at useful junctures.

258 M. Gendreau and J.-Y. Potvin

9.6.4 Parameter Calibration and Computational Testing

Parameter calibration and computational experiments are key steps in the develop-
ment of any algorithm. This is particularly true in the case of tabu search, since the
number of parameters required by most implementations is fairly large and the per-
formance of a given procedure can vary quite significantly when parameter values
are modified. The first step in any serious computational experimentation is to select
a good set of benchmark instances (either by obtaining them from other researchers
or by constructing them), preferably with some reasonable measure of their diffi-
culty and with a wide range of size and difficulty. This set should be split into two
subsets, the first one being used at the algorithmic design and parameter calibration
steps, and the second reserved for performing the final computational tests that will
be reported in the paper(s) describing the heuristic under development. The reason
for doing so is quite simple: when calibrating parameters, one always runs the risk
of overfitting, i.e. finding parameter values that are excellent for the instances at
hand, but poor in general, because these values provide too good a fit (from the
algorithmic standpoint) to these instances. Methods with several parameters should
thus be calibrated on much larger sets of instances than ones with few parameters
to ensure a reasonable degree of robustness. The calibration process itself should
proceed in several stages:

1. Perform exploratory testing to find good ranges of parameters. This can be done
by running the heuristic with a variety of parameter settings.

2. Fix the value of the parameters that appear to be robust, i.e. which do not seem
to have a significant impact on the performance of the algorithm.

3. Perform systematic testing for the other parameters. It is usually more efficient
to test values for only a single parameter at a time, the others being fixed at what
appear to be reasonable values. One must be careful, however, for cross-effects
between parameters. For example, assume that value x1 for parameter p1 leads
to good results when the other parameters are fixed at their default values, and
that value x2 for parameter p2 leads to good results when the other parameters
are fixed at their default values. Then, it might happen that value x1 for parameter
p1 and value x2 for parameter p2 lead to poor results. Where such effects exist,
it can be important to jointly test pairs or triplets of parameters, which can be an
extremely time-consuming task.

The paper by Crainic et al. (1993) provides a detailed description of the calibration
process for a fairly complex tabu search procedure and can be used as a guideline
for this purpose.

9.7 Conclusions

Tabu search is a powerful algorithmic approach that has been applied with great
success to many difficult combinatorial problems. A particularly nice feature of
tabu search is that it can quite easily handle the dirty complicating constraints that

9 Tabu Search 259

are typically found in real-life applications. It is thus a really practical approach.
It is not, however, a panacea: every reviewer or editor of a scientific journal has
seen more than his/her share of failed tabu search heuristics. These failures stem
from two major causes: an insufficient understanding of fundamental concepts of
the method (and we hope that this tutorial may help in alleviating this shortcoming),
but also, more often than not, a crippling lack of understanding of the problem at
hand. One cannot develop a good tabu search heuristic for a problem that one does
not know well! This is because significant problem knowledge is absolutely vital
to perform the most basic steps of the development of any tabu search procedure,
namely the choice of a search space and the choice of an effective neighborhood
structure. If the search space and/or the neighborhood structure are inadequate, no
amount of tabu search expertise will be sufficient to save the day. A last word of
caution: to be successful, all metaheuristics need to achieve both depth and breadth
in their searching process; depth is usually not a problem for tabu search, which is
quite aggressive in this respect (it generally finds pretty good solutions very early
in the search), but breadth can be a critical issue. To handle this, it is extremely
important to develop an effective diversification scheme.

Sources of Additional Information

• Good introductory papers on tabu search may be found in Glover and Laguna
(1993), Glover et al. (1993), Hertz and de Werra (1991), Hindsberger and Vidal
(2000), de Werra and Hertz (1989) and, in French, in Soriano and Gendreau
(1997).

• The book by Glover and Laguna (1997) is the ultimate reference on tabu search.
Apart from the fundamental concepts of the method, it presents a considerable
amount of advanced material, as well as a variety of applications. It is interesting
to note that this book contains several ideas applicable to tabu search that yet
remain to be fully exploited.

• Two issues of Annals of Operations Research devoted respectively to Tabu
Search (Glover et al. 1993) and Metaheuristics in Combinatorial Optimization
(Laporte and Osman 1996) provide a good sample of applications of tabu search.

• The books made up from selected papers presented at the Metaheuristics
International Conferences (MIC) are also extremely valuable. At this time, the
books for the following conferences are available: Breckenridge 1995 (Osman
and Kelly 1996), Sophia-Antipolis, 1997 (Voss et al. 1999), Angra dos Reis,
1999 (Ribeiro and Hansen 2002), Porto 2001 (Resende and de Sousa 2004), Ky-
oto, 2003 (Ibaraki et al. 2005) and Vienna, 2005 (Doerner et al. 2007). A book
for the 2009 conference in Hamburg is also planned. Finally, a special issue of
Journal of Heuristics was devoted to the 2007 conference in Montreal (Crainic
et al. 2010).

• Three books of interest have also been published. The first one, edited by Rego
and Alidaee (2005), deals with tabu search and scatter search. The one edited by

260 M. Gendreau and J.-Y. Potvin

Glover and Kochenberger (2003) addresses metaheuristics in general (a second
edition of this book, edited by Gendreau and Potvin, was published in 2010).
The third book, edited by Pardalos and Resende (2002), has a broader scope but
contains a nice chapter on metaheuristics.

References

Alba E (ed) (2005) Parallel metaheuristics: a new class of algorithms. Wiley,
Hoboken

Anderson EJ, Glass CA, Potts CN (1997) Machine scheduling, in local search in
combinatorial optimization. In: Aarts EHL, Lenstra JK (eds). Wiley, New York,
pp 361–414

Ateme-Nguema B, Dao T-M (2009) Quantized Hopfield networks and tabu search
for manufacturing cell formation problems. Int J Product Econ 121:88–98

Battiti R, Tecchiolli G (1994) The reactive tabu search. ORSA J Comput 6:126–140
Blum C, Blesa Aguilera MJ, Roli A, Sampels M (eds) (2008) Hybrid metaheuristics:

an emerging approach to optimization. Springer, Berlin
Burke E, De Causmaecker P, Vanden Berghe G (1998) A Hybrid Tabu Search Al-

gorithm for the Nurse Rostering Problem. In: Selected papers from the 2nd Asia
Pacific conference on simulated evolution and learning, LNAI 1585. Springer,
Berlin, Canberra, Australia, pp 187–194

Crainic TG, Gendreau M (1999) Towards an evolutionary method—cooperative
multi-thread parallel tabu search heuristic hybrid. In: Voss S et al (eds) Meta-
heuristics: advances and trends in local search paradigms for optimization.
Kluwer, Norwell, pp 331–344

Crainic TG, Gendreau M, Soriano P, Toulouse M (1993) A tabu search procedure
for multicommodity location/allocation with balancing requirements. Ann Oper
Res 41:359–383

Crainic TG, Toulouse M, Gendreau M (1997) Toward a taxonomy of parallel tabu
search heuristics. INFORMS J Comput 9:61–72

Crainic TG, Gendreau M, Farvolden JM (2000) Simplex-based tabu search for the
multicommodity capacitated fixed charge network design problem. INFORMS J
Comput 12:223–236

Crainic TG, Gendreau M, Rousseau L-M (eds) (2010) J Heuristics 16:235–535
(Special issue: Recent advances in metaheuristics)

Cung V-D, Martins SL, Ribeiro CC, Roucairol C (2002) Strategies for the parallel
implementation of metaheuristics. In: Ribeiro CC, Hansen P (eds) Essays and
surveys in metaheuristics. Kluwer, Norwell, pp 263–308

de Werra D, Hertz A (1989) Tabu search techniques: a tutorial and an application to
neural networks. OR Spektrum 11:131–141

Doerner KF, Gendreau M, Greistorfer P, Gutjahr WJ, Hartl RF, Reimann M (eds)
(2007) Metaheuristics: progress in complex systems optimization. Springer,
New York

9 Tabu Search 261

Dorigo M (1992) Optimization, learning and natural algorithms. PhD Dissertation,
Departimento di Elettronica, Politecnico di Milano

Dueck G, Scheuer T (1990) Threshold accepting: a general purpose optimization
algorithm appearing superior to simulated annealing. J Comput Phys 90:161–175

Fleurent C, Ferland JA (1996) Genetic and hybrid algorithms for graph colouring.
Ann Oper Res 63:437–461

Friden C, Hertz A, de Werra D (1989) STABULUS: a technique for finding stable
sets in large graphs with tabu search. Computing 42:35–44

Gandibleux X, Jaszkiewicz A, Freville A, Slowinski R (eds) (2000) J Heuristics
6:291–431 (Special issue: Multiple objective metaheuristics)

Gendreau M (2002) Recent advances in tabu search. In: Ribeiro CC, Hansen P (eds)
Essays and surveys in metaheuristics. Kluwer, Norwell, pp 369–377

Gendreau M, Soriano P, Salvail L (1993) Solving the maximum clique problem
using a tabu search approach. Ann Oper Res 41:385–403

Gendreau M, Hertz A, Laporte G (1994) A tabu search heuristic for the vehicle
routing problem. Manage Sci 40:1276–1290

Gendreau M, Guertin F, Potvin J-Y, Séguin R (2006) Neighborhood search heuris-
tics for a dynamic vehicle dispatching problem with pick-ups and deliveries.
Transp Res C 14:157–174

Glover F (1977) Heuristics for integer programming using surrogate constraints.
Decis Sci 8:156–166

Glover F (1986) Future paths for integer programming and links to artificial intelli-
gence. Comput Oper Res 13:533–549

Glover F (1989) Tabu search I. ORSA J Comput 1:190–206
Glover F (1990) Tabu search II. ORSA J Comput 2:4–32
Glover F (1992) Ejection chains, reference structures and alternating path methods

for traveling salesman problems. University of Colorado Report (Shortened ver-
sion published in Discret Appl Math 65:223–253, 1996)

Glover F, Kochenberger GA (eds) (2003) Handbook of metaheuristics. Kluwer,
Norwell

Glover F, Laguna M (1993) Tabu search. In: Reeves CR (ed) Modern heuristic tech-
niques for combinatorial problems. Halsted Press, New York, pp 70–150

Glover F, Laguna M (1997) Tabu search. Kluwer, Norwell
Glover F, Laguna M, Taillard ED, de Werra D (eds) (1993) Tabu search. Ann Oper

Res 41, Baltzer Science, Basel, pp 1–490
Glover F, Taillard ED, de Werra D (1993) A user’s guide to tabu search. Ann Oper

Res 41:3–28
Grünert T (2002) Lagrangean tabu search. In: Ribeiro CC, Hansen P (eds) Essays

and surveys in metaheuristics. Kluwer, Norwell, pp 379–397
Hertz A, de Werra D (1987) Using tabu search for graph coloring. Computing

39:345–351
Hertz A, de Werra D (1991) The tabu search metaheuristic: how we used it. Ann

Math Artif Intell 1:111–121
Hindsberger M, Vidal RVV (2000) Tabu search—a guided tour. Control Cybern

29:631–651

262 M. Gendreau and J.-Y. Potvin

Holland JH (1975) Adaptation in natural and artificial systems. University of
Michigan Press, Ann Arbor

Ibaraki T, Nonobe K, Yagiura M (eds) (2005) Metaheuristics: progress as real
problem solvers. Springer, New York

Jaziri W (2008) Local search techniques: focus on tabu search. In-Teh, Croatia
Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated anneal-

ing. Science 220:671–680
Laporte G, Osman IH (eds) (1996) Metaheuristics in combinatorial optimization.

Ann Oper Res 63, Baltzer Science, Basel, pp 1–630
Lokketangen A, Glover F (1996) Probabilistic move selection in tabu search for

0/1 mixed integer programming problems. In: Osman IH, Kelly JP (eds) Meta-
heuristics: theory and applications. Kluwer, Norwell, pp 467–488

Lokketangen A, Woodruff DL (1996) Progressive hedging and tabu search applied
to mixed integer (0,1) multistage stochastic programming. J Heuristics 2:111–128

Nilsson NJ (1980) Principles of artificial intelligence. Morgan Kaufmann, Los Altos
Osman IH, Kelly JP (eds) (1996) Meta-heuristics: theory and applications. Kluwer,

Norwell
Pardalos PM, Resende MGC (eds) (2002) Handbook of applied optimization.

Oxford University Press, New York
Pesant G, Gendreau M (1999) A constraint programming framework for local search

methods. J Heuristics 5:255–280
Rego C, Alidaee B (eds) (2005) Metaheuristic optimization via memory and evolu-

tion: tabu search and scatter search. Kluwer, Norwell
Resende MGC, de Sousa JP (eds) (2004) Metaheuristics: computer decision-

making, Kluwer, Norwell
Ribeiro CC, Hansen P (eds) (2002) Essays and surveys in metaheuristics. Kluwer,

Norwell
Rochat Y, Taillard ED (1995) Probabilistic diversification and intensification in local

search for vehicle routing. J Heuristics 1:147–167
Rolland E (1996) A tabu search method for constrained real-number search:

applications to portfolio selection, Working Paper, The Gary Anderson Gradu-
ate School of Management, University of California, Riverside

Skorin-Kapov J (1990) Tabu search applied to the quadratic assignment problem.
ORSA J Comput 2:33–45

Soriano P, Gendreau M (1996) Diversification strategies in tabu search algorithms
for the maximum clique problems. Ann Oper Res 63:189–207

Soriano P, Gendreau M (1997) Fondements et applications des méthodes de
recherche avec tabous. RAIRO—Recherche Opérationnelle 31:133–159

Taillard ED (1990) Some efficient heuristic methods for the flow shop sequencing
problem. Eur J Oper Res 47:65–74

Taillard ED (1991) Robust taboo search for the quadratic assignment problem.
Parallel Comput 17:443–455

Vaessens RJM, Aarts EHL, Lenstra JK (1996) Job shop scheduling by local search.
INFORMS J Comput 8:302–317

9 Tabu Search 263

Voss S, Martello S, Osman IH, Roucairol C (eds) (1999) Meta-heuristics: advances
and trends in local search paradigms for optimization. Kluwer, Norwell

Wang Y, Li L, Ni J, Huang S (2009) Feature selection using tabu search with
long-term memories and probabilistic neural networks. Pattern Recognit Lett
30:661–670

Chapter 10

Simulated Annealing

Emile Aarts, Jan Korst and Wil Michiels

10.1 Introduction

Many problems in engineering, planning and manufacturing can be modeled as that
of minimizing or maximizing a cost function over a finite set of discrete variables.
This class of so-called combinatorial optimization problems has received much
attention over the years and major achievements have been made in its analysis
(Ausiello et al. 1999). One of these achievements is the separation of this class into
two subclasses. The first one contains the problems that can be efficiently solved,
i.e. problems for which algorithms are known that solve each instance to optimal-
ity in polynomial time. Examples are linear programming, matching and network
problems. The second subclass contains the problems that are notoriously hard—
formally referred to as NP-hard—and for which it is generally believed that no algo-
rithms exist that solve each instance in polynomial time. Consequently, there are in-
stances that require superpolynomial or exponential time to be solved to optimality.
Many known problems belong to this class and probably the best known example
is the traveling salesman problem (TSP). The above-mentioned distinction is sup-
ported by a general discipline in computer science called complexity theory; for a
detailed introduction and an extensive listing of provably hard problems see Garey
and Johnson (1979) and Arora and Barak (2009).

E. Aarts
Eindhoven University of Technology, Eindhoven, The Netherlands
e-mail: e.h.l.aarts@tue.nl

J. Korst
Philips Research Laboratories, Eindhoven, The Netherlands
e-mail: jan.korst@philips.com

W. Michiels (�)
NXP, Eindhoven, The Netherlands
e-mail: wil.michiels@philips.com

E.K. Burke and G. Kendall (eds.), Search Methodologies: Introductory Tutorials
in Optimization and Decision Support Techniques, DOI 10.1007/978-1-4614-6940-7_10,
© Springer Science+Business Media New York 2014

265

mailto:e.h.l.aarts@tue.nl
mailto:jan.korst@philips.com
mailto:wil.michiels@philips.com

266 E. Aarts et al.

Clearly, also hard problems must be handled in practice. Roughly speaking, this
can be done by two types of algorithms of inherently different nature: either one may
use optimization algorithms that find optimal solutions possibly using large amounts
of computation time or one may use heuristic algorithms that find approximate
solutions in relatively small amounts of computation time. Local search algorithms
are of the latter type (Aarts and Lenstra 2003; Michiels et al. 2007). Simulated
annealing, the subject of this chapter, is among the best known local search algo-
rithms, since it performs quite well and is widely applicable. In this chapter we
present the basics of simulated annealing. The chapter summarizes the treatment of
simulated annealing contained in Michiels et al. (2007). First, we introduce some
elementary local search concepts. We introduce basic simulated annealing as an ap-
proach following directly from the strong analogy with the physical process of the
annealing of solids. We analyze the asymptotic performance of basic simulated an-
nealing. Next, we present some cooling schedules that allow for a finite-time imple-
mentation. Finally, we discuss some issues related to the practical use of simulated
annealing and conclude with some suggestions for further reading.

10.2 Local Search

Local search algorithms constitute a widely used, general approach to hard com-
binatorial optimization problems. They are typically instantiations of various gen-
eral search schemes, but all have the same feature of an underlying neighborhood
function, which is used to guide the search for a good solution. To make this more
precise, we introduce in this section some notation and definitions.

An instance of a combinatorial optimization problem consists of a set S of feasi-
ble solutions and a non-negative cost function f . The problem is to find a globally
optimal solution i∗ ∈ S, i.e. a solution with optimal cost f ∗. A neighborhood func-
tion is a mapping N : S→ 2S, which defines for each solution i ∈ S a set N(i)⊆ S of
solutions that are in some sense close to i. The set N(i) is called the neighborhood
of solution i, and each j ∈ N(i) is called a neighbor of i. The simplest form of local
search is called iterative improvement. An iterative improvement algorithm starts
with an initial solution and then continuously explores neighborhoods for a solution
with lower cost. If such a solution is found, then the current solution is replaced
by this better solution. The procedure is continued until no better solutions can be
found in the neighborhood of the current solution. By definition, iterative improve-
ment terminates in a local optimum, i.e. a solution ı̂ ∈ S that is at least as good as
all its neighbors with regard to the cost. Note that the concept of local optimality
depends on the neighborhood function that is used.

For many combinatorial optimization problems one can represent solutions as
sequences or collections of subsets of elements; examples are tours in the TSP,
partitions in the graph partitioning problem (GPP), and schedules in the job shop
scheduling problem (JSSP). These solution representations enable the use of k-change
neighborhoods, where the k-change neighborhood N(i) of a solution i is defined
as the set of solutions that can be obtained from i by exchanging at most k ele-

10 Simulated Annealing 267

ments. These k-change neighborhoods are widely applied; see Lin (1965) and Lin
and Kernighan (1973) for the TSP, Kernighan and Lin (1970) for the GPP, and van
Laarhoven et al. (1992) for the JSSP.

As an example we discuss the TSP. In an instance of TSP we are given n cities
and an n× n-matrix (dpq), whose elements denote the distance from city p to city
q for each pair p,q of cities. A tour is defined as a closed path visiting each city
exactly once. The problem is to find a tour of minimal length. For this problem a
solution can be written as a permutation π = (π(1), . . . ,π(n)) as each permutation
corresponds uniquely to a tour. The solution space is given by

S = {all permutations π on n cities}.

The cost function is defined as

f (π) =
n−1

∑
i=1

dπ(i),π(i+1)+ dπ(n),π(1)

that is, f (π) gives the length of the tour corresponding to π. Furthermore, we have
|S|= (n− 1)!

For a TSP instance, the k-change neighborhood function Nk defines for each
solution i a neighborhood Nk consisting of the set of solutions that can be obtained
from the given solution i by removing k′ ≤ k edges from the tour corresponding to
solution i, replacing them with k′ other edges such that again a tour is obtained, and
choosing the direction of the tour arbitrarily (Lin 1965; Lin and Kernighan 1973).
The simplest non-trivial version of this is the 2-change neighborhood. In that case
we have

N2(π) = {π′ ∈ S | π′ is obtained from π by a 2-exchange}

and
|N2(π)|= 2+ n(n− 3), for all π ∈ S.

In general, local search can be viewed as a walk in a neighborhood graph.
The node set of the neighborhood graph is given by the set of solutions and there
is an arc from node i to node j if and only if j is a neighbor of i. The sequence
of nodes visited by the search process defines the walk. Note that, as for the TSP,
each solution j can be obtained from any other solution i by at most n− 2 succes-
sive 2-changes, so the 2-change neighborhood graph is strongly connected. Roughly
speaking, the two main issues of a local search algorithm are the choice of the
neighborhood function and the search strategy that is used. Good neighborhoods
often take advantage of the combinatorial structure of the problem at hand, and
are therefore typically problem dependent. A disadvantage of using iterative im-
provement as a search strategy is that it easily gets trapped in poor local minima.
To avoid this disadvantage—while maintaining the basic principle of local search
algorithms, i.e. iteration among neighboring solutions—one can consider the ex-
tension of accepting in a limited way neighboring solutions corresponding to a
deterioration in the value of the cost function. This in fact is the basic idea
underlying simulated annealing.

268 E. Aarts et al.

10.3 Basic Simulated Annealing

In the early 1980s Kirkpatrick et al. (1983) and independently Černý (1985)
introduced the concept of annealing in combinatorial optimization. Originally this
concept was heavily inspired by an analogy between the physical annealing process
of solids and the problem of solving large combinatorial optimization problems.
Since this analogy is quite appealing we use it here as a background for introducing
simulated annealing.

In condensed matter physics, annealing is known as a thermal process for obtain-
ing low-energy states of a solid in a heat bath. The process consists of the following
two steps (Kirkpatrick et al. 1983):

• Increase the temperature of the heat bath to a maximum value at which the solid
melts.

• Decrease carefully the temperature of the heat bath until the particles arrange
themselves in the ground state of the solid.

In the liquid phase all particles arrange themselves randomly, whereas in the ground
state of the solid, the particles are arranged in a highly structured lattice, for which
the corresponding energy is minimal. The ground state of the solid is obtained only
if the maximum value of the temperature is sufficiently high and the cooling is
sufficiently slow. Otherwise the solid will be frozen into a meta-stable state rather
than into the true ground state.

As far back as 1953, Metropolis et al. (1953) introduced a simple algorithm for
simulating the evolution of a solid in a heat bath to thermal equilibrium. Their algo-
rithm is based on Monte Carlo techniques (Binder 1978) and generates a sequence
of states of the solid in the following way. Given a current state i of the solid with
energy Ei, a subsequent state j is generated by applying a perturbation mechanism
which transforms the current state into a next state by a small distortion, for instance
by displacement of a particle. The energy of the next state is E j. If the energy dif-
ference, E j−Ei, is less than or equal to 0, the state j is accepted as the current state.
If the energy difference is greater than 0, the state j is accepted with a probability
given by

exp

(

Ei−E j

kBT

)

,

where T denotes the temperature of the heat bath and kB a physical constant known
as the Boltzmann constant. The acceptance rule described above is known as the
Metropolis criterion and the algorithm that goes with it is known as the Metropolis
algorithm. It is known that, if the lowering of the temperature is sufficiently slow, the
solid can reach thermal equilibrium at each temperature. In the Metropolis algorithm
this is achieved by generating a large number of transitions at a given temperature
value. Thermal equilibrium is characterized by the Boltzmann distribution, which
gives the probability of the solid of being in a state i with energy Ei at temperature
T , and which is given by

10 Simulated Annealing 269

IPT{X = i}= exp(−Ei/kBT)

∑
j

exp(−E j/kBT)
, (10.1)

where X is a random variable denoting the current state of the solid and the summa-
tion extends over all possible states. As we show below, the Boltzmann distribution
plays an essential role in the analysis of the convergence of simulated annealing.

Returning to simulated annealing, the Metropolis algorithm can be used to
generate a sequence of solutions of a combinatorial optimization problem by
assuming the following equivalences between a physical many-particle system and
a combinatorial optimization problem:

• Solutions in a combinatorial optimization problem are equivalent to states of a
physical system.

• The cost of a solution is equivalent to the energy of a state.

Furthermore, we introduce a control parameter c which plays the role of the temper-
ature. In this way simulated annealing can be viewed as an iteration of Metropolis
algorithms, evaluated at decreasing values of the control parameter.

We now let go of the physical analogy and formulate simulated annealing in
terms of a local search algorithm. To simplify the presentation, we assume in the
remainder of this paper that we are dealing with a minimization problem. The dis-
cussion easily translates to maximization problems. Figure 10.1 describes simu-
lated annealing in pseudo-code for an instance (S, f) of a combinatorial optimization
problem and a neighborhood function N.

The meaning of the four functions in the procedure SIMULATED_ANNEALING is
obvious: INITIALIZE computes a start solution and initial values of the parameters
c and L, where L denotes the number of iterations at a given value of the control
parameter c; GENERATE selects a solution from the neighborhood of the current
solution; CALCULATE_LENGTH and CALCULATE_CONTROL compute new values
for the parameters L and c, respectively.

As already mentioned, a typical feature of simulated annealing is that, besides
accepting improvements in cost, it also to a limited extent accepts deteriorations
in cost. Initially, at large values of c, large deteriorations will be accepted; as c
decreases, only smaller deteriorations will be accepted and finally, as the value of
c approaches 0, no deteriorations will be accepted at all. Furthermore, there is no
limitation on the size of a deterioration with respect to its acceptance. In simulated
annealing, arbitrarily large deteriorations are accepted with positive probability; for
these deteriorations the acceptance probability is small, however. This feature means
that simulated annealing, in contrast to iterative improvement, can escape from local
minima while it still exhibits the favorable features of iterative improvement, i.e.
simplicity and general applicability.

Note that the probability of accepting deteriorations is implemented by
comparing the value of exp((f (i)− f (j))/c) with a random number generated from
a uniform distribution on the interval [0,1). Furthermore, it should be obvious that
the speed of convergence of the algorithm is determined by the choice of the pa-
rameters Lk and ck with k = 0,1, . . . , where Lk and ck denote the values of L and

270 E. Aarts et al.

Fig. 10.1 The simulated annealing algorithm in pseudo-code

c in iteration k of the algorithm. In the next section we will argue that under cer-
tain mild conditions on the choice of the parameters simulated annealing converges
asymptotically to a globally optimal solution, and that it exhibits an equilibrium
behavior from which some performance characteristics can be derived. In the sub-
sequent section we present more practical, implementation-oriented choices of the
parameter values that lead to a finite-time execution of the algorithm.

Comparing simulated annealing to iterative improvement, it is evident that
simulated annealing can be viewed as a generalization. Simulated annealing be-
comes identical to iterative improvement in the case where the value of the control
parameter is taken equal to zero. With respect to a comparison between the perfor-
mance of both algorithms we mention that for most problems simulated annealing
performs better than iterative improvement, repeated for a number of different initial
solutions such that both algorithms have used the same computation time.

Figure 10.2 shows four solutions in the evolution of simulated annealing running
on a TSP instance with 100 cities on the positions of a 10× 10 grid. The initial
solution at the top left is given by a random sequence among 100 cities, which is far
from optimal evidently. It looks very chaotic; the corresponding value of the tour
length is large. In the course of the optimization process the solutions become less

10 Simulated Annealing 271

Fig. 10.2 Evolution of simulated annealing for an instance with 100 cities on a regular grid

and less chaotic (top right and bottom left), and the tour length decreases. Finally,
the optimal solution shown at the bottom right is obtained. This solution has a highly
regular pattern for which the tour length is minimal.

10.4 Mathematical Modeling

Simulated annealing can be mathematically modeled by means of Markov chains
(Feller 1950; Isaacson and Madsen 1976; Seneta 1981). In this model, we view
simulated annealing as a process in which a sequence of Markov chains is gener-
ated. For each Markov chain the value of the control parameter is constant, but it
decreases for successive Markov chains. Each chain consists of a sequence of trials,
where the outcomes of the ith trial corresponds to the solution generated in the ith
iteration at the considered value of the control parameter.

Let (S, f) be a problem instance, N be a neighborhood function, and X(k) be a
stochastic variable denoting the outcome of the kth trial. Then the transition prob-
ability Pi, j(k) is the probability to make a transition from solution i to solution j at
the kth trial and it is given by

272 E. Aarts et al.

Pi j(k) = IP{X(k) = j|X(k− 1) = i}

=

⎧

⎨

⎩

Gi j(ck)Ai j(ck) if i
= j

1− ∑
l∈S,l
=i

Gil(ck)Ail(ck) if i = j,
(10.2)

where Gi j(ck) denotes the generation probability, i.e. the probability of generating a
solution j from the neighborhood of a solution i, and Ai j(ck) denotes the acceptance
probability, i.e. the probability of accepting the solution j, once it is generated from
solution i. The most frequently used choice for these probabilities is the following
(Aarts and Korst 1989):

Gi j(ck) =

{

|N(i)|−1 if j ∈ Si

0 if j
∈ Si
(10.3)

and

Ai j(ck) =

{

1 if f (j) ≤ f (i)
exp((f (i)− f (j))/c) if f (j) > f (i).

(10.4)

For fixed values of c, the probabilities do not depend on k, in which case the resulting
Markov chain is time-independent or homogeneous. Using the theory of Markov
chains it is fairly straightforward to show that, under the condition that the neigh-
borhoods are strongly connected and not all solutions have the same cost—in which
case the Markov chain is irreducible and aperiodic—there exists a unique stationary
distribution of the outcomes. This distribution is the probability distribution of the
solutions after an infinite number of trials. If Gi, j(c) = G j,i(c), then the distribution
takes the following form (Aarts and Korst 1989).

Theorem 10.1. Given an instance (S, f) of a combinatorial optimization problem
in which not all solutions are optimal and a neighborhood function that induces
a strongly connected neighborhood graph, then, after a sufficiently large number
of transitions at a fixed value of c, applying the transition probabilities of (10.2)–
(10.4), simulated annealing will find a solution i ∈ S with a probability equal to

IPc{X = i} def
= qi(c) =

1
N0(c)

exp

(

− f (i)

c

)

, (10.5)

where X is a stochastic variable denoting the current solution obtained by simulated
annealing and

N0(c) = ∑
j∈S

exp

(

− f (j)

c

)

(10.6)

denotes a normalization constant.

A proof of this theorem is considered beyond the scope if this chapter. For those
interested we refer to Michiels et al. (2007). The probability distribution of Eq. (10.5)

10 Simulated Annealing 273

is called the stationary or equilibrium distribution and it is the equivalent of the
Boltzmann distribution of Eq. (10.1). Next we can formulate the following impor-
tant result.

Corollary 10.1. Given an instance (S, f) of a combinatorial optimization problem
and a suitable neighborhood function, and furthermore let the stationary distribu-
tion be given by Eq. (10.5), then

lim
c↓0

qi(c)
def
= q∗i =

1
|S∗|χ(S∗)(i), (10.7)

where S∗ denotes the set of globally optimal solutions.1

Proof. Using the fact that for all a ≤ 0, lim
x↓0

e
a
x = 1 if a = 0, and 0 otherwise,

we obtain

lim
c↓0

qi(c) = lim
c↓0

exp
(

− f (i)
c

)

∑ j∈S exp
(

− f (j)
c

)

= lim
c↓0

exp
(

f ∗− f (i)
c

)

∑ j∈S exp
(

f ∗− f (j)
c

)

= lim
c↓0

1

∑ j∈S exp
(

f ∗− f (j)
c

)χ(S∗)(i)

+ lim
c↓0

exp
(

f ∗− f (i)
c

)

∑ j∈S exp
(

f ∗− f (j)
c

)χ(S\S∗)(i)

=
1
|S∗|χ(S∗)(i)+

0
|S∗|χ(S\S∗)(i),

which completes the proof. ⊓⊔

As already mentioned, the result of this corollary is important since it guarantees
asymptotic convergence of the simulated annealing algorithm to the set of globally
optimal solutions under the condition that the stationary distribution of Eq. (10.5) is
attained at each value of c. More specifically, it implies that asymptotically optimal
solutions are obtained which can be expressed as

lim
c↓0

lim
k→∞

IPc{X(k) ∈ S∗}= 1.

1 Let A and A′ ⊂ A be two sets. Then the characteristic function χ(A′) : A → {0,1} of the set A′ is
defined as χ(A′)(a) = 1 if a ∈ A′, and χ(A′)(a) = 0 otherwise.

274 E. Aarts et al.

We end this section with some remarks:

• We can also prove asymptotic convergence to optimality in the case that the con-
straints on the generation probabilities are weakened to the extent that they only
need to induce a symmetric neighborhood graph.

• The simulated annealing algorithm can also be formulated as an inhomogeneous
algorithm, namely as a single inhomogeneous Markov chain, where the value
of the control parameter c is decreased between subsequent trials. In this case,
asymptotic convergence can again be proved. However, an additional condition
on the sequence {ck} of values of the control parameter is needed, namely

ck ≥
Γ

log(k+ 2)
, k,= 0,1, . . .

for some constant Γ that can be related to the neighborhood function that is
applied.

• Asymptotic estimates of the rate of convergence show that the stationary
distribution of simulated annealing can only be approximated arbitrarily closely
if the number of transitions is proportional to |S|2. For hard problems, |S| is
necessarily exponential in the size of the problem instance, thus implying that
approximating the asymptotic behavior arbitrarily close results in an exponential-
time execution of simulated annealing. Similar results have been derived for the
asymptotic convergence of the inhomogeneous algorithm.

Summarizing, simulated annealing can find optimal solutions with probability one
if it is allowed an infinite number of transitions and it can get arbitrarily close to an
optimal solution if at least an exponential amount of transitions is allowed. In
Sect. 10.6 we show how a more efficient finite-time implementation of simulated
annealing can be obtained. Evidently, this will be at the cost of the guarantee of ob-
taining optimal solutions. Nevertheless, practice shows that high-quality solutions
can be obtained in this way.

10.5 Equilibrium Statistics

In order to enhance our understanding of the algorithm, we discuss some
characteristic features of simulated annealing under the assumption that we are at
equilibrium, i.e. at the stationary distribution given by Eq. (10.5). The expected cost
IEc(f) at equilibrium is defined as

IEc(f)
def
= 〈 f 〉c

= ∑
i∈S

f (i)IPc{X = i}

= ∑
i∈S

f (i)qi(c). (10.8)

10 Simulated Annealing 275

Similarly, the expected squared cost IEc(f 2) is defined as

IEc(f 2)
def
= 〈 f 2〉c

= ∑
i∈S

f 2(i)IPc{X = i}

= ∑
i∈S

f 2(i)qi(c). (10.9)

Using the above definitions, the variance Varc(f) of the cost is given by

Varc(f)
def
= σ2

c

= ∑
i∈S

(f (i)− IEc(f))2IPc{X = i}

= ∑
i∈S

(f (i)−〈 f 〉c)2qi(c)

= 〈 f 2〉c−〈 f 〉2c . (10.10)

The notation 〈 f 〉c,〈 f 2〉c and σ2
c is introduced as shorthand notation for the

remainder of this paper.

Corollary 10.2. Let the stationary distribution be given by Eq. (10.5), then the fol-
lowing relation holds:

∂

∂c
〈 f 〉c =

σ2
c

c2 . (10.11)

Proof. The relation can be straightforwardly verified by using the definition of
Eq. (10.8) and substituting the expression for the stationary distribution given by
Eq. (10.5). ⊓⊔

Corollary 10.3. Let the stationary distribution be given by (10.5). Then we have

lim
c→∞

〈 f 〉c
def
= 〈 f 〉∞ =

1
|S |∑i∈S

f (i) (10.12)

lim
c↓0
〈 f 〉c = f ∗ (10.13)

lim
c→∞

σ2
c

def
= σ2

∞ =
1
|S |∑i∈S

(f (i)−〈 f 〉∞)2 (10.14)

and

lim
c↓0
σ2

c = 0. (10.15)

276 E. Aarts et al.

Proof. The relations can be easily verified by using the definitions of the expected
cost (10.8) and the variance (10.10), and by substituting the stationary distribution
of Eq. (10.5). ⊓⊔

Since ∂
∂c 〈 f 〉c is strictly positive, as follows from Eq. (10.11), we get that dur-

ing execution of simulated annealing the expected cost decreases monotonically—
provided equilibrium is reached at each value of the control parameter—to its final
value, i.e. f ∗. The dependence of the stationary distribution of Eq. (10.5) on the
control parameter c is the subject of the following corollary.

Corollary 10.4. Let (S, f) denote an instance of a combinatorial optimization prob-
lem with S∗
= S, and let qi(c) denote the stationary distribution associated with
simulated annealing and given by (10.5). Then we have

(i) ∀i ∈ S∗

∂

∂c
qi(c)< 0

(ii) ∀i ∈ S\S∗, f (i) ≥ 〈 f 〉∞
∂

∂c
qi(c)> 0

(iii) ∀i ∈ S\S∗, f (i) < 〈 f 〉∞,∃c̃i > 0

∂

∂c
qi(c) < 0 if c > c̃i

= 0 if c = c̃i

> 0 if c < c̃i.

Proof. From (10.6) we can derive the following expression:

∂

∂c
N0(c) =∑

j∈S

f (j)

c2 exp

(− f (j)

c

)

.

Hence, we obtain

∂

∂c
qi(c) =

∂

∂c

exp
(

− f (i)
c

)

N0(c)

=

⎧

⎨

⎩

f (i)

c2

exp
(

− f (i)
c

)

N0(c)
−

exp
(

− f (i)
c

)

N2
0 (c)

∂

∂c
N0(c)

⎫

⎬

⎭

=
qi(c)

c2 f (i)− qi(c)

c2

∑ j∈S f (j)exp
(

− f (j)
c

)

N0(c)

=
qi(c)

c2 (f (i)−〈 f 〉c). (10.16)

10 Simulated Annealing 277

Thus, the sign of ∂
∂c qi(c) is determined by the sign of f (i)−〈 f 〉c since qi(c)

c2 > 0, for
all i ∈ S and c > 0.

From Eqs. (10.11) to (10.13) we have that 〈 f 〉c increases monotonically from
f ∗ to 〈 f 〉∞ with increasing c, provided S∗
= S. The remainder of the proof is now
straightforward.

If i∈ S∗ and S
= S∗, then f (i)< 〈 f 〉c. Hence, ∂
∂c qi(c)< 0 (see Eq. (10.16)), which

completes the proof of part (i).
If i
∈ S∗, then the sign of ∂

∂c qi(c) depends on the value of 〈 f 〉c. Hence, using

(10.16), we have that ∀i ∈ S\S∗ : ∂
∂c qi(c) > 0 if f (i) ≥ 〈 f 〉∞, whereas ∀i ∈ S\S∗,

where f (i) < 〈 f 〉∞, there exists a c̃i > 0 at which f (i)−〈 f 〉c changes sign. Conse-
quently, we have

∂

∂c
qi(c) < 0 if c > c̃i

= 0 if c = c̃i

> 0 if c < c̃i.

This completes the proofs of parts (ii) and (iii). ⊓⊔

From Corollary 10.4 it follows that the probability of finding an optimal solution
increases monotonically with decreasing c. Furthermore, for each solution, not be-
ing an optimal one, there exists a positive value of the control parameter c̃i, such
that for c < c̃i, the probability of finding that solution decreases monotonically with
decreasing c.

We conclude this section with some results that illustrate some of the elements
discussed in the analysis presented above. For this we need the definition of the
acceptance ratio ω(c) which is defined as

ω(c) =
number of accepted transitions
number of proposed transitions

∣

∣

∣

∣

c

. (10.17)

Figure 10.3 shows the behavior of the acceptance ratio as a function of the value of
the control parameter for typical implementations of simulated annealing. The figure
illustrates the behavior as it would be expected from the acceptance criterion given
in Eq. (10.4). At large values of c, virtually all proposed transitions are accepted.
As c decreases, ever fewer proposed transitions are accepted, and finally, at very
small values of c, no proposed transitions are accepted at all.

Figure 10.4 shows the typical behavior of (a) the normalized average cost and
(b) the normalized spread of the cost for simulated annealing as a function of the
control parameter c. The typical behavior shown in this figure is observed for many
different problem instances and is reported in the literature by a number of authors
(Aarts et al. 1988; Hajek 1985; Kirkpatrick et al. 1983; van Laarhoven and Aarts
1987; White 1984).

From the figures we can deduce some characteristic features of the expected cost
〈 f 〉c and the variance σ2

c of the cost. First, it is observed that for large values of c
the average and the spread of the cost are about constant and equal to 〈 f 〉∞ and σ∞,

278 E. Aarts et al.

c (logarithmic scale)

ω
(c

)

0

0.1

0.2

0.3

0.4

0.6

0.7

0.8

1

0.9

0.5

Fig. 10.3 Acceptance ratio as function of the control parameter

c (logarithmic scale) c (logarithmic scale)

ba

σ
c

σ
∞

〈
f
〉 c
−

f∗

〈
f
〉 ∞

−
f∗

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Fig. 10.4 (a) Normalized average value 〈 f 〉c− f ∗
〈 f 〉∞− f ∗ , and (b) normalized spread σc

σ∞
of the cost func-

tion, as a function of the control parameter

respectively. This behavior is directly explained by Eqs. (10.12) and (10.14), from
which it follows that both the average value and the spreading of the cost function
are constant at large c-values.

Secondly, we observe that there exists a threshold value ct of the control param-
eter for which

〈 f 〉ct ≈
1
2
(〈 f 〉∞+ f ∗) (10.18)

and

σ2
c ≈ σ2

∞ if c ≥ ct

< σ2
∞ if c < ct . (10.19)

Moreover, we mention that ct is roughly the value of c for which ω(c)≈ 0.5.

10 Simulated Annealing 279

10.6 Practical Application

A finite-time implementation of simulated annealing is obtained by generating a
sequence of homogeneous Markov chains of finite length at descending values of
the control parameter. A cooling schedule specifies a finite sequence of values of
the control parameter, and a finite number of transitions at each value of the control
parameter. More precisely, it is specified by

• An initial value of the control parameter c0

• A decrement function for lowering the value of the control parameter
• A final value of the control parameter specified by a stop criterion and
• A finite length of each homogeneous Markov chain.

The search for adequate cooling schedules has been the subject of many studies
over the years. Reviews are given by van Laarhoven and Aarts (1987), Collins et al.
(1988), and Romeo and Sangiovanni-Vincentelli (1991). Below we discuss some
results.

Most of the existing work on cooling schedules presented in the literature deals
with heuristic schedules. We distinguish between two broad classes: static and dy-
namic schedules. In a static cooling schedule the parameters are fixed; they cannot
be changed during execution of the algorithm. In a dynamic cooling schedule the
parameters are adaptively changed during execution of the algorithm. Below we
present some examples.

10.6.1 Static Cooling Schedules

The following simple schedule is known as the geometric schedule. It originates
from the early work on cooling schedules by Kirkpatrick et al. (1983), and is still
used in many practical situations.

10.6.1.1 Initial Value of the Control Parameter

To ensure a sufficiently large value of ω(c0), one may choose c0 = Δ fmax, where
Δ fmax is the maximal difference in cost between any two neighboring solutions.
Exact calculation of Δ fmax is quite time consuming in many cases. However, one
often can give simple estimates of its value.

10.6.1.2 Lowering the Control Parameter Value

A frequently used decrement function is given by

ck+1 = α · ck, k = 0,1, . . .

where α is a positive constant smaller than but close to 1. Typical values lie between
0.8 and 0.99.

280 E. Aarts et al.

10.6.1.3 Final Value of the Control Parameter

The final value is fixed at some small value, which may be related to the smallest
possible difference in cost between two neighboring solutions.

10.6.1.4 Markov Chain Length

The length of Markov chains is fixed by some number that may be related to the
size of the neighborhoods in the problem instance at hand.

10.6.2 Dynamic Cooling Schedules

There exist many extensions of the simple static schedule presented above that
lead to a dynamic schedule. For instance, a sufficiently large value of c0 may be
obtained by requiring that the initial acceptance ratio ω(c0) is close to 1. This can
be achieved by starting off at a small positive value of c0 and multiplying it with a
constant factor, larger than 1, until the corresponding value of ω(c0), which is calcu-
lated from a number of generated transitions, is close to 1. Typical values of ω(c0)
lie between 0.9 and 0.99. An adaptive calculation of the final value of the control
parameter may be obtained by terminating the execution of the algorithm at a ck-
value for which the value of the cost function of the solution obtained in the last trial
of a Markov chain remains unchanged for a number of consecutive chains. Clearly
such a value exists for each local minimum that is found. The length of Markov
chains may be determined by requiring that at each value ck, a minimum number
of transitions is accepted. However, since transitions are accepted with decreasing
probability, one would obtain Lk →∞ for ck ↓ 0. Therefore, Lk is usually bounded by
some constant Lmax to avoid extremely long Markov chains for small values of ck.

In addition to this basic dynamic schedule the literature presents a number of
more elaborate schedules. Most of these schedules are based on a statistical analysis
of simulated annealing using the equilibrium statistics of the previous section.

10.7 Tricks of the Trade

To apply simulated annealing in practice, three basic ingredients are needed: a
concise problem representation, a neighborhood and a cooling schedule. The al-
gorithm is usually implemented as a sequence of homogeneous Markov chains of
finite length, generated at descending values of the control parameter. This is spec-
ified by the cooling schedule. As for the choice of the cooling schedule, we have
seen in the previous section that there exist some general guidelines. However, for
the other ingredients no general rules are known that guide their choice. The way

10 Simulated Annealing 281

they are handled is still a matter of experience, taste and skill left to the annealing
practitioner, and we expect that this will not change in the near future.

Ever since its introduction in 1983, simulated annealing has been applied to a
large number of different combinatorial optimization problems in areas as diverse
as operations research, VLSI design, code design, image processing and molecular
physics. The success of simulated annealing can be characterized by the following
elements:

• Performance, i.e. running time and solution quality
• Ease of implementation and
• Applicability and flexibility.

With respect to the last two items we make the following remarks. It is appar-
ent that simulated annealing is conceptually simple and quite easy to implement.
Implementation of the algorithm typically takes only a few hundred lines of com-
puter code. Experience shows that implementations for new problems often take
only a few days and in most cases existing programs, written for another problem,
can be efficiently used.

With respect to applicability and flexibility it has become obvious as a result of
the overwhelming amount of practical experience that has been gathered over the
past 30 years that simulated annealing can be considered as one of the most flexible
and applicable algorithms that exist. However, one must bear in mind that it is not
always trivial to apply the algorithm to a given problem. Finding appropriate neigh-
borhoods requires problem insight, and sometimes it is necessary to reformulate the
problem or transform it into an equivalent or similar problem, before simulated an-
nealing can be applied successfully; an example is graph coloring (Michiels et al.
2007).

With respect to performance, one typically trades solution quality against running
time. Performance analyses of simulated annealing algorithms have been the subject
of many studies. Despite numerous studies it is still difficult to judge simulated
annealing on its true merits. This is predominantly due to the fact that many of these
studies lack the depth required to draw reliable conclusions; for example, results are
often limited to one single run of the algorithm, instead of taking the average over a
number of runs; the applied cooling schedules are often too simple, and do not get
the best out of the algorithm; results are often not compared to the results obtained
with other (tailored) algorithms.

We conclude this section with two remarks.
Comparing simulated annealing to time-equivalent iterative improvement using

the same neighborhood function, i.e. repeating iterative improvement with different
initial solutions for an equally long time as the running time of simulated anneal-
ing and keeping the best solution, reveals that simulated annealing performs sub-
stantially better (smaller error). This difference becomes even more pronounced for
larger problem instances (van Laarhoven et al. 1992; van Laarhoven 1988).

Finally, experience shows that the performance of simulated annealing depends
as much on the skill and effort that is applied to the implementation as on the
algorithm itself. For instance, the choice of an appropriate neighborhood function,

282 E. Aarts et al.

of an efficient cooling schedule, and of sophisticated data structures allowing fast
manipulations can substantially reduce the error as well as the running time. Thus,
in view of this and considering the simple nature of annealing, there lies a challenge
in constructing efficient and effective implementations of simulated annealing.

10.8 Conclusions

Since its introduction in 1983, simulated annealing has been applied to many dif-
ferent problems in many different areas. Thirty years of experience has led to the
following general observations:

• High-quality solutions can be obtained but sometimes at the cost of large amounts
of computation time.

• In many practical situations, where no tailored algorithms are available, the algo-
rithm is a real boon due to its general applicability and its ease of implementation.

So, simulated annealing is an algorithm that every practical mathematician and
computer scientist should have in his toolbox.

Sources of Additional Information

Introductory textbooks describing both theoretical and practical issues of simulated
annealing are given by Aarts and Korst (1989), van Laarhoven and Aarts (1987),
and Michiels et al. (2007). Salamon et al. (2002) present a basic textbook on sim-
ulated annealing with improvements for practical implementations and references
to software tools. Azencott (1992) presents a theoretical textbook on parallelization
techniques for simulated annealing for the purpose of speeding up the algorithm
through effective parallel implementations.

Early proofs of the asymptotic convergence of the homogeneous Markov model
for simulated annealing are presented by Aarts and van Laarhoven (1985) and Lundy
and Mees (1986). Proofs for the inhomogeneous algorithm have been published by
Connors and Kumar (1987), Gidas (1985), and Mitra et al. (1986). Hajek (1988) was
the first to present necessary and sufficient conditions for asymptotic convergence
of the inhomogeneous model. Anily and Federgruen (1987) present theoretical re-
sults on the convergence of simulated annealing for a set of acceptance probabilities
that are much more general than the classical Metropolis acceptance probabilities.
Villalobos-Arias et al. (2006) prove asymptotic convergence of simulated annealing
when applied to multi-objective optimization problems. A comprehensive review of
the theory of simulated annealing is given by Romeo and Sangiovanni-Vincentelli
(1991).

Strenski and Kirkpatrick (1991) present an early analysis of the finite-time
behavior of simulated annealing for various cooling schedules. Steinhöfel et al.

10 Simulated Annealing 283

(1998) present a comparative study in which they investigate the performance
of simulated annealing for different cooling schedules when applied to job shop
scheduling. Nourani and Andersen (1998) present a comparative study in which
they investigate the performance of simulated annealing with cooling schedules ap-
plying different types of decrement functions for lowering the value of the control
parameter. Andersen (1996) elaborates on the thermodynamical analysis of finite-
time implementations of simulated annealing. Orosz and Jacobson (2002) study the
finite-time behavior of a special variant of simulated annealing in which the values
of the control parameters are kept constant during the annealing process. Park and
Kim (1998) present a systematic approach to the problem of choosing appropriate
values for the parameters in a cooling schedule.

Vidal (1993) presents an edited collection of papers on practical aspects of
simulated annealing, ranging from empirical studies of cooling schedules up to im-
plementation issues of simulated annealing for problems in engineering and plan-
ning. Eglese (1990) presents a survey of the application of simulated annealing to
problems in operations research. Collins et al. (1988) present an annotated bibliog-
raphy with more than a thousand references to papers on simulated annealing. It is
organized in two parts; one on theory, and the other on applications. The applica-
tions range from graph-theoretic problems to problems in engineering, biology and
chemistry. Fox (1993) discusses the integration of simulated annealing with other
local search heuristics such as tabu search and genetic algorithms.

References

Aarts EHL, Korst JHM (1989) Simulated annealing and Boltzmann machines.
Wiley, Chichester

Aarts EHL, van Laarhoven PJM (1985) Statistical cooling: a general approach to
combinatorial optimization problems. Philips J Res 40:193–226

Aarts EHL, Lenstra JK (eds) (2003) Local search in combinatorial optimization.
Princeton University Press, Princeton

Aarts EHL, Korst JHM, van Laarhoven PJM (1988) A quantitative analysis of the
simulated annealing algorithm: a case study for the traveling salesman problem.
J Stat Phys 50:189–206

Andersen B (1996) Finite-time thermodynamics and simulated annealing. In: Shiner
JS (ed) Entropy and entropy generation. Kluwer, Dordrecht, pp 111–127

Anily S, Federgruen A (1987) Simulated annealing methods with general accep-
tance probabilities. J Appl Probab 24:657–667

Arora S, Barak B (2009) Computational complexity: a modern approach.
Cambridge University Press, Cambridge/New York

Ausiello G, Crescenzi P, Gambosi G, Kann V, Marchetti-Spaccamela A, Protasi M
(1999) Complexity and approximation: combinatorial optimization problems and
their approximability properties. Springer, Berlin

284 E. Aarts et al.

Azencott R (1992) Simulated annealing: parallelization techniques. Wiley, Chich-
ester

Binder K (1978) Monte Carlo methods in statistical physics. Springer, Berlin
Černý V (1985) Thermodynamical approach to the traveling salesman problem: an

efficient simulation algorithm. J Optim Theory Appl 45:41–51
Collins NE, Eglese RW, Golden BL (1988) Simulated annealing: an annotated bib-

liography. Am J Math Manage Sci 8:209–307
Connors DP, Kumar PR (1987) Simulated annealing and balance of recurrence or-

der in time-inhomogeneous Markov chains. In: Proceedings of the 26th IEEE
conference on decision and control, Los Angeles, pp 2261–2263

Eglese RW (1990) Simulated annealing: a tool for operational research. Eur J Oper
Res 46:271–281

Feller W (1950) An introduction to probability theory and its applications, vol 1.
Wiley, New York

Fox BL (1993) Integrating and accelerating tabu search, simulated annealing, and
genetic algorithms. In: Glover F et al (eds) Tabu search. Annals of operations
research, vol 41. Baltzer, Basel, pp 47–67

Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory
of NP-completeness. Freeman, San Francisco

Gidas B (1985) Nonstationary Markov chains and convergence of the annealing
algorithm. J Stat Phys 39:73–131

Hajek B (1985) A tutorial survey of the theory and application of simulated anneal-
ing. In: Proceedings of the 24th IEEE conference on decision and control, Fort
Lauderdale, pp 755–760

Hajek B (1988) Cooling schedules for optimal annealing. Math Oper Res
13:311–329

Isaacson D, Madsen R (1976) Markov chains. Wiley, New York
Kernighan BW, Lin S (1970) An efficient heuristic procedure for partitioning

graphs. Bell Syst Tech J 49:291–307
Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated anneal-

ing. Science 220:671–680
Lin S (1965) Computer solutions of the traveling salesman problem. Bell Syst Tech

J 44:2245–2269
Lin S, Kernighan BW (1973) An effective heuristic algorithm for the traveling sales-

man problem. Oper Res 21:498–516
Lundy M, Mees A (1986) Convergence of an annealing algorithm. Math Program

34:111–124
Metropolis M, Rosenbluth A, Rosenbluth M, Teller A, Teller E (1953) Equation of

state calculations by fast computing machines. J Chem Phys 21:1087–1092
Michiels W, Aarts E, Korst J (2007) Theoretical aspects of local search. Springer,

Berlin
Mitra D, Romeo F, Sangiovanni-Vincentelli AL (1986) Convergence and finite-time

behavior of simulated annealing. Adv Appl Probab 18:747–771
Nourani Y, Andersen B (1998) A comparison of simulated annealing cooling strate-

gies. J Phys A 31:8373–8385

10 Simulated Annealing 285

Orosz JE, Jacobson SH (2002) Finite-time performance analysis of static simulated
annealing algorithms. Comput Optim Appl 21:21–53

Park M-W, Kim Y-D (1998) A systematic procedure for setting parameters in sim-
ulated annealing algorithms. Comput Oper Res 25:207–217

Romeo F, Sangiovanni-Vincentelli A (1991) A theoretical framework for simulated
annealing. Algorithmica 6:302–345

Salamon P, Sibani P, Frost R (2002) Facts, conjectures, and improvements for sim-
ulated annealing. SIAM Monographs, Philadelphia

Seneta E (1981) Non-negative matrices and Markov chains, 2nd edn. Springer,
New York

Steinhöfel K, Albrecht A, Wong CK (1998) On various cooling schedules for sim-
ulated annealing applied to the job shop problem. In: Luby M et al (eds) Ran-
domization and approximation techniques in computer science. Lecture notes in
computer science, vol 1518. Springer, Berlin, pp 260–279

Strenski PN, Kirkpatrick S (1991) Analysis of finite length annealing schedules.
Algorithmica 6:346–366

van Laarhoven PJM (1988) Theoretical and computational aspects of simulated
annealing. PhD thesis, Erasmus University Rotterdam

van Laarhoven PJM, Aarts EHL (1987) Simulated annealing: theory and applica-
tions. Reidel, Dordrecht

van Laarhoven PJM, Aarts EHL, Lenstra JK (1992) Job shop scheduling by simu-
lated annealing. Oper Res 40:185–201

Vidal RVV (ed) (1993) Applied simulated annealing. Lecture notes in economics
and mathematical systems, vol 396. Springer, Berlin

Villalobos-Arias M, Coello CA, Hernandez-Lerma O (2006) Asymptotic con-
vergence of a simulated annealing algorithm for multiobjective optimization
problems. Math Methods Oper Res 64:353–362

White SR (1984) Concepts of scale in simulated annealing. In: Proceedings of the
IEEE international conference on computer design, New York, pp 646–651

Chapter 11

GRASP: Greedy Randomized Adaptive Search
Procedures

Mauricio G.C. Resende and Celso C. Ribeiro

11.1 Introduction

Metaheuristics are general high-level procedures that coordinate simple heuris-
tics and rules to find good-quality solutions to computationally difficult combi-
natorial optimization problems. Among them, we find simulated annealing (see
Chap. 10), tabu search (see Chap. 9), genetic algorithms (Chap. 4), scatter search
(Chap. 5), variable neighborhood search (Chap. 12), ant colonies (Chap. 8), and
others. The method described in this chapter represents another example of such a
technique. Metaheuristics are based on distinct paradigms and offer different mech-
anisms to escape from locally optimal solutions. They are among the most effective
solution strategies for solving combinatorial optimization problems in practice and
have been applied to a wide array of academic and real-world problems. The cus-
tomization (or instantiation) of a metaheuristic to a given problem yields a heuristic
for that problem.

In this chapter, we consider the combinatorial optimization problem of minimiz-
ing f (S) over all solutions S ∈ X , which is defined by a finite set E = {e1, . . . ,en}
(called the ground set), by a set of feasible solutions X ⊆ 2E and by an objective
function f : 2E →R. The ground set E , the objective function f , and the constraints
defining the set of feasible solutions X are specific for each problem. We seek an
optimal solution S∗ ∈ X such that f (S∗)≤ f (S), ∀S ∈ X .

GRASP, which stands for greedy randomized adaptive search procedures
(Feo and Resende 1989, 1995), is a multistart, or iterative, metaheuristic in which

M.G.C. Resende (�)
Algorithms and Optimization Research Department, AT&T Labs Research,
Florham Park, NJ, USA
e-mail: mgcr@research.att.com

C.C. Ribeiro
Department of Computer Science, Universidade Federal Fluminense, Niterói, RJ, Brazil
e-mail: celso@ic.uff.br

E.K. Burke and G. Kendall (eds.), Search Methodologies: Introductory Tutorials
in Optimization and Decision Support Techniques, DOI 10.1007/978-1-4614-6940-7_11,
© Springer Science+Business Media New York 2014

287

mailto:mgcr@research.att.com
mailto:celso@ic.uff.br

288 M.G.C. Resende and C.C. Ribeiro

each iteration consists of two phases: construction and local search. The construc-
tion phase builds a solution. If this solution is not feasible, a repair procedure should
be applied to attempt to achieve feasibility. If feasibility cannot be reached, it is
discarded and a new solution is created. Once a feasible solution is obtained, its
neighborhood is investigated until a local minimum is found during the local search
phase. The best overall solution is kept as the result.

The principles and building blocks of GRASP, which are also common to other
metaheuristics, are reviewed in Sect. 11.2. A template for the basic GRASP al-
gorithm is described in Sect. 11.3. The GRASP with path-relinking heuristic is
considered in Sect. 11.4, where different strategies for the efficient implementa-
tion of path-relinking are discussed. Hybridizations of GRASP with data mining
and other metaheuristics are reviewed in Sect. 11.5. Recommendations and good
problem-solving practices leading to more efficient implementations are presented
in Sect. 11.6. Finally, we suggest sources of additional information, with references
and links to literature surveys, annotated bibliographies and source codes, tools and
software for algorithm evaluation and comparison, and accounts of applications and
parallel implementations of GRASP.

11.2 Principles and Building Blocks

Several principles and building blocks appear as components common to GRASP
and other metaheuristics. They are often blended using different strategies and
additional features that distinguish one metaheuristic from another.

11.2.1 Greedy Algorithms

In a greedy algorithm, solutions are progressively built from scratch. At each
iteration, a new element from the ground set E is incorporated into the partial solu-
tion under construction, until a complete feasible solution is obtained. The selection
of the next element to be incorporated is determined by the evaluation of all candi-
date elements according to a greedy evaluation function. This greedy function usu-
ally represents the incremental increase in the cost function due to the incorporation
of this element into the partial solution under construction. The greediness criterion
establishes that an element with the smallest incremental increase is selected, with
ties being arbitrarily broken. Figure 11.1 provides a template for a greedy algorithm
for a minimization problem.

The solutions obtained by greedy algorithms are not necessarily optimal. Greedy
algorithms are often used to build initial solutions to be explored by local search or
metaheuristics.

11 GRASP: Greedy Randomized Adaptive Search Procedures 289

Fig. 11.1 Greedy algorithm for minimization

Fig. 11.2 Greedy randomized algorithm for minimization

11.2.2 Randomization and Greedy Randomized Algorithms

Randomization plays a very important role in algorithm design. Metaheuristics such
as simulated annealing, GRASP and genetic algorithms rely on randomization to
sample the search space. Randomization can also be used to break ties, enabling
different trajectories to be followed from the same initial solution in multistart meth-
ods, or sampling different parts of large neighborhoods. One particularly important
use of randomization appears in the context of greedy algorithms.

Greedy randomized algorithms are based on the same principle guiding pure
greedy algorithms. However, they make use of randomization to build different
solutions at different runs. Figure 11.2 illustrates the pseudo-code of a greedy
randomized algorithm for minimization. At each iteration, the set of candidate
elements is formed by all elements that can be incorporated into the partial solution
under construction without destroying feasibility. As before, the selection of the next
element is determined by the evaluation of all candidate elements according to a
greedy evaluation function. The evaluation of the elements by this function leads

290 M.G.C. Resende and C.C. Ribeiro

to the creation of a restricted candidate list (RCL) formed by the best elements,
i.e. those whose incorporation into the current partial solution results in the small-
est incremental costs. The element to be incorporated into the partial solution is
randomly selected from those in the RCL. Once the selected element has been
incorporated into the partial solution, the set of candidate elements is updated and
the incremental costs are re-evaluated.

Greedy randomized algorithms are used for a variety of purposes. For example,
they are used in the construction phase of GRASP heuristics or to create initial
solutions for population-based metaheuristics such as genetic algorithms or scatter
search. Randomization is also a major component of metaheuristics, such as sim-
ulated annealing and VNS, in which a solution in the neighborhood of the current
solution is randomly generated at each iteration.

11.2.3 Neighborhoods

A neighborhood of a solution S is a set N(S)⊆X . Each solution S′ ∈N(S) is reached
from S by an operation called a move. Normally, two neighbor solutions S and S′ ∈
N(S) differ by only a few elements. Neighborhoods may also eventually contain
infeasible solutions not in X .

A solution S∗ is a local optimum with respect to a given neighborhood N if
f (S∗) ≤ f (S),∀S ∈ N(S∗). Local search methods are based on the exploration of
solution neighborhoods in an iterative fashion by successively searching for im-
proving solutions until a local optimum is found.

The definition of a neighborhood is not unique. Some implementations of meta-
heuristics make use of multiple neighborhood structures. A metaheuristic may also
modify the neighborhood, by excluding some of the possible moves and introduc-
ing others. Such modifications might also require changes in the nature of solution
evaluation. The strategic oscillation approach (Glover 1996) illustrates this intimate
relationship between changes in neighborhood and changes in evaluation.

11.2.4 Local Search

Solutions generated by greedy algorithms are not necessarily optimal, even with
respect to simple neighborhoods. A local search technique attempts to improve
solutions in an iterative fashion, by successively replacing the current solution by a
better solution in a neighborhood of the current solution. It terminates when no bet-
ter solution is found in the neighborhood. The pseudo-code of a basic local search
algorithm for a minimization problem is given in Fig. 11.3. It starts from a solution
S and makes use of a neighborhood structure N.

11 GRASP: Greedy Randomized Adaptive Search Procedures 291

Fig. 11.3 Local search algorithm for minimization

The effectiveness of a local search procedure depends on several aspects, such as
the neighborhood structure, the neighborhood search technique, the speed of evalua-
tion of the cost function, and the starting solution. The neighborhood search may be
implemented using either a best-improving or a first-improving strategy. In the case
of a best-improving strategy, all neighbors are investigated and the current solution
is replaced by the best neighbor. In the case of a first-improving strategy, the current
solution moves to the first neighbor whose cost function value is smaller than that
of the current solution.

11.2.5 Restricted Neighborhoods and Candidate Lists

Glover and Laguna (1997) point out that the use of strategies to restrict neighbor-
hoods and to create candidate lists is essential to restrict the number of solutions
examined in a given iteration in situations where the neighborhoods are very large
or their elements are expensive to evaluate.

Their goal consists in attempting to isolate regions of the neighborhood contain-
ing desirable features and inserting them into a list of candidates for close exam-
ination. The efficiency of candidate list strategies can be enhanced by the use of
memory structures for efficient updates of move evaluations from one iteration to
another. The effectiveness of a candidate list strategy should be evaluated in terms of
the quality of the best solution found in some specified amount of computation time.
Strategies such as aspiration plus, elite candidate list, successive filtering, sequen-
tial fan candidate list, and bounded change candidate list are reviewed in Glover and
Laguna (1997).

Ribeiro and Souza (2000) used a candidate list strategy, based on quickly
computed estimates of move values, to significantly speed up the search for the
best neighbor in their tabu search heuristic for the Steiner problem in graphs. Moves
with bad estimates were discarded. Restricted neighborhoods based on filtering out
unpromising solutions with high evaluations are discussed, for example, in Martins
et al. (1999) and Resende and Ribeiro (2003b).

292 M.G.C. Resende and C.C. Ribeiro

11.2.6 Intensification and Diversification

Two important components of metaheuristics are intensification and diversification:

• Intensification strategies encourage move combinations and solution features
historically found to be good or to return to explore attractive regions of the
solution space more thoroughly. The implementation of intensification strategies
enforces the investigation of neighborhoods of elite solutions and makes use of
explicit memory to do so. Intensification is often implemented in GRASP heuris-
tics by using path-relinking, as described below.

• Diversification strategies encourage the search to examine unvisited regions of
the solution space or to generate solutions that significantly differ from those
previously visited. Penalty and incentive functions are often used in this context.
Diversification is often implemented by means of perturbations which destroy
the structure of the current solution. In the context of GRASP, they are used, for
example, within hybridizations with the iterated local search (ILS) metaheuristic,
as described in Sect. 11.5.

11.2.7 Path-Relinking

Path-relinking was originally proposed by Glover (1996) as an intensification
strategy exploring trajectories connecting elite solutions obtained by tabu search
or scatter search (Glover et al. 2000). Starting from one or more elite solutions,
paths in the solution space leading toward other elite solutions are generated and
explored in the search for better solutions. To generate paths, moves are selected to
introduce attributes in the current solution that are present in the elite guiding solu-
tion. Path-relinking may be viewed as a strategy that seeks to incorporate attributes
of high-quality solutions, by favoring these attributes in the selected moves.

The algorithm in Fig. 11.4 illustrates the pseudo-code of the path-relinking
procedure applied to a pair of solutions Ss (starting solution) and St (target solution).
The procedure starts by computing the symmetric difference Δ(Ss,St) between the
two solutions, i.e. the set of elements of the ground set E that appear in one of them
but not in the other. The symmetric difference also defines the set of moves that have
to be successively applied to Ss until St is reached. At each step, the procedure ex-
amines all moves m ∈ Δ(S,St) from the current solution S and selects the one which
results in the least cost solution, i.e. the one which minimizes f (S⊕m), where S⊕m
is the solution resulting from applying move m to solution S. The best move m∗ is
made, producing solution S⊕m∗. The set of available moves is updated. If neces-
sary, the best solution S̄ is updated. The procedure terminates when St is reached,
i.e. when Δ(S,St) = /0. A path of solutions is thus generated linking Ss to St and S̄ is
the best solution in this path. Since there is no guarantee that S̄ is a local minimum,
local search can be applied to it and the resulting local minimum is returned by the
algorithm.

11 GRASP: Greedy Randomized Adaptive Search Procedures 293

Fig. 11.4 Path-relinking procedure for minimization

Path-relinking may also be viewed as a constrained local search strategy
applied to the initial solution Ss, in which only a limited set of moves can be per-
formed and uphill moves are allowed. Several alternatives have been considered
and combined in successful implementations of path-relinking in conjunction with
GRASP and other metaheuristics. They are reviewed in Sect. 11.4.

11.3 A Template for GRASP

Each iteration of the original GRASP metaheuristic proposed in Feo and Resende
(1989) may be divided in two main phases: construction and local search (see also
Feo and Resende 1995; Resende 2008; Resende and Ribeiro 2003a,b, 2005a, 2010
for other surveys on GRASP and its extensions). These steps are repeated many
times, characterizing a multistart metaheuristic. The construction phase builds a
solution. If this solution is not feasible, it is either discarded or a repair heuristic is
applied to achieve feasibility (examples of repair procedures can be found in Duarte
et al. 2007a,b; Mateus et al. 2011; Nascimento et al. 2010). Once a feasible solution
is obtained, its neighborhood is investigated until a local minimum is found during
the local search phase. The best solution found over all iterations is returned.

The pseudo-code in Fig. 11.5 illustrates the main blocks of a GRASP procedure
for minimization, in which MaxIterations iterations are performed and Seed is
used as the initial seed for the pseudo-random number generator.

An especially appealing characteristic of GRASP is the ease with which it can
be implemented. Few parameters need to be set and tuned, and therefore develop-
ment can focus on implementing efficient data structures to assure quick iterations.
Basic implementations of GRASP rely exclusively on two parameters: the number

294 M.G.C. Resende and C.C. Ribeiro

Fig. 11.5 Template of a GRASP heuristic for minimization

MaxIterations of iterations and the parameter used to limit the size of the RCL
within the greedy randomized algorithm used by the construction phase. In spite of
its simplicity and ease of implementation, GRASP is a very effective metaheuristic
and produces the best known solutions for many problems, see Festa and Resende
(2002, 2009a,b) for extensive surveys of applications of GRASP.

For the construction of the RCL used in the first phase, we consider, without
loss of generality, a minimization problem such as the one formulated in Sect. 11.1.
As before, we denote by c(e) the incremental cost associated with the incorporation
of element e ∈ E into the solution under construction. At any GRASP iteration, let
cmin and cmax be, respectively, the smallest and the largest incremental costs.

The RCL is made up of the elements e ∈ E with the best (i.e. the smallest)
incremental costs c(e). This list can be limited either by the number of elements
(cardinality-based) or by their quality (value-based). In the first case, it is made up
of the p elements with the best incremental costs, where p is a parameter. In this
chapter, the RCL is associated with a threshold parameter α ∈ [0,1]. The RCL is
formed by all feasible elements e ∈ E which can be inserted into the partial solu-
tion under construction without destroying feasibility and whose quality is superior
to the threshold value, that is c(e) ∈ [cmin,cmin +α(cmax − cmin)]. The case α = 0
corresponds to a pure greedy algorithm, while α= 1 is equivalent to a random con-
struction. The pseudo-code in Fig. 11.6 is a refinement of the greedy randomized
construction algorithm, whose pseudo-code appears in Fig. 11.2.

GRASP may be viewed as a repetitive sampling technique. Each iteration pro-
duces a sample solution from an unknown distribution, whose mean value and vari-
ance are functions of the restrictive nature of the RCL. The pseudo-code in Fig. 11.6
shows that the parameter α controls the amounts of greediness and randomness in
the algorithm. Resende and Ribeiro (2003b, 2010) have shown that what often leads
to good solutions are relatively low average solution values (i.e. close to the value of

11 GRASP: Greedy Randomized Adaptive Search Procedures 295

Fig. 11.6 Refined pseudo-code of the construction phase using parameter α for defining a quality
threshold

the purely greedy solution obtained with α= 0) in the presence of a relatively large
variance (i.e. solutions obtained with a larger degree of randomness as α increases),
such as is often the case for α= 0.2.

Prais and Ribeiro (2000a) showed that using a single fixed value for the value of
the RCL parameterα often hinders finding a high-quality solution, which eventually
could be found if another value was used. An alternative is to use a different value
of α, chosen uniformly at random in the interval [0,1], at each GRASP iteration.
Prais and Ribeiro (2000a) proposed another alternative, the Reactive GRASP ex-
tension of the basic procedure, in which the parameter α is self-tuned and its value
is periodically modified according with the quality of the solutions previously ob-
tained. Applications to other problems (see e.g. Festa and Resende 2009a; Resende
and Ribeiro 2010) have shown that Reactive GRASP outperforms the basic algo-
rithm. These results motivated the study of the behavior of GRASP for different
strategies for the variation of the value of the RCL parameter α. The experiments
reported in Prais and Ribeiro (2000a) show that implementation strategies based on
the variation of α are likely to be more affective than one using a single fixed value
for this parameter.

Two other randomized greedy approaches, with smaller worst-case complexities
than that depicted in the pseudo-code of Fig. 11.6, were proposed by Resende and
Werneck (2004). Instead of combining greediness and randomness at each step of
the construction procedure, the random plus greedy scheme applies randomness dur-
ing the first p construction steps to produce a random partial solution. Next, the al-
gorithm completes the solution with one or more pure greedy construction steps. By
changing the value of the parameter p, one can control the balance between greed-
iness and randomness in the construction: larger values of p correspond to solu-
tions that are more random, with smaller values corresponding to greedier solutions.
The sampled greedy construction provides a different way to combine randomness
and greediness. This procedure is also controlled by a parameter p. At each step

296 M.G.C. Resende and C.C. Ribeiro

of the construction process, the procedure builds a RCL by sampling min{p, |C|}
elements of the candidate set C. Each of the sampled elements is evaluated by the
greedy function and an element with the smallest greedy function value is added to
the partial solution. These steps are repeated until there are no more candidate ele-
ments. As before, the balance between greediness and randomness can be controlled
by changing the value of the parameter p, i.e. the number of candidate elements that
are sampled. Small sample sizes lead to more random solutions, while large sample
sizes lead to more greedy solutions.

11.4 GRASP with Path-Relinking

GRASP, as originally proposed, is a memoryless procedure in which each iteration
does not make use of information gathered in previous iterations. Path-relinking is a
major enhancement used for search intensification with GRASP. By adding memory
structures to the basic procedure described above, path-relinking leads to significant
improvements in solution time and quality.

The basic principles of path-relinking were described in Sect. 11.2.7. The use
of path-relinking within a GRASP procedure was proposed in Laguna and Martí
(1999) and followed by extensions, improvements, and successful applications
(see Sect. 11.7.2). Surveys of GRASP with path-relinking can be found in Resende
and Ribeiro (2003a, 2005a, 2010). Different schemes have been proposed for the im-
plementation of path-relinking. In essence, it has been applied as a post-optimization
phase (between every pair of elite solutions in the pool of elite solutions) and as an
intensification strategy (between every local optimum obtained after the local search
phase and one or more elite solutions in the pool of elite solutions).

In this last context, path-relinking is applied to pairs of solutions, one of which is
a locally optimal solution and the other is randomly chosen from a pool with a lim-
ited number MaxElite of elite solutions found along the search. A simple strategy
is to assign equal probabilities of being selected to each elite solution. Another strat-
egy assigns probabilities proportional to the cardinality of the symmetric difference
between the elite solution and the locally optimal solution. This strategy favors elite
solutions that result in longer paths. One of these solutions is called the initial solu-
tion, while the other is the guiding solution. One or more paths in the solution space
graph connecting these solutions may be explored in the search for better solutions.
The pool of elite solutions is originally empty. Since we wish to maintain a pool of
good but diverse solutions, each locally optimal solution obtained by local search
is considered as a candidate to be inserted into the pool if it is sufficiently different
from every other solution currently in the pool. If the pool already has MaxElite
solutions and the candidate is better than the worst of them, then a simple strategy
is to have the candidate replace the worst elite solution. This strategy improves the
quality of the elite set. Another strategy is to have the candidate replace an elite
solution with worse objective function value that is most similar to it. This strategy
improves the diversity of the elite set as well as its quality.

11 GRASP: Greedy Randomized Adaptive Search Procedures 297

Fig. 11.7 Template of a GRASP with path-relinking heuristic for minimization

The pseudo-code in Fig. 11.7 illustrates the main steps of a GRASP procedure
using path-relinking to implement a memory-based intensification strategy.

Several alternatives for applying path-relinking to a pair of solutions S and
S′ have been considered and combined in the literature. These include forward,
backward, back and forward, mixed, truncated, greedy randomized adaptive, and
evolutionary path-relinking. All these alternatives involve trade-offs between
computation time and solution quality.

In forward path-relinking, the GRASP local optimum S is designated as the ini-
tial solution and the pool solution S′ is made the guiding solution. The roles of S
and S′ are interchanged in backward path-relinking. This scheme was originally
proposed in Aiex et al. (2005), Ribeiro et al. (2002), and Resende and Ribeiro
(2003a). The main advantage of this approach over forward path-relinking comes
from the fact that, in general, there are more high-quality solutions near pool ele-
ments than near GRASP local optima. Backward path-relinking explores more thor-
oughly the neighborhood around the pool solution, whereas forward path-relinking
explores more thoroughly the neighborhood around the GRASP local optimum.
Experiments in Aiex et al. (2005) and Resende and Ribeiro (2003a) have con-
firmed that backward path-relinking usually outperforms forward path-relinking.
Back and forward path-relinking combines forward and backward path-relinking,
exploring two different paths. It finds solutions at least as good as forward path-
relinking or backward path-relinking, but at the expense of taking about twice as
long to run. Mixed path-relinking shares the benefits of back and forward path-
relinking, in about the same time as forward or backward path-relinking alone.

298 M.G.C. Resende and C.C. Ribeiro

This is achieved by interchanging the roles of the initial and guiding solutions at
each step of the path-relinking procedure. Ribeiro and Rosseti (2007) have shown
experimentally that it outperforms forward, backward, and back and forward path-
relinking (see also Resende and Ribeiro 2010).

Other strategies have been proposed more recently. Truncated path-relinking can
be applied to either forward, backward, back and forward, or mixed path-relinking.
Instead of exploring the entire path, it takes only a fraction of those steps and con-
sequently takes a fraction of the time to run. Since high-quality solutions tend to
be near the initial or guiding solutions, exploring part of the path near the ex-
tremities may produce solutions about as good as those found by exploring the
entire path. Indeed, Resende et al. (2010) showed experimentally that this is the
case for instances of the max–min diversity problem. Greedy randomized adaptive
path-relinking, introduced by Faria et al. (2005), is a semi-greedy version of path-
relinking. Instead of taking the best move in the symmetric difference still not per-
formed, a RCL of good moves still not performed is set up and a randomly selected
move from the RCL is applied. By applying this strategy several times between the
initial and guiding solutions, several alternative paths can be explored. Resende and
Werneck (2004, 2006) described an evolutionary path-relinking scheme applied to
pairs of elite solutions and used as a post-optimization phase, in which the pool
resulting from the GRASP with path-relinking iterations progressively evolves as a
population. Similar schemes were also used by Aiex et al. (2005) and Resende et al.
(2010).

11.5 Extensions

Hybridizations of GRASP with metaheuristics such as tabu search, simulated an-
nealing, variable neighborhood search, iterated local search and genetic algorithms
have been reported in the literature.

Almost all the randomization effort in GRASP involves the construction phase,
since the local search always stops at the first local optimum. Variable neighborhood
search (VNS), see Chap. 12, relies almost entirely on the randomization of the local
search to escape from local optima. Thus GRASP and VNS may be considered as
complementary and potentially capable of leading to effective hybrid methods. Festa
et al. (2002) studied different variants and combinations of GRASP and VNS for the
MAX-CUT problem, finding and improving the best known solutions for some open
instances in the literature. Other examples of hybrids of GRASP with VNS include
Beltrán et al. (2004) and Canuto et al. (2001).

GRASP has also been used in conjunction with genetic algorithms. Basically, the
greedy randomized strategy used in the construction phase of a GRASP is applied
to generate the initial population for a genetic algorithm. We may cite, for example,
the genetic algorithm of Ahuja et al. (2000) for the quadratic assignment problem,
which makes use of the GRASP proposed by Li et al. (1994) to create the initial

11 GRASP: Greedy Randomized Adaptive Search Procedures 299

population of solutions. A similar approach was used by Armony et al. (2000), with
the initial population made up of both randomly generated solutions and those built
by a GRASP.

The hybridization of GRASP with tabu search was first studied by Laguna and
González-Velarde (1991). Delmaire et al. (1999) considered two approaches. In the
first, GRASP is applied as a powerful diversification strategy in the context of a
tabu search procedure. The second approach is an implementation of the Reactive
GRASP algorithm, in which the local search phase is strengthened by tabu search.
Two two-stage heuristics are proposed in Abdinnour-Helm and Hadley (2000) for
solving the multi-floor facility layout problem. GRASP/TS applies a GRASP to
find the initial layout and tabu search to refine it. Souza et al. (2004) used a short-
term tabu search procedure as a substitute for the standard local search in a GRASP
heuristic for the capacitated minimum spanning tree problem.

Iterated local search (ILS) iteratively builds a sequence of solutions generated
by the repeated application of local search and perturbation of the local optimum
found by local search (Lourenço et al. 2003; Martin et al. 1991). Ribeiro and Urrutia
(2007) presented a GRASP with ILS heuristic for the mirrored traveling tournament
problem. In this case, the GRASP construction produces a solution which is passed
on to the ILS procedure.

The hybridization of GRASP with data mining techniques was introduced by
Ribeiro et al. (2006). This scheme uses a data mining algorithm to search for
solution patterns that occur in high-quality elite solutions produced by the basic
GRASP algorithm. These mined patterns are used as initial building blocks that
guide the construction of new solutions that are submitted to local search. A survey
of applications of DM-GRASP can be found in Santos et al. (2008).

11.6 Tricks of the Trade

1. An especially appealing characteristic of GRASP is the ease with which it can
be implemented. Few parameters need to be set and tuned. Therefore, algorithm
development and coding can focus on implementing efficient data structures to
ensure quick GRASP iterations.

2. Most metaheuristics benefit from good initial solutions. Clever low-complexity
algorithms leading to good feasible solutions can often be devised by examina-
tion of the problem structure. Good initial solutions lead to better final solutions
and significantly reduce the time taken by local search.

3. Using a single, fixed value for the RCL parameter α very often hinders finding
a high-quality solution, which eventually could be found if another value was
used. The use of strategies such as Reactive GRASP which vary the value of α
may lead to better and more diverse solutions. The reactive approach leads to
improvements over the basic GRASP in terms of robustness and solution quality,
due to greater diversification and less reliance on parameter tuning. In addition
to the original applications reported by Prais and Ribeiro (2000a,b), it has also

300 M.G.C. Resende and C.C. Ribeiro

been applied by Álvarez-Valdés et al. (2008b), Binato et al. (2002), Binato and
Oliveira (2002), Boudia et al. (2007), Delmaire et al. (1999) and Scaparra and
Church (2005). Another simple strategy is to uniformly select at random a value
for α at each GRASP iteration from the interval [0,1].

4. Local search procedures may be implemented using a best-improving or a first-
improving strategy, as well as any combination of them. In the case of the best-
improving strategy, all neighbors are investigated and the current solution is
replaced by the best neighbor. In the case of a first-improving strategy, the current
solution moves to the first neighbor whose cost function value is smaller than
that of the current solution. Both strategies quite often lead to same-quality solu-
tions, but in smaller computation times when the first-improving strategy is used.
Premature convergence to a non-global local minimum is more likely to occur
with a best-improving strategy.

5. The definition of a neighborhood is not unique. Some implementations of
metaheuristics make use of multiple neighborhood structures to improve solution
quality and to speed up the search. Variable neighborhood descent (VND) allows
the systematic exploration of multiple neighborhoods (Hansen and Mladenović
2003). It is based on the facts that a local minimum with respect to one neigh-
borhood is not necessarily a local minimum with respect to another and that a
global minimum is a local minimum with respect to all neighborhoods. Further-
more, VND is also based on the empirical observation that, for many problems,
local minima with respect to one or more neighborhoods are relatively close to
each other (Hansen and Mladenović 2003). Since a global minimum is a local
minimum with respect to all neighborhoods, it should be easier to find a global
minimum if more neighborhoods are explored. In the case of nested neighbor-
hoods, the search is first confined to smaller neighborhoods. A larger neighbor-
hood is explored only after a local minimum is found in the current, smaller
neighborhood. Neighborhoods are not necessarily nested. Non-nested neighbor-
hoods have been successfully used by, for example, Aloise et al. (2006).

6. Local search can be considerably accelerated with the use of appropriate data
structures and efficient algorithms. All possible attempts should be made to im-
prove the neighborhood search procedure. Algorithms should be coded to have
minimum complexity. The use of circular lists to represent and search the neigh-
borhood is very helpful. Candidate lists storing the move values may be easy to
update or may be used as quick approximations to avoid their re-evaluation at
every iteration. We have seen several implementations in which the time taken
by the first local search code dropped from several minutes to a few milliseconds
in the final version.

7. Path-relinking is a very effective strategy to improve solution quality and to
reduce computation times, leading to more robust implementations. Any avail-
able knowledge about the problem structure should be used in the development
of efficient algorithms to explore the most attractive strategy for path-relinking.

8. Different metaheuristics make use of a number of common components, such
as greedy constructions, local search, randomization, candidate lists, multiple

11 GRASP: Greedy Randomized Adaptive Search Procedures 301

neighborhoods and path-relinking. Borrowing and incorporating principles from
other metaheuristics leads to efficient hybridizations of GRASP, which often
results in the best algorithm for some problem class.

9. There is no universal, general purpose metaheuristic that gives the best results
for every problem (Wolpert and Macready 1997)—see Chap. 16. The structure of
each problem should be explored to bring additional intelligence into the solution
strategy. Knowledge, experience and information available in the literature for
similar problems are very helpful. However, one should not be obsessed with a
fixed idea or bounded by strategies that worked for other problems but might not
be appropriate for the one on hand. The best algorithm is always the one that
most exploits the structure of your problem and gives the best results.

11.7 Some Promising Areas for Future Application

We conclude this chapter with two promising areas for future applications of
GRASP.

11.7.1 Continuous GRASP

Hirsch et al. (2007b) (see also Hirsch 2006) proposed an adaptation of GRASP
for derivative-free continuous global optimization. Continuous GRASP (or simply
C-GRASP) was shown to perform well on a set of multimodal test functions, as
well as on difficult real-world applications (Hirsch et al. 2007b). It was applied
to the registration of sensors in a sensor network (Hirsch et al. 2006), to com-
pute solutions for systems of nonlinear equations (Hirsch et al. 2009), to deter-
mine which drugs are responsible for adverse reactions in patients (Hirsch et al.
2007a), and for dynamic, decentralized path planning of unmanned aerial vehicles
(Hirsch and Ortiz-Pena 2009; Hirsch et al. 2007c). Improvements to the original
C-GRASP (Hirsch et al. 2007b) are presented in Hirsch et al. (2010). These im-
provements are aimed at making implementations of the algorithm more efficient
and increasing robustness, while at the same time keeping the overall algorithm
simple to implement.

The local improvement procedures in the derivative-free C-GRASP sample
points around the solution produced by the global greedy randomized procedure.
Since they only make function evaluations and do not use gradient information,
they can be used for local optimization of any type of function, including ones
that are not smooth. Birgin et al. (2010) adapt C-GRASP for global optimization
of functions for which gradients can be computed. This is accomplished by using
GENCAN (Birgin and Martínez 2002), an active-set method for bound-constrained
local minimization.

302 M.G.C. Resende and C.C. Ribeiro

11.7.2 Probabilistic-Based Stopping Rules

The absence of effective stopping criteria is one of the main drawbacks of most
metaheuristics. Implementations of such algorithms usually stop after performing a
given maximum number of iterations or a given maximum number of consecutive
iterations without improvement in the best known solution value, or after the stabi-
lization of a set of elite solutions found along the search. Ribeiro et al. (2011) pro-
posed effective probabilistic stopping rules for randomized metaheuristics such as
GRASP, VNS, simulated annealing and genetic algorithms, based on the estimation
of the probability of finding better solutions than the incumbent. Such probabilities
may be computed and used online to estimate the trade-off between solution im-
provement and the time needed to achieve it. The results described in Ribeiro et al.
(2011) are being extended to encompass memory-based methods such as GRASP
with path-relinking and tabu search.

Sources of Additional Information

Surveys on GRASP (Feo and Resende 1995; Resende and Ribeiro 2003b, 2010),
path-relinking (Resende and Ribeiro 2005a; Ribeiro and Resende 2012) and its ap-
plications (Festa and Resende 2002, 2009a,b) can be found in the literature, to which
the interested reader is referred for more details.

The web page www.research.att.com/~mgcr contains an always-updated version
of the annotated bibliography on GRASP which appeared in Festa and Resende
(2002, 2009a,b). Source codes for GRASP heuristics for several problems are also
available at http://www.research.att.com/~mgcr/src/index.html.The Twitter web page
http://twitter.com/graspheuristic posts links to recently published papers on GRASP
and its applications.

Time-to-target (TTT) plots display on the ordinate axis the probability that an
algorithm will find a solution at least as good as a given target value within a given
running time, shown on the abscissa axis. TTT plots were used by Feo et al. (1994)
and have been advocated also by Hoos and Stützle (1998) as a way to character-
ize the running times of stochastic algorithms for combinatorial optimization. Aiex
et al. (2002) advocate and largely explored the use of TTT plots to evaluate and
compare different randomized algorithms running on the same problem. The use
of TTT plots has been growing ever since and they have been extensively applied
in computational studies of sequential and parallel implementations of randomized
algorithms (see e.g. Resende and Ribeiro 2003b, 2010; Ribeiro and Rosseti 2007).
The foundations of the construction of TTT plots, together with their interpretation
and applications, were surveyed by Aiex et al. (2007). This reference also describes
a Perl language program to create TTT plots for measured CPU times that can be
downloaded from http://www.research.att.com/~mgcr/tttplots.

www.research.att.com/~mgcr
http://www.research.att.com/~mgcr/src/index.html
http://twitter.com/graspheuristic
http://www.research.att.com/~mgcr/tttplots

11 GRASP: Greedy Randomized Adaptive Search Procedures 303

The first application of GRASP described in the literature concerned the set-
covering problem (Feo and Resende 1989). GRASP has been applied to many prob-
lems in different areas, such as routing (Argüello et al. 1997; Corberán et al. 2002;
Kontoravdis and Bard 1995; Reghioui et al. 2007), logic (Deshpande and Trianta-
phyllou 1998; Festa et al. 2006; Pardalos et al. 1996; Resende and Feo 1996; Re-
sende et al. 1997, 2000), covering and partitioning (Álvarez-Valdés et al. 2005;
Areibi and Vannelli 1997; Feo and Resende 1989; Hammer and Rader Jr 2001),
location (Abdinnour-Helm and Hadley 2000; Colomé and Serra 2001; Cravo et al.
2008; Han and Raja 2003; Holmqvist et al. 1997; Delmaire et al. 1999; Urban 1998;
Klincewicz 1992), minimum Steiner tree (Canuto et al. 2001; Martins et al. 1999,
2000, 1998; Ribeiro et al. 2002), optimization in graphs (Abello et al. 1999, 2002;
Ahuja et al. 2001; Arroyo et al. 2008; Feo et al. 1994; Festa et al. 2001, 2002;
Holmqvist et al. 1998; Laguna et al. 1994; Laguna and Martí 2001; Martí 2001;
Martins et al. 2000; Pardalos et al. 1999; Resende 1998; Resende et al. 1998; Re-
sende and Ribeiro 1997; Ribeiro and Resende 1999; Ribeiro et al. 2002; Souza
et al. 2004), assignment (Ahuja et al. 2000; Aiex et al. 2005; Feo and González-
Velarde 1995; Fleurent and Glover 1999; Li et al. 1994; Mavridou et al. 1998; Mur-
phey et al. 1998a,b; Oliveira et al. 2004; Pardalos et al. 1995, 1997; Pitsoulis et al.
2001; Prais and Ribeiro 2000b; Resende et al. 1996; Robertson 2001), timetabling,
scheduling, and manufacturing (Aiex et al. 2003; Álvarez-Valdés et al. 2008b,a; An-
drade and Resende 2006; Bard and Feo 1989, 1991; Bard et al. 1996; Binato et al.
2002; Boudia et al. 2007; Commander et al. 2004; Feo and Bard 1989; Feo et al.
1995, 1996, 1991; Klincewicz and Rajan 1994; Laguna and González-Velarde 1991;
Ribeiro and Urrutia 2007; Ríos-Mercado and Bard 1998, 1999; Xu and Chiu 2001;
Yen et al. 2000), transportation (Argüello et al. 1997; Feo and Bard 1989; Feo and
González-Velarde 1995; Scaparra and Church 2005), power systems (Binato and
Oliveira 2002; Binato et al. 2001; Faria et al. 2005), telecommunications (Abello
et al. 1999; Amaldi et al. 2003; Andrade and Resende 2006; Klincewicz 1992;
Piñana et al. 2004; Prais and Ribeiro 2000b; Resende and Resende 1999; Resende
1998; Resende and Ribeiro 2003a; Ribeiro and Rosseti 2002; Srinivasan et al. 2000),
graph and map drawing (Cravo et al. 2008; Fernández and Martí 1999; Laguna and
Martí 1999; Martí 2001; Osman et al. 2003; Resende and Ribeiro 1997; Ribeiro and
Resende 1999), biology (Andreatta and Ribeiro 2002; Ribeiro and Vianna 2005)
and VLSI (Areibi and Vannelli 1997), among others.

GRASP is a metaheuristic very well suited for parallel implementation, due to the
independence of its iterations. Parallel cooperative versions of GRASP with path-
relinking may also be implemented in parallel if a centralized pool of elite solutions
is kept by one of the processors. Surveys and accounts of parallel implementations
of GRASP in networks of workstations, clusters and grids may be found in Cung
et al. (2002), Martins et al. (2004, 2006), Resende and Ribeiro (2005b), Ribeiro
et al. (2007) and Ribeiro and Rosseti (2002, 2007).

304 M.G.C. Resende and C.C. Ribeiro

References

Abdinnour-Helm S, Hadley SW (2000) Tabu search based heuristics for multi-floor
facility layout. Int J Prod Res 38:365–383

Abello J, Pardalos PM, Resende MGC (1999) On maximum clique problems in
very large graphs. In: Abello J, Vitter J (eds) External memory algorithms and
visualization, DIMACS 50. AMS, Providence, pp 199–130

Abello J, Resende MGC, Sudarsky S (2002) Massive quasi-clique detection. In:
Rajsbaum S (ed) LATIN 2002: theoretical informatics. LNCS 2286. Springer,
Berlin, pp 598–612

Ahuja RK, Orlin JB, Tiwari A (2000) A greedy genetic algorithm for the quadratic
assignment problem. Comput Oper Res 27:917–934

Ahuja RK, Orlin JB, Sharma D (2001) Multi-exchange neighborhood structures for
the capacitated minimum spanning tree problem. Math Program 91:71–97

Aiex RM, Resende MGC, Ribeiro CC (2002) Probability distribution of solution
time in GRASP: an experimental investigation. J Heuristics 8:343–373

Aiex RM, Binato S, Resende MGC (2003) Parallel GRASP with path-relinking for
job shop scheduling. Parallel Comput 29:393–430

Aiex RM, Pardalos PM, Resende MGC, Toraldo G (2005) GRASP with path-
relinking for three-index assignment. INFORMS J Comput 17:224–247

Aiex RM, Resende MGC, Ribeiro CC (2007) TTTPLOTS: a Perl program to create
time-to-target plots. Optim Lett 1:355–366

Aloise DJ, Aloise D, Rocha CTM, Ribeiro CC, Ribeiro Filho JC, Moura LSS
(2006) Scheduling workover rigs for onshore oil production. Discret Appl Math
154:695–702

Álvarez-Valdés R, Parreño F, Tamarit JM (2005) A GRASP algorithm for con-
strained two-dimensional non-guillotine cutting problems. J Oper Res Soc
56:414–425

Álvarez-Valdés R, Crespo E, Tamarit JM, Villa F (2008a) GRASP and path relink-
ing for project scheduling under partially renewable resources. Eur J Oper Res
189:1153–1170

Álvarez-Valdés R, Parreño F, Tamarit JM (2008b) Reactive GRASP for the strip-
packing problem. Comput Oper Res 35:1065–1083

Amaldi E, Capone A, Malucelli F (2003) Planning UMTS base station location:
optimization models with power control and algorithms. IEEE Trans Wirel Com-
mun 2:939–952

Andrade DV, Resende MGC (2006) A GRASP for PBX telephone migration
scheduling. In: Proc 8th INFORMS telecoms, Dallas, TX

Andreatta AA, Ribeiro CC (2002) Heuristics for the phylogeny problem. J Heuris-
tics 8:429–447

Areibi S, Vannelli A (1997) A GRASP clustering technique for circuit partitioning.
In: Gu J, Pardalos PM (eds) Satisfiability problems, DIMACS 35. AMS, Provi-
dence, pp 711–724

Argüello MF, Bard JF, Yu G (1997) A GRASP for aircraft routing in response to
groundings and delays. J Comb Optim 1:211–228

11 GRASP: Greedy Randomized Adaptive Search Procedures 305

Armony M, Klincewicz JC, Luss H, Rosenwein MB (2000) Design of stacked self-
healing rings using a genetic algorithm. J Heuristics 6:85–105

Arroyo JEC, Vieira PS, Vianna DS (2008) A GRASP algorithm for the multi-criteria
minimum spanning tree problem. Ann Oper Res 159:125–133

Bard JF, Feo TA (1989) Operations sequencing in discrete parts manufacturing.
Manage Sci 35:249–255

Bard JF, Feo TA (1991) An algorithm for the manufacturing equipment selection
problem. IIE Trans 23:83–92

Bard JF, Feo TA, Holland S (1996) A GRASP for scheduling printed wiring board
assembly. IIE Trans 28:155–165

Beltrán JD, Calderón JE, Cabrera RJ, Pérez JAM, Moreno-Vega JM (2004)
GRASP/VNS hybrid for the strip packing problem. In: Proc hybrid metaheuris-
tics, Valencia, Spain, pp 79–90

Binato S, Oliveira GC (2002) A reactive GRASP for transmission network expan-
sion planning. In: Ribeiro CC, Hansen P (eds) Essays and surveys in metaheuris-
tics. Kluwer, Dordrecht, pp 81–100

Binato S, Oliveira GC, Araújo JL (2001) A greedy randomized adaptive search pro-
cedure for transmission expansion planning. IEEE Trans Power Syst 16:247–253

Binato S, Hery WJ, Loewenstern D, Resende MGC (2002) A GRASP for job shop
scheduling. In: Ribeiro CC, Hansen P (eds) Essays and surveys in metaheuristics.
Kluwer, Dordrecht, pp 59–79

Birgin EG, Martínez JM (2002) Large-scale active-set box-constrained optimization
method with spectral projected gradients. Comput Optim Appl 23:101–125

Birgin EG, Gozzi EM, Resende MGC, Silva RMA (2010) Continuous GRASP with
a local active-set method for bound-constrained global optimization. J Glob Op-
tim 48:289–310

Boudia M, Louly MAO, Prins C (2007) A reactive GRASP and path relinking for a
combined production-distribution problem. Comput Oper Res 34:3402–3419

Canuto SA, Resende MGC, Ribeiro CC (2001) Local search with perturbations for
the prize-collecting Steiner tree problem in graphs. Networks 38:50–58

Colomé R, Serra D (2001) Consumer choice in competitive location models: for-
mulations and heuristics. Pap Reg Sci 80:439–464

Commander CW, Butenko SI, Pardalos PM, Oliveira CAS (2004) Reactive GRASP
with path relinking for the broadcast scheduling problem. In: Proceedings of the
40th Annual International telemetry conference, San Diego, CA, pp 792–800

Corberán A, Martí R, Sanchís JM (2002) A GRASP heuristic for the mixed Chinese
postman problem. Eur J Oper Res 142:70–80

Cravo GL, Ribeiro GM, Nogueira Lorena LA (2008) A greedy randomized adap-
tive search procedure for the point-feature cartographic label placement. Comput
Geosci 34:373–386

Cung V-D, Martins SL, Ribeiro CC, Roucairol C (2002) Strategies for the parallel
implementation of metaheuristics. In: Ribeiro CC, Ribeiro CC (eds) Essays and
surveys in metaheuristics. Kluwer, Dordrecht, pp 263–308

306 M.G.C. Resende and C.C. Ribeiro

Delmaire H, Díaz JA, Fernández E, Ortega M (1999) Reactive GRASP and tabu
search based heuristics for the single source capacitated plant location problem.
INFOR 37:194–225

Deshpande AS, Triantaphyllou E (1998) A greedy randomized adaptive search pro-
cedure (GRASP) for inferring logical clauses from examples in polynomial time
and some extensions. Math Comput Model 27:75–99

Duarte AR, Ribeiro CC, Urrutia S (2007a) A hybrid ILS heuristic to the referee
assignment problem with an embedded MIP strategy. In: Hybrid metaheuristics.
LNCS 4771. Springer, Berlin, pp 82–95

Duarte AR, Ribeiro CC, Urrutia S, Haeusler EH (2007b) Referee assignment in
sports leagues. In: PATAT VI. LNCS 3867. Springer, Berlin, pp 158–173

Faria H Jr, Binato S, Resende MGC, Falcão DJ (2005) Transmission network design
by a greedy randomized adaptive path relinking approach. IEEE Trans Power
Syst 20:43–49

Feo TA, Bard JF (1989) Flight scheduling and maintenance base planning. Manage
Sci 35:1415–1432

Feo TA, González-Velarde JL (1995) The intermodal trailer assignment problem:
models, algorithms, and heuristics. Transp Sci 29:330–341

Feo TA, Resende MGC (1989) A probabilistic heuristic for a computationally diffi-
cult set covering problem. Oper Res Lett 8:67–71

Feo TA, Resende MGC (1995) Greedy randomized adaptive search procedures.
J Glob Optim 6:109–133

Feo TA, Venkatraman K, Bard JF (1991) A GRASP for a difficult single machine
scheduling problem. Comput Oper Res 18:635–643

Feo TA, Resende MGC, Smith SH (1994) A greedy randomized adaptive search
procedure for maximum independent set. Oper Res 42:860–878

Feo TA, Bard JF, Holland S (1995) Facility-wide planning and scheduling of printed
wiring board assembly. Oper Res 43:219–230

Feo TA, Sarathy K, McGahan J (1996) A GRASP for single machine scheduling
with sequence dependent setup costs and linear delay penalties. Comput Oper
Res 23:881–895

Fernández E, Martí R (1999) GRASP for seam drawing in mosaicking of aerial
photographic maps. J Heuristics 5:181–197

Festa P, Resende MGC (2002) GRASP: an annotated bibliography. In: Ribeiro CC,
Hansen P (eds) Essays and surveys in metaheuristics. Kluwer, Dordrecht, pp
325–367

Festa P, Resende MGC (2009a) An annotated bibliography of GRASP, part I: algo-
rithms. Int Trans Oper Res 16:1–24

Festa P, Resende MGC (2009b) An annotated bibliography of GRASP, part II:
applications. Int Trans Oper Res 16:131–172

Festa P, Pardalos PM, Resende MGC (2001) Algorithm 815: FORTRAN sub-
routines for computing approximate solution to feedback set problems using
GRASP. ACM Trans Math Softw 27:456–464

Festa P, Pardalos PM, Resende MGC, Ribeiro CC (2002) Randomized heuristics for
the MAX-CUT problem. Optim Methods Softw 7:1033–1058

11 GRASP: Greedy Randomized Adaptive Search Procedures 307

Festa P, Pardalos PM, Pitsoulis LS, Resende MGC (2006) GRASP with path-
relinking for the weighted MAXSAT problem. ACM J Exp Algorithm 11:1–16

Fleurent C, Glover F (1999) Improved constructive multistart strategies for the
quadratic assignment problem using adaptive memory. INFORMS J Comput
11:198–204

Glover F (1996) Tabu search and adaptive memory programing—advances, applica-
tions and challenges. In: Barr RS, Helgasonm RV, Kennington JL (eds) Interfaces
in computer science and operations research. Kluwer, Dordrecht, pp 1–75

Glover F, Laguna M (1997) Tabu search. Kluwer, Dordrecht
Glover F, Laguna M, Martí R (2000) Fundamentals of scatter search and path re-

linking. Control Cybern 39:653–684
Hammer PL, Rader DJ Jr (2001) Maximally disjoint solutions of the set covering

problem. J Heuristics 7:131–144
Han BT, Raja VT (2003) A GRASP heuristic for solving an extended capacitated

concentrator location problem. Int J Inf Technol Decis Making 2:597–617
Hansen P, Mladenović N (2003) Variable neighborhood search. In: Glover F,

Kochenberger G (eds) Handbook of metaheuristics. Kluwer, Dordrecht, pp
145–184

Hirsch MJ (2006) GRASP-based heuristics for continuous global optimization
problems. PhD thesis, University of Florida

Hirsch MJ, Ortiz-Pena H (2009) UAV cooperative control for multiple target track-
ing. In: Du D-Z, Pardalos PM (eds) DIMACS/DyDAn workshop on approxima-
tion algorithms in wireless ad hoc and sensor networks, Piscataway, NJ

Hirsch MJ, Pardalos PM, Resende MGC (2006) Sensor registration in a sensor net-
work by continuous GRASP. In: Proceeding of the MILCOM 2006, Washington,
DC

Hirsch MJ, Meneses CN, Pardalos PM, Ragle MA, Resende MGC (2007a) A Con-
tinuous GRASP to determine the relationship between drugs and adverse reac-
tions. In: Seref O, Kundakcioglu OE, Pardalos PM (eds) Data Mining, systems
analysis, and optimization in biomedicine. American Institute of Physics, New
York, pp 106–121

Hirsch MJ, Meneses CN, Pardalos PM, Resende MGC (2007b) Global optimization
by continuous GRASP. Optim Lett 1:201–212

Hirsch MJ, Ortiz-Pena H, Sapankevych N, Neese R (2007c) Efficient flight forma-
tion for tracking of a ground target. In: Proceeding of the National Fire Control
Symposium, San Diego, CA

Hirsch MJ, Pardalos PM, Resende MGC (2009) Solving systems of nonlinear equa-
tions using continuous GRASP. Nonlinear Anal Real World Appl 10:2000–2006

Hirsch MJ, Pardalos PM, Resende MGC (2010) Speeding up continuous GRASP.
Eur J Oper Res 205:507–521

Holmqvist K, Migdalas A, Pardalos PM (1997) Greedy randomized adaptive search
for a location problem with economies of scale. In: Bomze IM et al (eds) Devel-
opments in global optimization. Kluwer, Dordrecht, pp 301–313

Holmqvist K, Migdalas A, Pardalos PM (1998) A GRASP algorithm for the
single source uncapacitated minimum concave-cost network flow problem.

308 M.G.C. Resende and C.C. Ribeiro

In: Pardalos PM, Du D-Z (eds) Network design: connectivity and facilities lo-
cation, DIMACS 40. AMS, Providence, pp 131–142

Hoos HH, Stützle T (1998) Evaluating Las Vegas algorithms—pitfalls and remedies.
In: Proceedings of the 14th Conference on uncertainty in artificial intelligence,
Madison, WI, pp 238–245

Klincewicz JG (1992) Avoiding local optima in the p-hub location problem using
tabu search and GRASP. Ann Oper Res 40:283–302

Klincewicz JG, Rajan A (1994) Using GRASP to solve the component grouping
problem. Nav Res Logist 41:893–912

Kontoravdis G, Bard JF (1995) A GRASP for the vehicle routing problem with time
windows. ORSA J Comput 7:10–23

Laguna M, González-Velarde JL (1991) A search heuristic for just-in-time schedul-
ing in parallel machines. J Intell Manuf 2:253–260

Laguna M, Martí R (1999) GRASP and path relinking for 2-layer straight line
crossing minimization. INFORMS J Comput 11:44–52

Laguna M, Martí R (2001) A GRASP for coloring sparse graphs. Comput Optim
Appl 19:165–178

Laguna M, Feo TA, Elrod HC (1994) A greedy randomized adaptive search proce-
dure for the two-partition problem. Oper Res 42:677–687

Li Y, Pardalos PM, Resende MGC (1994) A greedy randomized adaptive search
procedure for the quadratic assignment problem. In: Pardalos PM, Wolkowicz H
(eds) Quadratic assignment and related problems, DIMACS 16. AMS, Provi-
dence, pp 237–261

Lourenço HR, Martin OC, Stützle T (2003) Iterated local search. In: Glover
F, Kochenberger G (eds) Handbook of metaheuristics. Kluwer, Dordrecht,
pp 321–353

Martí R (2001) Arc crossing minimization in graphs with GRASP. IIE Trans
33:913–919

Martin O, Otto SW, Felten EW (1991) Large-step Markov chains for the traveling
salesman problem. Complex Syst 5:299–326

Martins SL, Ribeiro CC, Souza MC (1998) A parallel GRASP for the Steiner
problem in graphs. In: Ferreira A, Rolim J (eds) Proceedings of IRREGULAR’98.
LNCS 1457. Springer, Berlin, pp 285–297

Martins SL, Pardalos PM, Resende MGC, Ribeiro CC (1999) Greedy randomized
adaptive search procedures for the Steiner problem in graphs. In: Pardalos PM,
Rajasejaran S, Rolim J (eds) Randomization methods in algorithmic design,
DIMACS 43. AMS, Providence, pp 133–145

Martins SL, Resende MGC, Ribeiro CC, Pardalos P (2000) A parallel GRASP for
the Steiner tree problem in graphs using a hybrid local search strategy. J Glob
Optim 17:267–283

Martins SL, Ribeiro CC, Rosseti I (2004) Applications and parallel implementations
of metaheuristics in network design and routing. In: Applied computing. LNCS
3285. Springer, Berlin, pp 205–213

11 GRASP: Greedy Randomized Adaptive Search Procedures 309

Martins SL, Ribeiro CC, Rosseti I (2006) Applications of parallel metaheuristics to
optimization problems in telecommunications and bioinformatics. In: Talbi E-G
(ed) Parallel combinatorial optimization. Wiley, New York, pp 301–325

Mateus GR, Resende MGC, Silva RMA (2011) GRASP with path-relinking for the
generalized quadratic assignment problem. J Heuristics 17:527–565

Mavridou T, Pardalos PM, Pitsoulis LS, Resende MGC (1998) A GRASP for the
biquadratic assignment problem. Eur J Oper Res 105:613–621

Murphey RA, Pardalos PM, Pitsoulis LS (1998a) A greedy randomized adaptive
search procedure for the multitarget multisensor tracking problem. In: Pardalos
PM and Du D-Z (eds) Network design: connectivity and facilities location, DI-
MACS 40. AMS, Providence, pp 277–301

Murphey RA, Pardalos PM, Pitsoulis LS (1998b) A parallel GRASP for the data
association multidimensional assignment problem. In: Pardalos PM (ed) Paral-
lel processing of discrete problems. The IMA volumes in mathematics and its
applications 106. Springer, Berlin, pp 159–180

Nascimento MCV, Resende MGC, Toledo FMB (2010) GRASP with path-relinking
for the multi-plant capacitated plot sizing problem. Eur J Oper Res 200:747–754

Oliveira CA, Pardalos PM, Resende MGC (2004) GRASP with path-relinking for
the quadratic assignment problem. In: Ribeiro CC, Martins SL (eds) Proceedings
of III workshop on efficient and experimental algorithms. LNCS 3059. Springer,
Berlin, pp 356–368

Osman IH, Al-Ayoubi B, Barake M (2003) A greedy random adaptive search
procedure for the weighted maximal planar graph problem. Comput Ind Eng
45:635–651

Pardalos PM, Pitsoulis LS, Resende MGC (1995) A parallel GRASP implementa-
tion for the quadratic assignment problem. In: Ferreira A, Rolim J (eds) Parallel
algorithms for irregularly structured problems—IRREGULAR’94. Kluwer, Dor-
drecht, pp 115–133

Pardalos PM, Pitsoulis LS, Resende MGC (1996) A parallel GRASP for MAX-SAT
problems. LNCS 1184. Springer, Berlin/New York, pp 575–585

Pardalos PM, Pitsoulis LS, Resende MGC (1997) Algorithm 769: Fortran subrou-
tines for approximate solution of sparse quadratic assignment problems using
GRASP. ACM Trans Math Softw 23:196–208

Pardalos PM, Qian T, Resende MGC (1999) A greedy randomized adaptive search
procedure for the feedback vertex set problem. J Comb Optim 2:399–412

Piñana E, Plana I, Campos V, Martí R (2004) GRASP and path relinking for the
matrix bandwidth minimization. Eur J Oper Res 153:200–210

Pitsoulis LS, Pardalos PM, Hearn DW (2001) Approximate solutions to the turbine
balancing problem. Eur J Oper Res 130:147–155

Prais M, Ribeiro CC (2000a) Parameter variation in GRASP procedures. Investi-
gación Operativa 9:1–20

Prais M, Ribeiro CC (2000b) Reactive GRASP: an application to a matrix decom-
position problem in TDMA traffic assignment. INFORMS J Comput 12:164–176

310 M.G.C. Resende and C.C. Ribeiro

Reghioui M, Prins C, Labadi N (2007) GRASP with path relinking for the capaci-
tated arc routing problem with time windows. In: Giacobini M et al (eds) Appli-
cations of evolutinary computing. LNCS 4448. Springer, Berlin, pp 722–731

Resende MGC (1998) Computing approximate solutions of the maximum covering
problem using GRASP. J Heuristics 4:161–171

Resende MGC (2008) Metaheuristic hybridization with greedy randomized adap-
tive search procedures. In: Chen Z-L, Raghavan S (eds) TutORials in operations
research. INFORMS, Hanover, pp 295–319

Resende MGC, Feo TA (1996) A GRASP for satisfiability. In: Johnson DS, Trick
MA (eds) Cliques, coloring, and satisfiability: the second DIMACS implemen-
tation challenge, DIMACS 26. AMS, Providence, pp 499–520

Resende LIP, Resende MGC (1999) A GRASP for frame relay permanent virtual
circuit routing. In: Ribeiro CC, Hansen P (eds) Extended abstracts of the III
metaheuristics International Conference, Angra dos Reis, Brazil, pp 397–401

Resende MGC, Ribeiro CC (1997) A GRASP for graph planarization. Networks
29:173–189

Resende MGC, Ribeiro CC (2003a) A GRASP with path-relinking for private vir-
tual circuit routing. Networks 41:104–114

Resende MGC, Ribeiro CC (2003b) Greedy randomized adaptive search proce-
dures. In: Glover F, Kochenberger G (eds) Handbook of metaheuristics. Kluwer,
Dordrecht, pp 219–249

Resende MGC, Ribeiro CC (2005a) GRASP with path-relinking: recent advances
and applications. In: Ibaraki T, Nonobe K, Yagiura M (eds) Metaheuristics:
progress as real problem solvers. Springer, Berlin, pp 29–63

Resende MGC, Ribeiro CC (2005b) Parallel greedy randomized adaptive search
procedures. In: Alba E (ed) Parallel metaheuristics: a new class of algorithms.
Wiley, New York, pp 315–346

Resende MGC, Ribeiro CC (2010) Greedy randomized adaptive search procedures:
advances and applications. In: Gendreau M, Potvin J-Y (eds) Handbook of meta-
heuristics, 2nd edn. Springer, Berlin, pp 293–319

Resende MGC, Werneck RF (2004) A hybrid heuristic for the p-median problem.
J Heuristics 10:59–88

Resende MGC, Werneck RF (2006) A hybrid multistart heuristic for the uncapaci-
tated facility location problem. Eur J Oper Res 174:54–68

Resende MGC, Pardalos PM, Li Y (1996) Algorithm 754: Fortran subroutines for
approximate solution of dense quadratic assignment problems using GRASP.
ACM Trans Math Softw 22:104–118

Resende MGC, Pitsoulis LS, Pardalos PM (1997) Approximate solution of weighted
MAX-SAT problems using GRASP. In: Gu J, Pardalos PM (eds) Satisfiability
problems, DIMACS 35. AMS, Providence, pp 393–405

Resende MGC, Feo TA, Smith SH (1998) Algorithm 787: Fortran subroutines
for approximate solution of maximum independent set problems using GRASP.
ACM Trans Math Softw 24:386–394

11 GRASP: Greedy Randomized Adaptive Search Procedures 311

Resende MGC, Pitsoulis LS, Pardalos PM (2000) Fortran subroutines for computing
approximate solutions of MAX-SAT problems using GRASP. Discret Appl Math
100:95–113

Resende MGC, Martí R, Gallego, M, Duarte A (2010) GRASP and path relinking
for the max–min diversity problem. Comput Oper Res 37:498–508

Ribeiro CC, Resende MGC (1999) Algorithm 797: Fortran subroutines for approxi-
mate solution of graph planarization problems using GRASP. ACM Trans Math
Softw 25:342–352

Ribeiro CC, Resende MGC (2012) Path-relinking intensification methods for
stochastic local search algorithms. J Heuristics 18:193–214

Ribeiro CC, Rosseti I (2002) A parallel GRASP heuristic for the 2-path network
design problem. LNCS 2400. Springer, Berlin, pp 922–926

Ribeiro CC, Rosseti I (2007) Efficient parallel cooperative implementations of
GRASP heuristics. Parallel Comput 33:21–35

Ribeiro CC, Souza MC (2000) Tabu search for the Steiner problem in graphs.
Networks 36:138–146

Ribeiro CC, Urrutia S (2007) Heuristics for the mirrored traveling tournament prob-
lem. Eur J Oper Res 179:775–787

Ribeiro CC, Vianna DS (2005) A GRASP/VND heuristic for the phylogeny problem
using a new neighborhood structure. Int Trans Oper Res 12:325–338

Ribeiro CC, Uchoa E, Werneck RF (2002) A hybrid GRASP with perturbations for
the Steiner problem in graphs. INFORMS J Comput 14:228–246

Ribeiro MH, Plastino A, Martins SL (2006) Hybridization of GRASP metaheuristic
with data mining techniques. J Math Model Algorithm 5:23–41

Ribeiro CC, Martins SL, Rosseti I (2007) Metaheuristics for optimization problems
in computer communications. Comput Commun 30:656–669

Ribeiro CC, Rosseti I, Souza RC (2011) Effective probabilistic stopping rules for
randomized metaheuristics: GRASP implementations. LNCS 6683. Springer,
Berlin, pp 146–160

Ríos-Mercado RZ, Bard JF (1998) Heuristics for the flow line problem with setup
costs. Eur J Oper Res 110:76–98

Ríos-Mercado RZ, Bard JF (1999) An enhanced TSP-based heuristic for makespan
minimization in a flow shop with setup costs. J Heuristics 5:57–74

Robertson AJ (2001) A set of greedy randomized adaptive local search proce-
dure (GRASP) implementations for the multidimensional assignment problem.
Comput Optim Appl 19:145–164

Santos LF, Martins SL, Plastino A (2008) Applications of the DM-GRASP heuristic:
a survey. Int Trans Oper Res 15:387–416

Scaparra M, Church R (2005) A GRASP and path relinking heuristic for rural road
network development. J Heuristics 11:89–108

Souza MC, Duhamel C, Ribeiro CC (2004) A GRASP heuristic for the capacitated
minimum spanning tree problem using a memory-based local search strategy. In:
Resende MGC, de Sousa JP (eds) Metaheuristics: computer decision-making.
Kluwer, Dordrecht, pp 627–658

312 M.G.C. Resende and C.C. Ribeiro

Srinivasan A, Ramakrishnan KG, Kumaram K, Aravamudam M, Naqvi S (2000)
Optimal design of signaling networks for Internet telephony. In: IEEE INFO-
COM 2000, Tel Aviv, Israel, vol 2, pp 707–716

Urban TL (1998) Solution procedures for the dynamic facility layout problem. Ann
Oper Res 76:323–342

Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE
Trans Evol Comput 1:67–82

Xu JY, Chiu SY (2001) Effective heuristic procedure for a field technician schedul-
ing problem. J Heuristics 7:495–509

Yen J, Carlsson M, Chang M, Garcia JM, Nguyen H (2000) Constraint solving for
inkjet print mask design. J Imaging Sci Technol 44:391–397

Chapter 12

Variable Neighborhood Search

Pierre Hansen and Nenad Mladenović

12.1 Introduction

Variable neighborhood search (VNS) is a metaheuristic, or framework for building
heuristics, which exploits systematically the idea of neighborhood change, both in
the descent to local minima and in the escape from the valleys which contain them.
In this tutorial we first present the ingredients of VNS, i.e. variable neighborhood
descent (VND) and Reduced VNS (RVNS) followed by the basic and then the gen-
eral scheme of VNS itself which contain both of them. Extensions are presented, in
particular Skewed VNS which enhances exploration of far away valleys and vari-
able neighborhood decomposition search (VNDS), a two-level scheme for solution
of large instances of various problems. In each case, we present the scheme, some
illustrative examples and questions to be addressed in order to obtain an efficient
implementation.

Let us consider a combinatorial or global optimization problem

min
x∈X

f (x) (12.1)

where f (x) is the objective function to be minimized and X the set of feasible solu-
tions. A solution x∗ ∈ X is optimal if

f (x∗)≤ f (x), ∀x ∈ X . (12.2)

An exact algorithm for problem (12.1) and (12.2), if one exists, finds an optimal
solution x∗, together with the proof of its optimality, or shows that there is no feasi-
ble solution, that is X = /0. Moreover, in practice, the time to do so should be finite

P. Hansen (�)
GERAD and HEC Montreal, Montréal, Québec, Canada
e-mail: Pierre.Hansen@gerad.ca

N. Mladenović
School of Mathematics, Brunel University, Uxbridge, Middlesex UB8 3PH, UK

E.K. Burke and G. Kendall (eds.), Search Methodologies: Introductory Tutorials
in Optimization and Decision Support Techniques, DOI 10.1007/978-1-4614-6940-7_12,
© Springer Science+Business Media New York 2014

313

mailto:Pierre.Hansen@gerad.ca

314 P. Hansen and N. Mladenović

(and not too large); if one deals with a continuous function one must admit a degree
of tolerance i.e. stop when a feasible solution x∗ has been found such that

f (x∗)< f (x)+ ε, ∀x ∈ X (12.3)

or

f (x∗)− f (x)

f (x∗)
< ε, ∀x ∈ X (12.4)

for some small positive ε.
Numerous instances of problems of the form (12.1) and (12.2), arising in

Operational Research and other fields, are too large for an exact solution to be found
in reasonable time. It is well known from complexity theory (Garey and Johnson
1979; Papadimitriou 1994) that thousands of problems are NP-hard, that no algo-
rithm with a number of steps polynomial in the size of the instances is known and
that finding one for any such problem would entail obtaining one for any and all
of them. Moreover, in some cases where a problem admits a polynomial algorithm,
the power of this polynomial may be so large that realistic size instances cannot be
solved in reasonable time in worst case, and sometimes also in the average case or
most of the time.

So one is often forced to resort to heuristics, which yield quickly an approximate
solution, or sometimes an optimal solution but without proof of its optimality. Some
of these heuristics have a worst-case guarantee, i.e. the solution xh obtained satisfies

f (xh)− f (x)

f (xh)
≤ ε, ∀x ∈ X (12.5)

for some ε, which is however rarely small. Moreover, this ε is usually much larger
than the error observed in practice and may therefore be a bad guide in selecting
a heuristic. In addition to avoiding excessive computing time, heuristics address
another problem: local optima. A local optimum xL of (1) and (2) is such that

f (xL)≤ f (x), ∀x ∈ N(xL)∩X (12.6)

where N(xL) denotes a neighborhood of xL (ways to define such a neighborhood will
be discussed below). If there are many local minima, the range of values they span
may be large. Moreover, the globally optimum value f (x∗) may differ substantially
from the average value of a local minimum, or even from the best such value among
many, obtained by some simple heuristic (a phenomenon called the Tchebycheff
catastrophe by Baum 1986). There are, however, many ways to get out of local
optima and, more precisely, the valleys which contain them (or set of solutions from
which the descent method under consideration leads to them).

Metaheuristics are general frameworks to build heuristics for combinatorial and
global optimization problems. For a discussion of the best-known of them the reader
is referred to the books of surveys edited by Reeves (1993) and Glover and Kochen-
berger (2003) as well as to other chapters of the present volume. Some of the many
successful applications of metaheuristics are also mentioned there.

12 Variable Neighborhood Search 315

VNS (Mladenović and Hansen 1997; Hansen and Mladenović 1999, 2001c,
2003) is a recent metaheuristic which exploits systematically the idea of neighbor-
hood change, both in descent to local minima and in escape from the valleys which
contain them. VNS exploits systematically the following observations:

Fact 1 A local minimum with respect to one neighborhood structure is not
necessarily so for another.

Fact 2 A global minimum is a local minimum with respect to all possible
neighborhood structures.

Fact 3 For many problems local minima with respect to one or several
neighborhoods are relatively close to each other.

This last observation, which is empirical, implies that a local optimum often
provides some information about the global one. This may for instance be several
variables with the same value in both. However, it is usually not known which ones
are such. An organized study of the neighborhood of this local optimum is therefore
in order, until a better one is found.

Unlike many other metaheuristics, the basic schemes of VNS and its extensions
are simple and require few, and sometimes no parameters. Therefore, in addition
to providing very good solutions, often in simpler ways than other methods, VNS
gives insight into the reasons for such a performance, which in turn can lead to more
efficient and sophisticated implementations.

The chapter is organized as follows. In the next section, we examine the
preliminary problem of gathering information about the problem under study, and
evaluating it. In Sect. 12.3 the first ingredient of VNS, i.e. VND, which is mostly or
entirely deterministic, is studied. Section 12.4 is devoted to the second ingredient,
RVNS, which is stochastic. Both ingredients are merged in the basic and the gen-
eral VNS schemes, described in Sect. 12.5. Extensions are then considered. Skewed
VNS, which addresses the problem of getting out of very large valleys, is discussed
in Sect. 12.6. Very large instances of many problems cannot be solved globally in
reasonable time; VNDS studied in Sect. 12.7 is a two-level scheme which merges
VNS with successive approximation (including a two-level VNS). Various tools for
analyzing in detail the performance of a VNS heuristic, and then streamlining it are
presented in Sect. 12.8. They include distance-to-target diagrams and valley pro-
files. In each of these sections basic schemes, or tools, are illustrated by examples
from papers by a variety of authors. Questions to be considered in order to get
an efficient implementation of VNS are also systematically listed. Promising ar-
eas of research are outlined in Sect. 12.9. Brief conclusions complete the chapter in
Sect. 12.10. Finally, sources of further information are suggested.

316 P. Hansen and N. Mladenović

12.2 Preliminaries: Documentation

Once a problem of the form (12.1) and (12.2) has been selected for study and
approximate solution by VNS, a preliminary step is to gather in a thorough way the
papers written about it or closely related problems. Note that this may be a difficult
task as papers are often numerous, dispersed among many journals and volumes of
proceedings and the problem may appear (usually under different names) in several
fields. Tools such as the ISI Web of Knowledge, NEC Research’s Citeseer or even
general web browsers such as Google may prove to be very useful.

There are several reasons for studying the literature on the selected problem:

(i) Evaluating its difficulty. Is it NP-hard? Is it strongly NP-hard? (and hence
admits no fully polynomial approximation scheme). If it is in P, what is the
complexity of the best-known exact algorithm, and is it sufficiently low for
realistic instances to be solvable in reasonable time?

(ii) Evaluating the performance of previous algorithms. Are there some instances
of (preferably real-word) data for the problem available (e.g. at http://www.
informs.org/Resources/Resources/Problem_Instances/)? What are the largest
instances solved exactly?

(iii) Evaluating the performance of previous heuristics. Which metaheuristics have
been applied to this problem? What are the performances of the resulting
heuristics, in terms of size of problems solved, error and computing time
(assuming comparison among computing environments, if needed, can be done
in a fairly realistic way)?

(iv) What steps are used in the heuristics already proposed? What are the corre-
sponding neighborhoods of the current solution? Are codes for these heuristics
available? Are codes for simple descent methods available?

Question (i)’s role is to help to assess the need for a VNS (or others) heuristic
for the problem considered. Questions (ii) and (iii) aim at obtaining a benchmark to
evaluate the performance of the VNS heuristic when it will be designed and imple-
mented: a good heuristic should obtain optimal solutions for most and preferably all
instances solved by an exact algorithm (which suffers from the additional burden of
having to prove optimality). Moreover, the new heuristic should do as well as previ-
ous ones on most or all instances and substantially better than them on quite a few
instances to be viewed as a real progress (doing slightly better on a few instances is
just not sufficient).

Question (iv) aims at providing ingredients for the VNS heuristic, notably in
its VND component; it also inquires indirectly about directions not yet explored.
Incidentally, it raises the question of possible re-use of software, which is reasonable
for standard steps, e.g. a descent with Newton’s method or a variant thereof.

http://www.informs.org/Resources/Resources/Problem_Instances/
http://www.informs.org/Resources/Resources/Problem_Instances/

12 Variable Neighborhood Search 317

Initialization.
Choose f , X , neighborhood structure N(x), initial solution x;
Current step (Repeat).

(1) Find x′ = arg minx∈N(x) f (x);

(2) If f (x′)< f (x) set x′ ← x′′ and iterate; otherwise, stop.

Fig. 12.1 Steepest-descent heuristic

Initialization.
Choose f , X , neighborhood structure N(x), initial solution x;
Current step (Repeat).

(1) Find first solution x′ ∈ N(x);
(2) If f (x′)> f (x), find next solution x′′ ∈ N(x); set x′← x′′ and iterate (2); otherwise, set
x ← x′ and iterate (1);
(3) If all solutions of N(x) have been considered, stop.

Fig. 12.2 First-descent heuristic

12.3 Variable Neighborhood Descent

A steepest-descent heuristic (known also as best improvement local search) consists
of choosing an initial solution x, finding a direction of steepest descent from x,
within a neighborhood N(x), and moving to the minimum of f (x) within N(x) along
that direction; if there is no direction of descent, the heuristic stops, and otherwise
it is iterated. This set of rules is summarized in Fig. 12.1.

Observe that a neighborhood structure N(x) is defined for all x ∈ X ; in discrete
optimization problems it usually consists of all vectors obtained from x by some
simple modification, e.g. complementing one or two components of a 0–1 vector.
Then, at each step, the neighborhood N(x) of x is explored completely. As this may
be time-consuming, an alternative is to use the first-descent heuristic. Vectors x′ ∈
N(x) are then enumerated systematically and a move is made as soon as a descent
direction is found. This is summarized in Fig. 12.2.

VND is based on Fact 1 of the Introduction, i.e. a local optimum for a first type
of move x ← x′ (or heuristic, or within the neighborhood N1(x)) is not necessary
one for another type of move x ← x̃ (within neighborhood N2(x))). It may thus be
advantageous to combine descent heuristics. This leads to the basic VND scheme
presented in Fig. 12.3.

Caution should be exercised when applying that scheme. In particular one should
consider the following questions:

(i) What complexity do the different moves have?
(ii) What is the best order in applying them?

318 P. Hansen and N. Mladenović

Initialization. Select the set of neighborhood structures Nℓ, for ℓ= 1, . . . , ℓmax, that will be
used in the descent; find an initial solution x (or apply the rules to a given x);
Repeat the following sequence until no improvement is obtained:

(1) Set ℓ← 1;

(2) Repeat the following steps until ℓ= ℓmax:
(a) Exploration of neighborhood. Find the best neighbor x′ of x (x′ ∈ Nℓ(x));
(b) Move or not. If the solution x′ thus obtained is better than x, set x ← x′ and ℓ← 1;
otherwise, set ℓ← ℓ+1;

Fig. 12.3 Steps of the basic VND

(iii) Are the moves considered sufficient to ensure a thorough exploration of the
region containing x?

(iv) How precise a solution is desired?

Question (i) aims at selecting and ranking moves: if they involve too many
elementary changes (e.g. complementing three components or more of a 0–1 vec-
tor), the resulting heuristic may be very slow and often takes more time than an
exact algorithm on small or medium size examples.

Question (ii) also bears upon computing times in relation to the quality of
solutions obtained. A frequent implementation consists of ranking moves by or-
der of complexity of their application (which is often synonymous with by size of
their neighborhoods |Nℓ(x)|), and returning to the first one each time a direction of
descent is found and a step made in that direction. Alternatively, all moves may be
applied in sequence as long as descent is made for some neighborhood in the series.

Question (iii) is a crucial one: for some problems elementary moves are not suf-
ficient to leave a narrow valley, and heuristics using them only can give very poor
results. This is illustrated in Example 12.2.

Finally, the precision desired, as asked for in question (iv) will depend upon
whether VND is used alone or within some larger framework, such as VNS itself.
In the former case, one will strive to obtain the best solution possible within the
allocated computing time; in the latter, one may prefer to get a good solution fairly
quickly by the deterministic VND and to improve it later by faster stochastic search
in VNS.

Example 12.1 (Simple plant location (see Cornuejols et al. 1990, for a survey)).
The simple (or uncapacitated) plant location problem consists of locating a set of
facilities i among a given set I of m potential locations, with fixed costs fi, in order
to minimize total costs for satisfying the demand of a given set of users J with
delivery costs ci j, i ∈ I, j ∈ J. It is expressed as follows:

min
x,y

zP =
m

∑
i=1

fiyi +
m

∑
i=1

n

∑
j=1

ci jxi j (12.7)

12 Variable Neighborhood Search 319

s.t.
m

∑
i=1

xi j = 1, ∀ j ∈ J (12.8)

yi− xi j ≥ 0, ∀i ∈ I, ∀ j ∈ J (12.9)

yi ∈ {0,1}, ∀i ∈ I (12.10)

xi j ≥ 0, ∀i ∈ I, ∀ j ∈ J, (12.11)

where yi = 1 if a facility is located at i, and 0 otherwise; xi j = 1 if demand of user j
is satisfied from facility i and 0 otherwise. Note that for fixed yi, the best solution is
defined by

xi j =

{

1 if ci j = minℓ|yℓ=1 cℓ j (with minimum index ℓ in case of ties);
0 otherwise.

Therefore neighborhoods can be defined on the yi, e.g. by Hamming distance
(or number of components with complementary values). A first heuristic, Greedy,
proceeds by opening a facility ℓ with minimum total cost:

fℓ+∑
j

cℓ j = min
i

{

fi +∑
j

ci j

}

(12.12)

then letting

cr j = min
i|yi=1

ci j, ∀ j (12.13)

computing the gains gi obtained by opening a facility at i

gi =∑
j

max{cr j− ci j,0}− fi (12.14)

and iteratively opening the facility for which the gain is larger, as long as it is
positive. Each iteration takes O(mn) time.

Once the Greedy heuristic has been applied, an improved solution may be
obtained by the Interchange heuristic which proceeds iteratively to the relocation
of one facility at a time in the most profitable way. With an efficient implementa-
tion, the idea of which was suggested by Whitaker (1983) for the closely related
p-median problem, an iteration of interchange can also be made in O(mn) time.

Applying in turn Greedy and Interchange is a simple case of VND. Further
moves in which one facility would be closed and two opened, or two closed and one
opened, or two opened and two closed would be too costly if all possible exchanges
are examined.

Example 12.2 (Minimum sum-of-squares clustering, MSSC). Given N points aℓ ∈
IRp, the MSSC problem consists of partitioning them in M classes (or clusters) C j

such as to minimize the sum of squared distances between the points and the cen-
troids xi of their clusters:

min
m

∑
i=1

∑
ℓ:aℓ∈Ci

‖aℓ− xi‖2 (12.15)

320 P. Hansen and N. Mladenović

where

xi =
1
|Ci| ∑ℓ:aℓ∈Ci

aℓ (12.16)

and ‖.‖ denotes the Euclidean norm.
Traditional heuristics for MSSC are: (i) H-means, which proceeds from an ini-

tial partition by moving one entity xℓ from its cluster to another one, in a greedy
way, until no further move decreases the objective function value, and (ii) K-means,
which proceeds from an initial partition by, alternatingly, finding the centroids of its
clusters, and reassigning entities to the closest centroid, until stability is attained.

Computational experiments (Hansen and Mladenović 2001) show that both H-
means and K-means may lead to very poor results for instances with large M and N
(the relative error being sometimes greater than 100 %). This is due to bad explo-
ration of X , or in other words, to difficulties in leaving valleys. A new jump move,
defined as the displacement of a centroid to a point aℓ which does not coincide
with a centroid, leads to a new VND heuristic, called J-means, which improves very
substantially on both H-means and K-means.

12.4 Reduced VNS

Assume a local minimum x of f has been reached. One would then like to leave its
valley, and find another deeper one. In the standard versions of VNS, no previous
knowledge of the landscape is assumed, or exploited. (Note that interesting hybrids
could be built, using also values of f (x) at previous iteration points x). Then, the
questions to be asked are

(i) Which direction to go?
(ii) How far?

(iii) How should one modify moves if they are not successful?

Question (i) bears upon the possibility of reaching any feasible point x ∈ X , or
every valley; the simplest answer is to choose a direction at random. For problems
in 0–1 variables this will amount to complementing some variables; for continuous
Euclidean problems, drawing angular coefficients at random (or, in other words,
choosing at random a point on the unit ball around x) takes all points of X into
account.

Question (ii) is crucial. Indeed one wants to exploit to the limit Fact 2 of the
Introduction, i.e. in many combinatorial and global optimization problems, local
optima tend to be close one to another and situated in one (or sometimes several)
small parts of X . So once a local optimum has been reached, it contains implicit
information about close better, and perhaps globally optimum, ones. It is then natu-
ral to explore first its vicinity. But, if the valley surrounding the local optimum x is
large, this may not be sufficient, and what to do next is asked for in question (iii).
Again a natural answer is to go further.

12 Variable Neighborhood Search 321

Initialization. Select the set of neighborhood structures Nk, for k = 1, . . .,kmax, that will
be used in the search; find an initial solution x; choose a stopping condition;
Repeat the following sequence until the stopping condition is met:

(1) Set k ← 1;

(2) Repeat the following steps until k = kmax:
(a) Shaking. Generate a point x′ at random from the kth neighborhood of x (x′ ∈Nk(x));
(b) Move or not. If this point is better than the incumbent, move there (x ← x′), and con-
tinue the search with N1 (k ← 1); otherwise, set k ← k+1;

Fig. 12.4 Steps of the Reduced VNS

These aims are pursued in the RVNS scheme, presented in Fig. 12.4. A set
of neighborhoods N1(x),N2(x), . . . ,Nkmax(x) will be considered around the current
point x (which may be or not a local optimum). Usually, these neighborhoods will
be nested, i.e. each one contains the previous. Then a point is chosen at random in the
first neighborhood. If its value is better than that of the incumbent (i.e. f (x′)< f (x)),
the search is re-centered there (x ← x′). Otherwise, one proceeds to the next neigh-
borhood. After all neighborhoods have been considered, one begins again with the
first, until a stopping condition is satisfied (usually it will be maximum computing
time since the last improvement, or maximum number of iterations).

Due to the nestedness property the size of successive neighborhoods will be
increasing. Therefore, one will explore more thoroughly close neighborhoods of
x than farther ones, but nevertheless search within these when no further improve-
ments are observed within the first, smaller ones.

Example 12.3 (p-median (see Labbé et al. 1995 for a survey)). This is a location
problem very close to that of Simple Plant Location. The differences are that there
are no fixed costs, and that the number of facilities to be opened is set at a given
value p. It is expressed as follows:

min
m

∑
i=1

n

∑
j=1

ci jxi j (12.17)

subject to

m

∑
i=1

xi j = 1, ∀ j (12.18)

yi− xi j ≥ 0, ∀i, j (12.19)
m

∑
i=1

yi = p (12.20)

xi j,yi ∈ {0,1}. (12.21)

The Greedy and Interchange heuristics described above for Simple Plant Loca-
tion are easily adapted to the p-median problem and, in fact, the latter was early
proposed by Teitz and Bart (1967).

322 P. Hansen and N. Mladenović

Table 12.1 5934-customer p-median problem

Obj. value CPU times % Error
p Best known FI RVNS VNDS FI RVNS VNDS

100 27,33,817.25 6,637.48 510.20 6,087.75 0.36 0.15 0.00
200 18,09,064.38 14,966.05 663.69 14,948.37 0.79 0.36 0.00
300 13,94,715.12 20,127.91 541.76 17,477.51 0.65 0.51 0.00
400 11,45,669.38 23,630.95 618.62 22,283.04 0.82 0.59 0.00
500 9,74,275.31 29,441.97 954.10 10,979.77 0.98 0.51 0.00
700 7,52,068.38 36,159.45 768.84 32,249.00 0.64 0.50 0.00
800 6,76,846.12 38,887.40 813.38 20,371.81 0.61 0.53 0.00
900 6,13,367.44 41,607.78 731.71 27,060.09 0.55 0.53 0.00

1,000 5,58,802.38 44,176.27 742.70 26,616.96 0.73 0.66 0.00
Average 28,403.90 705.00 19,786.00 0.68 0.48 0.00

Initialization. Select the set of neighborhood structures Nk, for k = 1, . . .,kmax, that will
be used in the search; find an initial solution x; choose a stopping condition;
Repeat the following sequence until the stopping condition is met:

(1) Set k ← 1;

(2) Repeat the following steps until k = kmax:
(a) Shaking. Generate a point x′ at random from the kth neighborhood of x (x′ ∈Nk(x));
(b) Local search. Apply some local search method with x′ as initial solution; denote with
x′′ the so obtained local optimum;
(c) Move or not. If the local optimum x′′ is better than the incumbent x, move there (x ←
x′′), and continue the search with N1 (k ← 1); otherwise, set k ← k+1;

Fig. 12.5 Steps of the basic VNS

Fast interchange, using Whitaker’s (1983) data structure applies here also
(Hansen and Mladenović 1997). Refinements were proposed by Resende and Wer-
neck (2002). A comparison between that approach and RVNS is made in Hansen
et al. (2001), and the results are summarized in Table 12.1. It appears that RVNS
gives better results than Fast Interchange in 2.5 % of the time.

12.5 Basic and General VNS

In the previous two sections, we examined how to use variable neighborhoods in
descent to a local optimum and in finding promising regions for near-optimal solu-
tions. Merging the tools for both tasks leads to the General VNS scheme. We first
discuss how to combine a local search with systematic changes of neighborhoods
around the local optimum found. We then obtain the Basic VNS scheme presented
in Fig. 12.5.

According to this basic scheme, a series of neighborhood structures, which define
neighborhoods around any point x ∈ X of the solution space, are first selected. Then

12 Variable Neighborhood Search 323

Initialization. Select the set of neighborhood structures Nk, for k = 1, . . .,kmax, that will
be used in the shaking phase, and the set of neighborhood structures Nℓ for ℓ= 1, . . . , ℓmax
that will be used in the local search; find an initial solution x and improve it by using
RVNS; choose a stopping condition;
Repeat the following sequence until the stopping condition is met:

(1) Set k ← 1;

(2) Repeat the following steps until k = kmax:
(a) Shaking. Generate a point x′ at random from the kth neighborhood Nk(x) of x;
(b) Local search by VND.

(b1) Set ℓ← 1;
(b2) Repeat the following steps until ℓ= ℓmax;
· Exploration of neighborhood. Find the best neighbor x′′ of x′ in Nℓ(x

′);
· Move or not. If f (x′′)< f (x′) set x′ ← x′′ and ℓ← 1; otherwise set ℓ← ℓ+1;

(c) Move or not. If this local optimum is better than the incumbent, move there (x ← x′′),
and continue the search with N1 (k ← 1); otherwise, set k ← k+1;

Fig. 12.6 Steps of the general VNS

the local search is used and leads to a local optimum x. A point x′ is selected at
random within the first neighborhood N1(x) of x and a descent from x′ is done with
the local search routine. This leads to a new local minimum x′′. At this point, three
outcomes are possible: (i) x′′ = x, i.e. one is again at the bottom of the same valley;
in this case the procedure is iterated using the next neighborhood Nk(x), k ≥ 2;
(ii) x′′
= x but f (x′′)≥ f (x), i.e. another local optimum has been found, which is not
better than the previous best solution (or incumbent); in this case too the procedure
is iterated using the next neighborhood; (iii) x′′
= x and f (x′′) < f (x) i.e. another
local optimum, better than the incumbent has been found; in this case the search is
recentered around x′′ and begins again with the first neighborhood. Should the last
neighborhood be reached without a solution better than the incumbent being found,
the search begins again at the first neighborhood N1(x) until a stopping condition,
e.g. a maximum time or maximum number of iterations or maximum number of
iterations since the last improvement, is satisfied.

If instead of simple local search, one uses VND and if one improves the ini-
tial solution found by Reduced VNS, one obtains the General VNS scheme. This
scheme is presented in Fig. 12.6.

Several questions about selection of neighborhood structures are in order:

(i) What properties of the neighborhoods are mandatory for the resulting scheme
to be able to find a globally optimal or near-optimal solution?

(ii) What properties of the neighborhoods will favor finding a near-optimal
solution?

(iii) Should neighborhoods be nested? Otherwise how should they be ordered?
(iv) What are desirable properties of the sizes of neighborhoods?

The first two questions bear upon the ability of the VNS heuristic to find the best
valleys, and to do so fairly quickly. To avoid being blocked in a valley, while there

324 P. Hansen and N. Mladenović

may be deeper ones, the union of the neighborhoods around any feasible solution x
should contain the whole feasible set:

X ⊆N 1(x)∪N 2(x)∪·· ·∪N kmax(x), ∀x ∈ X .

These sets may cover X without necessarily partitioning it, which is easier to imple-
ment, e.g. when using nested neighborhoods, i.e.

N 1(x)⊂N 2(x)⊂ ·· · ⊂N kmax(x), X ⊂N kmax(x), ∀x ∈ X .

If these properties do not hold, one might still be able to explore X completely,
by traversing small neighborhoods around points on some trajectory, but it is not
guaranteed. To illustrate, as mentioned before in MSSC, the neighborhoods defined
by moving an entity (or even a few entities) from one cluster to another one are
insufficient to get out of many local optima. Moving centers of clusters does not
pose a similar problem.

Nested neighborhoods are easily obtained for many combinatorial problems by
defining a first neighborhood N1(x) by a type of move—e.g. 2-opt in the traveling
salesman problem (TSP)—and then iterating it k times to obtain neighborhoods
Nk(x) for k = 2, . . . ,kmax. They have the property that their sizes are increasing.
Therefore if, as is often the case, one goes many times through the whole sequence
of neighborhoods the first ones will be explored more thoroughly than the last ones.
This is desirable in view of Fact 3 mentioned in the Introduction, i.e. that local
optima tend to be close one from another.

Restricting moves to the feasible set X may be too constraining, particularly if
this set is disconnected. Introducing some or all constraints in the objective func-
tion with Lagrangian multipliers, makes it possible to move to infeasible solutions.
A variant of this idea is to penalize infeasibility, e.g. pairs of adjacent vertices to
which the same color is assigned in graph coloring (see Zufferey et al. 2003).

Example 12.4 (Scheduling workover rigs for onshore oil production). Many oil
wells in onshore fields rely on artificial lift methods. Maintenance services such as
cleaning and others, which are essential to these wells, are performed by workover
rigs. They are slow mobile units and, due to their high operation costs, there are rel-
atively few workover rigs when compared with the number of wells demanding ser-
vice. The problem of scheduling workover rigs consists in finding the best schedule
Si (i = 1, . . . ,m) of the m workover rigs to attend all wells demanding maintenance
services, so as to minimize the oil production loss (production before maintenance
being reduced).

In Aloise et al. (2003) a basic VNS heuristic is developed for solving the Schedul-
ing of Workover Rigs Problem. Initial schedule Si (where Si is an ordered set of
wells serviced by workover rig i), is obtained by a Greedy constructive heuristic.
For the shaking step kmax = 9 neighborhoods are constructed: (1) Swap routes (SS):
the wells and the associated routes assigned to two workover rigs are interchanged;
(2) Swap wells from the same workover rig (SWSW): the order in which two wells
are serviced by the same rig is swapped; (3) Swap wells from different workover
rig (SWDW): two wells assigned to two different workover rigs are swapped;

12 Variable Neighborhood Search 325

Table 12.2 Average results with eight workover rigs over 20 runs of each synthetic test problem
and three possible scenarios (from Aloise et al. 2003)

Problem GA GRASP AS MMAS VNS
P-111 16,791.87 16,602.51 15,813.53 15,815.26 15,449.50

P-211 20,016.14 19,726.06 19,048.13 19,051.61 18,580.64

P-311 20,251.93 20,094.37 19,528.93 19,546.10 19,434.97

(4) Add/Drop (AD): a well assigned to a workover rig is reassigned to any posi-
tion of the schedule of another workover rig; (5) (SWSW)2: apply twice the SWSW
move; (6) (SWDW)2: apply twice the SWDW move; (7) (SWDW)3: apply three
times the SWDW move; (8) (AD)2: successively apply two (AD) moves; (9) (AD)3:
successively apply three (AD) moves.

For local search, the neighborhood consists of all possible exchanges of pairs of
wells, i.e. the union of (SWSW) and (SWDW) from above are used.

A basic VNS is compared with a genetic algorithm, the greedy randomized adap-
tive procedure (GRASP) and two ant colony methods (AS and MMAS) on synthet-
ical and real-life problems from Brazilian onshore fields. Some results on synthet-
ical data are given in Table 12.2. On 27 possible scenarios in generating data sets
(denotedby P-111, P-112, P-113, P-121, . . . , P333), VNS was better than others in
85 % of the cases and MMAS in 15 %. For real-life problems, results were much
better than the gains expected. For example, a daily reduction of 109 m3 (equivalent
to 685.6 bbl) in the production losses over 15 days was obtained by VNS com-
pared with Petrobras’ previous solution. That leads to a total savings estimated at
6,600,000 US dollars a year.

12.6 Skewed VNS

VNS gives usually better (or as good) solutions than multistart, and much better
ones when there are many local optima. This is due to Fact 3 of the Introduction:
many problems have clustered local optima; often, their objective function is a glob-
ally convex one plus some noise. However, it may happen that some instances have
several separated and possibly far apart valleys containing near-optimal solutions.
If one considers larger and larger neighborhoods, the information related to the cur-
rently best local optimum dissolves and VNS degenerates into multistart. Moreover
if the current best local optimum is not in the deepest valley this information is in
part irrelevant. It is therefore of interest to modify VNS schemes in order to ex-
plore more fully valleys which are far away from the incumbent solution. This will
be done by accepting to re-center the search when a solution close to the best one
known, but not necessarily as good, is found, provided that it is far from this last
solution. The modified VNS scheme for this variant, called Skewed VNS (SVNS) is

326 P. Hansen and N. Mladenović

Initialization. Select the set of neighborhood structures Nk, for k = 1, . . .,kmax, that will
be used in the search; find an initial solution x and its value f (x); set xopt ← x, fopt ← f (x):
choose a stopping condition and a parameter value α;
Repeat the following until the stopping condition is met:

(1) Set k ← 1;

(2) Repeat the following steps until k = kmax:
(a) Shaking. Generate a point x′ at random from the kth neighborhood of x;
(b) Local search. Apply some local search method with x′ as initial solution; denote with
x′′ the so-obtained local optimum;
(c) Improvement or not. If f (x′′)< fopt set fopt ← f (x) and xopt ← x′′;

(d) Move or not. If f (x′′)−αρ(x,x′′)< f (x) set x← x′′ and k← 1; otherwise set k← k+1.

Fig. 12.7 Steps of the Skewed VNS

presented in Fig. 12.7. The relaxed rule for re-centering uses an evaluation function
linear in the distance from the incumbent, i.e. f (x′′) is replaced by

f (x′′)−αρ(x,x′′)

where ρ(x,x′′) is the distance from x to x′′ and α a parameter. A metric for distance
between solutions is usually easy to find, e.g. the Hamming distance when solutions
are described by Boolean vectors or the Euclidean distance in the continuous case.
Clearly, more complicated formulas could be used for re-centering; possibly, one
might take into account known values at points already visited in the valley being
explored.

Questions to be answered when applying SVNS are the following:

(i) Does the problem under consideration have a roughly convex objective function,
or are there several far apart deep valleys?

(ii) How should α be chosen?

These questions can be answered, to some extent, by first using a multistart ver-
sion of VNS, i.e. starting VNS from various random points and running it for a short
time. Then one can look at the position of the best local optima found and see if they
are clustered or dispersed. Further, one can plot values in function of distance from
the corresponding local optima to the best known solution and chooseα as a fraction
of the average slope.

Example 12.5 (Weighted maximum satisfiability, WMAX-SAT). The satisfiability
problem, in clausal form, consists in determining if a given set of m clauses (all in
disjunctive or all in conjunctive form) built upon n logical variables has a solution
or not. The maximum satisfiability problem consists in finding a solution satisfy-
ing the largest possible number of clauses. In the weighted maximum satisfiability
problem (WMAXSAT) positive weights are assigned to the clauses and a solution
maximizing the sum of weights of satisfied clauses is sought. Results of compara-
tive experiments with VNS and tabu search (TS) heuristics on instances having 500

12 Variable Neighborhood Search 327

Table 12.3 Results for GERAD test problems for WMAXSAT (n = 500)

VNS VNS-low SVNS-low TS
Number of instances where
best solution is found 6 4 23 5
% average error in 10 trials 0.2390 0.2702 0.0404 0.0630
% best error in 10 trials 0.0969 0.1077 0.0001 0.0457
Total number of instances 25 25 25 25

Initialization. Select the set of neighborhood structures Nk, for k = 1, . . .,kmax, that will
be used in the search; find an initial solution x; choose a stopping condition;
Repeat the following sequence until the stopping condition is met:

(1) Set k ← 1;

(2) Repeat the following steps until k = kmax:
(a) Shaking. Generate a point x′ at random from the kth neighborhood of x (x′ ∈Nk(x));
in other words, let y be a set of k solution attributes present in x′ but not in x (y = x′ \ x).
(b) Local search. Find a local optimum in the space of y either by inspection or by some
heuristic; denote the best solution found with y′ and with x′′ the corresponding solution in
the whole space S (x′′ = (x′ \ y)∪ y′);
(c) Move or not. If the solution thus obtained is better than the incumbent, move there
(x ← x′′), and continue the search with N1 (k ← 1); otherwise, set k ← k+1;

Fig. 12.8 Steps of the basic VNDS

variables, 4,500 clauses and three variables per clause, in direct or complemented
form, are given in Table 12.3 from Hansen et al. (2001). It appears that using a re-
stricted neighborhood consisting of a few directions of steepest descent or mildest
ascent in the Shaking step does not improve results, but using this idea in conjunc-
tion with SVNS improves notably upon results of basic VNS and also upon those of
a TS heuristic.

12.7 Variable Neighborhood Decomposition Search

The VNDS method (Hansen et al. 2001) extends the basic VNS into a two-level
VNS scheme based upon decomposition of the problem. Its steps are presented in
Fig. 12.8.

Note that the only difference between the basic VNS and VNDS is in step 2b:
instead of applying some local search method in the whole solution space S (start-
ing from x′ ∈ Nk(x)), in VNDS we solve at each iteration a subproblem in some
subspace Vk ⊆ Nk(x) with x′ ∈ Vk. When the local search used in this step is also
VNS, the two-level VNS scheme arises.

VNDS can be viewed as embedding the classical successive approximation
scheme in the VNS framework.

328 P. Hansen and N. Mladenović

12.8 Analyzing Performance

When a first VNS heuristic has been obtained and tested, the effort should not stop
there. Indeed, it is often at this point that the most creative part of the development
process takes place. It exploits systematically Fact 2 of the Introduction, that global
minima are local minima for all possible neighborhoods simultaneously. The con-
trapositive is that if a solution x ∈ X is a local minimum (for the current set of
neighborhoods) and not a global one there are one or several neighborhoods (or
moves) to be found, which will bring it to this global optimum.

The study then focuses on instances for which an optimal solution is known
(or, if none or very few are available, on instances with a presumably optimal solu-
tions, i.e. the best one found by several heuristics) and compares it with the heuristic
solution obtained. Visualization is helpful and may take the form of a distance-to-
target diagram (Hansen and Mladenović 2003). Then, the heuristic solutions, the
optimal one and their symmetric difference (e.g. for the TSP) are represented on
screen. Moreover, an interactive feature makes it possible to follow how the heuris-
tic works step by step. The information thus gathered is much more detailed than
one would get just from objective values and computer times if, as is often the case,
the heuristic is viewed as a black box. For instance, this clearly shows that 2-opt is
not sufficient to get a good solution for the TSP, that moves involving three or four
edges are needed and that those edges leading to an improvement may be far apart
along the tour. For another application of VNS to the TSP see Burke et al. (1999).

Similarly, for location problems, one can focus on those facilities which are not
at their optimal location and study why, in terms of distributions of nearby users.

Another point is to study how to get out of a large valley if there exists another
promising one. Valley (or mountain) profiles are then useful (Hansen et al. 2001).
They are obtained by drawing many points x′ at random within nested neighbor-
hoods N1(x),N2(x), . . . (or, which is equivalent, at increasing distance of a local
minimum x) then performing one VND descent and plotting probabilities to get
back to x, to get to another local minimum x′′ with a value f (x′′)≥ f (x) or to get to
an improved local minimum x′ with f (x′′) < f (x). Alternately one may also study
the probabilities to go in the direction of x, i.e. ρ(x,x′′)≤ ρ(x,x′) or towards another
valley i.e. ρ(x,x′′)> ρ(x,x′).

12.9 Promising Areas of Research

Research on Variable Neighborhood Search and its applications is currently very
active. We review some of the promising areas in this section; these include a few
which are barely explored yet.

A first set of areas concerns enhancements of the VNS basic scheme and ways to
make various steps more efficient.

12 Variable Neighborhood Search 329

(a) Initialization. Both VND and VNS, as many other heuristics, require an initial
solution. Two questions then arise: How best to choose it? and Does it mat-
ter? For instance, many initialization rules have been proposed for the k-means
heuristic for minimum sum-of-squares clustering, described above, 25 such
rules are compared in Hansen et al. (2003a). It appears that while sensitivity
of k-means to the initial solution is considerable (best results being obtained
with Ward’s hierarchical clustering method), VNS results depend very little on
the chosen rule. The simplest one is thus best. It would be interesting to extend
and generalize this result by conducting similar experiments for other problems.

(b) Inventory of neighborhoods. As mentioned above, a VNS study begins by gath-
ering material on neighborhoods used in previous heuristics for the problem
under study. A systematic study of moves (or neighborhoods) used for heuris-
tics for whole classes of problems (e.g. location, network design, routing, . . .)
together with the data structures most adequate for their implementation should
be of basic interest for VNS as well as for other metaheuristics. Several
researchers (e.g. Ahuja et al. 2000) are working in that direction.

(c) Distribution of neighborhoods. When applying a General VNS scheme,
neighborhoods can be used in the local search phase, in the shaking phase or in
both. A systematic study of their best distribution between phases can enhance
performance and provide further insight in the solution process. In particular,
the trade-off between increased work in the descent, which provides better local
optima, and in shaking which leads to better valleys should be focused upon.

(d) Ancillary tests. VNS schemes use randomization in their attempts to find better
solutions. This also avoids possible cycling. However, many moves may not
lead to any improvement. This suggests adding an ancillary test (Hansen 1974,
1975) the role of which is to decide if a move should be used or not, in its
general or in a restricted form. Considering again MMSC, one could try to
select better the centroid to be removed from the current solution (a possible
criterion being that its cluster contains a few entities only or is close to another
centroid) as well as the position where it will be assigned (e.g. the location of
an entity far from any other centroid and in a fairly dense region).

A second set of areas concerns changes to the Basic VNS scheme.

(e) Use of memory. VNS in its present form relies only on the best solutions cur-
rently known to center the search. Knowledge of previous good solutions is
forgotten, but might be useful to indicate promising regions not much explored
yet. Also, characteristics common to many or most good solutions, such as vari-
ables taking the same value in all or most such solutions could be used to better
focus the shaking phase. Use of memory has been much studied in tabu search
and other metaheuristics. The challenge for VNS is to introduce memory while
keeping simplicity.
An interesting way to use memory to enhance performance is Reactive VNS,
explored by Braisy (2001) for the vehicle routing problem with time windows.
If some constraints are hard to satisfy, their violation may be penalized more
frequently than for others in the solution process.

330 P. Hansen and N. Mladenović

(f) Parallel VNS. Clearly, there are many natural ways to parallelize VNS schemes.
A first one, within VND, is to perform local search in parallel. A second one,
within VNS, is to assign the exploration of each neighborhood of the incumbent
to a different processor. A third one, within VNDS, is to assign a different
subproblem to each processor. Lopez et al. (2002) explore several options in
designing a parallel VNS.

(g) Hybrids. Several researchers (e.g. Rodriguez et al. 1999; Festa et al. 2001;
Ribeiro et al. 2001) have combined VNS with other metaheuristics for various
problems. Again, this is not always easy to do without losing VNS’s simplicity
but may lead to excellent results, particulary if the other metaheuristics are very
different from VNS.

At a more general level, one might wish to explore combinations of VNS with
constraint programming, instead of its development within mathematical programm-
ing as in the applications described above. This could be done in two ways: on the
one hand, techniques from constraint programming could be applied to enhance
VND; on the other hand, VNS could be applied to constraint programming by min-
imizing a sum of artificial variables measuring infeasibility and possibly weighted
by some estimate of the difficulty of satisfying the corresponding constraints.

A third set of areas concerns new aims for VNS, i.e. non-standard uses:

(h) Solutions with bounds on the error. VNS, as other metaheuristics, most often
provides near-optimal solutions to combinatorial problems, without bounds on
their error. So while such solutions may be optimal or very close to optimality,
this fact cannot be recognized. One approach to obtain such bounds is to find
with VNS a heuristic solution of the primal problem, deduce from it a solution
to the dual (or its continuous relaxation) and then improve this dual solution by
another application of VNS. Moreover, complementary slackness conditions
can be used to simplify the dual. For problems with a small duality gap this
may lead to a near-optimal solution, guaranteed to be very close to optimality.
To illustrate, recent work of Hansen et al. (2003a) on the simple plant location
problem (SPLP) gave solutions to instances with up to 15,000 users and 15,000
possible facilities with an error bounded by 0.05 %.

(i) Using VNS within exact algorithms for mixed-integer programming. Sophisti-
cated algorithms for mixed-integer programming often contain various phases
where heuristics are applied. This is illustrated, for example, by Desaulniers
et al. (2001) for the airline crew scheduling problem.

Extending the results described in the previous section, in the branch-and-bound
framework led to solve exactly SPLP instances with up to 7,000 users (Hansen et al.
2007).

A different approach, called local branching, has been recently proposed by
Fischetti and Lodi (2003) and Fischetti et al. (2003), both for exact and approximate
resolution of large mixed-integer programs. At various branches in the branch-and-
bound tree, cuts (which are not valid in general) are added; they express that among
a given set of 0–1 variables, already at an integer value, only a few may change their
value. They thus correspond to neighborhoods defined by the Hamming distance.

12 Variable Neighborhood Search 331

Then CPLEX is used to find the optimal solution within the neighborhood and in this
way feasible solutions are more easily obtained. Improved solutions were obtained
for a series of large mixed-integer programming instances from various sources,
when local branching idea is combined with VNS (Hansen et al. 2006; Lazic et al.
2010).

(j) Artificial intelligence: enhancing graph theory with VNS. VNS, as other
metaheuristics, has been extensively used to solve a variety of optimization
problems in graph theory. However, it may also be used to enhance graph theory
per se, following an artificial intelligence approach. This is done by the Auto-
GraphiX (AGX) system developed by Caporossi and Hansen (2000, 2003). This
system considers a graph invariant (i.e. a quantity defined for all graphs of the
class under study and independent of vertex and edge labelings) or a formula
involving several invariants (which is itself a graph invariant). Then AGX finds
extremal or near-extremal graphs for that invariant parametrizing on a few vari-
ables, often the order n (or number of vertices) and the size m (of number of
edges) of the graph. Analyzing automatically or interactively these graphs and
the corresponding curves of invariant values leads to the finding of new con-
jectures, refuting, corroborating or strengthening existing ones, and giving hints
about a possible proof from the minimal list of moves needed to find the ex-
tremal graphs. To illustrate, the energy E of a graph is the sum of absolute values
of the eigenvalues of its adjacency matrix. The following relations were obtained
by Caporossi et al. (1999) with AGX: E ≥ 2

√
m and E ≥ 4m

n and were easily
proved. Over 70 new relations have now been obtained, in mathematics and in
chemistry. Three ways to attain full automation based on the mathematics of
principal component analysis, linear programming and recognition of extremal
graphs together with formula manipulations are currently being studied.

12.10 Tricks of the Trade

12.10.1 Getting Started

This purpose of this section is to help students in making a first very simple
version of VNS, which would not necessary be competitive with later more so-
phisticated versions. Most of the steps are common to the implementation of other
metaheuristics.

12.10.1.1 A Step-by-Step Procedure

1. Become familiar with the problem. Think about the problem at hand; in order to
understand it better, make a simple numerical example and spend some time in
trying to solve it by hand in your own way. Try to understand why the problem
is hard and why a heuristic is needed.

332 P. Hansen and N. Mladenović

2. Read literature. Read about the problem and solution methods in the literature.
3. Test instances (read data). Use your numerical example as a first instance for

testing your future code, but if it is not large enough, take some from the web,
or make a routine for generating random instances. In the second case, read how
to generate events using uniformly distributed numbers from (0,1) interval (since
each programming language has statement for getting such random numbers).

4. Data structure. Think about how the solution of the problem will be represented
in the memory. Consider two or more presentations of the same solution if they
can reduce the complexity of some routines, i.e. analyze the advantages and
disadvantages of each possible presentation.

5. Initial solution. Having a routine for reading or generating input data of the
problem, the next step is to get an initial solution. For the simple version, any
random feasible solution may be used, but the usual way is to develop some
greedy constructive heuristic, which should not be very hard to do.

6. Objective value. Make a procedure that calculates the objective function value
for a given solution. Notice that at this stage we already have all the ingredients
for the Monte Carlo method: generation of random solution and calculation of
objective function value. Get a solution to your problem by Monte Carlo heuristic
(i.e. repeat steps 5 and 6 many times and keep the best result).

7. Shaking. Make a procedure for shaking. This is a key step of VNS. However, it is
easy to implement and usually has only a few lines of computer code. For exam-
ple, in solving the multi-source Weber problem (see Example 12.2), the easiest
perturbation of the current solution is to reallocate randomly chosen entity ℓ from
its cluster to another one, also chosen at random. In fact, in this case, the shak-
ing step (or jump in the kth neighborhood) would have only three lines of the
computer code:

For i = 1 to k
a(1+ n ·Rnd1)= 1+m ·Rnd2

EndFor

The solution is saved in the array a(ℓ) ∈ {1, . . . ,m} that denotes membership
or allocation of entity ℓ (ℓ = 1, . . . ,n); Rnd1 and Rnd2 denote random numbers
uniformly distributed from the (0,1) interval. Compare the results of the obtained
Reduced VNS (take kmax = 2) with the Monte Carlo method.

8. Local search. Choose an off-the-shelf local search heuristic (or develop a new
one). In building a new local search, consider several usual moves that define the
neighborhood of the solution: drop, add, swap, interchange, etc. Also, for the
efficiency (speed) of the method, it is very important to pay special attention to
updating of the incumbent solution. In other words, it is not usually necessary
to use a procedure for calculating objective function values for each point in the
neighborhood, i.e. it is possible to get those values by very simple calculation.

9. Comparison. Include a local search routine in RVNS to get the basic VNS, and
compare it with other methods from the literature.

12 Variable Neighborhood Search 333

12.10.2 More Tips

Sometimes basic VNS does not provide very good results.

1. First versus best improvement. Compare experimentally first and best improve-
ment strategies within local search. Previous experience suggests the following:
if your initial solution is chosen at random, use first improvement, but if some
constructive heuristic is used, use best improvement rule.

2. Reduce the neighborhood. The reason for the bad behavior of any local search
may be unnecessary visits to all solutions in the neighborhood. Try to identify a
promising subset of the neighborhood and visit only those; ideally, find a rule that
automatically selects solutions from the neighborhood whose objective values
are not better than the current one.

3. Intensified shaking. In developing more effective VNS, one must spend some
time in checking how sensitive the objective function is to small change (shake)
of the solution. The trade-off between intensification and diversification of the
search in VNS is balanced in the shaking procedure. For some problem in-
stances completely random jump in the kth neighborhood is too diversified. In
such cases, some intensify shaking procedure may increase intensification of the
search. For example, k-interchange neighborhood may be reduced by repeating
k times random add followed by best drop moves. A special case of intensified
shaking is so-called large neighborhood search, where k randomly chosen at-
tributes of the solutions are destroyed (dropped), and then the solution is re-built
in the best way (by some constructive heuristic).

4. VND. Analyze several possible neighborhood structures, estimate their size,
make order of them, i.e. develop VND and replace the local search routine with
VND to get general VNS.

5. Experiments with parameter settings. The single parameter of VNS is kmax,
which should be estimated experimentally. However, the procedure is usually
not very sensitive on kmax. In order to make a parameter-free VNS, one can fix
its value at the value of some input parameter: e.g. for the p-median (Exam-
ple 12.3), kmax = p; for the MSSC (Example 12.2), kmax = m.

12.11 Conclusions

The general schemes of VNS have been presented, discussed and illustrated by
examples. References to many further successful applications are given in the next
section. In order to evaluate a VNS research program, one needs a list of desir-
able properties of metaheuristics. The following eight are identified by Hansen and
Mladenović (2003):

1. Simplicity. The metaheuristic should be based on a simple and clear principle,
which should be largely applicable;

334 P. Hansen and N. Mladenović

2. Precision. Steps of the metaheuristic should be formulated in precise mathemat-
ical terms, independent from the possible physical or biological analogy which
was an initial source of inspiration;

3. Coherence. All steps of heuristics for particular problems should follow naturally
from the metaheuristic’s principle;

4. Efficiency. Heuristics for particular problems should provide optimal or near-
optimal solutions for all or at least most realistic instances. Preferably, they
should find optimal solutions for most problems of benchmarks for which such
solutions are known, when available;

5. Effectiveness. Heuristics for particular problems should take moderate computing
time to provide optimal or near-optimal solutions;

6. Robustness. The performance of heuristics should be consistent over a variety of
instances, i.e. not just fine-tuned to some training set and less good elsewhere;

7. User-friendliness. Heuristics should be clearly expressed, easy to understand and,
most important, easy to use. This implies they should have as few parameters as
possible and ideally none;

8. Innovation. Preferably, the metaheuristic’s principle and/or the efficiency and
effectiveness of the heuristics derived from it should lead to new types of
applications.

VNS possesses, to a large extent, all of these properties. This has led to heuristics
being among the very best ones for several problems, but more importantly to insight
into the solution process and some innovative applications.

Sources of Additional Information

Some Web addresses with sources of information about VNS include

• http://scholar.google.co.uk/—“Variableneighborhood search” gets around 36,000
files.

• http://apps.isiknowledge.com/—“Variable neighborhood search” in the “topics”
window finds 478 VNS papers, together with 4,081 citations and VNS h-index
equal to 28 (on 30 November 2010).

• http://www.gerad.ca/en/publications/cahiers_rech.php—if one chooses the op-
tion “search for papers” and in the “Abstract” box types “Variable neighborhood
search”, 56 papers for downloading will appear at the screen; typing “Variable
neighbourhood search” gets an additional eight papers.

Survey papers: Hansen and Mladenović (1999, 2001a,c, 2002a,b, 2003), Hansen
et al. (2003a, 2008, 2010a,b) and Kochetov et al. (2003).

http://scholar.google.co.uk/
http://apps.isiknowledge.com/
http://www.gerad.ca/en/publications/cahiers_rech.php

12 Variable Neighborhood Search 335

References

Ahuja RK, Orlin JB, Sharma D (2000) Very large-scale neighborhood search. Int
Trans Oper Res 7:301–317

Aloise DJ, Aloise D, Rocha CTM, Ribeiro Filho JC, Moura LSS, Ribeiro CC
(2006) Scheduling workover rigs for onshore oil production. Discr Appl Math
154:695–702

Baum EB (1986) Toward practical ‘neural’ computation for combinatorial opti-
mization problems. In: Denker J (ed) Neural networks for computing. American
Institute of Physics, New York

Braysy O (2001) Local search and variable neighborhood search algorithms for
vehicle routing with time windows. Acta Wasaensia 87

Burke EK, Cowling P, Keuthen R (1999) Effective local and guided variable neigh-
borhood search methods for the asymmetric traveling salesman problem. In: Pro-
ceedings of the Evo workshops. LNCS 2037. Springer, Berlin, pp. 203–212

Caporossi G, Hansen P (2000) Variable neighborhood search for extremal graphs 1.
The AutoGraphiX system. Discr Math 212:29–44

Caporossi G, Hansen P (2003) Variable neighborhood search for extremal graphs 5.
Three ways to automate conjecture finding. Discr Math 276:81–94

Caporossi G, Cvetković D, Gutman I, Hansen P (1999) Variable neighborhood
search for extremal graphs 2. Finding graphs with extremal energy. J Chem Inf
Comput Sci 39:984–996

Cornuejols G, Fisher M, Nemhauser G (1990) The uncapacitated facility location
problem. In: Mirchandani P, Francis R (eds) Discrete location theory. Wiley,
New York

Desaulniers G, Desrosiers J, Solomon MM (2001) Accelerating strategies in column
generation methods for vehicle routing and crew scheduling problems. In: Essays
and surveys in metaheuristics. Kluwer, Dordrecht, pp. 309–324

Festa P, Pardalos P, Resende M, Ribeiro C (2001) GRASP and VNS for Max-cut.
In: Proceedings of the MIC 2001, pp. 371–376

Fischetti M, Lodi A (2003) Local branching. Math Program B 98:23–47
Fischetti M, Polo C, Scantamburlo M (2003) A local branching heuristic for mixed-

integer programs with 2-level variables. Research report, University of Padova
Garey MR, Johnson DS (1978) Computers and intractability: a guide to the theory

of NP-completeness. Freeman, New York
Glover F, Laguna M (1997) Tabu search. Kluwer, Boston
Glover F, Kochenberger G (eds) (2003) Handbook of metaheuristics. Kluwer, Dor-

drecht
Hansen P (1974) Programmes mathématiques en variables 0–1. Thèse d’Agrégation

de l’Enseignment Supérieur, Université Libre de Bruxelles
Hansen P (1975) Les procédures d’optimization et d’exploration par séparation et

évaluation. In: Roy B (ed) Combinatorial programming. Reidel, Dordrecht, pp
19–65

Hansen P, Mladenović N (1997) Variable neighborhood search for the p-median.
Locat Sci 5:207–226

336 P. Hansen and N. Mladenović

Hansen, P, Mladenović N (1999) An introduction to variable neighborhood search.
In: Voss S et al (eds) Metaheuristics, advances and trends in local search
paradigms for optimization. Kluwer, Dordrecht, pp 433–458

Hansen P, Mladenović N (2001a) Variable neighborhood search: principles and
applications. Eur J Oper Res 130:449–467

Hansen P, Mladenović N (2001b) J-Means: A new local search heuristic for
minimum sum-of-squares clustering. Pattern Recognit 34:405–413

Hansen P, Mladenović N (2001c) Developments of variable neighborhood search.
In: Ribeiro C, Hansen P (eds) Essays and surveys in metaheuristics. Kluwer,
Dordrecht, pp. 415–440

Hansen P, Mladenović N (2002a) Variable neighborhood search. In: Pardalos P,
Resende M (eds) Handbook of applied optimization. Oxford University Press,
New York, pp. 221–234

Hansen P, Mladenović N (2002b) Recherche à voisinage variable. In: Teghem J, Pir-
lot M (eds) Optimisation approchée en recherche opérationnelle. Lavoisier Her-
mès, Paris, pp. 81–100

Hansen P, Mladenović N (2003) Variable neighborhood search. In: Glover
F, Kochenberger G (eds) Handbook of metaheuristics. Kluwer, Dordrecht, pp
145–184

Hansen P, Jaumard B, Mladenović N, Parreira A (2000) Variable neighborhood
search for weighted maximum satisfiability problem. Les Cahiers du GERAD
G-2000-62

Hansen P, Mladenović N, Perez-Brito D (2001) Variable neighborhood decomposi-
tion search. J Heuristics 7:335–350

Hansen P, Mladenović N, Moreno-Pérez JA (2003a) Búsqueda de Entorno Variable
(in Spanish). Inteligencia Artificial 19:77–92

Hansen P, Ngai E, Cheung B, Mladenović N (2003b) Survey and comparison of
initialization methods for k-means clustering (in preparation)

Hansen P, Mladenovic N, Urosevic D (2006) Variable neighborhood search and
local branching. Comput Oper Res 33:3034–3045

Hansen P, Brimberg J, Urosevic D, Mladenovic N (2007) Primal-dual variable
neighborhood for the simple plant location problem. INFORMS J Comput
19:552–564

Hansen P, Mladenović N, Moreno-Pérez JA (2008) Variable neighborhood search.
Eur J Oper Res 191:593–595

Hansen P, Mladenovic N, Brimberg J, Moreno Pérez JA (2010a) Variable neigh-
bourhood search. In: Gendreau M, Potvin J-Y (eds) Handbook of metaheuristics,
2nd edn. Kluwer, Dordrecht, pp 61–86

Hansen P, Mladenović N, Moreno Pérez JA (2010b) Variable neighborhood search:
algorithms and applications. Ann Oper Res 175:367–407

Kirkpatrick S, Gellatt CD Jr, Vecchi P (1983) Optimization by simulated annealing.
Science 220:671–680

Kochetov Y, Mladenović N, Hansen P (2003) Lokalnii poisk s chereduyshimisy
okrestnostyami (in Russian). Diskretaja Matematika 10:11–43

12 Variable Neighborhood Search 337

Labbé M, Peeters D, Thisse JF (1995) Location on networks. In: Ball M et al (eds)
Network routing. North-Holland, Amsterdam, pp 551–624

Lazic J, Hanafi S, Mladenovic N, Urosevic D (2010) Variable neighborhood
decomposition search for 0–1 mixed integer programs. Comput Oper Res
37:1055–1067

Lopez FG, Batista BM, Moreno Pérez JA, Moreno Vega JM (2002) The parallel
variable neighborhood search for the p-median problem. J Heuristics 8:375–388

Mladenović N, Hansen P (1997) Variable neighborhood search. Comput Oper Res
24:1097–1100

Papadimitriou C (1994) Computational complexity. Addison-Wesley, Reading
Reeves CR (ed) (1993) Modern heuristic techniques for combinatorial problems.

Blackwell, Oxford
Resende MGC, Werneck R (2003) On the implementation of a swap-based local

search procedure for the p-median problem. In: Ladner RE (ed) Proceedings of
the ALENEX 2003. SIAM, Philadelphia, pp 119–127

Ribeiro C, Uchoa E, Werneck R (2001) A hybrid GRASP with perturbations for
the Steiner problem in graphs. Technical report, Computer Science Department,
Catholic University of Rio de Janeiro

Rodriguez I, Moreno-Vega M, Moreno-Perez J (1999) Heuristics for routing-median
problems. SMG report, Université Libre de Bruxelles

Teitz MB, Bart P (1968) Heuristic methods for estimating the generalized vertex
median of a weighted graph. Oper Res 16:955–961

Whittaker R (1983) A fast algorithm for the greedy interchange for large-scale clus-
tering and median location problems. INFOR 21:95–108

Zufferey N, Hertz A, Avanthay C (2003) Variable neighborhood search for graph
colouring. Eur J Oper Res 151:379–388

Chapter 13

Very Large-Scale Neighborhood Search

Douglas S. Altner, Ravindra K. Ahuja, Özlem Ergun, and James B. Orlin

13.1 Introduction

One of the central issues in developing neighborhood search techniques is defining
the neighborhood. As a rule of thumb, larger neighborhoods contain higher quality
local optimal solutions compared to smaller neighborhoods. However, larger neigh-
borhoods also typically require more time to search than smaller neighborhoods.
A neighborhood search algorithm is not practical if the neighborhoods cannot be
searched efficiently. Thus, a rapid search algorithm is needed to make efficient use
of large neighborhoods.

This chapter introduces very large-scale neighborhood search (VLSN search),
the technique of using a fast algorithm to implicitly search a neighborhood that
is “very large” relative to the problem size. Generally speaking, VLSN search al-
gorithms either implicitly search large neighborhoods by solving an auxiliary op-
timization problem or they partially explore the neighborhoods heuristically. This
chapter presents an overview of the broad classes of VLSN search algorithms, which

D.S. Altner
Department of Mathematics, United States Naval Academy, Annapolis, MD, USA
e-mail: daltner@aynrand.org

R.K. Ahuja (�)
Department of Industrial and Systems Engineering, University of Florida,
Gainesville, FL, USA
e-mail: ahuja@ufl.edu

Ö. Ergun
H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute
of Technology, Atlanta, GA, USA
e-mail: oergun@isye.gatech.edu

J.B. Orlin
Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA, USA
e-mail: jorlin@mit.edu

E.K. Burke and G. Kendall (eds.), Search Methodologies: Introductory Tutorials
in Optimization and Decision Support Techniques, DOI 10.1007/978-1-4614-6940-7_13,
© Springer Science+Business Media New York 2014

339

mailto:daltner@aynrand.org
mailto:ahuja@ufl.edu
mailto:oergun@isye.gatech.edu
mailto:jorlin@mit.edu

340 D.S. Altner et al.

we partition into variable-depth neighborhood search algorithms, cyclic exchange
neighborhood search algorithms and other VLSN search algorithms.

Section 13.2 presents preliminary concepts and definitions. Section 13.3 describes
variable-depth neighborhood search algorithms, which differ from standard neigh-
borhood search algorithms in that the neighborhoods contain solutions at varying
depths from the starting solution. Broadly speaking, given an initial s0, a solution si

in a neighborhood of s0 is within a depth of k if s0 can be transformed into si using at
most k moves. A prominent example of a variable-depth neighborhood search algo-
rithm is the well known Lin–Kernighan search heuristic for the traveling salesman
problem (TSP).

Section 13.4 presents an overview of cyclic exchange neighborhood search al-
gorithms and lists several classes of difficult problems where these algorithms have
obtained the best known solutions. Cyclic exchange neighborhood algorithms are
designed for combinatorial optimization problems that require finding an optimal
partition of a set of elements. Broadly speaking, a cyclic exchange neighborhood
search algorithm iteratively finds a cycle of transfers of elements between the sub-
sets of a partition until no improving cycle is found.

Section 13.5 focuses on VLSN search techniques that are neither variable-
depth neighborhood search algorithms nor cyclic exchange neighborhood search
algorithms but are still frequently used to heuristically solve difficult problems.
Section 13.6 presents several implementation suggestions to improve the practical
performance of VLSN search algorithms. Section 13.7 highlights several promising
areas for future research. The last section offers concluding remarks.

13.2 Preliminaries

A combinatorial optimization problem (COP) is a mathematical problem of the fol-
lowing form: given a finite set of feasible solutions X and a function f : X →ℜ, find
a solution x in X that maximizes f (x). f is called the objective function and COPs
can also require that the objective function be minimized instead of maximized.
A COP is a partitioning problem if every feasible solution corresponds to a partition
of a finite set of elements into two or more disjoint subsets. For example, consider
the minimum multiway cut problem (MMCP), which requires finding a minimum
cost partition of the vertices of a graph into k subsets such that no two vertices from
a set of k terminals are assigned to the same subset. In this problem, the cost of a
partition is the total weight of the edges that are between vertices in two different
subsets.

A COP can also be an ordering problem, where every feasible solution cor-
responds to an ordering of a finite set of elements and the objective is to find a
minimum cost ordering. A classic example of an ordering COP is the TSP, which
requires choosing the order in which to visit n cities in a single trip to minimize the
total travel distance.

In this chapter we study algorithms that iteratively modify a solution to construct
a better solution. A move is a rule for modifying a solution. For example, in the

13 Very Large-Scale Neighborhood Search 341

context of the TSP, a solution is an ordered list of cities such as c1,c2,c3,c4,c5,c6.
One example of a move for the TSP is an insertion move, where a single city is
removed from the ordered list of cities and is inserted elsewhere in the ordering.
For example, a possible insertion move is to insert city c3 before city c6, which
results in the new ordering c1,c2,c4,c5,c3,c6. Another example of a move is a swap
move, where the places of two cities in the ordering are exchanged. For example, a
possible swap move is to exchange the places of cities c2 and c5, which results in
the ordering c1,c5,c3,c4,c2,c6. If a move improves the objective value of a solution,
then the move is improving.

A neighborhood of a solution s is a function that maps s to a set of solutions
where each solution in the set can be constructed from s with a single execution of
a specific move. Every neighborhood is a function of a solution and a type of move.
For example, given a solution s to the TSP, there is the swap move neighborhood
of s, which is different from the insertion move neighborhood of s, which in turn is
different from the swap move neighborhood of a solution x that is different from s.
Throughout this chapter, we often say that a solution si+1 is in a neighborhood of a
solution si to informally describe that solution si+1 is in the range of a neighborhood
of si.

Any solution in a neighborhood of solution s is a neighbor of s. For example, the
TSP solution s0 = (c1,c2,c3,c4,c5,c6) has the solution s1 = (c1,c5,c2,c3,c4,c6) as
a neighbor with respect to the insertion move neighborhood of s0 since s1 can be
obtained from s0 by removing city c5 from the sequence and inserting it before city
c2. A solution is a local optimal solution in a neighborhood if its objective value is
better than that of every solution contained in the neighborhood.

A neighborhood search algorithm, also called a local search algorithm, is an al-
gorithm that, given a neighborhood and a starting solution, iteratively moves to a
neighboring solution until a stopping criterion is satisfied. Typically, neighborhood
search algorithms iteratively move to a neighboring solution with a better objective
value until a local optimal solution is discovered. Algorithm 1 displays pseudocode
for a generic neighborhood search algorithm.

Algorithm 1 Generic neighborhood search
Begin with initial solution s0.

repeat

Find si , the best solution in the neighborhood of si−1.

until The objective value of si is no better than that of si−1.

return si−1.

There are more sophisticated neighborhood search algorithms, such as tabu
search (see Chap. 9), that consider non-improving moves in an effort to explore
a greater portion of the solution space. These algorithms typically terminate after
they fail to discover a solution that is better than the best-known solution after a
user-specified number of iterations.

342 D.S. Altner et al.

A neighborhood is explicitly searched when every single solution in a
neighborhood is evaluated during an iteration of the neighborhood search algo-
rithm. Likewise, a neighborhood is implicitly searched if a locally optimal solu-
tion is obtained without explicitly evaluating every solution in the neighborhood.
For example, finding an optimal solution to a binary integer program by evaluating
every feasible solution is an example of an explicit search of the feasible region.
In contrast, using a branch-and-bound method to find an optimal solution is an ex-
ample of an implicit search, since some feasible solutions may never be explicitly
evaluated if subproblems in the branch-and-bound tree are fathomed (see Chap. 2).

A very large-scale neighborhood is a neighborhood that is “very large” in size
with respect to the problem input. Typically, these neighborhoods are exponen-
tially large, but this term is often used informally to describe neighborhoods that
are too large to explicitly search in practice. Similarly, a VLSN search algorithm is
a neighborhood search algorithm that iteratively searches a very large-scale neigh-
borhood. The phrase “very large-scale neighborhood search” was coined by Ahuja
et al. (2002).

13.3 Variable-Depth Neighborhood Search Algorithms

A common technique for designing VLSN search algorithms is to create a neigh-
borhood based on simultaneously executing several moves. Neighborhoods based
on executing two or three moves simultaneously can often be explicitly searched in
a reasonable amount of time. A neighborhood where more moves are executed si-
multaneously tends to have better local optimal solutions than neighborhoods based
on executing a single move. However, if an unreasonable number of computations
are required to find an optimal solution to the larger neighborhood then an explicit
search is impractical. This motivates variable-depth neighborhood search, which is
the practice of partially exploring neighborhoods based on simultaneously executing
a variable number of moves.

In this section, we first present definitions for variable-depth neighborhood
search algorithms. We also detail two prominent examples of variable-depth neigh-
borhood search algorithms: Kernighan–Lin search for the maximum cut problem
and Lin–Kernighan search for the TSP.

13.3.1 Definitions

A neighboring solution that can be reached by a minimum of k moves from a starting
solution, s0, is at depth of k in the neighborhood of s0. Ordinary neighborhoods
contain solutions that are all at the same depth from the starting solution. In contrast,
the neighborhoods in this section, which are called variable-depth neighborhoods,
contain solutions of varying depths. For example, a neighborhood of a TSP solution

13 Very Large-Scale Neighborhood Search 343

T0 that contains the set of all tours that can be obtained with up to five insertion
moves on T0 is a variable-depth neighborhood. In contrast, the neighborhood of T0

that only contains tours that can be obtained after exactly two insertions moves is
not a variable-depth neighborhood since this neighborhood is constructed to contain
solutions at exactly a depth of two from T0. A variable-depth neighborhood search
algorithm is an algorithm that heuristically searches a variable-depth neighborhood.

13.3.2 Example: Kernighan–Lin Search for the MAX CUT

We present an example of variable-depth neighborhood search by describing the
well-known Kernighan–Lin search algorithm for the maximum cut problem (MAX
CUT). MAX CUT is defined as follows:

Given an undirected graph G = (V,E) where each edge e ∈ E has weight we, parti-
tion the vertices V into two subsets X and Y to maximize the sum of the weights of
the edges in the cut (X ,Y) = {(i, j) : i ∈ X and j ∈ Y}.

Every variable-depth neighborhood is with respect to a specific move. For our
example, we examine the MAX CUT problem with a flip move. Given a cut (X ,Y),
a flip move is the move that transfers one vertex from the subset X to the subset Y
(or from the subset Y to the subset X).

A variable-depth neighborhood search algorithm for MAX CUT is presented in
Algorithm 2. Algorithm 2 starts with an initial solution C0 and iteratively looks for
an improving solution in the neighborhood of the current solution. The ith iteration
of the algorithm starts with a solution Ci−1 and either moves to a new solution Ci if Ci

has a better objective value than Ci−1 or terminates with the solution Ci−1 otherwise.
Within each iteration of this variable-depth search, there are several rounds. Be-

fore the first round of each iteration, all vertices are unmarked and cut Ci starts out
equal to Ci−1, the best cut from the previous iteration. During the jth round, exactly
one unmarked vertex vπ(j) is flipped and then vπ(j) becomes marked for all subse-
quent rounds of this iteration. In addition, flipping vertex vπ(j) creates a new cut Ci, j.
If Ci, j has weight greater than that of Ci, then Ci is redefined to equal Ci, j.

An iteration continues until all vertices have been flipped except for one. The
last vertex need not be flipped since doing so would invariably result in the solution
used at the beginning of this iteration. In addition, at the end of each iteration, Ci is
the cut created during this iteration that has the greatest weight. If Ci does not equal
Ci−1, then Ci is used as the starting solution for the next iteration. Otherwise, the
algorithm terminates with Ci.

Algorithm 2 is adapted from the variable-depth neighborhood search algorithm
for the graph partitioning problem originally presented by Kernighan and Lin
(1970).

An example of a single iteration of Algorithm 2 is executed on a five-vertex graph
in Fig. 13.1. At the beginning of this iteration, the current solution is the cut (X0,Y0)

344 D.S. Altner et al.

Algorithm 2 Variable-depth search for MAX CUT
Start with initial solution C0.

repeat

All vertices are unmarked.
Ci−1 is the current solution.
Set Ci equal to Ci−1.

repeat

Flip the unmarked vertex vπ(j) that creates the cut with the largest weight. Let Ci, j be this
cut.
Mark vertex vπ(j).
if Ci, j has greater weight than Ci then

Set Ci equal to Ci, j .
end if

until All vertices but one are marked.

until Ci is not of greater weight than Ci−1.
return Ci−1, the best cut seen during this algorithm.

Fig. 13.1 Example of one iteration of Kernighan–Lin search for MAX CUT

where X0 = {A,E} and Y0 = {B,C,D}. The weight of (X0,Y0) is 70. Vertex C is
flipped during the first round, since of the five vertices, flipping C results in the cut
with the most weight. Vertex A is flipped during the second round, since flipping A
of the four unmarked vertices yields the cut with the most weight. Likewise, vertex B
is flipped during the third round and vertex E during the fourth round. Vertex D is
not flipped since this would recreate the starting cut. f (Xi) denotes the weight of the
cut (Xi,Yi).

At the end of this iteration, the cut with the most weight seen is (X2,Y2) where
X2 = {C,E} and Y2 = {A,B,D}. This is the cut that will be used to begin the next
iteration. This cut also happens to be the optimal solution to this instance of MAX
CUT. However, performing one iteration of this variable-depth neighborhood search
algorithm does not guarantee an optimal solution to MAX CUT in general.

13 Very Large-Scale Neighborhood Search 345

Fig. 13.2 Creating a δ-path from a TSP tour

13.3.3 Example: Lin–Kernighan Search for the TSP

A second example of a variable-depth neighborhood search algorithm is the Lin–
Kernighan search heuristic for the TSP. This is a widely used heuristic in both TSP
and vehicle routing solvers. Before we present an overview of this heuristic, we first
introduce a few definitions.

A δ-path is a connected subgraph where one vertex has a degree of three, one
vertex has a degree of one and all other vertices have a degree of two. Figure 13.2
illustrates a δ-path being created from a TSP tour (A,B, . . . ,J) where edge (A,B)
is exchanged for (A,E). In this example, vertices {A,E,F, . . . ,J} form the cycle of
the δ-path and vertices {B,C,D,E} form the stem. The vertex with degree three in
a δ-path is called the center of the δ-path. In Fig. 13.2, E is the center. In addition,
the target edge is the unique edge that is (1) in the cycle, (2) incident to the center
and (3) is not the edge that was just added. In Fig. 13.2, the target edge is (E,F).
This edge is called the target edge since it is invariably the next edge that is removed
from the δ-path to create either a TSP tour or a better δ-path. Lastly, the completion
edge is the unique edge that completes the tour if the target edge is deleted from a
δ-path. In Fig. 13.2, the completion edge is (B,F).

Pseudocode for the Lin–Kernighan search is presented in Algorithm 3. The algo-
rithm has one iteration for each vertex vi in the graph. During the iteration for vi, the
algorithm tries to construct a δ-path from the current TSP tour by deleting an edge
incident to vi and replacing it with a cheaper edge incident to vi. If such a δ-path
can be constructed, then the algorithm iteratively tries to construct a δ-path of even
lower cost by replacing the target edge with another edge that creates a new δ-path.

During each iteration, the algorithm temporarily constructs a TSP tour from the
current δ-path by deleting the target edge and adding the completion edge. If this
tour is better than the best tour seen so far during this algorithm, then it is stored as
the best tour seen during the course of the algorithm. In Algorithm 3, this is stored
as T ∗.

When the cost of the δ-path can no longer be improved in this fashion, the
iteration for vertex vi terminates by converting the δ-path back into a TSP tour.

346 D.S. Altner et al.

This is done by deleting the target edge and replacing it with the completion edge.
After executing an iteration for each vertex, the algorithm returns T ∗.

Algorithm 3 Lin–Kernighan search for TSP
Start with initial TSP tour T0.
Let T ∗ equal T0.
for each vertex vi do

Let Ti = {v1,v2, . . .,vn} equal T ∗.

if there is a δ-path Pi that is cheaper than Ti and can be constructed from Ti by replacing
(vi,vi+1) with some edge (vi,v j) then

Construct Pi.
Let (vk,vk+1) be the target edge and let vertex vk = v j be the center of Pi.

while A cheaper δ-path can be constructed by exchanging (vk,vk+1) for another edge
(vk+1,vℓ) do

Update Pi by swapping (vk,vk+1) for (vk+1,vℓ).
Let vℓ be the center of the updated Pi and let (vk+1,vℓ) be the new target edge.
Let T (Pi) be the tour created by deleting the target edge and adding the completion
edge.

if T (Pi) costs less than T ∗ then

Set T ∗ equal to T (Pi).
end if

end while

end if

end for

return T ∗, the best tour constructed during this algorithm.

Figures 13.3 and 13.4 illustrate a δ-path being created from another δ-path. In
Fig. 13.3, the newly added edge was incident to two vertices in the cycle of the
previous δ-path. In Fig. 13.4, the newly added edge was incident to one vertex in
the cycle and one vertex in the stem. If this δ-path can no longer be improved by
swapping out the target edge, the δ-path in the “After” image of Fig. 13.4 can be
converted into a TSP tour by swapping the target edge (D,E) with edge (B,E).

The Lin–Kernighan search for the TSP was introduced by Lin and Kernighan
(1973). Helsgaun’s (2000) implementation of the Lin–Kernighan search is consid-
ered the most effective implementation of a neighborhood search algorithm for
the TSP and has successfully obtained optimal solutions for all of the instances
in TSPLIB (2012) where provably optimal solutions have been obtained. TSPLIB
is a widely referenced library of benchmark instances for the TSP and related
problems.

13 Very Large-Scale Neighborhood Search 347

Fig. 13.3 Creating a δ-path from another δ-path

Fig. 13.4 Another example of creating a δ-path from another δ-path

13.3.4 Final Remarks on Variable-Depth Neighborhood

Search Algorithms

There are many other classes of problems being solved with variable-depth neigh-
borhood search algorithms, including vehicle routing problems (Rego and Roucairol
1996; Xu and Kelly 1996), generalized assignment problems (Yagiura et al. 2004a,
1999) and clustering problems (Dorndorf and Pesch 1994). Altner et al. (2010)
contains an extensive survey of applications of variable-depth neighborhood search
algorithms.

13.4 Cyclic Exchange Neighborhood Search Algorithms

A common tactic for designing VLSN search algorithms is to try to model the prob-
lem of finding an improving set of simultaneously executed moves as a network flow
problem. Cycle exchange neighborhood search algorithms are a prominent class of
VLSN search algorithms that are based on finding an improving set of moves by

348 D.S. Altner et al.

Fig. 13.5 Illustrating a generic cyclic exchange

computing a minimum cost subset-disjoint cycle in an auxiliary network. In this
section, we discuss cyclic exchange neighborhoods and present an overview of their
applicability to a wide range of settings. Section 13.4.1 describes many of the ba-
sic concepts involved in designing a cyclic exchange neighborhood. Section 13.4.2
discusses searching the cyclic exchange neighborhood. Sections 13.4.3 and 13.4.4
present applications of cyclic exchange neighborhood search algorithms to the
Vehicle Routing Problem and the Capacitated Minimum Spanning Tree Problem re-
spectively. Section 13.4.5 contains final remarks on cyclic exchange neighborhood
search algorithms.

13.4.1 Basic Concepts

The cyclic exchange neighborhood was developed for rapidly obtaining good-
quality solutions to computationally difficult minimum cost partitioning problems.
Let S = {S1,S2, . . . ,SK} be a partition of a set of elements E . Roughly speaking, a
move in a cyclic exchange neighborhood, which is called a cyclic exchange, trans-
fers one element from a subset Si into a different subset S j while another element
is transferred from S j into yet another subset Sk. This chain of transfers continues
until an element is transferred into Si, which completes a cycle.

Figure 13.5 illustrates a generic cyclic exchange. Here, element e1 will be trans-
ferred from subset T1 to subset T2. Element e4 will be transferred from subset T2 to
subset T4. Element e10 will be transferred from subset T4 to T5. Finally, the cyclic
exchange will be completed by transferring element e13 from subset T5 to subset T1.

A k-partition of a set of elements E is a collection of subsets {S1,S2, . . . ,Sk} such
that no subset is empty, the sets are pairwise disjoint and the union of the sets is E .
A partitioning problem is a combinatorial optimization problem (COP) where the
objective is to find a minimum cost partition of a set of elements.

There are many well-known examples of partitioning COPs. As previously men-
tioned, the MMCP is one example of a partitioning problem. The vehicle routing
problem (VRP) also involves a partitioning COP. The VRP is a generalization of the
TSP to k salesmen (i.e. vehicles) where the objective is to visit each of n customers
using at most k vehicle tours while minimizing the sum of the distances of each tour.

13 Very Large-Scale Neighborhood Search 349

Fig. 13.6 Illustrating a partition transfer

The VRP is a partitioning problem since n customers are partitioned into k disjoint
vehicle routes where the cost of each route is the minimum distance required to visit
each of the customers covered by the route. Other examples of partitioning problems
are provided later in this section.

A partition transfer is a way of shifting around the elements within a k-partition.
Any cyclic exchange is also a partition transfer so Fig. 13.5 illustrates an example
of a partition transfer. However, a partition transfer is a more general concept than a
cyclic exchange. Figure 13.6 contains an example of a partition transfer that is not a
cyclic exchange. This is because the fifth partition lost an element without receiving
another element in return and because the third partition received three elements but
only lost one.

A useful way to study partition transfers is to represent them with a graph. To-
wards this end, the (S,T)-transfer graph between two k-partitions S and T (of the
same element set E) is defined as follows: for each element being partitioned there
is a vertex in the transfer graph. Similarly, if element vi is transferred to a subset and
v j is removed from the subset that vi is transferred into, then there is a directed edge
from the vertex corresponding to vi to the vertex corresponding to v j. Moreover, for
each subset in T there is a vertex in the transfer graph. For each element vi that is
removed from subset Si and transferred into subset Tj without replacing an element
in Tj, there is a directed edge from the vertex corresponding to vi to the vertex cor-
responding to Tj. Note that the (S,T)-transfer graph is a disjoint union of cycles and
paths because each vertex of the graph has at most one incoming edge and at most
one outgoing edge. Figure 13.7 illustrates the (S,T)-transfer graph of the partition
transfer illustrated in Fig. 13.6.

If a (S,T)-transfer graph of a partition transfer is a single cycle then that partition
transfer is a cyclic exchange. Likewise, if a (S,T)-transfer graph consists of a single
path then T can be obtained from S via a path exchange. Figure 13.5 would illustrate
a path exchange if the arc from e13 to e1 were deleted.

The cyclic exchange neighborhood of a given solution S is the set of all solutions
that can be obtained by applying one cyclic exchange to S. Likewise, the path ex-
change neighborhood of S is the set of all solutions that can be obtained by applying
a single path exchange to S.

350 D.S. Altner et al.

Fig. 13.7 Illustrating a (S,T)-transfer graph

Fig. 13.8 A feasible solution to an instance of the minimum multiway cut problem

Cyclic exchange neighborhoods are rightfully classified as very large neigh-
borhoods because the size of the cyclic exchange neighborhood is a function of
the number of partitions and the number of elements partitioned. For example, a
k-partition of n elements has a cyclic exchange neighborhood of size O(nk). When
k is permitted to grow with n, the size of the neighborhood is typically exponential.

13.4.2 Finding Improving Cyclic Exchanges

Now that we have discussed what cyclic exchanges are, we focus on finding improv-
ing exchanges. Improving cyclic exchanges can be obtained by solving a network
flow problem on an auxiliary graph called the improvement graph. Let E be the set
of elements that are being partitioned. Given a k-partition S = {S1,S2, . . . ,Sk}, the
improvement graph is constructed as follows: for each element in E , add a corre-
sponding vertex to the improvement graph. In addition, an edge (i, j) is created for
each pair i, j of elements of E that are in different subsets of S.

Each edge in the improvement graph corresponds to replacing one element in
a subset with another. For example, suppose S j is the subset of S that contains

13 Very Large-Scale Neighborhood Search 351

element j. Then the edge (i, j) represents transferring element i into S j and remov-
ing element j from S j. Given a particular cyclic exchange neighborhood, each fea-
sible solution to a partitioning COP has a corresponding improvement graph.

For illustrative purposes, we describe the improvement graph for the feasible so-
lution of the MMCP depicted in Fig. 13.8. Vertices s1,s2,s3 and s4 are the terminals
that must be separated by the multicut. The feasible solution shown in Fig. 13.8 is a
partition of the non-terminal vertices {v1,v2, . . . ,v9} into four subsets:

{s1,v1,v2,v3},{s2,v4,v5},{s3,v6,v7} and {s4,v8,v9}.

Note that each subset uniquely corresponds to one of the terminals.
The corresponding improvement graph has one vertex for each non-terminal ver-

tex. The improvement graph also has a directed edges (vi,v j) and (v j,vi) for each
pair of non-terminal vertices vi and v j that are in different subsets in the feasible
solution. Thus, for example, the improvement graph has directed edges such as
(v1,v4), (v1,v5), (v1,v6), (v4,v1) and (v4,v8) but it does not contain directed edges
such as (v1,v2), (v6,v7) or (v8,v9).

To allow for path exchanges, four additional vertices {s1,s2,s3,s4} are added to
the improvement graph, one for each subset. In addition, there is a directed edge
(vi,s j) for each vertex vi and each subset corresponding to s j such that vertex vi is
currently not in the subset corresponding to s j. There are no directed edges originat-
ing from any of the vertices in {s1,s2,s3,s4}. Thus, for example, the improvement
graph has directed edges such as (v3,s2),(v8,s1) and (v9,s2).

We now discuss computing the cost of a cyclic exchange. Let c(vi,v j) be the cost
on edge (vi,v j) in the improvement graph. Specifically, this is the change in the
objective value of the current k-partition if element vi is moved from its current
subset and replaces element v j in v j’s current subset S j. Note that although the
objective value is also impacted since v j must be moved to a new subset, this cost
is not included in c(vi,v j) because it is incorporated in the cost on the directed edges
leaving v j.

For example, the “Before” image in Fig. 13.9 depicts a cyclic exchange for the
MMCP feasible solution shown in Fig. 13.8. In this cyclic exchange, c(v3,v4) = 3−
4 = −1 because the s2-subset loses four edges: (v4,v1),(v4,v3),(v4,s1) and (v4,s3)
and it only gains three edges: (v3,s4),(v3,v4) and (v3,v6). Similarly, c(v4,v6) = 4−
3 = 1 because the s3-subset gains four edges: (v4,v1),(v4,v3),(v4,s1) and (v4,s2)
and only loses three edges: (v6,v9),(v6,v2) and (v6,v3). Likewise, c(v6,v3) = 4−3=
1 since the s1-subset gains four edges: (v6,s3),(v6,v7),(v6,v3) and (v6,v9) and loses
three edges: (v3,s4),(v3,v6) and (v3,v4). Thus, the total cost of this cyclic exchange
is−1+1+1= 1, which means the objective value increases by one unit if the cyclic
exchange that corresponds to this cycle is executed.

An edge is between two disjoint subsets Si and S j if the edge has one vertex in
Si and the other vertex in S j. Note that some edges are now between two subsets
when they were within one subset before the exchange. Specifically, these edges
are (v4,s2),(v6,s3) and (v6,v7). Similarly, some edges remain within the same sub-
set, such as (v3,v4),(v3,s4) and (v1,v4). Likewise, some edges were between two

352 D.S. Altner et al.

Fig. 13.9 A non-improving cyclic exchange for the MMCP

subsets before the exchange but are within the same subset after the exchange.
Specifically, these edges are (v2,v6) and (v4,s3). Lastly, the cost of the cyclic ex-
change equals the total number of edges that are now between two subsets minus
the total number of edges that are no longer between two subsets. In this case, this
is 3− 2 = 1 additional edge that is now between two subsets.

More generally, suppose elements vi,v j,vk and vℓ are all currently in distinct sub-
sets Si,S j,Sk and Sℓ respectively. The cost of simultaneously executing the transfers
corresponding to edges (vi,v j) and (vk,vℓ) equals c(vi,v j)+ c(vk,vℓ) because each of
these elements is in its own distinct subset. For example, consider simultaneously
swapping vertices v2 and v8 as well as swapping vertices v5 and v6 in Fig. 13.8.
In this example, c(v2,v8) = 2 and c(v5,v6) = 2 and the cost of executing both of these
moves simultaneously is equal to c(v2,v8)+ c(v5,v6) = 4.

Conversely, if v j and vℓ are currently in the same subset S j,ℓ then the cost of
executing the transfers corresponding to edges (vi,v j) and (vk,vℓ) is not necessarily
equal to c(vi,v j)+ c(vk,vℓ). This is because c(vi,v j) is the cost of replacing element v j

in subset S j,ℓ with vi assuming all of the other elements in S j,ℓ (including vℓ) remain
unmoved. (c(vk,vℓ) is defined similarly.) Sticking with Fig. 13.8, suppose swapping
v2 with v8 is performed simultaneously with swapping v6 with v9. Here, c(v2,v8) =
2 and c(v6,v9) = 3 so c(v2,v8) + c(v6,v9) = 5. However, executing these two moves
simultaneously only costs four edges since five new edges are now between subsets
but the edge (v2,v6) is no longer between two subsets.

There are sufficient conditions for when the cost of an entire cyclic exchange
(v1,v2),(v2,v3), . . . ,(vk,v1) equals the sum of the costs on the corresponding edges:
c(v1,v2) + c(v2,v3) + · · ·+ c(vk,v1). Thompson and Orlin (1989) show there is such a
cyclic exchange with cost c∗ in the original partitioning problem if there is a cor-
responding subset-disjoint cycle in the improvement graph with cost c∗. A cycle
(v1,v2),(v2,v3), . . . ,(vk,v1) is subset-disjoint if and only if each of the vertices
v1,v2, . . . ,vk are in distinct subsets. The left image in Fig. 13.9 illustrates a subset-
disjoint cycle since v3,v4 and v6 are all in separate subsets. However, the cycle
(v4,v3),(v3,v6),(v6,v2),(v2,v4) (in the same partition) is not subset-disjoint since
vertices v2 and v3 are currently in the same subset.

13 Very Large-Scale Neighborhood Search 353

Fig. 13.10 A cyclic exchange in the VRP

A feasible solution to a minimum cost partitioning COP can be improved by
executing a cyclic exchange that corresponds to a negative-cost subset-disjoint cycle
in the improvement graph. Finding a minimum cost subset-disjoint cycle is NP-
hard (Thompson and Orlin 1989) but it is an NP-hard problem that is relatively
easy to solve in practice. A good heuristic for constructing negative-cost subset-
disjoint cycles is described in Sect. 13.6. This heuristic works very well in practice
even though it is not guaranteed to find a negative cost subset-disjoint cycle, even if
several exist.

13.4.3 Example: Cyclic Exchange Neighborhood Search

for the VRP

This section presents a cyclic exchange neighborhood search algorithm for the VRP.
VRP involves a partitioning COP since the customers must be partitioned into sub-
sets that will be serviced by a single vehicle. Thus, each subset of the partition
corresponds to a unique vehicle.

Unlike a typical partitioning COP, the VRP requires ordering the elements in
each subset of the partition. This is because the cost of a vehicle tour is a function of
the order in which the vehicle visits the customers in its route. That being said, an
edge (i, j) in the improvement graph of a VRP corresponds to removing customer i
from its current vehicle tour Ti, removing customer j from its current vehicle tour Tj

and inserting customer i into customer j’s former position in Tj. The improvement
graph also contains one vertex that corresponds to each tour itself to allow for path
exchanges.

Figure 13.10 illustrates a cyclic exchange for a VRP. The “Before” image
illustrates a current solution to a VRP. Tour T1 indicates the first vehicle visits the
following customers in the following order: c1, c2, c3. Tour T2 indicates that the sec-
ond vehicle visits customers c4,c5,c6,c7 and c8 in that order. Tour T3 indicates that
the third vehicle visits customers c9,c10,c11 and c12 in that order. Lastly, Tour T4

indicates that the fourth vehicle visits c13,c14 and c15 in that order. The vertex d

354 D.S. Altner et al.

represents the depot where the vehicles begin and end their tours. The cyclic
exchange on this solution replaces c2 in T1 with c14, replaces c5 in T2 with c2, re-
places c10 in T3 with c5 and replaces c14 in T4 with c10. The VRP solution that results
from this cyclic exchange is depicted in the “After” image depicted in Fig. 13.10.

Cyclic exchange neighborhood search algorithms for variants of the VRP are det-
ailed in Thompson and Orlin (1989), Thompson and Psaraftis (1993) and Agarwal
et al. (2003).

13.4.4 Example: Cyclic Exchange Neighborhood Search

for the Capacitated Minimum Spanning Tree Problem

This section presents a cyclic exchange neighborhood search algorithm for the
capacitated minimum spanning tree problem (CMST). CMST is an NP-hard op-
timization problem where the objective is to find a minimum cost spanning tree
subject to an additional constraint on the maximum number of vertices that can be
in each subtree incident to the root vertex. This is a partitioning COP since the ver-
tices of the spanning tree (except for the root, which is common to all subtrees) are
the elements that must be partitioned and the subsets of the partition correspond
to the vertices in each subtree. In CMST, an edge (i, j) in the improvement graph
corresponds to the transfer where vertex i is removed from subtree Ti, vertex j is
removed from subtree Tj and vertex i is inserted in subtree Tj. To ensure that the
new spanning subtree is of minimum weight, the vertices in V (Tj)∪{i}\{ j} must
be connected via a minimum spanning tree since merely making vertex i adjacent
to all of the vertices in Tj that j was adjacent to may result in a suboptimal tree. In
this context, V (Tj) is the set of vertices in subtree Tj. It is typically faster to com-
pute the minimum spanning tree on the vertices in V (Tj)∪{i}\{ j} by modifying
the spanning subtree Tj rather than computing it from scratch.

The improvement graph also contains a vertex corresponding to each subtree
to allow for path exchanges. Furthermore, the improvement graph contains an ad-
ditional vertex to allow for the possibility of creating a new subtree with a path
exchange. For example, the edge (i,r) in the improvement graph signifies removing
vertex i from subtree Ti and creating a new subtree that only contains vertex i.

Figure 13.11 illustrates a cyclic exchange for CMST. In this example, r is the
root vertex and the four subtrees T1,T2,T3,T4 before the cyclic exchange takes place
are on the following respective vertex sets:

{v6,v7,v8,v9},{v1,v2,v3,v4,v5},{v13,v14,v15,v16,v17} and {v10,v11,v12}.

The cyclic exchange being illustrated replaces vertex v9 in subtree T1 with vertex v3,
replaces vertex v3 in subtree T2 with vertex v17, replaces vertex v17 in subtree T3 with
vertex v12 and replaces vertex v12 in subtree T4 with vertex v9. The spanning tree that
results from this cyclic exchange is depicted in the “After” image of Fig. 13.11.

A cyclic exchange neighborhood search algorithm for CMST is discussed by
Ahuja et al. (2001).

13 Very Large-Scale Neighborhood Search 355

Fig. 13.11 A cyclic exchange in the capacitated minimum spanning tree problem

13.4.5 Final Remarks on Cyclic Exchange Neighborhood

Search Algorithms

There are numerous other examples of cyclic exchange neighborhood search algo-
rithms being used to rapidly compute good quality solutions to difficult problems of
practical interest. These include problems in airline fleet assignment (Ahuja et al.
2007a, 2004a), exam timetabling (Abdullah et al. 2007), facility location (Ahuja
et al. 2004b; Scaparra et al. 2004) inventory routing (Sindhuchao et al. 2005),
machine scheduling (Frangioni et al. 2004), multi-period production planning (Ahuja
et al. 2007d), trucking fleet assignment (Ambrosino et al. 2009) and weapon-target
assignment (Ahuja et al. 2008). Cyclic exchange neighborhood search algorithms
have also been used to obtain successful results on several classic problems in
combinatorial optimization including the Quadratic Assignment Problem
(Ahuja et al. 2007c) and a multiple-choice, multi-dimensional knapsack problem
(Cunha and Ahuja 2005).

For an extensive survey of applications of cyclic exchange neighborhood search
algorithms, see Altner et al. (2010).

13.5 Other Very Large-Scale Neighborhood Search Algorithms

In designing VLSN search algorithms, researchers have drawn inspiration from
more than 50 years of algorithmic development in mathematical programming
and computer science. Here, we describe a diverse collection of approaches for
developing VLSN search algorithms that do not fall under variable-depth neigh-
borhood search algorithms or cyclic exchange neighborhood search algorithms.
Section 13.5.1 presents VLSNs based on compounding independent moves,

356 D.S. Altner et al.

Fig. 13.12 Illustrating two compounded independent insertion moves

Sect. 13.5.2 describes VLSNs that are implicitly searched by solving a mathematical
program and Sect. 13.5.3 discusses additional VLSNs that do not fit into any afore-
mentioned category.

13.5.1 Neighborhoods Based on Compounding

Independent Moves

To explain the concept of compounding independent moves, we first need a few
definitions. An ordering COP is a combinatorial optimization problem that requires
arranging a set of elements in an order of minimum cost. The TSP is a classic ex-
ample of an ordering COP as the problem requires determining the order to visit a
set of cities to minimize the total travel distance required for visiting all cities in
a single trip. A solution to the TSP is an ordering of the cities. For example, the
ordering c1,c2,c4,c5,c6,c3,c7,c8,c9,c10 corresponds to the TSP tour where city c1

is visited first, city c2 is visited second, . . . , city c9 is visited ninth and city c10 is
visited last before returning to c1. This solution can be represented as a Hamil-
tonian cycle on a graph where each vertex uniquely corresponds to a city and
(c1,c2),(c2,c3), . . . ,(c9,c10),(c10,c1) are the corresponding edges in the cycle.

There are several classes of moves that can be considered for an ordering COP.
One such example is an insertion move. Recall that an insertion move takes one
element out of its current position in a solution to an ordering COP and inserts it
before another element. For example, if the solution to a TSP is to visit ten cities in
the following order:

c1,c2,c3,c4,c5,c6,c7,c8,c9,c10

then an insertion move of inserting city c3 before city c7 results in the following new
solution:

c1,c2,c4,c5,c6,c3,c7,c8,c9,c10.

Two insertion moves, inserting ci before c j and inserting ck before cℓ, are over-
lapping if either ci ≤ ck ≤ c j or ci ≤ cℓ ≤ c j. Two insertion moves are independent
if they are non-overlapping. To continue our example, inserting c2 before c5 and
inserting c7 before c10 are two independent insertion moves while inserting c2 be-
fore c8 and inserting c7 before c10 are not independent. Two independent insertion
moves are compounded if they are executed simultaneously. Figure 13.12 illustrates

13 Very Large-Scale Neighborhood Search 357

compounding the insertion moves of inserting c2 before c5 and inserting c7 before
c10 in the example we have been discussing.

Given a solution to an ordering COP, the set of all solutions that can be reached
by either a single move or a single set of compounded independent moves is called
the compounded independent move (CIM) neighborhood. Like the cyclic exchange
neighborhood in the previous section, the CIM neighborhood can be searched by
solving a network flow problem on an auxiliary graph called the improvement graph.
In the context of CIM neighborhoods for ordering COPs, an improvement graph is
a graph where each vertex corresponds to an element that must be ordered and each
edge corresponds to either a move or the decision not to move either of the two
elements corresponding to the vertices in the edge. Note that CIM neighborhood
search algorithms are a special case of variable-depth neighborhood search algo-
rithms and that cyclic exchange neighborhood search algorithms are a special case
of CIM neighborhood search algorithms.

In the particular case of the CIM neighborhood based on compounding insertion
moves for the TSP, each vertex in the improvement graph corresponds to a city.
In addition, if c1,c2, . . . ,cn is the current solution then the edge (ci,c j) corresponds
to inserting city ci+1 before city c j. We call these edges insertion edges and there
is one such edge for each i in {1,2, . . . ,n− 3} and for each j in {i+ 3, i+ 4, . . . ,n}.
In addition, the edge (ci,ci+1) corresponds to the decision to keep city ci+1 immedi-
ately after ci in the solution. We call these default edges and there is one such edge
for each i such that 1≤ i < n. There are no other edges in the improvement graph.

The weight on each insertion edge equals the change in objective value if the
corresponding insertion move is executed. For example, the weight on the insertion
edge (c1,c5) equals d(c1,c3) + d(c4,c2) + d(c2,c5) − d(c1,c2) − d(c2,c3) − d(c4,c5) where
d(ci,c j) is the distance from city ci to city c j. Each default edge has a weight of 0.
Given this improvement graph, the problem of finding the best set of compounded
independent insertion moves reduces to finding a least-weight path in the improve-
ment graph. This can be done using any algorithm for finding a shortest path in an
acyclic directed graph.

Finding cost-improving compounded independent insertion moves for the TSP
by solving a shortest path problem on an improvement graph is just one example of
a CIM neighborhood search algorithm. Other CIM neighborhood search algorithms
can be designed by studying different ordering COPs, compounding different moves
or modeling searching the improvement graph as a different problem in combina-
torial optimization. The specific example of the CIM neighborhood for insertion
moves for the TSP was originally discussed in Ergun et al. (2006). Ergun et al.
also discuss compounding swap moves and 2-opt moves for the TSP as well as
compounding these moves for the VRP. Congram et al. (2002) compound inde-
pendent swap moves for a machine scheduling problem. CIM neighborhoods can
also be searched by solving a matching problem. Ahuja et al. (2002) discuss how
to compound moves by solving a matching problem in general and Dror and Levy
(1986) use a matching neighborhood for improving solutions to an inventory routing
problem.

358 D.S. Altner et al.

Fig. 13.13 Providing an example of RINS

13.5.2 Neighborhoods Based on Variable Fixing

Some VLSNs can also be searched by solving a mathematical programming
subproblem created by fixing a subset of decision variables. Suppose x is a solution
to a mathematical program. For a given subset I of indices, we say another feasible
solution y is I-adjacent to x if yi = xi for i ∈ I, and we say y is in the I-neighborhood
of x. The problem of finding the best solution in the I-neighborhood of a solution x
to a mathematical program can be formulated by adding |I| constraints to the orig-
inal mathematical program that fix the variables with indices in I to their current
values in x.

These definitions lay the groundwork for VLSN search algorithms that search
neighborhoods by solving mathematical programming subproblems. A prominent
example is the relaxation-induced neighborhood search (RINS) algorithm for mixed
integer programming (MIP). RINS is a local improvement heuristic used during
the course of a branch-and-bound algorithm to quickly find better quality integer
feasible solutions than the current best known integer feasible solution. The best
known integer feasible solution at any stage during a branch-and-bound algorithm
is called the incumbent solution.

RINS is based on the intuition that decision variables that assume the same value
in the current incumbent solution and in an optimal solution to a linear programm-
ing subproblem are likely to assume these same values in the best integer feasible
solution that can be found in the subtree rooted at this linear programming subprob-
lem. We call these decision variables the common-value variables. The basic idea
of RINS is that at some nodes of the branch-and-bound tree, a sub-MIP is solved to
try to find an integer feasible solution rather than continuing to branch as normal.
Specifically, the sub-MIP contains all of the constraints from the original MIP, all
of the additional branching constraints from the linear programming subproblem
and constraints that fix the common-value variables to the values they take in the
incumbent solution. Finding the optimal solution to this sub-MIP is tantamount to
implicitly searching the relaxation-induced neighborhood of the incumbent solution.

Figure 13.13 illustrates an example of how RINS constructs an integer program
for searching its neighborhood. This example is on a binary integer program (BIP)
with a single set of constraints Ax≤ b in addition to the requirement that all variables

13 Very Large-Scale Neighborhood Search 359

are binary. Suppose the incumbent solution is x1 = x3 = x5 = x6 = 1, x2 = x4 = x7 =
x8 = x9 = x10 = 0 and the branch-and-bound algorithm is currently focusing on the
LP subproblem created by adding the two branching constraints: x1 = 0 and x4 = 1
to the original BIP. In addition, suppose the optimal solution to the LP subprob-
lem under consideration is x3 = x4 = 1,x1 = x5 = x7 = x8 = 0,x2 =

1
3 ,x6 = 2

3 and
x9 = x10 = 3

4 . In this case, the relaxation-induced neighborhood can be implicitly
searched by solving the BIP with the original objective function, the original set of
constraints, the two branching constraints x1 = 0 and x4 = 1, and the common-value
variable constraints x7 = x8 = 0 and x3 = 1. The three mathematical programs and
the two solutions described in this paragraph are listed in Fig. 13.13.

RINS was originally proposed in Danna et al. (2005) and has been included in the
CPLEX MIP solver starting with version 9.0. Large neighborhoods that are searched
by solving a constraint programming subproblem have also been used with success.
Two such examples are given by Davenport et al. (2007) and Pesant and Gendreau
(1999).

13.5.3 Other VLSN Search Algorithms

There are other novel ways to design VLSN search algorithms. Ahuja et al. (2007b)
designed a VLSN search algorithm for consolidating shipments into blocks to min-
imize the cost of transporting these shipments through a complex railroad network.
Ahuja et al.’s VLSN search algorithm is unique because their neighborhood is based
on the physical structure of the underlying real-world problem. Specifically, for a
given set of routing and blocking decisions, a neighborhood is created and searched
by temporarily dismantling all shipment blocks at a specific railroad yard, temporar-
ily re-routing the shipments on the dismantled blocks and then incrementally intro-
ducing new blocks at this yard until no more blocks can (or need to) be added.

Another possibility for developing VLSN search algorithms is by exploiting
polynomially solvable subcases of NP-hard COPs. For example, Ahuja et al. (2002)
discuss how several different polynomially solvable special cases of the TSP can be
converted into VLSN search algorithms.

13.6 Tricks of the Trade

In this section, we discuss a few implementation details that enhance the practical
performance of the various VLSN search algorithms discussed in this chapter.

1. Constructing negative-cost subset-disjoint cycles. For the construction of
negative-cost subset-disjoint cycles, researchers use a modified version of the
label-correcting algorithm for the shortest path problem. In particular, Ahuja et
al. (2001) strongly recommend modifying the dequeue implementation of the
label-correcting algorithm. A brief overview of this algorithm is presented here.

360 D.S. Altner et al.

For each vertex vi, a label-correcting algorithm maintains a distance label and
a predecessor label. Collectively, these labels define a directed tree rooted at s,
where s is the starting vertex in the shortest path problem. A vertex vi’s distance
label is an upper bound on the length of the shortest vi–t path in the directed
graph, where t is the termination vertex in the shortest path problem. A vertex
vi’s predecessor label indicates the vertex that immediately precedes vi in the
unique s–vi path defined by the distance and predecessor labels.

Broadly speaking, a label-correcting algorithm iteratively updates the distance
labels until a stopping criterion is met. The algorithm terminates with a tree
rooted at s and every s–u path in the tree is a shortest s–u path in the graph.
To detect subset-disjoint cycles, this algorithm is modified to only update a ver-
tex’s distance and predecessor labels if it preserves the condition that all paths
in the tree are subset-disjoint. In addition, all negative-cost subset-disjoint cycles
encountered during the execution of the algorithm are stored in a list. The cy-
cle with the negative cost of the greatest magnitude is output as the solution to
the minimum cost subset-disjoint cycle problem. Ahuja et al. (2001) present this
algorithm in great detail.

The algorithm can discover several cost-improving cyclic exchanges but it
has no guarantee of discovering any even if multiple such cycles exist. Never-
theless, Ahuja et al. (2001) report that this algorithm works well in practice if it
is run several times using different vertices for the starting vertex s. This algo-
rithm can also be modified to allow for detecting both path exchanges and cyclic
exchanges.

2. Updating objective values. After a local improvement, it is sometimes signif-
icantly faster to compute the objective value of the improved solution starting
from that of the previous solution rather than computing the objective value of
the improved solution from scratch. For example, consider updating the objective
value of the TSP after performing an insertion move. Specifically, consider a TSP
solution T0 that visits the ten cities in the order c1,c2,c3,c4,c5,c6,c7,c8,c9,c10

and consider an insertion move of city c3 before city c7, which results in the
solution: c1,c2,c4,c5,c6,c3,c7,c8,c9,c10. The cost of this new solution can be
computed by starting with the objective value of T0, subtracting the cost of trav-
eling between the following three pairs of cities: (c2,c3),(c3,c4) and (c6,c7)
and adding the cost of traveling between the following three pairs of cities:
(c2,c4),(c6,c3) and (c3,c7). For TSPs with a large number of cities, updating
the cost of the newly obtained solution is much faster than computing the cost of
the new solution from scratch. Such update heuristics can be applied to a large
number of complex COPs.

3. Updating improvement graphs. Repeatedly building improvement graphs from
scratch can be computationally expensive. It can also be unnecessarily expensive
when the improvement graphs are very similar to those from the previous iter-
ation. In practice, it is often much faster to update an improvement graph using
the improvement graph from the previous iteration rather than constructing a new
improvement graph from scratch.

13 Very Large-Scale Neighborhood Search 361

For example, after executing a cyclic exchange that transfers four vertices in a
MMCP with ten terminals, the only the edges in the improvement graph that need
to be updated are those that are incident to a vertex in one of the four affected
subsets. The edges in the improvement graph that are between vertices in the six
other subsets do not need to be updated. In fact, it is both costly and unnecessary
to re-generate them from scratch.

4. Approximating edge weights in the improvement graph. Recall that for cyclic
exchange neighborhoods the weight of an edge in an improvement graph is the
corresponding transfer’s contribution to the change of the objective value if a
cyclic or path exchange involving this transfer is executed. It can sometimes be
computationally intensive to exactly compute these edge weights, especially for
the entire improvement graph during each iteration. As a remedy, sometimes
approximating the edge weights of the improvement graph significantly reduces
the algorithm’s running time without compromising the quality of the solutions
constructed. Thompson and Psaraftis (1993) discuss using such an approximation
for VRPs.

5. Incorporating tabu lists. As several other metaheuristic search algorithms, VLSN
search algorithms can sometimes find better-quality solutions if moves that do
not immediately improve the objective value are allowed. Tabu lists reduce the
likelihood that such algorithms cycle and increase the likelihood that such al-
gorithms explore a greater portion of the solution space. Abdullah et al. (2007)
incorporate tabu lists with a cyclic exchange neighborhood search algorithm for
an exam timetabling problem. Similarly, Ergun et al. (2006) use tabu lists with
various CIM neighborhoods for different VRPs.

6. Incorporating composite cyclic exchanges. Composite cyclic exchanges are cyclic
exchanges where a set (or a sequence) of elements is moved from one subset to
another as part of a single subset-disjoint cycle. As with any other neighborhood,
the advantage of including composite cyclic exchanges is highly dependent on
how efficiently the composite cyclic exchange neighborhood can be searched.
Composite cyclic exchanges can be included in a cyclic exchange neighborhood
by creating vertices in the improvement graph that correspond to an entire set (or
sequence) of elements. For example, Agarwal et al. (2003) use a composite cyclic
exchange neighborhood for the VRP that allows a sequence of customers to be
transferred from one vehicle tour to another. Similarly, Ahuja et al. (2003) use a
composite cyclic exchange neighborhood for the CMST problem that allows an
entire sub-subtree to be transferred from one subtree to another.

Figure 13.14 illustrates a composite cyclic exchange for a VRP. The “Be-
fore” image illustrates a current solution to a VRP. Tour T1 indicates that the
first vehicle visits customers in the following order: c1, c2, c3. Tour T2 indicates
that the second vehicle visits customers c4,c5,c6,c7 and c8 in that order. T3 in-
dicates that the third vehicle visits customers c9,c10,c11 and c12 in that order.
Lastly, T4 indicates that the fourth vehicle visits c13,c14 and c15 in that order. The
vertex d represents the depot where the vehicles start and end their tours. The
cyclic exchange on this solution replaces c2 in T1 with c14, replaces the customer

362 D.S. Altner et al.

Fig. 13.14 Illustrating a composite cyclic exchange for the VRP

sequence c5,c6,c7 in T2 with c2, replaces the customer sequence c10,c11 in T3

with the sequence c5,c6,c7 and replaces c14 in T4 with the sequence c10,c11. The
VRP solution that results from this cyclic exchange is the “After” image depicted
in Fig. 13.14.

7. Using VLSN search selectively. Sometimes when a VLSN search algorithm is
used as a subroutine as part of a broader algorithm it is not practical to employ
it during every possible opportunity because this may substantially increase the
overall running time of the broader algorithm without offering a worthwhile in-
crease in the quality of the solution. For example, consider the RINS heuristic
used during a branch-and-bound algorithm for integer programming. RINS can
be used during each subproblem encountered during branch-and-bound. How-
ever, to avoid having the RINS heuristic slow down the MIP solver, the heuristic
is typically used with an upper bound on the amount of time it is allowed to run.
In addition, the heuristic is not always used during every subproblem. For exam-
ple, the heuristic might not be effective for subproblems whose optimal solution
has relatively very few common-value variables with the incumbent solution.

8. Relaxing the subset-disjoint condition. Many cyclic exchange neighborhood
search algorithms only consider cyclic exchanges that correspond to subset-
disjoint cycles in the improvement graph because the costs of the non-subset-
disjoint cycles do not necessarily correspond to the change in the objective value
that would transpire if the corresponding cyclic exchange is executed. However,
there are some instances where the cost of any cycle in the improvement graph
is still a reasonably good approximation of the change in the objective value
even if the cycle is not subset-disjoint. In particular, Yagiura et al. (2004b) re-
port advantageously relaxing the subset-disjoint condition during their cyclic ex-
change neighborhood search algorithm for a multi-resource generalized assign-
ment problem.

13 Very Large-Scale Neighborhood Search 363

13.7 Promising Areas for Future Research

There are a few promising directions for future research in VLSN search algorithms:

1. Grammar-based VLSN search. Bompadre and Orlin (2005) use context-free
grammars to generate neighborhoods for ordering COPs. Specifically, the authors
show how a polynomial number of rules of the grammar can be used to gener-
ate exponentially large neighborhoods and they develop a dynamic programming
solver to search these neighborhoods. This framework unifies a variety of previ-
ous results on exponentially large neighborhoods for the TSP and generalizes
them to other sequencing problems including the linear ordering problem. With
regards to future research, it is worth exploring whether grammars can be used
to generate efficiently searchable exponentially large neighborhoods for other
COPs.

2. Group-theoretic VLSN search. Group theory is a branch of abstract algebra that
offers insights for characterizing what mathematical structures are similar to one
another. Colletti and Barnes (2005) show how group theory provides insight of
the solution space of exchange neighborhoods for the TSP as well as a new
framework for viewing neighborhood search algorithms. Colletti and Barnes at-
tribute this group-theoretic framework as having equipped researchers to produce
powerful neighborhood search algorithms for multiple complex logistics prob-
lems for the US Air Force (Barnes et al. 2004; Crino et al. 2004). A possible area
of future research is to extend the ideas discussed in Colletti and Barnes to apply
group theory in a similar fashion to analyze the solution space of VLSNs and to
design better VLSN search algorithms.

3. Parallel VLSN search. Parallel computing allows researchers to coordinate sev-
eral processors towards completing a single computational task. The develop-
ment of parallel computing has allowed researchers to run computational rou-
tines to completion using a series of processors that are prohibitively long on a
single processor. Recently, operations researchers have been incorporating par-
allel computing techniques into many different optimization algorithms to solve
large problems faster and to solve problems that were previously too large to
be practical. Designing and implementing neighborhood search algorithms in a
parallel computing framework is a relatively new but growing field. Alba (2005)
contains several chapters on the design, implementation and applications of vari-
ous metaheuristics, such as genetic algorithms, GRASP algorithms and simulated
annealing algorithms in a parallel computing environment. A possible area of fu-
ture research is to design and implement VLSN search algorithms that capitalize
on available parallel computing architecture.

4. Variable neighborhood VLSN search. The variable neighborhood search (VNS)
technique of Mladenović and Hansen (1997) refers to the systematics utiliza-
tion of several different neighborhoods in a single neighborhood search algo-
rithm. Mitrović-Minić and Punnen (2009) incorporate ideas from VNS into a
VLSN search algorithm for multi-resource generalized assignment problems.

364 D.S. Altner et al.

Mitrović-Minić and Punnen also discuss how their very large-scale variable
neighborhood search technique can be extended to other difficult COPs, which
offers direction for future research.

13.8 Conclusions

VLSN search algorithms are instrumental in rapidly computing good quality
solutions for difficult COPs of practical interest. We believe there are two main
components to the success of a VLSN search algorithm compared to standard
neighborhood search algorithms. First, VLSNs contain significantly more solutions
than a standard neighborhood, which means they are more likely to contain better-
quality solutions than standard neighborhoods. Second, VLSN search algorithms
only implicitly search their neighborhoods, as opposed to explicitly considering
each element in the neighborhood. This substantially reduces the running time of
the algorithms.

VLSN search algorithms are also receiving an increasing amount of attention
from the academic community. We suspect this is because VLSN search algorithms
are highly practical as they obtain promising results in a wide variety of applica-
tions. We also think the popularity of VLSN search algorithms is because they in-
volve elegant algorithmic techniques. This makes the VLSN search literature a nice
combination of algorithmic theory and practice.

For more information on the wide variety of instances in which VLSN search
algorithms have been used, we recommend the survey by Altner et al. (2010).

References

Abdullah S, Ahmadi S, Burke EK, Dror M, McCollum B (2007) A tabu-based large
neighborhood search methodology for the capacitated examination timetabling
problem. J Oper Res Soc 58:1494–1502

Agarwal R, Ahuja RK, Laporte G, Shen ZJ (2003) A composite very large-scale
neighborhood search algorithm for the vehicle routing problem. In: Leung, JY-T
(ed) Handbook of scheduling: algorithms, models and performance analysis.
CRC, Boca Raton, pp 49-01–49-23

Ahuja RK, Orlin JB, Sharma D (2001) Multi-exchange neighborhood structures for
the capacitated minimum spanning tree problem. Math Program 91:71–97

Ahuja RK, Ergun Ö, Orlin JB, Punnen AP (2002) A survey of very large-scale
neighborhood search techniques. Discret Appl Math 123:75–102

Ahuja RK, Orlin JB, Sharma D (2003) A composite very large-scale neighbor-
hood structure for the capacitated minimum spanning tree problem. Oper Res
Lett 31:185–194

13 Very Large-Scale Neighborhood Search 365

Ahuja RK, Liu J, Orlin JB, Goodstein J, Mukherjee A (2004a) A neighborhood
search algorithm for the combined through fleet assignment model with time
windows. Networks 44:160–171

Ahuja RK, Orlin JB, Pallottino S, Scaparra MP, Scutellá MG (2004b) A multi-
exchange heuristic for the single source capacitated facility location. Manag Sci
50:749–760

Ahuja RK, Goodstein J, Mukherjee A, Orlin JB, Sharma D (2007a) A very large-
scale neighborhood search algorithm for the combined through-fleet assignment
model. INFORMS J Comput 19:416–428

Ahuja RK, Jha KC, Liu J (2007b) Solving real-life railroad blocking problems.
Interfaces 37:404–419

Ahuja RK, Jha KC, Orlin JB, Sharma D (2007c) A very large-scale neighborhood
search algorithm for the quadratic assignment problem. INFORMS J Comput
19:646–657

Ahuja RK, Huang W, Romeijn HE, Morales DR (2007d) A heuristic approach to the
multi-period single-sourcing problem with production and inventory capacities
and perishability constraints. INFORMS J Comput 19:14–26

Ahuja RK, Kumar A, Jha KC, Orlin JB (2008) Exact and heuristic algorithms for
the weapon-target assignment problem. Oper Res 55:1136–1146

Alba E (2005) Parallel metaheuristics: a new class of algorithms. Wiley, New York
Altner DS, Ahuja RK, Ergun Ö, Orlin JB (2010) Very large-scale neighborhood

search. In: Cochranm JJ (ed) Wiley Encyclopedia of operations research and man-
agement science. Wiley, New York

Ambrosino D, Sciomachen A, Scutellá MG (2009) A heuristic based on multi-
exchange techniques for a regional fleet assignment location-routing problem.
Comput Oper Res 36:442–460

Barnes JW, Wiley VD, Moore JT, Ryer DM (2004) Solving the aerial fleet refueling
problem using group theoretic tabu search. Math Comput Model 39:617–648

Bompadre A, Orlin JB (2005) Using grammars to generate very large-scale neigh-
borhoods for the traveling salesman problem and other sequencing problems.
In: Integer programming and combinatorial optimization. LNCS 3509. Springer,
Berlin, pp 437–451

Colletti BW, Barnes JW (2005) Using group theory to construct and characterize
metaheuristic search neighborhoods. In: Alidaee B, Rego C (eds) Metaheuristic
optimization via memory and evolution. Springer, Berlin, pp 303–328

Congram RK, Potts CN, van de Velde SL (2002) An iterated dynasearch algorithm
for the single machine total weighted tardiness scheduling problem. INFORMS J
Comput 14:52–67

Crino JR, Moore JT, Barnes JW, Nanry WP (2004) Solving the theater distribution
vehicle routing and scheduling problem using group theoretic tabu search. Math
Comput Model 39:599–616

Cunha CB, Ahuja RK (2005) Very large-scale neighborhood search for the
K-constrained multiple knapsack problem. J Heuristics 11:465–481

Danna E, Rothberg E, Le Pape C (2005) Exploring relaxation induced neighbor-
hoods to improve MIP solutions. Math Program 102:71–90

366 D.S. Altner et al.

Davenport A, Kalagnanam J, Reddy C, Siegel S, Hou J (2007) An application
of constraint programming to generating detailed operations schedules for steel
manufacturing. In: Proceedings of the constraint programming, Providence,
pp 64–75

Dorndorf U, Pesch E (1994) Fast clustering algorithms. ORSA J Comput 6:141–153
Dror M, Levy L (1986) A vehicle routing improvement algorithm comparison of a

greedy and a matching implementation for inventory routing. Comput Oper Res
13:33–45

Ergun Ö, Orlin JB, Steele-Feldman A (2006) Creating very large-scale neighbor-
hoods out of smaller ones by compounding moves. J Heuristics 12:115–140

Frangioni A, Necciari E, Scutellá MG (2004) Multi-exchange algorithms for mini-
mum makespan machine scheduling problems. J Comb Optim 8:195–220

Helsgaun K (2000) An effective implementation of the Lin–Kernighan traveling
salesman heuristic. Eur J Oper Res 126:106–130

Kernighan BW, Lin S (1970) An efficient heuristic procedure for partitioning
graphs. Bell Syst Tech J 49:291–307

Lin S, Kernighan BW (1973) An effective heuristic algorithm for the traveling
salesman problem. Oper Res 21:498–516

Mitrović-Minić S, Punnen AP (2009) Local search intensified: very large-scale
variable neighborhood search for the multi-resource generalized assignment
problem. Discret Optim 6:370–377

Mladenović N, Hansen P (1997) Variable neighborhood search. Comput Oper Res
24:1097–1100

Pesant G, Gendreau M (1999) A constraint programming framework for local search
methods. J Heuristics 5:255–279

Rego C, Roucairol C (1996) A parallel tabu search algorithm using ejection chains
for the vehicle routing problem. In: Osman IH, Kelly JP (eds) Metaheuristics:
theory and applications. Kluwer, Norwell, pp 661–675

Scaparra MP, Pallottino S, Scutellá MG (2004) Large-scale neighborhood heuristics
for the capacitated vertex p-center problem. Networks 43:241–255

Sindhuchao S, Romeijn HE, Akcali E, Boondiskulchok R (2005) An integrated
inventory-routing system for multi-item joint replenishment with limited vehicle
capacity. J Glob Optim 32:93–118

Thompson PM, Orlin JB (1989) The theory of cyclic transfers. Technical report OR
200-89, MIT

Thompson PM, Psaraftis HN (1993) Cyclic transfer algorithms for multivehicle
routingand scheduling problems. Oper Res 41:935–946

TSPLIB (2012) http://www.iwr.uni-heidelberg.de/groups/comopt/software/
TSPLIB95/

Xu J, Kelly JP (1996) A network flow-based tabu search heuristic for the vehicle
routing problem. Transp Sci 30:379–393

Yagiura M, Yamaguchi T, Ibaraki T (1999) A variable-depth search algorithm for
the generalized assignment problem. In: Voss S et al (eds) Metaheuristics: ad-
vances and trends in local search paradigms for optimization. Kluwer, Norwell,
pp 459–471

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

13 Very Large-Scale Neighborhood Search 367

Yagiura M, Ibaraki T, Glover F (2004a) An ejection chain approach for the
generalized assignment problem. INFORMS J Comput 16:133–151

Yagiura M, Iwasaki S, Ibaraki T, Glover F (2004b) A very large-scale neighborhood
search algorithm for the multi-resource generalized assignment problem. Discret
Optim 1:87–98

Chapter 14

Constraint Programming

Eugene C. Freuder and Mark Wallace

14.1 Introduction

Constraint satisfaction problems are ubiquitous. A simple example that we will use
throughout the first half of this chapter is the following scheduling problem: Choose
employees A or B for each of three tasks, X, Y, Z, subject to the work rules that
the same employee cannot carry out both tasks X and Y, the same employee cannot
carry out both tasks Y and Z, and only employee B is allowed to carry out task Z.
(Many readers will recognize this as a simple coloring problem.)

This is an example of a class of problems known as constraint satisfaction prob-
lems (CSPs). CSPs consist of a set of variables (e.g. tasks), a domain of values
(e.g. employees) for each variable, and constraints (e.g. work rules) among sets
of variables. The constraints specify which combinations of value assignments are
allowed (e.g. employee A for task X and employee B for task Y); these allowed
combinations satisfy the constraints. A solution is an assignment of values to each
variable such that all the constraints are satisfied (Dechter 2003; Tsang 1993).

We stress that the basic CSP paradigm can be extended in many directions: for
example, variables can be added dynamically, domains of values can be continuous,
constraints can have priorities, and solutions can be optimal, not merely satisfactory.

Examples of constraints are:

• The meeting must start at 6:30.
• The separation between the soldermasks and nets should be at least 0.15 mm.
• This model only comes in blue and green.
• This cable will not handle that much traffic.

E.C. Freuder
University College Cork, Cork, Ireland
e-mail: e.freuder@4c.ucc.ie

M. Wallace (�)
Monash University, Melbourne, VIC, Australia
e-mail: mark.wallace@monash.edu

E.K. Burke and G. Kendall (eds.), Search Methodologies: Introductory Tutorials
in Optimization and Decision Support Techniques, DOI 10.1007/978-1-4614-6940-7_14,
© Springer Science+Business Media New York 2014

369

mailto:e.freuder@4c.ucc.ie
mailto:mark.wallace@monash.edu

370 E.C. Freuder and M. Wallace

• These sequences should align optimally.
• John prefers not to work on weekends.
• The demand will probably be for more than 5,000 units in August.

Examples of constraint satisfaction or optimization problems are:

• Schedule these employees to cover all the shifts.
• Optimize the productivity of this manufacturing process.
• Configure this product to meet my needs.
• Find any violations of these design criteria.
• Optimize the use of this satellite camera.
• Align these amino acid sequences.

Many application domains (e.g. design) naturally lend themselves to modeling
as CSPs. Many forms of reasoning (e.g. temporal reasoning) can be viewed as con-
straint reasoning. Many disciplines (e.g. operations research) have been brought to
bear on these problems. Many computational architectures (e.g. neural networks)
have been utilized for these problems. Constraint programming can solve problems
in telecommunications, internet commerce, electronics, bioinformatics, transporta-
tion, network management, supply chain management, and many other fields.

Some examples of commercial application of constraint technology are:

• Staff planning: BanqueBuxelles Lambert.
• Vehicle production optimization: Chrysler Corporation.
• Planning medical appointments: FREMAP.
• Task scheduling: Optichrome Computer Systems.
• Resource allocation: SNCF (French Railways).
• From push-to-pull manufacturing: Whirlpool.
• Utility service optimization: Long Island Lighting Company.
• Intelligent cabling of big buildings: France Telecom.
• Financial decision support system: Caisse des Dépôts.
• Load capacity constraint regulation: Eurocontrol.
• Planning of satellites missions: Alcatel Espace.
• Optimization of configuration of telecom equipment: Alcatel CIT.
• Production scheduling of herbicides: Monsanto.
• “Just in Time” transport and logistics in food industry: Sun Valley.
• Supply chain management in petroleum industry: ERG Petroli.

CSPs can be represented as constraint networks, where the variables correspond
to nodes and the constraints to arcs. The constraint network for our sample problem
appears in Fig. 14.1. Constraints involving more than two variables can be modeled
with hypergraphs, but most basic CSP concepts can be introduced with binary con-
straints involving two variables, and that is the route we will begin with in this chap-
ter. We will say that a value for one variable is consistent with a value for another
if the pair of values satisfies the binary constraint between them. (This constraint
could be the trivial constraint that allows all pairs of values; such constraints are
not represented by arcs in the constraint network.) Note that specifying a domain of
values for a variable can be viewed as providing a unary constraint on that single
variable.

14 Constraint Programming 371

{B}{A, B}{A, B}

X Y Z

=/ =/

Fig. 14.1 A constraint network representation of a sample constraint satisfaction problem

This chapter focuses on the methods developed in artificial intelligence and the
approaches embodied in constraint programming languages. Of course, this brief
chapter can only suggest some of the developments in these fields; it is not intended
as a survey, only as an introduction. Rather than beginning with formal definitions,
algorithms and theorems, we will focus on introducing concepts through examples.

The constraint programming ideal is this: the programming is declarative; we
simply state the problem as a CSP and powerful algorithms, provided by a con-
straint library or language, solve the problem. In practice, this ideal has, of course,
been only partially realized, and expert constraint programmers are needed to refine
modeling and solving methods for difficult problems.

14.2 Inference

Inference methods make implicit constraint information explicit. Inference can
reduce the effort involved in searching for solutions or even synthesize solutions
without search. The most common form of inference is known as arc consistency. In
our sample problem, we can infer that B is not a possible value for Y because there
is no value for Z that, together with B, satisfies the constraint between Y and Z. This
can be viewed as making explicit the fact that the unary constraint on the variable Y
does not allow B.

This inference process can propagate: after deleting B from the domain of Y,
there is no value remaining for Y that together with A for X will satisfy the constraint
between X and Y, therefore we can delete A from the domain of X (see Fig. 14.2).
If we repeatedly eliminate inconsistent values in this fashion until any value for
any variable is consistent with some value for all other variables, we have achieved
arc consistency. Many algorithms have been developed to achieve arc consistency
efficiently (Bessière and Régin 2001; Mackworth 1977).

Eliminating inconsistent values by achieving arc consistency can greatly reduce
the space we must search through for a solution. Arc consistency methods can also
be interleaved with search to dynamically reduce the search space, as we shall see
in the next section.

Beyond arc consistency lies a broad taxonomy of consistency methods. Many
of these can be viewed as some form of (i, j)-consistency (Freuder 1985). A CSP
is (i, j)-consistent if, given any consistent set of i values for i variables, we can
find j values for any other j variables, such that the i+ j values together satisfy

372 E.C. Freuder and M. Wallace

{B}{A, B}{A, B}

X Y Z

=//=

Fig. 14.2 Arc consistency propagation

all the constraints on the i + j variables. Arc consistency is (1,1)-consistency.
(k− 1,1)-consistency, or k-consistency, for successive values of k constitute an im-
portant constraint hierarchy (Freuder 1978).

More advanced forms of consistency processing often prove impractical either
because of the processing time involved or because of the space requirements. For
example, 3-consistency, otherwise known as path consistency, is elegant because it
can be shown to ensure that given values for any two variables one can find values
that satisfy all the constraints forming any given path between these variables in the
constraint network. However, achieving path consistency means making implicit
binary constraint information explicit, and storing this information can become too
costly for large problems.

For this reason variations on inverse consistency, or (1, j−1)-consistency, which
can be achieved simply by domain reductions, have attracted some interest
(Debruyne and Bessière 2001). Various forms of learning achieve partial k-
consistency during search (Dechter 1990; Katsirelos and Bacchus 2005). For ex-
ample, if we modified our sample problem to allow only A for Z, and we tried
assigning B to X and A to Y during a search for a solution to this problem, we
would run into a dead end: no value would be possible for Z. From that we could
learn that the constraint between X and Y should be extended to rule out the pair
(B, A), achieving partial path consistency.

Interchangeability (Freuder 1991) provides another form of inference, which can
also eliminate values from consideration. Suppose that we modify our sample prob-
lem to add employees C and D who can carry out task X. Values C and D would be
interchangeable for variable X because in any solution using one we can substitute
the other. Thus we can eliminate one in our search for solutions—and if we want
to, just substitute it back into any solutions we find. Just as with consistency pro-
cessing there is a local form of interchangeability that can be efficiently computed.
In a sense, inconsistency is an extreme form of interchangeability; all inconsistent
values are interchangeable in the null set of solutions that utilize them.

14.3 Modeling

Modeling is a critical aspect of constraint satisfaction. Given a user’s understand-
ing of a problem, we must determine how to model the problem as a constraint
satisfaction problem. Some models may be better suited for efficient solution than
others (Régin 2001).

14 Constraint Programming 373

Experienced constraint programmers may add constraints that are redundant in
the sense that they do not change the set of solutions to the problem, in the hope
that adding these constraints may still be cost effective in terms of reducing problem
solving effort. Added constraints that do eliminate some, but not all, of the solutions,
may also be useful, e.g. to break symmetries in the problem (Walsh 2012).

Specialized constraints can facilitate the process of modeling problems as CSPs,
and associated specialized inference methods can again be cost-effective. For exam-
ple, imagine that we have a problem with four tasks, two employees who can handle
each, but three of these tasks must be undertaken simultaneously. This temporal con-
straint can be modeled by three separate binary inequality constraints between each
pair of these tasks; arc consistency processing of these constraints will not eliminate
any values from their domains. On the other hand an alldifferent constraint, that
can apply to more than two variables at a time, not only simplifies the modeling of
the problem, but an associated inference method can eliminate all the values from
a variable domain, proving the problem unsolvable. Specialized constraints may be
identified for specific problem domains, e.g. scheduling problems.

It has even proven useful to maintain multiple complete models for a problem
channeling the results of constraint processing between the two (Cheng et al. 1999).
As has been noted, a variety of approaches have been brought to bear on constraint
satisfaction, and it may prove useful to model part of a problem as, for example,
an integer programming problem. Insight is emerging into basic modeling issues,
e.g. binary versus non-binary models (Bacchus et al. 2002).

In practice, modeling can be an iterative process. Users may discover that their
original specification of the problem was incomplete or incorrect or simply impos-
sible. The problems themselves may change over time.

14.4 Search

In order to find solutions we generally need to conduct some form of search. One
family of search algorithms attempts to build a solution by extending a set of con-
sistent values for a subset of the problem variables, repeatedly adding a consistent
value for one more variable, until a complete solution is reached. Another family
of algorithms attempts to find a solution by repairing an inconsistent set of val-
ues for all the variables, repeatedly changing an inconsistent value for one variable,
until a complete solution is reached. (Extension and repair techniques can also be
combined.)

Often extension methods are systematic and complete, they will eventually try all
possibilities, and thus find a solution or determine unsolvability, while often repair
methods are stochastic and incomplete. The hope is that completeness can be traded
off for efficiency.

374 E.C. Freuder and M. Wallace

A

A B

B

B

A

B

X

Y

Z

Fig. 14.3 Backtrack search tree for example problem

14.4.1 Extension

The classic extension algorithm is backtrack search. Figure 14.3 shows a back-
track search tree representing a trace of a backtrack algorithm solving our sample
problem.

A depth-first traversal of this tree corresponds to the order in which the algorithm
tried to fit values into a solution. First the algorithm chose to try A for X, then A
for Y. At this point it recognized that the choice of A for Y was inconsistent with
the choice of A for X: it failed to satisfy the constraint between X and Y. Thus there
was no need to try a choice for Z; instead the choice for Y was changed to B. But
then B for Z was found to be inconsistent, and no other choice was available, so the
algorithm “backed up” to look for another choice for Y. None was available so it
backed up to try B for X. This could be extended to A for Y and finally to B for Z,
completing the search.

Backtrack search can prune away many potential combinations of values simply
by recognizing when an assignment of values to a subset of the variables is already
inconsistent and cannot be extended. However, backtrack search is still prone to
thrashing behavior. A wrong decision early on can require an enormous amount of
backing and filling before it is corrected. Imagine, for example, that there were 100
other variables in our example problem, and, after initially choosing A for X and
B for Y, the search algorithm tried assigning consistent values to each of those 100
variables before looking at Z. When it proved impossible to find a consistent value
for Z (assuming the search was able to get that far successfully) the algorithm would
begin trying different combinations of values for all those 100 variables, all in vain.

A variety of modifications to backtrack search address this problem (Kondrak
and van Beek 1997). They all come with their own overhead, but the search effort
savings can make the overhead worthwhile.

Heuristics can guide the search order. For example, the minimal domain size
heuristic suggests that as we attempt to extend a partial solution we consider the
variables in order of increasing domain size; the motivation there is that we are
more likely to fail with fewer values to choose from, and it is better to encounter

14 Constraint Programming 375

failure higher in the search tree than lower down when it can induce more thrashing
behavior. Using this heuristic in our example we would have first chosen B for Z,
then proceeded to a solution without having to back up to a prior level in the search
tree. While “fail first” makes sense for the order in which to consider the variables,
“succeed first” makes sense for the order in which to try the values for the variables.

Various forms of inference can be used prospectively to prune the search space.
For example, search choices can be interleaved with arc consistency maintenance.
In our example, if we tried to restore arc consistency after choosing A for X, we
would eliminate B from the domain of Z, leaving it empty. At this point we would
know that A for X was doomed to failure and could immediately move on to B.
Even when failure is not immediate, “look ahead” methods that infer implications of
search choices can prune the remaining search space. Furthermore, dynamic search
order heuristics can be informed by this pruning, e.g. the minimal domain size
heuristic can be based on the size of the domains after look-ahead pruning. Main-
taining arc consistency is an extremely effective and widely used technique (Sabin
and Freuder 1997).

Memory can direct various forms of intelligent backtracking (Dechter and Frost
2002). For example, suppose that in our example for some reason our search heuris-
tics directed us to start the search by choosing B for Y followed by A for X. Of
course, B the only choice for Z would then fail. Basic backtrack search would back
up chronologically to then try B for X. However, if the algorithm remembers that
failure to find a value for Z was based solely on conflict with the choice for Y, it can
jump back to try the alternative value A at the Y level in the search tree without unn-
ecessarily trying B for X. The benefits of maintaining arc consistency overlap with
those of intelligent backtracking, and the former may make the latter unnecessary.

Search can also be reorganized to try alternatives in a top-down as opposed to
bottom-up manner. This responds to the observation that heuristic choices made
early in the extension process, when the remaining search space is unconstrained by
the implications of many previous choices, may be most prone to failure. For exa-
mple, limited discrepancy search iteratively restarts the search process increasing
the number of discrepancies, or deviations from heuristic advice, that are allowed,
until a solution is found (Harvey and Ginsberg 1995). (The search effort at the
final discrepancy level dominates the upper-bound complexity computation, so the
redundant search effort is not as significant as it might seem.)

Extensional methods can be used in an incomplete manner. As a simple example,
random restart, starting the search over as soon as a dead end is reached, with a
stochastic element to the search order, can be surprisingly successful (Gomes et al.
1997).

14.4.2 Repair

Repair methods start with a complete assignment of values to variables, and work
by changing the value assigned to a variable in order to improve the solution. Each
such change is called a move, and the new assignment is termed a neighbor of

376 E.C. Freuder and M. Wallace

the previous assignment. Genetic algorithms, which create a new assignment by
combining two previous assignments, rather than by moving to a neighbor of a sin-
gle assignment, can be viewed as a form of repair.

Repair methods utilize a variety of metaphors, physical (hill climbing, simulated
annealing) and biological (neural networks, genetic algorithms). For example, we
might start a search on our example problem by choosing value A for each variable.
Then, seeking to hill climb in the search space to an assignment with fewer incon-
sistencies, we might choose to change the value of Y to B; and we would be done.
Hill climbing is a repair-based algorithm in which each move is required to yield a
neighbor with a better cost than before. It cannot, in general, guarantee to produce
an optimal solution at the point where the algorithm stops because no neighbor has
a better cost than the current assignment.

Repair methods can also use heuristics to guide the search. For example, the
min-conflicts heuristic suggests finding an inconsistent value and then changing it to
the alternative value that minimizes the amount of inconsistency remaining (Minton
et al. 1992).

The classic repair process risks getting stuck at a local maximum, where com-
plete consistency has not been achieved, but any single change will only increase in-
consistency, or cycling through the same set of inconsistent assignments. There are
many schemes to cope. A stochastic element can be helpful. When an algorithm has
to choose between equally desirable alternatives it may do so randomly. When no
good alternative exists it may start over, or jump to a new starting point. Simulated
annealing allows moves to neighbors with a worse cost with a given probability.
Memory can also be utilized to guide the search and avoid cycling (tabu search).

14.5 Example

We illustrate simple modeling, search and inference now with another example.
The Queens Problem involves placing queens on a chessboard such that they do
not attack one another. A simple version only uses a four-by-four corner of the
chessboard to place four queens.

Queens in chess attack horizontally, vertically and diagonally. So, for example,
the two queens on the dark squares above attack each other diagonally, the two
queens on the light squares attack vertically. One solution is:

If we model this problem as a CSP where the variables are the 4 queens and the
values for each queen are the 16 squares, we have 65,536 possible combinations
to explore, looking for one where the constraints (the queens do not attack each
other) are satisfied. If we observe that we can only have 1 queen per row, and model
the problem with a variable corresponding to the queen in each row, each variable
having 4 possible values corresponding to the squares in the row, we have only 256
possibilities to search through.

14 Constraint Programming 377

Q

Q Q

Q

Q

Q

Q

Q

The beginning of the backtrack search tree for this example is shown below. After
placing the first row queen in the first column, the first successful spot for the second
row queen is in the third column. However, that leaves no successful placement for
the third row queen, and we need to backtrack:

In fact, there will be quite a lot of backtracking to do here before we find a solu-
tion. However, arc consistency inference can reduce the amount of search we do con-
siderably. Consider what happens if we seek arc consistency after placing a queen in
the second column of row 1. This placement directly rules out any square that can be
attacked by this queen, of course, and, in fact, arc consistency propagation proceeds

378 E.C. Freuder and M. Wallace

to rule out additional possibilities until we are left with a solution. The queens in
column 3 of row 3 and column 4 of row 4 are ruled out because they are attacked
by the only possibility left for row 2. After the queen in column 3 of row 3 is elimi-
nated, the queen in column 1 of row 4 is attacked by the only remaining possibility
for row 3, so it too can be eliminated:

14.6 Tractability

CSPs are in general NP-hard. Analytical and experimental progress has been made
in characterizing tractable and intractable problems. The results have been used to
inform algorithmic and heuristic methods.

14.6.1 Theory

Tractable classes of CSPs have been identified based on the structure of the con-
straint network, e.g. tree structure, and on the types of constraints allowed, e.g. max-
closed (Jeavons and Cooper 1995). Tractability has been associated with sets of
constraints defining a specific class of problems, e.g. temporal reasoning problems
defined by simple temporal networks (Dechter et al. 1991).

If a constraint network is tree-structured, there will be a width-one ordering for
the variables in which each variable is directly constrained by at most one variable
earlier in the ordering. In our sample problem, which has a trivial tree structure, the
ordering X, Y, Z is width-one: Y is constrained by X and Z by Y; the ordering X, Z,
Y is not width-one: Y is constrained by both X and Z. If we achieve arc consistency
and use a width-one ordering as the order in which we consider variables when
trying to extend a partial solution, backtrack search will in fact be backtrack-free:
for each variable we will be able to find a consistent value without backing up to
reconsider a previously instantiated variable (Freuder 1982).

14 Constraint Programming 379

Max-closure requires that if (ab) and (cd) both satisfy the constraint, then also
(max(ac),max(bd)) will satisfy the constraint. If all the constraints in a problem are
max-closed, the problem will be tractable. The less than constraint is max-closed,
e.g. 4 < 6, 2 < 9 and 4 < 9. In fact, simple temporal networks are max-closed.

14.6.2 Experiment

Intuitively it seems natural that many random CSPs would be relatively easy: loosely
constrained problems would be easy to solve, highly constrained problems would
be easy to prove unsolvable. What is more surprising is the experimental evidence
that as we vary the constrainedness of the problems there is a sharp phase transition
between solvable and unsolvable regions, which corresponds to a sharp spike of
really hard problems (Cheeseman et al. 1991). (“Phase transition” is a metaphor
alluding to physical transitions, such as the one between water and ice.)

14.7 Optimization

Optimization arises in a variety of contexts. If all the constraints in a problem can-
not be satisfied, we can seek the best partial solution (Freuder and Wallace 1992).
If there are many solutions to a problem, we may have some criteria for distinguish-
ing the best one. We can distinguish hard constraints, which have to be satisfied,
from soft constraints, which do not necessarily have to be. Soft constraints can al-
low us to express probabilities or preferences that make one solution better than
another.

Again we face issues of modeling, inference and search. What does it mean to be
the best solution; how do we find the best solution? We can assign scores to local
elements of our model and combine those to obtain a global score for a proposed
solution, then compare these to obtain an optimal solution for the problem.

A simple case is the Max-CSP problem, where we seek a solution that satisfies
as many constraints as possible. Here each satisfied constraint scores 1, the score for
a proposed solution is the sum of the satisfied constraints, and an optimal solution
is one with a maximal score. Many alternatives, such as fuzzy, probabilistic and
possibilistic CSPs, have been captured under the general framework of semiring-
based or valued CSPs (Bistarelli et al. 1996).

Backtrack search methods can be generalized to branch and bound methods for
seeking optimal solutions, where a partial solution is abandoned when it is clear that
it cannot be extended to a better solution than one already found. Inference methods
can be generalized. Repair methods can often find close to optimal solutions quickly.

380 E.C. Freuder and M. Wallace

14.8 Algorithms

14.8.1 Handling Constraints

Constraint technology is an approach that solves problems by reasoning on the
constraints, and when no further inferences can be drawn, making a search step.
Thus inference and search are interleaved.

For problems involving hard constraints—ones that must be satisfied in any so-
lution to the problem—reasoning on the constraints is a very powerful technique.

The secret of much of the success of constraint technology comes from its fa-
cility to capitalize on the structure of the problem constraints. This enables global
reasoning to be supported, which can guide a more intelligent search procedure than
would otherwise be possible.

In this section we introduce some different forms of reasoning and its use in
solving problems efficiently.

14.8.2 Domains, and Constraint Propagation

In general, domain constraint propagation algorithms take a set of variables and
the original domains as input, and either report inconsistency, or output smaller do-
mains for the variables. Since propagation algorithms can extract more information,
each time the input domains become smaller, and since the propagation behavior
also makes the domains of the variables smaller, the propagation algorithms can co-
operate through these domains. The output from one algorithm is input to another,
whose output can in turn be input to the first algorithm. Thus many different prop-
agation algorithms can cooperate, together yielding domain reductions which are
much stronger than simply pooling the information from the separate algorithms.

In the following code we constrain two variables, X and Y, to take values in the
range 1–10. We constrain X to be greater than Y and (inconsistently!) we also con-
strain Y to be greater than X:

?- X::1..10, Y::1..10
fd:(X>Y), fd:(Y>X)

If the propagation algorithm for each constraint makes the bounds consistent, then
the first constraint will yield new domains

X::2..10, Y::1..9

and the second constraint will yield new domains

14 Constraint Programming 381

X::1..9, Y::2..10.

Pooling the deduced information, we get the intersection of the new domains:

X::2..9, Y::2..9.

By contrast, if the propagation algorithms communicate through the variable do-
mains, then they will yield new domains, which are then input to the other algorithm
until, at the fifth step, the inconsistency between the two constraints is detected.

The interaction of the different algorithms is predictable, even though the
algorithms are completely independent, so long as they have certain natural proper-
ties. Specifically,

• The output domains must be a subset of the input domains;
• If with input domains ID the algorithm produces output domains OD, then with

any input domains which are a subset of ID, the output domains must be a subset
of OD.

These properties guarantee that the information produced by the propagation
algorithms, assuming they are executed until no new information can be deduced,
is guaranteed to be the same, independent of the order in which the different algo-
rithms (or propagation steps) are executed.

14.8.3 Constraints and Search

14.8.3.1 Separating Constraint Handling from Search

The constraint programming paradigm supports clarity, correctness and maintain-
ability by separating the statement of the problem as far as possible from the details
of the algorithm used to solve it. The problem is stated in terms of its decision vari-
ables, the constraints on those variables, and an expression to be optimized.

As a toy example the employee task problem introduced at the beginning of this
chapter can be expressed as follows:

?- X::[a,b], Y::[a,b], Z::[b], % Set up variables
X= \=Y, Y= \=Z. % set up constraints.

This states that the variable X can take either of the two values, a or b; similarly Y
can take a or b; but Z can only take the value b. Additionally, the value taken by X
must be different from that taken by Y; and the values taken by Y and Z must also
be different.

To map this problem statement into an algorithm, the developer must

• Choose how to handle each constraint
• Specify the search procedure.

382 E.C. Freuder and M. Wallace

For example, assuming fd is a solver which the developer chooses to handle the
constraints, and labeling is a search routine, the whole program is written as follows:

?- X::[a,b], Y::[a,b], Z::[b],
fd:(X= \=Y), fd:(Y= \=Z),
labeling([X,Y,Z]).

This code sends the constraint X= \ =Y to the finite domain solver called fd; and
the constraint Y= \ =Z is also sent to fd. The list of variables X, Y and Z is then
passed to the labeling routine.

Domain propagation algorithms take as input the domains of the variables, and
yield smaller domains. For example, given that the domain of Z is [b], the fd solver
for the constraint Y= \=Z immediately removes b from the domain of Y, yielding
a new domain [a]. Every time the domain of one of those variables is reduced by
another propagation algorithm, the algorithm wakes and reduces the domains further
(possibly waking the other algorithm). In the above example, when the domain of
Y is reduced to [a], the constraint X= \=Y wakes, and removes b from the domain
of X, reducing the domain of X to [b].

The domain of a variable may be reduced either by propagation, or instead by
a search decision. In this case propagation starts as before, and continues until no
further information can be derived. Thus search and constraint reasoning are auto-
matically interleaved.

14.8.3.2 Search Heuristics Exploiting Constraint Propagation

Most real applications cannot be solved to optimality because they are simply too
large and complex. In such cases it is crucial that the algorithm is directed towards
areas of the search space where low-cost feasible solutions are most likely to be
found.

Constraint propagation can yield very useful information, which can be used to
guide the search for a solution. Not only can propagation exclude impossible choices
a priori, but it can also yield information about which choices would be optimal in
the absence of certain (awkward) constraints.

Because constraint propagation occurs after each search step, the resulting infor-
mation is used to support dynamic heuristics, where the next choice is contingent
upon all the information about the problem gathered during the current search.

In short, incomplete extension search techniques can produce high-quality so-
lutions to large complex industrial applications in areas such as transportation and
logistics. The advantage is that the solutions respect all the hard constraints and are
therefore applicable in practice.

14 Constraint Programming 383

14.8.4 Global Constraints

In this section we introduce a variety of application-specific “global” constraints.
These constraints achieve more, and more efficient, propagation behavior than
would be possible using combinations of the standard equality and disequality
constraints introduced above. We first outline two global constraints, one called
“alldifferent” for handling sets of disequality constraints, and one called “schedule”
for handling resource usage by a set of tasks. A complete catalog of global con-
straints is available at www.emn.fr/z-info/sdemasse/gccat.

14.8.4.1 Alldifferent

Consider the disequality constraint “= \ =” used in the employee task example at
the beginning of this chapter. Perhaps surprisingly, global reasoning on a set of such
constraints brings more than local reasoning. Suppose we have a list and want to
make local changes until all the elements of the list are distinct. If each element has
the same domain (i.e. the same set of possible values), then it suffices to choose any
element in conflict (i.e. an element whose value occurs elsewhere in the list), and
change it to a new value which doesn’t occur elsewhere. If, however, the domains
of different elements of the list are different, then there is no guarantee that local
improvement will converge to a list whose elements are all different. However, there
is a polynomial time graph-based algorithm (Régin 1994) which guarantees to detect
if there is no solution to this problem, and otherwise it reduces the domains of
all the elements until they contain only values that participate in a solution. The
constraint that all the elements of a list must be distinct is usually called alldifferent
in constraint programming.

For example, consider the case

?- X::[a,b], Y::[a,b], Z::[a,b,c],
alldifferent([X,Y,Z]).

In this case Régin’s algorithm (Régin 1994) for the alldifferent constraint will reduce
the domain of Z to just [c]. As we saw above, the behavior of reducing the variables
domains in this manner is called constraint propagation.

Global constraint propagation algorithms work co-operatively within a constraint
programming framework. In the above example, the propagation algorithm for the
alldifferent constraint takes as input the list of variables, and their original domains.
As a result it outputs new, smaller, domains for those variables.

14.8.4.2 Schedule

Consider a task scheduling problem comprising a set of tasks with release times
(i.e. earliest start times) and due dates (i.e. latest end times), each of which requires

www.emn.fr/z-info/sdemasse/gccat

384 E.C. Freuder and M. Wallace

a certain amount of resource, running on a set of machines that provide a fixed
amount of resource.

The schedule constraint works, in principle, by examining each time period
within the time horizon.

• First the algorithm calculates how much resource ri each task i must necessarily
take up within this period.

• If the sum ∑i ri exceeds the available resource, then the constraint reports an
inconsistency.

• If the sum ∑i
= j ri takes up so much resource that task j cannot be scheduled
within the period, and the remaining resource within the period is rT , then task j
is constrained only to use an amount rT of resource within this period.

For non-preemptive scheduling, this constraint may force such a task j to start a
certain amount of time before the period begins, or end after it. The information
propagated narrows the bounds on the start times of certain tasks.

Whilst this kind of reasoning is expensive to perform, there are many quicker,
but theoretically less complete forms of reasoning, such as “edge-finding”, which
can be implemented in a time quadratic in the number of tasks.

14.8.4.3 Further Global Constraints

The different global constraints outlined above have proven themselves in practice.
Using global constraints such as schedule, constraint programming solves bench-
mark problems in times competitive with the best complete techniques. There are
two main advantages of global constraints in constraint programming, in addition to
their efficiency in solving standard benchmark problems:

1. They can be augmented by any number of application-specific “side” constraints.
The constraint programming framework allows all kinds of constraints to be
thrown in, without requiring any change to the algorithms handling the differ-
ent constraints.

2. They return high-quality information about the problem which can be used to
focus the search. Not only do they work with complete search algorithms, but
also they guide incomplete algorithms to return good solutions quickly.

Constraint programming systems can include a range of propagation algorithms sup-
porting global reasoning for constraints appearing in different kinds of applications
such as rostering, transportation, network optimization, and even bioinformatics.

14.8.4.4 Analysis

One of the most important requirements of a programming system is support for
reusability. Many complex models developed by operations researchers have made
very little practical impact, because they are so hard to reuse. The concept of a

14 Constraint Programming 385

global constraint is inherently quite simple. It is a constraint that captures a class of
subproblems, with any number of variables. Global constraints have built-in algo-
rithms, which are specialized for treating the problem class. Any new algorithm can
be easily captured as a global constraint and reused. Global constraints have had
a major impact, and are used widely and often as a tool in solving complex real-
world problems. They are, arguably, the most important contribution that constraint
programming has brought to Operations Research (OR).

14.8.5 Different Constraint Behaviors

Constraint reasoning may derive other information than domain reductions. Indeed
any valid inference step can be made by a propagation algorithm. For example, from
the constraints

X > Y,Y > Z

propagation can derive that
X > Z.

To achieve co-operation between propagation algorithms, and termination of
propagation sequences, constraint programming systems typically require propa-
gation algorithms to behave in certain standard ways. Normally they are required to
produce information of a certain kind, for example domain reductions.

An alternative to propagating domain reductions is to propagate new linear con-
straints. Just as domain propagation ideally yields the smallest domains which in-
clude all values that could satisfy the constraint, so linear propagation ideally yields
the convex hull of the set of solutions. In this ideal case, linear propagation is
stronger than domain propagation, because the convex hull of the set of solutions
is contained in the smallest set of variable domains (termed the box) that contains
them.

14.8.6 Extension and Repair Search

Extension search is conservative in that, at every node of the search tree, all the
problem constraints are satisfied. Repair search is optimistic, in the sense that a
variable assignment at a search node may be, albeit promising, actually inconsistent
with one or more problem constraints.

14.8.6.1 Constraint Reasoning and Extension Search

Constraint reasoning, in the context of extension search, corresponds to logical de-
duction. The domain reductions, or new linear constraints yielded by propagation,
are indeed a consequence of the constraint in the input state.

386 E.C. Freuder and M. Wallace

14.8.6.2 Constraint Reasoning and Repair Search

Constraint reasoning can also be applied in the context of repair search. The standard
method for handling constraints in repair search is to check them in each search
state. If a constraint is violated then the “cost” of the state is increased by an amount
computed by the constraint checker (either simply counting the number of violated
constraints, or assessing the degree of violation of each constraint and penalizing it
accordingly). More radically, any state which includes a violated constraint can be
rejected, and the assignment leading to this state immediately undone. These meth-
ods of handling violated constraints are, of course, fully covered in other chapters
of this book.

There are, however, other methods of moving forward from a search state in
which constraints are violated. These methods were pioneered in the mathematical
programming community, for handling integer-linear problems. They are applica-
ble in case the violated constraint is—for whatever reason—too difficult to directly
enforce during search. When such a violation occurs, these methods return to a
previous search state (in which no constraints were violated) and add new easier
constraints which preclude the violation. Like propagation, the method of dealing
with a (violated difficult) constraint yields new information, in the form of easy con-
straints that can be dealt with actively by the search procedure. We distinguish two
ways of choosing the easy constraints: constraint generation and separation. These
are best illustrated by example.

1. Constraint generation. For an example of constraint generation, consider a
traveling salesman problem (TSP) which is being solved by integer/linear
programming. At each search node an integer/linear problem is solved, which
only approximates the actual TSP constraint. It generates “routes” in which ev-
ery location has a predecessor and a successor, but unfortunately the route is
sometimes composed of two or more unconnected cycles. Consider a search node
which represents a route with a detached cycle. This violates the TSP constraint
in a way that can be fixed by adding a linear constraint enforcing a unit flow
out from the set of cities in the detached cycle. This is the generated constraint,
at the given search node. The search is complete at the first node where the TSP
constraint is no longer violated. Constraint generation can be used in cases where
the awkward constraints can be expressed by a conjunction of easy constraints,
although the number of such easy constraints in the conjunction may be too large
for them all to be imposed.

2. Separation. Separation behavior is required to fix any violated constraint which
cannot be expressed as a conjunction of easy constraints (however large). If the
awkward constraint can be approximated, arbitrarily closely, by a (conjunction
of) disjunction(s) of easy constraints, then separation can be used. Constraint
reasoning yields one of the easy constraints—one that is violated by the cur-
rent search node—and imposes it so that the algorithm which produces the next
search node is guaranteed to satisfy this easy constraint. Completeness is main-
tained by imposing the other easy constraints in the disjunction on other branches
of the search tree.

14 Constraint Programming 387

14.8.6.3 Languages and Systems

One drawback of the logical basis of Constraint Programming is that search methods
are not naturally expressed in logic, and repair-based search includes many states
which violate constraints and are therefore logically inconsistent. Depth-first search
with backtracking is inbuilt in constraint logic programming (CLP, see next section),
and therefore concise and natural to express and control (e.g. Refalo 2004). Other
forms of tree search, such as best-first, do not fit so well, and repair-based search is
not even expressible in most implementations of CLP. For controlling tree search a
number of search control languages have been developed, including SALSA (Labur-
the and Caseau 1998), ToOLS (de Givry and Jeannin 2006) and search combinators
(Schrijvers et al. 2011). For repair search in a constraint programming framework
the Comet language (Van Hentenryck and Michel 2009) has been highly influential.
More recently Comet has been extended to support both repair-based search and
extension search.

A key feature of Comet is the concept of an “invariant”, which is a constraint
that retains information used during search. When implementing GSAT (Selman
et al. 1992), by way of example, an invariant is used to record, for each problem
variable in each search state, the change in the number of satisfied propositions that
would occur if the variable’s value were to be changed. The invariant is specified as
a constraint, but maintained by an efficient incremental algorithm.

14.9 Constraint Languages

14.9.1 Constraint Logic Programming

The earliest constraint programming languages, such as Ref-Arf and Alice, were
specialized to a particular class of algorithms. The first general-purpose constraint
programming languages were constraint handling systems embedded in logic progr-
amming (Jaffar and Lassez 1987; Van Hentenryck et al. 1992), called constraint
logic programming (CLP). Examples are CLP(fd), HAL, SICStus and ECLiPSe.
Certainly logic programming is an ideal host programming paradigm for constraints,
and CLP systems are widely used in industry and academia.

Logic programming is based on relations. In fact, every procedure in a logic pro-
gram can be read as a relation. However, the definition of a constraint is exactly the
same thing—a relation. Consequently, the extension of logic programming to CLP
is entirely natural. Logic programming also has backtrack search built-in, and this
is easily modified to accommodate constraint propagation. CLP has been enhanced
with some high-level control primitives, allowing active constraint behaviors to be
expressed with simplicity and flexibility. The direct representation of the application
in terms of constraints, together with the high-level control, results in short simple
programs. Since it is easy to change the model and, separately, the behavior of a

388 E.C. Freuder and M. Wallace

program, the paradigm supports experimentation with problem solving methods. In
the context of a rapid application methodology, it even supports experimentation
with the problem (model) itself.

14.9.2 Modeling Languages

On the other hand, operations researchers have introduced a wide range of highly so-
phisticated specialized algorithms for different classes of problems. These algorithms
are only applicable to special classes of problem models expressible in modeling
languages such as AMPL (Fourer et al. 2002) and AIMMS.

For many OR researchers CLP and Localizer are too powerful—they seek a
modeling language rather than a computer programming language in which to en-
code their problems. Traditional mathematical modeling languages used by OR re-
searchers have offered little control over the search and the constraint propagation.
OPL (Van Hentenryck 1999) and its more expressive successors Essence (Frisch
et al. 2007) and Zinc (Marriott et al. 2008) give more control to the algorithm de-
veloper. They represent a step towards a full constraint programming language.

By contrast, a number of application development environments (e.g. Visual
CHIP) have appeared recently that allow the developer to define and apply con-
straints graphically, rather than by writing a program. This represents a step in the
other direction!

14.9.3 Constraint Satisfaction and Optimization Systems

As constraint technology has matured the community has recognized that it is not a
standalone technology, but a weapon in an armory of mathematical tools for tack-
ling complex problems. Indeed, an emerging role for constraint programming is as a
framework for combining techniques such as constraint propagation, integer/linear
and quadratic programming, interval reasoning, global optimization and metaheuris-
tics.

Several systems are now available that support such a combination of tools
and techniques, including G12 (Stuckey et al. 2005), Comet (Van Hentenryck and
Michel 2009), IBM ILOG Optimization Studio, Microsoft Solver Foundation and
NumberJack, from the Cork Constraint Computation Center. These systems sup-
port alternative interfaces to enable their users to exploit the underlying tools in the
combination most suited to their particular applications.

A hybridization that has recently proven very successful is the combination of CP
with propositional satisfiability solvers (Nieuwenhuis et al. 2005; Stuckey 2010).

14 Constraint Programming 389

14.10 Applications

14.10.1 Current Areas of Application

Constraint programming is based on logic. Consequently any formal specification
of an industrial problem can be directly expressed in a constraint program. The
drawbacks of earlier declarative programming paradigms have been

• That the programmer had to encode the problem in a way that was efficient to
execute on a computer;

• That the end user of the application could not understand the formal specification.

The first breakthrough of constraint programming has been to separate the logical
representation of the problem from the efficient encoding in the underlying con-
straint solvers. This separation of logic from implementation has opened up a range
of applications in the area of control, verification and validation.

The second breakthrough of constraint programming has been in the area of
software engineering. The constraint paradigm has proven to accommodate a wide
variety of problem-solving techniques, and has enabled them to be combined into
hybrid techniques and algorithms, suited to whatever problem is being tackled.

As important as the algorithms to the success of constraint technology, has been
the facility to link models and solutions to a graphical user interface that makes
sense to the end user. Having developers display the solutions in a form intelligible
to the end users, forces the developers to put themselves into the shoes of the users.

Moreover, not only are the final solutions displayed to the user: it is also possi-
ble to display intermediate solutions found during search, or even partial solutions.
The ability to animate the search in a way that is intelligible to the end user means
the users can put themselves into the shoes of the developers. In this way the crucial
relationship and understanding between developers and end users is supported and
users feel themselves involved in the development of the software that will support
them in the future.

As a consequence, constraint technology has been applied very successfully in a
range of combinatorial problem-solving applications, extending those traditionally
tackled using operations research.

The two main application areas of constraint programming are, therefore,

1. Control, verification, and validation;
2. Combinatorial problem solving.

14.10.2 Applications in Control, Verification and Validation

Engineering relies increasingly on software, not only at the design stage, but also
during operation. Consider the humble photocopier. Photocopiers are not as hum-
ble as they used to be—each system comprises a multitude of components, such

390 E.C. Freuder and M. Wallace

as feeders, sorters, staplers and so on. The next generation of photocopiers will
have orders of magnitude more components than now. The challenge of maintain-
ing compatibility between the different components, and different versions of the
components, has become unmanageable.

Xerox has turned to constraint technology to specify the behavior of the different
components in terms of constraints. If a set of components are to be combined in
a system, constraint technology is applied to determine whether the components
will function correctly and coherently. The facility to specify behavior in terms of
constraints has enabled engineers at Xerox not only to simulate complex systems
in software but also to revise their specifications before constructing anything and
achieve compatibility first time.

Control software has traditionally been expressed in terms of finite-state ma-
chines. Proofs of safety and reachability are necessary to ensure that the system only
moves between safe states (e.g. the lift never moves while the door is open) and that
required states are reached (the lift eventually answers every request). Siemens has
applied constraint technology to validate control software, using techniques such
as Boolean unification to detect any errors. Similar techniques are also used by
Siemens to verify integrated circuits.

Constraint technology is also used to prove properties of software. For example,
abstract interpretation benefits from constraint technology in achieving the perfor-
mance necessary to extract precise information about concrete program behavior.

Finally, constraints are being used not only to verify software but to monitor
and restrict its behavior at runtime. Guardian Agents ensure that complex software,
in medical applications for example, never behaves in a way that contravenes the
certain safety and correctness requirements.

For applications in control, validation and verification, the role of constraints is to
model properties of complex systems in terms of logic, and then to prove theorems
about the systems. The main constraint reasoning used in this area is propositional
theorem proving. For many applications, even temporal properties are represented
in a form such that they can be proved using propositional satisfiability.

Nevertheless, the direct application of abstract interpretation to concurrent
constraint programs offers another way to prove properties of complex dynamic
systems.

14.10.3 Combinatorial Problem Solving

Commercially, constraint technology has made a huge impact in problem-solving ar-
eas such as transportation, logistics, network optimization, scheduling and timetabl-
ing, production control, configuration and design, and it is also showing tremendous
potential in new application areas such as bioinformatics and virtual-reality systems.

Starting with applications to transportation, constraint technology is now used
by airline, bus and railway companies all over the world. Applications include
timetabling, fleet scheduling, crew scheduling and rostering, stand, slot and plat-
form allocation.

14 Constraint Programming 391

Constraints have been applied in the logistics area for parcel delivery, food,
chilled goods, and even nuclear waste. As in other application areas, the major IT
system suppliers (such as SAP and I2) are increasingly adopting constraint
technology.

Constraints have been applied for Internet service planning and scheduling, for
minimizing traffic in banking networks, and for optimization and control of dis-
tribution and maintenance in water and gas pipe networks. Constraints are used for
network planning (bandwidth, routing, peering points), optimizing network flow and
pumping energy (for gas and water), and assessing user requirements.

Constraint technology appears to have established itself as the technology of
choice in the areas of short-term scheduling, timetabling and rostering. The flexi-
bility and scalability of constraints was proven in the European market (for example
at Dassault and Monsanto), but is now used worldwide.

It has been used for timetabling activities in schools and universities, for rostering
staff at hospitals, call centers, banks and even radio stations. An interesting and
successful application is the scheduling of satellite operations.

The chemical industry has an enormous range of complex production processes
whose scheduling and control is a major challenge, currently being tackled with
constraints. Oil refineries and steel plants also use constraints in controlling their
production processes. Indeed, many applications of constraints to production
scheduling also include production monitoring and control.

The majority of commercial applications of constraint technology have, to date,
used finite-domain propagation. Finite domains are a very natural way to represent
the set of machines that can carry out a task, the set of vehicles that can perform a
delivery, or the set of rooms/stands/platforms where an activity can be carried out.
Making a choice for one task, precludes the use of the same resource for any other
task which overlaps it, and propagation captures this easily and efficiently.

Naturally, most applications involve many groups of tasks and resources with
possibly complex constraints on their availability (for example, personnel regula-
tions may require that staff have 2 weekends off in 3, that they must have a day off
after each sequence of night-shifts, and that they must not work more than 40 h a
week). For complex constraints like this a number of special constraints have been
introduced which not only enable these constraints to be expressed quite naturally,
but also associate highly efficient specialized forms of finite-domain propagation
with each constraint.

14.10.4 Other Applications

14.10.4.1 Constraints and Graphics

An early use of constraints was for building graphical user interfaces. Now these in-
terfaces are highly efficient and scalable, allowing a diagram to be specified in terms
of constraints so that it still carries the same impact and meaning whatever the size
or shape of the display hardware. The importance of this functionality in the context

392 E.C. Freuder and M. Wallace

of the Internet and mobile computing is very clear, and constraint-based graphics
are likely to have a major impact in the near future. Constraints are also used in de-
sign, involving both spatial constraints and, in the case of real-time systems design,
temporal constraints.

14.10.4.2 Constraint Databases

Constraint databases have not yet made a commercial impact, but it is a good bet
that future information systems will store constraints as well as data values. The
first envisaged application of constraint databases is to geographical information
systems. Environmental monitoring will follow, and subsequently design databases
supporting both the design and maintenance of complex artifacts such as airplanes.

14.11 Potpourri

There are many more topics that could merit an additional section of their own. Here
we briefly sample a few of these. O’Sullivan (2012) discusses some opportunities
and challenges for constraint programming.

14.11.1 Dynamic Constraint Problems and Soft Constraints

We may need to handle problems that change over time (for example due to machine
breakdown, newly placed priority orders, or late running). Dynamic CSPs add or
delete constraints to produce a sequence of problems (Dechter and Dechter 1988).
After the problem changes, we might want to find a solution close to the solution
to the previous problem, or we may simply be interested in finding a new solution
as quickly as possible. We may seek robust solutions that are more likely to remain
solutions even if the problem does change.

14.11.2 Explanation

Users may feel more comfortable when an explanation can accompany a solution.
Explanation is particularly important when a problem is unsolvable. The user wants
to know why, and can use advice on modifying the problem to permit a solution,
or preferences can be codified a priori to guide subsequent search (Amilhastre et al.
2002). A related set of problems confronts the need constraint programmers have to
better understand the solution process. Explanation and visualization of this process
can assist in debugging constraint programs, computing solutions more quickly, and
finding solutions closer to optimal (Deransart et al. 2000; Junker 2004).

14 Constraint Programming 393

14.11.3 Synthesizing Models and Algorithms

Ideally people with constraints to satisfy or optimize would simply state their
problems, in a form congenial to the problem domain, and from this statement a
representation suited to efficient processing and an appropriate algorithm to do the
processing would be synthesized automatically. In practice, considerable human ex-
pertise is often needed to perform this synthesis. The challenge is to automate the
modelling and solving process (O’Sullivan 2010).

14.11.4 Distributed Processing

Distributed constraint processing arises in many contexts. There are parallel
algorithms for constraint satisfaction and concurrent constraint programming
languages. There are applications where the problem itself is distributed in some
manner. There are computing architectures that are naturally distributed, e.g. neu-
ral networks. There is synergy between constraint processing and software agents.
Agents have issues that are naturally viewed in constraint-based terms, e.g. nego-
tiation. Agents can be used to solve constraint satisfaction problems (Yokoo et al.
1998).

14.11.5 Uncertainty

Real-world problems may contain elements of uncertainty. Data may be problem-
atic. The future may not be known. For example, decisions about fuel purchases
may need to be made based on uncertain demand dependent on future weather pat-
terns. We want to model and compute with constraints in the presence of such un-
certainty (Walsh 2002). Many problems exhibit a form of symmetry (Cohen et al.
2006). For example, in the Queens problem discussed earlier, the two solutions are
symmetric in the sense that one is the “mirror image” of the other. Reducing or
“breaking” symmetries can save search. Avoiding symmetries is one consideration
in choosing how to model a problem. Given a model with symmetry, one can seek
to add constraints that break symmetry (Walsh 2012). For example, one could add a
constraint to the Queens problem requiring the queen in the first row to be placed in
one of the first two columns. There are also methods that avoid symmetry dynami-
cally during search by recognizing “symmetric” portions of the search space.

14.12 Tricks of the Trade

The constraints community uses a variety of different tools to solve complex prob-
lems. There are a number of constraint programming systems available, which sup-
port constraint propagation, search and a variety of other techniques. For pedagogical

394 E.C. Freuder and M. Wallace

purposes we will simply show the solution of a simple problem, solved using one
constraint programming system, MiniZinc. This system is free for research use, and
can be downloaded from www.g12.csse.unimelb.edu.au/minizinc.

We consider a one-machine scheduling problem. The requirement is to schedule
a set of tasks on a machine. Each task has a fixed duration, and each has an earliest
start time (the release date) and a latest end time (the due date). How should we
schedule the tasks so as to finish soonest?

In constraint programming a problem is handled in three stages:

1. Initialize the problem variables;
2. Constrain the variables;
3. Search for values for the variables that satisfy the constraints.

14.12.1 Initializing Variables

For a scheduling problem, we introduce a time horizon: all tasks will start and end
within this horizon. A variable is declared to represent the start time of each task and
this variable can only take a value between 0 (the start of our schedule) and the time
horizon. A completion time variable is also declared. This is the time when the last
task finishes, and also takes a value between 0 and the time horizon. In this model
we have fixed the number of tasks as 5 and the time horizon as 50. These variables
are encoded as follows:

int: Horizon = 50 ;
int: NTasks = 5 ;

array[1..NTasks] of var 0..Horizon: start ;
var 0..Horizon: all_completed ;

In this model we have chosen to represent time as a sequence of time points each
represented by an integer between 0 and 50.

14.12.2 Constrain the Variables

The start time of each task is constrained to be after the release date of the task, and
the end time before the due date. We write “forall (t in 1..NTasks)” in order to apply
the constraints to each of the five tasks.

array[1..NTasks] of int: Release_date = [0,10,11,20,25] ;
array[1..NTasks] of int: Duration = [12,10,8,10,5] ;
array[1..NTasks] of int: Due_date = [17,40,30,35,45] ;

www.g12.csse.unimelb.edu.au/minizinc

14 Constraint Programming 395

constraint forall (t in 1..NTasks)
(start[t] >= Release_date[t]) ;

constraint forall (t in 1..NTasks)
(start[t]+Duration[t] <= Due_date[t]) ;

The completion time is constrained to be greater than or equal to the end of each
task:

constraint forall (t in 1..NTasks)
(start[t] + Duration[t] <= all_completed) ;

(Later, during search, MiniZinc will find the minimum possible completion time,
which will ensure that it is actually equal to the end of one of the tasks.)

The interesting constraints are the ones that prevent two tasks running on the
machine at the same time. To express this condition, we define a “predicate”, which
states that either the second task starts after the first plus its duration or else (written
“\/”) the first task starts after the second plus its duration.

predicate not_at_same_time(1..NTasks: t1, 1..NTasks: t2) =
start[t1] + Duration[t1] <= start[t2]

\/ start[t2] + Duration[t2] <= start[t1] ;

The constraint enforces that this predicate holds for every pair of tasks:

constraint forall (t1,t2 in 1..NTasks where t1 < t2)
(not_at_same_time(t1,t2)) ;

Such a constraint, whose definition is an arbitrary predicate, cannot be expressed in
a mathematical modelling language.

14.12.3 Search and Propagation

MiniZinc has a default search where the user need only specify what expression
should be minimized, namely:

solve
minimize all_completed ;

However, it is normal in constraint programming for the user to specify the order in
which variables are assigned a value during search, and an order in which values are
tried. A static variable order can be specified for example as follows:

396 E.C. Freuder and M. Wallace

solve :: int_search(start, input_order, indomain_min, complete)
minimize all_completed ;

The part of the line after the “::” is termed an “annotation”. Annotations do not
change the logic of a model, but only add control. This annotation specifies that
the start variables should be assigned a value in the order that they appear in the
array. The first value to try is the earliest possible time point, and then later and later
time points when exploring other alternatives during search. The search should be
“complete” meaning every possible alternative should be explored until it is proven
that the best solution has been found.

Naturally MiniZinc does not have to try every time point for every task start time
because some values are ruled out by constraints (for example if the first task has
been assigned a start time of 0, then other tasks will only have possible start times
starting from the end of the first task—that is, time point 15).

Moreover, once a solution has been found more time points will be removed from
the set of alternatives for each task. For example if a solution has been found with a
completion time of 45 then, for the start time of the last task, all time points after 40
are ruled out.

The search control annotations offer many other possibilities. Instead of a static
order, the next variable to be assigned might be chosen on the basis of the current
search state. A common dynamic variable choice heuristic is to select next the vari-
able with the fewest alternative values remaining, which is called “first_fail”. Also
instead of selecting a value the next variable may simply have its set of alterna-
tives reduced by simply ruling out the higher valued ones as a group (this is termed
“domain splitting”). For scheduling tasks, domain splitting is an effective search
method. Thus we can control the search as follows:

solve :: int_search(start, first_fail, indomain_split, complete)
minimize all_completed ;

The whole MiniZinc program for solving the one-machine scheduling problem
is as follows. To run it load MiniZinc and run it on a file called “your_name.mzn”
containing this model.

int: Horizon = 50 ;
int: NTasks = 5 ;

array[1..NTasks] of var 0..Horizon: start ;
var 0..Horizon: all_completed ;

array[1..NTasks] of int: Release_date = [0,10,11,20,25] ;
array[1..NTasks] of int: Duration = [12,10,8,10,5] ;
array[1..NTasks] of int: Due_date = [17,40,30,35,45] ;

constraint forall (t in 1..NTasks)

14 Constraint Programming 397

(start[t] >= Release_date[t]) ;

constraint forall (t in 1..NTasks)
(start[t]+Duration[t] <= Due_date[t]) ;

constraint forall (t in 1..NTasks)
(start[t] + Duration[t] <= all_completed) ;

predicate not_at_same_time(1..NTasks: t1, 1..NTasks: t2) =
start[t1] + Duration[t1] <= start[t2]

\/ start[t2] + Duration[t2] <= start[t1] ;

constraint forall (t1,t2 in 1..NTasks where t1 < t2)
(not_at_same_time(t1,t2)) ;

solve :: int_search(start, first_fail, indomain_split, complete)
minimize all_completed ;

14.12.4 Introducing Redundant Constraints

The first way to enhance this algorithm is by adding a global constraint, specialized
for scheduling problems (see Global Constraints above). The new constraint does
not remove any solutions: it is logically redundant. However, its powerful propaga-
tion behavior enables parts of the search space, where no solutions lie, to be pruned.
Consequently, the number of search steps is reduced—dramatically for larger prob-
lems! The algorithm was devised by operations researchers, but it has been encap-
sulated by constraint programmers as a single constraint.

14.12.5 Adding Search Heuristics

The next enhancement is to choose at each search step, first the task with the earliest
due date. Whilst this does tend to yield feasible solutions, it does not necessarily
produce good solutions, until the end time constraints become tight.

14.12.6 Using an Incomplete Search Technique

For very large problems, complete search may not be possible. In this case the al-
gorithm may be controlled so as to limit the effort wasted in exploring unpromising

398 E.C. Freuder and M. Wallace

parts of the search space. This can be done simply by limiting the number of times
a non-preferred ordering of tasks is imposed during search and backtracking.

The above techniques combine very easily, and the combination is very powerful
indeed. As a result, constraint programming is currently the technology of choice
for operational scheduling problems where task orderings are significant.

Sources of Additional Information

Sources of information about constraint programming include:

• The International Conferences on Principles and Practice of Constraint Programm-
ing, whose proceedings are available in the Springer LNCS series;

• The International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CPAIOR),
whose proceedings are also published in Springer LNCS;

• The Constraints journal published by Springer;
• Handbook of Constraint Programming, ed. Rossi et al., Elsevier, 2006;
• Constraint Processing, Rina Dechter. Morgan Kaufmann, 2003;
• Programming with Constraints: an Introduction, Kim Marriott and Peter Stuckey.

MIT Press, 1998;
• Online Guide to Constraint Programming, maintained by Roman Barták:

http://kti.ms.mff.cuni.cz/~bartak/constraints/
• Constraints groups:

– http://tech.groups.yahoo.com/group/constraints/
– http://groups.google.ie/group/comp.constraints

• The Association for Constraint Programming: http://4c.ucc.ie/a4cp/
• Constraint Programming Online: http://4c.ucc.ie/cponline/

Acknowledgements Some of this material is based upon works supported by the Science Foun-
dation Ireland under Eugene Freuder’s Grant No. 00/PI.1/C075; some of his contribution to this
chapter was prepared while he was at the University of New Hampshire. Richard Wallace and Dan
Sabin provided some assistance. The contents of this chapter overlap with a chapter by the same
authors on Constraint Satisfaction in the Handbook of Metaheuristics, edited by Fred W. Glover
and Gary A. Kochenberger, and published by Kluwer Academic Press.

References

Amilhastre J, Fargier H, Marquis P (2002) Consistency restoration and explanations
in dynamic CSPs—application to configuration. Artif Intell 135:199–234

Bacchus F, Chen X, van Beek P, Walsh T (2002) Binary vs non-binary constraints.
Artif Intell 140:1–37

http://kti.ms.mff.cuni.cz/~bartak/constraints/
http://tech.groups.yahoo.com/group/constraints/
http://groups.google.ie/group/comp.constraints
http://4c.ucc.ie/a4cp/
http://4c.ucc.ie/cponline/

14 Constraint Programming 399

Bessière C, Régin J (2001) Refining the basic constraint propagation algorithm. In:
Proc. 17th IJCAI, Seattle, pp 309–315

Bistarelli S, Fargier H, Montanari U, Rossi F, Schiex T, Verfaille G (1996) Semiring-
based CSPs and valued CSPs: basic properties. In: Jampel M et al (eds) Over-
constrained systems. LNCS 1106. Springer, Berlin, pp 111–150

Cheeseman P, Kanefsky B, Taylor W (1991) Where the really hard problems are.
In: Proc. 12th IJCAI, Sydney. Morgan Kaufmann, San Mateo, pp 331–337

Cheng B, Choi K, Lee J, Wu J (1999) Increasing constraint propagation by redun-
dant modeling: an experience report. Constraints 4:167–192

Cohen C, Jeavons P, Jefferson C, Petrie K, Smith B (2006) Symmetry definitions
for constraint satisfaction problems. Constraints 11:115–137

Debruyne R, Bessière C (2001) Domain filtering consistencies. J Artif Intell Res
14:205–230

Dechter R (1990) Enhancement schemes for constraint processing: backjumping,
learning, and cutset decomposition. Artif Intell 41:273–312

Dechter R (2003) Constraint processing. Morgan Kaufmann, San Mateo
Dechter R, Dechter A (1988) Belief maintenance in dynamic constraint networks.

In: Proc. 7th AAAI, Saint Paul, pp 37–42
Dechter R, Frost D (2002) Backjump-based backtracking for constraint satisfaction

problems. Artif Intell 136:147–188
Dechter R, Meiri I, Pearl J (1991) Temporal constraint networks. Artif Intell

49:61–95
de Givry S, Jeannin L (2006) A unified framework for partial and hybrid search

methods in constraint programming. Comput OR 33:2805–2833
Deransart P, Hermenegildo M, Maluszynski J (eds) (2000) Analysis and visualiza-

tion tools for constraint programming. LNCS 1870. Springer, Berlin
Fourer R, Gay DM, Kernighan BW (2002) AMPL: a modeling language for mathe-

matical programming. Duxbury, Pacific Grove
Freuder E (1978) Synthesizing constraint expressions. Commun ACM 11:958–966
Freuder E (1982) A sufficient condition for backtrack-free search. J Assoc Comput

Mach 29:24–32
Freuder E (1985) A sufficient condition for backtrack-bounded search. J Assoc

Comput Mach 32:755–761
Freuder E (1991) Eliminating interchangeable values in constraint satisfaction prob-

lems. In: Proc. 9th AAAI, Anaheim, pp 227–233
Freuder E, Wallace R (1992) Partial constraint satisfaction. Artif Intell 58:21–70
Frisch A, Grum M, Jefferson C, Martinez M, Miguel I (2007) The design of

ESSENCE: a constraint language for specifying combinatorial problems. In:
Proc. 20th IJCAI, Hyderabad, pp 80–87

Gomes C, Selman B, Crato N (1997) Heavy-tailed distributions in combinatorial
search. In: Principles and practice of constraint programming-CP97. LNCS 1330.
Springer, Berlin

Harvey W, Ginsberg M (1995) Limited discrepancy search. In: Proc. 14th IJCAI
1995, Montreal, pp 607–615

400 E.C. Freuder and M. Wallace

Jaffar J, Lassez J-L (1987) Constraint logic programming. In: Proceedings of the an-
nual ACM symposium on principles of programming languages, Munich. ACM,
New York, pp 111–119

Jeavons P, Cooper M (1995) Tractable constraints on ordered domains. Artif Intell
79:327–339

Junker U (2004) QUICKXPLAIN: preferred explanations and relaxations for over-
constrained problems. In: Proc. 16th AAAI 2004, San Jose, pp 167–172

Katsirelos G, Bacchus F (2005) Generalized NoGoods in CSPs. In: Proceedings of
the AAAI, Pittsburgh, pp 390–396

Kondrak G, van Beek P (1997) A theoretical evaluation of selected backtracking
algorithms. Artif Intell 89:365–387

Laburthe F, Caseau Y (1998) SALSA: a language for search algorithms. In: Proceed-
ings of the 4th international conference on the principles and practice of constraint
programming, Pisa, pp 310–324

Mackworth A (1977) Consistency in networks of relations. Artif Intell 8:99–118
Marriott K, Nethercote N, Rafeh R, Stuckey PJ, Garcia de la Banda M, Wallace M

(2008) The design of the Zinc modelling language. Constraints 13:229–267
Minton S, Johnston MD, Philips AB, Laird P (1992) Minimizing conflicts: a

heuristic repair method for constraint satisfaction and scheduling. Artif Intell
58:161–205

Nieuwenhuis R, Oliveras A, Tinelli C (2005) Abstract DPLL and abstract DPLL
modulo theories. In: Logic for programming, artificial intelligence, and reason-
ing. LNCS 3452. Springer, Berlin, pp 36–50

O’Sullivan B (2010) Automated modelling and solving in constraint programm-
ing. In: Proceedings of the 24th National Conference on Artificial Intelligence,
Atlanta, AAAI Palo Alto, pp 1493–1497

O’Sullivan B (2012) Opportunities and challenges for constraint programming. In:
Proceedings of the 26th National Conference on Artificial Intelligence, Atlanta,
Toronto, AAAI Palo Alto, pp 2148–2152

Refalo P (2004) Impact-based search strategies for constraint programming. In: Pro-
ceedings of the international conference on constraint programming (CP 2004),
Toronto. LNCS 3258. Springer, Berlin, pp 557–571

Régin J-C (1994) A filtering algorithm for constraints of difference in CSPs. In:
Proc. 12th AAAI, Seattle, pp 362–367

Régin J-C (2001) Minimization of the number of breaks in sports scheduling prob-
lems using constraint programming. In: Freuder E, Wallace R (eds) Constraint
programming and large scale discrete optimization. DIMACS 57. AMS, Provi-
dence, pp 115–130

Sabin D, Freuder E (1997) Understanding and improving the MAC algorithm. In:
Principles and practice of constraint programming—Proc CP 1997, Linz. LNCS
1330. Springer, Berlin, pp 167–181

Schrijvers T, Tack G, Wuille P, Samulowitz H, Stuckey PJ (2011) Search combina-
tors. In: Proceedings of the international conference on constraint programming
(CP 2011), Perugia. LNCS 6876. Springer, Berlin, pp 774–788

14 Constraint Programming 401

Selman B, Levesque H, Mitchell D (1992) A new method for solving hard satisfia-
bility problems. In: Proc. 10th AAAI, San Jose, pp 440–446

Stuckey P (2010) Lazy clause generation: combining the power of SAT and CP
(and MIP?) solving. In: Integration of AI and OR techniques in constraint
programming for combinatorial optimization problems. LNCS 6140. Springer,
Berlin, pp 5–9

Stuckey PJ, Garcia de la Banda M, Maher M, Marriott K, Slaney J, Somogyi Z,
Wallace M, Walsh T (2005) The G12 project: mapping solver independent models
to efficient solutions. Logic programming, 21st international conference. LNCS
3668. Springer, Berlin, pp 9–13

Tsang E (1993) Foundations of constraint satisfaction. Academic, London
Van Hentenryck P (1999) The OPL optimization programming language. MIT,

Cambridge
Van Hentenryck P, Michel L (2009) Constraint-based local search. MIT, Cambridge
Van Hentenryck P, Simonis H, Dincbas M (1992) Constraint satisfaction using con-

straint logic programming. Artif Intell 58:113–159
Walsh T (2002) Stochastic constraint programming. In: Proceedings of the ECAI-

2002, Lyon. IOS, Amsterdam, pp 111–115
Walsh T (2012) Symmetry breaking constraints: recent results. In: Proc. 26th AAAI,

Toronto, pp 2192–2198
Yokoo M, Durfee E, Ishida T, Kuwabara K (1998) The distributed CSP: formaliza-

tion and algorithms. IEEE Trans Knowl Data Eng 10:673–685

Chapter 15

Multi-objective Optimization

Kalyanmoy Deb

15.1 Introduction

Multi-objective optimization is an integral part of optimization activities and has a
tremendous practical importance, since almost all real-world optimization problems
are ideally suited to be modeled using multiple conflicting objectives. The classi-
cal means of solving such problems were primarily focused on scalarizing multi-
ple objectives into a single objective, whereas the evolutionary means have been
to solve a multi-objective optimization problem as it is. In this chapter, we discuss
the fundamental principles of multi-objective optimization, the differences between
multi-objective optimization and single-objective optimization, and describe a few
well-known classical and evolutionary algorithms for multi-objective optimization.
Two application case studies reveal the importance of multi-objective optimization
in practice. A number of research challenges are then highlighted. The chapter con-
cludes by suggesting a few tricks of the trade and mentioning some key resources
to the field of multi-objective optimization.

Many real-world search and optimization problems are naturally posed as non-
linear programming problems having multiple conflicting objectives. Due to lack
of suitable solution techniques, such problems were artificially converted into a
single-objective problem and solved. The difficulty arose because such problems
give rise to a set of trade-off optimal solutions (known as Pareto-optimal solutions),
instead of a single optimum solution. It then becomes important to find not just one

K. Deb (�)
Koenig Endowed Chair Professor, Department of Electrical and Computer Engineering, Michigan
State University, East Lansing, 428 S. Shaw Lane, 2120 EB, MI 48824, USA

Professor, Department of Computer Science, Michigan State University, East Lansing, MI, USA

Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA
e-mail: kdeb@egr.msu.edu

E.K. Burke and G. Kendall (eds.), Search Methodologies: Introductory Tutorials
in Optimization and Decision Support Techniques, DOI 10.1007/978-1-4614-6940-7_15,
© Springer Science+Business Media New York 2014

403

mailto:kdeb@egr.msu.edu

404 K. Deb

Pareto-optimal solution, but as many of them as possible. This is because any two
such solutions constitute a trade-off between the objectives, and users will be in a
better position to make a choice when such trade-off solutions are unveiled.

Classical methods use a different philosophy in solving these problems, mainly
because of a lack of a suitable optimization methodology to find multiple optimal
solutions efficiently. They usually require repetitive applications of an algorithm
to find multiple Pareto-optimal solutions and on some occasions such applications
do not even guarantee the finding of any Pareto-optimal solutions. In contrast, the
population approach of evolutionary algorithms (EAs) is an efficient way to find
multiple Pareto-optimal solutions simultaneously in a single simulation run. This
aspect has made research and applications in evolutionary multi-objective optimiza-
tion (EMO) popular over the past one-and-half decades. The interested reader may
explore current research issues and other important studies in various texts (Deb
2001; Coello et al. 2002; Goh and Tan 2009; Bagchi 1999), conference proceedings
(Zitzler et al. 2001a; Fonseca et al. 2003; Coello et al. 2005; Obayashi et al. 2007;
Ehrgott et al. 2009; Takahashi et al. 2011) and numerous research papers (archived
and maintained in Coello 2003).

In this tutorial, we discuss the fundamental differences between single- and
multi-objective optimization tasks. The conditions for optimality in a multi-objective
optimization problem are described and a number of state-of-the-art multi-objective
optimization techniques, including one evolutionary method are presented. To
demonstrate that the evolutionary multi-objective methods are capable and ready
for solving real-world problems, we present a couple of interesting case studies.
Finally, a number of important research topics in the area of EMO are discussed.

A multi-objective optimization problem (MOOP) deals with more than one ob-
jective function. In most practical decision-making problems, multiple objectives or
multiple criteria are evident. Because of a lack of suitable solution methodologies, a
MOOP has been mostly cast and solved as a single-objective optimization problem
in the past. However, there exist a number of fundamental differences between the
working principles of single- and multi-objective optimization algorithms because
of which the solution of a MOOP must be attempted using a multi-objective opti-
mization technique. In a single-objective optimization problem, the task is to find
one solution (except in some specific multi-modal optimization problems, where
multiple optimal solutions are sought) which optimizes the sole objective function.
Extending the idea to multi-objective optimization, it may be wrongly assumed that
the task in a multi-objective optimization is to find an optimal solution correspond-
ing to each objective function. Certainly, multi-objective optimization is much more
than this simple idea. We describe the concept of multi-objective optimization by
using an example problem.

Let us consider the decision-making involved in buying an automobile car. Cars
are available at prices ranging from a few thousand to few hundred thousand dol-
lars. Let us take two extreme hypothetical cars, i.e. one costing about 10,000 dollars
(solution 1) and another costing about a 100,000 dollars (solution 2), as shown in
Fig. 15.1. If the cost is the only objective of this decision-making process, the opti-
mal choice is solution 1. If this were the only objective to all buyers, we would have

15 Multi-objective Optimization 405

B

C

C
o
m
f
o
r
t

Cost
100k10k

90%

1

2

A

40%

Fig. 15.1 Hypothetical trade-off solutions are illustrated for a car-buying decision-making problem

seen only one type of car (solution 1) on the road and no car manufacturer would
have produced any expensive cars. Fortunately, this decision-making process is not
a single-objective one. Barring some exceptions, it is expected that an inexpensive
car is likely to be less comfortable. The figure indicates that the cheapest car has
a hypothetical comfort level of 40 %. To rich buyers for whom comfort is the only
objective of this decision-making, the choice is solution 2 (with a hypothetical max-
imum comfort level of 90 %, as shown in the figure). This so-called two-objective
optimization problem need not be considered as the two independent optimiza-
tion problems, the results of which are the two extreme solutions discussed above.
Between these two extreme solutions, there exist many other solutions, where a
trade-off between cost and comfort exists. A number of such solutions (solutions A,
B and C) with differing costs and comfort levels are also shown in the figure. Thus,
between any two such solutions, one is better in terms of one objective, but this
betterment comes only from a sacrifice on the other objective. In this sense, all such
trade-off solutions are optimal solutions to a MOOP. Often, such trade-off solutions
provide a clear front on an objective space plotted with the objective values. This
front is called the Pareto-optimal front and all such trade-off solutions are called
Pareto-optimal solutions.

15.1.1 How Is It Different from Single-Objective Optimization?

It is clear from the above description that there exist a number of differences be-
tween single- and multi-objective optimization tasks. The latter have the following
properties:

406 K. Deb

• Cardinality of the optimal set is usually more than one,
• There are two distinct goals of optimization, instead of one, and
• They possess two different search spaces.

We discuss each of the above properties in the following paragraphs.
First of all, we have seen from the above car-buying example that a multi-

objective optimization with conflicting objectives results in a number of Pareto-
optimal solutions, unlike the usual notion of only one optimal solution associated
with a single-objective optimization task. However, there exist some single-objective
optimization problems which also contain multiple optimal solutions (of equal or
unequal importance). In some sense, multi-objective optimization is similar to that
in such multi-modal optimization tasks. However, in principle, there is a difference,
which we would like to highlight here. In most MOOPs, the Pareto-optimal solu-
tions have certain similarities in their decision variables (Deb 2003). On the other
hand, between one local or global optimal solution and another in a multi-modal
optimization problem, there may not exist any such similarity. For a number of en-
gineering case studies (Deb 2003), an analysis of the obtained trade-off solutions
revealed the following properties:

• Among all Pareto-optimal solutions, some decision variables take identical
values. Such a property of the decision variables means that the solution is an
optimum solution.

• Other decision variables take different values causing the solutions to have a
trade-off in their objective values.

Secondly, unlike the sole goal of finding the optimum in a single-objective
optimization, here there are two distinct goals:

• Convergence to the Pareto-optimal solutions and
• Maintenance of a set of maximally spread Pareto-optimal solutions.

In a sense, these goals are independent of each other. An optimization algorithm
must have specific properties for achieving each of the goals.

One other difference between single-objective and multi-objective optimization
is that in multi-objective optimization the objective functions constitute a multi-
dimensional space, in addition to the usual decision variable space common to
all optimization problems. This additional space is called the objective space, Z.
For each solution x in the, there exists a point in the objective space, denoted by
f(x) = z = (z1,z2, . . . ,zM)T . The mapping takes place between an n-dimensional so-
lution vector and an M-dimensional objective vector. Figure 15.2 illustrates these
two spaces and a mapping between them. Although the search process of an al-
gorithm takes place on the decision variables space, many interesting algorithms
(particularly MOEAs) use the objective space information in their search operators.
However, the presence of two different spaces introduces a number of interesting
flexibilities in designing a search algorithm for multi-objective optimization.

15 Multi-objective Optimization 407

f1

f2

x1

x2

x3
Decision space Objective space

z

x

Fig. 15.2 Representation of the decision variable space and the corresponding objective space

15.2 Two Approaches to Multi-objective Optimization

Although the fundamental difference between single- and multiple-objective opti-
mization lies in the cardinality in the optimal set, from a practical standpoint a user
needs only one solution, no matter whether the associated optimization problem is
single-objective or multi-objective. In the case of multi-objective optimization, the
user is now in a dilemma. Which of these optimal solutions must one choose? Let us
try to answer this question for the case of the car-buying problem. Knowing the num-
ber of solutions that exist in the market with different trade-offs between cost and
comfort, which car does one buy? This is not an easy question to answer. It involves
many other considerations, such as the total finance available to buy the car, distance
to be driven each day, number of passengers riding in the car, fuel consumption
and cost, depreciation value, road conditions where the car is to be mostly driven,
physical health of the passengers, social status and many other factors. Often, such
higher-level information is non-technical, qualitative and experience-driven. How-
ever, if a set of trade-off solutions are already worked out or available, one can eval-
uate the pros and cons of each of these solutions based on all such non-technical and
qualitative, yet still important, considerations and compare them to make a choice.
Thus, in a multi-objective optimization, ideally the effort must be in finding the set
of trade-off optimal solutions by considering all objectives to be important. After a
set of such trade-off solutions are found, a user can then use higher-level qualitative
considerations to make a choice. Therefore, we suggest the following principle for
an ideal multi-objective optimization procedure:

Step 1 Find multiple trade-off optimal solutions with a wide range of values for
objectives.

Step 2 Choose one of the obtained solutions using higher-level information.

408 K. Deb

IDEAL

Multi−objective

optimizer

Higher−level

information

Minimize f1

Minimize fM

Multiple trade−off

solutions found

......
Minimize f2

subject to constraints

Multi−objective

optimization problem

S
t
e
p

1

Step 2

Choose one

solution

Fig. 15.3 Schematic of an ideal multi-objective optimization procedure

Figure 15.3 shows schematically the principles in an ideal multi-objective opti-
mization procedure. In Step 1 (vertically downwards), multiple trade-off solutions
are found. Thereafter, in Step 2 (horizontally, towards the right), higher-level in-
formation is used to choose one of the trade-off solutions. With this procedure in
mind, it is easy to realize that single-objective optimization is a degenerate case of
multi-objective optimization. In the case of single-objective optimization with only
one global optimal solution, Step 1 will find only one solution, thereby not requiring
us to proceed to Step 2. In the case of single-objective optimization with multiple
global optima, both steps are necessary to first find all or many of the global optima
and then to choose one from them by using the higher-level information about the
problem.

If thought of carefully, each trade-off solution corresponds to a specific order of
importance of the objectives. It is clear from Fig. 15.1 that solution A assigns more
importance to cost than to comfort. On the other hand, solution C assigns more im-
portance to comfort than to cost. Thus, if such a relative preference factor among
the objectives is known for a specific problem, there is no need to follow the above
principle for solving a MOOP. A simple method would be to form a composite
objective function as the weighted sum of the objectives, where a weight for an ob-
jective is proportional to the preference factor assigned to that particular objective.
This method of scalarizing an objective vector into a single composite objective
function converts the MOOP into a single-objective optimization problem. When
such a composite objective function is optimized, in most cases it is possible to ob-
tain one particular trade-off solution. This procedure of handling MOOPs is much
simpler, though still being more subjective than the above ideal procedure. We call

15 Multi-objective Optimization 409

optimization problem

Minimize f
1

Single−objective

optimization problem

F = w
1
 f

1
 + w

2
 f

2
 +...+ w

M
 f

M

or

a composite function

Multi−objective

......

Minimize f
M

Minimize f
2

Higher−level

information

One optimum

solution

Single−objective

optimizer

Estimate a

relative

importance

vector

(w
1
w
2
..w

M
)

subject to constraints

Fig. 15.4 Schematic of a preference-based multi-objective optimization procedure

this procedure a preference-based multi-objective optimization. A schematic of this
procedure is shown in Fig. 15.4. Based on the higher-level information, a preference
vector w is first chosen. Thereafter, the preference vector is used to construct the
composite function, which is then optimized to find a single trade-off optimal so-
lution by a single-objective optimization algorithm. Although not often practiced,
the procedure can be used to find multiple trade-off solutions by using a different
preference vector and repeating the above procedure.

It is important to appreciate that the trade-off solution obtained by using the
preference-based strategy is largely sensitive to the relative preference vector used
in forming the composite function. A change in this preference vector will re-
sult in a (hopefully) different trade-off solution. Besides this difficulty, it is intu-
itive to realize that finding a relative preference vector itself is highly subjective
and not straightforward. This requires an analysis of the non-technical, qualitative
and experience-driven information to find a quantitative relative preference vector.
Without any knowledge of the likely trade-off solutions, this is an even more dif-
ficult task. Classical multi-objective optimization methods which convert multiple
objectives into a single objective by using a relative preference vector of objectives
work according to this preference-based strategy. Unless a reliable and accurate
preference vector is available, the optimal solution obtained by such methods is
highly subjective to the particular user.

The ideal multi-objective optimization procedure suggested earlier is less sub-
jective. In Step 1, a user does not need any relative preference vector information.
The task there is to find as many different trade-off solutions as possible. Once
a well-distributed set of trade-off solutions is found, Step 2 then requires certain
problem information in order to choose one solution. It is important to mention that
in Step 2, the problem information is used to evaluate and compare each of the
obtained trade-off solutions. In the ideal approach, the problem information is not
used to search for a new solution; instead, it is used to choose one solution from a
set of already obtained trade-off solutions. Thus, there is a fundamental difference in

410 K. Deb

using the problem information in both approaches. In the preference-based approach,
a relative preference vector needs to be supplied without any knowledge of the pos-
sible consequences. However, in the proposed ideal approach, the problem infor-
mation is used to choose one solution from the obtained set of trade-off solutions.
We argue that the ideal approach in this matter is more methodical, more practical,
and less subjective. At the same time, we highlight the fact that if a reliable relative
preference vector is available to a problem, there is no reason to find other trade-off
solutions. In such a case, a preference-based approach would be adequate.

In the next section, we make the above qualitative idea of multi-objective opti-
mization more quantitative.

15.3 Non-dominated Solutions and Pareto-Optimal Solutions

Most multi-objective optimization algorithms use the concept of dominance in their
search. Here, we define the concept of dominance and related terms and present a
number of techniques for identifying dominated solutions in a finite population of
solutions.

15.3.1 Special Solutions

We first define some special solutions which are often used in multi-objective opti-
mization algorithms.

15.3.1.1 Ideal Objective Vector

For each of the M conflicting objectives, there exists one different optimal solu-
tion. An objective vector constructed with these individual optimal objective values
constitutes the ideal objective vector.

Definition 15.1. The mth component of the ideal objective vector z∗ is the con-
strained minimum solution of the following problem:

Minimize fm(x)
subject to x ∈ S

}

. (15.1)

Thus, if the minimum solution for the mth objective function is the decision vector
x∗(m) with function value f ∗m, the ideal vector is as follows:

z∗ = f∗ = (f ∗1 , f ∗2 , . . . , f ∗M)T .

In general, the ideal objective vector (z∗) corresponds to a non-existent solution
(Fig. 15.5). This is because the minimum solution of Eq. (15.1) for each objective
function need not be the same solution. The only way an ideal objective vector

15 Multi-objective Optimization 411

*

z

W

z

**
*

(f1
max, f2

max)

z*
(1)

(2)z

nad

f2

f1

z

Fig. 15.5 The ideal, utopian and nadir objective vectors

corresponds to a feasible solution is when the minimal solutions to all objective
functions are identical. In this case, the objectives are not conflicting to each other
and the minimum solution to any objective function would be the only optimal so-
lution to the MOOP. Although the ideal objective vector is usually non-existent, it
is also clear from Fig. 15.5 that solutions closer to the ideal objective vector are bet-
ter. Moreover, many algorithms require the knowledge of the lower bound on each
objective function to normalize objective values in a common range.

15.3.1.2 Utopian Objective Vector

The ideal objective vector denotes an array of the lower bound of all objective func-
tions. This means that for every objective function there exists at least one solution in
the feasible search space sharing an identical value with the corresponding element
in the ideal solution. Some algorithms may require a solution which has an objective
value strictly better than (and not equal to) that of any solution in the search space.
For this purpose, the utopian objective vector is defined as follows.

Definition 15.2. A utopian objective vector z∗∗ has each of its components
marginally smaller than that of the ideal objective vector, or z∗∗i = z∗i −εi with εi > 0
for all i = 1,2, . . . ,M.

Figure 15.5 shows a utopian objective vector. Like the ideal objective vector, the
utopian objective vector also represents a non-existent solution.

15.3.1.3 Nadir Objective Vector

Unlike the ideal objective vector which represents the lower bound of each objec-
tive in the entire feasible search space, the nadir objective vector znad represents

412 K. Deb

the upper bound of each objective in the entire Pareto-optimal set, and not in the
entire search space. A nadir objective vector must not be confused with a vector of
objectives (marked as “W” in Fig. 15.5) found by using the worst feasible function
values f max

i in the entire search space. The nadir objective vector may represent an
existent or a non-existent solution, depending on the convexity and continuity of
the Pareto-optimal set. In order to normalize each objective in the entire range of
the Pareto-optimal region, the knowledge of nadir and ideal objective vectors can
be used as follows:

f norm
i =

fi− z∗i
znad

i − z∗i
. (15.2)

15.3.2 Concept of Domination

Most multi-objective optimization algorithms use the concept of domination. In
these algorithms, two solutions are compared on the basis of whether one domi-
nates the other or not. We will describe the concept of domination in the following
paragraph.

We assume that there are M objective functions. In order to cover both mini-
mization and maximization of objective functions, we use the operator ⊳ between
two solutions i and j as i ⊳ j to denote that solution i is better than solution j on a
particular objective. Similarly, i ⊲ j for a particular objective implies that solution i
is worse than solution j on this objective. For example, if an objective function is
to be minimized, the operator ⊳ would mean the “<” operator, whereas if the objec-
tive function is to be maximized, the operator ⊳ would mean the “>” operator. The
following definition covers mixed problems with minimization of some objective
functions and maximization of the rest of them.

Definition 15.3. A solution x(1) is said to dominate the other solution x(2) if both
conditions 1 and 2 are true:

1. The solution x(1) is no worse than x(2) in all objectives, or f j(x
(1)) ⋫ f j(x

(2)) for
all j = 1,2, . . . ,M.

2. The solution x(1) is strictly better than x(2) in at least one objective, or f j̄(x
(1))⊳

f j̄(x
(2)) for at least one j̄ ∈ {1,2, . . . ,M}.

If either of these conditions is violated, the solution x(1) does not dominate the
solution x(2). If x(1) dominates the solution x(2) (or mathematically x(1) � x(2)), it is
also customary to write any of the following:

• x(2) is dominated by x(1)

• x(1) is non-dominated by x(2) or
• x(1) is non-inferior to x(2).

Let us consider a two-objective optimization problem with five different solu-
tions shown in the objective space, as illustrated in Fig. 15.6a. Let us also assume

15 Multi-objective Optimization 413

14

3

f1 (maximize)

6 10 182 14

f1 (maximize)

6 10 182

1

3

5

1

3

5

4

1 5

2

f2 (minimize) f2 (minimize)

2

Level 2

Level 1

Level 3

1

4

5

3

a b

Fig. 15.6 A set of five solutions and the corresponding non-dominated fronts

that the objective function 1 needs to be maximized while the objective function 2
needs to be minimized. Five solutions with different objective function values are
shown in this figure. Since both objective functions are of importance to us, it is
usually difficult to find one solution which is best with respect to both objectives.
However, we can use the above definition of domination to decide which solution
is better among any two given solutions in terms of both objectives. For example,
if solutions 1 and 2 are to be compared, we observe that solution 1 is better than
solution 2 in objective function 1 and solution 1 is also better than solution 2 in
objective function 2. Thus, both of the above conditions for domination are satisfied
and we may write that solution 1 dominates solution 2. We take another instance of
comparing solutions 1 and 5. Here, solution 5 is better than solution 1 in the first
objective and solution 5 is no worse (in fact, they are equal) than solution 1 in the
second objective. Thus, both the above conditions for domination are also satisfied
and we may write that solution 5 dominates solution 1.

It is intuitive that if a solution x(1) dominates another solution x(2), the solution
x(1) is better than x(2) in the parlance of multi-objective optimization. Since the
concept of domination allows a way to compare solutions with multiple objectives,
most multi-objective optimization methods use this domination concept to search
for non-dominated solutions.

15.3.3 Properties of Dominance Relation

Definition 15.3 defines the dominance relation between any two solutions. There
are three possibilities that can be the outcome of the dominance check between two
solutions 1 and 2. That is (i) solution 1 dominates solution 2, (ii) solution 1 gets
dominated by solution 2, or (iii) solutions 1 and 2 do not dominate each other. Let
us now discuss the different binary relation properties (Cormen et al. 1990) of the
dominance operator.

414 K. Deb

• Reflexive. The dominance relation is not reflexive, since any solution p does not
dominate itself according to Definition 15.3. The second condition of dominance
relation in Definition 15.3 does not allow this property to be satisfied.

• Symmetric. The dominance relation is also not symmetric, because p � q does
not imply q � p. In fact, the opposite is true. That is, if p dominates q, then q
does not dominate p. Thus, the dominance relation is asymmetric.

• Antisymmetric. Since the dominance relation is not symmetric, it cannot be anti-
symmetric as well.

• Transitive. The dominance relation is transitive. This is because if p � q and
q� r, then p� r.

There is another interesting property that the dominance relation possesses. If solu-
tion p does not dominate solution q, this does not imply that q dominates p.

In order for a binary relation to qualify as an ordering relation, it must be at
least transitive (Chankong and Haimes 1983). Thus, the dominance relation qualifies
as an ordering relation. Since the dominance relation is not reflexive, it is a strict
partial order. In general, if a relation is reflexive, antisymmetric and transitive, it
is loosely called a partial order and a set on which a partial order is defined is
called a partially ordered set. However, it is important to note that the dominance
relation is not reflexive and is not antisymmetric. Thus, the dominance relation is
not a partial-order relation in its general sense. The dominance relation is only a
strict partial-order relation.

15.3.4 Pareto Optimality

Continuing with the comparisons in the previous section, let us compare solutions 3
and 5 in Fig. 15.6, because this comparison reveals an interesting aspect. We observe
that solution 5 is better than solution 3 in the first objective, while solution 5 is worse
than solution 3 in the second objective. Thus, the first condition is not satisfied for
both of these solutions. This simply suggests that we cannot conclude that solution 5
dominates solution 3, nor can we say that solution 3 dominates solution 5. When this
happens, it is customary to say that solutions 3 and 5 are non-dominated with respect
to each other. When both objectives are important, it cannot be said which of the two
solutions 3 and 5 is better.

For a given finite set of solutions, we can perform all possible pair-wise
comparisons and find which solution dominates which and which solutions are
non-dominated with respect to each other. At the end, we expect to have a set of
solutions, any two of which do not dominate each other. This set also has another
property. For any solution outside of this set, we can always find a solution in this set
which will dominate the former. Thus, this particular set has a property of dominat-
ing all other solutions which do not belong to this set. In simple terms, this means
that the solutions of this set are better compared to the rest of the solutions. This
set is given a special name. It is called the non-dominated set for the given set of

15 Multi-objective Optimization 415

Min−−Max

f1

f2

Min−−Min

Max−−Min Max−−Max

f2

f1

f2

f
1

f2

f1

Fig. 15.7 Pareto-optimal solutions are marked with continuous curves for four combinations of
two types of objectives

solutions. In the example problem, solutions 3 and 5 constitute the non-dominated
set of the given set of five solutions. Thus, we define a set of non-dominated solu-
tions as follows.

Definition 15.4 (Non-dominated set). Among a set of solutions P, the non-domin-
ated set of solutions P′ are those that are not dominated by any member of the set P.

When the set P is the entire search space, or P = S , the resulting non-dominated
set P′ is called the Pareto-optimal set. Figure 15.7 marks the Pareto-optimal set with
continuous curves for four different scenarios with two objectives. Each objective
can be minimized or maximized. In the top-left panel, the task is to minimize both
objectives f1 and f2. The solid curve marks the Pareto-optimal solution set. If f1 is
to be minimized and f2 is to be maximized for a problem having the same search
space, the resulting Pareto-optimal set is different and is shown in the top-right
panel. Here, the Pareto-optimal set is a union of two disconnected Pareto-optimal
regions. Similarly, the Pareto-optimal sets for two other cases—(maximizing f1,
minimizing f2) and (maximizing f1, maximizing f2)—are shown in the bottom-left
and bottom-right panels, respectively. In any case, the Pareto-optimal set always
consists of solutions from a particular edge of the feasible search region.

It is important to note that an MOEA can be easily used to handle all of the above
cases by simply using the domination definition. However, to avoid any confusion,
most applications use the duality principle (Deb 1995) to convert a maximization
problem into a minimization problem and treat every problem as a combination of

416 K. Deb

f1

f2

A

x1Globally

Pareto−optimal set

x2

B

Locally

Pareto−optimal set

B

Fig. 15.8 Locally and globally Pareto-optimal solutions

minimizing all objectives. Like global and local optimal solutions in the case of
single-objective optimization, there could be global and local Pareto-optimal sets in
multi-objective optimization.

Definition 15.5 (Globally Pareto-optimal set). The non-dominated set of the entire
feasible search space S is the globally Pareto-optimal set.

Definition 15.6. If for every member x in a set P there exists no solution y (in the
neighborhood of x such that ‖y− x‖∞ ≤ ε, where ε is a small positive number)
dominating any member of the set P, then solutions belonging to the set P constitute
a locally Pareto-optimal set.

Figure 15.8 shows two locally Pareto-optimal sets (marked by continuous curves).
When any solution (say “B”) in this set is perturbed locally in the decision

variable space, no solution can be found dominating any member of the set. It is
interesting to note that for continuous search space problems, the locally Pareto-
optimal solutions need not be continuous in the decision variable space and the
above definition will still hold good. Zitzler (1999) added a neighborhood constraint
on the objective space in the above definition to make it more generic. By the above
definition, it is also true that a globally Pareto-optimal set is also a locally Pareto-
optimal set.

15.3.5 Procedure for Finding Non-dominated Solutions

Finding the non-dominated set of solutions from a given set of solutions is similar
in principle to finding the minimum of a set of real numbers. In the latter case, when
two numbers are compared to identify the smaller number, a ‘<’ relation operation is

15 Multi-objective Optimization 417

used. In the case of finding the non-dominated set, the dominance relation � can be
used to identify the better of two given solutions. Here, we discuss one simple proce-
dure for finding the non-dominated set (we call here the best non-dominated front).
Many MOEAs require to find the best non-dominated solutions of a population and
some MOEAs require to sort a population according to different non-domination
levels. We present one algorithm for each of the tasks.

15.3.5.1 Finding the Best Non-dominated Front

In this approach, every solution from the population is checked with a partially filled
population for domination. To start with, the first solution from the population is
kept in an empty set P′. Thereafter, each solution i (the second solution onwards) is
compared with all members of the set P′, one by one. If the solution i dominates any
member of P′, then that solution is removed from P′. In this way non-members of the
non-dominated solutions get deleted from P′. Otherwise, if solution i is dominated
by any member of P′, the solution i is ignored. If solution i is not dominated by any
member of P′, it is entered in P′. This is how the set P′ grows with non-dominated
solutions. When all solutions of the population are checked, the remaining members
of P′ constitute the non-dominated set.

Identifying the non-dominated set

Step 1 Initialize P′ = {1}. Set solution counter i = 2.
Step 2 Set j = 1.
Step 3 Compare solution i with j from P′ for domination.
Step 4 If i dominates j, then delete the jth member from P′ or else update

P′ = P′\{P′(j)}. If j < |P′|, increment j by one and then go to Step 3.
Otherwise, go to Step 5. Alternatively, if the jth member of P′ dominates
i, increment i by one and then go to Step 2.

Step 5 Insert i in P′ or update P′ = P′∪{i}. If i < N, increment i by one and
go to Step 2. Otherwise, stop and declare P′ as the non-dominated set.

Here, we observe that the second element of the population is compared with
only one solution P′, the third solution with at most two solutions of P′, and so on.
This requires a maximum of 1+2+ · · ·+(N−1) or N(N−1)/2 domination checks.
This computation is also O(MN2). It is interesting to note that the size of P′ may
not always increase (dominated solutions will get deleted from P′) and not every
solution in the population may be required to be checked with all solutions in the
current P′ set (the solution may get dominated by a solution of P′). Thus, the actual
computational complexity may be smaller than the above estimate.

Another study (Kung et al. 1975) suggested a binary-search-like algorithm for
finding the best non-dominated front with a complexity O

(

N(logN)M−2
)

for M≥ 4
and O(N logN) for M = 2 and 3.

418 K. Deb

15.3.5.2 A Non-dominated Sorting Procedure

Using the above procedure, each front can be identified with at most O(MN2)
computations. In certain scenarios, this procedure may demand more than O(MN2)
computational effort for the overall non-dominated sorting of a population. Here, we
suggest a completely different procedure which uses a better bookkeeping strategy
requiring O(MN2) overall computational complexity.

First, for each solution we calculate two entities: (i) domination count ni, the
number of solutions which dominate the solution i, and (ii) Si, a set of solutions
which the solution i dominates. This requires O(MN2) comparisons. At the end of
this procedure, all solutions in the first non-dominated front will have their domina-
tion count as zero. Now, for each of these solutions (each solution i with ni = 0), we
visit each member (j) of its set Si and reduce its domination count by one. In doing
so, if for any member j the domination count becomes zero, we put it in a separate
list P′. After such modifications on Si are performed for each i with ni = 0, all solu-
tions of P′ would belong to the second non-dominated front. The above procedure
can be continued with each member of P′ and the third non-dominated front can be
identified. This process continues until all solutions are classified.

An O(MN2) non-dominated sorting algorithm

Step 1 For each i ∈ P, ni = 0 and initialize Si = /0. For all j
= i and j ∈ P,
perform Step 2 and then proceed to Step 3.

Step 2 If i� j, update Sp = Sp∪{ j}. Otherwise, if j � i, set ni = ni + 1.
Step 3 If ni = 0, keep i in the first non-dominated front P1 (we called this set

P′ in the above paragraph). Set a front counter k = 1.
Step 4 While Pk
= /0, perform the following steps.
Step 5 Initialize Q = /0 for storing next non-dominated solutions. For each

i ∈ Pk and for each j ∈ Si,
Step 5a Update n j = n j− 1.
Step 5b If n j = 0, keep j in Q, or perform Q = Q∪{ j}.

Step 6 Set k = k+ 1 and Pk = Q. Go to Step 4.

Steps 1–3 find the solutions in the first non-dominated front and require O(MN2)
computational complexity. Steps 4–6 repeatedly find higher fronts and require at
most O(N2) comparisons, as argued below. For each solution i in the second- or
higher level of non-domination, the domination count ni can be at most N−1. Thus,
each solution i will be visited at most N − 1 times before its domination count
becomes zero. At this point, the solution is assigned a particular non-domination
level and will never be visited again. Since there are at most N− 1 such solutions,
the complexity of identifying second and more fronts is O(N2). Thus, the overall
complexity of the procedure is O(MN2). It is important to note that although the
time complexity has reduced to O(MN2), the storage requirement has increased to
O(N2).

When the above procedure is applied to the five solutions of Fig. 15.6a, we obtain
three non-dominated fronts as shown in Fig. 15.6b. From the dominance relations,
the solutions 3 and 5 are the best, followed by solutions 1 and 4. Finally, solution 2

15 Multi-objective Optimization 419

belongs to the worst non-dominated front. Thus, the ordering of solutions in terms of
their non-domination level is as follows: ((3,5), (1,4), (2)). A study (Jensen 2003b)
suggested a divided-and-conquer method to reduce the complexity of sorting to
O(N logM−1 N).

15.4 Some Approaches to Multi-objective Optimization

In this section, we briefly mention two commonly used classical multi-objective
optimization methods and thereafter present a commonly used EMO method.

15.4.1 Classical Method: Weighted-Sum Approach

The weighted-sum method, as the name suggests, scalarizes a set of objectives into
a single objective by pre-multiplying each objective with a user-supplied weight.
This method is the simplest approach and is probably the most widely used classical
approach. If we are faced with the two objectives of minimizing the cost of a product
and minimizing the amount of wasted material in the process of fabricating the
product, one naturally thinks of minimizing a weighted sum of these two objectives.
Although the idea is simple, it introduces a not-so-simple question. What values of
the weights must one use? Of course, there is no unique answer to this question. The
answer depends on the importance of each objective in the context of the problem
and a scaling factor. The scaling effect can be avoided somewhat by normalizing
the objective functions. After the objectives are normalized, a composite objective
function F(x) can be formed by summing the weighted normalized objectives and
the problem is then converted to a single-objective optimization problem as follows:

Minimize F(x) = ∑M
m=1 wm fm(x)

subject to g j(x)≥ 0, j = 1,2, . . . ,J
hk(x) = 0, k = 1,2, . . . ,K

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1,2, . . . ,n.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(15.3)

Here, wm (∈ [0,1]) is the weight of the mth objective function. Since the minimum
of the above problem does not change if all weights are multiplied by a constant, it
is the usual practice to choose weights such that their sum is one, or ∑M

m=1 wm = 1.
Mathematically oriented readers may find a number of interesting theorems

regarding the relationship between the optimal solution of the above problem to
the true Pareto-optimal solutions in classical texts (Chankong and Haimes 1983;
Miettinen 1999; Ehrgott 2000).

Let us now illustrate how the weighted-sum approach can find Pareto-optimal
solutions of the original problem. For simplicity, we consider the two-objective
problem shown in Fig. 15.9. The feasible objective space and the corresponding

420 K. Deb

Feasible objective space

Pareto−optimal front

f1

a

b

c
d

A

w2

w1

f2

Fig. 15.9 Illustration of the weighted-sum approach on a convex Pareto-optimal front

Pareto-optimal solution set are shown. With two objectives, there are two weights
w1 and w2, but only one is independent. Knowing any one, the other can be cal-
culated by simple subtraction. It is clear from the figure that a choice of a weight
vector corresponds to a pre-destined optimal solution on the Pareto-optimal front,
as marked by the point A. By changing the weight vector, a different Pareto-optimal
point can be obtained. However, there are a couple of difficulties with this approach:

1. A uniform choice of weight vectors does not necessarily find a uniform set of
Pareto-optimal solutions on the Pareto-optimal front (Deb 2001).

2. The procedure cannot be used to find Pareto-optimal solutions which lie on the
non-convex portion of the Pareto-optimal front.

The former issue makes it difficult for the weighted-sum approach to be applied
reliably to any problem in order to find a good representative set of Pareto-optimal
solutions. The latter issue arises due to the fact that a solution lying on the non-
convex Pareto-optimal front can never be the optimal solution of the problem given
in Eq. (15.3).

15.4.2 Classical Method: ε-Constraint Method

In order to alleviate the difficulties faced by the weighted-sum approach in solv-
ing problems having non-convex objective spaces, the ε-constraint method is used.
Haimes et al. (1971) suggested reformulating the MOOP by just keeping one of the
objectives and restricting the rest of the objectives within user-specified values. The
modified problem is as follows:

15 Multi-objective Optimization 421

1

B

C

ε 1 1

D

1ε ε εa b c d

f2

f1

Fig. 15.10 The ε-constraint method

Minimize fµ(x)
subject to fm(x)≤ εm, m = 1,2, . . . ,M and m
= µ

g j(x)≥ 0, j = 1,2, . . . ,
hk(x) = 0, k = 1,2, . . . ,K

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1,2, . . . ,n.

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(15.4)

In the above formulation, the parameter εm represents an upper bound of the value
of fm and need not necessarily mean a small value close to zero.

Let us say that we retain f2 as an objective and treat f1 as a constraint: f1(x)≤ ε1.
Figure 15.10 shows four scenarios with different ε1 values. Let us consider the third
scenario with ε1 = εc

1 first. The resulting problem with this constraint divides the
original feasible objective space into two portions, f1 ≤ εc

1 and f1 > εc
1. The left por-

tion becomes the feasible solution of the resulting problem stated in Eq. (15.4). Now,
the task of the resulting problem is to find the solution which minimizes this feasi-
ble region. From Fig. 15.10, it is clear that the minimum solution is C. In this way,
intermediate Pareto-optimal solutions can be obtained in the case of non-convex
objective space problems by using the ε-constraint method.

One of the difficulties of this method is that the solution to the problem stated in
Eq. (15.4) largely depends on the chosen εεε vector. Let us refer to Fig. 15.10 again.
Instead of choosing εc

1, if εa
1 is chosen, there exists no feasible solution to the stated

problem. Thus, no solution would be found. On the other hand, if εd
1 is used, the

entire search space is feasible. The resulting problem has the minimum at D. More-
over, as the number of objectives increases, there exist more elements in the εεε vector,
thereby requiring more information from the user.

15.4.3 Evolutionary Multi-objective Optimization (EMO) Method

Over the years, a number of multi-objective EAs () emphasizing non-dominated
solutions in a EA population have been suggested. In this section, we shall describe
one state-of-the-art algorithm popularly used in EMO studies.

422 K. Deb

15.4.3.1 Elitist Non-dominated Sorting GA (NSGA-II)

The non-dominated sorting GA or NSGA-II procedure (Deb et al. 2002) for finding
multiple Pareto-optimal solutions in a MOOP has the following three features:

1. It uses an elitist principle,
2. It uses an explicit diversity preserving mechanism, and
3. It emphasizes the non-dominated solutions.

In NSGA-II, the offspring population Qt is first created by using the parent popula-
tion Pt and the usual genetic operators (Goldberg 1989). Thereafter, the two popula-
tions are combined to form Rt of size 2N. Then, a non-dominated sorting is used to
classify the entire population Rt . Once the non-dominated sorting is over, the new
population is filled by solutions of different non-dominated fronts, one at a time.
The filling starts with the best non-dominated front and continues with solutions
of the second non-dominated front, followed by the third non-dominated front, and
so on. Since the overall population size of Rt is 2N, not all fronts may be accom-
modated in N slots available in the new population. All fronts which could not be
accommodated are simply deleted. When the last allowed front is being considered,
there may exist more solutions in the last front than the remaining slots in the new
population. This scenario is illustrated in Fig. 15.11. Instead of arbitrarily discard-
ing some members from the last acceptable front, the solutions which will make the
diversity of the selected solutions the highest are chosen. The NSGA-II procedure
is outlined in the following.

NSGA-II

Step 1 Combine parent and offspring populations and create Rt = Pt ∪Qt . Per-
form a non-dominated sorting to Rt and identify different fronts: Fi, i =
1,2, . . ., etc.

Step 2 Set new population Pt+1 = /0. Set a counter i = 1.
Until |Pt+1|+ |Fi|< N, perform Pt+1 = Pt+1∪Fi and i = i+ 1.

F2

Rt

F1

Pt

F3

Pt+1

Rejected
Qt

Non−dominated

sorting

Crowding

distance

sorting

Fig. 15.11 Schematic of the NSGA-II procedure

15 Multi-objective Optimization 423

Step 3 Perform the Crowding-sort(Fi,<c) procedure and include the most
widely spread (N− |Pt+1|) solutions by using the crowding distance values
in the sorted Fi to Pt+1.

Step 4 Create offspring population Qt+1 from Pt+1 by using the crowded tour-
nament selection, crossover and mutation operators.

In Step 3, the crowding-sorting of the solutions of front i (the last front which could
not be accommodated fully) is performed by using a crowding distance metric,
which we describe later. The population is arranged in descending order of mag-
nitude of the crowding distance values. In Step 4, a crowding tournament selection
operator, which also uses the crowding distance, is used.

The crowded comparison operator (<c) compares two solutions and returns the
winner of the tournament. It assumes that every solution i has two attributes:

1. A non-domination rank ri in the population,
2. A local (di) in the population.

The crowding distance di of a solution i is a measure of the normalized search space
around i which is not occupied by any other solution in the population. Based on
these two attributes, we can define the crowded tournament selection operator as
follows.

Definition 15.7. Crowded tournament selection operator. A solution i wins a tour-
nament with another solution j if any of the following conditions are true:

1. If solution i has a better rank, that is, ri < r j.
2. If they have the same rank but solution i has a better crowding distance than

solution j, that is, ri = r j and di > d j.

The first condition makes sure that the chosen solution lies on a better non-
dominated front. The second condition resolves the tie of both solutions being on the
same non-dominated front by deciding on their crowded distance. The one residing
in a less crowded area (with a larger crowding distance di) wins. The crowding
distance di can be computed in various ways. However, in NSGA-II, we use a
crowding distance metric, which requires O(MN logN) computations.

Cuboid

f1

f2

i

i-1

i+1

0

l

Fig. 15.12 The crowding distance calculation

424 K. Deb

To get an estimate of the density of solutions surrounding a particular solution
i in the population, we take the average distance of two solutions on either side of
solution i along each of the objectives. This quantity di serves as an estimate of
the perimeter of the cuboid formed by using the nearest neighbors as the vertices
(we call this the crowding distance). In Fig. 15.12, the crowding distance of the ith
solution in its front (marked with filled circles) is the average side-length of the
cuboid (shown by a dashed box). The following algorithm is used to calculate the
crowding distance of each point in the set F .

Crowding distance assignment procedure: Crowding-sort(F ,<c)

Step C1 Call the number of solutions in F as l = |F |. For each i in the set, first
assign di = 0.

Step C2 For each objective function m = 1,2, . . . ,M, sort the set in worse order
of fm or, find the sorted indices vector: Im = sort(fm,>).

Step C3 For m = 1,2, . . . ,M, assign a large distance to the boundary solutions,
or dIm

1
= dIm

l
= ∞, and for all other solutions j = 2 to (l− 1), assign

dIm
j
= dIm

j
+

f
(Im

j+1)
m − f

(Im
j−1)

m

f max
m − f min

m
.

Index I j denotes the solution index of the jth member in the sorted list. Thus, for any
objective, I1 and Il denote the lowest and highest objective function values, respec-
tively. The second term on the right-hand side of the last equation is the difference in
objective function values between two neighboring solutions on either side of solu-
tion I j. Thus, this metric denotes half of the perimeter of the enclosing cuboid with
the nearest-neighboring solutions placed on the vertices of the cuboid (Fig. 15.12). It
is interesting to note that for any solution i the same two solutions (i+1) and (i−1)
need not be neighbors in all objectives, particularly for M ≥ 3. The parameters f max

m
and f min

m can be set as the population-maximum and population-minimum values
of the mth objective function. The above metric requires M sorting calculations in
Step C2, each requiring O(N logN) computations. Step C3 requires N computations.
Thus, the complexity of the above distance metric computation is O(MN logN) and
the overall complexity of one generation of NSGA-II is O(MN2), governed by the
non-dominated sorting procedure.

15.4.4 Sample Simulation Results

In this section, we show the simulation results of NSGA-II on two test problems.
The first problem (SCH1) is simple two-objective problem with a convex Pareto-
optimal front:

SCH1 :

⎧

⎨

⎩

Minimize f1(x) = x2

Minimize f2(x) = (x− 2)2

−103 ≤ x ≤ 103.
(15.5)

15 Multi-objective Optimization 425

The second problem (KUR) has a disjointed set of Pareto-optimal fronts:

KUR :

⎧

⎪

⎨

⎪

⎩

Minimize f1(x) = ∑2
i=1

[

−10exp(−0.2
√

x2
i + x2

i+1

]

Minimize f2(x) = ∑3
i=1

[

|xi|0.8 + 5sin(x3
i)
]

−5≤ xi ≤ 5, i = 1,2,3.

(15.6)

NSGA-II is run with a population size of 100 and for 250 generations.
Figure 15.13 shows that NSGA-II converges on the Pareto-optimal front and main-
tains a good spread of solutions. In comparison to NSGA-II, another competing
EMO method—the Pareto archived evolution strategy (PAES) (Knowles and Corne
2000)—is run for an identical overall number of function evaluations and an inferior
distribution of solutions on the Pareto-optimal front is observed.

On the KUR problem, NSGA-II is compared with another elitist EMO methodol-
ogy—the strength Pareto EA or SPEA (Zitzler and Thiele 1998)—for an identical
number of function evaluations. Figures 15.14 and 15.15 clearly show the superior-
ity of NSGA-II in achieving both tasks of convergence and maintaining diversity of
optimal solutions.

15.4.5 Other State-of-the-Art MOEAs

Besides the above elitist EMO method, there exist a number of other methods which
are also quite commonly used. Of them, the strength Pareto-EA or SPEA2 (Zitzler
et al. 2001b), which uses an EA population and an archive in a synergistic man-
ner and the Pareto envelope-based selection algorithm or PESA (Corne et al. 2000),

0
0

0.5

1

1.5

2

2.5

3

3.5

4

0

PAES
0.5

1

1.5

2

2.5

3

3.5

4

NSGA−II

f
_
2

f_1

f
_
2

f_1

0.5 1 1.5 2 2.5 3 3.5 4

0 0.5 1 1.5 2 2.5 3 3.5 4

Fig. 15.13 NSGA-II finds better spread of solutions than PAES on SCH

426 K. Deb

NSGA−II

−10

−8

−6

−4

−2

0

2

f_1

f
_
2

−12
−20 −14−19 −18 −17 −16 −15

Fig. 15.14 NSGA-II on KUR

SPEA

−10

−8

−6

−4

−2

0

2

f_1

f
_
2

−12
−20 −14−19 −18 −17 −16 −15

Fig. 15.15 SPEA on KUR

which emphasizes non-dominated solutions residing in a less-crowded hyper-box
in both the selection and the offspring-acceptance operators, are common. The
ε-MOEA procedure (Deb et al. 2003b) is found to be a superior version of PESA,
in which only one solution is allowed to occupy a hyper-box for obtaining a bet-
ter distribution of solutions. In addition, the ε-dominance concept (Laumanns et al.
2002a) makes the MOEA a practical approach for solving complex problems with
a large number of objectives. The ε-MOEA is also demonstrated to find a well-
converged and well-distributed set of solutions in a very small computational time
(two to three orders of magnitude smaller) compared to a number of state-of-the-
art MOEAs (Deb et al. 2003b), such as SPEA2 and PAES. There also exist other
competent MOEAs, such as multi-objective messy GA (MOMGA) (Veldhuizen and
Lamont 2000), multi-objective micro-GA (Coello and Toscano 2000), neighborhood
constraint GA (Loughlin and Ranjithan 1997), and others. Further, there exist other
EA-based methodologies, such as particle swarm EMO (Coello and Lechuga 2002;
Mostaghim and Teich 2003), ant-based EMO (McMullen 2001; Gravel et al. 2002)
and differential evolution-based EMO (Babu and Jehan 2003).

15 Multi-objective Optimization 427

15.5 Constraint Handling

Constraints can be simply handled by modifying the definition of domination in an
EMO method.

Definition 15.8. A solution x(i) is said to “constrain-dominate” a solution x(j) (or
x(i) �c x(j)) if any of the following conditions are true:

1. Solution x(i) is feasible and solution x(j) is not.
2. Solutions x(i) and x(j) are both infeasible, but solution x(i) has a smaller con-

straint violation.
3. Solutions x(i) and x(j) are feasible and solution x(i) dominates solution x(j) in the

usual sense (see Definition 15.3).

This definition allows a feasible solution to be always dominating an infeasible so-
lution and compares two infeasible solutions based on constraint violation values
and two feasible solutions in terms of their objective values.

In the following, we show simulation results of NSGA-II applied with the above
constraint handling mechanism to two test problems—the CONSTR and the prob-
lem TNK described below:

CONSTR

Minimize f1(x) = x1

Minimize f2(x) =
1+x2

x1

x2 + 9x1 ≥ 6
−x2 + 9x1 ≥ 1

TNK

Minimize f1(x) = x1

Minimize f2(x) = x2

x2
1 + x2

2− 1− 1
10 cos

(

16tan−1 x1
x2

)

≥ 0

(x1− 0.5)2+(x2− 0.5)2 ≤ 0.5

With identical parameter settings as in Sect. 15.4.4, NSGA-II finds a good dis-
tribution of solutions on the Pareto-optimal front in both problems (Figs. 15.16 and
15.17, respectively).

15.6 Some Applications

Since the early development of MOEAs in 1993, they have been applied to many
real-world and interesting optimization problems. Descriptions of some of these
studies can be found in books (Deb 2001; Coello et al. 2002; Osyczka 2002), confer-
ence proceedings (Zitzler et al. 2001a), and domain-specific journals and conference
proceedings. In this section, we describe two case studies.

15.6.1 Spacecraft Trajectory Design

Coverstone-Carroll et al. (2000) proposed a multi-objective optimization technique
using the original non-dominated sorting (NSGA) (Srinivas and Deb 1994) to find

428 K. Deb

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2

4

6

8

10

6

f_1

f
_
2

Fig. 15.16 Obtained non-dominated solutions with NSGA-II on the constrained problem
CONSTR

0
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f_1

f
_
2

0.2 0.4 0.6 0.8 1 1.2 1.4

Fig. 15.17 Obtained non-dominated solutions with NSGA-II on the constrained problem TNK

multiple trade-off solutions in a spacecraft trajectory optimization problem. To eval-
uate a solution (trajectory), the SEPTOP software is called for, and the delivered
payload mass and the total time of flight are calculated. In order to reduce the com-
putational complexity, the SEPTOP program is run for a fixed number of genera-
tions. The MOOP had eight decision variables controlling the trajectory, as well as
three objective functions, i.e. (i) maximize the delivered payload at destination, (ii)
maximize the negative of the time of flight, and (iii) maximize the total number of
heliocentric revolutions in the trajectory, and three constraints, i.e. (i) limiting the
SEPTOP convergence error, (ii) limiting the minimum heliocentric revolutions, and
(iii) limiting the maximum heliocentric revolutions in the trajectory.

On the Earth–Mars rendezvous mission, the study found interesting trade-off so-
lutions. Using a population of size 150, the NSGA was run for 30 generations on a
Sun Ultra 10 Workstation with a 333 MHz ULTRA Sparc IIi processor. The obtained
non-dominated solutions are shown in Fig. 15.18 for two of the three objectives.
It is clear that there exist short-time flights with smaller delivered payloads (solu-
tion marked as 44) and long-time flights with larger delivered payloads (solution

15 Multi-objective Optimization 429

1 1.5 2 2.5 3 3.5
0

100

200

300

400

500

600

700

800

900

22
36

132

72

Transfer Time (yrs.)

73

44

M
a
s
s

D
e
l
i
v
e
r
e
d

t
o

T
a
r
g
e
t

(
k
g
.
)

Fig. 15.18 Obtained non-dominated solutions

Fig. 15.19 Four trade-off trajectories

marked as 36). To the surprise of the original investigators, two different types of
trajectories emerged. The representative solutions of the first set of trajectories are
shown in Fig. 15.19. Solution 44 can deliver a mass of 685.28 kg and requires about
1.12 years. On the other hand, solution 72 can deliver almost 862 kg with a travel
time of about 3 years. In these figures, each continuous part of a trajectory repre-
sents a thrusting arc and each dashed part of a trajectory represents a coasting arc.
It is interesting to note that only a small improvement in delivered mass occurs in
the solutions between 73 and 72. To move to a somewhat improved delivered mass,
a different strategy for the trajectory must be found. Near solution 72, an additional
burn is added, causing the trajectories to have better delivered masses. Solution 36
can deliver a mass of 884.10 kg.

The scenario as in Fig. 15.19 is what we envisaged in discovering in a MOOP
while suggesting the ideal procedure in Fig. 15.3. Once such a set of solutions with

430 K. Deb

a good trade-off among objective values is obtained, one can then analyze them in
order to choose a particular solution. For example, in this problem context, whether
the wait of an extra year to be able to carry an additional 180 kg of payload is worth-
while or not would lead a decision-maker to choose between solutions 44 and 73.
Without the knowledge of such a wide variety of optimal solutions, the decision-
making could be difficult. Although one can set a relative weight to each objective
and optimize the resulting aggregate objective function, the decision-maker will al-
ways wonder what solution would have been derived if a slightly different weight
vector had been used. The ideal multi-objective optimization technique allows for a
flexible and a pragmatic procedure for analyzing a well-diversified set of solutions
before choosing a particular solution.

15.6.2 A Cantilever Plate Design

A rectangular plate (1.2× 2 m2) is fixed at one end and a 100 kN load is applied to
the center element of the opposite end. The following other parameters are chosen:

• Plate thickness: 20 mm
• Yield strength: 150 MPa
• Young’s modulus: 200 GPa
• Poisson ratio: 0.25.

The rectangular plate is divided into a number of grids and the presence or absence
of each grid becomes a Boolean decision variable. NSGA-II is applied for 100 gen-
erations with a population size of 54 and crossover probability of 0.95. In order to
increase the quality of the obtained solutions, we use an incremental grid-tuning
technique. The NSGA-II and the first local search procedure are run with a coarse
grid structure (6× 10 or 60 elements). After the first local search procedure, each
grid is divided into four equal-sized grids, thereby having a 12×20 or 240 elements.
The new smaller elements inherit its parent’s status of being present or absent. After
the second local search is over, the elements are divided again, thereby making
24× 40 or 960 elements. In all cases, an automatic mesh-generating finite element
method is used to analyze the developed structure.

Figure 15.20 shows the obtained front with eight solutions: the trade-off between
weight and deflection is clear. Figure 15.21 shows the shape of these eight solutions.
The solutions are arranged according to increasing weight from left to right and
top to bottom. Thus, the minimum-weight solution is the top-left solution and the
minimum-deflection solution is the bottom-right solution.

One striking difference between single-objective optimization and multi-objective
optimization is the cardinality of the solution set. In the latter, multiple solutions are
the outcome and each solution is theoretically an optimal solution corresponding to
a particular trade-off among the objectives. Thus, all such trade-off solutions found
by an EMO are high-performing near-optimal solutions. It is intuitive to realize that
these solutions will possess some common properties that qualify them to be near

15 Multi-objective Optimization 431

0.04

0.06

0.08

0.1

0.12

0.14

100

D
i
s
p
l
a
c
e
m
e
n
t

(
m
m
)

Weight (kg)

150 200 250 300 350 400

Fig. 15.20 Obtained front with eight clustered solutions shown for the cantilever plate design
problem

Fig. 15.21 Eight trade-off solutions of the cantilever plate design problem

Pareto-optimal. The author first proposed an analysis procedure to decipher hid-
den relationships common to EMO-obtained trade-off solutions in 1993 (Deb 2003)
and later (Deb and Srinivasan 2006) termed the task as innovization procedure—
revealing innovation through optimization. Such useful properties are expected to
exist in practical problems, as they follow certain scientific and engineering princi-
ples at the core. In the recent past, the author and his student have devised several
automated innovization procedures that take EMO solutions and churn out multiple
hidden mathematical relationships of certain structure through an optimization task
(Bandaru and Deb 2010, 2011a,b).

432 K. Deb

We consider the canteliver plate design problem to illustrate the usefulness of
the innovization task. The obtained nine solutions are manually analyzed and the
following interesting insights are revealed as properties of those solutions:

1. First, all nine solutions seem to be symmetric about the middle row of the plate.
Since the loading and support are symmetrically placed around the middle row,
the resulting optimum solution is also likely to be symmetric. Although this in-
formation is not explicitly coded in the hybrid NSGA-II procedure, this emerges
as one of the features in all optimal solutions. Although in this problem, it is dif-
ficult to know the true Pareto-optimal solutions, the symmetry achieved in these
solutions is an indication of their proximity to the true Pareto-optimal solutions.

2. The minimum-weight solution simply extends two arms from the extreme sup-
port nodes to reach to the element carrying the load. Since a straight line is the
shortest way to join two points, this solution can be easily conceived as one close
to the minimum-weight feasible solution.

3. Thereafter, to have a reduction in deflection, the weight has to be increased. This
is where the hybrid procedure discovers an innovation. For a particular sacrifice
in the weight, the procedure finds that the maximum reduction in deflection oc-
curs when the two arms are connected by a stiffener. This is an engineering trick
often used to design a stiff structure. Once again, no such information was ex-
plicitly coded in the hybrid procedure. By merely making elements on or off, the
procedure has resulted in a design innovation.

4. Interestingly, the third solution is a thickened version of the minimum-weight
solution. By making the arms thicker, the deflection can be increased maxi-
mally for a fixed change in the weight from the previous solution. Although
not intuitive, this thick-arm solution is not an immediate trade-off solution to
the minimum-weight solution. Although the deflection of this solution is smaller
compared to the second solution, the stiffened solution is a good compromise
between the thin- and thick-armed solutions.

5. Thereafter, any increase in the thickness of the two-armed solution turns out to
be a suboptimal proposition and the stiffened solution is rediscovered instead.
From the support to the stiffener, the arms are now thicker than before, providing
better stiffness than before.

6. In the remaining solutions, the stiffener and arms get wider and wider, finally
leading to the complete plate with rounded corners. This solution is, no doubt,
close to the true minimum-deflection solution.

The transition from a simple thin two-armed cantilever plate having a minimum-
weight solution to a complete plate with edges rounded off having a minimum-
deflection solution proceeds by discovering a vertical stiffener connecting the two
arms and then by widening the arms and then by gradually thickening the stiff-
ener. The symmetric feature of the solutions about the middle row of the plate has
emerged to be a common property of all obtained solutions. Such information about
the trade-off solutions is very useful to a designer. Importantly, it is not obvious how
such vital design information can be obtained by any other means and in a single
simulation run.

15 Multi-objective Optimization 433

15.7 Tricks of the Trade

Here, we discuss how to develop an ideal multi-objective optimization algorithm in a
step-by-step manner. Since they can be developed by using classical or evolutionary
optimization methods, we discuss each of these in turn.

15.7.1 Classical Multi-objective Optimization

We assume here that the user knows a classical optimization method to optimize
a single-objective optimization problem P with constraints (x ∈ S) and can find a
near-optimum solution x∗. Let us assume that the user desires to find K different
efficient solutions.

Step 1 Find individual optimum solutions x∗i for all objectives, i = 1,2, . . . ,M.
Step 2 Choose K points ε(k) uniformly in the (M− 1)-dimensional plane having

objectives i = 1 to i = M− 1 as coordinate directions.
Step 3 Solve each subproblem (k = 1,2, . . . ,K) as follows:

Minimize fM(x)

subject to fi(x)≤ ε(k)i , i = 1,2, . . . ,(M− 1)
x ∈ S.

(15.7)

Call the optimal solution x∗(k) and corresponding objective vector f∗(k).
Step 4 Declare the non-dominated set, F = non-dominated(f∗(1), . . . , f∗(K)), as the

set of efficient solutions.

If desired, the above ε-constraint method can be replaced by other conversion meth-
ods, such as the weighted-sum method or the Tchebyshev metric method (Deb 2001;
Miettinen 1999; Chankong and Haimes 1983).

15.7.2 Evolutionary Multi-objective Optimization (EMO)

The bottleneck of the above method is Step 3, in which a single-objective minimizer
needs to be applied K times (where K is the number of desired efficient solutions).
Here, we discuss an evolutionary search principle to find a set of efficient solutions
simultaneously in a synergistic manner. It must be kept in mind that the main aim
in an ideal multi-objective optimization is to (i) converge close to the true Pareto-
optimal front and (ii) maintain a good diversity among them. Thus, an EMO method
must use specific operations to achieve each of the above goals. Usually, an empha-
sis on non-dominated solutions is performed to achieve the first goal and a niching
operation is performed to achieve the second goal. In addition, an elite-preserving
operation is used to speed up convergence.

434 K. Deb

Again, we assume that the user is familiar with a particular population-based
evolutionary algorithm, in which in each generation one or more new offspring
are created by means of recombination and mutation operators. We describe here
a generic archive-based EMO strategy.

Step 1 A population P and an empty archive A are initialized. The non-dominated
solutions of P are copied in A. Steps 2 and 3 are iterated till a termination criterion
is satisfied.

Step 2 A set of λ new offspring solutions are created using P and A.
Step 3 Every new offspring solution is checked for its inclusion in A by using a

archive-acceptance criterion CA and for its inclusion in P by using a population-
acceptance criterion CP. If an offspring is not to be included to either P or A, it is
deleted.

Step 4 Before termination, the non-dominated set of the archive A is declared as
the efficient set.

In Step 2, random solutions from the combined set P∪A can be used to create an
offspring solution or some solution from P and some other solutions from A can be
used to create the offspring solution. Different archive-acceptance and population-
acceptance criteria can be used. Here, we propose one criterion each. Readers can
find another implementation elsewhere (Deb et al. 2003b).

15.7.2.1 Archive Acceptance Criterion CA(c,A)

The archive A has a maximum size K, but at any iteration it may not have all K
members. This criterion required domination check and a niching operator which
computes the niching of the archive with respect to a particular solution. For exam-
ple, the crowding distance metric for a solution i in a subpopulation (suggested in
Sect. 15.4.3) measures the objective-wise distance between two neighboring solu-
tions of solution i in the subpopulation. The larger the crowding distance, the less
crowded is the solution and the higher is probability of its existence in the subpop-
ulation.

The offspring c is accepted in the archive A if any of the following conditions is
true:

1. Offspring c dominates any archive member A. In this case, delete those archive
members and include c in A.

2. Offspring c is non-dominated with all archive members and the archive is not full
(that is, |A|< K). In this case, c is simply added to A.

3. Offspring c is non-dominated with all archive members, the archive is full, and
crowding distance of c is larger than that of an archive member. In this case, that
archive member is deleted and c is included in A.

15 Multi-objective Optimization 435

15.7.2.2 Population Acceptance Criterion CP(c,P)

If the offspring is a good solution compared to the current archive, it will be included
in A by the above criterion. The inclusion of the offspring in the population must be
made mainly from the point of view of keeping diversity in the population. Any of
the following criteria can be adopted to accept c in P:

1. Offspring c replaces the most old (in terms of its time of inclusion in the
population) population member.

2. Offspring c replaces a random population member.
3. Offspring c replaces the least-used (as a parent) population member.
4. Offspring c introduces more diversity of the population compared to an existing

population member. Here the crowding distance or an entropy-based metric can
be used to compute the extent of diversity.

5. Offspring c replaces a population member similar (in terms of its phenotype or
genotype) to itself.

6. Offspring c replaces a population member dominated by c.

It is worth the effort to investigate which of the above criteria works the best in
standard test problems, but the maintenance of diversity in the population and search
for widespread non-dominated solutions in the archive are two activities which
should allow the combined algorithm to reach the true efficient frontier quickly and
efficiently.

In the following, we suggest some important post-optimality studies which are
equally important to the optimality study and are often ignored in EMO studies.

15.7.3 Post-optimality Studies

It should be well understood that an EMO method (no matter whether it is the
above one or any of the existing ones) does not have a guaranteed convergence
properties; nor do they have any guaranteed proof for finding a well-diversed set
of solutions. Thus, there is an onus on the part of EMO researchers/practitioners to
perform a number of post-optimality studies to ensure (or build confidence about)
convergence and achievement of diversity in obtained solutions. Here, we make
some suggestions.

1. Use a hybrid EMO–local search method. From each of the obtained EMO so-
lution, perform a single-objective search by optimizing a combined objective
function—see Chap. 9.6 in Deb (2001) for more details. This will cause the EMO
solutions to reach near to the true efficient frontier.

2. Obtain individual optimum solutions and compare the obtained EMO solutions
with the individual optima on a plot or by means of a table. Such a visual com-
parison will indicate the extent of convergence as well as the extent of diversity
in the obtained solutions.

436 K. Deb

3. Perform a number of ε-constraint studies for different values of the ε-vector,
given in Eq. (15.7) and obtain efficient solutions. Compare these solutions with
the obtained EMO solutions to get further visual confirmation of the extent of
convergence and diversity of obtained EMO solutions.

4. Finally, it is advisable to also plot the initial population on the same objective
space showing the efficient solutions, as this will depict the extent of optimization
performed by the EMO local search approach.

For such a post-optimality study, refer to any of the application studies performed
by the author (Deb and Jain 2003; Deb et al. 2004b; Deb and Tiwari 2004; Deb et al.
2004a).

For practical problems, we also suggest performing an innovization study after
multiple trade-off solutions are found to reveal useful properties that are common
to them. As shown in Sect. 15.6.2 and in other studies (Deb and Srinivasan 2006;
Bandaru and Deb 2011b), such a task elicits useful knowledge that is usually more
valuable than just the discovery of a set of trade-off solutions.

15.7.4 Evaluating a Multi-objective Optimization Algorithm

When a new algorithm is suggested to find a set of Pareto-optimal solutions in a
MOOP, the algorithm has to be evaluated by applying them on standard test prob-
lems and compared with existing state-of-the-art EMO algorithms applied to the
identical test problems. Here, we suggest a few guidelines in this direction.

1. Test problems with 20–50 variables must be included in the test set.
2. Test problems with three or more objectives must be included in the test set.

For scalable test problems, readers may refer to WFG (Huband et al. 2005) and
DTLZ (Deb et al. 2005) test problems.

3. Test problems must include some non-linear constraints, making some portion
of the unconstrained Pareto-optimal front infeasible. For a set of constrained test
problems, see the CTP problems (Deb 2001) or DTLZ test problems.

4. Standard EMO algorithms such as NSGA-II, SPEA2, PESA, ε-MOEA, and others
must have to be used for comparison purposes. See the section Sources of
Additional Information for some freely downloadable codes of these algorithms.

5. A proper criterion for the comparison must be chosen. Often, the algorithms are
compared based on the fixed number of evaluations. They can also be compared
based on some other criterion (Deb 2001).

6. Besides static performance metrics which are applied to the final solution set,
running metrics (Deb and Jain 2002) may also be computed, plotted with genera-
tion number, and compared among two algorithms. The running metrics provide
a dynamic (generation-wise) evaluation of the algorithm, rather than what had
happened at the end of a simulation run.

15 Multi-objective Optimization 437

15.8 Research Challenges

With the growing interest in the field of multi-objective optimization, particularly
using evolutionary algorithms, there exist a number of research directions:

EMO and decision making: EMO methodologies have amply shown that multi-
ple and well-spread Pareto-optimal solutions can be obtained in a single simu-
lation run for a few objectives (four or less). We discuss solving many-objective
problems later in this section. However, finding a set of trade-off solutions is only
a part of the whole story. In practice, one needs to choose only a single preferred
solution. Such a task requires one to use a multiple-criterion decision-making
(MCDM) technique (Miettinen 1999; Belton and Stewart 2002; Chankong and
Haimes 1983; Collette and Siarry 2004; Tzeng and Huang 2011). The combina-
tion of EMO and MCDM can, in principle, be used in three possible ways:

1. A priori approach, in which preference information can be determined be-
fore any optimization task is performed, like in scalarization methods, such
as weighted-sum, ε-constraint, and other methods (Chankong and Haimes
1983). As discussed above, determining a preference information without any
knowledge of trade-off solutions becomes a difficult task. However, if a pri-
ori information is used to find a preferred region of the Pareto-optimal front,
instead of a single preferred solution, MCDM techniques can be used with an
EMO to find a predefined focussed region (Deb et al. 2006; Deb and Kumar
2007a,b).

2. A posteriori approach, in which a set of trade-off solutions is first found and
then a MCDM technique is used to anlayse the solutions to choose a single
preferred solution (Deb 2001; Coverstone-Carroll et al. 2000). Although the
decision-making becomes relatively meaningful when a set of trade-off solu-
tions are available, the approach becomes difficult to apply in problems having
five or more objectives, as finding a set of trade-off solutions for a large set of
objectives is still a difficult task.

3. Interactive approach, in which preference information is used during the EMO
process iteratively, so that the combined approach is directed towards the pre-
ferred part of the Pareto-optimal region. A couple of such hybrid methods
have been suggested recently (Deb et al. 2010; Branke et al. 2009).

In one of the interactive studies (Deb et al. 2010), after every 10 or 20 gener-
ations, a few (four or five) clustered non-dominated solutions are presented to
the decision-maker. Using MCDM techniques, the decision-maker then provides
partial or complete preference information by performing pair-wise comparisons
of these solutions. These information are then used to build a mathematical util-
ity function honoring the decision-maker’s preference information. For the next
10 or 20 generations the EMO modifies its domination principle with the de-
veloped utility function so as to focus its search towards the preferred part of
the search space. These approaches are practical and promise to handle many-
objective problems using a combined EMO and MCDM approach.

438 K. Deb

Handling many objectives: So far, most studies using EMO strategies have been
restricted to two- or three-objective problems. In practice, there exist a
considerable number of problems in which 10 or 15 objectives are common-
place. Existing domination-based EMO approaches have difficulties in solving
such large-dimensional problems due to the following reasons:

• A large fraction of the population becomes non-dominated to each other for
a large number of objectives, as there are many ways a solution can be-
come non-dominated. In an EMO approach emphasizing all non-dominated
solutions, such a method does not keep many population slots free for new
solutions, thereby slowing the search.

• A diversity preservation procedure becomes computationally expensive to
determine the extent of crowding of solutions.

• An exponentially large number of solutions are required to represent a large-
dimensional Pareto-optimal front, thereby requiring an exponentially large
population (or an archive) to store trade-off solutions.

• Comparison of two sets of trade-off solutions for set-based EMO approaches
(Zitzler et al. 2010; Zitzler and Künzli 2004) becomes a difficult task for a
large-dimensional problem. Estimation of set-based metrics, such as hyper-
volume, becomes computationally expensive.

• Although not specific to EMO algorithms, visualization of a large-dimensional
dataset becomes difficult.

However, recent studies on many objective optimization problems (Zhang and
Li 2007; Knowles and Corne 2007; López and Coello Coello 2009; Corne and
Knowles 2007; Hughes 2005; Ishibuchi et al. 2008; Deb and Jain 2012) have
shown that computationally tractable EMO algorithms can be developed by us-
ing fixed search directions or fixed reference points to handle large-dimensional
problems.

Non-evolutionary multi-objective optimization: EMO methods include principles
of genetic algorithms, evolution strategy, genetic programming, particle swarm
optimization, differential evolution and others. But other non-traditional opti-
mization techniques such as ant colony optimization, tabu search and simulated
annealing can also be used for solving MOOPs. Although there has been some
research and application in this direction (Hansen 1997; Khor et al. 2001; Balicki
and Kitowski 2001; Bandyopadhyay et al. 2008; McMullen 2001; Gravel et al.
2002; Kumral 2003; Parks and Suppapitnarm 1999; Chattopadhyay and Seeley
1994), more rigorous studies are called for, and such techniques can also be suit-
ably used to find multiple Pareto-optimal solutions.

Performance metrics: For M objectives, the Pareto-optimal region will correspond
to at most an M-dimensional surface. To compare two or more algorithms, it
is then necessary to compare M-dimensional data sets which are partially or-
dered. It is not possible to have only one performance metric to compare such
multi-dimensional data sets in an unbiased manner. A study has shown that at
least M performance metrics are necessary to properly compare such data sets
(Zitzler et al. 2003). An alternative pragmatic suggestion was to compare the

15 Multi-objective Optimization 439

data sets from a purely functional point of view of (i) measuring the extent of
convergence to the front and (ii) measuring the extent of diversity in the obtained
solutions (Deb 2001). It then becomes a challenge to develop performance met-
rics for both functional goals for problems having any number of objectives.
The hypervolume metric (Zitzler and Thiele 1999) has received a lot of attention
among the EMO researchers, due to its ability to provide a combined estimate
of convergence and diversity of a set of solutions. However, the computation of
hypervolume for more than three or four objective problems is time-consuming.
Researchers have devised approximate procedures for estimating hypervolume in
higher dimensions (Bradstreet et al. 2008; While et al. 2006; Bader et al. 2010).

Test problem design: When new algorithms are designed, they need to be evalu-
ated on test problems for which the desired Pareto-optimal solutions are known.
Moreover, the test problems must be such that they are controllable to test an
algorithm’s ability to overcome a particular problem difficulty. Although there
exist a number of such test problems (Deb 2001; Deb et al. 2005), more such
problems providing different kinds of difficulties must be developed. Care should
be taken to make sure that the test problems are scalable to any number of ob-
jectives and decision variables, so that systematic evaluation of an algorithm can
be performed. Recent test problems (Zhang et al. 2008; Huband et al. 2005) are
some efforts in this direction.

Parallel EMO methodologies: With the availability of parallel or distributed pro-
cessors, it may be wise to find the complete Pareto-optimal front in a distributed
manner. A study (Deb et al. 2003a) has suggested such a procedure based on a
guided-domination concept, in which one processor focuses on finding only a
portion of the Pareto-optimal front. With intermediate cross-talks between the
processors, the procedure has shown that the complete Pareto-optimal front can
be discovered by concatenating the solutions from a number of processors. Since
each processor works on a particular region in the search space and processors
communicate between themselves, a faster and parallel search is expected from
such an implementation. Other similar parallelization techniques must be at-
tempted and evaluated. Parallel EMO algorithms are also required to be developed
for GPU-based computing platforms to take advantage of the recent enhance-
ment of GPU technology. Some efforts in this direction are by Sharma and Collet
(2010) and Wong (2009).

Multi-objectivization using EMO principle: Over the past few years and since
the development of EMO methodologies, they have been also used to help solve
a number of other optimization problems, such as (i) in reducing bloating prob-
lems commonly found in genetic programming applications (Bleuler et al. 2001),
(ii) in goal programming problems (Deb 1999), (iii) in maintaining diversity in
a single-objective EA (Jensen 2003a), (iv) single-objective constraint-handling
problems (Coello 2000; Surry et al. 1995), (v) solving constrained optimization
problems (Deb and Datta 2010), (vi) solving multimodal problems (Deb and
Saha 2012), and others. Because of the use of additional objectives signifying
a desired effect to be achieved, the search procedure becomes more flexible.
More such problems, which reportedly perform poorly due to some fixed or rigid

440 K. Deb

solution procedures, must be tried using a multi-objective approach. A recent
edited book (Knowles et al. 2008) presents many such recently proposed multi-
objectivization studies.

EMO for redundant objectives: Many practical problems may have a large num-
ber of objectives, but the Pareto-optimal front of the problem may be lower-
dimensional. In such problems, certain objectives get correlated to each other as
the solutions approach the Pareto-optimal front. In such methods, the redundancy
in objectives are determined by various means—through a principal component
analysis (PCA) (Deb and Saxena 2006), nonlinear PCA analysis (Saxena et al.
2013), and other means (Brockhoff and Zitzler 2006, 2007)—as the algorithms
progress and the redundant objectives are eliminated to reduce the cardinality
of the objectives. In problems having 50 objectives, the PCA-based NSGA-II
procedure (Deb and Saxena 2006) was shown to reduce 48 correlated objectives
successively with generations. Further such studies with better computational ef-
ficiency are needed for application to real-world problems.

Theoretical developments: One aspect for which EMO can be criticized is the
lukewarm interest among its researchers to practice much theory related to their
working principles or convergence behaviors. Apart from a few studies (Rudolph
1998; Rudolph and Agapie 2000), this area still remains a fertile field for theo-
retically oriented researchers to dive into and suggest algorithms with a good
theoretical basis. Algorithms with a time complexity analysis on certain prob-
lems have been started (Giel 2003; Laumanns et al. 2002b, 2004) and research in
this area should grow more popular in trying to devise problem–algorithm com-
binations with an estimated computational time for finding the complete Pareto-
optimal set.

EMO on dynamic problems: Dynamic optimization involves objectives,
constraints or problem parameters which change over time (Branke 2001). This
means that as an algorithm is approaching the optimum of the current problem,
the problem definition changes and now the algorithm must solve a new prob-
lem. Often, in such dynamic optimization problems, an algorithm is usually not
expected to find the optimum, instead it is expected to track the changing opti-
mum with iteration. A study (Deb et al. 2007) proposed the following procedure
for dynamic optimization involving single or multiple objectives. Let P (t) be a
problem which changes with time t (from t = 0 to t = T). Despite the continual
change in the problem, we assume that the problem is fixed for a time period τ,
which is not known a priori and the aim of the (offline) dynamic optimization
study is to identify a suitable value of τ for an accurate as well as computation-
ally faster approach. For this purpose, an optimization algorithm with τ as a fixed
time period is run from t = 0 to t = T with the problem assumed fixed for every τ
time period. A measure Γ(τ) determines the performance of the algorithm and is
compared with a pre-specified and expected value ΓL. If Γ(τ)≥ ΓL, for the entire
time domain of the execution of the procedure, we declare τ to be a permissible
length of stasis. Then, we try with a reduced value of τ and check if a smaller
length of statis is also acceptable. If not, we increase τ to allow the optimization
problem to remain static for a longer time so that the chosen algorithm can now

15 Multi-objective Optimization 441

have more iterations (time) to perform better. Such a procedure will eventually
come up with a time period τ∗ which would be the smallest time of statis allowed
for the optimization algorithm to work based on the chosen performance require-
ment. Based on this study, a number of test problems and a hydro-thermal power
dispatch problem have been tackled (Deb et al. 2007).
In the case of dynamic multi-objective problem-solving tasks, there is an
additional difficulty which is worth mentioning here. Not only does an EMO
algorithm needs to find or track the changing Pareto-optimal fronts, but in a real-
world implementation, it must also make an immediate decision about which
solution to implement from the current front before the problem changes to
a new one. Decision-making analysis is considered to be time-consuming, in-
volving execution of analysis tools, higher-level considerations, and sometimes
group discussions. If dynamic EMO is to be applied in practice, automated pro-
cedures for making decisions must be developed. Although it is not clear how to
generalize such an automated decision-making procedure in different problems,
problem-specific tools are possible and certainly a worthwhile and fertile area for
research.

Real-world applications: Although the usefulness of EMO and classical multi-
objective optimization methods are increasingly being demonstrated by solving
real-world problems (Coello and Lamont 2004), more complex and innovative
applications would not only demonstrate the widespread applicability of these
methods but also may open up new directions for research.

15.9 Conclusions

For the past two decades, the usual practice of treating MOOPs by scalarizing them
into a single objective and optimizing it has been seriously questioned. The pres-
ence of multiple objectives results in a number of Pareto-optimal solutions, instead
of a single optimum solution. In this tutorial, we have discussed the use of an ideal
multi-objective optimization procedure which attempts to find a well-distributed set
of Pareto-optimal solutions first. It has been argued that choosing a particular so-
lution as a post-optimal event is a more convenient and pragmatic approach than
finding an optimal solution for a particular weighted function of the objectives. Be-
sides introducing the multi-objective optimization concepts, this tutorial also has
also presented two commonly used MOEAs.

Besides finding the multiple Pareto-optimal solutions, the suggested ideal
multi-objective optimization procedure has another unique advantage. Once a set
of Pareto-optimal solutions are found, they can be analyzed. The principle behind
the transition from the optimum of one objective to that of other objectives can be
investigated as a post-optimality analysis. Since all such solutions are optimum with
respect to certain trade-off between objectives, the transition should reveal interest-
ing knowledge on an optimal process of sacrifice of one objective to get a gain in
other objectives.

442 K. Deb

The field of MOEAs has now matured. Nevertheless, there exist a number of
interesting and important research topics which must be investigated before their full
potential is unearthed. This tutorial has suggested a number of salient research topics
to motivate newcomers to pay further attention to this growing field of importance.

Sources of Additional Information

Here, we outline some dedicated literature in the area of evolutionary multi-objective
optimization and decision-making.

Books in Print

• C. A. C. Coello, D. A. VanVeldhuizen, and G. Lamont (2002). Evolutionary
algorithms for solving multi-objective problems. Kluwer, Boston—a good refer-
ence book with a good citation of most EMO studies up to 2001.

• A. Osyczka (2002). Evolutionary algorithms for single and multicriteria design
optimization. Physica-Verlag, Heidelberg—a book describing single and multi-
objective EAs with lots of engineering applications.

• K. Deb (2001). Multi-objective optimization using evolutionary algorithms.
Wiley, Chichester (2nd edn, with exercise problems)—a comprehensive book
introducing the EMO field and describing major EMO methodologies and some
research directions.

• K. Miettinen (1999). Nonlinear multiobjective optimization. Kluwer, Boston—a
good book describing classical multi-objective optimization methods and a ex-
tensive discussion on interactive methods.

• M. Ehrgott (2000). Multicriteria optimization. Springer, Berlin—a good book on
the theory of multi-objective optimization.

Conference Proceedings

The following six conference proceedings spanning from 2001 to 2013 are most
useful on the theory, algorithms, and application of EMO.

• Purshouse et al., eds (2013). Evolutionary Multi-Criterion Optimization (EMO-
13) Conference Proceedings, LNCS 7811. Springer, Berlin.

• Takahashi et al., eds (2011). Evolutionary Multi-Criterion Optimization (EMO-
11) Conference Proceedings, LNCS 6576. Springer, Berlin.

• Ehrgott et al., eds (2009). Evolutionary Multi-Criterion Optimization (EMO-09)
Conference Proceedings, LNCS 5467. Springer, Berlin.

15 Multi-objective Optimization 443

• Obayashi et al., eds (2007). Evolutionary Multi-Criterion Optimization (EMO-
07) Conference Proceedings, LNCS 4403. Springer, Berlin.

• Coello et al., eds (2005). Evolutionary Multi-Criterion Optimization (EMO-05)
Conference Proceedings, LNCS 3410. Springer, Berlin.

• Fonseca et al., eds (2003). Evolutionary Multi-Criterion Optimization (EMO-03)
Conference Proceedings. LNCS 2632. Springer, Berlin.

• Zitzler et al., eds (2001). Evolutionary Multi-Criterion Optimization (EMO-01)
Conference Proceedings. LNCS 1993. Springer, Berlin.

Additionally,

• GECCO (Springer LNCS) and CEC (IEEE Press) annual conference proceedings
feature numerous research papers on EMO theory, implementation, and applica-
tions.

• MCDM conference proceedings (Springer) publish theory, implementation, and
application papers in the area of classical multi-objective optimization.

Mailing Lists

• emo-list@ualg.pt (EMO methodologies)
• http://lists.jyu.fi/mailman/listinfo/mcdm-discussion (MCDM related queries)

Public-Domain Source Codes

• NSGA-II in C: http://www.iitk.ac.in/kangal/soft.htm
• SPEA2 in C++: http://www.tik.ee.ethz.ch/~zitzler
• MOEA/D in C++: http://dces.essex.ac.uk/staff/zhang/webofmoead.htm
• Other codes: http://www.lania.mx/~ccoello/EMOO/
• MCDM softwares: http://www.mit.jyu.fi/MCDM/soft.html
• JMetal software: http://jmetal.sourceforge.net/

References

Babu B, Jehan ML (2003) Differential evolution for multi-objective optimization.
In: Proceedings of the CEC’2003, Canberra, vol 4. IEEE, Piscataway, pp 2696–
2703

Bader J, Deb K, Zitzler E (2010) Faster hypervolume-based search using Monte
Carlo sampling. In: Proceedings of the MCDM 2008, Auckland. LNEMS 634.
Springer, Heidelberg, pp 313–326

http://lists.jyu.fi/mailman/listinfo/mcdm-discussion
http://www.iitk.ac.in/kangal/soft.htm
http://www.tik.ee.ethz.ch/~zitzler
http://dces.essex.ac.uk/staff/zhang/webofmoead.htm
http://www.lania.mx/~ccoello/EMOO/
http://www.mit.jyu.fi/MCDM/soft.html
http://jmetal.sourceforge.net/

444 K. Deb

Bagchi T (1999) Multiobjective scheduling by genetic algorithms. Kluwer, Boston
Balicki J, Kitowski Z (2001) Multicriteria evolutionary algorithm with tabu search

for task assignment. In: Proceedings of the EMO-01, Zurich, pp 373–384
Bandaru S, Deb K (2010) Automated discovery of vital knowledge from

pareto-optimal solutions: first results from engineering design. In: Proceedings
of the WCCI-2010, Barcelona. IEEE, Piscataway

Bandaru S, Deb K (2011a) Automated innovization for simultaneous discovery of
multiple rules in bi-objective problems. In: Proceedings of the EMO-2011, Ouro
Preto. Springer, Heidelberg, pp 1–15

Bandaru S, Deb K (2011b) Towards automating the discovery of certain innovative
design principles through a clustering based optimization technique. Eng Optim
43:911–941

Bandyopadhyay S, Saha S, Maulik U, Deb K (2008) A simulated annealing-
based multiobjective optimization algorithm: Amosa. IEEE Trans Evol Comput
12:269–283

Belton V, Stewart TJ (2002) Multiple criteria decision analysis: an integrated
approach. Kluwer, Boston

Bleuler S, Brack M, Zitzler E (2001) Multiobjective genetic programming: reducing
bloat using SPEA2. In: Proceedings of the CEC-2001, Seoul, pp 536–543

Bradstreet L, While L, Barone L (2008) A fast incremental hypervolume algorithm.
IEEE Trans Evol Comput 12:714–723

Branke J (2001) Evolutionary optimization in dynamic environments. Springer,
Heidelberg

Branke J, Greco S, Slowinski R, Zielniewicz P (2009) Interactive evolutionary mul-
tiobjective optimization using robust ordinal regression. In: Proceedings of the
EMO-09, Nantes. Springer, Berlin, pp 554–568

Brockhoff D, Zitzler E (2006) Are all objectives necessary? On dimensionality re-
duction in evolutionary multiobjective optimization. In: PPSN IX, Reykjavik.
LNCS 4193, pp 533–542

Brockhoff D, Zitzler E (2007) Dimensionality reduction in multiobjective optimiza-
tion: the minimum objective subset problem. In: Waldmann KH, Stocker UM
(eds) OR proceedings 2006, Karlsruhe, Germany. Springer, Berlin, pp 423–429

Chankong V, Haimes YY (1983) Multiobjective decision making theory and
methodology. North-Holland, New York

Chattopadhyay A, Seeley C (1994) A simulated annealing technique for
multiobjective optimization of intelligent structures. Smart Mater Struct 3:98–106

Coello CAC (2000) Treating objectives as constraints for single objective
optimization. Eng Optim 32:275–308

Coello CAC (2003) http://www.lania.mx/~ccoello/EMOO/
Coello CAC, Lamont GB (2004) Applications of multi-objective evolutionary

algorithms. World Scientific, Singapore
Coello CAC, Lechuga MS (2002) MOPSO: a proposal for multiple objective

particle swarm optimization. In: Proceedings of the CEC 2002, vol 2. IEEE,
Piscataway, Honolulu, USA, pp. 1051–1056

http://www.lania.mx/~ccoello/EMOO/

15 Multi-objective Optimization 445

Coello CAC, Toscano G (2000) A micro-genetic algorithm for multi-objective
optimization. Technical report Lania-RI-2000–06, Laboratoria Nacional de
Informatica Avanzada, Xalapa, Veracruz

Coello CAC, Van Veldhuizen DA, Lamont G (2002) Evolutionary algorithms for
solving multi-objective problems. Kluwer, Boston

Coello CAC, Aguirre AH, Zitzler E (eds) (2005) Evolutionary multi-criterion
optimization (EMO-2005). LNCS 3410. Springer, Berlin

Collette Y, Siarry P (2004) Multiobjective optimization: principles and case studies.
Springer, Berlin

Cormen TH, Leiserson CE, Rivest RL (1990) Introduction to algorithms. Prentice-
Hall, New Delhi

Corne DW, Knowles JD (2007) Techniques for highly multiobjective optimization:
some nondominated points are better than others. In: Proceedings of the GECCO-
07, London. ACM, New York, pp 773–780

Corne DW, Knowles JD, Oates M (2000) The Pareto envelope-based selection al-
gorithm for multiobjective optimization. In: Proceedings of the PPSN-VI, Paris,
pp 839–848

Coverstone-Carroll V, Hartmann JW, Mason WJ (2000) Optimal multi-objective
low-thurst spacecraft trajectories. Comput Methods Appl Mech Eng 186:387–402

Deb K (1995) Optimization for engineering design: algorithms and examples.
Prentice-Hall, New Delhi

Deb K (1999) Solving goal programming problems using multi-objective genetic
algorithms. In: Proceedings of the CEC, Washington, pp 77–84

Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley,
Chichester

Deb K (2003) Unveiling innovative design principles by means of multiple
conflicting objectives. Eng Optim 35:445–470

Deb K, Datta R (2010) A fast and accurate solution of constrained optimization
problems using a hybrid bi-objective and penalty function approach. In: Proceed-
ings of the IEEE WCCI 2010, Barcelona, pp 165–172

Deb K, Jain S (2002) Running performance metrics for evolutionary multi-objective
optimization. In: Proceedings of the 4th Asia-Pacific conference on simulated
evolution and learning (SEAL-02), Singapore, pp 13–20

Deb K, Jain S (2003) Multi-speed gearbox design using multi-objective evolutionary
algorithms. ASME Trans Mech Des 125:609–619

Deb K, Jain H (2012) Handling many-objective problems using an improved
NSGA-II procedure. In: Proceedings of the CEC 2012, Brisbane

Deb K, Kumar A (2007a) Interactive evolutionary multi-objective optimization
and decision-making using reference direction method. In: Proceedings of the
GECCO 2007, London. ACM, New York, pp 781–788

Deb K, Kumar A (2007b) Light beam search based multi-objective optimiza-
tion using evolutionary algorithms. In: Proceedings of the CEC-07, Singapore,
pp 2125–2132

Deb K, Saha A (2012) Multimodal optimization using a bi-objective evolutionary
algorithms. Evol Comput J 20:27–62

446 K. Deb

Deb K, Saxena D (2006) Searching for Pareto-optimal solutions through dimen-
sionality reduction for certain large-dimensional multi-objective optimization
problems. In: Proceedings of the WCCI 2006, Vancouver, pp 3352–3360

Deb K, Srinivasan A (2006) Innovization: innovating design principles through
optimization. In: Proceedings of the GECCO-2006, Seattle. ACM, New York,
pp 1629–1636

Deb K, Tiwari S (2004) Multi-objective optimization of a leg mechanism using
genetic algorithms. Technical report KanGAL 2004005, Kanpur Genetic Algo-
rithms Laboratory (KanGAL), IIT, Kanpur

Deb K, Agrawal S, Pratap A, Meyarivan T (2002) A fast and elitist multi-objective
genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197

Deb K, Zope P, Jain A (2003a) Distributed computing of pareto-optimal solutions
using multi-objective evolutionary algorithms. In: Proceedings of the EMO-03,
Faro. LNCS 2632, pp 535–549

Deb K, Mohan M, Mishra S (2003b) Towards a quick computation of well-spread
pareto-optimal solutions. In: Proceedings of the EMO-03, Faro. LNCS 2632,
pp 222–236

Deb K, Jain P, Gupta N, Maji H (2004a) Multi-objective placement of electronic
components using evolutionary algorithms. IEEE Trans Compon Packag Technol
27:480–492

Deb K, Mitra K, Dewri R, Majumdar S (2004b) Towards a better understanding of
the epoxy polymerization process using multi-objective evolutionary computa-
tion. Chem Eng Sci 59:4261–4277

Deb K, Thiele L, Laumanns M, Zitzler E (2005) Scalable test problems for evo-
lutionary multi-objective optimization. In: Abraham A et al (eds) Evolutionary
multiobjective optimization. Springer, London, pp 105–145

Deb K, Sundar J, Uday N, Chaudhuri S (2006) Reference point based multi-
objective optimization using evolutionary algorithms. Int J Comput Intell Res
(IJCIR) 2:273–286

Deb K, Rao UB, Karthik S (2007) Dynamic multi-objective optimization and
decision-making using modified NSGA-II: a case study on hydro-thermal power
scheduling bi-objective optimization problems. In: Proceedings of the EMO-
2007, Matsushima

Deb K, Sinha A, Korhonen P, Wallenius J (2010) An interactive evolutionary multi-
objective optimization method based on progressively approximated value func-
tions. IEEE Trans Evol Comput 14:723–739

Ehrgott M (2000) Multicriteria optimization. Springer, Berlin
Ehrgott M, Fonseca CM, Gandibleux X, Hao JK, Sevaux M (eds) (2009) Proceed-

ings of the EMO-2009, Nantes. LNCS 5467. Springer, Heidelberg
Fonseca C, Fleming P, Zitzler E, Deb K, Thiele L (eds) (2003) Proceedings of the

EMO-2003, Faro. LNCS 2632. Springer, Heidelberg
Giel O (2003) Expected runtimes of a simple multi-objective evolutionary

algorithm. In: Proceedings of the CEC-2003, Canberra. IEEE, Piscatway,
pp 1918–1925

15 Multi-objective Optimization 447

Goh CK, Tan KC (2009) Evolutionary multi-objective optimization in uncertain
environments: issues and algorithms. Springer, Berlin

Goldberg DE (1989) Genetic algorithms for search, optimization, and machine
learning. Addison-Wesley, Reading

Gravel M, Price WL, Gagné C (2002) Scheduling continuous casting of aluminum
using a multiple objective ant colony optimization metaheuristic. Eur J Oper Res
143:218–229

Haimes YY, Lasdon LS, Wismer DA (1971) On a bicriterion formulation of the
problems of integrated system identification and system optimization. IEEE Trans
Syst Man Cybern 1:296–297

Hansen MP (1997) Tabu search in multiobjective optimization: MOTS. Paper pre-
sented at MCDM’97, University of Cape Town

Huband S, Barone L, While L, Hingston P (2005) A scalable multi-objective test
problem toolkit. In: Proceedings of the EMO-2005, Guanajuato. Springer, Berlin

Hughes EJ (2005) Evolutionary many-objective optimization: many once or one
many? In: Proceedings of the CEC-2005, Edinburgh, pp 222–227

Ishibuchi H, Tsukamoto N, Nojima Y (2008) Evolutionary many-objective op-
timization: a short review. In: Proceedings of the CEC-2008, Hong Kong,
pp 2424–2431

Jensen MT (2003a) Guiding single-objective optimization using multi-objective
methods. In: Raidl G et al (eds) Applications of evolutionary computing.
Evoworkshops 2003: EvoBIO, EvoCOP, EvoIASP, EvoMUSART, EvoROB, and
EvoSTIM, Essex. LNCS 2611. Springer, Berlin, pp 199–210

Jensen MT (2003b) Reducing the run-time complexity of multiobjective EAs. IEEE
Trans Evol Comput 7:503–515

Khor EF, Tan KC, Lee TH (2001) Tabu-based exploratory evolutionary algo-
rithm for effective multi-objective optimization. In: Proceedings of the EMO-01,
Zurich, pp 344–358

Knowles JD, Corne DW (2000) Approximating the non-dominated front using the
Pareto archived evolution strategy. Evol Comput J 8:149–172

Knowles J, Corne D (2007) Quantifying the effects of objective space dimension
in evolutionary multiobjective optimization. In: Proceedings of the EMO-2007,
Matsushima. LNCS 4403, pp 757–771

Knowles JD, Corne DW, Deb K (2008) Multiobjective problem solving from nature.
Natural computing series. Springer, Berlin

Kumral M (2003) Application of chance-constrained programming based on multi-
objective simulated annealing to solve a mineral blending problem. Eng Optim
35:661–673

Kung HT, Luccio F, Preparata FP (1975) On finding the maxima of a set of vectors.
J Assoc Comput Mach 22:469–476

Laumanns M, Thiele L, Deb K, Zitzler E (2002a) Combining convergence and di-
versity in evolutionary multi-objective optimization. Evol Comput 10:263–282

Laumanns M, Thiele L, Zitzler E, Welzl E, Deb K (2002b) Running time analy-
sis of multi-objective evolutionary algorithms on a simple discrete optimization
problem. In: Proceedings of the PPSN-VII, Granada, pp 44–53

448 K. Deb

Laumanns M, Thiele L, Zitzler E (2004) Running time analysis of multiobjective
evolutionary algorithms on pseudo-Boolean functions. IEEE Trans Evol Comput
8:170–182

López JA, Coello Coello CA (2009) Some techniques to deal with many-objective
problems. In: Proceedings of the 11th annual conference companion on genetic
and evolutionary computation, Montreal. ACM, New York, pp 2693–2696

Loughlin DH, Ranjithan S (1997) The neighborhood constraint method: a
multiobjective optimization technique. In: Proceedings of the 7th international
conference on genetic algorithms, East Lansing, pp 666–673

McMullen PR (2001) An ant colony optimization approach to addessing a JIT
sequencing problem with multiple objectives. Artif Intell Eng 15:309–317

Miettinen K (1999) Nonlinear multiobjective optimization. Kluwer, Boston
Mostaghim S, Teich J (2003) Strategies for finding good local guides in multi-

objective particle swarm optimization (MOPSO). In: Proceedings of the 2003
IEEE symposium on swarm intelligence, Indianapolis. IEEE, Piscataway,
pp 26–33

Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T (eds) (2007) Proceedings of
the EMO-2007, Matsushima. LNCS 4403. Springer, Berlin

Osyczka A (2002) Evolutionary algorithms for single and multicriteria design opti-
mization. Physica-Verlag, Heidelberg

Parks G, Suppapitnarm A (1999) Multiobjective optimization of PWR reload core
designs using simulated annealing. In: Aragonès JM (eds) Mathematics and com-
putation, reactor physics and environmental analysis in nuclear applications,
vol 2. Senda Editorial, Madrid, pp 1435–1444

Rudolph G (1998) Evolutionary search for minimal elements in partially ordered fi-
nite sets. In: Proceedings of the 7th annual conference on evolutionary programm-
ing, San Diego. Springer, Berlin, pp 345–353

Rudolph G, Agapie A (2000) Convergence properties of some multi-objective evo-
lutionary algorithms. In: Proceedings of the CEC 2000, San Diego, pp 1010–1016

Saxena D, Duro JA, Tiwari A, Deb K, Zhang Q (2013) Objective reduction in many-
objective optimization: linear and nonlinear algorithms. IEEE Trans Evol Comput
17(1):77–99

Sharma D, Collet P (2010) GPGPU compatible archive based stochastic rank-
ing evolutionary algorithm (G-ASREA) for multi-objective optimization. In:
Proceedings of the PPSN-2010, Kraków. Springer, Berlin, pp 111–120

Srinivas N, Deb K (1994) Multi-objective function optimization using
non-dominated sorting genetic algorithms. Evol Comput J 2:221–248

Surry PD, Radcliffe NJ, Boyd ID (1995) A multi-objective approach to constrained
optimization of gas supply networks: the COMOGA method. In: Evolutionary
computing. AISB workshop, Sheffield. Springer, Berlin, pp 166–180

Takahashi RHC, Deb K, Wanner EF, Greco S (2011) Proceedings of the EMO-2011,
Ouro Preto. LNCS 6576. Springer, Berlin

Tzeng GH, Huang J-J (2011) Multiple attribute decision making: methods and
applications. CRC, Boca Raton

15 Multi-objective Optimization 449

Veldhuizen DV, Lamont GB (2000) Multiobjective evolutionary algorithms: analyz-
ing the state-of-the-art. Evol Comput J 8:125–148

While L, Hingston P, Barone L, Huband S (2006) A faster algorithm for calculating
hypervolume. IEEE Trans Evol Comput 10:29–38

Wong ML (2009) Parallel multi-objective evolutionary algorithms on graphics
processing units. In: Proceedings of the GECCO-2009, Montreal, pp 2515–2522

Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans Evol Comput 11:712–731

Zhang Q, Zhou A, Zhao SZ, Suganthan PN, Liu W, Tiwari S (2008) Multiobjective
optimization test instances for the CEC-2009 special session and competition.
Technical report, Nanyang Technological University, Singapore

Zitzler E (1999) Evolutionary agorithms for multiobjective optimization: methods
and applications. PhD thesis, Swiss Federal Institute of Technology ETH, Zürich

Zitzler E, Künzli S (2004) Indicator-based selection in multiobjective search. In:
Proceedings of the PPSN VIII, Birmingham. LNCS 3242. Springer, Berlin, pp
832–842

Zitzler E, Thiele L (1998) An evolutionary algorithm for multiobjective optimiza-
tion: the strength Pareto approach. Technical report 43, Computer Engineering
and Networks Laboratory, Switzerland

Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative
case study and the strength Pareto approach. IEEE Trans Evol Comput 3:257–271

Zitzler E, Deb K, Thiele L, Coello CAC, Corne DW (2001a) Proceedings of the
EMO-2001, Zurich. LNCS 1993. Springer, Berlin

Zitzler E, Laumanns M, Thiele L (2001b) SPEA2: improving the strength Pareto
evolutionary algorithm for multiobjective optimization. In: Giannakoglou KC,
Tsahalis DT, Périaux J, Papailiou KD, Fogarty T (eds) Evolutionary methods for
design optimization and control with applications to industrial problems, Athens.
International Center for Numerical Methods in Engineering (CIMNE), pp 95–100

Zitzler E, Thiele L, Laumanns M, Fonseca CM, da Fonseca VG (2003) Performance
assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol
Comput 7:117–132

Zitzler E, Thiele L, Bader J (2010) On set-based multiobjective optimization. IEEE
Trans Evol Comput 14:58–79

Chapter 16

Sharpened and Focused No Free Lunch
and Complexity Theory

Darrell Whitley

16.1 Introduction

This tutorial reviews basic concepts in complexity theory, as well as various No Free
Lunch results and how these results relate to computational complexity. The tutorial
explains basic concepts in an informal fashion that illuminates key concepts. “No
Free Lunch” theorems for search can be summarized by the following result:

For all possible performance measures, no search algorithm is better than another when its
performance is averaged over all possible discrete functions.

Note that No Free Lunch is often referred to simply as NFL within the heuristic
search community (despite copyrights and trademarks held by the National Football
League). Two more recent variants of NFL, the Sharpened NFL, and the Focused
NFL are also reviewed. There has been a significant amount of confusion in the liter-
ature about the meaning of No Free Lunch, and differences between Sharpened NFL
and Focused NFL have not been well understood in the literature. This tutorial at-
tempts to resolve some of this confusion. The reader familiar with basic complexity
theory might wish to skip to Sect. 16.3 on No Free Lunch. Section 16.4 explains new
results based on the distinction between Sharpened and Focused No Free Lunch.

16.2 Complexity: P and NP

No Free Lunch relates to complexity theory in as much as complexity theory ad-
dresses the time and space costs of algorithms; complexity theory is also concerned
with key classes of problems, such as the class of NP-complete problems that are
also of interest to researchers designing search algorithms.

D. Whitley (�)
Department of Computer Science, Colorado State University, Fort Collins, CO, USA

E.K. Burke and G. Kendall (eds.), Search Methodologies: Introductory Tutorials
in Optimization and Decision Support Techniques, DOI 10.1007/978-1-4614-6940-7_16,
© Springer Science+Business Media New York 2014

451

452 D. Whitley

The complexity classes denoted by P and NP are the most famous classes of
problems in complexity theory. The problem class P is the set of problems that
can be solved in polynomial time on a deterministic Turing machine. For current
purposes, we can think of any computer as a surrogate for a Turing machine (except
that Turing machines are assumed to have infinite memory). The P stands for poly-
nomial. In practice, we generally think of P as representing those problems that are
tractable, i.e. problems that can be solved in reasonable computation time. What
we generally mean when we say that a problem is not tractable is that the computa-
tional costs grow exponentially with problem size and that relatively modest sized
problems can result in computation times involving years, or hundreds of years, or
trillions of years.

The problem class NP is the set of problems that can be solved in polynomial time
on a nondeterministic Turing machine. The NP stands for nondeterministic polyno-
mial (which should not be confused with “not polynomial”). Nondeterminism is a
bit strange. In a nondeterministic machine, choices are allowed in the computation,
so that some things need not be computed. In effect, the computation itself becomes
a search tree with paths and decision points in the computation. Each path in the
tree corresponds to a computation that results in one possible solution, but only one
path or a small number of paths yields an exact and optimal solution. We say that
a problem is in NP if this search tree is polynomial in height, while the number of
nodes in the search tree might be exponential. Thus, if we could explore all compu-
tational paths in parallel, we arrive at a solution in polynomial time. Alternatively,
if we “magically” make the right choice at each decision node in the tree, then we
again arrive at the desired solution in polynomial time. If we can deterministically
find a path to a solution in polynomial time in every case, then the problem is in P.
All problems in P are also in NP, because a nondeterministic Turing machine can do
all the computations in polynomial time that can be done by a deterministic Turing
machine in polynomial time.

Another hallmark of the class NP is that the correctness of solutions can be veri-
fied in deterministic polynomial time. Note that this is true, because if we have the
solution in hand, we then know how to make the right choice at each decision node
without needing any magical guidance.

Can all the problems that are solved by a nondeterministic Turing machine in
polynomial time be solved by a deterministic Turing machine in polynomial time
using another, more clever algorithm? What we are really asking is whether the
complexity class P = NP. The answer is unknown and is considered to be one of
the most important theoretical questions in Computer Science. It is an equally im-
portant question in Operations Research. While the answer is unknown, it is widely
thought that P
= NP.

Researchers have identified a very important subset of the class NP known as
the class NP-complete. A problem class, R, is NP-complete if (1) it is NP-hard
and (2) R ∈ NP. Informally, a problem is NP-hard if it is at least as hard as any
other problem in NP. More formally, a problem R is NP-hard if there exists an NP-
complete problem R0 such that every instance of R0 can be reformulated into an

16 No Free Lunch and Complexity 453

instance of R in deterministic polynomial time. More formally, it is said that R0

reduces to R in polynomial time. Therefore R must be just as hard as R0 since R
includes R0 in some sense.

In a famous theorem, Cook (1971) established that Boolean satisfiability is NP-
complete by showing it is in NP and by showing that every problem in NP can be
expressed as a Boolean satisfiability problem (also just called SAT). Of course SAT
is a member of the set of NP problems: the nondeterministic Turing machine just
selects the right assignment to the Boolean variables to make the expression true, if
it is possible to do so.

Other problems in NP have been shown to be NP-complete by showing that ev-
ery SAT problem can be converted into an instance of that particular problem class.
Thus, every instance of SAT can be converted into an instance of the 3-CNF-SAT
problem. A 3-CNF-SAT problem is a satisfiability problem where the Boolean ex-
pressions is made up of conjunctive normal form clauses. Each clause contains three
Boolean literals, where a literal is a variable or it negation, such as x1 or ¬x1. All
of the clauses of a 3-CNF-SAT problem must be satisfied for the Boolean expres-
sion to be satisfied. Every instance of a 3-CNF-SAT, in turn, can be converted into
an instance of a Hamiltonian circuit problem, and every Hamiltonian circuit can be
converted into an instance of the traveling salesman problem (TSP) (Cormen et al.
1990). This means all of these problems are NP-hard. Showing that they are all also
in the class NP makes them NP-complete. Technically, to be NP-complete, a prob-
lem must be a decision problem. A decision problem is a problem that has a yes or
no answer. Therefore, the TSP is NP-complete when expressed as a decision prob-
lem (i.e. is there a tour with length ≤ k?), but the TSP is still said to be NP-hard
when expressed as an optimization problem.

Given the interrelated nature of the NP-complete problems, if researchers ever
discover a polynomial-time algorithm for any NP-complete problem, then it would
follow that every problem in NP could be solved in polynomial time. In an abstract
sense, this means that all problems in the NP-complete are all of comparable diffi-
culty, and that the NP-complete problems are (within a polynomial difference) the
most difficult problems in the set made up of all problems in NP.

16.2.1 Complexity, Search and Optimization

Since we don’t know how to compute the exact solution to NP-hard problems in
polynomial time, we sometimes have to settle for approximate solutions. In some
cases approximate methods can guarantee a solution which is within some ratio con-
stant of the optimal solution; in other cases this is not possible and we use heuristics
search methods to find the best solutions possible. It can be useful to think of these
search methods as exploring the decision tree that is magically navigated by a non-
deterministic Turing machine. The solutions that are found using heuristic search
methods often are not optimal, but finding satisfactory or sufficiently good solutions
can be important for many applications.

454 D. Whitley

A basic distinction can be made between search problems that are discrete versus
problems that are continuous. This distinction can also be related to the difference
between integers and real-valued numbers. If we ask how many integers there are in
the (inclusive) interval between 1 and 10, the answer is obviously 10 different and
discrete values. But if we asked how many real-valued numbers there are between 1
and 10, the answer is infinitely many.

The nondeterministic Turing machine is clearly solving a discrete problem, be-
cause there are a fixed number of decisions that must be made to reach an optimal
solution. By definition, the number of decisions that must be made by the Nondeter-
ministic Turing Machine must be polynomial if it is solving an NP-hard problem.

Some problems cannot be solved in polynomial time by a nondeterministic Tur-
ing machines and therefore are not in NP; we can loosely think of such problems
as requiring exponential time, although in complexity theory one must worry about
both space (memory) and time and balance trade-offs between space and time costs.

Consider a parameter optimization problem such that there is a function f that
takes k parameters as inputs and returns a single value that evaluates the usefulness
or goodness of those k parameters. The space of possible inputs is known as the do-
main and the space of possible outputs as co-domain of the function. For example,
we might have a parameter optimization problem that used temperature and pres-
sure as two input control parameters for a process that produces some material (e.g.
paper), where the output of the function might be the cost of the material, or some
measurement of its quality.

If a parameter can be assigned any continuous real-valued number, then the
input space is theoretically infinite. We will limit our attention to problems that are
discrete such that the domain and therefore the co-domain are finite. Discrete param-
eter optimization problems are part of a larger set of discrete problems referred to
as combinatorial optimization problems. Combinatorial optimization problems in-
clude many different types of problems, such as scheduling and resource allocation,
as well as problems in graph theory and Boolean logic.

For example, we might have a scheduling problem where we want to optimize the
order in which tasks are carried out. The goal might be to minimize total processing
time, or to maximize work done per unit of time. For N tasks, there could be N!
ways to order those tasks. Or, we might want to assign truth values (0 or 1) to a
Boolean expression, in which case there are 2k assignments if there are k Boolean
variables in the expression. In the first case, an input could be a permutation of tasks
of length N and the evaluation might be how long it takes to process all of the N
tasks. In the second case, an input might be a bit-string of length k representing the
assignments made to the k Boolean variables, and the output might be a true or false
(0 or 1) evaluation of the overall Boolean expression. For classic NP-hard problems,
the search space is typically modeled in a general way so that the search space is
exponentially large in relationship to the size of an input.

Parameter optimization problems can also be discretized. For example, a single
input parameter can be restricted to a value between 1 and 100 (inclusive) where we
only consider values that are increments of 0.01. In this case, there are only 10,000
possible assignments for that particular input parameter. If all of the parameters of a

16 No Free Lunch and Complexity 455

parameter optimization problem are discretized in this way, then the overall search
problem is discrete as well. There are a number of reasons that one might want to
look at parameter optimization problems as discrete search spaces. In some cases,
sensors for the inputs and/or outputs have limited precision and it does not make
sense to represent and reason about extremely high precision numbers—we simply
can’t measure the world that precisely. And, in general, as soon as anything is rep-
resented in a computer program it is discrete. Infinite precision is a fiction, although
it is often an extremely useful fiction (for example, when we can still use mathe-
matical methods that exploit properties of continuous functions). But as soon as we
decide to represent a parameter using a fixed-length floating point representation,
the optimization problem is actually discrete.

This leads to the following observation. If the set of possible inputs is discrete, we
can enumerate the set of inputs and label each possible input with a unique integer.
We will also sort the inputs in some principled manner, so that the ith possible input
is uniquely identified. This is a familiar concept in complexity, since it allows us to
count all of the inputs. Thus, any particular instance of a discrete search problem
using any given discrete representation can be abstractly modeled by a function

f (i) = j

where i is an integer that labels the ith input (i.e. the i element of the domain) and j
is a member of the set of values that make up the co-domain. This perspective also
provides a general foundation for discussing the concept of No Free Lunch.

16.3 No Free Lunch

In 1995, a paper by David Wolpert and William Macready caused a good deal of
excitement in the search community. Their technical report No Free Lunch Theorems
for Search presents proofs that can be summarized by the following No Free Lunch
result:

For all possible performance measures, no search algorithm is better than another when its
performance is averaged over all possible discrete functions.

First, note that we only consider discrete functions. A performance measure in-
cludes any measurement of the quality of the solution (or set of solutions) found
after sampling some fixed number of points in the search space, or how long it takes
to find a solution of a particular quality. It is also implied that a performance mea-
sure is taken over the set of domain and associated co-domain values that have been
sampled so far.

An updated version of the original report appeared in 1997. A key assumption
behind this result is that resampling is ignored: this means that if a search algorithm
samples point i and evaluates the objective function f (i) then that point is never
sampled again. In reality, heuristic search algorithms concentrate search in particular
regions of the search space: in other words, in a concentrated search more time is

456 D. Whitley

spent sampling points that are near to previously observed good solutions. This is
sometimes described as intensification or exploitation. Consequently, a concentrated
search is one that is more likely to also resample previously visited points. Search
algorithms that are more likely to resample points in the search space than others
are in some sense worse than algorithms that resample less.

One of the most basic and least intelligence forms of search is random enumera-
tion. Random enumeration means that we sample the search space randomly with-
out replacement; this can be done using clever bookkeeping, or simply by keeping a
list of visited points so that none are evaluated again. In practice, random sampling
explores only a limited amount of the search space, and it is reasonable to allow sam-
pling with replacement because resampling is unlikely if the sampling is random.
When random sampling is used as a search algorithm, it provides a minimal baseline
against which the performance of heuristic search algorithms can be judged. Clearly,
we would expect any useful heuristic search algorithm to outperform random enu-
meration. However, a startling and powerful consequence of No Free Lunch is that
no heuristic search algorithm is better than random enumeration when compared
over all possible discrete functions.

Useful search algorithms do not exhaustively enumerate the entire search space.
Wolpert and Macready (1995, 1997) model a search algorithm as a procedure that
searches for m steps. However, this does not restrict any of the No Free Lunch
results.

Another issue relating to No Free Lunch involves deterministic versus stochas-
tic search algorithms. Some algorithms make deterministic decisions, such as a
steepest-ascent local search algorithm: when started from the same point, steepest
ascent always yields the same solution. Other search algorithms are stochastic—
meaning that the search utilizes random numbers and makes stochastic decisions
and therefore different runs will typically produce different solutions. Wolpert and
Macready present arguments showing that the No Free Lunch theorems hold for
both stochastic and deterministic search algorithms. Radcliffe and Surry (1995) also
point out that in practice stochastic algorithms typically employ pseudo-random
number generators. Thus, if we include the random number generator and initial
seed in the specification of the search algorithm, then these stochastic algorithms, in
effect, are also deterministic.

Immediately following its introduction, researchers had two general reactions to
the No Free Lunch results.

• Reaction 1. Many researchers simply dismissed No Free Lunch, arguing that re-
sults concerning the set of all possible discrete functions are not applicable in the
real world because this set is not representative of real-world problems. Some
researchers pointed out that the set of all possible discrete functions is infinitely
large and most functions are incompressible in that there is not a representation
whose size is significantly less than the size of the function when fully enumer-
ated. For example, if there are N values in the co-domain of a function, then
writing down all of these values requires N log2(N) bits (i.e. N values, log2(N)
bits per value). In effect, this representation of the function is just a look-up table
where the ith entry is the co-domain value associated with f (i). If there exists

16 No Free Lunch and Complexity 457

no representation of a function that uses less than O(N log2(N)) bits, then that
function is incompressible. Even if an evaluation function only returns 0 or 1, it
still requires O(N) bits to construct a look-up table or to enumerate the function;
in this case, the look-up table is still exponentially large when N is exponentially
large in relationship to the size of an input string to the evaluation function.
Of course, there are more random functions than non-random functions (English
2000a). Furthermore, most standard textbooks on computability discuss the well-
known result that the set of all possible functions is uncountably infinite (as can
be shown using diagonalization arguments), while the set of all possible pro-
grams (which are just bit-strings at the lowest level) is only countably infinite
(Sudcamp 1997). So the set of all possible cost functions that can be imple-
mented on a computer is a tiny subset of the set of all possible functions. Thus,
the space of all possible discrete functions is largely composed of incompressible
functions. Given these observations, “No Free Lunch is No Big Deal” seemed to
be the conclusion of this point of view.

• Reaction 2. The other reaction to No Free Lunch was to acknowledge that re-
searchers trying to develop the best possible algorithm for a particular application
typically need to leverage extensive problem-specific knowledge. Consequently,
the No Free Lunch result seemed to be an intuitive affirmation of the idea that
there are no general-purpose search methods (at least none that are very effec-
tive) and that the business of developing search algorithms is one of building
special-purpose methods to solve application-specific problems. This point of
view echoes a refrain from the Artificial Intelligence community: “Knowledge is
Power.”

Of course, there is truth in both of these views. It has taken several years for
the research community to gain a deeper understanding of No Free Lunch. These
investigations have led to some surprising and even fruitful results along the way.
In 1998 Joe Culberson published an algorithmic view of No Free Lunch that added
perspective to the debate; Culberson makes two important points.

First, all of this looks at search as a blind process. This means that we are doing
black-box optimization and the only information we have is the evaluation of par-
ticular points in the space. We do not have information about what a solution might
look like or information about how the evaluation function is constructed that might
allow us to search more intelligently. Blind search is extremely weak. Using an ad-
versarial argument we can think of blind search as the process of asking an adversary
to sample a point of some objective function and then return an answer. In the space
of all possible discrete functions, however, the adversary is free to return any value
whatsoever without regard to those values of the search space that have already been
examined. In the worst case, the previously sampled points from the search space
tell us nothing about the remaining points in the search space. (As we will see later
in this paper, for Focused No Free Lunch, we are not restricted to blind black-box
optimization.)

Second, Culberson points out that search is often not blind. If we construct an
algorithm for the TSP, for example, we usually exploit application-specific operators

458 D. Whitley

and representations. But we do not completely give up generality; our algorithms
are designed to solve a particular problem, but should be general enough to solve
different instances of that problem.

Radcliffe and Surry (1995) first formalized the idea that we can also include
representations under No Free Lunch. That is, when we consider all possible rep-
resentations of a function, No Free Lunch still holds: no search algorithm is better
than another when applied to all possible representations of a function. In effect, a
representation just transforms one function into another.

Not surprisingly, No Free Lunch also holds when comparing the set of possi-
ble representations under Gray codes and binary bit encodings. However, Whitley
and Rana (1997) pointed out that if one selected particular subsets of problems of
bounded complexity, then No Free Lunch no longer holds; Whitley (1999) provided
proofs of this for binary representations. Droste et al. (1999) also made similar ob-
servations, indicating that one can define sets of reasonable and interesting functions
where one algorithm can consistently outperform another.

If we go back in time, No Free Lunch observations were made by Greg Rawlins
at the Foundations of Genetic Algorithms (FOGA) workshops in 1990 and 1992. In
the preface to the proceedings of the 1990 FOGA workshop Rawlins (1991) makes
the following observations:

[I]t is sometimes suggested that GAs [Genetic Algorithms] are universal in that they can be
used to optimize any function. These statements are true in only a very limited sense; any
algorithm satisfying [these] claims can expect to do no better than random search over the
space of all functions (Rawlins 1991, p. 7).

It is now apparent that for a fixed universal algorithm, restricted to strings . . . over the set
of all possible domain functions . . . it does not matter which encoding we use, since for
every domain function which the encoding makes easier to solve there is another domain
function that makes it more difficult to solve. Thus, changing the encoding does not affect
the expected difficulty of solving a randomly chosen domain function.

Equivalently, assume that we have a fixed domain function f and suppose that we choose the
encoding, e, at random. That is, we pick one of the . . . possible encodings. Then, no search
algorithm can expect to do better than random search, since no information is carried by e
about f , except that for each string there is a value (Rawlins 1991, p. 8).

Rawlins anticipated several of the consequences of No Free Lunch. Nevertheless,
it was Wolpert and Macready who provided the first detailed proof of No Free Lunch
for search.

16.3.1 No Free Lunch: Variations on a Theme

Two variants of NFL are as follows:

• The aggregate behavior of any two search algorithms is equivalent when
compared over all possible discrete functions.

16 No Free Lunch and Complexity 459

• The aggregate behavior of all possible search algorithms is equivalent when
compared over any two discrete functions that share the same co-domain values.

At the root of these observations is another, more concise result. Consider any
algorithm Ai applied to function f j. Let Apply(Ai, f j,m) represent a meta-level al-
gorithm that outputs the order in which Ai visits m elements in the co-domain of f j

after m steps. For every pair of algorithms Ak and Ai and for any function f j , there
exists another function fl such that

Apply(Ai, f j,m)≡ Apply(Ak, fl ,m).

The equivalence operator ≡ denotes that the ordered sequence of co-domain
values that is return by “Apply” will be equivalent. We could interpret this re-
sult in another way. For every pair of functions f j and fl that share the same co-
domain values and for any algorithm Ai, there exists another algorithm Ak such that
Apply(Ai, f j,m) ≡ Apply(Ak, fl ,m). In fact, if we consider the algorithms and the
functions as variables that are supplied to the Apply function, then when any three
of the “variables” are known, the fourth is immediately determined, assuming we
restrict the functions to the same set of co-domain values.

This also implies that we can talk about No Free Lunch in a much smaller con-
text: for example, we can talk about exactly two search algorithms applied to exactly
two carefully chosen paired functions.

This perspective on No Free Lunch has some rather counterintuitive implications.
Consider a Best-First version of steepest-ascent local search which restarts when
a local optimum is encountered. Also consider a Worst-First steepest-ascent local
search, also with restarts. We incorporate restarts so that these algorithms continue
searching for an arbitrary number of steps. Then, for every function f j there exists
a function fl such that

Apply(Best-First, f j ,m)≡ Apply(Worst-First, fl ,m).

Virtually all researchers would accept that Best-First local search is a reason-
able search algorithm and that it is useful on many real-world problems. In other
words, there is a subset of problems where Best-First search is effective, relative
to some performance measure. But there is a corresponding set of functions where
Worst-First local search is equally effective. What do these functions look like?
They probably are “structured” in some sense, and might be compressible. Also
note that if we are minimizing a function, then a Worst-First local search is one
that simply maximizes at each step, instead of minimizing. So on some functions,
we find a good minimal solution by using an algorithm that maximizes. Why is
Best-First search generally viewed as a reasonable algorithm and Worst-First as an
unreasonable algorithm? This is a nagging question for which, at least formally,
there are currently no good answers except that we expect functions representing
real applications to have a structure that is better explored by Best-First search.

460 D. Whitley

16.3.2 No Free Lunch and Permutation Closure

Whitley et al. (1997, 2000) first explored the idea that permutations could be used
to represent both algorithms and functions—and thus produce an NFL result over
a finite set. However, this idea is also implicit in the work of Radcliffe and Surry
(1995) on NFL and representations.

Consider the following example. Assume that the co-domain of our objective
function consists of the set of values {A,B,C}. Let the permutation 〈A,B,C〉 rep-
resent a canonical ordering of these values. We can start by considering bijective
functions, those that are one-to-one and onto: an important implication of this is
that each value in the co-domain is unique. To construct a function, we need to as-
sign values to f (1), f (2) and f (3). Exactly 3! bijective functions can be constructed
given three possible co-domain values. Additionally, only 3! behaviors are possible
for any search algorithm, assuming that an algorithm does not resample points. Let
an algorithm’s behavior be represented by a permutation over the set of numbers
{1,2,3} which will serve as indices into the canonical permutation of co-domain
values {A,B,C}. Let si be the ith value sampled by a search algorithm. Thus, the
permutation 〈2,1,3〉 defined with respect to the canonical ordering 〈A,B,C〉 repre-
sents a search algorithm whose behavior can be described by the following sampling
behavior

s1 = f (2) = B, s2 = f (1) = A, s3 = f (3) =C.

Note that we don’t actually need to specify a particular function to talk about be-
havior, we just need to define the co-domain values. In the following table, we
enumerate all possible permutations over all possible functions over the co-domain
{A,B,C} as well as all possible permutations over the set of algorithm behaviors
over the set of indices denoted by {1,2,3}:

POSSIBLE POSSIBLE
BEHAVIORS FUNCTIONS

B1: < 1, 2, 3 > F1: < A, B, C >

B2: < 1, 3, 2 > F2: < A, C, B >

B3: < 2, 1, 3 > F3: < B, A, C >

B4: < 2, 3, 1 > F4: < B, C, A >

B5: < 3, 1, 2 > F5: < C, A, B >

B6: < 3, 2, 1 > F6: < C, B, A >

The implications of No Free Lunch start to become clear when one asks basic
questions about the set of behaviors and the set of functions.

16 No Free Lunch and Complexity 461

If we apply any two sets of behaviors to all functions, each behavior generates
a set of 3! possible search behaviors which is the same as the set of all possible
functions. If we apply all possible search behaviors to any two functions, for each
function we again obtain a set of behaviors which, after the indices are translated
into co-domain values, is the same as the set of all possible functions.

We need to be careful to distinguish between algorithms and their behaviors.
There exist many algorithms (perhaps infinitely many) but once the values of the
co-domain are fixed, there are only a finite number of behaviors.

Schumacher (2000) and Schumacher et al. (2001) make the No Free Lunch the-
orem more precise by formally relating it to the permutation closure of a set of
functions. The result is what is now referred to as the Sharpened No Free Lunch
theorem. Let X and Y denote finite sets and let f: X −→ Y be a function where
f (xi) = yi. Let σ be a permutation such that σ : X −→ X . We can permute functions
as follows:

σ f (x) = f (σ−1(x)).

Since f (xi) = yi, the permutation σ f (x) can also be viewed as a permutation over
the values that make up the co-domain (the output values) of the objective function.

We next define the permutation closure P(F) of a set of functions F :

(F) = {σ f : f ∈ F and σ is a permutation}.

Informally, P(F) is constructed by taking each function in F and re-ordering its
co-domain values to produce a new function. This process is repeated until no new
functions can be generated. This produces closure since every re-ordering of the
co-domain values of any function in P(F) will produce a function that is already a
member of P(F). Therefore, P(F) is closed under permutation.

The Sharpened No Free Lunch theorem is often informally expressed by saying
that when comparing search methods, the No Free Lunch theorem holds if and only
if the set of functions used to compare the algorithms is closed under permutations.
However in Sect. 16.4 we will see that we should really be more precise about what
the Sharpened No Free Lunch theorem really means.

Sharpened NFL does make it clear that No Free Lunch theorems for search apply
to finite sets. These sets can in fact be quite small. Proofs are given by Schumacher
et al. (2001). Intuitively, that NFL should hold over a set closed under permutations
can be seen from Culberson’s adversarial argument: any possible remaining value
of the co-domain that has not yet been sampled can occur at the next time step of
search. To see why this is true, assume we have a bijective function, and we place
the N values of the co-domain in a grab-bag. By drawing values of the grap-bag we
can construct N! different functions. Denote this set P(F) since it is the permutation
closure of some seed function. Assume f j is one of these functions. Next (using our
Apply meta-function) execute algorithm A1 on function f j:

Apply(Ai, f j ,m).

462 D. Whitley

Next, assume we want to compare the behavior of algorithm A2 against that of
A1. For every f j ∈ P(F), there exists a function fl ∈ P(F) such that

Apply(A1, f j ,m) = Apply(A2, fl ,m).

It also follows that for every fl ∈ P(F), there exists a function fi ∈ P(F) where
this statement also holds. This is the essence of Sharpened No Free Lunch. The
statement remains true even if the functions are not bijections. But this only estab-
lishes one direction of the if and only if.

Proving that the connection between algorithm behavior and permutation closure
is an if and only if relationship is much stronger than the observation that No Free
Lunch holds over the permutation closure of a function. But if every remaining value
is not equally likely at each time step, then the set of functions we are sampling
from is not closed under permutation and No Free Lunch is not guaranteed to hold
for arbitrarily chosen search methods. Similar observations have also been made by
Droste et al. (2002). As we will see later, the fact that algorithms A1 and A2 can be
chosen arbitrarily is critical to Sharpened No Free Lunch.

We can now make a more precise statement about the zero-sum nature of No Free
Lunch. If algorithm K outperforms algorithm Z on any subset of functions denoted
by β, then algorithm Z will outperform algorithm K over P(β)−β.

English (2000a) first pointed out that NFL can hold over sets of functions such
as needle-in-a-haystack functions. A needle-in-a-haystack function is one that has
the same evaluation for every point in the space except one; in effect, searching a
needle-in-a-haystack function is necessarily random since there is no information
about how to find the needle until after it has been found.

In the following example, NFL holds over just three functions:

f = 〈0,0,3〉
P(f) = {〈0,0,3〉,〈0,3,0〉,〈3,0,0〉} .

Clearly, NFL does not just hold over sets that are incompressible. All needle-in-
a-haystack functions have a compact representation of size O(lg N), where N = |X |.
In effect, the evaluation function needs to indicate when the needle has been found
and return a distinct evaluation.

Generally, we like to construct evaluation functions that are capable of producing
a rich and discriminating set of outputs: that is, we like to have evaluation functions
that tell us point i is better than point j. But it also seems reasonable to conjecture
that if NFL holds over a set that is compressible, then that set has low information
measure.

Schumacher et al. (2001) also note that the permutation closure has the following
property:

P(F ∪F ′) = P(F)∪P(F ′).

Given a function f and a function g, where g /∈ P(f), we can then construct three
permutation closures: P(f),P(g),P(f ∪g). For example, this implies that NFL holds
over the following sets which are displayed in table format:

16 No Free Lunch and Complexity 463

Set 1: {< 3, 0, 0 >,
< 0, 3, 0 >, Set 3: {< 3, 0, 0 >,
< 0, 0, 3 >} < 0, 3, 0 >,

< 0, 0, 3 >,
Set 2: {< 1, 3, 2 >, < 1, 3, 2 >,

< 2, 1, 3 >, < 2, 1, 3 >,
< 2, 3, 1 >, < 2, 3, 1 >,
< 3, 1, 2 >, < 3, 1, 2 >,
< 3, 2, 1 >} < 3, 2, 1 >}

We can also ask about NFL and the probability of sampling a particular function
in P(f). For NFL to hold, we must insist that all members of P(f) for a specific
function f are uniformly sampled. Otherwise, some functions are more likely to be
sampled than others, and NFL breaks down. For NFL to hold over P(g) the proba-
bility of sampling a function in P(g) must also be uniform. But Igel and Toussaint
(2004) point out that we can also have a uniform sample over P(g) and a (different)
uniform sample over P(f) and NFL still holds. Thus, sampling need not be uniform
over P(f ∪g).

16.3.3 Free Lunch and Compressibility

Whitley (2000) presents the following observation (the current form is expanded to
be more precise):

Theorem: Let P(f) represent the permutation closure of the function f . If f is a bijection,
or if any fixed fraction of the co-domain values of f are unique, then |P(f)|= O(N!) and
the functions in P(f) have a description length of O(N lg N) bits on average, where N is
the number of points in the search space.

The proof, which is sketched here, follows the well known proof demonstrating
that the best sorting algorithms have complexity O(N logN). We first assume that
the function is a bijection and that |P(f)|= N!. We would like to tag each function
in P(f) with a bit string that uniquely identifies that function. We then make each
of these tags a leaf in a binary tree. The tag acts as an address that tells us to go left
or right at each point in the tree in order to reach a leaf node corresponding to that
function. But the tag also uniquely identifies the function. The tree is constructed
in a balanced fashion so that the height of the tree corresponds to the number of
bits needed to tag each function. Since there are N! leaves in the tree, the height
of the tree must be O(logN!) = O(N logN). Thus O(N logN) bits are required to
uniquely label each function. Standard binary labels can be compressed by dropping
leading zeros, but only 1/2 of the strings can be compressed, so the complexity is
still O(N logN) on average.

To construct a lookup table or a full enumeration of any permutation of N el-
ements requires O(N logN) bits, since there are N elements and logN bits are
needed to distinguish each element. Thus, most of these functions have exponential
description.

464 D. Whitley

This is, of course, one of the major concerns about No Free Lunch theorems. Do
No Free Lunch theorems really apply to sets of functions which are of practical in-
terest? Yet this same concern is often overlooked when theoretical researchers wish
to make mathematical observations about search. For example, proofs which calcu-
late the number of expected optima over all possible functions (Rana and Whitley
1998), or the expected path length to a local optimum over all possible functions
(Tovey 1985) under local neighborhood search are computed with respect to the set
of N! functions.

Igel and Toussaint (2003) formalize the idea that if one considers all the possi-
ble ways that one can construct subsets over the set of all possible functions, then
those subsets that are closed under permutation are a vanishing small percentage.
This problem with this observation is that the a priori probability of any subset of
problems is vanishingly small—including any set of applications we might wish to
consider. On the other hand, Droste et al. (2002) have also shown that for any func-
tion for which a given algorithm is effective, there exist related functions for which
performance of the same algorithm is substantially worse.

16.4 Sharpened NFL and Focused NFL

We might express the Sharpened No Free Lunch theorem more precisely as follows:

The aggregate behaviors of any two arbitrarily chosen search algorithms are guaranteed to
be equivalent if and only if the algorithms are compared on a set of functions that are closed
under permutation.

It is important to stress that the algorithms are arbitrarily chosen. If we do not
know which algorithms are being compared, then the best we can do to ensure that
the algorithms display identical behaviors is to compare them on a set of functions
that are closed under permutation.

What if we wish to compare two specific search algorithms, Ai and Ak, algorithms
that we have knowledge about? Does the “Sharpened No Free Lunch” result still
apply?

We will again use the function Apply(Ai, f j ,m). Recall that this meta-level algo-
rithm outputs the order in which Ai visits m elements in the co-domain of f j after
m steps. We can also reconfigure Apply to be a function generator. We will call the
function generator APPLY such that

fout = APPLY(Ai,Ak, fin,m) ⇐⇒ Apply(Ai, fin,m)≡ Apply(Ak, fout,m).

We can now define a set that is closed with respect to the operation of the APPLY

function. Assume that we will be given some as yet unknown algorithms Ai and Ak,
and we start with a set F which contains a single function f1. We assign fin = f1

and we generate a function fout = f2.
Define the set C(F) such that the set F is a subset of C(F) and if fin is a member

of C(F) then fout = APPLY(Ai,A j, fin) is also a member of C(F).

16 No Free Lunch and Complexity 465

Can we define C(F) in advance so that any two arbitrarily chosen algorithms Ak

and Ai are guaranteed to have the same behaviors? The Sharpened No Free Lunch
theorem states that C(F) must be a set that is closed under permutation if Ak and Ai

are arbitrarily chosen (as yet unknown algorithms) and we require that algorithms Ak

and Ai have identical performance when compared on all in the functions in C(F).
But what if we wish to compare exactly two algorithms, A1 and A2, and we are

told in advance what algorithms are going to be compared? In this case we can
potentially find a closure C(F) defined with respect to the APPLY function such
that the set C(F) need not be closed under permutation in order for algorithms A1

and A2 to display the same aggregate performance over the set of function in C(F)
for all possible comparative measures.

Using these ideas, Whitley and Rowe (2008) present the key ideas behind the
Focused No Free Lunch theorem:

Let A1 and A2 be two predetermined algorithms and let F be a set of functions. The aggre-
gate performance of A1 and A2 are equivalent over the set C(F); furthermore, the set C(F)
need not be closed under permutation.

Actually, we might also compare 3 or 4 or 20 predetermined algorithms and ask
if a set exists where all of the selected algorithms have the same behavior. But for
now, looking at just two algorithms is enough to establish the behavior in which we
are interested. We will look at two different ways in which Focused No Free Lunch
can hold.

First, assume that the two algorithms are deterministic. The search behaviors of
A1 and A2 when executed on a function f1 can induce a permutation group such that
the orbit of the group is smaller than the permutation closure. For example, assume
that A1 is a local search algorithm that uses a binary bit encoding, and A2 is a local
search algorithm that uses a Gray code bit encoding; assume that both algorithms
use the same restart mechanism. Otherwise A1 and A2 apply exactly the same search
strategy; the only difference is that one uses the binary representation and the other
uses a Gray code. Then we can prove that when F = { f1}, then the size of C(F)
is less than or equal to 2L where L is the number of bits used to encode the search
space.

Whitley and Rowe (2008) show that this happens because repeated application of
Gray encoding induces a group whose orbit is always made up of a set of between
L and 2L functions. To see why this is true, consider a bit string of length 3. We
will take a binary string, then Gray code it, and Gray code it again. Let G1 denote
one application of Gray code, G2 will denote two applications, and Gx will denote x
applications of Gray code:

Binary = 000 001 010 011 100 101 110 111
G1 = 000 001 011 010 110 111 101 100
G2 = 000 001 010 011 101 100 111 110
G2 = 000 001 011 010 111 110 100 101
G4 = 000 001 010 011 100 101 110 111

466 D. Whitley

By the fourth application of Gray code, the encoding has cycled back to the same
as the original binary encoding. Thus the performance of any algorithm using G4

as a representation is identical to the performance of the same algorithm using the
binary coding. The first 4 sets of bit strings form a group with an orbit of 4.

We will generate four functions in the following way: Gray the original function
four times, then assume that the bit pattern that is produced is actually the binary
encoding of a new function. In other words, each bit string in each representation
will be treated as if it is a binary string, b, and the function f (b) = i will return
the integer corresponding to the bit string b. (Without loss of generality, we can
represent the seven co-domain values as integers.) The binary representation and
the Gray code representations are transformed into the following four functions:

fi(1) fi(2) fi(2) fi(3) fi(4) fi(5) fi(6) fi(7)
f1 = 0 1 2 3 4 5 6 7
f2 = 0 1 3 2 6 7 5 4
f3 = 0 1 2 3 5 4 7 6
f4 = 0 1 3 2 7 6 4 5
f5 = 0 1 2 3 4 5 6 7

Since f1 = f5 there are only four distinct functions. One can show by construction
that the Gray code representation of fi induces exactly the same search space as
the binary representation of fi+1.

Let Ab be any algorithm that uses a binary coding; let Ag be exactly the same
algorithm except that it uses a Gray encoding. On the set of four functions we have
defined, algorithms Ab and Ag will have identical performance. This implies

Apply(Ab, f2,m) = Apply(Ag, f1,m)

Apply(Ab, f3,m) = Apply(Ag, f2,m)

Apply(Ab, f4,m) = Apply(Ag, f3,m)

Apply(Ab, f5,m) = Apply(Ag, f4,m).

And since f5 = f1 we have constructed a set C(F) = { f1, f2, f3, f4} that is not
closed under permutation. Therefore a Focused No Free Lunch holds. Whitley and
Rowe (2008) generalize this result to show that when comparing algorithm Ag and
Ab for inputs of L bits, the size of the set C(F) is always less than 2L. By contrast, the
size of the permutation closure P(F) is 2L! for a single seed function. Whitley and
Rowe also show that Focused No Free Lunch that exploit the orbits of groups also
holds for other classes of search algorithms. In this case Focused No Free Lunch
holds even if the entire search space is exhaustively explored.

So, when comparing two specific algorithms we can sometimes look at sets of
functions smaller than the permutation closure, and still observe identical perfor-
mance for the two algorithms we are comparing. Furthermore, while Sharpened No
Free Lunch holds for the black-box optimization method, Focused No Free Lunch
does not require that the optimization method be a black-box optimizer. For exam-
ple, for our algorithms Ab and Ag we can have various kinds of information about the

16 No Free Lunch and Complexity 467

functions we are optimizing. We can know how many parameters there are, where
the parameter boundaries are, and we might exploit domain-specific knowledge so
that we apply different search strategies for different parameters. Algorithms Ab and
Ag can in fact use any information we might want to include about the set of func-
tions as long as the only difference between the two algorithms is that one uses a
binary encoding and the other uses a Gray encoding. Search need not be blind or
black box for Focused No Free Lunch results to hold.

There is a second way in which Focused No Free lunch results can occur. In all
real applications the number of points that we sample, denoted by m, is polynomial
with respect to input size of the problem, while the search space is exponential. Let
N denote the size of the search space. Reconsider the computation using the APPLY

function where m << N:

fout = APPLY(Ai,A j, fin,m).

There now can be exponentially many functions that can play the role of fout

because the behavior of fout is defined at only m points in the search space, and the
other points in the search space can be reconfigured in any of (N −m)! ways, all
of which are unique if the function fin is a bijection. Intuitively, we no longer need
the entire permutation closure to obtain identical over some set of functions when
only a tiny fraction of the search space is explored. In fact, under certain conditions
one can prove that given two predetermined algorithms A1 and A2 there can exist
functions f1 and f2 such that

Apply(A1, f1,m)≡ Apply(A2, f2,m)

Apply(A1, f2,m)≡ Apply(A2, f1,m)

so that a Focused No Free Lunch result holds over a set of only two functions such
that C(F) = { f1, f2}. This can occur, for example, if the two search algorithm never
sample the same domain values or co-domain values on any test function. (It should
be noted that this requirement is sufficient, but not strictly necessary; Whitley and
Rowe (2008) present a more general result.)

For example, consider the following functions:

f1 = 〈0, 1, 2, 3, 4, 5, 6, 7〉.

Assume that search algorithm A1 samples f1(4) = 3 and f1(8) = 7 and halts. As-
sume that search algorithm A2 samples f1(3) = 2 and f1(6) = 5 and halts. We can
construct a second function f2 on the fly. We will assume that each algorithm starts
at the same domain value. To make their behaviors the same, we require that A1 sam-
ples f2(4) = 2 and that A2 samples f2(3) = 3. This has the following implications
for function f2:

f2 = 〈?, ?, 3, 2, ?, ?, ?, ?〉.
In this case, a ? symbol means that the co-domain value of the function at that
location has not yet been determined, and the function is under-specified. Next we

468 D. Whitley

see where the algorithms sample next as search continues. Assume that A1 decides
to sample f2(1) and that A2 decides to sample f2(5). Then we continue to define
function f2 so that f2(1) = 5 and f2(5) = 7. We can do this as long as they do not
sample the same points. This has the following implications for the construction of
function f2:

f2 = 〈7, ?, 3, 2, 5, ?, ?, ?〉.
Thus, after sampling only two points in the search space we see that there must exist
a function f2 such that

Apply(A1, f1,2)≡ Apply(A2, f2,2)

Apply(A1, f2,2)≡ Apply(A2, f1,2)

and a set C(F) = { f1, f2} can be defined which is smaller than the permutation
closure. It does not matter than function f2 is under-specified, and that in fact, f2

actually represents a family of functions, all of which produce the desired behavior.
What happens if we are not so lucky, and algorithms A1 and A2 sample some of

the same domain values? Whitley and Rowe (2009) present a constructive algorithm
that creates a set of functions that yield a set of under-specified functions which in
turn creates a closure C(F). We can think of the set F as either allowing under-
specified functions, or we can make every function in F specific by randomly filling
in the unspecified co-domain values with unused co-domain values.

16.4.1 Partitioning the Permutation Closure under Focused NFL

There can be many ways to partition a set that is closed under permutation to ob-
tain many additional sets that display Focused No Free Lunch results. Let P(F) be
the permutation closure of a set of functions denoted by F . Let C(F) be a set of
functions such that the specific algorithms Ak and A j have identical performance on
the set of function C(F). In this case, we assume that C(F) contains fully specified
functions. Assume that C(F) is a proper subset of P(F). Then a Focused No Free
Lunch result holds over C(F) but a Focused No Free Lunch result must also hold
over the set P(F)−C(F) as well. Let F1 =C(F). If we can extract a second proper
subset F2 from the residual set P(F)−F1 such that algorithms Ak and A j have iden-
tical performance over the functions in set F2, then the algorithms will also have
identical performance over the residual set P(F)−F1−F2. By recursively extend-
ing this idea, we can decompose the set P(F) into subsets such that Ak and A j will
have identical performance over the functions in each subset Fi ⊂ P(F). This also
means that P(F) decomposes such that

P(F) =
⋃

Fi.

16 No Free Lunch and Complexity 469

Furthermore, recall that when we are constructing the set C(F) under the
conditions that we limit search to m steps, there can be exponentially many dif-
ferent functions that display the same behaviors for the first m steps. Thus, when
constructing C(F), there is not a unique way to partition P(F). Assume that we pick
a different set of functions, G such G ∈ P(F) and we define C(G) so that Ak and A j

have identical performance over the functions in C(G). Furthermore, assume that
∀i,C(G)
= Fi. Let G1 denote the set C(G). Then we can also define a different set
of partitions where

P(F) =
⋃

Gi =
⋃

Fi.

However, the decomposition represented by the sets
⋃

Gi can be completely differ-
ent from the decomposition represented by the sets

⋃
Fi.

For example, one can construct cases where even the average size of the subsets
that make up

⋃
Gi is different from the average size of the subsets in

⋃
Fi. One can

attempt to construct sets Fi such that every set is as small as possible. On the other
hand, one can allow the search to “wander” through various random functions and
allow the subsets that make up

⋃
Gi to grow larger before attempting to construct a

function to create a closure.
Again, consider the following function:

f1 = 〈0, 1, 2, 3, 4, 5, 6, 7〉.

Assume that search algorithm A1 samples f1(4)= 3 and f1(8)= 7 and halts. Assume
that search algorithm A2 samples f1(3) = 2 and f1(6) = 5 and halts. Now, instead of
constructing a second function f2 that produces a closure as quickly as possible, we
will add an additional random function that causes the size of the subset to become
larger.

We start to construct a different function f ∗2 as follows. We still require that A2

mimic the behavior of A1 on f1, thus we assume that A2 samples f ∗2 (3) = 3 and then
f ∗2 (0) = 7. This results in the partial construction of f ∗2 :

f ∗2 = 〈7, ?, 3, ?, ?, ?, ?, ?〉.

This is sufficient to ensure that

Apply(A1, f1,2)≡ Apply(A2, f2,2).

However, there can be up to (N−m)! different ways of making an underspecified
function specific. Suppose we pick the missing values in f ∗2 randomly as follows:

f ∗2 = 〈7, 6, 3, 5, 1, 4, 0, 2〉.

And now we execute algorithm A1 for two steps; assume that it samples f ∗2 (4) = 5
and f ∗2 (6) = 4 and halts. We now are forced to construct a third function. But now,
we will try to assign values to the underspecified function to create a closure. If
possible, we want to create a function f3 where

470 D. Whitley

Apply(A1, f1,2)≡ Apply(A2, f2,2)

Apply(A1, f2,2)≡ Apply(A2, f3,2)

Apply(A1, f3,2)≡ Apply(A2, f1,2).

With this goal in mind, we create construct f3 as follows:

f3 = 〈?, 4, ?, 5, 2, ?, ?, ?〉.

Now assume that on f3 algorithm A1 samples f3(4) = 5 and f3(2) = 4 and halts
and search algorithm A2 samples f3(5) = 2 and f3(4) = 5 and halts. This yields the
desired result. But it yields a different partitioning of the permutation space, because
function f1 is the same in both cases, but f1 ends up in partitions of different size.
Therefore, there is not a unique way to partition the permutation closure.

There can be many different ways of partitioning the permutation closure. As-
sume that a f1 is given and that function f2 is defined to satisfy the following con-
dition:

Apply(A1, f1,m)≡ Apply(A2, f2,m).

If after placing a function f1 in a partition we can randomly pick any of the expo-
nential many functions from the set of (N−m)! possibilities as the second function,
assume we construct them all in parallel, but we attempt to make each closure a
different size. This is sufficient to create a large number of ways of partitioning the
permutation closure.

16.4.2 Evaluating Search Algorithms

From a theoretical point of view, comparative evaluation of search algorithms is a
dangerous, if not dubious, enterprise. But the alternative to testing is to just give up
and say that all algorithms are equal—which means we have no way of recommend-
ing one algorithm over another when a search method is required to solve a problem
of practical interest. The best we can do is build test functions that we believe cap-
ture some aspects of the problems we actually want to solve. But this highlights a
critical question. Do benchmarks really test what we want to test? If an algorithm
does well on a very simple problem—such as a linear objective function—is that
good or bad? Many people have used the ONEMAX test function for testing search
algorithms that use a binary representation. The objective function for ONEMAX is
to maximize number of bits set to 1 in a bit string. But should we really believe that
an algorithm that does well on ONEMAX generalizes to other problems of practical
interest? Theory would suggest extreme caution.

Each instance of an optimization problem has an associated objective func-
tion. Let β represent a particular set of benchmark functions. NFL implies that if
algorithm K is better than algorithm Z on the benchmark set β, then algorithm Z

must be better than K on the instances in P(β)− β. NFL theorems make it clear

16 No Free Lunch and Complexity 471

that comparative evaluation is really a zero-sum game. But the P(β)−β might be
exponentially large and uncompressible. Focused No Free Lunch indicates that the
zero-sum game can be played at a much smaller scale. Focused NFL implies that
if algorithm K is better than algorithm Z on the benchmark set β, then algorithm Z

must be better than K on the instances in C(β)−β. The set C(β) where Focused No
Free Lunch plays out can be very small indeed. Thus, there is even more reason to
suggest extreme caution.

So what does it mean to evaluate an algorithm on a set of benchmarks and com-
pare it to another algorithm? Given the NFL theorems, comparison is meaningless
unless we prove (which virtually never happens) or assume (an assumption which
is rarely made explicit) that the benchmarks used in a comparison are somehow
representative of a particular subclass of problems.

Benchmarks are commonly used for testing both optimization and learning algo-
rithms. Often, the legitimacy of a new algorithm is “established” by demonstrating
that it finds better solutions than existing algorithms when evaluated on a particular
benchmark or collection of benchmarks. Alternatively, the new algorithm may find
high-quality solutions faster than existing algorithms for one or more benchmarks.

What are some of the dangers associated with the use of benchmarks? Algorithms
can be tuned such that they perform well on specific benchmarks, but fail to exhibit
good performance on benchmarks with different characteristics. More importantly,
there is no guarantee that algorithms developed and evaluated using synthetic bench-
marks will perform well on more realistic problem instances. Furthermore, simple
algorithms can often provide excellent performance on more realistic benchmarks
(Watson et al. 1999).

While the dangers associated with benchmarks are well known, most researchers
continue to use benchmarks to evaluate their algorithms. This is because researchers
have few alternatives. How can one algorithm be compared to another without some
form of evaluation? Evaluation requires the use of either synthetic or real-world
benchmarks, or at least the use of test problems drawn from problem generators
so that algorithms can be compared on sets of problem instances that have similar
characteristics. Researchers who develop new algorithms and do not demonstrate
their merit through some form of comparative testing can expect their work to be
ignored. The compulsion to develop “a new method” has resulted in the literature
being full of new algorithms, most of which are never used or analyzed by anyone
other than the researchers who created them.

Hooker (1995) discusses the “evils of competitive testing” and points out the
difficulty of making fair comparisons of algorithm performance. Implementation
details can significantly impact algorithm performance, as can the values selected
for various tuning parameters. Some algorithms have been refined for years. Other
algorithms have become so specialized that they only work well on specific bench-
marks. Hooker argues that the evaluation of algorithms should be performed in a
more scientific, hypothesis-driven manner. Barr et al. (1995) suggest guidelines for
the experimental evaluation of heuristic methods. Such guidelines are for the most
part useful, although rarely followed.

472 D. Whitley

While evaluation is difficult, it is also important. Too many experimental papers
(especially conference papers) include no comparative evaluation; researchers may
present a hard problem (perhaps newly minted) and then present an algorithm to
solve the problem. The question as to whether some other algorithm could have
done just as well (or better!) is ignored.

16.5 Conclusions

As in many other areas of life, extreme reactions are likely to lead to extreme errors.
This is also true for No Free Lunch. It is clearly wrong to say “NFL doesn’t apply
to real-world problems, so who cares?” It is also an error to give up on building
general purpose search algorithms.

A careful consideration of the No Free Lunch theorems forces us to ask what set
of problems we want to solve and how to solve them. More than this, it encourages
researchers to consider more formally whether the methods they develop for partic-
ular classes of problems actually are better than other algorithms. This may involve
proofs about performance behavior. In some ways, we are just starting to ask the
right questions. And yet, researchers working in complexity and NP-completeness
have long been concerned with algorithm performance for particular classes of prob-
lems.

Few researchers have attempted to formalize their assumptions about search
problems and search algorithm behavior. But if we fail to do this, then we become
trapped in a kind of empirical and experimental treadmill that leads nowhere: algo-
rithms are developed that work on benchmarks, or on particular applications, with-
out any evidence that such methods will work on the next problem we might wish
to solve.

Unfortunately, it is not widely understood that there are significant differences
in the Focused and Sharpened No Free Lunch results. And there are examples in
the literature where the Sharpened No Free Lunch result has been overstated to
imply that for any two (predetermined) algorithms, the behaviors of those algorithm
will be identical if and only if the algorithms are compared over a set of functions
closed under permutation. Focused No Free Lunch proves that this interpretation
is incorrect as well as very misleading. Correcting this misunderstanding can only
help to also clarify our understanding as to what it means to compare algorithms.

16.6 Tricks of the Trade

No Free Lunch is a theoretical result about search algorithms. As such there are
no specific methods or algorithms that directly follow from NFL. Several pieces of
advice do follow from No Free Lunch.

16 No Free Lunch and Complexity 473

1. In most practical applications one must trade-off generality and specificity. Using
simpler off-the-shelf search methods reduces time effort and cost. Simple but
reasonably effective search methods, even when implemented from scratch, are
often easier to work with than complex methods. Using custom-designed search
methods that only work for one application will usually yield better results: but
generally, one must ask how much time and money one wishes to spend and how
good the solution needs to be.

2. Exploit problem-specific information when it is simple to do so. For example,
most NP-complete problems have been studied for years and there are many
problem-specific methods that yield good near-optimal solutions.

3. For discrete parameter optimization problems, one has a choice of using stan-
dard binary encodings, Gray codes or real-valued representations. Gray codes
are often better than binary codes when some kind of neighborhood search is
used either explicitly (e.g. local search) or implicitly (e.g. via a random bit flip
operator). The use of Gray codes versus real-valued is less clear, and depends on
other algorithm design choices.

4. Don’t assume that a search method that does well on classic benchmarks will
work equally well on real-world problems. Sometimes algorithms are overly
tuned to do well on benchmarks and in fact don’t work well on real-world
applications.

16.7 Current and Future Research Directions

One body of the literature asks the question “What representation is best?” Of
course, the answer is that other No Free Lunch theorems show that in the gen-
eral case there is no best representation. For discrete parameter optimization prob-
lems, one might use standard binary representations, or standard binary-reflect Gray
codes. Or one might use real-valued floating point representations.

Another area of research is the construction of algorithms that can provably beat
random enumeration on specific subsets of problems. Christensen and Oppacher
(2001) prove that No Free Lunch does not hold over sets of functions that can be
described using polynomials of a single variable of bounded complexity. This also
includes Fourier series of bounded complexity. (Also see a 2000a paper by En-
glish about polynomials and No Free Lunch.) They define a minimization algorithm
called SubMedian-Seeker. The algorithm assumes that the target function f is one-
dimensional and bijective and that the median value of f is known and denoted by
med(f). The actual performance depends on M(f), which measures the number of
submedian values of f that have successors with supermedian values. They also
define Mcrit as the critical value of M(f) such that when M(f) < Mcrit SubMedian-
Seeker is better than random search. Christensen and Oppacher then prove:

If f is a uniformly sampled polynomial of degree at most k and if Mcrit > k/2 then
SubMedian-Seeker beats random search.

474 D. Whitley

The SubMedian-Seeker is not a practical algorithm. The importance of
Christensen and Oppacher’s work is that it sets the stage for proving that there are
algorithms that are generally (if perhaps weakly) effective over a very broad class
of interesting, nonrandom functions. More recently, Whitley et al. (2004) have gen-
eralized these concepts to outline conditions which allow local neighborhood bit
climbers to display SubTheshold-Seeker behavior and then show that in practice
such algorithms spend most of their time exploring the best points in the search
space on common benchmarks and are obviously better than random search.

Sources of Additional Information

The classic textbook Introduction to Algorithms by Cormen et al. has a very good
discussion of NP-completeness and approximate algorithms for some well-studied
NP-hard problems.

Joe Culberson’s 1998 paper On the Futility of Blind Search: An Algorithmic View
of No Free Lunch helps to relate complexity theory to No Free Lunch in simple and
direct terms. Tom English has contributed several good papers to the NFL discus-
sion (English 2000a,b). Igel and Toussaint have also contributed notable papers.
Chris Schumacher’s 2000 PhD dissertation, Fundamental Limitations on Search Al-
gorithms, deals with various issues related to No Free Lunch.

Work by Ingo Wegener and colleagues has focused on showing when particular
methods work on particular general classes of problems, (e.g. Storch and Wegener
2003; Fischer and Wegener 2004) or showing the inherent complexity of particular
problems for black-box optimization (Droste et al. 2003).

Corne and Knowles (2003) examine questions about No Free Lunch in the space
of multi-objective optimization.

Auger and Teytaud (2008) look at the question of whether No Free Lunch ap-
plies to continuous functions and conclude that “continuous lunches are free”. A pa-
per by Rowe et al. (2009) entitled Reinterpreting No Free Lunch presents a general
set-theoretic intrepretation of Sharpened No Free Lunch which examines symme-
tries over arbitrary domains and co-domain values. Whether No Free Lunch holds
over continuous parameter optimization problems in practice may depend on what
assumptions one makes about these spaces.

References

Auger A, Teytaud O (2008) Continuous lunches are free plus the design of optimal
optimization algorithms. Algorithmica 57:121–146

Barr R, Golden B, Kelly J, Resende M, Stewart W Jr (1995) Designing and reporting
on computational experiments with heuristic methods. J Heuristics 1:9–32

16 No Free Lunch and Complexity 475

Christensen S, Oppacher F (2001) What can we learn from no free lunch? In:
GECCO 2001, San Francisco. Morgan Kaufmann, San Mateo, pp 1219–1226

Cook S (1971) The complexity of theorem proving procedures. In: 3rd annual ACM
symposium on theory of computing, pp 151–158. ACM, New York

Cormen T, Leiserson C, Rivest R (1990) Introduction to algorithms. McGraw-Hill,
New York

Corne D, Knowles J (2003) Real royal road functions for constant population size.
In: Evolutionary multi-criterion optimization. LNCS 2632. Springer, Berlin

Culberson J (1998) On the futility of blind search. Evol Comput 6:109–127
Droste S, Jansen T, Wegener I (1999) Perhaps not a free lunch, but at least a free

appetizer. In GECCO 1999, Orlando. Morgan Kaufmann, San Mateo, pp 833–839
Droste S, Jansen T, Wegener I (2002) Optimization with randomized search heuris-

tics; the (A)NFL theorem, realistic scenarios and difficult functions. Theor Com-
put Sci 287:131–144

Droste S, Jansen T, Tinnefeld K, Wegener I (2003) A new framework for the valua-
tion of algorithms for black-box optimization. Foundations of genetic algorithms.
Morgan Kaufmann, San Mateo

English T (2000a) Practical implications of new results in conservation of optimizer
performance. In: Proceedings of the PPSN 6, Paris. Springer, Berlin, pp 69–78

English T (2000b) Optimization is easy and learning is hard in the typical function.
Proceedings of the CEC 2000, pp 924–931

Fischer S, Wegener I (2004) The Ising model on the ring: mutation versus recombi-
nation. In: Proceedings of the GECCO 2004, Seattle. Springer, Berlin, pp 1113–
1124

Hooker JN (1995) Testing heuristics: we have it all wrong. J Heuristics 1:33–42
Horowitz E, Sahni S (1978) Fundamentals of computer algorithms. Computer Sci-

ence Press, Washington, DC
Igel C, Toussaint M (2003) On classes of functions for which No Free Lunch results

hold. Inf Process Lett 86:317–321
Igel C, Toussaint M (2004) A no-free-lunch theorem for non-uniform distributions

of target functions. J Math Model Algorithms 3:313–322
Kauffman SA (1989) Adaptation on rugged fitness landscapes. In: Stein DL (ed)

Lectures in the science of complexity, pp 527–618. Addison-Wesley, Reading
Radcliffe NJ, Surry PD (1995) Fundamental limitations on search algorithms: evo-

lutionary computing in perspective. In: van Leeuwen J (ed) Computer science
today. LNCS 1000. Springer, Berlin

Rana S, Whitley D (1997) Representations, search and local optima. In: Proceed-
ings of the AAAI 1997, Providence. MIT, Providence, pp 497–502

Rana S, Whitley D (1998) Search, representation and counting optima. In: Davis L,
De Jong K, Vose M et al (eds) Proceedings of the IMA workshop on evolutionary
algorithms. Springer, Berlin

Rawlins G (ed) (1991) Foundations of genetic algorithms. Morgan Kaufmann, San
Mateo

Rowe J, Vose M, Wright A (2009) Reinterpreting no free lunch. Evol Comput J
17:117–129

476 D. Whitley

Schumacher C (2000) Fundamental limitations of search. PhD thesis, University of
Tennessee

Schumacher C, Vose M, Whitley D (2001) The no free lunch and problem
description length. In: Proceedings of the GECCO 2001, San Francisco. Morgan
Kaufmann, San Mateo, pp 565–570

Storch T, Wegener I (2003) Real royal road functions for constant population size.
In: Proceedign of the GECCO 2003, Chicago. Springer, Berlin, pp 1406–1417

Sudcamp T (1997) Languages and machines, 2nd edn. Addison-Wesley, Reading
Tovey CA (1985) Hill climbing and multiple local optima. SIAM J Algebr Discret

Methods 6:384–393
Watson JP, Barbulescu L, Whitley D, Howe A (1999) Algorithm performance and

problem structure for flow-shop scheduling. In: Proceeding of the AAAI 1999,
Orlando, pp 688–695

Whitley D (1999) A free lunch proof for Gray versus binary encodings. In: Proceed-
ings of the GECCO 1999, Orlando. Morgan Kaufmann, San Mateo, pp 726–733

Whitley D (2000) Functions as permutations: regarding no free lunch, walsh analy-
sis and summary statistics. In: Schoenauer M et al (eds) Proceedings of the PPSN
6, Paris. LNCS 1917. Springer, Berlin, pp 169–178

Whitley D, Rowe J (2008) Focused no free lunch theorems. In: Proceedings of the
GECCO 2008, Atlanta. ACM, New York

Whitley D, Rana S, Heckendorn R (1997) Representation issues in neighborhood
search and evolutionary algorithms. In: Poloni C et al (eds) Genetic algorithms
and evolution strategies in engineering and computer science. Wiley, New York,
pp 39–57

Whitley D, Rowe J, Bush K (2004) Subthreshold seeking behavior and robust
local search. In: Proceedings of the GECCO 2004, Seattle. Springer, Berlin,
pp 282–293

Wolpert DH, Macready WG (1995) No free lunch theorems for search. Technical
report SFI-TR-95-02-010, Santa Fe Institute

Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE
Trans Evol Comput 4:67–82

Chapter 17

Machine Learning

Xin Yao and Yong Liu

17.1 Introduction

Machine learning is a very active sub-field of artificial intelligence concerned with
the development of computational models of learning. Machine learning is inspired
by the work in several disciplines: cognitive sciences, computer science, statistics,
computational complexity, information theory, control theory, philosophy and biol-
ogy. Simply speaking, machine learning is learning by machine. From a computa-
tional point of view, machine learning refers to the ability of a machine to improve
its performance based on previous results. From a biological point of view, machine
learning is the study of how to create computers that will learn from experience
and modify their activity based on that learning as opposed to traditional computers
whose activity will not change unless the programmer explicitly changes it.

17.1.1 Learning Models

A machine learning model has two key components: a learning element and a perfor-
mance element, as shown in Fig. 17.1. The environment supplies some information
to the learning element. The learning element then uses the information to mod-
ify the performance element so that it can make better decisions. The performance
element selects actions to perform its task.

X. Yao (�)
School of Computer Science, University of Birmingham, Birmingham, UK
e-mail: X.Yao@cs.bham.ac.uk

Y. Liu
University of Aizu, Aizuwakamatsu, Fukushima, Japan
e-mail: yliu@u-aizu.ac.jp

E.K. Burke and G. Kendall (eds.), Search Methodologies: Introductory Tutorials
in Optimization and Decision Support Techniques, DOI 10.1007/978-1-4614-6940-7_17,
© Springer Science+Business Media New York 2014

477

mailto:X.Yao@cs.bham.ac.uk
mailto:yliu@u-aizu.ac.jp

478 X. Yao and Y. Liu

Environment
Learning

element

Performance

element

Fig. 17.1 A machine learning model

A large variety of learning elements have been proposed by researchers in the
machine learning field. Based on the representation, there is symbolic and subsym-
bolic learning. Based on the algorithms, there are many different types of machine
learning, such as decision tree, inductive logic programming, Bayesian learning,
artificial neural networks, evolutionary learning and reinforcement learning. Based
on the feedback available, there are three different types of machine learning: super-
vised, unsupervised and reinforcement learning.

The problem of supervised learning involves learning a function from a set
of input–output examples. The general supervised learning model consists of two
components:

1. A probability space (E ,Pr) in which we associate each elementary event with
two random variables, the input pattern x and the desired output y, where E is
the event set, Pr is the probability distribution, x ∈ Rp, and y is a scalar. The as-
sumption that the output y is a scalar has been made merely to simplify exposition
of ideas without loss of generality.

2. A learning machine, capable of implementing a set of functions F(x,w),w ∈W ,
where W is a set of, in general, real-valued parameters.

The purpose of supervised learning is to find the function F(x,w) so that the
expected squared error

R(w) = E[(F(x,w)− y)2] (17.1)

is minimized, where E represents the expectation value over the probability space
(E ,Pr).

In unsupervised learning, there is no specific output supplied. In the context of
pattern classification, unsupervised learning learns to discover the statistical regular-
ities of the patterns in the input, form internal representations for encoding features
of the input, and thereby to create new classes automatically. In reinforcement learn-
ing, rather than being told what to do by a teacher, the learning of an input–output
mapping is performed through continued interaction with the environment in order
to minimize a scalar index of performance.

The environment can be either fully observable or partially observable. In the first
case, the machine can observe the effects of its action and hence can use supervised
learning methods to learn to predict them. In the second case, the immediate effects
might be invisible so that reinforcement learning or unsupervised learning should
be adopted.

17 Machine Learning 479

17.1.2 Learning Tasks and Issues in Machine Learning

Machine learning can be applied to tasks in many domains. This section presents
some important learning tasks and issues in machine learning.

17.1.2.1 Classification

A classification task in machine learning is to take each instance and assign it to a
particular class. For example, in an optical character recognition task, the machine is
required to scan an image of a character and output its classification. In the English
language recognition, the task involves learning the classification of the digits 0 . . .9
and the characters A . . .Z.

17.1.2.2 Regression, Interpolation and Density Estimation

In regression, the aim is to learn some functional description of data in order to pre-
dict values for new input. An example of learning a regression function is predicting
the future value of a share index in the stock market. In interpolation, the function
for certain ranges of input is known. The task is to decide the function for inter-
mediate ranges of input. In density estimation, the task is to estimate the density
or probability that a member of a certain category will be found to have particular
features.

17.1.2.3 Learning a Sequence of Actions

In robot learning and chess play learning, the task is to find the best strategies that
can choose the optimal actions. In an example of robot navigation, a robot is as-
signed a task to track a colored object within a limited number of actions while
avoiding obstacles and walls in an environment. There are obstacles of different
shapes in the environment enclosed by the walls. To perform its task, the robot must
learn the basic behavior of obstacle avoidance and moving to the target. It must also
learn to co-ordinate the behavior of obstacle avoidance and the behavior of moving
to the target to avoid becoming stuck due to repetition of an identical sensor–motion
sequence. In chess playing, machine must decide an action based on the state of the
board to move a piece in which the action will maximize its chance of winning the
game.

17.1.2.4 Data Mining

The problem of data mining is of searching for interesting patterns and impor-
tant regularities in large databases. Many learning methods have been developed

480 X. Yao and Y. Liu

for determining general descriptions of concepts from examples in the form of
relational data tables. Machine learning plays an important role in discovering and
presenting potentially useful information from data in a form which is easily com-
prehensible to humans.

17.1.2.5 Issues in Machine Learning

There are many issues that need to be solved in machine learning. For example,
which learning algorithm performs best for a particular learning task and repre-
sentation? How many training samples are sufficient? How fast can the learning
algorithms converge? When and how can prior knowledge be used in the learning
process? Can a machine learn in real-time or only via offline learning? How do
we choose from among multiple learning models that are all consistent with the
data? Among all these issues, generalization is a key issue for any learning system.
There are often two phases to design a learning system. The first phase is learning.
The second phase is a generalization test. The term generalization is borrowed from
psychology. In neural network learning, a model is said to generalize well when it
can produce correct input–output mapping for unseen test data that have not been
used in the learning phase.

17.1.3 Organization of the Chapter

The reminder of this chapter is organized as follows. Section 17.2 introduces a num-
ber of learning algorithms in order to give a breadth of coverage of machine learn-
ing. Section 17.3 addresses evolution and learning. Three levels of evolution can
be introduced in neural network learning: the evolution of weight, the evolution
of architectures and the evolution of learning rules. Section 17.5 points out some
promising areas in machine learning. Section 17.6 provides a guideline for imple-
menting machine learning algorithms. Section 17.7 concludes with a summary of
the chapter and a few remarks.

17.2 Overview of Learning Algorithms

This section explores the basic ideas and the principles of a number of learning
algorithms that are used for real-world applications.

17.2.1 Learning Decision Trees

The task of inductive learning is to find a function h that approximates f given a
collection of examples of f . The function h is called a hypothesis. An example is

17 Machine Learning 481

a pair (x, f (x)), where x is the input, and f (x) is the output of the function applied
to x. In decision-tree learning, hypotheses are represented by decision trees.

A decision tree is a diagram representing a classification system or a predictive
system. The structure of the system is a tree generated based on a sequence of sim-
ple questions. The answers to these questions trace a path down the tree. As a result,
a decision tree is a collection of hierarchical rules that segment the data into groups,
where a decision is made for each group. The hierarchy is called a tree, and each
segment is called a node. The original segment that contains the entire data set is
referred to as the root node of the tree. A node with all of its successors forms
a branch of the rode. The terminal nodes are called leaves that return a decision,
i.e. the predicted output value for the input. The output value can be either discrete
or continuous. A classification tree is used to learn a discrete-valued function, while
a regression tree is used to learn a continuous function. Most decision learning al-
gorithms are variations on a core algorithm that employs a top-down, greedy search
through the space of possible decision trees.

A very effective decision learning algorithm, called ID3, was developed by
Quinlan (1986). In ID3, classification trees are built by starting with the set of ex-
amples and an empty tree. An attribute test is chosen for the root of the tree, and
examples are partitioned into disjoint subsets depending on the outcome of the test.
The learning is then applied recursively to each of these disjoint subsets. The learn-
ing process stops when all the examples within a subset belong to the same class.
At this learning stage, a leaf node is created and labeled with the class.

The method used to choose the attribute test is designed to minimize the depth of
the final tree. The idea is to select the attribute that can lead to an exact classifica-
tion of examples as far as possible. In ID3, a statistical property, called information
gain, was introduced to measure how well a given attribute separates the examples
according to their target classification.

For decision-tree learning, a learned classification tree has to predict what the
correct classification is for a given example. Given a training set S, containing p
positive examples and n negative examples, the entropy of S to this Boolean classi-
fication is

E(S) =− p

p+ n
log2

p

p+ n
− n

p+ n
log2

n

p+ n
. (17.2)

In information theory, the entropy of S gives an estimate of the information con-
tained in a correct answer before any of the attributes have been tested. Information
theory measures information content in bits. After a test on a single attribute A, at-
tribute A divides the training set S into subsets Si, i = 1, . . . ,v, where A can have v
distinct values. The information gain G(S,A) of an attribute A, relative to a training
set S, is defined as

G(S,A) = E(S)−
v

∑
i=1

pi + ni

p+ n
E(Si) (17.3)

where each subset Si has pi positive examples and ni negative examples. The second
term in (17.3) is the expected value of entropy after S is partitioned using attribute A.

482 X. Yao and Y. Liu

HarryWilliam EugenieBeatriceZaraPeter

Married(Andrew, Sarah)Married(Diana, Charles) Married(Anne, Mark)

Married(Elizabeth, Philip)Married(Spencer, Kydd)

Edward

Married(George, Mum)

Margaret

Fig. 17.2 A typical family tree

The expected entropy is the sum of entropies of each subset Si, weighted by the
fraction of examples in Si. G(S,A) is therefore the expected reduction in entropy
caused by knowing the value of attribute A.

ID3 provides a simple and effective approach to decision-tree learning. How-
ever, for real-world applications, the algorithm needs to cope with problems such
as a noisy data set, missing attribute values and attributes with continuous values.
Dealing with these problems was studied with ID3’s successor C4.5 (Quinlan 1993).

The first decision-tree learning system, called the Elementary Perceiver and
Memorizer, was proposed by Feigenbaum (1961). It was studied as a cognitive-
simulation model of human concept learning. The concept learning system devel-
oped by Hunt et al. (1966) used a heuristic look-ahead method to grow decision
trees. ID3 (Quinlan 1986) introduced the information content as a heuristic search.
The classification and regression tree system is a widely used statistical procedure
for producing classification and regression (Breiman et al. 1984). Many practical
issues of decision-tree induction can be found in C4.5, a decision-tree learning
package by Quinlan (1993).

The advantages of decision-tree learning are its comprehensibility, fast classifi-
cation and mature technology. However, by using only one attribute at each internal
node, decision-tree learning can construct monothetic trees, which are limited to
axis-parallel partitions of the instance space, rather than polythetic trees. Polythetic
trees can use more than two attributes at each internal node, but are expensive to in-
duce. The next section will introduce inductive logic programming, which combines
inductive learning with the power of first-order representations.

17.2.2 Inductive Logic Programming

Inductive logic programming is a combination of knowledge-based inductive learn-
ing and logic programming (Russell and Norvig 2002). A general knowledge-based
inductive learning is a kind of algorithm that satisfies the entailment constraint

Background∧Hypothesis∧Descriptions |= Classifications, (17.4)

where Descriptions denote the conjunction of all the example classifications, and
Classifications denote the conjunction of all the example classifications. Given the

17 Machine Learning 483

Background knowledge and examples described by Descriptions and Classifications,
the induction problem of knowledge-based inductive learning is to solve the entail-
ment constraint (17.4) for the unknown Hypothesis.

In order to see how the background knowledge can be combined with the new
hypothesis to explain examples, consider a problem of learning family relationships
from examples in an extended family tree given in Fig. 17.2 (Russell and Norvig
2002).

The descriptions will be in the terms of Mother, Father, and Married relations
and Male and Female properties, such as Father(Philip, Charles), Mother(Mum,
Margaret), Married(Diana, Charles), Male(Philip), Female(Beatrice). Classifica-
tions depend on the target concept being learned. For learning the target concept of
Grandfather, the complete set of Classifications contains 20× 20 = 400 conjuncts
of the form

Grandparent(Mum, Charles) Grandparent(Elizabeth, Beatrice) · · ·
¬Grandparent(Mum, Harry) ¬Grandparent(Spencer, Peter) · · · .

Without the background knowledge, inductive learning can find a possible
Hypothesis:

Grandparent(x,y) ⇔ [∃ z Mother(x,z)∧Mother(z,y)]

∨ [∃ z Mother(x,z)∧Father(z,y)]

∨ [∃ z Father(x,z)∧Mother(z,y)]

∨ [∃ z Father(x,z)∧Father(z,y)]. (17.5)

With the help of the background knowledge represented by the sentence

Parent(x,y)⇔ [Mother(x,y)∨Father(x,y)]. (17.6)

Hypothesis can be simply defined by

Grandparent(x,y)⇔ [∃z Parent(x,z)∧Parent(z,y)]. (17.7)

By using background knowledge, we can reduce the size of hypotheses greatly.
There are two basic approaches to inductive logic programming: the top-down

learning of refining a very general rule and the bottom-up learning of inverting
the deductive process. A top-down approach will typically begin with a general
clause and search the clause by adding literals so that only positive examples are
entailed. First-order inductive learning (Quinlan 1990) is such a top-down induction
algorithm.

Suppose the task is to learn a definition of Grandfather(x,y) predicate in the fam-
ily tree shown in Fig. 17.2. Examples can be divided into positive and negative ones
as in decision-tree learning: 12 positive examples are

〈George, Charles〉,〈George, Anne〉,〈George, Andrew〉, . . .

and 388 negative examples are

484 X. Yao and Y. Liu

〈George, Spencer〉,〈George, Kydd〉,〈George, Elizabeth〉,

First-order inductive learning constructs a set of clauses that must classify the
positive examples while ruling out the negative examples. First-order inductive
learning starts with the initial clause with Grandfather(x,y) as the head, and an
empty body

⇒ Grandfather(x,y). (17.8)

All examples are classified as positive by this clause. To specialize it, first-order
inductive learning adds literals one at a time to the clause body. Look at two clauses
constructed by such addition:

Parent(x,z) ⇒ Grandfather(x,y) (17.9)

Father(x,z) ⇒ Grandfather(x,y). (17.10)

Although both clauses agree with all of 12 positive examples, the first allows both
fathers and mothers to be grandfathers and makes larger misclassification on nega-
tive examples. The second clause is chosen to be further specialized. By adding the
single literal Parent(z,y), first-order inductive learning can find

Father(x,z)∧Parent(z,y)⇒ Grandfather(x,y), (17.11)

which successfully classifies all the examples. This example gives a simple explana-
tion how first-order inductive learning works. In real applications, first-order induc-
tive learning generally has to search through a large number of unsuccessful clauses
before finding the correct one.

Whereas first-order inductive learning (Quinlan 1990) is a top-down approach,
Cigol (logic, spelled backwards), which Muggleton and Buntine (1988) devel-
oped for inductive logic programming, worked bottom-up. Cigol incorporated a
slightly incomplete version of inverse resolution and was capable of generating
new predicates. A hybrid (top-down and bottom-up) approach was chosen in Progol
(Muggleton 1995) that inverse entailment and had been applied to a number of prac-
tical problems. A large collection of papers on inductive logic programming can be
found in Lavrač and Džeroski (1994).

Inductive logic programming provides a practical approach to the general know-
ledge-based inductive learning problem. Its strengths lie in its firm theoretical foun-
dations, richer hypothesis representation language, and explicit use of background
knowledge. The limitations of inductive logic programming are its weak numeric
representations and large search spaces.

17.2.3 Bayesian Learning

In practice, there are cases when more than one hypothesis satisfy a given task.
Because it is not certain how those hypotheses perform on unseen data, it is hard to
choose the best hypothesis. Bayesian learning gives a probabilistic framework for

17 Machine Learning 485

x1 x2 x3 xn

C

Fig. 17.3 The naive Bayes model

justification. By calculating explicit probabilities for hypotheses, Bayesian learning
provides a useful perspective for understanding many learning algorithms that do
not explicitly manipulate probabilities.

Let D represent all the data, and H the set of all the hypotheses hi. The probability
of each hypothesis with observed d can be calculated by Bayes’ rule:

P(hi | d) = αP(d | hi)P(hi), (17.12)

where P(hi) is the prior probability, P(d | hi) denotes the probability of observed d

given hi, and P(hi | d) is the posterior probability of hi.
A practical Bayesian learning used in machine learning is the naive Bayes model

shown in Fig. 17.3, where each instance x is described by a conjunction of attribute
values 〈x1,x2, . . . ,xn〉. In this model, the class variable C is the root, and the attribute
values x are leaves.

According to (17.12), the probability of each class from a set of S is given by

P(C | x1,x2, . . . ,xn) = αP(x1,x2, . . . ,xn |C)P(C). (17.13)

In the naive Bayes model, a simplified assumption is made that the attributes are
conditionally independent of each other given the class. That is, the probability of
the observed conjunction x1,x2, . . . ,xn is just the product of probabilities for the
individual attributes:

P(x1,x2, . . . ,xn |C) =∏
i

P(xi |C). (17.14)

From (17.13) and (17.14), the naive Bayes model makes the prediction by choosing
the most likely class:

CNB = argmaxC∈SP(C)∏
i

P(xi |C), (17.15)

where CNB denotes output class by the naive Bayes model.
Consider a medical diagnosis problem with three possible diagnoses (well, cold,

allergy) based on three symptoms (sneeze, cough, fever). In this example, there are
three attributes in which x1 can be sneeze or not sneeze, x2 cough or not cough, and
x3 fever or not fever, and three classes: well, cold and allergy. The probabilities for
the three attributes and three prior class probabilities are given in Table 17.1.

486 X. Yao and Y. Liu

Table 17.1 An example for the naive Bayes model

Diagnosis Well Cold Allergy
P(C) 0.9 0.05 0.05
P(sneeze |C) 0.1 0.9 0.9
P(cough |C) 0.1 0.8 0.7
P(fever |C) 0.01 0.7 0.4

Given a new x= 〈sneeze, cough, not fever〉, which class of diagnoses is it mostly
like to be? First, the posterior probability P(well | sneeze, cough, not fever) of well,
cold and allergy are calculated by the product of P(sneeze | well), P(cough | well),
P(not fever | well), and P(well):

P(well | sneeze, cough, not fever) = 0.1× 0.1× (1−0.01)×0.9

= 0.00891. (17.16)

Similarly we can obtain the posterior probability of cold:

P(cold | sneeze, cough, not fever) = 0.216 (17.17)

and the posterior probability of allergy:

P(allergy | sneeze, cough, not fever) = 0.378. (17.18)

Finally, we compare three posterior probabilities and generate output class allergy
because the probability of allergy for the data x = 〈sneeze, cough, not fever〉 is the
largest one.

The naive Bayes model has been compared with C4.5 on 28 benchmark tasks
(Domingos and Pazzani 1996). The results show that the naive Bayes model per-
forms surprisingly well in a wide range of applications. Except for a few domains
where the naive Bayes model performs poorly, it is comparable to or better than
C4.5.

This section just uses the naive Bayes model to introduce the idea of Bayesian
learning. Heckerman (1998) gives an excellent introduction on general learning with
Bayesian networks. Bayesian learning has had successful applications in pattern
recognition and information retrieval. Algorithms based on Bayesian learning won
the 1997 and 2001 KDD Cup data mining competitions (Elkan 1997; Cheng et al.
2002). Experimental comparisons between Bayesian learning, decision-tree learn-
ing and other algorithms have been made on a wide range of applications (Michie
et al. 1994).

17.2.4 Reinforcement Learning

Reinforcement learning concerns learning how to map situations to actions so as
to maximize a numerical reward signal (Sutton and Barto 1998). Unlike supervised
learning, the machine is not told which actions to take but has to discover which

17 Machine Learning 487

actions yield the most reward by trying them. In the most practical cases, actions
may affect both the immediate reward and the next situation and thus all subse-
quent rewards. Trial-and-error search and delayed reward are the two most impor-
tant unique characteristics of reinforcement learning.

A central and novel idea of reinforcement learning is temporal-difference learn-
ing (Sutton and Barto 1998). Temporal-difference learning is a combination of
Monte Carlo ideas and dynamic programming ideas. Like Monte Carlo methods,
temporal-difference learning methods can learn directly from the raw experience
without a model of the environment’s dynamics. Like dynamic programming meth-
ods, temporal-difference learning methods update estimates based in part on other
learned estimates, without waiting for a final outcome. Temporal-difference learn-
ing works because it is possible to make local improvements. At every point in the
state space, the Markov property allows actions to be chosen based only on knowl-
edge about the current state and the states reachable by taking the actions available
at that state.

Temporal-difference learning methods fall into two classes: on-policy and off-
policy (Sutton and Barto 1998). One of the most important breakthroughs in re-
inforcement learning was the development of an off-policy temporal-difference
learning control algorithm known as Q-learning. The learned action-value function
Q(s,a) directly approximates the optimal action-value function, independent of the
policy being followed. The major steps of Q-learning are (Sutton and Barto 1998):

1. Initialize Q(s,a) values arbitrarily.
2. Initialize the environment.
3. Choose action a using the policy derived from Q(s,a) (e.g., ε-greedy).
4. Take action a; Observe reward r and the next state s′.
5. Update the Q(s,a) as follows:

Q(s,a)← Q(s,a)+α[r+ γmax
a′

Q(s′,a′)−Q(s,a)]. (17.19)

6. Let s ← s′. Go to the next step if the state s is a terminal state. Otherwise, go to
Step 3.

7. Repeat Steps 2–6 for a certain number of episodes.

The Sarsa learning algorithm is an on-policy temporal-difference learning method
in which the action-value function Q is updated after every transition from a nonter-
minal state. The major steps of Sarsa learning are (Sutton and Barto 1998):

1. Initialize Q(s,a) values arbitrarily.
2. Initialize the environment.
3. Choose action a using the policy derived from Q(s,a) (e.g., ε-greedy).
4. Take action a; Observe reward r and the next state s′; Choose the next action a′

using the policy derived from Q (e.g. ε-greedy).
5. Update the Q(s,a) as follows:

Q(s,a)← Q(s,a)+α[r+ γQ(s′,a′)−Q(s,a)]. (17.20)

488 X. Yao and Y. Liu

6. Let s ← s′ and a ← a′. Go to the next step if the state s is a terminal state.
Otherwise, go to Step 3.

7. Repeat Steps 2–6 for a certain number of episodes.

Sutton and Barto assessed a Sarsa learning example (Sutton and Barto 1998).
The results showed that the online performance of Q-learning is worse than that of
Sarsa learning.

The strengths of reinforcement learning come from its firm theoretical founda-
tion, its ability to solve broad tasks, and its easy usage of background knowledge.
Work in reinforcement learning dates back to the earliest days of machine learn-
ing when Turing proposed the reinforcement learning approach (Turing 1950), and
Samuel developed his famous checkers learning program that contained most of the
modern ideas of reinforcement learning, including temporal differencing and func-
tion approximation (Samuel 1959). Three threads contributed towards the modern
field of reinforcement learning. The first thread is about learning by trial and error
and had its origin in the psychology of animal learning, which led to the popu-
larity of reinforcement learning in the early 1980s. The second thread arose from
the problem of optimal control and its solution using value functions and dynamic
programming. The third thread concerns temporal-difference methods. The survey
by Kaelbling et al. (1996) provides a good starting point in the literature. The text
Reinforcement Learning: An Introduction by Sutton and Barto, two of the field’s
pioneers, shows architectures and algorithms of reinforcement learning in the con-
text of learning, planning and acting (Sutton and Barto 1998).

17.2.5 Neural Networks

Artificial neural networks, commonly referred to as neural networks, try to simulate
biological brains. However, neural networks have been simplified greatly from bi-
ological brains. A neural network is a parallel computational system consisting of
many processing elements connected with each other in a certain way in order to
perform a task. Neural networks have gained popularity because they are adaptive,
robust, fault tolerant, noise tolerant, and massively parallel.

Among the many tasks that neural networks perform, the most important one is
learning. A neural network can improve its performance via learning. Perceptron
learning is one of the earliest learnings developed for neural networks (Rosenblatt
1962). Perceptrons are often used to refer to feed-forward neural networks consist-
ing of McCulloch–Pitts (MP) neurons (McCulloch and Pitts 1943):

yi = sgn

(

∑
j

wi jx j−θi

)

(17.21)

where the wi j are called weights (synapses) and θ is the threshold. The x j and yi are
input and output. The signum function sgn(x) is defined as

17 Machine Learning 489

..
.

wj1

wj2

wjm

θi

x1

x2

xm

yi

..
.

Fig. 17.4 Nonlinear model of a neuron

sgn(x) =

{

1, if x≥ 0
0, otherwise.

(17.22)

It is also known as the threshold function or Heaviside function and is described in
Fig. 17.4.

After presenting each example to a perceptron that has one layer of neurons,
perceptron learning adjusts the weights until the weights converge (i.e. Δw j(t) = 0):

w j(t + 1) = w j(t)+Δw j(t), (17.23)

where
Δw j(t) = η(yp−Op)xp

j , (17.24)

where η is the learning rate, xp
j is the jth input of the pth example, yp is the target

(desired) output of the pth example, and Op is the actual output of the pth example:

Op = sgn

(

∑
j

w jx
p
j −θ

)

. (17.25)

The convergence theorem of perceptron learning states that if there exists a set of
weights for a perceptron which solves a problem correctly, the perceptron learning
rule will find them in a finite number of iterations (Rosenblatt 1962). If a problem
is linearly separable, then the perceptron learning rule will find a set of weights in a
finite number of iterations that solves the problem correctly. A pair of linearly sepa-
rable patterns means that the patterns to be classified must be sufficiently separated
from each other to ensure that the decision surface consists of a hyperplane.

The perceptron learning rule, Δw j(t) = η(yp−Op)xp
j , is related to the Hebbian

learning rule (Hebb 1949). Hebb’s postulate of learning (Hebb 1949) states that

When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes
part in firing it, some growth process or metabolic changes take place in one or both cells
such that A’s efficiency as one of the cells firing B, is increased.

In other words, if two neurons on either side of a synapse (connection) are
activated simultaneously (i.e. synchronously), then the strength of that synapse is
selectively increased. If two neurons on either side of a synapse are activated asyn-
chronously, then that synapse is selectively weakened or eliminated.

490 X. Yao and Y. Liu

It is clear from perceptron learning that the algorithm tries to minimize the
difference between the actual and desired output. We can define an error function to
represent such a difference:

E(w) =
1
2∑p

(yp−Op)2 (17.26)

or

E(w) =
1

2N∑p
(yp−Op)2 , (17.27)

where N is the number of patterns. The second error function above is called the
mean square error. Learning minimizes this error by adjusting weights w.

One advantage of introducing the error function is that it can be used for any type
of transfer function, discrete or continuous. The aim of learning is to adjust w such
that the error E is minimized, i.e. the network output is as close to the desired output
as possible. There exist mathematical tools and algorithms which tell us how to
minimize the error function E , such as the gradient descent algorithm which is based
on partial derivatives. Given a set of training examples, {

(

xp
1 , . . . ,x

p
m;yp

1 , . . . ,y
p
n
)

}p,
the gradient descent learning algorithm can be summarized as follows:

1. Construct a neural network with m inputs and n outputs.
2. Select learning rate η and the gain parameter a.
3. Generate initial weights at random in a small range, e.g. [−0.5,0.5]. Note that

thresholds are regarded as weights here.
4. While the neural network has not converged do: For each training example p,

(a) Compute Op
i . (Op

i = f (ui))
(b) Compute δp

i =
(

yp
i −Op

i

)

f ′(ui), where f ′(ui) = a f (ui)(1− f (ui)) if the
transfer function is

f (ui) =
1

1+ exp(−aui)
, (17.28)

where a is a parameter determined by the user.
(c) Compute Δwi j = ηδp

i xp
i .

(d) Update wi j for all i, j. (All weights will be updated.)

There are two modes of the gradient descent learning algorithm. One is the se-
quential mode of training which is also known as online, pattern or stochastic mode.
In this mode, weights are updated after the presentation of each example. The other
is the batch mode of training in which weights are updated only after the complete
presentation of all examples in the training set, i.e. only after each epoch.

The idea of the gradient descent learning algorithm for a single-layer neural
network can be generalized to find weights for multilayer neural networks. Mul-
tilayer feedforward neural networks can solve nonlinear problems. In fact, there are
mathematical theorems which show that multilayer feedforward neural networks
can approximate any input–output mapping. The backpropagation algorithm can be
used to train multilayer feedforward neural networks (Rumelhart et al. 1986). Its
forward pass propagates the activation values from input to output. Its backward

17 Machine Learning 491

pass propagates the errors from output to input. Backpropagation is still a gradient
descent algorithm. It uses gradient information to figure out how the weights should
be adjusted so that the output error can be reduced. Mathematically, backpropaga-
tion uses the chain rule to figure out how to change weights in order to minimize the
error.

Consider a network with M layers m = 1,2, . . . ,M and use V m
i to represent the

output of the ith unit in the mth layer. V 0
i = xi is the ith input. Backpropagation can

be described as follows:

1. Initialize the weights to small random values.
2. Choose a pattern and apply it to the input layer so that V 0

i = xp
i .

3. Propagate the signal forwards through the network using

V m
i = f (um

i) = f

(

∑
j

wm
i jV

m−1
j

)

(17.29)

for each i and m until the final outputs V M
i have all been calculated.

4. Compute the deltas for the output layer:

δM
i = f ′(uM

i)(yp
i −V M

i). (17.30)

5. Compute the deltas for the preceding layers by propagating errors backwards:

δm−1
i = f ′(um−1

i)∑
j

wm
i jδ

m
j (17.31)

for m = M,M− 1, . . . ,2.
6. Update the weights according to

wnew
i j = wold

i j +Δwi j, (17.32)

where
Δwi j = ηδm

i V m−1
j . (17.33)

7. Goto step 2 and repeat for the next pattern. The algorithm stops when no weight
changes were made for a complete epoch or the maximum number of iterations
has been reached.

The study of neural networks started with the work of MP neuron models pro-
posed by McCulloch and Pitts (1943). The Hebbian learning rule was studied by
Hebb (1949). Rosenblatt (1962) proposed perceptrons and proved the perceptron
convergence theory. After Minsky and Papert’s book (Minsky and Papert 1969)
which showed the limitation of single-layer perceptrons, the field of neural net-
works was almost deserted during the 1970s. Then Hopfield published a series
of papers on Hopfield networks that used the idea of an energy function to for-
mulate a new way of understanding the computation performed by recurrent net-
works with symmetric synaptic connections (Hopfield 1982; Hopfield and Tank
1985). The two-volume “bible” Parallel Distributed Processing: Explorations in

492 X. Yao and Y. Liu

the Microstructures of Cognition, edited by Rumelhart and McClelland attracted a
great deal of attention (Rumelhart and McClelland 1986). In the mid-1980s, the field
of neural networks really took off.

Neural networks have been applied to solve a wide range of problems such as
pattern recognition and classification, time-series prediction, function approxima-
tion, system identification, and control. Neural network applications often include
two phases. The first phase is learning. The task performed by a neural network is
often represented as a set of examples. The neural network is expected to learn more
general concepts from these examples. The steps involved include:

1. Select a neural network architecture, where the number of input and output nodes
are determined by the task. Hidden nodes and network connectivity need to be
designed mostly by trial and error.

2. Train the network using a suitable training algorithm.

The second phase is a generalization test. After the neural network is trained, it will
be tested with new (never seen before) examples to see how well it generalizes.

17.2.6 Evolutionary Learning

Evolutionary learning includes many topics, such as learning classifier systems,
evolutionary neural networks, evolutionary fuzzy logic systems, co-evolutionary
learning and self-adaptive systems. The primary goal of evolutionary learning is
the same as that of machine learning in general. Evolutionary learning can be re-
garded as the evolutionary computation approach to machine learning. It has been
used in the framework of supervised learning, reinforcement learning and unsuper-
vised learning, although it appears to be most promising as a reinforcement learn-
ing method. Evolutionary computation encompasses major branches, i.e. evolution
strategies, evolutionary programming, genetic algorithms and genetic programming,
due largely to historical reasons. At the philosophical level, they differ mainly in the
level at which they simulate evolution. At the algorithmic level, they differ mainly
in their representations of potential solutions and their operators used to modify the
solutions. From a computational point of view, representation and search are two
key issues.

Evolution strategies were first proposed by Rechenberg and Schwefel in the
mid-1960s for numerical optimization. Real-valued vectors are used to represent
individuals. Evolution strategies use both recombination and self-adaptive muta-
tions. The original evolution strategy did not use populations. A population was
introduced into evolution strategies later (Schwefel 1981, 1995).

Evolutionary programming was first proposed by Fogel et al. in the mid-1960s
for simulating intelligence (Fogel et al. 1966). Finite-state machines were used to
represent individuals, although real-valued vectors have always been used in nu-
merical optimization. Search operators (mutations only) are applied to the phe-
notypic representation of individuals. There is no recombination in evolutionary
programming. Tournament selection is often used in evolutionary programming.

17 Machine Learning 493

Genetic algorithms and genetic programming are introduced in Chaps. 4 and 5
of this book, respectively. Although genetic algorithms, evolutionary programming,
evolution strategies and genetic programming are different, they are all variants of
population-based generate-and-test algorithms:

Generate: Mutate and/or recombine individuals in a population.
Test: Select the next generation from the parents and offsprings.

They share more similarities than differences. A better and more general term to use
is evolutionary algorithms. All evolutionary algorithms have two prominent fea-
tures which distinguish themselves from other search algorithms. First, they are all
population-based. Secondly, there are communications and information exchange
among individuals in a population. Such communications and information exchange
are the result of selection and/or recombination in evolutionary algorithms. A gen-
eral framework of evolutionary algorithms can be summarized as follows:

1. Generate the initial population P(0) at random, and set i← 0;
2. Repeat

(a) Evaluate the fitness of each individual in P(i);
(b) Select parents from P(i) based on their fitness in P(i);
(c) Generate offspring from the parents using crossover and mutation to form

P(i+ 1);
(d) i← i+ 1;

3. Until halting criteria are satisfied

where the search operators are also called genetic operators for genetic algorithms.
They are used to generate offspring (new individuals) from parents (existing indi-
viduals).

Learning classifier systems, also known as classifier systems, are probably the
oldest and best known evolutionary learning systems, although they did not work
very well in their classical form. Some of the recent systems have improved this sit-
uation. Due to its historical importance, a brief introduction to the classical learning
classifier systems will be introduced here.

Learning classifier systems are a particular class of message-passing, rule-based
systems. They can also be regarded as a type of adaptive expert system that uses a
knowledge base of production rules in a low-level syntax that can be manipulated by
a genetic algorithm. In a classifier system, each low-level rule is called a classifier.
A general operational cycle for the classifier system is as follows:

1. Allow the detectors (input interface) to code the current environment status and
place the resulting messages on the message list.

2. Determine the set of classifiers that are matched by the current messages.
3. Resolve conflicts caused by limited message list size or contradictory actions.
4. Remove those messages which match the conditions of firing classifier from the

message list.
5. Add the messages suggested by the firing messages to the list.

494 X. Yao and Y. Liu

6. Allow the effectors (output interface) that are matched by the current message
list to take actions in the environment.

7. If a payoff signal is received from the environment, assign credit to the classifiers.
8. Goto Step 1.

A genetic algorithm is used in classifier systems to discover new classifiers by
crossover and mutation. The strength of a classifier updated by the credit assign-
ment scheme is used as its fitness. A classifier’s strength is based on its average
usefulness in the context in which it has been tried previously. Credit assignment
is a very difficult task because credit must be assigned to early-acting classifiers
that set the stage for a sequence of actions leading to a favorable situation. The most
well known credit assignment is the bucket brigade algorithm which uses metaphors
from economics.

For a classifier called middleman, its suppliers are those classifiers that have
sent messages satisfying its conditions, and its consumers are those classifiers that
have conditions satisfied by its message and have won their competition in turn.
When a classifier wins in competition, its bid is actually apportioned to its suppliers,
increasing their strengths by the amounts apportioned to them. At the same time,
because the bid is treated as a payment for the right to post a message, the strength
of the winning classifier is reduced by the amount of its bid. Should the classifier bid
but not win, its strength remains unchanged and its suppliers receive no payment.
Winning classifiers can recoup their payments from either winning consumers or
the environment payoff.

The genetic algorithm is only applied to the classifiers after certain number of op-
erational cycles in order to approximate strengths better. There are two approaches
to classifier systems; the Michigan approach and the Pitt approach. For the Michigan
approach, each individual in a population is a rule. The whole population represents
a complete classifier system. For the Pitt approach, each individual in a population
represents a complete classifier system. The whole population includes a number of
competing classifier systems.

17.3 Learning and Evolution

Learning and evolution are two fundamental forms of adaptation. There has been
a great interest in combining learning and evolution with neural networks in recent
years.

17.3.1 Evolutionary Neural Networks

Evolutionary neural networks refer to a special class of neural networks in which
evolution is another fundamental form of adaptation in addition to learning (Yao
1991, 1993a, 1994, 1995). Evolutionary algorithms are used to perform various

17 Machine Learning 495

tasks, such as connection weight training, architecture design, learning rule adap-
tation, input feature selection, connection weight initialization and rule extraction
from neural networks. One distinct feature of evolutionary neural networks is their
adaptability to a dynamic environment. In other words, evolutionary neural net-
works can adapt to an environment as well as to changes in the environment. The
two forms of adaptation, i.e., evolution and learning in evolutionary neural net-
works, make their adaptation to a dynamic environment much more effective and
efficient. In a broader sense, evolutionary neural networks can be regarded as a gen-
eral framework for adaptive systems, i.e. systems that can change their architectures
and learning rules appropriately without human intervention.

Evolution has been introduced into neural networks at roughly three different
levels:

• Connection weights
• Architectures and
• Learning rules.

17.3.1.1 The Evolution of Connection Weights

The evolution of connection weights introduces an adaptive and global approach
to training, especially in the reinforcement learning and recurrent network learning
paradigm where gradient-based training algorithms often experience great difficul-
ties.

One way to overcome gradient-descent-based training algorithms’ shortcomings
is to adopt evolutionary neural networks, i.e. to formulate the training process as the
evolution of connection weights in the environment determined by the architecture
and the learning task. Evolutionary algorithms can then be used effectively in the
evolution to find a near-optimal set of connection weights globally without comput-
ing gradient information. The fitness of a neural network can be defined according
to different needs. Two important factors which often appear in the fitness (or er-
ror) function are the error between target and actual outputs and the complexity of
the neural network. Unlike in the gradient-descent-based case, the fitness (or error)
function does not have to be differentiable or even continuous since evolutionary al-
gorithms do not depend on gradient information. Because evolutionary algorithms
can treat large, complex, nondifferentiable and multimodal spaces, which are the
typical case in the real world, considerable research and application has been con-
ducted on the evolution of connection weights.

The evolutionary approach to weight training in neural networks consists of two
major phases. The first phase is to decide the representation of connection weights,
i.e. whether it is to be in the form of binary strings or not. The second one is the
evolutionary process simulated by an evolutionary algorithm, in which search oper-
ators such as crossover and mutation have to be decided on in conjunction with the
representation scheme. Different representations and search operators can lead to

496 X. Yao and Y. Liu

quite different training performance. A typical cycle of the evolution of connection
weights is shown as follows (Yao 1999):

1. Decode each individual (genotype) in the current generation into a set of
connection weights and construct a corresponding neural network with weights.

2. Evaluate each neural network by computing its total mean square error between
actual and target outputs. Other error functions can also be used. The fitness
of an individual is determined by the error. The higher the error, the lower the
fitness. The optimal mapping from the error to the fitness is a problem dependent.
A regularization term may be included in the fitness function to penalize large
weights.

3. Select parents for reproduction based on their fitness.
4. Apply genetic operators, such as crossover and/or mutation, to parents to gener-

ate offspring, which form the next generation.

The evolution stops when the fitness is greater than a predefined value (i.e. the train-
ing error is smaller than a certain value) or the population has converged.

17.3.1.2 The Evolution of Architectures

The evolution of architectures enables neural networks to adapt their topologies to
different tasks without human intervention and thus provides an approach to auto-
matic neural network design as both neural network connection weights and struc-
tures can be evolved.

Architecture design is crucial in the successful application of neural networks be-
cause the architecture has significant impact on a network’s information processing
capabilities. Given a learning task, a neural network with only a few connections
and linear nodes may not be able to perform the task at all due to its limited capabil-
ity, while a neural network with a large number of connections and nonlinear nodes
may overfit noise in the training data and fail to have good generalization ability.

Currently, architecture design is still very much a human expert’s job. It depends
heavily on expert experience and a tedious trial-and-error process. There is no sys-
tematic way to design a near-optimal architecture for a given task automatically.
Design of the optimal architecture for a neural network can be formulated as a
search problem in the architecture space where each point represents an architecture.
Given some performance (optimality) criteria, e.g. lowest training error, lowest net-
work complexity, etc., about architectures, the performance level of all architectures
forms a discrete surface in the space. The optimal architecture design is equivalent
to finding the highest point on this surface.

Similar to the evolution of connection weights, two major phases involved in the
evolution of architectures are the genotype representation scheme of architectures
and the evolutionary algorithm used to evolve neural network architectures. One of
the key issues in encoding neural network architectures is to decide how much infor-
mation about an architecture should be encoded in the chromosome. At one extreme,
all the details, i.e. every connection and node of an architecture, can be specified

17 Machine Learning 497

by the chromosome. This kind of representation scheme is called direct encoding.
At the other extreme, only the most important parameters of an architecture, such
as the number of hidden layers and hidden nodes in each layer, are encoded. Other
details about the architecture are left to the training process to decide. This kind
of representation scheme is called indirect encoding. After a representation scheme
has been chosen, the evolution of architectures can progress according to the cycle
as follows (Yao 1999):

1. Decode each individual in the current generation into an architecture. If the in-
direct encoding scheme is used, further detail of the architecture is specified by
some developmental rules or a training process.

2. Train each neural network with the decoded architecture by a pre-defined learn-
ing rule (some parameters of the learning rule could be learned during training)
starting from different sets of random initial weights and, if any, learning param-
eters.

3. Compute the fitness of each individual (encoded architecture) according to the
above training result and other performance criteria such as the complexity of
the architecture.

4. Select parents from the population based on their fitness.
5. Apply genetic operators to the parents and generate offspring which form the

next generation.

The cycle stops when a satisfactory neural network is found.
An automatic system, EPNet (Yao and Liu 1997, 1998), based on evolution-

ary programming has been developed for simultaneous evolution of neural network
architectures and connection weights. EPNet relies on a number of mutation op-
erators to modify architectures and weights. Behavioral (i.e. functional) evolution,
rather than genetic evolution, is emphasized in EPNet. A number of techniques were
adopted to maintain the behavioral link between a parent and its offspring (Yao and
Liu 1997). Figure 17.5 shows the main structure of EPNet.

EPNet uses rank-based selection (Yao 1993b) and five mutations: hybrid train-
ing, node deletion, connection deletion, connection addition and node addition (Yao
and Liu 1997). EPNet uses a hybrid algorithm to train the neural network for a fixed
number of epochs. Such training does not guarantee the convergence of neural net-
work learning. Hence the training is partial. The other four mutations are used to
grow and prune hidden nodes and connections.

The five mutations are attempted sequentially. If one mutation leads to a better
offspring, it is regarded as successful. No further mutation will be applied. Other-
wise the next mutation is attempted. The motivation behind ordering mutations is
to encourage the evolution of compact neural networks without sacrificing gener-
alization. A validation set is used in EPNet to measure the fitness of an individual,
and another validation set to stop training in the final step. EPNet has been tested
extensively on a number of benchmark problems, and very compact neural networks
with good generalization ability have been evolved (Yao and Liu 1997).

498 X. Yao and Y. Liu

Hybrid training
Random initialisation

of ANNs

Initial partial training

Rank-based selection

Obtain the new

generation

yes

yes

yes

no

no

no

no

Mutations

Further training

yes

Stop?

Hidden node

deletion

Connetion deletion

Connection/node

addition

Successful?

Successful?

Successful?

Fig. 17.5 The main structure of EPNet

17.3.2 The Evolution of Learning Rules

The evolution of learning rules can be regarded as a process of learning to learn in
neural networks where the adaptation of learning rules is achieved through evolu-
tion. It can also be regarded as an adaptive process of automatic discovery of novel
learning rules.

The relationship between evolution and learning is extremely complex. Various
models have been proposed, but most of them deal with the issue of how learn-
ing can guide evolution and the relationship between the evolution of architectures
and that of connection weights (Yao 1999). Research into the evolution of learning
rules is still in its early stages. This research is important not only in providing
an automatic way of optimizing learning rules and in modeling the relationship
between learning and evolution, but also in modeling the creative process since
newly evolved learning rules can deal with a complex and dynamic environment.
This research will help us to understand better how creativity can emerge in artifi-
cial systems, like neural networks, and how to model the creative process in biolog-
ical systems. A typical cycle of the evolution of learning rules can be described as
follows (Yao 1999):

17 Machine Learning 499

THE EVOLUTION OF LEARNING RULES

evaluation of learning rules

reproduction of learning rules

THE EVOLUTION OF ARCHITECTURES

evaluation of architectures

reproduction of architectures

THE EVOLUTION OF WEIGHTS

evaluation of weights

reproduction of weights

TASKS

Fig. 17.6 A general framework for evolutionary neural networks

1. Decode each individual in the current generation into a learning rule.
2. Construct a set of neural networks with randomly generated architectures and

initial weights, and train them using the decoded learning rules.
3. Calculate the fitness of each individual (encoded learning rule) according to the

average training results.
4. Select parents from the current generation according to their fitness.
5. Apply search operators to parents to generate offspring which form the next

generation.

The iteration stops when the population converges or a predefined maximum number
of iterations has been reached.

17.3.3 A General Framework for Evolutionary Neural Networks

Figure 17.6 illustrates a general framework for evolutionary neural networks (Yao
1999). The evolution of connection weights proceeds at the lowest level on the
fastest time scale in an environment determined by an architecture, a learning rule,
and learning tasks. There are, however, two alternatives to decide the level of the evo-
lution of architectures and that of learning rules: either the evolution of architectures
is at the highest level and that of learning rules at the lower level or vice versa. The
lower the level of evolution, the faster the time scale.

500 X. Yao and Y. Liu

17.4 Ensemble Learning

17.4.1 Bias–Variance Trade-Off

In order to minimize R(w) in Eq. (17.1) with an unknown probability distribution
Pr, a training set D = {(x(1),y(1)), . . . ,(x(N),y(N))} is selected and the function
F(x,w) is chosen to minimize ΣN

i=1E[(F(x(i),w)− y(i))2]. Thus, the training set
leads to a function F(x,w) that depends on D. To be explicit about dependence on
the training set D, we rewrite the function F(x,w) as F(x,D).

The training set D can be chosen randomly using (E ,Pr) by choosing N indepen-
dent samples from E . This can be described by a new probability space (E (N),Pr(N))
which consists of all the training sets D of given size N. Let ED denote expectation
over this space. Let E with no subscript denote the expectation over (E ,Pr). Since
the function F(x,D) is dependent on D, it differs from term to term in the sum for
ED. Consider the mean-squared error of the function F(x,D), which is defined by

ED[(F(x,D)− y)2].

Taking expectations with respect to the training set D, we obtain the well-known
separation of the mean-squared error (Geman et al. 1992)

ED[(F(x,D)− y)2] = ED[F(x,D)2]− 2yED[F(x,D)]+ y2

= (ED[F(x,D)]− y)2

+ED[F(x,D)2]− (ED[F(x,D)])2

= (ED[F(x,D)]− y)2

+varD(F(x,D)), (17.34)

where we have made use of the fact that y has constant expectation with respect to
D, and variance definition

varD(F(x,D)) = ED[(F(x,D)−ED[F(x,D)])2]

= ED[F(x,D)2]− (ED[F(x,D)])2. (17.35)

The first term (ED [F(x,D)]− y)2 in the right-hand side of Eq. (17.34) represents
the bias of the approximating function F(x,D). The bias measures how much the
average function value at x deviates from y. The second term varD (F(x,D)) rep-
resents the variance of the approximating function F(x,D). The variance measures
how much the function values at x vary from one training set to another.

Accordingly, Eq. (17.34) states that the expected mean-square value consists of
the sum of two terms: bias and variance. Note that neither is negative. To achieve
good performance, both the bias and the variance of the approximating function
F(x,D) should be small.

If an allowed function F(x,D) is too simple, it will not be capable of capturing
some of the aspects of the data. In particular, for a particular pair (x,y), there may
be a general tendency to overestimate or a general tendency to underestimate. Both
tendencies will make bias large. On the other hand, if an allowed function F(x,D)

17 Machine Learning 501

is too complex, it may be able to implement numerous solutions that are consistent
with the training data, but most of these are likely to be poor approximations to data
different from the training data. In other words, for any particular pair (x,y), a wide
range of values of F(x,D), i.e. a large variance, may be obtained as the training set
D varies.

There is usually a trade-off between bias and variance in the case of a training set
with finite size (Geman et al. 1992): attempts to decrease bias by introducing more
parameters often tend to increase variance; attempts to reduce variance by reducing
parameters often tend to increase bias.

17.4.1.1 Bias–Variance–Covariance Trade-Off

There are many approaches to dealing with the bias–variance trade-off in neural
network field. Given the training data set D = {(x(1),y(1)), . . . ,(x(N),y(N))}, this
section considers estimating y by forming a neural network ensemble whose out-
put is a simple averaging of outputs Fi(x,D) of a set of neural networks. All the
individual networks in the ensemble are trained on the same training data set D:

F(x,D) =
1
M
ΣM

i=1Fi(x,D), (17.36)

where M is the number of individual networks in the neural network ensemble.
Taking expectations with respect to the training set D, the expected mean-squared
error of the neural network ensemble can be written in terms of individual network
output:

ED
[

(F(x,D)− y)2]= ED

[

(

1
M
ΣM

i=1Fi(x,D)− y

)2
]

. (17.37)

By use of Eq. (17.34), the right-hand side in (17.37) can be written as

ED

[

(

1
M
ΣM

i=1Fi(x,D)− y

)2
]

=

(

ED

[

1
M
ΣM

i=1Fi(x,D)

]

− y

)2

+varD

(

1
M
ΣM

i=1Fi(x,D)

)

, (17.38)

where the first term in the right-hand side of (17.38) is the bias of the neural network
ensemble, and the second term is the variance of the neural network ensemble. The
variance of the neural network ensemble may be expressed as the sum of two terms:

varD

(

1
M
ΣM

i=1Fi(x,D)

)

= ED

[

(

1
M
ΣM

i=1Fi(x,D)−ED

[

1
M
ΣM

i=1Fi(x,D)

])2
]

= ED

[

1
M2

(

ΣM
i=1 (Fi(x,D)−ED[Fi(x,D)])

)2
]

502 X. Yao and Y. Liu

= ED

[1
M2

(

ΣM
i=1(Fi(x,D)−ED[Fi(x,D)])

(ΣM
j=1(Fj(x,D)−ED[Fj(x,D)]

)

]

= ED

[

1
M2 Σ

M
i=1(Fi(x,D)−ED[Fi(x,D)])2

]

+ED

[1
M2Σ

M
i=1Σ

M
j=1, j
=i(Fi(x,D)−ED[Fi(x,D)])

(Fj(x,D)−ED[Fj(x,D)])
]

, (17.39)

where the first term in the right-hand side of (17.39) is the weighted average of
variance among the individual neural networks and the second term is the weighted
average covariance among the different neural networks in the ensemble.

Similar to the bias–variance trade-off for a single neural network, there is a bias–
variance–covariance trade-off for neural network ensembles. If the individual neural
network Fi are highly positively correlated, for example Fi = F, i = 1, . . . ,M, there
is no reduction in the variance of ensemble in this case. If the individual neural net-
work Fi is uncorrelated, the weighted-average covariance among the different neural
networks is reduced to zero, and the variance of ensemble can be seen to decay at 1

M .
Both theoretical and experimental results (Clemen and Winkler 1985; Perrone and
Cooper 1993) have indicated that when individual neural networks in an ensem-
ble are unbiased, average procedures are most effective in combining them when
errors in the individual neural networks are negatively correlated and moderately
effective when the errors are uncorrelated. There is little to be gained from average
procedures when the errors are positively correlated.

There are a number of methods of learning neural network ensembles. To sum-
marize, there are three approaches: independent learning, sequential learning and
simultaneous learning.

17.4.1.2 Independent Learning Methods

It is clear that there is no advantage of combining a set of identical neural networks.
In order to create a set of neural networks which are as uncorrelated as possible, a
number of methods have been proposed to train a set of neural networks indepen-
dently by varying initial random weights, the architectures, the learning algorithm
used, and the data (Hansen and Salamon 1990; Sarkar 1996; Rogova 1994; Battiti
and Colla 1994; Kim et al. 1995).

Experimental results have showed that neural networks obtained from a given
neural network architecture for different initial random weights often correctly rec-
ognize different subsets of a given test set (Hansen and Salamon 1990; Sarkar 1996).
As argued by Hansen and Salamon (1990), because each neural network makes gen-
eralization errors on different subsets of the input space, the collective decision pro-
duced by the ensemble is less likely to be in error than the decision made by any of
the individual neural networks.

17 Machine Learning 503

Currently, the commonest methods for the creation of ensembles are those which
involve altering the training data, such as cross-validation (Krogh and Vedelsby
1995), bootstrapping (Raviv and Intrator 1996) and different input features (Rogova
1994; Battiti and Colla 1994).

Cross-validation is a method of estimating prediction error in its original form
(Stone 1974). The procedure of m-fold cross-validation is as follows:

1. Split the data into m roughly equal-sized parts.
2. For the ith part, fit the model to the other (m− 1) parts of the data, and calculate

the prediction error of fitted model when predicting the ith part of the data.
3. Do the above for i = 1, . . . ,m, and combine the m estimates of prediction error.

Cross-validation can be used to create a set of neural networks. Split the data
into m roughly equal-sized parts, and train each neural network on the different
parts independently. As indicated by Meir (1995), when the data set is small and
noisy, such independence will help to reduce the correlation among the m neural
networks more drastically than in the case where each neural network is trained on
the full data.

When a larger set of independent neural networks is needed, splitting the training
data into non-overlapping parts may cause each data part to be too small to train
each neural network if no more data are available. In this case, data reuse methods,
such as bootstrap (Efron and Tibshirani 1993), can help. Bootstrap was introduced in
1979 as a computer-based method for estimating the standard error of a statistic s(x)
(Efron and Tibshirani 1993). Breiman (1996) used the idea of bootstrap in bagging
predictors. In bagging predictors, a training set containing N patterns is perturbed
by sampling with replacement N times from the training set. The perturbed data
set may contain repeats. This procedure can be repeated several times to create a
number of different, although overlapping, data sets.

Although an ensemble primarily combines a set of neural networks with same
architectures, it has been observed that classifiers based on different classifiers and
features are frequently complementary to one another (Rogova 1994; Battiti and
Colla 1994). Rogova (1994) proposed to combine several different neural network
classifiers. For instance, three different neural network classifiers were used in Ro-
gova’s experiment on data of hand-printed digits (Rogova 1994).

17.4.1.3 Sequential Learning Methods

Most independent learning methods emphasize independence among individual neu-
ral networks in an ensemble. One of the disadvantages of such a method is the loss
of interaction between the individual neural networks during learning. There is no
consideration of whether what one individual learns has already been learned by
other individuals. The errors of independently trained neural networks may still be
positively correlated. It has been found that the combined results are weakened if
the errors of individual neural networks are positively correlated (Clemen and Win-
kler 1985; Perrone and Cooper 1993). In order to decorrelate the individual neural

504 X. Yao and Y. Liu

networks, sequential learning methods train a set of networks in a particular order
(Drucker et al. 1993; Opitz and Shavlik 1996; Rosen 1996). Drucker et al. (1993)
suggested training the neural networks using the boosting algorithm.

The boosting algorithm was originally proposed by Schapire (1990). Schapire
proved that it is theoretically possible to convert a weak learning algorithm that
performs only slightly better than random guessing into one that achieves arbitrary
accuracy. The proof presented by Schapire (1990) is constructive. The construction
uses filtering to modify the distribution of examples in such a way as to force the
weak learning algorithm to focus on the harder-to-learn parts of the distribution.

The boosting algorithm trains a set of learning machines sequentially on data that
have been filtered by the previously trained learning machines (Schapire 1990). As
indicated by Drucker et al. (1994), the original boosting procedure is as follows.
The first machine is trained with N1 patterns randomly chosen from the available
training data. After the first machine has been trained, a second training set with
N1 patterns is randomly selected on which the first machine would have 50% error
rate. That is, there are 50% of patterns in the training set which the first machine
misclassifies. Once the second machine has been trained with the second training
set, another set of training patters are filtered through the first and second machines.
Add the patterns on which the two machines disagree into the third training set for
the third machine until there are total of N1 patterns in it. Then the third machine is
trained. During testing, each testing pattern is classified using the following voting
scheme: if the first two machines agree, take their answer as the output; otherwise,
assign the label as classified by the third machine.

Drucker et al. (1993) first used the idea of the boosting algorithm to improve
performance of neural networks on four databases of optical character recognition
problems. Drucker et al. (1994) compared the performance of the original version of
boosting to that of a single neural network for an optical character recognition prob-
lem. The results showed that a single network was best for small training set size
while for large training set size the original version of boosting was best. The ensem-
ble used by Drucker et al. (1994) only consists of three individual neural networks,
where the output of the ensemble is decided by adding of the outputs of the three
neural networks rather than voting them.

The boosting algorithm can help to reduce the covariance between the differ-
ent neural networks in an ensemble. A practical limitation of the original boosting
algorithm Drucker et al. (1994) is that with a finite number of training patterns, un-
less the first network has very poor performance, there may not be enough patterns
to generate a second or third training set. This limitation can be overcome by an-
other boosting algorithm called AdaBoost. AdaBoost was developed by Freund and
Schapire (1996) and analyzed theoretically by Schapire (1999). AdaBoost belongs
to boosting by resampling that allows the training data to be reused.

Different to the boosting algorithm, Rosen (1996) proposed a decorrelation neu-
ral network training algorithm in which individual neural networks are trained not
only to minimize the error between the target and its output, but also to decorrelate
the errors with those from previously trained neural networks.

17 Machine Learning 505

17.4.1.4 Simultaneous Learning Methods

Most of the independent training methods and sequential training methods follow
a two-stage design process: first generating individual neural networks, and then
combining them. The possible interactions between the individual neural networks
cannot be exploited until the integration stage. There is no feedback from the inte-
gration stage to the individual neural network design stage. It is possible that some
of the independently designed neural networks do not make much contribution to
the integrated system. In order to use the feedback from the integration, simultane-
ous training methods train a set of neural networks together. The mixtures-of-experts
(ME) architectures (Jacobs et al. 1991a,b; Jordan and Jacobs 1994) and negative cor-
relation learning (Liu and Yao 1998a,b, 1999a,b; Chandra and Yao 2006) are two
examples of simultaneous training methods.

The ME architecture is composed of multiple neural networks that combine as-
pects of competitive and associative learning (Jacobs et al. 1991a,b; Jordan and
Jacobs 1994). The ME architecture is based on the principle of divide and conquer,
in which a complex problem is decomposed into a set of simpler subproblems. It is
assumed that the data can be adequately summarized by a collection of functions,
each defined over a local region of the input space. The ME architecture adaptively
partitions the input space into possibly overlapping regions and allocates different
networks to summarize the data located in different regions. The ME architecture
consists of two types of neural networks: a gating neural network and a number
of expert neural networks. The ME architecture allows for all expert neural net-
works to look at the input and make their best guess. The gating neural network
uses the normalized exponential transformation to weight the outputs of the expert
neural networks to provide an overall best guess. All the parameter adjustments in
the expert neural networks and gating neural network are performed simultaneously.
Although the ME architecture can produce biased individual neural networks whose
estimates are negatively correlated (Jacobs 1997), it does not provide a convenient
way to balance the bias–variance–covariance trade-off.

17.4.1.5 Negative Correlation Learning

The idea of negative correlation learning is to introduce a correlation penalty term
into the error function of each individual network so that the individual network can
be trained simultaneously and interactively (Liu and Yao 1999a). Given the training
data set D = {(x(1),y(1)), . . . ,(x(N),y(N))}, we consider estimating y by forming
a neural network ensemble whose output is a simple averaging of outputs Fi of a set
of neural networks. All the individual networks in the ensemble are trained on the
same training data set D:

F(n) =
1
M
ΣM

i=1Fi(n), (17.40)

506 X. Yao and Y. Liu

where Fi(n) is the output of individual network i on the nth training pattern x(n),
F(n) is the output of the neural network ensemble on the nth training pattern, and
M is the number of individual networks in the neural network ensemble.

In negative correlation learning, the error function Ei for individual i on the train-
ing data set D = {(x(1),y(1)), . . . ,(x(N),y(N))} in negative correlation learning is
defined by

Ei =
1
N
ΣN

n=1Ei(n)

=
1
N
ΣN

n=1

[

1
2
(Fi(n)− y(n))2 +λpi(n)

]

, (17.41)

where N is the number of training patterns, Ei(n) is the value of the error function of
network i at presentation of the nth training pattern, and y(n) is the desired output of
the nth training pattern. The first term in the right-hand side of (17.41) is the mean-
squared error of individual network i. The second term pi is a correlation penalty
function. The purpose of minimizing pi is to negatively correlate each individual’s
error with errors for the rest of the ensemble. The parameter λ is used to adjust the
strength of the penalty.

The penalty function pi has the form

pi(n) =−1
2
(Fi(n)−F(n))2. (17.42)

The partial derivative of Ei with respect to the output of individual i on the nth
training pattern is

∂Ei(n)

∂Fi(n)
= Fi(n)− y(n)−λ(Fi(n)−F(n))

= (1−λ)(Fi(n)− y(n))+λ(F(n)− y(n)), (17.43)

where we have made use of the assumption that the output of ensemble F(n) has
constant value with respect to Fi(n). The value of parameter λ lies inside the range
0≤ λ≤ 1 so that both (1−λ) and λ have non-negative values.

Negative correlation learning has been analyzed in terms of mutual information
on a regression task in the different noise conditions (Liu et al. 2001). Unlike in-
dependent training which creates larger mutual information among the ensemble,
negative correlation learning can produce smaller mutual information among the
ensemble. Through minimization of mutual information, very competitive results
have been produced by negative correlation learning in comparison with indepen-
dent training.

The decision boundaries and the correct response sets constructed by negative
correlation learning and the independent training have been compared for two pat-
tern classification problems (Liu et al. 2002). The experimental results show that
negative correlation learning has a very good classification performance. In fact,
the decision boundary formed by negative correlation learning is nearly close to the

17 Machine Learning 507

optimum decision boundary generated by the Bayes classifier. Negative correlation
learning has also been applied in online learning and class imbalance learning
(Minku et al. 2010; Tang et al. 2009; Wang and Yao 2009a,b).

17.4.1.6 Evolutionary Neural Networks as Ensembles

Combining individual neural networks in a population into a neural network
ensemble has a close relationship to the design of neural network ensembles. The
population of neural networks can be regarded as an ensemble. The evolutionary
process can be regarded as a natural and automatic way to design neural network
ensembles.

Evolutionary ensembles with negative correlation learning (EENCL) were de-
veloped for automatically designing neural network ensembles (Liu et al. 2000).
EENCL are studied to address the following issues: exploitation of the interaction
between individual neural network design and combination and automatic determi-
nation of the number of individual neural networks. In EENCL, an evolutionary
algorithm based on evolutionary programming (Fogel 1995) is used to search for a
population of diverse individual neural networks that together solve a problem. To
maintain a diverse population, fitness sharing (Yao et al. 1996) and negative cor-
relation learning are used to encourage the formation of different species. In the
implementation of EENCL, each neural network in the ensemble is a feedforward
neural network with logistic transfer functions. The major steps of EENCL are as
follows:

1. Generate an initial population of M neural networks, and set k = 1. The number
of hidden nodes for each neural network, nh, is specified by the user. The random
initial weights are uniformly distributed inside a small range.

2. Train each neural network in the initial population on the training set for a certain
number of epochs using negative correlation learning. The number of epochs, ne,
is specified by the user.

3. Randomly choose a group of nb neural networks as parents to create nb offspring
neural networks by Gaussian mutation.

4. Add the nb offspring neural networks to the population and train the offspring
neural networks using negative correlation learning while the rest of the neural
networks’ weights are frozen.

5. Calculate the fitness of M + nb neural networks in the population and prune the
population to the M fittest neural networks.

6. Go to the next step if the maximum number of generations has been reached.
Otherwise, k = k+ 1 and go to Step 3.

7. Form species using the k-means algorithm.
8. Combine species to form the ensembles.

There are two levels of adaptation in EENCL: negative correlation learning at
the individual level and evolutionary learning based on evolutionary programm-
ing (Fogel 1995) at the population level. Negative correlation learning and fitness

508 X. Yao and Y. Liu

sharing have been used to encourage the formation of species in the population.
EENCL were tested on the Australian credit card assessment problem and the di-
abetes problem (Liu et al. 2000). Very competitive results have been produced by
EENCL in comparison with other algorithms (Liu et al. 2000). Three combination
methods have been investigated in EENCL, including simple averaging, majority
voting and winner-takes-all.

Besides the k-means algorithm, regularized learning and constructive learning
were also introduced in negative correlation learning for automatically determining
the size of the ensembles (Chen and Yao 2009; Islam et al. 2003; Chen and Yao
2010).

17.5 Promising Areas for Future Application

Six recent trends and directions in machine learning are summarized by Dietterich
(1997) and Langley (1996).

The first trend is in experimental studies of learning algorithms. Experimental
studies of learning algorithms have shifted from the early study of idealized, hand-
crafted examples to realistic learning tasks that involve hundreds and thousands of
cases. Besides robustness and the generality test of learning algorithms on a num-
ber of different data sets, comparisons between different learning algorithms on the
same task domains need to be done. It has been realized that some explicit methods
for evaluating different learning algorithms should be established, and the condi-
tions in which a learning algorithm will perform well should be identified in order
to make progress in machine learning.

The second trend is in theoretical analyses of learning processes. The main goal
of theoretical analysis is to find the inductive principle with the best generaliza-
tion, and then to develop learning algorithms with such inductive principle. Early
studies on the convergence of learning algorithms were important but showed little
insight into real learning problems. A major advance was due to the introduction
of the probably approximately correct model (Vapnik 1995). For the first time, this
model provided theoretical accuracy guarantees that were based on a finite number
of training samples. The resulting probably approximately correct model also served
the rigorous framework that addressed the concerns from real-world problems.

The third trend is in applications of machine learning. Most recent successful
applications are in classification or prediction tasks. Machine learning has also been
applied in the areas of configuration and layout, planning and scheduling, and ex-
ecution and control. In order for machine learning to play a big role in solving
problems of interest to industry and commerce, many more applications need to be
undertaken.

The fourth trend is on new learning algorithms. Many new learning algorithms
have been studied in the past decade. For example, a support vector machine can
construct a hyperplane as the decision surface in such a way that the margin of sep-
aration between positive and negative examples is maximized. A boosting algorithm

17 Machine Learning 509

trains a set of classifiers on data sets with entirely different distributions, and
combines them in an elementary way to achieve near-optimal performance. The
boosting algorithm was originally proposed by Schapire (1990). Schapire proved
that it is theoretically possible to convert a weak learning algorithm that performs
only slightly better than random guessing into one that achieves arbitrary accuracy.
Boosting is a general method that can be used to improve the performance of any
learning algorithm. Another ensemble learning called bagging combines models
built on resamplings of data to yield superior models (Breiman 1996).

The fifth trend is in unified frameworks for machine learning. Machine learning
has been widely studied from a variety of backgrounds. The similarities between
the various approaches have often been overlooked while the differences between
them were emphasized. It is important to draw distinctions among different learn-
ing algorithms. However, an ultimate goal of machine learning is to study a unified
framework that can explain different learning processes in terms of common under-
lying mechanisms. One route to this goal is the study of hybrid learning systems
that incorporate aspects of different learning algorithms.

The sixth trend is in integrated cognitive architectures. It is related to the develop-
ment of integrated architectures for cognition. A common implementation in early
work was to design a separate system for each new task. These systems had little of
the nature of intelligent behavior, and posed limitations on work in other domains.
Now research has moved to the design of integrated architectures that make strong
assumptions about the control structures that can support intelligence. It is clear that
learning will continue to play an important role in the development of such cogni-
tive architectures when it is necessary to acquire knowledge from the environment
for long-term adaptive behavior.

These new areas will confront researchers with many more challenge problems,
and novel directions will surely emerge when the limitations of existing learning
algorithms are revealed.

17.6 Tricks of the Trade

Newcomers to the field of machine learning, applying a learning algorithm to a
given problem, are often not very clear about where to start to come up with a suc-
cessful implementation. The following step-by-step procedures provide a guideline
for implementing machine learning algorithms (Langley and Simon 1995).

17.6.1 Formulating the Problem

The first step is to formulate a given problem in terms of what can be dealt with by a
particular learning algorithm. Often, some real-world problems can be transformed
into simple classification tasks. For an example, the breast cancer diagnosis problem

510 X. Yao and Y. Liu

can be formulated as a classification task that classifies a tumor as either benign or
malignant based on cell descriptions gathered by microscopic examination. Strate-
gies such as divide-and-conquer can be used to decompose a complex task into a set
of subproblems more amenable to the chosen learning algorithm. The strengths and
limitations discussed in Sect. 17.2 provide a guideline for selecting an appropriate
learning algorithm. Additionally, based on the feedback available in the problem,
supervised learning can be chosen when specific output is supplied; unsupervised
should be adopted when there is no specific output; reinforcement learning can be
applied when the environment can be either fully observable or partially observable.

17.6.2 Choosing the Representation

The second step is to choose an appropriate representation for both the data and
knowledge to be learned. The representation is referred to the attributes or features
describing examples rather than the representational formalism, such as decision
trees or neural networks. In some real-world problems, there might be thousands of
potential features describing each input. Most learning algorithms do not scale well
when there are many features. Meanwhile, examples with many irrelevant and noisy
input features give little information from a statistical point of view. It is essential
to choose useful and important features to feed to the learning algorithms. There are
three main approaches for feature selection (Dietterich 1997). The first approach is
to select a subset of the features based on some initial analysis. The second approach
is to test different subsets of the features on the chosen learning algorithm and select
the subsets that generate the best performance. The third approach is to automate the
selection and weighting of features in the learning algorithm.

17.6.3 Collecting the Data

The third step is to collect data needed for the learning algorithm. In some
applications, this process may be straightforward, but in others it can be very diffi-
cult. Generally speaking, the quantity of the data is decided by the chosen learning
algorithm. Data preprocessing is often necessary in the learning process.

17.6.4 Conducting the Learning Process

Once the data are ready, the learning process can be started to find the best learning
model within a set of candidate model structures according to a certain criterion.
A standard tool in statistics known as cross-validation provides a good guiding cri-
terion. First the collected data are randomly partitioned into a training set and a

17 Machine Learning 511

test set. The training set is further divided into two disjoint subsets called estimation
subset and validation subset in which the estimation subset is used to induce the
learning model, and the validation subset is used to validate the model. It is possible
that the learned model may end up overfitting on the validation subset. Therefore,
the generalization performance of the learned model is measured on the test set
which is different from the validation subset. Some learning algorithms, such as in-
ductive logic programming, rely on the background knowledge available. How to
obtain such helpful background knowledge is an important issue that will affect the
outcome of those learning algorithms.

17.6.5 Analyzing and Evaluating the Learned Knowledge

Empirical comparisons have often been used to evaluate the predictive performance
of the various learning methods. The experiments can be conducted on simulated
data sets or a real-life data set, or both. The known best predictions on some simu-
lated data sets make it possible to compare the learned knowledge with the known
knowledge. Real-life data are helpful for evaluation of the robustness and generality
of different learning algorithms. Cross-validation is a method of estimating predic-
tion error in its original form (Stone 1974). The procedure of m-fold cross-validation
is as follows:

1. Split the data into m roughly equal-sized parts.
2. For the ith part, fit the model to the other (m− 1) parts of the data, and calculate

the prediction error of fitted model when predicting the ith part of the data.
3. Do the above for i = 1, . . . ,m, and combine the m estimates of prediction error.

In addition to empirical comparisons, statistical learning theory can be used to an-
alyze the generalization ability of learning algorithms. Vapnik (1995) argued that
the Vapnik–Chervonenkis dimension of the set of functions (rather than number of
parameters) is responsible for the generalization ability of learning machines. This
opens remarkable opportunities to overcome the “curse of dimensionality”: to gen-
eralize well on the basis of a set of functions containing a huge number of parameters
but possessing a small Vapnik–Chervonenkis dimension.

17.7 Conclusions

This chapter has been primarily concerned with the core learning algorithms in-
cluding decision tree, inductive logic programming, Bayesian learning, neural net-
works, evolutionary learning and reinforcement learning. Inevitably, there are some
important learning algorithms that have not been covered. One important learning
algorithm dealing with imprecise and uncertain knowledge and data is fuzzy logic.
Imprecision is treated based on probability in statistical learning. In contrast, fuzzy

512 X. Yao and Y. Liu

logic is concerned with the use of fuzzy values that capture the meaning of words,
human reasoning and decision making. At the heart of fuzzy logic lies the concept
of a linguistic variable. The values of the linguistic variable are words rather than
numbers.

Generalization is one of key issues in machine learning. In neural network
learning, generalization was studied from the bias–variance trade-off point of view
(Geman et al. 1992). There is usually a trade-off between bias and variance in the
case of a training set with finite size: attempts to decrease bias by introducing more
parameters often tend to increase variance; attempts to reduce variance by reduc-
ing parameters often tend to increase bias. Besides the generalization issue, how to
scale up learning algorithms is another important issue. Dietterich (1997) reviewed
learning with a large training set and learning with many features. Even though
some learning techniques can solve very large problems with millions of training
examples in a reasonable amount of computer time, it is unclear whether they can
successfully be applied to those problems with billions of training examples.

This chapter has also been concerned with exploring the possible benefits arising
from combining learning with evolution with neural networks. Different learning al-
gorithms have their own strengths and weaknesses. Among all learning algorithms,
there is no clear winner in terms of the best learning algorithm. The best one is
always problem dependent. This is certainly true according to the no-free-lunch
theorem (Wolpert and Macready 1997). In general, hybrid algorithms tend to per-
form better than others for a large number of problems.

Sources of Additional Information

The literature on machine learning is rather large, and has been growing rapidly.

• Mitchell’s Machine Learning (Mitchell 1997) and Russell and Norvig’s Arti-
ficial Intelligence: A Modern Approach (Russell and Norvig 2002) give good
overviews of different types of learning algorithms.

• Machine Learning, volumes I–III, provide the early history of machine learning
development (Michalski et al. 1983, 1986; Kodratoff and Michalski 1990).

• Some important papers in machine learning are collected in Readings in Machine
Learning (Shavlik and Dietterich 1990).

• Current research in machine learning spreads out over a number of journals. Ma-
jor machine learning journals include Machine Learning, the Journal of Machine
Learning Research, IEEE Transactions on Neural Networks, IEEE Transactions
on Evolutionary Computation, and mainstream artificial intelligence journals.

• Machine learning is also covered by a number of conferences, such as the In-
ternational Conference on Machine Learning, the International Joint Conference
on Neural Networks, Congress on Evolutionary Computation, the IEEE Interna-
tional Conference on Fuzzy Systems, and the Conference on Neural Information
Processing Systems.

17 Machine Learning 513

• Mlnet Online Information Service (http://www.mlnet.org/) funded by the
European Commission is dedicated to the field of machine learning, knowledge
discovery, case-based reasoning, knowledge acquisition and data mining.

• Machine learning topics can also be found at the website of the American Asso-
ciation for Artificial Intelligence: www.aaai.org/Pathfinder/html/machine.html.

References

Battiti R, Colla AM (1994) Democracy in neural nets: voting schemes for classifi-
cation. Neural Netw 7:691–707

Breiman L (1996) Bagging predictors. Mach Learn 24:123–140
Breiman L, Friedman J, Olshen RA, Stone PJ (1984) Classification and regression

trees. Wadsworth, Belmont
Chandra A, Yao X (2006) Ensemble learning using multi-objective evolutionary

algorithms. J Math Model Algorithms 5:417–445
Chen H, Yao X (2009) Regularized negative correlation learning for neural network

ensembles. IEEE Trans Neural Netw 20:1962–1979
Chen H, Yao X (2010) Multiobjective neural network ensembles based on regular-

ized negative correlation Learning. IEEE Trans Knowl Data Eng 22:1738–1751
Cheng J, Greiner R, Kelly J, Bell DA, Liu W (2002) Learning Bayesian networks

from data: an information-theory based approach. Artif Intell 137:43–90
Clemen RT, Winkler RL (1985) Limits for the precision and value of information

from dependent sources. Oper Res 33:427–442
Dietterich TG (1997) Machine-learning research: four current directions. AI Mag

18:97–136
Domingos P, Pazzani M (1996) Beyond indpendence: conditions for the optimality

of the simple Bayesian classifier. In: Saitta L (ed) Proceedings of the 13th inter-
national conference on machine learning, Bari. Morgan Kaufmann, San Mateo,
pp 105–112

Drucker H, Schapire R, Simard P (1993) Improving performance in neural networks
using a boosting algorithm. In: Hanson SJ et al (eds) Advances in neural infor-
mation processing systems 5. Morgan Kaufmann, San Mateo, pp 42–49

Drucker H, Cortes C, Jackel LD, LeCun Y, Vapnik V (1994) Boosting and other
ensemble methods. Neural Comput 6:1289–1301

Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman and Hall,
London

Elkan C (1997) Boosting and naive Bayesian learning. Technical report, Department
of Computer Science and Engineering, University of California

Feigenbaum EA (1961) The simulation of verbal learning behavior. In: Proceedings
of the western joint computer conference, Los Angeles, pp 121–131

Fogel DB (1995) Evolutionary computation: towards a new philosophy of machine
intelligence. IEEE, New York

http://www.mlnet.org/
www.aaai.org/Pathfinder/html/machine.html.

514 X. Yao and Y. Liu

Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated
evolution. Wiley, New York

Freund Y, Schapire RE (1996) Experiments with a new boosting algorithm. In: Pro-
ceedings of the 13th international conference on machine learning, Bari. Morgan
Kaufmann, San Mateo, pp 148–156

Geman S, Bienenstock E, Doursat R (1992) Neural networks and the bias/variance
dilemma. Neural Comput 4:1–58

Hansen LK, Salamon P (1990) Neural network ensembles. IEEE Trans Pattern Anal
Mach Intell 12:993–1001

Hebb DO (1949) The organization of behavior: a neurophysiological theory. Wiley,
New York

Heckerman D (1998) A tutorial on learning with Bayesian networks. In: Jordan MI
(ed) Learning in graphical models. Kluwer, Dordrecht

Hopfield JJ (1982) Neural networks and physical systems with emergent collective
computational abilities. Proc Nat Acad Sci USA 79:2554–2558

Hopfield JJ, Tank DW (1985) Neural computation of decisions in optimization
problems. Biol Cybern 52:141–152

Hunt EB, Marin J, Stone PT (1966) Experiments in induction. Academic, New York
Islam MM, Yao X, Murase K (2003) A constructive algorithm for training coopera-

tive neural network ensembles. IEEE Trans Neural Netw 14:820–834
Jacobs RA (1997) Bias/variance analyses of mixture-of-experts architectures.

Neural Comput 9:369–383
Jacobs RA, Jordan MI, Barto AG (1991a) Task decomposition through competition

in a modular connectionist architecture: the what and where vision task. Cogn Sci
15:219–250

Jacobs RA, Jordan MI, Nowlan SJ, Hinton GE (1991b) Adaptive mixtures of local
experts. Neural Comput 3:79–87

Jordan MI, Jacobs RA (1994) Hierarchical mixtures-of-experts and the EM algo-
rithm. Neural Comput 6:181–214

Kaelbling LP, Littman ML, Moore AW (1996) Reinforcement learning: a survey. J
Artif Intell Res 4:237–285

Kim J, Ahn J, Cho S (1995) Ensemble competitive learning neural networks with
reduced input dimensions. Int J Neural Syst 6:133–142

Kodratoff Y, Michalski RS (eds) (1990) Machine learning—an artificial intelligence
approach 3. Morgan Kaufmann, San Mateo

Krogh A, Vedelsby J (1995) Neural network ensembles, cross validation, and active
learning. In: Tesauro G et al (eds) Advances in neural information processing
systems 7. MIT, Cambridge, pp 231–238

Langley P (1996) Elements of machine learning. Morgan Kaufmann, San Francisco
Langley P, Simon H (1995) Applications of machine learning and rule induction.

Commun ACM 38:54–64
Lavrač N, Džeroski S (1994) Inductive logic programming: techniques and applica-

tions. Ellis Horwood, Chichester
Liu Y, Yao X (1998a) Negatively correlated neural networks can produce best

ensembles. Aust J Intell Inf Process Syst 4:176–185

17 Machine Learning 515

Liu Y, Yao X (1998b) A cooperative ensemble learning system. In: Proceedings of
the IJCNN 1998, Anchorage. IEEE, Piscataway, pp 2202–2207

Liu Y, Yao X (1999a) Simultaneous training of negatively correlated neural
networks in an ensemble. IEEE Trans Syst Man Cybern B 29:716–725

Liu Y, Yao X (1999b) Ensemble learning via negative correlation. Neural Netw
12:1399–1404

Liu Y, Yao X, Higuchi T (2000) Evolutionary ensembles with negative correlation
learning. IEEE Trans Evol Comput 4:380–387

Liu Y, Yao X, Higuchi T (2001) Ensemble learning by minimizing mutual informa-
tion. In: Proceedings of the 2nd international conference on software engineer,
artificial intelligence, networking and parallel/distributed computing, Nagoya.
International association for computer and information science, pp 457–462

Liu Y, Yao X, Zhao Q, Higuchi T (2002) An experimental comparison of neural
network ensemble learning methods on decision boundaries. In: Proceedings of
the IJCNN 2002, Honolulu. IEEE, Piscataway, pp 221–226

McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous
activity. Bull Math Biophys 5:115–137

Meir R (1995) Bias, variance, and the combination of least squares estimators. In:
Tesauro G, Touretzky DS, Leen TK (eds) Advances in neural information pro-
cessing systems 7. MIT, Cambridge, pp 295–302

Michalski RS, Carbonell JG, Mitchell TM (eds) (1983) Machine learning—an
artificial intelligence approach 1. Morgan Kaufmann, San Mateo

Michalski RS, Carbonell JG, Mitchell TM (eds) (1986) Machine learning—an
artificial intelligence approach 2. Morgan Kaufmann, San Mateo

Michie D, Spiegelhalter DJ, Taylor CC (1994) Machine learning, neural and
statistical classification. Ellis Horwood, London

Minku LL, White A, Yao X (2010) The impact of diversity on on-line ensem-
ble learning in the presence of concept drift. IEEE Trans Knowl Data Eng
22:730–742

Minsky ML, Papert S (1969) Perceptrons: an introduction to computational geome-
try. MIT, Cambridge

Mitchell TM (1997) Machine learning. McGraw-Hill, New York
Muggleton SH (1995) Inverse entailment and progol. New Gener Comput

13:245–286
Muggleton SH, Buntine W (1988) Machine invention of first-order predicates by in-

verting resolution. In: Proceedings of the 5th international conference on machine
learning, Ann Arbor. Morgan Kaufmann, San Mateo, pp 339–352

Opitz DW, Shavlik JW (1996) Actively searching for an effective neural network
ensemble. Connect Sci 8:337–353

Perrone MP, Cooper LN (1993) When networks disagree: ensemble methods for
hybrid neural networks. In: Mammone RJ (ed) Neural networks for speech and
image processing. Chapman and Hall, London

Quinlan JR (1986) Introduction to decision tree. Mach Learn 1:81–106
Quinlan JR (1990) Learning logical definitions from relations. Mach Learn

5:239–266

516 X. Yao and Y. Liu

Quinlan JR (1993) C4.5: programs for machine learning. Morgan Kaufmann, San
Mateo

Raviv Y, Intrator N (1996) Bootstrapping with noise: an effective regularization
technique. Connect Sci 8:355–372

Rogova G (1994) Combining the results of several neural networks classifiers.
Neural Netw 7:777–781

Rosen BE (1996) Ensemble learning using decorrelated neural networks. Connect
Sci 8:373–383

Rosenblatt F (1962) Principles of neurodynamics: perceptrons and the theory of
brain mechanisms. Spartan, Chicago

Rumelhart DE, McClelland JL (ed) (1986) Parallel distributed processing: explo-
rations in the microstructures of cognition. MIT, Cambridge

Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations
by error propagation. In: Rumelhart DE, McClelland JL (eds) Parallel distributed
processing: explorations in the microstructures of cognition I. MIT, Cambridge,
pp 318–362

Russell S, Norvig P (2002) Artificial intelligence: a modern approach. Prentice-Hall,
Englewood Cliffs

Samuel AL (1959) Some studies in machine learning using the game of checkers.
IBM J Res Dev 3:210–229

Sarkar D (1996) Randomness in generalization ability: a source to improve it. IEEE
Trans Neural Netw 7:676–685

Schapire RE (1990) The strength of weak learnability. Mach Learn 5:197–227
Schapire RE (1999) Theoretical views of boosting and applications. In: Proceed-

ings of the 10th international conference on algorithmic learning theory, Tokyo.
Springer, Berlin, pp 13–25

Schwefel HP (1981) Numerical optimization of computer models. Wiley, Chichester
Schwefel HP (1995) Evolution and optimum seeking. Wiley, New York
Shavlik J, Dietterich T (eds) (1990) Readings in machine learning. Morgan Kauf-

mann, San Mateo
Stone M (1974) Cross-validatory choice and assessment of statistical predictions. J

R Stat Soc 36:111–147
Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. MIT, Cam-

bridge
Tang K, Lin M, Minku FL, Yao X (2009) Selective negative correlation learning

approach to incremental learning. Neurocomputing 72:2796–2805
Turing A (1950) Computing machinery and intelligence. Mind 59:433–460
Vapnik VN (1995) The nature of statistical learning theory. Springer, New York
Wang S, Yao X (2009a) Theoretical study of the relationship between diversity

and single-class measures for class imbalance learning. In: Proceedings
of the IEEE international conference on data mining workshops, Miami.
IEEE Computer Society, Washington, DC, pp 76–81

Wang S, Yao X (2009b) Diversity exploration and negative correlation learning on
imbalanced data sets. In: Proceedings of the IJCNN 2009, Atlanta, pp 3259–3266

17 Machine Learning 517

Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE
Trans Evol Comput 1:67–82

Yao X (1991) Evolution of connectionist networks. In: Dartnall T (ed) Preprints of
the international symposium on AI, reasoning and creativity, Griffith University,
Queensland, pp 49–52

Yao X (1993a) A review of evolutionary artificial neural networks. Int J Intell Syst
8:539–567

Yao X (1993b) An empirical study of genetic operators in genetic algorithms.
Microprocess Microprogr 38:707–714

Yao X (1994) The evolution of connectionist networks. In: Dartnall T (ed) Artificial
intelligence and creativity. Kluwer, Dordrecht, pp 233–243

Yao X (1995) Evolutionary artificial neural networks. In: Kent A, Williams JG
(eds) Encyclopedia of computer science and technology 33. Dekker, New York,
pp 137–170

Yao X (1999) Evolving artificial neural networks. Proc IEEE 87:1423–1447
Yao X, Liu Y (1997) A new evolutionary system for evolving artificial neural net-

works. IEEE Trans Neural Netw 8:694–713
Yao X, Liu Y (1998) Making use of population information in evolutionary artificial

neural networks. IEEE Trans Syst Man Cybern B 28:417–425
Yao X, Liu Y, Darwen P (1996) How to make best use of evolutionary learning. In:

Stocker R, Jelinek H, Durnota B (eds) Complex systems: from local interactions
to global phenomena. IOS, Amsterdam, pp 229–242

Chapter 18

Fuzzy Reasoning

Costas P. Pappis and Constantinos I. Siettos

18.1 Introduction

The derivation of mathematical models that can efficiently describe real-world
problems is generally an overwhelming or even impossible task, due to the com-
plexity and inherent ambiguity of characteristics that these problems can possess.
As L. A. Zadeh (1973), the founder of the theory of fuzzy sets, puts it

as the complexity of a system increases, our ability to make precise and yet significant
statements about its behavior diminishes until a threshold is reached beyond which precision
and significance (or relevance) become almost mutually exclusive characteristics.

Fuzzy reasoning is based on the theory of fuzzy sets and it encompasses artificial
intelligence, information processing and theories from logic to pure and applied
mathematics, like graph theory, topology and optimization. The theory of fuzzy sets
was introduced in 1965. In his introductory paper, Zadeh, while stating his intention
“to explore in a preliminary way some of the basic properties and implications” of
fuzzy sets, noted that

the notion of a fuzzy set provides a convenient point of departure for the construction of
a conceptual framework which parallels in many respects the framework used in the case
of ordinary sets, but is more general than the latter and, potentially, may prove to have a
much wider scope of applicability, particularly in the fields of pattern classification and
information processing.

Indeed, in subsequent years, the theory of fuzzy sets was more decisively estab-
lished as a new approach to complex systems theory and decision processes. The

C.P. Pappis
University of Piraeus, Piraeus, Greece
e-mail: pappis@unipi.gr

C.I. Siettos (�)
National Technical University, Athens, Greece
e-mail: ksiet@mail.ntua.gr

E.K. Burke and G. Kendall (eds.), Search Methodologies: Introductory Tutorials
in Optimization and Decision Support Techniques, DOI 10.1007/978-1-4614-6940-7_18,
© Springer Science+Business Media New York 2014

519

mailto:pappis@unipi.gr
mailto:ksiet@mail.ntua.gr

520 C.P. Pappis and C.I. Siettos

applications of fuzzy logic have dramatically increased since 1990, ranging from
production, finance, marketing and other decision-making problems to biomedi-
cal applications, micro-controller-based systems in home appliances and large-scale
process control systems (e.g. Østergaard 1977, 1990; Sugeno and Yasukawa 1993;
Karr and Gentry 1993; Lee 1990; Kunsch and Fortemps 2002; Ruan et al. 2003;
Polat et al. 2006; Cheng et al. 2008). For systems involving nonlinearities and lack
of a reliable analytical model, fuzzy logic control has emerged as one of the most
promising approaches. Definitely, fuzzy inference is a step towards the simulation
of human thinking.

The main advantage of fuzzy logic techniques, i.e. techniques based on the the-
ory of fuzzy sets, over more conventional approaches in solving complex, nonlinear
and/or ill-defined problems lies in their capability of incorporating a priori qual-
itative knowledge and expertise about system behavior and dynamics. This ren-
ders fuzzy logic systems almost indispensable for obtaining a more transparent and
tactile qualitative insight into systems whose representation with exact mathemat-
ical models is poor and inadequate. Besides, fuzzy schemes can be used either as
enabling to other approaches or as self-reliant methodologies providing thereby a
plethora of alternative structures and schemes.

In fact, fuzzy control theory generates nonlinear functions according to a repre-
sentation theorem by Wang (1992), who stated that any continuous nonlinear func-
tion can be approximated as exactly as needed with a finite set of fuzzy variables,
values and rules. Therefore, by applying appropriate design procedures, it is always
possible to design a fuzzy controller that is suitable for the nonlinear system under
control. Table 18.1 depicts some benchmarks in the history of fuzzy logic, particu-
larly in the domain of fuzzy control.

Table 18.1 A chronology of critical points in the development of fuzzy reasoning

First paper on fuzzy systems Zadeh 1965
Linguistic approach Zadeh 1973
Fuzzy logic controller Assilian and Mamdani 1974
Heat exchanger control based on fuzzy logic Østergaard 1977
First industrial application of fuzzy logic: ce-
ment kiln control

Homblad and Ostergaard 1982

Self-organizing fuzzy controller Procyk and Mamdani 1979
Fuzzy pattern recognition Bezdek 1981
Fuzzy controllers on Tokyo subway shuttles Hitachi 1984
Fuzzy chip Togai and Watanabe 1986
Takagi–Sugeno fuzzy modeling Takagi and Sugeno 1985

Hybrid neural-fuzzy systems Kosko 1992

18 Fuzzy Reasoning 521

This chapter presents an overview of the basic notions of the theory of fuzzy sets
and fuzzy logic. In the next section, an introduction to the theory of fuzzy sets is
presented, covering topics of the most commonly used types of membership func-
tions, logical and transformation operators, fuzzy relations, implication and infer-
ence rules, and fuzzy similarity measures. Section 18.3 introduces the basic structure
of a fuzzy inference system and its elements are described. Section 18.4 presents the
topic of fuzzy control system and an example is demonstrated. In particular, a fuzzy
controller is proposed for the control of a plug flow tubular reactor, which is a typi-
cal nonlinear distributed parameter. The proposed fuzzy controller is compared with
a conventional PI controller. In the same section an introduction to the field of fuzzy
adaptive control systems is given and the self-organizing scheme is presented. In
Sect. 18.5 reviews are given on the topics of model identification and stability of
fuzzy systems, respectively. Conclusions and perspectives on fuzzy reasoning are
given in Sect. 18.6.

18.2 Basic Definitions of Fuzzy Set Theory

18.2.1 Fuzzy Sets and the Notion of Membership

A classical set A is defined as a collection of elements or objects. Any element or
object x either belongs or does not belong to A. The membership µA(x) of x in A is
a mapping

µA : X →{0,1}
that is, it may take the value 1 or 0, which represent the truth value of x in A. It
follows that, if Ā is the complement set of A and ∩ represents intersection of sets,
then

A∩ Ā = /0.

Fuzzy logic is a logic based on fuzzy sets, i.e. sets of elements or objects character-
ized by truth values in the [0,1] interval rather than crisp 0 and 1, as in conventional
set theory. The function that assigns a number in [0,1] to each element of the uni-
verse of discourse of a fuzzy set is called a membership function.

18.2.2 Membership Functions

Let X denote the universe of discourse of a fuzzy set A, which is completely char-
acterized by its membership function µA:

µA : X → [0,1]

and is defined as a set of pairs:

A = {(x,µA(x))}.

522 C.P. Pappis and C.I. Siettos

0.

0.5

1

0

0.5

1

Fig. 18.1 Triangular (left) and trapezoid (right) membership functions

The most commonly used membership functions are the following (Dubois and
Prade 1980; Zimmermann 1996):

• Triangular membership function
• Trapezoid membership function
• Linear membership function
• Sigmoidal membership function
• Π-type membership function
• Gaussian membership function.

The triangular membership function (Fig. 18.1, left) is defined as

Tri(x;α,β,γ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 x < α
x−a
β−α α≤ x < β

− x−γ
γ−β β≤ x < γ

0 x ≥ y.

The trapezoid membership function (Fig. 18.1, right) is defined as

Tra(x;α,β,γ,δ) =

⎡

⎢

⎢

⎢

⎢

⎣

0 x < α
x−α
β−α α≤ x < β

1 β≤ x < γ

− x−δ
δ−γ γ≤ x < δ

0 x≥ δ

⎤

⎥

⎥

⎥

⎥

⎦

.

The monotonically increasing linear membership function (Fig. 18.2, left) is given
by

L(x;α,β) =

⎧

⎨

⎩

0 x < α
x−α
β−α α≤ x ≤ β
1 x > β.

The monotonically decreasing linear membership function (Fig. 18.2, right) is given
by

18 Fuzzy Reasoning 523

0

0.5

1

0

0.5

1

Fig. 18.2 Monotonically increasing linear (left) and monotonically decreasing linear (right) mem-
bership functions

L(x;α,β) =

⎧

⎨

⎩

1 x < α

− x−β
β−αα≤ x≤ β

0 x > β.

The monotonically increasing sigmoidal membership function (Fig. 18.3, left) is
given by

S(x;α,β,γ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0 x < α

2
(

x−α
γ−α

)2
α≤ x≤ β

1− 2
(

x−γ
γ−α

)2
β≤ x≤ γ

1 x− γ.
The monotonically decreasing sigmoidal membership function (Fig. 18.3, right)
reads

S(x;α,β,γ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1 x−α
1− 2

(

x−α
γ−α

)2
α≤ x ≤ β

2
(

x−γ
γ−α

)2
β≤ x ≤ γ

0 x > γ.

The Π-membership function (Fig. 18.4, left) is defined as

Π(x;β,γ) =

⎧

⎨

⎩

S
(

x;γ−β, γ−β2 ,γ
)

x ≤ γ
1− S

(

x;γ, γ+β2 ,γ+β
)

x > γ.

The Gaussian membership function (Fig. 18.4, right) is given by

G(x;γ,σ) = exp
(

−(γ− x)2/2σ2) ,

where σ is the standard deviation.

524 C.P. Pappis and C.I. Siettos

0

0.5

1

0

0.5

1

Fig. 18.3 Monotonically increasing sigmoidal (left) and monotonically decreasing sigmoidal
(right) membership functions

0

0.5

1

0

0.5

1

Fig. 18.4 Π (left) and Gaussian (right) membership functions

18.2.2.1 Examples of Fuzzy Sets

Maintaining a comfortable room temperature is of great importance for work pro-
ductivity. Fuzzy logic climate control is one of the many commercial applications of
fuzzy set theory. For example, the room temperature for low-level activities could be
described by the following five fuzzy sets: a temperature around 18 ◦C is comfort-
able, around 26 ◦C is warm (though not during summer!), above 40 ◦C is definitely
too warm, while around 12 ◦C can be characterized as cold, and below that too cold.

0 12 18 26 40

Fast cars can be described by their horsepower (HP) using the following mem-
bership function:

18 Fuzzy Reasoning 525

µ(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0,0≤ x ≤ 75
x−120

25 ,75≤ x ≤ 120
1,120≤ x ≤ 150

0,x ≥ 150

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

Notice that in the above characterization, for a horsepower above 150 HP fast cars
have a zero membership. A nonzero membership could have been assigned in an-
other the fuzzy set (e.g. the fuzzy set of very fast cars).

18.2.3 Fuzzy Set Operations

Knowledge and understanding of the operations of the theory of fuzzy sets is im-
portant for the design of fuzzy systems. The fuzzy set operations are defined with
respect to the sets’ membership functions.

Two fuzzy sets A and B on the universe of discourse X are equal if their mem-
bership functions are equal for each x ∈ X :

∀x ∈ X : µA(x) = µB(x).

A fuzzy set A is a subset of B (A⊆ B) if

∀x ∈ X : µA(x)≤ µB(x).

For the operation of intersection ∩ of two fuzzy sets A and B, there is a plethora of
definitions in the references. The choice is application dependent:

∀x ∈ X : µA∩B =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min(µA(x),µB(x))
µA(x)+µB(y)

2
µA(x)µB(y)
.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

The union ∪ of two fuzzy sets A and B is also defined in several ways:

∀x ∈ X : µA∩B =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

max(µA(x),µB(y))
2min(µA(x),µB(y))+4max(µA(x),µB(y))

6
µA(x)+ µB(y)− µA(x)µB(y)

.

The complement A′ of a fuzzy set A is defined as

∀x ∈ X : µ′A(x) = 1− µA(x).

526 C.P. Pappis and C.I. Siettos

Table 18.2 Examples of transformation operators

Very µÃ(x) = (µA(x))
n , n > 1

More/less µÃ(x) = (µA(x))
n , 0 < n < 1

More than (lt) Mlt(A)(x) = 0 for x≥ x0, x0 : µA(x0) = maxµA(x) = 1−µA(x) for x < x0

More/less (mt) µmt(A)(x) = 0 for x ≤ x0,x0 : µA(x0) = maxµA(x) = 1−µA(x) for x > x0

18.2.3.1 Examples of Fuzzy Set Operations

Let us consider the fuzzy sets A and B:

A = {0/1+ 0.2/2+0.8/3+1/4+1/5)

and
B = {0.1/1+ 0.4/2+0.5/3+0.7/4+0.3/5).

Then, using the notation A′ for the complement of A,

A∩B = {0/1+ 0.2/2+0.5/3+0.7/4+ 0.3/5) using the min operator
= {{0/1+ 0.08/2+0.4/3+0.7/4+0.3/5) using the product operator

A∪B = {0.1/1+ 0.4/2+0.8/3+1/4+ 1/5) using the max operator
A′ = {1/1+ 0.8/2+0.2/3+0/4+0/5}
B′ = {0.9/1+ 0.6/2+0.5/3+0.3/4+0.7/5)

(A∩B)′ = A′∪B′

= {1/1+ 0.8/2+0.5/3+0.3/4+ 0.7/5) using the max operator.

18.2.4 Transformation Operators

The transformation operator (or hedge or modifier) acts on a membership function
to modify the concept of the liquistic term that describes the fuzzy set. For example,
in the clause “number very close to 10”, the transformation operator very acts on
the linguistic term “close to 10” which corresponds to a fuzzy set. Examples of
such operators are given in Table 18.2 (Ross 1995; Zimmermann 1996; Pappis and
Mamdani 1977).

18.2.4.1 Example of Transformation Operators

Let us consider the fuzzy set young on the discrete set U = {0,20,40,60,80},Fyoung

= {(0,1),(20,0.75),(40,0.52),(60,0.23),(80,0)}. Then we can derive the fuzzy
set F ′ = veryyoung by using the relevant transformation operator. Choosing ν= 1.5
we get F ′ = {(0,1),(20,0.6495),(40,0.0.375),(60,0.1103),(80,0)}.

18 Fuzzy Reasoning 527

18.2.5 Cartesian Inner Product of Fuzzy Sets

If A1,A2, . . . ,Aν are fuzzy sets defined in U1,U2, . . . ,Uν, their Cartesian inner prod-
uct is a fuzzy set F = A1×A2 × ·· · ×Aν in U1 ×U2 × ·· · ×Uν with membership
function

µF(u1,u2, . . . ,uν) = ∩i=1,νµAι(ui).

For example,

µF(u1,u2, . . . ,uν) = min{µA1(u1),µA2(u2), . . . ,µAν(uν)}

or
µF(u1,u2, . . . ,uν) = µA1(u1)µA2(u2), . . . ,µAν(uν).

18.2.5.1 Example

The objective in climate control is to find the optimum conditions in terms of both
temperature T and humidity H. Suppose that the discrete sets of temperature and
humidity are given by T = {T1,T2,T3,T4}, H = {H1,H2,H3} respectively, that of
the desired temperature by the discrete fuzzy set

A = 0.12/T1+ 0.65/T2+ 1/T3+ 0.25/T4

and the desired level of humidity by

B = 0.5/H1 + 0.9/H2+ 0.1/H3.

Then the Cartesian product A×B reads

A×B= 0.12/T1,H1+0.12/T1,H2+0.1/T1,H3+0.5/T2,H1+0.65/T2,H2+0.1/T2,

H3+0.5/T3,H1+0.9/T3,H2+0.1/T3,H3+0.25/T4,H1+0.25/T4,H2+0.1/T4,H3.

Then the optimum conditions are those for T = T3 and H = H2.

18.2.6 Fuzzy Relations

Let U1 and U2 be two universes of discourse and the membership function µR :
U1×U2 → [0,1]. Then a fuzzy relation R on U1×U2 is defined as (Zimmermann
1996)

R =

∫

U×B

µR(u1,u2)/(u1,u2) if U1,U2 are continuous

528 C.P. Pappis and C.I. Siettos

or

Rd =

∫

U×V

µR(u1,u2)/(u1,u2) if U1,U2 are discrete.

18.2.6.1 Example

Consider the coordinates of three atoms, denoted by i, j,k in a cubic crystal with a
lattice constant of 3Å and their corresponding x,y,z coordinates

U = {(0,0,0),(0.5,0.5,0.5),(1.2,1.2,1.2)}

(in Å). Then the fuzzy relation near neighbors can be described by the following
fuzzy relation:

R = 1.0/i, i+ 1/ j, j+ 1/k,k+ 0.9/i, j+ 0.1/i,k+ 0.9/ j, i
+0.6/ j,k+ 0.1/k, i+ 0.6/k, j.

Note that for the particular problem we should have excluded the pairs (i, i), (j, j)
and (k,k), but we have kept them for the completeness of the example.

18.2.7 Fuzzy Set Composition

Let R1 and R2 be two fuzzy relations on U1×U2 and U2×U3 respectively, then the
composition C of R1 and R2 is a fuzzy relation defined as follows:

C = R1 ◦R2 = {(u1,u3),∪(µR1(u1,u2)∩µR2(u1,u2))},u1 ∈U1,u2 ∈U2,u3 ∈U3.

18.2.7.1 Example

Consider the following fuzzy relations (in a matrix form):

R =

[

0.2 0.6
0.9 0.4

]

and S =

[

1 0.4 0.3
0.8 0.5 0.1

]

.

Then using a min operator for ∩ and a max operator for ∪ their composition reads

T = R◦ S =

[

0.2 0.6
0.9 0.4

]

◦
[

1 0.4 0.3
0.8 0.5 0.1

]

=

[

0.6 0.5 0.2
0.9 0.4 0.3

]

.

18 Fuzzy Reasoning 529

18.2.8 Fuzzy Implication

Let A and B be two fuzzy sets in U1,U2 respectively. The implication I : A ⇒ B ∈
U1×U2 is defined as (Ross 1995; Zimmermann 1996)

I = A×B =

∫

U1×U2

µA(u1)∩µB(u2)/(u1,u2).

The rule “If the error is negative big then control output is positive big” is an impli-
cation: error x implies control action y.

Let the two discrete fuzzy sets be A = {(ui,µA(ui)), i = 1, . . . ,n} defined on U
and B = {(v j,µB(v j)), j = 1, . . . ,m} defined on V. Then the implication A ⇒ B is
a fuzzy relation R:

R = {((ui,v j),µR(ui,v j)), i = 1, . . . ,n, j = 1, . . . ,m}

defined on U ×V , whose membership function µR(ui,v j) is given by

⎡

⎢

⎢

⎣

µA(u1)
µA(u2)
.
µA(un)

⎤

⎥

⎥

⎦

×
[

µB(v1) µB(v2) µB(vm)
]

=

⎡

⎢

⎢

⎣

µA(u1)∧µB(v1) µA(u1)∧µB(v2) µA(u1)∧µB(vm)
µA(u2)∧µB(v1) µA(u2)∧µB(v2) µA(u2)∧µB(vm)

. .
µA(un)∧µB(v1) µA(un)∧µB(v2) µA(un)∧µB(vm)

⎤

⎥

⎥

⎦

.

18.2.9 Inference Rules

Let R be a fuzzy relation on U1×U2 and A be a fuzzy set in U1. The composition

A◦R = B

is a fuzzy set in U2, which represents the conclusion made from the fuzzy set A
(fact) based on the implication R (rule).

Let a multiple-input single-output (MISO) rule base with N rules. The ith rule is
given by “If Ai1 and Ai2 and . . . and Ain then Bi”, where

• n is the number of input variables xi

• Ai j is the fuzzy set of input variable x j in the ith rule
• Bi is the fuzzy set of output variable y j in the ith rule.

530 C.P. Pappis and C.I. Siettos

The ith rule is the implication

Ii = Ai ⇒ Bi, Ai = Ai1∩Ai2∩ . . .∩Ain = ∩n
i=1Ai j.

Then the implication Itot of N rules is given by

Itot = R1∪R2∪ . . .∪RN = ∪N
i=1Ri = ∪N

i=1Ai → Bi.

18.2.10 The Inverse Problem

The inverse problem is defined as follows. Given two fuzzy relations S and T find
R such that R◦S = T . In application terms, the problem may be defined as follows:
Let S be the input–output relation describing a system and T a desired output of the
system. Find input R, which produces T .

Sanchez (1976) showed an existence condition of the solutions associated with
their least upper bound and presented a method for obtaining it analytically. Pappis
(1976) and Pappis and Sugeno (1985) presented a method to obtain the whole set of
solutions.

18.2.11 Fuzzy Similarity Measures

The fuzzy similarity measures introduce the notion of approximate equality (or sim-
ilarity) between fuzzy sets. The most commonly used fuzzy similarity measures are
the following (Pappis 1991; Pappis and Karacapilidis 1993, 1995; Wang 1997; Cross
and Sudkamp 2002):

18.2.11.1 L-Fuzzy Similarity Measure

The L(A,B) similarity measure of two fuzzy sets A, B is defined as

L(A,B) = 1−max
x∈X

|A(x)−B(x)| .

18.2.11.2 M-Fuzzy Similarity Measure

The M(A,B) similarity measure of two fuzzy sets A,B ∈ X is defined as

M(A,B) =

⎧

⎪

⎨

⎪

⎩

1 if A = B = /0

∑x∈X min(A(x),B(x))
∑x∈X max(A(x),B(x))

in every other case.

18 Fuzzy Reasoning 531

Fig. 18.5 Basic structure of a fuzzy inference system

Two fuzzy sets are ε-almost equal (A ∼ B) if and only if M(A, B) ≤ ε, where ε ∈
[0,1].

18.2.11.3 S-Fuzzy Similarity Measure

The S(A,B) similarity measure of two fuzzy sets A, B ∈ X is defined as

S(A,B) =

⎧

⎪

⎨

⎪

⎩

1, if A = B = /0

1− ∑x∈X |A(x)−B(x)|
∑x∈X (A(x)+B(x))

in every other case.

18.2.11.4 W-Fuzzy Similarity Measure

The W (A,B) similarity measure of two fuzzy sets A, B ∈ X is defined as

W (A,B) = 1−∑
x∈X

|A(x)−B(x)| .

18.2.11.5 P-Fuzzy Similarity Measure

The P(A,B) similarity measure of two fuzzy sets A, B ∈ X is defined as

P(A,B) =
∑x∈X A(x)B(x)

max(∑x∈X A(x)A(x),∑x∈X B(x)B(x))
.

18.3 Basic Structure of a Fuzzy Inference System

The basic structure of a fuzzy inference system consists of a fuzzification unit, a
fuzzy logic reasoning unit (process logic), a knowledge base and a defuzzification
unit (Fig. 18.5).

532 C.P. Pappis and C.I. Siettos

The key element of the system is the fuzzy logic reasoning unit that contains two
main types of information:

• A data base defining the number, labels and types of the membership functions
the fuzzy sets used as values for each system variable. These are of two types: the
input and the output variables. For each one of them the designer has to define
the corresponding fuzzy sets. The proper selection of these is one of the most
critical steps in the design process and can dramatically affect the performance
of the system. The fuzzy sets of each variable form the universe of discourse of
the variable.

• A rule base, which essentially maps fuzzy values of the inputs to fuzzy values of
the outputs. This actually reflects the decision-making policy. The control strat-
egy is stored in the rule base, which in fact is a collection of fuzzy control rules
and typically involves weighting and combining a number of fuzzy sets result-
ing from the fuzzy inference process in a calculation, which gives a single crisp
value for each output. The fuzzy rules incorporated in the rule base express the
control relationships usually in an IF-THEN format. For instance, for a two-input
one-output fuzzy logic controller, that is the case in this work, a control rule has
the general form

Rule i: IF x is Ai and y is Bi THEN z is Ci

where x and y are input variables, z is the output variable, and Ai, Bi and Ci are
linguistic terms (fuzzy sets) such as negative, positive or zero. The if part of the
rule is called condition or premise or antecedent, and the then part is called the
consequence or action.

Usually the actual values acquired from or sent to the system of concern are crisp,
and therefore fuzzification and defuzzification operations are needed to map them
to and from the fuzzy values used internally by the fuzzy inference system.

The fuzzy reasoning unit performs various fuzzy logic operations to infer the
output (decision) from the given fuzzy inputs. During fuzzy inference, the following
operations are involved for each fuzzy rule:

1. Determination of the degree of match between the fuzzy input data and the de-
fined fuzzy sets for each system input variable;

2. Calculation of the fire strength (degree of relevance or applicability) for each
rule based on the degree of match and the connectives (e.g. AND, OR) used with
input variables in the antecedent part of the rule;

3. Derivation of the control outputs based on the calculated fire strength and the
defined fuzzy sets for each output variable in the consequent part of each rule.

Several techniques have been proposed for the inference of the fuzzy output
based on the rule base. The most common used are the following:

• The Max-Min fuzzy inference methodfuzzy inference method.

Assume that there are two input variables, e (error) and ce (change of error), one
output variable, cu (change of output) and two rules:

18 Fuzzy Reasoning 533

• Rule1: If e is A1 AND ce is B1 THEN cu is C1.
• Rule2: If e is A2 AND ce is B2 THEN cu is C2.

In the Max-Min inference method, the fuzzy operator AND (intersection) means
that the minimum value of the antecedents is taken:

µA AND µB = min{µA,µB},

while for the Max-product one the product of the antecedents is taken:

µA AND µB = µAµB

for any two membership values µA and µB of the fuzzy subsets A,B, respectively.
All the contributions of the rules are aggregated using the union operator, thus gen-
erating the output fuzzy space C.

18.3.1 Defuzzifiation Unit

Defuzzification typically involves weighting and combining a number of fuzzy sets
resulting from the fuzzy inference process in a calculation, which gives a single
crisp value for each output.

The most commonly used defuzzification methods are those of mean of maxi-
mum, centroid and center of sum of areas (Lee 1990; Ross 1995; Driankov et al.
1993).

18.3.1.1 Mean of Maximum Defuzzification Technique

The technique of the mean value of maximum is given by the following equation
(Yan et al. 1994):

x =
∑n

i=1αiHixi

αiHi
,

where x is the control (output) value to be applied, n is the number of rules in a MISO
system, Hi is the maximum value of the membership function of the output fuzzy
set, which corresponds to rule Ii, xi is the corresponding control (output) value, and
αi is the degree that the rule i is fired.

18.3.1.2 Centroid Defuzzification Technique

This is the most prevalent and intuitively appealing among the defuzzification meth-
ods (Lee 1990; Ross 1995).

This method takes the center of gravity of the final fuzzy space in order to pro-
duce a result (the value u of the control variable) sensitive to all rules; it is described

534 C.P. Pappis and C.I. Siettos

U U

Fig. 18.6 Defuzzification techniques. Left: centroid; right: center of sums

by the following equation (Ross 1995):

u =
∑n

i=1αiMi

∑n
i=1αiAi

,

where Mi is the value of the membership function of the output fuzzy set of rule i,
Ai is the corresponding area and αi is the degree that the rule i is fired. Note that the
overlapping areas are merged (Fig. 18.6, left).

In the case of a continuous space (universe of discourse), the output value is given
by Ross (1995) and Taprantzis et al. (1997)

u =

∫
U uµU(u)du∫
U µU(u)du

.

18.3.1.3 Center of Sums Defuzzification Technique

A technique similar to the centroid technique but computationally more efficient, in
terms of speed, is that of the center of sums. The difference is that the overlapping—
between the output fuzzy sets—areas are not merged (Fig. 18.6, right). The discrete
value of the output is given by Lee (1990) and Driankov et al. (1993)

u =
∑1

i=1 ui ·∑n
k=1 µk(ui)

∑1
i=1∑

n
k=1 µk(ui)

.

18.3.2 Design of the Rule Base

There are two main approaches in the design of rule bases (Yan et al. 1994):

1. The heuristic approach
2. The systematic approach.

18 Fuzzy Reasoning 535

Table 18.3 A fuzzy rule base with two inputs and one output

ce

NB NM NS Z PS PM PB

PB ZE PS NM NB NB NB NB
PM PS ZE NS NM NM NB NB

e PS PM PS ZE NS NS NM NB
Z PB PM PS ZE NS NM NB
NS PB PM PS PS ZE NS NM
NM PB PB PM PM PS ZE ZE
NB PB PB PB PB PM ZE ZE

Heuristic approaches (Yan et al. 1994; King and Mamdani 1977; Pappis and Mam-
dani 1977) provide a convenient way to build fuzzy control rules in order to achieve
the desired output response, requiring only qualitative knowledge for the behavior
of the system under study. For a two-input (e and ce) one-output (cu) system these
rules are of the form

• IF e is P (Positive) AND ce is N (Negative) THEN cu is P (Positive).
• IF e is N (Negative) AND ce is P (Positive) THEN cu is N (Negative).

The reasoning for the construction of the fuzzy control rules can be summarized
as follows:

1. If the system output has the desired value and the change of the error (ce) is zero
then keep the control action constant.

2. If the system output diverges from the desired value then the control action
changes with respect to the sign and the magnitude of the error e and the change
of error ce. Table 18.3 compresses the design of a rule base for the linguistic
term sets NB (negative big), NM (negative medium), NS (negative small), ZE
(zero), PS (positive small), PM (positive medium) and PB (positive big) of the
fuzzy variables e, ce, cu. The input variables are laid out along the axes, and each
matrix element represents the output variable.

Systematic approaches provide the decision-making strategy (Rule Base) with
the aid of system identification and pattern recognition techniques from input–
output data.

18.4 Case Study: A Fuzzy Control System

18.4.1 The Fuzzy Logic Control Closed Loop

Over the last 20 years, a large number of conventional modeling and control meth-
ods have been proposed to cope with nonlinear and/or time-varying systems includ-
ing input-state linearization (Isidori 1995), input–output linearization (Cravaris and

536 C.P. Pappis and C.I. Siettos

Gin Gout

Fig. 18.7 The fuzzy logic control closed loop

Chung 1987; Henson and Seborg 1990), model predictive schemes and various di-
rect and indirect adaptive control schemes (Isermann 1989; Batur and Kasparian
1991).

However, the poor modeling of system uncertainties and the inherent difficulty
of incorporating a priori qualitative information about the system dynamics limit
the efficiency and the applicability of the classical approaches. The fuzzy logic
approach to process control provides a convenient way to build the control strat-
egy, by requiring only qualitative knowledge for the behavior of the control system.
The heuristics employed offer a very attractive way of handling imprecision in the
data and/or complex systems, where the derivation of an accurate model is difficult
or even impossible. On the other hand, modeling and control techniques based on
fuzzy logic comprise very powerful approaches of handling imprecision and non-
linearity in complex systems. The basic structure of a fuzzy logic controller is given
in Fig. 18.7. Usually the input and output variables are normalized through scaling
factors Gin and Gout in the interval [−1,1].

18.4.2 Fuzzy Logic Controllers in Proportional-Integral (PI)

and Proportional-Differential (PD) Forms

In what follows, in order to enable a comparison basis, the fuzzy logic controller
(FLC) with two input variables, the error and the change of error, is represented in
PI- and PD-like forms.

18.4.2.1 PI-Like Fuzzy Controller

The PI controller in the z-domain has the following form (Stephanopoulos 1984):

C(z) =
u(z)

e(z)
= Kc

(

1+K
1

1− z−1

)

.

18 Fuzzy Reasoning 537

In the time domain the above equation can be rewritten as

cu = Kcce+(KcK)e,

where e is the error between a predefined set point and the process output, ce is the
change in error, and u is the control output signal. In order to generate an equivalent
fuzzy controller, the same inputs e, ce and the same output, cu, will be used in its
design.

Based on the above, a two-input single-output FLC is derived with the following
variables:

• Input variables: e(t) = r(t)− y(t), ce(t) = e(t)− e(t− 1)
• Output variable: cu(t) = u(t)− u(t− 1)

where r(t) is the set point at time t (set point moisture), y(t) is the process output at
time t (output moisture), e(t), ce(t) are the error and the change of error at time t,
respectively, and cu(t) is the change in the control variable at time t.

In a general form the control action cu can be represented as a nonlinear function
of the input variables e(t), ce(t):

cu = f (e′,ce′, t) = f (GEe,GCEce, t).

For small perturbations δe, δce around equilibrium, the above equation is approxi-
mated by the linearized equation

cu =

[

∂ f

∂e

]

ce

δe+

[

∂ f

∂ce

]

e

δce.

By substituting, one finally obtains the simplified discretized equation (Mizumoto
1995)

cu(t) = GEe(t)+GCEce(t)

which gives the incremental control output at time t. GE , GCE are the scaling factors
for the error and change of error, respectively.

18.4.2.2 PD-Like Fuzzy Controller

In an analogous manner the PD-like fuzzy controller is of the form

u(t) = GEe(t)+GCEce(t).

Note that the above expressions are derived using the max-product inference
technique.

538 C.P. Pappis and C.I. Siettos

Fig. 18.8 The process under
study: control of a plug flow
tubular reactor

Table 18.4 Nominal values of the tubular reactor parameters

CA1 = 1.6 kmol/m3

CA2 = 0.11 kmol/m3

T1 = 440 K
T2 = 423 K

ko = 3.34 108 min−1

E/R = 8,600 K
DHR =−44,000 kcal/kmol

U = 25 Kcal m2 min−1 grad−1

cp = 25 kcal/kmol K
ρ= 47 kmol/m3

Tco = 293 K

At = 0.01 m2

A = 0.002 m2

U = 2 m/min

18.4.3 An Illustrative Example

The design procedure of a FLC is demonstrated through an illustrative example: the
system under study is a plug flow tubular reactor, which is a nonlinear distributed
parameter with time lag system. The design of the FLC is based on a heuristic
approach. The proposed controller is compared with a conventional PI controller,
which is tuned with two methods: the process reaction curve tuning method and
by using time integral performance criteria such as the integral of absolute error
(IAE). Based on dynamic performance criteria, such as IAE, ISE, ITAE (defined
later), it is shown that the proposed fuzzy controller exhibits a better performance
compared to the PI controller tuned by the process reaction curve tuning method
and an equivalent, if not better dynamic behavior, compared to the optimal tuned
via the time performance criteria PI controller, for a wide range of disturbances.

18.4.3.1 The Case Study: Fuzzy Control of a Plug Flow Tubular Reactor

The process of concern is shown in Fig. 18.8. It is the problem of the control of a
jacketed tubular reactor in which a simple exothermic reaction A ⇒ B with first-
order kinetics takes place. Assuming plug flow conditions, constant temperature for
the coolant, which flows around the tube of the reactor, the governing equations con-
sist of a set of nonlinear time-dependent partial differential equations. The system
is a nonlinear distributed parameter with time delay system:

∂CA
∂t + u ∂CA

∂z = −kCA

cpρA ∂T
∂t + cpρuA ∂T

∂t = hAt (TC−T)+ (−DHR)kACA

k = kO exp
(

− E
RT

)

.

The nominal values of the tubular reactor parameters are given in Table 18.4.

18 Fuzzy Reasoning 539

The solution of nonlinear, time-dependent, partial differential equations is pos-
sible only by means of modern computer-aided methods. The choice here is the
combination of Galerkin’s method of weighted residuals and finite element basis
functions (Zienkiewicz and Morgan 1983).

The control objective is to maintain the control variable, which is the composition
of the reacting mixture at the output of the reactor, within the desired operational
settings and, particularly, to keep the A reactant concentration at the output below
its nominal steady state value, eliminating mostly input concentration disturbances.
The manipulated variable is taken to be the coolant temperature. The incremental
fuzzy controller, a two-input single-output FLC, is derived with the following vari-
ables: e(t) = r(t)−y(t), ce(t) = e(t)−e(t−1), cu(t) = u(t)−u(t−1), where r(t) is
the set point at time t (set point moisture), y(t) is the process output at time t (output
moisture) and e(t), ce(t) are the error and the change of error at time t.

For the fuzzification of the input–output variables, seven fuzzy sets are defined
for each variable, e(t), ce(t) and cu(t) with fixed triangular-shaped membership
functions normalized in the same universe of discourse, as shown in Fig. 18.9. For
the development of the rule base a heuristic approach was employed.

Given the fact that a reduction in the coolant temperature decreases the output
concentration, and inversely, the reasoning for the construction of the fuzzy control
rules is as follows:

1. Keep the output of the FLC constant if the output has the desired value and the
change of error is zero.

2. Change the control action of the FLC according to the values and signs of the
error, e, and the change of error, ce:

(a) If the error is negative (the process output is above the set point) and the
change of error is negative (at the previous step the controller was driving the
system output upwards), then the controller should turn its output downwards.
Hence, considering negative feedback, the change in control action should be
positive, i.e. cu > 0, since u(t) = u(t− 1)+ cu.

(b) If the error is positive (the process output is below the set point) and the
change of error is positive (at the previous step the controller was driving the
system output downwards), then the controller should turn its output upwards.
Hence, considering negative feedback, the change in control action should be
negative, i.e. cu < 0, since u(t) = u(t− 1)+ cu.

(c) If the error is positive (the process output is below the set point) and the
change of error is negative, implying that at the previous step the controller
was driving the system output upwards, trying to correct the control deviation,
then the controller need not to take any further action.

(d) If the error is negative (the process output is above the set point) and the
change of error is positive, implying that at the previous step the controller
was driving the system output downwards, then the controller need not to take
any further action.

540 C.P. Pappis and C.I. Siettos

Fig. 18.9 Input–output fuzzy
sets

ce

nb nm ns ze ps pm pb

pb ze ze nm nb nb nb nb
pm ps ze ns nm nm nb nb

e sp pm ps ze ns ns nm nb
ze pb pm ps ze ns nm nb
ns pb pm ps ps ze ns nm
nm pb pb pm pm ps ze ze
nb Pb Pb Pb Pb pm ze ze

Table 18.5 Fuzzy control rules

Table 18.5 compresses the design of the control rules for the term sets [nb: neg-
ative big, nm: negative medium, ns: negative small, ze: zero, ps: positive small, pm:
positive medium, pb: positive big] of the fuzzy variables [e,ce,cu].

The input variables are laid out along the axes, and each matrix element repre-
sents the output variable. This structure of the rule base provides negative feedback
control in order to maintain stability under any condition. For the evaluation of the
rules, the fuzzy reasoning unit of the FLC has been developed using the MAX-MIN
fuzzy inference method (Lee 1990; Driankov et al. 1993). In the particular FLC, the
centroid defuzzification method (Zimmermann 1996; Driankov et al. 1993) is used.
Finally, for the projection of the input and output variable values to the normalized
universe of discourse, the following values of scaling factors have been chosen:
Ge(t) = 5, Gce(t) = 45, Gcu(t) = 2.5.

18.4.3.2 Performance Analysis: Results and Discussion

To study the performance of the FLC controller, a comparison with a conventional
PI controller is made. The parameters of the PI controller are adjusted using two
methods of tuning. First it is assumed that the dynamics of the process are poorly
known and the tuning of the PI controller is based on the process reaction curve,
an empirical tuning method, which provides an experimental model of the process
near the operating point. The results of this analysis are: GainI = 350, Integral time
constantI = 1.5 min.

In the second approach, the optimal values of the PI controller are determined
by minimizing the IAE of the control variable for a predetermined disturbance
in input concentration. Here the optimal parameters of the PI controller are ad-
justed by minimizing the IAE at the +20% step disturbance in input reactant

18 Fuzzy Reasoning 541

concentration. The resulting tuning parameters are: GainII = 155, Integral time
constantII = 1.0 min. The relatively large deviation between the parameters obtained
by minimizing the IAE and those obtained by the process reaction curve method is
rendered to the fact that the process reaction curve method is based on the approxi-
mation of the open loop process response by a first-order system plus dead time.

In the case under study, this approximation seems to be rather poor. In order
to objectively compare the FLC controller with the conventional PI controller, in
addition to the IAE criterion, the integral of time multiplied by the absolute value
of error (ITAE) and the integral of the square of the error (ISE) performance criteria
are used for both control and manipulated variables.

Simulation results are presented for step change disturbances ranging from 5 %
up to 20 % in input reactant concentration. Figure 18.10 depicts in histograms the
calculated three dynamic performance criteria IAE, ISE, ITAE for the fuzzy and the
PI controller tuned with the two different methods.

The performance criteria are determined for both control and manipulated vari-
ables. Based on Fig. 18.10, it is apparent that the overall performance of the FLC
seems better compared to the conventional PI controller tuned by the empirical pro-
cess reaction curve method (controller PI 1) and equivalent, if not better, compared
to the optimal PI controller tuned by minimizing the IAE (controller PI 2). The PI 1
controller has the highest values of IAE (Fig. 18.10, top panels), ISE (Fig. 18.10,
middle panels) and ITAE (Fig. 18.10, bottom panels) criteria. As is shown, the fuzzy
controller exhibits up to 60 % lower IAE (Fig. 18.10, top left), up to 30 % lower ISE
(Fig. 18.10, middle right) and up to 200 % lower ITAE (Fig. 18.10, bottom right)
in comparison to the PI controller tuned by the process reaction curve method. In
comparison to the PI controller, whose parameters are optimally adjusted by min-
imizing the IAE criterion, the fuzzy controller shows an equivalent, if not better
performance, based on IAE, ISE and ITAE criteria for all the range of step distur-
bances (from 5 % up to 20 %).

However, the approach of optimally adjusting the parameters of the PI controller
to some dynamic performance criterion, such as IAE, requires an exact mathemat-
ical model of the process, which in real-world processes is very difficult, if not
impossible, to derive. In contrast, the design of the fuzzy logic controller is based
on a heuristic approach and a mathematical model of the process is not vital.

18.4.4 Fuzzy Adaptive Control Schemes

A major problem encountered in nonlinear and/or time-dependent systems is the
degradation of the closed-loop performance as the system shifts away from the ini-
tial operational settings. This drawback imposes the need of using adaptive con-
trollers, i.e. controllers which adjust their parameters optimally, according to some
objective criteria (Astrom 1983).

Many schemes have been proposed for fuzzy adaptive control, including self-
organizing control (Procyk and Mamdani 1979; Siettos et al. 1999b), member-

542 C.P. Pappis and C.I. Siettos

0

0.1

0.2

0.3

0.4

0.5

5

% step changes

IA
E

 (
ca

)

FLC

PI 1

PI 2

0

70

140

210

280

% step changes

IA
E

 (
T

c)
0

0.1

0.2

0.3

0.4

% step changes

IS
E

 (
ca

)

0

20000

40000

60000

80000

% step changes

IS
E

 (
T

c)

0

0.7

1.4

2.1

2.8

% step changes

IT
A

E
 (
ca

)

0

250

500

750

1000

% step changes

IT
A

E
 (
T

c)

10 20

5 10 20

5 10 20

5 10 20

5 10 20

5 10 20

Fig. 18.10 Performance comparison of the fuzzy and the PI controller tuned by the process reac-
tion method (PI 1), by minimizing the IAE criterion (PI 2), top left: IAE of the control variable;
top right: IAE of the manipulated variable; middle left: ISE of the control variable; middle right:
ISE of the manipulated variable; bottom left: ITAE of the control variable; bottom right: ITAE of
the manipulated variable

ship functions adjustment (Batur and Kasparian 1991; Zheng 1992) and scaling
factor adjustment (Maeda and Murakami 1992; Daugherity et al. 1992; Palm 1993;
Jung et al. 1995; Chou and Lu 1994; Chou 1998; Sagias et al. 2001). Maeda and
Murakami and Daugherity et al. proposed adjustment mechanisms for the tuning of
scaling factors by evaluating the control result based on system performance indices
such as overshoot, rising time, amplitude and settling time. Palm (1993) addressed
the method of adjusting optimally the scaling factors by measuring online the linear
dependence between each input and output signal of the fuzzy controller. According
to the above method the scaling factors are expressed in terms of input–output cross-
correlation functions. Jung et al. proposed a real-time tuning of the scaling factors,
based on a variable reference tuning index and an instantaneous system fuzzy per-
formance according to system response characteristics. Chou and Lu presented an

18 Fuzzy Reasoning 543

Performance Index Table

Rule Base

generator/ modificator

Control Rules

Table - Based

Controller

GE/ GCE

Input

Section

GU

Output
Section

Process
u yer

Fig. 18.11 The self-organizing fuzzy logic controller

algorithm for the adjustment of the scaling factors using tuning rules, which are
based on heuristics. A model-identification fuzzy adaptive controller for real-time
scaling factors adjustment is presented by Sagias et al. (2001).

Among the first attempts to apply a fuzzy adaptive system for the control of
dynamic systems was that of Procyk and Mamdani (1979), who introduced the
self-organizing controller. The configuration of the proposed controller is shown
in Fig. 18.11.

It has a two-level structure, in which the lower level consists of a table-based con-
troller with two inputs and one output. The upper level consists of a performance
index table, which relates the state of the process to the deviation from the desired
overall response, and defines the corrections required in the table-based controller
to bring the system to the desired state. From this point of view, the self-organizing
controller performs two tasks simultaneously, namely (a) performance evaluation
of the system and (b) system performance improvement by creation and/or modi-
fication of the control actions based on experience gained from past system states.
Hence, the controller accomplishes its learning through repetition over a sequence
of operations. The elements of the table are the control actions as they are calcu-
lated from a conventional or a fuzzy controller for a fixed operational range of input
variables. Here, the (i, j) element of the table contains the changes in control action
inferred for the ith value of error and jth value of change of error.

18.5 Model Identification and Stability of Fuzzy Systems

18.5.1 Fuzzy Systems Modeling

Mathematical models, which can describe efficiently the dynamics of the system
under study, play an essential role in process analysis and control. However, most of
the real-world processes are complicated and nonlinear in nature, making the deriva-
tion of mathematical models and/or subsequent analysis formidable tasks. In prac-
tice, such models are not available. For these cases, models need to be developed

544 C.P. Pappis and C.I. Siettos

based solely on input–output data. Many approaches based on nonlinear time se-
ries (Hernadez and Arkun 1993; Ljung 1987), several nonlinear approaches (Henon
1982; Wolf et al. 1985) and normal form theory (Read and Ray 1998a,b,c) have
been applied in nonlinear system modeling and analysis. During the last decade, a
considerable amount of work has been published on the dynamic modeling of non-
linear systems using neural networks (Narendra and Parthasarathy 1990; Chen and
Billings 1992; Shaw et al. 1997; Haykin 1999) and/or fuzzy logic methodologies
(Sugeno and Yasukawa 1993; Laukoven and Pasino 1995; Babuška and Verbruggen
1996). Most of them are numerical in nature providing therefore only black-box rep-
resentations. On the other hand, fuzzy logic methodologies (Laukoven and Pasino
1995; Park et al. 1999; Sugeno and Kang 1988; Sugeno and Yasukawa 1993; Tak-
agi and Sugeno 1985) can incorporate a priori qualitative knowledge of the system
dynamics. In Siettos et al. (2001) and Alexandridis et al. (2002) fuzzy logic and
Kohonen’s neural networks are combined for the derivation of truncated time series
models.

Fuzzy logic can incorporate expertise and a priori qualitative knowledge of the
system. In the last 20 years, strikingly results have been obtained by using various
fuzzy design methods. In many cases the fuzzy control systems outperform other
more traditional approaches. However, the extensive applicability of the former is
limited due to the deficiency of formal and systematic design techniques, which
can fulfil the two essential requirements of a control system: the requirement for
robust stability and that of satisfactory performance. As a consequence, due to the
complexity of nonlinear processes, it is difficult to construct a proper fuzzy rule
base based only on observation. Moreover, the lack of a mathematical model, which
characterizes fuzzy systems, often limits their applicability, since various vital tasks,
such as stability analysis, are difficult to accomplish.

18.5.2 Stability of Fuzzy Systems

The problem of designing reliable fuzzy control systems in terms of stability and
performance has found a remarkable resonance among engineers and scientists. Var-
ious approaches to this problem have been presented. One of the first contributions
to this topic was that of Braae and Rutherford (1979), where they utilized the phase
plane method for analyzing the stability of a fuzzy system. Kickert and Mamdani
(1978) proposed the use of describing functions for the stability analysis of unforced
fuzzy control systems. In Kiszka et al. (1985) the notion of the energy of fuzzy rela-
tions to investigate the local stability of a free fuzzy dynamic system is introduced.
Motivated by the work of Tanaka and Sugeno (1992), many schemes have been
proposed for analyzing the stability of fuzzy systems (Feng et al. 1997; Kiriakidis
et al. 1998; Leung et al. 1998; Kim et al. 1995; Thathachar and Viswanath 1997;
Wang et al. 1996). The main idea behind this approach lies in the decomposition of
a global fuzzy model into simpler linear fuzzy models, which locally represent the
dynamics of the whole system. In Kiendl and Ruger (1995) and Michels (1997) the

18 Fuzzy Reasoning 545

authors proposed numerical methods for the stability analysis of fuzzy controllers
in the sense of Lyapunov’s direct method. In Fuh and Tung (1997) and Kandel et al.
(1999) the stability analysis of fuzzy systems using Popov–Lyapunov techniques is
proposed. In recent years, the problem of designing stable, robust and adaptive fuzzy
controllers with satisfactory performance based on the sliding-mode approach has
attracted much attention (Chen and Chang 1998; Chen and Chen 1998; Chen and
Fukuda 1998; Palm 1992; Tang et al. 1999; Wang 1994; Yi and Chung 1995; Yu
et al. 1998). The design of such schemes is based on Lyapunov’s direct method. The
proposed schemes take advantage of both sliding and fuzzy features. A systematic
practical way of deriving analytical expressions for fuzzy systems for use in control,
system identification and stability using well-established classical theory methods
is presented by Siettos et al. (2001). Finally, in Siettos and Bafas (2001) singular
perturbation methods (Kokotovic et al. 1976) based on a Lyapunov approach are im-
plemented for the derivation of sufficient conditions for the semiglobal stabilization
with output tracking of nonlinear systems having internal dynamics, incorporating
fuzzy controllers.

18.6 Conclusion and Perspectives

In this chapter an overview of the basics of fuzzy reasoning has been presented. The
theory of fuzzy sets has been introduced and definitions concerning the membership
function, logical and transformation operators, fuzzy relations, implication and in-
ference rules, and fuzzy similarity measures have been stated. The basic structure
of a fuzzy inference system and its elements have been described. Fuzzy control has
been introduced and an example of a fuzzy logic controller has been demonstrated,
which applies to the control of a plug flow tubular reactor. The issue of fuzzy adap-
tive control systems has been discussed and the self-organizing scheme has been
presented. Subsequently the topics of stability and model identification of fuzzy
systems have been outlined and the presentation has concluded with an introduction
of fuzzy classification and clustering systems in pattern recognition.

The above are only an elementary attempt to outline a small part of the introduc-
tory concepts and areas of interest of fuzzy reasoning, whose theory and applications
are fast developing. Indeed, during recent years, the literature on fuzzy logic theory
and applications has exploded. Areas of current research include an enormous set
of topics, from basic fuzzy set-theoretic concepts and fuzzy mathematics to fuzzy
methodology and fuzzy logic in practice (Dubois and Prade 1980). The statement by
H.-J. Zimmermann that “theoretical publications are already so specialized and as-
sume such a background in fuzzy set theory that they are hard to understand” (Zim-
mermann 1996) holds much more today than 25 years ago, when it was first made.

In recent years several highly influential papers have appeared that point towards
the future directions of fuzzy set theory and applications. Most preferential among
these is work reported in the area of fuzzy control (Sala and Ariño 2007; Tanaka
et al. 2007; Fang et al. 2006; Tian and Peng 2006; Guan and Chen 2004). Indeed,

546 C.P. Pappis and C.I. Siettos

this area has attracted the attention of many researchers since the first years after the
introduction of the theory of fuzzy sets by Zadeh in 1965. Apart from fuzzy control,
several important papers have appeared that seem to shape the future of this area of
research. Among them fuzzy rough sets (Jensen and Shen 2004, 2007; Yeung et al.
2005), genetic fuzzy systems (Herrera 2008), type-2 fuzzy logic systems (Mendel
et al. 2006), fuzzy approximation operators (Wu and Zhang 2004), and intuitionistic
fuzzy sets (Li 2005) are included. Finally, in the area of applications, the emphasis
seems to be on fields like supply chain management (Chan and Kumar 2007; Chen
et al. 2006), Internet commerce and online commodity exchanges (Song et al. 2005).

More particularly, in addition to the above, research is continuing on the various
basic fuzzy set-theoretic concepts, including possibility theory (Ben Amor et al.
2002; Liu and Liu 2010), fuzzy operators (Pradera et al. 2002; Yager 2002a; Ying
2002; Wang et al. 2003), fuzzy relations (Wang et al. 1995; Naessens et al. 2002;
Pedrycz and Vasilakos 2002), measures of information and comparison (Hung 2002;
Yager 2002b), genetic fuzzy systems (Cordón et al. 2004), type-2 fuzzy sets (Mendel
and John 2002) and fuzzy control systems (Feng 2006).

In the area of fuzzy mathematics, research focuses on various issues of non-
classical logics (Biacino and Gerla 2002; Novak 2002), algebra (Di Nola et al. 2002)
and topology (Albrecht 2003).

The research on fuzzy methodology is extensive. It encompasses issues related
to inference systems (del Amo et al. 2001; Marin-Blazquez and Shen 2002), com-
putational linguistics and knowledge representation (Intan and Mukaidono 2002),
production scheduling (Adamopoulos et al. 2000; Karacapilidis et al. 2000), neural
networks (Alpaydin et al. 2002; Oh et al. 2002; Wang and Lee 2002), genetic al-
gorithms (Spiegel and Sudkamp 2002; Ishibuchi and Yamamoto 2004), information
processing (Liu et al. 2002; Hong et al. 2002; Nikravesh et al. 2002), pattern anal-
ysis and classification (Gabrys and Bargiela 2002; de Moraes et al. 2002; Pedrycz
and Gacek 2002; Nobuhara et al. 2006), fuzzy systems modeling and control (Mas-
trokostas and Theocharis 2002; Pomares et al. 2002; Tong et al. 2002; Yi and Heng
2002), decision making (Yager 2002c; Wang 2000; Zimmermann et al. 2000; Wang
and Lin 2003), etc.

Finally, extensive research is also reported on various applications of fuzzy logic,
including process control (Tamhane et al. 2002), robotics (Lin and Wang 1998; Ruan
et al. 2003), scheduling (Muthusamy et al. 2003), transportation (Chou and Teng
2002), nuclear engineering (Kunsch and Fortemps 2002), medicine (Blanco et al.
2002; Kilic et al. 2002; Polat et al. 2006), economics, supply chain management
and finance (Kahraman et al. 2002; Afshar and Fathi 2009; Lee 2009). Many other
applications of fuzzy logic in various fields are reported in Pappis et al. (2012).

It is this last area and the reported applications of fuzzy reasoning which proves
the relevance and vigor of this new approach to understanding, modeling and solving
many problems of modern society.

Concluding this chapter, the views of the founder of the theory of fuzzy sets are
worthy mentioning. In a paper that appeared in 2008, with the challenging title Is
there a need for fuzzy logic?, Zadeh notes that the issue is associated with a “long
history of spirited discussions and debate” and that there are many misconceptions

18 Fuzzy Reasoning 547

about fuzzy logic (Zadeh 2008). According to Zadeh, fuzzy logic is a precise logic,
not a fuzzy one, of imprecision and approximate reasoning, with a high power of
precisiation, an operation which transforms an object, p, into an object which in
some specified sense is defined more precisely than p. It is an attempt to formal-
ize/mechanize two remarkable human capabilities: the capabilities to converse, rea-
son and make rational decisions in an environment of imperfect information, and
second, to perform a wide variety of tasks without any measurements and any com-
putations. Among its facets are the logical, fuzzy-set-theoretic, epistemic and rela-
tional ones, with the practical applications of fuzzy logic being associated with the
latter (relational).

In his paper, Zadeh views fuzzy logic in a nonstandard perspective, where its
cornerstones and principal distinguishing features are graduation, granulation, pre-
cisiation and the concept of a generalized constraint. After introducing some innova-
tive concepts, Zadeh concludes that, in summary, progression from bivalent logic to
fuzzy logic is a significant positive step in the evolution of science as, in large mea-
sure, the real-world is a fuzzy world and what is needed in order to deal with fuzzy
reality is fuzzy logic. As a consequence, fuzzy logic is likely to grow in visibility,
importance and acceptance in coming years.

Tricks of the Trade

Newcomers to the field of fuzzy reasoning often ask themselves (and/or other more
experienced fuzzy researchers) questions such as “What is the best way to get started
with fuzzy reasoning?”, or “Which papers should I read?”

A very helpful tutorial on fuzzy sets recommended for beginners is available at
www.mathworks.com/access/helpdesk/help/toolbox/fuzzy/fuzzytu2.html.This tuto-
rial is a step-by-step introduction to the basic ideas and definitions of fuzzy set the-
ory, with simple and well-designed illustrative examples.

Apart from this tutorial, a variety of sources of information are available, includ-
ing the first publication on fuzzy reasoning by L. A. Zadeh, the founder of fuzzy
logic, which appeared in 1965, as well as his subsequent publications (notably
Outline of a new approach to the analysis of complex systems and decision pro-
cesses, IEEE Trans. Syst. Man. Cybern., 3, 28–44, 1973), which inspired so many
researchers in this new and fascinating field of research.

Another question often asked is “How should I be acquainted with the world of
fuzzy systems and fuzzy reasoning?” This question is best answered by consulting
information available on the Web. For example, information useful to practitioners
is given at www.cse.dmu.ac.uk/~rij/tools.html about fuzzy logic tools and compa-
nies. Information may also be found about books and journals as well as research
groups and national and international associations and networks, whose members
are researchers and practitioners working on fuzzy sets and systems. For this and
other relevant information see the next section.

www.mathworks.com/access/helpdesk/help/toolbox/fuzzy/fuzzytu2.html
www.cse.dmu.ac.uk/~rij/tools.html

548 C.P. Pappis and C.I. Siettos

Sources of Additional Information

A most valuable source of additional information about fuzzy reasoning is the site
www.abo.fi/~rfuller/fuzs.html,which includes information on almost everything one
might like to know about the world of fuzzy systems and fuzzy reasoning, from
L. A. Zadeh, the founder of fuzzy logic, fuzzy national and international associations
and networks, personal home pages of fuzzy researchers, and fuzzy-mail archives,
to fuzzy logic tools and companies, conferences and workshops on fuzzy systems,
fuzzy logic journals and books and research groups. An excellent Internet course on
fuzzy logic control and fuzzy clustering from the Technical University of Denmark,
Oersted-DTU can be found at www.dtu.dk/service/searchresult.aspx?q=fuzzy.

References

Adamopoulos GI, Pappis CP, Karacapilidis NI (2000) A methodology for solving
a range of sequencing problems with uncertain data. In: Slowinski R, Hapke M
(eds) Advances in scheduling and sequencing under fuzziness. Physica, Heidel-
berg, pp 147–164

Afshar A, Fathi H (2009) Fuzzy multi-objective optimization of finance-based
scheduling for construction projects with uncertainties in cost. Eng Optim
41:1063–1080

Albrecht RF (2003) Interfaces between fuzzy topological interpretation of fuzzy sets
and intervals. Fuzzy Sets Syst 135:11–20

Alexandridis A, Siettos CI, Sarimveis H, Boudouvis AG, Bafas GV (2002) Mod-
eling of nonlinear process dynamics using kohonen’s neural networks. Comput
Chem Eng 26:479–486

Alpaydin G, Dündar G, Balkir S (2002) Evolution-based design of neural
fuzzy networks using self-adapting genetic parameters. IEEE Trans Fuzzy Syst
10:211–221

Assilian S, Mamdani EH (1974) An experiment in linguistic synthesis with a fuzzy
logic controller. Int J Man Mach Stud 1:1–13

Astrom KJ (1983) Theory and applications of adaptive control—a survey. Automat-
ica 19:471–486

Babuška, R, Verbruggen HB (1996) Neuro-fuzzy methods for nonlinear system
identification. Ann Rev Contr 27:73–85 (2003)

Batur C, Kasparian V (1991) Adaptive expert control. Int J Control 54:867–881
Ben Amor N, Melloyli K, Benfeshat S, Dubios D, Prade H (2002) A theoretical

framework for possibilistic independence in a weakly ordered setting. Int J Uncert
Fuzz Knowl Based Syst 10:117–155

Bezdek JC (1981) Pattern recognition with objective function algorithms. Plenum,
London

Biacino L, Gerla G (2002) Fuzzy logic, continuity and effectiveness. Arch Math
Logic 41:643–667

www.abo.fi/~rfuller/fuzs.html
www.dtu.dk/service/searchresult.aspx?q=fuzzy

18 Fuzzy Reasoning 549

Blanco A, Pelta DA, Verdegay JL (2002) Applying a fuzzy sets-based heuristic to
the protein structure prediction problem. Int J Intell Syst 17:629–643

Braae M, Rutherford DA (1979) Selection of parameters for a fuzzy logic controller.
Fuzzy Sets Syst 2:185–199

Chan FTS, Kumar N (2007), Global supplier development considering risk factors
using fuzzy extended AHP-based approach. Omega 35:417–431

Chen S, Billings S (1992) Neural networks for nonlinear dynamic system modelling
and identification. Int J Control 56:319–346

Chen CL, Chang MH (1998) Optimal design of fuzzy sliding-mode control: a com-
parative study. Fuzzy Sets Syst 93:37–48

Chen CS, Chen WL (1998) Analysis and design of a stable fuzzy control system.
Fuzzy Sets Syst 96:21–35

Chen X, Fukuda T (1998) Robust adaptive quasi-sliding mode controller for
discrete-time systems. Syst Control Lett 35:165–173

Chen CT, Lin CT, Huang SF (2006) A fuzzy approach for supplier evaluation and
selection in supply chain management. Int J Prod Econ 102:289–301

Cheng JH, Chen SS, Chuang YW (2008) An application of fuzzy delphi and Fuzzy
AHP for multi-criteria evaluation model of fourth party logistics. WSEAS Trans
Syst 7:466–478

Chou CH (1998) Model reference adaptive fuzzy control: a linguistic approach.
Fuzzy Sets Syst 96:1–20

Chou CH, Lu HC (1994) A heuristic self-tuning fuzzy controller. Fuzzy Sets Syst
61:249–264

Chou CH, Teng JC (2002) A fuzzy logic controller for traffic junction signals. In-
form Sci 143:73–97

Cordón O, Gomide F, Herrera F, Hoffmann F, Magdalena L (2004) Ten years
of genetic fuzzy systems: current framework and new trends. Fuzzy Sets Syst
141:5–31

Cravaris C, Chung C (1987) Nonlinear state feedback synthesis by global in-
put/output linearization. AIChE J 33:592–603

Cross VV, Sudkamp TA (2002) Similarity and compatibility in fuzzy set theory—
assessment and applications. Studies in fuzziness and soft computing, vol. 93.
Springer, Berlin

Daugherity W, Rathakrishnan B, Yen J (1992) Performance evaluation of a self-
tuning fuzzy controller. In: Proceedings of the 1st IEEE international conference
on fuzzy systems. San Diego, CA, pp 389–397

De Moraes RM, Banon GJF, Sandri SA (2002) Fuzzy expert systems architecture
for image classification using mathematical morphology operators. Inform Sci
142:7–21

Del Amo A, Comez D, Montero J, Biging G (2001) Relevance and redundancy in
fuzzy classification systems. Mathw Soft Comput VIII:203–216

Di Nola A, Esteva F, Garcia P, Godo L, Sessa S (2002) Subvarieties of BL-algebras
generated by singlecomponent chains. Arch Math Logic 41:673–685

Driankov D, Hellendoorn H, Reinfrank M (1993) An introduction to fuzzy control.
Springer, Berlin

550 C.P. Pappis and C.I. Siettos

Dubois D, Prade H (1980) Fuzzy sets and systems: theory and apllications. Aca-
demic, New York

Fang CH, Liu YS, Kau SW, Hong L, Lee CH (2006) A new LMI-based approach to
relaxed quadratic stabilization of T-S fuzzy control systems. IEEE Trans Fuzzy
Syst 14:386–397

Feng G (2006) A survey on analysis and design of model-based fuzzy control sys-
tems. IEEE Trans Fuzzy Syst 14:676–697

Feng G, Cao SG, Rees NW, Chak CK (1997) Design of fuzzy control systems with
guaranteed stability. Fuzzy Sets Syst 85:1–10

Fuh CC, Tung PC (1997) Robust stability analysis of fuzzy control systems. Fuzzy
Sets Syst 88:289–298

Gabrys B, Bargiela A (2002) General fuzzy min-max neural network for clustering
and classification. IEEE Trans Neural Netw 11:769–783

Guan XP, Chen CL (2004) Delay-dependent guaranteed cost control for T-S fuzzy
systems with time delays. IEEE Trans Fuzzy Syst 12:236–249

Haykin S (1999) Neural networks, 2nd edn. Prentice-Hall, Englewood Cliffs
Henon M (1982) On the numerical computation of poincaré maps. Phys D 5:

412–414
Henson M, Seborg D (1990) Input–output linearization of general nonlinear pro-

cesses. AIChE J 36:1753–1895
Hernadez E, Arkun Y (1993) Control of nonlinear systems using polynomial ARMA

models. AIChE J 39:446–460
Herrera F (2008) Genetic fuzzy systems: taxonomy, current research trends and

prospects. Evol Intell 1:27–46
Hitachi (1984) http://www.hitachi.com/rev/1999/revjun99/r3_109.pdf
Homblad P, Ostergaard J-J (1982) Control of a cement kiln by fuzzy logic. In: Gupta

MM, Sanchez E (eds) Fuzzy information and decision processes. North-Holland,
Amsterdam, pp 398–399

Hong TP, Lin KY, Wang SL (2002) Mining linguistic browsing patterns in the world
wide web. Soft Comput 6:329–336

Hung WL (2002) Partial correlation coefficients of intuitionist fuzzy sets. Int J Un-
cert Fuzz Knowl Based Syst 10:105–112

Intan R, Mukaidono M (2002) On knowledge-based fuzzy sets. Int J Fuzzy Syst
4:655–664

Isermann R (1989) Digital control system II. Springer, Berlin
Ishibuchi H, Yamamoto T (2004) Fuzzy rule selection by multi-objective genetic

local search algorithms and rule evaluation measures in data mining. Fuzzy Sets
Syst 141:59–88

Isidori A (1995) Nonlinear control systems, 3rd edn. Springer, Berlin
Jensen R, Shen Q (2004) Semantics-preserving dimensionality reduction: rough and

fuzzy-rough-based approaches. IEEE Trans Knowl Data Eng 16:1457–1471
Jensen R, Shen Q (2007) Fuzzy-rough sets assisted attribute selection. IEEE Trans

Fuzzy Syst 15:73–89
Jung CH, Ham CS, Lee KI (1995) A real-time self-tuning controller through scaling

factor adjustment for the steam generator of NPP. Fuzzy Sets Syst 74:53–60

http://www.hitachi.com/rev/1999/revjun99/r3_109.pdf

18 Fuzzy Reasoning 551

Kahraman C, Ruan D, Tolga E (2002) Capital budgeting techniques using dis-
counted fuzzy versus probabilistic cash flows. Inform Sci 142:57–56

Kandel A, Luo Y, Zhang YQ (1999) Stability analysis of fuzzy control systems.
Fuzzy Sets Syst 105:33–48

Karacapilidis NI, Pappis CP, Adamopoulos GI (2000) Fuzzy set approaches to lot
sizing. In: Slowinski R, Hapke M (eds) Advances in scheduling and sequencing
under fuzziness. Physica, Heidelberg, pp 291–304

Karr CL, Gentry EJ (1993) Fuzzy control of pH using genetic algorithms. IEEE
Trans Fuzzy Syst 1:46–53

Kickert WM, Mamdani EH (1978) Analysis of a fuzzy logic controller. Fuzzy Sets
Syst 1:29–44

Kiendl H, Ruger JJ (1995) Stability analysis of fuzzy control systems using facet
functions. Fuzzy Sets Syst 70:275–285

Kilic K, Sproule BA, Türksen IB, Naranjo CA (2002) Fuzzy system modeling in
pharmacology: an improved algorithm. Fuzzy Sets Syst 130:253–264

Kim WC, Ahn SC, Kwon WH (1995) Stability analysis and stabilization of fuzzy
state space models. Fuzzy Sets Syst 71:131–142

King PJ, Mamdani EH (1977) Analysis of fuzzy control systems to industrial pro-
cesses. Automatica 13:235–242

Kiriakidis K, Grivas A, Tzes A (1998) Quadratic stability analysis of the Takagi–
Sugeno fuzzy model. Fuzzy Sets Syst 98:1–14

Kiszka JB, Gupta MM, Nikiforuk PN (1985) Energetistic stability of fuzzy dynamic
systems. IEEE Trans Syst Man Cybern 15:783–791

Kokotovic PV, O’Malley RE, Sannuti P (1976) Singular perturbation and order re-
duction in control theory—an overview. Automatica 12:123–132

Kosko B (1992) Neural networks and fuzzy systems: a dynamical system approach.
Prentice-Hall, Englewood Cliffs

Kunsch PL, Fortemps P (2002) A Fuzzy decision support system for the economic
calculus in radioactive waste management. Inform Sci 142:103–116

Laukoven EG, Pasino KM (1995) Training fuzzy systems to perform estimation and
identification. Eng Applic Artif Intell 8:499–514

Lee CC (1990) Fuzzy logic in control systems: fuzzy logic controllers-parts I, II.
IEEE Trans Syst Man Cybern 20:404–435

Lee AHI (2009) A fuzzy supplier selection model with the consideration of benefits,
opportunities, costs and risks. Expert Syst Appl 36:2879–2893

Leung FHF, Lam HK, Tam PKS (1998) Design of fuzzy controllers for uncer-
tain nonlinear systems using stability and robustness analyses. Syst Control Lett
35:237–243

Li DF (2005) Multiattribute decision making models and methods using intuitionis-
tic fuzzy sets. J Comput Syst Sci 70:73–85

Lin CK, Wang SD (1998) A self-organizing fuzzy control approach for bank-to-turn
missiles. Fuzzy Sets Syst 96:281–306

Liu ZQ, Liu YK (2010) Type-2 fuzzy variables and their arithmetic. Soft Comput
14:729–747

552 C.P. Pappis and C.I. Siettos

Liu M, Wan C, Wang L (2002) Content-based audio classification and retrieval us-
ing a fuzzy logic system: towards multimedia search engines. Soft Comput 6:
357–364

Ljung L (1987) System identification: theory for the user. Prentice-Hall, Englewood
Cliffs

Maeda M, Murakami S (1992) A self-tuning fuzzy controller. Fuzzy Sets Syst
51:29–40

Marin-Blazquez JG, Qiang Shen (2002) From approximative to descriptive fuzzy
classifiers. IEEE Trans Fuzzy Syst 10:484–497

Mastrokostas PA, Theocharis JB (2002) A recurrent fuzzy- neural model for dy-
namic system identification. IEEE Trans Syst Man Cybern B 32:176–190

Mendel JM, John RIB (2002) Type-2 fuzzy sets made simple. IEEE Trans Fuzzy
Syst 10:117–127

Mendel JM, John RIB, Liu F (2006) Interval type-2 fuzzy logic systems made sim-
ple. IEEE Trans Fuzzy Syst 14:808–821

Michels K (1997) Numerical stability analysis for a fuzzy or neural network con-
troller. Fuzzy Sets Syst 89:335–350

Mizumoto M (1995) Realization of PID controls by fuzzy control methods. Fuzzy
Sets Syst 70:171–182

Muthusamy K, Sung SC, Vlach M, Ishii, H. (2003) Scheduling with fuzzy delays
and fuzzy precedences. Fuzzy Sets Syst 134:387–395

Naessens H, De Meyer H, De Baets B (2002) Algorithms for the computation of
T-transitive closures. IEEE Trans Fuzzy Syst 10:541–551

Narendra KS, Parthasarathy K (1990) Identification and control of dynamical
sytems using neural networks. IEEE Trans Neural Netw 1:4–27

Nikravesh M, Loia V, Azvine B (2002) Fuzzy logic and the internet (FLINT): inter-
net, world wide web and search engines. Soft Comput 6:287–299

Nobuhara H, Bede B et al (2006) On various eigen fuzzy sets and their application
to image reconstruction. Inform Sci 176:2988–3010

Novak V (2002) Joint consistency of fuzzy theories. Math Log Q 48:563–573
Oh SK, Kim DW, Pedrycz W (2002) Hybrid fuzzy polynomial neural networks. Int

J Uncert Fuzz Knowl Based Syst 10:257–280
Østergaard JJ (1990) Fuzzy II: the new generation of high level kiln control. Zement

Kalk Gips 43(11): 539–541
Østergaard JJ (1977) Fuzzy logic control of a heat exchange process. In: Gupta MM,

Gains BR, Saridis GN (eds) Fuzzy automata and decision processes. Elsevier,
New York

Palm R (1992) Sliding mode fuzzy control. In: Proceedings of the 1st IEEE interna-
tional conference on fuzzy systems. San Diego, CA, pp 519–526

Palm R (1993) Tuning of scaling factors in fuzzy controllers using correlation func-
tions. In: Proceedings of the 2nd IEEE international conference on fuzzy systems.
San Diego, CA, pp 691–696

Pappis CP (1976) On a fuzzy set theoretic approach to aspects of decision making
in ill-defined systems. PhD thesis, University of London

18 Fuzzy Reasoning 553

Pappis CP (1991) Value approximation of fuzzy systems variables. Fuzzy Sets Syst
39:111–115

Pappis CP, Karacapilidis NI (1993) A comparative assessment of measures of simi-
larity of fuzzy values. Fuzzy Sets Syst 56:171–174

Pappis CP, Karacapilidis NI (1995) Application of a similarity measure of fuzzy sets
to fuzzy relational equations. Fuzzy Sets Syst 75:35–142

Pappis CP, Mamdani EH (1977) A fuzzy logic controller for a traffic junction. IEEE
Syst Man Cybern SMC-7 10:707–717

Pappis CP, Sugeno M (1985) Fuzzy relational equations and the inverse problem.
Fuzzy Sets Syst 15:79–90

Pappis CP, Siettos I, Dasaklis TK (2012) Fuzzy sets, systems, and applications. In:
Gass S, Fu M (eds) Encyclopedia of operations research and management science
(E/ORMS) (3/e). Springer, Berlin

Park M, Ji S, Kim E, Park M (1999) A new approach to the identification of a fuzzy
model. Fuzzy Sets Syst 104:169–181

Pedrycz W, Gacek A (2002) Temporal granulation and its application to signal anal-
ysis. Inform Sci 143:47–71

Pedrycz W, Vasilakos AV (2002) Modularization of fuzzy relational equations. Soft
Comput 6:33–37

Polat K, Şahan S et al. (2006) A new method to medical diagnosis: artificial immune
recognition system (AIRS) with fuzzy weighted pre-processing and application
to ECG arrhythmia. Expert Syst Appl 31:264–269

Pomares H, Rojas I, Gonzalez J, Prieto A (2002) Structure identification in complete
rule-based fuzzy systems. IEEE Trans Fuzzy Syst 10:349–359

Pradera A, Trillas E, Calvo T (2002) A general class of triangular norm-based ag-
gregation operators: quasilinear T-S operators. Int J Approx Reason 30:57–72

Procyk TJ, Mamdani EH (1979) A linguistic self-organizing process controller. Au-
tomatica 15:15–30

Read NK, Ray WH (1998a) Application of nonlinear dynamic analysis in the iden-
tification and control of nonlinear systems I. Simple dynamics. J Process Control
8:1–15

Read NK, Ray WH (1998b) Application of nonlinear dynamic analysis in the iden-
tification and control of nonlinear systems II more complex dynamics. J Process
Control 8:17–34

Read NK, Ray WH (1998c) Application of nonlinear dynamic analysis in the iden-
tification and control of nonlinear systems III n-dimensional systems. J Process
Control 8:35–46

Ross TJ (1995) Fuzzy logic with engineering applications. McGraw-Hill, New York
Ruan D, Zhou C, Gupta MM (2003) Fuzzy set techniques for intelligent robotic

systems. Fuzzy Sets Syst 134:1–4
Sagias DI, Sarafis EN, Siettos CI, Bafas GV (2001) Design of a model identification

fuzzy adaptive controller and stability analysis of nonlinear processes. Fuzzy Sets
Syst 121:169–179

554 C.P. Pappis and C.I. Siettos

Sala A, Ariño C (2007) Asymptotically necessary and sufficient conditions for sta-
bility and performance in fuzzy control: applications of Polya’s theorem. Fuzzy
Sets Syst 158:2671–2686

Sanchez E (1976) Resolution of composite fuzzy relational equations. Inform Con-
trol 30:38–48

Shaw AM, Doyle III FJ, Schwaber JS (1997) A dynamic neural network approach
to nonlinear process modeling. Comput Chem Eng 21:371–385

Siettos CI, Bafas GV (2001) Semiglobal stabilization of nonlinear systems using
fuzzy control and singular perturbation methods. Fuzzy Sets Syst 129:275–294

Siettos CI, Boudouvis AG, Bafas GV (1999a) Implementation and performance of a
fuzzy adaptive controller for a tubular reactor with limit points. Syst Anal Model
Simul 38:725–739

Siettos CI, Kiranoudis CT, Bafas GV (1999b) Advanced control strategies for flu-
idized bed dryers. Dry Technol 17:2271–2292

Siettos CI, Boudouvis AG, Bafas GV (2001) Approximation of fuzzy control sys-
tems using truncated Chebyshev series. Fuzzy Sets Syst 126:89–104

Song S, Hwang K, Zhou R, Kwok Y-K (2005) Trusted P2P transactions with fuzzy
reputation aggregation. IEEE Internet Comput 9:24–34

Spiegel D, Sudkamp T (2002) Employing locality in the evolutionary generation of
fuzzy rule bases. IEEE Trans Syst Man Cybern B 32:296–305

Stephanopoulos G (1984) Chemical process control: an introduction to theory and
practice. Prentice-Hall, Englewood Cliffs

Sugeno M, Kang GT (1988) Structure identification of fuzzy model. Fuzzy Sets Syst
28:15–23

Sugeno M, Yasukawa T (1993) A fuzzy-logic-based approach to qualitative mod-
elling. IEEE Trans Fuzzy Syst 1:7–31

Takagi T, Sugeno M (1985) Fuzzy identification of systems and its application to
modelling and control. IEEE Trans Syst Man Cybern 15:116–132

Tamhane D, Wong PM, Aminzadeh F (2002) Integrating linguistic descriptions and
digital signals in petroleum reservoirs. Int J Fuzzy Syst 4:586–591

Tanaka K, Sugeno M (1992) Stability analysis and design of fuzzy control systems.
Fuzzy Sets Syst 45:135–156

Tanaka K, Ohtake H, Wang HO (2007) A descriptor system approach to fuzzy con-
trol system design via fuzzy Lyapunov functions. IEEE Trans Fuzzy Syst 15:
333–341

Tang Y, Zhang N, Li Y (1999) Stable fuzzy adaptive control for a class of nonlinear
systems. Fuzzy Sets Syst 104:279–288

Taprantzis AV, Siettos CI, Bafas GV (1997) Fuzzy control of a fluidized bed dryer.
Dry Technol 15:511–537

Thathachar MA, Viswanath P (1997) On the stability of fuzzy systems. IEEE Trans
Fuzzy Syst 5:145–151

Tian E, Peng C (2006) Delay-dependent stability analysis and synthesis of uncertain
T-S fuzzy systems with time-varying delay. Fuzzy Sets Syst 157:544–559

Togai M, Watanabe H (1986) Expert systems on a chip: an engine for real-time
approximate reasoning. IEEE Expert Mag 1:55–62

18 Fuzzy Reasoning 555

Tong S, Wang T, Li HX (2002) Fuzzy robust tracking control for uncertain nonlinear
systems. Int J Approx Reason 30:73–90

Wang LX (1992) Fuzzy systems are universal approximators. In: Proceedings of 1st
IEEE international conference on fuzzy systems. San Diego, CA, pp 1163–1170

Wang LX (1994) Adaptive fuzzy systems and control: design and stability analysis.
Prentice-Hall, Englewood Cliffs

Wang W (1997) New similarity measures on fuzzy sets and on elements. Fuzzy Sets
Syst 85:305–309

Wang HF (2000) Fuzzy multicriteria decision making—an overview. J Intell Fuzzy
Syst 9:61–84

Wang JS, Lee CSG (2002) Self-adaptive neuro-fuzzy inference systems for classifi-
cation applications. IEEE Trans Fuzzy Syst 10:790–802

Wang J, Lin YI (2003) A fuzzy multicriteria group decision making approach
to select configuration items for software development. Fuzzy Sets Syst 134:
343–363

Wang W, De Baets B, Kerre E (1995) A comparative study of similarity measures.
Fuzzy Sets Syst 73:259–268

Wang HO, Tanaka K, Griffin MF (1996) An approach to fuzzy control of nonlinear
systems: stability and design issues. IEEE Trans Fuzzy Syst 4:14–23

Wang SM, Wang BS, Wang GJ (2003) A triangular-norm-based propositional fuzzy
logic. Fuzzy Sets Syst 136:55–70

Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining Lyapunov expo-
nents from a time series. Phys D 16:285–317

Wu WZ, Zhang WX (2004) Constructive and axiomatic approaches of fuzzy ap-
proximation operators. Inform Sci 159:233–254

Yager RR (2002a) On the cardinality index and attitudinal character of fuzzy mea-
sures. Int J Gen Syst 31:303–329

Yager RR (2002b) The power average operator. IEEE Trans Syst Man Cybern A
Syst Hum 31:724–730

Yager RR (2002c) On the valuation of alternatives for decision-making under un-
certainty. Int J Intell Syst 17:687–707

Yan J, Ryan M, Power J (1994) Using fuzzy logic. Prentice-Hall, Englewood Cliffs
Yeung DS, Chen DG, Tsang ECC, Lee JWT, Wang XZ (2005) On the generalization

of fuzzy rough sets. IEEE Trans Fuzzy Syst 13:343–361
Yi SY, Chung MJ (1995) Systematic design and stability analysis of a fuzzy logic

controller. Fuzzy Sets Syst 72:271–298
Yi Z, Heng PA (2002) Stability of fuzzy control systems with bounded uncertain

delays. IEEE Trans Fuzzy Syst 10:92–97
Ying M (2002) Implication operators in fuzzy logic. IEEE Trans Fuzzy Syst 10:

88–91
Yu X, Man Z, Wu B (1998) Design of fuzzy sliding-mode control systems. Fuzzy

Sets Syst 95:295–306
Zadeh LA (1965) Fuzzy sets. Inform Control 8:338–353
Zadeh LA (1973) Outline of a new approach to the analysis complex systems and

decision processes. IEEE Trans Syst Man Cybern 3:28–44

556 C.P. Pappis and C.I. Siettos

Zadeh LA (2008) Is there a need for fuzzy logic? Inform Sci 178:2751–2779
Zheng L (1992) A practical guide to tune of proportional and integral (PI) like fuzzy

controllers. In: Proceedings of 1st IEEE international conference on fuzzy sys-
tems. San Diego, CA, pp 633–640

Zienkiewicz OC, Morgan K (1983) Finite elements and approximation. Wiley, New
York

Zimmermann HJ (1996) Fuzzy set theory and its applications, 3rd edn. Kluwer,
Dordrecht

Zimmermann HJ, Ruan D, Huang C (eds) (2000) Fuzzy sets and operations research
for decision support: key selected papers. Normal University Press, Beijing

Chapter 19

Rough-Set-Based Decision Support

Roman Słowiński, Salvatore Greco, and Benedetto Matarazzo

19.1 Introduction

In this chapter,1 we are concerned with the discovery of knowledge from data
describing a decision situation. A decision situation is characterized by a set of
states or examples, which relate the input with the output of the situation. The aim
is to find concise knowledge patterns that summarize a decision situation, and that
are useful for explanation of this situation, as well as for the prediction of future
similar situations. They are particularly useful in such decision problems as techni-
cal or medical diagnostics, performance evaluation and risk assessment. A decision
situation is described by a set of attributes, which we might also call properties, fea-
tures, characteristics, etc. Such attributes may be concerned with either the input or
output of a situation or, in other words, with either conditions or decisions. Within
this chapter, we will refer to states or examples of a decision situation as objects. The
goal of the chapter is to present a knowledge discovery paradigm for multi-attribute
and multicriteria decision making, which is based upon the concept of rough sets.
Rough set theory was introduced by Pawlak (1982, 1991). Since then, it has often
proved to be an excellent mathematical tool for the analysis of a vague description

R. Słowiński (�)
Institute of Computing Science, Poznań University of Technology, Poznań,
and Polish Academy of Sciences, Systems Research Institute, Warsaw, Poland
e-mail: roman.slowinski@cs.put.poznan.pl

S. Greco
Department of Economics and Business, University of Catania, Catania, Italy

Portsmouth Business School, Operations & Systems Management University of Portsmouth,
Portsmouth PO1 3DE, United Kingdom

B. Matarazzo
Department of Economics and Business, University of Catania, Catania, Italy

1 The new material added to the first edition of this chapter is taken from our survey published
in Slowinski et al. (2012), with kind permission of the Brazilian Society of Operations Research
(SOBRAPO).

E.K. Burke and G. Kendall (eds.), Search Methodologies: Introductory Tutorials
in Optimization and Decision Support Techniques, DOI 10.1007/978-1-4614-6940-7_19,
© Springer Science+Business Media New York 2014

557

mailto:roman.slowinski@cs.put.poznan.pl

558 R. Słowiński et al.

of objects. The adjective vague (referring to the quality of information) is concerned
with inconsistency or ambiguity. The rough set philosophy is based on the assump-
tion that with every object of the universe U there is associated a certain amount
of information (data, knowledge). This information can be expressed by means of a
number of attributes. The attributes describe the object. Objects which have the same
description are said to be indiscernible (similar) with respect to the available infor-
mation. The indiscernibility relation thus generated constitutes the mathematical
basis of rough set theory. It induces a partition of the universe into blocks of indis-
cernible objects, called elementary sets, which can then be used to build knowledge
about a real or abstract world. The use of the indiscernibility relation results in in-
formation granulation.

Any subset X of the universe may be expressed in terms of these blocks either
precisely (as a union of elementary sets) or approximately. In the latter case, the
subset X may be characterized by two ordinary sets, called the lower and upper ap-
proximations. A rough set is defined by means of these two approximations, which
coincide in the case of an ordinary set. The lower approximation of X is composed
of all the elementary sets included in X (whose elements, therefore, certainly belong
to X), while the upper approximation of X consists of all the elementary sets which
have a non-empty intersection with X (whose elements, therefore, may belong to X).
The difference between the upper and lower approximation constitutes the bound-
ary region of the rough set, whose elements cannot be characterized with certainty
as belonging or not to X (by using the available information). The information about
objects from the boundary region is, therefore, inconsistent or ambiguous. The car-
dinality of the boundary region states, moreover, the extent to which it is possible to
express X in exact terms, on the basis of the available information. For this reason,
this cardinality may be used as a measure of vagueness of the information about X .

Some important characteristics of the rough set approach makes it a particularly
interesting tool in a variety of problems and concrete applications. For example, it is
possible to deal with both quantitative and qualitative input data and inconsistencies
need not to be removed prior to the analysis. In terms of the output information,
it is possible to acquire a posteriori information regarding the relevance of partic-
ular attributes and their subsets to the quality of approximation considered within
the problem at hand. Moreover, the lower and upper approximations of a partition
of U into decision classes, prepare the ground for inducing certain and possible
knowledge patterns in the form of “if. . . , then. . . ” decision rules.

Several attempts have been made to employ rough set theory for decision support
(Pawlak and Slowinski 1994; Slowinski 1993). The Indiscernibility-Based Rough
Set Approach is not able, however, to deal with preference ordered attribute domains
and preference ordered decision classes. In decision analysis, an attribute with a
preference ordered domain (scale or value set) is called a criterion.

In the late 1990s, adapting the Indiscernibility-Based Rough Set Approach to
knowledge discovery from preference ordered data became a particularly challeng-
ing problem within the field of multicriteria decision analysis. Why might it be so
important? The answer is connected with the nature of the input preference infor-
mation available in multicriteria decision analysis, and of the output of that analysis.

19 Rough-Set-Based Decision Support 559

As to the input, the rough set approach requires a set of decision examples which
is also convenient for the acquisition of preference information from decision mak-
ers. Very often in multicriteria decision analysis, this information has to be given
in terms of preference model parameters, such as importance weights, substitution
ratios and various thresholds. Presenting such information requires significant effort
on the part of the decision maker. It is generally acknowledged that people often
prefer to make exemplary decisions and cannot always explain them in terms of
specific parameters. For this reason, the idea of inferring preference models from
exemplary decisions provided by the decision maker is very attractive. Furthermore,
the exemplary decisions may be inconsistent because of limited clear discrimination
between criteria and because of hesitation on the part of the decision maker (see, for
example, Roy 1996). These inconsistencies cannot be considered as a simple error
or as noise. They can convey important information that should be taken into ac-
count in the construction of the decision makers preference model. The rough set
approach is intended to deal with inconsistency and this is a major argument to sup-
port its application to multicriteria decision analysis. Note also that the output of the
analysis, i.e. the model of preferences in terms of decision rules, is very convenient
for decision support because it is intelligible and speaks the same language as the
decision maker.

An extension of the Indiscernibility-Based Rough Set Approach which enables
the analysis of preference ordered data was proposed by Greco et al. (1998a,
1999a,b). This extension, called the Dominance-Based Rough Set Approach (DRSA)
is mainly based on the substitution of the indiscernibility relation by a dominance
relation in the rough approximation of decision classes. An important consequence
of this fact is the possibility of inferring (from exemplary decisions) the prefer-
ence model in terms of decision rules which are logical statements of the type
“if. . . , then. . . ”. The separation of certain and uncertain knowledge about the de-
cision maker’s preferences is carried out by the distinction of different kinds of
decision rules, depending upon whether they are induced from lower approxima-
tions of decision classes or from the boundary region, i.e. the difference between
upper and lower approximations (composed of inconsistent examples). Such a pref-
erence model is more general than the classical functional models considered within
multi-attribute utility theory or the relational models considered, for example, in
outranking methods.

In the next section, we present the basic version of the Indiscernibility-Based
Rough Set Approach by way of an example.

19.2 Rough Set Fundamentals

19.2.1 Explanation by an Example

Let us assume that we want to describe the classification of basic traffic signs to a
novice. We start by saying that there are three main classes of traffic signs corre-
sponding to

560 R. Słowiński et al.

Table 19.1 Examples of traffic signs described by S and PC

Traffic sign Shape (S) Primary Color (PC) Class

a) triangle yellow W

b) circle white I

c) circle blue I

d) circle blue O

• Warning (W),
• Interdiction (I),
• Order (O).

Then, we say that these classes may be distinguished by such attributes as the shape
(S) and the principal color (PC) of the sign. Finally, we give a few examples of
traffic signs, like those shown in Table 19.1. These are:

1. Sharp right turn,
2. Speed limit of 50 km/h,
3. No parking,
4. Go ahead.

The sets of signs indiscernible by “Class” are

W = {a}Class, I = {b,c}Class, O = {d}Class

and the sets of signs indiscernible by S and PC are as follows:

{a}S,PC, {b}S,PC,{c,d}S,PC.

The above sets are granules of knowledge generated by, on the one hand, the clas-
sification of traffic signs by “Class” and, on the other hand, their description by S
and PC. The sets of signs indiscernible by “Class” are denoted by {•}Class and those
by S and PC are denoted by {•}S,PC. We can see that granule W={a}Class is charac-
terized precisely by granule {a}S,PC. In order to characterize granules I={b,c}Class

and O={d}Class, one needs granules {b}S,PC and {b,c}Class, however, only granule
{b}S,PC is included in I={b,c}Class while {c,d}S,PC has a non-empty intersection
with both I={b,c}Class and O={d}Class. It follows, from this characterization, that
by using attributes S and PC, one can characterize class W precisely, while classes
I and O can only be characterized approximately:

• Class W includes sign a certainly, and possibly no other sign,
• Class I includes sign b certainly, and possibly signs b, c and d,

19 Rough-Set-Based Decision Support 561

Table 19.2 Examples of traffic signs described by S, PC and SC

Traffic sign Shape (S) Primary Color (PC) Secondary color (SC) Class

a) triangle yellow red W

b) circle white red I

c) circle blue red I

d) circle blue white O

• Class O includes no sign certainly, and possibly signs c and d.

The terms “certainly” and “possibly” refer to the absence or presence of ambiguity
between the description of signs by S and PC from the one side, and by “Class”,
from the other side. In other words, using knowledge about the description of signs
by S and PC, one can say that all signs from granules {•}S,PC included in granules
{•}Class belong certainly to the corresponding class, while all signs from granules
{•}S,PC having a non-empty intersection with granules {•}Class belong to the corre-
sponding class only possibly. The two sets of certain and possible signs are, respec-
tively, the lower and upper approximations of the corresponding class by attributes
S and PC:

lower_approx.S,PC(W)={a}, upper_approx.S,PC(W)={a},
lower_approx.S,PC(I)={b}, upper_approx.S,PC(I)={b,c,d},
lower_approx.S,PC(O)= /0, upper_approx.S,PC(O)={c,d}.

The quality of approximation of the classification by attributes S and PC is equal
to the number of all the signs in the lower approximations divided by the number of
all the signs in the table, i.e. 1/2.

One way to increase the quality of the approximation is to add a new attribute
to better describe the objects and, consequently, to decrease the ambiguity. Let us
introduce the secondary color (SC) as a new attribute. The new situation is now
shown in Table 19.2.

As one can see, the sets of signs indiscernible by S, PC and SC, i.e. the granules
{•}S,PC,SC, are now

{a}S,PC,SC, {b}S,PC,SC, {c}S,PC,SC, {d}S,PC,SC.

It is worth noting that the granularity is finer than before and it enables the
ambiguity to be eliminated. Consequently, the quality of approximation of the
classification by attributes S, PC and SC is now equal to 1.

A natural question occurring here is to ask if, indeed, all three attributes are nec-
essary to characterize precisely the classes W, I and O. When we eliminate attribute

562 R. Słowiński et al.

S or attribute PC from the description of the signs, we obtain the granules {•}PC,SC

or {•}S,SC, respectively, as follows:

{a}PC,SC,{b}PC,SC,{c}PC,SC,{d}PC,SC,{a}S,SC,{b,c}S,SC,{d}S,SC.

Using any one of the above sets of granules, it is possible to characterize (approx-
imate) classes W, I and O with the same quality (equal to 1) as it is when using
the granules {•}S,PC,SC (i.e. those generated by the complete set of three attributes).
Thus, the answer to the above question is that the three attributes are not all neces-
sary to characterize precisely the classes W, I and O. It is, in fact, sufficient to use
either PC and SC or S and SC. The subsets of attributes {PC, SC} and {S, SC} are
called reducts of {S, PC, SC} because they have this property. Note that the identi-
fication of reducts enables us to reduce knowledge about the signs from the table to
that which is relevant.

Other useful information can be generated from the identification of reducts by
taking their intersection. This is called the core. In our example, the core contains
attribute SC. This tells us that it is clearly an indispensable attribute, i.e. it cannot
be eliminated from the description of the signs without decreasing the quality of
the approximation. Note that other attributes from the reducts (i.e. S and PC) are
exchangeable. If there happened to be some other attributes which were not included
in any reduct, then they would be superfluous, i.e. they would not be useful at all in
the characterization of the classes W, I and O.

If, however, we eliminate column S or PC from Table 19.2 then we still do not
have a minimal representation of knowledge about the classification of the four traf-
fic signs. Note that, in order to characterize class W in Table 19.2, it is sufficient to
use the descriptor “S = triangle”. Moreover, class I is characterized by two descrip-
tors (“S = circle” and “SC= red”) and class O is characterized by the descriptor “SC
= white”. Thus, the minimal representation of this knowledge requires only four
descriptors (rather than the eight descriptors that are presented in Table 19.2 with
either column S or PC eliminated). This representation corresponds to the follow-
ing set of decision rules which may be seen as knowledge (classification) patterns
discovered in the dataset contained in Table 19.2 (in the braces there are symbols of
signs covered by the corresponding rule):

Rule #1: if S=triangle, then Class=W {a},
Rule #2: if S=circle and SC=red, then Class=I {b,c},
Rule #3: if SC=white, then Class=O {d}.

This is not the only representation, because an alternative set of rules is

Rule #1′: if PC=yellow, then Class=W {a},
Rule #2′: if PC=white, then Class=I {b},
Rule #3′: if PC=blue and SC=red, then Class=I {c},
Rule #4′: if SC=white, then Class=O {d}.

It is interesting to return to Table 19.1 and to ask what decision rules represent
the knowledge contained in this dataset. As the description of the four signs by S

19 Rough-Set-Based Decision Support 563

and PC is not sufficient to characterize precisely all the classes, it is not surprising
that not all the rules will have a non-ambiguous decision. Indeed, we have

Rule #1′′: if S=triangle, then Class=W {a}
Rule #2′′: if PC=white, then Class=I {b}
Rule #3′′: if PC=blue, then Class=I or O {c,d}.

Note that these rules can be induced from the lower and upper approximations
of classes W, I, O defined above. Indeed, for rule #1′′, the supporting example is in
lower_appx.S,PC(W) = {a}, for rule #2′′ it is in lower_appx.S,PC(I) = {b} and the
supporting examples for rule #3′′ are in the set called the boundary of both I and O:

BoundaryS,PC(I) = upper_appx.S,PC(I)− lower_appx.S,PC(I) = {c,d},
BoundaryS,PC(O) = upper_appx.S,PC(O)−lower_appx.S,PC(O) = {c,d} .

As a result of the approximate characterization of classes W, I and O by S and
PC, we can obtain an approximate representation in terms of decision rules. Since
the quality of the approximation is 1/2, certain rules (#1′′ and #2′′) cover one-half
of the examples and the other half is covered by the approximate rule (#3′′). Now,
the quality of approximation by S and SC or by PC and SC was equal to 1, so all
examples were covered by certain rules (#1 to #3 or #1′ to #4′, respectively).

We can see from this simple example that the rough set analysis of a dataset
provides some useful information. In particular, we can determine:

• A characterization of decision classes in terms of chosen attributes through lower
and upper approximation.

• A measure of the quality of approximation which indicates how good the chosen
set of attributes is for approximation of the classification.

• A reduction of the knowledge contained in the table to a description by relevant
attributes, i.e. those belonging to reducts; at the same time, exchangeable and
superfluous attributes are also identified.

• The core which indicates indispensable attributes.
• A set of decision rules which is induced from the lower and upper approxima-

tions of the decision classes; this shows classification patterns which exist in the
dataset.

Other important information can also be induced but it cannot be illustrated by such
a simple example. In the next section, we will present a more formal treatment. For
more details, the reader is referred to Pawlak (1991), Polkowski (2002), Slowinski
(1992b) and many others (see the Sources of Additional Information section at the
end of the chapter).

19.2.2 A Formal Description of the Indiscernibility-Based Rough

Set Approach

For algorithmic reasons, we supply the information regarding the objects in the form
of a data table, whose separate rows refer to distinct objects and whose columns refer

564 R. Słowiński et al.

to the different attributes considered. Each cell of this table indicates an evaluation
(quantitative or qualitative) of the object placed in that row by means of the attribute
in the corresponding column.

Formally, a data table is the 4-tuple S = 〈U,Q,V, f 〉, where U is a finite set of
objects (universe), Q = {q1,q2, . . . ,qm} is a finite set of attributes, Vq is the domain
(value set) of the attribute q, V =

⋃
q∈QVq and f : U×Q→V is a total function such

that f (x,q) ∈Vq for each q ∈Q, x ∈U , called the information function.
Each object x of U is described by a vector (string)

DesQ(x) = [f (x,q1), f (x,q2), . . . , f (x,qm)]

called the description of x in terms of the evaluations of the attributes from Q. It rep-
resents the available information about x.

To every (non-empty) subset of attributes P we associate an indiscernibility rela-
tion on U , denoted by IP and defined as follows:

IP = {(x,y) ∈U ×U : f (x,q) = f (y,q) for each q ∈ P}.

If (x,y) ∈ IP, we say that the objects x and y are P-indiscernible. Clearly, the indis-
cernibility relation thus defined is an equivalence relation (reflexive, symmetric and
transitive). The family of all the equivalence classes of the relation IP is denoted by
U |IP and the equivalence class containing an element x ∈U is denoted by IP(x). The
equivalence classes of the relation IP are called the P-elementary sets or granules of
knowledge encoded by P.

Let S be a data table, X be a non-empty subset of U and /0
= P⊆ Q.
The set X may be characterized by two ordinary sets, called the P-lower approxi-
mation of X (denoted by P(X)) and the P-upper approximation of X (denoted by
P(X)) in S. They can be defined, respectively, as

P(X) = {x ∈U : IP(x)⊆ X}, P(X) = {x ∈U : IP(x)∩X
= /0}=
⋃
x∈X

IP(x).

The family of all the sets X ⊆U having the same P-lower and P-upper approxima-
tions is called a P-rough set. The elements of P(X) are all and only those objects
x ∈U which belong to the equivalence classes generated by the indiscernibility re-
lation IP contained in X . The elements of P(X) are all and only those objects x ∈U
which belong to the equivalence classes generated by the indiscernibility relation IP

containing at least one object x belonging to X . In other words, P(X) is the largest
union of the P-elementary sets included in X , while P(X) is the smallest union of
the P-elementary sets containing X .

The P-boundary of X in S, denoted by BnP(X), is defined as

BnP(X) = P(X)−P(X).

The term rough approximation is a general term used to express the operation
of the P-lower and P-upper approximation of a set or of a union of sets. The rough
approximations obey the following basic laws (see Pawlak 1991):

19 Rough-Set-Based Decision Support 565

• The inclusion property: P(X)⊆ X ⊆ P(X),
• The complementarity property: P(X) =U −P(U −X).

Therefore, if an object x belongs to P(X), it is also certainly contained in X , while if
x belongs to P(X), it is only possibly contained in X . BnP(X) constitutes the doubtful
region of X : using the knowledge encoded by P nothing can be said with certainty
about the inclusion of its elements in set X .

If the P-boundary of X is empty (i.e. BnP(X) = /0) then the set X is an ordinary
set, called the P-exact set. By this, we mean that it may be expressed as the union of
some P-elementary sets. Otherwise, if BnP(X)
= /0, then the set X is a P-rough set
and may be characterized by means of P(X) and P(X).

The following ratio defines an accuracy measure of the approximation of X
(X
= /0) by means of the attributes from P:

αP(X) =
|P(X)|
∣

∣P(X)
∣

∣

,

where |Y | denotes the cardinality of a (finite) set Y . Obviously, 0≤ αP(X) ≤ 1. If
αP(X) = 1, then X is a P-exact set. If αP(X)< 1, then X is a P-rough set.

Another ratio defines a quality measure of the approximation of X by means of
the attributes from P:

γP(X) =
|P(X)|
|X | .

The quality γP(X) represents the relative frequency of the objects correctly assigned
by means of the attributes from P. Moreover, 0≤αP(X)≤ γP(X)≤ 1, and γP(X) = 0
iff αP(X) = 0, while γP(X) = 1 iff αP(X) = 1.

The definition of approximations of a subset X ⊆U can be extended to a clas-
sification, i.e. a partition Y = {Y1, . . . ,Yn} of U . The subsets Yi, i = 1, . . . ,n, are
disjunctive classes of Y . By the P-lower and P-upper approximations of Y in S we
mean the sets

P(Y) = {P(Y1) , . . . ,P (Yn)} and P(Y) =
{

P(Y1) , . . . ,P(Yn)
}

respectively. The coefficient

γP (Y) =
∑n

i=1 |P(Yi)|
|U |

is called the quality of approximation of classification Y by the set of attributes
P, or in short, the quality of classification. It expresses the ratio of all P-correctly
classified objects to all objects in the data table.

The main issue in rough set theory is the approximation of subsets or partitions
of U , representing knowledge about U , with other sets or partitions that have been
built up using available information about U . From the perspective of a particu-
lar object x ∈ U , it may be interesting, however, to use the available information

566 R. Słowiński et al.

to assess the degree of its membership to a subset X of U . The subset X can be
identified with the knowledge to be approximated. Using the rough set approach
one can calculate the membership function µP

X(x) (rough membership function) as

µP
X(x) =

|X ∩ IP(x)|
|IP(x)|

.

The value of µP
X(x) may be interpreted analogously as conditional probability and

may be understood as the degree of certainty (credibility) to which x belongs to X .
Observe that the value of the membership function is calculated from the available
data, and not subjectively assumed, as it is in the case of membership functions of
fuzzy sets.

Between the rough membership function and the rough approximations of X the
following relationships hold:

P(X) = {x ∈U : µP
X(x) = 1},

P(X) = {x ∈U : µP
X(x)> 0},

BnP(X) = {x ∈U : 0 < µP
X(x)< 1},

P(U −X) = {x ∈U : µP
X(x) = 0}.

In rough set theory there is, therefore, a close link between the granularity connected
with the rough approximation of sets and the uncertainty connected with the rough
membership of objects to sets.

A very important concept for concrete applications is that of the dependence of
attributes. Intuitively, a set of attributes T ⊆Q totally depends upon a set of attributes
P⊆Q if all the values of the attributes from T are uniquely determined by the values
of the attributes from P. In other words, this is the case if a functional dependence
exists between evaluations by the attributes from P and by the attributes from T .
This means that the partition (granularity) generated by the attributes from P is at
least as fine as that generated by the attributes from T , so that it is sufficient to use
the attributes from P to build the partition U |IT . Formally, T totally depends on P iff
IP ⊆ IT .

Therefore, T is totally (partially) dependent on P if all (some) objects of the
universe U may be univocally assigned to granules of the partition U |IT , using only
the attributes from P.

Another issue of great practical importance is that of knowledge reduction. This
concerns the elimination of superfluous data from the data table, without deteriorat-
ing the information contained in the original table.

Let P⊆ Q and p ∈ P. It is said that attribute p is superfluous in P if IP = IP−{p};
otherwise, p is indispensable in P.

The set P is independent if all its attributes are indispensable. The subset P′ of P
is a reduct of P (denoted by RED(P)) if P′ is independent and IP′ = IP.

A reduct of P may also be defined with respect to an approximation of the classi-
fication Y of objects from U . It is then called a Y-reduct of P (denoted by REDY (P))
and it specifies a minimal (with respect to inclusion) subset P′ of P which keeps

19 Rough-Set-Based Decision Support 567

the quality of the classification unchanged, i.e. γP′ (Y) = γP (Y). In other words, the
attributes that do not belong to a Y -reduct of P are superfluous with respect to the
classification Y of objects from U .

More than one Y -reduct (or reduct) of P may exist in a data table. The set con-
taining all the indispensable attributes of P is known as the Y-core (denoted by
COREY (P)). In formal terms, COREY (P) =

⋂
REDY (P). Obviously, since the Y -

core is the intersection of all the Y -reducts of P, it is included in every Y -reduct of P.
It is the most important subset of attributes of Q, because none of its elements can
be removed without deteriorating the quality of the classification.

19.2.3 Decision Rules Induced from Rough Approximations

In a data table the attributes of the set Q are often divided into condition attributes
(set C
= /0) and decision attributes (set D
= /0). Note that C∪D = Q and C∩D = /0.
Such a table is called a decision table. The decision attributes induce a partition
of U deduced from the indiscernibility relation ID in a way that is independent of
the condition attributes. D-elementary sets are called decision classes. There is a
tendency to reduce the set C while keeping unchanged all important relationships
between C and D, in order to make decisions on the basis of a smaller amount of
information. When the set of condition attributes is replaced by one of its reducts,
the quality of approximation of the classification induced by the decision attributes
does not deteriorate.

Since the tendency is to underline the functional dependencies between condition
and decision attributes, a decision table may also be seen as a set of decision rules.
These are logical statements of the type “if. . . , then. . . ”, where the antecedent (con-
dition part) specifies values assumed by one or more condition attributes (describing
C-elementary sets) and the consequence (decision part) specifies an assignment to
one or more decision classes (describing D-elementary sets). Therefore, the syntax
of a rule can be outlined as follows:

if f (x,q1) is equal to rq1 and f (x,q2) is equal to rq2 and ... f (x,qp) is equal to rqp

then x belongs to Yj1 or Yj2 or ... Yjk

where

{q1,q2, . . . ,qp} ⊆C,(rq1,rq2, . . . ,rqp) ∈Vq1×Vq2×·· ·×Vqp and Yj1,Yj2, . . . ,Yjk

are some decision classes of the considered classification (D-elementary sets). If
there is only one possible consequence, i.e. k = 1, then the rule is said to be certain,
otherwise it is said to be approximate or ambiguous.

An object x ∈U supports decision rule r if its description is matching both the
condition part and the decision part of the rule. We also say that decision rule r
covers object x if it matches at least the condition part of the rule. Each decision

568 R. Słowiński et al.

rule is characterized by its strength, defined as the number of objects supporting the
rule. In the case of approximate rules, the strength is calculated for each possible
decision class separately.

Let us observe that certain rules are supported only by objects from the lower ap-
proximation of the corresponding decision class. Approximate rules are supported,
in turn, only by objects from the boundaries of the corresponding decision classes.

Procedures for the generation of decision rules from a decision table use an
inductive learning principle. The objects are considered as examples of decisions.
In order to induce decision rules with a unique consequent assignment to a D-
elementary set, the examples belonging to the D-elementary set are called positive
and all the others negative. A decision rule is discriminant if it is consistent (i.e. if it
distinguishes positive examples from negative ones) and minimal (i.e. if removing
any attribute from a condition part gives a rule covering negative objects). It may be
also interesting to look for partly discriminant rules. These are rules that, besides
positive examples, could cover a limited number of negative ones. They are char-
acterized by a coefficient, called the level of confidence, which is the ratio of the
number of positive examples (supporting the rule) to the number of all examples
covered by the rule.

The generation of decision rules from decision tables is a complex task and a
number of procedures have been proposed to solve it (see, for example, Grzymala-
Busse 1992, 1997; Skowron 1993; Ziarko and Shan 1994; Skowron and Polkowski
1997; Stefanowski 1998; Slowinski et al. 2000). The existing induction algorithms
use one of the following strategies:

1. The generation of a minimal set of rules covering all objects from a decision
table.

2. The generation of an exhaustive set of rules consisting of all possible rules for a
decision table.

3. The generation of a set of strong decision rules, even partly discriminant, cov-
ering relatively many objects from the decision table (but not necessarily all of
them).

Internet links to freely available software implementations of these algorithms can
be found in the last section of this chapter.

19.2.4 From Indiscernibility to Similarity

As mentioned above, the classical definitions of lower and upper approximations are
based on the use of the binary indiscernibility relation which is an equivalence re-
lation. The indiscernibility implies the impossibility of distinguishing between two
objects of U having the same description in terms of the attributes from Q. This
relation induces equivalence classes on U , which constitute the basic granules of
knowledge. In reality, due to the imprecision of data describing the objects, small
differences are often not considered significant for the purpose of discrimination.

19 Rough-Set-Based Decision Support 569

This situation may be formally modeled by considering similarity or tolerance re-
lations (see e.g. Nieminen 1988; Marcus 1994; Slowinski 1992a; Polkowski et al.
1995; Skowron and Stepaniuk 1995; Slowinski and Vanderpooten 1997; Slowinski
and Vanderpooten 2000; Stepaniuk 2000; Yao and Wong 1995).

Replacing the indiscernibility relation by a weaker binary similarity relation has
considerably extended the capacity of the rough set approach. This is because, in
the least demanding case, the similarity relation requires reflexivity only, relaxing
the assumptions of symmetry and transitivity of the indiscernibility relation.

In general, a similarity relation R does not generate a partition but a cover of U .
The information regarding similarity may be represented using similarity classes
for each object x ∈ U . More precisely, the similarity class of x, denoted by R(x),
consists of the set of objects which are similar to x:

R(x) = {y ∈U : yRx}.

It is obvious that an object y may be similar to both x and z, while z is not similar to x,
i.e. y∈ R(x) and y∈R(z), but z /∈R(x), x,y,z∈U . The similarity relation is of course
reflexive (each object is similar to itself). Slowinski and Vanderpooten (1995, 2000)
have proposed a similarity relation which is only reflexive. The abandonment of the
transitivity requirement is easily justifiable. For example, see Luce’s paradox of the
cups of tea (Luce 1956). As for the symmetry, one should notice that yRx, which
means “y is similar to x”, is directional. There is a subject y and a referent x, and in
general this is not equivalent to the proposition “x is similar to y”, as maintained by
Tversky (1977). This is quite immediate when the similarity relation is defined in
terms of a percentage difference between evaluations of the objects compared on
a numerical attribute in hand, calculated with respect to evaluation of the referent
object. Therefore, the symmetry of the similarity relation should not be imposed.
It then makes sense to consider the inverse relation of R, denoted by R−1, where
xR−1y means again “y is similar to x”. R−1(x), x ∈U , is the class of referent objects
to which x is similar:

R−1(x) = {y ∈U : xRy}.

Given a subset X ⊆U and a similarity relation R on U , an object x ∈U is said to be
non-ambiguous in each of the two following cases:

• x belongs to X without ambiguity, that is x ∈ X and R−1(x)⊆ X ; such objects are
also called positive;

• x does not belong to X without ambiguity (x clearly does not belong to X), that is
x ∈U −X and R−1(x)⊆U −X (or R−1(x)∩X = /0); such objects are also called
negative.

The objects which are neither positive nor negative are said to be ambiguous.
A more general definition of lower and upper approximation may thus be offered
(see Slowinski and Vanderpooten 2000). Let X ⊆U and let R be a reflexive binary
relation defined on U . The lower approximation of X , denoted by R(X), and the
upper approximation of X , denoted by R(X), are defined, respectively, as

570 R. Słowiński et al.

R(X) = {x ∈U : R−1(x)⊆ X}, R(X) =
⋃
x∈X

R(x).

It may be demonstrated that the key properties—inclusion and complementarity—
still hold and that

R(X) = {x ∈U : R−1(x)∩X
= /0}.

Moreover, the above definition of rough approximation is the only one that correctly
characterizes the set of positive objects (lower approximation) and the set of positive
or ambiguous objects (upper approximation) when a similarity relation is reflexive,
but not necessarily symmetric nor transitive.

Using a similarity relation, we are able to induce decision rules from a decision
table. The syntax of a rule is represented as follows:

i f f (x,q1) is similar to rq1 and f (x,q2) is similar to rq2 and . . .

f (x,qp) is similar to rqp, then x belongs to Yj1 or Yj2 or . . .Yjk,

where
{q1,q2, . . . ,qp} ⊆C,

(rq1,rq2, . . . ,rqp) ∈Vq1×Vq2×·· ·×Vqp

and Yj1,Yj2, . . . ,Yjk are some classes of the considered classification (D-elementary
sets). As mentioned above, if k = 1 then the rule is certain, otherwise it is approx-
imate or ambiguous. Procedures for generation of decision rules follow the induc-
tion principle described in Sect. 19.2.3. One such procedure has been proposed by
Krawiec et al. (1998)—it involves a similarity relation that is learned from data. We
would also like to point out that Greco et al. (1998b, 2000b) proposed a fuzzy exten-
sion of the similarity, that is, rough approximation of fuzzy sets (decision classes)
by means of fuzzy similarity relations (reflexive only).

19.3 The Knowledge Discovery Paradigm and Prior Knowledge

The dataset in which classification patterns are searched for is called the learning
sample. The learning of patterns from this sample should take into account available
prior knowledge that may include the following items (see Slowinski et al. 2000a):

(i) Domains of attributes, i.e. sets of values that an attribute may take while being
meaningful to the user.

(ii) A division of attributes into condition and decision attributes which restricts
the range of patterns to functional relations between condition and decision
attributes.

(iii) A preference order in the domains of some attributes and a semantic corre-
lation between pairs of these attributes, requiring the patterns to observe the
dominance principle.

19 Rough-Set-Based Decision Support 571

In fact, item (i) is usually taken into account in knowledge discovery. With this prior
knowledge only, one can discover patterns called association rules (Agrawal et al.
1996) which show strong relationships between values of some attributes, without
fixing which attributes will be on the condition and which ones on the decision side
in all rules.

If item (i) is combined with item (ii) in the prior knowledge, then one can con-
sider a partition of the learning sample into decision classes defined by decision
attributes. The patterns to be discovered have then the form of decision trees or
decision rules, representing functional relations between condition and decision at-
tributes. These patterns are typically discovered by machine learning and data min-
ing methods (Michalski et al. 1998). Since there is a direct correspondence between
a decision tree and rules, we will concentrate our attention on decision rules only.

As item (iii) is crucial for decision support, let us explain it in more detail. Con-
sider an example of a data set concerning pupils’ achievements in a high school.
Suppose that among the attributes describing the pupils there are results in mathe-
matics (Math) and physics (Ph). There is also a general achievement (GA) result.
The domains of these attributes are composed of three values: bad, medium and
good. This information constitutes item (i) of prior knowledge. Item (ii) is also avail-
able because, clearly, Math and Ph are condition attributes while GA is a decision
attribute. The preference order of the attribute values is obvious: good is better than
medium and bad, and medium is better than bad. It is known, moreover, that both
Math and Ph are semantically correlated with GA. This is, precisely, item (iii) of the
prior knowledge.

Attributes with preference ordered domains are called criteria because they in-
volve an evaluation. We will use the name of regular attributes for those attributes
whose domains are not preference-ordered. Semantic correlation between two crite-
ria (condition and decision) means that an improvement on one criterion should not
worsen the evaluation on the second criterion, while other attributes and criteria are
unchanged (monotonicity constraint). In our example, an improvement of a pupil’s
score in Math or Ph, with other attribute values unchanged, should not worsen the
pupil’s general achievement (GA), but rather improve it. In general, semantic cor-
relation between condition criteria and decision criteria requires that an object x
dominating object y on all condition criteria (i.e. x having evaluations at least as
good as y on all condition criteria) should also dominate y on all decision criteria
(i.e. x should have evaluations at least as good as y on all decision criteria). This
principle is called the dominance principle (or Pareto principle) and it is the only
objective principle that is widely agreed upon in the multicriteria comparisons of
objects. An alternative name of the classification problem with semantic correlation
between condition and decision criteria is ordinal classification with monotonicity
constraints.

Let us consider two questions:

• What classification patterns can be drawn from the pupils’ data set?
• How does item (iii) influence the classification patterns?

572 R. Słowiński et al.

The answer to the first question is: monotonic “if. . . , then. . . ” decision rules. Each
decision rule is characterized by a condition profile and a decision profile, cor-
responding to vectors of threshold values of regular attributes and criteria in the
condition and decision parts of the rule, respectively. The answer to the second
question is that condition and decision profiles of a decision rule should observe the
dominance principle (monotonicity constraint) if the rule has at least one pair of se-
mantically correlated criteria spanned over the condition and decision part. We say
that one profile dominates another if they both involve the same values of regular
attributes and the values of criteria of the first profile are not worse than the values
of criteria of the second profile.

Let us explain the dominance principle with respect to decision rules on the
pupils’ example. Suppose that two rules induced from the pupils’ data set relate
Math and Ph on the condition side, with GA on the decision side:

Rule #1: if Math = medium and Ph = medium, then GA = good,
Rule #2: if Math = good and Ph = medium, then GA = medium.

The two rules do not observe the dominance principle because the condition
profile of rule #2 dominates the condition profile of rule #1, while the decision
profile of rule #2 is dominated by the decision profile of rule #1. Thus, in the sense
of the dominance principle, the two rules are inconsistent, i.e. they are wrong.

One could say that the above rules are true because they are supported by ex-
amples of pupils from the learning sample, but this would mean that the examples
are also inconsistent. The inconsistency may come from many sources. Examples
include:

• Missing attributes (regular ones or criteria) in the description of objects. Maybe
the data set does not include such attributes as the opinion of the pupil’s tu-
tor expressed only verbally during an assessment of the pupil’s GA by a school
assessment committee.

• Unstable preferences of decision makers. Maybe the members of the school
assessment committee changed their view on the influence of Math on GA during
the assessment.

Handling these inconsistencies is of crucial importance for knowledge discovery.
They cannot be simply considered as noise or error to be eliminated from data, or
amalgamated with consistent data by some averaging operators. They should be
identified and presented as uncertain patterns.

If item (iii) was ignored in prior knowledge, then the handling of the above-
mentioned inconsistencies would be impossible. Indeed, there would be nothing
wrong with rules #1 and #2. They would be supported by different examples dis-
cerned by considered attributes.

It has been acknowledged by many authors that rough set theory provides an ex-
cellent framework for dealing with inconsistencies in knowledge discovery (see, for
example, Grzymala-Busse 1992; Pawlak 1991; Pawlak et al. 1995; Polkowski 2002;
Polkowski and Skowron 1999; Slowinski 1992b; Slowinski and Zopounidis 1995;
Ziarko 1998). As we have shown in Sect. 19.2, the paradigm of rough set theory is

19 Rough-Set-Based Decision Support 573

that of granular computing, because the main concept of the theory (rough approx-
imation of a set) is built up of blocks of objects which are indiscernible by a given
set of attributes, called granules of knowledge. In the space of regular attributes, the
indiscernibility granules are bounded sets. Decision rules induced from rough ap-
proximation of a classification are also built up of such granules. While taking into
account prior knowledge of type (i) and (ii), the rough approximation and the inher-
ent rule induction ignore, however, prior knowledge of type (iii). In consequence,
the resulting decision rules may be inconsistent with the dominance principle.

The authors have proposed an extension of the granular computing paradigm
that enables us to take into account prior knowledge of type (iii), in addition to
either (i) only (Greco et al. 2002a), or (i) and (ii) together (Greco et al. 1998a,
1999b, 2000d, 2001a, 2002b,c; Slowinski et al. 2002a, 2009). The combination of
the new granules with the idea of rough approximation is called the Dominance-
Based Rough Set Approach.

In the following, we present the concept of granules which permit us to handle
prior knowledge of type (iii) when inducing decision rules.

Let U be a finite set of objects (universe) and let Q be a finite set of attributes
divided into a set C of condition attributes and a set D of decision attributes where
C∩D = /0. Also, let

XC =
|C|
∏
q=1

Xq and XD =
|D|
∏
q=1

Xq

be attribute spaces corresponding to sets of condition and decision attributes, re-
spectively. The elements of XC and XD can be interpreted as possible evaluations
of objects on attributes from set C = {1, . . . , |C|} and from set D = {1, . . . , |D|},
respectively. Therefore, Xq is the set of possible evaluations of considered objects
with respect to attribute q. The value of object x on attribute q ∈Q is denoted by xq.
Objects x and y are indiscernible by P⊆C if xq = yq for all q ∈ P and, analogously,
objects x and y are indiscernible by R⊆D if xq = yq for all q ∈ R. The sets of indis-
cernible objects are equivalence classes of the corresponding indiscernibility rela-
tion IP or IR. Moreover, IP(x) and IR(x) denote equivalence classes including object
x. ID generates a partition of U into a finite number of decision classes Cl = {Clt ,
t = 1, . . . ,n}. Each x ∈U belongs to one and only one class Clt ∈ Cl.

The above definitions take into account prior knowledge of type (i) and (ii) only.
In this case, the granules of knowledge are bounded sets in XP and XR (P ⊆C and
R ⊆ D), defined by partitions of U induced by the indiscernibility relations IP and
IR, respectively. Then, classification patterns to be discovered are functions repre-
senting granules IR(x) by granules IP(x) in the condition attribute space XP, for any
P⊆C and for any x ∈U .

If prior knowledge includes item (iii) in addition to (i) and (ii), then the indis-
cernibility relation is unable to produce granules in XC and XD that would take into
account the preference order. To do so, the indiscernibility relation has to be substi-
tuted by a dominance relation in XP and XR (P ⊆C and R ⊆ D). Suppose, for sim-
plicity, that all condition attributes in C and all decision attributes in D are criteria,
and that C and D are semantically correlated.

574 R. Słowiński et al.

Let≻q be a weak preference relation on U (often called outranking) representing
a preference on the set of objects with respect to criterion q∈{C∪D}. Now, xq≻qyq

means “xq is at least as good as yq with respect to criterion q”. On the one hand, we
say that x dominates y with respect to P⊆C (in brief, x P-dominates y) in the condi-
tion attribute space XP (denoted by xDPy) if xq≻qyq for all q∈P. Assuming, without
loss of generality, that the domains of the criteria are numerical (i.e. Xq ⊆R for any
q ∈C) and that they are ordered so that the preference increases with the value, we
can say that xDPy is equivalent to xq ≥ yq for all q ∈ P,P ⊆ C. Observe that for
each x ∈ XP, xDPx, i.e. P-dominance is reflexive. On the other hand, the analogous
definition holds in the decision attribute space XR (denoted by xDRy), where R⊆D.

The dominance relations xDPy and xDRy (P⊆C and R⊆D) are directional state-
ments, where x is a subject and y is a referent.

If x ∈ XP is the referent, then one can define a set of objects y ∈ XP dominating
x, called the P-dominating set (denoted by D+

P (x)) and defined as

D+
P (x) = {y ∈U : yDPx}.

If x ∈ XP is the subject, then one can define a set of objects y ∈ XP dominated by
x, called the P-dominated set (denoted by D+

P (x)) and defined as

D+
P (x) = {y ∈U : xDPy}.

P-dominating sets D+
P (x) and P-dominated sets D+

P (x) correspond to positive and
negative dominance cones in XP, with the origin x.

With respect to the decision attribute space XR (where R ⊆ D), the R-dominance
relation enables us to define the following sets:

Cl≥x
R = {y ∈U : yDRx}, Cl≤x

R = {y ∈U : xDRy}.

We denote by Cltq = {x ∈ XD : xq = t = q} the decision class corresponding to

q ∈ D. Cl≥x
R is called the upward union of classes and Cl≤x

R is the downward union
of classes. If x∈Cl≥x

R , then x belongs to class Cltq , xq = tq, or better, on each decision

attribute q∈R. On the other hand, if x∈Cl≤x
R , then x belongs to class Cltq , xq = tq, or

worse, on each decision attribute q∈R. The downward and upward unions of classes
correspond to the positive and negative dominance cones in XR, respectively.

In this case, the granules of knowledge are open sets in XP and XR defined by
dominance cones D+

P (x), D+
P (x) (P⊆C) and Cl≥x

R , Cl≤x
R (R⊆D), respectively. Then,

classification patterns to be discovered are functions representing granules Cl≥x
R ,

Cl≤x
R by granules D+

P (x), D+
P (x), respectively, in the condition attribute space XP,

for any P⊆C and R ⊆D and for any x ∈ XP.
In both cases above, the functions are sets of decision rules.

19 Rough-Set-Based Decision Support 575

19.4 The Dominance-Based Rough Set Approach

19.4.1 Granular Computing with Dominance Cones

When discovering classification patterns, a set D of decision attributes is, usually, a
singleton, D = {d}. Let us take this assumption for further presentation, although it
is not necessary for the DRSA. The decision attribute d makes a partition of U into
a finite number of classes, Cl = {Clt , t = 1, . . . ,n}. Each x ∈U belongs to one and
only one class, Clt ∈ Cl. The upward and downward unions of classes boil down,
respectively, to

Cl≥t =
⋃
s≥t

Cls

Cl≤t =
⋃
s≤t

Cls

where t = 1, . . . ,n. Notice that for t = 2, . . . ,n we have Cl≤n =U −Cl≤t−1, i.e. all the
objects not belonging to class Clt or better, belong to class Clt−1 or worse.

Let us explain how the rough set concept has been generalized to the DRSA in
order to enable granular computing with dominance cones (for more details, see
Greco et al. 1998a, 1999b, 2000d, 2001a, 2002b; Slowinski et al. 2009, 2000).

Given a set of criteria, P ⊆ C, the inclusion of an object x ∈ U to the upward
union of classes Cl≥t , t = 2, . . . ,n, is inconsistent with the dominance principle if
one of the following conditions holds:

• x belongs to class Clt or better but it is P-dominated by an object y belonging to
a class worse than Clt , i.e. x ∈Cl≥t but D+

P (x)∩Cl≤t−1
= /0,
• x belongs to a worse class than Clt but it P-dominates an object y belonging to

class Clt or better, i.e. x /∈Cl≥t but D+
P (x)∩Cl≥t
= /0.

If, given a set of criteria P⊆C, the inclusion of x ∈U to Cl≥t , where t = 2, . . . ,n, is
inconsistent with the dominance principle, we say that x belongs to Cl≥t with some
ambiguity. Thus, x belongs to Cl≥t without any ambiguity with respect to P ⊆ C,
if x ∈ Cl≥t and there is no inconsistency with the dominance principle. This means
that all objects P-dominating x belong to Cl≥t , i.e. D+

P (x)⊆Cl≥t . Geometrically, this
corresponds to the inclusion of the complete set of objects contained in the positive
dominance cone originating in x, in the positive dominance cone Cl≥t originating
in Clt .

Furthermore, x possibly belongs to Cl≥t with respect to P ⊆C if one of the fol-
lowing conditions holds:

• According to decision attribute d, x belongs to Cl≥t ,
• According to decision attribute d, x does not belong to Cl≥t , but it is inconsistent

in the sense of the dominance principle with an object y belonging to Cl≥t .

In terms of ambiguity, x possibly belongs to Cl≥t with respect to P ⊆ C, if x
belongs to Cl≥t with or without any ambiguity. Due to the reflexivity of the P-
dominance relation DP, the above conditions can be summarized as follows:

576 R. Słowiński et al.

x possibly belongs to class Clt or better, with respect to P ⊆ C, if among the ob-
jects P-dominated by x there is an object y belonging to class Clt or better, i.e.
D+

P (x)∩Cl≥t
= /0. Geometrically, this corresponds to the non-empty intersection of
the set of objects contained in the negative dominance cone originating in x, with
the positive dominance cone Cl≥t originating in Clt .

For P⊆C, the set of all objects belonging to Cl≥t without any ambiguity consti-
tutes the P-lower approximation of Cl≥t , denoted by PCl≥t , and the set of all objects
that possibly belong to Cl≥t constitutes the P-upper approximation of Cl≥t , denoted
by P(Cl≥t). More formally, we can say that

P(Cl≥t) = {x ∈U : D+
P (x)⊆Cl≥t },

P(Cl≥t) = {x ∈U : D−
P (x)∩Cl≥t
= /0},

where t = 1, . . . ,n. Analogously, one can define the P-lower approximation and the
P-upper approximation of Cl≤t as follows:

P(Cl≤t) = {x ∈U : D−
P(x) ⊆Cl≤t },

P(Cl≤t) = {x ∈U : D+
P(x)∩Cl≤t
= /0},

where t = 1, . . . ,n. The P-lower and P-upper approximations so defined satisfy the
following inclusion properties for each t ∈ {1, . . . ,n} and for all P⊆C:

P(Cl≥t)⊆Cl≥t ⊆ P(Cl≥t),

P(Cl≤t)⊆Cl≤t ⊆ P(Cl≤t).

All the objects belonging to Cl≥t and Cl≤t with some ambiguity constitute the P-
boundary of Cl≥t and Cl≤t , denoted by BnP(Cl≥t) and BnP(Cl≤t), respectively. They
can be represented, in terms of upper and lower approximations, as follows:

BnP(Cl≥t) = P(Cl≥t)−P(Cl≥t),

BnP(Cl≤t) = P(Cl≤t)−P(Cl≤t),

where t = 1, . . . ,n. The P-lower and P-upper approximations of the unions of classes
Cl≥t and Cl≤t have an important complementarity property. It says that if object x
belongs without any ambiguity to class Clt or better, then it is impossible that it
could belong to class Clt−1 or worse, i.e. P(Cl≥t) =U −P(Cl≤t−1), t = 2, . . . ,n.

Due to the complementarity property, BnP(Cl≥t) = BnP(Cl≤t−1), for t = 2, . . . ,n,
which means that if x belongs with ambiguity to class Clt or better, then it also
belongs with ambiguity to class Clt−1 or worse.

From the knowledge discovery point of view, P-lower approximations of unions
of classes represent certain knowledge provided by criteria from P ⊆ C, while P-
upper approximations represent possible knowledge and the P-boundaries contain
doubtful knowledge provided by the criteria from P⊆C.

19 Rough-Set-Based Decision Support 577

The above definitions of rough approximations are based on a strict application
of the dominance principle. However, when defining non-ambiguous objects, it is
reasonable to accept a limited proportion of negative examples, particularly for large
data tables. This extended version of the DRSA is called the Variable Consistency
DRSA (VC-DRSA) model (Greco et al. 2001f).

For any P⊆C, we say that x∈U belongs to Cl≥t with no ambiguity at consistency
level l∈(0, 1], if x ∈Cl≥t and at least l∗100 % of all objects y ∈Udominating x with
respect to P also belong to Cl≥t , i.e.

∣

∣

∣
D+

P (x)∩Cl≥t
∣

∣

∣

∣

∣D+
P (x)

∣

∣

≥ l.

The term
∣

∣

∣
D+

P (x)∩Cl≥t
∣

∣

∣

/

∣

∣D+
P (x)

∣

∣ is called rough membership and can be inter-

preted as conditional probability Pr
(

y ∈Cl≥t |y ∈D+
P (x)

)

. The level l is called the

consistency level because it controls the degree of consistency between objects qual-
ified as belonging to Cl≥t without any ambiguity. In other words, if l < 1, then at
most (1− l) ∗ 100 % of all objects y ∈ U dominating x with respect to P do not
belong to Cl≥t and thus contradict the inclusion of x in Cl≥t .

Analogously, for any P⊆C we say that x ∈U belongs to Cl≤t with no ambiguity
at consistency level l∈(0, 1], if x ∈Cl≤t and at least l∗100 % of all the objects y ∈U
dominated by x with respect to P also belong to Cl≤t , i.e.

∣

∣

∣
D−

P (x)∩Cl≤t
∣

∣

∣

∣

∣D−
P (x)

∣

∣

≥ l.

The rough membership
∣

∣

∣
D−

P (x)∩Cl≤t
∣

∣

∣

/

∣

∣D−
P (x)

∣

∣ can be interpreted as conditional

probability Pr
(

y ∈Cl≤t |y ∈ D−
P (x)

)

. Thus, for any P⊆C, each object x∈U is either

ambiguous or non-ambiguous at consistency level l with respect to the upward union
Cl≥t (t = 2, . . . ,n) or with respect to the downward union Cl≤t (t = 1, . . . ,n− 1).

The concept of non-ambiguous objects at some consistency level l leads naturally
to the definition of P-lower approximations of the unions of classes Cl≥t and Cl≤t
which can be formally presented as follows:

Pl
(

Cl≥t
)

=

⎧

⎨

⎩

x ∈Cl≥t :

∣

∣

∣
D+

P (x)∩Cl≥t
∣

∣

∣

∣

∣D+
P (x)

∣

∣

≥ l

⎫

⎬

⎭

,

Pl
(

Cl≤t
)

=

⎧

⎨

⎩

x ∈Cl≤t :

∣

∣

∣
D−

P (x)∩Cl≤t
∣

∣

∣

∣

∣D−
P (x)

∣

∣

≥ l

⎫

⎬

⎭

.

578 R. Słowiński et al.

Given P ⊆C and consistency level l, we can define the P-upper approximations of

Cl≥t and Cl≤t , denoted by P
l
(

Cl≥t
)

and P
l
(

Cl≤t
)

, respectively, by complementation

of Pl
(

Cl≤t−1

)

and Pl
(

Cl≥t+1

)

with respect to U as follows:

P
l (

Cl≥t
)

=U −Pl
(

Cl≤t−1

)

,

P
l (

Cl≤t
)

=U −Pl
(

Cl≥t+1

)

.

P
l
(

Cl≥t
)

can be interpreted as the set of all the objects belonging to Cl≥t , which

are possibly ambiguous at consistency level l. Analogously, P
l
(

Cl≤t
)

can be inter-

preted as the set of all the objects belonging to Cl≤t , which are possibly ambiguous
at consistency level l. The P-boundaries (P-doubtful regions) of Cl≥t and Cl≤t are
defined as

BnP(Cl≥t) = P
l (

Cl≥t
)

−Pl
(

Cl≥t
)

,

BnP(Cl≤t) = P
l (

Cl≤t
)

−Pl
(

Cl≤t
)

,

where t = 1, . . . ,n. The VC-DRSA model provides some degree of flexibility in as-
signing objects to lower and upper approximations of the unions of decision classes.
It can easily be demonstrated that for 0 < l′ < l ≤ 1 and t = 2, . . . ,n,

Pl
(

Cl≥t
)

⊆ Pl′ (Cl≥t
)

and P
l′ (

Cl≥t
)

⊆ P
l (

Cl≥t
)

.

The VC-DRSA model is inspired by Ziarko’s model of the variable-precision rough
set approach (Ziarko 1993, 1998). However, there is a significant difference in

the definition of rough approximations because Pl
(

Cl≥t
)

and P
l
(

Cl≥t
)

are com-

posed of non-ambiguous and ambiguous objects at the consistency level l, respec-

tively, while Ziarko’s Pl (Clt) and P
l
(Clt) are composed of P-indiscernibility sets

such that at least l∗100 % of these sets are included in Clt or have an non-empty
intersection with Clt , respectively. If one would like to use Ziarko’s definition of
variable-precision rough approximations in the context of multiple-criteria classifi-
cation, then the P-indiscernibility sets should be substituted by P-dominating sets
D+

P (x). However, then the notion of ambiguity that naturally leads to the general
definition of rough approximations (see Slowinski and Vanderpooten 2000) loses its
meaning. Moreover, a bad side effect of the direct use of Ziarko’s definition is that

a lower approximation Pl
(

Cl≥t
)

may include objects y assigned to Clh, where h is

much less than t, if y belongs to D+
P (x), which was included in Pl

(

Cl≥t
)

. When

the decision classes are preference ordered, it is reasonable to expect that objects
assigned to far worse classes than the considered union are not counted to the lower
approximation of this union.

19 Rough-Set-Based Decision Support 579

The VC-DRSA model presented above has been generalized by Greco et al.
(2008b) and Blaszczynski et al. (2009). The generalized model applies two types
of consistency generalizing the concept of rough membership in the definition of
lower approximations:

• Gain-type consistency measures f P
≥t(x), f P

≤t (x):

Pα≥t

(

Cl≥t
)

=
{

x ∈Cl≥t : f P
≥t(x)≥ α≥t

}

,

Pα≤t

(

Cl≤t
)

=
{

x ∈Cl≤t : f P
≤t(x)≥ α≤t

}

• Cost-type consistency measures gP
≥t(x),g

P
≤t(x):

Pβ≥t

(

Cl≥t
)

=
{

x ∈Cl≥t : gP
≥t(x)≤ β≥t

}

,

Pβ≤t

(

Cl≤t
)

=
{

x ∈Cl≤t : gP
≤t(x)≤ β≤t

}

where α≥t ,α≤t ,β≤t ,β≤t are threshold values on the consistency measures which are
conditioning the inclusion of object x in the P-lower approximation of Cl≥t , or Cl≤t .
To be concordant with the rough set philosophy, consistency measures should enjoy
some monotonicity properties (see Table 19.3). A consistency measure is monotonic
if it does not decrease (or does not increase) when

• (m1) the set of attributes is growing,
• (m2) the set of objects is growing,
• (m3) the union of ordered classes is growing,
• (m4) x improves its evaluation, so that it dominates more objects.

The ε-consistency measures which enjoy at least three from among four mono-
tonicity properties are defined as follows:

εP
≥t(x) =

∣

∣

∣
D+

P ∩¬Cl≥t
∣

∣

∣

∣

∣

∣
¬Cl≥t

∣

∣

∣

, εP
≤t(x) =

∣

∣

∣
D−

P ∩¬Cl≤t
∣

∣

∣

∣

∣

∣
¬Cl≤t

∣

∣

∣

.

They can be interpreted as estimates of conditional probability, respectively:

Pr
(

y ∈D+
P (x)|y ∈ ¬Cl≥t

)

, Pr
(

y ∈ D−
P (x)|y ∈ ¬Cl≤t

)

.

They say how far the implications y ∈ D+
P (x)⇒ y ∈Cl≥t ,y ∈ D−

P (x)⇒ y ∈Cl≤t are
not supported by the data.

For every P⊆C, the objects are consistent in the sense of the dominance principle
with all upward and downward unions of classes being P-correctly classified. For
every P ⊆C, the quality of approximation of classification Cl by the set of criteria
P is defined as the ratio between the number of P-correctly classified objects and
the number of all the objects in the data sample set. Since the objects which are

580 R. Słowiński et al.

Table 19.3 Monotonicity properties of consistency measures (Blaszczynski et al. 2009)

Consistency measure (m1) (m2) (m3) (m4)
µ (rough membership) No Yes Yes No
µ′ No Yes Yes Yes
B (Bayesian) No No No No
β No Yes Yes Yes
ε Yes Yes No Yes
ε∗ Yes Yes Yes Yes
ε′ Yes Yes Yes Yes
µ̄ Yes Yes Yes Yes

P−correctly classified are those that do not belong to any P-boundary of unions
Cl≥t and Cl≤t , t = 1, . . . ,n, the quality of approximation of classification Cl by set of
criteria P can be written as

γP(Cl) =

∣

∣

(

U−
(⋃

t∈{1,...,n}BnP(Cl≤t)
)

∪
(⋃

t∈{1,...,n}BnP(Cl≥t)
))∣

∣

∣

∣U
∣

∣

=

∣

∣

(

U−
(⋃

t∈{1,...,n}BnP(Cl≥t)
))∣

∣

∣

∣U
∣

∣

.

γP (Cl) can be seen as a measure of the quality of knowledge that can be extracted
from the data table, where P is the set of criteria and Cl is the considered
classification.

Each minimal subset P ⊆ C such that γP (Cl) = γC (Cl) is called a reduct of Cl

and is denoted by REDCl. Note that a decision table can have more than one reduct.
The intersection of all reducts is called the core and is denoted by CORECl . Criteria
from CORECl cannot be removed from the data sample set without deteriorating the
knowledge to be discovered. This means that in set C there are three categories of
criteria:

• Indispensable criteria included in the core,
• Exchangeable criteria included in some reducts but not in the core,
• Redundant criteria being neither indispensable nor exchangeable, thus not in-

cluded in any reduct.

Note that reducts are minimal subsets (with respect to inclusion) of attributes and
criteria conveying the relevant knowledge contained in the learning sample. This
knowledge is relevant for the explanation of patterns in a given decision table, but
not necessarily for prediction.

It has been shown in Greco et al. (2001d) that the quality of classification satisfies
properties of set functions which are called fuzzy measures. For this reason, we
can use the quality of classification for the calculation of indices which measure
the relevance of particular attributes and/or criteria, in addition to the strength of
interactions between them. The useful indices are: the value index and interaction
indices of Shapley and Banzhaf; the interaction indices of Murofushi-Soneda and

19 Rough-Set-Based Decision Support 581

Roubens; and the Möbius representation. All these indices can help to assess the
interaction between the considered attributes and criteria, and can help to choose
the best reduct.

19.4.2 Stochastic DRSA

From a probabilistic point of view, the assignment of object xi to “at least” class t
can be made with probability Pr(yi ≥ t|xi), where yi is classification decision for xi,
t = 1, . . . ,n. This probability is supposed to satisfy the usual axioms of probability:
Pr(yi ≥ t|xi) = 1,Pr(yi ≤ t|xi) = 1− Pr(yi ≥ t + 1|xi), and Pr(yi > t|xi) < Pr(yi >
t ′|xi) for t > t ′. These probabilities are unknown but can be estimated from data.

For each class t = 2, . . . ,n, we have a binary problem of estimating the condi-
tional probabilities Pr(yi ≥ t|xi) ,Pr (yi < t|xi). It can be solved by isotonic regres-
sion (Kotlowski et al. 2008). Let yit = 1 if yi ≥ t, otherwise yit = 0. Let also pit be
the estimate of the probability Pr(yi ≥ t|xi). Then, choose estimates p∗it which min-
imize the squared distance to the class assignment yit , subject to the monotonicity
constraints

Minimize :
|U|
∑

i=1
(yit − pit)

2

subject to xi ≻ x j → pit ≥ p jt for all xi,x j ∈U,

where xi # x j means that xi dominates x j. Then, stochastic α-lower approximations
for classes “at least t” and “at most t−1” can be defined as

Pα
(

Cl≥t
)

= {xi ∈U : Pr(yi ≥ t|xi)≥ α}
Pα
(

Cl≤t−1

)

= {xi ∈U : Pr(yi < t|xi)≥ α} .

Replacing the unknown probabilities Pr(yi ≥ t|xi) ,Pr(yi < t|xi) by their estimates
p∗it obtained from isotonic regression, we get

Pα
(

Cl≥t
)

= {xi ∈U : p∗it ≥ α}
Pα
(

Cl≤t−1

)

= {xi ∈U : p∗it ≤ 1−α}

where parameter α ∈ [0.5,1] controls the allowed amount of inconsistency.
Solving isotonic regression requires O(|U |4) time, but a good heuristic needs

only O(|U |2).
In fact, as shown by Kotlowski et al. (2008), we don’t really need to know the

probability estimates to obtain stochastic lower approximations. We only need to
know for which object xi, p∗it ≥ α and for which xi, p∗it ≤ 1−α. This can be found
by solving a linear programming (reassignment) problem.

582 R. Słowiński et al.

As before, yit = 1 if yi ≥ t, otherwise yit = 0. Let dit be the decision variable
which determines a new class assignment for object xi. Then, reassign objects from
union of classes indicated by yit to union of classes indicated by d∗it , such that the
new class assignments are consistent with the dominance principle, where d∗it results
from solving the following linear programming problem:

Minimize:
|U|
∑

i=1
wyit |yit − dit |

subject to xi ≻ x j → dit ≥ d jt for all xi,x j ∈U.

Due to unimodularity of the constraint matrix, the optimal solution of this linear
programming problem is always integer, i.e. d∗it ∈ {0,1}. For all objects consistent
with the dominance principle, d∗it = yit . If we set w0 = α and w1 = α−1, then the
optimal solution d∗it satisfies: d∗it = 1 ⇔ p∗it ≥ α. If we set w0 =1−α and w1 = α,
then the optimal solution d∗it satisfies: d∗it = 0⇔ p∗it ≤ 1−α.

For each t = 2, . . . ,n, solving the reassignment problem twice, we can obtain

the lower approximations Pα
(

Cl≥t
)

,Pα
(

Cl≤t−1

)

without knowing the probability

estimates!

19.4.3 Induction of Decision Rules

The dominance-based rough approximations of upward and downward unions of
classes can serve to induce a generalized description of the objects contained in the
decision table in terms of “if . . . , then . . . ” decision rules. For a given upward or
downward union of classes, Cl≥t or Cl≤s , the decision rules induced under a hypoth-
esis that objects belonging to P(Cl≥t) or P(Cl≤s) are positive and all the others are
negative suggest an assignment to “class Clt or better”, or to “class Cls or worse”,
respectively. On the other hand, the decision rules induced under a hypothesis that
objects belonging to the intersection P(Cl≤s)∩P(Cl≥t) are positive and all the others
are negative suggest an assignment to some classes between Cls and Clt (s < t).

In the case of preference ordered data it is meaningful to consider the following
five types of decision rules:

1. Certain D≥-decision rules. These provide lower profile descriptions for objects
belonging to Cl≥t without ambiguity: if xq1#q1 rq1 and xq2#q2 rq2 and . . . xqp #qp

rqp, then x ∈ Cl≥t , where for each wq,zq ∈ Xq, “wq #q zq” means “wq is at least
as good as zq”.

2. Possible D≥-decision rules. Such rules provide lower profile descriptions for
objects belonging to Cl≥t with or without any ambiguity: if xq1 #q1 rq1 and

xq2 #q2 rq2 and . . . xqp #qp rqp, then x possibly belongs to Cl≥t .
3. Certain D≤-decision rules. These give upper profile descriptions for objects be-

longing to Cl≤t without ambiguity: if xq1 �q1 rq1 and xq2 �q2 rq2 and . . . xqp �qp

rqp, then x ∈ Cl≤t , where for each wq,zq ∈ Xq, “wq �q zq” means “wq is at most
as good as zq”.

19 Rough-Set-Based Decision Support 583

4. Possible D≤-decision rules. These provide upper profile descriptions for objects
belonging to Cl≤t with or without any ambiguity: if xq1 �q1 rq1 and xq2 �q2 rq2

and xqp �qp rqp, then x possibly belongs to Cl≤t .
5. Approximate D≥≤-decision rules. These represent simultaneously lower and up-

per profile descriptions for objects belonging to Cls ∪Cls+1 ∪ . . . ∪Clt with-
out the possibility of discerning the actual class: if xq1 #q1 rq1 and . . .xqk #qk

rqk and xqk+1 �qk+1 rqk+1 and . . . xqp �qp rqp, then x ∈Cls∪Cls+1∪ . . .∪Clt .

In the left-hand side of a D≥≤-decision rule we can have xq #q rq and xq �q r′q,
where rq ≤ r′q, for the same q ∈ C. Moreover, if rq = r′q, the two conditions boil
down to xq ∼q rq, where for each wq,zq ∈ Xq, then wq ∼q zq means “wq is indifferent
to zq”.

A minimal rule is an implication where we understand that there is no other
implication with a left hand side which has at least the same weakness (which means
that it uses a subset of elementary conditions and/or weaker elementary conditions)
and which has a right hand side that has at least the same strength (which means,
a D≥- or a D≤-decision rule assigning objects to the same union or sub-union of
classes, or a D≥≤-decision rule assigning objects to the same or larger set of classes).

The rules of type (1) and (3) represent certain knowledge extracted from the data
table, while the rules of type (2) and (4) represent possible knowledge. Rules of type
(5) represent doubtful knowledge.

The rules of type (1) and (3) are exact if they do not cover negative examples;
they are probabilistic, otherwise. In the latter case, each rule is characterized by a
confidence ratio, representing the probability that an object matching the left-hand
side of the rule also matches its right-hand side. Probabilistic rules concord to the
VC-DRSA model mentioned above.

We will now comment upon the application of decision rules to some objects
described by criteria from C. When applying D≥-decision rules to an object x, it
is possible that x either matches the left hand side of at least one decision rule or
it does not. In the case of at least one such match, it is reasonable to conclude
that x belongs to the lowest class resulting from intersection of all the right-hand
sides of the rules covering x. More precisely, if x matches the left-hand side of rules
ρ1, ρ2, . . . ,ρm, having right-hand sides x ∈ Cl≥t1, x ∈ Cl≥t2, . . . ,x ∈ Cl≥tm, then x is
assigned to class Clt , where t = max{t1, t2, . . . , tm}. In the case of no matching,
we can conclude that x belongs to Cl1, i.e. to the worst class, since no rule with a
right-hand side suggesting a better classification of x is covering this object.

Analogously, when applying D≤-decision rules to the object x, we can conclude
that x belongs either to the highest class resulting from the intersection of all the
right-hand sides of the rules covering x or to class Cln, i.e. to the best class, when
x is not covered by any rule. More precisely, if x matches the left-hand side of
rules ρ1,ρ2, . . . ,ρm, having right-hand sides x ∈ Cl≤t1, x ∈ Cl≤t2, . . . ,x ∈ Cl≤tm, then x
is assigned to class Clt , where t = min{t1, t2, . . . , tm}. In the case of no matching,
it is concluded that x belongs to the best class Cln because no rule with a right hand
side suggesting a worse classification of x is covering this object.

584 R. Słowiński et al.

Finally, when applying D≥≤-decision rules to x, it is possible to conclude that x
belongs to the union of all the classes suggested in the right-hand side of the rules
covering x.

A new classification scheme has been proposed by Blaszczynski et al. (2007).
Let φ1 → ψ1, . . . ,φk → ψk, be the rules matching object x. Then, Rt(x) = { j : Clt ∈
ψ j, j = 1, . . . ,k} denotes the set of rules matching x, which are recommending
assignment of object x to a union including class Clt , and R¬t(x) = { j : Clt /∈ ψ j,
j = 1, . . . ,k} denotes the set of rules matching x, which are not recommending as-
signment of object x to a union including class Clt .

∥

∥φ j

∥

∥,
∥

∥ψ j

∥

∥ are sets of objects
with property φ j and ψ j , respectively, j = 1, . . . ,k. For a classified object x, one has
to calculate the score for each candidate class:

score(Clt ,x) = score+ (Clt ,x)− score− (Clt ,x)

where

score+ (Clt ,x) =

∣

∣

∣

∣

∣

⋃
j∈Rt(x)

(
∥

∥φ j

∥

∥∩Clt
)

∣

∣

∣

∣

∣

2

∣

∣

∣

∣

∣

⋃
j∈Rt(x)

∥

∥φ j

∥

∥

∣

∣

∣

∣

∣

×|Clt |

and

score− (Clt ,x) =

∣

∣

∣

∣

∣

⋃
j∈R¬t(x)

(
∥

∥φ j

∥

∥∩
∥

∥ψ j

∥

∥

)

∣

∣

∣

∣

∣

2

∣

∣

∣

∣

∣

⋃
j∈R¬t(x)

∥

∥φ j

∥

∥

∣

∣

∣

∣

∣

×
∣

∣

∣

∣

∣

⋃
j∈R¬t (x)

∥

∥ψ j

∥

∥

∣

∣

∣

∣

∣

.

score+ (Clt ,x) and score− (Clt ,x) can be interpreted in terms of conditional proba-
bility as a product of confidence and coverage of the matching rules:

score+ (Clt ,x) = Pr
({

φ j : j ∈ Rt(x)
}

|Clt
)

×Pr
(

Clt |
{

φ j : j ∈ Rt(x)
})

score− (Clt ,x) = Pr
({

φ j : j ∈ R¬t(x)
}

|¬Clt
)

×Pr
(

¬Clt |
{

φ j : j ∈ R¬t(x)
})

.

The recommendation of the univocal classification x→Clt is such that

Clt = arg max
t∈{1,...,n}

[score(Clt ,x)] .

A set of decision rules is complete if it is able to cover all objects from the de-
cision table in such a way that consistent objects are re-classified to their original
classes and inconsistent objects are classified to clusters of classes which refer to
this inconsistency. Each set of decision rules that is complete and non-redundant
is called minimal. Note that an exclusion of any rule from this set makes it non-
complete.

19 Rough-Set-Based Decision Support 585

In the case of the VC-DRSA, the decision rules are induced from the P-lower
approximations whose composition is controlled by the user-specified consistency
level l. Consequently, the value of confidence α for the rule should be constrained
from the bottom. It is reasonable to require that the smallest accepted confidence
level of the rule should not be lower than the currently used consistency level l.
Indeed, in the worst case, some objects from the P-lower approximation may create
a rule using all the criteria from P thus giving a confidence α≥ l.

Observe that the syntax of decision rules induced from dominance-based rough
approximations uses the concept of dominance cones: each condition profile is a
dominance cone in XC, and each decision profile is a dominance cone in XD. In both
cases the cone is positive for D≥-rules and negative for D≤-rules.

Also note that dominance cones which correspond to condition profiles can orig-
inate in any point of XC, without the risk of being too specific. Thus, in contrast to
granular computing based on an indiscernibility (or similarity) relation, in the case
of granular computing based on dominance, the condition attribute space XC need
not be discretized (Greco et al. 2007, 2008a, 2009).

Some procedures for induction of rules from dominance-based rough approxima-
tions have been proposed by Greco et al. (2001g) and Blaszczynski et al. (2010b).

The utility of decision rules is threefold: they explain (summarize) decisions
made on objects from the dataset; they can be used to make decisions with respect to
new (unseen) objects which are matching conditions of some rules; and they make
it possible to build up a strategy of intervention (Greco et al. 2005b). The attractive-
ness of particular decision rules can be measured in many different ways. However,
the most convincing measures are Bayesian confirmation measures enjoying a spe-
cial monotonicity property, as reported in Greco et al. (2004b).

In Giove et al. (2002), a new methodology for the induction of monotonic deci-
sion trees from dominance-based rough approximations of preference-ordered deci-
sion classes has been proposed.

It is finally worth noting that several algebraic models have been proposed for the
DRSA (Greco et al. 2010a)—the algebraic structures are based on a bipolar disjoint
representation (positive and negative) of the interior and exterior of a concept. These
algebra models give elegant representations of basic properties of Dominance-Based
Rough Sets. Moreover, a topology for the DRSA in a bitopological space has been
proposed by Greco et al. (2010b).

19.4.4 An Illustrative Example

To illustrate the application of the DRSA to multicriteria classification, we will use
a part of some data provided by a Greek industrial bank ETEVA which finances in-
dustrial and commercial firms in Greece (Slowinski and Zopounidis 1995). A sam-
ple composed of 39 firms has been chosen for the study in co-operation with the
ETEVA’s financial manager. The manager has classified the selected firms into three
classes of bankruptcy risk. The sorting decision is represented by decision attribute
d making a trichotomic partition of the 39 firms:

586 R. Słowiński et al.

• d = A means “acceptable”
• d = U means “uncertain”
• d = NA means “non-acceptable”.

The partition is denoted by Cl = {ClA,ClU,ClNA} and, obviously, class ClA is
better than ClU which is better than ClNA.

The firms were evaluated using the following 12 criteria (↑ means preference
increasing with value and ↓ means preference decreasing with value):

• A1 = earnings before interests and taxes/total assets, ↑
• A2 = net income/net worth, ↑
• A3 = total liabilities/total assets, ↓
• A4 = total liabilities/cash flow, ↓
• A5 = interest expenses/sales, ↓
• A6 = general and administrative expense/sales, ↓
• A7 = managers’ work experience, ↑ (very low = 1, low = 2, medium = 3, high = 4,

very high = 5)
• A8 = firm’s market niche/position, ↑ (bad = 1, rather bad = 2, medium = 3,

good = 4, very good = 5)
• A9 = technical structure/facilities, ↑ (bad = 1, rather bad = 2, medium = 3,

good = 4, very good = 5)
• A10 = organization/personnel, ↑ (bad = 1, rather bad = 2, medium = 3, good = 4,

very good = 5)
• A11 = special competitive advantage of firms, ↑ (low = 1, medium = 2, high = 3,

very high = 4)
• A12 = market flexibility, ↑ (very low = 1, low = 2, medium = 3, high = 4,

very high = 5).

The first six criteria are cardinal (financial ratios) and the last six are ordinal. The
data table is presented in Table 19.4.

The main questions to be answered by the knowledge discovery process were the
following:

• Is the information contained in Table 19.4 consistent?
• What are the reducts of criteria ensuring the same quality of approximation of

the multicriteria classification as the whole set of criteria?
• What decision rules can be extracted from Table 19.4?
• What are the minimal sets of decision rules?

We will answer these questions using the DRSA. The first result from this ap-
proach is a discovery that the financial data matrix is consistent for the complete set
of criteria C. Therefore, the C-lower and C-upper approximations of Cl≤NA, Cl≤U and
Cl≥U , Cl≥A are the same. In other words, the quality of approximation of all upward
and downward unions of classes, as well as the quality of classification, is equal
to 1.

The second discovery is a set of 18 reducts of criteria ensuring the same quality
of classification as the whole set of 12 criteria:

19 Rough-Set-Based Decision Support 587

Table 19.4 Financial data table
Firm A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 d
F1 16.4 14.5 59.82 2.5 7.5 5.2 5 3 5 4 2 4 A
F2 35.8 67.0 64.92 1.7 2.1 4.5 5 4 5 5 4 5 A
F3 20.6 61.75 75.71 3.6 3.6 8.0 5 3 5 5 3 5 A
F4 11.5 17.1 57.1 3.8 4.2 3.7 5 2 5 4 3 4 A
F5 22.4 25.1 49.8 2.1 5.0 7.9 5 3 5 5 3 5 A
F6 23.9 34.5 48.9 1.7 2.5 8.0 5 3 4 4 3 4 A
F7 29.9 44.0 57.8 1.8 1.7 2.5 5 4 4 5 3 5 A
F8 8.7 5.4 27.4 3.3 4.5 4.5 5 2 4 4 1 4 A
F9 25.7 29.7 46.8 1.7 4.6 3.7 4 2 4 3 1 3 A
F10 21.2 24.6 64.8 3.7 3.6 8.0 4 2 4 4 1 4 A
F11 18.32 31.6 69.3 4.4 2.8 3.0 4 3 4 4 3 4 A
F12 20.7 19.3 19.7 0.7 2.2 4.0 4 2 4 4 1 3 A
F13 9.9 3.5 53.1 4.5 8.5 5.3 4 2 4 4 1 4 A
F14 10.4 9.3 80.9 9.4 1.4 4.1 4 2 4 4 3 3 A
F15 17.7 19.8 52.8 3.2 7.9 6.1 4 4 4 4 2 5 A
F16 14.8 15.9 27.94 1.3 5.4 1.8 4 2 4 3 2 3 A
F17 16.0 14.7 53.5 3.9 6.8 3.8 4 4 4 4 2 4 A
F18 11.7 10.01 42.1 3.9 12.2 4.3 5 2 4 2 1 3 A
F19 11.0 4.2 60.8 5.8 6.2 4.8 4 2 4 4 2 4 A
F20 15.5 8.5 56.2 6.5 5.5 1.8 4 2 4 4 2 4 A
F21 13.2 9.1 74.1 11.21 6.4 5.0 2 2 4 4 2 3 U
F22 9.1 4.1 44.8 4.2 3.3 10.4 3 4 4 4 3 4 U
F23 12.9 1.9 65.02 6.9 14.01 7.5 4 3 3 2 1 2 U
F24 5.9 −27.7 77.4 −32.2 16.6 12.7 3 2 4 4 2 3 U
F25 16.9 12.4 60.1 5.2 5.6 5.6 3 2 4 4 2 3 U
F26 16.7 13.1 73.5 7.1 11.9 4.1 2 2 4 4 2 3 U
F27 14.6 9.7 59.5 5.8 6.7 5.6 2 2 4 4 2 4 U
F28 5.1 4.9 28.9 4.3 2.5 46.0 2 2 3 3 1 2 U
F29 24.4 22.3 32.8 1.4 3.3 5.0 2 3 4 4 2 3 U
F30 29.7 8.6 41.8 1.6 5.2 6.4 2 3 4 4 2 3 U
F31 7.3 −64.5 67.5 −2.2 30.1 8.7 3 3 4 4 2 3 NA
F32 23.7 31.9 63.6 3.5 12.1 10.2 3 2 3 4 1 3 NA
F33 18.9 13.5 74.5 10.0 12.0 8.4 3 3 3 4 3 4 NA
F34 13.9 3.3 78.7 25.5 14.7 10.1 2 2 3 4 3 4 NA
F35 −13.3 −31.1 63.0 −10.0 21.2 23.1 2 1 4 3 1 2 NA
F36 6.2 −3.2 46.1 5.1 4.8 10.5 2 1 3 3 2 3 NA
F37 4.8 −3.3 71.9 34.6 8.6 11.6 2 2 4 4 2 3 NA
F38 0.1 −9.6 42.5 −20.0 12.9 12.4 1 1 4 3 1 3 NA
F39 13.6 9.1 76.0 11.4 17.1 10.3 1 1 2 1 1 2 NA

588 R. Słowiński et al.

RED1
Cl ={A1, A4, A5, A7}, RED2

Cl ={A2, A4, A5, A7},

RED3
Cl ={A3, A4, A6, A7}, RED4

Cl ={A4, A5, A6, A7},

RED5
Cl ={A4, A5, A7, A8}, RED6

Cl ={A2, A3, A7, A9},

RED7
Cl ={A1, A3, A4, A7, A9}, RED8

Cl ={A1, A5, A7, A9},

RED9
Cl ={A2, A5, A7, A9}, RED10

Cl ={A4, A5, A7, A9},

RED11
Cl ={A5, A6, A7, A9}, RED12

Cl ={A4, A5, A7, A10},

RED13
Cl ={A1, A3, A4, A7, A11}, RED14

Cl ={A2, A3, A4, A7, A11},

RED15
Cl ={A4, A5, A6, A12}, RED16

Cl ={A1, A3, A5, A6, A9, A12},

RED17
Cl ={A3, A4, A6, A11, A12}, RED18

Cl ={A1,A2,A3,A6, A9,A11,A12}.

All the 18 subsets of criteria are equally good and sufficient for the perfect
approximation of the classification performed by ETEVA’s financial manager on
the 39 firms. The core of Cl is empty (CORECl = /0) which means that no criterion
is indispensable for the approximation. Moreover, all the criteria are exchangeable
and no criterion is redundant.

The third discovery is the set of all decision rules. We obtained 74 rules describ-
ing Cl≤NA, 51 rules describing Cl≤U , 75 rules describing Cl≥U and 79 rules describing
Cl≥A .

The fourth discovery is the finding of minimal sets of decision rules. Several
minimal sets were found. One of them is shown below. The number in parenthesis
indicates the number of objects which support the corresponding rule, i.e. the rule
strength:

1. if f (x,A3)≥67.5 and f (x,A4)≥-2.2 and f (x,A6)≥8.7, then x ∈Cl≤NA, (4),
2. if f (x,A2)≤3.3 and f (x,A7)≤2, then x ∈Cl≤NA, (5),
3. if f (x,A3)≥63.6 and f (x,A7)≤3 and f (x,A9)≤3, then x ∈Cl≤NA, (4),
4. if f (x,A2)≤12.4 and f (x,A6)≥5.6, then x ∈Cl≤U , (14),
5. if f (x,A7)≤3, then x ∈Cl≤U , (18),
6. if f (x,A2)≥3.5 and f (x,A5)≤8.5, then x ∈Cl≥U , (26),
7. if f (x,A7)≥4, then x ∈Cl≥U , (21),
8. if f (x,A1)≥8.7 and f (x,A9)≥4, then x ∈Cl≥U , (27),
9. if f (x,A2)≥3.5 and f (x,A7)≥4, then x ∈Cl≥A , (20).

As the minimal set of rules is complete and composed of D≥-decision rules and
D≤-decision rules only, application of these rules to the 39 firms will result in their
exact re-classification to classes of risk.

Minimal sets of decision rules represent the most concise and non-redundant
knowledge representations. The above minimal set of 9 decision rules uses 8 criteria
and 18 elementary conditions, i.e. 3.85 % of descriptors from the data matrix.

The well-known machine discovery methods cannot deal with multicriteria clas-
sification because they do not consider preference orders in the domains of attributes
and among the classes. There are multicriteria decision analysis methods for such

19 Rough-Set-Based Decision Support 589

classification. However, they are not discovering classification patterns from data.
They simply apply a preference model, like the utility function in scoring methods
(see, for example, Thomas et al. 1992), to a set of objects to be classified. In this
sense, they are not knowledge discovery methods at all.

Comparing the DRSA to the Indiscernibility-Based Rough Set Approach, we can
notice the following differences between the two approaches. The Indiscernibility-
Based Rough Set Approach extracts knowledge about a partition of U into classes
which are not preference-ordered. The granules used for knowledge representation
are sets of objects which are indiscernible by a set of condition attributes.

In the case of the DRSA and multicriteria classification, the condition attributes
are criteria and the classes are preference-ordered. The extracted knowledge con-
cerns a collection of upward and downward unions of classes and the granules used
for knowledge representation are sets of objects defined using the dominance re-
lation. This is the main difference between the Indiscernibility-Based Rough Set
Approach and the DRSA.

There are three notable advantages of the DRSA over the Indiscernibility-Based
Rough Set Approach. The first one is the ability to handle criteria, preference-
ordered classes and inconsistencies in the set of decision examples that the
Indiscernibility-Based Rough Set Approach is simply not able to discover. Conse-
quently, the rough approximations separate the certain information from the doubt-
ful, which is taken into account in rule induction. The second advantage is the ability
to analyze a data matrix without any preprocessing of data. The third advantage lies
in the richer syntax of decision rules that are induced from rough approximations.
The elementary conditions of decision rules resulting from the DRSA use relations
from {≤,=,≥}, while those resulting from the Indiscernibility-Based Rough Set
Approach only use =. The DRSA syntax is more understandable to practitioners.
The minimal sets of decision rules are smaller than the minimal sets which result
from the Indiscernibility-Based Rough Set Approach.

19.5 The DRSA to Multicriteria Choice and Ranking

One of the very first extensions of the DRSA concerned preference-ordered data
representing pairwise comparisons (i.e. binary relations) between objects on both
condition and decision attributes (Greco et al. 1999a,b, 2000d, 2001c). Note that
while classification is based on the absolute evaluation of objects, choice and rank-
ing refer to pairwise comparisons of objects. In this case, the patterns (i.e. decision
rules) to be discovered from the data characterize a comprehensive binary relation
on the set of objects. If this relation is a preference relation and if, from among
the condition attributes, there are some criteria which are semantically correlated
with the comprehensive preference relation, then the data set (serving as the learn-
ing sample) can be considered to be preference information for a decision maker
in a multicriteria choice or ranking problem. In consequence, the comprehensive
preference relation characterized by the decision rules discovered from this data set

590 R. Słowiński et al.

can be considered as a preference model for the decision maker. It may be used to
explain the decision policy of the decision maker and to recommend a good choice
or preference ranking with respect to new objects.

Let us consider a finite set A of objects evaluated by a finite set of criteria C.
The best choice (or the preference ranking) in set A is semantically correlated with
the criteria from set C. The preference information concerning the multicriteria
choice or ranking problem is a data set in the form of a pairwise comparison ta-
ble which includes pairs of some reference objects from a subset B⊆ A×A. This is
described by preference relations on particular criteria and a comprehensive prefer-
ence relation. One such example is a weak preference relation called the outranking
relation. By using the DRSA for the analysis of the pairwise comparison table, we
can obtain a rough approximation of the outranking relation by a dominance rela-
tion. The decision rules induced from the rough approximation are then applied to
the complete set A of the objects associated with the choice or ranking. As a result,
one obtains a four-valued outranking relation on this set. In order to obtain a rec-
ommendation, it is advisable to use an exploitation procedure based on the net flow
score of the objects. We present this methodology in more detail below.

19.5.1 The Pairwise Comparison Table as Preference Information

and as a Learning Sample

A set of reference objects represents a decision problem and a decision maker can
express the preferences by pairwise comparisons. In the following, xSy will denote
the presence, while xScy denotes the absence of the outranking relation for a pair of
objects (x,y) ∈ A×A.

For each pair of reference objects (x,y) ∈ B ⊆ A× A, the decision maker can
select one of the three following possibilities:

1. Object x is at least as good as y, i.e. xSy
2. Object x is worse than y, i.e. xScy
3. The two objects are incomparable at the present stage.

A pairwise comparison table, denoted by SPCT , is then created on the basis of this
information. The first m columns correspond to the criteria from set C. The last,
i.e. the (m+ 1)th, column represents the comprehensive binary preference relation
S or Sc. The rows correspond to the pairs of objects from B. For each pair in SPCT ,
a difference between criterion values is put in the corresponding column. If the
decision maker judges that two objects are incomparable, then the corresponding
pair does not appear in SPCT .

We will define SPCT more formally. For any criterion gi ∈C, let Ti be a finite set
of binary relations defined on A on the basis of the evaluations of objects from A
with respect to the considered criterion gi, such that for every (x,y) ∈ A×A exactly
one binary relation t ∈ Ti is verified. More precisely, given the domain Vi of gi ∈C,
if v′iv

′′
i ∈ Vi are the respective evaluations of x,y ∈ A by means of gi and (x,y) ∈ t,

19 Rough-Set-Based Decision Support 591

with t ∈ Ti, then for each w,z ∈ A having the same evaluations v′i,v
′′
i by means of

gi,(w,z) ∈ t. Furthermore, let Td be a set of binary relations defined on set A (com-
prehensive pairwise comparisons) such that at most one binary relation t ∈ Td is
verified for every (x,y) ∈ A×A.

The pairwise comparison table is defined as data table SPCT =
〈B,C ∪ {d},TG ∪ Td , f 〉, where B ⊆ A× A is a non-empty set of exemplary pair-
wise comparisons of reference objects, TG =

⋃
q∈C

Tq, d is a decision corresponding to

the comprehensive pairwise comparison (comprehensive preference relation), and
f : B× (C∪{d})→ TG∪Td is a total function such that f [(x,y),q] ∈ Ti for every
(x,y) ∈ A×A and for each gi ∈ C, and f [(x,y),q] ∈ Td for every (x,y) ∈ B. It fol-
lows that for any pair of reference objects (x,y) ∈ B there is verified one and only
one binary relation t ∈ Td . Thus, Td induces a partition of B. In fact, the data table
SPCT can be seen as a decision table, since the set of considered criteria C and the
decision d are distinguished.

We assume that the exemplary pairwise comparisons made by the decision maker
can be represented in terms of graded preference relations (for example “very large
preference”, “large preference”, “strict preference”, “strong preference” and “very
strong preference”), denoted by Ph

q : For each q ∈ C and for every (x,y) ∈ A×A,
Ti = { ⋃

q∈C
Tq,h ∈ Hi}, where Hi is a particular subset of the relative integers and

• xPh
i y, h > 0, means that object x is preferred to object y by degree h with respect

to criterion gi,
• xPh

i y, h < 0, means that object x is not preferred to object y by degree h with
respect to criterion gi,

• xP0
i y means that object x is similar (asymmetrically indifferent) to object y with

respect to criterion gi.

Within the preference context, the similarity relation P0
i , even if not symmetric,

resembles the indifference relation. Thus, in this case, we call this similarity relation
asymmetric indifference. Of course, for each gi ∈C and for every (x,y) ∈ A×A,

[xPh
i y,h > 0]⇒ [yPk

i x,k ≤ 0], [xPh
i y,h < 0]⇒ [yPk

i x,k ≥ 0].

The set of binary relations Td may be defined in a similar way, but xPh
d y means that

object x is comprehensively preferred to object y by degree h. We are considering
a pairwise comparison table where the set Td is composed of two binary relations
defined on A:

• x outranks y (denoted by xSy or (x,y) ∈ S), where (x,y) ∈ B,
• x does not outrank y (denoted by xScy or (x,y) ∈ Sc), where (x,y) ∈ B, and

S∪Sc = B.

Observe that the binary relation S is reflexive, but not necessarily transitive or
complete.

592 R. Słowiński et al.

19.5.2 Rough Approximation of the Outranking

and Non-outranking Relations Specified

in the Pairwise Comparison Table

In the following we will distinguish between two types of evaluation scales of
criteria: cardinal and ordinal. Let CN be the set of criteria expressing preferences
on a cardinal scale, and let CO, be the set of criteria expressing preferences on an
ordinal scale, such that CN ∪CO =C and CN ∩CO = /0. Moreover, for each P ⊆C,
we denote by PO the subset of P composed of criteria expressing preferences on an
ordinal scale, i.e. PO = P∩CO, and by PN we denote the subset of P composed of
criteria expressing preferences on a cardinal scale, i.e. PN = P∩CN . Of course, for
each P⊆C, we have P = PN ∪PO and PN ∩PO = /0.

The meaning of the two scales is such that in the case of the cardinal scale we
can specify the intensity of preference for a given difference of evaluations, while in
the case of the ordinal scale, this is not possible and we can only establish an order
of evaluations.

19.5.2.1 Multigraded Dominance

Let P = PN and PO = /0. Given P ⊆ C (P
= /0), (x,y),(w,z) ∈ A× A, the pair of
objects (x,y) is said to dominate (w,z) with respect to criteria from P (denoted by
(x,y)DP(w,z)), if x is preferred to y at least as strongly as w is preferred to z with
respect to each gi ∈ P. More precisely, “at least as strongly as” means “by at least
the same degree”, i.e. hi ≥ ki, where hi,ki ∈ Hi, xPhiy and wPki

i z for each gi ∈ P.
Let D{i} be the dominance relation confined to the single criterion gi ∈ P. The

binary relation D{i} is reflexive ((x,y)D{i}(x,y), for every (x,y) ∈ A× A), tran-
sitive ((x,y)D{i}(w,z) and (w,z)D{i}(u,v) imply (x,y)D{i}(u,v), for every (x,y),
(w,z), (u,v) ∈ A×A), and complete ((x,y)D{i}(w,z) and/or (w,z)D{i}(x,y), for all
(x,y),(w,z) ∈ A×A). Therefore, D{i} is a complete preorder on A×A. Since the
intersection of complete preorders is a partial preorder and

DP =
⋂

gi∈P

D{i}, P⊆C

then the dominance relation DP is a partial preorder on A×A.
Let R⊆ P⊆C and (x,y),(u,v)∈ A×A; then the following implication holds:

(x,y)DP(u,v)⇒ (x,y)DR(u,v).

Given P⊆C and (x,y) ∈ A×A, we define the following:

• A set of pairs of objects dominating (x,y), called the P-dominating set, denoted
by D+

P (x,y) and defined to be {(w,z) ∈ A×A : (w,z)DP(x,y)}.
• A set of pairs of objects dominated by (x,y), called the P-dominated set, denoted

by D−
P (x,y) and defined as {(w,z) ∈ A×A : (x,y)DP(w,z)}.

19 Rough-Set-Based Decision Support 593

The P-dominating sets and the P-dominated sets defined on B for all pairs of
reference objects from B are granules of knowledge that can be used to express P-
lower and P-upper approximations of the comprehensive outranking relations S and
Sc, respectively:

P(S) = {(x,y) ∈ B : D+
P (x,y)⊆ S},

P(S) =
⋃

(x,y)∈S
D+

P (x,y),

P(Sc) = {(x,y) ∈ B : D−
P (x,y)⊆ Sc},

P(Sc) =
⋃

(x,y)∈Sc
D−

P (x,y)

It has been proved by Greco et al. (1999a) that

P(S)⊆ S ⊆ P(S), P(Sc)⊆ Sc ⊆ P(Sc) .

Furthermore, the following complementarity properties hold:

P(S) = B−P(Sc) , P(S) = B−P(Sc)
P(Sc) = B−P(S), P(Sc) = B−P(S).

The P-boundaries (P-doubtful regions) of S and Sc are defined as

BnP(S) = P(S)−P(S), BnP(S
c) = P(Sc)−P(Sc) .

From the above, it follows that BnP(S) = BnP(Sc).
The concepts of the quality of approximation, reducts and core can be extended

also to the approximation of the outranking relation by multigraded dominance re-
lations.

In particular, the coefficient

γP =
|P(S)∪P(Sc)|

|B|

defines the quality of approximation of S and Sc by P ⊆C. It expresses the ratio of
all pairs of reference objects (x,y) ∈ B correctly assigned to S and Sc by the set P of
criteria to all the pairs of objects contained in B. Each minimal subset P ⊆C, such
that γP = γC, is called a reduct of C (denoted by REDSPCT). Note that SPCT can have
more than one reduct. The intersection of all B-reducts is called the core (denoted
by CORESPCT).

It is also possible to use the Variable Consistency Model on SPCT (Slowinski et al.
2002b) but being aware that some of the pairs in the positive or negative dominance
sets belong to the opposite relation but at least l∗100 % of pairs belong to the correct
one. Then the definition of the lower approximations of S and Sc boils down to

P(S) =

{

(x,y) ∈ B :
|D+

P (x,y)∩S|
|D+

P (x,y)| ≥ l

}

P(Sc) =

{

(x,y) ∈ B : |D
−
P (x,y)∩Sc|
|D−P (x,y)| ≥ l

}

.

594 R. Słowiński et al.

19.5.2.2 Dominance Without Degrees of Preference

The degree of graded preference considered above is defined on a cardinal scale
of the strength of preference. However, in many real-world problems, the existence
of such a quantitative scale is questionable. This is the case with ordinal scales of
criteria. In this case, the dominance relation is defined directly on evaluations gi(x)
for all objects x ∈ A. Let us explain this latter case in more detail.

Let P = PO and PN = /0, then, given (x,y), (w,z) ∈ A×A, the pair (x,y) is said to
dominate the pair (w,z) with respect to criteria from P (denoted by (x,y)DP(w,z)),
if for each gi ∈ P, gi(x)≥ gi(w) and gi(z)≥ gi(y).

Let D{i} be the dominance relation confined to the single criterion gi ∈ PO. The
binary relation D{i} is reflexive, transitive, but non-complete (it is possible that not
(x,y)D{i}(w,z) and not (w,z)D{i}(x,y) for some (x,y),(w,z) ∈ A×A). Therefore,
D{i} is a partial preorder. Since the intersection of partial preorders is also a partial
preorder and

DP =
⋂

gi∈P

D{i}, P = PO

then the dominance relation DP is a partial preorder.
If some criteria from P ⊆C express preferences on a quantitative or a numerical

non-quantitative scale and others on an ordinal scale, i.e. if PN
= /0 and PO
= /0,
then, given (x,y),(w,z) ∈ A×A, the pair (x,y) is said to dominate the pair (w,z)
with respect to criteria from P, if (x,y) dominates (w,z) with respect to both PN

and PO. Since the dominance relation with respect to PN is a partial preorder on
A×A (because it is a multigraded dominance) and the dominance with respect to
PO is also a partial preorder on A×A (as explained above), then the dominance
DP, being the intersection of these two dominance relations, is a partial preorder.
In consequence, all the concepts introduced in the previous section can be restored
using this specific definition of dominance.

19.5.3 Induction of Decision Rules from Rough Approximations

of Outranking and Non-outranking Relations

Using the rough approximations of S and Sc defined in the previous section, it is
possible to induce a generalized description of the preference information contained
in a given SPCT in terms of suitable decision rules. The syntax of these rules is based
on the concept of upward cumulated preferences (denoted by P≥h

i) and downward

cumulated preferences (denoted by P≤h
i), having the following interpretation:

• xP≥h
i y means “x is preferred to y with respect to gi by at least degree h”,

• xP≤h
i y means “x is preferred to y with respect to gi by at most degree h”.

Exact definition of the cumulated preferences, for each (x,y) ∈ A×A, gi ∈C and
h ∈ Hi, can be represented as follows:

19 Rough-Set-Based Decision Support 595

• xP≥h
i y if xPk

i y, where k ∈ Hi and k ≥ h,
• xP≤h

i y if xPk
i y, where k ∈ Hi and k ≤ h.

Let also Gi ={gi(x), x ∈ A}, gi ∈CO. The decision rules then have the following
syntax:

1. D≥-decision rules:

If xP
≥h(i1)
i1 y and . . .xP

≥h(ie)
ie y and gie+1(x)≥ rie+1

and gie+1(y)≤ sie+1 and . . .gip(x)≥ rip and gip(y)≤ sip,
then xSy,

where

P = {gi1, . . . ,gip} ⊆C,PN = {gi1, . . . ,gie},PO = {gie+1, . . . ,gip},
(h(i1), . . . ,h(ie)) ∈Hi1×·· ·×Hie

and (rie+1, . . . ,rip),(sie+1, . . . ,sip) ∈ Gie+1×·· ·×Gip.

These rules are supported by pairs of objects from the P-lower approximation of
S only.

2. D≤-decision rules:

If xP
≤h(i1)
i1 y and . . .xP

≤h(ie)
ie y and gie+1(x)≤ rie+1

and gie+1(y)≥ sie+1 and . . .gip(x)≤ rip and gip(y)≥ sip,
then xScy,

where

P = {gi1, . . . ,gip} ⊆C,PN = {gi1, . . . ,gie},PO = {gie+1, . . . ,gip},
(h(i1), . . . ,h(ie)) ∈Hi1×·· ·×Hie

and (rie+1, . . . ,rip),(sie+1, . . . ,sip) ∈ Gie+1×·· ·×Gip.

These rules are supported by pairs of objects from the P-lower approximation of
Sc only.

3. D≥≤-decision rules:

If xP
≥h(i1)
i1 y and . . .xP

≥h(ie)
ie y and xP

≤h(ie+1)
ie+1 y . . .xP

≤h(i f)
i f y

and gi f+1(x)≥ ri f+1 and gi f+1(y)≤ si f+1 and . . .gig(x)≥ rig and gig(y)≤ sig

and gig+1(x)≤ rig+1 and gig+1(y)≥ sig+1 and . . .gip(x)≤ rip and gip(y)≥ sip,
then xSy or xScy,

where
O′ = {gi1, . . . ,gie} ⊆C,O′′ = {gie+1, . . . ,gi f }} ⊆C,
PN = O′∪O′′,O′ and O′′ are not necessarily disjoint,
PO = {gi f+1, . . . ,gip},
(h(i1), . . . ,h(if)) ∈ Hi1×·· ·×Hi f ,
(ri f+1, . . . ,rip),(si f+1, . . . ,sip) ∈ Gi f+1×·· ·×Gip.

These rules are supported by pairs of objects from the P-boundary of S and Sc

only.

596 R. Słowiński et al.

19.5.4 Use of Decision Rules for Decision Support

The decision rules induced from a given SPCT describe the comprehensive preference
relations S and Sc either exactly (D≥- and D≤-decision rules) or approximately
(D≥≤-decision rules). A set of these rules covering all pairs of SPCT represent a
preference model from the decision maker who gave the pairwise comparison of
reference objects. The application of these decision rules on a new subset M ⊆ A of
objects induces a specific preference structure on M.

In fact, any pair of objects (u,v) ∈ M×M can match the decision rules in one of
four ways:

• at least one D≥-decision rule and neither D≤- nor D≥≤-decision rules,
• at least one D≤ -decision rule and neither D≥- nor D≥≤-decision rules,
• at least one D≥-decision rule and at least one D≤-decision rule, or at least one

D≥≤-decision rule, or at least one D≥≤-decision rule and at least one D≥- and/or
at least one D≤-decision rule,

• no decision rule.

These four ways correspond to the following four situations of outranking,
respectively:

• uSv and not uScv, i.e. true outranking (denoted by uST v),
• uScv and not uSv, i.e. false outranking (denoted by uSFv),
• uSv and uScv, i.e. contradictory outranking (denoted by uSKv),
• not uSv and not uScv, i.e. unknown outranking (denoted by uSUv).

The four above situations, which together constitute the so-called four-valued out-
ranking (Tsoukiàs and Vincke 1995; Greco et al. 1998c), have been introduced to
underline the presence and absence of positive and negative reasons for the outrank-
ing. Moreover, they make it possible to distinguish contradictory situations from
unknown ones.

A final recommendation (choice or ranking) can be obtained upon a suitable ex-
ploitation of this structure, i.e. of the presence and the absence of outranking S and
Sc on M. A possible exploitation procedure consists of calculating a specific score,
called the Net Flow Score, for each object x ∈M:

Sn f (x) = S++(x)− S+−(x)+ S−+(x)− S−−(x)

where

S++(x) = card({y ∈M: there is at least one decision rule which affirms xSy}),
S+−(x) = card({y ∈M: there is at least one decision rule which affirms ySx}),
S−+(x) = card({y ∈M: there is at least one decision rule which affirms yScx}),
S−−(x) = card({y ∈M: there is at least one decision rule which affirms xScy}).

The recommendation in ranking problems consists of the total preorder deter-
mined by Sn f (x) on M. In choice problems, it consists of the object(s) x∗ ∈M such
that Sn f (x∗) = max

x∈M
{Sn f (x)}.

19 Rough-Set-Based Decision Support 597

Table 19.5 Decision table with reference objects

Warehouse A1 A2 A3 d (ROE %)
1 Good Medium Good 10.35
2 Good Sufficient Good 4.58
3 Medium Medium Good 5.15
4 Sufficient Medium Medium −5
5 Sufficient Medium Medium 2.42
6 Sufficient Sufficient Good 2.98
7 Good Medium Good 15
8 Good Sufficient Good −1.55

The above procedure has been characterized with reference to a number of desir-
able properties by Greco et al. (1998c).

Recently, Fortemps et al. (2008) extended the DRSA to multicriteria choice and
ranking on multi-graded preference relations, instead of simple S and Sc.

19.5.5 An Illustrative Example

Let us suppose that a company managing a chain of warehouses wants to buy some
new warehouses. To choose the best proposals or to rank them all, the managers of
the company decide to analyze first the characteristics of eight warehouses already
owned by the company (reference objects). This analysis should give some indica-
tions for the choice and ranking of the new proposals. Eight warehouses belonging
to the company have been evaluated by the following three criteria: capacity of the
sales staff (A1), perceived quality of goods (A2) and high traffic location (A3). The
domains (scales) of these attributes are presently composed of three preference-
ordered echelons: V1 = V2 = V3 ={sufficient, medium, good}. The decision at-
tribute (d) indicates the profitability of warehouses, expressed by the return on eq-
uity (ROE) ratio (in %). Table 19.5 presents a decision table which represents this
situation.

With respect to the set of criteria C = CN ={A1,A2,A3}, the following multi-
graded preference relations Ph

i , i = 1,2,3, are defined:

• xP0
i y (and yP0

i x), meaning that x is indifferent to y with respect to Ai, if f (x,Ai) =
f (y,Ai).

• xP1
i y (and yP−1

i x), meaning that x is preferred to y with respect to Ai, if f (x,Ai)
=good and f (y,Ai)= medium, or if f (x,Ai)= medium and f (y,Ai)= sufficient,

• xP2
i y (and yP−2

i x), meaning that x is strongly preferred to y with respect to Ai, if
f (x,Ai)= good and f (y,Ai)= sufficient.

Using the decision attribute, the comprehensive outranking relation was built as
follows: warehouse x is at least as good as warehouse y with respect to profitability
(xSy) if

598 R. Słowiński et al.

ROE(x)≥ ROE(y)− 2%.

Otherwise, i.e. if ROE(x) < ROE(y)− 2 %, warehouse x is not at least as good as
warehouse y with respect to profitability (xScy).

The pairwise comparisons of the reference objects result in SPCT . The rough set
analysis of the SPCT leads to the conclusion that the set of decision examples on the
reference objects is inconsistent. The quality of approximation of S and Sc by all
criteria from set C is equal to 0.44. Moreover, REDSPCT =CORESPCT = {A1,A2,A3}.
This means that no criterion is superfluous.

The C-lower approximations of S and Sc, obtained by means of multigraded dom-
inance relations, are

C (S) = {(1,2),(1,4),(1,5),(1,6),(1,8),(3,2),(3,4),(3,5),
(3,6),(3,8),(7,2),(7,4),(7,5),(7,6),(7,8)}

C (Sc) = {(2,1),(2,7),(4,1),(4,3),(4,7),(5,1),(5,3),(5,7),
(6,1),(6,3),(6,7),(8,1),(8,7)}.

All the remaining 36 pairs of reference objects belong to the C-boundaries of S
and Sc, i.e. BnC(S) = BnC(Sc).

The following minimal D≥-decision rules and D≤-decision rules can be induced
from lower approximations of S and Sc, respectively (the figures within parentheses
represent the pairs of objects supporting the corresponding rules):

If xP≥1
1 y and xP≥1

2 y, then xSy; ((1,6),(3,6),(7,6))
If xP≥1

2 y and xP≥0
3 y, then xSy; ((1,2),(1,6),(1,8),(3,2),(3,6),(3,8),(7,2),(7,6),(7,8))

If xP≥0
2 y and xP≥1

3 y, then xSy; ((1,4),(1,5),(3,4),(3,5),(7,4),(7,5))
If xP≤−1

1 y and xP≤−1
2 y, then xScy; ((6,1),(6,3),(6,7))

If xP≤0
2 y and xP≤−1

3 y, then xScy; ((4,1),(4,3),(4,7),(5,1),(5,3),(5,7))
If xP≤0

1 y and xP≤−1
2 y and xP≤0

3 y, then xScy; ((2,1),(2,7),(6,1),(6,3),(6,7),(8,1),(8,7)).

Moreover, it is possible to induce five minimal D≥≤-decision rules from the
boundary of approximation of S and Sc:

If xP≤0
2 y and xP≥0

2 y and xP≤0
3 y and xP≥0

3 y, then xSy or xScy;

((1,1),(1,3), (1,7),(2,2),(2,6),(2,8),(3,1),(3,3),(3,7),(4,4),(4,5),(5,4),
(5,5),(6,2),(6,6),(6,8),(7,1),(7,3),(7,7),(8,2),(8,6),(8,8)).

If xP≤−1
2 y and xP≥1

3 y, then xSy or xScy; ((2,4),(2,5),(6,4),(6,5),(8,4),(8,5))
If xP≥1

2 y and xP≤−1
3 y, then xSy or xScy; ((4,2),(4,6),(4,8),(5,2),(5,6),(5,8))

If xP≥1
1 y and xP≤0

2 y and xP≤0
3 y, then xSy or xScy; ((1,3),(2,3),(2,6),(7,3),(8,3),(8,6))

If xP≥1
1 y and xP≤−1

2 y, then xSy or xScy; ((2,3),(2,4),(2,5),(8,3),(8,4),(8,5)).

Using all the above decision rules and the Net Flow Score exploitation procedure
on ten other warehouses proposed for purchase, the managers can obtain the result
presented in Table 19.6. The DRSA gives a clear recommendation:

• For the choice problem it suggests the selection of warehouse 2′ and 6′, having
maximum score (11).

19 Rough-Set-Based Decision Support 599

Table 19.6 Ranking of warehouses for sale by decision rules and the net flow score procedure

Warehouse for sale A1 A2 A3 Net flow score Ranking
1′ Good Sufficient Medium 1 5
2′ Sufficient Good Good 11 1
3′ Sufficient Medium Sufficient −8 8
4′ Sufficient Good Sufficient 0 6
5′ Sufficient Sufficient Medium −4 7
6′ Sufficient Good Good 11 1
7′ Medium Sufficient Sufficient −11 9
8′ Medium Medium Medium 7 3
9′ Medium Good Sufficient 4 4
10′ Medium Sufficient Sufficient −11 9

• For the ranking problem it suggests the ranking presented in the last column of
Table 19.5, as follows:

(2′,6′)→ (8′)→ (9′)→ (1′)→ (4′)→ (5′)→ (3′)→ (7′,10′).

19.5.6 Summary

We have briefly presented the contribution of the DRSA to multicriteria choice and
ranking problems. Let us point out the main features of the described methodology:

• The decision maker is asked for the preference information necessary to deal
with a multicriteria decision problem in terms of exemplary decisions.

• The rough set analysis of preference information supplies some useful elements
of knowledge about the decision situation. These are: the relevance of particular
attributes and/or criteria, information about their interaction, minimal subsets of
attributes or criteria (reducts) conveying important knowledge contained in the
exemplary decisions and the set of the non-reducible attributes or criteria (core).

• The preference model induced from the preference information is expressed in
a natural and comprehensible language of “if. . . , then. . . ” decision rules. The
decision rules concern pairs of objects and from them we can determine either the
presence or the absence of a comprehensive preference relation. The conditions
for the presence are expressed in “at least” terms, and for the absence in “at most”
terms, on particular criteria.

• The decision rules do not convert ordinal information into numeric, but keep the
ordinal character of input data due to the syntax proposed.

• Heterogeneous information (qualitative and quantitative, ordered and non
-ordered) and scales of preference (ordinal, cardinal) can be processed within the
DRSA, while classical methods consider only quantitative ordered evaluations
(with rare exceptions).

• No prior discretization of the quantitative domains of criteria is necessary.

600 R. Słowiński et al.

19.6 Conclusions and Promising Areas of Future Work

We have introduced a knowledge discovery paradigm for multi-attribute and mul-
ticriteria decision support, based on the concept of rough sets. Rough set theory
provides mathematical tools for dealing with granularity of information and pos-
sible inconsistencies in the description of objects. Considering this description as
an input data about a decision problem, the knowledge discovery paradigm con-
sists of searching for patterns in the data that facilitate an understanding of the
decision maker’s preferences and that enable us to recommend a decision which
is in line with these preferences. An original component of this paradigm is that it
takes into account prior knowledge about preference semantics in the patterns to be
discovered.

Knowledge discovery from preference-ordered data differs from usual knowl-
edge discovery, since the former involves preference orders in domains of attributes
and in the set of decision classes. This requires that a knowledge discovery method
applied to preference-ordered data respects the dominance principle. As this is not
the case for the well-known methods of data mining and knowledge discovery, they
are not able to discover all relevant knowledge contained in the analyzed data sample
and, even worse, they may yield unreasonable discoveries, because of inconsistency
with the dominance principle. These deficiencies are addressed in the DRSA. More-
over, this approach enables us to apply a rough set approach to multicriteria decision
making. We showed how the approach could be used for multicriteria classification,
choice and ranking. In more advanced papers, we have presented many extensions
of the approach that make it a useful tool for other practical applications. These
extensions are:

• DRSA to decision under risk and uncertainty (Greco et al. 2001e)
• DRSA to decision under uncertainty and time preference (Greco et al. 2010c)
• DRSA handling missing data (Greco et al. 1999c, 2000a)
• DRSA for imprecise object evaluations and assignments (Dembczynski et al.

2009)
• Dominance-based approach to induction of association rules (Greco et al. 2002a)
• Fuzzy-rough hybridization of DRSA (Greco et al. 1999b, 2000b,c; Greco et al.

2002e; Greco et al. 2004c)
• DRSA as a way of operator-free fuzzy-rough hybridization (Greco et al. 2004c,

2005a, 2007)
• DRSA to granular computing (Greco et al. 2008a, 2009)
• DRSA to case-based reasoning (Greco et al. 2008d)
• DRSA for hierarchical structure of evaluation criteria (Dembczynski et al. 2002)
• DRSA to decision involving multiple decision makers (Greco et al. 2006)
• DRSA to interactive multiobjective optimization (Greco et al. 2008c)
• DRSA to interactive evolutionary multiobjective optimization under risk and

uncertainty (Greco et al. 2010d).

The DRSA leads to a preference model of a decision maker in terms of decision
rules. The decision rules have a special syntax which involves partial evaluation pro-

19 Rough-Set-Based Decision Support 601

files and dominance relations on these profiles. The clarity of the rule representation
of preferences enables us to see the limits of other traditional aggregation func-
tions: the utility function and the outranking relation. In several studies (Greco et al.
2001b; Greco et al. 2002d; Greco et al. 2004a; Slowinski et al. 2002c) we have
proposed an axiomatic characterization of these aggregation functions in terms of
conjoint measurement theory and in terms of a set of decision rules. In compari-
son to other studies on the characterization of aggregation functions, our axioms do
not require any preliminary assumptions about the scales of criteria. A side-result
of these investigations is that the decision rule aggregation (preference model) is
the most general among the known aggregation functions. The decision rule prefer-
ence model fulfills, moreover, the postulate of transparency and interpretability of
preference models in decision support.

Dealing with ordered data and monotonicity constraints also makes sense in gen-
eral classification problems, where the notion of preference has no meaning. Even
when the ordering seems irrelevant, the presence or the absence of a property has an
ordinal interpretation. If two properties are related, one of the two: the presence or
the absence of one property should make more (or less) probable the presence of the
other property. A formal proof showing that the Indiscernibility-Based Rough Set
Approach is a particular case of the DRSA has been given in Greco et al. (2007).
Having this in mind, DRSA can be seen as a general framework for analysis of clas-
sification data. Although it has been designed for ordinal classification problems
with monotonicity constraints, DRSA can be used to solve a general classification
problem where no additional information about ordering is taken into account.

The idea which stands behind this claim is the following (Blaszczynski et al.
2012). We assume, without loss of generality, that the value sets of all regular at-
tributes are number-coded. While this is natural for numerical attributes, categorical
attributes must get numerical codes for categories. In this way, the value sets of all
regular attributes get ordered (as all sets of numbers are ordered). Now, to analyze
a non-ordinal classification problem using DRSA, we transform the decision table
such that each regular attribute is cloned (doubled). It is assumed that the value set
of each original attribute is ordered with respect to increasing preference (gain type),
and the value set of its clone is ordered with respect to decreasing preference (cost
type). Using DRSA, for each t ∈ {1, . . . ,n}, we approximate two sets of objects from
the decision table: class Clt and its complement ¬Clt . Obviously, we can calculate
dominance-based rough approximations of the two sets. Moreover, they can serve
to induce “if. . . , then. . . ” decision rules recommending assignment to class Clt or to
its complement ¬Clt . In this way, we reformulated the original non-ordinal classi-
fication problem to an ordinal classification problem with monotonicity constraints.
Due to cloning of attributes with opposite preference orders, we can have rules that
cover a subspace in the condition space, which is bounded from the top and from
the bottom. This leads (without discretization) to more synthetic rules than those
resulting from the Indiscernibility-Based Rough Set Appraoch.

602 R. Słowiński et al.

Tricks of the Trade

Below we give some hints about how to start a typical session of rough set analysis
of a multi-attribute or multicriteria classification problem.

1. First, prepare the data set so it is composed of objects (examples) described by
a set of attributes. In the set of attributes, distinguish the decision attribute from
other (condition) attributes. For example, in Sect. 19.4.3, we considered a set of
firms evaluated by financial and managerial criteria, assigned to three classes
of bankruptcy risk. In terms of the size of the data set, in the case of, say, five
condition attributes and three decision classes, the number of objects should not
be less than a dozen per class.

2. Check if the decision classes labeled by the decision attribute are preference-
ordered. Check also whether or not, among the condition attributes, there is at
least one whose domain is also preference ordered such that there is a semantic
correlation between this condition attribute and the decision attribute (e.g. the
bankruptcy risk of a firm and its “net income/net worth” ratio). If the check is
positive, then the DRSA should be used, otherwise, the Indiscernibility-Based
Rough Set Approach is sufficient. In the latter case, in order to avoid getting
decision rules which are too specific, you may need to group some values of
particular attributes (say, to at most seven values per attribute). This step is called
discretization.

3. Choose the appropriate software (web addresses for free download are given in
the next section) and proceed with your calculations.

4. Calculate the quality of approximation of the classification for the complete set
of condition attributes/criteria. A quality value above 0.75 is usually satisfac-
tory. In the case of a lower-quality value, there are too many inconsistencies in
the data. So try to get data about the evaluation of the objects on additional at-
tributes/criteria, or eliminate some extremely inconsistent objects from the doubt-
ful region of the classification, or add some new and consistent objects. For
example, in Sect. 19.2.1 (the traffic signs example), we added one additional
attribute—secondary color (SC). Of course, you may continue the analysis even
if the quality is low, but then you will get weaker decision rules.

5. Calculate the minimal subsets of attributes/criteria conveying the relevant knowl-
edge contained in the data (reducts) and the set of non-reducible attributes/criteria
(core). You may continue the analysis with a data set confined to a chosen reduct
—then the decision rules induced from the reduced data set will represent knowl-
edge contained in the data in terms of attributes/criteria from the reduct only.
For example, with the traffic signs, one could eliminate from the data table the
column of either shape (S) or primary color (PC), without decreasing the quality
of knowledge representation.

6. Using the lower and upper approximations of either decision classes (Indiscern-
ibility-Based Rough Set Approach) or unions of preference-ordered decision
classes (DRSA), induce decision rules from the reduced or original decision ta-
ble. You may either induce a minimal set of rules covering all the objects from the
decision table or choose from all induced decision rules a subset of the most inter-

19 Rough-Set-Based Decision Support 603

esting rules. For example, this might be the rules with a minimal support of 50 %
of objects per class or per union of classes, or rules with no more than three ele-
mentary conditions in the premise (see the example of traffic signs in Sect. 19.2.1
and the example of bankruptcy risk in Sect. 19.4.3). Usually, the “minimal cover”
set of rules is chosen in the perspective of prediction and the “most interesting”
set of rules is chosen in the perspective of explanation. At this stage, an expert
may disagree with some rules, but they say nothing apart from the truth hidden in
the decision table, so you can show what objects from the decision table support
the rules in question and the expert may want to eliminate at least some of them
from the data. It is also possible that decision rules seem strange for the expert
because there are not enough examples in the decision table.

7. If the expert finds your decision rules too specific and/or too numerous, you may
use the variable-precision (Indiscernibility-Based Rough Set Approach) model or
the variable-consistency (DRSA) model. Then, you have to specify the required
precision or consistency level, say 80 %, and you will finally get fewer decision
rules. However, their confidence will vary between 80 and 100 %.

Sources of Additional Information

The community of researchers and practitioners interested in rough set theory and
applications is organized in the International Rough Set Society. The society’s web
page (roughsets.home.pl/www/) includes information about rough set conferences,
about the Transactions on Rough Sets published in the Springer Lecture Notes in
Computer Science series, and about the International Journal of Granular Comput-
ing, Rough Sets and Intelligent Systems. This page also includes slides of tutorial
presentations on rough sets.

A database of rough set references can be found at http://rsds.univ.rzeszow.pl.
The following software is available free in the Internet:

• RSES—Rough Set Exploration System http://logic.mimuw.edu.pl/~rses ,
• ROSE—ROugh Set data Explorer http://idss.cs.put.poznan.pl/site/rose.html,
• jMAF—java Multi-criteria and Multi-attribute Analysis Framework, available at

http://www.cs.put.poznan.pl~/jblaszczynski/Site/jRS.html,
• jRank—ranking generator using the DRSA, see www.cs.put.poznan.pl/mszelag/

Software/jRank/jRank.html.

References

Agrawal R, Mannila H, Srikant R, Toivinen H, Verkamo I (1996) Fast discovery of
association rules. In: Fayyad UM et al (eds) Advances in knowledge discovery
and data mining. AAAI, Palo Alto, pp 307–328

http://rsds.univ.rzeszow.pl
http://logic.mimuw.edu.pl/~rses
http://idss.cs.put.poznan.pl/site/rose.html
http://www.cs.put.poznan.pl~/jblaszczynski/Site/jRS.html
www.cs.put.poznan.pl/mszelag/
Software/jRank/jRank.html

604 R. Słowiński et al.

Blaszczynski J, Greco S, Slowinski R (2007) Multi-criteria classification—a new
scheme for application of dominance-based decision rules. Eur J Oper Res
181:1030–1044

Blaszczynski J, Greco S, Slowinski R, Szelag M (2009) Monotonic variable
consistency rough set approaches. Int J Approx Reason 50:979–999

Blaszczynski J, Greco S, Slowinski R (2012) Inductive discovery of laws using
monotonic rules. Engineering Applications of Artificial Intelligence, 25:284–294

Blaszczynski J, Slowinski R, Szelag M (2010b) Sequential covering rule in-
duction algorithm for variable consistency rough set approaches. Inform Sci
181:987–1002

Dembczynski K, Greco S, Slowinski R (2002) Methodology of rough-set-based
classification and sorting with hierarchical structure of attributes and criteria.
Control Cybern 31:891–920

Dembczynski K, Greco S, Slowinski R (2009) Rough set approach to multiple cri-
teria classification with imprecise evaluations and assignments. Eur J Oper Res
198:626–636

Fortemps P, Greco S, Slowinski R (2008) Multicriteria decision support using rules
that represent rough-graded preference relations. Eur J Oper Res 188:206–223

Giove S, Greco S, Matarazzo B, Slowinski R (2002) Variable consistency mono-
tonic decision trees. In: Alpigini JJ et al (eds) Rough sets and current trends in
computing. LNAI 2475. Springer, Berlin, pp 247–254

Greco S, Matarazzo B, Slowinski R (1998a) A new rough set approach to evaluation
of bankruptcy risk. In: Zopounidis C (ed) Operational tools in the management
of financial risk. Kluwer, Dordrecht, pp 121–136

Greco S, Matarazzo B, Slowinski R (1998b) Fuzzy similarity relation as a basis for
rough approximation. In: Polkowski L, Skowron A (eds) Rough sets and current
trends in computing. LNAI 1424. Springer, Berlin, pp 283–289

Greco S, Matarazzo B, Slowinski R, Tsoukias A (1998c) Exploitation of a rough
approximation of the outranking relation in multicriteria choice and ranking. In:
Stewart TJ, van den Honert RC (eds) Trends in multicriteria decision making.
LNEMS 465. Springer, Berlin, pp 45–60

Greco S, Matarazzo B, Slowinski R (1999a) Rough approximation of a preference
relation by dominance relations. Eur J Oper Res 117:63–83

Greco S, Matarazzo B, Slowinski R (1999b) The use of rough sets and fuzzy sets
in MCDM. In: Gal T et al (eds) Advances in multiple criteria decision making.
Kluwer, Dordrecht, pp 14.1–14.59

Greco S, Matarazzo B, Slowinski R (1999c) Handling missing values in rough set
analysis of multi-attribute and multi-criteria decision problems. In: Zhong N et
al (eds) New directions in rough sets, data mining and granular-soft computing.
LNAI 1711. Springer, Berlin, pp 146–157

Greco S, Matarazzo B, Slowinski R (2000a) Dealing with missing data in rough set
analysis of multi-attribute and multi-criteria decision problems. In: Zanakis SH
et al (eds) Decision making: recent developments and worldwide applications.
Kluwer, Dordrecht, pp 295–316

19 Rough-Set-Based Decision Support 605

Greco S, Matarazzo B, Slowinski R (2000b) Rough set processing of vague infor-
mation using fuzzy similarity relations. In: Calude CS, Paun G (eds) Finite versus
infinite—contributions to an eternal dilemma. Springer, Berlin, pp 149–173

Greco S, Matarazzo B, Slowinski R (2000c) Fuzzy extension of the rough set
approach to multicriteria and multiattribute sorting. In: Fodor J et al (eds)
Preferences and decisions under incomplete knowledge. Physica, Heidelberg,
pp 131–151

Greco S, Matarazzo B, Slowinski R (2000d) Extension of the rough set approach to
multicriteria decision support. INFOR 38:161–196

Greco S, Matarazzo B, Slowinski R (2001a) Rough sets theory for multicriteria
decision analysis. Eur J Oper Res 129:1–47

Greco S, Matarazzo B, Slowinski R (2001b) Conjoint measurement and rough set
approach for multicriteria sorting problems in presence of ordinal criteria. In: Col-
orni A et al (eds) A-MCD-A: aide multi-critère à la décision—multiple criteria
decision aiding. European Commission Report, EUR 19808 EN, pp 117–144

Greco S, Matarazzo B, Slowinski R (2001c) Rule-based decision support in multi-
criteria choice and ranking. In: Benferhat S, Besnard P (eds) Symbolic and quan-
titative approaches to reasoning with uncertainty. LNAI 2143. Springer, Berlin,
pp 29–47

Greco S, Matarazzo B, Slowinski R (2001d) Assessment of a value of information
using rough sets and fuzzy measures. In: Chocjan J, Leski J (eds) Fuzzy sets and
their applications. Silesian University of Technology Press, Gliwice, pp 185–193

Greco S, Matarazzo B, Slowinski R (2001e) Rough set approach to decisions under
risk. In: Ziarko W, Yao Y (eds) Rough sets and current trends in computing. LNAI
2005. Springer, Berlin, pp 160–169

Greco S, Matarazzo B, Slowinski R, Stefanowski J (2001f) Variable consistency
model of dominance-based rough set approach. In: Ziarko W, Yao Y (eds) Rough
sets and current trends in computing. LNAI 2005. Springer, Berlin, pp 170–181

Greco S, Matarazzo B, Slowinski R, Stefanowski J (2001g) An algorithm for induc-
tion of decision rules consistent with dominance principle. In: Ziarko W, Yao Y
(eds) Rough sets and current trends in computing. LNAI 2005. Springer, Berlin,
pp 304–313

Greco S, Matarazzo B, Slowinski R, Stefanowski J (2002a) Mining association rules
in preference-ordered data. In: Hacid M-S et al (eds) Foundations of intelligent
systems. LNAI 2366. Springer, Berlin, pp 442–450

Greco S, Matarazzo B, Slowinski R (2002b) Rough sets methodology for sort-
ing problems in presence of multiple attributes and criteria. Eur J Oper Res
138:247–259

Greco S, Matarazzo B, Slowinski R (2002c) Multicriteria classification. In: Kloes-
gen W, Zytkow J (eds) Handbook of data mining and knowledge discovery,
chap 16.1.9. Oxford University Press, Oxford, pp 318–328

Greco S, Matarazzo B, Slowinski R (2002d) Preference representation by means
of conjoint measurement and decision rule model. In: Bouyssou D et al (eds)
Aiding decisions with multiple criteria—essays in honor of Bernard Roy. Kluwer,
Dordrecht, pp 263–313

606 R. Słowiński et al.

Greco S, Inuiguchi M, Slowinski R (2002e) Dominance-based rough set approach
using possibility and necessity measures. In: Alpigini JJ et al (eds) Rough sets
and current trends in computing. LNAI 2475. Springer, Berlin, pp 85–92

Greco S, Inuiguchi M, Slowinski R (2004c) A new proposal for fuzzy rough ap-
proximations and gradual decision rule representation. Trans rough sets II. LNCS
3135, Springer, Berlin, pp 319–342

Greco S, Matarazzo B, Slowinski R (2004a) Axiomatic characterization of a general
utility function and its particular cases in terms of conjoint measurement and
rough-set decision rules. Eur J Oper Res 158:271–292

Greco S, Pawlak Z, Slowinski R (2004b) Can Bayesian confirmation measures be
useful for rough set decision rules? Eng Appl Artif Intell 17:345–361

Greco S, Inuiguchi M, Slowinski R (2005a) Fuzzy rough sets and multiple-premise
gradual decision rules. Int J Approx Reason 41:179–211

Greco S, Matarazzo B, Pappalardo N, Slowinski R (2005b) Measuring expected ef-
fects of interventions based on decision rules. J Exp Theor Artif Intell 17:103–118

Greco S, Matarazzo B, Slowinski R (2006) Dominance-based rough set approach to
decision involving multiple decision makers. In: Greco S et al (eds) Rough sets
and current trends in computing. LNCS 4259. Springer, Berlin, pp 306–317

Greco S, Matarazzo B, Slowinski R (2007) Dominance-based rough set approach
as a proper way of handling graduality in rough set theory. Trans rough sets VII.
LNCS 4400. Springer, Berlin, pp 36–52

Greco S, Matarazzo B, Slowinski R (2008a) Granular computing for reasoning
about ordered data: the dominance-based rough set approach, chap 15 In: Pedrycz
W et al (eds) Handbook of granular computing, chap 15. Wiley, Chichester,
pp 347–373

Greco S, Matarazzo B, Slowinski R (2008b) Parameterized rough set model using
rough membership and Bayesian confirmation measures. Int J Approx Reason
49:285–300

Greco S, Matarazzo B, Slowinski R (2008c) Dominance-based rough set approach
to interactive multiobjective optimization. In: Branke J et al (eds) Multiobjec-
tive optimization: interactive and evolutionary approaches. LNCS 5252. Springer,
Berlin, pp 121–156

Greco S, Matarazzo B, Slowinski R (2008d) Case-based reasoning using grad-
ual rules induced from dominance-based rough approximations. In: Wang G et
al (eds) Rough sets and knowledge technology. LNAI 5009. Springer, Berlin,
pp 268–275

Greco S, Matarazzo B, Slowinski R (2009) Granular computing and data min-
ing for ordered data—the dominance-based rough set approach. In: Meyers
RA (ed) Encyclopedia of complexity and systems science. Springer, New York,
pp 4283–4305

Greco S, Matarazzo B, Slowinski R (2010a) Algebra and topology for dominance-
based rough set approach. In: Ras ZW, Tsay L-S (eds) Advances in intelligent
information systems. Studies in computational intelligence 265. Springer, Berlin,
pp 43–78

19 Rough-Set-Based Decision Support 607

Greco S, Matarazzo B, Slowinski R (2010b) On topological dominance-based rough
set approach. Trans Rough Sets XII. LNCS 6190. Springer, Berlin, pp 21–45

Greco S, Matarazzo B, Slowinski R (2010c) Dominance-based rough set approach
to decision under uncertainty and time preference. Ann Oper Res 176:41–75

Greco S, Matarazzo B, Slowinski R (2010d) Dominance-based rough set approach
to interactive evolutionary multiobjective optimization. In: Greco S et al (eds)
Preferences and decisions: models and applications. Studies in fuzziness and soft
computing 257. Springer, Berlin, pp 225–260

Grzymala-Busse JW (1992) LERS—a system for learning from examples based
on rough sets. In: Slowinski R (ed) Intelligent decision support. Handbook of
applications and advances of the rough sets theory. Kluwer, Dordrecht, pp 3–18

Grzymala-Busse JW (1997) A new version of the rule induction system LERS. Fund
Inform 31:27–39

Kotlowski W, Dembczynski K, Greco S, Slowinski R (2008) Stochastic dominance-
based rough set model for ordinal classification. Inform Sci 178:4019–4037

Krawiec K, Slowinski R, Vanderpooten D (1998) Learning of decision rules from
similarity based rough approximations. In: Polkowski L, Skowron A (eds) Rough
sets in knowledge discovery 2. Physica, Heidelberg, pp 37–54

Luce RD (1956) Semi-orders and a theory of utility discrimination. Econometrica
24:178–191

Marcus S (1994) Tolerance rough sets, Cech topologies, learning processes. Bull
Pol Acad Sci Tech Sci 42:471–487

Michalski RS, Bratko I, Kubat M (eds) (1998) Machine learning and data mining—
methods and applications. Wiley, New York

Nieminen J (1988) Rough tolerance equality. Fund Inform 11:289–296
Pawlak Z (1982) Rough sets. Int J Inform Comput Sci 11:341–356
Pawlak Z (1991) Rough sets. Theoretical aspects of reasoning about data. Kluwer,

Dordrecht
Pawlak Z, Slowinski R (1994) Rough set approach to multi-attribute decision anal-

ysis. Eur J Oper Res 72:443–459
Pawlak Z, Grzymala-Busse JW, Slowinski R, Ziarko W (1995) Rough sets. Com-

mun ACM 38:89–95
Polkowski L (2002) Rough sets: mathematical foundations. Physica, Heidelberg
Polkowski L, Skowron A (1999) Calculi of granules based on rough set theory:

approximate distributed synthesis and granular semantics for computing with
words. In: Zhong N et al (eds) New directions in rough sets, data mining and
soft-granular computing. LNAI 1711. Springer, Berlin, pp 20–28

Polkowski L, Skowron A, Zytkow J (1995) Rough foundations for rough sets. In:
Lin TY, Wildberger A (eds) Soft computing. Simulation Councils, San Diego,
pp 142–149

Roy B (1996) Multicriteria methodology for decision aiding. Kluwer, Dordrecht
Skowron A (1993) Boolean reasoning for decision rules generation. In: Komorowski

J, Ras ZW (eds) Methodologies for intelligent systems. LNAI 689. Springer,
Berlin, pp 295–305

608 R. Słowiński et al.

Skowron A, Polkowski L (1997) Decision algorithms: a survey of rough set-
theoretic methods. Fund Inform 27:345–358

Skowron A, Stepaniuk J (1995) Generalized approximation spaces. In: Lin TY,
Wildberger A (eds) Soft computing. Simulation Councils, San Diego, pp 18–21

Slowinski R (1992a) A generalization of the indiscernibility relation for rough set
analysis of quantitative information. Rivista di Matematica per le Scienze Eco-
nomiche e Sociali 15:65–78

Slowinski R (ed) (1992b) Intelligent decision support. Handbook of applications
and advances of the rough sets theory. Kluwer, Dordrecht

Slowinski R (1993) Rough set learning of preferential attitude in multi-criteria
decision making. In: Komorowski J, Ras ZW (eds) Methodologies for intelligent
systems. LNAI 689. Springer, Berlin, pp 642–651

Slowinski R, Vanderpooten D (1997) Similarity relation as a basis for rough approx-
imations. In: Wang PP (ed) Advances in machine intelligence and soft-computing
IV. Duke University Press, Durham, pp 17–33

Slowinski R, Vanderpooten D (2000) A generalised definition of rough approxima-
tions. IEEE Trans Data Knowl Eng 12:331–336

Slowinski R, Zopounidis C (1995) Application of the rough set approach to evalua-
tion of bankruptcy risk. Intell Syst Account Finance Manage 4:27–41

Slowinski R, Stefanowski J, Greco S, Matarazzo B (2000) Rough sets based
processing of inconsistent information in decision analysis. Control Cybern
29:379–404

Slowinski R, Greco S, Matarazzo B (2002a) Rough set analysis of preference-
ordered data. In: Alpigini JJ et al (eds) Rough sets and current trends in
computing. LNAI 2475. Springer, Berlin, pp 44–59

Slowinski R, Greco S, Matarazzo B (2002b) Mining decision-rule preference model
from rough approximation of preference relation. In: Proceedings of the 26th
IEEE annual international conference on computer software and applications,
Oxford, pp 1129–1134

Slowinski R, Greco S, Matarazzo B (2002c) Axiomatization of utility, outrank-
ing and decision-rule preference models for multiple-criteria classification prob-
lems under partial inconsistency with the dominance principle. Control Cybern
31:1005–1035

Slowinski R, Greco S, Matarazzo B (2009) Rough sets in decision making. In: Mey-
ers RA (ed) Encyclopedia of complexity and systems science. Springer, New
York, pp 7753–7786

Slowinski R, Greco S, Matarazzo B (2012) Rough set and rule-based multicriteria
decision aiding. Pesqui Oper 32:213–269

Stefanowski J (1998) On rough set based approaches to induction of decision rules.
In: Polkowski L, Skowron A (eds) Rough sets in data mining and knowledge
discovery 1. Physica, Heidelberg, pp 500–529

Stepaniuk J (2000) Knowledge discovery by application of rough set models. In:
Polkowski L et al (eds) Rough set methods and application. Physica, Heidelberg,
pp 137–231

19 Rough-Set-Based Decision Support 609

Thomas LC, Crook JN, Edelman DB (eds) (1992) Credit scoring and credit control.
Clarendon, Oxford

Tversky A (1977) Features of similarity. Psychol Rev 84:327–352
Tsoukiàs A, Vincke Ph (1995) A new axiomatic foundation of partial comparability.

Theory and Decision 39:79–114
Yao Y, Wong S (1995) Generalization of rough sets using relationships between

attribute values. In: Proceedings of the 2nd annual joint conference on informa-
tion science, Wrightsville Beach, pp 30–33

Ziarko W (1993) Variable precision rough sets model. J Comput Syst Sci 46:39–59
Ziarko W (1998) Rough sets as a methodology for data mining. In: Polkowski L,

Skowron A (eds) Rough sets in knowledge discovery 1. Physica, Heidelberg,
pp 554–576

Ziarko W, Shan N (1994) An incremental learning algorithm for constructing deci-
sion rules. In: Ziarko WP (ed) Rough sets, fuzzy sets and knowledge discovery.
Springer, Berlin, pp 326–334

Chapter 20

Hyper-heuristics

Peter Ross

20.1 Introduction

Many practical problems are awkward to solve computationally. Whether you are
trying to find any solution at all, or perhaps to find a solution that is optimal or close
to optimal according to some criteria, exact methods can be unfeasibly expensive. In
such cases it is common to resort to heuristic methods, which are typically derived
from experience but are inexact or incomplete. For example, in packing and cutting
problems a very simple heuristic might be to try to pack the items in some standard-
ized way starting with the largest remaining one first, on the reasonable grounds that
the big ones tend to cause the most trouble. But such heuristics can easily lead to
suboptimal answers.

Suppose you are given a supply of 6× 6 sheets of metal and have to cut them
to produce forty 5× 1 sheets and ten larger, 4× 4, sheets (you are not restricted to
guillotine cuts, that is, to edge-to-edge straight cuts). The total area of the required
pieces is 360, which suggests that at least 10 sheets are needed. If you start with the
biggest ones, by cutting out a 4× 4 sheet from a corner, you are doomed to waste
material; the sole optimal arrangement per sheet (apart from reflection) is shown in
Fig. 20.1, which wastes no material.

However, it is not easy to conceive of a straightforward and broadly useful
heuristic that would suggest such a layout. Creating new heuristics, whether by de-
tailed study of sample problems and their solutions or by personal introspection
based on past experience, is unreliable and difficult (see for example Neth et al.
2009). More generally, both intuition and experience suggest that any given heuristic

P. Ross (�)
School of Computing, Edinburgh Napier University, Edinburgh, UK
e-mail: P.Ross@napier.ac.uk

E.K. Burke and G. Kendall (eds.), Search Methodologies: Introductory Tutorials
in Optimization and Decision Support Techniques, DOI 10.1007/978-1-4614-6940-7_20,
© Springer Science+Business Media New York 2014

611

mailto:P.Ross@napier.ac.uk

612 P. Ross

Fig. 20.1 The optimal cutting
layout

4 x 4

5 x 1

5 x 1

5
 x

 1

5
 x

 1

6

6

has some weaknesses and will recommend some bad decisions in certain cases.
Hyper-heuristics tries to address such issues, in two main ways:

• By exploring whether some suitable combination of existing heuristics can offset
the weaknesses of any one of them, so that each is only applied when it is not
weak;

• Or, by trying to discover new heuristics through some kind of meta-heuristic
search process (tabu search, genetic algorithm, genetic programming, etc.).

Some authors (for example Cowling et al. 2001) describe hyper-heuristics simply
as “heuristics to choose heuristics”. A recent survey and classification of different
approaches can be found in Burke et al. (2009a), which also proposes as a defini-
tion that a “hyper-heuristic is an automated methodology for selecting or generating
heuristics to solve hard computational problems”. Chakhlevitch and Cowling (2008)
present another survey with a different classification.

Broadly speaking, some studies aim to produce constructive heuristics that will
build a solution to a problem step by step: heuristics are used to decide how to
extend a partial solution. Other studies aim to produce refinement or perturbing
heuristics that work on a fully-specified candidate solution but try to improve its
quality. And some studies aim to produce a hybrid of these, both extending and
modifying partial solutions. Constructive methods tend to be fast and have a natural
stopping point. Solution-refinement methods can be appreciably slower, perhaps
stopping only when no further progress seems likely, but can deliver better final
results.

This chapter is an introduction to hyper-heuristics. It discusses the issues that
make hyper-heuristics research distinctive, presents some illustrative examples and
a brief survey of past research, and offers some suggestions about interesting di-
rections for future research. Finally, there is a selection of useful links to relevant
material.

20 Hyper-heuristics 613

20.2 The Need for Hyper-heuristics

There is a vast literature on methods for tackling problems in combinatorial
optimization and operations research (OR), including commercially significant ones
such as scheduling and timetabling, vehicle routing, and packing as well as rather
more generic (if no less valuable) ones such as constraint satisfaction. In many cases
researchers have concentrated their efforts on trying to find one or more solutions
that are optimal according to some chosen criteria. However, as Chambers Twentieth
Century Dictionary (1974 edition) puts it:

optimal, etc. See optimism.

The online Chambers 21st Century Dictionary has updated this to

adj most favourable; optimum. [. . .].

The earlier version slyly embodies a pragmatic truth: often it is unreasonable to
hope to find the very best possible answer. The search may be far too expensive.
Or, the optimal answer may be too dependent on the chosen criteria, so that some
seemingly small, circumstantial change in the problem or in the criteria renders the
discovered optimum useless or seriously sub-optimal. The criteria themselves may
be unreasonable or unrealistic. In practice, what is wanted is often good answers,
found fairly or very quickly, where “good” means meeting some minimum accep-
tance criteria or, perhaps, usefully better than present practice can deliver. Also,
there is often a requirement that the method of finding such answers must be sus-
tainable for business use.

For example, suppose a large supermarket chain wants to get into the business
of providing home deliveries of orders placed over the internet. Their competitors
already do it, they feel they must do so as well. Customers will expect that deliver-
ies should be made within some reasonable time window, chosen by the customer
from a set of current possibilities. This looks at first sight like a classic instance of
a vehicle routing problem with time windows: given a set of deliveries, each to be
made within some time window, find the minimum number of vehicles required; the
vehicles are assumed all to have a certain average speed and a given maximal capac-
ity. There are many papers available that study such problems; for example, Bräysy
(2003) describes a four-stage approach. The first stage uses some route construc-
tion heuristics to propose an initial solution. The second stage also uses heuristic
methods—it tries to reduce the total number of routes by, repeatedly, selecting a
route and seeing if those customers can be squeezed into other routes, perhaps in-
volving some cascade of shifts of customers from those routes to others. The third
and fourth stages keep the number of routes fixed but try to improve them, reducing
the distance traveled and then exploring changes to a cost function that combines
distances and waiting times in case the search has become stuck in a local mini-
mum. The overall aim is to minimize total distance traveled and number of vehicles
required, and the approach was tested on a number of standard benchmark problems
involving up to 400 customers and also 2 real-world problems with 417 customers
each. Although results were very good when compared with previous approaches,

614 P. Ross

all the approaches took anywhere from half an hour to several hours to solve the
real-world instances (see Table 5 in that paper). Those were much more demanding
than the benchmark problems because the customers were less spread out, necessi-
tating much more local search effort.

Even if you are not directly interested in vehicle routing problems, it is worth
looking at the recent literature because it illustrates various points about solving
combinatorial and OR problems:

• The more effective approaches tend to employ two or more stages each of which
utilizes one or more heuristics, rather than being monolithic;

• The widely used artificially generated benchmark problems may not be represen-
tative of real-world ones;

• If the approach involves some randomized elements, even if only to break ties,
then different runs can produce significantly different results and it may be neces-
sary to do several runs because the first one or two may be unreasonably poor—
which you don’t know until you try.

But there are more pragmatic considerations too. A supermarket probably does not
want to spend CPU-hours per day solving one problem for one locality, and doing
that for each locality where it operates. Even if it has its own IT department and in-
house expertise, it will also have to factor in the cost of maintaining the necessary
software and periodically upgrading or replacing it as the situation demands. And
the problem itself is not static: solutions can be partly built as orders arrive: late-
comers may not be offered the full range of delivery windows if some are already
full. There are legal constraints on driver hours; drivers can fall ill at short notice;
vehicles can break down; changing traffic patterns will affect average speeds; any
delivery can fail because the customer forgets to be there to accept it; and so on. The
supermarket is likely to want to be able to produce good, reasonably low-cost an-
swers that are not too fragile in the face of changing situations, rather than solutions
that are genuinely optimal with respect to just one or two criteria. Hyper-heuristics
offers a possible way to discover an effective, fast process for scheduling the deliv-
eries that can be used day to day, on ever-changing problems, with relatively little
effort. Garrido and Castro (2009) used a hybrid hyper-heuristics method to find
stable, good-quality solutions for certain kinds of vehicle routing problems.

More generally, this example raises some important issues:

• Some problems are offline problems: their full details are available at the start.
Others are online problems: their details only emerge over time, and a solution
must be built incrementally;

• In practice, it will often be important to be able to offer some performance guar-
antees. These might not be very strong, perhaps just “better than X” rather than
(say) “within 5% of optimal according to criterion C”;

• There can be major differences between academic and real-world problems, and
between academic and real-world concerns.

It is also useful to consider how success is to be judged. Standards in many fields
can sometimes be ad hoc. A recent useful classification, which considers heuristic

20 Hyper-heuristics 615

methods applied to forest planning, can be found in Bettinger et al. (2009); it offers
a multi-level categorization:

Level 1: No validation or performance is established.
Level 2: Self-validation using basic statistics on the distribution of results. This

includes worst-case (level 2a), best-case (level 2b) and average-case (level 2c)
results, performance variation (level 2d) and sensitivity analysis of parameters
(level 2e).

Level 3: Comparison with other heuristic results.
Level 4: Comparison with an estimated global optimum solution, for example by

applying results from extreme value theory.
Level 5: Comparison with optimal solutions generated for similar problems, for

example by relaxing the problem to get something more tractable.
Level 6: Comparison with solutions provided by exact techniques.

When thinking specifically about hyper-heuristics, these levels need to be modified
slightly. It is be important to look at performance on a range of test problems, which
should be different from any problems used to discover a new candidate heuristic
in the first place. After all, the whole rationale of a heuristic is to suggest what to
do when faced with an unfamiliar problem, and so it should be evaluated against
previously unseen cases. If the discovery process involves iterative testing as well
as learning, then (as usual) there should be separate learning, validation and test
sets. Each visit to a validation set after a bout of learning produces some feedback
that influences later learning episodes, and so the performance on the validation set
is likely to increase in subsequent stages. In order to avoid such ‘data snooping’ the
test set should be used only once, at the very end. It can also be useful to include an
extra level to the above categorization:

Level 7: Stress-testing, for example by trying to devise new problems that “break”
the heuristic in some way, delivering poor results or introducing previously un-
considered aspects.

Assuming that the aim is to produce a heuristic that has some general applica-
bility, it is also wise to include some easy problems in the test set as well as hard
problems. For some types of problem domain, there can be heuristics that only do
well on hard problems but which struggle when presented with an easy problem!

The next sections present some illustrative examples of hyper-heuristics.

20.3 Hyper-heuristics for Boolean Satisfiability

20.3.1 The Problem Area

Suppose that x1, x2 and x3 are Boolean variables—that is, each one is either true or
false. Find an assignment of true or false to each of the three variables such that the
two clauses:

616 P. Ross

x1∨¬x2∨¬x3

x1∨ x2

are both true (where ∨ means “or” and ¬ means “not”). Clearly, any assignment in
which x1 is true works; also, any other assignment in which x3 is false and x2 is true
works. This is a trivial example of a Boolean satisfiability problem. In conjunctive
normal form, the problem consists of a number of clauses all of which are required
to be true, and each clause is a disjunct (that is, joined by ∨) of some variables
and/or negated variables. If each clause contains at most two variables, the problem
can be solved in polynomial time; if the clauses contain three or more variables, the
problem type is NP-complete. Boolean satisfiability problems occur in many practi-
cal applications, such as automated planning, automated software testing, hardware
design and biology (Marques-Silva 2008). For example, a newly-fabricated inte-
grated circuit may contain a fault in which the output of a certain gate is stuck at
logic 1 or at logic 0. Such a fault may be detected by generating a set of 0/1 inputs
that would, if the circuit were correct, produce a set of outputs different from those
actually observed; the task of finding a suitable set of inputs can be formulated as
an instance of a Boolean satisfiability problem.

If the problem has n variables then there are 2n possible assignments so that if n
is not small exhaustive search, even with some smart pruning, may not be possible.
Various heuristics are commonly used. For example:

GSAT: flip the variable that will produce the greatest increase in the number of
satisfied clauses (call this the highest gain). If there is more than one such vari-
able, choose randomly between those variables.

GWSAT(p): with probability p, randomly choose an unsatisfied clause and flip a
randomly-chosen variable in it. With probability (1− p), use GSAT.

WalkSat(p): randomly choose an unsatisfied clause. Find those variables which,
if flipped, produce no net change in the number of satisfied clauses. If there is at
least one such variable, choose one and flip it. If there are none, then with prob-
ability p apply GSAT to the variables in the chosen clause, and with probability
(1− p) choose a random variable from that clause.

20.3.2 The Heuristic Generation Process

Bader-El-Den and Poli (2008) analyzed several such heuristics and created a simple
recursive grammar that was capable of expressing them as well as many more candi-
date heuristics. They then used a grammar-constrained form of genetic programm-
ing (Poli et al. 2008) to search for a new heuristic that would give good performance
on a range of benchmark problems.

The grammar used the terminals and functions shown in Table 20.1, and the set of
functions and terminals also happens to imply the grammar actually used, although
this need not always be the case. Some functions that select from a list have an op-
tional argument, shown as {op}, used to break ties; the default is to break ties by

20 Hyper-heuristics 617

Table 20.1 Functions and terminals for heuristics for Boolean satisfiability (Bader-El-Den and
Poli 2008)

Functions
FLIP v The fixed, top-level-only action: flip the variable v
RANDOM l Return a random variable from the list
MAX_SCR l {op} Return the variable with the highest gain.
MIN_SCR l {op} Return the variable with lowest gain.
SCR_Z l {op} Return a variable that, if flipped, produces zero net change in the

number of satisfied clauses.
MAX_AGE l {op} Return the variable that has not been flipped for the longest time.
IFV prob v1 v2 With the given probability return variable v1 else v2
IFL prob l1 l2 With the given probability return list l1 else l2
PROB A probability: one of 0.2, 0.4, 0.5, 0.7, 0.8 or 0.9

Terminals
ALL A list of all clauses
ALL_USC A list of all currently unsatisfied clauses
USC A random unsatisfied clause (the same at each appearance in the

whole expression)
RAND_USC A random unsatisfied clause (not necessarily the same each time)
TIE_RAND Flag: break ties at random
TIE_AGE Flag: break ties by selecting the least-recently flipped.
TIE_SCR Flag: break ties by gain.
NOT_ZERO_AGE Flag: skip the just-flipped variable when breaking ties.

random choice. Where appropriate, a clause is treated as a list of variables, whether
negated or not, that it contains. For example, GWSAT(0.5) could be expressed in
this language as

(FLIP (IFV 0.5 (MAX_SCR ALL TIE_RAND) (RANDOM USC))).

The initial randomly generated population had some existing good heuristics in-
jected into it, thus providing some known-good material from which to breed. At
each stage, each member of the population was evaluated on a set of training prob-
lems by using it repeatedly to modify an initial assignment of false to each variable
in the problem. Fitness was based on the number of problems solved, the number of
flips done and the size of the heuristic.

The training and testing problems were all taken from a standard benchmark
collection of hard problems (Satlib 2012), in particular those involving between
25 and 100 variables each, with 3 variables per clause (3-SAT), and all known to
have at least one solution. Overall, the results were very encouraging: generated
heuristics, trained on one subset of problem, also performed well on other subsets
and produced results “that are on par with some of the best-known SAT solvers”.
Figure 20.2 shows an example of a generated heuristic.

618 P. Ross

50 MAX_SCR MAX_SCR

TIE_AGEALL RAND_USC TIE_RAND

80 IFV

IFV

FLIP

IFV

MAX_SCR

NOT_ZERO_AGEIFL

70 ALL_USC USC

90

IFV

40 MAX_SCR

ALL TIE_RAND

IFV

70

RANDOM

USC

IFV

80

MAX_SCR

NOT_ZERO_AGERAND_USC

IFV

20

MAX_SCR

ALL TIE_RAND

MAX_SCR

RAND_USC TIE_AGE

Fig. 20.2 A generated heuristic for 3-SAT problems, from Bader-El-Den and Poli (2008)
(amended)

20.3.3 Remarks

Bader-El-Den and Poli (2008) also introduced the notion of a disposable heuristic,
namely a heuristic intended to be used on a specific sort of subset of a more general
family of problems. In this case, the aim was to focus on relatively small problems
with three variables per clause that are known to have solutions. In this usage dis-
posable means not fully general-purpose, just tailored to a subclass of some kind.
Later work by different authors has occasionally abused this notion of disposable
by focusing on just one problem, trying to generate a heuristic that will solve only a
single instance. But, as mentioned earlier, one of the hallmarks of a heuristic is that
it should usefully be applicable to unseen problems.

This example is a good illustration of hyper-heuristics: it starts with some well-
studied heuristics and devises a search space that includes them and many more
variants. Fukunaga (2008) describes a similar study, also using genetic programm-
ing but involving a more expressive grammar and a larger search space, which was
able to generate heuristics competitive with some of the best SAT algorithms to date.
See Fukunaga (2002) for a shorter overview of the grammar and some early results
using a much-simplified form of genetic programming.

20 Hyper-heuristics 619

A somewhat different approach is outlined by Bittle and Fox (2009). They use
a version of the SOAR cognitive architecture to generate a constructive hyper-
heuristic comprising a large number of condition-action rules, in which the con-
ditions encode aspects of the current state of a solution that is under construction,
and the action encodes how to select a variable and a value for it.

20.4 Hyper-heuristics for Timetabling

20.4.1 The Problem Area

Timetabling problems are often highly constrained and incompletely specified. In a
typical problem the task is to timetable a number of weekly lectures or a number
of exams. Some events can only happen in specific rooms, perhaps because they
require unusual facilities or because the room must be large enough to hold all the
participants. Each person (staff or student) may only be available at some limited
times. There are also soft constraints that should be honored if possible but can be
violated if necessary. For example, it may be desirable to try to space events out or
to cluster certain events, but travel timings may make it inconvenient to put some
pairs of events too close together. And, of course, it may not be possible to have a
full and accurate specification by the time that the timetable has to be finalized.

Heuristics for timetabling problems are similar in spirit to those for SAT and
for SAT’s close relation, constraint satisfaction problems. In constraint satisfaction
problems, each variable has a domain of possible values and there are constraints
between pairs of variables, typically in the form of a pair-specific set of disallowed
pairs of values. In all three problem areas, solutions are typically constructed by
repeatedly choosing a variable and then choosing a value for it, in some heuristic
fashion.

It is also common to view timetabling as a graph-coloring problem at heart.
Events are represented as nodes and two nodes are linked by an edge if they cannot,
for whatever reason, be placed in the same timeslot. The basic task is then to color
the nodes of the graph in such a way that no two nodes linked by an edge have the
same color—the set of colors represents the set of timeslots. There is a large body
of theory about graph coloring, see for example Kubale (2004).

20.4.2 The Heuristic Generation Process

Burke et al. (2007b) used up to six heuristics based on graph-coloring notions to
choose events. A chosen event would then be inserted into the lowest-cost available
timeslot, cost being determined by the soft constraints. The possible heuristics were:

620 P. Ross

1. LD: (largest degree) choose the event with the largest number of hard constraints;
2. LWD: (largest weighted degree) as LD, but the hard constraints are weighted in

some way rather than being regarded as equal;
3. CD: (color degree) choose the event that has the most hard constraints involving

already-placed events;
4. LE: (largest enrolment) choose the event involving the most people;
5. SD: (saturation degree) choose the event with the fewest available timeslots;
6. RO: (random order) choose at random.

and different mixes of these were tried.
A solution is represented by a sequence of these heuristics, applied in turn to

build a complete solution. Each heuristic was used to place two events before
moving on to the next heuristic in the sequence, thus if there were n events to
be scheduled the sequence would be ⌊ n

2⌋ long (no selection method is needed for
the final event). The decision to use each heuristic twice was guided by the empir-
ical observation that, if the list was n long then runs often occurred, and then by
some experimental exploration of possible choice of repetition factor (2–5).

To begin with, tabu search was used to find the best sequence of heuristics
for a family of benchmark timetabling problems. Each sequence was evaluated by
constructing a complete timetable, then using a local search to try to improve the
timetable further by moving events around and evaluating that improved result. If
a sequence produced an invalid timetable, the offending sub-sequence of heuristics
would be added to the tabu list.

Later work (Qu and Burke 2009) tried replacing tabu search by steepest descent,
iterated local search and variable neighborhood search. The latter two were found to
be better than tabu search for the purpose. Ochoa et al. (2009) analyzed the fitness
landscape, observing that there were many plateaus in the landscape but it was also
globally convex, suggesting that the landscape does contain the sort of information
that could help to guide a search towards the optimum.

Cowling and Chakhlevitch (2007) tackled practical personnel scheduling prob-
lems by using a large set of low-level perturbing heuristics, some of which choose
an event to try altering and others of which decide how to alter a chosen event. The
problems involved 50 or more training staff to be scheduled to handle between 147
and 224 training events in 16 different locations over some 3-month period; when
scheduled by hand, they were taking around 9 days of a manager’s time. Cowling
and Chakhlevitch explored a broad range of ways of combining the heuristics using
greedy or mildly greedy (peckish) and tabu search strategies. They conducted exten-
sive experiments and concluded that hyper-heuristic methods were able to produce
very good solutions, and in a very small fraction of the time previously taken by
managers.

20 Hyper-heuristics 621

20.4.3 Remarks

One of the observations in Burke et al. (2007b) was that, assuming enough search
time was allowed, it tended to be beneficial to include random ordering (RO) as one
of the heuristics. But it is important to remember that if a solution method includes
any non-deterministic components then different runs on the same data can produce
different results, and it may then be important to factor in the cost of doing multiple
runs in order to sample the space of possible outputs. If speed or reproducibility
are of primary importance in your application area, it may be wise to omit any
random-based component from the final product.

However, in the development stage, it can be helpful to try including a random-
choice heuristic. If its inclusion improves the results, that is suggestive evidence
that the other heuristics considered by the search process all failed to offer the good
choice that the random-choice heuristic actually made. In that case, perhaps the
basic set of heuristics or heuristic ingredients needs to be modified in some way.

20.5 Hyper-heuristics for Packing

20.5.1 The Problem Area

Given a set of containers, usually all of the same size, how can you pack a given
set of objects into them so as to use as few containers as possible? There are many
variants on this basic theme. The containers may be one-, two- or three-dimensional.
In two or three dimensions, the objects may be rectilinear or may be of any shape.
There may be a cost or weight associated with each object so that the task is instead
to minimize that cost or weight while packing as many items as possible. The task
may be to cut specified shapes from stock material, using only guillotine cuts, or
using only cuts parallel to the edges of the material. A taxonomy of such problems
can be found in Dyckhoff (1990); see also Martello and Toth (1990) and Coffman
et al. (1996).

As before, the basic constructive approach is iterative: select an item and decide
where to put it, repeatedly. Some approaches create a rating heuristic that evaluates
any given placement of an item, and this rating heuristic is applied at each step to ev-
ery remaining item in every possible position. Many heuristics have been suggested,
for example:

• (For offline problems) select items, largest first, and put them in the first container
that will hold them. If M is the minimum number of containers needed, this is
known to require no more than 11M/9+ 4 containers (Johnson 1973);

• (For offline problems) taking largest items first, pack a container until it is at
least one-third full, then conduct a search for any single item that will fill the
container, or else a combination of two or three items that will fill the bin;

622 P. Ross

Fig. 20.3 A messy GA
approach: the basic idea

H4

H3

H1H2

H1

Initial

state

Solved

• (For online problems) put the next item into the fullest container that will
accept it.

There are also fairly obvious perturbing heuristics. For example, if a container is
nearly full, such that it will not accept any other item, then search the other contain-
ers for a single item or any pair of items that will fill it.

20.5.2 Heuristic Generation Processes

Ross et al. (2003) describe a distinctive approach to solving offline one-dimensional
packing problems, using a hyper-heuristic approach to create a very fast construc-
tive heuristic. The idea is to associate heuristics with points or regions in a simplified
problem-state space, for example encoding the current state of the partial solution
as a vector of five real numbers: the proportion of small items, medium items, large
and huge items remaining to be packed, and finally the proportion of the total num-
ber of items still to be packed. The definitions of small, medium, large and huge
are somewhat ad hoc. A messy GA (Goldberg et al. 1989) is used to try to find a
number of points in this five-dimensional space, each with an associated heuristic,
that can be used to guide the packing process. Each chromosome contains a variable
number of genes, and each gene is a block containing a five-dimensional vector and
a named heuristic that can be regarded as the label for that five-dimensional point.
A chromosome therefore describes a set of labeled points in five-dimensional space,
as suggested by Fig. 20.3 and is decoded into a complete packing by the algorithm
shown in Fig. 20.4.

Fitness of each chromosome was based on using it for a number of training prob-
lems, using a rolling regime of sampling problems rather than trying every training
problem every time. The single final algorithm was able to deliver very creditable
results on each of a large number of test problems. Moreover, since the simplified
state space could be divided up into a suitably large number of cubes, each marked

20 Hyper-heuristics 623

Fig. 20.4 A state-space-guided packing algorithm

Fig. 20.5 Applying a candidate rating heuristic

with a chosen one of its nearest labeled points, a very slightly modified form of this
algorithm could be applied to any new problem without any search being involved
whatever.

A somewhat similar messy GA approach was used by Terashima-Marín et al.
(2010) to tackle two-dimensional stock-cutting problems involving both regular and
irregular shapes. Stock-cutting problems are simply packing problems involving the
cutting of specified shapes out of standardized stock material; practical examples
include tasks such as stamping car body parts out of sheet steel. Each block in the
chromosome contained a vector identifying a point in an eight-dimensional simpli-
fied state space, and also two heuristics—one to select the next shape to be cut and
one to decide whereabouts on the stock sheet it should be cut from.

Burke et al. (2007a) tackled the online version of the one-dimensional packing
problem by using genetic programming to evolve a rating heuristic to decide where
best to put the next item. An adequately large array of containers was used, but only
non-empty ones counted at the end. Any candidate heuristic was evaluated by using
it to tackle a number of training problems; each problem was handled as shown in
Fig. 20.5.

624 P. Ross

B

A

 20
 40

 60
 80
 100

 120
 140

−160

−140

−120

−100

−80

−60

−40

−20

 0

 20

Size of item

 40

50
200150

100
250 300

Fullness of bin (sum of contents)

H
eu

ri
st

ic
’s
 v

a
lu

e

Fig. 20.6 A plot of the generated rating function for online packing

Unusually, candidate heuristics were allowed to overfill containers, but any such
packing was penalized heavily so that the system learns not to overfill. The ge-
netic programming used the standard +,−,×,/,≤ functions, where “/” is pro-
tected division that returns 1 if the denominator is zero and “≤” returns 1 or −1.
The terminals included the size of the item S, the fullness of the container F (that
is, the sum of all that it currently holds) and the capacity C of the container. The
solutionQuality function was

solutionQuality=

{

1− ∑(Fi/C)2

n : if legal
big constant : if not,

where Fi is the fullness of container i and there are n non-empty containers. The
approach was developed using a number of modest-sized benchmark packing prob-
lems, all using containers with size C = 150. Burke et al. suggested that a heuristic
developed using a specific subset of the problems tended to show rather less good
performance on other subsets with different characteristics, and gave the following
example of a generated rating function:

2S+F

S+F
+

C

((F
C ≤ 2C−F)+ (C− S−F))

.

Figure 20.6 shows the value of this rating function for values of F from 1 to 300
(since the container could be overfilled beyond its capacity of 150 by a bad heuristic)
and values of S from 1 to 150. The peak of the ridge lies along the line S+F =
C. Either by careful analysis of the formula, or by inspecting a large table of the
formula’s values, it can be seen that the region marked A slopes smoothly upward
from the origin to the ridge, and the region marked B all lies strictly below any
point in region A. This means that the heuristic rating function will never allow a
container to be overfilled, because points with S+F >C all have lower values than

20 Hyper-heuristics 625

Fig. 20.7 Three-dimensional packing

any points satisfying S+F ≤C. Assuming that the items are never larger than the
container, the rating function is exactly equivalent to the sensible online heuristic
that says “put the item in the fullest container that can accept it”.

Allen et al. (2009) have extended this idea to three-dimensional packing of rect-
angular objects in rectangular containers. A more complicated notion of packing is
used. Figure 20.7 shows a view of a container with two items already packed. There
are five places where the next object might be placed, namely the five places where
three back-surfaces meet. Items should be fully supported from below rather than
overlapping the lower items: an item placed on surface Az should not overhang Bz

or Cz. If nothing can be used to infill a gap, such as the gap to the left of Bx, then the
gap is deemed to be filled and the supporting surface Bz is deemed to expand over
the gap. However, the basic notion, of trying every item in every possible corner and
in every possible distinctive orientation, remains the same. The functions used in the
genetic programming are more elaborate than in the one-dimensional case, and are
not repeated here.

20.5.3 Remarks

See Burke et al. (2009b) for a survey of genetic programming applied in hyper-
heuristics research. Arguably, there are numerous papers which have used genetic
programming to create a good rating function and yet which do not mention hyper-
heuristics. For example, Hauptman and Sipper (2005) used genetic programming to

626 P. Ross

create a good board evaluation function for certain kinds of chess end-game, namely
those in which either side has a queen or a rook or both. A large number of chess-
specific terminals were used, such as “is my king protecting one of my pieces?”,
“number of legal moves for opponents king” and “distance of my king from edge
of board” as well as basic logical operations such as and/if/or/not. Each function
was evaluated by having it play against some other members of the population with
a randomly-generated initial end-game position. The final result was able to draw
against a world-class (2004) chess program. Hyper-heuristics is still a fairly new
topic; perhaps in future more such examples will come to be known as instances of
the topic.

However, if you want to explore hyper-heuristics, packing is a better place to
start. There are many benchmark problems available, with many results available for
comparison. And as yet, not many authors have tried using hybrid hyper-heuristics
for online problems—that is, not only deciding where to put the next item but also
revisiting earlier decisions from time to time so as to shuffle various items between
containers. After all, that is what human supermarket bag-packers often do, while
trying to pack bags fast and avoid undue delay at the end.

In earlier work, Ross et al. (2002) also tried using an extended classifier system as
the search engine for one-dimensional packing. Classifier systems try to discover a
good set of condition-action rules by simulated evolution, but early systems tended
strongly to favor rules that were very general. XCS, the extended classifier sys-
tem (Wilson 1995), avoids that trap by focusing more on the prediction accuracy of
a rule than on the number of test cases it covered, and has been extremely successful
in areas such as data mining. See also Marin-Blazquez and Schulenburg (2007).

20.6 A Little History

Although hyper-heuristics has only emerged as a recognizable topic area within the
last decade or so, the basic concepts are certainly older than that. For example,
the COMPOSER system (Gratch et al. 1993) planned communication schedules
between Earth-orbiting satellites and ground stations, with a maximum interval be-
tween communications with a given satellite. The ground stations that could be used
were constrained by satellite orbits. The scheduler used heuristic methods to try to
build a schedule, deciding which unsatisfied constraints to focus on next and how
to try to satisfy them. Because there were several possible heuristics to use in each
case, the system used a simple hill-climbing approach to investigate combinations
of them, testing each on 50 different problems, and was able to discover an effec-
tive combination. Wah et al. (1995) developed an early heuristics-learning system
named Teacher and discussed a number of the issues raised in this chapter.

The Adaptive Constraint Engine (ACE, Epstein et al. 2002) also implemented
some interesting ideas that are now being explored in hyper-heuristics research.
ACE used reinforcement learning to try to discover good heuristics for constraint
satisfaction problems, using an advisor-based architecture named FORR, which was

20 Hyper-heuristics 627

an acronym for “FOr the Right Reasons”. Each of a number of advisor components
looked after some specific principle, such as “prefer the variable with the fewest re-
maining values in its domain”, and generated explicit comments about the suitability
of its principle for the legal actions in any given state. ACE then learned what to do
in each state, based on such comments. ACE built upon some of the ideas embodied
in cognitive architectures such as SOAR (SOAR 2012) and ACT-R (ACT-R 2012).

20.7 Some Research Issues

20.7.1 No Free Lunch?

It would be natural to wonder just how good any generated heuristic could be.
Perhaps some hyper-heuristic composition of other heuristics will manage to avoid
the specific weaknesses of each of the ingredients, but might the composition not
have new weaknesses of its own? Or do hyper-heuristics offer the prospect of some
kind of “free lunch” to operations researchers?

Consider a finite-search problem defined on a finite domain. This is not a re-
strictive supposition; in fact, virtually all computer-based searching is done on such
problems, because only finitely many values can be represented in IEEE floating
point arithmetic, or in other formats within a finite-memory computer. Wolpert
(1995) proved a famous “No Free Lunch” theorem that said that, averaged over all
such problems, all search algorithms that do not revisit already-visited points have
exactly the same average performance. This result is not as surprising as it might
seem. Nearly all problems have no exploitable structure that could be used to guide
a search—they can only be defined by a large lookup table, and nothing about the
values would tell you where the optima actually lie. You can easily generate exam-
ples of intractable search problems for yourself. For example, start with f (x) = x2

in the interval x ∈ 0. . .100 and then, in your program, redefine f (π2 + 23) to be
10,000,000 instead of≈1,080.410893. Now the maximum of this modified function
f () lies at x = (π2 + 23) (or rather at the closest value to this that the computer can
represent internally) rather than at x = 100, but how could you find it without sam-
pling that one specific value? Nothing about the other values of the function will tell
you that this amazing spike is lurking there. But in practice we are not interested in
such random- or random-seeming functions; the problems we humans are interested
in have some internal structure and some degree of predictability or continuity about
them. We therefore want to find algorithms that can perform well on the subset of
problems that arise naturally in some context; the difficulty lies in characterizing
that subset properly in such a way that we can design a really effective algorithm
for the members of that subset. Hyper-heuristics sidesteps these issues of character-
ization and design to some degree by instead conducting a search for an adequately
effective algorithm.

628 P. Ross

Schumacher et al. (2001) showed that the No Free Lunch theorem applies to
smaller sets of problems than all problems defined on a finite domain, and in par-
ticular it applies to a set of problems that is closed under permutation of the set
of values. To get an idea of what that means, consider the domain x ∈ [1,2,3,4,5]
and the set of values [23,47,51,55,93]. There are 120 different ways of defining a
function f () on that domain by assigning these values to f (1) . . . f (5), thus produc-
ing a set of problem (functions) closed under permutation of the values. But more
significantly, Schumacher et al. showed that the No Free Lunch theorem only ap-
plies to such problem sets; if the problem set is not closed under permutation, then
the theorem is not true and there are some algorithms that have better average per-
formance than others. As Poli and Graff (2009) have pointed out, this means that
hyper-heuristics-generated algorithms may turn out to be better than average if the
problem set to which they are applied is not closed under permutation.

In practice, this is still more of theoretical than practical interest, but it does
highlight the research question of how best to characterize the set of problems on
which a generated heuristic is capable of showing particularly good performance.
There has been some practical work done on such issues already—see Sect. 20.5.2—
but much more could be done. One possible approach is to investigate systematically
how the performance of a generated heuristic varies as it is applied to other sets
of problems in the same area but with different characteristics. Another approach
might be to use search techniques to try to create problems that cause the heuristic
to stumble in some way.

20.7.2 Search Methods

Many different search techniques have been tried already, such as genetic programm-
ing, tabu search, straightforward genetic algorithms, variable-neighborhood search,
simulated annealing, classifier systems, ant colony methods, particle swarm meth-
ods and so on.

Genetic programming is typically used to create a rating function of some kind
but the general technique still suffers from some weaknesses that researchers are try-
ing to address, such as the issue of bloat: the creation of overly-elaborate functions
that may be unreasonably opaque to the end users or which might bias the search
undesirably. As illustrated earlier, sometimes a generated function is relatively sim-
ple and can be analyzed to simplify it even further. But it is less easy to analyze a
function tree of the kind shown in Fig. 20.2 in order to try to simplify it. Various
kinds of tree-pruning methods used in data mining could be used to explore whether
a generated heuristic is either overly complicated or perhaps even too specific to the
training examples.

The messy GA and classifier systems approaches mentioned in Sects. 20.5.2 and
20.5.3 typically produce a rather different sort of output, which directly associates
a choice of existing heuristic with some problem-specific conditions. Few peo-
ple have yet done much investigation of these search methods in the context of

20 Hyper-heuristics 629

hyper-heuristics—see Terashima-Marín et al. (2008) for an example that tackles
hard constraint satisfaction problems and see Terashima-Marín et al. (2010) for an
example that tackles regular- and irregular-shaped stock-cutting problems. Essen-
tially these methods generate sets of condition-action rules, but the actions do not
have to be simply about choosing a heuristic. In a hybrid system, the actions might
also be about when to switch from a constructive phase to a solution-perturbing
phase or vice versa, or might be about altering the scope of a search process, and
so on.

The example described at the start of Sect. 20.3.2 searched a space defined by
a grammar, but the grammar in question was essentially defined by the type of in-
formation involved. Grammatical evolution (O’Neill 2003, 2012) could be used to
explore more varied kinds of grammar, although there are open questions about how
best to conduct the search through a grammar-defined space (Castle and Johnson
2010).

As yet, little has been done on distributed and parallel versions of hyper-heuristic
search, but see Biazzini et al. (2009) and León et al. (2009) for examples.

20.7.3 Representation Issues

Various researchers have begun to explore how the choice of representation af-
fects the results, for instance by studying which base-level heuristics to include or
omit (Burke et al. 2007b) or which problem-features to include (Ross et al. 2003).
In many instances the choice of representation has been guided by a study of ex-
isting heuristics, although the use of sensitivity analysis to investigate what really
matters is still relatively rare. It is also conceivable that the choice of representation
could itself be heuristically guided and problem specific. Think of trying to solve a
rectangular jigsaw puzzle. It is commonplace to start with the four corner pieces and
then the edge pieces. Thereafter, the choice of what to focus on tends to be guided
by the specific details of the puzzle itself. For instance, if the puzzle contains lots
of relatively undifferentiated blue sky then that might best be left until most of the
rest of the puzzle has been completed, because then there will be more guidance
available from the surrounding pieces. The same sort of notion might be applied in
hyper-heuristics.

20.7.4 Performance Guarantees

Although real-world users of heuristics often like to have performance guarantees,
little has as yet been done to try to generate heuristics that have formally prov-
able performance bounds, and indeed relatively few human-generated heuristics
seem to offer such guarantees either. Section 20.5.1 mentioned one example: the
“largest first” heuristic that uses no more than 11M/9+4 containers where M is the
minimum.

630 P. Ross

One possible way to make progress in this area might be to try combining
hyper-heuristics ideas with ideas from the study of parameterized algorithmics,
sometimes also referred to as fixed-parameter algorithms (Niedermeier 2006;
Downey and Fellows 1999). The key idea in fixed-parameter algorithms is to in-
troduce an additional, fixed parameter that will help to focus the search for a solu-
tion and will significantly simplify the process. Here is an example. Imagine that
you have been asked to help modernize a large national railway system—see Weihe
(1998) for a motivating real-world example. It is very costly to have a ticket office
and ticket-checking barriers at every station; all you really need is to have such fa-
cilities at one end or the other of every possible journey. So you need to find the
fewest possible number of stations at which to install such facilities; this is known
as the vertex cover problem and it is known to be NP-hard. In graph theory terms, if
a graph has N nodes, representing stations, and E edges, representing journeys, then
the task is to find a minimal subset of nodes such that every edge meets at least one
of them. Clearly the size of such a subset will be at most ⌊E/2⌋ but might well be
much smaller, and even some kind of non-exhaustive search could be very costly.
But if you introduce a new parameter k and search only for covers of size at most k,
the search can be made much more focused. This is because any node that has e > k
edges attached to it must be in the cover; if it were not in the cover, then all of the
e nodes at the other ends of those edges would have to be in the cover, thus making
the cover larger than k in size. By studying the degree sequence—that is, the ordered
sequence of the number of edges meeting each node—it is often possible to home in
on a modest number of possible choices for k, each of which may involve a far less
costly search than in the unparameterized case and which involve an explicit bound
on the solution size.

It may be possible to unite hyper-heuristic ideas with specific ideas about pa-
rameterized algorithms in order to generate heuristics with specific performance
characteristics. This also raises the possibility of using hyper-heuristic ideas to gen-
erate new kinds of metaheuristic algorithms which will be able to announce their
performance characteristics when applied to any specific problem.

20.8 Getting Started: The HyFlex Framework

The best way to learn more about hyper-heuristics is by trying some practical exper-
iments. The HyFlex software framework (Ochoa et al. 2012) is a convenient tool for
the purpose, written in Java. At the time of writing it includes four kinds of problem:

• One-dimensional bin-packing problems;
• Satisfiability problems;
• Personnel scheduling problems, not unlike the timetabling problems described

earlier;
• Permutation flow shop problems. These are work-scheduling problems in which

there are n jobs to be completed and each job needs to visit m machines, in each
case visiting machine 1 first, machine 2 second and so on (so that the work-flow

20 Hyper-heuristics 631

is the same for each job), but possibly visiting each machine for differing job-
specific amounts of time. Therefore the issue is to find that permutation of the n
jobs which minimizes the total time to completion.

In each case a number of benchmark problems is supplied, and also a number of
heuristics. The heuristics are black boxes: they can be applied to a problem but
their internal workings are not available at the level of the system’s API. There are
four kinds of heuristic: mutational/perturbing ones; ruin–recreate ones that make
large-scale changes by partially destroying a solution and rebuilding it; local search
ones that stop when a local optimum is found or a stopping condition is met; and
crossover ones that construct a new solution in some way from two current ones.

The API provides hooks to initialize and manage a population of candidate so-
lutions, set and monitor a time limit, and apply any of the relevant heuristics. Two
parameters, described as depth of search and intensity of mutation, make it possible
to control certain aspects of the heuristics’ operations. The main task is therefore to
create your own program that learns through experience which heuristic to apply,
with what parameter settings.

The framework provides a simple and convenient entry-point into some of the
practical aspects of hyper-heuristics. However, it enforces a strict separation be-
tween the domain-specific aspects, hidden from the end user behind a so-called
domain barrier, and a domain-independent form of hyper-heuristic exploration. For
large real-world applications, it is often desirable to use far more domain informa-
tion than a tool such as HyFlex can conveniently offer.

20.9 Tricks of the Trade

Hyper-heuristics is an excellent area for research: there are still many issues await-
ing thorough explorations. This section lists some advice.

20.9.1 The Problem Area

If you have a choice, look for an area where a hyper-heuristic approach is likely to
bring useful benefits. Finding new ways to slingshot a spaceship around the inner
planets may be fun and that research may have valuable theoretical consequences,
but the space agencies are not necessarily interested in fast-and-cheap, good-enough
algorithms at the mission-planning stage. On the other hand, there may be useful
practical scope for hyper-heuristic approaches in dynamic robot control applica-
tions: a moving robot may not be able to afford to wait for the completion of some
expensive optimization routine. Whatever the area, remember that you will need a
significant number and variety of problem instances.

If your focus is on very practical problems, perhaps provided by a commercial
partner, you may not have that many problem instances to work with. It is possible to

632 P. Ross

generate additional examples, both by using random methods to create completely
new problems and by making random changes of various sizes in existing problems.
In many areas of combinatorics, generating random problems by some naive method
may create examples that are not particularly hard, so it can be worthwhile to put
some thought into how to generate problems. It can also pay to do a systematic study
to try to discover what makes certain problems especially hard, at least for certain
heuristics or search methods. It is sometimes possible to create problems for which
you know the optimal answer. For example, in two-dimensional packing, you can
start by dissecting the shape to be packed into a number of pieces, and then change
some pieces a little by removing small amounts, such that the total amount removed
adds up to less than the smallest piece. Thus all the pieces will still be needed.

20.9.2 Success Criteria

You should not simply be trying to produce better results than any recently published
ones. Hyper-heuristic methods are unlikely ever to beat hand-crafted, CPU-intensive
problem-specific methods. Your new hyper-heuristic methods may of course pro-
duce better results than some earlier hyper-heuristic methods, but that should not
be your final goal. As a scientist, your aim should be to develop a new and greater
understanding of what is going on, and to tell others about what you learned. Rather
than simply obtaining good results, try to explore what made the difference and
also, what the limitations of your methods are. More specifically, if your interest
is in developing good-enough, fast-enough methods for some class of problems,
there is going to be some kind of trade-off between speed and quality. Despite many
decades of research, that kind of Pareto frontier is still poorly charted territory. It
can be helpful to think carefully at the outset about the success criteria for your
research, not least because you then have a clear goal to work towards. For exam-
ple, a good hyper-heuristic might be one that is significantly cheaper to use than the
alternative of trying every available heuristic in turn, and also provides results that
can be better than the best heuristic but never significantly worse. Once you have
found a good hyper-heuristic, investigate what features contributed to its success,
for example by seeing what happens if you omit individual ingredients. Remember
Danth’s Law, paraphrased here as “if you are forced to resort to declaring victory,
you have probably already lost”.

20.9.3 On-line or Off-line

Many papers discuss some class of off-line problems, in which all relevant infor-
mation is available at the start, and others discuss on-line problems and assume
that the task is to build a solution by deciding what to do with the latest information.
Few authors have yet considered hybrid approaches in which, when new information
arrives, a very limited time is spent on reconsidering the whole of the solution so

20 Hyper-heuristics 633

far and possibly reorganising it. This would make good use of the time between
arrivals.

20.9.4 A Good Set of Heuristic Ingredients

Finding a good set of heuristics, or a set of heuristics components, can be tricky.
Having too large a set can cripple the search process by making the search space too
enormous. Look for heuristics that complement each other in some way. In solution-
constructing approaches, remember that a single application of a heuristic does not
have to do just one step of the construction: a heuristic can also be of the form do
. . . until . . . or some other such looping construct. In solution-modifying approaches,
it may be helpful to include “destructive” ingredients that may shift the focus to
some other part of the space.

20.9.5 Fitness

Although the ultimate aim may be to find some algorithm that is capable of perform-
ing well on a wide variety of problems, it is not always necessary to evaluate each
candidate on every problem. The computational burden can be reduced by evalu-
ating each candidate on some randomly selected subset of problems, biasing the
selection in favour of those problems that have participated least in the evaluations
so far, and perhaps also in favour of those that have been hard.

Of course, you should adopt good practices such as having separate sets of prob-
lems for training and for eventual validation, or use cross-validation. It is also good
practice to keep a set of problems apart for use as a final test set, that ideally should
only be used once: you should try to avoid “data snooping”, sometimes referred to
as “data dredging”, as far as you can.

20.9.6 A Good Set of Tools

There are many tool-kits available that implement search methods such as genetic
algorithms, genetic programming or tabu search. It takes time to learn to use such
tool-kits properly, and you will probably still need to do some programming work to
add the features that you need, such as specific heuristics. It can often be worthwhile
to build your own system rather than relying on a toolkit: that way, you get only what
you need, your system does what you want, and you learn more than you would if
you relied on someone else’s ideas and skills. Aim to become a good programmer:
it takes time, but is a very valuable talent.

Resist any temptation to build your own very elaborate graphical user interface
(GUI). GUIs are limited when it comes to handling and analyzing large amounts of

634 P. Ross

data (and GUI-building is often simply a form of work-avoidance). Hyper-heuristic
research often generates very large amounts of data, that are better handled using a
powerful scripting language such as Perl or Python. Open-source tools such as gnu-
plot or the python-specific matplotlib are excellent for graph plotting, and graphviz
is excellent for tree or network visualization; becoming thoroughly comfortable with
such tools does take time but pays big dividends.

20.9.7 Attitude

Try to be skeptical about your results. Subtle programming errors, whether made by
you or by someone else, can affect your results, so try to find ways to check them
that do not depend on reusing critical parts of your code.

Aim to keep up to date with related research, such as developments in search
technology as well as more specific things such as new ideas in your chosen problem
areas. Reviewers routinely reject papers that claim good results on the basis of a
comparison with outdated results or with obsolete algorithms. Try to be your own
strongest critic.

Sources of Additional Information

This section lists some places to look.

• The Handbook of Metaheuristics (Glover and Kochenberger 2003) contains a lot
of information about different kinds of heuristics, and includes a chapter about
hyper-heuristics (Burke et al. 2003).

• The ASAP group at Nottingham University has a good website (ASAP 2012) that
includes research publications about hyper-heuristics and links to timetabling
problems and other resources.

• The Journal of Heuristics, published by Kluwer, contains many papers about
heuristic methods generally. The tables of contents and the abstracts of papers
are available online; full papers are available to subscribers to Kluwer Online.

• The European Journal of Operational Research also contains may papers relat-
ing to heuristics and to problems that might be tackled by hyper-heuristic meth-
ods. Again, abstracts are freely available online.

• The Metaheuristics Network site at www.metaheuristics.org provides informa-
tion about various meta-heuristic techniques, references to papers and links to
sets of problems in several areas: quadratic assignment, maximum-satisfiability,
timetabling, scheduling, vehicle routing and an industrial hose-optimization prob-
lem. The aim of the Metaheuristics Network is to conduct scientific comparisons
of performance between various metaheuristic techniques in different problem
areas. Although hyper-heuristic methods are not explicitly considered, the site is

www.metaheuristics.org

20 Hyper-heuristics 635

valuable because the problems have been generated or contributed by the mem-
bers and performance results are being made available.

• The OR-Library (OR-library 2012) is a large repository of benchmark OR
problems.

• Kendall (2012) has a useful online bibliography of papers about hyper-heuristics.
• The European Space Agency (ESA 2012) has some difficult spacecraft trajectory

optimization problems available online.
• There is an online collection of frequency assignment problems (FAP 2012).
• See University of Melbourne data (2012) for some real-world university exam

timetabling problems.

References

Allen S, Burke EK, Hyde M, Kendall G (2009) Evolving reusable 3D packing
heuristics with genetic programming. In: Rothlauf F (ed) Proceedings of the
GECCO 2009, Montreal. ACM, New York, pp 931–938

ASAP research group (2012) http://www.asap.cs.nott.ac.uk/
Bader-El-Den MB, Poli R (2008) Generating SAT local-search heuristics using a

GP framework. In: Monmarche N et al (eds) Artificial Evolution: Proceedings of
the 8th International Conference EA 2007, Tours, France. Springer LNCS 4926,
37–49, 2008

Bettinger P, Sessions J, Boston K (2009) A review of the status and use of validation
procedures for heuristics used in forest planning. Int J Math Comput Forest Nat
Resour Sci 1:26–37. http://mcfns.com

Biazzini M, Bánhelyi B, Montresor A, Jelasity M (2009) Distributed hyper-
heuristics for real parameter optimization. In: Rothlauf F (ed) Proceedings of the
GECCO 2009, Montreal. ACM, New York, pp 1339–1346

Bittle S, Fox M (2009) Learning and using hyper-heuristics for variable and value
ordering in constraint satisfaction problems. In: Rothlauf F (ed) Proceedings of
the GECCO 2009, Montreal. ACM, New York, pp 2209–2212

Bräysy O (2003) A reactive variable neighborhood search for the vehicle routing
problem with time windows. INFORMS J Comput 15:347–368

Burke E, Hart E, Kendall G, Newall J, Ross P, Schulenburg S (2003) Hyper-
heuristics: an emerging direction in modern search technology. In: Glover F,
Kochenberger G (eds) Handbook of meta-heuristics. Kluwer, Dordrecht,
pp 457–474

Burke EK, Hyde M, Kendall G, Woodward J (2007a) Automatic heuristic generation
with genetic programming: evolving a jack-of-all-trades or a master of one. In:
Proceedings of the GECCO 2007, London. ACM, New York, pp 1559–1565

Burke EK, McCollum B, Meisels A, Petrovic S, Qu R (2007b) A graph-based hyper-
heuristic for educational timetabling problems. Eur J Oper Res 176:177–192

http://www.asap.cs.nott.ac.uk/
http://mcfns.com

636 P. Ross

Burke EK, Hyde M, Kendall G, Ochoa G, Ozcan E, Woodward J (2009a) A
classification of hyper-heuristics approaches. In: Gendreau M, Potvin J-Y (eds)
Handbook of metaheuristics, 2nd edn. Springer, Berlin, pp 449–468

Burke EK, Hyde MR, Kendall G, Ochoa G, Ozcan E, Woodward JR (2009b)
Exploring hyper-heuristic methodologies with genetic programming. In: Mum-
ford CL, Jain LC (eds) Computational intelligence: collaboration, fusion and
emergence. Springer, Berlin, pp 177–201

Castle T, Johnson CG (2010) Positional effect of crossover and mutation in gram-
matical evolution. In: Esparcia-Alcazar AI et al (eds) Proceedings of the EuroGP
2010, Istanbul. LNCS 6021. Springer, Berlin, pp 26–37

Chakhlevitch K, Cowling PI (2008) Hyperheuristics: recent developments. In: Cotta
C, Sevaux M, Sörensen K (eds) Adaptive and multilevel metaheuristics. Studies
in computational intelligence, 136. Springer, Berlin, pp 3–29

Coffman EG, Garey MR, Johnson DS (1996) Approximation algorithms for bin
packing: a survey. In: Hochbaum D (ed) Approximation algorithms for NP-hard
problems. PWS, Boston, pp 46–93

Cowling PI, Chakhlevitch K (2007) Using a large set of low-level heuristics in a
hyperheuristic approach to personnel scheduling. In: Dahal KP, Tan KC, Cowl-
ing PI (eds) Evolutionary scheduling. Studies in computational intelligence, 49.
Springer, Berlin, pp 543–576

Cowling P, Kendall G, Soubeiga E (2001) A hyperheuristic approach for schedul-
ing a sales summit. In: PATAT 2000, Konstanz. LNCS 2079. Springer, Berlin,
pp 176–190

Downey RG, Fellows MR (1999) Parameterized complexity. Springer, New York
Dyckhoff H (1990) A topology of cutting and packing problems. Eur J Oper Res

44:145–159
Epstein SL, Freuder EC, Wallace RJ, Morozov A, Samuels B (2002) The adaptive

constraint engine. In: Van Hentenryck P (ed) Principles and Practice of Constraint
Programming – CP 2002, Ithaca. LNCS 2470. Springer, Berlin, pp 525–540

ESA (2012) Global trajectory optimisation problems. C++ and Matlab code avail-
able. http://www.esa.int/gsp/ACT/inf/op/globopt.htm

Frequency assignment problems (2012) fap.zib.de/
Fukunaga A (2002) Automated discovery of composite SAT variable-selection

heuristics. In: Proceedings of the AAAI 2002, AAAI Press, Edmonton, pp 641–
648

Fukunaga AS (2008) Automated discovery of local search heuristics for satisfiabil-
ity testing. Evol Comput 16:31–61

Garrido P, Castro C (2009) Stable solving of CVRPs using hyperheuristics. In:
Proceedings of the GECCO 2009, Montreal, pp 255–262

Glover F, Kochenberger G (eds) (2003) Handbook of meta-heuristics. Kluwer,
Dordrecht

Goldberg DE, Deb K, Kargupta H, Harik G (1989) Messy genetic algorithms:
motivation, analysis and first results. Complex Syst 3:493–530

http://www.esa.int/gsp/ACT/inf/op/globopt.htm
fap.zib.de/

20 Hyper-heuristics 637

Gratch J, Chein S, de Jong G (1993) Learning search control knowledge for deep
space network scheduling. In: Proceedings of 10th international conference on
machine learning, Amherst, pp 135–142

Hauptman A, Sipper M (2005) GP-endchess: using genetic programming to evolve
chess endgame players. In: Keijzer M et al (eds) Proceedings of the 8th EuroGP,
Lausanne. LNCS 3447. Springer, Berlin, pp 120–131

Johnson DS (1973) Near-optimal bin-packing algorithms. PhD thesis, MIT Depart-
ment of Mathematics

Kendall G (2012) A bibliography of hyper-heuristics and related approaches. http://
www.cs.nott.ac.uk/~gxo/hhbibliography.html

Kubale M (ed) (2004) Graph colorings. AMS, Providence
León C, Miranda G, Segura C (2009) A memetic algorithm and a parallel hyper-

heuristic island-based model for a 2D packing problem. In: Rothlauf F (ed) Pro-
ceedings of the GECCO 2009, Montreal. ACM, New York, pp 1371–1378

Marin-Blazquez JG, Schulenburg S (2007) A hyper-heuristic framework with XCS:
learning to create novel problem-solving algorithms constructed from simpler
algorithmic ingredients. In: Learning classifier systems. LNCS 4399. Springer,
Berlin, pp 193–218

Marques-Silva J (2008) Practical applications of Boolean satisfiability. In:
Workshop on discrete event systems, Gothenberg, pp 74–80

Martello S, Toth P (1990) Knapsack problems. Algorithms and computer
implementations. Wiley, New York

Neth H et al. (2009) Analysis of human search strategies. Technical report, Large
Knowledge Collider Consortium. Deliverable 4.2.2. www.larkc.eu

Niedermeier R (2006) Invitation to fixed-parameter algorithms. Oxford lec-
ture series in mathematics and its applications, 31. Oxford University Press,
Oxford/New York

Ochoa G, Qu R, Burke EK (2009) Analyzing the landscape of a graph based
hyper-heuristic for timetabling problems. In: Proceedings of the GECCO 2009,
Montreal. ACM, New York, pp 341–348

Ochoa G, Hyde M, Curtois T, Vazquez-Rodriguez JA, Walker J, Gendreau M,
Kendall G, McCollum B, Parkes AJ, Petrovic S, Burke EK (2012) HyFlex: A
benchmark framework for cross-domain heuristic search. In: Hao J-K, Midden-
dorf M (eds), European conference on evolutionary computation in combinatorial
optimisation EvoCOP 2012. LNCS 7245. Springer, Berlin, pp 136–147

O’Neill M, Ryan C (2003) Grammatical evolution: evolutionary automatic
programming in an arbitrary language. Springer, Berlin

O’Neill M (2012) The grammatical evolution page. http://www.
grammatical-evolution.org

OR-library (2012) http://people.brunel.ac.uk/~mastjjb/jeb/orlib/
Poli R, Graff M (2009) There is a free lunch for hyper-heuristics, genetic programm-

ing, and computer scientists. In: Vanneschi L et al (eds) Genetic programming.
Proceedings of the 12th EuroGP, Tübingen. LNCS 5481. Springer, Berlin,
pp 195–207

http://www.cs.nott.ac.uk/~gxo/hhbibliography.html
http://www.cs.nott.ac.uk/~gxo/hhbibliography.html
www.larkc.eu
http://www.grammatical-evolution.org
http://www.grammatical-evolution.org
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/

638 P. Ross

Poli R, Langdon WB, McPhee N (2008) A field guide to genetic programming.
Lulu, Raleigh. Also available as a free PDF from lulu.com

Qu R, Burke EK (2009) Hybridisations within a graph based hyper-heuristic frame-
work for university timetabling problems. J Oper Res Soc 60:1273–1285

Ross P, Schulenburg S, Marín-Blázquez JG, Hart E (2002) Hyper-heuristics: learn-
ing to combine simple heuristics in bin packing problems. In: Langdon WB et al.
(eds) Proceedings of the GECCO 2002, New York. Morgan Kaufman, San Mateo,
pp 942–948

Ross P, Marín-Blázquez JG, Schulenburg S, Hart E (2003) Learning a procedure
that can solve hard bin-packing problems: a new GA-based approach to hyper-
heuristics. In: Cantú-Paz E et al (eds) Proceedings of the GECCO 2003, Chicago.
LNCS 2724. Springer, Berlin, pp 1295–1306

Satlib—the satisfiability library (2012) http://www.satlib.org
Schumacher C, Vose MD, Whitley LD (2001) The no free lunch and problem de-

scription length. In: Proceedings of the GECCO 2001, San Francisco. Morgan
Kaufman, San Mateo, pp 565–570

The ACT-R home page (2012) http://act-r.psy.cmu.edu/
The SOAR home page (2012) http://sitemaker.umich.edu/soar/home
Terashima-Marín H, Ortiz-Bayliss JC, Ross P, Valenzuela-Rendón M (2008) Using

hyper-heuristics for the dynamic variable ordering in hard constraint satisfaction
problems. In: Proceedings of the MICAI 2008, Atizapán de Zaragoza. LNCS
5317. Springer, Berlin, pp 407–417

Terashima-Marín H, Ross P, Farías-Zárate CJ, López-Camacho E, Valenzuela-
Rendón M (2010) Generalized hyper-heuristics for solving 2D regular and ir-
regular packing problems. Ann Oper Res 179:369–392

University of Melbourne (2012) http://www.or.ms.unimelb.edu.au/timetabling/.
Exam timetabling data

Wah BW, Ieumwananonthachai A, Chu LC, Aizawa A (1995) Genetics-based learn-
ing of new heuristics: rational scheduling of experiments and generalization.
IEEE Trans Knowl Data Eng 7:763–785

Weihe K (1998) Covering trains by stations or the power of data reduction. In: Battiti
R, Bertossi AA (eds) Proceedings of the ALEX 1998, pp 1–8. http://rtm.science.
unitn.it/alex98/book/weihe.ps.gz

Wilson SW (1995) Classifier systems based on accuracy. Evol Comput 3:149–175
Wolpert D, MacReady WG (1995) No free lunch theorems for search. Technical

report SFI-TR-92-02-010, Santa Fe Institute

lulu.com
http://www.satlib.org
http://act-r.psy.cmu.edu/
http://sitemaker.umich.edu/soar/home
http://www.or.ms.unimelb.edu.au/timetabling/
http://rtm.science.unitn.it/alex98/book/weihe.ps.gz
http://rtm.science.unitn.it/alex98/book/weihe.ps.gz

Chapter 21

Approximations and Randomization

Carla P. Gomes and Ryan Williams

21.1 Introduction

Most interesting real-world optimization problems are very challenging from a
computational point of view. In fact, quite often, finding an optimal or even a near-
optimal solution to a large-scale optimization problem may require computational
resources far beyond what is practically available. Computer scientists study the
computational properties of optimization problems by considering how the compu-
tational demands of a solution method grow with the size of the problem instance to
be solved. A key distinction is made between problems that require computational
resources that grow polynomially with problem size versus those for which the re-
quired resources grow exponentially. The former category of problems are called
efficiently solvable, whereas problems in the latter category are deemed intractable
because the exponential growth in required computational resources renders all but
the smallest instances of such problems unsolvable.

A large class of common optimization problems are classified as NP-hard. It is
widely believed—though not yet proven (Clay Mathematics Institute 2003)—that
NP-hard problems are intractable, which means that there does not exist an efficient
algorithm (i.e. one that scales polynomially) that is guaranteed to find an optimal
solution for such problems. Examples of NP-hard optimization tasks are the mini-
mum traveling salesman problem (TSP), the minimum graph coloring problem, and
the minimum bin packing problem. As a result of the nature of NP-hard problems,
progress that leads to a better understanding of the structure, computational proper-
ties, and ways of solving one of them, exactly or approximately, also leads to better

C.P. Gomes
Department of Computer Science, Cornell University, Ithaca, NY, USA
e-mail: gomes@cs.cornell.edu

R. Williams (�)
Computer Science Department, Stanford University, Stanford, CA, USA
e-mail: rrw@cs.stanford.edu

E.K. Burke and G. Kendall (eds.), Search Methodologies: Introductory Tutorials
in Optimization and Decision Support Techniques, DOI 10.1007/978-1-4614-6940-7_21,
© Springer Science+Business Media New York 2014

639

mailto:gomes@cs.cornell.edu
mailto:rrw@cs.stanford.edu

640 C.P. Gomes and R. Williams

algorithms for solving hundreds of other different but related NP-hard problems.
Several thousand computational problems, in areas as diverse as economics, biology,
operations research, computer-aided design and finance, have been shown to be
NP-hard.

A natural question to ask is whether approximate (i.e. near-optimal) solutions can
possibly be found efficiently for such hard optimization problems. Heuristic local
search methods, such as simulated annealing and tabu search (see Chaps. 9 and 10),
are often quite effective at finding near-optimal solutions. However, these methods
do not come with rigorous guarantees concerning the quality of the final solution
or the required maximum run-time. In this chapter, we will discuss a more theoret-
ical approach to this issue consisting of so-called approximation algorithms, which
are efficient algorithms that can be proven to produce solutions of a certain quality.
We also discuss classes of problems for which no such efficient approximation al-
gorithms exist, thus leaving an important role for the quite general, heuristic local
search methods.

The design of good approximation algorithms is a very active area of research
where one continues to find new methods and techniques. It is quite likely that
these techniques will become of increasing importance in tackling large real-world
optimization problems.

In the late 1960s and early 1970s a precise notion of approximation was proposed
in the context of multiprocessor scheduling and bin packing (Graham 1966; Garey
et al. 1972; Johnson 1974). Approximation algorithms generally have two prop-
erties. First, they provide a feasible solution to a problem instance in polynomial
time. In most cases, it is not difficult to devise a procedure that finds some feasible
solution. However, we are interested in having some assured quality of the solution,
which is the second aspect characterizing approximation algorithms. The quality
of an approximation algorithm is the maximum distance between its solutions and
the optimal solutions, evaluated over all the possible instances of the problem. In-
formally, an algorithm approximately solves an optimization problem if it always
returns a feasible solution whose measure is close to optimal, for example within
a factor bounded by a constant or by a slowly growing function of the input size.
Given a constant α, an algorithm A is an α-approximation algorithm for a given
minimization problemΠ if its solution is at most α times the optimum, considering
all the possible instances of problemΠ.

The focus of this chapter is on the design of approximation algorithms for
NP-hard optimization problems. We will show how standard algorithm design
techniques such as greedy and local search methods, dynamic programming, and
classical methods of discrete optimization such as linear programming and semidef-
inite programming have been used to devise good approximation algorithms.

We will also show how randomization is a powerful tool for designing
approximation algorithms. Randomized algorithms are interesting because in general
such approaches are easier to analyze and implement, and faster than deterministic
algorithms (Motwani and Raghavan 1995). A randomized algorithm is simply an
algorithm that performs some of its choices randomly; it “flips a coin” to decide
what to do at some stages. As a consequence of its random component, different
executions of a randomized algorithm may result in different solutions and runtime,

21 Approximations and Randomization 641

even when considering the same instance of a problem. We will show how one can
combine randomization with approximation techniques in order to efficiently ap-
proximate NP-hard optimization problems. In this case, the approximation solution,
the approximation ratio and the runtime of the approximation algorithm may be
random variables. Confronted with an optimization problem, the goal is to produce
a randomized approximation algorithm with runtime provably bounded by a poly-
nomial and whose feasible solution is close to the optimal solution, in expectation.
Note that these guarantees hold for every instance of the problem being solved. The
only randomness in the performance guarantee of the randomized approximation
algorithm comes from the algorithm itself, and not from the instances.

Since we do not know of efficient algorithms to find optimal solutions for NP-
hard problems, a central question is whether we can efficiently compute good ap-
proximations that are close to optimal. It would be very interesting (and practical)
if one could go from exponential to polynomial time complexity by relaxing the
constraint on optimality, especially if we guarantee at most a relatively small error.

Good approximation algorithms have been proposed for some key problems in
combinatorial optimization. The so-called APX complexity class includes the prob-
lems that allow a polynomial-time approximation algorithm with a performance
ratio bounded by a constant. For some problems, we can design even better ap-
proximation algorithms. More precisely we can consider a family of approximation
algorithms that allows us to get as close to the optimum as we like, as long as we
are willing to trade quality with time. This special family of algorithms is called
an approximation scheme and the so-called PTAS class is the class of optimiza-
tion problems that allow for a polynomial time approximation scheme that scales
polynomially in the size of the input. In some cases we can devise approximation
schemes that scale polynomially, both in the size of the input and in the magnitude
of the approximation error. We refer to the class of problems that allow such fully
polynomial time approximation schemes as FPTAS.

Nevertheless, for some NP-hard problems, the approximations that have been
obtained so far are quite poor, and in some cases no one has ever been able to
devise approximation algorithms within a constant factor of the optimum. Initially
it was not clear if these weak results were due to our lack of ability in devising
good approximation algorithms for such problems or to some inherent structural
property of the problems that excludes them from having good approximations. We
will see that indeed there are limitations to approximation, intrinsic to some classes
of problems. For example, in some cases there is a lower bound on the constant
factor of the approximation, and in other cases we can provably show that there are
no approximations within any constant factor from the optimum. Essentially, there
is a wide range of scenarios going from NP-hard optimization problems that allow
approximations to any required degree, to problems not allowing approximations
at all. We will provide a brief introduction to proof techniques used to derive non-
approximability results.

We believe that the best way to understand the ideas behind approximation and
randomization is to study instances of algorithms with these properties, through
examples. Thus in each section, we will first introduce the intuitive concept, then

642 C.P. Gomes and R. Williams

reinforce its salient points through well-chosen examples of prototypical problems.
Our goal is far from trying to provide a comprehensive survey of approximation
algorithms or even the best approximation algorithms for the problems introduced.
Instead, we describe different design and evaluation techniques for approximation
and randomized algorithms, using clear examples that allow for relatively simple
and intuitive explanations. For some problems discussed in the chapter there are ap-
proximations with better performance guarantees but requiring more sophisticated
proof techniques that are beyond the scope of this introductory tutorial. In such cases
we will point the reader to the relevant literature results. In summary, our goals for
this chapter are as follows:

1. Present the fundamental ideas and concepts underlying the notion of approxima-
tion algorithms.

2. Provide clear examples that illustrate different techniques for the design and eval-
uation of efficient approximation algorithms. The examples include accessible
proofs of the approximation bounds.

3. Introduce the reader to the classification of optimization problems according to
their polynomial-time approximability, including basic ideas on polynomial-time
inapproximability.

4. Show the power of randomization for the design of approximation algorithms
that are in general faster and easier to analyze and implement than the determin-
istic counterparts.

5. Show how we can use a randomized approximation algorithm as a heuristic to
guide a complete search method (empirical results).

6. Present promising application areas for approximation and randomized algorithms.
7. Provide additional sources of information on approximation and randomization

methods.

In Sect. 21.2 we introduce precise notions and concepts used in approximation
algorithms. In this section we describe key design techniques for approximation
algorithms. We use clear prototypical examples to illustrate the main techniques and
concepts, such as the minimum vertex cover, the knapsack problem, the maximum
satisfiability problem, the TSP, and the maximum cut problem. As mentioned ear-
lier, we are not interested in providing the best approximation algorithms for these
problems, but rather in illustrating how standard algorithm techniques can be used
effectively to design and evaluate approximation algorithms. In Sect. 21.3 we pro-
vide a tour of the main approximation classes, including a brief introduction to tech-
niques to proof lower bounds on approximability. In Sect. 21.4 we describe some
promising areas of application of approximation algorithms. Section 21.5 summa-
rizes the chapter and we conclude by suggesting additional sources of information
on approximation and randomization methods.

21 Approximations and Randomization 643

21.2 Approximation Strategies

21.2.1 Preliminaries

21.2.1.1 Optimization Problems

We will define optimization problems in a traditional way (Aho et al. 1979; Ausiello
et al. 1999). Each optimization problem has three defining features: the structure of
the input instance, the criterion of a feasible solution to the problem, and the measure
function used to determine which feasible solutions are considered to be optimal. It
will be evident from the problem name whether we desire a feasible solution with
a minimum or maximum measure. To illustrate, the minimum vertex cover problem
may be defined in the following way:

Minimum Vertex Cover
Instance: An undirected graph G = (V,E). Solution: A subset S ⊆ V such that for
every {u,v} ∈ E , either u ∈ S or v ∈ S. Measure: |S|. We use the following notation
for items related to an instance I.

Sol(I) is the set of feasible solutions to I,
mI : Sol(I)→ R is the measure function associated with I, and
Opt(I) ⊆ Sol(I) is the feasible solutions with optimal measure (be it minimum

or maximum).

Hence, we may completely specify an optimization problemΠ by giving a set of
tuples {(I,Sol(I),mI,Opt(I))} over all possible instances I. It is important to keep
in mind that Sol(I) and I may be over completely different domains. In the above
example, the set of I is all undirected graphs, while Sol(I) is all possible subsets of
vertices in a graph.

21.2.1.2 Approximation and Performance

Roughly speaking, an algorithm approximately solves an optimization problem if it
always returns a feasible solution whose measure is close to optimal. This intuition
is made precise below.

Let Π be an optimization problem. We say that an algorithm A feasibly solves Π
if given an instance I ∈Π,A(I) ∈ Sol(I); that is, A returns a feasible solution to I.

Let A feasibly solve Π. Then we define the approximation ratio α(A) of A to
be the minimum possible ratio between the measure of A(I) and the measure of an
optimal solution. Formally,

α(A) = min
(I∈Π)

mI(A(I))

mI(Opt(I))
.

644 C.P. Gomes and R. Williams

For minimization problems, this ratio is always at least 1. Respectively, for
maximization problems, it is always at most 1.

21.2.1.3 Complexity Background

We define a decision problem as an optimization problem in which the measure
is 0–1 valued. That is, solving an instance I of a decision problem corresponds to
answering a yes/no question about I. Note we may also represent a decision problem
as a subset S of the set of all possible instances: members of S represent instances
where the measure is 1.

Informally, P (polynomial time) is defined as the class of decision problems Π
for which there exists a corresponding algorithm AΠ. such that every instance I ∈Π.
is solved by AΠ within a polynomial (|I|k for some constant k) number of steps on
any reasonable model of computation. Reasonable models include single-tape and
multi-tape Turing machines, random access machines, pointer machines, etc.

NP (non-deterministic polynomial time) is defined as the class of decision prob-
lemsΠ for which there exists a corresponding decision problemΠ′ in P and constant
k satisfying

I ∈Π if and only if there exists C ∈ {0,1}|I|k such that (I,C) ∈Π′.

In other words, we can determine if I is in an NP problem efficiently if, given an
instance I, one is also provided with a short “proof”C, which is of length polynomial
in I. Notice that while a short proof always exists if I ∈ Π, it need not be the case
that short proofs exist for instances not inΠ. Thus, while P problems are considered
to be those which are efficiently decidable, NP problems are those considered to be
efficiently verifiable via a short proof.

We will also consider the optimization counterparts to P and NP, which are PO
and NPO, respectively. Informally, PO is the class of optimization problems where
there exists a polynomial time algorithm that always returns an optimal solution to
every instance of the problem, whereas NPO is the class of optimization problems
where the measure function is polynomial time computable, and an algorithm can
determine whether or not a possible solution is feasible in polynomial time.

Our focus here will be on approximating solutions to the hardest of NPO
problems, those problems where the corresponding decision problem is NP-hard.
Interestingly, some NPO problems of this type can be approximated very well,
whereas others can hardly be approximated at all.

21.2.2 The Greedy Method

Greedy approximation algorithms are designed with a simple philosophy in mind:
repeatedly make choices that get one closer and closer to a feasible solution for

21 Approximations and Randomization 645

the problem. These choices will be optimal according to an imperfect but easily
computable heuristic. In particular, this heuristic tries to be as opportunistic as pos-
sible in the short run. (This is why such algorithms are called greedy—a better name
might be short-sighted). For example, suppose my goal is to find the shortest walk-
ing path from my house to the theater. If I believed that the walk via Forbes Avenue
is about the same length as the walk via Fifth Avenue, then if I am closer to Forbes
than Fifth, it would be reasonable to walk towards Forbes and take that route.

Clearly, the success of this strategy depends on the correctness of my belief that
the Forbes path is indeed just as good as the Fifth path. We will show that for some
problems, choosing a solution according to an opportunistic, imperfect heuristic
achieves a non-trivial approximation algorithm.

21.2.2.1 Greedy Vertex Cover

The minimum vertex cover problem was defined in the previous section. Variants on
the problem come up in many areas of optimization research. A simple greedy algo-
rithm is a 2-approximation to the problem, and no better approximation algorithms
are known! In fact, it is widely believed that one cannot approximate minimum ver-
tex cover better than 2−ε for any ε> 0, unless P = NP (see Khot and Regev 2003).
The 2-approximation is as follows.

Greedy-VC: Initially, let S be an empty set. Choose an arbitrary edge {u,v}. Add
u and v to S, and remove u and v from the graph. Repeat until no edges remain in
the graph. Return S as the vertex cover.

Theorem 21.1. Greedy-VC is a 2-approximation algorithm for Minimum Vertex
Cover.

Proof. First, we claim S is indeed a vertex cover. Suppose not; then there exists an
edge e which was not covered by any vertex in S. Since we only remove vertices
from the graph that are in S, an edge e would remain in the graph after the algorithm
had completed, which is a contradiction.

The next step is to show that any vertex cover of the graph contains at least |S|/2
vertices. |S|/2 is the number of edges we chose during the run of the algorithm, and
none of them share any endpoints. Hence at least one vertex in any vertex cover of
the given graph must be assigned to each edge we choose. It follows that any optimal
solution has at least |S|/2 nodes, so our algorithm has a |S|/|S∗|= 2 approximation
ratio. ⊓⊔

Sometimes when one proves that an algorithm has a certain approximation ratio,
the analysis is somewhat loose, and may not reflect the best possible ratio that can
be derived. It turns out that Greedy-VC is no better than a 2-approximation. In par-
ticular, there is an infinite set of vertex cover instances where Greedy-VC provably
chooses exactly twice the number of vertices necessary to cover the graph, namely
in the case of complete bipartite graphs; see Fig. 21.1.

646 C.P. Gomes and R. Williams

Fig. 21.1 Instances that cor-
respond to bipartite graphs
Kn,n. When running greedy-
VC on these instances, the
algorithm will select all 2n
vertices

21.2.2.2 Greedy MAX-SAT

The MAX-SAT problem has been very well-studied; variants of it arise in many
areas of discrete optimization. To introduce it requires a bit of terminology.

We will deal solely with Boolean variables (that is, those which are either true or
false), which we will denote by x1, x2, etc. A literal is defined as either a variable or
the negation of a variable (e.g. x7, ¬x11 are literals). A clause is defined as the OR
of some literals (e.g. (¬x1 ∨ x7∨¬x11) is a clause). We say that a Boolean formula
is in conjunctive normal form (CNF) if it is presented as an AND of clauses (e.g.
(¬x1∨ x7∨¬x11)∧ (x5∨¬x2∨¬x3) is in CNF).

Finally, the MAX-SAT problem is to find an assignment to the variables of a
Boolean formula in CNF such that the maximum number of clauses are set to true,
or are satisfied. Formally:

MAX-SAT
Instance: A Boolean formula F in CNF.
Solution: An assignment a, which is a function from each of the variables in F to
{true, false}.
Measure: The number of clauses in F that are set to true (are satisfied) when the
variables in F are assigned according to a.

21 Approximations and Randomization 647

What might be a natural greedy strategy for approximately solving MAXSAT?
One approach is to pick a variable that satisfies many clauses if it is set to a certain
value. Intuitively, if a variable occurs negated in several clauses, setting the variable
to false will satisfy several clauses; hence this strategy should approximately solve
the problem well. Let n(li,F) denote the number of clauses in F where the literal li
appears:

Greedy-MAXSAT: Pick a literal li with maximum n(li,F) value. Set its cor-
responding variable in such a way that all clauses containing it are satisfied,
yielding a reduced F . Repeat until no variables remain in F .

It is easy to see that Greedy-MAXSAT runs in polynomial time (roughly quadratic
time, depending on the computational model chosen for analysis). It is also a good
approximation for the MAX-SAT problem.

Theorem 21.2. Greedy-MAXSAT is a 1/2-approximation algorithm for MAXSAT.

Proof. Proof by induction on the number of variables n in the formula F . Let m be
the total number of clauses in F . If n = 1, the result is obvious. For n > 1, let li have
maximum n(li,F) value, and vi be its corresponding variable. Let mPOS and mNEG be
the number of clauses in F that contain li and 1

2 li, respectively. After vi is set so that
li is true (so both li and 1

2 li disappear from F), there are at least m−mPOS−mNEG

clauses left, on n− 1 variables.
By induction hypothesis, Greedy-MAXSAT satisfies (m−mPOS −mNEG)/2 of

these clauses at least, therefore the total number of clauses satisfied is at least (m−
mPOS−mNEG)/2+mPOS = m/2+(mPOS−mNEG)/2 = m/2, by our greedy choice
of picking the li that occurred most often. ⊓⊔

21.2.2.3 Greedy MAX-CUT

Our next example shows how local search may be employed in designing approx-
imation algorithms. Local search is inherently a greedy strategy: when we have a
feasible solution x, we try to improve it by choosing some feasible y that is close
to x, but has a better measure (lower or higher, depending on minimization or max-
imization). Repeated attempts at improvement often result in locally optimal solu-
tions that have a good measure relative to a globally optimal solution (i.e. a member
of Opt(I)). We illustrate local search by giving an approximation algorithm for the
NP-complete MAX-CUT problem:

MAX-CUT
Instance: An undirected graph G = (V,E).
Solution: A cut of the graph, i.e. a pair (S,T) such that S⊆V and T =V − S.
Measure: The cut size, which is the number of edges crossing the cut, i.e.

|{{u,v} ∈ E|u ∈ S,v ∈ T}|.

648 C.P. Gomes and R. Williams

Our local search algorithm repeatedly improves the current feasible solution by
changing one vertex’s place in the cut, until no more improvement can be made. We
will prove that at such a local maximum, the cut size is at least m/2:

Local-Cut: Start with an arbitrary cut of V . For each vertex, determine if moving
it to the other side of the partition increases the size of the cut. If so, move it.
Repeat until no such movements are possible.

First, observe that this algorithm repeats at most m times, as each movement of a
vertex increases the size of the cut by at least 1, and a cut can be at most m in size.

Theorem 21.3. Local-Cut is a 1/2-approximation algorithm for MAX-CUT.

Proof. Let (S,T) be the cut returned by the algorithm, and consider a vertex v.
After the algorithm finishes, observe that the number of edges adjacent to v that
cross (S,T) is more than the number of adjacent edges that do not cross, otherwise v
would have been moved. Let deg(v) be the degree of v. Then our observation implies
that at least deg(v)/2 edges out of v cross the cut returned by the algorithm.

Let m∗ be the total number of edges crossing the cut returned. Each edge has two
endpoints, so the sum ∑v∈V (deg(v)/2) counts each crossing edge at most twice, i.e.

∑
v∈V

(deg(v)/2)≤ 2m∗.

Using the well-known degree-edge equation ∑v∈V deg(v) = 2m, we conclude that

m = ∑
v∈V

(deg(v)/2)≤ 2m∗.

It follows that the approximation ratio of the algorithm is

m∗

m
≥ 1

2
. ⊓⊔

It turns out that MAX-CUT admits much better approximation ratios than 1/2;
a relaxation of the problem to a semidefinite linear program yields a 0.8786 ap-
proximation (see Goemans and Williamson 1995). However, like many optimization
problems, MAX-CUT cannot be approximated arbitrarily well (1− ε, forall ε > 0)
unless P = NP. That is to say, it is unlikely that MAX-CUT is in the PTAS complex-
ity class.

21.2.2.4 Greedy Knapsack

The knapsack problem and its special cases have been extensively studied in oper-
ations research. The premise behind it is classic: you have a knapsack of capacity
C, and a set of items 1, . . . ,n. Each item has a particular cost ci of carrying it, along

21 Approximations and Randomization 649

with a profit pi that you will gain by carrying it. The problem is then to find a subset
of items with cost at most C, having maximum profit:

Maximum Integer Knapsack
Instance: A capacity C ∈ N, and a number of items n ∈ N, with corresponding costs
and profits c−i, pi ∈ N for all i = 1, . . . ,n.
Solution: A subset S ⊆ {1, . . . ,n} such that ∑ j∈S c j ≤C.
Measure: The total profit ∑ j∈S p j.

Maximum Integer Knapsack, as formulated above, is NP-hard. There is also a
fractional version of this problem (we call it Maximum Fraction Knapsack), which
can be solved in polynomial time. In this version, rather than having to pick the
entire item, one is allowed to choose fractions of items, like 1/8 of the first item, 1/2
of the second item, and so on. The corresponding profit and cost incurred from the
items will be similarly fractional (1/8 of the profit and cost of the first, 1/2 of the
profit and cost of the second, and so on).

One greedy strategy for solving these two problems is to pack items with the
largest profit-to-cost ratio first, with the hopes of getting many small-cost high-
profit items in the knapsack. It turns out that this algorithm will not give any con-
stant approximation guarantee, but a tiny variant on this approach will give a 2-
approximation for Integer Knapsack, and an exact algorithm for Fraction Knapsack.
The algorithms for Integer Knapsack and Fraction Knapsack are, respectively:

Greedy-IKS: Choose items with the largest profit-to-cost ratio first, until the total
cost of items chosen is greater than C. Let j be the last item chosen, and S be the
set of items chosen before j. Return either { j} or S, depending on which one is
more profitable.

Greedy-FKS: Choose items as in Greedy-IKS. When the item j makes the cost
of the current solution greater than C, add the fraction of j such that the resulting
cost of the solution is exactly C.

The following is left as an exercise for the reader.

Lemma 21.1. Greedy-FKS solves Maximum Fraction Knapsack in polynomial time.

We entitled the result for Fraction Knapsack as a lemma, because we will use it
to analyze the approximation algorithm for Integer Knapsack.

Theorem 21.4. Greedy-KS is a 1/2-approximation for Maximum Integer Knapsack.

Proof. Fix an instance of the problem. Let P = ∑ j∈S pi, the total profit of items in
S, and j be the last item chosen (as specified in the algorithm). We will show that
P+ p j is greater than or equal to the profit of an optimal Integer Knapsack solution.
It follows that one of S or { j} has at least half the profit of the optimal solution. Let
S∗I be an optimal Integer Knapsack solution to the given instance, with total profit

650 C.P. Gomes and R. Williams

P∗I . Similarly, let S∗F and P∗F correspond to an optimal Fraction Knapsack solution.
Observe that P∗F = P∗I . By the analysis of the algorithm for Fraction Knapsack, P∗F =
P+ p j, where ε∈ (0,1] is the fraction chosen for item j in the algorithm. Therefore,

P+ p j ≥ P+ εp j = P∗F = P∗I

and we are done. ⊓⊔

Later, we will see how this algorithm can be extended (in conjunction with dy-
namic programming) to get a PTAS for Maximum Integer Knapsack. A PTAS is
quite powerful; such a scheme can approximately solve a problem with arbitrarily
close ratios to the optimal solution. However, many problems provably do not have
a PTAS, unless P = NP.

21.2.3 Sequential Algorithms

Sequential algorithms are used for approximations on problems where a feasible
solution is a partitioning of the instance into subsets. A sequential algorithm sorts
the items of the instance in some manner, and selects partitions for the instance
based on this ordering.

21.2.3.1 Sequential Bin Packing

We first consider the problem of Minimum Bin Packing, which is similar in nature
to the knapsack problems.

Minimum Bin Packing
Instance: A set of items S = r1, . . . ,rn, where ri ∈ (0,1] for all i = 1, . . . ,n.
Solution: Partition of S into bins B1, . . . ,BM such that ∑r j∈Bi

r j ≤ 1 for all
i = 1, . . . ,M.
Measure: M.

An obvious algorithm for Minimum Bin Packing is an online strategy. Initially,
let j = 1 and have a bin B1 available. As one runs through the input (r1,r2, etc.),
try to pack the new item ri into the last bin used, B j. If ri does not fit in B j, create
another bin B j+1 and put ai in it. This algorithm is onï¿ 1

2 line as it processes the
input in a fixed order, and thus adding new items to the instance while the algorithm
is running does not change the outcome. Call this heuristic Last-Bin.

Theorem 21.5. Last-Bin is a 2-approximation to Minimum Bin Packing.

Proof. Let R be the sum of all items, so R = ∑ri∈S ri. Let m be the total number of
bins used by the algorithm, and let m∗ be the minimum number of bins possible for
the given instance. Note that m∗ ≥ R, as the total number of bins needed is at least

21 Approximations and Randomization 651

the total size of all items (each bin holds one unit). Now, given any pair of bins Bi

and Bi + 1 returned by the algorithm, the sum of items from S in Bi and Bi + 1 is
at least 1; otherwise, we would have stored the items of Bi + 1 in Bi instead. This
shows that m ≤ 2R. Hence m ≤ 2R≤ 2m∗, and the algorithm is a 2-approximation.

⊓⊔
An interesting exercise for the reader is to construct a series of examples demon-
strating that this approximation bound, like the one for Greedy-VC, is tight.

As one might expect, there exist algorithms that give better approximations than
the above. For example, we do not even consider the previous bins B1, . . . ,B j−1

when trying to pack an ai, only the last one is considered.
Motivated by this observation, consider the following modification to Last-Bin.

Select each item ai in decreasing order of size, placing ai in the first available bin
out of B1, . . . ,B j. (So a new bin is only created if ai cannot fit in any of the previous
j bins.) Call this new algorithm First-Bin. An improved approximation bound may
be derived, via an intricate analysis of cases.

Theorem 21.6. First-Bin is a 11/9-approximation to Minimum Bin Packing.

21.2.3.2 Sequential Job Scheduling

One of the major problems in scheduling theory is how to assign jobs to multiple
machines so that all of the jobs are completed efficiently. Here, we will consider job
completion in the shortest amount of time possible. For the purposes of abstraction
and simplicity, we will assume the machines are identical in processing power for
each job.

Minimum Job Scheduling
Instance: An integer k and a multi-set T = {t1, . . . , tn} of times, ti ∈ Q for all i =
1, . . . ,n (i.e. the ti are fractions).
Solution: An assignment of jobs to machines, i.e. a function a from {1, . . . ,n} to
{1, . . . ,k}.
Measure: The completion time for all machines, assuming they run in parallel:
max{∑i:a(i)= j ti| j ∈ {1, . . . ,k}}.

The algorithm we propose for Job Scheduling is also on-line: when reading a
new job with time ti, assign it to the machine j that currently has the least amount of
work; that is, the j with minimum ∑i:a(i)= j ti. Call this algorithm Sequential-Jobs.

Theorem 21.7. Sequential Jobs is a 2-approximation for Minimum Job Scheduling.

Proof. Let j be a machine with maximum completion time, and let i be the index of
the last job assigned to j by the algorithm. Let si, j be the sum of all times for jobs
prior to i that are assigned to j. (This may be thought of as the time that job i begins
on machine j). The algorithm assigned i to the machine with the least amount of

652 C.P. Gomes and R. Williams

work, hence all other machines j′ at this point have larger ∑i:a(i)= j′ ti, Therefore,
si, j ≤ 1/k∑n

i=1 ti, i.e. si, j is less 1/k of the total k time of all jobs (recall that k is the
number of machines).

Notice B = 1/k∑n
i=1 ti = m∗, the completion time for an optimal solution, as the

sum corresponds to the case where every machine takes exactly the same fraction of
time to complete. Thus the completion time for machine j is

si, j + ti = m∗+m∗ = 2m∗.

So the maximum completion time is at most twice that of an optimal solution. ⊓⊔

Minimum Job Scheduling also has a PTAS, as we will discover in the next section.

21.2.4 Dynamic Programming

Dynamic programming is, in essence, a formal name given to the tried-and-true
principle of saving your work. It is often the case in algorithmic design that, when
optimal solutions to small pieces of an instance are known, those solutions can be
merged in a way that yields an optimal solution for the entire instance. This is pre-
cisely the idea behind dynamic programming: we solve pieces of the problem and
save their solutions in order to solve the entire problem later on. We will demonstrate
how dynamic programming may be used to extend the previous 2-approximation for
Minimum Job Scheduling into a PTAS for the problem. Dynamic programming will
also be employed to get a FPTAS for Maximum Integer Knapsack.

21.2.4.1 PTAS for Minimum Job Scheduling

The algorithm we present is based on one given by Vazirani (2004). It has the prop-
erty that, for any fixed ε > 0 provided beforehand, it returns a (1+ ε)-approximate
solution. Further, the runtime is polynomial in the input size, provided that ε is con-
stant. This allows us to specify a runtime that has 1/ε in the exponent (which we will
do). It is typical to view this algorithm as a family of successively better (but also
slower) approximation algorithms, each running with a successively smaller ε > 0.
This is intuitively why they are called an approximation scheme; scheme is meant
to suggest that a variety of algorithms are used.

Our treatment here will be lighter than in other sections due to the complexity of
the algorithm. We will name a special case problem that is polynomial time solvable.
The polytime algorithm will serve as a subroutine to a parameterized Job Scheduling
procedure, where we are allowed to specify the completion time in the input. The
PTAS will use this parameterized procedure to perform a binary search over the
possible completion times, finding an approximate minimum completion time.

The special case problem we consider is Minimum Unit-Time c-Job Schedul-
ing, a variant on Minimum Job Scheduling which is polynomial time solvable. It is

21 Approximations and Randomization 653

similar to job scheduling, except (a) the number of distinct possible times for jobs is
a constant c, and (b) the completion time is fixed to be 1. (We stress that the number
of jobs is not constant—the number of distinct times for jobs is.) The problem now
is to minimize the number of machines necessary to schedule these jobs so they
may be completed in one time unit. (The astute reader will find that this modified
problem is essentially bin packing.)

Theorem 21.8. Minimum Unit-Time c-Job Scheduling is polynomial time solvable.

Proof. Arbitrarily order the possible job times T1, . . . ,Tc. Observe that any instance
(a multi-set S = {t1, . . . , tn} of items) of this problem may be specified as a c-tuple
(n1, . . . ,nc) of natural numbers: the ith component of the c-tuple (ni) gives the num-
ber of job with time Ti.

Define OPT (n1, . . . ,nc) to be the optimal solution (minimum number of ma-
chines necessary) for the instance (n1, . . . ,nc). We will determine OPT for a given
instance via dynamic programming, i.e. by determining its value on all possible
(i1, . . . , ic), where each i j ranges from 0 to n j. (Note there are only O(nc) such
c-tuples.)

Initially, we determine for all 1 ≤ j ≤ c, and 0 ≤ i j ≤ n j, those (i1, . . . , ic) for
which OPT (i1, . . . , ic) = 1 (exactly one machine suffices). Doing this takes constant
time for each of the O(nc) c-tuples. Add these c-tuples to a saved value set, S.

For the remaining (i1, . . . , ic) (those whose OPT value is larger than 1), we
determine their OPT solution via the inductive assignment

OPT(i1, . . . , ic) := 1+ min
(j1,..., jc)∈S

OPT(i1− jc, . . . , ic− jc)

provided that ∀l = 1, . . . ,c, il ≥ jl . A bit of thought shows that every possible c-
tuple’s OPT value may be computed in this way, provided the c-tuples are processed
in the correct order.

An OPT value for a fixed c-tuple, assuming all of the other necessary OPT values
are present, requires at most O(nc) time to compute. As there are O(nc) possible
c-tuples, the overall runtime is O(n2c). ⊓⊔

As expected, this dynamic programming algorithm will be a component in our
description of the PTAS. However, before we give the PTAS, we need to describe
another procedure that will use the dynamic programming algorithm.

Let ε> 0 be fixed, and (T = {t1, . . . , tn},k) be a job scheduling instance (where k
is number of machines to be used). From the analysis of the 2-approximation, there
exists a (polytime computable) lower bound B on the optimum, and an upper bound,
which is 2B. Let V ∈ [B,2B]. The next algorithm, Parameter-JS, returns a (1+ ε)-
approximate solution for T , given that the parameter V is the desired completion
time. Let Unit-cJS be the algorithm from the above theorem.

Parameter-JS(S,V,ε): Define a job time t j to be short if t j <V . Remove the short
jobs from T . For the remaining jobs, round their sizes down to the nearest power
of (1+ ε), times εV . More precisely, for each t j remaining in T , compute the
unique x such that t j ∈ [(1+ ε)x · εV,(1+ ε)x+1 · εV], and set t ′j := (1+ ε)x · εV .

654 C.P. Gomes and R. Williams

Let T ′ = {t ′j|t j ∈ T}. Now the possible times for jobs in T ′ are εV , (1+ ε)V ,
(1+ ε)2V , and so on. There are therefore

k =

⌈

log(1/ε)
log(1+ ε)

⌉

distinct possible times. Further, all of these times are a multiple of V .
Let T ′′ = {t j/V |t j ∈ T}. Call Unit-cJS on T ′′ and the above k, getting back a

solution S. As Unit-cJS assumes the completion time to be 1, the resulting Unit-
cJS solution for T ′′ is also a solution for T ′, where the completion time is V .
Greedily schedule the short jobs back in this solution, on whatever machines will
accommodate them (without exceeding the completion time V). Introduce new
machines for handling short jobs only when the job cannot be scheduled on any
of the existing machines without exceeding V . Return the resulting solution.

Let us observe a lemma, which follows from a simple analysis of the short jobs’
impact on the Unit-kJS solution for T ′.

Lemma 21.2. Parameter-JS on T ′,V, and ε returns a job schedule for a minimum
number of machines, with completion time that is at most (1+ ε)V.

Proof. (Sketch) Each job’s time t ′j ∈ T ′ is rounded down by at most a (1+ ε) factor
from the original t j, the solution returned by the algorithm is feasible if the minimum
completion time in the original instance T (modulo short jobs) is (1+ ε)V. ⊓⊔

Let OPT(T,V) be the minimum number of machines needed to schedule the jobs of
instance T when the completion time is exactly V , and let M(T,V) be the number of
machines used by Parameter-JS(S,V,ε).

Lemma 21.3. M′(T,V)≤ OPT(T,V).

The proof involves an analysis of short jobs, and is left to the reader.
Finally, we are in a position to describe the PTAS. We wish to find the optimal

completion time V ∗ for a given number of machines k, which is located somewhere
in the interval [B,2B] (recall that B and 2B are lower and upper bounds on the opti-
mal, respectively). The above lemma implies

min{V |M(T,V) = k}= min{V |OPT(T,V) = k}=V ∗.

To find V ∗, the PTAS will perform a binary search over fractions in the interval
[B,2B], calling Parameter-JS on the current V -value, until the remaining interval
size is at most B. At this point, we will argue that the solution obtained is approxi-
mately close to an optimal one:

PTAS-MJS(T,k,ε):
Initially, F := B (first), L := 2B (last).
Repeat ⌈log2(3/ε)⌉ times:

Set M := (F +L)/2, the midpoint of the interval.

21 Approximations and Randomization 655

Call Parameter-JS(S,M,ε/3), getting a solution S′.
If S′ uses at most k machines, then set L := M; if not, set F := M. End Repeat.

Return L and S.

Based on the runtime of Parameter-JS, it is easy to verify that PTAS-MJS runs in
O(log2(1/ε)n

⌈2 log1+ε(1/ε)⌉) time.

Theorem 21.9. PTAS-MJS is a (1+ε)-approximation for Minimum Job Scheduling.

Proof. We first prove that the L returned is at most (1+ε)V ∗. When the repeat-loop
is completed, |F−L| ≤ εB, as the initial length of the interval is B and each iteration
of the loop decreases that length by a factor of 2.

Hence
L−B = min{V |M′(T,V)≤ k} ≤ L

implying (via the lemma)

L = min{V |M′(T,V)≤ k}+ εB≤min{V |OPT(T,V)≤ k}+ εV ∗ = (1+ ε)V ∗.

Applying Lemma 21.2, we infer that the value of S returned by PTAS-MJS is

M′(T,V)≤ (1+ ε/3)M ≤ (1+ ε/3)L≤ (1+ ε/3)2V∗ ≤ (1+ ε)V ∗.

Therefore, the S′ returned is within 1+ ε of the optimal minimum solution. ⊓⊔

21.2.4.2 FPTAS for Knapsack

Our next example for which we can get arbitrarily good approximations will have
the added benefit that, as the approximation ratio of the algorithm improves, the
runtime does not get larger than a fixed polynomial in n. This is known as a fully
polynomial time approximation scheme.

The strategy we will use for developing the FPTAS is similar to that for Job
Scheduling, but the algorithm itself will be much simpler. We first look at a special
case of Maximum Integer Knapsack where some parameter in the problem is held
constant, and show it to be polynomial time solvable via dynamic programming.
Then we use this polynomial time algorithm to derive an approximation algorithm
for the general problem.

Recall that in the Minimum Integer Knapsack problem we have a capacity C ∈N,
and a number of items n ∈ N, with corresponding costs and profits ci, pi ∈ N for all
i = 1, . . . ,n. The objective is to pack a knapsack of capacity C with items of cost
at most C, and maximum profit. Here, the special case problem will be Maximum
k-Profit Integer Knapsack; in this restriction, all of the items’ profits are bounded
from above by a constant k.

Theorem 21.10. Maximum k-Profit Integer Knapsack is solvable in polynomial
time.

656 C.P. Gomes and R. Williams

Proof. Given an instance of the problem with n items (labeled 1, . . . ,n), since all
profits are bounded from above by k, kn is an upper bound on the optimum profit
for the instance. We will now set up a dynamic program that computes optimum
solution for subsets of the instance, from 0 profit up to kn profit.

For every i = 1, . . . ,n and j = 1, . . . ,kn, define OPT(i, j) to be the minimum
capacity of a packing over items 1, . . . , i that has profit exactly j (and OPT(i, j) =∞
if no packing exists).

Note that OPT(1, j) = c1 if p1 = j, and∞ otherwise. To determine OPT for i > 1,
we use the following inductive equation:

OPT(i, j) :=

{

min{OPT(i− 1, j),OPT(i, j− pi)+ ci} if pi < j
OPT(i− 1, j) otherwise.

Intuitively, this just means that we either add the ith item to the solution or not,
depending on which is smaller and whether or not the profit of item i exceeds the
total profit j. For each OPT(i, j) value, we also save a subset of {1, . . . , i}with profit
j that achieves the OPT(i, j) value.

Using the inductive equation, we can compute all OPT values in O(kn2) time.
Notice that the maximum profit possible for the instance is

max{ j : j = 1, . . . ,kn,OPT(n, j)< ∞}

i.e. the maximum profit over the feasible OPT values. Hence, after the OPT values
are computed, it takes O(kn) time to find an optimal solution S′ corresponding to
the maximum profit. ⊓⊔

The central idea behind our FPTAS for the general Integer Knapsack problem is
to discard least significant bits of the profits of items. That is, we divide all of the
profits of items by some parameter (depending on ε), reducing the instance to one
that has a small upper bound k on the profit size. Then the above algorithm will
be used to determine an exact solution S′ for this reduced instance, which roughly
corresponds to an approximate solution for the original instance. Finally, we will use
a trick from the 2-approximation for Knapsack: we will either return the solution S′,
or the most profitable item of cost at most C, whichever is better.

Fix an ε > 0. Let Dyn-MBIK be the polynomial-time algorithm for Maximum
k-Profit Integer Knapsack from Theorem 21.10.

FPTAS-MIK: For all i = 1, . . . ,n, re-define pi := ⌈ pi·n
max j εp j

⌉. Run Dynï¿ 1
2MBIK,

and get a solution S′. Let i be s.t. pi = max j p j. Return S′. or {i}, depending on
which has higher profit.

Theorem 21.11. FPTAS-MIK runs in O(n3/ε) time, and is a (1−ε)-approximation.

Notice that the runtime is now polynomial in n and 1/ε, so this algorithm indeed
qualifies as an FPTAS for the problem.

21 Approximations and Randomization 657

Proof. First, from the analysis of Dyn-MBIK, the runtime of FPTAS-MIK is

O

(

n2 max
i

⌈

pi
1
2 n

max j εp j

⌉)

,

i.e. O(n3/ε) time.
Now we will show that the algorithm is a (1− ε)-approximation. Let S∗ be a

subset of {1, . . . ,n} that is an optimal solution for an instance, let S′ be the sub-
set returned by the Dyn-MBIK call, and let P(S∗) (respectively P(S′)) be the cor-
responding profits. Our goal is to show that the profit of the set returned by the
algorithm (call it P′) is at least (1− ε)P(S∗).

Let P(S∗) be the profit of S∗, under the redefined profits given in the algorithm.
It is straightforward to verify that

P(S∗)≤max
j
εp j +(max

j
p j/n)

1
2

P′(S∗).

Dyn-MBIK returns the optimal solution under redefined profits, hence

P(S′)≥ (max
j
εp j/n)

1
2

P′(S∗)≥ P(S∗)−max
j
εp j.

By definition of the algorithm, the profit of the solution returned P′ is at least
max j p j. Since P′ ≤ P(S∗), it follows that

P′ ≥ P(S′)≥ P(S∗)−max
j
εp j ≥ P(S∗)− εP′ ≥ (1− ε)P(S∗). ⊓⊔

21.2.5 LP-Based Algorithms

Linear programming (LP) plays an important role on the design of algorithms for
combinatorial optimization problems (see e.g. Chvatal 1983; Papadimitriou and
Steiglitz 1982; Schrijver 2003). The use of LP for the design and analysis of ap-
proximation algorithms for NP-hard problems dates back to the 1970s (Chvatal
1979; Lovasz 1975; see also Wolsey 1980). In this section we show how we can
use LP techniques to design approximation algorithms. We start by showing how
LP rounding can be used to derive a 2-approximation algorithm for the minimum-
weight vertex cover problem. We then describe the primal–dual method, based on
LP duality. We provide background material on LP duality and its most important
theorems.

658 C.P. Gomes and R. Williams

21.2.5.1 LP Rounding

A simple way of obtaining an approximation algorithm based on linear programm-
ing is to solve the problem as a linear program and convert its fractional solution
into an integral solution, by rounding it. We use LP rounding to approximate the
Minimum-Weight Vertex Cover problem (Hochbaum 1982, 1983).

Minimum-Weight Vertex Cover
Instance: An undirected graph G = (V,E), and a positive weight function, W : V →
R+ on the vertices.
Solution: A subset S ⊆V such that for every {u,v} ∈ E , either u ∈ S or v ∈ S.
Measure: ∑v∈S w(v).

In order to formulate this problem as a linear program, let us associate a variable
x(v) with each vertex v∈V , and require that x(v)∈ {0,1}, for each v∈V . The inter-
pretation of the x(v) is the following: if x(v) = 1, the vertex v belongs to the vertex
cover; if x(v) = 0, the vertex v does not belong to the vertex cover. The constraint
that requires that for any edge (u,v), at least one of the u and v must be in the ver-
tex cover, can be stated as x(u)+x(v) = 1. We obtain the following integer program:

0–1 integer program

Minimize ∑v∈V w(v)x(v)
subject to : x(u)+ x(v)≥ 1 for each v ∈V

x(v) ∈ {0,1} for each v ∈V.

Finding the solution to this integer program is NP-hard. However, if we relax the
constraint x(v) ∈ {0,1}, and replace with 0 ≤ x(v)≤ 1, we obtain what is called its
LP relaxation:

LP relaxation of the 0–1 integer program

Minimize ∑v∈V w(v)x(v)
subject to : x(u)+ x(v)≥ 1 for each v ∈V

x(v)≥ 0 for each v ∈V
x(v)≥ 1 for each v ∈V.

Note that any feasible solution to the 0–1 integer program is also a feasible solution
to its LP relaxation. Therefore, an optimal solution to the LP relaxation is a lower
bound on the optimal solution of the 0–1 integer program.

LP-Rounding-MVC: Formulate the minimum-weight vertex cover as the above
relaxed linear program. Compute its optimal solution x∗. Initially, we have an
empty set S. For each vertex v ∈ V , if x∗(v) ≥ 1/2, add v to S. Return S as the
minimum-weight vertex cover.

Theorem 21.12. LP-Rounding-MVC is a 2-approximation algorithm for Minimum
Weight Vertex Cover.

21 Approximations and Randomization 659

Proof. We start by noting that we can solve a linear program in polynomial time (see
for example Papadimitriou and Steiglitz 1982). Let us now show that S is indeed
a vertex cover. Suppose not; then there exists an edge e = (u,v) which was not
covered by any vertex in S. That implies that x(u)< 1/2 and x(v)< 1/2. But, since
we know that x∗ is a feasible solution to the relaxed linear program, it has to satisfy
the constraint x(u)+x(v)≥ 1, which leads to a contradiction if we assume that both
x(u)< 1/2 and x(v)< 1/2.

Next, we show that our procedure is a 2-approximation algorithm for the mini-
mum weight vertex cover problem. Let us denote the value of the solution obtained
with the LP-Rounding-MVC procedure by mLPR−MWVC, the optimal value of the
minimum weight vertex cover by mMWVC, and the optimal value of the LP-relaxation
of the formulation of the minimum weight vertex cover as an integer program by
mLP−MWVC:

mLPR−MWVC = ∑
v∈S

w(v)

≤ ∑
v∈S

2x∗(v)w(v)≤ ∑
v∈V

2x∗(v)w(v)

= 2mLP−MWVC.

Since mLP−MWVC ≤ mMWVC, it follows that

mLPR−MWVC ≤ 2mMWVC. ⊓⊔

21.2.6 Primal–Dual Method

Some of the most fundamental exact polynomial time algorithms exploit min–max
relations that characterize the structure of several combinatorial problems. Most of
such min–max relations are special cases of the duality theorem in LP. A great deal
of the theory of approximation algorithms also exploits such min–max relations and
is based on LP and the LP-duality theory. In this section we start by briefly reviewing
some key concepts of the LP-duality. We then describe the primal–dual method and
apply it to the minimum weight vertex cover problem.

21.2.6.1 The LP Duality Theorem

Let us illustrate the importance of LP duality through an example:

Minimize 15x1 + 7x2 + 5x3

subject to : 3x1 + x2− x3 ≥ 2
x1 + x2 + x3 ≥ 1
x1,x2,x3 ≥ 0.

660 C.P. Gomes and R. Williams

This problem is the standard form of an LP minimization problem, with all the
constraints of the form “≥”, and all the variables constrained to be non-negative.
Any minimization LP problem can be written in this format.

Instead of solving this linear program, we can try to provide bounds on its optimal
solution, z∗. Let us consider a question of the form: “is z∗ at most 15?”

A feasible solution to our problem, with value at most 15, is a Yes certificate to
that question. For example, the solution x1 = 1, x2 = 1, and x3 = 1 is such a cer-
tificate since it satisfies all the constraints of the problem and the objective function
value associated with that solution is 12 < 15. In other words, any feasible solution
of our problem provides an upper bound on z∗. On the other hand, if we are inter-
ested in lower bounds for z∗, a good estimate can be based on the bounds associated
with the constraints. For example, if we consider the first constraint, given that all
its coefficients are smaller than the coefficients of the objective function (we are
dealing with a minimization problem), and that all the xi are non-negative, we can
infer that

15x1 + 7x2 + 5x3 = 3x1 + x2− x3 = 2.

In other words, the objective function value is at least 2. We can improve this bound
by multiplying the first equation by 4 and the second equation by 2, obtaining a
lower bound of 10, i.e.

15x1 + 7x2+ 5x3 = (12x1 + 4x2− 4x3)+ (2x1+ 2x2 + 2x3) = 10.

Basically, we are considering linear combinations of the constraints, multiplying
the first constraint by some multiplier y1 and the second by y2. Because we have
a minimization problem our goal is to have the coefficient of each xi in the linear
combination of the constraints as close to the corresponding coefficient of xi in the
objective function as possible, but not greater than it. Furthermore, the multipliers
have to be non-negative to make sure that the direction of the inequality is not re-
versed. And of course, we would like our lower bound, given by the sum of the
right-hand sides of the constraints multiplied by the corresponding multiplier, to be
as large as possible.

This problem of finding the largest lower bound for our minimization problem
can be formulated also as a linear program:

Maximize 2y1 + y2

subject to : 3y1 + y2 ≤ 15
y1 + y2 ≤ 7

−y1 + y2 ≤ 5
y1,y2,y3 ≥ 0.

This second linear program is called the dual of the original one. The original linear
program is called the primal. Note that y1 can be interpreted as the multiplier of
the first constraint of our primal program, the original minimization problem, and
y2 as the multiplier of the second constraint. In this framework, the first constraint
of the dual program states that the linear combination of the constraint coefficients

21 Approximations and Randomization 661

Fig. 21.2 Primal–dual rela-
tionships

(lower bounds on

primal optimum)

Dual

solutions

(maximization)

Primal Opt = Dual Opt

(upper bounds on

dual optimum)

Primal

solutions

(minimization)

11

0

of x1 in the primal program (3 and 1) cannot be greater than x1’s objective function
coefficient (15). The objective function of this dual program states that we want to
maximize our primal lower bound, i.e. the right-hand sides of our primal program,
multiplied by the corresponding multipliers.

Every minimization LP problem in the standard form has a dual LP maximization
problem. More interestingly, as we observed before, every feasible solution of the
dual provides a lower bound on the optimum of the primal. The dual relationship
also holds: every primal feasible solution is an upper bound on the optimum of the
dual. In fact, if one has an optimal solution so does the other and the two optimal
values coincide. In our example the optimal value is 11, which corresponds to the
primal solution x1 = 0.5, x2 = 0.5, and x3 = 0 and the dual solution y1 = 4 and
y2 = 3 (see Fig. 21.2). The dual of a maximization LP problem is a minimization LP
problem. The dual of the dual of a given problem is the problem itself.

What we have just observed in the example corresponds to a key theorem in lin-
ear programming, the duality theorem. In a more formal way, let us consider the pair
of primal and dual linear programs:

Primal linear program

Minimize ∑n
j=1 c jx j

subject to : ∑n
j=1 ai jx j ≥ bi, i = 1, . . . ,m

x j ≥ 0, j = 1, . . . ,n

Dual linear program

Minimize ∑m
i=1 biyi

subject to : ∑m
i=1 ai jyi ≥ c j, j = 1, . . . ,n

yi ≥ 0, i = 1, . . . ,m

662 C.P. Gomes and R. Williams

where ai j, c j, and bi are given rational numbers. We can now state the duality
theorem in a formal way.

Theorem 21.13. Duality Theorem The primal program has an optimal solution if
and only if its dual has an optimal solution. Furthermore, if x∗ = (x∗1, . . . ,x

∗
n) and

y = (y∗1, . . . ,y
∗
m) are the optimal solutions of the primal and the dual program, then

n

∑
j=1

c jx
∗
j =

m

∑
i=1

ai jy
∗
i .

Note that given the duality relationships we could have the primal problem as a
maximization problem and the dual problem as a minimization problem. The duality
theorem provides a succinct way of proving optimality: an optimal solution of the
dual problem provides a certificate of optimality for an optimal solution of the pri-
mal, and vice versa. As in our example, every feasible solution of the dual provides
a lower bound on the optimal value of the primal and of course on the objective
function value of any feasible primal solution. This corresponds to half of the dual-
ity theorem, referred to as the weak duality theorem. In the design of approximation
algorithms, in general, the weak duality theorem is sufficient.

Theorem 21.14. Weak Duality Theorem If x = (x1, . . . ,xn) and y = (y1, . . . ,ym)
are the feasible solutions of the primal and the dual program, respectively, then

n

∑
j=1

c jx j ≥
m

∑
i=1

biyi.

Proof. Given the non-negativity of the x j and given that y is feasible:

n
∑
j=1

c jx j ≥
n
∑
j=1

(

m
∑

i=1
ai jyi

)

x j

n
∑
j=1

(

m
∑

i=1
ai jyi

)

x j =
m
∑

i=1

(

n
∑
j=1

ai jx j

)

yi

m
∑

i=1

(

n
∑
j=1

ai jx j

)

yi ≥
m
∑

i=1
biyi.

Therefore,
n

∑
j=1

c jx j ≥
m

∑
i=1

biyi. ⊓⊔

From the duality theorem we know that x and y are optimal solutions if and only
if the objective function value of the primal and the dual are equal. We can break this
condition down into important conditions, known as the complementary slackness
conditions.

21 Approximations and Randomization 663

Theorem 21.15. Complementary slackness conditions Let x and y be primal and
dual feasible solutions. Necessary and sufficient conditions for the optimality of x
and y are:

• Primal complementary slackness conditions

m

∑
i=1

ai jyi = c j or x j = 0 (or both) for each j = 1, . . . ,n.

• Dual complementary slackness conditions

n

∑
j=1

ai jx j = bi or yi = 0 (or both) for each i = 1, . . . ,m.

Proof. From the definitions of the primal and the dual:

c jx j ≥
(

m

∑
i=1

ai jyi

)

x j(j = 1, . . . ,n),

(

n

∑
j=1

ai jx j

)

yi ≥ biyi(i = 1, . . . ,m).

Therefore,

n

∑
j=1

c jx j ≥
n

∑
j=1

(

m

∑
i=1

ai jyi

)

x j =
m

∑
i=1

(

n

∑
j=1

ai jx j

)

yi ≥
m

∑
i=1

biyi.

For this equation to hold throughout, the two equations above have to hold in
equality. For the first equation to hold in equality we have to have x j = 0 or
c j =∑

m
i=1 ai jyi. Similarly, for the second equation to hold in equality we need yi = 0

or ∑n
j=1 ai jx j = bi. ⊓⊔

The complementary slackness conditions play a very important role in the design
of both exact and approximation algorithms. Below we discuss how we can use
them to design an approximation algorithm based on the primal–dual method for
the minimum weighted vertex cover.

21.2.7 Primal–Dual Method Applied to Minimum Weight

Vertex Cover

Our approximation algorithm for the Minimum Weight Vertex Cover based on LP
rounding requires that we solve the LP relaxation of its integer program formulation.
If we are dealing with large graphs with many edges, this procedure is relatively
expensive, since the number of constraints of our linear program corresponds to the

664 C.P. Gomes and R. Williams

Dual LP Relaxation

solutions

(maximization)

0

Primal LP Relaxation

solutions

(minimization)

(upper bounds on

dual LP relaxation optimum)

(lower bounds on

primal LP relaxation and IP optimum)

IP solutions

IP Opt

Primal LP Relaxation Opt =

Dual LP Relaxation Opt

Fig. 21.3 Feasible solutions of integer program and its primal and dual relaxations

number of edges in the graph. An alternative to this procedure is the primal–dual
method, also based on linear programming.

The primal–dual method was originally proposed by Dantzig et al. (1956), in-
spired by work on a min–max relation for the assignment problem that led to
the primal–dual Hungarian Method for solving the assignment problem (Egervary
1931; Kuhn 1955). Although the primal–dual method as proposed originally is no
longer used to solve LP problems, it has found several applications to develop
algorithms for combinatorial optimization problems. In fact, several fundamental
algorithms in combinatorial optimization are based on the primal–dual method or
can be understood in terms of it. Examples include, in addition to the Hungarian
algorithm, Dijkstra’s shortest-path algorithm, and Ford and Fulkerson’s network
flow algorithm. The primal–dual method has also been used to obtain approxi-
mation algorithms for several NP-hard optimization problems—see Goemans and
Williamson (1997) for a survey.

The primal–dual method provides, in fact, a general framework to devise approx-
imation algorithms for several NP-hard optimization problems. Most primal–dual
approximation algorithms enforce one of the complementary slackness conditions
relaxing the other. The method starts with the LP relaxation of the primal program
and iteratively builds an integral solution to the primal and a feasible solution to the
dual program. The primal and the dual programs are used to guide this procedure.
At each iteration, the algorithm improves the feasibility of the primal solution and
the optimality of the dual solution, in such a way that at the end, the final primal
solution is integral and feasible.

As mentioned in the previous section, any feasible solution to the dual provides
a lower bound to the optimal solution of the primal. The performance guarantee is
obtained by comparing the two solutions (see Fig. 21.3). For many problems, the
performance guarantee of primal–dual methods is similar to the one obtained with
LP rounding, close to the integrality gap of the relaxation. The runtimes of primal–
dual methods are in general much faster than solving the LP relaxation since such
methods are more versatile and exploit the combinatorial structure of the problem.
In fact, for several problems, once we formulate them as linear programs and have in
place the duality framework, a simple combinatorial algorithm can be used without
further need of the linear programming tools.

21 Approximations and Randomization 665

Let us consider again the LP relaxation of the integer program formulation of the
minimum-weight vertex cover problem.

LP relaxation of minimum-weight vertex cover IP problem

Minimize ∑v∈V w(v)x(v)
subject to: x(u)+ x(v) ≥ 1 for each v ∈V

x(v) ≥ 0 for each v ∈V.

We obtain the dual of the LP relaxation of the IP by associating a multiplier to each
of its constraints. Note that each constraint corresponds to an edge in the original
graph. Therefore, to each edge e ∈ E we associate a dual variable denoted by y(e).
The constraints of the dual problem state that, for each node v ∈ V , the sum of the
dual variables associated with the edges incident to it have to be less than the weight
of the node v,w(v). The objective function of the dual is to maximize the lower
bound, which corresponds to the sum of the multipliers y(e),e ∈ E .

Dual LP relaxation of minimum-weight vertex cover IP problem

Maximize ∑e∈E y(e)
subject to: ∑u:e=(u,v)∈E y(e) ≤ w(v) for each v ∈V

y(e) ≥ 0 for each e ∈ E.

The weak-duality theorem states that

Dual-LP-cost = Primal-LP-cost.

Therefore,

Dual-LP-cost≤ Dual-LP-cost∗ ≤ Primal-LP-cost∗.

Since Primal-LP-cost∗ = OPT-IP, it is not necessary to find the optimal solution
to the dual problem. We just need to find a feasible solution that will allow us to
upper-bound the cost of the vertex cover as a function of the dual feasible solution
cost.

The primal–dual weight vertex cover algorithm (PD-MVC) starts from a feasible
dual solution in which all the y(e) are set to zero and an infeasible primal solution
corresponding to the empty set. It then improves the dual solution while moving
towards a feasible primal solution using the complementary slackness conditions.

PD-MVC: Initially, we have an empty set S and set all the dual variables y(e) to
0. Choose an edge e = (u,v) not covered by S. Increase the value of the dual variable
y(e) until a constraint of the Dual-LP relaxation of the IP becomes tight (i.e. satisfied
in equality). The vertex for which the constraint becomes tight, say v is then added
to the cover S. All the edges incident to the vertex v are removed from the graph.
Repeat until no edges remain in the graph. Return S as the minimum-weight vertex.

666 C.P. Gomes and R. Williams

Theorem 21.16. PD-MVC is a 2-approximation algorithm for Minimum Weight
Vertex Cover.

Proof. By construction, S is a feasible solution. We now show that indeed this pro-
cedure provides a solution at most twice the value of the optimal solution to the
Minimum Weight Vertex Cover problem.

We start by observing that

w(v) = ∑
u:e=(u,v)∈E

y(e) for each v ∈ S. (21.1)

Let us denote by mPD-MVC the value obtained by the primal–dual method and,
as before, by mMWVC the optimal solution value of the Minimum Weight Vertex
Cover problem:

mPD−MVC =∑
v∈S

w(v) =∑
v∈S

∑
u:e=(u,v)∈E

y(e)≤ ∑
v∈V

∑
u:e=(u,v)∈E

y(e) = 2∑
e∈E

y(e). (21.2)

Given that

∑
e∈E

y(e)≤ mMWVC (21.3)

it follows that

mPD−MVC = 2mMWVC. (21.4)

⊓⊔

21.2.8 Randomization

Randomness is a powerful resource for algorithmic design. Upon the assumption
that one has access to unbiased coins that may be flipped and their values (heads
or tails) extracted, a wide array of new mathematics may be employed to aid the
analysis of an algorithm. It is often the case that a simple randomized algorithm
will have the same performance guarantees as a complicated deterministic (i.e. non-
randomized) procedure.

One of the most surprising discoveries in the area of algorithm design is that
the addition of randomness into the computational process can sometimes lead to a
significant speedup over purely deterministic methods. This may be intuitively ex-
plained by the following set of observations. A randomized algorithm can be viewed
as a probability distribution on a set of deterministic algorithms. The behavior of a
randomized algorithm can vary on a given input, depending on the random choices
made by the algorithm; hence when we consider a randomized algorithm, we are
implicitly considering a randomly chosen algorithm from a family of algorithms. If
a substantial fraction of these deterministic algorithms perform well on the given

21 Approximations and Randomization 667

input, then a strategy of restarting the randomized algorithm after a certain point in
runtime will lead to a speed-up (Gomes et al. 1998).

Some randomized algorithms are able to efficiently solve problems for which
no efficient deterministic algorithm is known, such as polynomial identity testing
(see Motwani and Raghavan 1995). Randomization is also a key component in the
popular simulated annealing method for solving optimization problems (Kirkpatrick
et al. 1983). For a long time, the problem of determining if a given number is prime
(a fundamental problem in modern cryptography) was only efficiently solvable us-
ing randomization (Goldwasser and Kilian 1986; Rabin 1980; Solovay and Strassen
1977). More recently, a deterministic algorithm for primality has been discovered
(Agrawal et al. 2004).

21.2.8.1 Random MAX-CUT Solution

We saw earlier a greedy strategy for MAX-CUT that yields a 2-approximation.
Using randomization, we can give an extremely short approximation algorithm that
has the same performance in approximation, and runs in expected polynomial time.

Random-Cut: Choose a random cut (i.e. a random partition of the vertices into
two sets). If there are < m/2 edges crossing this cut, repeat.

Theorem 21.17. Random-Cut is a 1/2-approximation algorithm for MAX-CUT that
runs in expected polynomial time.

Proof. Let X be a random variable denoting the number of edges crossing a cut. For
i = 1, . . . ,m, Xi will be an indicator variable that is 1 if the ith edge crosses the cut,
and 0 otherwise. Then X =∑m

i=1 Xi, so by linearity of expectation, E[X] =∑m
i=1 E[Xi].

Now for any edge u,v, the probability it crosses a randomly chosen cut is 1/2.
(Why? We randomly placed u and v in one of two possible partitions, so u is in the
same partition as v with probability 1/2.) Thus, E[Xi] = 1/2 for all i, so E[X] = m/2.

This only shows that by choosing a random cut, we expect to get at least m/2
edges crossing. We want a randomized algorithm that always returns a good cut,
and its running time is a random variable whose expectation is polynomial. Let us
compute the probability that X = m/2 when a random cut is chosen. In the worst
case, when X = m/2 all of the probability is weighted on m, and when X < m/2
all of the probability is weighted on m/2− 1. This makes the expectation of X as
high as possible, while making the likelihood of obtaining an at-least-m/2 cut small.
Formally,

m/2 = E[X]≤ (1−Pr[X ≥ m/2])(m/2− 1)+Pr[X ≥ m/2]m.

Solving for Pr[X ≥m/2], it is at least 2/(m+2). It follows that the expected number
of iterations in the above algorithm is at most (m+2)/2; therefore the algorithm runs
in expected polynomial time, and always returns a cut of size at least m/2. ⊓⊔

668 C.P. Gomes and R. Williams

Had we simply specified our approximation as “pick a random cut and stop”, we
would say that the algorithm runs in linear time, and has an expected approximation
ratio of 1/2.

21.2.8.2 Random MAX-SAT Solution

Previously, we studied a greedy approach for MAX-SAT that was guaranteed to
satisfy half of the clauses. Here we will consider MAX-Ak-SAT, the restriction of
MAX-SAT to CNF formulas with at least k literals per clause. Our algorithm is anal-
ogous to the one for MAX-CUT: Pick a random assignment to the variables. It is
easy to show, using a similar analysis to the above, that the expected approximation
ratio of this procedure is at least 1− 1/2k. More precisely, if m is the total num-
ber of clauses in a formula, the expected number of clauses satisfied by a random
assignment is m−m/2k.

Let c be an arbitrary clause of at least k literals. The probability that each of its
literals were set to a value that makes them false is at most 1/2k, since there is a
probability of 1/2 for each literal and there are at least k of them. Therefore, the
probability that c is satisfied is at least 1− 1/2k. Using a linearity of expectation
argument (as in the MAX-CUT analysis) we infer that at least m−m/2k clauses are
expected to be satisfied.

21.3 A Tour of Approximation Classes

We will now take a step back from our algorithmic discussions, and briefly describe
a few of the common complexity classes associated with NP optimization problems.

21.3.1 PTAS and FPTAS

21.3.1.1 Definition

PTAS and FPTAS are classes of optimization problems that some believe are closer
to the proper definition of what is efficiently solvable, rather than merely P. This is
because problems in these two classes may be approximated with constant ratios ar-
bitrarily close to 1. However, with PTAS, as the approximation ratio gets closer to 1,
the runtime of the corresponding approximation algorithm may grow exponentially
with the ratio.

More formally, PTAS is the class of NPO problemsΠ that have an approximation
scheme. That is, given ε> 0, there exists a polynomial time algorithm Aε such that:

• If Π is a maximization problem, Aε is a (1+ ε) approximation, i.e. the ratio
approaches 1 from the right.

21 Approximations and Randomization 669

• IfΠ is a minimization problem, it is a (1−ε) approximation (the ratio approaches
1 from the left).

As we mentioned, one drawback of a PTAS is that the (1+ ε) algorithm could
be exponential in 1/ε. The class FPTAS is essentially PTAS but with the additional
requirement that the runtime of the approximation algorithm is polynomial in n
and 1/ε.

21.3.1.2 A Few Known Results

It is known that some NP-hard optimization problems cannot be approximated arbi-
trarily well unless P=NP. One example is a problem we looked at earlier, Minimum
Bin Packing. This is a rare case in which there is a simple proof that the problem is
not approximable unless P = NP.

Theorem 21.18 (Aho et al. 1979). Minimum Bin Packing is not in PTAS, unless
P = NP. In fact, there is no 3/2− ε approximation for any ε> 0, unless P = NP.

To prove the result, we use a reduction from the Set Partition decision problem.
Set Partitioning asks if a given set of natural numbers can be split into two sets that
have equal sum.

Set Partition
Instance: A multi-set S = {r1, . . . ,rn}, where ri ∈ N for all i = 1, . . . ,n.
Solution: A partition of S into sets S1 and S2; i.e. S1∪S2 = S and S1∩S2 = /0.
Measure: m(S) = 1 if ∑ri∈S1

ri = ∑r j∈S2
r j , and m(S) = 0 otherwise.

Proof. Let S = r1, . . . ,rn be a Set Partition instance. Reduce it to Minimum Bin
Packing by setting C = 1/2∑ j=1 s j (half the total sum of elements in S), and consid-
ering a bin packing instance of items S′ = {r1/C, . . . ,rn/C}. If S can be partitioned
into two sets of equal sum, then the minimum number of bins necessary for the
corresponding S′ is 2. On the other hand, if S cannot be partitioned in this way, the
minimum number of bins needed for S′ is at least 3, as every possible partition-
ing results in a set with sum greater than C. Therefore, if there were a polytime
(3/2− ε)-approximation algorithm A, it could be used to solve Set Partition:

• If A (given S and C) returns a solution using at most (3/2− ε)2 = 3− 2ε bins,
then there exists a Set Partition for S.

• If A returns a solution using at least (3/2− ε)3 = 9/2− 3ε= 4.5− 3ε bins, then
there is no Set Partition for S.

But for any ε ∈ (0,3/2),
3− 2 < 4.5− 3ε.

Therefore, this polynomial time algorithm distinguishes between those S that can be
partitioned and those that cannot, so P = NP. ⊓⊔

670 C.P. Gomes and R. Williams

A similar result holds for problems such as MAX-CUT, MAX-SAT and Minimum
Vertex Cover. However, unlike the result for Bin Packing, the proofs for these
require the introduction of probabilistically checkable proofs, which we will be
discussed later.

21.3.2 APX

APX is a (presumably) larger class than PTAS; the approximation guarantees for
problems in it are strictly weaker. An NP optimization problem Π is in APX sim-
ply if there is a polynomial time algorithm A and constant k such that A is a
c-approximation to Π.

21.3.2.1 A Few Known Results

It is easy to see that PTAS ⊆ APX ⊆ NPO. When one sees new complexity classes
and their inclusions, one of the first questions to be asked is: How likely is it that
these inclusions could be made into equalities? Unfortunately, it is highly unlikely.
The following relationship can be shown between the three approximation classes
we have seen.

Theorem 21.19 (Ausiello et al. 1999). PTAS = APX ⇐⇒ APX = NPO ⇐⇒
P = NP.

Therefore, if all NP optimization problems could be approximated within a con-
stant factor, then P =NP. Further, if all problems that can have constant approxima-
tions can be arbitrarily approximated, still P = NP. Another way of saying this is: if
NP problems are hard to solve, then some of them are hard to approximate as well.
Moreover, there exists a hierarchy of successively harder-to-approximate problems.

One of the directions stated follows from a theorem of the previous section: ear-
lier, we saw a constant factor approximation to Minimum Bin Packing. However,
it does not have a PTAS unless P = NP. This shows the direction PTAS = APX ⇒
P = NP. One example of a problem that cannot be in APX unless P = NP is the
well-known Minimum TSP :

Minimum Traveling Salesman
Instance: A set C = {c1, . . . ,cn} of cities, and a distance function d : C×C→ N.
Solution: A path through the cities, i.e. a permutation π : {1, . . . ,n}→ {1, . . . ,n}.
Measure: The cost of visiting cities with respect to the path, i.e.∑n−1

i=1 d(cπ(i),cπ(i+1)).

It is important to note that when the distances in the problem instances always
obey a Euclidean metric, Minimum Traveling Salesman has a PTAS (Arora 1998).
Thus, we may say that it is the generality of possible distances in the above problem

21 Approximations and Randomization 671

that makes it difficult to approximate. This is often the case with approximability:
a small restriction on an inapproximable problem can suddenly turn it into a highly
approximable one.

21.3.3 Brief Introduction to PCPs

In the 1990s, the work in probabilistically checkable proofs (PCPs) was the ma-
jor breakthrough in proving hardness results, and arguably in theoretical computer
science as a whole. In essence, PCPs only look at a few bits of a proposed proof,
using randomness, but manage to capture all of NP. Because the number of bits they
check is so small (a constant), when an efficient PCP exists for a given problem,
it implies the hardness of approximately solving the same problem as well, within
some constant factor.

The notion of a PCP arose from a series of meditations on proof-checking using
randomness. We know NP represents the class of problems that have short proofs
we can check efficiently. As far as NP is concerned, all of the checking we do is de-
terministic. When a proof is correct or incorrect, a polynomial time verifier answers
“yes” or “no” with 100 % confidence.

However, what happens when we relax the notion of total correctness to include
probability? Suppose we permit the verifier to toss unbiased coins, and have one-
sided error. That is, now a randomized verifier only accepts a correct proof with
probability at least 1/2, but still rejects any incorrect proof it reads. (We call such a
verifier a probabilistically checkable proof system.) This slight tweaking of what it
means to verify a proof leads to an amazing characterization of NP: all NP decision
problems can be verified by a PCP of the above type, which only flips O(logn)
coins and only checks a constant (O(1)) number of bits of any given proof! The
result involves the construction of highly intricate error-correcting codes. We do
not discuss this on a formal level here, but shall cite the above in the notation of a
theorem.

Theorem 21.20 (Arora et al. 1998). PCP[O(logn),O(1)] = NP.

One corollary of this theorem is that a large class of approximation problems do
not admit a PTAS, in particular, as follows.

Theorem 21.21. For Π ∈ {MAX-Ek-SAT, MAX-CUT, Minimum Vertex Cover},
there exists a c such that Π cannot be c-approximated in polynomial time, unless
P = NP.

672 C.P. Gomes and R. Williams

21.4 Promising Areas for Future Application

21.4.1 Randomized Backtracking and Backdoors

Backtracking is one of the oldest and most natural methods used for solving com-
binatorial problems. In general, backtracking deterministically can take exponential
time. Recent work has demonstrated that many real-world problems can be solved
quite rapidly, when the choices made in backtracking are randomized. In particu-
lar, problems in practice tend to have small substructures within them. These sub-
structures have the property that once they are solved properly, the entire problem
may be solved. The existence of these so-called backdoors (Williams et al. 2003)
to problems make them very tenable to solution using randomization. Roughly
speaking, search heuristics will set the backdoor substructure early in the search,
with a significant probability. Therefore, by repeatedly restarting the backtracking
mechanism after a certain (polynomial) length of time, the overall runtime that back-
tracking requires to find a solution is decreased tremendously.

21.4.2 Approximations to Guide Complete Backtrack Search

A promising approach for solving combinatorial problems using complete (exact)
methods draws on recent results on some of the best approximation algorithms
based on LP relaxations and randomized rounding techniques, as well as on re-
sults that uncovered the extreme variance or unpredictability in the runï¿ 1

2 time of
complete search procedures, often explained by so-called heavy-tailed cost distribu-
tions (Gomes et al. 2000). Gomes and Shmoys (2002) propose a complete random-
ized backtrack search method that tightly couples constraint satisfaction problem
(CSP) propagation techniques with randomized LP-based approximations. They use
as a benchmark domain a purely combinatorial problem, the quasi-group (or Latin
square) completion problem. Each instance consists of an n by n matrix with n2

cells. A complete quasi-group consists of a coloring of each cell with one of n col-
ors in such a way that there is no repeated color in any row or column. Given a
partial coloring of the n by n cells, determining whether there is a valid completion
into a full quasi-group is an NP-complete problem (Colbourn 1984). The underlying
structure of this benchmark is similar to that found in a series of real-world appli-
cations, such as timetabling, experimental design, and fiber optics routing problems
(Laywine and Mullen 1998; Kumar et al. 1999).

Gomes and Shmoys compare their results for the hybrid CSP/LP strategy guided
by the LP randomized rounding approximation with a CSP strategy and with a LP
strategy. The results show that the hybrid approach significantly improves over the
pure strategies on hard instances. This suggest that the LP randomized rounding
approximation provides powerful heuristic guidance to the CSP search.

21 Approximations and Randomization 673

21.4.3 Average-Case Complexity and Approximation

Recently, an intriguing thread of theoretical research has explored the connections
between the average-case complexity of problems and their approximation hard-
ness (Feige 2002). For example, it is shown that if random 3SAT is hard to solve
in polynomial time (under reasonable definitions of random and hard), then NP-
hard optimization problems such as Minimum Bisection are hard to approximate
in the worst-case. Conversely, this implies that improved approximation algorithms
for some problems could lead to the average-case tractability of others. A natu-
ral research question to ask is: does an FPTAS imply average-case tractability, or
vice versa? We suspect that some statement of this form might be the case. In our
defense, a recent paper (Beier and Vocking 2003) shows that Random Maximum In-
teger Knapsack is exactly solvable in expected polynomial time! (Recall that there
exists an FPTAS for Maximum Integer Knapsack.)

21.5 Tricks of the Trade

One major initial motivation for the study of approximation algorithms was to
provide a new theoretical avenue for analyzing and coping with hard problems.
Faced with a brand-new interesting optimization problem, how might one apply the
techniques discussed here? One possible scheme proceeds as follows:

1. First, try to prove your problem is NP-hard, or find evidence that it is not! Per-
haps the problem admits an interesting exact algorithm, without the need for
approximation.

2. Often, a very natural and intuitive idea is the basis for an approximation algorithm.
How good is a randomly chosen feasible solution for the problem? (What is the
expected value of a random solution?) How about a greedy strategy? Can you
define a neighborhood such that local search does well? Is there a relaxation of
the problem (where integer solutions are relaxed, and real solutions are allowed)
that can be solved efficiently? For many computational problems, there are linear
programming relaxations which can be used to approximately solve the original
problem.

3. Look for a problem (call it Π) that is related to yours, and is known to have good
approximation algorithms. Try to use the algorithms and techniques for solving
Π to obtain an approximation algorithm for your problem.

4. Try to prove that your problem cannot be well-approximated, by reducing some
hard-to-approximate problem to your problem.

The first, third, and fourth points essentially hinge on one’s resourcefulness: one’s
tenacity to scour the literature (and colleagues) for problems similar to the one at
hand, as well as one’s ability to see the relationships and reductions which show that
a problem is indeed similar.

674 C.P. Gomes and R. Williams

This chapter has been mainly concerned with the second point. To answer the
questions of that point, it is crucial to prove bounds on optimal solutions, with
respect to the feasible solutions that one’s approaches obtain. For minimization
(maximization) problems, one will need to prove lower bounds (respectively, up-
per bounds) on some optimal solution for the problem. Devising lower (or upper)
bounds can simplify the proof tremendously: one only needs to show that an algo-
rithm returns a solution with value at most c times the lower bound to show that the
algorithm is a c-approximation.

We have proven upper and lower bounds repeatedly (implicitly or explicitly) in
our proofs for approximation algorithms throughout this chapter—it may be instruc-
tive for the reader to review each approximation proof and find where we have done
it. For example, the greedy vertex cover algorithm (of choosing a maximal match-
ing) works because even an optimal vertex cover covers at least one of the vertices
in each edge of the matching. The number of edges in the matching is a lower bound
on the number of nodes in a optimal vertex cover, and thus the number of nodes in
the matching (which is twice the number of edges) is at most twice the number of
nodes of an optimal cover.

21.6 Conclusions

We have seen the power of randomization in finding approximate solutions to hard
problems. There are many available approaches for designing such algorithms, from
solving a related problem and tweaking its solution (in linear programming relax-
ations) to constructing feasible solutions in a myopic way (via greedy algorithms).
We saw that for some problems, determining an approximate solution is vastly easier
than finding an exact solution, while other problems are just as hard to approximate
as they are to solve.

In closing, we remark that the study of approximation and randomized algorithms
is still a very young (but rapidly developing) field. It is our sincerest hope that the
reader is inspired to contribute to the prodigious growth of the subject, and its far-
reaching implications for problem solving in general.

Sources of Additional Information

Books on algorithms:

• Data structures and Algorithms (Aho et al. 1983)
• Introduction to Algorithms (Cormen et al. 2001)
• The Design and Analysis of Algorithms (Kozen 1992)
• Combinatorial Optimization: Algorithms and Complexity (Papadimitriou and

Steiglitz 1982)

21 Approximations and Randomization 675

Books on linear programming and duality:

• Linear Programming (Chvatal 1983)
• Linear Programming and Extensions (Dantzig 1998)
• Integer and Combinatorial Optimization (Nemhauser and Wolsey 1988)
• Combinatorial Optimization: Algorithms and Complexity (Papadimitriou and

Steiglitz 1982)
• Combinatorial Optimization (Cook et al. 1988)
• Combinatorial Optimization Polyhedra and Efficiency (Schrijver 2003)

Books on approximation algorithms:

• Complexity and Approximation (Ausiello et al. 1999)
• Approximation Algorithms for NP-Hard Problems (Hochbaum 1997)
• Approximation algorithms (Vazirani 2004)
• The Design of Approximation Algorithms (Williamson and Shmoys 2001),

available at http://www.designofapproxalgs.com/

One of the most intriguing lines of work in approximation algorithms over the
past few years has been the formulation and development of the Unique Games
Conjecture of Subhash Khot (2002). The conjecture asserts that a certain combina-
torial problem is hard to approximate. If the conjecture is true, then many simple
approximation algorithms (like the 2-approximation for Vertex Cover) are optimal.
However, the status of the conjecture is unclear. Recently, there is some interesting
evidence (in the form of subexponential-time approximation algorithms) that the
Unique Games Conjecture may be false (Arora et al. 2010).

Books on probabilistic and randomized algorithms:

• An Introduction to Probability Theory and Its Applications (Feller 1971)
• The Probabilistic Method (Alon and Spencer 2000)
• Randomized Algorithms (Motwani and Raghavan 1995)
• The Discrepancy Method (Chazelle 2001)

Surveys:

• Computing Near-Optimal Solutions to Combinatorial Optimization Problems
(Shmoys 1995)

• Approximation algorithms via randomized rounding: a survey (Srinivasan 1999)

Courses and lectures notes online:

• Approximability of Optimization Problems, MIT, Fall 99 (Madhu Sudan)
http://theory.lcs.mit.edu/madhu/FT99/course.html

• Approximation Algorithms, Fields Institute, Fall 99 (Joseph Cheriyan)
http://www.math.uwaterloo.ca/jcheriya/App-course/course.html

• Approximation Algorithms, John Hopkins University Fall 1998 (Lenore Cowen)
http://www.cs.jhu.edu/cowen/approx.html

• Approximation Algorithms, Technion, Fall 95 (Yuval Rabani)
http://www.cs.technion.ac.il/rabani/236521.95.wi.html

http://www.designofapproxalgs.com/
http://theory.lcs.mit.edu/ madhu/FT99/course.html
http://www.math.uwaterloo.ca/ jcheriya/App-course/course.html
http://www.cs.jhu.edu/ cowen/approx.html
http://www.cs.technion.ac.il/ rabani/236521.95.wi.html

676 C.P. Gomes and R. Williams

• Approximation Algorithms, Cornell University, Fall 1998 (David Williamson)
http://www.almaden.ibm.com/cs/people/dpw/

• Approximation Algorithms, Tel Aviv University, Fall 2001 (Uri Zwick)
http://www.cs.tau.ac.il/

• Approximation Algorithms for Network Problems, Lecture Notes (J.Cheriyan
and R.Ravi)
http://www.gsia.cmu.edu/afs/andrew/gsia/ravi/WWW/new-lecnotes.html

• Randomized algorithms, CMU, Fall 2000 (Avrim Blum)
http://www-2.cs.cmu.edu/afs/cs/usr/avrim/www/Randalgs98/home.html

• Randomization and optimization by Devdatt Dubhashi http://www.cs.chalmers.
se/dubhashi/ComplexityCourse/info2.html

• Topics in Mathematical Programming: Approximation Algorithms, Cornell Uni-
versity, Spring 99 (David Shmoys) http://www.orie.cornell.edu/or739/index.html

• Course notes on online algorithms, randomized algorithms, network .ows, linear
programming, and approximation algorithms (Michel Goemans) http://www-math.
mit.edu/goemans/

• Lecture notes, www.cs.cmu.edu/afs/cs/academic/class/15854-f05/www/ (hosted
by CMU)

Main conferences covering the approximation and randomization topics:

• IPCO—Integer Programming and Combinatorial Optimization
• ISMP—International Symposium on MAthematical Programming
• FOCS—Annual IEEE Symposium on Foundation of Computer Science
• SODA—Annual ACM-SIAM Symposium on Discrete Algorithms
• STOC—Annual ACM Symposium on Theory of Computing
• RANDOM—International Workshop on Randomization and Approximation

Techniques in Computer Science
• APPROX—International Workshop on Approximation Algorithms for Combi-

natorial Optimization Problems

References

Agrawal M, Kayal N, Saxena N (2004) PRIMES is in P. Ann Math 160:781–793
Aho AV, Hopcroft JE, Ullman JD (1979) Computers and intractability: a guide to

NP-completeness. Freeman, San Francisco
Aho AV, Hopcroft JE, Ullman JD (1983) Data structures and algorithms. Computer

science and information processing series. Addison-Wesley, Reading
Alon N, Spencer J (2000) The probabilistic method. Wiley, New York
Arora S (1998) Polynomial time approximation schemes for Euclidean traveling

salesman and other geometric problems. J ACM 45:753–782
Arora S, Lund C, Motwani R, Sudan M, Szegedy M (1998) Proof verification and

the hardness of approximation problems. J ACM 45:501–555

http://www.almaden.ibm.com/cs/people/dpw/
http://www.cs.tau.ac.il/
http://www.gsia.cmu.edu/afs/andrew/gsia/ravi/WWW/new-lecnotes.html
http://www-2.cs.cmu.edu/afs/cs/usr/avrim/www/Randalgs98/home.html
http://www.cs.chalmers.se/ dubhashi/ComplexityCourse/info2.html
http://www.cs.chalmers.se/ dubhashi/ComplexityCourse/info2.html
http://www.orie.cornell.edu/ or739/index.html
http://www-math.mit.edu/ goemans/
http://www-math.mit.edu/ goemans/
www.cs.cmu.edu/afs/cs/academic/class/15854-f05/www/

21 Approximations and Randomization 677

Arora S, Barak B, Steurer D (2010) Subexponential algorithms for unique games
and related problems. In: Proceedings of the IEEE symposium on foundations of
computer science, Las Vegas, pp 563–572

Ausiello G, Crescenzi P, Gambosi G, Kann V, Marchetti-Spaccamela A, Protasi M
(1999) Complexity and approximation. Springer, Berlin

Beier R, Vocking B (2003) Random knapsack in expected polynomial time.
J Comput Syst Sci 69:306–329

Chazelle B (2001) The discrepancy method. Cambridge University Press,
Cambridge/New York

Chvatal V (1979) A greedy heuristic for the set-covering. Math Oper Res 4:233–235
Chvatal V (1983) Linear programming. Freeman, San Francisco
Clay Mathematics Institute (2003) The millenium prize problems: P vs NP. http://

www.claymath.org/
Colbourn C (1984) The complexity of completing partial latin squares. Discret Appl

Math 8:25–30
Cook W, Cunningham W, Pulleyblank W, Schrijver A (1988) Combinatorial

optimization. Wiley, New York
Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to algorithms.

MIT, Cambridge
Dantzig G (1998) Linear programming and extensions. Princeton University Press,

Princeton
Dantzig GB, Ford LR, Fulkerson DR (1956) A primal-dual algorithm for linear pro-

grams. In: Kuhn HW, Tucker AW (eds) Linear inequalities and related systems,
Annals of Mathematics Study No. 38, Princeton University Press, Princeton, New
Jersey, pp 171–181

Egerváry E (1931) Matrixok kombinatorius tujajdonsagairol. Matematikai es Fizikai
Lapok 38:16–28

Feige U (2002) Relations between average case complexity and approximation
complexity. In: Proceedings of the ACM symposium on theory of computing,
Montreal

Feller W (1971) An introduction to probability theory and its applications. Wiley,
New York

Garey MR, Graham RL, Ulman JD (1972) Worst case analysis of memory allocation
algorithms. In: Proceedings of the 4th ACM symposium on theory of computing,
Denver, pp 143–150

Goemans MX, Williamson DP (1995) Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. J ACM
42:1115–1145

Goemans M, Williamson DP (1997) The primal-dual method for approximation
algorithms and its application to network design problems. In: Hochbaum DS
(ed) Approximation algorithms for NP-hard problems. PWS, Boston

Goldwasser S, Kilian J (1986) Almost all primes can be quickly certified. In: Pro-
ceedings of the annual IEEE symposium on foundations of computer science,
Toronto, pp 316–329

http://www.claymath.org/
http://www.claymath.org/

678 C.P. Gomes and R. Williams

Gomes CP, Shmoys D (2002) The promise of LP to boost CSP techniques for combi-
natorial problems. In: Jussien N, Laburthe F (eds) Proceedings of the CP-AI-OR
2002, Le Croisic, France, pp 291–305. http://www.emn.fr/z-info/cpaior/

Gomes CP, Selman B, Kautz H (1998) Boosting combinatorial search through ran-
domization. In: Proceedings of the AAAI 1998, Madison, Wisconsin, pp 431–
437. http://www.aaai.org/Conferences/AAAI/aaai98.php

Gomes C, Selman B, Crato N, Kautz H (2000) Heavy-tailed phenomena in satisfia-
bility and constraint satisfaction problems. J Autom Reason 24:67–100

Graham RL (1966) Bounds for certain multiprocessing anomalies. Bell Syst Tech J
45:1563–1581

Hochbaum DS (1982) Approximation algorithms for the set covering and vertex
cover problem. SIAM J Comput 11:555–556

Hochbaum DS (1983) Efficient bounds for the stable set, vertex cover and the set
packing problems. Discret Appl Math 6:243–254

Hochbaum DS (ed) (1997) Approximation algorithms for NP-hard problems. PWS,
Boston

Johnson DS (1974) Approximation algorithms for combinatorial problems. J Com-
put Syst Sci 9:256–278

Khot S (2002) On the power of unique 2-prover 1-round games. In: Proceedings of
the 34th annual ACM symposium on theory of computing, Montreal, pp 767–775

Khot S, Regev O (2003) Vertex cover might be hard to approximate within 2− ε.
In: Proceedings of the IEEE conference on computational complexity, Aarhus.
J Comput Syst Sci 74:335–349

Kirkpatrick S, Gelatt C, Vecchi M (1983) Optimization by simulated annealing.
Science 220:671–680

Kozen D (1992) The design and analysis of algorithms. Springer, New York
Kuhn HW (1955) The Hungarian method for the assignment problem. Nav Res Q

2:83–97
Kumar SR, Russell A, Sundaram R (1999) Approximating latin square extensions.

Algorithmica 24:128–138
Laywine C, Mullen G (1998) Discrete mathematics using latin squares. Discrete

mathematics and optimization series. Wiley-Interscience, New York
Lovasz L (1975) On the ratio of optimal integral and fractional covers. Discret Math

13:383–390
Motwani R, Raghavan P (1995) Randomized algorithms. Cambridge University

Press, Cambridge/New York
Nemhauser G, Wolsey L (1988) Integer and combinatorial optimization. Wiley, New

York
Papadimitriou C, Steiglitz K (1982) Combinatorial optimization: algorithms and

complexity. Prentice-Hall, Englewood Cliffs
Rabin M (1980) Probabilistic algorithm for testing primality. J Number Theor

12:128–138
Schrijver A (2003) Combinatorial optimization polyhedra and efficiency. Springer,

Berlin

http://www.emn.fr/z-info/cpaior/
http://www.aaai.org/Conferences/AAAI/aaai98.php

21 Approximations and Randomization 679

Shmoys D (1995) Computing near-optimal solutions to combinatorial optimization
problems. In: Cook W, Lovasz L, Seymour P (eds) Combinatorial optimization.
DIMACS series. AMS, Providence, pp 355–396

Solovay R, Strassen V (1977) A fast Monte Carlo test for primality. SIAM J Comput
6:84–86

Srinivasan A (1999) Approximation algorithms via randomized rounding: a survey.
In: Karonskin M, Promel HJ (eds) Lectures on approximation and randomized
algorithms. Series in advanced topics in mathematics. Polish Scientific Publishers
PWN, Warsaw, pp 9–71

Vazirani V (2004) Approximation algorithms. Springer, Berlin
Williams R, Gomes CP, Selman B (2003) Backdoors to typical case complexity. In:

Proceedings of the IJCAI, Acapulco, pp 173–1178
Williamson DP, Shmoys DB (2011) The design of approximation algorithms. Cam-

bridge University Press, New York
Wolsey LA (1980) Heuristic analysis, linear programming and branch and bound.

Math Programm 28:271–287

Chapter 22

Fitness Landscapes

Colin R. Reeves

22.1 Historical Introduction

One of the most commonly used metaphors to describe the process of heuristic
methods such as local search in solving a combinatorial optimization problem is
that of a fitness landscape. However, describing exactly what we mean by such a
term is not as easy as might be assumed. Indeed, many cases of its usage in both the
biological and optimization literature reveal a rather serious lack of understanding.

The landscape metaphor appears most commonly in work related to evolutionary
algorithms, where it is customary to trace the usage of the term back to a paper
by the population geneticist Sewall Wright (1932), although Haldane had already
introduced a similar notion (Haldane 1931). The metaphor has become pervasive,
being cited in many biological texts that discuss evolution.

Wright’s original idea of a fitness landscape was somewhat ambiguous. It ap-
pears that what he initially had in mind concerned within-species variation where
the axes of a search space represented unspecified gene combinations, but Dobzhan-
sky’s subsequent enthusiastic use of the metaphor (Dobzhansky 1951) seems to have
established the consensus view of the axes of the search landscape as the frequency
of a particular allele of a particular gene in a particular population. This can be seen
in many textbooks on the subject of evolution, such as Ridley (1993). In the hands
of Simpson, who seems to have thought primarily in terms of phenotypic charac-
ters (Simpson 1953), the story became even more highly developed, although even
more divorced from empirical reality. Despite Wright’s later attempts to clarify the
situation (Wright 1967, 1988), the ambiguity remains. There is thus an interesting
paradox in evolutionary biology: according to Futuyma (1998, p. 403),

[The] adaptive landscape is probably the most common metaphor in evolutionary genetic[s]

C.R. Reeves (�)
Department of Mathematics and Control Engineering, Coventry University, Coventry, UK
e-mail: c.reeves@coventry.ac.uk

E.K. Burke and G. Kendall (eds.), Search Methodologies: Introductory Tutorials
in Optimization and Decision Support Techniques, DOI 10.1007/978-1-4614-6940-7_22,
© Springer Science+Business Media New York 2014

681

mailto:c.reeves@coventry.ac.uk

682 C.R. Reeves

yet nobody seems sure what exactly is the reality to which the metaphor is supposed
to relate! However, it remains extremely popular: Dawkins’ recent book (Dawkins
1996), for example, makes considerable use of the notion, as its title Climbing
Mount Improbable suggests.

Although we may have a vague idea of what the search space is, it is rather
harder to define any axes for such a search space, as we have seen. Moreover, fit-
ness in evolutionary biology is also a rather slippery concept. It is discussed as if
there is some objective a priori measure, yet as usually defined, fitness concerns an
organism’s reproductive success, which can only be measured a posteriori.1 Add to
this the confusion over what the search space axes represent, and it becomes almost
impossible to relate them to some quantifiable measure of fitness. It is thus gener-
ally dealt with by prestidigitation, and so, for all its popularity, the idea of a fitness
landscape in biology is a mirage, displaying what is to a mathematician a distress-
ing lack of rigor. Happily, some biologists agree, as in the cogent arguments against
the hand-waving approach in Eldredge and Cracraft (1980). More recently, Skipper
(2004) has argued that it still has a certain value in illustrating behavioral aspects of
evolutionary theories, but Kaplan (2008) has suggested that it should be abandoned
completely.

A more serious approach was foreshadowed by Eigen (1983) and Eigen et al.
(1989). In his work on viruses, he introduced the concept of a quasi-species—a
group of similar sequences. Each sequence Sk is a string of symbols drawn from
some alphabet, the natural one to consider for viruses being the RNA bases adenine,
cytosine, guanine and uracil—{A,C,G,U}. Differences in members of the quasi-
species correspond to point mutations—replacement of one symbol by another one.

This interpretation falls somewhat short of the grand ideas in the popular biology
textbooks, but it does make a formal mathematical development of the concept of a
fitness landscape much more feasible, and following pioneering work by Weinberger
(1990) in particular, a fairly complete formal statement of landscape theory was pro-
posed by Stadler (1995). His paper is a sustained development and exploration of
landscape concepts, requiring fairly sophisticated mathematics. Recent work has
developed and explicated these ideas further (Reidys and Stadler 2002), but some
quite extensive mathematical knowledge is still needed in order to appreciate it fully.
In the expectation that the mathematical background of the readers of this volume
will be somewhat variable, this tutorial will try to survey some of the themes most
relevant to combinatorial optimization, without using advanced mathematical ideas.
Some basic ideas of set theory, matrix algebra and functional analysis will be re-
quired, but the more complex ideas found in Reidys and Stadler (2002) will not be
covered. Illustrative numerical examples will also be used at key points in an attempt
to aid understanding.

1 The Oxford Dictionary of Biology defines fitness as “The condition of an organism that is well
adapted to its environment, as measured by its ability to reproduce itself.”

22 Fitness Landscapes 683

22.2 Combinatorial Optimization

We can define combinatorial optimization problems as follows: we have a discrete
search space X , and a function

f : X)→ IR.

The general problem is to find

x∗ = argmax
x∈X

f .

where x is a vector of decision variables and f is the objective function. (Of course,
minimization can also be the aim, but the modifications are always obvious). In the
field of evolutionary algorithms, the function f is often called the fitness; hence the
associated landscape is a fitness landscape. The vector x∗ is a global optimum: that
vector which is the fittest of all. (In some problems, there may be several global
optima—different vectors of equal fitness.)

With the idea of a fitness landscape comes the idea that there are also many local
optima or false peaks, in which a search algorithm may become trapped without
finding the global optimum. In continuous optimization, notions of continuity and
concepts associated with the differential calculus enable us to characterize quite
precisely what we mean by a landscape, and to define the idea of an optimum. It
is also convenient that our own experience of hill climbing in a three-dimensional
world gives us analogies to ridges, valleys, basins, watersheds, etc., which help us to
build an intuitive picture of what is needed for a successful search, even though the
search spaces that are of interest often have dimensions many orders of magnitude
higher than three.

However, in the continuous case, the landscape is determined only by the fitness
function, and the ingenuity needed to find a global optimum consists in trying to
match a technique to this single landscape. There is a major difference when we
come to discrete optimization, which leads to mistaken explanations of the efficacy
of this or that local search metaheuristic: sometimes it is asserted, for example,
that a given technique (e.g. using a Gray code for 0–1 vectors) allows search in
more remote parts of the landscape, when it would be more accurate to say that the
landscape has been remodeled by changing distances. Indeed, we really should not
use the term landscape unless we have first defined the topological relationships of
the points in the search space X . Unlike the continuous case, we have some freedom
to specify these relationships, and in fact, that is precisely what we do when we
decide to use a particular technique.

22.2.1 An Example

In practice, one of the most commonly used search methods for a combinatorial
optimization problem is neighborhood search. This idea is at the root of modern

684 C.R. Reeves

metaheuristics such as simulated annealing and tabu search—as well as being much
more involved in the methodology of genetic algorithms than is sometimes realized.

A neighborhood structure is generated by using an operator that transforms a
given vector x into a new vector x′. For example, if the solution is represented by
a binary vector (as is often the case for genetic algorithms, for instance), a simple
neighborhood might consist of all vectors obtainable by flipping one of the bits. The
bit flip neighbors of (00000), for example, would be

{(10000),(01000),(00100),(00010),(00001)}.

Consider the problem of maximizing a simple function

f (z) = z3− 60z2+ 900z+ 100

where the solution z is required to be an integer in the range [0,31]. Regarding z for a
moment as a continuous variable, we have a smooth unimodal function with a single
maximum at z = 10—as is easily found by calculus. Since this solution is already
an integer, this is undoubtedly the most efficient way of solving the problem.

However, suppose we chose instead to represent z by a binary vector x of length 5.
By decoding this binary vector as an integer it is possible to evaluate f , and we could
then use neighborhood search, for example, to search over the binary hypercube for
the global optimum using some form of hill-climbing strategy.

This discrete optimization problem turns out to have four optima (three of them
local) when the bit flip operator is used. If a steepest ascent strategy is used (i.e. the
best neighbor of a given vector is identified before a move is made) the local optima
are as shown in Table 22.1. Also shown are the basins of attraction—the set of
initial points from which the search leads to a specified optimum. For example, if
we start the search at any of the points in the first column, and follow a strict best-
improvement strategy, the search will finish up at the global optimum. However,
if a first improvement strategy is used (where the first change that leads uphill is
accepted without ascertaining if a still better one exists), the basins of attraction are
rather different, as shown in Table 22.2.

In fact, there are even more complications: in Table 22.2, the order of searching
the components of the vector has been termed forward (left-to-right). If the search
is made in the reverse direction (right-to-left) the basins of attraction are different,
as shown in Table 22.3.

Thus, by using flipping with this binary representation, we have created local
optima that did not exist in the integer version of the problem. Further, although
the optima are still the same, the chances of reaching a particular optimum can be
seriously affected by a change in hill-climbing strategy.

Moreover, the bit flip operator is not the only mechanism for generating neigh-
bors. An alternative neighborhood could be defined as follows: for k = 1, . . . ,5, flip
bits {k, . . . ,5}. Thus, the neighbors of (00000), for example, would now be

{(11111),(01111),(00111),(00011),(00001)}.

22 Fitness Landscapes 685

Table 22.1 Local optima and basins of attraction for steepest ascent with the bit flip operator in
the case of a simple cubic function. The bracketed figures are the fitnesses of each local optimum

Local optimum 0 1 0 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0
(4100) (3988) (3803) (3236)

Basin 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0
0 0 0 0 1 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1
0 0 0 1 0 1 1 1 0 0 1 0 1 1 0 1 0 0 1 0
0 0 0 1 1 1 0 1 1 1 1 0 0 1 1
0 0 1 0 1 1 0 1 0 0
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1
1 0 1 0 1
1 1 0 0 0
1 1 0 0 1
1 1 0 1 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

We shall call this the CX operator, and it creates a very different landscape. In fact,
there is now only a single global optimum (01010); every vector is in its basin of
attraction. This illustrates the point that it is not merely the choice of a binary rep-
resentation that generates the landscape—the search operator needs to be specified
as well.

Incidentally, there are two interesting facts about the CX operator. Firstly, it is
closely related to the one-point crossover operator frequently used in genetic algo-
rithms. (CX is actually shorthand for complementary crossover.) Secondly, if the
32 vectors in the search space are re-coded using a Gray code, it is easy to show
that the bit-flip neighbors of a point in Gray-coded space are identical to those in
the original binary-coded space under CX. This is an example of an isomorphism of
landscapes.2

2 An isomorphism in mathematics refers to mappings between mathematical objects that preserve
structure. It comes from the Greek iso (equal) and morphe (shape). For example, two graphs are
isomorphic if there is a one-to-one mapping σ between their respective sets of vertices such that
for every edge (x,y) of one graph, (σ(x),σ(y)) is an edge of the other.

686 C.R. Reeves

Table 22.2 Local optima and basins of attraction for first improvement (forward search) using the
bit flip operator

Local optimum 0 1 0 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0
(4100) (3988) (3803) (3236)

Basin 0 0 1 0 1 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0
0 0 1 1 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 1
0 1 0 0 1 0 1 1 0 0 1 0 1 1 1 0 0 0 1 0
0 1 0 1 0 1 0 1 0 0 1 1 1 1 1 0 0 0 1 1
0 1 0 1 1 1 1 0 0 0 1 0 0 0 0
0 1 1 0 1 1 1 1 0 0 1 0 0 0 1
0 1 1 1 0 1 0 0 1 0
1 0 1 0 1 1 0 0 1 1
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

22.3 Mathematical Characterization

Now that some of the typical features of a landscape have been illustrated, we can
provide a mathematical characterization. We define a landscape L for the function f
as a triple L = (X , f ,d) where d denotes a distance measure d : X ×X → IR+∪{∞}
for which it is required that, ∀s, t,u ∈ X ,

d(s, t)≥ 0; d(s, t) = 0⇔ s = t; d(s,u)≤ d(s, t)+ d(t,u) .

Note that we do not need to specify the representation explicitly, since this is as-
sumed to be implied in the description of X . We have also decided, for the sake
of simplicity, to ignore questions of search strategy and other matters in the defini-
tion of a landscape, unlike the more comprehensive definition of Jones (1995), for
example.

This definition says nothing about how the distance measure arises. In fact, for
many cases a canonical distance measure can be defined. Often, this is symmetric,
i.e. d(s, t) = d(t,s) ∀s, t ∈ X , so that d also defines a metric on X . This is clearly a
nice property, although it is not essential.

22.3.1 Neighborhood Structure

The distance measure is typically related to the neighborhood structure. Every solu-
tion x ∈ X has an associated set of neighbors, Nω(x)⊂ X , called the neighborhood
of x. This neighborhood is generated by applying an operatorω to a vector s in order

22 Fitness Landscapes 687

Table 22.3 Local optima and basins of attraction for first improvement (reverse search) using the
bit flip operator

Local optimum 0 1 0 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0
(4100) (3988) (3803) (3236)

Basin 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 0 1
0 1 0 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 1 0
0 1 0 1 1 0 1 1 1 1 0 0 0 1 1 1 0 0 1 1

0 0 1 0 0 1 0 1 0 0
0 0 1 0 1 1 0 1 0 1
0 0 1 1 0 1 0 1 1 0
0 0 1 1 1 1 0 1 1 1

1 1 0 0 0
1 1 0 0 1
1 1 0 1 0
1 1 0 1 1
1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

to transform it into a vector t. What we may call a canonical distance measure dω is
that induced by ω whereby

t ∈ Nω(s)⇔ dω(s, t) = 1.

The distance between non-neighbors is defined as the length of the shortest path
between them (if one exists). The operator ω generally takes a parameter, which
means that it is technically a one-to-many function, able to generate many neighbors
from one initial vector. The size of the neighborhood will be denoted by n.

For example, if X is the binary hypercube {0,1}ℓ, the bit flip operator can be
defined as

φ(i) : {0,1}ℓ×ZZ→ {0,1}ℓ
{

z′i = 1− zi

z′k = zk if i
= k,

where z is a binary vector of length ℓ, and i is the parameter specifying the bit to be
flipped. It is clear that the distance metric induced by φ is the well-known Hamming
distance

dH(x,y) =
ℓ

∑
i=1

[xi
= yi],

where the square brackets [expr] denote an indicator function, which takes the
value 1 if the logical expression expr is true and 0 otherwise. Thus we could describe
this landscape as a Hamming landscape (with reference to its distance measure), or
as the bit-flip landscape (with reference to the operator). Similarly, we can define
the CX operator as

688 C.R. Reeves

γ(i) : {0,1}ℓ×ZZ→ {0,1}ℓ
{

z′k = 1− zk for k ≥ i
z′k = zk otherwise.

The distance measure induced here is clearly more complicated than the Hamming
landscape, and cannot be described by a simple function. In both of these cases the
size of the neighborhood is n = ℓ.

As an example of an asymmetric distance measure, consider the case where X is
Πm, the space of permutations of length m, which is often relevant for scheduling
problems. A familiar neighborhood is defined by the forward shift operator, taking
two parameters in this case:

F SH (i, j) :Πm×ZZ×ZZ→Πm

⎧

⎨

⎩

π′k−1 = πk for j < k ≤ i
π′i = π j

π′k = πk otherwise.

The neighbors of (1234), for example, would be

{(2134),(2314),(2341),(1324),(1342),(1243)}.

Note that the size of this neighborhood is n =
(m

2

)

. It is easily seen that (1234), how-
ever, is not a neighbor of (2314),(2341) or (1342), so F SH is not symmetric. Other
neighborhood operators (for example, exchange, where two items in the sequence
are swapped) induce different distance measures, so there may be advantages in
choosing operator-independent distance measures (Reeves 1999) for practical com-
parisons.

Distance measures may become even more complicated: for instance, in the prob-
lem of biological sequence comparison (RNA, DNA and protein sequences, see
Waterman 1995), it is common to compare sequences in terms of the minimal num-
ber of genetic operations necessary to convert one string into another (the “string
edit” distance). Thus, even finding the distance measure is effectively an optimiza-
tion problem.

22.3.2 Local Optima

We can now give a formal statement of a fundamental property of fitness landscapes:
for a landscape L = (X , f ,d), a vector xo ∈ X is locally optimal if

f (xo)> f (t) ∀ t ∈ N(xo).

We shall denote the set of such optima as X o, and the set of global optima (recall
that we allow the possibility of more than one) as X ∗ where the vector x∗ ∈ X o is a
global optimum if

f (x∗)≥ f (xo) ∀ xo ∈ X o.

22 Fitness Landscapes 689

Landscapes that have only one local (and thus also global) optimum are commonly
called unimodal, while landscapes with more than one local optimum are said to be
multimodal.

The number of local optima in a landscape clearly has some bearing on the dif-
ficulty of finding the global optimum. In our previous example, it is clearly more
difficult to find the global optimum using bit-flipping than if we used CX. However,
it is not the only indicator: in our example the steepest-ascent strategy increased the
chance of finding the global optimum, since there were more initial solutions that
led to the global optimum than under first-improvement.

22.3.3 Basins of Attraction

We can also now define more precisely the idea of a basin of attraction. Neighbor-
hood search can be interpreted as a function

µ : X)→ X o,

where if x is the initial point, µ(x) is the optimum that it reaches. With this in mind,
we can define the basin of attraction of xo as the set

B(xo) = {x : µ(x) = xo}.

The problem is that B(xo) is not independent of the search strategy, as the example
of Sect. 22.2.1 demonstrated. In fact, it is only well defined for the case of steepest
ascent. For other search strategies, such as first improvement, the order of searching
may be highly influential. Our example showed that the basin of attraction of the
global optimum was much larger for steepest ascent than for the other strategies,
but it is possible to find examples where the opposite is the case.

22.3.4 Plateaux

The definition of a local optimum above ignored the possibility that in many prob-
lems neighboring points may have the same fitness value. We could ignore this by
assuming that fitnesses can be jittered by adding a small random perturbation, but
in some cases the issue causes considerable difficulty to a local search, as there may
be extensive plateaux. A plateau P is a set of points {xi} such that f (xi) = c, a
constant, and if s, t ∈ P , there is a path

s = x1,x2, . . . ,xk = t such that xi+1 ∈ N(xi) and xi ∈ P ∀i.

In fact, this situation can be investigated further: in Frank et al. (1997), a whole
taxonomy of plateaux is discussed, but in this brief chapter the subject will not

690 C.R. Reeves

be explored further. Suffice it to say that understanding plateaux and methods to
circumvent them is a very important part of finding efficient techniques for problems
such as MAXSAT.

22.3.5 Graph Representation

Neighborhood structures are clearly just another way of defining a graph Γ, which
can be described by its (n× n) adjacency matrix A. The elements of A are given by
ai j = 1 if the indices i and j represent neighboring vectors, and ai j = 0 otherwise.
For example, the graph induced by the bit flip φ on binary vectors of length 3 has
adjacency matrix

Aφ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 1 0 1 0 0 0
1 0 0 1 0 1 0 0
1 0 0 1 0 0 1 0
0 1 1 0 0 0 0 1
1 0 0 0 0 1 1 0
0 1 0 0 1 0 0 1
0 0 1 0 1 0 0 1
0 0 0 1 0 1 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

where the vectors are indexed from 0 to 7 in the usual binary-coded integer or-
der (i.e. (000),(001), etc.). By way of contrast, the adjacency matrix for the CX
operator is

Aγ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 1 0 0 0 1
1 0 1 0 0 0 1 0
0 1 0 1 0 1 0 0
1 0 1 0 1 0 0 0
0 0 0 1 0 1 0 1
0 0 1 0 1 0 1 0
0 1 0 0 0 1 0 1
1 0 0 0 1 0 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

It is simply demonstrated that permuting the rows and columns so that they are
in the order 0,1,3,2,7,6,4,5 reproduces the adjacency matrix Aφ—another way of
demonstrating the isomorphism mentioned earlier. In other words,

P−1AφP = Aγ

where P is the associated permutation matrix of the binary-to-Gray transforma-
tion. It is also clear that the eigenvalues and eigenvectors are the same (up to a
permutation).

As a final example, we may consider the adjacency matrix for F SH in the
space Π3:

22 Fitness Landscapes 691

AF SH =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 1 1 0 0
1 0 0 0 1 1
1 1 0 1 0 0
0 0 1 0 1 1
1 1 0 0 0 1
0 0 1 1 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where the permutations have been indexed in lexicographic order (123), . . . ,(321).
The lack of symmetry in the distance measure is of course reflected in an asymmetric
matrix.

22.3.6 Laplacian Matrix

The graph Laplacian Δ is defined as

Δ= A−D,

where D is a diagonal matrix such that dii is the degree of vertex i. Usually, these
matrices are vertex-regular and dii = n ∀i, so that

Δ= A− nI.

This notion recalls that of a Laplacian operator in the continuous domain; the effect
of this matrix, applied at the point s to the fitness function f is

Δ f (s) = ∑
t∈N(s)

(f (t)− f (s)),

so it functions rather like a finite-differencing operator in the continuous domain.
In particular, Δ f (s)/n is the average difference in fitness between the vector s and
its neighbors. Grover (1992) observed that the landscapes of several combinatorial
optimization problems satisfy a difference equation of the form

Δ f +
C

n
f = 0,

where C is a problem-specific constant. This is essentially a discrete analog of the
wave equation familiar in physics. From this it can be deduced that all local optima
are better (i.e. larger, in the case of maximization) than the mean f̄ over all points
on the landscape. Furthermore, it can also be shown that under mild conditions on
the nature of the fitness function, the time taken by neighborhood search to find a
local maximum is O(n log2[fmax/ f̄]) where fmax is the fitness of a global maximum.
(Similar results hold, mutatis mutandis, for minimization problems.)

692 C.R. Reeves

22.3.7 Graph Eigensystem

In the usual way, we can define eigenvalues and eigenvectors of the matrices asso-
ciated with the graph Γ. The set of eigenvalues is called the spectrum of the graph.
For an n× n matrix A the spectrum is

(

λ0 λ1 . . . λn−1
)

,

where λi is the ith eigenvalue, ranked in (weakly) descending order. Similarly, the
spectrum of the Laplacian is

(

µ0 µ1 . . . µn−1
)

,

where, again, µi is the ith eigenvalue, ranked this time in (weakly) ascending order.
For a regular connected graph it can be shown that

µi = n−λi ∀i.

Further, from the corresponding eigenvectors the eigenfunctions {ϕi} can be formed,
and f can be expanded as

f (s) =∑
i

aiϕi(s).

This is sometimes called a Fourier expansion (Stadler and Wagner 1998).
Unfortunately, the size of these graphs rapidly becomes very large. However,

graphs can often be partitioned in a way that makes it possible to reduce the scale of
the problem. This enables the formation of a collapsed matrix Ã whose eigenvalues
are the distinct eigenvalues of A, with multiplicities given by the cardinalities of
the partitions. (Relevant mathematical details may be found in the books by Biggs
(1993) and Godsil (1993).) If the diameter of such a graph is δ, the number of
distinct eigenvalues is only δ+1, so a considerable reduction in size is possible—at
least in principle.

Similarly, the Fourier expansion can be partitioned into a sum

f (s) =∑
p

βpϕ̃p(s)

over the distinct eigenvalues of Δ. The corresponding values

|βp|2 =∑ |ak|2

(where the sum is over the coefficients that correspond to the pth distinct eigenvalue)
form the amplitude spectrum, which expresses the relative importance of different
components of the landscape.

22 Fitness Landscapes 693

22.3.8 Elementary Landscapes

Ideally, such mathematical characterizations could be used to aid our understanding
of the important features of a landscape, and so help us to exploit them in designing
search strategies. One step in this direction starts from the connection between
Grover’s observation and Stadler’s rather more obscure results (Stadler 1995).
Stadler designated landscapes where f is itself an eigenfunction of the “wave
equation” as elementary landscapes.

In Whitley et al. (2008), it is shown that from a practical point of view, an el-
ementary landscape arises when the objective function is partially decomposable.
This occurs when the function f is formed as a sum of subfunctions that each in-
volve only a subset of the relevant components of the objective function. Often,
such a property is already used in implementing local search: evaluating the cost
of a move implied by applying the operator ω does not necessarily entail evaluat-
ing f itself. (The TSP is the most obvious case in point: a 2-opt move disconnects
the tour, but most of the inter-city distances are unchanged and do not need to be
re-calculated.) In such cases, Whitley and his colleagues show, useful information
can be gained from partial evaluation of neighborhoods

Another interesting implication of this analysis is for landscapes where f is not
partially decomposable. Problems such as flowshop and jobshop scheduling, for
example, may have fundamentally different performance characteristics from those
problems whose neighborhoods can induce elementary landscapes.

However, apart from the implications of Grover’s equation, it is possible to carry
out further analytical studies only for small graphs or graphs with a special structure,
as illustrated for example, in Stadler (1995). For the important case of the Ham-
ming landscape of a binary search space, analytical results for the graph spectrum
show that the eigenvectors are thinly disguised versions of the familiar Walsh func-
tions.3 For the case of recombinative operators the problem is considerably more
complicated, and necessitates the use of P-structures (Stadler and Wagner 1998).
The latter are essentially generalizations of graphs in which the mapping is from
pairs of parents (x,y) to the set of possible strings that can be generated by their
recombination. However, it can be shown that for some recombination landscapes
(such as that arising from the use of uniform crossover) the eigenvectors are once
more the Walsh functions. Whether this is also true in the case of one- or two-point
crossover, for example, is not known, but Stadler and Wagner conjecture that it is.
In view of the close relationship between the bit-flip and CX landscapes as demon-
strated above, it would not be surprising if this is a general phenomenon. However,
to obtain these results, some assumptions have to be made—such as a uniform dis-
tribution of parents—that are unlikely to be true in a specific finite realization of a
genetic search.

3 For readers who are unfamiliar with Walsh functions, they are digital analogs of trigonometrical
functions, forming an orthonormal set of rectangular waveforms. An introduction to their uses in
the analysis of optimization methods can be found in Reeves and Rowe (2002).

694 C.R. Reeves

In the case of the bit-flip landscape, the distinct eigenvalues correspond to sets of
Walsh coefficients of different orders, and the amplitude spectrum is exactly the set
of components of the epistasis variance associated with other attempts to measure
problem difficulty (see Reeves and Rowe 2002 for a review). For the cubic func-
tion of Sect. 22.2.1, the components of variance for the different orders of Walsh
coefficients can be shown to be (0.387,0.512,0.101,0,0) respectively; i.e. 61.3 %
of the variation in the landscape is due to interactions of order two and three. This
is consistent with the relatively poor performance of the bit-flip hill climber.

Of course, the eigenvalues and eigenvectors are exactly the same (up to a
permutation) for the CX landscape of this function, and the set of values for the
Walsh coefficients in the Fourier decomposition is also the same. However, the
effect of the permutation inherent in the mapping from the bit flip landscape to
the CX landscape is to re-label some of the vertices of the graph, and hence
some of the Walsh coefficients. Thus some coefficients that previously referred
to linear effects now refer to interactions, and vice versa. Taking the cubic func-
tion as example again, the components of variance or amplitude spectrum become
(0.771,0.174,0.044,0.011,0.000). We see that the linear effects now predominate
(77.1 %), and this is consistent with the fact that the hill climber in the CX landscape
always finds the optimum of this function.

Table 22.4 Illustration of the different groupings of the Walsh coefficients associated with the bit
flip, CX and recombination landscapes

Binary Binary
Index coding Bit flip CX Recom Index coding Bit flip CX Recom

0 0000 0 0 0 8 1000 1 2 1
1 0001 1 1 1 9 1001 2 3 4
2 0010 1 2 1 10 1010 2 4 3
3 0011 2 1 2 11 1011 3 3 4
4 0100 1 2 1 12 1100 2 2 2
5 0101 2 3 3 13 1101 3 3 4
6 0110 2 2 2 14 1110 3 2 3
7 0111 3 1 3 15 1111 4 1 4

22.3.9 Recombination Landscapes

If we look at the recombination landscapes derived from the P-structures of Stadler
and Wagner (1998), we find that once again the Walsh coefficients are obtained,
but labeled in yet another way. The coefficients in the bit flip and CX landscapes
are grouped according to the number of 1s in their binary- and Gray-coded index
representations respectively. However, in a recombination landscape—such as that
generated by 1-point crossover—it is the separation between the outermost 1-bits
that defines the groupings. Table 22.4 shows the groupings for a 4-bit problem.

22 Fitness Landscapes 695

Several things can be seen from this table: firstly, the linear Walsh coefficients
(and hence the linear component of epistasis variance) are the same in both the bit
flip and the recombination landscapes. Secondly (as already explained), the coeffi-
cients in the CX landscape are simply a re-labeling of those in the bit flip landscape.
Thirdly, the coefficients in the recombination landscape do not form a natural group-
ing in terms of interactions, and consequently the different components of variance
for the recombination landscape do not have a simple interpretation as due to inter-
actions of a particular order.

22.3.10 Summary

This section has set out some of the basic mathematics necessary for the analysis of
landscapes. As has probably become obvious, the details can require an extensive
mathematical knowledge. Furthermore, the full analysis of a particular landscape
(i.e. its eigensystem) may need the gathering of a large amount of empirical infor-
mation, perhaps equivalent to a complete knowledge of the fitness function at all
points of the search space! Landscape analysis in such cases can be no more than
an a posteriori justification (or lack of it!) for the choice of a particular neighbor-
hood. Further discussion on some of these points may be found in Reeves and Rowe
(2002).

While it is undeniably useful that we can construct mathematical techniques to
help us neatly summarize certain facts about a landscape, we must also recognize
that there are other features—possibly very important ones—that are not captured
by these methods. In the simple example of the cubic function we have seen that the
search strategy adopted can make a big difference to the likelihood of a hill climber
finding the global optimum.

Mathematical analysis holds out some tantalizing prospects of future progress,
but for the moment we turn to a consideration of the results of experimental work
on landscapes.

22.4 Statistical Measures

If mathematical analysis of a landscape is a difficult task, then it is natural to ask
if there is something we can learn about the nature of a landscape, simply from the
process of searching it. Several ideas have been suggested.

696 C.R. Reeves

22.4.1 Autocorrelation

One of the earliest attempts to obtain some statistical measure of a landscape was by
Weinberger, who showed that certain quantities obtained in the course of a random
walk can be useful indicators (Weinberger 1990). If the fitness of the point visited
at time t is denoted by ft , we can estimate the autocorrelation function (usually
abbreviated to acf) of the landscape during a random walk of length T as

r j =

T− j

∑
t=1

(ft − f̄)(ft+ j − f̄)

T
∑

t=1
(ft − f̄)2

.

Here f̄ is of course the mean fitness of the T points visited, and j is known as the lag.
The concept of autocorrelation is of course an important one in time series analysis,
but its interpretation in the context of landscapes is interesting.

For smooth landscapes, and at small lags (i.e. for points that are close together),
the acf is likely to be close to 1 since neighbors are likely to have similar fitness
values. However, as the lag increases the correlations will diminish. “Rugged” land-
scapes are informally those where close points can nevertheless have completely
unrelated fitnesses, and so the acf will be close to zero at all lags. Landscapes for
which the acf has significant negative values are conceptually possible, but they
would have to be rather odd.

A related quantity is the correlation length of the landscape, usually denoted
by τ. Classical time series analysis (Box and Jenkins 1970) can be used to show that
the standard error of the estimate r j is approximately 1/

√
T , so that there is only

approximately 5 % probability that |r j| could exceed 2/
√

T by chance. Values of r j

less than this value can be assumed to be zero. The correlation length τ is then the
last j for which r j is non-zero:

τ= j : |r j+1|< 2/
√

T ∧{|rk|> 2/
√

T ∀ k ≤ j}.

The acf and the correlation length are useful indicative measures of the ruggedness
of a landscape, but they are rather crude statistics, and it is difficult to attach a great
deal of meaning to their values for particular instances.

22.4.2 Number of Optima

Although it is not the full story, the number of local optima is widely acknowledged
as a very important factor in how easy or difficult it is to find a global optimum
of a landscape, and is clearly much more directly relevant for a particular instance
than the correlation measures. Recently, some attempts have been made (Reeves
2001; Eremeev and Reeves 2002, 2003; Reeves and Eremeev 2004) to obtain direct
estimates of the number of optima using statistical principles.

22 Fitness Landscapes 697

It is assumed that a heuristic search method can be restarted many times using
different initial solutions. Given the landscape framework we have discussed above,
by randomly generating initial solutions, we will sample many basins of attraction.
Of course, this will be evident by the number of different final solutions {xo} that
are found. Suppose this number is k, and the number of restarts is r(≥ k). Various
statistical models may be used in order to estimate the number of optima ν.

22.4.2.1 Waiting-Time Model

We can ask for the distribution of the waiting-time to find all optima. If r exceeds
k substantially, this fact can be used to estimate the probability that all optima have
been found. This would also imply, a fortiori, that the global optimum had been
found, and thus provides us with an objective confidence level concerning the qual-
ity of the best solution obtained.

22.4.2.2 Counting Model

In the event—unfortunately, a common one—that k is not much smaller than r, it
is unlikely that we have seen many of the optima. However, a counting model can
be used to estimate the value of ν, in a similar way to those used by ecologists to
estimate the size of an unknown animal population. This can be quite illuminating
in showing the differences between landscapes generated by different neighborhood
operators.

22.4.2.3 Non-parametric Estimates

Fairly restrictive assumptions are needed in order to obtain tractable statistical mod-
els of landscapes. Where these estimates can be checked against actuality (by enu-
merating all points on a landscape), it appears that the effect of these assumptions is
to produce negatively biased estimates—i.e. the estimate of ν is consistently smaller
than the true value. Removing the assumptions by creating more general models
would probably be impossible, so some non-parametric approaches have been ex-
plored, and found to provide useful estimates of ν, although the problem of negative
bias remains, albeit at a lower level. All these models are summarized in Reeves and
Eremeev (2004).

22.5 Empirical Studies

Besides explicit statistical models of landscape features, several empirical studies
have been aimed at providing some idea of the “big picture”. Although multi-
dimensional fitness landscapes have few similarities with “real” 3D landscapes,

698 C.R. Reeves

certain empirical findings can be interpreted sensibly in terms of characteristics of
real landscapes, which provides us with some insights into ways we can approach
hard optimization problems.

One of the most interesting observed properties of fitness landscapes has been
seen in many different studies: it is a feature of Kauffman’s well-known NK land-
scapes (Kauffman 1993),4 and it also appears in many examples of combinatorial
optimization problems, such as the traveling salesman problem (Boese et al. 1994;
Lin 1965), graph partitioning (Merz and Freisleben 1998), and flowshop scheduling
(Reeves 1999).

In the first place, such studies have repeatedly found that, on average, local op-
tima are very much closer to the global optimum than are randomly chosen points,
and closer to each other than random points would be. That is, the distribution of
local optima is not isotropic; rather, they tend to be clustered in a central massif
(or—if we are minimizing—a big valley). This can be demonstrated graphically by

Fig. 22.1 The diagram shows the set of paths that could be traced between the parents 00000 and
11001. Only those intermediate vectors indicated by underlines can be generated by one-point
crossover, but all can be generated by uniform crossover

plotting a scatter graph of fitness against distance to the global optimum. Secondly,
if the basins of attraction of each local optimum are explored, size is quite highly
correlated with quality: the better the local optimum, the larger is its basin of at-
traction. (If true, this also impinges on the estimation problem we discussed in the
previous section: although there is a negative bias in the estimate of ν, the big valley
phenomenon implies that it is only the small basins and low-quality optima that we
are missing.)

Of course, there is no guarantee that this property holds in any particular case, but
it provides an explanation for the success of perturbation methods (Johnson 1990;
Martin et al. 1992; Zweig 1995) which currently appear to be the best available
for the traveling salesman problem. It is also tacitly assumed by such methods as
simulated annealing and tabu search, which would lose a great deal of their potency
if local optima were isotropically distributed.

4 In Kauffman’s notation, N is the length of a binary string, and K is the maximum number of
genes that are allowed to interact with any other; e.g. if K = 1, each gene can interact with just one
other. There are several different ways in which the sets of interacting genes can be chosen, but
essentially they turn out to make little difference.

22 Fitness Landscapes 699

22.5.1 Practical Applications

These studies have suggested a starting point for the development of new heuristic
search algorithms, such as the adaptive multi-start algorithm of Boese et al. (1994).
As a more recent example, we shall consider the path tracing algorithms intro-
duced in Reeves and Yamada (1998) and Yamada and Reeves (1998), which can be
motivated either as a use of the idea of a landscape, or in terms of extending the
boundaries of evolutionary algorithms.

If we consider the case of crossover of vectors in {0,1}ℓ, it is easily seen that
any child produced from two parents will lie on a path that leads from one parent to
another. Figure 22.1 demonstrates this fact.

In an earlier paper (Reeves 1994), such points were described as intermediate
vectors. In other search spaces, the distance measure may be more complicated,
but the principle is still relevant. Crossover is re-interpreted as finding a point lying
between two parents in some landscape in which we hope the big valley conjecture is
true. This path-tracing crossover was implemented for both the makespan and the
flowsum versions of the flowshop sequencing problem; Fig. 22.2 shows in a two-
dimensional diagram the idea behind it, while full details can be found in Reeves
and Yamada (1998, 1999).

In this way, the concept of recombination can be fully integrated with traditional
neighborhood search methods, and the results obtained for flowshop instances (see
Reeves and Yamada 1998 and Yamada and Reeves 1998 for details) have been grat-
ifyingly good. For the makespan problem, embedded path tracing helped the GA to
achieve results of outstandingly high quality: several new best solutions were dis-
covered for well known benchmarks. For the flowsum version, optimal solutions
are not known, but the path-tracing GA consistently produced better solutions than
other proposed techniques.

This idea has also recently been applied to multi-constrained knapsack problems
(Levenhagen et al. 2001), where the need was confirmed for a big valley structure
in order to benefit from this approach.

Very recently, a detailed examination of TSP instances (Hains et al. 2011) has
shown that the big valley structure breaks down around high-quality local optima,

Parent1 Parent2

Offspring

PTX

Fig. 22.2 Path tracing crossover combined with local search: a path is traced from one parent in
the direction of the other. In the middle of the path, solutions may be found that are not in the basins
of attractions of the parents. A local search can then exploit this new starting point by climbing to
the top of a hill (or the bottom of a valley, if it is a minimization problem)—a new local optimum.
The acronym PTX signifies path-tracing crossover

700 C.R. Reeves

with multiple funnel structures appearing. Further investigation leads to new ideas
about search operators for such instances, although whether this extends to other
COPs is not yet known.

22.6 Promising Areas for Future Application

Finally, we should remark that several interesting future research questions are sug-
gested. On the theoretical side, a deeper knowledge of the connections between al-
gebra and graph theory may provide further useful analytical results. For example,
it would be useful to have analytical results for all the common operators in per-
mutation spaces analogous to those derived for the simpler case of binary strings.
As mentioned in Sect. 22.3.4, real fitness landscapes for a number of combinatorial
optimization problems have to cope with extensive plateaux. Measuring the extent
and effects of such formations also needs further study, as does the characterization
of basins of attraction. Some promising ideas based on the notion of a barrier tree
have been put forward by Stadler and colleagues in Flamm et al. (2002), which are
developed further in Hallam and Prugel-Bennet (2005).

Building on such notions, it would be helpful if we could provide a formal
definition of what it means for a big valley structure to exist, and how it could be re-
lated to mathematical constructs associated with neighborhood structures. Does the
big valley exist almost everywhere? If not, can we define classes of problems and
neighborhood structures for which it does not occur? Further empirical analysis,
such as that described by Levenhagen et al. (2001), Watson et al. (2002), and Hains
et al. (2011), should be of considerable assistance in suggesting fruitful avenues to
explore.

More generally, it is clear that crude correlation measures can only be a general
guide to the nature of a landscape instance, and we need to find better ways of char-
acterizing landscapes from empirical measurements. Some suggestions have been
made in Reeves (2004) for further work in this direction.

In the area of implementation, it is important to see if we can further refine the
path tracing methodology and its integration into heuristic search methods such
as evolutionary algorithms. Also, the methodological developments pioneered in
Reeves (2001), Eremeev and Reeves (2002, 2003), and Reeves and Eremeev (2004)
for deducing properties of an instance of a landscape from the results of heuristic
search offer the possibility of making principled probability statements about the
quality of solutions obtained.

22.7 Tricks of the Trade

Mathematical analysis of landscapes is generally possible only for small problems,
and then can only really be useful as an a posteriori validation (or questioning) of
the decisions already made. However, empirical analysis is relatively easy and may
provide some useful insights.

22 Fitness Landscapes 701

Correlation analysis can be a helpful indicator of the type of landscape with
which we are dealing. Typically this proceeds by making a random walk on the
landscape for several thousand steps and collecting data on fitness. The resultant
time series can be analyzed with standard statistical tools. The drawback of this
approach is that even when it is complete, knowing how smooth or rugged the land-
scape is from the perspective of a random walk does not help very much in deciding
which heuristic search method to adopt. Further, much computation has been carried
out yet the search for an optimum has not even started!

For those wishing to make use of empirical landscape analysis as part of a gen-
eral research program, it should be realized that much of the necessary information
is inherently generated in the course of applying a heuristic search method to a com-
binatorial optimization problem. Of course, if a single run is all that is used, nothing
much can be gleaned, but if independent restarts or a Metropolis-type search are
used, it becomes possible to collect statistics and make use of them.

The existence of a big valley is usually an encouraging feature, and requires little
checking. Assuming the global optimum is unknown it will not be possible to do a
complete analysis, but useful information can be gained by computing the distance
of each local optimum from the best local optimum, and plotting this against their
corresponding differences in fitness. A strong correlation is indicative of a big val-
ley, and motivates the application of metaheuristics that perform intensive searches
in the region of good local optima.

If every local optimum ever found is distinct, not much more can be done, but if
it is noticed that specific local optima are being detected multiple times, it becomes
possible to provide indications of solution quality, using statistical estimation tools
based on the waiting-time or counting models mentioned above. For low values
of the ratio k/r (see above), it may even be possible to provide a (probabilistic)
guarantee that the global optimum has indeed been found.

22.8 Conclusion

This chapter has reviewed and discussed in some detail the basic mathematical
theory and methods associated with the concept of a fitness landscape. While these
methods can be very useful in enhancing our understanding of evolutionary algo-
rithms, it has been emphasized that they cannot provide a complete explanation for
the performance of a specific algorithm on their own—even in the case of very sim-
ple functions. Secondly, and more briefly, some empirically determined properties
of many search landscapes have been described, and one approach whereby such
properties can be exploited has been outlined.

As our understanding of the nature of fitness landscapes and how to exploit them
develops, this promises to become an important area of research into the theory and
application of heuristic search.

702 C.R. Reeves

Sources of Additional Information

• For technical and theoretical analysis, there are many papers associated with
Peter Stadler and his co-workers. The paper of Reidys and Stadler (2002) is per-
haps the most readily accessible and recent treatment of theoretical properties
of landscapes, although the seminal work is still Stadler (1995). Many of these
papers can be found on the University of Leipzig website5 and also at the Santa
Fe Institute.6

• Several papers give a general low-tech introduction to landscapes—for example
Reeves (1999, 2000)—as does the chapter in Reeves and Rowe (2002). For ideas
relating to elementary landscapes, see Barnes et al. (2003), Dimova et al. (2005),
and Whitley et al. (2008).

• For correlation analysis, Weinberger (1990) is still a major source of information,
supplemented by more recent work in papers by Stadler and co-workers (see the
Vienna website); another useful reference is Hordijk (1996).

• For work relating to the big valley and its exploitation, there are several important
papers: Boese et al. (1994), Reeves and Yamada (1998), Merz and Freisleben
(1998), and Reeves (1999); a chapter by Reeves and Yamada in Corne et al.
(1999) is also an accessible introduction.

• The statistical approach to estimation of landscape properties is described in a
series of papers (Eremeev and Reeves 2002, 2003; Reeves and Eremeev 2004),
and its extension to the use of the Metropolis algorithm is considered in Reeves
and Aupetit-Bélaidouni (2004).

References

Barnes JW, Dimova B, Dokov SP, Solomon A (2003) The theory of elementary
landscapes. Appl Math Lett 16:37–343

Biggs NL (1993) Algebraic graph theory. Cambridge University Press, Cambridge
Boese KD, Kahng AB, Muddu S (1994) A new adaptive multi-start technique for

combinatorial global optimizations. Oper Res Lett 16:101–113
Box GEP, Jenkins GM (1970) Time series analysis, forecasting and control. Holden

Day, San Francisco
Corne DA, Dorigo M, Glover F (eds) (1999) New methods in optimization.

McGraw-Hill, London
Dawkins R (1996) Climbing mount improbable. Viking, London
Dimova B, Barnes JW, Popova E (2005) Arbitrary elementary landscapes and AR(1)

processes. Appl Math Lett 18:287–292
Dobzhansky T (1951) Genetics and the origin of species. Columbia University

Press, New York

5 www.bioinf.uni-leipzig.de/~studla/Publications/index.html
6 www.santafe.edu/research/publications/

www.bioinf.uni-leipzig.de/~studla/Publications/index.html
www.santafe.edu/research/publications/

22 Fitness Landscapes 703

Eigen M (1993) Viral quasispecies. Sci Am 269:32–39
Eigen M, McCaskill J, Schuster P (1989) The molecular quasi-species. Adv Chem

Phys 75:149–263
Eldredge N, Cracraft J (1980) Phylogenetic patterns and the evolutionary process.

Columbia University Press, New York
Eremeev AV, Reeves CR (2002) Non-parametric estimation of properties of com-

binatorial landscapes. In: Gottlieb J, Raidl G (eds) Applications of evolutionary
computing. LNCS 2279. Springer, Berlin, pp 31–40

Eremeev AV, Reeves CR (2003) On confidence intervals for the number of local
optima. In: Raidl G et al (eds) Applications of evolutionary computing. LNCS
2611. Springer, Berlin, pp 224–235

Flamm C, Hofacker IL, Stadler PF, Wolfinger MT (2002) Barrier trees of degenerate
landscapes. Z Phys Chem 216:155–173

Frank J, Cheeseman P, Stutz J (1997) When gravity fails: local search topology.
J Artif Intell Res 7:249–281

Futuyma DJ (1998) Evolutionary biology. Sinauer Associates, Sunderland
Godsil CD (1993) Algebraic combinatorics. Chapman and Hall, London
Grover LK (1992) Local search and the local structure of NP-complete problems.

Oper Res Lett 12:235–243
Hains DR, Whitley LD, Howe A (2011) Revisiting the big valley search space struc-

ture in the TSP. J Oper Res Soc 62:305–312
Haldane JBS (1931) A mathematical theory of natural selection, Part VI: metastable

populations. Proc Camb Phil Soc 27:137–142
Hallam J, Prugel-Bennett A (2005) Large barrier trees for studying search. IEEE

Trans Evol Comput 9:385–397
Hordijk W (1996) A measure of landscapes. Evol Comput 4:335–360
Johnson DS (1990) Local optimization and the traveling salesman problem. In:

Goos G, Hartmanis J (eds) Automata, languages and programming. LNCS 443.
Springer, Berlin, pp 446–461

Jones TC (1995) Evolutionary algorithms, fitness landscapes and search. Doctoral
dissertation, University of New Mexico, Albuquerque

Kaplan J (2008) The end of the adaptive landscape metaphor? Biol Phil 23:625–638
Kauffman S (1993) The origins of order: self-organization and selection in evolu-

tion. Oxford University Press, New York
Levenhagen J, Bortfeldt A, Gehring H (2001) Path tracing in genetic algorithms

applied to the multiconstrained knapsack problem. In: Boers EJW et al (eds) Ap-
plications of evolutionary computing. Springer, Berlin, pp 40–49

Lin S (1965) Computer solutions of the traveling salesman problem. Bell Syst Tech
J 44:2245–2269

Martin O, Otto SW, Felten EW (1992) Large step Markov chains for the TSP incor-
porating local search heuristics. Oper Res Lett 11:219–224

Merz P, Freisleben B (1998) Memetic algorithms and the fitness landscape of the
graph bi-partitioning problem. In: Eiben AE et al (eds) Proceedings of the PPSN
V, Amsterdam. Springer, Berlin, pp 765–774

704 C.R. Reeves

Reeves CR (1994) Genetic algorithms and neighbourhood search. In: Fogarty TC
(ed) Evolutionary computing: AISB workshop selected papers. Springer, Berlin,
pp 115–130

Reeves CR (1999) Landscapes, operators and heuristic search. Ann Oper Res
86:473–490

Reeves CR (2000) Fitness landscapes and evolutionary algorithms. In: Fonlupt C
et al (eds) 4th European conference on artificial evolution. LNCS 1829. Springer,
Berlin, pp 3–20

Reeves CR (2001) Direct statistical estimation of GA landscape features. In: Martin
WN, Spears WM (eds) Foundations of genetic algorithms 6. Morgan Kaufmann,
San Francisco, pp 91–107

Reeves CR (2004) Partitioning landscapes. Available online at http://www.dagstuhl.
de/04081/Talks/

Reeves CR, Aupetit-Bélaidouni MM (2004) Estimating the number of solutions for
SAT problems. In: Yao X et al (eds) Proceedings of the PPSN VIII, Birmingham.
LNCS 3242. Springer, Berlin, pp 101–110

Reeves CR, Eremeev AV (2004) Statistical analysis of local search landscapes.
J Oper Res Soc 55:687–693

Reeves CR, Rowe JE (2002) Genetic algorithms—principles and perspectives.
Kluwer, Norwell

Reeves CR, Yamada T (1998) Genetic algorithms, path relinking and the flowshop
sequencing problem. Evol Comput 6:45–60

Reeves CR, Yamada T (1999) Goal-oriented path tracing methods. In: Corne DA,
Dorigo M, Glover F (eds) New methods in optimization. McGraw-Hill, London

Reidys CM, Stadler PF (2002) Combinatorial landscapes. SIAM Rev 44:3–54
Ridley M (1993) Evolution. Blackwell, Oxford
Simpson GG (1953) The major features of evolution. Columbia University Press,

New York
Skipper R (2004) The heuristic role of Sewell Wright’s 1932 adaptive landscape

diagram. Philos Sci 71:1176–1188
Stadler PF (1995) Towards a theory of landscapes. In: Lopéz-Peña R et al (eds)

Complex systems and binary networks. Springer, Berlin, pp 77–163
Stadler PF, Wagner GP (1998) Algebraic theory of recombination spaces. Evol

Comput 5:241–275
Waterman MS (1995) Introduction to computational biology. Chapman and Hall,

London
Watson J-P, Barbalescu L, Whitley LD, Howe AE (2002) Contrasting structured and

random permutation flow-shop scheduling problems: search-space topology and
algorithm performance. INFORMS J Comput 14:98–123

Weinberger ED (1990) Correlated and uncorrelated landscapes and how to tell the
difference. Biol Cybern 63:325–336

Whitley LD, Sutton AM, Howe AE (2008) Understanding elementary landscapes.
In: Proceedings of the GECCO 2008, Atlanta. ACM, New York, pp 585–592

http://www.dagstuhl.de/04081/Talks/
http://www.dagstuhl.de/04081/Talks/

22 Fitness Landscapes 705

Wright S (1932) The roles of mutation, inbreeding, crossbreeding and selection
in evolution. In: Jones D (ed) Proceedings of the 6th international congress on
genetics, Ithaca, vol 1, pp 356–366

Wright S (1967) Surfaces of selective value. Proc Nat Acad Sci 102:81–84
Wright S (1988) Surfaces of selective value revisited. Am Nat 131:115–123
Yamada T, Reeves CR (1998) Solving the Csum permutation flowshop scheduling

problem by genetic local search. In: Proceedings of the CEC 1998. IEEE, Piscat-
away, pp 230–234

Zweig G (1995) An effective tour construction and improvement proedure for the
traveling salesman problem. Oper Res 43:1049–1057

Index

acceleration coefficients, 229
acceptance probability, 269, 272
ACO, see ant algorithms
adaptive

heuristics, 221, 224
immune system, 186–208

ADF, see automatically defined functions
adjacency matrix, 331, 690
affinity measure, 194–196
agents, 393
Alice, 387
alldifferent constraint, 373, 383
alleles, 93, 97, 99
amplitude spectrum, 692
ancillary tests, 329
ant algorithms, 214–227

candidate lists, 226
changing α, β values, 226
lookahead, 226
lower bounds, 226
moving direction, 226
repelling pheromone, 226
stagnation recovery, 226

antibody, 188–201
antigen, 188–194, 196–198, 204, 206
aperiodic, 272
approximate evaluation, 107
approximate rule, 563
approximation algorithms, 639–679
approximation scheme, 327, 641
approximation strategies, 643–668
APX, 641, 670–671
arc consistency, 371, 375, 377
architecture, 370, 393, 492, 495, 498, 509
architecture-altering operations, 147, 150, 152,

157
artificial immune systems, 186–211

auto-immune attacks, 191
B-cells, 188–190
cellular, 188
cellular immunity, 190
encoding, 193
immune network theory, 191
immunological memory, 191
initialization, 193
innate, 187
self cells, 191
T-cells, 188–190

artificial intelligence, 3
aspiration criteria, 250, 257
association rules, 571, 600
asymmetric, 591
asymmetric distance measure, 688
asymmetric matrix, 691
attributes, 481, 485, 510, 557, 560–567, 571,

580, 588, 597, 599, 600, 602
autocorrelation, 696
automatically defined functions, 156
auxiliary objectives, 254
axes of a search space, 681

B-cells, 196, 202
backpropagation algorithm, 490
backtrack search, 25, 28–31, 374–375, 377,

387, 398, 672
complete backtrack search, 672
complete randomized, 672
intelligent, 375

backtrack-free, 378
backtracking, 59
backward recursion, 38, 60
base formulation, 77
basin of attraction, 684, 689, 698, 700
batch mode of training, 490

E.K. Burke and G. Kendall (eds.), Search Methodologies: Introductory Tutorials
in Optimization and Decision Support Techniques, DOI 10.1007/978-1-4614-6940-7,
© Springer Science+Business Media New York 2014

707

708 Index

Bayesian learning, 478, 484–486, 511
Bellman’s principle, 36
best improvement, 250, 317, 333, 684
best-bound search, 87
best-first strategy, 35, 59, 459
best-of-generation, 154
big-M model, 75, 79
bin packing, 639, 650, 669
binary variables, 72–76, 78–85
bioinformatics, 370, 384
bird flocking, 213, 227
bloat, 160, 169, 628
blossom algorithm, 55
Boltzmann

constant, 268
distribution, 269, 273

Boolean satisfiability, 453, 615
boosting, 508
bottom-up learning, 483
bounding argument, 71
branch and backtrack, 25
branch and bound, 19, 24–35, 41, 51, 59, 68,

71, 72, 76, 80, 83, 85, 379
parameters, 86

branch and price, 85, 86
branching strategy, 25, 26, 28, 59
breadth-first search, 25, 87
Bron and Kerbosch algorithm, 29, 34
Brown’s algorithm, 29
building blocks, 102–104, 107

exchange, 104
identification, 104

C4.5, 482, 486
candidate list, 226, 251, 291
candidate solutions, 144
cantilever plate design, 430
Cartesian inner product of fuzzy sets, 526
certain rules, 558
chess, 376, 479
chromosome, 93–101, 109, 496
Cigol, 484
classical set, 521
classical techniques, 19–65
classification, 199, 208, 478–482, 508, 519,

545, 559–574, 600, 602
tree, 481–482

clique, 29, 31–35, 81
clonal selection, 190–192, 196
closure, 461
CLP, 388
co-domain, 454–457, 459, 463
co-evolutionary learning, 492
collapsed matrix, 692

combinatorial optimization, 287, 340, 348,
683–685

competent GAs, 95, 101, 104, 105
competition complexity, 103
complement A′, 525
complementarity property, 565, 576
complementary slackness, 46, 330
complex systems theory, 519
complexity theory, 451–476
computer programs, 143
computer security problems, 204
condition attributes, 567
condition profile, 572
connection weights, 495
constraining structures, 157
constraint, 5, 67–89

databases, 392
explicit, 83
generation, 86
hard, 5
implicit, 83
logic programming, 387
matrix, 42
programming, 368–401
propagation, 380–385
satisfaction problems, 369–372, 393, 672
soft, 5

constraints and graphics, 391
construction method, 215
constructive heuristic, 8, 109
constructive method, 24
continual improvement, 94
continuous

diversification, 253
function, 228–229, 314, 481
optimization, 228–229, 255, 683

control parameter, 146, 269–273, 276–280,
454

convex
function, 326
hull, 385

cooling schedule, 279
cooperative swarms, 235

CPSO optimizer, 235
split swarm, 235

crossover, 56, 57, 96–99, 108, 131, 143, 147,
150, 493, 495, 685, 687, 693–695

k-point, 97
cycle, 99
one-point, 96, 99, 693, 698
order-based, 98
partially matched, 99, 131
two-point, 96, 693
uniform order-based, 97

Index 709

crowded tournament selection, 423
crowding distance metric, 423
curse of dimensionality, 511
cuts, 34, 78–80, 330
cutting and packing, 4, 611
CX, see crossover
cyclic network, 46

danger theory, 202–204
Darwinian

evolution, 171
selection, 150, 155

data mining, 192–194, 198, 207, 479, 571, 600
decision

attributes, 567, 573–574, 602
classes, 558, 563, 567, 602
making, 437
problem, 452, 520, 557, 672
profile, 572
rules, 582–585
tree, 25–33, 452, 453, 478, 482, 486, 510,

511, 571
variable, 67, 93, 381, 683
variable space, 406

decomposition, 102, 163, 327, 544, 694
principled efficiency-enhancement

technique, 95
defuzzification unit, 533–535

center of sums technique, 534
centroid method, 540
centroid technique, 533
mean of maximum technique, 533

degree of certainty, 566
delete-all, 101
denial-of-service attacks, 192
density estimation, 479
depth-first, 25, 59, 87, 153, 374
design innovation, 432
deterministic, 6

polynomial, 452
differential calculus, 683
direct encoding of neural networks, 496
direction of branching, 87
discrete

function, 455
binary PSO algorithm, 231
function, 490

distance-to-target diagrams, 315
distinct eigenvalues, 692
distributed processing, 393
distribution of neighborhoods, 329
diversification, 252, 255–257, 292, 333

generation method, 119, 122–125
dominance, 570, 585, 598, 600

cones, 575–581
relation, 413, 559, 573, 589, 592–594
without degrees of preference, 594

dominance-based rough set approach, 559,
589

domination, 412
definition, 412

doubtful region, 565, 578, 593, 602
DRSA, 559, 589
DSATUR, 31
dual variables, 46
duality, 330

dual value, 84
dual problem, 61
dual simplex, 87

dynamic
programming, 487
cooling schedules, 280
heuristics, 382
programming, 19, 36–42, 51–53, 57, 58, 60,

488, 653

ECLiPSe, 387
elementary sets, 558
elitism strategy, 220
elitist solutions, 220–221, 255
EMO

a posteriori approach, 437
a priori approach, 437
cantilever plate design, 430
GPU computing, 439
interactive approach, 437
many objectives, 438
non-evolutionary approaches, 438
parallel implementation, 439
post-optimality studies, 435
redundant objectives, 440
research challenges, 437
spacecraft trajectory design, 427
theoretical studies, 440

ensemble learning, 500
entropy, 482
enumeration, 24, 56, 60, 317, 456
Euclidean distance, 128
evaluation

difficulty of a problem, 316
function, 5
performance of previous algorithms, 316
performance of previous heuristics, 316
relaxation, 107
search algorithms, 470

evolution, 93, 109, 170, 268
connection weights, 495–497
of architectures, 496

710 Index

of learning rules, 498
strategies, 100, 492

evolutionary
fuzzy logic systems, 492
learning, 478
neural networks, 492, 507
programming, 492

exact algorithm, 316
exact methods, 10
exchangeable

attribute, 562
criteria, 580, 588

exhaustive search, 7
expanded formulation, 77

facility location, 68–71, 75, 77, 80, 87
fail first, 375
feasible solution, 4
financial decision support system, 370
finite element method, 430
finite-state machines, 492
firewall, 192
first improvement strategy, 684
fish schooling, 227
fitness, 5

function, 107
inheritance, 107
landscapes, 680–705

an example, 683
empirical studies, 697
mathematical characterization, 686
practical applications, 699

measure, 145, 147, 148, 152
of a neural network, 495
proportionate selection, 95, 154

fixed charge, 74, 247
flow-augmenting chains, 43–49, 54
Floyd’s shortest path algorithm, 52
Ford–Fulkerson algorithm, 43–45, 50
forward recursion, 37
fully polynomial time approximation scheme,

641, 652, 668–670
fuzzy

adaptive control schemes, 541–543
CSPs, 379
implication, 529
inference system, 531–535

defuzzification unit, 531–534
logic, 511, 520–521, 524
measures, 580
relation, 527
set composition, 528
set operations, 525
sets, 519–547

similarity measures, 530–531
systems

modeling, 543
stability, 544

fuzzy reasoning, 518–556

GA, see genetic algorithm
gene

deletion, 143
duplication, 143

generalization test, 480, 492
generation probability, 272–274
genes, 93, 98–99, 698
genetic algorithm, 93–117, 131, 143, 193, 195,

198, 199, 201, 207, 231, 246, 376, 493,
684

relaxation, 255
genetic programming, 142–185

developmental, 159
probabilistic, 159
theory, 167

genotype, 199, 496
global constraints, 383
global optimum, 6, 698
globally Pareto-optimal set, 416
Gomory–Chvátal procedure, 78
GP, see genetic programming
gradient descent algorithm, 490
granulation, 558
granules of knowledge, 560, 593
graph

algorithms, 53
bipartite, 55, 646
coloring, 29–33, 81, 324, 369, 639
complete, 32
eigensystem, 692
partitioning, 266, 698
problem, 42
representation, 690
theory, 28, 58, 255, 331, 454, 519, 700

GRASP, 122, 129, 286–303
Gray code, 466, 685
greedy, 125

algorithms, 288
approximation algorithms, 644
construction, 123
heuristic, 319, 324
knapsack, 648
MAX-CUT, 647
MAX-SAT, 646
solution, 295
vertex cover, 645

grow initialization method, 147

Index 711

H-means, 320
HAL, 387
Hamming

distance, 128, 194, 330, 687
landscape, 687, 693

Heaviside function, 489
Hebbian learning rule, 489
hedge, see transformation operator
heuristics, 8–9, 613

generation, 616, 619, 622
hill climbing, 9
homogeneous, 42, 51, 272, 279
Hopfield networks, 491
human-competitive, 170
hyper-heuristics, 11, 610–638

hybrid, 614
hypervolume, 439

ideal point, 410
idiotypic networks, 200–201
inclusion property, 565, 576
incomplete search technique, 397
independent variables, 145
indicator function, 687
indirect encoding of neural networks, 497
indiscernibility relation, 558, 559, 564, 569,

573
indispensable

attribute, 562, 563, 566
criteria, 580, 588

inductive learning, 480–484, 568
inductive logic programming, 478, 482–484
inertia weight, 229
infeasible solutions, 4
inference methods, 371–372
inference rules, 520, 529
infix notation, 145
information

gain, 481
theory, 477, 481
transfer, 219

inhomogeneous algorithm, 274
initial random population, 150, 151, 155
initial solution, 8
initialization, 94, 147, 196, 234, 329, 495
innovation, 94, 102
innovization, 431

automated procedure, 431
integer programming, 66–92
integer quantities, 73
intensification, 216, 225, 252, 256–257, 292,

333
interchangeability, 372

interior point, 87
intermediate vectors, 698
intermediate-term memory, 252
interpolation, 479
intersection, 381, 521, 525, 558, 560, 562, 567,

576, 578, 594
intractable, 105, 378, 639
invariant, 104, 331
inverse consistency, 372
inverse problem, 530
irreducible, 272
iterative improvement, 266, 269

job shop scheduling, 207, 222, 244, 247, 253,
266, 651

K-means, 320
kilter

diagram, 46
line, 46, 54

knapsack
binary knapsack problem, 55
bounded knapsack problem, 55
maximum fraction, 649
maximum integer, 649, 655
minimum integer, 655
problem, 29, 40, 60, 83, 128, 642, 648, 650

unbounded, 37, 55

Lagrangian relaxation, 34
Laplacian matrix, 691
learning

algorithms, 471, 480–508
Bayesian, 484–486
bottom-up, 375, 483
chess play learning, 479
classifier systems, 207, 493
decision-tree, 483
element, 477
methods, 502–507
reinforcement, 486–488
robot learning, 479
sample, 570
sequence of actions, 479
top-down, 483

level of confidence, 568
limited discrepancy search, 375
linear propagation, 385
linear relaxation, 69–71, 76
linearly separable, 489
Lisp S-expressions, 144, 169
local optimum, 6

712 Index

local search, 9, 109, 120, 125, 127, 290, 341
locally Pareto-optimal set, 416
logic programming, 387
logical constraints, 75
long-term memory, 253
look-ahead, 375
lower approximation, 558, 561, 593
lower bound, 26–31, 34, 41, 46–49, 53–55

machine learning, 477–517
makespan, 244, 699
Markov chains, 271–274, 279
matching function, 193, 197, 200
matching problem, 55
matheuristics, 11
mating pool, 95
MAX-Ak-SAT, 668
max-closure, 378
max-CSP problem, 379
MAX-CUT problem, 128, 343, 647
MAX-SAT, 646, 668, 670
maximum

diversity problem, 129
flow problem, 43–45
weighted independent set, 85

McCulloch–Pitts neurons, 488
MCDM, 437
mean square error, 490, 496
membership function, 521–528, 566
Π, 523
Gaussian, 524
monotonically decreasing, 522
monotonically increasing, 522
trapezoid, 522
triangular, 522

memetic algorithm, 106, 109
metaheuristics, 10–11
Metropolis algorithm, 268, 702
min-conflicts heuristic, 376
minimal domain size, 374
minimum

cost flow problem, 45–50
job scheduling, 651
sum-of-squares clustering, 329
vertex cover, 642, 645, 658

mixed integer programming, 255
modern heuristics, see metaheuristics
modifier, see transformation operator
MOEAs, 421
Monte Carlo, 268, 332, 487
MOOP, see multi-objective optimization

problem

multi-attribute, 557, 602
multi-objective optimization, 403–443
ε-constraint approach, 420
classical approach, 409
differences from single-objective optimiza-

tion, 405
ideal approach, 407
preference-based approach, 409
principles, 406
weighted-sum approach, 419

multi-objectivization, 439
multicriteria, 557–559, 571, 585–590, 599, 600
multigraded dominance, 592–594
multilayer feedforward neural networks, 490
multimodal landscapes, 689
multistage programming, 36
mutation, 57, 94, 99, 107, 143, 147, 150, 191,

198, 493, 495, 497
probability, 100, 109

nadir point, 411
negative dominance cone, 574
negative selection, 191, 196–197, 205
neighbor, 266, 683
neighborhood, 266

graph, 267
search, 313

very large scale, 339–364
structure, 247, 686–688

network
flow, 50, 54, 56, 391
flow programming, 19, 42–51, 58, 60
management, 370
simplex algorithm, 50

neural networks, 488–492, 494–497
no free lunch, 450–476
node potentials, 46
non-dominated

front, 417
set, 414
solutions, procedure to identify, 416
sorting, 418

non-parametric estimates, 697
NP-complete, 51, 453
NP-hard, 245, 265, 378, 452, 639, 641, 673
NSGA-II, 422

objective
function, 5

objective normalization, 412
objective space, 406
off-policy, 487–488
on-policy, 487–488

Index 713

online, 488, 650
operational research, 4
operations research, 4
OPL, 88, 388
optimal solutions, 6, 613
optimization, see combinatorial optimization,

50, 83, 86, 93, 199, 207, 226, 234, 237,
390, 492, 646

algorithm, 105, 266
ordinal selection, 96
out-of-kilter, 46–50, 53, 56
outranking, 559, 574, 590, 593

P, 451
P-boundary, 564
P-dominated set, 574
P-lower approximation, 564, 576
P-rough set, 564, 565
P-upper approximation, 564, 576
p-median, 319, 321, 333
parallel, 188, 452, 488, 651

algorithm, 393
search strategy, 170, 255

parallelization, 61, 105
parameter

calibration, 258
optimization, 453–455

parental solutions, 94
Pareto, 137, 571

optimal solutions, 403, 405, 410
partial order, 414
partial solutions, 24–31, 34, 57, 389
particle swarm optimization, 137, 214,

227–236
adaptive PSO, 231
advanced features, 231
controlling diversity, 233
convergence enforcement, 232
maximum velocity, 232
neighborhood best velocity update, 231
PSO algorithm, 228–229
queen particle, 232
simplified PSO, 232
stagnation recovery, 234

partitioning, 24, 29, 35, 319, 324, 650, 669
path

consistency, 372
relinking, 121, 133, 292–298
tracing, 699

pathogen, 188
pattern classification, 478
PCPs, see probabalistically checkable proofs
Pearson correlation coefficient, 195

penalty function, 5
perceptron learning, 488–490
perfect graph, 33
permutation, 31, 81, 131, 222, 244, 267, 454,

688, 694
closure, 460–463
code, 97
matrix, 690
problems, 126, 128, 131, 216, 219, 226

personnel scheduling, 369
PESA, 425
phenotype, 199
pheromone, 214

best–worst, 225
matrix, 217–220
update, 216, 225–227
values, 217–219

plant location problem, 243–245, 247, 249,
252–254

plug flow tubular reactor case study, 538
PMX, 99
polynomial time, 452

algorithm, 644, 668–670
approximation scheme, 641, 650
verifier, 671

population, 10, 94–96, 143–161
matrix, 219
matrix update, 220
population-based ACO, 219
size, 152

positive dominance cone, 574, 575
predictive system, 481
prefix notation, 144
primal, 330
primal simplex, 87
primal–dual method, 659
principle of optimality, see Bellman’s principle
prior knowledge, 480, 570–574, 600
probabilistic safety factor, 103
probabilistically checkable proofs, 670–671
probabilistically selected, 146, 151
probability distribution, 218, 272, 478, 666
probability space, 478
problem-specific repair mechanism, 97
production planning problem, 38–42
production scheduling, 370, 391, 546
propagation, 372, 377, 380–385, 391, 672
proportional-differential-like fuzzy controller,

537
proportional-integral-like fuzzy controller, 536
protected division, 152, 155
pruning, 26, 28, 34, 375
PSO, see particle swarm optimization

714 Index

PTAS, see polynomial time approximation
scheme

Q-learning, 487
quality measure, 565
quality of approximation, 561, 563, 565, 567,

579, 586, 593, 602
queens problem, 376

random
3SAT, 673
binary template, 98
bouncing, 234
constants, 145
crossover, 98
cut, 667
enumeration, 456, 473
initial weights, 497
jump, 333
MAX-SAT solution, 668
number, 95, 233, 269, 332, 456
restart, 375
sampling, 107, 251, 456
search, 154, 458, 473
selection, 98, 150, 320, 323
solution, 332
value, 229
variable, 641, 667
walk, 94, 246, 696, 701

randomization, 666
ranking selection, 94
real-time decision problem, 255
recombination, 94–96, 107, 492, 699

landscapes, 694–695
operators, 96, 104, 106
sexual, 143, 150, 170

recursive relationship, 37, 40, 51, 60
reduced VNS, 321
reduct, 567, 580, 586, 599
reducts, 562
redundant criteria, 580
reflexive, 569–570, 574, 592, 594
regression, 151, 479

tree, 481
reinforcement learning, 478, 486–488, 492,

495, 510–511
relaxation, 34, 76, 107, 648, 672
repair, 50, 373, 375–376, 386
replacement, 94, 96, 101, 109, 456
reproduction, 95, 143, 147, 150–152, 155, 496
resource allocation, 370, 454
restart diversification, 253
robustness, 258

rough approximation, 559, 564–568, 570, 573,
577, 585, 589, 594

rough sets, 137, 138, 557–609
certain, 567
certain knowledge, 559, 576, 583
certain rules, 563, 570
dominance-based approach, 559, 589
formal description, 563
fundamentals, 559–570
illustrative example, 597
indiscernibility-based approach, 563
indiscernibility-based approach, 558, 559,

589, 602
uncertain knowledge, 559

roulette wheel, 94–95
routing, 36, 42, 60, 329, 391, 672
rule base design

heuristic, 534
systematic, 534

rules
induction of, 567

running metric, 436

Sarsa learning algorithm, 487
scatter search, 119–139

diversification generation, 119, 127, 135
improvement, 119, 127, 136
reference set update, 119, 120, 122,

127–129, 136
solution combination, 119–122, 131–134,

136
subset generation, 119–121, 129–131

schema theorem, 96
search space, 7, 247–248, 253
selection, 95–96, 147
selection-intensity models, 102
self-adaptive systems, 492
separation, 83, 265, 369, 386, 389, 508
sequencing problems, 61, 76
sequential

algorithms, 650–652
job scheduling, 651
mode of training, 490

shaking, 323, 329, 332
short-term memory, 249
shortest path, 26–29, 36, 42, 51, 57, 214–217,

645, 687
SICStus, 387
similarity, 192, 520, 568–570

classes, 569
measure, 193–196, 545

simplex, 42, 43, 46
simulated annealing, 264–285, 289

Index 715

single machine total weighted tardiness
problem, 221

skewed VNS, 326
social insect colonies, 213
spacecraft trajectory design, 427
SPEA2, 425
staff planning, 370
states, 36
steady state, 94, 101, 539
steepest descent, 317, 327
stochastic, 36, 315, 318, 373, 490

element, 375
noise, 104
programming, 255
search algorithm, 456
universal selection, 94, 95
variable, 271

stopping criterion, 216, 218
strategic oscillation, 253
subcomponent complexity, 103
subjective function, 93
sum-of-squares clustering, 319
superfluous attribute, 562, 566
supervised learning, 478, 492, 510
supply chain management, 370
surrogate objectives, 254
survival of the fittest, 94
swapping probability, 97
swarm intelligence, 212–242
symbolic regression, 151
synapse, 488, 489
syntax, see tree, syntax, 567, 570, 585, 589,

594, 599

tabu
list, 57, 361

length, 249
search, 133, 135, 243–263, 327

multiple tabu list, 249
probabilistic, 251
recency memory, 252

tenure, 249
takeover time models, 102
task scheduling, 370
Tchebycheff catastrophe, 314
temperature, 189, 268, 454, 524, 527
temporal difference learning, 487
terminal

node, 25, 32, 481
set, 145, 152

termination criterion, 146, 151, 152, 155, 251
test function, 230
thrashing behavior, 374

threshold function, 489
threshold methods, 246
time continuation, 107
time-independent, 272
timetabling, 29, 56, 106, 390, 619
top-down learning, 483
tournament selection, 94, 96, 154
tractability, 378–379, 452, 673
trade-off solutions, 404
transfer functions, 490
transformation operator, 520, 526, 545
transitive, 564, 570, 591, 594
transportation, 370, 382, 384, 390

assignment, 53
cost, 244
problem, 53, 245, 247, 254

traveling salesman problem, 7, 29, 57, 93,
97, 99, 207, 215–221, 266, 328, 340,
345–347, 457, 698

minimum, 639, 670
tree, 25–27, 481

rooted point-labeled program, 147
syntax, 144, 149, 150

truncation selection, 96
TSP, see traveling salesman problem
Turing, 143, 170, 488

machine, 452–453
two-dimensional cutting problems, 40–41

uncertain knowledge, 511, 559
uniform probability, 150
unimodal landscapes, 689
unimodular, 42
union ∪, 525
unsupervised learning, 478, 492, 510
update, 218
upper approximation, 558, 593, 602
upper bound, 26–30, 32–35, 43–49, 53–55, 74,

229, 233, 375, 530
utility service optimization, 370
utopian point, 411

variable
generation, 84–86
neighborhood search, 290, 313–337

reduced, 313, 320–323, 332
skewed, 313, 325–327
variable neighborhood descent, 126, 313
VNS within exact algorithm, 330

precision rough set approach, 578
vehicle routing, 255, 348
Visual CHIP, 388
VNDS, 313, 315, 327

716 Index

VNS, see variable neighborhood search, 322,
327

Vogel’s approximation method, 54

waiting-time model, 697
weak preference relation, 574
weighted maximum satisfiability, 326

weighted-sum approach, 419

Y -reduct, 567

zero-argument functions, 145
Zykov’s algorithm, 31

	Foreword to the First Edition
	Foreword to the Second Edition
	Preface to the First Edition
	Preface to the Second Edition
	Contents
	1 Introduction
	1.1 Inter-disciplinary Decision Support: Motivation
	1.2 The Structure of the Book
	1.3 Basic Concepts and Underlying Issues
	1.3.1 Artificial Intelligence
	1.3.2 Operational Research (Operations Research)
	1.3.3 Management Science
	1.3.4 Feasible and Infeasible Solutions
	1.3.5 Hard Constraints
	1.3.6 Soft Constraints and Evaluation Functions
	1.3.7 Deterministic Search
	1.3.8 Optimization
	1.3.9 Local and Global Optimum
	1.3.10 Exhaustive Search
	1.3.11 Complexity
	1.3.12 Order (Big O Notation)
	1.3.13 Heuristics
	1.3.14 Constructive Heuristics
	1.3.15 Local Search Heuristics
	1.3.16 Hill Climbing
	1.3.17 Metaheuristics
	1.3.18 Evolutionary Methods
	1.3.19 Exact Methods
	1.3.20 Hyper-heuristics
	1.3.21 Matheuristics

	References

	2 Classical Techniques
	2.1 Introduction
	2.2 Linear Programming
	2.2.1 Introduction
	2.2.2 The Linear Programming Form
	2.2.2.1 A Simple Example
	2.2.2.2 The General LP Format

	2.2.3 Duality
	2.2.4 Solution Techniques

	2.3 Branch and Bound
	2.3.1 Introduction
	2.3.2 Branch and Bound Based on Partial Solutions
	2.3.2.1 Example 1: Finding the Shortest Path
	2.3.2.2 Example 2: Brown's Algorithm for Graph Coloring

	2.3.3 A Generalization
	2.3.3.1 Zykov's Algorithm for Graph Coloring

	2.3.4 Other Issues
	2.3.4.1 Bounds
	2.3.4.2 Branching
	2.3.4.3 Miscellaneous

	2.4 Dynamic Programming
	2.4.1 Introduction
	2.4.2 Developing a DP Model
	2.4.2.1 Forward Recursion and the Unbounded Knapsack Problem
	2.4.2.2 Backward Recursion and a Production Planning Problem

	2.4.3 Other Issues

	2.5 Network Flow Programming
	2.5.1 Introduction
	2.5.2 The Maximum Flow Problem
	2.5.2.1 Introduction
	2.5.2.2 The Ford–Fulkerson Labeling Algorithm

	2.5.3 Minimum Cost Flow Problem
	2.5.3.1 Introduction
	2.5.3.2 The Out-of-Kilter Algorithm

	2.5.4 Other Issues

	2.6 Some Useful Models
	2.6.1 Shortest-Path Problems: DP Approaches
	2.6.1.1 Bellman's Shortest-Path Algorithm
	2.6.1.2 Floyd's Shortest-Path Algorithm

	2.6.2 Transportation Assignment and Transhipment Problems: Network Flow Approaches
	2.6.2.1 The Transportation Problem
	2.6.2.2 The Assignment and Transhipment Problems
	2.6.2.3 Other Useful Models

	2.7 Promising Areas for Future Application
	2.7.1 Pre- and Post-processing
	2.7.2 True Hybrids
	2.7.3 Cross-fertilization

	2.8 Tricks of the Trade
	2.8.1 Introduction
	2.8.2 Tips for Branch and Bound
	2.8.3 Tips for Dynamic Programming
	2.8.4 Tips for Network Flow Programming

	2.9 Conclusions
	References

	3 Integer Programming
	3.1 Introduction
	3.1.1 Facility Location
	3.1.2 Solving the Facility Location IP
	3.1.3 Difficulties with Integer Programs

	3.2 Be Creative in Formulations
	3.2.1 Integer Quantities
	3.2.2 Binary Decisions
	3.2.3 Fixed-Charge Requirements
	3.2.4 Logical Constraints
	3.2.5 Sequencing Problems

	3.3 Find Formulations with Strong Relaxations
	3.4 Avoid Symmetry
	3.5 Consider Formulations with Many Constraints
	3.6 Consider Formulations with Many Variables
	3.7 Modify Branch-and-Bound Parameters
	3.7.1 Description of Problem
	3.7.2 Linear Programming Solver
	3.7.3 Choice of Branching Variable
	3.7.4 Choice of Subproblem to Solve
	3.7.5 Direction of Branching
	3.7.6 Tolerances

	3.8 Tricks of the Trade
	3.9 Conclusion
	References

	4 Genetic Algorithms
	4.1 Introduction
	4.2 Basic GA Operators
	4.2.1 Selection Methods
	4.2.1.1 Fitness Proportionate Selection
	4.2.1.2 Ordinal Selection

	4.2.2 Recombination Operators
	4.2.3 Mutation Operators
	4.2.4 Replacement

	4.3 Competent GAs
	4.4 Efficiency Enhancement of Genetic Algorithms
	References

	5 Scatter Search
	5.1 Introduction
	5.2 Diversification Generation Method
	5.3 Improvement Method
	5.4 Reference Set Update
	5.5 Subset Generation
	5.6 Solution Combination
	5.7 Multiobjective Optimization
	5.8 Tricks of the Trade
	5.9 Conclusions
	5.10 Promising Areas for Future Research
	References

	6 Genetic Programming
	6.1 Introduction
	6.2 Preparatory Steps of Genetic Programming
	6.3 Executional Steps of GP
	6.4 Example of a Run of GP
	6.5 Further Features of GP
	6.5.1 Automatically Defined Functions and Libraries
	6.5.2 Architecture-Altering Operations
	6.5.3 Constraining Structures
	6.5.4 Developmental GP
	6.5.5 Probabilistic GP
	6.5.6 Bloat and Bloat Control

	6.6 Human-Competitive Results Produced by GP
	6.7 Genetic Programming Theory
	6.7.1 Models of GP Search
	6.7.2 Bloat

	6.8 Conclusions
	References

	7 Artificial Immune Systems
	7.1 Introduction
	7.2 Overview of the Biological Immune System
	7.2.1 Dendritic Cells
	7.2.2 Immune Network Theory
	7.2.3 Negative Selection Mechanism
	7.2.4 Clonal Selection Principle

	7.3 Illustrative Problems
	7.3.1 Intrusion Detection Systems
	7.3.2 Data Mining: Collaborative Filtering and Clustering

	7.4 Artificial Immune System Basic Concepts
	7.4.1 Initialization/Encoding
	7.4.2 Similarity or Affinity Measure
	7.4.3 Negative, Clonal or Neighborhood Selection
	7.4.4 Somatic Hypermutation
	7.4.5 Dendritic-Cell-Based Approaches

	7.5 Comparison of Artificial Immune Systems to Genetic Algorithms and Neural Networks
	7.6 Extensions of Artificial Immune Systems
	7.6.1 Idiotypic Networks: Network Interactions (Suppression)
	7.6.2 Danger Theory

	7.7 Promising Areas for Future Application
	7.8 Tricks of the Trade
	7.9 Conclusions
	References

	8 Swarm Intelligence
	8.1 Introduction
	8.2 Ant Colony Optimization
	8.2.1 Example 1: Basic ACO and the TSP
	8.2.1.1 The TSP Problem
	8.2.1.2 Pheromone Information
	8.2.1.3 Solution Construction
	8.2.1.4 Pheromone Update
	8.2.1.5 Stopping Criterion

	8.2.2 Example 2: Population-Based ACO and TSP
	8.2.2.1 Information Transfer and Population Matrix
	8.2.2.2 Population Matrix Update
	8.2.2.3 Construction of Pheromone Matrix

	8.2.3 Example 3: ACO for a Scheduling Problem
	8.2.3.1 The SMTWTP Problem
	8.2.3.2 Pheromone Encoding
	8.2.3.3 Pheromone Evaluation
	8.2.3.4 Adaptation of Heuristics

	8.2.4 Advanced Features of ACO
	8.2.4.1 Variants of Pheromone Update
	8.2.4.2 Other ACO Variants

	8.2.5 Promising Areas for Future Applications of ACO
	8.2.5.1 Hybrid ACO

	8.3 Particle Swarm Optimization
	8.3.1 Example 1: Basic PSO and Continuous Function Optimization
	8.3.2 Example 2: Discrete Binary PSO for Subset Problems
	8.3.3 Advanced Features of PSO
	8.3.4 Promising Areas for Future Applications of PSO
	8.3.4.1 Operations on Particles
	8.3.4.2 Cooperative Swarms

	8.4 Tricks of the Trade
	8.5 Conclusion
	References

	9 Tabu Search
	9.1 Introduction
	9.2 Illustrative Problems
	9.2.1 The Job-Shop Scheduling Problem
	9.2.2 The Capacitated Plant Location Problem

	9.3 Basic Concepts
	9.3.1 Historical Background
	9.3.2 Tabu Search
	9.3.3 Search Space and Neighborhood Structure
	9.3.4 Tabus
	9.3.5 Aspiration Criteria
	9.3.6 A Template for Simple Tabu Search
	9.3.7 Termination Criteria
	9.3.8 Probabilistic Tabu Search and Candidate Lists

	9.4 Extensions to the Basic Concepts
	9.4.1 Intensification
	9.4.2 Diversification
	9.4.3 Allowing Infeasible Solutions
	9.4.4 Surrogate and Auxiliary Objectives

	9.5 Promising Areas for Future Applications
	9.6 Tricks of the Trade
	9.6.1 Getting Started
	9.6.2 More Tips
	9.6.3 Additional Tips for Probabilistic Tabu Search
	9.6.4 Parameter Calibration and Computational Testing

	9.7 Conclusions
	References

	10 Simulated Annealing
	10.1 Introduction
	10.2 Local Search
	10.3 Basic Simulated Annealing
	10.4 Mathematical Modeling
	10.5 Equilibrium Statistics
	10.6 Practical Application
	10.6.1 Static Cooling Schedules
	10.6.1.1 Initial Value of the Control Parameter
	10.6.1.2 Lowering the Control Parameter Value
	10.6.1.3 Final Value of the Control Parameter
	10.6.1.4 Markov Chain Length

	10.6.2 Dynamic Cooling Schedules

	10.7 Tricks of the Trade
	10.8 Conclusions
	References

	11 GRASP: Greedy Randomized Adaptive Search Procedures
	11.1 Introduction
	11.2 Principles and Building Blocks
	11.2.1 Greedy Algorithms
	11.2.2 Randomization and Greedy Randomized Algorithms
	11.2.3 Neighborhoods
	11.2.4 Local Search
	11.2.5 Restricted Neighborhoods and Candidate Lists
	11.2.6 Intensification and Diversification
	11.2.7 Path-Relinking

	11.3 A Template for GRASP
	11.4 GRASP with Path-Relinking
	11.5 Extensions
	11.6 Tricks of the Trade
	11.7 Some Promising Areas for Future Application
	11.7.1 Continuous GRASP
	11.7.2 Probabilistic-Based Stopping Rules

	References

	12 Variable Neighborhood Search
	12.1 Introduction
	12.2 Preliminaries: Documentation
	12.3 Variable Neighborhood Descent
	12.4 Reduced VNS
	12.5 Basic and General VNS
	12.6 Skewed VNS
	12.7 Variable Neighborhood Decomposition Search
	12.8 Analyzing Performance
	12.9 Promising Areas of Research
	12.10 Tricks of the Trade
	12.10.1 Getting Started
	12.10.1.1 A Step-by-Step Procedure

	12.10.2 More Tips

	12.11 Conclusions
	References

	13 Very Large-Scale Neighborhood Search
	13.1 Introduction
	13.2 Preliminaries
	13.3 Variable-Depth Neighborhood Search Algorithms
	13.3.1 Definitions
	13.3.2 Example: Kernighan–Lin Search for the MAX CUT
	13.3.3 Example: Lin–Kernighan Search for the TSP
	13.3.4 Final Remarks on Variable-Depth Neighborhood Search Algorithms

	13.4 Cyclic Exchange Neighborhood Search Algorithms
	13.4.1 Basic Concepts
	13.4.2 Finding Improving Cyclic Exchanges
	13.4.3 Example: Cyclic Exchange Neighborhood Search for the VRP
	13.4.4 Example: Cyclic Exchange Neighborhood Search for the Capacitated Minimum Spanning Tree Problem
	13.4.5 Final Remarks on Cyclic Exchange Neighborhood Search Algorithms

	13.5 Other Very Large-Scale Neighborhood Search Algorithms
	13.5.1 Neighborhoods Based on CompoundingIndependent Moves
	13.5.2 Neighborhoods Based on Variable Fixing
	13.5.3 Other VLSN Search Algorithms

	13.6 Tricks of the Trade
	13.7 Promising Areas for Future Research
	13.8 Conclusions
	References

	14 Constraint Programming
	14.1 Introduction
	14.2 Inference
	14.3 Modeling
	14.4 Search
	14.4.1 Extension
	14.4.2 Repair

	14.5 Example
	14.6 Tractability
	14.6.1 Theory
	14.6.2 Experiment

	14.7 Optimization
	14.8 Algorithms
	14.8.1 Handling Constraints
	14.8.2 Domains, and Constraint Propagation
	14.8.3 Constraints and Search
	14.8.3.1 Separating Constraint Handling from Search
	14.8.3.2 Search Heuristics Exploiting Constraint Propagation

	14.8.4 Global Constraints
	14.8.4.1 Alldifferent
	14.8.4.2 Schedule
	14.8.4.3 Further Global Constraints
	14.8.4.4 Analysis

	14.8.5 Different Constraint Behaviors
	14.8.6 Extension and Repair Search
	14.8.6.1 Constraint Reasoning and Extension Search
	14.8.6.2 Constraint Reasoning and Repair Search
	14.8.6.3 Languages and Systems

	14.9 Constraint Languages
	14.9.1 Constraint Logic Programming
	14.9.2 Modeling Languages
	14.9.3 Constraint Satisfaction and Optimization Systems

	14.10 Applications
	14.10.1 Current Areas of Application
	14.10.2 Applications in Control, Verification and Validation
	14.10.3 Combinatorial Problem Solving
	14.10.4 Other Applications
	14.10.4.1 Constraints and Graphics
	14.10.4.2 Constraint Databases

	14.11 Potpourri
	14.11.1 Dynamic Constraint Problems and Soft Constraints
	14.11.2 Explanation
	14.11.3 Synthesizing Models and Algorithms
	14.11.4 Distributed Processing
	14.11.5 Uncertainty

	14.12 Tricks of the Trade
	14.12.1 Initializing Variables
	14.12.2 Constrain the Variables
	14.12.3 Search and Propagation
	14.12.4 Introducing Redundant Constraints
	14.12.5 Adding Search Heuristics
	14.12.6 Using an Incomplete Search Technique

	References

	15 Multi-objective Optimization
	15.1 Introduction
	15.1.1 How Is It Different from Single-Objective Optimization?

	15.2 Two Approaches to Multi-objective Optimization
	15.3 Non-dominated Solutions and Pareto-Optimal Solutions
	15.3.1 Special Solutions
	15.3.1.1 Ideal Objective Vector
	15.3.1.2 Utopian Objective Vector
	15.3.1.3 Nadir Objective Vector

	15.3.2 Concept of Domination
	15.3.3 Properties of Dominance Relation
	15.3.4 Pareto Optimality
	15.3.5 Procedure for Finding Non-dominated Solutions
	15.3.5.1 Finding the Best Non-dominated Front
	15.3.5.2 A Non-dominated Sorting Procedure

	15.4 Some Approaches to Multi-objective Optimization
	15.4.1 Classical Method: Weighted-Sum Approach
	15.4.2 Classical Method: -Constraint Method
	15.4.3 Evolutionary Multi-objective Optimization (EMO) Method
	15.4.3.1 Elitist Non-dominated Sorting GA (NSGA-II)

	15.4.4 Sample Simulation Results
	15.4.5 Other State-of-the-Art MOEAs

	15.5 Constraint Handling
	15.6 Some Applications
	15.6.1 Spacecraft Trajectory Design
	15.6.2 A Cantilever Plate Design

	15.7 Tricks of the Trade
	15.7.1 Classical Multi-objective Optimization
	15.7.2 Evolutionary Multi-objective Optimization (EMO)
	15.7.2.1 Archive Acceptance Criterion CA(c,A)
	15.7.2.2 Population Acceptance Criterion CP(c,P)

	15.7.3 Post-optimality Studies
	15.7.4 Evaluating a Multi-objective Optimization Algorithm

	15.8 Research Challenges
	15.9 Conclusions
	References

	16 Sharpened and Focused No Free Lunch and Complexity Theory
	16.1 Introduction
	16.2 Complexity: P and NP
	16.2.1 Complexity, Search and Optimization

	16.3 No Free Lunch
	16.3.1 No Free Lunch: Variations on a Theme
	16.3.2 No Free Lunch and Permutation Closure
	16.3.3 Free Lunch and Compressibility

	16.4 Sharpened NFL and Focused NFL
	16.4.1 Partitioning the Permutation Closure under Focused NFL
	16.4.2 Evaluating Search Algorithms

	16.5 Conclusions
	16.6 Tricks of the Trade
	16.7 Current and Future Research Directions
	References

	17 Machine Learning
	17.1 Introduction
	17.1.1 Learning Models
	17.1.2 Learning Tasks and Issues in Machine Learning
	17.1.2.1 Classification
	17.1.2.2 Regression, Interpolation and Density Estimation
	17.1.2.3 Learning a Sequence of Actions
	17.1.2.4 Data Mining
	17.1.2.5 Issues in Machine Learning

	17.1.3 Organization of the Chapter

	17.2 Overview of Learning Algorithms
	17.2.1 Learning Decision Trees
	17.2.2 Inductive Logic Programming
	17.2.3 Bayesian Learning
	17.2.4 Reinforcement Learning
	17.2.5 Neural Networks
	17.2.6 Evolutionary Learning

	17.3 Learning and Evolution
	17.3.1 Evolutionary Neural Networks
	17.3.1.1 The Evolution of Connection Weights
	17.3.1.2 The Evolution of Architectures

	17.3.2 The Evolution of Learning Rules
	17.3.3 A General Framework for Evolutionary Neural Networks

	17.4 Ensemble Learning
	17.4.1 Bias–Variance Trade-Off
	17.4.1.1 Bias–Variance–Covariance Trade-Off
	17.4.1.2 Independent Learning Methods
	17.4.1.3 Sequential Learning Methods
	17.4.1.4 Simultaneous Learning Methods
	17.4.1.5 Negative Correlation Learning
	17.4.1.6 Evolutionary Neural Networks as Ensembles

	17.5 Promising Areas for Future Application
	17.6 Tricks of the Trade
	17.6.1 Formulating the Problem
	17.6.2 Choosing the Representation
	17.6.3 Collecting the Data
	17.6.4 Conducting the Learning Process
	17.6.5 Analyzing and Evaluating the Learned Knowledge

	17.7 Conclusions
	References

	18 Fuzzy Reasoning
	18.1 Introduction
	18.2 Basic Definitions of Fuzzy Set Theory
	18.2.1 Fuzzy Sets and the Notion of Membership
	18.2.2 Membership Functions
	18.2.2.1 Examples of Fuzzy Sets

	18.2.3 Fuzzy Set Operations
	18.2.3.1 Examples of Fuzzy Set Operations

	18.2.4 Transformation Operators
	18.2.4.1 Example of Transformation Operators

	18.2.5 Cartesian Inner Product of Fuzzy Sets
	18.2.5.1 Example

	18.2.6 Fuzzy Relations
	18.2.6.1 Example

	18.2.7 Fuzzy Set Composition
	18.2.7.1 Example

	18.2.8 Fuzzy Implication
	18.2.9 Inference Rules
	18.2.10 The Inverse Problem
	18.2.11 Fuzzy Similarity Measures
	18.2.11.1 L-Fuzzy Similarity Measure
	18.2.11.2 M-Fuzzy Similarity Measure
	18.2.11.3 S-Fuzzy Similarity Measure
	18.2.11.4 W-Fuzzy Similarity Measure
	18.2.11.5 P-Fuzzy Similarity Measure

	18.3 Basic Structure of a Fuzzy Inference System
	18.3.1 Defuzzifiation Unit
	18.3.1.1 Mean of Maximum Defuzzification Technique
	18.3.1.2 Centroid Defuzzification Technique
	18.3.1.3 Center of Sums Defuzzification Technique

	18.3.2 Design of the Rule Base

	18.4 Case Study: A Fuzzy Control System
	18.4.1 The Fuzzy Logic Control Closed Loop
	18.4.2 Fuzzy Logic Controllers in Proportional-Integral (PI) and Proportional-Differential (PD) Forms
	18.4.2.1 PI-Like Fuzzy Controller
	18.4.2.2 PD-Like Fuzzy Controller

	18.4.3 An Illustrative Example
	18.4.3.1 The Case Study: Fuzzy Control of a Plug Flow Tubular Reactor
	18.4.3.2 Performance Analysis: Results and Discussion

	18.4.4 Fuzzy Adaptive Control Schemes

	18.5 Model Identification and Stability of Fuzzy Systems
	18.5.1 Fuzzy Systems Modeling
	18.5.2 Stability of Fuzzy Systems

	18.6 Conclusion and Perspectives
	References

	19 Rough-Set-Based Decision Support
	19.1 Introduction
	19.2 Rough Set Fundamentals
	19.2.1 Explanation by an Example
	19.2.2 A Formal Description of the Indiscernibility-Based Rough Set Approach
	19.2.3 Decision Rules Induced from Rough Approximations
	19.2.4 From Indiscernibility to Similarity

	19.3 The Knowledge Discovery Paradigm and Prior Knowledge
	19.4 The Dominance-Based Rough Set Approach
	19.4.1 Granular Computing with Dominance Cones
	19.4.2 Stochastic DRSA
	19.4.3 Induction of Decision Rules
	19.4.4 An Illustrative Example

	19.5 The DRSA to Multicriteria Choice and Ranking
	19.5.1 The Pairwise Comparison Table as Preference Information and as a Learning Sample
	19.5.2 Rough Approximation of the Outranking and Non-outranking Relations Specified in the Pairwise Comparison Table
	19.5.2.1 Multigraded Dominance
	19.5.2.2 Dominance Without Degrees of Preference

	19.5.3 Induction of Decision Rules from Rough Approximations of Outranking and Non-outranking Relations
	19.5.4 Use of Decision Rules for Decision Support
	19.5.5 An Illustrative Example
	19.5.6 Summary

	19.6 Conclusions and Promising Areas of Future Work
	References

	20 Hyper-heuristics
	20.1 Introduction
	20.2 The Need for Hyper-heuristics
	20.3 Hyper-heuristics for Boolean Satisfiability
	20.3.1 The Problem Area
	20.3.2 The Heuristic Generation Process
	20.3.3 Remarks

	20.4 Hyper-heuristics for Timetabling
	20.4.1 The Problem Area
	20.4.2 The Heuristic Generation Process
	20.4.3 Remarks

	20.5 Hyper-heuristics for Packing
	20.5.1 The Problem Area
	20.5.2 Heuristic Generation Processes
	20.5.3 Remarks

	20.6 A Little History
	20.7 Some Research Issues
	20.7.1 No Free Lunch?
	20.7.2 Search Methods
	20.7.3 Representation Issues
	20.7.4 Performance Guarantees

	20.8 Getting Started: The HyFlex Framework
	20.9 Tricks of the Trade
	20.9.1 The Problem Area
	20.9.2 Success Criteria
	20.9.3 On-line or Off-line
	20.9.4 A Good Set of Heuristic Ingredients
	20.9.5 Fitness
	20.9.6 A Good Set of Tools
	20.9.7 Attitude

	References

	21 Approximations and Randomization
	21.1 Introduction
	21.2 Approximation Strategies
	21.2.1 Preliminaries
	21.2.1.1 Optimization Problems
	21.2.1.2 Approximation and Performance
	21.2.1.3 Complexity Background

	21.2.2 The Greedy Method
	21.2.2.1 Greedy Vertex Cover
	21.2.2.2 Greedy MAX-SAT
	21.2.2.3 Greedy MAX-CUT
	21.2.2.4 Greedy Knapsack

	21.2.3 Sequential Algorithms
	21.2.3.1 Sequential Bin Packing
	21.2.3.2 Sequential Job Scheduling

	21.2.4 Dynamic Programming
	21.2.4.1 PTAS for Minimum Job Scheduling
	21.2.4.2 FPTAS for Knapsack

	21.2.5 LP-Based Algorithms
	21.2.5.1 LP Rounding

	21.2.6 Primal–Dual Method
	21.2.6.1 The LP Duality Theorem

	21.2.7 Primal–Dual Method Applied to Minimum Weight Vertex Cover
	21.2.8 Randomization
	21.2.8.1 Random MAX-CUT Solution
	21.2.8.2 Random MAX-SAT Solution

	21.3 A Tour of Approximation Classes
	21.3.1 PTAS and FPTAS
	21.3.1.1 Definition
	21.3.1.2 A Few Known Results

	21.3.2 APX
	21.3.2.1 A Few Known Results

	21.3.3 Brief Introduction to PCPs

	21.4 Promising Areas for Future Application
	21.4.1 Randomized Backtracking and Backdoors
	21.4.2 Approximations to Guide Complete Backtrack Search
	21.4.3 Average-Case Complexity and Approximation

	21.5 Tricks of the Trade
	21.6 Conclusions
	References

	22 Fitness Landscapes
	22.1 Historical Introduction
	22.2 Combinatorial Optimization
	22.2.1 An Example

	22.3 Mathematical Characterization
	22.3.1 Neighborhood Structure
	22.3.2 Local Optima
	22.3.3 Basins of Attraction
	22.3.4 Plateaux
	22.3.5 Graph Representation
	22.3.6 Laplacian Matrix
	22.3.7 Graph Eigensystem
	22.3.8 Elementary Landscapes
	22.3.9 Recombination Landscapes
	22.3.10 Summary

	22.4 Statistical Measures
	22.4.1 Autocorrelation
	22.4.2 Number of Optima
	22.4.2.1 Waiting-Time Model
	22.4.2.2 Counting Model
	22.4.2.3 Non-parametric Estimates

	22.5 Empirical Studies
	22.5.1 Practical Applications

	22.6 Promising Areas for Future Application
	22.7 Tricks of the Trade
	22.8 Conclusion
	References

	Index

