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Preface

Electromagnetism is an important subject in today’s physics. The number of

textbooks on electromagnetism is much larger than those on other subjects. This

is because abstract concepts are frequently used and therefore it is not easy

for students to come to a complete understanding of electromagnetism, although

various phenomena are concisely described with mathematics. For this reason many

textbooks have been published to assist students to understand electromagnetism

better. Why, then, is a new textbook on electromagnetism necessary now?

Electromagnetism is a classical subject that was almost completely formulated in

the nineteenth century. However, concerning its theoretical description, there is still

room for further progress. In addition, textbooks are required to describe their topics

adequately within a limited space. Therefore, there is also room for improvement in

textbooks from the technical point of view.

In principle, there is a beautiful formal analogy between static electric and

magnetic phenomena, as will be shown in this textbook. However, the analogy is

not necessarily perfect in existing textbooks because of the lack of an important

concept. Electric materials are classified into conductors and dielectric materials,

but only magnets are studied as magnetic materials. While it is known that

electric phenomena in dielectric materials and magnetic phenomena in magnets are

analogous to each other, no one has discussed magnetic materials that correspond to

electric conductors. However, we have to note superconductors. In a superconductor

a current flows on its surface to shield the inside against an external magnetic field,

so that the magnetic flux density B is zero in the superconductor. This is analogous

to the electric phenomenon of a conductor in an external electric field. That is, an

electric charge appears on its surface to shield the inside against an external electric

field, so that the electric field E is zero in the conductor. This is one of the remarkable

analogies in the present E–B analogy.

Thus, the introduction of the superconductor into electromagnetism, which

has not yet been tried systematically, seems to be quite useful for understanding

electromagnetism. That is, the analogy between electricity and magnetism can be

completed by the introduction of the superconductor. There can be various ways of

v
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education without such a comprehensive analogy, and this is another reason why

many textbooks on electromagnetism have appeared.

From another point of view, superconductivity is a general phenomenon that

appears in many single elements and most metallic compounds, if the cases of pres-

surization and thin films are included. The intrinsic property of superconductivity,

the breaking of Ohm’s law, may seem to be peculiar. However, superconductivity

is a purely physical phenomenon that can be derived from minimizing free energy.

In contrast, the empirical Ohm’s law associated with energy dissipation cannot be

derived theoretically, and electromagnetic theory is incomplete for other current-

carrying materials in this sense.

Usually students learn about static magnetic energy after they study electromag-

netic induction. One of the appreciable advantages of using a superconductor is

the direct derivation of magnetic energy as mechanical work done by magnetic

force, similar to the electric energy resulting from the electric force. This is because

the magnetic flux is conserved in a superconducting circuit disconnected from any

electric sources. As a result, the electromagnetic induction can be predicted for a

usual electric circuit using the relationship between the energy and magnetic force.

In electromagnetism the magnetic moment of a magnet caused by spins and

orbital motions of electrons is described using a virtual magnetizing current.

However, the magnetic moment of a superconductor comes from a real current

flowing in it. Hence, the introduction of the superconductor is also beneficial with

regard to persuasion of the appropriateness of the virtual magnetizing current.

It should be noted that the definition of magnetization is different for magnets

and superconductors. That is, magnetization comes directly from the magnetization

M in magnets, while it comes from the magnetic field H in superconductors. This

arises from the difference in the origin of the magnetic moments. According to

the definition used for magnets, superconductors are classified as non-magnetic

materials. On the other hand, the analogous electric phenomena are electrostatic

shielding in conductors and electric polarization in dielectrics. These are similar

electric shielding mechanisms caused by electric charges and polarization charges,

but the above-mentioned different terms are used. Such comparison between

electricity and magnetism is also useful for education.

The final merit of the introduction of superconductors is application of the

analysis method of electromagnetic phenomena in superconductors. The continuity

equation of magnetic flux used for superconductors is useful for estimating the

velocity of magnetic flux lines under a magnetic field varying with time. This

enables us to unify the magnetic flux law and the motional law for electromagnetic

induction, which usually have been treated separately.

The purpose of this textbook is to show the remarkable analogy between

static electric phenomena, described in Part I, and static magnetic phenomena,

described in Part II. Hence, a comparison between the corresponding chapters in

each part, such as Chap. 2 on conductors and Chap. 7 on superconductors, will

assist in understanding electromagnetism. Dynamic electromagnetic phenomena are

described in Part III.
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Explanation of the figures

The upper figures show the structure of electric flux lines when a uniform electric

field is applied to a sphere of a conductor (left) and a dielectric (right), and the lower

figures show the structure of magnetic flux lines when a uniform magnetic field is

applied to a sphere of a superconductor (left) and a magnet (right). These will be

covered in Chapters 2, 4, 7 and 9, respectively. The reason why the electric flux lines

are used instead of the more important electric field lines is to emphasize the analogy

between dielectrics and magnets by showing continuous lines at the interfaces with

vacuum. In the case of electric field lines, the number of lines inside the dielectric

is smaller than that outside because of the shielding by polarization charges (see

Chapter 4). This situation is similar when we draw the magnetic field lines instead

of the magnetic flux lines for the lower right figure.

The manner of perfect shielding is different between the conductor and the

superconductor. This comes from the different nature of the corresponding fields.

Electric charges on the conductor surface absorb the lines directly, while currents

on the superconductor surface push the lines to outside.



Part I

Static Electric Phenomena



Chapter 1

Electrostatic Field

1.1 Electric Charge in Vacuum

When we touch a metal doorknob after walking on a carpet on a dry day, we

sometimes feel a shock on the fingertips as a small crackle. If it is dark, we can

see a spark when inserting a key into a keyhole. This is the same phenomenon as

thunder. This phenomenon is brought about by electric charge in substances. The

usual frictional electricity we experience also comes from electric charges.

Electric charge build-up in a substance that causes various kinds of electric

phenomena, including the above examples. Matter is a substance that obeys

universal gravity laws, and its magnitude is quantitatively described in terms of

mass. In the case of electric phenomena, an amount of electric charge quantitatively

describes the phenomena and the same term, “electric charge”, is also used to mean

the amount of electric charge.

Unlike mass, there are two kinds of electric charge, positive and negative. The

components of the electric charge are the proton with positive charge and electron

with negative charge. The electric charge of a proton is called the elementary

electric charge and its magnitude is

e D 1:602 189 2 � 10�19 C;

where the unit [C] is coulomb. The electric charge of an electron is �e. The

elementary electric charge is the minimum amount of electric charge, and any

electric charge is its integral multiple. Since e is sufficiently small, electric charge

can be regarded as a continuous quantity in many cases. This is similar to the fact

that an amount of water can be regarded as a continuous quantity in usual cases.

On an atomic scale the nucleus of an atom is composed of protons and neutrons,

which are electrically neutral, and electrons stay in orbits around the nucleus. There

are innumerable positive and negative electric charges in substances. Since the

size of each atom is very small, electrons and protons can be regarded as being

T. Matsushita, Electricity and Magnetism: New Formulation by Introduction

of Superconductivity, Undergraduate Lecture Notes in Physics,

DOI 10.1007/978-4-431-54526-2__1, © Springer Japan 2014
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4 1 Electrostatic Field

in the center of each atom on a macroscopic scale. As a result, the positive and

negative charges cancel each other to yield an electrically neutral state. Ionic crystals

composed of equal amounts of positive and negative ions can also be regarded as

electrically neutral on the macroscopic scale, since the distance between these ions

is sufficiently small. Sometimes the electric charge is not balanced. In such a case the

electric charge that remains after cancellation causes various electric phenomena.

There are two kinds of electric charge that cause electric phenomena: one is

true electric charge, which can be transferred outside a substance and the other

is polarization charge, which is locally bound around a nucleus and cannot be

transferred outside. The former charge appears on the surface of a conductor and

will be covered in Chap. 2, and the latter appears on the surface of a dielectric and

will be covered in Chap. 4. These charges that contribute to electric phenomena are

called free electric charge.

Electric charge is generally distributed with some density in the interior or on the

surface of matter. Electric charge small enough to be regarded as a point is called

point charge. This is similar to a material particle in mechanics. Electric charge

distributed along a thin line with negligible cross-sectional area is line charge, and

electric charge distributed on a surface with negligible thickness is surface charge.

The principle of conservation of charge is a fundamental principle for electric

charge, which is similar to the law of conservation of mass in mechanics. It states

that the amount of electric charge is constant in a closed system. Even when positive

and negative electric charges cancel each other, resulting in an electrically neutral

state, the algebraic sum of electric charge is unchanged.

1.2 Coulomb’s Law

Electric force works between electric charges, and this force is called the Coulomb

force. This force is analogous to universal gravitation between two particles with

masses. The Coulomb force on two point charges in vacuum is expressed as

follows:

• The force between two electric charges of the same kind (i.e. both positive or

both negative) is repulsive and the force between electric charges of different

kinds (i.e. one positive and one negative) is attractive.

• The magnitude of the force is proportional to the product of the two electric

charges.

• The magnitude of the force is inversely proportional to the square of the distance

between the two electric charges.

• The direction of the force lies on the straight line connecting the two electric

charges.
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Fig. 1.1 The Coulomb force

exerted on point charge q

by q0

The first property is different from the property of universal gravitation whereby

the force between two masses is always attractive. The Coulomb force between two

point charges, q and q0, separated by distance d is mathematically expressed as

F D qq0

4��0r2
; (1.1)

where �0 is a constant called the permittivity of vacuum,

�0 D 107

4�c20
D 8:854 2 � 10�12 C2=Nm2 (1.2)

with c0 D 2:998 � 108 m/s denoting the speed of light in vacuum. The force in

Eq. (1.1) is repulsive when F > 0 and attractive when F < 0. This equation is

called Coulomb’s law.

Since force is a vector, the Coulomb force can be expressed as a vector. We

denote the direction vector of point charge q measured from the position of q0 as

r, as shown in Fig. 1.1. Then, its magnitude is r D jrj and the unit vector pointing

from q0 to q is i r D r=r . Hence, the force that works on q is

F D qq0i r
4��0r2

D qq0r

4��0r3
: (1.3)

The force on q0 is given by �F , and the law of action and reaction is satisfied.

When there are more than two material particles, the gravitational force on

one particle is the linear sum of the gravitational forces exerted on it by all other

particles, and the principle of superposition holds. The same principle holds also for

the Coulomb force. Assume that n point charges, q1; q2; � � � ; qn, are distributed in

vacuum, as shown in Fig. 1.2. The total Coulomb force on another point charge, q,

is given by the sum of each individual Coulomb force exerted by each point charge.

If the direction vectors of point charges qi and q are denoted by r i (i D 1; 2; � � � ; n)

and r , respectively, the Coulomb force exerted by qi on q is

F i D qqi .r � r i /

4��0jr � r i j3
: (1.4)

Hence, the total Coulomb force on q is

F D
n

X

iD1
F i D q

4��0

n
X

iD1

qi .r � r i /

jr � r i j3
: (1.5)
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Fig. 1.2 The Coulomb force

exerted on point charge q by

more than one point charge

Fig. 1.3 The Coulomb force

exerted on point charge q by

electric charge inside small

volume

This result can be extended to the case where electric charge is continuously

distributed. Suppose that electric charge is distributed with the density � within a

region, V, in vacuum, as shown in Fig. 1.3. We treat the electric charge, dq0 D �dV 0,
in an infinitesimal volume dV 0 as a point charge at the position r 0. The Coulomb

force this charge exerts on the point charge, q, at r is given by

dF D q.�dV 0/.r � r 0/

4��0jr � r 0j3 : (1.6)

Hence, the Coulomb force from all electric charges is

F D q

4��0

Z

V

�.r 0/.r � r 0/

jr � r 0j3 dV 0: (1.7)

In the above,
R

dV 0 denotes a volume integral with respect to r 0.
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Example 1.1. Electric charge is uniformly distributed with a linear density, �, along

a semicircle of radius a. Determine the Coulomb force on a point charge,Q, placed

at the center of curvature of the semicircle.

Fig. 1.4 Electric charge

distributed uniformly with

linear density � on a

semicircle and point charge

Q placed at center O

Solution 1.1. An angle is defined as shown in Fig. 1.4. We treat an electric charge

�ad� between � and � C d� as a point charge. The Coulomb force it exerts on

chargeQ at the center is

dF D Q�ad�

4��0a2
D Q�d�

4��0a
:

From symmetry, the vertical components of the Coulomb forces exerted by infinites-

imal arc elements onQ cancel out, and only the horizontal component remains. This

component is dF 0 D dF cos � . Hence, the total Coulomb force is

F D Q�

4��0a

Z �=2

��=2
cos �d� D Q�

4��0a
Œsin ��

�=2

��=2 D Q�

2��0a
:

This force is directed to the right in the figure. }

1.3 Electric Field

When a point charge,Q, is placed at the origin, the Coulomb force on another point

charge, q, at the position r is given by Eq. (1.3) as

F D qQr

4��0r3
: (1.8)



8 1 Electrostatic Field

This expression for force holds for arbitrary q and for arbitrary position r . Hence,

the space can be regarded as exerting the following force on a point charge, q:

F D qE : (1.9)

We can consider the operation E to be caused by an electrical distortion of the space

due to the charge,Q. That is, the Coulomb force on q can be understood as a force

that this charge feels under the electrical distortion of the space. This operation on

q, E , is called the electric field, and its magnitude is called electric field strength.

In the above case, whereQ is at the origin, the electric field strength is

E D Qr

4��0r3
: (1.10)

The unit of electric field strength is [N/C]. This is also expressed as [V/m]

using the unit [V] (volt) of electrostatic potential, which will be defined later.

The electrostatic field, which is the title of this chapter, is the electric field that

comes from electric charges, and does not include the electric field caused by

electromagnetic induction (see Chap. 10).

The electric field strength is the Coulomb force on a unit electric charge. Hence,

calculating the electric field strength is equivalent to calculating the Coulomb force.

Here, we calculate the electric field strength for electric charges distributed in

space. When an electric charge, qi , is placed at position r i (i D 1; 2; � � � ; n), the

electric field strength at r is given by Eq. (1.5) as

E D 1

4��0

n
X

iD1

qi .r � r i /

jr � r i j3
: (1.11)

When an electric charge is continuously distributed in a region, V, with density

�.r 0/, as shown in Fig. 1.3, the electric field strength at r from Eq. (1.7) is

E D 1

4��0

Z

V

�.r 0/.r � r 0/

jr � r 0j3 dV 0: (1.12)

Equations (1.11) and (1.12) for the electric field strength are also called Coulomb’s

law.

The electric field is generally complicated depending on the distribution of

electric charges. However, we can visualize the field using electric field lines (lines

of electric force), which help us to understand the field easily. When a point charge

is put in an electric field of strength E , the charge experiences the Coulomb force

directed parallel to E . If this charge is sufficiently small, its movement driven by

the force will not appreciably change the electric field. The direction of the electric

field line is defined as the direction of the force on a positive charge. Therefore, we

can refer to a line of electric force as an electric field line, and take the tangent to an
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c

a b

Fig. 1.5 Electric field lines of (a) single positive charge, (b) single negative charge and (c) pair of

positive and negative charges

electric field line at an arbitrary point as being parallel to the direction of the electric

field at this point.

It can be shown that electric field lines never cross each other. That is, if two

field lines cross at a certain point, two forces must work on a point charge put on

this point. However, the electric field at any point has a single strength.

Figure 1.5 shows examples of electric field lines. A field line always starts from

a positive charge and ends at a negative charge. One can see that a field line never

begins or ends at a point with no charge. We will cover mathematical expressions of

these facts in Sect. 1.4.

In principle, we can draw an arbitrary number of field lines. Hence, we define

E D jE j as the number of field lines through a unit area perpendicular to the electric

field. Thus, the electric field strength can be expressed through the density of field

lines. For example, if the distance from the point charge is doubled in Fig. 1.5a, the

spacing between two field lines is also doubled. This means that the field strength

becomes one quarter as great, which is directly derived from Eq. (1.10).
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Example 1.2. Electric charge is uniformly distributed with a linear density, �, on a

straight segment of length 2a parallel to the y-axis, as shown in Fig. 1.6. Determine

the electric field strength at a point, A, at distance b from the center of the segment

to the direction of the x-axis.

Fig. 1.6 Electric charge

distributed uniformly with

linear density � on a straight

segment of length 2a

Solution 1.2. We define the y-axis along the length of the segment with the origin

at its center. The electric field strength at A produced by the charge, �dy, in the

region from y to y C dy is

dE D �dy

4��0.y2 C b2/
:

The angle � is defined as shown in the figure. From symmetry, the y-component

of the electric field is cancelled and only the x-component, dE cos � , remains. The

relationship y D b tan � gives dy D bd�= cos2 �and y2 C b2 D b2= cos2 �: The

electric field strength is given by

E D �

4��0b

Z �a

��a
cos �d�

with �a D tan�1.a=b/. After a simple calculation we have

E D �

4��0b
Œsin ��

�a
��a D �a

2��0b.a2 C b2/1=2
:
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For an infinitely long line (a ! 1) this result gives

E D �

2��0b
:

}

1.4 Gauss’ Law

Suppose a closed surface, S, which includes a point charge, q, inside, as shown in

Fig. 1.7. The number of electric field lines produced by this charge that penetrate S

is given by

N D
Z

S

E � dS : (1.13)

Since these lines do not terminate halfway, N is also the number of lines that

penetrate the sphere, S0, of radius r0 with its center on q. Thus, we have

N D
Z

S0

E � dS : (1.14)

Fig. 1.7 Point charge q and closed surfaces S and S0 containing q



12 1 Electrostatic Field

Fig. 1.8 Case where closed surface S containing point charge q has a complicated shape

Since E is parallel to dS and jE j D q=.4��0r
2
0 / is constant on S0, a simple

calculation gives

N D q

4��0r
2
0

Z

S0

dS D q

�0
: (1.15)

In the above
R

S0
dS D 4�r20 is the surface area of S0. This surface area divided

by r20 , i.e., the surface area of a unit sphere, is equal to 4� , the full solid angle.

The reason why the full solid angle appears in Coulomb’s law, Eq. (1.1), is to make

Gauss’ law simple as in Eq. (1.15). Thus, the relationship

N D
Z

S

E � dS D q

�0
(1.16)

holds for S in Fig. 1.7. Thus, when q > 0, N > 0 and field lines go outside S, and

when q < 0, N < 0 and field lines go inside S.

Now consider the case where the shape of sphere S is complicated in such a way

that points on S and points on S0 do not correspond one to one, as shown in Fig. 1.8.

Suppose a thin cone with a top on the point charge, q. We denote small areas on S

cut by the cone as dS1, dS2 and dS3. If the number of field lines that go out of S

through the area, dS1, is dN , the number of field lines that go out through the areas

dS2 and dS3 are �dN and dN , respectively. Hence, the number of field lines inside

the cone is dN and is equal to the number of field lines through the area of S0 cut by

the cone. Thus, we can see that Eq. (1.16) holds when the point charge is included

in S, even if the shape of S is complicated.

Next, consider the case where a point charge, q, is placed outside a closed

surface, S, as shown in Fig. 1.9. From the above discussion, the number of field

lines that enter S through dS1 is equal to the number of field lines that go out of S

through dS2. Hence, we have
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Fig. 1.9 Case where point charge q is outside closed surface S

N D
Z

S

E � dS D 0: (1.17)

Based on the above discussion and the principle of superposition, we can

easily obtain the number of field lines when point charges are distributed. When

point charges q1; q2; � � � ; qn are distributed inside S and qnC1; qnC2; � � � ; qnCm are

distributed outside S, the number of field lines that go out of S is

N D
Z

S

E � dS D 1

�0

n
X

iD1
qi : (1.18)

When the electric charge is continuously distributed with the density, �.r/, the

number of field lines is

N D
Z

S

E � dS D 1

�0

Z

V

�.r/dV; (1.19)

where V is the region surrounded by S. Equations (1.18) and (1.19) show that the

number of field lines that go out of S is equal to the total sum of electric charge

inside S divided by �0. These equations are called Gauss’ law. Gauss’ law describes

the global relationship between the distributed electric charge and the electric field,

while Coulomb’s law describes the local electric field caused by individual electric

charges. These laws are equivalent to each other.

Using Gauss’ theorem, we rewrite Eq. (1.19) as

Z

V

r � EdV D 1

�0

Z

V

�.r/dV (1.20)

for continuously distributed electric charge. Since this equation holds for arbitrary

V, we obtain the relation

r � E D �.r/

�0
: (1.21)

This is Gauss’ divergence law.
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The left side of Eq. (1.21) represents a source of electric field lines. That is, field

lines come out of positive electric charges and go into negative electric charges. An

electric field line never starts or ends at a point where there is no electric charge

(� D 0), since r � E D 0.

Example 1.3. Electric charge is uniformly distributed with a density, �, inside an

infinitely long cylinder of radius a. Determine the electric field strength inside and

outside the cylinder.

Solution 1.3. It is possible to calculate the electric field strength using Coulomb’s

law, Eq. (1.12). However, the calculation is not easy even if we use the result in

Example 1.2. Gauss’ law can be used to calculate the electric field strength when

the geometry is highly symmetric as in this problem.

We apply Gauss’ law, Eq. (1.19), to an imaginary infinite cylindrical closed

surface, S, of radius R and length l with a common axis with the infinite cylinder

(see Fig. 1.10). The electric field, E , is directed radially from the central axis and

perpendicular to it. Hence, E is perpendicular to the elementary surface vector, dS ,

on the top and bottom surfaces, and there is no contribution to the surface integral

of the electric field strength from these surfaces. On the other hand, E is parallel

to dS on the side surface and the strength, E , is constant and depends only on the

distance from the axis. Hence, the surface integral in Eq. (1.19) gives

Z

S

E � dS D 2�RlE:

The total charge inside S is �R2l� for R < a and �a2l� for R > a. Hence, the

electric field strength is

E D �

2�0
RI R < a;

Fig. 1.10 Cylinder with

distributed charge and

cylindrical closed surface S

(case for R > a)
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D �a2

2�0R
I R > a:

The result forR > a is identical with the result of Example 1.2 for an infinitely long

line charge with � D �a2�, i.e., the case where all electric charge is concentrated on

the central axis. When the length of the cylinder is finite, the electric field strength

is not uniform along the length, and Gauss’ law cannot be used to calculate the

strength.

}

Example 1.4. Electric charge is uniformly distributed with a density, � , on a wide

flat plane. Determine the electric field strength at a point, A, at distance h from the

plane.

Solution 1.4. This problem can also be easily solved using Gauss’ law. From

symmetry we can assume that the electric field, E , is directed normally to the plane

with its strength dependent only on the distance from the plane. Assume a closed

cylindrical surface, S, of radius a and length 2h, as shown in Fig. 1.11: Its side

surface is normal to and the top and bottom surfaces parallel to the plane, and A is

on the top surface. We apply Gauss’ law to this cylindrical surface. The field, E , is

parallel to the side surface, and there are no field lines passing through this surface.

The numbers of field lines that go out of the top and bottom surfaces are the same

from symmetry. Thus, we have

Z

S

E � dS D 2ES

with S D �a2 denoting the area of the top or bottom surface. Since the total electric

charge included inside S is �S , the electric field strength is

E D �

2�0
: (1.22)

This result shows that the electric field strength does not change with the distance

from the plane. This can be understood from the fact that the distance between field

lines does not change with the distance from the plane, as shown in Fig. 1.12. }

Fig. 1.11 Cylindrical closed

surface S with point A on top

surface
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Fig. 1.12 Electric field lines

from uniformly distributed

electric charge on a plane

1.5 Electric Potential

The Coulomb force works between any electric charges, and any electric field

originates from electric charges. Hence, the general nature of the electric field can

be deduced from one point charge. This nature can be extended to any case using

the principle of superposition. The electric field strength caused by an isolated point

charge,Q, placed at the origin is given by Eq. (1.10). If we note the expression,

r
�

1

r

�

D � r

r3
; (1.23)

using polar coordinates, we write this electric field strength as

E D �r� (1.24)

with

� D Q

4��0r
: (1.25)

This scalar function, �, is called the electric potential or electrostatic potential.

The unit of electric potential is [Nm/C] and is defined as [V] (volt).

The electric potential produced by a positive electric charge is illustrated in

Fig. 1.13a. This shows the electric potential on a plane that contains the electric

charge. Figure 1.13b illustrates the electric potential given by a pair of positive and

negative electric charges of equal amounts on a plane that contains both charges.

When there are two or more electric charges, the principle of superposition

holds for the electric field strength. A similar principle of superposition holds

for the electric potential. While the superposition is with vector quantities for the

electric field, it is with scalar quantities for the electric potential. For discontinuously

distributed electric charges that provide the electric field strength of Eq. (1.11), the

electric potential is given by
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a b

Fig. 1.13 Electric potential on a plane with (a) positive electric charge and (b) pair of positive and

negative electric charges of equal amounts

�.r/ D 1

4��0

n
X

iD1

qi

jr � r i j
: (1.26)

For continuously distributed electric charge that provides the electric field strength

of Eq. (1.12), the electric potential is given by

�.r/ D 1

4��0

Z

V

�.r 0/

jr � r 0jdV 0: (1.27)

Since the electric field obeys Eq. (1.24), we obtain

r � E D 0 (1.28)

using Eq. (A1.45) in the Appendix. This shows that the electrostatic field is an

irrotational field, that is, a field without a vortex. Equations (1.21) and (1.28)

describe the fundamental properties of the electrostatic field.

Since the inverse operation of a gradient is a curvilinear integral, the electric

potential is generally given by

�.r/ D �
Z r

r0

E � ds; (1.29)

where r0 is a reference point satisfying �.r0/ D 0 and is usually taken at infinity.

It should be noted that Eqs. (1.25)–(1.27) satisfy this requirement. Suppose a closed

loop, C, with the surface in it denoted by S (see Fig. 1.14). The curvilinear integral

of the electric field strength on C is

I

C

E � ds D
Z

S

.r � E/ � dS D 0: (1.30)
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Fig. 1.14 Closed loop C

with surface S in it

a b

Fig. 1.15 Curvilinear integral of electric field strength from point A to point B over closed loop C

through (a) C1 and (b) C2

The above uses Stokes’ theorem given by Eq. (A1.73) in the Appendix and

Eq. (1.28). This holds for any closed loops and can also be derived from Eqs. (1.24)

and (A1.55).

Next, assume two points, A and B, on a closed loop, C, as shown in Fig. 1.15, and

the positions of these points are denoted by rA and rB, respectively. We denote the

line from A to C on one side as C1 and that on the other side as C2. Thus, Eq. (1.30)

gives

Z

C1.A!B/

E � ds D
Z

C2.A!B/

E � ds: (1.31)

Since this equation holds for an arbitrary closed loop C, the curvilinear integral of

the electric field strength is determined only by the starting point, A, and terminal

point, B, and is independent of the path. In fact, Eq. (1.31) is given by

Z rB

rA

E � ds D �.rA/ � �.rB/; (1.32)
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a b

Fig. 1.16 Electric field lines (solid lines) and equipotential surfaces for (a) positive electric charge

and (b) pair of positive and negative electric charges of equal amounts. These illustrate the

conditions on a plane containing the electric charge(s), and the dotted lines are the crossing lines

between the plane and equipotential surfaces

using Eq. (1.29). Such a vector is called a conservative vector. The electric field

belongs to this kind of vector, and the electric field is also called conservative field.

Here, assume that an electric charge is forced to move in the electric field. The

Coulomb force, QE , is exerted on a charge, Q, in the electric field of strength

E . Hence, it is necessary to apply an opposite force, �QE , to the electric charge to

prevent it from moving, and then to add an infinitesimal force to move it in a desired

direction. The work necessary to carry slowly the electric charge from point A to

point B is

W D �Q
Z rB

rA

E � ds D QŒ�.rB/ � �.rA/�: (1.33)

Thus, the work necessary to carry the electric charge from point A to point B is

proportional to the difference in electric potential between the two points but is

independent of the particular path. Specifically, the work needed to carry the electric

charge from a reference point such as infinity to position r is

W D Q�.r/: (1.34)

This work can be regarded as the potential energy of the electric charge,Q.

A virtual surface composed of points with the same electric potential is called an

equipotential surface. The work necessary to carry an electric charge, q, a small

distance, ır, on an equipotential surface is zero from Eq. (1.33). Since this work

is given by �qE � r , we have E � r D 0. That is, E vector is normal to the

equipotential surface. This can also be expressed by saying that the electric field

lines are normal to the equipotential surface. Figure 1.16 shows examples of field

lines and equipotential surfaces.
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Human beings live in the earth’s gravitational field. The gravity we experience is

the universal gravitation between matter and the earth, and is similar to the electric

force discussed here. Hence, we can define a surface on which gravitational potential

is constant, and this surface is spherical and concentric with the earth. The direction

of gravity, i.e., the direction of free motion of matter, is toward the center of the

earth and is perpendicular to the sphere. Contour lines in maps are interfacial lines

between spheres with different potential energies and the surface of the earth.

Elimination of the electric field strength, E , using Eqs. (1.21) and (1.24) gives

r � .r�/ D � �

�0
: (1.35)

The left side is written as r2�. This is expressed as��, and the operator� is called

Laplacian. This operator is

� D r � r D @2

@x2
C @2

@y2
C @2

@z2
(1.36)

in Cartesian coordinates. Sections A1.17 and A1.18 in the Appendix give its

expressions in other coordinates. Using this operator, we rewrite Eq. (1.35) as

�� D � �

�0
: (1.37)

This equation is called Poisson’s equation, which the electrostatic potential satis-

fies. When there is no electric charge (� D 0), Eq. (1.37) gives

�� D 0; (1.38)

which is called Laplace’s equation. We can directly prove that the electric potential

given by Eq. (1.27) satisfies Eq. (1.37) (see Sect. A2.1). Chapter 2 describes the

method of solving Laplace’s equation.

Example 1.5. Electric charge is distributed uniformly with a density, �, inside a

sphere of radius a. Determine the electric potential inside and outside the sphere.

Solution 1.5. We apply Gauss’ law to a virtual sphere, S, of radius, r , concentric

with the charged sphere (see Fig. 1.17). The electric field, E , is parallel to the

elementary surface vector, dS , with a constant strength, E , on the surface of S.

Thus, we have

Z

S

E � dS D 4�r2E:
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Fig. 1.17 Virtual sphere S

with radius r smaller than a

Since the total electric charge inside S is .4�=3/r3� and .4�=3/a3� for r < a and

r > a, respectively, we obtain the electric field strength as

E D �

3�0
r I r < a;

D �a3

3�0r2
I r > a:

Substituting these results into Eq. (1.29) gives

� D �
Z r

1

�a3

3�0r2
dr D �a3

3�0r
I r > a;

D �
Z r

a

�

3�0
rdr C �a2

3�0
D �

2�0

�

a2 � r2

3

�

I r < a:

}

Example 1.6. Electric charge is uniformly distributed with a linear density, �,

around a circle of radius a, as shown in Fig. 1.18. Determine the electric potential at

the center, O.

Fig. 1.18 Electric charge

distributed uniformly around

a circle of radius r
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Solution 1.6. Here, we directly calculate the electric potential with Eq. (1.27). The

electric charge in an infinitesimal region between � and � C d� , �ad� , is regarded

as a point charge, �dV 0, with � denoting the azimuthal angle. Thus, we have

� D 1

4��0

Z 2�

0

�d� D �

2�0
:

}

Example 1.7. Determine the electric potential inside and outside the cylinder in

Example 1.3 when the position R D R0.> a/ outside the cylinder is the reference

point with zero electric potential.

Solution 1.7. Under the given condition the electric potential outside the cylinder is

�.R/ D �
Z R

R0

�a2

2�0R
dR D �a2

2�0
log

R0

R
I R > a: (1.39)

Then, the electric potential inside the cylinder is given by

�.R/ D �.a/�
Z R

a

�R

2�0
dR D �a2

2�0
log

R0

a
C �

4�0
.a2�R2/I R < a: (1.40)

The reason why the reference point is not infinity is that the electric potential

diverges because of the infinite total electric charge. In practice, we easily find that

the electric potential directly estimated from Eq. (1.27) diverges. This divergence

comes from assuming an infinitely long cylinder; the theory of electromagnetism

itself does not contain any defect. }
We rewrite the electric field and electric potential in Example 1.5 as

E.r D a/ D Q

4��0a2
; (1.41)

�.r D a/ D Q

4��0a
(1.42)

with the total electric charge Q D .4�=3/a3�. Both of them diverge in the limit of

a point charge, i.e., a ! 0, indicating an abnormal situation. However, this comes

from the problematic assumption that finite electric charge exists in an infinitesimal

volume, and hence, it is not an essential problem in the theory itself. In practice the

space in which electric charge exists is finite. The concept of “point charge” is an

approximation of the fact that the size of the electric charge is much smaller than

the treated system.
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1.6 Electric Dipole

Most materials are electrically neutral with equal amounts of positive and negative

electric charges, as mentioned in the beginning of this chapter. When an electric

field is applied to such materials, positive and negative charges are displaced in and

against the direction of the electric field, respectively, resulting in local deviations

from neutrality. As a result, some electric phenomena are observed, as will be

discussed in Chaps. 2 and 4. The fundamental element for such electric phenomena

is a pair of positive and negative point charges that are separated by a small distance.

This is called an electric dipole.

Suppose that electric charges q and �q are displaced by d=2 in the positive

and negative directions from the origin along the z-axis, as shown in Fig. 1.19. We

determine the electric potential due to the pair of charges at a point, P, sufficiently

far from the origin. In polar coordinates the distance of P from the origin is denoted

by r.� d/ and the angle of P from the z-axis is denoted by � . The distance from the

positive point charge to P is r 0 D Œr2C.d=2/2�rd cos ��1=2 ' r�.d=2/ cos�; and

the electric potential at P due to this charge is

�C.r/ ' q

4��0
� 1

r � .d=2/ cos�
' q

4��0r2

�

r C d

2
cos �

�

: (1.43)

Similarly, the electric potential due to the negative charge is

��.r/ ' � q

4��0
� 1

r C .d=2/ cos�
' � q

4��0r2

�

r � d

2
cos �

�

: (1.44)

Fig. 1.19 Pair of positive

and negative electric charges

near the origin and point P

sufficiently far from the

charges



24 1 Electrostatic Field

Thus, the electric potential caused by the electric dipole is given by

�.r/ D �C.r/C ��.r/ ' qd cos �

4��0r2
: (1.45)

Here, the electric dipole moment is defined as the product of the direction vector

from the negative electric charge to the positive electric charge, d i z, and the amount

of charge, q:

p D qd i z: (1.46)

In terms of the electric dipole moment, we rewrite the electric potential caused by

the dipole as

�.r/ D p � r

4��0r3
D p cos �

4��0r2
; (1.47)

where p D qd is the magnitude of the electric dipole moment. We calculate the

resultant electric field to be

Er D �@�
@r

D p cos �

2��0r3
; (1.48a)

E� D �1
r

� @�
@�

D p sin �

4��0r3
; (1.48b)

E' D � 1

r sin �
� @�
@'

D 0: (1.48c)

Figure 1.20 shows the electric potential and electric field produced by the dipole.

Suppose that electric charge is distributed in a region, V, around the origin, O. We

determine the electric potential caused by this charge at a point, P, with a position

vector r with r D jrj sufficiently large compared with V (see Fig. 1.21). The electric

potential is formally given by Eq. (1.27). We denote by � the angle between the

vector r 0 from the origin to a point, A, in V and r . Since r 0 D jr 0j � r , we have

1

jr � r 0j ' 1

r

�

1C r 0

r
cos �

�

C � � � D 1

r
C r � r 0

r3
C � � � :

Hence, we rewrite the electric potential at P as

� D Q

4��0r
C p � r

4��0r3
C � � � : (1.49)
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Fig. 1.20 Equipotential

surfaces (dotted lines) and

electric field lines (solid lines)

produced by an electric dipole

on a plane including positive

and negative electric charges

Fig. 1.21 Region V in which

electric charge is distributed

and point P sufficiently far

from it

In the above,

Q D
Z

V

�.r 0/dV 0 (1.50)

is the total amount of electric charge and

p D
Z

V

r 0�.r 0/dV 0 (1.51)

is the total electric dipole moment caused by non-uniform distribution of electric

charge. An expansion such as that in Eq. (1.49) is called a multipole expansion.

For a single electric dipole, shown in Fig. 1.19, the position vectors of charges q

and �q are .d=2/i z and �.d=2/i z, respectively. Thus, we can easily show that the

electric dipole moment of Eq. (1.46) is derived from Eq. (1.51).

Example 1.8. Electric charge is uniformly distributed with linear densities � and

�� on the lines at x D d=2 and x D �d=2 parallel to the z-axis, respectively, as
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shown in Fig. 1.22. Determine the electric potential at a point sufficiently far from

these lines. Such a pair of electric charges is called an electric dipole line.

Fig. 1.22 Electric dipole line

Solution 1.8. We define the cylindrical coordinates as in Fig. 1.22, where the

azimuthal angle ' is measured from the x-axis. The distance between the point,

P, and the line x D d=2 is denoted by RC. The electric field at P produced by this

line charge is

E D �

2��0RC
:

Electric field lines start radially from the line charge. The resultant electric

potential is

�C D �

2��0
log

R0

RC
;

where R0 is the distance to the reference point with zero electric potential. In fact

the above result satisfies the condition �C D 0 at RC D R0.

Similarly, the electric potential due to the line charge at x D �d=2 is

�� D � �

2��0
log

R0

R�
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with R� denoting the distance from the line charge to P. Thus, the total electric

potential is given by

� D �C C �� D �

2��0
log

R�
RC

:

When R � d , we approximateRC as

RC D
"

R2 C
�

d

2

�2

�Rd cos'

#1=2

' R

�

1 � d

2R
cos'

�

and have R� ' Rf1C Œd=.2R/� cos'g: Thus, the electric potential is reduced to

�.R; '/ ' �

2��0
log

1C Œd=.2R/� cos'

1 � Œd=.2R/� cos'
' �

2��0
� d
R

cos':

Using the moment of an electric dipole line given by

Op D �d; (1.52)

we write the electric potential as

�.R; '/ ' Op cos'

2��0R
: (1.53)

The equality holds at the far distance (R � d ). In this case the total electric

charge is 0 and the electric potential is 0 at infinity. Hence, there is no problem

of divergence.

We determine the electric field strength to be

ER D Op cos'

2��0R2
; (1.54a)

E' D Op sin '

2��0R2
; (1.54b)

Ez D 0: (1.54c)

Figure 1.23 shows interfacial lines between the equipotential surfaces and the sheet

and electric field lines. Both are circles. }
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Fig. 1.23 Equipotential

surfaces (dotted lines) and

electric field lines (solid

lines) in a plane normal to the

line charges

Column: Electric Charge Density in Electric Phenomena

Here we estimate the amount of electric charges involved in a particular

electric phenomenon. Equation (1.22) gives the relationship between surface

electric charge and resultant electric field strength in Example 1.4. For a

conductor surface the electric field strength is doubled, as Sect. 2.1 will show.

Here we examine the dielectric breakdown of air as an extreme case. The

dielectric breakdown of air occurs when the applied electric field strength is as

high as 3 � 106 V/m. Realizing such a field strength requires a surface charge

density of � D �0E ' 2:7 � 10�5 C/m2. Since the electric charge of one

electron is 1:6 � 10�19 C, we estimate the number density of electrons or holes

on the surface to be 1:7 � 1014 m�2.
The surface number density of metal atoms such as copper is about 0:6�1020

m�2. If one of every 3:6 � 105 atoms on the surface gets or loses one electron,

such a high electric field is produced. The number density of electric charge

involved in usual electric phenomena is much lower.
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Exercises

1.1. Electric charge,Q, is uniformly distributed on a bar, AB, of lengthL, as shown

in Fig. E1.1. Determine the force on a point charge, q, put at point P.

1.2. Electric charge is uniformly distributed with a linear density, �, on a bar of

length a parallel to the y-axis. Determine the electric field strength at point A at

distance b along the x-axis from the bottom of the bar (see Fig. E1.2).

1.3. Electric charge is uniformly distributed with a linear density, �, around a

square of width a. Determine the electric field strength at point P at distance z above

the center of the square (see Fig. E1.3).

1.4. Electric charge is uniformly distributed with a surface density, � , on a long

thin slab of width 2a. Determine the electric field strength at points A and B (see

Fig. E1.4). A and B are located at distance b above the center and at distance d.> a/

from the center in the same plane as the slab, respectively.

1.5. A solid sphere of diameter a contains a spherical void of radius b. Electric

charges uniformly distributed in the solid portion with a density, � (see Fig. E1.5).

In the figure, a > bCd . Determine the electric field strength at the center, A, of the

spherical void and at point B outside the sphere. Suppose that O, A and B are on the

same line.

1.6. Determine the electric potential at point A in Example 1.2.

1.7. Electric charge is uniformly distributed with a density, � , on the surface of a

sphere of radius a. Determine the electric potential at the center of the sphere.

Fig. E1.1 Uniformly

distributed charge Q on a bar

and point charge q put at a

position extrapolated from the

bar

Fig. E1.2 Bar with

uniformly distributed electric

charge and point A
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Fig. E1.3 Square with

uniformly distributed electric

charge and point P above the

center

Fig. E1.4 Long thin slab

with uniformly distributed

electric charge and points A

and B

Fig. E1.5 Solid sphere

containing a spherical void,

uniformly distributed electric

charge in the solid portion

Fig. E1.6 Circle with

uniformly distributed electric

charge and point P above the

center
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1.8. Suppose that electric charge is uniformly distributed on a circle of radius awith

a linear density, �, as illustrated in Fig. E1.6. Determine the electric field strength

and electric potential at a point P at distance z from the center of the circle.

1.9. Electric charge,Q, is uniformly distributed in a sphere of radius a. Determine

the work necessary to carry a point charge, q, from point A to point B. These points

are outside the sphere, and the distances of A and B from the sphere’s center are rA

and rB, respectively. Suppose that the electric charge distribution in the sphere is not

influenced by the movement of the point charge.



Chapter 2

Conductors

2.1 Electric Properties of Conductors

In terms of electric properties, materials are roughly classified into conductors,

which can easily transport electric current, and insulators, which can hardly do

so. The classification is based on electric conductivity, as shown in Chap. 5. Metals

are conductors, and their electric property originates from free electrons that can

move freely in the material. On the other hand, electrons in insulators such as

mica and glass cannot move because of their bonding to atomic nuclei. Hence,

the electric behavior of conductors and insulators is very different. This chapter

describes the electric behavior of conductors. Chapter 4 describes that of insulators,

which are also called dielectrics or dielectric materials because of their other

electric properties.

The electric behavior of conductors is defined as follows: the electric field and

the electric charge density inside the conductor are zero in the static condition after

the conductor is put in an external electric field. That is,

E D 0 (2.1)

and

� D 0: (2.2)

The properties given by the above two equations are not independent of each other.

Namely, Eq. (2.2) is derived from Eq. (2.1) with Eq. (1.21). From Eq. (2.1) we have

� D const: (2.3)

Thus, we can also say that conductors are equipotential.

Here we mention the relationship between electrical conductivity and the

above definition of a conductor. If some electric field remains in the conductor,

T. Matsushita, Electricity and Magnetism: New Formulation by Introduction

of Superconductivity, Undergraduate Lecture Notes in Physics,

DOI 10.1007/978-4-431-54526-2__2, © Springer Japan 2014

33



34 2 Conductors

a b

Fig. 2.1 (a) Small closed surface that includes part of the conductor surface and (b) electric field

vector around the closed surface. The vector n is a unit vector normal to the surface

free electrons in the material will be driven by this field, which contradicts the

assumption of a static condition. Thus, there is no electric field in a static conductor.

Suppose that an isolated conductor is placed in an electric field. The field

forces the free electrons in the conductor to move. These electrons cannot go outside

the conductor, and some of them accumulate on the surface of the conductor.

The electric field produced by the electric charges on the surface exactly cancels

the external electric field, resulting in a zero electric field inside the conductor. This

realizes the situation assumed above for a conductor.

The appearance of electric charge on the surface of a conductor placed in an

electric field is called electrostatic induction. The free electrons that appear on the

surface are true charges in electromagnetism. It is possible to make an electric field

stay inside the conductor. In this case electric charges move inside the conductor,

resulting in electric current, as will be described in Chap. 5. Hence, it is not a static

situation. It should be noted that, even if the electric current does not change with

time in a steady state, it is different from a static situation. This chapter describes

static electric phenomena without movement of electric charges.

Here we investigate the electric field in the vicinity of the conductor surface.

Suppose a small closed pellet-shaped surface includes the interface between the

conductor and vacuum, as shown in Fig. 2.1a. We denote the height of the pellet

and the area of the conductor surface inside the pellet by �h and �S , respectively.

Suppose that the density of electric charge on the surface of the conductor is � .

We apply Gauss’ law, Eq. (1.19), to the pellet. In this case, the electric field vector,

E , is perpendicular to the surface of the conductor because of the orthogonality

between the electric field and equipotential surface, since the surface of the

conductor is equipotential. Hence, the electric field lines that go out of the side

surface of the pellet are negligible if �h is sufficiently small. Thus, all the electric

field lines go out from the outer surface (see Fig. 2.1b). Since E is perpendicular to

this surface, we have

Z

�S

E � dS D
Z

outersurface

EdS D E�S: (2.4)
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a b

Fig. 2.2 Spherical conductor and virtual spherical surface, S: (a) case where S is outside the

conductor and (b) case where S is inside the conductor

The total electric charge inside the pellet is ��S , and the left side of Eq. (1.19) is

��S=�0. This gives

E D �

�0
: (2.5)

That is, the electric field strength on the surface of the conductor is equal to the

surface electric charge density divided by �0.

Suppose we apply an electric charge,Q, to a spherical conductor of radius a. This

determines the electric field and electric potential inside and outside the conductor.

Since the electric charge stays on the surface and charges repel each other, the charge

is uniformly distributed on the surface. Hence, the surface electric charge density is

� D Q=.4�a2/. We apply Gauss’ law to a supposed spherical surface, S, of radius

r with the same center as that of the conductor. Since the electric charge distribution

has spherical symmetry, we can also assume the electric field to have spherical

symmetry. Hence, the electric field is directed normally to S, and its strength is

uniform on S. If its strength is denoted byE , the surface integral of the electric field

strength in Eq. (1.19) is 4�r2E . For r > a, as shown in Fig. 2.2a, all the electric

charge stays inside S, and the right side of Eq. (1.19) is Q=�0. Thus,

E.r/ D Q

4��0r2
I r > a: (2.6)

The electric field outside the conductor is the same as that when all the electric

charge is concentrated on the center. For r < a, as shown in Fig. 2.2b, the total

electric charge inside S is zero. This gives

E.r/ D 0I 0 � r < a: (2.7)
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a b

Fig. 2.3 (a) Electric field strength and (b) electric potential inside and outside the charged

spherical conductor

Thus, Eq. (2.1) is fulfilled inside the conductor. It can also be shown that Eq. (2.6)

satisfies Eq. (2.5) on the surface of the conductor (r D a) with the surface electric

charge density determined above.

We determine the electric potential from

�.r/ D �
Z r

1
E.r/dr (2.8)

with Eqs. (2.6) and (2.7) and the condition that the electric potential is zero at

infinity. This gives

�.r/ D Q

4��0r
I r > a; (2.9a)

D Q

4��0a
I 0 � r < a: (2.9b)

Figure 2.3a, b shows the determined electric field strength and electric potential,

respectively.

Example 2.1. Suppose a pair of concentric spherical conductors, as shown in

Fig. 2.4. Determine the electric field strength and electric potential in all regions

when the electric charge,Q, is given on the inner conductor.
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Fig. 2.4 Isolated concentric

spherical conductors

Solution 2.1. We can assume thatQ is uniformly distributed on the surface (r D a)

of the inner conductor because of the spherical symmetry. This distribution makes

the electric field zero inside the inner conductor (r < a). The electric charge appears

on the inner surface (r D b) of the outer conductor because of the electrostatic

induction. This electric charge is denoted byQb . We apply Gauss’ law to a spherical

surface, S, of radius r (b < r < c) with the same center as that of the conductors:
Z

S

E � dS D Q CQb

�0
:

Since E D 0 on S, we obtain Qb D �Q. Since no electric charge is given to the

outer conductor, the electric charge that appears on the outermost surface (r D c) is

�Qb D Q.

If the total electric charge inside the virtual sphere, S, of radius r is denoted by

Qr , Gauss’ law gives

E.r/ D Qr

4��0r2
:

Since Qr is equal to Q, 0 and Q for a < r < b, b < r < c and r > c, respectively,

we determine the electric field strength to be

E D 0I 0 < r < a;

D Q

4��0r2
I a < r < b;

D 0I b < r < c;

D Q

4��0r2
I r > c:
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a b c

Fig. 2.5 (a) Electric field strength, (b) electrical potential and (c) electric field lines when electric

charge is given to the inner conductor of a set of concentric spherical conductors

Then, we obtain the electric potential as

�.r/ D �
Z r

1
E.r/dr D Q

4��0r
I r > c;

D Q

4��0c
I b < r < c;

D �.b/�
Z r

b

E.r/dr D Q

4��0

�

1

r
� 1

b
C 1

c

�

I a < r < b;

D Q

4��0

�

1

a
� 1

b
C 1

c

�

I 0 � r < a:

Figure 2.5a–c shows the obtained electric field strength, electrical potential and

electric field lines, respectively.

}
Here, we suppose that the outer conductor in Example 2.1 is grounded.

Grounding is a method to make the electric potential of a conductor zero by

connecting it to the ground. It sometimes accompanies transfer of electric charge.

In the above case, the electric charge on the outer surface (r D c) of the outer

conductor transfers to the ground through the grounding. This occurs because of

the repulsive Coulomb interaction between electric charges on the outer surface.

This can also be understood from the fact that the free electric charge transfers from

the position of higher electric potential, � D Q=.4��0c/, to the position of lower

electric potential, � D 0. The electric charge on the inner surface (r D b) of the

outer conductor does not transfer to the ground. This is because it is attracted by
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Fig. 2.6 Electric field lines

when electric charge is given

to the inside of a set of

concentric spherical

conductors and the outside is

grounded

the electric charge on the surface (r D a) of the inner conductor (see Fig. 2.6).

When some area is surrounded by a grounded conductor, changes in the outside do

not influence the electric field inside the grounded conductor. Such shielding from

outside influence is called electrostatic shielding.

In this case, Qr is Q and 0 for a < r < b and r > b, respectively. This gives

E D 0I 0 � r < a;

D Q

4��0r2
I a < r < b;

D 0I r > b:

Thus, we determine the electric potential to be

�.r/ D Q

4��0

�

1

a
� 1

b

�

I 0 � r < a;

D Q

4��0

�

1

r
� 1

b

�

I a < r < b;

D 0I r > b:

Figure 2.7a, b shows the obtained electric field strength and electric potential,

respectively.
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a b

Fig. 2.7 (a) Electric field strength and (b) electric potential when electric charge is given to the

inner conductor of a set of concentric spherical conductors and the outer conductor is grounded

Example 2.2. Suppose a pair of long coaxial conductors, as shown in Fig. 2.8.

Determine the electric field strength and electric potential in all regions when

an electric charge, �, is given to the inner conductor of unit length. The electric

potential is defined to be zero at a point at distance R0.> c/ from the central axis.

Fig. 2.8 Isolated long

coaxial conductors

Solution 2.2. The electric charge is uniformly distributed on the surface (R D a)

of the inner conductor with value � in unit length. The induced electric charges on

the inner (R D b) and outer (R D c) surfaces of the outer conductor are �� and �
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in unit length, respectively. We determine the electric field strength to be

E.R/ D 0I 0 � R < a;

D �

2��0R
I a < R < b;

D 0I b < R < c;

D �

2��0R
I R > c:

From the definition the electric potential is given by

�.R/ D �
Z R

R0

E.R/dR D �

2��0
log

R0

R
I c < R < R0;

D �

2��0
log

R0

c
I b < R < c;

D �

2��0
log

bR0

cR
I a < R < b;

D �

2��0
log

bR0

ac
I 0 � R < a:

The reason why infinity is not defined as the reference point of zero electric potential

is that the total electric charge is infinite because of the infinite length, as mentioned

in Example 1.7.

}

2.2 Special Solution Method for Electrostatic Field

Suppose we need to determine the density of electric charge on the surface of a

conductor or the electric field strength around the conductor when the conductor is

in an external electric field. The electric potential in the conductor is constant in

space, as shown in Eq. (2.3). Outside the conductor, there is no electric charge and

the electric potential � satisfies Laplace’s equation (1.38).

When we are given the boundary condition on the surface of a treated area, such

as the value of � above or a value of its derivative along the direction normal to

the surface, Laplace’s equation can be solved uniquely. Hence, there is only one

solution of � in the space outside the conductor, which becomes a constant value on

the surface of the conductor. This means that, if some function satisfies the boundary

condition, it is a solution, even though it may be obtained by intuition. In the case

of conductors we know some methods to solve problems. These will be introduced

in this section. When we obtain a solution for �, we obtain the electric field, E ,

using Eq. (1.24) and determine the surface electric charge density from the value of

E with Eq. (2.5).
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a b

Fig. 2.9 (a) Point charge, q, at distance a from a wide flat conductor surface and (b) image charge,

�q, put at the symmetric point of the given charge with respect to the conductor surface

Here, suppose that an electric point charge, q, is put at a position at distance

a from a flat infinite conductor surface, as shown in Fig. 2.9a. Electric charge

of different signs appears on the conductor surface because of the electrostatic

induction and exerts an attractive force on q. The x-y plane is defined on the

conductor surface with the origin, O, at the foot of a perpendicular line from the

electric charge. The electric potential is constant on the conductor surface (z D 0),

as discussed in Sect. 2.1. Figure 1.16b shows that such an electric potential can

be realized in the following way: the conductor is virtually removed, and then an

electric charge, �q, is put at the point .0; 0;�a/, the point symmetric to the location

of q with respect to the conductor surface, as shown in Fig. 2.9b. We now check

the validity of this speculation. The electric potential that the two electric charges

produce outside the conductor .z > 0) is

�.x; y; z/ D 1

4��0

�

q

Œx2 C y2 C .z � a/2�1=2
� q

Œx2 C y2 C .z C a/2�1=2

�

:

(2.10)

It is easily found that this satisfies the condition, � D 0, on the conductor surface

(z D 0). Since this satisfies Laplace’s equation outside the conductor and the

boundary condition of Eq. (2.3) on the conductor surface, this is the solution. This

shows that the above intuitive method is useful. In the conductor (z < 0) the electric

potential is not given by Eq. (2.10) but by � D 0. This solution method is called the

method of images and the virtual electric charge is called an image charge.

From Eq. (2.10) we obtain the electric field strength outside the conductor as

Ex D �@�
@x

D q

4��0

�

x

Œx2Cy2C.z�a/2�3=2� x

Œx2Cy2C.zCa/2�3=2
�

;

Ey D �@�
@y

D q

4��0

�

y

Œx2Cy2C.z�a/2�3=2� y

Œx2Cy2 C .zCa/2�3=2
�

; (2.11)
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Fig. 2.10 Electric field lines

between point charge and

electric charges induced on

the conductor surface

Ez D �@�
@x

D q

4��0

�

z�a
Œx2Cy2C.z�a/2�3=2� zCa

Œx2Cy2C.z C a/2�3=2

�

:

On the conductor surface this reduces to

Ex.x; y; 0/ D Ey.x; y; 0/ D 0; Ez.x; y; 0/ D � qa

2��0.x2 C y2 C a2/3=2

(2.12)

Figure 2.10 shows the electric field lines. Then, from Eq. (2.5) we obtain the density

of electric charge induced on the conductor surface as

� D � qa

2�.x2 C y2 C a2/3=2
: (2.13)

Now we determine the total electric charge. Using the two-dimensional polar

coordinates (x D r cos'; y D r sin'), we have

Z

dx

Z

dy �D� qa
2�

Z 2�

0

d'

Z 1

0

r

.r2Ca2/3=2 drD�qa
�

� 1

.r2Ca2/1=2
�1

0

D�q:

(2.14)

That is, the total electric charge is equal to the amount of the image charge. The

Coulomb force exerted on the electric charge q by the electric charge induced on

the conductor surface is equal to that exerted by the image charge:

F D � q2

4��0.2a/2
D � q2

16��0a2
: (2.15)

This force is attractive (F < 0). This force is called image force.

The electric field strength inside the conductor (z < 0) produced by the electric

charge on the conductor surface is equal to that produced by the electric charge �q
placed at the position of q, .0; 0; a/. Since the latter electric field absolutely cancels

out the electric field produced by q, the electric field in the conductor can be shown

to be zero.
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a b

Fig. 2.11 (a) Grounded spherical conductor and point charge at point A and (b) image charge at

point B after removal of the conductor

Suppose that a point charge, q, is placed at point A at distance d from the
center, O, of a grounded spherical conductor of radius a (d > a), as illustrated in
Fig. 2.11a. Now we determine the electric potential outside the spherical conductor.
Assume that the conductor is removed and an image charge, Q, is placed at point
B at distance h from the center, as shown in Fig. 2.11b. The quantities Q and h are
unknown and need to be determined. Then, the electric potential on the conductor
surface is

� D 1

4��0

�

q

.a2Cd 2�2ad cos �/1=2
C Q

.a2Ch2�2ah cos �/1=2

�

;

D 1

4��0

(

q=
p
a2Cd 2

Œ1�2ad cos �=.a2Cd 2/�1=2C Q=
p
a2Ch2

Œ1�2ah cos �=.a2Ch2/�1=2

)

; (2.16)

where angle †POA is represented by � . Hence, � D 0 is realized at any point on the

conductor surface (r D a) and the boundary condition is satisfied, if the following

conditions are fulfilled:

qp
a2 C d 2

C Qp
a2 C h2

D 0; (2.17)

and

2ad

a2 C d 2
D 2ah

a2 C h2
; (2.18)

which reduce to

h D a2

d
; Q D �aq

d
: (2.19)
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Fig. 2.12 Electric field lines

between the point electric

charge and grounded

spherical conductor

Thus, the electric potential at point .r; �/ outside the conductor is given by

�.r; �/ D q

4��0

�

1

.r2 C d 2 � 2rd cos �/1=2
� a

dŒr2 C .a2=d/2 � 2.a2r=d/ cos ��1=2

�

:

(2.20)

The electric field strength can be calculated with this electric potential (see

Exercise 2.7). Figure 2.12 shows the electric field lines.

We obtain the density of electric charge on the conductor surface as

�.�/ D �0Er .r D a/ D ��0
�

@�

@r

�

rDa
D � q.d 2 � a2/

4�a.a2 C d 2 � 2ad cos �/3=2
:

(2.21)
The total electric charge is

Z �

0
�.�/ � 2�a2 sin � d� D �qa.d

2�a2/
2

Z �

0

sin � d�

.a2Cd 2�2ad cos �/3=2

D q.d 2�a2/
2d

h

.a2Cd 2�2ad cos �/�1=2
i�

0
D � a

d
q;(2.22)

which is equal to the image charge, Q. This charge is transferred from the ground

to the conductor because of attraction by the point charge q. The reason it is smaller

by factor a=d than in the case shown in Fig. 2.9 is that the size of the conductor

is finite. For an infinitely long cylindrical conductor and line charge, the electric

charge induced in a conductor of unit length is equal to the density of the given line

charge (see Exercise 2.8).
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Example 2.3. Suppose that the conductor is not grounded in the problem shown in

Fig. 2.11a. Determine the electric potential outside the conductor.

Solution 2.3. In this case the total electric charge on the conductor surface is zero.

This problem is solved using the method of superposition. That is, this situation

is obtained by a superposition of the electric charge �aq=d , which is distributed

according to Eq. (2.21), and the charge aq=d , which is uniformly distributed on the

surface. The distributed charge �aq=d and point charge q give the zero electric

potential of the conductor, and the distributed charge aq=d makes the conductor

equipotential, q=.4��0d/. Hence, this situation satisfies the conductor condition. If

the electric potential given by Eq. (2.20) is denoted by �1.r; �/, the electric potential

outside the conductor is

�.r; �/ D �1.r; �/C aq

4��0dr
:

}

2.3 Electrostatic Induction

Suppose that a spherical conductor of radius a is put in a uniform electric field of

strength E 0 (see Fig. 2.13). An electric charge appears on the conductor surface and

cancels out the electric field in the conductor. This phenomenon is the electrostatic

induction. Here we determine the surface electric charge density and the electric

field around the conductor. We use cylindrical coordinates and define the z-axis

as the line through the center of the conductor along the direction of the applied

electric field.

Fig. 2.13 Spherical

conductor put in a uniform

electric field
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a

b c

Fig. 2.14 Electrostatic induction in spherical conductor in uniform electric field: (a) displacement

of positive and negative electric charges driven by the electric field, (b) electric charge that appears

on the surface and (c) electric dipole at the center

Before the electric field is applied, positive and negative electric charges are

uniformly distributed inside the conductor, and the conductor is electrically neutral.

When the electric field is applied, the positive and negative electric charges are

displaced in and against the direction of the electric field, respectively, as illustrated

in Fig. 2.14a. This leads to a surface distribution of electric charge that keeps the

inside electrically neutral (see Fig. 2.14b). Hence, this seems to realize the proper

condition of a spherical conductor. We determine the displacement of the electric

charges. In this case we find the electric field produced by the positive charge to be

the same as that produced when all the positive charge is concentrated at the center,

as predicted by Gauss’ law. The electric field produced by the negative charge is also

the same as that produced by all the negative charge if concentrated at the center. As

a result an electric dipole appears at the center of the conductor (see Fig. 2.14c). The

electric dipole moment, p, that satisfies the electric potential is to be determined.

The electric potential outside the conductor is composed of the electric potential,

�f, due to the applied electric field, E 0, and the electric potential, �d, due to the

electric dipole placed at the center after virtually removing the spherical conductor.

These are given by

�f D �E0r cos �; (2.23)

�d D p cos �

4��0r2
; (2.24)

where � is the zenithal angle measured from the direction of applied electric field.

These potentials are independent of the azimuthal angle, '. Now prove for yourself

that �f satisfies the requirements

�@�f

@r
D E0 cos �; �1

r
� @�f

@�
D �E0 sin �:
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The electric potential is given by

� D �f C �d D
�

�E0r C p

4��0r2

�

cos �: (2.25)

We determine the electric dipole moment, p, to be

p D 4��0a
3E0 (2.26)

so that the condition, �.r D a/ D 0, is satisfied independently of the angle � . Thus,

we have

� D �E0
�

r � a3

r2

�

cos �: (2.27)

Since this satisfies the boundary condition on the conductor surface (r D a) and

satisfies Laplace’s equation (note that each component of � satisfies it), this is

the unique solution. Thus, we can say the above speculation is valid. The electric

potential inside the conductor is � D 0.

The electric field strength outside the conductor is given by

Er D �@�
@r

D E0

�

1C 2a3

r3

�

cos �; (2.28a)

E� D �1
r

� @�
@�

D �E0
�

1 � a3

r3

�

sin �; (2.28b)

E' D � 1

r sin �
� @�
@'

D 0: (2.28c)

Figure 2.15 shows electric field lines on the plane that includes the z-axis. We can

see that E� .r D a/ D 0 from Eq. (2.28b). This shows that the electric field vector

is normal to the conductor surface. Equation (2.28a) shows that the electric field

strength has the maximum value, 3E0, at both poles (� D 0; �). We determine the

surface electric charg density to be

� D �0Er .r D a/ D 3�0E0 cos �: (2.29)

The electric dipole moment in a unit volume of the spherical conductor is

P D 3�0E0; (2.30)

which corresponds to the electric polarization in dielectric materials.
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Fig. 2.15 Electric field lines

outside the spherical

conductor

Example 2.4. A long cylindrical conductor is placed in a uniform normal electric

field of strength E0. Determine the electric potential and electric field outside the

conductor and the density of electric charge on the conductor surface.

Solution 2.4. We use cylindrical coordinates and define the z-axis as the central

axis of the conductor, and measure the azimuthal angle, ', from the direction of the

applied electric field. The electric potential outside the conductor can be determined

by putting the electric dipole line, as shown in Example 1.8, on the central axis after

removing the conductor similarly to what we did in the above analysis. We denote

by Op the moment of the electric dipole line in a unit length along the z-axis. Then,

the electric potential outside the conductor is given by

�.R; '/ D
�

�E0RC Op
2��0R

�

cos'

with the aid of Eq. (1.53). The first and second terms are the electric potential due to

the applied electric field and the electric dipole line, respectively. Hence, from the

requirement that � D 0 at R D a, we have

Op D 2��0a
2E0;

which gives

�.R; '/ D �E0
�

R � a2

R

�

cos':
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Thus, we obtain the electric field strength as

ER D �@�
@R

D E0

�

1C a2

R2

�

cos';

E' D � 1

R
� @�
@'

D �E0
�

1 � a2

R2

�

sin ';

Ez D 0:

We can see that the electric field is normal to the conductor surface from E'.R D
a/ D 0. The surface electric charge density is

� D �0ER.R D a/ D 2�0E0 cos':

The electric dipole moment in a unit volume of the conductor is

P D 2�0E0:

}

Column: Applicability of Method of Images

The method of images is useful for solving problems when a conductor

is put in an electric field, as shown in the Examples and Exercises. Now,

suppose that an electric charge is given on a spherical conductor placed at

some distance from a wide flat conductor surface. Can we also use the method

of images in this case?

This problem can be compared with Exercise 2.9. Following the solution

for that exercise, we first remove the spherical conductor and then place a

point charge equal to the given charge at a point at some distance from the

center. Next, we remove the wide flat conductor and put the same electric

charge at the point symmetric to the location of the former charge with respect

to the flat conductor surface. At first this may seem useful in determining the

electric potential outside the two conductors.

However, the electric potential cannot be determined with this method.

How can we prove it? To satisfy the boundary condition on the infinitely

wide conductor surface, all electric charges distributed on the surface must

be connected to the electric charges on the spherical conductor surface

through the electric field lines. In fact, from a superposition of point electric

charges we can show that the total amount of electric charge induced on the

flat conductor surface is equal to the electric charge given to the spherical

conductor. However, to satisfy the boundary condition on the spherical

conductor surface after virtually concentrating all the electric charge at the

image point, the absolute value of the electric charge must be smaller than the

point charge assumed inside the infinite flat conductor [see Eq. (2.22)].
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The method shown in Example 2.3 seems useful for making the spherical

conductor surface equipotential with the same electric charge. However, the

boundary condition on the infinitely wide conductor surface is not satisfied

between one point charge and two separate point charges. For this reason we

cannot obtain an analytic solution. To get a solution it is necessary to distribute

the image charge in such way that the boundary condition is satisfied with the

given electric charge.

For an infinitely long cylindrical conductor as in Exercise 2.9, even

if the electric charge is concentrated on an infinitely thin line, the two

conductors have equal total amounts of electric charge. Hence, we can

obtain an analytic solution that simultaneously satisfies the two boundary

conditions using the method of images. The method of images is useful also

for dielectric materials, and even for magnetic phenomena in superconductors

and magnetic materials. Consider the possibility of solving other problems

using this method.

Exercises

2.1. Determine the electric field strength and electric potential when electric

charges Q1 and Q2 are given to the inner and outer conductors, respectively, of

the concentric spherical conductors in Fig. 2.4.

2.2. In a pair of concentric spherical conductors, an electric charge, Q, is given

to the outer conductor and the inner conductor is grounded, as shown in Fig. E2.1.

Determine the electric charge induced on the inner conductor surface. (Hint: Use

the condition that the electric potential is also zero at infinity).

Fig. E2.1 Concentric

spherical conductors with

grounded inner conductor

2.3. Two wide slab conductors are parallel to each other, as shown in Fig. E2.2, and

an electric charge,Q, is given to the left conductor. The area of each flat surface is S .
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Fig. E2.2 Two parallel slab

conductors

Fig. E2.3 Two perpendicular

flat conductor surfaces and

point charge

Determine the electric charge that appears on each conductor surface, the electric

field strength and electric potential inside and outside the conductors.

2.4. When an electric charge is uniformly distributed with a surface density � on

a thin flat plane, the electric field strength near the plane is given by Eq. (1.22).

However, Eq. (2.5) yields double this electric field strength near the conductor

surface with the same charge density. Discuss the reason for the difference.

2.5. When an electric charge, q, is put at a point at distance a from a wide conductor

surface, the electric charge induced on the conductor surface is given by Eq. (2.13).

Prove that the Coulomb force exerted on q by the induced electric charge is given

by Eq. (2.15).

2.6. Point chargeQ is placed at a point at distances a and b from two flat conductor

surfaces that are perpendicular to each other, as shown in Fig. E2.3. Determine the

electric potential and electric field strength in the vacuum.

2.7. Determine the electric field strength in the space around a spherical conductor

using the electric potential given by Eq. (2.20).



2.3 Electrostatic Induction 53

Fig. E2.4 Cylindrical

conductor parallel to infinite

flat conductor surface

Fig. E2.5 Hollow spherical

conductor and electric charge

at a point inside the conductor

2.8. A long line of electric charge of uniform linear density � is placed at distance

d from the central axis of a grounded parallel long cylindrical conductor of radius

a.< d/. Determine the electric charge induced on the conductor surface.

2.9. A long cylindrical conductor of radius a is placed at distance l.> a/ from an

infinite flat conductor surface, as shown in Fig. E2.4, and an electric charge of linear

density � is given to the cylindrical conductor. Determine the density of electric

charge on the surfaces of the two conductors.

2.10. Electric charge Q is placed at a point at distance h from the center, O, of a

hollow spherical conductor, as shown in Fig. E2.5. Determine the electric potential

in the vacuum and the electric charge density on the inner surface of the conductor.



Chapter 3

Conductor Systems in Vacuum

3.1 Coefficients in Conductor System

We learned that conductors are equipotential in the static condition in the last

chapter. We determined the electric potential and electric field strength around a

conductor and the distribution of electric charge were determined for simple cases.

Most cases involve more than one conductor rather than a single conductor. In this

chapter we cover a conductor system, which consists of two or more conductors.

For a single conductor, as shown in Fig. 2.2, electric potential � is generally

proportional to electric chargeQ according to

� D pcQ; (3.1)

where pc is a proportional constant called the coefficient of electric potential and

is uniquely determined when the shape of the conductor is given. Its unit is [V/C].

When we rewrite Eq. (3.1) as

Q D C� (3.2)

focusing on the electric charge,C D 1=pc is called capacity or capacitance, which

is equal to the electric charge stored by a unit electric potential, and its unit is [F]

(farad). For the spherical conductor of radius a in Fig. 2.2, we have C D 4��0a.

Suppose that there are two conductors and electric charges Q1 and Q2 are

given to conductors 1 and 2, respectively (see Fig. 3.1). When Q1 only is given

to conductor 1, the electric potential, of conductor 1, �1, is given by

�1 D p11Q1: (3.3)

The electric potential of conductor 2, �2, is similarly given by

�2 D p21Q1: (3.4)
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Fig. 3.1 Two charged

conductors

The constants p11 and p21 are also coefficients of electric potential and now

elements of a matrix. While p11 is determined only by the shape of conductor 1,

p21 depends both on the shape of conductor 2 and the relative position of the two

conductors. When conductor 1 is charged, an electric charge appears on the surface

of conductor 2 to shield its interior, resulting in an equipotential state under the

condition that total electric charge is zero. This will be easily understood from

Example 2.2. The distribution of electric charge on the surface of conductor 1 is

also influenced by the electric charge induced on conductor 2. Thus, it should be

noted that the electric charge is distributed in a way that makes the two conductors

equipotential.

WhenQ2 is given to conductor 2, the electric potentials in the two conductors are

�1 D p11Q1 C p12Q2; (3.5a)

�2 D p21Q1 C p22Q2: (3.5b)

Between the non-diagonal coefficients the following relationship holds, as will be

described later:

p12 D p21: (3.6)

Extending the above case, we consider a system composed of n conductors

schematically shown in Fig. 3.2. Suppose that conductor i has electric charge, Qi ,

and electric potential, �i (i D 1; 2; � � � ; n). The electric potential of conductor i is

expressed as

�i D
n

X

jD1
pijQj : (3.7)

The pij ’s are the coefficients of electric potential determined by the geometrical

arrangement of the conductors and fulfill the following conditions:

pi i > 0; pij D pj i � 0.i ¤ j /; pi i � pij : (3.8)
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Fig. 3.2 System of n

conductors

The relationships between the electric potentials and electric charges take the matrix

form

2

6

6

4

�1

�2
�
�n

3

7

7

5

D

2

6

6

4

p11 p12 � � � p1n
p21 p22 � � � p2n

� � � � � �
pn1 pn2 � � � pnn

3

7

7

5

2

6

6

4

Q1

Q2

�
Qn

3

7

7

5

: (3.9)

The electric charge is given by the inverse of Eq. (3.7):

Qi D
n

X

jD1
Cij�j : (3.10)

The Cij ’s in Eq. (3.10) are capacity coefficients or capacitance coefficients and

have the same unit as the capacitance. These coefficients fulfill the following

conditions:

Ci i > 0; Cij D Cj i � 0.i ¤ j /: (3.11)

Equation (3.10) can also be expressed as

2

6

6

4

Q1

Q2

�
Qn

3

7

7

5

D

2

6

6

4
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C21 C22 � � � C2n

� � � � � �
Cn1 Cn2 � � � Cnn
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�2
�
�n

3

7

7

5

: (3.12)

The matrix of coefficients of electric potential, OP D fpij g, and the matrix of

capacitance coefficients, OC D fCij g, are inverses of each other and satisfy

OP OC D OC OP D OE; (3.13)
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where OE is a unit matrix. The above relationship can also be expressed as

n
X

kD1
pikCkj D

n
X

kD1
Cikpkj D ıij ; (3.14)

where ıij is the Kronecker delta,

ıij D 1I i D j;

D 0I i ¤ j: (3.15)

The equalities pij D pj i and Cij D Cj i in Eqs. (3.8) and (3.11) are called the

reciprocity theorem.

Here, we prove the inequalities pi i > 0, pi i � pij and pij � 0.i ¤ j /, in

Eq. (3.8). Suppose that a unit electric charge, Qi D 1, is given only to conductor i

and no electric charge is given to other conductors (Qj D 0I j ¤ i ). In this case we

have �i D pi i , and we can easily show that this potential is positive. The electric

potential of conductor i is the highest. From the relationship �i � �j D pj i , we

can prove the inequality pi i � pij . In the assumed space there is only positive unit

electric charge, and the electric potential at infinity has the lowest value, 0. Thus,

we can show the condition pij � 0 holds.

The coefficients of electric potential or the capacitance coefficients are useful

in practical cases. For example, we apply the coefficients of electric potential to

the example in Fig. 2.11 to determine the electric charge induced on the spherical

conductor by the point charge. The spherical conductor is named conductor 1, and

a very small imaginary conductor placed at the position of the point charge is called

conductor 2. Under the conditionsQ1 D 1 and Q2 D 0, we have

�1 D p11 D 1

4��0a
; �2 D p21 D 1

4��0d
: (3.16)

Under the conditionsQ1 D Q and Q2 D q, the electric potential of conductor 1 is

�1 D p11Q C p12q: (3.17)

Since conductor 1 is grounded, �1 D 0. This and the reciprocity theorem p12 D p21
give

Q D �p21
p11

q D � a
d
q; (3.18)

which agrees with Eq. (2.19). Thus, the coefficients of electric potential can

sometimes be used to determine the induced electric charge more easily than with

the method discussed in Sect. 2.2.
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Example 3.1. Prove the inequalities, Ci i > 0 and Cij � 0.i ¤ j /, in Eq. (3.11).

Solution 3.1. Suppose that conductor i has a unit electric potential (�i D 1) by

having some electric charge and the electric potentials of other conductors are forced

to be zero (�j D 0) by grounding. In this case, the electric charge on conductor i

must be positive, and we can easily prove Qi i D Ci i > 0. Part of the electric field

lines start from conductor i and go to infinity, but the remaining lines reach other

conductors (see Fig. 3.3). Hence, the electric charges induced in these conductors

are negative or zero, which proves the inequalityQj D Cj i � 0.

Fig. 3.3 Electric field lines

when unit electric potential is

given to conductor i and other

conductors are grounded

}

Example 3.2. An electric charge, Q, is given to the inner conductor of the set

of concentric spherical conductors in Fig. 3.4, and then the outer conductor is

grounded. Determine the electric charge induced on the outer conductor using the

coefficients of electric potential. Neglect the thickness of the outer conductor.

Fig. 3.4 Concentric

spherical conductors
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Solution 3.2. The inner and outer conductors are called conductors 1 and 2,

respectively. Under the conditionsQ1 D 0 and Q2 D 1, we have

�2 D p22 D 1

4��0b
; �1 D p12 D p21 D 1

4��0b
:

Under the conditionsQ1 D Q and Q2 D q, the electric potential of conductor 2 is

�2 D p21QC p22q D QC q

4��0b
:

When conductor 2 is grounded, the condition �2 D 0 gives

q D �Q: }

3.2 Capacitor

The component used to store electric charge is called a condenser or a capacitor.

Larger capacitance is usually desirable for this purpose. As shown in Sect. 3.1, the

capacitance of a spherical conductor of radius a is C D 4��0a. It amounts only to

5:6 � 10�12 F even for a spherical conductor 10 cm in diameter. Hence, a different

shape is needed to obtain a larger capacitance.

Common capacitors consist of two parallel sheet conductors separated by a small

distance, as schematically shown in Fig. 3.5. Each sheet conductor is connected to

an outer circuit with a lead line for transporting electric charge. Such a capacitor

is called a parallel-plate capacitor. The sheet conductor that stores the electric

charge is called an electrode. Suppose that the surface area of each electrode is S

and the distance between the two electrodes is d , which is very small compared with

Fig. 3.5 Parallel-plate

capacitor
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Fig. 3.6 Distribution of

electric charge and electric

field in parallel-plate

capacitor

the electrode size: d �
p
S . When an electric charge, Q, is given to one electrode

and �Q is given to the other, the electric charges are distributed uniformly on the

inner surfaces of the electrodes (facing each other) but do not appear on the outer

surfaces. Hence, the electric field is almost concentrated in the space between the

electrodes and perpendicular to them except at the edges (see Fig. 3.6).

The surface density of positive electric charge is

� D Q

S
: (3.19)

Applying Gauss’ law to the closed region shown by the dotted line in Fig. 3.6, we

find the electric field strength in the space between the two electrodes to be

E D �

�0
D Q

�0S
: (3.20)

Thus, the electric field strength is uniform in this space. The electric potential

difference between the two electrodes is

V D Ed D Qd

�0S
: (3.21)

The electric charge that can be stored in the capacitor by a unit electric potential

difference is

C D Q

V
D �0S

d
: (3.22)

This is the capacity or capacitance of the capacitor.

For a parallel-plate capacitor with square electrodes 10 cm in size and a distance

of 0.2 mm between the two electrodes, the capacitance is estimated to be 4:4 �
10�10 F, which is about 80 times larger than that of the spherical conductor 10 cm

in diameter mentioned above. This shows that the structure of the parallel-plate

capacitor is quite effective for storing electric charge. In practical capacitors a
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dielectric material is used in the space between the two electrodes to enhance the

capacitance further (see Chap. 4).

In the above example of a spherical conductor, we discussed the relationship

between the electric charge and electric potential difference between the conductor

and infinity. The same result is obtained for the parallel-plate capacitor by giving

an electric charge to one electrode and by grounding the other electrode instead of

giving the opposite electric charge. The grounding process gives the same definition

for capacitance as for a spherical conductor. The reason for the small capacitance in

the spherical conductor is that a weak electric field is spread over the whole space.

Example 3.3. Determine the capacitance of the concentric spherical capacitor in

Fig. 3.7.

Fig. 3.7 Concentric

spherical capacitor

Solution 3.3. An electric charge, Q, is given to the inner conductor and the outer

conductor is grounded. Then, an electric charge, �Q, appears on the inner surface

of the outer conductor. Applying Gauss’ law, we determine the electric field strength

to be

E D Q

4��0r2
I a < r < b;

D 0I 0 � r < a; r > b;

where r is the distance from the center. The electric potential difference between

the electrodes is

V D
Z b

a

Q

4��0r2
dr D Q

4��0

�

1

a
� 1

b

�

:

Hence, the capacitance is given by

C D 4��0ab

b � a
:

}
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Example 3.4. A pair of conductors is regarded as a capacitor. Describe the capaci-

tance in terms of the coefficients of electric potential or the capacitance coefficients.

Solution 3.4. Electric charges Q and �Q are given to conductors 1 and 2,

respectively. Since the electric potential of each conductor is written as

�1 D p11Q � p12Q;

�2 D p21Q � p22Q;

using the coefficients of electric potential, its difference is

V D �1 � �2 D .p11 C p22 � p12 � p21/Q:

Thus, the capacitance is given by

C D Q

V
D 1

p11 C p22 � p12 � p21
D 1

p11 C p22 � 2p12
:

The electric charges in the two conductors are written as

Q D C11�1 C C12�2;

�Q D C21�1 C C22�2;

using the capacitance coefficients. Thus, we obtain the electric potential differ-

ence as

V D �1 � �2 D C11 C C22 C C12 C C21

C11C22 � C12C21
Q:

This gives the capacitance,

C D C11C22 � C12C21

C11 C C22 C C12 C C21
D C11C22 � C 2

12

C11 C C22 C 2C12
: }

We connect capacitors in series, apply an electric charge,Q, to the top capacitor,

and then ground the lowest capacitor, as shown in Fig. 3.8. An electric charge, �Q,

is induced on the inner surface of the lower electrode of the top capacitor to shield

the lower electrode from the electric field produced by Q on the upper electrode.

From the principle of conservation of charge, an electric charge, Q, appears on the

upper electrode of the next capacitor. This is repeated, and finally electric charges
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Fig. 3.8 Capacitors

connected in series

˙Q appear on both electrodes of each capacitor. When the capacitance of each

capacitor is Ci.i D 1; 2; � � � ; n/, the electric potential difference in each capacitor is

Vi D Q

Ci
: (3.23)

Hence, the total electric potential difference through the series of capacitor is

V D
n

X

iD1
Vi D Q

n
X

iD1

1

Ci
: (3.24)

If the capacitance of capacitors connected in series is denoted by C , we have

1

C
D

n
X

iD1

1

Ci
: (3.25)

Next, we connect capacitors in parallel, as shown in Fig. 3.9. When we apply a

voltage, V , between the terminals, the electric charges that appear in the capacitor

of capacitance Ci are ˙Qi D ˙CiV . Hence, the total amount of positive electric

charge is

Q D
n

X

iD1
Qi D V

n
X

iD1
Ci : (3.26)

If the capacitance of capacitors connected in parallel is denoted by C , we have

C D
n

X

iD1
Ci : (3.27)
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Fig. 3.9 Capacitors

connected in parallel

3.3 Electrostatic Energy

Suppose there is a conductor system with electric charges. The electric charges

produce an electric field in the space outside the conductors. Hence, we can regard

the conductor system as having some kind of energy. This is called electrostatic

energy or electric energy. It is reasonable to assume that there is no electrostatic

energy in this system when there is no electric charge. Thus, the electrostatic energy

is equivalent to the mechanical work necessary to bring electric charges from infinity

until we attain the desired distribution of electric charge.

Now we determine the electrostatic energy for an isolated conductor of capaci-

tance C and electric charge Q. Suppose that the conductor has an electric charge,

q, in an intermediate state while electric charge is being brought from infinity. The

electric potential of the conductor is

�.q/ D q

C
:

A small amount of electric charge, dq, is additionally carried from infinity to the

conductor. If this amount is sufficiently small, the transfer of this charge does not

change the electric potential �.q/. Hence, the mechanical work needed for carrying

this charge is given by

dW D �.q/dq D q

C
dq:

Thus, the total work needed to carry all electric charge,Q, is

W D
Z Q

0

q

C
dq D 1

2C
Q2: (3.28)
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a b

Fig. 3.10 System composed of two conductors in the intermediate condition where (a) conductor

1 has q1 and conductor 2 has no electric charge and (b) conductor 1 hasQ1 and conductor 2 has q2

This gives the electrostatic energy,Ue. In terms of the electric potential, � D Q=C ,

this can also be written as

Ue D 1

2C
Q2 D 1

2
Q� D 1

2
C�2: (3.29)

Next, consider a system composed of two conductors. Suppose that conductor 1

has electric chargeQ1 and electric potential �1, and conductor 2 has electric charge

Q2 and electric potential �2. Electric charge is brought from infinity to conductor 1,

and then from infinity to conductor 2. Now suppose an intermediate condition where

conductor 1 has electric charge q1 and conductor 2 has no electric charge, as shown

in Fig. 3.10a. Under this condition the electric potential of conductor 1 is p11q1 in

terms of the coefficient of electric potential. Hence, the work needed to carry Q1 to

conductor 1 is

W1 D
Z Q1

0

p11q1dq1 D 1

2
p11Q

2
1: (3.30)

In the next intermediate condition where conductor 1 hasQ1 and conductor 2 has q2
(see Fig. 3.10b), the electric potential of conductor 2 is p21Q1Cp22q2. We similarly

obtain the work needed to carryQ2 to conductor 2 as

W2 D
Z Q2

0

.p21Q1 C p22q2/dq2 D p21Q1Q2 C 1

2
p22Q

2
2: (3.31)

Finally the electrostatic energy of this system is

Ue D W1 CW2 D 1

2
p11Q

2
1 C p21Q1Q2 C 1

2
p22Q

2
2: (3.32)
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If the order of carrying electric charge is reversed, the electrostatic energy

becomes

Ue D 1

2
p11Q

2
1 C p12Q1Q2 C 1

2
p22Q

2
2 (3.33)

by exchanging subscripts 1 and 2. Since Eqs. (3.32) and (3.33) must coincide with

each other, we derive

p12 D p21: (3.34)

Thus, the reciprocity theorem holds in this simple case. Using this relationship, we

rewrite the electrostatic energy as

Ue D 1

2
Q1.p11Q1 C p12Q2/C 1

2
Q2.p21Q1 C p22Q2/

D 1

2
.Q1�1 CQ2�2/: (3.35)

We can extend the above result to a conductor system with n conductors.

Assume that conductor i has an electric charge Qi and an electric potential �i
(i D 1; 2; � � � ; n). The electrostatic energy of this system is given by

Ue D 1

2

n
X

iD1
Qi�i D 1

2

n
X

iD1

n
X

jD1
pijQiQj : (3.36)

We can extend this result to the case where electric charge is continuously

distributed with the density �.r/ and the electric potential is given by �.r/ in region

V (see Fig. 3.11). Regarding an electric charge �dV in a small region dV as a point

charge, Eq. (3.36) gives

Fig. 3.11 Region V in which

electric charge density is �.r/

and electric potential is �.r/
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Ue D 1

2

Z

V

�.r/�.r/dV (3.37)

for the electrostatic energy in V.

Example 3.5. When electric charges ˙Q are given to a capacitor of capacitance

C , the electric potential difference between the two electrodes is V . Prove that the

electrostatic energy of this capacitor is

Ue D 1

2C
Q2 D 1

2
QV D 1

2
CV 2: (3.38)

Solution 3.5. We apply Eq. (3.35) to the electrostatic energy of this capacitor. The

positive and negative electrodes are named conductors 1 and 2, respectively. Then,

we have Q1 D Q, Q2 D �Q and �1 D �2 C V . Substituting these relationships

into Eq. (3.35) gives

Ue D 1

2
QV:

Other expressions are obtained using Eq. (3.22). }
When there is an electric field in space, the space is distorted electrically

as mentioned in Sect. 1.3. Hence, the electrostatic energy is understood as the

energy associated with the electrical distortion in the space. Now we discuss the

electrostatic energy for the parallel-plate capacitor in Sect. 3.2. The capacitance of

this capacitor with surface area S and distance d between the electrodes is given by

Eq. (3.22). From this and Eq. (3.38) we have

Ue D 1

2
�0E

2Sd: (3.39)

In the above V D Ed is used for the electric potential difference. Since Sd is

the volume of the region in which the electric field is concentrated with a constant

strength E , we can regard that electrostatic energy of density

ue D 1

2
�0E

2 (3.40)

as filling this region. This is called electrostatic energy density or electric energy

density.
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We can show that Eq. (3.40) holds generally also for cases where the electric field

strength is not uniform in the space. Substituting Eq. (1.21) into Eq. (3.37) gives

Ue D 1

2
�0

Z

V

� r � E dV

D 1

2
�0

Z

V

r � .�E/ dV � 1

2
�0

Z

V

E � r� dV; (3.41)

where Eq. (A1.40) is used. Applying Gauss’ theorem to the first integral, we have

1

2
�0

Z

S

�E � dS ; (3.42)

where S is the surface area of region V. If we select a sphere with a sufficiently large

radius r as V, we have � / r�1, E / r�2 and
R

dS / r2 on S. Hence, we can show

that the surface integral is proportional to r�1, resulting in zero in the limit r ! 1.

Thus, we can disregard the surface integral. Using Eq. (1.24) for the second term,

Eq. (3.41) gives

Ue D 1

2
�0

Z

V

E 2dV: (3.43)

Thus, the electrostatic energy density is generally given by Eq. (3.40).

Example 3.6. Determine the electrostatic energy when an electric chargeQ is given

to a spherical conductor of radius a.

Solution 3.6. The electrostatic energy can be obtained by more than one method.

First, we do this using the electric potential. The electric field strength is

E.r/ D 0I 0 � r < a;

D Q

4��0r2
I r > a;

and the electric potential of the conductor is given by

�.a/ D Q

4��0a
:

Hence, from Eq. (3.29) we obtain the electrostatic energy as

Ue D 1

2
Q�.a/ D Q2

8��0a
:
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We then calculate the electrostatic energy using the electrostatic energy density.

From Eq. (3.40) with the above electric field strength, the electrostatic energy

density is

ue.r/ D 0I 0 � r < a;

D Q2

32�2�0r4
I r > a:

Hence, we obtain the same result,

Ue D
Z 1

a

ue � 4�r2 dr D Q2

8��0a
: }

3.4 Electrostatic Force

The electrostatic force between charged conductors is the sum of the Coulomb force

on individual electric charges distributed on the conductor surface. We can also

determine this force using the principle of virtual displacement and the electrostatic

energy.

Suppose that part of an isolated conductor system is forced to move a small

distance �s by an electrostatic force F . The work done by the system, F � �s, is

the energy that the system loses. Hence, if we use �Ue to denote the variation in

electrostatic energy caused by the movement, the work is equal to ��Ue. Thus, we

have

F ��s C�Ue D 0: (3.44)

In the limit j�sj D �s ! 0 for displacement along the direction of the electrostatic

force, this gives

F D �@Ue

@s
: (3.45)

We calculate the force on the electrodes of the parallel-plate capacitor in Fig. 3.5

using this method, when electric charges ˙Q are given. The surface area and the

distance between the electrodes are S and d , respectively. Assume that the distance

is changed to x. In this case the electric charge Q and the electric field strength

E D Q=�0S are unchanged, and it is reasonable to describe the electrostatic energy

of Eq. (3.39) as

Ue D Q2x

2�0S
(3.46)



3.4 Electrostatic Force 71

in terms of Q. It should be noted that the voltage V changes with the distance, and

it is not suitable to describe Ue in terms of V . Hence, we determine the electrostatic

force on the electrode as

F D � @Ue

@x

ˇ

ˇ

ˇ

ˇ

xDd
D � Q2

2�0S
: (3.47)

Since this force is negative for expansion (increasing x), it is attractive.

Example 3.7. Suppose that the electric potential difference V of the parallel-plate

capacitor is kept constant by connecting an electric power source, as shown in

Fig. 3.12. The surface area of the electrode is S , the distance between the electrodes

is d and the electric charges are ˙Q. Determine the electrostatic force between the

electrodes.

Fig. 3.12 Parallel-plate

capacitor connected with

electric power source of

voltage V . The electric

charges are˙Q in the initial

condition

Solution 3.7. It should be noted that the electric charge and the electric field

strength change when the distance between the electrodes changes. That is, when the

distance between the electrodes changes from d to dC�x, the electric field strength

and electric charge change to V=.dC�x/ and �0SV=.dC�x/, respectively. This is

caused by a transfer of electric energy between the capacitor and the power source.

From Eq. (3.39) we obtain the variation in electrostatic energy as

�Ue D �0SV
2

2

�

1

d C�x
� 1

d

�

:

The amount of electric charge that transfers to the power source is

�Q D ��0SV
�

1

d C�x
� 1

d

�

:
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Hence, the energy that flows into the power source during the displacement is

�W D V�Q D �0SV
2

�

1

d
� 1

d C�x

�

:

If we denote the force on the electrode by F , the energy that the system loses is

equal to the sum of the work done to the outside, F�x, and�W . Since this is equal

to ��Ue, we have

F D � lim
�x!0

�W C�Ue

�x
D ��0SV

2

2d 2
:

This is also an attractive force. It should be noted that this force is the same as that

in Eq. (3.47). }

Column: Case of Infinite Amount of Electric Charge

The surface integral of Eq. (3.42) must be zero so that Eqs. (3.37) and (3.43)

coincide with each other. Is this condition also fulfilled when there is an infinite

amount of electric charge in the whole space as discussed in Example 1.8? Here

we treat the case where an electric charge Q0 is given to a unit length of an

infinitely long cylindrical conductor of radius a. The electric field strength and

electric potential are

E.R/ D 0I 0 � R � a;

D Q0

2��0R
I R > a;

and

�.R/ D Q0

2��0
log

R0

a
I 0 � R � a;

D Q0

2��0
log

R0

R
I R > a:

In the above, R0 is the distance from the central axis to the reference point

at which the electric potential is zero. We obtain the electrostatic energy in

a unit length from Eq. (3.29) as U 0e D Q0�.a/=2 D .Q02=4��0/ log.R0=a/:

The electrostatic energy can also be calculated from Eq. (3.43). Restricting the

region within a < R < R0 for integration, we have

U 0e D 1

2
�0

Z R0

a

�

Q0

��0R

�2

2�RdR D Q02

4��0
log

R0

a
;

which agrees with the above result. Thus, it is consistent with the assumption

that � is zero on the surface of R D R0, resulting in a zero surface integral
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in Eq. (3.42). This agreement holds even in the limit R0 ! 1. This means

that there is no contradiction in the theoretical framework, although there is the

problem of divergence of electrostatic energy because of the infinite amount of

electric charge.

Exercises

3.1. Determine the electric potential of the spherical conductor in Example 2.3

using the coefficients of electric potential and confirm that the result agrees with the

solution in this example. The spherical conductor and a small imaginary conductor

placed at the position of point charge q are named conductors 1 and 2, respectively.

3.2. In Exercise 2.8 we supposed that a line charge of uniform linear density �

is placed at distance d from the central axis of a grounded parallel long cylindrical

conductor of radius a.< d/. Determine the electric charge induced in the cylindrical

conductor using the coefficients of electric potential. (Hint: the reference point of the

electric potential should be sufficiently far away following the original definition.)

3.3. Determine the electric charge induced in the internal spherical conductor in

Exercise 2.2 using the coefficients of electric potential.

3.4. An electric charge � in a unit length is uniformly distributed on the inner

conductor of the coaxial conductors in Fig. E3.1, and the outer conductor is

grounded. Determine the electrostatic energy and capacitance in a unit length of

the coaxial conductors.

3.5. Determine the electrostatic energy when electric charges ˙Q are given to

the concentric spherical conductors in Fig. 3.7 using the following methods: (1)

Fig. E3.1 Cylindrical

coaxial conductors
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Fig. E3.2 Two long and thin

cylindrical conductors

parallel to each other

Fig. E3.3 Plate conductor inserted into gap of parallel-plate capacitor

the electrostatic energy density, (2) the electric potential and (3) the coefficients

of electric potential.

3.6. Two long and thin cylindrical conductors of radius a are placed parallel to

each other with distance d , as shown in Fig. E3.2. Determine the capacitance in a

unit length of these conductors. Assume that a is sufficiently smaller than d .

3.7. A plate conductor is inserted into the gap of a wide parallel-plate capacitor a

distance x from the edge, as shown in Fig. E3.3. The capacitor is connected to a

power source of output voltage V . Determine the force on the plate conductor.

3.8. The electric power source is removed from the parallel-plate capacitor in

Fig. E3.3 when the electric charges in the capacitor are ˙Q, and then a plate

conductor is inserted into the gap of the capacitor up to the depth x. Determine

the force on the plate conductor.



Chapter 4

Dielectric Materials

4.1 Electric Polarization

When two electric charges are separated by a grounded metal sheet, there is no force

between the two electric charges. On the other hand, when the two electric charges

are separated by a paper or wood, although the force may be weakened slightly, it

does not reduce to zero. This shows that the effect of electric charge, i.e., the electric

field, penetrates the paper or wood. Such material is called a dielectric material or

insulator.

Here, we discuss the difference in electric behavior between conductors and

dielectric materials. When an electric field is applied to a conductor, free electric

charges (free electrons) move to the surface of the conductor to shield the interior

from the external electric field. When the conductor is grounded, the electric charge

on the surface opposite to the applied electric field is zero, and no electric field line

appears from this surface. Hence, electric field lines from the electric charge, Q,

do not reach a point, A, at which the other charge stays, as shown in Fig. 4.1a. In a

dielectric material, electrons cannot freely move to shield because of their bonding

to nuclei, which allows the electric field to penetrate, as shown in Fig. 4.1b. Hence,

even when an electric field is applied to a dielectric material, no current can flow

in it.

When no electric field is applied to a dielectric material, positive and negative

electric charges are uniformly distributed on the macroscopic scale, resulting in an

electrically neutral state. When an electric field is applied the dielectric material,

nuclei and electrons bonded by them are slightly displaced opposite to each other,

as shown in Fig. 4.2a, and innumerous electric dipoles appear inside the dielectric

material. As a result, the electrically neutral state is maintained inside but electric

charges appear on the surfaces (see Fig. 4.2b). This phenomenon is called electric

polarization or dielectric polarization, and the electric charge that appears on

the surface is called polarization charge. Although this phenomenon is similar

to the electrostatic induction in conductors learned in Sect. 2.3, the polarization

charges cannot be carried outside. This is a difference from true electric charges

T. Matsushita, Electricity and Magnetism: New Formulation by Introduction

of Superconductivity, Undergraduate Lecture Notes in Physics,

DOI 10.1007/978-4-431-54526-2__4, © Springer Japan 2014
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a b

conductor dielectric material

Fig. 4.1 Electric field lines produced by electric charge, Q, for (a) grounded conductor and

(b) dielectric material

a b

negative

electric charge

positive

electric charge

Fig. 4.2 (a) Displacement of positive and negative electric charges in external electric field and

(b) resultant polarization charges on the surfaces

in conductors. In some dielectric materials the electric polarization exists even in

the absence of an external electric field. Such a material is called a ferroelectric

material and its electric polarization is called spontaneous polarization.

There are also other kinds of electric polarization. The above example is caused

by relative displacements of electrons and nuclei under an applied electric field and

is called electronic polarization. In ionic crystals composed of cations and anions,

the relative displacements of positive and negative ions in the electric field brings

about the electric polarization called ionic polarization (see Fig. 4.3). In the case

of water or hydrogen chloride, the molecule itself has an electric dipole moment,

as shown in Fig. 4.4. In the usual state of gas or liquid in the absence of external

electric field, each electric dipole moment of a polar molecule is directed randomly,
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a b
Fig. 4.3 Arrangement of

ions in ionic crystal (a) before

and (b) after application of

electric field

a bFig. 4.4 Examples of

molecule with electric dipole

moment: (a) water (H2O) and

(b) hydrogen chloride (HCl)

a b
Fig. 4.5 Direction of electric

dipole moments of polar

molecules (a) before and

(b) after application of

electric field

resulting in no electric polarization (see Fig. 4.5a). When an electric field is applied,

each electric dipole moment tends to incline in the direction of the electric field and

the electric polarization appears, as shown in Fig. 4.5b. This is called orientation

polarization. In many cases the magnitude of electric polarization is proportional

to the electric field strength.

Since electrons are able to respond quickly to a variation in the electric field

because of their light mass, they can contribute to the electric polarization even

for an AC (alternating current) electric field with very high frequency. On the other

hand, polar molecules cannot quickly rotate themselves to follow the variation in the

electric field because of their heavy mass. Hence, those can contribute only to the

electric polarization at a fairly low frequency. The ionic polarization is intermediate.
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Fig. 4.6 Dependence of electric polarization on the frequency of an AC electric field

Fig. 4.7 Electric polarization

in rectangular parallelepiped

Figure 4.6 shows a typical dependence of electric polarization on the frequency of

AC electric field. Hence, each contribution can be discriminated by measuring the

frequency dependence of electric polarization.

We use P to represent the electric dipole moment appearing in a unit volume of

the dielectric material in an electric field of strength E . This quantity is also called

electric polarization. Its unit is [C/m2]. Usually P is proportional to E :

P D �0�eE : (4.1)

In the above, �e is a dimensionless constant of proportionality called electric

susceptibility.

Suppose a small rectangular parallelepiped with each surface perpendicular to a

coordinate axis, as shown in Fig. 4.7, in a dielectric material. The extension of this

region along each axis is denoted by �x, �y and �z. We assume that the electric

polarization, P , is directed along the z-axis. The magnitude of the electric dipole

moment in this region of volume �V D �x�y�z is P�V . If the surface densities

of polarization charge that appears on the top and bottom surfaces of this region
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Fig. 4.8 Electric polarization

tilted from the normal

direction of the surface of a

rectangular parallelepiped

are ˙�p, polarization charges of ˙�p�x�y appear on the top and bottom surfaces.

Hence, the electric dipole moment can also be given by �p�x�y�z D �p�V . Thus,

we have

�p D P: (4.2)

That is, the electric polarization is equal to the amount of positive polarization

charge that crosses the surface of a unit area perpendicular to the direction of

polarization.

Figure 4.8 shows the case where the electric polarization, P , is tilted by an

angle � from the unit surface vector, n. In this case the surface density of positive

polarization charge that appears on the surface is

�p D P cos � D P � n: (4.3)

When the electric polarization is uniform in space, the polarization charge

appears only on the surface as shown above. However, when the electric polarization

is not uniform, the polarization charge also appears inside the dielectric material.

Suppose a closed surface, S, inside the dielectric material, as shown in Fig. 4.9. The

amount of electric charge that goes out of S through a small surface area, dS , is

given by �pdS D P � dS , using Eq. (4.3). Hence, the total polarization charge that

goes out of S is

Fig. 4.9 Polarization charge

that goes out of closed

surface, S, and polarization

charge that remains in interior

region, V
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Q0p D
Z

S

P � dS D
Z

V

r � P dV; (4.4)

where V is the interior of S.

The volume density of polarization charge is called polarization charge density.

The density of polarization charge that appears after the electric polarization is

denoted by �p. Then, the total polarization charge in V is

Qp D
Z

V

�p dV: (4.5)

The appearance of polarization charge in V is caused by the movement of polariza-

tion chargeQ0p to the outside. Hence, the principle of conservation of electric charge

requiresQp CQ0p D 0. This is written as

Z

V

.r � P C �p/dV D 0: (4.6)

Since this relationship holds for arbitrary V, we have

r � P D ��p: (4.7)

In the above we learned that electric polarization in dielectric materials and

electrostatic induction in conductors are similar to each other. However, there is

an essential difference between them. When a transverse electric field is applied

to a long dielectric hollow cylinder, a similar discussion suggests a distributed

polarization charge on the inner surface, as shown in Fig. 4.10a. As a result, the

electric field appears also in the interior space. In the case of a hollow cylinder made

of a conductor, electric charge does not appear on the inner surface in an external

transverse electric field, since this electric charge produces an electric field inside

the conductor (see Fig. 4.10b).

Fig. 4.10 (a) Dielectric hollow cylinder in transverse electric field and induced polarization charge

and (b) conducting hollow cylinder in transverse electric field and induced electric charge
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Example 4.1. A dielectric sphere of diameter a is placed in a uniform electric

field of strength, E 0, as shown in Fig. 4.11a. Determine the surface density of

polarization charge that appears on the surface of the dielectric sphere. The

magnitude of electric polarization, P , is P .

a b

Fig. 4.11 (a) Electric polarization induced in dielectric sphere and (b) polarization charge that

appears on the surface

Solution 4.1. We define polar coordinates with the origin at the center of the

sphere and the axis along the direction of the applied electric field. We denote

by � the zenithal angle measured from this axis, as shown in Fig. 4.11b. We also

denote the positive and negative electric charge densities and the relative displace-

ment of these charges by ˙�p and ı, respectively. Thus, the surface density of

polarization charge is given by �p.�/ D �pı cos � . Since the magnitude of electric

polarization is equal to the amount of positive polarization charge that crosses the

surface of a unit area, it is given by P D �pı. Thus, we have

�p.�/ D P cos �: (4.8)

}

4.2 Electric Flux Density

We learned that there are two kinds of electric charge, i.e., true electric charge, which

can be transferred outside, and polarization charge, which appears on the surface of

dielectric materials but cannot be transferred outside. In addition, there are two kinds
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of electric field in dielectric materials, i.e., the electric field applied from outside and

the one caused by electric polarization that occurs inside. Thus, electric phenomena

in dielectric materials are rather complicated. To distinguish these contributions, it

is convenient to introduce a new concept, electric flux density, defined below.

Suppose a closed surface, S, with inner region V. We denote the densities of true

electric charge and polarization charge in V by � and �p, respectively. Both of them

contribute to the electric field and Gauss’ law is written as
Z

S

E � dS D 1

�0

Z

V

.�C �p/dV: (4.9)

Substituting Eq. (4.7) for �p gives

Z

S

.�0E C P/ � dS D
Z

V

� dV: (4.10)

Here we define

D D �0E C P (4.11)

and call this electric flux density or electric displacement. Its unit is the same

as for P and is [C/m2]. In a relatively wide range of electric field strength, P is

proportional to E , and D is also proportional to E . Thus, we can write D as

D D �0.1C �e/E D �E ; (4.12)

where � is a constant inherent to each material and is called the dielectric constant.

Its unit is the same as for �0. If � is written as

� D �0�r; (4.13)

�r=1+�e is a dimensionless quantity and is called the relative dielectric constant.

Table 4.1 gives values of �r for various materials.

Table 4.1 Values of �r for various materials at room temperature

Gas (1 atm) Solid

Oxygen 1.00049 Titanium dioxide 83–183

Nitrogen 1.00055 Quartz glass 3.5–4.5

Carbon dioxide 1.00092 Mica 5–9

Liquid Ebonite 2.6–5.0

Water 78.54 Bakelite 4.5–9.0

Ethyl alcohol 24.30 Polyethylene 2.3–2.7

Solid Vinyl chloride 3.3–6.0

Sodium chloride (NaCl) 5.9 Ferroelectric material

Silicon (Si) 10.7–11.8 Barium titanate 1,150–4,500

Aluminum oxide (Al2O3) 8.5–11 Rochelle salt �4,000



4.2 Electric Flux Density 83

Using the electric flux density, Eq. (4.10) gives

Z

S

D � dS D
Z

V

� dV: (4.14)

This is an extension of Eq. (1.19) and is generally called Gauss’ law. It should be

noted that there is no constant in Eq. (4.14) and only true electric charge is involved.

Equation (1.19) describes only phenomena in vacuum or conductors, and is Gauss’

law in a narrow sense. The surface integral of electric flux density on the left side

of Eq. (4.14) is called electric flux. Hence, Eq. (4.14) states that the total electric

flux going out of a closed surface is equal to the amount of true electric charge in it.

Using Gauss’ theorem on the left side of Eq. (4.14), it is rewritten as

Z

V

r � D dV D
Z

V

� dV: (4.15)

Since this relationship holds for arbitrary V, we have

r � D D �: (4.16)

This is the general form of Gauss’ divergence law. It states that the divergence of

the electric flux density is caused by true electric charge.

Substituting Eqs. (1.24) and (4.12) into Eq. (4.16) gives

�� D ��
�
: (4.17)

This equation is an extension of Eq. (1.37) to the case in which a dielectric material

is also contained and is the general form of Poisson’s equation. Its solution is given

by Eq. (1.27) by replacing �0 by �.

Similarly to the definition of an electric field line for E , an electric flux line

can be defined for D. Namely, the direction of a tangential line at any point on the

electric flux line is the same as the direction of D, and its line density is defined to

be equal to the magnitude of D.

As shown by Eq. (4.16) the true electric charge density changes from the

divergence of �0E to that of D D �E . Hence, when the space between two

electrodes in a capacitor is occupied by a dielectric material with dielectric constant

�, its new capacitance is given by the former expression of capacitance by replacing

�0 by �. For example, the capacitance of a parallel-plate capacitor with a material of

dielectric constant � is given by

C D �S

d
D �0�rS

d
(4.18)

[see Eq. (3.22)]. The capacitance increases by factor �r by filling the space between

the two electrodes with a dielectric material.
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Example 4.2. Determine the capacitance of the parallel-plate capacitor in Fig. 4.12.

The surface area of the electrodes is S , their distance is d , and the thicknesses of

dielectric materials 1 and 2 with dielectric constants �1 and �2 are t and d � t ,

respectively.

Fig. 4.12 Parallel-plate

capacitor with two kinds of

dielectric material

Solution 4.2. When a voltage, V , is applied to this capacitor, we assume that

electric charges, ˙Q, are induced uniformly on the two electrodes. Non-uniformity

at the edge can be disregarded if the electrodes are sufficiently wide. The electric

field and electric flux density are directed normally to the electrodes and the

interface between the two dielectric materials. Since there is no true electric charge

on the interface, the magnitude of the electric flux density, D, is continuous there.

This value is equal to the surface density of electric charge on the electrode, � D
Q=S , using Gauss’ law. Hence, the electric field strengths in dielectric materials 1

and 2 are E1 D D=�1 and E2 D D=�2, respectively. The voltage between the two

electrodes is

V D E1t C E2.d � t/ D Q

S

�

t

�1
C d � t

�2

�

:

This gives a capacitance of

C D Q

V
D �1�2S

�2t C �1.d � t/ :

}

Example 4.3. Determine the capacitance of the parallel-plate capacitor shown in

Fig. 4.13 in which dielectric materials 1 and 2 with dielectric constants �1 and �2
each occupy half of the space between the two electrodes. The surface area of the

electrodes is S and their distance is d .
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Fig. 4.13 Parallel-plate

capacitor with two kinds of

dielectric material

Solution 4.3. When a voltage, V , is applied to this capacitor, the electric field

strength is E D V=d in the space between the two electrodes. The electric flux

densities in dielectric materials 1 and 2 are D1 D �1V=d and D2 D �2V=d ,

respectively. Hence, the surface electric charge density on the electrode surface

is different between the regions faced to dielectric materials 1 and 2. That is, the

density is �1 D �1V=d and �2 D �2V=d in respective regions. The total electric

charge on the electrode surface is

Q D .�1 C �2/
S

2
D .�1 C �2/SV

2d
:

The capacitance is

C D Q

V
D .�1 C �2/S

2d
:

}

4.3 Boundary Conditions

In this section we investigate the boundary conditions to be fulfilled for the electric

field and electric flux density at an interface between two different dielectric

materials with dielectric constants �1 and �2. Assume that a true electric charge

of a surface density, � , exists on the interface.

First, we discuss the boundary condition for the electric flux density. Assume a

closed surface, �S, of a small pellet region at the interface with top and bottom

surfaces parallel to the interface, as shown in Fig. 4.14a. Assume that the height,

�h, is sufficiently small. We apply Gauss’ law, Eq. (4.14), to this region. Since �h

is sufficiently small, the surface integral of electric flux on the side surface can be

neglected and only the contributions from the top and bottom surfaces remain. We

denote the electric flux density in dielectric materials 1 and 2 near the boundary by
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a b

Fig. 4.14 (a) Small closed surface �S that contains a part of the interface between two dielectric

materials and (b) electric flux density in each dielectric material at the interface

D1 and D2, respectively, and the normal unit vector on the boundary directed from

dielectric material 1 to 2 is denoted by n (see Fig. 4.14b). The electric flux going out

from the top and bottom surfaces are D1 � n�S and �D2 � n�S , respectively. Here

�S is the area of the interface in the small region. Since the electric charge inside

this small region is ��S , Gauss’ law gives

n � .D1 � D2/ D �: (4.19)

This shows that the difference between the normal components of the electric flux

density is equal to the surface electric charge density. Hence, if there is no true

electric charge on the interface, the normal component of electric flux density is

continuous at the interface. If the electric potentials in dielectric materials 1 and 2

in the vicinity of the interface are �1 and �2, Eq. (4.19) is written as

n � .�1 r�1 � �2 r�2/ D ��: (4.20)

Secondly, we discuss the boundary condition for the electric field. We denote

the electric field in dielectric materials 1 and 2 near the boundary by E 1 and

E 2, respectively. One can show that a plane that contains the vectors E 1 and E 2

is perpendicular to the interface, as illustrated in Fig. 4.15a (see Exercise 4.3).

Consider a small rectangle with two sides parallel to the interface on this plane, as

shown in Fig. 4.15b. The circular integral of the electric field on the rectangle is zero

from Eq. (1.30). When the height, �h, of the rectangle is sufficiently small, there

are only two contributions from the top and bottom sides to the circular integral.

We denote the unit vector on the top side along the direction of integral by t. Then,

the integrals on the top and bottom sides are respectively given by E 1 � t�s and

�E 2 � t�s, where�s is the length of these sides. Hence, we have

t � .E 1 � E 2/ D 0: (4.21)
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a

b

Fig. 4.15 (a) Plane that contains the electric field vectors in each dielectric material at the interface

and (b) small rectangle on the plane that contains the interface

That is, the component of the electric field parallel to the interface is continuous.

However, since t is a unit vector directed along the electric field projected upon the

interface, Eq. (4.22) is not a general description. Then, we define a unit vector, a,

normal to the plane, as shown in Fig. 4.15b. This vector satisfies the relationship

a � n D t and is perpendicular to both the plane that includes the electric field and

n. Thus, Eq. (4.21) is rewritten as Œn � .E 1 � E 2/� � a D 0; and we obtain

n � .E 1 � E 2/ D 0: (4.22)

This condition can also be described in terms of the electric potential. If the

derivative along the direction of t is @=@t , Eq. (4.21) is written as

@�1

@t
D @�2

@t
: (4.23)

Hence, when integrating along the direction of t, we have �1 � �2 D c with c

denoting a constant. If there is a finite difference in the electric potential in a very

narrow region, it results in an extremely strong electric field in the normal direction

at the interface. This is not practical and results in c D 0. That is,

�1 D �2: (4.24)

The electric potential is continuous at the interface.

Confirm that the above boundary conditions are satisfied on the interfaces of two

dielectric materials in Examples 4.2 and 4.3.

Here, we discuss the boundary conditions of the electric field at the conduc-

tor surface using the above conditions. Suppose that the vacuum and the conductor
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Fig. 4.16 Refraction of

electric field lines at interface

are regions 1 and 2, respectively, and �0 is used for the dielectric constant of the

conductor. Since E2 D 0, Eq. (4.22) shows that the electric field in the vacuum has

only a normal component. Equation (4.19) leads to D1 D � , i.e.,

�0E1 D �: (4.25)

This agrees with Eq. (2.5). Thus, the boundary conditions for a conductor can also

be included in the above general boundary conditions.

Now, we discuss refraction of electric field lines at a boundary using the boundary

conditions. Suppose an interface between two dielectric materials with dielectric

constants �1 and �2. Assume that an electric field of strength E1 is applied to

dielectric material 1 in the direction of angle �1 measured from the normal direction

to the interface, as shown in Fig. 4.16. The strength and angle of the electric field in

dielectric material 2 are denoted by E2 and �2. Since true electric charge does not

usually exist on the interface, the normal component of the electric flux density is

continuous on it:

�1E1 cos �1 D �2E2 cos �2: (4.26)

The continuity of the parallel component of the electric field is written as

E1 sin �1 D E2 sin �2: (4.27)

These equations give

tan�1

tan�2
D �1

�2
: (4.28)

This is the law of refraction. We obtain E2 and �2 as

E2 D E1

"

sin2 �1 C
�

�1

�2

�2

cos2 �1

#1=2

; (4.29)

�2 D tan�1
�

�2

�1
tan �1

�

: (4.30)
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Example 4.4. A dielectric sphere of radius a is placed in a uniform electric field of

strength E0, as shown in Fig. 4.11a. Determine the electric field strength, electric

flux density and electric polarization inside and outside the dielectric sphere and the

polarization charge density on the surface.

Solution 4.4. Polar coordinates are defined as in Example 4.1. We can assume that

a uniform electric polarization occurs in the dielectric material as in this example.

The electric field outside the sphere is given by the sum of the applied electric

field and the contribution of the electric dipole placed at the origin after virtual

removal of the sphere. The electric field strength inside the sphere is expected to

be uniform because of the uniform electric polarization. Let p denote the electric

dipole moment directed along the applied electric field. From Eqs. (1.48a) and

(1.48b), the radial and zenithal components of the electric field outside the sphere

produced by the electric dipole are

Er D p cos �

2��0r3
; E� D p sin �

4��0r3
:

We denote the internal electric field strength by E . The continuities of the parallel

component of the electric field and normal component of the electric flux density at

the surface (r D a) are given by

�E0 sin � C p sin �

4��0a3
D �E sin �; �0

�

E0 cos � C p cos �

2��0a3

�

D �E cos �:

From these equations we have

p D � � �0
� C 2�0

4��0a
3E0; E D 3�0

� C 2�0
E0:

We can see that E is smaller than E0 because of � > �0. This means that the

dielectric material is shielded by the polarization charge. Using these results the

electric field is

Er D Dr

�0
D

�

1C � � �0
� C 2�0

� 2a
3

r3

�

E0 cos �;

E� D D�

�0
D �

�

1 � � � �0

� C 2�0
� a

3

r3

�

E0 sin �

outside the sphere (r > a) and

Er D Dr

�
D 3�0

� C 2�0
E0 cos �; E� D D�

�
D � 3�0

� C 2�0
E0 sin �



90 4 Dielectric Materials

Fig. 4.17 Small shell

containing a part of the

surface of a dielectric sphere

Fig. 4.18 Electric field lines

inside and outside the

dielectric sphere for � D 3�0

inside the sphere (r < a). These results can also be obtained by solving Eqs. (4.20)

and (4.24) for the electric potential. We obtain the electric polarization as

P D .� � �0/E D 3�0.� � �0/
� C 2�0

E0:

Here, we suppose a small shell that contains a part of the surface (see Fig. 4.17).

We apply Eq. (4.9) to this region. Since there is no true electric charge, the difference

in normal component of the electric field is equal to the surface polarization charge

density divided by �0. Thus, we have

�p.�/ D 3�0.� � �0/
� C 2�0

E0 cos � D P cos �:

This agrees with Eq. (4.8) in Example 4.1.

Figure 4.18 shows electric field lines inside and outside the dielectric sphere for

� D 3�0. Electric flux lines are continuous on the surface, similarly to the magnetic

flux lines in Fig. 9.16. }
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Example 4.5. A point charge, q, is placed at a position of distance a from a wide

flat surface of a dielectric material of dielectric constant �, as shown in Fig. 4.19.

Determine the electric potential in the vacuum and in the dielectric material.

Fig. 4.19 Point charge q

placed at distance a from the

surface of a dielectric

material

Solution 4.5. We draw the z-axis from the point charge in the direction normal to

the dielectric material’s surface, which is defined to be z D 0. We define the x-y

plane on the surface with the origin at the foot of a perpendicular line from the

point charge. This problem can also be solved using the method of images shown in

Sect. 2.2.

We assume that the electric potential in the vacuum region (z > 0) is given by

the sum of a contribution from q and that from a virtual point charge, q0, placed at

the symmetric position with respect to the surface with virtual removal of dielectric

material, as shown in Fig. 4.20a. Thus, the electric potential at point .x; y; z/ is

�v D 1

4��0

�

q

Œx2 C y2 C .z � a/2�1=2
C q0

Œx2 C y2 C .z C a/2�1=2

�

:

We assume that the electric potential in the dielectric material (z < 0) is equal to

that produced by a point charge, q00, placed at the original position with virtual

occupation of the vacuum region by the same dielectric material, as shown in

Fig. 4.20b. Thus, the electric potential at point .x; y; z/ is

�d D 1

4��
� q00

Œx2 C y2 C .z � a/2�1=2
:

From Eq. (4.24) the continuity condition for the parallel component of the electric

field is expressed as �v.z D 0/ D �d.z D 0/, which gives

q C q0

�0
D q00

�
:

The continuity condition for the normal component of the electric flux density is

given by Eq. (4.20) with � D 0: �0.@�v=@z/zD0 D �.@�d=@z/zD0, which gives

q � q0 D q00:
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a b

Fig. 4.20 Solution using the method of images: assumed conditions for (a) vacuum and (b)

dielectric material

From these equations we have

q0 D � � � �0

� C �0
q; q00 D 2�

� C �0
q:

Thus, the electric potential is

� D q

4��0.� C �0/

�

� C �0

Œx2 C y2 C .z � a/2�1=2
� � � �0
Œx2 C y2 C .z C a/2�1=2

�

I z > 0;

D q

2�.� C �0/
� 1

Œx2 C y2 C .z � a/2�1=2
I z < 0:

}

4.4 Electrostatic Energy in Dielectric Materials

We discussed the electrostatic energy of a conductor system in vacuum in Sect. 3.3.

This does not essentially change even when there are dielectric materials in the

system. Formally only the change from �0 to � occurs in the region of dielectric

materials because of the change from Eq. (1.21) to Eq. (4.16). That is, the electro-

static energy density in dielectric materials is

ue D 1

2
�E 2 D 1

2
E � D D 1

2�
D2 (4.31)
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and the electrostatic energy is given by its volume integral,

Ue D
Z

V

1

2
�E 2 dV D

Z

V

1

2
E � D dV D

Z

V

1

2�
D2 dV: (4.32)

Example 4.6. A dielectric plate of thickness t and dielectric constant � is inserted

into the gap of a wide parallel-plate capacitor to a distance x from the edge, as

shown in Fig. 4.21. The surface area and distance of the electrodes are S and d , and

the sizes of the dielectric plate and electrode in the direction normal to the sheet are

the same. When electric charges, ˙Q, are given to the two electrodes, determine

the force on the dielectric plate.

Fig. 4.21 Parallel-plate

capacitor with inserted

dielectric plate

Solution 4.6. The part in which the dielectric plate is not inserted can be regarded

as one capacitor, and from Eq. (3.22) we obtain its capacitance as

C1 D �0S

d

�

1 � x

a

�

:

The capacitance of the remaining part, in which the dielectric plate is inserted, is

similarly given by

C2 D �0�Sx

aŒ�d � .� � �0/t �
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(see Example 4.2). From Eq. (3.27) we obtain the total capacitance as

C D C1 C C2 D �0S

d

�

1 � x

a

�

C �0�Sx

aŒ�d � .� � �0/t �
:

The variation rate of the electrostatic energy determines the force on the dielectric

plate:

F D � d

dx

�

Q2

2C

�

D Q2

2C 2

dC

dx

D Q2atd

2�0S
� .� � �0/Œ�.d � t/C �0t �

faŒ�.d � t/C �0t �C .� � �0/txg2 :

This force is positive for increasing x because � > �0, showing that it is

attractive. }

Column: Electric Induction in a Conductor and Electric Polarization

in a Dielectric Material

From electric field lines inside and outside the dielectric sphere placed in

a uniform electric field shown in Fig. 4.17, one can see that the interior is

imperfectly shielded by polarization charge. On the other hand, the electric

flux density inside the sphere is higher than the external value because � larger

than �0, similarly to the magnetic flux lines in Fig. 9.16. The solution for

the electric flux density, D, has the same form as that for the magnetic flux

density, B, for a magnetic sphere placed in the uniform magnetic flux density

treated in Example 9.4 in Chap. 9. This similarity comes from the fact that,

when there is no electric charge (� D 0), D obeys the same equation as B

(r � D D r � B D 0).

If the dielectric constant � is infinitely large in Example 4.4, the solution

for the electric field strength coincides with that in the spherical conductor

in Sect. 2.3. That is, E D 0 inside and Eq. (2.28) holds outside the sphere.

In this case the electric flux density has a finite value. However, its value is

meaningless and we can disregard it. There is also the relationship

�p � �

between the polarization charge density �p on the dielectric sphere surface in

Example 4.4 and the true electric charge density � on the spherical conductor

surface in Sect. 2.3. The equality holds in the limit � ! 1. Hence, there

is no large difference between the true electric charge in the conductor and

the polarization charge in the dielectric material that are displaced in the
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electric field (�p D .4=7/� for � D 5�0). Hence, it is reasonable to assume

similar models for the two cases. This shows that the electrostatic shielding in

conductors and electric polarization in dielectric materials are essentially the

same mechanism.

Exercises

4.1. The space between the electrodes in a concentric spherical capacitor is

occupied by two dielectric materials with dielectric constants, �1 and �2, as shown

in Fig. E4.1. Determine the capacitance of the capacitor.

4.2. The space between the electrodes in a concentric spherical capacitor is

occupied by two dielectric materials with dielectric constants, �1 and �2, as shown

in Fig. E4.2. Determine the capacitance of the capacitor.

4.3. The electric fields, E 1 and E 2, in dielectric materials 1 and 2 are defined

in the vicinity of the interface. Prove that these vectors stay in the same plane

perpendicular to the interface.

4.4. A uniform electric field of strength E0 is applied parallel to a thin slit of

vacuum in a dielectric material of dielectric constant �, as shown in Fig. E4.3.

Determine the electric field and electric flux density inside the slit.

4.5. A uniform electric field of strengthE0 is applied normal to a thin slit of vacuum

in a dielectric material of dielectric constant �, as shown in Fig. E4.4. Determine the

electric field and electric flux density inside the slit.

4.6. An electric field of strength E0 is applied normal to a wide flat surface of

dielectric material of dielectric constant �, as shown in Fig. E4.5. Determine the

Fig. E4.1 Concentric

spherical capacitor with two

dielectric materials
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Fig. E4.2 Concentric

spherical capacitor with two

dielectric materials

Fig. E4.3 Vacuum slit

parallel to the electric field in

a dielectric material

Fig. E4.4 Vacuum slit

normal to the electric field in

a dielectric material

Fig. E4.5 Electric field

applied normal to the

dielectric material surface
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electric field and electric flux density inside the dielectric material and the surface

density of polarization charge.

4.7. The internal electric field strengthE and surface density of polarization charge

�p are obtained when a dielectric sphere is placed in a uniform electric field of

strength E0 in Example 4.4. Prove that the obtained value of E coincides with the

sum ofE0 and the electric field strength produced by the polarization charge. (Hint:

use Eq. (2.29) for the relationship between the uniform electric field strength and

the surface electric charge density.)

4.8. A long dielectric cylinder of radius a and dielectric constant � is placed in a

uniform normal electric field of strength E0. Determine the electric field strength,

electric flux density, electric polarization and surface polarization charge density.

4.9. A uniform line charge of density � is placed at a position of a distance a from

a wide flat surface of a dielectric material of dielectric constant �. Determine the

electric potential in the vacuum and the dielectric material.



Chapter 5

Steady Current

5.1 Current

A conductor contains freely moving electric charge and the Coulomb force can

move the electric charge when an electric field is directly applied to the conductor.

This movement of electric charge is current. In this chapter we discuss electric

phenomena when a steady current that does not change with time flows. As distinct

from magnetization current and displacement current discussed in Chaps. 9 and 11,

the current of true electric charge is sometimes called true current.

The current is a vector with a magnitude and direction. When electric charge dQ

passes through a cross-section within time dt , the current is given by

I D dQ

dt
: (5.1)

Its unit is [C/s] and is denoted [A] (ampere).

Although the current is an amount of electric charge that passes through a certain

cross-section in a unit time, it is not a quantity representing strength. We define

current density as a quantity representing the strength of current. The current

density i is also a vector. Its direction is the same as that of the current, and its

magnitude is given by

i D dI

dS
; (5.2)

when current dI flows through a small normal cross-section of area dS . Its unit

is [A/m2]. When the direction of current is tilted from elementary surface vector

dS , the current that flows through the elementary surface is

dI D idS cos � D i � dS : (5.3)

T. Matsushita, Electricity and Magnetism: New Formulation by Introduction

of Superconductivity, Undergraduate Lecture Notes in Physics,

DOI 10.1007/978-4-431-54526-2__5, © Springer Japan 2014
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Fig. 5.1 Electric charge in

region V and current through

surface S

Since the current is a flow of electric charge, we can describe it using the density

and velocity of electric charge. Suppose that particles of electric charge q and

density n move with velocity v. The current density is then given by

i D qnv: (5.4)

Since the electric charge density is given by � D qn, the current density is

expressed as

i D �v: (5.5)

The amount of electric charge is conserved similarly to the mass of materials.

That is, the algebraic sum of positive and negative charges is conserved. We suppose

a region V surrounded by a closed surface S (see Fig. 5.1) and denote the electric

charge density inside it by �. The total electric charge in V is

Q D
Z

V

� dV: (5.6)

When current of density i flows across the surface, the electric charge that passes

out of V through a small area dS in unit time is i � dS . Hence, the electric charge

that goes out of S in unit time is given by

dQ0

dt
D

Z

S

i � dS : (5.7)

The principle of conservation of electric charge requires that this should be equal to

the decrease in electric charge in region V in unit time, �dQ=dt . This gives

d

dt

Z

V

� dV C
Z

S

i � dS D 0: (5.8)

Since region V does not change with time, we can change the order of the time

derivative and spatial integral in the first term. Using Gauss’ theorem for the second

term, Eq. (5.8) is written as
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Z

V

�

r � i C @�

@t

�

dV D 0: (5.9)

Since this relationship holds for arbitrary V, we have

r � i C @�

@t
D 0: (5.10)

This is called the continuity equation of current.

For a steady current that does not change with time Eq. (5.10) reduces to

r � i D 0: (5.11)

That is, the current density does not diverge and follows the same continuity

equation as an incompressible fluid.

5.2 Ohm’s Law

It is necessary to apply an electric potential difference to a material such as a metal

to get a current. In many cases it is empirically known that there is a proportional

relationship between the electric potential difference V and the current I :

V D RrI: (5.12)

The proportional constantRr is called electric resistance or simply resistance. This

constant is determined by the shape and property of the material that carries current.

The unit of electric resistance is [V/A] and is denoted [�] (ohm). Equation (5.12)

is called Ohm’s law. For a material of length l and uniform cross-sectional area S ,

the electric resistance is given by

Rr D �r

l

S
; (5.13)

where �r is a constant inherent to material and is called resistivity or specific

resistance. Its unit is [�m]. Table 5.1 lists values of the resistivity for various

materials. The electric property of a material differs dramatically depending on the

resistivity: materials with resistivity less than 10�6 �m that can easily transport a

current are called conductors, and materials with resistivity above 108 �m that can

hardly transport a current are classified as insulators. Materials with intermediate

resistivity are called semiconductors.

The relationship between the current and electric potential difference is also

written as
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Table 5.1 Resistivity of various materials at 20ıC

Metal (�10�8�m) Semiconductor (�m)

Silver (Ag) 1.62 Germanium (Ge)a 4:8� 10�1

Copper (Cu) 1.72 Silicon (Si)a 3:2� 103
Gold (Au) 2.4 Insulator (�m)

Aluminum (Al) 2.75 Epoxy resin 1011–1014

Brass (Cu–Zn) 5–7 Aluminum oxide 1012–1013

Iron (Fe) 9.8 Mica 1012–1015

Platinum (Pt) 10.6 Natural rubber 1013–1015

Constantan 50 Polyethylene >1014

Mercury (Hg) 95.8 Paraffin 1014–1017

Nichrome 109 Quartz glass >1015

aValues at 27 ıC

I D GV: (5.14)

In the above the proportional constant G D 1=Rr is called conductance. Its unit is

[S] (Siemens). Using Eq. (5.13), the conductance is written as

G D �c

S

l
: (5.15)

The constant �c D 1=�r is called electric conductivity. Its unit is [S/m].

Suppose a small region in which the current flows under electric potential

difference (see Fig. 5.2). The length of this region along the current is �l and the

cross-sectional area normal to the current is �S . When the electric field strength is

E and the current density is i , the potential difference and the current in this small

region are �V D E�l and �I D i�S , respectively. Hence, the electric resistance

is written as

Rr D �V

�I
D �l

�S
� E
i
: (5.16)

Fig. 5.2 Small region in which current flows under an electric potential difference
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On the other hand, the electric resistance is defined as

Rr D �I

�c�S
: (5.17)

Hence we have i D �cE . Since the current and electric field have the same direction,

we can write this relationship in the vector form as

i D �cE (5.18)

or

E D �ri : (5.19)

These are Ohm’s law for electromagnetism.

The current is realized by a movement of electric charge, most of which

is electrons. Therefore, current is a dynamic phenomenon and is not a static

phenomenon, even if it is in a steady state. The reason why some electric field can

remain in a conductor is that the phenomenon is in a dynamic state. Even in this

case, we can express the electric field using the electric potential as in Eq. (1.24).

5.3 Microscopic Investigation of Electric Resistance

As mentioned in Sect. 5.2, Ohm’s law is an empirical law for various kinds of

materials, and it should be noted that this law cannot be explained by any physical

principle. This is because the resistance is associated with energy dissipation, which

cannot be derived theoretically. Hence, Ohm’s law is a kind of phenomenological

model. On the other hand, in a superconductor, which is introduced as one kind

of magnetic material in Chap. 7, Ohm’s law does not hold and the current obeys a

physical principle. Hence, we can say that a superconductor is a pure material from

the viewpoint of physics.

Here we investigate microscopically the occurrence of electric resistance,

although it is not rigorously based on a physical principle. When a current flows

steadily inside a metal, electrons that compose the current are driven by the electric

field. If the mass of an electron is m, the equation of motion of the electron in

electric field E is expected to be

m
dv

dt
D �eE ; (5.20)

where v is the velocity of the electron. However, this equation requires the electron

to be accelerated by the electric field, which would bring about increasing current

with time, resulting in a contradiction with the assumption of a steady state.
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a b

Fig. 5.3 (a) Motion of electrons in a metal and (b) variation in velocity with time

In a practical condition, every time an electron is accelerated by the electric field,

it will collide with atoms in the metal and lose the energy given by the electric field,

as illustrated in Fig. 5.3a. Thus, the velocity of the electron will have some mean

value without increasing appreciably (see Fig. 5.3b). The effect of collision can be

introduced by assuming a viscous force acting on electrons. Although this force

cannot be derived from any physical principle, this phenomenological assumption

is known to be useful in many examples.

Here we average the motion of an electron within a suitable time scale as in

Fig. 5.3b in such a way that we can describe a gradual variation in the average

velocity v on a much longer time scale. Then, the viscous force is defined. This force

is directed opposite to the motion of the electron and its magnitude is proportional to

the velocity. Hence, when the electron moves with a higher velocity, it is subjected

to a stronger force that reduces the velocity. This force is expressed as ��v and

constant � is called the coefficient of viscosity. Hence, the equation of motion of

the electron is now given by

m
dv

dt
D �eE � �v: (5.21)

We can easily solve this equation; the solution under the initial condition of v D 0

at t D 0 is

v D �eE
�

�

1 � exp

�

��t
m

��

: (5.22)

Figure 5.4 shows the variation in the velocity with time. After a sufficiently long

time we can neglect the exponential term and the velocity reaches a constant value,

v D �eE
�
: (5.23)
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Fig. 5.4 Time variation in velocity of an electron derived from the equation of motion

Hence, using Eq. (5.4), the current density in the steady state is given by

i D �enev D nee
2

�
E ; (5.24)

where ne is the density of electrons. Thus, we obtain Ohm’s law. In the above model

the electric conductivity is given by

�c D nee
2

�
: (5.25)

From Eq. (5.22) the time needed for the current to reach the steady-state value is

approximately given by

t D t0 D m

�
D �cm

nee2
: (5.26)

Substitutingm ' 0:9 � 10�30 kg, e ' 1:6 � 10�19 C, ne ' 1 � 1029 m�3 for usual

metals and �c ' 0:6� 108 S/m for copper, we have t0 ' 2� 10�14 s. Since the time

required for observation using measurement instruments is of the order of 10�10 s,

the above variation in current cannot be observed. This means that Ohm’s law is

always observed.

When we apply a current to a material with electric resistance, energy dissipation

takes place. Suppose that a current I flows in a material under an electric potential

difference V given by a power source. Here we estimate the work done by the power

source during a period �t . The amount of electric charge that is transferred during

this period is �Q D I�t . The work done on this electric charge is

�W D V�Q D VI�t: (5.27)
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Hence, the work done in unit time is

P D �W

�t
D VI: (5.28)

This is called electric power. Its unit is [VA] and denoted [W] (watt). Using Ohm’s

law this is rewritten as

P D RrI
2 D V 2

Rr

: (5.29)

In this case the steady state of the current is maintained and the stored electric energy

does not change. Hence, the work done by the power source is dissipated to heat.

Suppose a small region of length �l and cross-sectional area �S . We assume

that a current, �I D i�S , flows through the cross-section under an electric

potential difference,�V D E�l , along the length. The electric power dissipated in

this region is

�P D �V�I D Ei�l�S: (5.30)

Hence, the dissipated electric power in a unit volume (i.e., the electric power

density) is

�P

�l�S
D p D Ei D �cE

2 D �ri
2: (5.31)

5.4 Fundamental Equations for Steady Electric Current

We have discussed the equation describing the phenomena associated with a steady

current. The fundamental physical quantity for the steady current is the current

density i. The quantity that causes it is the electric field, E . Here we summarize

the fundamental equations for these quantities.

The continuity equation for a steady current is given by Eq. (5.11). The electric

field is derived from the electric potential and hence, Eq. (1.28) holds. Ohm’s law

that connects these quantities is Eq. (5.18).

These equations have the same forms as fundamental equations describing the

electrostatic field in a space in which there is no electric charge, as compared in

Table 5.2. That is, the electric field E is common to the two cases, and the current

density i corresponds to the electric flux density D and the electric conductivity

�c corresponds to the dielectric constant �. However, it should be noted that this

correspondence is mathematical, and similarity is sometimes broken in real cases as

will be shown later.

Here we suppose that electric charges ˙Q are given to the outer and inner

electrodes of a concentric spherical capacitor with a dielectric material of dielectric
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Table 5.2 Comparison of

fundamental equations for

steady current and

electrostatic field in the

absence of electric charge

Electrostatic field

in the absence of

Steady current electric charge

r � i D 0 r �D D 0

i D �cE D D �E

r �E D 0 r �E D 0

i  ! D

�c  ! �

Fig. 5.5 Concentric

spherical capacitor

constant � in Fig. 5.5. We have learned the method with which to determine the

electric potential difference between the electrodes. The electric flux density is

directed outward from the inner electrode, and using Gauss’ law we can determine

its magnitude as

D D Q

4�r2
(5.32)

at position r.a < r < b/ from the center. Since the electric field is E D D=�, the

electric potential difference is given by

V D
Z b

a

Q

4��r2
dr D Q

4��

�

1

a
� 1

b

�

: (5.33)

Thus, the capacitance is

C D Q

V
D 4��ab

b � a
: (5.34)

The dielectric material in the concentric spherical capacitor is replaced by a

substance with electric conductivity �c. Now we determine the electric resistance

between the two electrodes under the electric potential difference V . We denote

the current by I . Since the current density does not have a divergence similarly to

the electric flux density, Gauss’ law gives the current density as
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i D I

4�r2
; (5.35)

corresponding to Eq. (5.32). Since the electric field is E D i=�c, the electric

potential difference is given by

V D
Z b

a

I

4��cr2
dr D I

4��c

�

1

a
� 1

b

�

: (5.36)

The electric resistance is

Rr D V

I
D b � a
4��cab

: (5.37)

Thus, the above two problems are formally identical. Eliminating V common to

each example from Eqs. (5.34) and (5.37), we have

CRr D �

�c

: (5.38)

This quantity—the product of capacitance and electric resistance—does not depend

on the shape of capacitor or resistor and is given only by the dielectric constant and

electric conductivity. This relationship of Eq. (5.38) generally holds for a capacitor

and resistor having electrodes of the same shape. However, this is limited to the case

in which we can obtain a rigorous solution for the field.

Similarity is rarely found between phenomena of steady current and an electro-

static field. This is explained by a quite large difference in the electric conductivity

between a conductor and vacuum, while the difference in the dielectric constant

between a dielectric material and vacuum is a factor of several tens at most.

For example, Fig. 5.6a shows the current when an electric potential difference

is applied to the two edges of a long thin resistor. In this case the current flows

a b

Fig. 5.6 (a) Lines of current

in a long thin resistor and (b)

electric flux lines in a

capacitor with long thin

dielectric material
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uniformly. On the other hand, Fig. 5.6b shows the electric flux when an electric

potential difference is applied to the two electrodes of a capacitor composed of

a long thin dielectric material. The electric flux lines spread out of the dielectric

material, although they pass more easily through the dielectric material than through

the vacuum. This difference arises from the large difference in material constants

mentioned above. The reason why Eq. (5.38) holds in the case of Fig. 5.5 is that the

electric field has completely the same form under the rigorous symmetry in both

cases.

Here we discuss the boundary condition to be satisfied for the steady current at an

interface between substances with different electric resistivities. Since the equation

for the current density i is formally the same as that for the electric flux density D

in the absence of electric charge, the boundary condition is also the same. That is,

from Eq. (4.19) we have

n � .i 1 � i 2/ D 0; (5.39)

where n is a unit vector normal to the interface. This shows that the normal

component of the current density is continuous at the interface.

Example 5.1. Determine the electric resistance when current flows along a quarter

of a circle of radius R0 with a rectangular cross-section, as shown in Fig. 5.7a. The

electric resistivity is �r.

a b

Fig. 5.7 (a) Shape of a quarter circular prism and (b) part of a thin region of radius R to RC dR

Solution 5.1. We apply electric potential difference V between the two edges. The

electric field at an arc of radius R from the center in Fig. 5.7b is

E.R/ D 2V

�R

and the current density is
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i.R/ D 2V

��rR
:

The current that flows in the region of R to R C dR is i.R/wdR and the total

current is

I D
Z R0Cd=2

R0�d=2

2wV

��rR
dR D 2wV

��r

log
R0 C d=2

R0 � d=2
:

Thus, the electric resistance is given by

Rr D ��r

2w logŒ.R0 C d=2/=.R0 � d=2/�
:

}

Example 5.2. Determine the electric resistance along the length of the truncated

cone in Fig. 5.8. The electric resistivity is �r.

Fig. 5.8 Long truncated cone

Solution 5.2. The cross-sectional area at position x from the bottom is

S.x/ D �

�

b � b � a

h
x

�2

:
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If the applied current is I , the current density at this position is

i.x/ D I

S.x/
:

Since the electric field is E.x/ D �ri.x/, the electric potential difference between

the two edges is

V D
Z h

0

�r

I

S.x/
dx D I�rh

�ab
:

The electric resistance is

Rr D �rh

�ab
:

}

Example 5.3. Current of density i 0 flows uniformly in a substance of electric

conductivity �c0. When a part of a sphere of radius a in this substance is replaced

by a different substance of electric conductivity �c, as shown in Fig. 5.9, determine

the current density inside and outside the sphere.

Fig. 5.9 Sphere of radius a

with different electrical

conductivity from the

surrounding uniform

substance

Solution 5.3. The equations describing the phenomena have the same form as those

describing the electric flux density in the absence of an electric charge. Hence, the
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Fig. 5.10 Current around a

sphere with different electric

conductivity for �c D �c0=3

solution for the current density and that for the electric flux density are formally the

same. That is, we can use the solution for D in Example 4.4 by replacing �0 and �

with �c0 and �c. In this case the uniform electric field E0 corresponds to i0=�c0. We

define polar coordinates with the origin at the center of the sphere. We denote by �

the zenithal angle measured from the direction of the applied current. The current

density outside the sphere (r > a) is

ir D
�

1C �c � �c0

�c C 2�c0

� 2a
3

r3

�

i0 cos �; i� D �
�

1 � �c � �c0

�c C 2�c0

� a
3

r3

�

i0 sin �

and that inside the sphere (0 � r < a) is uniform:

ir D 3�c

�c C 2�c0

i0 cos �; i� D � 3�c

�c C 2�c0

i0 sin �:

Figure 5.10 shows the current around the sphere. }

5.5 Electromotive Force

Suppose that a steady current, I , flows in a closed electric circuit, C. When

integrating the current along the circuit, we have

I

C

I � ds D lI; (5.40)
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where l is the perimeter of the circuit. On the other hand, with the aid of Ohm’s law

the left side of this equation can be written as

S

I

C

i � ds D S�c

I

C

E � ds D 0; (5.41)

where S and �c are the cross-sectional area and electric conductivity of the circuit,

respectively. Thus, we have I D 0, which contradicts the assumption of a steady

current. This gives E D 0. On the other hand, under the initial condition of v D v0
(I D I0 D �enejv0jS ) we obtain the solution to Eq. (5.21) as

I D I0 exp

�

��t
m

�

: (5.42)

This also shows that I reduces to zero after a very short period. A steady current

can continue to flow only in superconductors with �r D 0.

Hence, to get a steady current in the general case, it is necessary to have an

electric power source that applies an electric potential difference to force the

current to flow in a circuit. The electric potential difference that the electric power

source generates is called electromotive force. Table 5.3 lists practical electric

power sources and the kinds of electromotive force. The unit of the electromotive

force is [V]. Except in the case of generator, the electric energy of the electromotive

force provided by the sources is transformed from chemical, mechanical, thermal or

optical energy.

Suppose a closed circuit with an electric power source of electromotive force V .

We denote the part of electric power source and the remaining part of the electric

circuit as�C and C0(=C��C), respectively, as shown in Fig. 5.11. The electric field

due to the electromotive force is denoted E em. We then have

V D �
Z

�C

E em � ds: (5.43)

In the above the integral is directed along the current. We define the electric potential

� that also includes the electromotive force. This satisfies

� r� D �ri (5.44)

Table 5.3 Kinds of electric

power source and

electromotive force

Electric power source Kind of electromotive force

Battery Chemical electromotive force

Generator Electromagnetic induction

Thermocouple Thermoelectric power

Photo-electric cell Photovoltaic effect
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Fig. 5.11 Closed electric

circuit with electric power

source

in C0 and

� r� D E em (5.45)

in �C. The condition

I

C

r� � ds D 0; (5.46)

which is required for the electric potential, gives

�r

S

Z

C0

I � ds D V: (5.47)

Thus, the steady current is realized by the electric power source. The electric

potential difference on the left side is due to the current that flows in an electric

resistor and is called a voltage drop. The direction of the electric field is the same

as that of the current but is opposite that of the electric field due to the electromotive

force.

5.6 Kirchhoff’s Law

In an electrical network composed only of resistors and DC (direct current) electric

power sources, the current flows in a steady state. An important law that describes

the steady current is Kirchhoff’s law. We derive this law from the principles of

electromagnetism.

Kirchhoff’s first law states that the algebraic sum of currents passing out of an

arbitrary node is zero. Here the currents that pass out and in are considered to be

positive and negative, respectively. Applying this law to a node in Fig. 5.12a, we

have
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a b

Fig. 5.12 (a) Currents that flow out of and into a node and (b) closed surface that includes the

node

X

n

In D 0; (5.48)

where In is the current that passes out of the node through the n-th branch. Suppose

a closed surface S that includes the node (see Fig. 5.12b). The surface integral of the

current density i on S gives

Z

S

i � dS D
X

n

In: (5.49)

Using Gauss’ theorem and Eq. (5.11), the left side of Eq. (5.49) is rewritten as

Z

V

r � i dV D 0; (5.50)

where V is the interior of S. Thus, we obtain Kirchhoff’s first law, Eq. (5.48).

Kirchhoff’s second law states that the sum of electromotive forces is equal to the

sum of voltage drops in resistors in an arbitrary closed circuit composed of branches

in an electrical network. This is expressed as

X

m

Vm D
X

m

RmIm (5.51)

for closed circuit C in Fig. 5.13. In the above Vm, Rm and Im are the electromotive

force, electric resistance and current in the m-th branch, respectively. We denote

the electric potential including the electromotive force by �. The potential differ-

ence between the two edges of the m-th branch is then given by

��m D
Z

m

r� � ds D Vm � RmIm: (5.52)
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Fig. 5.13 Closed circuit in

an electrical network

In the above the relationship
R

m
.�r=S/ds D Rm is used. From uniqueness of the

electric potential we have

I

C

r� � ds D
X

m

��m D 0: (5.53)

Substituting Eq. (5.52) into this equation gives Kirchhoff’s second law, Eq. (5.51).

Column: Difference in Electric Resistivity

There are no material constants that differ so much depending on material

as electric resistivity. Electric resistivity differs by a factor of 1023 between

silver and quartz glass. In superconducting materials covered in Chap. 7,

the electric resistivity is theoretically predicted to be zero. However, it is

impossible to experimentally prove that the resistivity is absolutely zero.

For example, if the electric potential difference is measured to be less than

the noise level of 10 nV when current of 1 A is applied to a superconducting

wire of cross-sectional area 1 mm2 and length 1 m, we can prove that the

electric resistivity is less than 10�14 �m. This is close to the limit of

sensitivity of measurement instruments. It should be noted that the electric

resistivity is of the order of 10�11 �m even for high-purity copper at

extremely low temperatures such as 4.2 K. Observation of the decay of

current due to electric resistivity is much more sensitive. If the inductance
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and electric resistance of a closed circuit areL andRr, the current decays as

I.t/ D I.0/ exp

�

� t
�

�

I � D L

Rr

;

as known for an electrical circuit. Hence, we can estimate the electric

resistance Rr from the time constant � . For a closed circuit in which two

parallel superconducting wires of length l D 0:5 m and cross-sectional area

S D 1mm2 separated by d D 10mm are connected at both edges with zero

resistance, we calculate the inductance as

L ' �0l

�
log

d

a
' 5:8 � 10�7 H

(see Example 8.1). In the above �0 is the magnetic permeability of vacuum.

If no decay is observed with measurement uncertainty less than 0.1% over

3 years (approximately 0:95 � 108 s), � is larger than 0:95 � 1011 s. Thus,

Rr is less than 6� 10�18 � and we can say that the electric resistivity is less

than 6 � 10�24 �m.

Hence, the practical difference in electric resistivity reaches the level

of 1038. The difference in size between a hydrogen atom and the universe

(about 15 billion light years) is of the order of 1036, which gives an idea of

the huge range of electric resistivity. Completely different electric properties

of different materials are due to such a dramatic difference in the electric

resistivity.

Exercises

5.1. Determine the electric resistance along the length of a quarter ring of radius

R0 with a circular cross-section of radius a, as shown in Fig. E5.1. The electric

resistivity is �r.

5.2. Determine the electric resistance along the length of a substance with electric

resistivity �r, as shown in Fig. E5.2.

Fig. E5.1 Quarter ring with

circular cross-section
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Fig. E5.2 Long substance

with rectangular cross-section

c

Fig. E5.3 Long coaxial

resistor composed of two

types of substance with

different electric resistivities

5.3. The space between two long coaxial electrodes is occupied by two types of

substance with electric resistivities �r1 and �r2, as shown in Fig. E5.3. Determine the

electric resistance between the two electrodes.

5.4. The space between two long coaxial electrodes is occupied by two types of

substance with electric resistivities �r1 and �r2, as shown in Fig. E5.4. Determine the

electric resistance between the two electrodes.

5.5. Suppose that, when we apply electric potential difference V between the two

edges of the quarter circular prism shown in Fig. 5.7a, current I flows. Prove that the

total electric power dissipated in this resistor is VI . (Hint: Integrate the loss power

density given by Eq. (5.31).)

5.6. Prove that Eq. (5.38) holds also for two parallel plate electrodes with area S

and distance d .
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Fig. E5.4 Long coaxial

resistor composed of two

types of substance with

different electric resistivities

Fig. E5.5 Current applied

normal to a long cylindrical

rod with a different electric

conductivity embedded in a

uniform substance

Fig. E5.6 Cross-section of

two parallel cylindrical

conductors embedded in a

uniform substance.

5.7. A long cylindrical rod of radius a and electric conductivity �c is embedded in

a substance of electric conductivity �c0. Determine the current density inside and

outside the rod, when we apply a uniform current of density i0 to an infinitely wide

region, as shown in Fig. E5.5.

5.8. Two parallel long cylindrical conductors of radius a are embedded in a uniform

substance of electric conductivity �c, as shown in Fig. E5.6. The distance between
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the central axes of the two conductors is d.> 2a/ and the electric resistivity of

the two conductors is negligibly small. Determine the electric resistance in a unit

length between the two conductors. (Hint: Convert this problem to the problem

of determining the capacitance between two conductors with replacement of a

substance having electric conductivity �c with a dielectric material having dielectric

constant �. Place virtual positive and negative line charges having densities ˙� at

suitable positions so that the electric potential has constant values on the surfaces of

the two conductors.)



Part II

Static Magnetic Phenomena



Chapter 6

Current and Magnetic Flux Density

6.1 Magnetic Flux Density by Current

We know that there exists a force between currents. This phenomenon is similar to

the Coulomb force between electric charges. Hence, we can presume that currents

also make some field in space similar to the electric field made by electric charges.

This field is called the magnetic field.

Magnets also make a magnetic field. However, the magnetic field source that we

can quantitatively define is current. In fact, the amount of current is defined based

on the force between currents. In the case of magnets the magnetic field strength

depends on the substance of the magnet and its condition of magnetization, which

cannot be controlled exactly. We discuss the relationship between the current and

magnetic field in this chapter. It should be noted, however, that we do not define

the magnetic field itself but the magnetic flux density to express the magnetic field

strength. The relationship between the magnetic field and magnetic flux density will

be described in Chap. 9.

We suppose that two parallel straight wires separated by distance d carry currents

I1 and I2, as shown in Fig. 6.1a. In this case a force of strength

F 0 D ��0I1I2
2�d

(6.1)

works on each wire of a unit length. It is attractive (F 0 < 0) for currents in the

same direction (I1I2 > 0) and repulsive (F 0 > 0) for currents in opposite directions

(I1I2 < 0). The constant

�0 D 4� � 10�7 N=A2 (6.2)

is called the magnetic permeability of vacuum. The unit of current, [A], is defined

using Eq. (6.1). The magnitude of this force corresponds to the magnitude of the

Coulomb force on electric charges. That is, when electric charges of linear densities

T. Matsushita, Electricity and Magnetism: New Formulation by Introduction

of Superconductivity, Undergraduate Lecture Notes in Physics,

DOI 10.1007/978-4-431-54526-2__6, © Springer Japan 2014
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a b

Fig. 6.1 (a) Force between two parallel currents and (b) force between two parallel line charges

�1 and �2 are uniformly distributed on two parallel straight lines separated by d , as

shown in Fig. 6.1b, the Coulomb force on each line of a unit length is given by

F 0 D �1�2

2��0d
; (6.3)

which is of the same form as the magnetic force of Eq. (6.1). Namely, the magnetic

force is proportional to the product of two currents and is inversely proportional

to their distance. The unique difference is that the magnetic force is attractive for

currents in the same direction.

The magnetic flux produced by currents is largely different from the electric field

produced by electric charges. The magnetic flux can be visualized using magnetic

particles such as iron sand. For example, the magnetic flux lies in a plane normal

to a straight current and forms vortices around it, as shown in Fig. 6.2. On the other

hand, the electric field radiates from a line charge.

Below are the main differences between the electric interaction between electric

charges and the magnetic interaction between currents:

• Electric charges are scalars and currents are vectors.

• While the electric field is directed parallel to the straight line connecting the

electric charge and observation point, the magnetic flux is directed normally to

Fig. 6.2 Magnetic flux

produced by straight current
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both the current and the straight line connecting a part of the current and the

observation point.

• While the electric force between electric charges of the same kind is repulsive,

the magnetic force between currents in the same direction is attractive.

6.2 The Biot–Savart Law

The law that expresses the magnetic flux density produced by a current is the

Biot–Savart law. Suppose that current I flows along line C, as shown in Fig. 6.3.

The law states that the magnetic flux density at point P produced by an elementary

current Ids flowing in a small segment ds is given by

dB D �0

4�
� Ids � i r

r2
D �0

4�
� Ids � r

r3
: (6.4)

In the above r is the position vector from the small segment to point P and jrj D r

with i r D r=r . The unit of the magnetic flux density is [T] (tesla). If the angle

between ds and r is � , the magnitude of magnetic flux density is

dB D �0Ids

4�r2
sin � (6.5)

and the vector points along the motion of a screw when a screw driver is rotated

from ds to r.

Fig. 6.3 Elementary current

along C and observation

point P



126 6 Current and Magnetic Flux Density

Fig. 6.4 Elementary current

in space V

Thus, the magnetic flux density produced at r by current I flowing through line

C is given by

B.r/ D �0

4�

Z

C

Idr 0 � .r � r 0/

jr � r 0j3 : (6.6)

When there are many currents, the total magnetic flux density is the superposition

of all the individual magnetic flux densities they produce.

Here, we consider a current flowing with density i in space V, as shown in

Fig. 6.4. The elementary current that flows in a small region of length ds and cross-

sectional area dS is i dSds D i dV with dV denoting the volume of this region.

Thus, the magnetic flux density is given by

B.r/ D �0

4�

Z

V

i .r 0/ � .r � r 0/

jr � r 0j3 dV 0: (6.7)

One can see that this equation corresponds to Eq. (1.12) for the electric field

produced by electric charges. The electric charge density � corresponds to the

current density i , and the vector product of current density and position is necessary

for yielding a vector for the magnetic flux density. This explains why the magnetic

flux density is perpendicular to the current.

Example 6.1. Current I flows in a circle of radius a; as shown in Fig. 6.5a.

Determine the magnetic flux density at point P located at distance z in the normal

direction from the center O of the circle.
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a

b

Fig. 6.5 (a) Point P on axis of circular current and (b) magnetic flux density at P produced by

elementary current

Solution 6.1. We define angle ' as shown in Fig. 6.5b. The elementary current in

the part ' to ' C d' has magnitude Ids D Iad' and is directed normally to the

position vector from this segment to point P [� D �=2 in Eq. (6.5)], as shown in the

figure. The magnetic flux density at P produced by this elementary current is

dB D �0Iad'

4�r2

with r D .z2Ca2/1=2. From symmetry only the component along the z-axis remains:

dB 0 D �0Iad'

4�r2
sin ˛ D �0Ia

2d'

4�r3
:

This will be understood by considering a contribution from the opposite side of the

circle at angle ' C � . Integrating with respect to angle ', we have

B D
Z 2�

0

�0Ia
2d'

4�r3
D �0Ia

2

2.z2 C a2/3=2
:

}

Example 6.2. Current I flows along a long straight line (see Fig. 6.6). Determine

the magnetic flux density at point P at distance a from the line.
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Fig. 6.6 Long straight line

with current and observation

point P

Solution 6.2. We define coordinates as shown in Fig. 6.6. The magnetic flux density

produced at P by an elementary current Idz in a small region z to z C dz is

dB D �0Idz

4�r2
sin �;

where angle � is defined as in the figure and r D .z2 C a2/1=2 D a= sin � . The

relationship z D �a cot � gives dz D .a= sin2 �/d� . Thus, the elementary magnetic

flux density is transformed to be

dB D �0I

4�a
sin � d�:

Since this vector is directed normally to this sheet, a simple superposition holds

for summing the contribution from each small region. We obtain the magnetic flux

density as

B D
Z �

0

�0I

4�a
sin � d� D �0I

2�a
: (6.8)

}

6.3 Force on Current

The force on an elementary part ds of a current I in a magnetic flux density B is

given by

dF D Ids � B (6.9)
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Fig. 6.7 Current I in

magnetic flux density B

a b

Fig. 6.8 Magnetic flux density produced by current I1 and resultant force on current I2 when I2
has (a) the same and (b) opposite directions to I1

(see Fig. 6.7). This is called the Lorentz force in a narrow sense. From the

mathematical requirement that the force vector results from the product of two

vectors, the vector product appears again. The force that line C with current I

experiences in the magnetic flux density B is

F D I

Z

C

ds � B: (6.10)

We apply this to the case of a force on two parallel currents in Fig. 6.1a. The

magnetic flux density that current I1 produces at the position of current I2 is

B D �0I1=.2�d/ using the result of Example 6.2. It is directed as shown in

Fig. 6.8a. Hence, if I2 is in the same direction as I1, the force on I2 is attractive.

If I2 is directed opposite to I1 as in Fig. 6.8b, the force is repulsive. This results in

Eq. (6.1).

Since the current is composed of flowing electric charges, we can consider that

the force on the current to be a force on the electric charges. The force on the region

of length ds along the direction of the current I and cross-sectional area dS in the

magnetic flux density B is

dF D Ids � B D i dSds � B: (6.11)
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Since dSds is the volume of this region, dV , we rewrite this force as

dF D .qv � B/ndV (6.12)

using Eq. (5.4). Since ndV is the number of electric charges in this volume, the force

on one electric charge is given by

F D qv � B: (6.13)

For the special case where the electric field E and the magnetic flux density B

coexist, the force on the electric charge is

F D q.E C v � B/: (6.14)

This is called the Lorentz force in a broad sense. This equation shows that E

and B are important variables that connect electromagnetism with dynamics. The

E–B analogyis the standpoint from which electromagnetism is described using

these variables. Chapter 9 will include a description based on another standpoint.

We can easily show that the total force on a closed circuit, C, along which current

I flows in a uniform magnetic flux density is zero:

F D I

�I

C

ds

�

� B D 0: (6.15)

However, it should be noted that the torque, i.e., the moment of force on a closed

circuit is not necessarily zero.

For example, we suppose rectangular circuit PQRS in a uniform magnetic flux

density, B, as shown in Fig. 6.9a. We assume sides PS and QR are normal to B.

When current I flows in this circuit, the force aIB cos � works on side PQ, where

� is the angle between the unit vector n normal to the circuit and the magnetic flux

density B. The strength of this force is the same as that on side RS, and these forces

are on the same line and directed opposite to each other (see Fig. 6.9b). Hence,

these forces completely cancel and do not contribute to the torque. On the other

hand, forces of strength bIB work on sides PS and QR in opposite directions to

each other, but these forces do not lie on the same line. Hence, a torque appears and

rotates the circuit (see Fig. 6.9c). Its magnitude is

N D bIBa sin � D BIS sin �; (6.16)

where S D ab is the area of the circuit.

The unit vector n specifies the direction of movement of a right thumb when it

is rotated along the direction of the current, and the surface vector of the closed

circuit is defined by S D nS . Then, the torque is expressed in the form of a vector:

N D IS � B; where N is a vector with the same magnitude as the torque and is
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a b c

Fig. 6.9 (a) Rectangular circuit with current I in uniform magnetic flux density B, (b) two forces

that cancel each other and (c) two forces that cause torque

directed along the motion of a screw when a screw driver is rotated along the torque.

If we define the magnetic moment of the closed circuit as

m D IS ; (6.17)

the torque is given by

N D m � B: (6.18)

Equation (6.18) holds for closed current I with an arbitrary shape on a plane

in a uniform magnetic flux density. We can explain this as follows. Any given

current-carrying closed circuit is expressed as a superposition of small rectangular

closed circuits with the same current I , as shown in Fig. 6.10, since two currents in

opposite directions in adjacent closed circuits completely cancel out. The above

discussion holds for each small rectangular circuit. The magnitude of the total

magnetic moment is equal to the product of current I and the total area of the closed

circuit. Thus, we can prove that Eqs. (6.17) and (6.18) hold for any closed circuit on

a plane.

Example 6.3. Electric charge q of mass m is ejected with velocity v along of the

x-axis in magnetic flux densityB along the z-axis. Discuss the motion of the electric

charge after ejection.
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Fig. 6.10 Division of closed

current of arbitrary shape on a

plane

Fig. 6.11 Motion of electric

charge in magnetic flux

density

Solution 6.3. The Lorentz force given by Eq. (6.13) works on the electric charge

along the y-axis just after it is ejected. Since the force is directed perpendicularly to

the motion, a circular motion of the electric charge occurs (see Fig. 6.11). We denote

the radius of this circular motion as R. The magnitude of the Lorentz force on the

electric charge is qvB and the centrifugal force is mv2=R. From the condition of

balance between these forces, we obtain the radius of the circular motion as

R D mv

qB
:

This circular motion of a charge is called cyclotron motion. The angular frequency

of the motion, which is called cyclotron angular frequency, is given by



6.4 Magnetic Flux Lines 133

! D v

R
D qB

m
:

Since the Lorentz force is always perpendicular to the direction of motion, the work

done by the Lorentz force is zero. }

6.4 Magnetic Flux Lines

The electric field produced by electric charges can be visualized by electric field

lines. We can similarly see the magnetic flux density with magnetic flux lines. The

magnetic flux line is defined as follows: the direction of a tangential line at any point

on the magnetic flux line is the same as the direction of B, and its line density is

defined as equal to the magnitude of B. Figure 6.12 shows examples of magnetic

flux lines. We define the magnetic flux that passes through arbitrary surface S as

ˆ D
Z

S

B � dS : (6.19)

The unit of magnetic flux is [T m2], which is newly defined as [Wb] (weber).

From the examples in Fig. 6.12 it seems that magnetic flux lines are closed lines.

This is different from electric field lines that start from positive electric charges and

terminate at negative electric charges. If this speculation is valid,

Z

S

B � dS D 0 (6.20)

a b

Fig. 6.12 Examples of magnetic flux lines for (a) a straight current and (b) a circular current
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holds for an arbitrary closed surface, S. Using Gauss’ theorem on the left side,

Eq. (6.20) gives

Z

V

r � B dV D 0;

where V is the interior of S. Since this holds for arbitrary V, we have

r � B D 0: (6.21)

In fact, we can prove Eq. (6.21) as described in Sect. A2.2 in the Appendix. That

is, the magnetic flux lines are closed lines. Equations (6.20) and (6.21) are called

Gauss’ law for magnetic flux and Gauss’ divergence law for magnetic flux,

respectively.

6.5 Ampere’s Law

Consider the circular integral of magnetic flux density B along a closed line, C:

I

C

B � ds:

When current I flows in a straight line and C is a circle of radiusR from the current

in a plane normal to the current, B is parallel to the line element ds (see Fig. 6.13)

and its magnitudeB is a constant, �0I=.2�R/, as discussed in Example 6.2. Hence,

the above integral gives

I

C

B � ds D �0I

2�R

I

C

ds D �0I (6.22)

and the value is independent of R.

Fig. 6.13 Circle C around

straight current
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Fig. 6.14 Closed line KLMN

on a plane normal to straight

current that is composed of

two arcs and two straight

segments

Suppose a closed line, C, on a plane normal to the straight current I that does

not encircle the current. For simplicity we assume that C is composed of two arcs

with different radii and two straight segments extending from the current, as shown

in Fig. 6.14. Here, we calculate the circular integral of B on C. We denote the angle

of arcs KL and MN as ˛. The integrals along these arcs are:

Z L

K

B � ds D
Z M

N

B � ds D �0I˛

2�
:

On the two straight segments NK and LM, B is perpendicular to ds and we have

Z K

N

B � ds D
Z M

L

B � ds D 0:

Thus, the circular integral gives

I

C

B � ds D 0: (6.23)

Using the above results, we can show that Eq. (6.22) holds when straight current

I penetrates arbitrary closed line C on the normal plane, and Eq. (6.23) holds when

this is not so. In the latter case, for example, we can realize an arbitrary closed line

with a set of small closed loops composed of two arcs with the center on the current

and two straight segments extending from the current, as shown in Fig. 6.15, and

Eq. (6.23) holds for each closed loop. Hence, we can show that Eq. (6.23) holds for

any closed line.

If I is defined as the current that penetrates closed line C in Eq. (6.22), it includes

Eq. (6.23). This equation holds also when the closed line is not on a plane normal

to the straight current and/or when the current is not straight. Since it is time-

consuming to prove each of them, this will be proved indirectly using another

method.
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Fig. 6.15 Closed line

divided into a set of closed

loops composed of two arcs

and two straight segments

when straight current does

not penetrate the closed line

We suppose that currents I1, I2, � � � flow separately in space. In this case

Eq. (6.22) is extended to

I

C

B � ds D �0

n
X

mD1
Im: (6.24)

In the above, the right side is the sum of the currents that penetrate C. When current

flows with the density i , the corresponding equation is

I

C

B � ds D �0

Z

S

i � dS ; (6.25)

where S is the surface surrounded by C. Equations (6.22), (6.24) and (6.25) are

called Ampere’s law.

Applying Stokes’ theorem to the left side of Eq. (6.25) gives

Z

S

r � B � dS D �0

Z

S

i � dS : (6.26)

Since this holds for arbitrary S, we have

r � B D �0i : (6.27)

This is called the differential form of Ampere’s law. Hence, if Eq. (6.27) holds,

then Eq. (6.22) must hold. The proof of Eq. (6.27) is given in Sect. A2.3 in the

Appendix.

From Eq. (A1.44) in the Appendix, we can see that Eq. (6.27) satisfies Eq. (5.11).

That is, the magnetic flux density B is produced by a steady current. Equation (6.27)

shows that the current produces rotation of the magnetic flux density. This is in

contrast with Eq. (1.21) that shows that an electric charge produces divergence of

the electric field.
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Example 6.4. Current I flows uniformly in a long cylinder of radius a. Determine

the magnetic flux density inside and outside the cylinder.

Solution 6.4. We can determine the magnetic flux density using the Biot–Savart

law. However, it is not easy. On the other hand, this can be easily done using

Ampere’s law. We apply this law to a circle, C, of radius R from the central axis

of the cylinder, as shown in Fig. 6.16. From symmetry the magnetic flux density B

is parallel to a line element, ds, and its magnitude B is constant on C. Hence, the

left side of Eq. (6.25) gives

I

C

B � ds D 2�RB:

For R > a, the total current that flows inside C is I and the right side of Eq. (6.25)

is equal to �0I . Thus, we have

B D �0I

2�R
:

Fig. 6.16 Circle C with the

same central axis as cylinder

for R < a

This result is the same as for the case where the total current flows along the central

axis. For R < a, the current inside C is .R=a/2I , and we have

B D �0IR

2�a2
:

}

Example 6.5. Current flows uniformly with surface density � on a wide plane.

Determine the magnetic flux density at a position at distance h from the plane.
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Solution 6.5. We can easily obtain the answer using Ampere’s law also for this

case. Suppose a rectangle, KLMN, normal to the direction of current with two sides

(KL and MN) of length w parallel to the plane, as shown in Fig. 6.17. The other two

sides (LM and NK) of length 2h are normal to the plane. We apply Ampere’s law

to this rectangle. From symmetry the magnetic flux density has the same value on

sides KL and MN at the same distance from the plane, and its vectors are parallel

to these sides but opposite to each other. Hence, the contribution from these sides to

the circular integral of the magnetic flux density gives 2wB . On the other hand, the

contribution from other two sides is zero. As a result we have

I

C

B � ds D 2wB:

The total current inside the rectangle is w� . Thus, we obtain the magnetic flux

density as

B D �0�

2
: (6.28)

It should be noted that this value is independent of the distance h from the plane.

Figure 6.18 shows the magnetic flux lines produced by the sheet current. This is

similar to the electric field produced by an electric charge distributed uniformly on

a wide plane (see Example 1.4). }

Fig. 6.17 Rectangle normal

to the direction of current

flowing uniformly on a plane

Fig. 6.18 Magnetic flux lines

produced by uniform sheet

current
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Table 6.1 Correspondence of laws describing electric and magnetic phenomena

Electricity Magnetism

Local E.r/ D 1
4��0

R

V

�.r0/.r�r0/

jr�r 0j3
dV 0 B.r/ D �0

4�

R

V

i .r 0/�.r�r0/

jr�r 0j3
dV 0

(Coulomb’s law) (The Biot–Savart law)

Global
R

S E � dS D 1
�0

R

V � dV
H

C B � ds D �0
R

S i � dS

(Gauss’ law) (Ampere’s law)

Differential r �E D �

�0
r �B D �0i

As shown above we can say that the Biot–Savart law for the local magnetic flux

density produced by a current and Ampere’s law for the global relationship between

the magnetic flux density and current describe the same magnetic phenomenon

from opposite viewpoints. This is similar to the relation between Coulomb’s law

and Gauss’ law describing electric phenomena in Chap. 1. Table 6.1 shows the

correspondence between electric and magnetic phenomena.

Although there is a difference between the scalar source (electric charge) and

vector source (current) that produce the fields, the correspondence between electric

and magnetic phenomena is clear. These sources cause a divergence of the electric

field and rotation of the magnetic flux density. As for the physical constants, the

magnetic permeability of vacuum, �0, corresponds to the inverse of the permittivity

of vacuum, ��10 .

6.6 Vector Potential

The electric field E is given by Eq. (1.24) in terms of the electric potential, i.e., a

kind of scalar potential. This originates from the irrotational nature of the electric

field as given by Eq. (1.28) and from the mathematical property that the gradient of

a scalar is irrotational.

Magnetic flux density is a solenoidal field with no divergence, as shown by

Eq. (6.21). Mathematically rotation of a vector has no divergence, as shown by

Eq. (A1.44) in the Appendix. Hence, the magnetic flux density can be mathemat-

ically expressed as a rotation of some vector:

B D r � A: (6.29)

The quantity A is called the vector potential. As can be seen from Eq. (A1.45), we

could add the gradient of any scalar function to the vector potential, and the vector

potential would still correspond to the same magnetic flux density. This arbitrary

gradient of some scalar function means the vector potential cannot be uniquely
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determined without specifying some condition. In the case of static magnetic

phenomenon that does not change with time, the condition

r � A D 0 (6.30)

is usually used. This is called the Coulomb gauge. We assume a new vector

potential,

A0 D A C r˛; (6.31)

under this condition. It yields the same magnetic flux density. Using Eq. (6.30), ˛

satisfies Laplace’s equation:

r � r ˛ D �˛ D 0: (6.32)

Since ˛ is uniquely determined under a given boundary condition as discussed in

Sect. 2.2, the vector potential is uniquely determined using the Coulomb gauge.

The solution of the vector potential is given by

A.r/ D �0

4�

Z

V

i .r 0/

jr � r 0jdV 0 (6.33)

One can show that this proves the Biot–Savart law for the magnetic flux density

B (see Sect. A2.4 in the Appendix). In this case the Coulomb gauge is fulfilled

(see Exercise 6.8). This equation corresponds to Eq. (1.27) describing the electric

potential produced by electric charge. These are compared in Table 6.2. The result

that the potential is scalar or vector depends on whether the source of the field

is scalar or vector. The similarity in Table 6.1 is found again in this table. When

current I flows along a line circuit, C, Eq. (6.33) reduces to

A.r/ D �0I

4�

Z

C

dr 0

jr � r 0j : (6.34)

Table 6.2 Comparison between electric potential due to electric charge

and vector potential due to current

Electric potential by charge Vector potential by current

Potential �.r/ D 1
4��0

R

V

�.r 0/

jr�r 0j
dV 0 A.r/ D �0

4�

R

V

i .r 0/

jr�r 0j
dV 0

Source � i

Constant �0 ��1
0

Equation �� D � �

�0
�A D ��0i
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Integrating the vector potential along C gives

I

C

A � ds D
Z

S

r � A � dS D
Z

S

B � dS D ˆ; (6.35)

where S is a surface surrounded by C and ˆ is a magnetic flux that penetrates C. In

the above we have used Stokes’ theorem and Eqs. (6.19) and (6.29).

Substituting Eq. (6.29) into Eq. (6.27) gives

r � .r � A/ D �0i : (6.36)

With Eqs. (A1.46) in the Appendix and (6.30), Eq. (6.36) becomes

�A D ��0i : (6.37)

That is, each component of the vector potential satisfies Poisson’s equation. In the

region where current does not flow (i D 0), this reduces to Laplace’s equation,

�A D 0: (6.38)

This is also similar to the electric potential in electric phenomena. When a boundary

condition is given, A in Eqs. (6.37) or (6.38) is uniquely determined. One can

directly prove that Eq. (6.36) holds for the vector potential A given by Eq. (6.33).

This will be apparent from the proof of Eq. (6.33) in Sect. A2.4 and that of Eq. (6.27)

in Sect. A2.3 in the Appendix.

Example 6.6. Determine the vector potential for the case discussed in Example 6.4.

Solution 6.6. We use cylindrical coordinates. Since the current flows only along the

z-axis, the vector potential has only the z-componentAz, as indicated by Eq. (6.33).

In addition, from symmetry it does not depend on z or the azimuthal angle '. The

magnetic flux density has only the azimuthal componentB' . Thus, we have

B' D �@Az

@R
:

The vector potential is given by

Az D �
Z R

R0

B'dR;

where R0.> a/ is the distance from the central axis to the reference point at which

Az D 0. The reason why infinity is not chosen as the reference point is that the
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vector potential diverges because of the requirement that the current flows over an

infinitely long distance. In fact, we find that the vector potential directly estimated

from Eq. (6.34) diverges. This corresponds to the divergence of the electric potential

for an infinitely long line charge (see Example 1.7).

We determine the vector potential as

Az D �0I

2�
log

R0

R

from B' D �0I=.2�R/ for R > a and as

Az D �0I

4�a2
.a2 �R2/C �0I

2�
log

R0

a

from B' D �0IR=.2�a
2/ for 0 � R < a. In the above the vector potential takes

a constant value on the cylindrical surface with the radius R. Thus, we can define

an equivector-potential surface, which is similar to the equipotential surface. The

vector potential is parallel to the equivector-potential surface. }

Example 6.7. Current I is applied to an infinitely long solenoid coil of radius a

with n turns in a unit length. Determine the vector potential.

Solution 6.7. Firstly, we determine the magnetic flux density. Suppose rectangles

C1 and C2 as shown in Fig. 6.19. Applying Ampere’s law to these rectangles, the

circular integral of the magnetic flux density is zero in each case. It shows that the

magnetic flux density is constant inside and outside the coil. Since the magnetic flux

density outside the coil must be uniform up to infinity and the total magnetic

flux must be finite, we can show that the magnetic flux density must be zero outside

the coil. Then, we apply Ampere’s law to rectangle C3 to determine the magnetic

flux density B inside the coil. The left side of Eq. (6.25) is Bl with l denoting the

axial length of C3. Since the total current inside C3 is nI l , we have

B D �0nI:

Then, we could determine the vector potential with Eq. (6.29), but we use

Eq. (6.35) here. We apply this equation to a circle, C, of radius R from the central

axis of the coil in Fig. 6.20. Since the current flows only in the azimuthal direction,

the vector potential has only the azimuthal componentA' . Hence, this is parallel to

C and its magnitude is constant. We have

I

C

A � ds D 2�RA'.R/:
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Fig. 6.19 Longitudinal

cross-section of solenoid coil

and rectangles C1–C3

Fig. 6.20 Circle C of radius

R from the central axis of the

coil (for R < a)

On the other hand, the magnetic flux penetrating C is

Z

S

B � dS D B�R2 D ��0nIR
2I 0 � R < a;

D B�a2 D ��0nIa
2I R > a:

Thus, we determine the vector potential as

A'.R/ D �0nIR

2
I 0 � R < a;

D �0nIa
2

2R
I R > a:

Determine the vector potential with Eq. (6.29) and confirm that it agrees with the

above result (see Exercise 6.9). }
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6.7 Small Closed Current

Suppose that current I flows around a small square of side length d . The vector

potential produced by this current is determined at a point, P, sufficiently far from

this square. We denote the direction vector from the center of the square to point P

as r . The assumption allows jrj D r � d . We define the origin of the coordinates at

the center of the square placed on the x-y plane. Their sides are parallel to the x- or

y-axis, as shown in Fig. 6.21a. We also assume that P is on the y-z plane, and � is the

angle between r and the z-axis. Hence, the position of P is r D .0; r sin �; r cos �/

in polar coordinates. We suppose that a point, Q, with the position vector r 0 moves

on square KLMN (see Fig. 6.21b). When Q is on side KL, r 0 D .x; d=2; 0/ with

�d=2 � x � d=2. A simple calculation gives

1

jr � r 0j D 1

Œr2 � rd sin � C .d 2=4/C x2�1=2
' 1

r

�

1C d

2r
sin �

�

:

Integrating this from K to L (along the negative x-axis), we have

Z L

K

dr 0

jr � r 0j D �d
r

�

1C d

2r
sin �

�

i x : (6.39a)

When Q is on MN, we similarly have r 0 D .x;�d=2; 0/ and

Z N

M

dr 0

jr � r 0j D d

r

�

1 � d

2r
sin �

�

i x: (6.39b)

a b

Fig. 6.21 (a) Closed current flowing along a small square with the center at the origin and

observation point P and (b) position of Q on the square
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When Q is on LM, substituting r 0 D .�d=2; y; 0/ gives

1

jr � r 0j D 1

Œr2 � 2ry sin � C .d 2=4/C y2�1=2
' 1

r

�

1C y

r
sin �

�

and

Z M

L

dr 0

jr � r 0j D �d
r

i y : (6.39c)

Similarly we have r 0 D .d=2; y; 0/ and

Z K

N

dr 0

jr � r 0j D d

r
i y ; (6.39d)

when Q is on NK.

The vector potential is determined with Eqs. (6.39a)–(6.39d) as

A.r/ D �0I

4�

I

C

dr 0

jr � r 0j D ��0Id
2

4�r2
sin � i x : (6.40)

We rewrite this as

A.r/ D �0

4�
� m � r

r3
(6.41)

in terms of the magnetic moment,

m D IS ; (6.42)

with S D d 2i z denoting the surface vector. Equation (6.41) corresponds to the

electric potential, Eq. (1.47), produced by an electric dipole. Practically Eq. (6.41)

reduces to

A' D �0m

4�r2
sin � (6.43)

in our polar coordinates. In the above, m D jmj is the magnitude of the magnetic

moment.

For simplicity we treated the closed current flowing on the small square in the

above. This result is valid for small closed current of arbitrary shape. One can easily

prove this, since any closed current can be realized by a superposition of small

square currents.

The magnetic flux density produced by the closed current is determined with

Eqs. (6.29) and (6.43) as

Br D 1

r sin �
� @
@�
.sin �A'/ D �0m cos �

2�r3
; (6.44a)
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B� D �1
r

� @
@r
.rA'/ D �0m sin �

4�r3
; (6.44b)

B' D 0: (6.44c)

It is found that the obtained magnetic flux density has the same form as the

electric field produced by the electric dipole given by Eqs. (1.48a)–(1.48c) under the

correspondence of m ! p and �0 ! ��10 . This is reasonable, since the magnetic

flux density is expressed as

B D r � A D ��0
4�

r
�m � r

r3

�

(6.45)

as is shown in Sect. A2.5 in the Appendix.

6.8 Magnetic Charge

Magnets are materials that cause magnetic interaction similarly to currents. Magnets

have north (N) and south (S) poles. The force between poles of the same kind

is repulsive and the force between poles of the different kinds is attractive. This

property is similar to that of electric charges. Hence, one can compare the magnetic

interaction between magnetic poles to Coulomb’s law for electric charges. A mag-

netic charge is an imaginary source that causes magnetic interaction corresponding

to the magnetic pole. In fact, it was assumed in the past that N and S poles had

magnetic charges, qm and �qm, respectively, and that a force similar to the Coulomb

force worked on magnetic charges. The force exerted by q0m on qm would then be

given by

F m D �0qmq
0
mr

4�r3
(6.46)

similarly to Eq. (1.3), where r is the position vector from q0m to qm and r D jrj.
Since the magnetic force, Eq. (6.46), comes from some magnetic distortion

in space, we can define the magnetic flux density B as the magnetic field that

quantitatively expresses the strength of magnetic distortion. When we express the

magnetic force as

F m D qmB; (6.47)
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Table 6.3 Formal

correspondence between

electricity and magnetism

Electricity Magnetism

Source Electric charge (q) Magnetic charge (qm)

Potential Electric potential (�) Magnetic potential (�m)

Field Electric field Magnetic flux density

(E D �r�) (B D �r�m)

a bFig. 6.22 Magnetic moment

produced by (a) magnetic

dipole and (b) small closed

current

the magnetic flux density is given by

B D �0q
0
mr

4�r3
: (6.48)

It should be noted that this definition of magnetic charge is different by a factor of

��10 from that used in other books, in which the magnetic field H defined in Chap. 9

was used for the magnetic interaction instead of the magnetic flux density B. One

can also define a scalar potential, �m, called magnetic potential similarly to the

electric potential. Its relation to B is

B D �r�m: (6.49)

Table 6.3 compares the charges, scalar potentials and fields between electricity and

magnetism. However, we cannot apply this scheme in a space in which current

flows.

Suppose that imaginary magnetic charges ˙qm are separated by a small distance,

d , like an electric dipole. This pair of magnetic charges is called a magnetic dipole.

We define the magnetic dipole moment as

m D qmd: (6.50)

The magnetic flux density produced by the magnetic dipole is given by Eq. (1.48)

with p replaced by m. It was shown above that the magnetic flux density has the

same form as Eq. (6.44) produced by a small closed current. Hence, the magnetic

dipole and the small closed current are equivalent to each other (see Fig. 6.23). This

also supports the formal correspondence between electric and magnetic charges. It

is empirically known that even when a magnet is divided into small pieces, it is

impossible for any piece to pick up only one type of magnetic pole, as shown in the
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Fig. 6.23 Division of permanent magnet (upper half ) and corresponding division of closed current

(lower half )

upper part of Fig. 6.23. This can be explained assuming equivalent closed currents,

as shown in the lower figure.

Thus, it may be advantageous in some cases to assume magnetic virtual charges

and compare them to electric charges, since we can directly use all knowledge

of electric phenomena. However, the obvious problem is that magnetic charge

has never been observed. That is, the magnetic flux density empirically satisfies

Eq. (6.21), including the flux for permanent magnets. On the other hand, the right

side should be equal to magnetic charge density �m multiplied by �0. Hence, this

results in �m D 0. For this reason textbooks now base their treatment of magnetic

phenomena on current.

Example 6.8. Currents I and �I flow along lines at y D d=2 and y D �d=2,

respectively, on the y-z plane, as shown in Fig. 6.24. Determine the vector potential

at point P sufficiently far from the z-axis. This pair of parallel opposite currents is

equivalent to a pair of virtual line magnetic charges and is called a magnetic dipole

line.
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Fig. 6.24 Magnetic dipole

line composed of pair of

parallel opposite currents

Solution 6.8. We define cylindrical coordinates, as shown in the figure, and

measure the azimuthal angle from the x-axis. We denote the distance between

observation point P and the line at y D d=2 asRC. With the solution of Example 6.6

we obtain the contribution of this current to the vector potential as

AzC D �0I

2�
log

R0

RC
;

where R0 is the distance to the reference point at which the vector potential is zero.

The vector potential produced by the current at y D �d=2 is

Az� D ��0I
2�

log
R0

R�

using the distance R� between the current and point P. Hence, the vector potential

is given by

Az D AzC C Az� D �0I

2�
log

R�
RC

:

For R � d , RC reduces approximately to

RC D
"

R2 C
�

d

2

�2

� Rd sin '

#1=2

' R

�

1� d

2R
sin '

�

:
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Similarly we have R� ' Rf1 C Œd=.2R/� sin'g: Thus, the vector potential

reduces to

Az.R; '/ ' �0I

2�
log

1C Œd=.2R/� sin'

1� Œd=.2R/� sin'
' �0Id

2�R
sin ':

If we define the moment of a magnetic dipole line in a unit length by

Om D Id; (6.51)

the vector potential is written as

Az.R; '/ ' �0 Om sin '

2�R
: (6.52)

At sufficient distance (R � d ) the equality holds. In this case the total vector sum

of the current is zero, and hence, the vector potential goes to zero at infinity. Thus,

there is no problem of divergence.

If we carry out the same calculation using a virtual magnetic charge, we

obtain the magnetic potential �m.R; '/ that corresponds to the electric potential

in Example 1.8. Assume that the magnetic charges of linear densities ˙�m stay at

x D ˙d=2, respectively, and define the moment of the magnetic dipole line by

Om D �md: (6.53)

Then, the magnetic potential is given by

�m.R; '/ D �0 Om cos'

2�R
: (6.54)

This magnetic potential has the same form as the electric potential, Eq. (1.53).

From the above result for vector potential or magnetic potential we determine the

magnetic flux density as

BR D �0 Om
2�R2

cos'; (6.55a)

B' D �0 Om
2�R2

sin '; (6.55b)

Bz D 0: (6.55c)

This corresponds to the electric field in Eq. (1.54). }
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Column: (1) Forces Between Electric Charges and Between Cur-

rents

We have said that, since the source of magnetic phenomena is the current,

a vector, the resultant vector field of magnetic flux density must be given

by the vector product of the current and position vector. As a result, the

magnetic flux density is perpendicular to both the current and position

vector. This is in contrast to the electric field, which is simply given by

the product of the electric charge, a scalar, and the position vector and is

in the same direction as the position vector. Thus, these results follow the

mathematical requirements and the correspondence holds in this sense.

Here, we compare the forces arising from electric charges and currents.

To obtain a force vector for electric charges, we need the direct product

of the electric charge, a scalar, and the electric field, a vector. Thus, the

force between electric charges of the same kind is repulsive. For currents

the vector product must appear again to yield a force vector from the current

vector and the magnetic flux density vector. Thus, the magnetic force is

perpendicular to both the current and magnetic flux density. This explains

why the force is attractive between currents in the same direction. We again

show the correspondence between the forces based on the mathematical

requirements.

(2) Coulomb Magnetic Field

In a space with no current, as in vacuum, the magnetic flux density obeys

r � B D 0

from Eq. (6.27). Hence, we can describe the magnetic flux density in

terms of the magnetic potential �m as in Eq. (6.49) from the mathematical

viewpoint. Such a magnetic field is called a Coulomb magnetic field.

In the past the magnetic phenomena were described using virtual mag-

netic charges and the Coulomb magnetic field. This is the magnetic field H

defined in Chap. 9 and is equal to B=�0 in the present description. This

method is beneficial because various descriptions of electric phenomena

can be used to explain some magnetic phenomena. For example, the static

magnetic energy can be simply determined as the work needed to carry

magnetic charges in the magnetic field. This is not possible for currents

because of electromagnetic induction (see Column (1) in Chap. 8). In

addition, from similarity to the electric field, one can easily show that the

parallel component of the magnetic field is continuous at an interface using

Eq. (4.22). In fact, this coincides with the boundary condition of Eq. (9.24)

when there is of no surface current on the interface.
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Thus, the magnetic field in the absence of current behaves similarly to

the electric field in the absence of a true electric charge. We can see such

an analogy between the electric field in a dielectric material in Example 4.4

and the magnetic flux density in a magnetic material in Example 9.4.

Exercises

6.1. Current I flows along a line composed of a semicircle and two straight lines

on a common plane, as shown in Fig. E6.1. Determine the magnetic flux density at

the center O of curvature of the semicircle.

6.2. Current I flows on a square closed line of side length a, as shown in Fig. E6.2.

Determine the magnetic flux density at point P at distance b from the center O of

the square.

6.3. Current of density i flows in a slab conductor along the x-axis in the normal

magnetic flux density B parallel to the z-axis (see Fig. E6.3). Determine the steady

electric field produced in the direction normal to both the current and magnetic flux

density. The electric charge and number density of particles that carry current are q

and n.

6.4. Prove that Eq. (6.22) holds for an arbitrary closed line C that straight current I

penetrates (see Fig. E6.4).

Fig. E6.1 Current on line

composed of semicircle and

two straight lines

Fig. E6.2 Square current and

observation point P
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Fig. E6.3 Slab conductor

carrying current in normal

magnetic flux density

Fig. E6.4 Straight current

and surrounding closed line

of arbitrary shape

Fig. E6.5 Two parallel slab

conductors with uniform

currents flowing in opposite

directions

6.5. Currents of density i flow uniformly in two parallel wide slab conductors in

opposite directions along the y-axis (see Fig. E6.5). Determine the magnetic flux

density and vector potential inside and outside of the conductors.

6.6. Current I flows uniformly in a thin planar conductor of width w. Determine

the magnetic flux density and vector potential at point P at distance d.> w=2/ from

the center of the conductor (see Fig. E6.6). The conductor and P are on a common

plane.
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Fig. E6.6 Thin planar

conductor with uniform

current and observation

point P

Fig. E6.7 Cross-section of

long cylindrical conductor

with cylindrical hollow

6.7. Current I flows uniformly in a long cylindrical conductor of radius a that

contains a cylindrical hollow of radius b, as shown in Fig. E6.7. The center of the

hollow is located at distance d from the center of the conductor, where a > b C d .

Determine the magnetic flux density at the center of the hollow (point A) and at

point B outside the conductor. The distance of point B from the center is R.> a/.

The central axis O and points A and B are on a common plane.

6.8. Prove that the vector potential given by Eq. (6.33) satisfies the Coulomb gauge,

Eq. (6.30).

6.9. Use Eq. (6.29) to determine the vector potential in the solenoid in Example 6.7.

6.10. Determine the magnetic potential produced by the small closed current in

Fig. 6.21b in Sect. 6.7.



Chapter 7

Superconductors

7.1 Magnetic Properties of Superconductors

A superconductor is a material that loses its electric resistance when cooled

below a characteristic temperature called the critical temperature. Many elements,

alloys and compounds are superconductors. This state of zero resistivity is called

the superconducting state. A superconductor has not only this property but also

perfect diamagnetism. That is, when a magnetic flux density is applied to a

superconductor, the interior magnetic flux density is zero:

B D 0: (7.1)

When the temperature is above the critical temperature, the superconductor is in

a normal state with nonzero resistance. In this case the magnetic flux density

penetrates the superconductor. If the superconductor is cooled below the critical

temperature, the magnetic flux is expelled from the superconductor and perfect

diamagnetism occurs. These diamagnetic phenomena are called the Meissner–

Ochsenfeld effect.

The perfect diamagnetic state is realized by a current that flows on the surface

of the superconductor, as will be mentioned. This is similar to the electric property

of a conductor that the inside is completely shielded by an electric charge induced

on the surface when an external electric field is applied. In this chapter we study

the magnetic phenomena around a superconductor in the perfect diamagnetic state.

The perfect diamagnetic state of B D 0 occurs in a type 1 superconductor or type 2

superconductor in a magnetic flux density below the lower critical flux density (see

Sect. A3.2 in the Appendix). Special knowledge is needed to understand the physical

mechanism that causes the zero resistivity and perfect diamagnetism. This is not

discussed in this textbook. Section A3.1 in the Appendix gives a brief explanation

of phenomenological theory. For a more detailed understanding, it is recommended

to read technical books.

T. Matsushita, Electricity and Magnetism: New Formulation by Introduction

of Superconductivity, Undergraduate Lecture Notes in Physics,

DOI 10.1007/978-4-431-54526-2__7, © Springer Japan 2014
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Materials are roughly classified into conductors and insulators (dielectric mate-

rials) with respect to their electric properties. For the magnetic properties, materials

are classified into superconductors and magnetic materials. The latter will be

covered in Chap. 9.

Since Eq. (7.1) holds inside the superconductor, from Eq. (6.27), we have

i D 0: (7.2)

Hence, current flows only on the surface of the superconductor. Equation (6.29)

generally gives

A D r˛ (7.3)

with ˛ denoting a scalar function. However, it is no problem to assume as

A D const: (7.4)

in most cases. This is a special case of Eq. (7.3). If the superconducting region

is not simply connected but a magnetic flux penetrates a space surrounded by

the superconductor, the vector potential in the superconductor is not a constant.

Equations (7.1), (7.2) and (7.4) correspond to Eqs. (2.1), (2.2) and (2.3) for

conductors, respectively.

Here, we discuss the magnetic flux density in the vicinity of the superconductor

surface. Suppose a small closed surface of a pellet that includes the interface

between the superconductor and vacuum, as shown in Fig. 7.1. We denote the

height of the pellet and the area of surface inside the pellet by �h and �S ,

respectively. Assume that the upper and lower surfaces of the pellet are parallel

to the superconductor surface. We apply Gauss’ law, Eq. (6.20), to the surface of the

pellet, �S, and we have

Z

�S

B � dS D 0: (7.5)

When the height�h is sufficiently small, we can neglect the magnetic flux going out

of the side surface. Since B D 0 on the lower surface in the superconductor, there

Fig. 7.1 Small closed

surface that includes a part of

superconductor surface



7.1 Magnetic Properties of Superconductors 157

Fig. 7.2 Magnetic flux

density parallel to wide

superconductor surface

is no magnetic flux going out from this surface. Hence, we can conclude that there

is no magnetic flux going out from the upper surface. This means that the magnetic

flux density is parallel to the superconductor surface. That is,

B � n D 0; (7.6)

where n is the unit vector normal to the superconductor surface and directed

outward. This is in contrast with the electric field, which is normal to the conductor

surface.

Next, we discuss the current that flows on the superconductor surface. Suppose

that the magnetic flux density B is parallel to a wide surface of the superconductor,

as shown in Fig. 7.2. We define the coordinates as in the figure. We apply Ampere’s

law, Eq. (6.25), to a small rectangular closed loop,�C, with two sides of length�l

parallel to the z-axis and two sufficiently short sides of length �t parallel to the

x-axis. Since the magnetic flux density inside the superconductor is zero and there

is no contribution from the two sides of length �t , the closed curvilinear integral

gives

I

�C

B � ds D B�l: (7.7)

This is equal to the current flowing along the negative y-axis inside �C multiplied

by �0, that is, �0��l with � denoting the surface current density. Thus, we have

B D �0�: (7.8)

It should be noted that the directions of the current and magnetic flux density follow

the right hand rule. This relationship is also in contrast with Eq. (2.5) for conductors.

As has been discussed above, magnetic phenomena with perfect diamagnetism

(B D 0) in superconductors are similar to electric phenomena with perfect

electrostatic shielding (E D 0) in conductors. This similarity is prominent in the
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E–B analogy in electromagnetism. In addition, the correspondence of Eqs. (7.2),

(7.4) and (7.8) to Eqs. (2.2), (2.3) and (2.5) shows that the similarity between

electricity and magnetism is considerably deep. Especially, it should be noted

that shielding current must continue to flow on the surface of a superconductor

and hence, the electric resistance of the superconductor must be zero to achieve

perfect diamagnetism in the superconductor (see Exercise 7.11). With the E–B

analogy, it was possible for someone even in the 19th Century to predict the

existence of a material with perfect diamagnetism, i.e., a superconductor, just

after completion of the Maxwell theory. In reality the superconductivity with zero

resistivity was discovered independently of the above consideration in 1911, and

perfect diamagnetism was discovered 22 years later in 1933.

Here, we show an example of magnetic phenomena associated with a supercon-

ductor. Suppose that current I is applied to a long cylindrical superconductor of

radius a. We determine the magnetic flux density and vector potential inside and

outside the superconductor. We define cylindrical coordinates with the z-axis on

the central axis of the superconductor. The current flows uniformly only on the

superconductor surface and the magnetic flux density does not appear inside the

superconductor. Thus, the surface current density is � D I=.2�a/.

We define a circle, C, of radius R from the central axis on a plane normal to

the axis (see Fig. 7.3). We apply Ampere’s law to C. Since the current distribution

is cylindrically symmetric, we can assume the magnetic flux density also has

cylindrical symmetry. Hence, the magnetic flux density is parallel to C and its

magnitude B is constant on C. Thus, the left side of Eq. (6.25) is 2�RB.R/. All

the current I flows through C and the right side of Eq. (6.25) is �0I for R > a.

We obtain the magnetic flux density as

B.R/ D �0I

2�R
I R > a: (7.9)

The magnetic flux density outside the superconductor is the same as that when all the

current is concentrated along the central axis. For R < a the right side of Eq. (6.25)

is zero. This gives

Fig. 7.3 Cross-section of

cylindrical superconductor

and closed circle C (for

R < a)
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a b

Fig. 7.4 (a) Magnetic flux density and (b) vector potential inside and outside the current-carrying

cylindrical superconductor

B.R/ D 0I 0 � R < a: (7.10)

Thus, Eq. (7.1) is fulfilled inside the superconductor. We can also show that Eq. (7.9)

satisfies Eq. (7.8) on the superconductor surface (R D a) with the surface current

density determined above.

Now we determine the vector potential using the above results. From Eq. (6.33)

we find that the vector potential has only the z-component, Az, which is given by

Az.R/ D �
Z

B.R/dR: (7.11)

We choose the reference point for zero vector potential at distance R0.> a/ from

the central axis, as done in Example 6.6. Then, the vector potential is determined

to be

Az.R/ D �0I

2�
log

R0

R
I R > a; (7.12a)

D �0I

2�
log

R0

a
I 0 � R < a: (7.12b)

Figure 7.4a, b shows the obtained magnetic flux density and vector potential. The

vector potential is constant inside the superconductor and Eq. (7.4) is satisfied.

Example 7.1. Suppose a long superconducting coaxial transmission line, as shown

in Fig. 7.5. Determine the magnetic flux density and vector potential when we apply

current I only to the inner superconductor.
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Fig. 7.5 Long

superconducting coaxial

transmission line

Solution 7.1. We use cylindrical coordinates. From cylindrical symmetry the

current I flows uniformly on the surface of the inner superconductor (R D a) and

the internal magnetic flux density (R < a) is zero. The current is induced on the

inner surface (R D b) of the outer superconductor so that the magnetic flux does

not penetrate the outer superconductor. This current is denoted by Ib . We apply

Ampere’s law to a circle C of radiusR.a < R < b/ from the central axis on a plane

perpendicular to the axis. Then, we have
I

C

B � ds D �0.I C Ib/:

Since B D 0 on C, this gives Ib D �I . Since the total current is zero in the outer

superconductor, an opposite current, i.e., I flows on the outer surface (R D c) of

the outer superconductor.

If we denote the total current passing through C of radiusR as IR, Ampere’s law

gives

B.R/ D �0IR

2�R
:

Since IR is equal to I , 0 and I for a < R < b, b < R < c and R > c, respectively,

we determine the magnetic flux density to be

B.R/ D 0I 0 � R < a;

D �0I

2�R
I a < R < b;

D 0I b < R < c;

D �0I

2�R
I R > c:
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a b

c

Fig. 7.6 (a) Magnetic flux density, (b) z-component of vector potential and (c) magnetic flux lines

when current is applied to the inner superconductor of a superconducting coaxial transmission line

The vector potential has only the z-component and is determined to be

Az.R/ D �0I

2�
log

R0

R
I R > c;

D �0I

2�
log

R0

c
I b < R < c;

D �0I

2�
log

bR0

cR
I a < R < b;

D �0I

2�
log

bR0

ac
I 0 � R < a:

In the above,R0.> c/ is the distance to the reference point.

Figure 7.6a–c shows the obtained magnetic flux density, vector potential and

magnetic flux lines, respectively. The above results for the magnetic flux density
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and vector potential are formally the same as for the electric field and electric

potential of the coaxial cylindrical conductor when electric charge is given to the

inner conductor (see Example 2.2).

}
There is a treatment called grounding for a conductor. What is the corresponding

treatment for a superconductor? It is to connect the superconductor with a current

path with infinitely large capacity. In the above case a connection of the outer

superconductor to infinity moves the back current on the surface atR D c to infinity.

We also call this grounding. Then, the current is I at R D a and �I at R D b. The

magnetic flux density and vector potential are

B.R/ D 0I 0 � R < a;

D �0I

2�R
I a < R < b;

D 0I R > b:

and

Az.R/ D �0I

2�
log

b

a
I 0 � R < a;

D �0I

2�
log

b

R
I a < R < b;

D 0I R > b:

Figure 7.7a, b shows the obtained results.

a b

Fig. 7.7 (a) Magnetic flux density and (b) z-component of vector potential when we apply a

current to the inner superconductor of superconducting coaxial transmission line and ground the

outer superconductor
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7.2 Special Solution Method for Magnetic Flux Density

We determine the current distribution on the superconductor surface or magnetic

flux density around a superconductor when the superconductor is placed in an

applied magnetic flux density. The vector potential in the superconductor is constant

in space, as shown by Eq. (7.4). Outside the superconductor, there is no current and

the vector potential A satisfies Laplace’s equation (6.38).

When we are given the boundary condition on the surface of a treated area,

Laplace’s equation can be solved uniquely, as mentioned in Sect. 2.2. Hence, there

is only one solution for A in the space outside the superconductor, which becomes

a constant value on the surface of the superconductor. Hence, if some function

satisfies the boundary condition, it is a solution. This is the same as for the electric

potential around a conductor. Some solution methods are introduced here. It may be

helpful for readers to compare these methods with those mentioned in Sect. 2.2 for

conductors.

First, suppose we apply current I through a thin straight line placed at distance

a from a wide flat surface of a superconductor, as shown in Fig. 7.8a. A current

of opposite direction appears on the surface of the superconductor to shield it, and

exerts a repulsive force on I . We determine the distribution of the induced current

similarly to the electric charge distribution on the conductor surface in Fig. 2.9.

We define the x-y plane on the superconductor surface. Suppose that current I

flows on the line at x D 0 and z D a along the positive y-axis. The magnetic flux

density on the surface (z D 0) must be parallel to the superconductor, as shown

in Sect. 7.1. We can realize this situation by virtually removing the superconductor

and then applying a straight current with the same magnitude and opposite direction

at the symmetric position (x D 0, z D �a) with respect to the superconductor

surface. This will be confirmed below. The vector potential in the vacuum region

(z > 0) produced by the two straight currents has only the y-component parallel to

the currents, and we calculate it as

a b

Fig. 7.8 (a) Thin straight current I placed at distance a from wide flat surface of superconductor

and (b) imaginary current placed at a mirror position with respect to the superconductor surface
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Ay.x; y; z/ D �0I

2�

�

log
R0

Œx2 C .z � a/2�1=2
� log

R0

Œx2 C .z C a/2�1=2

�

D �0I

4�
log

x2 C .z C a/2

x2 C .z � a/2
(7.13)

using Eq. (7.12a). In the above, R0 is the distance from the current to the reference

point. We can easily show that Ay D 0 on the superconductor surface (z D 0).

Thus, the condition, Eq. (7.4), is satisfied. Laplace’s equation is satisfied except at

the position of the current in the vacuum region (z > 0). Hence, we conclude that

Eq. (7.13) is the solution for the vector potential. The vector potential inside the

superconductor (z < 0) is Ay D 0. Thus, the method of images is useful also for

superconductors. The imaginary current placed at the mirror position is called an

image current.

Using Eq. (7.13), we obtain the magnetic flux density in the vacuum region as

Bx D ��0I
2�

�

z C a

x2 C .z C a/2
� z � a
x2 C .z � a/2

�

;

By D 0; (7.14)

Bz D �0Ix

2�

�

1

x2 C .z C a/2
� 1

x2 C .z � a/2

�

:

On the superconductor surface it reduces to

Bx.x; y; 0/ D � �0Ia

�.x2 C a2/
; By.x; y; 0/ D Bz.x; y; 0/ D 0; (7.15)

showing that the magnetic flux density is parallel to the surface. Figure. 7.9 shows

the magnetic flux lines. Then, from Eq. (7.15) we determine the density of current

Fig. 7.9 Magnetic flux lines

produced by given current

and current induced on the

superconductor surface



7.2 Special Solution Method for Magnetic Flux Density 165

induced on the superconductor surface to be

� D � Ia

�.x2 C a2/
: (7.16)

The total current is

Z

dx � D �Ia
�

Z 1

�1

dx

x2 C a2
D �I: (7.17)

That is, the total current is equal to the image current. The force on the given current

I caused by the current induced on the superconductor surface is equal to the force

by the image current, and its magnitude in a unit length is

F 0 D �0I
2

4�a
: (7.18)

This force is repulsive (F 0 > 0). This is called the image force.

One can show that the current induced on the superconductor surface com-

pletely cancels the magnetic flux density produced by the given current in the

superconductor (z < 0).

Suppose we apply current I through a line, A, separated by distance d from

the central axis O of a grounded parallel long superconducting cylinder of radius

a, as shown in Fig. 7.10a. Now we determine the vector potential outside the

superconductor. We virtually remove the superconductor and apply an image current

I 0 through a line, B, separated by h from the central axis of the superconducting

cylinder, as shown in Fig. 7.10b, similarly to the example in Sect. 2.2. The vector

potential at point P on the superconductor surface is given by

Az D �0I

2�
log

R0

.a2 C d 2 � 2ad cos'/1=2
C �0I

0

2�
log

R00
.a2 C h2 � 2ah cos'/1=2

;

(7.19)

a b

Fig. 7.10 (a) Long superconducting cylinder and straight current parallel to it and (b) image

current placed on line B after removing the superconductor
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where ' is the angle POA. In the above, R0 and R00 are distances to a suitable

reference point and are not important quantities. For the vector potential to be

constant and independent of ', the following conditions should be satisfied:

I 0 D �I; (7.20)

2ad

a2 C d 2
D 2ah

a2 C h2
: (7.21)

Equation (7.21) reduces to

h D a2

d
: (7.22)

In this case the current-carrying wire and superconductor are infinitely long and

hence, the current induced in the superconductor has the same magnitude. This is

different from the case of the spherical conductor treated in Sect. 2.2.

The above results give the vector potential at point .R; '/,

Az.R; '/ D �0I

2�
log

dŒR2 C .a2=d/2 � 2.a2R=d/ cos'�1=2

a.R2 C d 2 � 2Rd cos'/1=2
(7.23)

when it is zero on the superconductor surface (R D a). That is, R00 D .a=d/R0.

We can calculate the magnetic flux density outside the superconductor using

Eq. (7.23) (see Exercise 7.6). Figure 7.11 shows the magnetic flux lines. The current

density on the superconductor surface is obtained as

�.'/ D 1

�0
B'.R D a/ D � 1

�0

�

@Az

@R

�

RDa
D � I.d 2 � a2/

2�a.a2 C d 2 � 2ad cos'/
:

(7.24)

Fig. 7.11 Magnetic flux lines produced by long superconducting cylinder and straight current

parallel to it
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The total current is
Z 2�

0

�.'/ ad' D �I.d
2 � a2/

�

Z �

0

d'

a2 C d 2 � 2ad cos'
D �I (7.25)

and agrees with the image current, Eq. (7.20). In the above the following formula

was used.

Z �

0

d'

1 � k cos'
D �

.1 � k2/1=2 : (7.26)

This problem corresponds to estimating electric potential in Exercise 2.8.

Example 7.2. In the above we discussed the vector potential when straight current

I is placed outside the grounded superconducting cylinder, as shown in Fig. 7.10.

Determine the vector potential when the superconductor is isolated.

Solution 7.2. In this situation the total current flowing in the superconductor must

be zero. Hence, we use a superposition. That is, we obtain the current distribution

by superposing currents �I and I in a way that makes the vector potential of the

superconductor constant. Current �I is distributed according to Eq. (7.24) and I

has uniform distribution on the superconductor surface. The former current and the

external current give the vector potential, Eq. (7.23), which we denote as A1z.R; '/.

The latter current gives the vector potential, Eq. (7.12a). Both of them satisfy the

requirement to be constant on the superconductor surface. Hence, the sum of these

components gives the unique solution. If we determine the vector potential so that

it is zero at the superconductor surface R D a, we have

Az.R; '/ D A1z.R; '/C �0I

2�
log

d

R
:

}

7.3 Magnetization

Suppose that a superconducting sphere of radius a is put in a uniform magnetic flux

density,B0 (see Fig. 7.12). The superconducting current flows on the surface to can-

cel the applied magnetic flux density inside the superconductor. Here we determine

the density of this current and the magnetic flux density outside the superconductor.

We use polar coordinates: the origin is at the center of the superconductor and the

z-axis is parallel to the direction of the applied magnetic flux density.

When a conducting sphere is in a uniform electric field, the boundary condition

is fulfilled by assuming an electric dipole of suitable moment placed at the center

of the conductor, as discussed in Sect. 2.3. It seems useful to use a similar method
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Fig. 7.12 Superconducting

sphere in uniform magnetic

flux density

assuming a magnetic moment placed at the center of the superconductor. In fact, the

dipole moment of a pair of magnetic charges, which correspond to a pair of electric

charges, is equivalent to the magnetic moment of a closed current, as shown in

Sect. 6.8. This virtual closed current at the center flows along the azimuthal direction

similarly to the real current on the surface.

The vector potential outside the superconducting sphere has only the azimuthal

component, A' , corresponding to the current. This component consists of Af'

caused by the uniform magnetic flux density B0 and Ad' caused by the magnetic

momentm. The former component is given by

Af' D B0r

2
sin �: (7.27)

Confirm for yourself that the following conditions are satisfied:

1

r sin �
� @
@�
.sin �Af'/ D B0 cos �; �1

r
� @
@r
.rAf'/ D �B0 sin �:

The latter component is given by Eq. (6.43),

Ad' D �0m sin �

4�r2
: (7.28)

Thus, the vector potential is

A' D Af' C Ad' D
�

B0r

2
C �0m

4�r2

�

sin �: (7.29)

The requirement that it is zero on the superconductor surface (r D a) gives

m D �2�a
3B0

�0
: (7.30)

Hence, we determine the vector potential to be

A' D B0

2

�

r � a3

r2

�

sin �: (7.31)
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Fig. 7.13 Magnetic flux lines

around superconducting

sphere in uniform magnetic

flux density

This satisfies the boundary condition on the superconductor surface and Laplace’s

equation. Hence, this is the solution. Inside the superconductor the solution is

A' D 0.

We obtain the magnetic flux density outside the superconductor as

Br D 1

r sin �
� @
@�
.sin �A'/ D B0

�

1 � a3

r3

�

cos �; (7.32a)

B� D �1
r

� @
@r
.rA'/ D �B0

�

1C a3

2r3

�

sin �; (7.32b)

B' D 0: (7.32c)

Figure 7.13 shows magnetic flux lines on the plane including the z-axis. Equa-

tion (7.32a) shows that the magnetic flux lines are parallel to the superconductor

surface, Br .r D a/ D 0. We find from Eq. (7.32b) that the magnitude of the

magnetic flux density takes the maximum value, 3B0=2, on the equator (� D �=2).

The current density in the azimuthal direction on the superconductor surface is

� D B� .r D a/

�0
D �3B0

2�0
sin �: (7.33)

This azimuthal current produces a magnetic flux density opposite to the applied

one. Using Eq. (7.30) we have the magnetic moment in a unit volume of the

superconductor,

M D �3B0
2�0

: (7.34)

This is called magnetization. This corresponds formally to the magnetization of

magnetic materials.
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Fig. 7.14 Surface current

and resultant magnetic

moment (broken line) when

magnetic flux density is

applied parallel to long

superconducting cylinder

The magnetization in a superconductor is given by the magnetic moment in a

unit volume of the superconductor as defined above. In the above example, the

magnetic flux density that the superconductor experiences on its surface is different

from the applied value because of the geometry of the superconductor. Here we

consider a simple case where there is no such geometrical effect. Suppose we apply

magnetic flux densityB0 parallel to a long superconducting cylinder along the z-axis

of radius a (see Fig. 7.14). The current flows along the negative azimuthal direction

and produces a magnetic moment along the negative z-axis. The surface current

density is

� D B0

�0
: (7.35)

The magnetic moment in a unit length due to this current is

m0 D ��a2� D ��a
2B0

�0
: (7.36)

Hence, the magnetization is

M D �B0
�0
: (7.37)

We assume that the superconductor is a type 2 superconductor and is in the mixed

state with the internal magnetic flux density B (see Sect. A3.2 in the Appendix).

Then, a similar discussion derives � D .B0 � B/=�0 and we have

M D �B0 � B
�0

: (7.38)

This is the common definition of magnetization of a superconductor when it is not

influenced by the geometrical effect.
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Example 7.3. An infinitely long superconducting cylinder of radius a is in a

uniform perpendicular magnetic flux density of B0. Determine the vector potential

and magnetic flux density outside the superconductor and current density on the

superconductor surface.

Solution 7.3. We use cylindrical coordinates with the z-axis at the central axis of

the superconductor and the azimuthal angle measured from the direction of the

applied magnetic flux density. From a similarity with Example 2.4 we can expect the

following treatment to be useful for determining the vector potential: We virtually

remove the superconductor and place a magnetic dipole line produced by a pair of

anti-parallel straight currents at the axis. We denote the magnitude of the magnetic

moment in a unit length along the z-axis by Om. From Eq. (6.52) the vector potential

is given by

Az.R; '/ D
�

B0RC �0 Om
2�R

�

sin ';

where the first and second terms are components of the applied magnetic flux

density and magnetic moment, respectively. The requirementAz.R D a/ D 0 gives

Om D �2�a
2B0

�0
:

Thus, the vector potential outside the superconductor is

Az.R; '/ D B0

�

R � a2

R

�

sin ':

We obtain the magnetic flux density as

BR D 1

R
� @Az

@'
D B0

�

1 � a2

R2

�

cos';

B' D �@Az

@R
D �B0

�

1C a2

R2

�

sin ';

Bz D 0:

We can show that BR.R D a/ D 0. The surface current density is

� D B'.R D a/

�0
D �2B0

�0
sin ':
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The magnetization of the superconducting cylinder is

M D �2B0
�0

:

}
From the above examples we can understand that the interior of a superconductor

is completely shielded with zero magnetic flux density. This situation is unchanged

even for the case of a hollow superconductor. Hence, if we completely surround

a space with a superconductor, the effect of external magnetic flux density can be

completely shielded in the space. This is called magnetic shielding and corresponds

to the electrostatic shielding attained by a conductor.

Column: (1) Penetration of Magnetic Flux into Superconducting

Hollow Cylinder with Tilted Slit

Suppose we apply a magnetic flux density parallel to a long supercon-

ducting hollow cylinder with a tilted slit as shown in Fig. 7.15. Does the

magnetic flux penetrate into the interior of the superconducting hollow

cylinder without passing through the superconducting region?

If axial magnetic flux lines move along the radial direction, they surely

have to pass through the superconducting region, indicating that the mag-

netic flux cannot penetrate into the interior. Is this true? In practice the

magnetic flux penetrates into the interior and its density is the same as that

of the external one.

Remember here that a superposition holds for electric and magnetic

quantities. That is, the resultant magnetic flux density is the sum of the

applied one and one produced by the shielding current. The shielding current

flows on the surface of the superconductor, as schematically shown in

Fig. 7.16a. This is composed of the current flowing on the surface of a virtual

hollow cylinder with no slit in Fig. 7.16b and that flowing in the opposite

direction only in the region of the slit in Fig. 7.16c. The current in Fig. 7.16b

produces a magnetic flux density of the same magnitude and opposite

direction to the external one in the superconducting region, resulting in

complete shielding there. The important thing is that the current in Fig. 7.16c

produces a tilted magnetic flux at the slit. This shows the magnetic flux

structure during the penetration. That is, the magnetic flux is tilted when it

penetrates into the interior.
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a b c

Fig. 7.15 Long super-

conducting hollow cylin-

der with a tilted slit in par-

allel magnetic flux density

Fig. 7.16 (a) Flow of current on the superconductor sur-

face, (b) that on the surface of virtual superconductor with

no slit and (c) that in the opposite direction in the slit region.

The current in (a) is obtained by superposing those in (b)

and (c)

(2) Intermediate State

When we apply an external magnetic flux density to a superconducting

sphere, the superconductor expels the magnetic flux from its interior. In

this case some part of the superconductor experiences a magnetic flux

density higher than the applied value because of the geometrical effect, as

shown in Fig. 7.13. Hence, even when the applied magnetic flux density is

below the critical value, Bc, the local magnetic flux density can exceed Bc,

resulting in a breakdown of the superconductivity. If we assume that the

superconductivity is completely broken, the magnetic flux will completely

penetrate the superconductor, resulting in a magnetic flux density of the

same value as the external one. This will bring about a recovery of the

superconductivity. However, this is contradictory. In reality the supercon-

ductor goes into a state in which the superconductivity is partially broken.

This is called the intermediate state. In this state the superconductor is in

the layered structure composed of the superconducting region with perfect

extrusion of magnetic flux and normal region with penetration of magnetic

flux, as shown in Fig. 7.17. Since the size of these layers is of the order of

several 10�m, the magnetic structure can be regarded as a uniform partially

diamagnetic structure on a macroscopic scale. However, we cannot use the
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Fig. 7.17 Multilayered structure composed

of superconducting and normal layers in the

intermediate state

Fig. 7.18 Magnetization curve of spherical

type 1 superconductor.

condition (7.4), so we need another method to determine the internal

magnetic flux density and surface current density. This is the method using

the boundary conditions on the magnetic flux density and magnetic field,

which will be described in Chap. 9 (see Exercise 9.9). Figure 7.18 shows the

magnetization curve of a spherical type 1 superconductor. The ascending

line starting from the origin represents the perfect diamagnetic characteristic

given by Eq. (7.34) and the descending line shows the characteristic in the

intermediate state.

Exercises

7.1. Determine the magnetic flux density and vector potential when we apply

currents I1 and I2 to the inner and outer superconductors, respectively, for the

coaxial superconductor in Fig. 7.5.

7.2. Two wide slab superconductors are parallel to each other, as shown in

Fig. E7.1, and current I is applied along the y-axis to the left superconductor. The

length along the z-axis of each slab is l . Determine the current that appears on each

superconductor surface, the magnetic flux density and vector potential inside and

outside the superconductors.

7.3. When a current flows uniformly with a surface density � on a thin sheet

conductor, the magnetic flux density near the sheet is given by Eq. (6.28). However,

Eq. (7.8) yields double this magnetic flux density near the superconductor surface

with the same current density. Discuss the reason for the difference.

7.4. When we put straight current I at a distance a from a wide superconductor

surface, the current given by Eq. (7.16) is induced on the superconductor surface.
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Fig. E7.1 Two parallel slab

superconductors

Fig. E7.2 Two perpendicular

flat superconductor surfaces

and straight current I

Prove that the Lorentz force exerted on I by the induced current is given by

Eq. (7.18).

7.5. Straight current I is placed at distances a and b from two flat superconductor

surfaces that are perpendicular to each other, as shown in Fig. E7.2. Determine the

vector potential and magnetic flux density in the vacuum.

7.6. Determine the magnetic flux density in the space around a superconducting

cylinder using the vector potential given by Eq. (7.23).

7.7. The vector potential is given by Eq. (7.13) for the case of a straight current and

a wide superconductor surface. Determine the equivector-potential surface.

7.8. A long superconducting cylinder of radius a is placed at distance l(>a) from an

infinite flat superconductor surface, as shown in Fig. E7.3, and a current I is applied

to the superconducting cylinder. Determine the current density on the surfaces of

the two superconductors.
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Fig. E7.3 Superconducting

cylinder parallel to infinite

flat superconductor surface

Fig. E7.4 Hollow cylindrical

superconductor and straight

current inside the

superconductor

7.9. Straight current I is placed at distance h from the central axis, O, of a hollow

cylindrical superconductor, as shown in Fig. E7.4. Determine the vector potential in

the vacuum and current density on the inner surface of the superconductor.

7.10. Derive Eqs. (7.30) and (7.33) for a superconducting sphere in a uniform

magnetic flux density using Eq. (7.1) with the boundary conditions, Eqs. (7.6) and

(7.8).

7.11. It is stated in Sect. 7.1 that someone might have predicted the existence of

superconducting material in the 19th Century. Prove this prediction that a material

with perfect magnetism (B D 0) has no resistivity. Note that the proof using the

magnetization of a hollow cylindrical material, as done in Sect. 9.1, cannot be used,

since no one can experimentally determine whether the magnetic flux density in the

hollow is zero for an undiscovered material.



Chapter 8

Current Systems

8.1 Inductance

In Chap. 6 we learned that the magnetic flux is produced around currents. When

a current, I , flows in a closed circuit, C, as shown in Fig. 8.1, the magnetic flux

penetrating C is proportional to I :

ˆ D LI: (8.1)

The proportional constant L is called self-inductance. The unit of self-inductance

is [Wb/A] and is newly defined as [H] (Henry). The self-inductance is determined

only by the shape of C and is defined as a positive quantity. That is, the directions

of the current and magnetic flux follow the right-hand rule.

Second, we suppose that there are two closed circuits and current I1 flows along

circuit C1. The magnetic flux penetrating itself is expressed as

ˆ1 D L11I1; (8.2)

similarly to Eq. (8.1). The magnetic flux also penetrates the other circuit C2, as

illustrated in Fig. 8.2, and it is expressed as

ˆ2 D L21I1: (8.3)

The constant L21 is influenced by the geometrical arrangement of C1 and C2, while

L11 is determined only by the shape of C1. If current I2 flows along C2, the resultant

magnetic flux penetrates C2 itself and C1. Thus, the magnetic fluxes penetrating C1
and C2 are formally given by

ˆ1 D L11I1 C L12I2; (8.4a)

ˆ2 D L21I1 CL22I2: (8.4b)

T. Matsushita, Electricity and Magnetism: New Formulation by Introduction

of Superconductivity, Undergraduate Lecture Notes in Physics,

DOI 10.1007/978-4-431-54526-2__8, © Springer Japan 2014
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Fig. 8.1 Magnetic flux

penetrating closed circuit

produced by current flowing

along itself

Fig. 8.2 Magnetic flux

produced by current flowing

along one of two closed

circuits

The self-inductancesL11 and L22 are positive as mentioned above. The coefficients

L12 and L21 are called mutual inductances and have the following relationship,

L12 D L21: (8.5)

The mutual inductance takes a positive or negative value depending on the directions

of the current and magnetic flux.

Extending the above case of two closed electric circuits, we consider a system

composed of n electric circuits in Fig. 8.3, where current Ii flows in the i -th circuit

Ci (i D 1; 2; � � � ; n). We express the magnetic flux ˆi penetrating Ci as

ˆi D
n

X

jD1
Lij Ij : (8.6)

In the above, the Lij ’s are inductance coefficients. The Li i ’s are self-inductances

and Lij ’s (i ¤ j ) are mutual inductances. The reciprocity theorem

Lij D Lj i ; (8.7)

holds generally.
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Fig. 8.3 System composed

of n closed circuits

Now we prove Eq. (8.7). From Eq. (6.34) the vector potential produced by current

Ij flowing in the j -th closed circuit Cj is given by

A.r/ D �0Ij

4�

I

Cj

drj

jr � rj j : (8.8)

With the aid of Eq. (6.35), we rewrite the magnetic flux penetrating Ci as

ˆij D
I

Ci

A.r i/ � dr i D �0Ij

4�

I

Ci

I

Cj

dr i � drj

jr i � rj j : (8.9)

Hence, the mutual inductance is given by

Lij D �0

4�

I

Ci

I

Cj

dr i � drj

jr i � rj j : (8.10)

This is called Neumann’s formula. The result is the same even if subscripts i and

j are exchanged. Thus, Eq. (8.7) is proved.

Here, we show an example of calculating a mutual inductance. Two circular coils

of radius a are separated by distance d with a common central axis, as shown in

Fig. 8.4a. The currents flow in the same direction. We define the coordinates as in

Fig. 8.4b and position vector r1 for the lower coil is fixed at point P. Then, the

contribution from a small region dr2 in the upper coil to the mutual inductance is

written as

�0dr2

4�Œ2a2.1C sin �/C d 2�1=2
D �0ad�.�i x sin � C i y cos �/

4�Œ2a2.1C sin �/C d 2�1=2
:

Integrating this for the upper coil, the y-component reduces to zero because of

symmetry, and only the x-component, i.e., the tangential component at point P,

remains. Here we put � D 2 C �=2. Then, after a simple calculation we write

the above integration with respect to r2 as
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a b

Fig. 8.4 Two circular coils with common axis: (a) arrangement and (b) coordinates

��0k
2�

Z �=2

0

1 � 2 sin2  

.1 � k2 sin2  /1=2
d ;

where k D 2a=.4a2 C d 2/1=2. Although the integration is not simplified any

more, the above calculated vector is directed along dr1 and its value is constant.

Hence, integrating with respect to r1 gives simply the factor 2�a. Thus, we obtain

the mutual inductance as

M D �0a

k
Œ.2 � k2/F.k/ � 2E.k/�; (8.11)

where F.k/ and E.k/ are complete elliptic integrals of the first and second kind,

respectively:

F.k/ D
Z �=2

0

1

.1 � k2 sin2  /1=2
d ; (8.12)

E.k/ D
Z �=2

0

.1 � k2 sin2  /1=2d : (8.13)

When the current path has a finite cross-sectional area, it is not easy to define the

magnetic flux penetrating the electric circuit. This may indicate that the inductance

cannot be exactly defined. However, the inductance can be exactly determined using

the magnetic energy, as will be shown later (see Exercise 8.3).
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Example 8.1. Determine the self-inductance of a unit length of the parallel-wire

transmission line of radius a separated by distance d in Fig. 8.5. Assume that d is

much larger than a and we can neglect the magnetic flux inside the conductors.

Fig. 8.5 Parallel-wire

transmission line

Solution 8.1. We suppose that current I flows as shown in the figure. We assume

a plane that includes the axes of the two cylindrical conductors and calculate the

magnetic flux penetrating the plane between the two conductors. The magnetic flux

density produced by current I flowing along the left conductor at distance x from

its central axis is

B1 D �0I

2�x

and is directed downwards. Hence, the magnetic flux in a unit length produced by

this current is

ˆ01 D
Z d�a

a

�0I

2�x
dx D �0I

2�
log

d � a
a

:

The magnetic flux produced by the current along the right conductor is the same,

and we have the self-inductance of a unit length as

L0 D 2ˆ01
I

D �0

�
log

d � a

a
' �0

�
log

d

a
:

}

Example 8.2. Determine the mutual inductance in a unit length between the two

parallel-wire transmission lines in Fig. 8.6. We define the current directions as in

the figure.
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Fig. 8.6 Two parallel-wire

transmission lines

Solution 8.2. We apply current I1 to transmission line 1. We calculate the magnetic

flux that penetrates transmission line 2 in a unit length. The magnetic flux produced

by the right current of transmission line 1 is

ˆ0r D ��0I1
2�

Z

p
b2Cc2

b

dr

r
D ��0I1

4�
log

b2 C c2

b2
:

The magnetic flux produced by the left current of transmission line 1 is

ˆ0l D �0I1

2�

Z

p
.aCb/2Cc2

aCb

dr

r
D �0I1

4�
log

.a C b/2 C c2

.a C b/2
:

The total magnetic flux penetrating transmission line 2 is

ˆ02 D ˆ0r Cˆ0l D ��0I1
4�

log
.b2 C c2/.a C b/2

b2Œ.a C b/2 C c2�

and the mutual inductance is given by

L021 D ˆ02
I1

D ��0
4�

log
.b2 C c2/.a C b/2

b2Œ.a C b/2 C c2�
:

Confirm for yourself that the same result is obtained by calculating the magnetic

flux produced by transmission line 2 that penetrates transmission line 1. }

Example 8.3. A circular coil is placed just between a parallel-wire transmission line

separated by d , as shown in Fig. 8.7. These stay on a common plane. Determine the

mutual inductance between the transmission line and circular coil.
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Fig. 8.7 Circular coil placed

at the center of the

parallel-wire transmission

line

Solution 8.3. We calculate the magnetic flux produced by current I flowing along

the left line of the transmission line that penetrates the circular coil. Using two-

dimensional polar coordinates with the origin at the center of the coil, the magnetic

flux density at .R; �/ is B D �0I=Œ2�.d CR cos �/�. Hence, the magnetic flux is

ˆl D �0I

2�

Z a

0

Z 2�

0

RdRd�

d CR cos �
:

The integral with respect to angle � is carried out using Eq. (7.26):

ˆl D �0I

Z a

0

RdR

.d 2 �R2/1=2 D �0I Œd � .d 2 � a2/1=2�:

Since the magnetic flux due to the current flowing along the right line is the same,

we obtain the mutual inductance as

M D 2ˆl

I
D 2�0Œd � .d 2 � a2/1=2�:

}

8.2 Coils

In Sect. 3.2 we learned about the electric property of capacitors used for storing

electric charges in electric circuits. The component used to store the magnetic flux

is a coil. Coils are also used for other purposes such as producing various magnetic

flux densities or generating electric power, that will be covered in Chap. 10. Here,

we introduce the magnetic property of coils.
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a

b c

Fig. 8.8 (a) Current in parallel-plate transmission line, (b) magnetic flux lines and (c) electric field

lines in a capacitor of the same geometry

When we apply a uniform current, I , to a parallel plate transmission line in

Fig. 8.8a, a magnetic flux with a uniform density is produced in the space between

the two plates (see Fig. 8.8b). We assume that the distance d between the two plates

is sufficiently small and the magnetic flux density on the outside can be neglected.

The magnetic flux in the space is directed normally to the currents and its density is

B D �0I

b
D �0�; (8.14)

where � D I=b is the planar current in a unit width. The magnetic flux between the

two plates is

ˆ D Bad D �0Iad

b
: (8.15)

Hence, we obtain the self-inductance as

L D �0ad

b
: (8.16)

The magnetic flux density produced by parallel planar currents corresponds to

the electric field of strength E D �=�0 produced by planar electric charges in a

parallel-plate capacitor (see Fig. 8.8c).

The coil used to produce a uniform magnetic flux density is a solenoid coil. For

example, when we apply current I to a long solenoid coil with a winding of n turns

in a unit length, the interior magnetic flux density is uniform with the value

B D �0nI; (8.17)
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as shown in Example 6.7. This value does not depend on the radius or length of the

coil. For a coil of radius a, the magnetic flux that penetrates one turn of the coil is

� D ��0na
2I: (8.18)

Thus, the magnetic flux penetrating the coil of a unit length is

ˆ0 D n� D ��0n
2a2I: (8.19)

Hence, the self-inductance in a unit length is given by

L0 D ˆ0

I
D ��0n

2a2: (8.20)

When the length of the solenoid coil is l , its self-inductance is smaller than L0l
and is expressed as

L D K

�

2a

l

�

L0l: (8.21)

In the above,K.2a=l/ is a function only of the ratio 2a=l and is called Nagaoka’s

coefficient. Figure 8.9 shows Nagaoka’s coefficient.

A spherical coil is a special coil for producing a uniform magnetic flux density

in a limited space. That is, when current flows on the surface of a sphere as given by

Eq. (7.33), the interior magnetic flux density is uniform. Assume a spherical coil of

N turns as in Fig. 8.10a. We take the number of turns in a unit zenithal length to be

ŒN=.2a/� sin � , where � is the zenithal angle. When we apply current I , the surface

current density on the sphere is

Fig. 8.9 Nagaoka’s

coefficient
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a b

Fig. 8.10 Spherical coil: (a) geometry and (b) windings

� D NI

2a
sin � (8.22)

and from Eq. (7.33) we obtain the interior magnetic flux density as

B0 D �0NI

3a
: (8.23)

To realize such a winding, the number of turns in a unit length along the axis is

N=.2a/.

However, fabricating such a spherical coil is not easy, and the Helmholtz coil

introduced below is commonly used. This coil consists of a pair of circular coils of

the same size, as shown in Fig. 8.11. The radius of the circular coils is a and the

distance between the two coils arranged on the common axis is 2z0. The center is

defined to be z D 0. We apply current I to the two coils in the same direction. Using

the result in Example 6.1, the magnetic flux density on the common axis is given by

B.z/ D �0Ia
2

2

�

1

Œ.z � z0/2 C a2�3=2
C 1

Œ.z C z0/2 C a2�3=2

�

: (8.24)

Fig. 8.11 The Helmholtz

coil
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a b c

Fig. 8.12 Magnetic flux distribution along the central axis of the Helmholtz coil for the cases

where the distance between the two coils is (a) too long, (b) too short and (c) optimum

When the distance between the two coils is too large, the magnetic flux density is

locally minimum at the center, as shown in Fig. 8.12a. When this distance is too

short, the variation in the magnetic flux density around the center is steep (see

Fig. 8.12b). No uniform magnetic flux density is achieved in either of these two

cases. We obtain the optimum arrangement under the condition d2B=dz2 D 0 at the

center, z D 0, which gives

z0 D a

2
: (8.25)

Figure 8.12c shows the magnetic flux distribution for this condition. The magnetic

flux density is uniform over a fairly wide area. The magnetic flux density at the

center is

B.0/ D 8�0I

5
p
5a
: (8.26)

Example 8.4. We apply current I to a solenoid coil of radius a, length l andN total

number of turns. Determine the magnetic flux density on the central axis.

Solution 8.4. We define the z-axis on the central axis, as shown in Fig. 8.13, with

the origin at the center of the coil. We regard the windings in the region z to z C dz

as a one-turn coil. The current flowing there is dI D .NI=l/dz. Using the result in

Example 6.1, the magnetic flux density at z D z0 produced by this current is

dB D �0dIa
2

2Œ.z � z0/2 C a2�3=2
D �0NIa

2

2lŒ.z � z0/2 C a2�3=2
dz:
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Fig. 8.13 Longitudinal

cross-section of solenoid coil

Hence, the total magnetic flux density at the observation point is

B.z0/ D
Z l=2

�l=2

�0NIa
2

2lŒ.z � z0/2 C a2�3=2
dz:

Here we define

z � z0 D a tan �

with

tan �1 D �1
a

�

l

2
C z0

�

; tan �2 D 1

a

�

l

2
� z0

�

:

Then, we calculate the total magnetic flux density to be

B.z0/ D �0NI

2l

Z �2

�1

cos �d� D �0NI

2l
.sin �2 � sin �1/

D �0NI

2l

�

l C 2z0

Œ.l C 2z0/2 C 4a2�1=2
C l � 2z0

Œ.l � 2z0/2 C 4a2�1=2

�

:

}

8.3 Magnetic Energy

The electric field fills the space between two electrodes in a charged capacitor, and

we can regard that the space as filled with electric energy. For a coil that stores the

magnetic flux, we can also regard the interior space as filled with magnetic energy.
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Fig. 8.14 Magnetic flux

trapped in closed circuit

composed of two

superconductors. The

superconducting plate is

movable as shown by the

arrow and in electrical contact

with the fixed piece

a b c

Fig. 8.15 Magnetic flux density in the field-cooled process: (a) after applying magnetic flux

density above the critical temperature, (b) after cooling below the critical temperature and

(c) after removing external magnetic flux density

Here we suppose two superconductors in electrical contact with each other, as

shown in Fig. 8.14. One of them is a movable plate. Assume that magnetic flux

ˆ is trapped within the space surrounded by the superconductors. We can realize

this situation by applying an external magnetic flux density at a temperature above

the critical value, reducing the temperature below the critical value to make the

superconductors superconducting, and then removing the external magnetic flux

density, as shown in Fig. 8.15. A current flows on the inner surface to shield the

superconductors from the magnetic flux. Hence, a repulsive force given by Eq. (6.9)

is exerted on the movable superconducting plate. If the plate is displaced by distance

x, the interior magnetic flux density changes to

B D ˆ

.aC x/b
(8.27)

and the density of current flowing on the inner surface changes to

� D B

�0
D ˆ

�0.aC x/b
: (8.28)
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We assume that a is much smaller than b. Since the magnetic flux density produced

by the fixed superconductor is half of the value given by Eq. (8.27), we estimate the

force on the movable plate to be

F D 1

2
�Bbh D ˆ2h

2�0.a C x/2b
; (8.29)

which is directed along increasing x. This is an isolated system and there is

no electromagnetic interaction with the surroundings after the initial condition is

established. Thus, this force is attributed to the variation in the magnetic energy Um

of this system. From the relationship

F D �@Um

@x
; (8.30)

we estimate the magnetic energy as

Um D ˆ2h

2�0.a C x/b
D 1

2�0
B2.a C x/bh: (8.31)

In the above .a C x/bh is the volume of the space in which the uniform magnetic

flux is trapped. Hence, the magnetic energy density is given by

um D 1

2�0
B2: (8.32)

This is similar to the electric energy density given by Eq. (3.40).

Since the total current flowing in the closed circuit is I D �h, the self-inductance

of the system is

L D ˆ

I
D �0.aC x/b

h
: (8.33)

In terms of the self-inductance we rewrite the magnetic energy, Eq. (8.31), as

Um D 1

2
LI 2 D 1

2
ˆI D 1

2L
ˆ2: (8.34)

These expressions are similar to those for electric energy in a capacitor, Eq. (3.38).

We consider a system composed of n closed electric circuits. Suppose that current

Ii flows in the i -th circuit and magnetic fluxˆi penetrates it (i D 1; 2; � � � ; n). Then,

extending the result of Eq. (8.34) to this case, the magnetic energy of this system is

given by
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Um D 1

2

n
X

iD1
ˆiIi D 1

2

n
X

iD1

n
X

jD1
Lij IiIj : (8.35)

The magnetic energy is usually derived using electromagnetic induction, as will be

shown in Chap. 10.

Equation (8.32) is the result when the magnetic flux density is uniform in space.

Here we determine the magnetic energy density for a non-uniform magnetic flux

density. Substituting Eq. (6.35) into Eq. (8.34), the energy of the system is written as

Um D 1

2

I

C

IA � ds; (8.36)

where C is the closed circuit with the current I . When the current is not concentrated

but flows widely in space, we extend Eq. (8.36) to

Um D 1

2

Z

V

A � i dV; (8.37)

where V is the region in which the current with density i flows. In terms of

Eqs. (6.27) and (A1.41) in the Appendix, the magnetic energy becomes

Um D 1

2�0

Z

V

A � .r � B/ dV D 1

2�0

Z

V

ŒB � .r � A/� r � .A � B/�dV: (8.38)

Using Gauss’ theorem, the second volume integral is transformed to the surface

integral

�
Z

S

.A � B/ � dS : (8.39)

Assuming a sphere of sufficiently large radius r for V, we have jAj / r�1; jBj /
r�2and

R

dS / r2on its surface, and the surface integral is proportional to r�1.
Hence, taking the limit r ! 1, the integral reduces to zero. Neglecting this integral,

the magnetic energy reduces to

Um D 1

2�0

Z

V

B2 dV; (8.40)

where we have used Eq. (6.29). Thus, we can prove that the magnetic energy density

is given by Eq. (8.32) even when the magnetic flux density is not uniform in space.

We compare the magnetic energy obtained here and the electric energy obtained

in Chap. 3 in Table 8.1. These are quite analogous to each other.



192 8 Current Systems

Table 8.1 Comparison of electric energy and magnetic energy

Electric energy Magnetic energy

Separated system 1
2

Pn
iD1 �iQi

1
2

Pn
iD1ˆiIi

Continuum system 1
2

R

V ��dV 1
2

R

V A � i dV

Energy density 1
2
�0E

2 1
2�0

B2

Example 8.5. We apply current I to the superconducting coaxial transmission line

in Fig. 7.5. Determine the magnetic energy stored in a unit length of the transmission

line and derive the self-inductance with this result.

Solution 8.5. Currents flow only on the surfaces R D a and R D b so that the

magnetic flux does not penetrate the superconductors. The magnetic flux density is

B D �0I=.2�R/ only in the region a < R < b and is zero in other regions. Hence,

the magnetic energy is non-zero only in the region a < R < b and its density is

B2

2�0
D �0I

2

8�2R2
:

Integrating this over the volume in a unit length, we have

U 0m D �0I
2

8�2

Z b

a

1

R2
� 2�RdR D �0I

2

4�
log

b

a
:

We can also obtain the magnetic energy from Eq. (8.36). The vector potential

has only the axial component Az similarly to the current. From the relation-

ship @Az=@R D �B with Az.b/ D 0 we obtain the vector potential as

Az.R/ D �0I

2�
log

b

R

in the region a < R < b. Thus, the magnetic energy is

U 0m D 1

2
Az.a/I D �0I

2

4�
log

b

a
;

which agrees with the above result.

Using this result, the self-inductance in a unit length is

L0 D 2U 0m
I 2

D �0

2�
log

b

a
:

}
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Example 8.6. We apply current I to a sufficiently long solenoid coil of radius a

with n turns in a unit length. Calculate the magnetic energy in a unit length using

either Eq. (8.37) or (8.40).

Solution 8.6. The magnetic flux density inside the coil is B D �0nI (see

Example 6.7). Using Eq. (8.40) the magnetic energy in a unit length of the coil is

U 0m D 1

2�0
.�0nI /

2�a2 D ��0

2
.naI /2:

On the other hand, the current flows only on the coil surface (R D a). The vector

potential on this surface is A'.a/ D �0nIa=2 and the surface current density is

� D nI . Thus, using Eq. (8.37), the magnetic energy is

U 0m D 1

2

Z

S

A'.a/�dS D 1

2
� �0nIa

2
nI � 2�a D ��0

2
.naI /2:

This agrees with the above result. }

8.4 Magnetic Force

Magnetic force works between current-carrying conductors. This force is equal to

the sum of the Lorentz force on each current. We can expect to derive this force

using the magnetic energy and the principle of virtual displacement, similarly to

the electrostatic force learned in Sect. 3.4. In fact, we learned the reverse process,

namely estimating magnetic energy from the Lorentz force, in Sect. 8.3. However,

we need to pay special attention when applying such a method to general cases.

We suppose that current I1 flows in a straight line and current I2 flows along

a rectangular circuit with two sides parallel to the straight line, as shown in

Fig. 8.16. These are placed on a common plane. Now we determine the force on

Fig. 8.16 Long straight line

and rectangular circuit
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the rectangular circuit using the Lorentz force. An attractive force works on the

closer side and a repulsive force works on the opposite side. If the distance between

the straight line and the closer side is x, the force on the rectangular circuit is

F 0 D ��0I1I2
2�x

b C �0I1I2

2�.x C a/
b D � �0abI1I2

2�x.x C a/
; (8.41)

where we define the force in the direction of increasing x to be positive. This force

is negative, i.e., attractive.

Next we calculate the force with the magnetic energy. The magnetic energy due

to current I1 only and that due to current I2 only are expressed in terms of the self-

inductances of each circuit. These energies are independent of the displacement of

the rectangular circuit, since the self-inductances do not change under the relative

displacement between the two circuits. From Eq. (8.35) for n D 2, the associated

energy is the interaction energy between the two currents, i.e., the energy from

mutual induction. The magnetic flux produced by current I1 that penetrates the

rectangular circuit is

ˆ D L21I1 D �0I1b

2�

Z xCa

x

dr

r
D �0I1b

2�
log

x C a

x
: (8.42)

Hence, the associated energy is

Um D 1

2
.L12 C L21/I1I2 D ˆI2 D �0bI1I2

2�
log

x C a

x
; (8.43)

using Eq. (8.5). Thus, the magnetic force seems to be

F D �@Um

@x
D �0abI1I2

2�x.x C a/
: (8.44)

However, this disagrees with F 0 in Eq. (8.41) which shows that there is a problem

with the above procedure.

What does this mean? The above procedure seems to indicate that the magnetic

energy decreases by F�x during the displacement of the rectangular circuit from

x to x C �x. However, the total magnetic energy must additionally increase by

�Um D 2F�x to reach the correct result. From the reciprocity theorem in Eq. (8.5),

half of this increment comes from the increase in the magnetic energy in the

rectangular circuit. We expect this to be caused by the induced electromotive force

V in the circuit. Namely, when the rectangular circuit is displaced by �x within

time�t , the work done by the induced electromotive force is VI2�t . We can rewrite

this as ��ˆI2 in terms of the change in the magnetic flux that penetrates the circuit,

�ˆ D � �0I1ab

2�x.x C a/
�x: (8.45)
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Taking the limit �t ! 0, we have

V D ��ˆ
�t

! �dˆ

dt
: (8.46)

This is the induced electromotive force that will be learned in Chap. 10.

What we can say from the above example is that estimating the magnetic force

from the magnetic energy is valid only when the circuit is isolated and the magnetic

flux is conserved as treated in Sect. 8.3. In most cases electromagnetic induction is

involved and such an estimation is not correct.

Column: (1) Method of Deriving Static Magnetic Energy

This chapter shows that there is a formal similarity between the electric

energy and magnetic energy. However, the method of deriving the energy is

completely different between the two cases. For example, the electric energy

is estimated from the mechanical work needed to carry electric charges from

infinity until the final distribution of electric charge is attained, whereas the

magnetic energy cannot be estimated from the mechanical work to carry

currents from infinity. That is, there is a problem of divergence of the

energy. In addition, the more severe problem is that the final energy must

be negative, since the work to carry a current is negative because of the

attractive force between currents of the same direction. Thus, we conclude

that the magnetic energy cannot be derived with this method. This is because

of the induced electromotive force mentioned in Sect. 8.4.

For this reason we estimate the magnetic energy in a virtual experiment

using a superconducting circuit in this chapter. The merits of this method

are that it enables us to construct an isolated system from surroundings such

as a power source, and that it is free from electromagnetic induction since

it conserves the magnetic flux because of the perfect diamagnetic property

(see Exercise 8.9).

Consider possible ways to derive the magnetic energy other than the

method introduced here.

(2) Is Magnetic Flux a Magnetic Potential?

There is a famous analogy between the electric energy and magnetic

energy, as shown in Table 8.1. The electric energy is given by the product

of the electric source, i.e., the electric charge Qi and the resultant electric

potential �i divided by 2. On the other hand, the magnetic energy is given

by the product of the magnetic source, i.e., the current Ii and the resultant

magnetic flux ˆi divided by 2. Does this analogy mean that the magnetic

flux is a magnetic potential, i.e., the vector potential? It is clear that the

magnetic flux is not the vector potential. How can we explain such a

disagreement between electricity and magnetism?
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The answer is that this difference is caused by the difference in the

dimension of the sources. Originally the electric charge density corresponds

to the current density, as can be seen in Table 8.1. For a conductor system,

the electric potential is constant in each conductor. In the i -th conductor, the

electric energy reduces to

1

2

Z

Vi

��dV D 1

2
�i

Z

Vi

�dV D 1

2
�iQi :

On the other hand, we obtain the current by integrating the current density in

the cross-sectional area. In the i -th circuit, the magnetic energy reduces to

1

2

Z

Vi

A � i dV D 1

2

Z

Si

i dS

I

Ci

A � ds D 1

2
ˆiIi :

In the above the volume integral was divided into the cross-sectional integral

and the integral along the current path as dV D dSds, and we used the

relationship i ds D ids. That is, the magnetic flux is not the vector potential

but is the vector potential integrated along the circuit. This may be simply

understood from dimensions. In this sense the magnetic flux is a kind of

magnetic potential.

Exercises

8.1. Determine the mutual inductance between a parallel-wire transmission line and

a triangular circuit on the common plane in Fig. E8.1.

8.2. Calculate the self-inductance directly from the penetrating magnetic flux for

the superconducting coaxial transmission line in Example 8.5.

8.3. Suppose that the coaxial transmission line in Example 8.6 is not made of

a superconductor but of a usual conductor. Determine the self-inductance. (Hint:

Determine the self-inductance using the magnetic energy for a current.)

8.4. Determine the mutual inductance between a parallel-wire transmission line and

a rectangular circuit placed at distance b from the transmission line (see Fig. E8.2).

8.5. Determine the mutual inductance between two coaxial solenoid coils in

Fig. E8.3. The inner and outer coils have na and nb turns in a unit length,

respectively.
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Fig. E8.1 Parallel-wire

transmission line and

triangular circuit

Fig. E8.2 Parallel-wire

transmission line and

rectangular circuit

Fig. E8.3 Two coaxial

solenoid coils

8.6. Determine the interior magnetic flux density, magnetic energy and

self-inductance when we apply current I to the toroidal coil in Fig. E8.4. The

radius of the central axis is d , the radius of the winding region is a and the total

number of turns is N .
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Fig. E8.4 Toroidal coil

Fig. E8.5 Cross-section of

coaxial superconducting

cylinders

8.7. We denote the inner, middle and outer long coaxial superconducting cylinders

in Fig. E8.5 as superconductors 1–3. (a) Determine the inductance coefficients

assuming the reference point for zero vector potential at R D R1 > R4, and

(b) determine the magnetic energy in a unit length using the inductance coefficients

when we apply currents I1, I2 and I3 to superconductors 1, 2 and 3, respectively.

8.8. Suppose that current I 0 is flowing along the azimuthal direction in a unit length

of a long hollow superconducting cylinder with inner diameter 2b, as shown in

Fig. E8.6a. Determine the force on the cylindrical superconducting rod of radius a

when we insert the rod into the superconducting cylinder to a depth x from the edge,

as shown in Fig. E8.6b. Neglect the disturbance of magnetic flux density around the

edge of the rod.

8.9. Currents I1 and I2 flow along two long rectangular superconducting circuits, as

shown in Fig. E8.7. Calculate the magnetic force using the magnetic energy. (Hint:

Note that when the distance x changes to x C �x, currents I1 and I2 change in a

way that keeps the penetrating magnetic flux constant in each circuit.)
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a b

Fig. E8.6 (a) Long hollow superconducting cylinder with azimuthal current and (b) penetration

of superconducting rod into the hollow superconducting cylinder

Fig. E8.7 Two

current-carrying long

rectangular superconducting

circuits placed on a common

plane



Chapter 9

Magnetic Materials

9.1 Magnetization

Some materials possess a magnetic moment that causes magnetic phenomena, when

an external magnetic flux density is applied to those materials. These materials are

classified as magnetic materials. Commonly used permanent magnets are made

of magnetic materials, and possess a magnetic moment even without an external

magnetic flux density.

The appearance of the magnetic moment in magnetic materials is analogous to

the way the electric polarization arises because of a relative displacement between

electric charges of different signs in an external electric field. In fact it looks as if the

magnetic moment appears because of a relative displacement of magnetic charges

of different signs in an external magnetic flux density, as shown in Eq. (6.50).

However, magnetic charges do not exist, as discussed in Sect. 6.8. On the other

hand, we learned that the magnetic moment can be equivalently expressed by

closed currents. This equivalent current that produces the magnetic moment is called

magnetizing current. However, true currents produce the static magnetic moment

only in superconductors. The magnetizing current in a magnetic material cannot be

taken outside. This is also similar to the polarization charge, which cannot be taken

out of a dielectric material. Thus, the magnetizing current is a virtual substance like

the magnetic charge. The magnetic moment is caused by electron spins, electron

orbital motion, nuclear magnetic moment, etc.

The resultant magnetic moment in a unit volume of a material is called

magnetization and is represented by M . Its unit is [A/m]. This definition of mag-

netization is the same as that for superconductors (see Sect. 7.3). The magnetization

M in a magnetic material is usually directed parallel to an applied magnetic flux

density, B, and is proportional to B D jBj. Thus, it can be expressed as

M D �m

�0
B; (9.1)

T. Matsushita, Electricity and Magnetism: New Formulation by Introduction

of Superconductivity, Undergraduate Lecture Notes in Physics,
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a b

Fig. 9.1 Arrangement of individual magnetic moments in paramagnetic material (a) in the

absence of a magnetic flux density and (b) in an applied magnetic flux density

Table 9.1 Magnetic

susceptibility per kg/m3 of

non-magnetic materials

Material �m (�10�3) Material �m (�10�3)

Diamond �0:49 Oxygen 106.2

Graphite �6 to�7 Air 24.1

Gold �0:139 Nitrogen �0:43
Copper �0:086 Hydrogen �1:97
Zinc �0:157 Pure water �0:720
Germanium �0:12 Benzene �0:712
Aluminum 0:62 Quartz glass �0:5
Manganese 9:6 Alumina �0:34
Chromium 3:17 Iron dioxide 20:6

where the dimensionless proportional constant �m is called the magnetic suscepti-

bility. Magnetic materials are classified into various kinds depending on the value

of �m. It is recommended to read technical books to learn more about different kinds

and characteristics of magnetic materials. Here these will be briefly introduced.

1. Non-magnetic materials: This group includes diamagnetic materials with

negative �m and paramagnetic materials with �m that is positive but smaller

than 1. The reason why the magnetization is proportional to the applied magnetic

flux density is that magnetic moments directed randomly tend to incline in the

direction of the applied magnetic flux density, as illustrated in Fig. 9.1. Table 9.1

gives the magnetic susceptibility for non-magnetic materials.

If we apply Eq. (9.1) to superconductors, those with �m D �1 may be classi-

fied as diamagnetic material. However, the usual definition in electromagnetism

is different, as will be shown later.
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a

b

c

Fig. 9.2 Alignment of magnetic moments in (a) ferromagnetic, (b) anti-ferromagnetic and

(c) ferrimagnetic materials

2. Magnetic materials: Materials with positive �m of 102–104 are classified into

this group. The origin of this type of magnetism is spin of electrons. One group

of magnetic materials is ferromagnetic, with magnetic moments of atoms

aligned in the same the direction, as shown in Fig. 9.2a. This alignment is

favored because the positive exchange interaction reduces the free energy. Anti-

ferromagnetic materials have magnetic moments aligned alternately because of

the negative exchange interaction, and ferrimagnetic materials with magnetic

moments of different magnitudes aligned alternately because of the negative

exchange interaction (see Fig. 9.2b, c). Thus, ferromagnetic materials and fer-

rimagnetic materials have non-zero magnetization without an applied magnetic

flux density. This magnetization is called spontaneous magnetization. Even for

materials with spontaneous magnetization, the total magnetization in a specimen

is sometimes zero. This occurs because the specimen is divided into finite regions

called magnetic domains. In each magnetic domain the magnetic moment is

aligned in the same direction, and the magnetic moments of these domains are

directed randomly, as illustrated in Fig. 9.3. When we apply a magnetic flux

density to such a specimen, the structure of its magnetic domains changes in

a complex manner, including movement of the wall between adjacent domains

or rotation of the magnetic moment in each domain, etc. This results in a complex

magnetization as shown in Fig. 9.4.
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Fig. 9.3 Structure of

magnetic domain with

magnetic moment for zero

magnetization

Fig. 9.4 Magnetization

curve of ferromagnetic

material. The magnetization

changes with a change in

applied magnetic flux density

as indicated by the arrows

Suppose a thin magnetic slab of thickness�h that is magnetized uniformly in the

normal direction. The magnetization of a small region in this slab is expressed by

magnetizing current flowing around it (see Fig. 9.5). We denote the area of the top

surface and the surface density of magnetizing current by �S and �m, respectively.

The magnetizing current flowing around the small region is �m�h, and the magnetic

moment is �m D �m�h�S D �m�V with �V D �S�h denoting the volume of

this small region. Hence, the magnetization is given by

M D �m

�V
D �m: (9.2)

Namely, the magnetization is equal to the surface density of the magnetizing current.

This relationship is similar to that of Eq. (4.2) stating that the electric polarization is

equal to the surface density of the polarization charge in dielectric materials.
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Fig. 9.5 Thin magnetic slab

magnetized in the normal

direction and a small part

Fig. 9.6 Magnetizing current

in each divided region (upper

half ) and resultant

magnetizing current flowing

on the periphery of the slab

(lower half )

When this slab is divided into small regions as shown in Fig. 9.6, the magnetic

moment in each region can be expressed by the magnetizing current flowing

around it. These currents cancel out between adjacent regions, leaving only the

magnetizing current flowing on the periphery of the slab. This is similar to the fact

that the polarization charge remains only on the surface of a uniformly polarized

dielectric material. When the magnetization is not uniform, the magnetizing current

remains inside the magnetic material.

This result may suggest that the magnetizing current in magnetic materials and

the shielding current in superconductors are similar to each other. However, there

is an essential difference between them. Suppose we apply a magnetic flux density

along a long hollow magnetic material and a long hollow superconductor. When we

use reasoning similar to that for Fig. 9.6 for a magnetic material, the magnetizing

current remains not only on the outer surface but also on the inner surface, as shown

in Fig. 9.7. In this case we can easily show that a magnetic flux density of the same

value as the external one appears in the hollow. On the other hand, the current

flows only on the outer surface of the superconductor, as shown in Fig. 9.8, and

the interior is completely shielded including the hollow. It should be noted that

the direction of the current is opposite to the magnetizing current because of the

diamagnetic nature of the superconductor. This difference comes from the origin

of the magnetic moment: The magnetic moment in magnetic materials originates

from the electron spins, which are equivalent to the magnetizing current, while the

magnetic moment in superconductors originates from the true current. The currents

cannot be necessarily expressed by a superposition of small closed currents like the

magnetizing currents.
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a b

Fig. 9.7 (a) Small closed loops of magnetizing current and (b) resultant magnetizing current on

the surfaces in hollow magnetic material in parallel magnetic flux density

Fig. 9.8 Current that shields

a hollow superconductor in

parallel magnetic flux density

Fig. 9.9 Small region of

volume dV 0 at point A in

magnetic material and

observation point P

A similar difference can be found between a hollow dielectric material and a

hollow conductor in a transverse electric field, as shown in Fig. 4.10. This difference

comes from the difference between the polarization charge and electric charge.

We assume that the magnetization is not uniform in region V occupied by a

magnetic material. The magnetic moment of a small region of volume dV 0 at point

A positioned at r 0 is m.r 0/ D M .r 0/dV 0 (see Fig. 9.9). Using Eq. (6.41), the vector

potential produced by this magnetic moment at observation point P at r is
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dA D �0

4�
� M .r 0/ � .r � r 0/

jr � r 0j3 dV 0: (9.3)

Hence, the total vector potential is given by

A.r/ D �0

4�

Z

V

M .r 0/ � .r � r 0/

jr � r 0j3 dV 0: (9.4)

As shown in Sect. A2.6 in the Appendix, this transforms to

A.r/ D �0

4�

Z

V

r 0 � M .r 0/

jr � r 0j dV 0; (9.5)

where the operation r 0� is rotation with respect to r 0. Comparing this and

Eq. (6.33), we understand that this vector potential is produced by the magnetizing

current density,

r � M D i m: (9.6)

In addition,�0M represents the magnetic flux density produced by the magnetizing

current. Thus, the following equation holds:

r � M D 0: (9.7)

Example 9.1. A spherical magnetic material of radius a is in a uniform magnetic

flux density B0, as shown in Fig. 9.10a. Determine the magnetizing current density

on the surface. The magnitude of magnetization M is M .

a b

Fig. 9.10 (a) Magnetization of spherical magnetic material in magnetic flux density and (b) thin

plate of magnetic material
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Solution 9.1. We define the origin at the center of the sphere and the z-axis along

the direction of the applied magnetic flux density. We measure the zenithal angle �

from this axis. We slice the spherical magnetic material into thin plates and denote

the surface magnetizing current density on the edge of a plate by � . Equation (9.2)

gives � D M . If we denote the thickness of the thin plate and the corresponding

zenithal angle interval by dh and d� , we have dh D a sin �d� . The magnetizing

current that flows on the edge of this plate is �dh D �mad� . Thus, the surface

magnetizing current density is given by

�m D � sin � D M sin �: (9.8)

}

9.2 Magnetic Field

When a current of density i and a magnetizing current of density i m coexist, the

vector potential is given by

A.r/ D �0

4�

Z

V

i .r 0/C i m.r
0/

jr � r 0j dV 0: (9.9)

The rotation of the magnetic flux density is

r � B D �0.i C i m/: (9.10)

Here we define a new physical quantity

H D 1

�0
B � M : (9.11)

Then, we have

r � H D i : (9.12)

That is, H is a variable that corresponds only to the current and is called the

magnetic field or magnetic field strength. The unit of the magnetic field is [A/m]

and is the same as for the magnetization. Equation (5.11) is satisfied also in this

case as shown in Chap. 6, and hence, this is the magnetic field produced by a steady

current. The definition of the magnetic field is similar to the definition of electric

flux density, which corresponds only to electric charges.

The word “field” represents a fundamental property of space that exerts force at a

distance such as the electric field. The corresponding field for magnetic interaction

is the magnetic flux density as described in Eq. (6.10) or (6.14). In this sense B

can be called the magnetic field. However, H defined by Eq. (9.11) has been called
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the magnetic field. As is customary, we will call H and B the magnetic field and

magnetic flux density, respectively.

As stated above, the magnetic field H is the variable associated only with a

current. Hence, the Biot–Savart law and Ampere’s law are the laws for H . Namely,

the general form of the Biot–Savart law is given by

H .r/ D 1

4�

Z

C

Idr 0 � .r � r 0/

jr � r 0j3 (9.13)

instead of Eq. (6.6). The general form of Ampere’s law is now written as

I

C

H � ds D
Z

S

i � dS (9.14)

instead of Eq. (6.25). Equation (9.12) is the general differential form of Ampere’s

law.

Here we explain the definition of the magnetic susceptibility in Eq. (9.1). In

this definition M is described in terms of B. This corresponds to the description

of the electric polarization in Eq. (4.1) and follows the E–B analogy. Hence,

the dimensionless magnetic susceptibility �m in Eq. (9.1) is consistent with the

dimensionless electric susceptibility �e in Eq. (4.1). However, electromagnetism

currently uses the definition

M D �mH : (9.15)

In practical measurement of magnetization the magnetic flux density B applied to

a specimen is nothing else than �0H , which can be clearly defined using current.

In this sense there is no contradiction between Eqs. (9.1) and (9.15). Substituting

Eq. (9.15) into Eq. (9.11) gives

H D 1

�
B: (9.16)

In the above

� D �0.1C �m/ (9.17)

is a material constant called the magnetic permeability and has a unit of [N/A2].

The relative magnetic permeability �r is a dimensionless parameter defined by

� D �0�r: (9.18)

It is related to the magnetic susceptibility as

�r D 1C �m: (9.19)

We can define the magnetic field line for the magnetic field H similarly to

the magnetic flux line for the magnetic flux density B. That is, the direction of a
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tangential line at any point on the magnetic field line is the same as the direction of

H , and its line density is equal to the magnitude of H .

Substituting Eqs. (9.12) and (9.16) into Eq. (6.29), we have

r � .r � A/ D �i : (9.20)

Using the Coulomb gauge, Eq. (6.30), for static magnetism, the above equation gives

Poisson’s equation,

�A D ��i : (9.21)

This is simply obtained by replacing �0 with � in Eq. (6.37). Hence, its solution is

given by Eq. (6.33) when �0 is replaced by �.

It should be noted that the magnetic moment produced by the current is not

included in the magnetization M , since the current affects only the magnetic field

H in Eq. (9.11). That is, Eq. (9.11) is applicable only to magnetic materials and not

to superconductors. In fact, we have B D �0H and M D 0 in superconductors.

Thus, the magnetization in the superconductor cannot be expressed using Eq. (9.11).

However, the same term “magnetization” is used to express the magnetic moment in

a unit volume for both magnetic materials and superconductors. The magnetization

in a superconductor is proportional to the difference between the mean magnetic

flux density in the superconductor and the applied magnetic flux density, as shown

in Eq. (7.38). In other words, the magnetization is a local variable in magnetic

materials but is a variable averaged over a specimen for superconductors.

Example 9.2. Two magnetic materials have magnetic permeabilities �1 and �2.

Each occupies half of the inner space of a long solenoid coil of radius a and n

turns in a unit length, as shown in Fig. 9.11. Determine the self-inductance in a unit

length of this coil.

Fig. 9.11 Solenoid coil

occupied by two magnetic

materials with different

magnetic permeabilities
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Solution 9.2. We apply Ampere’s law, Eq. (9.14), as in Example 6.7. The magnetic

field is H D nI in both magnetic materials when current I is applied to the coil.

The magnetic flux density is given by B1 D �1nI and B2 D �2nI inside materials

1 and 2, respectively. Hence, the magnetic flux that penetrates one turn of the coil is

� D �

2
.�1 C �2/na

2I:

Since the magnetic flux that penetrates the coil of a unit length is

ˆ0 D n� D �

2
.�1 C �2/n

2a2I;

the self inductance in a unit length is given by

L0 D ˆ0

I
D �

2
.�1 C �2/n

2a2:

}

9.3 Boundary Conditions

In Sect. 4.3 we discussed the conditions for the electric field and electric flux density

to be fulfilled at an interface between different dielectric materials. Here, we discuss

the conditions for the magnetic flux density and magnetic field to be fulfilled at

an interface between different magnetic materials. Suppose an interface between

magnetic materials 1 and 2 with magnetic permeabilities �1 and �2.

First we discuss the boundary condition for the magnetic flux density. The

magnetic flux density B satisfies Eq. (6.21). This is the same form as Eq. (4.16)

for the electric flux density D when the electric charge density � is zero. Hence,

using the same procedure as that for deriving Eq. (4.19), we have

n � .B1 � B2/ D 0: (9.22)

That is, the normal component of the magnetic flux density is continuous at the

interface. In the above n is the unit vector normal to the interface and is directed

from material 2 to material 1.

Second we treat the condition for the magnetic fields. We denote the magnetic

fields in magnetic materials 1 and 2 in the vicinity of the interface by H 1 and

H 2, respectively. We assume that the plane containing the vectors H 1 and H 2

is normal to the interface, as illustrated in Fig. 9.12a. Suppose a small rectangle,

�C, on the plane with two sides parallel to the interface, as shown in Fig. 9.12b.

We integrate the magnetic field along�C. If the height�h is sufficiently small, we



212 9 Magnetic Materials

a

b

Fig. 9.12 (a) Plane that contains the magnetic field vectors in each magnetic material at the

interface and (b) small rectangle on the plane that contains the interface

obtain the contribution only from the two sides parallel to the interface. We denote

the unit vector along the direction of integration on the upper side and the length of

this side by t and �s. The integrations on the upper and lower sides are given by

H 1 � t�s and �H 2 � t�s. Thus, the integration gives

I

�C

H � ds D .H 1 � H 2/ � t�s: (9.23)

From Eq. (9.14) this is equal to the total current flowing through the region

surrounded by�C. Since the height�h is infinitesimal, this is zero when the current

flows with a finite density. This takes a finite value only when a planar current flows

on the interface. Here, we use � and a to denote the planar current density and unit

vector normal to�C, respectively. These vectors are defined to point along the right

thumb when it is rotated along the direction of the integration. The total current

that flows through�C is � � a�s. Using the relationship a � n D t, Eq. (9.23) gives

Œn � .H 1 � H 2/� � a D � � a;

and finally we obtain

n � .H 1 � H 2/ D �: (9.24)

In the above we assumed that the plane containing H 1 and H 2 is normal to the

interface. You can prove this assumption in Exercise 9.3. Equation (9.24) states that

a planar current flows on the interface and its density is equal to the difference in
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the parallel component of the magnetic field. When there is no planar current, the

parallel component of the magnetic field is continuous. This condition is satisfied in

Example 9.2.

Now, we describe the above boundary conditions using the vector potential. We

denote the vector potentials in magnetic materials 1 and 2 in the vicinity of the

interface by A1 and A2, respectively. Then, Eqs. (9.22) and (9.24) are rewritten as

n � .r � A1 � r � A2/ D 0; (9.25)

n �
�

1

�1
r � A1 � 1

�2
r � A2

�

D �: (9.26)

The main component of the vector potential is parallel to the current in the vicinity of

the interface, as can be seen from Eq. (6.33). The current flows along the direction of

a and we denote the corresponding component of the vector potential by Aa. Thus,

we have

r � A D �@Aa
@n

t C @Aa

@t
n; (9.27)

where @=@n and @=@t are the derivatives along the directions of n and t. Hence,

Eq. (9.25) gives

@Aa1

@t
D @Aa2

@t
: (9.28)

Integrating this along the direction of t, we have

Aa1 D Aa2: (9.29)

Equation (9.26) gives

1

�1
� @Aa1
@n

� 1

�2
� @Aa2
@n

D ��: (9.30)

Example 9.3. Magnetic materials 1 and 2 of magnetic permeabilities �1 and �2
each occupy half of the space between two long parallel superconducting plates, as

shown in Fig. 9.13. We apply current I to each superconducting plate in opposite

directions. Determine the magnetic flux density and magnetic field in each magnetic

material and self-inductance in a unit length of superconducting plates. Assume that

the width of the plate, w, is sufficiently long in comparison with the distance, d ,

between the two plates.
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Fig. 9.13 Two

superconducting plates with

magnetic materials with

different magnetic

permeabilities

Solution 9.3. The magnetic flux density and magnetic field are directed parallel to

the superconducting plates in the space between them. We denote these values in

magnetic materials 1 and 2 by B1, H1, B2 and H2. From Eq. (9.22) we have

B1 D B2;

which gives

H2 D �1

�2
H1:

We apply Eq. (9.14) to rectangle C in Fig. 9.13. If the surface current density on the

superconducting plate in this region is �1, we haveH1l D �1l . This reduces to

H1 D �1:

The surface current density on the superconducting plate in contact with magnetic

material 2 is

�2 D H2 D �1

�2
�1:

Since the total current I is equal to .w=2/.�1 C �2/, we obtain

H1 D 2�2I

w.�1 C �2/
; H2 D 2�1I

w.�1 C �2/
;

and

B1 D B2 D 2�1�2I

w.�1 C �2/
:

The magnetic flux that penetrates the superconducting plates in a unit length is

ˆ0 D 2�1�2dI

w.�1 C �2/
;
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and we obtain the self-inductance as

L0 D 2�1�2d

w.�1 C �2/
:

It should be noted that the situation is not simple if the superconducting plates

are replaced with usual conducting plates. This situation is similar to that in

Example 4.3.

}
Here we derive the boundary conditions on the surface of a superconductor from

the above general boundary conditions. We denote the vacuum and superconductor

as regions 1 and 2, respectively. We use �0 for the magnetic permeability of the

superconductor. Since B2 D 0, we can say from Eq. (9.22) that the magnetic flux

density in the vacuum is parallel to the surface. Equation (9.24) derives H1 D � ,

which gives the same result as Eq. (7.8),

B1 D �0�: (9.31)

Here we discuss the refraction of magnetic flux lines and magnetic field lines

using the boundary conditions. Suppose an interface between magnetic materials

with magnetic permeabilities �1 and �2 (see Fig. 9.14). We assume that magnetic

flux density B1 is applied in material 1 in the direction of angle �1 from the normal

direction to the interface. We denote by B2 and �2 the magnitude and angle of

magnetic flux density in material 2. The continuity of the normal component of

the magnetic flux density gives

B1 cos �1 D B2 cos �2: (9.32)

Since no surface current flows usually on the interface, the parallel component of

the magnetic field is continuous at the interface:

1

�1
B1 sin �1 D 1

�2
B2 sin �2: (9.33)

Fig. 9.14 Refraction of

magnetic flux lines at

interface
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These equations give

tan�1

tan�2
D �1

�2
: (9.34)

This is the law of refraction. We obtain B2 and �2 as

B2 D B1

"

�

�2

�1

�2

sin2 �1 C cos2 �1

#1=2

; (9.35)

�2 D tan�1
�

�2

�1
tan �1

�

: (9.36)

Example 9.4. A magnetic sphere of radius a is in a uniform magnetic flux density

of B0, as shown in Fig. 9.10a. Determine the magnetic flux density, magnetic field

and surface magnetizing current density.

Solution 9.4. We define polar coordinates as in Example 9.1. We can assume that

magnetization is uniform in the magnetic material. Hence, the magnetic flux density

outside the sphere is given by the sum of the applied magnetic flux density and

the contribution of the magnetic moment placed at the origin after removal of the

sphere. We expect a uniform magnetic flux density inside the sphere due to the

uniform magnetization. We denote the magnetic moment directed to the z-axis bym.

Equation (6.44a and 6.44b) gives the radial and zenithal components of the magnetic

flux density outside the sphere due to the magnetic moment:

Br D �0m cos �

2�r3
; B� D �0m sin �

4�r3
:

We use B to denote the internal magnetic flux density along the z-axis. Then, the

continuities of the normal component of the magnetic flux density and the parallel

component of the magnetic field on the surface (r D a) are given by

B0 cos � C �0m cos �

2�a3
D B cos �;

1

�0

�

�B0 sin � C �0m sin �

4�a3

�

D � 1
�
B sin �:

From these equations we have

m D � � �0
�C 2�0

� 4�a
3B0

�0
; B D 3�

�C 2�0
B0: (9.37)
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Using these results, the magnetic flux density outside the sphere (r > a) is

Br D �0Hr D
�

1C � � �0

�C 2�0
� 2a

3

r3

�

B0 cos �;

B� D �0H� D �
�

1 � � � �0
�C 2�0

� a
3

r3

�

B0 sin �;

and that inside the sphere (r < a) is

Br D �Hr D 3�

�C 2�0
B0 cos �;

B� D �H� D � 3�

�C 2�0
B0 sin �:

We can also obtain these results by solving Eqs. (9.29) and (9.30) for the vector

potential. We determine the magnetization to be

M D
�

1

�0
� 1

�

�

B D 3.�� �0/

�0.�C 2�0/
B0:

Here we suppose small closed loop �C on a plane with an arbitrary azimuthal

angle that contains a part of the surface (see Fig. 9.15). We apply the integrated form

of Eq. (9.10),

I

�C

B � ds D �0

Z

�S

.i C i m/ � dS ;

to this region, where �S is the surface surrounded by �C. Since there is no true

current, the difference in the parallel component of the magnetic flux density divided

by �0 is equal to the surface magnetizing current density. Thus, we have

�m.�/ D 3.�� �0/
�0.�C 2�0/

B0 sin � D M sin �:

Fig. 9.15 Small closed loop

�C on a plane through the

z-axis that contains a part of

the surface of magnetic

sphere
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Fig. 9.16 Magnetic flux lines

inside and outside the

magnetic sphere for � D 3�0

This agrees with Eq. (9.8) in Example 9.1.

Figure 9.16 shows the magnetic flux lines inside and outside the magnetic sphere

for � D 3�0.

}

Example 9.5. We apply current I to a thin straight line at distance a above the flat

surface of a magnetic material of magnetic permeability �, as shown in Fig. 9.17.

Determine the vector potential.

Fig. 9.17 Straight current

and flat surface of magnetic

material

Solution 9.5. We use the method of images similar to that in Example 4.5. We

define the y-axis along the direction of the current and the x-y plane (z D 0) on the

surface of the magnetic material with x D 0 as the position of the current.
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a b

Fig. 9.18 Solution using method of images: assumed conditions for (a) vacuum and (b) magnetic

material

To determine the vector potential in the vacuum region (z > 0), we virtually

assume that all the space is vacuum and the vector potential is given by the sum of

the component caused by I and that caused by the image current I 0 placed at the

mirror position with respect to the surface of the magnetic material, as shown in

Fig. 9.18a. Hence, the vector potential has only the y-component, Ay , and depends

only on x and z. The vector potential at point .x; z/ in the vacuum is given by

Avy.x; z/ D �0

2�

�

I log
R0

Œx2 C .z � a/2�1=2
C I 0 log

R0

Œx2 C .z C a/2�1=2

�

;

where R0 is the distance to the reference point of the vector potential. On the other

hand, to determine the vector potential in the magnetic material (z < 0), we virtually

assume that all the space is occupied by the magnetic material and the vector

potential is produced by the image current I 00 placed at the original position, as

shown in Fig. 9.18b. The vector potential at point .x; z/ in the magnetic material is

Amy.x; z/ D �

2�
I 00 log

R0

Œx2 C .z � a/2�1=2
:

The continuity condition of the normal component of the magnetic flux density

on the surface is given by Eq. (9.29), i.e.,Avy.z D 0/ D Amy.z D 0/. This condition

gives

�0.I C I 0/ D �I 00:

The continuity condition of the parallel component of the magnetic field on the

surface is given by Eq. (9.30), i.e., .1=�0/.@Avy=@z/zD0 D .1=�/.@Amy=@z/zD0.
This condition gives
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I � I 0 D I 00:

Thus, we have

I 0 D � � �0

�C �0
I; I 00 D 2�0

�C �0
I:

We obtain the vector potential as

Ay D �0I

2�

�

log
R0

Œx2 C .z � a/2�1=2
C .� � �0/
.�C �0/

log
R0

Œx2 C .z C a/2�1=2

�

I z > 0;

D �0�I

�.�C �0/
log

R0

Œx2 C .z � a/2�1=2
I z < 0:

}

9.4 Magnetic Energy in Magnetic Material

We discussed the magnetic energy in vacuum caused by currents in Sect. 8.3.

However, there is no essential difference even if magnetic materials are involved

in the space. The formal change is only replacing the permeability �0 with � based

on replacing Eq. (6.27) with Eq. (9.12). That is, the magnetic energy density in the

magnetic material is

um D 1

2�
B2 D 1

2
B � H D 1

2
�H 2; (9.38)

and the magnetic energy is given by its volume integral:

Um D
Z

V

1

2�
B2 dV D

Z

V

1

2
B � H dV D

Z

V

1

2
�H 2 dV: (9.39)

Example 9.6. Current I flows uniformly in the azimuthal direction on the inner

surface of a long hollow superconducting cylinder, as shown in Fig. 9.19a. Assume

that the length l is sufficiently long in comparison with the radius a. Then, we insert

a magnetic cylinder of magnetic permeability � and the same radius into the hollow

to depth x from the edge, as shown in Fig. 9.19b. How does the current change?

Estimate the magnetic energy and determine the force on the magnetic material.
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a b

Fig. 9.19 (a) Current I flowing on the inner surface of long hollow superconducting cylinder and

(b) insertion of magnetic material into the hollow

Solution 9.6. The magnetic flux density in the hollow before insertion of the

magnetic material is B D �0I=l . This does not change even after the insertion.

This is because the magnetic flux does not appear or disappear, and the magnetic

flux lines must go out of or into the hollow for the change to occur. However, this is

prohibited by the superconductor.

Hence, the surface current density is � D I=l in the region where the magnetic

material is not inserted but changes to � D �0I=.�l/ in the region where the

magnetic material is inserted. Thus, the total current changes to

I 0 D I

�

1 �
�

1 � �0

�

�

x

l

�

:

Hence, the magnetic energy density in the hollow is

um D 1

2�0
B2 D �0I

2

2l2
;

and that in the magnetic material is

um D 1

2�
B2 D �20I

2

2�l2
:

We have the total magnetic energy as

Um D ��0a
2I 2

2l2

�

l �
�

1 � �0

�

�

x

�

and determine the force on the magnetic material to be

F D �@Um

@x
D ��0a

2I 2

2l2

�

1 � �0

�

�

:
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Since � > �0 in normal magnetic materials, we have F > 0. That is, the force is

directed along the positive x-axis and attractive. In this problem the magnetic flux

does not change and there is no influence of the electromagnetic induction.

}

9.5 Analogy Between Electric and Magnetic Phenomena

In Part II we learned static magnetic phenomena through similarities to and

differences from static electric phenomena in Part I. To understand these phenomena

further we summarize the corresponding relationships here. Tables 9.2–9.4 give the

electromagnetic variables, equations and boundary conditions, respectively.

It is also useful to refer to Table 6.1, which summarizes integral equations

corresponding to the differential equations in Table 9.3 and Table 6.2, which

summarizes the potentials. In these tables it is necessary to replace �0 and �0 with �

and �, respectively, for generalization.

The contents in Tables 9.2–9.4 are explained as follows:

1. The most fundamental variables are the magnetic field E and the magnetic flux

density B, which are directly connected to the force. That is, these variables

describe the fields in electric and magnetic phenomena. The electric field is

a conservative field with no rotation and is given by a gradient of the scalar

potential, the electrostatic potential. On the other hand, the magnetic flux density

is a field with no divergence and is given by a rotation of the vector potential.

Table 9.2 Fundamental variables, supplementary variables and sources in static electric and

magnetic phenomena

Electric phenomena Magnetic phenomena

Fundamental variable 1 Electric field E Magnetic flux density B

Fundamental variable 2 Electric flux density D Magnetic field H

Supplementary variable Electric polarization P Magnetization M

Source 1 Electric charge (density) � Current (density) i

Source 2 Polarization charge (density) �m Magnetizing current (density) i m

Table 9.3 Equations of fundamental variables describing static electric

and magnetic phenomena

Electric phenomena Magnetic phenomena

Property of field r �E D 0 r �B D 0

Potential � .E D �r �/ A .B D r �A/

Relation to source r �D D � r �H D i

Fundamental variable 2 D D �0E CP H D 1
�0

B �M

Constant �0
1
�0

Supplementary variable �P.�r �P D �m/ M .r �M D i m/
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Table 9.4 Boundary conditions for fundamental variables describing static electric and

magnetic phenomena

Electric phenomena Magnetic phenomena

Continuity 1 Parallel component of E Normal component of B

Continuity 2 Normal component of D Parallel component of H

Source for discontinuity 2 Electric charge (density) � Current (density) �

Table 9.5 Static electric phenomena in conductor and magnetic phenomena in

superconductor

Electric phenomena Magnetic phenomena

in conductor in superconductor

Fundamental variable E D 0 B D 0

Source on the surface Electric charge (density) � Current (density) �

Supplementary variable P D 0 M D 0

Condition on the surface Normal E Parallel B

(E D �=�0) (B D �0� )

2. The secondary fundamental variables are the electric flux density D and the

magnetic field H , which are associated with source-1 quantities such as electric

charges and currents. The electric charge causes a divergence of the electric flux

density and the current causes a rotation of the magnetic field.

3. The supplementary variables are the electric polarization P and the magnetization

M and these are associated with source-2 quantities, which cannot be taken out

of materials. That is, the polarization charge causes a divergence of the electric

polarization and the magnetizing current causes a rotation of the magnetization.

The signs are opposite between electric polarization and magnetization because

only magnetic materials do not shield themselves from an applied field. This is

mathematically expressed by the fact that the relative dielectric constant �r and

relative magnetic permeability �r are larger than 1.

4. Table 9.4 summarizes the conditions for the fundamental variables on a boundary.

For the primary fundamental variables, the parallel component of the electric

field is continuous because there is no rotation, and the normal component

of the magnetic flux density is continuous because there is no divergence.

For secondary fundamental variables, the corresponding components can be

discontinuous at a boundary because of the existence of the source-1 quantities.

That is, the normal component of the electric flux density is discontinuous by

an amount equal to the surface charge density, and the parallel component of the

magnetic field is discontinuous by an amount equal to the surface current density.

When there is no such source, these components are continuous.

5. We compare special phenomena in electricity and magnetism in conductors and

superconductors in Table 9.5. The primary fundamental variables, the electric

field and magnetic flux density, are zero inside the respective materials and the

source-1 quantities, the charge and current, exist only on the surface. There are no

source-2 quantities or resultant supplementary variables. To satisfy the boundary
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Table 9.6 Fundamental variables in the E–H analogy

Electric phenomena Magnetic phenomena

Property of fundamental variable 1 r �E D 0 r �H D i

Property of fundamental variable 2 r �D D � r �B D 0

Definition of fundamental variable 2 D D �0E CP B D �0H CM

Constant �0 �0
Supplementary variable �P M

(�r �P D �m) (r �M D �0i m)

conditions in Table 9.4 the electric field is normal and the magnetic flux density

is parallel to the surface. The values of these variables on the surface are

proportional to the surface densities of the source-1 quantities.

Table 9.6 summarizes electric and magnetic phenomena in the E–H analogy,

in which H is treated as a primary fundamental variable. In the past Coulomb’s law

was used for assumed magnetic charges. This method is beneficial as a mathematical

analogy. In this case the magnetization M and the magnetic charge qm correspond

to �0M and �0qm in this textbook, respectively.

Column: (1) Magnetic Shielding by a Superconductor and That by

a Magnetic Material

In the Column in Chap. 4 we showed that electric shielding by a conductor

and that by a dielectric material are similar phenomena in spite of the quan-

titative difference. How about the magnetic shielding by superconductor and

that by magnetic material?

From correspondence with Chap. 4, we can derive Eq. (7.32) for the

magnetic flux density around a superconducting sphere by taking the

magnetic flux density around the magnetic sphere in Example 9.4 in the limit

� ! 0. In this case, although a magnetic field of finite strength remains

inside the superconducting sphere, we can disregard it because it has no

meaning. This is similar to electric phenomena as shown in the Column in

Chap. 4.

However, the essential difference is that the magnetization in a super-

conductor is negative, while the magnetization in a magnetic material is

positive. The internal magnetic flux density is weakened in a superconductor

from the outside and the shielding is really similar to electric shielding.

However, the situation is completely different for a magnetic material.

Namely, the internal magnetic flux density is strengthened in comparison

with the external value because of the positive magnetization (see Eq. (9.37)

and Fig. 9.16). This characteristic property of magnetic material comes from

the origin of the magnetic moment. Is such a magnetic material useful for

magnetic shielding?
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The answer is yes. When we make a slit with the structure in Fig. E9.3

in Exercise 9.4, the magnetic flux density inside the slit decreases by

a factor of �0=� from the value in the surrounding magnetic material.

Namely, magnetic flux lines are likely to pass through the region with higher

magnetic permeability. It is possible to weaken the magnetic flux density in

a target region by introducing the magnetic flux to other regions using this

property.

(2) Magnetization and Electric Polarization

The substance in a material that causes the magnetic action is the

magnetic moment, and the current in a superconductor and the virtual

magnetizing current in a magnetic material are the origins of the magnetic

moment. However, there is a problem in the fact that the same term

“magnetization” is used to express the magnetic moment in a unit volume

even for different origins. The mathematical description is different. For

example, according to the definition of magnetization used for magnetic

materials, the magnetization in superconductors is zero as mentioned in

Sect. 9.2. Hence, we need a new term such as magnetic moment density

instead of magnetization to define the magnetic moment in a unit volume of

superconductor.

Electric polarization in dielectric materials is comparable to the magneti-

zation. The electric action is caused by a relative displacement of polariza-

tion charges of different signs that cannot move freely in a given electric field

and partially contributes to the shielding of the material from the external

electric field. This electric phenomenon is quantitatively characterized by

the electric polarization P , the electric dipole moment in a unit volume.

A similar electric phenomenon in conductors is the perfect electrostatic

shielding by electric charges that can move freely. This phenomenon can

also be explained by a relative displacement of electric charges of different

signs as discussed in Sect. 2.3. That is, appearance of electric dipoles is

common for both electric phenomena (see, for example, Eq. (2.30) for a

conductor). This situation is similar to the production of a magnetic moment

by two kinds of origin mentioned above. Since the electric dipole moment

in a unit volume had not been discussed for a conductor, there was no con-

fusion as with the magnetization in a magnetic material and superconductor.

However, it is meaningful to study the similarity between the electrostatic

shielding in a conductor and the electric polarization in a dielectric material.

In this sense we need a new term such as electric moment density to define

the electric dipole moment in a unit volume of conductor.
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Exercises

9.1. We apply current I to two long parallel superconducting plates with magnetic

materials of magnetic permeabilities �1 and �2 between them, as shown in

Fig. E9.1. Assume that the width of the plate, w, is sufficiently larger than the

distance, d , between the plates. Determine the magnetic flux density and magnetic

field in each magnetic material and the self-inductance in a unit length.

9.2. Determine the self-inductance of a unit length for the superconducting coaxial

transmission line with two magnetic materials of different magnetic permeabilities

in Fig. E9.2.

9.3. We define the magnetic fields, H 1 and H 2, in magnetic materials 1 and 2 in the

vicinity of an interface. Prove that these vectors stay in the same plane perpendicular

to the interface.

9.4. We apply a magnetic flux density B0 parallel to a thin slit of vacuum in a

magnetic material of magnetic permeability �, as shown in Fig. E9.3. Determine

the magnetic flux density and magnetic field inside the slit.

Fig. E9.1 Two parallel

superconducting plates with

two magnetic materials of

different magnetic

permeabilities

Fig. E9.2 Superconducting

coaxial line with two

magnetic materials of

different magnetic

permeabilities
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Fig. E9.3 Vacuum slit

parallel to the magnetic flux

density in magnetic material

Fig. E9.4 Vacuum slit

normal to the magnetic flux

density in magnetic material

Fig. E9.5 Magnetic flux

density applied parallel to the

surface of magnetic material

9.5. We apply magnetic flux density B0 normal to a thin slit of vacuum in a

magnetic material of magnetic permeability �, as shown in Fig. E9.4. Determine

the magnetic flux density and magnetic field inside the slit.

9.6. We apply magnetic flux density B0 parallel to a wide flat surface of a magnetic

material of magnetic permeability�, as shown in Fig. E9.5. Determine the magnetic

flux density and magnetic field inside the magnetic material and surface magnetizing

current density.

9.7. When a magnetic sphere is in a uniform magnetic flux density B0, we obtain

the magnetic flux density B and the surface magnetizing current density �m (see

Example 9.4). Prove that the obtained B coincides with the sum of B0 and the
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magnetic flux density produced by the magnetizing current. (Hint: use Eq. (7.33) for

the relationship between the uniform magnetic flux density and the surface current

density.)

9.8. A long magnetic cylinder of radius a and magnetic permeability � is in a

uniform normal magnetic flux density B0. Determine the magnetic flux density,

magnetic field, magnetization and surface magnetizing current density.

9.9. Determine the magnetic flux density and magnetization in a superconducting

sphere of radius a in the intermediate state in an applied magnetic flux density B0.

Confirm that the obtained magnetization agrees with the characteristic shown

in Fig. 7.18 in Column (2) of Chap. 7. Use the boundary conditions for B and

H with the critical condition that the maximum magnetic flux density that the

superconductor suffers is the critical value, Bc.

9.10. We apply current I to two long parallel superconducting plates and insert

a magnetic material of magnetic permeability � into the space between the

two superconducting plates by distance x from the edge, as shown in Fig. E9.6.

Determine the magnetic energy and the force on the magnetic material.

Fig. E9.6 Two parallel superconducting plates with applied current with inserted magnetic

material
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Chapter 10

Electromagnetic Induction

10.1 Induction Law

Magnetic flux density is produced by current as described in Chap. 6. Faraday

conducted experiments based on the idea that current might be produced by

magnetic flux density. Although he could not produce a steady current by using a

static magnetic flux density, he produced a non-steady current by varying a magnetic

flux density with time. The results are summarized as follows. Suppose two coils.

When a current is applied to coil 1 as shown in Fig. 10.1, a magnetic flux density is

produced around it. A current flows in coil 2 in the following cases:

1. the current in coil 1 changes as shown in Fig. 10.1a;

2. coil 1 is moved as shown in Fig. 10.1b.

This phenomenon is called electromagnetic induction, and the electromotive force

that induces the current in coil 2 is called induced electromotive force. One can

observe that the current flows in coil 2 in such a way as to reduce any change in

the magnetic flux penetrating coil 2. This shows a conservative property in nature

similarly to the law of inertia for the matter.

From the above results, if the magnetic flux that penetrates the coil is ˆ, the

induced electromotive force in the coil is given by

Vem D �dˆ

dt
; (10.1)

where the directions of magnetic flux and electromotive force follow the right-hand

rule. This is exactly the result predicted in Sect. 8.4 and is called Faraday’s law.

This shows that the variation in magnetic flux with time causes the electromotive

force. In this sense this is also called the magnetic flux law or transformer law.

If the number of turns of the coil is n and the magnetic flux that penetrates one turn

of the coil is ˆ, the electromotive force is

T. Matsushita, Electricity and Magnetism: New Formulation by Introduction

of Superconductivity, Undergraduate Lecture Notes in Physics,

DOI 10.1007/978-4-431-54526-2__10, © Springer Japan 2014
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a b

Fig. 10.1 Current changes in coil 2, when (a) current in coil 1 changes or (b) coil 1 moves

Fig. 10.2 Solenoid coil

rotating in uniform magnetic

flux density

Vem D �N dˆ

dt
: (10.2)

Here we calculate the electromotive force induced in a solenoid coil of radius

a and number of turns N that is rotating with angular frequency ! in a uniform

magnetic flux density, B , as shown in Fig. 10.2. If the angle between the coil axis

and magnetic flux density is � D !t , the magnetic flux that penetrates one turn of

the coil is ˆ D �a2B cos!t , and the electromotive force is

Vem D �Na2B! sin!t: (10.3)

Here we derive the differential expression of Faraday’s law for the above case (1).

Using the electric field, the electromotive force induced in closed coil 2 is written

as

Vem D
I

C

E � ds D
Z

S

r � E � dS ; (10.4)

where S is the surface surrounded by C and we have used Stokes’ theorem. On the

other hand, from Eq. (6.19) the magnetic flux is

ˆ D
Z

S

B � dS : (10.5)
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Thus, Eq. (10.1) gives

Z

S

r � E � dS D � d

dt

Z

S

B � dS D �
Z

S

@B

@t
� dS : (10.6)

In the above we changed the order of the surface integral and differentiation with

respect to time, since surface S does not change with time. In this process we change

the total differentiation with time to partial differentiation, since we are treating a

stationary system. The relationship, Eq. (10.6), holds for arbitrary S, and we have

r � E D �@B
@t
: (10.7)

This is the differential form of the induction law. When the magnetic flux density

does not change with time, Eq. (10.7) reduces to the equation for electrostatic field,

Eq. (1.28). Hence, we can conclude that the electric field given by Eq. (10.7) is a

general electric field that includes the induced and static components.

Second, we consider case (2) where coil 2 of closed loop C moves with the

velocity v in a magnetic flux density B that does not change with time. The area

of the hatched region in Fig. 10.3 that a small segment of the coil, ds, sweeps in

short period�t is jv�t � dsj, and the magnetic flux that enters the coil through this

region is

.v�t � ds/ � B D .B � v/ � ds�t: (10.8)

It should be noted that the directions of ds and B follow the right hand rule. Hence,

the total magnetic flux that enters the coil during�t is

�ˆ D �t

I

C

.B � v/ � ds: (10.9)

In the limit �t ! 0, we have

�ˆ

�t
! dˆ

dt
D

I

C

.B � v/ � ds: (10.10)

Fig. 10.3 Coil C moving in

magnetic flux density B. It

moves from the position

shown by the dotted line to

that by the solid line during

short period �t
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Hence, from Eqs. (10.4) and (10.10) we obtain the relationship describing the

induced electric field,

E D v � B: (10.11)

This is called the motional law. Mathematically, the induced electric field should

be given by E D v � B � r� with � being an arbitrary scalar function. However,

it is empirically known that r� is zero in usual cases. Electrons in a conductor of a

coil suffer the Lorentz force, �ev � B, when the coil moves with the velocity v. We

can think of this force as a force caused by the electric field, Eq. (10.11), induced in

the coil.

Thus, we can conclude that the electromotive force induced in the coil is caused

by the change in the magnetic flux that penetrates the coil in both cases (1) and (2).

The induced electromotive force can be summarized as

Vem D
I

C

.E C v � B/ � ds D �
Z

S

dB

dt
� dS : (10.12)

Using Eq. (A1.43), the condition r � B D 0 and the condition that the coil is not

deformed during the movement, r � v D 0, we have

r � .v � B/ D .B � r/v � .v � r/B: (10.13)

When the velocity is constant, the first term on the right side is zero. The total

differentiation with respect to time is written as

dB

dt
D @B

@t
C .v � r/B: (10.14)

Hence, rewriting Eq. (10.12) with Stokes’ theorem, we have

Z

S

r � E � dS D �
Z

S

@B

@t
� dS : (10.15)

Thus, we have derived Eq. (10.7), indicating that the above conclusion is valid.

When a conductor carries current I in magnetic flux density B, the Lorentz force

acts on the conductor. If this force forces the conductor to move with velocity v, the

power in a unit length of the conductor given by the Lorentz force is

F 0 � v D .I � B/ � v: (10.16)

This seems to contradict the fact that the Lorentz force does not do any work on

electric charges (see Example 6.3). In a practical case, the induced electric field

directed opposite to the current works to reduce the current. To have the same current

continue to flow, the electric power source must supply additional electric power,

� I � .v � B/ D .I � B/ � v; (10.17)
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which is equal to the power given by the Lorentz force. That is, the power by the

Lorentz force is nothing other than the electric power by the electric source (see

Exercise 10.8).

Example 10.1. A triangular closed circuit and a straight current, I , are placed on a

common plane. The closed circuit is moving away with velocity v from the current,

as shown in Fig. 10.4. The distance between the closed circuit and the current is

r D r0 in the initial condition (t D 0). Determine the electromotive force induced

in the closed circuit with the magnetic flux law. We define the electromotive force

to be positive along the direction of ABC.

Fig. 10.4 Straight current

and triangular closed circuit

moving away with constant

velocity

Solution 10.1. At time t the distance between the circuit and current is r.t/ D
r0 C vt . The width of the triangle at distance x (r � x � r C b) from the current is

w.x/ D a � a.x � r/
b

:

The direction of the magnetic flux produced by current I inside the circuit is the

same as that of the magnetic flux produced by the current flowing along ABC.

Hence, the magnetic flux produced by current I is positive. The magnetic flux

density at distance x from the current is B.x/ D �0I=.2�x/. The magnetic flux

penetrating the narrow region x to x C dx in the circuit is

dˆ D B.x/w.x/dx D �0aI

2�b

�

r C b

x
� 1

�

dx:

Thus, the total magnetic flux penetrating the circuit is

ˆ D �0Ia

2�b

Z rCb

r

�

r C b

x
� 1

�

dx D �0Ia

2�b

�

.r C b/ log
r C b

r
� b

�

:
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The electromotive force induced in the circuit is

Vem D �dˆ

dt
D �@ˆ

@r
� @r
@t

D �0Iav

2�b

�

b

r0 C vt
� log

�

1C b

r0 C vt

��

:

The penetrating magnetic flux decreases with time and hence, the electromotive

force is induced to increase it. Thus, Vem is positive.

}

Example 10.2. Determine the electromotive force in Example 10.1 with the

motional law.

Solution 10.2. Figure 10.5a shows the direction of the induced electric field on

each side. We determine the electromotive force induced on each side. On side AB,

the magnetic flux density is B D �0I=.2�r/, and v � B is directed from A to

B and its magnitude is �0I v=.2�r/. Hence, the contribution from this side to the

electromotive force is

Z B

A

.v � B/ � ds D �0I v

2�r
a:

Next, the magnetic flux density at point P at distance s from B is �0I=Œ2�.r C
s sin �/� with � denoting the angle of B (see Fig. 10.5b). The induced electric field

has magnitude �0I v=Œ2�.r C s sin �/� and its direction is tilted by � � � from the

direction of integration, ds. Thus, we have

.v � B/ � ds D �0I v

2�.r C s sin �/
cos.� � �/ ds D � �0I v cos �

2�.r C s sin �/
ds;

a b

Fig. 10.5 (a) Direction of induced electric field on each side and (b) a point on side BC
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and the contribution from side BC is

Z C

B

.v � B/ � ds D ��0I v cos �

2�

Z BC

0

ds

r C s sin �
D ��0I v cot �

2�
log

r C a tan �

r

D ��0Iav

2�b
log

r C b

r
:

Finally, the induced electric field is perpendicular to the direction of integration on

side CA. Hence, there is no contribution from this side. As a result, the induced

electromotive force is

Vem D
I

.v � B/ � ds D �0Iav

2�b

�

b

r0 C vt
� log

�

1C b

r0 C vt

��

;

which agrees with the result obtained in Example 10.1.

}
Here we discuss a phenomenon that is usually explained using only the motional

law. Suppose that a conducting circular plate of radius a is rotated with angular

frequency ! around its axis in uniform magnetic flux density B , as shown in

Fig. 10.6a. We determine the electromotive force induced between the center O of

the plate and point P on the edge. Since the magnetic flux penetrating the closed

loop composed of the straight line connecting O and P and the line C outside the

plate does not change with time, it seems that no electromotive force is induced

in it. However, an electromotive force is induced in reality. This is called unipolar

induction.

According to the motional law, since the magnetic flux crosses line OP, the

electromotive force is induced there. In the arrangement in Fig. 10.6a the induced

electric field is directed from O to P. At a point at distance R from the central

axis the velocity of rotation, v, is equal to R!. Hence, the induced electric field is

E D R!B . Integrating this from O to P, the electromotive force is

a b

Fig. 10.6 Unipolar induction: (a) usual system and (b) new system
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Vem D
Z a

0

R!B dR D 1

2
!Ba2: (10.18)

The unipolar induction is really known. However, since the electromotive force is

not stable, it is not practically used. If the circular plate is magnetized, the same thing

occurs even if no magnetic field is applied. In addition, when a hollow dielectric

plate is rotated in a magnetic flux density, an electric polarization occurs because of

the electromotive force.

The same unipolar induction can be observed even for the system shown in

Fig. 10.6b, in which bar OP rotates. In this case the magnetic flux penetrating the

circuit changes with time, and the result can also be explained with the magnetic flux

law. To explain the result for the system in Fig. 10.6a with the magnetic flux law,

we can suppose that part of the circuit rotates with the plate as the bar in Fig. 10.6b.

Another part of the circuit on the edge of the plate is equipotential. Hence, it is

difficult to distinguish the two mechanisms.

In the above we learned the magnetic flux law and motional law to describe

the induced electromotive force for simple cases. If we discuss the case where a

conductor is forced to move in a magnetic flux density varying with time, we have

two contributions to the electromotive force, and it is necessary to calculate each

contribution using the two laws. Here we propose a general law that combines the

two laws.

We assume that the external magnetic field is increasing with time. In this case

the magnetic flux density inside a material also increases because of the penetrating

magnetic flux. Thus, we can define the velocity of the magnetic flux lines and denote

it as V . If the coil in Fig. 10.3 stays stationary but the magnetic flux lines move

with velocity V D �v, the same amount of magnetic flux penetrates into the coil

through a segment ds within period �t . Hence, repeating a similar argument up to

Eq. (10.10), the time-variation in magnetic fluxˆ that penetrates the coil is given by

dˆ

dt
D �

I

C

.B � V / � ds: (10.19)

Thus, we obtain the local relationship,

r � .B � V / D �@B
@t
: (10.20)

This is called the continuity equation of magnetic flux and is frequently used for

analyzing electromagnetic phenomena in superconductors. Comparing this equation

with Eq. (10.7), we have

E D B � V : (10.21)

This is called Josephson’s relation. It should be noted that this relation expresses

the magnetic flux law. Using the above two velocities, the relative velocity of

magnetic flux lines from coil C is
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V 0 D V � v; (10.22)

and combining the above equation with Eq. (10.11) gives the general law for the

induced electric field,

E D B � V 0: (10.23)

The Column in this chapter shows an example of calculating induced electromotive

force.

Example 10.3. Suppose that we increase by �B the magnetic flux density B0
applied parallel to a long cylindrical conductor of radius a during a short period,�t .

Determine with Eq. (10.21) the electromotive force measured with potential leads

with the different arrangements shown in Fig. 10.7a, b.

a b

Fig. 10.7 Different arrangements of potential leads for measuring electromotive force induced in

cylindrical conductor

Solution 10.3. We denote the velocity of the magnetic flux as

V D �iRV:

Then, the continuity equation of magnetic flux shown earlier reduces to

� 1

R
� @
@R
.RB0V / D ��B

�t
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and we have

E D B0V D 1

2
� �B
�t

a

on the surface (R D a). The induced electric field is directed counterclockwise. One

can easily show that the induced electric field integrated along the circumference

in this direction, 2�aE , is equal to the total electromotive force, �ˆ=�t D
�a2�B=�t .

Here we consider the case shown in Fig. 10.7a. The azimuthal angle between

potential terminals 1 and 2 is � , and we place the potential leads on the surface of

the conductor and twist to eliminate the electromotive force outside the conductor.

The measured electromotive force is

Vem D a�B0V D 1

2
� �B
�t

a2�;

where we set a reference point on terminal 1.

Second, we determine the electromotive force for the arrangement shown in

Fig. 10.7b. We assume an integral path of the induced electric field on the right

conductor surface. In this case we can neglect the magnetic flux penetrating

the closed loop composed of this path and the potential leads, and similarly

determine the electromotive force only by integrating Eq. (10.21) along the path.

Thus, we have

V 0em D �.2� � �/B0V D �1
2

� �B
�t

a2.2� � �/

for the same reference point.

On the other hand, it is possible to choose the left conductor surface for the

integral path. The integral gives a2�.�B=�t/=2. In this case the electromotive

force due to the magnetic flux penetrating the integral path should be taken into

account. This additional component is ��a2.�B=�t/, and we obtain the same

result by adding it.

Thus, there is a freedom in choosing the integral path. For example, it is also

possible to choose the path shown by the dotted line in Fig. 10.7b. In this case the

induced electric field is perpendicular to the path, resulting in a zero line integral.

From the magnetic flux penetrating the area surrounded by the path and the potential

leads (denoted by the azimuthal angle 2� � �), we directly obtain the same result.

}

10.2 Potential

As described in Sect. 10.1, the electric field E contains not only the electrostatic

field but also the induced electric field. Hence, such a general electric field cannot be

described only by the electric potential. Here we note that the right side of Eq. (10.7)

is written in terms of the vector potential A as
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� @B

@t
D �r �

�

@A

@t

�

; (10.24)

where we have changed the order of the time differentiation and spatial differenti-

ation. Comparing this with the left side of Eq. (10.7), it is obvious that the induced

electric field is given by �@A=@t: Hence, with the electrostatic field, the general

electric field is given by

E D �r� � @A

@t
: (10.25)

This satisfies Eq. (10.7) and reduces to Eq. (1.24) in the static condition. The vector

potential satisfies Eq. (9.21) under the Coulomb gauge even in this case.

To discuss the general electromagnetic fields, it is necessary to extend Ampere’s

law, Eq. (9.12), for the static magnetic field produced by a steady current to a general

law including the magnetic field by a non-steady current. This will be covered in

Chap. 11 in which we complete the set of Maxwell’s equations.

10.3 Boundary Conditions

Here we investigate whether the boundary condition for the electric field E changes

in going from Eqs. (1.28) to (10.7).

We denote the electric fields in materials 1 and 2 near the boundary as E 1 and

E 2, respectively. Consider a plane normal to the boundary that includes vectors E 1

and E 2 (see Fig. 4.15a, b). Integrating the electric field around a small rectangle,

�C, with two sides parallel to the boundary, with Eq. (10.7) and Stokes’ theorem

we have

I

�C

E � ds D
Z

�S

r � E � dS D � @

@t

Z

�S

B � dS ; (10.26)

where �S is the surface surrounded by �C, and we have changed the order

of the spatial integration and time differentiation. When the height of the small

rectangle,�h, is sufficiently small, the amount of magnetic flux that penetrates�S

is negligible. Thus, the circular integral of the electric field reduces to zero similarly

to the case in Sect. 4.3, and we obtain the same result as Eq. (4.22),

n � .E 1 � E 2/ D 0: (10.27)

That is, the parallel component of the electric field is continuous across the boundary

even when electromagnetic induction occurs.
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10.4 Magnetic Energy

We already learned the magnetic energy in Sect. 8.3. In the system shown in

Fig. 8.14 the magnetic flux that links the circuit made of a superconductor does

not change even when the plate moves. This means that there is no electromagnetic

induction. This is why the magnetic energy can be determined from the mechanical

work needed against the magnetic force for this system. Most textbooks on

electromagnetism explain magnetic energy after electromagnetic induction. Hence,

this textbook gives the same explanation. An explanation from a different viewpoint

is helpful for a deep understanding of the phenomenon. Since there is no new

phenomenon in this section, however, readers who do not feel a need for this

explanation can skip it.

Suppose a coil of self-inductance L. When we apply current I 0 to this coil, the

magnetic flux penetrating this coil is

ˆ0 D LI 0: (10.28)

When the current is increased by a small amount dI 0 in a short period dt , the induced

electromotive force is

Vem D �LdI 0

dt
: (10.29)

This acts to restrict the increase in the current. This phenomenon is called self-

induction. Thus, the electric power source must work against this electromotive

force to increase the current, and the electric power in this period is

P D �VemI
0 D LI 0

dI 0

dt
: (10.30)

The energy stored in the coil when we apply the current I to the coil is equal to the

energy supplied by the electric power source until the current increases from 0 to I ,

and is given by

Um D W D
Z

LI 0
dI 0

dt
dt D

Z I

0

LI 0dI 0 D 1

2
LI 2: (10.31)

Using the magnetic flux ˆ D LI , this is also written as

Um D 1

2
LI 2 D 1

2
ˆI D 1

2L
ˆ2: (10.32)

This result agrees with Eq. (8.34), and we can understand that this energy is exactly

the magnetic energy.
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Following a similar discussion, we can show that the magnetic energy of a system

composed of n coils is given by Eq. (8.35). In this case the electromotive force in

the i -th coil induced by current Ij flowing in the j -th coil is given by

Vemi D �Lij
dIj

dt
; (10.33)

using the mutual inductance. This is called mutual induction.

Example 10.4. Prove Eq. (8.35) for a system composed of two coils and prove the

reciprocity, L12 D L21.

Solution 10.4. Currents I1 and I2 flow in coils 1 and 2, and the resultant penetrating

magnetic fluxes in these coils are ˆ1 and ˆ2, respectively. Assume that this final

situation is reached after we apply the currents to coil 1 and then to coil 2. We

suppose an intermediate situation where coil 2 has no current and coil 1 has current

I 01 (see Fig. 10.8a). With the inductance coefficient the magnetic flux that penetrates

coil 1 is L11I
0
1. Hence, the work done to apply current I1 to coil 1 is

W1 D
Z I1

0

L11I
0
1dI
0
1 D 1

2
L11I

2
1 :

Next, we consider the situation where coils 1 and 2 have currents I1 and I 02,
respectively (see Fig. 10.8b). The magnetic flux penetrating coil 2 is L21I1 CL22I

0
2.

Hence, the work done to apply current I2 to coil 2 is

I
1

I
1

I
2

Fig. 10.8 (a) Situation in which current I 0
1 is flowing in coil 1 but no current in coil 2 and (b) that

in which currents I1 and I 0
2 are flowing in coils 1 and 2, respectively



244 10 Electromagnetic Induction

W2 D
Z I2

0

.L21I1 C L22I
0
2/dI

0
2 D L21I1I2 C 1

2
L22I

2
2 :

Thus, the magnetic energy of this system is

Um D W1 CW2 D 1

2
L11I

2
1 C L21I1I2 C 1

2
L22I

2
2 : (10.34)

If we apply the currents in reversed order, the magnetic energy is

Um D 1

2
L11I

2
1 C L12I1I2 C 1

2
L22I

2
2 : (10.35)

Since Eqs. (10.34) and (10.35) must be the same, we can prove the reciprocity,

Eq. (8.5),

L12 D L21:

Thus, if we write L21 D .L12 C L21/=2 in Eq. (10.34), the magnetic energy is

Um D 1

2
I1.L11I1 C L12I2/C 1

2
I2.L21I1 C L22I2/ D 1

2
.I1ˆ1 C I2ˆ2/:

Thus, Eq. (8.35) holds for n D 2.

}
Suppose we change magnetic flux densities in coils with electric power sources.

We denote the induced electric field by E . From Eq. (10.30) the input power into

the system is given by

P D �
Z

V

E � i dV: (10.36)

Using Eqs. (6.27) and (A1.41) in the Appendix, this leads to

P D � 1

�0

Z

V

E � .r � B/dV

D 1

�0

Z

V

Œr � .E � B/ � B � .r � E/�dV: (10.37)

Using Gauss’ theorem we rewrite the first integral as the surface integral

1

�0

Z

S

.E � B/ � dS ;
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where S is the surface of V. We assume a sphere of sufficiently large radius r for V.

Since jBj / r�2, jE j / r�1 and
R

dS / r2, the integral is proportional to r�1.
Hence, if we assume a very large sphere, the integral approaches zero and can be

disregarded. Substituting Eq. (10.7) for the second integral, we have

P D 1

2�0

Z

V

@B2

@t
dV: (10.38)

From the above result we can generally show that the magnetic power density is

given by Œ1=.2�0/�@B
2=@t and the magnetic energy density by Eq. (8.32).

10.5 Skin Effect

The fundamental equations that we have learned up to now are

r � E D �@B
@t
; (10.39)

i D r � H ; (10.40)

B D �H ; (10.41)

i D �cE : (10.42)

The unknown variables, E , B, H and i can be obtained by solving the set of

these equations. Here we rewrite the above equations in terms of E and B. Then,

Eqs. (10.40) to (10.42) are summarized as

r � B D ��cE : (10.43)

We can solve this equation with Eq. (10.39).

Now we learn the skin effect for the example of dynamic phenomena. Supposed

that we apply an AC magnetic flux density of amplitude B0 and angular frequency

! along the z-axis parallel to the surface of a semi-infinite conductor that occupies

x � 0 (see Fig. 10.9). We can assume that no physical variable changes along the

y- and z-axes:

@

@y
;

@

@z
! 0: (10.44)

The variation with time can be expressed with the factor ei!t , and we replace the

time differentiation with

@

@t
! i!: (10.45)
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Fig. 10.9 Magnetic flux

density applied parallel to the

surface of semi-infinite

conductor

In addition, since the external magnetic flux density is directed along the z-axis, we

can assume that the internal magnetic flux density has only a z-component. Hence,

we have

r � B D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i x i y i z

d=dx 0 0

0 0 Bz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �i y
dBz

dx
:

Thus, we find that the electric field has only a y-component, Ey , and Eq. (10.43)

reduces to

dBz

dx
D ���cEy : (10.46)

The left side of Eq. (10.39) is

r � E D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i x i y i z

d=dx 0 0

0 Ey 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D i z

dEy

dx
;

leading to

dEy

dx
D �i!Bz: (10.47)

This is consistent with the initial assumption that the magnetic flux density has only

a z-component. Eliminating Ey in Eqs. (10.46) and (10.47), we have

d2Bz

dx2
� i!��cBz D 0: (10.48)

The equation for Ey has the same form as this.
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We can derive this equation generally. Taking a rotation of Eq. (10.43) and

substituting Eq. (10.39), we have

r � .r � B/ D ���c

@B

@t
: (10.49)

Using Eqs. (A1.46) in the Appendix and (6.21), this equation becomes

�B � ��c

@B

@t
D 0: (10.50)

This is a differential equation of the second order called a diffusion equation.

Substituting the spatial symmetry, Eq. (10.44), and the time variation, Eq. (10.45),

derives Eq. (10.48).

Assume a solution of type Bz.x/ � e˛x . Substituting this into Eq. (10.48), we

have ˛2 D i!��c. That is,

˛ D ˙.1C i/
�!��c

2

�1=2

: (10.51)

From the condition that the magnetic flux density must be finite in the limit x ! 1,

˛ with the negative real part is the solution. The boundary condition is

Bz.x D 0/ D B0: (10.52)

Thus, we obtain the solution of the magnetic flux density as

Bz.x; t/ D B0e
�x=ı exp

h

i
�

!t � x

ı

�i

! B0e
�x=ı cos

�

!t � x

ı

�

: (10.53)

In the above

ı D
�

2

!��c

�1=2

(10.54)

is a quantity with the dimension of length and is called the skin depth. In Eq. (10.53)

we have adopted the real part for the solution. Figure 10.10 shows the spatial

variation in the magnetic flux density given by Eq. (10.53). The magnetic flux

density propagates along the x-axis while decaying. The depth of penetration is

roughly equal to ı, which is the reason for the name. For larger ! and/or larger �c

the shielding current density is higher, resulting in shorter ı. The position of a plane

on which the phase of the propagating wave is constant is given by the condition

!t � x

ı
D c; (10.55)
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Fig. 10.10 Spatial variation

in magnetic flux density

where c is a constant. Thus, the velocity of propagation is dx=dt D !ı, and the

wave length � is 2�ı. Substituting this solution into Eq. (10.46) gives the solution

of the electric field,

Ey.x; t/ D B0

�

!

��c

�1=2

e�x=ı exp
h

i
�

!t � x

ı
C �

4

�i

! B0

�

!

��c

�1=2

e�x=ı cos
�

!t � x

ı
C �

4

�

: (10.56)

We find that, although this solution is similar to that of the magnetic flux density,

the phase is ahead by �=4. The magnetic field and current density are obtained from

Hz.x; t/ D Bz.x; t/=� and iy.x; t/ D �cEy.x; t/ with the above results.

We estimate the skin depth of copper at 60 Hz at room temperature. Substituting

typical values, �c D 0:58�108 S/m and � ' �0 D 4��10�7 N=A2 into Eq. (10.54)

gives ı D 0:85 � 10�2 m.

Example 10.5. We apply an AC electric field of amplitude E0 and angular fre-

quency ! along the z-axis parallel to an infinitely wide slab conductor that occupies

�d � x � d . Determine the electric field in the conductor.
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Solution 10.5. We can assume that @=@y and @=@z are zero as in Eq. (10.44) and

the electric field has only a z-component. The time differentiation is replaced by the

operator to multiply i!. Hence, Eq. (10.39) reduces to

dEz

dx
D i!By ;

showing that the magnetic flux density has only a y-component. Thus, Eq. (10.43)

becomes

dBy

dx
D ��cEz:

From these equations we have

d2Ez

dx2
� i!��cEz D 0;

which has the same form as Eq. (10.48). Using Eqs. (10.51) and (10.54), we obtain

the general solution for the electric field as

Ez.x/ D K1 exp
h

.1C i/
x

ı

i

CK2 exp
h

�.1C i/
x

ı

i

:

The coefficientsK1 andK2 are determined by the boundary conditions:

Ez.x D �d/ D Ez.x D d/ D E0:

Thus, the electric field is given by

Ez.x; t/ D E0
coshŒ.1C i/x=ı�

coshŒ.1C i/d=ı�
ei!t

and its real part is

Ez.x; t/ D E0

cosh.2d=ı/C cos.2d=ı/

�
��

cosh

�

xCd
ı

�

cos

�

x�d
ı

�

C cosh

�

x�d
ı

�

cos

�

xCd
ı

��

cos!t

�
�

sinh

�

x�d
ı

�

sin

�

xCd
ı

�

C sinh

�

xCd
ı

�

sin

�

x�d
ı

��

sin!t

�

:

}
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Column: General Law of Electromagnetic Induction

Suppose that the plate in Fig. 10.6a is rotating with angular frequency !

in magnetic flux density, B , that increases with time as B D B0 C  t . For

simplicity we assume that the potential leads are arranged as in Fig. 10.11

to eliminate the magnetic flux that interlinks the circuit outside the plate.

That is, one potential lead is aligned on the plate edge between P and A0

and twisted with another one up to a voltmeter. Now we determine the

induced electromotive force in the direction of OPA0AO. In this case the

electromotive force appears on line OP from the motional law and appears

also from the magnetic flux law because of the penetrating magnetic flux.

We now use Eq. (10.23) for the determination.

The velocity of the plate is

v D R!i �

and from the answer to the problem in Example 10.3, the velocity of the

magnetic flux lines is

V D �R
2B

iR:

The contribution from line OP to the electromotive force is

Z a

0

ŒB � .V � v/� � dR D
Z a

0

vBdR D 1

2
!Ba2:

That from arc PA0 is

Z A0

P

ŒB � .V � v/� � ds D �
Z �

0

BV.R D a/ad� D �1
2
a2�:

On line AO outside the plate, v D 0 and the induced electric field, B � V ,

is perpendicular to the integration path. Thus, there is no contribution from

this line to the electromotive force. Finally we have

Vem D 1

2
.!B � �/a2:
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Fig. 10.11 Arrangement of plate and potential leads for measurement

Exercises

10.1. AC current I.t/ D Im sin!t flows along a straight line. Calculate the

electromotive force induced in a rectangular coil separated by d from the current

(see Fig. E10.1).

10.2. A conducting bar that is in contact with two parallel lines shunted at the

terminal is moving with constant velocity v, as shown in Fig. E10.2. A static

magnetic flux density, B , is applied normal to the rectangular circuit. Determine

the electromotive force induced in the rectangular circuit. The electromotive force

is defined to be positive along the direction of PQRS, and the distance between PQ

and SR is b C vt .

10.3. Determine the electromotive force induced in the rectangular circuit in

Exercise 10.2 when the magnetic flux density changes with time asB.t/ D B0C˛t .
Use the general law, Eq. (10.23).

10.4. A rectangular coil is moving with constant velocity v on a horizontal plane of

distanceR0 from a straight line carrying constant current I , as shown in Fig. E10.3.

Calculate the electromotive force induced in this coil with the motional law. The

electromotive force is defined to be positive along the direction of PQRS and d D
d0 C vt .

10.5. A constant current, I , is applied to a straight line and a rectangular coil is

rotating with angular frequency ! (� D !t) around side RS parallel to the straight

line, as shown in Fig. E10.4. Calculate the electromotive force induced in the coil

with the magnetic flux law. The distance d is larger than a and the electromotive

force is defined to be positive along the direction of PQRS.

10.6. Solve Exercise 10.5 with the motional law.
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Fig. E10.1 Straight line

carrying AC current and

rectangular coil

Fig. E10.2 Conducting bar

moving with constant

velocity on two parallel lines

shunted at the terminal

Fig. E10.3 Straight line

carrying constant current and

rectangular coil moving with

constant velocity

10.7. Voltage V is applied to an electric circuit composed of a resistor of electric

resistanceRr and a coil of inductanceL at t � 0, as shown in Fig. E10.5. Derive the

equation for the circuit and determine the current.

10.8. Suppose that a conductor carrying current I in magnetic flux density B is

forced to move with velocity v by the Lorentz force. Thus, we may say that the

Lorentz force does mechanical work. In this case the work in unit time done on

electric charge by the induced electric field v � B is given by

I � .v � B/ D �.I � B/ � v:
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Fig. E10.4 Straight line

carrying constant current and

rectangular coil rotating

around side RS

Fig. E10.5 Electric circuit

composed of resistor and coil

This is equal to the negative of the work done by the Lorentz force in unit time,

Eq. (10.16). Explain what it means. The fact that the Lorentz force does mechanical

work seems to contradict the statement in Example 6.3. Discuss whether these are

really contradictory.

10.9. Suppose that we apply an AC electric field of amplitude E0 and angular

frequency ! along the z-axis parallel to the surface of a semi-infinite conductor

of electric conductivity �c that occupies x � 0. Determine the electric field and

magnetic flux density in the conductor.

10.10. Suppose that we apply current I to an infinitely long cylindrical thin

conductor of radius a. Calculate the magnetic energy in this condition from the

work necessary to carry the current from the position at R D R1 sufficiently far

from the conductor. We assume that the return current flows uniformly at R D R1.



Chapter 11

Displacement Current and Maxwell’s Equations

11.1 Displacement Current

In a steady state, Ampere’s law, Eq. (9.14), holds for a closed line, C, with different

surfaces on it, S1 and S2, as shown in Fig. 11.1a, b. If the magnetic field H is

integrated on C in opposite directions as drawn in Fig. 11.1a, b, the sum of the two

integrations is naturally zero. At the same time, the sum of the surface integrals of

the current density i on S1 and S2 is also zero. This sum becomes the surface integral

on closed surface S12 composed of S1 and S2 (see Fig. 11.1c). Thus, we have

Z

S12

i � dS D 0: (11.1)

This agrees with Eq. (5.8) in a steady state. However, it means that Ampere’s law

contradicts to Eq. (5.8) in a non-steady state. In such a general case, the law of

conservation of electric charge, Eq. (5.8), must be satisfied. Substituting Eq. (4.14)

into this equation, we have

Z

S12

�

i C @D

@t

�

� dS D 0: (11.2)

This strongly suggests that, for generalizing to a non-steady state, we can assume

I

C

H � ds D
Z

S

�

i C @D

@t

�

� dS (11.3)

instead of Ampere’s law. In the above, S is the surface surrounded by C. The second

term on the right side, @D=@t , is called displacement current, and has the same

unit as electric current density [A/m2]. In a steady state, Eq. (11.3) reduces to the

usual form of Ampere’s law, Eq. (9.14), and there is no problem. Equation (11.3)

is called the generalized form of Ampere’s law. The corresponding generalized

differential form of Ampere’s law is

T. Matsushita, Electricity and Magnetism: New Formulation by Introduction

of Superconductivity, Undergraduate Lecture Notes in Physics,

DOI 10.1007/978-4-431-54526-2__11, © Springer Japan 2014

255
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a

b

c

Fig. 11.1 (a) Surface S1 and (b) surface S2 surrounded by closed line C, and (c) closed surface

composed of S1 and S2

r � H D i C @D

@t
: (11.4)

Here we show the validity of the displacement current. Suppose that a capacitor is

energized using an electric power source. When we apply current I to the capacitor,

as shown in Fig. 11.2a, the electric charge Q in the electrode changes. We assume

a closed line, C, around a wire through which the current flows and a surface, S1,

as in the figure. We apply Eq. (11.3) to C and S1. The displacement current is zero

on S1 and the right side is equal to the current I applied to the capacitor. Next, we

assume another surface S2 that does not contain the wire, as shown in Fig. 11.2b.

In this case, while the left side does not change, i is zero on S2 and the right side is

@

@t

Z

S2

D � dS D dQ

dt
: (11.5)

In the above, we changed the order of the time differential and surface integral, since

S2 does not change with time. Hence,

I D dQ

dt
(11.6)

and no contradiction results from Eq. (11.4).

a b

Fig. 11.2 Closed line C

around a current-carrying

wire and surfaces surrounded

by C: (a) surface that includes

the wire and (b) surface that

does not include the wire
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When current changes with time as in the case of alternating current (AC),

electric charges are stored in the electrodes of a capacitor, and hence, current flows

through the capacitor. Thus, the time variation in the electric flux in the space

between the electrodes generates a magnetic field as well as current.

Example 11.1. We apply AC I.t/ D I0 sin!t to a capacitor with circular electro-

plates of radius a separated by d , as shown in Fig. 11.3. Determine the displacement

current and magnetic field in the space between the electroplates.

Fig. 11.3 AC flowing

through circular parallel-plate

capacitor

Solution 11.1. The electric charge on the electroplate is Q.t/ D �.I0=!/ cos!t

and the electric flux density is directed downward with magnitude

D.t/ D Q.t/

�a2
D � I0

�a2!
cos!t:

Hence, the displacement current is

@D.t/

@t
D I0

�a2
sin!t:

This is similar to a virtual situation in which the current of the same density flows

uniformly in the space between electroplates, suggesting the continuity of current.

In fact, this situation is realized if the space is occupied by a material with electric

resistivity sufficiently higher than that of the electroplates.

The magnetic field produced by the displacement current is concentric around

the central axis of the capacitor. If the magnetic field on a circle of radius R

from the axis is H.R/, the left side of Eq. (11.3) is 2�RH.R/. The right side is

�R2@D.t/=@t D .R2I0=a
2/ sin!t . Thus, we have

H.t/ D I0R

2�a2
sin!t:

}
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11.2 Maxwell’s Equations

All of the equations that describe electromagnetic phenomena have been introduced.

They are summarized as follows:

r � E D �@B
@t
; (11.7)

r � H D i C @D

@t
; (11.8)

r � D D �; (11.9)

r � B D 0: (11.10)

These are Maxwell’s equations. Equation (11.7) describes the law of electro-

magnetic induction, which directly connects the first fundamental variables in

electricity and magnetism. Equation (11.8) is the generalized differential form of

Ampere’s law that directly connects the second fundamental variables in electricity

and magnetism. Equations (11.9) and (11.10) are Gauss’ laws on electric flux and

magnetic flux, respectively, and represent the conditions of divergence.

When we look back at Eqs. (11.7)–(11.10), a break of formal symmetry may be

found among them. However, if there are no sources (� D 0, i D 0), a beautiful

symmetry appears. This is the essential feature of electromagnetism. The break of

symmetry comes from the difference in the nature of fields produced by different

sources, electric charge density � (scalar) and current density i (vector). The electric

field is an irrotational field with divergence and the magnetic flux density is a

solenoidal field with rotation. It should be noted that such a difference comes from

the more fundamental nature of mathematics; i.e., the difference between the source

being a scalar or vector.

The field (i.e., a distortion vector in space) that a potential due to a scalar

source can produce is only a gradient. This field naturally has no rotation and has

divergence. In contrast, the field that a potential due to a vector source can produce

is only a rotation, which naturally has no divergence. Poisson’s equation and its

solution clearly show that a scalar or vector source produces a scalar or vector

potential, respectively. Therefore, including the effects of these sources in the above

equations automatically determines the corresponding equations to be modified. The

electric charge density � is included in Eq. (11.9), which represents divergence, and

the current density i is included in Eq. (11.8), which represents rotation. As a result,

the effects are not included in Eqs. (11.7) and (11.10) for E and B.

These equations are solved for electromagnetic fields with material relationships:

D D �E ; (11.11)

B D �H ; (11.12)

i D �cE : (11.13)
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The variables to be obtained are the electric field E , magnetic flux density B,

electric flux density D, magnetic field H and current density i . These five

variables are obtained with five equations, (11.7), (11.8) and (11.11)–(11.13).

Equations (11.9) and (11.10) provide supplementary conditions.

We transform the differential Eqs. (11.7)–(11.10) to integral equations:

I

C

E � ds D � d

dt

Z

S

B � dS ; (11.14)

I

C

H � ds D
Z

S

�

i C @D

@t

�

� dS ; (11.15)

Z

S

D � dS D
Z

V

� dV; (11.16)

Z

S

B � dS D 0: (11.17)

In the above, C is the closed line that surrounds the surface S in Eqs. (11.14)

and (11.15), S is the closed surface and V is its internal region in Eqs. (11.16)

and (11.17).

Here we show an example for solving Maxwell’s equations. In terms of only the

electric field and magnetic flux density, Eq. (11.8) is rewritten as

1

�
r � B D �cE C �

@E

@t
; (11.18)

and Eq. (11.9) gives

� r � E D �: (11.19)

Substituting Eq. (11.18) into a rotation of Eq. (11.7) gives

r � .r � E/ D � @

@t
.r � B/ D ��� @

2E

@t2
� ��c

@E

@t
: (11.20)

It is common to solve Eq. (11.20) under the condition of Eq. (11.19). When there is

no electric charge (� D 0) in a material, according to Eq. (A1.46), the left side of

Eq. (11.20) is equal to ��E , and we have

�E � �� @
2E

@t2
� ��c

@E

@t
D 0: (11.21)

The same equations are obtained for the other four variables including B. This

equation is the telegraphic equation.

The second and third terms on the left side of Eq. (11.21) correspond to the

second (displacement current) and first terms (electric current) on the right side
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of Eq. (11.18), respectively. Hence, in usual cases where we can neglect the

displacement current, the second term in the telegraphic equation disappears and the

equation leads to the diffusion equation, Eq. (10.50). Here we discuss the condition

in which this approximation holds. Assume AC electromagnetic fields of angular

frequency !. The magnitudes of the second and third terms are ��!2jEj and

��c!jEj, respectively. The ratio of the second and third terms is

�!

�c

: (11.22)

This ratio is also directly derived from the displacement current and electric current.

In usual metals � and �c are of the order of �0 ' 1�10�11 C2/N m2 and 1�107 S/m,

respectively. Hence, this ratio is as small as 6�10�8 even for a microwave of 10 GHz

(! D 2� � 1010). In usual metals, we can therefore safely neglect the displacement

current even at a very high frequency. In contrast, for insulating materials such as

mica, typical material constants are � ' 7�0 ' 6 � 10�11 C2/N m2 and �c ' 1 �
10�14 S/m. Hence, the ratio takes a value as large as 2�106 even for a low frequency

like a commercial one of 50 Hz. In this case we can neglect the current. It is easily

understood that a large difference in the electric conductivity dramatically affects

the electromagnetic phenomena. In the latter case, Eq. (11.21) reduces to

�E � ��
@2E

@t2
D 0: (11.23)

This differential equation of the second order is called the wave equation. This will

be investigated in Chap. 12, in which we learn the electromagnetic wave.

Example 11.2. Show that the equation for the magnetic flux density B is also the

telegraphic equation.

Solution 11.2. Substituting Eq. (11.7) into a rotation of Eq. (11.8) gives

r � .r � B/ D ��cr � E C ��
@

@t
r � E D ���c

@B

@t
� �� @

2B

@t2
:

Using Eqs. (A1.46) and (11.10), the left side reduces to ��B independently of the

existence of electric charges, and we have

�B � �� @
2B

@t2
� ��c

@B

@t
D 0:

}
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11.3 Boundary Conditions

Since the equation for the magnetic field H changes from Eqs. (9.12) to (11.4), we

investigate the boundary condition for H here.

We denote the magnetic fields in materials 1 and 2 in the vicinity of an interface

by H 1 and H 2, respectively. Consider a plane that is normal to the boundary and

contains H 1 and H 2 (see Fig. 9.12a, b). Integrating the magnetic field on the small

rectangle�C with two sides parallel to the boundary, we have

I

�C

H � ds D
Z

�S

r � H � dS D
Z

�S

i � dS C @

@t

Z

�S

D � dS ; (11.24)

where we have used Stokes’ theorem and Eq. (11.4), and �S is the surface

surrounded by �C. If the height �h is sufficiently small, only the surface current

contributes to the first term on the right side and we can neglect the displacement

current of a finite density. Hence, the boundary condition to be satisfied is the same

as Eq. (9.24); i.e., if the surface density of current flowing on the boundary is �,

Eq. (11.24) gives

n � .H 1 � H 2/ D �; (11.25)

where n is the unit vector normal to the boundary and is directed from material 1 to

material 2. The difference in the parallel component of the magnetic field is equal

to the surface density of current flowing on the boundary.

11.4 Electromagnetic Potential

Here we summarize the potentials that describe the electromagnetic fields. The

electric field is given by Eq. (10.25) with the electric potential (scalar potential)

� and the vector potential A:

E D �r� � @A

@t
: (11.26)

On the other hand, the magnetic flux density B always satisfies Eq. (11.10) and is

given by Eq. (6.29) with the vector potential A:

B D r � A: (11.27)

Thus, the electric field and magnetic flux density are given by � and A, and the set

of these potentials are called the electromagnetic potential.

There is no change in the magnetic flux density, even if we add a gradient of an

arbitrary scalar function  to the vector potential A. However, it is necessary to

make the change
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� ! � � @ 

@t
; A ! A C r ; (11.28)

so that the electric field does not change. This transformation is the gauge transfor-

mation. Since the electromagnetic fields do not change under this transformation,

the electromagnetic potential is arbitrary. Hence, it is necessary to impose a

condition to determine the electromagnetic potential uniquely.

When an electric charge of density � and a current of density i coexist in space,

it is common to use the condition

��
@�

@t
C r � A D 0: (11.29)

This condition is the Lorentz gauge. The equations associated with the electric

charge and current are Eqs. (11.9) and (11.8), respectively. The left side of Eq. (11.9)

is written with the electromagnetic potential as

� �
�

�� C @

@t
r � A

�

D ��
�

�� � ��
@2�

@t2

�

: (11.30)

Hence, the equation that � should satisfy is

�� � ��
@2�

@t2
D ��

�
: (11.31)

Equation (11.8) leads similarly to

�A � ��
@2A

@t2
D ��i : (11.32)

Under the Lorentz gauge, the scalar function  must satisfy

� � ��
@2 

@t2
D 0: (11.33)

When there is neither electric charge nor current, all these equations reduce to the

same form as Eq. (11.23), i.e., the wave equation. This type of equation expresses

the electromagnetic wave as will be shown in Chap. 12.

Example 11.3. Derive Eq. (11.32).

Solution 11.3. The left side of Eq. (11.8) is

1

�
r � .r � A/ D 1

�
Œr.r�A/ ��A� D �� r @�

@t
� 1

�
�A;



11.5 The Poynting Vector 263

where Eq. (11.29) is used. The right side is

i � � r @�
@t

� � @
2A

@t2
:

Thus, Eq. (11.32) is derived.

}

11.5 The Poynting Vector

The total energy density of electromagnetic fields varying with time is given by

u D 1

2
�E 2 C 1

2�
B2 C

Z

i � E dt: (11.34)

The first, second and third terms are the electric energy, magnetic energy and

mechanical energy of charged particles, respectively. Hence, the variation in the

total energy in space V with time is

@U

@t
D @

@t

Z

V

u dV

D
Z

V

�

�E � @E
@t

C B

�
� @B
@t

C i � E

�

dV: (11.35)

The first and third terms are transformed using Eq. (11.8) and @B=@t in the second

term is eliminated by substituting Eq. (11.7). The right side of the above equation

then becomes

Z

V

ŒE � .r � H /� H � .r � E/�dV D �
Z

V

r � .E � H /dV D �
Z

S

.E � H / � dS ;

(11.36)

where S is the surface of V. Here we define

S P D E � H : (11.37)

We then rewrite Eq. (11.35) as

@

@t

Z

V

u dV C
Z

S

S P � dS D 0: (11.38)

The vector S P is called the Poynting vector. This equation says that the variation

in the energy in space V with time is equal to the Poynting vector that enters V
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through the surface S. Hence, we understand that the Poynting vector represents the

flow of electromagnetic energy, and Eq. (11.38) represents the law of conservation

of energy. When this equation is written in differential form, we have

@u

@t
C r � S P D 0: (11.39)

This gives the continuity equation of energy.

However, there is an extraordinary case where it is difficult to understand that the

Poynting vector gives a real energy flow. See Column (2) in this chapter.

Example 11.4. The electric field is given by Eq. (10.56) in the case of the skin effect

discussed in Sect. 10.5. Prove that the total energy loss
R

dt
R

V
E � i dV is equal to

�
R

dt
R

S
S P � dS , where the integration with time is carried out over one period of

the AC field.

Solution 11.4. The current density corresponding to Eq. (10.56) is

iy.x; t/ D �cEy.x; t/ D B0

�

�c!

�

�1=2

e�x=ı cos
�

!t � x

ı
C �

4

�

and the power loss in a unit area of the y-z plane is

Z 1

0

Ey.x; t/iy.x; t/dx D B2
0!

�

Z 1

0

exp

�

�2x
ı

�

cos2
�

!t � x

ı
C �

4

�

dx

D B2
0!ı

4�

�

1C 1p
2

cos
�

2!t C �

4

�

�

:

Integrating this with time over one period, the total loss energy density is

W D B2
0!ı

4�
D B2

0

2�

�

!

2��c

�1=2

:

On the other hand, the Poynting vector on the surface is S P.x D 0/ D
i x.EyBz/xD0=�. Noting that dS D �i xdS , the surface integral of the Poynting

vector is

�
Z

S

S P � dS D
�

EyBz

�

�

xD0
D B2

0

�

�

!

��c

�1=2

cos!t cos
�

!t C �

4

�

:

Integrating this with time over one period, we have

B2
0

2�

�

!

2��c

�1=2

;
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which agrees with the above result. The reason for the same result is that the

conditions of electric field and magnetic flux density are the same before and after

one period, and hence, the electric and magnetic energies are unchanged. All the

energy that flows into the conductor in one period is consumed and converted to

Joule heat.

}

Example 11.5. We apply current I to a wide parallel-plate transmission line using

an electric power source of output voltage V , as shown in Fig. 11.4a. Determine the

Poynting vector and discuss the flow of energy. Neglect the electric resistance of the

conductor. The width of a plate is w and the plate separation is d . When we cannot

neglect the electric resistance, how does the energy flow?

a b

Fig. 11.4 (a) Parallel-plate transmission line and (b) the Poynting vector in the transmission line

Solution 11.5. First, we consider the case where the electric resistance can be

neglected. We determine the Poynting vector on a surface, S, at some distance from

the electric power source (see Fig. 11.4b). The electric field of strength E D V=d

is directed downward and the magnetic field of strength H D I=w is directed

backward. Hence, the magnitude of the Poynting vector is SP D VI=.wd/ and the

vector is directed from the electric power source to the terminal of the transmission

line. Hence, the energy that flows from the electric power source to the transmission

line in unit time is

SPwd D VI

and is equal to the electric power as well known. This value is constant and

independent of the position of surface S.
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Second, we consider the case where the electric resistance cannot be neglected.

We use R0r and V 0 to denote the electric resistance of the conducting plate in

a unit length and the potential difference between the conductors on surface S,

respectively. The potential difference on surface S0 at distance L from S is then

V 0 � 2LR0rI . The electric power that enters through surface S is V 0I and the

electric power that exits through S0 is .V 0�2LR0rI /I D V 0I �2LR0rI 2. Hence, the

difference, 2LR0rI
2, is the power consumed as the Joule heat in the region between

S and S0. Here we did not discuss the detailed energy flow into the conductor. See

Exercise 11.8 for this discussion.

}

Column: (1) Polarization Current Density

Using the electric polarization P , the displacement current is written as

@D

@t
D �0

@E

@t
C @P

@t
:

The second term is the polarization current density due to the movement

of the polarization charge of density �p:

@P

@t
D i p:

Using this equation and Eq. (4.7), the continuity equation for the polariza-

tion charge is obtained as

r � i p C @�p

@t
D 0

The first term of the displacement current is independent of the movement

of charges and is not a current in the usual sense. The displacement current

discussed in Fig. 11.2 and that in the vacuum region of the capacitor in

Example 11.1 are examples of this component.

When a capacitor is occupied by a dielectric material, the polarization

current given by the second term also flows. For a dielectric material with

a larger dielectric constant, most of the displacement current is polarization

current.

(2) The Poynting Vector and Flow of Energy

We open the end terminal of the parallel-plate transmission line in

Fig. 11.4b and apply voltage V and uniform magnetic flux density B0
directed normally into the sheet. In this case the electric field applied
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between the two plate conductors is E D V=d , and a Poynting vector of

magnitude S D VB0=�0d is directed from the electric power source to

the terminal. Does this mean there is a steady energy flow from the electric

power source even in this static condition?

It is difficult to consider that the energy flows continuously, since there is

no electric power from the source. How should we understand Eq. (11.39),

which is considered to represent the energy flow? If we substitute

S P D S P0 C r�K :

into Eq. (11.39), we have

@u

@t
C r � S P0 D 0:

If S P0 represents the real energy flow, the Poynting vector differs from

the real energy flow by a rotation of an arbitrary vector function..1/ Thus,

the Poynting vector does not necessarily give the energy flow, and there is

always arbitrariness in determining the energy flow. The above case is one

example.
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Exercises

11.1. Derive the equations that the electric potential and vector potential satisfy

when we use the Coulomb gauge, Eq. (6.30).

11.2. Suppose we apply an external AC electric field E0 cos!t along the z-axis

parallel to the surface of a semi-infinite dielectric material (dielectric constant: �,

magnetic permeability: �) that occupies x � 0, as shown in Fig. E11.1. Determine

the electric field and magnetic flux density in the dielectric material.

11.3. Discuss the energy flow in Exercise 11.2.

11.4. Suppose that an electric power source supplies electric charges to the

electrodes of the circular parallel-plate capacitor in Fig. 11.3. Assume that the

distance d between the electroplates is much smaller than a. Determine the Poynting

vector that enters the capacitor when the electric charges increase to ˙q.t/. Then

calculate the energy stored in the capacitor, when the electric charges are ˙Q.
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11.5. We apply direct current I to a long cylindrical conductor of radius a and

electric conductivity �c. Determine the Poynting vector and discuss the energy flow.

11.6. We apply current to a cylindrical one-turn coil made of a thin conducting plate

shown in Fig. E11.2. Determine the Poynting vector as the current increased from

zero to I and discuss the flow of the energy. The height h is sufficiently greater and

the width of the gap ı is sufficiently smaller than the radius a. Neglect the electric

resistance of the conducting plate.

11.7. Discuss the case where we cannot neglect the electric resistance of the

conductor in Exercise 11.6. The electric resistivity of the conductor is �r, and the

thickness b of the conductor is sufficiently less than the diameter a so that a slab

approximation holds for the conductor.

11.8. Discuss the energy flow into the conductor but including the electric resis-

tance that is not discussed in Example 11.5.

Fig. E11.1 AC electric field

applied parallel to the surface

of semi-infinite dielectric

material

Fig. E11.2 Cylindrical

one-turn coil
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Fig. E11.3 Magnetic flux

distribution in half a

superconducting slab

11.9. Suppose we apply a uniform magnetic flux density B0 along the z-axis

parallel to a wide superconducting slab occupying �d � x � d and virtually

change the magnetic flux distribution as B.x/ D B0 C b0x=d in the region

0 � x � d (see Fig. E11.3) by increasing the external magnetic flux density from

B0 to B0 C b0. In this case, a current flows along the y-axis, and it is known that

the Lorentz force acts on the current. Note that we can presume that this force acts

on flux lines whose distortion produces the current. Calculate the energy that flows

into the region from d ��x to d through a unit area in the y-z plane as the external

magnetic flux density increases. Derive an expression of the Lorentz force from the

difference between the energy input and the enhancement of magnetic energy. (Hint:

To derive the Lorentz force, it is necessary to determine the displacement of flux

lines, u. For this purpose, use the continuity equation of magnetic flux, Eq. (10.20):

du=dx D ��b=B with �b denoting a variation in the magnetic flux density.)



Chapter 12

Electromagnetic Wave

12.1 Planar Electromagnetic Wave

Electromagnetic fields in a dielectric material follow the wave equation, Eq. (11.23),

since there is no electric charge in the material. This chapter covers the property of

electromagnetic fields described by this equation. For simplicity, we focus only on

the electric field and assume that it has only a y-component varying only along the

x-axis. Thus, Eq. (11.23) reduces to

@2Ey

@x2
� ��

@2Ey

@t2
D 0: (12.1)

We assume that Ey varies with time as ei!t with ! denoting the angular frequency.

Equation (12.1) then leads to

@2Ey

@x2
C ��!2Ey D 0: (12.2)

This equation is easily solved as

Ey D E1e
i.!tCkx/ C E2e

i.!t�kx/; (12.3)

where E1 and E2 are constants determined by initial and boundary conditions, and

k D .��/1=2! � !

c
(12.4)

is the wave number. As will be shown later,

c D
�

1

��

�1=2

(12.5)

T. Matsushita, Electricity and Magnetism: New Formulation by Introduction

of Superconductivity, Undergraduate Lecture Notes in Physics,
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is the speed of electromagnetic waves or the light speed, in the dielectric material.

The wavelength is given by

� D 2�

k
: (12.6)

The practical electric field is given by the real part of the complex solution.

In the first term of Eq. (12.3),

!t C kx D const (12.7)

gives the position at which the phase of the wave is constant. Hence,

dx

dt
D �!

k
D �c (12.8)

shows that the first term in Eq. (12.3) represents a wave that propagates with the

velocity c along the negative x-axis. Namely, this wave is an electromagnetic wave.

Similarly, the second term in Eq. (12.3) gives the electromagnetic wave propagating

along the positive x-axis. Such an electromagnetic wave, whose same phase is on a

plane as in Eq. (12.3), is generally called a plane wave.

Since the left side of Eq. (11.7) is given by i z@Ey=@x; the magnetic flux density

has only a z-component. Assuming the same time-dependent factor, the magnetic

flux density is given by

Bz D �B1ei.!tCkx/ C B2e
i.!t�kx/;

D �1
c
E1e

i.!tCkx/ C 1

c
E2e

i.!t�kx/: (12.9)

The first and second terms in this equation correspond to the first and second terms

in Eq. (12.3), and represent electromagnetic waves propagating along the negative

and positive x-axis, respectively. Thus, the electric field and magnetic flux density

coexist in electromagnetic waves. That is, the time variation in a magnetic flux

density induces an electric field and the time variation in the produced electric field

induces again a magnetic flux density; the process is repeated and the variation

propagates as a wave. Since current does not flow, there is no energy dissipation and

the electromagnetic wave does not decay with time.

We can also easily show that, if the electric field has only a z-component, the

magnetic flux density has only a y-component, similarly to the above case. Hence,

the planar electromagnetic wave is a transverse wave in which the electric field and

magnetic flux density are perpendicular to each other and directed perpendicularly

to the propagation direction. The ratio of these amplitudes is

E1

B1
D E2

B2
D c: (12.10)
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The magnetic field has been commonly used instead of the magnetic flux density

to describe electromagnetic waves. In this case, the following equation is used:

Hz D �H1e
i.!tCkx/ CH2e

i.!t�kx/: (12.11)

The ratio of the amplitudes,

E1

H1

D E2

H2

D �c D
��

�

�1=2

� Z; (12.12)

is the characteristic impedance or wave impedance. This value is inherent to each

medium and its unit is [�].

The planar electromagnetic wave is generally expressed in the form

expŒi.!t � k�r/�: (12.13)

Using the unit vector along the propagation direction (the wave number vector i k D
k=jkj), the relationship between the electric field and magnetic field is expressed as

E D Z.H � i k/; H D Z�1.i k � E/: (12.14)

In other words, the propagation direction of electromagnetic waves coincides with

that of the Poynting vector representing the direction of the energy flow. For

example, the first terms in Eqs. (12.3) and (12.11) correspond to each other, and

since the electric field and magnetic field are directed along the positive y- and

negative z-axes, respectively, the Poynting vector is directed along the negative x-

axis. Thus, the above relation holds. For the second terms in these equations, a

similar relation holds.

In vacuum the speed of the electromagnetic wave is

c0 D 1

.�0�0/1=2
D 2:997925� 108 m=s; (12.15)

and the characteristic impedance is

Z0 D
�

�0

�0

�1=2

D 376:730 �: (12.16)

The electromagnetic wave is generally classified depending on its wavelength.

Table 12.1 shows the classifications, although the classification ranges somewhat

overlap.

Table 12.1 Classification of

electromagnetic waves

Name Wavelength

Electromagnetic wave Above 10�1 mm

Infrared ray 1 mm to 0.76�m

Visible ray 0.76–0.38�m

Ultraviolet ray 0.38�m to 1 nm

X ray Several 10–10�3 nm

 ray Below 10�1 nm
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Example 12.1. Prove that there are no components of the electric field or magnetic

flux density parallel to the propagation direction of a planar electromagnetic wave.

Solution 12.1. Assume a planar electromagnetic wave propagating along the pos-

itive x-axis. The functional form of variations with respect to time and space for

the electric field and magnetic flux density is ei.!t�kx/. Hence, from Eq. (11.7) the

x-component of the magnetic flux density is

�i!Bx D @Ez

@y
� @Ey

@z
D 0;

and from Eq. (11.8), the x-component of the electric field is

i!�Ex D 1

�

�

@Bz

@y
� @By

@z

�

D 0:

Thus, we prove that there are no components along the propagation direction for the

electric field or magnetic flux density.

}
Equations (12.3) and (12.9) deal with the case where each of the electric field and

magnetic flux density remains in its own direction perpendicular to the other. Such

a direction is called the direction of polarization. A polarization whose direction is

fixed is referred to as linear polarization. In general, a superposition of components

is possible, such as

Ey D E1 cos.!t � kx/; Ez D E2 cos.!t � kx C ı/: (12.17)

The corresponding components of the magnetic flux density are

By D �E2
c

cos.!t � kx C ı/ D �1
c
Ez; Bz D E1

c
cos.!t � kx/ D 1

c
Ey :

(12.18)

Usually, the direction of polarization is designated as that of the electric field, E .

Eliminating t in the above equations, we obtain the relationship between Ey and

Ez as

�

Ey

E1

�2

� 2 cos ı
EyEz

E1E2
C

�

Ez

E2

�2

D sin2 ı: (12.19)



12.2 Reflection and Refraction of the Planar Electromagnetic Wave 275

Fig. 12.1 Linear polarization

and right-hand elliptical

polarization: the abscissa and

ordinate are respectively Ey
and Ez

In the range 0 < ı < � , the direction of polarization turns to the right (clockwise)

from the view of an observer directed along the propagation of the electromagnetic

wave. This is called right-hand polarization (see Fig. 12.1). In the range �� <

ı < 0, the direction of polarization turns to the left (counter-clockwise). When

ı D 0 or � , the electric field E is fixed in one direction and is linearly polarized.

When ı D ˙�=2 and E1 D E2, the trace of E is a circle and this polarization is

circular polarization. In other cases, the trace is an ellipse, and the polarization

is elliptical polarization. Such phenomena that the directions of E and B in the

electromagnetic wave are not uniform but biased are referred to as the polarization

of a wave, and such a wave is called a polarized wave.

12.2 Reflection and Refraction of the Planar

Electromagnetic Wave

Electromagnetic wave is a family of waves that includes visible light. Reflection

and refraction are well known processes for light in optics. Here, we investigate

reflection and refraction using electromagnetism.

Media 1 and 2 with dielectric constants �1 and �2 and magnetic permeabilities

�1 and �2 face each other on the plane z D 0, as shown in Fig. 12.2a. Suppose

that a planar electromagnetic wave propagates from medium 1 to the boundary.

The plane formed by the propagation direction and the direction (z-axis) normal to

the boundary is called a plane of incidence. We define the x-axis on the line on

which the plane of incidence and the boundary meet and the y-axis on the boundary

in such a way that it is normal to both the x- and z-axes.
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a b

Fig. 12.2 Definition of (a) axes on the boundary and (b) angles of waves

In this case, the incident wave and reflected wave remain in medium 1, and the

transmitted wave remains in medium 2. We use k, k00 and k0 to denote the wave

number vectors of the incident, reflected and transmitted waves, respectively. Each

wave propagates along the wave number vector. These vectors lie on the plane

of incidence, the x-z plane. We denote the angles of the incident, reflected and

transmitted waves from the z-axis by � , � 00 and � 0, respectively (see Fig. 12.2b).

The factor that represents the variation with time is commonly given by ei!t . The

incident, reflected and transmitted waves are then expressed as

expŒi.!t � k�r/�; expŒi.!t � k00 �r/�; expŒi.!t � k0 �r/�;

with r representing the position vector.

The electric field E and magnetic flux density B are perpendicular to each other

and lie on the plane normal to the propagation direction, as shown in the last section.

For example, E and B for the incident wave are normal to k. Here we consider the

boundary conditions for E and B: Eqs. (4.19), (10.27), (9.22) and (11.25). When

there is neither electric charge nor current on the boundary, the parallel components

of the electric field and magnetic field are continuous, and the normal components

of the electric flux density and magnetic flux density are continuous across the

boundary. That is,

n � .E 1 � E 2/ D 0; (12.20)

n � .�1E 1 � �2E 2/ D 0; (12.21)

n �
�

B1

�1
� B2

�2

�

D 0; (12.22)

n � .B1 � B2/ D 0; (12.23)
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with n denoting the vector normal to the boundary. In the above, the subscripts 1

and 2 represent the variables in media 1 and 2, respectively.

Considering the orthogonality between E and B, the incident wave is given by

E D E 0 expŒi.!t � k�r/�; (12.24a)

B D k

k
� E 0

c1
expŒi.!t � k�r/�; (12.24b)

where k D jkj and c1 is the light speed in medium 1. The magnetic flux density B

is normal to both E and k, and its magnitude is equal to the magnitude of E divided

by the corresponding light speed. The reflected wave is similarly given by

E 00 D E 000 expŒi.!t � k00 �r/�; (12.25a)

B 00 D k00

k00
� E 000
c1

expŒi.!t � k00 �r/�; (12.25b)

and the transmitted wave is given by

E 0 D E 00 expŒi.!t � k0 �r/�; (12.26a)

B 0 D k0

k0
� E 00
c2

expŒi.!t � k0 �r/�: (12.26b)

In the above, k00 D jk00j, k0 D jk0j and c2 is the light speed in medium 2. Thus, the

electric field and magnetic flux density in medium 1 are

E 1 D E C E 00; B1 D B C B 00; (12.27)

and those in medium 2 are

E 2 D E 0; B2 D B 0: (12.28)

Since Eqs. (12.20)–(12.23) should be satisfied at the boundary (z D 0) at any time,

the phase must be the same for the three waves. This condition is given by

k�rjzD0 D k00 �rjzD0 D k0 �rjzD0: (12.29)

Equation (12.29) is expressed as

k�r0 D k00 �r0 D k0 �r0 (12.30)

in terms of an arbitrary position vector r0 on the boundary. If r0 is given by

r0 D xi x C yi y ; (12.31)
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we have

k sin � D k00 sin � 00 D k0 sin � 0; (12.32)

since the wave number vectors are perpendicular to the y-axis. The speeds of the

incident and reflected waves in the same medium are the same and the wave numbers

of these waves are also the same k D k00. Hence, we have

� D � 00: (12.33)

That is, the incident and reflection angles are the same, and this is called the law

of reflection. We also have the relationship between the incident and transmission

angles as

sin �

sin � 0
D k0

k
D c1

c2
D

�

�2�2

�1�1

�1=2

: (12.34)

This is called Snell’s law for refraction.

Using the above results, Eqs. (12.20)–(12.23) are rewritten as

n � .E 0 C E 000 � E 00/ D 0; (12.35)

n � Œ�1.E 0 C E 000 /� �2E
0
0� D 0; (12.36)

n �
�

1

�1

�

k � E 0

kc1
C k00 � E 000

k00c1

�

� 1

�2
� k0 � E 00
k0c2

�

D 0; (12.37)

n �
�

k � E 0

kc1
C k00 � E 000

k00c1
� k0 � E 00

k0c2

�

D 0: (12.38)

Although the electric field of the incident wave is directed in various directions,

we focus for simplicity on the case where the electric field is directed parallel to the

y-axis (i.e., normal to the plane of incidence) as shown in Fig. 12.3. In this case,

Eq. (12.35) reduces to

E0 CE 000 � E 00 D 0: (12.39)

Since the electric field is perpendicular to the normal vector, n, Eq. (12.36) is already

satisfied. Equation (12.37) becomes

�

�1

�1

�1=2

.E0 �E 000 / cos � �
�

�2

�2

�1=2

E 00 cos � 0 D 0: (12.40)

Equation (12.38) is written as

E0

c1
sin � C E 000

c1
sin � � E 00

c2
sin � 0 D 0; (12.41)
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Fig. 12.3 Case where the

electric field of the incident

wave is normal to the plane of

incidence, i.e., parallel to the

y-axis

which is found to reduce to Eq. (12.39) using Eq. (12.34). Thus, from Eqs. (12.39)

and (12.40), we obtain the amplitudes of the electric fields of the refracted and

reflected waves as

E 00 D 2.�1=�1/
1=2 cos �

.�1=�1/1=2 cos � C .�2=�2/1=2 cos � 0
E0; (12.42a)

E 000 D .�1=�1/
1=2 cos � � .�2=�2/

1=2 cos � 0

.�1=�1/1=2 cos � C .�2=�2/1=2 cos � 0
E0: (12.42b)

The amplitudes of magnetic flux densities are

B 00 D E 00
c2

D .�2�2/
1=2E 00; (12.43a)

B 000 D E 000
c1

D .�1�1/
1=2E 000 : (12.43b)

Example 12.2. Solve Eqs. (12.35)–(12.38) when the electric field of the incident

wave is parallel to the plane of incidence, i.e., the magnetic flux density is parallel

to the y-axis.

Solution 12.2. Under this condition, .k�E 0/, .k
0�E 00/ and .k00�E 000 / are directed

along the y-axis, as shown in Fig. 12.4. Hence, Eqs. (12.35) and (12.36) become

.E0 �E 000 / cos � � E 00 cos � 0 D 0;

�1.E0 C E 000 / sin � � �2E
0
0 sin � 0 D 0;
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Fig. 12.4 Case where the

electric field of the incident

wave is parallel to the plane

of incidence, i.e., normal to

the y-axis

respectively. The latter equation is rewritten as

�

�1

�1

�1=2

.E0 CE 000 /�
�

�2

�2

�1=2

E 00 D 0:

In Eq. (12.37), n�.k�E / is parallel to the x-axis, and this equation agrees with the

above result from Eq. (12.36). The condition given by Eq. (12.38) is satisfied. From

the above two equations, we obtain the electric fields of the refracted and reflected

waves as

E 00 D 2.�1=�1/
1=2 cos �

.�2=�2/1=2 cos � C .�1=�1/1=2 cos � 0
E0;

E 000 D .�2=�2/
1=2 cos � � .�1=�1/1=2 cos � 0

.�2=�2/1=2 cos � C .�1=�1/1=2 cos � 0
E0:

The corresponding magnetic flux densities are derived by substituting these results

into Eqs. (12.43a) and (12.43b).

}

12.3 Energy of the Electromagnetic Wave

Here we discuss the energy of the planar electromagnetic wave described in

Sect. 12.1. For simplicity we treat the second terms in Eqs. (12.3) and (12.9). In

this case, the electric field and magnetic flux density are given by

E D E2 cos.!t � kx/i y ; (12.44)

B D E2

c
cos.!t � kx/i z: (12.45)
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Hence, the electric energy density and magnetic energy density are equal to each

other and given by

1

2
�E 2 D 1

2�
B2 D 1

2
�E2

2 cos2.!t � kx/: (12.46)

Since there is no current, from Eq. (11.34) the total energy density is

u D �E2
2 cos2.!t � kx/: (12.47)

On the other hand, from Eq. (11.37) the Poynting vector is

S P D E � B

�
D

�

�

�

�1=2

E2
2 cos2.!t � kx/i x D cui x : (12.48)

Thus, we find that the Poynting vector has a magnitude equal to the total energy

density multiplied by the light speed and is directed along the x-axis, i.e., the

propagation direction of the electromagnetic wave. This holds for all planar elec-

tromagnetic waves including the elliptically polarized wave. Hence, the Poynting

vector expresses the energy that flows through a unit area in unit time as defined in

Sect. 11.5.

12.4 Wave Guide

Hollow metal tubes called wave guides are used to transmit electromagnetic waves

such as microwaves. The cross-section of a wave guide is usually rectangular or

circular. Here we treat a rectangular wave guide for simplicity. Assume that the

wave guide is uniformly extended along the z-axis and the internal vacuum region

is 0 � x � a and 0 � y � b, as shown in Fig. 12.5.

Fig. 12.5 Rectangular wave

guide
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We assume that the factors for time variation and spatial variation are given by

ei!t and e�iz, respectively. Equations (11.7) and (11.8) then reduce to

@Ez

@y
C iEy D �i!Bx ; (12.49a)

�iEx � @Ez

@x
D �i!By ; (12.49b)

@Ey

@x
� @Ex

@y
D �i!Bz; (12.49c)

and

@Bz

@y
C iBy D i

!

c20
Ex ; (12.50a)

�iBx � @Bz

@x
D i

!

c20
Ey ; (12.50b)

@By

@x
� @Bx

@y
D i

!

c20
Ez: (12.50c)

Using these equations, the equations for the z-components, Ez and Bz, are

obtained as

@2Ez

@x2
C @2Ez

@y2
C k2Ez D 0; (12.51a)

@2Bz

@x2
C @2Bz

@y2
C k2Bz D 0: (12.51b)

If these equations can be solved, we obtain other components from

Ex D � i

k2

�


@Ez

@x
C !

@Bz

@y

�

; (12.52a)

Ey D � i

k2

�


@Ez

@y
� !

@Bz

@x

�

; (12.52b)

Bx D i

k2

�

!

c20
� @Ez

@y
� 

@Bz

@x

�

; (12.52c)

By D � i

k2

�

!

c20
� @Ez

@x
C 

@Bz

@y

�

; (12.52d)

where

k2 D
�

!

c0

�2

� 2; (12.53)

and r�E D 0 is used. Equations (12.52a)–(12.52d) hold for k ¤ 0.
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In the case of k D 0, we have  D ˙!=c0, and we may consider that there is an

electromagnetic wave propagating along the z-axis at light speed. For example, we

assume an electromagnetic wave without z-components (Ez D Bz D 0) similar to a

planar electromagnetic wave. This is called the transverse electromagnetic (TEM)

wave. If we choose  D !=c0, Eqs. (12.49a) and (12.49b) lead to

Ex D c0By ; Ey D �c0Bx ; (12.54)

showing that the electric field E and magnetic flux density B are perpendicular to

each other. However, Eq. (12.49c) gives

@Ey

@x
� @Ex

@y
D 0: (12.55)

This shows that the electric field is a dynamic two-dimensional field with no

rotation. The spatial structure of the irrotational field is the same as that of the

electrostatic field, and hence, we conclude that such an electric field cannot exist

in a space surrounded by a conductor like a rectangular wave guide. That is, TEM

wave cannot exist in simple rectangular or circular wave guides. Such a field can

exist only when the guide is composed of two or more conductors like those in

Fig. 12.6, and a potential difference can appear between conductors with electric

field lines extending from one conductor to another.

From the above discussion, we know that either the electric field E or magnetic

flux density B has at least one component in the propagation direction. The

electromagnetic wave with a zero longitudinal component of the electric field

is called the transverse electric (TE) wave and that with a zero longitudinal

component of the magnetic flux density is called the transverse magnetic (TM)

wave. The general electromagnetic wave is given by a linear combination of these

waves.

a b

c

Fig. 12.6 Examples of the cross-section of a wave guide in which a TEM wave exists: (a) parallel

cylindrical conductor, (b) parallel-plate conductor and (c) coaxial conductor
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Here we consider a TM wave. In this case Bz D 0. Since any electromagnetic

wave of high frequency does not penetrate the conductor, the electric field is

perpendicular to and the magnetic flux density is parallel to the conductor surface.

That is,

Ey D Ez D Bx D 0I x D 0; a;

Ex D Ez D By D 0I y D 0; b:
(12.56)

The general solution of Eq. (12.51a) is given by

Ez.x; y; z; t/ D K expŒ˙i.kxx C kyy/� expŒi.!t � z/� (12.57)

with

k2x C k2y D k2: (12.58)

The dependence on x can be written as

Ez D K1e
ikxx CK2e

�ikxx : (12.59)

From Eq. (12.56), the following conditions should be satisfied:

K1 CK2 D 0; ei2kxa D 1: (12.60)

The latter condition gives

kx D m�

a
I m D 1; 2; � � � : (12.61)

The case ofm D 0 also satisfies this condition. However, we have Ez D 0, which is

meaningless. Thus, Eq.(12.59) reduces to

Ez D 2K 01 sin
�m�x

a

�

(12.62)

with K 01 D iK1. We similarly obtain the y-dependence with ky D n�=b (n D
1; 2; � � � ), and Eq. (12.57) is rewritten as

Ez.x; y; z; t/ D A sin
�m�x

a

�

sin
�n�y

b

�

expŒi.!t � z/�; (12.63)

where A is a constant, and there is a relationship betweenm and n written as

�m�

a

�2

C
�n�

b

�2

D
�

!

c0

�2

� 2: (12.64)

The mode of the electromagnetic wave is different depending on the set of integers,

.m; n/, and each mode of the TM wave is expressed as TMmn. The mode of the TE

wave is represented similarly as TEmn.
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So that the TM wave propagates through the wave guide along the z-axis without

damping,  must be a real number and we have

�

!

c0

�2

�
�m�

a

�2

�
�n�

b

�2

� 0: (12.65)

That is, the angular frequency ! should be larger than the cut-off frequency

given by

!0 D c0

�

�m�

a

�2

C
�n�

b

�2
�1=2

: (12.66)

Example 12.3. Determine other components of electromagnetic fields of the above

TM wave.

Solution 12.3. Substituting Ez in Eq. (12.63) and Bz D 0 into Eqs. (12.52a)–

(12.52d), we have

Ex D �iA
m�

k2a
cos

�m�x

a

�

sin
�n�y

b

�

;

Ey D �iA
n�

k2b
sin

�m�x

a

�

cos
�n�y

b

�

;

Bx D iA
n�!

k2c20b
sin

�m�x

a

�

cos
�n�y

b

�

;

By D �iA
m�!

k2c20a
cos

�m�x

a

�

sin
�n�y

b

�

;

where the factor expŒi.!t�z/� is neglected. The real parts of these expressions give

practical physical quantities. That is, the above factor is replaced by cos.!t � z/

for Ez, and i expŒi.!t � z/� is replaced by sin.!t � z/ for the above quantities.

We easily find that E � B D 0 is satisfied, indicating that the electric field and

magnetic flux density are perpendicular to each other.

}

12.5 Spherical Wave

Here we consider the case in which an electromagnetic wave propagates radially.

This wave is a spherical wave. We assume that the factor of time variation is given

by ei!t . Then, from Eq. (11.23), we write the equation for the electric field as

�E C !2

c2
E D 0: (12.67)
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We assume spherical symmetry of the electromagnetic quantities except in the

vicinity of the source of the electromagnetic wave. We also assume that the electric

field has only the zenithal component,E� , dependent only on the radius r :

E�.r; t/ D E� .r/e
i!t : (12.68)

Then, the above equation leads to

1

r
� @

2

@r2
.rE�/C

�!

c

�2

E� D 0; (12.69)

and we obtain a general solution as

E�.r; t/ D K1

r
exp

h

i!
�

t C r

c

�i

C K2

r
exp

h

i!
�

t � r

c

�i

: (12.70)

The first term represents an electromagnetic wave propagating to the origin at speed

c, but such a wave concentrating to one point is unrealistic. On the other hand, the

second term represents an electromagnetic wave radiating at speed c from the origin,

and this is the solution to be obtained. Taking the real part, we have

E� .r; t/ D K2

r
cos

h

!
�

t � r

c

�i

: (12.71)

Equation (11.7) shows that the magnetic flux density has only the azimuthal

component,B' , and reduces to

1

r
� @
@r
.rE� / D �@B'

@t
: (12.72)

This is easily solved, and we have

B'.r; t/ D K2

cr
cos

h

!
�

t � r

c

�i

: (12.73)

From the above results, we obtain the Poynting vector as

S P D 1

�
E�B'i r D

�

�

�

�1=2
K2
2

r2
cos2

h

!
�

t � r

c

�i

i r ; (12.74)

showing that it is directed radially. The energy density is

u D 1

2
�E2

� C 1

2�
B2
' D �

K2
2

r2
cos2

h

!
�

t � r

c

�i

D 1

c
S P � i r : (12.75)
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This relationship is similar to that for a planar electromagnetic wave. The energy

density and Poynting vector are proportional to r�2 because the wave front expands

and yield constants when integrated on the spherical surface.

12.6 Retarded Potential

When electric charge (of density �) or current (of density i ) changes with time,

an electromagnetic wave is emitted into the surrounding space. At a distance

far from the source, the electromagnetic wave propagates as a spherical wave as

treated in Sect. 12.5. The electromagnetic potential describing such time-dependent

electromagnetic fields is given by Eqs. (11.31) and (11.32). In the static limit, these

reduce to Eqs. (4.17) and (9.21), and the solutions are given by Eqs. (1.27) and (6.33)

when �0 and �0 are replaced with � and �.

Using polar coordinates, Eq. (11.31) for the electric potential reduces to

1

r
� @

2

@r2
.r�/ � 1

c2
� @

2�

@t2
D ��

�
: (12.76)

We denote by �.r/ D f .t/=r the solution for the corresponding quasi-static

equation, i.e., the equation with the second term on the left side omitted. Referring

to the solution of Eq. (12.70) for Eq. (11.23) of the same form, we can prove that the

general solution of Eq. (12.76) is given by

�.r; t/ D 1

r
f

�

t � r

c

�

: (12.77)

Hence, we expect that the solution of Eq. (11.31) is given by

�.r; t/ D 1

4��

Z

V

�.r 0; t � jr � r 0j=c/
jr � r 0j dV 0 (12.78)

(see Exercise 12.8). We also obtain the vector potential as

A.r; t/ D �

4�

Z

V

i .r 0; t � jr � r 0j=c/
jr � r 0j dV 0: (12.79)

The above results show that, since the speed of propagation of a variation in

the fields due to the change in the source is finite (light speed c), the change is

transmitted with a delay in time of R=c at distance R D jr � r 0j. For this reason,

the above potentials are called retarded potentials. When the variation with time is

slow, we can neglect this delay, resulting in the static potentials given by Eqs. (1.27)

and (6.33).
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Column: To the Theory of Relativity

Newton’s equation of motion is unchanged between coordinate system K

with spatial coordinates .x; y; z/ and time t and another coordinate system

K� with the dimensions

x0 D x � vt; y0 D y; z0 D z; t 0 D t:

The coordinate systems K and K� move with constant velocity relatively

to each other and this transformation is called the Galilean transformation.

That is, Newton’s equation is unchanged under the Galilean transformation.

We assume that the equation for the electromagnetic potential [e.g.,

Eq. (11.31)] holds in coordinate system K:

�� � ��@
2�

@t2
D ��

�
:

Under the Galilean transformation, however, this equation does not hold in

the same form in coordinate system K�:

�0�0 � ��@
2�0

@t 02
D ��

�
;

where�0 represents the Laplacian with respect to x0, y0 and z0.
Since there is no rotation of space, the scalar potential �0 is equal to �.

From each relationship such as

@

@x0
D @

@x
� @x
@x0

C @

@y
� @y
@x0

C @

@z
� @z

@x0
C @

@t
� @t
@x0

D @

@x
;

@

@t 0
D @

@x
� @x
@t 0

C @

@y
� @y
@t 0

C @

@z
� @z

@t 0
C @

@t
� @t
@t 0

D v
@

@x
C @

@t
;

we have

�0 D �

and

@2

@t 02
D v2

@2

@x2
C 2v

@2

@x@t
C @2

@t2
¤ @2

@t2
:
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The above results indicate that Maxwell’s equations hold correctly only in

one coordinate system. However, it was experimentally demonstrated that

Maxwell’s equations hold in all coordinate systems that move relatively to

each other with constant velocities. This means that the Galilean transfor-

mation is not a correct transformation connecting two coordinate systems.

The correct transformation is the Lorentz transformation and, in this case,

the time is no longer independent of the velocity of the coordinate system.

In 1905, Einstein proposed the special theory of relativity based on the

principle of relativity that all coordinate systems are equivalent, and the

principle of the constancy of light speed that the light speed observed in

any coordinate system is the same.

Exercises

12.1. Discuss the reflection and refraction of a planar electromagnetic wave at the

boundary when medium 1 is a vacuum and medium 2 is a conductor. Assume that

the electric field of the incident wave is normal to the plane of incidence.

12.2. Discuss the same problem as in Exercise 12.1 when the electric field of the

incident wave is parallel to the plane of incidence.

12.3. Discuss the energy flow using the Poynting vector for the reflection and

refraction of a planar electromagnetic wave treated in Sect. 12.2. Assume that the

electric field in the incident wave is normal to the place of incidence.

12.4. Discuss the energy flow for the TMmn wave in the wave guide treated in

Sect. 12.4 and Example 12.3.

12.5. Determine the electromagnetic fields of the TE wave in the rectangular wave

guide in Fig. 12.5.

12.6. Determine the electric charge density and current density on the inner surface

x D 0 of the rectangular wave guide for the TM wave discussed in Example 12.3.

Discuss the relation between them.

12.7. Determine the electromagnetic fields of a TEM wave propagating along the

length (z-axis) for the case of two parallel cylindrical conductors of radius a and

mean distance d in Fig. E12.1. Disregard the factor ei.!t�z/ with =! D 1=c0.

(Hint: Since the arrangement of conductors is the same as that in Exercise 5.8, the

electric field has the same form as in that case.)

12.8. Prove that Eq. (12.78) satisfies Eq. (11.31). See Sect. A2.1 in the Appendix.
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Fig. E12.1 Parallel cylindrical conductors
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5

Steady Current

Page 103, line 2, Right side of Eq. (5.17), �I should read �l .

9

Magnetic Materials

Page 222, Table 9.2, second column, �m should read �p.

Page 222, Table 9.3, second column, �m should read �p.

Page 224, Table 9.6, second column, �m should read �p.

Appendix A

Page 298, last line, ! D r � v should read ! D .1=2/r � v.

Answers to Exercises

Page 363, line 9, � D �3.B0=2�0/ sin � should read � D �.3B0=2�0/ sin � .

Page 369, line 6,
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Appendix A

A1 Vector Analysis

A1.1 Scalars and Vectors

A quantity that is only specified by its magnitude is a scalar. Mass, energy, electric

charge and temperature are examples of scalars. On the other hand, there is a kind of

quantity that needs to be specified not only by magnitude but also direction; such a

quantity is a vector. Force, velocity and moment in dynamics and the electric field,

magnetic flux density and current in electromagnetism are examples of vectors.

A vector is commonly denoted by a bold character such as F or a character with

an arrow such as EF . A vector is specified in space by drawing a straight arrow, as

shown in Fig. A1.1. The length of the line represents the magnitude of the vector

and the direction of the arrow represents the direction of the vector. The magnitude

of vector F is written as jF j.
In many cases the effect of vector is unchanged even when it is displaced in

parallel, i.e. moved without changing the direction in which it points, as shown in

Fig. A1.2. Such a vector is called a free vector. On the other hand, there is a kind

of vector that gives a different effect when displaced (like a force); such a vector is

called a bound vector. For example, when a force is given on the center of gravity of

an object it causes a simple translation motion of the object. However, when a force

is given on a point other than the center of gravity, it causes both straight motion of

the center of gravity and a rotational motion around that center.

A1.2 Addition of Vectors

Suppose the sum of two free vectors A and B, as shown in Fig. A1.3. The sum

ACB is obtained graphically by translating B so that its starting point reaches the

T. Matsushita, Electricity and Magnetism: New Formulation by Introduction

of Superconductivity, Undergraduate Lecture Notes in Physics,

DOI 10.1007/978-4-431-54526-2, © Springer Japan 2014
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Fig. A1.1 Specifying a

vector in space

Fig. A1.2 Parallel

displacement of vector

Fig. A1.3 Two vectors

a b

Fig. A1.4 Sum of two vectors: (a) ACB and (b) BCA

end point of A, as shown in Fig. A1.4a. In this case the sum is obtained as a vector

that connects the starting point of A and the end point of B. The sum B CA is

similarly obtained by translating A, and we can see it is equal to the sum ACB (see

Fig. A1.4b). Thus, the relation holds generally:

A C B D B C A: (A1.1)

This is called the exchange law. For a sum of three vectors the following relation

holds:

.ACB/C C D A C .BCC /; (A1.2)
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where the operation inside parentheses has priority. This is called the combina-

tion law.

A1.3 Products of Vectors and Scalars

The product of a vector A and scalar a gives a vector of magnitude equal to ajAj
with the same direction as A. For a < 0 the direction is reversed. The following

relations hold for this kind of product:

m.nA/ D .mn/A; (A1.3)

.mC n/A D mA C nA; (A1.4)

m.A C B/ D mA CmB: (A1.5)

Equation (A1.5) is called the distribution law.

A1.4 Analytic Expression of a Vector

We use Cartesian coordinates .x; y; z/ and denote unit vectors with a unit magnitude

along the x- y- and z-axes by i x , i y and i z, respectively. If vector A is expressed as

A D Axi x C Ayi y CAzi z (A1.6)

(see Fig. A1.5), Ax , Ay and Az are called the x-, y- and z-components of A,

respectively. Using these components, A is also expressed as

Fig. A1.5 Representation of

vector components using

Cartesian coordinates
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.Ax; Ay ; Az/: (A1.7)

The magnitude of A is given by

jAj D A D .A2x C A2y C A2z /
1=2: (A1.8)

When the components of vectors A and B are .Ax ; Ay ; Az/ and .Bx ; By ; Bz/,

respectively, the components of ACB are

.AxCBx ; AyCBy ; AzCBz/: (A1.9)

The components of aA are

.aAx ; aAy ; aAz/: (A1.10)

Using these methods, we can prove the laws of exchange, combination and

distribution.

A1.5 Products of Vectors

When the angle of vector B measured from vector A is � (� � � < �), AB cos �

is called a scalar product of A and B, and is written as A �B. Hence, we have

A �B D B �A D AB cos �: (A1.11)

If A and B are perpendicular to each other (� D ˙�=2), A �B D 0. When the

components of A and B are .Ax ; Ay ; Az/ and .Bx ; By ; Bz/, we have

A �B D AxBx C AyBy C AzBz: (A1.12)

The vector product of A and B is a vector of magnitude AB sin � that points

along the direction of a screw when we rotate it from A to B, and is written as

A � B. Thus,

A � B D �B � A: (A1.13)

Vector A � B is normal to A and B, and when A and B point in the same or

opposite direction (� D � or 0), A � B D 0. Using the components, the vector

product is expressed as

A � B D .AyBz �AzBy/i x C .AzBx �AxBz/i y C .AxBy �AyBx/i z: (A1.14)
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Fig. A1.6 Parallelepiped

composed of A, B and C

We can also represent the vector product with a determinant,

A � B D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i x i y i z

Ax Ay Az

Bx By Bz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

: (A1.15)

Now we treat a product of three vectors. Among the conceivable products of

three vectors A, B and C , it is clear that A�B�C and .A�B/�C do not make sense,

and the order of operation is not defined for A �B �C . One meaningful product is:

A.B �C / D aAI B �C D a: (A1.16)

The next one is

A �.B � C / D .Axi x C Ayi y C Azi z/ �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i x i y i z

Bx By Bz

Cx Cy Cz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ax Ay Az

Bx By Bz

Cx Cy Cz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

: (A1.17)

This represents the volume of a parallelepiped composed of A, B and C (see

Fig. A1.6). We can easily prove the following equation:

A �.B � C / D B �.C � A/ D C �.A � B/: (A1.18)

This product is called a scalar triple product.

The final meaningful product of three vectors is a vector triple product:

A � .B � C / D .A �C /B � .A �B/C : (A1.19)

A1.6 Differentiation of Vectors

When vector A changes spatially, we express it as a function of coordinates such as

A.x; y; z/. If position vector r corresponds to point .x; y; z/, it is possible to write

it as A.r/. Suppose that only x changes by a small amount,�x, with no change in

y and z. The corresponding change in A is
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�A D A.xC�x; y; z/� A.x; y; z/: (A1.20)

If the limit of �A=�x exists in the limit �x ! 0, this is called a partial

differential coefficient and is written as

@A

@x
: (A1.21)

If the components of A are .Ax ; Ay ; Az/, this coefficient is

@A

@x
D @Ax

@x
i x C @Ay

@x
i y C @Az

@x
i z: (A1.22)

The partial differential coefficients with respect to y and z,

@A

@y
;

@A

@z
(A1.23)

are similarly defined.

When .x; y; z/ changes to .xC�x; yC�y; zC�z/ or r changes to r C�r , the

variation in A is

�A D A.xC�x; yC�y; zC�z/� A.x; y; z/;

' @A

@x
�x C @A

@y
�y C @A

@z
�z: (A1.24)

In the limit of small �x, �y and �z, these are written as dx, dy and dz, and then,

�A leads to

dA D @A

@x
dx C @A

@y
dy C @A

@z
dz: (A1.25)

This is called total differentiation. If A is a function not only of .x; y; z/ but also

of time t , the total differentiation of A also includes .@A=@t/dt on the right side of

Eq. (A1.25).

If vectors A and B are functions of scalar ', the following relations hold:

d

d'
.ACB/ D dA

d'
C dB

d'
; (A1.26)

d

d'
.mA/ D dm

d'
A Cm

dA

d'
; (A1.27)

d

d'
.A �B/ D dA

d'
�B C A � dB

d'
; (A1.28)
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d

d'
.A � B/ D dA

d'
� B C A � dB

d'
: (A1.29)

A1.7 Gradient of a Scalar

When f .x; y; z/ is a given scalar function, the following vector is called the

gradient of f :

@f

@x
i x C @f

@y
i y C @f

@z
i z: (A1.30)

This is written as gradf and the operation, grad, is also called the gradient. The

function gradf is a vector that points in the direction of maximum variation with a

magnitude equal to the maximum variation. If we use the operator defined by

r D i x
@

@x
C i y

@

@y
C i z

@

@z
; (A1.31)

Eq. (A1.30) is also written as

gradf D rf D
�

i x
@

@x
C i y

@

@y
C i z

@

@z

�

f: (A1.32)

The operator r is called nabla.

If the unit vector along some direction is s, the variation rate of a given function

f in this direction is s � rf . For example, the variation rate along the x-axis is

i x �rf D @f

@x
: (A1.33)

Thus, the gradient is an operator that operates on a scalar to result in a vector.

An example is the relation between temperature and heat flow. The temperature is

a scalar and the heat flows along the opposite direction of its gradient, i.e., from

a position with a higher temperature to a position with a lower one. When the

temperature and heat conductivity are T and K , the heat that flows across a unit

area in unit time because of the temperature gradient is �KrT .

A1.8 Divergence of a Vector

When A.x; y; z/ is a given vector function, the following scalar is called the

divergence of A:
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@Ax

@x
C @Ay

@y
C @Az

@z
: (A1.34)

This is written as divA and the operation, div, is also called the divergence. Using

the vector operator r, this is also written as r�A. Namely,

divA D r�A D @Ax

@x
C @Ay

@y
C @Az

@z
: (A1.35)

The mathematical definition of divergence will be given later in Eq. (A1.67).

Thus, the divergence is an operator that operates on a vector to result in a scalar.

For example, if the velocity of a fluid is v, r�v is the volume of the fluid that comes

out through a unit area in unit time.

A1.9 Rotation of a Vector

When A.x; y; z/ is a given vector function, the following vector is called the

rotation or curl of A:

i x

�

@Az

@y
� @Ay

@z

�

C i y

�

@Ax

@z
� @Az

@x

�

C i z

�

@Ay

@x
� @Ax

@y

�

: (A1.36)

This is written as rotA or curlA and the operation, rot or curl, is also called rotation

or curl. Using the vector operator r, this is also written as r � A. We can also use

a determinant to express Eq. (A1.36) as

rotA D r � A D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i x i y i z

@=@x @=@y @=@z

Ax Ay Az

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D i x

�

@Az

@y
� @Ay

@z

�

C i y

�

@Ax

@z
� @Az

@x

�

C i z

�

@Ay

@x
� @Ax

@y

�

: (A1.37)

The mathematical definition of rotation will be given later in Eq. (A1.76).

Thus, the rotation is an operator that operates on a vector to result in a vector.

We consider a rotation of a rigid body. When the rigid body rotates with an angular

velocity ! around an axis through the center of gravity, as shown in Fig. A1.7, the

velocity of a point located at r is v D ! � r. Thus, we obtain ! D r � v.
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Fig. A1.7 Rotation of

rigid body

A1.10 Differentiation of Products of Vectors

The following relations hold for various products:

r.� / D �r C  r�; (A1.38)

r.A �B/ D .A �r/B C .B �r/A C A � .r � B/C B � .r � A/; (A1.39)

r�.�A/ D �r�A C r� �A; (A1.40)

r�.A � B/ D B �.r � A/ � A �.r � B/; (A1.41)

r � .�A/ D � r � A � A � r�; (A1.42)

r � .A � B/ D .B �r/A � .A �r/B C Ar�B � Br�A: (A1.43)

A1.11 Second Differentiation

There are three formulae for second differentiation. One of them is for an arbitrary

vector A:

div.rotA/ D r�.r � A/ D 0: (A1.44)

The second one is for an arbitrary scalar �:

rot.grad�/ D r � r� D 0: (A1.45)

The last one is

rot.rotA/ D r � .r � A/ D r.r�A/ � r2A: (A1.46)
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In Cartesian coordinates the second term is written as

r2A D
�

@2

@x2
C @2

@y2
C @2

@z2

�

A: (A1.47)

Formulae for cylindrical and polar coordinates are given in Sects. A1.17 and A1.18,

respectively. It should be noted that the operator r2 is different between scalars and

vectors:

r2� D .r�r/� D r�.r�/; (A1.48)

r2A D .r�r/A ¤ r.r�A/: (A1.49)

A1.12 Curvilinear Integral of a Vector

We denote the tangential component of a vector F .x; y; z/ on a smooth curve, C, by

Ft.x; y; z/ and the elementary line vector on C by ds (see Fig. A1.8). The following

integral is called a curvilinear integral:

Z

C

F .x; y; z/ � ds D
Z

C

Ft.x; y; z/ds: (A1.50)

If we divide this into components, it becomes

Z

C

F � ds D
Z

C

Fxdx C
Z

C

Fydy C
Z

C

Fzdz: (A1.51)

When F is a force on a matter particle, its curvilinear integral given by Eq. (A1.50)

is the work to move the particle along C.

When F D r�, its curvilinear integral is

Z

C

r� � ds D
Z

C

@�

@x
dx C

Z

C

@�

@y
dy C

Z

C

@�

@z
dz D

Z

C

d�; (A1.52)

Fig. A1.8 Curvilinear

integral of vector F on

curve C
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Fig. A1.9 Two integral paths

connecting points P and Q

where d� is a total differential. Hence, the curvilinear integral of F from point P of

position rP to point Q of position rQ along C leads to

Z rQ

rP

r� � ds D
Z rQ

rP

d� D �.rQ/ � �.rP/: (A1.53)

Thus, we find that the inverse operation of the gradient is the curvilinear integral.

It is obvious that the curvilinear integral of a gradient is determined only by the

starting point P and terminating point Q and is independent of the integral path. If

there are two integral paths C1 and C2 that connect P and Q, as shown in Fig. A1.9,

the following relation holds:

Z

C1

r� � ds D
Z

C2

r� � ds D �
Z

C0
2

r� � ds; (A1.54)

where C02 is the integral path from Q to P along the opposite direction on path C2.

Hence, the circular integral on closed line C composed of C1 and C02 is

I

C

r� � ds D 0: (A1.55)

This holds for an arbitrary closed line C.

A1.13 Surface Integral of a Vector

We denote the normal component of vector F .x; y; z/ on a curved surface, S, by

Fn.x; y; z/ and the elementary surface vector on S by dS (see Fig. A1.10). In this

case the following integral is called a surface integral:

Z

S

F � dS D
Z

S

FndS: (A1.56)
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Fig. A1.10 Surface integral

of vector F on curved

surface S

Fig. A1.11 Small

parallelepiped with sides

parallel to x-, y- and z-axes

When F is the velocity of a fluid and S is a cross-section, the surface integral given

by Eq. (A1.56) is the amount of fluid that flows through the cross-section in unit

time.

A1.14 Gauss’ Theorem

We suppose a small parallelepiped in the region x to xC�x; y to yC�y and z to zC
�z of volume�V D �x�y�z and integrate vector A on the surface of this region:

Z

�S

A � dS ; (A1.57)

where dS is directed outward from this region. This integral is divided into six

surface integrals. First, we treat integrals on two surfaces parallel to the y-z plane at

x and xC�x (see Fig. A1.11). On the surface at x, dS D �i xdS , and the integral

on this surface is

�
Z

Ax.x; y; z/dS ' �Ax
�

x; yC�y

2
; zC�z

2

�

�y�z; (A1.58)
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where we have used the mean value of Ax on this surface. On the surface at xC�x,

dS D i xdS and the integral on this surface is

Z

Ax.xC�x; y; z/dS ' Ax

�

xC�x; yC�y

2
; zC�z

2

�

�y�z: (A1.59)

We expand this as

Ax

�

xC�x; yC�y

2
; zC�z

2

�

' Ax

�

x; yC�y

2
; zC�z

2

�

C @Ax

@x
�x:

(A1.60)

Then, the sum of both surface integrals yields

�

Ax

�

x C�x; y C �y

2
; z C �z

2

�

� Ax

�

x; y C �y

2
; z C �z

2

��

�y�z

D @Ax

@x
�x�y�z D @Ax

@x
�V: (A1.61)

We similarly obtain the contributions from the sets of two surfaces parallel to the

z-x and x-y planes as

@Ay

@y
�V;

@Az

@z
�V: (A1.62)

Thus, we have

Z

�S

A �dS D
�

@Ax

@x
C @Ay

@y
C @Az

@z

�

�V D r�A�V D
Z

�V

r�A dV; (A1.63)

where�V is the region surrounded by �S.

Here we divide region V surrounded by closed surface S into a set of small

regions f�Vi g and denote the surface of the i -th region �Vi as �Si . The surface

integral of A on S is

Z

S

A �dS D
X

i

Z

�Si

A �dS ; (A1.64)

since the surface integrals on a common surface between two adjacent regions

cancel each other because dS has an opposite direction in each integral (see

Fig. A1.12). On the other hand, using Eq. (A1.63), this is equal to

X

i

Z

�Vi

r�A dV D
Z

V

r�A dV: (A1.65)
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Fig. A1.12 Two adjacent

regions with common surface

Thus, we have

Z

S

A �dS D
Z

V

r�AdV: (A1.66)

This is called Gauss’ theorem.

In the limit �V ! 0 in Eq. (A1.63), the right side leads to �V r�A. Hence, we

obtain the relationship,

lim
�V!0

1

�V

Z

�S

A �dS D r�A: (A1.67)

This gives the definition of divergence.

A1.15 Stokes’ Theorem

We consider a small rectangle in the region y to y C�y and z to z C�z on the y-z

plane. We integrate vector A along this small rectangle. The integral path is directed

counterclockwise, as shown in Fig. A1.13, so that a screw points in the direction of

the x-axis when we rotate a screwdriver along the direction of the integral. On the

path from P to Q, ds D i ydy, and the contribution from this region to the integral

is Ay.x; y C .1=2/�y; z/�y using the mean value. On the path from R to S, ds D
�i ydy, and the contribution from this region is �Ay.x; yC.1=2/�y; zC�z/�y.

Their sum is

�
�

Ay

�

x; yC�y

2
; zC�z

�

� Ay

�

x; yC�y

2
; z

��

�y

' �@Ay
@z
�y�z D �@Ay

@z
�S; (A1.68)

where�S D �y�z is the area of the small rectangle.



A1 Vector Analysis 305

Fig. A1.13 Small rectangle

with sides parallel to y- and

z-axes

On the path from Q to R, ds D i zdz with a contribution of Az.x; yC�y; zC
.1=2/�z/�z, and on the path from S to P, ds D �i zdz with a contribution of

�Az.x; y; zC.1=2/�z/�z. Their sum is

�

Az

�

x; yC�y; zC�z

2

�

� Az

�

x; y; zC�z

2

��

�z ' @Az

@y
�S: (A1.69)

Thus, the curvilinear integral on �C is

I

�C

A �ds D
�

@Az

@y
� @Ay

@z

�

�S D .r � A/x�S D
Z

�S

.r � A/xdSx: (A1.70)

We consider a curvilinear integral of A on an arbitrary closed line C. The surface

surrounded by C is divided into a set of infinitesimal rectangular regions normal to

each of the x- y- and z-axes (see Fig. A1.14). We can show that the curvilinear

integral on C is equal to the sum of the curvilinear integrals of all rectangular

regions. That is,

I

C

A �ds D
X

i

I

�Ci

A �ds: (A1.71)

This is because every curvilinear integral on the common side of two adjacent

regions cancel out. Using Eq. (A1.70), the right side of Eq. (A1.71) leads to

X

i

Z

�Si

.r � A/�dS D
Z

S

.r � A/�dS ; (A1.72)

where�Si is the surface surrounded by�Ci , and S is the curved surface surrounded

by C. Thus, we have

I

C

A �ds D
Z

S

.r � A/�dS : (A1.73)

This is called Stokes’ theorem.
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Fig. A1.14 Closed line C and small rectangular segments f�Cig

In the limit �S ! 0 in Eq. (A1.70), its right side leads to .r � A/x�S: Hence,

if the unit vector normal to the small surface is n, we have

lim
�S!0

1

�S

I

�C

A �ds D .r � A/�n: (A1.74)

This gives the definition of rotation.

A1.16 Green’s Theorem

Substituting A D r into Eq. (A1.40) leads to

r�.�r / D �r2 C .r�/�.r /: (A1.75)

Integrating this over region V and transforming the left side into a surface integral

using Gauss’ theorem, we have

Z

S

�r �dS D
Z

V

�r2 dV C
Z

V

.r�/�.r /dV: (A1.76)
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Then, the subtraction between this and the quantity in which � and are exchanged

yields:

Z

S

.�r �  r�/�dS D
Z

V

.�r2 �  r2�/dV: (A1.77)

Equations (A1.76) and (A1.77) are called Green’s theorem.

A1.17 Cylindrical Coordinates

In Sect. A1.4, we used Cartesian coordinates. However, it is convenient to use

cylindrical coordinates when we calculate electromagnetic properties for long

cylindrical objects. When we use cylindrical coordinates, we first define the central

axis (the z-axis). Then, we express the target position with the distance from this axis

(R), the azimuthal angle (') on the plane normal to the z-axis and the position on

this axis (z): .R; '; z/. When we use the common z-axis with Cartesian coordinates,

as shown in Fig. A1.15, the relationships between the two sets of coordinates are:

R D .x2Cy2/1=2; ' D tan�1
y

x
; z D z: (A1.78)

If we use iR, i ' and i z to denote the unit vectors along the radial, azimuthal and

z-axial directions, respectively, these are perpendicular to each other and follow the

right-hand rule in the order iR ! i ' ! i z ! iR:

The gradient, divergence and rotation in cylindrical coordinates are

rf D iR
@f

@R
C i '

1

R
� @f
@'

C i z

@f

@z
; (A1.79)

Fig. A1.15 Cylindrical

coordinates
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r � A D 1

R
� @.RAR/

@R
C 1

R
� @A'
@'

C @Az

@z
; (A1.80)

r � A D iR

�

1

R
� @Az

@'
� @A'

@z

�

C i '

�

@AR

@z
� @Az

@R

�

C i z

1

R

�

@.RA'/

@R
� @AR

@'

�

:

(A1.81)

The second differentiation of a scalar function is given by

r2f D 1

R
� @
@R

�

R
@f

@R

�

C 1

R2
� @

2f

@'2
C @2f

@z2

D @2f

@R2
C 1

R
� @f
@R

C 1

R2
� @

2f

@'2
C @2f

@z2
: (A1.82)

A1.18 Polar Coordinates

It is convenient to use polar coordinates when we calculate electromagnetic

properties for spherical objects. When we use polar coordinates, we first define

the center with an axis that determines the two poles. Then, we express the target

position with the distance from the center (r), the zenithal angle (�) measured from

the north pole and the azimuthal angle (') on the plane normal to the axis: .r; �; '/.

When we use the common center and z-axis with Cartesian coordinates, as shown

in Fig. A1.16, the relationships between the two sets of coordinates are:

r D .x2Cy2Cz2/1=2; � D tan�1
.x2Cy2/1=2

z
; ' D tan�1

y

x
: (A1.83)

Fig. A1.16 Polar coordinates
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If we use i r , i � and i ' to denote the unit vectors along the radial, zenithal and

azimuthal directions, respectively, these are perpendicular to each other and follow

the right-hand rule in the order i r ! i � ! i ' ! i r :

The gradient, divergence and rotation in polar coordinates are

rf D i r
@f

@r
C i �

1

r
� @f
@�

C i '
1

r sin �
� @f
@'
; (A1.84)

r � A D 1

r2
� @
@r
.r2Ar /C 1

r sin �
� @
@�
.sin �A� /C 1

r sin �
� @A'
@'

; (A1.85)

r � A D i r
1

r sin �

�

@

@�
.sin �A'/ � @A�

@'

�

C i �
1

r

�

1

sin �
� @Ar
@'

� @

@r
.rA'/

�

C i '
1

r

�

@

@r
.rA�/ � @Ar

@�

�

:

(A1.86)

The second differentiation of a scalar function is given by

r2f D 1

r2
� @
@r

�

r2
@f

@r

�

C 1

r2 sin �
� @
@�

�

sin �
@f

@�

�

C 1

r2 sin2 �
� @

2f

@'2

D @2f

@r2
C 2

r
� @f
@r

C 1

r2
� @

2f

@�2
C cos �

r2 sin �
� @f
@�

C 1

r2 sin2 �
� @

2f

@'2
: (A1.87)

A2 Proofs

A2.1 Proof of Eq. (1.37)

For the electric potential given by Eq. (1.27) we have

��.r/ D 1

4��0

Z

V

�

�
1

jr�r 0j

�

�.r 0/dV 0:

Here we put R D r�r 0 with R D jRj and define�R as the Laplacian with respect

to R. Then, applying the formula might suggest

�
1

jr�r 0j D �R

1

R
D 1

R2
� @
@R

�

R2
@

@R
� 1
R

�

D 0:

However, the above is not valid in the vicinity of R D0 (r Dr 0), since this position is

an abnormal point at which the function 1=jr � r 0j diverges. Hence, the integral has

a finite contribution in the vicinity of this abnormal point. We denote the surface and
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volume of a small region around the abnormal point as �S and �V , respectively.

Rewriting �� with the definition of divergence, Eq. (A1.67), we have

��.r/ D 1

4��0
r�

�

r 1

jr�r 0j

�

�.r/ �V D lim
�V!0

�.r/

4��0

Z

�S

r 1

jr�r 0j �dS :

Here we assume a spherical surface of radius a with the center at r 0 for small �S;

then,

Z

�S

r 1

jr�r 0j �dS D �
Z

�S

r�r 0

jr�r 0j3 �dS D �4�a
2

a2
D �4�:

Thus, we obtain Eq. (1.37),

��.r/ D ��.r/
�0

:

We find that the Laplacian of 1=jr � r 0j can be expressed in terms of the three-

dimensional delta function as

�
1

jr�r 0j D �4�ı.r�r 0/:

A2.2 Proof of Eq. (6.21)

Since the divergence is a differentiation with respect to r for the magnetic flux

density in Eq. (6.7), we have

r�B.r/ D �0

4�

Z

V

r�
�

i .r 0/ � .r�r 0/

jr � r 0j3
�

dV 0:

Using Eq. (A1.41) with

A ! i .r 0/; B ! r�r 0

jr�r 0j3 ;

the integrand in the above equation leads to

r�
�

i .r 0/ � .r �r 0/

jr � r 0j3
�

D �i .r 0/�
�

r � r�r 0

jr�r 0j3
�

;

where we have used r � i .r 0/ D 0. If we use

r�r 0

jr�r 0j3 D �r 1

jr�r 0j
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and Eq. (A1.45), we obtain Eq. (6.21),

r � B D 0:

A2.3 Proof of Eq. (6.27)

The rotation of Eq. (6.7) is

r � B.r/ D �0

4�

Z

V

r �
�

i .r 0/ � .r �r 0/

jr � r 0j3
�

dV 0:

Substituting

A ! i .r 0/; B ! r�r 0

jr�r 0j3 D �r 1

jr�r 0j

into Eq. (A1.43) yields

r �
�

i .r 0/ � .r�r 0/

jr � r 0j3
�

D �i .r 0/r�
�

r 1

jr�r 0j

�

C Œi .r 0/�r�r 1

jr�r 0j :

Here we denote the differential operator with respect to r 0 by r 0. Then,

r 1

jr�r 0j D �r 0 1

jr�r 0j :

That is, r is equivalent to �r 0. Using this relationship in part of the above equation,

we have

r �
�

i .r 0/ � .r�r 0/

jr � r 0j3
�

D �i .r 0/r 02 1

jr�r 0j � Œi .r 0/ � r 0�r 1

jr�r 0j :

Here we use the relationship shown in Sect. A2.1:

�r 02 1

jr�r 0j D 4�ı.r 0�r/:

Then, the integral of the first term on the right side leads to

�
Z

V

i .r 0/r 02 1

jr�r 0jdV 0 D 4�i .r/:
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Changing the order of differentials in the second term, we have

�Œi .r 0/�r 0�r 1

jr�r 0j D �rŒi .r 0/�r 0� 1

jr�r 0j D �r
�

i .r 0/�r 0 1

jr�r 0j

�

:

The scalar function operated on by r is written as

i .r 0/�r 0 1

jr�r 0j D r 0 � i .r 0/

jr�r 0j � 1

jr�r 0jr
0 �i .r 0/:

The condition of a steady current gives r 0 � i .r 0/ D 0: Hence, the integral of the

second term becomes

�r
Z

V

r 0 � i .r 0/

jr�r 0jdV 0 D �r
Z

S

i .r 0/

jr�r 0j � dS 0:

If we suppose an infinitely large sphere for S, i decreases to zero on S. Thus, the

relationship r � B D �0i ; Eq. (6.27), is valid.

A2.4 Proof of Eq. (6.33)

The rotation of Eq. (6.33) is

r � A.r/ D �0

4�

Z

V

r � i .r 0/

jr�r 0jdV 0:

Noting that the rotation is a derivative with respect to r , Eq. (A1.42) leads to

r � i .r 0/

jr�r 0j D �i .r 0/ � r 1

jr�r 0j D i .r 0/ � r �r 0

jr�r 0j3 :

Thus, the above equation is written as

r � A.r/ D �0

4�

Z

V

i .r 0/ � .r�r 0/

jr � r 0j3 dV 0:

Since this agrees with the right side of Eq. (6.7), Eq. (6.33) is valid.

A2.5 Proof of Eq. (6.45)

For Eq. (6.45) to hold, only the following equation has to be satisfied:

r �
�m � r

r3

�

D �r
�m�r
r3

�

:
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Here we put

a D r

r3
D �r 1

r
:

Then, from Eq. (A1.43) we have

r � .m � a/ D .a�r/m � .m�r/a C m.r�a/ � a.r�m/:

The first and fourth differentiation terms of the constant vector m are zero.

Substituting a D .1=r2/i r leads to

r�a D 1

r2
� @
@r

�

r2
1

r2

�

D 0:

Thus, only the third term remains. On the other hand, Eq. (A1.39) gives

r.m�a/ D .m�r/a C .a �r/m C m � .r � a/C a � .r � m/:

The second and fourth differentiation terms of the constant vector m are zero. We

can easily show that r � a D 0 in the third term from Eq. (A1.45). Thus, only the

first term remains. As a result, the target equation is valid and we prove Eq. (6.45).

A2.6 Proof of Eq. (9.5)

Using the relationship,

r�r 0

jr�r 0j3 D �r 1

jr�r 0j D r 0 1

jr�r 0j ;

on the right side of Eq. (9.4), this equation is written as

A.r/ D �0

4�

Z

V

M .r 0/ � r 0 1

jr�r 0j dV 0:

If we put � D 1=jr�r 0j in Eq. (A1.42), this leads to

M � r 0� D �.r 0 � M / � r 0 � .�M /:

Thus, Eq. (9.4) becomes

A.r/ D �0

4�

Z

V

r 0 � M .r 0/

jr � r 0j dV 0 � �0

4�

Z

V

r 0 � M .r 0/

jr�r 0j dV 0:
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Equation (A1.41) becomes

r�.a � b/ D b�.r � a/ � a�.r � b/ D b�.r � a/

for a constant vector b. The volume integral on the left side leads to
R

V
r �

.a � b/dV D R

S
.a � b/ � ndS; where n is the unit vector normal to the surface

denoted by S. Since vector b is constant, the above surface integral reduces to
R

S
b�.n � a/dS D b�R

S
n � a dS: On the other hand, the volume integral on the right

side leads to
R

V
b �.r � a/dV D b �R

V
r � a dV: Since b is an arbitrary vector, we

obtain the general relationship,

Z

V

r � a dV D
Z

S

n � a dS:

Using this relationship, the second integral of the vector potential leads to

��0
4�

Z

S

n0 � M .r 0/

jr�r 0j dS 0:

If we assume an infinitely large sphere for S (jr 0j D r 0 ! 1), jM j and jr �r 0j�1
are of the orders of 1=r 02 and 1=r 0, and the surface integral is of the order of r 02

in magnitude. As a result, this surface integral is of the order of 1=r 0, and we can

neglect it. Thus, the vector potential is

A.r/ D �0

4�

Z

V

r 0 � M .r 0/

jr � r 0j dV 0;

and we derive Eq. (9.5).

A3 Superconductivity

A3.1 Phenomenological Electromagnetism

Here we introduce the phenomenological London theory that describes the

electromagnetic phenomenon associated with the Meissner–Ochsenfeld effect

in superconductors. We denote the mass, electric charge and velocity of a

superconducting electron by m�, �e� and vs, respectively. The theory assumes

the equation of motion of the superconducting electron:

m�
dvs

dt
D �e�E :
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The right side is the Coulomb force. The viscous force in Eq. (5.21) does not act on

superconducting electrons. The above equation requires a superconducting current

to flow without decaying in a steady state where there is no electric field. It is

known that the superconducting electron is a pair of two electrons, thus e� D 2e.

If we denote the density of superconducting electrons by ns, from Eq. (5.24) the

superconducting current density is

i D �e�nsvs:

Eliminating vs using this equation yields

E D m�

nse�2
� di

dt
: (A3.1)

Taking a rotation of this equation and using Eqs. (10.39) and (6.27) for r � E and

i , we have

@

@t

�

B C m�

�0nse�2
r � r � B

�

D 0:

Hence, we find that the quantity in the parentheses is a constant value. When it is

zero, the Meissner–Ochsenfeld effect can be explained. Namely, it leads to

B C �2r � r � B D 0; (A3.2)

where

� D
�

m�

�0nse�2

�1=2

is a quantity with the dimension of length called the penetration depth of the

magnetic field. Equations (A3.1) and (A3.2) are called the London equations. Since

r�B D 0, using Eq. (A1.46) reduces Eq. (A3.2) to

r2B � 1

�2
B D 0: (A3.3)

Here we show that Eq. (A3.3) describes the Meissner–Ochsenfeld effect. Sup-

pose a semi-infinite superconductor that occupies the region x � 0 with the surface

at x D 0. We apply an external magnetic field of magnetic flux density B0 parallel

to the z-axis. In this case it is reasonable to assume that the internal magnetic flux

density has only the z-component and is uniform in the y-z plane. Thus, Eq. (A3.3)

reduces to

d2B

dx2
� 1

�2
B D 0:
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Fig. A3.1 Distribution of magnetic flux density in the vicinity of the superconductor surface

From the boundary conditions that B.0/ D B0 and B should be finite at infinity

(x ! 1), we have

B.x/ D B0 exp
�

�x
�

�

:

This shows that the magnetic flux penetrates from the surface to a depth of about

� (see Fig. A3.1). For this reason � is called the penetration depth. Usually � takes

a value of the order of tens of nm and can be neglected in comparison with the

specimen size, and hence, the Meissner–Ochsenfeld effect can be explained. From

Eq. (6.27) a current of density

i.x/ D B0

�0�
exp

�

�x
�

�

:

flows along the y-axis. That is, the diamagnetism in the superconductor is caused by

the current flowing on the surface, and this current is called the Meissner current.

If we regard this as a real surface current, the current that flows within a unit width

along the z-axis is given by

� D
Z 1

0

i.x/dx D B0

�0
;

which satisfies Eq. (7.8).

As was just stated, the London equation is assumed to explain the Meissner–

Ochsenfeld effect. It is easy to show that Eqs. (A3.1) and (A3.2) are derived from

the following equation:

i D �nse
�2

m�
A: (A3.4)
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a b

Fig. A3.2 Magnetization of (a) type 1 and (b) type 2 superconductors

Namely, we obtain Eq. (A3.1) by differentiating this equation with respect to time

using the fact that there is no electrostatic field (�r� D 0) in the superconductor.

The rotation of Eq. (A3.4) directly derives Eq. (A3.2). Equation (A3.4) is derived

from the rigorous Ginzburg–Landau theory, and hence, we are justified in assuming

the London equations.

We can also derive the London equation, (A3.3), by minimizing a suitable energy.

This is given by

1

2�0
B2 C �2

2�0
.r � B/2: (A3.5)

The first term is the magnetic energy and the second term is the kinetic energy of

superconducting electrons.

A3.2 Mixed State

There are two kinds of superconductors, i.e., type 1 and type 2 superconductors.

When there is no geometrical effect as in the case of a long slab superconductor in a

parallel magnetic flux density, the magnetizations of these superconductors are like

those shown in Fig. A3.2a, b. Most superconducting elements are classified into

type 1 in (a). In this case when the external magnetic flux density B0 is small,

the superconductor is in the Meissner state, a perfect diamagnetic state. When

B0 exceeds the critical value Bc, the superconductivity disappears with a jump in

magnetization to zero, and the superconductor enters in the normal state with an

electric resistivity. We call Bc the critical magnetic flux density, or Bc=�0 D Hc is

called the critical magnetic field.

Alloy or compound superconductors, including practical superconductors, are

classified into type 2 shown in Fig. A3.2b. WhenB0 is belowBc1 the superconductor

is in the Meissner state, but when B0 exceeds Bc1 the superconductor enters an
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Fig. A3.3 Micrograph of

quantized magnetic fluxes in

superconducting Pb–Tl

(courtesy of Dr. B. Obst at the

Research Center in

Karlsruhe). Black dots are

ferromagnetic particles

attached to the central part of

each quantized magnetic flux

Fig. A3.4 Magnetic flux

distribution in type 2

superconductor in the mixed

state

imperfectly diamagnetic state called the mixed state with a penetration of magnetic

flux. When B0 exceeds Bc2 the superconductor enters the normal state with zero

magnetization. The quantities Bc1 and Bc2 are called the lower and upper critical

magnetic flux density.

In the mixed state the magnetic flux is quantized as shown in Fig. A3.3, and each

has a magnetic quantum of

�0 D hP

2e
D 2:0678 � 10�15 Wb;

where hP is Planck’s constant. The central part of each quantized magnetic flux is in

the normal state and the magnetic flux is concentrated in the region about � from the

center. Hence, the circular current flows stably around the center, and the quantized

magnetic flux is also called a vortex.

The structure of each quantized magnetic flux is much smaller than the size of a

superconductor specimen, and the internal magnetic flux density can be regarded as

uniform, as schematically shown in Fig. A3.4. If this magnetic flux density is B , the

magnetization of the superconductor is given by Eq. (7.38).
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Fig. A3.5 Relationship

between current density and

induced electric field in

superconductor. The solid and

dashed lines show the

characteristics for the

superconductor without and

with pinning centers

A3.3 Motion of Quantized Magnetic Flux

In operating conditions of superconducting equipment, the superconductors are

generally in the mixed state with penetration of quantized magnetic fluxes. Thus,

the Lorentz force,

F 0 D i � B

is exerted on quantized magnetic fluxes in a unit volume under the transport current.

In this case the current is not localized only near the surface but flows uniformly

inside the superconductor. When quantized magnetic fluxes are driven to move with

velocity V by the Lorentz force, the electric field given by Eq. (10.21) is induced:

E D B � V : (A3.6)

This is Josephson’s relation. Since the condition is steady without a change in the

magnetic flux density with time, this induced electric field satisfies Eq. (1.28).

The relationship between the current density and electric field in the supercon-

ductor in the mixed state is similar to Ohm’s law for a usual metal, as shown by

the solid line in Fig. A3.5. That is, when the current density increases, the Lorentz

force increases and the velocity of quantized magnetic flux increases, resulting in an

increase in the electric field. In such a resistive state heat is generated because of the

energy dissipation. This occurs because the central part of each quantized magnetic

flux is in the normal state. The induced electric field drives normal electrons,

resulting in energy dissipation similar to that in a normal metal. Thus, when the

magnetic flux density increases, the number density of quantized magnetic flux

also increases and the electric resistance increases. When the magnetic flux density

reaches Bc2, all the area in the superconductor reaches the normal state and the

electric resistance reaches the normal value.
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To transport a current without appearance of electric resistance, the motion of

quantized magnetic fluxes needs to stop (V D 0) even under the Lorentz force.

This action is called flux pinning, and defects such as normal precipitates or

grain boundaries are known to act effectively. These defects are called pinning

centers. Practical superconductors contain such pinning centers dispersed with a

high concentration. The condition of the force equilibrium on quantized magnetic

fluxes is given by

i � B C F p D 0; (A3.7)

where F p is the pinning force density. The corresponding relationship between the

current density and electric field under the influence of flux pinning is shown by the

dashed line in Fig. A3.5. The current density ic at which the electric field starts to

appear is called the critical current density. In this condition Eq. (A3.7) gives

ic D Fp

B
: (A3.8)

To transport a current of high density without appearance of electric resistance, the

strength of the pinning force needs to be enhanced.

A3.4 Electromagnetism and Superconductivity

Here we carefully look at the fundamental factors that construct electromagnetism.

The independent principles are

(a) the Coulomb force (with Coulomb’s law),

(b) the Lorentz force (with the Biot–Savart law),

(c) the law of electromagnetic induction,

(d) the displacement current.

(a) gives Eq. (11.9), (b) gives Eq. (11.10) and a part of Eq. (11.8), (c) gives

Eq. (11.7), and (d) gives a part of Eq. (11.8). Thus, the above four principles are

arranged into Maxwell’s equations. From the comprehensive Maxwell theory based

on these equations, the Coulomb force and Lorentz force are derived in terms of

the Maxwell stress tensor. In fact, the Lorentz force is derived from a theoretical

investigation of the energy in Exercise 11.9.

However, it should be noted that these principles are not enough to describe

electromagnetic phenomena completely. That is, we need empirical Ohm’s law

for a system in which current flows. This law is not derived theoretically. Hence,

electromagnetic theory is not complete in this sense.

Here we discuss electromagnetic phenomena in superconductors. These phenom-

ena are independent of Ohm’s law, and the mechanism that determines the current

is obtained by minimizing the free energy. Hence, we can say that electromagnetic

theory is complete for superconductors including the case where current flows. In
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a b

Fig. A3.6 Distortions of quantized magnetic fluxes: (a) bending of magnetic fluxes and

(b) gradient of magnetic flux density. The Lorentz forces shown by the arrows to reduce the

distortion are the line tension and magnetic pressure, respectively

addition, if we include the cases of pressurization or films, more than half of the ele-

ments become superconducting at low temperatures, and most metallic compounds

and some organic compounds are superconductors. That is, superconductors are

fairly common substances. This textbook shows that superconductor has its own

place in the E–B analogy. In principle it was even possible to predict the existence

of superconductors in the 19th Century.

Second, we discuss electromagnetic phenomena in a superconductor with

pinning centers in the mixed state. In many cases we can neglect the kinetic energy

in Eq. (A3.4), and the suitable energy density to be minimized is

1

2�0
B2 C Up; (A3.9)

where Up is the pinning energy. Minimizing this energy with respect to the

displacement of quantized magnetic fluxes leads to Eq. (A3.7) for an isolated

superconductor..1/ That is, the variation in the magnetic energy due to the defor-

mation of magnetic structure brings about the Lorentz force, and the variation in

the pinning energy gives the pinning force density. We can extend this relationship

to a non-isolated case and then to a general irreversible case. Thus, we obtain

the force balance equation that describes practical electromagnetic phenomena

in superconductors. The Lorentz force given by the first term in Eq. (A3.7) is

transformed to

i � B D 1

�0

�

.B � r/B � 1

2
rB2

�

: (A3.10)

Each term on the right side is expressed as an elastic restoring force against the

distortion of quantized magnetic fluxes lines. The first term gives the line tension

for the bent magnetic fluxes in Fig. A3.6a, and the second term gives the magnetic

pressure to make the magnetic flux density uniform in Fig. A3.6b. The Lorentz force

derived in Exercise 11.9 is the magnetic pressure.
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Fig. A3.7 Distortion of

magnetic flux lines in the

force free-state. Current flows

parallel to the magnetic flux

lines. Restoring torque is

predicted to work on the flux

lines as shown by the arrows

It is known that various peculiar electromagnetic phenomena called longitudinal

magnetic field effects are observed when we apply a current to a long supercon-

ducting wire or slab in a parallel magnetic field..2/ In this condition the current

and magnetic flux density are parallel to each other, and the Lorentz force on the

quantized magnetic flux is zero (i � B D 0). This state is called the force-free

state. However, the magnetic structure contains a twisted distortion produced by

the current, as shown in Fig. A3.7. We can expect that some restoring torque works

to reduce the distortion, as shown by the arrows in the figure. In fact, we can

derive the force-free torque using a similar method in Exercise 11.9..3/ We can

explain that the rotational motion of quantized magnetic flux driven by the restoring

torque causes the peculiar electromagnetic phenomena of the longitudinal magnetic

field effects..2/

Such a torque in a static condition is not known in electromagnetism. We can

easily show that r � J ¤ 0 when a current flows as in Fig. A3.7. Hence, this

situation cannot be realized in normal conductors (see Exercise 7.11). To say this in

more detail, the helicity given by J � B or A � B is not zero in this condition.

In this textbook we showed that a superconductor can be considered a general

material in electromagnetism. Here we showed that a superconductor is a more

purely physical material described by a complete theory. We can even expect that

superconductors will open the door to electromagnetic phenomena that people have

never yet experienced.
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Answers to Exercises

Chapter 1

1.1. We presume the electric charge in a small region between x and x C dx from

point A, dQ D .Q=L/dx, to be a point charge. Then, the Coulomb force on point

charge q by this charge is dF D qQdx=Œ4��0L.L C d � x/2� and all the forces

from each position point in the same direction. Thus, the total force is

F D
Z L

0

qQdx

4��0L.LC d � x/2
D qQ

4��0d.LC d/
:

1.2. The electric field strength due to the electric charge �dy in the region y to

y C dy from the lower edge of the bar is dE D �dy=Œ4��0.y
2 C b2/�: We define

angle � as shown in Fig. B1.1. The x- and y-components of the electric field are

dE cos � and �dE sin � , respectively, and y D b tan � with �a D tan�1.a=b/. Thus,

we obtain

Ex D �

4��0b

Z �a

0

cos �d� D �a

4��0b.a2 C b2/1=2
;

Ey D � �

4��0b

Z �a

0

sin �d� D � �

4��0b

�

1 � b

.a2 C b2/1=2

�

:

1.3. The distance from one side to point P is r D Œ.a2=4/C z2�1=2 and the electric

field strength due to the electric charge on one side is E 0 D �a=f4��0rŒ.a2=4/C
z2�1=2g: From symmetry only the vertical component of the electric field remains

(see Fig. B1.2), and we obtain the electric field by summing the contributions from

the four sides as

E D 4E 0 sinˇ D �az

��0Œ.a2=4/C z2�Œ.a2=2/C z2�1=2
:

T. Matsushita, Electricity and Magnetism: New Formulation by Introduction

of Superconductivity, Undergraduate Lecture Notes in Physics,

DOI 10.1007/978-4-431-54526-2, © Springer Japan 2014
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Fig. B1.1 Definition of

angle �

Fig. B1.2 Electric field

produced by electric charge

on one side

Fig. B1.3 Electric field

produced by line charge in a

part of slab

1.4. We define the coordinates as shown in Fig. B1.3. Although we cannot directly

apply Gauss’ law, it can be used to estimate the electric field produced by the line

charge of density �dx in a thin region between x and x C dx. The electric field

strength at point A due to this line charge is dE 0A D �dx=Œ2��0.x
2 C b2/1=2�: From

symmetry only the z-component, dEA D dE 0A cos � , remains. Integration yields the

electric field at A;

EA D
Z a

�a

� cos �dx

2��0.x2 C b2/1=2
D �

2��0

Z �a

��a
d� D ��a

��0
;

where we have transformed as x D b tan � with �a D tan�1.a=b/.
The electric field at point B produced by the line charge in a thin region between

x and xC dx has a strength of dEB D �dx=Œ2��0.d �x/� and is directed along the

x-axis. Thus, a simple summation yields

EB D �

2��0

Z a

�a

dx

d � x
D �

2��0
log

d C a

d � a
:
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a b

Fig. B1.4 Superposition of (a) uniformly distributed electric charge with density � over the whole

sphere and (b) uniformly distributed electric charge with density �� in the vacancy

1.5. Although we cannot directly obtain the electric field using Gauss’ law, we can

solve this problem using a superposition of two solvable cases. The given condition

can be realized by superposing the situation where the electric charge is uniformly

distributed with density � in the whole region of the sphere as shown in Fig. B1.4a,

and that where the electric charge is uniformly distributed with density �� in the

vacant region as shown in Fig. B1.4b. We can calculate the electric field in each

case using Gauss’ law. First we determine the electric field at the center A of the

vacancy. In (a) the total electric charge is Q0 D .4�=3/d 3� and the electric field is

E1 D Q0=.4��0d 2/ D �d=.3�0/. We similarly determine the electric field in (b) to

be E2 D �r=.3�0/ ! 0 in the limit r ! 0. Thus, we have

EA D E1 C E2 D �d

3�0
:

Second, we determine the electric field at point B. The contributions from (a) and

(b) are E3 D �a3=.3�0r
2/ and E4 D ��b3=Œ3�0.r � d/2�, respectively. Thus, we

have

EB D E3 C E4 D �

3�0

�

a3

r2
� b3

.r � d/2

�

:

1.6. From Eq. (1.25) we obtain the electric potential due to the electric charge �dy

in a small region between y and y C dy from origin O as d� D �dy=Œ4��0.y
2 C

b2/1=2�: Integrating this with respect to y from �a to a yields

� D
Z a

�a

�dy

4��0.y2 C b2/1=2
D �

2��0

Z �a

0

d�

cos �
D �

2��0
log

.a2 C b2/1=2 C a

b
;

where we have transformed as y D b tan � with �a D tan�1.a=b/.
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1.7. We easily obtain the electric potential from Eq. (1.27) in this case. Since all the

electric charge is located at distance a from the center, the electric potential is

� D 1

4��0a

Z

V

�.r 0/dV 0 D Q

4��0a
D �a

�0
;

where Q D 4�a2� is the total electric charge. We can also calculate the electric

potential from the electric field [see Eq. (2.9b)].

1.8. Since all the electric charge Q D 2�a� is located at the same distance .z2 C
a2/1=2 from point P, we calculate the electric potential as

� D Q

4��0.z2 C a2/1=2
D a�

2�0.z2 C a2/1=2
:

From symmetry the electric field at point P is directed vertically and its strength is

E D �@�
@z

D az�

2�0.z2 C a2/3=2
:

1.9. We denote the distance from the sphere center by r . Then, the electric potential

outside the sphere (r > a) is �.r/ D Q=.4��0r/: Thus, from Eq. (1.33) the work is

determined to be

W D qŒ�.rB/ � �.rA/� D qQ

4��0

�

1

rB

� 1

rA

�

:

Chapter 2

2.1. Electric charge Q1 is distributed uniformly on the surface of the inner sphere

(r D a) and the electric charge �Q1 induced by the electrostatic induction is

distributed uniformly on the inner surface of the outer sphere (r D b). Thus, the

electric charge Q1 C Q2 appears on the outer surface of the outer sphere (r D c),

following the principle of conservation of charge. The electric field is directed

radially and its strength is

Er D 0I 0 � r < a;

D Q1

4��0r2
I a < r < b;

D 0I b < r < c;

D Q1 CQ2

4��0r2
I r > c:
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The electric potential is determined to be

� D Q1 CQ2

4��0r
I r > c;

D Q1 CQ2

4��0c
I b < r < c;

D Q1

4��0

�

1

r
� 1

b
C 1

c

�

C Q2

4��0c
I a < r < b;

D Q1

4��0

�

1

a
� 1

b
C 1

c

�

C Q2

4��0c
I 0 � r < a:

2.2. We denote by Q0 the electric charge induced on the inner surface (r D a).

Using Gauss’ law, the electric charge on the inner surface of the outer sphere (r D b)

is determined to be �Q0. Hence, the electric charge on the outer surface (r D c) is

QCQ0. If we define the electric potential to be zero at infinity, the electric potential

of the outer sphere is

� D QCQ0

4��0c
:

On the other hand, the electric field in the region a < r < b is E D Q0=.4��0r
2/,

and the electric potential there is � D Q0=.4��0r/CC with C denoting a constant.

From the condition that � D 0 at r D a because of grounding, we have C D
�Q0=.4��0a/. Thus, the electric potential of the outer sphere is

� D � Q0

4��0

�

1

a
� 1

b

�

:

The requirement that this is equal to the electric potential determined from infinity

yields

Q0 D �
�

1

a
� 1

b
C 1

c

��1
Q

c
:

2.3. We denote the electric charge on the surface at x D b byQb . Then, the electric

charge on the surface at x D a is �Qb . So that the electric field does not penetrate

the conductor of a < x < b, the electric charge at x D b must be the same as

the total electric charge in the region x < a, i.e., Q � Qb . Thus, we have Qb D
Q=2 and the electric charge at x D a is �Q=2. We similarly obtain the electric

charges on the surfaces of the left conductor. As a result, the electric charges at

x D �b;�a; a and b are Q=2;Q=2;�Q=2 andQ=2, respectively.

The electric field is directed along the x-axis and its strength is
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E D � Q

2�0S
I x < �b;

D 0I �b � x � �a; a � x � b;

D Q

2�0S
I �a < x < a;

D Q

2�0S
I x > b:

We obtain the electric potential from E D �@�=@x as

� D Q.x C 2aC b/

2�0S
I x < �b;

D Qa

�0S
I �b � x � �a;

D �Q.x � a/
2�0S

I �a < x < a;

D 0I a � x � b;

D Q.�x C b/

2�0S
I x > b;

where � of the right conductor with no electric charge is arbitrarily defined to

be zero.

2.4. The reason why the electric field produced by the electric charge distributed

on the conductor surface is doubled is that there are other electric field contributions

from electric charges in other areas. For the same reason the electric field inside the

conductor cancels to zero. Examples are found in the case where an electric charges

of different kind is distributed on the surface of the opposite electrode of a capacitor,

as shown in Fig. B2.1a, or in the case where an electric charge of the same kind stays

on the opposite surface of the conductor, as shown in Fig. B2.1b. The situation in

Example 1.4 corresponds to the thin limit of the conductor in Fig. B2.1b.

2.5. We define two-dimensional polar coordinates .R; '/ on the conductor surface

with the origin on the point at which the vertical line from point charge q meets

the surface. We consider a thin ring of radius R to R C dR and presume the

electric charge in a small part of the azimuthal angle ' to ' C d', dQ D
�qaRdRd'=Œ2�.R2 C a2/3=2�; as a point electric charge. The Coulomb force on

q caused by this point charge is dF D qdQ=Œ4��0.R
2 C a2/�, and only its vertical

component, dFz D Œa=.R2 C a2/1=2�dF , remains from symmetry. Integrating this

over the surface, we have
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a b

Fig. B2.1 Examples of doubled electric field strength: (a) parallel-plate capacitor and

(b) distribution of electric charge of the same kind on the opposite surface of the conductor

Fz D � q2a2

8�2�0

Z 1

0

2�RdR

.R2 C a2/3
D � q2

16��0a2
:

This agrees with the image force, Eq. (2.15).

2.6. We denote two conductor surfaces that are perpendicular to each other by

the x-y and y-z planes, as shown in Fig. B2.2. Assume the given electric charge

is located on the plane y D 0. We virtually remove the conductor and place

three electric charges, �Q, �Q and Q, at .a; 0;�b/, .�a; 0; b/ and .�a; 0;�b/,
respectively. Then, the electric potential in the vacuum region (x > 0; z > 0) is

�.x; y; z/ D Q

4��0

n

1

Œ.x�a/2Cy2C.z�b/2�1=2 � 1

Œ.x�a/2Cy2C.zCb/2�1=2

� 1

Œ.xCa/2Cy2C.z�b/2�1=2 C 1

Œ.xCa/2Cy2C.zCb/2�1=2
o

:

Fig. B2.2 True electric

charge Q and three mirror

charges
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This satisfies � D 0 on the surfaces x D 0 and z D 0, and hence, this gives the

correct electric potential. We determine the electric charge density on the x-y and

y-z planes to be

�.x; y; 0/ D ��0
�

@�

@z

�

zD0

D �Qb
2�

�

1

Œ.x � a/2 C y2 C b2�3=2 �
1

Œ.x C a/2 C y2 C b2�3=2
�

;

�.0; y; z/ D ��0
�

@�

@x

�

xD0

D �Qa
2�

�

1

Œy2 C .z� b/2 C a2�3=2 �
1

Œy2 C .zC b/2 C a2�3=2
�

:

2.7. A simple calculation gives

Er D �
@�

@r
D q

4��0

�

r � d cos �

.r2 C d 2 � 2rd cos �/3=2
� a

d
� r � .a2=d/ cos �

Œr2 C .a2=d/2 � .2a2r=d/ cos ��3=2

�

;

E� D �
1

r
� @�
@�
D q sin �

4��0

�

d

.r2 C d 2 � 2rd cos �/3=2
� a3

d 2
� 1

Œr2 C .a2=d/2 � .2a2r=d/ cos ��3=2

�

;

E' D �
1

r sin �
� @�
@'
D 0:

2.8. We virtually remove the conductor and place a line electric charge of density

�0 at the line located at distance h from the center O. As shown in Example 1.8, the

electric potential at point P on the surface of cylindrical conductor is

� D �

2��0
log

R0

.a2 C d 2 � 2ad cos'/1=2
C �0

2��0
log

R00
.a2 C h2 � 2ah cos'/1=2

;

where ' is the angle defined in Fig. B2.3 and R0 and R00 are distances from O

to reference points of the electric potential. So that the electric potential does not

depend on ', the conditions �0 D �� and h D a2=d must be fulfilled. In addition,

R00 D .a=d/R0 is requited so that the electric potential of the conductor is zero.

Thus, the electric potential outside the conductor is

�.R; '/ D �

2��0
log

dŒR2 C .a2=d/2 � 2.a2R=d/ cos'�1=2

a.R2 C d 2 � 2Rd cos'/1=2
:

Fig. B2.3 Definition of

angle '
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The electric charge density on the conductor surface is

� D ��0
�

@�.R; '/

@R

�

RDa
D � �.d 2 � a2/

2�a.a2 C d 2 � 2ad cos'/
:

This gives the electric charge in a unit length;

Z 2�

0

�a d' D ��.d
2 � a2/
�

Z �

0

d'

a2 C d 2 � 2ad cos'
D ��;

where we have used Eq. (7.26).

2.9. We assume that the electric field produced by the electric charge on the

cylindrical conductor surface is the same as that produced by the line charge

of density � placed at distance h from the center of the cylinder after virtually

removing the cylinder (see Fig. B2.4). If we place an image line charge of density

�� in the infinite conductor at distance l�h from its surface after virtually removing

the infinite conductor, the infinite conductor surface is equipotential. Hence, if

the distance 2l�h between the image charge �� and the cylinder center corresponds

to d in Exercise 2.8, the cylindrical conductor surface is also equipotential, and all

the required conditions are satisfied. The result in Exercise 2.8 gives h D a2=d .

From the above conditions we have

d D l C
p
l2 � a2; h D l �

p
l2 � a2:

Substituting these into the result in Exercise 2.8 yields the electric potential outside

the conductors;

�.R; '/ D � �

4��0
log

R2 C .l �
p
l2 � a2/2 � 2R.l �

p
l2 � a2/ cos'

R2 C .l C
p
l2 � a2/2 � 2R.l C

p
l2 � a2/ cos'

:

Fig. B2.4 Image line charges

placed in two conductors



334 Answers to Exercises

We find that the electric potential on the surface, �.a; '/ D �Œ�=.2��0/� logŒ.l �p
l2 � a2/=a�; is constant. The electric charge density on the cylindrical surface is

� D ��0
�

@�

@x

�

RDa
D �

2�a
�

p
l2 � a2

l � a cos'
:

Next we define Cartesian coordinates with the y-z plane (x D 0) on the infinite

conductor surface and the central axis of the cylindrical conductor at y D 0. From

the relationships R cos' D x C l and R sin ' D y, the electric potential is also

expressed as

�.x; y/ D � �

4��0
log

.x C
p
l2 � a2/2 C y2

.x �
p
l2 � a2/2 C y2

:

Thus, we can easily confirm that �.x D 0/ D 0 is satisfied. The electric charge

density on the infinite conductor surface is

� D �0

�

@�

@x

�

xD0
D � �

p
l2 � a2

�.y2 C l2 � a2/ :

It should be noted that the sign is opposite, since the normal vector on the conductor

surface is directed along the negative x-axis.

2.10. We remove the conductor and place an image electric charge, q, on a line

extending from the center and the electric charge Q (see Fig. B2.5). We denote the

distance of this point from the center by d . The electric potential at point P on

the inner surface of the conductor is

�.a; �/ D 1

4��0

�

q

.a2 C d 2 � 2ad cos �/1=2
C Q

.a2 C h2 � 2ah cos �/1=2

�

:

The conditions that satisfy �.a; �/ D 0 are

d D a2

h
; q D �dQ

a
D �aQ

h
:

Fig. B2.5 Image electric

charge q



Answers to Exercises 335

Thus, the electric potential in the hollow is given by

�.r; �/ D Q

4��0

�

� a

hŒr2 C .a2=h/2 � 2.a2r=h/ cos ��1=2

C 1

.r2 C h2 � 2rh cos �/1=2

�

:

The electric charge density on the inner surface is

�.�/ D ��0Er .r D a/ D �0

�

@�

@r

�

rDa
D � Q.a2 � h2/

4�a.a2 C h2 � 2ah cos �/3=2
:

Chapter 3

3.1. First we determine the coefficients. AssumingQ1 D 1 and Q2 D 0, we have

�1 D p11 D 1

4��0a
; �2 D p21 D 1

4��0d
D p12:

When Q1 D 0 and Q2 D q, the electric potential of the spherical conductor is

�1 D p11Q1 C p12Q2 D q

4��0d
:

We easily find this agrees with the result, �.a; �/, in Example 2.3.

3.2. We denote the cylindrical conductor and a thin linear conductor placed at the

position of the line charge as conductors 1 and 2, respectively. We give a unit electric

charge to conductor 1 of a unit length (�1 = 1) and no electric charge to conductor 2

(�2= 0). Then, the electric potentials of conductors 1 and 2 are

�1 D p011 D 1

2��0
log

R0

a
; �2 D p021 D 1

2��0
log

R0

d
:

Thus, we obtain the coefficients of electrostatic potential. In a general case where

�1 D ƒ and �2 D �, the electric potential of conductor 1 is

�1 D p011ƒC p012�:

When conductor 1 is grounded, �1 D 0. This with p012 D p021 yields

ƒ D �p
0
21

p011
� D � logR0 � log a

logR0 � logd
�:
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If the reference point is infinity (R0 ! 1), this reduces to

ƒ D ��:

3.3. We denote the inner and outer conductors as conductors 1 and 2, respectively.

In a general case where conductor 1 is not grounded, the assumptions Q1 D 1 and

Q2 D 0 give

�1 D p11 D 1

4��0

�

1

a
� 1

b
C 1

c

�

; �2 D p21 D p12 D 1

4��0c
:

For Q1 D q andQ2 D Q, the electric potential of conductor 1 is

�1 D p11q C p12Q D q

4��0

�

1

a
� 1

b
C 1

c

�

C Q

4��0c
:

Hence, when conductor 1 is grounded (�1 D 0), we have

q D �
�

1

a
� 1

b
C 1

c

��1
Q

c
:

This agrees with the result obtained in Exercise 2.2.

3.4. The electric charge distributed in a unit length of the concentric conductor is

� on the surface of the inner conductor (R D a) and �� on the inner surface of

the outer conductor (R D b). As a result, the electric field is E D �=.2��0R/ in

the region a < R < b and is zero in other regions. Hence, the electrostatic energy

density in this region is ue D �0E
2=2 D �2=.8�2�0R

2/ and the electrostatic energy

in the conductor of a unit length is

U 0e D
Z b

a

�2

8�2�0R2
� 2�R dR D �2

4��0
log

b

a
:

The electric potential of the outer conductor is zero and that of the inner conductor is

� D �

2��0
log

b

a
:

Hence, we obtain the same electrostatic energy from Eq. (3.36) with U 0e D ��=2.

Using this result and U 0e D �2=.2C 0/ corresponding to Eq. (3.38), the capaci-

tance in a unit length is

C 0 D 2��0

log.b=a/
:
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3.5. (1) The electric field is E.r/ D Q=.4��0r
2/ in the region a < r < b

and is zero in other regions. The electrostatic energy density has a non-zero

value, ue D Q2=.32�2�0r
4/; only in the region a < r < b. We calculate the

electrostatic energy as

Ue D
Z b

a

ue4�r
2dr D .b � a/Q2

8��0ab
:

(2) Using the electric field in (1), the electric potential of the outer conductor is

zero and that of the inner conductor is

� D �
Z a

b

Q

4��0r2
dr D .b � a/Q

4��0ab
:

The electrostatic energy is

Ue D 1

2
Q� D .b � a/Q2

8��0ab
:

(3) We denote the inner and outer conductors as conductors 1 and 2, respectively.

The coefficients of electric potential are

p11 D 1

4��0

�

1

a
� 1

b
C 1

c

�

; p12 D p21 D p22 D 1

4��0c
:

The electric charges are Q1 D Q and Q2 D �Q. Thus, the electrostatic

energy is

Ue D 1

2
p11Q

2 � p12Q2 C 1

2
p22Q

2 D .b � a/Q2

8��0ab
:

3.6. Suppose that electric charges ˙� are given to each conductor in a unit length.

We define the x-axis normal to these conductors in such a way that it passes

through the centers of these conductors. We denote the positions of the centers of

the conductors with negative and positive electric charges by x D 0 and x D d ,

respectively. Since the diameter of these conductors is much smaller than the

interval, d , we can approximate the electric charges as being uniformly distributed

on each surface. Hence, the electric field at position x is

E D � �

2��0

�

1

x
C 1

d � x

�

under the definition of positive electric field directed along the positive x-axis. The

electric potential difference between the two conductors is
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V D �
Z d�a

a

Edx D �

��0
log

�

d

a
� 1

�

:

The capacitance in a unit length is

C 0 D �

V
D ��0

logŒ.d=a/ � 1� :

3.7. The electric field in the space where the conductor is not inserted is EDV=d

and the densities of electric charges on the electrode surfaces in this region are

˙�1 D ˙�0ED ˙�0V=d . On the other hand, the electric field is concentrated only

in the vacuum in other region and its strength is EDV=.d � t/. Thus, the densities

of electric charges on the electrode surfaces in this region are ˙�2D˙�0V=.d�t/.
Hence, when the depth of insertion changes from x to xC�x, the change in the

electric charge in the electrode is �Q D �0btV�x=Œd.d � t/�: The electrostatic

energy of the capacitor is

Ue D 1

2
Œ.a � x/�1 C x�2�bV D �0bV

2

2

�a � x

d
C x

d � t
�

:

The variation in the electrostatic energy when x increases by �x is �Ue D
�0btV

2�x=Œ2d.d � t/�.

If we denote the force on the conductor by F , the work done by the conductor

is F�x. The input energy from the electric power source to the system is V�Q.

Hence, from the relationship�Ue D �F�x C V�Q; we obtain the force as

F D lim
�x!0

V�Q ��Ue

�x
D �0btV

2

2d.d � t/
:

Thus, the force is positive for increasing x and is attractive.

3.8. In the solution of Exercise 3.7, the electric charge,

Q D .a � x/b�1 C xb�2 D �0bV
�a � x

d
C x

d � t

�

;

is kept constant and there is no energy flow from the electric power source. Thus,

the electrostatic energy is given by

Ue D 1

2
QV D Q2

2�0b

�a � x

d
C x

d � t
��1

:

We obtain the force on the conductor as

F D �@Ue

@x
D dt.d � t/Q2

2�0bŒa.d � t/C tx�2
:

Confirm that this force is identical with that in Exercise 3.7.
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Chapter 4

4.1. Assume that electric charges Q and �Q appear on the inner and outer

electrodes, respectively, when we apply potential difference V between the two

electrodes. The electric flux density is directed radially between the two electrodes

and its values are D1 D D2 D Q=.4�r2/ in each region of different dielectric

materials. Hence, the electric fields in each region are E1 D Q=.4��1r
2/ and

E2 D Q=.4��2r
2/: The electric potential difference between the two electrodes is

V D
Z b

a

E1dr C
Z c

b

E2dr D Q

4��1

�

1

a
� 1

b

�

C Q

4��2

�

1

b
� 1

c

�

:

We obtain the capacitance as

C D Q

V
D 4��1�2abc

�1a.c � b/C �2c.b � a/ :

4.2. Assume that electric charges of density �1 and �2 appear on the inner electrode

surface regions (r D a) faced to dielectric materials of �1 and �2, respectively,

when we apply potential difference V between the two electrodes. The electric flux

density is directed radially between the two electrodes, and its values in dielectric

materials 1 and 2 are D1 D a2�1=r
2 and D2 D a2�2=r

2: The electric fields

in respective regions are E1 D a2�1=.�1r
2/ and E2 D a2�2=.�2r

2/: Since the

integration of these electric fields between the two electrodes is V , we have

a2�1

�1

�

1

a
� 1

b

�

D a2�2

�2

�

1

a
� 1

b

�

D V:

Thus, we determine the surface charge densities to be

�1 D b�1V

a.b � a/
; �2 D b�2V

a.b � a/
:

This yields the total electric charge on the internal electrode,

Q D 2�a2.�1 C �2/ D 2�ab.�1 C �2/V

b � a
:

We obtain the capacitance as

C D Q

V
D 2�ab.�1 C �2/

b � a
:

4.3. We denote the plane determined by the normal vector n on the interface and

the electric field E 1 in dielectric material 1 as S. Assume that the electric field E 2

in dielectric material 2 does not lie on this plane. We consider a plane, S0, normal to
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both the interface and S and define a small rectangle on S0 that includes the interface.

The two sides of the rectangle are parallel to the interface. When we integrate the

electric field along this rectangle, the integral in dielectric material 2 is not zero,

while that in dielectric material 1 is zero. This is contradictory, since Eq. (1.30) is

not satisfied under this assumption. Thus, we prove that the electric field E 2 also

lies on plane S.

4.4. Since the parallel component of the electric field is continuous across the wide

interface, the electric field inside the slit is also E0 and the electric flux density is

D D �0E0.

4.5. Since the normal component of the electric flux density is continuous across

the wide interface, the electric flux density inside the slit is also D D �E0 and the

electric field is E D D=�0 D .�=�0/E0.

4.6. Applying Gauss’ law to a closed surface including the dielectric material

surface, we determine the electric flux density in the dielectric material to be

D D �0E0. Hence, the electric field in the dielectric material is E D .�0=�/E0:

The surface polarization charge density �p is equal to the electric polarization and

we obtain

�p D P D .� � �0/E D �0.� � �0/

�
E0:

4.7. The electric fieldE is given by the sum ofE0 and the electric field produced by

the polarization charge of surface density, �p.�/ D Œ3�0.�� �0/=.�C 2�0/�E0 cos �;

with � denoting the zenithal angle. Since the electric charge of surface density � D
3�0E0 cos � in Eq. (2.29) produces the uniform electric field �E0 inside the sphere,

the above polarization charge produces the uniform electric field �.�� �0/E0=.�C
2�0/. Thus, we have

E D E0 � .� � �0/E0

� C 2�0
D 3�0

� C 2�0
E0:

This agrees with the result in Example 4.4.

4.8. We define cylindrical coordinates with the z-axis at the central axis of the

dielectric cylinder and the azimuthal angle measured from the direction of the

applied electric field. We assume that the electric field outside the dielectric cylinder

(R > a) produced by the polarized charge is given by the linear electric dipole of

moment Op in a unit length placed at the central axis after virtually removing the

dielectric cylinder. The direction of the dipole moment is the same as that of the

applied electric field. We assume that the electric field inside the dielectric cylinder

(R < a) has a uniform strength E and is directed parallel to the applied electric

field (' D 0). The continuity conditions for the parallel (azimuthal) component of

the electric field and the normal (radial) component of the electric flux density give
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Op D � � �0

� C �0
� 2��0a2E0; E D 2�0

� C �0
E0:

The electric field is

ER D
DR

�0
D

�

1C � � �0
�C �0

� a
2

R2

�

E0 cos '; E' D
D'

�0
D �

�

1� � � �0
�C �0

� a
2

R2

�

E0 sin';

outside the dielectric cylinder (R > a) and

ER D DR

�
D 2�0

� C �0
E0 cos'; E' D D'

�
D � 2�0

� C �0
E0 sin ':

inside the dielectric cylinder (0 � R < a). The electric polarization inside the

dielectric cylinder is

P D .� � �0/E D 2�0.� � �0/

� C �0
E0:

Here we apply Eq. (4.9) to a small shell that includes the surface of the dielectric

cylinder, as shown in Fig. 4.17. Since there is no true electric charge on the surface,

the surface polarization charge density is given by the difference in the normal

component of the electric field on the surface multiplied by �0;

�p.'/ D 2�0.� � �0/
� C �0

E0 cos' D P cos':

4.9. We define the x-y plane (z D 0) on the dielectric material surface and the

position of the line current as x D 0. To determine the electric potential in the

vacuum region (z > 0), we assume that all the space is vacuum and the electric

potential is produced by both the line charge of linear density � and a virtual line

charge of linear density �0 located at the symmetric line with respect to the dielectric

material surface;

�v.x; z/ D 1

2��0

�

� log
R0

Œx2 C .z � a/2�1=2 C �0 log
R0

Œx2 C .z C a/2�1=2

�

:

In the above R0 is the distance of the reference point from the line at x=0 on the

surface. To determine the electric potential inside the dielectric material (z < 0),

we assume that all the space is occupied by the dielectric material and the electric

potential is given by a line charge of linear density �00 placed at the original position.

Hence, the electric potential at .x; z/ inside the dielectric material is

�d.x; z/ D 1

2��
�00 log

R0

Œx2 C .z � a/2�1=2 :
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The continuity condition of the parallel component of the electric field, Eq. (4.24),

gives �v.zD0/ D �d.zD0/. This yields

�C �0

�0
D �00

�
:

Since there is no true electric charge on the surface, the normal component of the

electric flux density is continuous. Then, �0.@�v=@z/zD0 D �.@�d=@z/zD0 given by

Eq. (4.20) yields

� � �0 D �00:

From these conditions we obtain the linear electric charge densities as

�0 D � � � �0
� C �0

�; �00 D 2�

� C �0
�:

The electric potential is

� D �

2��0

�

log
R0

Œx2 C .z � a/2�1=2 � � � �0

� C �0
log

R0

Œx2 C .z C a/2�1=2

�

I z > 0;

D �

�.� C �0/
log

R0

Œx2 C .z � a/2�1=2
I z < 0:

Chapter 5

5.1. We apply voltage V between the two edges. The electric field along the circle

of radiusR from the center is E.R/ D 2V=.�R/ (see Fig. B5.1). Hence, the current

density at this point is i.R/ D 2V=.��rR/. Here we define the angle � as in the

Fig. B5.1 Part in the region

R to RC dR from the center
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figure. Then, R D R0 C a cos � . The current flowing in the region between R and

R C dR is i.R/2a sin �dR D 4Va2 sin2 �d�=Œ��r.R0 C a cos �/�: Hence, the total

current is

I D
Z �

0

4Va2 sin2 �d�

��r.R0 C a cos �/
:

We transform the integrand as

sin2 �

R0 C a cos �
D R0

a2
� 1

a
cos � �

�

R20
a2

� 1
�

1

R0 C a cos �
:

For integration of the third term, we use Eq. (7.26) with � D � � '. A simple

calculation gives

I D 4V

�r

ŒR0 � .R20 � a2/1=2�:

Then, we obtain the electric resistance as

Rr D �r

4ŒR0 � .R20 � a2/1=2�
:

5.2. The cross-sectional area at height x from the bottom is S.x/DaŒb�.b�c/x=h�;
and the current density there is i.x/ D I=faŒb � .b � c/x=h�g; when we apply

current I . Since the electric field is E.x/ D �ri.x/, the voltage between the two

edges is

V D
Z h

0

�rI

aŒb � .b � c/x=h�dx D h�rI

a.b � c/
log

b

c
:

The electric resistance is

Rr D h�r

a.b � c/
log

b

c
:

5.3. When we apply current I , the current density at distance R from the central

axis is

i.R/ D I

2�lR
:

The electric field is E.R/ D �r1i.R/ for a < R < b and E.R/ D �r2i.R/ for

b < R < c. Hence, the voltage between the two electrodes is
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V D
Z b

a

�r1I

2�lR
dRC

Z c

b

�r2I

2�lR
dR D I

2�l

�

�r1 log
b

a
C �r2 log

c

b

�

:

The resistance is

Rr D V

I
D 1

2�l

�

�r1 log
b

a
C �r2 log

c

b

�

:

5.4. We use I1 and I2 to denote the currents flowing in the respective regions with

the electric resistivities �r1 and �r2 when we apply voltage V between the electrodes.

Then, the current densities at positions at distance R (a � R � b) in the respective

regions are i1.R/ D I1=.�Rl/ and i2.R/ D I2=.�Rl/; and the electric fields are

E1.R/ D �r1I1=.�Rl/ and E2.R/ D �r2I2=.�Rl/: From the conditions that the

integrations of the electric fields from RDa to RDb are V , we have

I1 D �lV

�r1 log.b=a/
; I2 D �lV

�r2 log.b=a/
:

Since the total current is IDI1CI2, we obtain the electric resistance as

Rr D �r1�r2 log.b=a/

�l.�r1 C �r2/
:

5.5. When we apply voltage V between the two edges, the electric field at a point

of radius R is E.R/ D 2V=.�R/. Hence, the electric power density is p.R/ D
4V 2=.�2�rR

2/: The electric power in the region R to R C dR is

dP D �wRdRp.R/

2
D 2wV 2

��r

dR

R
:

Thus, the total dissipated electric power is

P D 2wV 2

��r

Z R0Cd=2

R0�d=2

dR

R
D 2wV 2

��r

log
R0 C d=2

R0 � d=2
:

This is equal to IV .

5.6. When we apply voltage V between the electrodes of the capacitor with a

dielectric material of dielectric constant � in the space, the electric field isE D V=d

and the electric flux density isD D �E D �V=d . The surface charge density on the

electrode is � D D D �V=d and the total electric charge is Q D �S D �SV=d .

Thus, the capacitance of the capacitor is C D Q=V D �S=d:

When we apply voltage V between the electrodes of the resistor with a substance

of electric conductivity �c in the space, the electric field isE D V=d and the current

density is i D �cE D �cV=d . The total current is I D iS D �cSV=d . Thus, the

electric resistance of the resistor is Rr D V=I D d=.�cS/:
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From the above results we obtain the same result as Eq. (5.38):

CRr D �

�c

:

5.7. We can use the answer to Exercise 4.5, if we convert the electric flux density

D to the current density i with conversion of the dielectric constants �0 and � to the

electric conductivities �c0 and �c. The uniform electric fieldE0 corresponds to �c0i0.

We define cylindrical coordinates with the z-axis at the central axis of the cylinder

and azimuthal angle ' measured from the direction of the applied uniform current.

The current density outside the cylinder (R>a) is

iR D
�

1C �c � �c0

�c C �c0

� a
2

R2

�

i0 cos'; i' D �
�

1 � �c � �c0

�c C �c0

� a
2

R2

�

i0 sin';

and that inside the cylinder (R<a) is

iR D 2�c

�c C �c0

i0 cos'; i' D � 2�c

�c C �c0

i0 sin ':

5.8. Suppose we replace a substance of electric conductivity �c with a dielectric

material of dielectric constant � and place virtual line charges ˙� at the positions

shown in Fig. B5.2. Then, the electric potential at point P on the surface of the left

conductor is

�.a; �/ D �

2��

�

log
R0

.a2 C h2 � 2ah cos �/1=2

� log
R00

Œa2 C .d � h/2 � 2a.d � h/ cos ��1=2

�

;

where R0 and R00 are constants. So that this electric potential is constant and

independent of angle � , the following condition should be satisfied;

ah

a2 C h2
D a.d � h/

a2 C .d � h/2
;

Fig. B5.2 Virtual line

charges
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which reduces to h.d � h/ D a2. This condition for h is simply solved as

h D d �
p
d 2 � 4a2

2
:

The symmetry condition of � D 0 on the central plane between the two conductors

gives R0 D R00. Then, the electric potential of the left conductor is

�C D �.a; �/ D �

4��
log

d C
p
d 2 � 4a2

d �
p
d 2 � 4a2

D �

2��
log

d C
p
d 2 � 4a2

2a
:

The electric potential of the right conductor is �� D ��.a; �/. Hence, the

capacitance in a unit length is

C 0 D �

2�.a; �/
D ��

logŒ.d C
p
d 2 C 4a2/=2a�

:

Using Eq. (5.38), we obtain the electric resistance in a unit length as

R0r D 1

��c

log
d C

p
d 2 C 4a2

2a
:

Chapter 6

6.1. All contributions to the magnetic flux density at the center O produced by

elementary currents at respective regions point normal backward. The angle � in

Eq. (6.5) is zero on any point on the left straight section and is � on any point on the

right straight section. Thus, there is no contribution to the resultant magnetic flux

density from these sections. The angle � is �=2 and r D a on the semicircle. The

contribution from the elementary current in this section is dB D �0Ids=.4�a2/:

Integrating this over the semicircle yields

B D �0I

4�a2
� �a D �0I

4a
:

6.2. The distance between one side and point P is l D Œ.a2=4/Cb2�1=2. Using the

same method as in Example 6.2, we calculate the magnetic flux density produced

by the current on one side as

B 0 D �0I

4�l

Z ���1

�1

sin � d� D �0I

2�l
cos �1 D �0Ia

4�lŒ.a2=4/C l2�1=2
;
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Fig. B6.1 Magnetic flux

density produced at point P

by current on one side

where �1 is the angle of point P measured from the edge of the side. Figure B6.1

schematically shows the magnetic flux density produced by the current on one side.

Only the vertical component remains from symmetry, and we obtain as

B D 4B 0 cos˛ D �0Ia
2

2�l2Œ.a2=4/C l2�1=2
D �0Ia

2

2�Œ.a2=4/C b2�Œ.a2=2/C b2�1=2
:

6.3. The current density is expressed as i D nqv in terms of the velocity v of

an electric charge. The force of F D �qvB acts on the charge along the y-axis,

resulting in the condition that the charges are accumulated on the side of the negative

y-axis. Such an accumulation causes the electric field E along the y-axis and the

electric forceF 0DqE works on the charge. In the steady state we attain the balanced

condition given by FCF 0D0. Hence, we obtain the electric field as

E D vB D iB

nq
:

This is called the Hall electric field. The sign of the Hall electric field is determined

by the sign of electric charge. That is, the sign of the Hall electric field clarifies

whether the current-carrying charges are electrons (qD �e) or holes (qD e). This

phenomenon, i.e., the induction of the electric field in the direction normal to the

current and magnetic flux density is called the Hall effect.

6.4. Closed circuit C is projected on a plane normal to the current, as shown in

Fig. B6.2. We denote the projected closed trajectory and elementary line vector ds

as C0 and ds0, respectively. Since the magnetic flux density B stays in a plane normal

to the current, we have B � ds D B � ds0: That is, the following relationship holds;

Z

C

B � ds D
Z

C0

B � ds0:
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Fig. B6.2 Closed line C and

its projection C0 on a plane

perpendicular to straight

current

Hence, Eq. (6.22) holds for an arbitrary closed line. We can similarly prove Eq.

(6.23) when the current does not penetrate the closed line.

6.5. The magnetic flux density is directed along the z-axis and its value is

Bz.x/ D 0I x < �b;
D �0i.x C b/I �b < x < �a;
D �0i.b � a/ W �a < x < a;
D �0i.b � x/I a < x < b;

D 0I x > b:

The vector potential has only the y-component, Ay , and the from the relationship

Bz D @Ay=@x; we have

Ay.x/ D ��0i
2
.b2 � a2/I x < �b;

D �0i

2
.x2 C 2bx C a2/I �b < x < �a;

D �0i.b � a/x W �a < x < a;

D �0i

2
.�x2 C 2bx � a2/I a < x < b;

D �0i

2
.b2 � a2/I x > b:

6.6. We define the x- and y-axes along the slab width and current, respectively,

with x D 0 at the center of the slab. We presume the current dI D Idx=w flowing
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in a thin region x to x C dx as a line current. The magnetic flux density at point P

produced by this line current is directed along the negative z-axis, and its value is

dBz D ��0dI=Œ2�.d � x/� D ��0Idx=Œ2�w.d � x/�: The magnetic flux density

at point P is

Bz.d/ D ��0I
2�w

Z w=2

�w=2

dx

d � x
D ��0I

2�w
log

d C w=2

d � w=2
:

The vector potential at x > w=2 is directed along the y-axis, and from Bz.x/ D
@Ay=@x we have

Ay.x/ D
Z

Bz.x/dx D �
�0I

2�w

h�

xC w

2

�

log

�

xC w

2

�

�
�

x � w

2

�

log

�

x � w

2

�

C C
i

;

where C is a constant determined by the position of reference point and Ay.d/ is

the value on point P.

6.7. The current density is i D I=Œ�.a2 � b2/�. We can solve this problem by

superposing case (a) in which the current flows uniformly with density i in the whole

cross-section (see Fig. B6.3a) and case (b) in which the current flows uniformly

with density i along the opposite direction inside the vacancy (see Fig. B6.3b). The

contribution to the magnetic flux density at the vacancy center A from case (a) is

B1 D �0�d
2i=.2�d/ D �0Id=Œ2�.a

2 � b2/� and that from case (b) is B2 D 0.

Hence, the magnetic flux density at A is directed upward and its strength is

BA D B1 D �0Id

2�.a2 � b2/
:

The contribution to the magnetic flux density at point B from (a) is B3 D
�0a

2i=.2R/ D �0Ia
2=Œ2�.a2 � b2/R� and that from (b) is B4 D ��0b2i=Œ2.R �

a b

Fig. B6.3 Superposition of (a) current flowing uniformly with density i and (b) current flowing

uniformly with density i along the opposite direction inside the vacancy
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d/� D ��0Ib2=Œ2�.a2 � b2/.R� d/�: These point in the same direction. Thus, the

magnetic flux density at B is directed upward and its strength is

BB D B3 C B4 D �0I

2�.a2 � b2/

�

a2

R
� b2

R � d

�

:

6.8. The divergence of Eq. (6.33) is

r�A.r/ D �0

4�

Z

V

r � i .r 0/

jr � r 0j dV 0:

Since r is the differential operator with respect to r, from Eq. (A1.40) we have

r � i .r 0/

jr � r 0j D i .r 0/ � r 1

jr � r 0j :

If we use the differential operator r 0 with respect to r 0, rjr�r 0j�1 D �r 0jr�r 0j�1:
Thus, using Eq. (A1.40) again, the integrand is written as

�i .r 0/ � r 0 1

jr � r 0j D 1

jr � r 0jr
0 � i .r 0/ � r 0 � i .r 0/

jr � r 0j :

Since r 0 �i .r 0/ D 0, applying Gauss’ law yields

�
Z

V

r 0 � i .r 0/

jr � r 0j dV 0 D �
Z

S

i .r 0/

jr � r 0j � dS 0:

If we assume the surface S of region V at infinity, the surface integral reduces to

zero, and we prove Eq. (6.30).

6.9. The vector potential has only the azimuthal component, A' , since the current

flows only along this direction. This is related to the axial magnetic flux density,

Bz, through .1=R/.@RA'=@R/ D Bz. Outside the coil (R > a), substituting Bz D
0 yields A' D C1=R with C1 being a constant. Inside the coil (0 � R < a),

substituting Bz D �0nI yields

A' D 1

2
�0nIRC C2

R

with C2 being a constant. Since the value of A' must be finite at R D 0, we find

that C2 D 0. The continuity at R D a gives C1 D �0nIa
2=2. Thus, the vector

potential is

A'.R/ D �0nIR

2
I 0 � R < a;
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D �0nIa
2

2R
I R > a:

This agrees with the result in Example 6.7.

6.10. We use the coordinates in Fig. 6.21 and place magnetic charges ˙qm at

points .0; 0;˙d=2/. Then, we obtain the magnetic potential due to positive and

negative magnetic charges similarly to the calculation in Sect. 1.6 as �m˙.r/ D
˙Œ�0qm=.4�r

2/�Œr ˙ .d=2/ cos��: The magnetic potential due to the magnetic

charge pair is

�m.r/ D �mC.r/C �m�.r/ D �0qmd

4�r2
cos � D �0m

4�r2
cos �:

The magnetic flux density, Eq. (6.44c), is derived using Eq. (6.49).

Chapter 7

7.1. The current I1 flows uniformly on the surface of the inner superconductor

(R D a) and the induced current �I1 flows uniformly on the inner surface of the

outer superconductor (R D b). The current I1 C I2 flows on the outer surface of

the outer superconductor (R D c), following the conservation law of current. The

resultant magnetic flux density has the azimuthal component and its value is

B' D 0I 0 � R < a;

D �0I1

2�R
I a < R < b;

D 0I b < R < c;

D �0.I1 C I2/

2�R
I R > c:

The vector potential has the z-component and its value is

Az D �0.I1 C I2/

2�
log

R0

R
I R > c;

D �0.I1 C I2/

2�
log

R0

c
I b < R < c;

D �0I1

2�
log

bR0

cR
C �0I2

2�
log

R0

c
I a < R < b;

D �0I1

2�
log

bR0

ac
C �0I2

2�
log

R0

c
I 0 � R < a;

where R D R0.> c/ is the position of the reference point.
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7.2. We denote the current flowing on the surface at x D b by Ib . Then, the

current at x D a is �Ib . So that the magnetic flux density does not penetrate

the superconductor of a < x < b, the current at x D b must be the same as

the total current in the region x < a, i.e., I � Ib . Thus, we have Ib D I=2 and

the current at x D a is �I=2. We similarly obtain the currents on the surfaces

of the left superconductor. As a result, the currents at x D �b;�a; a and b are

I=2; I=2;�I=2 and I=2, respectively.

The magnetic flux density is directed along the z-axis and its value is

Bz D ��0I
2l

I x < �b;

D 0I �b < x < �a; a < x < b;

D �0I

2l
I �a < x < a;

D �0I

2l
I x > b:

The vector potential has only the y-component and we obtain fromBz D @Ay=@x as

Ay D ��0I.x C 2aC b/

2l
I x < �b;

D ��0Ia
l

I �b < x < �a;

D �0I.x � a/
2l

I �a < x < a;

D 0I a < x < b;

D �0I.x � b/
2l

I x > b;

where the vector potential of the right superconductor without electric current is

defined to be zero.

7.3. The reason why the magnetic flux density produced by the current flowing

on the superconductor surface is doubled is that there is other magnetic flux density

contributions from currents flowing in other areas. For the same reason the magnetic

flux density inside the superconductor cancels to zero. Examples are found in

the case where a current flows along the opposite direction on the surface of the

opposite plate of a superconducting transmission line, as shown in Fig. B7.1a, or in

the case where a current flows along the same direction on the opposite surface of the

superconductor, as shown in Fig. B7.1b. The situation in Example 6.5 corresponds

to the thin limit of the superconductor in Fig. B7.1b.
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a b

Fig. B7.1 Examples of doubled magnetic flux density: (a) superconducting transmission line with

opposite currents and (b) superconductor with same currents in the both sides

7.4. We define the x-axis on the superconductor surface along the direction normal

to the current and the position of the current to be x D 0. The density of the

current induced on the surface is given by Eq. (7.16). The force on I in a unit

length caused by the current dI D �.x/dx flowing in a thin region x to x C dx

is dF 0 D �0I
2adx=Œ2�2.x2Ca2/3=2�: From symmetry only the component normal

to the surface remains: dF 0z D Œa=.x2 C a2/1=2�dF 0: Thus, the total force in a unit

length is

F 0z D �0I
2a2

�2

Z 1

0

dx

.x2 C a2/2
D �0I

2

�2a

Z �=2

0

cos2 �d� D �0I
2

4�a
:

This agrees with the image force, Eq. (7.18).

7.5. We denote two superconductor surfaces that are perpendicular to each other by

the x-y and y-z planes, as shown in Fig. B7.2. Assume the given current I is located

at .a; b/ on the x-z plane. We virtually remove the superconductor and place three

image currents, �I , �I and I , at .a;�b/, .�a; b/ and .�a;�b/, respectively. Then,

Fig. B7.2 Current I and

three image currents
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the vector potential in the vacuum region (x > 0; z > 0) is

Ay.x; z/ D �0I

4�
log

Œ.x � a/2 C .z C b/2�Œ.x C a/2 C .z � b/2�

Œ.x � a/2 C .z � b/2�Œ.x C a/2 C .z C b/2�
;

neglecting a constant term associated with a choice of the reference point. This

satisfies Ay D 0 on the surfaces x D 0 and z D 0 and hence, this gives the correct

vector potential. We determine the current density on the x-y and y-z planes to be

�.x; y; 0/ D � 1

�0

�

@Ay

@z

�

zD0
D � 4Iabx

�Œ.x � a/2 C b2�Œ.x C a/2 C b2�
;

�.0; y; z/ D 1

�0

�

@Ay

@x

�

xD0
D � 4Iabz

�Œ.z � b/2 C a2�Œ.z C b/2 C a2�
:

7.6. A simple calculation gives

BR D
1

R
� @Az

@'
D �0I sin'

2�

�

a2=d

R2 C .a2=d/2 � 2.a2R=d/ cos '
� d

R2 C d 2 � 2dR cos '

�

;

B' D �
@Az

@R
D ��0I

2�

�

R� .a2=d/ cos '

R2 C .a2=d/2 � 2.a2R=d/ cos'
� R� d cos'

R2 C d 2 � 2dR cos '

�

;

Bz D 0:

7.7. From Eq. (7.13) the equivector-potential surface is given by

x2 C .z C a/2

x2 C .z � a/2
D K;

with K denoting a constant. This is transformed to

x2 C
�

z � K C 1

K � 1
a

�2

D 4a2K

.K � 1/2
:

This expresses a cylindrical surface parallel to the y-axis. Thus, we can see that the

vector potential lines on the surface.

7.8. We assume that the magnetic flux density in the vacuum region is the same

as that when we place an image current I in the superconducting cylinder at

distance h from the center of the cylinder and an image current �I in the infinite

superconductor at distance l � h from its surface after virtually removing the two

superconductors (see Fig. B7.3), similarly to the answer to Exercise 2.9. In this case

the boundary condition on the infinite superconductor surface is satisfied. If the

distance 2l � h between the image current �I and the cylinder center corresponds

to d in Fig. 7.10, the boundary condition on the cylinder surface is also satisfied.

From the above relationship and Eq. (7.22) we obtain
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Fig. B7.3 Image currents

placed in two

superconductors

d D l C
p
l2 � a2; h D l �

p
l2 � a2:

Substituting these into Eq. (7.23) yields the vector potential outside the supercon-

ductors;

Az.R; '/ D ��0I
4�

log
R2 C .l �

p
l2 � a2/2 � 2R.l �

p
l2 � a2/ cos'

R2 C .l C
p
l2 � a2/2 � 2R.l C

p
l2 � a2/ cos'

:

We find that the vector potential on the surface, Az.a; '/ D �Œ�0I=.2�/� logŒ.l �p
l2 � a2/=a�; is constant. The current density on the cylinder surface is

� D � 1

�0

�

@Az

@R

�

RDa
D I

2�a
�

p
l2 � a2

l � a cos'
:

Next we define Cartesian coordinates with the y-z plane (x D 0) on the infinite

superconductor surface and the central axis of the cylindrical superconductor at

y D 0. From the relationshipsR cos' D xCl andR sin ' D y, the vector potential

is also expressed as

Az.x; y/ D ��0I
4�

log
.x C

p
l2 � a2/2 C y2

.x �
p
l2 � a2/2 C y2

:

Thus, we can easily confirm that Az.x D 0/ D 0 is satisfied. The density of the

current (along the z-axis) on the infinite superconductor surface, which is equal to

�By.xD0/=�0, is

� D 1

�0

�

@Az

@x

�

xD0
D � I

p
l2 � a2

�.y2 C l2 � a2/
:
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Fig. B7.4 Image current I 0

7.9. We virtually remove the superconductor and place an image current I 0 parallel

to the current I on a plane including the central axis and the current I (see

Fig. B7.4). We denote the distance between the central axis and the image current

by d . The vector potential at point P on the inner surface of the superconductor is

Az.a; '/ D �0I
0

2�
log

R00
.a2 C d 2 � 2ad cos'/1=2

C �0I

2�
log

R0

.a2 C h2 � 2ah cos'/1=2
:

The conditions that satisfy Az.a; '/=const give

I 0 D �I; d D a2

h
:

Since the total current is zero (I C I 0 D 0), we can choose the infinity as the

reference point of the vector potential and we have R0 D R00. The vector potential

in the hollow is

Az.R; '/ D �0I

2�
log

ŒR2 C .a2=h/2 � 2.a2R=h/ cos'�1=2

.R2 C h2 � 2Rh cos'/1=2
:

The current density on the inner surface is

�.'/ D B'.R D a/

�0
D � 1

�0

�

@Az

@R

�

RDa
D � I.a2 � h2/

2�a.a2 C h2 � 2ah cos'/
:

7.10. The radial and zenithal components of the applied magnetic flux density

outside the spherical superconductor are B0 cos � and �B0 sin � , respectively. The

radial and zenithal components due to the magnetic moment m at a point at dis-

tance r from the origin are �0m cos �=.2�r3/ and �0m sin �=.4�r3/, respectively.

The condition that the radial component of the magnetic flux density just outside

the surface is zero is written as
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B0 cos � C �0m cos �

2�a3
D 0;

which gives

m D �2�a
3

�0
B0:

The zenithal component of the magnetic flux density just outside the surface is equal

to the surface current density � multiplied by �0. Thus, we have

� D 1

�0

�

�B0 sin � C �0m sin �

4�a3

�

D � 3

2�0
B0 sin �:

These results agree with Eqs. (7.30) and (7.33).

7.11. For simplicity we consider the case where we apply a current to a wide slab

material. Since the internal magnetic flux density must be zero, the current must

flow on the surface. If Ohm’s law holds, the electric field E has a non-zero value

only on the surface, while it is zero inside the material. Then, we can easily show

that r�E is not zero in violation of the fundamental relationship of Eq. (1.28).

Chapter 8

8.1. When we apply current I to the left line, the magnetic flux that penetrates the

coil is

ˆl D
Z bCc

c

�0I

2�x
w.x/dx;

where w.x/D .a=b/.bCc�x/ is the width of the triangle at distance x from the

line. A simple calculation gives

ˆl D �0Ia

2�

�

b C c

b
log

b C c

c
� 1

�

:

The magnetic flux produced by the current on the right line is similarly given by

ˆr D �0Ia

2�

�

1 � d � b � c

b
log

d � c

d � b � c

�

:

Thus, we obtain the mutual inductance as



358 Answers to Exercises

M D ˆl Cˆr

I
D �0a

2�b

�

.b C c/ log
b C c

c
� .d � b � c/ log

d � c

d � b � c

�

:

8.2. The magnetic flux stays only in the region between the two superconductors

and the density is BD�0I=.2�R/. Hence, the magnetic flux in a unit length is

ˆ0 D
Z b

a

�0I

2�R
dR D �0I

2�
log

b

a
:

We obtain the self-inductance in a unit length as

L0 D ˆ0

I
D �0

2�
log

b

a
:

This agrees with the result calculated from the magnetic energy.

8.3. In the case of conductor, the current flows uniformly inside the conductor, and

the magnetic flux densities in the regions 0�R<a and b <R<c are respectively

given by

B.R/ D �0IR

2�a2
I 0 � R < a;

D �0I

2�.c2 � b2/

�

c2

R
�R

�

I b < R < c:

Hence, in comparison with the case of superconductor, the magnetic energy

increases by

�U 0
m D

1

2�0

Z a

0

�

�0IR

2�a2

�2

� 2�RdRC 1

2�0

Z c

b

�

�0I

2�.c2 � b2/

�2 �

c2

R
�R

�2

� 2�RdR

D �0c
2I 2

8�.c2 � b2/

�

2c2

c2 � b2 log
c

b
� 1

�

:

Adding this contribution to the result in Exercise 8.5, we obtain the self-inductance

in a unit length as

L0 D �0

2�
log

b

a
C �0c

2

4�.c2 � b2/

�

2c2

c2 � b2
log

c

b
� 1

�

:

8.4. When current I flows in the parallel-wire transmission line as shown in

Fig. B8.1, the magnetic flux that penetrates upward the coil by the right current is

� D w

Z .a2Cb2/1=2

b

�0I

2�r
dr D �0Iw

2�
log

.a2 C b2/1=2

b
:

The magnetic flux produced by the left current is the same and the total magnetic

flux is ˆD2�. The mutual inductance is
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Fig. B8.1 Current in

parallel-wire transmission

line

M D ˆ

I
D �0w

�
log

.a2 C b2/1=2

b
:

8.5. When we apply current I to the outer coil, the magnetic flux density produced

in the inner coil is B D �0nbI . Hence, the magnetic flux that penetrates one turn

of the inner coil is � D �a2B D ��0nba
2I . The magnetic flux penetrating a unit

length of this coil is

ˆ0 D na� D ��0nanba
2I:

The mutual inductance in a unit length is

M 0 D ˆ0

I
D ��0nanba

2:

8.6. We apply Ampere’s law to circle C of radius R from the central axis (see

Fig. B8.2). The magnetic flux density at this position is B D �0NI=.2�R/: If

we define the two-dimensional polar coordinates as in the figure, we have R D
dCr cos � . The magnetic energy is

Fig. B8.2 Cross-section of

toroidal coil
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Um D 2

Z �

0

d�

Z a

0

�0N
2I 2

8�2.d C r cos �/2
� 2�.d C r cos �/rdr

D �0N
2I 2

2�

Z �

0

d�

Z a

0

rdr

d C r cos �
:

Using Eq. (7.26) for the integral with respect to � , the magnetic energy leads to

Um D �0N
2I 2

2

Z a

0

rdr

.d 2 � r2/1=2
D �0N

2I 2

2
Œd � .d 2 � a2/1=2�:

The self-inductance is

L D 2Um

I 2
D �0N

2Œd � .d 2 � a2/1=2�:

8.7. (a) The inductance coefficients are

L11D �0

2�
log

R1R3R1
R0R2R4

;

L21DL12 D L22 D �0

2�
log

R3R1
R2R4

;

L31DL32 D L13 D L23 D L33 D �0

2�
log

R1
R4

:

(b) From Eq. (8.35) we calculate the magnetic energy as

Um D
1

2
L11I

2
1 C

1

2
L22I

2
2 C

1

2
L33I

2
3 C L12I1I2 C L23I2I3 C L31I3I1

D �0

4�

�

I 21 log
R1R3R1

R0R2R4
C .I 22 C 2I1I2/ log

R3R1

R2R4
C .I 23 C 2I2I3 C 2I3I1/ log

R1

R4

�

D �0

4�

�

.I1 C I2 C I3/2 log
R1

R4
C .I1 C I2/2 log

R3

R2
C I 21 log

R1

R0

�

:

This result can also be obtained from Eq. (8.40).

8.8. The magnetic flux density in the vacuum region where the superconducting

rod is not inserted is B1 D �0I
0. Thus, the magnetic flux that penetrates the

superconducting hollow cylinder is ˆ D �b2B1 D ��0b
2I 0: The magnetic flux

is the same in the space of the region where the superconducting rod is inserted, and

the magnetic flux density there is B2 D b2B1=.b
2 � a2/ D �0b

2I 0=.b2 � a2/: The

current in a unit length flowing on the inner surface of the superconducting hollow

cylinder is

I 02 D B2

�0
D b2I 0

b2 � a2 :
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On the surface of the inserted superconducting rod the current of the same surface

density flows along the opposite direction. Thus, the total magnetic energy is

Um D 1

2
ˆI 0.l � x/C 1

2
ˆI 02x D ��0b

2I 02

2

�

l � x C b2x

b2 � a2
�

;

where l is the length of the superconducting hollow cylinder. We obtain the same

result from Eq. (8.40). The force on the cylindrical rod is

F D �@Um

@x
D ���0a

2b2I 02

2.b2 � a2/
;

indicating a repulsive force, since it is negative for increasing x.

8.9. When the distance between the two coils, x, changes to x C �x, we assume

that I1 and I2 change to I1 C �I1 and I2 C �I2, respectively. If we neglect small

terms of the second order, the conditions that the magnetic fluxes do not change in

each coil are given by

�ˆ1DL11�I1 C�L21I2 C L21�I2 D 0;

�ˆ2D�L21I1 C L21�I1 C L22�I2 D 0;

where L11, L22 and L21 are inductance coefficients and �L21 is the change in the

mutual inductance coefficient. The corresponding change in the magnetic energy is

�Um D L11I1�I1 C L21.I1�I2 C I2�I1/C�L21I1I2 C L22I2�I2:

Using the above two conditions, this reduces to �Um D ��L21I1I2: The mutual

inductance coefficient L21 is given by

L21 D ��0l
2�

log
.x C a/.x C b/

x.x C aC b/
:

and the change in L21 due to the change in x is �L21 D .@L21=@x/�x: Thus, we

calculate the magnetic force as

F D �@Um

@x
D @L21

@x
I1I2

D �0l

2�

�

1

x
� 1

x C a
� 1

x C b
C 1

x C a C b

�

I1I2:

We can easily confirm that this agrees with the Lorentz force between the two

circuits.
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Chapter 9

9.1. The magnetic flux density and magnetic field are parallel to the slab. We denote

these values in magnetic materials 1 and 2 by B1, H1, B2 and H2, respectively.

Ampere’s law derives H1 D H2 D I=w, and these satisfy the continuity of the

parallel component of the magnetic field on the boundary. These yield B1D�1I=w

and B2 D�2I=w. The magnetic flux in a unit length is ˆ0Dd.B1CB2/=2 and the

self-inductance in a unit length is

L0 D .�1 C �2/d

2w
:

9.2. We denote the distance from the center by R. When we apply current I to the

parallel-wire transmission line, the magnetic field isH.R/DI=.2�R/ in the region

a< R< c and zero in other regions. Hence, the magnetic flux densities in magnetic

materials 1 and 2 are B1D�1I=w and B2D�2I=w, respectively. The magnetic flux

in a unit length is

ˆ0 D
Z b

a

�1I

2�R
dRC

Z c

b

�2I

2�R
dR D I

2�

�

�1 log
b

a
C �2 log

c

b

�

:

The self-inductance in a unit length is

L0 D 1

2�

�

�1 log
b

a
C �2 log

c

b

�

:

9.3. We denote the plane determined by the normal vector n on the interface and

the magnetic field H 1 in magnetic material 1 as S. Assume that the magnetic field

H 2 in magnetic material 2 does not lie on this plane. We consider a plane, S0,
normal to both the interface and S and define a small rectangle on S0 that includes

the interface. The two sides of the rectangle are parallel to the interface. When we

integrate the magnetic field along this rectangle, the integral in magnetic material

2 is not zero, while that in magnetic material 1 is zero. The circular integral of the

magnetic field should be zero, since the planar current � flows on plane S0. Hence,

the above assumption is contradictory, and we prove that the magnetic field H 2 also

lies on plane S.

9.4. Since the parallel component of the magnetic field is continuous across the

interface, the magnetic field inside the slit is alsoB0=� and the magnetic flux density

is BD.�0=�/B0.
9.5. Since the normal component of the magnetic flux density is continuous across

the interface, the magnetic flux density inside the slit is also B D B0 and the

magnetic field is H DB=�0DB0=�0.
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9.6. Applying Ampere’s law to a closed line including the magnetic material

surface, the magnetic field in the magnetic material is H D B0=�0. Hence, the

magnetic flux density in the magnetic material is B D .�=�0/B0: The surface

magnetizing current density �m is equal to the magnetization and we obtain

�m D M D
�

1

�0
� 1

�

�

B D .� � �0/
�20

B0:

9.7. The magnetic flux density B is given by the sum of B0 and the compo-

nent produced by the magnetizing current of surface density, �m.�/ D 3.� �
�0/B0 sin �=Œ�0.� C 2�0/�; where � is the zenithal angle. Since the current of

surface density � D �3.B0=2�0/ sin � in Eq. (7.33) produces the uniform magnetic

flux density �B0 inside the sphere, the magnetizing current produces a uniform

magnetic flux density 2.�� �0/B0=.�C 2�0/. Thus, we have

B D B0 C 2.�� �0/B0

�C 2�0
D 3�

�C 2�0
B0:

This agrees with Eq. (9.37) in Example 9.4.

9.8. We define cylindrical coordinates with the z-axis at the central axis of the

cylindrical magnetic material and the azimuthal angle ' measured from the direction

of the applied magnetic flux density. We assume that the magnetic flux density

outside the magnetic material (R > a) due to its magnetization is given by the

linear magnetic dipole of moment Om in a unit length placed at the central axis

after virtually removing the magnetic material. The magnetic flux density inside

the magnetic material (R < a) B is assumed to be constant. The directions of the

linear magnetic dipole and inner magnetic flux density are parallel to that of the

applied magnetic flux density. The continuities of the normal (radial) component of

the magnetic flux density and the parallel (azimuthal) component of the magnetic

field at the surface (RDa) give

Om D � � �0

�C �0
� 2�a

2B0

�0
; B D 2�

�C �0
B0:

Using these results, the magnetic flux density outside the magnetic material (R >

a) is

BR D �0HR D
�

1C � � �0
�C �0

� a
2

R2

�

B0 cos';

B' D �0H' D �
�

1 � � � �0
�C �0

� a
2

R2

�

B0 sin ';

and that inside the magnetic material (R<a) is
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BR D �HR D 2�

�C �0
B0 cos'; B' D �H' D � 2�

�C �0
B0 sin':

The magnetization of the magnetic material is

M D
�

1

�0
� 1

�

�

B D 2.�� �0/
�0.�C �0/

B0:

Here we apply the integral form of Eq. (9.10) to a small rectangle on a plane normal

to the central axis that includes the surface of the magnetic material, as shown in

Fig. 9.15. Since there is no true current on the surface, the surface magnetizing

current density is given by the difference in the parallel component of the magnetic

flux density on the surface divided by �0;

�m.'/ D 2.�� �0/
�0.�C �0/

B0 sin ' D M sin ':

9.9. We use B to denote the uniform magnetic flux density inside the spherical

superconductor. This is directed parallel to the applied magnetic flux density. The

boundary conditions are

�

B0 C �0m

2�a3

�

cos � D B cos �;
1

�0

�

�B0 C �0m

4�a3

�

sin � D � B

�0
sin �C�:

From the former equation we have m D 2�a3.B � B0/=�0: The magnetic flux

density on the superconductor surface is maximum on the equator (� D �=2), and

its absolute value is B0 � �0m=.4�a
3/. The critical condition is that this value is

equal to the critical magnetic flux density Bc. Thus, we have m D 4�a3.B0 �
Bc/=�0 or

�M D � m

.4=3/�a3
D 3

�0
.Bc � B0/:

This characteristic shows the descending line in Fig. 7.18 in Column (2) in Chap. 7.

Using this result, we obtain B and � as

B D 3B0 � 2Bc; � D � 3

�0
.Bc � B0/ sin �:

We can see that the values of B and � agree with those in the Meissner state given

by Eqs. (7.34) and (7.33) at B0 D .2=3/Bc. The quantitiesM and � decrease to zero

at B0 D Bc, showing the change to the normal state.

9.10. We suppose that currents of surface densities �0 and � flow in the regions of

the superconductor facing to the vacuum and the magnetic material, respectively.

The magnetic field in the gap region is parallel to the superconductors and its
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strength is H0 D �0 and H D � in the vacuum and magnetic material, and the

corresponding magnetic flux density is B0 D �0�0 and B D �� . The boundary

condition yields �0�0 D �� . Since the total current is �0.a � x/ C �x D I; we

obtain the surface current densities as

�0 D �I

�a � .� � �0/x
; � D �0I

�a � .� � �0/x
:

The magnetic flux density is

B0 D B D ��0I

�a � .� � �0/x
:

Thus, we calculate the magnetic energy as

Um D bd

�

B2
0

2�0
.a � x/C B2

2�
x

�

D ��0bdI
2

2Œ�a � .�� �0/x�
:

The force on the magnetic material is

F D �@Um

@x
D � ��0.�� �0/bdI

2

2Œ�a � .� � �0/x�2
:

Since F is negative (� > �0), it is directed opposite to increasing x, i.e., repulsive.

This agrees with the answer in Example 4.6, if we substituteQ ! bI; S ! ab; t !
d; �0 ! ��10 and � ! ��1.

Chapter 10

10.1. The magnetic flux penetrating the coil is that staying in the region d to .a2C
d 2/1=2 from the straight line:

ˆ D �0bI

2�

Z .a2Cd 2/1=2

d

dR

R
D �0bI

2�
log

.a2 C d 2/1=2

d
:

The induced electromotive force is

Vem D �dˆ

dt
D ��0b

2�
log

.a2 C d 2/1=2

d
�dI.t/

dt
D ��0Imb!

2�
log

.a2 C d 2/1=2

d
cos!t:

10.2. First, we use the magnetic flux law to determine the induced electromotive

force. The magnetic flux penetrating the closed circuit is ˆD�a.bCvt/; when the

magnetic flux produced by a current flowing along PQRS is defined as positive. The

induced electromotive force is



366 Answers to Exercises

Vem D �dˆ

dt
D avB:

Second, we use the motional law. The electromotive force is induced only on

side PQ, and v � B has magnitude vB and is directed from P to Q. Hence, the

induced electromotive force is avB and the result agrees with that from the magnetic

flux law.

10.3. We define the origin at R and the x- and y-axes on sides RQ and RS,

respectively. Under the given condition, the continuity equation leads to

r � .B � V / D �˛i z:

The left side reduces to

B

�

@Vx

@x
C @Vy

@y

�

i z:

The symmetry condition allows us to assume .@Vx=@x/D .@Vy=@y/. We can also

assume the zero point of V at any point. Under the condition that V D 0 at (0,

0), we have Vx D �˛x=.2B/ and Vy D �˛y=.2B/: On line PQ.x D b C vt/,

Vx D �˛.b C vt/=.2B/ and vx D v give V 0x D �˛.b C vt/=.2B/ � v; and the

integral of the induced electric field from P to Q is

�
Z a

0

.B � V 0/ydy D ˛a.bCvt/

2
C Bva

On line SP(y D a), Vy D �˛a=.2B/ and vy D 0 give V 0y D �˛a=.2B/, and the

integral of the induced electric field from S to P is

Z bCvt

0

.B � V 0/xdx D ˛a.b C vt/

2
:

There are no contributions from sides QR and RS. Thus, the induced electromotive

force is

Vem D ˛a.b C vt/C Bva:

10.4. Since the electric field is induced along the direction parallel to the applied

current, there is no contribution to the electromotive force from sides QR and SP.

The magnetic flux density on side PQ is B D �0I=f2�ŒR20C.aCb/2�1=2g and the

induced electric field v � B has a magnitude

EPQ D �0I v.aC d/

2�ŒR20 C .aC d/2�
;
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and is directed from P to Q. The induced electric field on side RS has a magnitude

ERS D �0I vd

2�.R20 C d 2/
;

and is directed from S to R. Thus, we obtain the induced electromotive force as

Vem D b.EPQ �ERS/ D �0I vabŒR20 � .d0 C vt/.a C d0 C vt/�

2�ŒR20 C .d0 C vt/2�ŒR20 C .a C d0 C vt/2�
:

10.5. Using the distance r D .d 2 C a2 C 2ad cos �/1=2 between side PQ

and the straight line, the magnetic flux that penetrates the coil is ˆ D
�.�0Ib=2�/ log.r=d/: Hence, the induced electromotive force is

Vem D �dˆ

dt
D � �0Iabd! sin!t

2�.d 2 C a2 C 2ad cos!t/
:

10.6. Since side RS does not move, this does not contribute to the induced

electromotive force. Since v � B is parallel to sides QR and SP, there are no

contributions from these sides. Using the distance r D .d 2 Ca2 C 2ad cos �/1=2

between side PQ and the straight line, the magnetic flux density on this side is BD
�0I=.2�r/ and v Da!. We denote the angle between v and B and the angle from

the line to side PQ by ˛ and ˇ (see Fig. B10.1), respectively. From relationships

a sin ˛ D d sinˇ and a sin � D r sinˇ; we have sin ˛ D .d=r/ sin �: Hence, the

magnitude of v � B is vB sin˛ D �0adI! sin �=.2�r2/; and this is directed from

Q to P, i.e., opposite to the integration. Thus, the induced electromotive force is

Vem D �vBb sin ˛ D � �0Iabd! sin!t

2�.d 2 C a2 C 2ad cos!t/
:

Fig. B10.1 Angles ˛ and ˇ
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10.7. We denote the current flowing in the circuit by I . Since the electromotive

force induced in the coil is �L.@I=@t/, the potential difference applied to the

resistor is V � L.@I=@t/, which is equal to RrI . Thus, we have

V � L
@I

@t
D RrI:

The initial condition is I.0/ D 0. The solution is

I.t/ D V

Rr

�

1 � exp

�

� t
�

��

with � D L=Rr .

10.8. So that the current I flows in the conductor of electric resistance R0r in a unit

length, the electric field strength that the electric power source supplies is

E 0 D R0rI � v�B:

The electric power inside the conductor is the sum of the component from the

electric power source, E 0 � I , and the component from the induced electric field,

I�.v�B/. This leads toR0rI
2, i.e., the electric power consumed in the conductor. The

remaining electric power from the source contributes to the mechanical work on the

outside as shown in Eq. (10.17).

Thus, the work done by the induced electric field is virtual and cannot really be

measured. The induced electric field prevents all the electric energy from the electric

power source from being consumed as Joule heat in the conductor but converts part

of it to the mechanical work on the outside.

The Lorentz force does no mechanical work on moving electric charges (elec-

trons). However, the charges driven by the Lorentz force do mechanical work on ions

in a material through the Coulomb interaction. This is why the conductor moves. As

a result, it looks as thought the Lorentz force does mechanical work. In this case

the current decreases because of the law of conservation of energy, if the electric

power from the source is not sufficient. The lost energy of the charges is the kinetic

energy that is given by the electric power source in the initial state but not given by

the Lorentz force.

10.9. We can assume that the derivatives with respect to y and z are zero from

spatial symmetry and replace the time derivative by i!. We can also assume that

the inner electric field has only a z-component, Ez. Equation (10.39) leads to

dEz=dx D i!By ; showing that the magnetic flux density has only a y-component.

Thus, Eq. (10.43) leads to dBy=dx D ��cEz: The above two equations yield

d2Ez

dx2
� i!��cEz D 0:
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We can easily solve this equation under the boundary condition Ez.x D 0/D E0.

Taking the real part, we have

Ez.x; t/ D E0e
�x=ı exp

h

i
�

!t � x

ı

�i

! E0e
�x=ı cos

�

!t � x

ı

�

:

Substituting the complex solution into the first equation yields

By.x; t/ D E0

���c

!

�1=2

e�x=ı exp

�

i

�

!t � x

ı
C 3�

4

��

! E0

���c

!

�1=2

e�x=ıE0 cos

�

!t � x

ı
C 3�

4

�

:

10.10. We suppose that current I 0 flows uniformly on the thin conductor. When

we carry a small current, �I 0, from the position R D R1 to the conductor, an

attractive force, �0I
0�I 0=.2�R/, works on the small current of a unit length. Since

the return current is uniformly distributed at R1, the force from the return current

cancels. Hence, the work in a unit length necessary to carry the small current to the

conductor is negative:

�W1 D �0I
0�I 0

2�

Z a

R1

dR

R
D ��0I

0�I 0

2�
log

R1
a
:

The electromotive force is induced to reduce the current in both the conductor circuit

and the circuit composed of the small current. Hence, the electric power source

in each circuit must supply an energy to maintain the current. For example, the

magnetic flux penetrating a unit length of the circuit of the small current located at

R is ˆ0D .�0I
0=2�/ log.R1=R/: The electromotive force induced in a unit length

is Vem D�dˆ0=dtD Œ�0I 0=.2�/�dR=dt:Hence, the electric power necessary for the

source to drive the current�I 0 continuously is �Vem�I
0, and the additional energy

necessary to carry it from R1 to a is

�W2 D �
Z

Vem�I
0dt D ��0I

0�I 0

2�

Z a

R1

dR

R
D �0I

0�I 0

2�
log

R1
a
:

The same energy is also needed for the circuit composed of the conductor. Thus, the

total energy needed to carry�I 0 is

�W D �W1 C 2�W2 D �0I
0�I 0

2�
log

R1
a
:

The energy needed to carry the current I to the conductor is

W D �0

2�
log

R1
a

Z I

0

I 0dI 0 D �0I
2

4�
log

R1
a
:
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Using the magnetic flux density B.R/ D �0I=.2�R/ and Eq. (8.32), we can easily

show that this is equal to the magnetic energy in the space of a unit length;

Z R1

a

B2.R/

2�
2�RdR D �0I

2

4�
log

R1
a
:

Thus, we can also derive the magnetic energy from the force between currents, if

we correctly take into account the electromagnetic induction.

Chapter 11

11.1. The left side of Eq. (11.9) is ����, and we obtain Poisson’s equation for the

electric potential,

�� D ��
�
:

The left side of Eq. (11.8) leads to

1

�
r�.r�A/ D 1

�
Œr.r�A/ ��A� D � 1

�
�A:

The right side is the same as that shown in Exercise 11.3 and the equation for the

vector potential is given by

�A � ��
@2A

@t2
� �� r @�

@t
D ��i :

11.2. We use complex numbers and ei!t for the variation with time. We can assume

that the internal electric field has only a z-component,Ez. Equation (10.39) leads to

@Ez=@x D i!By ; showing that the magnetic flux density has only a y-component.

Equation (11.4) leads to @By=@xD i!��Ez: Eliminating By yields

@2Ez

@x2
C !2��Ez D 0:

The general solution including the time dependence is given by

Ez.x; t/ D K1 expŒi.!t C kx/�CK2 expŒi.!t � kx/�;

where k D !.��/1=2. The first and second terms show electromagnetic waves

propagating along the negative and positive directions of the x-axis, respectively.

From causality there is no wave propagating from infinity to the negative x-axis,

and it is reasonable to assume K1 D 0. Taking the real part the boundary condition

Ez.xD0; t/DE0 cos!t givesK2DE0. Thus, we have
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Ez.x; t/ D E0 cos.!t � kx/; By.x; t/ D �.��/1=2E0 cos.!t � kx/:

11.3. From the answer to Exercise 11.2, the Poynting vector at depth x from the

surface is

S P D �i x
EzBy

�
D 1

.��/1=2
� �E2

0 cos2.!t � kx/i x:

It shows that the energy of density �E2
0 cos2.!t � kx/ propagates with velocity

1=.��/1=2 along the direction of the propagating electromagnetic wave. This does

not decay with increasing x. This is because there is no energy dissipation due to

electric resistivity.

11.4. When the electric charges on the electroplates are ˙q.t/, the electric field

in the space between the electroplates is E.t/ D q.t/=��0a
2 and the displacement

current there is @D.t/=@t D .1=�a2/Œ@q.t/=@t�: The magnetic field on the surface

of the space (R D a) is H.t/ D .1=2�a/Œ@q.t/=@t�: Hence, the Poynting vector on

the surface of the space is

SP D E.t/H.t/ D q.t/

2�2�0a3
� @q.t/
@t

and is directed inward the space. Integrating this with time gives

W D 2�ad

Z

SPdt D d

��0a2

Z Q

0

qdq D dQ2

2��0a2
D Q2

2C
;

where C D ��0a
2=d is the capacitance of the capacitor. Thus, this energy is the

electric energy stored in the capacitor.

11.5. Since the current density is i D I=.�a2/, the electric field is E D i=�c D
I=.�a2�c/. The magnetic flux density on the surface is B D �0I=.2�a/. Thus, the

Poynting vector on the surface has a magnitude

SP D EB

�0
D I 2

2�2a3�c

and is directed normally inward the surface of the cylindrical conductor. The electric

power penetrating into the conductor through a unit area is

P 0 D 2�aSP D I 2

�a2�c

D I 2R0r

and is consumed in the conductor. In the above R0r D 1=.�a2�c/ is the electric

resistance in a unit length of the cylindrical conductor.
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11.6. The magnetic flux density produced in the coil when the current I 0 flows

is B 0 D �0I
0=h and the electric field induced in the conducting plate is E 0i D

�.�0a=2h/dI 0=dt: The electric field provided by the electric power source to keep

the current constant is E 0s D �E 0i . Thus, the electric field inside the conductor is

E 0 D E 0i �E 0s D 0. Hence, the Poynting vector on the conductor surface is zero,

and there is no energy flow into the conductor. On the other hand, since the voltage

between the gap at the terminal is V D2�aE 0s, the electric field there is

E 0 D V

ı
D �0�a

2

hı
� dI 0

dt
:

Hence, the Poynting vector at the terminal is directed inside the coil and the

magnitude of the vector is

SP D B 0E 0

�0
D �0�a

2

h2ı
I 0

dI 0

dt
:

The energy supplied to the coil until the current reaches I is

Um D hı

Z I

0

�0�a
2

h2ı
I 0dI 0 D �0�a

2

2h
I 2 D B2

2�0
�a2h;

where B D �0I=h is the magnetic flux density in the final state and �a2h is the

volume of the space in which the magnetic flux is stored. Hence, we can see that all

the energy fed by the energy source is stored in the coil as the magnetic energy.

11.7. We denote the radius from the center by R. When the current applied to the

coil is I 0, the magnetic flux density in the coil (R < a) is B 0 D �0I
0=h. Because

the conductor is sufficiently thin, we can assume that the current flows uniformly.

Thus, the magnetic flux density in the conductor (a � R � a C b) is B 0.R/ D
�0.aC b�R/I 0=.bh/: The induced electric field has an azimuthal component, and

from the relationship

.r � E/z D E 0i
R

C dE 0i
dR

' dE 0i
dR

;

the induced electric field is given by

E 0i .R/D��0
bh

� dI 0

dt

Z R

a

.a C b � R/dRC E 0i .a/

D��0Œab C 2b.R � a/ � .R � a/2�
2bh

� dI 0

dt
;

where we have used E 0i .a/ D �.�0a=2h/dI 0=dt: Averaging this in the sufficiently

thin conductor gives hE 0i i D �Œ�0.3a C 2b/=.6h/�.dI 0=dt/: Hence, so that the
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current I 0 flows in the conductor, the sum of the electrostatic field, E 0s, and hE 0i i
should be equal to �rI

0=.bh/, and we have

E 0s D �rI
0

bh
C �0.3a C 2b/

6h
� dI 0

dt
:

The electric field between the gap of the coil isE 00 D .2�a=ı/E 0s, and the energy

that enters the coil while the current increases linearly from 0 to I within period

T is

U D hı

Z

E 00B
0

�0
dt D �0�a

2

2h
I 2 C �0�ab

3h
I 2 C 2�a

3bh
�rI

2T:

The first term is the magnetic energy stored in the space of the coil (see Exer-

cise 11.6). As will be shown later, the second and third terms are the magnetic

energy stored in the conductor and the dissipated energy. We can show that these

energies penetrate from the inner surface of the coil using the Poynting vector.

The magnetic energy in the conductor is

2�ah

Z aCb

a

1

2�0
B2.R/dR D ��0ab

3h
I 2:

Assuming I 0 D .t=T /I , the dissipated energy is

2�a�r

bh

Z T

0

�

tI

T

�2

dt D 2�a

3bh
�rI

2T:

11.8. Exactly speaking, the conductors are not equipotential and hence, the electric

field is not perpendicular to the conductor surfaces (see Fig. B11.1). Thus, the

Poynting vector is not parallel to the surface and the dissipated energy enters the

conductor.

11.9. The electric field induced along the y-axis while the magnetic flux density

increases is

Ey.x/ D �
Z x

0

@Bz.x/

@t
dx D � x

2

2d

@b0

@t
;

Fig. B11.1 Equipotential

surface (solid line), electric

field and the Poynting vector
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where we have used the symmetry condition,Ey.0/ D 0. Thus, the Poynting vector

at x directed along the positive x-axis is

SP.x/ D � x2

2�0d

�

B0 C b0x

d

�

@b0

@t
:

The energy that penetrates into the region in unit time is

�SP D �SP.d/C SP.d ��x/ D 1

�0

@b0

@t

�

B C 3

2
b0

�

�x:

Hence, the input energy while the magnetic flux density increases is

�U D
Z

�SPdt D b0

�0

�

B0 C 3

4
b0

�

�x:

On the other hand, the increase in the magnetic energy is

�Um D 1

2�0

Z d

d��x

"

�

B0 C b0

d
x

�2

� B0
2

#

dx ' b0

�0

�

B0 C b0

2

�

�x:

Hence, the work done by the expected restoring force to reduce the magnetic

distortion is

�W D �U ��Um D 1

4�0
b0
2�x:

Here we determine the displacement of the flux lines, u. Integrating the continuity

equation of magnetic flux with time gives r � .B � u/ D �b. This leads to

du=dx D �b0x=.B0d/. Under the symmetry condition u.0/ D 0, we obtain the

displacement as

u.d/ ' � b0

B0d

Z d

0

xdx D �b0d
2B0

:

The work is written as �W D .B0
2=�0d

2/u2�x in terms of the displacement.

Hence, the force on this region is

f D @�W

@u
D �B0b0

�0d
�x D �JB0�x;

where J D b0=�0d is the current density. Thus, we prove that the elastic restoring

force is the Lorentz force. This force is directed along the negative x-axis to make

the magnetic flux density uniform.
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Thus, the Lorentz force is derived from the condition that the work on flux

lines is equal to the difference between the input energy and stored energy. This

should be equal to the dissipated energy. In this case we assume that the Lorentz

force is counterbalanced with a virtual force to stably maintain such a state with a

higher energy. In reality this virtual force is the pinning force (see Sect. A3.3 in the

Appendix), and the work done by the Lorentz force is dissipated as the pinning loss.

Chapter 12

12.1. High frequency components of electromagnetic fields are completely

shielded inside the conductor and the electric charge and current are consequently

induced on the conductor surface. Hence, the fulfilled boundary conditions are

only Eqs. (12.20) and (12.23). Corresponding Eqs. (12.35) and (12.38) are

n � .E 0 C E 000 / D 0; n �
�

1

k
k � E 0 C 1

k00
k00 � E 000

�

D 0:

Since the electric field in the incident wave is normal to the plane of incidence

(parallel to the y-axis in Fig. 12.3), the first equation leads to

E0 CE 000 D 0:

The second equation gives also the same result. In this case, taking the real part, the

electric field in the vacuum region is

Ey D E0 cos.!t�k�r/�E0 cos.!t�k00�r/ D�2E0 sin.kz cos �/ sin.!t�kx sin �/:

In the above kDk00 and we have used Eq. (12.33) and the following relations:

k � r D kx sin � � kz cos �; k00 � r D kx sin � C kz cos �:

In this configuration the electric charge does not appear on the surface since the

electric field is parallel to the surface. The magnetic flux density is

Bx D E0

c0
cos.!t � k � r/ cos � � E 000

c0
cos.!t � k00 � r/ cos �

D 2E0

c0
cos � cos.kz cos �/ cos.!t � kx sin �/;

Bz D E0

c0
cos.!t � k � r/ sin � C E 000

c0
cos.!t � k00 � r/ sin �

D �2E0
c0

sin � sin.kz cos �/ sin.!t � kx sin �/:
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The surface current density is given by

�y.x/ D Bx.z D 0/

�0
D 2

�

�0

�0

�1=2

E0 cos � cos.!t � kx sin �/:

12.2. The same two equations as in Exercise 12.1 appear. Using the definition in

Fig. 12.4, the first equation reduces to .E0�E 000 / cos �D0 and we obtain E 000 D E0:

The second equation is fulfilled. Hence, it is sufficient if the above equation is

satisfied. The magnetic flux density has only a y-component;

By D E0

c0
Œcos.!t�k�r/Ccos.!t�k00 �r/� D 2E0

c0
cos.kz cos �/ cos.!t�kx sin �/:

Since the parallel component of the magnetic flux density is not zero on the surface,

the surface current density is

�x.x/ D �By.z D 0/

�0
D 2

�

�0

�0

�1=2

E0 cos.!t � kx sin �/:

(Note the directions of the current and magnetic flux density.) The electric field is

Ex D �E0 cos.!t � k � r/ cos � C E 000 cos.!t � k00 � r/ cos �

D 2E0 cos � sin.kz cos �/ sin.!t � kx sin �/;

Ez D �E0 cos.!t � k � r/ sin � � E 000 cos.!t � k00 � r/ sin �

D �2E0 sin � cos.kz cos �/ cos.!t � kx sin �/:

Since the normal component of the electric field is not zero on the surface, an electric

charge appears on the surface and its density is

�.x/ D �0Ez.z D 0/ D �2E0�0 sin � cos.!t � kx sin �/:

In this case we can see that the following relationship holds between the surface

current and surface charge;

r�� C @�

@t
D 0;

which corresponds to Eq. (5.10) for a three-dimensional case. It should be noted that

r�� D0 in Exercise 12.1.

12.3. From Eqs. (12.24) and (12.25) we obtain the electric powers flowing from

medium 1 to medium 2 through a unit area as the incident and reflected waves as
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� 1

�1
ŒE.zD0/ � B.zD0/�z D E2

0

c1�1
cos2.!t � k�r0/ cos �;

� 1

�1
ŒE 00.zD0/ � B 00.zD0/�z D � E 0020

c1�1
cos2.!t � k00 �r0/ cos � 00;

respectively. From Eq. (12.26) the electric power penetrating into medium 2 as the

transmitted wave is

� 1

�1
ŒE 0.zD0/ � B0.zD0/�z D E 020

c2�2
cos2.!t � k0 �r0/ cos � 0:

Because of Eq. (12.30) the factors dependent on time and space such as cos2.!t �
k �r0/ are the same. Neglecting these factors, the rate of energy flow from medium

1 is

1

�1c1
.E2

0 � E 0020 / cos � D 4˛ cos2 � cos � 0E2
0

�1c1.cos � C ˛ cos � 0/2
;

where ˛ D .�2�1=�1�2/
1=2 and we have used Eqs. (12.33) and (12.42b). On the

other hand, Eq. (12.42a) yields the rate of energy penetration into medium 2;

1

�2c2
E 020 cos � 0 D 4 cos2 � cos � 0E2

0

�2c2.cos � C ˛ cos � 0/2
:

We can easily show that this is equal to the rate of energy flow from medium 1.

12.4. The x- and y-components of the Poynting vector are �EzBy=�0 and

EzBx=�0, respectively. From the condition of Eq. (12.56) these are zero on the

surfaces of the wave guide, .x D 0; a/ and .y D 0; b/. Hence, there is no energy

flow through these surfaces. Taking the real parts of the electric field and magnetic

flux density, the z-component of the Poynting vector is

SPz DA2 �
2�0!

k4

�

m2

a2
cos2

�m�x

a

�

sin2
�n�y

b

�

Cn2

b2
sin2

�m�x

a

�

cos2
�n�y

b

�

�

sin2.!t � z/:

Integrating this in the x-y plane, the electric power through a unit area along the

z-axis is

P D A2
�2�0!.n

2a2 Cm2b2/

4k4ab
sin2.!t � z/:
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12.5. The boundary conditions on Ex , Ey , Bx and By are given by Eq. (12.56).

The boundary conditions on Bz are: @Bz=@xD0 at x D 0 and a from Eqs. (12.52b)

and (12.52c), and @Bz=@y D 0 at y D 0 and b from Eqs. (12.52a) and (12.52d).

Using these conditions, the general solution of Eq. (12.51b) is given by

Bz.x; y; z; t/ D A0 cos
�m�x

a

�

cos
�n�y

b

�

:

Substituting this with Ez D0 into Eqs. (12.52a)–(12.52d) yields

Ex D iA0
n�!

k2b
cos

�m�x

a

�

sin
�n�y

b

�

;

Ey D �iA0
m�!

k2a
sin

�m�x

a

�

cos
�n�y

b

�

;

Bx D iA0
m�

k2a
sin

�m�x

a

�

cos
�n�y

b

�

;

By D iA0
n�

k2b
cos

�m�x

a

�

sin
�n�y

b

�

:

For simplicity, the factor expŒi.!t�z/� is omitted. The Poynting vector along the

z-axis is

SPz D A02
�2!

�0k4

�

n2

b2
cos2

�m�x

a

�

sin2
�n�y

b

�

Cm2

a2
sin2

�m�x

a

�

cos2
�n�y

b

�

�

sin2.!t � z/:

Integrating this in the x-y plane yields the electric power through a unit area along

the z-axis;

P D A02
�2!.n2a2 Cm2b2/

4�0k4ab
sin2.!t � z/:

12.6. Using the real parts of the electric field and magnetic flux density, the surface

densities of electric charge and current on the plane x D 0 are respectively given by

�.x D 0/ D �0Ex.x D 0/ D �0A
m�

k2a
sin

�n�y

b

�

sin.!t � z/;

�z.x D 0/ D 1

�0
By.x D 0/ D �0A

m�!

k2a
sin

�n�y

b

�

sin.!t � z/;

where we have used c0 D 1=.�0�0/
1=2. From the above results we have

@

@z
�z.x D 0/C @

@t
�.x D 0/ D 0:



Answers to Exercises 379

Thus, the continuity equation of current holds. Similar relationships are obtained for

other surfaces.

12.7. The electric field in the plane normal to the conductors is similar to that in the

case where the line charges ˙� are given at the image axes (˙l , 0) of the left and

right conductors, respectively. The electric potential,

�.x; y/ D �

4��0
log

.x � l/2 C y2

.x C l/2 C y2
;

gives

Ex D �

2��0

�

x C l

.x C l/2 C y2
� x � l
.x � l/2 C y2

�

;

Ey D �

2��0

�

y

.x C l/2 C y2
� y

.x � l/2 C y2

�

; (A.1)

where l D .d=2/ � h D Œ.d=2/2 � a2�1=2 (see Fig. B5.2). For the TEM wave � is

an arbitrary parameter associated with the electric field strength. The magnetic flux

density is

Bx D Ey

c0
; By D �Ex

c0
:

Although a detailed calculation is not shown, the total electric charges that appear

on the surface of each conductor of a unit length are equal to ˙�, and the continuity

equation of current holds with the surface charges.

12.8. Using �.r; t/ in Eq. (12.78), the first term on the left side of Eq. (11.31) is

��.r; t/ D 1

4��

Z

V

�

�

�.r 0; t � R=c/

R

�

dV 0;

where RDjr �r 0j. Since � is the derivative with respect to r, we have

�
�

R
D ��

1

R
C 2r� � r 1

R
C ��

R
:

The volume integral of the first term on the right side including the abnormal point

gives ��=� in Eq. (11.31), as shown in Sect. A2.1. The second term is written as

�.2=R2/.@�=@R/, and �� in the third term is

�� D 1

R
� @

2

@R2
.R�/ D @2�

@R2
C 2

R
� @�
@R
:
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Hence, only .@2�=@R2/=R remains from the second and third terms. It is obvious

that the following equation holds;

@2�

@t2
D 1

4��

Z

V

1

R
� @

2�

@t2
dV 0:

Hence, we find that Eq. (11.31) is proved, if the following equation holds;

@2�

@R2
D 1

c2
� @

2�

@t2
:

The new definition � D t�R=c gives @�=@RD �.1=c/@�=@� and @�=@t D @�=@�:

Thus, the following relations are resulted;

@2�

@R2
D 1

c2
� @

2�

@�2
;

@2�

@t2
D @2�

@�2
:

Hence, the above relation holds and we derive Eq. (11.31).
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Symbols

E–B analogy, 130, 158

E–H analogy, 224

A

ampere, 99

Ampere’s law, 136, 209

anti-ferromagnetic material, 203

B

Biot–Savart law, 125, 209

C

capacitance, 55

capacitance (of capacitor), 61

capacitance coefficient, 57

capacitor, 60

capacity, 55

capacity (of capacitor), 61

capacity coefficient, 57

characteristic impedance, 273

circular polarization, 275

coefficient of electric potential, 55

coefficient of viscosity, 104

coil, 183

condenser, 60

conductance, 102

conductor, 33

conductor system, 55

continuity equation of current, 101

continuity equation of energy, 264

continuity equation of magnetic flux, 238

coulomb, 3

Coulomb force, 4

Coulomb gauge, 140

Coulomb magnetic field, 151

Coulomb’s law, 5

curl, 298

current, 99

current density, 99

curvilinear integral, 300

cut-off frequency, 285

cyclotron angular frequency, 132

cyclotron motion, 132

cylindrical coordinate, 307

D

diamagnetic material, 202

dielectric, 33

dielectric constant, 82

dielectric material, 33, 75

dielectric polarization, 75

differential form of Ampere’s law, 136, 209

differential form of induction law, 233

displacement current, 255

divergence, 297

E

electric charge, 3

electric conductivity, 102

electric dipole, 23

electric dipole line, 26

electric dipole moment, 24

electric displacement, 82

electric energy, 65

electric energy density, 68

electric field, 8

electric field line, 8

electric field strength, 8

T. Matsushita, Electricity and Magnetism: New Formulation by Introduction

of Superconductivity, Undergraduate Lecture Notes in Physics,

DOI 10.1007/978-4-431-54526-2, © Springer Japan 2014

381



382 Index

electric flux, 83

electric flux density, 82

electric flux line, 83

electric moment density, 225

electric polarization, 75, 78

electric potential, 16

electric power, 106

electric power source, 113

electric resistance, 101

electric susceptibility, 78

electromagnetic induction, 231

electromagnetic potential, 261

electromagnetic wave, 272

electromotive force, 113

electronic polarization, 76

electrostatic energy, 65, 93

electrostatic energy density, 68, 92

electrostatic field, 8

electrostatic force, 70

electrostatic induction, 34, 46

electrostatic potential, 16

electrostatic shielding, 39

elementary electric charge, 3

elliptical polarization, 275

equipotential surface, 19

equivector-potential surface, 142

F

farad, 55

Faraday’s law, 231

ferrimagnetic material, 203

ferroelectric material, 76

ferromagnetic material, 203

force-free torque, 322

free electric charge, 4

G

gauge transformation, 262

Gauss’ divergence law, 13, 83

Gauss’ divergence law for magnetic flux,

134

Gauss’ law, 13, 83

Gauss’ law for magnetic flux, 134

Gauss’ theorem, 304

general law for induced electric field, 239

generalized differential form of Ampere’s law,

255

generalized form of Ampere’s law, 255

gradient, 297

Green’s theorem, 307

grounding, 38

H

Hall effect, 347

Hall electric field, 347

Helmholtz coil, 186

Henry, 177

I

image charge, 42

image current, 164

image force, 43, 165

induced electromotive force, 194, 231

inductance, 177

inductance coefficient, 178

insulator, 33, 75

intermediate state, 173

ionic polarization, 76

J

Josephson’s relation, 238, 319

K

Kirchhoff’s law, 114

L

Laplace’s equation, 20, 41, 141, 163

Laplacian, 20

law of reflection, 278

law of refraction (electric field line), 88

law of refraction (magnetic flux line), 216

light speed, 272

line charge, 4

line of electric force, 8

linear polarization, 274

London equation, 315

Lorentz force, 129, 130, 321

Lorentz gauge, 262

M

magnetic charge, 146

magnetic charge density, 148

magnetic dipole, 147

magnetic dipole line, 148

magnetic dipole moment, 147

magnetic energy, 188, 191, 220, 242

magnetic energy density, 190, 220

magnetic field, 123, 208

magnetic field line, 209

magnetic field strength, 208

magnetic flux, 133

magnetic flux density, 123
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magnetic flux law, 231

magnetic flux line, 133

magnetic force, 193

magnetic material, 156, 201, 203

magnetic moment, 131

magnetic moment (of small closed current),

145

magnetic moment density, 225

magnetic permeability, 209

magnetic permeability of vacuum, 123

magnetic potential, 147

magnetic shielding, 172

magnetic susceptibility, 202

magnetization, 169, 170, 201

magnetizing current, 201

magnetizing current density, 207

Maxwell’s equations, 258

Meissner current, 316

Meissner–Ochsenfeld effect, 155

method of images, 42, 91, 164, 218

mixed state, 318

moment of electric dipole line, 27

moment of magnetic dipole line, 150

motional law, 234

multipole expansion, 25

mutual inductance, 178

mutual induction, 243

N

nabla, 297

Nagaoka’s coefficient, 185

Neumann’s formula, 179

non-magnetic material, 202

normal state, 155

O

ohm, 101

Ohm’s law, 101, 105

orientation polarization, 77

P

parallel-plate capacitor, 60

paramagnetic material, 202

partial differential coefficient, 296

penetration depth, 315

perfect diamagnetism, 155

permittivity of vacuum, 5

plane wave, 272

point charge, 4

Poisson’s equation, 20, 83, 141, 210

polar coordinate, 308

polarization charge, 4, 75

polarization charge density, 80

polarization current density, 266

polarization of wave, 275

polarized wave, 275

Poynting vector, 263

principle of conservation of charge, 4

Q

quantized magnetic flux, 318

R

reciprocity theorem, 58, 67, 178, 244

relative dielectric constant, 82

relative magnetic permeability, 209

resistance, 101

resistivity, 101

retarded potential, 287

rotation, 298

S

scalar, 291

scalar product, 294

scalar triple product, 295

self-inductance, 177

self-inductance (of solenoid coil), 185

self-induction, 242

Siemens, 102

skin depth, 247

skin effect, 245

small closed current, 144

Snell’s law, 278

solenoid coil, 184

specific resistance, 101

spherical coil, 185

spherical wave, 285

spontaneous magnetization, 203

spontaneous polarization, 76

steady current, 99

Stokes’ theorem, 305

superconducting state, 155

superconductor, 155

surface charge, 4

surface integral, 301

T

telegraphic equation, 259

tesla, 125

toroidal coil, 197

total differentiation, 296
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transformer law, 231

transverse electric (TE) wave, 283

transverse electromagnetic (TEM) wave, 283

transverse magnetic (TM) wave, 283

transverse wave, 272

true current, 99

true electric charge, 4

U

unipolar induction, 237

V

vector, 291

vector potential, 139

vector product, 294

vector triple product, 295

viscous force, 104

volt, 8, 16

voltage drop, 114

W

watt, 106

wave equation, 260

wave guide, 281

wave impedance, 273

weber, 133

Z

zero resistivity, 155
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