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Foreword of Prof. Filippo Sorbello

It is a great pleasure to present the book Introduction to Digital Systems Design by

my friends and colleagues Donzellini, Oneto, Ponta, and Anguita. This textbook is

suited for first year students of Engineering and Computer Science. It starts from the

theoretical bases of digital systems, chosen and treated at the right level of depth,

proceeds toward the analysis and synthesis of combinational and sequential logic to

reach its target of designing and simulating controller–datapath systems. A very

high number of examples and exercises with related solutions are provided.

The evolution of electronic technologies has brought a wide diffusion of digital

systems in every field of everyday life. Speed, density, and complexity of current

digital circuits have been made possible by automatic design methodologies and

technological progress.

The knowledge of the theoretical bases of logic networks is necessary to achieve

a complete mastery of digital system architectures of different complexities and also

for the correct use of automatic design tools based on hardware description lan-

guages (HDLs).

First year students possess neither the adequate programming and abstraction

abilities nor the physics and electronics knowledge necessary to use HDLs prop-

erly. In this textbook, this difficulty is overcome by employing a simulation tool

(Deeds), developed by one of the authors, which uses an user-friendly interface.

Deeds is employed to simulate the behavior both of the circuits proposed in the

textbook and of those that the learner will autonomously design and then verify.

Deeds projects can be exported in HDL and tested on FPGA circuits.

The use of languages for hardware description, together with the knowledge

of the theoretical bases of logic circuits, represent the keys to understanding the

digital world.
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I think that this book is a good tool to face this challenge, given the ability that

the authors have shown in transferring the necessary theoretical and professional

know-how in a text with clear contents, smooth layout, and pleasant aspect.

Palermo, Italy

March 2018

Filippo Sorbello
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Foreword of Prof. Mauro Olivieri

The textbook written by Giuliano Donzellini, Luca Oneto, Domenico Ponta, and

Davide Anguita is characterized by two features that distinguish it in the wide field

of university textbooks introducing digital design.

The first feature is the focus on a well-defined group of notions and tools

representing the basis for digital systems: combinational and sequential logic

synthesis and the topics strictly connected with them. The book covers neither

electronic circuits nor microprocessor systems, and by remaining within these

limits, it allows great clarity, precision, completeness, and consistency for the

learners, as it appears immediately to the reader by inspecting the high number of

schematics and timing diagrams provided with the textbook. Besides, the avail-

ability of solved exercises, together with the simulation software Deeds, represents

a key element that is always appreciated and requested by students.

The second feature is the balance between the theoretical structure and the

practical implementation, which allows solid learning. Even though in the textbook

the word “voltage” is never cited, a student using the book always has the

impression he/she is studying an electronic system formalization. At the same time,

the textbook avoids presenting the topics only as a series of practical design

examples without a theoretical basis.

This peculiarity characterizes the approach of the “school” of digital systems at

the University of Genoa, in respect of which I consider myself an outsider.

For these reasons, the textbook of Donzellini, Oneto, Ponta, and Anguita is a

precious tool for a student willing to deeply understand the concepts belonging to

the big world of digital electronics design.

Roma, Italy

March 2018

Prof. Mauro Olivieri
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Preface

The large and ever-growing complexity of today’s digital systems places heavy

demands on educational systems that are in charge of training the new generations

of designers or just providing a solid understanding of the digital world. Academic

institutions struggle to keep the pace of technological advancements, and people,

like the authors of this book, who are in charge of introductory- or

intermediate-level education, have the responsibility to face the problem and make

choices.

It is certainly obvious that a digital designer must be trained in the use of

hardware description languages (HDLs) and it is nowadays a common practice to

introduce them very early in the courses, substituting the traditional approach based

on components and schematics. The choice to describe digital systems by HDL

matches very well with the adoption of Field-Programmable Gate Arrays (FPGA)

for the practical implementation of projects, using prototype boards provided by

chip producers.

Nevertheless, it is our opinion that the adoption of HDL in a beginner course of

logic networks with limited resources in terms of credits (as in our case) may

present problems. We believe that it is not easy to build a solid understanding of the

foundations by completely replacing logic components and schematics with HDL,

which requires a level of abstraction and a familiarity with programming that

beginner students generally do not possess.

What is more, employing a simulation and synthesis software developed by

FPGA chip producers presents other problems. Tools developed for digital systems

designers may not necessarily satisfy learning needs: their use is not immediate for

students, who may end up using them partially and mechanically, with the risk of

missing important basic concepts, hidden under the technicalities of HDL and tools.

It is therefore necessary that students acquire a solid foundation on which to

build design abilities and, at the same time, adapt to the fast rate of technological

innovation, while gaining familiarity with languages and design tools.

For these reasons, the textbook maintains a traditional approach to logic net-

works, described and designed through symbols and schematics, while taking into

account today’s state of the art when choosing topics and, especially, exercises and
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projects. This feature allows an optimal use of the book in university curricula that

contain only one course on digital hardware, while providing a solid foundation for

higher-level studies.

The book takes an original approach in introducing FPGA devices and VHDLs.

The last chapter shows how projects similar to the ones presented earlier and tested

by simulation only can be practically and quickly implemented on FPGA boards,

using Deeds tools. The procedure offers the opportunity of an “hands-on” intro-

duction to FPGA devices and VHDL.

The book is self-sufficient, since it supports the theoretical part with a huge

number of examples and exercises, complete with their solutions. In courses that

have room for a laboratory session, the symbiosis with the Digital Electronics

Education and Design Suite (Deeds) simulation tool can be exploited, with

important advantages. Deeds was developed recently by one of the authors

(Giuliano Donzellini), with the precise target of supporting learning and laboratory

activities for Information Engineering students. The strong connection with Deeds

represents an important strength and the originality of our work, since all the

schematics, examples, and design exercises included, from the easiest to the most

complex, were created with Deeds and are available online for an immediate

simulation.

The Deeds environment covers all the principal aspects of digital systems

design, from combinational and sequential logic to finite state machines and

embedded systems, thus allowing for the design and simulation of complex net-

works containing standard logic, finite state machines, user-defined components,

and microprocessors, including their programming in assembly language.

Deeds has been developed with the idea of matching ease of use and almost

professional features. The main differences between Deeds and a professional tool

are represented by the friendliness of the user interface and the availability of a wide

collection of teaching material and projects. Furthermore, Deeds is an “alive,”

continuously evolving system: updates are periodically available to improve exis-

tent tools and add new ones. The same is true for teaching materials.

The transition toward FPGA devices is supported by Deeds that allows to export

any of its projects to a professional tool, in order to test it in FPGA hardware. Deeds

bypasses the complexity of the process that is normally required by a specific

professional software and does not require writing HDL code, which is automati-

cally generated by Deeds. The rich teaching material of Deeds is hence redirected

toward FPGA implementation, without substantial modifications.

However, after practicing with the automatic HDL code generation by Deeds,

students can directly interact with FPGA tools, thus having the possibility to

observe, modify, and reuse HDL code (VHDL in our case), making a gradual

transition toward current design techniques.
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Teaching Objectives

According to authors’ experience, the whole content of the book, together with

design exercises and simulations based on Deeds, may be developed in an intro-

ductory course to digital systems of at least nine credits.

In the following, we briefly report the content of the chapters, indicating in italics

the topics that can be avoided without loss of continuity with the teaching project,

for courses with a smaller number of credits:

1. Boolean Algebra and Combinational Logic

– Classic approach that does not require preliminary knowledge.

It is possible to skip Shannon’s theorems.

2. Combinational Network Design

– Synthesis and minimization with Karnaugh maps.

– Standard combinational logic.

– Propagation delays.

Variable-Entered Maps and hazards may be omitted.

3. Numeral Systems and Binary Arithmetic

– Classic approach.

– Arithmetic networks.

Binary negative numbers may be omitted, as well as BCD arithmetic.

4. Complements in Combinational Network Design

– Minimization of expressions with Quine–McCluskey method.

The entire chapter may be omitted.

5. Introduction to Sequential Networks

– Intuitive transition from combinational to sequential logic.

– Structure and operation of principal flip-flop types.

– Dynamic flip-flop characteristics.

It is possible to consider just “D” and “E” logic types and to skip their

circuital details.

6. Flip-Flop-BasedSynchronous Networks

– Introduction to synchronous flip-flop networks.

– Sequential networks: registers and counters.

– Techniques for timing analysis of synchronous networks.

Counters and registers section may be reduced, as well as timing analysis of

sequential networks.
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7. Sequential Networks as Finite State Machines

– FSM project, realized through ASM diagrams.

– Solved exercises of ASM diagrams.

– FSM synthesis with state tables and maps.

FSM synthesis may be reduced, by omitting variable-entered maps, or

completely left aside.

8. The Finite State Machine as System Controller

– Design of Controller–Datapath systems.

– Solved exercises on controller–datapath systems.

This chapter applies all the material presented in the book to develop

controller–datapath systems. The projects may be chosen according to the

needs and level of the class.

9. Introduction to FPGA and HDL Design

– Introduction to FPGA.

– System prototyping on FPGA with Deeds tools.

– Introduction to VHDL.

– Examples of FPGA prototyping projects.

This chapter requires the use of Deeds, and it is fully exploited when

accompanied by laboratory activities.

How to Use the Book

The strict connection between this book and the Deeds tool suggests using it

together with the simulation tools, both to verify and test concepts and procedures

in an active way and to have a support for the solution of the exercises and the

design of systems.

This “learning by doing” practice allows students to progressively build the

analytic and design capabilities that represent the target to reach.

Giuliano Donzellini

Luca Oneto

Domenico Ponta

Davide Anguita

Genova, Italy
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Digital Contents for the Book

This textbook contains theoretical parts, examples, exercises, and solutions. All the

examples have also been implemented with the Deeds simulator that can be

downloaded from the link:

https://www.digitalelectronicsdeeds.com

The Web site contains a description of the Deeds’s features, tutorials, and learning

materials. The simulator does not require an Internet connection.

On the same Web site, as additional material, it is possible to find almost all the

schematics and charts included in the book:

https://www.digitalelectronicsdeeds.com/books

Thanks to this material, it is possible to simulate with Deeds the proposed circuits

and the exercises. The material has been organized by following the same structure

of the book in order to make it easier to access. On the same Web site, future

updates, corrections, and additions will be made available.

xv
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Chapter 1

Boolean Algebra and Combinational
Logic

Abstract This chapter introduces to the idea of digitally representing analog quanti-

ties and goes step by step through the main concepts of the Boolean algebra: variables,

functions, truth tables, operations, and properties. The chapter is quite detailed and

accompanied by many examples and exercises in order to provide a precise frame-

work of the fundamentals of digital design. It includes the theorems which constitute

the foundation for the application of the Boolean algebra to logic networks, with a

precise focus on their application for combinational network design.

1.1 Analog and Discrete Variables

In every field of human knowledge, information’s observation, memorization, elab-

oration, and communication is something everyone has to deal with. The definition

of the word “information” may sound obvious, since this term is commonly used in

everyday language, but for our aim we need a definition that leaves no space to any

ambiguous interpretation. We hence refer to R. V. L. Hartley (1888–1970), one of

the fathers of Information Theory, who helps us with the following definition:

Information is a reduction of uncertainty.

From this sentence, it is clear that information is associated with “before” and “after,”

in relation to an event having a probability to happen; thanks to this probability, an

observer reduces his uncertainty related to the event itself. From this definition, it

can be easily derived that information can be conveyed through the employment

of physical quantities variables, changing in time or space. For example, we can

refer to information transmitted by a computer screen through images, defined as

variations of luminosity and color in time and space, or the information transmitted

by an earphone, through a sound, defined as variations of air pressure over time.

To the aim of studying information processing, we will not refer directly to a

physical quantity variable, but rather to its numeric representation, indicated with

“G,” and its variation over time, indicated with “T.”

This approach allows us to divide the representation into two families: if G can vary

continuously between a value and another one, assuming all the infinite intermediate
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2 1 Boolean Algebra and Combinational Logic

values, we are employing an “analog” representation. If, instead, G can assume only a

limited number of values, we are employing a “discrete” (or “digital”) representation,

becoming “binary” (or “Boolean”) if the numbering system uses only two symbols.

Sometimes, the distinction between a physical quantity variable and its numeric

representation may create confusion, but we are interested only in the latter. Light,

for example, may be described both through a discrete representation (photons) and

a continuous one (electromagnetic waves), but identifying the “true” representation,

if it exists, is beyond our scope: we gladly leave this objective to philosophers. For

an engineer, what matters is using the most appropriate tool to solve the problem

under analysis.

In the picture, four possible representations obtained using discrete or continuous

values for G and T are provided [red lines are given for reference]:

(a) continuous quantity variable changing over time;

(b) continuous quantity variable sampled over time;

(c) quantity variable quantized in amplitude and continuous over time;

(d) quantity variable quantized in amplitude and sampled over time.

In the analog case, the main tool at our disposal is math, involving real numbers

and functions defined over them: i.e., algebra and infinitesimal calculus. The analog

representation is effective at dealing with natural physical quantities variables at the

macroscopic level.

This does not mean that natural quantities’ variables are analog, but only that

in this case the analog representation is the most suitable and effective. In fact, if

we go deeper toward the microscopic level, matter reveals its discrete nature (atoms
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and particles) and the analog representation is not necessarily the most convenient.

Generally, a device able to convert continuous quantities variables into digital ones,

and vice versa, is necessary. These devices are called Analog to Digital Converters

(ADC) and Digital to Analog Converters (DAC) respectively, but they are beyond

the scope of this book.

The digital case may be faced with discrete math, generally more complex than

real numbers math. If we limit to the case of G assuming only two values, i.e., the

binary case, we can refer to the Boolean algebra that takes its name from its creator,

the Irish logician and mathematician George Boole (1815–1864). Boolean algebra

will be sufficient for our scope, that is, putting the basis of the combinational logic

and digital systems.

Binary variables are usually indicated with {0, 1} or also with other symbols,

like {−1,+1}, {L , H} (Low and High) or {T, F} (True or False), depending on the

context.

In the digital field, we will make use of both the representation over continuous

time, called “asynchronous,” and the one over discrete time, called “synchronous.”

A logic network is called synchronous if its parts operate simultaneously, according

to a common synchronization signal; it is instead defined as asynchronous if its parts

operate in an autonomous mode among each other.

The binary (digital) representation possesses advantages and disadvantages with

respect to the analog one:

• an analog value is a pure mathematical abstraction, since it requires infinite preci-

sion to be expressed.

• a discrete value (binary) is easily storable, since it requires a finite number (two)

of the physical variable values to be memorized.

• the management and processing of binary variables are less sensitive to a possible

damaging of the signals that occur during its processing and transmission. In fact,

if the damage is not large enough to alter the distinction between the two signal

levels (high/low), there is no damage in the information carried by signals.

• the precision of the system can be easily controlled by choosing the number of

bits that code the information.

• devices processing digital information, namely digital systems, are simpler to

design, though the practical realization requires a higher number of circuital com-

ponents.

1.2 Boolean Variables

Let X be a certain discreet variable. We will call Boolean variable any discreet

variable that can assume only two values. These values are denoted as follows:

X = 0 false

X = 1 true
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In the following, the values 0, 1 will be used.

1.3 Boolean Functions

If we have the Boolean variables X1, X2, . . ., Xn , the following:

f (X1, X2, . . . , Xn)

is called a Boolean function, and it can assume only the values 0 and 1. This function

associates a Boolean value to every element in its domain.

The domain of a function of n-variables is composed of all the 2n combination-

s of their values. Therefore, domain’s elements are countable. Two functions are

equivalent if they assume the same value for any combination of their variables’

values.

1.4 Truth Tables

The Principle of Perfect Induction (that is, carrying out all the calculations) makes

it possible to prove the value of f for all the 2n points of the domain. The function

is represented in the truth table.

Let’s assume a three-variable function X1, X2, X3. We can construct a table with

all the values assumed by f :

X1 X2 X3 f

0 0 0

0 0 1 values

0 1 0

0 1 1 assumed

1 0 0

1 0 1 by

1 1 0

1 1 1 f

Observation: To write the 23 = 8 elements of the domain, we begin at the farthest

right column (X3), from the top and alternate between one 0 and one 1. In the next

column, we alternate between two 0s and two 1s, while in the column after that, four

0s and four 1s and so on, doubling the number of 0s and 1s with each new column.

Examples:

Derive the truth tables from the verbal definitions:

1. U is true if C is true or if B and A are both true.
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2. Z is true if the number of ones in the inputs M , G, D is equal to two.

1.

C B A U

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

2.

M G D Z

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

1.5 Definition of Boolean Algebra

Boolean algebra provides the necessary tools to calculate and interpret information

presented in binary form. Boolean algebra is an algebraic system (a set of elements

to which a set of operations is associated), defined by:

• The set of values {0,1};

• The operations OR, AND, and NOT;

• The equivalence operator “=”, along with the properties reflexive, symmetric, and

transitive.

The three operations are defined as follows:

Operation: OR AND NOT
(logical sum) (logical product) (negation)

Algebraic symbols: X + Y X · Y = XY X
X ∨ Y X ∧ Y !X
X ∪ Y X ∩ Y -X
X or Y X and Y not(X)

Truth table:

X Y X + Y

0 0 0
0 1 1
1 0 1
1 1 1

X Y X · Y

0 0 0
0 1 0
1 0 0
1 1 1

X X

0 1
1 0

Circuit diagram symbols:
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1.6 The Fundamental Properties of Boolean Algebra

Conventions

• X , Y , Z , X1, X2, X3, . . ., Xn , are considered Boolean variables.

• The parentheses establish the calculation priorities as in regular algebra.

• AND is prioritized over OR (e.g., X + Y Z = X + (Y Z)).

This is also analogous to regular algebra. All the properties can be demonstrated

through Perfect Induction, that is, by verifying the validity of each combination of

values assumed by the variables that make up the expression.

Example: X · 0 = 0 is verified through the truth table:

X 0 X · 0

0 0 0

1 0 0

Duality Principle

If a given expression is valid, its dual expression is also valid. The dual expression is

obtained by switching the OR with the AND and the 0 constants with the 1 constants

from the original expression. For example:

X + 1 = 1

(dual:) X · 0 = 0

X + 0 = X

(dual:) X · 1 = X

Idempotent Law

X + X = X

(dual:) X · X = X

Commutative Law

X + Y = Y + X

(dual:) X · Y = Y · X

Associative Law

(X + Y ) + Z = X + (Y + Z) = X + Y + Z

(dual:) (X · Y ) · Z = X · (Y · Z) = X · Y · Z .

The associative law makes it possible to extend fundamental operations to more than

two variables. The circuit symbols for the first expression are:
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(X + Y ) + Z X + (Y + Z) X + Y + Z

As there is no distinction between the first and second circuits, it makes sense to

generally define an OR of three or more inputs. The same holds true for the AND,

so it is really the property of Associativity that allows us to make sense of OR and

AND gates with more than two inputs.

We can redefine the OR and AND operations with n inputs:

• An OR with n inputs gives a 0 as output only if all the n inputs are 0, otherwise it

gives a 1 as output.

• An AND with n inputs gives a 1 as output only if all the n inputs are 1, otherwise

it gives a 0 as output.

Distributivity

Factoring law (X + Y ) · (X + Z) = X + (Y · Z)

Distributive law (dual:) (X · Y ) + (X · Z) = X · (Y + Z)

Proof of the factoring law:

(X + Y ) · (X + Z) = X · X + X · Z + X · Y + Y · Z =

= X + X · Z + X · Y + Y · Z

= X · (1 + Y ) + X · Z + Y · Z

= X + X · Z + Y · Z

= X · (1 + Z) + Y · Z

= X + (Y · Z)

It would also be possible to demonstrate this law through Perfect Induction (i.e.,

verifying all the possible combinations for X , Y , Z ):

X Y Z Y · Z X + Y · Z X + Y X + Z (X + Y )(X + Z)

0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0

0 1 0 0 0 1 0 0

0 1 1 1 1 1 1 1

1 0 0 0 1 1 1 1

1 0 1 0 1 1 1 1

1 1 0 0 1 1 1 1

1 1 1 1 1 1 1 1
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It is clear that columns X + Y · Z and (X + Y )(X + Z) are equal.

Complementation

X + X = 1

(dual:) X · X = 0

Absorption

First form:

X + X · Y = X

(dual:) X · (X + Y ) = X

Second form:

X + (X · Y ) = X + Y

(dual:) X · (X + Y ) = X · Y

Proof:

X + X · Y = X · (1 + Y ) = X · 1 = X

X · (X + Y ) = X · X + X · Y = X + X · Y = X

X + X · Y = X + X · Y + X · Y = X + Y (X + X) = X + Y

X · (X + Y ) = X · X + X · Y = X · Y

Logic Adjacency

Y X + Y X = Y

(dual:) (Y + X) · (Y + X) = Y

Proof:

Y X + Y X = Y · (X + X) = Y · 1 = Y

(Y + X) · (Y + X) = Y + (X · X) = Y + 0 = Y

Consensus

X · Y + Y · Z + Z · X = X · Y + Z · X

(dual:) (X + Y )(Y + Z)(Z + X) = (X + Y )(Z + X)
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Proof:

X · Y + Y · Z + Z · X =

= X · Y + Y · (X + X) · Z + Z · X =

= (X · Y + X · Y · Z) + (Z · X · Y + Z · X) =

= X · Y + Z · X

(X + Y )(Y + Z)(Z + X) =

= (X + Y )[(X + Y + Z)(X + Y + Z)](Z + X) =

= [(X + Y )(X + Y + Z)][(Z + X + Y )(Z + X)] =

= (X + Y )(Z + X)

Involution

Also known as Double Complement law: X = X.

Duality or De Morgan’s Theorem

A logical product of two variables can be substituted by the negation of their logical

sum. Dual: a logical sum of two variables can be substituted by the negation of their

logical product:

X · Y = X + Y

(dual:) X + Y = X · Y

This theorem is important: it allows us to obtain an AND through an OR gate and

vice versa. The theorem tells us that either one of the two functions is superfluous

according to the definition of Boolean algebra.

Generalized De Morgan’s Theorem

The theorem applies to any number of variables:

X1 · X2 · . . . · Xn = X1 + X2 + . . . + Xn

(dual :) X1 + X2 + . . . + Xn = X1 · X2 · . . . · Xn.
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1.7 Other Operations

In this paragraph, we define other operations in Boolean algebra: NAND, NOR, and

EXOR.

NAND

The NAND operation is equivalent to an AND whose output is negated:

X nand Y = (X · Y )

X Y (X nand Y )

0 0 1

0 1 1

1 0 1

1 1 0

Circuital symbols:

NOR

The NOR operation is equivalent to an OR whose output is negated:

X nor Y = (X + Y )

X Y (X nor Y )

0 0 1

0 1 0

1 0 0

1 1 0

Circuital symbols:

NAND and NOR are commutative but not associative.

XOR (Exclusive OR)

The XOR operation is said “anticoincidence” (it provides 1 when the inputs are

different):

X ⊕ Y = X xor Y = X Y + X Y

X Y X ⊕ Y

0 0 0

0 1 1

1 0 1

1 1 0

Circuital symbols:
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The XOR is commutative and associative. If we negate its output, we obtain the

“coincidence” function (equivalence of inputs):

X ⊕ Y = X Y + X Y

Generalized XOR

Is a multiple inputs XOR, written thus:

X1 ⊕ X2 ⊕ . . . ⊕ Xn =

{

1 if there is an odd number of inputs = 1

0 if there is an even number of inputs = 1

They are made with the typical structure of the XOR tree:

1.8 Functionally Complete Operation Sets

We have seen that Boolean algebra is based on a set of two elements {0, 1} and a set of

operations: OR, AND, NOT. Also, De Morgan’s Theorem shows that one of the two

AND or OR operations can be considered superfluous and the sets of {OR, NOT} or

{AND, NOT} are a sufficient basis to construct all of Boolean algebra. Let’s broaden

the subject by discussing other sets of operations that allows to construct Boolean

algebra (named, for this reason, Functionally Complete Operation Sets):

1. {AND, OR, NOT}

2. {NOR}

3. {NAND}

4. {OR, NOT}

5. {AND, NOT}

6. {EXOR, AND}

6. {EXOR, OR}

Note: in practice, only {NOR} and {NAND} sets are used.

{NOR} Set

We can obtain OR and NOT from NOR gates. If we connect a NOR as in the figure

below, we obtain a NOT. Given that the X and Y inputs are connected together, we

obtain the following from the NOR table:



12 1 Boolean Algebra and Combinational Logic

In fact:

X Y X nor Y

0 0 1

1 1 0

However, we obtain the OR gate by negating the NOR output with a NOT:

To obtain the AND, we apply De Morgan: X · Y = X + Y . We have:

{NAND} Set

Similar to the above, the NOT is obtained as follows, taking into account the two

lines of the NAND table where the two X and Y inputs are equal:

In fact:

X Y X nand Y

0 0 1

1 1 0

Therefore, to obtain the AND, it is sufficient to connect the NAND to a NOT made

with a NAND.

Finally, by De Morgan, we obtain the OR:
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Take note: there is another way to obtain the NOT by the NAND. By connecting

one of the inputs to the constant X = 1:

X Y X nand Y

0 0 1

1 1 0
we obtain:

Similarly, if we posit X = 0 for the NOR we get:

X Y X nor Y

0 0 1

0 1 0

we obtain:

{OR, NOT} Set

The AND is obtained by De Morgan’s Theorem.

{AND, NOT} Set

The OR is obtained by De Morgan’s Theorem.

{XOR, AND} Set

The NOT is obtained by the XOR as follows:

From the XOR truth table, we get:

X Y X ⊕ Y

0 0 0

0 1 1

1 0 1

1 1 0

positing X = 1:

X Y X ⊕ Y

1 0 1

1 1 0
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Note: If we change the constant X = 1 in 0, we get the identity. Therefore, we obtain

an inverting/identity function, “programmable” by the input X .

{XOR, OR} Set

The NOT is obtained through the XOR and the AND by using De Morgan’s Theorem.

Identity

Identity can be obtained in the following ways:

from OR: In fact:

X Y X + Y

0 0 0

1 1 1

from AND: In fact:

X Y X · Y

0 0 0

1 1 1

from XOR: In fact:

X Y X ⊕ Y

0 0 0

0 1 1

1.9 Shannon’s Expansion Theorem

First Form

A Boolean function can be broken down this way:

f (X1, X2, X3, . . . , Xn) = X1 · f (0, X2, X3, . . . , Xn)+

X1 · f (1, X2, X3, . . . , Xn)

The first of the two terms obtained is equivalent to the starting function but only

when X1 = 0, so it is conditioned by X1. Likewise, the second term, which applies

to X1 = 1, is conditioned by X1.

Now that we have seen the process, we can extract all the variables of the function:

f (X1, X2, X3, . . . , Xn) = X1 · X2 · f (0, 0, X3, . . . , Xn)+

X1 · X2 · f (0, 1, X3, . . . , Xn)+

X1 · X2 · f (1, 0, X3, . . . , Xn)+

X1 · X2 · f (1, 1, X3, . . . , Xn) =

= . . .
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In the end, every f (0, 1, . . .)-type entry will turn out to be a (0 or 1) constant. From

an n-variable function, we obtain 2n product terms in OR, where each term consists

of all the direct and negated variables.

As an example, let’s break down a f (C, B, A) into three variables:

f (C, B, A) = C B A · f (0, 0, 0)+

C B A · f (0, 0, 1)+

C B A · f (0, 1, 0)+

C B A · f (0, 1, 1)+

C B A · f (1, 0, 0)+

C B A · f (1, 0, 1)+

C B A · f (1, 1, 0)+

C B A · f (1, 1, 1)

The expanded form of the function is called sum of products, or first canonical form,

or AND–OR form.

Example

We want to derive the analytical expression from a Boolean function f (C, B, A)

defined through the truth table using the first form of the theorem.

C B A f

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

⇒

f = C B A · f (0, 0, 0)+

C B A · f (0, 0, 1)+

C B A · f (0, 1, 0)+

C B A · f (0, 1, 1)+

C B A · f (1, 0, 0)+

C B A · f (1, 0, 1)+

C B A · f (1, 1, 0)+

C B A · f (1, 1, 1)

=

C B A · 0 +

C B A · 1 +

C B A · 0 +

C B A · 0 +

C B A · 0 +

C B A · 1 +

C B A · 1 +

C B A · 0

=

C B A +

C B A +

C B A

Beginning by the definition, we substitute all the f (...)-type constants with the real

value of the function, taken directly from the truth table. We observe that in the

logical sum, the terms with 0 in AND can be omitted since they are always 0. We then

simplify the remaining terms corresponding to the lines with output 1 and eliminate

the product for the constant. The remaining expression is what we’re looking for. It

analytically expresses the behavior of the function in the first canonical form.

Second Form

The second form allows us to break down a function f into a product of sums:

f (X1, X2, X3, . . . , Xn) = (X1 + f (0, X2, X3, . . . , Xn)) ·

(X1 + f (1, X2, X3, . . . , Xn))

The first sum term is equivalent to the starting function after substituting X1 = 0 and

applies if X1 = 0 (otherwise the whole term is 1). The second sum term is equivalent
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to the starting function after substituting X1 = 1 and applies if X1 = 1 (otherwise

the whole term is 1). In other words, for a certain value of X1, one of the two terms

is always 1, while the other assumes the value of the function.

If we go through the break-down procedure until we exhaust all the f argument

variables, we obtain 2n terms in AND. Each term is composed of the logical sum

of all the direct or negated variables and the value of the function for that specific

combination:

f (X1, X2, X3, . . . , Xn) = (X1 + X2 + f (0, 0, X3, . . . , Xn)) ·

(X1 + X2 + f (0, 1, X3, . . . , Xn)) ·

(X1 + X2 + f (1, 0, X3, . . . , Xn)) ·

(X1 + X2 + f (1, 1, X3, . . . , Xn)) =

= . . .

Consider a three-variable function f (C, B, A); we obtain 23 OR terms in AND:

f (C, B, A) = (C + B + A + f (0, 0, 0)) ·

(C + B + A + f (0, 0, 1)) ·

(C + B + A + f (0, 1, 0)) ·

(C + B + A + f (0, 1, 1)) ·

(C + B + A + f (1, 0, 0)) ·

(C + B + A + f (1, 0, 1)) ·

(C + B + A + f (1, 1, 0)) ·

(C + B + A + f (1, 1, 1)

A function expanded this way takes on the second canonical form, or product of

sums, or OR–AND form. Any Boolean function can be expressed this way. For a

function with n-variables, we obtain 2n factors to multiply.

Example

Through the second form of Shannon’s Expansion Theorem, we derive the analyt-

ical expression of a Boolean function f (C, B, A), given the truth table that descri-

bes it.

C B A f

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

⇒

f = (C + B + A + f (0, 0, 0)) ·

(C + B + A + f (0, 0, 1)) ·

(C + B + A + f (0, 1, 0)) ·

(C + B + A + f (0, 1, 1)) ·

(C + B + A + f (1, 0, 0)) ·

(C + B + A + f (1, 0, 1)) ·

(C + B + A + f (1, 1, 0)) ·

(C + B + A + f (1, 1, 1)

=

f = (C + B + A + 1) ·

(C + B + A + 1) ·

(C + B + A + 0) ·

(C + B + A + 0) ·

(C + B + A + 0) ·

(C + B + A + 1) ·

(C + B + A + 1) ·

(C + B + A + 1)
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We have applied the definition of the second form of the theorem by substituting all

the f (...)-type constants with the values of the truth table. Given that the constant

term 1 in a logical sum absorbs the other variables and that adding 0 is redundant,

the function’s final expression is:

f = (C + B + A) · (C + B + A) · (C + B + A)

The expression expresses how the function behaves in the second canonical form.

1.10 Level of Boolean Expressions

The level is the maximum number of cascading operations made on the input vari-

ables. For example:

f = a + b is a one-level expression

f = ab + c is a two-level expression

f = ab + cd is a two-level expression

Take note: the levels are important for technical reasons. The more levels there are,

the longer the delays; we will focus mainly on syntheses of two-level networks.

When the number of levels has to be computed, we suppose all the input variables

and their complemented forms to be available. Thus, the expression f = ab + cd is

a two-level Boolean expression.

1.11 Literals

Literals are the number of input variables that make up a Boolean expression (not to

be confused with the number of variables).

For example: if f (a, b) is a logical function with two binary variables a and b:

f = a + b has 2 literals

f = ab + ab has 4 literals.
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1.12 Minterms

If an AND term in a Boolean expression contains all the direct or negated variables

in the entire expression, it is called a fundamental product, or minterm. For example:

f (X1, X2, X3) = X1 · X2 · X3 is a minterm.

An n-variable function has 2n minterms since every variable in the function must

be part of a minterm, in its direct or negated form. Note that among all the possible

combinations of variables, there is only one for which a certain minterm equals 1

(e.g., X1 · X2 · X3 = 1 if and only if X1 = 1, X2 = 1, X3 = 0).

1.13 Maxterms

If an OR term in a Boolean expression contains all the direct or negated variables in

the entire expression, it is called a fundamental sum, or maxterm. As above, if there

are n-variables, there are 2n maxterms. For example:

f (X1, X2, X3) = X1 + X2 + X3 is a maxterm.

Remember that there is only one combination of variables for which a certain max-

term equals zero (e.g., X1 + X2 + X3 = 0 if and only if X1 = 0, X2 = 1, X3 = 0).

1.14 Implicants

Given the Boolean expressions f and g, g is an implicant of f : g implies f (g ⇒ f )

or f covers g ( f ⊃ g) if f always = 1 when g = 1.

In this example: f (X, Y, Z) = XY + Z we have XY ⇒ f

Z ⇒ f

Every time Z and/or XY equal 1, f also equals 1. XY and Z are therefore implicants

of f . X does not imply f : in fact if X equals 1 f does not necessarily equal 1.

1.15 Prime Implicants

g is a prime implicant of f if:

• g ⇒ f ( f ⊃ g);
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• g is not covered by another implicant with fewer literals.

In other words, an implicant is prime if it equals 1 when no other implicant equals

1. An implicant, which is not prime, can be removed from the expression since it is

superfluous. In the example:

f = XY + X + Z

X and Z are prime implicants while XY is a non-prime implicant of f . In fact, to

have XY = 1 it is necessary that X = 1, but if X = 1 then f = 1 anyway, since X

already implies f (X ⊃ XY ).

1.16 Combinational Networks

A combinational network is defined as a logical circuit whose output depends only

on the combination of its inputs. In Chap. 5, we will discuss sequential networks

whose output does not only depend on the values of the inputs in that time but also

on the “inputs history.” In other words, we will see that these networks have memory

capacity.

A combinational network can be described in terms of a Boolean function. Note

some examples of combinational networks.

1.16.1 Example: Logical Network Analysis

We want to analyze the following circuit, obtaining its truth table:

It is composed of two known gates, so we can complete the truth table directly:

A B Out1 Out2

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

We will find this circuit again in Chap. 2, being an arithmetic circuit.
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1.16.2 Example: Two-Level Logical Network Analysis

As above, we will analyze the circuit, compiling its truth table:

By analyzing all the circuit paths, we must determine the output value F for all

the combination of A, B, C , and D. It is useful to include the intermediate outputs

in the truth table. The result of the analysis is:

A B C D A A B A C D F

0 0 0 0 1 0 0 0

0 0 0 1 1 0 0 0

0 0 1 0 1 0 0 0

0 0 1 1 1 0 0 0

0 1 0 0 1 1 0 1

0 1 0 1 1 1 0 1

0 1 1 0 1 1 0 1

0 1 1 1 1 1 0 1

1 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0

1 0 1 0 0 0 0 0

1 0 1 1 0 0 1 1

1 1 0 0 0 0 0 0

1 1 0 1 0 0 0 0

1 1 1 0 0 0 0 0

1 1 1 1 0 0 1 1

1.16.3 Example: Circuit Schematic of a Logical Network (1)

We want to draw the logical schematic of a circuit, given its Boolean expression:

F = A D + C B

The result is:
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1.16.4 Example: Circuit Schematic of a Logical Network (2)

If we draw the logical schematic of the circuit, given this Boolean expression:

F = A D C + C (A B + A (B + D))

The result is a five-level network:

For practice, if we derive the truth table of this circuit and the one of the previous

example, we see that the truth tables are identical! Perfect Induction shows that the

two networks are equivalent. We can also prove that they are equivalent through the

properties of Boolean algebra, as follows:

F = A D C + C (A B + A (B + D)) =

= A D C + C (A B + A B + A D) =

= A D C + C (B (A + A) + A D) =

= A D C + C (B + A D) = A D C + A D C + C B =

= A D (C + C) + C B = A D + C B.

1.16.5 Example: Defining the Behavior of a Logical Network

We want to define the truth table of a combinational network with three inputs A, B,

and C : output F must assume value 1 when the number of input 1s is odd.

First, we prepare the truth table (bottom left). Then, line by line, we count the 1s

and write the value of F based on the given definition. For example, in the last line
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we count three (an odd number of) 1s so we insert a 1 in the output column. In the

end, we get the table at the right.

A B C F

0 0 0 .

0 0 1 .

0 1 0 .

0 1 1 .

1 0 0 .

1 0 1 .

1 1 0 .

1 1 1 .

→

A B C F

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

1.16.6 Example: Circuit Schematic from the Truth Table

Let’s examine the table derived from the last example and start by writing the Boolean

expression of the function using the first form (AND–OR) of Shannon’s Theorem.

Then, we’ll draw its circuit schematic.

We obtain the following from the table:

F = A B C + A B C + A B C + A B C

The expression defines four three-input ANDs that merge into one single four-input

OR. After the components of this schematic are designed and interconnected, we

will connect inputs A, B, and C to the ANDs, taking any negations into account. In

the end, we get:
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1.16.7 Example: Controlling a Heating System

Designing the control circuit of a heating system.

The system is composed of a thermostat, a heater, and a switch. T , I , and C are

Boolean variables: the first two are inputs, the last, an output.

Defining the Variables

Given t0 as a certain threshold temperature, the thermostat indicates that we are above

or below it. Thus, we suppose that:

T = 0 (if t ≥ t0) T = 1 (if t < t0)

The heater could be ON or OFF:

C = 0 (heater OFF) C = 1 (heater ON)

The same goes for the switch, which could be ON or OFF:

I = 0 (switch OFF) I = 1 (switch ON)

Defining the Network Operation

For the heater to be ON (C = 1) it must be t < t0 (T = 1) and the switch must be

ON (I = 1).

Let’s translate this verbal description into the truth table:

• if I is OFF ⇒ heater is OFF (C = 0)

• if I is ON but (t ≥ t0) ⇒ heater is OFF (C = 0)

• if I is ON and (t < t0) ⇒ heater is ON (C = 1)

⇒

I T C

0 0 0

0 1 0

1 0 0

1 1 1

Synthesis

Synthesis is the process that allows us to find the logical expression (and the network

schematic) from a truth table. The resulting logical expression is C = I · T , and the

circuit representation is:
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Note: the values assigned to the three variables to represent the different physical

conditions are arbitrary. For example, we would be able to define I and C as before

and T as follows:

T = 0 se t < t0
T = 1 se t ≥ t0

gives us:

I T C

0 0 0

0 1 0

1 0 1

1 1 0

Notice that C = 1 if and only if I = 1 and T = 0. Here, the logical expression is

C = I · T . The new circuit representation is:

In the two cases, both C = I · T and C = I · T are minterms. There is one only

combination of I and T whose product is C = 1. In general, to synthesize a network

with just one 1 in the output, we take the minterm of the unique combination of

variables that give the output 1. We do this by inserting the variables that equal 1 in

that specific combination into the direct form and those that equal 0 into the negated

form.

1.16.8 Example: Two Channels Multiplexer (Selector)

This is a system that provides a Boolean output variable (U ) that copies one of the

two possible inputs (S1, S2), depending on the value of a control variable (SE L).

Before defining the problem in Boolean terms, let’s draw the timing diagram of

the possible S1s, S2s, and SE Ls over time and see how U should change.
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Let’s represent S1 and S2 as digital signals, that is, sequences of 0s and 1s that

vary over time and encode information such as a phone call or a TV program, ac-

cording to a certain standard. Without concerning ourselves with the type of code,

let’s use SE L to select which of the signals will be routed to output U .

From the image above, we see that U needs to assume the values of S1 if SE L = 0,

or of S2 if SE L = 1. Thus, it is possible to define the truth table. Notice that the

table is valid “moment by moment,” and does not describe the history of the network

operations:

SE L S1 S2 U

0 0 0 0

0 0 1 0

0 1 0 1 (a)

0 1 1 1 (b)

1 0 0 0

1 0 1 1 (c)

1 1 0 0

1 1 1 1 (d)

Let’s apply the first form of Shannon’s Expansion Theorem: meaning, let’s do an

AND–OR canonical synthesis. For all the 1s in the output column, let’s write the

corresponding minterms, merging them in a OR:

U = SE L · S1 · S2 + (a)

SE L · S1 · S2 + (b)

SE L · S1 · S2 + (c)

SE L · S1 · S2 (d)

This is the circuit schematic, including the NOTs (three suffice):
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Notice that every time we see one of the four combinations that the table assigns at

1, the corresponding minterm (and only that) generates a 1. The OR makes it so that

the output U goes to 1 for all four combinations above.

Minimizing

The AND/OR canonical form that we derived can be minimized by using the proper-

ties of Boolean algebra. We need to minimize the number of literals of the expression

that describes the network. Let’s see the following:

U = SE L · S1 · S2 + SE L · S1 · S2 + SE L · S1 · S2 + SE L · S1 · S2 =

= (S1 · S2 + S1 · S2) · SE L + (S1 · S2 + S1 · S2) · SE L =

= ((S2 + S2) · S1) · SE L + ((S1 + S1) · S2) · SE L =

= S1 · SE L + S2 · SE L

Take into account that (S1 + S1) = 1 and (S2 + S2) = 1. Originally the expression

had 12 literals; now it only has four. See the logical schematic below. The network’s

complexity is markedly reduced:
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The final expression:

U = S1 · SE L + S2 · SE L

can also be reinterpreted intuitively. It simply says that output U copies S1 when

SE L is 0 (thus SE L = 1), while it copies S2 when SE L is 1.

Note: we went through the analytical process of minimization for practice. To reduce

the complexity of a Boolean function, we can use simpler methods like the “maps”

that we will see in Chap. 2.

1.17 Exercises

1. Negate the following term and transform it into a four-term logical sum.

A B C D

2. Negate the following term and then transform it into a single product term.

A + B + C

3. Using the theorems of Boolean algebra, minimize the following logical expres-

sion:

A + A B + C B + C B

4. Using the theorems of Boolean algebra, it is possible to prove that the following

expression equals 1 only when A and B are contemporaneously at 1 or when D

is at 1 and C is contemporaneously at 0:
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F = A C B + A C B + A D + B C D + B C + B D

5. Minimize the following logical function with the criteria of Boolean algebra.

Y = A (A + B) + C + B C

6. Using De Morgan’s theorem, minimize the following logical function:

Y = A + A B + C D

7. Design the circuit that implements the expression A B + A B C (B + C), and

verify that it is equivalent to the following network:

8. Design the circuits corresponding to the following logical expressions:

(a) C = (A + B) + A B

(b) D = A (B + C) C

(c) E = A D (C + D)

(d) G = A B C + D (C + A B C)

9. Do the following conversions between the canonical forms:

(a) F = A B C + A B C + A B C + A B C to the OR–AND form.

(b) G = (A + B + C)(A + B + C)(A + B + C) to the AND–OR form.

10. Analytically derive the logical function of the following circuit:
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1.18 Solutions

1. A B C D = A + B + C + D = A + B + C + D

2. A + B + C = A B C = A B C

3. A + AB + C B + C B = A(1 + B) + C(B + B) = A + C

4. We need to demonstrate that the expression given equals the one below:

F = A B + C D

By minimizing the expression given we obtain:

F = A C B + A C B + A D + B C D + B C + B D =

= A C (B + B) + A D + B C (D + 1) + B D =

= A C + A D + B C + B D =

= A (C + D) + B (C + D) =

= (A + B) · (C + D) =

= (A + B) + (C + D) = A B + C D

5. We obtain:

Y = A (A + B) + C + B C =

= A A + A B + C + B C = A B + C + B C + B C =

= A B + C + B (C + C) = AB + C + B =

= B + C

6. We obtain:

Y = A + AB + C D = A(1 + B) + C D = A + C D = A(C + D)

7. The network is as follows:
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Minimizing the expression of F :

F = A B + A B C (B + C) = A B + A B C B + A B C C =

= A B + A C (B B) + A B (C C) = A B + A C (0) + A B (0) =

= A B

8. These are the circuits corresponding to the expressions:

(a) C = (A + B) + A B:

(b) D = A (B + C) C :

(c) E = A D (C + D):

(d) G = A B C + D (C + A B C):
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9. (a) We derive the truth table and represent the negated output.

A B C F F

0 0 0 0 1

0 0 1 0 1

0 1 0 1 0

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 0 1

From this table, we derive the AND/OR expression of the negated function

and we apply De Morgan’s Theorem.

F = A B C + A B C + A B C + A B C

= (A + B + C)(A + B + C)(A + B + C)(A + B + C) =

Finally, we once more negate the whole expression.

F = (A + B + C)(A + B + C)(A + B + C)(A + B + C).

(b) We complete the truth table, from which we will then directly derive the

AND–OR canonical synthesis.

A B C G

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

G = A B C + A B C + A B C + A B C + A B C

10. F = A C D + (A D + A B + C).



Chapter 2

Combinational Network Design

Abstract This chapter deals with the transition from Boolean algebra to the imple-

mentation of combinational networks. Karnaugh maps provide a simple and intuitive

method to represent and minimize functions with a few variables. The Variable-

Entered Maps extend their usefulness and overcome some of their limitation. Stan-

dard networks such as decoders, multiplexers, and demultiplexers provide a wider

view of combinational circuits, where the random approach of classical synthesis

is enriched with an architectural one that introduces the concepts of programmable

logic. Finally, this chapter deals with time behavior of non-ideal components and its

implications on the synthesis.

2.1 Karnaugh Maps

In Chap. 1, we used two “languages” to describe a logical network: Boolean expres-

sions and truth tables. Here, we will see a third language: maps.

Describing a function through its Boolean expression or truth table makes sim-

plifying them logically an arduous task. Maps offer a way to write truth tables in a

format that makes simplification easier. As we will see, maps order and highlight

minterms because they have a geometric structure that makes applying the absorption

and logic adjacency properties easy.

Absorption:

A + A B = A A + A B = A + B

A · (A + B) = A A · (A + B) = A B

Logic Adjacency:

A B + A B = A

(A + B) · (A + B) = A

Given a two-variable function f (A, B), we represent in a two-dimensional space (A,

B) its set definition, which consists in the four combinations (A, B):
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For a three-variable function f (A, B, C), the set of definition can be represented in

a three-dimensional space by placing each of the eight possible combinations of A,

B, and C at the vertexes of a cube:

By moving along one edge of the cube from one vertex to another, geometrically

adjacent one, we see that only one variable changes value.

There is logic adjacency between two combinations of variables when they are at

distance 1; that is, they differ by only one variable.

The cube above is an order-3 cube. Within its structure, various cubes of inferior

order, or subcubes, can be identified. The order is the number of geometrical dimen-

sions: a square is an “order-2” (two-dimensional) cube; an n-order cube will have 2n

vertexes. In the cube above, we see:

• Eight vertexes (order-0 cubes): Every vertex has one single combination of all

the variables; for example, in the vertex (1,1,1) all the input variables have the

value 1.
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• Twelve edges (order-1 cubes): Each edge has two combinations of variables at

distance 1. In other words, each edge is univocally located by one single pair of

two-out-of-three variables; e.g., the upper left-hand edge of the figure is defined

by B = 0 and C = 1.

• Six faces (order-2 cubes): Each face has four different combinations of variables,

and it is univocally located by the value of a single variable; e.g., the farthest right

face in the figure is defined by B = 1.

Now that, we have made these preliminary points, and let’s draw the map correspond-

ing to a three-dimensional cube by “cutting it out” and arranging its eight vertexes

on a plane, maintaining as much as possible the same position they had in space.

The map is a lattice of cells, each containing one of the vertexes:

We see that:

• In the four lower cells, C = 1.

• In the four higher cells, C = 0.

• In the four cells to the right, A = 1.

• In the four cells to the left, A = 0.

• In the four central cells, B = 1.

• In the four lateral cells, B = 0.

So, we can represent the areas of the map by using the variables as the “coordinates”

of the cells. One method is shown in the figure below (left), where the values of the

variables identify the rows and columns.

The figure below (right) divides the map into geometrical areas corresponding to

the values of the variables. This is the method we will use in this book. The name of

each variable is drawn in correspondence with the area where it equals 1.
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Since a map’s cell corresponds univocally to one combination of variable values, it

is possible to copy into the cell itself the corresponding function value f (C, B, A)

for that specific combination.

These types of maps are called Karnaugh maps (or K-maps).

2.2 Using Maps for AND-OR Synthesis

Here, we will look at the truth table of the multiplexer we examined in Chap. 1:

SE L S1 S2 U

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

Let’s copy the function values into a Karnaugh map:
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The expression of the AND-OR canonical form that we found was:

U = S1 · S2 · SE L + S1 · S2 · SE L + S1 · S2 · SE L + S1 · S2 · SE L

In the following figure, we see the minterms and their position on the map.

Remember that cells are adjacent if they are at distance 1, that is if they differ by one

variable only. On the map, we can group together the 1s that are at distance 1 in two

unidimensional subcubes (or “groupings”):

In each grouping, we have a variable whose value changes within the group, while

the values of the other variables do not. For each grouping, let’s write a term that

contains only the variables whose value remains the same and ignores the others.

From the upper grouping, we get S1 · SE L: this is the area where S1 = 1 and

SE L = 0, while S2 assumes different values.

Likewise, we have S2 · SE L in the lower grouping: this is the area where S2 = 1

and SE L = 1, while S1 varies.

In the end, by adding the terms obtained, we quickly and directly derive the

minimized expression:

U = S1 · SE L + S2 · SE L

In Chap. 1, we obtained the same expression by minimizing the canonical form using

the properties of Boolean algebra.
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Proof

In the above right grouping, the two minterms are:

S1 · S2 · SE L and S1 · S2 · SE L

In OR, these two terms can be simplified:

S1 · S2 · SE L + S1 · S2 · SE L =

S1 · SE L · (S2 + S2) =

S1 · SE L

The eliminated variable, S2, is the one that assumes different values within the

grouping. The other term is treated likewise: here, the variable that changes is S1,

thus showing:

S1 · S2 · SE L + S1 · S2 · SE L =

S2 · SE L · (S1 + S1) =

S2 · SE L

The function is U = S1 · SE L + S2 · SE L , as defined above.

2.2.1 Implicants and Prime Implicants in Karnaugh Maps

Consider the following map.

From the two unidimensional subcubes, we derive:

U = A B + A B

Each one is an implicant because if A B or A B equals 1, the function U also equals

1. Let’s now consider the two-dimensional subcube that comprises all the 1s as in

the following figure.
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In this subcube, the only variable that does not change is A: thus, the function is

reduced to the expression U = A. We could reach the same conclusion this way:

U = A B + A B = A (B + B) = A

The simplification is possible because A B and A B are not prime implicants while A

is. To obtain the best grouping, we must locate the largest possible subcubes. If there

is no largest subcube that completely covers what we are considering, it is called a

prime implicant.

Let’s see some examples of how to derive the expression of the function from the

maps. From the map on the left, we derive U = A B C , while we get U = B C from

the one on the right.

Despite appearances, the two cells are logically adjacent, in the map on the right.

As we have seen, the map is a representation on a two-dimensional space of a multi-

dimensional cube. So, we need to imagine the map as a piece of paper that can be

folded over itself vertically and horizontally; the upper and lower edges and the right

and left edges are adjacent to each other. As proof, note that only variable A changes

between each two pair of cells.

Now, consider the following map:

The largest subcube containing the 1s is highlighted: thus U = B.
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Now let’s look two borderline cases. The map on the left has a 1 in every cell and

represents the constant function U = 1; likewise, the map on the right only contains

0s, represented by the constant U = 0:

In a three-variable map, we have seen that all the minterms that differ by one variable

are represented on the map by adjacent cells. This also holds for four-variable maps,

as in the following example:

From this map, we get: U = A B D + B C D.

Five-variable maps (order-5) can be represented by two order-4 maps, in which

cells in the same position in the two maps are adjacent (imagine one map on the top

of the other):
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The cells with asterisks are adjacent: it is therefore possible to group them and,

therefore, eliminate the variable E.

Six-variable maps are made with four order-4 maps. Higher order maps are too

complicated to represent.

2.2.2 Using Maps for Minimization

Let’s define the essential prime implicant as the only prime implicant that contains

a certain 1 on the map. On the following map, for example, there are two order-1

essential prime implants and one order-2 essential prime implicant.

The cells with the 1s can be considered more than once. This is useful for finding

higher order subcubes. We obtain the synthesis:

U = Y Z + X Y W + X Y W

An implicant completely covered by essential prime implicants is called a redundant

implicant. Redundant implicants, as such, must be eliminated from the synthesis.

Therefore, by using the maps, we obtain the minimum synthesis by taking only the

essential prime implicants.

2.2.3 “Checkerboard” Maps

A checkerboard map, as seen in the figure below, cannot be minimized in terms of

two-level AND-OR or OR-AND networks.
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It can be verified that it represents an XOR tree:

U = A B C + A B C + A B C + A B C =

= (A B + A B) · C + (A B + A B) · C =

= (A ⊕ B) · C + (A ⊕ B) · C =

= A ⊕ B ⊕ C = (A ⊕ B) ⊕ C

⇒

⇒

2.2.4 Examples of AND-OR Synthesis

1. Considering the truth table below, let’s complete the map at the right.

A B C D F

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 1

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 0

1 1 0 1 1

1 1 1 0 0

1 1 1 1 1

⇒
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The grouping in the third row gives us the term A C D; the grouping in the second

gives us B C D, thus: F = A C D + B C D. Let’s verify:

A B C D + A B C D = A C D (B + B) = A C D

A B C D + A B C D = B C D (A + A) = B C D

2. Let’s simplify F = A B C + A B C + A B C . We get this map:

By grouping the two 1s at the left we get: A B. The overall function:

F = A B + A B C .

3. Let’s synthesize the following map:

The four 1s that are adjacent even though on opposide edges, can be grouped into

a single product. The resulting function is:

F = B D.

4. Likewise, we synthesize the other map with the 1s at the angles.
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As above, we group one single term. The function is:

F = B D.

5. Let’s derive the function from the map below:

The groupings all have four bits. The upper grouping provides the term B C ; in

the second row, we have C D; at the bottom left, we get A C . So, the desired

function is:

F = B C + C D + A C.

6. Here is another example (cyclical map):
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There are four order-1 essential implicants, so we get:

U = X Z W + Y W Z + X Z W + Y Z W

2.3 OR-AND Synthesis

In an AND-OR synthesis, we have seen that we synthesize the 1s of the function

through the AND of the input variables. They are direct if the variable equals 1 and

negated if it equals 0. Then, all outputs of the AND gates are OR-ed together.

In the OR-AND synthesis, according to the second form of Shannon’s theorem,

we synthesize the 0 of the function through the OR of the input variables (direct if

0 and negated if 1) and all the ORs end up in an AND.

To minimize the OR-AND synthesis using Karnaugh maps, the property of logic

adjacency is still valid. Let’s take the two-input channel multiplexer as an example,

but use the OR-AND technique. Here is the truth table:

SE L S1 S2 U

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

After completing the map with the corresponding values from the table, we identify

the subcubes that group the 0s (the rules are the same as for the subcubes with 1s).

In the map below, we see the best grouping possible for our example:
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From this, we directly derive the minimized OR-AND expression:

U = (S1 + SE L) (S2 + SE L).

2.3.1 Synthesis of the Negated Function

For an OR-AND synthesis, we can work differently, by first doing the AND-OR

synthesis from the 0s as if they were 1s and as if the function were negated.

If we apply this method to the previous example, we get the following AND-OR

synthesis of U :

U = S1 · SE L + S2 · SE L

By applying the De Morgan Theorem, we obtain the OR-AND expression:

U = (S1 + SE L)(S2 + SE L)

Note that it is not possible to obtain the OR-AND synthesis by applying the principle

of duality directly to the AND-OR expression.

2.4 NAND-NAND Synthesis

Once we have the AND-OR synthesis, we can implement the function with a network

composed exclusively of NANDs (NAND-NAND synthesis) by substituting every

OR or AND with a NAND, as in the figure below:

Proof :

Let’s substitute the ANDs on the left with NANDs followed by NOT. Then, let’s apply

De Morgan’s Theorem to the OR gate, transforming it into AND, whose inputs and

output are negated:
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Let’s merge the AND gate with the NOT that follows and obtains a NAND, and then

separates the two NANDS on the left from the NOTs.

Finally, when we eliminate the double negation, we get the NAND-NAND network.

If the AND-OR function has one or more inputs that go directly to the OR gate, they

must be negated.

2.5 NOR-NOR Synthesis

Starting from an OR-AND network, we substitute each OR or AND with a NOR

gate and get a NOR-NOR synthesis as in the example below. The proof is analogous

to the NAND-NAND network.
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2.6 Standard Combinational Networks

These are general-use combinational networks with a regular circuit structure that

are available to the user as functional blocks.

2.6.1 Decoders

Decoders have n inputs and 2n outputs: every combination of inputs activates one

and only one output.

A 3 → 8 decoder has 3 inputs and 8 outputs:

As we can see in the truth table below, output activation occurs in order. The combi-

nation A2A1A0 = “000” activates the output Y 0 and so on until A2A1A0 =“111”

activates output Y 7:

A2 A1 A0 Y 0 Y 1 Y 2 Y 3 Y 4 Y 5 Y 6 Y 7

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1
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Synthesizing a truth table with eight outputs requires using a combinational network

for each output. Here, each output is activated by a single combination of inputs, so

maps are not useful since each output calls for only one minterm. The figure below

shows the synthesis of the 3 → 8 decoder:

Decoders generally have one enable input. When the decoder is enabled, it behaves

as described above; otherwise, no output is activated. In the figure below, we see the

synthesis of the output Y 0, with the enable input EN .

Y 0 = A0 A1 A2 EN
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The figure below shows the “Dec 3–8” component from the Deeds library, along

with its truth table (notice the functionality of the E N input):

E N A2 A1 A0 Y 0 Y 1 Y 2 Y 3 Y 4 Y 5 Y 6 Y 7

0 − − − 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0 0

1 0 0 1 0 1 0 0 0 0 0 0

1 0 1 0 0 0 1 0 0 0 0 0

1 0 1 1 0 0 0 1 0 0 0 0

1 1 0 0 0 0 0 0 1 0 0 0

1 1 0 1 0 0 0 0 0 1 0 0

1 1 1 0 0 0 0 0 0 0 1 0

1 1 1 1 0 0 0 0 0 0 0 1

More than one decoder can be connected in order to form a larger one. For example,

with two “Dec 3–8s” we get a 4 → 16 decoder:
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The truth table below can be divided into two parts: the upper part where the input

A3 = 0 and the lower part where A3 = 1. The “Dec 3–8” that generates the first

eight outputs must be enabled (E N = 1) when A3 = 0 and the other when A3 = 1.

A simple NOT, as we see in the logic diagram, does the job.

A3 A2 A1 A0 Y 0 Y 1 Y 2 Y 3 Y 4 Y 5 Y 6 Y 7 Y 8 Y 9 Y 10 Y 11 Y 12 Y 13 Y 14 Y 15

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

We can extend this technique at will to obtain larger decoders than the ones available.

Decoders are very important because they are very commonly used. For example,

they represent the fundamental component to implement “addressing” of digital

system devices. In other words, they allow us to use an identification number to

identify and/or select the elements of a system and operate on them, as with memories

and microcomputer systems.

2.6.2 Multiplexer

The “multiplexer” (short form “mux,” or “channel selector” or simply “selector”)

is a combinational network with 2n data inputs, one single output, and n selection

inputs. The output assumes the input value identified by the selection inputs.
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We have already seen the two-input channel selector and how it is created through

logical gates. In this case, input S selects which of the two I0 and I1 inputs will be

reproduced as the output.

It is easy to extend this concept to multiplexers with a higher number of inputs. In

the figure below, three inputs S2, S1, and S0 control which of the eight inputs (I0..I7)

will be brought over to the output.

The network has eight data inputs and three selection inputs. It is impractical to do

the synthesis through the truth table of a network with 11 inputs (providing 2048

rows in the table). The concept of decoding (see below) can help here.
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Sending the selection inputs to a decoder, we enable only one of the eight AND gates

that transmit each of the eight inputs I0..I7 through the OR gate.

Considering the circuital structure of the decoder already discussed, by just adding

an input to each of the AND gates that generate the decoder’s outputs, we can get

rid of the eight external ANDs. The result is that the network is reduced to just two

levels, as in the next figure.

2.6.3 Demultiplexers

The demultiplexer (“deselector” or “DEMUX”) is a combinational network with

only one data input I N , n selection inputs, and 2n outputs. It is a combinational

network that mirrors the multiplexer. The value of the single input is transferred to

one of the many outputs, which is chosen by the logical value of the selection inputs.

The next figure shows an example of an eight-output demultiplexer.
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The truth table is represented below. The non-selected outputs always generate 0,

while the selected one (from S2, S1, and S0) copies the value of input I N . Therefore,

in the first row of the table, (for any S2, S1, and S0 with I N = 0), the selected and

non-selected outputs all equal 0. However, on the other half of the table (for I N = 1),

the selected output equals 1, since it copies input I N :

I N S2 S1 S0 Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

0 − − − 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0 0

1 0 0 1 0 1 0 0 0 0 0 0

1 0 1 0 0 0 1 0 0 0 0 0

1 0 1 1 0 0 0 1 0 0 0 0

1 1 0 0 0 0 0 0 1 0 0 0

1 1 0 1 0 0 0 0 0 1 0 0

1 1 1 0 0 0 0 0 0 0 1 0

1 1 1 1 0 0 0 0 0 0 0 1

This truth table could be examined from another perspective: all the outputs are 0

when input IN equals 0, while the only output at 1 is the selected output if IN equals

1. This behavior matches that of a decoder with an enable input. It follows that a

decoder with an enable input can be used as a demultiplexer, using the enable input

as a data input.

The figure below shows that the “Demux 1–8” and “Dec 3–8” (Deeds components)

are equivalent:
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Example

When a multiplexer and a demultiplexer are connected as in the following figure,

they allow data transfer from more than one source through a single line to more

than one destination. This is especially useful when the transmitting system is very

far from the receiving system: it can make radio or cable transmission practical.

The multiplexer’s T 2, T 1, and T 0 selection inputs allow us to choose the source

to transmit, while R2, R1, and R0 select the data destination.

2.6.4 Seven-Segment Display Decoder

A seven-segment display is a device for visualizing numbers and letters. It has seven

inputs, one for every luminous segment. Let’s assume that a 1 turns on the corre-

sponding segment, while a 0 keeps it off. The segments are denoted by the lower-case

letters “a, b, c, d, e, f, g” as in the figure below.

The “hexadecimal” (Hex) code will be examined in Chap. 3 but for now suffice it to

say that it encodes, using 4 bits, the decimal digits from 0 to 9 followed by the first

six letters of the alphabet (for a total of 16 symbols).

According to the four-bit input binary number DC B A, the decoder must activate

the segments that make up the corresponding hexadecimal symbol, as seen in the

figure below.

The decoder will have seven outputs: a, b, c, d, e, f , and g, one for each segment.

Each of the outputs is controlled by an independent combinational network that

switches that particular segment on or off.
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The following table describes the networks that generate a, b, c, d, e, f , and g

(the Hex column was inserted to facilitate understanding).

D C B A a b c d e f g Hex

0 0 0 0 1 1 1 1 1 1 0 0

0 0 0 1 0 1 1 0 0 0 0 1

0 0 1 0 1 1 0 1 1 0 1 2

0 0 1 1 1 1 1 1 0 0 1 3

0 1 0 0 0 1 1 0 0 1 1 4

0 1 0 1 1 0 1 1 0 1 1 5

0 1 1 0 1 0 1 1 1 1 1 6

0 1 1 1 1 1 1 0 0 0 0 7

1 0 0 0 1 1 1 1 1 1 1 8

1 0 0 1 1 1 1 1 0 1 1 9

1 0 1 0 1 1 1 0 1 1 1 A

1 0 1 1 0 0 1 1 1 1 1 B

1 1 0 0 1 0 0 1 1 1 0 C

1 1 0 1 0 1 1 1 1 0 1 D

1 1 1 0 1 0 0 1 1 1 1 E

1 1 1 1 1 0 0 0 1 1 1 F

Below is the synthesis of the networks that drive segments “a” and “b”.

a = A D + B D + B C + B C D + A C D + A C

b = C D + A C + A B D + A B D + A B D

Likewise, we find the other outputs.
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2.6.5 Seven-Segment BCD Decoder (using “don’t-cares”)

We want to design a similar device to visualize only the decimal digits from 0 to 9.

Since there are only ten symbols to represent, we need only ten input combinations.

On the other hand, ten combinations still require four inputs (if there were three

inputs, there would only be 23
= 8 combinations available), so there are six unused

combinations.

When the input is a combination that does not correspond to any decimal digit,

the problem of what to visualize on the screen can be resolved by two different

approaches:

• Leave all the segments of the display off.

• Ignore which segments are on or off.

The purpose of the device is actually to decode a decimal number, not to operate

on combinations that fall outside the expected ones. In practice, we hypothesize the

inputs DC B A always remain within the constraints, in this case, meaning combina-

tions from “0000” to “1001” (from 0 to 9 in decimal figures).

If we are not interested in what we will visualize if we have unexpected combina-

tions (the second approach), we place the symbol “-” meaning “don’t-care”) on the

table and the maps corresponding to the outputs related to nonsignificant inputs. This

symbol will then be treated in the synthesis randomly as either 0 or 1, in order to get

the most economical implementation of the device. This is, therefore, the decoder’s

truth table:
D C B A a b c d e f g Dec

0 0 0 0 1 1 1 1 1 1 0 0

0 0 0 1 0 1 1 0 0 0 0 1

0 0 1 0 1 1 0 1 1 0 1 2

0 0 1 1 1 1 1 1 0 0 1 3

0 1 0 0 0 1 1 0 0 1 1 4

0 1 0 1 1 0 1 1 0 1 1 5

0 1 1 0 1 0 1 1 1 1 1 6

0 1 1 1 1 1 1 0 0 0 0 7

1 0 0 0 1 1 1 1 1 1 1 8

1 0 0 1 1 1 1 1 0 1 1 9

1 0 1 0 − − − − − − − −

1 0 1 1 − − − − − − − −

1 1 0 0 − − − − − − − −

1 1 0 1 − − − − − − − −

1 1 1 0 − − − − − − − −

1 1 1 1 − − − − − − − −

The “don’t-cares” allow us to minimize the network more efficiently since we can

make them into 0s or 1s in order to choose the largest subcubes.
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For example, we can choose among four subcubes for output “a”, as below:

We get: a = B + D + A C + A C .

2.6.6 Using Multiplexers to Synthesize Combinational

Networks

An interesting way to create combinational networks without going to the synthesis

procedure is to use a multiplexer. This method has the advantage of allowing the

network to be re-configured, even while it is working, when it is matched with

memorization systems (which we have not seen yet).

We use multiplexers like those we studied earlier that allow us to generate the

desired function by selecting the values of the function itself as if we were reading

them from the truth table. We need to have the truth table of the function. If, however,

we start from the Boolean expression, we must obtain the truth table from it.

Example 1:

Synthesize with a multiplexer a function f (A, B, C), which is expressed as:

G = B C + A B C + A B C.

Let’s get the truth table:

A B C G

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

As shown in the next figure (left), we prepare a network based on a multiplexer

8 → 1 connecting input variables A, B, and C to the selection inputs.
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Thus (same figure, right), we connect the eight inputs I 0..I 7 of the multiplexer

to constants 0 and 1 in the same order as they appear in the truth table.

The network is ready: for each combination of inputs A, B, and C , the multiplexer

will transfer the value we have set as input over to the output.

Example 2:

The function is: H = A B D + A B D + B C D + A C D.

There are four inputs (A, B, C , and D), but we want to use a multiplexer with just

three selection lines. The trick is to condition the eight inputs I 0..I 7 to the value of

input D.

Let’s derive the truth table from the expression: its farthest right column reports

the value of H as a function of D taken from the same table.

The figure on the right shows the resulting network when the constants and the

inputs D and D are connected:

A B C D H H

0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 1

0 0 1 1 0 D

0 1 0 0 0

0 1 0 1 1 D

0 1 1 0 1

0 1 1 1 1 1

1 0 0 0 0

1 0 0 1 1 D

1 0 1 0 0

1 0 1 1 1 D

1 1 0 0 0

1 1 0 1 0 0

1 1 1 0 1

1 1 1 1 0 D

⇒
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2.7 Variable-Entered Maps

Now, let’s discuss a method of synthesis using Karnaugh maps that contain variables.

This method will be used (in Chap. 7) to synthesize Finite State Machines (FSMs)

with the ASM method, since applying the rules of synthesis will directly produce this

type of map. The figure below shows an example of a map with entered variables.

Aside from variables A, B, and C , shown around the map, let’s look at variables

E and G shown inside two of the cells. This map shows a five-variable function

f (A, B, C, E, G). Writing a certain variable (or an entire expression) inside a cell

means conditioning the result of the function to that variable or expression.

In the example here, the upper left-hand cell corresponds to the minterm A B C ;

however, since the variable is in the cell, the term must be conditioned to E , giving:

A B C E .

In the upper right-hand cell, we condition the corresponding minterm to the vari-

able G, giving: A B C G. The resulting function is:

f = A B C E + A B C G + A B C

In this example, the function’s expression cannot be minimized, but in general the

problem of minimization exists. Now, let’s look at one of the methods to obtain a

minimum synthesis (or at least minimized as far as possible).

2.7.1 Synthesizing Maps with Entered Variables

Here, we examine a method for synthesizing maps with entered variables. In the

example, we find variable X3 in a cell and its negated form in another. We take the

following steps:

1. We reduce all the variables on the map to zero and synthesize the 1s.

We obtain the first partial result. f ′
= X1 X2.
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2. We turn the 1s synthesized in step 1 into don’t-care terms. We then choose the

cells containing the same variable, making them equal to 1, leaving the remaining

ones at 0. We consider the variable and its negated value to be two independent

variables to be considered one by one in two different steps. We then synthesize

this map and place the result in AND with the chosen variable.

We write the second partial result as: f ′′
= X2 X3.

We repeat step 2 for all the other variables on the map. When this cycle of steps

is finished, the equivalent expression is given by the OR of all the AND expressions

found. In the example, step 2 is repeated once more:

From which we derive the last partial result: f ′′′
= X1 X2 X3 , so the final expres-

sion is:

f = f ′
+ f ′′

+ f ′′′
= X1 X2 + X2 X3 + X1 X2 X3

Example 1: Given the following map, derive the corresponding function.

1. Set the cells containing D and D to 0 and synthesize the remaining 1s. Note that

the don’t-care terms remain the same and could be used to minimize the map,

although it would not help in this example.

We obtain the expression: f ′
= A B C .
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2. We substitute the only 1 on the map with a don’t-care term, set the cells containing

D at 1, and set the cells with D at 0.

This way, we obtain the synthesis C , which is placed in AND with D, so the

second term of the desired expression is: f ′′
= C D.

3. We repeat step 2 for the cells with D, as if this were an independent variable from

D, by setting the cells with D to 1 and those with D to 0.

From this map, we derive the term A B. When this is placed in AND with D, it

provides the last term of the desired expression: f ′′′
= A B D.

4. The final expression is: f = f ′
+ f ′′

+ f ′′′
= A B C + C D + A B D.

Example 2: Deriving the function from a map with two entered variables:

After the first step, we get A C . Note that an equally valid synthesis of step 1 could

be B C . Let’s start to do step 2, by inserting 1 in the cells with D, and 0 in those with

E e E :

The synthesis of the map gives C , so the desired term is C D. Notice how only the

considered variable enters into the term, while the others appear neither in direct nor

in negated form.

Let’s do step 2 again, this time for E : we reduce cells D and E to zero:
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Synthesizing the map provides the term A B, hence A B E . Finally, we do step 1

once again for cells containing E , reducing those with D and E to zero:

We obtain the term A B, which gives us A B E . The final expression is:

f = A C + C D + A B E + A B E

2.7.2 Entered Variables and Theorems of Expansion

A map with entered variables could be considered a hybrid, a middle ground between

representing logical networks through their Boolean expression and doing it through

their Karnaugh map.

The “classic” K-map that contains only 0s and 1s is none other than a map with

entered variables that happens to lack entered variables. If we enter all the variables

of a map, what we obtain in the only remaining cell is the Boolean expression of

the network. It would be possible to demonstrate, by using Shannon’s expansion

theorems, how maps with entered variables can result from the “compression” of

ordinary Karnaugh maps and vice versa.

It is interesting to look again at the map of the two-input multiplexer and compare

it with the map of the same network with entered variables, obtained by compressing

the K-map by entering the variables S1 and S2.

It would have been much simpler to create the map with entered variables by means

of the multiplexer’s specifications: if SE L = 0, the output is S1, and if SE L = 1

the output is S2. In fact, the variable-entered map can be seen as a synthetic tool for

describing combinational networks.
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2.8 Time Behavior of Combinational Networks

2.8.1 Definitions and Timing Models

A logical gate introduces a delay between the change in value of the input and that of

the output. In the figure below, the input and output signals of a NOT are represented

in idealized form, since the transitions between logical values are instantaneous.

tPHL : propagation time (high to low)

tPLH : propagation time (low to high)

The delays in this form are called transport delays. This idealized model makes them

quick and easy to read.

For simplicity’s sake, we could denote propagation times generically as:

tp = max( tP L H , tP L H )

When necessary, it is useful to adopt a more realistic signal model where level

transitions (edges) do not occur instantly (in 0 time) but in finite times with linear

progression. We use this model to describe inertial delays:

With this model, we assume that the logical level transitions occur when the signal

reaches (rises to or lowers to) 50% of its excursion.

Propagation times tP H L and tP L H are the times between the signal-level transition

at input and that at output.



2.8 Time Behavior of Combinational Networks 65

The rise time tr is the time interval between 10 and 90% of the signal excursion

from low to high. In a similar way, the fall time t f is defined as the time interval

between 10 and 90% of the signal excursion from high to low. Make sure not to

confuse rise and fall times with propagation times.

Representation through transport delays requires only the translation of the output

signal over the input signal over time and does not explain the fact that in reality,

signals whose duration falls under a certain threshold are not propagated.

The inertial model, however, does allow us to represent this behavior. Let’s look

at the following logical circuit.

If we analyze the circuit with a digital circuit simulator set to calculate only the

transport delays, we get:

Thus, based on this model, there should be two short pulses on the OUT output due

to the delay differences along the signal paths and the difference between times tP H L

and tP L H .

If we repeat the simulation using the inertial delay model, we get:
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In this new, more realistic simulation, we see that the two pulses are present but will

not be propagated since their amplitude fails to reach the threshold due to the finite

slope of the transitions.

2.8.2 Hazards

As we have seen, combinational networks can give rise to impulsive behavior due to

differences in delays. These behaviors are called hazards. Depending on the physical

component’s technology, these behaviors might be mitigated or removed by the iner-

tial behavior of the circuits. In any case, these phenomena are potentially damaging

due to their effect on the circuits that receive them and they should be avoided when

they can cause errors.

The hazards that arise due to asymmetrical delay paths, due in turn to the presence

of inverters or other gates, are called static hazards. They can generally be eliminated

(or masked) through algebraic methods like the one explained later.

In the figure above, a simple network made up of an AND gate and a NOT gate

allows us to observe the effect of different paths.

This network should generate a constant (OU T = I N · I N = 0). To perform a

simplified time analysis, let us only consider transport delays so that the hazard will

not be masked by the inertial delay.

The figure above shows that the output is not always 0 but produces a pulse at 1 (the

hazard). Due to the delay of the NOT, the AND inputs are together at 1 for a certain,

small period of time.

To be thorough, let’s examine another simple circuit based on an OR gate. The

output should be constant here as well (given that OU T = I N + I N = 1):
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The time analysis using the same criteria as above also shows a hazard (in the opposite

transition) in this case as well. Timing analysis, executed as in the case before, shows

the presence of a hazard, this time on the falling edge of the input transition.

In AND-OR networks, hazards generally appear as brief transitions to 0 of signals

that should be stable at 1. In OR-AND networks, we see signals that transition to 1

when they should be at 0.

2.8.3 Elimination of Static Hazards

In the following two-level AND-OR circuit (the 2 → 1 multiplexer), there is a hazard

in the transition 1 → 0 of C when inputs A and B equal 1:

OUT = A C + B C

Time simulation shows that the hazard occurs since, for a short time, the two logical

products A C e B C will be reduced to zero due to the delay induced by NOT.
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If we look at the Karnaugh map, we see that the hazard develops in the transition

indicated by the arrow (i.e., when C goes from 1 to 0, while A = 1 and B = 1).

There is a theorem (not proven here) that affirms: a two-level combinational network

synthesized as a sum of products is free of hazards if there are no hazards in its 1 → 1

transitions (fromonesetof inputs thatproduce1 toanothersetof inputs thatproduce1).

In a two-level AND-OR combinational network, there can be a hazard when there

is a pair of 1s near each other on the map that does not belong to the same implicant,

as in the map above.

Let’s check for a hazard in this network since there are two adjacent 1s in different

implicants. To eliminate the hazard, we must add the implicant that contains these

two 1s (term A B):



2.8 Time Behavior of Combinational Networks 69

The result is: OU T =A C+B C+A B. See the schematic of the new network below:

This is no longer a minimal synthesis, but the added product term masks (or covers)

the hazard, which disappears from the time simulation.

In fact, in the short time in which the two logical products A C e B C go to zero,

the term A B keeps a 1 in the input of OR, as we can see in the figure below:
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In the OR-AND networks, the situation is symmetrical: the hazard occurs in 0 → 0

transitions and is eliminated by adding the implicants containing two nearby zeros

that are not contained in the same subcube.

2.8.4 Notes on Eliminating Hazards

Generally, to eliminate static hazards, we systematically add nonessential implicants

in all the situations that can produce hazards. However, let’s note that eliminating haz-

ards is necessary only when they are damaging, typically in asynchronous sequential

circuits.

Hazards can generally be tolerated in synchronous sequential circuits, in which

the signals are read in well-defined times where possible hazards cannot occur. We

will see more on this later in the book.

2.9 Exercises

2.9.1 Maps

1. Draw the truth tables and maps for the following functions:

(a) G = A B C + B C

(b) H = (A + B)(B + C)

2. Construct the maps of the following functions:

(a) F = A B D + A B C + A B D + A B C D + A B C D

(b) M = (A + C)(A + C + D)(A + B)(A + B + C + D)

3. Minimize the logical functions in the maps below as sums of products.

(a) F1:
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(b) F2:

(c) F3:

(d) F4:

4. Minimize the function F = B C D + A B C D + A B D as a sum of products,

keeping in mind that inputs ABC D = “11 − −” and ABC D = “− − 11” are

never present (combinations A = B = 1 or C = D = 1 can never arise).

5. Synthesize the logical function in the map below as a sum of products.

6. Synthesize the logical function in the map of the previous exercise as a product

of sums.



72 2 Combinational Network Design

7. Synthesize the following map, which contains don’t-cares.

8. Using only NAND gates, draw the simplest circuit that generates the function:

F = (A B + A B) C D + (A C + A C) B D + A C D + A B C D.

9. Synthesize the following map with entered variables (group only the don’t-cares

that give us the largest groupings; ignore those that would add groups).

2.9.2 Hazards

1. Derive the minimal synthesis from the following map:

(a) Ignoring the hazards;

(b) Eliminating the hazards.
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2. Identify the hazards in the circuit and eliminate them.

2.10 Solutions

2.10.1 Maps

1. (a) G = A B C + B C

A B C G

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

(b) H = (A + B)(B + C)

A B C H

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1
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2. (a) F = A B D + A B C + A B D + A B C D + A B C D

(b) M = (A + C)(A + C + D)(A + B)(A + B + C + D)

3. (a) F1 = A C + A B + B D :

(b) F2 = B C + A B D + B C D :
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(c) F3 = A D + B C D + A C D :

(d) F4 = B C D + A B D + B C D :

4. F = A D + B C + B C D :

5. These are the three order-2 subcubes for AND-OR synthesis:

We obtain the expression: F = A + B + C .

6. For OR-AND synthesis, we just need to consider the only 0.

We derive the same expression as in the previous exercise, but using only one

grouping.
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7. F = A B C D + B C D + B C D + B C D + A D

8. We expand the given expression in terms of minterms.

F = (AB + A B) C D + (A C + A C) B D + A C D + A B C D =

= ABC D + A B C D + AB C D+

+A BC D + A (B + B) C D + A B C D =

= ABC D + A B C D + A B C D + A BC D + A B C D

The resulting map is:

which produces the minimized expression: F = C D + A B C .

We transform this into NAND-NAND with De Morgan’s Theorem.

F = C D · A B C

This is the network:

9. With the method, we studied for Variable-Entered Maps, and we have:

F = A B D + A B X + A D X
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2.10.2 Hazards

1. Synthesis of a function considering the hazards issue:

a) With hazards:

C D + A C + A B D :

b) With hazards “covered”:

C D + A C + A B D+

A D + B C D + A B C :

2. Keeping NAND-NAND network equivalence in mind, we derive the expression

of the AND-OR network, and from this, we get the map.

F = A B C + B C D + A C D + B C D

We group the map for minimal synthesis.
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On the map, all the adjacent 1s are masked, so the minimal synthesis is already

free of hazards. See its expression and the logical network below.

F = A B + C D + A C



Chapter 3

Numeral Systems and Binary Arithmetic

Abstract The representation of numbers is essential for the digital logic design. In

this chapter, positional number systems (decimal, binary, octal, hexadecimal), BCD

and Gray codes are presented together with the rules for the conversion between

numbers encoded in different bases and the representations of negative numbers.

Then, the rules for the arithmetic operations and the circuits that execute them are

presented. The addition of binary number is examined with particular attention, since

it is the operation at the basis of all computational circuits. Alphanumeric codes and

the concept of parity for error detection complete the chapter.

3.1 Binary Information

The basic unit of binary information is called a bit (binary digit). The bit can only

assume the value of 0 or 1.

Normally, bits are grouped into meaningful sets called nibbles (4 bits), bytes (8 bits),

or generically words if they contain more bits (e.g., 16, 32, or 64 bits):
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In this chapter, we will see how to use these sets of bits to represent numbers or other

types of information through standard codes.

In the previous figure, the abbreviation MSB refers to the Most Significant Bit and

LSB refers to the Least Significant Bit, when these sets are used to codify numbers.

3.2 Binary Numbering System (BIN)

Like the decimal system, binary numbering is positional. Positional notation makes

it possible to express a number N as:

N = nm−1 · Rm−1 + · · · + n1 · R1 + n0 · R0

where R is the base of the system; m is the number of digits the representation is

composed of; the exponents denote the position k of each digit from 0 to m − 1

starting from the right; the set A = {0, . . . , R − 1} is the alphabet of the numbering

system and is made up of symbols we use to represent numbers; coefficients n are

the numbers that correspond to the value of the symbols in set A.

In the decimal system, the alphabet of symbols is A = {0, 1 . . . , 9} and, obviously,

R = 10. When we write a number N , for example, 2017, we mean:

201710 = 2 · 103 + 0 · 102 + 1 · 101 + 7 · 100

Let’s refer to the binary numbering system as that system that has base R = 2 and

alphabet A = {0, 1}. For example, the number 1110 in base two corresponds to the

number 14 in base ten:

11102 = 1 · 23 + 1 · 22 + 1 · 21 + 0 · 20 = 8 + 4 + 2 + 0 = 1410

Finally, let’s denote weight as:

p = Rk

In the decimal system, weight refers to units, decimals, hundreds, thousands, etc.,

(powers of 10). In the binary numbering system, magnitudes have the power of base

R = 2: 1, 2, 4, 8, 16, 32, 64, 128, etc.

Note: For a short guide about powers of 2, refer to Appendix A.

3.2.1 Converting from Binary System to Decimal

We obtain this conversion by directly applying the definition above. Here are exam-
ples for 4 and 8 digits:
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00002 = 0 · 23 + 0 · 22 + 0 · 21 + 0 · 20 = 010

00112 = 0 · 23 + 0 · 22 + 1 · 21 + 1 · 20 = 310

11112 = 1 · 23 + 1 · 22 + 1 · 21 + 1 · 20 = 1510

000000102 = 0 · 27 + 0 · 26 + 0 · 25 + 0 · 24 + 0 · 23 + 0 · 22 + 1 · 21 + 0 · 20 = 210

100011102 = 1 · 27 + 0 · 26 + 0 · 25 + 0 · 24 + 1 · 23 + 1 · 22 + 1 · 21 + 0 · 20 = 14210

111100112 = 1 · 27 + 1 · 26 + 1 · 25 + 1 · 24 + 0 · 23 + 0 · 22 + 1 · 21 + 1 · 20 = 24310

111111112 = 1 · 27 + 1 · 26 + 1 · 25 + 1 · 24 + 1 · 23 + 1 · 22 + 1 · 21 + 1 · 20 = 25510

3.2.2 Converting from Decimal System to Binary

A natural number N (with N ≥ 2) can be expressed as:

N = 2 · q0 + r0 with r0 = (0, 1)

where q0 is the quotient and r0 is the remainder of the division of N by 2. We can

repeat the process if q0 ≥ 2, by writing that:

q0 = 2 · q1 + r1 with r1 = (0, 1)

By substituting the latter expression in the former one, we obtain:

N = 2 · (2 · q1 + r1) + r0

Continuing, if q1 ≥ 2, we derive:

N = 2 · (2 · (2 · q2 + r2) + r1) + r0 = 23 · q2 + 22 · r2 + 21 · r1 + 20 · r0

and so on as long as qk ≥ 2, giving us:

N = 2k · qk−1 + 2k−1 · rk−1 + . . . + 21 · r1 + 20 · r0.

In other words, the remainders ri from divisions by 2 represent the binary digits of N .

Consider N10 = 46, for example. Let’s divide by 2 recursively, writing the remainder

at the right of the line and the result below the number.
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46 0 (r0)

(q0) 23 1 (r1)

(q1) 11 1 (r2)

(q2) 5 1 (r3)

(q3) 2 0 (r4)

(q4) 1 1 (q4)

We get the result of the conversion by writing in order, from the left, q4 followed by

the remainders r4, r3, ..., r0:

N = 4610 = 1011102

Proof

N = q4 · 25 + r4 · 24 + r3 · 23 + r2 · 22 + r1 · 21 + r0 · 20 =

= 1 · 32 + 0 · 16 + 1 · 8 + 1 · 4 + 1 · 2 + 0 · 1 = 4610

As an example, let’s convert some decimal numbers into the binary system.

25810 :

258 0

129 1

64 0

32 0

16 0

8 0

4 0

2 0

1 1 → 1000000102

23710 :

237 1

118 0

59 1

29 1

14 0

7 1

3 1

1 1 → 111011012

3.2.3 Maximum Representable Number

Given a set of m bits, the largest natural number that can be represented is:

Nmax = 2m − 1

For example, if we consider a byte (m = 8), where every bit equals 1, we will add

all the magnitudes present among them.

111111112 = 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 =

= 255 = 256 − 1 =

= 28 − 1
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3.3 Octal Number System (OCT)

This is a base R = 8 positional numbering system with alphabet A = {0, 1, 2, 3, 4, 5,

6, 7}. It is used to represent binary numbers but it is rarely used today, being replaced

by the hexadecimal system. Nevertheless, it is still useful to be acquainted with it.

Below is an example:

1238 = 1 · 82 + 2 · 81 + 3 · 80 = 64 + 16 + 3 = 8310

The binary–octal conversion table, for a single octal digit:

BIN OCT

000 0

001 1

010 2

011 3

100 4

101 5

110 6

111 7

Since the octal number system’s base is a power of 2, the conversion from binary to

octal is immediate.

Converting any binary number into octal requires just dividing it into groups of

three digits (starting from the right) and replacing each with the corresponding octal

digit.

See the examples below:

1001002 = | 1002 | 1002 | = 448

1111112 = | 1112 | 1112 | = 778

110012 = | 0112 | 0012 | = 318

11012 = | 0012 | 1012 | = 158

An integer decimal number can be converted into octal by using the method of

repeated division seen above for decimal to binary conversion, in this case dividing

by 8.

In this example we convert the number 26710 into octal:

267 3 (267 : 8 = 33 + 3)

33 1 (33 : 8 = 4 + 1)

4 4 (4 : 8 = 0 + 4)

The result is: 4138.



84 3 Numeral Systems and Binary Arithmetic

3.4 Hexadecimal Number System (HEX)

This is a positional number system with base R = 16. Its alphabet is:

A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}.

To represent digits higher than 9 we use the first six letters of the Latin alphabet since

they are available on a typical keyboard. A DEC − BIN − HEX conversion table is

as follows.
DEC BIN HEX

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

Since the hexadecimal number system is also based on the power of 2, the BIN–

HEX conversion is immediate. We replace every group of four binary digits with the

corresponding HEX digits. Here are some examples:

100011112 = | 10002 | 11112 | = 8F16 = 8FH

111000112 = | 11102 | 00112 | = E316 = E3H

1001012 = | 00102 | 01012 | = 2516 = 25H

111002 = | 00012 | 11002 | = 1C16 = 1CH

In this case the conversion can also be done with repeated division, by dividing by

16. In the following example, the number 65510 is converted into hexadecimal.

655 15 (655 : 16 = 40 + 15)

40 8 (40 : 16 = 2 + 8)

2 2 (2 : 16 = 0 + 2)

The result is: 28FH .
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To get familiar with hexadecimal numbers, let’s look at some examples of column

addition with two numbers. Note that when a digit is over 15 (not 9 as in the decimal

system), we carry it over one column.:

28H + 22H + 40H + 0FH + 3AH +

33H = AAH = 51H = 0FH = 9BH =

5BH CCH 91H 1EH D5H

3.5 Others Binary Codes

3.5.1 Binary Coded Decimal

The most natural way to represent a number in a binary format is to use the pure

binary numbering system. However, the downside of this is that decimal-to-binary

and binary-to-decimal conversion becomes more taxing as the numbers get bigger.

To make the conversion easier, we can represent the digits of a decimal number

one by one, using the so-called Binary Coded Decimal (BCD) codes. They code

the decimal numbers’ digits one by one using groups of four bits. Obviously, their

arithmetic properties are less than those of the pure binary number system.

In general, binary codes are said to be weighted if every digit has its own weight

according to its position. Those in which every combination of digits is randomly

associated to a certain number are called non-weighted.

Self-complementing codes are those where two numbers that add up to 9 are

complements to one of each other (i.e., the 1s and 0s are interchanged).

Now, let’s look at some of the most commonly used BCD codes:

• BCD 8421: It is a weighted code in which the digits’ weights are 8, 4, 2, 1 from

left to right; this is equal to pure binary terminated at 10012.

• BCD 5421: It is analogous to BCD 8421 but the weights are 5, 4, 2, 1.

• AIKEN 2421: It is a weighted, self-complementing BCD code with weights of 2,

4, 2, 1.
N BCD 8421 BCD 5421 AIKEN 2421

0 0000 0000 0000

1 0001 0001 0001

2 0010 0010 0010

3 0011 0011 0011

4 0100 0100 0100

5 0101 1000 1011

6 0110 1001 1100

7 0111 1010 1101

8 1000 1011 1110

9 1001 1100 1111
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• BCD XS3: It is a non-weighted, self-complementing code that is obtained by

adding 3 (11 in binary) to BCD 8421; XS3 actually means “excess 3”.

N BCDXS3

0 0011

1 0100

2 0101

3 0110

4 0111

5 1000

6 1001

7 1010

8 1011

9 1100

3.5.2 GRAY Codes

The GRAY codes are non-weighted. They are characterized by the fact that each

number differs by one single digit from the one that precedes it and the one that

follows it. GRAY codes can be made with any number of bits. There are many types

of GRAY codes. The one shown here is the “reflected” type.

N GRAY

0 0000

1 0001

2 0011

3 0010

4 0110

5 0111

6 0101

7 0100

8 1100

9 1101

10 1111

11 1110

12 1010

13 1011

14 1001

15 1000
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3.6 Binary Arithmetic

3.6.1 Addition

Consider the addition of two bits A and B. Let’s evaluate the four possible cases:

A + 0 + 0 + 1 + 1 +

B = 0 = 1 = 0 = 1 =

sum 0 1 1 102

In the farthest right column, the result is obviously 210 but it makes sense to interpret

it as “result 0, with carry over 1”. So, let’s denote the bit of the sum as S and introduce

the bit Co (Carry Out), which represents the result. In cases where there is no carry,

we will write it as 0.

A + 0 + 0 + 1 + 1 +

B = 0 = 1 = 0 = 1 =

Co S 0 0 0 1 0 1 1 0

When we add binary numbers coded on more than one bit, the carry generated from

one column must be added to the result from the column to its immediate left, as in

the following examples:

00102 + 00012 + 00112 +

00012 = 00012 = 00012 =

00112 00102 01002

In the first example, there are no carries; in the second, there is one in the farthest

right column; in the last, the two right-hand columns have carries.

Based on these observations, we define the addition rules for a given column by

introducing the carry Ci (Carry In), which comes from the adjoining column.

Ci + 0 + 0 + 0 + 0 +

A + 0 + 0 + 1 + 1 +

B = 0 = 1 = 0 = 1 =

Co S 0 0 0 1 0 1 1 0
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Ci + 1 + 1 + 1 + 1 +

A + 0 + 0 + 1 + 1 +

B = 0 = 1 = 0 = 1 =

Co S 0 1 1 0 1 0 1 1

See below some examples of binary number addition.

00012 + 01102 + 01112 + 010111112 + 010111102 +

01112 = 01102 = 01112 = 001001012 = 001011112 =

10002 11002 11102 100001002 100011012

When calculating the sum of two numbers, the result could exceed the maximum

representable number. If, for example, in our logical network we have only 4 bits

available to code a number, the following sums generate a result that is too large.

11112 + 01112 + 01012 + 11112 +

00012 = 10112 = 11002 = 11112 =

100002 100102 100012 111102

To contain the result, we need 5 bits. An overflow error has occurred. After calculating

a sum, we must always check for an overflow error, that is if anything has carried

over from the column of the MSB. This rule holds for numbers without signs. Next,

we will see how to check for overflow with numbers that can be positive or negative.

3.6.2 Subtraction

We define the subtraction rules by using criteria similar to those for addition. In

this case, a column can borrow from the column to the left if it is necessary. Due

to similarities with real circuits, we will use the same symbol used for carry. Ci is

what is borrowed from the column on the right, while Co is what the present column

borrows from the left.

Ci − 0 − 0 − 0 − 0 −

A − 0 − 0 − 1 − 1 −

B = 0 = 1 = 0 = 1 =

Co S 0 0 1 1 1 1 1 0
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Ci − 1 − 1 − 1 − 1 −

A − 0 − 0 − 1 − 1 −

B = 0 = 1 = 0 = 1 =

Co S 0 1 0 0 0 0 1 1

Here are some examples of subtraction:

10012 − 01112 − 01102 − 11112 − 010110112 −

00112 = 01012 = 00012 = 01112 = 001001012 =

01102 00102 01012 10002 001101102

3.6.3 Products

The product rules are as follows (we will not deal with division):

0 × 0 = 0

0 × 1 = 0

1 × 0 = 0

1 × 1 = 1

Here are some examples of products (they are carried out in the familiar way but with

the rules seen here). Note that in the partial results of the operation, we either copy the

multiplicand when it is multiplied by 1, or we write all 0s when it is multiplied by 0.

1 1 ×

1 1 =

1 1

1 1 −

1 0 0 1

1 1 ×

1 0 1 =

1 1

0 0 −

1 1 − −

1 1 1 1

1 1 0 ×

1 0 0 =

0 0 0

0 0 0 −

1 1 0 − −

1 1 0 0 0

3.7 BCD 8421 Arithmetic

When adding in BCD 8421 arithmetic, we keep in mind that every group of 4 bits

codes a decimal number so the rules of carries should be the same as with decimal
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representation. In the following example, when calculating in decimal on the left,

there are no carries from the units to the tens. When calculating in binary, on the

right, there is no carry from the units column and the result is still made up of BCD

digits (since ≤ 9), so the result is correct.

2410 + 0010 0100 +

4210 = 0100 0010 =

6610 0110 0110

However, in the second example, when we add the BCD digits, we come out with a

sum that is not a BCD digit. The result is not valid (see the sum in decimal on the

left), so we must make adjustments.

2710 + 0010 0111 +

3510 = 0011 0101 =

6210 0101 1100

In the result, the number 11002 is not in BCD 8421 (it is greater than 910 = 10012).

The method to correct this consists in adding 01102 (i.e., decimal 6) to the non-BCD

number.

1100 +

0110 =

1 0010

The four digits to the right are now BCD. The carry is considered to be added to the

BCD digit to its immediate left. In the example:

0101 +

0001 =

0110

So, the exact result of the BCD addition, with corrections, is:

6210 = 01100010bcd
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3.8 Binary Rational Numbers

The way to deal with binary rational numbers is similar to what is used for integer

numbers. Let’s see two examples of conversion:

0.10112 = 1 · 2−1 + 0 · 2−2 + 1 · 2−3 + 1 · 2−4 =

= 0.5 + 0.125 + 0.0625 =

= 0.687510.

To convert DEC into BIN, we do the following:

0.6875 · 2 = 1.3750

The integer part constitutes the binary number, and the decimal part is multiplied

again by 2. Continuing:

0.375 · 2 = 0.750

0.750 · 2 = 1.500

0.500 · 2 = 1.000

we have come back to the initial number: 0.10112.

3.9 Arithmetic Networks

3.9.1 Half Adders

Half adders add two single-digit binary numbers generating a result and a carry. From

the Deeds library:

Using the addition rules seen earlier, let’s complete the truth table. The addends are

A and B, the sum S, and the carry Co:
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A B Co S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Without the use of a map, we immediately recognize the functions in the table:

Co = A · B e S = A ⊕ B

So the logical network of the half adder will look like this:

3.9.2 Full Adders

Full adders extend the possibilities of half adders by adding the carry from the

preceding sum to the input.

Let’s derive the truth table from the addition rules. A and B are the addends, Ci is

the carry from the previous addition, S is the sum, and Co is the carry:

Ci A B Co S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1
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From the maps, we derive the synthesis:

S = A B Ci + A B C i + A B C i + A B Ci =

= A (B Ci + B C i ) + A (B C i + BCi ) =

= A (B ⊕ Ci ) + A (B ⊕ Ci ) =

= A ⊕ (B ⊕ C I N )

Co = A B + A Ci + Ci B

and then the logical schematic:

3.9.3 Ripple Carry Adder

The network in the figure below (ripple carry adder) allows us to calculate the sum

of two 4-bit numbers, and it is extendable to any number with m bits:
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Because the carries are propagated from one stage to another, the execution time of

a sum Ts is proportional to m.

Ts = (m − 1) · t f a + tha

where t f a is the propagation delay of the full adders (FA), and tha that of the half

adders (HA). The Co, and therefore the sum, is valid only after all the intermediate

carries are propagated along the network.

This is why, when we need high-speed calculation on a large number of bits, we

rely on more efficient architectures where the carries are calculated, not in ripple

fashion but in parallel, as in the Carry Look Ahead networks (not dealt with in this

book).

3.9.4 Arithmetic Logic Unit (ALU)

The ALU is a combinational network that makes it possible to do different operations

on two binary numbers (A and B). The figure below shows an example of an 8-bit

ALU (from the Deeds library):

The operands are A7..A0 and B7..B0, while the result is taken from the outputs

F7..F0. For addition and subtraction, there is one input Ci and one carry output

Co.

Outputs V and Z are also available: V = 1 shows that the arithmetic operation

gave rise to an overflow, while Z = 1 is activated when the result of the operation

is zero. The operations are selected by the group of inputs S4..S0, according to the

table below:



3.10 Relative Numbers in Binary 95

S4..S0 Function Notes

00000 F = 0
00001 F = +1
00010 F = −1
00011 F = −128 Minimum negative value
00100 F = A

00101 F = B

00110 F = A Ones’ complement of A

00111 F = B Ones’ complement of B
01000 F = A and B (bitwise)

01001 F = A and B (bitwise)

01010 F = A and B (bitwise)

01011 F = A or B (bitwise)
01100 F = A or B (bitwise)

01101 F = A or B (bitwise)

01110 F = A or B (bitwise)

01111 F = A and B (bitwise)
10000 F = A ⊕ B (bitwise)

10001 F = A ⊕ B (bitwise)

10010 F = A + 1 Two’s complement of A

10011 F = B + 1 Two’s complement of B
10100 F = A + 1 Increment of A
10101 F = B + 1 Increment of B
10110 F = A − 1 Decrement of A
10111 F = B − 1 Decrement of B
11000 F = A + B Addition
11001 F = A + B + Ci Addition (with input carry)
11010 F = sat (A + B) Saturating Addition
11011 F = A − B Subtraction
11100 F = A − B − Ci Subtraction (with input borrow)
11101 F = sat (A − B) Saturating Subtraction
11110 F = B − A Reversed Subtraction
11111 F = B − A − Ci Reversed Subtraction (with input borrow)

3.10 Relative Numbers in Binary

There are many methods to represent relative numbers (signed numbers) in binary.

In general, positive numbers are represented as if they had no sign whereas methods

differ as to how negative numbers are coded. When the codifications we use change,

so change the rules to manage the operations involving negative numbers.

3.10.1 Representation in “Module and Sign” Code

Let’s consider a 4-bit packet: we use the MSB for the sign bit and the rest for the

module:
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We code the sign minus with 1 and the sign plus with 0. We get the following table:

B3 B2 B1 B0 Dec

0 1 1 1 +7
0 1 1 0 +6
0 1 0 1 +5
0 1 0 0 +4
0 0 1 1 +3
0 0 1 0 +2
0 0 0 1 +1
0 0 0 0 +0

1 0 0 0 −0 (!)
1 0 0 1 −1
1 0 1 0 −2
1 0 1 1 −3
1 1 0 0 −4
1 1 0 1 −5
1 1 1 0 −6
1 1 1 1 −7

There are some downsides to this representation:

1. The zero has two different codes: 0000 and 1000.

2. The code has bad arithmetic properties.

As shown in the following examples, we cannot use a normal adder.

310 +

410 =

710

00112 +

01002 =

01112 (correct)

410 +

410 =

−010

01002 +

01002 =

10002 (overflow)

710 +

−210 =

510

01112 +

10102 =

100012 (carry)

So, in a module and sign representation, we would need to use a more complex,

tailor-made adder.
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3.10.2 Complementation

The complement to the base

Let the number N in base R be represented in a positional notation with m digits:

N = nm−1 · Rm−1 + nm−2 · Rm−2 + · · · + n1 · R1 + n0 · R0

We define the complement to the base R of the number N :

CR(N ) = Rm − N

Let’s now consider another number Q, represented with the same base and the same

number of digits. By adding the number Q to CR(N ), we obtain the difference

between the two plus the term Rm , which represents a carry outside the number’s

format.

Q + CR(N ) = Q + (Rm − N ) = (Q − N ) + Rm

Bringing the difference Q − N to the left:

Q − N = Q + CR(N ) − Rm

Let’s now look at an example with decimal numbers. R = 10, so the complement is

“to ten”; we use only two digits (m = 2), and assume Q = 4810 e N = 1210.

4810 − 1210 = 4810 + C10(1210) − 102

By applying the definition of the complement of the base to our example:

C10(1210) = 102 − 12 = 88

We get:

4810 − 1210 = 4810 + 8810 − 102 = 13610 − 102 = 3610

Despite the apparent complication, we have a great advantage: the negative number

has been substituted by its complement to ten, which is positive. Then taking away

102 from the result is very simple, as we will soon see, since it does not require

subtraction.

In an arithmetic network, we can do without subtractors and use only adders as

long as we know an easy way to calculate the complement to the base of a number.

Note that the complement operation is, from the point of view of the calculation, the

same as changing the sign of a number.
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Let’s go back to our example and do the addition in column:

48 +

88 =

carry 1 36

At this point, taking away 102 is simple: we only need to ignore the carry. The result

is what we expect: 3610 = 4810 − 1210.

Note that it is necessary to represent all the numbers with the same m. For example,

let’s use the same quantities as before but represented on eight digits (m = 8):

C10(1210) = 108 − 1210 = 9999998810

00000048 +

99999988 =

carry 1 00000036

The carry exceeds the m digits: taking away Rm from the result means just ignoring it.

Now let’s look at binary numbers with R = 2. We’ll use the 4-bit format (m = 4),

and we’ll evaluate the complement to two of N = 01012 = 510 from the definition:

C2(01012) = 2m − N = 100002 − 01012 = 10112

As we’ll see below, the C2(N ) can be calculated more quickly using the complement

of “base minus one”.

The complement to “base minus one”

We define the complement to base minus one (complement to one) of the number N :

CR−1(N ) = (Rm − 1) − N

Let’s compare this definition with that of the complement of the base. The result is:

CR(N ) = CR−1(N ) + 1

Calculating the complement to the base minus one is simpler than calculating the

complement to the base. Therefore, to obtain the complement to the base, we prefer

to calculate the complement to the base minus one and then add 1.

Let’s look at an example in decimal with N = 1210. Let’s represent the number

with eight digits and calculate the complement to nine (base ten minus one), by first

evaluating the term:

(Rm − 1) = 108 − 1 = 99999999
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This number is composed only of the digit “9” repeated m times. The complement

to nine of 12 is:

C9(12) = 99999999 − 00000012 = 99999987

It is simpler to calculate the complement to nine because when we subtract the number

we never need to borrow. Then, by adding 1 to the result, we get the complement to

ten.

Le’s take the example of the binary number N = 01012 = 510 seen above

(M = 4). To evaluate ones’ complement (base two minus one), we first calculate

the term:

(Rm − 1) = 2m − 1 = 100002 − 1 = 11112

The situation is similar to the one before: this number is composed of the digit “1”

repeated m times. So, ones’ complement of 01012 is:

C1(01012) = 11112 − 01012

To make this clearer, let’s do the subtraction in column.

11112 −

01012 =

C1(01012) 10102

We see that when we subtract the number from a number made only of “1”, there

is no need to borrow. To calculate the result, all we need to do is replace all the “1”

with “0” and vice versa. From a circuital perspective, this means negating all the bits

the number N is composed of.

C1(N ) = N

From what we have seen, by adding +1 to the number obtained, we get the two’s

complement:

C2(N ) = C1(N ) + 1 = N + 1

3.10.3 Representation in “Ones’ Complement” Code

We can represent negative binary numbers through ones’ complement (C1). In the

following table, we see an example for 4-bit numbers. The positive numbers are

coded in pure binary, leaving the most significant digit at 0. The negatives are the C1

of the corresponding positive number calculated according to the criteria outlined

above.

To generate the code of a negative number, as above, we just invert all the bits of

the corresponding positive number, for example:
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B3 B2 B1 B0 Dec

0 1 1 1 +7
0 1 1 0 +6
0 1 0 1 +5
0 1 0 0 +4
0 0 1 1 +3
0 0 1 0 +2
0 0 0 1 +1
0 0 0 0 +0

1 1 1 1 −0 (!)
1 1 1 0 −1
1 1 0 1 −2
1 1 0 0 −3
1 0 1 1 −4
1 0 1 0 −5
1 0 0 1 −6
1 0 0 0 −7

−310 = C1(310) = C1(00112) = 11002

Arithmetic Properties

• The sum of two positives:
+2 +

+5 =

+7

0010 +

0101 =

0111

• The sum of a positive and a negative with a positive result:
+5 +

−2 =

+3

0101 +

1101 =

10010 (“End Around Carry”) → 0010 + 1 = 0011

• The sum of a positive and a negative with a negative result:
−5 +

+2 =

−3

1010 +

0010 =

1100

• The sum of two negatives:
−3 +

−3 =

−6

1100 +

1100 =

11000 (“End Around Carry”) → 1000 + 1 = 1001

The carry “outside” the number format should be added to the LSB of the result. CP

denotes the carry to the MSB and CS the carry outside the MSB.

Let’s consider the sum of two numbers Q + N ; the table below shows us the

values of CP and CS for all the combinations of the signs of addends and result,

when the sum is correct, i.e., when the number’s format is able to contain the result:
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Q N Sum CP CS

+ + + 0 0

+ − + 1 1

+ − − 0 0

− − − 1 1

If CP and CS are different, there is an overflow error, and we can detect it as OVF

= CP ⊕ CS . Here is an example of an overflow error:

+7 +

+1 =

+8

0111 +

0001 =

1000 CP = 1, CS = 0,→ OVF

3.10.4 Representation in “Two’s Complement” Code

The most commonly used method for representing neg-

ative binary numbers relies on two’s complement (C2).

In the table on the right, we find an example of code for

four-bit numbers.

The positive numbers here are coded in pure binary as

before, leaving the most significant digit at 0, while the

negative numbers are calculated as two’s complement

of the corresponding positive number.

B3 B2 B1 B0 Dec

0 1 1 1 +7

0 1 1 0 +6

0 1 0 1 +5

0 1 0 0 +4

0 0 1 1 +3

0 0 1 0 +2

0 0 0 1 +1

0 0 0 0 +0

1 1 1 1 −1

1 1 1 0 −2

1 1 0 1 −3

1 1 0 0 −4

1 0 1 1 −5

1 0 1 0 −6

1 0 0 1 −7

1 0 0 0 −8

For practice, let’s calculate the number −110 starting from +110:

C2(0001) = C1(0001) + 1 = 1110 + 1 = 1111

If we calculate C2 of zero, we get zero again (the zero in C2 has a univocal repre-

sentation). Note that the operation C2 changes the number’s sign: if N is positive,

C2(N ) is negative and vice versa.

Also, if we perform C2(C2(N )), we get the number N again:

C2(C2(N )) = 2m − (C2(N )) = 2m − (2m − N ) = N
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Arithmetic Properties

Let’s look again at the carry into the MSB (CP ) and the carry outside the number

(CS). The same considerations for representation in C1 also hold for C2. When adding

two numbers Q and N , the table used for checking the carries for overflow errors

still holds:
Q N Sum CP CS

+ + + 0 0

+ − + 1 1

+ − − 0 0

− − − 1 1

As before, there is overflow when CP and CS are different: OVF = CP ⊕ CS .

C2 code allows us to execute additions regardless of the sign of the addends by

using a normal binary adder with no need to make corrections to the result (unlike

with C1).

3.10.5 Sign Extension

A signed binary number represented in C2 code (or in C1), over m bits, can be

extended to a larger number of bits v > m, provided that the sign and value are

preserved. Let’s consider a positive number, for example 610, represented on four

bits and its corresponding negative in C2:

610 = 01102 − 610 = 10102

Let’s examine the positive number and consider the sign as an integral part of the

number. In positional notation, it is:

01102 = 0 · 23 + 1 · 22 + 1 · 21 + 0 · 20

If we represent it with 8 bits, the positional notation will be:

0 · 27 + 0 · 26 + 0 · 25 + 0 · 24 + 0 · 23 + 1 · 22 + 1 · 21 + 0 · 20 = 000001102

We have actually added non-significant zeroes to the left of the number, as you might

expect. Still, this method cannot work for negative numbers, first of all because we

will change the sign to positive but also because we will also change the value.

So, let’s evaluate C2(610), represented with 8 bits.

C2(000001102) = C1(000001102) + 1 = 111110012 + 1 = 111110102
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As we can see, to extend a negative number to a larger number of bits, we only need

to add 1s (rather than 0s) to the left. In other words, in either case, we must add digits

with a value equal to the sign on the left. From a circuital perspective, the extension

of the sign is translated into a very simple network.

3.11 Representation of Real Numbers

There are essentially two methods to deal with real numbers in binary arithmetic.

• Fixed point. To assign a certain number of bits for the integer part of the number

and the others for the fractional part. For example:

• Floating point. With this method, the bits available (32, in the example) are divided

as follows:

In the figure, Se is the sign of the exponent, and Sm is the sign of the mantissa.

There is a “normalized” representation with a 0, . . .-type mantissa and a 2Exp-type

exponent, for example: −0, 101100010110112 ∗ 2001011112 .
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3.12 Alphanumeric Codes

Alphanumeric codes allow us to represent uppercase and lowercase letters, the ten

decimal numbers, punctuation marks, and the so-called special symbols. There are

codes that allow the writer to use the characters of almost all the written languages

in the world, including Chinese and Japanese. The most common among these is

Unicode.1 This type of code is very complex and is not organized only on simple

correspondence tables but on libraries of software supported by modern environments

for applications development. An explanation of Unicode goes beyond the scope of

this book.

One code that is still rather commonly used and relatively simple is ASCII,2

which has 7 significant bits in the standard version. It codes the 26 uppercase and

lowercase letters of the English language, the 10 decimal numbers, punctuation, and

the symbols used in that language.

It also includes a certain number of communication codes, the so-called non-

printable characters, which are used only sparingly in modern systems. Below are

two tables of ASCII code characters: “non-printable” and printable.

ASCII: Not Printable Characters

Dec Code Description Dec Code Description

0 NULL (Null character) 16 DLE (Data link escape)
1 SOH (Start of Header) 17 DC1 (Device control 1)
2 STX (Start of Text) 18 DC2 (Device control 2)
3 ETX (End of Text) 19 DC3 (Device control 3)
4 EOT (End of Transmiss 20 DC4 (Device control 4)ion)
5 ENQ (Enquiry) 21 NAK (Negative acknowledgement)
6 ACK (Acknowledgemen 22 SYN (Synchronous idle)t)
7 BEL (Bell) 23 ETB (End of transmission block)
8 BS (Backspace) 24 CAN (Cancel)
9 HT (Horizontal Tab) 25 EM (End of medium)
10 LF (Line feed) 26 SUB (Substitute)
11 VT (Vertical Tab) 27 ESC (Escape)
12 FF (Form feed) 28 FS (File separator)
13 CR (Carriage return) 29 GS (Group separator)
14 SO (Shift Out) 30 RS (Record separator)
15 SI (Shift In) 31 US (Unit separator)

1http://www.unicode.org
2American Standard Code for Information Interchange

http://www.unicode.org
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ASCII: Printable Characters

Dec Code Description Dec Code Description

32 Space 80 P Capital P
33 ! Exclamation mark 81 Q Capital Q
34 ” Quotation mark 82 R Capital R
35 # Number sign 83 S Capital S
36 $ Dollar sign 84 T Capital T
37 % Percent sign 85 U Capital U
38 & Ampersand 86 V Capital V
39 ’ Apostrophe 87 W Capital W
40 ( round brackets 88 X Capital X
41 ) round brackets 89 Y Capital Y
42 * Asterisk 90 Z Capital Z
43 + Plus sign 91 [ square brackets
44 , Comma 92 \ Backslash
45 - Hyphen 93 ] square brackets
46 . Dot 94 ⌢ Circumflex accent
47 / Slash 95 _ underscore
48 0 number zero 96 ‘ Grave accent
49 1 number one 97 a Lowercase a
50 2 number two 98 b Lowercase b
51 3 number three 99 c Lowercase c
52 4 number four 100 d Lowercase d
53 5 number five 101 e Lowercase e
54 6 number six 102 f Lowercase f
55 7 number seven 103 g Lowercase g
56 8 number eight 104 h Lowercase h
57 9 number nine 105 i Lowercase i
58 : Colon 106 j Lowercase j
59 ; Semicolon 107 k Lowercase k
60 < Less-than sign 108 l Lowercase l
61 = Equals sign 109 m Lowercase m
62 > Greater-than sign 110 n Lowercase n
63 ? Question mark 111 o Lowercase o
64 @ At sign 112 p Lowercase p
65 A Capital A 113 q Lowercase q
66 B Capital B 114 r Lowercase r
67 C Capital C 115 s Lowercase s
68 D Capital D 116 t Lowercase t
69 E Capital E 117 u Lowercase u
70 F Capital F 118 v Lowercase v
71 G Capital G 119 w Lowercase w
72 H Capital H 120 x Lowercase x
73 I Capital I 121 y Lowercase y
74 J Capital J 122 z Lowercase z
75 K Capital K 123 { curly brackets
76 L Capital L 124 | vertical-bar
77 M Capital M 125 } curly brackets
78 N Capital N 126 ~ Tilde ; swung dash
79 O Capital O 127 DEL Delete
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3.13 Error Detection Codes: Parity Generator and Checker

Assume that in an 8-bit system, we are using ASCII standard code (that only has 7

significant bits, denoted here as C6 . . . C0). So, we can use the eighth bit to create an

“error detection” code by using it as a “parity bit”. In this way, we add information

which is redundant for coding ASCII, but useful to control the integrity of the data.

With P = 1 at the output, an XOR gate signals the presence of an odd number of

ones in the input.

Thus, operation is called “parity check”. Through a tree structure, we can extend the

parity check to any number of inputs.

The truth table of the 4-input XOR tree will show a 1 for each input combination

with an odd number of ones:
C3 C2 C1 C0 P

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 0

0 1 0 0 1

0 1 0 1 0

0 1 1 0 0

0 1 1 1 1

1 0 0 0 1

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 0

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

In the figure below, a 7-bit parity check processes bits C6 . . . C0 of the input data

word, producing a 1 in output P if the set has an odd number of ones (“odd parity”).

This structure is called a “parity generator”:
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The 8-bit data word, composed of P and C6 . . . C0 has an even number of ones

(“even parity”). In the set of bits of the data word, P is called the “parity bit”.

Associating a redundancy (in this case, a parity bit) to an original data word allows

us to perform a quality check on it when data is moved from one system to another.

The distance between systems, the characteristics of the communication channel, and

the presence of noise all degrade the quality of the signal along its path, to the point

that might damage its contents. Some bits can be received wrong. In real systems,

errors are always present. They cannot be completely avoided but, with the right

techniques, the probability of their happening can be greatly reduced. The error rate

can be studied in statistical terms.

We introduce an analogous structure on the receiver side to verify that data parity

has been preserved. We recalculate the parity of the received bits C0 . . . C7 and also

include bit P (see the figure below).

If no error has been detected, output E R (Error) will be zero. If E R is 1, it means

that parity has not been preserved due to an error. Note that the check is accurate

only if the error involves one bit: if there are two affected bits, for example, E R does

not show it.
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Thus, this is only useful if the probability of error is low. If we assume the prob-

ability of one bit error out of 104 transmitted, the probability of an error on two bits

will be 108 bits (product of the two).

3.14 Exercises

3.14.1 Binary Numbers

1. Write 16810 and 14310 as binary numbers.

2. Calculate the decimal value of the following binary numbers:

(a) 11101112

(b) 1010111010010112

3. Do the following calculations:

(a) 110011012 + 10101012

(b) 10110112 − 1011102

(c) 10010012 − 101012

4. Multiply these binary numbers:

(a) 11102 e 10112

(b) 10112 e 1012

(c) 111002 e 0112

(d) 1102 e 11112

3.14.2 Signed Binary Numbers

1. Do these calculations in two’s complement with 7 bits:

(a) 15 + 11

(b) 15 + (−11)

(c) 15 − 11

(d) 4 − 11

(e) 29 + 17

(f) 29 − 17

(g) 29 + (−17)

(h) (−11) − 29

(i) 8 + (−18)

(j) 7 − 17

2. Do these calculations in two’s complement using the minimum number of bits to

avoid overflow.

(a) 3 + (−7)
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(b) −3 + 7

(c) 11 + (−11)

(d) 18 − (−3)

3.14.3 Octal and Hexadecimal Numbers

1. Convert the following numbers from octal to hexadecimal.

(a) 2765348

(b) 220175557248

2. Convert these decimals into binary and hexadecimals.

(a) 772210

(b) 143510

3. Convert these decimals into octals and hexadecimals.

(a) 3662510

(b) 12410

4. Calculate the decimal values of these hexadecimal numbers.

(a) 1A2B0716

(b) 1104716

5. Calculate the decimal values of these octal numbers.

(a) 31118

(b) 2765348

6. Solve the equations of these hexadecimal numbers.

(a) 41AB716 + C2D6F16

(b) A23CE16 + 363E616

3.15 Solutions

3.15.1 Binary Numbers

1.

168 0

84 0

42 0

21 1

10 0

5 1

2 0

1 1 → 101010002

143 1

71 1

35 1

17 1

8 0

4 0

2 0

1 1 → 100011112
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2. (a) 11101112 = 1 · 26 + 1 · 25 + 1 · 24 + 0 · 23+1 · 22+1 · 21 + 1 · 20+

= 1192

(b) 1010111010010112 = 2234710

3. (a)

11001101 +

1010101 =

100100010

(b)

1011011 −

101110 =

0101101

(c)

1001001 −

10101 =

110100

4. (a)

1110 ×

1011 =

1110

11100

000000

1110000

10011010

(b)

1011 ×

101 =

1011

00000

101100

110111

(c)

11100 ×

00011 =

11100

111000

0000000

00000000

000000000

1010100

(d)

110 ×

1111 =

110

1100

11000

110000

1011010
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3.15.2 Signed Binary Numbers

1. (a)

15 +

11 =

26

0001111 +

0001011 =

0011010

(b)

15 +

−11 =

4

0001111 +

1110101 =

0000100

(c)

15 −

11 =

4

0001111 −

0001011 =

0000100

(d)

4 −

11 =

−7

0000100 −

0001011 =

1111001

(e)

29 +

17 =

46

0011101 +

0010001 =

0101110

(f)

29 −

17 =

12

0011101 −

0010001 =

0001100

(g)

29 +

−17 =

12

0011101 +

1101111 =

0001100

(h)

−11 −

29 =

−40

1110101 −

0011101 =

1011000

(i)

8 +

−18 =

−10

0001000 +

1101110 =

1110110

(j)

7 −

17 =

−10

0000111 −

0010001 =

1110110

2. (a) 4 bits are needed:
3 +

−7 =

−4

0011 +

1001 =

1100
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(b) 4 bits are needed:
−3 +

7 =

4

1101 +

0111 =

0100

(c) 5 bits are needed:
11 +

−11 =

0

01011 +

10101 =

00000

(d) 6 bits are needed:
18 −

−3 =

21

010010 −

111101 =

010101

3.15.3 Octal and Hexadecimal Numbers

1. The quickest solution is to first write the number in binary:

(a) 2765348 in binary is 0101111101010111102.

The hexadecimal representation is: 17D5CH .

(b) 220175557248 is 0100100000011111011011011110101002 in binary.

Hexadecimal: 903EDBD4H .

2. (a) Converting 772210:
7722 0

3861 1

1930 0

965 1

482 0

241 1

120 0

60 0

30 0

15 1

7 1

3 1

1 1

7722 10 (A) (ex: 7722 : 16 = 482 + 10)

482 2

30 14 (E)

1 1

In binary: 11110001010102, in hexadecimal: 1E2AH .
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(b) Converting 143510:
1435 1

717 1

358 0

179 1

89 1

44 0

22 0

11 1

5 1

2 0

1 1

1435 11 (B) (ex: 1435 : 16 = 89 + 11)

89 9

5 5

In binary: 101100110112, in hexadecimal: 59BH .

3. (a) Converting 3662510:
36625 1 (36625 : 8 = 4578 + 1)
4578 2 (4578 : 8 = 572 + 2)
572 4 (572 : 8 = 71 + 4)

71 7 (71 : 8 = 8 + 7)
8 0 (8 : 8 = 1 + 0)
1 1

36625 1 (36625 : 16 = 2289 + 1)
2289 1 (2289 : 16 = 143 + 1)
143 F (143 : 16 = 8 + 15)

8 8

In octal: 1074218, in hexadecimal: 8F11H .

(b) Converting 12410:
124 4 (124 : 8 = 15 + 4)

15 7 (15 : 8 = 1 + 7)

1 1

124 12 (C) (124 : 16 = 7 + 12)

7 7

In octal: 1748, in hexadecimal: 7CH .

4. First, we convert the number into binary and then into decimal:

(a) 1101000101011000001112 = 171495110

(b) 100010000010001112 = 6970310

5. From octal to binary and then to decimal:

(a) 110010010012 = 160910

(b) 101111101010111002 = 9762810

6. (a)

4 1 A B 7 +

C 2 D 6 F =

1 0 4 8 2 6

(b)

A 2 3 C E +

3 6 3 E 6 =

D 8 7 B 4



Chapter 4

Complements in Combinational Network

Design

Abstract In this chapters, we overcome the limitations of the Karnaugh maps,

whose application becomes impractical when applied to expressions with more than

four/five variables. We present the Quine–McCluskey method, the first algorithms

for minimizing Boolean expressions developed by Willard V. Quine and improved

by Edward J. McCluskey. We present both the methods for synthesize single and

multiple functions at the same time.

In past chapters, we addressed minimizing Boolean expressions, i.e., using Karnaugh

maps to find an expression equivalent to the original but with fewer prime implicants.

Unfortunately, the map method can only be applied to expressions with a maximum

of four variables, extendable to five variables through 3-D maps or, in limited cases,

even more through entered variables. For more than four variables, we cannot use

“manual” methods but rather algorithmic methods implemented on a computer.

4.1 Minimizing Boolean Expressions with

the Quine–McCluskey Method

One of the first algorithms for minimizing Boolean expressions was developed by

Willard V. Quine (1908–2000) and improved by Edward J. McCluskey (1929–2016)1

and is known as the “Quine–McCluskey Method” (hereinafter referred to as “QM–

M”).

The QM–M is an algorithm that translates the manual procedure of the Kar-

naugh maps, and it is made up of two phases. The first is the “expansion” phase

where all the implicants of the function to be minimized (Karnaugh’s “cubes”) are

generated. The prime implicants are identified, and the others are eliminated. The

1E.J.McCluskey, Minimization of Boolean Functions, The Bell System Technical Journal,

November 1956.
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second phase known as “covering” is where the smallest number of prime implicants

needed to make the function equivalent to the starting function is chosen. That is,

all the minterms of the function are “covered.” There are tables for these two phases

that help keep track of the steps in the algorithm and are easy to calculate.

4.1.1 The Expansion Phase

In the preparatory phase, the QM–M uses a simple approach to identify minterms:

an n variable minterm is identified by an n-bit binary number where a direct variable

is denoted with the value 1 and a negated variable, with 0. Let’s look at this three-

variable function as an example:

F(X, Y, Z) = X Y Z + X Y Z + X Y Z + X Y Z + X Y Z + X Y Z

Minterms are identified by the binary numbers (000, 010, 011, 100, 110, 111), which

in decimal are (0, 2, 3, 4, 6, 7), so we can use this encoding to write the compact form

of the function:

F(X, Y, Z) = �(0, 2, 3, 4, 6, 7)

The latter can be described through the map below.

From here, we can easily derive the minimal expression:

F(X, Y, Z) = Y + Z

At the beginning of the expansion phase, the QM–M lists all the minterms in a table,

respecting the order that we will outline below. It then proceeds to pair them to obtain

all the possible implicants with one variable less than the starting minterm.
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3 Variables
Terms X Y Z P

0 000
2 010
4 100
3 011
6 110
7 111

2 Variables
Terms X Y Z P

1 Variable
Terms X Y Z P

For example, minterms m0 and m2 can be combined, thus

X Y Z + X Y Z = X Z (Y + Y ) = X Z

In QM–M notation, that would be:

000 + 010 → 0−0

0 + 2 → (0, 2)

The symbol “−” is used to show that the variable was eliminated through simplifi-

cation.

When we combine all the possible minterm pairs, we get a new table with all the

two-variable implicants (one variable less than originally).

3 Variables
Terms X Y Z P

0 000 ∨

2 010 ∨

4 100 ∨

3 011 ∨

6 110 ∨

7 111 ∨

2 Variables
Terms X Y Z P

0, 2 0−0
0, 4 −00
2, 3 01−

2, 6 −10
4, 6 1−0
3, 7 −11
6, 7 11−

1 Variable
Terms X Y Z P

At this point, we should analyze two expedients that have been used in the first phase

of the algorithm.

The first expedient refers to the initial order of the minterms that are grouped

by their number of negated variables, that is, the number of 0s in the corresponding

binary number.2 Group 1 has the minterms with all the negated variables (000). Group

2 has those with two negated variables (010, 100) and so on. It is actually impossible

to combine minterms that differ by two or more variables, for example X Y Z (000)

and X Y Z (011), because we would obtain no simplification. It is only possible to

2In the table, the groups are separated by one continuous line.
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combine copies of minterms that differ by just one variable which is negative in one

of them and direct in the other, for example: X Y Z (110) and X Y Z (111). In other

words, two minterms can be combined only if the corresponding binary numbers have

a Hamming distance of 1. By grouping the numbers that contain the same number of

0s, we get homogeneous groups and can reduce the number of comparisons. Instead

of comparing all the possible copies of minterms, we can check only those belonging

to adjacent groups, those with smaller Hamming distances. The minterm of group 1

(000) can actually only be combined with that of group 2 (010, 100), which in turn

can only be combined with that of group 3 (011, 110) and so on.3 Note that not all

combinations are possible: the term (100) belonging to group 2 can be combined

with (110) but not with (011) from group 3 because their Hamming distance is two.

The second expedient will keep track of terms (implicants) that have been com-

bined. If two implicants are combined to obtain an implicant with one less variable

it means that those implicants were not prime and should not be considered in the

covering phase. We know that a non-prime implicant can be substituted with a prime

implicant if the prime covers it. Column P in the table does just this: there is an

indication that the term has been combined so it is non-prime and can be overlooked

in the covering phase.

By applying the same procedure to two-variable implicants, we get implicants

where an additional variable has been eliminated.

3 Variables
Terms X Y Z P

0 000 ∨

2 010 ∨

4 100 ∨

3 011 ∨

6 110 ∨

7 111 ∨

2 Variables
Terms X Y Z P

0, 2 0−0 ∨

0, 4 −00 ∨

2, 3 01− ∨

2, 6 −10 ∨

4, 6 1−0 ∨

3, 7 −11 ∨

6, 7 11− ∨

1 Variable
Terms X Y Z P

0, 2, 4, 6 −−0 P0

2, 3, 6, 7 −1− P1

Note that when combining two-variable implicants, we have two different ways to

get the same one-variable implicant:

(0, 2) + (4, 6) → (0, 2, 4, 6)

0−0 + 1−0 → −−0

or

(0, 4) + (2, 6) → (0, 4, 2, 6)

−00 + −10 → −−0

3If we had to compare all the possible pairs among n terms to see if they could be combined, we would

have to make more than n(n − 1)/2 comparisons, i.e., each term with every other bidirectionally.
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Clearly, implicant (0, 2, 4, 6) and implicant (0, 4, 2, 6) identify the same term

because they correspond to (−−0), which is the term Z . This is why only one

of these will be brought over to the right-most table.

When we can combine the implicants no further, as in this case where there are only

two uncombined terms altogether, the expansion phase ends and all the unflagged

terms are prime implicants.

We can now list the starting function’s prime implicants, which are:

P0 = (0, 2, 4, 6) = −−0 = Z

P1 = (2, 3, 6, 7) = −1− = Y.

4.1.2 The Covering Phase

If the goal in the expansion phase is to find all the prime implicants, the goal of the

covering phase is to identify the lowest number of prime implicants that can cover

the starting function. We must therefore be sure that all the minterms that defined

the function to be minimized are covered by at least one of the identified prime

implicants. We must also be sure to use as few implicants as possible to obtain the

coverage.

To reach these goals, the QM–M used a “covering table” where the columns

show all the minterms and the rows show all the prime implicants identified in the

expansion phase. The “Xs” in the mi column and in the Pj row show that mi is

covered by Pj :

m0 m2 m3 m4 m6 m7

P0 X X X X
P1 X X X X

In this case, it is easy to deduce that both the prime implicants are needed to cover

the function, so the minimized function is:

F(X, Y, Z) = P0 + P1 = Z + Y

Note that if a column contains just one “X,” it means that there is only one prime

implicant that can cover the corresponding minterm. In this case, the implicant is a

essential prime implicant because without it, the function could not be completely

covered. In this last example, both prime implicants are essential because minterms

m0 and m4 are covered only by P0, while minterms m3 and m7 are only covered by

P1. Further on, we will see that covering tables can be much more complex than this,

so after selecting the essential prime implicants, we will need to use an algorithm to

select the remaining ones to achieve minimum coverage.
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4.1.3 Incompletely Specified Functions

We often need to deal with incompletely specified functions like the one represented

in the map below:

which is written in QM–M notation as:

F(X, Y, Z) = �(0, 2, 4, 6) + d(3, 7)

where d() groups all the minterms corresponding to don’t-care.

Here, the QM–M could be applied by simply treating the don’t-cares as 1s in

the expansion phase and as 0s in the covering phase. The basic idea is this: in the

expansion phase whenever larger cubes are constructed, (implicants with ever fewer

variables) it makes sense to use as many minterms as possible to raise the possibilities

of simplification. In the covering phase, we want to avoid covering a minterm if it is

not strictly necessary. Avoiding to use it in the coverage phase, we try to prevent the

minterm from making any prime implicant superfluous.

For the function above, the expansion phase is identical to the previous case while

the covering phase uses a table with no m3 or m7 don’t-care minterms.

m0 m2 m4 m6

P0 X X X X
P1 X X

From this table, we can immediately see that P0 is an essential prime implicant (due

to m0 and m4) and it is also able to cover the function, giving us:

F(X, Y, Z) = P0 = Z

as expected.

4.1.4 Optimizing the Covering Phase

The covering phase can be particularly complicated when there is a large number of

prime implicants.

Let’s assume that after the expansion phase and after identifying the essential

prime implicants, k prime implicants remain {P0, . . . , Pk−1} from which we will

choose the minimum coverage.
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To obtain minimum coverage, we must check through 2k − 1 different cases,

all the possible combinations with 1, 2, 3, or 4 prime implicants, and so on until

finding the right one: {P0}, {P1}, . . ., {Pk}, {P0, P1}, {P0, P2}, {P0, P3}, and so on

until {P0, . . . , Pk−1}.

The QM–M offers a more efficient alternative that usually requires far fewer

comparisons. Let’s assume we want to minimize the following function:

F(X, Y, W, Z) = �(1, 2, 3, 6, 9, 10, 11, 12) + d(5, 13, 14)

The expansion phase begins with grouping terms, as explained previously. Group 1

contains minterms with three negated variables, group 2 with two and group 3 with

one, as shown in the following tables.

4 Variables
Terms XY WZ P

1 0001
2 0010
3 0011
5 0101
6 0110
9 1001
10 1010
12 1100
11 1011
13 1101
14 1110

3 Variables
Terms XY WZ P

2 Variables
Terms XY WZ P
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Now we can begin comparing all the group 1 and group 2 terms. When it is possible

to combine two four-variable terms, we get three-variable implicants.

4 Variables
Terms XY WZ P

1 0001 ∨

2 0010 ∨

3 0011 ∨

5 0101 ∨

6 0110 ∨

9 1001 ∨

10 1010 ∨

12 1100
11 1011
13 1101
14 1110

3 Variables
Terms XY WZ P

1, 3 00−1
1, 5 0−01
1, 9 −001
2, 3 001−

2, 6 0−10
2, 10 −010

2 Variables
Terms XY WZ P

Now we proceed to compare the terms of group 2 and group 3. See the tables below.

4 Variables
Terms XY WZ P

1 0001 ∨

2 0010 ∨

3 0011 ∨

5 0101 ∨

6 0110 ∨

9 1001 ∨

10 1010 ∨

12 1100 ∨

11 1011 ∨

13 1101 ∨

14 1110 ∨

3 Variables
Terms XY WZ P

1, 3 00−1
1, 5 0−01
1, 9 −001
2, 3 001−

2, 6 0−10
2, 10 −010
3, 11 −011
5, 13 −101
6, 14 −110
9, 11 10−1
9, 13 1−01
10, 11 101−

10, 14 1−10
12, 13 110−

12, 14 11−0

2 Variables
Terms XY WZ P

A tic in column P regarding all the four-variable implicants (the minterms) indicates

that none are prime.
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The algorithm continues comparing the two groups of three-variable implicants

to obtain two-variable implicants.

4 Variables
Terms XY WZ P

1 0001 ∨

2 0010 ∨

3 0011 ∨

5 0101 ∨

6 0110 ∨

9 1001 ∨

10 1010 ∨

12 1100 ∨

11 1011 ∨

13 1101 ∨

14 1110 ∨

3 Variables
Terms XY WZ P

1, 3 00−1 ∨

1, 5 0−01 ∨

1, 9 −001 ∨

2, 3 001− ∨

2, 6 0−10 ∨

2, 10 −010 ∨

3, 11 −011 ∨

5, 13 −101 ∨

6, 14 −110 ∨

9, 11 10−1 ∨

9, 13 1−01 ∨

10, 11 101− ∨

10, 14 1−10 ∨

12, 13 110− P0

12, 14 11−0 P1

2 Variables
Terms XY WZ P

1, 3, 9, 11 −0−1 P2

1, 5, 9, 13 −−01 P3

2, 3, 10, 11 −01− P4

2, 6, 10, 14 −−10 P5

Note that we can combine both (1, 5) + (9, 13) → (1, 5, 9, 13) and (1, 9) + (5, 13) →

(1, 9, 5, 13) but they produce the same term (−−01), W Z , which is reported only

once in the two-variable table. The pairs (1, 5), (9, 13) and (1, 9), (5, 13) both receive

the tic because neither is a prime implicant.

In the end, there are six prime implicants: P0 and P1 with three variables (repre-

sented on the Karnaugh map as two cubes with two cells) and P2, P3, P4, P5 with

two variables (represented on the Karnaugh map as four cubes with four cells).

The QM–M proceeds with the covering table to find the lowest number of impli-

cants to cover the function.

m1 m2 m3 m6 m9 m10 m11 m12

P0 X
P1 X
P2 X X X X
P3 X X
P4 X X X X
P5 X X X

The table clearly indicates that P5 is an essential prime implicant because it is the

only one that covers m6, so the minimum expression will certainly include it.

F(X, Y, W, Z) = P5 + · · · = W Z + · · ·
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So we can write a new table and eliminate row P5, which has already been selected

as well as columns m2, m6, m10, which are covered by P5:

m1 m3 m9 m11 m12

P0 X
P1 X
P2 X X X X
P3 X X
P4 X X

The resulting table can be further simplified by analyzing coverage by the rows and

columns and eliminating some of the prime implicants (the rows) or some of the

minterms (the columns). Column mi can be eliminated if it covers column m j ; that

is, if for every X in column m j there is an X in the corresponding row of column mi .

In this configuration, we can eliminate because the minterm mi would be covered by

one of the implicants that covers m j , so there is no need to treat it.

In the table above, the columns m9 and m11 can be eliminated because they cover

m1 and m3, respectively, (in this case, they are actually equal):

m1 m3 m12

P0 X
P1 X
P2 X X
P3 X
P4 X

Likewise, row Pi can be eliminated if it is covered by another implicant Pj ; that is,

if for every X in row Pi there is an X in the corresponding column of row Pj . We

can eliminate Pi because the prime implicant Pj covers all the minterms covered by

Pi (and possibly more).

In the table above, we can immediately see that P1 covers P0 and vice versa while

P2 covers P3 and P4. Thus, the final table is:

m1 m3 m12

P0 X
P2 X X

Now it is very easy to identify the optimal coverage, composed here by P0 and P2.

By adding these two prime implicants to the already identified (P5), we get the final

result:

F(X, Y, W, Z) = P0 + P2 + P5 = X Y W + Y Z + W Z
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In rare cases, not all the columns or rows can be eliminated in a coverage table.

In this case, the table is referred to as “cyclic” and all the possible combinations

of prime implicants must be checked to obtain optimal coverage. There are various

ways (some optimal, some less so) to deal with this, but they go beyond the scope of

this book.

4.1.5 Simultaneous Optimization of Multiple Functions

In real digital systems, we must often create different combinational networks, each

corresponding to a Boolean function in the same project. In a case like this, we can

benefit in terms of circuit complexity from jointly optimizing functions to reuse some

parts of circuits shared by multiple networks. This is why the QM–M was extended to

optimize more than one Boolean function. The expansion and covering phases were

changed to identify the prime implicants that could be used to cover the minterms of

multiple functions.

To understand how the multiple function method is extended, see the example

below. Supposing we must optimize the following three functions:

F1(X, Y, W, Z) = Σ(2, 3, 6, 10, 11, 12) + d(14)

F2(X, Y, W, Z) = Σ(1, 3, 9, 11) + d(5, 13)
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F3(X, Y, W, Z) = Σ(1, 2, 3, 9, 10, 11) + d(5)

In the expansion phase, all the minterms of the three functions are reported in the

first table. The difference from the case of only one function is that here, there is an

added column that uses multi-bit masks to indicate how many functions to optimize

and which ones contain the corresponding minterm.

4 Variables

Terms XY WZ F1F2F3 P

1 0001 011

2 0010 101

3 0011 111

5 0101 011

6 0110 100

9 1001 011

10 1010 101

12 1100 100

11 1011 111

13 1101 010

14 1110 100

3 Variables

Terms XY WZ F1F2F3 P

2 Variables

Terms XY WZ F1F2F3 P

The minterm m1, for example, appears in functions F2 and F3 but not in F1. This is

indicated by mask “011”. Likewise, the minterm m14 appears in function F1 but not

in F2 or F3, and so the corresponding mask is “100”.

In the expansion phase, the four-variable terms are combined to form three-

variable terms. We must keep in mind that two terms can be combined only if they

appear in the same function. For example, consider the combination of m1 and m3,

i.e., (0001) and (0011), to obtain (00−1). This is possible only for functions F2 and

F3, which contain both the terms. Function F1 contains the term m3 but not m1, so

it is impossible to simplify in this case. Thus, we will use mask “011” with (1, 3) to

indicate that this term is present in only two out of the three functions: F2 and F3.

When applying the tic that indicates prime implicants, we must take into account

which terms have been combined relative to which functions. The minterm m1 has
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actually been simplified in all cases, so it is not a prime implicant, and the tic can

be inserted in column P. The minterm m3, however, has not been simplified with

any other term in the function F1, so the tic cannot be inserted because m3 is still a

potential prime implicant for this function at least during the expansion phase.

4 Variables

Terms XY WZ F1F2F3 P

1 0001 011 ∨

2 0010 101

3 0011 111

5 0101 011

6 0110 100

9 1001 011

10 1010 101

12 1100 100

11 1011 111

13 1101 010

14 1110 100

3 Variables

Terms XY WZ F1F2F3 P

1, 3 00−1 011

2 Variables

Terms XY WZ F1F2F3 P

We can derive two simple rules from these considerations about combining terms

and inserting the tic for implicants.

Rule 1

Two terms can be combined if we compute the bit-wise AND from the corresponding

masks and at least one bit from the resulting mask differs from 0. We actually obtain

this when there is a 1 in the same position in both masks; i.e., the terms being

considered are both present in the same function. The resulting mask will be reported

in the column of the simplified term. The previous case, where m1 is combined with

m3 to obtain (1, 3): “011” AND “111” → “011”.

Rule 2

If a term’s mask is identical to the one resulting from the simplification, the corre-

sponding minterm is definitely not a prime implicant, so the tic can be inserted. In

the previous case, the resulting mask is “011” so the term m1 is definitely not a prime

implicant and we can insert the tic “∨.” The masks of m3 and (1, 3) are not the same

(they are “111” and “011”, respectively), so m3 is still a potential prime implicant.

By continuing the simplification, we get the following table with three-variable

terms.
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4 Variables

Terms XY WZ F1F2F3 P

1 0001 011 ∨

2 0010 101 ∨

3 0011 111 ∨

5 0101 011 ∨

6 0110 100 ∨

9 1001 011 ∨

10 1010 101 ∨

12 1100 100 ∨

11 1011 111 ∨

13 1101 010 ∨

14 1110 100 ∨

3 Variabili

Terms XY WZ F1F2F3 P

1, 3 00−1 011

1, 5 0−01 011

1, 9 −001 011

2, 3 001− 101

2, 6 0−10 100

2, 10 −010 101

3, 11 −011 111

5, 13 −101 010

6, 14 −110 100

9, 11 10−1 011

9, 13 1−01 010

10, 11 101− 101

10, 14 1−10 100

12, 14 11−0 100

2 Variables

Terms XY WZ F1F2F3 P

Note that the minterms m12 and m13 were not combined because m12 is only present

in function F1 (“100”) and m13, only in function F2 (“010”).

Now we can combine the three-variable terms to obtain two-variable terms if

possible.

4 Variables

Terms XY WZ F1F2F3 P

1 0001 011 ∨

2 0010 101 ∨

3 0011 111 ∨

5 0101 011 ∨

6 0110 100 ∨

9 1001 011 ∨

10 1010 101 ∨

12 1100 100 ∨

11 1011 111 ∨

13 1101 010 ∨

14 1110 100 ∨

3 Variables

Terms XY WZ F1F2F3 P

1, 3 00−1 011 ∨

1, 5 0−01 011 P0

1, 9 −001 011 ∨

2, 3 001− 101 ∨

2, 6 0−10 100 ∨

2, 10 −010 101 ∨

3, 11 −011 111 P1

5, 13 −101 010 ∨

6, 14 −110 100 ∨

9, 11 10−1 011 ∨

9, 13 1−01 010 ∨

10, 11 101− 101 ∨

10, 14 1−10 100 ∨

12, 14 11−0 100 P2

2 Variables

Terms XY WZ F1F2F3 P

1, 3, 9, 11 −0−1 011 P3

1, 5, 9, 13 −−01 010 P4

2, 3, 10, 11 −01− 101 P5

2, 6, 10, 14 −−10 100 P6

Here as well, we must pay attention to the masks that indicate which functions we

can continue simplifying and which are the prime implicants.

For example, when we combine (1, 3) with (9, 11) we get (1, 3, 9, 11) for func-

tions F2 and F3 (“011”), and both starting terms are non-prime implicants.

However, when we combine (1, 9) with (3, 11) we get the same term (1, 3, 9, 11)

for the same functions (F2 and F3) but (3, 11) is still a prime implicant because it

was impossible to simplify it with another term in function F1. The two masks are

actually “011” and “111”.

When the expansion phase is finished, we can move on to the covering phase,

considering each function separately.
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F1 F2 F3

m2 m3 m6 m10 m11 m12 m1 m3 m9 m11 m1 m2 m3 m9 m10 m11

P0 X X

P1 X X X X X X

P2 X

P3 X X X X X X X X

P4 X X

P5 XXXXXXXX

P6 X X X

Masks are useful here as well because they indicate what functions the prime impli-

cant should be associated with. The prime implicant P4, for example, covers the

minterms m1, m5, m9, and m13 only for function F2, because the corresponding

mask is “010”, so Xs are not inserted for the other functions (F1 and F3).

As before, we go on to identify the essential prime implicants, in this case: P2

(because it is the only one that covers the minterm m12 in F1), P3 (because it is the

only one that covers the minterm m9 of F3), P5 (because it is the only one that covers

the minterms m2 and m10 in F3) and P6 (because it is the only one that covers the

minterm m6 in F1). Note that when a prime implicant is selected, it is selected for

all the functions. The implicant P5, for example, is selected because it is essential

for F3 but at that point it is also used to cover the minterms of F1. In other words

P5, which corresponds to the term (2, 3, 10, 11) i.e., Y W , certainly appears in the

optimal expression of F3 but can also be used for F1. This way, the same logical

network is used twice economizing on the circuit level.

By selecting P2, P3, P5 and P6 we cover all the minterms in all the functions and

we now can write the resulting functions:

F1(X, Y, W, Z) = P2 + P5 + P6 = XY Z + Y W + W Z

F2(X, Y, W, Z) = P3 = Y Z

F3(X, Y, W, Z) = P3 + P5 = Y Z + Y W

Note that the P3 and P5 combinational networks are used twice in different functions

providing some savings in the overall complexity of the circuit.
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4.2 Exercises

4.2.1 Quine–McCluskey: Single Function Synthesis

1. Synthesize the following Boolean function with the QM–M

F(A, B, C, D) = �(5, 7, 8, 9, 12, 13, 15) + d(4)

4 Variables
Terms ABCD P

3 Variables
Terms ABCD P

2 Variables
Terms ABCD P

m5 m7 m8 m9 m12 m13 m15

P0

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15
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2. Synthesize the following Boolean functions with the QM–M

F(A, B, C, D) = �(0, 1, 2, 3, 4, 5, 15) + d(10, 14)

4 Variables
Terms ABCD P

3 Variables
Terms ABCD P

2 Variables
Terms ABCD P

m0 m1 m2 m3 m4 m5 m15

P0

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15
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3. Synthesize the following Boolean function with the QM–M

F(A, B, C, D) = �(1, 9, 11, 13, 15) + d(0, 4, 5)

4 Variables
Terms ABCD P

3 Variables
Terms ABCD P

2 Variables
Terms ABCD P

m1 m9 m11 m13 m15

P0

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15
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4.2.2 Quine–McCluskey: Jointly Synthesis of Multiple

Functions

1. Jointly synthesize the following Boolean functions with the QM–M

F1(A, B, C, D) = �(5, 7, 13, 15) + d(4, 12)

F2(A, B, C, D) = �(8, 9, 12, 13) + d(4, 5)

F3(A, B, C, D) = �(4, 5, 12, 13)

4 Variables

Terms ABCD F1F2F3 P

3 Variables

Terms ABCD F1F2F3 P

2 Variables

Terms ABCD F1F2F3 P

F1 F2 F3

m5 m7 m13 m15 m8 m9 m12 m13 m4 m5 m12 m13

P0

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15
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2. Jointly synthesize the following Boolean functions with the QM–M

F1(A, B, C, D) = �(0, 1, 2, 15) + d(3)

F2(A, B, C, D) = �(2, 3, 4, 5) + d(0, 1)

F3(A, B, C, D) = �(0, 1, 4, 5)

4 Variables

Terms ABCD F1F2F3 P

3 Variables

Terms ABCD F1F2F3 P

2 Variables

Terms ABCD F1F2F3 P

F1 F2 F3

m0 m1 m2 m15 m2 m3 m4 m5 m0 m1 m4 m5

P0

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15
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3. Jointly synthesize the following Boolean functions with the QM–M

F1(A, B, C, D) = �(1, 4, 5) + d(13)

F2(A, B, C, D) = �(1, 9, 13) + d(0, 5)

F3(A, B, C, D) = �(9, 11, 13, 15) + d(1, 5)

4 Variables

Terms ABCD F1F2F3 P

3 Variables

Terms ABCD F1F2F3 P

2 Variables

Terms ABCD F1F2F3 P

F1 F2 F3

m1 m4 m5 m1 m9 m13 m9 m11 m13 m15

P0

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15
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4.3 Solutions

4.3.1 Quine–McCluskey: Synthesis of a Single Function

1. F(A, B, C, D) = B D + A C

4 Variables
Terms ABCD P

4 0100 ∨

8 1000 ∨

5 0101 ∨

9 1001 ∨

12 1100 ∨

7 0111 ∨

13 1101 ∨

15 1111 ∨

3 Variables
Terms ABCD P

5, 4 010− ∨

9, 8 100− ∨

12, 4 −100 ∨

12, 8 1−00 ∨

7, 5 01−1 ∨

13, 5 −101 ∨

13, 9 1−01 ∨

13, 12 110− ∨

15, 7 −111 ∨

15, 13 11−1 ∨

2 Variables
Terms ABCD P

13, 12, 9, 8 1−0− P0

3, 12, 5, 4 −10− P1

15, 13, 7, 5 −1−1 P2

m5 m7 m8 m9 m12 m13 m15

P0 X X X X
P1 X X X
P2 X X X X

2. F(A, B, C, D) = A B C + A C + A B

4 Variables
Terms ABCD P

0 0000 ∨

1 0001 ∨

2 0010 ∨

4 0100 ∨

3 0011 ∨

5 0101 ∨

10 1010 ∨

14 1110 ∨

15 1111 ∨

3 Variables
Terms ABCD P

1, 0 000− ∨

2, 0 00−0 ∨

4, 0 0−00 ∨

3, 1 00−1 ∨

3, 2 001− ∨

5, 1 0−01 ∨

5, 4 010− ∨

10, 2 −010 P0

14, 10 1−10 P1

15, 14 111− P2

2 Variables
Terms ABCD P

3, 2, 1, 0 00−− P3

5, 4, 1, 0 0−0− P4

m0 m1 m2 m3 m4 m5 m15

P0 X
P1

P2 X
P3 X X X X
P4 X X X X
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3. F(A, B, C, D) = A D + C D

4 Variables
Terms ABCD P

0 0000 ∨

1 0001 ∨

4 0100 ∨

9 1001 ∨

5 0101 ∨

11 1011 ∨

13 1101 ∨

15 1111 ∨

3 Variables
Terms ABCD P

1, 0 000− ∨

4, 0 0−00 ∨

5, 1 0−01 ∨

5, 4 010− ∨

9, 1 −001 ∨

11, 9 10−1 ∨

13, 5 −101 ∨

13, 9 1−01 ∨

15, 11 1−11 ∨

15, 13 11−1 ∨

2 Variables
Terms ABCD P

5, 4, 1, 0 0−0− P0

13, 5, 9, 1 −−01 P1

15, 13, 11, 9 1−−1 P2

m1 m9 m11 m13 m15

P0 X
P1 X X X
P2 X X X X

4.3.2 Quine–McCluskey: Joint Synthesis of Multiple

Functions

1. The solution is

F1(A, B, C, D) = B C

F2(A, B, C, D) = A C

F3(A, B, C, D) = B D

4 Variables

Terms ABCD F1F2F3 P

4 0100 111 ∨

8 1000 010 ∨

5 0101 111 ∨

9 1001 010 ∨

12 1100 111 ∨

7 0111 100 ∨

13 1101 111 ∨

15 1111 100 ∨

3 Variables

Terms ABCD F1F2F3 P

5, 4 010− 111 ∨

4, 12 −100 111 ∨

8, 9 100− 010 ∨

8, 12 1−00 010 ∨

5, 7 01−1 100 ∨

5, 13 −101 111 ∨

9, 13 1−01 010 ∨

12, 13 110− 111 ∨

7, 15 −111 100 ∨

13, 15 11−1 100 ∨

2 Variables

Terms ABCD F1F2F3 P

4, 5, 12, 13 −10− 111 P0

8, 9, 12, 13 1−0− 010 P1

5, 7, 13, 15 −1−1 100 P2

F1 F2 F3

m5 m7 m13 m15 m8 m9 m12 m13 m4 m5 m12 m13

P0 X X X X X X X X

P1 X X X X

P2 X X X X
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2. The solution is
F1(A, B, C, D) = A B C D + A B

F2(A, B, C, D) = A B + A C

F3(A, B, C, D) = A C

4 Variables

Terms ABCD F1F2F3 P

0 0000 111 ∨

1 0001 111 ∨

2 0010 110 ∨

4 0100 011 ∨

3 0011 110 ∨

5 0101 011 ∨

15 1111 100 P0

3 Variables

Terms ABCD F1F2F3 P

0, 1 000− 111 P1

0, 2 00−0 110 ∨

0, 4 0−00 011 ∨

1, 3 00−1 110 ∨

1, 5 0−01 011 ∨

2, 3 001− 110 ∨

4, 5 010− 011 ∨

2 Variables

Terms ABCD F1F2F3 P

0, 1, 2, 3 00−− 110 P2

0, 1, 4, 5 0−0− 011 P3

F1 F2 F3

m0 m1 m2 m15 m2 m3 m4 m5 m0 m1 m4 m5

P0 X

P1 XXXX

P2 X X X X X

P3 X X X X X X

3. The solution is

F1(A, B, C, D) = A C D + A B C

F2(A, B, C, D) = C D

F3(A, B, C, D) = A D

4 Variables

Terms ABCD F1F2F3 P

0 0000 010 ∨

1 0001 111 ∨

4 0100 100 ∨

5 0101 111 ∨

9 1001 011 ∨

11 1011 001 ∨

13 1101 111 ∨

15 1111 001 ∨

3 Variables

Terms ABCD F1F2F3 P

0, 1 000− 010 P0

1, 5 0−01 111 P1

1, 9 −001 011 ∨

4, 5 010− 100 P2

5, 13 −101 111 P3

9, 11 10−1 001 ∨

9, 13 1−01 011 ∨

11, 15 1−11 001 ∨

13, 15 11−1 001 ∨

2 Variables

Terms ABCD F1F2F3 P

1, 5, 9, 13 −−01 011 P4

9, 11, 13, 15 1−−1 001 P5

F1 F2 F3

m1 m4 m5 m1 m9 m13 m9 m11 m13 m15

P0 X

P1 X X X

P2 X X

P3 X X X

P4 X X X X X

P5 X X X X



Chapter 5

Introduction to Sequential Networks

Abstract The transition from combinational to sequential networks is explained

step by step, starting from a simple gate with feedback and arriving to the struc-

ture and behavior of the principal types of flip-flops. They are classified according

to their temporal response (direct command, level enabled, master–slave, and edge

triggered) and the logical operation (SR, D, JK). The timing parameters of physi-

cally implemented devices are considered. The chapter introduces the concept and

techniques for synchronization that will be further examined in the following ones.

It is very rare for a digital device to be based only on combinational networks. In

a real situation, it is important to have devices that can memorize data, generate

sequences, and respond to conditions that change over time.

5.1 From Combinational Networks to Sequential Networks

We have seen combinational networks (see RC in the figure below left) where, at

any given moment, the output U is the function of only the I inputs. Combinational

networks are identified precisely by the fact that every input combination always

produces the same output U = f (I 1, I 2, . . . I n).
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A sequential network (RS, below right) does not follow this rule. The same input

combination can generate different outputs when applied at different moments.

We can obtain a sequential network by starting with a combinational network and

bringing one or more of its outputs into the inputs, as seen in the figure above. This

type of connection is called feedback.

Generally speaking, connecting m outputs of a combinational network to as many

inputs makes it so that the outputs’ behavior as a function of the inputs depends in

part on the outputs themselves. If we consider recursively that each set of current

outputs was produced by the inputs plus the preceding outputs, we can say that the

outputs depend not only on the current inputs but on their history.

In other words, the functioning of the network depends on the sequence of inputs

that produce a sequence of outputs. A logical network that behaves this way is

unsurprisingly called a sequential network.

Next we will see that in sequential networks, the outputs, the inputs, and the

special conditions of the network at that moment (called “state”) can all be expressed

analytically. As we will see, the concept of state will allow us to concisely express

the history of the network.

5.1.1 Introductory Example

Let’s look at this simple example of a sequential network that uses the OR function,

which as we know is a combinational network. Let’s construct a feedback by bringing

the output U to one of the two inputs (B), as in the following figure.

Let’s try to understand how this network acts, operating on the only available input

A, since B is already driven by U , so it is unavailable. Let’s suppose that A and U

(and therefore B) are initially equal to 0. This is described in the timing diagram to

the right.

If we force input A to 1 at a certain moment, the output will go to 1. If this were

a combinational network this change would have exhausted the number of possible

cases (two), taking the number of inputs (one) into account. If we reduce input A

to zero, this should also force output U to zero, but actually, this does not happen.

Because of the feedback connection between U and B, output U remains forced at

1 for any input value A so it is impossible to get it back to zero.

We can say that the network has memorized the value 1. Note that the diagram

shows in an approximate way the propagation time of the OR gate.

Evidently, this is no longer a combinational network but a sequential one, where

the output value depends on the history of the inputs. We can no longer describe how

it works through a truth table like we did with combinational networks.
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5.1.2 Memorizing an Information Bit: Flip-Flops

If we find a way to force the output to 0, the simple sequential network we have just

seen can be used to store an information bit, i.e., to memorize both the value 0 and 1.

A potential change is shown in the figure below, where an AND gate was inserted

in the feedback loop and the input C was added.

The AND gate and input C were added to establish or remove the connection between

U and B. If C = 1 the network will behave as before since every variation of U is

transferred through the AND gate on B (B = U · 1 = U ). If C = 0, then B is at 0,

regardless of the value of U (B = U · 0 = 0).

In the timing diagram in the figure, we assume that we start with input A and

output U at 0 and with input C at 1. Then, the activation of the input A forces the

output to 1. The new value U = 1, brought from the AND gate on input B of the

OR, makes it so that further variations of A can no longer change the output. We

have memorized a bit at 1.

To force the output U to 0, we will have to open the feedback loop by applying

the value 0 to input C , as shown in the timing diagram. Forcing the output to zero

memorizes a bit at 0. Further variations of C do not change the situation. As before,

in the figure the propagation times are represented in a approximated way.

Note that each input can be considered in two ways:

• the purpose that each command has in the network;

• the logical modality that produces an effect.

In this case, input A produces the effect of memorizing 1 in the output, which happens

when it is brought to 1. This is called an active-high input, that is, it does its job when

it is brought to 1 and is inactive when it is at 0.

Input C has the job of memorizing a 0, which happens when it is brought to 0.

We say that this input at 0 is active-low and when it is inactive it is at 1.

With this sequential network, we are able to memorize a bit whose value is main-

tained until a new value is memorized. This is one of the ways to create an elementary

memory cell, also called bistable element, one-bit register or, more commonly, “flip-

flop.” Flip-flops are the basic logical elements generally used to build sequential

digital systems.
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Now let’s try to slightly modify the network, making the commands symmetri-

cal and easier to operate. We want to gradually build the network analyzed in the

paragraph below, the classic elementary memory cell called Set-Reset flip-flop.

To achieve this, we make the following changes. Let’s

• add a NOT before input C , to make active-high the command memorizing the

zero.

• call the new input we obtain RE SET (because it brings the output to 0).

• change the name of input A to SET (because it brings the output to 1).

• change the name of output U to Q (to follow an established naming tradition).

The network with these changes appears in the figure below left. To continue trans-

forming it, we apply De Morgan’s theorem and substitute the OR with an AND (in

the figure at the right).

The NOTs directly following the ANDs suggest that we should use the NANDs to

get the network below left. The transformation is now complete; it is convenient to

re-draw the network to highlight its symmetry without altering the connections (in

the figure below right).

The network in the right is called Set-Reset flip-flop.

5.1.3 Flip-Flop Classification: Logical Type and Command

Type

In the last section, we saw how to derive the sequential structure called the Set-Reset

flip-flop. This is one of many flip-flops used to memorize a bit of information. Flip-

flops are fundamental blocks used to build more complex sequential networks. We

classify the flip-flops according to their “logical type” and to their “command type.”
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The Logical Type

The type of flip-flop whose function is to activate the output (Set it) or deactivate it

(Reset it) is the logical Set-Reset. Further on, we will examine other logical types,

such as D (Delay), which memorizes the output value of the unique input D and the

variant JK of the Set-Reset. This variant substitutes inputs J and K with S and R,

respectively, and allows the output’s state to reverse. We will also see logical types

T and E that derive from JK and D, respectively.

As we will see, the logical type is described by its function table, which indicates

the output values in function of the logical inputs, that is, the inputs that characterize

the logical type of flip-flop and that give it its name.

The Command Type

The command type describes input behavior, which comes in three forms: direct,

level-enabled, or edge-triggered.

In the case of direct command, logical input action is not subordinated to any other

enable or synchronization input but it directly controls the behavior of the flip-flop

which, in this case, is called “asynchronous.”

In the other two cases, there is an added input that enables/disables logical

inputs. Enabling can happen simply as a function of the logical level of this added

input (level-enabled command), or when it presents a logical level transition (edge-

triggered command).1 In this case, the flip-flop is called “synchronous.”

Let’s turn our attention to direct command types. Before we begin to deal with

other types of commands, we will need to examine some important concepts like

initialization and synchronization of sequential networks.

5.2 Direct Command Flip-Flops

Now, let’s look at the three types of direct commands: SR, D, and JK. The SR type

has already been introduced but some of its possible variants will be dealt with here.

5.2.1 SR Flip-Flop

SR Flip-Flop (Active-High Commands, NAND Version)

The schematic in the figure below represents a Set-Reset (SR) flip-flop built with

NAND (and NOT) gates and active-high inputs. This is like the version examined

above but with the added output Q, which takes the opposite value of Q under normal

operating conditions, as we will soon see. This is the structure that implements the

1The transition can be “positive” (from 0 to 1, or “rising edge”) or “negative” (from 1 to 0, the

“falling edge”).
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Set-Reset logical type with direct command. Drawn on the right side of the figure is

the logical symbol that represents this flip-flop in schematics:

As we have seen before, this is a sequential network that can memorize a bit. The

activation of the input SET memorizes a 1 in the cell, while the input RE SET

imposes a 0. Given their opposite actions, it would naturally make little sense to

activate SET and RE SET at the same time. Below, its function table shows what

we have just described in English. The table gives both the outputs Q and Q.

Set-Reset Flip-flop (Active-high Commands)

SET RE SET Q Q

1 1 Q p Q p Previous state

0 1 1 0 SET command

1 0 0 1 RE SET command

0 0 1 1 Invalid

The table shows that if the inputs are kept idle (at 0), the flip-flop stays in its previous

state (Q p, Q p), that is it maintains the previously memorized bit in the output. The

next two rows describe what the SET and RE SET commands do. To be thorough,

the last row in the table shows the invalid case, where both command inputs are

activated.

In this network, the invalid combination simultaneously activates the two outputs:

Q and Q. The invalid configuration deserves to be treated separately later on because

this limit condition has technically interesting aspects that depend in part on the

specific configuration of the circuit.

The following timing diagram, obtained with the Deeds simulator, shows how

the flip-flop behaves under various driving conditions. The duration of the signals

and the visual scale of the diagram were chosen in order to show the delay times

between the activation of SET , RE SET , and the outputs Q and Q, as evaluated by

the simulator:



5.2 Direct Command Flip-Flops 145

Let’s analyze the behavior of the network point by point.

• In the simulated interval, we assume Q = 0 and Q = 1 at the beginning.

• The activation of SET forces output Q to 1 and, accordingly, Q to 0.

• After SET is deactivated, Q = 1 remains memorized in the flip-flop.

• Activating RE SET forces output Q to zero.

• After RE SET is deactivated, Q = 0 remains memorized.

• Further activations and deactivations of the RE SET input produce no changes

because output Q is already at zero.

• Output Q changes to 1 only on the next activation of SET .

In the final part of the diagram, we see the effects of applying the invalid input

configuration. When SET and RE SET are both active, outputs Q and Q are both

forced to 1. By examining the logical network of the flip-flop, it is easy to verify that

the feedback has no effect on the NAND inputs under this condition since there is a

0 on the other input.

The network has lost both the feedback and the data memory! We can get out

of this anomalous situation with no problem if we first deactivate one of the inputs

and then the other. We will then get to an input configuration that would force the

memorization of a known value that, at that moment, is coherent with the value of

SET and RE SET .

The timing diagram shows the limit condition where the inputs SET and RE SET

are simultaneously deactivated. Normally, if SET and RE SET are both inactive, we

get the memorization of a value. In this case, however, the information has just been

lost. The simulator shows that the outputs oscillate. That is, Q and Q periodically

switch between the two levels, at the same time and with the same logical value.

The simulation produces this result because the model of the components is sim-

plified and idealized; the logical gates have the same delay time (transport). When

the inputs switch at the same time, they cause the outputs to switch at the same time,

too. The feedback brings them to the inputs, which then causes a further change in

the level of both the outputs together and on the same instant, and so on.

This behavior would be very unlikely in a real network. In reality, the logical

components are nonlinear amplifiers. An in-depth study of their behavior in the

limit case examined here could become very complex and involve concepts like

metastability, which will be dealt with further on.

For our purposes, it suffices to point out that the real gates’ propagation times

are similar but not identical. One of the gates will be faster than the other, and the

feedback quickly ends up stabilizing the outputs by forcing the flip-flop into the

memorization condition (although to an a priori unknown value).

SR Flip-Flop (Active-Low Commands, NAND Version)

If the two inverters are eliminated, we get the same flip-flop with active-low com-

mands. Because of its simplicity, the SR flip-flop with this type of command forms

the base structure on witch other logical types are built on.

Hereafter, we will refer to this network as “base cell.”
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Obviously, this type is not substantially different from the type with active-high

commands. Only the logical level of the command changes. Below, we have its

function table. As we can see, this is just like the previous one except that the inputs

are active-low.

Flip-flop Set-Reset (active-low commands)

SET RE SET Q Q

1 1 Q p Q p Previous state

0 1 1 0 SET command

1 0 0 1 RE SET command

0 0 1 1 Invalid

The timing diagram below shows a simulation sequence that is identical to the pre-

vious one but with complemented input signals.

SR Flip-Flop (Active-High Commands, NOR Version)

To be thorough, let’s now outline a version of the Set-Reset flip-flop with NOR gates.

To obtain that, we go back to the network composed only of an AND and an OR,

seen previously, but this time let’s transform it into a network with only NOR gates.

Ignoring the intermediate steps where the NOT gates are eliminated, we obtain the

following network:
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This cell has active-high inputs. Note that, unlike the NAND version, here, output

Q is generated by the gate that receives the RE SET signal and output Q by the gate

that receives SET .

Despite its simplicity, this NOR version is not commonly used since it is more

convenient to use NAND gates in many technologies. Here is its function table.

Set-Reset Flip-flop (NOR gate version)

SET RE SET Q Q

0 0 Q p Q p Previous state

1 0 1 0 SET command

0 1 0 1 RE SET command

1 1 0 0 Invalid

This is similar to the table for the flip-flop with NAND gates except for its behavior

in the invalid condition. Here, when both inputs are activated, the network responds

with both outputs at 0. The analysis made before on simultaneously deactivating the

inputs is still valid.

5.2.2 D Flip-Flop

Here, we introduce the concept of the logical type D flip-flop. We want one single

data input D, rather than two separate SET and RE SET controls. The idea is to

simply memorize the bit by submitting it at the input and to avoid the problems

related to the invalid configuration.

In the figure below, on the left, we get rid of one input by adding a NOT to the SR

flip-flop structure with active-high inputs. The data in input D is applied to the SET ,

while we attach D to the RE SET . Once the two cascading NOTs are eliminated,

we get the network below right:

The NOT also assures that the inputs SET and RE SET of the base cell will never

have the same logical level. This prevents the critical condition previously discussed.

However, as seen in the timing diagram, output Q always reproduces input D.

There is no command configuration that memorizes the data so this circuit is useless

in the direct command version.
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The D flip-flop is an important functional element in the enabled command versions,

as we will see further on.

5.2.3 JK Flip-Flop

An efficient approach to eliminating the invalid configuration is the JK flip-flop with

direct commands. This circuit derives from the Set-Reset flip-flop with active-low

inputs plus two NAND gates, as shown in the next figure. The new inputs are assigned

the name J and K (hence the name JK, in honor of Jack Kilby for his contribution

to the birth of integrated electronics).

Here, we see that through one of the two new NANDs the input J drives the SET

conditioned by Q. Likewise, the input K drives the RE SET conditioned by Q. This

way, SET and RE SET can never be activated at the same time. Here, the function

table describes how inputs J and K act on the outputs:

JK Flip-flop

J K Q Q

0 0 Q p Q p Previous state

1 0 1 0 SET command

0 1 0 1 RE SET command

1 1 Q p Q p Toggle

In the first row of the table, J and K are both at 0, so SET and RE SET are at 1,

and the outputs keep the previous value. In the timing simulation below, we find this

input configuration in the “MEM” time intervals:
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In the second row of the table J = 1 and K = 0, so the input SET is activated and

output Q is forced to 1 (operation identified as “SET” in the timing simulation). In

the third row, we have the opposite case and output Q is at zero (“RESET” in the

same figure).

The JK flip-flop is different from the SR type because the invalid condition in SR

is used to accomplish a useful function, the inversion of the output values (as shown

in the last line of the table), also known as “toggle.” When both inputs J and K are

at 1, SET is activated if Q = 0, or RE SET is activated if Q = 1. This reverses the

outputs (time interval indicated as “INV” in the timing diagram).

Further on, we will see that the toggle function is only completely usable in edge-

triggered JK flip-flops. Under the conditions in the timing diagram above, that is

with J and K kept at 1 for a long enough time, outputs Q and Q reverse their values

continually. At every change of outputs Q and Q, the feedback reverses the values in

SET and RE SET , in turn creating another inversion, thus giving rise to a cyclical

behavior.

5.3 Initialization of a Sequential Network

Before we continue, a small digression: in the timing diagrams that we have studied,

the sequences always purposefully begin with Q = 0 and Q = 1, as in the following

example:

A specific moment in the normal functioning of the network has been chosen as the

time to begin to observe the network. In the previous section, we willfully hid an

important aspect of all sequential networks. To simplify things, we avoided men-

tioning the fact that we must launch the network with a known configuration. This

problem involves all sequential networks and will be dealt with further when we

study aspects of their design.



150 5 Introduction to Sequential Networks

At the launch of a sequential network, we say in technical terms, that it must

be “initialized” so that it can work coherently in normal operation. There will be

many flip-flops in a real network: when the system is activated, in absence of specific

measures, every one of these will tend to take on a random value.

We can see that this is unacceptable for a complex network so we need to turn to

circuit techniques that allow us to supply every flip-flop with a known value before

launching the normal functioning of the network.

In simpler networks, initialization could be irrelevant. For example, for a circuit

that makes an LED light flash on a panel, it doesn’t make much difference if the LED

lights immediately when turned on or whether it lights half a cycle later. In almost

all real cases, however, it is unacceptable for the network to start at random values.

Think of a digital network that controls something intrinsically dangerous, like

opening the bulkheads in the dyke of a hydroelectric basin. We could not afford

for the flip-flops to be positioned randomly at the start of a system that opens the

bulkheads. Rather, we need to take every precaution so that they stay rigorously

closed, opening only after an explicit command.

Let’s return our attention to the JK flip-flop with direct commands. With a real

component, when powering on the circuit, output Q of the elementary memory cell

will be forced to an a priori unknown value. From that moment, the network will

start to work (even though it starts from a random value, 0 or 1) and will follow the

path imposed by the evolution of the inputs.

Still, if we try to simulate the network we see that the simulator cannot resolve

the network’s behavior and it gives us back the result in the figure below, where the

bands represent an unknown value.

The simulator’s behavior is formally correct: since it does not know the initial value

of outputs Q and Q, the simulator cannot calculate the following values. As we have

seen, they depend on the inputs and also on the previous value of the outputs, which

is unknown.

The simulator is a tool for development and verification, and for it to be efficient,

the developer must be able to see errors and oversights. Here, the simulator tells us

that the network is not formally able to begin working from a known configuration.

If the simulator resolved these situations by “hypothesizing” starting values, this

would not do us any great favor because it could mask possible design errors.

5.3.1 Flip-Flop Initialization Inputs

So how was it possible to do a JK flip-flop network simulation? It was actually

another network that was simulated, as you see in the next figure. Here an auxiliary
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initialization input called Clear acts on two of the network’s NANDs (the negation

bar highlights the fact that it is active-low):

As we learn from the logical schematic, when Clear = 1, the network behaves as if

there were no Clear input. When it is brought to 0, however, the configuration that

brings output Q to zero is forced on the elementary cell.

It is important to note that input Clear is prioritized over J and K . In fact, for all

the time that it is active, Clear keeps the output at zero and prevents J and K from

influencing the elementary cell.

In the figure below, we see the network simulation with the activation of input

Clear highlighted.

As we can see, outputs Q and Q are initially indeterminate but the activation of

input Clear forces (A) a definition (the delays are due to propagation times). Then

deactivating Clear allows the flip-flop to work freely (B)(C)(D), under the control of

inputs J and K . Finally, on the right, we see Clear activated once more (E), which

forces the flip-flop to return to zero.

To be thorough and versatile, flip-flops generally have two initialization inputs:

Clear and Preset . The action of Preset is perfectly symmetrical to Clear : it forces

the output to 1.

Notice that the function of inputs Clear and Preset is functionally equivalent

to that of the RE SET and SET of an RS flip-flop with active-low commands.

Nevertheless, the purpose of initialization inputs remains and they should not be

used differently.
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For this reason, Clear and Preset should be considered mutually exclusive. In

order to initialize the flip-flop, we use only one of them based on the project needs,

while the other will be connected to a constant high logic level, so as to remain

inactive.

Regardless of logical type, inputs Clear and Preset exist in all flip-flops, whether

they be physical or CAD system component.

In the figure below, we see the terminations common among all the logical types:

inputs Clear and Preset and outputs Q and Q. The inputs are shown here in a

generic form seeing that they vary depending on the logical type.

For completeness, the entire logical schematic of the JK flip-flop with direct com-

mands, inputs J and K , outputs Q and Q, and inputs Clear and Preset appears

below left. The one on the right is the corresponding schematic symbol.

5.3.2 Generating an Initialization Signal

After discussing the need to initialize sequential networks, we must now examine

how the signal that is fed to inputs Clear (or Preset) of the individual flip-flops is

produced when the system is powered up.

The next figure shows what is called a Reset Generator: a mixed analog and digital

circuit, that we will study only from the functional point of view.
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When the system is powered up, this circuit automatically generates a pulse of a

determined duration on the Reset line, that is linked to all the flip-flops in the

network (either to Clear or to Preset according to need).

There is often a push-button that the user may press to manually re-initialize the

system (as with PCs for example).

Activating the Reset keeps all the system’s flip-flops blocked during the initial

power up transient. The power supply takes a certain amount of time (a few tens mS)

to bring the circuit voltages from zero to nominal values. The generator keeps the

Reset active for the time necessary and then deactivates it, allowing the system to

start working.

5.4 Level-Enabled Flip-Flops

All the flip-flops discussed previously share the commonality that the action of the

logical inputs is not subordinated to any other input. When designing a digital system,

however, it is often necessary that the outputs of the flip-flops change at the same

instant, namely that they be synchronized.

In this section, we will deal with level-enabled flip-flops, where a specific input

conditions the action of the inputs. This type of flip-flop is also called Latch.

Take note: to make the explanation clear, the logical networks of the flip-flops

presented here are simplified and do not include initializing circuits (inputs Clear

and Preset will not appear in the descriptions). Remember that real flip-flops of

course have these inputs, as described before.

5.4.1 SR-Latch Flip-Flop

In the following schematic, the base structure of the flip-flop is SR type with active-

low inputs and has been integrated with two NAND gates.

The two new gates make the SET and RE SET act upon the base cell only if the

Enable input E N = 1. If so, the network’s overall behavior is identical to that of the

SR flip-flop with direct command and active-high inputs.
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If E N = 0, the two NANDs that condition the input generate a 1, regardless of the

value of inputs SET and RE SET , so the base cell maintains the value of the outputs.

The function table shown below summarizes this information.

Set-Reset Flip-flop (Level-enabled)

E N SET RE SET Q Q

0 − − Q p Q p Previous state

1 0 0 Q p Q p Previous state

1 1 0 1 0 SET command

1 0 1 0 1 RE SET command

1 1 1 1 1 Invalid

In the timing simulation below, we observe the behavior of the SR flip-flop as the

inputs vary (for simplicity’s sake, the invalid configuration was omitted).

In the first part of the image, the simulator cannot predict an initial value so it indicates

the outputs as undefined. The first activation of input E N allows input SET to force

the output Q to 1. Afterward, the flip-flop keeps the value of the outputs since input

E N is inactive. Then E N is active again, while input RE SET is active, forcing

output Q to zero.

As we can see, input E N is used to restrict the changes of the outputs of the

flip-flop within the time intervals it is active. By shortening these intervals, we get

the first form of synchronization, as we will see further on.
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5.4.2 D-Latch Flip-Flop

In the schematic below, a NOT was added to the structure of the SR latch flip-flop.

Input SET of the SR flip-flop was renamed D. Negated, it drives the input RE SET .

This way, we obtained a D flip-flop but this time the enable input E N is present

(this flip-flop is usually called D-Latch). The invalid configuration is automatically

eliminated by the NOT, as we saw with the direct command D flip-flop. Thanks to

the enable input, however, in this case we can memorize a bit. The function table for

this flip-flop is shown below:

D-Latch Flip-flop

E N D Q Q

0 − Q p Q p Previous state

1 1 1 0 SET command

1 0 0 1 RE SET command

When E N is at 1 (active), output Q copies the value of input D, whereas when

E N = 0, there is no transmission between input D and the base cell of memory,

which keeps its value.

Due to its simplicity and economy, the D-Latch flip-flop is commonly used to make

many types of registers and semiconductor memory devices that have applications in

sequential networks and in computers in general. To store the information, we need

first to submit the bit to be memorized at input D, and then activate and release input

E N . The timing diagram below shows a typical sequence of use.

As in the other cases, we do not know the value of the outputs at the start of the

simulation. First, input D of the data is set to 0 and, during this interval, input E N
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is activated for a certain time. The data at input D is transferred to output Q. When

E N is deactivated, the flip-flop captures the value at the output at that moment (it is

said to memorize the last transited value).

The same activation sequence is repeated immediately after, but with input data

D = 1: the flip-flop memorizes 1 on the output. The diagram shows that in the

interval when E N = 0, input D does not produce changes in the outputs even though

it changes many times.

Lastly, the diagram shows that E N is maintained at 1 for a certain period of time.

We see that the output repeats the value of the input D (when it is enabled, the

flip-flop is said to be transparent).

5.4.3 JK-Latch Flip-Flop

The schematic below shows a variant of the direct command JK flip-flop with an

added enable input E N :

As with the direct command JK flip-flop, the input J is conditioned by output Q,

and input K by output Q, making it impossible to simultaneously activate the inputs

of the base cell.

Input E N conditions both the inputs J and K . When E N is active the network

behaves exactly like a direct command JK. Otherwise it keeps the previously mem-

orized value (the condition E N = 0 is equivalent to having both J and K at 0). The

function table summarizes the relationship among the inputs J , K , and E N , and the

outputs Q and Q.

JK Flip-flop (Level-enabled, or JK-Latch)

E N J K Q Q

0 − − Q p Q p Previous state

1 0 0 Q p Q p Previous state

1 1 0 1 0 SET command

1 0 1 0 1 RE SET command

1 1 1 Q p Q p Toggle
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This type of level-enabled JK flip-flop is not commonly used because the toggle

configuration (J = 1 and K = 1) can only be used if the duration of E N is shorter

than the network propagation time. As mentioned, the toggle function is used in

edge-triggered JK flip-flops.

5.5 Synchronization of Sequential Networks

Level-enabled structures only partially satisfy the requirements of modern digital

systems where it is required that the outputs of flip-flops change periodically and

simultaneously. This type of system is called synchronous. To design a synchronous

system, we must use more elaborate sequential components than those we have seen

so far. Above all it is important to completely understand what synchronization of

sequential networks really means and what issues are involved. Before introducing

the flip-flops used in synchronous systems in the following sections, we will first

introduce the concept of synchronicity using familiar elements.

5.5.1 The Synchronization Signal

Consider a network that uses level-enabled flip-flops. To satisfy the requirement of

periodicity, the enabling command E N must take on a cyclical form as seen in part

(a) of the figure below.

Flip-flops will change their outputs only in response to the periodic activation of the

E N enable command. This becomes the synchronization signal meaning the time

reference for the time evolution of the network. Level-enabled flip-flops, however,

only partly guarantee simultaneous changes.

Their outputs can only change when E N is active and since the activation interval

is finite, transitions can still occur at different times given that outputs can change

the whole time E N is active.

If the duration of E N is restricted (part (b) in the figure above), it reduces the inter-

val in which the outputs can change. This brings us closer to the outputs’ simultaneity

requirement.
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5.5.2 Pulse Command in Level-Enabled Flip-Flops

Let’s consider a level-enabled JK flip-flop identical to the one examined in previous

sections. Let’s drive its E N enable input with a periodic pulse sequence.

The flip-flop will change outputs Q and Q when the pulses on E N occur, as seen

in the timing diagram below, which describes typical usage. Note that the flip-flop

responds to inputs and only changes its outputs (after the network’s propagation

times) when E N is activated (see the vertical dotted lines).

In the previous figure, the pulse (1) on E N where J = 1 and K = 0, forces output

Q to 1. Pulse (2) where J = 0 and K = 1 forces Q to zero. Pulse (3) where J = 0

and K = 0 keeps the previous output value. From pulse (4) on, where J = 1 and

K = 1, the output value is inverted at every cycle (toggle).

Note that when E N is active and J = 1 and K = 1, the short duration of the

enable command does not allow for the continuous switching of the outputs typical

of the implementation of the same flip-flop with direct command. The duration of

the pulse must be carefully assessed at the project level in relation to network timing.
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The two figures below describe two abnormal situations, where the excessive

duration of the E N pulse allows for two output inversions in case (a) and three in

case (b).

The function table below summarizes the logical behavior of the level-enabled JK

flip-flop that is driven impulsively.

JK Flip-flop (Level-enabled), Impulsively Driven

J K EN Q Q

0 0 Qp Qp Previous state

1 0 1 0 SET command

0 1 0 1 RESET command

1 1 Qp
Qp Toggle

The symbols in the E N column represent the pulse command. Keep in mind while

reading the table that a given combination of inputs J and K corresponds to the

indicated outputs only after input E N is pulse activated.

5.5.3 The “Clock” and the “Edge-Triggered Command”

This example has shown us that level-enabled flip-flops make it possible to create

synchronous systems. As we have seen, however, defining the length of the pulse

poses a downside. In the example above, the inputs of the flip-flop are supposed

to remain stable during E N activation, but it is not always possible to fulfill this

condition, necessary to guarantee simultaneity of output changes.

To resolve these problems, we need to shorten the length of the activation pulse

as much as possible in level-enabled flip-flops. Technically, however, we cannot

go lower than a certain minimum value. Historically, level-enabled flip-flops were
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mainly used in the first logical circuits using discrete components, because of their

simplicity.

With integrated circuits, which began to substitute discrete components as of the

1970s, the situation has evolved. Since microelectronics greatly lowered the cost of a

single logical function, more dependable and economical, although more circuitally

complex structures have been developed. Current digital systems no longer employ

level-enabled flip-flops but rather edge-triggered, i.e., from a level transition of the

synchronization signal.

The synchronization signal in digital systems is traditionally called “clock.” A

clock is a two-level periodic signal generated by a dedicated circuit, the Clock Gen-

erator:

The timing evolution of a periodic signal is called a “waveform.” In the example

below, the signal is a symmetrical square wave with a duty cycle (percentage of

the time the signal is high in its period) of 50%. The designer chooses the clock’s

oscillation frequency based on the system specifications.

In the figure below, the clock signal’s transitions from 0 to 1 are highlighted by

arrows pointing to the top:

This type of transition is called the positive (or rising) edge; its opposite, the negative

(or falling) edge. As we will soon see, this type of device will render the timing

evolution of digital systems rigorously synchronized by the edge of the clock (there

are positive-edge-triggered components and negative-edge-triggered components).

5.5.4 Master–Slave Structure

The first general-use structure where the change in outputs is synchronized by an

edge was the master–slave structure. It is no longer commonly used but it is useful

to examine it before going on to more modern structures.

The master–slave configuration uses two level-enabled RS flip-flops. The Clock

signal controls the triggering of the two flip-flops and thus the data transfer from

the input to the output. Here we refer to a master–slave structure that creates a JK

flip-flop (the logic type it was developed for).
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The RS flip-flop that the input data is applied to (master) is driven directly by the

Clock, while the other (slave) is controlled by Clock.

When Clock = 1, the data on J and K is applied to the master flip-flop but this

has no effect on the slave since its inputs are disabled (Clock = 0). When the Clock

goes back to 0, the master input is disabled and the data is transferred to the slave.

The function table that describes the JK master–slave is similar to that of the

level-enabled JK flip-flop that is driven impulsively, but note that the output changes

occur on the falling edge of the Clock.

JK Flip-Flop (Master-slave)

J K Clock Q Q

0 0 Qp Qp Previous state

1 0 1 0 SET command

0 1 0 1 RESET command

1 1 Qp
Qp Toggle

The timing diagram in the next figure shows the behavior of the master–slave JK

flip-flop. The semiperiods of the Clock when it is at 1 are shown by dotted lines to

demonstrate that a master–slave flip-flop acquires inputs the whole time the Clock

is at 1 while it changes its outputs according to its falling edges.

In the figure above, the triggering sequence is the same as the one for the JK flip-flop

that is driven impulsively. All the possible combinations for J and K are represented

including the toggle mode.

The master–slave structure eliminates the limitation on the duration of triggering

pulses typical of the level-enabled structures. Note, however, that inputs J and K

must be stable when the Clock is at 1 to make the JK master–slave flip-flop work
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correctly. One drawback of this structure is that it is sensitive to the changes in J and

K during this interval.

In the figure above, for example, a brief pulse on J (if Q = 0) is memorized in the

master flip-flop causing a change in output on the falling edge.

Thus, we can say this structure is edge-triggered, provided that the inputs for the

time when the Clock is at 1 are guaranteed to be stable. This problem was resolved

by a variant called data lock-out (DLO), which takes on the values of J and K on

the Clock’s rising edge and changes its outputs on the falling edge, while remaining

impervious to the changes when the Clock is at 1.

Master–slave and DLO triggered flip-flops are now obsolete. They have been

replaced by flip-flops that work on only one edge. We examine them in the next

section.

5.6 Edge-Triggered Flip-Flops

Edge-triggered flip-flops are widely used in the current implementations of digital

system. In this structure, both the acquisition of data and the change of outputs occur

on a transition (edge) of the Clock.

If the active edge is the rising one the structure is called Positive-Edge-Triggered

(PET); if the falling edge is active, it is called Negative-Edge-Triggered (NET).

The flip-flop remains impervious to inputs throughout the rest of the time. Thus,

the inputs can change at any time except for a brief interval around the active edge

of the Clock. This aspect is examined in the next section.

5.6.1 D-PET Flip-Flop

In the figure below left, we observe a logical network that creates the D-PET type

positive-edge-triggered flip-flop. The structure is reminiscent of the master–slave

flip-flop but it uses two level-enabled D flip-flops.
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For the whole time that the Clock is at 0, the first flip-flop, having an active En,

follows the variations of input D. In the same time interval, the second flip-flop

with an inactive En keeps the previous value. When the Clock changes to 1 the first

flip-flop memorizes the last value in D, while the data in its output is transferred to

the second flip-flop. The figure at the right shows the logical symbol of the D-PET

flip-flop. The small triangle at the input of the Clock indicates the sensitivity to the

edge.

In the function table below, the symbol in the Clock column indicates the rising

edge to which the changes in the outputs are associated.

D-PET Flip-flop

D Clock Q Q

0 0 1 Memorizes 0

1 1 0 Memorizes 1

− 0 Q Qp Previous state

− 1 Q Qp Previous state

The last two rows on the table are superfluous but they highlight the fact that the

flip-flop keeps the previous outputs in the absence of an edge. Further on, these two

rows will not appear in the other tables.

The timing diagram in the next figure shows that the output Q of the flip-flop

copies the value of input D on the Clock’s rising edges and keeps it stable for the

length of one clock period.

Note that Q changes only in response to the Clock rising fronts. A signal that keeps

a fixed timing relation with the Clock is defined as “synchronous.”

The figure below shows the circuit of the D-PET flip-flop, which is commonly

used in many commercial products. It is fast and economical, and it is built using

three base cells.
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Its function table and timing diagram coincide with those of the D-PET structure we

have just seen before.

The figure below shows the schematic of a D-PET flip-flop like the previous one

but with Clear and Preset networks. On the right, we see the corresponding circuit

symbol.

The top rows on the function table of the D-PET flip-flop with Clear and Preset

(seen below) describe how the initialization inputs function.
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D-PET Flip-Flop (with Clear and Preset)

Clear Preset D Clock Q Q

0 1 − − 0 1 Action of Clear

1 0 − − 1 0 Action of Preset

0 0 − − 1 1 (invalid)

1 1 0 0 1 Memorizes 0

1 1 1 1 0 Memorizes 1

Note that D and Clock have no effect on the component when either Clear or Preset

is active.

The behavior of the D-PET flip-flop with inactive Clear and Preset (the bottom

two rows of the table) corresponds to the previous table of the flip-flop with no

initialization inputs.

For structures based on the NAND cell, simultaneously activating Clear and

Preset forces outputs Q and Q to 1 creating a parallel situation to that of the base

cell of the SR flip-flop, with the same problems. However, this combination of values

is easily avoidable because we would normally choose to initialize the flip-flop by

using Clear or Preset and connecting the other to the constant 1.

Now let’s analyze the time behavior of the D-PET flip-flop, including its response

to the activation of inputs Clear and Preset .

To make this analysis, we must focus not only on the level of input D signal when

the active edge of the Clock occurs but also on the level of the asynchronous Clear

and Preset .

As we have seen, Clear and Preset are prioritized and act independently of the

Clock. The figure below shows the example of Clear activation and the other, the

activation of Preset .

In the example on the left, we initially do not know the value of Q but with the rising

edge (1) of the Clock the value 0 on D is memorized by the flip-flop and appears in

output Q. At the rising edge (2), the flip-flop takes on the new value of D, forcing

Q to 1.

Activating Clear involves asynchronously forcing the output to zero and the

insensitivity to edge (3) of the Clock. Note that deactivating Clear produces no

changes in the output.



166 5 Introduction to Sequential Networks

In the example on the right, the Preset input is activated, which forces the output

to 1. Note that the flip-flop is insensitive to the edges of the Clock during the activation

interval of Preset as well.

5.6.1.1 Example (D-PET as “synchronizer”)

Finally, let’s observe the behavior of output Q in the figure below in relation

to input D.

As we can see, input D changes irregularly, without respect to the edges of the Clock.

At each occurrence of the active edge of the Clock, memorization of the signal at

input D creates a “synchronized” copy in the output, i.e., with a fixed timing relation

to the Clock.

A typical application of the D-PET flip-flop is the synchronization of signals. Fur-

ther on, we will see how important signal synchronization is and the issues involved.

5.6.2 E-PET Flip-Flop

Digital networks, especially those based on large-scale integration devices, employ

another type of flip-flop called “E-PET,” an extension of the D type. The E-PET

flip-flop has the capacity to store an input value only upon request. This differs from

the D type, which stores a new value at each active edge of the clock.

We would be wrong to try to achieve this by using a D flip-flop and condition its

Clock to an E enable signal, as in the following network:

The logical gate allows us to block the Clock when input E is at 0. This technique is

not used, however, because the gate’s propagation time defeats the requirement that

the outputs should be simultaneous to other flip-flops in the system.2

2In large-scale integration devices that use a high number of flip-flops, the designer takes great care

with the physical connections of the clock to avoid time misalignments among the various elements

of the network. Logical gates along the clock path are also invalid.
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Thus, we make use of a different structure where the input of the D-PET flip-flop

is driven by a multiplexer, as in the figure below left. At right is the circuit symbol

of the E-PET flip-flop.

The multiplexer’s input E (“Enable”) allows us to copy the value of output Q to the

input of the D flip-flop if E = 0, or the value of the external input D if E = 1. When

the rising edge of Clock arrives, in the first case the memorized data stays the same.

In the second case, output Q takes on the value of external input D. Note that the

Clock is not affected.

See below the function table of the E-PET flip-flop with no initialization inputs.

E-PET Flip-flop

E D Clock Q Q

0 − Qp Qp Previous value

1 0 0 1 Memorizes 0

1 1 1 0 Memorizes 1

In the timing diagram below, we see the effect of input E , in response to the active

edges of the Clock. The rising edges of the Clock where the flip-flop memorizes the

new value are: (2), (4) and (7).

Finally, let’s consider the complete version of the E-PET flip-flop with initialization

inputs. Its logical symbol and function table are found below.
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E-PET Flip-flop

E D Clock Q Q

0 − Qp Qp Previous value

1 0 0 1 Memorizes 0

1 1 1 0 Memorizes 1

5.6.3 JK-PET Flip-Flop

In the figure below left, we see a logical network that creates a positive-edge-triggered

JK-PET flip-flop. We derive this structure from that of the D-PET where input D

is controlled by an AND-OR combinational network, which calculates D’s value

based on inputs J and K and outputs Q and Q.

The image on the right shows the corresponding logical symbol. The triangle at

the input of Clock indicates it is sensitive to the edge.

The function table that describes the JK-PET flip-flop is similar to that of other JK

structures we have seen before, but in this case, the output changes occur on the

rising edge of the Clock.

JK-PET Flip-flop

J K Clock Q Q

0 0 Qp Qp Previous state

1 0 1 0 SET command

0 1 0 1 RESET command

1 1 Qp
Qp Toggle

The AND-OR combinational network that generates the value of D is derived by

analyzing the function table. This analysis provides us with the table below, which

allows us to go directly to the synthesis of the network.
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J K Q D

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

This gives us: D = (J Q + K Q)

The timing diagram in the figure describes the typical behavior of a JK-PET flip-flop.

At the rising edge of the Clock, the flip-flop responds to the inputs and then updates

the outputs after the network’s propagation time. The input activation sequence is

the same as that for previous versions of flip-flops.

On edge (1) Q is activated in response to the acquisition of J . On (2), it is deactivated

(because K = 1), while on (3) its value is maintained (J = K = 0). Finally, on the

following edges (4, 5, 6) the outputs switch their value (given that J = K = 1).

Like the other logical types, the JK-PET flip-flop often includes inputs Clear and

Preset in its commercial or library implementations. Find below its logical symbol

and function table.
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JK-PET Flip-Flop (with Clear and Preset)

Clear Preset J K clock Q Q

0 1 − − − 0 1 Action of Clear

1 0 − − − 1 0 Action of Preset

0 0 − − − 1 1 (invalid)

1 1 0 0 Qp Qp Previous value

1 1 1 0 1 0 SET command

1 1 0 1 0 1 RESET command

1 1 1 1 Qp
Qp Outputs reversed

5.6.4 T-PET Flip-Flop

If the two inputs of a JK flip-flop are connected, we get a type T (Toggle) flip-flop.

The figure below shows the network based on the JK-PET and the corresponding

logical symbol.

The function table of the T-PET is derived from the JK-PET table eliminating the

rows where J and K are different.

The T-PET Flip-Flop

T Clock Q Q

0 Qp Qp Previous state

1 Qp
Qp Toggle

The T flip-flop can also be obtained from the D type through the same procedure as

above, deriving the JK from the D. By doing this, we get:

D = (J Q + K Q)

given that T = J = K , the expression is reduced to:

D = T Q + T Q = T ⊕ Q

From this, we get the network below. In the following, we will come back to this a

few times.
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5.6.5 Synchronous Initialization of Flip-Flops

Networks at a certain level of complexity use a synchronous initialization structure

where the Clock synchronizes the actions of Clear and Preset . The figure below

provides an example:

It shows a possible structure of the synchronous Clear for a D-PET-type flip-flop.

When input Clear is activated (at 0), it prevails over input D and forces the output

to 0 on the active edge of the Clock.

5.7 Timing Parameters of Flip-Flops

Flip-flops, like the combinational components they are made of, are subject to prop-

agation delays. As we saw with combinational networks, propagation times are

measured by taking 50% of the signal edges as a reference. Propagation times are

published on the producer data sheets on statistical bases, as their minimal, typical,

or maximum values are declared.

Aside from propagation times, there are other timing parameters that are statis-

tically quantified such as safety margins, which must be observed to guarantee the

flip-flop works as expected. The table below gives a succinct definition of the main

timing parameters.

t PLH Propagation time measured from the activation of the Clock to the out-

put’s transition from low to high (L-H)

t PHL Propagation time measured from the activation of the Clock to the out-

put’s transition from high to low (L-H)

t s Setup Time: the time interval the value of a synchronous input must

remain stable before the active edge of the Clock

t h Hold time: the interval when the value of a synchronous input must

remain stable after the active edge of the Clock

t w Minimum width of an input signal

T min Minimum Clock period

F max Maximum Clock frequency

The timing diagram in the figure below shows the timing parameters of a D-PET

flip-flop in the acquisition sequence of a 1 followed by a 0. The tw in the figure refers

to input D and in this example, it is given by the sum of the ts and th times.
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If the safety margins are not observed, unpredictable behavior can result. This is

called metastability, and it will be dealt with in the next section.

5.7.1 Relationship Between Propagation and Hold Times

Let’s use the example from the figure below to study the relationship between prop-

agation times and hold times.

The circuit is composed of a D-PET flip-flop whose input D is connected to its

negated output Q. At each active edge of the Clock, it will toggle its value, as it

would in a T-PET-type flip-flop with an input of T = 1.

If the value of input D is to be acquired correctly, it must remain stable for at least

a time th after the rising edge of Clock.

The situation is exemplified in the timing diagram above where we see that th must

be shorter than both the two propagation times (t PHL and t PLH). This condition is at

the base of all sequential networks and all the flip-flops are designed to satisfy it.
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5.7.2 Maximum Clock Frequency of a Network

with Flip-Flops

A flip-flop’s timing parameters enter into play when evaluating the maximum clock

frequency of the network that uses it. We have previously seen the implementation

of the T-PET flip-flop based on the D-PET. In the network in the figure below, we

continually force T to 1, imposing a configuration in which the output changes value

at every rising edge of the Clock.

The purpose of this example is to take into account the propagation delay of a

combinational network along the feedback path.

Input D is driven by output Q through the XOR gate which works like a NOT gate

since it has an input at 1. For the network to function correctly, the signal at D must

be stable at least from time ts, at the moment when the Clock sees the rising edge

until time th after the transition.

Notice that the time scale in the following three timing diagrams corresponds to

1 nS (between two notches on the time axis). The values: ts = 2 nS, th = 1 nS, t
PHL(FF) = 7 nS, t PLH(XOR) = 3 nS have been taken.

What the three situations have in common is that signal D is stable after time

t PHL(FF) + t PLH(XOR) regardless of the Clock period. In the first diagram below,

the sequence is characterized by Clock with period T = 20 nS (corresponding to a

frequency of 50 MHz):

The next rising edge samples data D, which was stable for a time longer than ts,

so the network functions correctly. Also, the condition of th is maintained since

th is shorter than the propagation time of the flip-flop (in the next two figures, the

representation of th is omitted).

In the figure below, we see the limit case where D is stable for exactly a time ts

before the edge with a Clock period of 12 nS. The network still functions correctly.
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The period 12 nS corresponds to a frequency of about 83 MHz, the maximum clock

frequency of the network.

In the figure below, however, the Clock period is 11 nS (corresponding to about

91 MHz). The following Clock edge occurs when D is already stable but the ts is

not observed. In this case, there is no guarantee the network will function; we are

over the network’s maximum working frequency.

5.8 Flip-Flops: Graphic Symbols and Tables

At the beginning of this chapter, we described flip-flops by their logical type and their

command type. This section summarizes the characteristics and graphic symbols of

the most commonly used flip-flops.

5.8.1 Logical Types

The following function tables recap the behavior of the logical types of flip-flop that

were introduced in this chapter (SR, JK, D, E, and T). They do not describe the

command structure but only the logical inputs, assuming they are active-high.



5.8 Flip-Flops: Graphic Symbols and Tables 175

SR

SET RE SET Q

0 0 Q p Previous state

1 0 1 SET Command

0 1 0 RE SET Command

1 1 1 Invalid

JK

J K Q

0 0 Q p Previous state

1 0 1 SET Command

0 1 0 RE SET Command

1 1 Q p Toggle

D

D Q

0 0 Memorizes 0

1 1 Memorizes 1

E

E D Q

0 − Q p Previous value

1 0 0 Memorizes 0

1 1 1 Memorizes 1

T

T Q

0 Q p Previous state

1 Q p Toggle

5.8.2 Command Types

This summary includes only the most commonly used flip-flops. Let’s recap the

command configurations that flip-flops use to acquire the inputs and update the

outputs.

• Direct command:

A command is direct when the action of the logical inputs does not depend on any

other input. They directly control the flip-flop’s behavior, which is asynchronous

in this case.

• Level-enabled commands:

A command is level-enabled when there is an added input that enables/disables

the inputs according to its logical level. Another term to identify this type is Latch

commands.
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• Edge-triggered command:

We have an edge-triggered command when there is an added synchronization

input, usually called Clock, which enables the inputs to function in response to

their rising or falling edges. These flip-flops are synchronous.

Direct Commands

The direct command structure is currently used only with the Set-Reset logical type.

The figure below left shows the symbol without initialization inputs. The one on the

right shows a symbol that includes Clear and Preset .

Clear and Preset might seem superfluous since they do the same thing as the

logical inputs, but it is often useful in a project to separate the initialization network

from the rest.

Level-Enabled Commands

Level-enabled command structures are mainly used in D-Latch type-flip-flops and

often in large structures that employ hundreds of thousands of them, as the read/write

memories (not covered in this book). The level-enabled Set-Reset is used as internal

block of more complex flip-flops. The considerations about initialization inputs are

valid here as well.

Edge-Triggered Commands

PET or NET edge-triggered command structures are the most commonly used espe-

cially in the D and E logical-type flip-flops. The use of the E type is spreading in

complex networks while use of the JK type is in decline. The figure below shows

both PET and NET flip-flop symbols. They generally have the initialization inputs

Clear and Preset .
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5.8.3 Excitation Tables

Excitation tables give us another way to describe the behavior of a flip-flop. Function

tables, which we have seen before, indicate the assumed value of an output in relation

to the inputs. Excitation tables provide values to assign to the logical inputs of a flip-

flop in relation to the desired output transition.

Below left is the function table of the Set-Reset flip-flop. On the right is the

corresponding excitation table where each of the four possible output transitions is

shown next to the input configuration needed to obtain it.

Set-Reset

Function Table

Set Reset Q

0 0 Q p Previous state

1 0 1 SET command

0 1 0 RESET command

1 1 1 Invalid

Set-Reset

Excitation table

Q p → Q Set Reset

0 → 0 0 −

0 → 1 1 0

1 → 0 0 1

1 → 1 − 0

The excitation table is easily derived by the function table. For example, the output

transition of Q from 0 to 0 (written as: 0 → 0) can be obtained by keeping the

previous state of the flip-flop (Set = 0, Reset = 0, row 1 of the function table), or

with a Reset command (Set = 0, Reset = 1, row 3).

This is translated in the express terms by the top row of the excitation table. Set

must be at 0, while the value of Reset is don’t-care. The same holds for the transition

1 → 1, while the other two transitions have no don’t-cares.

The function and excitation tables of the JK flip-flop are shown below.
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JK

Function table

J K Q

0 0 Q p Previous state

1 0 1 SET command

0 1 0 RESET command

1 1 Q p Toggle

JK

Excitation table

Q p → Q J K

0 → 0 0 −

0 → 1 1 −

1 → 0 − 1

1 → 1 − 0

This excitation table shows a don’t-care for each of the four transitions. For example,

the transition 0 → 1 is obtained through a Set command (J = 1, K = 0), or a toggle

command (J = 1, K = 1). In short, about the transition 0 → 1 the value of K is

don’t-care while J must be at 1.

To be thorough, we have put the tables for the D flip-flop below even though the

excitation table is immediately derived from the function table. The table for the E

flip-flop, when it is enabled by input E , is identical.

D

Function table

D Q

0 0 Memorizes 0

1 1 Memorizes 1

D

Excitation table

Q p → Q D

0 → 0 0

0 → 1 1

1 → 0 0

1 → 1 1

5.9 Exercises

For each network below, complete the timing diagram (all the diagrams to be com-

pleted are also available in PDF in the digital contents of the book, on the Deeds

Web site).

We suggest to draw first the diagrams without using the simulator and then check

your answers with it (the network files are on the Web site, too).
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1. Set-Reset flip-flop (direct command)

2. Set-Reset flip-flop (direct command, NAND base cell)

3. Set-Reset flip-flop (with Enable)
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4. D-PET flip-flop (with Preset and Clear )

5. JK-PET flip-flop (with Preset and Clear )
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6. E-PET flip-flop (with Preset and Clear )

5.10 Solutions

The timing diagrams below were obtained using the Deeds timing simulation. The

files of all the networks are available on the digital contents of the book so that the

answers can be checked through the simulator.

1. Set-Reset flip-flop (direct command)

2. Set-Reset flip-flop (direct command, NAND base cell)
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3. Set-Reset flip-flop (with Enable)

4. D-PET flip-flop (with Preset and Clear )

5. JK-PET flip-flop (with Preset and Clear )

6. E-PET flip-flop (with Preset and Clear )



Chapter 6

Flip-Flop-Based Synchronous Networks

Abstract The flip-flops are the building blocks of all sequential networks. A regular

structure made of flip-flop and combinational networks can implement any sequential

circuit. In this chapter, the structures are not designed but either assembled in an

intuitive fashion or taken from standard building blocks. The presentation of counters

and registers introduces progressively the real full-featured components that are

available for design. Sequential network analysis in the time domain is the important

skill that is developed at the end of the chapter.

In this chapter, we will examine the most commonly used flip-flop-based networks

that can be used as functional standard blocks to create more complex digital net-

works. We will analyze these networks intuitively, whereas in later chapters will

deal with their systematic design. We will represent the networks through logical

schematics that is in the form of a set of components, such as logical gates and

flip-flops with their connections.

In Chap. 5, we examined simple sequential networks, which are generally formed

by combinational networks with feedback. This was to gain an understanding of

the structure and functionality of various types of flip-flops, the elementary memory

cells. Theoretically, a more complex sequential network could be designed in the

same way, as a set of combinational networks with feedback. This approach would,

however, pose a number of problems especially on the design and testability level.

It is preferable to design a complex sequential network in a more structured way,

by using flip-flops as the base sequential elements, connected by purely combina-

tional networks. This makes it possible to clearly divide the memorization function,

the typical quality of a sequential network (entrusted to the flip-flops), from the

function that determines its logical behavior and evolution over time (entrusted to

the combinational networks).

As seen in Chap. 5, the output of a sequential network is not only a function of

the inputs at that moment but also of the values that they took on in the past.

In a sequential network made up of flip-flops and combinational networks, the

history of the network only leaves a trace on the values taken on by the flip-flop,

since combinational networks, as such, have no memory.

The set of values memorized by the flip-flops is called the state of the networks.

The outputs of a sequential network will thus be a function of the inputs and the state.
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A flip-flop-based synchronous network is a network in which the flip-flops share

the same clock, and the flip-flop asynchronous inputs (i.e., Clear and Preset) are

used only for their initialization. If these two conditions are not met, the network

falls into the category of asynchronous networks.

Due to their regularity, synchronous networks have great advantages from the

design and testability point of view, and it is possible to design the simplest structures

without relying on formal synthesis methods. The networks examined in this chapter

use D, E, and JK logical-type flip-flops with PET behavior.

The figure above shows the basic schematic of a flip-flop-based synchronous network

in a simplified form. The flip-flops share the clock signal. This guarantees one of

the properties of synchronous sequential networks, the simultaneity1 of the change

in the flip-flop outputs. The active-low Reset makes it possible to initialize all the

flip-flops.

The D inputs of the flip-flop are generated by the Input Combinational Network

(ICN), which processes inputs I0..Im−1 coming from outside and the outputs Q0..Qq−1

of the flip-flops themselves.

At every positive edge of the Clock, the values of Q0..Qq−1 are replaced by those

the ICN provides. It is therefore easy to understand how the combinational network

shapes the sequential network’s behavior through the external inputs and the values

memorized in the flip-flops (the state of the network). This is why the ICN is called

also the next state combinational network.

1Within the limits of the propagation delay dispersion of real components.
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The general structure of a synchronous network is shown in the figure below:

This structure is different from the previous simplified one because of addition of

the Output Combinational Network (OCN), which allows for greater flexibility in

generating outputs. Each of the outputs U0..Up−1 can be generated as a combinational

function of the state memorized in flip-flops Q0..Qq−1 and of the external inputs

I0..Im−1.

6.1 Synchronous and Asynchronous Signals

Since flip-flops share the same clock in a synchronous network, their outputs change

in response to the edges of the clock; that is, they are synchronous with the clock.

All the network’s outputs and internal signals obtained through the flip-flop outputs’

combinational networks maintain a fixed temporal relation with the clock even in

presence of propagation delays.

In principle, input signals have no relationship with the network’s clock since

they are generated by external systems. In general, an input signal is asynchronous

unless it comes from another synchronous network that uses the same clock. Before

using an asynchronous signal, it makes sense to synchronize it using an appropriate

synchronization network.
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6.1.1 Synchronizer

Let’s now consider the network below, which is made up of a simple D-PET flip-flop

that receives an asynchronous signal in the input.

We want to examine this network as the synchronizer of the input signal. Output InS

represents the synchronized version of the signal applied to input In. The timing dia-

gram below shows the evolution of the input. Note that the fact that it is asynchronous

has been highlighted.

On the rising edges of the Clock, from (1) to (4), output InS takes on the value of

input In and keeps it until the next active edge. Any intermediate variation of the

input is not detected, however, as we can see in the time intervals between edges

(3) and (5).

On edges (1) to (4), we assume the setup times (ts) and hold times (th) of the

flip-flop have been respected. On edge (5), however, they have been violated. The

input makes an upward transition that is simultaneous to that of the Clock. Because

of that, we cannot predict the output of the flip-flop, which is shown as indeterminate

from the edge (5) and (6).

Under these anomalous conditions, a physical circuit may generate invalid logical

levels or oscillations for a brief period.

Two examples of this phenomenon that is called “metastability” are reported in the

figure above. On the left, output Q of the flip-flop is brought to an invalid logical

level for time tm before stabilizing at value 1.
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On the right, the output goes through a few oscillation cycles between the two

levels before settling.

The logical network that reads these types of signal can produce an error. This

is a random behavior in terms of the probability of it happening and for how long

time tm lasts. These errors depend on the physical characteristics of the flip-flop

and the frequency of the signals in play. The closer we get to the speed limits of

the specific component in use, the greater the probability of metastable behavior

becoming significant. The relationship is exponential.

In any case, errors due to metastability are very rare in well-designed flip-flops

in non-critical conditions. The average time between two consecutive errors could

be on the order of hundreds of years. Since the probability of an error in the digital

circuit due to other causes (a circuit failure, electromagnetic disturbance, for example)

is much higher, we can say that signal synchronization through this technique is

generally reliable for many applications.

6.1.2 Multistage Synchronization

Under critical conditions or when higher security margins are requested, it is nec-

essary to use a configuration that is more complex than the previous one and uses

multiple synchronizer flip-flops connected in ripple fashion.

By extending the synchronization procedure this way, we can reduce the probability

of error due to metastability to acceptably low limits. This means that any metastable

behavior by the first flip-flop is filtered by the second and so forth. Aside from the

question of metastability, it is interesting to consider the temporal relation between

input In and output InS as shown in the figure further on.

At every rising edge of the Clock, the first flip-flop transfers the value of input In

onto output Qa, as with the previous synchronizer. Qa thus reproduces the evolution

of input signal In in clean, synchronized form.

Seeing that the first flip-flop generates the very output Qa after the edge of the

Clock, the second reads the new value of Qa on the edge of the next Clock. Thus the

timing path of Qb is the same as that for Qa, but delayed by one Clock period.

The next flip-flop echoes the process so output InS is still identical to Qa, but

delayed by another Clock cycle. On the next figure, we have highlighted the fact that

the value generated by a flip-flop on edge (n) is read by the next flip-flop at edge

(n + 1).
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Further on, we will often revisit the concept of reading the value at the next Clock

cycle in the information exchange between two synchronous networks.

6.2 Registers

Registers are important logical structures used to memorize data. It is possible to

“write” binary data on a register, keep it for a period of time, and “read it” as many

times as necessary. From this perspective, the D flip-flop is also a register, since it

can carry out the operations described on one single bit.

A register is usually made up of a number of flip-flops equal to the number of bits of

the data that needs to be memorized. Registers allow for two ways to store and retrieve

data: the parallel mode and the serial mode, as we will see in the next few sections.

6.2.1 Parallel Registers

The networks in the figure below are two examples of parallel registers that can

memorize four bits of information.
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The register at the left uses D-type flip-flops while the one on the right uses the E

type. These are synchronous networks since the flip-flops receive the same Clock.

An older term for this type of register is “PIPO” (Parallel Input–Parallel Output).

Normally, registers have an initialization input, which for simplicity’s sake is not

shown in this figure.

In the D-type version, input data P3..P0 is memorized in parallel in the flip-flops

at a rising edge of the Clock. The data is maintained on outputs Q3..Q0 and remains

available until the next writing. If there is no new writing, they remain in the register

indefinitely as long as the network is in operation (i.e., its power supply is on).

In the E-type variant, we have the added opportunity to enable/disable the writing

under the control of the Enable input. This is the most commonly used version in

complex systems where, for example, there can be many registers and the one that

will store the information needs to be selected each time.

Below there are two examples of 8-bit synchronous parallel registers taken from

the Deeds simulator library. These are two versions of the same component that differ

by the way their connections are represented.

In the version on the left, the terminations are represented individually: the eight data

inputs P7...P0, the eight outputs Q7...Q0, and the Clock inputs, the E enable, and

the asynchronous initialization input CL (Clear). On the right, inputs P7...P0 and

the eight outputs Q7...Q0 are shown in the form of multi-wire connections, in short,

bus type.2

The figure below shows the typical operation sequence of an eight-bit register

with bus-type connections and enabling. In the timing diagram, the hypothesis is

that the register will initially contain 0 in all the flip-flops. As we can see, the graphic

representation of the values is “cumulative”; that is, it represents all the bits in the

register on one single track, a bar formed by two parallel lines that cross at the

transitions of the signals. The value taken by the signals between one transition and

another (in this case, represented in hexadecimals) is written inside the bar.

2Representing multi-wire connections as bus allows us to simplify the logical schematic and make

it more readable, especially if complex.
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In our example, lines P7..P0 are set over time to values 01010101 (= 55h) and then

00101010 (= 2Ah). Enable is only driven to load the new data onto outputs Q7..Q0

in response to edges 3 and 8 of the Clock.

Parallel registers are widely used in digital systems where data is generally orga-

nized into “words” made of multiple bits and stored in registers. Note that in the

structure of the generic synchronous sequential network, featured at the beginning

of this chapter, the state of the network is memorized in a register.

6.2.2 Shift Registers

The other mode of data input in registers is serial, where the bits that make up a word

to memorize are presented to the input one at a time in succession. One register that

allows for this is called shift register (SHR). It can be made of D, E, or JK logical-type

flip-flops. We have already been introduced to this structure, with the D type, used

as a synchronizer.



6.2 Registers 191

In the figure here above, we see two examples of four-bit shift registers: the first

with a D-type flip-flop and the second, with the E type. We can see that the output of

each flip-flop is connected to the input of the next while the Clock is shared by all,

since this is a synchronous network. For simplicity’s sake, the initialization network

is omitted. The “serial” input of the register is In. The outputs in both cases are

Q3..Q0; the Enable input is available only in the second version.

The timing diagram below is an example of how the type E register functions.

The hypothesis is that outputs Q3...Q0 will initially be at 0 and that input In will be

activated in correspondence with edge 2 of the Clock. Also, Enable is activated for

four Clock cycles, from 2 to 5.

As with the synchronizer, the flip-flop farthest to the left transfers the value of input

In onto output Q3 at every rising edge of the Clock. This means that output Q3

reproduces the evolution of input signal In, synchronized to the Clock. The second

flip-flop reads the changes in Q3 on the next rising edge so Q2 is identical to Q3, but

delayed by one Clock cycle. The same goes for all the other flip-flops.

From edge 6 on, Enable is read at 0. With no enabling, the register’s content

remains unchanged from edge 5 on, so the new activation of In is ignored.

Let’s now look at another use of the shift register. Here, it is used as a base

element of a serial sequence receiver. In the next figure, it is assumed that input In

receives a sequence of bits with a pre-established format (protocol). In this case, the

format requires the bits to be put into groups of five with a “start bit” at 1, three

“information” bits (D0, D1, D2) and a “stop bit” at 0. Each of these bits has the

same duration as a Clock cycle, as shown.
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Assume that when line IN is in the “idle” state, that it is normally defined at 0, so

the start bit at 1 signals the beginning of the sequence. The stop bit separates two

consecutive groups with a 0.

In our example, the start bit is read by the first flip-flop on edge 2, so the infor-

mation bits (D0 = 0, D1 = D2 = 1) are read by edges 3, 4, and 5, and the stop bit,

by edge 6. When receiving the sequence, the register memorizes and shifts the bits

received one by one. After edge 6, information bits D0, D1, and D2 are made avail-

able in parallel on outputs Q0, Q1, and Q2. In this simplified example, the shifting

continues with each new Clock cycle, and so data is progressively lost.

Serial/parallel conversion is widely employed in digital telecommunication sys-

tems where serial communication is mainly used to cover great distances. It is also

used in data processing systems when it is necessary to reduce the number of wires

connecting the system’s modules, to reduce cost or improve usability and practicality.

USB (Universal Serial Bus) connections are an example of serial format communi-

cation. The parallel format provides quicker and more efficient data processing and

is generally used in computational systems.

Below are two examples of 8-bit shift registers from the library of Deeds:
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The same device is shown with different connections. The one on the right uses the

bus type for outputs Q7..Q0. On the component, we see the acronym “SIPO,” which

stands for Serial Input–Parallel Output.

There are also “SISO” (Serial Input - Serial Output) registers whose internal

structure is identical to that of the SIPO type. It is clear that, in principle, one can

simply choose any of the outputs Q to obtain a serial output. SISO registers as

such (those with one single serial output) are normally made with many, sometimes

thousands of flip-flops.

They are used to obtain a delayed signal of as many clock cycles. Due to the large

number of connections required, it is impractical to make the intermediate outputs

externally available.

6.2.3 Shift Registers with Parallel Load

We have seen that registers with serial input and parallel outputs directly carry out

serial–parallel conversion. To obtain the opposite conversion, from the parallel for-

mat to the serial format we must first load the data onto the register in parallel, and

then make it shift serially.

We can do this by combining the structures we have already seen in the parallel and

shift registers, with the help of multiplexers. The figure below shows the schematic

of a 4-bit shift register with parallel load (we have omitted the initialization network).

We see the four E-type flip-flops with their outputs Q3..Q0, as in the previous register

types. Here, however, we have the serial input In and the parallel inputs P3..P0.

The new input LD (“Load”) controls the parallel load through the four multiplexers

that allow to choose the data to send as input to the flip-flops.

As we can see in the next figure, when LD = 1, the selectors route the parallel

inputs P3..P0 to the flip-flop. If Enable = 1, the parallel data in the input is loaded

onto the flip-flops at the next rising edge of the Clock. The data appears on outputs

Q3..Q0.



194 6 Flip-Flop-Based Synchronous Networks

If LD = 0, the data is shifted, as we can see in the figure below. The serial input In is

routed to the first flip-flop; its output is brought to the second and so on. Obviously,

the shifting is carried out on the next rising edge of the Clock. Note that parallel load

and serial shifting are mutually exclusive operations.

We have previously seen an example of serial sequence receivers. A shift register

with parallel load, like the one we examined above, is perfectly suited to transmit a

serial sequence.

In the timing diagram below, let’s assume we want to transmit a bit sequence to

output Q0 according to the serial receiver format defined in the example. Remember

that the format requires a group of five bits: the start bit at 1, then three information

bits D0, D1, and D2 followed by the stop bit at 0. Each bit has the same length as a

Clock cycle.

We choose D0 = 1, D1 = 0, and D2 = 1. As seen in the next figure, we set these

values on the register’s parallel inputs: P1 = D0, P2 = D1, and P3 = D2.
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Notice that P0 has been forced to 1 since it is the start bit to be transmitted first,

while the serial input In is forced to 0, because we need to transmit the stop bit last.

Together with the data, we enable the register by activating the Enable input. We

bring LD to 1 for one Clock cycle so that the parallel load can be carried out on edge

3 of the Clock. The start bit is brought to output Q0 and is maintained for one Clock

cycle.

Given that LD = 0, the register shifts right at edge 4 bringing the value of D0 to

output Q0, which is maintained for one Clock cycle.

Meanwhile, note that serial input In inserts a 0 from the left, so the register’s

content progressively returns to zero. In the end, the stop bit is transmitted at 0. In

this simplified example, the shifting continues on the following Clock cycles and the

register continues to send 0 on line Q0.

In the next page are two examples of 8-bit shift registers (“PiSo8”) with parallel

load taken from the library of Deeds.
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The only difference between these two components is in the connections. The one

on the right uses the bus type for inputs P7..P0. These components belong to the

“PISO” (Parallel Input–Serial Output) classification.

Note, however, that their only output is line Q0 and there are also a few small

differences in the enabling logic. Here, input E controls the enabling of the shifting

only. To do a parallel load of the data, one needs to activate LD.

6.2.4 Universal Shift Register

The registers shown so far make it possible to load and read data in serial or parallel

format but shifting is only done in one direction (to the right, Q3 → Q0). Other

registers allow shifting in both directions.

The universal register allows bidirectional shifting and can be loaded and read in

serial and parallel format.

Below, the schematic of a 4-bit universal register (the initialization network has

been omitted also in this case).
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For a summary of this register’s terminations and their functions, let’s consider the

component “Univ4” shown below (from the Deeds library).

As in parallel registers, here there are inputs P3..P0 and outputs Q3..Q0. Obvi-

ously, clock (Ck) and clear (CL) inputs are also present.

InR and InL are the serial inputs for right and left shifting, respectively.

Inputs S1 and S0 select component’s operation according to the table below.

S1 S0 Function

0 0 Maintaining information

0 1 “Right” shifting

1 0 “Left” shifting

1 1 Parallel loading

The configuration (S1 = 0, S0 = 0) maintains the information because connects

each input D with the output Q of the same flip-flop (see the figure).

On the rising edge of the Clock, the register reloads the previous values on the

flip-flops.
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The combination (S1 = 0, S0 = 1) configures the register for right shifting (see

the figure below).

On the rising edge of the Clock, the data at Q1 is loaded onto the farthest right

flip-flop and appears on Q0. The one on Q2 is transferred to Q1, and Q3 to Q2. InR

is copied onto the first flip-flop and appears on Q3.

The next figure shows the left shifting operation. It is obtained through the com-

bination (S1 = 1, S0 = 0).

Despite the seemingly complex paths in the figure, the routing here is analogous to

that of the previous figure, only in the opposite direction. In this mode, the serial

input is InL. On the rising edge of the Clock, the value of InL is loaded onto Q0,

while the other outputs shift one stage to the left.
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Finally, the configuration (S1 = 1, S0 = 1) routes the value of parallel load input

P onto each corresponding input D. On the rising edge of the Clock, the register will

carry out a parallel load as shown in the figure below.

6.3 Counters

Another commonly used type of sequential network is the counter. This term indi-

cates a network that generates a numerical sequence in a particular code (think, for

example, of an increasing sequence made up of binary numbers represented by a

certain number of bits). The network’s active edge of the clock input causes the

passage from one element of the sequence to the next. The counter is synchronous

when the flip-flop network that creates it is synchronous.

6.3.1 Binary Counters

The following figure depicts an example of a natural binary 4-bit counter. The table

on the right shows the outputs’ 16 combinations. This is an increasing sequence, so

it is an “up counter”.

A counting cycle is made up of a sequence of 16 different configurations that can

be generated: it is the case of a “module 16” counting. When it gets to the highest

number “1111”, the count continues cyclically at “0000”. The rising edge of the

Clock advances the count. Input CL (Reset) makes it possible to initialize the count

at the value “0000”.
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Q3 Q2 Q1 Q0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

The internal structure of a counter is a synchronous sequential network like the one

described at the start of this chapter. It is made up of a D-PET flip-flop parallel

register and a combinational network that controls its behavior. In this counter, the

function required to the combinational network is to increase the binary number on

the outputs by 1, as shown in the figure below.
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Intuitively, the count could be done by a full adder that adds the constant +1 to the

number on the flip-flops’ outputs at that time. The result is submitted to the flip-flops’

inputs that will load the new number at the next rising edge of the Clock. Note that

the carry from the fourth bit of the sum is ignored, since there are only four bits. This

is how we get module 16 counting.

Let us now proceed more systematically and describe, in this truth table, the

behavior that the combinational network should have.

Q3 Q2 Q1 Q0 D3 D2 D1 D0

0 0 0 0 0 0 0 1

0 0 0 1 0 0 1 0

0 0 1 0 0 0 1 1

0 0 1 1 0 1 0 0

0 1 0 0 0 1 0 1

0 1 0 1 0 1 1 0

0 1 1 0 0 1 1 1

0 1 1 1 1 0 0 0

1 0 0 0 1 0 0 1

1 0 0 1 1 0 1 0

1 0 1 0 1 0 1 1

1 0 1 1 1 1 0 0

1 1 0 0 1 1 0 1

1 1 0 1 1 1 1 0

1 1 1 0 1 1 1 1

1 1 1 1 0 0 0 0

The left side of the table shows the 16 possible combinations of flip-flop outputs

Q3..Q0 and, on the right, the corresponding values of inputs D3..D0 that the com-

binational network must produce.

Since the rising edge of the Clock loads the value processed by the combinational

network onto the flip-flops, the table actually links the current state of the network

with the next state.

Remember that a D-PET-type flip-flop connected to an XOR through feedback

reproduces the functioning of the T type, as we have seen before.

If we put T = 0 at the input of the XOR the flip-flop keeps the previously memorized

value. If T = 1, then outputs are inverted.

With this in mind, we synthesize the combinational network described in the table

above. Omitting all the intermediate steps, we derive the schematic of the adder based

on D-PET flip-flops connected to form a T-type flip-flop.
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The regular structure of the network allows us to study its functioning even on an

intuitive level, with the help of the timing simulation below.

Output Q0 changes values at each active edge of the Clock since the correspond-

ing flip-flop always receives the inverse of Q0 in the input. With Q1, however, the

inversion condition is only true when Q0 is 1 at the XOR, whereas if Q0 = 0, Q1

keeps its previous value.
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Likewise, Q2 changes when outputs Q0 and Q1 are both at 1, due to the two-input

AND gate. Finally, Q3 toggles only when Q0, Q1, and Q2 are all at 1, due to the

three-input AND.

The simulation shows that an output changes when all the lesser significant outputs

are high. This observation allows us to intuitively extend the binary counter to any

number of bits.

Let us now look at the inversion function, which can be obtained through the

JK-PET flip-flop (this is implicit in this logical type and it is enough to connect the

inputs J and K together):

By substituting the D flip-flops with as many JKs, we simplify the previous schematic

as seen in the following figure:
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We can also draw the same network placing the flip-flops horizontally, as in the figure

below. The advantage is a more intuitive view of the flip-flop inputs’ “cascade”

driving.

The network simplifies even more if we take AND’s associative property into con-

sideration. It allows us to use simple 2-input ANDs to arrive at the structure shown

in the figure below:

Nevertheless, when the number of bits increases in this type of structure, the maxi-

mum operating frequency declines since the number of levels in the combinational

network rises linearly along with the number of flip-flops.

Let’s go back to the binary counter’s timing simulation. An interval of this is seen

below:

If we consider the relation between the signals’ timing evolution (the so-called wave-

forms), we see that the period of Q0 is twice that of the clock Ck. Likewise, the period

of Q1 is twice that of Q0 and four times the clock.
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If Fck is the frequency of the clock signal, then Fck/2 is the frequency of the Q0

signal, Fck/4 the frequency of Q1 and so on. In our example, the waveforms of the

outputs are also symmetrical; that is, the lengths of their high and low intervals are

identical.

A counter therefore can be used as a “frequency divider”, a network that provides

periodic signals derived from the clock with frequencies equal to that of the clock

divided by a power of 2.

The following figure shows the “UCnt4,” an example of a synchronous, binary,

4-bit up counter taken from the Deeds simulator library. This counter is functionally

identical to the one described above with an added TC (“Terminal Count”) output.

TC activates when the number generated by the counter reaches the highest value,

according to the simple combinational function TC = Q3 · Q2 · Q1 · Q0.

The figure below shows an example of the component’s timing simulation that high-

lights the activation of TC.

6.3.2 Counters with Enabling

The figure in the next page shows a counter that is similar to the previous one. It has

an extra enable input En that controls the counting function.
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The count is enabled only if En is at 1. When the count is disabled, the counter’s

outputs do not change despite the edges of the clock. The counter here is the “ECnt4”

(“up counter with enable 4 bits”), taken from the library of Deeds.

Let’s examine how enabling functions in principle. The following figure describes

the function of a binary up counter 4 bits with enabling:

Compared to the last structure we saw, this one has a multiplexer in front of the inputs

of the flip-flop that is controlled by En. When En is high, the multiplexer connects

the output of the adder with the flip-flops, which brings us back to the normal count

as seen previously.

When En is low, the multiplexer feeds back the outputs into the inputs of the

flip-flop. Thus, at each edge of the clock, the previous values are confirmed (and the
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count halts). The TC is generated in function of the value taken on by the flip-flops.

If the value “1111” is on the outputs Q3..Q0, it activates.

The timing diagram depicted in the next figure shows an example of the func-

tionality of a counter with enabling. The record starts with En set low and the count

halted (say, at the value of “1101”). The count only proceeds on the rising edges of

the clock if En = 1. In this simulation, it is activated three times for the duration of

one clock cycle.

At the first (1) activation of En, the count gets to the value “1110” and stops.

The value will increment (“1111”) at the next (2) activation of En. Note that the

entire time the counter has this combination of outputs, the output TC is activated,

an indication that the counter is at its “terminal” value.

Then, the counter moves up one increment at the last (3) activation of En: its

outputs go from “1111” to “0000”, because the count is cyclical and uses only 4 bits.

Note that TC = 1 signals also that the count on the next active edge of the clock will

go from the maximum value to zero. In the next section, we will see that this will

be useful in connecting multiple “cascading” counters in order to get a count with a

higher number of bits.

In sum, counters with enabling make it possible to count the number of times

input En is activated in response to the active edge of the clock, all while keeping

the operations rigorously synchronous.

6.3.3 Up/Down Counters

Up/down counters allow to count up or down. For example, take the “DCnt4”

(“up/down counter with enable 4 bits”) from the Deeds library:
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Here, the up/down counter has the added input U/D that sets the count direction.

The up/down counter in the figure below repeats the structure of the counters seen

previously but with one main difference: the content of the register can be increased

or decreased.

We can do this by presenting the constants +1 or −1 (represented in two’s comple-

ment code) to the adder through the multiplexer seen in the upper left-hand corner

of the figure. The choice of +1 or −1 is based on the value of the input direction

control U/D.
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U/D controls also the multiplexer in the lower right-hand side of the figure that gen-

erates the Terminal Count coherently with the count direction. When counting up, TC

is activated when the highest number “1111” is reached. WhenU/D = 0, the counting

is down, TC is set to 1 if we have reached the lowest number “0000”.

This block description finds a possible circuital synthesis in the following figure.

The network is very similar in structure to that of the up counter without enable.

Keeping the similarities in mind, let’s try to interpret the elements of this new network

from an intuitive perspective.

The D-PET flip-flops are connected as T type, but four XORs have been added in

the feedback loop.

With the input U/D, we can invert, or not, the value taken from the outputs of the

flip-flops. If U/D = 1, these XORs do not invert, and the network works like an up

counter. If U/D = 0, the network works like a down counter.
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Input En controls all the flip-flops. If En = 0, all of them are forced to recharge

their own value (at each active edge of the clock), so the outputs do not change, and

the count does not change. If En = 1, however, everything works as if that input were

not there and the count is enabled.

Independently of En, output TC is generated by an AND gate. AND’s four inputs

come from the outputs of the (direct or negated) flip-flops in function of input U/D.

TC will be activated when the outputs of the flip-flops get to “1111” if the count is

up (or to “0000”, if it is down).

The figure below shows an example of the timing simulation of the up/down

counter with enable:

In the first part of the timing diagram, the counter is enabled (En = 1) and counts

up (U/D = 1). Then for two clock cycles, the counter is disabled (En = 0) and the

count stops, staying at the last number it had got to, “0010”. In the meantime, the

counter is asked to count down (U/D = 0).

When it is enabled again, (En = 1), it starts counting down. When it reaches

“0000”, TC is activated and it starts counting from “1111” until it gets down to

“1100”, at which point we order it to count up again (U/D = 1). When it gets to

“1111”, TC is activated again and starts from “0000” (and so on).

6.3.4 “Universal” Counters

The most complete counter is the “universal” counter. It adds the possibility to preset

the number the counter contains, like in parallel registers. The structure presented

improves enabling and TC output, too.

In the figure next page, we see an example of a universal counter, the “Cnt4”

(“counter 4 bits”), from the Deeds library.
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The figure below shows a universal counter block by block. The counter has the preset

inputs P3..P0, in the same number as the outputs Q3..Q0, and the load command

input LD.

Here, a multiplexer controlled by input LD has been added to the structure of the

counters seen previously. If LD is at 1, the number set on the inputs P3..P0 is routed

to the D of the flip-flops, and it will be loaded into the counter on the next rising

edge of the clock. If LD = 0, however, the counter works like the previous types.

For example, the functionality of the direction input U/D is the same.
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There are now two enable inputs: En (“Enable”) and Et (“Enable Terminal

Count”). Both En and Et must be active to enable the count. Since Et enables the gen-

eration of output TC, it is used separately from En with multiple cascading counters,

as we will see further on.

Remember that in all the counters seen previously, TC function could not be

disabled and its value depended only on the direction of the count and the output

values.

Counter Extension

The synchronous structure of a universal counter lends itself to the extension of the

number of bits by using multiple interconnected “cascading” devices. For example,

we see in the figure below that a 12-bit counter has been obtained through three 4-bit

counters.

As we can see, all three devices share the clock signal, so the entire structure is

synchronous. Inputs Reset and U/D are also shared, so the three counters will be

initialized together and will always count in the same direction.

The enable input En is shared as well as the load command LD. The counter on

the far right-hand side of the figure is used for the less significant bits (Q3..Q0) and

the farthest left, for the most significant (Q11..Q8).

Now let’s assume that the En command is set to 1 and the direction is up. The

counter that generates Q3..Q0 will be enabled since its input Et is at 1. So that the

middle counter, which produces Q7..Q4, counts only when it should, we connect its

input Et to the TC of the counter that generates Q3..Q0.

This way, TC is used like a “carry”: when the farthest right counter gets to the

maximum number, it instructs the middle one to count up one unit by enabling it

with Et = 1.
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There is an analogous connection between the TC of the middle counter and the

farthest left Et input. The TC, which is produced by the farthest left counter, will

only be active when all three counters reach “1111”.

This structure can be extended to more bits, but we must remember that every

counter we add increases the overall propagation delay of the combinational network,

which propagates the Et enable signals through the TC of the various components.

In this book, we have used 4-bit counters for simplicity’s sake. Obviously, in CAD

system libraries, we find components of any size, like the 8- and 16-bit counters in

the figures below.

The 8-bit counter on the left is shown in its normal version. The 16-bit counter on

the right is shown in the bus-type connections’ version.

6.3.5 Asynchronous Counters

A counter is asynchronous when the flip-flops it is made of do not all share the same

clock. The network in the figure below represents an asynchronous, binary up counter

where all JK flip-flops but the first use the Q of the one before it as a clock signal.

Every flip-flop in this network (active on the rising edge of its own Ck input) changes

state when the output Q of the previous flip-flop switches from one to zero. Because

of this behavior, this is called a “ripple counter”, a term that recalls a wave-like

propagation.

The evolution of the outputs is described in the figure below where the propagation

times of the flip-flops have been highlighted (in approximate terms). Note that the

delay between the Clock at the input of the counter and any given output grows

proportionally to the position (weight) of that output.
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If we ignore the delays, this counter follows an up binary sequence, but the asyn-

chronous commutation of the outputs generates anomalous codes that alter this

sequence, as shown in the figure. These codes have a short duration (the same as

the propagation time of the flip-flop), but they can create problems in a network that

processes its outputs, for example a decoding network. This is why asynchronous

counters are used only in special cases.

As we know, a counter can be considered a frequency divider, when we consider

the timing relation between the waveform of the Clock and that of any of the outputs.

An asynchronous counter can be used to good advantage to this purpose. As we see

in the figure below, the frequency of outputs Q0 is 1/2 of that of the Clock and

outputs Q1 and Q2 provide a frequency signal of 1/4 and 1/8, respectively.

In counters used as frequency dividers, the asynchronous outputs do not pose a

problem since the signals generated are often used independently of each other.

Also, the simplicity of the asynchronous counter versus the synchronous one is a

great advantage for very high “division ratios”.

Frequency dividers are used in telecommunications devices where they generate

signals whose frequency is a submultiple of that of a Clock generator, which works

at a higher frequency.

To be thorough, below, we show an asynchronous down counter. In this network,

the input Ck of each flip-flop except the first is connected to the output Q of the one

before it.
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In the timing diagram below, we see that the flip-flop’s change in outputs in the

backward count occurs when the one before it makes a transition from zero to one.

6.4 Network Analysis Examples

One essential step in beginning to design digital systems is to understand the behavior

of a given sequential network. The timing analysis of a network provides familiarity

with some general aspects of the interaction between the combinational and sequen-

tial components of a logical circuit. The familiarity with the low-level behavior of

sequential networks is an important step for the designer who is mindful of the

workflow from the project specifications through to the final product.

Next, we will show a series of examples of analyses through the timing diagrams

of simple sequential networks that have a given logical schematic associated with

suitable input signal sequences. We will carry out a functional network test; that is,

we will study the evolution on time of the outputs as a function of the inputs.

6.4.1 Example 1

In this section, our goal is to analyze the function of the network of flip-flops depicted

in the figure below. A simple observation of the schematic gives useful indications

on how to analyze it. This is a synchronous network made of D-PET flip-flops with

an asynchronous initialization input Reset (which acts on the inputs Clear of the

flip-flops). The network generates the three outputs Q2, Q1, and Q0.

The structure of the network is also easy to identify: a shift register where the serial

input D2 is connected to the negated output Q0 of the last flip-flop. It is not necessary
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to identify the specific structure to analyze it. The procedures shown here work for

any synchronous network of flip-flops.

To start, we must first have a timing diagram where we can sketch the evolution of

Clock, and the inputs and outputs of the network. In the case at hand, we will insert

signal D2 (= Q0) in the diagram for ease of examination.

The next figure shows the track of the diagram to construct. Here, the Clock and

the initialization signal Reset have been defined. We suppose Reset active at the

beginning of the diagram and then deactivated in the interval between the edges (1)

and (2) of the Clock.

As long as input Reset is kept active (low), outputs Q of the flip-flops are forced to

zero and edge (1) of the Clock cannot provoke changes. Note that we must draw D2

with the value of 1 in this initialization phase since it is connected to the negated

output Q0.

Remember that deactivating Reset does not change the state of the network and

the signals remain unchanged until the next active edge of the Clock (2).

At every active edge of the Clock, the D-PET flip-flops transfer the logical value that

is on their own input D at that moment onto their output Q.

On edge (2) of the figure above, inputs D2, D1, and D0 of the flip-flop are 1, 0,

and 0, respectively. Therefore, let’s draw the outputs of the flip-flops after edge (2)

the figure in the next page.
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In the previous figure, we have chosen to highlight the propagation delay between

the edge of the Clock and the change of output Q2. Note that the new value taken by

Q2 (and thus by D1) will be acquired by flip-flop Q1 on the next edge (3).

Up until edge (3), the situation remains the same, given that flip-flops change

their state only on the edge of the Clock. On edge (3), the values on inputs D are

transferred to outputs Q, in the same way as on edge (2). In the figure below, we see

the situation after edge (3). Note that there is a delay in the activation of Q1.

In the two following diagrams, we continue drawing the diagram in relation to edge

(4) and (5) by applying the same criteria.
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Finally, in the figure below, we see the complete timing diagram. The figure shows

the typical behavior of a shift register.

The network we have examined is called a 3-bit “Johnson Counter”. It can be made

with a shift register with any number of bits by connecting the negated output of the

last flip-flop to the input of the first. It has the advantage of a simple structure and the

corresponding disadvantage of a counting code which is different from pure binary

(but can be easily decoded).

6.4.2 Example 2

The network in the following figure is made up of three D-PET flip-flops with shared

Clock and Reset signals. It is easy to find the base structure of the shift register but

the input of the farthest left flip-flop, D2, is obtained by an XOR tree that processes

the outputs Q1 and Q0, and the input Seed .
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We know that, at every active edge of the Clock, the flip-flops transfer the logical

value on input D at that moment onto output Q. The network analysis consists in

evaluating inputs D2, D1 and D0 in relation to those active edges. Based on the figure

above, we can write the Boolean expressions. Note that only the first one describes

a network with logical gates, while the others are simple connections.

D2 = Seed ⊕ Q1 ⊕ Q0; D1 = Q2; D0 = Q1

These three expressions provide the values of inputs D2, D1 and D0 as function of

the values of input Seed and flip-flop outputs Q2, Q1, and Q0 (the current state of the

network). Once these are loaded on the flip-flop, they will constitute the next state

of the network. Here too, we trace the behavior of the network on a timing diagram

seen in the figure below. We prepare traces for all the network’s inputs and outputs,

the flip-flops’ inputs and even the intermediate signal Ex for ease of analysis.

The next figure shows the timing analysis up until edge (4). The Reset signal, which

is active before edge (1) of the Clock, sets the flip-flop’s outputs to 0. It is easy to

understand why the Seed activation is necessary to make the network evolve. In its

absence, the network would remain in the situation set by Reset indefinitely.

Inputs D1 and D0 are also at 0, since they are connected to outputs Q2 and Q1.

D2 is at 0, as we can see from the Boolean expression since the external input Seed is

set to 0. Therefore, edge (1) of the Clock does not change its outputs, which remain

at 0. The same goes for edge (2).
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In the initial setting of the diagram, we assumed that the input Seed is activated for

the duration of the Clock cycle between edges (2) and (3). The immediate result

is that D2 is activated: on edge (3), the output Q2 switches to 1, while the other

flip-flops do not change their values (D1 = D0 = 0).

After edge (3), the input Seed returns to 0 and remains to this value until the end

of the diagram, so the evaluation of D2 is simplified, since it now depends only on

the variations of outputs Q1 and Q0.

To continue the analysis, after Seed is brought to zero, the networks that generate

D2, D1, and D0 produce the values 0, 1, and 0, respectively. These are transferred onto

the flip-flop outputs at edge (4). With the same method, let’s continue the analysis

until we complete the diagram shown here:

We can make some general comments about the complete diagram. All the flip-flop

outputs commute at the active edges of the Clock with a delay that is equal to their

propagation time. Signals Ex and D2 show an added delay due to the combinational

network that generates them. As we can see in the diagram, signal D2 can change

asynchronously with respect to the Clock between edges (2) and (4) because it is

dependent on external input Seed .

The network we have analyzed is a simplified example of a pseudo-random num-

ber generator. The number generated in this case is made up of outputs Q2, Q1, and

Q0. A pseudo-random number generator is normally created with a high number

of flip-flops (ex. 32) because the sequence generated is only apparently random; it

actually repeats cyclically.
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6.4.3 Example 3

The network in this example uses two D-PET flip-flops with shared Clock and Reset

signals and without command inputs. Outputs U0 and U1 are taken directly from

outputs Q0 and Q1 of the flip-flops while TC is obtained through a logical gate.

Let’s apply the same analytical process as before. We evaluate D0 and D1 at the

active edge of the Clock since at that time they will be loaded onto the flip-flops. It

may be useful to “separate” the combinational networks that produce D0, D1 and

the outputs U0, U2, and TC from the overall schematic. Let’s re-draw them apart,

in the form of a circuit and as Boolean expressions.

D0 = Q0; D1 = Q0 ⊕ Q1;

U0 = Q0; U1 = Q1; TC = Q0 · Q1

By using the schematics or expressions just described, we can trace the timing dia-

gram. Aside from the Clock, let’s trace the signal Reset in the diagram, as active

from the beginning and deactivated just before edge (1) of the Clock.
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The first step is to consider Reset, which forces the flip-flops to 0 at the beginning

and then is removed. The state of the network changes at Clock edge (1) when the

two flip-flops take on the values of D0 and D1.

Now, we suggest that for practice the readers continue the analysis on their own,

following the criteria suggested so far. The timing diagram will look like the following

figure, where we see the cyclical quality of the sequence, which repeats every four

edges of the Clock.

This device behaves as a counter; the values taken on by outputs U1 (MSB) and U0

(LSB) follow a module 4 binary natural up count. TC signals when the outputs have

reached their highest value.
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6.4.4 Example 4

The network in the figure below is very similar to the previous one. It uses two

D-PET flip-flops and has the same outputs U0, U1, and TC, but it has an added

input SyncRes (“Synchronous Reset”) and the logic associated with it. The Clock

and Reset network are identical to the previous case.

A couple of intuitive points can help the analysis of this network.

If the input SyncRes is 1, the two ANDs conditioned by this signal transmit the

value of their other input to their respective outputs and the network is functionally

identical to the one in the previous exercise.

If SyncRes equals 0, the outputs of both the ANDs are at 0, setting D0 and D1 to

0 and so the two flip-flops are brought to zero synchronously.

Let’s derive the combinational networks that produce D0 and D1, and/or the

expressions. The U0, U1, and TC network is identical to that of the previous exercise.

D0 = SyncRes · Q0; D1 = SyncRes · (Q0 ⊕ Q1);

U0 = Q0; U1 = Q1; TC = Q0 · Q1;

Let’s set up the timing diagram as in the figure below, with the Clock and Reset

signals set as in the previous exercise. Let’s assume that the SyncRes command is

activated for two Clock cycles as drawn here:
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Now, it is the reader’s job to complete the timing layout, which will turn out to be

like the figure below. Notice that signals D0 and D1 respond immediately (except

for propagation times) to SyncRes command variations.

6.4.5 Example 5

The figure below shows a network that uses two D-PET flip-flops that share the same

Clock. Both flip-flops are connected to the asynchronous initialization input Reset.

The two inputs are EN and DIR. The outputs generated by the networks are U0, U1,

U2, U3, and MAX .
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As before, the fundamental step to analyze the network is to evaluate D0 and D1 at the

active edges of the Clock. Let’s separate the combinational networks that produce D0

and D1 from the full schematics and describe them in terms of Boolean expression

as well.

D0 = EN ⊕ Q0; D1 = (EN · Q0) ⊕ (Q1 ⊕ (EN · DIR))

These networks combine the values of inputs EN and DIR with the values of outputs

Q0 and Q1 of the flip-flops (the “state” of the network), and they produce a new

value for D0 and D1. On the active edge of the Clock, these values will be loaded

and will constitute the “next state” of the network.

The network’s outputs U0, U1, U2, U3, and MAX are combinational functions

of the flip-flops’ outputs and of the input EN , as shown below, both as a network

schematic and in terms of Boolean expressions.

U0 = Q0 · Q1; U1 = Q0 · Q1; U2 = Q0 · Q1; U3 = Q0 · Q1;

MAX = Q0 · Q1 · EN

For the timing analysis, inputs EN and DIR should be set in a way to avoid an

unrepresentative timing diagram. We have chosen to include the flip-flops’ inputs

and outputs in the diagram to make the analysis easier.
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The same criteria of analysis we have seen before are appropriate to analyze this

network. We suggest that the reader carries out the analyses personally.

Below we provide some advice on how to proceed:

1. We should focus initially on the evolution of the state of the network and then

afterwards on the generation of outputs. So, we should first trace the evolution of

signals Q0 and Q1 (direct and negated), and D0 and D1.

2. Even if we assume, as usual, that the propagation delays are short with respect

to the Clock period, it is very useful to represent them in the diagram, albeit in a

qualitative way.

3. Note that after the activation of Reset, the network starts to evolve with edge (1)

of the Clock.

4. After each active edge of the Clock, we must recalculate the values of D0 and

D1, which will be loaded onto the flip-flops at the next active edge.

5. Between edges (3) and (4), EN changes. As a result, D0 and D1 immediately

follow this change and the values of D0 and D1, which are transferred onto Q0

and Q1 are sampled by the flip-flops at edge (4).

6. Likewise, between edges (4) and (5), both EN and DIR change.

7. When the analysis of the next state is finished, we trace the outputs U0, U1, U2,

and U3. These outputs can only change on the active edges of the Clock. This

does not apply to MAX , which depends also on an input.
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The figure below reports the results of the analysis. We see in the timing diagram

that the flip-flops’ outputs Q0 and Q1 follow a binary up counting sequence in the

first few cycles after Reset is activated.

When input EN is at 0, the network loads the preexisting values onto the two flip-

flops. On edge (4), Q0 and Q1 do not change. As on edge (5), the count changes

direction since the value on input DIR changes.

The circuit, evaluated on outputs Q0 and Q1, behaves like an up/down binary

counter. Input EN enables the count (if EN = 1), while DIR sets the direction (down

if DIR = 1).

As we see in the timing diagram, outputs U0, U1, U2, and U3 are activated by

combinations 00, 01, 10, and 11 of Q1 and Q0, respectively. Output MAX decodes the

same combination of U3, but it is enabled only if EN = 1. Thus, the output is brought

to 0 asynchronously following the evolution of EN between edges (3) and (5).

Finally, note that D0 and D1 evolve asynchronously between edges (3) and (5),

since they follow the changes of inputs EN and DIR. What matters, however, is that

their values should be stable at the moment they are read (i.e., on the rising edge of

the Clock).
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6.5 Exercises

Analyze the following synchronous sequential networks by completing the timing

diagrams on the side page. The templates are also available on the simulator Web

site, as PDF files, on the digital contents pages.

It is advisable to complete the layouts on paper without the help of Deeds, using

it only to check the solutions. The Web site also provides the Deeds files of the

networks proposed.

1. Exercise 1—(timing diagrams in the next page)
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2. Exercise 2—(timing diagrams in the next page)
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3. Exercise 3—(timing diagrams in the next page)
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4. Exercise 4—(timing diagrams in the next page)
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5. Exercise 5—(timing diagrams in the next page)
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6. Exercise 6—(timing diagrams in the next page)
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7. Exercise 7—(timing diagrams in the next page)
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8. Exercise 8—(timing diagrams in the next page)
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9. Exercise 9—(timing diagrams in the next page)
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10. Exercises 10—(timing diagrams in the next page)
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6.6 Solutions

The timing diagrams reported here were obtained through the Deeds timing simulator.

The files of the networks assigned here are available on theDeeds site and on the digital

contents pages of the book, so the solutions can be checked on the simulator as well.

1. Exercise 1 (solutions)
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2. Exercise 2 (solutions)
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3. Exercise 3 (solutions)
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4. Exercise 4 (solutions)
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5. Exercise 5 (solutions)
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6. Exercise 6 (solutions)
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7. Exercise 7 (solutions)
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8. Exercise 8 (solutions)
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9. Exercise 9 (solutions)
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10. Exercise 10 (solutions)



Chapter 7

Sequential Networks as Finite State
Machines

Abstract The term Finite State Machine indicates a regular and standard structure

that is able to describe and synthesize sequential networks in a general fashion.

Algorithmic State Machine (ASM) is the tool adopted in the book and developed

through the chapter. The attention is focused on synchronous stand-alone machines,

their properties, and timing behavior.

In past chapters, we have seen different examples of sequential networks whose

functions we analyzed through timing diagrams. All the synchronous networks we

examined can be described by the general structure we see here:
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We called state the set of values memorized by the flip-flops, which we grouped

into a parallel register, the state register of the network (highlighted in the center of

the figure). Our purpose in this chapter is to learn to design synchronous sequential

networks with a general method. To do this, we work with the standard model of a

Finite State Machine (FSM), that we can use to create sequential networks that can

perform any logical algorithm that requires a finite number of operations.

7.1 Finite State Machines: Standard Model

The standard model described below is valid for both synchronous and asynchronous

sequential networks. A general sequential network can be depicted as having three

blocks, as shown in the figure below.

Let I, X and U be the set of input, state and output variables, respectively. A set of

variables is called a vector. For example, above, I = {I0, I1, I2..Im − 1}, where m

is the number of input variables. In the figure, the lines carrying the variables I, X

and U are shown with a slash indicating the number of lines they group.

The middle block is the state register, that memorizes the state vector X, defined

by the set of q variables of the state {X0, X1, X2.. Xq − 1}. Each of the 2q variable

combinations identifies a specific state of the network.

The clock CK is shown in parentheses because it is only present in synchronous

networks.

The Next State Combinational Network, previously referred to as ICN, receives

the vector of inputs I and state X, and based on this information, it generates vector

iX, which is brought to the input of the register. As we have seen, vector X will take

on the value of iX at the appropriate time.

The Output Combinational Network, the OCN from Chap. 6, has in its input a

vector of state X and a vector of input I and generates the output vector of the network

U = {U0, U1, U2... Up − 1}.
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7.1.1 Synchronous and Asynchronous Machines

The network’s timing evolution is conditional upon the specific structure of the state

register. If the state register is made with synchronous flip-flops timed to the same

clock, the sequential network is described by the model of the synchronous FSM. The

clock scans the evolution over time of the sequence of states taken by the machine

(see the following figure left).

If the state register uses asynchronous flip-flops, it does not employ a clock input

(upper right-hand figure) and is described by the asynchronous FSM model. Here,

the network’s timing evolution depends on inputs changes and the internal delays

of the network.

7.1.2 Moore and Mealy Machines

There are two architectural variants for the modality of generating outputs. The

standard model shown above where the outputs are a function of the state and of the

inputs is normally called a Mealy machine. In the Moore machine, the outputs are a

function of the state only since they do not directly depend on the inputs. The figure

below summarizes the four possible variants:
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The models on the left (a) and (c) are synchronous. The synchronization of the

clock makes the state change on the active edges of the clock. The models on the

right (b) and (d) are asynchronous. In the Moore machines, (a) and (b), there is no

connection between the inputs and the output combinational network. By contrast,

in the Mealy machines, (c) and (d), there is.

7.1.3 An Example of Synchronous Finite State Machine

In Chap. 6, we analyzed the function of a synchronous sequential network that could

count up (module 4) and synchronously bring the count to zero. Let’s re-examine

it now in terms of FSM. As we see in the schematic below, the network uses two

D-PET flip-flops. They can be considered to be memory elements that make up the

state register, and their outputs as variables of the state (X0, X1):

In the figure, we see a set of logical gates that calculate the values of the flip-flops’

inputs D as functions of the external input SyncRes and the variables of state X 0 and

X 1. This part of the circuit can be considered the network of the next state. Likewise,

we see that outputs U0, U1, and TC are combinational functions of the variables of

state X 0 and X 1. In light of these observations, let’s re-draw the network and organize

the schematic according to the standard model of Moore’s synchronous FSM:
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Block (1) generates the next state by offering it to the input of flip-flops (iX 0 and

iX 1), based on input SyncRes and the current state of X 0 and X 1. Let’s derive their

Boolean expressions:

iX 0 = (SyncRes · X 0)

iX 1 = (SyncRes · (X 0 ⊕ X 1))

Block (2), the state register, memorizes the values of iX 0 and iX 1 at each active

edge of the Clock, thus updating the state represented by X 0 and X 1. The Reset

signal is used for the asynchronous initialization of the flip-flops.

Block (3) generates outputs U0, U1, and TC of the network, that depend on the

variables of state X 0 and X 1 in the following way.

U0 = X 0; U1 = X 1; TC = (X 0 · X 1).

7.1.4 General Equations of the Next State and the Outputs

In a synchronous FSM, the clock determines the instants n − 1, n, n + 1... when the

FSM can change state. Cyclically, at every clock edge, vector iX is transferred onto

the state register, thus updating the value of X . Time is reduced to a succession of

numerable events.

Let X (n) be the state of the FSM in interval [n, n + 1]. In response to n − 1, n,

n + 1, ..., the state assumes values X (n − 1), X (n), X (n + 1)... (in the figure, these

events occur at the rising edges of the clock).

Let’s now turn our attention to Moore’s synchronous FSM shown here:

Let’s express the state X (n) in the interval [n, n + 1] as function of the previous state

X (n − 1) and of inputs I(n − 1) in interval [n-1, n]:
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X (n) = f ( X (n − 1), I(n − 1) )

This expression is called the “equation of the next state.” Keeping in mind that

X is a vector made up of q variables, we will have q scalar equations, one for each

variable of the state.

Briefly, the equation above can also be expressed thus:

X ← f ( X , I )

The arrow “←” reminds us that X is a “delayed function” of the inputs and of the

previous state. The function U (n), which represents the system’s output in interval

[n, n + 1], is:

U (n) = g( X (n) )

The above expression is the equation of the outputs for Moore’s FSM. It represents

the outputs’ dependency on the state it takes on in interval [n, n + 1]. Given that state

X (n) remains constant for the whole interval, the outputs will as well.

Let’s also keep in mind that if p is the number of variables that make up the vector

of the outputs, we will have p scalar functions, one for each output.

For Mealy’s synchronous FSM, however, the function U (n) is different since

there is a connection between the FSM’s inputs and the combinational network of

the outputs (see the figure below).

The equation of the outputs for Mealy’s FSM describes the dependency between the

outputs and state X (n) and inputs I(n) of the FSM.

U (n) = g( X (n), I(n) )

Note that while state X (n) remains constant for the whole interval [n, n + 1], the

same cannot be said for inputs I(n), which will condition the value of outputs U (n)

during the interval since the inputs generally can vary at any instant.

The outputs that partially depend on input values are called “conditional outputs.”

Hereinafter, we will use interval n to refer to the timing interval [n, n + 1], and

state n to refer to state X (n).
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7.2 ASM Diagrams

When designing a sequential network, it is wise to adopt a behavioral rather than a

circuital approach. This means starting by defining the algorithm that the FSM must

execute and working top-down. The algorithm will only be implemented in circuital

form afterward, through a process called synthesis.

There are several methods for describing and designing a state machine’s algo-

rithm. The ASM diagrams (Algorithmic State Machine diagrams), used through

the book, represent a simple and intuitive method to design and synthesize a state

machine.

Another graphical method, still in use in books and documents, is the State Dia-

gram. Appendix B provides the simple rules for converting state machine represen-

tation from one method to the other one.

ASM diagrams (or charts) seem similar to the flow diagrams used in programming,

but they are structured so that they describe the evolution of the states of a network.

They were introduced in the 1970s by Christopher R. Clare in his book “Designing

Logic Systems Using State Machines” (McGraw-Hill, 1973, out of print). ASM

diagrams can describe both synchronous and asynchronous FSMs. Below, ASM

diagrams are applied to synchronous machines.

7.2.1 Description of States

Here is the first example of an ASM diagram which has four state blocks (the rect-

angles), interconnected by lines that represent the states’ logical flow.

Let’s try to interpret the figure at the right. The diagram

describes the algorithm i.e. the logical behavior of a device that

can take four different states, represented by blocks (a), (b), (c)

and (d).

The letters on the right of the blocks in the ovals represent the

symbolic names assigned to the states. These four states happen

one after the other, in the order indicated by the arrows.

Outputs can be associated to the states. The diagram shows

only the active outputs, state by state inside of the rectangles.

For example, in state (c), output Q1 is active, while in state (d)

outputs Q1 and Q0 are active. Convention dictates that only the

active outputs are indicated inside state blocks, so unreported

outputs are understood as inactive.

In our example, Q1 and Q0 are the device’s only two outputs since the diagram does

not mention others. x No inputs appear in the diagram. Indeed, this device has no

inputs that have an effect on states’ flow (the next examples, however, do have them).
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In the ASM description of the network, the initialization and synchronization

inputs (Reset and Clock) are never represented since they do not affect its behavioral

description.

Furthermore, an ASM diagram does not explain the timing modalities with which

the machine goes from state to state, which depend on the structure of the state

register (whether the network is synchronous or asynchronous).

When the designer describes the FSM in algorithmic terms, (s)he has already

decided if the network will be synchronous or asynchronous. In our example, the

device was planned to be synchronous, so the Clock will govern the progress from

state to state. Hereinafter, let’s assume all the devices we will analyze and design to

be synchronous.

The figure below left shows a block schematic that describes the device. It has

Clock inputs, initialization inputs Reset as well as two outputs Q1 and Q0.

The figure on the right shows the sequence of outputs, from state to state as

indicated in the ASM diagram. This sequence shows clearly that our device behaves

like a 2-bit synchronous binary counter. It counts from 0 to 3 cyclically (module 4).

Activating Reset

When the initialization input Reset is activated, the flip-flops

of the state register are forced to a known value. This means

that the network is brought to a pre-defined state that, at the

design level, we call the “reset state”.

As per convention, the reset state is shown in the diagram

with a small rhombus (an ace of spades!) at the upper left-

hand corner of the rectangle.

The figure below highlights a sequence where we can examine the behavior of the

network upon initialization. As we can see in the timing path, the choice was made

to begin the simulation with Reset inactive.

Given that we assume nothing about the state of the network before the activation

of Reset, we represent the state as initially unknown (shown by the question marks),

and the outputs as indefinite (see figure in the next page).
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When the input Reset is activated, the network is brought to state (a), the reset state

specified by the ASM diagram. Remember that Reset, being an external signal applied

to the FSM, can change at any time and acts asynchronously (i.e., independently of

the clock). The network remains forcedly in state (a) until Reset is deactivated.

After Reset is deactivated, the network is brought to state (b) at the first rising

edge of the clock and continues on the sequence laid down by the ASM diagram, as

seen in the figure above.

The Relation Between the ASM Diagram and Timing Diagram

The following figure highlights the relation between the state flow, output timing

diagram and the clock. The machine is synchronous; it remains in each state for the

duration of one clock cycle.
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Assuming that the FSM is in state (a) at a given time, the ASM diagram tells us

that the next state will be (b). The timing diagram shows the passage from state (a)

to state (b), which occurs at the rising edge of the clock.

With the passage to state (b), output Q0 activates. At the next rising edge, the

FSM goes to state (c), where it activates output Q1, and so on.

The short delay highlighted in the timing diagram represents the physical delays of

the logical network. The change of outputs occurs “after” the rising edge of the clock.

The timing diagram also shows the cyclical nature of the network well; there, we see

the repetition over time of the generated sequence.
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7.2.2 Inputs

The figure below displays another, broader example of an ASM diagram. This one

represents a variable module counter, which can count in pure binary (module 16)

or in BCD 8421 (Binary Coded Decimal).

There are 16 states in the diagram, and one decision block. The decision block,

which we are meeting for the first time, takes account of an input called MOD.

If its value is 0, the machine goes through all 16 states in the order shown in the

diagram. If its value is 1, after state (m), the machine returns to (a), thus going

through a sequence of 10 states.

If the value is 0, the sequence of states produces Q3, Q2, Q1, and Q0 at the

outputs, a binary sequence from 0 to 15. If the value is 1, the outputs take on the

values of the BCD codes corresponding to the decimal numbers 0 a 9.

The figure below left shows the block schematic of the variable module counter.

The block schematic shows inputs Reset and Clock, as well as the input MOD and

the four outputs Q3, Q2, Q1, and Q0. The table shows the two sequences generated

by the counter as the input setting varies.
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Using Decision Blocks

In ASM diagrams, the network’s inputs have an influence on the sequence of the

states through the decision blocks. Argument of a decision block is normally an

input variable or a Boolean function of multiple input variables.

A decision block allows to choose between two logical paths according to the

Boolean value of its argument. The figure below shows two examples taken from

standard ASM diagrams.

On the left, the decision block allows input IN to define what state will follow state

(g). The answer is (h) if IN = 0, or (k) if IN = 1 (this case is analogous to the one

examined previously).
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On the right, however, state (g) has two possible next states: itself or state (k). If

IN = 0, the machine remains in state (g); the next edge of the clock will produce no

change in state. In IN = 1, at the active edge, the machine will go to state (k).

The machine stays in state (g) waiting for input IN to go to 1 before continuing.

In (g), the network is said to be in a waiting state.

Timing Aspects of State and Decision Blocks

The state blocks determines the timing of the FSM. The passing of time is related

to the states; to remain in a certain state corresponds to a certain length of time and

a sequence of states evolves over time. In synchronous machines, one state follows

another to the rhythm of the clock, so a state will last one clock cycle or a multiple

depending on the algorithm.

The decision blocks represent just a combinational function, which is independent

from time. Looking back at the example of the variable module counter, when the

counter is in state (m), input MOD decides which state to switch to at the next active

edge of the clock. The decision block performs a logical operation: determining the

path toward the next state, either (a) or (n). The effects of the decision appear upon

transition in the next state.

Example: The Up/Down Binary Counter

We have seen the FSM that describes a simple 2-bit binary counter. The counter was

designed to generate an up binary sequence. Now, let’s describe the behavior of a

up/down counter. We start with the circuit block seen previously and add a command

input that we call DIR. See the figure below:

The command input will set the count up if it is at 1, or down if it is at 0. The figure

shows the sequences called for as input DIR varies. As a further specification, we

want the count to be able to change direction at any state the device is in.

Let’s proceed stepwise and change the previous counter. Its ASM diagram is

shown in the figure below left. The four-state sequence corresponds to the up count.

To also allow for a down count, we insert a decision block after every state block to

condition the sequence to the value of input DIR.
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In the central figure, we can see the four conditional blocks that were added, but the

diagram is still incomplete. The logical paths related to the value 0 of DIR is 1 are

missing and the sequence of states counts up.

Let’s add the missing logical paths making sure that if DIR = 0, the count

decreases one unit at every clock cycle. In other words, we want the sequence of

states to go backward.

For example, the right-hand side of the figure shows that if DIR = 0, the logical

path brings the machine from state (b) to state (a).

The following figure adds the down count paths one by one: at left, from (c) to

(b), and center, from (d) to (c).

To complete the sequence, we must now identify the path for DIR = 0, in state

(a): if, in the up count we go from (d) to (a), in the down count we must, obviously,

go from (a) to (d).
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The complete ASM diagram is shown on the right-hand side of the figure. Note that

the machine’s behavior in state (a) is analogous from a topological perspective to

that of all the other states. This is in spite of the fact that it could seem different from

a graphic perspective.

The figure here below shows the timing simulation of the counter.
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We see the Clock and DIR inputs and outputs Q1 and Q0, as well as an indication

of which State the FSM is in. The active edges of the clock are numbered for ease

of reading.

On the first active edges of the clock (numbered 1–6), input DIR is high so the

count sequence is forward. From edge (7) to edge (11), input DIR is low so the

counter goes backward, and then goes forward again on edge (12).

Sample Project: Edge Detector

An Edge Detector, as its name states, can signal that its input has changed value from

0 to 1 or vice versa. Its behavior is shown in the figure below with a timing diagram.

Every time input IN has a (rising or falling) edge, the detector reports the event by

generating a pulse on output OUT :

The path represented here is only approximate. The precise timing evolution of the

output will depend on the way we choose to build it.

If we take Moore’s machine as a model, the output OUT will be synchronous

with the clock and so the pulse generated will have a minimum duration equal to a

clock cycle. The figure below shows the timing diagram with adjustments made in

view of these choices.

At every transition of input IN (0 → 1 or 1 → 0), a pulse is generated with a duration

of one clock cycle. Note that because of asynchronicity between the input and the

clock, we must accept the inevitable and random delay between the input transition

and the output pulse generation.

The delay will never be longer than one clock cycle. Based on these specifications,

let’s now derive the ASM diagram of the edge detector.

To begin, we must assume that the FSM is “in a certain state” and that the input

has “a specific value” consistent with the design.
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To this end, let’s assume that, at a certain moment, input IN is 0 and the machine

is in state (a) where the output is inactive (see the figure below left).

In this case, the machine must wait for the only possible event, a transition of IN

from low to high. Therefore, we insert after the state a decision block that controls

the input (at the center of the figure), so that the machine stays in state (a) in the

absence of input changes.

When the input changes to 1, the machine must report the transition and activate

the OUT output. To achieve this, we must add a state (b) that will generate OUT for

one clock cycle (on the right-hand side of the figure).

It is wise at this point to take a few moments to

think about the evolution over time of the signals

involved here in relation to the ASM diagram we

are building. The figure on the right shows the tim-

ing sequence of the signals in the transition from

state (a) to (b). The image highlights that the FSM

stays in state (a) while IN = 0 in the initial clock

cycles.

Then we see the transition to (b) at the rising edge of the clock, after IN has taken

the value of 1. The output OUT is activated when the machine is in state (b).

As we get back to drawing the ASM diagram, we must keep in mind that the

output OUT must be no longer than one clock cycle so state (b) must necessarily

be followed by a state with no output OUT . Also, since input IN is now at 1, the

machine must wait for it to go to 0.

Let’s add a state (c) where the machine will wait for the input to go back low (see

the figure in the next page).
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When the input goes to 0, the machine must produce the output OUT again. As

before, to activate the output, we add a state (d) to follow state (c) when IN is 0 (the

right-hand side of the figure).

Note the very close analogy between the pair of states (a) and (b), and the pair (c)

and (d). The behavior of the machine is similar between them but the difference in

the input value dictates two different sequences of states.

After OUT is generated in (d), the machine must wait for IN to go back high again.

This is the very behavior of state (a), which was introduced with the assumption that

the input would be 0.

So, let’s close (d) over (a), completing the diagram as shown in the figure below.

There are no more paths to close, and the initial assumption about state (a) is satisfied.

We must still decide which reset state the machine will go to on initialization. Intu-

itively, states (a) and (c) should be the most suitable for this since the FSM does not

activate the output there, but simply waits for the input.

States where the machine waits for events without generating outputs are called

“idle states.” In the absence of further specifications, we will choose state (a), shown

in the figure with a small rhombus on the upper left-hand side.
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Here below is the timing diagram of the edge detector with the input sequence

from before, plus the sequence of states taken by the FSM.

Looking closely at the timing path and the ASM diagram, we see that the evolution of

the input signal must be subject to some restrictions so that the FSM works correctly.

In short, the input changes must be far enough apart.

In the first part of the path above, where the input signal is high for two consecutive

cycles, the machine still has time to detect the falling edge, and the evolution of the

output OUT is what we expect.

This is a limit situation for this FSM. If the input signal changes more frequently,

the machine can no longer follow and will produce a incorrect output sequence (it

would not satisfy the given specifications), as in the figure below:

Here we see that the output OUT is no longer generated at each edge of the input

signal. At the end of the path, where we see an input signal that changes multiple

times within the same clock cycle, the transitions are totally invisible.

This type of problem, normal in digital design, is linked to the type of operation

to carry out, the algorithm used but, mostly, the clock frequency. Here, the edge

detector would work if the clock frequency were raised appropriately.

7.2.3 Conditional Outputs

We have seen that the state block and the decision block suffice to define Moore’s

machines. To describe Mealy FSM ASM diagrams also use the conditional output.

As we have seen, in Mealy’s machines the outputs can depend not only on the state,

as with Moore’s machines, but also directly on the inputs in terms of combinational

logic.
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Conditional output blocks make it possible to

describe this type of dependence on an ASM dia-

gram. The machine described in this ASM diagram

on the right has only two states: (a) and (b). The

conditional output block is represented by a rect-

angle with rounded corners, with inside the name

of the output (UC in this case). The decision block

that evaluates input C here is not involved in chang-

ing states. If we observe the paths the block can

take, we see that whatever the input value, the next

state of (a) will always be (b) just as the next state

of (b) is (a).

The decision block, however, serves the purpose of the conditional output block.

Output UC is generated when the machine is in state (a) if and only if C = 1. The

timing diagram shown in the figure below demonstrates this behavior.

In line with the ASM diagram, the path here shows that output UC is not generated

in clock cycles 2, 4, 6, 8, and 10 since the machine is in state (b) in those cycles. In

the other cycles, the machine is in state (a) so UC activation depends on the input

value:

1. In all of cycle 1, input C is low, so UC is inactive.

2. By contrast, in 3, C is high for the whole cycle, so UC is active.

3. In cycle 5, input C is active only for a brief interval and output UC is consequently

activated (as we can see, the evolution over time of UC copies that of input C).

4. In cycle 7, the behavior is similar to cycle 5 with one exception. UC is active

when input C goes high and then goes down to zero along with the transition to

state (b) since there is no provision for output UC in (b).

5. Finally, in cycle 9, the behavior is the same as in cycle 5.
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For comparison, the path also features the (unconditional) output of state UN ,

which is activated every time the machine is in state (b). Since over time, the two

states (a) and (b) alternate at every clock cycle, UN evolves periodically.

Example: A New Edge Detector

We have already designed an edge detector as a Moore’s machine with four states.

Let’s re-think this device in light of the possibilities offered by Mealy’s machines,

i.e., using conditional outputs. We will see the advantages and disadvantages of this

approach.

In the previous device, the output activation in synchronicity with the clock pro-

duced a delay between the actual arrival of the signal edge and the generation of the

output. This delay is equal or less than the duration of one clock cycle.

With Mealy’s machine, however, we can control the outputs directly through the

inputs. We want to take advantage of this to obtain a device that can generate the output

pulse as soon as the input changes without waiting for the active edge of the clock.

In the figure below left, we start setting up the solution, assuming a state (a) where

we start with input IN at 0, and wait until the transition to 1. At the center of the

figure, we add another state (b), which is symmetrical to (a), to manage the opposite

case, leaving the paths between them sketched for the moment.

Set up this way, the machine still has no outputs but it can already do the important job

of following the input signal. The machine remains in one of two different states, each

corresponding to a specific input value. It goes from one to the other synchronously

as it changes.

Let’s add the conditional output OUT (on the right side of the previous figure)

to state (a). In state (a) when the machine waits for IN to go high, no output is

generated. As soon as IN goes to 1, the output OUT is activated. Let’s complete

the ASM diagram by introducing the conditional output OUT into (b). It will be

activated when IN = 0.

It is important to note that decision blocks express both state transition conditions

and the logical function that links OUT to input IN . In fact, an ASM diagram that

contains conditional output blocks describes two different aspects of the MSF’s

behavior with a single drawing.
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The first is the state transition, which is not influenced by conditional output

blocks. The second is the aspect of the conditional outputs, which are expressed in

the form of combinational functions of the inputs and of the state where they are

instantiated.

For comparison, the timing diagram below gives an example of the behavior of

the conditional output OUT in function of the same input sequence used for the test

of the edge detector with state outputs.

By the time of the first transition, the machine is in state (a). The input’s change in

value makes the output OUT activate immediately. It remains active until going to

state (b). In (b), the output OUT is conditioned by IN = 0, so when it is in that state

it activates only when the input goes to zero. The other input transitions in the figure

show analogous behavior.

Nonetheless, in the timing sequence we have used here, input IN is asynchronous

with the machine’s clock. The duration of output OUT is unverifiable, as shown in

the diagram.

Consider the third input transition, that produces a very brief pulse. If the transition

occurs too late respect to the edge of the clock, the pulse might not be generated due

to the physical delays of the components, or be too short to be readable.

It is clear that this machine cannot be used with asynchronous inputs. A syn-

chronous input, however, makes it possible to avoid limit cases and obtain an output

signal of the proper duration. In the timing diagram below, the IN signal is syn-

chronous with the machine’s clock and so the duration of the output is constant.

Finally, note that the machine uses only two states. Generally, a Mealy machine needs

fewer states than Moore’s machine.
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Example: Version 3 of the Edge Detector

Now let’s discuss the advantages and disadvantages mentioned earlier to obtain

another version of the detector that maintains its conditioned outputs’ response readi-

ness but generates the output for at least one clock cycle. Let’s begin with the ASM

diagram of the four-state version, dealt with previously, and add two conditional

outputs as in the figure below:

In state (a): waiting for IN to go high, the conditional output OUT is inactive. As

soon as IN goes to 1, OUT is immediately brought to 1 while we are still in (a). At

the next edge of the clock, when the FSM goes to (b), it will continue to generate

OUT since it is defined as a state output.

In the timing diagram below, the arrows indicate the instants the output OUT is

activated. They come before they would have in Moore’s machine, where we would

have waited for the edge of the clock to activate the output.

This new structure allows us to generate a readable output with a minimum guaranteed

duration, even though input IN behaves asynchronously.
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7.3 Examples of ASM Diagram Construction

Here, we show a collection of synchronous FSM design examples to clarify the

basic concepts regarding the construction of ASM diagrams subject to assigned

specifications. The examples in this chapter will be on an FSM that directly manages

the inputs and outputs of the system we want to design.

7.3.1 Introductory Examples

For now, let’s deal with simple synchronous FSMs whose specifications are defined

verbally and through timing diagrams. This will clarify the relationship between the

input/output signals’ evolution over time and the evolution of the states.

Example 1

Using ASM diagrams, design an FSM that generates a periodic OUT signal which

is synchronous with the clock CK , whose value is high for one cycle and low for the

next, as in the figure.

Solution

In a standard synchronous FSM with no inputs, the

output changes only if the state changes (Moore’s

model).

In our case, to make the values 0 and 1 alternate at

each clock cycle, we must change state cyclically.

See the figure at the right:

Example 2

Draw the ASM diagram of a synchronous counter that generates continously the

sequence (ABC) 000, 001, 010, 011, 100, 000, etc.
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Solution

As in the previous example, the outputs will only

be a function of the state (there are no inputs) and

at every cycle the combinations requested are dif-

ferent.

Thus, we should introduce a sequence of states,

each with a different output combination into the

ASM diagram. The sequence will repeat cyclically.

Example 3

Using the ASM diagrams, design an FSM with input IN (synchronous), that generates

a synchronous OUT signal for the whole time input IN is at 1, as described in the

figure below:

Solution

So that the output OUT is synchronous with the

clock, it should be a state output, so we will use

Moore’s model. This means the input will be eval-

uated by the FSM at the rising edge of the clock.

The solution is shown in the figure on the right.

In state (a) we wait for the input to go to 1 without

activating the output OUT .

When the input changes, the state changes, gen-

erates the output OUT and waits for the input to

return to 0.
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Example 4

Using the AMS diagrams, design an FSM that generates the following cyclical signal

sequence: A, B, AB at the low-high transition of input IN (where A and B are the two

outputs of the machine):

Solution

The signal sequence generated by a synchronous FSM

will obviously be synchronous with the clock, as

we see in the timing diagram. So, let’s use Moore’s

model.

The input is evaluated in the waiting state (a). As

soon as the input goes to 1, we enter into the cyclical

sequence of states (b), (c) and (d).

In each state, we activate a different combination of

outputs as defined by the specifications.

Note that the FSM will return to state (a) only upon

the activation of the asynchronous reset.

Example 5

Using the ASM diagrams, design an FSM with one input STR (Start) that is syn-

chronous with the clock and three outputs: ONE, T W O, and TRE (abbreviation for

Three). When a pulse with the duration of one clock cycle hits STR, we want the

machine to activate the TRE, T W O, and ONE outputs in sequence. The count cannot

be interrupted and ends with all the outputs at zero.
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Solution

The solution is similar to that of Example 4, except that the initial state (a) is included

in the cyclical sequence of the states.

See the figure at the right. The input, which is impul-

sive, is evaluated in state (a). Note that if input STR

evolved not impulsively but continually, the machine

would still work, but it would continue to generate a

cyclical sequence for all the time STR was high and

then stop in state (a) after the command was removed.

Example 6

Design an FSM with the same functionality as that of

example 5 but with a different specification for acti-

vating a sequence by input STR, represented in the

figure below. The sequence should start when input

STR goes from low to high. The count cannot be inter-

rupted and should end with all the outputs at zero.
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Solution

The solution for the previous example might

at first seem to work here but that is actually

not the case. Here, the event that can activate

the sequence is the input’s transition from low

to high.

To be sure to detect this transition, we must

first verify that STR is low (or has returned to

that level).

So, to the diagram of the previous example,

we add an extra state (rs), before state (a).

In state (rs) we wait for STR to get to 0 (or

verify that it is already there) before moving

on to the check for 1 in state (a).

Example 7

Using the ASM diagrams, design a synchronous FSM with inputs A and B that are

synchronous with the clock. The FSM must generate an output ERR every time both

inputs are high. Output ERR must go to zero when the inputs have different values.

Solution

We’ve chosen to design a Moore model syn-

chronous FSM. In a synchronous machine,

two inputs are determined to be contempo-

raneous when they are checked in the same

clock cycle.

In the waiting state (a) we contemporane-

ously check inputs A and B, and move to

state (b) if they are both 1. In state (b) we

generate output ERR and re-check inputs A

and B together.

By the way the decision block paths are

connected, the FSM only stays in (b) if A

and B are equal; otherwise it returns to state

(a).
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Example 8

Using the ASM diagrams, design an FSM that checks a synchronous input IN and

generates an ERR signal lasting one clock period if IN stays high for more than one

clock cycle (see the timing diagram below).

Solution

We’ve chosen to design a Moore model syn-

chronous FSM (see the figure to the right). In

waiting state (a) we check input IN and move to

state (b) when it is at 1.

In state (b) we perform the same check. If the

input is at 1 in state (b) as well, we generate

output ERR and move to state (c) to report that

the input is high for more than one clock cycle.

Otherwise we go back and wait for the next 1.

Output ERR must be active for no more than one

clock cycle so we generate it only in state (c).

In (c) we check input IN . If it has gone to 0 in

the mean time, we return to state (a).

If, however, IN were still at 1, we would have to

wait for it to finally go back to 0 before returning

to state (a).

If we were to go directly, we would actually be

checking the same signal again.

Example 9

Design an FSM that generates an output OUT that is high when input IN is high but

stays high for one clock cycle (see figure):
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If input IN lasts longer, the FSM stably activates the output W T (Wait), entering into

an infinite cycle that it can get out of only when reset is applied.

Solution

We have chosen to design a Moore model synchronous

FSM. As we see in the figure at the right, we check input

IN in waiting state (a) and we move to state (b) if it is high.

In state (b) we generate output OUT and if the input has

changed again, the FSM goes back to state (a) to wait for

the next transition.

If input IN stayed low, the FSM would move definitely to

state (c) generating output W T in an infinite cycle, from

which it could only exit upon activation of the Reset com-

mand.

Example 10

Design an FSM with two signals in the input, ENB (Enable) and SEL (Select), which

are synchronous with clock CK , and two outputs, GO and HLT (Halt). The FSM

waits for ENB to take the value 1. If ENB is at 1, the machine chooses whether to

activate GO or HLT depending on SEL being at 1 or 0, respectively, for all the time

ENB stays at 1. When ENB goes back to 0, the machine goes back to the waiting

state and does not generate active outputs.
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Solution

We have created a Moore model syn-

chronous FSM. In the waiting state (a) we

check input ENB and, if it is at 1, we move

to state (b) if SEL is at 1, otherwise we

move to (c).

In state (b) we generate output GO, waiting

for ENB to return to 0. Likewise in state

(c), we activate HLT and wait for ENB to

change value.

Finally, when ENB goes back to 0 the

machine returns to state (a).

Example 11

Here we have the same specifications as in Example 10 with one variant: if ENB is

at 1, the value of input SEL will let us choose which signal is activated, GO or HLT ,

while they are generated.
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Solution

We have created an initial version using

Moore’s model (the figure on the right). In

practice, the machine is identical to the one in

Exemple 10 but in states (b) and (c) input SEL

is checked.

The cycle will occur in state (b) or (c) depend-

ing on the value of SEL.

The figure on the left shows another solution

using Mealy’s model. The machine has only

two states and while it is in state (b), it acti-

vates GO or HLT depending on the value of

SEL.

This will work a bit differently from a tim-

ing point of view (see the figure below). To

obtain the same sequence as in the diagram

above, the SEL check must be postponed by

one clock cycle.
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Example 12

Using the ASM diagrams, design an FSM that has an input IN that is synchronous

with clock CK and an output OUT that activates at the rising edge of IN and stays

active until the next rising edge of CK .

Solution

Since the output must activate at the edge of IN , we must

use the Mealy model (see the figure at the left).

In state (a) we wait for IN to go from 0 to 1; the conditional

output allows us to generate OUT as soon as IN is high,

while we are still in state (a).

At the next edge of CK , the machine goes to state (b) where

no output is instantiated so OUT is deactivated as soon as

the machine leaves state (a).

From state (b) we go back to (a) at the edge of CK that follows

IN , returning to 0.

7.3.2 Pulse Generators with Adjustable Duty Cycle

We want to design a synchronous FSM that generates a con-

tinuous succession of pulses with an adjustable duty cycle on

output PWM (“Pulse Width Modulation”). See the figure at

the right.

The output period, five times that of the clock CK , is fixed.

The duty cycle is regulated through inputs P1 and P0.

The figure below describes the expected evolution of the out-

put depending on inputs P1 and P0.
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Solution

Let’s set up the diagram by intro-

ducing state (a) where we acti-

vate output PWM (see the figure

aside).

All the sequences share this state,

which corresponds to the clock

cycle between edge 1 and 2 in the

timing diagram.

Four logical paths corresponding to the four combinations of P1 and P0 branch off

from state (a). Let’s complete the part of the diagram that relates to the first sequence

in the timing diagram (P1 = 0 e P0 = 0):



7.3 Examples of ASM Diagram Construction 293

We have added four states with no active outputs that will take four clock cycles before

returning to state (a) so that the period is five clock cycles in total, as specified. If

inputs P1 and P0 are both equal to 0, the machine generates a PWM that is at 1 for

one clock cycle and then at 0 for four other cycles in states (b0), (c0), (d0), and (e0).

Let’s complete the second sequence. It is only different from the first because of

state (b1) where we activate PWM.

Let’s close this sequence and complete the other two similarly, taking care to close

all the paths on the state (a) from which all the sequences start.
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We realize here that there are superfluous state sequences because in some cases they

perform the same functions. For example, the state sequence (c1)(d1)(e1) produces

the same result as the sequence (c0)(d0)(e0) and both end in state (a) so it would be

possible to define the states of the second sequence as in the ASM below:

We reused states (c0)(d0)(e0) from sequence 1. Let’s continue with the same approach

for the third and fourth sequence. We will get the final result of this second version,

which is simpler than the first one.
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We could stop here. Note that the value of inputs P1 and P0 is checked onl6pty

in state (a). Any change in the inputs during pulse generation will only produce an

effect at the generation of the next pulse. This is an appropriate design choice.

Let’s assume then that the specifications define that P1 and P0 can change only in

state (a). This means that we can test their value in the following states since they will

not change then. From this assumption and an analysis of the four possible sequences

to generate, we will be able to further reduce the number of states. In cycle 2 of the

sequence, after state (a) (between edges 2 and 3), output PWM does not have to be

generated if both inputs P1 and P0 are 0 (see the figure below left).

Afterward, in the third clock cycle of the sequence (between edges 3 and 4), output

PWM must only be generated if P1 is at 1, so we continue designing as we see in

the figure below, center.

Taking analogous considerations, we complete the diagram (at the right in the figure)

testing only P0 in the fourth cycle of the sequence (between edges 4 and 5) since the

path dictates that P1 is at 1.

The final step is to insert the last state (e) corresponding to the last cycle of the

sequence (between edges 5 and 6).
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7.3.3 Sequence Detector

A synchronous network has an input LN and an output OK . Input LN reads a sequence

of zeroes and ones, as shown in the figure below.

Output OK is activated for the duration of one clock cycle every time the sequence

“1100” is recognized.

Solution

We define a state (a) where the machine waits to read a 1 on

input LN (see the figure aside). We move to state (b) as soon

as LN = 1 is read.

Since the value of input LN can change at every clock cycle,

we must read its value in state (b) and the following ones.

We proceed drafting the ASM diagram, taking into account,

for the moment, only the expected sequence “1100”, leaving

the other paths for the next step.

Thus we get to state (e) after reading the 4-value sequence 1,

1, 0 and 0, one after the other at a distance of one clock cycle

(because the FSM is synchronous).

If we look, for example, at the timing diagram shown before,

the four values were read in order on edges 3, 4, 5 and 6.

According to the specifications, output OK is generated in

state (e) to report that the sequence we were looking for has

been found.

Now, going in order, let’s complete the remaining paths.
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See the figure at the left. If a

0 is read in state (b) after a 1

is read in state (a), we must

return to state (a) because we

are looking for two consecu-

tive 1s.

We find them there if a 1 is

read in state (b). In this case,

we move to state (c).

In state (c) we either read a

1 or a 0, which corresponds

to the next bit of the sequence

we’re looking for.

Reading a 1 in state (c) doesn’t

mean that the sequence does

not correspond to the one we

want. The specifications do

not dictate that there be a 0

before the sequence.

LN could even remain at 1

for a long time. What matters

is that after the two last 1s,

we read two 0s: we remain

therefore in state (c), waiting

for a 0.

In sum, we move to state (d) if we have identified a 0 after two 1s. We must decide

what to do if the 0 is not read in state (d).

The only assumption we can make about any 1 read in state (d) is that, it is the

first 1 of a new sequence, since it follows a 0. This means that we move to state (b)

where we would have gone after state (a) for the same reason.

Finally, we must decide how to leave state (e), where the FSM goes after identi-

fying the sequence.
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To that end, let’s complete the diagram (see figure at the

left). Let’s assume we have recognized the sequence and

moved in state (e).

If we find another 0 we go back to state (a) to wait for a

new sequence. Instead, if a 1 is read, it could represent

the beginning of a new sequence, so we move to state

(b) as we did from state (d).

7.3.4 Serial Synchronous Transmitters (2 bits)

Design a 2-bit serial synchronous transmitter. The device reads

three synchronous inputs GO, D0 and D1 and generates the

serial sequence on the output LIN.

The transmission of the two data bits D0 and D1 is started by a

low-high transition of the command input GO. The following

figure describes the format of the transmitted sequence.
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The bit time is the same as the clock cycle CK. The sequence begins with a start bit

at 1, continues with two data bits D0 and D1 in that order, and finally ends with a

stop bit at 0.

Solution

Beginning with the assumption that GO is initially at 0,

we wait in (a) for GO to move to 1.

As soon as it does, we make a transition to state (b) where

we activate output LIN (i.e., we start transmission by gen-

erating the start bit) for the duration of a clock cycle.

At the next clock cycle, we must transmit the value

of D0, so we read this input and decide whether to go

to state (c0) or (c1).

In (c0), output LIN is not active but in (c1) it is. Note

that both states (c0) and (c1) are mutually exclusive

in terms of state paths, but from a timing perspec-

tive, they correspond to the same clock cycle, the one

following the cycle where we generated the start bit.
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With the same criterion (see the figure on the right),

we transmit the value of D1 in the next clock

cycle by setting LIN = 0 for state (e0) or LIN = 1

for (e1).

The serial sequence must end with a stop bit at 0

so we go to state (g) where the output LIN is not

activated.

Finally, we must check that input GO is back to 0

before returning to state (a). If we did not check

this and GO was still high we would immediately

start the transmission of a new sequence when back

in (a).

We know that this should only occur when GO has

a transition from low to high.

Rather than inserting another state where LIN is not

active, let’s directly take advantage of the already

defined state (g) since it has no outputs, and trans-

form it into a waiting state.

7.3.5 Command Receiver with Serial Synchronous Interface

Let’s design a 2-bit command receiver with serial synchronous

interface. The device receives the serial sequences on input LN

and generates outputs OK and ERR.

The bit time is the same as the clock CK period. The sequences

all begin with a start bit at 1, continue with two data bits D0

and D1 and finally end with a stop bit at 0. The figure below

shows the sequence format.
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Among the four possible combinations, our receiver must recognize the one where

D0 = 0 and D1 = 1, as in the figure below:

When a sequence has been received, the receiver monitors the stop bit to identify

any errors. This consists of checking that the serial signal LN is at 0 in the bit

time corresponding to the stop bit. This monitoring is done in all cases, even for

combinations that do not interest us.

If the stop bit is correctly at 0 and the sequence received corresponds to the one

we were looking for, the receiver activates output OK for the duration of a CK cycle,

signaling that it received the expected command. If the sequence is different, the

receiver does not activate any output.

If the stop bit is incorrect, the receiver activates output ERR (for the duration

of one CK). After receiving a sequence, the receiver always returns and waits for

the next one.

Solution

Let’s start designing the ASM diagram setting a waiting loop

on state (a), where we wait for a 1 (the start bit) on input LN

(see the figure on the right).

Once the start bit is identified, the other bits will be read after

it at every clock cycle.

Let’s assume the sequence we were looking for has no errors;

we continue designing the states without completing the dia-

gram for the other branches yet.
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Note that states (b), (c0), and (e0) have been inserted to test LN at every clock cycle

in accordance with the bits that are received one by one.

So we get to (f) if we

read D0 = 0, D1 = 1

and stop bit = 0.

The activation of OK

in (f) concludes the

sequence reception, so

the machine returns to

(a) to wait for the next

one.

Now, let’s add the

remaining paths (see

the figure at the right).

If we read 1 in (b)

we have a different

sequence from the one

we expected.

We must still complete

it because we have to

verify that the stop bit

is correct at the right

time.

States (c1) and (e1) are added so that the test can be done at the same time as the

expected sequence.

Notice that the value of the second bit is not checked on this path. This is because

we know that this sequence is different from the one expected and we will not activate

the output OK .

Let’s have another look at state (b). If the first bit is read at 0 (what is expected),

the machine goes to state (c0) to check the second bit. If it equals 0, the sequence is

different from what is expected so we move to state (e1) because we will not activate

output OK .
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Finally, let’s complete the diagram (see the figure below), noting the valuation of

the stop bit which occurs in state (e1).

If the bit is correct, we go to state (a)

to wait for a new sequence. If the bit is

incorrect we must activate output ERR

for one clock cycle in state (g) and then

return to state (a).

Finally, let’s complete the diagram using

state (g) for the other path as well; the

actual sequence is what we expected but

with the wrong stop bit so we activate

ERR rather than OK .

7.3.6 Serial Synchronous Receiver (2 bits)

Design a 2-bit serial synchronous receiver. The device

should receive the serial sequences on line LIN and gen-

erate outputs Q0, Q1, OK and ERR.

The bit time is the same as a clock cycle CK ; the sequences

all begin with a start bit at 1, continue with two data bits D0

and D1 and finally end with a stop bit at 0. The following

figure shows the format of the sequences received.
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Note that signal LIN is synchronous with the clock CK , and changes its value a

propagation delay time after the rising edge. This is typical when the system that

generates LIN has the same clock as the device we are designing. Thus, LIN is

sampled on the edge of the next clock that has generated it.

Once it has received the sequence, the receiver checks that the stop bit is correct. If

the stop bit is at zero as it should be, the receiver activates output OK , signaling that

it extracted the two data bits D0 and D1 from the sequence and made them available

on outputs Q0 and Q1, respectively. Outputs Q0, Q1, and OK are kept active until

another sequence is received.

If the stop bit is wrong, the receiver only activates output ERR for the duration of

one CK cycle and then it waits for another sequence.

Solution

We start designing the ASM diagram by setting (a) as a state

where we wait for the start bit from the input LIN (see the figure

at the right). Once the start bit has been identified, the other bits

will be read, one per clock cycle.

Let’s look at state (b): while in this state, the value on input LIN

corresponds to bit D0. We will take different paths depending on

the value read on it, as shown in the first figure on the following

page.

We move to state (c) if D0 = 0 or to state (d) if D0 = 1.

We use the same reasoning for D1, the second data bit for the sequence, and separate

the paths afterward based on the value received. Downstream of the reception of

bits D0 and D1, the FSM will be in one of the following states: (e), (f), (g), or (h),

depending on the four possible values’ combinations.

The paths have been separated because this is the only way the machine has to

keep track of the received data D0 and D1. States (e), (f), (g), and (h) remember

different previous input sequences.

It would not be necessary to activate the outputs Q0 and Q1 along the four paths

but it could be useful to monitor the values received from outside.



7.3 Examples of ASM Diagram Construction 305

After the data bit, we must test the stop bit, which is present on line LIN right when

the FSM is in (e), (f), (g) or (h).

So, as we see in the figure above, we check LIN, and if the stop bit is wrong, we join

together all the paths (we no longer care about the data bits’ values), generate ERR

in state (m) for one clock cycle and then return to (a).

If, however, the stop bit is correct for all four paths, we will move to a corre-

sponding state: (q), (r), (s), or (n) where we will activate OK and outputs Q0 and Q1

depending on the data received.
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Let’s complete the diagram, as seen in the figure below, with the specification

that the values on outputs Q0, Q1, and OK must be kept until the next sequence. To

achieve this, all the states (q), (r), (s), and (n) are enclosed in a loop. The machine

leaves the loop when a new start bit arrives from line LIN.

Thus, each of the states (q), (r), (s), and (n) does the same job as (a), waiting for the

next sequence. Note that as with state (a), the next state after each of these will be (b).

7.3.7 Push-Button Handling

Design a synchronous sequential network that handles the state

of the push-buttons P1, P2 and P3 and generates outputs L1,

L2 and L3 and an output PLS (pulse).

The figure below describes the typical signal evolution at inputs

P1, P2 and P3: initially, a push-button is not activated, then it

is pressed and finally released.
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Assume that the switches already have the necessary circuitry to solve the problem

of electromechanical contact bounce so that the signal they generate is considered

bounce-free and synchronous with the clock.

The push-buttons must be managed taking in account their priority: P3 first, then

P2, last P1. This means that if P3 is pressed, the other push-buttons’ states are

ignored. If P2 is pressed, P1 is ignored. P1 is considered only if none of the other

push-buttons are pressed.

When a switch Pi is pressed, the FSM activates the corresponding output Li for

the time the switch is pressed. When the switch is released Li is turned off and PLS

generates 1, 2, or 3 pulses (depending on which switch is pressed), as shown in the

figure below:

Solution

As we see in the figure to the

right, we set (a) as a waiting loop,

where we stay if no button is

pressed.

Then we add states (b1), (b2)

and (b3) to the diagram, where

the output corresponding to the

pressed button (L1, L2 or L3) is

activated.

From the point of view of the

algorithm, we move to these

states to remember that a certain

button (P1, P2 or P3) has been

pressed.

Notice the logic used to test the lines coming from the push-buttons. It reflects the

specifications about priority. If P3 is pressed, we do not check the others; if P3 is

not pressed, but P2 is, we do not check P1.
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Note: the figure could be misleading in that the test of the push-buttons might seem

to be carried out “one after the other,” in chronological order, but this is not the

case. The figure actually describes a combinational logic where the inputs are jointly

evaluated at the same time in state (a). P2 and P1 are don’t cares if P3 is at 1; P1 is

a don’t care if P3 = 0 and P2 = 1.

The following figure describes the same algorithm in a more redundant fashion,

since all the possible combinations of P1, P2, and P3 are considered here.

Some of the eight possible paths are collected together according to the rule of priority

described above. By eliminating the superfluous decision blocks, making them flow

into the same path, we get the figure seen before.

Let’s now turn our attention to the function of states

(b1), (b2) and (b3). The specifications require that

output Li corresponding to push-button Pi be kept

active the whole time that it is pressed, and that

output PLS should be activated when Pi is released.

This means that (b1), (b2) and (b3) must be defined

as wait states, as shown in the figure aside for the

button P1.

The figure shows how to generate the required

pulse on PLS at the release of the button, activat-

ing PLS for one cycle and then coming back to (a)

waiting for a new action.
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The figure below shows the complete ASM diagram. After releasing the push-button

P2, we generate two pulses on PLS by a sequence of three states: (p2) where we

activate output PLS, (q2) where we deactivate it and finally (p1), already used for

P1.

The figure also shows the completed path of P3, which reuses states in the same way.

7.3.8 3-Bit Shift Registers

Let’s design a 3-bit shift register using ASM diagrams. It receives an input IN and

generates the outputs QA, QB and QC.
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The following figure shows an example of how the register works for a specific

sequence applied at input IN :

It is not practical to show in the timing diagram all the possible sequences there can

be at the input. Rather, an ASM diagram describes the register’s behavior thoroughly.

Solution

Let’s assume that register’s outputs are initially

at zero in state (a) (see figure aside). When a

1 appears at input IN , the register will load the

new value onto output QA, on the next active

edge of the clock CK .

Let’s formally describe this new situation by

changing states: the FSM goes to (b) where out-

put QA is activated.

Note that the input should always be checked in

any state because output QA will always depend

on the value of IN .

Now let’s check the input in state (b).

On the next active edge of the clock, the FSM changes state. The value memorized

in QA is moved to QB, while QA takes the value of IN . States (c) and (d) describe

the two possible cases depending on the value acquired.
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We will use the same reasoning for the next active edge of the clock where the

value memorized in QB moves to QC, QA to QB and QA copies IN , giving us the

diagram at the top of the next page.

It is not complete yet, but it includes all eight possible states (the combination of

the values of outputs QA, QB, and QC). Certain that we do not have to introduce

other states since we have exhausted all the possible combinations of QA, QB, and

QC, we must determine to what states the FSM will move to depending on the value

of IN , from states (e), (f), (g), and (h).

We finish the ASM diagram, obtaining the final version seen below.
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Here are some ideas that helped us complete the diagram from states (e), (f), (g), and

(h).

If the FSM is in state (e), after the next active clock edge, QC and QB will be at

0 whatever the value of IN is. This is because they will load the contents of QB and

QA, respectively, 0 in this state. The states that already have QB and QA at 0 are (a)

and (b). So if IN is at 0, we will go to (a): if it is at 1, we will go to (b).

We will use the same reasoning for state (f) where the next state could only be (c)

if IN is at 0, or (d) if IN is at 1.

Following the same criterion for states (g) and (h), we fill in the diagram, closing

all the remaining logical paths.

7.3.9 Sequential Networks with Conditional Outputs

Let’s describe as an FSM, the functioning of a sequential network based on a 2-bit

shift register with an added output that is a function not only of the state but also of

the input (Mealy model).

The network reads IN and generates outputs QA and QB. An XOR gate generates

output KA, a function of input IN and output QA. The figure below shows how it

works for a specific input sequence.

As we can see, KA is generated when IN and QA are different. The ASM diagram

will describe how the network functions, including the conditional output KA.
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Some Notes on Conditional Outputs

Even if we assume that the signal at input IN is generated by another synchronous

system with the same clock as the FSM, some factors in play (the length of the

connections, possible different technology, etc.) could delay it. Even though the

signal remains synchronous, it is translated in time (if we look at the timing sequence

in the figure above, IN has been drawn a bit to the right of the other signals).

The result is that the pulse duration on output KA, a combinational function of

IN , as shown in the same figure, can be much shorter than a clock cycle. In many

cases, this could be irrelevant assuming that KA is readable on the active edge of the

clock.

Solution

To begin, we draw the ASM diagram without

output KA.

In state (a), QA and QB are at 0. When a 1 gets

to IN , output QA goes to 1 (on the next active

edge of the clock CK), moving to state (b) where

output QA is active (see the figure on the right).

Assuming we will receive a few consecutive 1s

on input IN we continue to draw the diagram.

From state (b) we move to state (c) where both

outputs QA and QB are active. We will stay in

(c) as long as 1s continue to appear at IN .

However, if IN = 0 we move to (d). The

previous QA moves to QB while QA takes

the value 0.

Let’s now fill in the remaining paths, as

in the figure at the left. If we are in (b)

and IN equals 0, QA moves to QB and a

0 moves to QA, so we will go to (d).

Only QB is active in state (d). Since QA =

0, whatever the next state may be, QB will

go to zero. So, depending on the input

value we will move to (a) or (b).
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Let’s add the description of the conditional out-

put. We can see in the network schematic that

KA activates if QA and IN are different.

Let’s focus on state (a) where QA = 0. From

what we have seen so far, KA will activate while

in (a) if IN = 1. So let’s add a conditional output

block along the logical path for IN = 1 (see the

figure at the right).

QA = 0 in state (d) as well. The conditional out-

put will be added with the same criterion (for

IN = 1).

Let’s fill in the diagram for states (b) and (c)

where QA = 1. Output KA will activate while in

these states if IN = 0. The block will be placed

along the paths for IN = 0.

7.3.10 Shift Register with XOR Tree

Let’s describe as an FSM the functioning of a sequential network made of a 3-bit

shift register and an XOR tree. This FSM conducts parity checks on outputs O1, O2,

and O3 of the flip-flops and compares the results with the value of input IN . The

product of this comparison is reintroduced into the shift register.
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Here is a helpful note about describing the network in FSM terms. If the number of

1s on outputs O1, O2, and O3 is even, the value of input IN is inserted into the first

flip-flop on the left. If the number of 1s is odd, its negated value is inserted.

Solution

In the figure below, we see the first steps toward building the ASM diagram. In

state (a), outputs O1, O2, and O3 are set to 0.

This means that in state (a), the XOR tree will

only copy input IN , so it will go to state (b)

and activate output O1 at the next active edge

of the clock if IN = 1.

In state (b) we have an odd number of outputs

at 1, so output O1 will load the negated value

of IN on the active edge of the clock, while Q2

will simply copy the current value of Q1.

So, let’s introduce two new states: (c) and (d).

Q2 is active in both, while Q1 is active only in

(c), the state where the FSM will go if IN = 0,

starting from (b).

Applying the same criterion to states (c) and (d) (see the figure below), let’s introduce

four more states: (e), (f), (g), and (h).

Now the diagram includes eight states, all the possible ones in a three flip-flop

network. When filling in the diagram, we must take care to avoid adding other states

and reuse those we already have, according to the input IN . The complete diagram

can be seen in the next page.



316 7 Sequential Networks as Finite State Machines

7.4 Synthesis of Synchronous FSM

In this section, we will discuss the synthesis of synchronous FSMs, a process that we

can use to create a synchronous sequential network from its algorithmic description.

A CAD system will normally allow us to synthesize automatically. Still, it is useful

to tackle this subject systematically by examining the rules and concepts as if we

needed to proceed manually.

Taking the Mealy model as an example, the issue of synthesis is reduced to the

definition of two networks: the Next State Combinational Network and the Output

Combinational Network.
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We can see in the figure that both networks receive vector I (the inputs of the

network) and vector X (the state of the network) in the input. The next state combi-

national network produces vector iX (the next state to be stored in the state register),

the output combinational network produces vector U (the network outputs).

Inputs I and outputs U are defined by the network specifications. The number of

variables that make up vectors iX and X will depend on the number of states foreseen

by the algorithm at the project level (and by the type of flip-flop that is chosen for the

state register). In the previous sections, we simply assigned a name to each state. To

synthesize the network, it is essential to assign a unique binary code to each state.

This process is called state assignment.

7.4.1 State Assignment

In a synchronous FSM, there are several ways to assign codes to the states. Some tend

to reduce the number of circuit components, others to improve speed or reliability.

Generally, designers try to find a compromise between circuit size and speed. The

first technique that we will look at minimizes the number of state variables; with q

variables, one can codify up to 2q states.

The four-state counter, examined previously, is a synchronous network with no

inputs (excluding the Clock and Reset). The minimal number of variables needed to

represent four states is two (X 1 and X 0). Taking Moore’s model of the synchronous

FSM as an example, this counter can be represented by the reduced model shown in

the figure below.
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Due to the system’s synchronous structure and the absence of inputs, the choice of

state codes is completely arbitrary. With two state variables, we have four possible

combinations and thus, 24 possible distinct assignments of the 4-state codes (24 =

4!, i.e., the number of possible permutations of the four combinations).

Given the freedom of choice, in our example we associate each state with the code

that is the binary combination of outputs generated by the state itself. In other words,

it is convenient to make outputs Q1 and Q0 correspond directly to the state variables

X 1 and X 0 so that the output combinational network breaks down into two simple

connections (Q1 = X 1 and Q0 = X 0).

State assignment can be represented in various, equally valid ways. The figure

below left shows the state codes directly noted above every state block. The central

figure shows the same assignment described by a table. On the right, a map is used.

7.4.2 Describing an FSM with a State Table

The state table is a description that is formally equivalent to the ASM diagram and

provides the very same information. For each state, it identifies the outputs and the

next state in function of any relevant input. In the case of the previous machine,

which has no inputs, the table is laid out as follows:

Current State Next State

State Outputs State

Name X1 X0 Q1 Q0 Name iX1 iX0

a 0 0 0 0 b 0 1

b 0 1 0 1 c 1 0

c 1 0 1 0 d 1 1

d 1 1 1 1 a 0 0
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The table is divided into two fields: the left describes the current state (name and

code) and its outputs. The right-hand side shows the name and code of the next state

for every possible current state.

Another example of the state table is derived from one of the previously described

edge detectors (the one with four states, an input and an output). Let’s assign the state

codes directly on the diagram, as shown in the figure below. If we assume that the

input is synchronous, the assignment will be arbitrary.

Let’s derive the state table that corresponds to this ASM diagram. See the results

below. Note that the table contains one line for each path connecting the state blocks

so that it completely describes the evolution of the machine’s states, as does the ASM

diagram.

Current State Next State

State Input Output State

Name X1 X0 IN OUT iX1 iX0

a 0 0 0 0 0 0

a 0 0 1 1 0 1

b 0 1 - 1 1 0

c 1 0 0 1 1 1

c 1 0 1 0 1 0

d 1 1 - 1 0 0
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The table does not follow a timing sequence order, so it could be written in any order.

Its information must be read row by row independently.

State by state, it lists the current outputs (conditional and otherwise) and the next

state in function of the input value. For example, there are two rows for each of states

(a) and (c) to describe how they depend on input IN.

Describing an FSM with a table is a good method for representing it on a computer.

Yet, it is clear that the ASM diagram gives a better and more comprehensible vision

of the MSF’s algorithm, and so, it is this representation that we use here to better

understand sequential network design.

In any case, this method has practical limitations when it comes to describing

machines with many states since it becomes impossible to have an overview of it.

This is when using a language to describe the hardware (eg., VDHL or VERILOG)

is preferable.

7.4.3 State Table Synthesis

From the state table, we can extract the truth tables of the next state network and the

output combinational network, shown here below:

Next State Network

Current State Input Next State

X1 X0 IN iX1 iX0

0 0 0 0 0

0 0 1 0 1

0 1 - 1 0

1 0 0 1 1

1 0 1 1 0

1 1 - 0 0

Output Combinational Network

Current State Input Output

X1 X0 IN OUT

0 0 0 0

0 0 1 1

0 1 - 1

1 0 0 1

1 0 1 0

1 1 - 1

From these tables, we can synthesize these networks and draw the schematic of the

circuits.
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If we use the maps, these tables will give us two for the next state (iX 1, iX 0) and

one for the output (OUT ), as shown below:

Alternatively, we can draw maps with entered variables. State variables are used as

coordinates on the map while inputs (here, there is only IN ) will be entered inside.

The synthesis of these maps gives us the equations that describe the functions we are

looking for.

iX 1 = (X 0 · X 1) + (X 0 · X 1)

iX 0 = (IN · X 1 · X 0) + (IN · X 1 · X 0)

OUT = X 0 + (IN · X 1) + (IN · X 1)

We use the XOR gates and take a few steps to make these expressions more

concise.

iX 1 = X 0 ⊕ X 1

iX 0 = (IN ⊕ X 1) · X 0

OUT = (IN ⊕ X 1) + X 0
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Here are the three functions represented in circuit form:

The figure below shows the whole network, complete with asynchronous initializa-

tion circuits (input Reset that acts on the CLs of the flip-flops):

To be thorough, let’s examine the timing simulation of this network:

The timing diagram shows that, as expected, output OUT activates following the

changes of input IN, without waiting for the rising edge of the Clock. Then, output

OUT is kept active in the next state for one whole cycle.
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7.4.4 Examples of Synchronous FSM Synthesis

Example 1 (2-Bit Up/down Counter)

In this example, we synthesize a synchronous FSM with

a synchronous input and the terminations described in

the figure below:

The ASM diagram of a binary up/down counter is

shown in the figure at the right and was analyzed and

defined on p. 271. The lack of conditional outputs makes

this an example of a Moore’s machine.

To do the synthesis, a code has been assigned to the

states in the diagram (see at upper right-hand corners).

The criteria were as follows: with four states, we can

only use two state variables (X and Y ).

Given that outputs Q0 and Q1 appear in all the possible

combinations of the four states, we chose to align the

state variables with the outputs:

Q0 = X Q1 = Y

The figure below shows a block schematic of the net-

work that we want. We see the state variables X and

Y (the outputs of the flip-flops) and variables iX and

iY , which the next state combinational network must

produce in function of state X , Y and input DIR.
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From the ASM diagram, we get the table of the next state (the output table is super-

fluous here because of how it was defined), and then the maps:

State Y X DIR Next State iY iX

a 0 0 0 d 1 1

a 0 0 1 b 0 1

b 0 1 0 a 0 0

b 0 1 1 c 1 0

c 1 0 0 b 0 1

c 1 0 1 d 1 1

d 1 1 0 c 1 0

d 1 1 1 a 0 0

From this, we get the following. Notice the transformation of iY in the XOR tree is

possible since the map is a checkerboard):

iX = X

iY = DIR · X · Y + DIR · X · Y + DIR · X · Y + DIR · X · Y

= (DIR · X + DIR · X ) · Y + (DIR · X + DIR · X ) · Y

= (DIR ⊕ X ) · Y + (DIR ⊕ X ) · Y = (DIR ⊕ X ⊕ Y )

= DIR ⊕ X ⊕ Y
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Finally, we draw the logical schematic of the resulting network:

Example 2 (Up/down Counter with Maximum and Minimum Outputs)

Here, we take the binary up/down counter from

Example 1 and add two outputs to show when the

maximum number is reached when counting up,

or the minimum when counting down.

The ASM diagram at the left is identical in terms

of the evolution of states. There are, however, two

conditional outputs, so this is a Mealy model FSM.

As we can see, MIN activates while we are in (a)

assuming that DIR = 0. Thus, MIN shows the ter-

minal count condition in the down direction. Like-

wise, MAX activates in (d) if DIR = 1 and shows

the terminal count in the other direction.

The states are assigned in the same way as in

Example 1 (variables X and Y ) with aligned state

outputs.

Q0 = X Q1 = Y

In the next page, we see the network block

schematic that we want to synthesize. Note the

Mealy model structure with outputs MAX and

MIN that depend on input DIR.
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From the ASM diagram, we get the state table. Then, we get the maps:

State Y X DIR Nxt. St. iY iX Q1 Q0 MIN MAX

a 0 0 0 d 1 1 0 0 1 0

a 0 0 1 b 0 1 0 0 0 0

b 0 1 0 a 0 0 0 1 0 0

b 0 1 1 c 1 0 0 1 0 0

c 1 0 0 b 0 1 1 0 0 0

c 1 0 1 d 1 1 1 0 0 0

d 1 1 0 c 1 0 1 1 0 0

d 1 1 1 a 0 0 1 1 0 1
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The maps of iX and iY are the same as in Example 1, while the maps of Q0 and Q1

are superfluous as we have defined them. We get the expressions:

iX = X iY = DIR ⊕ X ⊕ Y

Q0 = X Q1 = Y

MIN = DIR · X · Y MAX = DIR · X · Y

After the synthesis, the resulting network is the same as in Example 1 plus the

logic that generates outputs MIN and MAX:

For practice, let’s now try to redo the synthesis, this time using JK-PET flip-flops

rather than D-PET. The network is described in the block schematic below:

The state assignment and the output combinational network are the same as in the

D-PET version. What changes is the next state network, which must generate four

functions rather than two: JX , KX , JY , and KY . From the ASM diagram, we get the

table of the next state and, from there, the maps.
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State Y X DIR Nxt. St. JY KY JX KX

a 0 0 0 d 1 - 1 -

a 0 0 1 b 0 - 1 -

b 0 1 0 a 0 - - 1

b 0 1 1 c 1 - - 1

c 1 0 0 b - 1 1 -

c 1 0 1 d - 0 1 -

d 1 1 0 c - 0 - 1

d 1 1 1 a - 1 - 1

Alternatively, we could set the maps with the entered variable technique using X and

Y as coordinates.

From the maps, we get the expressions that describe the four functions we are looking

for:

JX = 1 JY = DIR · X + DIR · X = DIR ⊕ X

KX = 1 KY = DIR · X + DIR · X = DIR ⊕ X
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After the synthesis with the JK-PET flip-flops, we get the network below:

Let’s examine the timing simulation of this network:

See, for example, what happens between edges 4 and 5 of the clock; the counter is

asked to change count direction. Output MAX, which is active in the up count, is

immediately deactivated when DIR changes since MAX is a combinational function

of DIR (as well as of the state).

Example 3 (Sequence Detector)

Here, let’s synthesize the Sequence Detector analyzed on p. 296. Its ASM diagram

is shown again on the left, completed with the state assignment.
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Given that input LN and the FSM are synchronous, code assignation can be

arbitrary. We have chosen to use one of the state variables to directly generate output

OK . We define the three state variables W , Y , and X with the assumption that

OK = W . There are no conditional outputs in the diagram, so this synthesis gives us

a Moore machine.
The block schematic of the network is shown here:

The network highlights the state variables W , Y , X , and

the next state network outputs iW , iY and iX . Let’s derive

the table from the diagram.

State W Y X LN Nxt. St. iW iY iX

a 0 0 0 0 a 0 0 0

a 0 0 0 1 b 0 0 1

b 0 0 1 0 a 0 0 0

b 0 0 1 1 c 0 1 0

c 0 1 0 0 d 0 1 1

c 0 1 0 1 c 0 1 0

d 0 1 1 0 e 1 0 0

d 0 1 1 1 b 0 0 1

e 1 0 0 0 a 0 0 0

e 1 0 0 1 b 0 0 1

- 1 0 1 - - - - -

- 1 1 - - - - - -
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We get the maps from the state table. For comparison, we can use ordinary maps (on

the left), or the more compact entered variable maps (on the right):

As we continue to read the maps, we get the expressions:

iW = LN · X · Y

iY = X · Y + LN · X · Y

iX = LN · X · Y + LN · X · Y + LN · X · Y
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Finally, to be thorough (even though it is not necessary since OK = W has already

been defined), we have put the map of output OK below:

This is the network resulting from the synthesis:

Below, is the timing simulation that checks the network. The two sequences 1-1-0-0,

which are recognized by the algorithm, are highlighted.



7.4 Synthesis of Synchronous FSM 333

Example 4 (Push-Button Handling)

The figure below shows the ASM diagram from the push-button handling example

(p. 306). The diagram has nine states, so we must use four-state variables (Z , W ,

Y , and X ). The states are assigned arbitrarily since the FSM is synchronous and we

assume inputs to be synchronous with the clock.

The reader should be aware that the assignment that was made leads to a very complex

synthesis and network, as we will see in the next few pages. Perfectly equivalent

networks with very different levels of complexity (and thus cost) can depend upon

the specific assignation.

Thanks to the availability of CAD design systems, this type of choice and synthesis

is done by automatic algorithms, where the designer typically only sets the rules and

constraints at the beginning and checks system function at the end of the synthesis.

Here, the example is shown as done manually to promote understanding of this

subject.
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We expect to get a network that, represented as blocks, has the look of the network

in the figure below:

From the ASM diagram, we get the table of the next state, which defines iZ , iW , iY

and iX of Z , W , Y , X , P1, P2, and P3:

State Z W Y X P3 P2 P1 Next State iZ iW iY iX

a 0 0 0 0 0 0 0 a 0 0 0 0

a 0 0 0 0 1 - - b3 0 1 0 1

a 0 0 0 0 0 1 - b2 0 0 1 1

a 0 0 0 0 0 0 1 b1 0 0 0 1

b1 0 0 0 1 - - 0 p1 0 0 1 0

b1 0 0 0 1 - - 1 b1 0 0 0 1

p1 0 0 1 0 - - - a 0 0 0 0

b2 0 0 1 1 - 0 - p2 0 1 0 0

b2 0 0 1 1 - 1 - b2 0 0 1 1

p2 0 1 0 0 - - - q2 0 1 1 1

b3 0 1 0 1 0 - - p3 0 1 1 0

b3 0 1 0 1 1 - - b3 0 1 0 1

p3 0 1 1 0 - - - q3 1 0 1 0

q2 0 1 1 1 - - - p1 0 0 1 0

- 1 0 0 - - - - - - - - -

q3 1 0 1 0 - - - p2 0 1 0 0

- 1 0 1 1 - - - - - - - -

- 1 1 - - - - - - - - - -
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From the table, we get the maps of iZ , iW , iY and iX . We must draw them with

entered variables because we have too many variables (P1, P2, P3 and the four-state

variables).

From the maps, we get the expressions:

iZ = X · Y · W

iW = W · Y + Z+

P3 · X · Y + P2 · X · Y · W

iY = X · W + Y · W+

P2 · P3 · X · Y + P3 · W+

P1 · X · Y · W + P2 · X · Y

iX = X · Y · W + (P1 + P2 + P3) · X · Y+

P3 · Y · W + P1 · X · Y · W+

P2 · X · Y · W
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Let’s go back to the ASM diagrams and get the output table:

State Z W Y X L3 L2 L1 PLS

a 0 0 0 0 0 0 0 0

b1 0 0 0 1 0 0 1 0

p1 0 0 1 0 0 0 0 1

b2 0 0 1 1 0 1 0 0

p2 0 1 0 0 0 0 0 1

b3 0 1 0 1 1 0 0 0

p3 0 1 1 0 0 0 0 1

q2 0 1 1 1 0 0 0 0

- 1 0 0 - - - - -

q3 1 0 1 0 0 0 0 0

- 1 0 1 1 - - - -

- 1 1 - - - - - -

Let’s translate the information from the table to the four maps L3, L2, L1, and PLS.

Here it is not useful to draw the maps with entered variables since the network’s

outputs are the function of only the four individual state variables.
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From the maps of the outputs, we get the expressions:

L1 = X · Y · W

L2 = X · Y · W

L3 = X · Y · W

PLS = X · W + X · Y · Z

Finally, the synthesis gives us the following network:
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7.5 Time Behavior of Synchronous FSM

7.5.1 FSM with no Inputs

For simplicity’s sake, let’s start considering the synchronous FSM with no inputs

(see the figure below) and for the moment, ignoring the outputs, focusing only on

the logic of the next state.

The timing diagram below represents the evolution of the states over time. Vector X

represents the state of the FSM and its changes, which result from the action of the

clock.

At the end of clock cycle A, the machine is in state X (n − 1), and the state register

inputs IX (n − 1) for the next state X (n) are already available.

At the rising edge n of the clock, the FSM moves to clock cycle B where the state

vector X (n − 1) is substituted by that generated by the next state network IX (n − 1),

giving us X (n).

The timing diagram highlights delay t1 between the edge of the clock and the

instant vector X changes (this delay is caused by the propagation times of the memory

elements that constitute the state register).
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After delay t1, state X (n) is thus active and, thanks to the feedback, X (n) is carried

back to the input of the combinational network of the next state, which will make

the new value of vector IX (n) available after delay t2.

Vector IX (n) represents the new next state, which will be loaded in the state

register on the next clock active edge (this further delay is due to the combinational

network’s propagation time). The entire sequence examined above will repeat with

the next rising edge of the clock, when value IX (n) is loaded onto the state register.

On clock cycle C, this produces the next state X (n + 1)... and so forth.

Notice that in order for events to occur as described, clock period T must be

greater than the sum of the delays considered and of the setup time ts of the state

register (T > t1 + t2 + ts).

7.5.2 FSM with Synchronous and Asynchronous Inputs

There needs to be a distinction between “synchronous” and “asynchronous” FSM

inputs. Remember that synchronous inputs change levels in well-defined time inter-

vals that are constant with respect to the active clock edge so that the network can

read them unambiguously.

This entails that they must be stable when the next state is loaded onto the state

register. A classic example of a synchronous input is what comes from another

sequential network that shares the same clock and therefore generates the signal

with a constant delay relative to the clock (see figure).

Asynchronous inputs, which can change at any moment, might be read by the network

while they are unstable (i.e., when they are changing), thus producing state transition

errors. An example of an asynchronous input is the signal from a manually operated

push-button, which is by nature disengaged with the clock.

The figure above shows some transitions of an asynchronous input that are critical

since they occur in correspondence with (or nearly so) an edge of the clock (at 2, 3,

and 5).

The problem comes from the propagation times of the next state and state register

networks. An input’s change in value is generally propagated by the next state network

with slightly different delays variable by variable.
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If the input transition takes place too close to the active edge of the clock, due

to the delay differences, some of the variations could be taken by the state register,

while others might not. This would cause errors in state transitions, as explained in

the following.

7.5.3 Synchronous Inputs

Let’s now examine in detail the timing of a synchronous FSM with synchronous

inputs. We will still leave the outputs aside (see figure below).

As we have seen before, the next state in this case is obtained by combining the

current state X with inputs IN . The timing diagram below shows an example of the

evolution of the states in presence of synchronous inputs.

At the end of clock cycle A, the machine is in state X (n − 1), state register inputs

IX (n − 1) and inputs IN (n − 1) are available. At the rising edge n of the clock, we

move to clock cycle B where state vector X (n − 1) is substituted by that generated

by the next state network IX (n − 1), giving us X (n).
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As with the network without inputs, there is a delay t1 between the edge of the

clock and the change of vector X (due to the state register). The new state X (n) is

brought by the feedback connection to the input of the combinational network of the

next state. When propagation time t2 is over, it will produce a new value for vector

IX (n), which is not yet valid, because the inputs have changed in the meantime.

The new value of inputs IN (n) (occurring synchronously with the clock) give

extra work to the next state combinational network. With propagation delay t2, it

will produce the definitive value of IX (n), a function of the new value of the IN (n)

and the current state X (n).

This sequence repeats likewise at every active edge of the clock. Notice that the

synchronous nature of the inputs makes it possible to produce a vector IX that is

always stable when read by the next active clock edge.

7.5.4 Asynchronous Inputs

In a synchronous FSM with asynchronous inputs, the state transition can occur incor-

rectly. The timing diagram below shows an example of two possible cases in relation

to the asynchronous input change.

In the first example, the asynchronous inputs change in clock cycle B at a time

that is still compatible with the networks’ delay times (similarly to the case with the

synchronous inputs).

In the second example, the asynchronous inputs change too late in clock cycle C. As

shown in the figure, the next state network produces vector IX (n) almost at the same

time of the active edge of the clock.

This edge forces the state register to load the new state, but some of the variations

may arrive a bit before the clock edge and others after. Thus, the state register could

load an incorrect vector and bring the machine unpredictably to an unexpected state.
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A possibile solution is to use a specific state assignment so that only one state

variable depends on the asynchronous input.

It is a common approach in the design practice to face the problem at its root, by

synchronizing the asynchronous inputs (see pp. 186 and 187).

7.5.5 FSM Outputs (Moore’s Model)

There are no specific observations to make about the outputs in a Moore model

synchronous FSM since they are generated by the output combinational network as

functions of the state (see figure below).

As shown in the timing diagram below, the outputs change when the state changes

with a delay time t1 + t3 compared to the edge of the clock, where t1 is the state

register’s propagation time and t3 is that of the output network.

7.5.6 FSM Outputs (Mealy’s Model)

In a Mealy model FSM, the evolution of the conditional outputs will generally depend

on the behavior over time of the inputs, so myriad examples could be presented.
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The figure below highlights the generation of conditional outputs as combinational

functions of the state and the current inputs.

The timing diagram below shows us only a general representation. The conditional

outputs are functions of the state and the inputs.

This means that the outputs can change either following the state transition (A and C)

or a change in inputs (B) within the interval between two active edges of the clock,

as shown in the figure below.

The figure shows that the output delay is measured against what caused its change.

We can easily see that the signal path is t1 + t3 if it is referred to the clock, or just t3

if referred to an input.

7.6 Exercises

7.6.1 Sequential Network Analysis in Terms of FSMs

Analyze the following synchronous sequential networks by designing an ASM dia-

gram that functionally describes their behavior.
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On the Deeds Web site, you will find an ASM diagram to be completed from each

FSM as well as the schematic with the assigned network. The schematics are set up

for you to insert your FSM next to the network given so that you can easily compare

their behavior through the simulation.

Network 1

Network 2

Network 3



7.6 Exercises 345

Network 4

Network 5

Network 6
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Network 7

Network 8

7.6.2 FSM Design Based on Textual Specifications

For each of the FSM design exercises below, you must draw the ASM diagram based

on given specifications and complete the timing diagram indicating the state the FSM

is in at every clock cycle. No synthesis is requested.

For each exercise, the Deeds Web site offers: an ASM diagram to be completed,

a PDF file with the timing diagram template to fill in with pen and paper without

using the simulator, and a schematic in which to insert your FSM into test its timing

behavior.
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Exercise 1

Using the ASM method, design a synchronous FSM with a synchronous input DIR

and two outputs Q1 and Q0. In binary, outputs Q1 (MSB) and Q0 (LSB) represent

the decimal numbers 0–3. The device behaves like a non-cyclical binary up/down

counter. Input DIR determines the count direction (DIR = 1, up count; DIR = 0,

down count). Once it gets to the maximum or minimum, the device stops there. It

can restart in the opposite direction by inverting the value of DIR.

Exercise 2

Using the ASM method, design a synchronous FSM with an input X, synchronous

with clock signal CK, and two outputs D0 and D1 that represent in binary code the

number of 1s read at the input in the last three clock cycles.

Exercise 3

Using the ASM method, design a synchronous FSM that can measure the delay

between two signals S and W at the inputs according to the following specifications:

1. It has a master clock CK and receives in the input two symmetrical square wave

signals S and W whose period is eight times that of the clock.

2. The level changes of inputs S and W are synchronous but the two signals can be

delayed by 0, 1, 2 or 3 clock cycles from each other.

3. Four outputs R0, R1, R2, and R3 show the delay amount of W versus S.

4. A synchronous GO signal with a duration of just one clock cycle commands the

measurement sequence.
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Keep in mind that the machine remains inactive until the GO signal arrives and that

S and W can be kept valid only from the GO cycle (included); i.e., we can assume

nothing about their previous timing position both with respect to the GO signal, and

between themselves.

Exercise 4

Using the ASM method, design an FSM that receives a serial sequence of binary data

LIN synchronous with the clock CK of the FSM itself. The machine has the outputs:

DAT (data), STR (strobe), ERR (error), and EOT (end of transmission). It also has a

synchronous input RST (restart). The LIN sequence is interpreted according to the

following rules:

• A constant low level means absence of transmission.

• Two consecutive high levels indicate the presence of a data bit in the third position,

which is copied onto output DAT contemporaneously with the activation of the

STR signal (they need not be kept valid for more than one CK cycle).

• The level is always low after the data bit. If there is no low level, the FSM activates

ERR and waits for the user to give an RST. The active-high RST will be considered

only in the absence of transmission.

• An isolated high level marks the end of transmission, that the FSM signals by

activating EOT and keeping it active until it receives another sequence.
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Exercise 5

Using the ASM method, design a synchronous FSM with an input X , synchronous

with clock signal CK , and three outputs S0, S1, and W T (wait).

Input X receives sequences made of three bits, with the first one always at 1. The two

sequences are always separated by at least three bits at 0. The two outputs S0, S1

report which sequence was received last, with a code chosen by the designer. That

code must stay until the first bit of a new sequence is received. Output W T activates

when the two outputs S0 and S1 are invalid.

Exercise 6

Using the ASM method, design a synchronous FSM that meets the following speci-

fications:

1. It has three synchronous inputs coming from three push-buttons RDY (ready),

GO, and STP (stop).

2. It generates two outputs RID (ride) and ERR (error).

3. Output RID is activated when the correct sequence of input signals is received,

i.e., when the RDY push-button is pressed and then released and, after, the GO

push-button is pressed. Output RID activates as soon as GO is activated, without

waiting for the active edge of the clock. It is deactivated later when the STP

push-button is pressed.

4. Output ERR is activated if the GO push-button is pressed before or at the same

time as the RDY push-button. The ERR output will also be deactivated when the

STOP push-button is pressed.

Each output remains active for at least two clock cycles, regardless of whether

the STP push-button is activated.
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Exercise 7

Using the ASM method, design a synchronous FSM with a synchronous input IN

and an output OUT. The input, which is normally at zero can be at 1 for intervals of

1, 2, or 3 consecutive clock CK cycles.

The output takes on the value 1 and keeps it for three clock periods if IN stays at

1 for one period, for two periods if IN stays at 1 for two periods, for one period if IN

stays at 1 for three periods.

Assume that after the generation of the output is completed, input IN stays inactive

for a few clock cycles.

Exercise 8

Using the ASM method, design an FSM with:

1. A synchronous input COM;

2. Two groups of two inputs R1, R0 and D1, D0;

3. An output DPU.

The device generates an aperiodic pulse DPU, whose duration and delay respect to

the command signal are separately controllable by steps of the clock period. At every

rising edge of COM, the system waits for a time of r clock cycles and then generates

a pulse with duration of d clock cycles.

Inputs R1 and R0 define the extent of delay r (= 0, 1 or 2), while D1 and D0

define the pulse duration d (= 1, 2 or 3). Thus, the delay can be null and the pulse

must always last at least one clock cycle.

The system only generates a new output sequence after the previous one is termi-

nated.
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7.7 Solutions

7.7.1 Sequential Network Analysis in Terms of FSMs

The files of the FSMs represented here can be downloaded from the Deeds Web site

on the digital contents pages of the book.

Network 1: Network 2:
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Network 3: Network 4:
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Network 5:

Network 6:

Network 7:
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Network 8:
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7.7.2 FSM Design Based on Textual Specifications

The solutions for each of the FSMs are also listed on the Deeds Web site as well as

a downloadable circuit file, which can be used to check network behavior through a

timing simulation.

Solution to Exercise 1:
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Solution to Exercise 2:
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Solution to Exercise 3:
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Solution to Exercise 4:
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Solution to Exercise 5:
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Solution to Exercise 6:
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Solution to Exercise 7:
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Solution to Exercise 8:



Chapter 8

The Finite State Machine as System

Controller

Abstract The Finite State Machine can implement any algorithm, but it becomes

over complicated when dealing with data. It is therefore convenient to include in

digital systems other components that are more efficient to process and memorize

data under the machines control. Such systems are called controller and datapath and

described in this chapter. They optimize the sharing of duties between Finite State

Machine and an external architecture. They are the first choice for the design of a

wide variety of systems.

This chapter presents a collection of design examples of synchronous digital systems

using an FSM as system controller.

8.1 Digital Systems

In previous chapters, we have seen that the FSM can model and implement various

algorithms. A FSM describes a system in terms of the evolution of states and outputs

as functions of inputs. From a theoretical perspective, the FSM can represent any

discrete system that evolves over time moving from one state to another and has a

finite number of inputs, outputs, and states.

Still, describing and designing a system in terms of states, while very general and

versatile, can become overly complex and impracticable when the number of states

becomes very large.

As we have seen with the shift register, the number of states in data management

systems depends on all the possible configurations that the data can take on. For

example, an 8-bit shift register will be described by an algorithm with at least 256

states. To describe a microprocessor in terms of states, one needs to only observe

that a single 32-bit register (a microprocessor could contain many of them) would

require 232 states.

Regular digital structures for data management are available as blocks. They can be

combinational (e.g., multiplexer, demultiplexer, encoders, decoders, and arithmetic

circuits) or sequential (registers, counters, memories, and many others). Although

the FSM can do arithmetic and logical operations, they can be done more effectively

by dedicated devices.
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A digital system can be optimized by dividing its tasks between a “controller”

and “dedicated components.”

The controller that we will design as FSM will manage the functioning of the

system, while the dedicated components define its “architecture,” which interacts

directly with the data.

The system’s controller is sometimes called “sequencer” or “timing generator.”

The architecture is often called “datapath.” Hereinafter, we will use the terms con-

troller and datapath.

8.2 Open Control Systems

In the simplest version of this system, the controller gives commands to the datapath

without receiving any feedback, as we can see in the figure below. The system’s

outputs can be generated by the controller or the datapath. Inputs can be dealt with

by both subsystems.

In the following, we will look at an example of this structure: a 2-bit serial receiver,

a version of the one based on the FSM alone that we have seen previously on p. 303.

The introduction of the datapath will simplify the FSM and make the system

structure more easily scalable. In fact, in order to manage a serial signal containing

8 data bits, a system based only on FSM would need at least 256 states. Adding

a datapath made up of as many flip-flops as serial bits would make the FSM only

moderately more complex, when increasing the number of bits. In sum, the second

approach raises the complexity of the design linearly along with the number of bits

to manage, while the first approach raises it exponentially.

In further implementations of the serial receiver, we will show how an adequate

datapath will make it possible to design a controller whose complexity is independent

of the number of bits.
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8.2.1 2-Bit Serial Receiver

Let’s briefly summarize the specifications. We must design a 2-bit synchronous serial

receiver. The device must receive serial sequences on line LN and generate outputs

Q0, Q1, OK, and ERR, as shown in the figure below. There, we reference the previous

version with the FSM only. Note that in this figure the network’s inputs and outputs

appear as active components, as represented by Deeds during the simulation by

animation.

The format of the sequence received is summarized here verbally and also in the

timing diagram below:

• The bit time is the clock period CK.

• The sequence begins with a start bit at 1.

• The sequence continues with the two data bits D0 and D1 (in order).

• The sequence ends with a stop bit at 0.

Notice that signal LN is synchronous with the clock CK, which is why we represent

it with an approximate propagation delay after the clock rising edge. The system

performs the following operations:

• Upon receiving a sequence, it makes the two data bits D0 and D1 available on

outputs Q0 and Q1.

• It checks that the stop bit is correctly at 0, and if so, it activates output OK and

maintains it active until the next sequence arrives. If the stop bit is at 1, the receiver
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only activates output ERR (Error) for the duration of one clock cycle and awaits a

new sequence.

The figure shows the ASM of the previous version based on the FSM alone:

The path highlighted in red reminds us that in order for the FSM to remember which

bits it received, it must separate the paths, since it cannot memorize the data in

any other way. In the example, the FSM received a sequence where D0 = 1 and

D1 = 0, followed by a regular stop bit. To keep the outputs active (here Q0 = 1 and

Q1 = 0) until the next sequence, there must be a loop around the state that activates

the outputs.

This requires a number of states that depend on all the possible data configurations.

It is clear that extending the number of bits raises the complexity of the FSM (13

states in this example, which go up to 25 if the serial signal contains three bits and

to 49 with four bits; 97 with five bits, etc.).

Thus, using this design structure is impractical for real-life cases (a typical serial

signal contains eight bits).

The situation changes radically when we introduce a datapath that can memorize

data, consisting in two E-PET flip-flops.
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Notice the initialization input Reset, which acts both on the controller, forcing the

FSM into the reset state, and on the sequential components of the datapath. We will

find this type of connection in all the upcoming designs excluding specific cases,

which will be specially marked. Let’s begin to draw the ASM diagram (see the figure

below). The FSM waits for the start bit in state (a), as in the previous approach.

Still, as soon as the start bit is identified (edge 2 of the clock,

see the figure above) rather than continuing to check the line

cycle by cycle, this version delegates the job of memorizing the

bits of the sequence to the flip-flops.
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Input D of the flip-flops is actually connected

directly to line LN .

The FSM only needs to enable the two flip-flops

by activating lines E0 and E1 at the right time,

that is in states (b) and (c), as suggested in the

timing diagram seen in the previous figure. The

highlighting shows that the value of the line is

copied onto the corresponding flip-flop on the

active edge of the clock in presence of enable E0

or E1. It is assumed that their previously mem-

orized value is unknown and that the sequence

received is D0 = 0 and D1 = 1.

In the clock cycle between edges 4 and 5, while

the FSM is in state (d), the serial sequence

presents the stop bit. Its value determines

whether to generate OK (until the next sequence)

or ERR for one cycle and then returning to await

another sequence (see the complete ASM dia-

gram on the right).

In the timing simulation below, the first sequence

is correct, while the second presents an erro-

neous stop bit (due to line disturbances) causing

ERR to be activated.
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To extend the receiver to more bits, we only need to introduce more states like (b)

and (c) into the ASM diagram and, obviously, change the datapath by adding the

necessary flip-flops.

8.3 Feedback Control Systems

FSM generally needs to have feedback information from the datapath.

The feedback connection that carries this information as FSM inputs greatly

increases the system’s possibilities.

8.3.1 2-Bit Serial Receiver and Transmitter

This design is an example of a system in which the FSM acquires signals generated

by the datapath as inputs and uses them to re-transmit the serial data in another

format.
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At first glance, the schematic resembles the previous example in that it uses two E-

PET flip-flops to store serial data received through the LN line. This system, however,

has an output OUT that re-transmits the serial signal in a different format.

The connection between flip-flops’ outputs Q0 and Q1, and the FSM inputs with

the same name allows the FSM to know the values of the bits received, which is

necessary for re-transmission.

In idle state, lines LN and OUT are at 0. The device waits for a bit packet on line

LN in the known format (start bit, D0, D1, stop bit).

When it is done receiving, the device trans-

mits a similar sequence on OUT (start bit,

Q1, Q0, stop bit) but with a bit time that is

two times (two clock cycles) the one of the

sequence received.

As we see in the figure above, this operation

halves the bit rate (the number of bits trans-

mitted in a second).

The transmission on OUT should only occur

if the sequence received on LN is correct

(the stop bit must be at 0). If it is not, the

device generates no output on OUT , but

rather checks LN to go back to zero before

awaiting a new sequence.

Let’s draw the first part of the ASM diagram

(see the figure aside). The receiver saves the

data on the flip-flops, as we have already seen

in the previous example.

Notice that the FSM waits in state (e) until the

line goes back to 0, if the stop bit is wrong.

If, however, it is right as expected, the FSM

begins to generate the serial signal on output

OUT .

The OUT activation in the consecutive states

(f0) and (f1) means that the start bit is trans-

mitted on OUT , with the duration of two

clock cycles.
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To generate the serial sequ-

ence as defined, the FSM

needs to know the values of

the serial data received, now

contained in the flip-flops.

Thus, the FSM re-reads out-

puts Q1 and Q0 in order

and, based on their value,

generates pairs of states

with or without the activa-

tion of the output OUT .

Notice the inverted order

of transmission as required

(before Q1, then Q0).

Finally, the FSM generates

the stop bit in state (st).

Since state (a), which has

no output, occurs after (st),

there is no need to dupli-

cate (st).

In the following timing diagram, the sequence received 1 – 0 – 1 – 0 produces

sequence 11 – 11 – 00 – 00 in the output.
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8.3.2 Pulse Generator

This design is another

example of a system made

in two different ways: using

only the FSM and with

the controller - datapath

structure.

On detection of 0 → 1 tran-

sition on the input TRG, the

pulse generator produces a

pulse on output OUT (a

high signal with a duration

that is multiple of the clock

cycle).

In this first version, we use

only the FSM (see the figure

aside).

The pulse duration is fixed and lasts only six clock cycles, as seen in the timing

track below, which shows an example of TRG command activation, too.

The ASM diagram does not pose any particular

difficulty. In the reset state (a), the FSM waits for

TRG to go to 1.

When this occurs, the FSM goes to state (b) and the

following ones, generating OUT = 1. The pulse

duration is equal to the number of consecutive

states where OUT is active.

When pulse generation is finished, in (h) we wait

for TRG to go back to 0.

The wait state (h) is necessary. If it were skipped,

and if TRG were still at 1 when it went back to

state (a), the FSM would immediately generate a

new pulse.

The specifications, however, require this to happen

on the rising edge of TRG.
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Finally, this is the timing diagram produced by the simulator when input TRG dura-

tion is short.

Below, with TRG very long, the FSM will wait until TRG it goes back to 0.

Let us now look at the second version based on the controller–datapath structure.

We add to the system a “Cnt4” counter (see below).
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Before continuing, it can be useful to get familiar with the behavior of the counter

“Cnt4” by simulating a test circuit as the one of previous figure, available also in the

digital contents of the book. We suggest to check the operation modes of up/down

count, enable, load, and clear.

Aswecanseeinthefigurebelow,thedatapath ismadeupofacounter thatkeepstrace

of the number of clock cycles where OUT must remain active. This extension allows us

to implement more flexible specifications, like the ability to program pulse duration.

Counter is set to count down (U/D=0) and always enabled (EN=ET=1). The

FSM defines the start number of the count controlling the line LD and checks its

end by reading TC. In the ASM diagram (see figure at right), we wait for com-

mand TRG in state (a).

In the waiting state (a) we activate LD to force the counter to load

the number set on the switches (lines P3..P0).

Note that activating LD in (a) we freeze the count, thus reducing

also the network’s energy consumption (a real circuit uses a certain

amount of energy each time lines change levels).

Exiting state (a), the counter will start to count. However, given

that command LD is synchronous, the counter does not start yet in

the transition between (a) and (b), since LD is still active on that

rising edge of the clock.
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In the figure below, the red arrows indicate clock edges 2, 3, and 4. These are the

instants when the number P3..P0 is loaded onto the counter, including edge 4, when

the FSM moves to state (b). This means that the count will effectively begin only on

edge 5.

State (b) repeats until the counter signals the end of the count. At each edge of the

clock, the counter decreases its value until it gets to zero and activates TC as in the

timing diagram below:

As a result, the FSM leaves state (b). Notice a detail that in this case

poses no problem: edge 17 of the clock allows the FSM to leave

state (b) but since the counter is enabled, the down count continues

(from 0000 to 1111).

We finish the ASM diagram by adding state (c) where output OUT

is no longer active and waits for TRG to go back to zero if, it is still

at 1, as in the previous version of the generator. In state (c), we also

activate LD to freeze the count.

Finally, we carry out the complete system simulation in Deeds. An

analysis of its behavior (see the timing diagram on the next page)

will allow us to answer detailed questions such as the following:

How many times state (b) has been repeated?

How many clock cycles have occurred since the counter was

loaded?
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As the diagram shows, OUT lasts 13 clock cycles, in response to a 12 set on counter

inputs P3..P0 (the 0 is counted as well).
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Finally, notice that the system can be easily modified to generate a longer pulse

by simply using a counter with the right number of bits, without modifing the FSM.

The system shown below uses a 16-bit counter (the “Cnt16” from the Deeds library):

This FSM is exactly the same, but the new circuit can generate pulses with durations

of up to 216 = 65536 clock cycles.

8.3.3 8-Bit Serial Receiver

The two projects here introduce two variations of the serial receiver we have seen

before: to memorize bits, they use a shift register rather than flip-flops. The serial

sequence has the same protocol as what was used for the 2-data-bit receiver, except

that it contains eight, from D0 to D7. The specifications remain the same regarding

the activation of OK or ERR when the sequence has been received.

Let’s now look at the first of these two new versions of the receiver. The datapath

is made up of only a shift register, the “SiPo8” component of the Deeds library (see

the figure in the next page).
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As we can see in the figure below, input IN of the shift register is directly driven by

line LN with no mediation by the FSM. The shift enable E of the register is controlled

by line EN of the FSM. Resetting the system initializes the FSM and the register.

To correctly design the FSM, one must have a clear understanding of the timing of

the signals in play. Before drawing the ASM diagram, it is often useful to make an

outline of signal evolution over time. The figure below gives an example that assumes

a serial sequence that transports bits D0..D7 = 01001101, in this order.
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We must load the bits onto the shift register one by one.

As we see in the timing diagram above, we

must activate EN as soon as the start bit is

identified, and keep it active for eight clock

cycles.

The bits enter into Q7 and they shift toward

Q0, at every clock edge.

When we deactivate EN after the data bits

on the line are terminated, all the received

bits will be stored in the outputs Q0..Q7 of

the register, available in parallel.

Thus, after waiting for the start bit in state

(a), we will activate EN from the following

state (b) (see the ASM diagram).

To keep it active for eight cycles, we must

insert a total of eight states where EN is

active (b)..(m).

Finally, we check the stop bit and generate

OK or ERR according to specifications as

in previous exercises, thus completing the

ASM diagram (see the figure in the next

page).
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Now, with a complete timing simulation, we can verify that the system functions

correctly.
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The version of receiver just examined uses an external device to memorize the serial

data but still uses the FSM to count the number of bits. Obviously, it is possible to

delegate this function to the datapath by using a counter set for the down count from

7 to 0.

The counter is a “Cnt4,” used in a previous example (see the Pulse Generator on

p. 372). The new system schematic now contains two elements in the datapath, a

register and a counter, and optimizes task distribution between the datapath and the

controller.
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The beginning of the ASM diagram is the same as the previous

version (see the figure at the right). In the idle state (a) the

machine waits for the start bit in line LN and initializes and

freeze the count through line LD.

When the start bit is detected, the FSM moves to state (b) where

deactivates LD and activates register input EN , as in the previous

case. Here, the difference is that it uses a single state rather

than introducing as many states as there are bits to insert in the

register.

The counter, in any case, is enabled (En = Et = 1). As soon

as LD is deactivated, the count will decrease at each following

rising edge of the clock, starting from 0111 (the value set on the

inputs P3..P0, see the schematic).

In state (b) data bits are memorized one by one onto the register

and counted by the counter, while the machine waits for TC to

be activated.

When the count gets to 0000, the counter activates TC, so the

FSM leaves the cycle at state (b) and goes to (c) at the right

time to check the stop bit of the sequence.

The state sequence that follows is almost identical to the one

of the previous example, except that LD is activated in state

(ok) as well as in (a).

Thus we have created a remarkably simple, easily analyzable

FSM.

Notice that the very same algorithm can check serial

sequences with a definable number of bits without changing

the datapath’s components. This is done by changing only

the constant value applied to inputs P3..P0 of the counter.
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The timing simulation of the complete design now allows us to check every aspect of

the relation between the evolution of states and the behavior of the register and the

counter (see the figure below). Specifically, we can observe the following details.

• The counter decrements from 7 to 0, starting from clock edge 5 (that is at the end

of the cycle where the FSM is in state (b) for the first time).

• The machine stays in state (b) until TC is read at 1 (on edge 12).

• The counter, after getting to zero (0000), continues to count cyclically (1111,

1110...) until the FSM activates LD in state (ok), so it is re-loaded to 0111 on edge 14.
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8.3.4 Light Dimmer

The system in the figure is a light dimmer that controls the intensity of a light bulb

by means of four switches (ON , UP, DN e OFF).

The circuit generates the output lines Q3..Q0 that encode 16 possible values of light

intensity, starting from 0000 (fully off) to 1111 (fully on). Note that the light bulb

will be driven by a device that converts the code value Q3..Q0 in an analog quantity,

which is fed to the light bulb. This device is not part of our design, and it is not

represented in the schematic.

The switches generate a low level in idle state and high while they are pressed. They

should be considered ideal, that is having no electromechanical contact bouncing.

Pressing and then releasing each switch determine the system’s behavior, as follows.

ON → Turns on the lamp to the maximum(Q3..Q0 = 1111).

UP → Increases light intensity by one unit.

DN → Decreases light intensity by one unit.

OFF → Turns off the lamp(Q3..Q0 = 0000).

Output PRS serves as a signaling device and is active while a switch is pressed.

The output number Q3..Q0 must not be incremented if it has reached the maximum

value or decremented if it has reached the minimum value.

This system uses the counter “Cnt4” more completely than in previous examples

(see Pulse Generator on p. 372 or 8-bit Serial Receiver on p. 377), in that here it

must be loaded, enabled, and set for the up or down count.
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The two logical gates have the counter outputs Q3..Q0 as inputs: the AND acti-

vates MAX when the count gets to the maximum, while the NOR activates MIN

when it gets to the minimum.

As for reading the switches, they should be given the same considerations as in the

Push-button Handling example on p. 306. The structure of the first part of the ASM

diagram is the same, the simultaneous control of the pressure on the push-buttons

and the wait states that follow.

The diagram branches off into four separate paths corresponding to push-buttons

OFF , DN , UP, and ON . Based on specifications, output PRS is active in states (e1),

(d1), (c1), and (b1), where the FSM is when a push-button has been pressed and it is

waiting for it to be released.

Let’s fill in the four paths of the diagram keeping in mind how it must work when

the push-buttons are released. For now, let’s focus on the paths related to the release

of OFF and ON . The figure below shows that in states (e2) and (b2), we send the

counter the command to load the data present on counter inputs P3..P0 by activating

LD.
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To achieve this, the FSM sets P3..P0 = 0000 in (e2) while it assigns P3..P0 = 1111

in (b2). So, in (e2), the counter will be loaded to the minimum value (light off) and

in (b2) to the maximum (light fully on).

Notice that lines P3..P0 and LD are set at the same time in the same state. Given

that LD is synchronous, the actual loading takes place at the edge of the clock that

makes the FSM leave the state and return to (a).

Let’s look at the diagram in relation to the decrement and increment of the number

(push-buttons DN and UP). The decrement of the counter takes place in state (d2)

and the increment in state (c2), after the MIN and MAX check, because the number

must not be changed if it is respectively at the minimum or maximum value.

In these states, EN must be activated to enable the count and UPD to determine

its direction. In state (d2), UPD is set at 0 (to count down), while in (c2) it is set at

1 (to count up).



8.3 Feedback Control Systems 387

Note that the count occurs on the positive edge of the clock; therefore, the incre-

ment or decrement will take place on exit from states (d2) and (c2) where it is enabled,

at the same time when the machine goes back to (a).

Below a timing simulation of the system. Note the loading, increments, and decre-

ments discussed above.
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8.3.5 Combination Lock

This system commands the opening of a door with an electric lock through a combi-

nation the user inserts. The lock is commanded by output OPN and opens when the

input push-buttons PA, PB, PC, and PD are pressed in a specific sequence.

The datapath is made up of an “SiPo8” shift register (seen in 8-bit Serial Receiver on

p. 377) and a simple combinational logic that reads its outputs Q7..Q0 and activates

the FSM’s input EQU when they take on the value 011010112 (the internal code of

the combination).

Register inputs In and E are driven by FSM outputs SD (serial data) and EN ,

respectively. Notice that, unlike the previous cases, Reset is applied only on the

FSM, while the register’s CL command is generated by the FSM’s output CLR.

When the user presses the push-button and then releases it, the system inserts a

2-bit code in the shift register.

PA → Loads code 00.

PB → Loads code 01 (first1, then0).

PC → Loads code 10 (first0, then1).

PD → Loads code 11.

The sequence of push-buttons (the combination) we have chosen to open the lock is:

PD − PC − PC − PB .

When the data in the register is equal to that produced by this input sequence

(011010112), the FSM activates output OPN for one clock cycle and then clears

the data in the register.

Once the lock is open, it will be mechanically locked again when the door is

closed. We assume that:
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• Pressing a push-button activates the corresponding line to 1 at the FSM input,

while releasing it puts it back to 0.

• Two push-buttons are never pressed at the same time.

• Enough time passes between releasing a push-button and pressing the next one so

that the system concludes its operations.

As we can see in the figure below, the section of the ASM diagram that handles the

push-buttons was previously introduced (as in Push-buttons Handling on P. 306 and

in the Light Dimmer on p. 384).

Notice that here, when the system is reset, the FSM goes to state (a), which

precedes the push-button control cycle. In (a), CLR is active and clears the register

(for reasons that will become clear later).

After the waiting for the release of the push-buttons, the states that follow will load

onto the register the two bits corresponding to the pressed push-button.
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The figure below shows an almost complete ASM diagram. States (d2) and (d3)

have been inserted along the path related to the release of push-button PD. They load

the pair of bits 11 onto the register by activating EN and SD for two clock cycles.

Likewise, we load a 0 onto the register in state (c2). Then, we take advantage of the

existing state (d3) to load the next 1. We do the same in states (b2), (b3), and (a2).

Here, we see another example of how we can use the same state many times along

different paths.
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Now, let’s finish the diagram according to the specifications regarding opening

the lock (see below).

Notice that the check on EQU is inserted in the same cycle that checks the push-

buttons; this is for simplicity’s sake. When EQU is 1, the FSM moves to state (op)

activating OPN for one cycle, as per specifications, and then goes to state (a), which
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clears the register. Without this step, once the right combination was set, OPN would

stay active forever.

Finally, notice that (a) is also set as a reset state. This is because the register is

not cleared directly by the system reset, as previously explained. Rather, it needs to

be cleared before entering the loop waiting for the push-button.

The timing simulation below highlights the FSM outputs SD and EN in relation

to the values loaded on the shift register.
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8.3.6 Automatic Drink Dispenser

We are designing a digital system to manage a (simplified) automatic drink dispenser.

It is made up of a synchronous FSM plus a datapath made of a 4-bit arithmetic circuit

that includes an “Add4” adder, a “PiPo4” parallel register, and a “Cp4” magnitude

comparator.

Both the FSM and the register are initialized by the system Reset.

The dispenser offers three types of drinks that all cost 20 cents. The dispenser waits

for a user to insert the money to pay for the drink. Inputs C05, C10, and C20 show

when a 5, 10, or 20 cent coin is inserted, respectively. When this happens, they

produce a high pulse on the corresponding line for one clock cycle (when idle, the

lines are low).

The system calculates the total value of the coins inserted and memorizes it in

the “PiPo4” register. By convention, a unit of Q3..Q0 corresponds to 5 cents: for

example, Q3..Q0 = 01002 = 410 corresponds to (4 · 5) = 20 cents.

The register’s input is connected to the output of the “Add4” adder. One of the

adder’s inputs is connected to the register’s output, while the other is directly provided

by the FSM through lines V 3..V 0. As a result, instant by instant, the adder generates

the sum of the number on the register and the number provided by the FSM.

The FSM adds the value of the inserted coin to the register, presenting it to the

adder for one clock cycle. Given that the register’s enable input E is always active,
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it will be necessary for the FSM to keep lines V 3..V 0 at zero for the rest of the time

to keep the calculated total unchanged.

The comparator compares the total Q3..Q0 accumulated on the register with the

price of the drink (= 01002 = 4 = 20 cents, established on inputs B3..B0 of the

comparator). Of its three outputs A < B, A = B, A > B, only one A < B is read by

the FSM at input MIN (“minor than”).

When at least 20 cents are inserted, the dispenser activates PIK to ask the user to

choose the drink by pressing one of the three push-buttons B0, B1, or B2 (PIK lights

up the push-buttons). Push-buttons B0, B1, and B2 are normally at the logical value

0 and go to 1 when they are pressed.

When one of the buttons is pressed, the FSM deactivates PIK and activates one

of the outputs OK0, OK1, or OK2 (corresponding to the drink the user picks) for one

clock cycle, thus commanding the dispensing of the drink.

Finally, the dispenser collects the cost of the drink but credits the next user for

any amount inserted over the 20 cent cost of the drink. To do this, the FSM must

subtract 20 cents from the value stored in the register, and does so by generating

two’s complement of the code of the value of the drink on lines V 3..V 0 for one clock

cycle. After this operation, the register will contain the credit to be used by the next

customer.

Further specification: assume all the input

signals to be synchronous with the clock,

that it is impossible to insert more than one

coin at a time and that enough time passes

between inserting one coin and the next that

the system can function properly.

Let’s start drawing the ASM diagram (see

aside). We wait in (a) for a coin to be

inserted.

Depending on the coin’s value, it activates

V 2, V 1 or V 0 for one clock cycle. Thus, it

provides the binary numbers 01002, 00102

or 00012 (corresponding to 20, 10 o 5 cents)

to the adder.

In one of states (b), (c) or (d), the adder

generates the sum of the number V 3..V 0

and the number on the register.

The register memorizes the sum on the next positive edge of the clock, so it is

necessary to add to the ASM state (e) to wait for one clock cycle before checking

MIN (see the complete ASM diagram below).
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We go back to (a) if the money inserted is lower than the cost of the drink. When

the sum reaches or exceeds the 20 cent cost, MIN goes to zero and the FSM to state

(f) where it activates PIK to ask the user to choose a drink and waits for him/her to

press one of the push-buttons B0, B1 or B2.

Depending on which button is pressed, OK2, OK1, or OK0 is activated for one

clock cycle to command the corresponding drink to be dispensed.

Finally, to close the diagram, we make it so that any residual credit is available for

the next user. To subtract 20 cents from the register, the FSM sets V 3..V 0 = 11002

in state (s) (two’s complement of the code for 20 cents).

The system’s timing simulation in the next figure highlights the adding operation

of the value set by the FSM on V 3..V 0 and the value on the register at that moment.

Notice the last addition where the cost of the drink is subtracted from the total (35

cents = 710 = 7h = 01112) by adding two’s complement to it (−20 cents = −410 =

Ch = 11002).
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8.3.7 Programmable Square Wave Generator

We anticipate that here the network structure will not be provided as in previous

examples but must be designed according to specifications.

We are designing a synchronous (controller–datapath) digital system that gen-

erates a two-level periodic signal (hereinafter called “square wave”). The system

must have a group of eight input lines, which we will call TH, a second group of

input lines TL and a single output line SW. Upon activation, the system generates a

square wave on SW without waiting for any command. The high part of the square

wave lasts for as many clock cycles CK as those set by (TH + 1); the low part has

the same duration as the number set by (TL + 1). The generation of SW begins with

the high part of the waveform.

The steps to take to carry out a design of this type are:

(a) Define the system as a functional block, highlighting inputs and outputs.

(b) Choose the components to use in the datapath.

(c) Design the datapath with the connections between the controller and the datapath

components and the inputs and outputs of the whole system.

(d) Draw the ASM diagram of the FSM that describes the controller.

(e) Perform a timing simulation of the whole system by choosing input sequences

that help demonstrate the system’s functionality set.

Step (a)

It is fundamental in this phase to correctly identify the system’s inputs and outputs

based on the given specifications. Here is a summary of what was defined in the text:

1. Inputs:

(a) TL (8 bit) sets the duration of the low part of the periodic signal in pure binary.

(b) TH (8 bit) sets the duration of the high part.

2. Outputs:

(a) SW (1 bit) periodically commutes between the logical value 0 and 1.

The system, represented as a single functional block, is as follows:



398 8 The Finite State Machine as System Controller

Step (b)

To choose the datapath components, we must know which functions are required

to create the system. Remember that the controller must be used as such, not as a

register, a counter, a comparator or to memorize and/or process numerical data sets,

for example.

To create the final, complete system, the controller must be the “director” of

combinational, arithmetic, or memorization components. In this example, the system

must acquire TL and TH and use them to measure the number of clock cycles where

SW must remain low or high.

The best component for this job is an 8-bit universal counter like

the “Cnt8” from the Deeds library. We have already encountered

a smaller version of it (for example in the Pulse Generator on p.

372).

We can pre-load it with a number and then, with the count down

enabled, we can wait for TC (Terminal Count).

So, according to the specifications, the components needed are two

universal counters of this type, one for TL and one for TH.

Step (c)

This step is deeply connected to step (b). As explained above, two counters enabled

for counting down are needed. They will be loaded at the right time by the controller

(with the values of TL and TH). The TCs will be evaluated by the controller to check

if the set time has passed.

Now, it is important to know how to connect the two counters’ inputs and outputs

to the controller and the system. Specifically:

• The inputs P7..P0 of the two counters must be connected to the TL and TH input

groups, as explained before.

• The counters must count down so let’s set input U/D = 0.

• The input LD of the counters must be commanded by the controller so that they

are loaded at the right time. It is possible to keep Et and En active all the time

so that the counters work always and LD is the only necessary control. Then, the

controller will be simply waiting for TC.

• The output SW can be driven directly by the controller.

• The schematic includes signals as LD and TC of the two counters, LDL and TCL

for the counter connected to TL, LDH and TCH for the counter of TH and the

output SW.

• It is convenient to add a few auxiliary outputs into the system schematic, just to

visualize the relevant signals and counter outputs, during the simulation.

• Notice that the clock CK and the system Reset must be shared by the counters and

the controller.
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After these evaluations, the final schematic is shown here:

Step (d)

Once points (a), (b), and (c) are defined, point (d) should not pose particular diffi-

culties in that the controller should implement the logic specified in describing the

datapath design.

Notice that when the system’s Reset is activated, the two coun-

ters go to zero. When Reset is released, if LDH and LDL are

not active, the counters will start to count. It can be useful to

activate them in the reset state (rs), as shown at the right.

In this way, we start pre-loading the counters with the TL and

TH values. To satisfy the specifications, the system needs to

start generating SW = 1, so we activate also SW in the reset

state.

We no longer activate LDH in the next state (w1) in order to

leave the counter free to count, and we wait for its terminal

count TCH.
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This way, we keep output SW at 1 for (TH + 1) clock cycles

(+1 because we count also the zero).

To be ready to start the count for the low part of SW, we

maintain pre-loaded in (w1) the related counter, activating

LDL.

When TCH signals that count has ended, it is time to change

the output SW value to 0, so we introduce another state (w0).

In this new state, the counter of the low part is free to count

(LDL is 0) and the FSM stands by for the terminal count

TCL.

Then, we finalize the ASM diagram closing the loop to state

(w1), on the activation of TCL.

The output sequence on SW will be repeated indefinitely.

Step (e)

To test the system, we define a timing trace that includes the activation of reset and

the setting of TL and TH (in the example, they are set to 310 and 210, respectively).

The output square wave on SW is low for four clock cycles and high for three.

As we can see in the simulation, the first part of the signal on output SW is wrong

(it is kept high for a longer time than needed). Starting from the subsequent cycles,

however, the system produces the square wave that was set by the inputs TH and TL.
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8.3.8 Christmas Light Systems

Design a system for Christmas lights that controls three strips of red, green, and

blue lights. Each strip should light up in sequence for a time controllable by a

4-bit number. The network structure must be designed according to the specifications

above.

Here too, we should read the project specifications carefully and follow the same

five steps (a), (b), (c), (d), and (e) suggested on p. 397.

Step (a)

In step (a), we must define clearly inputs and outputs of the system. Reading the

specifications above, we understand that the machine must have 12 inputs and three

outputs that we identify as follows.

1. Inputs:

(a) DR, four bits, lighting time of the red light (in binary);

(b) DB, four bits, lighting time of the blue light;

(c) DG, four bits, lighting time of the green light.

2. Outputs:

(a) R (one bit), red light control (on for DR clock cycles);

(b) B (one bit), blue light control (on for DB clock cycles);

(c) G (one bit), green light control (on for DG clock cycles).

The system, as a single functional block, will appear as follows:

Step (b)

The system acquires DR, DB, and DG to use them to measure the number of clock

cycles the output signals R, B, G should be kept active for. We could use three

counters, as in the previous example.

Another possible architecture is to use a single 4-bit

counter that will be pre-loaded to the correct value by

multiplexers connected to system inputs DR, DB and

DG.

We need a counter “Cnt4” (see on p. 372) and four

multiplexer “Mux4-1” (p. 51), shown on the right.
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Step (c)

Following the previous analysis, we should decide how to connect the elements of

the system:

• The counter’s inputs P3..P0 must be connected to the three groups of inputs DR,

DB, and DG by the multiplexers.

• We use four multiplexers, one for each bit of DR, DB, and DG, as described in the

following:

The bits in position 0 of DR, DB and DG will be

connected to the inputs I0, I1 and I2 of the first

multiplexer, respectively, as shown in the figure.

The same will be done for the other bits, through

the other multiplexers. This way, the outputs Q of

the four multiplexers will copy DR, DB or DG,

based on how their selection inputs S1, S0 are set

(at 00, 01 and 10, respectively).

• The counter must count down, so U/D is set at 0. We set also Et = En = 1, so

that we control the counter using the input LD only.

• Let’s take DR as an example: the controller sets the selection lines S1, S0 at 00

and then activates LD. The counter generates TC after DR + 1 clock cycles (since

the count also includes zero).

• The controller generates directly the outputs R, B, and G.

• Clock CK and Reset are common to the counter and the controller, as discussed

in the previous example.

Below is the final schematic of the system.
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Step (d)

As we can see in the figure, in the reset state (rs), we activate only the counter’s input

LD. This means in the same state (rs) we are setting S1, S0 = 00 on the multiplexers,

so that DR is routed to the counter pre-load inputs P3..P0.

Note that the reset state (rs) is not included in the main algo-

rithm loop (it is used only to initialize the counter when the

FSM starts working).

On entering the following state (a), the counter will be loaded

with the number on DR (the lighting time of the red light).

In state (a) we activate output R, and wait for TC from the

counter.

The counter’s input LD is activated in state (a) only when

the counter reaches zero. When this happens, on entering the

following state (b) the counter is loaded again, but this time

with the number DB. In fact, in state (a) we have prepared

S1S0 = 01 (declaring only S0 in the block), to route the mul-

tiplexers accordingly.

State (b) is similar in its operation to state (a), but now B

is active and we set the multiplexers to present DG to the

counter’s pre-load inputs.

In the same way, in state (c) we activate G and set the multi-

plexers to re-load again the counter with the number on DR.

The FSM loops back to state (a) when the lighting time of the

green light has elapsed.

Step (e)

To simulate the complete system (see the timing diagram on

the next page), we set inputs DR = 1, DB = 2 and DG = 3 in

addition to the usual initial reset sequence. Values have been

chosen to obtain a reasonably short graphic.

Notice how the outputs related to lights R, B and G activate in

a cyclical sequence for 2, 3 and 4 clock cycles, respectively.
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8.4 Design Exercises

8.4.1 Design of the Controller of a Given Datapath

For each of the following exercises of digital systems design, the schematic of a

complete controller–datapath architecture is supplied.

You should define the controller’s ASM diagram according to the specifications

and complete the timing diagram (on the opposite page). Remember to indicate the

state of the FSM at each clock cycle. The synthesis of the FSM is not requested.

For each exercise, the Web site offers:

(a) A trace of the FSM to design where state variables, inputs, and outputs are

pre-defined.

(b) A PDF file with a suggested timing diagram template, to fill in on paper without

using the simulator.

(c) The network schematic where you can insert your FSM to check its behavior

through the timing simulation.



406 8 The Finite State Machine as System Controller

Exercise 1 The system shown in the figure below contains the controller, a “Cnt8”

counter and two logical gates.

The system implements a binary number generator, controlled by five push-buttons

ON, UP, MID, DN, and OFF. Output Q7..Q0 is taken directly from the counter.

Pressing and then releasing each push-button determine the system’s behavior.

Push-buttons’ functions are:

ON → Sets numberQ7..Q0at the highest value.

UP → Increments the number by one unit.

MID → Sets numberQ7..Q0to the intermediate value(= 100000002);

DN → Decrements the number by one unit.

OFF → Sets numberQ7..Q0to the lowest value.

In the idle state, the push-buttons are at 0, while pressed they are at 1.

The controller activates output PRS when one of the push-buttons is pressed.

Number Q7..Q0 does not have to be increased or decreased if it has reached the

highest or lowest value, respectively.
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Exercise 2 The system shown in the figure below is made up of a controller, a “Cnt4”

counter and an E-PET flip-flop.

The system, a serial transmitter, must generate on output SER a 5-bit packet with

one start bit at 1, three data bits (order: D0, D1, and D2), and a stop bit at 0.

Duration N of each bit of the packet (the bit time) is P time the clock period CK.

P is the number set at the counter’s inputs P3..P0.

To carry out the system’s timing analysis, assign P = 2.

The data to transmit are available on the controller’s inputs D0, D1, and D2. A

falling edge on input GO starts the packet’s generation.

Determine the relation between N and the number P that depends on your own

specific solution.
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Exercise 3

The system shown in the figure below includes a controller that receives data from

a serial line and manages a network made of two E-PET flip-flops, a register, and a

few arithmetic circuits.

On SER, the controller receives a 4-bit pack with one start bit at 1, two data bits (order:

D0 and D1), and a stop bit at 0. The duration of the bit time is one clock period; the

two data bits codify an operation that the system carries out on outputs N3..N0.

If an incorrect stop bit (= 1) is received, no operation is carried out and the system

waits for SER to go back to zero before waiting for the next packet. When a correct one

(stop bit = 0) is received, the system carries out the following operations according

to the value of D1 and D0.

D1 D0 Operation

0 0 No operation (NOP)

0 1 Clear output N3..N0

1 0 Increment output N3..N0 by one

1 1 Decrement output N3..N0 by one

Output N3..N0 does not increase when it has reached the highest value nor does it

decrease when it has reached the lowest. Output RDY is activated for one clock cycle

when any command (except NOP) is received.

Notice that the FSM memorizes bits D1 and D0 on flip-flops Q1 and Q0, so that

their values can be reused by the FSM itself.

The FSM output NEG selects two different values on the input B3..B0 of the

adder. The FSM line MM allows to choose two different numbers to be compared

with the output number N3..N0.
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Exercise 4 The system shown in the figure below is composed by of a controller, a

register, and a few arithmetic circuits.

The system is a binary number generator controlled by three push-buttons P1, Z ,

and M 1. Output Q3..Q0 is taken from the register “PiPo8.” The binary number in

the output is signed (two’s complement code).

In the idle state, the push-buttons are at 0; while pressed, they are at 1. The

push-buttons are assumed to be ideal with no mechanical bounce.

Pressing and then releasing each push-button determine the system’s behavior.

Push-buttons’ functions are defined as follows:

P1 → Increments the number Q3..Q0 by one.

Z → Clears the number Q3..Q0.

M1 → Decrements the number Q3..Q0 by one.

The number Q3..Q0 must not be incremented if it is at the maximum positive value

nor decremented if it is at the minimum negative value. When the system is initialized,

the number Q3..Q0 must be cleared.

Notice that the FSM outputs V 3..V 0 set the values to add on the adder inputs,

while output MAX allows to compare the number Q3..Q0 with the maximum and

minimum values.
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Exercise 5 Consider the digital system shown in the figure below. It is made up of

a controller, a register, and a few arithmetic circuits.

The system implements a binary number generator controlled by two push-buttons

UP and DN. Output Q3..Q0 is taken from the parallel register “PiPo4.” The output

binary number is signed (two’s complement code).

In idle state, the push-buttons are at 0 and at 1 while they are pressed. The push-

buttons are assumed ideal with no mechanical bounce.

When the push-buttons are pressed and then released, the system carries out the

following functions:

UP button → increments the number Q3..Q0 by one.

DN button → decrements the number Q3..Q0 by one.

The system ignores the pressing of the push-buttons if its time duration is shorter

than 3 clock cycles.

The two comparators receive the value of output Q3..Q0 on inputs A3..A0, and

they compare it with the maximum and minimum values set on B3..B0. The num-

ber Q3..Q0 must not be incremented if it is at the maximum (positive) value or

decremented, if it is at the minimum (negative) value.

The system activates output PRS for the time a push-button is pressed. Assume

that the two push-buttons can never be pressed at the same time.
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Exercise 6

The system shown in the figure is made up of a controller, a “SiPo4” shift register,

an 8-bit counter “Cnt8,” and a few logical gates.

On input LN, the system receives a standard serial signal made up of a start bit, eight

data bits, and a stop bit (see below).

The controller commands the shifting of the serial data into the two registers with

the order that we can infer from the schematic (the low part D3..D0 on the register

at the right of the schematic, the high part D7..D4 on the register at the left).

The controller checks the stop bit at the end of the serial sequence. If correct, it

loads the counter with the byte received through the lines P7..P0. If, however, the

stop bit is not valid, the counter is cleared and the controller signals ERR, keeping it

active until LN returns to zero.
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Exercise 7

Consider the digital system shown in the figure below. It is made up of a controller,

an 8-bit counter “Cnt8,” a “PiSo8” shift register, a D-PET flip-flop, and a few logical

gates.

When push-button GO is released, the system transmits on SER a serial signal made

up of a start bit, eight data bits, and a stop bit.

The eight data bits to transmit are taken from the counter’s outputs. When push-

button GO is not pressed (GO = 0), the counter is enabled through line ENC. For

the rest of the time, the count is disabled. When push-button is pressed (GO = 1),

the FSM activates line PRS.

When the push-button is released, the controller starts transmission by loading

the counter’s outputs onto the shift register through line LDC. Notice that line STR

makes it possible to generate the start bit for one clock cycle and that serial output

SER is generated by the flip-flop.

The controller commands serialization through line ENS, which enables the shift

register. When the generation of SER is over, the system checks push-button GO

again. For the purposes of the timing analysis, assume that Number (see schematic)

equals 0Bh.
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Exercise 8

The digital system shown in the figure below is made up of a controller, a counter,

and a shift register.

The system is a synchronous serial transmitter whose bit time is equal to the clock

period. Transmission is launched on the rising edge of input GO. The packet trans-

mitted on SER is made up of a start bit at 1, the eight data bits D0..D7 (in that order),

and a stop bit at 0.

Output RDY (ready) is activated when the system does not transmit but waits for the

launch command.

The counter is used by the controller to count the number of transmitted bits in

order to end operations after the packet is transmitted.

Define the number P3..P0 required by your specific project (in the figure, 01112

is just an indication).
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Exercise 9 The system shown in the figure below is made up of a controller, a

counter, a comparator, and a parallel register.

The system’s inputs are push-buttons B1 and B2 (when pressed are at 1). The FSM

checks how long they have been pressed at the same time.

Specifically:

• It activates output O1 if B1 and B2 are pressed at the same time for less than four

clock cycles.

• It activates output O2 if B1 and B2 are pressed at the same time for exactly four

clock cycles.

• It activates O3 if B1 and B2 are pressed at the same time for more than four clock

cycles.

If B1 and B2 are pressed for more than 16 clock cycles, the system activates ERR

until the two push-buttons are both released.
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8.4.2 Design of a Controller–Datapath System

To carry out a design of this type, as suggested on p. 397, it is advisable to follow

these steps:

(a) Define the system as a functional block, highlighting inputs and outputs.

(b) Choose the components to use in the datapath.

(c) Design the datapath with the connections between the controller and the datapath

components and the inputs and outputs of the whole system.

(d) Draw the ASM diagram of the FSM that describes the controller.

(e) Perform a timing simulation of the whole system by choosing input sequences

that help demonstrate the system’s functionality set.

Exercise 1

Design a serial transmitter of the measure of a pulse duration, by using the controller–

datapath structure.

The system waits for line IM to go to 1 and then begins to count how many clock

cycles the signal IM stays at 1.

At the first clock edge after IM goes back to zero, the system sends a 6-bit packet

on the PKG channel. It consists of a start bit at 1, four data bits that represent the

pulse duration in terms of clock cycles (an error of +/ − 1 is tolerated), and a stop

bit at 0.

If the pulse lasts longer than 15 clock cycles, the machine activates output ERR

until IM goes back to zero. It sends no data pack but waits for the next pulse.

(Design tips on p. 427)

Exercise 2

Design a kitchen timer by using the controller–datapath structure.

When push-button ST (at 1 when pressed) is released, the device waits for the

number of clock cycles externally set on inputs P7..P0 (eight bits) and then activates

an output BEP for three cycles.

The clock’s frequency is 1Hz, and the time must be controlled between 2 and 256

seconds. The actual time can differ by a maximum of one second from the defined

time.

(Design tips on p. 428)
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Exercise 3

Design a serial–parallel converter by using the controller–datapath architecture.

The system has an input SER and outputs D0..D5 and RDY. It waits for the serial

data in the format {1, D0, D1 .. D5, 0} and transfers it into parallel format on the six

outputs D0..D5. If the stop bit check is positive, it activates RDY and keeps it until

it receives new serial data.

If the stop bit is incorrect, the system simply goes back to waiting for new serial

data.

(Design tips on p. 429)

Exercise 4

Design a serial–serial repeater by using the controller–datapath structure.

On its input IN, the system receives a serial packet in the format {1, B0, B1, P,

0} where P represents the parity (XOR function) of B0 and B1.

The system acquires B0 and B1 on two JK-PET flip-flops and uses an XOR gate

to check that the parity of B0 and B1, which are saved on the flip-flops, corresponds

to bit P of the serial packet, which was transmitted. If it does correspond and the

stop bit is correct, it transmits the pack {1, B0, B1, 0} to output OUT.

If the parity check is negative or the stop bit is incorrect, there is no transmission

and the system goes back to waiting for another input packet.

(Design tips on p. 430)

Exercise 5

Design a parallel–serial converter by using the controller–datapath architecture.

The system has five inputs (GO and D0..D3) and three outputs (SER, BSY and

RDY ). When GO appears, the system generates a serial packet made up of: {1, D0,

D1, D2, D3, and 0}.

Signals D0..D3 are only guaranteed to have the correct value when GO is received.

GO lasts for one clock period.

The system activates BSY during the transmission of the packet and generates a

pulse with a duration of one clock cycle on RDY just after the packet is transmitted.

(Design tips on p. 431)
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Exercise 6

Design a digital system that works as an accumulator that generates, on the output,

the sum (4 bits) of the current number and the one at the input.

The system has five inputs:

D2..D0 The data the accumulator must add (3 bits with no sign).

NEG If active, it commands to change the sign of the number

on D2..D0 before adding it.

GO If active, it commands the execution of the sum.
The system has six outputs:

Q3..Q0 The content of the accumulator.

OVF To be activated in case of Overflow.

CO To be activated in case of Carry.

(Design tips on p. 432)

Exercise 7

Design a controller for a microwave oven by using the controller–datapath structure.

The system has two 1-bit inputs and one 8-bit input.

Inputs:

GO Starts cooking for time TCC

TCC 8-bit input to set cooking time

OPN Active while the door is open
Outputs:

COK When active, the oven heats

BEL Signals the end of cooking time and lasts one clock cycle
The user sets the cooking time and presses the push-button. The signal GO, which

is active for one clock cycle, starts the cooking for time TCC.

If the door is open, the oven does not work; when it is closed, it begins to heat. If

the door is opened before the end of the set cooking time, it stops cooking and starts

again when the door is closed.

(Design tips on p. 433)
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8.5 Design Tips

8.5.1 Design of a Controller–Datapath System

Here, you will find some hints to help you complete the design exercises starting on

p. 424.

Exercise 1

We recommend using the counter “DCnt4” and logical gates of your choice.

We recommend defining a timing trace like this one below:
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Exercise 2

You may use the counter “DCnt8” and any logical gate.

We recommend defining a timing trace like this one below:
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Exercise 3

We suggest using the components “Sipo8” and “Cnt4” as well as any logical gate.

We recommend defining a timing trace like this one below:
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Exercise 4

We suggest using two JK flip-flops and an XOR gate for the datapath.

We recommend defining a timing trace like this one below:
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Exercise 5

For the datapath, we recommend using the components shown below (keep in mind

that we can also design the system without a counter).

We recommend defining a timing trace like this one below:
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Exercise 6

We recommend using the components shown below:

We recommend defining a timing trace like this one below:
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Exercise 7

For the datapath, we recommend using the component shown below:

We recommend defining a timing trace like this one below:
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8.6 Solutions

8.6.1 Design of the Controller of a Given Datapath

We can download the MSF files shown here and their complete circuit schematics

from the Web site of Deeds. It will be useful to analyze the solutions by using the

timing simulation.

Solution of Exercise 1:
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Solution of Exercise 2:
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Solution of Exercise 3:
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Solution of Exercise 4:
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Solution of Exercise 5:
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Solution of Exercise 6:
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Solution of Exercise 7:
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Solution of Exercise 8:
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Solution of Exercise 9:
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8.6.2 Design of a Controller–Datapath System

The Web site of Deeds has all the files corresponding to the figures shown here

(circuit schematics and FSMs) so that the solutions can be checked by simulation.

Solution of Exercise 1

The system’s inputs and outputs:

The network schematic (controller + datapath):
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Diagram of the states of the controller:

Timing simulation:
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Solution of Exercise 2

The system’s inputs and outputs:

The network schematic (controller + datapath):
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Diagram of the states of the controller:

Timing simulation:
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Solution of Exercise 3

The system’s inputs and outputs:

The network schematic (controller + datapath):
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Diagram of the states of the controller:

Timing simulation:
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Solution of Exercise 4

The system’s inputs and outputs:

The network schematic (controller + datapath):
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Diagram of the states of the controller:

Timing simulation:
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Solution of Exercise 5

The system’s inputs and outputs:

The network schematic (controller + datapath):
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Diagram of the states of the controller:

Timing simulation:
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Solution of Exercise 6

The system’s inputs and outputs:

The network schematic (datapath only):
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Solution of Exercise 7

The system’s inputs and outputs:

The network schematic (controller + datapath):
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Diagram of the states of the controller:

Timing simulation:



Chapter 9

Introduction to FPGA and HDL Design

Abstract The last chapter deals with the practical implementation in hardware of

systems similar to the ones presented in previous chapters and tested by simula-

tion only. The devices that host the projects are Field-Programmable Gate Arrays

(FPGAs), inserted on commercially available boards and managed by Deeds and pro-

prietary tools. A short description of the devices and the associated tools is presented.

An original, hands-on introduction of the VHDL hardware description language is

included. A few exercises of digital system design and prototyping complete the

chapter.

The reader that has successfully followed the book is now familiar with the issues

at the bases of digital systems and able to practice with their design and simulation.

Projects and examples presented in the previous chapters were targeted more to un-

derstanding and less to practical implementation, since the former is an essential

skill for the designer, upon which the latter is based. Furthermore, circuit implemen-

tation is strongly dependent on the state of the art of microelectronic technologies

and subject to a rapid evolution and inevitable obsolescence.

The networks presented in this chapter are similar, as for their approach and

complexity, to the ones already studied, with the difference that the work will go all

the way to physical implementation and testing.

9.1 Field-Programmable Gate Arrays

Physical implementation will be based on components called Field-Programmable

Gate Array (FPGA). The figure in the next page shows the visual appearance of two

FPGA, by Intel/Altera FPGA (ex Altera Corporation), on the left, and by XilinX, on

the right.
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An FPGA is a chip that contains a large quantity of basic logical elements, such as

gates and flip-flops (and quite a lot of more complex circuits) that can be wired to-

gether to form the system thanks to a matrix of switches. The connections are created

by using development tools provided by the FPGA’s manufacturers, downloaded in

the chip and kept alive in a memory.

FPGAs are the youngest child within the large family of programmable logic

devices (PLDs), a term that designates all the chips that can be programmed, i.e.,

specialized for a given application by establishing or changing their inside connec-

tions, during production or in the field. PLD must not be confused with devices,

as microcomputers, whose hardware is fixed and programming means execution of

external instructions. PLD has changed deeply, since the 1980s, design and imple-

mentation of complex systems.

FPGAs have a great value for the educational field, too, since they lend themselves

very well for the fast and inexpensive realization of working prototypes of systems

designed for learning purposes.

9.1.1 System Prototyping and FPGA

In a not too distant past, circuit prototyping implied the connection (by soldered

wires) of many discrete components. That process was extremely time consuming

and very sensitive to mistakes in the connection or bad contacts with the wires to a

point that it was not easy to understand if the malfunctioning of the system was due

to design mistakes of faulty connections.

It was common the use, in the laboratories, of solderless breadboards, with a fixed

grid of holes partially connected together, in which students inserted components,

usually in the form of integrated circuits (ICs) and established connections through

wires. The ICs made available gates, flip-flops, and a wide variety of combinational

and sequential blocks: the circuit implementation was therefore the same, or very

close, to the hardware structure designed with Deeds.
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For instance, below is a picture of the breadboard of an 8-bit parallel to serial

converter, where the system is built with standard ICs implementing the functions of

gates, flip-flops, registers and counters.

The problems with breadboarding digital systems are the same mentioned when

presenting the traditional prototyping. There are a few advantages: it is easier to

change connections and the risk that students burn their finger with the soldering

iron disappears. The problem of faulty contacts is even worse than in the previous

method. Solderless breadboards are still useful for rapid prototyping of system whose

core is a FPGA or a microcontroller: the board can host simple interface or ancillary

circuits around the core.

Nowadays are available FPGA-based prototyping board, especially suited for

educational purposes. They include several input/output interfaces, allowing the im-

plementation of system prototypes without the addition of components outside the

board.

9.1.2 FPGA Board Examples

A wide variety of FPGA boards are commercially available, with performances

continuously evolving. They are targeted to different applications, from simple and

inexpensive boards ideal for educational purposes to complex, high-speed boards

for professional designs. It is not our intention to go into the details of the boards.

The experimenters or the designers can find on the market the most suitable for their

application, paying attention to their performances, available software and, last but

not least, budget.
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As an example, we present here a general description of a few FPGA boards,

suitable for the implementation of the systems developed in the book. It is worth to

notice that each of them has the capacity to host much more complex systems and,

therefore, to allow a natural transition toward professional design. The figure below

shows the board DE0-CV, produced by Terasic/Altera. The DE0-CV is supported by

Deeds environment.

On the board are available, as the picture shows, push-buttons, switches, LEDs,

seven-segment displays, connectors, and other devices. The heart is the FPGA, the

big black square in the center of the board, a device from Intel/Altera FPGA, member

of the family “Cyclone® V FPGA.” The chip contains a matrix of more than 40,000

logic units (the basic FPGA block that will be explained later in this chapter), 60,000

flip-flops, and a microprocessor ARM CortexTM dual-core, the same used in many

mobile phones.

In the next page is another example: the ARTY S7-50 board, produced by Digilent,

using an FPGA chip from the Spartan®-7 family, produced by XilinX. The FPGA

chip is placed at 45 degrees with respect to the board’s boundaries.
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As in the previous board, push-buttons, switches, LEDs, and other interfaces are

available. In particular, there are connectors designed to host the input/output and

additional boards (shields) originally designed for Arduino microcontrollers. The

FPGA contains more than 52,000 basic combinational blocks and more than 65,000

flip-flops. No microprocessor is included.

Note: it is possible to program the FPGA to implement a processor, by using the

chip’s resources (logic elements and flip-flops). This is called “soft processor” since

it is assembled by software. It behaves exactly as an “hard” processor, i.e., one built

as such on the silicon.

The last example is a very inexpensive FPGA board available online and supported

by Deeds. It is based on an Intel/Altera FPGA chip “Cyclone® II.” In addition to the

four connectors placed around the chip, three LEDs and a push-button are available.

The two 10-pin connectors on the left are used for programming the FPGA chip.

To implement our projects, which usually need more input/output devices, we must

connect push-buttons, switches, displays, etc., to the four connectors. The chip is large

enough to implement small microcomputers, like the ones available with Deeds. The
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resulting “soft processor” would use about one half of the 4,600 logic units and only

400 of the 4,600 flip-flop.

9.1.3 FPGA Architecture

FPGAs’ manufactures make available a wide variety of devices, classified by families

varying by complexity and targeted to different application fields. Typical examples

are audio/video signal processing, radar, automotive systems, and, generally speak-

ing, all the applications that require high performances but do not have the volume to

justify the cost of a full custom chip. In spite of the variety presented by the families,

all FPGA devices have in common a basic architecture. An FPGA is essentially a

large matrix of logic blocks, arranged by rows and columns, as in the figure below.

Each block contains one or more flip-flops and combinational networks. A matrix

of programmable connections is spread through the chip, using the largest share of

its area. Connections are, again, arranged by rows and columns: at every crossing

electronic switches allow the individual junction of rows and columns. Such structure

provides the interconnection among the blocks. Local submatrices may be available

to improve the speed of communication among blocks physically close together.

Inside the matrix special blocks targeted to specific functions may be available,

such as read/write memories (RAM), arithmetic circuits (very often multipliers), and

others.

The matrix is surrounded along the four edges by other logic blocks (I/O Blocks),

in charge of the interface of the chip with external devices.
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The previous figure shows only the elements of the chip that are available for

design, while hides the ones in charge of programming (configuring) logic blocks

and connections, made of a very large number of flip-flops connected to form a shift

register, as in the figure below.

A particular synchronous serial port (JTAG interface, that we explain in the next

section) is in charge to write the flip-flops during the FPGA programming phase. In

normal operation, the flip-flops are not accessible.

The FPGA must be re-configured each time at power-up, since, as we know,

a flip-flop cannot maintain information when power is off. Therefore, at power-

up, a non-volatile memory in the board transfer programming information through

dedicated pins. From the above, we understand that the FPGA may be re-programmed

to perform a different function, using the JTAG interface.

Logic Block

In the next figure, the schematic of a simplified FPGA logic block is represented.

Basically, we have an E-type flip-flop, edge-triggered, driven by a combinational

logic network.

The combinational network’s operation is controlled by the configuration flip-flops

(top of the figure), as well as the multiplexer on the right that allows the option of

storing in the flip-flop the output of the combinational network.
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It is worth to have a closer look at the combinational network, which is implement-

ed as a Lookup Table (LUT). In Sect. 2.6.6, we have seen how to use a multiplexer

as a configurable combinational network, by feeding into its inputs the values of the

desired function, in the present case provided by the configuration flip-flops.

The multiplexer copies in its output D, according to the combination of A, B, and

C, the values stored in the flip-flops, implementing the function simply by reading

the LUT, which is defined at the time of FPGA configuration and does not change

during its operations.

Note that a logic block could be more complex than the one just presented, con-

taining also a full adder, XOR gates, other flip-flops, or multiple LUTs.

9.1.4 JTAG Programming

JTAG is the acronym of the consortium (Joint Test Action Group) that defined, at

the end of the 1980s of last century a standard protocol for the functional test of

integrated circuits, which later became the IEEE 1149.1 (IEEE Standard Test Access

Port and Boundary-Scan Architecture). In the following, we will refer to it as JTAG

(the term Boundary-Scan is sometimes used).

The version of the protocol released in 1994 added the possibility of programming

memories, microcontrollers, and other devices. In addition, it allowed to perform the

functional verification of the firmware and the possibility to activate automatic testing

(Built-In Self-Test), defined by the component’s manufacturer. A standard language

to access components (Boundary Scan Description Language), by using JTAG, has

been developed.

Nowadays, JTAG is the only procedure to access electronic systems, such as cell

phones, tablets, wireless access points, and the like, for testing and troubleshooting.

In synthesis, the standard provides the possibility of blocking the normal operation

of a system and disconnecting its clock, to switch to a modality in which the JTAG
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interface takes control of all the components’ pins and the testing and programming

circuits that may be inside the system itself.

The physical JTAG interface is composed of a limited number of standard con-

nections. The simplest set allows to communicate with the circuit using a few lines,

as shown in the following figure.

Pin Name Function

TCK Test Clock Data Clock Pin

TMS Test Mode Select Mode Control and Operation Selection

TDI Test Data In Serial Data Input Pin (toward the device)

TDO Test Data Out Serial Data Output Pin (from the device)

All JTAG’s signals are serial and synchronized by clock TCK (usually in the range

10–100 MHz). The activation of TMS signals to the system to enter the JTAG-

compliant mode. Then, through the same line it is possible to perform the operation

requested, using a state algorithm, the “JTAG State Machine” (not described here).

The standard defines an optional Test Reset control (TRST) also, but its functionality

can be obtained via TMS control, and often it is not used, as in the example above.

Moreover, the standard allows the series connection of the pin TDI and TDO of

more than one device (“Daisy Chain” connection) in order to access all the JTAG-

compliant devices in a board (shown in the next figure). An example of the power

of this method is the possibility of performing a “Chain Integrity Test”. Each JTAG-

compliant device has its own ID code. All the ID codes can be read and checked

against the ID of the design project, to verify if the JTAG chain is working as designed.

FPGA Programming

Many programmable devices, such as FPGA and PLD, are not designed to be JTAG-

compliant for testing purposes only. They use JTAG for their programming.

It must be stressed that FPGA is programmable after their insertion on the system’s

board. This fact provides several advantages, such as to simplify the programming
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phase, avoid the use of external programmers, update, and modify the networks

implemented by the FPGA. This feature makes FPGA systems ideal for the imple-

mentation of prototypes, experimental circuits, including educational ones.

There are several standards for the JTAG physical interface. The simplest uses a

10-pin connector, as shown in the figure below that refers to the FPGA board with

the Intel/Altera FPGA chip “Cyclone® II” already described.

In the next figure, an example of JTAG programmer with its 10-pin cable (right) and

a standard USB cable for connection to the PC. The software is always provided by

the FPGA manufacturer.

Often, especially in the most advanced boards, the programmer is built in with the

board, available through a dedicated USB interface. This is the case of the first two

boards described before.
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9.1.5 FPGA Development Tools

FPGA manufacturers offer (for a fee) proprietary development tools, targeted to

professional designer and to the implementation of complex systems. The same

manufacturers make available, usually free of charge, reduced versions of the same

tools, usually targeted to the education field.

The obvious purpose is to publicize their products to future designers and, there-

fore, to influence their choices when they will be working. Plenty of documentation

of such software tools is provided by the manufacturers.

In the following, we present a general view of what is available, free of charge,

on the net. All the tools we mention offer similar features, such as schematic editor,

source code editor, compiler, pin manager, optimization tools, and programmer and

allow to design digital systems using logical schematics or Hardware Description

Languages (HDL), such as Verilog, VHDL, or System C.

The large amount of features available, which make the professional’s work more

productive, produces in the beginner the impression of a difficult to manage com-

plexity. In the following, we will see how Deeds allows to use FPGAs for a fast

prototyping of our projects without going into the technicalities of the FPGA tools.

About boards based on XilinX devices, at the moment of writing two free tools

are available: Vivado® Design Suite HL WebPACK™ and ISE® WebPACK™. The

screenshot below shows Vivado®, which is targeted to the most recent families of

devices.

Below is ISE®. It supports project development on less recent FPGAs:
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Intel/Altera FPGA provides two free tools: Quartus® Prime Lite Edition™ and Quar-

tus® II Web Edition™. The next screenshot shows the mail window of the first one.

It supports the most recent Intel/Altera FPGA families:

The older versions of the same software are called Quartus® II. Below is its main

window with project management commands:
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In the last few years, due to the increase in the number of families and the complexity

of the chips, FPGA producers have put more efforts in developing and maintaining

the tools that support the new families than in assuring their compatibility with

older chips. In general, the less recent boards require the use of older version of

development software. It is therefore necessary to pay attention in the choice of

chips and tools, by studying the documentation available in the manufacturers’ Web

site.

Utilities called Software Selector associate the FPGA family to the corresponding

software version. In the following figure, from the Intel/Altera FPGA Web site, we

see that the Cyclone® II family is supported by a version 13.0 - ServicePack 1 (and

older) of Quartus® II Web Edition™:
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9.1.6 Deeds Support for FPGA

In the project development process, after design and simulation, a logical step is

to test the network in a physical system. Deeds allows a fast implementation of

prototypes on several FPGA boards commercially available.

To examine the path that goes from project to prototype, we use as an example a

Pulse Generator similar to the ones seen on p. 372 in Chap. 8. We implement the

project on the Terasic/Altera DE0-CV board presented before.

In this version, counter’s outputs are visualized on a LED array, and pulse duration is

set using 4 switches, with the aid of another LED array that shows the number while

it is set. Controller’s functionality has been extended by the addition of the line EN

to enable counting. The FSM, in the reset state (rs), waits until the TRG input goes

to zero.
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On next state (wt), the machine loads the counter and waits for a rising edge of TRG,

after which goes to state (ps) that generates the pulse on OUT. In (ps) the counter in

enabled until TC is activated and the FSM returns to the initial state.

“Test On FPGA” Window

In the following, we go through all the steps of the process (in several projects

available on the Deeds’s Web site most of the settings are already included in the

files).

Let’s assume we are done with the behavioral verification of the project, obtained

by simulation, and are ready for the prototype implementation. We open the “Test

On FPGA” window (see the Tools menu item).

In the “Test On FPGA” window firstly we select a FPGA board from the list box

(blue arrow in the next figure):
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After the selection of the board, in our case the DE0-CV (green arrow in the figure

below), we see the picture of the physical board in use (red arrow).
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Resource Assignment

We need to associate the network’s input and output components with the devices

available on the FPGA board. We select, one by one, the input/output components

of our network, either by clicking on the schematic (brown arrow) or in the list (blue

arrow).

In the example of the previous figure, we point to the input TRG and the system

shows only the board’s resources that are compatible with our selection. In this case,

we choose to associate to TRG the push-button “Key[03]”.

While scrolling the list (gray arrow), each physical device is identified on the

board inside a yellow frame (yellow arrow).

Assignment Summary

After the association of all inputs/outputs of our network to the corresponding phys-

ical resources of the board, we can check the “Assignment Summary” by clicking

the button with the same name in the bottom of the window.

Clock Frequency Setting and Slow Clock Test Mode

The clock frequency on the board (Fc) can be defined at wish, independently of

the one chosen in Deeds’s schematic. A frequency divider (not shown here) allows

to scale downward the native clock frequency (50 MHz in the case of the DE0-CV

board).

In our Pulse Generator project, the output pulse can last up to 16 clock cycles.

Therefore, for visual testing, Fc = 2 Hz allows to generate pulses up to 8 seconds.
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Deeds inserts a frequency divider by 25,000,000 between the board clock generator

and the clock input of our network.

It is possible to slow further down the clock to observe step by step the behavior of

the network, using the “Slow Clock Mode” (see the area pointed by the red arrow,

in the figure above).

We set the switch “Sw[09]” to activate it and the LED “LEDR[09]” to visualize

the clock pulses sent to the circuit under test. Push-button “Key[01]” will be the

manual command to generate clock pulses, one by one.

If switch “Sw[09]” is at ’0’ during the test, the clock works with the regular 2 Hz

frequency. If at ’1’ the clock stops and, at every push of “Key[01]” a complete clock

cycle is generated. If the same button is kept pressed, the pulse is repeated at the rate

of about two cycles per second.

Project Generation

The time has come to translate our network, with all its associations, into a Project

that can be opened in the tool corresponding to the FPGA used.

In our case, the board is the DE0-CV, so the tool is Quartus® II Web Edition™.

We use the button “Generate Project” (see the yellow arrow in the figure above) to

start the process.

The window now looks as it is shown in the following figure.
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Deeds generates several files that represent the translation of our network in VHDL

code. VHDL will be introduced later in this chapter: for the moment is enough to

know that the files describe in a textual format connections and behavior of all the

components in our network.

When the Project has been generated a dialog windows appears:

The window confirms that the generation of the Project has been successful and

allows either to launch Quartus® II (green arrow) or simply to access the project’s

file folder.

Quartus® II will open our project, as seen in the figure in the next page.
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The red arrow points to the list of the generated VHDL files, while the blue to one of

the files opened in the editor. It would be possible, at this point, to modify the VHDL

code generated automatically by Deeds.

In fact, FPGA boards offer a wealth of possibilities from which students could

take advantage, using the code generated by Deeds as a starting point. For our pur-

poses, instead, it is enough to click “Start Compilation” to proceed with the FPGA

configuration process.

When the compilation is finished, a message reports a certain number of warnings.

Warnings are not errors and, in our case, can be ignored.

Chip Programming

In the last phase, we must download the result of compilation on the board, using

the “Programmer” module:
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The green arrow points to the “Start” button that commences downloading. The red

arrow points to the command that establishes communication between the PC hosting

the tools and the FPGA board.

The VHDL code generated in this example will be explained in the next section, that

also will introduce the basic elements of the language.

9.2 Introduction to VHDL

As stated in the preface of this book, we presented so far digital design basics using

a traditional schematic entry approach. This choice favors an intuitive and visual un-

derstanding of concepts and circuits and allows a “conscious” transition to Hardware

Description Languages (HDL).

In fact, HDLs are the current industry standard to describe and design digital

systems. A very large and complex digital system can be efficiently designed with

a top-down methodology using HDLs. Schematics are still used at the board level,

where it is necessary to describe the wiring to the other parts of the system, or to the

external connections.

A HDL is a programming language that allows us to describe digital circuits,

either in a behavioral or structural way. HDLs are often used for simulation.

Very high-speed integrated-circuit Hardware Description Language (VHDL) and

Verilog are the most widespread and are supported by the majority of CAD tools

available. Currently a great and growing attention is reserved to System C, mainly

a set of C++ class libraries that provide the necessary modeling code to describe
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systems. Other HDLs to be mentioned are JHDL (Java HDL) or Active-HDL (from

Cypress Semiconductor).

In this section, we introduce VHDL, starting from the example seen just before.

Our presentation of the language is far from exhaustive since VHDL is used for many

purposes and here we see only one of them, the “VHDL for synthesis”.

9.2.1 VHDL Code from Deeds

We refer to the schematic seen in the previous section (see below).

Apart from the connections (from inputs, to outputs and between blocks), the network

contains two components, a controller (designed as FSM) and a 4-bit counter. Now,

let’s look at the files generated by Deeds, by going back in the chapter to the window

that follows.
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This time we choose to press the big button on the right (“Open FPGA Project

Folder”) to examine in more detail the files generated within the project.

The first two, in text format, define all the project’s parameters, such as the name

of the FPGA chip and the correspondence between the input/output connections of

our network and the FPGA physical connections (pins). The last one is a log file

that serves for debugging purposes. We concentrate our interest on the files with

extension “.vhd” (the complete code is available on in Appendix C).

The “Components.vhd” contains the behavioral description of all the components

included in the Deeds project (except FSMs and microcomputers). In our case, ex-

cluding the FSM (the controller), and the I/O objects, only one component should

be in this VHDL file, the 4-bit counter.

However, the file contains also another component (named “ClockScaler”, not

described here in detail), which is generated by Deeds to implement the “Slow Clock

Mode”. As introduced before, this is the component that provides to the network a

clock whose frequency is scaled down to the value defined in the settings.

9.2.2 Counter

A quick look into the VHDL file allows us to see the following code, which describes

the terminals of the counter.

1 ENTITY Counter4b IS

2 PORT( Ck : IN std_logic;

3 nCL: IN std_logic;

4 LD : IN std_logic;

5 ENP: IN std_logic;

6 ENT: IN std_logic;

7 UD : IN std_logic;

8 P3 : IN std_logic;

9 P2 : IN std_logic;

10 P1 : IN std_logic;

11 P0 : IN std_logic;

12 Q3 : OUT std_logic;

13 Q2 : OUT std_logic;

14 Q1 : OUT std_logic;

15 Q0 : OUT std_logic;

16 Tc : OUT std_logic );

17 END Counter4b;
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VHDL uses the design entity concept, and, in our example, “Counter4b” is an entity.

This piece of code represents the entity declaration unit of the component and de-

scribes its external “PORT” interface, including all the terminals by name and type.

For instance, T c is defined as output (“OUT”) and of type std_logic. The same type

applies to all inputs and outputs of this example.

The type std_logic is used to define a digital signal that can assume the 0 and 1

values. While this may look obvious, really it is not since this type can assume nine

different values, useful for simulation (for instance, X = Unknown).

The entity declaration unit must be followed by the architecture body unit, which

represents the internal description of the design entity. It can describe its behavior,

its structure, or a mix of both. For instance, in the following code example, we define

an entity with two inputs (A, B) and one output (U ).

1 ENTITY MyNand IS

2 PORT( A,

3 B: IN std_logic;

4 U: OUT std_logic );

5 end MyNand;

6

7 ARCHITECTURE behavioral OF MyNand IS

8 BEGIN

9 U <= not (A and B);

10 END behavioral;

The architecture part is described between the couple of keywords BEGIN .. END.

The word “behavioral” is completely arbitrary (it should be the private name of the

architecture, but it is not useful in this context). Instead, it is often used by designers

to identify the style of the description (behavioral or structural).

With behavioral description, we mean that the entity is described by a function or

an algorithm, without dealing directly with the components and connections (as in the

example, where a Boolean function defines the output U ). A structural description,

instead, is the textual translation of connection among the blocks that form the logic

network, in a way equivalent to traditional schematics. In any case, the two styles

can be mixed, when convenient.

Let’s return to our 4-bit counter, and consider the following code, extracted from

its architecture description. We see an example of process:

1 ARCHITECTURE behavioral OF Counter4b IS

2 BEGIN

3 Count4b: PROCESS( Ck , nCL , ENP , ENT , UD )

4 variable aCnt: unsigned( 3 downto 0 );

5 BEGIN

6 -- omissis ...

7

8 END PROCESS;

9 END behavioral;
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A process could resemble, at a first glance, a function as the ones that we can write in

C, JAVA, or other procedural languages. The resemblance is only apparent: a process

describes the entity’s behavior as a parallel process.

There is not a main program that calls the processes: they are “launched” when

at least one of the signals defined between parentheses (sensitivity list) changes. In

our case, the process is executed if the value of at least one of inputs Ck, nCL, ENP,

ENT, or UD changes, as it happens in a physical network.

Let’s examine the code of the process that describes the 4-bit counter.

1 Count4b: PROCESS( Ck, nCL , ENP , ENT , UD )

2 variable aCnt: unsigned( 3 downto 0 );

3 BEGIN

4 if (nCL = ’0’) then aCnt := (others =>’0’);

5 elsif (nCL = ’1’) then

6 if (Ck’event) AND (Ck=’1’) then

7 if (LD = ’1’) then aCnt := (P3 & P2 & P1 & P0);

8 elsif (LD = ’0’) then

9 if (ENP = ’1’) and (ENT = ’1’)then

10 if (UD = ’1’) then

11 if (aCnt < "1111") then aCnt := aCnt + 1;

12 else aCnt := (others =>’0’);

13 end if;

14 elsif (UD = ’0’) then

15 if (aCnt > "0000") then aCnt := aCnt - 1;

16 else aCnt := (others =>’1’);

17 end if;

18 else aCnt := (others =>’X’); -- (UD: Unknown)

19 END IF;

20 elsif not((ENP =’0’) or (ENT =’0’) ) then

21 aCnt := (others =>’X’); -- (ENP: Unknown)

22 END IF;

23 else aCnt := (others =>’X’); -- (LD: Unknown)

24 END IF;

25 END IF;

26 else aCnt := (others =>’X’); -- (nCL: Unknown)

27 END IF;

28 --

29 Tc <= ENT and ((aCnt (3) and aCnt (2) and

30 aCnt (1) and aCnt (0) and UD) or

31 (not(aCnt (3) or aCnt (2) or

32 aCnt (1) or aCnt (0) or UD)));

33 --

34 Q3 <= aCnt (3);

35 Q2 <= aCnt (2);

36 Q1 <= aCnt (1);

37 Q0 <= aCnt (0);

38 --

39 END PROCESS;



490 9 Introduction to FPGA and HDL Design

A few preliminary observations:

(a) inputs Ck, nC L , E N P , E N T and U D (the ones that appear in the sensitivity

list, line #1) are tested by if-then-else constructs (the keyword elsif is short for

else if ).

(b) line #2 defines a local variable aCnt, of type unsigned 4-bit integer, representing

the counter state.

(c) the aCnt := (others =>’0’) construct (as at line #4) sets to zero all the variable’s

bits.

(d) in the same way, aCnt := (others =>’X’) (for instance at line #18) declares

that the state of the counter is unknown (notice that this fact is relevant only for

simulation, not synthesis).

(e) line #6 calls the library function Ck’event that detects a level transition of Ck.

The argument of the if will be true in the case of a rising edge.

(f) two consecutive dashes ’- -’ signal the beginning of a comment that ends with

the line.

Let’s interpret now the code in natural language. If the input clear nC L is ’0’,

the counter’s state is cleared asynchronously (line #4). If nC L is at ’1’, the system

waits for a rising edge of clock (line #5,6) and, therefore, the part of code following

this control will be evaluated only when a rising edge arrives. Because of the rising

edge check, the compiler must instance memory elements to store aCnt between

two rising edges.

On the rising edge, the process controls the load L D input (line #7). If L D = ’1’,

the value of the inputs P3, P2, P1, and P0 is loaded in aCnt . Notice that the four

inputs are combined together by the operator ’&’ to form a 4-bit variable. If, instead,

L D = ’0’, the process controls inputs E N P and E N T (line #9), which must be at

’1’ at the same time to enable counting.

If this condition is verified, next line controls input UD that sets the counting

direction (if UD = ’1’, the statement aCnt := aCnt + 1 is executed, else the other

aCnt := aCnt - 1. Since the counting must be cyclical, aCnt is cleared (line #12) if

UD = ’1’ and count has reached ’1111’; else if UD = ’0’ and counter state aCnt is

’0000’, next state is assigned to ’1111’ (line #16).

Notice that the controls for possible unknown input signals make a bit more

complex the interpretation of the code.

Following next’s state logic, we find (line #29) the Boolean expression that assigns

the output T c (terminal count). Such expression is outside the construct that depends

on nCl and the Ck. The compiler will translate it in a combinational network, function

of the counter’s state and E N T and U D inputs.

Last, we find the assignments of the outputs Q3..Q0 that copy the bits of the

state variable (lines #34..37). The special operator ’<=’ defines the assignment of a

value to an output (inputs and outputs of a process are “SIGNALs” in VHDL jargon).

Instead, in the previous lines of code the assignments to the variable aCnt have been

defined using the operator ’:=’.
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In the following, the difference between operators ’<=’ and ’:=’ will be con-

sidered. For now, it is enough to say that in VHDL the “SIGNALs” correspond to

physical connections, while “VARIABLEs” concur to define the logic behavior of

the network.

9.2.3 Finite State Machine

“Pulser_EN.vhd” describes the FSM with the same name but extension “.fsm” that

has been designed as ASM chart. FSMs are exported in separated VHDL files (they

are not included in the “Components.vhd”). Below is the “Pulser_EN” entity decla-

ration unit with its input and output connections.

1 ENTITY Pulser_EN IS

2 PORT( ----------------------------------->Clock & Reset:

3 Ck: IN std_logic;

4 Reset: IN std_logic;

5 ----------------------------------->Inputs:

6 i_TRG: IN std_logic;

7 i_TC: IN std_logic;

8 ----------------------------------->Outputs:

9 o_OUT: OUT std_logic;

10 o_LD: OUT std_logic;

11 o_EN: OUT std_logic

12 -------------------------------------------

13 );

14 END Pulser_EN;

Next figure describes the FSM in general terms, by the three blocks with their con-

nections. To facilitate the identification of inputs and outputs, Deeds added to their

names a prefix ’i_’ or ’o_’.

The code of the architecture body unit, below, recalls the three blocks.
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1 ARCHITECTURE behavioral OF Pulser_EN IS

2 TYPE states is ( state_rs ,

3 state_wt ,

4 state_ps ,

5 dummy_11 );

6 SIGNAL State ,

7 Next_State: states;

8 BEGIN

9 -- Next State Combinational Logic -------------

10 FSM: process( State , i_TRG , i_TC )

11 begin

12 -- omissis --

13 end process;

14

15 -- State Register -----------------------------

16 REG: process( Ck , Reset )

17 begin

18 -- omissis --

19 end process;

20

21 -- Outputs Combinational Logic ----------------

22 OUTPUTS: process( State , i_TRG , i_TC )

23 begin

24 -- omissis --

25 end process;

26 END behavioral;

Note at line #6,7 the definition of State and Next_State, both declared as “SIGNAL”.

The compiler will create physical connections for them.

State and Next_State are defined as “states”, an ordinal type declared in the pre-

vious line #2..5 that defines the state names (Deeds has renamed the states instanced

in the ASM chart with a prefix “state_”).

The body of the code defines three processes, one for each of the blocks of the

FSM general model (see lines #10, #16, and #21).

Let us first consider the State Register process (see below). The sensitivity list

shows that the process is executed when a change of the input signals Ck and Reset

occurs. The state_rs value is assigned asynchronously to State if the Reset input is

’0’, on the rising edge of the Ck input. If Reset = ’1’, Next_State is copied in State.

This piece of code will compile as a parallel register that memorizes the FSM state.

Note that “rising_edge()” is a library function.

1 -- State Register ----------------------------

2 REG: process( Ck , Reset )

3 begin

4 if (Reset = ’0’) then

5 State <= state_rs;

6 elsif rising_edge(Ck) then

7 State <= Next_State;

8 end if;

9 end process;
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The other two processes are compiled as combinational networks, because in their

code all the outputs are completely specified as function of the inputs (see the next

listing).

The next state combinational logic process declares State, i_TRG, and i_TC in the

sensitivity list. The construct case-when is very similar to the C/C++ switch construct,

or the Pascal case. In this code, the selector is State.

Trying to translate the code in natural language, we see that, if State is equal to

state_wt (line #5), the value of the input i_TRG decides if next_state will be equal

to state_ps or will remain equal to the current state_wt.

The other lines are very similar, except at line #23, that simply defines the default

condition. If the current state could be different from the ones defined by design, the

FSM will be forced into the reset state state_rs.

Note that if this last statement were missing, the compiler will understand that

we would maintain memorized the outputs when none of the stated combination is

there.

It will then generate a sequential circuit, instead of a combinational one. To be

sure to avoid this, designers play it safe by inserting the “when OTHERS” clause

even when not strictly necessary.

1 -- Next State Combinational Logic ------------

2 FSM: process( State , i_TRG , i_TC )

3 begin

4 CASE State IS

5 when state_wt =>

6 if (i_TRG = ’1’) then

7 Next_State <= state_ps;

8 else

9 Next_State <= state_wt;

10 end if;

11 when state_ps =>

12 if (i_TC = ’1’) then

13 Next_State <= state_rs;

14 else

15 Next_State <= state_ps;

16 end if;

17 when state_rs =>

18 if (i_TRG = ’1’) then

19 Next_State <= state_rs;

20 else

21 Next_State <= state_wt;

22 end if;

23 when OTHERS =>

24 Next_State <= state_rs;

25 END case;

26 end process;

The last process describes the Output Combinational Network, where the outputs

o_OUT, o_LD, and o_EN are defined as function of State, with a CASE statement,
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in a way similar to the previous process. Note that in this example the clause “when

OTHERS” is used too.

1 -- Outputs Combinational Logic ---------------

2 OUTPUTS: process( State , i_TRG , i_TC )

3 begin

4 -- Set output defaults:

5 o_OUT <= ’0’;

6 o_LD <= ’0’;

7 o_EN <= ’0’;

8

9 -- Set output as function of current state and input:

10 CASE State IS

11 when state_wt =>

12 o_LD <= ’1’;

13 when state_ps =>

14 o_OUT <= ’1’;

15 if (i_TC = ’0’) then

16 o_EN <= ’1’;

17 end if;

18 when OTHERS =>

19 o_OUT <= ’0’;

20 o_LD <= ’0’;

21 o_EN <= ’0’;

22 END case;

23 end process;

This piece of code allows us to get familiar with the usage of the operator ’<=’ in

processes. For instance, pay attention to line #6, where we assign ’0’ to the signal

o_LD.

Then, at line #12 the same output o_LD is set to ’1’, if State = state_wt. If this

code were written in C/C++ or another procedural language, this would describe a

sequence where “before” o_LD is reset, and “after”, set. But this is VHDL, and a

process defines a parallel behavior in which the assignments to signals should be

understood in a different way.

In this code, when the process executes, it produces a logic value on the outputs,

and no delay is implicit there. The assignment o_LD <= ’0’ should be intended as

a default output value for o_LD.

If no other logic condition applies, o_LD will be ’0’ on the process execution end.

Otherwise, if a different condition will define o_LD at ’1’, this will be the value on

the process execution end, without regard to the other assignment.

9.2.4 Top-Level Entity

In a VHDL project, the top-level entity represents the entire system and instances

all the VHDL project entities defined in the project itself, in a hierarchical way.

In the example that we have considered, the top-level entity is defined in the file

“Pulser_DE0CV.vhd”.

Deeds has generated it starting from the schematics, including in it all the needed

references to the component and FSM entities, adding the description of all the
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connections between the blocks. Let’s extract and comment a few excerpts from the

code.

In the entity declaration unit, we find all the external connections of our circuit.

Deeds added automatically some useful comment, just to remind the connections to

the board devices.

In the example below, at line #7 the input iTRG has been connected, according

to the user definitions, to the button ’Key[03]’, through the ’PIN_M6’ of the FPGA

chip. Obviously, these comments are not relevant for the compiler, which will find

these definitions embedded into the Quartus® II project file.

1 ENTITY Pulser_DE0CV IS

2 PORT(

3 iCLOCK_50MHz: IN std_logic; --> PIN_V15

4 -- "iCLK" Clock: 2 Hz

5 -- Sw[09], LEDR [09],Key [01]

6 -- for Slow Clock Mode

7 iTRG: IN std_logic; --> PIN_M6 ,

8 --> Push -Button: Key [03]

9 inReset: IN std_logic; --> PIN_P22 ,

10 --> Push -Button: Reset

11 iTIME_03: IN std_logic; --> PIN_T12 ,

12 --> Switch: Sw[03]

13 iTIME_02: IN std_logic; --> PIN_T13 ,

14 --> Switch: Sw[02]

15 -- omissis

16 );

17 END Pulser_DE0CV;

At line #3, we see the connection to the 50-MHz native board clock. Internally, this

is connected to the clock scaler circuit (note that the generated comment reminds the

user setting of the clock frequency and the Slow Clock Mode).

All the other definitions have been omitted here to shorten the code listing and

make it more readable. Indeed, the number of entries is considerable and depends

on the board’s resources in use.

Deeds instances all the relevant output connections, even if not directly used by

our project, to switch off all the displays, LEDs, and other unused output devices

during the circuit test.

The code of the architecture body unit, shown in the next listing, declares the

components used by the entity, for instance, the counter “Counter4b” (line #3), the

FSM “Pulser_EN” (line #8), and other ones (here omitted).

The architecture description is “structural”, so all the SIGNALs used are declared

together with the mapping of all the connections among the components. For instance,

at line #13, a SIGNAL of name ’S001’ is declared (the code generation is automated,

so Deeds assign a different name to each net using its internal netlist identifier).
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1 ARCHITECTURE structural OF Pulser_DE0CV IS

2 -- omissis

3 COMPONENT Counter4b IS

4 PORT( -- omissis

5 );

6 END COMPONENT;

7

8 COMPONENT Pulser_EN IS

9 PORT( -- omissis

10 );

11 END COMPONENT;

12

13 SIGNAL S001: std_logic;

14 -- omissis

15 SIGNAL S017: std_logic;

16

17 BEGIN

18 -- omissis

19 END structural;

As an example, you see below the declaration of the interface of FSM component

“Pulser_EN”, which was shortened in the previous listing.

1 COMPONENT Pulser_EN IS

2 PORT( ------------------------>Clock & Reset:

3 Ck: IN std_logic;

4 Reset: IN std_logic;

5 ------------------------>Inputs:

6 i_TRG: IN std_logic;

7 i_TC: IN std_logic;

8 ------------------------>Outputs:

9 o_OUT: OUT std_logic;

10 o_LD: OUT std_logic;

11 o_EN: OUT std_logic

12 -------------------------

13 );

14 END COMPONENT;

Let’s examine now the body of the architecture, shortened to focus the attention on

the relevant elements. At line #3 and following, a few examples of usage of the ’<=’

operator , used outside processes, represent a simple wired connection.
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1 BEGIN

2 -- omissis --

3 S005 <= iCLK;

4 S007 <= inReset;

5 -- omissis --

6 oQ3_Q0_00 <= S010;

7 oQ3_Q0_01 <= S011;

8 -- omissis --

9 S004 <= ’0’;

10 S001 <= ’1’;

11 -- omissis --

12 C680: Counter4b PORT MAP( S005 , S007 , S003 , S006 ,

13 S001 , S004 , S017 , S016 ,

14 S015 , S014 , S013 , S012 ,

15 S011 , S010 , S009 );

16 C704: Pulser_EN PORT MAP( S005 , S007 , S002 , S009 ,

17 S008 , S003 , S006 );

18 END structural;

Line #3 means that the input iCLK is connected to the internal SIGNAL named

’S005’. In a similar way, at line #6 the internal net ’S010’ is connected to the output

oQ3_Q0_00. As an example of constant setting, the internal SIGNAL ’S004’ is set

to ’0’ (line #9).

The architecture body ends with the effective connection of the components to

the internal nets. In the VHDL jargon, this operation is named “mapping” and is

obtained here with the statement “PORT MAP”.

In this example, on line #17 an instance named ’C704’ of the “Pulser_EN” com-

ponent is connected to the internal SIGNALs declared in the arguments. Their order

corresponds to that of the component declaration, so, for instance, its Reset terminal

is connected to the SIGNAL ’S007’.

9.2.5 Other VHDL Examples

In the following, a few examples of VHDL code describe frequently used networks.

Decoder

A decoder activates the output corresponding to the input binary code, assuming

the Enable input is active (as seen in Sect. 2.6.1). Below is the symbol of a 2 → 4

decoder and its entity declaration unit, as defined in Deeds.
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1 ENTITY Decoder_2_4 IS

2 PORT( A1: IN std_logic;

3 A0: IN std_logic;

4 EN: IN std_logic;

5 Y0: OUT std_logic;

6 Y1: OUT std_logic;

7 Y2: OUT std_logic;

8 Y3: OUT std_logic );

9 END Decoder_2_4;

The PORT declaration lists inputs A1, A0, EN, and outputs Y0..Y3. Below is a possible

component’s description using the construct with-select-when.

In this case, we did not use a process to describe the behavior. The language allows

a considerable freedom of choice; in this case, it is convenient to adopt a descriptive

approach, basically similar to a truth table.

In the VHDL code generated by Deeds, below, line #2 defines aNumber as a

vector of three wires (indexed as 2,1,0), which on line #3 gathers together the three

inputs EN, A1, and A0.

The binary value of aNumber, i.e., the group of the three input wires, selects the

active output.

1 ARCHITECTURE behavioral OF Decoder_2_4 IS

2 SIGNAL aNumber: std_logic_vector( 2 downto 0 );

3 BEGIN

4 aNumber <= EN & A1 & A0;

5 with aNumber select

6 Y0 <= ’0’ when "000", ’0’ when "001",

7 ’0’ when "010", ’0’ when "011",

8 ’1’ when "100", ’0’ when "101",

9 ’0’ when "110", ’0’ when "111", ’X’ when others;

10 with aNumber select

11 Y1 <= ’0’ when "000", ’0’ when "001",

12 ’0’ when "010", ’0’ when "011",

13 ’0’ when "100", ’1’ when "101",

14 ’0’ when "110", ’0’ when "111", ’X’ when others;

15 with aNumber select

16 Y2 <= ’0’ when "000", ’0’ when "001",

17 ’0’ when "010", ’0’ when "011",

18 ’0’ when "100", ’0’ when "101",

19 ’1’ when "110", ’0’ when "111", ’X’ when others;

20 with aNumber select

21 Y3 <= ’0’ when "000", ’0’ when "001",

22 ’0’ when "010", ’0’ when "011",

23 ’0’ when "100", ’0’ when "101",

24 ’0’ when "110", ’1’ when "111", ’X’ when others;

25 END behavioral;

The rest of the code assigns a value to each output, on the bases of the selection

dictated by aNumber. For instance, at lines #6..9, the output Y0 is assigned to ’0’ for

all the combinations of aNumber, except when it is equal to ’100’ (i.e., when EN =

’1’, A1 = ’0’ and A0 = ’0’ ).

Remember that the assignment operator ’<=’, when used outside the processes,

represents a connection. The clause ’X’ when others is introduced only for simulation

purposes, and it is not necessary for synthesis.



9.2 Introduction to VHDL 499

Multiplexer

As described in Sect. 2.6.2, a multiplexer selects which one of the inputs will be

copied in the output, according to the binary value of the selection inputs. The 4 → 1

multiplexer symbol and the corresponding entity declaration unit follow.

1 ENTITY Multiplexer_4_1 IS

2 PORT( I0: IN std_logic;

3 I1: IN std_logic;

4 I2: IN std_logic;

5 I3: IN std_logic;

6 S1: IN std_logic;

7 S0: IN std_logic;

8 Q: OUT std_logic );

9 END Multiplexer_4_1;

In this case, it is convenient to use the construct when-else. The behavior of the

component is easily readable in the following code.

1 ARCHITECTURE behavioral OF Multiplexer_4_1 IS

2 BEGIN

3 Q <= I0 when ((S1 = ’0’) and (S0 = ’0’)) else

4 I1 when ((S1 = ’0’) and (S0 = ’1’)) else

5 I2 when ((S1 = ’1’) and (S0 = ’0’)) else

6 I3 when ((S1 = ’1’) and (S0 = ’1’)) else ’X’;

7 END behavioral;

The output Q takes the value of one of the inputs I0..I3, according to the combinations

of the input S1 and S0, this time represented as logic expressions. For instance, Q

copies I2 if (S1 = ’1’) and (S0 = ’0’).

Demultiplexer

Input IN is copied on the output selected by S1 and S0 (see Sect. 2.6.3). An example

of a 1 → 4 demultiplexer follows.

1 ENTITY Demultiplexer_1_4 IS

2 PORT( I: IN std_logic;

3 S1: IN std_logic;

4 S0: IN std_logic;

5 Q0: OUT std_logic;

6 Q1: OUT std_logic;

7 Q2: OUT std_logic;

8 Q3: OUT std_logic );

9 END Demultiplexer_1_4;

A demultiplexer is the same as a decoder with enable input; therefore, the imple-

mentation of both is identical.

1 ARCHITECTURE behavioral OF Demultiplexer_1_4 IS

2 SIGNAL aNumber: std_logic_vector( 2 downto 0 );

3 BEGIN

4 aNumber <= I & S1 & S0;

5 with aNumber select

6 Q0 <= ’0’ when "000", ’0’ when "001",

7 ’0’ when "010", ’0’ when "011",

8 ’1’ when "100", ’0’ when "101",
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9 ’0’ when "110", ’0’ when "111", ’X’ when others;

10 -- omissis ...

11 END behavioral;

Full Adder

The component, described in Sect. 3.9.2, adds two bits and the input carry and

generates the sum and the output carry. On the right is the VHDL declaration of its

terminals.

1 ENTITY Adder_Full IS

2 PORT( CIN: IN std_logic;

3 COUT:OUT std_logic;

4 A: IN std_logic;

5 B: IN std_logic;

6 S: OUT std_logic );

7 END Adder_Full;

The construct with-select-when produces a list that reflects the component’s truth

table. ABC, defined as vector of three signals, groups together inputs A, B, and CIN

(line #4).

1 ARCHITECTURE behavioral OF Adder_Full IS

2 SIGNAL ABC: std_logic_vector( 2 downto 0 );

3 BEGIN

4 ABC <= A & B & CIN;

5 --

6 with ABC select

7 S <= ’0’ when "000",

8 ’1’ when "001",

9 ’1’ when "010",

10 ’0’ when "011",

11 ’1’ when "100",

12 ’0’ when "101",

13 ’0’ when "110",

14 ’1’ when "111",

15 ’X’ when others;

16 --

17 with ABC select

18 COUT <= ’0’ when "000",

19 ’0’ when "001",

20 ’0’ when "010",

21 ’1’ when "011",

22 ’0’ when "100",

23 ’1’ when "101",

24 ’1’ when "110",

25 ’1’ when "111",

26 ’X’ when others;

27 END behavioral;
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Magnitude Comparator

It is a component used to compare the magnitude of two unsigned integer numbers

(encountered in Sect. 8.3.6). The figure shows the 4-bit version. On the right is the

corresponding entity in VHDL, as generated by Deeds.

1 ENTITY Compar_4 IS

2 PORT( A3: IN std_logic;

3 A2: IN std_logic;

4 A1: IN std_logic;

5 A0: IN std_logic;

6 B3: IN std_logic;

7 B2: IN std_logic;

8 B1: IN std_logic;

9 B0: IN std_logic;

10 MIN: OUT std_logic;

11 EQU: OUT std_logic;

12 MAJ: OUT std_logic );

13 END Compar_4;

MIN is asserted when operand A is lower than operand B.

MAJ is set to one in the opposite case, and EQU when they are equal.

This description is easily readable also in the architecture description, shown

below, where a process construct is used.

1 ARCHITECTURE behavioral OF Compar_4 IS

2 BEGIN

3 Cmp4: PROCESS( A3, A2, A1, A0,

4 B3, B2, B1, B0 )

5 variable A: unsigned( 3 downto 0 );

6 variable B: unsigned( 3 downto 0 );

7 BEGIN

8 A := (A3 & A2 & A1 & A0);

9 B := (B3 & B2 & B1 & B0);

10 --

11 if (A > B) then MIN <= ’0’; EQU <= ’0’; MAJ <= ’1’;

12 elsif (A < B) then MIN <= ’1’; EQU <= ’0’; MAJ <= ’0’;

13 elsif (A = B) then MIN <= ’0’; EQU <= ’1’; MAJ <= ’0’;

14 else MIN <= ’X’; EQU <= ’X’; MAJ <= ’X’;

15 END IF;

16 END PROCESS;

17 END behavioral;

In the process body, two variables (A and B) group together the corresponding input

wires (lines #8..9). In this way, we can compare in algebraic mode the variables and

assert, or not, the output coherently (lines #11..13).

Flip-flop D-PET

Below, the VHDL description of a D-PET-type flip-flop, with Clear and Preset .

1 ENTITY DpetFF IS

2 PORT( D, Ck : IN std_logic;

3 nCL , nPR: IN std_logic;

4 Q, nQ : OUT std_logic );

5 END DpetFF;
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Note that the D input is not in the sensitivity list (line #3), because a change of that

input only will not modify the flip-flop state. Lines #5..7 evaluate the asynchronous

inputs Clear and Preset (nCL and nPR), changing the flip-flop outputs indepen-

dently of the clock. If they are not active (line #8), on the positive clock edge the

output Q will copy the value of D.

1 ARCHITECTURE behavioral OF DpetFF IS

2 BEGIN

3 Dff: PROCESS( Ck, nCL , nPR )

4 BEGIN

5 if (nCL=’0’) and (nPR=’0’) then Q <= ’X’; nQ <= ’X’;

6 elsif (nCL=’0’) and (nPR=’1’) then Q <= ’0’; nQ <= ’1’;

7 elsif (nCL=’1’) and (nPR=’0’) then Q <= ’1’; nQ <= ’0’;

8 elsif (nCL=’1’) and (nPR=’1’) then

9 if (Ck ’event) AND (Ck=’1’) THEN -- Positive Edge

10 Q <= D; nQ <= not D;

11 END IF;

12 else Q <= ’X’; nQ <= ’X’;

13 END IF;

14 END PROCESS;

15 END behavioral;

Flip-Flop E-PET

The VHDL description of an E-PET-type flip-flop is obviously very similar to the

one of the D-PET, with the addition of the input E condition.

1 ENTITY EpetFF IS

2 PORT( D, E, Ck: IN std_logic;

3 nCL , nPR: IN std_logic;

4 Q, nQ : OUT std_logic );

5 END EpetFF;

At line #12, the flip-flop outputs are updated on the positive clock edge only if E is

active. Note that the line immediately below is there only for simulation purposes

and states that if the input E is unknown, the outputs will be too.

1 ARCHITECTURE behavioral OF EpetFF IS

2 BEGIN

3 Eff: PROCESS( Ck, nCL , nPR )

4 BEGIN

5 if (nCL=’0’) and (nPR=’0’) then Q <= ‘X’; nQ <= ‘X’;

6 elsif (nCL=’0’) and (nPR=’1’) then Q <= ’0’; nQ <= ’1’;

7 elsif (nCL=’1’) and (nPR=’0’) then Q <= ’1’; nQ <= ’0’;

8 elsif (nCL=’1’) and (nPR=’1’) then

9 if (Ck ’event) AND (Ck=’1’) THEN -- Positive Edge

10 if (E = ’1’) then Q <= D; nQ <= not D;

11 elsif not(E = ’0’) then Q <= ’X’; nQ <= ’X’;

12 END IF;

13 END IF;

14 else Q <= ’X’; nQ <= ’X’;

15 END IF;

16 END PROCESS;

17 END behavioral;
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Flip-Flop JK-PET

The VHDL of JK-PET flip-flop is similar to the previous two.

1 ENTITY JKpetFF IS

2 PORT( J, K, Ck: IN std_logic;

3 nCL , nPR: IN std_logic;

4 Q, nQ : OUT std_logic );

5 END JKpetFF;

The presence of the JK Toggle modality needs a variable representing the state of the

flip-flop (line #2).

1 ARCHITECTURE behavioral OF JKpetFF IS

2 BEGIN

3 JKff: PROCESS( Ck, nCL , nPR )

4 variable OutQ: STD_LOGIC;

5 BEGIN

6 if (nCL=’0’) and (nPR=’1’) then OutQ := ’0’;

7 elsif (nCL=’1’) and (nPR=’0’) then OutQ := ’1’;

8 elsif (nCL=’1’) and (nPR=’1’) then

9 if (Ck ’event) AND (Ck=’1’) THEN

10 -- Positive Edge

11 if (J = ’0’) AND (K = ’1’) THEN OutQ := ’0’;

12 elsif (J = ’1’) AND (K = ’0’) THEN OutQ := ’1’;

13 elsif (J = ’1’) AND (K = ’1’) THEN OutQ := not OutQ;

14 elsif not((J=’0’)AND(K=’0’)) THEN OutQ := ’X’;

15 END IF;

16 END IF;

17 else OutQ := ’X’;

18 END IF;

19 --

20 Q <= ( OutQ);

21 nQ <= (not OutQ);

22 --

23 END PROCESS;

24 END behavioral;

On the positive clock edge, the J and K inputs are evaluated (lines #11..15) and the

flip-flop state is updated. The output Q and Q are then updated on the end of the

process code (lines #20..21).
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Parallel Register

We have already encountered the VHDL of a parallel register, when we considered

the State Register process of the FSM. Here is presented an example of a more

general coding, defining a register with Enable and Clear inputs.

1 ENTITY PiPoE4 IS

2 PORT( Ck : IN std_logic;

3 nCL: IN std_logic;

4 E : IN std_logic;

5 P3 : IN std_logic;

6 P2 : IN std_logic;

7 P1 : IN std_logic;

8 P0 : IN std_logic;

9 Q3 : OUT std_logic;

10 Q2 : OUT std_logic;

11 Q1 : OUT std_logic;

12 Q0 : OUT std_logic );

13 END PiPoE4;

To group together the register bits, we introduce the variable aReg (line #3). If Clear

input is active (line #6), the variable is cleared. Else, on the positive clock edge, if the

enable input EN is active (line #8 and 9), the input values P3..P0 are assigned to the

variable. The statements at lines #18..21 assign to the register outputs the updated

variable bits.

1 ARCHITECTURE behavioral OF PiPoE4 IS

2 BEGIN

3 RegPiPoE4: PROCESS( Ck, nCL )

4 variable aReg: std_logic_vector( 3 downto 0 );

5 BEGIN

6 if (nCL = ’0’) then aReg := (others =>’0’);

7 elsif (nCL = ’1’) then

8 if (Ck ’event) AND (Ck=’1’) THEN -- Positive Edge

9 if (E = ’1’) then

10 aReg := (P3 & P2 & P1 & P0);

11 elsif not(E = ’0’) then

12 aReg := (others =>’X’);

13 END IF;

14 END IF;

15 else aReg := (others =>’X’);

16 END IF;

17

18 Q3 <= aReg (3);

19 Q2 <= aReg (2);

20 Q1 <= aReg (1);

21 Q0 <= aReg (0);

22

23 END PROCESS;

24 END behavioral;
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Shift Register (S.I.P.O.)

An example of Serial-Input Parallel-Output shift register is shown on the figure.

This 4-bit register has an EN input that enables the shifting. Data enters through the

input In and shifts from Q3 to Q0.

1 ENTITY SiPoE4 IS

2 PORT( I : IN std_logic;

3 Ck : IN std_logic;

4 nCL: IN std_logic;

5 E : IN std_logic;

6 Q3 : OUT std_logic;

7 Q2 : OUT std_logic;

8 Q1 : OUT std_logic;

9 Q0 : OUT std_logic );

10 END SiPoE4;

The VHDL description style resembles that of the parallel register see before, with

the difference that, on the positive clock edge (and if the enable E is active), the

variable bits are assigned coherently with the required function.

1 ARCHITECTURE behavioral OF SiPoE4 IS

2 BEGIN

3 RegSiPoE4: PROCESS( Ck, nCL )

4 variable aReg: std_logic_vector( 3 downto 0 );

5 BEGIN

6 if (nCL = ’0’) then aReg := (others =>’0’);

7 elsif (nCL = ’1’) then

8 if (Ck ’event) AND (Ck=’1’) THEN -- Positive Edge

9 if (E = ’1’) then

10 aReg := (I & aReg (3) & aReg (2) & aReg (1));

11 elsif not(E = ’0’) then

12 aReg := (others =>’X’);

13 END IF;

14 END IF;

15 else aReg := (others =>’X’);

16 END IF;

17 --

18 Q3 <= aReg (3);

19 Q2 <= aReg (2);

20 Q1 <= aReg (1);

21 Q0 <= aReg (0);

22 --

23 END PROCESS;

24 END behavioral;

On line #10, the new variable value is constructed joining the input In (I in the code)

and the current bits in position 3, 2, and 1.

After the clock edge, we obtain the copy on the input in the higher bit, and the

other ones shifted to the right.
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9.3 FPGA Prototyping Exercises

This section offers a few exercises of system project and prototyping on FPGA.

Others are included in the Deeds Web site’s Learning Materials.

9.3.1 Synchronous Serial Communication System (8-bit)

Complete the design of a synchronous serial communication system, and then im-

plement it on a FPGA board.

The TX unit reads an eight-bit parallel data (D0..D7); when the input GO goes from

0 to 1, data is serialized and transmitted on the line SER, in the format shown in the

following figure:

• The bit sequence is synchronous with the clock CK.

• The bit time duration is equal to one clock cycle.

• Each sequence begins with a start bit (high).

• Eight data bits follow (D0..D7).

• The bit packet ends with a Stop Bit (low).

The output RDY is activated when the transmitter is waiting for a low to high

transition on the input GO.

The receiver RX waits for packets on the line SER. When a start bit is detected, the

receiver processes the serial sequence and copies the D0..D7 values on the outputs

Q0..Q7.

The stop bit is evaluated. If correctly received, the system activates the OK out-

put for the duration of a clock cycle, otherwise the receiver sets the ERR output,

maintaining it active until SER returns to 0.
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The proposed architecture is shown below (a template of the schematic and the

controllers’ FSM are available for downloading from Deeds Web site).



508 9 Introduction to FPGA and HDL Design

TX Design Guidelines

The TX circuit is divided into the usual structure controller–datapath, where the

latter is composed of a multiplexer 16→1 and a D-PET flip-flop.

While waiting for the GO command, the transmitter generates a low level (the

idle state of the line).

On the positive edge of GO, it transmits sequentially on SER a ’1’ (the start bit),

the eight bits D0..D7, starting from D0, and finally a ’0’ (the stop bit). Then, it waits

for the next GO command.

A “Mux16-1” multiplexer (from Deeds library) provides the data, under the con-

trol of the FSM using the selection lines S3..S0. As shown in the previous figure, the

multiplexer inputs are connected in the following order:

• I 0 = low (the idle line );

• I 1 = high (the start bit);

• I 2..I 9 = D0..D7 (the data bits);

• I 10 = low (the stop bit);

• I 11..I 15 = low (not used).

To grant the synchronicity of the output with the clock CK, the multiplexer output

is fed to a D-PET flip-flop, which drives the output line SER.

RX Design Guidelines

The RX datapath is represented by an eight-bit shift register (“SiPo8”), used to de-

serialize and store the data received on SER.

On the rising edge of the clock, if the register enable input E is active, data shifts

by a position (I n → Q7 ... → Q1 → Q0). Otherwise, the outputs Q0..Q7 remain

unchanged.

The controller synchronizes the shift operations, enabling the register when need-

ed by activating the EN line. The controller waits for the start bit and then enables

data shifting in the register, for each data bit.

Finally, the controller evaluates the stop bit, activating OK or ERR, according to

the specifications.

Note that a multiplexer 2→1 was added between the transmitter and the receiver.

The TEST input, when activated, allows us to connect the receiver directly to the

transmitter to allow stand-alone testing.

Testing the Design on FPGA

If the circuit schematic template available on Deeds Web site is used, the I/O asso-

ciation for an Terasic/Altera DE0-CV board is already configured.
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As visible above, the clock frequency set in the template is 1 KHz. It is possible to

slow down the clock thanks to the Slow Clock Mode feature.

We set the switch “Sw[09]” to activate the mode, and the LED “LEDR[09]”

visualizes the clock pulses. During the test, if the switch is at ’0’, the clock works at

the regular frequency. If at ’1’, the clock slows down to 1 Hz, as defined in the setup.

To interact with the board resources, it could be convenient to refer to the figure

below, which summarizes the associations.

On right side of the figure are represented also the SEROUT and SERIN terminals,

made available on the expansion header. They are useful to connect the transmitter

to the receiver using a jumper or a cable (in this way, for example, we can test what
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happens if the line is disconnected during the test operations, or if the line is very

long and exposed to external noise).

9.3.2 Digital Chronometer

We design and test on FPGA a Digital Chronometer (see figure below). Requested

resolution is one hundredth of a second, maximum time measurable about one hour.

Time is displayed with six decimal figures, two for the minutes, two for the seconds,

and two for the hundredths of second.

The system has a push-button (PLS) and a lamp bulb (LIT ). At system reset all

displays’ digits are set to zero. LIT is on for all the time PLS is pushed.

The time counting starts when PLS is pushed and then released. The second

pressure on PLS stops counting, and the time elapsed can be read on the displays.

The third pressure resets the display, and the timer waits for PLS to start a new

counting sequence.

We assume to have available a clock CK with 100 Hz frequency and a FPGA

board, such as the Terasic/Altera DE0-CV with six seven-segment displays.
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Design Guidelines

We suggest to use for the chronometer the structure controller–datapath. The latter

is composed by the time counter and the associated display. The former handles the

push-button functionality, the lamp, and the counter controls.

Observe that the time counter needs only two control inputs, CLR (to clear its con-

tents) and ENC (to enable/stop counting). The controller can be implemented as a

FSM that reads the push-button through the PLS input, activates the lamp with the

output LIT, and generates the control signals CLR and ENC for the time counter.

We suggest to design a controller FSM that tracks the PLS input value, acting on

its level changes as required by the specifications.

Time Counter

The time counter can be designed in many different ways. We suggest to separate the

counter in six Binary Coded Decimal (BCD) elements, each for every digit, defining

in Deeds a Circuit Block Element (CBE) block.

Following this approach, each digit will be driven by its own counter, receiving

a count enable input EN from the component on the right side, and generating a

terminal count TC to increment the digit placed on its left. Take also in account that

the seconds and minutes should be counted module 60, so two of the blocks must

generate TC on the ’5’ digit.

In the next figure, the CBE component to be completed, as available in the digital

contents of this book, opened in the Deeds-DcS circuit editor.

The proposed CBE shows an added input MOD allowing to set the counting

module (i.e., equal to 10 if MOD = ’1’, or 6 if MOD = ’0’). The CBE receives also,

as usual, the inputs CK and RE S.
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Following this modular approach, the overall schematic appears as follows.

The CBE design, in turn, can be defined in different ways. A first, intuitive method

can be to connect a 4-bit binary counter with a few gates around, to implement the

module selection logic and the generation of TC. In this case, the approach must

stand on the experience of the designers and their own creativity.
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It is preferable to use a more systematic approach, designing the module in terms

of FSM, therefore defining its behavior in an algorithmic way (as seen, for instance,

in Sect. 7.2.2).

Testing the Chronometer on FPGA

A circuit to be completed is available on the digital contents of the book. If this file

is used, the I/O associations are already configured (for an Altera/Terasic DE0-CV

board). Following the specifications, the clock frequency is set to 100 Hz. The “Slow

Clock Mode” setting allows us to feed the clock manually, for testing, pressing the

button “Key[00]”, if the switch “Sw[09]” is set to ’1’. Normal operations will take

place if the switch is left at ’0’.

The following figure can be useful to interact with the board controls resources during

the circuit test.
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9.4 Solutions

9.4.1 Synchronous Serial Communication System (8-bit)

ASM Diagram of the Transmitter’s Controller

ASM Diagram of the Receiver’s Controller
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9.4.2 Digital Chronometer

Schematic

Controller ASM Diagram
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CBE Counter Module (Circuital Approach)

CBE Counter Module (Algorithmic Approach)
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ASM Diagram (CBE Counter Module)



Appendix A

The Powers of 2

As we are dealing with binary values, it is useful to remember the values of the most

significant powers of 2. Below are the smallest:

20 21 22 23 24 25 26 27 28 29 210

1 2 4 8 16 32 64 128 256 512 1024

We see that 210
= 1024 is equal to approximately 103

= 1000. Let the prefix K

(meaning Kilo) indicate the value 1024 even though the International Electrotech-

nical Commission (IEC) standard establishes the prefix Kibi (from Kilo binary):

210 211 212 213 214 215 216 217 218 219 220

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1024K

Similarly 220 let M (Mega) indicate (Mebi), equal to about 106:

220 221 222 223 224 225 226 227 228 229 230

1M 2M 4M 8M 16M 32M 64M 128M 256M 512M 1024M

Let G (Giga) (109) indicate (Gibi), which is equal to 230:

230 231 232 233 234 235 236 237 238 239 240

1G 2G 4G 8G 16G 32G 64G 128G 256G 512G 1024G

Let T (Tera) indicate 240 (Tebi), about 1012.
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To be thorough, a table including all the prefixes follows.

IEC prefix Representations Customary prefix

Name Symbol Base 2 Base 1024 Base 10 Name Symbol

Kibi Ki 210 10241
= 1.024 × 103 Kilo k or K

Mebi Mi 220 10242
≈ 1.049 × 106 Mega M

Gibi Gi 230 10243
≈ 1.074 × 109 Giga G

Tebi Ti 240 10244
≈ 1.100 × 1012 Tera T

Pebi Pi 250 10245
≈ 1.126 × 1015 Peta P

Exbi Ei 260 10246
≈ 1.153 × 1018 Exa E

Zebi Zi 270 10247
≈ 1.181 × 1021 Zetta Z

Yobi Yi 280 10248
≈ 1.209 × 1024 Yotta Y
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State Diagrams

The “State Diagram” is one of several methods for describing the behavior and

performing the synthesis of a FSM, alternative to the ASM method developed in the

book. It is quite similar to the former and still used in textbooks and documentation

materials.

As the ASM, it describes the machine state-to-state transitions and outputs. In

the following, we show how to convert ASM diagrams into State Diagrams, using as

examples state machines presented in the book as ASM.

A first example of a State Diagram

(right) is the module-4 counter

described in Sect. 7.2.1 (left).

The circles, or “bubbles” represent

the states, which are connected by

lines (arches) with arrows that point

to the direction of the transition.

The states are identified by a letter

(a, b, c, d); each circle contains also

the corresponding binary code. The

lines are labelled with the Q1 Q0

output values.

In other representations, in the case

of a Moore machine, the outputs

could also be written inside the state

circles.

If there are inputs conditioning the state transitions, they are written by the lines,

using digits separated by a slash. The first set of digits (before the slash) indicates

the value of the inputs: with only one input there will be two lines exiting each state.
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The figure below shows the bidirectional counter introduced in Sect. 7.2.2. There

is now an input DIR that sets the count direction. If DIR = 1 the count is up, if DIR

= 0 the count is down. The couple of digits after the slash shows the outputs, as in

the previous case.

The edge detector (Sect. 7.2.2) is another example of a Moore machine. A line that

starts and ends in the same state indicates a waiting loop.
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In a Mealy machine, such as the edge detector with conditioned outputs (Sect.

7.2.3), the outputs are function of both state and inputs. The State Diagram indicates,

as before, the outputs in the lines after the slash, but in this case, outputs in the same

state are different when conditioned by an input.

The figure below is another example of a Mealy machine. It represents the algorithm

of the circuit seen in Sect. 7.3.9.
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VHDL Code

In this pages, we list the VHDL codes described in Chap. 9. Listings are almost

complete. The omitted parts can be obtained by exporting with Deeds the projects

available in the digital contents pages (on Deeds Web site).

C.1 Code from the Pulse Generator Example

C.1.1 Schematic

C.1.2 Top Entity

1 ---------------------------------------------------------------------------------

2 -- Deeds (Digital Electronics Education and Design Suite)

3 -- VHDL Code generated on (10/03/2018 , 14:50:44)

4 -- by the Deeds (Digital Circuit Simulator)(Deeds -DcS)
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5 -- Ver. 2.10.300 (Jan 19, 2018)

6 -- Copyright(c)2002 -2018 University of Genoa , Italy

7 -- Web Site: https :// www.digitalelectronicsdeeds .com

8 ---------------------------------------------------------------------------------

9 -- Code compiled for: "DE0 -CV Board"

10 -- Chip FPGA: Intel/Altera Cyclone(r) V (5 CEBA4F23C7)

11 -- Proprietary EDA Tool: Quartus(r) II (Ver = 12.1 sp1)

12 ---------------------------------------------------------------------------------

13

14 LIBRARY ieee;

15 USE ieee.std_logic_1164 .ALL;

16 USE ieee.numeric_std .all;

17

18 ENTITY Pulser_DE0CV IS

19 PORT(

20 --------------------------------------------------------------------> Clocks:

21 iCLOCK_50MHz: IN std_logic; --> PIN_V15 --> "iCLK ": 2 Hz (Sw[09], LEDR [09]

22 --> Key [01] for Slow Clock Mode)

23 --------------------------------------------------------------------> Inputs:

24 iTRG: IN std_logic; --> PIN_M6 , PButton: Key [03] H (if pressed)

25 inReset: IN std_logic; --> PIN_P22 , PButton: Reset L (if pressed)

26 iTIME_03: IN std_logic; --> PIN_T12 , Switch: Sw[03]

27 iTIME_02: IN std_logic; --> PIN_T13 , Switch: Sw[02]

28 iTIME_01: IN std_logic; --> PIN_V13 , Switch: Sw[01]

29 iTIME_00: IN std_logic; --> PIN_U13 , Switch: Sw[00]

30 -------------------------------------------------------------------> Outputs:

31 oOUT: OUT std_logic; --> PIN_L2 , Red Led: LEDR [08]

32 oLEDS_03: OUT std_logic; --> PIN_Y3 , Red Led: LEDR [03]

33 oLEDS_02: OUT std_logic; --> PIN_W2 , Red Led: LEDR [02]

34 oLEDS_01: OUT std_logic; --> PIN_AA1 , Red Led: LEDR [01]

35 oLEDS_00: OUT std_logic; --> PIN_AA2 , Red Led: LEDR [00]

36 oQ3_Q0_03: OUT std_logic; --> PIN_U1 , Red Led: LEDR [07]

37 oQ3_Q0_02: OUT std_logic; --> PIN_U2 , Red Led: LEDR [06]

38 oQ3_Q0_01: OUT std_logic; --> PIN_N1 , Red Led: LEDR [05]

39 oQ3_Q0_00: OUT std_logic; --> PIN_N2 , Red Led: LEDR [04]

40 --------------------------------------------------------------> Added Inputs:

41 iSLOW_Sw09: IN std_logic; --> PIN_AB12 --> "iCLK" Sw[09]

42 iPULSE_Key01: IN std_logic; --> PIN_W9 --> "iCLK" Key [01]

43 -------------------------------------------------------------> Added Outputs:

44 oCLOCK_LedR09 : OUT std_logic; --> PIN_L1 , Red Led: LEDR [09]

45 -----------------------------------------------------------> Default Outputs:

46 oPIN_U21: OUT std_logic; --> PIN_U21 , Seven Segm. Display: HEX 0 0 (a)

47 oPIN_V21: OUT std_logic; --> PIN_V21 , Seven Segm. Display: HEX 0 1 (b)

48 oPIN_W22: OUT std_logic; --> PIN_W22 , Seven Segm. Display: HEX 0 2 (c)

49 oPIN_W21: OUT std_logic; --> PIN_W21 , Seven Segm. Display: HEX 0 3 (d)

50 oPIN_Y22: OUT std_logic; --> PIN_Y22 , Seven Segm. Display: HEX 0 4 (e)

51 oPIN_Y21: OUT std_logic; --> PIN_Y21 , Seven Segm. Display: HEX 0 5 (f)

52 oPIN_AA22: OUT std_logic; --> PIN_AA22 , Seven Segm. Display: HEX 0 6 (g)

53 oPIN_AA20: OUT std_logic; --> PIN_AA20 , Seven Segm. Display: HEX 1 0 (a)

54 oPIN_AB20: OUT std_logic; --> PIN_AB20 , Seven Segm. Display: HEX 1 1 (b)

55 oPIN_AA19: OUT std_logic; --> PIN_AA19 , Seven Segm. Display: HEX 1 2 (c)

56 oPIN_AA18: OUT std_logic; --> PIN_AA18 , Seven Segm. Display: HEX 1 3 (d)

57 oPIN_AB18: OUT std_logic; --> PIN_AB18 , Seven Segm. Display: HEX 1 4 (e)

58 oPIN_AA17: OUT std_logic; --> PIN_AA17 , Seven Segm. Display: HEX 1 5 (f)

59 oPIN_U22: OUT std_logic; --> PIN_U22 , Seven Segm. Display: HEX 1 6 (g)

60 oPIN_Y19: OUT std_logic; --> PIN_Y19 , Seven Segm. Display: HEX 2 0 (a)

61 oPIN_AB17: OUT std_logic; --> PIN_AB17 , Seven Segm. Display: HEX 2 1 (b)

62 oPIN_AA10: OUT std_logic; --> PIN_AA10 , Seven Segm. Display: HEX 2 2 (c)

63 oPIN_Y14: OUT std_logic; --> PIN_Y14 , Seven Segm. Display: HEX 2 3 (d)

64 oPIN_V14: OUT std_logic; --> PIN_V14 , Seven Segm. Display: HEX 2 4 (e)

65 oPIN_AB22: OUT std_logic; --> PIN_AB22 , Seven Segm. Display: HEX 2 5 (f)

66 oPIN_AB21: OUT std_logic; --> PIN_AB21 , Seven Segm. Display: HEX 2 6 (g)

67 oPIN_Y16: OUT std_logic; --> PIN_Y16 , Seven Segm. Display: HEX 3 0 (a)

68 oPIN_W16: OUT std_logic; --> PIN_W16 , Seven Segm. Display: HEX 3 1 (b)

69 oPIN_Y17: OUT std_logic; --> PIN_Y17 , Seven Segm. Display: HEX 3 2 (c)

70 oPIN_V16: OUT std_logic; --> PIN_V16 , Seven Segm. Display: HEX 3 3 (d)

71 oPIN_U17: OUT std_logic; --> PIN_U17 , Seven Segm. Display: HEX 3 4 (e)

72 oPIN_V18: OUT std_logic; --> PIN_V18 , Seven Segm. Display: HEX 3 5 (f)

73 oPIN_V19: OUT std_logic; --> PIN_V19 , Seven Segm. Display: HEX 3 6 (g)

74 oPIN_U20: OUT std_logic; --> PIN_U20 , Seven Segm. Display: HEX 4 0 (a)

75 oPIN_Y20: OUT std_logic; --> PIN_Y20 , Seven Segm. Display: HEX 4 1 (b)

76 oPIN_V20: OUT std_logic; --> PIN_V20 , Seven Segm. Display: HEX 4 2 (c)

77 oPIN_U16: OUT std_logic; --> PIN_U16 , Seven Segm. Display: HEX 4 3 (d)

78 oPIN_U15: OUT std_logic; --> PIN_U15 , Seven Segm. Display: HEX 4 4 (e)

79 oPIN_Y15: OUT std_logic; --> PIN_Y15 , Seven Segm. Display: HEX 4 5 (f)

80 oPIN_P9: OUT std_logic; --> PIN_P9 , Seven Segm. Display: HEX 4 6 (g)

81 oPIN_N9: OUT std_logic; --> PIN_N9 , Seven Segm. Display: HEX 5 0 (a)

82 oPIN_M8: OUT std_logic; --> PIN_M8 , Seven Segm. Display: HEX 5 1 (b)

83 oPIN_T14: OUT std_logic; --> PIN_T14 , Seven Segm. Display: HEX 5 2 (c)

84 oPIN_P14: OUT std_logic; --> PIN_P14 , Seven Segm. Display: HEX 5 3 (d)

85 oPIN_C1: OUT std_logic; --> PIN_C1 , Seven Segm. Display: HEX 5 4 (e)

86 oPIN_C2: OUT std_logic; --> PIN_C2 , Seven Segm. Display: HEX 5 5 (f)

87 oPIN_W19: OUT std_logic --> PIN_W19 , Seven Segm. Display: HEX 5 6 (g)

88 );
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89 END Pulser_DE0CV;

90 ARCHITECTURE structural OF Pulser_DE0CV IS

91 -------------------------------------------------------------------> Components:

92 COMPONENT ClockScaler IS

93 PORT( iMClk: IN std_logic; -- Master Clock

94 iH4: IN std_logic; -- iH4..iH0 = "high" frequency selection

95 iH3: IN std_logic;

96 iH2: IN std_logic;

97 iH1: IN std_logic;

98 iH0: IN std_logic;

99 iL3: IN std_logic; -- iL3..iL0 = "low" frequency selection

100 iL2: IN std_logic; -- and Button Modes

101 iL1: IN std_logic;

102 iL0: IN std_logic;

103 iSwch: IN std_logic; -- Switch

104 iBut: IN std_logic; -- Button for manual pulsed Clock

105 oSClk: OUT std_logic; -- Output Clock

106 oLed: OUT std_logic -- Slow "Clock Pulse" Led

107 );

108 END COMPONENT;

109 --

110 COMPONENT Counter4b IS

111 PORT( Ck : IN std_logic;

112 nCL: IN std_logic;

113 LD : IN std_logic;

114 ENP: IN std_logic;

115 ENT: IN std_logic;

116 UD : IN std_logic;

117 P3 : IN std_logic;

118 P2 : IN std_logic;

119 P1 : IN std_logic;

120 P0 : IN std_logic;

121 Q3 : OUT std_logic;

122 Q2 : OUT std_logic;

123 Q1 : OUT std_logic;

124 Q0 : OUT std_logic;

125 Tc : OUT std_logic );

126 END COMPONENT;

127 -----------------------------------------------------> Finite State Machine(s):

128 COMPONENT Pulser_EN IS

129 PORT( -----------------------------------> Clock & Reset:

130 Ck: IN std_logic;

131 Reset: IN std_logic;

132 -----------------------------------> Inputs:

133 i_TRG: IN std_logic;

134 i_TC: IN std_logic;

135 -----------------------------------> Outputs:

136 o_OUT: OUT std_logic;

137 o_LD: OUT std_logic;

138 o_EN: OUT std_logic

139 -------------------------------------------

140 );

141 END COMPONENT;

142 ---------------------------------------------------------------------> Signals:

143 SIGNAL S001: std_logic;

144 SIGNAL S002: std_logic;

145 SIGNAL S003: std_logic;

146 SIGNAL S004: std_logic;

147 SIGNAL S005: std_logic;

148 SIGNAL S006: std_logic;

149 SIGNAL S007: std_logic;

150 SIGNAL S008: std_logic;

151 SIGNAL S009: std_logic;

152 SIGNAL S010: std_logic;

153 SIGNAL S011: std_logic;

154 SIGNAL S012: std_logic;

155 SIGNAL S013: std_logic;

156 SIGNAL S014: std_logic;

157 SIGNAL S015: std_logic;

158 SIGNAL S016: std_logic;

159 SIGNAL S017: std_logic;

160 ---------------------------------------------------------------> Added Signals:

161 SIGNAL SSLOW_Sw09: std_logic;

162 SIGNAL SPULSE_Key01: std_logic;

163 SIGNAL iCLK: std_logic;

164 SIGNAL SCLOCK_LedR09 : std_logic;

165

166 BEGIN -- structural

167 -----------------------------------------------------------------------> Input:

168 S002 <= NOT iTRG;

169 S005 <= iCLK;

170 S007 <= inReset;

171 S014 <= iTIME_00;

172 S015 <= iTIME_01;
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173 S016 <= iTIME_02;

174 S017 <= iTIME_03;

175 ----------------------------------------------------------------------> Output:

176 oOUT <= S008;

177 oLEDS_00 <= S014;

178 oLEDS_01 <= S015;

179 oLEDS_02 <= S016;

180 oLEDS_03 <= S017;

181 oQ3_Q0_00 <= S010;

182 oQ3_Q0_01 <= S011;

183 oQ3_Q0_02 <= S012;

184 oQ3_Q0_03 <= S013;

185 -------------------------------------------------------------------> Constants:

186 S004 <= ’0’;

187 S001 <= ’1’;

188 oPIN_U21 <= ’1’;

189 oPIN_V21 <= ’1’;

190 oPIN_W22 <= ’1’;

191 oPIN_W21 <= ’1’;

192 oPIN_Y22 <= ’1’;

193 oPIN_Y21 <= ’1’;

194 oPIN_AA22 <= ’1’;

195 oPIN_AA20 <= ’1’;

196 oPIN_AB20 <= ’1’;

197 oPIN_AA19 <= ’1’;

198 oPIN_AA18 <= ’1’;

199 oPIN_AB18 <= ’1’;

200 oPIN_AA17 <= ’1’;

201 oPIN_U22 <= ’1’;

202 oPIN_Y19 <= ’1’;

203 oPIN_AB17 <= ’1’;

204 oPIN_AA10 <= ’1’;

205 oPIN_Y14 <= ’1’;

206 oPIN_V14 <= ’1’;

207 oPIN_AB22 <= ’1’;

208 oPIN_AB21 <= ’1’;

209 oPIN_Y16 <= ’1’;

210 oPIN_W16 <= ’1’;

211 oPIN_Y17 <= ’1’;

212 oPIN_V16 <= ’1’;

213 oPIN_U17 <= ’1’;

214 oPIN_V18 <= ’1’;

215 oPIN_V19 <= ’1’;

216 oPIN_U20 <= ’1’;

217 oPIN_Y20 <= ’1’;

218 oPIN_V20 <= ’1’;

219 oPIN_U16 <= ’1’;

220 oPIN_U15 <= ’1’;

221 oPIN_Y15 <= ’1’;

222 oPIN_P9 <= ’1’;

223 oPIN_N9 <= ’1’;

224 oPIN_M8 <= ’1’;

225 oPIN_T14 <= ’1’;

226 oPIN_P14 <= ’1’;

227 oPIN_C1 <= ’1’;

228 oPIN_C2 <= ’1’;

229 oPIN_W19 <= ’1’;

230 -----------------------------------------------------------> Component Mapping:

231 SSLOW_Sw09 <= iSLOW_Sw09;

232 SPULSE_Key01 <= iPULSE_Key01;

233 oCLOCK_LedR09 <= SCLOCK_LedR09 ;

234 ClockScaler_iCLK : ClockScaler PORT MAP (

235 iCLOCK_50MHz , ’1’, ’0’, ’1’, ’0’, ’0’, ’1’, ’1’, ’1’, ’1’,

236 SSLOW_Sw09 , SPULSE_Key01 , iCLK , SCLOCK_LedR09 );

237

238 C680: Counter4b PORT MAP ( S005 , S007 , S003 , S006 , S001 , S004 , S017 , S016 ,

239 S015 , S014 , S013 , S012 , S011 , S010 , S009 );

240 C704: Pulser_EN PORT MAP ( S005 , S007 , S002 , S009 , S008 , S003 , S006 );

241 END structural;

C.1.3 Components

1 ---------------------------------------------------------------------------------

2 -- Deeds (Digital Electronics Education and Design Suite)

3 -- VHDL Code generated on (10/03/2018 , 14:50:44)

4 -- by the Deeds (Digital Circuit Simulator)(Deeds -DcS)

5 -- Ver. 2.10.300 (Jan 19, 2018)

6 -- Copyright(c)2002 -2018 University of Genoa , Italy

7 -- Web Site: https ://www.digitalelectronicsdeeds .com

8 ---------------------------------------------------------------------------------

9 -- Code compiled for: "DE0 -CV Board"
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10 -- Chip FPGA: Intel/Altera Cyclone(r) V (5 CEBA4F23C7)

11 -- Proprietary EDA Tool: Quartus(r) II (Ver = 12.1 sp1)

12 ---------------------------------------------------------------------------------

13

14 library ieee;

15 use ieee.std_logic_1164.all;

16 use ieee.numeric_std.all;

17

18 ENTITY Counter4b IS

19 PORT( Ck : IN std_logic;

20 nCL: IN std_logic;

21 LD : IN std_logic;

22 ENP: IN std_logic;

23 ENT: IN std_logic;

24 UD : IN std_logic;

25 P3 : IN std_logic;

26 P2 : IN std_logic;

27 P1 : IN std_logic;

28 P0 : IN std_logic;

29 Q3 : OUT std_logic;

30 Q2 : OUT std_logic;

31 Q1 : OUT std_logic;

32 Q0 : OUT std_logic;

33 Tc : OUT std_logic );

34 END Counter4b;

35

36 --------------------------------------------------------------------

37 ARCHITECTURE behavioral OF Counter4b IS

38 BEGIN

39 Count4b: PROCESS( Ck , nCL , ENP , ENT , UD )

40 variable aCnt: unsigned( 3 downto 0 );

41 BEGIN

42 if (nCL = ’0’) then aCnt := (others =>’0’);

43 elsif (nCL = ’1’) then

44 if (Ck ’event) AND (Ck=’1’) then

45 if (LD = ’1’) then aCnt := (P3 & P2 & P1 & P0); -- Load

46 elsif (LD = ’0’) then

47 if (ENP = ’1’) and (ENT = ’1’)then

48 if (UD = ’1’) then

49 if (aCnt < "1111") then aCnt := aCnt + 1;

50 else aCnt := (others =>’0’);

51 end if;

52 elsif (UD = ’0’) then

53 if (aCnt > "0000") then aCnt := aCnt - 1;

54 else aCnt := (others =>’1’);

55 end if;

56 else aCnt := (others =>’X’); -- (UD: Unknown)

57 END IF;

58 elsif not((ENP =’0’)or

59 (ENT =’0’) ) then aCnt := (others =>’X’); -- (ENP: Unknown)

60 END IF;

61 else aCnt := (others =>’X’); -- (LD: Unknown)

62 END IF;

63 END IF;

64 else aCnt := (others =>’X’); -- (nCL: Unknown)

65 END IF;

66 --

67 Tc <= ENT and ( (aCnt (3) and aCnt (2) and aCnt (1) and aCnt (0) and UD) or

68 (not(aCnt (3) or aCnt (2) or aCnt (1) or aCnt (0) or UD)) );

69 --

70 Q3 <= aCnt (3);

71 Q2 <= aCnt (2);

72 Q1 <= aCnt (1);

73 Q0 <= aCnt (0);

74 END PROCESS;

75 END behavioral;

76 --------------------------------------------------------------------

77 library ieee;

78 use ieee.std_logic_1164.all;

79 use ieee.numeric_std.all;

80

81 -- Clock Scaler (Altera DE1 , DE2 and DE2 -115 version , master clock = 50 MHz)

82 ENTITY ClockScaler IS

83 PORT( iMClk: IN std_logic; -- Master Clock

84 iH4: IN std_logic; -- iH4..iH0 = "high" fr. sel.

85 iH3: IN std_logic;

86 iH2: IN std_logic;

87 iH1: IN std_logic;

88 iH0: IN std_logic;

89 iL3: IN std_logic; -- iL3..iL0 = "low" freq. sel.

90 iL2: IN std_logic; -- and Button Modes

91 iL1: IN std_logic;

92 iL0: IN std_logic;

93 iSwch: IN std_logic; -- Switch
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94 iBut: IN std_logic; -- Button for manual pulsed Clock

95 oSClk: OUT std_logic; -- Output Clock

96 oLed: OUT std_logic -- Slow "Clock Pulse" Led

97 );

98 END ClockScaler;

99

100 --------------------------------------------------------------------

101 ARCHITECTURE behavioral OF ClockScaler IS

102 BEGIN

103 -- ... omissis ... (see the complete code generated by Deeds)

104 END behavioral;

C.1.4 Finite State Machine

1 ---------------------------------------------------------------------------------

2 -- Deeds (Digital Electronics Education and Design Suite)

3 -- VHDL Code generated on (10/03/2018 , 14:50:44)

4 -- by the Deeds (Finite State Machine Simulator)(Deeds -FsM)

5 -- Ver. 2.10.300 (Jan 19, 2018)

6 -- Copyright(c)2002 -2018 University of Genoa , Italy

7 -- Web Site: https :// www.digitalelectronicsdeeds .com

8 ---------------------------------------------------------------------------------

9

10 LIBRARY ieee;

11 USE ieee.std_logic_1164 .ALL;

12

13 ENTITY Pulser_EN IS

14 PORT( -----------------------------------> Clock & Reset:

15 Ck: IN std_logic;

16 Reset: IN std_logic;

17 -----------------------------------> Inputs:

18 i_TRG: IN std_logic;

19 i_TC: IN std_logic;

20 -----------------------------------> Outputs:

21 o_OUT: OUT std_logic;

22 o_LD: OUT std_logic;

23 o_EN: OUT std_logic );

24 END Pulser_EN;

25

26 ARCHITECTURE behavioral OF Pulser_EN IS -- (Behavioral Description )

27 TYPE states is ( state_rs ,

28 state_wt ,

29 state_ps ,

30 dummy_11 );

31 SIGNAL State ,

32 Next_State: states;

33 BEGIN

34 -- Next State Combinational Logic ----------------------------------

35 FSM: process( State , i_TRG , i_TC )

36 begin

37 CASE State IS

38 when state_wt =>

39 if (i_TRG = ’1’) then

40 Next_State <= state_ps;

41 else

42 Next_State <= state_wt;

43 end if;

44 when state_ps =>

45 if (i_TC = ’1’) then

46 Next_State <= state_rs;

47 else

48 Next_State <= state_ps;

49 end if;

50 when state_rs =>

51 if (i_TRG = ’1’) then

52 Next_State <= state_rs;

53 else

54 Next_State <= state_wt;

55 end if;

56 when OTHERS =>

57 Next_State <= state_rs;

58 END case;

59 end process;

60

61 -- State Register --------------------------------------------------

62 REG: process( Ck , Reset )

63 begin

64 if (Reset = ’0’) then

65 State <= state_rs;

66 elsif rising_edge (Ck) then

67 State <= Next_State;
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68 end if;

69 end process;

70

71 -- Outputs Combinational Logic -----------------------------------

72 OUTPUTS: process( State , i_TRG , i_TC )

73 begin

74 -- Set output defaults:

75 o_OUT <= ’0’;

76 o_LD <= ’0’;

77 o_EN <= ’0’;

78

79 -- Set output as function of current state and input:

80 CASE State IS

81 when state_wt =>

82 o_LD <= ’1’;

83 when state_ps =>

84 o_OUT <= ’1’;

85 if (i_TC = ’0’) then

86 o_EN <= ’1’;

87 end if;

88 when OTHERS =>

89 o_OUT <= ’0’;

90 o_LD <= ’0’;

91 o_EN <= ’0’;

92 END case;

93 end process;

94 END behavioral;

C.2 Other VHDL Examples

C.2.1 Decoder

1 -----------------------------------------------------------------

2 library ieee;

3 use ieee.std_logic_1164.all;

4

5 ENTITY Decoder_2_4 IS

6 PORT( A1: IN std_logic;

7 A0: IN std_logic;

8 EN: IN std_logic;

9 Y0: OUT std_logic;

10 Y1: OUT std_logic;

11 Y2: OUT std_logic;

12 Y3: OUT std_logic );

13 END Decoder_2_4;

14

15 ARCHITECTURE behavioral OF Decoder_2_4 IS

16 SIGNAL aNumber: std_logic_vector( 2 downto 0 );

17 BEGIN

18 aNumber <= EN & A1 & A0;

19 with aNumber select

20 Y0 <= ’0’ when "000", ’0’ when "001",

21 ’0’ when "010", ’0’ when "011",

22 ’1’ when "100", ’0’ when "101",

23 ’0’ when "110", ’0’ when "111", ’X’ when others;

24 with aNumber select

25 Y1 <= ’0’ when "000", ’0’ when "001",

26 ’0’ when "010", ’0’ when "011",

27 ’0’ when "100", ’1’ when "101",

28 ’0’ when "110", ’0’ when "111", ’X’ when others;

29 with aNumber select

30 Y2 <= ’0’ when "000", ’0’ when "001",

31 ’0’ when "010", ’0’ when "011",

32 ’0’ when "100", ’0’ when "101",

33 ’1’ when "110", ’0’ when "111", ’X’ when others;

34 with aNumber select

35 Y3 <= ’0’ when "000", ’0’ when "001",

36 ’0’ when "010", ’0’ when "011",

37 ’0’ when "100", ’0’ when "101",

38 ’0’ when "110", ’1’ when "111", ’X’ when others;

39 END behavioral;
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C.2.2 Multiplexer

1 ----------------------------------------------------------------

2 library ieee;

3 use ieee.std_logic_1164.all;

4

5 ENTITY Multiplexer_4_1 IS

6 PORT( I0: IN std_logic;

7 I1: IN std_logic;

8 I2: IN std_logic;

9 I3: IN std_logic;

10 S1: IN std_logic;

11 S0: IN std_logic;

12 Q: OUT std_logic );

13 END Multiplexer_4_1;

14

15 ARCHITECTURE behavioral OF Multiplexer_4_1 IS

16 BEGIN

17 Q <= I0 when ((S1 = ’0’) and (S0 = ’0’)) else

18 I1 when ((S1 = ’0’) and (S0 = ’1’)) else

19 I2 when ((S1 = ’1’) and (S0 = ’0’)) else

20 I3 when ((S1 = ’1’) and (S0 = ’1’)) else ’X’;

21 END behavioral;

C.2.3 Demultiplexer

1 ---------------------------------------------------------------

2 library ieee;

3 use ieee.std_logic_1164.all;

4 ENTITY Demultiplexer_1_4 IS

5 PORT( I: IN std_logic;

6 S1: IN std_logic;

7 S0: IN std_logic;

8 Q0: OUT std_logic;

9 Q1: OUT std_logic;

10 Q2: OUT std_logic;

11 Q3: OUT std_logic );

12 END Demultiplexer_1_4;

13

14 ARCHITECTURE behavioral OF Demultiplexer_1_4 IS

15 SIGNAL aNumber: std_logic_vector( 2 downto 0 );

16 BEGIN

17 aNumber <= I & S1 & S0;

18 with aNumber select

19 Q0 <= ’0’ when "000", ’0’ when "001",

20 ’0’ when "010", ’0’ when "011",

21 ’1’ when "100", ’0’ when "101",

22 ’0’ when "110", ’0’ when "111", ’X’ when others;

23 with aNumber select

24 Q1 <= ’0’ when "000", ’0’ when "001",

25 ’0’ when "010", ’0’ when "011",

26 ’0’ when "100", ’1’ when "101",

27 ’0’ when "110", ’0’ when "111", ’X’ when others;

28 with aNumber select

29 Q2 <= ’0’ when "000", ’0’ when "001",

30 ’0’ when "010", ’0’ when "011",

31 ’0’ when "100", ’0’ when "101",

32 ’1’ when "110", ’0’ when "111", ’X’ when others;

33 with aNumber select

34 Q3 <= ’0’ when "000", ’0’ when "001",

35 ’0’ when "010", ’0’ when "011",

36 ’0’ when "100", ’0’ when "101",

37 ’0’ when "110", ’1’ when "111", ’X’ when others;

38 END behavioral;
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C.2.4 Full Adder

1 ----------------------------------------------------------------

2 library ieee;

3 use ieee.std_logic_1164.all;

4

5 ENTITY Adder_Full IS

6 PORT( CIN: IN std_logic;

7 COUT:OUT std_logic;

8 A: IN std_logic;

9 B: IN std_logic;

10 S: OUT std_logic );

11 END Adder_Full;

12

13 ARCHITECTURE behavioral OF Adder_Full IS

14 SIGNAL ABC: std_logic_vector( 2 downto 0 );

15 BEGIN

16 ABC <= A & B & CIN;

17 with ABC select

18 S <= ’0’ when "000",

19 ’1’ when "001",

20 ’1’ when "010",

21 ’0’ when "011",

22 ’1’ when "100",

23 ’0’ when "101",

24 ’0’ when "110",

25 ’1’ when "111",

26 ’X’ when others;

27 with ABC select

28 COUT <= ’0’ when "000",

29 ’0’ when "001",

30 ’0’ when "010",

31 ’1’ when "011",

32 ’0’ when "100",

33 ’1’ when "101",

34 ’1’ when "110",

35 ’1’ when "111",

36 ’X’ when others;

37 END behavioral;

C.2.5 Comparator

1 library ieee;

2 use ieee.std_logic_1164.all;

3 use ieee.numeric_std.all;

4

5 ENTITY Compar_4 IS

6 PORT( A3: IN std_logic;

7 A2: IN std_logic;

8 A1: IN std_logic;

9 A0: IN std_logic;

10 B3: IN std_logic;

11 B2: IN std_logic;

12 B1: IN std_logic;

13 B0: IN std_logic;

14 MIN: OUT std_logic;

15 EQU: OUT std_logic;

16 MAJ: OUT std_logic );

17 END Compar_4;

18

19 ARCHITECTURE behavioral OF Compar_4 IS

20 BEGIN

21 Cmp4: PROCESS( A3, A2 , A1, A0, B3, B2 , B1, B0 )

22 variable A: unsigned( 3 downto 0 );

23 variable B: unsigned( 3 downto 0 );

24 BEGIN

25 A := (A3 & A2 & A1 & A0);

26 B := (B3 & B2 & B1 & B0);

27 --

28 if (A > B) then MIN <= ’0’; EQU <= ’0’; MAJ <= ’1’;

29 elsif (A < B) then MIN <= ’1’; EQU <= ’0’; MAJ <= ’0’;
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30 elsif (A = B) then MIN <= ’0’; EQU <= ’1’; MAJ <= ’0’;

31 else MIN <= ’X’; EQU <= ’X’; MAJ <= ’X’;

32 END IF;

33 END PROCESS;

34 END behavioral;

C.2.6 Flip-Flop D-PET

1 library ieee;

2 use ieee.std_logic_1164.all;

3

4 ENTITY DpetFF IS

5 PORT( D, Ck : IN std_logic;

6 nCL , nPR: IN std_logic;

7 Q, nQ : OUT std_logic );

8 END DpetFF;

9

10 ARCHITECTURE behavioral OF DpetFF IS

11 BEGIN

12 Dff: PROCESS( Ck, nCL , nPR )

13 BEGIN

14 if (nCL=’0’) and (nPR=’0’) then Q <= ’X’; nQ <= ’X’;

15 elsif (nCL=’0’) and (nPR=’1’) then Q <= ’0’; nQ <= ’1’;

16 elsif (nCL=’1’) and (nPR=’0’) then Q <= ’1’; nQ <= ’0’;

17 elsif (nCL=’1’) and (nPR=’1’) then

18 if (Ck’event) AND (Ck=’1’) THEN -- Positive Edge

19 Q <= D; nQ <= not D;

20 END IF;

21 else Q <= ’X’; nQ <= ’X’;

22 END IF;

23 END PROCESS;

24 END behavioral;

C.2.7 Flip-Flop E-PET

1 library ieee;

2 use ieee.std_logic_1164.all;

3

4 ENTITY EpetFF IS

5 PORT( D, E, Ck: IN std_logic;

6 nCL , nPR: IN std_logic;

7 Q, nQ : OUT std_logic );

8 END EpetFF;

9 ARCHITECTURE behavioral OF EpetFF IS

10 BEGIN

11 Eff: PROCESS( Ck, nCL , nPR )

12 BEGIN

13 if (nCL=’0’) and (nPR=’0’) then Q <= ’X’; nQ <= ’X’;

14 elsif (nCL=’0’) and (nPR=’1’) then Q <= ’0’; nQ <= ’1’;

15 elsif (nCL=’1’) and (nPR=’0’) then Q <= ’1’; nQ <= ’0’;

16 elsif (nCL=’1’) and (nPR=’1’) then

17 if (Ck’event) AND (Ck=’1’) THEN -- Positive Edge

18 if (E = ’1’) then Q <= D; nQ <= not D;

19 elsif not(E = ’0’) then Q <= ’X’; nQ <= ’X’;

20 END IF;

21 END IF;

22 else Q <= ’X’; nQ <= ’X’;

23 END IF;

24 END PROCESS;

25 END behavioral;

C.2.8 Flip-Flop JK-PET

1 library ieee;

2 use ieee.std_logic_1164.all;

3

4 ENTITY JKpetFF IS
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5 PORT( J, K, Ck: IN std_logic;

6 nCL , nPR: IN std_logic;

7 Q, nQ : OUT std_logic );

8 END JKpetFF;

9

10 ARCHITECTURE behavioral OF JKpetFF IS

11 BEGIN

12 JKff: PROCESS( Ck, nCL , nPR )

13 variable OutQ: STD_LOGIC;

14 BEGIN

15 if (nCL=’0’) and (nPR=’1’) then OutQ := ’0’;

16 elsif (nCL=’1’) and (nPR=’0’) then OutQ := ’1’;

17 elsif (nCL=’1’) and (nPR=’1’) then

18 if (Ck’event) AND (Ck=’1’) THEN

19 -- Positive Edge

20 if (J = ’0’) AND (K = ’1’) THEN OutQ := ’0’;

21 elsif (J = ’1’) AND (K = ’0’) THEN OutQ := ’1’;

22 elsif (J = ’1’) AND (K = ’1’) THEN OutQ := not OutQ;

23 elsif not((J=’0’)AND(K=’0’)) THEN OutQ := ’X’;

24 END IF;

25 END IF;

26 else OutQ := ’X’;

27 END IF;

28 --

29 Q <= ( OutQ);

30 nQ <= (not OutQ);

31 --

32 END PROCESS;

33 END behavioral;

C.2.9 Parallel Register

1 library ieee;

2 use ieee.std_logic_1164.all;

3

4 ENTITY PiPoE4 IS

5 PORT( Ck : IN std_logic;

6 nCL: IN std_logic;

7 E : IN std_logic;

8 P3 : IN std_logic;

9 P2 : IN std_logic;

10 P1 : IN std_logic;

11 P0 : IN std_logic;

12 Q3 : OUT std_logic;

13 Q2 : OUT std_logic;

14 Q1 : OUT std_logic;

15 Q0 : OUT std_logic );

16 END PiPoE4;

17 ARCHITECTURE behavioral OF PiPoE4 IS

18 BEGIN

19 RegPiPoE4: PROCESS( Ck, nCL )

20 variable aReg: std_logic_vector( 3 downto 0 );

21 BEGIN

22 if (nCL = ’0’) then aReg := (others =>’0’);

23 elsif (nCL = ’1’) then

24 if (Ck’event) AND (Ck=’1’) THEN -- Positive Edge

25 if (E = ’1’) then

26 aReg := (P3 & P2 & P1 & P0);

27 elsif not(E = ’0’) then

28 aReg := (others =>’X’);

29 END IF;

30 END IF;

31 else aReg := (others =>’X’);

32 END IF;

33

34 Q3 <= aReg (3);

35 Q2 <= aReg (2);

36 Q1 <= aReg (1);

37 Q0 <= aReg (0);

38

39 END PROCESS;

40 END behavioral;
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C.2.10 Shift Register (S.I.P.O.)

1 library ieee;

2 use ieee.std_logic_1164.all;

3

4 ENTITY SiPoE4 IS

5 PORT( I : IN std_logic;

6 Ck : IN std_logic;

7 nCL: IN std_logic;

8 E : IN std_logic;

9 Q3 : OUT std_logic;

10 Q2 : OUT std_logic;

11 Q1 : OUT std_logic;

12 Q0 : OUT std_logic );

13 END SiPoE4;

14

15 ARCHITECTURE behavioral OF SiPoE4 IS

16 BEGIN

17 RegSiPoE4: PROCESS( Ck, nCL )

18 variable aReg: std_logic_vector( 3 downto 0 );

19 BEGIN

20 if (nCL = ’0’) then aReg := (others =>’0’);

21 elsif (nCL = ’1’) then

22 if (Ck’event) AND (Ck=’1’) THEN -- Positive Edge

23 if (E = ’1’) then

24 aReg := (I & aReg (3) & aReg (2) & aReg (1));

25 elsif not(E = ’0’) then

26 aReg := (others =>’X’);

27 END IF;

28 END IF;

29 else aReg := (others =>’X’);

30 END IF;

31 --

32 Q3 <= aReg (3);

33 Q2 <= aReg (2);

34 Q1 <= aReg (1);

35 Q0 <= aReg (0);

36 --

37 END PROCESS;

38 END behavioral;
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