
Structure
Determination
by X-ray
Crystallography

Mark Ladd
Rex Palmer

Analysis by X-rays and Neutrons

Fifth Edition



Structure Determination by X-ray
Crystallography



Official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States

[Reproduced by courtesy of N. I. S. T.]



Mark Ladd • Rex Palmer

Structure
Determination by
X-ray Crystallography

Analysis by X-rays and Neutrons

Fifth Edition

Celebrating the Centenary of

X-ray Crystallography



Additional material to this book can be downloaded from http://extra.springer.com.

ISBN 978-1-4614-3956-1 ISBN 978-1-4614-3954-7 (eBook)
DOI 10.1007/978-1-4614-3954-7
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2012947362

# Springer Science+Business Media New York 1977, 1985, 1994, 2003, 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or

part of the material is concerned, specifically the rights of translation, reprinting, reuse of

illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,

and transmission or information storage and retrieval, electronic adaptation, computer software,

or by similar or dissimilar methodology now known or hereafter developed. Exempted from this

legal reservation are brief excerpts in connection with reviews or scholarly analysis or material

supplied specifically for the purpose of being entered and executed on a computer system, for

exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is

permitted only under the provisions of the Copyright Law of the Publisher’s location, in its

current version, and permission for use must always be obtained from Springer. Permissions for

use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable

to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this

publication does not imply, even in the absence of a specific statement, that such names are

exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of

publication, neither the authors nor the editors nor the publisher can accept any legal

responsibility for any errors or omissions that may be made. The publisher makes no warranty,

express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Rex Palmer
Reader Emeritus in Structural Crystallography
Birkbeck College, University of London,
London, England

Visiting Professor in X-ray Crystallography

University of Greenwich, England

Senior Visiting Research Fellow

Christ Church University,

Canterbury, England

Mark Ladd
Formerly Head of Chemical Physics
University of Surrey
Guildford, England



When you can measure what you are speaking about and
express it in numbers, you know something about it; but when
you cannot express it in numbers, your knowledge is of a meagre
and unsatisfactory kind; it may be the beginning of knowledge,
but you have scarcely in your thoughts advanced to the state of
science, whatever the matter may be.

Lord Kelvin





To Valentia and Hilda





Foreword

I am privileged to write the Foreword to this fifth edition of Ladd and

Palmer’s Structure Determination by X-ray Crystallography, a textbook

that is now world renowned and that has helped educate two generations of

crystallographers in the theory and practice of modern crystallography,

myself included. Indeed, a well-worn first edition of this venerable text

remains on my shelves today, now somewhat battered and bruised from

passage through the hands of successive students who have learned the

fundamentals of crystallography from its pages.

This new fifth edition is especially timely, marking as it does a century

of discovery in which X-ray diffraction, and diffraction of other radiations,

has opened a window to the atomic world. From fundamental knowledge of

atomic interactions and chemical bonds in the simplest materials to the

atomic resolution analysis of the molecular machines of the cell, crystallo-

graphic science underpins much of our understanding of the world we live in

today. In recent years, advances in diffraction theory, automated technolo-

gies, and computational tools have helped move crystallography from a

specialist discipline to a standard laboratory tool across many fields of

science. In some fields, these advances have been so spectacularly successful

that the solution of the crystal structures of all but the most challenging

systems is now considered largely routine. At the same time, the develop-

ment of a new generation of high powered synchrotron, neutron and, most

recently, free electron laser facilities are pushing crystallographic science to

new frontiers, aiming to provide diffraction from single molecules, to locate

light atoms such as hydrogen in crystal structures, and to move beyond static

crystal structures towards time-resolved analyses of structural dynamics at

pico-second timescales.

For the interdisciplinary students of today seeking a thorough and

detailed understanding of the principles and methods of modern crystallog-

raphy, Ladd and Palmer remains as essential and relevant today as when it

first appeared some 35 years ago. Building from the fundamental concepts of

crystallography, through crystal symmetry to the mathematical formalism of

diffraction and on to the principle and practice of structure determination, the

text provides an excellent introduction to the techniques and applications of

crystallography, illustrated throughout by applications to real world pro-

blems. The fifth edition is expanded and enhanced with updated examples

and description of recent technical developments and achievements in X-ray

crystallography and benefits from a completely new chapter that describes
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the application of neutron crystallography in structural science. This is an

important addition. Neutrons are scattered by atomic nuclei and have a

magnetic moment. Hence, neutron diffraction can be used to determine

accurate atomic and magnetic structures of materials. With a new generation

of neutron sources and instruments now coming on-line, these properties will

be increasingly exploited in fundamental studies of new inorganic, organic,

and biological systems, of superconducting and magnetic materials, and for

structure-function analysis of hydrogen atoms in macromolecules.

Extending the scope of this classic text beyond the purely X-ray Crystal-

lography of its title to include diffraction of other radiations acknowledges

some of the new frontiers and ever-increasing impact of crystallographic

analysis in structural sciences. As has been the case for the last 35 years,

Ladd and Palmer is set to educate and equip the students of today to drive and

inspire the developments of tomorrow!

Neutron Sciences Directorate

Oak Ridge National Laboratory, TN, USA Dean A.A. Myles

x Foreword



Preface to the Fifth Edition

We were honoured to be asked by Springer, New York to prepare a fifth

edition of Structure Determination by X-ray Crystallography. First published

in 1977 under the Plenum imprint, this book has received wide acclaim in

both teaching and research in X-ray crystallography because of its extensive

and detailed coverage of all aspects of the subject.

As we prepare this new edition, we are entering the centenary of the

discovery of X-ray diffraction in 1912, the beginning of X-ray crystallogra-

phy as a science in its own right. Today, X-ray crystallography and the

complementary technique of neutron diffraction together provide the most

powerful tools for the investigation and elucidation of crystal and molecular

structures. X-ray and neutron crystallography may be described as the sci-

ence of the structure of materials, in the widest sense of the phrase, and their

ramifications are evident across a broad spectrum of scientific endeavour.

The power of computers and available software has unleashed an unprec-

edented ability to carry out with speed the complicated calculations involved

in crystal structure determination on a desktop PC. This is paralleled by the

availability of powerful X-ray and neutron sources and low temperature

devices for facilitating measurements at liquid nitrogen temperature or

lower, which provide ever higher precision in the determination of crystal

structures. However, a detailed knowledge of the theory underlying the

process of crystal structure determination is still required in order both to

ensure that the literature contains correct well-determined structures and to

understand the complexities introduced by features such as disorder and

twinning in crystals. There are many pitfalls in crystal structure determina-

tion to trap the unwary.

In this new edition, we have continued the approach that has been well

reviewed in its earlier editions. We have always kept in mind that students

meeting X-ray crystallography for the first time are encountering a new disci-

pline, and not merely extending the range of a subject already studied. In

consequence, we have chosen, for example, to discuss the geometry and sym-

metry of crystals in rather more detail than is found in other books on this

subject, for it is our experience that some of the difficulties that students meet in

introductory X-ray crystallography lie in their unfamiliarity with a three-

dimensional concept, whether they be final-year undergraduate or post-graduate

students in chemistry, biochemistry, materials science, geology, bioinformatics,

information technology, or physics. Both low molecular weight (small

molecules) and macromolecular methods (proteins) are covered in detail.
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As well as retaining and thoroughly revising the overall contents of the

earlier editions, we have added a significant chapter on neutron diffraction

studies, and sections introducing Molecular Modelling and Structure Predic-

tion. In order to maintain a workable size for the book, a number of elabora-

tions of mainly mathematical argument have been stored as Web Appendices

on the website http://extras.springer.com.

Although several novel methods have been added to the armoury of

crystal structure determination, we limit our discussion principally to Patter-

son interpretation, Direct Methods, Isomorphous and Molecular Replace-

ment and Powder Crystallography, and developments from them. The basic

problem remains the determination of the phases of X-ray reflections, and

this problem is addressed in these techniques discussed herein. In order to

simulate the actual process of structure determination, we are fortunate to be

able to include the XRAY program package prepared by Dr. Neil Bailey and

colleagues of the University of Sheffield, and we are grateful to him for

permission to use it in the present context. It has been modified (M.L.) for PC

operation and several enhancements made, including the presentation of

Fourier contour maps on the monitor. Although this package uses two-

dimensional data, much valuable insight into X-ray structure determination

can be gained, and a number of sets of X-ray data are included.

There are now numerous computer packages available for the many

aspects of crystallography that are in current use. We have referred to them

freely within the text, and they have been collected in an appendix together

with a reference to a source for each so that they become readily available to

the practising crystallographer. There are numerous references to each chap-

ter including website addresses for topics of crystallographic importance.

References among the text are given as “Sect. 1.2.3,” which refers to that

section in Chap. 1, or as “(3.4)” which refers to that equation in Chap. 3.

Each chapter contains a set of problems designed to assist the reader in the

understanding of the textual material, and detailed tutorial solutions are

provided. Some of these problems require computer assistance, and a set of

programs has been designed and included with the Web material and dated 1

January 2013 (Version 5.1). In this context, we are grateful to Dr. Jan Vissser

of the Technisch Physische Dienst, Delft, Professor Armel Le Bail of Labor-

atoire Fluorures, Université du Main, LeMans, and Professor A L Spek of the

University of Utrecht for the continued incorporation of the programs ITO12,

ESPOIR, and LEPAGE, respectively, in the Program Suite for this book.

Finally we thank Springer Science + Business Media for inviting this edition

and bringing it to a state of completion.

University of Surrey

Guildford, England Mark Ladd

Birkbeck College

London, England, London Rex Palmer
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Disclaimer

Every effort has been made to ensure the correct functioning of the software

associated with this book. However, the reader planning to use the software

should note that, from the legal point of view, there is no warranty, expressed

or implied, that the programs are free from error or will prove suitable for a

particular application; by using the software the reader accepts full responsi-

bility for all the results produced, and the authors and publisher disclaim all

liability from any consequences arising from the use of the software. The

software should not be relied upon for solving a problem, the incorrect

solution of which could result in injury to a person or loss of property. If

you do use the programs in such a manner, it is at your own risk. The authors

and publisher disclaim all liability for direct or consequential damages

resulting from your use of the programs.
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Physical Constants and Other
Numerical Data

Atomic mass unit mu 1.6605 � 10�27 kg

Avogadro constant L 6.0221 � 1023 mol�1

Bohr radius for hydrogen a0 5.2918 � 10�11 m

Boltzmann constant k 1.3806 � 10�23 J K�1

Elementary charge e 1.6022 � 10�19 C

Permittivity of a vacuum e 8.8542 � 10�12 F m�1

Planck constant h 6.6261 � 10�34 J s

Rest mass of the electron me 9.1094 � 10�31 kg

Rest mass of the neutron mn 1.6749 � 10�27 kg

Rest mass of the proton mp 1.6726 � 10�27 kg

Speed of light in a vacuum c 2.9979 � 108 m s�1

Conversions

1 eV (electron-volt) ¼ 1.6022 � 10�19 J

1 Å (Ångström unit) ¼ 10�10 m ¼ 0.1 nm

Prefixes to Units

femto pico nano micro milli centi deci kilo mega giga

f p n m m c d k M G

10�15 10�12 10�9 10�5 10�3 10�2 10�1 103 106 109
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Projected Revision of SI Units

The year 1960 saw the publication of Le Système international d’unités (the SI)

as a rational and coherent system of units for scientific research and communi-

cation. A projected revised SI aims to eliminate certain infelicities in the current

system, particularly in relation to the kilogram, kelvin, mole, and ampere. The

standard kilogram, a Pt–Ir alloy, was adopted as a standard in 1889, but has very

slowly lost material over the intervening years. In the case of the kelvin, the

purity and isotopic composition of water need to be defined for a complete

specification of its triple point, which is used in fixing the kelvin.

The new SI scheme will define the values of certain constants exactly.

Thus, it begins with the speed of light (c), which was set exactly as

2.99792458 � 108 m s�1 in 1983. A re-definition of the other fundamental

SI units can then be projected. For example, the kilogram will be defined

such that the Planck constant (h) is exactly 6.6260693 � 10�34 J s, then the

kilogram will be fixed, since hn ¼ E ¼ mc2 and the metre and second have

defined values.

The metre is defined in terms of the speed of light, and the second as the

distance travelled by light in a vacuum in 1/(2.99792458 � 108) s. The

second was given originally as 1/(8.6400 � 104) of the mean solar day, but

in 1967 it was re-defined as the duration of 9.192631770 � 109 periods of the

radiation corresponding to the transition between two hyperfine levels in the

ground state of 133Cs at 0�K; these two units will be unaltered.

The mole hitherto based on the molar mass of 12C will be revised to that

mass of the isotope which makes the Avogadro constant exactly

6.0221415 � 1023 per mole. Changes have also been proposed for the

ampere, but the candela remains unaltered.

Notwithstanding the value of the SI, certain traditional units are still in

common use. Thus the Ångström (1 Å ¼ 10�10 m) remains a very conve-

nient unit in crystallography for quoting interatomic distances and wave-

lengths. Detailed accounts of the history, revisions, and proposed changes of the

fundamental units in the system may be found in the published literature1,2.

These changes in the fundamental units will not affect the numerical values

involved in the text of this book or in its set problems.

1 http://physics.nist.gov/cuu/Units/
2Mills IM, Mohr PJ, Quinn TJ, Taylon BN, Williams ER (2011) Phil Trans Roy Soc. 369:3907ff
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Notation

These notes provide a key to the main symbols and constants used throughout

the book. Inevitably, some symbols havemore than one use. This feature arises

partly from general usage in X-ray crystallography, and partly from a desire to

preserve a mnemonic character in the notation wherever possible. It is our

belief that, in context, no confusion will arise. Where several symbols are

closely linked, they are listed together under the first member of the set. Two

or more applications of one and the same symbol are separated by a semicolon.

A0(hkl) Components of the structure factor, measured along the real and

imaginary axes of an Argand diagramB0(hkl)

A(hkl) Components of the geometrical structure factor, measured along the real

and imaginary axes of an Argand diagramB(hkl)

A A-face-centred unit cell; absorption correction factor

Å Ångström unit

a, b, c Unit-cell edges parallel to the x, y, and z axes, respectively, of a crystal;

intercepts made by the parametral plane on the x, y, and z axes

respectively; glide planes with translational components of a/2, b/2, and c/

2, respectively

a, b, c Unit-cell edge vectors parallel to the x, y, and z axes, respectively

a*, b*, c* Reciprocal unit-cell edges associated with the x*, y*, and z* axes,

respectively

a*, b*, c* Reciprocal unit-cell vectors associated with the x*, y*, and z* axes,

respectively

B B-face-centred unit cell; overall isotropic temperature factor

Bj Isotropic temperature factor for the jth atom

C C-face-centred unit cell

C= Not constrained by symmetry to equal

c Speed of light; as a subscript: calculated, as in jFcj
Dm Experimentally measured crystal density

Dc Calculated crystal density

d Interplanar spacing

d(hkl) Interplanar spacing of the (hkl) family of planes

d* Distance in reciprocal space

d*(hkl) Distance from the chosen origin of the reciprocal lattice to the hklth

reciprocal lattice point

Da Dalton; equivalent to mu

E Normalized structure factor (E value), including phase

jEj Amplitude of normalized structure factor, E (an “observed” value)

E, E(hkl) Normalized structure factor in centrosymmetric crystals (an “observed”

value)

Ec Normalized structure factor calculated from the atomic positions in the

unit cell

E Total energy of the hklth diffracted beam from one unit cell

e Electron charge

e, exp Exponential function

esd Estimated standard deviation

(continued)
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F(hkl) Structure factor for the hkl spectrum referred to one unit cell, including

phase

F*(hkl) Conjugate of F(hkl), including phase

jFj or F Modulus, or amplitude, of the structure factor F (excluding phase); jFj is
superfluous notation, but frequently used informally

Fo Observed structure “factor” (only ever an amplitude); jFoj is superfluous
notation, but frequently used informally

f / fj Atomic scattering factor / for the jth atom

fj,y Atomic scattering factor for the jth atom at a given sin y/l

g Glide line in two-dimensional space groups

gj Atomic scattering factor for the jth atom, in a crystal, corrected for

thermal vibrations

H Hexagonal (triply primitive) unit cell

(hkl)/(hkil) Miller / Miller–Bravais indices (of planes) associated with the x, y, and z

axes or the x, y, u, and z axes, respectively—any single index containing

two digits has a comma placed after such an index

{hkl} Form of (hkl) planes

hkl Reciprocal lattice point corresponding to the (hkl) family of planes

h Vector with components h, k, l in reciprocal space

h Miller index parallel to the x axis; Planck’s constant

I Body-centred unit cell; intensity of reflection

Io(hkl) Observed intensity of reflection from the (hkl) planes referred to one unit

cell

i Imaginary axis on an Argand diagram

i
ffiffiffiffiffiffiffi
�1

p
; an operator that rotates a quantity on an Argand diagram through

90� in a right-handed (counterclockwise) sense from the real axis

K Scale factor for Fo(hkl) data

k Miller index parallel to the y axis; Boltzmann constant

l Miller index parallel to the z axis

L Lorentz correction factor

mu Atomic mass unit

Mr Relative molecular mass (molecular “weight”)

m Mirror plane

N Number of atoms per unit cell

n Glide plane, with translational component of (a + b)/2, (b + c)/2, or

(c + a)/2

n1, n2, n3 Principal refractive indices in a biaxial crystal

o Subscript: observed, as in jFo(hkl)j
o Superscript, as in 25�C

P Probability; Patterson function; Polarization correction factor

P(uvw) Patterson function at the fractional coordinates u, v, w in the unit cell

p Polarization correction factor

pi Probability of the ith state of a system

R Rhombohedral unit cell; rotation axis of degree R; reliability factor

(several R parameters are in current use)

R Inversion axis of degree R

R Real axis on an Argand diagram

rms Root mean square

RU Reciprocal lattice unit

S Statistical distribution parameter; 2 sin y=l

s, s(hkl), s(h) Sign of a centric reflection, jFj or jEj
(continued)
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Tj,y Thermal vibration parameter for the jth atom at a given sin y/l

[U V W] Zone or direction symbol

<U V W> Form of zone axes or directions

(uvw) Components of a vector in Patterson space

U2 Mean-square amplitude of vibration

V Volume

Vc Volume of a unit cell

W Probability or number of arrangements of a system

w Weight factor

x, y, u, z Crystallographic reference axes descriptors

X, Y, Z Spatial coordinates, in absolute measure, of a point with respect to the x, y,

and z axes

x, y, z Spatial fractional coordinates in a unit cell parallel to x, y, z, respectively

xj, yj, zj Spatial fractional coordinates of the jth atom in a unit cell parallel to x, y,

z, respectively

[x, b, g] Line parallel to the x axis and intersecting the y and z axes at b and g,

respectively

(x, y, g) Plane normal to the z axis and intersecting it at g

� fx; y; z; :::g x; y; z; x; y; z . . .

Z Number of formula entities of mass Mrr per unit cell

Zj Atomic number of the jth atom in a unit cell

a, b, g Angles between the pairs of unit-cell edges bc, ca, and ab, respectively

a*, b*, g* Angles between the pairs of reciprocal unit-cell edges b*c*, c*a*, and a*b*,

respectively

d Path difference

e, e(hkl) Statistical weight of a reflection (epsilon factor)

e, o Principal refractive indices for a uniaxial crystal

y Bragg angle

k Reciprocal space constant

l Wavelength

m Linear absorption coefficient

n Frequency

r(xyz) Electron density at the point x, y, z (units are length�3)

F Interfacial (internormal) angle

’(hkl), ’(h), ’ Phase angle associated with a structure factor

w, C, o (cos w, cos C, cos o) direction cosines of a line with respect to the x, y,

and z axes

o Angular frequency

O Azimuthal angle in experimental methods; ohm

X; <X> Average value of X
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Crystal Morphology and Crystal
Symmetry 1

1.1 Brief Historical Introduction

Crystals, with their plane faces, sharp angles, and color, have excited interest since the earliest times.

Their color and decorative qualities are recorded in the Bible [1]: we need not start as far back as that, but

will consider instead some of the highlights in the build-up of the science of Crystallography.

The Swiss naturalist Conrad Gessner [2] observed in 1564 that “one crystal differs from another in

its angles, and consequently in its figure,” and Pliny [3], Caesalpinus [4], and Buffon [5] also denied

“the fixity of crystals.” Niels Stensen, a Dane, also known as Nicolaus Steno [6], showed in 1669 that

crystals of quartz, although of varying edge lengths, nevertheless preserved constant angles between

corresponding faces, an observation that led, after further work, to the law of constant interfacial

angles (q.v.), sometimes called Steno’s law. Some examples of Steno’s figures for quartz are shown in

Fig. 1.1. Pliny referred to quartz as krustallos (Gk. krnstallos ¼ ice), believing it to be ice

permanently congealed by intense cold: “rain-water and pure snow are needed for its formation.”

In the same year, Bartholinus [7] published his work on the Iceland Spar modification of calcium

carbonate: he measured the interfacial angles (q.v.) of crystal fragments and found that “the

(cleavage) fragments have the same shape as the original crystal.”

JohannesKepler, best known for his research in astronomy,worked sometime for EmperorRudolph II

of Austria, who was somewhat negligent in paying salaries. Kepler, who was without money with which

to purchase aChristmas present for a friend in 1611,wrote a booklet entitledThe Six-Cornered Snowflake

[8], Fig. 1.2. He had noticed that snow crystals of whatever shape always exhibited sixfold symmetry. He

speculated on a relationship between the snow crystal and a hexagonal close packing of spheres: he

recognized the genre of crystal symmetry, which was to be developed about two centuries years later.

Jokingly, hepassedoff his “NewYear’sGift” as amere “nothing” (like his finances),makinga playon the

word nix, which means “snowflake” in Latin but “nothing” in Lower German, Kepler’s language.

Over the period 1688–1705, many investigations by the Italian physicist Giovanni Guglielmini [9]

confirmed and extended the work of Steno, and during 1772–1783, about a century after Steno, the

Frenchman Jean-Baptiste Romé de l’Isle [10] carried out an extensive series of measurements that

confirmed fully Steno’s findings: he stated further, as a law, that “the interfacial angles of a crystal

material are characteristic of it.” In his work, hemademuch use of the contact goniometer, developed by

Arnould Carangeot [11], for measuring interfacial angles on crystals.

His compatriot René Just (Abbé) Ha€uy [12] published a treatise on mineralogy in 1801 in which he

envisaged crystals built up by stacking identical blocks of structural material in ways that led to the

shapes of crystals, thus explaining Steno’s law. He was led to this view by the observation that when
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Fig. 1.1 Examples of Steno’s drawings of transverse sections of different crystal specimens of quartz, SiO2; the

interfacial angles are 120� or (120/2)� in each case

Fig. 1.2 The cover (in translation) of Kepler’s booklet on The Six-Cornered Snowflake; some of Kepler’s many

drawings of snowflakes appear on the cover (reproduced by courtesy of Paul Dry Books)
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crystals of calcite were broken, they always formed rhombohedral-shaped fragments whatever the

shape of the original crystal, an observation similar to that made by Bartholinus. Other crystals cleaved

into different shapes, such as cubes; Fig. 1.3 illustrates some of Ha€uy’s figures. He laid the foundation

for the law of rational intercepts (q.v.), which demonstrated, albeit implicitly, a shape for the unit cell

(q.v.) of a crystal. He described also different crystal shapes, or habits, obtained by the packing of

different shaped blocks.

In the period 1804–1815, the German scientists Christian Weiss [13] and Frederick Mohs [14],

independently, identified the six “major” crystal systems (q.v.)—it seems that they did not distinguish

between the two systems that we now recognize as trigonal and hexagonal. Another German scientist

Johann Hessel [15] determined the 32 crystallographic point groups (q.v.) in 1835 and his compatriot

Moritz Frankenheim [16] also described six crystal systems and, additionally, the 32 crystal classes in

1842. Crystal classes are names for the general forms (q.v.) of crystals, of which we shall have more to

say later, Sect. 1.4.2; Fig. 1.4 illustrates two examples of crystal class.

A next landmark was that contained in the work of William Miller, 1839, who proposed an

unambiguous notation for specifying the orientations of the faces of a crystal, leading to the Miller

Indices [17] (q.v.), based on the scalar equation of a plane; the law of rational indices is clear from

Miller’s work—the descriptor “law of rational ratios of intercepts” is perhaps more apt.

The regular arrangements of points in space were addressed by August Bravais [18] in 1846, who

derived the 14 Bravais lattices. Actually, Frankenheim had derived 15 such lattices in 1842, but

Bravais showed that two of them were identical. For his infelicity, Frankenheim’s name is frequently

omitted from a discussion of lattices, albeit the nature of his 15th lattice was never completely clear.

Continuing the development of crystal symmetry, we have at the end of the nineteenth century,

Yevgraf Fyodorov [19] (in Russia), Artur Sch€onflies [20] (in Germany), and William Barlow [21]

(in Britain), all independently, describing the 230 ordered spatial patterns, or space groups (q.v.), that

represented the possible ways of arranging infinite arrays of points (atoms) regularly in space,

commensurate with the 14 Bravais lattices.

By that time, the work of mineralogists and mathematicians had led to a well-defined study of the

external form (morphology) of crystals, as well as to predictions about their internal structure. The

totality of mineralogical studies was collected in the extensive six-volume treatise ChemischeKris-

tallographie of Paul von Groth, the first part of which was published in 1904. The time was right for a

major breakthrough, and we arrive at the year 1912 and the inception of the study of crystals by X-ray

diffraction methods: X-ray Crystallography was born.

Fig. 1.3 Examples of Ha€uy’s figures. (a) Rhombic dodecahedron formed from stacked cubes, as in garnet (idealized

formula Ca3Al2Si3O12). (b) Pentagonal dodecahedron formed from stacked cubes, as in K2Mn2(SO4)3. (c) Scalenohe-
dron formed from stacked rhombohedra, as in calcite, CaCO3
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The classic experiment [22], suggested by Laue,1 and performed by Paul Friedrich and Walter

Knipping, demonstrated the diffraction of X-rays from a crystal of copper sulfate. This material was,

perhaps, not the best choice because of its low (triclinic) symmetry. Nevertheless, the diffraction

effects showed conclusively both that crystals were periodic in three dimensions and that X-rays

possessed wave-like properties. Figure 1.5 shows X-ray diffraction patterns from early experiments on

X-ray diffraction.

The results from this work may be said to be a landmark in the development of modern science.

The diffraction technique that was initiated by Laue was improved quickly by W. L. Bragg, in his

work on crystals of the alkali-metal halides and other crystals. Barlow, one of those who had derived

the space groups earlier, had also developed structure models for some metallic elements, and simple

binary compounds such as sodium chloride, cesium chloride, and zinc blende. None of his results was

proved at that time: all were speculative, but remarkably accurate, as it turned out.

Bragg [23] investigated the X-ray diffraction patterns of sodium chloride and other alkali halides

and zinc blende (ZnS). He found that the models suggested by Barlow were correct, and other models

proposed by Barlow, such as cubic close-packed and hexagonal close-packed structures for metallic

elements, were confirmed. The number of structure analyses grew very rapidly: Fig. 1.6 is a stereo-

view of the structure of sodium chloride, NaCl. Several stereoviews are used in this book in order to

Fig. 1.4 Examples

of crystal classes:

(a) Rhombic disphenoid,

showing left-hand and

right-hand enantiomorphs

(q.v.). (b) Hex(akis)
octahedron

1 In 1913, Laue’s father was raised to the ranks of hereditary nobility; Laue then became von Laue.
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demonstrate clearly the three-dimensional nature of crystal structures, and Appendix A describes the

process of stereoviewing, and the construction of a simple stereoviewer.

The early structure analyses were carried out with the aid of an X-ray ionization spectrometer, the

forerunner of the modern single-crystal X-ray diffractometer, designed largely by W. H. Bragg [24].

Generally, the name Bragg refers toW. L. Bragg, but his father (W. H.) also played a highly significant

role at the very beginning of the technique of crystal structure analysis by X-ray diffraction.

X-ray diffraction provides the most powerful technique for probing the internal structures of crystals

and for determining with high precision the actual atomic arrangement in space. Figure 1.7 shows a

three-dimensional contour map of the electron density in a medium-sized molecule, euphenyl iodoace-

tate [25], C32H53O2I. The contour lines join points of equal electron density in the structure; hydrogen

atoms are not revealed in this map because of their relatively small scattering power for X-rays.

If we assume that the centers of atoms are located at the maxima in the electron density map, we can

deduce the molecular model in Fig. 1.8a; the chemical structural formula is shown for comparison in

Fig. 1.8b. The iodine atom is represented by the large number of contours at the extreme left of Fig. 1.7.

The carbon and oxygen atoms are depicted by approximately equal numbers of contours. The atoms in the

side chain, shown on the extreme right of the figure, have contours that are spaced further apart. Thermal

Fig. 1.6 Stereoview of the face-centered cubic unit cell and its environs for the crystal structure of sodium chloride:

¼ Cl�, ¼ Naþ

Fig. 1.5 The first X-ray diffraction photograph by Friedrich et al. [22]. (a) Copper sulfate pentahydrate, CuSO4·5H2O,

showing no symmetry. (b) Zinc blende (the first crystal structure to be fully determined), ZnS, showing fourfold symmetry

(Bragg WH, Bragg WL (1949) The crystalline state, vol 1. G. Bell and Sons)
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vibrations of the atoms aremost severe in this portion of themolecule, and theyhave the effect of smearing

out the electron density, so that its gradient, represented by the closeness of the contours, is less steep than

in other parts of the molecule.

Molecules of much greater complexity than that in this example are now being investigated;

the structures of proteins, enzymes, and nucleic acids—the “elements” of life itself—are

being revealed by powerful X-ray diffraction techniques [25a].

Fig. 1.8 Euphenyl iodoacetate, C32H53O2I. (a) Molecular model, excluding hydrogen atoms. (b) Chemical structural

formula: the orientations at carbon atoms 13, 14, and 17 are a, b, and a, respectively (standard numbering)

Fig. 1.7 Three-dimensional electron density contour map for euphenyl iodoacetate, as seen along the b direction of the

unit cell; the contours connect points of equal electron density: the electron density contours have been drawn on a set of

perspex sheets and stacked normal to b
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1.2 The Crystalline State

A crystalline substance may be defined as a homogeneous solid having an ordered internal atomic

arrangement2 and a definite overall chemical composition, albeit non-stoichiometric in some exam-

ples. In addition to the more obvious manifestations of crystalline materials, like sugar and common

salt, other substances, such as cellophane sheet and fibrous asbestos, which reveal different degrees of

long-range order (extending over many atomic dimensions), may be described as crystalline.

With the unaided eye, fragments of glass and of quartz look similar to each other, yet quartz is

crystalline and glass is non-crystalline, oramorphous. Glass has an atomic arrangement that displays only

very short-range order (extending over a few atomic dimensions). Figure 1.9 illustrates the structures of

quartz and silica glass; both of them are based on the same atomic group, the tetrahedral SiO4 structural

unit, but in quartz these groups are arranged regularly throughout three-dimensional space.

A crystal may be defined as a substance that is crystalline and periodic in three dimensions and

bounded by plane faces. We have now made the useful distinction that crystalline substances exhibit

long-range order in three dimensions or less, whereas crystals have both this three-dimensional

regularity and plane bounding faces; see also Sect. 1.4.3.

1.2.1 Crystallographic Reference Axes

In describing the external features of crystals, we make use of relationships in coordinate geometry. It

is important to set up a system of reference axes, and three such axes are needed in the description of a

crystal, Fig. 1.10. By convention, the x, y, and z crystallographic reference axes are set parallel to

important directions in the crystal. We shall see later that these directions (crystal edges, or possible

crystal edges) are related closely to the symmetry of the crystal; in some cases, a choice of non-

orthogonal axes then will arise naturally.

It is usual to work with right-handed axes. In Fig. 1.11, +y and +z are in the plane of the paper, as

shown, and +x is directed forward; the succession +x ! +y ! +z simulates an anticlockwise screw

motion, which is one way of describing right-handed axes. Notice the selection of the interaxial angles a,

b, and g and the mnemonic connection between their positions and the directions of the x, y, and z axes.

1.2.2 Equation of a Plane

The plane ABC shown in Fig. 1.12 intercepts the x, y, and z axes (which need not be orthogonal) at A,

B, and C, respectively. ON is the perpendicular from the origin O to the plane; it has the length d, and

its direction cosines (see Web Appendix WA1) are cos w, cos C, and cos o with respect to OA, OB,

and OC, respectively, which have the lengths a, b, and c, and P is any point X, Y, Z in the plane ABC.

Let PK be parallel toOC and meet the plane AOB atK, and let KM be parallel toOB and meetOA atM.

Then the lengths of OM, MK, and KP are X, Y, and Z, respectively. Since ON is the projection of

OP on to ON, it is equal to the sum of the projections OM, MK, and KP all on to ON. Hence,

d ¼ X cos wþ Y cosCþ Z coso (1.1)

2 See also Sect. 8.9.
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In DOAN, d ¼ OA cos w ¼ a cos w. Similarly, d ¼ b cos C ¼ c cos o; dividing by d:

ðX=aÞ þ ðY=bÞ þ ðZ=cÞ ¼ 1 (1.2)

Equation (1.2) is the intercept form of the equation of the plane ABC.

1.2.3 Indices of Planes and the Law of Rational Intercepts

Miller Indices
The faces of a crystal are planes in three-dimensional space. Once the crystallographic axes are

chosen, a parametral plane may be defined and any other plane described by reference to it in terms of

three numbers h, k, and l. If the parametral plane is designated by integral values of h, k, and l,

Fig. 1.9 Arrangements of

SiO4 structural units (the

darker spheres represent

Si). (a) a-Quartz. (b) Silica
glass (reproduced by

courtesy of NPL)
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normally (111), then the indices of all other crystal faces are small integer values, rarely more than 5.

This result is known as the law of rational intercepts (indices) (q.v.) and has a basis in lattice theory.

A notation for describing the faces of a crystal was introduced first by William Whewell in 1825 and

developed fully by Miller [17] in 1839, and h, k, and l are the Miller indices.

In Fig. 1.13, let the parametral plane (111) be ABC, making intercepts a, b, and c on the

crystallographic axes x, y, and z, respectively. Another plane LMN makes corresponding intercepts

of lengths a/h, b/k, and c/l. The Miller indices of plane LMN are expressed by the ratios of the

intercepts of the parametral plane to those of the plane LMN. If in the figure, a/h ¼ a/4, b/k ¼ b/3,

and c/l ¼ c/2, then LMN is (432), see also Sect. 2.3. If fractions occur in formulating h, k, or l, they are

Fig. 1.11 Right-handed, general crystallographic axes x, y, and z, and the interaxial angles a, b, and g

Fig. 1.10 Idealized tetragonal crystal with orthogonal (mutually perpendicular) axes x, y, and z drawn in
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cleared by multiplication throughout by the lowest common denominator. Conditions of parallelism

to axes and intercepts on the negative sides of the axes lead respectively to zero or negative values for

h, k, and l. Thus, ABDE is the plane (110), BDFG is (010), and PBQ is ð�21�3Þ.3 It may be noted that it

has not been necessary to assign numerical values to either a, b, and c or a, b, and g in order to

describe the crystal faces by their Miller indices. In the next chapter, we shall identify a, b, and c with

the edges of the crystal unit cell in a lattice, but this relationship is not needed at present.

The preferred choice of the parametral plane leads to small numerical values for the Miller indices

of crystal faces. If LMN had been chosen as (111), then ABC would have been (346). Summarizing,

we may say that the plane (hkl) makes intercepts a/h, b/k, and c/l along the crystallographic x, y, and z

axes, respectively, where a, b, and c are the corresponding intercepts made by the parametral plane.

The conventional choice of reference axes leads to special relationships between the intercepts a, b, c,

and the (111) parametral plane, and between the interaxial angles a, b and g, in all crystals other than

triclinic (q.v.).

From (1.1) and (1.2), the intercept equation of the general plane (hkl) may be written as

ðhX=aÞ þ ðkY=bÞ þ ðlZ=cÞ ¼ 1 (1.3)

The equation of the parallel plane passing through the origin is

ðhX=aÞ þ ðkY=bÞ þ ðlZ=cÞ ¼ 0 (1.4)

it must satisfy the condition X ¼ Y ¼ Z ¼ 0. It follows from (1.4) that the Miller indices of a crystal

plane cannot be determined if the origin is chosen on that plane.

Fig. 1.12 Plane ABC in three-dimensional space; ON, of length d, is the normal to the plane from the origin O

3Read as “bar-two one bar-three,” or “two-bar one three-bar” in the USA.
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Miller–Bravais Indices
In crystals that exhibit sixfold or threefold symmetry referred to hexagonal axes, see Table 1.3, four

axes of reference may be used, an extension of the Miller indices due to Bravais [18]. The axes are

designated x, y, u, and z; the x, y, and u axes lie in one plane, at 120� to one another, and the z axis is

perpendicular to the x, y, u plane, Fig. 1.14; the sequence x, y, u, z is right-handed. Planes in these

crystals are described by four numbers, the Miller–Bravais indices h, k, i, and l. The index i is not

Fig. 1.13 Miller indices of planes: OA ¼ a, OB ¼ b, OC ¼ c; ABC is the parametral plane (111), and LMN is the

plane (hkl)

Fig. 1.14 Miller–Bravais indices (hkil). The crystallographic axes are labeled x, y, u, z, and the plane ð2354Þ is shown;
the parametral plane is ð1121Þ
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independent of h and k: thus, if the plane ABC in Fig. 1.14 intercepts the x and y axes at a/2 and b/3,

for example, then the u axis is intercepted at�u/5. If also the z axis is intercepted at c/4, then the plane

is designated ð23�54Þ. From Problem 1.14, we show that, in general, i ¼ �(h + k).

Law of Rational Intercepts
Planes that appear as external crystal faces are those most densely populated by the units of

structure. Consider a P orthorhombic lattice, Fig. 2.4. The (010) planes are more densely populated

in proportion to 1/ac than are the (110) planes at 1=ðc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
Þ which, in turn, are more densely

populated than, say, the (210) at 1=ðc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4b2

p
Þ. The more densely populated planes are those of

wider spacing in a given material: d is proportional to the reticular density or to 1/reticular area. The

planes with the lower values of S2, where S2 ¼ h2 + k2 + l2, lead to the more stable (lower energy)

crystal state. If we consider a cubic crystal, for example, then d ¼ a=ðh2þ k2 þ l2Þ1=2 ¼ a=S, from
Table 2.4, so that for the three cubic lattices, Fig. 2.4, we have:

P

hkl 100 110 111 210 211 221

S2 1 2 3 5 6 9

Showing a preference for hexahedral {100} forms, as in caesium chloride or sodium chlorate.

I

hkl 110 200 211 310 420 442

S2 2 4 6 10 20 36

Showing a preference for dodecahedral {110} forms, as in garnet structures.

F

hkl 111 200 220 310 420 422

S2 3 4 8 10 20 246

Showing a preference for octahedral {111} forms, as in diamond and calcium fluoride. Thus, on

grounds of stability, planes of larger d-values (smaller values of h, k, and l) are to be expected.

1.2.4 Axial Ratios

If both sides of (1.4) are multiplied by b, we obtain

hX

a=b
þ kY þ lZ

c=b
¼ 0 (1.5)

The quantities a/b and c/b are termed axial ratios; they can be deduced from an analysis of the

crystal morphology, but not the individual values of a, b, or c.

1.2.5 Zones

Most well formed crystals have their faces arranged in groups of two or more with respect to certain

directions in the crystal. In other words, crystals exhibit symmetry; this feature is an external

manifestation of the ordered arrangement of atoms in the crystal. Figure 1.15 illustrates zircon,
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ZrSiO4, an example of a highly symmetric crystal. It is evident that several faces have a given

direction in common. Such faces are said to lie in a zone, and the common direction is called a zone

axis. Any two faces, (h1k1l1) and (h2k2l2), define a zone. The zone axis is the line of intersection of the

two planes and is given by the solution of the equations

ðh1X=aÞ þ ðk1Y=bÞ þ ðl1Z=cÞ ¼ 0

ðh2X=aÞ þ ðk2Y=bÞ þ ðl2Z=cÞ ¼ 0
(1.6)

for the two planes passing through the origin (since we are concerned here only with the directional-

ity). The solution is given by the line

X

aðk1l2 � k2l1Þ
¼ Y

bðl1h2 � l2h1Þ
¼ Z

cðh1k2 � h2k1Þ
(1.7)

which must also pass through the origin. It may be written as

X=ðaUÞ ¼ Y=ðbVÞ ¼ Z=ðcWÞ (1.8)

where [UVW] is called the zone symbol.

If any other face (hkl) lies in the same zone as that defined by (h1k1l1) and (h2k2l2), then it follows

from immediately from (1.4) and (1.8), that

hU þ kV þ lW ¼ 0 (1.9)

which is an expression of the Weiss zone law [13]. For if planes (h1k1l1), (h2k2l2), and (hkl) lie in one

and the same zone (tautozonal), then applying (1.6) to (hkl) and using (1.8) in the result leads to (1.9).

We shall show this result in another way in Sect. 2.5.4.

Fig. 1.15 A highly symmetric crystal (zircon, ZrSiO4), showing the Miller indices of some of its faces. What are the

Miller indices of the other faces on this crystal?
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In the zircon crystal, the vertical (prism) faces lie in one zone. If the prism faces are indexed in the

usual manner, as in Fig. 1.15, then, from (1.7) and (1.8), the corresponding zone symbol is [001]. The

symbols [UVW] and ½ �U �V �W� refer to lines that are collinear, but of opposite sense. From (1.9), we see

that (110) and (100) are faces in the [001] zone, but (111) is not. Other relationships follow from (1.9) in a

similar way. In the manipulation of these equations, it may be noted that a zone axis is described by

[UVW], the simplest symbol; the axes that may be described as [nU, nV, nW] (n ¼ 0, �1, �2,. . .) are

coincident with [UVW] in crystal morphology. From (1.6), a zone symbol cannot be determined from

two faces (hkl) and ð�h �k �lÞ. Thus, although both the (110) and ð�1�10Þ planes lie in the [001] zone, this zone
symbol could not be determined from these two planes alone.

Angle Between Two Directions (Zone Axes)
The angle y between two directions [UVW] and ½U0V0W0� is given by

y ¼ r½UVW� � r½U0V0W0�
r½UVW�r½U0V0W0�

(1.10)

the evaluation of which follows from (2.16).

Fig. 1.16 Optical goniometry. (a) Principle of the reflecting goniometer; AB and BC represent two adjacent tautozonal

faces on the crystal. (b) Two-circle optical goniometer; the crystal rotates about the vertical circle (the zone axis

through O), and the telescope and collimator rotate about the horizontal circle
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Constancy of Interfacial Angles
The law of constant interfacial angles states that in all crystals of the same substance, angles between

corresponding faces have a constant value. Interfacial angles may be measured by a goniometer, the

first of which was that developed by Carangeot [11], as we noted earlier.

The principle of the more precise reflecting goniometer is shown in Fig. 1.16a, which forms the basis

of modern optical goniometry. A crystal is arranged to rotate about a zone axis O, which is set

perpendicular to a plane containing the incident and crystal-reflected light beams. Parallel light reflected

from the face AB is received by a telescope. If the crystal is rotated in a clockwise direction, a reflection

from the face BC is received next when the crystal has been turned through the angle F; then, the

interfacial angle is 180 � F�. Accurate goniometry brought a quantitative significance to observable

angular relationships in crystals. Figure 1.16b illustrates a simple two-circle optical goniometer.

1.3 Stereographic Projection: Brief Survey

A representation of the many faces of a crystal by means of a convenient two-dimensional illustration

may be achieved by means of a stereographic projection, or stereogram. Figure 1.17 shows a cubic

crystal set within a sphere of arbitrary radius, with the normals to the sets of crystal faces drawn to

intersect the sphere. Lines are drawn from the intersections with the sphere to meet the horizontal

plane, or primitive, which becomes the plane of projection. An intersection from the upper hemi-

sphere on to the horizontal plane, a pole, is marked as ● and that from the lower hemisphere as ○;

where the two coincide the notation used is the dot inside the circle. Thus, we obtain Fig. 1.18, which

may be indexed for the given crystal as shown in Fig. 1.19. Later in this chapter, we shall introduce a

modification for the notation of points on a stereogram, for reasons that will be there described.

Fig. 1.17 Spherical

projection of the cubic

crystal showing three forms

of planes: cube—faces b, e,

d, and parallel faces;

octahedron—faces r, m, n,

q, and parallel faces;

rhombic dodecahedron—

faces f, g, p, o, c, a, and

parallel faces. The x, y, and

z axes are chosen parallel to

important (symmetry)

directions in the crystal; the

radius of the sphere is

arbitrary. The inclined

great circle, b, m, o0, q0,. . .,
projects as G3G

0
3 in

Fig. 1.18
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Fig. 1.18 Stereogram of

the crystal shown in

Fig. 1.17; the zone circle

(great circle) G1G
0
1, symbol

[101], passes through e, q,

a, n, e0, q0, a0, n0; the zone
circle G2G

0
2 symbol ½1�10�,

passes through f, r, d, q0, f0,
r0, d0, q; the zone circle
G3G

0
3, symbol [011], passes

through b, m, o0, q0, b0, m0,
o, q

Fig. 1.19 Stereogram in

Fig. 1.18 indexed, taking r

as 111. The zone

containing (100) and (111)

is ½0�11�, and that containing
(010) and (001) is [100].

From (1.7), (1.8), and (1.9),

it follows that the face

p common to these two

zones is (011)
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The important feature of the stereogram for our purposes is that it preserves the interfacial angles

of the crystal and, hence, displays faithfully the crystal symmetry. A more detailed description of the

stereographic projection may be found in the Web Appendix WA2.

1.4 External Symmetry of Crystals

The existence of faces on a crystal in groups of two or more, in a similar orientation with respect to

some line or plane in the crystal, is a manifestation of symmetry. The crystal drawing of zircon in

Fig. 1.15 shows several sets of symmetrically arranged faces.

Few of us have difficulty in recognizing symmetry in two-dimensional pictures of objects such as a

dumbbell, the three-legged emblem of the Isle of Man, a Maltese cross, the five-petal Tudor rose, the

six-pointed Star of David; see Problem 1.10(c). But it is a rather different matter when we are dealing

with three-dimensional objects.

The problem arises first from the fact that we can see all parts of a two-dimensional object

simultaneously, and thus we take in the relation of the parts to the whole; but we cannot do that so

easily with three-dimensional objects. Secondly, while some three-dimensional objects, such as

flowers, pencils, and architectural columns, are simple enough for us to visualize and to rotate in

our mind’s eye, few of us have a natural gift for mentally perceiving and manipulating more complex

three-dimensional objects. Nevertheless, the art of doing so can be developed with suitable aids and

patience. If, initially, you have problems, take heart. You are not alone and, like many before you, you

will be surprised at how swiftly the required facility can be acquired. Engineers, architects, and

sculptors may be blessed with a natural three-dimensional visualization aptitude, but they have

learned to develop it—particularly by making and handling models.

Standard practice in the past was to reduce three-dimensional objects to one ormore two-dimensional

drawings (projections and elevations): it was cheap, well suited to reproduction in books, and less

cumbersome than handling three-dimensional models. In this book, we shall continue to use such two-

dimensional representations where appropriate, but to rely on them exclusively only delays the acquisi-

tion of a three-dimensional visualization ability. Fortunately, we can now use stereoscopic image pairs,

such as that shown in Fig. 1.6. These illustrations are a great help, but, because they provide a view from

only one standpoint, they are not always quite the equal of models that can be examined by hand.

Symmetry
Symmetrymaybe defined as that spatial property of a body (or pattern) bywhich thebody (orpattern) can

be brought from an initial state to another indistinguishable state by means of a certain operation—a

symmetry operation. For our purposes, the operation will be considered to take place in n-dimensional

space (n ¼ 1, 2, or 3) and to represent an action with respect to a symmetry element.

Symmetry Elements and Symmetry Operations
A symmetry element is a geometrical entity (point, line, or plane) in a body or assemblage, with which is

associated an appropriate symmetry operation. The symmetry element is strictly conceptual, but it is

convenient to accord it a sense of reality. The symmetry element connects all parts of the body or

assemblage as a number of symmetrically related parts. The term assemblage is often useful because it

describes more obviously a bundle of radiating face normals, Fig. 1.17, or a number of bonds emanating

from a central atom in the case of a molecule or ion, Fig. 1.34, to which these symmetry concepts equally

apply.

The symmetry operation corresponding to a symmetry element, when applied to a body, converts

it to a state that is indistinguishable from the initial state of that body, and thus the operation reveals
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the symmetry inherent in the body. In many cases, different symmetry operations can reveal one

and the same symmetry element. Thus, 31 (¼3), 32, and 33 (¼3) may be regarded as either multiple

steps of 3, a threefold operation (q.v.), or single-step operations in their own, but all are contained

within the same single symmetry element, 3. The latter idea is of particular importance in the study

of group theory. Symmetry elements may occur singly in a body, as in Fig. 1.20, for example, or in

certain combinations, as in the example of Fig. 1.22.

Point Groups
A set of interacting symmetry operations in a finite body, or just one such element, is referred to as a point

group. A point group may be defined as a set of symmetry operations the action of which leaves at least

one point unmoved: this point is taken as the origin of the reference axes for the body, through which all

symmetry elements pass. The assembly of points defining a rotation axis or a mirror plane is effectively

unmoved by their operations.

It can be contended that, in real objects, since they are imperfect, even if only on a microscopic

scale, an indistinguishable second state can be obtained only by a rotation of 360� (or 0�); this
operation is identity, or “doing nothing.” For practical purposes, however, the effects of most

Fig. 1.20 Some two-dimensional objects and their point-group symbols. The motifs are built up from the asymmetric

unit (a), by operating on it according to the point-group symmetry. Note that, except in (a), the symmetry element

intersects the asymmetric unit and lies at the center of each figure
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imperfections are small, and although our discussion of symmetry will be set up in terms of ideal

geometrical objects, the extension of the results to real situations is scientifically rewarding.

The observable symmetry may depend upon the nature of the examining probe, and different

results for a given material may arise in terms of its optical, magnetic, and photoelastic properties,

and from neutron diffraction, Sect. 11.1. Here, we shall be concerned with the symmetry shown by

directions in space, such as the normals to the faces on crystals, or the bond directions in chemical

species. Such angular relationships can be presented conveniently on stereograms, Sect. 1.3, and we

shall draw fully on this method of representation in the ensuing discussion.

Several concepts in symmetry can be introduced conveniently with two-dimensional objects;

subsequently, the third dimension can be introduced mainly as a geometrical extension of the two-

dimensional ideas. There is a single one-dimensional point group; it is more difficult to grasp

conceptually, and we shall not be particularly concerned with it in this book.

1.4.1 Two-Dimensional Point Groups

“We proceeded straight from plane geometry to solid bodies in motion without considering solid

bodies first on their own. The right thing is to proceed from second dimension to third, which brings us

Fig. 1.21 Stereograms of the point groups of the objects in Fig. 1.20; the conventional graphic symbols for R (R ¼ 1,

2, 3, 4, 6) and m are shown
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Fig. 1.22 Further two-dimensional objects with their stereograms and point groups. (a) 2mm. (b) 3m. (c) 4mm.

(d) 6mm
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to cubes and other three-dimensional figures” [26]. If we examine the two-dimensional objects in

Fig. 1.20, we can discover two types of symmetry elements that can bring an object from one state to

another indistinguishable state: parts (a) to (e) of Fig. 1.20 depict rotational symmetry, whereas (f)

shows reflection symmetry.

Rotation Symmetry
A two-dimensional object possesses rotational symmetry of degreeR (orR-fold symmetry) about a point if

it can be brought from one state to another indistinguishable state by each and every rotation of (360/R)�

about that symmetry point. Figure 1.20a–e illustrate the rotational symmetry elementsR equal to 1, 2, 3, 4,

and 6, respectively. The onefold element is the identity element and is crystallographically trivial; every

object has onefold symmetry.

Reflection Symmetry
A two-dimensional object possesses reflection symmetry, symbol m, if it can be brought from one

state to another indistinguishable state by reflection across the symmetry line. The operation is not

one that we can perform physically with an object, unlike rotation, but we can appreciate from the

object itself (and its stereogram) that m symmetry is present. The m line divides the figure into its

asymmetric unit, , and a mirror image or enantiomorph of this unit, , which situation (left-

hand–right-hand relationship) is characteristic of reflection symmetry, Fig. 1.20f.

Each of the objects in Fig. 1.20 has a symmetry pattern that can be described by a two-dimensional

point group, and it is convenient to illustrate these point groups by stereograms. Figure 1.21 shows

stereograms for the two-dimensional point groups 1, 2, 3, 4, 6, and m. It should be noted that in using

stereogram-like drawings to illustrate two-dimensional symmetry, the representative points (poles)

must fall on the perimeter; such situations may represent special forms (q.v.) on the stereograms of

three-dimensional objects.

Combinations of R and m lead to four more point groups; they are illustrated in Fig. 1.22. We have

deliberately omittedpoint groups inwhichR ¼ 5 andR � 7, for a reason thatwill be discussed inChap. 2.

It is convenient to allocate the ten two- dimensional point groups to two-dimensional systems and

to choose reference axes for the objects in close relation to the directions of their symmetry elements.

Table 1.1 lists these systems, together with the meanings of the positions in the point-group symbols.

It should be noted that combinations of m with R (R > 2) introduce additional reflection lines of a

different crystallographic form. In the case of 3m, however, these additional m lines are coincident

with the first set; the symbol 3mm is not meaningful.

Table 1.1 Two-dimensional point groups and notation

Symbol meaning, appropriate to position occupied

System Point groups First position Second position Third position

Oblique 1, 2 Rotation about a point – –

Rectangular 1ma As above m ⊥ x –
2mm As above m ⊥ x m ⊥ y

Square As above – –
4mm As above m ⊥ x, y m at 45� to x, y

Hexagonal 3 As above – –
3m As above m ⊥ x, y, u –
6 As above – –
6mm As above m ⊥ x, y, u m at 30� to x, y, u

aUsually written as m, but the full symbol is given here in order to clarify the positions of the symmetry elements in the

symbol
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It is important to remember the relative orientations of the symmetry elements in the point groups

and the variations in the meanings of the positions in the different systems. In the two-dimensional

hexagonal system, three axes may be chosen in the x, y plane; this selection corresponds with the

use of Miller–Bravais indices in three dimensions.

1.4.2 Three-Dimensional Point Groups

The symmetry elements encountered in three dimensions are rotation axes (R), inversion axes (R),

and a reflection (mirror) plane (m). A center of symmetry can be present also, although this symmetry

element may be included in a point group that contains the element R, as we shall see, and a check for

this must be made.

The operations of rotation and reflection are similar to those in two dimensions, except that the

geometric extensions of the operations are now increased to rotation about a line and reflection across

a plane, respectively.

Inversion Axes
An object is said to possess an inversion (strictly, roto-inversion) axis4 R if it can be brought from one

state to another indistinguishable state by the combined actions of rotation by (360/R)� about the axis
and inversion through a point on the axis that also serves as the origin point; the two actions comprise

a single symmetry operation. Like mirror symmetry, Sect. 1.4.1, the inversion axis is a physically

non-performable symmetry operation on a model, but it may be represented conveniently on a

stereogram. It is a little more difficult to envisage this operation than those of rotation and reflection.

Figure 1.23 illustrates a hypothetical molecule having a vertical �4 axis: the stereoscopic effect can be

created by using a stereoviewer (see Appendix A for instructions for making a model with �4

symmetry). In crystals, R in R, can take only the values 1, 2, 3, 4, and 6; this is sometimes referred

to as the crystallograpic restriction theorem. A simple explanation for this restriction is that only

figures that are based on these rotational symmetries can be stacked together to fill space completely

in a periodic manner, as Fig. 1.27 shows; see also Sect. 1.4.3. A further discussion of these restrictions

on R is given in Sect. 2.6.

In pictorial representations of the three-dimensional point groups, it is helpful to indicate the third

dimension on their stereograms and, in addition, to illustrate the change-of-hand relationship that

Fig. 1.23 Stereoview of a

hypothetical C4 molecule;

the �4 axis is in the vertical

direction

4Read as “bar-R”, or “R-bar” in the United States.
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occurs with R (including m) symmetry operations. For example, referring to Fig. 1.24, the element

2 lying in the plane of projection and the element �4 normal to the plane of projection, when acting on a

point derived from the upper hemisphere (symbol ●), both move the point into the lower hemisphere

region (symbol O). Both operations involve a reversal of the sign of the vertical coordinate, but only �4

involves also a change of hand, and this distinction is not clear from the conventional stereogram

notation. Consequently, we shall adopt a symbolism, shown in Fig. 1.25, that is common to three-

dimensional space groups, and which will affect the necessary distinction.

With the modified notation, a representative point in the upper, l-positive hemisphere will now be

shown by O+, signifying, for example, the face (hkl), or its pole. A change of hemisphere to ðhk�lÞ will
be indicated by O�, and a change-of-hand on reflection or inversion by or Fig. 1.25. This

notation may appear to nullify partially the purpose of a stereogram. However, although the

stereogram is a two-dimensional diagram, it is helpful here to convey a three-dimensional impression

clearly, and this notation is used as an aid to this end.

Figure 1.26a shows a stereogram for point group m. The inverse diad ð�2Þ is lying normal to the m

plane. A consideration of the two operations in the given relative orientations shows that they produce

equivalent actions. It is conventional to use the symbol m for this operation, although sometimes it is

helpful to employ the symbol �2 instead; potassium tetrathionate, Fig. 1.26b, crystallizes in point groupm.

Fig. 1.24 Stereograms of general forms. (a) Point group 2 (axis horizontal and in the plane of the stereogram).

(b) Point group �4 (axis normal to the plane of the stereogram). In (a), the point ● is rotated through 180� to O: (1) and

(2). In (b), the point ● is rotated through 90� and then inverted through the origin to O; this combined operation

generates, in all, four symmetry-equivalent points: (1) ! (4) ! (3) ! (2)

Fig. 1.25 (a) Stereograms from Fig. 1.24 in the revised notation: the different natures of points (2) in (a) and (2) and

(4) in (b), all with respect to point (1), are now clear
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We shall not be concerned here to derive the crystallographic point groups—and there are several

ways in which it can be done5—but to give, instead, a scheme which allows them to be worked

through simply and adequately for present purposes. In addition, the program EULR, Sect. 13.2,

shows how the combinations of symmetry operations based on R and R (R ¼ 1, 2, 3, 4 and 6) lead

inter alia to the 32 crystallographic point groups. The symbols for rotation and reflection symmetry in

three dimensions are similar to those already discussed; certain additional symbols are now required,

and Table 1.2 lists them all.

Crystal Classes
There are 32 crystal classes that describe the possible types of crystals that occur. Each class has a

name that corresponds to the general form on the crystal, and each class is characterized by a point

group. A crystal form is the set {hkl} of faces (hkl) related by the point group of the crystal: if it is

“general” then none of the (hkl) faces lies on symmetry elements; if it is a special form, then the faces

of the set lie on symmetry elements.

Two crystal classes were illustrated in Fig. 1.4: the rhombic disphenoid class (a) belongs to the

orthorhombic system (to be discussed next) and shows point group 222; it has four similar scalene

triangle faces and can exist in enantiomorphic forms.An example isMozartite, CaMn(SiO4)(OH),which
was first noted in 1991, the 200th anniversary of the death of Mozart. Another, less exotic, example is

Epsomite, MgSO4·7H2O. The hexakisoctohedron (cl. Gk. hexakis—six times; aka hexoctahedron) of

class (b) belongs to the cubic systemwith point groupm3m and is exhibited by some specimens of native

silver; each face is a regular octahedron sub-divided into six equal triangular faces.

Crystal Systems and Point-Group Scheme
Crystals are grouped into seven systems according to the characteristic symmetry listed in Table 1.3.

The characteristic symmetry refers to that minimum necessary for classification of a crystal in a given

system; a crystal of a given system may contain more than its characteristic symmetry.

Fig. 1.26 Point group m. (a) Stereogram showing equivalence of m and �2 (the graphic symbol used here for �2 is

useful, albeit not conventional). (b) Crystal of potassium tetrathionate (K2S4O6), point group m

5 See Bibliography (Ladd 1989).

24 1 Crystal Morphology and Crystal Symmetry

http://dx.doi.org/10.1007/978-1-4614-3954-7#Sec4_13


Fig. 1.27 Sections of three-dimensional figures and the rotational symmetries of their smallest structural units; (a–d)
Space-filling patterns. In (e) and (f) the v-marks represent voids in the pattern (see also Problem 1.10a)

Table 1.2 Three-dimensional symmetry symbols

Symbol Name Action for indistinguishability Graphic symbol

1 Monad 360� (0�) rotation; identity None

2 Diad 180� rotation projection, projection

3 Triad 120� rotation or inclined to projection

4 Tetrad 90� rotation projection, projection

6 Hexad 60� rotation projection

�1 Inverse monad Inversiona

�3 Inverse triad 120� rotation + inversion or inclined to projection

�4 Inverse tetrad 90� rotation + inversion projection, projection

�6 Inverse hexad 60� rotation + inversion projection

m Mirror planeb Reflection across plane projection, projection

a �R is equivalent to R plus �1 only where R is an odd number: �1 represents the center of symmetry, but �2, �4, and �6 are not
centrosymmetric point groups. For R even, Rþ �1 � R=m
bThe symmetry elements m and �2 produce an equivalent operation, with �2 oriented perpendicularly to the mirror plane



A crystallographic point-group scheme is given in Table 1.4, under the seven crystal systems as

headings. Themain difficulty in understanding point groups lies not somuch in knowing the action of the

individual symmetry elements, but in appreciating both the relative orientation of the different elements

in a point-group symbol and the fact that this orientation changes among the crystal systems according to

the principal symmetry axis, that is, the rotation axis R of highest degree. These orientations need to be

learned: they form the key to point-group and space-group studies.

Table 1.5 lists the meanings of the three positions in the three-dimensional point-group symbols.

Tables 1.4 and 1.5 should be studied carefully in conjunction with Fig. 1.32. For example,

consider carefully point groups 222 and 422, and note how and why the orientations repre-

sented by the three positions in the symbol change their meanings. In 222, the three symmetry

axes are along x, y, and z, respectively. In 422, 4 is taken along z, by convention; the first

symbol 2 (second position in the symbol) represents both the x and y directions, because they

are equivalent under fourfold symmetry. This combination of 4 and 2 introduces symmetry

along [110] and ½1�10�, so that the second symbol 2 represents this symmetry. Similar situations

exist among other point groups where the principal symmetry axis is of degree greater than 2.

The reader should not be discouraged by the wealth of convention which surrounds this part of the

subject. It arises for two main reasons. First, there are many different, equally correct ways of

describing crystal geometry. For example, the unique axis in the monoclinic system could be chosen

as x or z instead of y, or along some arbitrary direction. Secondly, a strict system of notation is

Table 1.3 Crystal systems and their characteristics

System

Characteristic symmetry axes,

with their orientation

Parametral plane intercepts and interaxial angles,

assuming the simplest indexing of facesa,b

Triclinic None a 6C b 6C c; a 6C b 6C g 6C 90�, 120�

Monoclinic One 2 or �2 axisc along y a 6C b 6C c; a ¼ g ¼ 90�; b 6C 90�, 120�

Orthorhombic Three mutually perpendicular

2 or �2 axes along x, y, and z

a 6C b 6C c; a ¼ b ¼ g ¼ 90�

Tetragonal One 4 or �4 axis along z a ¼ b 6C c; a ¼ b ¼ g ¼ 90�

Trigonald One 3 axis along z a ¼ b 6C c; a ¼ b ¼ 90�; g ¼ 120�

Hexagonal One 6 or �6 axis along z

Cubic Four 3 axes inclined at 54.74�

(cos�11=
ffiffiffi
3

p
) to x, y, and z

a ¼ b ¼ c; a ¼ b ¼ g ¼ 90�

aWe shall see in Chap. 2 that the same relationships apply to conventional unit cells in lattices
bThe special symbol 6C should be read as “not constrained by symmetry to equal”
cIt must be remembered that �2 is equivalent to an m plane normal to the �2 axis
dFor convenience, the trigonal system is referred to hexagonal axes (but see also Table 1.5)

Table 1.4 Crystallographic point-group schemea

Type Triclinic Monoclinic Trigonal Tetragonal Hexagonal Cubicb

R 1 2 3 4 6 23
�R �1 m �3 �4 �6 m�3
R + center — 2/m — 4/m 6/m —

Orthorhombic
R2 222 32 422 622 432
Rm mm2 3m 4mm 6mm
�Rm — �3m �42m �6m2 �43m
R2 + center mmm — 4

m
mm

6

m
mm m�3m

aThe reader should consider the implications of the spaces (marked —) in this table
bThe cubic system is characterized by its four threefold axes; R refers here to the element 2, �2, 4 or �4, but 3 is always

present along h111i
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desirable for the purposes of concise and unambiguous communication of crystallographic material.

With familiarity, the conventions cease to be a problem.

We now consider two point groups in a little more detail in order to elaborate some of the topics

discussed so far.

Point Group mm2

Once we fix the orientations of two of the symmetry elements in this point group, the third is

introduced in a unique orientation. Referring to Fig. 1.28, we start with mm ðm?x and m?yÞ as

shown by the thick lines. Point (1), in a general position, is reflected across the m plane perpendicular

to the x axis (mx) to give point (2). This point is now reflected across the second m plane (my) to (3).

Then either (3) across mx or (1) across my produces (4). It is evident now that the points in each of the

pairs (1), (3) and (2), (4) are related by the twofold rotation axis along z, which is, here, the line of

intersection of the two m planes.

Point Group 4mm

Ifwe startwith the fourfold axis along z andm perpendicular to x, we see straightaway that anotherm plane

(perpendicular to y) is required, Fig. 1.29a, b; the fourfold axis acts on all other symmetry elements in the

Table 1.5 Three-dimensional point groups and Hermann–Mauguin notation

Symbol meaning for each position

System Point groupsa First position Second position Third position

Triclinic 1, �1 All directions

in crystal

– –

Monoclinicb 2, m,
2

m

2 and/or �2
along y

– –

Orthorhombic 222, mm2,

mmm

2 and/or �2
along x

2 and/or �2 along y 2 and/or �2 along z

Tetragonal 4, �4,
4

m
4 and/or �4
along z

– –

422, 4mm,

�42m,
4

m
mm

4 and/or �4
along z

2 and/or �2 along x, y 2 and/or �2 at 45� to x, y and in xy

plane, i.e., along h110i

Cubicc 23, m�3 2 and/or �2
along x, y, z

3 and/or �3 at 54�440d to x, y, z,

i.e., along h111i
–

432, �43m,

m�3m

4 and/or �4
along x, y, z

3 and/or �3 at 54�440d to x, y, z,

i.e., along h111i
2 and/or �2 at 45� to x, y, z, i.e., along

h110i

Hexagonal 6, �6,
6

m
6 and/or �6
along z

– –

622, 6mm,

�6m2,
6

m
mm

6 and/or �6
along z

2 and/or �2 along x, y, u 2 and/or �2 perpendicular to x, y, u

and in xy plane

Trigonale 3, �3 3 and/or �3
along z

– –

32, 3m, �3m 3 and/or �3
along z

2 and/or �2 along x, y, u –

aR/m occupies a single position in a point-group symbol because only one direction is involved
bIn the monoclinic system, the y axis is taken as the unique 2 or �2 axis. Since �2 � m, then if �2 is along y, the m plane

represented by the same position in the point-group symbol is perpendicular to y. The latter comment applies mutatis

mutandis in other crystal systems (it is best to specify the orientation of a plane by that of its normal)
cEarlier notation uses m3 and m3m for m�3 and m�3m, respectively
dActually cos�1ð1=

ffiffiffi
3

p
Þ

eFor convenience; the trigonal system is referred to hexagonal axes; on the axes of a rhombohedral unit cell (q.v.), the

orientations of the first and second positions of the symbol are [111] and h1�10i, respectively
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crystal aswell as on crystal faces.Ageneral point operated on by the symmetry 4mproduces eight points in

all, Fig. 1.29c. The stereogram shows that a second formof (vertical)m planes, lying at 45� to the first set is
introduced, Fig. 1.29d.More concisely,wemay say that the normals to the two forms ofm planes lie at 45�

to one another. No further points are introduced by the second set of m planes: a fourfold rotation

(1) ! (2), followed by reflection across the mirror plane normal to the x axis, (2) ! (3), is equivalent

to reflectionof the original point across amirror at 45� to x, (1) ! (3).The reader should now refer again to

Table 1.5 for the relationship between the positions of the symmetry elements and the point-group

symbols, particularly for the tetragonal and orthorhombic systems, from which these detailed examples

have been drawn.

In this discussion, we have used a general form {hkl} to illustrate the point group, and each

symmetry-equivalent point lies in a general position, point-group symmetry 1, on the stereogram of

the group. The crystal planes that coincide with symmetry planes or symmetry axes are special forms,

and their poles lie on symmetry elements: the forms {110} and {010} in 4mm are examples of special

forms. The need for the general form in a correct description of a point group is illustrated by Fig. 1.30.

The poles of the faces on each of the two stereograms shown are identical, although theymay be derived

from crystals in different classes, �42m and 4mm in this example (and also in
4

m
mm).

Figure 1.31 shows crystals of these two classes with the {110} form, among others, developed.

In Fig. 1.31b, the presence of only special forms led originally to an incorrect deduction of the point

group of this crystal.

The stereograms for the 32 crystallographic point groups are shown in Fig. 1.32. The conventional

crystallographic axes are drawn once for each system. Two comments on the notation are necessary at

this stage.

The symbol − + indicates two points, Oþ and , immediately below it and related by a mirror

plane in the plane of projection. In the cubic crystal system, the four points related by a fourfold

lying axis in the plane of the stereogram lie on a stereographic small circle, which is a circle on the

surface of the sphere that does not pass through the center of the sphere, Fig. 1.33. In general, two of

the points are projected from the upper hemisphere and the other two points from the lower

hemisphere. We can distinguish them readily by remembering that 2 is a subgroup (q.v.) of both

4 and �4.

The use of the program SYMM for assisting with point-group recognition is described in Sect. 13.3,

and the reader may wish to refer forward at this stage. Appendix B discusses the Sch€onflies symmetry

Fig. 1.28 Stereogram, symmetry elements, and general form for point group mm2
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notation for point groups. Because this notation is also in use in certain contexts, we have written the

equivalent Sch€onflies symbols in Fig. 1.32, in parentheses, after the Hermann–Mauguin symbols.

Subgroups, Laue Groups, Centrosymmetric Groups, and Projection Symmetry
Subgroups

A subgroup of a given point group is a point group of lower symmetry than the given

group, contained within it and capable of separate existence as a point group. For example, 32 is

a subgroup of �3m, 622, �6m2,
6

m
mm, 432 and m3m, whereas �4 is a subgroup of

4

m
, �42m,

4

m
mm, �43m,

and m3m. The subgroup principle provides a rationale for some of the graphic symbols

for symmetry elements. Thus, �4 is shown by a square (fourfold rotation), unshaded (to distinguish

it from 4), and with a twofold rotation symbol inscribed (2 is a subgroup of �4).

Fig. 1.29 Intersecting

symmetry elements.

(a) One m plane

intersecting the fourfold

axis is inconsistent.

(b) Consistent group of

symmetry elements.

(c) General form of

points generated by 4m.

(d) Complete stereogram,

point group 4mm

Fig. 1.30 The {110} form

in tetragonal point groups.

(a) Point group �42m.
(b) Point group 4mm
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Laue Groups

Point group �1 and point groups that have �1 as a subgroup are centrosymmetric. We shall see later that

X-ray diffraction patterns are, in the absence of significant anomalous dispersion (q.v.), effectively

centrosymmetric, so that the arrangement of spots on the X-ray diffraction photograph of a crystal can

exhibit only the symmetry that would be found from a crystal having the corresponding centrosym-

metric point group. In the case of a crystal belonging to a non-centrosymmetric point group, the

corresponding centrosymmetric point group is simply the given group combined with a center of

symmetry.

There are 11 such point groups; they are called Laue groups,6 since symmetry is often investigated

by the Laue X-ray method, Sect. 5.4.1ff. In Table 1.6, the point groups are classified according to their

Laue group, and the symmetry of the Laue flat-plate film photograph is given for directions of the

X-ray beam normal to the crystallographic forms listed.

Laue-Projection Symmetry

The Laue-projection symmetry corresponds to one of the ten two-dimensional points groups. What is

the Laue-projection symmetry on {110} for a crystal of point group 4mm? This question can be

answered with the stereogram of the corresponding Laue group,
4

m
mm. Reference to the appropriate

diagram in Fig. 1.32 shows that an X-ray beam traveling normal to {110} encounters 2mm symmetry.

The entries in Table 1.6 can be deduced in this way. The reader should refer again to Table 1.5 and

compare corresponding entries between Tables 1.5 and 1.6

Fig. 1.31 Tetragonal

crystals showing, among

others, the {110} form. (a)
Copper pyrites, point group
�42m. (b) Iodosuccinimide,

apparent point group 4mm;

X-ray photographs

revealed that the true point

group is 4

6 Strictly, the term Laue group should be Laue class, but the former is in general use.
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Point-Group Projection Symmetry

Point-group projection symmetry is the symmetry of the projection of the general form of a point

group on to a plane. Thus, the point-group projection symmetry of 4mm on {110} is m.

Non-crystallographic Point Groups
There are species that exhibit symmetries other than those of the crystallographic point groups.

Indeed, R could, in principle, take any integer value between one and infinity. The statement R ¼ 1
implies cylindrical symmetry; the molecule of carbon monoxide has an 1 axis along the C–O bond,

if we assume spherical atoms.

A fivefold symmetry axis is present in uranium heptafluoride, Fig. 1.34, and the point-group

symbol may be written as 10m2, or
5

m
m. The stereogram of this point group is shown in Fig. 1.35;

the graphic symbol used here for
5

m
is not standard.

Other examples of non-crystallographic point groups will be encountered among chemical

molecules, and a stereogram can always be used to represent the point-group symmetry. In every

such example, however, the substance crystallizing in one of the seven crystal systems will normally

belong to one of the 32 crystal classes.

Fig. 1.32 Stereograms showing both the symmetry elements and the general form {hkl} in the 32 crystallographic

point groups. The arrangement is by system and common Laue group. The crystallographic axes are named once for

each system and the z axis is chosen normal to the stereogram. The Sch€onflies symbols are given in parentheses
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1.4.3 Quasicrystals, Buckyballs, and Icosahedral Symmetry

Quasicrystals
Our main task in this chapter has been the description of classical crystallography, in which a crystal is

defined as an ideally infinite three-dimensional periodic arrangement of atoms, the periodicities being

denoted by the directions of three crystallographic reference axes. Thus, we obtain a crystal structure,

with building blocks of atoms (unit cells, q.v.) aligned so as to fill space. Most crystal structures can be

described in terms of one of the 230 space groups (q.v.), which show the different types of symmetry

elements present in the structures.

Until the year 1982, no scientist anywhere would believe in crystals with rotational symmetry

degrees other than 1, 2, 3, 4, and 6, as we have discussed earlier: crystals had only these symmetries and

were periodic in three dimensions. In that year, however, Professor Daniel Shechtman7 was

Fig. 1.32 (continued)

7Nobel Laureate in Chemistry, 2011.
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experimenting with an alloy containing aluminum andmanganese, Al6Mn; he was concerned about the

appearance of certain areas of the metal surface, Fig. 1.36a, and took a transmission electron micros-

copy (TEM) photograph of that region of the surface. He observed diffraction spots in patterns of ten

extending over the area of reciprocal space (q.v.) recorded, Fig. 1.36b, and he spent the next 2 years

investigating an effect that he found hard to believe. Attempts to explain the results by a process

of crystal twinning were unsuccessful, and after more experimentation he was forced to the conclusion

of having discovered fivefold symmetry in a crystalline material. The crystal structure is aperiodic: it

Fig. 1.32 (continued)
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Fig. 1.33 Stereogram notation for points related by a fourfold axis (y) lying in the plane of a stereogram. The � signs

refer to the z direction. (a) Vertical section normal to the y axis. (b) Corresponding stereogram; the pairs of points

(1)–(2) and (3)–(4) are related by twofold symmetry (subgroup of 4)

Table 1.6 Laue groups and Laue-projection symmetry

System Point groups Laue group Laue-projection symmetry normal to the given form

{100} {010} {010}

Triclinic 1, �1 �1 1 1 1

Monoclinic 2, m, 2/m 2/m m 2 m

Orthorhombic 222, mm2, mmm mmm 2mm 2mm 2mm

{001} {100} {110}

Tetragonal 4; �4 and 4=m

422; 4mm;

�42m;
4

m
mm

)
4/m 4 m m

4

m
mm 4mm 2mm 2mm

{0001} f10�10g f11�20g
Trigonala 3, �3 �3 3 1 1

32, 3m, �3m �3m 3m m 2

Hexagonal 6; �6; 6=m

622; 6mm;

�6m2;
6

m
mm

)
6/m 6 m m

6

m
mm 6mm 2mm 2mm

{100} {111} {110}

Cubic 23, m3 m3 2mm 3 m

432, �43m, m3m m3m 4mm 3m 2mm

aReferred to hexagonal axes

Fig. 1.34 Stereoview of the molecule of uranium heptafluoride, UF7



Fig. 1.35 Stereogram of the non-crystallographic point group 10m2 (D5h) showing the general form (20 poles), and a

special form of 5 poles lying on the m planes that can be used to represent the five F atoms in one plane in UF7. The

poles for the remaining two F atoms lie at these center of the stereogram, on the 10 axis

Fig. 1.36 Transmission electronmicroscopy (TEM) on anAl6Mnalloy. (a) Surface of theAl6Mnalloy, with irregularities

inviting further examination. (b) Copy of Original TEM photograph of the alloy surface taken by Professor Shechtman,

showing a tenfold spot pattern indicative of a crystalline nature, but without the periodicity of classical crystals (reproduced

by courtesy of Professor Shechtman)



is space-filling, but with none of the three-dimensional periodicity that characterizes normal crystals.

His first paper on these findings was rejected, but a detailed account was published in 1984 [27].

This alloy structure is denoted a quasicrystal: it has icosahedral symmetry, point group 532;

Fig. 1.37 is a simulated Laue pattern for X-ray diffraction from an icosahedral crystal, with the X-ray

beam along a fivefold axis.

Subsequently,many stable andmetastable quasicrystals have been discovered, frequently as binary or

ternary intermetallic compounds containing aluminum as one of the constituents. Icosahedral quasicrys-

tals form one group of quasicrystals and polygonal quasicrystals, two-dimensional quasicrystals with

8-fold (Mn–Fe–Al), 10-fold (Al–Cu–Ni), or 12-fold (Al–Mn–Si) symmetry yet another. The former

group is manifested in the occurrence of sharp diffraction spots and the latter by the presence of a non-

crystallographic rotational symmetry. Figure 1.38 is an example of a simulated zero-layer X-ray

precession photograph (q.v.) from a polygonal crystal showing 12-fold symmetry (decagonal symmetry)

[28]. Two-dimensional quasicrystals symmetry have been reported for rapidly cooled samples

corresponding to the compositions V3Ni2 and V15Ni10Si: TEM studies showed that they exhibit

12-fold rotational symmetry but no long-range periodicity [29].

Two-dimensional quasiperiodical structures have been said to occur in medieval mosques and other

decorative tilings. Penrose [30] demonstrated the covering of plane space in a non-periodic manner by

using two differently shaped units, or tiles, and Fig. 1.39 is an example of a Penrose tiling which shows

two superimposed layers of fivefold symmetry. This tiling was extended to three dimensions and,

subsequently, a similarity was discovered between Penrose three-dimensional tiling and icosahedral

quasicrystals. Mackay has shown experimentally [31] that the diffraction pattern from a Penrose plane

tiling has a two-dimensional Fourier transform consisting of sharp d-peaks arranged in a fivefold

symmetry pattern.

In 2009, naturally occurring quasicrystals were found in Russia [32]; in composition they were

Cu–Al–Zn minerals with varying amounts of iron, including an Al63Cu24Fe13 phase; the quasicrystal

grains were stated to be of high crystalline quality [33].

Mathematically, the structures of quasicrystals are derivable by a general method that treats them

as projections of lattices of higher dimensions. The icosahedral quasicrystals found by Shechtman

were shown to be projections from a six-dimensional hypercubic lattice [34]. Whereas three integer

Fig. 1.37 Simulated Laue photograph of an icosahedral quasicrystal with the X-ray beam along a fivefold axis

(reproduced by courtesy of Dr. Steffen Weber)
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values, the Miller indices, are sufficient to label reflections in normal crystals, five linearly indepen-

dent vectors are needed for polygonal quasicrystals and six for icosahedral quasicrystals.

As a result of the findings on polygonal crystals and quasicrystals, the International Union of

Crystallography revised the definition of “crystal” as given in Sect. 1.2 to a material capable of

producing a clear-cut diffraction pattern, with ordering that is either periodic or aperiodic. The

concept of an aperiodic crystal was introduced by Schr€odinger [35]. He sought to explain how

hereditary information is stored: molecules were deemed too small, amorphous solids were plainly

chaotic, so it had to be a kind of crystal; and as a periodic structure could not encode information, it

Fig. 1.39 Example of a Penrose tiling [30] that uses just two shapes of tile (reproduced by courtesy of Jeff Preshing)

Fig. 1.38 Simulated zero-layer X-ray precession photograph of a polygonal crystal showing tenfold (decagonal)

symmetry (reproduced by courtesy of Dr. Steffen Weber)
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had to be aperiodic. Later, DNA was discovered and, although not crystalline, it possesses proper-

ties predicted by Schr€odinger—a regular but aperiodic molecule [36]. In this book, however, the

word ‘crystal’ is used in its traditional sense unless otherwise noted.

Buckyballs and Icosahedral Symmetry
The discovery of a new form of a chemical element is a very rare event, but this occurred with the

finding of a new allotropic form of carbon. Mass spectrometric examination of the products of a high-

energy laser interaction with graphite in a helium atmosphere contained fragments with varying

numbers of carbon atoms, their distribution depending upon the pressure of helium [37]. A very stable

carbon atom cluster was found to be C60. Stability arises because a sheet of carbon atoms formed a

ball, thereby satisfying fully the valence requirements of carbon.

This situation was met by a structural formation similar to that of a geodesic dome, Fig. 1.40, but

with interlocking pentagons and hexagons, and completed to a full sphere, Fig. 1.41. The C60

structure was named buckminsterfullerene [37], after Richard Buckminster Fuller, an American

engineer, who described the geodesic dome in detail. The geodesic dome was actually invented in

1922 by Walther Bauersfeld of the Zeiss optical company: it is a spherical or near-spherical lattice-

type surface formed by a network of great circles, or geodesics, on a sphere. The geodesics intersect to

form a rigid, stress-free triangular structure. Buckminster Fuller developed the mathematics of the

dome and popularized it.

For simplicity, near-spherical fullerenes are termed buckyballs, the simplest stable structure being

buckminsterfullerene [37], C60. This buckyball structure has 32 faces: 20 hexagons and 12 pentagons,

Fig. 1.41. Molecules that consist entirely of carbon atoms in the form of hollow spheres, ellipsoids,

and tubes are known as fullerenes. Buckyballs and buckytubes are topics of intense research both in

pure chemistry, in which fullerenes are manipulated to form compounds, and in technological

applications, such as carbon nanotubes.

The C60 fullerene exhibits icosahedral symmetry. As icosahedral symmetry is not compatible with

translational symmetry, there are no associated crystallographic space groups. Nevertheless, icosa-

hedral symmetry can be classified conveniently under the Sch€onflies point group system:

full icosahedral symmetry Ih comprises the following symmetry elements: E (identity), C5, C3, C2,

i (center of symmetry), S10, S6, s. Thus, the order of the group, the total number of its symmetry

elements, is 120. Figure 1.42 illustrates icosahedral symmetry; the similarity to C60 is clear in (b).

Fig. 1.40 Example of a geodesic dome (reproduced by courtesy of Lotus Domes UK)
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The icosahedral group of lower symmetry I has the elements E, C5, C3, and C2; it is of interest in some

biological fields as it can represent a chiral structure.

1.5 Problems

1.1. The line AC, Fig. P1.1, may be indexed as (12) with respect to the rectangular two-dimensional

axes x and y. What are the indices of the same line with respect to the axes x0 and y, where the

angle x0 Oy ¼ 120�? PQ is the parametral line for both sets of axes, and OB/OA ¼ 2.

1.2. Write the Miller indices for planes that make the intercepts given below:

(a) a/2, �b/2, kc.
(b) 2a, b/3, c/2.

(c) ka, kb, �c.

Fig. 1.42 Icosahedra. (a) Regular icosahedron of vertex figure 3.3.3.3.3: the vertex figure means that five triangles

meet at a vertex. (b) Truncated icosahedron of vertex figure 5.6.6: one pentagon and two hexagons meet at a vertex. The

symmetry is Ih in each case

Fig. 1.41 Molecular structure of buckminsterfullerene, a C60 buckyball. There are two different bond lengths: 1.458 Å

for the bonds fusing 5- and 6-membered rings and 1.401 Å for bonds fusing the 6-membered rings [38] (Harrison P,

McCaw C (2011) Educ Chem 48:113. Reproduced by permission of The Royal Society of Chemistry)
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(d) a, �b, 3c/4.

(e) ka, �b/4, c/3.

(f) �a/4, b/2, �c/3.

1.3. Evaluate zone symbols for the pairs of planes given below:

(a) (123), ð0�11Þ.
(b) ð20�3Þ, (111).
(c) ð41�5Þ, ð1�10Þ.
(d) ð�11�2Þ, (001).

1.4. What are theMiller indices of the plane that lies in both of the zones [123] and ½�11�1�?Why are there,

apparently, two answers to this problem and to each part of Problem 1.3?

1.5. How many different, unique point groups can be obtained from the symbol 422 by replacing one

or more of the rotation axes by roto-inversion axes of the same degree. Write the standard

symbols for the unique point groups so derived.

1.6. Take the cover of a matchbox, Fig. P1.2a.

(a) Ignore the label, and write down its point group.

(b) Squash it diagonally, Fig. P1.2b. What is the point group now?

(c) In each case, what is the point group if the label is not ignored?

1.7. Draw stereograms to show the general form in each of the point groups deduced in Problems 1.6a

and b. Satisfy yourself that in 1.6a three, and in 1.6b two, symmetry operations carried out in

sequence produce a resultant action that is equivalent to another operation in the group.

1.8. How many planes are there in the forms {010}, f�110g, and f11�3g in each of the point groups 2/

m, �42m, and m3?

Fig. P1.1 Line referred to rectangular and oblique axes

Fig. P1.2 Matchbox: (a) normal; (b) squashed
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1.9. What symmetry would be revealed by the Laue flat-film photographs where the X-ray beam is

normal to a plane in the form given in each of the examples below?

Point group Orientation

(a) �1 {100}

(b) mm2 {011}

(c) m {010}

(d) 422 {120}

(e) 3 f10�10g
(f) 3m f11�20g
(g) �6 {0001}

(h) �6m2 {0001}

(i) 23 {111}

(j) 432 {110}

In some examples, it may help to draw stereograms.

1.10. (a) What is the non-trivial symmetry of the figure obtained by packing a number of equivalent

but irregular quadrilaterals in one plane?

(b) What is the symmetry of the Dobermann in Fig. P1.3? This example illustrates how one can

study symmetry by means of everyday objects.

(c) What is the point group of each of the objects in Fig. P1.4a–e, assuming that they all have

depth, normal to the plane of the diagram?

1.11. Write the point-group symbol for the species (a) to (v) of molecule or ion in Fig. P1.5, in both the

Hermann–Mauguin and Sch€onflies notations. Use the program SYMM* with this question for

species (a) to (j) and allocate model numbers as follow:

(a) 90 (b) 49 (c) 3 (d) 18 (e) 42 (f) 91 (g) 30 (h) 16 (i) 65 (j) 71.

Fig. P1.3 Vijentor seal of approval at Valmara, JW
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1.12. What is the point-group projection symmetry for each of the examples in Problem 1.9?

1.13. What are the two-dimensional “Miller Indices” (hk) of the lines that form the perimeter of a

rectangle? Are they the same for a parallelogram? (Choose appropriate x and y axes with the

origin at the center of the figure.)

1.14. Show from Fig. P1.6 that with Miller–Bravais axes i ¼ �ðhþ kÞ.
1.15. Twelve 1 O resistors are linked to form the edges of a cube, Fig. P1.7. Use the cubic symmetry

to determine the effective resistance of the assembly of resistors to a current that is developed

by connecting a battery across the ends of a threefold axis.

Fig. P1.4 Six symmetrical objects. (a) Dumbbell. (b) Isle of Man style emblem (reproduced by courtesy of Mapsof-

World.com). (c) Maltese cross. (d) Flower pattern (reproduced by courtesy of Emeritus Professor John Huffman).

(e) Star of David
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Fig. P1.5 (a) Carbonate ion; planar. (b) Tetrabromogold(III) ion; planar. (c) Hexachloroplatinum(IV) ion; all

Cl–Pt–Cl angles are 90�. (d) Methane all H–C–H angles are 109.47�. (e) Trichloromethane; pyramidal.

(f) Bromochlorofluoromethane. (g) Benzene; planar. (h) Monochlorobenzene; planar. (i) 1,4-Dichlorobenzene; planar.
(j) 1,2-Bromochlorobenzene; planar. (k) Hydrogen peroxide. (l) Orhophosphoric acid. (m) Dibenzyl.

(n) Hexanitronickelate(II) ion. (o) Dihydrogen phosphate ion; the hydrogen atoms are arranged statistically on

the four positions shown. (p) 1,2,4,-Trichlorobenzene; planar. (q) 2,4,6-Triazidotriazine; planar. (r) trans-1,2-Dichlo-
roethane; planar. (s) Cycloocta-1,5-diene. (t) Tetranitrodiamminocobaltate(III) ion. (u) Pentafluoroantimonate(III) ion.

(v) Thorium tetrabromide
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Fig. P1.5 (continued)
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Fig. P1.5 (continued)
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Fig. P1.5 (continued)

46 1 Crystal Morphology and Crystal Symmetry



Fig. P1.5 (continued)
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Fig. P1.5 (continued)
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Lattices and Space-Group Theory 2

2.1 Introduction

We continue our study of crystals by investigating the internal arrangements of crystalline materials.

Crystals are characterized by periodicities in three dimensions.1 An atomic grouping, or pattern motif

which, itself, may or may not be symmetrical, is repeated again and again by a symmetry mechanism,

namely the space group of the crystal. There are 230 space groups, and each crystal substance belongs

to one or other of them. In its simplest form, a space group may be derived from the repetition of a

pattern motif by the translations of a lattice, as discussed below. It can be developed further by

incorporating additional symmetry elements, as demonstrated through the following text and Problem

2.1. We now enlarge on these ideas, starting with an examination of lattices.

2.2 Lattices

Every crystal has a lattice as its geometrical basis. A lattice may be described as a regular, infinite

arrangement of points in space in which every point has exactly the same environment as any other

point. This description is applicable, equally, in one-, two-, or three-dimensional space.

Lattice geometry in three-dimensional space is described in relation to three noncoplanar basic

repeat (translation) vectors a, b, and c. Any lattice point may be chosen as an origin, whence a vector

r to any other lattice point is given by

r ¼ Uaþ VbþWc (2.1)

where U, V, andW are positive or negative integers or zero, and represent the coordinates of the given

lattice point. The direction (directed line) joining the origin to the points U, V, W; 2U, 2V, 2W; . . .;

nU, nV, nW defines the row [UVW]. A set of such rows, or directions, related by the symmetry

constitutes a form of directions hUVWi; compare with zone symbols, Sect. 1.2.5. The magnitude r can

be evaluated by (2.16) mutatis mutandis.2

1We shall not be concerned here with the aperiodic crystalline materials discussed in Sect. 1.4.3.
2 “The necessary changes having been made.”

M. Ladd and R. Palmer, Structure Determination by X-ray Crystallography:

Analysis by X-rays and Neutrons, DOI 10.1007/978-1-4614-3954-7_2,
# Springer Science+Business Media New York 2013
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We consider first lattices in two dimensions; the three-dimensional lattices then become an

extension of the principles that evolve, rather like the symmetry operations discussed in the previous

chapter.

2.2.1 Two-Dimensional Lattices

A two-dimensional lattice is called a net; it may be imagined as being formed by aligning, in a regular

manner, one-dimensional rows of equally spaced points, Fig. 2.1a. The net (lattice) is the array of

points; the connecting lines are a convenience, drawn to aid our appreciation of the lattice geometry.

Since nets exhibit symmetry, they can be allocated to the two-dimensional systems, Sect. 1.4.1,

Table 1.1. The most general net is shown in Fig. 2.1b. A sufficient and representative portion of the

lattice is the unit cell, outlined by the vectors a and b; an infinite number of such unit cells stacked

side by side builds up the net.

The net under consideration exhibits twofold rotational symmetry about each lattice point; conse-

quently, it is placed in the oblique system. The chosen unit cell is primitive, symbol p, which implies that

one lattice point is associated with the area of the unit cell: each point is shared equally by four adjacent

unit cells. In the oblique unit cell, a 6C3 b, and g 6C 90 or 120�; angles of 90 or 120� in a lattice imply

symmetry higher than 2.

Consider next the stacking of unit cells in which a 6C b but g ¼ 90�, Fig. 2.2. The symmetry at

every point is 2mm, and this net belongs to the rectangular system. The net in Fig. 2.3 may be

described by a unit cell in which a0 ¼ b0 and g0 6C 90 or 120�. It may seem at first that such a net is

oblique, but careful inspection shows that each point has 2mm symmetry, and so this net, too, is

allocated to the rectangular system.

In order to display this fact clearly, a centered (symbol c) unit cell is chosen, shown in Fig. 2.3 by

the vectors a and b. This cell has two lattice points per unit-cell area. It is left as an exercise to the

reader to show that a centered, oblique unit cell does not represent a net with a fundamentally

different arrangement of points from that in Fig. 2.1b.

Fig. 2.1 Formation of a net. (a) Row (a one-dimensional lattice) of equally spaced points. (b) Regular stack of rows

forming a net

3The symbol 6C should be read as “not constrained by symmetry to equal.”
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2.2.2 Choice of Unit Cell

From the foregoing discussion, it will be evident that there is an infinity ofways inwhich a unit cellmight

be chosen for a given lattice (and structure). However, we shall follow a universal crystallographic

convention in choosing a unit cell: the unit cell is the smallest repeat unit for which its delineating vectors

are parallel to, or coincide with, important symmetry directions in the lattice. Returning to Fig. 2.3, the

centered cell is preferred because a and b coincide with the symmetry (m) lines in the net. The primitive

unit cell (a0, b0) is, of course, a possible unit cell, but it does not, in isolation, reveal the lattice symmetry

clearly. The symmetry is still there; it is invariant under choice of unit cell. The following equations show

the necessary equivalence of a0 and b0:

a0 2 ¼ a2=4þ b2=4 (2.2)

b0 2 ¼ a2=4þ b2=4 (2.3)

the value of g0 depends only on the ratio a/b.

Two other nets exist, governed by the unit-cell relationships a ¼ b, g ¼ 90� and a ¼ b, g ¼ 120�;
their study constitutes the Problem 1.2 at the end of this chapter. The five two-dimensional lattices are

summarized in Table 2.1. A lattice has the highest point-group symmetry of its system at each lattice

point: compare Table 2.1 with Table 1.1 and Table 2.3 with Table 1.5.

Fig. 2.3 Rectangular net with p and c unit cells drawn in; the c unit cell is the standard choice for this net

Fig. 2.2 Rectangular net with a p unit cell drawn in
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2.2.3 Three-Dimensional Lattices

The three-dimensional lattices, or Bravais lattices, may be imagined as being developed by the regular

stacking of nets. There are 14 unique ways in which this can be done, and the corresponding Bravais

lattices are distributed, unequally, among the seven crystal systems, as shown in Fig. 2.4. Each lattice is

represented by a unit cell, outlined by three vectors a, b, and c. In accordance with convention, these

vectors are chosen so that they both form a parallelepipedon of smallest volume in the lattice and are

parallel to, or coincide with, important symmetry directions in the lattice; thus, not all conventional unit

cells are primitive. In three dimensions, we encounter unit cells centered on a pair of opposite faces,

body-centered, or centered on all faces. Table 2.2 lists the unit-cell types and their notation.

Fractional Coordinates
A fractional coordinate x is given by X/a, where X is that coordinate in absolute measure (Å or nm)

and a is the unit-cell repeat distance in the same direction and in the same units. Thus, a position x at

1.45 Å along a unit cell of edge of length 12.34 Å corresponds to a fractional coordinate of 0.1175.

Triclinic Lattice
If oblique nets are stacked in a general and regular manner, a triclinic lattice is obtained, Fig. 2.5.

The unit cell is characterized by �1 symmetry at each lattice point, with the conditions a 6C b 6C c and

a 6Cb 6C g 6C 90 or 120�. This unit cell is primitive (symbol P), which means that one lattice point is

associated with the unit-cell volume; each point is shared equally by eight adjacent unit cells in

three dimensions; refer to Fig. 2.6 for this sharing principle. There is no symmetry direction to

constrain the choice of the unit-cell vectors, and a parallelepipedon of smallest volume can always

be chosen conventionally.

Monoclinic Lattices
The monoclinic system is characterized by one diad (rotation or inversion), with the y axis (and b)

chosen along or parallel to it. The conventional unit cell is specified by the conditions a 6C b 6C c,

a ¼ g ¼ 90�, and b 6C 90 or 120�. Figure 2.6 illustrates a stereoscopic pair of drawings of a monoclinic

lattice, showing eight P unit cells; according to convention, the b angle is chosen to be oblique.

Reference to Fig. 2.4 shows that there are two conventional monoclinic lattices, symbolized by the

unit-cell types P and C.

A monoclinic unit cell centered on the A faces is equivalent to that described as C; the choice of the

b axis4 is governedby symmetry:a and cmaybe interchanged, but thedirectionofbmust thenbe reversed

in order to preserve right-handed axes.

Table 2.1 The five two-dimensional lattices

System

Unit-cell

symbol(s)

Symmetry at

lattice points

Unit-cell edges

and angles

Oblique p 2 a 6C b; g 6C 90�, 120�

Rectangular p, c 2mm a 6C b; g ¼ 90�

Square p 4mm a ¼ b ; g ¼ 90�

Hexagonal p 6mm a ¼ b ; g ¼ 120�

4We often speak of the b axis (meaning the y axis) because our attention is usually confined to the unit cell.
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Fig. 2.4 Unit cells of the 14 Bravais lattices; interaxial angles are 90� unless indicated otherwise by a numerical value

or symbol. (1) Triclinic P. (2) Monoclinic P. (3) Monoclinic C. (4) Orthorhombic P. (5) Orthorhombic C. (6)

Orthorhombic I. (7) Orthorhombic F. (8) Tetragonal P. (9) Tetragonal I. (10) Cubic P. (11) Cubic I. (12) Cubic F.

(13) Hexagonal P. (14) Trigonal R. Note that (13) shows three P hexagonal unit cells. A hexagon of lattice points

without the central points in the basal planes shown does not lead to a lattice. Why?
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The centering of the B faces is illustrated in Fig. 2.7. In this situation a new unit cell, a0, b0, c0, can
be defined by the following equations:

a0 ¼ a (2.4)

b0 ¼ b (2.5)

c0 ¼ a=2þ c=2 (2.6)

Table 2.2 Notation for conventional crystallographic unit cells

Centering site(s) Symbol

Miller indices of

centred faces in the

unit cell

Fractional coordinates

of centered sites

in the unit cell

None P – –

bc faces A (100) 0; 1
2
; 1
2

ca faces B (010) 1
2
; 0; 1

2

ab faces C (001) 1
2
; 1
2
; 0

Body center I – 1
2
; 1
2
; 1
2

All faces F (100), (010),

(001)
0; 1

2
; 1
2

1
2
; 0; 1

2
1
2
; 1
2
; 0

8
><

>:

Fig. 2.5 Oblique nets stacked regularly at a vector spacing c to form a triclinic lattice

56 2 Lattices and Space-Group Theory



If b is not very obtuse, an equivalent transformation c0 ¼ � a/2 + c/2 can ensure that b0 is obtuse
(by convention). Since c0 lies in the ac plane, a0 ¼ g0 ¼ 90�, but b0 6C 90 or 120�. The new monoclinic

cell is primitive; symbolically we may write B � P. Similarly, it may be shown that I � F � C �
(A), Figs. 2.8 and 2.9.

If the C unit cell, Fig. 2.10, is reduced to primitive as shown, it no longer displays in isolation the

characteristic monoclinic symmetry clearly (see Table 2.3); neither a0 nor g0 is 90�. We may conclude

that there are two distinct monoclinic lattices, described by the unit-cell types P and C.

Fig. 2.6 Stereoview showing eight adjacent P unit cells in a monoclinic lattice. The sharing of lattice points among the

unit cells can be seen readily by focusing attention on the central lattice point in the drawings. A similar sharing occurs

with P unit cells of lattices in all systems

Fig. 2.7 Monoclinic lattice showing that B � P; b is the angle between c and a, and b0 the angle between c0 and a0
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It may be necessary to calculate the new dimensions of a transformed unit cell. Consider the

transformation B ! P, (2.4)–(2.6). Clearly, a0 ¼ a and b0 ¼ b. Taking the scalar product5 of (2.6)

with itself, we obtain

Fig. 2.8 Monoclinic lattice showing that I � C

Fig. 2.9 Monoclinic lattice showing that F � C

5The scalar (dot) product of two vectors p and q is denoted by p�q, and is equal to pq coscpq, wherecpq represents the

angle between the (positive) directions of p and q.
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c0 � c ¼ ða=2þ c=2Þ � ða=2þ c=2Þ (2.7)

Hence

c02 ¼ a2=4þ c2=4þ acðcos bÞ=2 (2.8)

The new angle b0 is given by

cos b0 ¼ a0 � c0=a0c0 (2.9)

In order to make b0 obtuse, it may be necessary to begin with �a/2 in (2.6).

Using (2.6) again and expanding, we obtain

cos b0 ¼ ½�a=2þ cðcos bÞ=2�=c0 ¼ ð�aþ c cos bÞ ð2c0Þ= (2.10)

Fig. 2.10 Monoclinic lattice showing that C ≢ P

Table 2.3 The 14 Bravais lattices and their notation

System Unit cell(s)

Symmetry at

lattice points Axial relationships

Triclinic Pa
1 a 6C b 6C c; a 6C b 6C g 6C 90�; 120�

Monoclinic P, C 2/m a 6C b 6C c; a ¼ g ¼ 90�; b 6C 90�; 120�

Orthorhombic P, C, I, F mmm a 6C b 6C c; a ¼ b ¼ g ¼ 90�

Tetragonal P, I 4

m
mm

a ¼ b 6C c; a ¼ b ¼ g ¼ 90�

Cubic P, I, F m3m a ¼ b ¼ c; a ¼ b ¼ g ¼ 90�

Hexagonal P 6

m
mm

a ¼ b 6C c; a ¼ b ¼ 90�; g ¼ 120�

Trigonalb R or P 3m a ¼ b ¼ c; a ¼ b ¼ g 6C 90�; <120�

aCapital letters are used for unit cells in three-dimensional lattices
bOn hexagonal axes, column 4 would be the same as for the hexagonal system, but the symmetry at each lattice point

remains �3m. This table may be compared with Table 1.3
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where c0 is given by (2.8). This type of calculation can be carried out in any crystal system, giving due

consideration to any nontrivial relationships between a, b, and c and between a, b, and g (see, for

example, Problem 2.3).

Orthorhombic Lattices
The monoclinic system was treated in some detail. It will not be necessary here to give such an

extensive discussion for either the orthorhombic system or the remaining crystal systems. Remember

always to think of the unit cell as a representative portion of its lattice and not as a finite body.

The orthorhombic system is characterized by three mutually perpendicular diad axes (rotation and/or

inversion); the unit-cell vectors are chosen to be parallel to, or to coincide with, these axes.

The orthorhombic unit cell is specified by the relationships a 6C b 6C c and a ¼ b ¼ g ¼ 90�. It will
not be difficult for the reader to verify that the descriptorsP,C, I, andF are necessary and sufficient in this

system. One way in which this exercise may be carried out is as follows. After centering the P unit cell,

four questions must be considered, in the following order:

1. Does the centered unit cell represent a lattice?

2. If so, is its symmetry, in isolation, different from that of the P unit cell?

3. If the symmetry is unchanged, is the lattice different in type (arrangement of points) from the

lattice or lattices already determined for the given system?

4. Has the unit cell been chosen correctly?

Notice that we answered these questions implicitly in discussing the monoclinic lattices.

The descriptors A, B, and C do not all remain equivalent for orthorhombic space groups in the class

mm2; it is necessary to distinguish C from A (or B). The reader may like to consider now, or later, why

this distinction is necessary.

Tetragonal Lattices
The tetragonal system is characterized by one tetrad (rotation or inversion) along z (c); the unit-cell

conditions are a ¼ b 6C c and a ¼ b ¼ g ¼ 90�. There are two tetragonal lattices, specified by the

unit-cell symbols P and I, Fig. 2.4; C and F tetragonal unit cells may be transformed to P and I,

respectively, see also Problem 2.4.

Cubic Lattices
The symmetry of the cubic system is characterized by four triad axes at angles of cos�1ð1=3Þ to one

another, or cos �1ð1=
ffiffiffi
3

p
Þ to x, y, and z; they are the body diagonals h111i of a cube; the unit-cell

conditions are a ¼ b ¼ c; a ¼ b ¼ g ¼ 90�. The four threefold axes, in this orientation, introduce

twofold axes along h100i; fourfold axes exist in three of the five cubic classes. There are three cubic

Bravais lattices, Fig. 2.4, with conventional unit cells P, I, and F.

Hexagonal Lattice
The basic feature of a hexagonal lattice is that it should be able to accommodate a 6- or 6-fold symmetry

axis. This requirement is achieved by a lattice based on a P unit cell, with a ¼ b 6C c, a ¼ b ¼ 90�, and
g ¼ 120�, the c direction being taken along the unique axis in the lattice.

Lattices in the Trigonal System
A two-dimensional unit cell in which a ¼ b and g ¼ 120� is compatible with either sixfold or

threefold symmetry; see Fig. 2.22, plane groups p6 and p3. For this reason, the hexagonal lattice (P

unit cell) may be used for certain crystals which belong to the trigonal system. However, as shown in

Fig. 2.11, the presence of two threefold axes within a unit cell, with x, y coordinates of 2
3
; 1
3
and 1

3
; 2
3
, and

parallel to the z axis, introduces the possibility of a lattice which, although belonging to the trigonal

system, has a triply primitive unit cell Rhex, with lattice points at
2
3
; 1
3
; 1
3
, and 1

3
; 2
3
; 2
3
(in addition to 0, 0, 0)

in the unit cell. Thus, for some trigonal crystals the unit cell will be P, and for others it will be Rhex, the
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latter being distinguished by systematically absent X-ray reflections, Table 3.2. The Rhex cell can be

transformed to a primitive rhombohedral unit cell R, with a ¼ b ¼ c and a ¼ b ¼ g 6C 90 and<120�;
the threefold axis is then along [111]. The R cell may be thought of as a cube extended (or squashed)

along one of its threefold axes.

The lattice based on an R unit cell is the only truly exclusive trigonal lattice, the trigonal lattice

based on a P unit cell being borrowed from the hexagonal system, Table 2.3.

We note in passing that the symbols P, R, A, B,C, I, and F cannot apply, strictly, to lattices [1]; they

are unit-cell symbols, and refer to the types of unit cells already chosen to represent their lattices.

However, terminology such as “P lattice” is in general use and, as long as it is used with understanding,

is perfectly acceptable.

Fig. 2.11 Trigonal lattice;

the fractions refer to values

of chex. (a) Rhombohedral

(R) unit cell in the obverse

setting developed from a

triply primitive hexagonal

(Rhex) unit cell. In the

reverse setting, the

rhombohedral lattice and

unit cell are rotated about

[111] 60� clockwise with
respect to the Rhex axes.

The ratio of the volumes

of any two unit cells in one

and the same lattice is

equal to the ratio of the

numbers of lattice points in

the two unit-cell volumes.

In the reverse, setting, the

lattice points in the unit cell

lie at 2
3
; 1
3
; 1
3
and 1

3
; 2
3
; 2
3
.

(b) Plan view of (a) as seen
along chex
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2.3 Families of Planes and Interplanar Spacings

Figure 2.12 shows one unit cell of an orthorhombic lattice projected on to the a, b plane. The trace of the

(110) plane nearest the originO is indicated by a dashed line, and the perpendicular distance of this plane

from O is d(110). By repeating the operation of the translation �d(110) on the plane (110), a series, or
family, of parallel, equidistant planes is generated, as shown in Fig. 2.13. Miller indices, Sect. 1.2.3, are

by definition prime to one another: in discussing X-ray diffraction effects, however, it is necessary to

consider planes for which the indices h, k, and l may contain a common factor while still making

intercepts a/h, b/k, and c/l on the x, y, and z axes, respectively, as required by the definition of Miller

indices. It follows that the plane with indices (nh, nk, nl) makes intercepts a/nh, b/nk, and c/nl along x, y,

and z, respectively, and that this plane is nearer to the origin by a factor of 1/n than is the plane (hkl). In

other words, d(nh, nk, nl) ¼ d(hkl)/n.

In general, we denote a family of planes as (hkl) where h, k, and l may contain a common factor.

For example, the (220) family of planes is shown in Fig. 2.14 with interplanar spacing d(220) ¼ d

(110)/2; alternate (220) planes therefore coincide with (110) planes. Note, that an external crystal face

normal to d(hh0) would always be designated (110), since external observations reveal the shape but

not the size for the unit cell.

Fig. 2.12 One P unit cell in an orthorhombic lattice in projection on (001), showing the trace of the (110) plane

Fig. 2.13 Family of (110) planes in an orthorhombic lattice, as seen in projection along c

Fig. 2.14 Family of (220) planes in an orthorhombic lattice, as seen in projection along c
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2.4 Reciprocal Lattice: Geometrical Treatment

Although we shall discuss the reciprocal lattice in detail in the next chapter, it is useful to introduce it

here, because there exists a reciprocal lattice for each of the Bravais lattices. The reciprocal lattice, a

lattice in reciprocal (diffraction) space, is derived here graphically from the Bravais lattice, a lattice in

real (direct) space, and we choose the monoclinic system for an example.

Figure 2.15a represents a monoclinic lattice as seen in projection along the y axis, the normal to the

(010) plane in this example. From the origin O of a P unit cell, lines are drawn normal to families of

planes (hkl) in real space. We note in passing that the normal to a plane (hkl) does not, in general,

coincide with the direction [hkl]: see Sect. 2.2. However, there are special cases, such as [010] and the

normal to (010) in the present example, in which the two directions do coincide.

Along each line, reciprocal lattice points hkl (no parentheses) are marked off such that the distance

from the origin to the first point in any line is inversely proportional to the corresponding interplanar

spacing d(hkl).

Fig. 2.15 Direct and reciprocal lattices. (a) Monoclinic P, as seen in projection along b, showing three families of

planes. (b) Corresponding reciprocal lattice showing the points representing these three and other families of planes
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In three dimensions, we refer to d*(100), d*(010), and d*(001) as a*, b*, and c*, respectively, and so

define a unit cell in the reciprocal lattice. In general,

d�ðhklÞ ¼ k=dðhklÞ (2.11)

where k is a constant. Hence, for the monoclinic system,

a� ¼ k=dð100Þ ¼ k=ða sin bÞ (2.12)

From Fig. 2.15a, the scalar product a � a� is given by

a � a� ¼ aa� cosðb� 90Þ ¼ ak
cosðb� 90Þ

a sin b
¼ k (2.13)

The mixed scalar products, such as a � c� are identically zero, because the angle between a and

c* is 90�.
The reciprocal lattice points form a true lattice with a representative unit cell outlined by a*, b*, and c*

which, therefore, involves six reciprocal unit-cell parameters in the most general case, three sides a*, b*,

and c*, and three angles a*, b*, and g*. The size of the reciprocal unit cell is governed by the choice of the

constant k. In practice, k may be taken as the wavelength l of the X-radiation used in an experiment, in

which case reciprocal lattice units are dimensionless.Alternatively,kmaybe taken as unity, inwhich case

reciprocal lattice units have the dimensions of length�1. The different situations where one or other

convention is used will become clear as we proceed.

A reciprocal lattice row hkl; 2h,2k,2l; . . . may be considered to be derived from the families of

planes (nh, nk, nl) with n ¼ 1, 2, . . ., since d(nh, nk, nl) ¼ d(hkl)/n. Hence,

d�ðnh; nk; nlÞ ¼ nd�ðhklÞ (2.14)

where d*(hkl) is the distance of the reciprocal lattice point hkl from the origin, expressed in the

appropriate reciprocal lattice units (RU). Since h, k, and l are the coordinates of reciprocal lattice

points, the vector d* (hkl) is given by

d�ðhklÞ ¼ ha� þ kb� þ lc� (2.15)

Hence, taking the dot product of d*(hkl) with itself, we have

d�ðhklÞ � d�ðhklÞ ¼ d�2ðhklÞ
¼ h2a�2 þ k2b�2 þ l2c�2

þ 2klb�c� cos a�

þ 2lhc�a� cos b�

þ 2hka�b� cos g� (2.16)

Now d(hkl) may be obtained from (2.11) and (2.16). Simplifications of (2.16) arise through

symmetry constraints on the unit-cell vectors in different crystal systems. The reader should check

the entries in Table 2.4, starting with Table 2.3 and (2.16).
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2.5 Unit-Cell Transformations

Here, we consider the transformations of unit-cell vectors, zone symbols and directions, Miller indices,

reciprocal unit-cell vectors, and fractional coordinates of sites in the unit cell, all involving no

change in the origin of the unit cell. Such transformations are necessary when a nonstandard unit cell

needs to be re-cast in standard form.

2.5.1 Bravais Unit-Cell Vectors

Let a, b, and c be transformed to a0, b0, and c0, such that

a0 ¼ s11aþ s12bþ s13c

b0 ¼ s21aþ s22bþ s23c

c0 ¼ s31aþ s32bþ s33c

(2.17)

which may be written in matrix notation as

a0

b0

c0

2
4

3
5 ¼

s11 s12 s13
s21 s22 s23
s31 s32 s33

2
4

3
5 �

a
b
c

2
4
3
5 (2.18)

or, more concisely, as

a0 ¼ S � a (2.19)

where the dot � here symbolizes matrix multiplication; a and a0 represent the two sets of column

vectors a, b, c, and a0, b0, c0, and S is the 3 	 3 matrix of elements sij. The inverse transformation is

obtained by multiplying both sides of (2.19) by S�1, since S � S�1 ¼ 1:

Table 2.4 Expressions for d*2(hkl), and d2(hkl) with k ¼ 1

System d*2(hkl) d2(hkl)

Triclinic h2a�2 þ k2b�2 þ l2c�2 þ 2klb�c� cos a�

þ 2lhc�a� cos b� þ 2hka�b� cos g�
1/d*2(hkl)

Monoclinic h2a�2 þ k2b�2 þ l2c�2 þ 2hla�c� cos b� 1

sin2b

h2

a2
þ l2

c2
� 2hl cos b

ac

� �
þ k2

b2

� ��1

Orthorhombic h2a�2 þ k2b�2 þ l2c�2 h2

a2
þ k2

b2
þ l2

c2

� ��1

Tetragonal ðh2 þ k2Þa�2 þ l2c�2 h2 þ k2

a2
þ l2

c2

� ��1

Hexagonal and

trigonal (P)
ðh2 þ k2 þ hkÞa�2 þ l2c�2 4ðh2 þ k2 þ hkÞ

3a2
þ l2

c2

� ��1

Trigonal (R)

(rhombohedral)
½h2 þ k2 þ l2 þ 2ðhk þ klþ hlÞðcos a�Þ�a�2 a2ðTRÞ�1

, where

T ¼ h2 þ k2 þ l2 þ 2ðhk þ klþ hl)

½ðcos2 a� cos aÞ=sin2 a� and
R ¼ ðsin2 aÞ=ð1� 3 cos2 aþ 2 cos3 aÞ

Cubic ðh2 þ k2 þ l2Þa�2 h2 þ k2 þ l2

a2

� ��1

¼ a2

h2 þ k2 þ l2
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a ¼ S�1 � a0 (2.20)

where S�1 is the matrix

S�1 ¼
t11 t12 t13
t21 t22 t23
t31 t32 t33

2
4

3
5 (2.21)

The elements tij may be obtained by rearranging (2.17), or by the following equations:

tij ¼ ð�1ÞiþjjMjij=jSj

jSj ¼ s11
s22s23

s32s33

�����

�����þ s21
s12s13

s22s23

�����

�����þ s31
s12s13

s22s23

�����

�����
(2.22)

where jMjij is the minor determinant of S obtained by striking out its jth row and ith column, and jSj is
the determinant value of the matrix S.

2.5.2 Directions (Zone Symbols)

From Sect. 2.2, we have

r ¼ Uaþ VbþWc (2.23)

and for the transformed cell

r ¼ U0a0 þ V 0b0 þW0c0 (2.24)

Thus, from (2.23) and (2.24),

½U0V0W0�
a0

b0

c0

0
@

1
A ¼ ðUVWÞ

a
b
c

0
@

1
A ¼ ðUVWÞS�1

a0

b0

c0

0
@

1
A (2.25)

or

U0V 0W0ð Þ ¼ UVWð ÞS�1 (2.26)

Hence, and concisely,

U0 ¼ US�1 ¼ ðS�1ÞTU (2.27)

where U and U0 are now column vectors.
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Since (S�1)T ¼ (ST)�1, pre-multiplication of (2.27) by ST leads to

STU0 ¼ STðSTÞ�1U ¼ U (2.28)

or

U ¼ ST � U0 (2.29)

2.5.3 Coordinates of Sites in the Unit Cell

For any point x, y, z in a unit cell, the vector r from the origin to that point is given by

r ¼ xaþ ybþ zc (2.30)

Comparison of this equation with (2.23), and by a procedure similar to (2.24)–(2.28), we see that

coordinates transform as do zone symbols. Thus,

x0 ¼ ðS�1ÞT � x (2.31)

2.5.4 Miller Indices

From (2.15) and (2.23), it follows that

d�ðhklÞ � r ¼ hU þ kV þ lW (2.32)

Thus, with (2.29),

d�ðhklÞ � r ¼ ½hkl� �
U

V

W

2
4

3
5 ¼ ½hkl� � ST �

U0

V0

W0

2
4

3
5 (2.33)

But also

d�ðh0k0l0Þ � r ¼ ½h0k0l0� �
U0

V0

W0

2
4

3
5 (2.34)

because d*(hkl) and d*(h0k0l0) are one and the same vector in the same plane but with different indices.

Hence

½h0k0l0� ¼ ½hkl� � ST (2.35)
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Transposing

h0

k0

l0

2
4

3
5 ¼ S �

h

k

l

2
4
3
5 (2.36)

or

h0 ¼ S � h (2.37)

where h and h0 are column vectors with components h, k, l and h0, k0, l0, respectively. Thus, Miller

indices transform in the same way as do unit-cell vectors in real space. If we operate on both sides of

(2.37) by S�1, then

S�1 � h0 ¼ S�1 � S � h

or

h ¼ S�1 � h0 (2.38)

We may note here that if a plane (hkl) lies in the [UVW] zone and the normal to the plane is d�ðhklÞ
then d�ðhklÞ � r ¼ 0, then from (2.15) and (2.23), it follows that hU + kV + lW ¼ 0, which is the Weiss

Zone Law, since products such as a�a* and a�b* are unity and zero, respectively (k ¼ 1).

2.5.5 Reciprocal Unit-Cell Vectors

From (2.15), we develop

d�ðhklÞ ¼ ½a�b�c�� �
h

k

l

2
64

3
75

¼ ½a�b�c�� � S�1 �
h0

k0

l0

2
64

3
75

(2.39)

In the transformed reciprocal unit cell

d�ðhklÞ ¼ ½a0�b0�c0�� �
h0

k0

l0

2
4

3
5 (2.40)

so that

½a0�b0�c0�� ¼ ½a�b�c�� � S�1 (2.41)
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Transposing

a0�

b0�

c0�

2
4

3
5 ¼ ðS�1ÞT �

a�

b�

c�

2
4

3
5 (2.42)

or

a0
� ¼ ðS�1ÞT � a� (2.43)

so that reciprocal unit-cell vectors transform in the same way as do zone symbols.

As an example of the transformations that we have just derived, let a transformation matrix from

unit cell 1 to unit cell 2 may be written as

S ¼
1 0 1

0 1 �2

1 2 1

2
4

3
5

Given the plane ð1�35Þ and the site �0.10, 0.15, 0.25 in unit cell 1, determine the corresponding

values for unit cell 2.

Miller indices: h2 ¼ h1 þ l1 ¼ 6

k2 ¼ k1 � 2l1 ¼ 13

l2 ¼ h1 þ 2k1 þ l1 ¼ 0

that is, the plane is ð613; 0Þ in unit cell 2.

For the coordinates we need the matrix (S�1)T. The determinant jSj is 4. Then, applying (2.22),

S�1 ¼
5=4 1=2 �1=4
�1=2 0 1=2
�1=4 �1=2 1=4

2
4

3
5

whereupon the transpose becomes

ðS�1ÞT ¼
5=4 �1=2 �1=4
1=2 0 �1=2
�1=4 1=2 1=4

2
4

3
5

then the transformed coordinates are

x2 ¼ 5x1=4� y1=2� z1=4 ¼ �0:2625

y2 ¼ x1=2� z1=2 ¼ �0:1750

z2 ¼ �x14þ y1=2þ z1=4 ¼ 0:1625

that is, the site �0.2625, �0.1750, 0.1625.
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A reciprocal lattice has the same symmetry as the Bravais lattice from which it was deduced. This

fact may be appreciated from a comparison of the constructions of the reciprocal lattice and the

stereogram. Both of these constructions are built up from normals to planes, so that the symmetry

expressed through the poles of a stereogram is the same as that at the reciprocal lattice points, but the

reciprocal lattice adds dimensions to the representation; see also Sect. 3.4.1.

The transformations that we have discussed can be summarized by the mnemonic scheme in

Fig. 2.16, for any matrix M and its inverse M�1. The arrow symbols, such as

Fig. 2.16 Mnemonic

scheme for operating on a

matrix or its inverse and its

inverse; two examples are

shown
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should be interpreted as a0 in terms of a, and so on. The scheme for the inverse is equivalent to writing,

x0 ¼ ðM�1ÞT � x and then multiplying in the usual manner.

2.6 Rotational Symmetries of Lattices

We now discuss analytically the permissible rotational symmetries in the lattices of periodic crystals,

already stated to be of degrees 1, 2, 3, 4, and 6. In Fig. 2.17, let A and B represent two adjacent lattice

points, of repeat distance t, in any row. An R-fold rotation axis is imagined to act at each point and to

lie normal to the plane of the diagram. An anticlockwise rotation of F about A maps B on to B0, and a
clockwise rotation of the same value F about B maps A on to A0. It follows from the geometry of the

figure that AB is parallel to A0B0 and, from the property of lattices, A0B0 ¼ Jt, where J is an integer.

Lines A0S and B0T are drawn perpendicular to AB, as shown. Hence,

A0B0 ¼ TS ¼ AB� ðAT þ BSÞ (2.44)

or

Jt ¼ t� 2t cos F (2.45)

whence

cos F ¼ ð1� JÞ=2 ¼ M=2 (2.46)

Fig. 2.17 Rotational symmetry in crystal lattices. Permissible values of F are 360(0), 180, 120, 90, and 60�,
corresponding to one-, two-, three-, four-, and sixfold rotations, respectively
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where M is another integer. Since � 1
 cos F
 1, it follows from (2.46) that the only admissible

values forM are 0, �1, �2, and these values give rise to the rotational symmetries already discussed.

This treatment gives a quantitative aspect to the packing considerations mentioned previously,

Sect. 1.4.2.

2.7 Space Groups

In order to extend our study of crystals further into the realm of atomic arrangements, we must

consider now the symmetry of extended, ideally infinite, patterns in space. We recall that a point

group describes the symmetry of a finite body, and that a lattice constitutes a mechanism for

repetition, to an infinite extent, by translations parallel to three noncoplanar directions. We may

ask, therefore, what is the result of repeating a point-group pattern by the translations of a Bravais

lattice? It is a space group, and we shall see that it produces an arrangement like atoms in a crystal.

A space group can be described as an infinite set of symmetry elements, the operation with

respect to any of which brings the infinite array of points to which they refer into a state that is

indistinguishable from that before the operation. In practice, we may apply space-group rules to

crystals because the dimensions of crystals used in experimental investigations are very large in

comparison with the repeat distances of the pattern. For example, the dimension a of the face-

centered cubic unit cell of sodium chloride is 0.564 nm. Thus, in a crystal of experimental size

(ca. 0.2, 0.2, 0.2 mm), there are approximately 4.5 	 1016 unit cells.

A space group may be considered to be made up of two parts, a pattern motif and a repeat

mechanism. An analogy can be drawn with a wallpaper-type pattern, a simple example of which is

shown in Fig. 2.18a. We shall analyze this pattern.

The conventional unit cell for this pattern is indicated by the vectors a and b. If we choose a pattern
motif consisting of two flowers, Fig. 2.18b, and continue it indefinitely by the repeat vectors a and b,

Fig. 2.18 Wallpaper-type

pattern. (a) Extended pat-

tern. (b) Asymmetric unit,

or pattern motif; the space-

group symmetry applied to

the asymmetric unit gener-

ates the infinite pattern
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the plane pattern is generated. However, we have ignored the symmetry between the two flowers in

the pattern motif itself. If one flower (1) is reflected across the dashed line (g) to (10) and then translated
by a/2, it then occupies the position of the second flower (2); thus, the pattern represented in Fig. 2.18a
is brought from one state to another indistinguishable state by this symmetry operation. This operation

takes place across a glide line, a symmetry element that occurs in some extended two-dimensional

patterns. The two motions constitute a single symmetry operation.

The necessary and sufficient pattern motif for a whole, extended figure is a single flower,

occupying the asymmetric unit—the unshaded (or shaded) portion of Fig. 2.18b. If the single flower

is repeated by both the glide-line symmetry and the unit-cell translations, that is, overall by the space-

group symmetry, then the infinitely extended pattern is generated. Thus, if we know the asymmetric

unit of a crystal structure, which need not be the whole unit-cell contents, and the space-group symbol

for the crystal, we can generate the whole structure.

2.7.1 Two-Dimensional Space Groups (Plane Groups)

Oblique System
Our discussion leads naturally into two-dimensional space groups, or plane groups. Consider the pattern

motif showing twofold symmetry, illustrated in Fig. 2.19a; the symmetry symbols that we have used in

point groups are continued into the realm of space groups. Next, consider a primitive oblique net,

Fig. 2.19b; it is of infinite extent in the plane, and the framework of lines divides the field, conceptually,

into a number of identical primitive (p) unit cells. An origin is chosen at a lattice point; it could be

anywhere in the unit cell, but is desirably, and conventionally, linked to a symmetry element.

Now, let themotif be repeated around eachpoint in thenet, and in the sameorientation,with the twofold

rotation points of the motif and the net in coincidence, Fig. 2.19c. It will be seen that additional twofold

rotation points are introduced at the unique fractional coordinates 0; 1
2
; 1
2
; 0; and 1

2
; 1
2
in each unit cell,

Fig. 2.19 Plane group p2.

(a) Twofold symmetry

motif. (b) Oblique net with
p unit cells outlined. (c)
Extended pattern of plane

group p2 obtained by a

combination of (a) with (b)
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see Sect. 2.2.2. We must always look for such “extra” symmetry elements after the point-group motif

has been operated on by the unit-cell translations. Ultimately, this will be found to be quite straightfor-

ward. Meanwhile, a simple check consists in ensuring that any point on the diagram can be reached

from any other point bymeans of a single symmetry operation, including translations as necessary. This

plane group is given the symbol p2.

In general, we shall not need to draw several unit cells; one cell will suffice provided that the pattern

motif is completed around all lattice points intercepted by the given unit cell. Figure 2.20 illustrates

the standard drawing of p2: the origin is taken on a twofold point, the x axis runs from top to bottom,

and the y axis runs from left to right. Thus, the origin is considered to be in the top left-hand corner of

the cell as drawn, but each twofold rotation point could be an equivalent origin; we must remember

always that the drawing is a representative portion of an infinite array, whether in two or three

dimensions.

The asymmetric unit (which may be a chemical species) represented here by O, may be placed

anywhere in the unit cell, but for convenience, near the origin. It is then repeated by the symmetry p2

to build up the complete picture, taking care to complete the arrangements around each corner of the

unit cell. The additional twofold points can then be identified. The reader should now carry out this

construction.

The list of fractional coordinates in Fig. 2.20 refers to the unique symmetry-related sites in the unit

cell. The first row of these sites, related by the space-group symmetry, lists the general equivalent

positions. In p2 they are given the coordinates x, y, and �x, �y. We could use 1 � x, 1 � y instead of �x, �y,

but it is more usual to list the set of coordinates near one and the same origin.

Each coordinate line in the space-group description lists, in order from left to right, the number of

positions in each set, the Wyckoff [2] notation, used for reference purposes, the symmetry at each site

in the set, and the fractional coordinates of all sites in the set.

In a conceptual two-dimensional crystal, or projected real atomic arrangement, the asymmetric

unit may contain either a single atom or a group of atoms. If it consists of part, half, in this plane

group, of one molecule then the whole molecule, as seen in projection at least, must contain twofold

rotational symmetry, or a symmetry of which 2 is a subgroup.

There are four unique twofold rotation points in the unit cell; in theWyckoff notation they are the sets

(a), (b), (c), and (d), and they constitute the sets of special equivalent positions, point symmetry 2 in this

plane group. Notice that general positions always have symmetry 1, whereas special positions always

have a higher crystallographic point-group symmetry. Where the unit cell contains fewer (an integral

submultiple) of a species than the number of general equivalent positions in its space group, then it may

be assumed that the species are occupying special equivalent positions and have the symmetry consistent

with that of the special site. Exceptions to this rule may arise in disordered structures, Sect. 8.9.

Fig. 2.20 Standard drawing and description of plane group p2. The lines which divide the unit cell into four quadrants

are, as usual, drawn for convenience only
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Rectangular System
We move next to the rectangular system, which includes point groups m and 2mm, and both p and c

unit cells. We shall consider first plane groups pm and cm.

The formation of these plane groups may be considered along the lines already described for p2,

and we refer immediately to Fig. 2.21a. The origin is chosen on m, but its y coordinate is not defined

by this symmetry element. In a structure of this symmetry, the origin is specified by fixing arbitrarily

the y coordinate of one of the atoms in the unit cell. In pm, the general equivalent positions are two in

number, and there are two sets of special equivalent positions on m lines.

Plane group cm, Fig. 2.21b, introduces several new features. The coordinate list is headed by the

expression ð0; 0; 1
2
; 1
2
Þ þ ; this means that the two translations 0, 0 and 1

2
; 1
2
are added to all the listed

coordinates. Hence, the full list of general (equivalent) positions would read

x; y; �x; y; 1
2
þ x; 1

2
þ y; 1

2
� x; 1

2
þ y

Fig. 2.21 Plane groups

in the rectangular system.

(a) pm. (b) cm; glide lines
(g) are indicated by the

dashed lines
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Given x, the distance 1
2
� x, for example, is found by first moving 1

2
along the a axis from the origin

and then moving back along the same line by the amount x.

The centering of the unit cell in conjunction with the m lines introduces the glide-line symmetry

element, symbol g and graphic symbol - - - . The glide lines interleave the mirror lines, and their action is

a combination of reflection and translation, the two movements comprising again a single symmetry

operation. The translational component is one half of the repeat distance in the direction of the glide line.

Thus, the pair of general positions x, y and 1
2
� x; 1

2
þ y are related by the g line at x ¼ 1

4
, y ¼ 0.We shall

encounter glide lines in any centered plane group wherem lines are present, and in certain other groups.

For example, we may ask if there is any meaning to the symbol pg, a glide-symmetry motif repeated by

the translations of a p unit-cell? The answer is that pg is a possible plane group; in fact, it is the symmetry

of the pattern in Fig. 2.18. The differing orientations of the glide lines in Figs. 2.18 and 2.22 (standard) are

expressed by the full symbols p11g (g ⊥ y) and p1g1 (g ⊥ x), respectively.

There is only one set of special positions in cm, in contrast to two sets in pm. This situation arises

because the centering condition in cm requires that both mirror lines in the unit cell be included in

one and the same set. If we try to postulate two sets, by analogy with pm, we obtain

0; y; 1
2
; 1
2
þ y (2.47)

and

1
2
; y; 0ðor 1Þ;1

2
þ y (2.48)

However, expressions (2.47) and (2.48) involve only a shift in the origin, and therefore do not

constitute two different sets of special equivalent positions.

We could refer to plane group cm by the symbol cg. If we begin with the origin on g and mark in the

general positions as before, we should find now the glide lines interleaved withm lines. Two patterns that

differ only in the choice of origin or in the numerical values attached to the coordinates of the equivalent

positions do not constitute different space groups. The reader can illustrate this statement by drawing cg,

and by drawing pg also, can show that pm and pg are different. The glide line or, indeed, any translational

symmetry element is not encountered in point groups; it is a property of infinite patterns.

The 17 Plane Groups
The 17 plane groups are illustrated in Fig. 2.22. The two diagrams for each plane group show the general

equivalent positions and the symmetry elements. The asymmetric unit is represented therein by a scalene

triangle instead of by the usual circle. Space groups that are derived by the repetition of a point-group

motif by the lattice translations are termed symmorphic space groups, as with p2, pm, and c2mm, but

otherwise as non-symmorphic space groups, as with pg, p2mg, and p2gg.

Conditions Governing X-Ray Reflection
Our main reason for studying space-group symmetry is that it provides information about the repeat

patterns of atoms in crystal structures. X-ray diffraction spectra are characterized in position by the

indices of the families of planes from which, in the Bragg treatment of diffraction which we

consider in Sect. 3.3.2, the X-rays are considered to be reflected. The pattern of the indices of the

reflecting planes reveals information about the space group of the crystal. Where a space group

contains translational symmetry, certain sets of reflections will be systematically absent from the

experimental diffraction data record. We meet this situation for the first time in cm, Fig. 2.21b; two-

dimensional reflections hk (l ¼ 0) are limited to those for which the sum h + k is an even number.
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Figure 2.23 illustrates a rectangular lattice. Two unit cells are depicted on this lattice, a centered

cell with vectors A and B, and a primitive cell with vectors a and b. The relationship between them
is summarized by the equations

A ¼ a� b

B ¼ aþ b (2.49)

We have shown in Sect. 2.5.4 that Miller indices of planes transform in the same way as unit-cell

vectors, so it follows that

H ¼ h� k

K ¼ hþ k
(2.50)

where H and K apply to the unit cellA, B and h and k to the unit cell a, b. Adding equations (2.50), we
obtain

H þ K ¼ 2h (2.51)

which is even for all values of h. Thus, in this centered unit cell, reflections can occur only when the

sum of the indices, H + K, is an even integer. This topic is discussed more fully in Sect. 3.7ff,

whereupon the significance of the extreme right-hand column of data in figures such as Figs. 2.21

and 2.24 will become clear.

2.7.2 Plane Groups Related to 2mm

Point group 2mm belongs to the rectangular system and, as a final example in two dimensions, we

shall study plane group p2gg. It is often helpful to recall the “parent” point group of any space group:

we ignore the unit-cell symbol, and replace any translational symmetry elements by the

Fig. 2.23 Centered rectangular unit cell A, B and primitive unit cell a, b within the same lattice
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corresponding nontranslational symmetry elements. Thus, pg is derived from point groupm, and p2gg

from 2mm.

In point group 2mm, we know that the two m lines intersect in the twofold rotation point, and this

remains true for plane group p2mm. In p2gg, however, we may not assume that the twofold rotation

point lies at the intersection of the g lines. In our study of point groups, we saw that the symmetry

elements in a given symbol have a definite relative orientation with respect to the crystallographic

axes; this is preserved in the corresponding space groups. Thus, we know that the g lines are normal to

the x and y axes, and we can take an origin, initially, at their intersection, Fig. 2.24a. In Fig. 2.24b, the

general equivalent positions have been inserted; this diagram reveals the positions of the twofold

points, inserted now in Fig. 2.24c, together with the additional g lines in the unit cell. The standard

Fig. 2.24 Formation and

description of plane group

p2gg
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orientation of p2gg places the twofold point at the origin; Fig. 2.24d shows this setting and the

description of this plane group. We see again that two interacting symmetry elements have a

combined action which is equivalent to that of a third symmetry element, but their positions must

be chosen correctly. This question did not arise in point groups because, by definition, all symmetry

elements pass through a point, the origin. What group would arise if we did place the twofold rotation

point at the intersection of the glide lines?

There are two sets of special equivalent positions in p2gg, but the pairs of twofold rotation points

that constitute each set must be selected correctly. One way of ensuring a proper selection is by

inserting the coordinate values of the point-group symmetry element constituting a special position

into the coordinates of the general positions. Thus, by taking x ¼ y ¼ 0, for one of the twofold points,

we obtain a set of special positions with coordinates 0,0 and 1
2
; 1
2
. If we had chosen 0,0 and 0; 1

2
as a set,

the resulting pattern would not have conformed to p2gg symmetry, but to pm, as Fig. 2.25 shows.

Special positions always form a subset of the general positions, under the same space-group symmetry.

The general equivalent positions give rise to two conditions limiting reflections, because

the structure is “halved” with respect to a for the reflections h0, and with respect to b for the

reflections 0k. The special positions take both of these conditions, and the extra conditions shown,

because occupancy of the special positions in this plane group gives rise to centered arrangements.

The entities occupying special positions must, themselves, be consistent with the symmetry of the

crystal structure.

After the development of the structure factor in Sects. 3.2.3ff and 3.5.1ff, limiting conditions will

be derived analytically.

2.7.3 Three-Dimensional Space Groups

The principles that have emerged from the discussion on plane groups can be extended to

three dimensions. Whereas the plane groups are limited to 17 in number, there are 230 space groups.

We shall limit our discussion to a few space groups mainly in the monoclinic and orthorhombic

systems. We believe this will prove a satisfactory working procedure because many of the important

principles will evolve and, from a practical point of view, a large percentage of crystals belong to these

two systems.

Monoclinic Space Groups
In the monoclinic system, the lattices are characterized by P and C unit-cell descriptors, and the point

groups are 2, m, and 2/m. We consider first space groups P2 and C2.

Fig. 2.25 Occupation of the special positions 0, 0 and 0; 1
2
in p2gg leads to pm (p1m1) symmetry, even though the

occupying entity has itself symmetry 2
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Aswith the plane groups, wemay begin with amotif, which has twofold symmetry, but now about a

line or axis, in three-dimensional space. This motif is arranged in a fixed orientation with respect to the

points of a monoclinic lattice. Figure 2.26 shows a stereoscopic pair of illustrations for a unit cell of

space group C2, drawn with respect to the conventional right-handed axes.

In Fig. 2.27, space groups P2 and C2 are shown in projection. The standard drawing of space-

group diagrams is on the a, b plane of the unit cell, with +x running from top to bottom, þy from left

to right, both in the plane of the paper, and +z directed upwards from the paper. The positive or

negative signs attached to the representative points indicate the z coordinates, that is, in the

symbolism O+ and O�, the signs stand for z and �z, respectively. The relationship with the preferred

stereogram notation Sect. 1.3, will be evident here.

In both P2 and C2, the origin is chosen on 2, and is, thus, defined with respect to the x and z axes,

but not with respect to y; compare pm and cm. How is the origin fixed in Pm? The graphic symbol

for a diad axis in the plane of the diagram is!; if the axis lies at, say, z ¼ 1
4
, the symbol ! 1

4
is used.

In space group P2, the general and special equivalent positions may be derived quite readily. The

special sets (b) and (d) should be noted carefully; they are sometimes forgotten by the beginner

because symmetry elements distant c/2 from those drawn in the a, b plane are not indicated on the

conventional diagrams. The diad axis at x ¼ 0, 1
2
, for example, relates x, y, z to a point at �x, y, 1 � z; its

presence, and that of the diad at x ¼ z ¼ 1
2
, may be illustrated by drawing the space group in projection

on the ac plane of the unit cell. The reader should make this drawing and compare it with Fig. 2.27a.

It is often useful to consider a structure in projection on to one of the principal planes (100), (010),

or (001). The symmetry of a projected space group corresponds to that of a plane group, and the

symmetries of the principal projections are included with the space-group description, Fig. 2.27. The

full plane-group symbols, given in parentheses, indicate the orientations of all symmetry elements,

including identity, in the space group, Table 1.5. In C2, certain projections produce more than one

repeat in some directions; the projected cell dimensions, represented by a0 and b0 are then halved with
respect to their original values. The Miller indices transform with the change of unit cell: thus, for

example, with b halved, 220 becomes 210, and 210 becomes 410 (which is equivalent to halving the k

index in each case).

The projection of C2 on to (100) is shown by Fig. 2.28 in three stages, starting from the y and z

coordinates of the set of general equivalent positions. The symmetry of the projection is determined

by the arrangements of points, now in two dimensions, and the relation between them is clearly that of

Fig. 2.26 Stereoscopic pair of illustrations of the environs of one unit cell of space group C2; the general equivalent

positions are shown. The diagram reveals nine axes of symmetry 2, and six axes of symmetry 21. Can you identify

their positions?
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Fig. 2.27 Monoclinic space groups in the standard setting. (a) P2. (b) C2
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m symmetry. A correct and sufficient projected unit cell is determined by a and b/2. It is important to

remember that, in the plane groups, as in the two-dimensional point groups, all symmetry operations

take place wholly within the plane of the figure.

The general equivalent positions in C2 may be obtained by adding the translations 1
2
; 1
2
; 0, namely,

those associated with a C unit cell (Table 2.2), to the equivalent positions of P2. This operation is

equivalent to repeating the original twofold motif at the lattice points of the C monoclinic unit cell.

This simple relationship between P and C cells is indicated by the heading ð0; 0; 0; 1
2
; 1
2
; 0Þ þ of the

coordinate list in C2; it may be compared with that for cm, Fig. 2.21b.

There are four sets of special positions in P2, but only two sets in C2; the reason for this has been

discussed in relation to plane groups pm and cm, Sect. 2.7.1.

2.7.4 Screw Axes

Screw axes are symmetry elements that can relate points in an infinite, three-dimensional, regular

array; they are not a feature of point groups. A screw-axis operation may be thought of as a

combination of rotation and translation, although it is a single symmetry operation: an infinitely

long spiral staircase gives an indication of the nature of the symmetry operation.

Imagine that the bottom step, Fig. 2.29, is rotated, anticlockwise, looking in a direction down the

stairs, by 60� about the vertical support, or axis, and then translated upward by one sixth of the repeat

Fig. 2.28 Projection of C2 on to (100). (a) y, z Positions from C2 (z axis left to right). (b) Two-dimensional symmetry

elements, m lines, added. (c) One unit cell: p1m (p11m), b0 ¼ b/2, c0 ¼ c. Plane groups p11m and p1m1 are equivalent

because they correspond only to an interchange of the x and y axes; 1 is the trivial symmetry element
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distance between steps in similar orientations; it then takes the place of the second step, which itself

moves upward in a similar manner. Clearly, if this procedure were repeated six times, the bottom step

would reach the position and orientation of the sixth step up; we symbolize this screw axis as 61.

Infinite length is, theoretically, a requirement because as the bottom step is rotated and translated

upward, so another step, below the figure, comes up into its position in order that indistinguishability

is maintained. The spiral staircases of the Monument in London and of the Statue of Liberty in

New York seem to be of infinite length, and might be considered as macroscopic near-examples of

screw axes. Examine them carefully on your next visit and determine their symmetry nature.

The centering of the unit cell in C2 introduces screw axes which interleave the diad axes,

Fig. 2.27. A screw axis may be designated Rp (p < R) and a screw-axis operation consists of an R-fold

rotation coupled with a translation parallel to the screw axis of p/R times the repeat in the direction of

the axis. Forp ¼ R, the translation parallel to the screwaxis is unity, and result of the operation corresponds

effectively to simple rotation: P22 � P2. In C2, the screw axis is of the type 21 and has a translational

component of 1
2
parallel to b. The general equivalent positions x, y, z and 1

2
� x; 1

2
þ y; �z are related by

a 21 axis along ½1
4
; y; 0�.6 Screw axes are present in the positions shown by their graphic symbol (see

also Table 2.5).

Limiting Conditions in C2
Wereferredbriefly to limiting conditions inSect. 2.7.1. The limiting conditions forC2are listed inFig. 2.27.

Two of them are placed in parentheses; this notation is used to indicate that they are dependent upon amore

general condition. Thus, since we know that the hkl reflections are limited by the condition h + k ¼ 2n

(even), because thecell isC-centered, it follows that theh0l reflectionsare limitedbyh ¼ 2n (0 is effectively

an even number). There are several other nonindependent conditions that could have been listed.

For example, 0kl: k ¼ 2n and h00: h ¼ 2n. However, in the monoclinic system, in addition to the

Fig. 2.29 Spiral staircase: an illustration of 61 screw-axis symmetry

6We use this notation to describe lines, in this example, the line parallel to the y axis through x ¼ 1
4
, z ¼ 0.
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hkl reflections, we are concerned particularly onlywith h0l and 0k0, because the symmetry plane is parallel

to (010) and the symmetry axis is parallel to [010]. This feature is discussed more fully in Sect. 3.7ff.

Space Group P21
Space groupsC2 andC21 are equivalent andmaybe comparedwith the pair cm and cg. On the other hand,

P2 contains no translational symmetry, soP21 is a new space group, Fig. 2.30; it occurs with a frequency

of6%among recorded structures. Thereare no special positions inP21. Special positions cannot exist ona

translational symmetry element, since it would mean that the entity placed on such an element consisted

of a pattern of infinite repeat.

Table 2.5 Notation for symmetry axes in space groups, and limiting

conditions for screw axes

Notes: (1) The 31 and 32 axes are referred to the hexagonal setting of the

trigonal system. (2) Compare the 21, 42, and 63 axes, the 41 and 43 axes, and

31, 32, 62, 64 axes

86 2 Lattices and Space-Group Theory

http://dx.doi.org/10.1007/978-1-4614-3954-7_3#Sec27_3


2.7.5 Glide Planes

Consider again Fig. 2.18, but let each dashed line be now the trace of a glide plane normal to b. Whereas

in two dimensions, the direction of translation, after the reflection part of the operation, is unequivocal, in

three dimensions there are several possibilities, although each of them will not necessarily give rise to a

different space group.

In the case of the glide plane normal to b, the reflection is across the mirror plane normal to b, and

the direction of translation could be along a of amount a/2, along c of amount c/2, along a diagonal

direction n of amount (a + c)/2, or, in certain groups, along a diagonal direction d of amount such as

(a � c)/4. The d-glide plane is not often encountered in practice, and will not be discussed in detail

here [3].

The graphic symbols for glide planes carry information about the glide planes. Thus, in Fig. 2.36, an a-

glide plane at c/4 is shown by the arrow with 1
4
adjacent to it. The symbol n may refer to more than one

orientation (Table 2.6), but the space-group symbol here, which relates back to the corresponding point-

group symbol in Table 1.5, provides the necessary information. Thus, if the n-glide plane is normal to a,

the translation component of the n-glide-symmetry operation must be (b + c)/2. This is why it is so

important to understand fully the Hermann–Mauguin point-group notation [4], Table 1.5, because that

for space groups follows in a parallel manner. The translational components for screw axes and for glide

planes are always integer fractions of the repeat distances.

If a space group is formed from the combination of a point group with m planes and a lattice of

centered unit cells, glide planes are always introduced into the space group. The nature and direction

of the translations in screw-axis and glide-plane symmetries are implicit in their symbolism (see

Tables 2.5 and 2.6).

Space Group P21/c
As an example of a space group with glide planes, we shall study P21/c, a space group encountered

frequently (36%) in practice. This space group is derived from point group 2/m, and must, therefore,

be centrosymmetric. However, the center of symmetry does not lie at the intersection of 21 and c.

Fig. 2.30 General equivalent positions and symmetry elements in space group P21
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It is normally desirable to place the origin on a center of symmetry in centrosymmetric space groups

and, in this example, we must determine the appropriate positions of the symmetry elements in the

unit cell. We note here that sometimes an origin will have a point symmetry greater than 1, for

example, 2/m or mmm, but 1 is a subgroup of such symmetries. We shall approach the solution of

this problem in two ways, the first of which is similar to our treatment of plane group p2gg.

Since the screw axis must intersect the glide plane normally, according to the space-group symbol,

the point of intersection will be taken as an origin and the space group drawn, Fig. 2.31. We see now

that the centers of symmetry lie at points such as 0; 1
4
; 1
4
. This point may be taken as a new origin, and

the space group redrawn, Fig. 2.32; the fraction 1
4
placed next to the center of symmetry symbol

indicates its fractional position above (and below) the ab plane.

It is desirable, however, to be able to draw the standard space-group illustration at the outset. From

a choice of origin, and using the full meaning of the space-group symbol, we can obtain the positions

of the symmetry elements by means of a simple scheme:

Let the symmetry elements be placed as follows:
�1 at 0, 0, 0 (choice of origin)

21 along [p, y, r], parallel to the y axis

c the plane (x, q, z), normal to the y axis

It is important to note that we have employed only the standard choice of origin and the

information contained in the space-group symbol. Next, we carry out the symmetry operations as

shown in the scheme of Fig. 2.33.

Table 2.6 Notation for symmetry planes in space groups, and limiting conditions for glide planes

Symbol Graphic symbol

Glide plane

orientation

and translation

Limiting

condition

m ⊥ paper – –

jj paper – –

a ⊥ paper (h0l) a/2 h0l: h ¼ 2n

jj paper (hk0) a/2 hk0: h ¼ 2n

b ⊥ paper (0kl) b/2 0kl: k ¼ 2n

jj paper (hk0) b/2 hk0: k ¼ 2n

c ?paper

?paper

(
(0kl) c/2 0kl: l ¼ 2n

(h0l) c/2 h0l: l ¼ 2n

n ?paper

?paper

(
(0kl) (b + c)/2 0kl: k + l ¼ 2n

(h0l) (c + a)/2 h0l: l + h ¼ 2n

jj paper (hk0) (a + b)/2 hk0: h + k ¼ 2n

d ?paper

?paper

(
(0kl) (b � c)/4 0kl: k + l ¼ 4n

(h0l) (c � a)/4 h0l: l + h ¼ 4n

jj paper (hk0) (a � b)/4 hk0: h + k ¼ 4n

Notes: (1) The trigonal system is here referred to hexagonal axes. (2) An arrow shows the direction of the

glide translation. A fraction indicates the z height of the plane. (3) The condition (a + b + c)/4 exists for

d-glide planes parallel to f1�10g in the tetragonal and cubic systems
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Fig. 2.31 Space group P21/c with the origin at an intersection of 21 and c

Fig. 2.32 Space group P21/c with the origin on �1 (standard setting)

Fig. 2.33 Operation about a 21 axis along the line [p, y, 0]: The x coordinate of point 2 relative to that of point 1 is

2p � x. A similar construction may be used for the y coordinate in the c-glide operation
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The symbol �c is used to indicate that the c-glide translation of 1
2
is subtracted, which is

crystallographically equivalent to being added.7

We use the fact that the combined effect of two operations is equivalent to a third operation,

starting from the original point (1). Symbolically, in operator notation, c 21 ¼ �1, that is, 21 followed
by c is equivalent to �1. Thus, points (3) and (4) are one and the same, whence, by comparing

coordinates, p ¼ 0 and q ¼ r ¼ 1
4
. Comparison with Fig. 2.32 shows that these conditions lead to

the desired positions of the symmetry elements in P21/c.

The change in the x coordinate in the operation (1) ! (2) is illustrated in Fig. 2.33; the argument

can be applied to any similar situation in other space groups, and we consider one coordinate at a time.

The completion of the details of this space group forms the basis of a problem at the end of this chapter.

We shall not discuss centered monoclinic space groups, but they do not present difficulty once the

primitive space groups have been mastered. Figure 2.34 shows a stereoscopic pair of illustrations of the

zinc and iodine atoms in the structure of diiodo-(N, N, N0, N0-tetramethylethylenediamine)zinc(II) [5]. It

crystallizes in space groupC2/cwith fourmolecules per unit cell; the zinc atoms lie on twofold axes. The

reader should make a drawing of C2/c, putting in all the symmetry elements and a set of

general equivalent positions, for comparison with Fig. 2.34.

2.7.6 Analysis of the Space-Group Symbol

In this section we consider the general relationship between space-group symbols and point-group

symbols.On encountering a space-group symbol, the first problem is to determine the parent point group.

This process has been discussed, Sect. 2.7.2; here are a few more examples. It is not necessary to have

explored all space groups in order to carry out this exercise:

P21=c ! ð21=cÞ ! ð2=cÞ ! 2=m

Ibca ! mmm

P41212 ! 422

F43c ! 43m

7�1 may always be added to a coordinate to give a crystallographically equivalent position.

Fig. 2.34 Stereoview of the unit cell for the structure of diiodo-(N, N, N0, N0-tetramethylethylenediamine)zinc(II),

showing the zinc and iodine (larger circles) atoms
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Next we must identify a crystal system for each point group:

2=m ! monoclinic

mmm ! orthorhormbic

422 ! tetragonal

43m ! cubic

Now, from Table 1.5, we can associate certain crystallographic directions with each symmetry

element in the space group symbol:

P21/c: Primitive, monoclinic unit cell; c-glide plane ⊥ b; 21 axis jj b; centrosymmetric.

Ibca: Body-centered, orthorhombic unit cell; b-glide plane⊥ a; c-glide plane⊥ b; a-glide plane⊥ c;

centrosymmetric.

P41212: Primitive, tetragonal unit cell; 41 axis jj c; 21 axes jj a and b; twofold axes at 45� to a and b, in
the ab plane; non-centrosymmetric.

F�43c: Face-centered, cubic unit cell; �4 axes jj a, b, and c; threefold axes jj h111i; c-glide planes ⊥

h110i; non-centrosymmetric.

It should be noted carefully that the symmetry elements, where there are more than two present, in

a given space-group symbol may not intersect in the third, equivalent symmetry element, and the

origin must always be selected with care. Appropriate procedures for the monoclinic and orthorhom-

bic systems have been discussed; in working with higher symmetry space groups, similar rules can be

drawn up, as we shall see.

Because of the similarities between space groups and their parent point groups, a reflection

symmetry, for example, in a given orientation with respect to the crystallographic axes always

produces similar changes in the signs of the coordinates. Thus, an m plane perpendicular to z in

point groupmmm changes x, y, z to x, y, �z. The a-glide plane in Pnma, which is at c/4, changes x, y, z to
1
2
þ x; y; 1

2
� z; the translational components of 1

2
are a feature of the space group, but the signs of x, y,

and z are still +, +, and � after the operation, as with mmm.

2.7.7 Orthorhombic Space Groups

We shall consider two orthorhombic space groups,P212121 andPnma. The first is illustrated in Fig. 2.35;

it should be noted that the three mutually perpendicular 21 axes do not intersect one another in this space

group. Although P212121, which occurs to the extent of ca. 10%, is a non-centrosymmetric space group,

the three principal projections are centrosymmetric; each corresponds to the two-dimensional space

group p2gg.

Change of Origin
Consider the projection of P212121 on to (001). From the general equivalent positions we obtain the

two-dimensional set of coordinates:

x; y; 1
2
� x; �y; 1

2
þ x; 1

2
� y; �x; 1

2
þ y

It is convenient to change the origin to a twofold rotation point, currently at 1
4
; 0. To carry out this

transformation, the coordinates of the new origin are subtracted from the original coordinates:

x� 1
4
; y; 1

4
� x; �y; 1

4
þ x; 1

2
� y; �x� 1

4
; 1
2
þ y
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Next, new variables x0 and y0 are chosen such that x0 ¼ x� 1
4
and y0 ¼ y. Then, by substitution,

we obtain:

x0; y0; �x0; �y0;
1
2
þ x0;

1
2
� y0;

1
2
� x0;

1
2
þ y0

If the subscript is dropped, these coordinates are exactly those given already for p2gg, Fig. 2.24d,

which is the plane group of the projection of P212121 on (001), and also on (100) and (010). This type

of change of origin is useful when studying projections.

The orthorhombic space group Pnma is shown with the origin on �1 in Fig. 2.36. The symbol tells us

that the unit cell is primitive, with an n-glide plane normal to the x axis (see Table 2.6), anm plane normal

to y, and an a-glide plane normal to z. Although this space group is derived from point group mmm, we

have a problem similar to that discussed with P21/c. The solution of this type of problem depends upon

the fact that, in the standard orientation,m m m ¼1, and is illustrated fully in Problem 2.10 at the end of

this chapter. It may be noted that a double application of Euler’s theorem is used here:

m m ¼ mm2 and m ðmm2Þ � 1

The coordinates of the general and the special equivalent positions can be derived easily from the

diagram. The translational symmetry elements n and a give rise to the limiting conditions shown on

the diagram.Nonindependent conditions are shown in parentheses; in the orthorhombic system, all of the

classes of reflection listed should be considered, as will be discussed in Sect. 3.7ff.

Fig. 2.35 Space group P212121. In space-group diagrams, represents a 21 axis normal to the plane of projection

(Lonsdale K, Henry NFM (1965) International tables for X-ray crystallography, vol I. Kynoch Press. Reproduced by

courtesy of I. U. Cr.)
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It is useful to remember that among the triclinic, monoclinic, and orthorhombic space groups, at

least, pairs of coordinates which have one sign change of x, y, or z indicate a symmetry plane normal

to the axis of the coordinate with the changed sign. If two sign changes exist, a symmetry axis lies

parallel to the axis of the coordinate that has not changed sign. Three sign changes indicate a center of

symmetry. In these three systems, where any coordinate, say x, is related by symmetry to another at

t � x, that symmetry element intersects the x axis at t/2, by virtue of Fig. 2.33 mutatis mutandis.

2.7.8 Relative Orientations of Symmetry Elements in Space Groups

Earlier in this chapter, we looked briefly at the problem of choosing the relative positions of the

symmetry elements in space groups while keeping a particular symmetry element at a given site, such

as a center of symmetry at the origin in space groups of class 2/m. We now discuss some simple rules

whereby this task can be accomplished readily, with due regard to the relative orientations of the

symmetry elements given by the space-group symbol itself, Tables 1.5 and 2.5. We shall consider

here the symmetry planes and symmetry axes in space groups derived from point groups mmm and

2/m, although the rules can be applied more widely.

Fig. 2.36 Space group Pnma; the full space-group symbol is P 21
n

21
m

21
a
(Lonsdale K, Henry NFM (1965) International

tables for X-ray crystallography, vol I. Kynoch Press. Reproduced by courtesy of I. U. Cr.)
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Half-Translation Rule

Location of Symmetry Planes

Consider space group Pnna: the translations associated with the three symmetry planes are (b + c)/2,

(c + a)/2 and a/2, respectively. If they are summed, the result T is (a + b/2 + c). We disregard the

whole translations a and c because they refer to unit-cell repetitions. Thus, the center of symmetry is

found displaced by T/2, or b/4, from the point of intersection of the three symmetry planes n, n, and a.

This means that, with �1 at the origin, we have njjð0; y; zÞ; njjðx; 1
4
; zÞ and ajj(x, y, 0). As a second

example, consider Pmma. The only translation is a/2; thus, T ¼ a/2, and the center of symmetry is

displaced by a/4 from the intersection of m, m and a.

Space group Immamay be formed from Pmma by introducing the body-centering translation 1
2
; 1
2
; 1
2
,

Fig. 6.18b. Alternatively, the half-translation rule may be applied to the complete space-group

symbol. In all, Imma contains the translations (a + b + c)/2 and a/2, so that T ¼ a + (b + c)/2, or

(b + c)/2; hence, the center of symmetry is displaced by (b + c)/4 from the intersection ofm,m and a.

This center of symmetry lies in one of the four sets, Wyckoff (a)–(d), that are introduced by the body-

centering translation at 1
4
; 1
4
; 1
4
, half the I translation, from a Pmma center of symmetry. This alternative

setting is given in the International Tables for X-Ray Crystallography [3]; it corresponds to that in

Fig. 6.18b with the origin shifted to the center of symmetry at 1
4
; 1
4
; 1
4
. Space groups in classmmm based

on A, B, C, and F unit cells similarly introduce additional sets of centers of symmetry. The reader may

care to apply these rules to space group Pnma and then check the result with Fig. 2.36. Note that there

are two sets of special equivalent positions on 1, which is why an origin on either center of symmetry

can be chosen.

Type and Location of Symmetry Axes

The quantity T also shows the types of twofold axes parallel to a, b, and c. Thus, if T contains an a/

2 component, then if a twofold axis parallel to a exists in the space group, it is a 21 axis. Similarly for

twofold axes parallel to y and z. Thus, in Pnna, T ¼ b/2, and so 2x � 2, 2y � 21, and 2z � 2. In Pbca,

T ¼ (b + c + a)/2; hence, all axes are 21 and the full space-group symbol is P
21

b

21

c

21

a
.

The location of each twofold axis may be obtained from the orientation of the symmetry plane

perpendicular to it, being displaced by half the corresponding glide translation, where appropriate.

Thus, in Pnna, we find 2 along ½x1
4
; 1
4
�, 21 along ½1

4
; y; 1

4
� and 2 along ½1

4
; 0; z�. In Pmma, 21 is along [x, 0,

0], 2 is along [0, y, 0] and 2 is along ½1
4
; 0; z�. The reader may care to continue the study with space

group Pnma, and then check the results against Fig. 2.36.

In the monoclinic space groups of class 2/m, a 21 axis with a translational component of b/2 shifts

the center of symmetry by b/4 with respect to the point of intersection of 21 with m; carry out Problem

7.3 and check you result in Tutorial Solution 7.3. In P2/c, the center of symmetry is shifted by c/4 with

respect to 2/c, and in P21/c the corresponding shift is (b + c)/4, see Fig. 2.32.

General Equivalent Positions
Once we know the positions of the symmetry elements in a space-group pattern, the coordinates of the

general equivalent positions in the unit cell follow readily.

Consider Pmma. Following out the above analysis, we may write the orientation of the symmetry

elements:
�1 at 0,0,0; choice of origin

mx, the plane ð14; y; zÞ
my, the plane (x, 0, z)

a, the plane (x, y, 0)
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Taking a point x, y, z across each of the three symmetry planes, we have, from Fig. 2.33:

x; y; z�!mx 1
2
� x; y; z

�!my

x; y; z

�!a 1
2
þ x; y; z

If these four points are now operated on by �1 the total of eight equivalent positions for Pmma are

obtained: � fx; y; z; 1
2
� x; y; z; x; y; z; 1

2
þ x; y; zg.

A similar analysis may be carried out for the space groups in the mm2 class, with respect to origins

on 2 or 21, although we have not discussed these space groups in this book. For example, work

through the space group Pma�, and check your result with Sect. 3.7.2 and Fig. 3.25, or with the

International Tables for X-ray Crystallography [3].

2.7.9 Tetragonal and Hexagonal Space Groups

We shall examine one space group from each of the tetragonal and hexagonal systems because new

features arise on account of the higher rotational symmetry in these two systems.

Tetragonal Space Group P4nc
It is evident that this space group is based on the point group 4mm. Reference to Table 1.5 shows that

the symbol has the following interpretation: a fourfold axis along z; n-glide planes normal to x (and to

y, because of the fourfold symmetry); c-glide planes normal to [110] and its fourfold symmetry-

related direction ½1�10�. The orientation of the n glides can be handled in the manner already discussed.

In the case of the c glide, it is straightforward to show, from Problem 2.21, that if the glide plane

intercepts the x and y axes at the value q, then a point x, y, z is reflected across the glide plane and

translated to the position q� y; q� x; 1
2
þ z. Thus, as in Sect. 2.7.5, we can set up the interpretation of

the symbol P4nc, again using Euler’s theorem, that the combination of any two operations is

equivalent to a third operation. Thus, n 4 ¼ c, but, in contradistinction to the point group 4mm, the

three operators do not all pass through the origin point.

Let the symmetry elements be placed as follows:

4 along the z axis, that is, the line [0, 0, z]

n normal to x, being the plane (x, b, z)

c normal to ½110�, the plane (q, q, z)
A point x, y, z (1) rotated about the 4-axis becomes �y; x; z (2); this point is taken across the n glide to

1
2
� y; 2b� x; 1

2
þ z (3). If we now operate on the original point (1) by the c glide, then x, y, z is

reflected to q� y; q� x; 1
2
þ z (4). Now, points (3) and (4) are one and the same, so that q ¼ 1

2
and

a ¼ 1
4
. This setting of the symmetry elements gives rise to the standard diagram for P4nc, shown in

Fig. 2.37. A similar result may be obtained by an initial clockwise rotation and the equivalent n glide

parallel to (a, y, z). The positions of the additional symmetry elements, not apparent from the symbol,

should again be noted. The diagram of the unit cell and its environs is complete, because any point

shown can be reached from any other point on the diagram by a single symmetry operation, plus unit-

cell translations as necessary.

Hexagonal Space Group P63/m
In this space group we encounter sixfold and threefold rotation operations. From Web Appendix

WA4, we show that a point x, y, z on hexagonal axes rotated anticlockwise about a 63 screw axis along
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z would be moved to the position x� y; x; 1
2
þ z. The translation of 1

2
accompanying the z coordinate

arises from the translation associated with the 63 axis, namely, a translation of 3/6, or 1
2
along z. The

sequence of points obtained by the successive operations of 63 about [0001] are:

x; y; z; x� y; x; 1
2
þ z; �y; x� y; z; �x; �y; 1

2
þ z;

ð1Þ ð2Þ ð3Þ ð4Þ
y� x; �x; z; y; y� x; 1

2
þ z

ð5Þ ð6Þ

Points (1) and (3) are related by a threefold rotation: note that 3 � 623, that is, two successive

operations of 63, whereas points (1) and (4) are related by 21 symmetry. The space group is completed

by introducing the m plane at z ¼ 1
4
: this position ensures that the center of symmetry is at the origin;

actually the symmetry at the origin is �3: �1 is a subgroup of �3. Other important symmetry elements now

in evidence include �6, 3, and �1.

Figure 2.38 illustrates space group P63/m. The 12 general equivalent positions comprise the six

listed above and another six obtained by their inversion across the center of symmetry at the origin; all

coordinates change sign. Consider point (2) reflected across the m plane to x� y; x; 1
2
� z. How may

this point be reached from x, y, z in a single operation? Either a clockwise �3 operation, or an

Fig. 2.37 Diagrams to show the general equivalent positions and symmetry elements for the tetragonal space group

P4nc (Lonsdale K, Henry NFM (1965) International tables for X-ray crystallography, vol I. Kynoch Press. Reproduced

by courtesy of I. U. Cr.)
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anticlockwise �32 operation, which is equivalent to two successive anticlockwise �3 operations, relates

these two points; we note in passing that both 3 and 32 are symmetry operations in this group, related

to the single symmetry element �3.

A scheme for handling hexagonal space groups, similar to those used for the lower-symmetry

systems, could be devised, but it will be more straightforward to use matrix operations, as we shall

now demonstrate.

Fig. 2.38 Diagrams to show the general equivalent positions and symmetry elements for the hexagonal space group

P63/m (Lonsdale K, Henry NFM (1965) International tables for X-ray crystallography, vol I. Kynoch Press. Reproduced

by courtesy of I. U. Cr.)
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2.8 Matrix Representation of Symmetry Operations

The representation of symmetry operations by matrices has a certain inherent elegance, and is useful

for displaying the close relationship between point groups and space groups. In this discussion, we

shall use the triplet x, y, z to represent a point in three-dimensional space. It could lie on the normal to

the face of a crystal or be an atom in a crystal structure, and we can indicate it concisely by the vector x.
A symmetry operation may be written as

R xþ t ¼ x0 (2.52)

where x and x0 are column vector triplets before and after the operation, R is a matrix representing the

symmetry operation, and t is a translation vector with components parallel to x, y, and z.

2.8.1 Matrices in Point-Group Symmetry

From the definition of point group, Sect. 1.4, it follows that t is identically zero in a point group. All

symmetry elements pass through a single point, the origin: if it were not the case, then parallel

symmetry axes, for example, could be generated. The consequence of this arrangement for a twofold

axis is shown in Fig. 2.39.

Thus, for point groups, (2.52) reduces to

R x¼x0 (2.53)

Let R1 represent an m plane perpendicular to the x axis, as in the orthorhombic system, for

example. Then, we have

1 0 0

0 1 0

0 0 1

2
4

3
5

R1

�
x

y

z

2
4
3
5

x

¼
�x

y

z

2
4
3
5

x0

(2.54)

Fig. 2.39 Points 1 and 2, related by the diad (twofold axis) a, when rotated about the axis b produce points 4 and 3. But

3 and 4 are now related by another diad, c. The effect of diad c on points 1 and 2 is to produce points 6 and 5. But these

points are related to 3 and 4 by diad d and to each other by diad e. Now 3 and 4, for example, can be rotated about e, and

so on. Clearly, this process would lead to an infinite number of parallel, equidistant diad axes, together with the

symmetry-related points, a situation that is totally incompatible with a point group
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The multiplication is carried out, as usual, along the row and down the column, with the result at

the intersection marked; that is,

(2.55)

�x ¼ �1	 xþ 0	 yþ 0	 z (2.56)

and similarly for y and z.

Let the triplet x0 now suffer reflection across a mirror plane normal to y, using matrix R2:

1 0 0

0 �1 0

0 0 1

2
4

3
5

R2

�
�x

y

z

2
4
3
5

x

¼
�x

�y

z

2
4
3
5

x00

(2.57)

It should be clear that the relationship between x and x00 is that of a twofold rotation about the z

axis. Thus, for the two m planes,

m m¼2 (2.58)

as we have seen already, Sect. 1.4.2.

Another way of reaching the same final result is first to combine the two matrices R1 and R2,

1 0 0

0 1 0

0 0 1

2
64

3
75

R2

�
1 0 0

0 1 0

0 0 1

2
64

3
75

R1

¼
1 0 0

0 1 0

0 0 1

2
64

3
75

R3

(2.59)

and then to use the right-hand side of (2.59) in (2.53):

�1 0 0

0 �1 0

0 0 1

2
4

3
5

R3

�
x

y

z

2
4
3
5

x

¼
�x

y

z

2
4
3
5

x00

(2.60)

Equation (2.59) corresponds to operation R2 R1 (R1 followed by R2), the order of multiplication

following (2.55). If a rotational symmetry axis forming an operator R is less than or equal to degree

2 or to m, the order of multiplication need not be followed, but it is good practice to multiply the

matrices in the standard manner; we can highlight this feature by considering point group 4mm.

The matrices for a fourfold rotation along the z axis and anm plane perpendicular to x are, in order,

1 0 0

0 1 0

0 0 1

2
4

3
5

R2

m?x

�
0 1 0

1 0 0

0 0 1

2
4

3
5

R3

4 along z

¼
0 1 0

1 0 0

0 0 1

2
4

3
5

R3

(2.61)
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Hence, R2 R1 ¼ R3, and R3 xðx; y; zÞ ¼ x0ðy; x; zÞ; R3 represents an m plane symmetry operator

normal to ½1�10�. Multiplying in the reverse order, that is,

ðR1 R2Þx ¼ x00 (2.62)

gives

R1 R2 ¼ R4 (2.63)

where x00 is now �y, �x, z, andR4 is a matrix operator representing anm plane normal to [110]. Write out

this matrix. The m planes represented by R3 and R4 are equivalent under symmetry R1 or R2, but lead

to physically different sites. Thus, if we are expecting x0 from x and obtain x00 instead, it may be

confusing and, in considering some physical properties, could be significantly different. All other

point groups may be treated in the standard manner just described.

2.8.2 Matrices in Space-Group Symmetry

In space-group symmetry, t in (2.52) is not necessarily equal to zero. Such a situation will exist

whenever the space group under consideration contains translational symmetry. We will consider first

space group P21/c, Sect. 2.7.5. As before, we set the origin on �1 ðR3Þ, 21 (R1) along [p, y, r], and c

(R2) the plane (x, q, z). The operation R1 followed by R2, from our previous discussion, may be

formulated as

1 0 0

0 �1 0

0 0 1

2
4

3
5

R2

þ
0

2q
1
2

2
4

3
5

t2

�
�1 0 0

0 1 0

0 0 �1

2
4

3
5

R1

þ
2p
1
2

2r

2
4

3
5

t1

¼
�1 0 0

0 �1 0

0 0 �1

2
4

3
5

R3

þ
0

0

0

2
4
3
5

t3

(2.64)

Matrix R1 is just that for twofold rotation about a line parallel to the y axis, as represented above,

and R2 is the matrix for an m plane normal to y, as given above. The translation vectors t1 and t2 may

be obtained from the setting, following the argument relating to Fig. 2.33. Matrix R3 is the multipli-

cation R2 R1 and, clearly, is equivalent to a center of symmetry (�1) at the origin. Since, by definition

of the standard origin, t3 must be zero, we have the translation vectors

t2 þ t1 ¼ t3 ¼ 0 (2.65)

It follows that p ¼ 0, q ¼ 1
4
and r ¼ 1

4
, as before. These results may be regarded as a matrix

justification of the scheme used in Sect. 2.7.5, and expressed in the half-translation rule, Sect. 2.7.8.

As a final example, we shall consider space group Pnma, see Sect. 2.7.7. From the symbol, we can

write

R1: n is the plane (p, y, z) with n-translation 0, 1
2
; 1
2

R2: m is the plane (x, q, z) with no translation

R3: a is the plane (x, y, r) with a-translation 1
2
; 0; 0

R4: �1 is the center of symmetry at 0,0,0 (no translation)

We know that, for space groups in the mmm class, we have

R3 R2 R1 ¼ R4 (2.66)
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Hence,

1 0 0

0 1 0

0 0 �1

2
64

3
75

R3

þ
1
2

0

2r

2
64

3
75

t3

8
>><

>>:

1 0 0

0 �1 0

0 0 1

2
64

3
75

R2

þ
0

2q

0

2
64

3
75

t2

�1 0 0

0 1 0

0 0 1

2
64

3
75

R1

þ
2p
1
2
1
2

2
64

3
75

t1

9
>>=

>>;

¼
�1 0 0

0 �1 0

0 0 �1

2
64

3
75

R4

þ
0

0

0

2
64

3
75

t4

(2.67)

And we have

t3 þ t2 þ t1 ¼ t4 ¼ 0 (2.68)

Multiplying the matrices and adding the translation vectors we obtain p ¼ 1
4
; q ¼ 1

4
, and r ¼ 1

4
as

given in Fig. 2.36. The full symbol of point group mmm is
2

m

2

m

2

m
, so that in Pnma there are 2 or 21

axes normal to the symmetry planes. We can obtain the results readily from (2.67), inserting the

values of p, q, and r into the translation vectors; if the fraction 1
2
appears in line with the x coordinate in

a plane normal to x, then the axis is 21, and similarly for the y and z positions. Hence, the full symbol

for this space group is P
21

n

21

m

21

a
. The same result could be achieved with the scheme used for

solving Problem 2.10, perhaps with less elegance.

The essential difference between point groups and space groups rests in the translation vectors, and

the infinite space to which the space groups refer. Symmorphic space groups such as Pm, C2/m, and

Imm2, some of which contain translational symmetry elements, do not need any special treatment to

determine the orientation of the symmetry elements with respect to the origin, since the symmorphic

space groups contain the point-group symbol, the origin is given immediately, for example, on m in

Pm, at 2/m (�1) in C2/m, and along mm2 in Imm2; all translation vectors in equations such as (2.64) are

zero in these space groups. The half-translation rule, once understood, is the simplest method of

locating the origin, certainly for the non-symmorphic space groups in the monoclinic and orthorhom-

bic systems, which represent the majority of known crystals.

2.9 Diffraction Symbols

We look ahead briefly to some results in later chapters, and note that after a crystal has been examined to

the extent that indices can be assigned to the X-ray diffraction spectra, the totality of the diffraction

information can be assembled into a diffraction symbol. This parameter includes the Laue group and the

symmetry determined through the systematic absences.
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In Table 2.7, we list the diffraction symbols for the orthorhombic space groups. A full discussion

of diffraction symbols for the 230 space groups may be found in the International Tables for X-Ray

Crystallography (2002, Volume A) or (1965, Volume I).

Table 2.7 Orthorhombic space group diffraction symbols

Point group

Diffraction symbol 222 mm2 mmm

mmmP . . . P222 Pmm2 Pmmm

mmmP . . 21 P2221
mmmP 21 21 . P21212

mmmP 21 21 21 P212121
mmmP c . . Pc2m ¼

Pcm21 ¼
Pma2

Pmc21

 !
Pcmm ¼ Pmma

mmmP n . . Pnm21 ¼ Pmn21 Pnmm ¼ Pmmn

mmmP c c . Pcc2 Pccm

mmmP c a . Pca21 Pcam ¼ Pbcm

mmmP b a . Pba2 Pbam

mmmP n c . Pnc2 Pncm ¼ Pmna

mmmP n a . Pna21 Pnam ¼ Pnma

mmmP n n . Pnn2 Pnnm

mmmP c c a Pcca

mmmP b c a Pbca

mmmP c c n Pccn

mmmP b a n Pban

mmmP b c n Pbcn

mmmP n n a Pnna

mmmP n n n Pnnn

mmmC . . . C222 Cmm2 ¼
Cm2m ¼

Cmm2

Amm2

 !
Cmmm

mmmC . . 21 C2221
mmmC . c . Cmc21 ¼

C2cm ¼
Cmc21

Ama2

 !
Cmcm

mmmC . . a C2ma ¼ Abm2 Cmma

mmmC . c a C2ca ¼ Aba2 Cmca

mmmC c c . Ccc2 Cccm

mmmC c c a Ccca

mmmI . . . I222

I212121

" #
Imm2 Immm

mmmI . a . Ima2 Imam ¼ Imma

mmmI b a . Iba2 Ibam

mmmI b c a Ibca

mmmF . . . F222 Fmm2 Fmmm

mmmF d d . Fdd2

mmmF d d d Fddd

Notes: (1) Space groups shown in bold type, e.g. P212121, are uniquely determinable when the Laue group is known. (2)

Space groups shown in italic type, e.g. Pccm, are not uniquely determinable even when the Laue group is known. (3)

Special pairs of space groups are enclosed in brackets, e.g. [I222, I212121]. (4) Space groups enclosed in parentheses,

e.g. Pma2, Pc2m, are determinable if the point group and its orientation are known. (5) In rows containing two symbols,

e.g. Pc2m and Pma2, the symbol on the right is the standard setting, whether or not it is in parentheses
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2.10 Some Other Types of Symmetry

The symmetry concepts dealtwith so far have referred to the classical “non-color” groups.Considerationof

other patterns, such as those of wallpapers, tiled walls and floors of the Alhambra, reveal the existence of

color symmetry, the simplest example of which is black-white symmetry.

An example of the classical symmetry that we have been studying is shown in Fig. 2.40. At the

bottom of the illustration there are three fourfold rotation points, assuming a two-dimensional pattern.

If we choose the center point as an origin, then another three points in identical orientation form the

corners of a plane unit cell, set at 45� to the borders of the figure. It may be found convenient to make

a copy of the figure for this study. Not surprisingly, twofold rotation points exist at the mid-points of

the unit-cell edges, but the fourfold point at the center of the unit cell is in a different orientation from

those at the corners. There are also m lines and g lines in the pattern: the plane group is p4mg: see also

Fig. 2.22; p4mg � p4gm by interchange of axes.

2.10.1 Black-White Symmetry

The simplest nonclassical symmetry is black-white symmetry, of which Fig. 2.41 is an example. The

elements of this pattern are black beetles and white beetles, and the same symmetry elements as in

Fig. 2.40 are present in this illustration. The m lines in the figure are classical, but the g lines involve a

color change fromwhite to black and vice versa as do the fourfold rotation points. The plane groupmay

be designated p40gm.

Fig. 2.40 Classical plane

group of symmetry p4mg

(see also Fig. 2.22) (Mac-

gillavry CH (1965) Sym-

metry aspects of

M. C. Escher’s periodic

drawings. Reproduced

by courtesy of I. U. Cr.).

Scheltema and Holkema,

Bohn (for I. U. Cr., 1976)
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Potassium Chloride
Apractical example of very closely black-white symmetry is found in the structure of potassiumchloride,

which consists of the isoelectronic K+ and Cl� ions, Fig. 2.42. Because X-rays are scattered by electrons

in a crystal structure, each of these species appears identical in an X-ray beam. Thus, the structure

appeared on first examination to be based on a cubic P unit cell,8 since the resolution of the X-ray pattern

at that time was not high.

After other alkali halides, notably sodium chloride, had been examined and their structures found

to be cubic F, a more detailed examination showed that potassium chloride, too, was cubic F, and the

true repeat distance was revealed. The X-ray reflections that would have been indicated the F cubic

structure of potassium chloride were too weak to be revealed by the first experiments with the X-ray

ionization spectrometer. The correct repeat period is found also by neutron scattering, since the

scattering powers of the K+ and Cl� species differ significantly for neutron radiation, Sect. 12.5.

2.10.2 Color Symmetry

As an example of color symmetry, we examine Fig. 2.43. It comprises fish in four different colors and

orientations, but all fish of any given color have identical orientations. The 90� difference in

orientation between the pairs white-green, green-red, red-blue, and blue-white fish indicate the

presence of fourfold color-rotation points. The almost square elements of fins, of sequence white,

Fig. 2.41 Black/white

plane group of symmetry

p40gm (Macgillavry CH

(1965) Symmetry aspects

of M. C. Escher’s periodic

drawings. Reproduced by

courtesy of I. U. Cr.)

8 See Bibliography (Bragg 1949).
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Fig. 2.43 An example of a color symmetry plane group (Macgillavry CH (1965) Symmetry aspects of M. C. Escher’s

periodic drawings. Reproduced by courtesy of I. U. Cr.)

Fig. 2.42 The structure of potassium chloride, KCl, as seen in projection on to a cube face. Since K+ and Cl� are

isoelectronic (18 electrons each), their scattering of X-rays (q.v.) is closely similar
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green, red, blue, at the bottom center of the figure and three others in similar orientation form the

corners of a square unit cell.

The fourfold color-rotation point at the center of the unit cell, consisting of areas of fish tails,

shows the same color sequence but in a different orientation. The twofold rotation points are again

evident at the mid-points of the cell edges. In this pattern, however, the twofold rotations involve a

change of color, as indicated by the motifs at the fourfold rotation points: they are twofold color-

rotation points.

For further discussions on black-white and color symmetry, the reader is referred to the works of

Macgillavry and Shubnikov listed in the Bibliography at the end of the chapter.

2.11 Problems

2.1. Figure P2.1a shows the molecule of cyclosporin H repeated by translations in two dimensions.

In Fig. P2.1b, the molecules are related also by twofold rotation operations, while still subjected

to the same translations as in Fig. P2.1a. Four parallelogram-shaped, adjacent repeat units of

pattern from an ideally infinite array are shown in each diagram. Convince yourself that

Fig. P2.1 (a) The mole-

cule of cyclosporin H

repeated by translations in

two dimensions. (b) The

molecules are related also

by twofold rotation opera-

tions
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Fig. P2.1a is formed by repeating a single molecule by the unit-cell translations shown, and that

Fig. P2.1b follows from it by the addition of a single twofold operation acting at any parallelo-

gram corner. Furthermore, for Fig. P2.1b state in words:

(a) The locations of all twofold symmetry operators belonging to a single parallelogram unit.

(b) How many of these twofold operators are unique to a single parallelogram unit?

2.2. Two nets are described by the unit cells (1) a ¼ b, g ¼ 90� and (2) a ¼ b, g ¼ 120�. In each

case: (a) What is the symmetry at each net point? (b) To which two-dimensional system does

the net belong? (c) What are the results of centering the unit cell?

2.3. A monoclinic F unit cell has the dimensions a ¼ 6.000 Å, b ¼ 7.000 Å, c ¼ 8.000 Å, and

b ¼ 110.0�. Show that an equivalent monoclinic C unit cell, with an obtuse b angle, can

represent the same lattice, and calculate its dimensions. What is the ratio of the volume of the C

cell to that of the F cell?

2.4. Carry out the following exercises with drawings of a tetragonal P unit cell:

(a) Center the B faces. Comment on the result.

(b) Center the A and B faces. Comment on the result.

(c) Center all faces. What conclusions can you draw now?

2.5. Calculate the length of ½31�2� for both unit cells in Problem 2.3.

2.6. The relationships a 6C b 6C c, a 6C b 6C 90 or 120�, and g ¼ 90� may be said to define a diclinic

system. Is this an eighth system? Give reasons for your answer.

2.7. (a) Draw a diagram to show the symmetry elements and general equivalent positions in c2mm,

origin on 2mm. Write the coordinates and point symmetry of the general and special positions, in

their correct sets, and give the conditions limiting X-ray reflections in this plane group. (b) Draw a

diagram of the symmetry elements in plane group p2mg, origin on 2; take care not to put the

twofold point at the intersection ofm and g. Why? On the diagram, insert each of the motifs P, V,

and Z in turn, each letter drawn in its most symmetrical manner, using the minimum number of

motifs consistent with the space-group symmetry.

2.8. (a) Continue the study of space group P21/c, Sect. 2.7.5. Write the coordinates of the general and

special positions, in their correct sets. Give the limiting conditions for all sets of positions, andwrite

the plane-group symbols for the three principal projections. Draw a diagram of the space group as

seen along the b axis. (b) Biphenyl, , crystallizes in space group P21/c with two molecules

per unit cell. What can be deduced about both the positions of the molecules in the unit cell and the

molecular conformation? The benzene rings in the molecule may be assumed to be planar.

2.9. Write the coordinates of the vectors between all pairs of general equivalent positions in P21/c

with respect to the origin, and note that they are of two types. What is the “weight,” or

multiplicity, of each vector set? Remember that � 1
2
and þ 1

2
in a coordinate are crystallo-

graphically equivalent, because we can always add or subtract 1 from a fractional coordinate

without altering its crystallographic implication.

2.10. The orientation of the symmetry elements in the orthorhombic space group Pban may be

written as follows9:

�1 at 0; 0; 0 (choice of origin)

b - glide k ðp; y; zÞ
a - glide k ðx; q; zÞ
n - glide k ðx; y; rÞ

9
>>=

>>;
ðfrom the space - group symbolÞ

9 In general, the symbol ǁ in this context indicates the plane (or line) specified; for example, the b-glide plane will be the

plane (p, y, z).
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Determine p, q, and r from the following scheme, using the fact that n a b � 1:

2.11. Construct a space-group diagram for Pbam, with the origin at the intersection of the three

symmetry planes. List the coordinates of both the general equivalent positions and the centers

of symmetry. Derive the standard coordinates for the general positions by transforming the

origin to a center of symmetry.

2.12. Show that space groups Pa, Pc, and Pn represent the same pattern, but that Ca is different from

Cc. What is the more usual symbol for space group Ca? What would be the space group for Cc

after an interchange of the x and z axes? Is Cn another monoclinic space group?

2.13. For each of the space groups P2/c, Pca21, Cmcm, P�421c, P6122, and Pa3:

(a) Write down the parent point group and crystal system.

(b) List the full meaning conveyed by the symbol.

(c) State the independent conditions limiting X-ray reflections.

(d) List the Buerger diffraction symbols for these space groups.

2.14. Consider Fig. 2.25. What would be the result of constructing this diagram with Z alone, and not

using its mirror image?

2.15. (a) Draw a P unit cell of a cubic lattice in the standard orientation.

(b) Center the A faces. What system and standard unit-cell type now exist?

(c) From the position at the end of (b), let c and all other lines parallel to it be angled backward

a few degrees in the ac plane. What system and standard unit-cell type now exist?

From the position at the end of (c), let c and all other lines parallel to it be angled sideways a

few degrees in the bc plane. What system and standard unit-cell type now exist? For (b) to

(d), write the transformation equations that take the unit cell as drawn into its standard

orientation.

2.16. Set up matrices for the following symmetry operations: �4 along the z axis, m normal to the y

axis. Hence, determine the Miller indices of a plane obtained by operating on (hkl) by �4, and on

the resulting plane by the operation m. What are the nature and orientation of the symmetry

element represented by the given combination of �4 followed by m?

2.17. The matrices for an n-glide plane normal to a and an a-glide plane normal to b in an orthorhom-

bic space group are as follows:

1 0 0

0 �1 0

0 0 1

2
64

3
75þ

1
2

0

0

2
64

3
75

�1 0 0

0 1 0

0 0 1

2
64

3
75þ

0
1
2
1
2

2
64

3
75

a t n t

What are the nature and orientation of the symmetry element arising from the combination of n

followed by a? What is the space-group symbol and its class?

2.18. (a) Determine thematrices for both a 63 rotation about [0, 0, z] and a c-glide plane normal to the y

axis and passing through the origin in space group P63c�. Use the fact that a threefold right-

handed rotation converts the point x, y, z to �y, x � y, z, and that 2 32 ¼ 6. (b) What is symmetry

represented by the symbol � in the space group symbol and what are the point-group and
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space-group symbols? (c)What is thematrix for the symmetry operation found in (b)? (d) Draw a

diagram for the space group. List the number of general equivalent positions, their Wyckoff

notation, point symmetry, coordinates, and conditions limiting reflections for the space group. (d)

Are there any special equivalent positions? If so, list them as under (c).

2.19. A unit cell is determined as a ¼ b ¼ 3 Å, c ¼ 9 Å, a ¼ b ¼ 90�, g ¼ 120�. Later, it proves to
be a triply primitive hexagonal unit cell. With reference to Fig. 2.11, determine the equations

for the unit-cell transformation Rhex ! Robv, and calculate the parameters of the rhombohedral

unit cell.

2.20. In relation to Problem 2.19, given the plane (13*4) and zone symbol ½1�2 � 3� in the hexagonal

unit cell, determine these parameters in the obverse rhombohedral unit cell. The symbol∗ here

indicates that the three integers given relate to the x, y, and z axes, respectively.

2.21. By means of a diagram, or otherwise, show that a site x, y, z reflected across the plane (qqz) in

the tetragonal system has the coordinates q � y, q � x, z after reflection.

2.22. Deduce a diffraction symbol table for the monoclinic space groups.

2.23. Draw the projection of an orthorhombic unit cell on (001), and insert the trace of the (210) plane

and the parallel plane through the origin.

(a) Consider the transformation a0 ¼ a/2, b0 ¼ b, c0 ¼ c. Using the appropriate transformation

matrix, write the indices of the (210) plane with respect to the new unit cell. Draw the new

unit cell and insert the planes at the same perpendicular spacing, starting with the plane

through the origin. Does the geometry of the diagram confirm the indices obtained from the

matrix?

(b) Make a new drawing, like the first, but now consider the transformation a0 ¼ a, b0 ¼ b/2,
c0 ¼ c. What does (210) become under this transformation? Draw the new unit cell and

insert the planes as before. Does the geometry confirm the result from the matrix?

2.24. Why are space groups Cmm2 and Amm2 distinct, yet Cmmm and Ammm are equivalent?

2.25. An orthorhombic P unit cell has the dimensions a ¼ 5.50 Å, b ¼ 6.75 Å, c ¼ 12.20 Å, and

their reciprocals (k ¼ 1) are a* ¼ 0.1818 Å�1, b* ¼ 0.1481 Å�1, c* ¼ 0.08197 Å�1. Use the

matrix M to transform: (a) The unit cell. (b) The Miller indices (312). (c) The zone symbol

[102]. (d) The reciprocal unit cell dimensions. (e) The point x ¼ 0.3142, y ¼ 0.4703,

z ¼ �0.5174.

M ¼
1 �1 1

2

1 1 �1
2

1
4

3
4

1
8

2
4

3
5
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X-Rays and X-Ray Diffraction 3

3.1 Generation and Properties of X-Rays

X-rays are an electromagnetic radiation of short wavelength, and can be produced by the sudden

deceleration of rapidly moving electrons at a target material. If an electron falls through a potential

difference of V volt, it acquires an energy eV electron-volt (eV), where e is the charge on an electron.

This energy may be expressed as quanta of X-rays of wavelength l, where each quantum is given by

l ¼ hc=ðeVÞ (3.1)

h being the Planck constant and c the speed of light in vacuum. Substitution of numerical values into

(3.1) leads to

l ¼ 12:4=V (3.2)

where V is measured in kilovolt and l is given in Angstrom units (Å). The wavelength range of X-rays

is approximately 0.1–100 Å, but for the purposes of practical X-ray crystallography, the range used is

restricted to 0.7–2.5 Å.

3.1.1 X-Rays and White Radiation

Except for synchrotron radiation, which is discussed in Sect. 3.1.6, a widely used source of X-rays in

conventional crystallography laboratories is the sealed hot-cathode tube with a rotating anode,

illustrated diagrammatically in Fig. 3.1. Electrons are emitted from a heated tungsten filament, the

cathode, and accelerated by a high voltage, 40 kV or more, towards a water-cooled target anode,

usually made of copper or molybdenum. A large proportion of the energy reaching the target is

dissipated as heat on account of multiple collisions within the target material, but about 10% of it is

converted usefully for X-ray crystallographic purposes. In order to dissipate the heat rapidly and

efficiently, the water-cooled anode is rotated, as indicated in the diagram of Fig. 3.1.

M. Ladd and R. Palmer, Structure Determination by X-ray Crystallography:

Analysis by X-rays and Neutrons, DOI 10.1007/978-1-4614-3954-7_3,
# Springer Science+Business Media New York 2013
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As a consequence, a higher accelerating voltage can be applied to the tube, which results in a more

powerful X-ray source. If the energy eV is not too high, there will be a continuous distribution of

X-ray wavelengths, “white” radiation, or Bremsstrahlung (Ger. ¼ braking radiation), as shown in

Fig. 3.2. With an increase in the accelerating voltage V, the intensity of the radiation increases, and

the maximum of the curve moves to shorter wavelengths.

Fig. 3.1 Schematic diagram of a sealed crystallographic X-ray tube. The target anode is provided with a means

of rotation, so as to aid the dissipation of heat generated by the electron impact on the target and to prolong the life of

the target

112 3 X-Rays and X-Ray Diffraction



3.1.2 Characteristic Radiation

At a particular higher value of V, the impinging electrons excite inner electrons in the target atoms.

Other electrons from higher energy levels then fall back to the inner levels, and their transitions are

accompanied by the emission of X-radiation of high intensity, characteristic of the material of

the target. The X-ray wavelength depends on the energies of the two levels involved, E1 and E2,

such that

l ¼ hc=jE2 � E1j (3.3)

Figure 3.3 illustrates the curve of radiation intensity against X-ray wavelength, when the accel-

erating voltage is sufficient to excite the K spectrum of the target metal. The K spectrum consists of

the Ka and Kb wavelengths, which are always produced together, and correspond to electrons

falling back to the K level from the L and M levels respectively. Two slightly different L energy

levels exist, so that the important Ka spectrum consists of two components, Ka1 and Ka2, of

closely similar wavelength. Similarly, M ! K transitions give rise to Kb characteristic radiation.

The wavelengths of the K radiations for a target material of copper are: Kb1 ¼ 1.39222 Å,

Kb2 ¼ 1.38109 Å, Ka1 ¼ 1.54056 Å, and Ka2 ¼ 1.54439 Å. The mean value for Ka is obtained

by averaging the Ka1 and Ka2wavelengths in their intensity ratio of 2:1, thus giving the average value

of 1.54184 Å for Ka. The a1, a2 doublet is resolved when the angle of scatter is large, that is, at high

values of the Bragg angle y (q.v.).

Fig. 3.2 Variation of intensity with wavelength for an X-ray tube, for three different operating voltages; as V increases,

the maximum wavelength in the continuous spectrum moves to shorter wavelengths, in accordance with (3.2)
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3.1.3 Absorption of X-Rays

All materials absorb X-rays, and the transmitted intensity is attenuated according to an exponential law:

I ¼ I0 expð�mtÞ (3.4)

I0 and I are, respectively, the incident and transmitted intensities, m is the linear absorption coefficient

of the material, and t is the path length for X-rays through the material. The absorption of X-rays

increases with the atomic numbers of the elements in the absorbing material.

The variation of m with wavelength is illustrated in Fig. 3.4, which refers to elemental nickel. The

absorption coefficient m of any material decreases approximately as l5/2, so that as l falls, the energy

of the radiation (hc/l) becomes greater and more penetrating. With continuing decrease in wave-

length, a position is reached where the energy of the radiation is sufficient to eject an electron from the

L energy level of an atom of the material. At this point, known as the absorption edge, or resonance

level, the value of m is greatly enhanced. As the wavelength decreases further, the absorption

coefficient continues to fall off as before. In the case of nickel, this particular L absorption edge

occurs at a wavelength of 1.4886 Å.

Absorption edges are important in selecting the correct radiation for a particular application. For

example, copper X-radiation would be unsuitable for materials containing a high percentage of iron.

The K absorption edge for iron is 1.7433 Å, so that radiation of this wavelength would be strongly

absorbed by the iron moiety and subsequently re-emitted as the characteristic K spectrum of iron.

In such a case, molybdenum radiation, l(Ka) ¼ 0.71073 Å, would be a satisfactory alternative.

Fig. 3.3 Characteristic

K spectrum from an X-ray

tube superimposed upon

the “white” radiation, or

continuous spectrum
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If a material consists of a single elemental species, m in (3.4) may be termed the atomic absorption

coefficient [1] ma, given by

ma ¼ Mrm=ðDmLÞ (3.5)

whereMr is the relative atomic mass, Dm the density of the material, and L the Avogadro constant. Of

more general applicability is the mass absorption coefficient mm, given by mm ¼ m/Dm, so that

ma ¼ mm(Mr/L). For a compound. we have

m ¼
X

i

mm;iDm;i (3.6)

where mm,i is the mass absorption coefficient for the ith species of partial density Dm,i in the

compound; Dm,i is calculated for the ith species as Dm;iMm;i=Mr. For example, sodium chloride,

NaCl, has a density of 2165 kg m�3, and the relative atomic masses and mass absorption coefficients

for Na and Cl are 22.98 and 3.01 m2 kg�1, and 35.45 m2 kg�1 and 10.6 m2 kg�1 for Na and Cl,

respectively. Hence, the linear absorption coefficient for NaCl is given by

m ¼ 2165½ð3:01� 22:98=58:43Þ þ ð10:6� 35:45=58:43Þ� ¼ 1:65� 104 m�1

and this parameter is needed in the correction of X-ray intensities, Sect. 4.1.3. The attenuation factor

I/I0, for a crystal of NaCl of thickness 0.1 mm in the path of the X-ray beam, is then exp(�1.65

� 104 � 0.1 � 10�3), or 0.192.

Fig. 3.4 Variation with

wavelength of the linear

absorption coefficient m for

nickel; the discontinuity at

approximately 1.4886 Å

corresponds with the L

absorption edge of the

element

3.1 Generation and Properties of X-Rays 115

http://dx.doi.org/10.1007/978-1-4614-3954-7#Sec4_4


3.1.4 Monochromatic Radiation

Usually X-ray structure analysis requires monochromatic radiation, but Figs. 3.2 and 3.3 show that

X-ray sources contain a range of wavelengths. However, and in particular for radiation from a

copper target, we note that the absorption edge for nickel (1.4886 Å) lies between the wavelengths

for Cu Ka and Cu Kb radiations. The effect of passing the X-rays from a copper target through a

nickel foil of ca. 0.018 mm thickness is shown in Fig. 3.5, a superposition of Figs. 3.3 and 3.4.

The Kb radiation is almost totally absorbed by the nickel, and the “white” radiation is decreased

significantly in intensity. There is also a loss in intensity of the Ka radiation, but the intense part of the

beam behaves as a closely monochromatic, or filtered, radiation. Evidence for a residual presence of

Kb and white radiation may be seen in Fig. 9.5 as weak reflections just below the strong reflections,

that is, at lesser y values; the very strong reflections also show spots from tungsten La radiation at

still lower y values (lLa ¼ 1.476 Å). A similar degree of monochromatization can be obtained with

molybdenum radiation if a filter of zirconium foil is used.

Crystals themselves can act as monochromators through application of the Bragg equation (q.v.);

we consider this topic in Sect. 5.8.1ff.

3.1.5 Collimation

A collimator is used to define the angular limit of the X-ray beam. The simplest collimator is the

pinhole type, a cylindrical device in which the beam is limited usually by two defining circular

apertures together with a guard aperture. The collimation provided is satisfactory in many situations,

and a divergence angle of approximately 0.02 rad is typical. Figure 3.6a illustrates an elegant

apparatus for taking a back-reflection Laue photograph of a metal casting, showing also the type of

collimator just described.

Fig. 3.5 Diagrammatic

superposition of the curves

of Figs. 3.3 and 3.4, for Cu

Ka X-radiation; the

strongly preferential

absorption of the Kb

radiation results in an

almost monochromatic Ka

radiation
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Improved collimators have been described [2] in which monochromatic X-rays, obtained by

crystal reflection, are guided by multiple reflections within thin-walled borosilicate glass capillary

tubes (Fig. 3.6b). It is necessary for the X-rays to be reflected from the tube walls at less than the

critical angle yc:

yc=mrad ¼ 30=V

where the voltage V is measured in keV. The divergence at input could be 60–120 mrad, or 5–10�, and

2–4 mrad at output. The system allows a useful X-ray flux from Cu Ka radiation to be produced that is

four to five times stronger than that obtained by simple pinhole collimation, with comparable initial

divergence, and the output beam produces uniform diffraction peaks while the higher energy

Bremsstrahlung and background radiations are insignificant.

Fig. 3.6 Collimation of X-rays. (a) Colli-
mator employed in a back-reflection Laue

experiment (courtesy of Jackson Electron-

ics Newark, UK)

(b) Cross-section of a multifiber

polycapillary fiber collimator, with

about 400 50 m diameter channels

(Gibson D, Gibson W (2002) Adv X-ray

Anal 45; reproduced by permission of

ICDD)

3.1 Generation and Properties of X-Rays 117



3.1.6 Synchrotron Sources

A synchrotron is a large-scale particle accelerator designed primarily as a tool for fundamental studies

in particle physics. However, it has many applications, and in X-ray crystallography it functions as a

very powerful source of X-rays, with an intensity of several orders of magnitude greater than that of

the sealed X-ray tube. It can generate brilliant beams of electromagnetic radiation from infra-red to

X-ray wavelengths.

The Diamond Synchrotron Source
Figure 3.7 is a schematic diagram of the Diamond synchrotron that was opened at Harwell Science

and Innovation Campus in 2007. It consists of several elements, as follow:

• In the injection system (1), an electron gun produces a series of pulses of electrons with an energy

of approximately 90 keV. These electrons are then accelerated in the linear accelerator LINAC,

which raises their energy to about 100 MeV.

• The 100 MeV electrons are further accelerated in the booster synchrotron (2). Thirty-six dipole

bending magnets of field up to 0.8 T are used to curve the electron beam around the bends in the

ring, and then they are ejected from the booster with energy of 3 GeV.

• The storage ring (3) contains 48 bending magnets that curve the electron beam between the

straight sections. The total deflection is 360� and the length of the orbit is 561.6 m. The ring is

under vacuum, and the 3 GeV electrons complete each circuit in 1.9 � 10�6 s, thus traveling at

98.6% of the speed of light.

• Each beamline (4) comprises three main sections: an optics hutch, an experimental hutch that

houses experimental equipment, and a control hutch, and is designed for a specific experimental

application.

• The front end (5) channels the synchrotron light into a beamline. It monitors the beam in passing

through to the optics hutch.

• The optics hutch (6) contains mirrors and diffraction gratings or crystals, the purpose of which is to

filter the beam so as to obtain the desired radiation wavelength, and also to focus it on to the sample

under investigation.

• The experimental hutch (7) houses the technical equipment for carrying out the experiments and

provides a number of different specialized X-ray detectors for the various kinds of experiments.

Fig. 3.7 Schematic illustration of the Diamond synchrotron facility at Harwell; the numbered sections are described in

the text (reproduced by courtesy of the Diamond Light Source, Harwell Science and Innovation Campus)
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• The control hutch (8) provides the operators with a computer-controlled monitoring system for the

experiment in progress.

• A radiofrequency cavity in the region of (9) contains an electromagnetic field that makes up for the

energy that the electrons lose in the form of synchrotron radiation as they travel around the ring.

There is also Diamond House, which provides for Diamond staff accommodation, meeting, and

conference rooms, and also access to the synchrotron facility itself.

The Diamond IO2 beamline, which is concerned with macromolecular X-ray crystallography, has

a flux of about 1.5 � 1012 photon s�1 and, typically, an operating wavelength of 0.98 Å, giving a

resolution of 1.09 Å. Beamlines IO3 and IO4 are similar to IO2, and beamlines IO4-1 and I24 are

available for microfocus macromolecular crystallography. A fascinating video-description of a trip

around the Diamond ring may be found at a web site [3].

Polarization of Synchrotron Radiation
An important difference between X-radiation from sealed tube or rotating anode sources and X-rays

produced by a synchrotron is their physical state of polarization; see also Sect. 3.2.4. X-rays generated

from conventional laboratory sources are totally non-polarized unless a crystal monochromator is

employed. In contrast, synchrotron radiation is 100% linearly polarized in the plane of the electron

beam orbit and elliptically polarized above and below the plane. In addition, the output radiation is

pulsed, because the electrons do not form a uniform stream.

Figure 3.8a considers a three-dimensional X-ray wave at the origin, with components of oscillation

vibrating in the y and z directions. The beam from a synchrotron is plane-polarized, with the

component in the z direction being an order of magnitude less in intensity. X-ray beams from crystal

monochromators, because they have undergone Bragg diffraction, are also polarized, but the extent is

considerably less. The effect of this primary or beam polarization of synchrotron radiation on the

intensity of the diffraction pattern must be taken into account during data processing. This is achieved

through application of a polarization factor P that includes a source-dependent property, with

components normal and parallel to the plane of polarization:

P ¼ ðIk � I?Þ=ðIk þ I?Þ

where Ik and I⊥ are the intensities of the electrical fields of the X-ray beam along and normal to the

axis of a rotation camera, respectively. The value of P is calibrated for each workstation at a

synchrotron installation. For the Diamond station, P is approximately 0.8, whereas for a graphite

monochromator, P is equal to 0.11.

A typical synchrotron radiation spectrum is shown in Fig. 3.8b and may be compared with that

from the sealed tube. The photon intensity is given in units of photon per second for a horizontal

angular aperture of 1 mrad (3.4 min of arc), with a 1 A beam current and a 0.1% spectral bandwidth,

after performing vertical integration over the full angular divergence of the radiation above and below

the orbital plane.

The flux attainable in practice depends upon the multiplying factors set by the values of the

dependent parameters. A horizontal aperture of an experimental workstation may be less than 1 mrad

for topography, typically 5–10 mrad for the majority of spectroscopy experiments, and up to 40 mrad

for the high-aperture port used for time-resolved measurements. The flux available will change

proportionally if this resolution is varied. The stored current and, hence the photo flux, gradually

decline as electrons are lost by scattering from closed electron orbits. The beam lifetime, that is, the

time of fall to approximately 1/e of the initial intensity, is approximately 8 h.
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Insertion Devices: Wigglers and Undulators
The output characteristics of the synchrotron can be modified by devices inserted into the straight

sections between themagnets. An insertion device is an array of magnets which can be inserted into the

straight sections of the storage ring and cause the electron beam to follow a wiggling or undulating

Fig. 3.8 (a) A three-

dimensional wave

traversing the origin, with

oscillatory components

vibrating along the x and y

directions: (i) Conventional

X-ray tube radiation, (ii)

Synchrotron radiation (not

to scale). The radiation

from a synchrotron is

plane-polarized, with the z

component an order of

magnitude less than that in

the y direction. The spread

of radiation in the vertical

(z) direction is given as

D ¼ mec
2/E, where E is the

electron beam energy.

(b) Spectral curves in the

X-ray region from a normal

bending magnet and a

wiggler for a 2 GeV 1 A

beam in the synchrotron

radiation source, and the

types of experiment used in

the wavelength regions

specified. The peak of the

curve is approximately

1.4lc, corresponding to the

maximum output of energy

per unit wavelength; lc is

the critical wavelength for

the synchrotron
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path, so as to produce more intense, tuneable light. Insertion devices come in two main types: wigglers

and undulators.

A wiggler is an insertion device that consists of an array of dipolar magnets of alternating

polarity which cause the electron beam to follow a wiggling path of oscillations perpendicular to its

general direction. This causes the light to be produced in a wide cone, spanning a broad spectrum of

X-rays. Wigglers are used in beamlines where the priority is for very high energy X-rays.

An undulator, which is more common at the Diamond installation, is an insertion device that

produces a very bright light in a very narrow beam. By varying the separation of the magnet arrays, it

is possible to tune the undulator and choose the energy that is generated. They can be used to produce

very high energy X-rays over a continuous frequency range, which is essential for many experiments,

particularly in protein crystallography.

The synchrotron source may be said to have revolutionized X-ray crystallography in certain

applications. It has enabled a rapid collection of data to be achieved, and so is of great value in

dealing with relatively unstable crystals, such as proteins, with poorly diffracting specimens or

polymers, in time-resolved studies, or in solid-state reactions and other transformations, including

enzyme-catalyzed processes, or in X-ray topographical studies of crystal defects.

Laser-Wakefield Acceleration
Relatively recent work on synchrotron sources has concentrated on a reduction in the physical size of

the accelerator. If a high-powered, femtosecond (10�15 s) laser pulse is focused into a plasma, an

electrostatic wake is produced which can be harnessed to accelerate electrons to GeV energies within

centimeter distances. Electrons become separated from the positive ions, and a ponderomotive force,

which is a non-linear force that a charged particle experiences in an inhomogeneous oscillating

electromagnetic field, arising from the laser light pushes aside the plasma electrons so as to create a

wake from the plasma. The associated electrostatic fields can produce an accelerating field of three to

four orders of magnitude greater than in the conventional accelerator.

In one application of the procedure [4], a laser pulse of 37 fs is fired at a cell of hydrogen gas

atoms, thus energizing the electrons and causing them to break free. The positive attraction of the

nucleus acts to retain the electrons and the result is an oscillation about the nucleus that produces

a plasma wave in the cell. This excitation is similar to the water-wave behind a motorboat; hence, the

term wake-field (or wakefield). Other electrons “ride” this wave at relativistic speeds and so generate

X-rays through their oscillatory changes.

An important feature in the process is the use of a miniature undulator. The combination of a

1.5 cm accelerator and a 30 cm magnetic undulator produced electron energies of 210 MeV. Further

research aims at higher electron energies, so that laser-wakefield acceleration can generate X-rays in

the useful wavelength range for diffraction experiments, and with facilities of centimeter size. This

development has great potential for X-ray studies on proteins and viruses, where powerful X-ray

sources are desirable, because of the low stability of some of these compounds.

3.2 X-Ray Scattering

Scattering occurs generally when electromagnetic radiation interacts with matter. Two everyday

examples of scattering are the blue color of the sky and the haloes around distant car lights at night

that arise from Rayleigh scattering, a highly wavelength-dependent elastic scattering of the light by

gas molecules or dust particles in the air. The pattern seen when looking at a sodium street-lamp

through a stretched handkerchief or an umbrella, which are approximately two-dimensional net

structures, shows an aspect of diffraction similar to that which we shall be discussing with X-rays
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and crystals, namely the interaction of radiation with a periodic distribution of matter. The X-ray

scattering from a crystal is described in terms of the intensity of the scattering function and the angle

of scatter.

3.2.1 Scattering by a Single Electron

If a plane monochromatic X-ray beam of wavelength l is incident upon an electron at an

origin O, then the amplitude C2y of the scattered beam at a point P in the forward direction at

unit distance from the origin is given by [5]

C2y ¼ f2yC0 (3.7)

where C0 is the amplitude of the incident wave, 2y is the scattering angle, and f2y is a constant

of proportionality that we shall discuss more fully shortly.

3.2.2 Scattering by Two or More Electrons

Let a second electron be introduced at a point A, Fig. 3.9. We need now to determine the phase

difference at any point P in the forward direction, whereOP is much greater thanOA, for the wavelets

scattered by the two electrons. The path difference d between the two wavelets scattered byO and A is

OY � AX; thus the phase difference f is (2p/l)d, that is,

f ¼ ð2p=lÞðOY � AXÞ (3.8)

If the distance OA is jrj, then the incident and diffracted waves may be defined by the unit vectors

s0 and s, respectively, such that AX ¼ r·s0 and OY ¼ r·s. Thus,

f ¼ 2pðr � s� r � s0Þ=l ¼ 2pr � ðs=l� s0=lÞ ¼ 2pr � S (3.9)

From Fig. 3.10, it is clear that S is a vector normal to a plane through O that may be regarded

conveniently as a reflecting plane; hence,

S ¼ js� s0j=l (3.10)

so that the magnitude jSj, or S, is equal to 2 sin y=l.

Fig. 3.9 Combined

scattering at two centers

O and A; s0 and s are unit
vectors in the incident and

scattered beams,

respectively; dv is a small

volume element at A.
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The amplitude of the wave scattered at P by the two electrons is thus

C2y ¼ f2y þ f2y expði2pr � SÞ ¼ f2y½1þ expði2pr � SÞ� (3.11)

The use of the exponential term to represent relative phase is explained below in Sect. 3.2.3 on the

Argand Diagram. In the case that neither of the electrons of the previous example occupies the origin,

so there is no zero relative phase involved, then the number 1 on the right-hand side of (3.11) would

be replaced by another exponential term. In general, the result for n electrons is given by

C2y;n ¼ f2y
Xn

j¼1

expði2prj � SÞ (3.12)

This equation assumes that the n scattering species have equal power, which would be true if they

were all electrons, or identical atoms. In the event that the scattering species are unequal, then the

function f2y would be unique to each species and included within the summation as f2y,j. The scattering

process itself introduces a phase shift with respect to the origin, but this applies equally to all atoms and

may be ignored for our purposes.

3.2.3 Waves and Wave Sums

In (3.12), we considered the summation of waves of equal scattering power. In general, each

scattering entity will be allocated its own scattering function and phase. Each wave then takes the

form fj exp(ifj), where fj ¼ rj � S. For convenience, we may drop the subscript y (or 2y) to f ; unless

we specifically want to emphasize its dependence on y; we know that such dependence is always

present. Using de Moivre’s theorem, the exponential term may be expanded into cosine (real) and

sine (imaginary) components: expð�ifÞ ¼ cosf� i sinf, and a straightforward way of representing

a wave is in the complex plane of an Argand diagram.

Fig. 3.10 Relationship of

the scattering vector S, or
(s � s0)/l, to the reflecting

plane (hkl). The vector S is

normal to the plane (hkl),

and its magnitude jSj, or S,
is 2 sin y=l
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Argand Diagram
In Fig. 3.11, we show the combination of two waves of scattering factors f1 and f2 on an Argand

diagram to give a resultant F, which we shall later identify with the structure factor, Sect. 3.5.1:

F ¼ f1 expðif1Þ þ f2 expðif2Þ (3.13)

F is a scalar quantity but may be manipulated like a vector in the complex plane, having both a

magnitude and direction; exp(if) may be regarded as an operator that rotates f counterclockwise on

an Argand diagram by the angle f measured from the positive, real axis.

The foregoing analysis may be extended to n waves. The resultant sum F is, from (3.13),

F ¼ f1 expðif1Þ þ f2 expðif2Þ þ � � � þ fj expðifjÞ þ � � � ¼
Xn

j¼1

fj expðifjÞ (3.14)

The Argand diagram, Fig. 3.12, expresses (3.14) as a polygon of f-“vectors” for the combination of

six waves, and the resultant F may be expressed as

F ¼ jFj expðifÞ (3.15)

where the amplitude jFj is obtained from

jFj ¼ ðFF�Þ1=2 (3.16)

F* is the complex conjugate of F, that is, jFj expð�ifÞ, Fig. 3.13. Resolving the resultant F of the six

waves into its real and imaginary components, we have

Fig. 3.11 Combination of

the two waves f1 exp(if1)

and f2 exp(if2), shown as

vectors on an Argand

diagram. The resultant is

F, and its phase is

expressed by the angle

f between F and the R

(real) axis
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Fig. 3.12 Combination of six waves on an Argand diagram: F ¼P6
j¼1 fj expðifjÞ

Fig. 3.13 The quantity F(hkl) for a reflection from an (hkl) family of planes and its components A0(hkl) and B0(hkl);
f(hkl) is the phase angle for F(hkl). The conjugate F*(hkl), or Fðh k lÞ, has the same magnitude for A0 and B0, but the sign
of B0 is reversed; hence fðhklÞ ¼ �fðh k lÞ. In a centrosymmetric structure, F(hkl) lies along the real axis, so that F

(hkl) ¼ A0(hkl), or F(hkl), and its phase is either 0 or p. Then, since A0(hkl) ¼ jF(hkl)j cos f, it is common to speak of

the sign of F(hkl), that is, �F(hkl), in a centrosymmetric structure
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jFj ¼ ðA02 þ B02Þ1=2 (3.17)

where

A0 ¼
Xn

j¼1

fj cosfj (3.18)

and

B0 ¼
Xn

j¼1

fj sinfj (3.19)

The phase f of the resultant F is given by

f ¼ tan�1ðB0=A0Þ (3.20)

Graphical Representation of Wave Sums
When waves of equal frequency, those in which we are interested, combine, the resultant can be

determined through (3.17–3.20). If two waves are in exact register—path difference, nl—the

resultant amplitude is simply the sum of the individual amplitudes. If the waves are exactly out of

phase—path difference, (n + 1)l/2—the resultant is the difference between the amplitudes. All cases

between these extremes are possible, depending on the values of the amplitudes jFj and phase anglesf.
In Fig. 3.14, we represent the combination of two waves, one of amplitude 100 (f1) and phase 0

�, and

the other of amplitude 50 (f2) and phase 240�, with respect to the origin. From the foregoing, the

amplitude of the resultant becomes

jFj ¼ ½ðf1 cosf1 þ f2 cosf2Þ
2 þ ðf1 sinf1 þ f2 sinf2Þ

2�1=2 (3.21)

and the phase of the resultant is

f ¼ tan�1 ½ðf1 sinf1 þ f2 sinf2Þ=ðf1 cosf1 þ f2 cosf2Þ� (3.22)

Importance of Correct Phases
As shown in the legend to Fig. 3.14, the resultant amplitude jFj is 86.6 and its phase f is 330�. From

the figure we can see the importance of the correct phase of a wave (reflection). The peaks (atomic

positions) in this figure occur at 330� � 2p (�360�). If, on one hand, we decrease f2 to 25, the

resultant amplitude is 90.1, because the sine term subtracts a smaller amount, and the phase is 346�, a

small change in position. If on the other hand, we decrease the phase by half, leaving f2 unchanged,

then the resultant amplitude is again 86.6, but the phase (atomic position) is now at +30�, a very

different situation; see Problem 7.11.
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3.2.4 Coherent and Incoherent Scattering

Coherent (Thomson) Scattering: Polarization
In coherent scattering, the incident and scattered waves have the samewavelength, and there is a definite

phase relationship between the incident and scattered radiations. When X-rays fall upon an electron, the

alternating electric-field vector imparts an alternating acceleration to the electron. Classical electromag-

netic wave theory shows that an accelerated charged particle emits radiation, through a process of

absorption and re-emission, the emitted radiation traveling in all directions for a given angle of scatter. A

theoretical treatment of Thomson scattering [5] shows that the intensity I2y of the scattered radiation of

incident intensity I0, defined as power per unit solid angle, is

I2y ¼
1

2
½e2=ð4pe0c2meÞ�

2ð1þ cos22yÞI0 (3.23)

Fig. 3.14 Combination of two waves of amplitudes 100 (f1) and 50 (f2) with phases 0
� (f1) and 240

� (f2), respectively.

The resultant wave has an amplitude jFj and a phase f. (a) First wave. (b) Second wave. (c) Resultant wave F, given
by ¼ [(100 + 50 cos 240)2 + (50 sin 240)2]1/2 ¼ 86.6; f ¼ tan�1[(50 sin 240)/(100 + 50 cos 240)] ¼ �30� (330�)
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where e is the charge on an electron, e0 is the permittivity of a vacuum, c is the speed of light in a

vacuum, and me is the mass of the electron. The factor 1=me shows how electrons are the only

effective scattering species for X-rays: even the lightest species, hydrogen, although it has the same

magnitude of charge, is ca. 1,840 times heavier than the electron. This result shows also that neutrons

are excluded from the category of X-ray scattering species because they are uncharged particles. The

term 1
2
ð1þ cos22yÞ is a geometrical factor known as the polarization factor p for X-ray scattering,

which we shall encounter further in ensuing chapters.

p ¼ 1

2
ð1þ cos22yÞ (3.24)

Incoherent (Compton) Scattering
With incoherent scattering, the wavelength of the scattered radiation is longer than that of the incident

radiation, which implies a loss of energy in the scattering process, owing to elastic collisions of

electrons with photons. An analysis [5] shows that in Compton scattering, the wavelength change dl

is given by

dl ¼ ½h=ðmecÞ�ð1� cos 2yÞ (3.25)

or, by inserting the fundamental constants in appropriate units,

dl ðA) ¼ 0:0243ð1� cos 2yÞ (3.26)

Thomson scattering illustrates the particle property of the electron, whereas Compton scattering

shows its wave nature.

3.2.5 Scattering by an Atom

In an atom, electrons are bound in levels of distinct energies, and in the scattering of X-rays by an

atom both coherent and incoherent scattering are involved. A full analysis of the scattering process

requires a wave-mechanical treatment, involving both modes of scattering, from which we obtain the

electron density function r, where r ¼ CC* andC* is conjugate toC; if we assume a real nature for

the electron density function then r ¼ jCj2, and the expression may be interpreted such thatC2 dt, or

r dt, represents the probability of finding the electron in a volume element dt. We shall use the

Thomson formula only because incoherent scattering contributes to the background radiation and is

but a small fraction of the total intensity in the case of crystalline materials.

Consider a plane of atoms in a crystal. We demonstrate in the ensuing sections that all atoms on this

plane scatter in phase with one another andwith the atoms in parallel planes, for a given scattering vector

S. Thus, we need to consider how the electrons in any one atom combine in order to obtain the total

scattering amplitude for the atom.

Let rðrÞ dt be the probability that an electron in the chosen atom lies in a small volume element dt

distant r from the origin, the center of the atom, where r is the magnitude of the vector r, as shown in
Fig. 3.15. If f(S) represents the scattering power of the atom in the direction S, then we have from the

foregoing:

f ðSÞ ¼

ð
rðrÞ expði2pr � SÞ dt (3.27)
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Let S make an angle C with the direction of r. Then

2pr � S ¼ ð4p=lÞ sin y r cosC ¼ mr cosC

where m ¼ 4p(sin y)/l. Since spherical symmetry has been assumed, the volume element dt is a

spherical annulus of radius r and thickness dr on S as axis, so that dt ¼ 2pr2 dC dr.

Let mr cos C ¼ x, so that dx ¼ �mr sin C dC. Now (3.27) may be expressed as

f ðSÞ ¼ 2p

ð1

0

r2rðrÞ=mr dr

ð�mr

mr

� expðixÞ dx ¼ 4p

ð1

0

r2rðrÞðsinmrÞ mr dr= (3.28)

Since m ¼ (4p sin y)/l, (3.28) may be recast as a function of jSj:

f ðSÞ ¼ 4p

ð1

0

r2rðrÞðsin 2prSÞ ð2prSÞ= dr (3.29)

where S is 2 sin y=l.
The atomic scattering factor may be defined as the ratio of the amplitude of coherent scattering

from an atom to that scattering by a single electron at the center of the atom. It follows from (3.29)

that, for scattering in the forward direction, when (sin 2prS)/(2prS) ¼ 1, the expression
Ð1
0

r2rðrÞ dr
becomes the total electron density for the atom. Hence, we may write

f ðSÞS¼0 ¼ Z (3.30)

Fig. 3.15 Scattering by a

single atom. A section of a

sphere of radius r, showing

an annular ring of thickness

dr at an angle C to the

scattering vector S. The
volume of the annular ring

is ½pðr þ drÞ2 � pr2�r sinC

dC ¼ 2pr2 sinC dC dr

(neglecting second order

terms in dr)
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where Z is the total number of electrons in the atom, or atomic number; S ¼ 0 is equivalent to

sin y ¼ 0 in terms of the y-angle.

As an example calculation, we consider the contribution of a 1s electron to f(S). We equate r(r) to

jC1sj2 and use Slater’s analytical wavefunctions. The Slater one-electron 1s wavefunction C1s may be

written as ð1= ffiffiffi
p

p Þc3=21 expð�c1=rÞ; c1 is (Z � s)/a0, where s is Slater’s quantummechanical screening

constant [6] and a0 is the Bohr radius for hydrogen. With lithium, for example, s1s ¼ 0.30 and,

remembering that r / C2, we have from (3.29),

f1sðSÞ ¼ 2c31=ðpSÞ
ð1

0

r expð�c1rÞ sinð2pSrÞ dr

From a table of standard integrals, or by use of the G function (see Web Appendix WA7),

ð1

0

x expð�axÞ sinðbxÞ dx ¼ 2ab=ða2 þ b2Þ2

so that

f1sðSÞ ¼ c41=ðc21 þ p2S2Þ2 (3.31)

In lithium, for example, there are two contributions from (3.31) and one contribution from a

similar expression for the 2s electron (see also Problem 3.3). They are added to obtain the value of f at

a given value of S. Atomic scattering factor data are readily available, quoted normally as functions of

sin y=l. Such data refer to systems of electrons at rest: at a finite temperature, the effective scattering

from an atom is less than the value at rest, and we shall discuss this situation later in this chapter.

A satisfactory calculation of rest atomic scattering factors is afforded by the equation

f ðsÞ ¼
X4

j¼1

aj expð�bjs
2Þ þ cj (3.32)

where s is sin y=l, and the nine constants required by the equation have been recorded for all atomic

and some ionic species [7].

3.3 Scattering by Regular Arrays of Atoms

The interaction of X-rays with a crystal is a complex process, often described as a diffraction

phenomenon although, strictly speaking, it is a combined scattering and interference effect.

Two treatments, those of von Laue and Bragg, describe the process, and we shall consider them in

that order.

3.3.1 Laue Equations

Figure 3.16 represents a regular, one-dimensional array of atoms of spacing b, imagined in three-

dimensional space. Parallel X-rays are incident at an angle f2 and scattered at an angle C2 to

the direction of b. The path difference for rays scattered by neighboring centers is represented by
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AQ � BP, or b(cos C2 � cos f2); this difference must be equal to an integral number of wavelengths

for reinforcement to occur, so that

bðcosC2 � cosf2Þ ¼ kl ¼ b � s� b � s0 (3.33)

where s and s0 have meanings as before. This equation may be written alternatively, using (3.10), as

b � ðs� s0Þ=l ¼ b � S ¼ k (3.34)

The generators of a cone of semivertical angleC2, coaxial with the row in Fig. 3.16, satisfy (3.33).

For a given value of f2, there will be a series of cones corresponding to the orders of k (k ¼ 0, 1,

2, . . .), as shown in Fig. 3.17.

Fig. 3.16 Diffraction

from a row of scattering

centers, of spacing b along

the y axis. The Laue

equation b(cos C2 �
cos f2) ¼ kl, or b � S ¼ k,

is satisfied by any

generator of the cone

Fig. 3.17 Several orders

of diffraction can arise

from a row of scattering

centers, for a given value

of f2, corresponding to

integral values for k
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The discussion is extended readily to a net a, b, so giving rise to a second condition

a � ðs� s0Þ=l ¼ a � S ¼ h (3.35)

A second cone now intersects the first cone generally in two lines, but for the special case that both

(3.34) and (3.35) hold simultaneously, the two lines coincide and the atoms of the net scatter in phase,

with the incident and diffracted beams lying in the plane of the net.

Generalizing the argument to three dimensions, we obtain the complete Laue equations:

a � S ¼ h

b � S ¼ k

c � S ¼ l

(3.36)

Any of the three possible pairs of equations define scattering from the corresponding net, but for

the particular case that all three equations apply simultaneously, the three-dimensional array scatters

in phase and produces the hkl spectrum.

Referring to Fig. 1.12 mutatis mutandis, we can rewrite (3.36) as

a � S ¼ 2a sin y=l cos a ¼ h

b � S ¼ 2b sin y=l cos b ¼ k

c � S ¼ 2c sin y=l cos g ¼ l

(3.37)

where h, k, and l are integers. The direction cosines cos a, cos b, and cos g of the vector S, normal to

the reflecting plane, with respect to the directions of a, b, and c are, therefore, proportional to a/h, b/k,
and c/l, respectively. Successive planes (hkl) in the crystal intersect the x, y, and z axes at a/h, b/k, and

c/l, respectively, so that they are parallel to the reflecting plane (hkl). Thus, (3.37) show that a

scattered beam may be considered as derived from the incident beam by “reflection” from the (hkl)

family of planes. Furthermore, if d(hkl) is the interplanar spacing, then from Sect. 1.2.2,

dðhklÞ ¼ a=h cos a ¼ b=k cos b ¼ l=c cos g (3.38)

and (3.37) shows that

2dðhklÞ sin y ¼ l (3.39)

a relation deduced by Bragg, originally in the form 2d(hkl) sin y ¼ nl.

3.3.2 Bragg Equation

The deduction of the Bragg equation, sometimes thought to be ad hoc, was occasioned by the

observation that if a crystal in a position that produced a scattered X-ray beam was rotated through

an angle j to another scattering position, then the scattered beam had been rotated through 2j, as in

the reflection of light from a plane mirror.

In Fig. 3.18, two planes from a family of planes (hkl) are shown, together with the incident and

reflected rays. The part of the incident beam that is not reflected at a given level passes on to be
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reflected from a deeper level in the crystal. Furthermore, all rays reflected from a given level remain

in phase after reflection, because there is no path difference between them.

The path difference d between the two reflected rays shown is given by

d ¼ QA2 þ A2R ¼ A1A2 cosf2 ¼ A1A2ðcosf1 þ cosf2Þ
¼ 2A1A2 cos½ðf1 � f2Þ=2� cos½ðf1 þ f2Þ=2� (3.40)

which, by simple manipulation, becomes

d ¼ 2d sin y (3.41)

Since d is independent of f1 and f2, (3.41) applies to all rays in the bundle reflected from

the adjacent planes. By the usual rules that apply to the combination of waves, the reflected rays

will interfere with one another, the interference being at least partially destructive unless the path

difference d is equal to an integral number of wavelengths. Hence, we obtain the Bragg equation, as

originally formulated:

2d sin y ¼ nl (3.42)

where n is an integer. The mirror-reflection analogy breaks down in practice because this equation

must be satisfied for a reflection to occur, but the treatment is, nevertheless, a very useful geometrical

way of looking at the X-ray diffraction process.

In (3.42), n is the order of the Bragg reflection. From Sect. 2.4, we recall that d(hkl)/n ¼ d(nh, nk,

nl), with h, k, and l taking common factors as necessary. Thus, n is included in the definition of d(hkl),

and the Bragg equation now written as

2dðhklÞ sin yðhklÞ ¼ l (3.43)

Each reflection from a crystal must now be considered, effectively, as first-order from the (hkl)

family of planes, specified uniquely by their Miller indices. To illustrate this argument further,

Table 3.1 lists data for planes parallel to (120) in a cube of side 5 Å.

The Bragg and von Laue treatments are equivalent, and we shall use them as the

occasion demands. It has been convenient for this discussion, although not necessary, to consider

Fig. 3.18 Geometry of

X-ray reflection. The path

difference between the two

typical rays reflected from

successive planes is

(QA2 + A2R). When this

difference is equal to an

integral number of

wavelengths l, a reflection

is obtained, according to

the Bragg equation
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that the scattering material is concentrated at lattice points, or on lattice planes. In general, electron

density is a continuous function, albeit with a lattice-like distribution in the crystal.

3.3.3 Equivalence of the Laue and Bragg Equations

A way of demonstrating the equivalence between the Laue and Bragg treatments is illustrated by

Fig. 3.19. Let p be the spacing between adjacent scattering points A and B in any row of a three-

dimensional lattice. An X-ray beam makes the incident angle f with the row of points, and C is the

angle between the diffracted ray and the same row. A “reflecting” plane must be in such a position as

to make an angle y with both rays; the dashed line in the figure is the trace of such a plane. Following

Sect. 3.3.1, we write

pðcosC� cosfÞ ¼ nl (3.44)

where m is an integer. Expanding (3.44), we obtain � 2p sinððCþ jÞ=2Þ sinððC� jÞ=2Þ ¼ nl.

It follows from the diagram that f� y ¼ Cþ y so that ðf=2Þ ¼ ðC=2Þ þ y, whereupon

p sinððCþ fÞ=2Þ ¼ p sinðCþ yÞ ¼ d and ððC� fÞ=2Þ ¼ ðC=2Þ � ððC=2Þ þ yÞ ¼ �y. Hence,

Table 3.1 Nomenclature for interplanar spacings

Original Bragg notation Current usage

hkl Order d (Å) hkl d (Å)

120 1 2.236 120 2.236
2 2.236 240 1.118
3 2.236 360 0.745
4 2.236 480 0.559

Fig. 3.19 Equivalence

of the Laue and Bragg

treatments of X-ray

diffraction
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2d sin y ¼ nl (3.45)

which is the Bragg equation (3.42) derived above.

3.3.4 Further Analysis of the Path Difference

In (3.12) we expressed the resultant wave from n scattering centers, there thought of as electrons.

Now, we can consider them as atoms each specified in scattering power by f(S).
The contribution to a wave scattered by the Ath atom in a unit cell is given by fAðSÞ expði2prA � SÞ,

where the exponential term is the phase of the contribution from the Ath atom. Now the distance r

from the origin to atom A is expressed through

rA ¼ xAaþ yAbþ zAc (3.46)

where xA, yA, and zA are the fractional coordinates of atom A, as before. Since jSj ¼ 2 sin yðhklÞ=l,

which from (3.43) is 1/d(hkl), or d*(hkl) (taking k as 1), S is the reciprocal lattice vector d*(hkl).
Applying (2.15) we have

rA � S ¼ ðxAaþ yAbþ zAcÞ � ðha
� þ kb� þ lc�Þ ¼ hxA þ kyA þ lzA (3.47)

since a � a� ¼ 1, and a � b� ¼ 0, and similarly for b and c.

Thus, from (3.12), the phase angle fA for an atomic species A and its phase contribution are now

given by 2prA � S, or

fA ¼ 2pðhxA þ kyA þ lzAÞ (3.48)

and the phase contribution is, therefore, exp½i2pðhxA þ kyA þ lzAÞ�.

3.4 Reciprocal Lattice: Analytical Treatment

We considered a geometrical derivation of the reciprocal lattice in Sect. 2.4, as we believe that

treatment forms a straightforward introduction to it. Here, we shall discuss the reciprocal lattice in

greater detail.

In considering the stereographic projection, we showed that the morphology of a crystal could be

represented by a bundle of lines, drawn from a point, normal to the faces of the crystal. This description,

although angle-true, lacks linear definition. The representationmay be extended by giving each normal a

length that is inversely proportional to the corresponding interplanar spacing in real space, and applying

it to all possible lattice planes, so forming a reciprocal lattice.

Let a Bravais (real-space) lattice be represented by the unit cell vectors a, b, c. The reciprocal

lattice unit cell is defined by the vectors a*, b*, c*, such that a* is perpendicular to b and c, and so

on. Then,

a� � b ¼ a� � c ¼ b� � a ¼ b� � c ¼ c� � a ¼ c� � b ¼ 0 (3.49)

The magnitudes of the reciprocal unit cell vectors are defined by

a� � a ¼ b� � b ¼ c� � c ¼ k (3.50)
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where k is a constant, normally equal to unity in theoretical discussions, and to an X-ray wavelength

in practical applications where the size of the reciprocal lattice is important.

In Fig. 3.20, the z*(c*) axis is normal to the plane a, b. Since c � c� ¼ cc� cos ffCOR, that is, taking

k ¼ 1 in this discussion,

c� ¼ jc�j ¼ 1=ðc cos ffCORÞ (3.51)

the magnitude of c* in reciprocal space is inversely proportional to the c-spacing in real, or Bravais,

space; similar deductions can be made for both a* and b*. Since c* is normal to both b and c, it lies in
the direction of their vector product:

c� ¼ �ða� bÞ (3.52)

where � is a constant. Let V be the unit cell volume in real space. Then,

V ¼ c � ða� bÞ (3.53)

Now a � b is a vector of magnitude ab sin g, the area ofOADB, directed normal to the plane of a, b

and forming a right-handed set of directions with a and b. Then,

c � c� ¼ �c � ða� bÞ ¼ �V ¼ 1 (3.54)

Hence,

c� ¼ jc�j ¼ ðab sin gÞ=V (3.55)

with values for a* and b* obtained by cyclic permutation.

The angle g* between a* and b* can be obtained by the equations of spherical trigonometry (seeWeb

Appendices WA2 and WA3). From the discussion therein, we derive

Fig. 3.20 Triclinic unit

cell, showing its vectors

a, b, and c, and the

corresponding reciprocal

unit-cell vectors, a*, b*,
and c*
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cos g� ¼ ðcos a cos b� cos gÞ= sin a sinb (3.56)

with corresponding expressions for a* and b* obtained by cyclic permutation. Simplified expressions

obtain for (3.51)–(3.56) when the crystal symmetry is higher than triclinic.

3.4.1 Reciprocal Lattice Properties

In the Web Appendix WA6, we derive a number of useful properties of the reciprocal lattice, and we

summarize the results here.

Unit-Cell Volumes in Real and Reciprocal Space
The volume of the unit cell may be evaluated as follows. From (3.53), and expressing a, b, and c in
terms of a set of orthogonal unit vectors, we derive the equation for a unit-cell volume Vc in terms of

its six constants, as shown in Web Appendix WA6; thus

Vc ¼ abcð1� cos2 a� cos2 b� cos2 gþ 2 cos a cos b cos gÞ1=2 (3.57)

In the same Appendix, we show also that

VcV
� ¼ k (3.58)

where V* is the volume of the reciprocal unit cell and k has the meaning as before.

Interplanar Spacings
From (2.16), the general equation for d*(hkl) is obtained in terms of the reciprocal unit cell

constants from

jd�ðhklÞj2 ¼ ðha� þ kb� þ lc�Þ � ðha� þ kb� þ lc�Þ

¼ h2a�2 þ k2b�2 þ l2c�2 þ 2klb�c� cos a� þ 2lhc�a� cos b� þ 2hka�b� cos g� (3.59)

and so

sin2yðhklÞ ¼ l2=½4d2ðhklÞ� ¼ l2d�2ðhklÞ=4 (3.60)

Simplifications of (3.59) arise in the presence of symmetry higher than triclinic and have been

detailed adequately in Table 2.4.

Angle Between Planes
Given any two planes h1k1l1 and h2k2l2, the angle between them can be found as the supplement of the

angle between the two normals, d*(h1k1l1) and d*(h2k2l2); this angle is the interfacial angle of

the stereographic projection, Sect. 1.3.

In general, the angle f between the forward directions of two vectors p and q is given through

cosf ¼ ðp � qÞ=pq (3.61)
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Applying (2.16) for the two planes h1k1l1 and h2k2l2, we find

cosf ¼ ½h1h2a�2 þ k1k2b
�2 þ l1l2c

�2 þ ðk1l2 þ k2l1Þb�c� cos a� þ ðl1h2 þ l2h1Þc�a� cos b�
þ ðh1k2 þ h2k1Þa�b� cos g��=½d�ðh1k1l1Þd�ðh2k2l2Þ� (3.62)

Reciprocity of F and I Unit Cells
We show in the Web Appendix WA6 how an F unit cell reciprocates into an I unit cell (and

conversely), where the I unit cell is defined by the vectors 2a�F; 2b
�
F, and 2c�F. If, as is customary in

practice, we define the reciprocal of an I unit cell by vectors a�F; b
�
F, and c

�
F, then only those reciprocal

lattice points for which each of h + k, k + l (and l + h) is an even integer belong to the reciprocal of

the I unit cell. In other words, Bragg reflections from an F unit cell have indices of the same parity;

see also Sect. 3.7.1 and Table 3.2.

3.4.2 Reciprocal Lattice and Reflection Condition: Ewald Sphere

A section of a reciprocal lattice is shown in Fig. 3.21a: the vectors s0/l and s/l lie in the incident and
scattered X-ray beams respectively; a crystal is situated at the pointC. The vectorQP, which is also the

direction of S, must be normal to an (hkl) plane and have the magnitude 2 sin y=l. When the conditions

for diffraction are satisfied, according to (3.43), S ¼ jd*(hkl)j. A sphere of radius 1/l is described on

C as center, and passing through Q, the origin of the reciprocal lattice. If another reciprocal lattice

point, such as P, lies on the sphere, then a diffracted beam arises and the vector CP is the direction of

this beam; the incident beam vector is along CQ. The sphere is known as the sphere of reflection, or

Ewald sphere [8], and will be required in subsequent chapters. We note that although we always refer

to the “Ewald” sphere, the first suggestion for this device came from Bernal [9].

Figure 3.21b is an alternative way of looking at the Ewald sphere construction, in this case taking

the radius of the sphere as unity, so that reciprocal space has the units of length�1. The conclusions

from the construction are, of course, the same, as we can see: from the figure AQ ¼ 2 and

ffAPQ ¼ 90�, so that QP ¼ AQ sin yðhklÞ, or 2 sin yðhklÞ. From (3.43), 2 sin y ðhklÞ ¼ l=dðhklÞ,

and from Sect. 2.4, we may identify the point P with the reciprocal lattice point hkl. Hence, QP ¼
d*(hkl). Since k ¼ l in this construction, d�ðhklÞ ¼ 2 sin yðhklÞ. Thus, the reflection from the (hkl)

Table 3.2 Limiting conditions for centered unit cells

Unit-cell-type Limiting conditions Associated translations

Structure factor

multiplier G

P None None 1

A hkl: k + l ¼ 2n b/2 + c/2 2

B hkl: l + h ¼ 2n c/2 + a/2 2

C hkl: h + k ¼ 2n a/2 + b/2 2

I hkl: h + k + l ¼ 2n a/2 + b/2 + c/2 2

F hkl: h + k ¼ 2n a/2 + b/2 4
hkl: k + l ¼ 2n b/2 + c/2
hkl: (l + h ¼ 2n)a c/2 + a/2

Rhex
b hkl: �h + k + l ¼ 3nobv a/3 + 2b/3 + 2c/3 3

2a/3 + b/3 + c/3
or
hkl: h � k + l ¼ 3nrev a/3 + 2b/3 + c/3 3

2a/3 + b/3 + 2c/3

aThis condition is not independent of the other two
bSee Sect. 2.2.3 and Table 2.3
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plane occurs when the hkl reciprocal lattice point lies on the sphere of reflection, and the direction of

reflection is, again, that of CP.

3.5 Scattering by a Crystal Structure

In Sect. 2.2ff, we discussed the geometrical properties of the lattices on which crystal structures are

based and showed how the arrays of atoms or molecules may be arranged according to space-group

symmetry. We need next to consider the diffraction of X-rays by a crystal. We refer the process of

scattering to a conventional unit cell and determine the resultant effect of all atoms in the unit cell,

Fig. 3.21 (a) Sphere of
reflection, radius 1/l, with

the crystal at C, the center.

The origin of the reciprocal

lattice is at Q. When a

reciprocal lattice point,

such as P, lies on the Ewald

sphere, a reflection arises

along the direction CP.

(b) Alternative, equivalent
picture, but with the sphere

of radius 1 (dimensionless),

showing the position of

crystal planes. By

geometry, QP is parallel to

the normal d*(hkl) to the

crystal planes and is now

2 sin yðhklÞ
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which leads directly to the equation for the structure factor, F. The scattering of X-rays by a crystal

comprises two parts: a geometrical part that depends on the symmetry of the arrangement of its

components, and a structural part that depends upon both the nature of the atoms or molecules

comprising those entities and their relative positions in the unit cell.

3.5.1 Structure Factor Equation

We need to express the equation that has been deduced for F in a manner that includes the coordinates

of the atoms in the unit cell. It follows from (3.46)–(3.48) that the phase for the jth atom, with respect

to the origin, can be represented by 2p(hxj + kyj + lzj). Hence, we use this expression in (3.14) to give

the structure factor equation for the hkl reflection:

F(hklÞ ¼
Xn

j¼1

fj;y exp½i2pðhxj þ kyj þ lzjÞ� (3.63)

The structure factor F(hkl) is a dimensionless scalar quantity and refers to the combined scattering

from the n atoms in the unit cell to give the hkl spectrum, or equally to the wave from the (hkl) family

of planes, relative to the scattering by a single electron at the origin; see also Sect. 3.2.3. The atomic

scattering factor fj,y for the jth atom indicates its dependence on y, an alternative parameter to S in this

context. Again, frequently the y dependence of f is not expressed in the formula, although it is

implicitly always present. The atomic coordinates in (3.63) are fractional values, Sect. 2.2.3, and so

are independent of the size of the unit cell.

3.6 Using the Structure Factor Equation

In the next two sections, we explore some of the properties and applications of the structure factor

equation that are encountered in practical X-ray crystallography. The trigonometrical relations in

Web Appendix WA5 may be helpful in some of the ensuing arguments.

3.6.1 Friedel’s Law

Except where anomalous scattering is significant, Sect. 7.6, X-ray diffraction spectra form a centro-

symmetric array. The diffraction spectra from a crystal may be thought of as an expression

of its reciprocal lattice, with each spectrum hkl weighted by the corresponding value of the amplitude

jF(hkl)j, or the intensity I(hkl). Friedel’s law expresses the centrosymmetric property as

IðhklÞ ¼ Ið�h �k �lÞ or jFðhklÞj ¼ jFðh k lÞj (3.64)

within the limits of experimental error, and may be derived as follows.

Since the atomic scattering factor is a function of (sin y)/l, it will have the same value for both the

hkl and h k l reflections. Thus, fy ¼ f�y, because reflections from opposite sides of any plane occur at

the same value of the Bragg angle y.
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From (3.63)

Fð�h �k �lÞ ¼
Xn

j¼1

fj exp½�i2pðhxj þ kyj þ lzjÞ� (3.65)

and from Fig. 3.13

FðhklÞ ¼ A0ðhklÞ þ iB0ðhklÞFð�h �k �lÞ ¼ A0ð�h �k �lÞ þ iB0ð�h �k �lÞ ¼ A0ðhklÞ � iB0ðhklÞ (3.66)

Hence, the following relations hold:

fðhklÞ ¼ �fð�h �k �lÞjFðhklÞj ¼ jFð�h �k �lÞj ¼ ½A02ðhklÞ þ B02ðhklÞ�1=2 (3.67)

and, since I ¼ jFj2

IðhklÞ ¼ Ið�h �k �lÞ (3.68)

which is Friedel’s law.

3.6.2 Structure Factor for a Centrosymmetric Crystal

One of the questions that frequently arises at the outset of a crystal structure determination is whether

or no the space group is centrosymmetric. In a centrosymmetric structure, with the origin on a center

of symmetry, the n atoms in the unit cell lie in related pairs, with coordinates �(x, y, z). From (3.18)

and (3.19), we write for the two parts of the structure factor equation:

A0ðhklÞ ¼
Xn=2

j¼1

fj½cos 2pðhxj þ kyj þ lzjÞ þ cos 2pð�hxj � kyj � lzjÞ�

¼ 2
Xn=2

j¼1

fj cos 2pðhxj þ kyj þ lzjÞ (3.69)

where j ranges over the n/2 atoms in the unit cell not related by the center of symmetry.

For B0(hkl), we write

B0ðhklÞ ¼
Xn=2

j¼1

fj½sin 2pðhxs þ kys þ lzsÞ þ sin 2pð�hxs � kys � lzsÞ� ¼ 0 (3.70)

Here, B0 ¼ 0 because sin(�f) ¼ �sin(f) for all f, in accord with (3.20). In this case, A0(hkl) ¼

F(hkl), and f(hkl) can take only the values 0 or p, so that the phase angle attaches itself to jF(hkl)j as a

positive or negative sign. Hence, we often speak of the signs, s, of reflections in centrosymmetric

crystals, so that F(hkl) ¼ s(hkl) jF(hkl)j. Clearly, these results apply only when the origin of the unit

cell is taken on �1; in any other setting of the origin in a centrosymmetric space group, there will

normally be a non-zero component in B0(hkl). Centrosymmetric crystals usually present fewer
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difficulties to the structure analyst than do non-centrosymmetric crystals because of the above

restriction on the phase angles.

3.7 Limiting Conditions and Systematic Absences

We considered limiting conditions briefly in Sect. 2.7.1; here we investigate them more fully through

the structure factor equation and show how they are handled in several different example symmetries.

An X-ray diffraction pattern can be used to determine the type of unit cell that corresponds to the

chosen system of reference axes. From (3.63), it would be an unexpected coincidence for many

intensities to be zero. With unit cells having no translational symmetry, the intensity of a reflection is

not usually zero for any particular combinations of h, k, and l, that is, no limiting conditions apply in

such a case. Vanishingly weak intensities may arise for certain reflections because of the particular

structure under investigation; we call these reflections accidental absences, and we shall discuss them

further, in Sect. 4.2.3. In centered unit cells or in the presence of other translational symmetry, glide

planes and screw axes, reflections of certain combinations of h, k, and l are totally absent; we call such

unobservable reflections systematic absences.

3.7.1 Body-Centered Unit Cell

As a first example, we know that in a body-centered (I) unit cell, the atoms are related in pairs as x, y, z

and 1
2
þ x; 1

2
þ y; 1

2
þ z. Using (3.63), we have

FðhklÞ ¼
Xn=2

j¼1

fj exp½i2pðhxj þ kyj þ lzjÞ� þ exp½i2pðhxj þ kyj þ lzj þ h=2þ k=2þ l=2Þ�
� �

(3.71)

The term within the braces {. . .} may be expressed as exp½i2pðhxj þ kyj þ lzjÞ�f1þ exp½i2

pðhþ k þ lÞ=2�g. Since h + k + l is integral, f1þ exp½i2pðhþ k þ lÞ=2�g ¼ 1þ cos½2pðhþ k þ lÞ

=2� ¼ 2 cos2½2pðhþ k þ lÞ=4� ¼ G, where G is a multiplying factor for the reduced structure factor

equation in centered unit cells; in the body-centered unit cellG ¼ 2, so that

FðhklÞ ¼ 2cos2½2pðhþ k þ lÞ=4�
X

n=2

j¼1

fj exp½i2pðhxj þ kyj þ lzjÞ� (3.72)

This equation may be broken down into its two components, A0(hkl) and B0(hkl), in the usual way.

Further simplification is possible: in this example, G takes the value 2 if h + k + l is even, and 0 if

h + k + l is odd. Hence, we write the limiting condition that shows which reflections are permitted by

the geometry of an I unit cell as

hkl : hþ k þ l ¼ 2n; n ¼ 0;�1;�2; . . .

The same situation expressed as systematic absences, the condition under which reflections are

forbidden by the space-group geometry, is

hkl : hþ k þ l ¼ 2nþ 1; n ¼ 0;�1;�2; . . .
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Both terms are in common use, and the reader should distinguish between them. We could have

reached the same conclusion from (3.71) more speedily: the expression {1 + exp[i2p(h + k + l)/2]} is

equal to 1 + exp(ipn), where n is the sum of the integers h, k, and l, and [1 + exp(ipn)] is 2 or 0 for n

even or odd. But it is preferable to highlight the dependence on h, k, and l.

Analogous expressions can be derived for any centered unit cell. The G factors for all types of

centering have been summarized in Table 3.2. It is evident that where a reflection arises in a centered

unit cell, the structure factor equation has the same form as that for the corresponding primitive unit

cell, but multiplied by the G factor appropriate to the unit cell type. The summation in the reduced

structure factor equation is then taken over that fraction of atoms not related by the centering

symmetry.

In practice, the diffraction pattern is recorded, indices allocated to the spectra and then scrutinized

for systematic absences, so as to determine the unit cell type. The reader may care to work through the

derivations of F(hkl) for, say, a C and an F unit cell, and determine the limiting conditions for each

unit cell type; see also Sect. 3.8.

3.7.2 Screw Axes and Glide Planes

As we are concerned in this discussion with the geometry of the unit cell rather than the chemical

nature of its contents, it is convenient to introduce the following nomenclature. Let N be the total

number of atoms in the unit cell, and let n of them be the number in the asymmetric unit, with the

number of asymmetric units being m, so that N ¼ nm. Symbolically, we may write

XN

j¼1



Xn

r¼1

Xm

s¼1

where the sum over r refers to the symmetry-independent atoms, and that over s to the symmetry-

related species. Thus, the structure factor equation contains two parts that may be considered

separately. The sum over m symmetry-related atoms is expressed through the coordinates of a set

of general equivalent positions. Thus,

ArðhklÞ ¼
Xm

s¼1

cos 2pðhxs þ kys þ lzsÞ

BrðhklÞ ¼
Xm

s¼1

sin 2pðhxs þ kys þ lzsÞ
(3.73)

Extending to the n atoms in the asymmetric unit, with one such term for each atom,

A0ðhklÞ ¼
Xn

r¼1

frArðhklÞ

B0ðhklÞ ¼
Xn

r¼1

frBrðhklÞ
(3.74)

The terms Ar(hkl) and Br(hkl) are independent of the nature and arrangement of the atoms in the

asymmetric unit; they are a property of the space-group symmetry and are called geometrical
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structure factors. We shall consider some examples taken from the monoclinic and orthorhombic

systems, in order to show how glide-plane and screw-axis symmetries give rise to limiting conditions

with special classes of reflections. For this discussion, the subscript s in (3.73) need not be retained,

because allm positions are related to the position x, y, z by symmetry, and in the geometrical structure

factors we shall, for simplicity, drop the subscript r.

Space Group P21
General equivalent positions: x; y; z; �x; 1

2
þ y; �z, see Fig. 2.30.

Geometrical structure factors:

AðhklÞ ¼ cos 2pðhxþ kyþ lzÞ þ cos 2pð�hxþ ky� lzþ k=2Þ
¼ 2 cos 2pðhxþ lz� k=4Þ cos 2pðkyþ k=4Þ (3.75)

In a similar way,

BðhklÞ ¼ sin 2pðhxþ kyþ lzÞ þ sin 2pð�hxþ ky� lzþ k=2Þ
¼ 2 cos 2pðhxþ lz� k=4Þ sin 2pðkyþ k=4Þ (3.76)

Limiting Conditions in P21
Geometrical structure factors enable us to determine limiting conditions, that is, to predict which

classes of reflections are capable of arising in an X-ray diffraction pattern. If we can show, for given

values of h, k, and l, that both A(hkl) and B(hkl) are systematically zero, then F(hkl) will be zero,

regardless of the atomic positions.

For P21, we can cast (3.75) and (3.76) in the following forms, according to the parity (evenness or

oddness) of k. Expanding (3.75), we have (see Web Appendix WA5):

AðhklÞ=2 ¼ ½cos 2pðhxþ lzÞ þ cos 2pðk=4Þ þ sin 2pðhxþ lzÞ sin 2pðk=4Þ�
� ½cos 2pðkyÞ cos 2pðk=4Þ � sin 2pðkyÞ sin 2pðk=4Þ� (3.77)

In expanding the right-hand side of (3.77), terms such as

cos 2pðhxþ lzÞ cos 2pðk=4Þ sin 2pðkyÞ sin 2pðk=4Þ

occur. This particular term is equivalent to

1

2
cos 2pðhxþ lzÞ sin 2pðkyÞ sin 4pðk=4Þ

which is zero, because k is an integer. Hence, (3.77) becomes

AðhklÞ=2 ¼ ½cos 2pðhxþ lzÞ cos 2pðkyÞcos22pðk=4Þ� � ½sin 2pðhxþ lzÞ

� sin 2pðkyÞ sin22pðk=4Þ� (3.78)

In a similar manner, we find from (3.76)

BðhklÞ=2 ¼ ½cos 2pðhxþ lzÞ sin 2pðkyÞ cos22pðk=4Þ� þ ½sin 2pðhxþ lzÞ

� cos 2pðkyÞ sin22pðk=4Þ� (3.79)
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Separating for k even and k odd, we obtain

k ¼ 2n:AðhklÞ ¼ 2 cos 2pðhxþ lzÞ cos 2pðkyÞ (3.80)

BðhklÞ ¼ 2 cos 2pðhxþ lzÞ sin 2pðkyÞ (3.81)

k ¼ 2nþ 1:AðhklÞ ¼ �2 sin 2pðhxþ lzÞ sin 2pðkyÞ (3.82)

BðhklÞ ¼ 2 sin 2pðhxþ lzÞ cos 2pðkyÞ (3.83)

Only one systematic condition can be extracted from these equations: if both h and l are zero, then

from (3.82) and (3.83).

AðhklÞ ¼ BðhklÞ ¼ 0

In other words, the limiting conditions associated with a 21 axis are

hkl None (P unit cell)

0k0 k ¼ 2n

The example of the 21 axis has been treated in detail; it shows again how a diffraction record may

be used to reveal information about the translational symmetry elements of a space group. We can

show how the limiting conditions for a 21 axis arise from a consideration of the Bragg equation.

Figure 3.22 is a schematic illustration of a 21 symmetry pattern; the motif represents a structure

at a height z, and the structure at a height �z after operating on it with the 21 axis. The planes

MM0 represent the family (0k0) and NN0 the family (02k,0).

Reflections of the type (0k0) fromMM0 planes are canceled by the reflections from the NN0 planes,
because their phase change relative to MM0 is 180�. Clearly, this result is not obtained with the

02k,0 reflections. Although the figure illustrates the situation for k ¼ 1, the same argument can be

applied to any pair of values k and 2k, where k is an odd integer. Limiting conditions for other screw

axes, and in other orientations, can be deduced as above, and the results are summarized in Table 3.3.

Notice that pure rotation axes, as in space group P2, do not introduce any limiting conditions.

Fig. 3.22 Pattern of a

structure containing a 21
screw axis: d(NN0) ¼ d

(MM0)/2, so that the MM0

planes are halved by the

NN0 family
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Centric Zones
Centric zones, sometimes loosely termed centrosymmetric zones, are of particular importance in

crystal structure determination; see also Sect. 4.2.3. In space group P21 and other space groups of

crystal class 2, the h0l reflections are of special interest. Among (3.80)—(3.83), only (3.80) is relevant

here because zero behaves as an even number, and sin(2pky)k¼0 ¼ 0. Hence,

Aðh0lÞ ¼ 2 cos 2pðhxþ lzÞ Bðh0lÞ ¼ 0 (3.84)

From (3.20), f(h0l) is either 0 or p; in other words, the [010] zone is centric for this space group.

Centric zones occur in the non-centrosymmetric space groups that have symmetry 2 as a subgroup of

their point groups; see Sects. 1.4.2 and 2.7.3ff.

Space Group Pc

General equivalent positions: x, y, z; x; �y; 1
2
þ z.

Geometrical structure factors: Proceeding as before, we obtain

AðhklÞ ¼ 2 cos 2pðhxþ lzþ l=4Þ cos 2pðky� k=4Þ
BðhklÞ ¼ 2 sin 2pðhxþ lzþ l=4Þ cos 2pðky� l=4Þ

(3.85)

If we expand these equations, as with the example for P21, and then separate the terms for l even

and l odd, we shall find systematic absences only for the h0l reflections. Thus, the limiting

conditions for Pc are

hkl None

h0l l ¼ 2n

The relationship between the index (l) involved in the condition and the symmetry translation (c/2)

is clear. A space group diagram for Pc is shown in Fig. 3.23.

Space Group P21/c
This space group contains the two translational symmetry operations already discussed, namely, a 21
axis parallel to y and a c-glide normal to y, Fig. 2.32 and Problem 2.8a. It is a centrosymmetric space

group, and the general equivalent positions may be summarized as

Table 3.3 Limiting conditions for screw axes

Screw axis Orientation Limiting condition Translational component

21 k x h00: h ¼ 2n a/2

21 k y 0k0: k ¼ 2n b/2

21 k z 00l: l ¼ 2n c/2

31 or 32 k z 000l: l ¼ 3n c/3 or 2c/3

41 or 43 k z 00l: l ¼ 4n c/4 or 3c/4

42 k z 00l: l ¼ 2n 2c/4 (c/2)

61 or 65 k z 000l: l ¼ 6n c/6 or 5c/6

62 or 64 k z 000l: l ¼ 3n 2c/6 (c/3), c/6(2c/3)

63 k z 000l: l ¼ 2n 3c/6 (c/2)

In the cubic system, 41, 43, and 42 axes parallel to x and y exhibit limiting conditions similar to those parallel to z by

cyclic permutation
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� fx; y; z; x; 1
2
� y; 1

2
þ zg

Geometrical structure factors: In the standard setting of this space group, the origin is on �1, so that we

can immediately apply (3.69) and (3.70) and write

AðhklÞ ¼ 2fcos 2p½hxþ kyþ lz� þ cos 2p½hx� kyþ lzþ ðk þ lÞ=2�gBðhklÞ ¼ 0 (3.86)

Combining the two cosine terms

AðhklÞ ¼ 4 cos 2p½hxþ lzþ ðk þ lÞ=4� cos 2p½ky� ðk þ lÞ=4Þ�

Separating for k + l even and odd, we obtain

k þ l ¼ 2n; AðhklÞ ¼ 4 cos 2pðhxþ lzÞ cos 2pðkyÞ

k þ l ¼ 2nþ 1; AðhklÞ ¼ �4 sin 2pðhxþ lzÞ sin 2pðkyÞ
(3.87)

We now deduce the limiting conditions as

hkl None

h0l l ¼ 2n (c-glide normal to y)

0k0 k ¼ 2n (21 axis k y)

These three classes of reflections are important in monoclinic reciprocal space, because only with

them can we determine the characteristic systematic absences in the space groups within this system.

Despite Friedel’s law, the diffraction symmetry reveals the true space group in this example.

Figure 3.24 illustrates weighted reciprocal space levels for a monoclinic crystal of space group Pc,

P2/c, or P21/c.

Fig. 3.23 Space group Pc. (a) Viewed along c. (b) Viewed along b
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Space Group Pma2
From the data in Fig. 3.25 we can write down expressions for the geometrical structure factors:

AðhklÞ ¼ cos 2pðhxþ kyþ lzÞ þ cos 2pð�hx� kyþ lzÞ þ cos 2pð�hxþ kyþ lzþ h=2Þ
þ cos 2pðhx� kyþ lzþ h=2Þ (3.88)

Combining the first and third, and second and fourth terms, we have

AðhklÞ ¼ 2 cos 2pðkyþ lzþ h=4Þ þ cos 2pðhx� h=4Þ þ 2 cos 2pð�kyþ lzþ h=4Þ
� cos 2pðhxþ h=4Þ (3.89)

Further simplification of this expression requires the separate parts to contain a common factor.

We return to (3.88) and make a minor alteration to the term cos 2p(hx � ky + lz + h/2). Since h is an

integer,wemaywrite this termas the crystallographically equivalent term cos 2p(hx � ky + lz � h/2).

Another way of looking at this process is that the fourth general equivalent position has been changed to

� 1
2
þ x; �y; z, which is equivalent to moving through one repeat a in the negative direction to a

crystallographically equivalent position, a perfectly valid and generally applicable tactic.

Returning to Pma2, (3.89) now becomes

AðhklÞ ¼ 2 cos 2pðkyþ lzþ h=4Þ cos 2pðhx� h=4Þ
þ 2 cos 2pð�kyþ lz� h=4Þ cos 2pðhx� h=4Þ (3.90)

which simplifies to

AðhklÞ ¼ ½2 cos 2pðhx� h=4Þ�½cos 2pðkyþ lzþ h=4Þ þ cos 2pð�kyþ lz� h=4Þ� (3.91)

Fig. 3.24 Reciprocal nets in the x*, z* plane appropriate to space groups Pc, P2/c, and P21/c. (a) k ¼ 0 and (b) k > 0.

The c-glide plane, which is perpendicular to b, causes a halving of the rows parallel to x* when k ¼ 0, so that only the

rows with l ¼ 2n are present. Hence, the true c* spacing is not observed on the reciprocal lattice level k ¼ 0, but can be

determined from higher levels. The symmetry on both levels is 2, in accordance with the diffraction symmetry 2/m:

jFðhklÞj ¼ jFðh k lÞj. The reciprocal lattice points are weighted according to jF(hkl)j, or to jF(hkl)j2, and we speak of

such diffraction patterns as weighted reciprocal lattices
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Combining again:

AðhklÞ ¼ 4½cos 2pðhx� h=4Þ� cos 2pðkyþ h=4Þ cos 2plz (3.92)

Similarly,

BðhklÞ ¼ 4½cos 2pðhx� h=4Þ� cos 2pðkyþ h=4Þ sin 2plz (3.93)

In the orthorhombic system, seven regions of reciprocal space of particular importance are listed

on the right-hand side of Fig. 3.25. Separating (3.92) and (3.93) for even and odd values of h, we

obtain

h ¼ 2n : AðhklÞ ¼ 4 cos 2phx cos 2pky cos 2plz

BðhklÞ ¼ 2 cos 2phx cos 2pky sin 2plz
(3.94)

h ¼ 2nþ 1 : AðhklÞ ¼ �4 sin 2phx sin 2pky cos 2plz

BðhklÞ ¼ �4 sin 2phx sin 2pky sin 2plz
(3.95)

from which we find the limiting conditions

hkl None

h0l h ¼ 2n

Fig. 3.25 General equivalent positions and symmetry elements in space group Pma2, with the origin on 2; the origin is

not fixed in the z direction by the symmetry elements. The diagram shows inter alia the coordinates of the special

equivalent positions and the limiting conditions
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The listed condition h00: (h ¼ 2n) should be considered carefully. One might be excused for

thinking at first that it implies the existence of a 21 axis parallel to the x axis, but for the knowledge

that there are no symmetry axes parallel to the x axis in class mm2. This particular limiting condition

is dependent upon the h0l condition: h00 is in the h0l zone.

We emphasize here that confusion can very easily arise if the limiting conditions are interpreted in

other than the following hierarchal order:

Order of inspection Downward

hkl Unit cell type #0kl Glide plane⊥x

h0l Glide plane⊥y

hk0 Glide plane ⊥z

h00 21 axis jj x
0k0 21 axis jj y
00l 21 axis jj z

One should proceed to a lower level in this list only after considering the full implications of the

conditions at higher levels. Conditions such as that for h00 in Pma2 are called redundant or dependent

and are placed in parentheses on the diagram. Reflections involved in such conditions are certainly

absent from a diffraction record, but do not contribute to the determination of space-group symmetry.

Table 3.4 summarizes the limiting conditions for glide-plane symmetry.

Space Group Pman

This space group may be derived from Pma2 by the addition of an n-glide plane perpendicular to

the z axis, with a translational component of (a + b)/2. We have now seen on several occasions that

it is advantageous to set the origin at �1 wherever possible; Fig. 3.26 shows Pman drawn in this

orientation. It is left to the reader to show that the geometrical structure factors are

AðhklÞ ¼ 8 cos 2phx cos 2p½ky� ðhþ kÞ=4� cos 2p½lzþ ðhþ kÞ=4�

BðhklÞ ¼ 0
(3.96)

and subsequently to derive the limiting conditions for this space group.

Table 3.4 Limiting conditions for glide planes

Glide plane Orientation Limiting condition Translational component

a ⊥b h0l: h ¼ 2n a/2

a ⊥c hk0: h ¼ 2n a/2

b ⊥a 0kl: k ¼ 2n b/2

b ⊥c hk0: k ¼ 2n b/2

c ⊥a 0kl: l ¼ 2n c/2

c ⊥b h0l: l ¼ 2n c/2

n ⊥a 0kl: k + l ¼ 2n (b + c)/2

n ⊥b h0l: l + h ¼ 2n (c + a)/2

n ⊥c hk0: h + k ¼ 2n (a + b)/2

d ⊥a 0kl: k + l ¼ 4n (k, l ¼ 2n) (b � c)/4

d ⊥b h0l: l + h ¼ 4n (l, h ¼ 2n) (c � a)/4

d ⊥c hk0: h + k ¼ 4n (h, k ¼ 2n) (a � b)/4
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Space Group P63 ⁄m
Finally here, and in order to show that these manipulations are fundamentally no more difficult with a

space group not based on orthogonal axes, we study the hexagonal space group P63/m; we will

address the tetragonal system through space group P4nc in a problem.

From Fig. 2.38, we list the coordinates as:

� fx; y; z; y; x� y; z; xþ y; x; z; x; y; 1
2
þ z; y; xþ y; 1

2
þ z; x� y; x; 1

2
þ zg

Fig. 3.26 Space group Pman. (a) General equivalent positions. (b) Symmetry elements; the origin is on �1. The diagram
shows also the limiting conditions for this space group.
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Since the structure is centrosymmetric, with the origin on 6/m ð1Þ, we need consider only the

cosine part of the structure factor equation (B ¼ 0). Thus, following (3.69) we can write the

geometrical structure factor as:

A=2 ¼ cos 2pðhxþ kyþ lzÞ þ cos 2pð�hyþ k½x� y� þ lzÞ þ cos 2pðh½ y� x� � kxþ lzÞ

þ cos 2pð�hx� kyþ lzþ l=2Þ þ cos 2pðhyþ k½ y� x� þ lzþ l=2Þ

þ cos 2pðh½x� y� þ kxþ lzþ l=2Þ

Combining the cosine terms in pairs, we obtain

A=4 ¼ cos 2pðlz� l=4Þfcos 2pðhxþ kyþ l=4Þ þ cos 2pðkxþ iyþ l=4Þ

þ cos 2pðixþ hyþ l=4Þg

[remember that i ¼ �(h + k)]. We can now separate into equations for l even and l odd by expanding

the cosine terms (you may need Web Appendix WA5):

l ¼ 2n: A ¼ 4 cos 2plzfcos 2pðhxþ kyÞ þ cos 2pðkxþ iyÞ þ cos 2pðixþ hyÞg

l ¼ 2nþ 1: A ¼ �4 sin 2plzfsin 2pðhxþ kyÞ þ sin 2pðkxþ iyÞ þ sin 2pðixþ hyÞg

For l even, there are no reflection conditions; for l odd, A ¼ 0 if h ¼ k ¼ 0. Thus, the only

condition limiting X-ray reflections is 000l ¼ l ¼ 2n. The expression above for A/2 differs in a

trivial manner from that given in the International Tables [10]: the value therein may be achieved

by using initially the crystallographically equivalent position ð�
1

2
þ zÞ, in place of the

1

2
þ z

employed here.

3.8 Practical Determination of Space Groups from Diffraction Data

The determination of the space group of a crystal is an important and early feature in the X-ray

analysis of its structure. We shall assume that we have available the X-ray diffraction record for the

several examples of monoclinic and orthorhombic crystals to be examined. It is necessary to bear in

mind that X-ray techniques can reveal the presence of that translational symmetry which can arise

through symmetry operations:

1. Translations relating to centering of the unit cell (a/2 and/or b/2 and/or c/2).

2. Translations relating to glide planes.

3. Translations relating to screw axes.

or any combination of these symmetry operations. All categories lead to systematic absences, and the

totality of the translational symmetry, together with the Laue group, forms the diffraction symbol,

Sect. 2.9.
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3.8.1 Monoclinic Space Groups

Single crystal X-ray photographs taken with a monoclinic crystal showed typically the reflections

listed in Table 3.5.

From the important reflection types, hkl, h0l, and 0k0, we deduce the limiting conditions:

hkl h + k ¼ 2n

h0l (h ¼ 2n)

0k0 (k ¼ 2n)

Using Table 3.7, we conclude that for crystal I, the space group is one of C2, Cm, or C2/m.

The diffraction data alone do not distinguish between these three possible space groups; we show in

Sect. 4.2.3ff how this ambiguity might be resolved.

Table 3.6, for monoclinic crystal II, provides the next list of diffraction data for inspection.

Table 3.5 Some reflection data for monoclinic

crystal I

hkl 200 401 112 510
201 402 113 020
202 600 114 040
203 110 310 060
400 111 311 080

Table 3.6 Some reflection data for monoclinic

crystal II

hkl 100 204 111 322
200 402 122 020
300 502 113 040
400 110 311 060
202 310 123 080

Table 3.7 Limiting conditions for the mono-

clinic space groups

Conditions limiting possible

X-ray reflections Space groups

hkl: none

h0l: none

0k0: none

)
P2, Pm, P2/m

hkl: none

h0l: none

0k0: k ¼ 2n

)
P21, P21/m

hkl: none

h0l: l ¼ 2n

0k0: none

)
Pc, P2/c

hkl: none

h0l: l ¼ 2n

0k0: k ¼ 2n

)
P21/c

hkl: hþ k ¼ 2n

h0l: none

0k0: none

)
C2, Cm, C2/m

hkl: hþ k ¼ 2n

h0l: l ¼ 2nðh ¼ 2nÞ
0k0: none

)
Cc, C2/c
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There is no condition on hkl, but h0l are restricted by l being even, and 0k0 by k being even: this

space group is identified uniquely as P21/c.

The limiting conditions for the 13 monoclinic space groups are listed in Table 3.7, in their standard

orientations. In practice, it is possible, by an inadvertent choice of axes, to find oneself working with a

non-standard space-group symbol. Generally, a fairly straightforward transformation of axes will lead

to the standard setting (see Problems 2.12 and 3.17).

3.8.2 Orthorhombic Space Groups

We begin with the sample data in Table 3.8. From these data, we deduce the conditions below:

Limiting conditions deduced:

hkl None h00 h ¼ 2n

0kl None 0k0 k ¼ 2n

h0l None 00l l ¼ 2n

hk0 None

Examining in the prescribed hierarchy, we find only 21 axes parallel to x, y, and z: the space group

is determined uniquely as P212121, Sect. 2.7.7 and Table 2.7.

In the final two examples, we consider only the conclusions drawn from an inspection of the

diffraction records. In the first instance, we have:

hkl None h00 None

0kl k ¼ 2n 0k0 (k ¼ 2n)

h0l l ¼ 2n 00l (l ¼ 2n)

hk0 None

The diffraction symbol ismmmPbc� so that the space group is either Pbc21 or Pbcm; the distinction
between them depends upon the presence, or otherwise, of a center of symmetry.

In the second example, we have:

hkl None h00 (h ¼ 2n)

0kl k ¼ 2n 0k0 (k ¼ 2n)

h0l l ¼ 2n 00l (l ¼ 2n)

hk0 h ¼ 2n

and space group Pbca is uniquely determined.

These results seem quite reasonable and straightforward, but nevertheless, one might be tempted to

question their validity. For example, in the first orthorhombic crystal, is there a space group in class

mmm that would give the same systematic absences as those in Table 3.8? Experience tells us that

there is not. Since no glide planes are indicated by the systematic absences, the three symmetry

planes, if present, would have to be m-planes. Three m-planes could not be involved with three 21

Table 3.8 Some reflection data for an ortho-

rhombic crystal

hkl 111 011 110 020
112 021 120 040
212 012 310 060
312 101 200 002
322 203 400 004
332 303 600 006
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axes unless the unit cell were centered, for example, as in Immm, which would restrict the hkl

reflections to h + k + l ¼ 2n. Hence, our original conclusion is correct.

3.8.3 Tetragonal Space Groups

The following reflections conditions were obtained for two tetragonal crystals of Laue groups
4

m
mm

and
4

m
, respectively. It may help to consider again Table 1.5.

(a) hkl : none hk0 : hþ k ¼ 2n 0kl : k ¼ 2n

P n? z b? x

Consulting the International Tables, Volume 1 (or Volume A) on diffraction symbols shows that

this space group is P
4

n
bm.

(b) hkl : hþ k þ l ¼ 2n hk0 : h; ðkÞ ¼ 2n 00l : l ¼ 4n

I a? z 41 jj z
This space group is I

41

a
.

3.8.4 Hexagonal Space Groups

The following reflections conditions were obtained for two hexagonal crystals of point groups (a) 622

and (b) either
6

m
mm or 6mm, respectively.

(a) hkil : none 000l : l ¼ 6n

P 61 or 65

The diffraction symbol is: 622P 61ð65Þ � �; thus, the space group is either P6122 or its enantio-

morph P6522.

(b) hkl : none h0�hl : l ¼ 2n

P c?x; ðyÞ

If the point group is
6

m
mm, reference to the International Tables for diffraction symbol

6

m
mmP�c�

leads to the space group is P
63

m
cm, whereas if the point group is 6mm, similar considerations indicate

space group P63cm.

The practicing X-ray crystallographer is assisted by the information on space groups in Volume A

(and the earlier Volume 1) of the International Tables for Crystallography [10].

Combined with a working knowledge of symmetry, these tables enable most symmetry situations

arising in the course of a structure analysis to be treated correctly.

3.9 Problems

3.1. What is the change in wavelength of an X-ray photon scattered incoherently by a free electron

at 45� to the forward direction of the incident beam? If the wavelength of the incident photon is

1 Å, what is the energy of the scattered photon?

3.9 Problems 155

http://dx.doi.org/10.1007/978-1-4614-3954-7#Tab5_1


3.2. Two identical coherent scattering centers are separated by the distance 2l, and X-rays

fall normally on to the line joining the two centers. For 2y ¼ 0 to 180� in steps of 30�, calculate

the scattered amplitudes and intensities as fractions of the results with both scatterers at

one point.

3.3. Calculate the atomic scattering factor f for beryllium at (sin y)/l ¼ 0.0, 0.2, and 0.5. The

expression for f(1s) has been given in the text. The Slater wave function for the 2s electron

may be given as C2s ¼ ðc52= 96pÞ1=2r expðc2r=2Þ; you may need the general resultÐ1
0

xn expð�axÞ sin bx dx ¼ n!½ðaþ ibÞnþ1�ða� ibÞnþ1�=½2iða2þ b2Þnþ1�, from which the

similar expression given in the text for the 1s wavefunction applies for the case n ¼ 1. The

screening constants for beryllium are s1s ¼ 0.3 and s2s ¼ 2.05. Compare the results that are

obtained for f with those from the expression f ¼
P4

j aj expð�bjs
2Þ þ c, where s is (sin y)/l

and the values of a, b, and c for beryllium are listed below:

a1 b1 a2 b2 a3 b3 a4 b4 c

1.5919 43.6427 1.1278 1.8623 0.5391 103.483 0.7029 0.5420 0.0385

3.4. An X-ray tube is operated at 30 kV. What is the energy, in J, associated with each X-ray

photon produced by the tube?

3.5. Calculate the transmittance factor (I/I0) for a 1 mm crystal plate of benzene (C6H6), the density

of which is 1,124 kg m�3. The mass absorption coefficient for Cu Ka X-radiation and the

relative atomic masses are as follow:

C H

m/m2 kg�1 0.46 0.04

Mr 12.01 1.008

3.6. There are eight combinations of one to three negative signs among the indices hkl for any

general reflection. With the aid of the geometrical structure factors given in the text, derive the

relationships between the eight forms of the phase angle f(hkl) for (a) space group P21 and

(b) space group Pma2.

3.7. A triclinic unit cell has the dimensions a ¼ 7.36 Å, b ¼ 9.21 Å, c ¼ 13.47 Å, and

a ¼ 101.22�, b ¼ 110.62�, g ¼ 123.41�. Calculate (a) the six parameters of the reciprocal

unit cell for Cu Ka radiation (l ¼ 1.5418 Å), and (b) the volumes of the real and reciprocal

unit cells.

3.8. In the direct unit cell of Problem 3.7, two atoms are situated at the fractional coordinates 0.10,

0.30, 0.20 and 0.10, 0.15, 0.35 for x, y, z, respectively. By means of vector expressions,

calculate the distance between the two atoms, and the angle subtended at the origin by the

vectors from the origin to each of the two atoms.

3.9. Three atoms have the following amplitudes and phases with respect to the real axis of an

Argand diagram:

(a) 13.1, 16.23�

(b) 21.4, 154.87�

(c) 37.9, �113.26�

Calculate the amplitude and phase of the resultant sum.

3.10. Express the structure factor equation in a reduced form for an A-face centered unit cell. Hence,

deduce the limiting conditions associated with A centering.
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3.11. A two-dimensional structure has four atoms per unit cell, two of type P and two of type Q,

with the following fractional coordinates:

x y

P1 0.1 0.2

P2 0.9 0.8

Q1 0.2 0.7

Q2 0.8 0.3

Calculate jF(hk)j for the reflections 5 0, 0 5, 5 5 and 5 10 in terms of the scattering factors gP
and gQ for the two species. If gP ¼ 2gQ, what are the phase angles for these reflections?

3.12. a-Uranium crystallizes in the orthorhombic system with four uranium atoms in special

positions:

� f0; y; 1
4
; 1

2
; 1
2
þ y; 1

4
g

Use the data below to decide whether y is better chosen as 0.10 or 0.15.

hkl jF(hkl)j gU(hkl)

020 88.5 70.0

110 268.9 80.0

3.13. The unit cell dimensions of a-uranium are a ¼ 2.85 Å, b ¼ 5.87 Å, c ¼ 5.00 Å. Use the value

of yU from Problem 3.12 to determine the shortest U–U distance in the structure. It may be

helpful to plot the uranium atom positions in a few neighboring unit cells.

3.14. In the examples listed below for monoclinic crystals, the conditions limiting possible X-ray

reflections are given. In each case, write the possible space groups corresponding to the

information given.

(a)

hkl None

h0l None

0k0 k ¼ 2n

(b)

hkl None

h0l h ¼ 2n

0k0 None

(c)

hkl h + k ¼ 2n

h0l l ¼ 2n (h ¼ 2n)

0k0 (k ¼ 2n)

(d)

hkl None

h0l None

0k0 None
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3.15. Repeat Problem 3.14, but for the limiting conditions below relating to orthorhombic crystals.

(a)

hkl None h00 h ¼ 2n

0kl None 0k0 k ¼ 2n

h0l None 00l None

hk0 None

(b)

hkl None h00 None

0kl k ¼ 2n 0k0 k ¼ 2n

h0l None 00l None

hk0 None

(c)

hkl h + k + l ¼ 2n h00 h ¼ 2n

0kl k ¼ 2n, l ¼ 2n 0k0 k ¼ 2n

h0l h + l ¼ 2n 00l l ¼ 2n

hk0 h + k ¼ 2n

3.16. (a) Write the independent conditions limiting possible X-ray reflections for the following

space groups: (i) P21/a; (ii) Pc; (iii) C2; (iv) P2122; (v) Pcc2; (vi) Imam. In each case, write

the symbols of the space groups, if any, in the same crystal system with the same limiting

conditions. (b) Write the conditions limiting possible X-ray reflections in the monoclinic space

group P21/n (non-standard setting). (c) Give the conventional symbols for the space groups

A2/a and B21221.

3.17. (a) Space group Pcab corresponds to the non-standard setting acb, that is, a along x,�c along y,
and b along z. What is the symbol in the standard (abc) setting? (b) What is the essential

difference between the space groups represented by the standard symbols Pmna and Pnma?

What are their full symbols?

3.18. The absorption correction for a crystal ground into a sphere of radius r is dependent on r, m, and

y. Assume that extinction effects are negligible and determine the ideal intensity for an hkl

reflection, given that the measured intensity less background is 56.3, and that r ¼ 0.11 mm and

m ¼ 18.2 � 103 m�1. For this reflection, y ¼ 30�, and some tabulated data are listed above,

corresponding to the numerical integration A ¼ fð1=VÞ
Ð
dx
Ð
dy
Ð
exp½�m ðr0 þ rÞ� dzg�1

,

where r0 and r are, respectively, the incident and diffracted paths lengths in the crystal.

Include the y-dependent Lorentz and polarization corrections.

Transmission factors A for a sphere

of radius R and linear absorption

coefficient �

y/�

mR 25 30 35

1 3.88 3.79 3.70
2 10.9 10.0 9.26
3 22.4 19.5 17.1
4 37.2 31.0 26.3
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3.19. For space group P63/m, what are (a) the Sch€onflies point group symbol, (b) the full

Hermann–Mauguin point-group and space-group symbols, (c) the crystal system, (d) the crystal

class, (e) the lattice, and (f) the conventional unit cell?

3.20. Using the coordinates of the general equivalent positions for space group P4nc, Fig. 2.37,

derive (a) the geometrical structure factors, (b) the amplitude symmetry, (c) the phase-angle

symmetry.
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Intensities and Intensity Statistics 4

4.1 Intensity Expressions and Factors Affecting Intensities

The measurement of the intensity of a diffracted X-ray beam can be carried out photographically by

camera methods, but almost always today by quantum counting with diffractometer techniques.

We can measure either a peak intensity or an integrated intensity, the latter parameter being preferred

for the expression of the intensity of X-ray reflection.

Real crystals are not geometrically perfect, so that a given reflection will be observed over a small,

finite angular range. Hence, we need to be able to determine the area under a curve such as that shown

in Fig. 4.1 in order to represent a total intensity of a reflection. In the photographic method, the peak

intensity is recorded over a grid of points and the integrated result imposed onto a photographic film.

In collecting intensities with a diffractometer, a scintillation counter sweeps through a pre-set angular

range�dy0, so recording the total number of counts, or integrated intensity. We shall discuss some of

the practical implications of these techniques in the next chapter, but much of the ensuing discussion

in this chapter will have the collection of intensity data by an X-ray diffractometer and its subsequent

treatment in mind.

The total energy of a given diffraction spectrum EðhklÞ at any given angle y0, for a crystal

sufficiently small that absorption may be neglected, and completely bathed in an X-ray beam and

rotating with a uniform angular velocity o, is given for unpolarized incident radiation of incident

intensity I0, by

EðhklÞo=I0 ¼ Qdn (4.1)

where EðhklÞo=I0 is known as the integrated reflection, dv is the volume of the crystal, and Q is

given by

Q ¼ ðN2l3= sin 2y0ÞjFðhklÞj2½e2=ð4pe0mec
2Þ2ð1þ cos22y0Þ=2� (4.2)

where N is the number of unit cells per unit volume of the crystal, and the other terms have

their conventional meanings. The derivation of these expressions has been discussed in detail

elsewhere [1].

Since the value of the integrated reflection does not actually depend upon the angular velocity, we

let RðyÞI0 be the radiation reflected at the angle y0 by the crystal, so that R(y) may be called the

reflecting power. Then,
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E ¼
ð
RðyÞI0=o dy

so that

Eo=I0 ¼
ð
RðyÞ dy ¼ Qdn (4.3)

The term
Ð
RðyÞ dy expresses the area under the curve in Fig. 4.1. From (4.2), we can write

Eo=I0 ¼ KCðhklÞð1=sin2yÞ 1
2
ð1þ cos22yÞjFðhklÞj2 (4.4)

where K is a scaling factor and C(hkl) is a factor that depends upon absorption and extinction, both of

which we shall discuss shortly. Essentially, the area under the curve of Fig. 4.1 may be expressed as

ð
RðyÞ dy ¼ KCðhklÞLpjFðhklÞj2 (4.5)

where the L and p are the trigonometrical terms in (4.4), to be discussed next.

4.1.1 Polarization and Lorentz Factors

In (4.5), L and p represent the Lorentz and polarization factors, respectively, thus linking the quantity

measured, the reflecting power, to the quantity sought, the corrected jF(hkl)j2 value, which we may

refer to as the ideal intensity.

The polarization factor p, discussed in Sect. 3.2.4, takes into account the fact that the output of a

conventionalX-ray tube is unpolarized radiation,whereas the radiation after reflection froma crystal plane

is polarized, thus decreasing the intensity of the diffracted beam as a function of the scattering angle 2y.

Fig. 4.1 Variation of reflection power R(y) with y; the intensity at the Bragg angle y0 is recorded over the angular

range �dy0
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Where the incident beam is polarized, for example, after reflection from a crystal monochromator,

the polarization factor is modified to ð1þ cos22ycos22ymÞ=ð1þ cos22ymÞ, where 2ym is the angle

between the incident and scattered beams at the monochromator.

The Lorentz factor L depends on the diffraction geometry and expresses a time-of-reflection

opportunity for a crystal plane in the X-ray beam. For a rotating crystal with the X-ray beam

normal to a reflecting plane the L factor is 1=ðsin 2yÞ; with a powder specimen it takes the form

2=ðsin y sin 2yÞ.
In order to give expression to the Lorentz factor in a particular case, let P be a point on a zero level of

the reciprocal lattice, normal to a rotation axis that passes through its originO; the crystal is atQ and the

incident X-ray beam direction is QO, as shown in Fig. 4.2. The constant angular velocity of the crystal

is o, so that the reciprocal lattice point P has a linear velocity jSjo. The speed with which P moves

through the surface of the Ewald sphere is the component of its velocity along the radius QP. Since

ffQOP ¼ ffQPO ¼ ð90� yÞ�, the velocity v of the point P as it passes through the sphere is given by

n ¼ ojSj cos y (4.6)

Since jSj ¼ 2 sin y=l, the velocity v is equal to (o/l) sin 2y. The time t taken for P to pass through the

reflecting position is proportional to 1/v, so that this time-of-reflection is given by

t ¼ k=n ¼ k=ðojSj cos yÞ (4.7)

where k is a constant depending on both the size of the reciprocal lattice, in practice, the wavelength

of X-radiation, and the limits�dy for finite reflection. The denominator in (4.7) depends on the time-

of-reflection opportunity for the given crystal plane; it is the Lorentz factor when the rotation axis is

normal to the reflecting plane. From (4.6), o/v ¼ 1/(jSj cos y), so that

L ¼ o=n ¼ l=ð2 sin y cos yÞ ¼ l=ðsin 2yÞ (4.8)

Fig. 4.2 Lorentz factor: sphere of reflection with the crystal at its center Q; O is the origin of the reciprocal lattice, P is

a reciprocal lattice point hkl in the position for a reflection from the corresponding plane. The distanceOP is jSj, and the
normal to it represents the velocity vector of P; ffQOP ¼ ffQPO ¼ ð90� yÞ�
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Since both o and l remain constant, L is equal to 1= sin 2y for the given experimental arrangement. This

argument assumes k = 1; if k = l, S = 2 sin y, and the same result obtains.

4.1.2 Extinction

We consider a crystal bathed in the X-ray beam, under the conditions for normal Bragg reflection,

with all unit cells stacked together in a regular manner. Figure 4.3 shows a family of planes, all in the

same orientation y with respect to the X-ray beam. It is clear that the first-reflected ray BC is in the

correct orientation for a second reflection CD, and so on. Since there is always an inherent phase

change of p/2 on reflection, the doubly reflected ray CD has a phase difference of pwith respect to the

incident ray AB. We note in passing that the phase change of p is neglected in crystal-structure

calculations since it occurs equally for all reflections.

Primary Extinction
In general, rays that are reflected n and (n � 2) times differ in phase by p, so that the net result is a

reduction in intensity of the incident X-ray beam and, hence, in the diffracted beam in passing through

the crystal. Energy is effectively conserved in this process, because each beam is depleted in energy

by scattering into another beam, while being enhanced in energy by that which is scattered into the

beam itself from other beams [2]. This effect is termed primary extinction, but it is very much reduced

if the crystal is not perfect in its stacking. In fact, very few crystals are perfect: they are composed of

an array of slightly misaligned blocks, constituting the so-called mosaic character of the crystal,

Fig. 4.4. The ranges of geometric perfection are generally very small, less than about 10�3 mm, and

even crystals that show primary extinction possess some mosaic character. For the ideally perfect

crystal, I / jFj, whereas for the ideally imperfect crystal, I / jFj2. Since perfection is rare and very

difficult to produce in a specimen, the imperfect state with I / jFj2 is the normal state in X-ray

crystallography.

Primary extinction is most noticeable with low-order, high-intensity reflections and, if it is suspected,

its effect may be very substantially reduced by the thermal shock occasioned by dipping the crystal in

liquid air, thereby increasing the imperfection of the mosaic structure of the crystal.

Secondary Extinction
In Sect. 3.1.3, we considered the absorption of X-rays by materials, a process that is quite independent

of the mechanism of diffraction. However, under Bragg reflection another feature may arise with an

attendant attenuation of the energy of the incident X-ray beam; this effect is known as secondary

extinction.

Fig. 4.3 Primary extinction: the phase changes by reflection at B and C are each p/2, so that between the directions BE

and CD, the total phase change is p. Thus, there is an attenuation of the incident X-ray beam reaching planes deeper into

the crystal
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Consider a situation in which the first of a set of parallel planes encountered by the X-ray beam

reflects a high proportion of the incident X-ray beam. Then, planes in this set deeper into the crystal

receive less incident intensity, so that they reflect less than would be expected. The effect is most

noticeable with large crystals and intense, often low-order, reflections. Crystals that have a high

degree of imperfection generally show very little secondary extinction, because only a relatively

small number of planes in the set are in the exact reflecting position at a given time. The ideally

imperfect crystal shows least secondary extinction, and often only a few very strong reflections are

affected, and they will not materially affect the structure determination. Nevertheless, it is possible to

bring secondary extinction into a least-squares refinement in terms of an additional variable, the

extinction parameter z; see Sect. 8.4. The quantity then minimized in the refinement of the atomic and

scale parameters is

X

hkl

w½Fo � ð1=KzÞjFcj�2 (4.9)

where Fo is the observed and jFcj the calculated structure factor amplitudes.

4.1.3 Absorption Measurement and Correction

Here we consider how the intensity may be corrected for absorption in obtaining a value for the ideal

intensity jF(hkl)j2.
From (3.4), the transmission factor T for an X-ray beam through a crystal is given by

T ¼ I=I0 ¼ exp½�mðti � tdÞ� (4.10)

where ti and td are path lengths through the crystal for the incident and diffracted beams, respectively.

If the shape of the crystal is known exactly, then it is possible to correct for absorption:

T ¼ ð1=VÞ
ð

V

exp½�mðti þ tdÞ� dV (4.11)

Fig. 4.4 Mosaic character in a crystal: the angular misalignment between blocks may vary from 2 to 30 min of arc
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where dV is an infinitesimal portion of the volume V of the crystal [3]. Frequently, however, the

crystal faces are not sufficiently well defined for this method, and an empirical procedure may be

preferred.

Empirical Absorption Correction with Diffractometer Data
An empirical absorption correction is easily applied to data collected with a diffractometer, Sect.

5.5ff. Consider Fig. 4.5: the incident and diffracted X-rays for a general reflection with f ¼ f0 will

intersect the transmission profile at f0 � d and f0 + d, where

d ¼ tan�1ðtan y cos wÞ

Hence, d ¼ 0 at w ¼ �90�. The transmission profile used is that with y nearest to the appropriate

equi-inclination angle n where

n ¼ sin�1ðsin y sin wÞ

The transmission factor T is given either as the arithmetic mean or as the geometric mean of the

estimated incident and reflected ray transmissions:

T ¼ ½Tnðf� dÞ þ Tnðfþ dÞ�=2 or T ¼ ½Tnðf� dÞTnðfþ dÞ�1 2=
(4.12)

Transmission Profiles
The transmission is measured for axial reflections, w ¼ 90�, as a function of f, Fig. 4.5. The

transmission is given by

TyðfÞ ¼ IyðfÞ=IyðmaxÞ (4.13)

The variation of T with y is neglected as it has the same effect as a small isotropic temperature factor.

A set of profiles of T as a function of f is obtained for different values of y, and applied in data

processing as detailed above.

Fig. 4.5 Geometry of the empirical absorption correction: the crystal rotates on the f-circle of a diffractometer with

the w-circle at �90�
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Absorption Correction with Area Detector Data
The empirical method just described requires single Bragg reflections to be isolated and scanned so as

to produce absorption correction curves. This procedure is not possible with intensity data collected

with an area detector, Sect. 5.7, and other methods for applying absorption corrections have been

developed. One commonly used procedure [4] uses a least-squares method to model an empirical

transmission surface as sampled by multiple symmetry-equivalent and/or azimuth rotation-equivalent

intensity measurements. The fitting functions are sums of real spherical harmonics of even order:

Ylm½�uð0Þ� þ Ylm½�uð1Þ� ð2 � l ¼ 2n � 8Þ

The arguments of the functions are the components of unit direction vectors, �u(0) relating to the
reverse incident beam and �u(1) to the scattered beam, with respect to crystal-fixed Cartesian axes.

The procedure had been verified against standard absorption correction data.

4.1.4 Scaling

Fluctuations in the incident X-ray beam intensity and possible radiation damage to the crystal may be

monitored on a diffractometer by measuring four standard reflections of moderate intensity at regular

intervals, say, hourly. Two of these reflections should have w-values of approximately 0�, and two

with w near 90�, with each pair approximately 90� apart in f. The average of these intensities relative
to the average of their starting values is smoothed and used to rescale the raw intensity data. If S is this

scale factor, different from the scale factor K applied to Fo, then the measured intensity Io,meas is

corrected to the intensity Io,corr:

Io;corr ¼ Io;measðLpÞ�1
T�1S�1 (4.14)

with an estimated standard deviation given by

sðIcorrÞ ¼ sImeasðLpÞ�1
T�1S�1 (4.15)

4.1.5 Merging Equivalent Reflections

Where more than the symmetry-independent region of weighted reciprocal space is measured for any

given reflection, a weighted mean intensity is calculated:

�I ¼
X

j

wjIj
X

j

wj

,
(4.16)

where the sum is over all n measured symmetry-equivalent values of the given reflection, and wj is

given by

wj ¼ s�2
j (4.17)
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A chi-squared test may be used to detect equivalents that have a systematic error:

w2 ¼
X

j

½ðIj � �IjÞ=sj�2 (4.18)

where the sum is again over n symmetry-equivalent reflections and the number of degrees of freedom

is (n � 1). If w2 exceeds w2n�1 at a probability level of 0.001, then the symmetry-equivalent reflection

with the highest weighted deviation from the mean, wj(Ij � �Ij), is rejected and the test repeated on the

remaining equivalents. If n ¼ 2, the smaller intensity value is rejected. The merging Rint value
1 is

defined by

Rint ¼
X

hkl

X

j

jIj � �Ijj
 !

X

hkl

X

j

Ij

 !,
(4.19)

4.1.6 Practical Intensity Expression and its Standard Deviation

We have developed the necessary theory to express the intensity of a reflection and the corrections

that need to be applied to it in order to obtain the ideal intensity. A measurement of intensity involves

values for both the intensity of the reflection, over a range �dy0, and the background. These

parameters are measured in diffractometry, by a step-scan moving-window method [5]. The standard

deviation s(I) in I arising from statistical fluctuations is given by

sðIÞ ¼ ðI þ rBþ r2BÞ1=2 (4.20)

where r is the ratio of the time spent in measuring the intensity I to that spent in measuring the

background B; typically a value of r is 1.5.

We now express the ideal intensity in a practical form, assuming the absence of primary extinction, as

jFðhklÞj2 ¼ IðhklÞT�1S�1L�1p�1 (4.21)

where I(hkl) represents the intensity of the hkl reflection that has been adjusted for fluctuations in the

incident X-ray beam, corrected for the background B and merged with symmetry-equivalent reflec-

tions, then further corrected for absorption (and extinction) T, for scaling S, and for Lorentz L, and

polarization p factors, to give ideal intensity values on a correct relative scale, with standard

deviations s(I).

All the corrections to intensity values that we have considered so far have been concerned with

adjustments to the experimentally measured expression of the intensity of reflection. There are other

related correcting factors, one of which is the secondary extinction parameter which has already been

discussed; the scale factor for Fo, that is actually applied to jFcj during refinement, and the temperature

factors are considered next.

1Elsewhere, Rint is also called Rm, Rmerge and Req.
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4.1.7 Scale Factor for Fo

In the initial stage of a structure analysis, the scaling factor K for Fo can be calculated by Wilson’s

method, which we describe more fully in the context of intensity statistics, in Sect. 4.2.1. We write the

scaling factor K in terms of Fo and jFcj as

jFcj ¼ KFo (4.22)

and a simplistic calculation of K during a structure analysis is evidently

K ¼
X

hkl

jFcj
X

hkl

Fo

,
(4.23)

where the sums are taken over all data for which Fo and jFcj are available. Normally, K is adjusted in a

least-squares refinement, where the scale factor is applied inversely to jFcj, as indicated in (4.9).

4.1.8 Thermal Vibrations and the Temperature Factor

The picture of a crystal with a total of j atoms in fixed positions with coordinates xj, yj, zj needs to be

modified to take into account their motion arising from the vibrational thermal energy that the atoms

possess at any finite temperature. Bonding forces permit small degrees of random, relative movement

of atoms, dependent upon the temperature, so that a crystal contains atoms that are vibrating about

their mean positions.

The effect of thermal vibration is that the electron density is smeared out over a finite volume,

rather than being concentrated at the atomic sites. Since the frequencies of vibrations are low relative

to the time taken for an X-ray beam to traverse a crystal under normal experimental conditions, the

crystal may be pictured as a time average of atoms randomly displaced from their mean positions, and

this condition is imposed upon the diffraction pattern of the crystal.

Thermal Vibration in One Dimension
Consider first a one-dimensional periodic arrangement of scattering centers in a row of repeat

distance a, and let the jth scattering species of mean fractional position xj be displaced by a small,

absolute distance uj. Since all unit cells in this structure are not identical, the structure factor F(h),

using (3.63) in the x dimension alone, is given by the time and space average

FðhÞ ¼
X

j

fjexp½i2phðxj þ uj=aÞ�

¼
X

j

fjexpði2phuj=aÞ expði2phxjÞ
(4.24)

Since the displacements uj are small, the exponential term may be expanded to three terms and,

remembering that for the symmetrical vibrations of simple harmonic motion uj ¼ 0, the average

value of exp(i2phuj/a) is approximately ð1� 2p2h2u2j =a
2Þ to the third term, expressed conveniently,

and to the same approximation, as expð1� 2p2h2u2j =a
2Þ. In the one-dimensional analysis,

h=a ¼ 2 sin y=l; hence, from (4.23), we obtain
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FðhÞ ¼
X

j

fj;y expð�8p2u2j l
�2sin2yÞ expði2phxjÞ (4.25)

The factor expð�8p2u2j sin
2y=l2Þ, where u2j is the mean square atomic displacement in the x

direction, modifies fj strictly fj,y, to take account of thermal vibration. Normally, 8p2u2j is written as

the isotropic temperature factor Bj, known as the Debye–Waller factor; initially in a structure

determination, an overall value B, Sect. 4.2.1, may be applied to all atoms.

Thermal Vibration in Three Dimensions
We extend the discussion now to three dimensions, that is, to a lattice of scattering centers, or atoms,

so as to obtain an expression analogous to (4.25). From (3.12), we derive an expression for the

observed intensity Io for a lattice of atoms at rest by multiplying this equation by its conjugate, which

leads to:

Io ¼ C2
2y

X

n

X

m

expfi2p½ðrn � rmÞ � S�g (4.26)

where each summation extends over the total number of atoms in the unit cell. Small, vector

displacements uj are now applied to each atom, so that rn is replaced by rn + un, and similarly for

rm, so that (4.26) becomes

Io ¼ C2
2y

X

n

X

m

expfi2p½ðrn � rmÞ � S�g 	 expfi2p½ðun � umÞ � S�g (4.27)

The isotropic vibration of the lattice of atoms is expressed by the mean value of the second

exponential term in (4.27). Let 2p½ðun � umÞ � S� be written as pn,m; then, for any particular value of

pn,m, we can write its mean value as

exp ðipÞ ¼ 1þ ip� p2=2!� ip3=3!þ p4=4!þ � � � ¼ 1� p2=2!þ p4=4! (4.28)

the mean values of the odd powers of p are zero, because positive and negative displacements are

equally probable. A satisfactory approximation to (4.28) is then

exp ðipÞ ¼ expð�p2=2Þ (4.29)

so that the mean value of (4.26) becomes

�Io ¼ C2
2y

X

n

X

m

expfi2p½ðrn � rmÞ � S�gexpð�p2n;m=2Þ (4.30)

Now pn,m ¼ (4/l) p sin y(un,S � um,S), where un,S is the component of the nth displacement vector

in the direction of the vector S. Hence, we need to evaluate the mean value ðun;S � um;SÞ2, which is

equivalent to u2n;S þ u2m;S � 2un;Sum;S. We make the approximation that the coupling of the vibrations of

atoms in a lattice is negligible, whereupon un;Sum;S ¼ 0, and u2n;S ¼ u2n;S ¼ u2S.
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In (4.26), the double summation contains N2 terms. Those with n ¼ m, a total of N, have an

exponential factor of unity and pn,m is equal to zero. Where n 6¼ m; p2n;m=2 is constant, because the

vibration has been taken to be isotropic, and is equal to 2B, where B is now given as

B ¼ 8p2u2S (4.31)

We can now write (4.27) as

Io ¼ C2
2y

(
X

n

X

m

n6¼m

expfi2p½ðrn � rmÞ � S�gexp½�2Bðsin2yÞ=l2� þ N

)
(4.32)

In the expression for the mean isotropic temperature factor B; u2S is the mean square atomic

displacement in the direction of vector S, that is, normal to the reflecting plane to which sin y

corresponds. Table 4.1 shows the effect of the exponential factor on the atomic scattering factor of

carbon, for two values of B and from sin y=l ¼ 0� 0:7.

A better approximation for temperature correction assumes that the motion remains isotropic, but

allows B to take a particular value Bj for each atom j in a unit cell of a structure. This procedure is used

in the least-squares routine in the XRAY program, Sect. 13.4.4. In general, however, each atom in a

structure vibrates anisotropically, and the time-averaged electron density for an atom has the form of

a triaxial ellipsoid. This ellipsoid is represented by a 3 	 3 tensor, where six Bij components are

needed in the most general case of triclinic symmetry; the tensor is symmetric, that is, Bij ¼ Bji. The

Bij values can be calculated from the isotropic Bj or B values, but normally are allowed to evolve in a

least-squares refinement of atomic parameters.

Thermal vibrations increase the effective volume of the atom, so that interference within the atom

becomes more noticeable. Consequently, f falls off with increasing sin y=l more rapidly than with

that calculated for an atom at rest, as shown in Fig. 4.6. The thermal vibrations of less rigidly retained

atoms in a structure often have higher thermal vibrations than atoms that are more constrained by the

stereochemistry. An example of this effect may be seen on the electron density map in Fig. 1.7: the

carbon atoms in the eight-membered side chain have a greater freedom of movement than do those in

the ring system; consequently, their thermal vibrations are larger and their electron density contours

more diffuse.

Table 4.1 Debye–Waller corrections for a carbon atom

l�1 sin y (l�1 sin y)2 f

expð�B2sin2y=l2Þ
B ¼ 2 Å2 B ¼ 4 Å2

0 0 6 6 6

0.10 0.01 5.126 5.024 4.925

0.20 0.04 3.581 3.306 3.052

0.30 0.09 2.502 .090 1.746

0.40 0.16 1.950 1.416 1.028

0.50 0.25 1.685 1.022 0.620

0.60 0.36 1.536 0.748 0.364

0.70 0.49 1.426 0.535 0.201
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Statistical Expectation Value of the Debye– Waller Factor
If the unit-cell distribution of the mean square displacement parameters of the atoms is assumed to be

Gaussian, a normal distribution, with a mean �m equal to �B, and a variance s2 equal to ðB� �BÞ2, then
the expectation value W2 for the Debye–Waller factor is given as W2 ¼ exp½�2ðm �s2s2Þ2�, where
W2 ¼ expð�2Bs2Þ2 and s ¼ sin y=l. This result has been incorporated into procedures for scaling and

normalizing measured intensities to the Wilson expectation values. The procedures can be used to

determine both isotropic mB and sB, and anisotropic mUij
and sUij

distribution parameters. Tests with

experimental data and refined structural models for several protein crystals have yielded reliable

normalized structure factors, Sect. 4.2.5, with Sh E�j jEcjj=ShE 
 5%.

4.2 Intensity Statistics

Statistics form an important adjunct to many aspects of X-ray crystallography. They are used in

assessing the precision of unit-cell and atomic parameters, for predicting the phase angles of

reflections by direct methods, as discussed in Chap. 8, for determining scale and temperature factors,

to name but three. In this section, we shall be concerned with the statistics of intensity distributions,

and we consider first the Wilson statistics, and show how they may be used to obtain scale and

temperature factors for a crystal.

4.2.1 Determining Scale and Temperature Factors

Wilson Plot
An important and familiar aspect of the statistics of the weighted reciprocal lattice is based on the

equation developed byWilson [6] for the average ideal intensity. We write (3.63), for convenience, in

a compact form:

FðhÞ ¼
X

j

gj;y exp½i2pðh � rjÞ� (4.33)

Fig. 4.6 Atomic scattering factors. (a) Stationary atom, fj,y. (b) Atom corrected for thermal vibration, fj,y Tj,y, also

called gj,y, where Tj;y ¼ expð�B2sin2y=l2Þ.
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where h represents the reciprocal lattice point hkl, rj is the position vector of the jth atom, that is,

rj ¼ xja + yjb + zjc; gj,y is the atomic scattering factor for the jth atom, fj, modified by a temperature

factor, such as expð�B2sin2y=l2Þ, and the sum is over all atoms in the unit cell.

If we now multiply (4.33) by its conjugate, we obtain an expression for the ideal intensity jF(h)j2:

jFðhÞj2 ¼
X

j

g2j;yþ
X

j

X

k

j6¼k

gj;ygk;y expði2ph �rj;kÞ
(4.34)

where rj,k is the vector distance rj � rk. If the distribution of atoms is uniform over the unit cell, then

the second term on the right-hand side of (4.34) will tend to a negligible value because the many rj,k
vectors will tend to cancel one another: then, the average ideal intensity is given by

jFðhÞj2 ¼
X

j

g2j;y (4.35)

and is the basis for obtaining a preliminary scale factor for Fo and a temperature factor for f.

Equation (4.35) has been found to hold satisfactorily over a wide range of structures, provided that

the values of F2
o are averaged over small, local ranges r in reciprocal space, such that f is not varying

rapidly within any range.

Applying the scale and temperature factors to (4.35), we have

K2FoðhÞ2 ¼ expð�2Bsin2yr=l
2Þ
X

j

f 2j;yr (4.36)

where yr is a representative value of y for each range and fj;yr the corresponding rest-atomic scattering

factor. Taking logarithms of both sides, we write

ln qr ¼ 2 ln K þ 2Bsin2yr=l
2 (4.37)

where qr is given by

qr ¼
X

j

f 2j;yr

 !
FoðhÞ2y;r

.
(4.38)

and the sum is taken over all j atoms in the unit cell. If ln qr is plotted against sin2yr=l
2 and the best

straight line drawn, the slope is equal to 2B and the intercept on the ordinate is equal to 2 ln K. This

graph is often called a Wilson plot and is best obtained through the following procedure.

Methodology

1. Three-dimensional space is divided into a number of spherical shells, Fig. 4.7a, such that there are

80–100 reflections in each range. Although the plot of Fig. 4.7b is against sin2y=l2, it is convenient

to form the range demarcations in terms of sin3y=l3, since this parameter has the dimensions of

reciprocal volume; the demarcations can be converted into the equivalent values of sin2y=l2 later.

2. Average values of Fo(h)
2 for each range are calculated, including either symmetry-equivalent

reflections, or according each reflection in the asymmetric unit its correct multiplicity of planes. It

is necessary also to allocate values to the accidental absences, that is, possible reflections lying

within the experimental Ewald sphere that are too weak to be recorded.
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Wilson [6] has shown that the most probable values for accidental absences are 0.55Fo,min for

centrosymmetric crystals, 0.66Fo,min for non-centrosymmetric crystals, and 0.59Fo,min where this

symmetry is undetermined; Fo,min is the minimum value of Fo(h) in the range under consideration.
Systematic absences are always ignored, as are those in a region up to the second order on each

axis because they are atypical of the general distribution of intensities. In addition, the average

intensity multiple (e-factor) should be applied as a divisor of each intensity value; this parameter is

discussed and tabulated in Sect. 4.2.3.

3. The mean values of sin2yr=l
2 may be obtained as

sin2yr=l
2 ¼ 1

2
ðsin2yn=l2 þ sin2ynþ1=l

2Þ

where n + 1 is the number of the outer boundary shell defining the rth shell, starting at n ¼ 0 for

which value sin y ¼ sin ymin, Fig. 4.7a. Alternatively, sin2yr=l
2 values may be obtained as

averages of sin2y=l2 over each range. Atomic scattering factor data are tabulated and readily

available [7].

Auxiliary Plot
The Wilson plot can sometimes be non-linear, possibly because (4.35) does not hold well for the

given data. It may be useful to make an auxiliary plot in which the numerator in (4.38) is replaced

by
P

j Z
2
j , that is, the sum of the squares of fj at y ¼ 0. Both curves should have the same intercept,

and experience indicates that a compromise between the Wilson and auxiliary plots often leads to a

better result.

Fig. 4.7 Scale and temperature factors. (a) Division of reciprocal space into spherical shells; the void region contains

data for which h, k, l < 2. (b) Wilson plot: the intercept is 2 ln K, and the slope is 2B
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4.2.2 Other Aspects of the Wilson Plot

In papers dealing with the calculation of jEj values, Hall and Subramanian consider the Wilson plot in

some detail [8]. They stress the need for the shells in the Wilson plot to be equally populated, which

means that Fo values for the accidentally absent reflections should be estimated with care. The

program GENEV [9] provides two methods for calculating jEj values: one uses the values of B and K

from the linear Wilson plot, whereas the other provides inter alia the options of linear scale, profile

scale, and random fragment; the program GENEV uses Bayesian statistics [10] to obtain reliable

estimates of weak reflections.

Pathological Cases
Assuming that all possible care has been taken in collecting the intensity data, there may still remain

some situations in which the Wilson plot is non-linear, for a variety of reasons: there may be

significant non-zero values of the double summation in (4.34) or the temperature factor is non-

Gaussian, both conditions leading to a partial breakdown of (4.35), on which equation the Wilson

plot is based. Alternatively, the number of atoms in the unit cell may be too low to provide a uniform

distribution; a proportion of atoms may lie on symmetry elements, and so contribute only to certain

reflections; the proportion of heavy atoms in the unit cell may be unduly large; hypersymmetry may

be present. Some of these problems have been addressed by several workers, but no totally

satisfactory procedure has emerged. In most cases, the problem is resolved in the least-squares

refinement of the structure; hypersymmetry is discussed briefly in Sect. 4.2.5.

In handling two-dimensional data, the annular regions of equal area may contain too few reflec-

tions for a true sample of the reciprocal lattice. Then it is possible to employ a batch procedure, that is,

to combine groups (1, 2), (2, 3), (3, 4),. . . before the averages are taken.

In the program XRAY, the routine for the Wilson plot uses this batch technique for the two-

dimensional data sets. Not all of the example data sets provided give equally satisfactory results; this

situation is considered again in Sect. 4.2.5.

4.2.3 Statistics of Reciprocal Space

The weighted reciprocal lattice exhibits four types of regularity and one type that may be described

as irregular; we shall consider them in turn.

Accidental Absences
Accidental absences occur in the diffraction pattern of most structures, and they are disposed in an

irregularmanner within the Ewald sphere. From (3.63), it is not surprising to find that there are some

instances where the sum of the vectors fj exp[i2p(hxj + kyj + lzj)] tend to cancel to a negligible value.

The result depends upon the particular atomic arrangement in the structure rather than on its

symmetry. Such permitted reflections of negligible intensity can be estimated in the manner discussed

in Sect. 4.2.1: it is not uncommon to omit these reflections from a structure analysis, but without real

justification. We now consider regular features of the weighted reciprocal lattice.

Laue Symmetry
The positions of the reciprocal lattice points and the intensities associated with them conform to one

of the Laue groups, that is, one of the eleven centrosymmetric point groups discussed in Sect. 1.4.2.

This situation arises because of Friedel’s Law, Sect. 3.6.1, and holds in all normal situations, that is, in

the absence of resonance excitation, Sect. 3.1.3.
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Systematic Absences
In the presence of translational symmetry, that is, structures with centered unit cells, glide planes,

or screw axes, certain characteristic groups of reflections are absent from the diffraction records,

Sect. 3.7ff. The diffracted energy that is so excluded is redistributed over other reflections. For

example in a C-centered unit cell, hkl reflections are absent for h + k ¼ 2n + 1. However, the

structure factor equation now takes the form

FðhklÞ ¼ 2½cos2pðhþ kÞ=4�
Xn

j¼1

gj 	 exp½i2pðhxj þ kyj þ lzjÞ� (4.39)

from which it is evident that for the reflections present, (h + k) even, jF(hkl)j has twice the value that
it would have for a corresponding primitive unit cell.

Abnormal Averages
We have shown in Sect. 3.2.3 that the components of (4.33) can be represented in phase and

amplitude on an Argand diagram. All types of symmetry link the rj (rj ¼ xja + yjb + zjc) in groups

of two or more; (3.69) represents the simplest example of this feature. Thus,
P

j g
2
j , which we shall

write as S, is enhanced and becomes a distribution parameter S (not to be confused with

S ¼ 2 sin y=l):

S ¼ eS ¼ e
Xn

j¼1

g2j (4.40)

Consider space group Pm, where the mirror plane is normal to y and cuts this axis at y ¼ 0; then,

atoms are related in pairs x, y, z, and x, �y, z. Simple manipulation shows that the structure factor

equation for this example becomes

FðhklÞ ¼
Xn=2

j¼1

gj exp½i2pðhxj þ kyjÞ�ð2 cos 2plzjÞ ¼ A0ðhklÞ þ iB0ðhklÞ (4.41)

where

A0ðhklÞ ¼ 2
Xn=2

j¼1

gj cos 2pðhxj þ lzjÞ cos 2pkyj (4.42)

and

B0ðhklÞ ¼ 2
Xn=2

j¼1

gj sin 2pðhxj þ lzjÞ cos2pkyj (4.43)

We need now to invoke the central limit theorem which states that in a sequence of independent

random variables x1, x2, . . ., xj, . . ., xn, where the mean values are expressed by mj and the variances

by s2j , the sum x ¼ Sjxj tends to a normal (Gaussian) distribution, with a mean m equal to Sjmj and a

variance s2 equal to Sjs
2
j , as the number of terms (n) in the sequence tends, ideally, to infinity.
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In our application, the mean values A0ðhklÞ and B0ðhklÞ both tend to zero, since the positive and

negative values of these terms are equally probable and will tend to cancel one another in a normal

distribution. The variance for a large sample is given generally by

s2 ¼ ð1=nÞ
X

j

ðxj � �xÞ2 ¼ ð1=nÞ
X

j

x2j � x2 (4.44)

since �x ¼ 0 in our example, s2 ¼ x2j . Applying this result first to A
0(hkl), the jth individual variance is

given by 2g2j cos
22pðhxj þ lzjÞcos2 2pðkyjÞ. Thus, the variance of A0(hkl) will be equal to A0ðhklÞ2

which, by the central limit theorem, is given by

A0ðhklÞ2 ¼
Xn=2

j¼1

4g2j cos
22pðhxj þ lzjÞcos22pkyj

¼
Xn=2

j¼1

4g2j cos
22pðhxj þ lzjÞ cos22pkyj

(4.45)

It is straightforward to show, since cos2y ¼ ð1=pÞ
Ð p

0
cos2y dy, that the average value of cos2 y is 1

2
.

Hence, from (4.40),

A0ðhklÞ2 ¼
Xn=2

j¼1

g2j ¼
1

2
S (4.46)

In a similar manner, we can show that the average B0ðhklÞ2 is also equal to 1
2
S,so that

jFðhklÞ2j ¼ S (4.47)

However, if we consider the zone of reflections for which k ¼ 0, a similar analysis shows that

jFðh0lÞ2j ¼ 2S (4.48)

Hence, the e-factor for the intensities in this zone of P2/m is 2. The e-factor is dependent on the crystal

class, and Table 4.2 lists the e-factors that arise in the 32 point groups.

Another way of looking at these e-factors is by means of stereograms. Consider Fig. 1.31, point

group �42m, and imagine the radiating normals that give rise to the poles as vectors. When projected

onto the z axis there is a fourfold superposition of the gj vectors, but when projected onto the plane

normal to z there is no such superposition; hence, 4/1 arises for the first direction, along z, that is,

e(00l) ¼ 4 and e(hk0) ¼ 1.

4.2.4 Acentric and Centric Distributions of Structure Factors

The measured intensities of the whole reciprocal lattice or of certain two- or even one-dimensional

regions of it may conform to an acentric,2 a centric, or a hypercentric distribution, and we shall

consider the properties and uses of their distribution functions.

2Not “non-centrosymmetric” and “centrosymmetric.”
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Acentric Distribution
In the acentric distribution, typically for space group P1, the components A0(h) and B0(h) of the
structure factor must be considered separately. Following earlier discussions we write A0(h), omitting

the subscript y to g, as

Table 4.2 Centric reflections and multiples (e-factors) for intensities in the 32 crystal classes

Crystal class New diffraction symbol Centric sets Multiples

1 1P None 1/1

�1 �1P All 1/1

m 2/mP–/– (0k0) 1/2

2 2/mP–/– (h0l) 2/1

2/m 2/mP–/– All 2/2

mm2 mmmP– – – [(hk0) masks (h00), (0k0)] 2/2; 2/2; 4/1

222 mmmP– – – 3 principal zones only 2/1; 2/1; 2/1

mmm mmmP– – – All 4/2; 4/2; 4/2

4 4/mP–/– (hk0) 4/1

�4 4/mP–/– (hk0); (00l) 2/1

4/m 4/mP–/– All 4/2

�42m 4/mmmP–/– – – [(hk0), {hh0}]; [{h0l}, (00l)] 4/1; 2/1; 2/2

4mm 4/mmmP–/– – – [(hk0), {h00}, {hh0}] 8/1; 2/2; 2/2

422 4/mmmP–/– – – (hk0); {h0l}; {hhl} 4/2; 2/1; 2/1

4/mmm 4/mmmP–/– – – All 8/2; 4/2; 4/2

3 �3P– None 3/1

�3 �3P– All 3/1

3m(1) �3mlP– – – fh0�h0g 6/1; 1/2; 2/1

32(1) �3mlP– – – fh0�hlg 3/1; 2/1; 1/1

�3m(1) �3mlP– – – All 6/1; 2/2; 2/1

6 6/mP–/– (hk0) 6/1

�6 6/mP–/– (00l) 3/2

6/m 6/mP–/– All 6/2

�6m2 6/mmmP–/– – – [{hhl}, {hh0}, (00l)] 6/2; 2/2; 4/1

6mm 6/mmmP–/– – – [(hk0), {hh0}, {h00}] 12/1; 2/2; 2/2

622 6/mmmP–/– – – (hk0); (h0l); (hhl) 6/1; 2/1; 2/1

6/mmm 6/mmmP–/– – – All 12/2; 4/2; 4/2

23 m3P– – {hk0} 2/1; 3/1; 1/1

m�3 m3P– – All 4/2; 3/1; 2/1

�43m m3mP– – – [{hk0}, {hh0}] 4/1; 6/1; 2/2

432 m3mP– – – {hk0}; {hhl} 4/1; 3/1; 2/1

m�3m m3mP– – – All 8/2; 6/1; 4/2

Column 1: Crystal class (also point group symbol)

Column 2: Buerger diffraction symbols: centric zones are underlined, and the unit cell symbol is underlined where the

point group is centrosymmetric. Note that the centric distribution occurs (i) for all hkl if the lattice is centrosymmetric;

(ii) for a zone if the corresponding projection is centrosymmetric; (iii) for a central lattice row if the corresponding

one-dimensional projection is centrosymmetric

Column 3: Centric reflections are listed explicitly

Column 4: Average intensity crystal class-dependent multiples (e-factors). Each p/q symbol gives the multiple

p (e-factor) for a reciprocal lattice row and q that for the zone normal to the row

Column 5. It may be helpful to recall the full symbols 1m1, 121 (monoclinic m and 2).
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A0ðhÞ ¼
Xn

j¼1

gj cos 2pðh � rjÞ

and its average value over j atoms is zero, as discussed above; then from (4.46)

A0ðhÞ2 ¼
Xn

j¼1

g2j cos
22pðh � rjÞ ¼

1

2
S (4.49)

Similarly, B0ðhÞ ¼ 0, and B0ðhÞ2 ¼ 1
2
S. The probabilities that A0 lies between A0 and A0 + dA0, and

that B0 lies between B0 and B0 + dB0, following a normal distribution of the type PðxÞ ¼ ð2ps2Þ�1=2

exp½�ðx� �xÞ2=2s2�, are

PaðA0Þ dA0 ¼ 1=ðpSÞ1=2 expð�A02=SÞ dA0

PaðB0Þ dB0 ¼ 1=ðpSÞ1=2 expð�B02=SÞ dB0
(4.50)

The region of area defined by dA0 dB0 is an infinitesimal portion of an annular ring on an Argand

diagram, Fig. 4.8, distant jFj from the origin. Since A0 and B0 are not correlated, the joint probability
that the structure amplitude jFj lies between jFj and jFj + djFj is

PaðjFjÞ djFj ¼ PaðA0ÞPaðB0Þ dA0 dB0 ¼ ð1=pSÞ exp½�ðA02 þ B02Þ=S� dA0 dB0

¼ ð1=pSÞ exp½ð�jFj2Þ=S� djSj (4.51)

where djSj represents an area dA0 dB0 on the Argand diagram and has the value 2pjFj djFj. Thus, the
joint probability refers to that area of the annular ring on the Argand diagram with radii jFj and
jFj + djFj, so that the acentric distribution function is

PaðjFjÞ ¼ ð2jFj=SÞ exp½ð�jFj2Þ=S� (4.52)

Centric Distribution
Space group P�1 provides a typical centric distribution of intensity data. The structure factors are real

and are given by the A0 component of the structure factor equation, that is,

FðhÞ ¼ A0ðhÞ ¼ 2
Xn=2

j¼1

gj cos 2pðh � rjÞ (4.53)

where h and rj have the meanings as before. From the central limit theorem, if the set of A0(h) follows

a normal distribution, the mean A0ðhÞ is zero, and the variance A0ðhÞ2 is the sum of n/2 terms of the

form 4g2j cos
22pðh � rjÞ, which evaluates to S, the distribution parameter defined above. Hence, the

probability that a structure factor lies between F and F + dF is given by

PcðFÞ dF ¼ 1=ð2pSÞ1=2 expð�F2=2SÞ dF (4.54)

and the centric distribution function becomes
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PcðFÞ ¼ ð2pSÞ�1=2
expð�F2=2SÞ (4.55)

We note that, if we wish to consider here only the amplitudes of the centric structure factors, a

phase-restricted set, then it follows that

PcðFampÞ ¼ 2PcðFÞ ¼ ð2=pSÞ1=2 expð�F2=2SÞ (4.56)

since the amplitude of F can be derived from either (+)F or (�)F, Fig. 4.8. We use this function in

deriving NcðEÞ shortly, because we will be concerned only with positive values in the centric

distribution of amplitudes.

Mean Values
We are now in a position to derive mean values for jFj and jFj2 and other parameters in the two

distributions derived. The mean value x for any distribution f(x) is given generally by

�x ¼
Ð
xfðxÞ dxÐ
fðxÞ dx

but, because we are dealing with a normal distribution,
Ð
fðxÞ dx ¼ 1, so that the average value of x is

given simply by

�x ¼
ð
xfðxÞ dx (4.57)

The acentric and centric intensity distributions are plotted in terms of jFj in Fig. 4.9. It is evident

that the centric distribution is characterized by a significant proportion of both strong and weak

intensities, whereas the acentric distribution has a low dispersion of intensities. These features can

sometimes be recognized in precession X-ray photographs, Sect. 5.4ff.

Fig. 4.8 Region on an Argand diagram for structure amplitude lying between jFj and jFj + djFj in an acentric

distribution. In a centric distribution, F can have only two possible values, shown at F1 (+jFj) and F2 (�jFj)
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Because the centric and acentric distributions differ, it is reasonable to suppose that the distributions

may be used to distinguish between centrosymmetric and non-centrosymmetric crystals. We have noted

in Sect. 3.8 that the space group suggested by the diffraction data of a crystal may often be ambiguous.

The cause of the ambiguity lies frequently in Friedel’s law, that is, the inability to determine from the

positions of the diffraction spectra alone whether or not the crystal itself is centrosymmetric.

A parameter that may be used as a discriminator is the ratio of the square of the average jFj to the

average of jFj2:

M ¼ jFj2=jFj2 (4.58)

For the acentric distribution, we have

jFj ¼ ð2=SÞ
ð1

0

jFj2 expð�jFj2=SÞdjFj

This integral, and many similar to it, can be solved readily by making use of the properties of the

gamma (G) function (see Web Appendix WA7). Let jFj2/S ¼ t, so that 2jFj djFj ¼ S dt. Then,

jFj ¼ S1=2

ð1

0

t1=2 expð�tÞ dt

The term t1/2 may be written as t(3/2–1), so that the value of the integral is G(3/2) or 1
2
p1 2= , so that

jFj ¼ 1

2
ðpSÞ1=2 (4.59)

In a similar manner,

jFj2 ¼ ð2=SÞ
ð1

0

jFj3 expð�jFj2=SÞ djFj (4.60)

Fig. 4.9 Distribution function for structure amplitudes: (a) acentric, (b) centric . The acentric distribution has a low

dispersion of jFj values, whereas the centric distribution has significant proportions of both small and large jFj values
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By making substitutions as before, it is straightforward to show that the integral in (4.60) equates

to S. Thus,

Ma ¼
1

4
pS=S ¼ p=4 ¼ 0:785 (4.61)

In a centric distribution, the corresponding parameter Mc is readily shown to be

Mc ¼ ð2S=pÞ=S ¼ 2=p ¼ 0:637 (4.62)

A disadvantage inherent in these discriminators, even when the data are divided into ranges in

which the variation of f (or g) with y is small, is that the variation is imposed on the results. It is

preferable, therefore, to use a parameter that is not dependent upon f.

4.2.5 Normalized Structure Factors

In the previous section, we stressed the importance of placing intensity data on a common statistical

scale, and we discussed the e-factor for the crystal classes. For improved statistical results, either

unitary structure factors U(h) or normalized structure factors E(h) are employed: jUðhÞj2 ¼
jEðhÞj2Sjg

2
j =ðSjgjÞ2. We shall use the parameter jEj in discussing intensity statistics and direct

methods.

The normalized structure factor E is given by the equation

jEj2 ¼ jFj2 e
X

j

g2j

,
(4.63)

where jFj is on an absolute scale. For special classes of reflections, the e-factor must be applied in

accordance with Table 3.10.

From (4.52), the acentric distribution function for normalized structure factors follows as

PaðjEjÞ ¼ 2jEj expð�jEj2Þ (4.64)

and from (4.55), that for the centric distribution is

PcðEÞ ¼ ð2pÞ�1=2
expð�E2=2Þ (4.65)

Again, as with the centric distribution of jFj, the distribution of jEj amplitudes in the centric case is

twice that given in (4.65), because jEj here includes both +E and –E:

PcðjEjÞ ¼ ð2=pÞ1=2 expð�jEj2=2Þ (4.66)

It will be evident that these distribution equations do not involve the atomic scattering factors, so

they are independent of the particular structure. As in the previous section, we can calculate mean

values related to the new variable jEj. For both the acentric and the centric distributions, the average

value of jEj2 is unity. For the average value of jEj in the acentric distribution, we have
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jEj ¼ 2

ð1

0

jEj2 expð�jEj2Þ djEj

Making the substitution jEj2 ¼ t, the integral becomes

jEj ¼
ð1

0

t1=2 expð�tÞ dt

Since t1/2 may be written as t3/2–1, the integral becomes G(3/2), or 1
2
Gð1=2Þ, which is 1

2

p
p. Hence,

jEj ¼ 0:886. In the case of the centric distribution, a similar calculation shows that jEj ¼ 0:798.
The parameter jEj2 � 1j offers another useful discriminant between acentric and centric distribu-

tions. Here, we evaluate this parameter for the centric distribution; that for the acentric distribution

forms a problem at the end of the chapter. We now use jE2 � 1j for the centric case—ðþEÞ2 ¼ ð�E)2:

jE2 � 1j ¼ ð2=pÞ1=2
ð1

0

jEj2 � 1j expð�E2=2Þ dE

¼ ð2=pÞ1=2
ð1

0

ð1� E2Þ expð�E2=2Þ dEþ ð2=pÞ1=2
ð1

1

ðE2 � 1Þ expð�E2=2Þ dE

Since, generally,

ð
ð1� X2Þ expð�X2=2Þ dX ¼

ð
d½X expð�X2=2Þ� (4.67)

it follows that

jE2 � 1j ¼ ð2=pÞ1=2
(ð1

0

d½E expð�E2=2Þ� þ
ð1

1
d½E expð�E2=2Þ�

)

¼ ð2=pÞ1=2fE expð�E2=2Þj10 þ E expð�E2=2Þj11g
¼ ð2=pÞ1=22e�1=2 ¼ 0:968

A range of parameters can be determined from the probability functions for the two distributions; a

few of them are listed in Table 4.3.

The centric distribution is addressed again through Problems 4.3 and 4.5.

Table 4.3 Parameters in the

acentric and centric distributions

of jEj values
Parameter Acentric Centric

jEj 0.886 0.798

jEj2 1 1

jEj2 � 1 0.736 0.968

ðjEj2 � 1Þ2 1 2

4.2 Intensity Statistics 183



Cumulative Distributions
Rather than considering individual parameters, such asM or jEj, the determination of the centricity or

otherwise of the distribution may be approached by means of cumulative distributions of jEj values. In
the acentric distribution, the fractional number of jEj values less than or equal to a given value of jEj is
the integral of the probability function from the lower limit to that given value. Thus, we write for the

acentric distribution

NaðjEjÞ ¼ 2

ðjEj

0

jEj expð�jEj2Þ djEj ¼ 1� expð�E2Þ (4.68)

Similarly, for the centric distribution, we have

NaðjEjÞ ¼ 2

ðjEj

0

jEj expð�jEj2Þ djEj

¼ erf ðjEj=
ffiffiffi
2

p
Þ

(4.69)

where erf(. . .) represents the statistical error function, which is tabulated in most texts on statistics.

Table 4.4 list the values of N(jEj) for the two distributions up to jEj ¼ 3.0, and Fig. 4.10 illustrates

these distributions; the region of greatest discrimination is clearly 0<jEj<1.

Hypersymmetry
Hypersymmetry (hyper-centrosymmetry) can arise when non-crystallographic centers of symmetry

are present in the asymmetric unit of a structure. Pyrene [11] and benzo[a]pyrene [12] are examples

of molecules that are, themselves, centrosymmetric; the crystal structure of pyrene has been reported

in space group P21/a, which is a non-standard setting of P21/c. The degree of hypersymmetry depends

upon the number of additional centers of symmetry. Figure 4.10 includes the curve for NhðjEjÞ when
one additional center is present in the asymmetric unit. Further discussions on hypersymmetry may be

found in the literature [13].

Table 4.4 Acentric and centric

cumulative distributions

jEj Na(jEj) Nc(jEj)
0 0 0

0.2 0.039 0.159

0.4 0.148 0.311

0.6 0.302 0.451

0.8 0.473 0.576

1.0 0.632 0.683

1.2 0.763 0.770

1.4 0.859 0.838

1.6 0.923 0.890

1.8 0.961 0.928

2.0 0.982 0.954

2.2 0.992 0.972

2.4 0.997 0.984

2.6 0.999 0.991

2.8 1.000 0.995

3.0 1.000 0.997
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4.3 Problems

4.1. An organic crystal has a large overall isotropic temperature factor of 6.8 Å2. What is the

percentage reduction of the atomic scattering factor of a carbon atom at room temperature for

a reflection at y ¼ 27.55�, with Cu Ka radiation (l ¼ 1.5418 Å) compared to that for a carbon

atom at rest scattering under the same conditions? What is the root mean square amplitude of

vibration of the atom in a direction normal to the given reflecting plane? How might the data

collection process for this crystal be improved?

4.2. Calculate the ideal intensities, jFj2, for the 111 and 222 reflections for NaCl and KCl. Hence,

discuss these reflections in the light of Fig. 12.10. The necessary data are as follows: a (NaCl)

¼ 5.627 Å, a (KCl) ¼ 6.278; f values may be calculated from the equationP4
1 ai expð�bis

2Þ þ ci, where s ¼ (sin y)/l, and the constants for the equation are listed below.

Fig. 4.10 Cumulative distributions N(jEj). The region 0 < jEj < 1 is the most discriminatory, as the curves tend to

converge and actually cross over at higher values of jEj

(sin y)/l fC

0 6

0.1 5.108

0.2 3.560

0.3 2.494

0.4 1.948

0.5 1.686

a1 b1 a2 b2 a3 b3 a4 b4 c

Na+ 3.2565 2.6671 3.9362 6.1153 1.3998 0.2001 1.0032 14.0390 0.4040

K+ 7.9578 12.6331 7.4917 0.7674 6.3590 �0.0020 1.1915 31.9128 �4.9978

Cl� 18.2915 0.0066 7.2084 1.1717 6.5337 19.5424 2.3386 60.4486 �16.3780
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4.3. Show that, in the centric distribution, Mcð¼ F
2
=F2Þ ¼ 0:637.

4.4. The value of jEj3 for the acentric distribution is 1.329. Find the value of jEj3 for the centric

distribution.

4.5. The value of jE2 � 1j in the centric distribution has been shown to be 0.968. Find

the corresponding value in the acentric distribution.

4.6. Compare the statistically distinguishable features of space groups Pm, P2, and P2/m and work

out a scheme for distinguishing between them.

4.7. How may one distinguish between the space groups that have the diffraction symbols (a)

mmm Pc � � and (b) mmm C � � � ?
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Examination of Single Crystals: Optical
and X-Ray Diffraction Practice 5

5.1 Introduction

The preliminary optical examination of crystalline specimens is interesting and useful in its own right

and is a major tool still employed by mineralogists and geologists. However, in structure determina-

tions with modern equipment, it is not uncommon nowadays to by-pass this step and proceed

immediately with X-ray studies. This is because in most cases, the X-ray technique is straightforward

and data can be quickly scanned with a single-crystal X-ray diffractometer, Sects. 5.5 and 5.6, or with

an area detector (see Sect. 5.7), and the suitability and quality of the crystal assessed. There are other

situations, however, where complications may arise, for example, because of an unusual crystal habit,

Sect. 5.3.5, pseudosymmetry, Sects. 7.2.2, 7.5.4, and Sect. 8.5.3, or twinning, Sect. 5.10. In such

cases, it might be possible to extract useful information from an optical examination of a crystal

before the more detailed, costly and time-consuming X-ray methods are tried.

5.2 Crystal Growing

It is frequently the case that the crystals supplied for crystallographic work are not suitable for

immediate use; then, it is necessary to recrystallize the material in order to obtain specimens

appropriate for both X-ray and optical studies.

5.2.1 Growing Crystals for X-Ray Diffraction

In Sect. 10.2ff we give considerable space to the discussion of growing crystals of proteins because

this specialized and important process can be difficult. It is, however, equally important to obtain

good crystals of inorganic and organic smaller-molecule materials, as the quality of the crystal will

influence both the value of an optical investigation and that of the X-ray diffraction data and, thus, of

the structure determination itself. Crystals used for X-ray diffraction are commonly of size ranging

between 0.1 and 0.5 mm, and crystals of such dimensions are generally obtained by a relatively slow

growth process. The slow growth favors the production of crystals that are not twinned (q.v.) or

disordered (q.v.), and from which occluded substances, such as dust or solvent molecules are absent,

except where the solvent is germane to the crystal structure. There are several techniques that are

M. Ladd and R. Palmer, Structure Determination by X-ray Crystallography:

Analysis by X-rays and Neutrons, DOI 10.1007/978-1-4614-3954-7_5,
# Springer Science+Business Media New York 2013
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employed in general crystal growing. It is not possible to give strict directions and it is often necessary

to vary the conditions of growth in order to obtain satisfactory crystals.

5.2.2 Crystallization from Solution

In this method a suitable solvent must be found, and it is useful to remember that many inorganic

materials and organic material containing polar functional groups, such as –OH or –CO2H, for

example, will dissolve in water or ethanol. Non-polar molecules frequently dissolve in solvents

such as benzene or toluene. In some cases, mixed solvents are an asset. For example, steroid-like

substances can often be recrystallized well from a mixture of methanol and dichloromethane.

Sufficient material to form a near-saturated solution may be dissolved in warm solvent in a clean

glass vessel protected from direct exposure to the surroundings and allowed to cool slowly. Slow

cooling may be achieved by suspending the crystallization vessel in a Dewar flask or by using a

thermal reservoir. Many variations on this procedure are possible.

Crystallization from solution is essentially a process of concentration of the solution until crystals

begin to form either by cooling a solution of the substance or by slow room-temperature evaporation.

If the vessel in which the crystals are to be grown is very smooth-walled, crystallization may need to

be induced by rubbing the wall of the vessel with a clean glass rod.

5.2.3 Crystallization by Diffusion

Another technique for bringing about crystallization is by diffusion into the solution of a miscible

solvent in which the crystals have a small solubility. Thus, “ibuprofen,” a-methyl-4-(2-methylpropyl)

benzeneaceticacid (C12H18O2), can be crystallized by diffusion from ethanol/diethylether, and

ammonium nitrate (NH3NO3) can be crystallized by diffusing ethanol into its aqueous solution.

Crystallization by diffusion may be brought about also by introducing the vapor of the solvent in

which the substance is least soluble above the surface of the solution of the substance in a suitable

vessel. This technique and the related hanging-drop method are discussed in Sect. 10.2.9, and are not

restricted to proteins.

5.2.4 Crystallization by Sublimation

Some materials are suitable for crystallization by sublimation; iodine, I2, and menthol (C10H20O) are

substances that can be treated in this manner. In principle, the material is warmed and the vapor

allowed to impinge on a cool surface; it can sometimes be advantageous for the material to be under

reduced pressure. Not surprisingly, the size of the crystals is governed by the rate of sublimation.

5.2.5 Other Issues

There are materials, particularly inorganic and refractory substances and polymers that cannot be

formed into single crystals. They exist as microcrystalline powders of size in the region of 10�3 mm,

and can rarely be recrystallized to larger dimensions. For this reason, we treat structure determination

from powder materials in Chap. 12, where we show that considerable success has been achieved with

this X-ray technique.
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5.3 Optical Techniques

We discuss first some aspects of the interaction between crystals and two different electromagnetic

radiations, light and X-rays. Light, with its longer wavelength (5000–6000 Å) can reveal only limited

information about crystal structures, whereas X-rays with wavelengths of less than about 2 Å can be

used to determine the relative positions of atoms in crystals. A preliminary examination of a crystal

aims to determine its space group and unit-cell dimensions, and is generally carried out by X-ray

techniques. However, the optical methods described here are simple but often very effective; they

should be regarded as a desirable prerequisite to an X-ray structure determination, particularly where

automated intensity measurement is used.

5.3.1 Polarized Light

An ordinary light source emits wave trains, or pulses of light, vibrating in all directions perpendicular

to the direction of propagation, as shown in Fig. 5.1; the light is said to be unpolarized. The vibrations

of interest to us are those of the electric vector associated with the waves. Any one of these random

vibrations can be resolved into two mutually perpendicular components, and the resultant vibration

may, therefore, be considered as the sum of all components in these two perpendicular directions. In

order to study the optical properties of crystals, we need to restrict the resultant vibration of the light

source to one direction only by eliminating the component at right angles to it.

A polarizer (P), consisting of a sheet of Polaroid, transmits light vibrating in the horizontal

direction LM and absorbs all components vibrating in the direction perpendicular to LM. Thus,

light passing through the polarizer vibrates in one plane only, and is said to be plane-polarized.

The plane contains the vibration direction that is perpendicular to the direction of propagation and to

the direction of propagation itself. A second Polaroid, the analyzer (A), is placed after the polarizer

and rotated so that its vibration transmission direction (MN) is at 90� to that of the polarizer. It

receives no component parallel to its transmission direction and, therefore, absorbs all the light

transmitted by the polarizer. The two Polaroids are then said to be crossed. This effect may be

demonstrated by cutting a Polaroid sheet marked with a straight line LMN into two sections, P and A.

When superimposed, the two halves will not transmit light if the reference lines (vibration directions)

LM and MN are exactly perpendicular, or crossed. In intermediate positions, the intensity of light

Fig. 5.1 Production of plane-polarized light by passing unpolarized light through a sheet of Polaroid film (the

polarizer, P). A second, identical sheet of Polaroid (the analyzer, A), rotated through 90� with respect to P, completely

absorbs all light transmitted by P. The lines LM and MN were parallel on the sheet from which P and A were cut
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transmitted varies from a maximum, where they are parallel, to zero (in the crossed position). The

production and use of plane-polarized light by this method is used in the polarizing microscope.

5.3.2 Optical Classification of Crystals

Crystals may be grouped, optically, under two main headings: isotropic crystals and anisotropic, or

birefringent, crystals. All crystals belonging to the cubic system are optically isotropic: the refractive

index of a cubic crystal is independent of the direction of the light incident upon it, and its optical

characteristics are similar to those of glass. Non-cubic crystals exhibit a dependence on direction in

their interaction with light.

Anisotropic crystals are divided into two groups: uniaxial crystals, which have one optically

isotropic section and include the tetragonal, hexagonal, and trigonal crystal systems, and biaxial

crystals, which have two optically isotropic sections and belong to the orthorhombic, monoclinic, or

triclinic crystal systems.

A preliminary optical examination of a crystal will usually show whether it is isotropic, uniaxial,

or biaxial. Distinction between the three biaxial crystal systems is often possible in practice and,

depending on how well developed the crystals are, a similar differentiation may also be effected for

the uniaxial crystals. Even if an unambiguous determination of the crystal system is not forthcom-

ing, the examination should, at least, enable the principal symmetry directions to be identified;

Table 5.1 summarizes this information.

5.3.3 Uniaxial Crystals

As an example of the use of the polarizing microscope, we consider a tetragonal crystal, such as

potassium dihydrogen phosphate (KH2PO4), lying on a microscope slide with its y axis parallel to the

axis of the optical path through a microscope, illustrated in Fig. 5.2. The microscope is fitted with a

polarizer (P), and an analyzer (A) which is crossed with respect to P and may be removed from the

optical path. The crystal can be rotated on the microscope stage between P and A. With the Polaroids

crossed and no crystal in between, the field of view is uniformly dark. However, with the crystal

interposed, this situation will not necessarily be obtained.

The tetragonal crystal is lying with its (010) plane on the microscope slide; both the x and z axes are,

therefore, perpendicular to the microscope axis. In general, some of the light passing through the crystal

will be transmitted by the analyzer, even though P and A are crossed. The intensity of the transmitted

light varies as the crystal is rotated on the microscope stage between the polarizer and the analyzer.

During a complete revolution of the stage, the intensity of transmitted light passes through four maxima

Table 5.1 Crystal directions readily derivable from an optical study

Optical classification Crystal system Information relating to crystal axes likely to be revealed

Isotropic Cubic Axes may be assigned from the crystal morphology

Anisotropic, uniaxial Tetragonal Direction of the z axis
Hexagonal Direction of the z axis
Trigonala Direction of the z axis

Anisotropic, biaxial Orthorhombic Direction of at least the x, y, or z axis, possibly all three axes
Monoclinic Direction parallel to the y axis
Triclinic No special relationship between the crystal axes and the

vibration directions

aReferred to hexagonal axes
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and four minima. At the minimum positions, the crystal is usually only just visible. These positions are

called extinction positions, and they occur at exactly 90� intervals of rotation. Maximum intensity is

observed with the crystal at 45� to these directions.

These changes would be observed if the crystal itself were replaced by a sheet of Polaroid.

Extinction would occur when the vibrations of the “crystal Polaroid” were perpendicular to those

of P or A. A simple explanation of these effects is that the crystal behaves as a polarizer. Incident

plane-polarized light from P is resolved by the crystal into two perpendicular components, Fig. 5.3.

In the tetragonal crystal, the vibration directions associated with this polarizing effect are parallel to

its x and z axes. Rotating the crystal on the microscope stage will, therefore, produce extinction

whenever x and z are parallel to the vibration directions of P and A. The x and z axes of a tetragonal

Fig. 5.2 Schematic

experimental arrangement

for examining extinction

directions. A tetragonal

crystal is shown on the

microscope stage, and the

incident light is

perpendicular to the z axis

of the crystal
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crystal correspond to its extinction directions: it should be remembered that the x and y directions are

equivalent under the fourfold symmetry of the crystal.

5.3.4 Birefringence

The vibration components produced by a crystal are associated with its different refractive indices.

With reference to Fig. 5.3, a tetragonal crystal in light vibrating parallel to the fourfold symmetry axis

(z) has a refractive index e, whereas light vibrating perpendicular to z has a different refractive index,

o; the crystal is said to be birefringent, or optically anisotropic. Figure 5.4 represents plane-polarized

light incident in a general direction with respect to the crystallographic axes. It is resolved into two

components, one with an associated refractive index o and the other with an associated refractive

index e0, both vibrating perpendicular to each other and to the direction of incidence. In general, the

value of e0 lies between those of o and e.

Two special cases arise: one, already discussed, where the incident light is perpendicular to z, for

which e0 ¼ e, and the other where the incident light is parallel to z, for which e0 ¼ o. It follows that

where the direction of incidence is parallel to the z axis, the refractive index is always o for any

vibration direction in the xy plane. Plane-polarized light incident parallel to the z axis will pass through

the crystal unmodified. In this particular direction, the crystal is optically isotropic, and if rotated on

the microscope stage between crossed Polaroids, it remains in extinction. The z direction of a uniaxial

crystal is called the optic axis, and there is only one such direction in the crystal; it is the fourfold

symmetry axis in the example that we are using.

Identification of the z Axis of a Uniaxial Crystal
A polarizing microscope is usually fitted with eyepiece cross-wires arranged parallel and perpendic-

ular to the vibration directions of the polarizer, and therefore we can relate the crystal vibration

Fig. 5.3 Resolution of

incident light into

components vibrating

parallel to the x and z axes

of a tetragonal crystal lying

with its y axis parallel to the

incident beam; o and e are

the refractive indices for

light vibrating,

respectively, perpendicular

and parallel to z
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directions to its morphology. There are two important optical orientations for a tetragonal crystal,

namely with the z axis either perpendicular or parallel to the axis of the microscope. These orienta-

tions are, in fact, important for all uniaxial crystals, and will be described in more detail.

z Axis Perpendicular to the Microscope Axis

In this position, shown by Fig. 5.5, a birefringent orientation is always presented to the incident light

beam. Extinction will occur whenever the z axis is parallel to a cross-wire, no matter how the crystal is

rotated, or flipped over, while keeping z normal to the microscope axis. The success of this operation

depends to a large extent on having a crystal with well-developed (hk0) faces. The term straight

extinction is used to indicate that the field of view is dark when a crystal edge is aligned with a cross-

wire. A face of a uniaxial crystal for which one edge is parallel to z, an (hk0) face or to its trace on a

crystal face, such as (h0l), will show straight extinction.

z Axis Parallel to the Microscope Axis

The crystal now presents an isotropic section to the incident light beam, and will remain extinguished

for all rotations of the crystal, while keeping z along the microscope axis. A reasonably thin section of

the crystal is required in order to observe this effect. Because of the needle-shaped habit of the crystal,

it is necessary to cut the crystal carefully so as to obtain the desired specimen, Sect. 5.10.1.

The section of a uniaxial crystal normal to the z axis, if well developed, may provide a clue to the

crystal system. Tetragonal crystals often have edges at 90� to one another, whereas hexagonal and

Fig. 5.4 Uniaxial crystal

showing a light ray OP

resolved into two

components. One

component, with refractive

index o, vibrates in the xy

plane, the other, with

refractive index e0, vibrates

parallel to both o and the

ray direction
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trigonal crystals often exhibit edges at 60 or 120� to one another. These angles are external

manifestations of the internal symmetry; idealized uniaxial crystal sections are shown in Fig. 5.6.

5.3.5 Biaxial Crystals

Biaxial crystals have two optic axes and, correspondingly, two isotropic directions. The reason for

this effect lies in the low symmetry associated with the orthorhombic, monoclinic, and triclinic

systems, which, in turn, results in less symmetric optical characteristics. Biaxial crystals have three

principal refractive indices, n1, n2, and n3 (normally, n1 < n2 < n3), associated with light vibrating

parallel to three mutually perpendicular directions in the crystal. The optic axes that derive from this

property are not necessarily directly related to the crystallographic axes. We shall not concern

ourselves here with a detailed treatment of the optical properties of biaxial crystals, but will

concentrate on relating the extinction directions to the crystal symmetry.

Orthorhombic Crystals
In the orthorhombic system, the vibration directions associated with n1, n2, and n3 are parallel to the

crystallographic axes, but any combination of x, y, and z with n1, n2, and n3may occur. Consequently,

recognition of the extinction directions facilitates identification of the directions of the crystallo-

graphic axes. For a crystal with x, y, or z perpendicular to the microscope axis, the extinction,

directions will be either parallel or perpendicular to the axis in question, as illustrated in Fig. 5.7.

Fig. 5.5 Extinction position for a tetragonal crystal lying with its z axis parallel to the microscope slide. Any [UV 0]

direction could be parallel to the microscope axis; extinction will always be straight with respect to the z axis or its trace

Fig. 5.6 Idealized uniaxial crystals as seen along the z axis. (a) Tetragonal. (b) Hexagonal. (c) Trigonal. The refractive
index for light vibrating perpendicular to the z axis is given the symbol o, and the crystals appear isotropic in this

orientation
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If the crystal is a well-developed orthorhombic prism, the three crystallographic axes may be

identified by this optical method. A common alternative habit of orthorhombic crystals has one

axis, x, for example, as a needle axis with the {011} form prominent. The appearance of such a crystal

viewed along x is shown in Fig. 5.8, and is an example of a symmetric extinction.

Monoclinic Crystals
The lower symmetry of monoclinic crystals results in a corresponding modification of the optical

properties in this system. The symmetry axis y is, conventionally, set parallel to one of the vibration

directions; x and z are related arbitrarily to the other two mutually perpendicular vibration directions.

Hence, two directions are of importance in monoclinic crystals, namely, perpendicular to and parallel

to the y axis.

When viewed between crossed Polaroids, a monoclinic crystal lying with its y axis perpendicular

to the microscope axis will always show straight extinction, with the cross-wires parallel (and

perpendicular) to y. Often, the y axis is a well-developed needle axis; rotation of the crystal about

this axis while keeping it perpendicular to the microscope axis will not cause any change in the

position of extinction, Fig. 5.9.

Fig. 5.7 Extinction directions in an orthorhombic crystal viewed along the x, y, or z axis

Fig. 5.8 Extinction directions as seen along the x-axis of an orthorhombic crystal with {011} development: an

example of symmetric extinction
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If the monoclinic crystal is arranged so that y is parallel to the microscope axis, the (010) plane will

lie on the microscope slide. Extinction in this position will, in general, be oblique, as shown in

Fig. 5.10, thus giving further evidence for the position of the y-axis direction. The appearance of

extinction in a monoclinic crystal in this orientation may be somewhat similar to that of an

orthorhombic crystal showing prominent {011} development, compare Figs. 5.8 and 5.10, and

confusion may sometimes occur in practice.

Triclinic Crystals
The mutually perpendicular vibration directions associated with n1, n2, and n3 are arbitrarily related to

the crystallographic axes, which are selected initially from morphological and X-ray studies.

Reference to Table 5.1 should now enable the reader to consolidate the ideas presented in the

discussion of extinction directions in the seven crystal systems. Although it gives only limited

Fig. 5.9 Extinction directions in a monoclinic crystal viewed perpendicular to the y axis: an example of straight

extinction

Fig. 5.10 Extinction directions in a monoclinic crystal viewed along the y axis—an example of oblique extinction. If

the forms developed are pinacoids, that is, {100}, {010}, and {001}, then the extinction angle; the angle between a

crystal edge and a cross-wire will be related in a simple way to the b angle
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information on the optical properties of crystals, a practical study of a crystal along these lines can

often provide useful information about both its system and its axial directions. Further details on the

optical properties of crystals may be found in standard works on this subject [1].

5.4 Single-Crystal X-Ray Diffraction Techniques: Intensity Data Collection

With the development of sophisticated X-ray diffractometers, there has been a distinct move away

from traditional photographic methods of recording diffraction patterns of crystals, although they still

have a value for displaying a picture of the reciprocal lattice, and for investigating the symmetry or

perfection of crystals. The introduction of various types of area detectors swings methodology away

from the serial, “one reflection at a time,” diffractometer toward image-plate principles, reminiscent of

the earlier photographic techniques. An understanding of Laue and X-ray oscillation photography and

the related geometry is invaluable to those taking the almost inevitable step of progressing from in-

house facilities to the use of the synchrotron. The precession camera [2, 3] is sadly no longer used per

se but was historically a brilliant innovation that allowed undistorted records of the weighted

reciprocal lattice, Sect. 3.4.2, to be produced as a matter of routine. Figure 5.11a, b show zero-level

and first-level precession photographs of the orthorhombic crystal of trypsin. Such records can

however now be produced from intensity data files using software such as that of Bruker AXS

(XPREP/RLATT) [4] thus preserving the art of recording the undistorted reciprocal lattice, Fig. 5.11c.

Over the past 15 years, the role of powder crystallography has been transformed from one of very

minor use in structure analysis to one in which it is rapidly becoming a major alternative choice.

Chap. 12 provides details of the advances that have taken place to revolutionize this method, while

the present chapter discusses the interpretation of the X-ray diffraction data recording techniques in

current use for single crystals and methods for the n data.

5.4.1 Laue Method

The three variables in the Bragg equation provide a basis for the interpretation of X-ray crystallo-

graphic experiments. In the Laue method, Fig. 5.12, the Bragg equation is satisfied by effectively

varying l, utilizing a beam of continuous (white) radiation. Since the crystal is stationary with respect

to the X-ray beam, it acts as a sort of filter, selecting the correct wavelength for each reflection

according to the Bragg equation.

The diffraction spots on a Laue photograph lie on ellipses, all of which have one end of their major

axis at the center of the photographic film, Fig. 5.13. All spots on one ellipse arise through reflections

from planes that lie in one and the same zone. In Fig. 5.14, a zone axis for a given Bragg angle y is

represented by ZZ0. A reflected ray is labeled R, and we can simulate the effect of the zone by

imagining the crystal to be rotated about ZZ0, taking the reflected beam with it. Rays such as R,

generate a cone, coaxial with ZZ0 and with a semivertical angle y. The lower limit, in the diagram, of

R is the direction (XY) of the X-ray beam, and the general intersection of a circle with a plane (the flat

film) is an ellipse. Hence, we can understand the general appearance of the Laue photograph shown in

Fig. 5.13. On each ellipse, discrete spots appear instead of continuous bands because only those

orientations parallel to zone axes, such as ZZ0, that exist for actual crystal planes can give rise to X-ray
reflections.
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Fig. 5.11 Precession photographs. (a) A zero-level precession photograph of an orthorhombic protein crystal, trypsin:

a ¼ 41.5444, b ¼ 113.4716, c ¼ 50.7156, space group P21212. (b) The first-level photograph of the same crystal.

(c) A simulated precession photograph of an orthorhombic crystal precessing about a (Cu Ka, l ¼ 1.5418 Å).

The undistorted, weighted reciprocal lattice zero level is shown; it enables b*, c*, and a* to be measured directly

from the film. The lengths b*and c* are magnified by the crystal-to-film distance of 60.00 mm, and the diagram has been

scaled down by a factor of 0.415 (from the original photograph). By direct measurement on the film, 14b*and 14c* are

67.9 and 68.5 mm, respectively. Hence, b� ¼ ð67:9=0:415Þ=ð60� 14Þ ¼ 0:1948. Similarly, c* ¼ 0.1965. Thus,

a ¼ 7.91 Å, b ¼ 7.84 Å and g ¼ 90�
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Fig. 5.12 Schematic experimental arrangement for taking a Laue photograph on a flat-plate film

Fig. 5.13 Sketch of a Laue photograph of a-Al2O3; the threefold symmetry direction is normal to the photograph

(along the X-ray beam)

Fig. 5.14 Geometry of the Laue method: XY, X-ray beam direction; ZZ0, a zone axis; R, generator of the cone of

diffracted rays of semi-angle y, the Bragg angle; Y, central spot on the film and extremity of the major axis of the ellipse

formed by the intersection of the cone with the film

5.4 Single-Crystal X-Ray Diffraction Techniques: Intensity Data Collection 199



5.4.2 Symmetry in Laue Photographs

One of the useful features of Laue photographs is the symmetry observable on them. The crystal

orientation with respect to the X-ray beam is selected by the experimenter from morphological and

optical considerations. This orientation, together with the crystal point group, controls the symmetry

on the Laue photograph.

In practice, a complication arises by the introduction of a center of symmetry into an X-ray

diffraction pattern, in normal circumstances, whether or not the crystal is centrosymmetric. This

situation is embodied in Friedel’s law, the theoretical grounds for which have been discussed in

Sect. 3.6.1. As a result of this law, the diffraction pattern may not reveal the true point-group

symmetry of a crystal. It may be recalled that Table 1.6 shows the classification of the 32 crystallo-

graphic point groups according to Laue diffraction symmetry.

It cannot be over emphasized that the Laue group assigned to a crystal describes the symmetry of

the complete X-ray diffraction pattern from that crystal. No single X-ray photograph can exhibit the

complete diffraction symmetry, only that of a selected portion which is a projection on to the film,

along the direction of the X-ray beam, of the symmetry information that would be encountered in that

direction in a crystal having the Laue group of the given crystal.

It follows that in the triclinic system, no symmetry higher than 1 is ever observable on a Laue

photograph. In other crystal systems, the Laue-projection symmetry depends on the orientation of the

crystal with respect to the X-ray beam. Rotation axes of any order reveal their true symmetry when

the X-ray beam is parallel to the symmetry axis. Even-order rotation axes, 2, 4, or 6, give rise to

mirror diffraction symmetry in the plane normal to the rotation axis when the X-ray beam is normal to

that axis. A mirror plane itself shows m symmetry parallel to the mirror plane when the X-ray beam is

contained by the plane. Various combinations of these effects may be observable, depending upon the

Laue group in question.

The nature of the X-ray results, supplementary to those obtained in the optical examination, should

now be evident. Uniaxial crystals can be allocated to their correct systems by a Laue photograph

taken with the X-ray beam along the z axis. The Laue photograph in Fig. 5.13 exhibits the Laue

symmetry 3m. Distinction between the monoclinic and orthorhombic systems, which is not always

possible in an optical examination, is fairly straightforward with Laue photographs, Table 1.6. Cubic

crystals can exhibit a variety of symmetries, but with the X-ray beam along h100i the differentiation
between Laue groups m�3 and m�3m is clear.

In practice, the symmetry pattern on a Laue photograph is very sensitive to the precise orientation

of the crystal with respect to the X-ray beam [5]. Slight deviation from the ideal position will result in

a distortion of the relative positions and intensities of the spots on the photographs.

5.4.3 Laue Method and Synchrotron Radiation

The synchrotron is an extremely powerful source of X-rays and produces a very wide range of

wavelengths, Sect. 3.1.6, and is ideally suited to the Laue method of recording diffraction patterns.

Since the crystal is in a fixed orientation, the angle of incidence of the X-ray beam is thus set for each

(hkl) plane. For a reflection to take place at a preset y angle, the plane must effectively select the

wavelength required to satisfy the Bragg equation. A reflection on a Laue photograph thus comprises

four parameters, the usual hkl indices and the wavelength selected by the crystal.
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Consider a fixed crystal in a Laue diffraction experiment. For planes (hkl) the preset angle of

incidence is y, and the wavelength required to be selected for the Bragg equation to be satisfied for the

reflection hkl is l(hkl)y, given by

lðhklÞy ¼ 2dðhklÞ sin y (5.1)

For planes (2h, 2k, 2l), the wavelength to be selected is

lð2h; 2k; 2lÞy ¼ 2dð2h; 2k; 2lÞ sin y (5.2)

From Sect. 2.3,

lð2h; 2k; 2lÞy ¼ 2dðhklÞ sin y=2 ¼ lðhklÞy=2 (5.3)

which is easily generalized to

lðnh; nk; nlÞy ¼ lðhklÞy=n (5.4)

Since the Bragg angle y is common to the sets of reflections (hkl, 2h, 2k, 2l, . . ., nh, nk, nl,

n ¼ 1, 2, 3, . . .) these sets will be superimposed on the Laue photograph. The extent of super-

imposition depends on the range of values of l available from the X-ray source, which may be

selected to minimize this overlap of reflections.

The interpretation of a Laue photograph may thus be complicated both by the possible existence of

multiple reflection orders and by the need to assign the correct value of l to each I(hkl) prior to use in

structure analysis. The latter requirement is, of course, necessary in view of the dependence of the

atomic scattering factor f on both y and l. Other factors requiring special attention include sensitivity

characteristics and absorption by the photographic film, both of which are wavelength-dependent.

As an example, consider the following situation: an orthorhombic crystal with a ¼ 10.0 Å,

b ¼ 15.0 Å, c ¼ 20.0 Å is mounted with c vertical and perpendicular to the X-ray beam, such that

bmakes an angle f of 30� with the beam direction in the horizontal plane. A diffraction spot P occurs

on a flat-plate film such that its coordinates are X mm (horizontal) and Y mm (vertical), the plate

being placed at a distance R mm from the crystal, Fig. 5.15, Y ¼ 0. Since the wavelength is variable,

Fig. 5.15 Geometry of Laue diffraction at the level Y ¼ 0 on a film placed perpendicularly to the incident X-ray beam:

C, crystal; P, position of a Bragg reflection; 2y, scattering angle
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we define d*(hkl) from (2.11) with k ¼ 1, which results in the Ewald sphere having a wavelength-

dependent radius of 1/l. Thus, if the extremes of l used in the experiment are lmin and lmax, the

corresponding Ewald spheres will have radii 1/lmin and 1/lmax, Fig. 5.16. The reciprocal lattice in this

treatment has fixed dimensions, a* ¼ 1/a, b* ¼ 1/b, and c* ¼ 1/c. We can predict possible Laue

reflections at Y ¼ 0 with the aid of Fig. 5.16. The a*b* reciprocal lattice net is shown rotated at 30� to

the X-ray beam, as described above. Traces of the outer and inner Ewald spheres, corresponding

to the minimum and maximum wavelengths, contain a reciprocal lattice area which includes all

reciprocal lattice points, shown intensified in the diagram, that are able to give rise to Laue reflections

with an appropriate wavelength. The recording geometry relevant to the above experimental arrange-

ment is shown in Fig. 5.15, from which it can be seen that for Y ¼ 0 (corresponding to l ¼ 0 in

the example)

tan 2yðhk0Þ ¼ X=R

where X is the horizontal distance of spot P from the origin O, and R is the crystal–film constant.

Reciprocal lattice points lying within the allowed region, Fig. 5.16, include 350, 470, 480, 490,. . .,

313,0, for the limiting wavelengths lmin ¼ 1.0 Å, lmax ¼ 1.5 Å used in the example. We now

determine the coordinates of Laue diffraction spots and the wavelengths used in producing them.

The wavelength selected for a particular d*(hk0) can be calculated with reference to Fig. 5.17.

In this diagram

Fig. 5.16 Reciprocal net a*b* for an orthorhombic crystal with a ¼ 10 Å and b ¼ 15 Å, tilted at f ¼ 30� to the X-ray

beam; c is vertical. The wavelength range chosen is 1.0 Å (lmin) to 1.5 Å (lmax). Reciprocal lattice points that can give

rise to diffraction spots on the right-hand side of the film (including the 350 and 470 used in the example calculations)

and on the left-hand side have been emphasized. They lie between the limiting arcs of the Ewald spheres as shown.

The range of hk0 reflections is limited also by the resolution limit d�max, which is governed by the crystal. For the

reciprocal net chosen, a* ¼ 1/a ¼ 0.1 RU and b* ¼ 1/b ¼ 0.0667 RU; the scale is 1 RU ¼ 3.52 cm
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tan e ¼ ha � =kb� ¼ hb=ka

and

yðhk0Þ ¼ ½90� ðfþ eÞ�

Thus,

lðhk0Þy ¼ 2dðhk0Þ sin yðhk0Þ ¼ 2dðhk0Þ sin½90� ðfþ eÞ� ¼ 2dðhk0Þ cosðfþ eÞ

Taking f ¼ 30�:

1. Reflection 350

tan e ¼ 3� 15=ð5� 10Þ ¼ 0:900 e ¼ 41:99�

dð350Þ ¼
9

102
þ

25

152

� ��1=2

¼ 2:2299A
�
¼ 2:2299A; lð350Þy ¼ 2� 2:2299 cosð30þ 41:99Þ

¼ 1:3789A yð350Þ ¼ 90� ð30þ 41:99Þ ¼ 18:01�

Hence for R ¼ 60 mm

Xð350Þ ¼ 60 tanð2� 18:01Þ ¼ 43:62 mm

Fig. 5.17 Geometry of

wavelength selection

through a reciprocal lattice

vector d* (hk0). The angle

f defines the crystal

orientation: C, crystal; O,

origin of reciprocal lattice;

CQ, direction of diffracted

beam
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2. Reflection 470

tan e ¼ 4� 15=ð7� 10Þ ¼ 0:8571 e ¼ 40:60�

dð470Þ ¼
16

102
þ

49

152

� ��1=2

¼ 1:6270A
�

lð470Þy ¼ 2� 1:6270 cosð30þ 40:60Þ

¼ 1:0809A
� yð470Þ ¼ 90� ð30þ 40:60Þ ¼ 19:40� Xð470Þ ¼ 60 tanð2� 19:40Þ

¼ 48:24mm

Note the dependence on these results of the crystal orientation parameter f. It is easy to show that

for f ¼ 0�

1. l(350)y ¼ 3.3148 Å

2. l(470)y ¼ 2.4707 Å

Thus, neither of these reflections would be recorded for this orientation using the given wavelength

range.

Laue photographs can be scanned optically with a densitometer, which records both intensity and

position of each spot on the film; alternatively, this information can be derived from the diffraction

pattern recorded on a flat reusable CCD plate. These data are then processed by computer using

powerful software, which will index and also refine the unit-cell parameters as required, Sect. 11.2.3ff.

The interpretation of such records, which can contain thousands of spots, is a skilled operation but

usually requires a minimum of user intervention. Knowledge of the crystal unit cell is a useful

prerequisite; otherwise the crystal can be, and usually is, randomly oriented with respect to the

direction of the X-ray beam. With a crystal of high symmetry it is possible to record most of the three-

dimensional diffraction pattern on a single photograph. Being independent of mechanical constraints,

Laue data can be recorded very rapidly, in seconds for good quality crystals at a high-intensity

synchrotron radiation facility using a CCD plate (q.v.) instead of a photographic film. Even the

problem previously mentioned of multiplicity of orders has proved to be less of a difficulty to an

application of the method than at first thought, for example, by using a wavelength range of 0.6–1.6 Å

in protein crystallography.

The method thus facilitates novel studies using synchrotron radiation, such as time-dependent

solid-state reactions and enzyme-driven transformations. The latter can be synchronized by employing

tailor-made photosensitive substrates to delay the biochemical reactions until the X-ray experiment is

ready. Such studies provide exciting new dimensions to X-ray crystallography.

There are several important differences between synchrotron radiation and X-rays generated from

a conventional laboratory source. The latter are usually emitted as characteristic radiation from a

copper or molybdenum metal target, and comprise the predominant characteristic a and b wave-

lengths, and a more general, less intense, polychromatic background. An appropriately selected metal

filter allows the production an effectively monochromatic beam, Sect. 3.1.4. Synchrotron radiation

(SR) is of extremely high intensity, a property which can be exploited for the examination of weakly

diffracting or very small crystals. A particular wavelength can be selected from the continuous SR

wavelength range by an appropriate filter, for either single-crystal rotation or powder diffraction

experiments. Alternatively, the continuous polychromatic beam can be used for Laue photography

with a stationary crystal, to record diffraction data efficiently and rapidly. Finally, SR has a very low

beam divergence which results in very sharp diffraction spots, Fig. 5.18. This is particularly useful in

providing good intensity data from poorly diffracting crystals, such as proteins, resulting subse-

quently in greatly improved resolution of their X-ray Fourier images.
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5.4.4 Oscillation Method

Flat-Plate Oscillation Technique: Basic Ideas
This technique is now used for both preliminary assessment of the suitability of a crystal prior to

X-ray data collection and data collection itself with monochromatic X-radiation. The diffraction

pattern was originally recorded on a flat film, but has been replaced in modern applications by one of

several electronic devices known as area detectors or position-sensitive devices that we discuss in

Sect. 5.7.

The intensity data are recorded in a series of exposures in which the crystal is rotated or

oscillated through a small angular range d’ of about 0.1–2�. For crystals with large unit cells, it

is necessary to employ a large crystal–film distance, at least 60 mm, in order to effect separation of

the diffraction spots on the film. A large effective surface area is necessary in order to record data to

high resolution, that is, to high y values, for the production of good quality X-ray structure

determinations. Previously, cameras were designed specifically for this purpose, and employed a

flat-plate film perpendicular to the X-ray beam together with a mechanism for automatically

changing the cassette, a carousel device, thus enabling several exposures to be set concurrently

[6]. Area detectors, Sect. 5.7, are reusable, thus eliminating this requirement.

The geometry necessary to define the (X, Y) coordinates of an upper-level spot on the film or plate

is indicated in Fig. 5.19. In this diagram CO0 is perpendicular to the film plane. Triangle CO0P0 is

right-angled at O0, and PP0O0 at P0; triangles DD0C and PP0C are similar, so that

Fig. 5.18 Synchrotron

Laue photograph recorded

from a crystal of

Photoactive Yellow Protein

(PYP) recorded on the

ESRF Laue beam line

(ID09B). The exposure was

performed by accumulating

16 single pulses each

100 ps long (courtesy H.

Ihee and M. Wulff, ESRF,

Grenoble)
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Y=CP0 ¼ z=CD0 ¼ z=ð1� z2Þ1=2

Y ¼ CP0z=ð1� z2Þ1=2

CP02 ¼ R2 þ X2

Y2 ¼ ðR2 þ X2Þz=ð1� z2Þ

(5.5)

where R is the distance CO0.
Further,

r=R ¼ tan 2y and r2 ¼ X2 þ Y2

where r is the distance PO0. Therefore,

R2tan22y ¼ X2 þ Y2 (5.6)

Combining these results, it follows that

X ¼ R½tan22yð1� z2Þ � z2�1=2 (5.7)

Y ¼ Rz½1þ tan22y�1=2 (5.8)

If a reciprocal lattice axis is parallel to the rotation axis, z RU corresponds to the appropriate level

along the axis.

Fig. 5.19 Coordinate pair X, Y of the diffraction spot P on a flat-plate oscillation photograph for a general upper-level

reflection: C, crystal; CC0, oscillation, or ’ axis; O, reciprocal lattice origin; O0, origin of coordinates on the film;

OD ¼ d*(hkl); CP, reflected beam, intersecting the Ewald sphere at D; DD0, perpendicular distance above the zero

level. Since the radius of the Ewald sphere is 1 RU, the radius of the upper level at level z is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� z2Þ

q
; CO0 is the

crystal-to-film distance
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We will illustrate these ideas with the following worked example. A protein crystal with a

monoclinic unit cell, a ¼ 30.0 Å, b ¼ 50.0 Å, c ¼ 40.0 Å, b ¼ 100�, is mounted on an oscillation

camera equippedwith a flat-plate cassette placedwith its plane perpendicular to theX-ray beam and at a

distance R ¼ 60 mm from the center of oscillation. The b axis of the crystal is vertical and perpendicu-

lar to the X-ray beam, with �a parallel to the beam at the start of a counterclockwise rotation;

X-rays with wavelength of 1.2 Å are used in the experiment. Consider the following problems:

1. At what point in the rotation will the 004 reflection take place?

2. Calculate the (X, Y) coordinates (in mm) of the 004 spot on the film, X being the horizontal

coordinate and Y the vertical.

3. Calculate the (X,Y) coordinates (in mm) of the 014 spot on the film.

1. Refer to Fig. 5.18 to see that the required rotation is y(004), calculated as follows:

d�ð004Þ ¼ 4c�

where c�¼ l=c sin b¼1:2=ð40 sin 100Þ¼0:03046, so that

d�ð004Þ ¼ 0:1219 ¼ 2 sin yð004Þ

Hence, sin yð004Þ ¼ 0:06095 and y(004) ¼ 3.494� (the rotation angle from starting position).

2. From Fig. 5.20, we have

Xð004Þ ¼ R tan 2yð004Þ

¼ 60 tan 6:988

¼ 7:354mm

Yð004Þ ¼ 0mm

3. For the 014 reflection:

z ¼ b� ¼ l=b ¼ 0:0240

Using (2.16), it follows that

d�2ð014Þ ¼ b�2 þ 16c�2

¼ 0:02402 þ 16ð0:03046Þ2

¼ 0:01542

so that

d�ð014Þ ¼ 0:1242 ¼ 2 sin yð014Þ

Hence, sin yð014Þ ¼ 0:06210, and 2y ¼ 7.121�, by (5.7). Thus,

Xð014Þ ¼ 60½tan27:121ð1� 0:02402Þ � 0:02402�1=2 ¼ 7:352mm
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and from (5.8)

Yð014Þ ¼ 60� 0:0240½1þ tan27:121�1=2 ¼ 1:451 mm

Hence, the 004 reflection has coordinates (7.354, 0.0) mm; the 014, (7.352, 1.451) mm.

5.5 Measurement of the Intensities of Diffraction Data

A variety of options is open to the crystallographer for obtaining measurements of X-ray intensities.

These include the use of a single counter or serial diffractometer, and the latest area detectors. A list

of some of the currently available equipment is to be found in Sect. 5.7.10. Examples include

the computer-controlled four-circle serial diffractometer (Nonius CAD4), and the kappa geometry

CCD diffractometer (Nonius KappaCCD). A cryostream device may be attached for work at low

temperatures.

Fig. 5.20 Plan view of flat-plate oscillation geometry, looking down the oscillation axis, CC0 in Fig. 5.19, at C. In the

accompanying example, the y axis of the crystal (C) is perpendicular to the diagram, and coincides with the rotation

axis. Because the crystal is monoclinic, the a*c* levels superimpose in this orientation. The diagram shows c* at

the beginning of an anticlockwise rotation perpendicular to the X-ray beam. The crystal rotates through y(004) and, at

the reciprocal lattice point 004, d* (004) intersects the Ewald sphere and the 004 reflection is produced. For the

014 reflection, a further small rotation is necessary
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5.5.1 Single Counter or Serial Diffractometers

Traditional diffractometers that employ scintillation counters1 to detect and measure X-ray reflec-

tions from single crystals, one by one, incorporate a mechanical goniometer to orientate the crystal

into the correct reflecting position for each hkl reflection, and to rotate the counter to receive the

scattered radiation from this single reflection. The energy is transformed electronically into a form

suitable for conversion to I(hkl). Because each reflection is measured individually, with a count time

typically of around 60 s, the process is very slow, particularly for proteins, which routinely involve

the measurement of tens of thousands of reflections. The dynamic range of the instrument is the

quantified range of intensities from very weak to very strong over which the instrument can produce

measured values of intensity. This can be enhanced to enable measurement of very strong reflections

through the use of a calibrated attenuator, such as a strip of nickel foil in the case of copper radiation.

The wider the dynamic range available the better will be the measured set of intensity data. For

relatively unstable crystals, proteins and other macromolecules, the crystal needs to be replaced once

it is observed to be dying. Consequently, several crystals may be required in the production of a

complete data set, which is subsequently achieved by scaling the individual sets together. However,

the accuracy attainable is possibly better than for most other methods, and this advantage offsets the

lengthy time scale that is required for the data collection.

The disadvantages of a slow data-collection rate and the need for several crystals with single

counter diffractometry have been largely overcome by the use of electronic film area detectors and

image plates, which methods we discuss in Sect. 5.7.

5.6 Single-Crystal X-Ray Diffractometry

It has become commonplace for X-ray diffraction data to be collected by means of a diffractometer.

We give here a brief description of the Enraf–Nonius CAD4 kappa-diffractometer. Two other similar

systems are considered later.

5.6.1 Instrument Geometry

The CAD4 kappa-diffractometer is characterized by its k-goniometer, which differs in geometry

from other four-circle diffractometers. The k-goniometer carries the goniometer head and arcs, and

keeps the crystal at the center of the diffractometer throughout the data collection. The k-goniometer

is a combination of three parts, which carry the rotation axes. All axes intersect in the center of the

diffractometer.

The arcs are mounted on the f axis, on the k-block, as shown in Fig. 5.21; the angle of rotation

about this axis is fk. The k-block is rotated about the k axis, being itself carried by the o-block.

In turn, the o-block is rotated about the axis (ok) and is carried on the diffractometer base. The angle

w between the o and X axes is ca. 50�, and that between the k and f axes is also ca. 50�. Thus, the

goniometer can access all directions of w within about 100� of the zero setting of the instrument. This

suspension gives the CAD4 an enhanced flexibility over the traditional Eulerian cradle. There is also a

2y axis, coinciding with the o axis, which carries the scintillation counter detector. The coincidence

of the f and o axes corresponds to k ¼ 0; ok ¼ 0 for k in the plane of the diffractometer axes X and

1 Similar to Geiger counters.
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Z, with the k block opposite +X, and 2y ¼ 0 when the center of the detector lies in the plane of X and

Z and opposite +X. The definition of fk is arbitrary, and a suitable working procedure is arranged.

Starting from k ¼ ok ¼ 0, positive rotations of y, o, and f move a vector from Y toward X, and a

positive rotation about k moves a vector from Y to a position below the horizontal plane.

5.6.2 Rotation of the Crystal into a Diffracting Position

In the zero position of the CAD4, a vector c is assumed to be attached to the crystal, with components

c1, c2, and c3 parallel to X, Y, and Z, respectively. The operation to be applied to c is given in terms of

the angles ok, k, fk by

cðo; k;fÞ ¼ ZðokÞ � Yð�aÞ � ZðkÞ � YðaÞ � ZðfkÞ � jcj (5.9)

We can define general clockwise rotations of amounts a, b, and g about X, Y, and Z, respectively,

by the following matrices:

XðaÞZ!Y ¼
1 0 0

0 cos a sin a

0 � sin a cos a

2
4

3
5 (5.10)

Fig. 5.21 Schematic

diagram of the Nonius

CAD4 single crystal X-ray

k diffractometer, showing

the X, Y, Z instrumental

coordinate system and the

rotation directions

(reproduced with the

permission of

Enraf–Nonius, Delft)
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YðbÞX!Z ¼
cos b 0 � sin b

0 1 0

sin b 0 cos b

2
4

3
5 (5.11)

ZðgÞY!X ¼
cos g sin g 0

� sin g cos g 0

0 0 1

2
4

3
5 (5.12)

In (5.9), a is the angle of rotation of the k-block about Y such that the k and Z axes coincide. The

term Y(�a) in (5.9) returns the goniometer to its original position.

5.6.3 Transformation from Miller Indices to Diffractometer Angles

To set a reflecting plane in the diffracting position, its Miller indices are transformed to a scattering

vector c by an orientation matrix R:

R ¼
a�X b�X c�X
a�Y b�Y c�Y
a�Z b�Z c�Z

2
4

3
5 (5.13)

where the reciprocal unit-cell vectors a*, b*, and c* are resolved into components along X, Y, and Z

respectively. Then

c1

c2

c3

2
64

3
75 ¼ R �

h

k

l

2
64

3
75 (5.14)

or

c ¼ R � h (5.15)

Other similar transformations are built into the software of the diffractometer so that the scattering

vector c is brought into the horizontal plane and, via Eulerian forward and inverse transformations,

for mathematical convenience, the values of the angles ok, k, and fk, by which the diffractometer

circles must be moved, are determined. Then the intensity of the reflection that corresponds to c(ok,

k, fk) can be measured and recorded.

5.6.4 Data Collection

The flexible routines that are built into the CAD4 permit selection of the hkl reflection in differing

ways, including Friedel pairs hkl and �h �k �l, Sects. 3.6.1 and 7.5. The azimuthal angle, the angle

between the vertical and the normal to the f-circle, can be variously specified, including multiple

measurements of reflections at different azimuth values so as to derive an empirical absorption

correction curve as a function of the angle f, see Sect. 4.1.3.
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Intensity and background measurements are carried out, and the crystal may be monitored for

decay and movement. Where the latter occurs, the crystal may be reoriented as necessary during the

data collection. If the space group is known, only the geometrically permitted reflections need to be

scanned. This procedure is of great significance with centered unit cells. In addition, more than the

unique portion of reciprocal space can be explored. By means of the CAD4 Structure Determination

Package, the symmetry-equivalent reflections can be merged to give the best set of unique data,

Lorentz and polarization corrections applied, and an absorption correction included if deemed

desirable. The data set can be truncated so as to exclude weak reflections of lower accuracy, for

example, those for which F2
o is less than 3sðF2

oÞ, or they may be remeasured over a longer time period

so as to increase their precision. The CAD4 is provided with a means of taking X-ray photographs of

the crystal on the diffractometer, using Polaroid film. This procedure may be very helpful where there

is a “difficult” space group, or where twinning is suspected, but it may not prove a substitute for a

thorough initial examination of the crystal by conventional X-ray photography where necessary.

The automatic search and indexing routines for determining the unit cell are not always definitive.

This situation may arise for various reasons, such as twinning, poor crystal quality, leading to weak

reflections, or insufficient spread of reflections in reciprocal space. Several options are available for

operator intervention. One of the most useful is to take a Polaroid rotation photograph about the

randomly oriented f-axis and use it to determine the x, y coordinates of reflections on the film.

About ten such pairs of values will often suffice to determine an approximate unit cell. Then the unit

cell can be refined by locating more reflections, well distributed in reciprocal space, and applying a

least-squares procedure, Sect. 8.4.2. The f-axis photograph may detect poor crystal quality but not

twinning, and it will not help with space-group determination; normal rotation X-ray photographs about

the crystallographic axes may be helpful in these situations, but this procedure is rarely used nowadays.

The techniques available with the CAD4 have been well tested in laboratories throughout the

world, and their careful application can lead to a data set of high quality, capable of solving and

refining a crystal structure to high precision, with R-factor (q.v.) between 5 and 1%.

5.6.5 Scanning Over a Peak: v/u Versus v Scans

The most widely used, and arguably the best, scanning option employed with the CAD4 and similar

types of diffractometer involves a coupled rotation of the crystal (o-axis) and the counter (2y-axis),

Fig. 5.21, both rotation axes being vertical during the scan. For a given reflection, the center of the

scan coincides with the calculated position of the maximum intensity, based on the orientation matrix

and unit-cell parameters already determined. Figure 5.22 shows the variation of intensity recorded for

such a scan, using a good quality crystal. In order to obtain a measure of the intensity it is necessary to

evaluate the counts recorded in the area P on the diagram. For most reflections there is general

background intensity, shown in the diagram as being slightly asymmetrical. The background levels

B1 and B2 are established by short scans on either side of the peak.

The scans are not smooth, and consist of, say, n short steps in both B1 and B2 andm similar steps in

P. If the total counts are b1 for region B1, b2 for region B2, and N for the peak P, it can be shown that

the number of counts in P is ½N � mðb1þ b2Þ=2n�. For most small-molecule crystals, the peak width

would be about 40–60min of arc and the total scan time about 60 s. In this method the two backgrounds

are usually fairly similar. The facility for inspecting individual scans is extremely useful for establish-

ing the correct scan width to use for a given crystal, and to check for crystal splitting, which would

produce a double, or even a multiple, peak.

For crystals with very large unit cells, which occur mainly withmacromolecules, neighboring peaks

are usually too close together, because the reciprocal lattice constants are very small, to allow the use
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ofo/y scans. Instead, the alternativeo-scan method is used, which involves a stationary counter, fixed

at the correct value of 2y. This procedure reduces the possibility of the diffraction maxima for

neighboring reflections overlapping, but does not eliminate it altogether.

5.7 Area Detectors (Position-Sensitive Detectors)

The disadvantages of single counter diffractometry, mentioned earlier, that apply mainly to large-

molecule structures, are a slow data-collection rate and the requirement of several crystals for

collection of a complete data set, with the attendant errors associated with scaling and crystal

deterioration: macromolecular crystals may contain 40–50% of solvent, which renders them suscepti-

ble to decay in the X-ray beam. These problems have been largely overcome by the use of electronic

film area detectors and image plates that have enjoyed rapid development in recent years. In many

laboratories, these methods of detection are used for both large- and small-molecule crystallography,

and especially in structure determination at low temperature.

The use of an area detector or image plate allows many nonoverlapping reflections to be recorded in

a single exposure. Each exposure is produced by oscillating the crystal through a small angle, D’. Each

reflection is received by a detector, which is an effectively flat surface with a uniform sensitivity to

X-rays. A series of sequential exposures is recorded, during which the crystal may be rotated through a

total of 180�, for a triclinic crystal, or as little as 30�, for a hexagonal or cubic crystal. TheX,Y position of

each reflection (Fig. 5.19) enables its hkl index to be computed, and the signals received at the detector

are converted electronically into intensity data. Area detectors are therefore also position-sensitive

detectors, because both the intensity of a diffracted beam and the exact position where it strikes the

detector are determined. Several designs are commercially available, as discussed next.

5.7.1 Multiwire Proportional Counter

The multiwire proportional counter (MWPC) is a digital detector, working on the principle of

detection of X-rays by ionization. This type of detector was used by protein crystallographers in

Fig. 5.22 Profile of a reflection peak scanned in the o/ymode. The background level to be subtracted on either side of

the peak is indicated. It is typically slightly asymmetrical
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the 1980s and 1990s. The design of the MWPC is based on a xenon-filled chamber with an anode

lying between two cathodes, Fig. 5.23. Each anode and each cathode consists of a plane of parallel

wires, with the direction of the wires in the first cathode and the anode perpendicular to those in the

second cathode, Fig. 5.24. During exposure to X-radiation, X-ray photons enter the chamber. For each

photon that is absorbed, a xenon molecule is ionized into a positive xenon ion and an inner shell

electron having a kinetic energy that is virtually all of the energy of the absorbed photon. The

liberated electron ionizes further xenon molecules. In the case of Cu Ka radiation, a single 8 keV

photon, the energy of a Cu Ka photon, produces about 300 ions and primary electrons. An electric

Fig. 5.23 Principle of the multiwire proportional counter (MWPC)

Fig. 5.24 Design of the MWPC
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field accelerates the positive ions toward the first cathode and the cloud of electrons toward the anode.

The electron cloud passes the first cathode to hit the anode plane, producing an avalanche of

secondary ionization, with an amplification factor of the order of 104 or more for each primary

electron. While the electrons give a negative pulse on the nearest anode wire, the positive ions move

toward the second cathode giving a positive pulse on the nearest cathode wire. To prevent ultraviolet

photons, produced in the secondary ionization, from restarting ionization in another region of the

chamber, a small amount of quenching gas, such as methane, is added to the xenon and absorbs excess

photons and dissipates energy. Counting is accomplished through the orthogonal array of wires that

samples the centroid of the charge distribution. The analog signals from the detector are digitized to

produce the corresponding reading.

This type of counter has a low noise level, is extremely sensitive, and covers a wide dynamic range

of intensities. Unfortunately the MWPC is severely hampered by size limitations, which reduce the

resolution range achievable with Cu Ka radiation, suffer from errors due to parallax at high angles of

incidence, and require a helium path in order to limit absorption, because of the large crystal-to-

detector distances employed. Commercially available MWPC devices include the Bruker AXS HI-

STAR (11.5 cm diameter) and the larger Xuong–Hamlin (also called San Diego Multiwire System or

SDMS, 30 � 30 cm).

5.7.2 FAST Area Detector (Enraf–Nonius FAST) [3]

In thismethod, theX-ray reflections strike a phosphor coated fiber optics screen that converts the signals

into light photons, which are then intensified, integrated, and digitized. The recording device incorpo-

rates a television scanning system and the goniometer is essentially that used in the CAD4 diffractome-

ter. The disadvantages of this method include high electronic noise and consequent low dynamic range

(1:103) and the need for remeasurement of strong intensities at decreased camera voltage. In view of

these inherent difficulties the FAST technique is now seldom used.

5.7.3 Image Plate

The image-plate detector [7, 8], shown diagrammatically in Fig. 5.25a, consists of a barium halide

phosphor doped with divalent europium, BaFBrEu(II), and held in an organic binder. On exposure to

X-rays, an X-ray photon hits the image plate and its energy is stored in a Br� “hole” (an F-center

defect) and the Eu(II) species is excited into the metastable Eu(III) state until further stimulated:

EuðIIÞ�!
X-rays

EuðIIIÞ þ e

(see also Fig. 5.25b). After completion of each exposure, during which time the crystal is oscillated in

the X-ray beam for a few minutes, the image plate is scanned with a narrow {helium– neon laser beam

(Fig. 5.25c), which causes the regions converted to Eu(III), where the X-ray spots would be located on

a photographic film, to emit violet light of wavelength 3900Å with intensity proportional to the

absorbed X-ray energy.

EuðIIIÞ þ e�!
laser

Eu(II)þ hn ðblue - violetÞ
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This light is then detected with a photomultiplier system, integrated and digitized. After reading

the stored data, the plate is cleaned by exposure to bright yellow light, Fig. 5.25d, and it is then ready

to record the next image. Image plates up to 345 mm diameter are now available (Mar Image Plate

345), which enable data to be collected to a resolution of about 1.4 Å using Cu Ka radiation, and even

Fig. 5.25 (a) Resting state
of the image plate. (b)
Exposure to X-ray

diffraction from the

oscillating crystal. (c)
Scanning with laser light

and measurement of the

emitted light from each

spot with a photomultiplier.

(d) Cleaning the plate

ready for further use (e)
Front view of MAR 345

image plate
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better resolution with synchrotron radiation at smaller radiation wavelengths. The resolution restric-

tion normally precludes the choice of this device for routine small-molecule analysis, but it is very

popular for large-molecule work. An approximately 1:105 range of intensities can be recorded

compared with ca. 1:200 for X-ray film.

5.7.4 Charge-Coupled Device Area Detectors

In this type of system, which is rapidly becoming the method of choice in both small-molecule and

macromolecular crystallography, the video tube of the now almost obsolete FAST area detector,

Sect. 5.7.2, or alternatively the image plate, Sect. 5.7.3, is replaced by a charge-coupled device

(CCD). The CCD has been developed for a multitude of applications where extremely efficient

detection of photons is required, as in astronomy and other branches of physics as well as X-ray

crystallography. We could say that the ideal characteristics of a detector are:

• 100% quantum efficiency (independent of wavelength)

• Perfectly uniform response and unlimited dynamic range (both energy-wise)

• Electronically noiseless

• Completely characterized components

Since the conception [9] of the CCD in 1970, the current state of the art has now effectively

achieved all of these criteria and the design of the CCD will probably not be improved further. In

theory, a CCD performs the following tasks:

1. Generation of charge. When a photon strikes a CCD, it generates electron–hole pairs by the

photoelectric effect [10].

2. Collection of the resulting charge or charges in the pixels formed by an array of electrodes or gates.

3. Transference of the charge on each pixel by application of a differential voltage across the gates.

This information is conveyed pixel by pixel for counting.

4. Detection of the individual charges and conversion to an output voltage, followed by digital

encoding prior to computer processing [11, 12]. Figure 5.26 shows a possible design for a

CCD chip.

The detector used with the Nonius Kappa CCD diffractometer, Fig. 5.27, achieves high efficiency

through the use of a special grade phosphor (Gd2O2S) with directly bonded high-quality fiber optics, in

turn also directly bonded to the CCD chip. The CCD chip needs to be actively cooled to between�20

and �50�C, which is achieved through the incorporation of a stack of four Peltier elements again

bonded directly to the chip. This results in a stable low temperature at the chip, which is a requirement

for low noise and consequent high sensitivity with low background. Figure 5.28 shows a composite

Fig. 5.26 Design of a

CCD chip
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Fig. 5.27 A view of the Nonius Kappa CCD diffractometer

Fig. 5.28 Composite of the molecule 1,2-ethene-3,30-di-tert-butyl-diimidazole-2,20-diylidene indium(III) trihydride,

C16H32In2N4, superimposed on part of its diffraction pattern, as recorded on a Nonius Kappa CCD diffractometer
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representation of the novel molecule 1,2-ethene-3,30-di-tert-butyl-diimidazole-2,20-diylidene indium
(III) trihydride, C16H32In2N4, superimposed on part of its diffraction pattern, which was recorded on a

Nonius Kappa CCD diffractometer [13].

5.7.5 The Tiled CCD

The MAR (Rayonix USA) company has recently introduced the MX-series of detectors described as

the tiled continuous CCD which uses either a 3 � 3 or a 4 � 4 array of fiber optic elements so as to

make a larger active surface. This is achieved by coupling the detector to a fiber optic, and linking

multiple CCD units together.

5.7.6 Charge-Coupled Device Including Tiled CCD Versus Image Plate

Image-plate detectors may be considered to be the heart of the workforce in many of the current

applications in recording and digitizing X-ray diffraction data. They have a large active surface, good

spatial resolution, and are relatively easy on the financial budget, which is a key consideration in

many science departments. Their main drawback has been that the readout time of 60 s is relatively

slow. However, recent design improvements, such as the MAR 345 IP, have resulted in a significant

reduction of this time to as low as 26 s and can record high-quality data from both small-molecule

and macromolecular crystals. The readout time is still slow compared to 1 s or less for a CCD

which can record atomic resolution data for small proteins at the synchrotron [13, 14]. In a local

laboratory environment this is a minor consideration, because the limited power of the X-ray

source means that exposure times of 5–10 min are the norm. At modern synchrotron stations, where

beam time is at an absolute premium, IP detectors while being extremely reliable are far too slow.

The CCD detector on the other hand is very fast (30–90 s exposures) and the small active surface

problems which restrict the range of data collection have now been alleviated by the introduction of

the tiled CCD, described in the previous section.

With their high sensitivity, high resolution, and low noise, the CCD is now in regular use for high-

resolution macromolecular structure determinations [14, 15]. Diffractometers employing CCD,

including software packages, are available from Nonius [16], Bruker [17], and Oxford-diffraction

[18], a system which includes optional liquid nitrogen or liquid helium cooling of the crystal

(Fig. 5.29a); other systems are run routinely with liquid nitrogen cooling. Figure 5.29b shows a

close-up of the Oxford Cryosystems CCD detector.

5.7.7 Data Collection Strategies

X-ray intensity data are measured most frequently using the oscillation technique as described in

Sect. 5.4.4, or with one or two minor variations. The crystal may be flash frozen and immediately held

in theX-ray beam on a goniometer head for data collection. In-houseX-rays are generated using a rotating

anode or other high outputX-ray tube, Sect. 3.1. For small-molecule analysis a molybdenumX-ray tube

may be used and for proteins an X-ray tube with a copper target is chosen; most protein crystals would

not give a high-quality data set with molybdenum X-radiation. A highly intense synchrotron source

with a wavelength range of 0.7–1.0 Å would be ideal in most cases.

The crystal can be rotated or oscillated about the f axis of the equipment by a preselected amount.

Most crystals will arrive on the goniometer head in a random orientation unless care has been taken to
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ensure that a particular crystallographic axis is parallel to thef axis.With an IP orCCDdetector, data are

collected in a series of small angle oscillations ofDfwhereDfwould be selected between 0.1 and 2.0�.

The overall angular range of f for the whole data could be 180 or 360� in order to ensure collection of

Friedel equivalent reflections. The final data set would then include sufficient measurements to enable

the unit cell, space group andRint to be evaluated. It is often possible, and advisable, to derive the unit cell

and space group by indexing a subset of the data at an earlier stage in the collection process in order to

enable any problems that may emerge to be dealt with. Most software packages will allow an efficient

data collection strategy to be designed in order to minimize problems such as radiation damage. Highly

intense X-ray sources available at the present time often produce data images that are sufficiently intense

to record after a single pass of the crystal through the angular range Df.

The method of data collection may be designated as fine-f-slicing if Df is less than or equal to half

the reflection, or rocking, width, which is a function of the crystal mosaic spread and beam divergence

usually in the range 0.1–1�, or thick-f-slicing if Df is greater than half the reflection width. At a

Fig. 5.29 Oxford-

diffraction: (a) The CCD
detector in position at the

Oxford-diffraction

Xcalibur diffractometer.

(b) A close-up of the

Oxford-diffraction CCD

detector (reproduced by

permission of Agilent,

formerly Oxford

Diffraction)
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synchrotron source, where the beam divergence is extremely small, a data set with images, or frames,

of 1.5� rotation would be a thick data set if the crystal mosaicity was 0.75� but would be a thin or fine

data set if the crystal mosaicity was 0.5�.

A data set of thick images usually has more fully-recorded reflections, fewer partially recorded

reflections, more spatial overlaps, higher X-ray background, more saturated pixels, and a lower total

number of images. A fine data set has no fully recorded reflections, fewer spatial overlaps, lower X-ray

background, fewer saturated pixels, more time consumed during data collection in reading out the

detector between oscillations or rotations, and a much larger total number of images. Each reflection

may span two or three adjacent images. Figure 5.30 is a good example of a clean oscillation exposure

from a cubic insulin protein crystal [19].

5.7.8 The CMOS Detector, Pilatus 1M Detector System, and Continuous Rotation

A significant recent development in flat-plate X-ray intensity measurement technology, particularly

appropriate for macromolecular crystallography, is based on the X-ray complementary metal-oxide

semiconductor (CMOS) system.2 The Pilatus 1M detector [20] is a CMOS with hybrid-pixel

technology, a detector with over one million pixels that operates in single-photon counting mode.

This detector was designed also for applications in macromolecular crystallography, and is one of the

largest pixel array detectors currently in use at synchrotron sources. It consists of 18 multichip

Fig. 5.30 A high-quality

oscillation photograph of

cryo-cooled cubic insulin

recorded using a Bruker

Microstar rotating anode

source with a Proteum X8

CCD plate; Cu Ka X-

radiation was used, with

crystal-to-detector distance

of 45 mm, and a 0.5�

oscillation. The image

display software was

COSMO/SAINT

(reproduced by courtesy of

Dr. S. M. Prince and

Dr. P. K. Bryant, Faculty of

Life Sciences, Manchester)

2Hamamatsu Photonics KK C10158DK.
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modules covering an area of about 500 cm2 and was designed and built at the Swiss Light Source

synchrotron location within the Paul Scherrer Institute, Switzerland. The modules are read out in

parallel, leading to a full-frame readout time of 6.7 ms. This allows crystallographic data to be

acquired in the fine-slicing mode, but with continuous rotation of the sample, not broken up into small

angle oscillations, and the X-ray shutter is kept continuously in the open position during the entire

data collection period. Using these techniques, the accuracy of the intensity data measurements can

be improved without increasing the data collection time.

The Pilatus silicon pixel detector was used in the analysis of the crystal structure of the protein

thaumatin [21]; the processing of the data produced extremely satisfactory merging R-factors of about

8.5% and led to a refined electron density map of the protein. The Pilatus system is marketed by

Dectris [22], who also produce the Mythen detector (q.v.) for powder crystallography. Other CMOS

detectors are manufactured by Dexela [23].

With shutterless data collection, images are still produced and are effectively shuttered by the

instrument readout. The CCD has pixels defined by a taper of fiber optic elements and the chip is read

out as a whole after the shutter is closed. For the CMOS detector each pixel has its own circuitry and

is read out directly and more rapidly. Both techniques are suitable for fine-slicing [24] and the data are

processed similarly.

5.7.9 Data Processing Software

A number of software packages are available for processing the data recorded by the oscillation

technique. These include HKL2000 [25], which has superceded the very popular DENZO, and

MOSFILM [26], and is supported by CCP4. Both of these programs have excellent indexing routines

that are based on slightly different versions of the data processing software algorithm [27]. It has been

recommended that it is sometimes useful to run both of these programs separately for initial

assessment of a given set of data [28].

Other software packages are d*TREK [24], sold with MSC X-ray detectors, and PROTUEM,3 a

commercial program associated with Bruker detectors. The expert system ELVES [29] was devel-

oped with the intention of taking the user from data collection frames to a protein structure without

human intervention. Perhaps the lessons learnt in Sect. 11.7 will encourage crystallographers to treat

this option with caution.

5.7.10 Detectors and Diffractometers

The following list indicates some of the devices that are currently available for the measurement of

X-ray diffraction intensities; it is not exhaustive, and some of them have been mentioned in the above

discussions.

PILATUS 6M pixel CMOS detector

ADSC CCD Q-series detectors

NOIR-1 lens focused CCD detector (ALS)

MAR345 IP detector

MAR555 Flatpanel detector (TFT/Se)

MAR-MX-series tiled CCD detector

STOE IP-PSD IP detector

3 http://www.bruker-axs.com/x8_proteum.html
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SIEMENS X100A Multiwire detector

OXFORD-DIFFRACTION Xcalibur Nova CCD detector

OXFORD CRYOSYSTEMS CCD detector

ADSC Quantum 4 CCD detector

LABORATORY DESIGN GUIDE [30]

CRYO-CRYSTALLOGRAPHY [31]

5.7.11 Other Diffractometer Systems

Bruker D8 Systems
A new system from Bruker, the D8 QUEST, offers a single-crystal diffractometer with a choice of

monochromatic wavelength source (Ag, Mo, Cu, or Cr). Alternatively, the ImS microfocus source is

available: it consumes only 30W but is of long life, requires no cooling and produces intensity greater

than that of the traditional water-cooled rotating anode source; the diffractometer accommodates

devices for low-temperature diffraction. The goniometer has a “sphere of confusion” of only 7 mm, so

that the specimen is always centered in the X-ray beam. Detection is by the PHOTON 100 CMOS

detector of high gain and sensitivity, and the system incorporates the APEX2 and SHELXTL

computer packages for structure solution.

The companion system D8 VENTURE has substantially the same facilities as the QUEST, but

provides a more spacious enclosure for the equipment. In addition, it offers either a fixed w or a k

sample stage, giving a high degree of freedom in positioning the sample.

Rigaku SCXmini System
Among the crystallographic products offered by Rigaku, the SCXmini is the first bench-top diffrac-

tometer system; it requires minimal training and support. Data collection is carried out by

the CrystalClear package, and structure solution by Oxford CRYSTALS and SHELXL. Twin crystals

may be handled by the TwinSolve software.

In both of these examples of diffractometer systems, full information may be obtained from the

manufacturers.4,5

5.8 Monochromators

In all aspects of diffraction crystallography, except for Laue diffraction, Sects. 5.4.1ff and 11.2.3ff,

where a continuous spectrum is employed, intensity data are measured with radiations that are as

close as possible to being monochromatic. We have seen in Sect. 3.1ff that characteristic radiation

from a sealed tube can be monochromatized effectively by means of an absorption filter, but with

considerable loss in intensity. In this section, we consider monochromators, which are devices

designed for the production of effectively single-wavelength X-ray beams. Both the traditional sealed

X-ray tube and the synchrotron source will be considered.

The Bragg equation shows that scattered X-radiation occurs at y angles that depend upon the

wavelength l of the X-radiation. Hence, in selecting y by reflection from a crystal plane, a mono-

chromatic radiation may be obtained. A small scattering angle is chosen so that the loss of energy due

to polarization is minimized.

4 http://www.bruker-axs.com/chemical_crystallography.html.
5 http://www.rigaku.com/smc/scxmini.html.
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5.8.1 Single-Type Crystal Monochromators

The crystal structure of graphite consists of layers of covalently bonded, planar, hexagonal carbon

rings stacked perpendicular to the c-axis. The stacking distance c/2 of 3.41 Å approximates to the van

der Waals distance for carbon. This layered structure maximizes the carbon content of successive

(0002) planes which thus produces an extremely strong 0002 reflection. The single-type crystal

graphite monochromator operates by using this reflection as the primary beam. For a copper target,

there is an approximately 20% greater loss of intensity than that suffered with a nickel filter.

However, the range of selected wavelengths is very narrow and effectively monochromatic. This

results in a dramatic improvement in the peak to background ratio, owing to a virtual elimination of

the general background radiation produced by a sealed-tube source. Reduced heating effects resulting

in improved crystal life have also been reported for some proteins.

For a monochromator tuned to wavelength l, the harmonically related wavelengths l/2, l/3,. . .

will be reflected at the same angle. This could, of course, present problems with the measured

intensities, which would then relate to a composite of wavelengths. However, in practice, the

harmonic wavelengths tend to be very weak in intensity and the choice of a structurally suitable

monochromator material, such as graphite, will further ensure that the corresponding I(h/n, k/n, l/n)

values are also negligibly small.

5.8.2 Double-Type Crystal Monochromators

A disadvantage with the single-type crystal monochromator is that once tuned to select a given

wavelength, the instrument cannot easily be adapted for use with a different wavelength source,

because the reflecting angle will be different. This can be overcome by employing a double-type

crystal monochromator, Fig. 5.31, in which the incident and emergent beam directions are the same.

Tuning of the instrument is achieved by pivots fitted to both halves of the monochromator. Obviously,

a further loss of intensity will be suffered with this arrangement, from the second crystal, which

offsets the above advantage to some extent.

Fig. 5.31 Double-type crystal monochromator. The incident X-ray beam Xi is reflected as an essentially monochro-

matic component Xr1 from the first crystal M1. The second crystal M2 is set at the same angle and is therefore tuned to

the same wavelength and reflects the emergent component Xr2. Tuning to a different wavelength is achieved by

coupled rotation of the two crystals (curved arrows) and maintains the direction of incident and emergent beams, thus

requiring minimal adjustment of the diffractometer. The second crystal M2 is absent in a single-type crystal

monochromator
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5.8.3 Monochromators for Synchrotron Radiation

The divergence of the X-ray beam from a synchrotron is small but undesirable. The effect can be

corrected by using a focusing monochromator, which may be either single- or double-type. A single

crystal of germanium or silicon is used for this purpose, because it has the additional advantage of a

much lower bandwidth selection, or wavelength range, compared to graphite. The plane of the crystal

monochromator is carefully bent in order to produce the focusing effect, which is in one direction

only, forming a line focus. Further focusing may be achieved by the use of highly polished quartz or

glass toroidal mirrors. Thin diamond plates, which have a high thermal tolerance, also provide

excellent mirrors but suffer from the disadvantage of being extremely small [32].

5.9 Focusing Mirrors

We have noted that important features of the X-ray beam used in data collection include mono-

chromatization, small beam divergence, high intensity, and optimal focusing. In macromolecular

crystallography, a small divergence of the beam enables the use of a larger oscillation range for

individual exposures without overlap of diffraction spots and consequently fewer exposures in total.

It will also improve the resolution of individual spots that are close together in a crystal of large unit-

cell dimensions.

X-rays can be reflected by mirrors when the angle of incidence is smaller than a critical angle,

ca. 0.1�, and the use of the Franks’ double focusing mirror to improve X-ray beam intensity, first

introduced nearly 50 years ago [33], has been revived recently. This device consists of a pair of

curved mirrors with perpendicular axes of curvature, which produces a point-focused X-ray beam,

with consequent high intensity. The first mirror thus focuses the beam in one direction and the

second mirror focuses the beam in the perpendicular direction to give a small, highly concentrated

spot size.

The design and construction of confocal ellipsoidal mirrors for use with microfocus X-ray tubes

has been described [34]. In this device, two mirrors are glued together in perpendicular arrangement

at the same distance from the X-ray source, giving a fixed focus beam. Alternatively, G€obel mirrors,

using parabolic focusing in a sequential double-mirror arrangement, can be used to produce a

collimated parallel beam.

The advantages of the use of mirrors include an increased flux by a factor of at least three or

four compared to a graphite monochromator, a narrow angular divergence and higher brilliance, a

small spot size and higher brightness, a low background and some degree of monochromatization.

The disadvantages are a degree of competition between monochromatization and beam flux,

leading to the use of a nickel filter, for copper radiation, placed in front of the mirror, associated

problems with alignment of the X-ray generator and filament with a rotating anode tube, and the

requirement of a helium path to counter air-absorption, because of path lengths of approximately

200 mm.

Commercially available mirrors include the following:

• Franks’ mirrors: MAR, MAC Science, Nonius XOS, and Charles Supper

• G€obel mirrors: Bruker AXS

• Confocal mirrors: Osmic’s Max Flux™ (Bruker), MSC, MAR, and Nonius (AXS Confocal

MaxFlux optics)
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5.10 Twinning

5.10.1 Morphology of Twinning

Crystals during their formation may undergo some form of growth stress that causes them to continue

the process of crystallization in other directions. The resultant material is called a twin crystal. A

twinned crystal exhibits two or more orientations in one and the same crystal fragment. The portions

occur in a well-defined relationship to one another: composite blocks of unit cells unite in differing

orientations to form the crystal fragment. Although the portions of the fragment grow simultaneously

during crystallization, it is convenient to speak of them in terms of an operation about a line, the twin

axis, or a plane, the twin plane, which would bring the fragments into congruence. In some instances

crystal fragments may be formed by mechanical deformation after growth, but they behave as

twinned crystals. A reflection twin may be described as a symmetric twin, and the rotation twin as

a hemitropic twin. Re-entrant angles are frequently an indication of twinning, whereas the interfacial

angles on single crystals are salient. The plane across which two portions of a twinned crystal appear

to be united is termed the composition plane. There is generally no physical discontinuity across this

plane, merely a change of orientation; often a twinned crystal may be separated across its composition

plane in order to obtain a single crystal. Another form of twinning is shown by interpenetrant twins,

on which the crystals making up the fragment appear to have grown through one another. A

composition plane is no longer possible in such cases, but the orientations of the crystals in the

fragment are still related by an operation of rotation or reflection.

In some crystal fragments, the twin plane is also the composition plane; an example is the

symmetric twin of gypsum, CaSO4�2H2O. The twin may be described in terms of a rotation of

180� about the X-axis, (100) being the twin plane, Fig. 5.32a. The re-entrant angle is clearly evident

and the specimen also exhibits an external pseudosymmetry of mm2, the true point-group symmetry

being 2/m. Another form of gypsum, twined on the same law, is shown in Fig. 5.32b, but this is an

example of an interpenetrant twin, with mmm pseudosymmetry.

Fig. 5.32 Twinning in gypsum: (a) Symmetric twin of gypsum, with a (100) twin plane. (b) Interpenetrant twin of

gypsum, also twinned on (100)
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The mineral fluorite, CaF2, exhibits interpenetrant twinning, Fig. 5.33a, and also contact twinning,

about a threefold axis, Fig. 5.33b. Figure 5.33c is an example of naturally occurring fluorite exhibiting

both interpenetrant and contact twinning.

The scalenohedral twin habit of calcite is illustrated in Fig. 5.34. It may be regarded as formed by a

rotation about the vertical, triad axis, and is thus a hemitropic twin. A crystallographic axis of

symmetry of even degree (2, 4 or 6) cannot function as a twin axis, because no new orientations

are formed by such rotations. Similarly a crystallographic reflection plane (m) cannot function as the

twin plane though it may, in some cases, be a composition plane.

In addition to these types of twinning, multiple twins can occur. The components may take the

form of lath-like fragments, parallel to the composition plane, the whole crystal being termed a

lamellar twin.

It is often possible to identify twinning under the polarizing microscope. Figure 5.35 shows two

possible situations where adjacent parts of a crystal specimen are not simultaneously in extinction.

Before proceeding to an X-ray examination, a single crystal may often be extracted from a twin by

cutting the fragment under the microscope with a sharp, thin (razor) blade and retaining collar,

Fig. 5.36. Any minute fragments adhering to the crystal can then be removed by judicious use of a

solvent. The same apparatus can be used to cut crystals generally, as the occasion demands.

Fig. 5.33 Twinning in fluorite: (a) Interpenetrant twin, about (111). (b) Contact twin of fluorite, also twinned about

(111). (c) Natural specimen of fluorite, showing both interpenetrant and contact twinning

Fig. 5.34 Scalenohedral habit of calcite, CaCO3, twinned about the vertical, triad axis (compare the scalenohedron

in Fig. 1.3)
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5.10.2 Twinning and X-Ray Diffraction

The consequence of twinning in an X-ray study is the appearance of more than one set of diffraction

data for the “crystal” under examination. The two lattices may coincide, so that the two sets of

reflections are superimposed in position and intensity. If the twin law is a symmetry operation of the

crystal system but not of the point group of the crystal,merohedral twinning, such as twinning on {110}

in point group
4

m
, occurs, and this twinning will simulate point group

4

m
mm, and reflections hkl and khl

will be superimposed because of the apparent higher symmetry of the holosymmetric point group.

A special case of merohedral twinning is racemic twinning, in which a non-centrosymmetric

structure is twinned with its inversion, thus leading to a superposition of reflections hkl and h k l,

which are not equivalent under Friedel’s law, see also Sect. 7.6. The twin operation may not be of the

crystal system but of a higher symmetry system, pseudomerohedral twinning, to which the structure

approximates. A common example would be a crystal in the monoclinic system with a b-angle close

to 90�. In such a case the two sets of reflections hkl; hk l; h kl; h k l and hkl; h kl; hk l; hkl each

equivalent and separate under Friedel’s law, but distinct in symmetry
2

m
, are all equivalent and

superposed under symmetry mmm.

Inmerohedral and pseudomerohedral twinning, the X-ray diffraction pattern can normally be indexed

on a single unit cell, but indications of twinning arise in space group determination, intensity statistics or

in the structure determination proper. Where the components do not overlap, non-merohedral twinning,

problems with the unit-cell determination may arise, leading to a doubling of one axis or more.

One way of avoiding problems with twinning may be by its early recognition. Interpenetrant twins

may be recognized under the microscope by their shape, and their use avoided. Contact twins can

Fig. 5.35 Thin sections of twinned crystals viewed in polarized light. (a) Simple contact twin. (b) Lamellar twin. In

each case, adjacent parts of the crystal are not in extinction simultaneously

Fig. 5.36 Crystal cutting apparatus: B is a half razor blade, M is a metal or plastic collar and C is the crystal under

examination
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often be determined with the microscope under polarized light. The two portions of the fragment may

appear in extinction or show polarization colors at different positions of the microscope stage. If the

boundary of two crystals comprising the fragment can be recognized, the crystal may be cut using the

simple apparatus shown in Fig. 5.36: then one is again dealing with a single crystal.

The SHELX structure solution program (see Appendix D) incorporates facilities (BASF and

TWIN) that enable tests to be carried out in the penultimate stages of least-squares refinement, and

interesting accounts of twinning may be found on the web site references below [35, 36].

5.11 Problems

5.1. Crystals of KH2PO4 are needle-shaped and show straight extinction parallel to the needle axis.

A Laue photograph taken with the X-rays parallel to the needle axis shows symmetry 4mm.

(a) What is the crystal system and Laue group, and how is the optic axis oriented?

(b) Describe and explain the appearance between crossed Polaroids of a section cut perpendic-

ular to the needle axis.

(c) What minimum symmetry, would be observed on both general and symmetric oscillation

photographs taken with the crystal mounted on the needle axis?

5.2. Crystals of acetanilide (C8H9NO) are brick-shaped parallelepipeda, showing straight extinction

for sections cut normal to each of the three edges of the “brick”

(a) What system would you assign to the crystals?

(b) Allocate suitable crystallographic axes.

(c) What minimum symmetry would be shown by general oscillation photographs taken, in

turn, about each of the three crystallographic axes?

(d) What symmetrywould an oscillation photograph exhibit where the crystal is oscillating about

the a axis such that b is parallel to the X-ray beam at the center of the oscillation range?

5.3. Crystals of sucrose show the extinction directions indicated on the schematic crystal drawing of

Fig. P5.1; the arrows indicate the directions of the cross-wires at extinction.

(a) To what crystal system does sucrose belong?

(b) How are the morphological directions, p, q, and r related to the crystallographic axes?

(c) How would you mount the crystal in order to test your conclusions with (i) Laue photo-

graphs, in a single mounting of the crystal, and (ii) oscillation photographs? In each case,

indicate the symmetry you would expect the photographs to exhibit in the orientations you

have chosen.

5.4. A cubic crystal of side a ¼ 5.0 Å is mounted on a flat-plate Laue camera so that one axis (b or

c) lies along the rotation axis and a is inclined to the X-ray beam at an angle f ¼ 70�. If the

crystal is irradiated with an X-ray beam possessing the wavelength range 0.2–2.5 Å, determine

Fig. P5.1 Crystal section

of sucrose, showing

extinction directions
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the highest order h00 reflection that can be recorded. If the cassette is placed at a distance R of

60 mm from the crystal and the film plate is 125 mm2, determine whether this reflection will be

recorded and, if so, find its coordinates on the film in mm.

5.5. A Laue photograph of a protein crystal is recorded on a pack of two films separated by black

paper. A particular reflection hkl for a wavelength l in the “white” radiation is overlapped on

the films by the reflection 2h, 2k, 2l for the wavelength l/2. The black paper transmits 65% of

the radiation of shorter wavelength and 35% of the longer wavelength radiation. If the relative

intensity of the composite reflection measured on the film first to receive the reflected beam is

300 but only 130 on the second film, what are the relative intensities of the two reflections on

the first film?

5.6. b-Zinc sulphide, ZnS, crystallizes in space group F�43m, with a ¼ 5.41 Å. A flat-plate Laue

photograph, taken with a crystal-to-film distance of 30.00 mm, exhibits symmetry 2mm.

(a) What was the direction of the incident beam in the crystal?

(b) The horizontal m line on the film displays two pairs of reflections, symmetrically disposed

about the center of the film. The two reflections of the outer pair are 77.5 mm apart, and the

inner pair 43.5 mm apart. For each reflection in the two pairs, find (i) the Bragg angle y, (ii)

the indices hkl and (iii) the wavelength producing each spot.

5.7. Oscillation photographs of manganese carbonate, MnCO3, taken about three mutually perpen-

dicular axes, and Laue photographs along the same three axes gave the following results

(l ¼ 1.5418 Å):

Axis 1 2 3

Layer line 8 4 2

Distance/mm

from zero layer

38.40 33.63 25.40

Laue symmetry 3m m 2

Determine the unit-cell dimensions and the Laue group of the substance; the diameter of the

oscillation camera was 60.00 mm.

5.8. The 0002 reflection from a single crystal of graphite can be used to obtain monochromatic

X-radiation from its (0001) plane. If the c dimension of graphite is 6.696 Å, calculate the

appropriate Bragg angle for reflection of (a) Cu Ka (l ¼ 1.5418 Å) and (b) Mo Ka (l ¼ 0.7107

Å) radiation at which the crystal monochromator must be set.

5.9. An orthorhombic crystal was set in a random orientation on an automatic four-circle single-

crystal X-ray diffractometer. A peak search led to a primitive reciprocal unit cell of dimensions

a* ¼ b* ¼ 0.239, c ¼ 0.184, a* ¼ b* ¼ 90, g* ¼ 152.4�, using Mo Ka radiation (l ¼ 0.7107

Å). Determine the transformation matrix to convert the “diffractometer” cell to the true cell,

which was known from photographs to have the approximate dimensions a ¼ 3.1 Å, b ¼ 12.5

Å, and c ¼ 3.9 Å, (a) in real space and (b) in reciprocal space.

5.10. (a) The diffraction pattern from a protein crystal is required to be recorded on an image plate

having a diameter of 345 mm. If the resolution dmin required is 1.0 Å and an X-ray

wavelength of 1.05 Å, is being used, calculate the furthest distance R in mm that the

plate can be set from the crystal.

(b) What would happen to the diffraction pattern in (a) if the plate were set 10 mm nearer to the

crystal?

(c) What would happen to the diffraction pattern in (a) if the plate were set 10 mm further from

the crystal?

5.11. Refer to Fig. P5.2a–c. Each figure poses a problem relating to X-ray records.
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Fig. P5.2 Diffraction images from a given crystal, with a fixed wavelength, but with varying oscillation angle,

crystal–detector distance, and exposure time
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Fourier Series and Fourier Transforms 6

6.1 Image Formation and Focusing

In Sect. 5.3, we touched upon an analogy between the scattering of X-rays and that of visible light.

Here, we extend that discussion to consider aspects of Fourier series and Fourier transforms that are

germane to our study of X-ray diffraction.

The formation of the optical image of an object involves first, a scattering of light from it, and then

a recombination of the scattered light rays to form the image. We could, for example, prepare a

transparency of the sodium chloride structure in Fig. 1.6 and project it on to a screen, thus revealing

an enlarged image of the model of the structure. If we now take the lens out of the projector, there will

be just a patch of light on the screen, even though the object, the transparency, is still in the same

position. All the information provided by the transparency is still present in the beam of light, but it is

not immediately decipherable. The lens has no information about the transparency, but once it is in

the correct position in the projector the image becomes clear. The lens rearranges the scattered light

so as to be understandable to us.

The process of focusing is complex, but we perform it by adjusting the position of the lens until the

image assumes our expectation of the object. Evidently, some foreknowledge of the probable

appearance of the object is needed, and we assume that the presence of sharply defined boundaries

in the image is a condition of being in focus. If we do not have the necessary foreknowledge, we must

determine the relative positions of transparency, lens and screen by the methods of geometrical

optics. It is possible to show that the scattered radiation is everywhere within the beam of scattered

light by moving through it with a hand lens and a piece of white card, although the resulting image

will not be quite as satisfactory as that obtained with the projector lens system. If we cannot obtain

recognizable sharp boundaries in an image, we need an aid to focusing. One simple practical method,

sometime used in microscopy, would be to have a minute speck of dust adhering to the surface of the

transparency. When the speck is in focus, it can be assumed that the whole image is also in focus.

Visible light can resolve separations in an object down to approximately 2500 Å, if a high-quality

microscope is employed. Resolution and radiation wavelength go hand-in-hand. The human eye can

observe two objects as separate entities provided that they are no less than approximately 0.15 mm

apart. The Rayleigh formula for the limit of resolution, or resolving power, R of a microscope is

given as

R ¼ 0:61l=ðn sin yÞ ¼ 0:61l=N (6.1)
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where 2y is the angle of scatter, n is the refractive index of the medium between the lens and the

specimen, and N is the numerical aperture of the objective. For a microscope working dry, N can

reach 0.95, but up to 1.46 with oil immersion. Hence, taking a mean l for visible light as 5800 Å, R is

approximately 3725 Å, or 2425 Å, corresponding to magnifications of 400 and 600, respectively.

More recently, higher resolution has been demonstrated by scanning near-field optical microscopy

(SNOM) [1, 2], and resolution as low as 2 nm has been reported.

The refractive index of materials for X-rays is different from unity by about 10�6, so that from

(6.1) wavelengths in the range 1–1.5 Å, are required in order to resolve an atomic separation of 1–2 Å;

such wavelengths are obtained with X-rays or neutrons. Although these radiations can be used to

resolve atomic detail, they can be focused only by special systems of curved mirrors, which lead to

impracticably low magnification. With X-rays or neutrons, the scattered radiation must be recom-

bined by calculation.

The electron microscope can provide resolution of atomic detail, provided that the structure is not

too complex. The theoretical limit of resolution with an accelerating voltage of 100 kV is about 0.8 Å,

but spherical aberration of the focusing system may prevent this value from being reached. High-

resolution transmission electron microscopy (HRTEM) has been developed with very small crystals

(<0.1 mm) and has attained resolution in the range 0.8–0.5 Å.

Certain simplifications exist in the applications of these radiations to crystal structures compared

with examination in visible light. The regular packing of atoms and molecules in crystals and a

restriction of the radiation used to a monochromatic source together give rise to a spot diffraction

pattern rather than a diffuse patch.

As we have remarked earlier, Sect. 3.2, a close analogy to two-dimensional X-ray diffraction is the

view of a sodium street-lamp through a fine, stretched gauze, such as a handkerchief or umbrella;

these materials simulate a two-dimensional lattice, or net. The spot pattern that is obtained is invariant

under translation of the object, but rotates as the object is rotated; we shall return to these two

properties later.

To form an image from the diffraction pattern, the scattered radiation must be recombined in both

amplitude and phase. The lens system used with visible light enables this process to be carried out

directly. With X-rays or neutrons, however, not only can the focusing not be done directly, but the

important phase information required is not obtained explicitly from the experimental procedure: we

record I(hkl), but from Fig. 3.10, we see that jFðhklÞj2 ¼ ½A0ðhklÞ þ B0ðhklÞ�2 ¼ jFðhklÞj2cos2 fðhklÞ
þjFðhklÞj2sin2fðhklÞ ¼ IðhklÞ, so that information about f(hkl) is not given directly by the

measured data.

In crystal structure analysis, we use Fourier series to carry out the focusing process that is

automatic with the lens system of a visible-light microscope. In the next section, we shall assume

that, for the moment, we have the necessary phase information; the acquisition of this phase

information will be the subject of much of the remainder of this book.

6.2 Fourier Series

We wish to consider in detail the function C(X) in Fig. 6.1: it is continuous, single-valued, and

periodic in the repeat distance a. The mathematician Jean Baptiste Fourier (1768–1830) solved

problems on thermal conduction by means of a series consisting of an ideally infinite number of

cosine and sine terms. Such series had been used earlier by Euler and Bernoulli to investigate

periodicity in vibrating strings and in astronomy.

According to the Fourier theorem,C(X) can be represented by a series of cosine and sine terms that

may be written conveniently as
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CðXÞ ¼
X1

H¼�1
CðHÞ cosð2pHX=aÞ þ SðHÞ sinð2pHX=aÞf g (6.2)

which is a trigonometric or Fourier series; C and S are amplitude terms, and the integer index H, that

defines the term of this number in this series, is a wave number, or reciprocal wavelength, that is, the

number of times its own wavelength fits into the repeat period.

Physical phenomena that are periodic, such as tides or heartbeats, can be represented by similar

Fourier series. For our application, we may make use of a one-dimensional analogue of Friedel’s law,

and express C(X) as

CðXÞ ¼ Cð0Þ þ 2

(X1

H¼1

CðHÞ cosð2pHX=aÞ þ SðHÞ sinð2pHX=aÞ
)

(6.3)

In order to find the coefficients C(H) and S(H), we integrate both sides of (6.3) with respect to X,

between the limits 0 and a for one period, andmake use of the fact that the integral of a sum is equal to the

sum of the integrals of the separate parts:

ða

0

CðXÞ dX ¼
ða

0

Cð0Þ dX þ 2
X1

H¼1

ða

0

CðHÞðcos 2pHX=aÞ dX þ 2

�
X1

H¼1

ða

0

SðHÞðsin 2pHX=aÞ dX (6.4)

We see readily that
Ð a
0
cosð2pHX=aÞ dX ¼ ða=2pHÞ sinð2pHX=aÞja0 ¼ 0, since H is an integer; a

similar result arises for the sine function. Hence,
Ð a
0
CðXÞ dX ¼ Cð0Þa, so that

Cð0Þ ¼
1

a

ða

0

CðXÞ dX (6.5)

In order to evaluate general expressions for C(H) and S(H), we multiply both sides of (6.2) by

cos 2pKX=a, where K is another integer, greater than zero:

ða

0

CðXÞ cosð2pKX=aÞ dX ¼

ða

0

(
Cð0Þ þ 2

X1

H¼1

½CðHÞðcos 2pHX=aÞ þ SðHÞ sinð2pHX=aÞ�

)

� cosð2pKX=aÞ dX (6.6)

Fig. 6.1 One-dimensional periodic function C(X) of repeat a
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Using again the rule of the integral of a sum, we have

ða

0

CðXÞ cosð2pKX=aÞ dX ¼ Cð0Þ
ða

0

cosð2pKX=aÞ dX þ 2
X1

H¼1

CðHÞ
ða

0

cosð2pHX=aÞ

� cosð2pKX=aÞ dX þ 2
X1

H¼1

SðHÞ

ða

0

sinð2pHX=aÞ

� cosð2pKX=aÞ dX (6.7)

The terms involving the integral of the product of the cosine and sine functions are zero for all

values of H and K, as discussed in Web Appendix WA8. However, the integral

ða

0

cosð2pHX=aÞ cosð2pKX=aÞ dX (6.8)

is zero for K 6¼ H, but for K ¼ H, it becomes

ða

0

cos2ð2pHX=aÞ dX (6.9)

which is readily shown to be equal to a/2. Thus, from (6.7)

ða

0

CðXÞ cosð2pKX=aÞ dX ¼ 2fCðKÞa=2g ¼ CðKÞa (6.10)

Solving for C(K) and then replacing K by H, we obtain from (6.4)

CðHÞ ¼
1

a

ða

0

CðXÞ cosð2pHX=aÞ dX (6.11)

Similarly, if we multiply both sides (6.2) by sin 2pKX=a and follow through the same procedure,

we obtain

SðHÞ ¼
1

a

ða

o

CðXÞ sinð2pHX=aÞ dX (6.12)

Thus, if the form of the function C(X) is known, the coefficients C and S can be evaluated. We

shall carry out this process for the square wave shown in Fig. 6.2, and subsequently extend these

arguments to two- and three-dimensional functions.

6.2.1 Analysis of the Square Wave

Let the square-wave function C(X), shown in Fig. 6.2, be defined in the range �p � X � p, with a

repeat of 2p. For X < 0,C(X) ¼ 0, and for 0 < X � p,C(X) ¼ p; we shall see from the analysis that

C(X) ¼ p/2 at X ¼ 0. Hence, from (6.11) and (6.12),
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CðhÞ ¼ 1

2p

ðp

0

p cos 2ph
X

2p

� �
dX (6.13)

and

SðhÞ ¼ 1

2p

ðp

0

p sin 2ph
X

2p

� �
dX (6.14)

Integration gives the result that for h 6¼ 0, C(h) ¼ 0, whereas for h ¼ 0, CðhÞ ¼ 1
2

Ð p
0
dx ¼ p=2. In a

similar manner, for h ¼ 0, S(h) ¼ 0, but for h 6¼ 0, SðhÞ ¼ ð1=2hÞ½1� cosðhpÞ�. Substituting these

results in (6.3), we find

CðXÞ ¼ p=2þ 2
X1

h¼1

ð1=2hÞ½1� cosðphÞ� sinðhXÞ

or

CðXÞ ¼ p=2þ 2
X1

h¼1
ðh¼2nþ1Þ

ð1=hÞ sinðhXÞ (6.15)

since the term [1 � cos(ph)] is zero for even values of h. Hence, finite values of C(X) arise for

h ¼ 2nþ 1 ðn ¼ 0; 1; 2; . . .Þ.

Range of X
In (6.15), the variable X defines a sampling point in any repeat interval between X ¼ �p.

For convenience, we will choose a zero arbitrarily at X ¼ 0 and sample the function at intervals

of 2pn/50, that is, we shall calculate the function from n ¼ 0 to 50. The results will show that

we could, and in general would, make use of reflection symmetry in the function at

X ¼ ð2mþ 1Þp=2; ðm ¼ 0; 1; 2; . . . ;1Þ in order to decrease the amount of calculation.

Range of h
The summations of Fourier series extend, theoretically, from �1 to 1. In practice, however, the

range becomes hmin � h � hmax, where the limits of h are set by the experimental conditions. In this

Fig. 6.2 Square wave

C(X), defined in the range

�p to p, with a repeat of 2p
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example hmin is unity and hmax values of 3 and 7 are used; the results of summing (6.15) are presented in

Fig. 6.3. It is notable, even with these few numbers of terms, that increasing hmax has a dramatic effect

on the series. As hmax increases so the series (6.15) approaches more closely the square-wave function

in Fig. 6.2. In general, the more independent terms that can be included in a Fourier series, the better it

represents the periodic function under investigation, from which the terms have been derived.

The process of determining the coefficients of a Fourier series is called Fourier analysis, and the

process of reconstructing the function by the summation of a series such as (6.15) is Fourier synthesis.

A microscope, in forming an image of an object, effectively performs a Fourier synthesis of the

scattered light, a process that we shall have occasion to refer to again later.

6.2.2 Exponential Forms of Fourier Series

Let a function G(h) be defined by

GðhÞ ¼ CðhÞ þ iSðhÞ
Gð�hÞ ¼ CðhÞ � iSðhÞ

(6.16)

so that G is of the nature of the structure factor, F(h). Multiplying G(h) and G(�h) by exp(�2phX/a),

and using de Moivre’s theorem ½expð�iXÞ ¼ cosðXÞ � i sinðXÞ� it follows that

GðhÞ expð�i2phX=aÞ þ Gð�hÞ expð�i2pð�hÞX=aÞ

¼ ½CðhÞ þ iSðhÞ�½cosð2phX=aÞ � i sinð2phX=aÞ� þ ½CðhÞ � iSðhÞ�½cosð2phX=aÞ

þ i sinð2phX=aÞ� ¼ 2CðhÞ cosð2phX=aÞ þ 2SðhÞ sinð2phX=aÞ

(6.17)

Fig. 6.3 Square waves

calculated from (6.15).

(a) hmax ¼ 3, (b) hmax ¼ 7.

The positive and negative

fluctuations of the

calculated function arise

because there are

insufficient terms to

provide good convergence

of the Fourier series; they

are known as series

termination errors
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From the foregoing and (6.3) we can write C(X) as

CðXÞ ¼ Gð0Þ þ 1

2

X1

h¼1

fjGðhÞj expð�i2phX=aÞ þ jGð�hÞj expði2phX=aÞg (6.18)

or

CðXÞ ¼
X1

h¼�1
jGðhÞj expð�i2phX=aÞ (6.19)

The multiplier of 1
2
and the term G(0) in (6.18) disappear in (6.19) because the summation limits

are now �1 through zero to 1, whereas in (6.18) the positive and negative values of h appear

explicitly under the summation. Following Sect. 6.2, we can show that

GðhÞ ¼ 1

a

ða

0

CðXÞ expði2phX=aÞ dX (6.20)

Equations (6.19) and (6.20) are Fourier transforms of each other, a topic that we shall consider in

more detail shortly; the signs of the exponents should be noted.

6.3 Fourier Series in X-Ray Crystallography

The lattice basis of a crystal structure introduces a three-dimensional periodicity which pervades its

properties, including the electron density distribution. The square wave that we have just analyzed

may be likened to a one-dimensional crystal, or the projection of a crystal structure on to a single axis.

The first applications of Fourier series in crystallography were with one-dimensional series, and for

good reason. We must consider first the significance of the functions C(X) and G(h).

We have shown in Sect. 3.2ff how X-rays are scattered by the electrons associated with atoms in a

crystal. The concentration of electrons and their distribution around an atom is called the electron

density. At any point X, Y, Z the electron density may be written as r(XYZ), and we may identify

r(XYZ) as a three-dimensional analogue of the function C(X) in (6.19), and we must now determine

the meaning of G(h).

We consider electrons in an atom as though they were concentrated at a point, but specify their

distribution by a shape factor, the atomic scattering factor f, which is an amplitude term. The

exponential term in (6.19) represents the phase of the wave of frequency index h in its contribution

to C(X), with respect to origin of the unit cell.

6.3.1 One-Dimensional Function

The one-dimensional electron density function r(X) shown in Fig. 6.4 was calculated from a small

number of experimental terms. In a small interval dX along the X axis, the electron density may be

regarded as being constant, so that the associated electron count is rðXÞ dX. Its contribution to the hth
structure factor F(h) is given, following Sect. 3.2.3, by rðXÞ expði2phXÞ dX,where exp(i2phX) is the
phase associated with rðXÞ dX with respect to the origin. The contribution from the whole repeat

period, the structure factor F(h), is now given by
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FðhÞ ¼
ða

0

rðXÞ expði2phX=aÞ dX (6.21)

This equation is a generalized one-dimensional structure factor; analogous expressions can

be written in two and three dimensions. Substituting for r(X), equivalent to C(X), from (6.19),

we have

FðhÞ ¼
ða

0

X1

h0¼�1
jGðh0Þj expð�i2ph0X=aÞ expði2phX=aÞ dX (6.22)

where h0 indicates the range of values of h under the summation sign. Since the integral of a sum is

equal to the sum of the integrals of the separate terms, we write

FðhÞ ¼
X1

h0¼�1
jGðh0Þj

ða

0

exp½i2pðh� h0ÞX=a� dX (6.23)

The integral evaluates to a=i2pðh� h0Þ expfi2pðh� h0ÞðX=aÞg. Since both h and h0 are integers,

the numerator of this expression is zero, except when h0 ¼ h. In this special case, we can see from

(6.23) that the integral becomes
Ð a
0
dX, which has the value a. It follows immediately that

GðhÞ ¼ FðhÞ=a, so that from (6.19) we write

rðXÞ ¼
1

a

X1

h¼�1

jFðhÞj expð�i2phX=aÞ (6.24)

which is the Fourier transform of (6.21).

From Fig. 3.13 we can write

FðhÞ ¼ AðhÞ þ iBðhÞ

Fð�hÞ ¼ AðhÞ � iBðhÞ
(6.25)

Fig. 6.4 One-dimensional

electron density projection

r(X) for pyrite, FeS2
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so that (6.24) may be written as

rðXÞ ¼ 1

a

(
Fð0Þ þ

X1

h¼1

½AðhÞ þ iBðhÞ�½cosð2phX=aÞ � i sinð2phX=aÞ� þ
X1

h¼1

½AðhÞ � iBðhÞ�

� ½cosð2phX=aÞ þ i sinð�2phX=aÞ�

)
(6.26)

which reduces to

rðXÞ ¼
1

a

(
Fð0Þ þ 2

X1

h¼1

½AðhÞ cosð2phX=aÞ þ BðhÞ sinð2phX=aÞ�

)
(6.27)

which may be compared with (6.3).

6.3.2 Two- and Three-Dimensional Functions

Analogous summation expressions can be formulated in two and three dimensions. We will consider

the two-dimensional case in detail, as the program system XRAY described in Sect. 13.4 uses this

form of the Fourier series. First, we state, by analogy with (6.24), and using fractional coordinates x,

y, z, the three-dimensional electron density equation as

rðxyzÞ ¼
1

Vc

X1

h¼�1

X1

k¼�1

X1

l¼�1

jFðhklÞj exp½�i2pðhxþ kyþ lzÞ� (6.28)

Since, from Fig. 3.13, AðhklÞ ¼ jFðhklÞj cosfðhklÞ and BðhklÞ ¼ jFðhklÞj sinfðhklÞ, it follows

from the form of (6.27) and Web Appendix WA5 equation (WA5.6), that r(xyz) may be written as

rðxyzÞ ¼
1

Vc

X1

h¼�1

X1

k¼�1

X1

l¼�1

jFðhklÞj cos½2pðhxþ kyþ lzÞ � fðhklÞ� (6.29)

which serves to show how the electron density depends upon the phase angles: only jF(hkl)j is

measured through the experimental procedure; f(hkl) must be determined before (6.29) can be

summed. This situation constitutes the phase problem in crystallography, of which we shall

hear more.

Equation (6.28) can be rewritten in the form of (6.27), which is more convenient for calculation,

by again making use of Friedel’s law, namely that jFð�h�k �lÞj ¼ jF(hklÞj, or Að�h�k �lÞ ¼ AðhklÞ and

Bð�h�k�lÞ ¼ BðhklÞ. Thus, we obtain

rðxyzÞ ¼
1

Vc

(
Fð000Þ þ 2

X1

h¼1

X1

k¼�1

X1

l¼�1

AðhklÞ cos½2pðhxþ kyþ lzÞ�

þ BðhklÞ sin½2pðhxþ kyþ lzÞ�

) (6.30)
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From the structure factor equation and the Bragg equation, it follows that F(0,0,0) ¼P
j ðfjÞy¼0

¼ Z, the total number of electrons in the unit cell. It is normally an integer quantity, but

need not be for a non-stoichiometric compound.

Again, this equation could be put in the form of (6.29) if desired, and variations can be developed

according to space-group symmetry, as discussed in Sect. 3.5.1ff for the structure factor equation.

We consider the two-dimensional electron density equation. The generalized structure factor

F(hkl) is given by

FðhklÞ ¼ V

ð1

0

ð1

0

ð1

0

rðxyzÞ exp½i2pðhxþ kyþ lzÞ� dx dy dz (6.31)

we are using the integration limits 0–1 because we are now using the fractional coordinates x, y, and z,

relating to a single unit cell. For a projection along the z axis, we need the F(hk0) reflections, where

Fðhk0Þ ¼ Vc

ð1

0

ð1

0

(ð1

0

rðxyzÞ dz

)
exp½i2pðhxþ kyþ lzÞ� dx dy (6.32)

To interpret the integral over z, consider an element of structure of cross-sectional area dx dy and

length c along the z axis. In an element of length dz, the electron content is r(xyz) dz, so that the total

electron content in the element of length c is c dx dx
Ð 1
0
rðxyzÞ dz. Hence, the projected electron

density at a point x, y is given by

rðxyÞ ¼ c

ð1

0

rðxyzÞ dx dy dz

from which F(hk0), or F(hk) becomes

FðhkÞ ¼ A

ð1

0

ð1

0

rðxyÞ exp½�i2pðhxþ kyÞ� dx dy (6.33)

since
Ð 1
0
expð�i2plzÞ dz is zero unless l ¼ 0; A is the area of the a, b face of the unit cell. It follows

that

rðxyÞ ¼
1

A

X1

h¼�1

X1

k¼�1

jFðhkÞj exp½�i2pðhxþ kyÞ� (6.34)

which may be written more conveniently as

rðxyÞ ¼
1

A

(
Fð00Þ þ 2

X1

h¼1

X1

k¼�1

fAðhkÞ cos 2pðhxþ kyÞ þ BðhkÞ sin 2pðhxþ kyÞg

)
(6.35)

We have defined F(000) above: in projection on to a plane or line, the electron density in the unit

cell is projected on to that plane or line; hence, F(000) ¼ F(00) ¼ F(0). Unless one is concerned with

absolute values of electron density, these terms can be omitted and the electron density scaled to a

convenient maximum value. In neutron diffraction, F(000) counts the total scattering power in the

unit cell, and is a positive or negative quantity.
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We conclude this section by a consideration of the one-dimensional electron density function

which we discussed in Sect. 6.2. We draw Fig. 6.1 again as Fig. 6.5, now with the amplitudes and

phases of the waves shown. Following the arguments above, and using a one-dimensional analogue of

(6.29), we can write the electron density function in terms of amplitude and phase as

rðxÞ ¼ 1

5
f20þ 5 cos½2pðxÞ � 3:023� þ 2:5 cos½2pð2xÞ � 2:400� þ 4 cos½2pð3xÞ � 4:060�g

This equation would then be evaluated at a suitable interval x, 20ths of awould be appropriate, and

the function plotted. Practice with Fourier series follows from the Problems section.

6.3.3 Units of Electron Density

A consideration of (6.28), (3.29), and (3.63), shows that the units of r(xyz) are reciprocal volume—a

number (of electrons) density. The often-quoted eÅ�3 unit for electron density is incorrect: integra-

tion of electron density figure field of a peak in r(xyz) gives the number of electrons associated with

the atoms of that peak.

6.4 Holes and Atoms

When visible light is incident upon a circular hole in an otherwise opaque card, its diffraction

pattern is somewhat diffuse. The theory of this scattering is complex, but it can be simplified by

considering the pattern at an ideally infinite distance, the Fraunhofer diffraction pattern of the hole.

Fig. 6.5 The periodic function of Fig. 6.1, with amplitudes and phases for waves of indices 0, 1, 2, and 3; the

amplitudes for the indices 1, 2, and 3 have been given twice their weight according to (6.27) for r(X). The portion Amay

be regarded as the electron density r(X) with a repeat distance a of 5 Å. The portion B corresponds to the structure

factors, or harmonics, with their phases. X-ray diffraction may be regarded as the path A ! B. Structure determination

is the path B ! A, and the need for correct phases is clear. The values for the phases (which must be in radians) given

are based on their own wavelengths, 0, a, 2a, and 3a in order to comply with the definition of phase, Sect. 3.2.3
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Figure 6.6 shows a simple schematic experimental arrangement for viewing a Fraunhofer diffrac-

tion pattern. Parallel light from a laser source S is incident upon the object hole at O, which must be

smaller than the diameter of the laser beam. The diffraction pattern can be viewed or photographed

at F, the back focal plane of the lens L. The whole of the radiation is not completely in phase at F,

and its intensity falls off with the distance from F. The larger the hole, the more rapid is the fall off,

since the addition of waves at a given distance fromF is then less complete. The diffraction pattern of

the hole has circular symmetry, and it may be represented by a radial distribution function of the form

AðyÞ ¼ 2J1ðXÞ=X (6.36)

where A(y) is the amplitude of the scattered radiation at an angle y to the plane of the hole, J1 is a first-

order Bessel function, and X is a function that is proportional to the radius of the hole and to sin y=l.

Figure 6.7a illustrates the diffraction pattern of a hole; Fig. 6.7b is a plot of (6.36), normalized to

A(y) ¼ 6 at sin y=l ¼ 0, together with the atomic scattering factor curve for carbon, atomic number

6. Whereas A(y) alternates in sign, the atomic scattering factor f does not, but at low values of sin y=l

the two curves are closely similar. The diffraction pattern of the hole is its Fourier transform, and

(6.36) is a mathematical representation of the transform. Similarly, f is the transform of an atom, and

the f-curve shows its variation with sin y=l.

6.5 Generalized Fourier Transform

We refer back to Fig. 3.9, and the development thereof. Let the three-dimensional electron density for

the body at the point A, distant jrj from the origin, be r(r) with respect to a single electron at the origin
O. An element of volume dV around A has an electron content of r(r)dV, and its phase with respect to
O is 2p r�S. Hence, the contribution of the quantity r(r)dV to scattering in the direction y is

rðrÞ exp½i2pðr � SÞ�dV (6.37)

Then, the total scattering for the body is

ð

V

rðrÞ exp½i2pðr � SÞ� dV (6.38)

where the integral extends over the volume V of the body. This expression is the Fourier transform of

the body, and may be written

Fig. 6.6 Simple experimental arrangement for producing Fraunhofer diffraction: S helium–neon laser source; O

object; L lens (focal length ca. 1 m); F back focal plane of lens L, where the diffraction pattern may be recorded

(reproduced from Taylor and Lipson 1964)
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GðSÞ ¼
ð

V

rðrÞ exp½i2pðr � SÞ� dV (6.39)

Following Sect. 3.2.3, we have

IðSÞ ¼ GðSÞG�ðSÞ (6.40)

so that I(S) is the intensity of the transform. For an atom, we may usually assume spherical symmetry,

so that the Fourier transform for an atom is just f(S), where f is the atomic scattering factor. Since

centrosymmetry is a subgroup of spherical symmetry

f ðSÞ ¼ f �ðSÞ (6.41)

Fig. 6.7 Scattering from a

circular hole. (a) Diffraction
pattern (Airy disc) for a

hole of 5 mm diameter.

(b) Scattered amplitude

function AðyÞ for a given
hole radius, normalized

to equal the value of f

for carbon at sin y=l
(reproduced from Taylor

and Lipson 1964)
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so that

f ðSÞ ¼ ½ f ðSÞ f �ðSÞ�1=2 ¼ ½ f 2ðSÞ�1=2 (6.42)

In practice, f(S) is defined to be positive for all values of sin y. Strictly, there is a phase change of p

when X-rays are scattered, as we discussed in Sect. 4.1.2, but since it is true for all atoms it is usually

ignored, and f(S) is given by the Fourier transform of (6.39), where rðrÞ ¼ 4pr2CðrÞ, C(r) being an

appropriate radial wave function, or a combinations of wave functions, for the atom. Evidently,

we evaluated the Fourier transform f(S) surreptitiously in Sect. 3.2.5 (see also Problem 3.3).

6.5.1 Fourier Transform of a Molecule

Let the n atoms of a molecule be characterized by the coordinates Xj, Yj, Zj, (j ¼ 1, 2, 3, . . ., n), each

with a scattering factor fj(S). The vector rj from the origin to the jth atom is

rj ¼ Xj þ Yj þ Zj (6.43)

From (6.38), the wave scattered by the jth atom at a distance r from it, with respect to the origin, is

given by

ð

V

rðrÞ exp½i2pðrþ rjÞ � S� dV (6.44)

or

ð

V

rðrÞ exp½i2pðr � SÞ� dV exp½i2pðrj � SÞ� (6.45)

which becomes

fjðSÞ exp½i2pðrj � SÞ� (6.46)

Thus, the total wave from all n discrete atoms in the molecule is its Fourier transform G(S),
given by

GðSÞ ¼
Xn

j¼1

fj exp½i2pðrj � SÞ� (6.47)

For convenience, we write fj for fj(S), because we have already decided that fj is spherically

symmetrical, and its variation with y is understood.

6.5.2 Fourier Transform of a Unit Cell

Let xj, yj, zj now be the fractional coordinates of the jth atom in a unit cell, so that

rj ¼ xjaþ yjbþ zjc (6.48)
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From the Bragg equation, 2 sin y=l ¼ 1=d, and the fact that

S ¼ d� ¼ ha� þ kb� þ lc� (6.49)

we have

rj � S ¼ hxj þ kyj þ lzj (6.50)

Then, the total transform for the unit cell is

GðSÞ ¼
Xn

j¼1

fj exp½i2pðhxj þ kyj þ lzjÞ� (6.51)

which is identical to the structure factor equation (3.63) for the reflection hkl, where hkl is related to

S through (6.49).

The Fourier transform (6.51) is valid for all values of h, k, and l. In a crystal, however, because of

interference, the transform can be observed only at those points where scattering is reinforced, that is,

at the reciprocal lattice points hkl, where h, k, and l are necessarily integral. Thus, the structure factor

equation for a crystal is its Fourier transform sampled at the reciprocal lattice points. We may imagine

the Fourier transform for a molecule overlaid by the reciprocal lattice in the correct orientation: only

those points that satisfy the limiting conditions for the space group (and lie within the sphere of

reflection) could give rise to X-ray reflections.

6.6 Practice with Transforms

We can calculate transforms by (6.51), and we can prepare them experimentally by means of

the optical diffractometer. Both techniques can provide useful results in developing Fourier

transform theory.

6.6.1 Optical Diffractometer

The optical diffractometer permits the preparation of diffraction patterns in a relatively straightfor-

ward manner. In Fig. 6.8, S is a helium–neon laser of ca. 50 mW intensity,M1 andM2 are mirrors, E is

an expander that extends the laser beam without loss of spatial coherence, L1 and L2 are lenses, and O

is the object. The diffraction pattern is brought to a focus at F, the back focal plane of lens L2, where it

may be viewed with an eyepiece, photographed or input to a television camera; Figs. 6.7a and 6.9

were produced with such an instrument.

6.6.2 Single Hole

The diffraction pattern for a single hole has been illustrated in Fig. 6.7a, and its transform (6.36), was

shown in Fig. 6.7b. The diffraction pattern of a circular hole is often called the Airy disc, after its

discoverer.
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6.6.3 Two or More Holes

The Fourier transform of a single hole may be represented generally by (6.39), as well as by (6.36).

A second hole, displaced by a vector distant a from the first hole, has an identical transform function

but with a vector distance r + a from the origin. The total transform GT(S) is the sum of the displaced

and undisturbed transforms:

GTðSÞ ¼
ð

V

rðrÞ exp½i2pðr � SÞ� dV þ

ð

V

rðrÞ exp½i2pðrþ aÞ � S� dV

¼

ð

V

rðrÞ exp½i2pðr � SÞ� dVf1þ exp½i2pða � SÞ�g ¼ G0ðSÞf1þ exp½i2pða � SÞ�g (6.52)

where G0(S) is the transform of the undisturbed function. The term f1þ exp½i2pða � SÞ�g is a fringe

functionmodifying G0(S). It has the value 2 when a�S is integral, and is zero halfway between, as can

be shown from de Moivre’s theorem. Thus, the total transform is that of a single hole, Figs. 6.7a

or 6.9a, crossed by a system of planar fringes, Young’s fringes, as shown in Fig. 6.9b. The fringe

Fig. 6.8 Schematic arrangement of an optical diffractometer: S helium–neon laser source; M1 and M2 mirrors; E

beam expander; O object; L1 and L2 lenses; F back focal plane of lens L2, where the diffraction pattern may be recorded

(reproduced from Taylor and Lipson 1964)

Fig. 6.9 Diffraction patterns from circular holes. (a) One hole 1 mm diameter. (b) Two holes each of 1 mm diameter,

set 3 mm apart in the horizontal direction (reproduced from Taylor and Lipson 1964)
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system lies perpendicular to the direction joining the two holes. As the distance a is increased, the

distance between the individual fringes becomes smaller, an example of the reciprocal nature of the

diffraction process. The amplitudes of the fringes vary sinusoidally, alternate fringes having a relative

phase difference of p.

The addition of further pairs of holes of different spacings and differing orientations gives rise to

more fringe systems, all with the same reciprocal property discussed above. The complete diffraction

pattern of a molecule may be thought of as a superposition of many sets of such fringes. The sequence

of optical transforms in Fig. 6.10 shows not only an increase in the number of pairs of holes, as with

Fig. 6.10 Optical

diffraction patterns

illustrating scattering.

(a) Two-dimensional

lattice ( portion only).

(b) Single molecule

(simulated benzene ring).

(c) Two such molecules.

(d) Four molecules.

(e) A row ( portion only)

of six molecules. (f) A net

(portion only) of

molecules; this pattern

resembles closely an X-ray

diffraction photograph

(reproduced from Taylor

and Lipson 1964)
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the benzene ring itself, but also the effect of increasing the numbers of benzene ring entities in both

one and two dimensions.

6.6.4 Change of Origin

If the origin to which a scattering species is referred be changed by the addition of a fixed vector p to

all rj vectors, then from (6.47)

GpðSÞ ¼
Xn

j¼1

fj exp½i2pðrj þ pÞ � S� ¼
Xn

j¼1

fj exp½i2pðrj � SÞ� exp½i2pðp � SÞ�

¼ G0ðSÞ exp½i2pðp � SÞ� (6.53)

In (6.53), G0(S) is modified by the fringe function exp½i2pðp � SÞ�. Since, in practice, ðp � SÞ is
integral at points where the transform can be observed, it follows that exp½i2pðp � SÞ� has a magnitude

of unity. Thus, the amplitude (and intensity) of the transform is invariant under translation, which can

be demonstrated as mentioned in Sect. 6.1. The phase, however, is dependent upon position, from

which it is apparent that a true position cannot be determined without knowledge of relative phases,

which is the central problem in crystal structure determination, as we have remarked already.

6.6.5 Systematic Absences

At this point, we can show how the Fourier transform of a crystal can predict systematic absences.

Suppose that the vector displacement a in (6.52) is replaced by ða=2þ b=2Þ, consistent with a

C-centered unit cell. Then, we have

GCðSÞ ¼ G0ðSÞ 1þ exp i2p 1=2 ðaþ bÞ � S½ �f g (6.54)

which, from (6.49), becomes

GCðSÞ ¼ G0ðSÞf1þ exp½ipðhþ kÞ�g (6.55)

For (h + k) odd, GC(S) is identically zero, but it equals 2G0(S) for (h + k) even, which we

recognize as characteristic for a C-centered unit cell; see also Sect. 3.7. Equations like (6.55) can

be developed for all translational symmetries. Such results show clearly those reciprocal lattice points

that cannot be sampled, whatever the nature of the contents of the unit cell.

6.6.6 Reconstruction of the Image

Consider again the diffraction pattern of the hypothetical two-dimensional crystal in Fig. 6.10f. The

lattice in this example is defined by the separations of the simulated benzene molecules. The weighted

reciprocal lattice is the transform of a single molecule, Fig. 6.10b, crossed by fringes, the principal

sets of which are governed by the basic translations of the lattice, Fig. 6.10a; the continuous transform

is decomposed into, or sampled as, a spot pattern.
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In reconstructing an image from its diffraction pattern, our object is to attain, say, the structure of

Fig. 6.10f given only its diffraction pattern, or transform. The fringes themselves are rather like a

diffraction grating. A set of true sinusoidal fringes itself used as a mask, or grating, would produce a

diffraction pattern that is the original two-hole object; see Sect. 6.6.3. Thus, in reconstructing the

object from its diffraction image, we are really seeking the diffraction pattern of the diffraction

pattern, or the transform of the transform. We may express this result mathematically in the following

manner.

The transform of (6.39) for a crystal gives an expression for the distribution of the electron density

r(r) in the form (note the change of sign of the exponent)

rðrÞ ¼
ð

v

jGðSÞj exp½�i2pðr � SÞ� dv (6.56)

where the integral extends over a volume n in reciprocal space. Using (6.40) in the context of the unit

cell of a crystal, we can now write

rðrÞ ¼

ð

v

jFðhklÞj exp½�i2pðr � SÞ� dv (6.57)

Equation (6.56), or the equivalent (6.57), is the Fourier transform of (6.39). Thus, the transform in

Fig. 6.10f corresponds to the calculation in (6.39), whereas the structure in Fig. 6.10f is the result of

evaluating (6.56), or (6.57).

From the (h0l) weighted reciprocal lattice section of the crystalline platinum derivative of

phthalocyanine, a mask, Fig. 6.11a, was prepared in which the relative amplitudes of the structure

factors were indicated by the sizes of the holes. When this mask was used in the optical diffrac-

tometer, the transform obtained was that shown in Fig. 6.11b. Comparison with the electron density

map from the fully solved structure, Fig. 6.11h, shows that the recombination obtained furnishes a

good reconstruction of the molecule which, in the crystal, gave the spot pattern from which the

mask was prepared. One will ask immediately how the phase problem has been overcome in this

reconstruction, as it appears not to have been even considered.

We have, in this example, a rather special case. In the crystal of platinum phthalocyanine, the

space group is P21/c and there are two molecules in the unit cell. Thus, the platinum atom occupies a

special position at the origin in the asymmetric unit, and makes a positive contribution to all structure

factors. It is such a heavy atom (high atomic number) that it dominates the contributions from all

other atoms in the structure so causing all F(h0l) structure factors to have a positive sign (zero phase

angle). Thus, all h0l structure factors have the same relative phase, and the transform of the

diffraction pattern gives a true representation of the structure without further reference to phase.

Figure 6.11c–g and c0–g0 shows different portions of the h0l reciprocal lattice section and the

corresponding transforms. The effect of the cutoff on the resolution is well illustrated.

Representation of Fourier Transforms
If an object is centrosymmetric and the origin is taken at a center of symmetry, then the Fourier

transform is real, Sect. 3.6.2, and only one diagram is needed to represent it. This situation exists for

the h0l section of the transform of platinum phthalocyanine, Fig. 6.11a. If the object is not centro-

symmetric, then it is necessary to use two diagrams to display the transform, either amplitude and

phase or real and imaginary parts. The phase, or the real and imaginary components, will vary

according to the choice of origin, but the amplitudes remain invariant under change of origin;

see also Sect. 6.6.4.
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Fig. 6.11 Platinum phthalocyanine. (a) Mask of the h0l diffraction pattern. (b) Optical transform of (a), showing a

complete molecule and portions of neighboring molecules in the (projected) crystal structure [3]. (c–g) Increasingly large
portions of the diffraction pattern. (c0–g0) Corresponding transforms—the effect of the cutoff of the pattern on the

resolution in the transform is evident. (h) Electron density contour map. All the diffraction patterns relate to the h0l

data, so that the corresponding transforms are x, z projections in real space. (Reproduced from Taylor and Lipson 1964)



6.6.7 Transforms and Inverse Transforms

Consider a one-dimensional square-wave function defined by

f ðxÞ ¼ 2 for� a=2 � x � a=2
0 for� a=2>x>a=2

�

which has the form shown in Fig. 6.12. The Fourier transform in the one dimension x is, from (6.39),

GðSÞ ¼

ða=2

�a=2

2 expði2pSxÞ dx (6.58)

which is solved readily to give

GðSÞ ¼ 2 sinðpSaÞ=ðpSÞ ¼ 2a sinðpSaÞ=ðpSaÞ (6.59)

This transform, in which the function sin pSa=pSa is typical for the transform of a pulse

waveform, has the form shown in Fig. 6.13, where G(S) is plotted as a function of S in units of 1/a.

It may be noted that, characteristically, the length 2/a between the first two nodes on each side of the

central maximum is the reciprocal of the width of the function f(x). We would have obtained the same

result if we had used the real part of exp ði2pSxÞ in (6.58), that is, 2
Ð a=2
0

2 cosð2pSxÞ dx, because

Fig. 6.12 indicates an even function: f(�x) ¼ f(x).

Fig. 6.12 Square wave of amplitude 2.0, defined for the period�a/2 to a/2; f(x) ¼ 2.0 for � a=2 � x � a=2; f(x) ¼ 0

for jxj > a/2

Fig. 6.13 Fourier transform of the square wave in Fig. 6.12. Subsidiary, decreasing maxima arise at intervals

ð2nþ 1Þa=2 ðn ¼ 1; 2; . . . Þ
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Consider next the function

f ðxÞ ¼
1� 2jxj for� 1

2
� x � 1

2

0 for jxj> 1
2

(

which has a saw-tooth wave form, Fig. 6.14. Because of the symmetry of this function about the point

x ¼ 0, the Fourier transform of this function has the general form

GðSÞ ¼ 2

ð0

�1=2

ð1þ 2xÞ cosð2pSxÞ dxþ 2

ð1=2

0

ð1� 2xÞ cosð2pSxÞ dx (6.60)

which may be simplified to 2
Ð 1=2
0

cosð2pSxÞ dx�4
Ð 1=2
0

x cosð2pSxÞ dx. The first of these two integrals
solves to sin pS=pS. Integrating by parts, the second integral gives ð1=p2S2Þ½1� cosðpSÞ��

ð1=pSÞ sinðpSÞ, so that the total result is

GðSÞ ¼ ð1=p2S2Þ½1� cosðpSÞ� (6.61)

It is left as an exercise to the reader to plot this transform, as a function of S, (S ¼ 0, 0.05, 0.10,. . .),

and to show that (6.61) is obtained also if expði2pSxÞ is used in place of cos(2pSx) in (6.60). The plot

of the transform should have a maximum at S ¼ 0, zero values at S ¼ 2n (n ¼ 1,2,3,. . .), and small

decreasing maxima at S ¼ 2n + 1 (n ¼ 1,2,3,. . .).

A function and its Fourier transform are reciprocally related; we noted this feature in studying

Fourier series in Sect. 6.3. We can illustrate this property by means of two programs, TRANS1 and

FOUR1D, which are part of the suite of programs that are described in Sects. 13.6.1 and 13.6.3.

Consider the one-dimensional, periodic function f(X) listed in Table 6.1 at 30ths of the repeat

distance along the X axis, from n ¼ 0 to 30/30. It can be represented by a series of sine and cosine

terms with coefficients determined by the program TRANS1, which calculates the Fourier transform

Fig. 6.14 Saw-toothed wave form for the period �
1

2
to

1

2
; f ðxÞ ¼ 1� 2jxj for jxj �

1

2
; f ðxÞ ¼ 0 for jxj>

1

2
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of the function. When this program is executed on the data shown in Table 6.1, with hmax ¼ 10, the

coefficients listed in Table 6.2 are obtained. Note that only the values of the function f(x) are entered

as data. If these coefficients are used with the program FOUR1D, which calculates a one-dimensional

Fourier series, the initial function is regained, Table 6.3—the transform of the transform is the

original function. Details on the manipulation of these programs are given in Sects. 13.6.1 and 13.6.3.

However, we mention here that the value of h should be below the critical value of D/2, where D is

the sampling interval, 30 in this example. The sampling theorem states that if the Fourier transform of

a function is zero for all frequencies greater than a critical frequency fc, that is, its bandwidth is

limited to frequencies smaller than fc, then the continuous function can be determined from a

knowledge of its sampled values. The function in Table 6.1 is not of this character, so that the

maximum frequency h used should be 1
4
to 1

3
of the sampling interval, 30. The reader may care to

investigate this property by using the programs with different values of h. Further reading about

sampling may be found in the literature [4].

This problem is rarely manifested in the normal Fourier syntheses of X-ray crystallography. The

experimental Fo data fall off in magnitude at the higher values of h, k, and l because of the attenuation

arising from the temperature factor effects on the atomic scattering factors, Sect. 4.1.8. In working

Table 6.1 Periodic function r(X), listed at 30ths (n) of the repeat distance along the X axis

n f(x) n f(x) n f(x) n f(x)

0 50 1 52 2 57 3 63

4 69 5 76 6 81 7 84

8 85 9 83 10 79 11 73

12 66 13 60 14 50 15 42

16 37 17 32 18 41 19 62

20 90 21 117 22 126 23 123

24 113 25 95 26 78 27 65

28 56 29 51 30 50

Table 6.2 Coefficients A(h) and B(h), for h ¼ 0–10, transformed from r(X) data in Table 6.1 using TRANS1

h A(h) B(h) h A(h) B(h) h A(h) B(h) h A(h) B(h)

0 71.87 0.00 1 2.22 �4.61 2 �15.08 �2.53 3 0.55 5.84

4 2.14 �1.54 5 �0.99 �0.21 6 0.19 0.36 7 0.15 �0.25

8 �0.26 �0.04 9 �0.07 0.13 10 0.43 0.06

Table 6.3 Transformation of the coefficients A(h) and B(h) from Table 6.2, using FOUR1D, to give the original

function f(x) of Table 6.1

n f(x) n f(x) n f(x) n f(x)

0 50.43 1 51.95 2 56.47 3 63.52

4 69.15 5 75.50 6 81.72 7 83.67

8 84.48 9 83.91 10 78.39 11 72.55

12 67.43 13 59.02 14 50.57 15 43.00

16 34.66 17 32.62 18 41.49 19 60.90

20 90.76 21 117.64 22 126.27 23 122.34

24 112.70 25 95.35 26 77.50 27 65.48

28 56.99 29 50.54 30 50.43
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with the sharpened Patterson function and the E map (q.v.), the sharpening inherent in the coefficients

in the former, reduces the tendency to zero of the higher order spectra, whereas in the latter the

coefficients in the Fourier transformation to an E map are both sharpened and significantly decreased

in number. We consider in later chapters how these cases are treated in practice.

6.6.8 Delta Function

Another important function, mentioned in Sects. 4.1.8 and 4.2.2, is the Gaussian distribution

f ðxÞ ¼ ð1=kÞ expð�px2=k2Þ (6.62)

where k may be regarded as a width of the function. In finding the Fourier transform of this function,

we can make use of the fact that it is an even function, so that we use the cosine part of exp(i2pSx) and

determine twice the sum from zero to infinity, that is,

1

k

ð1

�1
expð�px2=k2Þ expði2pSxÞ dx ¼ 2

k

ð1

0

expð�px2=k2Þ cosð2pSxÞ dx

From tables of standard integrals, or otherwise [5],

ð1

0

expð�a2x2 cosðbxÞÞ dx ¼ ðp=4a2Þ1=2 expð�b2=4a2Þ

so that the required Fourier transform becomes

GðSÞ ¼ expð�pk2S2Þ (6.63)

Thus, the transform of a Gaussian function is another Gaussian, in reciprocal space, of a width 1/k,

the reciprocal of the width k in real space. The integral

1

k

ð1

�1
expð�px2=k2Þ dx

evaluates to ð1= ffiffiffi
p

p ÞG 1

2

� �
, which is unity (normalized) for all values of k.

Consider next the function

dðxÞ ¼ lim
k!0

ð1=kÞ expð�px2=k2Þ (6.64)

This function has the following properties:

dðxÞ ¼ 0 for x 6¼ 0

1 for x ¼ 0

�

ð1

�1
dðxÞ dx ¼ 1
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and is known as the (Dirac) d-function; it corresponds to an infinitely sharp line of unit weight at the

origin. The shape of the function resembles somewhat that of the atomic scattering factor. As the

width k in (6.64) tends to zero, so the transform of the d-function tends to unity, and reaches it in the

limit where k ¼ 0. We can picture it from Fig. 6.12 but with a height of 1.0: as a ! 0 so f(x) ! d(x);

at a ¼ 0, f(x) ¼ d(x) ¼ 1, that is, the Fourier transform of a d-function, G(S), is unity.

This result arises also from the general integral

ð1

�1
f ðxÞdðxÞ dx ¼ f ð0Þ (6.65)

and if we let f ðxÞ ¼ expði2pSxÞ, then
ð1

�1
expði2pSxÞdðxÞ dx ¼ expð0Þ ¼ 1

If the d-function is located at x ¼ x0, we have f ðxÞ ¼ dðx� x0Þ. The Fourier transform of f(x)

is then

GðSÞ ¼
ð1

�1
dðx� x0Þ expði2pSxÞ dx ¼

ð1

�1
dðxÞ exp½i2pSðxþ x0Þ dx

which, from (6.65), leads to

GðSÞ ¼ expði2pSx0Þ (6.66)

Thus, the Fourier transform of a d-function at a point x0 is equal to exp(i2pSx0). When the

d-function is at the origin, that is, x0 ¼ 0, its Fourier transform is at unity for all values of S.

Of particular interest is a set of d-functions that define a one-dimensional lattice of spacing a.

Its Fourier transform will be another set of d-functions of spacing 1/a that define the corresponding

one-dimensional reciprocal lattice. While our discussions have been confined, for convenience, to

one-dimensional space, the results are equally true in higher dimensions, and we shall consider such

applications in later sections.

6.6.9 Weighted Reciprocal Lattice

As a final, practical example, we illustrate the power of the Fourier transform with the crystal

structure of euphenyl iodoacetate, Figs. 1.7 and 1.8. The crystal is monoclinic, with unit-cell

dimensions a ¼ 7.260 Å, b ¼ 11.547 Å, c ¼ 19.217 Å, b ¼ 94.10	. There are two molecules in

the unit cell, and systematic absences indicated space group P21 or P21/m. The latter space group is

not possible, because the two molecules in the unit cell would have to lie on special positions of

symmetry either m or �1. The chiral nature of the molecule, a tetracyclic triterpene, precludes both of

these symmetries, so that the two molecules must occupy general positions in space group P21.

Figure 6.15 is a reconstruction of the X-ray photograph, or weighted reciprocal lattice, of the

h0l section for this crystal; this section is centric, symmetry p2. Since the iodine atom is very

much heavier than the other atoms present in the crystal, the unit cell may be imagined, to a first

approximation, as a pair of iodine atoms distant jdj apart.
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From Sect. 6.6.3, we would expect to find a set of fringe systems running through the transform,

arising from the heavy iodine atoms. In Fig. 6.15, the two most obvious fringe systems at an angle of

85.90	 (b*, or the supplement of the b-angle in the monoclinic system) to each other arise from the

unit-cell translations a and c. In addition, the dashed lines indicate another prominent fringe system,

that arising from the iodine atoms. Note that the system is more prominent at higher angles, because

the scattering from heavy atoms falls of relatively much less than that from the lighter atoms present

in the structure.

The perpendicular spacing of the fringes is 0.18 reciprocal units which, because Cu KaX-radiation

(l ¼ 1.5418 Å) was used in the experiment, corresponds to an I–I spacing of 8.565 Å in projection,

lying in a direction normal to the fringe system, that is, at approximately 45	 to z*, Fig. 6.16.

Measuring X0 and z along the x* and z axes respectively, we have

X0 ¼ ðd=2Þ sinð45þ b� 90Þ ¼ 3:237A

Z ¼ ðd=2Þ cosð45þ b� 90Þ ¼ 2:804A

From the figure, X ¼ X0 cosðb� 90Þ, whence X ¼ 3.229 Å. Hence, the fractional coordinates are

x ¼ 0.445 and z ¼ 0.146. After the structure was fully solved [6], the refined values of these

coordinates were x ¼ 0.4274 and z ¼ 0.1431.

Fig. 6.15 The h0l section of the weighted reciprocal lattice of euphenyl iodoacetate. The I–I fringe spacing (three lines

of zero amplitude are indicated) is 0.18 reciprocal lattice units, and the I–I vector makes an angle of ca. 45	 with the

z* axis (It may help to inspect the diagram edgewise.)
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6.7 Some General Properties of Transforms

We summarize here in Table 6.4 some of the more important properties of Fourier transforms in

their applications to X-ray crystallography; for each property, real and reciprocal space may be

interchanged.

6.8 Convolution

We consider here the last of the properties of transforms listed in Table 6.4. The convolution integral is

often called the “folding” integral, for a reason that will become clear as we continue the discussion.

6.8.1 Convolution and Diffraction

The Fourier transform of a slit diffraction grating of given width can be considered in terms of the

diffraction at a single slit of that width, together with that of an ideal, infinite grating. We have, first,

the diffraction pattern, or transform, of the single slit, shown in Fig. 6.17a, and then the transform of

the ideal grating, Fig. 6.17b. These two transforms, in reciprocal space, are multiplied, point by point,

to give the product in real space (Fig. 6.17c), which is called the convolution of the two functions.

In a crystal, we have the contents of the unit cell and a point function, the lattice, in Bravais space.

The convolution of these two functions is the diffraction pattern in reciprocal space. The transform of

a lattice is another set of points, the reciprocal lattice points, and it has unit value at each point and

zero value elsewhere. The product of the two transforms is the transform of the contents of the unit

cell sampled at the reciprocal lattice points.

Fig. 6.16 Geometry of the

reconstruction of the x and

z coordinates of the iodine

atoms in euphenyl

iodoacetate. The b angle is

94.1	; X, X0, and Z are

measured along the x, x*,

and z axes, respectively.

Note that since the space

group of euphenyl

iodoacetate is P21, the y

coordinates of the iodine

atoms may be set at �
1

4
,

so as to fix the position of

the origin with respect to

the symmetry elements
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The image of a diffraction pattern is influenced by the divergence of the incident X-ray beam, the

crystal shape and the mosaic structure of the crystal, because all of these factors have a bearing on the

Fourier transform of the crystal.

6.8.2 Convolution Integral

The convolution of two functions is a physical concept of significance in divers scientific fields.

We consider the process of convolution now in a little more detail. Consider two functions f(r) and
g(r) in Bravais (real) space, and let their transforms in reciprocal space be F(S) and G(S), respec-
tively. The Fourier transform of the product of these two transforms may be written as

TðrÞ ¼
ð
FðSÞGðSÞ expð�i2pr � SÞ dVS (6.67)

and is a function in Bravais space. From earlier sections we know that F(S) is given by

FðSÞ ¼

ð
f ðr0Þ expði2pr0 � SÞ dVr0 (6.68)

where r0 is a vector different from r in general, but ranging over the same Bravais space, and the

change of sign of the exponential term arises because we are considering the reverse transformation.

Thus, we have

Table 6.4 Properties of Fourier transforms in real and reciprocal space

Operation in Bravais space Result in reciprocal space

Rotation about an axis Rotation about a parallel axis at the same speed

Change of scale in a given direction Reciprocal change of scale in the same direction

Translation Modulus unchanged; phase modified by a fringe function

Addition of n units Vector summation of n transforms referred to a common origin
(a) Two parallel units Transform for one unit crossed by parallel, planar fringes;

maximum amplitude doubled
(b) Two units related by a center of symmetry Transform for one unit crossed by wavy fringes which may be

approximately planar in limited regions

Convolution of two functions Transform is the product of the individual transforms

Fig. 6.17 Relationship between amplitudes of diffraction. (a) Single slit of finite width (thin line). (b) Ideal slit grating
(dashed line). (c) Grating of finite-width slits (bold line). The transform of the grating of finite-width slits is the convolution

of the transforms of the single slit and the ideal grating (reproduced from Taylor and Lipson 1964)
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TðrÞ ¼
ð
GðSÞ

ð
f ðr0Þ expði2pr0 � SÞ dVr0

� �

expð�i2pr � SÞ dVS

¼

ð

f ðr0Þ

ð

GðSÞ exp½�i2pðr� r0Þ � S� dVS

� �

dVr0 ¼

ð

f ðr0Þgðr� r0Þ dVr0 (6.69)

which is the convolution f ðrÞ � gðrÞ, or c(r); g(r � r0) is the function g(r) with its origin moved

from r ¼ 0 to r ¼ r0.
We can give a physical interpretation to this process. In Fig. 6.18a, an element dr0 of the function

f(r0) is defined. According to (6.69) each such element of f(r0) must be multiplied by the sharp

function g(r � r0) in Fig. 6.18b before integration. In Fig. 6.18c, this process is shown for three

elements, with the result in Fig. 6.18d. The completed convolution is shown in Fig. 6.18e; it is evident

that the function f(r0) has been repeated at each value of g(r). Note that g(r � r0) is g(r0) mirrored, or

folded, across the ordinate axis and shifted by an amount r; the convolution integral is often referred

to as the folding integral.

The converse of (6.69) is equally true, that is,

T½cðrÞ� ¼ FðSÞGðSÞ ¼

ð ð

f ðr0Þgðr� r0Þ dVr0

� �

expð�i2pr � SÞ dVr

¼

ð

f ðr0Þ

ð

gðr� r0Þ dVr

� �

expð�i2pr � SÞ dVr0 (6.70)

If now we let r � r0 ¼ r00, where r00 is another independent variable in the same space as r and r00,
then

Fig. 6.18 Convolution of two functions in the one-dimension space of r. (a) Function f(r0), showing an element

of width dr0. (b) Function g(r), showing two sharp peaks. (c) Function f(r0) with three selected elements dr0.
(d) Convolution of (b) and (c); the three elements are reproduced by g(r), modified by the values of that function.

(e) The completed convolution f ðr0Þ�gðrÞ; because the function g(r) does not have infinitesimal width, f(r0) is

reproduced in a slightly modified form (6.14)
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T½cðrÞ� ¼
ð
f ðr0Þ expð�i2pr0 � SÞ dVr0

ð
gðr00Þ expð�i2pr00 � SÞ dVr0 ¼ FðSÞGðSÞ (6.71)

so that the transform of the convolution is the product of the individual transforms.

6.8.3 Convolution and Crystal Structure

We have shown in the previous section, and illustrated in Fig. 6.18, that the convolution, in one-

dimensional space, of a function f(r) with another function g(r) consisting of two sharp peaks, results

in f(r) being repeated, modified slightly in accordance with the width of g(r), at the two locations in g(r).
A pair of d-functions can be derived from g(r) by allowing the width of the sharp peaks, normalized to

unit area, to be reduced while maintaining the area at unity. In the limit as the width becomes infinitely

small, the function becomes infinitely high at each location.

We now have a pair of d-functions that have the value unity at each location but zero otherwise. If

these d-functions were to be convolved with f(r), then f(r) would be repeated exactly at the locations of
the r vectors. We may write this process in mathematical terms in the following way. Initially, we have

the convolution expressed as

cðrÞ ¼

ð
f ðr0 � rÞgðrÞ dVr

where g(r) is normalized to unit area. As the width tends to infinitesimal size, it becomes

cðrÞ ¼

ð
f ðr0 � rÞdðrÞ dVr ¼ f ðr0Þ (6.72)

from Sect. 6.6.8.

If we translate the d-function by a vector r00 along the positive axis, so that the d-function is defined
as d(r � r00), then the convolution becomes

cðrÞ ¼

ð
f ðr0 � rÞdðr� r00Þ dVr (6.73)

so that the function f(r0) is reproduced at a vector distance r00 from the origin, that is, it is the function f

(r � r00). It is straightforward to extend the argument to a one-dimensional lattice. The convolution of

f(r0) with an infinite array of d-functions, gðrÞ ¼
P1

j¼�1 dðr� jr00Þ, is given by

cðrÞ ¼
X1

j¼�1

f ðr� jr00Þ (6.74)

which is periodic in r00, Fig. 6.19.
Thus, a crystal structure may be regarded first as the convolution of a unit cell and its contents,

delineated by vectors a, b, and c, with a three-dimensional set of d-functions that have the value unity

at each Bravais lattice point but zero elsewhere.

The transform of the unit-cell contents may involve one or more molecules, and is a continuous

function in reciprocal space. However, the conditions for interference lead to the fact that this
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transform may be sampled, experimentally, only at the reciprocal lattice points, so that the convolu-

tion of the unit cell and the lattice of d-functions is the product of the transform of the unit-cell

contents and the reciprocal lattice, and is made manifest in the experimental diffraction pattern.

The essence of this process may be grasped from Fig. 6.20, in which the transform of the contents

of the centrosymmetrical unit cell of naphthalene, projected on to the ac plane, has been overlaid with

a drawing of the x*, z* reciprocal lattice in the correct orientation. The weights of the transform at the

reciprocal lattice points h0l correspond to the values of jF(h0l)j.

Fig. 6.19 Convolution. (a) Structural entity f(r). (b) The function g(r) is an infinite set of d-functions d(r).
(c) Convolution cðrÞ ¼ f ðrÞ � gðrÞ

Fig. 6.20 Fourier transform of the h0l projection of the centrosymmetric structure of naphthalene, showing the a*

and c* directions. The transform is overlaid with a drawing of the reciprocal lattice in the correct orientation. The

amplitudes of the jF(h0l)j data are the amplitudes of the transform at the reciprocal lattice points. It can be seen readily

that reflections such as 201, 202, and 801 are sensitive to small changes in the orientation of the reciprocal lattice,

whereas reflections such as 203, 603, and 802 are relatively insensitive under rotation
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6.9 Structure Solution in Brief

An X-ray diffraction pattern of a crystal can be recombined to form an image of the object from which

it was derived, provided that we know the indices h, k, l, the amplitude jFj and the relative phase f

for each reflection. The absence of direct measurements of the phases means that they must be

obtained indirectly. If it can be done satisfactorily, a Fourier transform (Fourier series) can be used to

convert the reciprocal-space diffraction pattern into a real-space object, the crystal structure. This

section is just a brief overview of some of the problems in crystal structure analysis, and how they

may be overcome.

6.9.1 Use of Heavy Atoms

We considered a special case of this method in Sect. 6.6.6, where all F(h0l) data for platinum

phthalocyanine were positive in sign. In a more general case, the heavy atom which acts like the

speck of dust on the transparency in Sect. 6.1 will lie at a general position in the unit cell, probably

related to one or more atoms by symmetry.

Assuming for the moment that we can determine the coordinates of the heavy atoms in the unit

cell, see, for example, Sect. 6.6.9, we could calculate approximate structure factor amplitudes

and phases for the reflections. Then, the Fourier transform (6.57) becomes a summation, or series,

with coefficients of the form Fo expðifcÞ, where the Fo data are the experimentally determined

structure amplitudes and fc is the relative phase calculated from the positions of the heavy atoms

alone.

We may write these coefficients in the form

Fo expð�ifcÞ ¼ ðFo=jFcjÞjFcj expð�ifcÞ (6.75)

where jFcj is the amplitude produced by the heavy atoms alone. The right-hand side of (6.75) is the

product of the transform of the heavy-atom portion of the structure and a function (Fo/jFcj) which is of
zero phase for every reflection. The result in real space is the convolution of the heavy-atom portion

of structure with the transform of (Fo/jFcj). This transform, because of its zero phase, will have a large

peak at the origin, and the convolution will tend to make the heavy-atom part of the structure

dominant. However, because Fo is not equal jFcj, there will be a background effect imposed upon

the heavy-atom part of the structure that will modify it in the direction of Fo. If the heavy-atom

positions are correct, or nearly so, the convolution will lead to an improved model for the structure. It

is important to realize, however, that because of the nature of (6.75) such a convolution is always

biased toward the heavy-atom part of the structure, and success with this method depends strongly on

the degree of correctness of the heavy-atom positions.

Series Termination Effect
If a Fourier series is calculated with data only up to a certain value sin ymax, it is equivalent to

multiplying the transform of the structure by a function that is unity up to sin ymaxand zero above it.

The result is the convolution of the complete transform with that of the exclusion function. In two

dimensions, the exclusion function simulates a circular hole, and its transform is a Bessel function,

Fig. 6.7, which has a central maximum surrounded by maxima of alternating sign and decreasing

magnitude. The transform of the limited data set is, thus, the complete transform convoluted with the

Bessel function. The result can be seen in electron density maps as contours around the atomic
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positions that decrease to zero from the central maximum, and then are surrounded by ripples, or rings

of decreasing magnitude and alternating sign. The effect is most noticeable in the regions around the

heavy atoms in a structure; see, for example, Fig. 11.2a.

6.9.2 General Phase-Free Transform: Patterson Function

Although a diffraction pattern is invariant under the operation of translation, a representation of

translation is contained within the pattern, because when the pattern is recombined the translational

property of the object crystal is revealed. The relative phases at different parts of a transform do

change under translation, but the changes are not evident because we observe the intensity of the

transform:

I ¼ jFj2 (6.76)

Equation (6.76) is the counterpart of (6.40) for observations at reciprocal lattice points.

Recombination based on intensity alone contains no information about the lateral position of the

object. All possible pairs of scattering points in the object will be reproduced with the correct

orientation and separation, but symmetrically disposed about the center of the image. Hence, the

image from the transform of intensities is that of vector positions between pairs of scattering points

(atoms) in the object, all taken to a common origin. This is the Patterson function, Sect. 7.4.2, and

may be thought of as the result of the superposition of numerous fringe systems, all of which have a

positive sign at the origin of the unit cell. Mathematically, the transform of intensity, G(S)G*(S), is
the convolution of the transform of G(S), which is the electron density, with the transform of G*(S),
which is the electron density inverted in the origin.

In the hypothetical rectangular four-atom structure, Fig. 6.21a, there are 42, or 16, interatomic vectors.

Four of them are of zero length and coincide at the origin, Fig. 6.21b, and 12 are arranged in centrosym-

metric pairs. Those formed by them symmetries of the rectangle, Fig. 6.21a, are of doubleweight,whereas

those formedby symmetry 2, are of singleweight. Figure 6.21b can be considered in terms of Fig. 6.21a by

transferring all interatomic vectors (arrowed) to a common origin.

Fig. 6.21 Convolution

with a rectangle of

scattering centers (atoms).

(a) Hypothetical four-atom
structure of coordinates

� (0.1, 0.2); interatomic

vectors are shown by

arrows. (b) Schematic

convolution of the four-

atom structure with its

inversion in the origin.

Multi-weight peaks arise

from a superposition of

identical vectors
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Alternatively, we can think of Fig. 6.21b as Fig. 6.21a convoluted with its inversion in the origin

(which is the same as itself in this centrosymmetric arrangement). Thus, the structure in Fig. 6.21a is

drawn four times, with its center of inversion at each of the atoms of the inverted structure in turn, and

in the same orientation to give Fig. 6.21b.

We can arrive at the same results by calculating the appropriate transforms. Using (6.51) with

fj ¼ 6 (carbon), and neglecting the change in fj with y, Fig. 6.22 was plotted for h ¼ 0–10 and

k ¼ 0–10. The contours (disregard the three vectors highlighted for this application) show clearly the

fringe systems that are perpendicular to each of the six pairs of points in Fig. 6.21a. In Fig. 6.23, the

phase-free transform of the intensities, which are the squares of the values shown in Fig. 6.22 suitably

scaled, we see the 16 peaks and 4 rectangles to which we referred above, just as in Fig. 6.21b. The

orientations and separations of the peaks are correct, but there is a fourfold ambiguity with respect to

the lateral positions. If, by some stratagem, we were able to determine the correct relative phases, that

those shown in Fig. 6.22 were in fact correct, then the transform of these amplitudes, with those

phases, would lead to the one correct result, Fig. 6.24, from which we determine the atomic

positions � (0.1, 0.2). We shall investigate the required cunning in the next two chapters.

6.9.3 Sign Relationships

Relationships between signs (or phases, in the most general case) form a basis of the direct method of

structure determination, discussed in see Chap. 8. At this stage, it is interesting to show how an

important sign relationship may be deduced from the transform of a centrosymmetric arrangement of

atoms, Fig. 6.22, that will be considered to exist within a crystal unit cell.

Three vectors of the type h, k, and h � k, where we use h to represent the triplet hkl and k another

triplet h0k0l0, form a triangle in reciprocal space, with one vertex of the triangle at the origin; these

vector terminations correspond to X-ray reflections.

Fig. 6.22 Calculated

transform for the four-atom

structure (Fig. 6.21a)

convolved with its

inversion in the origin;

contours are shown at �20,

�10, 10, and 20. Fringe

systems are apparent,

corresponding to the

normals to the directions

between all pairs of atoms

in the four-atom structure

(The vectors labeled h, k,
and h � k refer to the

discussion in Sect. 6.9.3.)
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If, as in this chosen example, the vectors terminate in regions of relatively high magnitude in the

transform (strong reflections), then by counting the number of times that the zero-boundary contour is

traversed we can arrive at the signs of the transform at the reciprocal lattice points h, k, and h � k,
since the transform must be positive at the origin:

Vector hkl

Times zero

boundary crossed Sign

h 450 3 �
k 420 2 +

h � k 030 1 �

Fig. 6.23 Calculated

transform from Fig. 6.22

for h and k ¼ 0–10, using

the squares of the given

amplitudes (phase-free)

suitably scaled; contours

are shown at 20, 30, 40, and

50, with the origin peak

shaded. The rectangles are

correct in size and

orientation, but there is a

fourfold ambiguity in the

lateral positions in the x, y

plane. The ambiguity is

related to the symmetry and

not to the number of atoms

in the structure

Fig. 6.24 Calculated

transform from Fig. 6.22

for h and k ¼ 0–10, using

the given amplitudes and

signs; contours are shown

at 6, 14, 22, and 30.

A single, correct structure

is now revealed
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Hence,

sðhÞsðkÞsðh� kÞ ¼ þ1 (6.77)

which is an expression of the triple product (∑2) sign relationship, or Sayre’s equation, Sect. 8.2.3, for

a centrosymmetric crystal. This ∑2 relationship was used, apparently unwittingly as such, in solving

the structure of hexamethylbenzene, Sect. 8.2.3.

There will always be some vectors that terminate in a region of low magnitude in the transform

(weak reflections), such as 810 and 840 in Fig. 6.22. Then, no certain conclusion can be drawn about

their phases, because of the difficulty in locating exactly the zero-boundary contours in practice.

6.10 Problems

6.1 Show that
Ð c=2
�c=2 sinð2pmx=cÞ cosð2pnx=cÞ dx is zero for all values of m and n, where m and n

are both integers. One or more of the identities in Web Appendix WA5 may be useful.

6.2 Magnesium fluoride is tetragonal, with space P
42

m
nm, a ¼ 4.625 Å, c ¼ 3.052 Å and two species

MgF2 per unit cell at positions

2Mg 0; 0; 0; 1=2; 1=2; 1=2

4F � x; x; 0; 1=2þ x; 1=2� x; 1=2ð Þ

The Fo(h00) data are listed below:

h 2 4 6 8 10 12

Fo(h00) 2.7 12.0 7.2 0.1 3.2 0.1

Calculate r(x) using the program FOUR1D with a subdivision of 40, and plot the function.

Determine x. What length of the repeat is sufficient to define the complete function? Investigate

the effects of (a) using terms up to h ¼ 6, and (b) changing the sign attached to Fo(600).

6.3 Find the Fourier transform of the function

f ðxÞ ¼
a forjxj<p

a=2 for x ¼ �p

0 forjxj>p

8
<
:

Then, transform the resulting transform, and show that it regenerates the original function.

6.4 Find the Fourier transform and its inversion for the periodic function

f ðtÞ ¼ A cosð2pf0tÞ:

6.5 Using (6.47), deduce the Fourier transform for two asymmetric scattering units related by a center

of symmetry; the center may be taken as the origin. What general feature might be expected in the

resulting transform?

6.6 Show, from Fourier transform theory, the nature of the systematic absences that would arise

from a 21 screw axis along the line 0; 1;
1

4

� �
in an orthorhombic unit cell.

6.7 Tetraethyldiphosphine disulfide, ðC2H5Þ4P2 S2, crystallizes in the triclinic system,with space group

P�1 and onemolecule in the unit cell. Figure P6.1 is the hk0 section of the weighted reciprocal lattice

for this crystal. Make a photocopy of the diagram, identify, and draw lines to indicate, the fringe
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system for the (double weight) P–S vector. Hence, allocate signs to the more intense reflections

(about 25) in the asymmetric portion of the reciprocal-space diagram.

6.8 A hypothetical, two-dimensional, three-atom structure has the atomic coordinates 0.1, �0.1;

�0.1, 0.1; 0.2, 0.3, with respect to the origin of rectangular axes. Draw a diagram to represent the

convolution of this structure with its inversion in the origin.

Fig. P6.1 The hk0 section of the weighted reciprocal lattice of tetraethyldiphosphine disulphide (reproduced from

Taylor and Lipson 1964)

Fig. P6.2 Figure field of the phase-free Fourier transform of the intensities of the hypothetical structure in Problem 6.8
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6.9 The figure field of Fig. P6.2 represents the phase-free Fourier transform of the intensities of the

diffraction pattern of the three-atom structure in Problem 6.8. How many images of the

structure are present, and what are the sets of possible atomic coordinates?

6.10 Refer to Fig. 6.20. What are the signs of jFj for the reflections 00l, l ¼ 1–6?

6.11 If f ðxÞ ¼ 1=
ffiffiffiffiffiffi
2p

p
expð�x2=2Þ and gðxÞ ¼ dðx� 2Þ find the convolution cðxÞ ¼ f ðxÞ � gðxÞ by

multiplying the transforms of f(x) and g(x).

6.12 Write a computer program in any language with which you are familiar and compute the square-

wave function, Sect. 6.2.1, with values of h equal to, say, 10, 100, and 1,000.

(a) How does the form of the function f(x) change with increasing value of h?

(b) Where in f(x) do the results indicate m-line symmetry?

(c) Where does f(x) ¼ p/2, and for what reason?
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Fourier Techniques in X-Ray Structure
Determination 7

7.1 Introduction

We have reached the stage where we can consider how to attack the solving of a crystal structure.

After the earliest trial and error determinations in the 1920s with very simple and highly symmetrical

structures, it was found that the application of Fourier series, initially in one dimension, led to the

electron density function, in which peak maxima in the electron density corresponded to atomic

positions. As we have seen in the previous chapters, it is necessary to have the phases of the structure

factors for a Fourier synthesis to be carried out meaningfully. One way in which phase information

may be obtained is through the Patterson function of vector density, a function of interatomic vectors

in the crystal structure.

In this chapter, we examine the application of Fourier series to crystal structure analysis, together

with some of its developments. However, in any structure analysis there are certain preliminary

investigations that can throw light on the problem in hand. One such investigation, which we have

already discussed, leads to the unit-cell dimensions and space group of the crystal. We study next

some example crystal structures in order to show how other, readily available information can be used

to assist in the structure solution process.

7.2 Analysis of the Unit-Cell Contents

The density Dm of the crystals under examination may be measured by suspending them in a liquid or

liquid mixture. The composition of the liquid is altered until the crystals neither rise nor fall; then the

density of the liquid, equal to Dm, is measured with a pyknometer. Many organic materials can be

suspended in aqueous sodium bromide. At flotation equilibrium, the refractive index of the solution may

be measured, and the density determined by interpolation of a graph of the density of the solution as a

function of its refractive index. The flotation procedure is best carried out in a thermostat. It may

still happen, however, that the demarcation between sinking and floating is a little ill defined. Inclusion

of air or solvent in the crystal will lead to a smaller apparent density, and the flotation position

corresponding to a maximum value for the density measured should be most appropriate.

If the crystal unit cell contains a number Z of chemical species, each of relative molar mass Mr,

then the following relationship holds:

Dm ¼ ZMrmu=Vc (7.1)

M. Ladd and R. Palmer, Structure Determination by X-ray Crystallography:

Analysis by X-rays and Neutrons, DOI 10.1007/978-1-4614-3954-7_7,
# Springer Science+Business Media New York 2013
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where mu is the atomic mass unit. If the volume Vc of the unit cell is in Å
3 and the density in g cm�3,

(7.1) may be written as

Dm ¼ 1:6605 ZMr=Vc (7.2)

If several measurements are made, the standard deviation s(Dm) can be deduced. It is useful to

calculate the density Dc from the unit-cell volume and the (integral) value of Z. A significant

discrepancy between Dm and Dc should be examined, as it might point to an error in the unit-cell

dimensions or to solvent of crystallization not included in Mr at that stage.

7.2.1 Papaverine Hydrochloride, C20H21NO4·HCl

Crystal Data

System: monoclinic

Unit-cell dimensions: a ¼ 13.059 Å, b ¼ 15.620 Å, c ¼ 9.130 Å, b ¼ 92.13�

Vc: 1861.1 Å3

Dm: 1.33 g cm�3

Mr: 375.85

Z: 4 to the nearest integer (3.97 from (7.2))

Unit-cell contents: 80C, 88H, 4N, 16O, 4C1 atoms

Absent spectra: h0l: l odd; 0k0: k odd

Space group: P21/c

All atoms are in general equivalent positions. The molecular conformation, obtained by a complete

structure analysis [1], is shown in Fig. 7.1.

Fig. 7.1 Stereoview of the molecular conformation of papaverine hydrochloride; the circles, in order of decreasing

size, represent Cl, O, N, C, and H
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7.2.2 Naphthalene, C10H8

Crystal Data

System: monoclinic

Unit-cell dimensions: a ¼ 8.658 Å, b ¼ 6.003 Å, c ¼ 8.235 Å, b ¼ 122.92�

Vc: 359.28 Å3

Dm: 1.152 g cm�3

Mr: 128.17

Z: 2 to the nearest integer (1.94 from (7.2))

Unit-cell contents: 20C, 16H atoms

Absent spectra: h0l: l ¼ 2n + 1; 0k0: l ¼ 2n + 1

Space group: P21/c

7.2.3 Molecular Symmetry

In papaverine hydrochloride, the four molecules in the unit cell occupy a set of general positions; each

atom at coordinates xj, yj, zj, ( j ¼ 1, 2, . . ., 48) is repeated by the space-group symmetry so as to build up

the crystal structure. There are, therefore, 48 atoms, including hydrogen, in the asymmetric unit to be

located by the structure analysis.

Naphthalene is not quite so straightforward. With two molecules per unit cell, there are 20 carbon

atoms and 16 hydrogen atoms that may be distributed in 4 equivalent-position sets of five and four

atoms, respectively, in the unit cell. This means that in order to solve the structure, we have to locate

five carbon atoms and four hydrogen atoms. This number is only half that expected: since Z is 2, each

atom is related by one of the symmetry elements of the space group to a second atom of the same

type in the same molecule, so as to generate C10H8 from C5H4. There are three different symmetry

elements to consider: the 21 axis, the c-glide plane, and the center of symmetry. The screw axis

and glide plane are discounted because they involve translational symmetry, which would generate

an infinite molecule with translational repeats. We must, therefore, conclude that the atom pairs are

related by a center of symmetry, which in turn means that the molecule of naphthalene is

centrosymmetric.

The symmetry analysis for naphthalene has served two very useful purposes: it has halved thework of

the subsequent structure analysis, and shown that the molecules in the crystal exhibit a certain minimum

symmetry (�1). This result is, of course, in agreement with chemical knowledge, which ordinarily we are

quite entitled to use. The conventional notion that naphthalene should havemmm symmetry, Fig. 7.2, is

not supported directly, although the crystal structure analysis shows that this symmetry holds within

experimental error.

Fig. 7.2 Naphthalene molecular structure; the 9,10 carbon–carbon bond lies on a center of symmetry
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7.2.4 Special Positions

Themolecules ofnaphthalene lie onspecial positions inP21/c, Fig. 7.3. Special position sites correspond in

symmetry to one of the 32 crystallographic point groups and, in subsequent examples, we shall see that

both atoms and molecules can occupy special positions.

Glide planes and screw axes do not usually accommodate atoms or molecules; an atom lying

exactly on a translational symmetry element would introduce a pseudo-half-axial translation, thus

creating special reflection conditions which, depending on the atomic number, may be observable

among the X-ray data (see Problem 7.1).

Although the molecules of naphthalene are in special positions, they are subject to the space-group

symmetry inherent in the general positions: if one molecule is located at 0, 0, 0, then the second

molecule is at 0, 1
2
, 1
2
; see Sect. 2.7.5. This set may be determined by substituting x ¼ y ¼ z ¼ 0 into

the set of general positions. The structure of naphthalene [2] is shown in Fig. 7.4. The reader may like

to consider the three other possible sets of special positions that could be used to represent this

structure, and then show from the structure factor equation that jF(hkl)j is invariant with respect to

each set of special positions.

7.2.5 Nickel Tungstate, NiWO4

Crystal Data

System: monoclinic

Unit-cell dimensions: a ¼ 4.60 Å, b ¼ 5.66 Å, c ¼ 4.91 Å, b ¼ 90.1�

Vc: 127.84 Å3

Dm: 7.964 g cm�3

Mr: 306.81

Z: 2 to the nearest integer (2.00 from (7.2))

Unit-cell contents: 2Ni, 2W, 8O atoms

Absent spectra: h0l: l ¼ 2n + 1

Possible space groups: Pc or P2/c

We shall use space group P2/c, since the structure was determined successfully only with this

space group [3].

Fig. 7.3 Grouping of one of the special positions sets in P21/c; the arrangement of molecules (symmetry �1) with their

centers at 0, 0, 0 and 0, 1
2
, 1
2
is shown
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The general equivalent positions in P2/c are

� fx; y; z; x; �y; 1
2
þ zg

but in order to study NiWO4 further, we must consider the possible special positions for this space

group; they are located on either the twofold axes or the centers of symmetry. The reader should make

a drawing for space group P2/c, using the coordinates listed above and inserting the symmetry

elements.

Special Positions on Twofold Axes
The twofold axes lie along the lines 0; y;

1

4

� �

;
1

2
; y;

1

4

� �

; 0; y;
3

4

� �

; and
1

2
; y;

3

4

� �

. The equivalent

positions generated by the space-group symmetry show that the special position sets are

� f0; y; 1
4
g or � f1

2
; y; 1

4
g

and each set satisfies P2/c symmetry by accommodating in the unit cell two structural entities with

symmetry 2.

Special Positions on Centers of Symmetry
If we repeat the above analysis for the eight centers of symmetry in the space group, we will develop

four special position sets:

0; 0; 0 0; 0; 1
2

1
2
; 0; 0 1

2
; 0; 1

2

0; 1
2
; 0 0; 1

2
; 1
2

1
2
; 1
2
; 0 1

2
; 1
2
; 1
2

Fig. 7.4 Stereoview of the crystal structure of naphthalene; for clarity, H atoms are not shown
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The Ni and W atoms must lie on special positions, with either 2 or �1 symmetry. Nothing can be said

about the position of the oxygen atoms, and without further detailed analysis we cannot define this

structure further. However, to complete the picture, we list the atomic parameters for this structure, and

illustrate it in Fig. 7.5:

2Ni �f1
2
; 0:653; 1

4
g

2W �f0; 0:180; 1
4
g

4O �f0:22; 0:11; 0:96; 0:22; 0:89; 0:46g
4O0 �f0:26; 0:38; 0:39; 0:26; 0:62; 0:89g

The heavy atoms (W and Ni) were found to occupy the four twofold axes in pairs. This conclusion,

although not uniquely derivable from the symmetry analysis alone, was at least partially indicated by

it. Once again, a pencil and paper operation saved considerable effort in the subsequent detailed

structure analysis by pointing to the proper course of action.

In these few examples, we have shown the value of a symmetry analysis in the early stages of a

structure determination. The procedure may be regarded as a routine to be carried out before the more

detailed calculations required in the elucidation of the atomic parameters.

7.3 Interpretation of Electron Density Distributions

We have discussed different forms of the electron density equation in Sect. 6.3ff and we now make

use of that theory in studying the distribution of electron density in crystal structures.

Electron density is concentrated in the vicinity of atoms, and rises to peaks at electron density

maxima, which correspond to atomic positions within the limits of experimental error, and fall to

relatively low values between the peaks. The wavelengths of X-rays used in crystal structure analysis

are too long to reveal the intimate electronic structure of atoms themselves, which appear, therefore,

somewhat blurred in the calculated electron density function. In general, the more complete and

accurate the experimental Fo data, the better will be the atomic resolution and the more precise the

final structure model.

Fig. 7.5 Structure of NiWO4, showing the WO6 and NiO6 octahedra: large open circles O, small open circles W, small

black circles Ni
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7.3.1 Peak Heights and Weights

To a first approximation, the heights of the peaks in an electron density distribution of a crystal are

proportional to the corresponding atomic numbers. The hydrogen atom, at the extreme low end of the

atomic numbers, is rarely resolved in electron density maps; its small electron density merges into the

background density that arises from errors in both the data and the structure model. However,

hydrogen atoms can be detected by a difference-Fourier technique, as discussed later, Sect. 8.4.5,

and by neutron diffraction; see also Sects. 11.1, 11.4.1, and 11.5.

A better measure of the electron content of a given atom may be obtained from an integrated peak

weight, in which the absolute values of r(xyz) are summed over the volume occupied by the atom.

This technique makes some allowance for the variation of individual atomic temperature factors, high

values of which tend to decrease peak heights for a given electron content.

7.3.2 Computation and Display of Electron Density Distributions

Assuming for the moment that phases are available, the electron density function may be calculated

over a grid of chosen values of x, y, and z. For this purpose, the unit cell is divided into a selected number

of equal divisions, in a manner similar to that employed in the synthesis of the square-wave function,

Sect. 6.2.1. Intervals corresponding to about 0.3 Å are satisfactory for most electron density maps. The

symmetry of r(xyz) is that of the space group of the crystal under investigation. Consequently, a

summation over a volume either equal to or just greater than that of the asymmetric unit is adequate.

In order to facilitate the interpretation of r(xyz), it is essential to present the distribution of the

numerical values in such a way that the geometric relationships between the peaks are easily

inspected. This feature is afforded by first calculating the electron density in sections, each

corresponding to a constant value of x, y, or z. Each section consists of a field of figures arranged

on a grid, which may be true to scale for preference, and can be contoured by lines passing through

points of equal electron density, interpolating as necessary, Fig. 7.6. The grading of the contour

intervals is selected to produce a reasonable number of contours around the higher-density areas. The

contouring should be carried out with care; this exercise leads to fairly precise peak positions and a

desirable familiarity with the problem. Sophisticated map-plotting and peak-searching facilities are

available, but they should be treated with caution by the beginner.

The contoured sections may be transferred to a transparent medium, such as thin perspex or clear

acetate sheets, which are then stacked at the requisite spatial intervals and viewed over a diffuse light

source. The diagram in Fig. 1.7 is a photograph of such a display, extending through 17 sections.

An alternative method of displaying the results of an electron density calculation is by means of a

ball-and-stick model. An example of this form of representation is shown in Fig. 7.7.

In the analysis of small molecules, it is not considered necessary always to plot and contour the

electron density function, although it can be done through some program packages, such as WinGX.

There are many graphics programs available that recognize the highest peaks and carry out a

geometrical interpretation in terms of their coordinates: Platon for small molecules, and O, Turbo

Frodo or Coot for proteins (see Appendix D).

7.3.3 Projections

The use of two-dimensional studies in crystallography is fairly restrictive but, nevertheless, worthy of

mention because of the relative ease of calculation and preparation of Fourier maps. For example, the

function
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Fig. 7.6 Two-dimensional electron density projection r(xy) for azidopurine monohydrate, C5H3N7·H2O, calculated

from the data of Glusker et al. [3a]. The isolated peak Ow in the lower right-hand region of the map represents

the oxygen atom of the water molecule. Hydrogen-atom positions are not obtained in this electron density synthesis.

The field figures are 10 r(xy) Å�2 contoured at intervals of 20 units

Fig. 7.7 Three-dimensional model of euphenyl iodoacetate; see also Figs. 1.7 and 1.8
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rðxzÞ ¼ 2

A

X

h

X

l

jFðh0lÞj cos½2pðhxþ lzÞ � fðh0lÞ� (7.3)

is calculated with the data from only one level of the reciprocal lattice, the zero level, perpendicular to

b, and plotted over the area A of the a, c plane, or the asymmetric portion thereof. The simplification

in the calculations is offset, however, by a corresponding complexity in the interpretation of the maps,

arising from the superposition of peaks in projection on to the given plane, although this effect is not

as severe as in one dimension. Equation (7.3) corresponds to the projection of the electron density

along the b axis: it is essential to appreciate the difference between the meaning of r(xz) and r(x0z);

the latter represents the section of the three-dimensional electron density function at y ¼ 0. Equations

for projections along other principal axes may be written by analogy with (7.3).

Even simple atomic arrangements may appear distorted in projections, with individual molecules

overlapping to some degree, but we would not wish to discourage their consideration. We shall

restrict their use to examples illustrating various aspects of structure analysis. Practice in the

calculation and interpretation of Fourier series is provided by Problems 7.11 and 7.12, and also the

exercises with the XRAY system; see Sect. 13.4.

7.4 Methods of Solving the Phase Problem

At this point, it may be convenient for the reader to revise some of the ideas presented in Sect. 6.9ff

since a general overview of the present topic was presented there.

The set of Fo(hkl) data constitutes the starting point of an X-ray structure determination. The

approximate number of symmetry-independent reflections measurable may be calculated in the

following manner.

7.4.1 Number of Reflections in the Data Set

The radius of the limiting sphere is 2 RU (reciprocal lattice units), and its volume is therefore

33.510 RU3, taking the reciprocal lattice constant k as l, Sect. 2.4. The number of reciprocal lattice

points within the limiting sphere is approximately equal to the number of times the reciprocal unit-

cell volume V* will fit into 33.510; since, for this application, V* ¼ l/V, this number is 33.510 Vc/l
3.

The number of symmetry-independent reflections observable, Nmax, in a given experiment in which

ymax represents the practical upper limit of y is given by

Nmax ¼ 33:510Vcsin
3ymax=l

3Gm (7.4)

whereG is the unit-cell translation constant, Table 3.2, for non-zero reflections andm is the number of

symmetry-equivalent reflections, or the number of general equivalent points in the appropriate Laue

group. For zones and rows, mmay take different values from that for hkl, and a number of systematic

absences within the sphere of radius 2 sin ymax may have to be subtracted.

As an example, consider an orthorhombic crystal of space group Cmm2, with unit-cell dimensions

a ¼ 9.00 Å, b ¼ 10.00 Å, and c ¼ 11.00 Å. For Cu Ka radiation (l ¼ 1:5418A) and ymax of 85�

(dmin ¼ 0.77 Å), Nmax is (33.510 � 9 � 10 � 11� sin3 85)/(1.54183 � 2 � 8) ¼ 559. If Mo Ka

radiation (with ymax � 27� and �l ¼ 0:71073 Å) had been used instead of Cu Ka, the number would

have been 5709. Say the structure contains 15 atoms in the asymmetric unit. In the structure analysis, each
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atom would be determined by three positional parameters (xj, yj, zj) and, say, one isotropic thermal

vibration parameter, which, with an overall scale factor, totals 61 variables. Even with Cu Ka radiation,

there are nine reflections per variable, a situation which, from a mathematical point of view, is consider-

ably overdetermined. This feature is important, since the experimental intensity measurements contain

random errors which cannot be eliminated, and a preponderance of data is needed to ensure good

precision in the structural parameters. We shall meet this situation again in Chap. 8 but such a degree

of over-determination is not usually possible with macromolecules, as we explain in Chap. 10.

7.4.2 The Patterson Function

Although the connection between Fourier theory and X-ray diffraction was recorded first in 1915, it

was not until about 1930 that very much practical use was made of it. Before the advent of computing

facilities, the calculation of even a Fourier projection, involved considerable time and effort. Add to

this the phase problem, which necessitated many such calculations, and it is easy to understand that

X-ray analysts were not anxious to become involved with extensive Fourier calculations; many early

structure analyses were based on two projections.

In 1934, Patterson reported a new Fourier series which could be calculated directly from the

experimental intensity data. However, because phase information is not required in the Patterson

series, the result cannot be interpreted as a set of atomic positions, but rather as a collection of

interatomic vectors all taken to a common origin, Sect. 6.9.2. Patterson was led to the formulation of

his series from considerations of an earlier theory of Debye on the scattering of X-rays by liquids—a

much more difficult problem.

Patterson functions are of considerable importance in X-ray structure analysis, and their applica-

tion will be considered in some detail. We will study first a one-dimensional function.

One-Dimensional Patterson Function
The electron density at any fractional coordinate x is r(x), and that at the point (x + u) is r(x + u). The

average product of these two electron densities in a repeat of length a, for a given value of u, is

AðuÞ ¼
ð1

0

rðxÞrðxþ uÞ dx (7.5)

where the upper limit of integration corresponds to the use of fractional coordinates. Using (6.21) in a

form appropriate to a one-dimensional unit repeat, we obtain

AðuÞ ¼
ð1

0

1

a2

X

h

jFjðhÞe�i2phx
X

h0
jFjðh0Þe�i2ph0ðxþuÞ dx (7.6)

where jFj is an amplitude (phase-free) term. The index h0 lies within the same range as h, but is used to

effect distinction between the Fourier series for r(x) and r(x + u). Separating the parts dependent

upon x, and remembering that the integral of a sum is the sum of the integrals of the separate terms,

we may write

AðuÞ ¼ 1

a2

X

h

X

h0
jFjðhÞjFjðh0Þe�i2ph0u

ð1

0

e�i2pðhþh0Þx dx (7.7)
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Considering the integral

ð1

0

e�i2pðhþh0Þxdx ¼ e�i2pðhþh0Þx

�i2pðhþ h0Þ

�1

0

(7.8)

e�i2p(h+h0) is unity, since h and h0 are integral, from de Moivre’s theorem, Sect. 3.2.3, and the integral

is, in general, zero. However, for the particular value of h0 equal to �h, it becomes indeterminate and

we must consider making this substitution before integration. Thus,

ð1

0

dx ¼ 1 (7.9)

Hence, from (7.7), for non-zero values of A(u), where h0 ¼ �h,

AðuÞ ¼ 1

a2

X

h

X

�h

jFjðhÞjFjð�hÞei2phu (7.10)

Equation (7.10) is not really a double summation, since h and �h cover the same field of the

function. From Fig. 3.23, we see that the magnitudes jFj(h) and jFj(�h) are equal; hence, (7.10)

becomes

AðuÞ ¼ 1

a2

X

h

jFðhÞj2ei2phu (7.11)

where the index h ranges from �1 to 1. Taking h from 0 to 1, (7.11) may be written as

AðuÞ ¼ 1

a2

X

h

ðjFðhÞj2ei2phu þ jFðhÞj2e�i2phuÞ (7.12)

Applying de Moivre’s theorem, we obtain

AðuÞ ¼ 2

a2

X

h

jFðhÞj2 cos 2phu (7.13)

The corresponding Patterson function P(u) is usually defined as

PðuÞ ¼ 2

a

X

h

jFðhÞj2 cos 2phu (7.14)

a small difference from the averaging function A(u).

The practical evaluation of P(u) proceeds through (7.14), but its physical interpretation is best

considered in terms of (7.5), neglecting the small difference between P(u) and A(u).

Figure 7.8a shows one unit cell of a one-dimensional structure containing two different atoms A

and B situated at fractional coordinates xA and xB, respectively. Equation (7.5) represents the value of

the electron density product r(x)r(x + u), for any given value of u, averaged over the repeat period of

the unit cell. The average will be zero if one end of the vector u always lies in a zero region of electron

density, small if both ends of the vector encounter low electron densities, large if the electron density
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products are large, and amaximum where u is of such a length that it spans two atomic positions in the

unit cell.

For values of u less than umin in Fig. 7.8a, no peak will arise from the pair of atoms. As u is

increased, however, both ends of the vector will come simultaneously under the electron density

peaks, and from (7.5) a finite value of A(u), or P(u), will be obtained. The integration can be simulated

by sliding a vector of a given magnitude u along the x axis, evaluating the average product r(x)

r(x + u) for all sampling intervals between zero and unit fractional repeat; this process is carried out

for all fractional values of u between 0 and 1. The graph of P(u) as a function of u is similar in

appearance to an electron density function, but we must be careful not to interpret it in this way.

As we proceed through the values of u, we encounter upeak, the interatomic vector A–B, which gives

rise to the maximum value of P(u), labeled AB in Fig. 7.8b. As u increases to umax, the electron density

product falls to zero and P(u) decreases correspondingly. Since we are concerned with interatomic

vectors, negative values of u are equally important;�AB is marked off on the negative side of the origin,

or at BA within the given unit cell.

If we consider next very small values of u, both ends of such vectors will lie inside one and the

same electron density peak, and P(u) will be large. In the limit as u ! 0, the product involves that

of the electron density maximum with itself, which is a local maximum for each atom, and a very

large peak at the origin (u ¼ 0) is to be expected. Thus the Patterson function is represented as a

map of interatomic vectors, including null vectors, all taken to the origin, Sect. 6.9.2.

Fig. 7.8 Development of a

one-dimensional Patterson

function (b) for a two-atom
structure (a). Note the
centrosymmetry of the

Patterson function that is

lacking in the r(x) function
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The reader should confirm from Fig. 7.8, using tracing paper, that the positions of the peaks in

Patterson space can be plotted graphically by placing each atom of the structure r(x) in turn at the

origin of the Patterson map, in parallel orientation, and marking the positions of the other atoms on

to the Patterson unit cell. Because of the centrosymmetry of the Patterson function, implicit in

(7.14), it is not strictly necessary to plot vectors lying outside one-half of the unit cell.

Three-Dimensional Patterson Function
If we replace r(x) and r(x + u) in (7.5) by the three-dimensional analogs r(xyz) and r(x + u, y + v,

z + w) and integrate over a unit fractional volume, we can derive the three-dimensional Patterson

function:

PðuvwÞ ¼ 2

Vc

X

h

X

k

X

l

jFðhklÞj2 cos 2pðhuþ kvþ lwÞ (7.15)

where the summations range, in the most general case, over one half of experimental reciprocal space.

This equation should be compared with (7.14) and (6.29) in Chap. 6: it is a Fourier series with zero

phases and jFj2 as coefficients. Since jFj2 is F � F	, we see from (6.28) that (7.15) represents the

convolution of the electron density r(r) with its inversion in the origin, that is, with r(�r). In
practice, (7.15) may be handled like the corresponding electron density equation, with u, v, w repla-

cing x, y, z. Both series explore the same field but their interpretation is different, as we shall see. The

roving vector is now specified by three coordinates, u, v, and w, and P(uvw) is a maximum where the

corresponding vector spans two atoms in the crystal.

7.4.3 Positions and Weights of Peaks in the Patterson Function

The positions of the peaks in P(uvw) may be plotted in three dimensions by placing each atom of the

unit cell of a structure in turn at the origin of Patterson space, in parallel orientation, and mapping the

positions of all other atoms on to the Patterson unit cell. Examples of this process are illustrated

graphically in Fig. 7.9; for simplicity the origin peak is not shown in Fig. 7.9d. In Fig. 7.9a, all atoms

and their translation equivalents produce vector peaks lying on the points of a lattice that is identical in

shape and size to the crystal lattice. For example, atom 1 at x, y, z and its translation equivalent, 10, at x,
1 + y, z give rise to a vector ending at 0, 1, 0 on the Patterson map. Peaks of this nature accumulate at

the corners of the Patterson unit cell in exactly the same way as those of the origin peak, P(000). From

(7.15), we can derive the height of the origin peak:

Pð000Þ ¼ 2

Vc

X

h¼0

X1

k

X

l¼�1
jFoðhklÞj2 (7.16)

In general, (7.16) is equivalent to a superposition at the origin of all N products like r(xyz)r(xyz),

where N is the number of atoms in the unit cell. Since r(xyz), is proportional to the atomic number Zj
of the jth atom, Sect. 7.3, we have

Pð000Þ /
XN

j¼1

Z2
j (7.17)

A single vector interaction between two atoms j and k, Fig. 7.9b, will have a Patterson peak of

height proportional to ZjZk. Hence, the height Hð j; kÞ of this peak will be given by
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Hð j; kÞ � Pð000ÞZjZk=
XN

j¼1

Z2
j (7.18)

where P(000) is calculated from (7.16). This equation can serve as a useful guide, but overlapping

vectors may give rise to misleading indications. The reservations on peak heights already mentioned

in Sect. 7.3 apply also to Patterson peaks. It should be remembered that the correct geometrical

interpretation of Patterson peaks is of far greater significance than is an adherence to (7.18).

In a structure with N atoms per unit cell, each atom forms a vector with the remaining N � 1

atoms. There are, thus, N(N � 1) non-origin peaks per unit cell. From (7.15), substitution of �u, �v,

�w for u, v, w, respectively, leaves P(uvw) unaltered, which is a statement of the centrosymmetry of

the Patterson function.

The Patterson unit cell is of the same size and shape as the crystal unit cell, but it has to

accommodate N2 rather than N peaks and is, therefore, correspondingly overcrowded. Thus, peaks

in Patterson space tend to overlap when there are many atoms in the unit cell, a feature which

introduces difficulties into the process of unraveling the function in terms of the correct distribution of

atoms in the crystal.

Fig. 7.9 Effects of symmetry-related and symmetry-independent atomson thePatterson function.Theweights of the peaks

are approximately proportional to the diameters of the circles: (a) P1(N ¼ 1). (b) P1(N ¼ 2): two atoms per unit cell

produce (22 � 2) non-origin peaks. (c) Pm(N ¼ 2): two non-origin peaks, but with coordinates � {0, 2y, 0}.

(d) Pm(N ¼ 4): 12 non-origin peaks per unit cell; for clarity the origin peak has not been drawn. The Patterson space

group is P�1 in (a) and (b) and P2/m in (c) and (d)
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7.4.4 Sharpened Patterson Function

In a conceptual point atom, the electrons would be concentrated at a point. The atomic scattering

factor curves, Fig. 4.6, would be parallel to the abscissa and fwould be equal to the atomic number for

all values of sin y=l and at all temperatures. The electron density for a crystal composed of point

atoms would show a much higher degree of resolution than does that for a real crystal. Put another

way, the broad peaks representing real atoms, Fig. 6.4, would be replaced by peaks of very narrow

breadth in the point-atom crystal.

A plot of the mean value of Fo
2 against sin y=l for a typical set of data is shown in Fig. 7.10. The

radial decrease in Fo
2 can be reduced by modifying Fo

2 by a function which increases as sin y=l
increases. The coefficients for a sharpened Patterson synthesis may be calculated by the following

equation. Sharpening can be effected also through the use of jEj values, Sect. 8.2.1.

Fo;mod
2 ¼ Fo

2

exp½�2Bðsin2yÞ=l2�
PN

j¼1 fj

n o2

8
><
>:

9
>=
>;
hkl

(7.19)

where N is the number of atoms in the unit cell and B is an overall isotropic temperature factor,

Sect. 4.1.8.

The effect of sharpening on a Patterson synthesis is illustrated in Fig. 7.17d, the Harker section

u;
1

2
;w

� �

for papaverine hydrochloride. It should be compared with Fig. 7.17b; the increased

resolution is very apparent.

Over-sharpening of Patterson coefficients may lead to spurious peaks because of series termination

errors, Sect. 6.9.1, particularly where heavy atoms are present, and the technique should not be

Fig. 7.10 Effect of

sharpening on the radial

decrease of the local

average intensity Fo
2
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applied without care. Sometimes the coefficients can be further modified to advantage by multipli-

cation by a function such as exp(�m sin3 y), where m is chosen by trial, but might be about 5. This

function has the effect of decreasing the magnitude of the Fo
2 curve at high y-values. Many other

sharpening functions have been proposed, but we shall not dwell on this subject. It is often helpful to

calculate both the normal and sharpened Patterson functions for comparison. Practice can be gained

through exercises with the XRAY program system.

7.4.5 Symmetry of the Patterson Function for a Crystal of Space Group Pm

An inspection of Fig. 7.9c, d shows that the peaks on the line [0, v, 0] arise from atom pairs related by

the m planes. The vector interactions for case (d) are listed in Table 7.1, and may be easily verified by

the reader; the values z1 ¼ z2 ¼ 0.0 were chosen for convenience only.

The m planes in Pm are carried over into Patterson space, and relate the following pairs of peaks in

the vector set:

1; �1; 2; 5; �2; �5; 3; 4; �3; �4; 6; �6 (7.20)

Furthermore, the presence of a center of symmetry in the diffraction pattern generates 2/m symmetry

in the Patterson map, which corresponds to the Laue symmetry of all monoclinic crystals. Evidently, the

symmetry of the diffraction pattern is impressed on to the Patterson function by the use of Fo
2

coefficients in the Patterson series. As a consequence, the Patterson synthesis is computed in the

primitive space group corresponding to the Laue symmetry of a crystal, and this situation is similar for

all space groups.

We can detect the presence of the twofold axis parallel to b in Fig. 7.9d through vector peaks such as 5,
�2 and 3, �4. Finally, the symmetry-related pairs of atoms in the crystal, 1, 3 and 2, 4, give rise to vectors

along the line [0, v, 0] corresponding to the peaks 1, 6, �6, and �1 in Patterson space. The presence of a large

number of peaks along an axis in a three-dimensional Pattersonmapmay be used as evidence for amirror

plane perpendicular to that axis in the crystal. This feature is important because anm plane does not give

rise to systematic absences in the diffraction pattern, Table 3.7. The existence of peaks, arising from

symmetry-related atoms in certain regions of Patterson space was noted first by Harker in 1936. The line

Table 7.1 Vectors generated by two independent atoms and their symmetry equivalents in space group Pma

Subtraction of coordinates Reduced to one unit cell

Atom pair Analytical form of vector u v u v Point in Fig. 7.9d

(1), (3) �{0, 2y1, 0} 0 0.10 0 0.10 1
0 �0.10 0 0.90 �1

(1), (2) �{x1 � x2, y1 � y2, z1 � z2} 0.15 �0.15 0.15 0.85 2
�0.15 0.15 0.85 0.15 �2

(1), (4) �{x1 � x2, y1 + y2, z1 � z2} 0.15 0.25 0.15 0.25 3
�0.15 �0.25 0.85 0.75 �3

(2), (3) �{x1 � x2, �y1 � y2, z1 � z2} 0.15 �0.25 0.15 0.75 4
�0.15 0.25 0.85 0.25 �4

(3), (4) �{x1 � x2, �y1 + y2, z1 + z2} 0.15 0.15 0.15 0.15 5
�0.15 �0.15 0.85 0.85 �5

(2), (4) �{0, 2y2, 0} 0 0.40 0 0.40 6
0 �0.40 0 0.60 �6

aThe coordinates of the four atoms in two sets of general positions are x, y, z; x, �y, z with x1 ¼ 0.20, y1 ¼ 0.05,

x2 ¼ 0.05, y2 ¼ 0.20, and z1 ¼ z2 ¼ 0.00
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[0, v, 0] for Pm is called a Harker line; planes containing peaks arising from pairs of symmetry-related

atoms are called Harker sections. We shall consider some examples below.

7.4.6 Vector Interactions in Other Space Groups

We shall consider atoms in general positions in a number of space groups that should be now familiar.

Space Group P�1

General positions: x, y, z; �x; �y; �z.

Vectors: �{2x, 2y, 2z}.

Harker peaks lie in general positions in Patterson space.

Space Group P2

General positions: x, y, z; �x; y; �z.
Vectors: �{2x, 0, 2z}.

Harker section: (u, 0, w).

It may be noted that for complex structures, not all of the peaks on Harker sections are necessarily

true Harker peaks. If in this structure there are two atoms not related by symmetry, which, by chance,

have the same or very nearly the same y coordinates, the vector between them will produce a peak on

the Harker section.

Space Group P2/m

Vectors:

�{2x, 0, 2z} Double weight Type 1

�{0, 2y, 0} Double weight Type 2

�{2x, 2y, 2z} Single weight Type 3

�{2x, 2�y, 2z} Single weight Type 4

Harker section: (u, 0, w).

Harker line: [0, u, 0].

Vector type 1 arises in two ways, once from the pair x, y, z; �x; y; �z, and once from the pair x, �y, z;

�x; �y; �z. These two interactions give rise to identical vectors, which therefore superimpose in Patterson

space and form a double-weight peak. Similar comments apply to type 2, but the centrosymmetrically

related atoms give rise to single-weight peaks, types 3 and 4. Figure 7.11 illustrates these vectors, as

seen along the z axis. The reader may now consider how the Patterson function might be used to

differentiate among space groups P2, Pm, and P2/m. Statistical methods, discussed in Chap. 4, are

often employed to verify the results obtained from a study of the vector distribution.

7.4.7 Examples of the Use of the Patterson Function in Solving
the Phase Problem

In this section, we shall consider how the Patterson function was used in the solution of three quite

different structures.

Bisdiphenylmethyldiselenide, ðC6H5Þ2CHSe2 CHðC6H5Þ2
Crystals of this compound form yellow needles, with straight extinction under crossed Polaroids for

all directions parallel to the needle axis, and oblique extinction on the section normal to the needle
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axis. Photographs taken with the crystal oscillating about its needle axis show only a horizontal m

line, while zero- and upper-layer Weissenberg [4] photographs show only symmetry 2. The crystals

are therefore monoclinic, with b along the needle direction.

Crystal Data

System: monoclinic

Unit-cell dimensions: a ¼ 18.72, b ¼ 5.773, c ¼ 12.594 Å, b ¼ 125.47�

Vc: 1,108.5 Å3

Dm: 1.49 g cm�3

Mr: 492.38

Z: 2.02 or 2 to the nearest integer

Unit-cell contents: 4Se, 52C, and 44H atoms

Absent spectra: hkl: h + k ¼ 2n

Possible space groups: C2, Cm, C2/m

Symmetry Analysis

Where the space group is not determined uniquely by the X-ray diffraction pattern, it may be possible to

eliminate certain alternatives at the outset of the structure determination by other means.

Space groups C2 and Cm each require four general positions:

C2 : ð0; 0; 0; 1
2
; 1
2
; 0Þ þ fx; y; z; �x; y; �zg Cm : ð0; 0; 0; 1

2
; 1
2
; 0Þ þ fx; y; z; x; �y; zg

Since Z is 2, the molecular symmetry is either 2, in C2, or m, in Cm. In both C2 and Cm, all atoms

could satisfy general position requirements, and neither arrangement would be stereochemically

unreasonable.

Fig. 7.11 (a) Vectors
between symmetry-related

atoms in general equivalent

positions in space group

P2/m. Coordinates like �x
have been treated as

(1 � x) in drawing the

vectors. (b) One unit cell of
the Patterson function: the

twofold axes intersect the

m planes in centers of

symmetry. Note the single-

weight and double-weight

peaks, and their relation to

the space-group symmetry
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Space group C2/m requires eight general equivalent positions per unit cell. Only special position

sets, such as 0, 0, 0 and 1
2
, 1
2
, 0 correspond with Z ¼ 2. These positions have symmetry 2/m, but it is not

possible to construct the molecule in this symmetry without contradicting known chemical facts.

Consequently, we shall regard this space group as highly improbable for the compound under

investigation.

Patterson Studies

Whatever the answer to the questions remaining from this symmetry analysis, we expect, from the

covalent radius of selenium (1.22 Å) that the two selenium atoms will be covalently bonded at a

distance of about 2.4 Å. This Se–Se interaction will produce a strong peak in the Patterson function at

about this distance from the origin.

The atomic numbers of Se, C, and H are 34, 6, and 1, respectively. Hence, the important vectors in the

Patterson function would have approximate single-weight peak heights, from (7.18), as follows:

(a) Se–Se: 1156.

(b) Se–C: 204.

(c) C–C: 36.

Because of the presence of identical vectors arising from the C unit cell, all vectors will be double

these values.

Figure 7.12 is the Patterson section P(u0w), calculated with 1053 Fo(hkl)
2 data, with grid intervals

of 50th along u, v, and w. The origin peak P(000) was scaled to 100 and, from (7.17),PN
j¼1 Z

2
j ¼ 6540. Hence, the vector interactions (a), (b), and (c) should have peak heights in the

approximate ratio 32:5.7:1.

The section is dominated by a large peak of height 39 at a distance of about 2.4 Å from the origin.

Making the reasonable assumption that it represents the Se–Se vector, and since there are no

Fig. 7.12 Patterson section, P(u0w); the origin peak (height ¼ 100) has not been contoured. Contours around the

Se–Se peaks are at intervals of 4; elsewhere at intervals of 2
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significant peaks on the v axis, the Harker line in Cm, it follows that the space group cannot be Cm,

thus leaving C2 as the most logical choice.

In space group C2 from the above list, it follows that vectors between atoms in general positions take

the form: (u, 0, w), where u ¼ 2x, and w ¼ 2z, plus the C-centered equivalents. For the sulphur atom

vectors u ¼ 2xSe, w ¼ 2zSe. Hence by measurement on the section, the Patterson coordinates are

u ¼ 6.7/50 ¼ 0.134 and w ¼ 2.2/50 ¼ 0.044, so that xSe ¼ 0.067 and zSe ¼ 0.022.

In space group C2, the unit-cell origin is fixed in the x, z plane by the twofold axis. There is no

symmetry element that defines the origin in the y direction, which must be fixed by specifying the y

coordinate for a selected atom. For convenience, we may set ySe ¼ 0, and our analysis so far may be

given as the positions

Se: 0.067, 0, 0.022

Se0: �0.067, 0, �0.022

A space-group ambiguity is not always resolved in this manner. Sometimes it is necessary to proceed

further with the structure analysis, even to refinement stages, before confirmation is obtained.

What of the atoms other than selenium? Is it possible to determine the positions of the carbon and

hydrogen atoms? We shall find that we can locate the carbon atoms in this structure from the Patterson

synthesis. To explain the procedure, we consider first only part of the structure, including one phenyl ring

of the asymmetric unit, Fig. 7.13a, and neglect all but the C–Se vectors. The vector set generated by the

2 Se atoms and 14 C atoms in this hypothetical arrangement contains two images of the structure

fragment, one per Se atom, which are displaced from each other by the Se–Se vector. The idealized

vector set is shown in Fig. 7.13b. By shifting one of these images by a reverse1 Se–Se vector

displacement, it is possible to bring the two images into coincidence. Verify this statement by making

a transparent copy of Fig. 7.13b and placing its origin over an Se–Se vector position in the original figure,

keeping the pairs of u and w axes parallel. Certain peaks overlap, producing a single, displaced image of

the structure. Shade the peaks that overlap. This image is displaced with respect to the true space-group

origin, which we know to be midway between the two Se atoms. A correctly placed image of the

structure can be recovered by inserting the true origin position on to the tracing and neglecting any peaks

that are not shaded.

The partial vector set was formed from the image of all atoms of the fragment in each Se atom;

each image is weighted by Zj, the atomic number of the jth atom, (carbon, in this example), imaged in

Se. The displacement arises because the Patterson synthesis transfers all vectors to a common origin.

Fig. 7.13 (a) Hypothetical
structure fragment

C6H5CHSe2CHC6H5 in

real space; (b) idealized set

of Se–Se and Se–C vectors

in Patterson space

1 If the forward direction of this vector is used, the structure obtainedwould, in general, be inverted through the origin. This

does not happen with the example under study because the molecule possesses only twofold symmetry.
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Patterson Superposition

The technique just described depends upon the recognition of the vector interaction from a given

pair of atoms, the two Se atoms in this example. At least a partial unscrambling of the structure

images in the Patterson function was effected by correctly displacing two copies of the Patterson

map and noting the positions of overlap.

To illustrate the method further and to derive a systematic procedure for its implementation, we

return to the Patterson section in Fig. 7.12. The two Se atoms have the same y coordinate, which

means that the vector shift takes place in this section. Now, make two copies on tracing paper of the

half unit-cell outline, x ¼ 0� 1

2
and z ¼ 0–1, and label them copy 1 and copy 2.

On copy 1 mark in the position S of the point,�(xSe, zSe), which is at�0.067,�0.022, and on copy

2 mark in the position S0 of the point (xSe0 ; zSe0), which is at 0.067, 0.022. Think of these two unit cells
as existing in crystal space, not Patterson space. Place copy 1 over the Patterson (u, 0, w) section,

maintaining a parallel orientation, with S over the origin, and trace out the Patterson map, Fig. 7.14a,

excluding the origin peak in each case. Repeat this procedure with copy 2, placing S0 over the

Patterson section origin, Fig. 7.14b.

Finally, superimpose copy 1 and copy 2. As in the exercise with Fig. 7.13a, b, some peaks overlap

and some lie over blank regions in one or the other map. The overlaps correspond to regions of high

electron density in the crystal. They are best mapped out by compiling a new diagram which contains

theminimum value of the vector density between copy 1 and copy 2 for each point, thus eliminating or

decreasing in height those regions where one copy has no or only slight overlap. A map prepared in

this way is shown in Fig. 7.14c.

Minimum Function
The technique outlined above follows the method of Buerger.2 An analytical expression for the

minimum functionMn(xyz) is given by (7.21); it may be regarded as an approximation to the electron

density r(xyz).

MnðxyzÞ ¼ Min½Pðu� x1; v� y1;w� z1Þ; Pðu� x2; v� y2;w� z2Þ; . . . ;
Pðu� xn; v� yn;w� znÞ�

(7.21)

where Min(P1, P2, . . ., Pn) represents the lowest value at the point x, y, z in the set of super positions

P1, P2, . . ., Pn; n corresponds with the number of known or trial atomic positions. The following

general comments on the application of the minimum function procedure should be noted:

1. The n trial atoms should form within themselves a set or sets of points related by the appropriate

space-group symmetry.

2. In a non-centrosymmetric space group, n should be three or more in order to remove the Patterson

center of symmetry.

3. If the various n trial atoms have different atomic numbers, the corresponding Patterson copies

should be weighted accordingly in order to even out the different image strengths.

4. Incorrectly placed atoms in the trial set tend to confuse the structure image. New atom sites

therefore should be added to the model with caution.

Figure 7.15 shows a composite electron density map of the atoms in the asymmetric unit that

were revealed by a three-dimensional minimum function M2. This result is quite satisfactory; only

C(9), C(10), and C(11) are not yet located. The composite map of the complete structure [5] and the

2 See Bibliography, Buerger (1959).
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Fig. 7.14 Bisdiphenylmethyldiselenide. (a, b) Shifted copies 1 and 2 prepared from the (u0w) section. (c) Minimum-

function M2 section at y ¼ 0.0; C0(12) and C0(13) are symmetry-related to C(12) and C(13) in Fig. 7.15
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packing of the molecules in the unit cell are shown in Fig. 7.16. In favorable circumstances, the

Patterson function can be solved for the majority of the heavier atoms in the crystal structure. The

atoms not located by M2 in this example were obtained from an electron density map phased

on those atoms that were found, a standard method for attempting to complete a partial structure,

see Sect. 7.5.

Fig. 7.15 Composite map of the three-dimensional minimum function M2(xyz) for bisdiphenylmethyldiselenide

Fig. 7.16 Bisdiphenylmethyldiselenide: (a) Composite electron density map as seen along b; (b) crystal structure as
seen along b; the dashed lines indicate the closest intermolecular contacts
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7.4.8 Determination of the Chlorine Atom Positions in Papaverine
Hydrochloride [1]

The crystal data for this compound have been given in Sect. 7.2.1. The calculated origin peak height is

approximately 4700, and a single-weight Cl–Cl vector would have a height of about 6% of that of the

origin peak. The Cl–Cl vector may not be located as easily as that of Se–Se in the previous example.

The general equivalent positions in P21/c give rise to the vectors shown in Table 7.2. The assignment

of coordinates to the chlorine atoms follows the recognition of peaks A, B, and C as Cl–Cl vectors on

the Patterson maps, Fig. 7.17a–c. Figure 7.17d is the sharpened section, ðu; 1
2
; wÞ. The steps in the

solution of the problem are set out in Table 7.3.

The results are completely self-consistent, and we may list the Cl coordinates in the unit cell:

4Cl : 0:025; 0:169; 0:038; 0:025; 0:331; 0:538

� 0:025; �0:169; �0:038; �0:025; �0:331; �0:538

For simplicity, peak A was assigned as � ð1
2
þ 2yÞ, which is crystallographically the same as

1

2
� 2y, in order to obtain y
 1

2
. For a similar reason, B was retained as

1

2
þ 2z.

The specification of the peak parameters in this manner is, to some extent, dependent on the observer.

A different choice, for example,
1

2
þ 2y in A, merely results in a set of atomic positions located with

respect to one of the other centers of symmetry as origin. In space groups where the origin might be

defined with respect to other symmetry elements, similar arbitrary peak specifications may be possible.

7.4.9 Determination of the Mercury Atom Positions in KHg2

This example illustrates the application of the Patterson function to the determination of the

coordinates of atoms in special positions of space group Imma.

Crystal Data3

System: orthorhombic

Unit-cell dimensions: a ¼ 8.10, b ¼ 5.16, c ¼ 8.77 Å

Vc: 366.55 Å3

Dm: 7.95 g cm�3

Mr: 440.28

Table 7.2 Patterson peaks in space group P21/c

Label Vector Peak strength Harker region

A � f0; 1
2
þ 2y; 1

2
g Double weight Line: ð0; v; 1

2
Þ

B � f2x; 1
2
; 1
2
þ 2zg Double weight Section: ðu; 1

2
;wÞ

C �{2x, 2y, 2z} Single weight General region

D � f2x; 2�y; 2xg Single weight General region

3 In the original paper, the origin in Imma was chosen on a center of symmetry displaced by 1
4
, 1
4
, 1
4
from this origin.
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Fig. 7.17 Three-dimensional Patterson sections for papaverine hydrochloride; the Cl–Cl vectors are labeled A, B, and

C. (a) v ¼ 8.4/52, (b) v ¼ 1

2
. (c) v ¼ 17.6/52. (d) v ¼ 1

2
(sharpened section)

Table 7.3 Heavy-atom coordinates for papaverine hydrochloride

Patterson map Label Vector coordinatesa Cl coordinates

Figure 7.17a, level v ¼ 8.4/52 A 1
2
� 2y ¼ 8:4=52 y ¼ 0.169

Figure 7.17b, level v ¼ 1
2

B 2x ¼ 2.2/44 x ¼ 0.025
1
2
þ 2z ¼ 17:3=30 z ¼ 0.038

Figure 7.17c, level v ¼ 17.6/52 C 2x ¼ 2.2/44 x ¼ 0.025
2y ¼ 17.6/52 y ¼ 0.169
2z ¼ 2.3/30 z ¼ 0.038

aThe Patterson synthesis was computed with the intervals of subdivision 44, 52, and 30 and

along u, v, and w, respectively



Z: 3.99 or 4 to the nearest integer

Unit-cell contents: 4K and 8Hg atom

Absent spectra: hkl: h + k + l ¼ 2n + 1; hk0: h ¼ 2n + 1 (k ¼ 2n + 1)

From the diffraction data, possible space groups are Im2a, I2ma, or Imma. In the absence of further

information on the space group, we shall proceed with the analysis in Imma, Fig. 7.18a, b; the reader

may like to consider how easily this figure may be derived from Pmma, origin on �1, + I.

Symmetry and Packing Analyses
Since Z is 4 and there are 16 general equivalent positions in Imma, all atomsmust lie in special positions.

Table 7.4 lists these positions for this space group, with a center of symmetry (2/m) as origin [6].

This list presents a quite formidable number of alternatives for examination. The eight Hg

atoms could lie in (f), (g), (h), or (i). However, further consideration of sets (f), (g), and (i) and sets

(c) and (d) shows that they would all involve pairs of Hg atoms being separated by distances less

than b/2 (2.58 Å). This value is much shorter than known Hg–Hg bond distances in other structures,

and we shall reject these sets. The positions in these sets may be plotted to scale in order to verify

the spatial limitations.

Fig. 7.18 Space group

Imma (rotated by 90�

from the standard setting):

(a) general equivalent
positions, (b) symmetry

elements
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Of the remaining sets, (a) and (b) together would again place neighboring Hg atoms too close to one

another. There are three likely models:

Model I: four Hg in (a) + four Hg in (e).

Model II: four Hg in (b) + four Hg in (e).

Model III: eight Hg in (h).

The Patterson function enables us to differentiate among these alternative models.

Fig. 7.19 Patterson projection P(uw) for KHg2; the origin peak has not been contoured and the labeled peaks are

Hg–Hg vectors

Table 7.4 Special positions in Imma

4 (a) 2/m 0; 0; 0;
1

2
; 0; 0;

1

2
;
1

2
;
1

2
; 0;

1

2
;
1

2

4 (b) 2/m 0;
1

2
; 0;

1

2
;
1

2
; 0;

1

2
; 0;

1

2
; 0; 0;

1

2

4 (c) 2/m
1

4
;
1

4
;
1

4
;

1

4
;
3

4
;
1

4
;

3

4
;
3

4
;
3

4
;

3

4
;
1

4
;
3

4

4 (d) 2/m
1

4
;
3

4
;
3

4
;

1

4
;
1

4
;
3

4
;

3

4
;
1

4
;
1

4
;

3

4
;
3

4
;
1

4

4 (e) mm2
1

4
; 0; z;

3

4
; 0; �z;

3

4
;
1

2
;
1

2
þ z;

1

4
;
1

2
;
1

2
� z

8 (f) 2 � 0; y; 0;
1

2
; y; 0;

1

2
;
1

2
þ y;

1

2
; 0;

1

2
þ y;

1

2

� �

8 (g) 2 � x;
1

4
;
1

4
; x;

3

4
;
1

4
;

1

2
þ x;

3

4
;
3

4
;

1

2
þ x;

1

4
;
3

4

� �

8 (h) m � x; 0; z;
1

2
� x; 0; z;

1

2
þ x;

1

2
;
1

2
þ z; �x;

1

2
;
1

2
þ z

� �

8 (i) m � 1

4
; y; z;

1

4
; �y; z;

3

4
;
1

2
þ y;

1

2
þ z;

3

4
;
1

2
� y;

1

2
þ z

� �
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Vector Analysis of the Alternative Hg Positions
Model I would produce, among others, an Hg–Hg vector at u ¼ 1

2
, w ¼ 0, from the atoms in set (a).

The b axis Patterson projection, Fig. 7.19, shows no peak at that position, and we eliminate model I.

For a similar reason, with the atoms of set (b), model II is rejected. It is necessary to show next that

model III is consistent with the Patterson function. The a-axis projection is shown in Fig. 7.20.

Interpretation of P(uw)

In this projection, no reference is made to the y coordinates, and we look for vectors of the type

� f1
2
þ 2x; 0g and �{

1

2
, 2z}, and four vectors related by 2mm symmetry �{2x, 2z} and �f2�x, 2z}.

The double-weight peak labeled B(1) is on the line w ¼ 0, and B(2) is on the line u ¼ 1

2
. Hence,

xHg ¼ 0.064 and zHg ¼ 0.161. These values are corroborated by measurements from the single

weight peak B(3).

Interpretation of P(vw)

Vectors likeA, Fig. 7.20, are of the type�{0, 2z}.We deduce zHg ¼ 0.161, in excellent agreement with the

value obtained from the b-axis projection.

Superposition techniques applied to the a-axis projection indicate that the K atoms are in special

positions (b), but this result is not supported by the b-axis projection. Evidently, the Patterson results can

give only a partial structure, and supplementary methods are needed to carry the analysis to completion.

In summary, we have determined the positions of the mercury atoms to be in set (h),4 Table 7.4, with

x ¼ 0.064, z ¼ 0.161.

Fig. 7.20 Patterson projection P(vw) for KHg2; the origin peak has not been contoured

4 In the work of Duwell and Baenziger [6], the positions listed are 8 (i), with x ¼ 0.186 and z ¼ 0.089, each being 1
4

minus the value given here.
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7.5 Heavy-Atom Method and Partial Fourier Synthesis

The heavy-atom method was conceived originally as a method for determining the positions of light

atoms in a structure containing a relatively small number of heavier atoms. However, the technique

can be applied to most situations where a partial structure analysis has been effected, provided that

certain conditions are met.

Imagine a situation where Nk, of the N atoms in a unit cell have been located; Nk may be only one

atom, if it is a heavy atom. There will be Nu atoms remaining to be located, and we may express the

structure factor in terms of known (k) and unknown (u) atoms:

FðhklÞ ¼
XNk

j¼1

gj exp½i2pðhxj þ kyj þ lzjÞ� þ
XNu

u¼1

gu exp½i2pðhxu þ kyu þ lzuÞ� (7.22)

or

jFðhklÞj ¼ jFcðhklÞj þ jFuðhklÞj (7.23)

In practice, Fo data, appropriately scaled, replace jF(hkl)j, and Fc(hkl) refers to the known (Nk)

atomic positions. As more of the structure becomes known, the values of jFc(hkl)j approach Fo(hkl)

and the phase angle fc approaches the unobservable but required value f(hkl). Figure 7.21 illustrates

this argument for any given reflection. The values of fc may provide sufficiently reasonable

approximations to f(hkl) for an electron density map to be calculated with some confidence. The

nearer jFcj is to Fo, the better the values of the phase angles, and this is clearly dependent upon the

percentage of the scattering power which is known. As a guide to the effective phasing power of a

partial structure, the quantity r may be calculated:

r ¼
XNk

j¼1

Z2
j =
XNu

u¼1

Z2
u (7.24)

Fig. 7.21 Partial-structure phasing; F(hkl) is the true structure factor of modulus Fo(hkl) and phase f(hkl)
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where Z refers to the atomic number of a species. A value of r near unity is considered to provide a

useful basis for application of the heavy-atommethod. However, values of r quite different from unity

have produced successful results, because for a given reflection the important quantity is really r0, the
scattering ratio, given by

r0 ¼
XNk

j¼1

g2j =
XNu

u¼1

g2u (7.25)

If r is large, however, the heavy-atom contributions tend to swamp those from the lighter atoms,

which may then not be located very precisely from electron density maps. On the other hand, if r is

small, the calculated phases may deviate widely from the desired values, and the resulting electron

density map could be very difficult to interpret. These extreme situations are found in two of the

structures just studied, bisdiphenylmethyldiselenide (r ¼ 2.4) and papaverine hydrochloride

(r ¼ 0.28), based, in each case, on the heavy atoms alone in Nk.

The underlying philosophy of the heavy-atom method depends on the acceptance of calculated

phases, even if they contain errors, for the computation of the electron density synthesis. Large phase

errors give rise to high background features, which mask the image of the correct structure. The

calculated phases fc contain errors arising from inadequacies in the model, but the Fo data, although

subject to experimental errors, hold information on the complete structure. Phase errors may be counter-

acted to some extent by weighting the Fourier coefficients according to the degree of confidence in a

particular phase. For centrosymmetric structures, the weight w(hkl) by which Fo(hkl) is multiplied is

given by [7]

wðhklÞ ¼ tanhðw=2Þ (7.26)

where w is given by

w ¼ 2FojFcj=
X

g2u (7.27)

The subscripts c and u refer, respectively, to the known and unknown parts of the structure. In non-

centrosymmetric structures, w(hkl) can be obtained from the graph [8] in Fig. 7.22. Weighting factors

should be applied to Fo values that have been placed on an absolute, or approximately absolute, scale.

We can show, in a simplified manner, how one may reasonably expect the heavy-atom procedure

to be successful. In a centrosymmetric structure, the two terms on the right-hand side of (7.22) would

Fig. 7.22 Weighting

factor w(hkl) as a

function of w in non-

centrosymmetric crystals
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be cosine expressions. The sum over the Nk atoms would have a magnitudeM1 and be either + or� in

sign. Similarly, the sum over the Nu atoms would have a magnitudeM2 together with a + or a� sign.

Over a number of reflections, we may say that there is a 50% chance that the true signs are those given

by the heavy atom. For the other 50%, there is a 25% chance that M1 > M2, so that again the sign

given by the heavy atom is correct. Thus, there is a good chance that a large percentage of the

reflections will be given the correct sign in a favorable heavy-atom application.

Bearing all these points in mind, it follows that the best electron density map one can calculate

with phases determined from a partial structure is given by

rðxyzÞ ¼ 2

Vc

X

h¼0

X1

k¼�1

X

l¼�1
wðhklÞFoðhklÞ cos½2pðhxþ kyþ lzÞ � fcðhklÞ� (7.28)

where

fcðhklÞ ¼ tan�1½B0
cðhklÞ=A0

cðhklÞ� (7.29)

and A0
cðhklÞ and B0

cðhklÞ are the real and imaginary components, respectively, of the calculated

structure factor, which is included in the right-hand side of (7.23).

Electron density maps calculated from partial-structure phasing contain features which character-

ize both the true structure and the partial, or trial, structure. We have considered this situation in Sect.

6.9.1. Now, we may let each observation in (6.75), be multiplied by the weight w so as to give a better

statistical significance to each term in the calculation.

If the model includes atoms in reasonably accurate positions, we can expect two important features

in the electron density map: (a) atoms of the trial structure should appear, possibly in corrected

positions, and (b) additional atoms should be revealed by the presence of peaks in stereochemically

sensible positions.

If neither of these features is observed in the electron density synthesis, it may be concluded that

the trial structure contains very serious errors, and we would be on a false trail. Correspondingly,

there would be poor agreement in the pattern of relationship between Fo and jFcj.

7.5.1 Reliability Factor

Introduction
The use of different R factors is a popular way of quantifying various procedures at different stages of

an analysis. While the calculation of each R factor is not necessarily based on rigorous principles, it is

a simple and convenient way to record a quantitative assessment of quality as an aid to subsequent

decision making. In essence each R factor measures an agreement in terms of the ratio R ¼ D=M,

where D is the mean difference between measurements that are expected to have the same value

within experimental error and M is the mean value of the set of measured quantities. These averages

are usually derived from a large number of measurements in a typical crystal structure analysis. As an

example, we consider intensity data recorded from a crystal having a twofold symmetry axis parallel

to the y axis. Ideally, IðhklÞ ¼ Iðh k �lÞ so that DI ¼ jIðhklÞ � Iðh k �lÞj may be used to calculate an R

factor called Rsym.

If the intensity measurements do actually correspond according to twofold symmetry, Rsym

calculated in this way will be very small, because each DI term will tend to be zero within

experimental error. An unacceptably high value of Rsym could indicate that either there is not

7.5 Heavy-Atom Method and Partial Fourier Synthesis 303

http://dx.doi.org/10.1007/978-1-4614-3954-7#Sec29_6
http://dx.doi.org/10.1007/978-1-4614-3954-7#Equ75_6


actually a twofold axis parallel to y, or the crystal quality is poor. A solution to this problem would be

to repeat data measurements with a fresh crystal with subsequent reassessment of the situation. In the

case of a macromolecular crystal, it should be remembered that diffracted intensities tend to

much more accurate values at low resolution than at high resolution where the actual intensity

values become much smaller owing to the effect of disorder and high thermal factors. For this reason,

it is common to calculate Rsym as a function of resolution by partitioning the data into resolution

“shells” or “bins.”

A quantity very similar to Rsym, known as Rmerge, may be calculated as a by-product of data

collection: Rsym and Rmerge are based on different sets of data and should not be treated as being

equivalent. As a practical warning it should be remembered that neither Rsym nor Rmerge, as with other

R indices, can stand up to rigorous analysis, and should be treated only as guides to data quality and

aides to decision making. As a rule of thumb for high-resolution small-molecule structures Rsym may

be as low as 2% and more usually 4–6%. For low resolution protein data Rsym would rarely fall below

5%, and may rise to about 20% for high resolution data. A worse result than this would indicate poor

data quality, assuming that a sufficient sweep of intensity data has been recorded. In such cases it may

be wise either to exercise caution and discard some of the data by using a resolution cut-off or to

remeasure the data with a fresh crystal.

Rsym

If separate intensity measurements of IðhklÞ and its symmetry-related equivalents have been made,

each measurement may be expressed as IiðhklÞ, (i ¼ 1, 2, . . ., n) where n is greater than 2 but has

possibly different values for different reflections, with a maximum value equal to the total number of

symmetry equivalents for the space group in question. The best estimate of a given IðhklÞ is
�IðhklÞ ¼

P
IiðhklÞ=n. The discrepancy between the ith observation of IðhklÞ and the best estimate

is IiðhklÞ � �IðhklÞ; and the mean discrepancy of all the observations of this intensity isP
n ðIiðhklÞ � �IðhklÞÞ=n. In a given group of intensity measurements, let there be N for which at

least two symmetry equivalents have been measured. To form Rsym the mean discrepancy for each of

these N reflections is compared to their mean intensity:

Rsym ¼
X

N

X

n

jIiðhklÞ � �IðhklÞj=n
" # X

N

�IðhklÞ
,

Weights derived from the data collection statistics may be employed in order to make a better

estimate of �IðhklÞ as:

�IðhklÞ ¼
X

i¼1;n

oiIiðhklÞ
X

i¼1;n

wi

,

Rsym can be thought of as the mean error of an intensity measurement, compared to the mean

intensity, averaged over the chosen group of reflections.

We draw attention to the facts (1) that Rsym as defined here is calculated on the basis of intensity

measurements, (2) that some programs, such as SHELX-97, use the notation Rint instead of Rsym and

employ jFj2(hkl) instead of I(hkl), and (3) that since I(hkl) is related to jFj2(hkl), the fractional error in
I(hkl) is approximately double the fractional error in jFj(hkl) so that if Rsym is 0.04, the mean

fractional error in jFj would be about 0.02. This sort of value would usually be considered to be

“highly acceptable.”
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Rmerge

The essential difference between Rmerge and Rsym lies in the data subsets from which they are usually

calculated: Rmerge is calculated, not from symmetry-equivalent intensities, but from repeats of the

same I(hkl) measured during the course of a data collection session. Such repeat measurements may

be the result of employing overlapping angular ranges when the crystal is rotated. The program

SHELX-97 uses the notation Rsigma instead of Rmerge.

It is possible to merge the repeat measurements to produce a new basic data set prior to merging

the symmetry equivalents. A value of Rsym could then be derived from this new basic set and the

symmetry equivalents combined to produce the final working data set. A possible scheme is set out as

follows.

Intensity Data Collection and Processing Scheme

Data Set 1

Data are collected to the maximum possible y for which intensities are strong enough to measure

satisfactorily. This is the basic data set of non-merged I(hkl) data, and may include repeats:

• For some unique I(hkl) data whose values should be equal within experimental error;

• For a number of space group symmetry-equivalent I(hkl) data whose values should also be equal

within experimental error.

Data Set 2

Data processing can be performed first by merging the unique repeats in data set 1. Rmerge is thus

produced and examined for quality; if acceptable, it defines data set 2 which is then further processed.

Data Set 3

Data set 2 is next used to produce the final data set 3 in which the space group symmetry-equivalent I

(hkl) data have now been combined, and Rsym is produced as a result of this process. If Rsym has an

acceptable value, data set 3 becomes the current standard data set for the analysis.

Data Collection from Macromolecules
If Rmerge from data set 2 is not acceptable, poor crystal quality may be indicated. The data collection

should be repeated with a new crystal until a good specimen is found.

If Rsym from data set 3 is not acceptable, it could indicate an incorrect assignment of the space

group. Then, other possible space groups should be investigated by further analysis of the data and

recalculation of Rsym until a satisfactory result is obtained. If it is still unsuccessful, it may be

necessary to recollect data from fresh crystals.

Anomalous Scattering

Small Molecules: Calculation of Rsym for Non-centrosymmetric Structures

In small-molecule analysis for structures in non-centrosymmetric space groups, it is possible to

determine the absolute configuration of the structure by virtue of anomalous differences between Friedel

pairs IðhklÞ and IðhklÞ. The success of this operation depends on the types of atom present and the

radiation used for data collection. Thus, it is usual in non-centrosymmetric small-molecule structure

analysis not to merge Friedel opposites or any opposites generated by the space group symmetry

(Bijvoet differences, q.v.) unless it can be shown from calculation of the Flack parameter (Sect. 7.6.1)

that the absolute configuration cannot be determinedwith certainty. If andwhen this stage is reached, the
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refinement should be repeated and completed with a data set for which the Friedel opposites and Bijvoet

pairs have been merged.

Ranom in Macromolecular Analysis

With macromolecular structures that are also non-centrosymmetric, the application of anomalous

scattering for phasing in structure analysis also requires similar anomalous measurable differences to

exist. Again, this would preclude the inclusion of such reflections from the calculation of Rsym. In

order to assess the possible strength of anomalous scattering, an R index is initially calculated as

Ranom ¼ D=M where D is now the mean Friedel or Bijvoet difference and M is the mean of all

amplitudes involved.

We know that Bijvoet amplitude differences are equivalent by space group symmetry to Friedel

opposite differences. In a given data collection experiment, one or both quantities may be measured.

In practice, it is possible to derive useful phase indications from anomalous differences for a

macromolecular crystal which includes one or more strong anomalous scatters in relation to the

radiation employed provided that 2Ranom � Rmerge. The factor 2 derives from the fact that Rmerge is

based on intensity whereas Ranom is based on amplitude.

Rderiv

This R factor is used to assess the phasing power of a heavy-atom derivative in macromolecular

structure analysis by the isomorphous replacement method:

Rderiv ¼
X

jjFPHj � jFPjj
X

jFPj
.

The summations here are over the N-independent reflections for which both jFPj and jFPHj have
been measured. It is assumed that jFPj and jFPHj have both been scaled, for example, by Wilson

statistics (Sect. 4.2.1). For a moderately sized protein with one fully occupied heavy atom site, the

value of Rderiv calculated for the data between 10 and 3.5 Å resolution would be expected to have a

value between 0.1 and 0.2. Larger changes than this may indicate several sites of heavy atom

substitution or may be due to lack of isomorphism. If the latter is the case, the heavy atom derivative

will not provide any useful phasing and would be discarded; Rderiv is also known as Rdiff and Riso.

Reliability Factor in Structure Refinement
The conventional R factor that is used in structure refinement assessment reflects the difference

between the scaled-observed and the calculated structure-factor amplitudes, and provides a measure

of the quality of the trial structure. Large differences correspond to poor reliability, and vice versa.

The R is defined as

R ¼
X

hkl

jKFo � jFcjj
X

hkl

KFo

,
(7.30)

R is sometimes also known as R1, where R2 is used for the corresponding weighted value. For a well-

refined structure model, the value of R approaches a small value, about 1% at the very best,

corresponding to the residual errors in both the experimental data and the model. In the early stages

of the analysis, however, Rmay lie between 0.4 and 0.5. It expresses the first criterion of correctness,

namely, good agreement between Fo and jFcj. It should be noted that trial structures with an R factor

of more than 50% have been known to be capable of refinement; R is only a rough guide at that stage

of the analysis. A better basis for judgment is a comparison of the pattern of Fo and jFcj, which
requires care and experience.
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Refinement R Indices and Weights with SHELX-97
Structure refinement with the SHELX-97 system is carried out against jFj2 instead of jFj and the

values of the R indices tend to be more than twice as high. For comparison with older refinements,

SHELX-97 produces a conventional index R1 based on Fo values >4s(Fo) and a weighted R factor

wR2 based on jFj2 where R1 is governed by (7.30) and the weighted R factor by

wR2 ¼
X

½wðFo
2 � jFcj2Þ2�

X
½wðFo

2Þ2�
.n o1=2

where Fo is a scaled value, as in (7.30), and w ¼ 1=½s2ðF2
oÞ þ ðaPÞ2 þ bP� where P ¼ ½2jFcj2þ

maxðFo
2; 0Þ�=3. The use of this combination of F2

o and jFcj2 was shown [9] to reduce statistical bias.

As a rough guide, for high resolution small-molecule structures R1 may be as low as 2% but more

usually 4–6%. For low resolution protein data R1would rarely fall below 5%, and may rise to 15–20%

at high resolution. A result less than this would indicate poor data quality and require careful

investigation.

Rfree and Protein Refinement
The Rfree index [10] is currently used in macromolecular structure analysis, and this is a requirement in

most journals as a condition of publication. Use of this technique requires that the measured Fo(hkl)

data available for refinement of the protein structure is partitioned into two separate sets. The smaller

portion of the data is usually selected at random and comprises 5–10% of the whole data set. The small

subset is used in the calculation of Rfree and the larger subset is known as the “working” data set. The

Rfree subset of data is used only for calculation of Rfree. These reflections are subsequently excluded

from the summation in the equations forR (R1) given above, which is calculated only from the working

data set. Consequently there is a permanent loss of this selected data from the refinement procedure.

This test subset is never allowed to be included in the refinement process from start to finish. The

purpose of excluding this subset of data is to enable the calculation of

Rfree ¼
X

hkl

jKFo � jFcjj
X

hkl

KFo

,

where the summations are carried out over the randomly selected 5–10% subset of test data, and K is

the scale factor for the data set.

Since these randomly selected data are not available at any stage in the refinement procedure, any

improvements such as a decrease in Rfree during the course of the refinement will reflect genuine

improvements in the model, rather than the fitting of an incorrect model to the Fo data which could,

within limits, improve the conventional R factor. After each cycle of refinement calculations, it is

essential to review the refined model for errors by studying in detail the Fo � jFcj difference map. If

this map has any significant positive features, they are a clear indication that a part of the map needs to

be reinterpreted. In practice, during the course of structure refinement Rfree lags behind R because it is

calculated from reflections that the refinement procedure does not “know about.” A lag of about 3% is

usually considered acceptable. Further guidelines can be found in the documentation for the Phenix

program [11].

Rfree as a Simple Quantitative Guide to Correct Coordinate in a Refined Protein Structure
A method [12] that was originally intended to aid evaluation of the accuracy of well-resolved atomic

structures in small-molecule crystallography has been modified [13, 14] for application to refined

protein structures. As with the original method, the modification is based largely on the R factor.
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It enables the positional error for an atom having an average isotropic temperature factor to be

estimated. From (7.30), we see that R will be small if the Fo values have been measured accurately

and the jFcj values are derived from a well behaved and highly reliable structure. A modified

approximation [14] provides a rapid method for estimating the precision sðrx;y;z; �BÞ of the positions
of atoms in a refined protein crystal structure:

sðrx;y;z; �BÞ ¼ 2:2
ffiffiffiffiffiffiffiffiffiffiffiffi
Natoms

p
V1=3
a n�5=6

o Rfree

where Natoms is the number of fully occupied protein sites in the structure, Va is the volume of the

crystal asymmetric unit in Å3, no is the number of I(hkl) measurements in the refinement data set, and

Rfree is its final value after refinement is complete. This expression applies only to protein structures,

because the average atomic weight of atoms present in the structure is assumed to be about 14.1. The

measure sðrx;y;z; �BÞ is actually the standard error of position for an atom that has an average B value; it

does not include any information about sðBÞ, and the atom positions involved in N are those that are

fully occupied. Some of the atoms in a protein structure may be either partially occupied or have

larger than average B values. According to this analysis, sðrx;y;z; �BÞ has the following very approxi-

mate expectation values as a function of resolution dmin and Rfree:

dmin (Å) Rfree sðrx;y;z; �BÞ (Å)
1.0 0.25 0.06

2.0 0.25 0.30

The values of Rfree at this level would be considered worryingly high.

dmin (Å) Rfree sðrx;y;z; �BÞ (Å)
1.0 0.20 0.045

2.0 0.20 0.25

1.0 0.15 0.035

2.0 0.15 0.18

The values of Rfree within these ranges would generally be considered to be acceptable.

7.5.2 Pseudosymmetry in Electron Density Maps

The electron density map calculated with phases derived from the heavy-atom positions may not

exhibit the true space-group symmetry. Suppose space group P21, for example, has one heavy atom

per asymmetric unit. The origin is defined with respect to the x and z axes by the 21 axis along [0, y, 0],

but the y coordinate of the origin is determined with respect to an arbitrarily assigned y coordinate for

one of the atoms. Consider the heavy atoms at x, y, z and symmetry-related at �x,
1

2
þ y, �z. This

arrangement of heavy atoms has the symmetry of P21/m, with the m planes cutting the y axis at

whatever y coordinate is chosen for the heavy atom, say yH, and at
1

2
þ yH. If yH is selected as

1

4
, a

center of symmetry is at the origin, and the calculated phases will be 0 or p. This situation is

illustrated in Fig. 7.23, which indicates that an unscrambling of the images must be carried out.

If the heavy atom is given any general value for yH, B
0(hkl) will not be zero and the phase angles will

not be 0 or p, but the pseudosymmetry will still exist.
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7.5.3 Successive Fourier Refinement

A single application of the Fourier method described above does not usually produce a complete set

of atomic coordinates. It should lead to the inclusion of more atoms into subsequent structure factor

calculations and so to a better electron density map, and so on. This iterative process of Fourier

refinement should, after several cycles, result in the identification of all non-hydrogen atoms in the

structure to within about 0.1 Å of their true positions. Further improvement of the structure would

normally be carried out by the method of least squares, which is described in Sect. 8.4.

7.5.4 Difference-Fourier Synthesis

Some errors present in the trial structure may not be revealed by Fourier synthesis. In particular, the

following situations are important.

1. Atoms in completely wrong positions tend to be returned by the Fourier process with similar

fractional coordinates, but sometimes with a comparatively low electron density.

2. Correctly placed atoms, may have been assigned either the wrong atomic number, for example, C

for N, or an incorrectly estimated temperature factor.

3. Small corrections to the fractional coordinates may be difficult to assess from the Fourier map.

In these circumstances, a difference-Fourier synthesis is valuable. We shall symbolize the Fourier

series with Fo coefficients as ro(xyz) and the corresponding synthesis with jFcj instead as rc(xyz); the
difference-Fourier synthesis Dr(xyz) may be obtained in a single-stage calculation from the equation,

using the difference of observed and calculated structure amplitudes:

DrðxyzÞ ¼ 2

Vc

X

h

X

k

X

l

ðFo � jFcjÞ cos½2pðhxþ kyþ lzÞ � fc� (7.31)

Fig. 7.23 Introduction of pseudosymmetry into space group P21 by single heavy-atom phasing. H is the heavy atom

and C is a center of symmetry introduced between H and its P21 equivalent H
0. The space group (for the heavy atoms

alone) thus appears as P21/m with mirror (and �1) pseudosymmetry. The electron density map, phased on the H and H0

species, will contain two mirror-related images in the asymmetric unit, with a certain degree of confusion between them
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Since the phases are substantially correct at this stage, it is in effect, a subtraction, point by point, of

the “calculated,” or trial, Fourier synthesis from that of the “observed,” or experimentally based,

synthesis. The difference synthesis has the following useful properties.

1. Incorrectly placed atoms correspond to regions of high electron density in rc(xyz) and low density

in ro(xyz); Dr(xyz) is therefore negative in these regions.

2. A correctly placed atom with either too small an atomic number or too high a temperature factor

shows up as a small positive area in Dr. The converse situations produce negative peaks in Dr.

3. An atom requiring a small positional correction tends to lie in a negative area at the side of a small

positive peak. The correction is applied by moving the atom into the positive area.

4. Very light atoms, such as hydrogen, may be revealed by a Dr synthesis when the phases are

essentially correct, after least-squares refinement has been carried out.

5. As one final test of the validity of a refined structure, theDr synthesis should be effectively featureless

within two to three times the standard deviation of the electron density, Sect. 8.7.

7.5.5 Limitations of the Heavy-Atom Method

The Patterson and heavy-atom techniques are effective over a wide range of structures. It is

sometimes necessary to introduce heavy atoms artificially into structures. This process may not be

desirable because a possible structural interference may arise, and there will be a loss in the accuracy

of the light-atom positions. An introduction to direct methods, capable of solving the phase problem

for such structures, is given in the next chapter.

7.5.6 Patterson Selection

It is possible that the Patterson function for the crystal of a heavy-atom compound may not reveal

the heavy-atom vector unambiguously. Figure 7.24a is the Patterson projection on to the x, z plane

for euphenyl iodoacetate, C32H53O2I, and Fig. 7.24b is the Harker section for the same material.

There are two high peaks, A and B, in the asymmetric unit where only one was expected. For the

Harker section, the coefficients were sharpened and further modified by the multiplicative function

expð�9sin3yÞ so as to smooth out any undesirable fluctuations caused by the sharpening which

enhances the high-order reflections relative to those of low order.

In the selection process, the Fo
2 data, averaged in zones of 2 sin y, are plotted as a function of 2 sin y

in Fig. 7.24c(i). Between the values for 2 sin y of 0.5 and 0.7, the average values of Fo
2 are enhanced,

owing to the multiplicity of similar distances in the structure, unconnected with the heavy atom,

Fig. 1.7, compared with the corresponding smoothed curve, Fig. 7.24c(ii). The many equal, or nearly

equal, vectors between atoms in the molecule are superimposed in the Patterson function and lead to

additional large peaks.

The Fo
2 data were “selected” by excluding from the next Patterson synthesis all those data lying

within the range 0:5<2 sin y<0:7, and the resulting sharpened Harker section is shown in Fig. 7.25;

clearly, the heavy-atom vector is at B. The selection process has effectively removed the “structure”

that was giving rise to the additional peak A, so that the heavy-atom vector was then sought among the

vectors from a more random array of atoms [15].

Figure 7.24c(iii) is the average Fo
2 curve for a random arrangement corresponding to C32O2I, with

the same unit-cell geometry as that of euphenyl iodoacetate, and with no two atoms closer than 1.6 Å.

The R factor for this hypothetical structure was 0.58; the value for a completely random
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Fig. 7.24 Patterson studies on the heavy-atom compound C32H53O2I (P21; Z ¼ 2). (a) Projection P(uw).

(b) Sharpened Patterson–Harker section Pðu 1
2
wÞ. (c) Plots of average Fo

2 against 2 sin y: (i) experimental data,

(ii) “smooth” curve through the experimental points, (iii) hypothetical (random) structure C32O2I, with the same

crystal geometry as C32H53O2I

Fig. 7.25 Sharpened Patterson–Harker section Pðu 1
2
wÞ, with the Fo

2 data selected as described in the text. The I–I

vector is clearly at B, whereas in Fig. 7.24a, b, there were two peaks of equal height in the asymmetric unit



non-centrosymmetric structure is 0.586 [16]. The curve evolves in a manner similar to an f 2 curve

and, as would be expected, shows no structural effects of the nature of Fig. 7.24c(i).

7.5.7 Isomorphous Replacement

A common feature of biologically important substances is their high molecular weight. Proteins and

enzymes, for example, are polymers built up from various amino acid residues and form very large

atomic assemblies with molecular weights greater than about 5000. The study of the conformations of

these giant molecules is necessary for an understanding of their biological functions, and the principal

method of obtaining structural detail is by X-ray analysis.

Because of their high molecular weight, protein structures do not yield to analysis by the

straightforward heavy-atom method. The value of r, from (7.24), is typically 0.03 for a protein

molecule of molecular weight 5000 containing one incorporated mercury atom. This value of r is too

small to be useful. Another difficulty is that most proteins and enzymes contain neither very heavy

atoms nor easily replaceable groups to facilitate the introduction of heavy atoms. In spite of these

difficulties, if a heavy-atom derivative of a large molecule can be prepared, it may be possible to

induce it to crystallize in a similar size of unit cell and with the same space group as the native

compound. Such pairs of crystals are said to be isomorphous.

The structure factor of the heavy-atom derivative FPH may be handled, as before, in the manner of

a vector as

FPH ¼ FP þ FH (7.32)

where FP and FH are the structure factors for the parent protein and the heavy atoms alone,

respectively, for the same reflection. This relationship is shown in Fig. 7.26.

Fig. 7.26 Graphical interpretation of the isomorphous replacement equation. In practice, the phases fP and fPH are

unknown initially. FH may be known with a fair degree of accuracy if the heavy-atom position in each isomorphous

derivative is known. This enables a solution, as illustrated in Fig. 7.27, to be obtained
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Assuming that the positions of the NH heavy atoms in the unit cell can be determined, their

contribution can be calculated:

FH ¼
XNH

j¼1

g0j exp½i2pðhxj þ kyj þ lzjÞ� (7.33)

where g0j ¼ f 0j expð�Bjsin
2y=l2Þ, and f 0j ¼ Kjfj: Kj is a site occupation factor, less than or equal to

unity, provided that jFPj and jFPHj are on an absolute scale, and depending on the degree of

substitution at the heavy-atom site j; some heavy-atom binding sites of the protein molecules in the

crystal may not be fully substituted.

In order to obtain an idea of the effect of a heavy atom on the intensities of X-ray reflections from a

protein, we shall carry out a simple calculation for a crystal containing one protein molecule per unit

cell in space group P1. Assuming that it has a molecular weight of about 13000, about 1000 non-

hydrogen atoms would also be present in the molecule; we shall assume that the non-hydrogen atoms

are all carbon (ZC ¼ 6). Accepting Wilson’s approximation (4.35), and replacing gj by fC, we have

jFPj2 �
X1000

j¼1

f 2C (7.34)

At sin y ¼ 0, jFPj2 is 36000. If the derivative contains one mercury atom (ZHg ¼ 80), then

jFPHj2 �
X1000

j¼1

f 2C þ
XNH

j¼1

f 2j (7.35)

which has the value 42400 at sin y ¼ 0ð fj ¼ 80Þ. Hence, the maximum change in intensity is about

18%, which is a surprisingly high value.

Experimentally, two sets of data jFP(hkl)j and jFPH(hkl)j are measured and, because of the

comparative nature of the phase-determining procedure with isomorphous compounds, they must

be placed on the same relative scale, which can be achieved by Wilson’s method. Rewriting (7.32),

we have

jFPj expðifPÞ ¼ jFPHj expðifPHÞ � FH (7.36)

Assuming that FH can be determined, this equation involves two unknown quantities, fP and fPH,

and cannot yield a unique solution. However, Fig. 7.27 shows that ideally only two solutions for fP are

real, corresponding to the vectors OP1 and OP2, one of which is the true FP vector. A second

isomorphous derivative with a different set of heavy-atom positions will also have two solutions for

FP. The derivatives are denoted 1 and 2, and the solutions for FP are OP11 and OP12 (derivative 1) and

OP21 adOP22 (derivative 2), as shown in Fig. 7.28. Two of the solutions should agree with eitherOP1 or

OP2 within experimental error, thus resolving the ambiguity, Fig. 7.28. With a more extensive series of

isomorphous derivatives, it is possible to obtain phases capable of yielding interpretable electron density

maps. Many protein structures have been investigated successfully by this technique. Further details are

given in Sect. 7.4.8.

Centrosymmetric Projections
Proteins always crystallize in non-centrosymmetric space groups because the amino acid residues in

the polypeptide have left-handed configurations about the a-carbon atoms. Amino acid residues with
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Fig. 7.27 Single

isomorphous replacement

(SIR) phase–amplitude

diagram in the SIR method.

OH(�FH) is the known

reversed heavy-atom

vector. The triangles OHP1

and OHP2 both satisfy

(7.32), giving a twofold

ambiguity with vectors

either OP1 or OP2 as the

solution for FP

Fig. 7.28 Multiple

isomorphous replacement

(MIR) resolution of the

phase ambiguity with a

second isomorphous

heavy-atom derivative

PH2. The determined

direction of FP is near

vectors OP11 and OP21. In

practice, P11 and P21 rarely

coincide, due to

inaccuracies in the heavy-

atom parameters and lack

of complete isomorphism
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right-handed configurations are very rare in nature. Although non-centrosymmetric structures usually

present more difficulties than centrosymmetric structures, there is a compensation in the relative ease

of determination of the space group; ambiguities such as P21 and P21/m do not exist for the protein

crystallographer. Most non-centrosymmetric space groups have at least one centric zone. In such a

case, (7.32) becomes

sPHFPH ¼ sPFP þ sHFH (7.37)

where s, the sign of the structure factor is �1.

Unless both FPH and FP are very small compared with FH, it is unlikely that sPHwill differ from sP.

Generally FP and FPH are pointing in the same direction. Accepting this statement, we may substitute,

sP for sPH in (7.37):

sPðFPH � FPÞ ¼ sHFH (7.38)

or

sP ¼ sHFH=DF (7.39)

where DF ¼ FPH � FP. Since we are interested only in the signs, (7.39) may be rewritten as

sP ¼ sHsD (7.40)

where sD is +1 if FPH > FP and �1 if FPH < FP. In this way, signs can often be determined for

centric reflections in a protein crystal with only a single isomorphous derivative, and we shall

illustrate the method by the following example.

Sign Determination for Centric Reflections in Protein Structures
We shall consider data for both the enzyme ribonuclease and a heavy-atom derivative prepared by

soaking pre-grown crystals of the enzyme in K2[PtCl6] solution.

Crystal Data for Ribonuclease

System: monoclinic

Unit-cell dimensions: a ¼ 30.31 Å, b ¼ 38.26 Å, c ¼ 52.91 Å, b ¼ 105.9�

Mr: 13500 (ribonuclease)

ZP: two molecules of ribonuclease plus an unknown number of water molecules

ZPH: as for ZP + NH [PtCl6]
�2 groups per unit cell (NH is the number of heavy atoms groups)

Absent spectra: 0k0: k ¼ 2n + 1

Space group: P21. The h0l zone is centrosymmetric

Given the heavy-atom positions, Table 7.5 shows how the signs for some h0l reflections have been

determined.Notice that experimental errors in FP and FPH, togetherwith errors in the calculated FH arising

from inaccuracies in the heavy-atom model, are reflected in the inequality of DF and FH. The validity of

(7.40) is upheld by these data.

Location of Heavy-Atom Positions in Proteins
In a centrosymmetric zone, it follows from (7.39), since sP and sH are �1, that

FH ¼ jDFj (7.41)

where jDFj ¼ jFPHj � jFPj. A Patterson function calculated with jFHj2 as coefficients would give the
vector set of the substituted heavy atoms in the protein molecule. Since jFHj cannot be observed
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directly, one calculates a difference Patterson map with (DF)2 as coefficients. If the experimental

errors in jFPj and jFPHj are not significant, and not too many sign “cross-overs” with sP and sPH occur,

then the (DF)2 Patterson projection would be expected to reveal the heavy-atom vectors. In the case of

general non-centrosymmetric reflections, we note in Fig. 7.29 that sinceOQ ¼ jFPHj,OP ¼ jFPj, and
OR ¼ jFPj cos(fPH � fP), we have

RQ ¼ jFHj cosðfH � fPHÞ and

OQ ¼ ORþ RQ
(7.42)

Hence,

jFPHj � jFPj cosðfPH � fPÞ ¼ jFHj cosðfH � fPHÞ (7.43)

Table 7.5 h0l Data for ribonuclease

Observed data Calculated data
Deduced sign

hkl FP FPH jDFj sD jFHj sH sp ¼ sHsD

003 437 326 111 �1 50 +1 �1

006 59 48 11 �1 27 �1 +1

007 182 109 73 �1 90 �1 +1

10; 17 144 196 52 +1 31 �1 �1

10,13 146 82 64 �1 52 +1 �1

10�9 97 165 68 +1 55 �1 �1

106 183 242 59 +1 45 +1 +1

30�4 746 861 115 +1 72 +1 +1

405 103 57 46 �1 56 +1 �1

Fig. 7.29 Location of heavy-atom positions in proteins
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If fPH � fP is small, it follows that cos(fPH � fP) � 1.0 and

jFPHj � jFPj ¼ DF � jFHj cosðfH � fPHÞ (7.44)

In practice, since the angle fH � fPH is undeterminable at this stage, one can calculate a Patterson

function with (DF)2 coefficients as for centrosymmetric reflections, but as an added precaution to

ensure that (fPH � fP) is small, use only those terms for which both jFPj and jFPHj are large.

Although the non-centrosymmetric (DF)2 synthesis is not a true Patterson function, it has been used

successfully to determine the heavy-atom distribution in proteins.

The most useful derivatives contain a small number of highly substituted sites. Unlike the structure

analysis of smaller molecules, it is not known initially how many heavy-atom sites have been

incorporated into the molecule.

As an example, we shall consider the (DF)2 Patterson map for the Pt derivative of ribonuclease,

space group P21. The vectors between symmetry-related atoms occur on the Harker section ðu; 1
2
;wÞ.

Eight peaks occur on the Harker section and four at v ¼ 0, Fig. 7.30a, b. This result suggests that there

is more than one heavy-atom site per protein molecule. The most obvious choice is two, since four

heavy atoms per unit cell would give rise to 12 non-origin peaks. If the two sites are labeled 1 and 2,

their Harker peaks will be of the form � ð2x1;
1

2
; 2z1Þ and � ð2x2;

1

2
; 2z2Þ.

Interpretation of the Patterson function is best undertaken in terms of the Harker section, assuming

that the peaks represent nonoverlapping vectors and ignoring the possibility that some peaks could be

Fig. 7.30 (DF)2 Patterson

sections for the Pt

derivative of ribonuclease:

(a) Pðu1
2
wÞ. (b) P(u0w)
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non-Harker peaks. Since the true Harker peaks are of the form 2x, 2z, values of x and z can be obtained

from the fractional coordinates on the Harker section.

This analysis may be carried out graphically. The peak positions from the Harker section are

replotted, on tracing paper, on a unit-cell projection in which the a and c dimensions are each reduced

by a factor of 1
2
. This procedure results in one quadrant of Fig. 7.31a. The diagram is completed by

operating on the first quadrant with the translation of a/2, and then on both quadrants by c/2, thus

completing an area the size of the true unit-cell projection.

All points marked on this map locate potential (x, z) coordinates for the heavy atoms. In fact, it

contains four equivalent solutions with respect to the four unique 21 axes in the unit cell. Cross-vector

peaks are found by moving this implication diagram5 to other sections of the Patterson function, using

pairs of potential sites to generate potential vectors. To see how this mechanism operates, place the

site marked 2 on the tracing paper over the origin of the section v ¼ 0 and note the coincidence of site

1 with the peak 2-1. Similarly, the peak 2��1 and others on the section u ¼ 1

2
can be generated from

the sites 1, 2, �1, and �2 on the implication diagram. Peaks S and �S are not explained in this way; they

may be assumed to be spurious: remember (DF)2 is not a true representation of jFHj2.
Figure 7.31b shows a composite electron density map of the Pt atom sites which were prepared by

an independent method, and confirms the Patterson analysis. The y coordinates of the two heavy-atom

sites are almost equal, which accounts for the presence of the non-Harker peaks�(2-1) on the Harker

Fig. 7.31 Interpretation of

the (DF)2 Patterson

sections for ribonuclease.

(a) Implication diagram.

(b) Electron density map

showing the Pt atom sites

5 See Bibliography, Buerger (1959).
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section. Figure 7.32 is a stereo-pair showing the course of the polypeptide chain in ribonuclease and

the position of the main site in the Pt derivative.

7.5.8 Further Details of the Isomorphous Replacement Phasing Procedure

In single isomorphous replacement (SIR), the ambiguity in fP is best resolved, Fig. 7.33, by taking

fP ¼ fH with FP along the median OM between P1 and P2; jFPj should be weighted [17] by

m ¼ cosC where C is the semi-angle between P1 and P2. By the cosine rule

m ¼ cosC ¼ jjFPHj2 � jFPj2

� jFHj2j=ð2jFPjjFHjÞ
(7.45)

Fig. 7.32 Stereoviews of

the polypeptide chain in

ribonuclease; the main site

in the Pt derivative is

shown as a simulated

octahedrally coordinated

group

Fig. 7.33 Phase-

amplitude diagram in the

SIR method; OH(�FH) is

the known reversed heavy-

atom vector. The triangles

OHP1 and OHP2 both

satisfy (7.32), giving

twofold ambiguity with the

vectors either OP1 or OP2

as the solution for FP; OM

defines the weighted SIR

solution for FP
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we see that m would have a maximum value of unity in the special case for which jFHj ¼ jjFPHj �
jFPjj, where the two circles in Fig. 7.33 are tangential. The coefficients in the SIR electron density

map would be composed of mjFPj and fH. The electron density of such a map would be subject to the

pseudo-symmetry effects discussed in Sect. 7.4.4. Taking fP ¼ fH is thus the SIR equivalent of the

initial stage of the heavy-atom method, in which we take f ¼ fH.

Analytical Calculation of Phases in SIR and MIR
The geometrical determination of phases by the isomorphous replacement method using Harker’s

construction is impractical for several reasons:

1. In MIR (multiple isomorphous replacement), phase-circle intersections, arising from accumulated

errors, do not usually give absolutely clear indications of fP, as shown in Fig. 7.34 by P11 and P21.

Actual phase determination in MIR, exemplified by Fig. 7.35, contains a complexity of multiple-

derivative phase indications, the phase circles intersecting in rather ill-defined regions.

2. The size of the task of estimating thousands of fP(hkl) values in a typical protein analysis

necessitated the development of an analytical formula suitable for computer programming, as

outlined below.

The basis for a computational algorithm, alternative to the Harker construction for SIR, is shown in

Fig. 7.36, in which the inner circle represents jFPj and the spokes represent fT, a series of trial values

of fP for fT ¼ 0 to 360� in steps of 30�. The amplitude jFHj, which would be calculated from (7.33),

using the known heavy-atom parameters, is plotted at the end of each spoke. In order to simplify the

drawing, the third side of the isomorphous replacement triangle, representing jFPHj, has not been

joined up. The SIR solutions, corresponding to P1 and P2 in Fig. 7.33, would occur when jFHj just
touches the jFPHj circle, which is plotted concentrically with the jFPj circle and is the outer circle in

Fig. 7.36. These two positions are indicated in the diagram, which should be compared with Fig. 7.33.

Because of the method of selecting fT, neither is generated exactly in this method.

Fig. 7.34 MIR resolution

of the phase ambiguity with

a second isomorphous

derivative PH2. The

determined direction is

near the vectors OP11

and OP21. In practice P11

and P21 rarely coincide,

owing to inaccuracies in

the heavy-atom parameters

and a lack of true

isomorphism
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Now consider Fig. 7.37, which shows a more detailed representation of the case where fT ¼ 30�,
Fig. 7.36. This is one of the general cases, neither P1 nor P2, where the jFPHj trial value on the Argand
diagram would not close the third side of the phase triangle properly. In the case shown jFPHj is too
short; other situations evident in Fig. 7.36 would correspond to jFPHj being too long. In these

situations there is a lack-of-closure error denoted by eðfTÞ, Fig. 7.37. For the SIR solutions,

eðfTÞ ¼ 0. In general, eðfTÞ may be calculated as follows:

D2
fT

¼ jFPj2 þ jFHj2 þ 2jFPjjFHj cosðfT � fHÞ (7.46)

and

e2ðfTÞ ¼ ½jFPHj � DðfTÞ�2 (7.47)

Fig. 7.35 Examples ofMIRwhere the phase circles do not intersect at a point. Themost probable value of the phasef (fM

at Pmax) and the centroid phase (fB at Pcent) are indicated. (a) P(f) calculated for the two-derivative case in Fig. 7.34, with
fB ¼ 43�, fM ¼ 31�, and m ¼ 0.80. (b) An example of three-derivative phasing (see Problem 7.14) with fB ¼ 204�,
fM ¼ 185�, andm ¼ 0.59. Although based on three derivatives, the probability distribution in (b) is not as sharp as that in
(a), resulting in a lower figure of merit, m, and larger fB ! fM difference
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The SIR solutions could be determined to a satisfactory degree of precision by plotting eðfTÞ
against fT and locating the two fT values for which eðfTÞ ¼ 0. This is shown for the example in

Figs. 7.33 and 7.36 by the graph of Fig. 7.38. Both solutions P1 and P2 are of course equally probable

in the SIR method. In the theory of phase analysis by the MIR method, errors may be assumed to

reside in jFPHj [18], which simplifies the calculations. For a given trial value of fT, the probability

that fT is the correct value is

Fig. 7.37 Calculation of the lack-of-closure error eðfTÞ

Fig. 7.36 The concept of lack of closure; the inner circle represents jFPj and the outer circle jFPHj. Trial values of fP

are plotted at 30� intervals, each carrying the known FH. At P1 and P2, FH ends exactly on the FPH circle; otherwise it

fails to close, being too long for the smaller region spanning P1–P2 and too short for the rest; see Fig. 7.27 for the Harker

construction of this SIR case
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PðfTÞ ¼ expð�e2ðfTÞ=2E2Þ (7.48)

where E here is the root-mean-square error in jFPHj arising from data errors.

In MIR there would be one value of eðfTÞ per derivative. Let ei(fT) be the value for derivative i,

where i ¼ 1, 2, . . . to the total number of derivatives. Then the probability for the ith derivative is

PiðfTÞ ¼ exp½�e2i ðfTÞ=2E2
i � (7.49)

and the joint probability over all derivatives is

PðfTÞ ¼ P1ðfTÞP2ðfTÞPðfTÞ . . .

or

PðfTÞ ¼ exp �
X

e2i ðfTÞ=2E2
i

h i
(7.50)

Typical examples of probability distributions met in practice are given in Fig. 7.35. Generally

the distributions are bimodal, indicating a stronger preference for one maximum over the other.

The most probable electron density map uses coefficients (jFPj, fM), where fM is the phase angle

corresponding to the maximum probability in the range 0–360�. However, the electron density map

with the least overall root-mean-square error uses coefficients (jFPj, fB), where fB is the “best” phase

angle, corresponding to the centroid of the probability distribution, and m is a weighting function

(or figure of merit), given by

m cosfB ¼
X

fT

PðfTÞ cosfT

X
PðfTÞ

.
(7.51)

Fig. 7.38 Values of eðfTÞ plotted against fT; P1 and P2 are the two positions for which efT
¼ 0, corresponding to the

SIR solutions; see Figs. 7.33 and 7.36
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m sinfB ¼
X

fT

PðfTÞ sinfT

X
PðfTÞ

.
(7.52)

It is convenient in practice to evaluate these expressions by stepping from 0 to 360� in regular

intervals of 5 or 10�. The probability distributions and corresponding phases may be readily evaluated

by suitable programming [19].

For each derivative, the root-mean-square estimate of error may be taken initially as the average

E2
j ¼ hðjDFij � jFHi

jÞ2ihkl (7.53)

where the quantity

DFi ¼ jFPHi
j � jFPj (7.54)

is evaluated for centric reflections only.

The error in a phase angle may be defined as Df ¼ fB � fM and m ¼ cos Df. A value of

m ¼ 0.7 corresponds to �45�. The average value of m is a measure of the average of cos Df. In a

typical protein analysis at resolution 2 Å6 (sin ymax ¼ l/4), an average m of 0.6–0.7 would be

acceptable. Further practical details of MIR are to be found in Sect. 10.2.12ff.

Electron Density Maps Used in Large-Molecule Analysis
The correlation of heavy-atom sites between derivatives requires one to establish the coordinates of

heavy atoms in a derivative i with respect to those of another derivative or combination of derivatives

for which phases fP 6¼i have been determined. A difference electron density map may be calculated as

rDiðxyzÞ ¼
1

Vc

X

h

X

k

X

l

ðjFPHi
j � jFPjÞ cos½2pðhxþ kyþ lzÞ � fP 6¼i� (7.55)

This should reveal the heavy atoms in derivative i with respect to the same origin as in the other

heavy-atom derivatives. Derivative i can then be added into the MIR procedure.

For a trial structure in which phases have been calculated, as in small-molecule analysis, a

difference electron density map may be used in order to effect corrections to the structure:

DrðxyzÞ ¼ 1

Vc

X

j

X

k

X

l

ðjFPj � jFcjÞ cos½2pðhxþ kyþ lzÞ � fc� (7.56)

Alternatively a double-difference map

r0ðxyzÞ ¼ 1

Vc

X

h

X

k

X

l

ð2jFPj � jFcjÞ cos½2pðhxþ kyþ lzÞ � fc� (7.57)

6The resolution of a protein X-ray analysis is loosely defined as dmin, where dmin ¼ l/2 sin ymax, ymax being the

maximum Bragg angle associated with the analysis: initially ymax may be temporarily restricted in order to limit the

work required, but at the expense of the quality of the electron density image.
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where r0(xyz), equal to rc(xyz) + Dr(xyz), may be used since new features may be more easily

recognized in Dr(xyz) against the background of the known rc(xyz) structure. This map is very useful

in computer graphics analysis, Sect. 10.4.4.

In MIR the most error-free electron density is calculated as

rPðxyzÞ ¼
1

Vc

X

h

X

k

X

l

mjFPj

� cos½2pðhxþ kyþ lzÞ � fB�
(7.58)

where fB is the MIR phase corresponding to the centroid of the phase probability distribution (the

best phase) and m is the figure of merit; see (7.51) and (7.52).

7.6 Anomalous Scattering

Friedel’s law is not an exact relationship, and becomes less so as the atomic numbers of the

constituent atoms in a crystal increase. The law breaks down severely if X-rays are used that have

a wavelength just less than that of an absorption edge of an atom in the crystal, Sect. 3.1.3. However,

this criterion is not essential for anomalous scattering to be used in two important aspects of crystal

structure analysis, namely, the determination of absolute stereochemical configurations and the

phasing of reflections.

Anomalous scattering introduces a phase change into a given atomic scattering factor, which

becomes complex:

f ¼ fo þ Df 0 þ iDf 00 ¼ f 0 þ iDf 00 (7.59)

Df 0 is a real correction, usually negative, and Df00 is an imaginary component which is rotated

anticlockwise through 90� in the complex plane with respect to fo and Df 0, that is, to f 0.
A possible situation is illustrated in Fig. 7.39. In Fig. 7.39a, atom A is assumed to be scattering in

accordance with Friedel’s law, and it is clear that jFðhÞj ¼ jFð�hÞj, where h stands for hkl. In Fig. 7.39b,

atom A is represented as an anomalous scattering species, with its three components according to (7.59).

In this situation, jFðhÞj 6¼ jFð�hÞj, and intensity measurements of Friedel pairs of reflections produce

different values.

We can assume safely that procedures for measuring I(hkl) differentiate correctly between hkl and
�h �k �l. In any non-centrosymmetric space group a structure model can be inverted, as if through a center

of symmetry, and used to recalculate the structure factors. Because structure factor formulae involve

(hx + ky + lz), the two models will produce different values for jFc(hkl)j and jFcð�h �k �lÞj. The correct
enantiomorph is expected to produce better agreement between Fo and jFcj and, thus, a lower R-factor.
Some typical results are listed in Table 7.6, from which it may be deduced that the structure giving

jFcj�x;�y;�z corresponds to the absolute configuration. An equivalent procedure would be to measure the

values of both jF(hkl)j and jFð�h �k �lÞj and compare them with jFcjx,y,z. The technique can be used only

with crystals which are non-centrosymmetric, because jFðhÞj ¼ jFð�hÞj in centrosymmetric crystals,

but this limitation is not important because molecules which crystallize with a single enantiomorph

cannot do so in a space group containing any form of inversion symmetry.
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7.6.1 The Flack x Parameter

It is clear from the above treatment that a more complete, rigorous, and easily applied method for the

determination of absolute configuration would be highly desirable. To this end several proposals have

been made: Hamilton’s R-ratio test [20] requires the number of observations to be known; Rogers’ �
parameter [21] attempted to overcome operational difficulties associated with Hamilton’s test, but

assumed that reflections for which jFðhklÞj ¼ jFð�h �k �lÞj, and there are always some except in space

group P1, had no influence on the refinement of � and its standard deviation. Flack’s x parameter

method [22] showed that the assumption of Rogers was not always valid, and it has proved to be the

most useful and reliable method; it is currently employed in program packages such as SHELX-97.

The Flack x parameter is refined by least squares, together with the other structural parameters,

Sect. 8.4.3, to a final value and corresponding standard deviation. The Flack parameter x is defined in

terms of jFcj by the equation

jFcðhklÞj2 ¼ ð1� xÞjFcðhklÞj2 þ xjFcð�h �k �lÞj2 (7.60)

Fig. 7.39 Anomalous

scattering of atom A with

respect to the rest of the

structure R. (a) Normal

case: jFðhÞj ¼ jFð�hÞj.
(b) Anomalous

case: jFðhÞj 6¼ jFð�hÞj.
The general non-

centrosymmetric case

is illustrated. For

centrosymmetric crystals,

jFhj always equals jFhj, but
fh differs to a small degree

from 0 or p if anomalous

scattering is significant

Table 7.6 Example of some Friedel pairs and the

corresponding jFj values
hkl Fo jFcjx, y, z jFcjx;y;z
121 17.0 19.1 18.3

122 21.2 22.9 21.9

123 41.4 44.4 42.8

341 36.7 38.7 35.5

342 7.8 9.5 8.2

413 14.2 15.3 13.5
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When the atomic coordinate set and the crystal have the same chirality, x takes the value zero; if

they are different, x is equal to unity. A result is considered acceptable if x lies within 3 standard

deviations, that is, �3s(x) as calculated by the program, of either zero or unity. If a value of unity is

returned, the coordinates of the model should be inverted in the origin; the data collection routines

ensure that the hkl data have the correct polarity. After further refinement a value of 0.0 � 3s(x) for

x should result.

This method has withstood innumerable tests and can be considered reliable in most circum-

stances. Some examples are given below. A further advantage of this method is that although, as with

all analyses, the measured intensity data set should cover as large a volume of reciprocal space as

possible, it is not absolutely necessary to measure Friedel or Bijvoet pairs, Sect. 7.6.2. In practice, for

the test to be reliable, s(x) in x should be 0.05 or less. Because the refinement routine in SHELX

refines against jFj2 as opposed to jFj Sect. 8.4.2, the program determines x within a small number of

iterations. It should also be noted that since the value of xmay be related to twinning, Sect. 5.10.2, it is

advisable to carry out further tests for this effect as prescribed, for example, in the SHELX system

manual. Quite rightly the SHELX manual advises that it is important to refine every non-

centrosymmetric structure as the correct absolute structure in order to avoid introducing systematic

errors into the molecular geometry. In fact, it cannot be overemphasized that it is often imperative to

determine the absolute configuration, especially in the case of new drug molecules for which a

reversal of chirality is almost certain to lead to a dramatic change in potency and other binding

characteristics. The classic example [23] of this is that of thalidomide in the early 1960s. In some

cases the absolute structure will be known with certainty, for example, proteins which are predomi-

nantly L-amino acid polypeptides, but in others it has to be deduced from the X-ray structure.

If the structure includes a reasonably heavy atom, such as phosphorus, sulphur or chlorine, the

anomalous scattering effect from these atoms using Cu Ka or even accurate high-resolution low-

temperatureMoKa radiationmay be sufficient for determining the absolute configuration, particularly

if Friedel opposites have been measured. Sometimes the presence of as few as two oxygen atoms per

molecule has been shown to produce a reliable result, Sect. 9.4.4. In SHELX the refinement program

estimates [22] the parameters x and s(x) for the absolute structure.

The parameter x is effectively the fractional contribution of the inverted component of a “racemic

twin” and, as we have said, should be zero if the absolute structure is correct, or 1 if it needs to be

inverted in the origin; but it could be somewhere between 0 and 1 if racemic twinning is really

present. If this is the case, x can be refined along with all the other parameters, and the instructions for

TWIN refinement in the SHELXmanual must be followed faithfully; fortunately such cases are fairly

uncommon.

Examples to Illustrate Results of Flack Parameter Refinement
The following six crystal structures were all refined using SHELX-97 and have different degrees of

heavy atom content. The Flack parameter produced in the final least-squares cycle was within three

standard deviations of zero in each of the first five structures. All six structures are, of course, in non-

centrosymmetric space groups and the first four have single molecular species of one specific hand,

determined absolutely by the X-ray analysis. The fifth structure, atropine, was crystallized from a

commercial racemic mixture in the unusual space group Fdd2 and contains both enantiomorphic

forms of the atropine molecule. The space group itself is enantiomorphous, Tables 2.7, and the crystal

structure has therefore established, via the Flack parameter, the correct hand of the three-dimensional

arrangement ofmolecules in the crystal. For the sixth example the value of xwas notwithin 3s of 0 (or 1).

1. Form I of Cholesteryl Iodide [24], C27H45I

X-ray data were collected at low temperature (100 K) with Mo Ka radiation (l ¼ 0.71073 Å). The

crystals are monoclinic, space group P21 with a ¼ 12.577(1) Å, b ¼ 9.009(1) Å, c ¼ 12.862
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(1) Å, b ¼ 119.00(1)�, and Z ¼ 2molecules per unit cell. The crystal size was 0.35, 0.56, 0.06mm,

and the y-range for data collection 1.81–29.15�. The number of reflections collected was 14457,

with 5729 unique reflections (Rint ¼ 0.0632). Refinement by full-matrix least-squares on jFj2 gave
final R indices (I > 2sI) R1 ¼ 0.0499, weighted R2 ¼ 0.1119; R indices on all data were

R1 ¼ 0.0751 and weighted R2 ¼ 0.1345. The absolute structure parameter x was �0.04(3)

which is zero within 3s, s being less than 0.05.

2. Form II of Cholesteryl Iodide [24], C27H45I

X-ray data were collected at room temperature with Cu Ka radiation (l ¼ 1.54178 Å). Crystals are

monoclinic, space group P21 with a ¼ 11.005(1) Å, b ¼ 10.469(1) Å, c ¼ 11.6840(10) Å,

b ¼ 106.827(6)�, and Z ¼ 2. The crystal size was 0.24, 0.42, 0.24 mm, and the y-range for data

collection was 3.95–69.91�. The number of reflections collected was 3543, with 2470 unique

reflections (Rint ¼ 0.0191). Refinement was by full-matrix least-squares on jFj2 which gave final R
indices (I > 2sI): R1 ¼ 0.0480, weighted R2 ¼ 0.1299; R indices on all data were R1 ¼ 0.0537,

weighted R2 ¼ 0.1447. The absolute structure parameter x ¼ 0.00(1) which is zero within 3s, s

being less than 0.05.

The structures (1) and (2) are polymorphs, and have exactly the same chemical composition.

The iodine atom is a strong anomalous scattering species for either Mo radiation in the case of (1)

or Cu radiation in the case of (2). Both analyses confirm the absolute configuration of cholesterol,

an important biological substance, and of steroids in general.

3. Compound BW202W92: C12H12Cl3FN4O3 (C11H9Cl3FN4·CH3SO3) (R-form) [25]

X-ray data were collected at room temperature (293 K) with Cu Ka radiation (l ¼ 1.54178 Å). The

crystals are monoclinic, space group P21 with a ¼ 8.384(2) Å, b ¼ 16.984(3) Å, c ¼ 12.480(3) Å,

b ¼ 104.14(6)�, and Z ¼ 2. The crystal size was 0.30, 0.16, 0.16 mm, and the y-range for data

collection 4.49–74.42�. The number of reflections collected was 3990 reflections, with 3192 unique

reflections (Rint ¼ 0.0496). Refinement was by full-matrix least-squares on jFj2 which gave final R

indices (I > 2sI) R1 ¼ 0.0490, weighted R2 ¼ 0.1254; R indices on all data were R1 ¼ 0.0644,

weighted R2 ¼ 0.1324. The absolute structure parameter x ¼ 0.05(3) which is zero within

3s, s being less than 0.05.

4. Compound BW203W92: C12H12Cl3FN4O3 (C11H9Cl3FN4·CH3SO3) (S-form) [25]

X-ray data were collected at low temperature (123 K) with Mo Ka radiation (l ¼ 0.71073 Å).

The crystals are triclinic, space group P1 with a ¼ 7.716(2) Å, b ¼ 8.120(2) Å, c ¼ 13.719

(3) Å, a ¼ 74.91(3)�, b ¼ 87.69(3)�, g ¼ 89.83(3)�, and Z ¼ 1. The crystal size was 0.30, 0.20,

0.20 mm, and the y-range for data collection 2.60–27.47�. The number of reflections collected

was 6456, with 5302 unique reflections (Rint ¼ 0.0733). Refinement was by full-matrix least-

squares on jFj2, which gave final R indices (I > 2sI) R1 ¼ 0.0614, weighted R2 ¼ 0.1204; R

indices on all data were R1 ¼ 0.1248, weighted R2 ¼ 0.1468. The absolute structure parameter

x ¼ �0.10(9) which is zero within 3s, but s here is greater than 0.05.

Structures (3) and (4) are atropisomers [25] and have exactly the same chemical structure.

Chemical and spectroscopic studies have identified (3) as the R-isomer and (4) as the S-isomer, but

with insufficient details to enable their three-dimensional structures to be finalized; this was

achieved through X-ray structure analyses. The structures are good candidates for anomalous

X-ray scattering by virtue of their three chlorine, one sulphur, and three oxygen atoms. It is clear,

however, that the result for structure (3) is more convincing, being based on copper X-radiation

data and resulting in x ¼ 0.05(3), which is zero within 3s (s < 0.05), while structure (4), based on

molybdenum X-radiation data, has x ¼ �0.10(9) which is also zero within 3s, but with s greater

than 0.05, slightly larger than the recommended limit. Nevertheless, it is safe to say that the X-ray

analyses have established the absolute configurations of these important drugs for which (3) is a

potent/selective sodium-ion channel blocker and (4) is about 30 times less potent in this capacity.
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The R and S enantiomers derived from the X-ray analyses are shown in Fig. 7.40; see also

Sect. 8.2.16.

5. Atropine [28], C17H23NO3

X-ray data were collected at low temperature (100 K) with Mo Ka radiation (l ¼ 0.71073 Å). The

crystals are orthorhombic, space group Fdd2 with a ¼ 24.291(5) Å, b ¼ 39.538(8) Å, c ¼ 6.473

(1) Å, and Z ¼ 16. The crystal size was 0.20, 0.15, 0.35 mm, and the y-range for data collection

3.30–25.02�. The number of independent reflections collected was 14353, with 2710 unique

reflections (Rint ¼ 0.0820). Refinement was by full-matrix least-squares on jFj2, which gave

final R indices (I > 2sI) R1 ¼ 0.0452, weighted R2 ¼ 0.1206; R indices on all data

R1 ¼ 0.0558, weighted R2 ¼ 0.1294. The absolute structure parameter x ¼ �0.1(2) which is

zero within 3s, but with s greater than 0.05. Considering that there are no heavy anomalous

scattering species in this structure, only three oxygen atoms, this is an excellent result and fully

acceptable; see also Sect. 8.3.7.

6. 1-Benzyl-1H-tetrazole, C8H8N4

X-ray data were collected at low temperature (120 K) with Mo Ka radiation (l ¼ 0.71073Å). The

crystals aremonoclinic, space groupP21with a ¼ 7.6843(5) Å, b ¼ 5.5794(7) Å, c ¼ 9.4459(7) Å,

and Z ¼ 2. The crystal size was 0.09, 0.03, 0.02mm, and the y-range for data collection 3.14–27.45�.
The number of independent reflections collected was 5624, with 1718 unique reflections (Rint

¼ 0.0588). The refinement was by full-matrix least-squares on jFj2, which gave final R indices

(I > 2sI) R1 ¼ 0.0447, weighted R2 ¼ 0.0786; R indices on all data were R1 ¼ 0.0695, weighted

R2 ¼ 0.0870. The absolute structure parameter x ¼ 0(3). Inversion of the structure produced a result

with an absolute structure parameter x ¼ 1(3).

The molecular structure is shown in Fig. 7.41. What does the Flack parameter mean in this case? In

fact, the values of x for the structure and its inverse are exactly correct, 0 and 1, but the estimated

standard deviation of 3 in each case deprives this result of a statistical significance. We can relate the

Fig. 7.40 Molecular conformations of BW202W92: C11H9Cl3FN4·CH3SO3 (R-form) and BW203W92:

C12H12Cl3FN4O3 (S-form) [25] the R and S enantiomers respectively of 2,4-diamino-6-fluoromethyl-5-(2,3,5-trichlor-

ophenyl)-pyrimidine (Drawn with Ortep/Raster [26, 27]). Thermal ellipsoids are shown at 50% probability; for clarity

the CH3SO3 moieties have been omitted. The views are shown perpendicular to the pyrimidine ring (RHS) in order to

emphasize the difference between the two molecules with respect to the central linking bond
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failure of the Flack refinement to the lack of significant anomalous scattering species in the molecule

as well as to the choice of molybdenum radiation. Inspection of Fig. 7.41 reveals that there are no

chiral centers in this molecule but the space group P21 is enantiomorphic, Table 10.1, and therefore

could be more associated with molecules which are chiral. In this case, there is no need for concern

over the absolute configuration of the molecule as it does not have one. It should be noted that in fact

molecules chemically similar to this species usually crystallize in centrosymmetric space groups,

avoiding space groups such as P21.

Conclusions
These examples illustrate the successful use of Flack parameter refinement to determine absolute

configuration. It is easy to apply and has a high chance of success particularly where there are a good

number of anomalous scattering species in the structure and the diffraction data has been measured

carefully and completely. The cause of the failed result lay in the given experimental conditions. It

should be said, however, that it is always sensible to refine the Flack x parameter in all cases and run the

final refinement stages again if the test fails.

7.6.2 Effect of Anomalous Scattering on the Symmetry of Diffraction Patterns

We have seen that when Friedel’s law holds, the X-ray diffraction pattern, considered as a three-

dimensional weighted reciprocal lattice, exhibits a symmetry equivalent to that of the point group of

the crystal with an additional center of symmetry, if not already present, that is, to one of the eleven

diffraction symmetry groups (Laue groups) listed in Table 1.6. However, for a structure in which

some of the atoms scatter anomalously Friedel’s law breaks down and the symmetry of the diffraction

pattern then reverts to that of the point group of the crystal. For a centrosymmetric crystal jF(hkl)j still
equals jFð�h �k �lÞj, although the phase angle is no longer 0 or p. As an example to illustrate the effects of

anomalous scattering let us consider a crystal in space group P21.

Diffraction Symmetry for a Crystal in Space Group P21 with No Anomalous Scattering
A given crystal is monoclinic, belonging to point group 2, and the diffraction symmetry if Friedel’s

law holds is 2/m. The jF(hkl)j equivalents are thus jFðhklÞj ¼ jFð�h k �lÞj ¼ jFðh �k lÞj ¼ jFð�h �k �lÞj. On
X-ray photographs, for example, zero-level and upper-level a-axis precession photographs, this

symmetry will be manifested as indicated in Fig. 7.42. The zero level, Fig. 7.42a(i), clearly

Fig. 7.41 X-ray molecular structure of 1-benzyl-H-tetrazole [29] (Drawn with Ortep/Raster [26, 27]). Thermal

ellipsoids are shown at 50 % probability
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demonstrates symmetry mm2 with jFð0klÞj ¼ jFð0�k lÞj ¼ jFð0k�lÞj ¼ jFð0�k �lÞj, while upper-level

photographs exhibit symmetry m (perpendicular to b*) with, for example jFð1klÞj ¼ jFð1�klÞj and
jFð1k�lÞj ¼ jFð1�k �lÞj respectively, but jFð1klÞj 6¼ jFð1k�lÞj, Fig. 7.42a(ii).

Diffraction Symmetry for a Crystal in Space Group P21 for a Structure Containing Some
Anomalous Scattering Species
The diffraction symmetry is now that of point group 2, for which jFðhklÞj ¼ jFð�hk�lÞj and

jFð�h �k �lÞj ¼ jFðh�klÞj. On the a-axis precession photographs shown schematically in Fig. 7.42b(i) we

observe, on the zero level, jFð0klÞj ¼ jFð0k�lÞj and jFð0�klÞj ¼ jFð0�k �lÞj, but jFð0klÞj 6¼ jFð0�klÞj and
jFð0k�lÞj 6¼ jFð0�k �lÞj because there is now no m plane perpendicular to b*. On the upper-level photo-

graphs, no symmetry is observable and all four jFj values are different, Fig. 7.40b(ii).
We may define the anomalous difference as

DFANO ¼ ðjFðhklÞj � jFð�h �k �lÞjÞ
or as

DFANO ¼ ðjFðþÞj � jFð�ÞjÞ
(7.61)

From the above discussion, for the case of space group P21 with anomalous scattering species

present, DFANO is also given by

DFANO ¼ ðjFðhklÞj � jFðh�klÞjÞ (7.62)

since jFð�h �k �lÞj ¼ jFðh�klÞj. Differences such as (7.62), equivalent by point-group symmetry to the

difference between jFj for a Friedel pair, are known as Bijvoet differences, the two reflections

involved being denoted as a Bijvoet pair [30].

Fig. 7.42 Schematic representation of symmetry exhibited in b*c* sections of the reciprocal lattice for a crystal with space

groupP21 (or any othermonoclinic space group in crystal class 2). (a) No anomalous scattering; the diffraction symmetry is

2/m. (i) Symmetry of 0kl section ismm2. (ii) Symmetry of 1kl, 2kl, . . . sections ism⊥ b*. Equivalent hkl are represented by

the same symbolX, etc. (b) Anomalous scattering case; the diffraction symmetry is 2. (i) Symmetry of 0kl section ism⊥ b.*

(ii) Symmetry of 1kl, 2kl, . . . sections is reduced to 1 (no m present)
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Bijvoet differences can be observed on X-ray photographs represented in Fig. 7.42a, b as follows:

(a) Zero level: h ¼ 0

ðjFð0klÞj � jFð0�klÞjÞ Bijvoet pair

ðjFð0k�lÞj � jFð0�k �lÞjÞ Bijvoet pair

These differences will be equivalent by symmetry.

(b) Upper level

ðjFðhklÞj � jFðh�klÞjÞ Bijvoet pair

ðjFðhk�lÞj � jFðh�k �lÞjÞ Bijvoet pair

These differences are not equivalent.

It is, thus, possible to monitor anomalous differences indirectly on the same photograph through the

use of Bijvoet pairs, whereas Friedel pairs, in the true sense of the definition, would necessarily always

occur on different photographs (except for axial reflections, such as 00l and 00�l).

7.6.3 Form of the Structure Factor for a Structure Composed of Heavy-Atom
Anomalous Scattering Species

For a structure composed of NH heavy-atom anomalous scattering species, the structure factor

becomes

FðhklÞ ¼
XNH

j¼1

ð f 0j þ iDf 00j Þ exp 2piðhxj þ kyj þ lzjÞ (7.63)

which can be written as

FHðþÞ ¼ F0HðþÞ þ iF00 HðþÞ

where

F
0

HðþÞ ¼
XNH

j¼1

f
0

j exp 2piðhxj þ kyj þ lzjÞ (7.64)

and

F00HðþÞ ¼
XNH

j¼1

Df 00j exp 2piðhxj þ kyj þ lzjÞ (7.65)

Similarly the structure factor Fð�h �k �lÞ can be written as

FHð�Þ ¼ F0Hð�Þ þ iF00
Hð�Þ

where
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F0Hð�Þ ¼
XNH

j¼1

f 0j expf�2piðhxj þ kyj þ lzjÞg (7.66)

and

F00Hð�Þ ¼
XNH

j¼1

Df 00j expf�2piðhxj þ kyj þ lzjÞg (7.67)

The form of the structure factor for a protein heavy-atom derivative crystal composed of protein

atoms P, light atom, negligible-anomalous scattering species, mainly C, N, O atoms, and heavy atoms

H, anomalous scattering species, becomes

FPHðþÞ ¼ FPðþÞ þ F0HðþÞ þ iF00HðþÞ for hkl (7.68)

FPHð�Þ ¼ FPð�Þ þ F0Hð�Þ þ iF00Hð�Þ for �h �k �l (7.69)

FP is the normal protein structure factor and FP(+) is clearly equal to FP(�), Fig. 7.39a.

The structure factors FPH(+) and FPH(�) are represented in Fig. 7.43, where OC ¼ FPH(+) and

OD ¼ FPH(�). Clearly jFPH(+)j 6¼ jFPH(�)j. Figure 7.43 also shows the effect of reflecting FPH(�)

across the real axis OR. This device simplifies the following calculation. Using the cosine rule in

triangles OBC and OBD0, we obtain

jFPHðþÞj2 ¼ jFPHj2 þ jF00Hj2 � 2jFPHjjF00Hj
� cosðfPH � fH þ 90Þ

(7.70)

jFPHð�Þj2 ¼ jFPHj2 þ jF00Hj2 � 2jFPHjjF00
Hj

� cosð90� fPH � fHÞ
(7.71)

Subtracting (7.71) from (7.70) gives

jFPHðþÞj2 � jFPHð�Þj2

¼ ½jFPHðþÞj þ jFPHð�Þj�½jFPHðþÞj � jFPHð�Þj�
¼ �2jFPHjjF00Hj½cosðfPH � fH þ 90� � cosð90� fPH � fHÞ�
¼ 4jFPHjjF00

Hj sinðfPH � fHÞ

(7.72)

But, intuitively,

jFPHðþÞj þ jFPHð�Þj ¼ OCþ OD0 � 2OBð¼ 2jFPHjÞ (7.73)

Thus, it follows that the anomalous difference

DFANO ¼ jFPHðþÞj � jFPHð�Þj � 2jF00Hj sinðfPH � fHÞ (7.74)

For a given heavy-atom type, it is known that the ratio jF0Hj=jF00Hj ¼ f 0=Df 00, and is approximately

constant, k, say. Thus,
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DFANO � ð2jF0Hj=kÞ sinðfPH � fHÞ

or

jF0
Hj sinðfPH � fHÞ � ðk=2ÞDFANO (7.75)

From (7.44), we see that DFISO � jFHj cos(fH � fPH), and in the case of anomalous scattering

jFHj becomes jF0Hj. It follows that jF0Hj � ½ðDFISOÞ2 þ ðk=2ÞDFANOÞ2�1=2.
This provides a possible method for estimating jF0Hj for calculation of a difference Patterson map

when anomalous scattering measurements are available.

7.6.4 Phasing by Use of Anomalous Scattering

Anomalous scattering can be used in phasing reflections. We saw in the previous section that the

isomorphous replacement technique in non-centrosymmetric crystals leads to an ambiguity in phase

determination, Fig. 7.27. The ambiguity cannot be resolved unless the replaceable site is changed.

Merely using a third derivative with the same replaceable site would lead to a situation comparable

with that in Fig. 7.27. The heavy-atom vector would still be directed along OH, and its different

length would be just balanced by the change in Fo, so that three circles would intersect at P1 and P2.

Fig. 7.43 Structure factors FPH(+) and FPH(�) for a protein crystal containing heavy-atom anomalous scattering

species: dROC ¼ fPHðþÞ; dROD ¼ dROD; dROB ¼ fPH;
dROA ¼ fP;

dOAB ¼ fP þ ð180� fHÞ; OA ¼ jFP(+)j; AB ¼
jFH(+)j; BC ¼ jF’’HðþÞj; OB ¼ jFPHj; OC ¼ jFPH(+)j; OD ¼ jFPH(�)j; OD0 ¼ mirror reflection of OD; OE ¼
jFP(�)j; EF ¼ jFH(�)j; FD ¼ jF’’Hð�Þj; dOBC ¼ w ¼ fPH � fH þ 90; AC ¼ AD0 ¼ ED ¼ jFHj
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Avector change in the heavy-atom contribution can be brought about through anomalous scattering in

a given derivative, instead of invoking a different replaceable site. Following Fig. 7.39b we see that two

differentFo values can arise for h and �h. Consequently,fðhÞ 6¼ fð�hÞ, and the ambiguity can be resolved

by the experimental data. This technique is particularly important with synchrotron radiation, where the

wavelength can be tuned to the absorption edge of a relatively heavy atom in the structure so as to obtain

the maximum difference between jFo(h)j and Foð�hÞ.

7.6.5 Resolution of the Phase Problem for Proteins Using Anomalous Scattering
Measurements (SIRAS Method)7

AHarker diagram for any hkl reflection FP(+) may be constructed as discussed earlier by first drawing

a circle of center O and radius jFP(+)j. From C+, the end of the vector �FH(+) as center, a second

circle of radius jFPH(+)j is drawn, as shown in Fig. 7.44. It intersects the FP(+) circle in points P1(+)

and P2(+); OP1(+) and OP2(+) represent the SIR phase ambiguity noted previously, Sect. 7.4.8.

The Harker diagram for the corresponding �h �k �l reflection FP(�) is constructed by drawing a circle of

radius jFP(�)j, center O, and finally a circle of radius jFPH(�)j, centered at C�, the end of the value of
�FH(�), as shown inFig. 7.45. The two circles this time intersect in pointsP1(�) andP2(�), representing

the ambiguous SIR solution for FP(�).

Since FP(+) and FP(�) are related by reflection across the real axisOR, Figs. 7.44 and 7.45, the correct

solutions for FP(+) and FP(�) will be mirror-related in this way, while the incorrect pair will not. In the

given case the corresponding correct solutions areP1(+) andP1(�) andP2(+) andP2(�) are the unwanted,

erroneous solutions. In order to rationalize this process a combinedHarker diagram can be conceived as in

Fig. 7.46. This involves plotting the FPH(�) circle at the end of themirrored FH(�) vector, thus enabling

Fig. 7.44 Harker diagram

for FP(+)(hkl) for a protein

crystal with heavy atoms

scattering anomalously.

OJ+ is the vector

� F’HðþÞ, and J+C+ is the

imaginary component of

OC+, the vector for

�FH(+). The FP(+) and

FPH(+) circles intersect at

P1(+) and P2(+). OP1(+)

and OP2(+) are the

ambiguous solutions for

FP(+)

7 Single Isomorphous Replacement with Anomalous Scattering.
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solutions P1(+) and P1(�) mirrored to coalesce. In practice, the phasing process is carried out by

calculating a probability distribution in a similar manner to that used in the MIR technique. Algorithms

for carrying out these computations have been developed.

Fig. 7.46 Combined

Harker diagram for FP(+)

and FP(�), with FP(�)

mirrored across the real

axis of the Argand

diagram: C�
m is the mirrored

point of C�, where OC� is

the vector for �FH(�), as

in Fig. 7.43. The correct

solution for FP(+) is

OP1(+), coinciding with

OP1(�) mirrored

Fig. 7.45 Harker diagram

for FP(�)(hkl) for a protein

crystal with heavy atoms

scattering anomalously.

OJ� is the vector for

�FH(�), and J�C� is the

imaginary component of

OC�, the vector for
�FH(�). The FP(�) and

FPH(�) circles intersect at

P1(�) and P2(�). OP1(�)

and OP2(�) are the

ambiguous solutions for

FP(�)
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7.6.6 Protein Phasing Using the Multiple-Wavelength Anomalous Dispersion
Technique (MAD) with Synchrotron Radiation (SR)

The above treatment shows that, in principle, the phase ambiguity associated with the SIR

technique can be resolved by incorporating anomalous dispersion measurements. Conventional

laboratories are usually equipped with either sealed-tube or rotating-anode X-ray sources

generating X-radiation from a copper target. Anomalous scattering effects for Cu Ka radiation are

quite small, Table 7.7, the actual differences between jF(hkl)j and jFð�h �k �lÞj being difficult to detect

without extremely careful measurements. This practical limitation to the method may be overcome by

the use of synchrotron radiation. Optimization of anomalous scattering information can be achieved by

selection of a wavelength close to an absorption edge of the heavy atom, where Df 00 is a maximum. It

should be remembered, however, that anomalous differences are still small, even for measurements

made for wavelengths tuned in this way.

There is another advantage to be gained by the availability of SR radiation, namely that measure-

ments can be made at different wavelengths, possibly even on the same crystal specimen. The second

wavelength should be selected such that f 0 is large and f 00 is small for the anomalous scattering

species. Measurements for this wavelength would be made only for hkl reflections. This technique is

known as the multiple-wavelength anomalous dispersion (MAD) method for phasing. The measure-

ments required are jFP(hkl)j, jFPHðþÞjl1 , jFPHð�Þjl2 , and jFPHðþÞjl2 ; Fig. 7.47 shows an idealized

phase diagram for a typical hkl reflection using the MAD technique.

Table 7.7 Values of the real (dispersion) Df 0 and imaginary (absorption) Df 00 components of anomalous scattering for

Cu Ka X-rays

Atomic number

Cu Ka radiation, l ¼ 1.5418 Å

Df 0 Df 00

(sin y)/l ¼ 0 ¼0.6 (sin y)/l ¼ 0 ¼0.4 ma

C 6 0 0 0 0 4.6

N 7 0 0 0 0 7.52

O 8 0 0 0.1 0.1 11.5

S 16 0.3 0.3 0.6 0.6 89.1

Fe 26 �1.1 �1.1 3.4 3.3 308

Zn 30 �1.7 �1.7 0.8 0.7 60.3

Pd 46 �0.5 �0.6 4.3 4.1 206

Ag 47 �0.5 �0.6 4.7 4.5 218

I 53 �1.1 �1.3 7.2 6.9 294

Sm 62 �6.6 �6.7 13.3 12.8 397

Gd 64 �12 �12 12.0 11.6 439

Lu 71 �7 �7 5 5 153

Pt 78 �5 �5 8 7 200

Au 79 �5 �5 8 8 208

Hg 80 �5 �5 9 8 216

Pb 82 �4 �5 10 9 232

U 92 �4 �5 16 16 306

The atoms selected are those found in proteins and those used frequently for heavy-atom derivatives
am is the absorption coefficient (see Sect. 3.1.3)

7.6 Anomalous Scattering 337

http://dx.doi.org/10.1007/978-1-4614-3954-7#Sec4_3


7.7 Charge Flipping

The determination of good phases may sometimes be achieved by a process known as charge flipping,

which is based on an algorithm by Oszlányi and S€ut€u [31]. The process requires a set of experimental

jFoj values, but no other prior information about the structure at this stage. It can be applied to both

classical crystals and the aperiodic structures that were discussed briefly in Sect. 1.4.3, and with either

single crystal or powder specimens.

It begins by assigning random phases to all values of jFoj in the data set. A Fourier transform of this

phased data produces an electron density map r1(xyz) which will contain both positive and negative

regions of density, and will most probably have little if any resemblance to a chemical structure.

Then, a new density function r2(xyz) is derived, by inverting the signs of all density less than a chosen

positive value, D; this is the charge flipping stage. The new function r2(xyz) is transformed to give jFcj
values, which are discarded, and a set of phases. This set of phases is combined with the experimen-

tally determined jFoj values so as to create r3(xyz). Again, the signs are reversed, and the iterative

process is continued until a sensible chemical structure is obtained. The process is shown diagram-

matically in Fig. 7.48.

Fig. 7.47 Multiple-wavelength anomalous dispersion (MAD) phasing for wavelengths l1 and l2. The circles based on

l1 for jFPH(+)j and jFPH(�)j are drawn as before. Adding the measurement at l2 of jFPHðþÞjl2 is comparable to the

information from a second heavy-atom derivative in the MIR technique. OK+ is the real component and K+D+ the

imaginary component of OD+, the direction FHðþÞl2 . For clarity the FP circle is not shown. FP gives the MAD solution

for the protein structure factor. The measurements are sometimes made only for the derivative crystal, using first l1 and

then l2, during the same experimental session at the synchrotron radiation station. In such a case, the jFPj data may not

be available, whereupon the phasing would be carried out for jFPHj instead. The ensuing electron density map would

then apply to the derivative crystal
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The convergence of the process may be judged in the usual way, by both the chemical sense of the

electron density map and the R factor. The procedure has a single free parameter, namely the charge

flipping threshold, D, and no structural or symmetry information is needed. A number of structures

has been solved by this technique [32–36], and there is an interesting applet available [33] which

allows an interactive appreciation of the process.

In order to complete the structure determination, it is, of course, necessary to know the unit cell

data and space group, since the structure will need to be refined by least squares in the usual way. It

may be required also to have recourse to normal Fourier methods, if the phases produced by charge

flipping do not lead to all atoms in the molecule. The charge flipping procedure is another useful tool

in the crystallographer’s armoury, and is also useful in studying incommensurate structures, such as

those based on interpenetrating periodic lattices, and aperiodic structures [37]. The algorithm is

incorporated into the SHELX and WinGX (Superflip) program systems.

7.8 Location of Hydrogen Atoms

In other sections of this book we have commented on the location of hydrogen atoms: by difference

Fourier synthesis, Sect. 8.4.5, from molecular geometry, Sect. 9.2.4, and by neutron diffraction, Sect.

11.7.2. Here we consider a method by which hydrogen atoms can be located in hydrated ionic crystal

structures from calculations of electrostatic energy.

The location of the positions of hydrogen atoms in crystalline hydrates can sometimes be carried

out by a calculation based on electrostatic energy [38]. The coordinates at the positive end of the

dipole in a water molecule may be located by a vector sum of the weighted electrical field strengths

around the oxygen atom in the water molecule. All atoms less than 4 Å from the oxygen atom are

included in calculating x0 from (7.76); the O–H bond distance chosen was 0.99 Å and the H–O–H

angle 104.5�.

x0 ¼
X

i

ðZixi=d2i Þ (7.76)

where xi is x-coordinate of the ith atom in the structure, distant di from the oxygen atom, and Zi is its

charge including the sign. For the ions in the structure, their formal charges were used; for the oxygen

Fig. 7.48 Iterative process

for phasing by charge

flipping (FFT ¼ fast

Fourier transform)
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and hydrogen atoms, theoretical calculations on a water molecule gave charges of�0.310 and +0.155

for ZO and ZH, respectively. Results for y
0 and z0 follow similarly.

A number of possible positions for each hydrogen atom in the water molecule was generated in

steps f around the point x0, y0, z0, such that all O–H distances were 0.99 Å. Madelung constants were

calculated [39] for the complete structure with all possible hydrogen atoms locations and plotted

against the step angle f. The positions chosen for the hydrogen atoms were those corresponding to

minimum electrostatic energy; about 90% of the energy is electrostatic in ionic hydrate structures.

Results were obtained for barium chloride dihydrate, Table 7.8, and sodium bromide dihydrate,

Table 7.9.

This procedure can be useful for structures in which heavy atoms are present, because the electrostatic

contribution of a hydrogen atom in relation to the heavy atoms is significant. Subsequent to the location of

the hydrogen atoms, their positions can be refined by least squares.

7.9 Problems

7.1. A structure with the apparent space group P21/c consists of atoms at 0.2, 1
4
, 0.1 and the

symmetry-related positions; the center of symmetry is at the origin. Evaluate the geometric

structure factor for the four general equivalent positions in the unit cell, and, hence, determine

the systematic absences among the hkl reflections. What are the consequences of these absences

as far as the true structure is concerned? Sketch the structure in projection along b. What is the

true space group?

7.2. Rh2B crystallizes in space group Pnma with a ¼ 5.42 Å, b ¼ 3.98 Å, c ¼ 7.44 Å, and Z ¼ 4.

Consider Fig. 2.36: show that if no two Rh atoms may approach within 2.5 Å of each other, they

cannot lie in general positions. Where could the Rh atoms be placed? Illustrate your answer

with a sketch showing possible positions for these atoms in projection on (010).

Table 7.8 Hydrogen atom positions in BaCl2·2H2O

Experimental By (7.76)

x y z x y z

H11 0.3534 0.0616 0.8824 0.381 0.064 0.874

H12 0.4756 0.1255 0.0402 0.440 0.119 0.061

H21 0.0977 0.1368 0.5967 0.082 0.154 0.586

H22 0.2466 0.0654 0.4877 0.294 0.091 0.573

Table 7.9 Hydrogen atom positions in NaBr·2H2O

Experimental By (7.76)

x y z x y z

H11 0.269 0.029 0.635 0.298 0.052 0.657

H12 0.129 �0.017 0.765 0.124 �0.001 0.744

H21 0.861 0.221 0.725 0.804 0.222 0.753

H22 0.741 0.098 0.792 0.772 0.101 0.882
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7.3. Trimethylammonium chloride,

H3C

n
H3C ��N��H

=
H3C

2
66664

3
77775

þ

Cl�

crystallizes in a monoclinic, centrosymmetric space group, with a ¼ 6.09 Å, b ¼ 7.03 Å,

c ¼ 7.03 Å, b ¼ 95.73�, and Z ¼ 2. The only limiting condition is 0k0: k ¼ 2n. What is the

space group? Comment on the probable positions of (a) Cl, (b) C, (c) N, and (d) H atoms.

7.4. Potassium hexachloroplatinate(IV), K2 [PtCl6], is cubic, with a ¼ 9.755 Å. The atomic positions

are as follows (Z ¼ 4):

ð0; 0; 0; 0; 1
2
; 1
2
; 1

2
; 0; 1

2
; 1

2
; 1
2
; 0Þ þ

4 Pt 0, 0, 0

8 K 1
4
, 1
4
, 1
4
; 3
4
, 3
4
, 3
4

24 Cl �{x, 0, 0; 0, x, 0; 0, 0, x}

Show that jFc(hhh)j ¼ A0(hhh), where

A0ðhhhÞ ¼ 4gPt þ 8gK cosð3ph=2Þ þ 24gCl cos 2phxCl

Calculate jFc(hhh)j for the values of h tabulated below, with xCl ¼ 0.23 and 0.24. ObtainR factors

for the scaled Fo data for the two values of xCl, and indicate which value of xCl is the more

acceptable. Calculate the Pt–Cl distance, and sketch the [PtCl6]
�2 ion. What is the point group of

this species?

hkl 111 222 333

Fo 491 223 281

gPt 73.5 66.5 59.5

gK 17.5 14.5 12.0

gCl 15.5 13.0 10.5

Atomic scattering factors gj may be taken to be temperature-corrected values.

7.5. USi crystallizes in space group Pbnm, with a ¼ 5.65 Å, b ¼ 7.65 Å, c ¼ 3.90 Å, and Z ¼ 4.

The U atoms lie at the positions

� fx; y; 1
4
; 1

2
� x; 1

2
þ y; 1

4
g

Obtain a simplified expression for the geometric structure factor (�1 at 0, 0, 0) for the U atoms.

From the data below, determine approximate values for xU and yU; the Si contributions may be

neglected.

hkl 200 111 210 231 040 101 021 310

Io(hkl) 0 236 251 200 0 170 177 0

Proceed by using 200 to find a probable value for xU. Then find yU from 111, 231, and 040.
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7.6. Methylamine forms a complex with boron trifluoride of composition CH3NH2BF3.

Crystal Data

System: monoclinic

Unit-cell dimensions: a ¼ 5.06 Å, b ¼ 7.28 Å, c ¼ 5.81 Å, b ¼ 101.5�

Vc: 209.7 Å3

Dm: 1.54 g cm�3

Mr: 98.86

Z: 1.97 or 2 to the nearest integer

Unit-cell contents: 2C, 10H, 2N, 2B, and 6F atoms

Absent spectra: 0k0 : k ¼ 2n + 1

Possible space groups: P21 or P21/m (P21/m may be assumed)

Determine what you can about the crystal structure.

7.7. Write the symmetry-equivalent amplitudes of jF(hkl)j, jF(0kl)j, and jF(h0l)j in (a) the triclinic,

(b) the monoclinic, and (c) the orthorhombic crystal systems; Friedel’s law may be assumed.

7.8. (a) Determine the orientations of the Harker lines and sections in Pa, P2/a, and P2221.

(b) A monoclinic, non-centrosymmetric crystal with a primitive space group shows concentra-

tions of peaks on (u, 0, w) and [0, v, 0]. How might this situation arise?

7.9. Diphenyl sulfoxide, (C6H5)2SO, is monoclinic, with a ¼ 8.90 Å, b ¼ 14.08 Å, c ¼ 8.32 Å,

b ¼ 101.12�, and Z ¼ 4. The conditions limiting possible X-ray reflections are as follows.

hkl : none; h0l : hþ l ¼ 2n;

0k0 : k ¼ 2n

(a) What is the space group?

(b) Figure P7.1a–c are Patterson sections at v ¼ 1
2
, 0.092, and 0.408, respectively, and

contain S–S vector peaks. Write the coordinates of the non-origin S–S vectors in terms

of x, y, and z, and from the sections provided determine the best values for the S atoms in

the unit cell. Plot these atomic positions as seen along the b axis, with an indication of the

heights of the atoms with respect to the plane of the diagram.

7.10. Figure P7.2 shows an idealized u, w vector set for a hypothetical structure C6H5S in space group

P2 with Z ¼ 2, projected down the b axis. Only the S–S and S–C vector interactions are

considered.

(a) Determine the x and z coordinates for the S atoms and plot them to the scale of this

projection.

(b) Use the Patterson superposition method to locate the carbon atom positions on a map of the

same projection.

7.11. Hafnium disilicide, HfSi2, is orthorhombic, with a ¼ 3.677 Å, b ¼ 14.55 Å, c ¼ 3.649 Å, and

Z ¼ 4. The space group is Cmcm, and the Hf and Si atoms occupy three sets of special positions

of the type

� f0; y; 1
4
; 1

2
; 1
2
þ y; 1

4
g

The contributions from the Hf atoms dominate the structure factors. By combining the terms

cos2pky and cos 2p(ky + k/2), show that the geometric structure factor A(0k0) is approximately

proportional to cos2pyHf. The Fo(0k0) data are listed below, from which the values of Fo(0k0)
2,

divided by 10 and rounded to the nearest integer, have been derived.
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Fig. P7.1 Patterson

sections at (a) v ¼ 1

2
, (b)

v ¼ 0.092, (c) v ¼ 0.408
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0k0 020 040 060 080 010,0 012,0 014,0 016,0

Fo(0k0) 7 14 18 13 12 <1 20 <1

Fo(0k0)
2 5 20 32 17 14 0 40 0

(a) Calculate the one-dimensional Patterson function P(v), using the equation

PðvÞ /
X

k

Foð0k0Þ2 cos 2pkv

The multiplying factor 2/b and the F(0) term have been omitted8 to simplify the calculation;

they can never change the form of the synthesized function, although the neglect of the term

involving F(0) gives rise to negative values in the calculated P(v). The Fourier summation

here can be carried out readily by means of the program FOUR1D, which also gives a plot

of the function at the online printer.

Fig. P7.2 Idealized Vector map for C6H4S

8These omissions give rise to the proportionality sign.
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However, for many years following their introduction in 1936, the summation aid known

as Beevers–Lipson9 strips was used for Fourier summations in one and two dimensions, and

even Harker sections in three dimensions. For historical interest, Table P7.1 shows the strips

that would be used for this summation. Each line contains the value of the positive

coefficients ðF2
o=10Þ cos 2phðn=60Þ for n ¼ 0 to 15/60; for negative jFj the sign of all

terms for n ¼ 0–15 are changed. For reflection symmetry at
1

4
, only the values of n from

0 to 15 are needed. The columns are added vertically to give the sum over h at each value of

n. The range of n can be increased by making use of the properties of the cosine function.

Table P7.2 shows clearly how an error is of greater consequence in a phase (sign) than in

an amplitude. Consider changing the sign of 080 in the calculation of r(y) and then the

amplitude by, say, 20%.

Plot the function, extend it to one repeat unit, interpret the four highest non-origin peaks,

and determine yHf.

(b) Use the value of yHf and the form of the geometric structure factor A(0k0) to determine the

signs for the 0k0 reflections. Hence, compute the electron density:

rðyÞ /
X

k

�Foð0k0Þj cos 2pky

Again the 2/b factor and F(0) have been omitted. Plot the function and determine yHf.

What can be deduced about the positions of the Si atoms? In the light of your results,

study P(v) again. Table P7.2 contains the simulated, relevant Beevers–Lipson strips, with

positive values of jFj.

Table P7.1 Simulated Beevers-Lipson strips appropriate to problem 7.11

Amplitude Index 0
60

1
60

2
60

3
60

4
60

5
60

6
60

7
60

8
60

9
60

10
60

11
60

12
60

13
60

14
60

15
60

Add columns for
P

k 5

20

32

17

14

40

2

4

6

8

10

14

5

20

32

17

14

40

128

5

18

26

11

7

4

71

5

13

10
�2
�7
39

20:::

4

6

10

14

14

12

3
�2
26

17
�7
37

2

10

32

8

7

20

2

16

26

5

14

32

1

20

10

16

7

27

�1
20

10

16

7

27

�2
16

26

5

14

32

�2
10

32

8

7

20

�3
2

26

17

7

32

�4
6

10

14

14

12

�5
13

10

2

7

39

�5
18

26

11

7

4

�5
20

32

17

14

40

Table P7.2 Simulated Beevers–Lipson strips

Amplitude Index 0
60

1
60

2
60

3
60

4
60

5
60

6
60

7
60

8
60

9
60

10
60

11
60

12
60

13
60

14
60

15
60

7 2 7 7 6 6 5 3 2 1 �1 �2 �3 �5 �6 �6 �7 �7

14 4 14 13 9 4 �1 �7 11 14 14 11 �7 �1 4 9 13 14

18 6 18 15 6 �6 15 18 15 �6 6 15 18 15 6 �6 15 18

13 8 13 9 �1 11 13 �6 4 12 12 4 �6 13 11 �1 9 13

12 10 12 6 �6 12 �6 6 12 6 �6 12 �6 6 12 6 �6 12

20 14 20 2 20 �6 18 10 16 13 13 16 10 18 6 20 �2 20

9Lipson H, Beevers CA (1936) Proc Phys Soc 48:772.
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7.12. The alums, MAl(NO4)2·12H2O, where M ¼ NH4, K, Rb, Tl, and N ¼ S, Se, are isomorphous.

They crystallize in the cubic centrosymmetric space group Pa3, with the unit-cell side a in the

range 12.2–12.4 Å and Z ¼ 4.

A symmetry analysis leads to the following atomic positions:

4M 0, 0, 0; 0,
1

2
,
1

2
;
1

2
, 0,

1

2
;
1

2
,
1

2
, 0

4Al
1

2
,
1

2
,
1

2
;
1

2
, 0, 0; 0,

1

2
, 0; 0, 0,

1

2

8N � x; x; x;
1

2
þ x;

1

2
� x; x; �x;

1

2
þ x;

1

2
� x;

1

2
� x; �x;

1

2
þ x

� �

The N atoms lie on cube diagonals, and xN may be obtained by a one-dimensional Fourier

synthesis along the line [111], using F(hhh) data. Table P7.3 lists these data for four alums

(N ¼ S). Tl may be assumed to be sufficiently heavy to make all Fo values positive in this

derivative. The same sites in each crystal are occupied by the replaceable atoms.

(a) Use the isomorphous replacement technique to determine the signs of the reflections in

Table P7.3.

(b) Compute r[111] for K alum, using the following equation:

rðDÞ /
X

h

�FoðhhhÞ cos 2phD

where D is the sampling interval along [111]. Plot the function and determine a probable

value for ds.

(c) The corresponding hhh data for the isomorphous K/Se alum are listed below. The signs

have been allocated by a similar isomorphous replacement procedure. Calculate and plot

r(D) for these data. Compare the two electron density plots and comment upon the results.

hkl 111 222 333 444 555 666 777 888

Fo �48 �52 64 0 116 100 �16 0

7.13. A crystal contains five atoms per unit cell. Four of them contribute together 100eif to F(010).

The fifth atom has fractional coordinates 0.00, 0.10, 0.00, and its atomic scattering factor

components fo, Df
0, and Df00 are 52.2, �2.7, and 8.0, respectively. If f ¼ 60�, determine,

graphically or otherwise, jF(010)j, jFð0�10Þj, f(010), and fð0�10Þ.
7.14. A protein crystal structure is to be solved usingMIR. Three isomorphous derivatives are prepared

using platinum, uranium, and iodine compounds. For the reflection 060, the following measure-

ments were recorded:

Table P7.3 Fo(hhh) for isomorphous alums

hkl NHþ
4 (10 electrons) K+ (18 electrons) Rb+ (36 electrons) Tl+ (80 electrons)

111 86 38 19 113

222 0 19 79 195

333 111 125 158 236

444 25 6 55 125

555 24 49 64 131

666 86 86 122 164

777 53 34 0 18

888 0 16 22 56
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For protein: jFPj ¼ 858

For Pt derivative: jFPH1
j ¼ 756, jFH1

j ¼ 141, fH1
¼ 78�

U derivative: jFPH2
j ¼ 856, jFH2

j ¼ 154, fH2
¼ 63�

I derivative: jFPH3
j ¼ 940, jFH3

j ¼ 100, fH3
¼ 146�

Use a Harker construction to obtain an estimate for fP for this reflection from the native protein

crystal.

7.15. Consider (7.19), reproduced here:

CðxÞ ¼ p

2
þ 2

X1

h¼1

1

h
sin hx

Show that sin hx can be replaced by cos (hx � f), where f ¼ p/2.

7.16. A protein with molecular weight 18000 Da crystallizes in space group C2 with unit-cell

dimensions a ¼ 40 Å, b ¼ 50 Å, c ¼ 60 Å, b ¼ 100�.
(a) Estimate the number of protein molecules per unit cell if there are equal masses of protein

and solvent in the unit cell (take MH as 1.66 � 10�24 g).

(b) What symmetry would the protein molecule need to adopt in the crystalline state?

7.17. A non-centrosymmetric structure is composed entirely of NH identical heavy atom anomalous

scattering species per unit cell; it may be assumed here that no normal scattering species is present.

Show, graphically or otherwise, that jFðhklÞj ¼ jFð�h �k �lÞj but that fðhklÞ 6¼ �fð�h �k �lÞ.
7.18. A centrosymmetric structure contains a mixture of anomalous and normal scattering atoms.

Show that jFðhklÞj2 ¼ jFð�h �k �lÞj2 and fðhklÞ ¼ fð�h �k �lÞ 6¼ 0 or p.

7.19. Given the jF(hkl)j equivalents for each of the following space groups, list corresponding

Bijvoet pairs:

(a) C2: jFðhklÞj ¼ jFð�hk�lÞj ¼ jFðh�klÞj ¼ jFð�h �k �lÞj
(b) Pm: jFðhklÞj ¼ jFð�hk�lÞj ¼ jFðh�klÞj ¼ jFð�h �k �lÞj
(c) P212121:

jFðhklÞj ¼jFð�hklÞj¼jFðh�klÞj¼jFðhk�lÞj ¼ jF ð�hk�lÞ j ¼ jF ðh�k �lÞj ¼ jFð�h �k lÞj ¼ jFð�h �k �lÞj
(d) P4:

jFðhklÞj ¼ jFð�khlÞj ¼ jFð�h �k lÞj ¼ jFðk�hlÞj ¼ jFðk �h �lÞj ¼ jFðhk�lÞj ¼ jFð�kh�lÞj ¼ jFð�h �k �lÞj
7.20. X-ray intensity data are to be measured for an orthorhombic crystalline protein in three stages:

(a) For 0 < y < 10�, both I(hkl) and Ið�h �k �lÞ symmetry-equivalent reflections are measured

(b) For 10 < y < 20�, I(hkl) alone are measured

(c) For 20 < y < 25�, I(hkl) alone are measured

If the unit cell is primitive, with a ¼ 30 Å, b ¼ 50 Å and c ¼ 40 Å, and the X-ray wavelength is

1.5 Å, estimate the number of reflections measured and the corresponding resolution for the three

data sets.
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Direct Methods and Refinement 8

8.1 Introduction

In this chapter, we consider direct methods, also known as phase probability methods, of solving the

phase problem, together with Patterson search techniques, least-squares refinement, and other

important procedures that are involved in the overall investigation of crystal and molecular structure.

8.2 Direct Methods of Phase Determination

Direct methods of solving the phase problem are an important technique, particularly in their ability

to yield good phase information for structures containing no heavy atoms. One feature common to the

structure-determining methods that we have encountered so far is that values for phases of X-ray

reflections are derived initially by structure factor calculations, albeit on only part of the structure.

Since the data from which the best phases are ultimately derived are the Fo values, we may imagine

that the phases are encoded somehow in these quantities, even though their actual values are not

recorded experimentally. This philosophy led to the search for analytical methods of phase determi-

nation, which are independent of trial structures, and initiated the development of direct methods.

8.2.1 Normalized Structure Factors

An important stage in direct phase-determining formulae results by first replacing Fo(hkl) by

the corresponding normalized structure factor jE(hkl)j, which is given by the equation

jEðhklÞj2 ¼ K2FoðhklÞ2

e
PN

j¼1 g
2
j

(8.1)

The summation in the denominator of (8.1), which is y-dependent through gj, may be obtained

through a K-curve, similar to that in Fig. 7.24c(ii). The data must be on an absolute scale, Sect. 4.2.1,

and e is incorporated in setting up the K-curve; see also Sects. 13.4.6 and 13.4.10.

The jEj values have properties similar to those of the sharpened Fo values derived for a point-atom

model, Sect. 7.4.4: they are compensated for the fall-off in f with sin y. High-order reflections with

M. Ladd and R. Palmer, Structure Determination by X-ray Crystallography:

Analysis by X-rays and Neutrons, DOI 10.1007/978-1-4614-3954-7_8,
# Springer Science+Business Media New York 2013
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comparatively small jFj values can have relatively large jEj values, an important fact in the applica-

tion of direct methods. We may note in passing that jEj2 values, or jEj jFj, can be used as coefficients
in a sharpened Patterson function; also, since jEj2 ¼ 1, Table 8.1 and Sect. 4.2.5, the coefficients

(jEj2 � 1) produce a sharpened Patterson function with the origin peak removed. This technique is

useful because, in addition to the general sharpening effect, vectors of small magnitude that are often

swamped by the origin peak may be revealed.

Epsilon (e) Factor
Because of the importance of individual reflections in direct phasing methods, care must be taken to

obtain the best possible jEj values. The factor e in the denominator of (8.1) takes account of the fact that

reflections in certain reciprocal lattice zones or rows may have average intensity greater than that for

general reflections. The e-factor depends upon the crystal class, and its values for all crystal classes are

listed in Table 4.2. Detailed considerations of the e factor and of the statistics of jEj values have been
presented in Sect. 4.2.3.

Distributions of jEj Values
The distribution of jEj values holds useful information about the space group of a crystal. Theoretical

quantities derived for equal-atom structures in space groups P1 and P�1 are indicated in Table 8.1,

together with the experimental results for two crystals.

Crystal 1 is pyridoxal phosphate oxime dihydrate, C8H11N2O6P·2H2O, which is triclinic. The

values in Table 8.1 favor the centric distribution C, and the structure analysis [1] confirmed the

assignment of space group P�1. Crystal 2 is a penta-uloside sugar; the results correspond, on the

whole, to an acentric distribution A, as expected for a crystal of space group P212121 [2]. It should

be noted that the experimentally derived quantities do not always have a completely one-to-one

correspondence with the theoretical values, and care should be exercised in using these statistics to

select a space group.

8.2.2 Structure Invariants and Origin-Fixing Reflections

The formulae used in direct phasing require, initially, the use of a few reflections with phases known,

either uniquely or symbolically; we consider first centrosymmetric primitive space groups.

Table 8.1 Some theoretical and experimental values related to jEj values
statistics

Mean values

Theoretical values

Experimental values and

conclusions

P�1ðCÞ P1(A) Crystal 1 Crystal 2

jEj2 1.00 1.00 0.99 0.98

jEj 0.80 0.89 0.85 A/C 0.84 A/C

jjEj2 � 1j 0.97 0.74 0.91 C 0.82 A

Distribution % % % %

jEj > 3.0 0.30 0.01 0.20 C 0.05 A

jEj > 2.5 1.24 0.19 0.90 C 0.98 C

jEj > 2.0 4.60 1.80 2.70 A/C 2.84 A/C

jEj > 1.75 8.00 4.71 7.14 C 6.21 A/C

jEj > 1.5 13.4 10.5 12.9 C 10.5 A

jEj > 1.0 32.0 36.8 33.7 C 37.1 A
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In this group of crystals, the origin is usually taken on the center of symmetry in the unit cell at

0, 0, 0 and we speak of the sign s(hkl) of the reflection; s(hkl) is F(hkl)/jF(hkl)j and is either + or�. We

shall show that, in any primitive centrosymmetic space group, arbitrary signs can be allocated to three

reflections, chosen according to certain rules, in order to specify the origin at one of the eight centers

of symmetry in the unit cell. These signs form a basic set, or “fountainhead,” from which more signed

reflections emerge as the analysis proceeds. From (3.69), remembering that we are dealing with a

centrosymmetric crystal, we write

FðhklÞ0;0;0 ¼
XN

j¼1

gj cos 2pðhxj þ kyj þ lzjÞ (8.2)

where F(hkl)0,0,0 indicates an origin of coordinates at the point 0, 0, 0. If this origin is moved to a

center of symmetry at
1

2
,
1

2
, 0, the point that was originally xj, yj, zj, now becomes xj �

1

2
, yj �

1

2
, zj,

Fig. 8.1, with p ¼ q ¼ 1

2
. The structure factor equation may now be written as

FðhklÞ1=2;1=2;0 ¼
XN

j¼1

gj cos 2p½ðhxj þ kyj þ lzjÞ � ðhþ kÞ=2� (8.3)

Expanding the cosine term (see Web Appendix WA5), and remembering that sin[2p(h + k)/2]

¼ sin[np] ¼ 0, and cos[2p(h + k)/2] ¼ cos[np] ¼ (�1)n, we obtain

FðhklÞ1=2;1=2;0 ¼ ð�1Þhþk
FðhklÞ0;0;0 (8.4)

Equation (8.4) demonstrates that the amplitude jF(hkl)j is invariant under change of origin, as

would be expected, but that a change of sign may occur, depending on the parity of the indices hkl.

The complete results are presented in Table 8.2, the use of which is illustrated by the following

examples.1

Fig. 8.1 Transformation of the point P(x, y), with respect to two-dimensional axes, by moving the origin from O to O0

(p, q); the transformed coordinates of P are (x � p, y � q)

1 See also Bibliography, Ladd and Palmer (1980).
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For example, the reflection 312 belongs to the odd-odd-even (ooe) parity group 7. If s(312) is given

a plus sign, the origin could be regarded as being restricted to one from the following list:

0; 0; 0; 0; 0; 1
2
; 1

2
; 1
2
; 0; 1

2
; 1
2
; 1
2

Similarly, if s(322), parity group 2(oee), is also given a plus sign, the possible origins are

0; 0; 0; 0; 1
2
; 0; 0; 0; 1

2
; 0; 1

2
; 1
2

Combining these two sign allocations, the common origins are

0; 0; 0; 0; 0; 1
2

In order to fix the origin uniquely at, say, 0, 0, 0, we select another reflection with a plus sign with

respect to 0, 0, 0. Reference to Table 8.2 shows that parity groups 4, 5, 6, and 8 each meet this

requirement. For the following reasons, parity groups 1 and 3 are excluded from the choice as the

third origin-specifying reflection. Group 1 is a special case because signs of eee reflections do not

change sign among the permitted (�1) origins, and Group 3 (eoe) is related to groups 2 and 7 through an

addition of indices:

312þ 322 ! 634 (8.5)

or, more generally,

ooeþ oee ! eoe (8.6)

since o + o ¼ e + e ¼ e, and e + o ¼ o. Parity groups 2, 3, and 7 are said to be linearly related, and

cannot be used together in defining the choice of origin. As stated above, structure factors belonging

to parity group 1 do not change sign on change of origin, as is evident from both the development of

(8.4) and Table 8.2. Reflections in this group are called structure seminvariants; their actual signs

depend on the structure among the permitted origins, and cannot be used to restrict the origin.

Hence, the origin will be fixed by choosing a third reflection from one of the groups 4, 5, 6, or 8; the

reflections so chosen, three in this case, form a starting set.

Table 8.2 Effect of a change of the origin coordinates, among centers of symmetry, on the sign of a structure factor

Centers of symmetry

Parity group

1 2 3 4 5 6 7 8

h even h odd h even h even h even h odd h odd h odd

k even k even k odd k even k odd k even k odd k odd
l even l even l even l odd l odd l odd l even l odd

0, 0, 0 + + + + + + + +
1
2
, 0, 0 + � + + + � � �
0, 1

2
, 0 + + � + � + � �

0, 0, 1
2

+ + + � � � + �
0, 1

2
, 1
2

+ + � � + � � +

1
2
, 0, 1

2
+ � + � � + � +

1
2
, 1
2
, 0 + � � + � � + +

1
2
, 1
2
, 1
2

+ � � � + + + �
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8.2.3 Sign Determination: Centrosymmetric Crystals

Many equations have been proposed that are capable of providing sign information for centrosym-

metric crystals. Two of these expressions have proved to be outstandingly useful, and it is to them that

we first turn our attention.

Triple-Product Sign Relationship
In 1952, Sayre [3] derived a general formula for hypothetical structures containing identical resolved

atoms. For centrosymmetric crystals, it was given in the form

sðhklÞ sðh0k0l0Þ sðh� h0; k � k0; l� l0Þ � þ1 (8.7)

where � here means “is probably equal to.” The vectors associated with these reflections, d*(hkl),

d*(h0k0l0), and d*(h � h0, k � k0, l � l0) form a closed triangle, or vector triplet, in reciprocal space.

In practice, it may be possible to form several such vector triplets for a given hkl; Fig. 8.2a shows two

triplets for the vector 300. If any two of the signs in (8.7) are known, the third can be deduced, andwe can

then extend the sign information beyond that given in the starting set.

A physical meaning can be given to (8.7) by drawing the traces, in real space, of the three

planes that form a vector triplet in reciprocal space (Fig. 8.2a, b). For a centrosymmetric crystal,

we may write

rðxyzÞ ¼
2

Vc

X

h

X

k

X

l

�jFðhklÞj cos 2pðhxþ kyþ lzÞ (8.8)

The jF(hkl)j terms in this equation take a positive sign if the traces of the corresponding planes pass

through the origin, like the full lines in Fig. 8.2b, and a negative sign if they lie midway between these

positions, like the dashed lines in the figure. The combined contributions from the three planes in

question will thus have maxima at the points of their mutual intersections, which are therefore

potential atomic sites, and correspond to regions of high electron density.

This argument is particularly strong if the three planes have large jEj values, because in jEj the
damping effect of f has been significantly reduced, leaving a term that is governed by the structure

itself. It may be seen from the diagram that triple intersections occur only at points where either three

full lines (+ + +) meet, or two dashed lines and one full line meet (some combination of + � �).

This result is in direct agreement with (8.7). It is interesting to recall that the structure of hexam-

ethylbenzene was solved in 1929 by Lonsdale [4] through drawing the traces of three high-order,

high-intensity reflection planes, 7�30, 340, and 4�70, and placing atoms at their intersections. These

planes form a vector triplet, and this structure determination contained, therefore, the first, but

apparently inadvertent, use of direct methods.

�2�Formula
Hauptman and Karle [5] have given the more general form of (8.7) as

s½EðhklÞ� � s
X

h0k0l0

Eðh0k0l0ÞEðh� h0; k � k0; l� l0Þ

" #
(8.9)

where E(h) is the value of jE(h)j with its sign, and the summation is taken over all vector pairs with

known signs which form a triplet with hkl. The probability associated with (8.9) is given by [6]
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PþðhklÞ ¼ 1
2
þ 1

2
tanh½ðs3=s3=22 Þa0� (8.10)

where a0 and sn are given by

a0 ¼ jEðhklÞj
X

h0k0l0

Eðh0k0l0ÞEðh� h0; k � k0; l� l0Þ (8.11)

sn ¼
X

j

Zn
j (8.12)

and Zj is the atomic number of the jth atom. For a structure containing N identical atoms, s3=s
3=2
2 is

equal to N�1/2. From (8.11), the probability is strongly dependent upon the magnitudes of the jEj

values. Furthermore, unless glide-plane or screw-axis symmetry is present, or there exist some other

means of generating negative signs, (8.9) will produce only positive signs for all jE(hkl)j used. Such

a situation would correspond to a structure with a very heavy atom at the origin and would, in

general, indicate an incorrect solution.

Fig. 8.2 (a) Vector triplets 300, 204, 10�4 and 300, 30�4, 004. (b) Physical interpretation of (8.7): the lines are traces of

the families (300), (004), and ð30�4Þ, and the points of triple intersection correspond with (8.7)
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If the combination of signs under the summation in (8.11) produces a large and negative value for

a0, the corresponding value of P+(hkl) may tend to zero. This result indicates that s(hkl) is negative,

with a probability that tends to unity. Probability curves for different numbers N of atoms in the unit

cell as a function of a0 are shown in Fig. 8.3. Since the most reliable signs from (8.9) are associated

with large jEj values, we can now add to the origin-specifying criteria the requirements of both large

jEj magnitudes and a large number of ∑2 interactions for each reflection in the starting set. In this

way, strong and reliable sign propagation is encouraged.

In order to illustrate the operation of the ∑2 relationship, we shall consider the two vector triplets in

Fig. 8.2. The sign to be determined is s(300), the others are assumed to be known. It may be noted that

sometimes we speak of a sign as + or� and at other times as +1 or�1. The latter formulation is clearly

more appropriate to computational methods. The data are tabulated as follows:

hkl jE(hkl)j
300 2.40

h0k0l0 E(h0k0l0)

h � h0,
k � k0,
l � l0

E(h � h0,
k � k0,
l � l0) a0 s(hkl) P+(hkl) (%)

10�4 +2.03 204 �2.22 �19.3 �1 0.8

004 �1.95 30�4 +1.81 �1

Assuming an N of 64, the indication given is that s(300) is negative with a probability of 99.2%.

Fig. 8.3 Percentage

probability of a single

triple-product (∑2) sign

relationship as a function of

a0 for different numbers N

of atoms in a unit cell,

according to (8.10)
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8.2.4 Amplitude Symmetry and Phase Symmetry

In space group P�1, the only symmetry-related structure factors are F(hkl) and Fð�h �k �lÞ. According
to Friedel’s law the intensities and, hence the amplitudes, of these structure factors are equal, and in

centrosymmetric space groups sðhklÞ ¼ sð�h �k �lÞ. Thus, the amplitude symmetry and the phase symmetry

follow the same law, but this will not necessarily be true in other space groups.

From the geometric structure factor for space group P21/c, see (3.87),

jFðhklÞj ¼ jFð�h �k �lÞj ¼ jFðh�klÞj ¼ jFð�hk�lÞj (8.13)

and for the signs there are two possibilities to consider:

k þ l ¼ 2n: sðhklÞ ¼ sð�h �k �lÞ ¼ sðh�klÞ ¼ sð�hk�lÞ (8.14)

k þ l ¼ 2nþ 1: sðhklÞ ¼ sð�h �k �lÞ ¼ �sðh�klÞ ¼ �sð�hk�lÞ (8.15)

These relationships provide enhanced opportunities for ∑2 relationships to be developed, including

negative values for signs, and in this way space-group symmetry can improve the chances of a successful

phase determination. When considering phase relationships in a non-centrosymmetric space group, we

need to take note of the change in sign and magnitude of both the A and the B components of the

geometrical structure factor, as h, k, or l take a negative sign. Consider, for example, space group Pc (b

axis unique; origin on c). We can separate (3.85) into two parts, according to whether l is odd or even:

l ¼ 2n

A ¼ 2 cos 2pðhxþ lzÞ cos 2pky
B ¼ 2 sin 2pðhxþ lzÞ cos 2pky

l ¼ 2n + 1

A ¼ �2 sin 2pðhxþ lzÞ sin 2pky
B ¼ 2 cos 2pðhxþ lzÞ sin 2pky

It is clear that, in all cases, fðhklÞ ¼ �fð�h �k �lÞ 6¼ fð�hklÞ. However, for the two parities of l, the

following expressions hold.

l ¼ 2n: fðhklÞ ¼ fðh�klÞ and fð�hklÞ ¼ �fðhk�lÞ
l ¼ 2nþ 1: fðhklÞ ¼ pþ fðh�klÞ and fð�hklÞ ¼ p� fðhk�lÞ

The amplitude symmetry and phase symmetry for all space groups are contained in the Interna-

tional Tables for X-ray Crystallography, Volume A (or Volume 1) [7].

8.2.5 ∑2-Listing

Because of both the increased probability in relationships developed for reflections with high jEj
values and the existence of many vector triplets in a complete set of data, the initial application of

direct methods is limited to reflections with large jEj values, say, greater than 1.5.

A∑2 listing is prepared by considering each value of jE(hkl)j greater than the preset limit in order of

decreasingmagnitude, as a basic hkl vector, and searching the data for all possible interactions with h0k0l0
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and h � h0, k � k0, l � l0. Some reflections will enter into many such interactions, while others will

produce only a small number.

8.2.6 Symbolic-Addition Procedure: Example

Karle and Karle [8] described a technique for the systematic application of the ∑2 formula for

building up a self-consistent sign set. The various steps involved are outlined below, using results

obtained with pyridoxal phosphate oxime dihydrate [9].

Crystal Data

Formula: C8H11N2O6P·2H2O

System: triclinic

Unit-cell dimensions: a ¼ 10.94 Å, b ¼ 8.06 Å, c ¼ 9.44 Å; a ¼ 57.18�, b ¼ 107.68�, g ¼ 116.53�

Vc: 623.75 Å3

Dm: 1.57 g cm�3

Mr: 298.19

Z: 1.98 or 2 to the nearest integer

Absent spectra: none

Possible space groups: P1 or P�1; P�1 was chosen on the basis of intensity statistics

All atoms are in general positions.

Sign Determination
1. A total of 163 reflections for which jEj � 1.5 was arranged in descending order of magnitude, and

a ∑2 listing was obtained, Table 8.4.

2. From a study of the ∑2 listing, three reflections were allocated + signs, Table 8.3; they are the

origin-fixing reflections, selected according to the procedures already discussed.

3. Equation (8.9) was used by searching, initially between members of the origin-fixing set and

other reflections. In order to maintain a high probability, only the highest jEj values were used.
For example, 9�5 �5 with jEj ¼ 2.31 is generated by the combination of 8�1 �5 and �140

sð9 �5 �5Þ � sð8�1 �5Þ sð�140Þ ¼ ðþ1Þðþ1Þ ¼ þ1 (8.16)

From (8.11), a0 is 16.5, and Fig. 8.3, withN ¼ 38 and excluding hydrogen, shows that the probability

of this indication is about 99.7%. The new sign was accepted and used to generate more signs.

This process was continued until no new signs could be developed with high probability.

Table 8.3 Starting set for

the symbolic-addition pro-

cedure

hkl jEj Sign

9�1 �4 2.97 +

8�1 �5 3.00 +

�140 2.38 +

020 4.50 A

253 2.24 B

822 2.71 C

303 2.69 D

023 2.28 E
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4. At this stage, it is often found that the number of signs developed with confidence is small. This

situation arose with pyridoxal phosphate oxime dihydrate, and the∑2 formula was then applied to

reflections with symbolic signs. In this technique, a reflection was selected, again by virtue of its

high jEj value and long ∑2 listing, and allocated a letter symbol, as shown in Table 8.3; the letter

symbols A–E represent a + or � sign. Generally, less than five symbolic phases are sufficient, and

there are no necessary restrictions on the parities of these reflections. However, it is desirable that

there are no redundancies in the complete starting set, that is, no three reflections in the set should

themselves be related by a triple-product relationship.

As a symbol became involved in a sign of a reflection, it was written into the ∑2 listing. The

example in Table 8.4 shows a ∑2 entry for reflection 9�8 �6. Reading across the table, sign

combinations are seen to be generated by multiplying s(h0k0l0) by s(h � h0, k � k0, l � l0), which
are then written as sð9�8 �6Þ in the penultimate column. Recurring symbol combinations, such as

ABD, gave rise to consistent indications. If the probability that sð9�8 �6Þ ¼ sðABDÞ is sufficiently
large, this sign value is entered for sð9�8 �6Þ wherever these indices occur. In the final column of the

table, the probability of each sign indication is listed. Although they are small individually, the

combined probability from (8.10) that sð9�8 �6Þ was ABD is 100%.

5. When this process had been exhausted, the results were examined for agreement among sign

relationships. For example, in Table 8.4 there is a weak indication that ABD ¼ EC. The most

significant relationships found overall were AC ¼ E, C ¼ EB, B ¼ ED, AD ¼ E, and AB ¼ CD.

Multiplying the first by the second, and the first by the fourth, and remembering that products such

as A2 equal +1 reduces this list to A ¼ B, C ¼ D, and E ¼ AC. The five symbols were reduced,

effectively, to two, A and C. The sign determination was rewritten in terms of signs and the

symbols A and C; reflections with either uncertain or undetermined signs were rejected from the

first electron density calculation.

8.2.7 Calculation of E Maps

The result of the above analysis meant that four possible sign sets could be generated by the

substitutions A ¼ �1, C ¼ �1. The set with A ¼ C ¼ +1 was rejected immediately because this

phase assignment implies a very heavy atom at the origin of the unit cell. The three other sign

Table 8.4 ∑2 listing for reflection 9�8 �6 of pyridoxal oxime phosphate with symbols addeda

h0k0l0 s(h0k0l0)
jE2j:
jE(h0k0l0)j

h � h0,
k � k0,
l � l0

s(h � h0,
k � k0,
l � l0)

jE3j: jE(h � h0,
k � k0,
l � l0)j jE1jjE2jjE3j sð9�8 �6Þ Pþð9�8 �6Þ (%)

1 �5 0 BD 2.16 8, �3; �6 A 1.63 6.40 ABD 90

10; �2 �2 AB 2.04 1, 6, 4 D 1.88 6.97 ABD 91

10; �7 �1 D 1.87 1, 1, 5 AB 1.63 5.54 ABD 87

4 �8 �3 D 1.83 5, 0, �3 ECD 1.58 5.25 EC 85

3 �9 �4 1.76 6, 1, �2 1.58 5.03

3 �5 �6 1.70 6, �3, 0 1.51 4.66

6 �7 �2 1.68 3, �1, �4 1.63 4.98

10; �4 �2 B 1.62 1, 4, 4 AD 1.67 4.93 ABD 84

0 �2 0 �A 4.50 9, 6, �6 1.73 14.08

0 �8 0 + 2.48 9, 0, �6 1.85 8.30

ajEð98 6Þj ¼ jE1j ¼ 1:89. We can use both h � k and h + k in these triple products
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combinations were used to calculate E maps. These maps were obtained by Fourier syntheses, using

(8.8), but with jEj replacing jFj as the coefficients. The sharp nature of jEj implicit in (8.1) is

advantageous when using a limited number of data to resolve atomic peaks in the electron density

map, although normally about eight reflections per atom in the asymmetric unit are desirable.

Spurious peaks can arise, however, like that in the vicinity of O(8), because of the limited number

of coefficients in the Fourier series for an E map. The sign combination for pyridoxal phosphate

oxime dihydrate that led to an interpretable E map was A ¼ C ¼ �1. The atomic positions from this

map, Fig. 8.4a, were used in a successful refinement of the structure, and Fig. 8.4b shows the chemical

formula and Fig. 8.4c shows the molecular conformation determined in this study.

If there are n symbolic signs in the final centrosymmetric phase solution, there will be 2n

combinations, each of which can give rise to an E map, and it is desirable to set up criteria that

will seek the most probable set. We shall consider such criteria during our discussion of the non-

centrosymmetric case, where they are of even greater importance.

8.2.8 Phase Determination: Non-centrosymmetric Crystals

The non-centrosymmetric case is more difficult, both in theory and in practice. Much of this difficulty

stems from the fact that the phase angle can take on any value between 0 and 2p, with a consequent

imprecision in its determination. Nevertheless, direct methods are used regularly to solve structures,

the limiting factor being the number of atoms N in the unit cell, which is space-group dependent.

Structures where N is 400 or more can be expected to be solved without great difficulty using current

versions of the various programs now available.

Fig. 8.4 Pyridoxal

phosphate oxime dihydrate.

(a) Composite three-

dimensional E map as seen

along b. (b) Chemical

formula. (c) Molecular

conformation derived from

(a) excluding H atoms

(drawn with RASMOL)
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Equations for a non-centrosymmetric crystal are, not surprisingly, more generalized expressions of

those such as (8.9), which relates to centrosymmetric crystals. Using the fact that the electron density

distribution is a nonnegative function, Karle and Hauptman derived a set of inequality relationships [10].

The first three inequalities may be written as nonnegative functions.

F000 � 0 (8.17)

jFhj � F000 (8.18)

Fh � dh;k � jrj (8.19)

where

dh;k ¼ Fh�kF
a
k=F000 (8.20)

and

jrj ¼

F000 F	h�k

Fh�k F000

�

�

�

�

�

�

�

�

F000 F	k
Fk F000

�

�

�

�

�

�

�

�

F000
(8.21)

We use here the convenient notation h for hkl, k for h0k0l0, h � k for a third reflection that forms a

vector triplet with h and k, and, in order to avoid excessive parentheses, Fh for F(h). Equations (8.17)
and (8.18) are immediately acceptable in terms of earlier discussions in this book; FkFh�k is a

multiplication of two structure factors and may be interpreted on an Argand diagram as jFkjjFh�kj
exp{i(’k + ’h�k)}.

The structure factor Fh, given only jFhj, must lie on a circle of that radius on an Argand diagram,

Fig. 8.5. Equation (8.19) then indicates that Fh lies within a circle, center dh,k and radius jrj, between

Fig. 8.5 Illustration

of (8.19) at equality
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the points P and Q. Expansions of the determinants in (8.21), remembering that FF* ¼ jFj2, shows
that the larger the values of jFkj2 and jFh�kj2, the closer Fh approaches dh,k. For a given h, as k is

varied, Fh is proportional to the average over k:

Fh / hFkFh�kik (8.22)

the proportionality constant being F(000). We can see how (8.22) can give rise to (8.9) or (8.7) for a

single interaction.

Using the general relation

Fh ¼ jFhj expðifhÞ (8.23)

we obtain the phase addition formula

fh � fk þ fh�k (8.24)

The sign � indicates an approximation which is better the larger the values of the corresponding

structure factors. Where several triplets are involved with a given h, (8.24) becomes

fh � fk þ fh�kh ik (8.25)

where h ik implies an average, taken over a number of triple product relationships (TPRs) common

to h.
The Fo data derived experimentally are converted to jEj values. Again, we commence phase

determination with jEj values greater than about 1.5 in order to maintain acceptable probability limits.

Equation (8.25) is illustrated by an Argand diagram in Fig. 8.6 for four values of k; fh is the estimated

phase angle associated with the resultant Rh. Each direction labeled k depends on a product

jEkjjEh�kj and may be resolved into components A and B along the real and imaginary axes,

respectively, such that

A ¼ jEkjjEh�kj cosðfk þ fh�kÞ (8.26)

and

B ¼ jEkjjEh�kj sinðfk þ fh�kÞ (8.27)

It follows from (8.25) and (8.26), including a frequency enhancement weight wh, that

tanfh �

P
h whjEkjjEh�kj sinðfk þ fh�kÞP
h whjEkjjEh�kj cosðfk þ fh�kÞ

(8.28)

Equation (8.28) is a weighted tangent formula. Weights may be used as defined below under

MULTAN. Current phase-determining procedures are based largely on (8.28), and the reliability of

(8.28) can be measured by the variance VðfhÞ. Figure 8.7 shows VðfhÞ as a function of ah, where

a2h ¼
X

h

khk cosðfk þ fh�kÞ

" #2
þ

X

k

khk sinðfk þ fh�kÞ

" #2
(8.29)
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and

khk ¼ 2s3s
�3=2
2 jEhjjEkjjEh�kj (8.30)

with

sn ¼
XN

j¼1

Zn
j (8.31)

as before, and the sum is taken over the N atoms in the unit cell. The parameter ah gives a measure of

the reliability with which fh is determined by the tangent formula. When (8.29) contains only one

term, as it may in the initial stages of phase determination, then ah ¼ khk and is strongly dependent

on the product jEhjjEkjjEh�kj. Figure 8.7 shows clearly that VðfhÞ has acceptably small values when

ah is greater than about 4, corresponding to V1/2 < 30�, but increases rapidly for ah decreasing below
about 3, corresponding to V1/2 > 40�: ah depends also on s3s

�3=2
2 , which, in turn, depends on the number

and types of atoms in the unit cell. This dependence may be illustrated by hypothetical structures

containing different numbers N of identical atoms; ah (¼khk) is then given by

ah ¼ 2

N1=2
jEhjjEkjjEh�kj (8.32)

Fig. 8.6 Summation of

four “vectors” k1–k4 on an

Argand diagram; the

resultant is Rh, with a phase

angle fh
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Table 8.5 lists the values of jEminj needed to obtain ah ¼ 3 for selected values of N from 25 to 100.

The table illustrates clearly an important limitation of direct methods: the required jEminj increases
dramatically as a function of N, whereas, as indicated earlier, the distribution of jEj values is largely
independent of structural complexity. Therefore, it becomes more and more difficult to form a good

starting set as N becomes larger and larger. Calculation of ah from (8.29) is possible only when phases

are available. In the initial stages of phase determination this is not practicable, and the following

formula for the expectation value (a2E) of a
2
h, which uses only the values of khk, has been developed:

a2E ¼
X

k

k2hk þ
X

k

X

k0
khkkhk0

k 6¼k0

I1ðkhkÞI1ðkhk0Þ
I0ðkhkÞI0ðkhk0Þ (8.33)

where I0 and I1 are modified Bessel functions of the zero and first orders, respectively. The function

I1(k)/I0(k) has the form shown in Fig. 8.8 and may be expressed as the polynomial

I1ðkÞ=I0ðkÞ � 0:5658k� 0:1304k2 þ 0:0106k3

in the range 0 � k � 6; for larger values of k the function is essentially unity. These principles, used

in conjunction with those discussed earlier for selecting the origin-determining reflections, may help a

direct methods analysis to be established on a sound basis right from the beginning, and so lead to a

number of sufficiently accurate phases to give an interpretable E map. Experience shows, however,

that even with great care, the development of phases may not always be successful. In such an event

the remedy is often to try again with a different starting set of reflections.

Fig. 8.7 Variance ðVfhÞ as a function of ah
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∑1-Relationships
In (8.24), let �k ¼ h; then, since � f�h ¼ fh,

fh � f�h þ f2h � f2h=2 (8.34)

If the structure is centrosymmetric then, in (8.7), sh is �1; since sh s�h ¼ 1, it follows that

s2h � 1 (8.35)

These two∑1 relationships, like (8.7) and (8.24) themselves, require large values of both jEhj and jE2hj

for a high probability of their validity.

Multan System
We refer to equations of the MULTAN program system [11, 12] in order to define the weights

required in (8.28). Multan employs a modified weighted tangent formula given by

tanfh ¼
X

k

Qh; k sinðfk þ fh � kÞ

" # X

k

Qh; k cosðfk þ fh � kÞ

" #,
¼ Th=Bh

where

Qh;k ¼ okoh�kjEkjjEh�kj=ð1� jUhj
2Þ

where the unitary structure factor jUhj is defined by

jUhj ¼ jFhj e1=2
X

j
gj

� �.

Fig. 8.8 Variation of

I1(k)/I0(k) with k

Table 8.5 Values of jEminj
for ah ¼ 3.0 in structures

containing N identical

atoms per unit cell

N jEminj

25 1.96

36 2.08

49 2.19

64 2.29

81 2.38

100 2.47
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and j varies from 1 to N, the number of atoms in the unit cell; gj is fj corrected for temperature; ok is

given by

oh ¼ tan½s3s�3=2
2 jEhjðT2

h þ B2
hÞ�

and sn is defined by (8.31). Thus, each phase assignment carries a weight designed to ensure that

poorly determined phases have but little effect on the generation of new phases, while inclusion of all

phases ensures an efficient propagation of phase information throughout the data set.

8.2.9 Enantiomorph Selection

In non-centrosymmetric space groups, such as P21 and P212121, that contain no inversion symmetry,

but can exist in enantiomorphous forms, it is always possible to specify two enantiomorphic

arrangements of the atoms in the structure that will lead to the same values of jFj. For example, in

the structure in Fig. 1.8, which has two molecules per unit cell in space group P21, the two

enantiomorphic arrangements would be related by inversion through the origin, and will be referred

to as the structure (S) and its inverse (I). From the structure factor theory discussed earlier, we

can write

FðhÞS ¼ AðhÞS þ iBðhÞS

for the structure, and

FðhÞI ¼ AðhÞI þ iBðhÞI (8.36)

for its inverse. From the inversion relationship, we know that F(h)S and F(h)I are complex conjugates;

hence,

AðhÞS ¼ AðhÞI

and

BðhÞS ¼ �BðhÞI (8.37)

For either the structure or its inverse, we can choose B(h) to be positive, so that the corresponding
phase angle fðhÞlies in the range 0 � fðhÞ � p. This procedure was followed in the structure

analysis of tubercidin, Sect. 8.2.10, where the phase of symbolic reflection að13�8Þ was restricted to

a value between 0 and p, specifically 3p/4.

In P212121, a space group of frequent occurrence in practice, the zonal reflections 0kl, h0l, and hk0

are centric, and may be given phases equal to mp/2, since no 21 axis passes through the origin. The

value ofm takes the same parity as the Miller index following zero, working in a cyclic manner. Thus,

an origin and an enantiomorph could be specified in this space group by the selection

5 2 0 þp=2

0 1 1 þp=2

11 3 0 þp=2

9
>=
>;

Origin

11 0 0 þp=2 Enantiomorph
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A detailed practical treatment on the origin and enantiomorph for all space groups has been given

by Rogers [13]. It is important not to confuse the specification of the enantiomorph with the selection

of the absolute configuration of a structure: in both cases the same type of space group is involved.

Selection of the enantiomorph is essential to a correct application of direct methods to a structure with

an enantiomorphous space group. However, the derived solution of the structure may correspond to

either the absolute configuration or its inverse. This dilemma has to be resolved by further tests,

usually involving anomalous scattering, Sect. 7.6. We discuss enantiomorph selection and related

topics in Appendix E.

8.2.10 Phase Determination in Space Group P21

The method of symbolic addition can be used for phase determination in non-centrosymmetric

crystals, but it can be somewhat laborious because of the general nature of fðhklÞ. The structure of
tubercidin was determined by Stroud [14] using this method: Table 8.6 lists the crystal data for this

compound.

In space group P21, jE(hkl)j has the following symmetry equivalence:

jEðhklÞj ¼ jEð�hk�lÞj ¼ jEðh�klÞj ¼ jEð�h �k �lÞj (8.38)

The phases of the symmetry-related reflections in this space group are also linked, but in a different

way, according to the parity of k:

k ¼ 2n : fðhklÞ ¼ fð�hk�lÞ ¼ �fðh�klÞ
¼ �fð�h �k �lÞ

(8.39)

k ¼ 2nþ 1 : fðhklÞ ¼ pþ fð�hk�lÞ ¼ p� fðh�klÞ
¼ �fð�h �k �lÞ (8.40)

The h0l zone of this space group is centric, with the origin transferred to the twofold rotation point

at x ¼ z ¼ 0; hence, the phases are restricted to 0 or p, according to the arguments developed in

Sect. 8.2.2, so that permitted origins here are 0, 0, 0; 1
2
, 0, 0; 0, 0, 1

2
; 1
2
, 0, 1

2
.

Again, the origin was specified by assigning phases to three reflections, following the

rules discussed above, and shown in Table 8.7. Next, new phases were determined according

Table 8.6 Crystal data for tubercidin

Formula, Mr C11H14N4O4, 266.26

Space group P21

a (Å) 9.724(9)

b (Å) 9.346(11)

c (Å) 6.762(10)

b (�) 94.64(10)

Vc (Å
3) 612.52

Dm (g cm�3) 1.449

Dc (g cm�3) 1.444

Z 2

F(000) 280
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to (8.24) or (8.25). In order to maintain an expected variance VðfhÞ, Fig. 8.7, of no more than 0.5 rad2,

the product jEhjjEkjjEh�kj must be greater than 8.5 for this structure. Two new phases fð80�2Þ and
fð612Þ were thus determined from the origin set and added to it; further phases were determined in

terms of the symbols allocated as shown in Table 8.8.

Eleven phases were generated in terms of the origin set and symbol a, 20 after adding symbol b, and

47 after adding the third symbolic phase c. Table 8.9 illustrates the initial stages of this process. The criteria

for accepting a phase were as follows:

1. That VðfhÞ, irrespective of the actual choice for phases c and a should be less than 0.5 rad2, no

matter how many contributors there were to the sum in (8.25); symbol b, in parity group eee, is a

structure seminvariant with phase 0 or p with respect to the permitted origins.

Table 8.7 Origin-specifying phases

for tubercidin

hkl jEhj fh

10�6 1.95 0

40�1 2.09 0

71�4 2.45 0

Table 8.8 Course of the phase determination procedure for

tubercidin

hkl fh jEhj
Number of numerical

or symbolic phases

Origin set;

Table 8.7

5

13�8 a 2.99 11

206 b 2.20 20

790 c 2.76 47

Table 8.9 Initial development of phases for tubercidin

h jEhj fh jEhjjEkjjEh�kj
Origin set

40�1 2.09 0

10�6 1.95 0

71�4 2.45 0 9.98

New phases (marked *)

40�1 2.09 0

40�1 2.09 0

80�2* 2.33 0 10.2

�106a 1.95 0

71�4 2.45 0

612* 1.83 0 8.74

First symbol

13�8 2.99 a

612 1.83 0

74�6* 2.20 a 12.0

7�1 �4b 2.45 p
�138b 2.99 p + a

624* 2.19 a 16.0

aSymmetry-related through (8.39)
bSymmetry-related through (8.40)
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2. That where there were two or more different indications for a phase, the phase would be accepted

only when indications of one type predominated strongly. Manual phase determination using a∑2

listing indicated relationships such as

fð63�3Þ ¼ c� 2a� b (8.41)

and

b ¼ 0 (8.42)

which were strong because they both come from 6 and 3 multiple indications, respectively.

By reiteration of the phase addition procedure above, the results in Table 8.10 indicate relation-

ships between a and c. Bearing in mind that the objective is to obtain a self-consistent set of

phases, it is well to consider how this might now be achieved. Refinement of phases could in

principle be achieved by application of (8.28). However, this would be possible only if numerical

values for a and c (taking b as zero) were available. Alternatively, if a working formula relating a

and c could be found, (8.28) could be implemented by substitution of values for one symbol only.

Table 8.10 shows that there were 41 indications that

c ¼ pþ pa (8.43)

where the value for p was chosen as the weighted average of the first three indications for c in

Table 8.10. Thus,

c ¼ pþ 3:29a (8.44)

The symbol a was then limited to the range

0< a< p (8.45)

Table 8.10 Relationships between letter symbols

Form of relationship Number of indications

c ¼ p + 2a 7

c ¼ p + 3a 15

c ¼ p + 4a 19

c ¼ 3a 5

c ¼ 4a 2

c ¼ �3a 4 or 5

a ¼ 0 2

a ¼ p 2

b ¼ 0 Many

b ¼ p None
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in order to fix the enantiomorph, Sect. 8.2.9. Values for a were chosen such that

a ¼ np=8 ðn ¼ 1; 2; . . . ; 8Þ (8.46)

and converted into phases by the above relationships. Each set was expanded and refined by (8.28),

taking wh ¼ 1, for up to 419 reflections with jEminj � 1.0. Some phases were rejected because of

inconsistencies in their phase indications. An interpretable E map was obtained using the refined

phase set with a ¼ 6p/8; a composite diagram is given in Fig. 8.9.2

8.2.11 Advantages and Disadvantages of Symbolic Addition

Symbolic addition has several advantages and disadvantages, which we summarize as follows:

Advantages

1. The user is in control throughout the analysis, and has the responsibility of making sure that all

formulae, including symmetry relationships, are applied correctly.

2. The user can make decisions regarding criteria of acceptance of phase indications, the number of

jEj values to include, the number of symbolic phases, the choice of starting set, and so on.

Fig. 8.9 Tubercidin, C11H14N4O4. (a) Structural formula in approximately the same orientation as in the E map. (b)
Composite E map, with idealized contours drawn at arbitrary equal intervals. Some peaks are heavier than others

because of the limited data set used; peak T was the only significant spurious peak. (c) Molecular structure derived from

(b), and drawn with RASMOL

2 See also Bibliography, Ladd and Palmer (1980).
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Disadvantages

1. The analysis can be carried out only by a specialist in crystallography.

2. The procedure is slow, requiring many hours of preparation before meaningful results emerge.

3. If a large number of symbols are required, many phase sets will be produced, each of which requires

refinement by the tangent formula.

Not surprisingly, alternative rapid and more automatic methods of applying direct methods formulas

were sought in the late 1960s, leading to development of the multi-solution methods starting with the

program MULTAN, now superseded by other systems, particularly SHELX which we discuss in a

subsequent section. Where automatic methods fail, and sometimes they do, it is important to recall how

structures like tubercidin were solved by an intelligent manual approach.

8.2.12 Signs of Trouble, and Past Remedies When
the Structure Failed to Solve

We summarize some of our own experiences, and record factors involved when a structure solution

failed to emerge from direct phase-determining methods. Although these comments apply primarily

to earlier program systems, similar considerations apply to other comparable procedures:

1. Too few ∑2 interactions are being used. Increase the number of interactions by lowering jEminj.
2. The origin-defining set is poor or incorrect. Try another one, choosing it with the aid of the rules

given.

3. The E map contains one very large peak. The phases are probably very inaccurate; the heavy peak

may be located in the center of a closed ring. Start again; do not waste time trying to interpret the

E map.

4. The E map is not interpretable or chemically sensible. The are incorrect. Try again.

5. If heavy atoms are present in the structure, they alone may show up. Proceed to Fourier methods

using interpretable heavy-atom sites. A check against the Patterson function might prove useful

here.

6. Only a small molecular fragment is discernible on the E map. Try recycling basing phases on the

fragment found, or try to obtain more phases by increasing the initial data set.

7. The program selects an incorrect or poor starting set, such as too few∑2 interactions. Select your

own starting set. If you suspect that a program may contain a fault, inform the author; do not

attempt to correct it.

8. The solution still fails to emerge. Review the calculation of the jEj values; perhaps omit reflections

that appear to have a bad influence on the phase-determining pathway.

9. All fails. Go back to fundamentals. Check the space group, data collection, processing, and any

other factor that might be at fault.

If you exhaust these possibilities without achieving success, try another method for determining

the structure. Or give it a rest and try again later—or study recent Bibliography on direct methods.

8.2.13 Triplets, Quartets, and the SHELX Program Strategy [15]

We discuss in Appendix E and Sect. 8.2.2 entities known as structure invariants and structure

seminvariants. As we have shown, they may comprise one or more reflections, most often three or

four in practice, and have important properties that are related to the choice of origin, or permitted
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origin when symmetry is present. In this section, we examine how these invariants may be used to

enhance direct methods of phase determination. The structure factor equation has been expressed as

FðhklÞ ¼
XN

j¼1

gj exp½i 2pðhxj þ kyj þ lzjÞ� ¼ jFðhklÞj exp ifðhklÞ (8.47)

where N is the number of atoms in one unit cell. In the following discussions it will generally be

assumed, for simplicity, that we are dealing with an equal-atom structure.

Referring to Sect. 8.2.2 and Fig. 8.1, it can be seen that changing the origin to any point (Dx, Dy,

Dz), changes each atom coordinate to (xj � Dx, yj � Dy, zj � Dz), and that the structure factor in

(8.47) will change to a new structure factor F0(hkl), given by

F0ðhklÞ
XN

j¼1

fgj exp½i2pðhxj þ kyjþlzjÞ�gfexp½�i2pðhDxþ kDyþ lDzÞ�g (8.48)

where {exp[�i2p(hDx + kDy + lDz)]} is a term external to the summation, so that

F0ðhklÞ ¼ FðhklÞfexp½�i2pðhDxþ kDyþ lDzÞ�g (8.49)

Thus, changing the origin to the point (Dx, Dy, Dz) causes a change in ’(hkl) given by

DfðhklÞ ¼ �2pðhDxþ kDyþ lDzÞ (8.50)

jF(hkl)j is, of course, invariant, as is the intensity of reflection, I(hkl). If we now consider the structure

factors for two reflections where the two reflections have indices h1k1l1 and h2k2l2, we show in

Appendix E that for a product of two structure factors, in the absence of any symmetry, if

h1 + h2 ¼ 0, then it follows that the phase sum (’1 + ’2) is a structure invariant. This result can

be generalized for three and four (or more) reflections, thus:

ðf1 þ f2 þ f3Þ is a structure invariant if h1 þ h2 þ h3 ¼ 0 (8.51)

ðf1 þ f2 þ f3 þ f4Þ is a structure invariant if h1 þ h2 þ h3 þ h4 ¼ 0 (8.52)

The presence of symmetry normally requires that the origin be chosen on a symmetry element.

Thus, in P�1, for example, we have:

ðf1 þ f2 þ f3Þ is a structure invariant if h1 þ h2 þ h3 ¼ 0 (8.53)

but if h1 + h2 + h3 ¼ 0 modulo (2 2 2) the corresponding phase sum is a structure seminvariant. We

discuss these invariants more fully in Appendix E.

Notice that the individual phases in these expressions are not themselves invariant, and that

nothing has been said so far about the actual values of these phase sums. For (8.51), we can show

that we have assumed tacitly, Sect. 8.2, that, for sufficiently large values of a, that is, of

2N�1=2jEh1 jjEh2 jjEh3 j,

f1 þ f2 þ f3 � 0 (8.54)
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Rearranging (8.54) gives:

f1 � �f2 � f3 (8.55)

We make a small change in notation, so as to accord with that used in the SHELX-97 program

system and to focus on determining ’h. Let h1 ¼ h, �h2 ¼ k, �h3 ¼ h � k; then if Friedel’s law

holds, that is fðhklÞ ¼ �fð�h �k �lÞ, then (8.55) becomes

fh � fk þ fh�k (8.56)

which is the phase addition formula (8.24) from which the tangent formula (8.28) was developed as a

general means of exploiting TPRs for expanding and refining phases by direct methods. Equation

(8.52) represents a four-phase quartet, and like three-phase triplets, may be a source of phase

information, since it can be shown [16, 17] that for a sufficiently large value of the expression

2N�1jEh1 jjEh2 jjEh3 jjEh4 j

cosðf1 þ f2 þ f3 þ f4Þ � þ1 (8.57)

provided that jEh1þh2 j, jEh1þh3 j, and jEh1þh4 j are all large. Alternatively,

cosðf1 þ f2 þ f3 þ f4Þ � �1 (8.58)

if jEh1þh2 j, jEh1þh3 j, and jEh1þh4 j are all small. Equations (8.57) and (8.58) are positive quartets and

negative quartets (NQRs), respectively. Thus, the sum of four phases is dependent not only on the

intensities of the four corresponding reflections, the primary terms, but also on the intensities of three

other index-related reflections, the cross-terms. As in the treatment for triplets, we need to cast the

indices of the phase-quartet in terms of a target reflection h. The quartet phase sum then becomes

ðfh þ f�k þ f�l þ f�hþkþlÞ (8.59)

where h ¼ h1, �k ¼ h2, �l ¼ h3, and �h + k + l ¼ h4. The primary terms are jEhj, jEkj, jElj, and

jE�h+k+lj, which should all be large; the cross terms are jEh�kj, jEh�lj, and jEk+lj, which should all be

large for a positive quartet and small for an NQR.

We have seen in Sect. 8.2.11 that symbolic-addition techniques for phase determination employ a

number of initial phase assignments for a relatively small number of reflections. Each phase set is

then expanded via the tangent formula, which is based on the use of strong triplets. Only a very small

number of such assignments can be expected to converge to produce a phase set that is somewhere

near the correct one. To avoid the use of the time-consuming inspection of a large number of E maps,

experience has shown that, with large structures, results based only on the consistency of triplet

relationships may not discriminate the correct phase set. This failure has led to the use of NQRs, as

well as triple-phase relations, for good phase determination.

8.2.14 The SHELX Computer Program System

The SHELX program suite, one of the most popular and widely used set of crystallographic programs,

was developed originally from SHELX-76 which was specifically aimed at the determination and
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refinement of small-molecule structures [18, 19]. The latest version, SHELX-97 [20–22], is available

free of charge to academic users by registering online [23]. It is recommended that the program be

incorporated by the user into a specialized program system such as WinGX [22] which is download-

able [24]. SHELX and other programs have been integrated into WinGX to produce a comprehensive

work-base for small-molecule crystallography. The implementation of the SHELX programs for both

large and small molecules is fully covered in the usermanual.When usingWinGX, the crystallographer

has access to the SHELX direct methods structure-solving programs SHELXS-86, SHELXS-97,

SHELD, and PATSEE; see Sect. 8.3, which employs a Patterson Search method. The SHELXL

programs are relatively easy to use and require only two input files:

• Atoms and instructions

• Reflection data

The instruction file includes initially only unit-cell dimensions, wavelength, atom types and their

numbers, space group information, and the type of input data being used. The programs are written so

as to handle all space groups in all settings, both standard and nonstandard, and are thus perfectly

general. This has been achieved by requiring the coordinates of the equivalent positions in the unit

cell to be specified together with a centrosymmetric/non-centrosymmetric flag, and therefore

demands a good working knowledge of crystallography.

The reflection data file contains h,k,l, Fo
2 and s(Fo

2) as output by the data collection system. If

using SHELX with WinGX, the user has access also to graphics and editing facilities and programs

for monitoring the quality of the structure analysis prior to deposition and publication of the data.

Users are advised to read the operation manuals of both SHELX-97 and WinGX very carefully and to

keep an eye open for changes in either system.

8.2.15 The WinGX Program System

WinGX is an MS-Windows system of programs for solving, refining, and analyzing single crystal X-

ray diffraction data for small molecules. It provides a consistent and user-friendly Graphical User

Interface for some of the best publically available crystallographic programs, and has interfaces to

other popular programs such as SHELX-97 and SirWare programs (SIR-97, SIR-2008). Users of

WinGX must be registered users of the SHELX and SirWare programs. It is the responsibility of the

user to register with the appropriate sources as per instructions; WinGX can be downloaded free of

charge [23].

Installation of the system is fully described in the manual. The installation stage includes setting up

of environment variables which may need the help of an expert. Once installed and called from the PC

desktop shortcut, the menu shown in Fig. 8.10a is displayed. In this example, the project name is

BW202W92(R) and the necessary files BW202W92(R).ins and BW202W92(R).hkl are stored in a

folder called BW202W92(R) on the C:\ drive. Other menus in WinGX to which we shall refer are

shown in Fig. 8.10b, c.

8.2.16 Direct Methods in the Program SHELX-97 for Small Molecules

We are concerned at this point with methods used to determine small-molecule crystal structures

using the SHELX-97 system, but hasten to add that this system is in fact now capable of handling both

small-molecule and protein structure analyses. For these purposes it contains a number of executable

programs, such as those that solve structures by either Patterson or direct methods, carry out detailed

least-squares refinement, and locate water molecules of crystallization in proteins. The heavy-atom
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method can be invoked, and the Patterson search method used is effectively PATSEE, which we

describe in Sect. 8.3.6. The least-squares procedures encompass inter alia dispersion, absorption, and

extinction corrections, together with a wide range of constraints and restraints, and routines for fixing

and refining hydrogen-atom positions. The direct methods routine is based on a random start multi-

solution strategy, or more accurately a multi-permutation single-solution procedure, since it endea-

vors to identify the correct solution and then to improve on it by E map partial structure extension, or

successive refinement. Geometry routines calculate bond lengths, bond angles, and torsion angles and

identify possible hydrogen bonds, all of the results being tabulated for publication purposes. The

system is strongly recommended to the serious structure analyst.

The triple-phase and NQR relationships discussed above are employed in the SHELX-97 to

generate phases by a modified tangent formula. We write

a ¼ 2N�1=2jEhjEkEh�k (8.60)

h ¼ gN�1jEhjEkElEh�k�l (8.61)

where Ej ¼ jEjj(cos ’j + i sin ’j), (j ¼ k, l), and g is a positive constant set by the program to account

for the cross-term jEj values; (8.60) and (8.61) are subject to the same conditions as (8.59). It has been

found that computer time is optimized for cases where the number of NQRs is restricted to between

1000 and 8000. Only the most reliable relationships are retained in this process, strictly where all three

cross-terms have actually been measured and found to be weak. However, all interconnecting triple-

phase relationships are used, except for ∑1 terms, Sect. 8.2.8, and those which all involve restricted

phases that prevent the resultant phase from being zero [25].

A process of phase annealing, based on a principle similar to that of simulated annealing used in

the refinement of macromolecular structures, Sect. 10.9.1, is employed in the next stage of phase

refinement. The results from these two stages are then applied to a full tangent formula refinement for

the best retained reflections. The total number of different attempts using these procedures can be set

by the user and may be as many as 5000 for really difficult structures.

Fig. 8.10 The WinGX

program system. (a)
WinGX Menu showing the

Basic Functions available.

(b) Selection of SHELXS-

86 direct methods program

from the WinGX menu.

(c) Selection of the

graphics facility

SXGRAPH in WinGX is

activated by the option

“Model” on the main menu

(a); see also Fig. 8.11b, c
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Initial Stages
In the initial stages of applying SHELX-97 to a structure determination, a number of cycles of

weighted tangent formula (8.28) are performed, starting with a selected number of randomly

generated phases. The best phase sets, as judged by NQR and triplet consistency, are retained

and the process repeated to give a number of parallel-generated phase sets. After each iteration, the

total number of phase sets processed in parallel is reduced until only 25% of the original number of

phase sets is generated. Typically 8 or 16 best phase sets are retained from each cycle for a total run of

128 parallel permutations. The best reflections and strongest TPRs are retained and passed to the next

stage of the procedure. The program uses a TPR figure of merit (FOM) based on the indicator NQUAL

(a negative quantity), where the best phase set has the smallest value:

NQUAL ¼ Sja 
 hj=Sjajjhj (8.62)

Phase Annealing
This method is used to refine the phase sets retained after the initial stages. Phase annealing supplies a

correction to the phase produced by the tangent formula. As only a limited number of reflections

are involved, the process uses computer time efficiently, employing only the strongest triplets and

quartets.

Final Stages in Phase Determination
The total number of directmethods attempts (the variable np on theTREF instruction in SHELX-97) to be

employedmay have to be a very high value for difficult structures. The routines in SHELX-97 are written

with efficiency inmindand the program requires only a fewminutes on a PC for calculations onquite large

structures, evenwhen TREF is as high as 5000. The programwill select the number nE of reflections to be

involvedat this stage if not otherwise stipulated, butnEmayhave to be reset to ahighervalue if the program

fails to produce an interpretable E map. An example of the use of this program in solving a difficult

structure (cyclosporin H) is given in Sect. 11.10.

8.2.17 Example of a SHELX-97 Structure Solution: Crystal Code Name
BW202W92(R)

The SHELXS-97 direct determination described here was undertaken as part of the study of the

mesylate salts of a novel voltage-gated sodium channel-binding ligand R-(�)-BW202W92 and its

much less active S-(+)-enantiomer (BW203W92) (Fig. 8.11a) in order to determine the absolute

configuration of each, a factor which is of vital importance to a full understanding of the biological

activity of the drug. In addition each enantiomer exists as two distinct atropisomeric forms in the solid

state, i.e., each has two independent molecules per asymmetric unit with slightly different configu-

rational properties [26]. The solution for the R-form is described below.

Crystals of BW202W92(R) mesylate salt, C11H9Cl3FN4·CH3SO3 Fig. 8.11a (I), are monoclinic in

space group P21, with a ¼ 8.384(2) Å, b ¼ 16.984(3) Å, c ¼ 12.480(3) Å, b ¼ 104.14(2)�, and with
two independent molecules of each type per asymmetric unit. The X-ray data collected with Cu Ka

radiation had 3192 independent hkl data to a resolution of 0.800 Å (ymax ¼ 74.42�). The files

BW202W92(R).ins and BW202W92(R).hkl were stored in the folder BW202W92(R) which was read

intoWinGX as described in the previous section, Fig. 8.10a. The program SHELXS-86 was selected by

using the “Solve” option on the WinGX menu, Fig. 8.10b. The resulting E map from this calculation,

obtained using model/SXGRAPH, Fig. 8.10c, from the WinGX menu, is shown in Fig. 8.11b.
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The program SHELXS-97 was then implemented in a similar manner and resulted in the map

shown in Fig. 8.11c. The input data for the SHELXS-97 run is shown in Table 8.11a and the output

data in Table 8.11b, both with explanatory notes.

In all, 256 phase sets were refined; the best fit corresponds to the value 0.0503, a very promising

and acceptable result. However, in the final analysis it is the electron density map and subsequent

refinement which provide the final proof of correctness of the direct phase set. The RE value for this

best phase set prior to examination of the electron density had a value of 22.4% which is very

satisfactory at that stage.

Fig. 8.11 (a) Top:
schematic chemical

structure for the sterically

hindered rotamers of I and

II, respectively. Bottom:

general numbering scheme

used for the enantiomeric

compounds (R-

form ¼ BW202W92,

S-form ¼ BW203W92).

Note that the pyrimidine

ring is N10-protonated in

each of the mesylate acid

addition salts. (b) E map of

BW202W92(R) from

SHELXS-86. The structure

is essentially correct but the

heavy atoms Cl and S are

not identified and one

molecule is fragmented,

that is, the required

symmetry operation to join

the two halves up has not

been applied. (c) E map of

BW202W92(R) from

SHELXS-97. Heavy atoms

are recognized as such but

apart from one S atom are

incorrectly atom-typed.

The structure is essentially

correct apart from this fault

which was easily rectified
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It is of interest to compare the resulting E maps from SHELXS-86 (Fig. 8.11b) and SHELXS-97

(Fig. 8.11c). The SHELXS-97 program recognizes that the structure contains the heavy atoms Cl

(chlorine) and S (sulfur) and has attempted to assign the highest peaks in the electron density

calculated from the best phase set as either Cl or S (Fig. 8.11c). From Fig. 8.11c we can confirm

that the program has in fact assigned the correct peaks as heavy atoms but has not been able to

correctly identify all of the atom types: only one S atom has been correctly assigned as such. The

earlier program SHELXS-86, the results of which are shown in Fig. 8.11b, did not attempt to make

these heavy-atom assignments at all, and in addition did not apply the necessary symmetry relation-

ship needed to bring the two halves of one of the molecules together. In both respects SHELX-97 is

the superior program. Figure 8.11c shows the peaks generated by SHELXS-97 and displayed by the

WinGX facility model/SXGRAPH, which has the following features: three-dimensional rotation,

translation,magnification, and demagnification of the set of peaks displayed; calculation of bond lengths,

bond angles and torsion angles for selected peaks; deletion of unwanted peaks; assignment of individual

Table 8.11a Input data for crystal BW202W92(R) to SHELXS-97

Input file BW202W92(R).ins

TITL BW202W92(R)
CELL 1.54180 8.385 16.984 12.481 90.000 104.15 90.000
ZERR 4.00 0.002 0.003 0.003 0.000 0.02 0.000
LATT �1
SYMM � X, 1/2 + Y, - Z
SFAC C H O N CL S F
UNIT 48 48 12 16 12 4 4
HKLF 3
END

Explanation of input file BW202W92(R).ins

TITL Title
CELL Wavelength and unit-cell parameters
ZERR Number of chemical formula units per unit cell, with esds
LATT Non-centrosymmetric, -1 (centrosymmetric, 1)
SYMM Equivalent position(s) related to x,y,z (space group is P21)
SFAC Atom types in the structure
UNIT Number of each atom type in the unit cell (in the order of the previous

line)
HKLF Data input order: h,k,l, Fo, and s(Fo)

Note: This HKLF input is not the recommended form. The more usual input data

would be HKLF 4 corresponding to h,k,l, Fo
2, and s(Fo

2). These data were

collected on a CAD4 diffractometer, which produces output data as Fo and

s(Fo); thus, the input is restricted to HKLF 3. However, refinement is still

carried out on jFj2

Input file BW202W92(R).hkl

�8 0 0 43.79 1.30 1
�8 1 0 8.19 2.75 1
�8 3 1 11.18 2.59 1
�8 1 1 22.52 1.67 1
�8 0 2 48.56 1.28 1
�8 2 2 29.63 1.57 1
�8 3 2 10.44 2.63 1
�8 4 2 13.78 2.03 1
�8 4 3 7.48 4.08 1
�8 3 3 20.62 1.65 1
�8 2 3 13.71 2.33 1

. . .and so on, to the end of the hkl data set. At the end of each line is the batch

number, which is usually 1 for contemporary data measurement schemes. A total

of 3192 hkl values formed this data set, corresponding to a resolution of 0.800 Å

8.2 Direct Methods of Phase Determination 379



atom numbers, types and thermal parameters; saving of the present model as the new .ins file (for

refinement); and initiation of structure refinement. After completion of the refinement, programs within

WinGX assess the quality of refinement, produce files (.cif)3 for checking and publication, and prepare

high quality diagrams, either using the programs ORTEP/RASTER inWinGX or from the .cif3 file or a .

pdb file, using freely downloadable programs such as MERCURY or RASMOL (see Appendix D for

references to these programs).

8.3 Patterson Search Methods

In our earlier discussion in this chapter, we showed that a Patterson synthesis must contain a complete

set of peaks, that is,N2 � N non-origin peaks for a crystal containingN atoms in the unit cell. Since we

can always calculate the vector set for a model structure, or just a part of it, the Patterson function could

be unscrambled, wholly or partially, in terms of a set of atomic coordinates. This idea has led to a

technique in structure analysis called Patterson search methods.

Table 8.11b Selected output from the SHELX-97 direct methods calculations with WinGX

Summary of parameters for BW202W92(R)

ESEL jEjmin 1.200 jEjmax 5.000 DelU 0.005 renorm 0.700 axis 0
OMIT s 4.00 2theta(lim) 180.0
INIT nn 15 nf 16 s+ 0.800 s- 0.200 wr 0.200
PHAN steps 10 cool 0.900 Boltz 0.300 ns 282 mtpr 40 mnqr 10
TREF np 256. nE 420 kapscal 0.800 ntan 3 wn -0.750
FMAP code 8
PLAN npeaks -65 del1 0.500 del2 1.500
MORE verbosity 1
TIME t 9999999.

This first part of the output consists of various parameters which in this case have been set by default. For difficult

structures some manual intervention may be necessary
282 Reflections 4356 unique TPR for phase annealing
420 Phases refined, using 12351 unique TPR used
443 Reflections 13782 unique TPR for R(alpha)
7416 Unique negative quartets found 3768 used for phase refinement
Highest memory used to derive phase relations 5424 / 71182
This second selected part of the output lists some information about the direct methods results, including how many

triplet phase relationships (TPRs) have been found. Valid phases have been calculated from a random starting phase set

using TPRs and NQRs

Measure of fit results

FOM range Frequency

0.000 - 0.020 0
0.020 - 0.040 0
0.040 - 0.060 184
0.060 - 0.080 0
0.080 - 0.100 2
0.100 - 0.120 15
0.120 - 0.140 4
0.140 - 0.160 3
0.160 - 0.180 6
0.180 - 0.200 5
0.200 - 0.220 1
0.220 - 0.240 and so on

3Crystallographic Information File.
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8.3.1 General Comments for Small Molecules and Macromolecules

We introduce here a method for structure determination that is useful and applicable either to small

molecules, for which the method would normally be used in case of failure of direct methods, or to

macromolecules, for which the method is now frequently used as a first choice where possible.

The method may be designated Patterson Search for small molecules and Molecular Replacement

(MR) in the case of macromolecules. In order to apply the method to solve a structure, the initial

requirements are:

1. For the crystal under investigation, the target structure, a set of Fo(hkl) data to as high a resolution

as possible, which would normally be atomic resolution for small molecules, but generally less

for a macromolecular crystal because such crystals tend to diffract X-rays weakly, Sects. 4.1

and 10.4.7

2. The availability of the coordinates of a good quality structure, the search structure, which forms a

relatively small fragment of the target structure for small molecules, whereas with macromole-

cules the search structure should ideally be similar in size and structure to the target molecule and/

or with at least 40% sequence homology

3. A sound understanding of the principles and practices involved

4. State-of-the-art software and hardware

Conceptually the basic principle of Patterson Search or Molecular Replacement (MR) is quite

straightforward. Remember, we know that the intensity data Fo
2(hkl) contain phase information. The

MR method as proposed by Rossman and Blow [27] for protein structures involves a critical and

quantitative comparison of the Patterson functions of the target and search models. Similar com-

ments apply to a Patterson search method implemented successfully some years ago by Braun et al.

in the Vector Verification Method [28] for small molecules. Although quite successful and relatively

easy to use, this method has now been superseded by the program PATSEE, which will be described

in detail below.

In contemporary software for carrying out MR applications, the method is strengthened through

the use of a variety of other lengthy crystallographic techniques, which are now within the capabilities

of modern computers. For example, with proteins:

1. In the MR module of CCP4 [29] an automated procedure called MrBump is used

2. Model generation is used with the program Chainsaw

3. The program Phaser is used in CCP4

Similar routines are used with the programs:

4. MOLREP (developed from AmoRe)

5. BALBES

6. X-PLOR

7. CNS

In a similar manner, PATSEE is strengthened by the use of direct methods.

The Patterson function has peaks of high density at locations corresponding to the ends of

atom–atom vector pairs, with one atom of each pair occupying the common origin. For complex

structures like proteins, the interatomic vectors are densely packed in the unit cell, and most of them

will not be resolved in the Patterson map; lack of atomic resolution in the X-ray data will also cause a

further blurring of the vector distribution density. The two atoms forming the Patterson vector can be

in either the same molecule, intramolecular, or between atoms in either symmetry-related molecules

or nonsymmetry-related molecules, intermolecular.
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8.3.2 Intramolecular Interatomic Vectors and Molecular Orientation

Intramolecular vectors tend to be shorter than the intermolecular vectors that span different molecules

in the unit cell. This self-vector set, as it is also known, is consequently situated around the origin of

the Patterson function, the longest vectors arising between atoms at extreme ends of the molecule.

Each atom, in theory, images [30] both the structure and its inverse, that is, vector types AB and BA.

Because of the lack of resolution in most protein structures, this will be in the form of a blurredmolecular

envelope of density, whereas for small molecules at atomic resolution the individual images will bemuch

more clearly defined. There will be one such image of the structure, plus its inverse, per atom, forming a

centrosymmetric distribution. Figure 8.12 shows two similar (homologous) two-dimensional “mole-

cules,” in which S represents a suitable search molecule, and T the target molecule whose structure is

being determined. In the case of a small molecule we can consider the four or five discs to represent

resolvable atoms. For macromolecules, the surrounding sheaths in these diagrams represent the overall

molecular shape that MR technique is seeking.

Figure 8.13 shows the two actual structures in their different unit cells. In small-molecule

structures, where the search and target molecules include a relatively small part, maybe 50%, of

the structure in common, we would expect the two unit cells and space groups to be different. For

macromolecular structures, which are more similar to each other, this need not be so, although

frequently it is. As can be seen in this example, the known search structure S is based on a non-

orthogonal unit cell, while the unit cell for the target structure T is orthogonal. Both cells incorporate

twofold symmetry; Fig. 8.13b shows some of the intermolecular interatomic vectors, as discussed in

Sect. 8.3.3. For the two molecules S and T, Fig. 8.14 shows the corresponding resolved self-vector set

peak positions in the Patterson functions for small molecules and the corresponding simulated vector

sheaths representing the envelope of the Patterson function, for macromolecules; for clarity only

those peaks not related by the Patterson center of symmetry are shown.

Rotation Stage of Patterson Search or Molecular Replacement
In the above simulated example the vectors defining the orientation of the unknown structure T in its

unit cell, Fig. 8.14b, can be seen to occur in the Patterson of the known search structure S, Fig. 8.14a.

To demonstrate this fact the reader should make a transparent copy of Fig. 8.14a, which shows the

Patterson peaks of the known molecule S, and place it over Fig. 8.13b, the Patterson function of the

unknown structure T. Locate the two diagrams such that their origins are in register, and show that

the maximum correspondence occurs for an anticlockwise rotation of your copy by 67�.

Fig. 8.12 (a) Known, search model S to be used in Patterson Search or Molecular Replacement. (b) The unknown

target molecule T, that is similar to the search model but has an extra structural feature
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Fig. 8.13 (a) The search
model S, and (b) the target
molecule T packed in their

respective unit cells. It is

necessary that the structure

of S is known and that a set

of atomic coordinates is

available. The structure

(b) is to be determined by

Patterson Search or

Molecular Replacement.

Some of the intermolecular

Patterson vectors are

shown in (b)

Fig. 8.14 Interatomic vectors for (a) the search model S, and (b) the target molecule T. Only those vectors

independent of the Patterson center of symmetry are shown. Both diagrams contain multiple images, or part images,

of structures. There is a rotational relationship between the two Patterson functions that the reader should try to

determine (see text). Note that the sets of vectors shown here are arranged around the origin of the Patterson function at

distances corresponding to the distances between atoms within a given molecule. The high vector density which always

occurs at the Patterson origin has been omitted
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In a real structure determination this orientation angle would be calculated by one of the available

computer programs, as described below. Note that because the unknown structure Fig. 8.12b contains

an additional moiety, vectors for this part of the structure are missing in the search Patterson,

Fig. 8.14a. For small-molecule analysis the missing vectors may form a large fraction of the target

molecule, whereas for macromolecules only a small fraction would normally be involved. Subsequent

Fourier and least-squares refinement of the target structure, once the search model has been located,

will serve both to locate any missing atoms or groups and to eliminate others which may have been

included, but which do not form part of the target structure.

In practice the process of matching the orientations of the two Patterson functions, the rotation

stage, is carried out by computation, testing over a series of orientation angles. For three-dimensional

structures, it is necessary to perform these rotations about three independent axes, normally called a,

b, and g—not to be confused with the unit-cell angles. Axial systems used for the rotation procedure

differ among different programs, and it is advisable to read the program manual in each case for

information on this point (see Appendix D). The angular rotation ranges and intervals have to be

chosen carefully in order to cover a sufficient number of possibilities, thus ensuring that the correct

angular triplet is not overlooked. Although computationally wasteful, it is better to include too many

trials rather than too few. In PATSEE it is not unusual to use several thousand random angle triplets in

the rotation stage of the analysis.

On account of the complexity of protein structures, the following two conditions apply to the

rotation function:

1. In order to limit the Patterson vectors to lengths that include self-vectors (intramolecular vectors)

but exclude cross vectors (intermolecular vectors), the rotation function R(a, b, g) should be

calculated over a restricted spherical volume U centered at the origin, and having a radius known

as the radius of integration.

2. The large number of values of R(a, b, g), calculated over the required angular range, generally

contains many peaks in addition to those that belong to the correct solution, and having compara-

ble magnitudes. These peaks are simply signifying that there is a degree of correspondence

between the two Patterson functions in this orientation, albeit a wrong one. Because of this

uncertainty, some programs, such as AmoRe, retain all peaks greater than 50% of the highest

peak (even more in some programs) for transference to the translation stage of MR. The problem

is less significant for small molecules but nevertheless must not be overlooked. Figures of merit are

used to discriminate between the true and false solutions.

8.3.3 Intermolecular Interatomic Vectors: Translation Stage of MR

Assuming that the correct orientation of the search fragment or molecule has been determined in the

rotation stage, the correctly oriented structure must then be located spatially in its true position in the

unit cell of the target crystal by means of a translation stage. The origin with respect to this translation

process is usually governed by the space group. Translation is carried out rigorously by placing the

oriented search fragment in a large number of test positions located on a fine grid. This process must

cover a sufficient number of finely selected translational increments in three dimensions, designated

as either Dt1, Dt2, Dt3, or tx, ty, tz, in order to ensure that the correct location of the molecule is

scanned. In essence, the correct structure is recognized initially as corresponding to the highest degree

of overlap between the calculated and observed Patterson functions, when superimposed after

applying the given translation vector.

During the above process all of the lattice and symmetry operations for the target crystal are fully

applied. It is therefore absolutely essential that the space group of the target crystal has been correctly
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assigned. If this is not the case there will be no outstanding solution at the translation stage, and further

refinement of the structure will not be possible. Figure 8.13b, which represents the correct solution for

the target structure, includes some of the intermolecular interatomic vectors. For comparison the

corresponding vectors are shown in Fig. 8.15, in which the search molecule S is correctly oriented but

incorrectly translated into the target unit cell. Very large changes in these vectors are evident and

would have a profound effect on the quality of this particular translation when tested computationally.

The changes in how the molecules are packed (see below), while retaining the twofold symmetry and

unit-cell translations in the structure, should be noted by comparing Figs. 8.13b and 8.15.

8.3.4 Crystal Packing and Refinement of the Structure

We consider next the packing of the rotated–translated (RT)molecules in the unit cell. An incorrect RT

solution will produce incorrect crystal packing, which can be easily detected from a thorough

calculation of interatomic distances. What usually happens is that some atoms in different molecules

will be unacceptably close to each other; see Tables 8.21 and 8.22. Evidence of the correctness of the

combined RT search results can thus be easily achieved by inspecting the crystal packing generated

through each promising set of rotation and translation parameters that has been retained, usually

because the figures of merit are encouraging. Crystal packing can be examined readily with the use of a

suitable molecular graphics program. For small molecules this can be carried out, for example, in the

program package WinGX using the routine PLATON99, while for macromolecules the program

MOLPAK has been found to be useful and reliable (see Appendix D). These programs provide not

only graphical representations of the packed molecules but also quantitative values for the intermo-

lecular contacts; in particular, any violent clashes between the symmetry-related molecules that would

exclude a physically viable solution are flagged.

Fig. 8.15 A possible solution for Patterson Search or Molecular Replacement, where the correct rotation (or

orientation) has been applied to the search model S but the subsequent translation is incorrect (compare with

Fig. 8.14b). Three intermolecular vectors are shown for this situation which, because the translation is incorrect, will

not be present in the Patterson function for the target molecule. Consequently, there will be a lack of correspondence

between the S and T Patterson functions, resulting in poor figures of merit for this solution; such solutions will therefore

be rejected

8.3 Patterson Search Methods 385



Expansion and Refinement of the Structure
The final stage of this procedure, as with other methods of structure analysis, attempts to locate atoms

that are missing from the model and to refine the positions of all atoms to produce a value for the R-

factor, Sect. 7.6.1, that is compatible with the accuracy of the intensity data. As we have seen, missing

atoms can be located by calculating the electron density, based on phasing from the partial model.

Initially the calculated structure factors will be of low accuracy, but with a reasonably sized fragment,

as will be seen in the following examples, the electron density for the correct solution can be expected

to reveal at least some of the missing atoms, which are then added to the phasing process and passed

on to the next cycle.

Program suites likeWinGX have facilities for checking themolecular geometry at each stage, so as to

reduce the possibility of adding incorrectly placed atoms to the model. The partial model may be

subjected to a few cycles of least-squares refinement, as this can accelerate the procedure toward

convergence. However, it should be noted that only when all atoms are present in the model will the R

factor be meaningful. This refinement procedure will be designated loosely as “Fourier-least-squares,”

see Sect. 8.4.2.

8.3.5 Patterson Search Methods for Small Molecules

In the description of the heavy-atom method, Sect. 7.5, we showed that, for a structure containing a

small number of relatively heavy atoms, the Patterson function can lead to a successful determination

of the atomic coordinates of the heavy atoms, the remaining atoms being located by subsequent

calculation of electron density maps prior to refinement. Direct methods can be used to solve light-

atom structures, for which there are none of the predominant interatomic vectors that would be

necessary for an application of the heavy-atom method. We have seen that the Patterson function

necessarily contains the complete set of interatomic vectors for the given crystal structure, in the form

of peaks located at the ends of such vectors, one end of each vector being located at the origin.

Reference to Fig. 8.15 shows that in effect each atom forms an image of the structure with itself at the

origin. When the Patterson center of symmetry is added, there result 2N displaced images of the

structure present around the origin. A single weight peak, that is, one generated by a given pair of atoms

1 and 2, will have a value or peak height roughly proportional to the atomic number product Z1Z2.

The total of N2 � N non-origin Patterson peaks per unit cell containing N atoms increases rapidly

with N: the peaks may become overcrowded and overlapping, and unresolvable for larger structures.

In this section we describe applications of Patterson methods to approximately equal-atom structures.

These structures are usually of relatively low molecular weight, containing 30–40 carbon-like atoms,

with crystals that diffract to atomic resolution, leading to well-resolved interatomic vectors in the

Patterson function. Macromolecules, which generally diffract far short of atomic resolution, will be

discussed in Chap. 10.

The Patterson function for small molecules necessarily contains the complete set of interatomic

vectors for the crystal structure. Thinking of the logistics in reverse: for a known light-atom structure

we could use the atomic coordinates to generate the set of interatomic vector coordinates, and these

would match the Patterson function within limits of error that are dictated by the quality of the Fo data,

assuming that peak overlap is not a major problem. Since each atom in the structure forms in the

Patterson function an image of the structure in itself, Sect. 7.4.2, there areN such images scrambled, or

convoluted together, in P(uvw). The complexity of the Patterson function generally makes deconvo-

luting it in terms of the individual atomic coordinates almost impossible unless some additional

information can be used initially. This information is usually in the form of a reasonably precise

model of the geometry of a fragment of the molecule whose three-dimensional structure is known.
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The method thus depends on a good knowledge of the chemical identity of the molecule in

question. Knowing the geometry of such a fragment of the structure, interatomic vectors for the

fragment may be calculated and searched for in the Patterson function. Coordinates for the molecular

fragment to be used may be derived from the library of known crystal structures in the Cambridge

Crystallographic Data Base, or generated from graphics programs, such as the excellent ChemSketch

[31], which incorporate standard bond lengths and angles; see Sect. 8.7. For example, a suitable

molecular fragment may simply be a benzene ring, which comprises a flat regular hexagon with sides

of 1.40 Å and internal angles of 120�. The coordinates for the search model in this case could be

obtained by drawing (see Problem 8.9). If the structure contains a cyclohexane ring, this structure is

truly three-dimensional, and one of the other two methods mentioned above must be used to derive its

coordinates; see also Sect. 13.6.6. The examples discussed below both involve somewhat more

complex search fragments.

8.3.6 The Program PATSEE

In the discussion so far, we have established that a Patterson Search in vector space consists of the

following stages:

1. Acquisition of a set of accurate atom coordinates for a suitable search model

2. Calculation and storage of the Patterson function (self-vector set) for the model

3. Calculation and storage of the Patterson function for the target crystal, based on the Fo(hkl) data

4. Rotation search, which provides several possible orientations for the search model to occupy in the

target unit cell, listed in order of likely feasibility, or precedence

5. Translation search which attempts to place each of the rotation solutions in turn into the correction

position in the target unit cell

6. Refinement and expansion of the rotated and translated models, again in order of precedence, to

finally converge on the correct solution for the target structure

The program PATSEE follows stages (1)–(5) in the above list, using some important and powerful

new algorithms in its implementation. Stage (6) reverts to the standard procedures for structure

refinement described in the next section. The PATSEE program is highly recommended, is easy to

use, and readily available to crystallographers, being incorporated into the structure analysis suite

WinGX. As with other methods that utilize Patterson Search, the program determines the orientation

of the search fragment from the rotation function. However, instead of then using the conventional

translational function, direct methods are applied in order to determine the position of the oriented

fragment in the unit cell. This stage involves the use of several triple-phase invariants, Sect. 8.2.12,

selected by the program as being sensitive to the location of the fragment within the unit cell. The

weighted sum of the cosines of these phases is maximized with respect to the position of the search

fragment in order to determine its most probable location.

As a very large number of possible solutions for the orientation and position of the search fragment

in the unit cell are explored, it is necessary to try to pinpoint the correct solution by using a figure of

merit (FOM) based upon:

1. The agreement with the Patterson function

2. The triple-phase consistency

3. An R-index between the observed jEj, Sect. 8.2.1, and the jEcj values, Sect. 13.4.10, for the partial
structure

The Patterson function is calculated using jEjFo as coefficients instead of Fo
2 in order to sharpen or

improve the resolution of peaks. The complete Patterson function is then stored in the computer, each

grid value being represented by a digit between 0 and 7 so that it can be stored in three bits of
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computer memory. This is one step better than the method employed in the Vector Verification,

which employed only a two-bit representation. In order to make efficient use of computer memory,

the Patterson values are encoded according to seven test levels, with level 2 equal to the median of the

cumulative Patterson distribution, the difference between two successive test levels being about half

the expected height of the highest single vector. The user can, in fact, supply different test levels from

those noted above but it is probably not necessary.

Rotation Search Strategy Used in PATSEE
The rotation search procedure used in PATSEE is summarized in Table 8.12.

Translation Search Strategy Used in PATSEE
The translation search procedure used in PATSEE is summarized in Table 8.13.

8.3.7 Examples of Structure Solution Using PATSEE

The following examples, 5,7-methoxy-8-(3-methyl-1-buten-3-ol)-coumarin and atropine, indicate vari-

ous other features of the PATSEE program. In particular, the use of the figures of merit RFOM,

TPSRSUM, and CFOM is to pinpoint the correct Patterson Search solution.

Structure of 5,7-Methoxy-8-(3-Methyl-1-Buten-3-ol)-Coumarin
The crystal and molecular structure of the antimalarial compound 5,7-methoxy-8-(3-methyl-1-buten-3-

ol)-coumarin, C16H18O5,Mr ¼ 290.3 has been reported [32]. Thismolecule, Fig. 8.16a,was selected for

investigation of the features of the PATSEE program, because the coumarin moiety, Fig. 8.16b, is

known to be fairly rigid and planar (rings A and B) and as such is an ideal search molecule. The

presence of potentially more flexible side groups provides an element of challenge to the method.

The atomic coordinates of the 11 atoms in the coumarin moiety are readily available from either the

published structure [33] or the Cambridge Crystallographic Data Base [34]. In fact, we chose the

method of molecular graphics employing the Chem-X package to generate coumarin search model 1.

The program Chem-X is no longer available but ChemSketch [31] is a good alternative for this

type of work.

Table 8.12 Rotation search in PATSEE

Compilation of the intramolecular self-vector set from the model coordinates with distances between 2 Å, which are too

short to provide orientation data, and 6 Å, which is the point at which errors in distance affect the accuracy with which

vectors superimpose

Generation of random orientations, typically between 10000 and 60000 angle triplets (a, b, g) at about 7� intervals

For each orientation, calculation of the correlation between the rotated intramolecular vector set and the Patterson

function. This is computed as a sum function to give a figure of merit (FOM)

RFOM ¼ ð1=nÞP
n

i¼1

Pi=wi (8.63)

where n � 0.3ntotal, wi is the calculated vector weight, Pi is the nearest Patterson grid value, and ntotal is the number of

worst-fitting vectors, that is, those with the lowest Pi/wi value

An overlap or packing test ensures that when symmetry and lattice translations are applied there are no serious

interatomic clashes

An equivalence test which excludes similar solutions from being retained

Sorting of the solutions in descending order of RFOM

Refinement of the best solutions, carried out by testing up to 1000 additional random rotations around each retained

solution, at approximately 2� intervals
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Search Model 1 from Chem-X
The material crystallizes in the monoclinic space group P21/c with four molecules per unit cell of

dimensions a ¼ 8.9044(9) Å, b ¼ 17.623(1) Å, c ¼ 10.175(1) Å, b ¼ 113.97(1)�. The X-ray inten-
sity data were collected on a Nonius CAD4 diffractometer, Sect. 5.6ff, using Cu Ka radiation.

A total of 3193 reflections was collected, to a ymax of 74.22
�, of which 2972 are independent with

an Rint, Sect. 10.4.7, of 0.0175. Using the coumarin ring system as the search model provides a

fragment consisting of 11 out of 21 non-hydrogen atoms. The fractional scattering power (p2), defined

in the previous section, for this model is very high (50.4%). The coordinates generated by Chem-X for

the first search model are shown in Table 8.14, which is a complete listing of the PATSEE input data,

whereas Table 8.15 summarizes the search results.

Table 8.13 Translation search in PATSEE

Search for the most probable direct methods TPRs

Calculation of jE(hkl)j for a given orientation of the search model

Selection of suitable phase relationships from a relatively small number of large jE(hkl)j data. This strategy
considerably speeds up the procedure and especially enhances the efficiency for larger structures. Note that in small-

molecule work, the search fragment is of course very incomplete and possibly inaccurate. Nevertheless, if its scattering

power �
P

j Z
2
j

� �

is large enough, the TPRs used here should hold, at least approximately, for the correct solution, and

be nonrandom in character. Hence the importance of having a sufficiently large fragment of the whole structure as the

search model, as discussed further in the next section. The reader should refer to Sect. 8.2 to aid the appreciation of these

three steps

For each oriented search model from the rotation stage, sets of atom coordinates are generated, the oriented search

model being placed at a position in the unit cell generated in a random manner. Each of these sets of coordinates is used

for calculation of trial phases and assessment through their agreement with the selected TPRs from stage 1

A packing test is carried out on rotated-translated fragments from stage 4 and a model is eliminated if short

intermolecular distances occur

Initial refinement of an RT fragment: this procedure involves optimizing a figure of merit TPSRSUM by fine tuning the

position of the fragment:

TPSRSUM ¼
P

jEhjjEkjjE�h�kj cosðfh þ fk þ f�h�kÞ½ �
P

jEhjjEkjjE�h�kj½ �= (8.64)

the summations being taken over all selected three-phase structure invariants. TPSRSUM is expected to be large and

positive for the correct solution, up to a maximum value of 1.0. During this process the step sizes are reduced from

around 0.2 to 0.05 Å

A further distance test is then carried out to check the packing of the fragment

Solutions that have survived all of these rigorous tests are further tested against the Patterson function of the target

crystal. In earlier Patterson Search programs, such as Vector Verification, this stage was carried out immediately after

the rotation stage [87], and consequently more time consuming and less likely to succeed.

In PATSEE the correlation between the Patterson function and the fragment-derived intermolecular vector set is

examined by comparing the weight of each vector with the nearest grid value. The fit is measured by calculating a

further FOM:

TFOM ¼ ð1=nÞ
P

n

i¼1

Pi=wi (8.65)

where n � 0.2ntotal, and the other parameters are defined as before

Final selection and ordering of the possible solutions. At this stage a small number of the most promising solutions

according to TPSRSUM and TFOM will have been stored in the computer. An RE index is calculated as

RE ¼
P

ðEo � jEcjÞ=p½ �=
P

Eo (8.66)

where p2, equal to
P

Z2
frag=

P

Z2
molecule, is the fractional scattering power of the search model (frag) compared to that of

the whole model. Only positive terms in (8.66) are considered, as it is assumed that negative terms indicate complete

agreement. The solutions are then sorted according to a combined FOM:

CFOM ¼ 0:1ðRFOMþ TFOMÞðTPRSUM1=2Þ=RE (8.67)
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Fig. 8.16 Chemical

formulae: (a) the Coumarin

derivative; (b) Coumarin:

rings A and B form a planar

group for use in Patterson

Search (Diagrams

produced by Chemwindow

(Softshell International

Limited))

Table 8.14 Input data for coumarin model 1 PATSEE search

TITLE Coumarin derivative Chem-X model for PATSEE

CELL 1.5418 8.9044 17.6236 10.1757 90.0 113.97 90.0

ZERR 4 0.0009 0.001 0.001 0 0.01 0

LATT 1

SYMM X, 0.5 � Y, 0.5 + Z

SFAC C H O

UNIT 64 72 20

ROTS 10000 20

TRAN

FRAG 1 100.00 100.00 100.00 90.0 90.0 90.0

O1 3 �0.01015 0.00495 0.000

C2 1 �0.02219 �0.00188 0.000

O2 3 �0.03271 0.00429 0.000

C3 1 �0.02228 �0.01572 0.000

C4 1 �0.01034 �0.02273 0.000

C40 1 0.00169 �0.01589 0.000

C5 1 0.01363 �0.02289 0.000

C6 1 0.02566 �0.01605 0.000

C7 1 0.02576 �0.00221 0.000

C8 1 0.01382 0.00479 0.000

C80 1 0.00179 �0.00205 0.000

Notes: The above data have the following interpretation: CELL:

wavelength and target unit-cell parameters; ZERR: number of mole-

cules in target cell and errors in experimental unit-cell parameters a,

b, c, a, b, g; LATT 1: primitive unit cell and centrosymmetric space

group; SYMM: other space-group symmetry operations; SFAC: atom

types in molecule; UNIT: number of each atom type in unit cell;

ROTS: 10000 20 (use 10,000 random test orientations and retain the

best 20); TRAN: initiate translation search using nt random positions

calculated by the program (the user also has the option of supplying a

value for this number here); FRAG: 1 ¼ fragment 1 (a second frag-

ment can be supplied in addition as in the example below). The next

six values are the unit-cell parameters for the fragment. This is not a

real crystal cell as this fragment was model built in Chem-X. The final

11 lines of data here represent the model atom names, types, and

coordinates in the FRAG unit cell
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Discussion of Results and Expansion and Refinement of the Model
From the extract from the PATSEE output, Table 8.15, we can see:

1. The top 15 values of RFOM, after the rotation stage, are quite similar

2. The values of CFOM, after the translation stage, are more widely spread and only solution 8 has a

value greater than 1.0

3. Solution 9 has CFOM ¼ 0.909 and somewhat similar rotation solution angles

Using the coordinates of the coumarin fragment corresponding to solution 8, all of the atoms in the

structure were located and refined in two iterations of Fourier-least-squares in the program WinGX.

Figure 8.17 shows how the structure developed at these three stages. At stage (a), Fig. 8.17a, the R

factor was very high, as expected, with a value of 57.3%, reducing to 42.3% after the stage of

Fig. 8.17b, and dramatically to 15.5% represented by Fig. 8.17c, which included all non-hydrogen

atoms. Experience tells us that a structure which refines with isotropic temperature factors to this sort

of R-value is probably correct. Further refinement of the model led to the published structure for

which R ¼ 3.9%, Fig. 8.17d. It has been shown that the use of model 1 with PATSEE has led to a

successful determination of the structure with the RT solution corresponding to the highest CFOM

value. The strategy of carrying 20 rotation stage solutions through to the 00translation stage was

necessary in view of the lack of discrimination in the RFOM values.

Search Model 2 from Chem-X
In order to probe further the working and effectiveness of the PATSEE program, the above

calculations were repeated with a smaller search model. A smaller, six-atom fragment, model

comprising ring B, Fig. 8.16b, was generated again using Chem-X. This is essentially a benzene

ring with six equivalent bonds and angles. The fractional scattering power p2 is now much lower,

Table 8.15 Summary of results for coumarin model 1

Solution RFOM

Rotation stage Translation stage

a (�) b (�) g (�) CFOM

1 0.514 5.103 5.844 2.295 0.559

2 0.514 5.109 5.887 0.527 0.678

3 0.514 1.261 3.580 0.844 0.540

4 0.514 1.317 2.667 0.593 0.665

5 0.514 3.524 4.462 1.948 0.542

6 0.514 3.185 1.821 0.953 0.854

7 0.514 1.325 3.594 2.521 0.698

8 0.514 6.163 5.078 0.884 1.053←

9 0.514 5.153 5.841 0.462 0.909

10 0.514 1.832 0.475 0.891 0.881

11 0.514 2.868 4.993 1.146 0.554

12 0.514 5.136 0.437 2.633 0.716

13 0.491 1.939 5.704 2.240 0.470

14 0.491 1.862 5.706 2.253 0.594

15 0.490 1.315 2.543 2.291 0.547

16 0.364 5.305 0.977 1.172 0.103

17 0.356 0.438 1.273 2.666 0.409

18 0.329 4.078 4.008 1.198 0.094

19 0.299 5.091 0.103 2.478 0.089

20 0.298 1.162 2.826 2.258 0.132
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Fig. 8.17 Stages in determination of the structure of the coumarin derivative. (a) The search model. (b) The partial

structure developed after one cycle of refinement. (c) After two cycles of refinement. (d) After further refinement

(diagrams by POV-Ray™ VERSION 3.1 (http://www.povray.org), as implemented in WinGX and generated by Ortep-

3 for Windows)
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24.1% instead of 50.4% for model 1, and is therefore expected to be less effective in the Patterson

search. In other words even if PATSEE can locate the model correctly in the unit cell, this may not

be the top solution and may be more difficult to expand to the full molecule. The program was again

instructed to retain the top 20 rotation solutions, which were then passed on to the translation

procedure, with the results as summarized in Table 8.16.

Expansion and Refinement of the Model
The coordinates for the six atoms corresponding to the best RT solution (solution 16) were input to the

WinGX package and refined with SHELX-97 for two least-squares cycles. Inspection of a subsequent

electron densitymap, using the programSXGRAPH inWinGX, allowed all of themissing structure to be

built in and refinedwith two iterations of Fourier and isotropic least squares to anR-factor of 15.5%. The

above result is quite pleasing, and may be somewhat surprising in view of the relatively few atoms used

in the search.

Search Model 3 from Chem-X
The search model was further modified and reduced by removing atoms C40 and C80, Fig. 8.16b, and
the PATSEE procedure was repeated. A correctly rotated and translated search model was found in

the PATSEE RT listing. It was expanded and refined using WinGX to the same isotropic R-factor as

in the previous cases, but with a little more difficulty. The reason this model did not produce the top

RT solution is undoubtedly due to its size. Compared to models 1 and 2, the fractional scattering

power for model 3 is only 16.1%. It is therefore a tribute to the method that the correct crystal

structure could be generated with PATSEE without too much difficulty; remember though, that it is

often much easier to solve a problem when the answer is known.

Table 8.16 Summary of RT results for coumarin model 2

Solution RFOM

Rotation stage Translation stage

a (�) b (�) g (�) CFOM

1 0.604 0.515 1.328 2.756 0.960

2 0.604 5.015 5.907 2.162 0.661

3 0.604 5.088 5.846 0.637 0.881

4 0.604 3.746 1.826 1.492 0.437

5 0.604 5.088 5.284 2.035 0.264

6 0.604 1.973 5.816 0.615 0.983

7 0.604 5.956 4.351 2.546 1.335

8 0.604 1.278 2.682 2.257 1.234

9 0.604 1.895 5.873 0.623 1.071

10 0.604 0.353 1.714 1.263 0.783

11 0.604 3.158 4.603 2.316 0.787

12 0.604 3.353 4.417 2.025 0.879

13 0.604 2.724 1.756 0.429 0.830

14 0.604 4.548 3.606 0.925 0.715

15 0.604 1.468 3.602 0.781 0.691

16 0.604 6.289 4.886 0.936 1.478←

17 0.604 2.741 4.932 1.130 0.697

18 0.604 4.301 3.585 2.717 1.055

19 0.604 1.843 5.736 2.330 1.174

20 0.604 1.217 3.681 2.402 0.650
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The above experiments with a second and third model emphasize the power of the method and it

should be remembered that some structures do still fail to be determined by direct methods. We know

that a 21-atom structure can be solved with a 4-atom search model. Similar models may be useful for

solving small polypeptide structures, for example, using the well-defined planar peptide group in the

initial search. A dipeptide search model with 1� of rotational freedom may enable a tetrapeptide

structure to be solved. This procedure will become clearer after studying the next section.

Structure of Atropine: a-[Hydroxymethyl]Benzeneacetic Acid 8-Methyl-8-

Azabicyclo[3.2.1]oct-3-yl Ester

The chemical formula of the atropine molecule is shown in Fig. 8.18. Until recently [35] there were

no reports of the structure of this classic molecule in the literature. Atropine is a competitive

antagonist at central and peripheral synapses and has been used, somewhat unadvisedly, as a

beautifying agent; hence its alternative, better known name Belladonna.

Atropine, C17H23NO3, Mr ¼ 289.4, is a-[hydroxymethyl]benzeneacetic acid 8-methyl-8-azabicy-

clo [3.2.1]oct-3-yl ester, and is known also as tropine tropate.

Practical Details
Unit-cell determination and refinement, data collection, and data reduction were carried out on a Nonius

Kappa CCD diffractometer [36] using Mo Ka radiation at �173 �C (liquid nitrogen temperature) with

the aid of an Oxford Cryostreams cooler. At this temperature, the crystal diffracted strongly over the

90 min period of data collection. Data frames were processed using the Nonius software. The material

crystallizes in the orthorhombic system, with the unusual space group, Fdd2, Fig. 8.19, with 16

molecules per unit cell of dimensions a ¼ 24.291(5) Å, b ¼ 39.538(8) Å, c ¼ 6.472(1) Å. A total of

2701 independent reflections were collected, to ymax 25.02
�.

Patterson Search Models
The molecule contains a benzene ring, as in the previous example, which is an obvious fragment to use for

Patterson Search. This can be easily extended by adding atom C7 to form a slightly larger fragment

comprising 7 of the 21 non-hydrogen atoms, with a fractional scattering power p2 ¼ 0.30. However with

this model, trials with PATSEE failed to identify anRT solution that could be expanded and refined into the

complete molecule.

Fig. 8.18 Chemical formula of atropine (diagram produced by Chemwindow (Softshell International Limited))
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It can be demonstrated, by applying the usual Fourier-least-squares procedure to the known atom

coordinates for this fragment, that phasing on the 7 atoms of this model leads to a complete and refinable

structure.We conclude therefore that if the correct solution is in fact produced by PATSEE for this small

fragment, it does not appear as one of the best solutions, as judged by the figures of merit.

In order to overcome this problem and further test the features of PATSEE, a model was built

with Chem-X, which included fragment 1 (atoms 1–6) and five other atoms, C7, C9, O1, O3, and

C8, as fragment 2, Fig. 8.20. Fragment 2 is itself structurally rigid, but for the combined search

model of fragments 1 and 2 there is rotational freedom about the bond C6–C7. The PATSEE

program allows the linkage torsion angle, Sect. 8.5.2, between two such fragments to be systemati-

cally varied during Patterson Search to produce a series of test models. Each new set of coordinates

produced by a change of this torsion angle is then treated as an independent search model. The

computer time required to complete the rotation search is thus multiplied by the number of

individual models explored. The best models are again passed to the translation stage.

Patterson Search for Atropine
The input data are shown in Table 8.17. The reader should identify the differences between the data

in this table and those in Table 8.14 used for coumarin. Obvious changes arise from the differences

in unit-cell dimensions and space group and molecular formula. The reader should study Fig. 8.19

so as to identify the entries that appear in Table 8.17; LATT �4 is the code for a non-

centrosymmetric space group with an F unit cell. The rotation (ROTS) and translation (TRAN)

instructions have been retained from the coumarin example without change; see Table 8.14 and

footnote, especially for information on ROTS and TRAN. The next major change occurs in the

FRAG listing of atom positions: the instruction TWIS 0 2 360 causes the program to vary the

Fig. 8.19 Space group

diagrams for Fdd2.

(a) General equivalent
positions. (b) Symmetry

elements
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Fig. 8.20 Search model for atropine; torsional flexibility between the two rigid groups occurs about the C6–C7 bond

indicated (diagram produced by POV-Ray™ VERSION 3.1 [85], as implemented in WinORTEP [86])

Table 8.17 Input data for PATSEE search for atropine frag-

ment

TITL Atropine PATSEE using dual model

CELL 0.71073 24.2913 39.5380 6.4727

90.000 90.000 90.000

ZERR 16.00 0.0049 0.0079 0.0013 0.000 0.000 0.000

LATT �4

SYMM �X, �Y, Z

SYMM 0.25 + X, 0.25 � Y, 0.25 + Z

SYMM 0.25 � X, 0.25 + Y, 0.25 + Z

SFAC C H N O

UNIT 272 368 16 48

ROTS 10000 20

TRAN

FRAG 1 100.00 100.00 100.00 90.0 90.0 90.0

(Fragment via Chem-X)

C1 1 0.12068 0.04724 0.06165

C2 1 0.12991 0.05601 0.06751

C3 1 0.13407 0.05393 0.08046

C4 1 0.12927 0.04327 0.08761

C5 1 0.12003 0.03461 0.08187

C6 1 0.11568 0.03661 0.06881

TWIS 0 2 360

C7 1 0.10546 0.02722 0.06245

C8 1 0.07132 0.04096 0.06734

C9 1 0.09194 0.02896 0.06908

O3 3 0.08480 0.03817 0.06248

O1 3 0.08835 0.02332 0.07902

396 8 Direct Methods and Refinement



torsion angle systematically about C6–C7 from 0 to 360� in steps of 2�, thus involving 181 different
search models in the rotation procedure. The final application of the torsional change at 360� gives
the same result as for the first at 0 and acts merely as a check.

Rotation Stage
The results of the rotation analysis are summarized in Table 8.18. In this table and in Table 8.19, the

torsion angle refers to the relative orientation, about the C6–C7 bond, of the two rigid fragments of

the search model (Fig. 8.20).

Translation Stage
The possible rotation function solutions are then each transferred to the translation algorithm in turn.

The best 20 solutions, Table 8.19, were subjected to the translation algorithms as before. Values of

CFOM after translation and optimization range from 0.929 to 2.640, as shown in the table.

In this analysis the order of precedence has changed when using CFOM as the final discriminator.

As would be expected the best solutions (arrowed) all have similar rotational and torsional para-

meters. Although not shown here, the corresponding translation components derived in the second

stage of PATSEE are also quite similar, as would be expected.

Expansion and Refinement of the Model
The overall best solution was taken to be number 2 in Table 8.19, and the model coordinates

corresponding to this solution were subjected to Fourier-least-squares expansion and refinement as

before. After two iterations of Fourier-least squares all non-carbon atoms were located and isotropically

refined to an R factor of 0.105. In the published structure anisotropic refinement led to final R factor of

0.0453. The completed structure of atropine is shown in Fig. 8.21.

Table 8.18 Atropine fragment rotation search

Solution RFOM a (�) b (�) g (�) Torsion angle (�)

1 1.742 2.942 2.912 0.174 182

2 1.732 5.892 3.527 1.736 2

3 1.701 6.036 3.359 2.980 180

4 1.676 6.052 3.352 2.984 182

5 1.563 2.932 2.916 0.176 184

6 1.544 5.827 3.474 1.766 358

7 1.535 5.933 3.540 1.737 360

8 1.535 5.933 3.540 1.737 0

9 1.522 6.101 3.295 2.999 184

10 1.438 5.938 3.567 1.705 4

11 1.403 2.883 2.927 0.158 176

12 1.353 2.690 5.981 1.726 35

13 1.348 2.912 2.876 0.179 180

14 1.334 6.105 3.408 2.969 186

15 1.332 2.702 5.949 1.783 354

16 1.312 5.862 3.549 1.745 6

17 1.285 2.946 2.883 0.176 178

18 1.272 6.114 3.360 3.008 188

19 1.246 2.594 6.027 1.757 352

20 1.222 2.588 5.984 1.748 356

Note: Each entry in this table is the result of 10,000 test rotations
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Conclusions
These examples illustrate many of the features of the powerful Patterson search technique.

However, for small-molecule analysis, because direct methods are so much more easy to apply,

if not to understand, Patterson search will remain as a reserve technique, albeit a very useful and

powerful one, in the crystallographer’s armory.

Table 8.19 Atropine fragment translation search results

Solution RFOM Torsion angle (�) CFOM

1 1.742 182 1.408

2 1.732 2 2.640←

3 1.701 180 1.373

4 1.676 182 1.250

5 1.563 184 1.424

6 1.544 358 2.284←

7 1.535 360 1.232

8 1.535 0 1.232

9 1.522 184 1.029

10 1.438 4 2.342←

11 1.403 176 1.081

12 1.353 356 1.342

13 1.348 180 1.039

14 1.334 186 1.114

15 1.332 354 1.307

16 1.312 6 1.793

17 1.285 178 1.077

18 1.272 188 0.929

19 1.246 352 1.763

20 1.222 356 1.694

Fig. 8.21 The completed structure of atropine (diagram produced by POV-Ray™ VERSION 3.1 [85], as implemented

in WinORTEP [86])
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We have discussed two small-molecule analyses where Patterson search with PATSEE has led

successfully to refineable models of the crystal structure. Provided that a suitable search model is

available there is no reason to doubt that most small-molecule structures could be solved in a similar

way. Themost useful discriminator provided by PATSEE is the combined figure of merit (CFOM). For

all but the smallest searchmodels employed in the examples discussed, the RT solutionwith the largest

value of CFOM has proved to be correct.

A search model with a fractional scattering power as low as 16.1% and including only 6 out of a

total of 21 non-hydrogen atoms can provide the correct answer, but it requires more sifting of

coordinate sets, using Fourier and least squares, to be selected. We shall see in Sect. 10.6.4 that

the related method of Molecular Replacement (MR) is routinely used in macromolecular structure

analysis, and for this reason the examples discussed in the present chapter will be invaluable for a

sound understanding of the principles of the method when we come to discuss the large molecule

studies.

8.3.8 Shake and Bake

We mention here, very briefly, another procedure that is a further stage in solving really complicated

structures. Like PATSEE the program is readily available [37] and is quite fun to use, as the name

Shake and Bake suggests.

In outline, Shake and Bake is a direct structure solving procedure that carries out phase refinement

in reciprocal space and electron density space alternately, in order to achieve a true minimum of R(F),

a quantity known as the minimal function [38].

RðFÞ ¼
X

H;K

AHK cos THK � J1ðAHKÞ
J0ðAHKÞ

� �2

þ
X

L;M;N

jBLMNj cosQLMN � J1ðBLMNÞ
J0ðBLMNÞ

� �2
(

þ
X

L;M;N

jBLMNj cosQLMN � J1ðBLMNÞ
J0ðBLMNÞ

� �2
X

H;K

AHK þ
X

L;M;N

jBLMNj
" #�1

9

=

;

(8.68)

where AHK and BLMN are given by (8.69).

AHK ¼ ð2=N1=2ÞjEHEKEHþKjBLMN

¼ ð2=NÞjELEMENELþMþNjðjELþMj2 þ jEMþNj2 þ jENþLj2 � 2Þ (8.69)

The structure triple THK is defined by

THK ¼ fH þ fK þ f�H�K (8.70)

and an estimate of cos THK follows the equation

cos THK ¼ J1ðAHKÞ=J0ðAHKÞ (8.71)

where I0 and I1 are the modified Bessel functions.

The structure quartet QLMN is given by

QLMN ¼ fL þ fM þ fN þ f�L�M�N (8.72)
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and the phases themselves are functions of the atomic positions:

EðhÞ ¼ jEðhÞj exp i2pfðhÞ ¼ 1
ffiffiffiffi

N
p

X

j

exp i2ph 
 rj (8.73)

The Shake and Bake procedure is initiated by generating triplet and negative quartet structure

invariants that are based on a trial structure or partial structure model comprised of N atoms in the

unit cell, chosen such that no two atoms are closer than ca. 1.2 Å and no atom lies within bonding

distance of four other atoms. Normalized structure factors Eh are determined and with the phases a

first electron density map calculated. The phases are then subjected to a cyclical shake-and-bake

phasing procedure consisting of phase refinement, to minimize R(’), and constrained electron

density maps to obtain atom positions. The time per cycle depends on the number of atoms and is

about 10 s for a 30-atom structure and about 90 s for a structure with 400 atoms in the unit cell. The

technique has solved a number of structures, including one with over 600 atoms in the asymmetric

unit. For further details the reader is referred to the Appendix D and the literature [39–41].

The procedure has also been used successfully on the 1001 non-hydrogen atom structure of

lysozyme [38] and on a range of other protein structures [42].

8.4 Least-Squares Refinement

If we have two pairs of values of X and Y for measurements which are related by the equation

Y ¼ mX þ b (8.74)

we can obtain a unique answer for the constants m and b. Sometimes, as in the Wilson plot, we have

several pairs of values, which contain random errors, and we need to obtain those values of m and b

that best fit the complete set of observations. In practical problems, we have often a situation in which

the errors in the X values are negligible compared with those in Y.

Let the best estimates of m and b under these conditions be m0 and b0. Then, the error of fit in the

ith observation is

ei ¼ m0Xi þ b0 � Yi (8.75)

The principle of least squares states that the best-fit parameters are those that minimize the sum of

the squares of the errors. Thus,

X

i

e2i ¼
X

i

ðm0Xi þ b0 � YiÞ
2 ði ¼ 2; . . . ;NÞ (8.76)

has to be minimized over the number N observations. This condition corresponds to differentiating

partially with respect to m0 and b0, in turn, and equating the derivatives to zero. Hence,

m0

X

i

X2
i þ b0

X

i

Xi ¼
X

i

XiYi (8.77)
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m0

X

i

Xi þ b0N ¼
X

i

Yi (8.78)

which constitute a pair of simultaneous equations (normal equations) easily solved for m0 and b0.

In a crystal structure analysis, we are always manipulating more observations than there are

unknown quantities; the system is said to be overdetermined. We shall consider some crystallo-

graphic applications of the method of least squares.

8.4.1 Unit-Cell Dimensions

In Chap. 5, we considered methods for obtaining unit-cell dimensions with moderate accuracy from

photographic and diffractometer measurements. Generally, we need to enhance the precision of these

measurements, which may be achieved by a least-squares analysis. Consider, for example, a mono-

clinic crystal for which the y values of a number of reflections of known indices, preferably high-

order, have been measured to the nearest 0.01�. In the monoclinic system, sin y is given, Table 2.4

with k ¼ l, and (3.43), by

4sin2y ¼ h2a	2 þ k2b	2 þ l2c	2 þ 2hla	c	 cos b	 (8.79)

In order to obtain the best values of a*, b*, c*, and cos b*, we write, following (8.76),

X

i

ðh2i a	2 þ k2i b
	2 þ l2i c

	2 þ 2hilia
	c	 cos b	 � 4sin2yiÞ

2
(8.80)

and then minimize this expression, with respect to a*, b*, c*, and cos b*, over the number of

observations i. The procedure is a little more involved numerically; we obtain four simultaneous

equations to be solved for the four variables, but the principles are the same as those involved with the

straight line.

8.4.2 Least-Squares Parameters

Correct trial structures are refined by the least-squares method. In essence, this process involves

adjusting a scale factor and the positional and temperature parameters of the atoms in the unit cell so

as to obtain the best agreement between the experimental Fo values and the jFcj quantities derived
from the structure model. In its most usual application, the technique minimizes the function.

R0 ¼
X

h

wðFo � GðjFcjÞ2 (8.81)

where the sum is taken over the set of crystallographically independent terms h, w is a weight for each

term, and G is the reciprocal of the scale factor K for Fo. Let pj (j ¼ 1, 2,. . ., n) be the variables in jFcj
whose values are to be refined. Then

@R0

@pj
¼ 0 (8.82)

8.4 Least-Squares Refinement 401

http://dx.doi.org/10.1007/978-1-4614-3954-7_5
http://dx.doi.org/10.1007/978-1-4614-3954-7#Tab4_2
http://dx.doi.org/10.1007/978-1-4614-3954-7#Equ43_3


or

X

h

wD
@jFcj
@pj

¼ 0 (8.83)

where D is Fo � jFcj. For a trial set of parameters not too different from the correct values, D is

expanded as a Taylor series to the first order:

Dðp; jÞ ¼ DðpÞ �
Xn

i¼1

xi
@jFcj
@pj

(8.84)

where the shift xi is the correction to be applied to parameter pi; p and j represent the complete sets of

variables and corrections. Substituting (8.84) in (8.83) leads to the normal equations

Xn

i¼1

X

h

w
@jFcj
@pi

@jFcj
@pj

" #
xi ¼

X

h

wD
@jFcj
@pj

(8.85)

The n normal equations may be expressed neatly in matrix form:

A j ¼ b or
X

i

aijxi ¼ bj (8.86)

where

aij ¼
X

h

w
@jFcj
@pi

@jFcj
@pj

(8.87)

and

bj ¼
X

h

wD
@jFcj
@pj

(8.88)

The solution of the normal equations is a well- documented mathematical procedure that we

shall not dwell upon. Instead, we draw attention to certain features of least-squares refinement. It is

important to remember that least squares provides the best fit for the parameters that have been put

into the model. Hence, it is essential to examine a final difference-Fourier map at the completion of

a least-squares refinement, after several cycles of calculations have led to negligible differences xi.

The techniques of least squares have been reported fully at Crystallographic Computing Confer-

ences (see Bibliography).

Temperature Factors
The Wilson technique, Sect. 4.2.1, leads to an overall isotropic temperature factor for the structure,

and we have discussed the theory of one-dimensional isotropic thermal vibration in Sect. 4.1.8. As

indicated there, a better procedure allots a B parameter to each atom and refines the values as least-

squares parameters. We write the temperature correction factor Ti as
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Ti ¼ exp½�ðBil
�2sin2yÞ� (8.89)

and the equation

Bi ¼ 8p2U2
i (8.90)

relates the isotropic temperature factor Bi to the mean square amplitude U2
i of the ith atom;

the three-dimensional surface of isotropic vibration is a sphere. A more sophisticated treatment, as we

indicated already in Sect. 4.1.8, describes the vibrations of each atom by a symmetrical tensor U
having six independent components in the general case:

Ti ¼ exp½�2p2ðU11h
2a	2 þ U22k

2b	2 þ U33l
2c	2 þ 2U23klb

	c	 þ 2U31lhc
	a	

þ 2U12hka
	b	Þ� (8.91)

and the (anisotropic) Uij parameters are refined as part of the model. The surface of vibration is now a

biaxial (thermal) ellipsoid, and the mean-square amplitude of vibration in the direction of a unit

vector L(L1, L2, L3) is given by

U2
i ¼

X3

i¼1

X3

j¼1

UijLiLj (8.92)

Biaxial ellipsoids for molecule A of the R-enantiomer BW202W92(R) are illustrated in Fig. 8.22;

see also Sects. 8.2.12 and 8.2.16. Since L is defined with respect to the reciprocal lattice, the

component of U with L(1,0,0), parallel to a*, is

Fig. 8.22 Anisotropic thermal ellipsoids for molecule A of BW202W92(R) [26]. The ellipsoids are plotted at the 50%

probability level, which means that at the maximum radius drawn the exponential expression of (8.91) is 0.5. In terms of

an isotropic thermal surface, the radius would be almost 0.6 Å corresponding to sin2 y/l2, or ð1
2
dÞ2, of 0.694 Å�2 (drawn

in WinGX with ORTEP)
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U2
i ¼ U11 (8.93)

In an orthorhombic crystal, for example, a direction 30� from a* in the a*b* plane has

L ¼ ð
ffiffi

3
p

2
; 1
2
; 0Þ, and the component of U in that direction is

U2
i ¼ U11ð

ffiffi

3
p

2
Þ2 þ U22ð12Þ

2 þ 2U12ð
ffiffi

3
p

2
Þð1

2
Þ (8.94)

The following relationships among the values of B, U2
i , and the root mean square (rms) amplitude

are often useful:

The smallest rms amplitudes encountered are ca. 0.05 Å. Values ofB between 3 and 10 Å2 are found

in organic structures at ambient temperatures. The larger rms amplitudes require caution in interpret-

ing them in terms of bond lengths and their precision. For example, static or dynamic disorder,

Sect. 8.9, not included in the model, may be manifested as abnormally large temperature factors.

Scale Factor
In least-squares refinement the Fo data must not be adjusted, and so the parameter G in (8.81) is

introduced. The inverse of the refined value ofGmay be applied to Fo at the end of a refinement cycle.

Several cycles of refinement may be needed before the parameters reach a sensibly constant value.

Generally full-matrix least-squares refinement is to be preferred. However, where the number of

parameters is very large or where computer availability is limited, an approximation may be used.

One such method is the block-diagonal refinement, in which certain off-diagonal aij terms in (8.86) are

neglected. Generally, more cycles are necessary in this procedure.

Weights
In the initial stages of refinement, weights may be set at unity or chosen so as to accelerate the

process, such as down-weighting reflections of small Fo or of high order, or both. In the final stages,

weights should be related to the precision of Fo, which can be achieved in two ways:

1.
wðhklÞ ¼ 1=½s2ðFoðhklÞ� (8.95)

where the estimated standard deviation, s[Fo(hkl)], is obtained from counting statistics in diffrac-

tometer data by the relationship

s ¼
ffiffiffiffi

N
p

(8.96)

N being related to the total counts, peak, and background, for the given reflection. Sometimes a

quantity pFo
2 is added to the right-hand side of (8.95), where p is adjusted so that wD2 is constant

over ranges of Fo, where D is Fo � jFcj.

B/Å2 U2/Å2 rms Amplitude (Å)

0.10 0.0013 0.036

0.50 0.0063 0.080

1.0 0.013 0.11

5.0 0.063 0.25

10 0.13 0.36
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2. wðhklÞ ¼ FðFoÞ (8.97)

where the function F is chosen so that wD2 is again sensibly constant over ranges of Fo. Another

weighting scheme is given by

3. w ¼ ðAþ Fo þ BFo
2 þ CFo

3Þ�1
(8.98)

where the constants A, B, and C may be obtained by a least-squares fit of mean values of D, in

ranges of Fo, to the inverse of the right-hand side of (8.98).

Precision
The choice of absolute weights (8.95) should yield parameters of lowest variances:

s2ðpjÞ ¼ ðajjÞ�1
(8.99)

where (ajj)
�1 is an element of the matrix inverse to that of the aij elements (8.87). With weights

related to Fo,

s2ðpjÞ ¼ ðajjÞ�1

P
h wD

2

m� n
(8.100)

where m is the number of reflections and n the number of parameters to be refined. Generally,

m=n � ca 10 leads to a high quality analysis. In a block-diagonal approximation, the standard deviations

are usually underestimated by 15–20%.

Atoms in Special Positions
If any symmetry operation of the space group of a structure leaves an atom invariant, the atom is on a

special position. Consider onemolecule of formula AB2 in the unit cell of space groupP2. TheA atoms

occupy, say, the special positions 0, y, 0, and the B atoms occupy the general positions x, y, z and �x; y; �z.
Several important points arise:

1. The x and z coordinates of atoms A remain invariant at zero during refinement.

2. In this space group, the origin is along the twofold axis y and must be specified by fixing the y

coordinate of an atom; the heavier the atom the better. It could be yB ¼ 0, in which case this

parameter also remains invariant.

3. With respect to the symmetry operations of the space group, atoms A must be given an atom

multiplicity factor of 1
2
so that a total of one A atom per unit cell obtains.

4. In an isotropic refinement, one of the three twofold axes of the biaxial thermal ellipsoid must lie

along the twofold axis y of the space group. In this case, the U12 and U23 elements of U remain

invariant at zero value.

8.4.3 Theory of Least-Squares Refinement and Strategies to Use

The calculations of least squares, although lengthy, have been implemented in now well-tested

program systems, such as WinGX and SHELX, that are available to workers in crystal structure

determination. In a number of instances, the application of least-squares calculations is
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straightforward, and results of sufficient precision are obtained. In other cases, and perhaps more

generally, a consideration of the strategy to be employed, within the constraints of the program

system, is necessary and desirable. In the structure determination process, a model is proposed on the

basis of the diffraction data, and then subjected to adjustments (refinement) of the parameters of that

model so as to reach a solution with a defined precision.

Model
For a least-squares refinement to be successful, the model must be sufficiently close to the truth and

contain all the components of the structure. The multidimensional surface that corresponds to an

n-dimensional refinement is complex and contains many false minima, into any of which an insuffi-

ciently correct model may converge. Hence, the correctness of a structure should be based on several

criteria, Sect. 8.7.

Data Errors
Experimental data are subject to systematic and random errors. In X-ray diffraction, a systematic error

may be, for example, the lack of an absorption correction: the values ofFowill often be less than those of

jFcj for the partially refined structure, noticeably for the low-order reflections of high intensity. The

minimization of the difference betweenFo and jFcjwill lead, in this case, to unwarranted discrepancies in
the temperature factors of the atoms and the scale factor of the data.

Increasing the temperature factors and decreasing G, the scale factor applied inversely to jFcj
during refinement, will tend to decrease the jFcj values so as to compensate for the effect of

absorption. Random errors are unavoidable in any physical experiment, but they can be minimized

by careful attention to the experimental procedure. For example, reflections of low intensity and

consequent high probable error can be improved in reliability by increasing the measurement time.

This procedure may be costly in time, but is very straightforward with a diffractometer.

The data set must be sufficient in size for the work in hand. The success of least-squares refinement

is partially dependent on the fact that the calculations are appreciably overdetermined. This excess of

data over variables is needed in order to average out discrepancies in individual measurements. As an

approximate guide, the ratio of data to variables should be at least 8. The ratio can be improved by

decreasing the number of variables. There are instances, such as with phenyl rings, where refinement

of the parameters of the hydrogen atoms might be regarded as exaggerated. The hydrogen atoms can,

and should, be allowed to contribute to the calculated structure factors, but unless there is reason to

suppose otherwise they would be expected to display sp2 geometry, with C–H � 1.00 Å. Their

isotropic temperature factors may be refined, or assumed to be, say, 1.3 times that of the carbon atoms

to which they are attached. In a structure like euphenyl iodoacetate C32H53O2I, Sect. 1.1, the number

of variables may be very significantly reduced by this type of approach. The strategy should be

determined by the nature of the problem in hand, and computer programs that handle least-squares

refinement have been designed to accommodate a range of constraints.

If the data-to-variables ratio is too low, the final structure may have an inherent lack of resolution

that may not be immediately apparent from the numerical least-squares results, although all the

expected atomic positions will be represented, provided that the model itself was complete. Least

squares, unlike the Fourier process, cannot find anything that is not present in the model. It will obtain

a best fit, under the given strategy, for the model supplied. A lack of resolution may arise because of

an unsatisfactory termination of the data set. If the cut-off criterion for acceptable data leads to too

few reflections, those that have been excised could be subjected to re-measurement for longer times

so that they can be accepted under the same criterion. If this is not done, then imperfections will exist

in the refinement, and may be manifested in large estimated standard deviations for some parameters

or in unsatisfactory temperature factors. Incorrect values for B factors may lead to highly improbable
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root mean square atomic displacements or to Uij values that are non-positive definite, that is, they do

not define an ellipsoid.

There is some concern with published papers on structure determination that report 50% or more

of the unique experimental Fo data rejected by some criterion, such as I � 3sðIÞ, apparently to the

satisfaction of both the worker and the journal editor. The cosmetic effect of this practice serves

merely to reduce the R factor rather than to improve the estimated standard deviations of the structural

parameters. Weak intensity data do, in fact, contain structural information. Protein crystallographers,

who of necessity work with poorly diffracting crystal specimens, are not in a position to discard data

in this fashion.

Least-Squares Refinement Procedure
The least-squares refinement of a model leads to those parameters that minimize (Fo � jFcj)

2, as in

(8.76), over the whole data set. The first application of the calculations will generally not lead to the

best-adjusted parameters, and it will be necessary to cycle through the calculations until the results

converge; that is, until the calculated shifts are less than the estimated standard deviations of the

corresponding parameters. The refinement is continued until the shifts in the parameters are some

small fraction (0.1 is often quoted) of the estimated standard deviations.

A good procedure will begin by ensuring the maximum number of good observations, and by

minimizing the number of variables consistent with the requirements of the problem. The starting

model must be sufficiently good so that the minimization does not fall into a local, false position. This

is unlikely if Fourier synthesis or difference-Fourier synthesis has been used in establishing the model

and approximate scale and temperature factors have been obtained by statistical methods. Although

Fourier methods of refinement are less convenient than those of least squares, they do have the power of

revealing necessary information that may not be contained in an initial model. From the above, it should

be clear that such information is vital to a good least-squares refinement.

Another constraint that may be considered, as well as the fixed C–H geometry, is the rigid-body

specification of a group of atoms. For example, unless there is any reason to suppose otherwise, a phenyl

ring can be considered to obey the geometry ofTables 8.21 and 8.22, or other equivalent compilation, and

thus be refined as a single, rigid entity.

The least-squares equations outlined in Sect. 8.4.2 include a weight for each observation. They

may be unity or calculated from (8.97) for the early stages of refinement. Subsequently, weighting

schemes based on Fo or sin y or on both of these parameters may be used. The validity of any

weighting scheme should be checked for the given problem, as already indicated. Attention to detail

in least-squares refinement is generally rewarding, and it is worth remembering that it consumes

about three-quarters of the total calculation time of a structure analysis.

8.4.4 Least-Squares Refinement Against Fo
2

Some crystallographic program packages, notably SHELX-97, employ full-matrix least-squares

refinement routines based on Fo
2 and jFcj

2, as opposed to Fo and jFcj as shown in (8.81). Apart from

this major difference which will influence the form of the normal equations, the method of solution to

produce parameter shifts and estimated standard deviations, s, will be entirely parallel to the procedure

described above for refinement against Fo and jFcj. Studies have shown that refinement against jFj2

allows more weighted experimental data to be incorporated into the analysis which enables it to

proceed more smoothly. A further rationale in favor of this choice is that it is Fo
2 and s(Fo

2) that are,

after corrections, obtained from the diffraction experiments so why refine against Fo and jFcj?

Refinement against Fo also involves mathematical problems with very weak reflections or reflections
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with apparent negative measured intensity values. There are also difficulties in converting and

estimating s(F) from the measured s(F2) values for weak or zero measured intensities. Refinement

against jFj2 avoids these difficulties, and also reduces the probability of the refinement iterations

settling into a local minimum. It also simplifies the treatment of twinned crystals and the determination

of the absolute configuration in the case of non-centrosymmetric structures, Sect. 7.5.1. For these

reasons, it is probably currently the most frequently used technique, although it does rely heavily on

the assignment of reasonable weights to individual reflections. Further details are to be found in the

SHELX references [21, 23].

8.4.5 Constraints and Restraints

The program SHELX-97 allows the user to apply a wide range of controls on the structural

parameters being refined in any particular case. It is necessary in this respect to distinguish between

a constraint and a restraint. A constraint is an exact mathematical condition that enables one or more

least-squares variables to be expressed exactly in terms of other variables or constants, and as such is

eliminated from the actual refinement process while still contributing as part of the structure to jFcj.
An example is the fixing of an atom position exactly on a center of symmetry. A restraint involves

additional information that is not exact but is subject to a probability distribution; for example

chemically but not crystallographically equivalent bonds could be restrained to be approximately

equal within a specified tolerance. A restraint is treated as an extra experimental observation, with an

appropriate esd that determines its weight relative to the X-ray data.

Constraints are flagged in SHELX-97 using appropriate instructions prefixed by AFIX. A wide

variety of options is available as described in the manual. An HFIX instruction generates AFIX

instructions and dummy hydrogen atoms bonded to specified atoms. All types of hydrogen atom

groupings are available. For example, AFIX 6 fits a regular hexagon to six specified atoms, of

default bond length 1.39 Å for aromatic C–C bonds, and AFIX 13 specifies an ideal –CH3 group

with tetrahedral angles. A DFIX instruction allows the distance between two named atoms to be

restrained to a target value d within a specified standard deviation.

These facilities have a wide variety of uses. For example, to economize on parameters if the data/

parameter ratio is low, or to enable hydrogen atoms to be included in the analysis when it has not been

possible to locate them from an appropriate electron density map.

8.5 Molecular Geometry

When the structure analysis is complete, the results must be expressed in terms of molecular geometry

and crystal packing. Thus, we need to compute bond lengths, bond angles, intermolecular contact

distances, torsion angles, where necessary, all with measures of their precision.

8.5.1 Bond Lengths and Angles

Consider three atoms with fractional coordinates x1, y1, z1; x2, y2, z2; and x3, y3, z3 in a unit cell of sides

a, b, and c, Fig. 8.23. The vector rj from the origin O to any atom j is given by

rj ¼ xjaþ yjbþ zjc (8.101)
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The vector r12 between atoms 1 and 2 is given by

r12 ¼ r2 � r1 (8.102)

or, using (8.101),

r12 ¼ ðx2 � x1Þ aþ ðy2 � y1Þ bþ ðz2 � z1Þ c (8.103)

Forming the dot product of each side with itself, remembering that

p 
 q ¼ pq coscpq (8.104)

we obtain

r212 ¼ ðx2 � x1Þ
2
a2 þ ðy2 � y1Þ

2
b2 þ ðz2 � z1Þ

2
c2 þ 2ðy2 � y1Þðz2 � z1Þ bc cos aþ 2ðz2

� z1Þðx2 � x1Þ ca cos bþ 2ðx2 � x1Þðy2 � y1Þ ab cos g (8.105)

This equation may be simplified for crystal systems other than triclinic. Thus, if the atoms exist in a

tetragonal unit cell, for example,

r212 ¼ ½ðx2 � x1Þ
2 þ ðy2 � y1Þ

2�a2 þ ðz2 � z1Þ
2
c2 (8.106)

In a similar manner, we can evaluate r32, Fig. 8.23.

In the case of a bond angleF123 formed from atoms 1, 2, and 3, and using (8.105) for the tetragonal

system,

cosF123 ¼
½ðx2 � x1Þðx2 � x3Þ þ ðy2 � y1Þðy2 � y3Þ� a

2 þ ðz2 � z1Þðz2 � z3Þ c
2

r12r32
(8.107)

Fig. 8.23 Geometry of the

calculation of interatomic

distances and angles; points

1, 2, and 3 represent atomic

positions
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where r12 and r32 are evaluated following (8.106). Similar equations enable any distance or angle to

be calculated, in any crystal system, in terms of the atomic coordinates and unit-cell dimensions.

When the asymmetric unit of a crystal contains more than one copy of a given molecule, or when

similar molecules occur in different crystals, the question arises as to whether or not the several sets of

molecular dimensions are significantly different. The statistical test applicable in this situation is the

w2 test. It involves calculation of
Pn

i¼1 ½Di=sðDiÞ�
2
, which is distributed as w2with n degrees of freedom;

Di is the difference between one measured property, such as a bond length, in a pair of molecules, and

s(Di)is the standard deviation inDi, estimated as [s2(di1) + s2 (di2)]
1/2, assuming no correlation between

di1 and di2, and n is the number of pairs of measurements.

Significance Tests and x2 Distributions
The significance of a result can be tested bymaking the null hypothesis that all of the differences can be

accounted for by random errors in the experimental procedures, and then obtaining from statistical

tables the significance level of the test, that is, the probability P of incorrectly rejecting a good

hypothesis. Normally, the test is not regarded as significant unless P � 0.05. Bond lengths and angles

and their estimated standard deviations are calculated and listed by SHELX-97 through the BOND

instruction in the .ins file.

As an example we will consider two aspects of the bond lengths in the X-ray structure [43] of the

cyclic diamino acid peptide N,N0-diacetyl-cyclo(Gly-Gly), shown in the diagram below; the eight ring

bonds, including the C¼O bonds and the six side-chain bonds, will be considered in the table below.

The crystal structure has two independent copies of the molecule labeled A and B.

N,N0-Diacetyl-Cyclo(Gly-Gly) showing the atom numbering scheme (Gly ¼ glycine)

Using Table (b) below, we can show that:

Table a Bond lengths for N,N0-diacetyl-cyclo(Gly-Gly), molecules A and B

Bond lengths (Å) w2 Components

Molecule A B Di s(Di) [Di/s(Di)] [Di/s(Di)]
2

C(1)–N(2) 1.474(2) 1.472(2) 0.002 0.0028 0.714 0.51 Ca–Na

N(2)–C(3) 1.381(2) 1.383(2) 0.002 0.0028 0.714 0.51 N–C(O)
C(3)–C(4) 1.512(3) 1.508(3) 0.004 0.0042 0.953 0.91 C(O)–Ca
C(4)–N(5) 1.469(2) 1.474(2) 0.005 0.0028 1.786 3.19 Ca–N
N(5)–C(6) 1.386(2) 1.389(2) 0.003 0.0028 1.071 1.15 N–C(O)
C(1)–C(6) 1.507(3) 1.505(3) 0.002 0.0042 0.476 0.23 Ca–C(O)
C(6)–O(6) 1.217(2) 1.215(2) 0.002 0.0028 0.714 0.51 C(O)¼O
C(3)–O(3) 1.214(2) 1.209(2) 0.005 0.0028 1.786 3.19 C(O)¼O
Pn
i¼1

½Di=sðDiÞ�
2 ¼ 10:20 for n ¼ 8

C(2)–N(2) 1.416(2) 1.413(2) 0.003 0.0028 1.071 1.15 Side-chain bonds
C(2)–O(2) 1.217(2) 1.218(2) 0.001 0.0028 0.357 0.13
C(2)–C(21) 1.492(3) 1.493(3) 0.001 0.0042 0.238 0.06
C(5)–N(5) 1.415(2) 1.410(2) 0.005 0.0028 1.786 3.19
C(5)–O(5) 1.213(2) 1.212(2) 0.001 0.0028 0.357 0.13
C(5)–C(51) 1.486(3) 1.474(3) 0.012 0.0042 2.857 8.16
Pn
i¼1

½Di=sðDiÞ�
2 ¼ 12:82 for n ¼ 6

aStandard peptide bond notation is used here (see Chap. 10)
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1. For the eight ring bond lengths the probability Pring, the difference between molecules A and B, is

between 0.2 and 0.3, that is greater than 0.05 and is not significant

2. For the six side-chain bond lengths the probability Pchain, the differences between molecules A and

B, lies between 0.01 and 0.05, less than 0.05, so that they are significant. Exact values of P are

[44]: Pring ¼ 0.251 and Pchain ¼ 0.0463, thus confirming the above results

It is not too difficult to see that the main difference in side-chain bond lengths between molecules

A and B occurs for C(5)–C(51); in practice it may be necessary to seek further reasons for this type of

result.

8.5.2 Torsion Angles

Torsion angles are useful conformational parameters with which to compare different, related

molecules or, indeed, different conformations of one and the same molecule. In a freely rotating

moiety, a torsion angle may be a function of the environment of the molecule. Consider

an arrangement of four atoms 1, 2, 3, 4, Fig. 8.24. The torsion angle w(1, 2, 3, 4) is defined by the

angle between the planes 1, 2, 3 and 2, 3, 4, and lies in the range �180� < w � 180�; the sign is an

important property of the parameter.

Table b Chi-square distribution [45] w² vs. Probability, P. This table gives a number of P values matching to w² for the

first 10� of freedom, df. A P-value of 0.05 or less is usually regarded as statistically significant, that is, the observed

deviation from the null hypothesis is significant.

Degrees of

freedom (df) Probability (P)

0.95 0.90 0.80 0.70 0.50 0.30 0.20 0.10 0.05 0.01 0.001

1 0.004 0.02 0.06 0.15 0.46 1.07 1.64 2.71 3.84 6.64 10.83

2 0.10 0.21 0.45 0.71 1.39 2.41 3.22 4.60 5.99 9.21 13.82

3 0.35 0.58 1.01 1.42 2.37 3.66 4.64 6.25 7.82 11.34 16.27

4 0.71 1.06 1.65 2.20 3.36 4.88 5.99 7.78 9.49 13.28 18.47

5 1.14 1.61 2.34 3.00 4.35 6.06 7.29 9.24 11.07 15.09 20.52

6 1.63 2.20 3.07 3.83 5.35 7.23 8.56 10.64 12.59 16.81 22.46

7 2.17 2.83 3.82 4.67 6.35 8.38 9.80 12.02 14.07 18.48 24.32

8 2.73 3.49 4.59 5.53 7.34 9.52 11.03 13.36 15.51 20.09 26.12

9 3.32 4.17 5.38 6.39 8.34 10.66 12.24 14.68 16.92 21.67 27.88

10 3.94 4.86 6.18 7.27 9.34 11.78 13.44 15.99 18.31 23.21 29.59

Nonsignificant Significant

Fig. 8.24 The torsion

angle w(1, 2, 3, 4) has a

positive sign for a rotation

of 1, 2, about 2, 3 as shown,

that is, it is positive if,

looking along r23, a
clockwise rotation is

required to bring atom

1 into atom 4
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In the planar, eclipsed conformation shown in Fig. 8.24, w is zero. The torsion angle is the amount

of rotation of 1, 2 about 2, 3 and, looking along the direction 2 ! 3; a positive value of w corresponds

to the clockwise rotation that brings atom 1 into atom 4. Let

p1 ¼ r23 ��r12 (8.108)

and

p2 ¼ r23 � r34 (8.109)

Then

wð1; 2; 3; 4Þ ¼ cos�1 p1 
 p2
p1p2

� 	

(8.110)

If the torsion angle is calculated by the expression atan2 fjr23jr12:ðr23�r34Þ; ðr12�r23Þ:ðr23�r34Þg
the angle is obtained with the correct sign. [atan2 is a Fortran function for tan�1, with two arguments].

Torsion angle calculation is provided by crystallographic software, for example, the program MOL-

GOM in the program suite, Sect. 13.6.5, or by using the CONF instruction in SHELX-97. WinGX has

a facility for producing standard tables for publication including molecular geometry: the “Publish”

button, Fig. 8.10a, invokes this facility.

8.5.3 Conformational Analysis

Confusion has arisen in the literature over the use of torsion angles in conformational analysis. It is

often convenient to quote values of torsion angles as lying within certain ranges. For example,

w � 0� may be called cis, w ¼ 180� is trans, and w � �60� is �gauche. However, because of

changing conventions, it is best to quote the actual value of w, and to state how it is defined,

Fig. 8.24. This procedure will minimize ambiguities in the future.

Ring Conformations
Two types of symmetry (or pseudo-symmetry) must be considered in order to define ring

conformations [46], namely mirror planes perpendicular to the dominant ring plane and twofold

axes lying in the ring plane. If there is an odd number (usually 5 or 7) of atoms in the ring, all

symmetry elements pass through one of the ring atoms and bisect the opposite bond, Fig. 8.25. In

rings containing an even number of atoms (usually 6), symmetry elements may pass through two

ring atoms located directly across the ring, or else bisect two opposite ring bonds.

Ten symmetry elements are possible in five-membered rings. The planar five-membered ring

possesses all ten, five mirror planes and five twofold axes. The ideal envelope conformation has only a

single m plane, and it passes through the out-of-plane atom. The ideal half-chair has one twofold axis

bisecting the bond between the two out-of-plane atoms. Six-membered rings possess 12 locations for

symmetry elements. In determining the ring conformation, we can ignore the two-, three-, and sixfold

collinear rotation axes perpendicular to the ring plane. Figure 8.26 illustrates the symmetry elements

that define the ideal forms of commonly observed conformations. The planar ring, such as in benzene,

has one m plane and one twofold axis at each of six locations (
6

m
mm). The chair form of cyclohexane

has three m planes and three twofold axes (�3m). The boat and twist-boat have point group symmetry

mm2 and 222, respectively, while the sofa has symmetry m and the half-chair symmetry 2.
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Asymmetry Parameters
Once the atom coordinates are available, torsion angles may be calculated. Because of errors in the

data and for stereochemical reasons, a particular cyclic structure will often depart from its ideal

symmetry. The degree of this departure, its asymmetry, may be calculated in terms of asymmetry

parameters. For this purpose, related or nearly related torsion angles are compared in a way that will

result in a value of zero for a parameter if the corresponding symmetry is realized in the molecule.

Mirror-related torsion angles have equal magnitude but opposite sign, and such torsion angles are

compared by addition. The torsion angles related by twofold symmetry are equal in both magnitude

and sign, and are compared by subtraction. The rms value of each discrepancy yields a measure of the

deviation from ideal symmetry at the location in question. We calculate

DCs ¼
Pn

i¼1 ðwi þ w0iÞ
2

n

 !1=2
(8.111)

in respect of m symmetry, and

DC2 ¼
Pn

i¼1 ðwi � w0iÞ
2

n

 !1=2
(8.112)

in respect of twofold symmetry; n is the number of individual comparisons, and wi and w0i are the

related torsion angles in question.

Fig. 8.25 Conformations

in five- and six-membered

rings. (a) Torsion
angles related by mirror

planes (—) have opposite

signs. (b) Torsion angles

related by twofold rotation

axes have the same sign
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8.5.4 Mean Planes

In discussing the geometry of a molecule, it may be desirable to test the planarity of a group of atoms.

For a number n (n > 3) of atoms, the best plane may be obtained by the method of least squares. Let

the plane be given by

PX þ QY þ RZ þ S ¼ 0 (8.113)

The constants P, Q, R, and S are obtained through an extension of the least-squares procedure

given in Sect. 8.4; it is desirable to work with Cartesian coordinates (see Appendix C).

Fig. 8.26 Commonly observed conformations of six-membered rings. The mirror and twofold rotational symmetries

are indicated on the right
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8.6 Precision

Closely related to the calculations of bond lengths and angles is the expression of the precision of

these quantities. The least-squares refinement procedure establishes values for an estimated standard

deviation in each of the variables used in these calculations. Thus, a fractional coordinate of 0.3712

might have an esd of 0.0003, written as 0.3712(3).

We need to know further how errors are propagated in a quantity which is a function of several

variables, each of which contains some uncertainty arising from random errors. The answer is provided

by the statistical principle of superposition of errors. Let q be a function of several variables pi (i ¼ 1, 2,

3,. . ., N), with known standard deviations s(pi). Then the esd in q is given through

s2ðqÞ ¼
XN

i¼1

@q

@pi
sðpiÞ

� �2

(8.114)

A simple example may be given, through (8.103) and (8.114), for a bond between two atoms lying

along the c edge of a tetragonal unit cell. Let c be 10.06(1) Å, z1 be 0.3712(3), and z2 be 0.5418(2).

From (8.103),

r12 ¼ ðz2 � z1Þc ¼ ð0:5418� 0:3712Þ10:06 ¼ 1:716A (8.115)

and from (8.114),

s2ðr12Þ ¼ ð0:5418� 0:3712Þ2ð0:01Þ2 þ ð10:06Þ2ð0:0002Þ2 þ ð10:06Þ2ð0:0003Þ2 (8.116)

Thus, s(r12) is 0.004 Å and we write r12 ¼ 1.716(4) Å. Similar calculations may be used for all

distance and angle calculations in all crystal systems, but the general equations are quite involved

numerically and best handled by computer methods.

The estimated standard deviation of a torsion angle can be calculated along the lines given in this

section; the significances of differences between torsion angles may be as important as the differences

themselves. Again, in a discussion of best-plane results it is essential to evaluate the perpendicular

distances (deviations) of atoms from the plane, and their esds. Let the jth atom have the coordinates

Xj, Yj, Zj. Then it is a simple exercise in coordinate geometry to show that the deviation Dj of this atom

from the best plane (8.113) is given by

Dj ¼ ðPXj þ QYj þ RZj þ SÞ=K (8.117)

where K is given by

K ¼ ðP2 þ Q2 þ R2Þ1=2 (8.118)

To obtain the esd in Dj the esds in Xj, Yj, and Zj are first obtained, using (8.114) and results from

Appendix C. Then

sðDjÞ ¼ f½PsðXjÞ�
2 þ ½QsðYjÞ�

2 þ ½RsðZjÞ�
2g1=2K (8.119)
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8.7 Correctness of a Structure Analysis

At this stage we may summarize four criteria of correctness of a good structure analysis. If we can

satisfy these conditions in one and the same structure model, we shall have a high degree of

confidence in the analysis.

1. There should be good agreement between Fo and jFcj, expressed through the R factor. Ultimately,

R depends upon the quality of the experimental data. At best, it will probably be about 1% greater

than the average standard deviation in Fo. Assuming the desirable situation that two or more

asymmetric units of data have been collected, a value R close to that for Rint, Sect. 10.4.7, for the

data is acceptable.

2. The electron density map should show neither positive nor negative density regions that are

unaccountable, other than Fourier series termination errors.

3. The difference-Fourier map should be relatively flat. This map eliminates series termination errors

as they are present in both ro and rc. Random errors produce small fluctuations on a difference

map, but they should be less than 2.5–3 times the standard deviation of the electron density s(ro):

sðroÞ ¼
1

Vc

X

hkl

ðDFÞ2
" #1=2

(8.120)

where DF ¼ Fo � jFcj and the sum extends over all symmetry-independent reflections.

4. The molecular geometry should be chemically sensible, within the limits of current structural

knowledge. Abnormal bond lengths and angles may be correct but theymust be supported by strong

evidence of their validity in order to gain acceptance. Normally a deviation of less than three times

the corresponding standard deviation is not considered to be statistically significant. As a guide to

the interpretation of acceptable stereochemistry, we include selections of ionic radii, bond lengths,

and bond angles in Tables 8.20, 8.21, and 8.22, respectively; see also Table 13.4.

Table 8.20 Selected ionic radii (Å) referred to coordination number 6a

Ag+ 1.27 Hg2+ 1.02 Th4+ 0.94

Al3+ 0.54 K+ 1.44 Ti2+ 0.86

Ba2+ 1.49 La3+ 1.03 Ti4+ 0.61

Be2+ 0.48 Li+ 0.86 Tl+ 1.54

Ca2+ 1.18 Mg2+ 0.87 Tl3+ 1.03

Cd2+ 0.95 Mn2+ 0.83 Zn2+ 0.74

Ce3+ 1.01 Na+ 1.12 NHþ
4

1.66

Ce4+ 0.87 Ni2+ 0.69 H� 1.39

Co2+ 0.75 Pb2+ 1.19 F� 1.19

Co3+ 0.61 Pd2+ 0.86 Cl� 1.70

Cr3+ 0.62 Pt2+ 0.80 Br� 1.87

Cs+ 1.84 Pt4+ 0.63 I� 2.20

Cu+ 0.77 Ra2+ 1.43 O2� 1.40

Cu2+ 0.73 Rb+ 1.58 S2� 1.70

Fe2+ 0.78 Sn2+ 0.93 Se2� 1.81

Fe3+ 0.65 Sr2+ 1.32 Te2� 1.97

aThe changes in ionic radius from coordination number 6 to coordination

numbers 8, 4, 3, and 2 are approximately +1.5 %, �1.5 %, �3.0 %, and

�3.5 %, respectively
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8.7.1 Databases

Tables of standard (average) bond lengths and angles (both with esds) are useful aids to structure

determination. In any research or advanced study, it is necessary to take cognizance of all work in the

given field that has already been published. The number of crystal structures that has been solved and

published is now vast, and data files have been constructed that can be interrogated by computer. The

best known of these is the Cambridge Structural Database (CSD) [47]. It contains the results of both

X-ray and neutron diffraction studies on organic and organometallic compounds. At the time of

writing, over 544,000 crystal structures are filed in this database, summarized in Table 8.23, and the

database is available in about 25 countries (see also Appendix D). The Cambridge Structural Database

System (CSDS) is a single product that comprises the following components: Cambridge Structural

Database (CSD); CSDS Software: ConQuest, Mercury, VISTA, and PreQuest. Knowledge bases

derived from the CSD: Mogul and IsoStar. Life Sciences Products: SuperStar, Hermes, GOLD,

GoldMine, Relibase+. Powder Diffraction Products: DASH.

One criticism of the CSD has been that it does not store the experimental Fo data on which each

structure is based.TheProteinDataBank (PDB) doeskeep these data for eachprotein structure deposited.

Not every structure in the above classes that has been ever published will be found in the CSD.

Table 8.21 Selected bond lengths (Å)a

Formal single bonds Formal double bonds

C4–H 1.09 C3–C2 1.45 C3–C3 1.34 C2–O1 1.16
C3–H 1.08 C3–N3 1.40 C3–C2 1.31 N3–O1 1.24
C2–H 1.06 C3–N2 1.40 C3–N2 1.32 N2–N2 1.25
N3–H 1.01 C3–O2 1.36 C3–O1 1.22 N2–O1 1.22
N2–H 0.99 C2–C2 1.38 C2–C2 1.28 O1–O1 1.21
O2–H 0.96 C2–N3 1.33 C2–N2 1.32

Formal triple bonds

C4–C4 1.54 C2–N2 1.33 C2–C2 1.20 N1–N1 1.10
C4–C3 1.52 C2–O2 1.36 C2–N1 1.16
C4–C2 1.46 N3–N3 1.45
C4–N3 1.47 N3–N2 1.45

Aromatic bonds

C4–N2 1.47 N3–O2 1.36 C2–C3 1.40 N2–N2 1.35
C4–O2 1.43 N2–N2 1.45 C2–N2 1.34
C3–C3 1.46 N2–O2 1.41

aThe notation in the table indicates the connectivity of the atoms

Table 8.22 Selected bond angles

Atom Geometry Angle (�)

C4 Tetrahedral 109.47

C3 Planar 120

C2 Bent 109.47

C2 Linear 180

N4 Tetrahedral 109.47

N3 Pyramidal 109.47

N3 Planar 120

N2 Bent 109.47

N2 Linear 180

O3 Pyramidal 109.47

O2 Bent 109.47
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Each entry has to pass a scrutiny that involves such checks as the consistency between the published

coordinates and bond lengths. The information in the CSD falls into three categories, namely, biblio-

graphic, connective, and crystallographic. The bibliographic file contains information such as the

chemical name, the type of structure analysis, the chemical class, the molecular formula, and relevant

literature for a given compound. The connective file contains chemical structural formulae encoded as

atom and bond parameters, and the crystallographic file contains parameters relevant to the crystal

structure data and its solving.

Retrieval from the database is flexible, and the software permits many different types of search,

such as on chemical name, formula, or class, and compounds containing specific chemical fragments

can be sought. The results of searches can be recorded by printing and plotting techniques. File

formats which can be retrieved include .cif, .mol2, .pdb, SHELXL, and laztpulverix. The .cif file can

be used, for example, to display the structure with MERCURY and is required to be deposited by

authors to enable detailed checking of the structure determination and results.

Crystallographic programs such as SHELXL produce the .cif file at the completion of the analysis.

The file can be checked for errors using programs in WinGX or other analysis systems or by using

ENCIFER available through the CCDC [47]. Any alert produced by running the checking facilities

should be dealt with by the authors prior to submission of their results for publication.

Similar databases have been organized: for proteins by the Resource for Studying Biological

Molecules (RCSB) [48]; for inorganic structures at the Inorganic Crystal Structure Database (ICSD)

[49], a database of inorganic and related structures produced cooperatively by FIZ Karlsruhe and the

National Institute of Standards and Technology (NIST) [50] and searchable via two different web

browser interfaces, CrystalWeb [51] and ICSD-WWW [49]; for metals, alloys, and intermetallic

compounds: the CrystMet [52] database at Daresbury, UK which contains some 75,000 crystal

structure data.

Table 8.23 Statistics of the Cambridge Structural Database (CSD), 2011

Structures %CSD

Total number of structures 596,810 100.0

Number of different compounds 544,565 –

Number of literature sources 1,429 –

Organic structures 254,475 42.6

Transition metal present 319,188 53.5

Li–Fr or Be–Ra present 30,134 5.0

Main group metal present 36,923 6.2

3D coordinates present 554,760 93.0

Error-free coordinates 545,085 98.3{

Neutron studies 1,534 0.3

Powder diffraction studies 2,354 0.4

Low/high temperature studies 250,328 41.9

Absolute configuration determined 11,111 1.9

Disorder present in structure 132,349 22.2

Polymorphic structures 18,386 3.1

R-factor < 0.100 559,093 93.6

R-factor < 0.075 506,465 84.9

R-factor < 0.050 325,440 54.5

R-factor < 0.030 65,897 11.0

No. of atoms with 3D coordinates 45,048,092 –

{Taken as a precentage of structures for which 3D coordinates are present

in the CSD
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8.8 Limitations of X-Ray Structure Analysis

There are certain things that X-ray analysis cannot do well, and it is prudent to consider the more

important of them.

Liquids and gases lack three-dimensional order, and cannot be used in diffraction experiments in

the same way as are crystals. Certain information about the radial distribution of electron density can

be obtained, but it lacks the distinctive detail of crystal analysis.

It is not easy to locate light atoms in the presence of heavy atoms. Difference-Fourier maps

alleviate the situation to some extent, but the atomic positions are not necessarily precise. Least-

squares refinement of light-atom parameters is not always successful, because the contributions to the

structure factor from these atoms are relatively small.

Hydrogen atoms are particularly difficult to locate with precision because of their small scattering

power and the fact that the center of the hydrogen atom does not, in general, coincide with the

maximum of its electron density. Terminal hydrogen atoms have a more aspherical electron density

distribution than do hydrogen-bonded hydrogen atoms, and their bond distances, from X-ray studies,

often appear short when compared with spectroscopic or neutron diffraction values. For similar

reasons, refinement of hydrogen-atom parameters in a structure analysis may be imprecise, and the

standard deviations in their coordinate values may be as much as ten times greater than those for a

carbon atom in the same structure. It is, nevertheless, very desirable to include hydrogen-atom

positions in the final structure model. They lead to a best fit, and are useful when comparing the

results of X-ray structure determination with those of other techniques, notably nuclear magnetic

resonance.

In general, bond lengths determined by X-ray methods represent distances between the centers of

gravity of the electron clouds, which may not be the same as the internuclear separations. Internuclear

distances can be found from neutron diffraction data, because neutrons are scattered by the atomic

nuclei. If, for a given crystal, the synthesized neutron scattering density is subtracted from that of the

X-ray scattering density, a much truer picture of the electron density can be obtained. Neutron

diffraction is discussed in detail in Chap. 11.

8.9 Disorder in Single Crystals

A typical small-molecule analysis may involve less than about 100 non-hydrogen atoms in the

asymmetric unit. With Cu Ka radiation and ymax tending to 70�, it would be expected to lead to the

determination of bond lengths with esds of about 0.005 Å and of bond angles with esds of about 0.2�.
Isotropic thermal parameters for non-hydrogen atoms usually range from 0.050 to 0.090 Å2 and may

have esds from 0.003 to 0.007 Å2. However, it is sometimes found that the refined thermal parameters

for certain atoms in a structure have atypical values. For example, Uiso may increase progressively

and significantly toward the end of a chain-like moiety compared to the more rigid areas of the

structure. The obvious and reasonable physical interpretation is simply that the atoms near the end of

the chain experience greater thermal motion than do the atoms in the bulk of the molecule. For

example, the hydroxyethyl side-chain atoms (excluding hydrogen) of an azasteroid derivative [53]

have the following Uiso parameters:

>N –CH3 –CH2 –OH

0.058 0.073 0.190 0.176
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In the analysis of this azasteroid all atoms, including those in the side chain, were resolved and

refined successfully by least squares.

Atoms in solvent of crystallization molecules may exhibit high thermal parameters, and for similar

reasons. Exceptions occur from time to time, and in the above example a well-resolved solvent water-

oxygen atom had a refined Uiso value of 0.088 Å2 and was so well ordered that its hydrogen atoms

were clearly located in a DF map, Fig. 8.27. In this particular case, the clarity of definition in the

electron density is associated with the formation of two strong hydrogen bonds donated by each of the

water-hydrogen atoms holding it firmly in position. However, in the structure of another steroid

derivative [54], the carbon atoms of the side chains were so badly disordered that some atoms were

not resolved in the difference electron density and appeared as diffuse patches, Figs. 8.28 and 8.29.

Such disorder is probably of a statistical nature, with the atoms taking up slightly different positions

from one unit cell to another. The effect can be compensated, albeit somewhat artificially, by the

refinement of the isotropic thermal parameters assigned to the atoms concerned. In the example, the

Uiso values are three to six times greater than those of the ordered atoms in the structure.

Disorder may also arise by groups of atoms either in free rotation in the solid state (dynamic

disorder) or in more than one position of similar energy (static disorder). Methyl groups in large

organic molecules often show this type of behavior. It may be possible to distinguish between

dynamic and static disorder by a complete reexamination of the structure at a much reduced

temperature.

Protein structures are of particular topical interest, and innovations in this field include the

development of techniques for refining these large structures [55]. The molecules involved in protein

analysis are very large, typically with more than 1000 non-hydrogen atoms in the asymmetric unit.

Consequently, the crystals have large unit cells, and many possible X-ray reflections occur within a

given y-range compared to small-molecule crystals. It is customary to limit severely the maximum

Fig. 8.27 Difference electron density map for azasteroid HS626 showing the hydrogen atom on O1 (hydroxyl) and the

two water-hydrogen atoms, none of which was included in the structure factor calculation. The steroid molecule, part of

which is shown by the dashed line, has been subtracted out in the difference synthesis (This figure and the next five are

electron density and difference electron density maps photographed from the screen of an Evans and Sutherland Picture

System 2 cathode ray tube display unit coupled to a computer that holds the electron density data. The interactive

computer graphics system is programmed such that the user can simulate a three-dimensional effect by rotating the map

about one or more of three mutually perpendicular axes. The contouring of the maps encloses the electron density in a

cage of “chicken wire” hoops running in several directions. Unlike the sectional contour maps used elsewhere in this

book, only one contour level is used, selected so as to optimize the desired features of electron density)
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Fig. 8.28 Electron density at the end of the cholesteryl side chain of HS650 (molecule B). The density is smeared out,

and at least two stereochemically sensible positions for the C25

C26

C27

fragment can be fitted to the density, as indicated

Fig. 8.29 As for Fig. 8.28, but with molecule A of HS650, in which the disorder in the side chain is more extensive and

encompasses C23–C27. In this structure the side chains are loosely held, having little contact with neighboring

molecules in the crystal
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y-value during the course of a protein structure analysis, depending on the particular stage reached.

Corresponding to a given maximum y-value there is a minimum d-value, l=2 sin ymax and it is

customary to speak of the dmin of an analysis as the nominal resolution. The protein analysis may

proceed through stages of progressively higher resolution, for example, 6, 3, 2.5, 2, and 1.5 Å, the

electron density image undergoing gradually improved mathematical focusing in the process.

In addition to the large quantity of data associated with protein analysis, there is a further

technical problem, which limits the quality of most studies. During the process of crystallization

from solution, solvent molecules, typically 40–60% by weight, are trapped in the structure: the

protein molecules almost float in a solvated crystalline state [56], and consequently many regions of

electron density in the protein structure may be subject to the type of disorder described above. Even

in a good high-resolution analysis, protein data rarely extend beyond 1.5 Å, whence individual atoms

in the protein molecule may not be revealed. A protein structure refinement involves the use of both

least-squares analysis and geometrically constrained positioning of groups in order to produce a

plausible model.

We conclude this section with an example of electron density determined in the high-resolution X-

ray analysis of the enzyme ribonuclease [57], a small protein of molecular weight 13700. In the first

example, a tyrosyl residue, Fig. 8.30, is seen at 0.85 Å extremely high resolution as a hollow ring of

density and, although the individual atoms are not resolved, the shape of the density image is strikingly

good. As would be expected, the sulfur atom of a methionine residue, Fig. 8.31, is quite outstanding,

but it does not swamp the rest of this slender aliphatic side chain. At this resolution, the high quality of

the refined analysis is evident in the appearance of resolved, solvent (water) molecules, as shown in

Fig. 8.32. Further practical details of protein analysis are discussed in detail in Chap. 10.

8.10 Computer Prediction of Crystal Structures

Recent work has involved computer programs that fit structures to a givenmolecular conformation and

minimize the lattice energy of the chosen structure model so as to obtain an energetic “best fit.” As an

example, we consider the known crystal structure of 5-azauracil, Figs. 8.33 and 8.34.

8.10.1 Crystal Structure of 5-Azauracil [58]

A successful modeling procedure requires: (1) an accurate model of the molecule; (2) a formula for

the intermolecular force function, and (3) a method for generating close-packed structures. In this

example, the molecular structure model was obtained through an energy optimization of an SCF 6-

31G** wavefunction, using the program CADPAC [59].

The model for the electrostatic contribution to the lattice energy involved calculating sets of

atomic multipoles derived by a distributed multipole analysis [60] of the MP2 6-31G** wavefunction

for 5-azauracil. Other intermolecular forces were represented by an isotropic atom–atom repulsion

and attraction (dispersion) potential. Thus the lattice energy U was written as

U ¼
X

i21;j22
ðAppAqqÞ1=2 exp½�ðBppBqqÞRij=2� � ðCppCqqÞ=R

6
ij (8.121)

where atom i in molecule 1 is of type p, atom j in molecule 2 is of type q, and Rij is the i–j

intermolecular distance; the best known values [60, 61] of the parameters A, B, and C for the C, H,

O, and N atoms were used. This form of the potential function has been found to be successful in

representing other small, rigid C, H, O, N molecular species.
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The program MOLPAK [62] was used to select close-packed molecular structures, using a simple

hard-sphere repulsion potential function. The lattice energies were calculated with the

program DMAREL [62], and minimization of the lattice energy was carried out by a modified

Newton–Raphson method that optimized the unit-cell dimensions and the rotations and translations of

each molecule in the unit cell; the symmetry was generally maintained, although the minimization

procedure did not enforce it. The ten structures with the lower initial lattice energies corresponded to

space groups P�1, P21, P21/c, and P212121. Structures in these space groups were minimized, and on the

basis of the results MOLPAK crystal structures were generated with the less common space groups P1,

C2/c, Pna21, Pca21, and Pbca. Table 8.25 lists the predicted unit-cell dimensions and hydrogen-bond

distances, which are very structure-sensitive, for the six lower energy-minimized structures, together

with the corresponding results from the X-ray study.

Fig. 8.30 Figures 8.30–8.33 show extracts from the electron density map (COOT, Sect. 10.8.3) of ribonuclease-A at

0.85 Å extremely high resolution. The maps are calculated with the coefficients Fo + (Fo � jFcj) ¼ 2Fo � jFcj and
thus show features of both the electron density and the difference electron density. This figure shows a tyrosyl residue,

HOC6H4CH2CH<, with the hole of the phenyl ring and the –OH group (at the top) clearly indicated. [Data collected at

the Diamond Light Source synchrotron (Sect. 3.1.6) at 100 K and 0.77 Å wavelength.]
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Fig. 8.31 Methionyl

residue,

CH3SCH2CH2CH<,

showing the outstanding

electron density region

around the sulfur atom

Fig. 8.32 This electron

density portion shows a

clearly resolved solvent

molecule (water), not

included in the structure

factor calculation

424 8 Direct Methods and Refinement



Conclusions
The X-ray determination [58] and the best modeled structure of 5-azauracil, labeled * in Table 8.25,

are in good agreement. Both are in space group Pbca with unit-cell parameters all within 0.3 Å, the

modeled structure requiring a unit-cell transformation a0 ¼ b, b0 ¼ c, c0 ¼ a in order to conform to

the X-ray setting. The small energy differences, Table 8.25, of the order of 1–2 kJ mol�1, between the

best solution and other close agreements, mean that at this stage in the development of structure

prediction it may be necessary to obtain final confirmation by X-ray methods. In fact both the crystal

structure and the best predicted structure in this case are very similar, as we have seen, with respect to

unit cell and space group and this also applies to the structures in the details of packing and the rippled

sheet H-bond formation, Fig. 8.35. Two strong hydrogen bonds, N1H1. . .O4 and N3H3. . .N5, and

several weaker intermolecular interactions combine to produce this crinkled sheet structure.

This crystal structure was independently predicted by a search for minima in the lattice energy, as

calculated using an ab initio optimized molecular structure and a distributed multipole model for the

electrostatic interactions. The global minimum in the search thus corresponded to the same Pbca

space group, with rms errors in the cell lengths of about 3.7%. There is a larger energy gap separating

the observed hydrogen-bonding motif structure from alternative structures, with different hydrogen

bonds and connectivity.

8.10.2 Developments in Computer Crystal Structure Prediction

The state of the art in the computer prediction of organic crystal structures has been the subject of

several authoritative reviews [63, 64]. Many programs have been written that attempt to predict

structures, and a list of them is given in Table 8.26. The assumption is made that the true crystal

structure will correspond to the global minimum lattice energy among the predicted structures. Since

Fig. 8.33 Chemical formula of 5-azauracil, C3H3N3O2

Fig. 8.34 View of the molecule of 5-azauracil molecule in the crystal structure, perpendicular to the molecular plane,

showing 50% thermal ellipsoids
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the structure is calculated for atoms at rest, that is, at 0 K, the lattice energy will differ from the lattice-

free energy at ambient temperature mainly by an entropic component, which could affect the choice

of structure when several results of similar lattice energy are calculated.

8.11 Blind Structure Prediction of the Flexible Molecule
1-Benzyl-1H-Tetrazole

1-Benzyl-1H-tetrazole is a molecule with 2� of conformational freedom and has an unusual tetrazole

functional group, providing a challenge to crystal structure prediction methods. There are too few

structures with the C–H tetrazole fragment in the Cambridge Structural Database [65, 66] for any

prior expectations of the intermolecular interactions of the tetrazole ring to be made.

Table 8.24 Crystal data for 5-azauracil, C3H3N3O2

Color/shape Colorless/needles

Temperature (K) 289(2)

Crystal system Orthorhombic

Space group Pbca

a (Å) 6.5135(3)

b (Å) 13.5217(4)

c (Å) 9.5824(4)

Z 8

Diffractometer/scan CAD4/o � 2y

Radiation Cu Ka

Wavelength (Å) (graphite

monochromator)

1.54178

Crystal dimensions (mm) 0.48, 0.33, 0.14

Independent/observed reflections 779/763

y (�) range for data collection 6.54–74.178

Corrections applied Lorentz and polarization

Absorption correction None

Computer programs CAD4-Express 1988

Structure solution SHELX-86

Structure refinement SHELXL-93

Refinement method Full matrix least squares on jFj2
Data/restraints/parameters 763/0/86

Goodness-of-fit on F2 1.045

Final R indices [I � 2s(I)] R1 ¼ 0.0337; wR2 ¼ 0.0909

R indices (all data) R1 ¼ 0.0409; wR2 ¼ 0.1192

Table 8.25 Crystal structure parameters for modeled structures and the X-ray structure

Space group �U (kJ mol�1) a (Å) b (Å) c (Å) b (�) (Vc/Z) (Å
3) NH. . .O (Å) NH. . .N (Å)

Pbca* 109.4 13.777 9.197 6.814 90 107.9 2.17 1.87

P21/c 108.2 9.545 7.293 9.710 140.3 107.9 2.51 1.83

Pbca 108.1 7.277 9.730 12.243 90 108.3 2.48 1.82

P21 106.8 4.767 9.717 4.767 80.3 108.8 2.49 1.81

Pbca 106.4 7.302 9.694 12.296 90 108.8 2.51 1.81

Pca21 105.2 13.517 3.682 9.129 90 113.6 2.09 1.86

X-ray – 6.5135 13.5217 9.5824 90 105.5 2.03 1.99
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Fig. 8.35 The crystal structure of 5-azauracil: four unit cells of the hydrogen bonded sheet, viewed along the a axis;

hydrogen bonds are denoted by dashed lines

Table 8.26 Programs for organic crystal structure prediction

Program

Type of molecule used

in development Search type

Chin Crystal engineering: diketo-

piperazines

Monte Carlo simulated annealing with hydrogen-bonding bias

CRYSTALG Rigid organics: amides,

bases

Self-consistent basin-to-deformed-basin mapping global optimization

CRYSCA Pigments, organometallics Random search with steepest descent

ICE9 Rigid hydrocarbons Systematic grid search to generate close-packed structures

MDCP Small rigid Constant pressure molecular dynamics to find crude structures

MOLPAK Energetic materials, rigid Systematic search for high density structures in common coordination

types

DMAREL Rigid polar and hydrogen

bonded

MPA,

extended to

Mpg

Small rigid Lattman systematic, or random generation of expanded trial unit cell

Perlstein Moderate sized, semi-

flexible organics

Aufbau search for low energy one-dimensional and two-dimensional

aggregates, primarily for monolayer predictions

PMC Hydrocarbons Symmetry adapted grid systematic

Polymorph

Predictor

Flexible organics, including

pharmaceuticals

Monte Carlo simulated annealing with intermediate clustering

PROMET Rigid hydrocarbons Selecting cohesive dimer, ribbons, and layer substructures of partial

space group

SySe and PP Pigments Grid-based systematic

UPACK Sugars and alcohols Systematic grid or random search, with intermediate clustering
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Crystal Structure of 1-Benzyl-1H-Tetrazole
The crystal structure determination and refinement of 1-benzyl-1H-tetrazole, C8H8N4, has been

carried out using the programs SHELXS-86 and SHELXL-97 in WinGX [22], with Mo Ka X-ray

data measured at 120(2) K [67]. The final data/restraints/parameter ratios were 977/1/113; R

indices, I > 2s(I): R1 ¼ 0.0426, wR2 ¼ 0.0753; R indices, all data: R1 ¼ 0.0636, wR2 ¼ 0.0827.

Figure 8.36 shows the molecular structure and atom numbering, and Table 8.27 list the crystal data.

In the crystal structure, the benzyl and tetrazole rings are essentially planar. The individual rings

are each coplanar with the inter-ring link atom C(6), and H(5) on C(5) of the five-membered tetrazole

ring is also coplanar with its ring. The dihedral angle between the two rings is 68.52(5)�.

Crystal Packing: Weak Hydrogen Bonding
The mode of packing of the molecules in this crystal structure is unusual and unexpected. Molecules

such as 1-benzyl-1H-tetrazole, based on linked delocalized rings, might be expected to form crystal

structures involving pi. . .pi ring stacking bonding. In this case, however, no such interactions occur.

Instead the structure is held together through a large number of weak intermolecular hydrogen bonds:

[68, 69] twelve of them are of the type CH. . .N; and three are of the weaker type CH. . .C, involving

atoms in the phenyl ring, Table 8.28. The result is a structure composed of infinite S-shaped layers, as

illustrated in Figs. 8.37 and 8.38. Another interesting and unusual by-product of the hydrogen bonding

Fig. 8.36 1-Benzyl-1H-tetrazole showing thermal ellipsoids at 50 % probability. The torsion angles x1 ¼ C(7)– C(6)–

N(1)–C(5) ¼ �89.8(3)� and x2 ¼ C(12)– C(7)– C(6)–N(1) ¼ 98.5(3)� are indicated (drawn with ORTEP/RASTER)

Table 8.27 Crystal data: experimental, computed structure #2, global minimum,GM

Experimental #2 GM

a (Å) 7.6843(5) 7.932 9.992

b (Å) 5.5794(4) 5.550 8.175

c (Å) 9.4459(7) 9.437 11.038

b (�) 100.949(4) 101.323 117.504

Vc (Å
3) 397.61(5) 407.331 799.726

Z 2 2 4

Space group P21 P21 P21/c

x1 (
�) 89.91 87.38 86.07

x2 (
�) �98.57 �97.88 �92.07

Density (g cm�3) 1.338 1.306 1.330
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Table 8.28 Hydrogen bonds for 1-benzyl-1H-tetrazole

D-H. . .A d(D–H) (Å) d(H. . .A) (Å) d(D. . .A) (Å) ffDHA (�)

C(8)–H(8). . .C(8)#1 0.95 2.93 3.743(3) 144.3

C(9)–H(9). . .C(6)#1 0.95 2.93 3.668(4) 135.4

C(10)–H(10). . .N(3)#2 0.95 2.91 3.723(3) 143.9

C(10)–H(10). . .N(4)#2 0.95 2.78 3.674(4) 157.2

C(12)–H(12). . .N(2)#3 0.95 2.78 3.617(4) 148.1

C(6)–H(6B). . .N(3)#3 0.99 2.65 3.598(4) 159.7

C(6)–H(6B). . .N(3)#3 0.99 2.93 3.766(4) 142.4

C(5)–H(5). . .N(3)#3 0.90(3) 2.70(3) 3.490(4) 146(2)

C(6)–H(6A). . .N(3)#4 0.99 2.75 3.245(3) 111.5

C(5)–H(5). . .N(4)#5 0.90(3) 2.64(3) 3.292(4) 130(2)

C(12)–H(12). . .N(3)#3 0.95 3.14 3.991(3) 150.5

C(6)–H(6B). . .N(3)#3 0.99 2.93 3.766(4) 142.4

C(9)–H(9). . .N(4)#6 0.95 3.00 3.664(3) 127.8

C(10)–H(10). . .N(4)#6 0.95 3.04 3.679(4) 126.4

C(10)–H(10). . .C(5)#6 0.95 3.15 3.882(4) 135.0

Symmetry transformations used to generate equivalent atoms:

#1: �x + 1, y� 1
2
, �z + 2; #2: �x + 2, yþ 1

2
, �z + 2; #3: x, y + 1, z

#4: �x + 1, yþ 1
2
, �z + 1;#5: �x + 2, yþ 1

2
, �z + 1; #6: x, y, z + 1

Additionally there is an intermolecular CH. . .pi interaction: C(8)–H(8). . .benzyl centroid

#1 ¼ 2.859 Å

Fig. 8.37 1-Benzyl-1H-

tetrazole : view of the

infinite S-shaped layers

held together by weak

CH...N and CH...C

hydrogen bonds (drawn

with Accelrys Discovery

Studio 3 with coordinates

generated in MERCURY)
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is the formation of tetrazole clusters, Fig. 8.39, each having a central tetrazole ring coordinated by six

other tetrazoles. There is in addition one intermolecular CH. . .pi interaction, but no pi. . .pi interaction.

Structure Prediction
In view of this unusual mode of packing it was decided to initiate a blind crystal structure prediction

of 1-benzyl-1H-tetrazole. Initially the modeling study investigated possible steric hindrance to

rotation about the two torsion angles x1 and x2, Fig. 8.36, which indicated a high degree of flexibility

in the molecule. Such a degree of flexibility, where a wide range of very different molecular shapes is

possible, is required to be taken into account from the beginning of the structure search. This is a

significant difference to the approach that can be used for more rigid molecules [72–79].

Those working on this prediction study were provided only with a sketch of the 1-benzyl-1H-

tetrazole molecule and were told only that the crystal structure had one molecule per asymmetric unit.

The methodology used here for the prediction of crystal structures of flexible molecules had previously

been extended to a pharmaceutical-like molecule with seven torsion angles linking four aromatic rings

and a peptide group [73], in the Fifth Blind Test of Crystal Structure Prediction [74]. The search using

the program CrystalPredictor [75] covered the 59 most commonly occurring space groups and

generated about 170000 structures. The lattice energy, Elatt ¼ Uinter + DEintra, where Uinter is the

intermolecular packing energy and DEintra is the energy penalty for changing the conformation of the

molecule, was minimized by varying the cell parameters and torsion angles x1 and x2.

Fig. 8.38 Partial view of

the layer structure 1-

benzyl-1H-tetrazole

showing alternative benzyl

(B) and tetrazole (T) layers.

Note the repeating layer

sequence BTBT j TBTB
(drawn with MERCURY)
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At this stage, the lattice energy was calculated crudely by using a grid of ab initio calculations for

DEintra and an atomic point charge model and empirical repulsion-dispersion model for Uinter. This

reduced the search to 44000 unique structures. At this stage, for each of the lowest 10000 crystal

structures, the energy of the molecule and its charge distribution were calculated at the PBE0/6-31G

(d,p) level of theory using GAUSSIAN [76], to provide a better estimate of DEintra, and a more

accurate representation of the charge density in terms of a distributed multipole model [77]. This was

combined with an atom–atom exp–6 repulsion-dispersion potential, using parameters that had been

fitted to azahydrocarbon [60] and polar crystal structures [78], which were assumed transferable to

this tetrazole. The lattice energy of the crystal structure was minimized with DMACRYS [79], with

the molecule held rigidly. One hundred most stable structures were then further refined by allowing

the molecular conformation to adjust more accurately to the intermolecular forces using the program

CrystalOptimizer [73, 80] to combine the GAUSSIAN calculations on the conformations of the

isolated molecule with the crystal structure minimized by DMACRYS. Finally, the effect of the

crystal environment on the conformational energies DEintra and charge density was estimated by

calculating the conformational energy and charge distribution in a polarizable continuum, with the

dielectric constant e equal to 3, a value typical of organic molecules [81], using the Polarizable

Continuum Model [82] as implemented in GAUSSIAN [76] at the PBE0/6-31+G(d) level of theory.

Results
The two most stable crystal structures on the crystal energy landscape, Fig. 8.40, are separated by less

than 0.1 kJ mol�1 but are very different from one another in terms of structural features. One of these

structures, labeled #2, is in the same space group, P21, as determined experimentally and has very

similar unit-cell dimensions, Table 8.27. This computed structure gives an excellent overlay with the

Fig. 8.39 1-Benzyl-1H-

tetrazole packing, showing

an unusual tetrazole

cluster. (drawn with

Accelrys Discovery Studio

3 from coordinates

generated in MERCURY)
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experimental structure using the COMPACK [83] facility as implemented in MERCURY [84], with a

root mean square difference in the positions of the non-hydrogen atoms in a 15-molecule cluster of

only 0.148 Å. This model #2 provided a starting model that was easily refined in SHELXL-97 against

the experimental Fo(hkl) data, which is further proof that it is a genuine reproduction of the crystal

structure.

Lowest Energy Predicted Crystal Structure
It is of interest to note that the structure corresponding to the global minimum in lattice energy,

Table 8.28, is in space group P21/c and presents a very different spatial arrangement as shown in

Fig. 8.41. This structure also has dominant weak hydrogen bonds: eight of type CH. . .N; and one

Fig. 8.40 Crystal energy

landscape of 1-benzyl-1H-

tetrazole. Each point

represents a crystal

structure that is a lattice

energy minimum, using

PCM (e ¼ 3) at PBE0/6-31

+G level of theory

molecular calculations. The

structure that matches the

experimental crystal

structure, optimized with

the same lattice energy

model, is labeled with its

energy rank #2. The global

minimum structure (#1) is

labeled GM

Fig. 8.41 Global

minimum predicted

structure of 1-benzyl-1H-

tetrazole: the packing

reveals some of the weak

CH. . .N and CH. . .C
interactions and the weak

pi. . .pi interaction;
distances are in Å. There is

a strong possibility that this

structure may exist as a

polymorphic form (drawn

with Accelrys Discovery

Studio 3 from coordinates

generated in MERCURY)
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CH. . .C. There is also one weak pi. . .pi interaction (benzyl. . .benzyl) which is indicated in Fig. 8.41.

Thermodynamically, this structure could be a polymorph of 1-benzyl-1H-tetrazole, but no polymorph

screening had been undertaken when it was synthesized.

Conclusions
1-Benzyl-1H-tetrazole shows an unusual crystal packing with segregated layers of phenyl and

tetrazole interactions. This was predicted blindly from a structure that modeled accurately the

electrostatic forces arising from molecular charge density, including the anisotropic forces from the

lone pairs and pi-electrons, but otherwise had not been tailored to tetrazole. . .tetrazole interactions.

The successful prediction of the experimental structure as one of the two distinct most stable

structures shows that the unusual layers do present an optimal compromise between the many

different weak hydrogen bonds and other intermolecular interactions.

In structures that can exist in polymorphic modifications, the minimum energy conformation should

correspond to the thermodynamically most stable form. In practice however, various factors, such as

temperature, rate of crystallization, and nature of solvent, could affect the form that is actually observed.

It seems probable that improvements in the precision of the prediction method will involve incorporat-

ing more accurate forms of the intermolecular potential into the program, as well as allowing for the

possibility of kinetic control of crystallization. While computer prediction clearly has a part to play in

crystal structure determination, it will probably remain that X-ray diffraction will be needed for

confirmation of the structure and particularly for obtaining accurate molecular geometry.

8.12 Problems

8.1. Choose three of the following reflections to fix an origin in space group P�1, giving reasons for

your choice.

Are there any triplets which meet the vector requirements of the ∑2 formula?

8.2. The geometric structure factor formulae for space group P21 are

A ¼ 2 cos 2pðhxþ lzþ k=4Þ cos 2pðky� k=4Þ
B ¼ 2 cos 2pðhxþ lzþ k=4Þ sin 2pðky� k=4Þ

Deduce the amplitude symmetry and the phase symmetry for this space group according to the

two conditions k ¼ 2n and k ¼ 2n þ 1.

8.3. In space group P21/c, two starting sets of reflections for the application of the ∑2 formula are

proposed:

hkl jEj hkl jEj
705 2.2 6�1 �7 3.2

42�6 2.7 203 2.3

4�3 �2 1.1 8�1 �4 2.1

Origin-fixing Symbols

(a) 041, 117, �1 23 242, �162

(b) 223, 012, 13�7 111, 162
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Using just this information, which starting set would be chosen in practice? Give reasons. What

modification would have to be made to the starting set if the space group is C2/c?

8.4. The following values of ln
P

j f
2
j ðhklÞ=

h
jF2

oðhklÞj� and ðsin2yÞ=l2 were obtained from a set of

three-dimensional data for a monoclinic crystal. Use the method of least squares (program

LSLI) to obtain values for the scale K (of Fo) and temperature factor B by Wilson’s method.

ln
P

j f
2
j ðhklÞ=jF

2
oðhklÞ

h i
ðsin2yÞ=l2

4.0 0.10

5.6 0.20

6.5 0.30

7.9 0.40

9.4 0.50

What is the value of the root mean square atomic displacement corresponding to the derived

value of B?

8.5. An orthorhombic crystal contains four molecules of a chloro-compound in a unit cell of

dimensions a ¼ 7.210(4) Å, b ¼ 10.43(1) Å, c ¼ 15.22(2) Å. The coordinates of the Cl

atoms are

1
4
; y; z; 3

4
; �y; z; 1

4
; ð1

2
þ yÞ; ð1

2
þ zÞ; 3

4
; ð1

2
� yÞ; ð1

2
þ zÞ

with y ¼ 0.140(2) and z ¼ 0.000(2). Calculate the shortest Cl. . .Cl contact distance and its

estimated standard deviation.

8.6. The following data give phase indications for the reflection 771 (jEhj ¼ 2.2, ’calc ¼ �14�) in a
crystal of space group P212121. Determine ’h by both (8.25) and (8.28). For simplicity, let wh in

(8.28) be taken as unity.

k ’k (
�) h � k ’h�k (

�) jEkjjEh�kj
12,10 0 �561 �37 4.4

7�14 177 08�3 �180 5.1

12; 0�1 90 �572 �144 4.5

12,01 90 �570 �90 3.3

613 102 16�2 �64 2.7

�145 �79 83�4 92 3.7

8.7. Figure 8.13a, b shows unit cells for a hypothetical search model (S) and a target structure (T)

respectively. Assuming these structures to be correct, which of the intermolecular vectors

indicated in Fig. 8.13b will not actually occur in the Patterson for the search molecule? Explain

your answer.

8.8. (a) Why would you not use a molecular graphics package alone to generate coordinates for all

atoms in the coumarin derivative shown in Fig. 8.16a?

(b) The z coordinates of all atoms in the coumarin model built with Chem-X in Table 8.16 are all

0.0000. Why is this so?

(c) The unit cell for the coumarin model in Table 8.15 has three sides each of 100 Å and all

angles 90�. Why do you think this is so? (Hint: Apparently this is not a real unit cell.)

8.9. Determine graphically the X, Y, and Z Cartesian coordinates in Å of the six atoms of a (planar)

benzene ring to be used in Patterson search. The bond lengths are all 1.40 Å and angles 120�.
[Hint: Construct a regular hexagon with one side parallel to the X (horizontal) axis and its center

at the origin. The X, Y coordinates of atoms 1 and 2 are then obvious. The positions of the other

434 8 Direct Methods and Refinement



atoms may be generated by applying symmetry. All Z coordinates are of course 0.0]. Check

your results with the program INTXYZ, Sect. 13.6.6. If the unit cell shown has the dimensions

a ¼ 2.959 Å, b ¼ 5.741 Å, c ¼ 10.0 Å, a ¼ b ¼ g ¼ 90�, determine the x, y, z fractional

coordinates of the six atoms.

8.10. From the definition of jEj, show how a Patterson function with j(E2 � 1)j values as coefficients
leads to a sharpened Patterson function with the origin peak removed.

8.11. When employing Patterson Search methods for structure analysis, under what circumstances

would you expect the search molecule to be (a) very similar in size to, and (b) much smaller

than, the target molecule? Discuss your answer in some detail.

8.12. A third order Karle–Hauptman determinant for a centrosymmetric crystal may bewritten in

the form

Eð0Þ EðhÞ EðkÞ
Eð�hÞ Eð0Þ Eð�hþ kÞ
Eð�kÞ Eð�kþ hÞ Eð0Þ

�

�

�

�

�

�

�

�

�

�

�

�

� 0

If k ¼ h, form and evaluate the determinant. If E(0) ¼ 3 and jE(h)j ¼ jE(2h)j ¼ 2, determine

the sign of E(2h).
8.13. Consider the three triplets 101, 21�2, �1 3�3; 101, 21�2, �1 �13; and 101, 21�2, �3 �11. Decide whether

each triplet is a structure invariant, a structure seminvariant, or neither, and give reasons.

Can any of these triplets be used to specify an origin in space group P1? Explain your

conclusions.

8.14. Consider a hypothetical crystal structure with a single atom at x ¼ 0.3, y ¼ 0.2, and z ¼ 0.1.

Assume that f(103) ¼ 1.0, and calculate jF(103)j and ’(103) (a) in space group P21 (b) in space
group P212121 when the 21 axis parallel to y (i) passes through the point 0, 0, 0, and (ii) when it

is placed in the standard orientation for this space group. Comment on the results.
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Examples of Crystal Structure
Determination 9

9.1 Introduction

In this chapterwe draw together, bymeans of actual examples, someof thematerial presented earlier in the

book. It may be desirable for the reader to refer back to the previous chapters for descriptions of the

techniques used, since we shall present here mainly the results obtained at each stage.

The first three examples can be solved by either the heavy-atommethod or directmethods.Nowadays,

it is quite commonplace to attempt the solving by direct methods of those structures which, at one time,

would have been treated by the heavy-atom method. Where a powerful and sophisticated computer

package is available, direct methods frequently provide the most expeditious route to the solution of a

structure.However, in order thatwemay illustrate themethods described,we shall use both techniques in

this chapter.

9.2 Crystal Structure of 2-Bromobenzo[b] Indeno[1,2-e] Pyran [1]

2-Bromobenzo[b]indeno[1,2-e]pyran (BBIP) is an organic compound which was prepared by heating

a solution in ethanol of equimolar amounts of 3-bromo-6-hydroxybenzaldehyde (I) and 2-oxoindane

(II) under reflux in the presence of piperidine acetate. The two molecules condense with the

elimination of two molecules of water. Upon recrystallization of the product from toluene, it has an

m.p. of 176.5–177.0�C. Its molecular formula is C16H9BrO, and its classical structural formula is

shown by III.

9.2.1 Preliminary Physical and X-Ray Measurements

The compound was recrystallized from toluene by slow, isothermal evaporation of the solvent at

room temperature. The crystals were red, with an acicular (needle-shaped) habit, with the forms

M. Ladd and R. Palmer, Structure Determination by X-ray Crystallography:

Analysis by X-rays and Neutrons, DOI 10.1007/978-1-4614-3954-7_9,
# Springer Science+Business Media New York 2013
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(subsequently named) {100}, {110}, {001}, and {011} predominant, Fig. 9.1. The red color is

characteristic of the chromophoric nature of a conjugated double-bond system.

The density of the crystals was measured by suspending them in aqueous sodium bromide solution

in a stoppered measuring cylinder in a thermostat bath at 25�C. Water or concentrated sodium

bromide solution, as necessary, was added to the suspension until the crystals neither settled to the

bottom of the cylinder nor floated to the surface of the solution. Then, the crystals and solution were

of the same density, and the density of the solution was measured with a pyknometer. A convenient

variant here is to measure the refractive index of the final solution with an Abbe refractometer, having

first prepared a graph of refractive index against density from data in the literature [2].

Under a polarizing microscope, the crystals showed straight extinction on (100) and (001), and

oblique extinction (about 3� to a crystal edge) on a section cut normal to the needle axis (y). These

observations suggested that the crystals were probably monoclinic. Although the diffractometer is now

the main instrument of data collection, photographic work is still carried on in some parts of the world,

and X-ray photographs can be useful in deciding upon the suitability of the crystal specimen and for

Fig. 9.1 Crystal habit of BBIP with the crystallographic axes drawn in; the forms shown are {100}, {110}, {001},

and {011}
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information on its symmetry. In this example, we consider the use of photographic methods as a

preliminary to the diffractometer measurements.

The crystals chosen for X-ray studies had the approximate dimensions 0.2, 0.4, and 0.3 mm

parallel to a, b, and c, respectively. A crystal was mounted on the end of an annealed quartz fiber with

“Araldite” (or “Eastman 910”) adhesive and the fiber attached to an X-ray goniometer head, or arcs,

Fig. 9.2, with dental wax. The arcs were affixed to a single-crystal oscillation camera, and the crystal

was set with the needle axis accurately parallel to the axis of oscillation, first by eye and finally by X-

ray methods. Copper Ka radiation (l ¼ 1.5418 Å) was used throughout the work.

A symmetrical oscillation photograph taken about the b direction is shown in Fig. 9.3. The

horizontal mirror symmetry line indicates that the Laue group of the crystal has an m plane normal

to the needle axis. Further X-ray photographs, for example, the Laue photograph in Fig. 9.4, showed

that the only axial symmetry was 2 parallel to b, thus confirming the monoclinic system for BBIP.

Notwithstanding Weissenberg photography is rarely employed nowadays, these photographs were

used in this work, and a sample is shown in Figs. 9.5, 9.6, and 9.7. The straightforward indexing of the

reflections can be understood with reference to Figs. 9.8 and 9.9. There are no systematic absences for

the hkl reflections, so that the unit cell is primitive, but systematic absences do arise for h0l with l odd

and for 0k0 with k odd. These observations confirm the monoclinic symmetry, and the systematic

absences lead unambiguously to space group P21/c.

Measurements on the X-ray photographs gave the approximate unit-cell dimensions as:

a ¼ 7:51 A; b ¼ 5:96 A; c ¼ 26:2 A; and b ¼ 92:5�

The Bragg y-angles of 20 high-order reflections of known indices, distributed evenly in reciprocal

space, were measured to the nearest 0.01� on a four-circle CAD-4 diffractometer. From these data, the

unit-cell dimensions were calculated accurately by the method of least squares; see Sect. 8.4ff. The

complete crystal data are listed in Table 9.1. The calculated density Dc, for Z ¼ 4, is in good

agreement with the measured value Dm, which indicates a high degree of self-consistency in the

Fig. 9.2 Standard goniometer head; A and B are two arcs for angular adjustments; C and D are two sledges for

horizontal adjustments (courtesy of Stoe et Cie)
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Fig. 9.3 Symmetrical oscillation photograph taken with the X-ray beam normal to b. The horizontalm line indicates an

m plane in the Laue group of the crystal, normal to the axis of oscillation

Fig. 9.4 Laue photograph taken with the X-ray beam along b, showing clearly the twofold symmetry axis along this

direction
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Fig. 9.5 Weissenberg

photograph of the h0l layer.

The more intense

reflections show spots

arising from both Cu Ka

(l ¼ 1.5418 Å) and Cu Kb

(l ¼ 1.392 Å) radiations.

In some areas, spots from

W La radiation

(l ¼ 1.48 Å) arise due to

sputtering of the copper

target in the X-ray tube

with tungsten from the

filament; see Sect. 3.1.1. In

each case, the spots for a

given h0l reflection lie

along the directions of axial

rows at decreasing values

of sin y, in proportion to

the change in l. The

continuous streaks (Laue

streaks) arise from the

“white” radiation; filtering

(Chap. 3, Sect. 3.1.4) is

never perfect

Fig. 9.6 Weissenberg

photograph of the h1l layer.

The 01l reciprocal lattice

row, indicated by an

arrowhead, illustrates

clearly the effect of slight

mis-setting of the crystal
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parameters involved. The estimated standard deviations of the measured and calculated density

values are important, because a significant difference (>3s) may indicate the presence of unsuspected

solvent of crystallization.

9.2.2 Intensity Measurement and Correction

Intensity data were collected on the diffractometer up to sin y ¼ 65�. The number N of data to be

expected may be calculated from the formula N ¼ (4p/3)[2(sin ymax)/l]
3Vc/mG, where mG is the

number of general positions in the Laue group of the crystal, and the other symbols have their usual

meanings. Since mG ¼ 4 in the present example, N ¼ 1990. From this number we subtract the

number of systematic absences, 165, to give 1825. In practice, 1724 data were collected, indicating

101 accidental absences. Thus, a total of 1623 reflections were used for the structure analysis, giving

ten reflections per parameter, assuming anisotropic temperature factors for the non-hydrogen atoms

and a single scale factor in the least-squares refinement.

Fig. 9.7 Upper part of a

Weissenberg photograph of

the 0kl layer, Cu Kb spots,

can be seen for the more

intense reflections. The 00l

(z*) reciprocal lattice row,

indicated by an arrowhead,

is common to this

photograph and that of the

h0l layer

Fig. 9.8 Sample of

indexed reflections on an

h0l Weissenberg

photograph diagram
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The data were corrected for Lorentz and polarization effects, but not for absorption. Approximate

scale K and overall isotropic temperature B factors were obtained by Wilson’s method, Sect. 4.2.1.

The parameters were fitted by least squares, and the line obtained had the equation

ln

P
j f

2
j

F2
o

( )
¼ �1:759þ 3:480 sin2y (9.1)

Fig. 9.9 Weissenberg chart: camera diameter 57.30 mm, 2� rotation per mm travel (reproduced with the permission

of the Institute of Physics and the Physical Society, London)
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From the slope (2B/l2) and intercept (2 ln K), B ¼ 4.1 Å2 and K ¼ 0.41, where K is the scale

factor for F2
o. The graphical Wilson plot is shown in Fig. 9.10.

9.2.3 Structure Analysis in the xz Projection

This projection of the unit cell has the largest area and thus would be expected to show good resolution

of the molecule. It is uncommon for a normal three-dimensional study to be preceded by an analysis in

projection. However, from the standpoint of introductory study, carefully chosen two-dimensional

examples have much to offer.

Using Fig. 2.32, we can associate the coordinates of the general equivalent positions

� x; y; z; x; 1=2� y; 1=2þ zf g

with the four bromine atoms in the unit cell. In the xz projection, these coordinates give rise to two repeats

within the length c, so we may consider this projection in terms of plane group p2 and compute the

Patterson function from 0 to a/2 and 0 to c/2, which is equivalent to one-half of the unit cell in p2. This

portion of the projection P(uw) would be expected to show one Br–Br vector at (2x, 2z), as in Fig. 9.11.

The two rows of peaks indicate that, in this projection, the molecules lie closely parallel to the z

axis; this conclusion is supported by the large magnitude of jF(200)j, equal to 336. This value may be

compared with F(000) in Table 9.1, and, more significantly, with
P

j fj;y200 , which is 474. The peak

arising from the Br–Br vector is marked A, and by direct measurement we obtain the fractional

coordinates x ¼ 0.25, z ¼ 0.015 for the Br atom in the asymmetric unit.

An electron density map, in this projection, was calculated using the signs given by FBr with the

experimental values of Fo(h0l). If FBr was less than one third of the corresponding value of Fo for any

reflection, the sign was assumed to be uncertain and the reflection omitted from the electron density

calculation at this stage of the analysis. Figure 9.12 shows the electron density map with the molecule,

fitted with the aid of a model, marked in. The resolution is moderately good, and we can see that we are

working along the right lines. From the shapes of the rings, it is apparent that the molecule is inclined to

the plane of this projection, and therewill be a limit to the improvement of the resolution attainable in this

projection. Consequently, we begin three-dimensional studies.

Table 9.1 Crystal data for BBIP at 20�Ca

Molecular formula C16H9BrO

Mr 297.16

Space group P21/c

a (Å) 7.508(4)

b (Å) 5.959(5)

c (Å) 26.172(6)

b (�) 92.55(2)

Vc (Å
3) 1,169(2)

Radiation (Cu Ka) 1.5418 Å

Dm (g cm�3) 1.68(1)

Dc (g cm�3) 1.688(3)

Z 4

F(000) 592

aThe numbers in parentheses are estimated

standard deviations, to be applied to the least

significant figure
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9.2.4 Three-Dimensional Structure Determination

In order to obtain values for all spatial coordinates, we proceeded first to a three-dimensional

Patterson map P(uvw), calculated section by section normal to the b axis.

The coordinates of the general positions show that the Br–Br vectors in the asymmetric unit will be

found at 2x, 2y, 2z (single-weight peak), 0; 1
2
� 2y; 1

2
(double-weight peak), and 2x; 1

2
; 1
2
� 2z (double-

weight peak). Hence, wemust study the Pattersonmap carefully, particularly the Harker line ½0; v; 1
2
� and

section ðu; 1
2
;wÞ—why? Figures 9.13 and 9.14 show these two regions of Patterson space, and Fig. 9.15

illustrates a general section calculated close to the single-weight peakB. From the peaks B,C, andD, the

coordinates for the bromine atom in the asymmetric unit were found to be 0.248, 0.188, 0.016.

Repeating the phasing procedure, but now for hkl reflections, and calculating a three-dimensional

electron density map produced a good resolution of the complete structure, with the exception of the

Fig. 9.10 Wilson plot for

BBIP; the slope (2B/l2) is

3.48 and the intercept

ð2 ln KÞ is �1.76
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hydrogen atoms. Figure 9.16 illustrates a composite electron density map, which consists of super-

imposed sections calculated at intervals along a.

The scattering of X-rays by hydrogen atoms is small in magnitude, and these atoms are not

normally resolved by the direct summation of the electron density. If the data are of good quality and

all other atoms in the structure have been found, a difference-Fourier synthesis, Sect. 7.5.4, will

generally result in the hydrogen atoms being located, provided the other atoms are not themselves

too large in scattering power. It is possible also to calculate the positions of hydrogen atoms from the

geometry of the structure, if the positions of sufficient surrounding groups are known. Nowadays,

most program systems for X-ray structure analysis include routines for calculating the coordinates of

hydrogen atoms, according to their nature, for example, R1R2R3CH and R1R2CH2; the hydrogen

atoms in a CH3 group can be calculated if a position with respect to rotation about the R–CH3 bond

can be postulated.

Finally, we arrive at the complete structure for BBIP, as shown in Fig. 9.17 with a convenient

numbering scheme.

Fig. 9.11 Asymmetric unit of P(uw). Since we are concerned here mainly with the Br–Br vector (A), the slight

distortion arising from drawing b as 90� is inconsequential here
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9.2.5 Refinement

During the final stages of refinement of the structure, the hydrogen atoms were included in the

evaluation of the structure factors jFcj, but no attempt was made to refine the parameters of the

hydrogen atoms because the main interest in the problem lay in determining the molecular

conformation. We note also that we have a favorable ratio of 10:1 for data to variables. Had we

included the hydrogen atoms in the refinement, with isotropic temperature factors, the ratio would

have been decreased to 9.4; see Sect. 8.4.3. The final adjustments of the structural parameters of

the Br, O, and C atoms (x, y, z, and anisotropic temperature factors) and the scale factor were

carried out by the method of least squares. The refinement converged with an R factor of 0.070, and

a final difference-Fourier synthesis showed no fluctuations in density greater than about twice

s(ro), and then only around the position of the bromine atom. The analysis was considered to be

satisfactory, and the refinement was terminated at this stage.

Fig. 9.12 Asymmetric unit of r(xz) phased on the bromine atoms; the probable atomic positions are marked in
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Fig. 9.13 Patterson function along the Harker line ½0; v; 1
2
�, showing a double-weight Br–Br vector at C

Fig. 9.14 Patterson section ðu; 1
2
;wÞ showing a double-weight Br–Br vector at D



9.2.6 Molecular Geometry

It remained to determine the bond lengths, bond angles, and other features of the geometry of the

molecule and its relationship with other molecules in the unit cell.

From the coordinates of the atomic positions (Table 9.2) and using (7.119) and (7.121), bond

lengths and angles were calculated. They are shown on the drawings of the molecule in Figs. 9.18

and 9.19. Figure 9.20 illustrates the packing of the molecules in the unit cell, as seen along b; the

average intermolecular contact distance is 3.7 Å, a typical intermolecular contact distance in

organic compounds, in which van der Waals forces link the molecules in the solid state.

In a molecule of this nature, the planarity of the ring system is of stereochemical interest. The

equation of a plane, Ax + By + Cz ¼ D, can be solved by three triplets x, y, z. Hence, the best

molecular plane is obtained by a least-squares procedure that minimizes the sum of the squares of the

deviations d of all of the atoms from the plane. The results are listed in Table 9.3. It can be seen that

the deviations of the atoms from the best plane are not significant, and it is possible to conclude,

therefore, that the introduction of the heteroatom has but little effect on the planarity of the

benzofluorene moiety.

Fig. 9.15 Patterson section (u,0.375,w), showing a single-weight Br–Br vector B
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Fig. 9.16 Composite three-dimensional electron density map with the molecule (excluding H atoms) marked in, as

seen along a. The contour of zero electron density is not shown, and the numbers represent 100x for each atom.

A symmetry-related position to that chosen in Sect. 9.2.4 has been selected here for the Br atom (What is this symmetry

operation?)

Fig. 9.17 Structural formula for BBIP
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Table 9.2 Fractional atomic coordinates in BBIP, with esds in parenthesesa

Atom x y z

Br 0.7602(2) 0.3152(3) 0.4848(0)

C(1) 0.7820(16) 0.4187(22) 0.3789(4)

C(2) 0.7310(16) 0.4951(24) 0.4252(4)

C(3) 0.6524(16) 0.7075(25) 0.4297(5)

C(4) 0.6214(16) 0.8413(23) 0.3871(5)

C(4a) 0.6794(16) 0.7619(22) 0.3406(4)

O(5) 0.6520(11) 0.9051(14) 0.2995(3)

C(5a) 0.6973(14) 0.8329(21) 0.2526(4)

C(6) 0.6714(14) 0.9397(19) 0.2077(5)

C(6a) 0.7384(15) 0.7990(19) 0.1678(4)

C(7) 0.7401(17) 0.8230(24) 0.1150(4)

C(8) 0.8078(18) 0.6526(24) 0.0858(4)

C(9) 0.8766(17) 0.4574(24) 0.1079(5)

C(10) 0.8731(16) 0.4268(21) 0.1605(4)

C(10a) 0.8035(16) 0.5954(20) 0.1908(4)

C(10b) 0.7767(14) 0.6076(21) 0.2454(5)

C(11) 0.8064(15) 0.4734(21) 0.2850(4)

C(11a) 0.7593(14) 0.5475(20) 0.3359(5)

H(1) 0.809 0.239 0.375

H(3) 0.622 0.789 0.460

H(4) 0.565 0.999 0.389

H(6) 0.630 0.121 0.208

H(7) 0.674 0.944 0.097

H(8) 0.804 0.667 0.043

H(9) 0.886 0.361 0.076

H(10) 0.809 0.253 0.375

H(11) 0.870 0.311 0.285

aThere are no esd’s for the hydrogen atom coordinates because these

parameters were not included in the least-squares refinement

Fig. 9.18 Bond lengths in BBIP, with their estimated standard deviations in parentheses



Fig. 9.19 Bond angles in BBIP, with their estimated standard deviations in parentheses

Table 9.3 Deviations of atoms from

the least-squares plane through the

moleculea

Atom Deviation (Å)

Br 0.03

C(1) 0.01

C(2) �0.04

C(3) �0.05

C(4) �0.06

C(4a) 0.01

O(5) 0.05

C(5a) 0.06

C(6) 0.02

C(6a) 0.02

C(7) �0.06

C(8) �0.08

C(9) �0.03

C(10) 0.03

C(10a) 0.04

C(10b) 0.04

C(11) 0.03

C(11a) 0.03

aThe mean estimated standard deviation

of the deviations is 0.02, so that hardly

any atoms deviate significantly from the

best plane at a 3s level

Fig. 9.20 Stereoview of the molecular packing in the structure of BBIP, as seen along a
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9.3 Crystal Structure of Potassium 2-Hydroxy-3,4-Dioxocyclobut-1-ene-1-
Olate Monohydrate (KHSQ) [3]

1,2-Dihydroxy-3,4-dioxocyclobut-1-ene (IV) may be prepared by the acid-catalyzed hydrolysis of

1,2-diethoxy-3,3,4,4-tetrafluorocyclobut-1-ene (V). On recrystallization from water, it has a melting

point of 293�C, at which temperature it decomposes.

It has been called by the trivial name, squaric acid; the hydrogen atoms in the hydroxyl groups are

acidic, and can be replaced by a metal. Potassium hydrogen squarate monohydrate (VI), which is the

subject of this example, can be obtained by mixing hot, concentrated, equimolar aqueous solutions of

potassium hydroxide and squaric acid and then cooling the reaction mixture.

9.3.1 Preliminary X-Ray and Physical Measurements

The compound was recrystallized from water as colorless, prismatic crystals with the forms {001},

{110}, and {100} predominant, Fig. 9.21. Under a polarizing microscope, straight extinction was

observed on {001} and {100}, and an extinction angle of about 2� was obtained on a section cut

normal to b. These results suggest strongly that the crystals belong to the monoclinic system. The

density was measured in the manner indicated in Sect. 9.2.1.

The crystal specimen chosen for X-ray work had the dimensions 0.5, 0.5, and 0.3 mm parallel to a,

b, and c, respectively. The details of the preliminary measurements are similar to those described for

the previous example, and we list the crystal data immediately, Table 9.4. Copper Ka radiation

(l ¼ 1.5418 Å) was used throughout this work.

Fig. 9.21 Crystal habit of potassium hydrogen squarate monohydrate (KHSQ) with the crystallographic axes drawn in
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9.3.2 Intensity Measurement and Correction

Nine hundred symmetry-independent intensities with sin y=l � 0:57 A�1 were measured with a

CAD-4 diffractometer. Corrections were applied for polarization and Lorentz effects, but not for

absorption. Scale (K) and isotropic temperature (B) factors were deduced by Wilson’s method, and

the Fo data were converted to jEj values, see (8.1).
The structure analysis began with 142 jEj values �1.5, representing 15.8% of the experimental

reflection data, and the jEj statistics are shown in Table 9.5. The agreement with the theoretical values

for a centric distribution of jEj values is very close, in accord with the chosen centrosymmetric space

group, Table 9.4.

9.3.3 �2-Listing

The next stage was the preparation of a
P

2 listing, Sect. 8.2.5. Symmetry-related reflections become

very important in generating triplet relationships: 300 and 304 can lead to both 004 and 604, the latter

Table 9.4 Crystal data for KHSQ at 20�C

Molecular formula C4HO
�
4 , K

+, H2O

Mr 170.17

Space group P21/c

a (Å) 8.641(1)

b (Å) 10.909(1)

c (Å) 6.563(2)

b (�) 99.81(1)

Vc (Å
3) 609.6(2)

Dm (g cm�3) 1.839(7)

Dc (g cm�3) 1.854(1)

Z 4

F(000) 344

Table 9.5 Statistics of jEj values in KHSQ

Acentric Centric This structure

jEj2 1.00 1.00 1.00

jEj 0.89 0.80 0.81

jEj2 � 1 0.74 0.97 0.95

% � 1.0 36.8 31.7 33.9

% � 1.5 10.5 13.4 14.6

% � 1.75 4.7 8.0 8.4

% � 2.0 1.8 4.6 4.9

% � 2.5 0.2 1.2 1.1
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by replacing 304 by �304, taking note of the phase symmetry. The relevant phase symmetry for space

group P21/c follows from (3.87), and may be summarized as follows:

sðhklÞ ¼ sð�h �k �lÞ (9.2)

sðhklÞ ¼ sðh�klÞð�1Þkþl
(9.3)

A portion of the
P

2 listing is shown in Table 9.6; full use of the symmetry relationships (9.2) and

(9.3) has been made in setting up the listing. The numbers in parentheses under each h are the total

numbers of
P

2 triplets for each of these reflections; k and h � k represent those reflections forming a

vector triplet with h.

9.3.4 Specifying the Origin

Following the procedure described in Sect. 8.2.2 and using the reflections in Table 9.6, three

reflections were chosen and allocated positive signs, in order to fix the origin at 0,0,0. The symmetry

relationships in the space group of this compound allowed, in all, 12 signs in the origin set, Table 9.7.

The reader should check the signs, starting from the first one in each group of four, using (9.2)

and (9.3).

Table 9.6 Part of the
P

2 listing for KHSQa

h jE(h)j k jE(k)j h � k jE(h � k)j jE(h)j jE(k)j jE(h � k)j
531 (37) 2.6 010; 4 2.8 573 2.6 18.9

041 2.2 572 3.3 17.2
0041 2.0 570 2.7 14.0
114 2.3 625 1.7 10.2
032 1.7 563 2.0 8.8

114 (45) 2.3 572 3.3 482 1.9 14.4
664 1.8 570 2.7 11.2
681 1.5 573 2.6 9.0
563 2.0 451 1.5 6.9
454 1.6 540 1.5 5.5

032 (54) 1.7 531 2.6 563b 2.0 8.8
572 3.3 540 1.5 8.4
482 1.9 454 1.6 5.2
51 1.5 481b 2.0 5.1

112 (39) 2.5 572 3.3 664 1.8 14.9
482 1.9 570 2.7 12.8
114 2.3 002 1.9 10.2
571 1.7 681 1.5 6.4

010,4 (35) 2.8 332 2.2 372 1.9 11.7
625 1.7 681 1.5 7.1

332 (46) 2.2 332 2.2 664 1.8 8.7
114 2.3 242 1.7 8.6
313 1.8 041 2.0 7.9
625 1.7 313 1.8 6.7

002(25) 1.9 041 2.0 041 2.0 7.4
114 2.3 116 1.5 6.6
681 1.5 681 1.6 4.6

aWe use the notation h for hkl, k for h0k0l0, and h � k for h � h0, k � k0, l � l0
bUses 032
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9.3.5 Sign Determination

The
P

2 listing was examined with a view to generating new signs, using (8.9), which may be

given by

s½EðhÞ� � s
X

k

EðkÞEðh� kÞ
" #

(9.4)

where the sum is taken over the several k triplets all involved with the given h. The probability of

(9.4) is given by (8.10). If only a single
P

2 interaction is considered, (9.4) becomes

s½EðhÞ�� s½EðkÞsEðh� kÞ�

and the probability calculation omits the summation given in (8.11).

Since the values of the probability P+(h) were sufficiently high, the signs were accepted as

correct; very small or zero values of P+(h) indicated strongly a negative sign for h. Some examples

of the application of (9.5) are given in Table 9.8. It does not matter which reflections in a triplet are

labeled h and k.

Table 9.7 Origin-fixing reflections and their symmetry

equivalents

Reflections Sign jEj No. of
P

2 triplets

531 + 2.6 37

531 +

531 +

531 +

114 + 2.3 45

114 +

114 �
114 �
032 + 1.7 54

032 +

032 �
032 �

Table 9.8 Sign determination starting from the origin set

k h � k h Indication for s(h)

531 + 114� 625 �
531 + 03�2� 563 �
56�3� 114þ 451 �
56�3� 032+ 591 �
451� 03�2� 481 +
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Use of Sign Symbols
The above process of sign determination was applied to the entire

P
2 listing which, although it

contained 1276 triple products, was exhausted after only 24 signs had been found. To enable further

progress to be made, three reflections were assigned the symbols A, B, and C, where each symbol

represented either a plus or minus sign. Twelve symbolic signs, Table 9.9, were thus added to the set,

and the sign determination was continued, now in terms of both signs and symbols. It may be noted

that although the symbols are given to reflections with large jEj values and large numbers ofP
2 interactions, there are not, necessarily, any restrictions on either parity groups or the use of

structure seminvariants.

Some examples of this stage of the process are given in Table 9.10. The values of h and k are taken

from either Tables 9.7 and 9.9, which constitute the “starting set,” or as determined through (9.4). The

reader is invited to follow through the stages in Table 9.10, working out the correct symmetry-

equivalent signs from (9.2) and (9.3) as necessary.

From Table 9.10, we see that six more reflections have been allocated signs, and another 17 are

determined in terms of A, B, and C. Multiple indications can now be seen. For example, there are

two indications that s(573) ¼ B, two indications that s(570) ¼ �, and two indications that s

(540) ¼ A. Three indications for 041 suggest that both s(041) ¼ � and A ¼ �.

Continuing in this manner, it was found possible to allot signs and symbols to all 142 jEj values
greater than 1.5. The symbols A, B, and C were involved in 65, 72, and 55 relationships,

respectively. Consistent indications, such as those mentioned above for s(041), led finally to the

sign relationships A ¼ AC ¼ B ¼ �, from which it follows that C ¼ +. It does not always turn out

that the signs represented by symbols can be allocated from the analysis in that complete and

satisfactory manner. If there are n undetermined symbols, then there will be, in general, 2n sets of

signs to be examined. In this case, figures of merit, such as those discussed in Sect. 8.2.13, can be

used to indicate that set of signs most likely to be correct. It may not follow that the indicated set is

correct, and some trials with Fourier syntheses may be needed at this stage in order to elicit the

correct result.

9.3.6 The E Map

The signs of the 142 jEj values used in this procedure were obtained with a high probability, and an

electron density map was computed using the signed jEj values as coefficients. The sections of this

Table 9.9 Symbolic signs

Reflection Sign jEj No. of
P

2 relationships

112 A 2.5 39

1 12 A

1 1 2 �A

112 �A

010,4 B 2.8 35

010; 4 B

10; 4 B

010,4 B

332 C 2.2 46

332 C

332 �C

332 �C
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map r(xyz) at z ¼ 0.15, 0.20, 0.25, and 0.30 are shown in Figs. 9.22, 9.23, 9.24, and 9.25. They reveal

the K+ ion and the C4O
�
4 ring system clearly; the oxygen atom Ow of the water molecule was not

indicated convincingly at this stage of the analysis. A tilt of the plane of the molecule with respect to

(001) can be inferred from Figs. 9.23, 9.24, and 9.25. Some spurious peaks S may be seen. This is a

common feature of E maps. We must remember that a limited data set (142 out of 900) is being used,

and that the jEj values are sharpened coefficients corresponding to an approximate point-atom model.

The data set is therefore terminated while the coefficients for the Fourier series are relatively large, a

procedure that can lead to spurious maxima; see Sect. 6.9.1. However, such peaks are often of smaller

weight than those that correspond to true atomic positions.

Table 9.10 Further sign determinationsa

k s(k) (h � k) s(h � k) h Sign indication, sh

010.4 B 625 � 681 sð68�1Þ ¼ B

010.4 B 332 C 372 s(372) ¼ �BC

112 A 681 B 571 s(571) ¼ AB

531 + 010,4 B 573 s(573) ¼ B

114 + 681 B 573 s(573) ¼ B

332 C 332 C 664 s(664Þ ¼ CC ¼ þ
114 + 664 þ 570 s(570) ¼ �
112 A 570 � 482 s(482) ¼ A

112 A 664 þ 572 s(572Þ ¼ �A

114 + 572 �A 482 s(482) ¼ A

032 + 572 �A 540 s(540) ¼ A

032 + 482 A 454 s(454) ¼ �A

114 + 454 �A 540 s(540) ¼ A

332 C 114 þ 242 s(242) ¼ �C

112 A 114 þ 002 s(002) ¼ A

112 A 482 A 570 s(570) ¼ �AA ¼ �
570 � 531 þ 041 s(041) ¼ �
625 � 332 C 313 s(313Þ ¼ C

313 C 332 C 041 s(041) ¼ �CC ¼ �
531 + 041 � 572 sð57�2Þ ¼ þ
002 A 041 � 041 s(041) ¼ A

002 A 681 B 681 s(681) ¼ AB

002 A 114 þ 116 s(116Þ ¼ A

aSymmetry relations should be employed as necessary

Fig. 9.22 E map for KHSQ at z ¼ 0.15
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Fig. 9.23 E map for

KHSQ at z ¼ 0.20

Fig. 9.24 E map for

KHSQ at z ¼ 0.25

Fig. 9.25 E map for

KHSQ at z ¼ 0.30
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9.3.7 Completion and Refinement of the Structure

Sometimes, all atomic positions are not contained among the peaks in an E map. Those peaks that do

correspond to chemically sensible atomic positions may be used to form a trial structure for

calculation of structure factors and an Fo electron density map. A certain amount of subjective

judgment may be required to decide upon the best peaks for the trial structure at such a stage.

This situation was obtained for KHSQ, although it was not difficult to pick out a good trial

structure. Coordinates were obtained for all non-hydrogen atoms except the oxygen atom of the water

molecule. The R-factor for this trial structure was 0.30, and the composite three-dimensional electron

density map obtained is shown in Fig. 9.26, which now reveals Ow clearly. It may be noted in passing

that the small peak labeled Ow in Fig. 9.22 corresponds to the position of this atom, but this fact could

not be determined conclusively at that stage of the analysis.

Fig. 9.26 Composite electron density map for KHSQ (excludingH atoms); the atomic coordinates are listed in Table 9.11

Fig. 9.27 Composite difference electron density map for KHSQ. Positive contours are solid lines and negative

contours are broken lines. Bonds in the squarate ring and those involving hydrogen atoms are shown as dotted lines.

Some spurious, small peaks (unlabeled) we shown by this synthesis
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Further refinement was carried out by the method of least squares, and an R-factor of 0.078 was

obtained. Figure 9.27 shows a composite three-dimensional difference-Fourier map for KHSQ. Peaks

numerically greater than 0.5, representing about twice s(r0), are significant, and have been contoured.

Some of these peaks indicate areas of small disagreement between the true structure and the model.

Three positive peaks, however, are in positions expected for hydrogen atoms. Inclusion of these atoms in

the structure factor calculations in the final cycles of least-squares refinement had a small effect on theR-

factor, bringing it to its final value of 0.077. The fractional atomic coordinates for the atoms in the

asymmetric unit are listed in Table 9.11.

Interatomic distances and angles are shown in Fig. 9.28, and a molecular packing diagram, as seen

along c, is given in Fig. 9.29. From the analysis, we find that intermolecular hydrogen bonds exist

between O(2) and O(1)0 [2.47(1) Å], between O(3)˝ and Ow [2.76(1) Å], and between O(4)0 and Ow

[2.95(1) Å]; they are largely responsible for the cohesion between molecules in the solid state.1

Electron Counts on Atoms
We cannot determine from this analysis how the electronic charge on the individual species is

distributed. With X-rays, a more precise analysis would be needed, followed by a peak integration

of an electron density map. However, an ab initio calculation with Gaussian 94 on a free KHSQ

species resulted in the following electron population parameters p on the individual atomic species.

p p p p

K 18.111 C1 5.581 C2 5.833 C3 5.605

C4 5.599 O1 8.808 O2 8.760 O3 8.626

O4 8.544 Ow 8.855 H12 0.564 H3w 0.560

H4w 0.554

The value of
P

p is 86, which is also F(000)/4, as expected, the number of electrons in a single

species. Although the above results would be modified slightly in the crystal environment, they are in

excellent agreement with the formula weight and indicate the drawing of electron density from the

less electronegative species, particularly the hydrogen atoms, towards the more electronegative

Table 9.11 Fractional atomic coordinates for KHSQ

x y z

K+ 0.8249(2) 0.1040(2) 0.1295(3)

C(1) 0.4353(9) 0.1295(7) 0.2572(12)

C(2) 0.4495(9) 0.2597(7) 0.2714(12)

C(3) 0.2795(9) 0.2714(8) 0.2462(11)

C(4) 0.2659(9) 0.1345(7) 0.2305(12)

O(1) 0.5399(6) 0.0450(5) 0.2649(10)

O(2) 0.5649(6) 0.3346(5) 0.2920(10)

O(3) 0.1874(7) 0.3582(6) 0.2386(10)

O(4) 0.1578(6) 0.0605(5) 0.2022(10)

Ow 0.8789(7) 0.3429(6) 0.0424(10)

H(12) 0.522 0.413 0.246

H(3w) 1.000 0.346 0.075

H(4w) 0.826 0.400 0.100

1 Single and double primes indicate different neighboring molecules.
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Fig. 9.29 Molecular packing diagram of one layer of the KHSQ structure as seen along c. The circles in order of

decreasing size represent K, O, C, and H. The hydrogen-bond network is shown by dashed lines

Fig. 9.28 Bond lengths and bond angles in the asymmetric unit of KHSQ; the OH. . .O distances refer to the overall

O. . .O separations. Primes on atom symbols indicate neighboring asymmetric units; this diagram should be studied in

conjunction with Fig. 9.29
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oxygen atoms. This effect leads to bond lengths involving hydrogen that measure shorter by X-ray

diffraction than with neutrons, as we shall see in Chap. 11.

9.4 Crystal and Molecular Structure and Absolute Configuration of 3b-
Acetoxy-6,7-Epidithio-19-Norlanosta-5,7,9,11-Tetraene [4]

This interesting and stable dithiete compound (I) was obtained during an attempt to convert a

derivative of lanostenol (II) into a derivative of euphenol (III), through the series of reactions

(IV)–(VII). There are very few authenticated reports of 1,2-dithiones (VIII) or their tautomers, 1,2-

dithietes (IX) [5]. It may be noted en passant that (III) is closely related to the compound in Fig. 1.7b,

but a 3-b-hydroxyl group takes the place of the 3-b-iodoacetoxy group. At the time that this structure

was reported, it was the first representative of its class. The stability of the dithiete arises most

probably from a steric protection by the host molecule. From a crystallographic point of view, it has

the interest of two heavy atoms, not related by symmetry, in the asymmetric unit, and of easily

sufficient “weight” for a reliable determination of the absolute configuration of the molecule.

9.4 Crystal and Molecular Structure and Absolute Configuration. . . 465

http://dx.doi.org/10.1007/978-1-4614-3954-7_11
http://dx.doi.org/10.1007/978-1-4614-3954-7_1#Fig7_1


9.4.1 Preparation and Preliminary Optical and X-Ray Examinations

3-b-Acetoxy-7,7-ethlenedithio-5a-lanost-8-en-11-b-ol (IV) in pyridine heated under reflux with

phosphorus oxychloride gave a colorless compound, the expected 8,11-diene (V). After a prolonged

reaction time under reflux, colorless crystals corresponding to the formula C33H48O2S2, m.p.

161–163�C, [a]D ¼ 45� separated. Examination by n.m.r and u.v. indicated a 2,3-dihydro-1,4-

benzodithiine (VI). Photolysis of this compound in n-heptane at �20�C under medium-power

mercury light produced a quantitative conversion to C31H44O2S2 (VII, I) and ethylene (C2H4) [6].

The compound (I) was recrystallized from a 1:1 mixture of dichloromethane and methanol as pale-

yellow, lath-like parallelepipeds elongated in the direction of an axis, later to be described as z. The

crystal forms present in decreasing order of development were {100}, {010}, and {001}. An optical

examination indicated strongly that the crystals were monoclinic, with a b-angle close to 90�.
The density was measured by flotation in aqueous sodium bromide at 25�C. The result, 1.17

(1) g cm�3, was obtained by measuring the refractive index of the flotation-equilibrium solution and

then obtaining the density from a calibration chart.

X-ray photographs confirmed that the crystals were monoclinic and provided approximate unit-

cell dimensions. The only systematic extinctions were 0k0 for k ¼ 2n + 1; hence, the space group

was either P21 or P21/m. From the unit-cell and density measurements Z evaluated to 1.996, or 2 to

the nearest integer. Thus, for crystals of the asymmetric molecule (I) under investigation, space

group P21/m was eliminated, and so we find two sulphur atoms per unit in space group P21.

9.4.2 X-Ray Measurement of the Unit-Cell Dimensions and Intensities

Accurate unit-cell dimensions were obtained from a least-squares fit to the y values of 30 reflections

with y > 49�, measured on a Siemens four-circle diffractometer. Resolution of the Cu Ka1 peaks
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(l ¼ 1.54056 Å) and those for Cu Ka2 (l ¼ 1.54439 Å) was obtained for these reflections, which

were chosen so as to be evenly distributed in reciprocal space. The crystal data are summarized in

Table 9.12. In the usual order of a < b < c, a and c have been reversed in order that the higher

convention of b > 90� was preserved.
The intensities of 2605 of a theoretically possible 2629 symmetry-independent reflections with

sin y=l � 0:60 were measured on the diffractometer by a five-measurement technique [7]. Of the

total measured reflections, 243 for which I < 2.58s(I), were very weak; the average standard

deviations of the Fo data were 1.8% (2362 data) and 2.7% (all reflections). The very weak reflections

were omitted from the structure analysis. A reference reflection was measured after every 20

reflections: the data were scaled, first within batches of 20 reflections and then to the average value

of the reference reflection. The scaling factors varied over a range of less than�2%, and there was no

evidence of crystal decomposition.

Corrections were applied for Lorentz and polarization effects, but not for absorption (mR ¼ 0:78).

jEj values were calculated by the K-curve method; their statistics, listed in Table 9.13, show very

good agreement with those for the ideal acentric distribution.

Table 9.12 Crystal data for the title compound

Formula C31H44O2S2

Mr 512.82

System/space group Monoclinic/P21

Crystal dimensions/mm 0.2, 0.3, 0.5

a (Å) 20.1896(9)

b (Å) 11.0709(5)

c (Å) 6.4953(3)

b (�) 90.578(2)

Vc (Å
3) 1451.7(1)

Dm (g cm�3) 1.17(1)

Dc (g cm�3) 1.173(1)

Z 2

F(000) 556

m(Cu Ka) (cm�1) 19P
Z2(S)/

P
Z2 (light atoms) 0.4

Table 9.13 Statistics of jEj values
This structure Acentric Centric

jE2j 1.00 1.00 1.00

jEj 0.88 0.89 0.80

jEj2 � 1 0.76 0.74 0.97

% � 1:5 11.2 10.5 13.4

% � 1:75 4.7 4.7 8.0

% � 2:0 2.4 1.8 4.6

% � 2:5 0.4 0.2 1.2
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9.4.3 Structure Determination and Refinement

Patterson and sharpened (jEj2 � 1) syntheses revealed the expected heavy-atom peaks on the ðu; 1
2
;wÞ

Harker section, and in addition four peaks of about double the weight of the Harker peaks, with a

geometry in accord with that of two pairs of heavy (S) atoms, each pair being related by 21 symmetry.

The y coordinate of S(1) was fixed at 3
4
, and that for S(2) was deduced to be 0.69. Their difference in y of

0.66 Å was sufficient to break the pseudo-symmetry which occurs in P21 where the asymmetric unit

contains two heavy atoms. A similar situation has been reported, for example, with epilimonol

iodoacetate [8].

Successive Fourier syntheses located all non-hydrogen atoms in the molecule, and the structure

was refined on jFj by full-matrix anisotropic least squares. A Fourier difference synthesis enabled

most of the hydrogen atoms to be located and they were refined isotropically. The six hydrogen atoms

on the terminal methyl groups C(26) and C(27) were relatively poorly defined, and their coordinates

were determined geometrically in terms of their minimum energy conformations. It is highly probable

that some disorder exists in this region of the structure; see also Fig. 1.7 and accompanying text.

Corrections for anomalous dispersion were applied (DfS
00 ¼ 0.60) and the refinement converged at

R ¼ 3.4% (Rw ¼ 4.7%). All computations were performed by both local programs and the XRAY-72

system [9]. A list of structure factors has been deposited with the British Library Lending Division as

Supplementary Publication No. SUP 31423 (23 pp. 1 microfiche).

9.4.4 Absolute Configuration

The absolute configuration was examined by carrying out the least-squares refinement again, but with

the signs of the imaginary components Df 00 of the structure factors reversed. Convergence was

attained at R ¼ 3.6% (Rw ¼ 4.9%). The ratio of the weighted R values is 1.04, and by Hamilton’s

ratio test [10], the result is significant at a level better than 0.01. Thus, the absolute configuration

corresponds, not surprisingly, to the acetoxy group in the b-configuration, with the configurations at C

(13), C(14), and C(17) unchanged from those of the starting material (IV). Although the configuration

was quite clear from this result, the Flack parameter, Sect. 7.6.1, would now constitute the preferred

test.

9.5 Discussion of the Structure

Figure 9.30 is a stereoscopic illustration of themolecule (I) as seen along ½021�. The central ring system
shows a high degree of planarity: the average deviation of the atoms forming the plane C(5)–C(10) is

0.01 Å, and that for the atoms S(1), S(2), C(1), C(4), C(11), and C(14) from the same plane is 0.07 Å.

Fig. 9.30 Stereoscopic illustration of the title compound (I), as seen along ½021�
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The slightly different environments of the two sulphur atoms are shown by their deviations from the

plane (0.00 and 0.05 Å) and by the differing S–C–C angles (135.7(3)� and 100.5(3)�).
The question of the existence of the two sulphur atoms as a dithione (VIII) or a dithiete (IX) has

been clearly resolved by the geometry of the epidithio ring system, as shown by the data below:

Bond lengths (Å) Bond angles (�)

S(1)–S(2) ¼ 2.119(1) C(5)–C(6)–C(7) ¼ 123.8(4)

S(1)–C(7) ¼ 1.767(4) C(6)–C(7)–C(8) ¼ 122.1(3)

S(2)–C(6) ¼ 1.782(4) C(5)–C(6)–S(2) ¼ 135.7(3)

C(6)–C(7) ¼ 1.387(5) C(6)–C(7)–S(1) ¼ 103.3(3)

C(6)–S(2)–S(1) ¼ 80.3(3)
C(7)–C(6)–S(2) ¼ 100.5(3)
C(8)–C(7)–S(1) ¼ 134.5(3)
C(7)–S(1)–S(2) ¼ 79.3(3)

Additionally, the Raman spectrum showed a band at 486 cm�1, which corresponds to a –S–S–

stretch [11]; the >C¼S frequency is in the range 1171–1180 cm�1.

A theoretical study was carried out in connection with this unusual dithiete compound (I) [12, 13].

CNDO/2 calculations were applied to a model consisting of ring B + S(1) and S(2), a hypothetical

C6S2 molecule, for a range of C(7)–S(1), C(6)–S(2), C(7)–S(1)–S(2), and C(6)–S(2)–S(1) para-

meters, with the following encouraging results for a minimum energy conformation:

Calculated Experimental

C(7)–S(1) 1.74 Å 1.767(4) Å

C(6)–S(2) 1.76 Å 1.782(4) Å

C(7)–S(1)–S(2) 100� 103.3(3)�

C(6)–S(2)–S(1) 99� 100.5(3)�

A compound C6H4S2, corresponding to the [C6S2] fragment, cannot be isolated, as it dimerizes

through S–S bonding to the compound dibenzo[c,g]tetrathiocin, C12H8S4, which could exist in a rigid

trans form (XI), or in a mobile form with a range of possible conformations: CNDO/2 calculations as

a function of the dihedral angle between the two rings of the dimer showed the trans form to have the

most stable (minimum energy) conformation.
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The cohesion of the S–S bond is most probably occasioned by pd-orbital overlap. This mechanism

is not possible for the smaller oxygen species and o-quinones are well established as >C¼O species.

Figure 9.31 illustrates the molecular packing of the structure. The intermolecular S. . .S distances are

approximately 10 Å, and there is no tendency to dimerization. Steric factors probably prevent a close

approach of the two molecules.

In the reactions of (IV) to (VII, I), stage (IV) to (V) gave the expected elimination of water and

formation of the 11,12 double bond. Stage (V) to (VI) was accompanied by the loss of a –CH3 group

and three other hydrogen atoms. The final stage (VI) to (VII, I) was quantitative, with loss of

ethylene. The probable mechanism is a disruption at the spiro-C(7) carbon atom, followed by

migration of a sulphur atom to C(6) and subsequent aromatization of ring B. The aromatization

provides a conformational driving force for the elimination of the methyl group at C(19), the methyl

group that is attached to C(10) in II. Under u.v. activation, the structure is further stabilized by the

loss of ethylene from the dithian ring.

9.6 Some Remarks on X-Ray Structure Determination

No description of the process of X-ray crystal structure analysis can be as complete or as satisfying as

a practical involvement with the subject. In teaching crystallography and structural chemistry,

projects that include crystal structure determinations have become increasingly important. However,

in order to attempt to replicate the practical side of structure analysis, insofar as is possible in isolation

from the laboratory, problems on this topic additional to those at the end of this chapter are given in

Chap. 13; they involve the program system XRAY and the several sets of data that accompany it.

They have been designed to give practice, albeit in two dimensions, with the fundamental

techniques of solving crystal structures, given the crystal and reflection data. The programs can be

executed on any IBM-type PC. We encourage the reader strongly to tackle these problems and so

Fig. 9.31 Stereoview of the packing of the title compound (I), as seen along ½021�
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engage in a practical way with the techniques of crystal structure analysis. We refer the reader also to

Appendix D, wherein are listed the many program systems now freely available to the structural

crystallographer.

9.7 Biomolecular Modeling: Bioinformatics

We have seen that the technique of X-ray crystallography is a powerful means for the determination

of accurate crystal structures, and that this in turn provides a source of information on molecular

geometry in the form of bond lengths, bond angles, conformational parameters, planarity, and

intermolecular interactions. There are many reasons that prompt such studies. For example, we

may wish to design new industrial materials, a process which requires access to such experimental

results. We may wish to design a new drug molecule with modified properties, such as increased or

decreased potency, improved specificity, or lacking unwanted side effects. Again, detailed knowledge

of the molecular properties of the starting material, including its molecular geometry and flexibility as

well as those of the biological target are a necessary prerequisite for such research. One approach

where the crystallographic data can be applied effectively for such studies involves the use of

intensive computational techniques in which structural data from one or more starting materials are

employed. Obviously, there are many parameters and variables involved in this type of work and we

have selected an example which demonstrates many of the techniques employed.

We introduce in this section, as an important by-product of X-ray structure determination, the

technique known as biomolecular modeling. The method described here depends on the availability

of a known macromolecular structure, usually a protein or a nucleic acid, such as DNA or RNA, and

another usually much smaller molecule or ligand that is known to bind either chemically or more

usually to interact non-covalently with the macromolecule. It is usually an advantage, when embark-

ing on studies of this kind, for both structures to be known from previous X-ray or neutron diffraction

analysis. Frequently, it is possible to determine the structure of the macromolecule-ligand assembly

as such through a further diffraction study, as discussed later in Chaps. 10 and 11. However, when this

is not possible or practicable, biomolecular modeling may provide plausible answers about the mode

and location of the interactions between the two molecules.

9.8 Docking Oligomycin into ATP Synthase: Ligand and Receptor

The macrocyclic naturally occurring antibiotic oligomycin (Fig. 9.32) binds to and thereby inhibits

the biological activity of the multi-subunit protein enzyme ATP synthase (ATPase). The ATP

synthase complex is constructed of numerous protein subunits that work together (Fig. 9.33). It is

of interest to locate the site of interaction between the ligand oligomycin and the receptor ATPase.

The detailed X-ray structures of the three oligomycin structures [14] A, B, and C described below are

available for modeling studies designed to locate and characterize this site of interaction.

9.8.1 Why Modeling Studies?

Ideally the best way to investigate ligand/receptor binding would be to carry out a new X-ray or

neutron diffraction study on the complex of the two components. However, the protein (ATPase) is so

large and complex that it has not been possible to determine the complete structure as such. Instead, a

possible structure has been assembled from several independent studies, Sect. 9.10. Thus, it has been
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necessary to model the binding of oligomycin to ATPase, at least until a better way is devised for

studying the structure of the whole complex by diffraction methods.

9.9 X-Ray Structures and Absolute Configurations of the Antibiotics
Oligomycins A, B, and C: Inhibitors of ATP Synthase

Oligomycin is a naturally occurring antibiotic that occurs in the gram-positive bacterium Streptomy-

ces diastatochromogenes. Knowledge of the site on the FO (O ¼ oligomycin) domain (Fig. 9.33)

where oligomycin binds to ATPase may enable the development of new improved ATPase inhibitors

that could be produced synthetically. As the structure of oligomycin (Fig. 9.32) contains a 26-

membered ring, and therefore has numerous conformational possibilities, a detailed X-ray structure

Fig. 9.32 Chemical structures of oligomycins A, B, and C. The crystallographic numbering scheme is shown and

major features of the structures as discussed in the text are labeled
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is an essential prerequisite for the modeling studies that are aimed at locating and characterizing the

FO–ATPase binding site. In fact, recently published X-ray structures [14] of the three common forms,

of oligomycin, A, B, and C, including their absolute configurations, are available for these modeling

studies. The X-ray studies reveal regions with differences in the three-dimensional structures and

hydrogen-bonding propensity between the oligomycins, which may be associated with their potential

to bind to ATPase. The experimentally determined X-ray structures of the three forms of oligomycin

were used as the starting point for docking studies.

9.9.1 Summary

All three oligomycins crystallized in space group P212121 with four molecules per unit cell.

Oligomycin A crystallized as the methanol solvate C45H72O11	CH3OH with unit-cell parameters

a ¼ 10.476(3) Å, b ¼ 17.342(1) Å, c ¼ 26.825(5) Å; oligomycin B as an acetic acid solvate

C45H71O12	CH3CO2 with unit-cell parameters a ¼ 10.351(3) Å, b ¼ 17.305(1) Å, c ¼ 26.929

(5) Å; and oligomycin C, C45H74O10, with unit-cell parameters a ¼ 10.385(2) Å, b ¼ 11.9510

(9) Å, c ¼ 38.007(4) Å. Oligomycin A refined with final R indices [I > 2s(I)], R1 ¼ 0.0734,

wR2 ¼ 0.1940; R (all data): R1 ¼ 0.1106, wR2 ¼ 0.2100, and absolute structure parameter ¼ �0.7

(4); for oligomycin B, final R indices [I > 2s(I)] are R1 ¼ 0.0479, wR2 ¼ 0.1388; R (all data):

R1 ¼ 0.0581, wR2 ¼ 0.1435, and absolute structure parameter ¼ �0.2(2); and for oligomycin C,

final R indices [I > 2s(I)] are R1 ¼ 0.0454, wR2 ¼ 0.1130; R (all data): R1 ¼ 0.1061,

wR2 ¼ 0.1221, and absolute structure parameter ¼ 0.1(3).

Fig. 9.33 Subunit

arrangement for

Escherichia coli ATP

synthase
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The present study has provided:

1. Corrections to the previously published chemical structures of the oligomycins

2. Full descriptions of the absolute configurations

3. Information on regions of the structures with minor but important differences in their three-

dimensional structures that may create differences between the oligomycins in their potential to

bind to sites on the ATP synthase molecule. These results are all of major importance for future

studies designed to establish details of the actual binding of oligomycins to ATP synthase.

9.9.2 Background

Oligomycin is an antibiotic that occurs in the Gram-positive bacterium S. diastatochromogenes. It

is known [15] to act as a potent inhibitor of oxidative phosphorylation, and as a specific inhibitor

acting at the site of coupling between respiration and phosphorylation. Oligomycin is used

extensively in experiments designed, for example, to investigate the mechanisms of processes in

mitochondria [16] and studies involving oligomycin-sensitive ATP synthase [17, 18].

The three distinct forms or types studied here, known as Oligomycin A, B, and C, differ from

each other chemically only in one or two substituents, as discussed below. Experiments using

oligomycin as a probe do not usually attempt to distinguish between possible differences between

the effects of using a particular type of oligomycin, and often use the unrefined mixture of all three.

Enzymes known as ATP synthases are complex multi-subunited protein structures that can synthe-

size adenosine triphosphate (ATP) from adenosine diphosphate (ADP) and inorganic phosphate. In

mitochondria, the ATP synthase molecule can be visualized as having a major domain, F1, outside

the cell membrane, and a minor domain, FO, embedded within the membrane. FO derives its name

from being the oligomycin binding domain, and is also known as OSCP (the oligomycin sensitivity

conferral protein). The F1 domain, diameter 9 nm, can be seen in the transmission electron

microscope by negative staining, first observed, at least partially, by Fernandez-Moran [19]. The

antibiotic oligomycin binds to and inhibits ATP synthase. The crystal structure of the F1 catalytic-

domain of ATP synthase is known [20] and is largely consistent with Boyer’s rotary-catalysis model

[21].

9.9.3 Experimental

Samples of Oligomycin A, B, and C were purchased from Reanal Finechemical company. Small

seed crystals were produced by controlled evaporation of solutions at room temperature over

several weeks in (a) 50/50 acetone and acetic acid (for A); (b) 50/50 acetone/ethanol (for B); and

acetone only (for C). Recrystallization at 4�C was induced by seeding and produced X-ray quality

crystals after 20 days.

The forms A and B are almost colorless and prismatic or platy crystals of typical dimensions 0.25,

0.15, 0.15 mm. Form C crystals are also colorless but more plate-like with typical dimension 0.3,

0.25, 0.10 mm. In all cases, crystal quality was tested by means of Mar IP images taken in-house using

copper X-radiation prior to data collection.

Crystals were mounted for room temperature data collection on glass fibers, using epoxy resin

(araldite), and having dimensions 0.20, 0.15, 0.15 mm3 (A), 0.20, 0.20, 0.15 mm (B), and 0.3, 0.25,

0.10 mm (C) and then mounted for X-ray intensity measurement on an Enraf-Nonius CAD-4

automated 4-circle diffractometer equipped with a graphite monochromator for room temperature
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recording of the diffraction pattern. Intensity data were recorded using monochromatic Cu Ka

radiation; CAD-4 Express Software [22] was used for cell determination and refinement and data

reduction. In all cases, accurate cell parameters were determined from 25 reflections (25 < y < 28�).
For data collection, o � 2y scans were used under computer control. The intensities 4680 (A),

5266 (B), and 5498 (C) of reflections were measured for y < 70�. The crystals showed no significant
variations in the intensities of the three standard reflections during the course of data collection.

Lorenz and polarization corrections were applied and a semi-empirical correction for absorption

[23] was made for each set of data. All three oligomycins were found to have space group P212121,

the A and B unit cells being very similar but bearing no relationship to that of C.

9.9.4 Structure Determination and Refinement

The oligomycin structures were solved using SHELXS-86 [24] and refined with SHELXL-97 [12].

Non-hydrogen atoms were refined anisotropically by full-matrix least-squares techniques. Apart from

the exceptions discussed below, hydrogen-atom positions were calculated geometrically and refined

in riding mode with isotropic displacement parameters fixed by the program and common for all

hydrogen atoms attached to the same carbon atom. In the riding mode, hydrogen atoms are first

positioned according to standard molecular geometry. Then, in subsequent refinements, these atoms

are adjusted in such a way as to preserve the chosen geometry, and the isotropic temperature factors

Uiso of these atoms can be refined in the usual manner. A very high value of Uiso may indicate a

misplaced hydrogen atom, and the difference-Fourier map should be carefully examined. Calcula-

tions were made with SHELXL-97 [25] as implemented in WinGX [26] and geometrical calculations

were made with the programs PARST and PLATON [27] as implemented in WinGX.

9.9.5 Results

Figure 9.32 summarizes the chemical constitutions of the three forms as determined in these structure

analyses and the atom numbering used: ORTEP [28]/Raster3D [29] generated corresponding views of

the three molecular conformations which are shown in Fig. 9.34a–c. Figure 9.35a–c are surface

representations prepared with the program VMD [30].

9.9.6 Discussion

General
Apart from the exceptions discussed below, corresponding bond lengths and bond angles between the

three forms of oligomycin are in good agreement with one another and the values are within the

expected ranges for this type of molecule (see Tables 8.21 and 8.22).

Side Chain R4
According to the literature available [31, 32] when the X-ray analyses presented here were initiated,

the R4 side chains (Fig. 9.32) in all three forms were designated as being propanone (P3, Fig. 9.32).

As the analyses progressed it soon became clear that this was not the correct assignment for any of

the forms.
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Oligomycin A
In the refined Oligomycin A structure, the geometry for side chain R4 is as follows:

C(1)–C(2) ¼ 1.536(10) Å, O(2)–C(2) ¼ 1.487(9) Å, C(2)–C(3) ¼ 1.437(8) Å, C(3)–C(4) ¼ 1.516

(7) Å; C(1)–C(2)–C(3) ¼ 111.0(6)�, O(2)–C(2)–C(3) ¼ 104.0(5)�, C(2)–C(3)–C(4) ¼ 123. 1(5)�.
The bond angle C(2)–C(3)–C(4) is aromatic rather than tetrahedral, as is the associated short C

(2)–C(3) bond length. In difference electron density maps prior to assignment of hydrogen-atom

positions, there was only one significant peak close to where hydrogen atoms were expected to be

attached to C(3). Several different models involving the geometrical assignment of hydrogen atoms

on C(3) were set up. Only one hydrogen atom, H(3A), was left with an acceptably small temperature

factor, Uiso ¼ 0.2054 Å2, after refinement of a starting model in which two tetrahedrally positioned

hydrogen atoms on C(3) were both refined with respect to their positions and isotropic thermal

parameters. In the very final model, for consistency with the overall model, H(3) was geometrically

fixed using the aromatic option and tied to C(3), H(3) being close to the former refined H(3A)

position. These results are consistent with the R4 side chain in Oligomycin A as being propenol

(R4 ¼ P1, Fig. 9.32), not propanone (P3) as was previously thought [31]. In view of the unusual

geometry revealed in this analysis for side chain R4, several complete intensity data sets were

measured for Oligomycin A using fresh crystals; the results were always consistent with those

reported above.

Fig. 9.34 Molecular

conformations of

Oligomycins A, B, and C

respectively. The view

selected displays the most

open projection of the

molecule (ORTEP/Raster)

476 9 Examples of Crystal Structure Determination



Oligomycins B and C
The R4 side chains for both Oligomycins B and C were also quite clearly not propanone (P3) but were

consistent with P2 (Fig. 9.32), that is, with propanol. Both side chains refined with perfectly normal

geometry and well-behaved thermal displacement parameters including H(3A) and H(3B) in both

structures.

Oligomycins A and B have very similar unit cells and belong to the same space group. Many of the

atoms are in similar positions in the two structures. Chemical differences can be noted from the

formulae (Fig. 9.32). Those noted in the R4 side chains in the above discussion were quite unexpected

andmay be important for future activity studies.As discussed below, theR4 side chain inOligomycinA

differs in conformation from the corresponding side chains in Oligomycins B and C and forms an

internal hydrogen bond between O(2) and O(7) in pyranose ring X (Figs. 9.32 and 9.34a). The correct

assignment of the chemical features of any biologically active molecule is of course an essential

prerequisite to an understanding of its function and mode of action.

Fig. 9.35 Surface

representations of

Oligomycins A, B, and C

(VMD SURFACE).

Red ¼ oxygen,

blue ¼ carbon,

white ¼ hydrogen.

(a) Oligomycin A: OH(25)

forms an intramolecular

hydrogen bond with O(24)

which could exclude both

from receptor binding.

(b) Oligomycin B: there are

five active groups in this

surface view of oligomycin

B, compared to two in

oligomycin A and zero in

oligomycin C. This

suggests that oligomycin B

has a greater potential for

receptor binding than A or

C. (c) Oligomycin C: this

shows three potential

receptor binding sites. OH

(24) appears to be partially

buried but does in fact

participate in an

intermolecular hydrogen

bond. In addition OH(2) is

quite exposed in the

structure but out of this

view
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Pyranose Rings X and Y
Both of the spiro linked pyranose rings X and Y (Figs. 9.32 and 9.34) are distorted chairs in all three

forms of oligomycin, with corresponding rings having the same type of chair conformation in all three

structures. The ring torsion angles range from about �45 to �65� in both rings, and corresponding

torsion angles differ by as much as 9� but usually agree within 4�. The eight spiro linkage torsion

angles are either about �170 or �70�, with similar variations between Oligomycins as exhibited by

the rings.

9.9.7 Conformational Variations in the Macrocyclic Structures

Figure 9.32 shows the common macrocyclic structure of the oligomycins. The 26 atom chain runs

from C(11) to the ether oxygen O(37) which is the only non-carbon atom in the chain. Close

inspection of Fig. 9.34a–c reveals small differences in the overall macrocycle ring conformations.

Structures A and B are generally more similar in conformation to each other than to structure C which

has differences in torsion angle of up to 18� as discussed below.

Chain 1: C(36) to C(17) is Predominantly Fully Extended
The chain stretching from O(37) to C(17) and including side chain atom C(171) is fully extended in all

three structures (torsion angles ca. �180�). The ether oxygen O(37) is associated with a pronounced

kink in the chain (torsion angle about bond O(37)–C(11) is ca. �80�) in all structures.

Chain 2: C(17) to C(23)
This chain is also in an extended conformation but is slightly convex due to opposite sense twists at

either end.

Chain 3: C(21) to C(34)
This long stretch forms an irregular but gradual clockwise coil and is the most conformationally

variable part of the structure. Correspondence between the chain torsion angles in the three oligo-

mycins in this region is generally the most variable with differences as great as 17� about C(24)–C(25)
between Oligomycin A and C, and differences frequently around 10� elsewhere. Conformational

variability in this region can be seen from close examination of Fig. 9.33a–c.

Chain 4: C(33) to C(36)
This short stretch of chain is fully extended in all three structures.

Bends in the Macrocyclic Chains

1. The bend between chains 1 and 4:

This bend is created by a cis twist about bond C(35)–C(36) of about �3�.
2. The bend between chains 1 and 2:

This bend is associated with changes in the torsion angles about the bonds C(16)–C(17) and

C(17)–C(18) from the extended mode on either side (ca. 180�) to values of approximately�60 and

100� in all three structures.

3. The bend between chains 2 and 3:

This bend similarly involves transitions in two torsion angles, namely about C(21)–C(22)

and C(22)–C(23) from the extended mode, their values being approximately �130 and �60�

respectively.
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4. The bend between chains 3 and 4:

This bend also involves two torsion angles, namely, C(32)–C(33) and C(33)–C(34) changing from

extended mode on either side. C(32)–C(33) has values around 55� in all three structures whereas

C(33)–C(34) is highly variable with values of 134.3, 135.7, and 117.7� in Oligomycins A, B, and C

respectively.

Side Group Orientations

Close inspection of Fig. 9.33a–c reveals small differences in some side group orientations resulting

from variations in the ring conformation discussed above. These differences may be important factors

in determining the binding characteristics essential for understanding the biological activities of the

oligomycins. In the following discussion the term “external” applies to groups facing in a general

direction outwards, that is, away from the macrocyclic ring and “internal” facing groups are pointing.

CH3 Groups

In Oligomycin A, B, and C, two CH3 groups are internal, that is, those on C(12) and C(27) (Fig. 9.32).

All other CH3 groups are external.

OH Groups

In Oligomycin A, the five OH groups are all external and four of them participate in hydrogen bonds,

namely, O(2)H. . .O(7) (in ring X, see Fig. 9.32), stabilizing the R4 side chain; O(25)H. . .O(24)H,

stabilizing bend 3 (see above); and O(32)H. . .O(30), both stabilizing bend 4 (see above). Group O

(28)H forms an intermolecular hydrogen bond with O(36) (see below).

In Oligomycins B and C, the situation is quite different, possibly due in part to the lack of the R25OH

group (Fig. 9.32). The four OH groups are all external but with O(32)H. . .O(30), stabilizing bend 4,

being the only intramolecular hydrogen bond formed. This provides Oligomycins B and C with more

opportunities for hydrogen-bonding to protein receptors, and may explain differences which could exist

in their binding characteristics compared to Oligomycin A. Owing to the presence of three more

intramolecular hydrogen bonds, Oligomycin A may be deemed to be a much more stable conformation

than Oligomycin B or C.

¼O Groups

In Oligomycin A, B, and C, ¼O(26) is internal, and ¼O(30) and ¼O(36) are external. Oligomycin B

has an additional¼O(7) on pyranose ring X and this side group may be described as external and does

in fact participate in intermolecular hydrogen bonds.

Summary of the Hydrogen Bonds in Oligomycins A, B, and C
Only one intermolecular hydrogen bond, between OH(28) and O(36), is a consistent feature of these

structures. It may be concluded therefore that both OH(28) and ¼O(36) are highly exposed on the

molecular surface: OH(2) is also exposed in Oligomycins B and C forming hydrogen bonds either to

solvent, in B, or to symmetry-related molecules in C. In Oligomycin A, OH(2) forms an intramolec-

ular hydrogen bond to O(9) on the pyranose ring X: OH(24) is also exposed forming hydrogen bonds

to solvate molecules in A and B and to symmetry-related OH(2) groups in structure C. The OH(32)

group forms consistently a stabilizing intramolecular hydrogen bond with ¼O(30), and both oxygen

atoms can be discounted from binding studies. Apart from the intramolecular hydrogen bond

between O(2) and O(9) in Oligomycin A, the pyranose oxygen atoms O(9) and O(14) do not

participate in hydrogen-bonding interactions and can be taken to be inaccessible, as can ¼O(26)

and –O(37)–. It may therefore be concluded from these studies that the key groups which are likely to

be involved in intermolecular interactions with protein subunits are: OH(2) (probably only in

Oligomycins B and C), OH(24), OH(28), and O(36). The conclusions about OH(28) and ¼O(36)
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are clearly borne out by the VMD [22] SURFACE plots of the three molecules shown in Fig. 9.35.

Other features and differences of the molecular structures discussed above can be clearly seen by

careful inspection of these plots.

Absolute Configuration of Oligomycins A, B, and C
Oligomycins A, B, and C all include a number of asymmetric centers which, for the purposes of

modeling studies, need to be defined in the correct absolute configuration. The X-ray studies reported

in the present article have in all three cases been of sufficiently high quality to enable the correct

assignment of configuration in all three cases. The refined Flack [33] parameter, Sect. 7.6.1, and its

standard deviations for the three structures are: �0.7(4), �0.2(2), and 0.1(3), respectively. These

three values are all equal to 0.0 within 3 standard deviations or better and it may be concluded that

each structure has been assigned the correct absolute configuration, which can be seen by inspection

to be the same in each case. All figures depicting the oligomycin structures show them in their correct

absolute configurations.

Conclusions

While Oligomycins A, B, and C are chemically very similar, and A and B are crystallographically

pseudo-isomorphous, the small differences that do exist between them have significant effects on how

they take part in intermolecular interactions. This information is important for the assessment of the

receptor binding potential of oligomycin to sites in the ATP synthase system and, in particular, when

such assessments are being carried out by graphics-aided computer simulations.

It has been shown that in the case of Oligomycin A two surface-located sites are available for

intermolecular binding, while there are four in Oligomycin B and three in Oligomycin C. They are

highlighted in Table 9.1, counting interactions with solvent as possible intermolecular binding sites.

This result indicates that Oligomycin B, with an extra oxygen atom, O(7), available on the surface,

may be better favored than the A or C form for taking part in interactions with protein subunits.

9.10 Structure of ATP Synthase (ATPase): The Receptor

The three-dimensional structure of ATPase shown schematically in Fig. 9.33 has been constructed

from the following components:

1. The X-ray structure of the catalytic-domain F1 [20]

2. Collected information about domain FO from biochemical studies

The crystal structure of F1 is largely consistent with Boyer’s [22] rotary-catalysis model. The

absence of an X-ray structure for domain FO provides the motive for carrying out modeling studies of

the oligomycin binding. ATPase is a large subunited protein complex found in the mitochondria of

cells, and its function is to extract energy via the conversion of ADP into adenosine triphosphate

(ATP). The general reaction scheme is written as:

ADPþ Phosphate Ð ATP

The mechanism by which this conversion takes place is unique as it employs a biological rotor

driven by the passage of protons through a membrane. Various studies have shown that the ATPase

complex is constructed of numerous protein subunits that work together. Figure 9.33 shows schema-

tically the various protein subunits (a, b, c, a, b, g and d) and how they are arranged to form the
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ATPase complex. The ATPase complex straddles a cell membrane, which is itself a complex protein

assembly. Further details of the ATPase structure are given below.

The F1 Domain
The a and b subunits of ATPase (Fig. 9.33) contain the catalytic sites that carry out the reaction

between ADP and ATP; they are arranged cyclically in an ababab assembly. In the center of this

construct is the “stalk” which consists of the g subunit with, in the case of mitochondrial ATP

synthase, d and e subunits at the “foot,” the arrangement being slightly different in the case of

Escherichia coli ATP synthase. This foot is in contact with the c-ring of protein subunits which is

made up of 9–12 identical c-subunits. The c-ring and central stalk rotate within the ababab assembly

in order to cause the conformational changes required for catalytic activity. This rotation is a result of

proton transport facilitated by the a-subunit that allows access to a proton (H+) which binds to a

hydrophilic channel between the c-ring and the a-subunit, the ring moves around exposing an empty

site for the next proton. The bound proton stays attached to the c-ring until it has traveled nearly full

circle back to the a-subunit where it enters a second hydrophilic channel that opens inside, whereupon

it is released leaving an empty site for the next proton. The top of the structure (ab and g complex) is

known as the F1 domain and is external to the cell membrane. The crystal structure of the F1

catalytic-domain of ATP synthase is known [20] and is largely consistent with Boyer’s [34] rotary-

catalysis model.

The FO Domain
The c-ring, the a-unit, and other transmembrane protein units (Fig. 9.33) are known as the FO domain

and is a cell membrane embedded component of ATPase. The FO domain is thought to be where the

antibiotic oligomycin binds, thereby inhibiting the production of ATP. There are numerous examples of

mutational studies that reveal a possible binding site for oligomycin at the interface between the a-

subunit and the c-ring [35, 36].

9.11 Docking Oligomycin into ATPase

The study reported here locates and characterizes the oligomycin binding mode and site within the

FO subunit of an homology model of the ATP synthase FO subunit from E. coli, employing the three

oligomycin molecular structures independently.

9.11.1 ATP Synthase FO Model

Inspection of the European Bioinformatics Institute (EBI) database revealed a model [37] of the

FO structure derived from NMR measurements. This is a solution study as opposed to a single crystal

study. The PDB entry code for this structure is 1c17. However, this structure does not represent the

complete FO complex as it has omitted the vital section with residues numbered 167–198 in the a-

subunit. Since a complete model of the a-subunit is needed for oligomycin binding studies, it was

necessary to first build this missing section into the structure, and for this purpose the full sequence of

the a-subunit was submitted to the SWISSMODEL (now INTERPRO) fully automated protein

structure homology-modeling facility. This server is accessible either via the ExPASy web server,

or from the program DeepView (Swiss PDB-Viewer) [38, 39]. The resulting model included the

stretch missing in 1c17.
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9.11.2 Homology Modeling

The homology modeling procedure consists of four sequential steps:

1. Template selection

2. Target-template alignment

3. Model construction

4. Model assessment

Template selection and target-template alignment may be carried out together. The target is the

unknown structure being investigated and the template is a sought-for structure with a highly similar

amino acid sequence (homology) which it is hoped to find in the Protein Data Base. Usually a number

of possible templates will be found. The identification of templates relies on the production of

sequence alignments.

The simplest method of template identification relies on serial pairwise sequence alignments aided

by database search techniques. Choosing the best template from among the candidates is a key step,

and can affect the final accuracy of the structure significantly. Sometimes several homology models

are produced for a single query sequence, with the most likely candidate chosen only in the final step.

9.11.3 Refining the Model: Energy Minimization

The model provided by SWISSMODEL [40] was superimposed onto the coordinates of the

corresponding subunits in the PDB structure 1c17 using the program MOE [41] and an energy

minimization of the three chains involved in ligand binding was then carried out.

Energy Minimization
Molecules are not static structures, and many biological processes are mediated by molecular

movement. However, a static molecular model, where the atoms are located at an energy minimum,

is a useful simplification; ideally this energy minimum should be the global minimum for the given

collection of atoms.

The interactions between neighboring atoms include spring-like forces (representing chemical

bonds), and steric and van der Waals forces between nonbonded atoms. The Lennard-Jones potential

is commonly used to describe nonbonded interactions, and electrostatic interactions are computed

from Coulomb’s law. The complete potential energy function E for a biomolecule also includes terms

that constrain the deviation of bond lengths, bond angles, and torsion angles from their equilibrium

values, in addition to the nonbonded interactions. Thus, we write

E ¼ Ebonds þ Eangle þ Etorsion þ Enon�bonded þ Eelectrostatic

The set of parameters characterizing the potential function consists of equilibrium bond lengths,

angles, partial charges, force constants, and van der Waals parameters, collectively known as a force

field. Different implementations of molecular mechanics use differing mathematical expressions and

different parameters for the potential function. The force fields in use today have been developed by a

combination of high-level quantum-mechanical calculations and fitting to experimental data.

Given a model for the potential energy of the asymmetric unit, an equilibrium (zero force) set of

atomic positions can be found by energy minimization. The method of conjugate gradients is suitable

for finding the local energy minimum. Starting with an initial intelligent guess for the atomic

positions, the method of conjugate gradients will minimize the residual forces until local equilibrium

482 9 Examples of Crystal Structure Determination



is achieved. However, this is not necessarily the minimum energy structure: as with the refinement

that we have discussed in Sect. 8.4ff, a true, or global, minimum will not be reached unless we have a

reasonably accurate set of coordinates with which to begin. Lower energy states are more thermody-

namically stable and play the most important role in chemical and biological processes.

After the FO model, provided by SWISSMODEL, had been superimposed onto the coordinates of

the corresponding subunits in the PDB structure 1c17, using the program MOE [41], an energy

minimization of the three chains involved in ligand binding was then carried out until all van der

Waals contacts had been eliminated. Two models which were used for the docking were created from

the resultant model, one containing the full 12 c-subunits (Model 1) and the other including only the

three subunits involved in binding with the ligand (Model 2).

9.11.4 Creation of a Pocket for Docking Oligomycin into the ATP Synthase FO

Inspection of the completed FO model indicated that in its present form there was insufficient space

between the subunits, thought to be involved in the binding of oligomycin, in which to fit this ligand.

It was therefore necessary to create an artificial pocket in FO for this purpose. This is a reasonable

requirement because, when actually docking in vivo, it is quite feasible that the ligand would have to

force its way into the receptor.

Consequently a small space at the desired location was found using the facility Site Finder in

MOE. Dummy atoms were then placed into this pocket and Oligomycin B was manually overlaid

onto these dummy atoms and an energy minimization [42] was carried out using the program

AMBER99 on the three chains involved in binding (two c-subunits and the a-subunit). The backbone

atoms of these chains were fixed in order to retain the overall integrity of the structure. To develop

further the binding pocket, Oligomycin A was overlaid on to the coordinates of the energy minimized

ligand within the pocket, and energy minimization was again performed. This procedure was

followed during the creation of the pocket in both Model 1 (12 c-subunits and 1 a-subunit) and

Model 2 (subunits involved in ligand binding) which was then capable of accommodating any of the

oligomycins.

Docking Oligomycin into the ATP Synthase FO
The docking studies performed have highlighted contacts to the following residues that are known to be

essential for proton transport through the membrane: Asp61, Arg210, Asn214, and Gln252 [43].

Figure 9.36 demonstrates Oligomycin C bound in place, contacting these integral residues. According

to the docking study, these residues were contacted preferentially by specific ligating groups on the

antibiotic. The ligating group that appears to be most essential to binding is O(24) with a preference for

Asn214; this is a consistent theme for all forms of oligomycin and both FO models. According to the

results the ligand has a tendency to arrange itself in such a way that the outer ligating groups O(24), O

(28), O(32), and O(14) are positioned such that they will coordinate with Asn214. This allows for a

certain amount of mobility within the pocket permitting the ligating groups to contact other residues, for

example O(28)–Gln252 and O(2)–Asp61.

Conclusions

Docking of all oligomycins to the FO pocket indicated that the B and C forms would bind more tightly

than the A form. Consideration of the single crystal X-ray data alone indicated the B form to be the

best inhibitor and that O(24) was the most important ligating group for binding. This was supported
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by the docking data. The latter revealed Asn214 and other key proton translocating residues to be the

main residues contacted by the inhibitor.

These data have allowed the binding modes of different forms of oligomycin to be deduced from

X-ray single crystal data supported by molecular modeling and computational docking studies.

9.12 Problems

9.1. The unit cell of euphenyl iodoacetate, C32H53O2I, has the dimensions: a ¼ 7.26 Å, b ¼ 11.55 Å,

c ¼ 19.22 Å, and b ¼ 94.07�. The space group is P21 and Z ¼ 2. Figure P9.1 is the sharpened

and “selected” Harker section ðu; 1
2
;wÞ.

Fig. 9.36 Example of the

docking results:

oligomycin C docked,

showing the hydrogen-

bonding to Asn 214, Arg

210, and Asp 61
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(a) Determine the x and z coordinates for the iodine atoms in the unit cell.

(b) Atomic scattering factor data for iodine are tabulated below; temperature factor corrections

may be ignored.

Determine probable signs for the reflections 001 (Fo ¼ 40), 0014 (Fo ¼ 37), 106 (Fo ¼ 33),

and 300 (Fo ¼ 35). Comment upon the likelihood of the correctness of the signs which you

have determined.

(c) Calculate the length of the shortest iodine-iodine vector in the structure.

9.2. The following jEj values were determined for the [100] zone of a crystal of space group P21/a.

Prepare a
P

2 listing, assign an origin, and determine signs for as many reflections as possible,

and give reasons for each step that you carry out. In this projection, two reflections for which the

indices are not both even may be used to specify the origin.

0kl jEj 0kl jEj
0018 2.4 0310 1.9

011 1.0 0312 0.1

021 0.1 059 1.9

024 2.8 081 2.2

026 0.3 0817 1.8

035 1.8 011,7 1.3

038 2.1 011,9 2.2

9.3. The chart in Fig. P9.2 shows jEj values taken from the hk0 data for potassium hydrogen squarate.

Take an origin at the center of a sheet of centimeter graph paper and copy the jEj values on to it,
using the top left portion of each appropriate square. For each jEj value plotted, add the

corresponding symmetry-related jEj values to the other three portions of the graphical reciprocal
space representation. Remember to change the signs of jEj in accordance with the space group

symmetry. Next, draw an identical chart on transparent paper, but with the jEj values in the

bottom right portion of each appropriate square.

Fig. P9.1 Sharpened

Harker section ðu; 1
2
;wÞ for

euphenyl iodoacetate

(sin y)/l 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

f1 53.0 51.7 48.6 45.0 41.6 38.7 36.1 33.7 31.5
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(a) Obtain a
P

2 listing: take each plotted jEj value in turn on the original chart and superimpose

the transparency, with the origin of the transparency over the chosen jEj value and keeping

the two sets of h, k axes in register. Look for any superimposed jEj values. A
P

2 triplet is

given by the jEj value on the original chart under the origin of the transparency, together with
the superimposed values, with the hk indices read, one from the original and the other from

the transparency. Thus, with the origin of the transparency on the original jE(300)j, we read
840 on the original and 540 on the transparency. Set up the

P
2 listing as follows:

h jEhj k jEkj h � k jEh � kj jEhjjEkjjEh�kj
300 1.75 840 1.79 �5�40 1.92 6.01
	
	
	
700 2.26 	 	 	

The rationale for the graphical procedure may be seen from Fig. P9.3.

(b) Assign an origin in accordance with the rules discussed in the previous chapter and allocate

signs to as many reflections as possible; use symbols if necessary. It may be assumed that the

products jEhjjEkjjEh�kj are all sufficiently large for the indications to be accepted.

Fig. P9.2 Chart of the jE(hk0)j data for the KHSQ structure
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9.4. The dithiete compound discussed in Sect. 9.4 has the sulphur atoms placed as follows:

x y z

S(1) 0.2092(2) 3
4

�0.1522(2)

S(2) 0.1095(1) 0.6933(1) �0.1216(2)

(a) Calculate the S(1)–S(2) bond distance and its esd.

(b) Draw a diagram to show the positions and weights of the Patterson vector disposition around

the origin of the unit cell, as seen in projection on to the xz plane. For the purpose of the

drawing, a b-angle of 90� can be assumed.
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Proteins and Macromolecular
X-Ray Analysis 10

10.1 Introduction

In this chapter, we take a more detailed look at methods of X-ray analysis that are particularly

applicable to large biological molecules. It will involve some useful reiteration of concepts and ideas

discussed in previous chapters. We would also remind readers that although there are definite

distinctions between large and small molecules in the crystallographic arena, there is no reason to

exclude one from the other, and in fact, there are many advantages in being familiar with both. The

major differences should become clearer as we progress through this chapter. It follows that while we

deal mainly with macromolecules here, much of the information provided in this chapter is applicable

to all areas of crystal structure analysis.

Traditionally the branch of X-ray crystallography that has developed around the study of macro-

molecular structures is thought of as being derived from the need in the 1940s and 1950s to extend the

methods of analysis to include protein and enzyme structures, which range in relative molar mass

from around 6000 upwards. Structural studies of many other macromolecular types, including

chromatin, DNA fragments, and other polynucleotides, present similar problems for the crystallogra-

pher, and consequently many of the methods currently in use for proteins are applicable. Specific

topics to be covered include: methods for growing crystals, collection, measurement and handling of

the X-ray data, and methods for analyzing and interpreting the structures. Much of the emphasis here

will be given to the practical aspects of this type of research, most of the background to the underlying

theory having been covered in previous chapters. We have seen that X-ray crystallography is highly

computational, and a great variety of software is available for performing the various stages of the

calculations and graphics display. A guide to the availability of both equipment and software is

included in Appendix D, together with important Internet addresses. The flow chart in Fig. 10.1

indicates the first stages in the X-ray analysis of a macromolecule.

10.1.1 What Is a Protein?

Although proteins are very large biological molecules, their chemical formulation is quite straight-

forward. Figure 10.2a illustrates some of the important features of the first three residues of a protein

polypeptide chain: Ca atoms are chiral carbon atoms (see below); R1, R2, and R3 are side-groups,

each of which can be one of 20 [1] different chemical moieties that make up the “protein alphabet”:

the N-terminus (�NH2 or –NH3
+) is the beginning of the polypeptide chain, and at some distance

M. Ladd and R. Palmer, Structure Determination by X-ray Crystallography:

Analysis by X-rays and Neutrons, DOI 10.1007/978-1-4614-3954-7_10,
# Springer Science+Business Media New York 2013
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Fig. 10.1 Flow diagram for the preliminary stages in the X-ray analysis of a macromolecule

Fig. 10.2 (a) Schematic diagram of a polypeptide chain found in proteins, showing the first two amino acid residues

and the beginning of the third. The R-groups comprise one of the 20 commonly occurring moieties. The peptide groups

linked on either side to the Ca atoms are predominantly planar, the torsion angleo being usually in the range�20�; two
torsion angles C and f for each residue define the polypeptide main-chain conformation, Sect. 10.11.2. (b) The
absolute configuration about a Ca atom in the L-configuration, looking along H–C; the sequence C ! O ! R ! N is

encountered in a clockwise sense
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away will be the C-terminus group (�CO2H); the amino acid sequence is R1, R2, R3, . . ., Rn, where n

is the total number of residues in the chain, and is known as the primary structure. Elements of

secondary structure describe ways in which the polypeptide chain can fold; a-helices (right-handed)

and b-sheets constitute two of the principle elements of secondary structure; tertiary structure

describes how the elements of secondary structure are arranged to form the whole structure.

Two proteins are said to be homologous if their amino acid sequences are similar to within 40%,

although lesser values have been used; corresponding amino acids can be either exactly the same type

or conserved by replacement of similar side-groups. The sequence N–Ca–C(¼O)–N–Ca–C(¼O)– . . .

is known as the main chain. The bond labeled o has limited torsional freedom, with the torsion angle

o being 180 � 20� (maximum) for the usual trans peptide conformation, and 0 � 20� (maximum)

for the less usual cis peptide; the bonds on either side of the Ca atoms labeled with the torsion angles

f and C have greater but not unlimited rotational freedom. The folding of the protein chain depends

on the values that f and C take up along the chain to produce a minimum energy conformation, and

this in turn will be dependent on the amino acid sequence. Some large proteins comprise more than

one polypeptide chain, each of which acts as a subunit contributing to the tertiary structure of the

protein; structurally equivalent subunits can be related either by exact crystallographic symmetry (the

whole protein then occupies the corresponding symmetry element), by approximate or so-called non-

crystallographic symmetry (NCS), or in no regular manner at all.

10.2 Crystallization of Proteins and Complexes for X-Ray Analysis

10.2.1 Introduction

Bernal and Crowfoot [2] produced the first X-ray diffraction pattern of the protein crystal pepsin in

1934. Since then hundreds of biological macromolecules have been crystallized, at first using mainly

unrefined methodology, and with little or no control of the outcome. Recently, however, it has been

possible to rationalize the procedures, at least to some extent, through the use of hanging and sitting

drops, which require minimal amounts of protein, and multiple sampling techniques, which enable a

wide variety of conditions to be tried.

Once established, crystallization procedures are generally reproducible. However, problems can

arise as a result of one or more factors: minor differences in protein composition or purity, possibly

through extraction from different sources; or failure to reproduce exact crystallization conditions,

perhaps owing to poor reporting or recording protocols. Even the chance presence of a trace of dirt or

grease can make a difference to the resulting product. Special properties of protein crystals are

listed here:

1. Protein crystals tend to be small compared to common crystals, being rarely greater than 1 mm on

any edge.

2. In the vast majority of examples, only one stereoisomer of any biological macromolecule exists in

nature, so that their crystals contain only symmetry elements with rotation and/or translation;

inversion and reflection are excluded as these symmetry operations involve a change of hand. As a

consequence, the crystals themselves tend to exhibit fairly simple shapes compared to many

minerals and other naturally occurring crystals, such as quartz or ice crystals.

3. Protein crystals are fragile and require extremely gentle handling. This arises from their high

solvent content, which can be as much as 70%.

4. Protein crystals are extremely sensitive to pH, ionic strength, and temperature. Stability to low

temperature can be improved through the use of cryoprotectants, forming a useful technique for

improving the extent and quality of X-ray intensity data.
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5. Protein crystals diffract X-rays weakly, usually far short of atomic resolution; this effect is

associated with the presence of large amounts of disordered or partially disordered solvent in

the crystal.

10.2.2 Crystallization Conditions for Macromolecules

In keeping with aspects of crystal growth in general, the successful production of protein crystals

is highly dependent on supersaturation. Macromolecular crystals usually form by nucleation at

extremely high levels of supersaturation (100–1000%). In comparison, small-molecule crystals

usually nucleate at only a few percent supersaturation. Work with proteins usually means that the

starting material is both expensive and sparse (20 mg is a large amount of pure protein), whereas

most small-molecule compounds are available in much larger quantities and consequently quite

easy to crystallize.

Although high levels of supersaturation may be essential for promoting the nucleation of

macromolecular crystals, there are general problems in terms of the formation of good quality

crystals, because supersaturated macromolecular solutions tend to produce amorphous-like preci-

pitates. Consequently, there is competition between crystals and precipitates at both nucleation and

growth stages, and this competition is particularly acute because it is promoted at high levels of

supersaturation. Because amorphous precipitates are kinetically favored, even though they are

associated with higher energy states, they tend to dominate the solid phase and inhibit or even

preclude crystal formation.

10.2.3 Properties of Protein Crystals

Protein crystals may contain one or more of the following, which may influence their size, quality,

and X-ray diffraction characteristics: air pockets, disordered molecular deposits or clusters, inclu-

sions, ordered and disordered solvent, precipitant ions, impurities, such as bound carbohydrate,

inhibitors, non-covalently bound sugars, prosthetic groups or other ligands, or covalent or non-

covalently bound heavy atoms. The quality of sample homogeneity is another important factor.

10.2.4 Crystallization of Proteins

The formation of macromolecular crystals depends mainly on three factors:

1. Changing the relationship between the macromolecules and the solution components (water

molecules and ions)

2. Altering the structure of the solvent so that the molecules are less well accommodated, thus

promoting phase separation

3. Enhancing the number and strength of favorable interactions between macromolecules. If the right

conditions can be established, the molecules will be continuously associating to form clusters and

aggregates, to which new molecules are added more rapidly than old ones are lost. A crystal

nucleus will then be born and growth will proceed
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10.2.5 Molecular Purity

In order to form crystals, the macromolecules have to be ordered in regular three-dimensional arrays.

All forms of interference with regular packing will hinder crystallization. Lack of purity and

homogeneity are major factors in causing unsuccessful and irreproducible crystallization experi-

ments. It is advisable to carry out crystallization assays on fresh samples without mixing different

batches of macromolecules. However, some micro-heterogeneities can be tolerated provided they do

not occur in parts of the molecule involved in packing contacts in the crystal structure, a factor that is

unpredictable prior to the structure being solved.

10.2.6 Practical Considerations

The high supersaturation of the molecules required for crystal nucleation can be achieved using a

variety of chemical precipitants. Widely used precipitants include ammonium sulphate, polyethylene

glycol (PEG), methylpentanediol (MPD), and sodium chloride.

When starting from non-saturated solutions, supersaturation can be reached by varying parameters

such as temperature or pH. It should be noted that the conditions for optimal nucleation are not the

same as those for optimal growth. Nucleation may be homogeneous or heterogeneous, occurring in

the latter case on solid particles. This can lead to epitaxial growth (growth of crystals on other

crystals). Interface or wall effects and the shape and volume of drops when using hanging or sitting

drop techniques, Sect. 10.2.9, can affect nucleation or growth. Therefore, the geometry of crystalli-

zation chambers or drops can be quite critical.

10.2.7 Batch Crystallization

This method is not normally used in current research, as large amounts of protein are required. As an

exercise it can, however, be quite informative, and serious students are encouraged to try it before

moving to the smaller scale methods described below. In this method protein solutions are prepared in

milliliter quantities and crystallization is carried out in ordinary test tubes, typically of 5–10ml capacity.

The crystals grow on the walls of the test tubes and are harvested for storage when of suitable size.

To grow large crystals [3a] of the enzyme ribonuclease II (Mr � 13000), put 100 mg protein (e.g., ex

SIGMA Pharmaceuticals) into a test tube and dissolve in 2 ml water, cooled to 0 �C; then gradually add
1 ml ice-cold absolute ethanol with stirring. Measure the pH and adjust to 5.0 by addition of a suitable

buffer. Keep the tube at room temperature for 3 days. Re-cool and add a further 0.4 ml ethanol with

stirring. The composition is now approximately 40% v/v. Small crystals should eventually appear on the

walls of the tube within 10 days. The crystals obtained should be monoclinic, space group P21 [3b].

10.2.8 Microbatch Screening

As discussed in Sect. 10.2.6, it is necessary to establish the correct crystallization conditions for a new

protein. Consequently, initial experiments are usually conducted at a microscale level with sample

volumes in the range of a few microliters, with protein concentrations 5–10 mg ml–1. Since it is

difficult and expensive to prepare large quantities of highly purified protein, this strategy allows many

different crystallization conditions to be screened. The experiment is conducted using microbatch

plates such those of Hampton Research [4]. Each plate, Fig. 10.3, contains a number of small wells in
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the form of a matrix, so that individual wells can be easily labeled for future reference. This is

important, as each well will correspond to a different set of conditions and crystals will only form in a

very small number of wells, perhaps only one.

To set up the plate, drops are pipetted from a fine syringe under a layer of silicone oil (polydimethyl-

siloxane) or paraffin oil, or their 1:1 mixture. The drops contain protein and precipitant solution. All the

reagents involved in the crystallization are present at a specific concentration and no significant concen-

tration of the protein or of the reagents can occur in the drop. Reagent sampling kits are commercially

available. Diffusion ofwater from the drop takes place through the oil thus changing the concentration in

the drop, hopefully toward the required crystallization conditions. Once established, the localized well

conditions can be refined in order to optimize the crystal size and quality for X-ray diffraction, using one

of the techniquesdescribedbelow.Microbatchdroplets usually dry upcompletelywithin a fewweeks and

consequently require to be carefully monitored.

10.2.9 Vapor Diffusion Techniques

The most popular and successful techniques for establishing crystallization conditions rapidly and

efficiently with subsequent production of diffraction quality protein crystals are based on vapor

diffusion. There are several practical variations in use.

Hanging Drop
This method is illustrated in Fig. 10.4. Each drop is set up by being rapidly inverted over the prepared

well where it hangs by surface tension. The wells are again in the form of a matrix, typically 4 � 6

Fig. 10.3 Microbatch plate, (a) The well matrix, (b) The profile of the wells and detail of the drops
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(e.g., ex Hampton [4]). A great variety of plates is available, many of which are also adaptable for the

sitting drop technique. In the hanging drop method the droplet (5–20 ml) containing the macromole-

cule, a buffer and a precipitating agent is equilibrated against a reservoir (1–25 ml) containing a

solution of the same precipitant at a higher concentration than the droplet, say, by a factor of 2.

Equilibration proceeds by evaporation of the volatile component until the vapor pressure of the

droplet equals that of the reservoir. Crystals form in the droplet.

Sitting Drop
The principle here is essentially the same as that in the hanging drop technique except that the drop is

placed on a bridge which sits over the precipitant reservoir. If successful, crystals grow in the droplet.

Drop size and conditions of precipitants, buffers, and other factors similar to those used for hanging

drops apply.

Vapor Diffusion Rate of Control
As in the microbatch technique, a layer of oil can be used with hanging or sitting drop techniques.

This limits the rate of vapor diffusion; 200 ml of paraffin or silicone oil or a mixture of the two is

applied over the reservoir solution. Varying the composition of the mixture provides additional

control over the vapor diffusion rate.

Screening Crystallization Conditions
The above methods are all used with multiple screening protocols. A plate containing typically 4 � 6

wells provides a matrix of conditions. The method allows a broad range of salts, polymers and organic

solvents over a wide range of pH to be sampled. When crystals are obtained, a second, finer screening

around the relevant conditions can be used in order to optimize crystallization conditions to produce

X-ray diffraction quality crystals. Ready-to-use reagents formulated from highly pure salts, buffers, and

precipitants at various concentrations are commercially available.

Gel Crystallization Using Silica Hydrogel
Gels provide very efficient media for growing protein crystals. Silica gels, in particular are stable over

a wide range of conditions, and compatible with the additives and precipitants commonly used in

macromolecular crystal growing. The gel forms a porous network in which the crystals can grow; it

Fig. 10.4 Diagram of the hanging drop method of crystallization
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minimizes convection, sedimentation, and nucleation, and therefore promotes the growth of large

crystals without the strain usually imposed by the presence of a container. Silica hydrogel can be used

for liquid–gel, liquid–gel–liquid, and vapor diffusion as well as dialysis techniques.

10.2.10 Co-crystallization

Many proteins are required to be studied in the presence of ligands, which are usually quite small

molecules and include sugars, inhibitors, coenzymes, nucleotides, nucleic acid fragments, and sometimes

other macromolecules such as antibodies.Whenmultiple isomorphous replacement (MIR) is being used

as a phasing technique for structure analysis; see Sects. 7.5.8 and 10.6.2, it is necessary to incorporate

heavy-atom reagents into the crystals. One commonly used method of preparing these complex co-

crystals is to add the material into the protein solution prior to crystallization. Crystals grown in this way

are quite likely to suffer a change of crystal system,which is of course of no practical use inMIR, and can

lead to unwanted complications in their applications. This is discussed further in Sect. 10.2.12.

10.2.11 How to Improve the Crystals

The following brief guide should help to improve the situation where poor (or no) crystals have

appeared initially.

1. Vary the screening conditions: buffer, pH (possibly finer intervals), precipitant, protein concen-

tration, drop size, method used, temperature (crystals will sometimes form under cold conditions).

2. Use a finer matrix to vary the conditions around the wells with crystals. Try another method, for

example, the hanging drop instead of the sitting drop. Try seeding: this works by transferring finely

crushed crystal particles in the wells using a cat’s whisker or a hair.

3. One or more of the following additives may help the crystallization process: Cu2+, Zn2+, Ca2+, Co2+

ions, ethylenediamine tetraacetic acid, acetone, dioxane, phenol: for membrane proteins, N-

octyl-b-D-glucopyranoside (up to critical micelle concentrations) and substrates, cofactors, inhibi-

tors, or binding sugars.

4. With limited amounts of protein, concentrate on a few parameters known to be important: pH,

initially in 0.5 intervals of pH unit, decreasing the interval as conditions are established; tempera-

ture, 4, 22, and 37 �C are most commonly used; precipitants, such as ammonium sulfate, sodium

chloride, PEG, ethanol, or MPD are highly favored.

5. Crystals are obtained but their X-ray diffraction pattern looks like that of a small molecule, that is,

spots widely separated on the photograph. Try the click test on one of the crystals: small-molecule

crystals such as ammonium sulphate are usually physically hard and difficult to crush and will

audibly “click” when poked with a needle.

6. Large crystals are obtained but the diffraction pattern disappears after ca. 30 min exposure to the

X-ray beam, before a full set of data can be collected. Try freezing the crystals and book a session

on a synchrotron facility.

7. Crystals are very soft and disintegrate when mounted in a glass capillary tube. Try being more

careful when mounting: transfer through a larger pipette; use a larger diameter glass capillary.

Because of the fundamental importance of acquiring suitable crystals for diffraction work, a great

deal of effort is input by researchers endeavoring to improve the techniques involved. For example a

recent paper [5] on protein crystallization describes a simple method to perform matrix microseeding

in which crystals grown in one set of conditions are seeded into a secondary screen of 96 crystalliza-

tion solutions. The seed stocks can be stored at 193 K and can survive many cycles of freezing and

thawing without a decrease in the nucleation effect observed. This technique has great potential for
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improving “hit rates” in early stages of screening for crystallization conditions. Figure 10.5 illustrates

results that can be achieved by this method.

Another recent paper [6] suggests practical variations for growing large protein crystals.

Figure 10.6 shows examples of protein crystals grown using this method in semi-solid agarose gel.

(a) Xylanase. (b) Insulin at neutral pH. (c) Insulin at higher pH. (d) Glucose isomerase.

For further details of the methods described later in this chapter and a list of equipment suppliers see

Bibliography: Sanderson and Skelly; Sherwood and Cooper. An interesting video on the production of

protein crystals for X-ray crystallography is also worth viewing [7].

10.2.12 Heavy-Atom Derivatives for MIR

A very wide range of heavy-atom reagents has been compiled for this purpose, mainly organic or

inorganic compounds of mercury, gold, platinum, or uranium. The initial choice of possible

compounds may be influenced by a knowledge of the amino acid sequence of the protein [8].

Lists of known useful compounds may also be consulted [9, 10]. If good quality native crystals

are already available, soaking them in heavy-atom solutions may be the best way to prepare

derivatives. This can be carried out on single, mounted crystals, as in Fig. 10.7 except that it will

be necessary to open the capillary tube and wash the crystal at the end of the soaking period so

as to stop uptake of heavy-atom material. The procedure should be carried out under controlled

conditions of pH, temperature, time and concentration. Heavy-atom concentrations in the range

0.5–20 M may be tried for times between a few minutes and several days.

The crystals may change color but should not undergo any other significant physical change.

Detailed screening by X-ray techniques is necessary in order to establish isomorphism and to ensure

that the heavy atoms have been incorporated into useful locations; see Sect. 7.5.7. Alternatively, co-

crystallization can be tried. This involves setting up crystallization experiments using one of the

methods described in the previous section, but with the addition of a heavy-atom reagent to the

solution. It is essential to maintain the integrity of the solution prior to crystallization attempts. This

may require careful adjustment of the conditions and a good deal of patience. If crystals form they

will again require careful monitoring by X-rays so as to establish the desired incorporation of heavy

atoms. A change of crystal unit cell and space group is more likely to occur in this method.

Fig. 10.5 An example of protein crystallization results that can be achieved by the method of D’Arcy et al. [6]. This

compares (a) USP7 protein crystals used for seeds grown in 30% PEG (polyethylene glycol) 3350 and 100 mMHEPES

[4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid] at pH 7.0 with (b) Crystals grown after seeding in 20% PEG

3350 and 200 mM magnesium hexahydrate. The solid bar represents 200 mm
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10.2.13 Protein Complex Crystals with Small Molecules

Many proteins associate with small molecules as part of their biological function, for example:

enzyme–inhibitor complexes, protein–carbohydrate complexes (lectins), protein–nucleic acid frag-

ments, protein–peptide complexes, such as cyclophillin/cyclosporin, and antibody–antigen

Fig. 10.6 Examples of protein crystals grown using the method of Matsumara et al. [5]. The crystals were grow in

semi-solid agarose gel. (a) Xylanase. (b) Insulin at neutral pH. (c) Insulin at higher pH. (d) Glucose isomerase

Fig. 10.7 Capillarymountedprotein crystal, as used for heavy-atomsoakingor forX-raydata collection at room temperature
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complexes. Complex crystals may again be formed either by soaking or co-crystallization under

controlled conditions. The methodology is similar to that used for the preparation of heavy-atom

derivatives, and requires similar precautions and screening to establish incorporation of the adduct

molecules. There is a slight preference for co-crystallization, as it is more likely to lead to full

occupation of the ligand binding sites. Again, non-isomorphous derivatives may occur, but this

problem should be easily overcome by using molecular replacement (MR) to determine the structure,

assuming the native structure is known; see Sect. 8.3ff.

10.3 Crystal Mounting for X-Ray Data Collection

The two methods currently in use for X-ray data collection depend principally upon the temperature,

either room temperature or that of liquid nitrogen.

10.3.1 Mounting at Room Temperature

For X-ray data collection at room temperature, protein crystals are usually mounted in sealed thin-

walled glass capillary tubes as shown in Fig. 10.7. This method is rarely employed now and is

retained here mainly for historical reasons.

The presence of a drop of mother liquor inside the tube allows a stable equilibrium to be

established, which prevents the crystal from drying out and becoming denatured. Most proteins

rapidly deteriorate once exposed to X-rays, through the formation of free radicals. Crystal lifetime

can be anything from a few minutes to several days under normal laboratory conditions. Exposure to

the highly intense beam from a synchrotron source usually decreases crystal lifetime dramatically. It

is compensated, however, by an increased beam intensity, which permits shorter individual exposures

and consequent increase in the quantity of data recorded.

10.3.2 Cryo-Crystallography

When the temperature of a crystal is lowered, the thermal motion of the constituent atoms becomes

less marked and the X-ray diffraction pattern can be improved in both intensity and resolution. These

two factors are highly desirable in protein crystallography, as protein crystals are notoriously poor

diffractors. Since the innovation of more efficient crystal cryo-systems in the past decade (a popular

and efficient model is the Oxford Cryosystems Cryostream Cooler [11]), there has been a marked

increase in the number of protein structures determined at low temperature, and small-molecule data

is routinely collected on cooled crystals in some laboratories. However, for a new protein crystal, or a

new derivative crystal, the method requires to be carefully set up empirically in order to establish the

best conditions. The crystal is mounted and flash-cooled, usually to 100 K, free from ice, and set up

in the X-ray beam. Damage from freezing is prevented through the use of a cryoprotectant liquid.

The cryoprotectant may be incorporated in the mother liquor after crystallization or, less commonly,

as a component of the crystallization reagents.

The procedure involves supporting the crystal in a film of cryoprotected mother liquor in a small fiber

loop, Fig. 10.8a, b, which is then cooled in liquid nitrogen. The liquid surrounding the crystal must freeze
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as an amorphous glass to avoid crystal damage and diffraction fromordered ice crystals. Glycerol ismost

frequently used as a cryoprotectant in this type of work. The required glycerol concentration must be

carefully established; unfortunately this may involve the loss of several crystals in the early stages of the

experiment.

Fig. 10.8 Cryo-crystallography. (a) The loop mounting of a crystal in a film of cryoprotected mother liquor, which is

then cooled in a gaseous stream of evaporating liquid nitrogen. (b) Arrangement for aligning the crystal in the stream of

cold gas. The goniometer head is usually a standard commercial device, with perpendicular translation slides, but

normally no angular adjustments, because they are not needed for image-plate data collection
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For the low temperature data collection of mistletoe lectin I (MLI) [12], a complex mixture was

used, consisting of 0.1 M glycine buffer at pH 3.4, with 0.9 M ammonium sulfate, 0.05 M galactose

and 30% glycerol, soaking for a few minutes prior to flash freezing. Once frozen, protein crystals are

usually extremely stable, transportable, and can be stored and kept ready for subsequent X-ray

diffraction experiments.

10.4 Macromolecular Crystallography

10.4.1 Space Groups

Proteins are polymers of L-amino acids, the Ca atoms being specifically left-handed chiral centers,

Fig. 10.2b. Consequently, only axes of symmetry occur in protein crystals. This is because centers of

symmetry, mirror planes, and glide planes would necessarily produce D-amino acids, which do

not normally occur. Similar considerations, in fact, apply to the majority of biologically active mole-

cules. As a consequence, protein crystals can occur in only 65 of the possible 230 space groups,

Table 10.1; space group determination is therefore a relatively simple procedure.

10.4.2 X-Ray Diffraction from Macromolecular Crystals

Crystal Selection
We have seen, or implied in previous sections, that for single crystal analysis, each crystal to be used

for measuring diffraction data should be well ordered and produce a single, clear diffraction pattern.

Poor quality specimens that are not single crystals may suffer from a variety of faults including

splitting, twinning, or the presence of slippage-disorder planes. Split or twinned crystals may diffract

well but will produce multiple reflection spots that are difficult to interpret; such specimens should be

discarded. Badly disordered crystals are characterized by the spreading out of each diffraction spot,

often in an irregular manner, and by the poor overall resolution of the diffraction pattern, which

rapidly fades away as a function of the radial distance from the center of the pattern.

Faults of this type are particularly associated with protein crystals that are relatively soft (containing

up to 70% solvent), and easily damaged through handling when being mounted for X-ray analysis. Even

single crystals diffract poorly if heavily disordered. If a crystal proves to be unsuitable through any of the

above faults it should be discarded and another one selected. Refinement of crystallization conditions is

frequently necessary in order to produce better crystals.

Structure Factors and Temperature Factors
We have shown previously that the total X-ray scattering associated with a given hkl reflection

is represented by the structure factor F(hkl). This parameter and the atomic scattering factor have

been discussed in detail in Sects. 3.5 and 3.6ff. The use of structure factor equations for macro-

molecules is no different from applications with other molecules, except of course that the number of

atoms per unit cell is greater than 1000 even for quite small proteins.

The isotropic temperature factor, has the following typical values for proteins: overall average,

20–30 Å2; for main chain atoms, 10–20 Å2; for side-chain atoms 15–30 Å2; for solvent and small

ligand atoms, 25–45 Å2. As a rule of thumb it is common for an upper limit of around 80 Å2 to be

placed as a credibility indicator for any individual atom. Atoms with a temperature factor greater than

this value after refinement, Sect. 10.9, should be carefully re-examined. The values for the tempera-

ture factor of each atom evolve during the course of structure refinement.
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Intensities and Phases
Experimental Fo(hkl) values are derived from the measured intensities Io(hkl) by procedures that are

discussed below. For a successful structure analysis, as many values as possible of Fo(hkl) must be

measured to as high a resolution as can be achieved. Values of the phase angles f(hkl) required for

calculation of electron density r(xyz) are usually determined by application of one of the following

techniques:

Table 10.1 The 65 enantiomorphic space groups applicable to protein crystals; corresponding Laue groups are listed

in brackets

Crystal system Point group

Space-group symbol

(Laue-group symbol)

Number Z of asymmetric

units per unit cell

Triclinic 1 P1 1
[�1]

Monoclinic 2 P2, P21 2
C2 4
[2/m]

Orthorhombic 222 P222, P2221, P21212 4
P212121 4
C222, C2221 8
I222, I212121 8
F222 16
[mmm]

Tetragonal 4 P4, P41, P42, P43 4
I4, I41 8
[4/m]

422 P422, P4212, P4122 8
P41212, P4222 8
P42212
P43212, P4322 8
I422, I4122 16
[4/m mm]

Cubic 23 P23, P213 12
I23, I213 24
F23 48
[m3]

432 P432, P4132, P4232 24
P4332 24
I432, I4132 48
F432, F4132 96
[m3m]

Hexagonal 6 P6, P61, P65, P62 6
P64, P63 6
[6/m]

622 P622, P6122, P6522 12
P6222, P642, P63 22 12
[6/m mm]

Trigonala 3 P3, P31, P32 3
R3 3(9)
[�3] 6

321, 312b P321, P3121, P3221 6
R32 6(18)
P312, P3112, P3212 6
[�3m]

aTrigonal crystals are referred to hexagonal axes; there is no separate trigonal unit cell. The same choice can be made

for rhombohedral crystals, in which case there are three times the number of molecules per unit cell; but the cell shape is

easier to handle
bWhile point groups 321 and 312 are identical under a rotation of the symmetry elements by 30� with respect to the

crystallographic axes, space groups P321 and P312 are different. In the infinite array of a space group, the two space

groups relate to different arrangements of points in space, that is, differing sets of general equivalent positions. Similar

arguments apply to the pairs of point groups �3m1=�31m
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1. Direct calculation of phases, using a known isomorphous protein structure

2. MIR, Sect. 7.5.8

3. MR, Sect. 8.3ff

4. Multiple wavelength anomalous dispersion (MAD), Sect. 7.6.6

5. Single isomorphous replacement with anomalous scattering (SIRAS), Sect. 7.6.5

Calculated Structure Factors and R-Factors
Once a model of the structure has been proposed, values of the coordinates (x, y, z) for most of the

non-H atoms will be available. It is then possible to calculate values of the structure factor amplitudes

and phases based on the model. The quality of the model can be tested by calculating a conventional

R-factor:

R ¼
X

jFoðhklÞ � jFcðhklÞjj
h i.X

FoðhklÞ (10.1)

where the summations are carried out over all reflections in the data set.

For a protein structure R is rarely less than 0.35 for the initial model, improving to 0.2 or better

after refinement. The quality of any X-ray structure is restricted by the diffracting power of the

crystal. The poor diffracting power of protein crystals restricts both the quality and the total number

of data available compared to the large number of parameters involved in the calculation of the

structure factors, and is reflected in the poor R-factors attainable. By comparison the R-factor for a

good low molecular weight X-ray structure would be less than 7%.

Free R-Factor (Rfree)
When MR is used to determine a protein structure, a known homologous structure is fitted into the unit

cell of the new (target) structure. It is common to use search structures which have as little as 40%

identity with the sequence of the target structure and this is quite acceptable as long as the main chains of

the protein fold in a similar way. The new structure is then refined by gradually transforming each amino

acid in the sequence, in location and conformation, as necessary, in order to minimize the R-factor.

Sometimes it is difficult to remove the initial bias, which is built into the new structure as a consequence

of using the coordinates of another structure, a phenomenon known as feedback or “memory,” which is

then built into the Fourier method.

In order to monitor this process 5–10% of the Fo data are removed from the data set during the

refinement process and are not allowed to contribute to the course of the analysis. This subset of data

is used to calculate an R-factor called the Free R or Rfree [13, 14]. As the refinement proceeds, if

jFc(hkl)j truly approaches Fo(hkl), Rfree will drop together with R. If the refined model fails to break

away from the initial model, R will drop because its parameters are changing, but Rfree will fail to

improve because the model is not actually improving. With a correct model, Rfree will usually

decrease, but will remain a few percent greater than R.

10.4.3 Recording X-Ray Diffraction from Macromolecular Crystals

The recording and measurement of X-ray diffraction patterns are topics which have been thoroughly

covered inChap. 5.Only points specifically of interest formacromolecular crystallographywill be touched

upon here.
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Conventional X-Ray Laboratory Sources
In conventional crystallography laboratories, university and industrial departments, rotating anode

generators are reliable sources of intense X-radiation in most crystallographic applications. For

macromolecular studies, copper X-radiation in conjunction with a graphite monochromator and

focusing mirrors give excellent results. Focussing mirrors as discussed in Sect. 5.9, are the more

efficient alternative in practice as the graphite monochromator causes a large proportion of the incident

radiation to be absorbed with a consequent loss of X-ray intensity. It should also be noted that rotating

anode generators can be expensive to run, requiring constant pumping to high vacuum and frequent

filament changes.

Synchrotron X-Ray Sources
As discussed in detail in Sect. 5.4ff, X-rays are generated at a synchrotron source when high-energy

electrons are accelerated in a storage ring at relativistic speeds. The X-ray beam is narrow and extremely

intense, and the wavelength can be selected from a very wide range so as to match experimental

requirements. In view of the high intensity and fine collimation, it is possible to record complete data

sets even from small or weakly diffracting protein crystals in a matter of minutes. It is also possible to

devise time-resolved experiments in order to monitor processes such as modified enzyme-substrate

interactions. Synchrotron installations [15] are highly specialized research facilities. Experiments to be

undertaken with synchrotron radiation (SR) require careful planning and in depth consultation with the

on site staff. A list of world wide synchrotron installations is given in Sect. 11.4ff.

X-Ray Cameras
Full details of the use of X-ray cameras in macromolecular crystallography are given in Sect. 5.4ff.

Their use can lead to rapid and reliable evaluation of crystal quality, symmetry and unit cell

parameters, and is an excellent tool for establishing a sound understanding of the reciprocal lattice.

The availability of X-ray cameras in both university departments and other research laboratories is

commonplace and is retained for both training and research. Modern applications employ electronic

film devices to record and analyze the diffraction patterns in order to check for changes in both the

unit cell and the intensity pattern in applications involving MIR.

Diffractometers: Single Counter or Serial Diffractometers
Traditional diffractometers incorporate a mechanical goniometer to orientate the crystal into the

correct position for each reflection and to rotate the counter, usually a scintillation counter to receive

the scattered X-radiation from this single reflection. The energy is transformed electronically into a

form suitable for conversion to intensity. Because each reflection is measured individually, with a

count time typically of around 60 s, the process is very slow, particularly for proteins, which routinely

involve the measurement of tens of thousands of reflections. While the accuracy attainable is better

than for most of the other methods used for intensity measurement, the limited lifetime of protein

crystals in the X-ray beam permits only a fraction of the available data to be recorded from one crystal

The use of several crystals for data collection introduces errors associated with the scale factors

required to merge the various collections into a single data set. Further details of this method are to be

found in Sect. 5.6.4.

Diffractometers: Area Detectors
The main disadvantages of single counter diffractometry, such as slow data collection rate and the

requirement of several crystals for collection of a complete data set, with the attendant errors

associated with scaling and crystal deterioration, have been largely overcome by the use of “electronic

film” area detectors and image plates. They have enjoyed rapid development in recent years and have
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been discussed in Sect. 5.7.3. The principal advantages of this methodwith proteins are that data can be

collected to a resolution of about 1.4 Å using Cu radiation and better with synchrotron source, and that

a very wide range of intensities (approximately 105) can be recorded compared to an X-ray film

(approximately 200).

10.4.4 Measurement of X-Ray Diffraction from Macromolecular Crystals

Area Detectors in Practice: Autoindexing
As we have seen in Sect. 5.4ff, diffraction data are often collected now by the oscillation method, with

the oscillation or rotation axis perpendicular to the X-ray beam. A number of software packages is

available for processing the data recorded using the oscillation technique. These include HKL2000

(which has superceded the very popular DENZO), andMOSFILMwhich is supported by CCP4. Both of

these programs have excellent indexing routines, based on slightly different versions of the DPS

algorithm; see Sect. 5.6.9. It has been recommended that it is sometimes useful to run both of these

programs separately for initial assessment of a given set of data (see Appendix D). Other data processing

software packages include d*TREK, and further developments include ELVES which is an expert

system designed with the intention of taking the user from data collection frames to a protein structure

without human intervention. Perhaps the lessons learnt in Sect. 11.7 will encourage crystallographers to

treat this blind sort of approach with caution, and make every effort to understand fully the principles of

X-ray crystallography and reap the undoubted rewards it will bring.

A procedure known as autoindexing is designed to optimize data collection and processing. This

method allows time to be saved by using the most efficient data collection procedure for a given

situation. The autoindexing programs may be implemented on the basis of a single frame (or

exposure), or better still, two frames of data collected at starting points 90� apart. This initial

information leads to a derivation of approximate unit-cell parameters, Laue group, crystal orientation

(the crystal is not necessarily mounted about a major crystallographic axis), total oscillation range,

and oscillation range per frame and, hence, the total number of frames to be used for the experiment.

For a given exposure the crystal is oscillated through a small angle Df, set usually to a value between

0.1 and 1.5�, depending on the unit cell size. The next frame begins where the previous one ended,

keeping Df at the same setting. The procedure is repeated until the required angular range has been

covered. Once the X-ray intensities have been measured, structure analysis software usually assumes

that the I(hkl) data set covers a single asymmetric unit of the Laue group symmetry, together with the

Friedel equivalents where anomalous dispersion is being utilized.

If time permits, it is a sound strategy to collect at least two asymmetric units of data and utilize the

Rint index to monitor data quality. For a crystal arbitrarily mounted, 180� of data frames will be more

than sufficient for anything but a triclinic crystal. Such an arbitrary strategy can be wasteful of both

diffractometer time and crystal lifetime and can be avoided using the programs carefully.

Image Plate Data Processing
While the procedure for acquiring raw data using an image plate is quite rapid, and this itself is a

tremendous advantage bearing in mind the fact that protein crystals have notoriously short lifetimes in

the X-ray beam, processing this data to produce the Fo values can be very time consuming. Each

frame of data contains information about the (X, Y, Z) coordinates of the diffraction maxima relative

to the experimental set up, and digitized information from which a measure of the intensity can be

derived. For a given crystal specimen the following procedures are carried out concomitantly:
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1. Refinement of the orientation matrix to define the disposition of the crystal axes with respect to the

X-ray beam direction

2. Confirmation of the crystal system and possible space groups; measurement and refinement to the

highest accuracy possible of the unit-cell parameters and their estimated standard deviations

3. Determination of the indices hkl and intensities I(hkl) for each recorded diffraction spot

Partially Recorded Spots and Integration of Intensity Data
Because images are recorded from small oscillations of the crystal and the reciprocal lattice points for a

protein crystal are close together, each image will contain a proportion of partially recorded reflections

which are completed either on the previous or next record. To obtain the intensity reading, the two

partials are added together. This effect will inevitably introduce errors in the intensity values. Recording

of the diffraction image produces a series of digitized pixels, which can be viewed by computer graphics

and processed to provide intensity estimates.

Conversion to an Intensity Reading
In summation integration a volume containing an individual spot is defined. Summation of the

measured counts in all the pixels in the defined volume and subtraction of the background, determined

by examining surrounding pixels, leads to an integrated intensity. This method is similar to the

scanning method used in processing the data from serial diffractometer measurements described in

Sect. 5.5.

In an alternative method of profile fitting, an empirically derived model reflection shape is scaled

to the data and then integrated. This assumes that the reflection shape is independent of intensity. The

observed profiles vary over the detector face, so that several model profiles are usually required,

depending on the location on the detector face. Profile fitting is computationally expensive but

produces more reliable results, and is less susceptible to random errors. The method was first

proposed for one-dimensional profiles [16], extended to two-dimensional profiles for precession

films [17], and later applied to oscillation photographs [18].

Profile fitting depends on the assumption that strong and weak reflections share a common

intensity profile, so that an observed reflection can be related to a “standard” profile for the area by

a simple scale factor. In DENZO this is formulated as follows. The observed profile Mi is approxi-

mated by Pi

Pi ¼ Cpi þ Bi (10.2)

where C is a constant to be determined, Bi is the predicted value of the background and pi is the

predicted profile. The index i represents all pixels derived by scanning a spot in either a one-, two-, or

three-dimensional profile. If the predicted profile is normalized,
P

i pi ¼ 1, then the constant is the

fitted intensity I, that is, I ¼ C. Profile fitting minimizes the function

ðMi � PiÞ
2

vi
(10.3)

This solution means that each pixel provides an estimate of the spot intensity with variance vi. A

profile fitted intensity is then the weighted average of all observations, thus:

I ¼

P
i ðp

2
i =viÞðMi � BiÞ=piP

i p
2
i =vi

¼

P
i piðMi � BiÞ=viP

i p
2
i =vi

(10.4)
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Post-refinement
One of the aims in data collection is to measure the intensity of each indexed reflection as

accurately as the experimental conditions allow. For partial reflections, accurate partiality and

intensity fractions are necessary as described in the previous section. The parameters required for

the measurement of intensities, such as cell dimensions and crystal orientation can be determined

more accurately once an initial set of integrated intensities is available. This process of post-

refinement, allows a more reliable classification of reflections as full or partial, and gives suffi-

ciently accurate estimates of the intensity fraction of partial reflections for them to be scaled and

used. The parameters involved include:

1. Parameters determining the position of the reflection, such as cell dimensions, wavelength, and

crystal orientation;

2. Reflection width, which is precisely formulated [19];

3. A function relating the angular fraction to the intensity fraction for which a model function is

employed.

Fully recorded reflections or sums of adjacent partials are used for the reference intensity of a

partial reflection. Since these data and the flag that indicates whether a reflection is full or partial vary

during refinement of the parameters mentioned above, as well as by scaling between frames, the post-

refinement needs to be iterated with scaling several times over. There is a wide selection of software

available for data processing. A possible procedure using mainly CCP4 software (see Appendix D) is

indicated in the flow diagram in Fig. 10.9.

Alternative software that may be used in the various stages of this suggested scheme:

Stages (I), (II) and (III): DENZO

Stage (V): SCALEPACK

Stage (VIII): SCALEPACK2MTZ and CAD

DENZO/XDISPLAY/SCALEPACK are part of the HKL suite. DENZO enables autoindexing,

conversion to intensities and cell refinement; XDISPLAY displays the observed and calculated

spot positions for comparison and validation; SCALEPACK carries out scaling, and merging on an

iterative basis (post-refinement); MOSFILM is similar to DENZO but has the additional facility for

spot size adjustment; REFIX allows MOSFILM to autoindex a single image; XDS or MARXDS

include features of the programs mentioned previously that are required for MAR RESEARCH IPs;

Fig. 10.9 Possible flow diagram for data processing
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MARSCALE is an additional scaling program (see Appendix D). Note. A number of software

packages are available for processing data recorded using the oscillation technique. These include

HKL2000 [20] (which has now superceded the very popular DENZO), and MOSFILM [21] which is

supported by CCP4. Both of these programs have excellent indexing routines that are based on

slightly different versions of the DPS algorithm [22]. It has been recommended that it is sometimes

useful to run both of these programs separately for initial assessment of a given set of data [23]. The

paper by Leslie [24] is essential reading for those about to embark on data processing. Other

software packages are d*TREK [25] (sold with MSC X-ray detectors and evolved fromMADNESS)

and PROTUEM a commercial program associated with Bruker detectors. ELVES [26] is an expert

system developed with the intention of taking the user from data collection frames to a protein

structure without human intervention.

10.4.5 Problems with Data Collection and Suggested Cures

There are certain problems that may be encountered with data collection from protein crystals; the

main points are enumerated below, together with possible solutions.

1. Diffraction is observed but the spots are wide apart and clear to very high resolution. This may

indicate that the crystal is not protein but one of the small-molecule salts used in crystallization,

very often ammonium sulfate. To establish this further, the click test should be tried.

2. The crystals may appear to be well formed, optically clear, and with good morphology, and the

diffraction pattern is typically protein with spots close together. Sometimes, however, the

individual spots may be diffuse or partially diffuse, “tailed” or spread out in a tadpole shape,

obviously split (twinned), or spread out in a particular direction, for example, a principal

reciprocal lattice direction (statistical or systematic disorder). These symptoms are all indicative

of poor crystal quality and in all such cases, it is not worth collecting data from these specimens.

The crystallization conditions should be reviewed and possibly slowed down by cooling or

adjusting the initial concentration. Crystallization at cold-room temperature or in a refrigerator

may be tried. Crystal-mounting routines should be considered, as handling protein crystals too

vigorously will lead to damage; physical contact with the crystals should be minimized. Other

conditions should also be reviewed including storage time, because protein crystals can have a

very short shelf life in crystallization trays, and also suffer from rough handling in transit.

3. Sometimes crystals may be very small and refuse to grow, have good morphology, give good

diffraction spots, but the intensities are weak and ymax is low. In such cases, the high-intensity SR

should be tried, or cryo-cooling, or both.

4. If any one of the unit-cell parameters is large (>150 Å) diffraction spots may be weak and very

close together on low intensity diffraction equipment. Again it would be better to use SR, which

enables a larger crystal-to-image plate distance to be used, resulting in better spot separation while

maintaining satisfactory image strength.

5. If the crystals diffract well but their lifetime in the X-ray beam is too short to allow a full data set to

be collected, again use of cryo-cooling to �100�C or even �150�C should be tried, together with

synchrotron radiation and a CCD detector, so as to obtain very rapid collection. Cooling not only

promotes better resolution in many cases but also improves crystal lifetime almost indefinitely.

Crystals are usually loop mounted, Sect. 10.3.2, and can be stored and transported in a Dewar flask

contained in an insulated box.

Cryo-cooling is the method of choice in many current applications. It has several advantages in

addition to those listed above, including elimination of crystal slippage and drying out, both of which

can occur with capillary tube mounting.
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10.4.6 Preliminary Structure Determination: Unit Cell and Symmetry

Before serious consideration can be given to the determination of the structure it is necessary to

characterize the crystal system, determine the unit-cell dimensions and cell volume as accurately as

possible, and identify possible space groups. The unit-cell parameters will rarely be determined to

better than 0.02 Å for most protein crystals, unless extreme care is taken and the diffraction pattern

extends to better than 1 Å resolution. Some image plates allow direct measurement of cell dimensions

or other lattice spacings. Subsequent confirmation and least-squares refinement of the cell parameters

using the data reduction software produces the final values together with an estimate of the errors. The

space group of the crystal is determined from a consideration of the following.

Unit-Cell Parameters
The cell parameter restrictions associated with each of the seven crystal systems have been listed in

Table 2.3. It must be remembered that the symbol C=means “not restricted by symmetry to equal,” and

consequently it is quite possible for the unit cell parameters of a crystal to appear to have higher

symmetry than is actually the case. For example, a crystal which is actually monoclinic might have

values of a, b, and g which are all 90� within experimental error; the crystal is then apparently

orthorhombic.

Laue Symmetry
The diffraction pattern of a given crystal exhibits the symmetry of one of the 11 Laue Groups, Table

1.6. Provided that enough data have been collected, Laue symmetry is usually reliably indicated as a

further by-product of data reduction. This serves to pinpoint the correct crystal system and possible

space groups, Table 10.1, that apply to the given crystal. Initially it is usually best to sample as large a

portion of reciprocal space as possible in order to guarantee unambiguous determination of the Laue

group.

Systematically Absent X-ray Reflections
We show in Table 10.1 that there are several possible space groups for a crystal belonging to a given

crystal system. For example, a monoclinic protein crystal could have one of the three space groups

P2, P21, or C2; similar considerations apply to the other crystal systems. Further consideration of the

X-ray diffraction pattern may enable the exact space group to be indicated. This procedure depends

on the recognition of systematic absences, and has been considered at length in Sect. 3.7; specific

related problems can be found at the ends of Chaps. 3 and 10. In general, screw-axis absences, Table

2.5, must be determined from a careful consideration of intensity values, and may be indicated from

graphical plots of the reciprocal lattice using software such as HKLVIEW (see Appendix D), which

provides simulated precession photographs of the reciprocal lattice.

10.4.7 Ricin Agglutinin

Determination of the Space Group
Ricin Agglutinin [27] (RCA) belongs to the same family of proteins as the toxin Ricin [28], both

being derived from Castor beans. From biochemical evidence, it is known that Ricin comprises a

toxic A-chain and a lectin protein B-chain; the two chains are linked by an S–S bond to form an A–B

heterodimer; RCA has two A-chains and two B-chains that are highly homologous with the Ricin

chains but are linked as B–A–A–B. The molecular weight of RCA is thus about twice that of Ricin.
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There is a possibility that the B–A–A–B assembly could sit across a twofold axis in the crystal either

an exact space group twofold axis or an approximate, non-crystallographic twofold axis.

During data processing the unit-cell parameters for RCA found were a ¼ b ¼ 100.05 Å, c

¼ 212.58 Å, a ¼ b ¼ 90�, g ¼ 120�, and Laue symmetry 3. Together these observations show

that the crystals are trigonal, referred to hexagonal axes. In addition, limiting conditions in the

diffraction pattern for 00l, l ¼ 3n, indicate the presence of a 31 or 32 screw axis parallel to c, Table

2.5. Thus, the space group is either P31 or P32, Fig. 10.10 and Table 10.1. The X-ray analysis,

Sect. 10.6.3, resolved this ambiguity, the space group being shown conclusively to be P32, Fig. 10.10.

Note that 31 and 32 screw operations are left-hand–right-hand opposites; it follows that only one of the

enantiomorphic pair of space groups, P31 or P32, can be correct for a given protein crystal. The

question regarding the symmetry of the molecule was investigated using the self-rotation function and

the result was confirmed using MR, Sect. 10.6.3.

Resolution
The concept of resolution, Sect. 8.9, is perhaps more relevant in macromolecular crystallography than

in the case of well diffracting small-molecule crystals, which usually diffract to atomic resolution.

We may define dmin as the resolution of the X-ray diffraction pattern where, by the Bragg equation,

dmin ¼ l/2 sin ymax, ymax being the maximum value of y for reflections contained within the

measured data set. Atomic resolution corresponds to a dmin of about 0.8 Å, for copper radiation,

which is usually out of reach for proteins.

Most protein crystals fail to diffract to much better than 1.8 Å resolution. This is sufficient

however to define the positions of non-hydrogen atoms and many of the solvent atoms in the

structure. At 2.5 Å solvent atoms may be unreliable and at 3.5 Å it may be difficult to refine side-

chain atoms beyond Cb. Obviously the higher the resolution the better defined the structure will be,

and it is usually worthwhile to expend the required effort in order to achieve it rather than to cut

corners and end up with an inferior analysis. The resolution, as we shall see below, seriously affects

the quality of the initial electron density map upon which the ensuing analysis is based.

Number of Reflections in and Completeness of the Data Set
For a given crystal it is possible to estimate the number of reciprocal lattice points within the range

0 to ymax. For a crystal with a primitive lattice, ignoring the fact that some reflections will be related

by symmetry, the number of reflections n is given by, Sect. 7.4.1,

33:510Vc sin
3 ymax=l

3 ¼ 4:19Vc=d
3
min (10.5)

Fig. 10.10 Space

group P32
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Depending on how the X-ray data set has been measured, the number of reflections present may

not be consistent with the number expected from the nominal value of ymax, or dmin. If the number

of reflection data actually measured is significantly lower than the expected value, it can be

assumed that the resolution of the analysis will be correspondingly lower although it is not easy

to estimate by how much. The cause may also be due to an anisotropic intensity distribution,

associated with the variation of diffracting power with direction. Some data processing programs

put out a warning when such an effect is detected. The percentage completeness at nominal

resolution will also be indicated. A value less than about 85% complete indicates the need to

investigate the causes for the loss of data.

From the results so far for RCA, it follows that the unit-cell volume is 1.843 � 106 Å3. A data set

was recorded on a 180 mm diameter Mar Image Plate, with a crystal-to-detector distance of 300 mm.

The resolution dmin of the data was 3.6 Å for an X-ray wavelength of 1.5418 Å. From the results

above, the expected number of reflections is 165,513. This number includes all symmetry-related

reflections. Since the unit cell is P and Laue symmetry �3, we divide this number of reflections by G,

which is unity, Table 3.1, and by the multiplicity of planes m, namely 6, to obtain an estimate of the

number of unique data, that is, not related by symmetry, and which is therefore 27585. Experimen-

tally, 62310 reflections were recorded. The data processing program reported that the multiplicity

factor for the recorded data was 3.1, indicating that 62310/3.1, or 20100 reflections were unique. The

data set is therefore said to be 20100/27585, or 73% complete at 3.6 Å resolution. We can assume that

the effective resolution of the data is therefore less than the nominal resolution.

Internal Consistency, Space Group Ambiguities, and Rint

As a test of data quality, data processing programs produce an internal consistency index, Rint,

(4.19), which is calculated by comparing I(hkl) values that should be equal by virtue of symmetry.

To be acceptable, Rint for the complete measured data set for a protein should be 9% or better; for a

well diffracting small molecule Rmerg should be less than 7%, and is frequently 4% or better. Since

the mean value of I(hkl) decreases as the Bragg angle y(hkl) increases, errors in the data will be

more significant for the higher resolution data, that is, for smaller d(hkl). For the outer shells of

protein data, therefore, the local value of Rint might be as high as 20%. Although this value may

seem to be inordinately high, such data may still contain a great deal of structural information and

may serve a useful purpose in the analysis if retained, albeit with a low weight.

In addition to providing an indication of data quality, the merging R-factor can serve as a means of

resolving space group ambiguities. By assigning a Laue symmetry, Table 1.6, for the crystal that is

higher than true, such as mmm instead of 222, falsely high values of Rintwill result. Dropping down to

the correct Laue symmetry should produce better consistency and lower Rint values, but only if a

sufficient portion of reciprocal space has been covered during the data collection. If this is not the case

further data are needed.

Number of Molecules Per Unit Cell
Each of the possible protein space groups is associated with an expectation number of molecules

per unit cell, given as Z in Table 10.1. If the actual number n is greater than the expectation value,

again usually by a simple factor, the protein structure is said to be oligomeric and contains more

than one molecule in the asymmetric unit, not related to the other by crystal symmetry; in the case

of proteins frequently an approximate NCS relates such molecules. In this case the X-ray analysis

will involve the determination of the structures of this number of molecules rather than just one.

The molecules in this type of situation usually exhibit subtle differences in molecular conforma-

tion, particularly in loop regions.
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From Sect. 7.2, we express the crystal density as

Dc ¼ nMrmu=Vc (10.6)

where the parameters have meanings as before. If Vc is expressed in Å
3, Dc will have units of g cm

�3.

In this relationship, both n and Mr, which involves the unknown solvent component, are unknown.

However, Dc can be assumed, from experience, to lie in the range 1.2–1.4 g cm�3 for crystalline

compounds composed predominantly of the elements C, N, O, and H; the actual value will depend

heavily on the degree of solvation.

Let Mr ¼ MP + sMr, where MP is the relative molar mass of the protein, which is 133000 and s is

the solvent fraction of the cell mass. ThusMr ¼ MP/(1 – s), so that Dc ¼ nMPmu/[Vc(1 – s)]. IfMS is

the unknown molecular mass incorporated in the solvent, we define the fraction s as MS/(MP + MS),

the solvent fraction of the unit-cell mass. Finally if the crystal space group is known, as would be

normal after data reduction, then since we know that n will be a multiple or submultiple, say m, of Z,

the number of asymmetric units per unit cell, Table 10.1, it follows that n ¼ mZ. The density

expression (10.6) then becomes:

Dc ¼ ðmZÞMPmu=½Vcð1� sÞ� (10.7)

It is known [29–31] that in crystalline proteins, s is usually in the range 0.27–0.65. Putting all of

this information together it is usually possible to determine the appropriate value for m, the number of

protein molecules per asymmetric unit. These ideas are illustrated by the following example.

Analysis of the Solvent Content in Ricin Agglutinin
We now continue our study of RCA by investigating the possible values for the parameters m and s.

Since Vc is 1.843 � 106 Å3, the value for mu here is 1.6605, Z, Table 10.1, is 3 for space group P32,

and using the equation for Dc developed above and with MP ¼ 133000, we have

Dc ¼ 1:6605ðmZÞMP=½Vcð1� sÞ� ¼ 0:36m=ð1� sÞ (10.8)

Assuming m ¼ 1 RCA molecule per asymmetric unit (3� B–A–A–B per unit cell) and s ¼ 0.65

(a guess, at the top of the range because the crystals are wet and poorly diffracting), we find that Dc is

1.03 g cm�3. Since this is a very low value for the density, we try s ¼ 0.7, which gives Dc ¼ 1.20

g cm�3, a more realistic value. The physical wetness of the crystals and relatively poor diffracting

power are consistent with the result that they are highly solvated. As we shall see in the next section,

RCA has a non-crystallographic twofold axis relating the two halves of the B–A–A–B assembly, and

this information is used in the X-ray analysis. In addition, the following alternative must be borne in

mind as the X-ray analysis progresses: assuming m is 2, Dc equals 1.20 g cm�3 for s ¼ 0.40, which is

approximately equal to the average solvation level found in protein crystals, and should therefore be

considered reasonable until proved otherwise.

10.5 Types of Fourier Synthesis for Protein Analysis

10.5.1 Reconstruction of the Molecular Structure

We have seen in Sect. 6.3ff that the calculation of electron density maps is a major objective of any single

crystal X-ray analysis, and we recall the formula for calculating the electron density r(xyz) at the general

point with fractional coordinates (x, y, z):
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rðxyzÞ ¼ 1

Vc

Xhmax

hmin

Xkmax

kmin

Xlmax

lmin

FoðhklÞ cos 2p½ðhxþ kyþ lzÞ � fðhklÞ� (10.9)

For protein structures the phases can be determined using the experimentally intense method ofMIR,

or from a model derived byMR. The theory of MIR has been discussed in Sect. 7.5.8 and MR treated in

detail in Sect. 8.3.1; other important methods are to be found in this chapter. However, it is important to

remember that the quality of an electron densitymap is strongly influenced by the accuracy of the phases.

Poor phases will never produce a good map, whatever the resolution.

Most contemporary software uses the method of fast Fourier transform (FFT) for rapid calculation

of electron density maps [32–34]. Related algorithms are used for calculation of structure factors.

Programs for calculation and display of electron density and other Fourier series are listed in

Appendix D. Useful hints on the calculation and interpretation of electron density maps have been

given elsewhere [35].

Properties of the Electron Density
We summarize here the important properties of the electron density function that we need to keep in

mind when interpreting it in terms of a crystal structure:

1. When calculated at atomic resolution, r(xyz) has local maximum values (peaks) at sites

corresponding to atom centers (xj, yj, zj).

2. Density values at these locations are approximately proportional to Zj, the atomic number of the

corresponding jth atom.

3. The locations of all atom positions together define the crystal structure. Atom positions not

determined (for whatever reason) lower the quality of the structure model.

4. For proteins, where the extent of the X-ray data is usually far short of atomic resolution, the

electron density tends to be blurred, or unfocused. Atom coordinates have to be inferred in this

case, usually by model building, which makes extensive use of the known molecular geometry of

bonds and groups involved in the structures.

5. Since clearly defined peaks are not a property of protein electron density, the magnitude of given

density regions is assessed in terms of the overall root mean square value of r(xyz). Significant

density is taken to have r(xyz) > 3sr, although a value of 2sr (or even lower) can have useful

features but requires very careful consideration.

10.5.2 Difference Electron Density

Difference electron density may be defined as

DrðxyzÞ ¼ 1

Vc

Xhmax

hmin

Xkmax

kmin

Xlmax

lmin

DjFðhklÞj cos2p½ðhxþ kyþ lzÞ � fcðhklÞ� (10.10)

where DjFðhklÞj ¼ FoðhklÞ � jFcðhklÞj. This function exhibits positive density corresponding to

atoms not included in the model, and negative density where atoms are missing from the model or

badly placed in it.
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10.5.3 The 2Fo(hkl)–jFc(hkl )j Map

By adding rðxyzÞþDrðxyzÞwe obtain a new type ofmap known simply as a 2ðFoðhklÞ � jFcðhklÞjÞmap

represented by the expression

1

Vc

Xhmax

hmin

Xkmax

kmin

Xlmax

lmin

½2FoðhklÞ � jFcðhklÞj� cos 2p½ðhxþ kyþ lzÞ � fcðhklÞ� (10.11)

Maps of this type are very useful for locating parts of the structure which are not part of the current

model; they show positive density corresponding to missing atoms and negative density

corresponding to incorrect atoms against the background of the original model. It provides a very

useful basis for making corrections and additions to the structure model.

Omit Maps
An electron density function where part of the model has been deliberately left out is called an omit

map. Reasons for such omissions include disordered or apparently disordered regions, areas of poor

stereochemistry, ambiguous side-chains (some pairs of amino acids are very similar), or simply parts of

the model that are difficult to explain. The omitted parts of the structure should be returned in a

subsequent electron density calculation as peaks of about half the height of comparable regions included

in the phasing. An example of a contoured difference electron density map is given later in Fig. 10.19.

10.6 Determination of the Phases for Protein Crystals

The Patterson function has been discussed in detail including its use in MIR for location of heavy

atoms and for locating the position of the search model in an unknown structure in the MR method.

We discuss now some further uses of the Patterson function for these two methods.

10.6.1 Introduction

In the early years of protein structure analysis, the period 1950–1970, MIR was the primary choice for

protein structure analysis, and a core of good quality protein structures was established. During this

time MR became increasingly popular, as the number of well defined structures from which to select a

search model gradually increased. There are currently more than 19000 protein structures deposited

in the Protein Data Bank (see Appendix D). Thus, MR is the current method of choice for any protein

having good structural homology, as judged initially by the amino acid sequence and quality of the

search structure. The more experimentally demanding MIR technique is still used for proteins where

this condition does not apply. The advent of fast, large capacity computers, and improved software

has also contributed significantly to the ease of application of MR.

10.6.2 Isomorphous Replacement (MIR)

We know that by incorporating one or more heavy atoms into a protein crystal to form a heavy-atom

derivative, induces changes in the X-ray intensities. For the derivative crystal to be isomorphous three

conditions must hold:
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1. The heavy atoms must not disturb the protein structure significantly.

2. The crystallographic space group must remain unaltered.

3. The unit-cell parameters must not differ significantly (less than 0.5% in any cell length).

Useful heavy atoms usually have atomic numbers 53 (iodine) or greater. The average fractional

change in intensity DI(hkl)/I(hkl) at sin y/l ¼ 0 can be estimated as:
P

NH
Z2
H=
P

NP
Z2
P where the

summations are over the number of heavy atoms NH per unit cell and the number of non-heavy atoms

NP per unit cell, respectively. For a protein crystal containing a protein of relative molar mass 20000

with 1 molecule per unit cell, NP would be equivalent to about 3200 carbon atoms. If NH represents

two atoms of mercury (atomic number 80) per unit cell, then DIðhklÞ=IðhklÞ ¼ ð2� 802Þ=
ð3200� 62Þ, or 11 %. In practice some I(hkl) values are increased and some are decreased; intensity

differences of the order illustrated here would be useful for phasing.

Heavy Atoms and Compounds for Isomorphous Replacement
There is a very large repertoire of compounds [8, 9, 36] known to produce heavy-atom derivatives of

proteins that are suitable for MIR. Heavy atoms are usually non-covalently linked to the native

protein molecule, often in surface pockets or other easily accessible regions of the protein structure.

The most popular heavy atoms are platinum, mercury, gold, silver, and uranium. The selection of

appropriate compounds to screen for useful heavy-atom derivatives depends to a great extent on

knowledge of the amino acid sequence.

10.6.3 Preparation and Screening of Heavy-Atom Derivatives

Two methods are used for the preparation of heavy-atom derivatives for isomorphous replacement,

namely, soaking pre-grown native crystals in heavy-atom solutions, and co-crystallization of the protein

and heavy atoms together from solution.

Soaking Method
Soaking can be carried out on crystals in hanging or sitting drops or on crystals mounted for X-ray

diffraction in glass capillaries, Sect. 10.2. This method is highly sensitive and dependent on

correct pH, concentration, temperature and arid time. Heavy-atom solution concentrations around

0.5–10 M are frequently used with soaking times ranging from a few minutes to several days or

longer. This method can cause, often-visible, deterioration of crystal quality, but is not likely to

induce changes in unit cell and symmetry.

Co-crystallization in the Presence of Heavy Atoms
Generally speaking, the introduction of heavy atoms by co-crystallization will initially follow the

method established for crystallization of the native protein, Sect. 10.2. Co-crystallization can be

undertaken in situ in hanging or sitting drops, or in test tubes where batch crystallization is used. Co-

crystallization may produce better quality crystals than soaking, but symmetry and unit-cell changes

are more likely to occur as a consequence of the different crystallization conditions, including the

presence of heavy atoms, and is therefore not usually the first method of choice.

Screening Possible Derivatives
All possible heavy-atom derivatives, produced as described in the previous section, have to be

tested for isomorphism, for intensity changes that would indicate successful incorporation of heavy
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atoms and for crystal quality. This screening of possible heavy-atom derivative crystals can be time

consuming. The easiest method of detecting changes in I(hkl) is by comparing X-ray diffraction

records covering the same region of reciprocal space, Sect. 5.6.4, previously achieved via preces-

sion photographs. The same diffraction records can provide a sensitive check on symmetry and

unit-cell dimensions. Alternatively low resolution, 5–6 Å, data sets can be measured for all the

crystals of interest but this will be time consuming, particularly if no heavy atoms have been

introduced.

How Many Derivatives Are Required
Wehave discussed in Sect. 7.5.8 the procedures for locating heavy atoms and deriving phase information

inMIR, and it is advisable to use at least three good heavy-atom derivatives for phasing purposes. Useful

phase information can be obtained with two derivatives and to a much lesser degree, with a single

derivative, but the quality of the calculated electron density will suffer.

The Initial MIR Model
As in direct methods phasing in small-molecule analysis, MIR phases are not calculated from the

structure factors of a model, but from probability functions. Thus, MIR phases are free from model

bias, unlike those fromMR. As little or no information may be available about the secondary structure

of the protein, unless intensity data have been measured to a resolution of 1 Å or better, which is

unlikely, it is imperative that a detailed knowledge of the amino acid sequence of the protein is

available. The MIR phases are used to calculate the electron density distribution, which may first be

enhanced by modification techniques (Sect. 10.8.2) and interpreted using molecular graphics,

Sect. 10.8.3.

If the phases are of sufficiently high quality the main-chain density should be strong and continu-

ous, and on average greater than 3s(r), thus enabling this part of the structure to be modeled. Once

the ends of the polypeptide chain have been identified, its course through the electron density can be

retraced and side-groups fitted to the model and added to the coordinate list. This lengthy process will

then be followed by further refinement, Sects. 10.8 and 10.9. Figure 10.11 is a suggested flow diagram

for MIR.

10.6.4 Molecular Replacement (MR)

Introduction
In contrast to MIR, MR is not such an experimentally intense method of phase determination. The

initial requirements of this method are as set down under Sect. 8.3.1. In essence MR [37] involves a

critical and quantitative comparison of the Patterson functions of the target and search models. In

contemporary software for carrying out MR applications (AmoRe [38, 39], X-PLOR [40], MOL-

REP [41, 42], CNS [43] and PHASER [44, 45]), the method is sometimes strengthened through

the availability of other crystallographic techniques, as described below, which are now within the

capabilities of modern computers. For example, the Fast Rotation Function has been developed by

Jorge Navaza [46]. The programs MERLOT, ALMN, POLARRFN [47] are part of the CCP4 suite,

(q.v.), MOLREP [41, 42] and AmoRe [38, 39] use the Fast Rotation Function. CNS [43] and

X-PLOR [40] use the conventional Rotation Function (RFn). The programs BEAST [48] and

PHASER [44, 45], a highly speeded up version of BEAST, use novel maximum likelihood

functions.
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The following comprehensive list summarizes commonly available MR programs:

Fig. 10.11 Flow diagram

for single or multiple

isomorphous replacement

PHASER Has rotation and translation functions using a hybrid maximum likelihood scoring method with

traditional fast Rotation and Translation Functions. The program has a good operating speed and is

readily available in the Phenix and CCP4 suites

MOLREP This program has rotation and translation functions with many of the features of AmoRe, and includes

special features for dealing with multiple molecules in the asymmetric unit, and is part of the CCP4 suite

EPMR This program uses a genetic algorithmic 6D search and is very popular but quite slow. The new

OpenEPMR is readily available to users

AmoRe This program has rotation and translation functions which include facilities for searching long lists of

possible solutions. It is very fast and highly recommended. It can search for more than one model of more

than one type to assemble multidomain solutions and is currently part of CCP4

(continued)
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Of these programs AmoRe, which is very fast, and PHASER are both highly recommended. Other

programs may have to be considered if these two fail: MOLREP is probably just as powerful but less

user friendly. The following web pages may also be examined:

• “An introduction to molecular replacement,” from the CCP4 workshop proceedings (Phil Evans).

• Molecular Replacement course from Cambridge Institute for Medical Research.

• Molecular Replacement example, with some theory and practice.

• Molecular Replacement programs page UCLA.

• “Making the most of your search model” (Gerard Kleywegt).

• PHASER v2.1 home page and documentation.

• Mr BUMP home page.

• BALBES home page.

• CCP4’s AmoRe, POLARRFN, ALMN and program list (CHAINSAW, CAD, etc.).

• BEAST reprint in pdf.

For complex structures like proteins, interatomic vectors are densely packed in the unit cell and

most will not be resolved in the Patterson map. Lack of atomic resolution in the X-ray data will also

cause a further blurring of the vector distribution density. In the rotation stage of MR, the shorter

intramolecular and interatomic vectors are used to determine possible orientations for the search

molecule in the unit cell of the target molecule; the best subset of solutions is retained. The

translation stage seeks to optimize the actual location of each of these selected possible molecular

orientations in the target unit cell. Again the best solutions are retained for further development.

Ideally there will be an outstanding solution, which will eventually yield a refineable structure for

the target protein.

Self-Rotation Function and Non-crystallographic Symmetry
A complication can arise in practice for target crystal structures containing more than one protein

molecule in the asymmetric unit. A clue to the presence of NCS may already have been given by the

preliminary analysis of unit-cell contents, Sect. 10.4.6, but ambiguities can arise, mainly because of

uncertainties in solvent content. In practice it is necessary to establish the presence of NCS as early as

possible in the MR analysis, as this can save time by allowing the correct procedures to be followed.

Calculation of the self-rotation function may help to resolve, or at least to provide clues as to, the

actual situation with a given protein crystal.

CNS Uses Patterson-based RFn and TFn implementations which tend to run slowly. Its main advantage is PC

refinement which allows optimization of internal degrees of freedom in a model prior to the translation

function

BEAST This program has rotation and translation functions which employ a novel maximum likelihood scoring

method. It was essentially the precursor to PHASER

GLRF The mnemonic stands for Global Locked Rotation Function; it allows inclusion of non-crystallographic

symmetry constraints in MR searches. The programs REPLACE and COMO are probably derived from

this program

Mr BUMP An automated CCP4 Molecular Replacement program using MOLREP or PHASER

BALBES MR replacement

MERLOT This was the first MR program suite. It is now completely supplanted by PHASER, AmoRe and

MOLREP

ALMN Fast RFn program, using the Crowther algorithm for cross-rotation searches. Results expressed as

Eulerian angles; it is a part of the CCP4 suite

POLARRFN Fast RFn program using the Crowther algorithm for self- and cross-rotation searches. Results are

expressed as Polar angles. Most useful for self-rotation searches where the angle system makes the

symmetry easier to interpret, and part of CCP4 suite
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Molecules related by NCS frequently differ in both position and spatial orientation with respect to

each other and are often, but by no means always, related by pseudo twofold rotational symmetry.

The pseudo-rotation axis will not coincide with any of the space group symmetry elements and, of

course, will not necessarily involve an exact 180� rotation. Other types of rotational NCS can also

occur. In such cases, the Patterson function will include, around the origin, a differently oriented copy

of the molecular interatomic vectors for as many protein molecules as are involved in the NCS.

Consequently if two exact copies of the Patterson function are superimposed origin to origin,

then by rotating one copy of the replica correctly with respect to the other, the peak distributions

can be made to coincide, thus determining the relative orientations of the NCS related molecules.

For this correct relative orientation, the rotation function will have a significantly large local

maximum value.

Programs are available for plotting the results of this type of self-rotation and for calculating the

relative molecular orientations in three dimensions. Initially the crystal system is orthogonalized as

shown in the example in Fig. 10.12, and spherical polar angles with respect to this axial system are

used to define orientation, instead of the usual Eulerian angles. In this way, as shown in Fig. 10.13, it

is possible to specify a single rotation w (also called k) about an axis whose direction is defined by the

spherical polar anglesC (also called o) and f. The pointC ¼ 0� on the pole projects on to the center
of the circular plot, and points on the equator with C ¼ 90� project on to the circumference. Points

with f ¼ 0� project on to the X1-axis, or meridian; f increases in an anticlockwise direction. For

orthogonal unit cells, some programs place the crystallographic a-axis at f ¼ 0�, the b-axis at

f ¼ 90� and the c-axis at C ¼ 0�. Other conventions are used, however, and each program should

be checked by the prospective user. When working in a monoclinic space group, it is convenient to

place the unique y-axis along the polar direction. The use of spherical polar angles in this type of

analysis enables sections of constant w to be plotted.

The two most common cases of NCS that are found in practice are pseudo twofold axes,

corresponding to w ¼ 180�, and pseudo threefold axes, corresponding to w ¼ 120�. Other sections

Fig. 10.12 Relationship of the orthogonal axes X1, X2, X3, used in calculating the self-rotation function, and the

generalized crystallographic axes a1, a2, a3: X2 is along a2, X1 is normal to a2 and a3, and X3 is normal to both X1 and X2
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of constant w can be accommodated as required. In practice several self-rotation plots should be

calculated by varying the radius of integration, Sect. 8.3.2, and/or the resolution cut-off applied to the

Fo(hkl) input data. It is important to recognize features of the rotation function which persist under

these different conditions as they are most likely to contain the information sought. Both of these

parameters can be specified in the data input to the program. The use of plots with different radii of

integration enables the effect of eliminating cross vectors, which are the longer interatomic vectors in

the Patterson function, to be seen. It is of course not possible to eliminate all cross vectors, as the

molecules in a crystal are packed close together. As a rule of thumb, for an approximately spherical

molecule a search radius of 75–80% of the molecular diameter will include about 90% of the self-

vectors. Non-spherical molecules present more of challenge.

10.6.5 Example of a Self-Rotation Function: Ricin Agglutinin

We have seen that ricin agglutin (RCA) probably has a twofold NCS axis across the B–A–A–B

assembly of protein chains. Figure 10.14 shows the section of the self-rotation function at w ¼ 180�,
calculated with the program POLARRFN, and includes data to 4.0 Å resolution. For space group P32
the symmetry of this section must contain a threefold axis, corresponding to the symmetry of Laue

group 3. The presence of non-crystallographic twofold axes is exemplified by the very large peak,

(arrowed) on the stereogram, with spherical polar coordinates of approximately f ¼ 20,C ¼ 90, and

w ¼ 180�. This peak corresponds to a pseudo twofold axis perpendicular to the c-axis, and at

approximately 20� to b. This example is extended in the next section in which the rotation and

translation functions are described.

Intermolecular Atomic Vectors and Translational Non-crystallographic Symmetry
If two non-crystallographically related molecules differ only by a non-lattice translation, with no

rotational component, the Patterson function will contain an outstandingly high peak at a position

corresponding to the non-crystallographic intermolecular vector, because all vectors between the two

molecules will be lined up. Again, it is important to determine these situations prior to embarking on

the full MR analysis, by calculating the Patterson function and inspecting the regions of high density.

Fig. 10.13 Variables C and f are spherical polar coordinates that specify a direction about which the axes may be

rotated through an angle w
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Remember that the origin peak (0, 0, 0) always has the highest density in the Patterson. Most

Patterson density will be a very small fraction of P(000). We are therefore considering here Patterson

density that is, a numerically significant fraction of P(000), possibly as high as 20–50%.

10.6.6 Molecular Replacement in Practice

The Search Model
One of the following situations may provide a suitable opportunity for using MR:

1. Determination of a protein derivative structure containing a small ligand or other modification,

crystallizing in a space group different from that of the known native protein structure, for

example, enzyme–inhibitor or lectin–carbohydrate complexes.

2. Determination of macromolecular complex combinations when one or both components have

known structures. It may be possible to carry out successive MR searches in order to provide a

starting model for the complete structural combination. If only one macromolecular component

can be located by MR, lengthy Fourier development and refinement may follow. Examples

include antibody– protein and protein–nucleic acid complexes.

3. Functionally similar proteins with high sequence homology, one member of the series having a

known structure. Sequence homology as low as 20% may be sufficient especially if many of the

sequence changes are conservative, that is, chemically similar. Sequence homology may also be

used in less obvious cases of structural similarity, such as proteins not belonging to the same or

related families, but this carries a greater risk of failure.

Fig. 10.14 Non-crystallographic symmetry: the section w ¼ 180� of the self-rotation function for the protein RCA,

which crystallizes in space group P32, calculated with the program POLARRFN. The peak related by non-

crystallographic twofold symmetry approximately perpendicular to the crystallographic 32 axis, the only true symmetry

axis of this space group, is arrowed
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4. Proteins grown by a recombinant technique from a DNA template, or site-directed mutants (proteins

grown from modified DNA) having known native structures. The modified proteins may sometimes

crystallize isomorphously or otherwise in different space groups.

Data Base Searches
Several protein sequence data bases are readily available to accommodate sequence homology

searches for suitable MR test structures; a list is given in Appendix D. Depending on the type of

protein involved it is often known in advance what likely target structures are available. For example,

Ricin is the parent structure for the ribosome inactivating protein (RIP type II) family and would be the

first choice to use in MR search for determination of another member of the family such as RCA.

Sequence matching protocols and algorithms are under active development. Many of these routines are

freely available on the internet and can be accessed in combination with known protein sequences that

are accessible through data bases such as BLAST.

Where possible, well-defined structures should be chosen as search models. In simple terms, this

means that the resolution should be 2 Å or better, and the R-factor should be 20% or less. It is more

risky to use low resolution X-ray structures or nuclear magnetic resonance derived models, both of

which will suffer from a lack of refinement, but these may have to be employed if no other models are

available.

The Target Patterson Function
Calculation of the target Patterson function for the unknown structure is straightforward in practice as the

Fo(hkl) data are already available from diffraction measurements. It has been suggested that different

resolution cut-off values should be tried, say, between 3 and 5 Å; in other words, it is best to employ

medium to low resolution data in order to blur the differences between the search and target models. An

inner low-resolution data cut-off should also be used, within 10–20 Å, as such data are influencedmainly

by the solvent structure and therefore do not directly contribute to the protein structure at all. Facilities for

easily setting up these cut-off values are available in most software. Again, different radii of integration

should also be tried in order to pinpoint persistent solutions.

In the case of the target structure, it is more difficult to restrict the rotation vectors to the

intramolecular type alone because the observed Patterson distribution around the origin contains

both intramolecular and interatomic vectors. This problem can be overcome to some extent, by

restricting the volume of the target Patterson used in the search. The radius of integration used for this

purpose can be selected by the user in an attempt to optimize the signal to noise ratio. Several trials

may be required in practice in order to achieve the desired result. It has been recommended [49] to

start with a value for this radius of integration approximately equal to 0.5dm, where dm is the

approximate molecular diameter, increasing to about 0.75–0.8dm for further trials as necessary.

The Search Patterson Function
Several approaches are available for generating the Patterson function for the known search model in

macromolecular studies:

1. Construct the search Patterson as a vector array from the structure coordinates, as in procedures

used for small molecules, Sect. 8.3ff. This type of approach generates an extremely large number

of vectors and is computationally very costly and slow to apply but nevertheless is used effectively

in the X-PLOR [40] suite of programs.

2. In the program AmoRe, the search model coordinates are transformed with respect to an artificial

triclinic unit cell with angles of 90� and cell edges of pdm, where dm is again the molecular

diameter and the factor p is selected by the user, frequently with a value of 2.0 or less. Values of

jFc(hkl)j calculated from the triclinic coordinates are then used to calculate the search Patterson.
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This approach is computationally efficient and furthermore allows models that do not correspond

to any crystal structure, as derived from NMR studies or from model building, to be used. One or

both of these procedures may be used in practice. In either case, the need to consider symmetry is

eliminated, thereby ensuring that only intramolecular vectors are generated for the search model.

Recognition of the Correct Rotation Solution
Several powerful programs are currently available for MR analysis. Of these AmoRe and

X-PLOR are commonly used. X-PLOR is a more general program suite, covering most aspects

of macromolecular crystal structure analysis and refinement, whereas AmoRe is specific to MR.

The use of these programs to locate the correct rotation function solution involves searching

through a large number of trial rotation angle triplets (a, b, g). Incremental values of 5 or 10� for
each of these three angles are typical, resulting in a large number of trials. These programs

optimize the rotation angles around local maximum regions of Patterson overlap. In AmoRe, each

promising trial carries a correlation coefficient Cc indicating the level of agreement between the

rotated Pattersons. The correct, or near correct, solution should have the highest Cc value.

However, at the rotation stage, Cc values do not always differ significantly between potential

solutions, and the values tend to be much smaller, typically around 5–15%, than at the later

translation and optimization stages. The AmoRe program also calculates the rms value sp for the

Patterson density and gauges the significance of local density regions with respect to this value.

A peak greater than 3sp is considered significant.

If different search models, resolutions or integration radii, of any of the other parameters available,

have been varied over a series of searches, consistency in the occurrence of solutions for the angle

triplets a, b, g, with high Cc values, is a good indication that the given solution is worth carrying over

to the translation stage. Because the Cc indicator is not absolutely reliable, all peaks greater than 50%

of the maximum value, ranked in order, are normally retained for transfer to the translation stage. The

density values in terms of sp are also printed. In this way the probability of overlooking the correct

rotation solution should be greatly decreased. The AmoRe system can accommodate the retained

rotation solutions simultaneously into the translation routine. It also calculates an R-factor, Rf (not to

be confused with Rfree) based on observed and calculated jFj values for each possible solution.

Because the model is usually very incomplete at this stage, it is possible only to compare the relative

values of Rf for the different solutions, but this practice has been found to be quite useful and

effective.

The Rotation Function and Non-crystallographic Symmetry
For structures that contain more than one molecule per asymmetric unit related by NCS, the rotation

function would be expected to produce a corresponding number of solutions, equivalent, or nearly so,

with respect to both the Cc index and reproducibility under different computational conditions such as

resolution, radius of integration, search unit-cell size and initial search model orientation. Only

genuine solutions will produce acceptable translated models at the next stage of MR. There is no

guarantee that such translated models will occupy their true relative positions in the unit cell, and this

problem requires further attention, as explained below.

The Translation Function
It cannot be overemphasized that success with the MR technique depends heavily on the precision

with which the correct rotation parameters have been established. Programs such as AmoRe and

X-PLOR include optimization procedures at the rotation stage to improve the chances of success later

on. For each of the potential rotation solutions carried over into this stage of MR a set of atomic

coordinates is generated. It is necessary to place this oriented model into the correct location in the
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unit cell. Full attention to the symmetry elements and their relationship with one another and the

standard origin must be maintained. In general, only one of the retained rotation solutions will

provide a successfully translated model.

When NCS is present the user looks for the corresponding number of successfully translated

models. Each test model, carried over from the rotation stage, is moved by incremental translations

called (Dt1, Dt2, Dt3) along three independent axial directions. The small steps used, typically 1 Å or

more initially, are further optimized, as with the rotation solutions, so as to obtain the most promising

models. The translation function routines attempt to correlate, at least conceptually, the observed and

calculated Patterson functions. As we have seen, optimal correspondence is measured in AmoRe by

the correlation coefficient Cc, which approaches 1.0 for the best solution, but is usually much less than

unity. In addition, it is possible to compare Fo(hkl) with jFc(hkl)j for each translated model and to

calculate Rf, which is usually found to be lowest in value for the best solution. The AmoRe system

employs both Cc and Rf in order to discriminate between potential solutions. As with the earlier

rotation stage, consistency under different trial conditions is an important and extremely useful means

of generating confidence in the validity of the solution of choice, prior to embarking on what can be

very lengthy model building and refinement.

Rigid-Body Refinement
Recent innovations in software are aimed at improving the likelihood of choosing the correct model

resulting from an MR search. At the same time the accuracy of the three rotational and three

translational parameters of the best solution are optimized, and will therefore correspond to a model

which will be easier to refine. To this end, both AmoRe andX-PLOR include refinement routines which

fine tune the rotation and translation parameters by adjusting the position of the search model without

making changes to the geometry of themodel. This technique is known as rigid-body refinement. In this

approach, the validity of the rotated and translated model is given a final check in terms of Cc, which

should approach 1.0, and of Rf, which should minimize.

Subunits and Non-crystallographic Symmetry
Individual molecules related by NCS may produce independent acceptable solutions as a result of the

rotation and translation stages of MR. Because there is no guarantee that the coordinate sets for the

individual molecules produced at this stage are properly correlated in the unit cell it is not usually

possible to simply combine them to form the final trial structure. The main reason for this is

concerned with the existence of more than one equivalent origin in many space groups. For example

in space group P21 we know that there are four distinct 21 axes per unit cell, at [0, y, 0], ½12; 2; y; 0�,
½0; y; 1

2
�, and ½1

2
; y; 1

2
�. Both AmoRe and X-PLOR have the facility for allowing a rotated–translated model

to be included as a rigid group, which is subtracted from the unknown structure in order to enhance the

signal from the missing non-crystallographically related molecule or molecules. If successful, this

process will result in the non-crystallographically related molecules being properly placed relative to

one another in the unit cell. This is an extremely powerful facility and will produce a full trial structure

to be developed further by refinement procedures.

Phases Derived from Molecular Replacement
The phase information derived from Patterson Search methods is initially derived through the

calculation of structure factors, inspection of electron density maps, and least-squares refinement—

the method of Fourier-least-squares. Similar methods apply to macromolecular analysis but with

some important variations.
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10.6.7 Application of the AmoRe Algorithms to Ricin Agglutinin

We continue with the study of RCA, which we introduced in Sect. 10.4.7, as an example of the use of

the program AmoRe to solve a protein structure [27]. The amino acid sequences of the individual A-

and B-chains in both Ricin itself and in RCA are very similar, the overall homology being about 85%.

This suggests that, although Ricin is only half the size of RCA, its structure [28, 50, 51] would be

expected to make an ideal search molecule for RCA, with two final solutions corresponding to the two

halves of the RCA molecule.

A number of trials was used to establish the rotation search for RCA:

1. The search-model Patterson maps were calculated using intensity data restricted to various

resolution ranges, the most useful being 4.0–10 Å.

2. The Ricin search model was placed in an orthogonal cell of P1 symmetry, with unit-cell

parameters 100, 80, 60 Å, a “special” triclinic unit cell. Other search model unit cells were used

with edges from 60 to 100 Å.

3. The radius of integration was set at values between 25 and 35 Å, and the rotation function was

calculated at angular steps of 2.5�. An overall temperature factor applied to F2
o was set to �20 Å2,

which has the effect of sharpening the Patterson peaks, Sect. 7.4. Carrying over the most promising

peaks from the rotation stage and using space group P32, two different outstanding translation

function solutions were produced, as expected for the two halves of the RCA molecule. They had

peak heights of 4.8sp and 4.5sp above the highest noise peak (a value greater than 3sp is normally

considered to be outstanding) with Rf values of 49.2% and 54.0% and Cc 44.5% and 37.1%,

respectively, corresponding to solutions 1 and 2, after application of the rigid body refinement

protocol of AmoRe, Tables 10.2 and 10.3 [52].

Using both solutions simultaneously, all symmetry-related molecules in the P32 unit cell for

this solution were generated and examined graphically using the program MOLPAK. This

program detected no inadmissibly short intermolecular contacts in the packing of this model.

As anticipated however the symmetry-related version of solution 2 (Ricin 2) was found to be

situated in close proximity to solution 1 (Ricin 1). Closer examination strongly suggested that

Table 10.2 AmoRe rotation function for RCA in

space group P32

a (�) b (�) g (�)

1 109.7 80.2 80.7

2 41.3 83.1 169.9

3 14.3 46.5 11.5

4 70.0 141.7 103.0

5 15.6 139.9 177.1

Data range 10–4 Å; radius of integration 35 Å; search

cell 110, 110, 90 Å. The top five R-function peaks are

shown. The correct solutions (“peaks”) 1 and 2 are in

bold type. Solutions 1 and 2 alone persist under other

conditions, such as: data range 10–4 Å; radius of inte-

gration 32 Å; search cell 100, 90, 80 Å; data range

10–4 Å; radius of integration 25 Å; search cell 100, 80,

60 Å; Data range 10–4 Å; radius of integration 37 Å;

search Cell 100, 100, 80 Å [52].
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Ricin 1 and Ricin 2 were covalently linked, and after much further refinement the linkage was

shown to be a disulfide S–S bond. The same rotation function results when used with the

enantiomorphic space group P31 produced no translation function peaks comparable with those

in space group P32. It was concluded, therefore, that MR had produced a potentially refineable

model for RCA, and subsequent development and refinement of the P32 structure proved this to be

the case. Figure 10.15 shows a view of the RCA double heterodimer molecule drawn with the

program RASMOL.

The Initial MR Model
Unlike phases from MIR, those produced with MR are calculated from the structure factors of the re-

positioned search model, and as such are subject to model bias. As a consequence, the calculated

electron density will tend to reproduce the model even if it is incorrectly placed. However, there will

usually be significant differences between the search model and the target model, particularly in terms

of the amino acid sequence; such residues may have been omitted from the search model. The

electron density calculated with model-based MR phases and the Fo(hkl) data of the target protein

should show electron density in these regions of the amino acid sequence, thus allowing the new side

groups to be modeled and added to the atom list. Failure of the electron density to reveal these

modifications is an indication of further problems.

Another indication is a lack of correspondence between Fo(hkl) and jFc(hkl)j, resulting in a very

high R-factor. However, as the model will be very incomplete at this stage, the R-factor alone should

not be used to make decisions on the quality of the model. As in the case of MIR phasing, MR phases

may first be enhanced by modification techniques, Sect. 10.8.2. Interpretation of the electron density

is again achieved with molecular graphics, after which further refinement of the model is then carried

out, Sects. 10.8 and 10.9.

10.7 SIRAS and MAD Phasing

In Sects. 7.6.5 and 7.6.6, we discussed two methods that are applicable to solving the phase problem

for proteins, both of which require the use of tunable SR for making anomalous scattering measure-

ments. In the SIRAS method, two sets of intensity data are required: one from the native crystal, and a

Table 10.3 Extension of the rotations solutions 1 and 2 in Table 10.2 to the translation stage using space groups P32
and P31

a (�) b (�) g (�) tx ty tz Cc (%) Rf (%) Ds

P32 109.7 80.2 80.7 0.6334 0.1427 0.5674 44.5 49.2 4.8
1

P32 41.3 38.1 169.9 0.9679 0.0321 0.00 37.1 54.0 4.5
2

P31 109.7 80.2 80.7 0.5128 0.3910 0.00 9.5 77.9 1.5
1

P31 41.3 83.1 169.9 0.7372 0.3397 0.00 10.9 77.8 1.4
2

Compared to the other solutions in Table 10.2, the solutions in Table 10.3 for space group P32 are outstanding in terms

of Cc (highest) and Rf (lowest), indicating the correctness of the solution. Rotation solutions 1 and 2 fail to provide any

reasonable translation solutions in space group P31, which is therefore eliminated. As a further test of the method, the

starting Ricin model was rotated randomly to a new starting position, and the rotation and translation functions

recalculated. Two outstanding peaks were again found that proved to be consistent with the above solutions 1 and 2.

The packing of the molecules from the solution in P32 shows no disallowed contacts, and reveals also how the two

halves of the Ricin molecule associate.
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second from the heavy-atom derivative for which Friedel or Bijvoet pairs are measured, thus enabling

the phase ambiguity of SIR to be resolved. In the Multiple-Wavelength Anomalous Dispersion

technique (MAD), the anomalous dispersion measurements are made at two different wavelengths,

so providing an extra data set. In both methods the wavelengths used are selected in order to optimize

the anomalous dispersion effects from heavy atoms present in the crystals.

The MAD technique is often used to solve the phase problem for proteins containing selenium-

mutated methionine residues, produced by recombinant DNA technology, in which sulfur has been

replaced with the heavier selenium atom (ZS ¼ 16, ZSe ¼ 34) in order to enhance the strength of

the anomalous scattering signals. In such cases [53] the structure determined is often that of the

modified protein.

Fig. 10.15 (a) A view of the RCA double heterodimer molecule, drawn by the program RASMOL. The position of the

pseudo-twofold axis relating the two halves of the molecule that are joined by a disulfide bridge is shown by the arrow. This

figure is a ribbon diagram showing the course of themain chain, and it is possible to pick out regions of helix structure, sheet

structure, and random coils. (b) Stick-bond diagram of RCA; the central S–S bond is indicated by the arrow
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10.8 Use of Phase Information and Density Modification

Successful application of one of the four methods MIR, MR, SIRAS or MAD, will provide at least

approximate values of the phases required for calculation of a preliminary electron density map of the

native protein structure. Any errors associated with these phases will affect the quality of the

calculated electron density and its interpretation in terms of the protein structure. To enable improve-

ment in both the phases and electron density to be made at an early stage, density modification

techniques have been developed to optimize the electron density map, particularly in cases where

there is reason to believe the initial phasing is of poor quality, and also to enable a rational

interpretation to be carried out. Some applications in which this technique might be necessary include

SIR or MIR where the mean figure of merit is too low, say, less than 0.5, and in MR where Cc is too

low, or Rf too high, or where no outstanding or persistent solution is observed.

10.8.1 Properties of r(xyz) for Proteins

The inherently poor resolution of protein X-ray data means that, generally speaking, only heavy

atoms, those with atomic number greater than 20, are expected to produce distinct peaks in the

electron density map. The general features of protein electron density maps may be summarized as

follows:

1. Main-chain density tends to be continuous and relatively strong. This is because atoms in the

polypeptide chain are generally held firmly by interactions between neighboring atoms and are

therefore less susceptible to thermal and statistical disorder, Sect. 8.9. Recognition of strong,

continuous density in the map can therefore enable the main polypeptide chain to be traced and the

molecular envelope to be outlined.

2. Side-chain atoms tend to be less rigidly held in the structure than main-chain atoms, with

correspondingly weaker electron density.

3. Protein crystals can contain anything between 35 and 70% in solvent molecules. This part is the

most disordered of the structure and will consequently be associated with very weak electron

density, situated in the intermolecular interstices and solvent channels. Consideration of the

regions of weak density should therefore enhance the recognition of the protein molecular

boundary. Solvent molecules, such as water, closest to the protein are generally better ordered

than bulk solvent atoms, and may be identified once some structure refinement has been effected.

10.8.2 Programs for Density Modification

We provide here a brief list of programs available for density modification (DM) in protein structure

analysis.

DM [54] is a CCP4-supported program. It applies constraints to the observed electron density and

derives new phases via Fourier transform techniques. Phases can be calculated for reflections not

involved in the original phasing. However this procedure, known as phase extension, should be

applied with caution: for example, it is unlikely that a 6 Å MIR map will rapidly expand to 2 Å, but

the method might more realistically expand the phases from 2.5 to 2 Å.

SOLV [55] uses a method known as solvent flattening, which establishes uniformity of density in

solvent regions, on the assumption that regions of disordered solvent are essentially without

structure.
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HIST [56] applies histogram matching based on the known characteristics of biological structures so

as to predict the histogram of density values in the protein region. The current density map is then

systematically modified according to the predicted histogram. This technique is complementary to

solvent flattening. Between the two, the image of the protein structure should become much clearer

and facilitate model building prior to further refinement (see below). The combined process of

SOLV/HIST may require 10–20 iterations to converge.

SKEL uses skeletonization [57, 58] to provide a sound basis for molecular graphics model building of

the structure, by enhancing the connectivity of the electron density in main-chain regions.

SAYR [59] attempts to achieve phase improvement for data at 2 Å resolution or better by applying

phase relationships adapted from a classical small-molecule phasing method.

AVER [60, 61] uses molecular averaging for structures where either NCS or exact crystallographic

symmetry is present; it provides better phasing for initial model building. This constraint should, if

possible, be released for the final structure.

Figure 10.16 is a suggested flow diagram for use with these programs.

10.8.3 Preparing to Refine the Structure

At some stage in the determination of any structure using X-ray analysis, it has to be decided whether

the current model can be refined further. For small molecules, during the initial stages of Fourier

refinement we are guided by a combination of good molecular geometry and the behavior of the R-

factor, which should fall to 16–18% prior to least-squares refinement. Even a small protein of Mr

approximately 15,000 contains about 1,000 non-hydrogen atoms, so that examination of the electron

density is much more arduous and time consuming.

This work is carried out at a computer workstation, employing programs such as FRODO or its

updated version O, TURBO-FRODO, Coot (see below) and SKEL [57, 58], which allow a geometri-

cally accurate protein model to be built into the electron density. Figure 10.17a, b show examples of

fitting benzene ring atoms into electron density with Coot at two different resolutions. It should be

Fig. 10.16 Flow diagram for electron density modification (DM). The final electron density is used for model building,

and for further refinement if of sufficient quality

10.8 Use of Phase Information and Density Modification 529



Fig. 10.17 Coot (2Fo � jFjc) electron density maps. (a) Electron density for mistletoe lectin I (MLI) lactose complex

at 2.5 Å resolution in the vicinity of phenylalanine 88 (PHE 88), contoured at the 1.59s level. (b) Bovine ribonuclease A
at 0.95 Å in the vicinity of phenylalanine 20 (PHE 20), contoured at the 1.6s level: s is the rms deviation of the average

electron density, a quantitative way of assessing the noise level of the map. The choice of contour levels determines

both the appearance of the output map and the ease of interpretation. The effect of resolution is clearly apparent

emphasizing the need for a program like Coot, which assigns coordinates to the model atoms in such a way as to

preserve the molecular geometry. Assignment of atomic coordinates is obviously much easier for the higher resolution

map (b) (Coot maps provided by courtesy of Dr. David Lisgarten)
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emphasized that knowledge of the amino acid sequence of the protein is a desirable prerequisite

which will help residues to be identified in the complex electron density map. After each round of

model building, structure factors should be calculated and the R-factor inspected. A very satisfactory

R-factor for a protein structure at this stage would be around 25%; a value up to 30% could be

tolerated but should be treated with caution. Further computational refinement may then be carried

out, as described in the following discussion.

10.9 Macromolecular Structure Refinement and Solvent and Ligand Fitting

10.9.1 Refinement Techniques

Many programs are currently available for the refinement of macromolecular crystal structures. As

we shall see some are mainly concerned with refinement, while others will already have been

discussed for their particular use, for example in MR. It is a matter of personal choice and experience

whether to use a specialized refinement program or to continue a particular study using the same

program from which the structure was initially derived.

The process of structure refinement involves optimization of the agreement between the observed

and calculated diffraction patterns, represented by Fo(hkl) and jFc(hkl)j, and validation of the resulting
molecular structure. If isomorphous replacement has been used to derive phase information, the initial

structure model will be derived from an electron density map using molecular graphics (see below).

For anMR analysis, it is likely that rigid-body refinement of the model will have been carried out at an

earlier stage. Whichever method has been used for the initial structure analysis, refinement of the

model should be undertaken by a combination of the following techniques:

1. Fourier refinement using successive Fourier synthesis

2. Simulated annealing

3. Least-squares analysis

Further Details of Fourier Refinement and Model Building
Lack of resolution in protein X-ray data results in poor definition in the electron density map whether

from MIR, MR, or any other phase determining method. It will be necessary to interpret this map by

fitting the protein structure to the density. If MR has been used for the preliminary structure

determination, electron density calculations will again play an important role initially, but the

crystallographer will have prior knowledge of structural features of the search model that will help

to establish the new structure. There are three aids to assist the initial process of interpreting the

electron density:

1. The amino acid sequence of the protein. If this is not known, interpretation of the crystal structure

will necessarily be difficult, and probably not possible unless very good phasing at a high resolution

has been achieved. If MR has been used, the target molecule will be subject to amino acid sequence

changes; in addition, insertions and/or deletions may be required. These features have to be built into

the density.

2. Knowledge of the standard geometry of proteins [62, 63] in terms of main-chain and side-chain

bond lengths and bond angles, and of secondary structural features, particularly the a-helix and b-

sheet, Sect. 10.11. Software such as PROCHECK [64] and MolProbity [65] have been developed

as extremely useful aids to protein structure verification, including bond length, bond angle and

conformational checks, using the Ramachandran plot [66].
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3. Molecular graphics. The effective interpretation of electron density maps has been completely

revolutionized over the past 25–30 years because of the development and availability of graphics

software. These facilities enable structural features to be built into density maps, following

standard geometry protocols, and provide the user with structure files for use in further analysis.

Software available for carrying out these procedures include FRODO [67] and O [68] (O is an

enhanced version of FRODO), XtalView [69], Coot [70] and MolProbity [65] enable the molecu-

lar model to be fitted optimally into the electron density map. Output from these routines includes

a pdb file of atomic coordinates for each amino acid and ligand recognized and fitted graphically.

The pdb file will be used initially in the Fourier refinement stage and eventually as input to a least

squares refinement program.

The Fourier refinement process is represented in the flow diagram in Fig. 10.18. It consists of

successive cycles of electron density calculation, graphical interpretation, updating structure

files, and calculation of structure factors, and R-factors. Improvement in the model and its fit to the

electron density should cause significant decrease in the R-factors. This process terminates when no

further enhancement is evident. The structure file at this stage consists of atom names, individual

atom fractional coordinates (x, y, z), overall or average temperature factor B, for the whole crystal and

a scale factor that converts Fo values to an absolute scale. Individual Bj values are not refined at this

stage of the analysis.

Fig. 10.18 Basic flow diagram for protein structure refinement. Initial refinement is carried out by repeated cycles of

Fourier synthesis/molecular graphics until no further atoms can be added to the model. Once this process has converged,

least squares (REFMAC, PHENIX or SHELX-97) or simulated annealing (X-PLOR) can be used in step IV. The cycle

IV-II-III-IV is repeated until no further changes occur in the parameters of the structure; final convergence is then

considered to have been reached. Coot is now a popular choice to employ throughout for model building with the

electron density and molecular graphics analysis
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10.9.2 Simulated Annealing

After the initial model building of a protein structure, it is to be expected that there will be some

regions of the model that are some distance from their true positions. Such errors are difficult to

correct with Fourier methods alone, as the detailed inspection of each map is a lengthy and difficult

process. We have described the routine refinement of small-molecule structures through the calcula-

tion of successive Fourier syntheses followed by least-squares analysis. The Fourier method has also

been shown to be an essential tool for macromolecular structure analysis, and in the following

sections of this chapter, other techniques for refining large molecule structures will also be described.

In order to apply least squares satisfactorily, the structure should not contain any gross errors; if it does

the method will be unable to cope, as it assumes that the structural parameters are close to their

true values.

Another difficulty is that the ratio of reflections in the data set to the number of parameters in the

model (data/parameter ratio) is much smaller for a large molecule (see Problem 10.7). The least

squares method necessarily requires the problem to be over-determined to the extent of 3–4

reflections per parameter or better, which is extremely difficult to achieve for proteins. In order

to overcome these difficulties with the initial model, the program X-PLOR [40] or its updated

version CNS [43] can be used to carry out the process of simulated annealing, which employs

molecular dynamics.

The main objective of this method is the elimination from the model those regions of structure that

are far from their true positions. Such regions may have been introduced through the initial search

model in MR, or by faulty model building at a later stage. It is likely that such regions will be

associated with bad interatomic contacts and inadmissibly high potential energy. In simulated

annealing the structure is given a large perturbation (“heated to a high temperature”), yielding an

ensemble of energetically allowed structures that is then allowed to recover (“cool”) while preserving

or re-establishing the correct minimum-energy molecular geometry. This process allows energy

barriers that are associated with faults in the X-ray model to be overcome and corrected. The X-

PLOR protocol involves minimization of an overall total potential energy term Etot, which is made up

the empirical energy Eemp and the effective energy Eeff, where Eeff ¼ EX-ray + Ep + Enb. The terms

Ep + Enb are included to take into account experimental information about phases and crystal

packing, while EX-ray is a “pseudo energy” that involves differences in the observed and calculated

structure factors:

EX�ray ¼ ðWa=NaÞ
X

hklWhklðFo � KjFcjÞ (10.12)

whereWa puts the term on to the same basis as “energy” (established through a dummy dynamics run

without EX-ray), Na is a normalization factor which renders Wa independent of resolution, Whkl

provides a weighting scheme and K is a scale factor. X-PLOR is sometimes used without further

refinement, and this can lead to a satisfactory structure determination. Individual isotropic thermal

parameters Bj can be included in the refinement if the data collection resolution is sufficiently high, at

least 2.5 Å. The conventional R-factor should drop to ca. 20% or lower unless there are big problems

with the data, such as poor crystal quality or very weak diffraction, in which case it will not be

possible to derive a highly significant structure with any refinement protocol. It may be desirable to

undertake least-squares refinement of the structural parameters even after simulated annealing has

been carried out. In any case, routines such as PROCHECK [64] or WHAT_CHECK [71],

Sect. 10.11, should be used to provide rigorous validation of the structure model.
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10.9.3 Least-Squares Refinement: Constrained, Restrained and Other Protocols

The method of least squares is used routinely in small-molecule structure analysis, optimizing the fit

between jFcj andFo, and providing refined parameters and their standard deviations. Becausemost small-

molecule crystals diffract to around 0.8 Å, the data set provides about ten Fo data per parameter even

when an anisotropic thermal displacement model is used. This degree of over-determination is found

rarely in protein crystals. It is more usual with poorly diffracting protein crystals for there to be only one

Fo or less per structural parameter. Methods have therefore been developed, which attempt to economize

on the number of parameters defining the structure model, and provide data in addition to the X-ray data

that can contribute toward the refinement of the model. Software for carrying out such refinements is

usually based on constrained or restrained protocols.

Constrained or Rigid-Body Refinement
Rigid-body refinement was mentioned in Sect. 10.6.3 as an option in someMR protocols. The method

involves repositioning of the whole model in the unit cell without any further adjustment of individual

atom coordinates. The method can be useful for refinement of molecules related by NCS by initially

averaging the two or more molecules so as to improve the data/parameter ratio; this method is

available, for example, in the program X-PLOR. Constrained refinement can also be used for fixing

rigidly predefined bond length and angle types and planarity of groups such as rings or peptide groups.

While possibly effecting some degree of refinement in the structure model, constrained refine-

ment will usually require further refinement by restrained least squares, where a degree of tolerance

is built into the bond lengths and angles, if the data/parameter ratio allows. As an example of the

savings in parameters that can be achieved by applying constraints, consider a flat six-membered

ring. In terms of free atom parameters there are 18 positional parameters. By constraining the 6

bond lengths, 6 bond angles, and 3 cross-ring distances, only 15 parameters are required, a saving of

3 parameters. When applied repeatedly within a macromolecular structure, small savings like this

can accumulate to a very worthwhile total, and at the same time ensure that the geometry of the

refined structure will be acceptable. The input data set does, however, require a great deal of

preparation in order to set up the required constraints.

Restrained Refinement
This and other methods of refinement should not be used unless considerable effort has been applied

to the Fourier refinement and possibly supplemented by simulated annealing as well, so as to reduce

the errors present in the structure and to include as many atoms as possible in the coordinate set.

Restrained geometry refinement is more flexible than constrained refinement: each of the standard

values of bond lengths, bond angles and other distances is tagged with a tolerance which specifies an

acceptable range for the refined value of the parameter, Sect. 10.11. The following programs are

important in restrained refinement.

RESTRAIN
This program [72], which has now been superseded by REFMAC and PHENIX, employed a least-

squares algorithm, that used terms involving differences (DF)2, or (Fo � jFcj)
2, standard geometry

values, Sect. 10.11, and the planarity of groups. Corrections to structure parameter values were

derived by minimizing the function

M ¼
X

WfðDFÞ
2 þ

X
Wfðfo � fcÞ

2 þ
X

Wdðdo � dcÞ
2 þ

X
Waðao � acÞ

2

þ
X

Wbðbo � bcÞ
2 þ

X
WvV (10.13)
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where fo is the (usually) MIR phase, d is a bond length, a is a cross-bond distance, such as A–C in the

sequence A–B–C and therefore a measure of bond angle, b is a term for non-bonded distances, V is a

planarity restraint, and the weights W apply to various types of terms and require very careful

adjustment during the course of the refinement to ensure proper calculation of standard deviations

for the refined parameters. Chirality is preserved by applying restraints to the edges of all chiral

tetrahedra. Anisotropic thermal displacement parameters, nine for each freely refined atom, can be

included if the data/parameter ratio allows. RESTRAIN was a CCP4 program: it employed non-FFT

calculations for structure factors and partial derivatives and was consequently slow to perform each

cycle, but required fewer cycles to converge than FFT-based algorithms.

REFMAC with Maximum Likelihood
This is a currently supported and widely used CCP4 program [73] with many facilities, including the

fitting and refinement of ligands such as sugars. The refinement method used is based on the statistical

method of maximum likelihood. Use of the method of least squares assumes inherently that errors in

the data and themodel are random, uncorrelated andwith equal and finite variance. Some or all of these

conditions may break down in practice, for example, if part of the molecular structure is missing

initially from the model, even though the rest of the model is acceptable. Considerations such as these

lead to the use of another method for function minimization based on the principle of maximum

likelihood or probability. This requires the associated probabilities of the observed Fo(hkl) to be a

known function of the parameters of the model.

Maximum likelihood refinement adjusts the parameters of the model so as to maximize the

probability that the data and model are compatible. The overall conditional probability is calculated

as the product of the probabilities for each reflection, estimated from the individual Fo(hkl), jFc(hkl)j
and s(hkl) values [73]. In practice, use is also made, as we have emphasized in other respects, of the

known stereochemistry of the macromolecular system. Maximum likelihood refinement can also be

carried out with the programs CNS [43] and BUSTER-TNT [74].

SHELXL-97
SHELX programs [75] are well known for their use in small-molecule crystal structure analysis and

have been discussed in earlier chapters. The SHELXL-97 version has been adapted to accommo-

date protein refinement by incorporating the SHELXPRO computing interface. The geometry

refinement options and restraints are similar to those described previously and include additional

facilities such as: anisotropic scaling, refinement progress display, and thermal displacement

analysis. For conformational analysis, tabulation, display, and publication purposes the program

carries out the following:

1. Checks for validity of main-chain conformations using a Ramachandran plot [76] (see below)

2. Produces an electron density map file for use in the graphics program O

3. Generates a pdb file which can be used in most graphics display programs (see Appendix D). The

pdb file is a standardized record of the structural parameters and is used as an input to programs for

analyzing and displaying these results as well as for deposition at the Protein Data Bank; see also

Problem 11.7

Practical Details
Initially, small ligands and/or solvent can be excluded, but should be added through further use of

electron density maps as the refinement progresses. Least-squares analysis predicts corrections for the

structural parameters in the current model (coordinates, temperature factors and scale factor). It may

be possible to refine individual Bj values if the data/parameter ratio is at least 2–3; anisotropic thermal

displacement factors are unlikely to be refineable in all but very high-resolution protein structure
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determinations. Selected groups of atoms can be given a single temperature factor, which provides an

easy means of saving parameters.

PHENIX
This relatively new software suite [77, 78] for the automated determination of macromolecular

structures using X-ray crystallography and other methods and described as a “comprehensive

Python-based system for macromolecular structure solution,” is now widely used and highly recom-

mended. Among its refinement features is a facility for torsion angle parameterization [79] which is

also available in the program CNS [43]. This requires a much smaller number of parameters and is

therefore an approach which is expected to improve the refinement process, for example by speeding

up convergence and reducing the number of cycles required.

Solvent Molecules and Small Ligands: Fitting to the Electron Density
The assignment of solvent atoms, usually water, in the crystal structure model is one of the last

procedures to be carried out. These atoms make only small individual contributions to X-ray

intensities, but several hundred water molecules can influence considerably the values of jFcj. The
total level of solvation in protein crystals is usually around 50%, and most of the solvent is

unstructured, forming very disordered, fluid regions in the intermolecular channels. However within

a layer closest to the protein molecule, it is to be expected that many solvent molecules will form

strong hydrogen-bond interactions with atoms of the protein, and consequently will acquire an

ordered state approaching that of the protein itself.

A measure of the ordering may be derived from the refinement if individual atomic thermal

displacement parameters Bj are used, but this is possible only for analyses employing a resolution

better than about 1.8 Å. Generally, solvent atoms will have Bj values 10–20% larger than the protein

atoms with which they are associated. Hydrogen-bonded interactions are responsible for ordering

water molecules or other hydrophilic solvent molecules, such as ethanol. The interactions can involve

any main-chain or side-chain atom which can act as a hydrogen-bond donor or acceptor. In order to

locate possible water molecules it is necessary to inspect an (Fo � jFcj) or a (2Fo � jFcj) difference

density map in detail. Possible water sites may be assigned to significant density regions, say, greater

than 2s(r) where s(r) is the rms electron density, and located within 2.5–3.3 Å (hydrogen-bonding

distances) from one or more possible hydrogen-bond donors, usually –OH or >NH groups, or

acceptor atoms, usually oxygen or nitrogen; there should be no other close contacts present. Suitable

electron density regions should ideally be spherical and small in volume.

Since this procedure can be very time consuming, programs have been developed to expedite the

process, including routines in O [68] and SHELXPRO [75]. It should be emphasized that water sites

assigned by such automatic procedures should be critically checked manually using molecular

graphics such as Coot [70]. Graphical examples of water molecules located in this way are shown

in Fig. 10.19. If the analysis is at sufficiently high resolution, the Bj values should be refined in the

subsequent analysis. Solvent sites, as with other included atoms, for which Bj refines to a value greater

than 80 Å2 should be discarded as being unrealistically weak. The inclusion of significant numbers of

solvent atoms, which meet all these requirements should cause the R-factor to decrease by 1–2% or

more. In many cases solvent atoms are functionally important and their recognition through the X-ray

structure may be regarded as an added bonus.

The assignment of small ligands in the structural model follows a route similar to the above

procedures for water molecules. Atom coordinates should be assigned and added to the data file for

as many atoms as possible, paying full attention to the validity of the molecular geometry involving the

new atoms. As much information as possible should be incorporated into the procedure, including
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known or preconceived stereochemistry of the group, known or expected binding region of the protein,

proximity of protein atoms with ligand atoms, and validation of contact distances. Figure 10.18

provides a possible flow diagram for the refinement process just described. An example of difference

electron density showing a bound inhibitor molecule in the protein RNase T1 [80] is shown in

Fig. 10.20.

10.10 Structure Validation: Final Checks

In this final section, we mention some of the checks that can and should be made with respect to the

protein structure when all of the above techniques have been exhausted. These concern both the

technicalities of the X-ray analysis itself and the finished product.

10.10.1 R-Factors

One of the principal checks during the course of the analysis involves R-factors. While emphasizing

that this should not be the only means of assessing the final structure, it does nevertheless provide the

first indication that the analysis has progressed well. From the outset of the analysis, the overall

quality of the intensity data will have been assessed from the value (or values) of the merging R-

factor, Sect. 10.4.6. This in turn provides an indication of how we can expect the R-factor of the

structure to behave.

Fig. 10.19 Location of water molecules (actually water O atoms) in bovine ribonuclease A at 0.95 Å resolution for

data collected at �50 �C. Two water oxygen atoms are clearly visible in this (2Fo � jFcj) map contoured and

interpreted by Coot. One water molecule forms hydrogen bonds to the carbonyl O atom of the residue Arg 39, and to

the main chain N atoms of both Asp 38 and Arg 39, as indicated by the distances. This information provides sound

confirmation that the new peak, which is both strong in density and well resolved, is a water oxygen. The other water

does not form hydrogen-bonds directly to the protein and is therefore in an outer hydration shell of the structure, which

has about 40% total solvent. Subsequent least squares refinement of the B values of the proposed water oxygens to

values less than about 40 Å2 would be taken as final confirmation of the assignment. Several hundred water molecules

have been located in this structure (Coot map supplied by courtesy of Dr David Lisgarten)
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Over-refinement, that is, an unjustified fitting of too many parameters, can lead to unrealistically

low R-factors, whereas they should conform to the quality of the X-ray data. Depending on the

resolution attained, which is typically around 1.8–2.2 Å for a good protein structure, we can expect

the R-factor to drop to 18–20% on completion of the refinement. On the one hand, at higher resolutions

the R-factor should be less because more of the structure, particularly water molecules, will have been

fitted, and the structure will be less subjected to regions of disorder that are difficult to model. On the

other hand, for lower resolutions the R-factor will tend to lie between 20 and 30%. In contemporary

analyses it is expected that the Rfree index will be determined as a check on model bias, particularly in

structures based on MR. Because it is unbiased by the refinement process, as a general rule of thumb

Rfree should decrease as the R-factor falls but exhibit values 2–3% higher.

Fig. 10.20 An example of an (Fo � jFcj) electron density plot for a protein structure in the active site region of

RnaseT1 [80]. Two moieties are clearly visible: a 30-guanosine monophosphate (lower density region) and a guanosine

subsite (upper density). The resolution is 1.7 Å and find R value 14.5%
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10.10.2 Evaluation of Errors

Programs such as REFMAC, SHELX-97 and PHENIX provide estimated standard deviations for the

refined structural parameters and these should be carefully reviewed to enable poorly refined parts of

the structure to be identified. For a typical small-molecule analysis a good estimate of the error in

each of the refined parameters is calculated as a by-product of the least-squares procedure, the best

estimates being from a full-matrix refinement. This is possible because of the high degree of over-

determination in small-molecule analysis, with a data/parameter ratio greater than about 10, whereas

in protein analysis this ratio is more likely to be 2–3, and the estimated standard deviations will

therefore not be so reliable. Several methods have been suggested for estimating the rms valueffiffiffiffiffiffiffiffiffiffi
jDrj2

q
of the atomic coordinate error of a protein structure. They include the method given by Read

[81] which derives jDrj2 from the slope of a plot of ln(sA) against (sin y/l)2 in the formula

ln sA¼
1

2
ln

P
PP
N

� �

�
8p3

3
jDrj2

sin2 y

l2

� �

(10.14)

where
P

N is
P

f 2j summed over all atoms in the structure, and
P

P is
P

f 2j summed over all atoms

in the partial structure; sA is obtained from
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2Þ
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P

ðjEobsj
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2Þ
2

� �1=2 (10.15)

where jEobsj is obtained from Fo and jEcalcj is calculated from the structure; both observed jEoj
2
and

calculated jEcalcj
2
should equal unity, Table 4.3. Values of sA estimated from this method are not

absolute, and can only be considered to be on a relative basis for comparison purposes. According to

current opinion, a value of sA around 0.3 Å or less is acceptable.

10.11 Geometry Validation: Final Checks

The geometrical features of proteins and related compounds have been subjected to intense study for

over 50 years [62, 63]. Information on the bond lengths, bond angles and torsion angles of smaller

peptide structures are available in the Cambridge Crystallographic Data Base, and of proteins in the

PDB (see Appendix D). It is possible, therefore, to inspect a newly refined protein structure in detail

and to make assessments of its geometry in terms of standard features. If either unusual features or

possible errors are suspected, it will be necessary to look at them in detail and to repeat some of the

refinement protocols so as to make corrections where necessary.

10.11.1 Bond Lengths, Bond Angles, Planarity, and Chirality

Refinement programs have built-in checks that assess the derived geometry of the current model in

terms of standard values. Average values of features such as peptide bonds are also calculated together

with the spread of values found in the structure. Examination of these values provides a useful check on

possible errors. Software such as PROCHECK [64], MolProbity [65] and WHAT-CHECK [71] have

10.11 Geometry Validation: Final Checks 539

http://dx.doi.org/10.1007/978-1-4614-3954-7_4#Tab3_4


been developed for protein structure verification, including bond length, bond angle, and conforma-

tional checks, and should be used as a matter of routine in protein structure analysis.

Known planar groups, such as phenyl rings, will probably have been constrained, and the effect of

this should be checked to see if it has been successful. Chiral carbon atoms are usually of known hand

and this can be restrained in some refinement programs. The chiral volume calculated as the scalar triple

product of the vectors from the central atom to three attached atoms will have the correct sign only for

the correct enantiomeric form. If a side group has been attached to a chiral center incorrectly, the chiral

volume will have the wrong sign and this can be corrected by rebuilding the model at this location.

10.11.2 Conformation

Main-Chain Conformation

Fig. 10.21 Ramachandran plot for the protein SNAII (Sambucus nigra agglutinin II), a Gal/GalNAc specific lectin

extracted from the bark of the Elder, calculated with the program PROCHECK. The plot provides an overall picture of

the (f, C) coordinates (white squares) observed for this protein. There are no unusual or disallowed conformations

present (Gal, galactose; GalNAc N-acetylgalactosamine)
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The peptide torsion angle o, Sect. 10.1, is rarely outside the limits of 180 � 20� (trans) or

0 � 20� (cis). Deviations from these limits in the model should be examined carefully. The

features of protein secondary structure that are governed by folding of the polypeptide in terms of

the torsion angles f and C are well documented and can be visualized and evaluated conve-

niently in terms of a Ramachandran plot [66]. This provides an overall picture of the (f, C)

values observed for the protein structure, all of which are plotted on to the same diagram. The

shaded areas of Fig. 10.21 show the regions of allowed conformation more or less as originally

plotted. These regions were defined from studies of protein models in which the side-chains were

all alanine (ala), which has a short methyl side group, and are based on those (f, C) combina-

tions that are free from steric clashes.

Although protein structures are found to conform mainly to the allowed regions displayed here,

some extension outside and between these areas is accepted on account of the large data base of known

proteins now available. In Fig. 10.21 the white squares denote the (f,C) coordinates calculated for the

refined structure of Sambucus nigra agglutinin II (SNAII) [12, 82], which is a lectin with high

specificity for binding to the sugar b-D-Galactose (Gal) and its derivative b-D-N-acetylgalactosamine

(GalNAc), and is extracted from the bark of the Elder, S. nigra. All of the (f,C) values are seen to be

within allowed regions, indicating that it is an acceptable structure. Any points derived from a new

protein structure that are significantly outside the regions shown here should be carefully examined.

Side-Chain Conformations: Molecular Graphics Display Programs and Bound Ligands
In terms of stereochemistry there is a great variety amongst the 20 amino acids that occur in proteins,

and their individual conformations are well characterized from known structures. As with all

empirical data, tolerances in these conformations exist and should be borne in mind when evaluating

a new structure. Programs such as PROCHECK, MolProbity and WHAT-CHECK provide a detailed

analysis of the side-chain conformations in a given protein structure and flag any unusual or dubious

ones for further investigation.

Molecular Graphics Display Programs
One of the rewards of completing a protein structure is to see graphical representations of it. In the

1950s these were produced by artists, resulting in what Bernal described as “extremely beautiful

pictures. . ..” In his innovative 1969 book [83] Dickerson used clear and imaginative drawings

produced by the artist Irving Geis to great effect. Geis’s renowned paintings, sketches and drawings

helped generations of researchers to visualize complex macromolecules, such as cytochromes and

viruses [84]. Since then computerized molecular graphics has been developed and researchers are

fortunate to have at their disposal a wide range of software to produce accurate representations of

their structures which have a beauty of their own. An important feature of these programs is that

they allow different parts of a structure to be selected and presented graphically in a variety of

ways. One of the first programs to be developed, which is still extremely popular is RASMOL [85]

several examples of which can be found in Chap. 11. The CCP4 suite has a versatile graphics

facility [24] as can be seen in Fig. 10.22. Graphics produced by Accelrys Discovery [86] are also

extremely powerful and relatively easy to obtain from the versatile menu provided, Fig. 10.23. This

program also features a useful energy minimization procedure. Other useful graphics programs

include: MOLSCRIPT [87], PYMOL [88], and ArgusLab [89], all of which produce excellent

molecular drawings, such as the drawing of an a-helix in Fig. 10.24, of all sizes and has useful

energy minimization and other features; MOE [90] also has a wide range of useful features.

Finally there is another aspect of protein structure analysis which involves the binding of ligands to

the main protein molecule [91]. For example lectin proteins bind to specific cell surface sugar

molecules, and lectin structures are often determined with bound sugars. In the case of MLI, the
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Fig. 10.23 General view of MLI galactose complex [92], drawn with Accelrys Discovery [85]. Regions of a-helix

(red) and b-sheet (blue) are shown as ribbons

Fig. 10.22 CCP4 molecular graphics example showing a periplasmic ferric enterobactin binding protein Ceu of

Campylobacter jejeuni with a bound dinuclear ferric enterobactin mimic [95]
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structure crystallizes in the presence either of b-D-galactose [27, 92, 93], which shows two galactose

binding sites in the B-chain, or with lactose [94]. The binding sites are designated: site 1, towards the

N-terminus (a); and site 2, towards the C-terminus (b). Figure 10.25a, b were drawn from the pdb file

for MLI-lactose with LIGPLOT [95], which automatically analyses and depicts the interactions

between the protein and the ligand in each case. Similarities in the binding of galactose in MLI and

ricin [28] were revealed using this software. The sites are quite complex and it is virtually impossible to

represent the three-dimensional graphics in a direct two-dimensional diagram. This problem is

overcome by LIGPLOT which produces an easy to read cartoon type representation.

Fig. 10.24 Part of the a-helix from MLI [92] drawn with ArgusLab [88]. Hydrogen bonds are shown as white dots
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Fig. 10.25 The two sugar binding sites of MLI [27, 91, 92]. (a) Site 1, towards the N-terminus. (b) Site 2, towards the
C-terminus. Drawn from the pdb file with LIGPLOT [94], which automatically analyses and depicts the interactions

between the protein and the ligand. Similarities in the binding of galactose in MLI and ricin [28] are revealed using this

software. The sites are geometrically quite complex and it is virtually impossible to represent the three-dimensional

graphics in an undistorted two-dimensional diagram. This problem is overcome by LIGPLOT which produces these

comprehensible cartoon-type representations
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10.12 Humidity Control and the Use of Cryoprotectants in Protein
Crystallography

Soaking a protein crystal in a cryoprotectant causes it to suffer an abrupt shock which may disrupt the

crystalline order. This strongly suggests that most cryoprotectants have a lower relative humidity than

typical crystal well solutions. In order to overcome this problem experiments are now undertaken

with a view to controlling the humidity environment at the crystal to promote data enhancement and

identify the relative humidity of the mother liquor. Exposure of the crystal to X-rays is then carried

out while using a humidity control device to maintain the crystal at the humidity of the mother liquor,

thus providing an impression of crystal quality at room temperature. It is then possible to gradually

lower the humidity with the aim of improving the diffraction quality and possibly removing the need

to cryoprotect at all (below about 92% relative humidity). The humidity is controlled by passing a

humid stream of air over the sample. It is now considered to be an advantage to be able to review

crystals at room temperature so that the effect of the addition of cryo-protectant can be monitored.

This is not possible with crystals in volatile mother liquors as the mother liquor never stabilizes. Such

experiments are expedited by the use of crystal mounting robots which can handle 16 samples in one

setting (http://doc.diamond.ac.uk/MXManual/Sample-Changers.html). [We are indebted to Dr. C.

Lobley and Professor T. Sorensen, Diamond Light Source, for providing this update.] [97, 98].

10.13 Problems

10.1. Typical specimens used in single crystal studies have dimensions between 0.1 and 0.5 mm.

Crystals of small organic molecules have unit-cell dimensions in the range 5–100 Å and

macromolecules 20–400 Å. Estimate the number of unit cells in a protein crystal of dimen-

sions 0.2, 0.3, 0.4 mm if the unit-cell dimensions are a ¼ 30 Å, b ¼ 40 Å, c ¼ 50 Å. Repeat

the calculation for a small organic molecule with unit cell dimensions a ¼ 10 Å, b ¼ 12 Å,

c ¼ 15 Å. Assume that all crystal and unit cell angles are 90�. Comment on the relative

diffracting power of the crystals.

10.2. Diffraction data are to be measured on an image plate using SR. The exact wavelength of the

radiation can vary from time to time and needs to be calibrated. A smear of amorphous beeswax

was placedwhere the crystal is normally mounted at a distance of 300mm from the image plate.

The wax has a dominant powder line of spacing 3.5 Å and produced a ring of diameter 140 mm

on the image plate. Calculate the wavelength of the X-radiation.

10.3. Refer to Problem 10.2. It is required to collect data for a protein crystal with a known unit-cell

length of about 300 Å. If a spot separation of at least 1 mm is required, comment on whether a

crystal-to-detector distance of 450 mm would be appropriate.

10.4. During data processing for the crystal in Problems 10.2 and 10.3, the unit-cell parameters were

found to be a ¼ b ¼ 110.79 Å, c ¼ 308.53 Å, a ¼ b ¼ 90�, g ¼ 120�; the Laue symmetry

was 6
m
mm. The only limiting conditions in the diffraction pattern were for 00l: l ¼ 6n. State the

space group or possible space groups for this crystal.

10.5. For mistletoe lectin MLI, the space group is P6522 with Z ¼ 12,MP is 63000 and the unit-cell

parameters are a ¼ b ¼ 110.79 Å, c ¼ 308.53 Å, a ¼ b ¼ 90�, g ¼ 120�. Investigate possible
values for m, the number of molecules per asymmetric unit, and s, the fractional solvent content.

10.6. For mistletoe lectin MLI (see Problem 10.5), there are 21000 recorded reflections in a data set

having dmin ¼ 2.9 Å for wavelength l ¼ 0.8 Å. Estimate the total number of reflections
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expected in the data set. If 21000 unique reflections were recorded what is the percentage

completeness of the data set?

10.7. A protein of relative molar mass 27000 to be studied by X-ray crystallography, crystallizes in

space group P21 with 2 molecules per unit cell. Estimate the number of non-hydrogen atoms

to be located in the analysis given that the hydrogen content of the protein is 10% and

assuming that of the 40%, by weight of solvent (water) in the unit cell only 10% is ordered.

If the unit-cell dimensions are a ¼ 58.2 Å, b ¼ 38.3 Å, c ¼ 54.2 Å and b ¼ 106.5�, estimate

the data/parameter ratios corresponding to 6, 2.5, and 1.0 Å resolution data sets, and comment

on these values.

10.8. Derive the general equivalent positions for space group P32.What conditions limit reflections

in this space group? (Web Appendix WA5 may be helpful.)

10.9. The choice of methods for the determination of protein crystal structures includes (a) MR, (b)

MIR, and (c) MAD. Discuss the circumstances under which each of these methods would be

the most appropriate to use for a given protein.

10.10. When employing Patterson Search methods for structure analysis, under what circumstances

would you expect the search molecule to be (a) very similar in size to, and (b) much smaller

than, the target molecule? Discuss your answer in some detail.
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Neutron Diffraction from Single
Crystals 11

11.1 Introduction

Whenwediscussed the variation of observable symmetry according to the nature of the examining probe,

Sect. 1.4, we stated that one possible probe is a neutron beam. As an example, when the structure of

elemental chromium is examined by X-ray diffraction, it shows a body-centered cubic arrangement,

Fig. 11.1a. Elemental chromium has the electronic configuration (Ar 3d5 4s1); it is antiferromagnetic at

room temperature, and its electron spins, arising from the unpaired electrons, give rise to the magnetic

structure shown inFig. 11.1b. Themagneticmoment of the neutron interactswith the permanent dipole of

chromium to form this structure, and consequently the diffraction record shows a primitive cubic

structure.

Neutron diffraction can distinguish between isotopes, aid the study of alloy systems, such as the

Cu–Zn phases (similar atomic numbers) and magnetically ordered structures, and reveal the presence of

light atoms in the presence of heavy atoms, such as hydrogen in sodium hydride—a difficult matter with

X-rays.

As an example of the detection of hydrogen atoms, we cite the structure of potassium dihydrogen

phosphate, KH2PO4. Hydrogen atoms scatter neutrons strongly, but because the scattering cross section

(q.v.) is negative, the nuclear density contours are also negative for this atom; it also produces a high

background owing to incoherent scattering.Deuterium, however, has a large, positive coherent scattering

with only small background. Thus, it is common practice to replace hydrogen by deuterium in neutron

diffraction studies of hydrogen atom positions in crystal structures. Notable examples of this application

are the precise location of the deuterium (hydrogen) atom positions in potassium dihydrogen phosphate,

KH2PO4, Fig. 11.2, and sucrose, C12H22O11.

Neutron diffraction is also an important and powerful technique used in combination with X-ray

diffraction for locating hydrogen atoms or protons in both small molecules and macromolecules. For

example, neutron scattering has been used in protein crystallography to distinguish between the side

chain C¼Ooxygen atom and the NH2 nitrogen atom in asparagine and glutamine residues because of the

significant difference between the neutron scattering lengths of oxygen and nitrogen: this distinction is

difficult to achievewithX-ray diffraction. It is also possible to distinguish betweenN–H andC–Hgroups

on histidine rings (q.v.). In both cases the proper positioning of these groups is an important factor in the

understanding of the biological action of the protein; see also Sect. 9.4.3. It is also possible to ascertain

whether a given nitrogen atom is protonated (deuterated) or unprotonated, an ambiguity which again

may be difficult to resolve by other means [1].

M. Ladd and R. Palmer, Structure Determination by X-ray Crystallography:

Analysis by X-rays and Neutrons, DOI 10.1007/978-1-4614-3954-7_11,
# Springer Science+Business Media New York 2013
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11.1.1 Refinement of Hydrogen Atom Positions

The neutron diffraction results for sucrose give the value 1.09 Å for the C–H bond length, whereas by

X-rays it is shown to be 0.98 Å; the corresponding O–H bond length values are 0.98 and 0.80 Å.

These results are of interest in connection with the refinement of a structure. If the hydrogen atoms

are included in the calculations but are not themselves refined, a not uncommon procedure, then with

X-ray data it is reasonable to constrain the C–H bond length to be about 0.98 Å rather than 1.09 Å.

The polarity of the C–H bond leads to a displacement of the electron density of hydrogen toward the

carbon atom. Thus, the position of the electron density maximum for the hydrogen atom will not

coincide with that given by neutron diffraction.

Neutron diffraction investigations can also be carried out on powdered crystalline samples, and we

address this topic in Chap. 12. We proceed next to discuss neutron diffraction in detail and to give

examples of structures determined by neutron crystallography.

Fig. 11.1 Unit cell of the crystal structure of elemental chromium. (a) By X-rays: body-centred cubic. (b) By neutrons:
primitive cubic. The arrows represent the magnetic moment vector directions in the metal atoms

Fig. 11.2 Projections onto the x,y plane of the neutron scattering density for deuterated potassium dihydrogen

phosphate, KD2PO4, in the room temperature tetragonal structure. (a) Direct synthesis, showing all atoms in the

structure; the most intense peaks arise from the K and P atoms, which are superimposed in this projection. The other

peaks are O atoms (full lines) and D atoms (dashed lines, indicating the negative scattering amplitude of this

species). (b) Corresponding difference synthesis, in which only the D atoms appear. It is noteworthy that the

diffraction ripples (series termination errors) around the heavy-atom positions in (a) are subtracted out in (b), so that
the contours of D are free from the distorting effects of the ripples
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11.2 Neutrons, Neutron Sources, and Data Collection

11.2.1 Neutrons

In 1923, some years after the historical Laue experiment, de Broglie introduced the wave-particle

duality theory, which proposed that every material particle can behave also as a non-electromagnetic

wave, opposed to the electromagnetic waves which include X-rays, light, and other types of wave

phenomena such as heat and sound. According to de Broglie’s theory, the particle wavelength l is

given by:

l ¼ h=p ¼ h=mv (11.1)

where h is the Planck constant and p, m, and v are, respectively, the momentum, mass, and speed of

the particle.

Neutrons are sub-atomic particles which are bound to most atomic nuclei. A neutron has no net

electric charge and a mass slightly greater than that of a proton. The number of protons in a nucleus is

numerically equal to the atomic number and defines the type of the element. The number of neutrons

determines the isotope of the element. For example, the abundant 12C isotope has six protons and six

neutrons, while the rare radioactive 14C isotope has six protons and eight neutrons. While bound

neutrons in stable nuclei are stable, free neutrons are unstable and undergo b-decay with a mean

lifetime of just under 15 min. The nucleus of deuterium (heavy hydrogen) contains one proton and

one neutron, whereas the hydrogen nucleus contains just one proton. This distinction has an important

consequence in some neutron diffraction experiments, as we shall see.

11.2.2 Neutron Sources

Free neutrons are produced in both nuclear fission and fusion processes. Thus, large dedicated neutron

sources are either nuclear fission reactors, or high flux spallation sources in which protons have been

accelerated to high energies and directed on to a target so as to produce free neutrons. Spallation

describes what happens when a high-energy proton is accelerated into a heavy target: a number of

spallation particles, including neutrons, are produced. For every proton striking the nucleus, twenty to

thirty neutrons are expelled. Meson production limits spallation efficiency above 140 MeV. At the

1 GeV proton energy level, the Spallation Neutron Source, Sect. 11.4.2, requires 30 MeV per neutron

produced. All of these sources produce neutron beams that are useful in neutron diffraction experi-

ments. Inside a reactor, thermal neutrons have an average energy corresponding to 308 K (35 �C), but
there is actually a Boltzmann distribution of neutron energies, so that the emerging beam will have a

range of energies (or temperature) and, more importantly, a range of wavelengths, according to

(11.1). Hence an essentially “white” beam of neutron wavelengths is available, which can be limited,

if required, to a desired wavelength range.

11.2.3 Neutron Data Collection

Monochromatic Neutron Data Collection
This method of data collection as the title suggests involves the isolation of a single neutron

wavelength or limited range of wavelengths using suitable filters, corresponding closely to the use
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of monochromatic X-radiation discussed in Sect. 3.1.4. Thus, when a beam of neutrons emanating

from a reactor is slowed down and selected properly, wavelengths appropriate for crystal diffraction

experiments can be produced. However, these processes cause the neutron beam to be significantly

depleted in intensity, which has the over-riding consequence of prolonging data collection times to

the unmanageable proportions of days or weeks. As a result, alternative methods of data collection

have been developed.

Laue Diffraction Neutron Data Collection
In this now commonly used technique, a white neutron beam is used to produce Laue diffraction

photographs or image records [2], Sect. 5.4.1ff, that can be processed to create a neutron intensity

data set. This approach allows the full incident intensity of the neutron beam to be used without the

use of filters, which enables data to be collected far more rapidly.

Monochromatic versus Laue Diffraction Neutron Data Collection
It is of interest to compare these two methods of data collection. In particular, what are the limits to

data set completeness imposed by a Laue experiment vs. those of monochromatic data collection?

These methods of data collection are common to both X-ray and neutron diffraction techniques.

Rigorous theoretical considerations [3, 4] have laid the foundations of Laue data collection, which,

with the complications inherent in the method imposed by a lack of direct knowledge of the

wavelength associated with a given diffraction intensity, initially seemed to be an unlikely method

of successful data collection. From the Bragg equation, when a crystal diffracts a polychromatic beam

of X-rays or neutrons, many orders of each Bragg reflection, hkl, 2h,2k,2l,. . .., may occur simulta-

neously and overlap exactly in scattering angle. The overlap of these multiple orders along a ray, a

central line in reciprocal space, poses a problem for Laue methods. It has been shown [3] that:

1. More than 83% of all Bragg reflections occur on single rays when experimental values of lmax and

lmin are used.

2. This proportion depends only on the ratio of lmax to lmin and not on the space group, unit-cell

dimensions, crystal orientation, or the limiting resolution of the crystal, d�max, provided d
�

max is less

than 2/lmax.

3. The total number of single rays, like the total number of all stimulated Bragg reflections, is

approximately proportional to the wavelength range.

4. The proportion of reflections at a given resolution d* that lie on single or double rays depends

markedly on d*, and on the ratio of lmax to lmin—it is generally lower at low resolution than at

high.

5. Restricted angular acceptance of the detector can reduce significantly both the proportion and the

total number of single rays.

6. Agreement between the theoretical distributions and those derived from analysis of X-ray Laue

photographs of macromolecular crystals, and from extensive computer simulations, is good.

It is evident that, under a wide variety of experimental conditions, the effect of multiple orders is

not a serious limitation on the use of the Laue method for structure determination. An analysis has

also been presented [4] of the angular distribution of reflections in Laue diffraction, with particular

application to the spatial overlap problem in synchrotron macromolecular crystallography. This

shows the factors that govern the spatial overlap of spots and indicates tactics for experimental

design. The analysis is also relevant to polychromatic neutron diffraction. These considerations have

led to the development of both hardware and software [5] for Laue diffraction which has now come to

be accepted as a standard collection method capable of producing data of high quality, completeness,

and resolution for both X-ray and neutron diffraction from single crystals.
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Time-Resolved Laue Neutron Diffraction Data Collection Using a Spallation Source
This is a third method of neutron data collection currently undergoing intense development. Neutrons

are produced in a spallation source by bombarding a metal target with protons from a particle

accelerator or synchrotron. Essentially each neutron from a spallation source can be assigned its

own wavelength. Data collection by this method is analogous to carrying out hundreds of monochro-

matic experiments simultaneously. Further details on this type of experiment are given in Sect. 11.4.

11.2.4 Thermal Neutrons

The term “thermal neutron” is used to describe any free neutron that has been ejected from an atomic

nucleus and has kinetic energy corresponding to the average energy of the particles at 308 K. Thermal

neutrons are produced by slowing down more energetic atomic neutrons by passing them through a

moderator. The neutron wavelength can be calculated from a consideration of its kinetic energy E:

E ¼ 1

2
mnv

2 ¼ kT (11.2)

where mn is the neutron mass and v its speed; k is the Boltzmann constant and T the absolute

temperature. It follows that

v ¼ ð2kT=mnÞ1=2

and since mv ¼ p ¼ ð2kTmnÞ1=2,

l ¼ h=p ¼ A=T1=2 (11.3)

where A ¼ h=ð2kmnÞ1=2 and is a constant for a given particle type such as neutrons. Since mn¼1.6749

� 10�27 kg, A ¼ 3.0810 � 10�9mK1/2; hence, at 308 K

l ¼ 1:756� 10�10 m ¼ 1:756A
�

(11.4)

This wavelength is suitable for crystal diffraction measurements. Since the neutron beam may be

designed to comprise a range of wavelengths, the diffraction data are then processed using a Laue

procedure, as referred to in Sect. 11.2. As in contemporary X-ray diffraction experiments, the sample

may be flash frozen in order to prevent decomposition in the neutron beam and thus enable a full set of

diffraction data to be collected on a single crystal sample.

11.3 Neutron Scattering

Whereas the scattering of X-rays increases with increasing atomic number and decreases with sin y

for a given wavelength, neutron scattering factors, scattering lengths, do not depend on atomic

number in any regular manner. One important difference from X-ray diffraction is that the hydrogen

scattering length is comparable to those of other atoms, but of negative sign. This means that for

hydrogen, 1H, the beam scattered by the nucleus differs in phase by 180� from the scattering from a

nucleus in the same position that has a positive scattering factor. However, deuterium, 2H, has a

positive neutron scattering length that is comparable in magnitude to that of hydrogen. Consequently,
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it is frequently a useful option to replace hydrogen with deuterium, that is, to deuterate crystal

samples prior to neutron diffraction data collection in order to render positive the subsequent neutron

density at these sites. In that way, they are easier to handle, for example, when using molecular

graphics. This is not always possible if the sample is unstable. It should also be noted that in general

all C–H hydrogen atoms are not exchangeable in the deuteration process. Because neutron scattering

for hydrogen or deuterium is comparable in magnitude with that from other atoms, it is not so easy to

classify atoms as “light” or “heavy” as we have done for X-ray diffraction, and this introduces a

technical difficulty in the actual solving of crystal structures ab initio from neutron diffraction data.

An advantage, however, is afforded by the use of 2H over 1H, that is a much lower associated

background scattering level, because the incoherent scattering cross section of 2H is about 40 times

less than that of 1H. Thus, the signal-noise ratio is greatly enhanced in neutron diffraction data

measured from deuterated samples [6].

We have assumed tacitly that the number of hkl data is the same for both X-ray and neutron

diffraction. Usually, neutron data sets are less extensive than their X-ray counterparts, and this serves

to exaggerate still further these problems. It is therefore almost always necessary to solve a crystal

structure initially from X-ray data, and subsequently to use this structure as a basis for a detailed

neutron analysis, as has been done with the three examples of varying structural complexity given

later in this chapter.

11.3.1 Neutron Scattering Lengths

Neutron scattering lengths for different atoms can be obtained from various sources including the

website of the National Institute of Standards and Technology [7, 8]. Examples of scattering length

data incorporated into the SHELX program suite [9] for the atoms H, D, N, O, F, and S are listed in

Table 11.1.

11.4 Experimental Neutron Diffraction Data Collection

The practical use of neutron diffraction requires access to highly specialized neutron sources. These

installations are purpose built to cater for a variety of neutron physics applications, in the same way as

synchrotron installations are designed not only for X-ray diffraction, but can accommodate a wide

range of studies from Raman spectroscopy to circular dichroism studies, for example. A list of

neutron sources available to scientists on a global scale can be found at the end of this chapter. For

present purposes, experimental arrangements that are available at two of these installations will be

described in some detail.

Table 11.1 Neutron scattering lengths for common

elements

Atom Atomic number Scattering length (fm)

H 1 �3.739

D 2 6.671

N 7 9.360

O 8 5.803

F 9 5.650

S 16 2.847
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11.4.1 LADI-III and VIVALDI at ILL, Grenoble

At the Institut Laue-Langevin (ILL), the Laue diffraction instrument LADI-III produces extremely

high-quality diffraction data. It employs a quasi-white cold-neutron beam with a large-area cylindri-

cal detector based on neutron image plates and is used mainly for single crystal studies of relatively

small proteins at medium or high resolution with the objective of locating individual hydrogen atoms

in compounds of special interest, water molecules, or small ligands that can be deuterated to improve

their scattering power. Good data sets from macromolecular structures that tend to have relatively

weak scattering are measured routinely on this instrument. Protein crystals with unit-cell dimensions

up to about 150 Å are accommodated and sample sizes can be as small as 0.1–0.2 mm3.

The facility VIVALDI, Fig. 11.3, (Very-Intense Vertical-Axis Laue Diffractometer) [10, 11] was

set up for use in 2001. This instrument allows large volumes of reciprocal space to be surveyed very

quickly using an image-plate photographic Laue technique with a white neutron beam. Figure 11.4 is

an example of a neutron Laue frame taken on VIVALDI. As well as single crystal analysis, it can

accommodate applications for magnetism, nuclear charge-density waves, high-pressure studies, and

structural phase transitions and allows rapid preliminary investigation of new materials even when

only small single crystals are available. VIVALDI uses a technique similar to that of LADI-III, but

employs a thermal neutron beam and is very well suited to fast data collection for crystal structures

with smaller unit cells. Both VIVALDI and LADI-III have the detector cylinder axis vertical. In the

case of VIVALDI, this facilitates acceptance of an “Orange” cryostat, and in both installations, the

image plates are mounted and read on the inside of the cylinder in order to improve the detection

efficiency. Consequently with VIVALDI, it is now possible to study larger biological complexes using

smaller crystals than was previously possible [12]. As on LADI, the neutron-sensitive plates are based

on the BaFBr storage-phosphor doped with Eu(II) ions, which is also used for X-ray image plates,

Sects. 5.7.3 and 12.4.2, but with Gd2O3 added. The gadolinium nuclei act as neutron scintillators by

creating a cascade of g-rays and conversion electrons: an electron is released from the atomic shell by

transferring the energy of a g-quantum emitted from the same nucleus to its electron. Its kinetic energy

is equal to the energy of the g-quantum reduced by the binding energy of the electron.

The full thermal spectrum can be accepted without detrimental overlap of reflections for primitive

unit cells up to 25 Å edge length. An optional filter based on multilayer super-mirrors can be placed

upstream to deflect wavelengths longer than 3 Å which would otherwise contribute primarily to the

background. A time-of-flight spectrum analyzer is located downstream to monitor changes in the

wavelength. The entire instrument pivots on air cushions around the filter to allow selection of

Fig. 11.3 Diagrammatic layout of the ultra-high speed VIVALDI neutron diffractometer (reproduced from the

“yellow book” by courtesy of the Institut Laue-Langevin, Grenoble)
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wavelengths shorter than 3 Å, wavelengths longer than 3 Å, or the unfiltered beam. The beam size

used is up to 10 � 10 mm2 with a flux (unfiltered) of 109 neutron cm�2 s–1.

The Orange cryostat can be used to select a sample temperature in the range 1.5–300 K. A typical

experiment produces a small number of stationary-crystal, stationary-detector Laue diffraction

patterns, distinguished by means of 20–30� rotations of the crystal about the vertical axis. The

Laue data-analysis software developed on LADI from the CCP4 suite (see Appendix D) is used to

produce the final data set for subsequent analysis.

Although VIVALDI was unparalled in data collection speed when it was introduced in 2001, it is

now even faster. This has been brought about partly through the introduction of the more efficient Fuji

“Niimura Special” white image plates, the replacement of some sections of the neutron guide by super-

mirror guides, and a guide realignment, resulting in about three times as much neutron flux at the

sample. Overall there has been a ninefold gain in efficiency. A short video showing the instrument set

and each stage of the measurement of a neutron diffraction pattern is available on the ILLwebsite [13].

11.4.2 Oak Ridge National Laboratory (ORNL) [14]

The High Flux Isotope Reactor (HFIR) and the HB-3A Diffractometer
Operating at 85 MW, HFIR is the highest flux reactor-based source of neutrons for research in the

United States, and it provides one of the highest steady-state neutron fluxes of any research reactor in

the world. The thermal and cold neutrons produced by HFIR are used to study physics, chemistry,

materials science, engineering, and biology. The intense neutron flux, constant power density, and

constant-length fuel cycles are used by more than 200 researchers each year for neutron scattering

research into the fundamental properties of condensed matter.

Fig. 11.4 A neutron Laue diffraction frame
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For single crystal diffraction studies, a four-circle diffractometer installation, the HB-3A,

Fig. 11.5a, is available; see Sect. 5.6ff. The Huber goniometer has a full w-circle with a 10 K

closed-cycle helium refrigerator. The detector is 3He with a seven-anode array in a honeycomb

pattern. The upper limit of 2y is 100�. A multilayer [110] silicon wafer monochromator with the

reflection from planes of the <011> zone ensures sharp diffraction peaks in specified ranges of

detector angles by control of the horizontal radius of curvature.

Any plane from the <011> zone can be set in the Bragg reflection position, but only the (155),

(133), (022) with (044), and (111) with (333) reflection planes are of practical interest. For a fixed

monochromator angle of 48�, these reflections provide principal incident wavelengths of 0.618 Å,

1.01 Å, 1.56 Å, and 2.55 Å, respectively. A PC-based Lab-View system provides user-friendly

Fig. 11.5 (a) The HB-3A
neutron single crystal

diffractometer at ORNL,

Tennessee (reproduced by

courtesy of Dr Cao Huibo,

ORNL, Tennessee.)

(b) Detector array for the

MaNDi instrument. The

detectors are designed to

cover a large solid-angle

to record most of the

neutrons scattered from

a single crystal sample

regardless of the reflection

angle. The instrument

design accommodates this

by situating detectors

approximately spherically

around the sample
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diffractometer control and data acquisition. The beam size is 5 � 5 mm2, and the minimum crystal

size is 1 mm3. The maximum crystal dimension is about 4 mm. The flux on the sample is estimated to

be greater than 5 � 106 neutron cm�2 s�1, whereas that of VIVALDI is 109 neutron cm�2 s�1.

This instrument is suitable for a wide range of small unit-cell crystallography studies, from

structure solution and refinement to charge and nuclear density mapping. Problems have been

addressed from chemistry, physics, materials science, and mineralogy. Specific areas of study include

hydrogen bonding and weak interactions, organometallics, supra-molecular chemistry and crystal

engineering, metal hydrides, charge density, pharmaceuticals, and magnetic structures.

Design for the Future: The ORNL Spallation Neutron Source (SNS) High-Resolution
Time-of-Flight Single Crystal Macromolecular Neutron Diffractometer (MaNDi)
The ORNL spallation neutron source is an accelerator-based neutron source and forms a unique

facility providing for the most intense pulsed neutron beams in the world dedicated to scientific

research and industrial development.

It is reasonable to assume from our previous considerations that neutron macromolecular crystal-

lography (NMC) is capable of providing accurate hydrogen atom positions, protonation states and

hydration states, as well as hydrogen/deuterium exchange information in macromolecular crystals. In

fact, this is possible even at a moderate resolution of approximately 2 Å. In contrast, in order to

observe hydrogen atoms via ultra-high-resolution macromolecular X-ray crystallography, diffraction

data beyond 1.0 Å are required. X-ray diffraction beyond this limit can only be achieved with highly

ordered crystals, which is rarely achieved. The introduction of the Spallation Neutron Source (SNS)

at ORNL with over an order of magnitude increase in neutron flux, in combination with advances in

neutron optics and detectors, structural genomics, and protein deuteration, provides new opportu-

nities for NMC to become a routine and essential structural tool for enzymology, structural biology,

and functional genomics.

In order to satisfy the needs of the structural biology community, a dedicated, extremely

high-quality high-resolution time-of-flight single crystal macromolecular neutron diffractometer

(MaNDi) is now under construction at the SNS [15]. The design of this instrument has been

optimized so that it will enable data collection rates over 50 times faster than existing facilities.

It depends on the high regularity of the neutron pulses from the spallation source and the ability of

highly sensitive detectors to distinguish the velocity-dependent wavelength of each particle. This

process has been likened to measuring diffraction data from innumerable monochromatic experi-

ments and will enable studies of crystals with lattice constants substantially larger than currently

possible. It is expected that the unprecedented speed and resolution limits achievable with MaNDi

for NMC experiments will greatly advance the fields of structural biology, enzymology, and

computational chemistry.

The SNS macromolecular diffractometer (MaNDi) will be a state of the art high-resolution

macromolecular crystal diffractometer. Optimized for rapid data collection from large structures,

MaNDi will achieve a 1.5 Å resolution from crystal volumes between 0.1 and 1.0 mm3 with unit-

cell repeats in the order of 150 Å. The instrument will use a decoupled hydrogen moderator for

optimal resolution and separation of Bragg peaks. The design utilizes a 24 m flight path and a

variable wavelength bandwidth of 2.7 Å to accommodate different types of experiments. This

bandwidth variation is achieved by the use of three disc choppers in the incident flight path. With

crystals larger than 1 mm3, it will be possible to obtain useful data in the resolution range 2.0–2.5 Å

for unit-cell repeats of up to 300 Å, a revolution in neutron macromolecular crystallography

(NMC). Figure 11.5b shows the design of the detector array for the MaNDi instrument.
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11.4.3 Other Neutron Sources

We conclude this section with a global list of neutron facilities:

North America

• Spallation Neutron Source, Oak Ridge

• Los Alamos Neutron Science Center (LANSCE)

• University of Missouri Research Reactor Center

• High Flux Isotope Reactor, Oak Ridge

• Canadian Neutron Beam Centre, Chalk River, Canada

• Indiana University Cyclotron Facility

Europe

• ISIS-Rutherford-Appleton Laboratories, UK

• Institut Laue-Langevin, Grenoble, France

• Leon Brillouin Laboratory, Saclay, France

• Berlin Neutron Scattering Center, Germany

• GEMS at Helmholtz-Zentrum Geesthacht, Germany

• Juelich Center for Neutron Science, Germany

• FRM-II, Munich, Germany

• Budapest Neutron Centre, Hungary

• RID, Delft, The Netherlands

• SINQ, Paul Scherrer Institut (PSI), Switzerland

• Frank Laboratory of Neutron Physics, Dubna, Russia

• St. Petersburg Neutron Physics Institute, Gatchina, Russia

Asia and Australia

• ISSP Neutron Scattering Laboratory, Tokai, Japan

• JAEA Research Reactors, Tokai, Japan

• KENS Neutron Scattering Facility, Tsukuba, Japan

• Hi-Flux Advanced Neutron Application Reactor, Korea

• Bragg Institute, ANSTO, Australia

11.5 Deuteration and Perdeuteration

Deuteration
Deuteration even of simple compounds is best effected by collaborating with an experienced chemist.

In simple terms, the obvious way to effect H–D interchange would be to soak the compound of

interest, or a crystal of it, in D2O. This may work in some cases, but it is nevertheless a hit-or-miss

experiment. Generally speaking, whereas C–H hydrogen atoms would probably not be exchanged in

this way, O–H and N–H hydrogen atoms would.

Deuteration may be carried out on pre-grown crystals or on the pure sample itself prior to

crystallization. With some crystal materials that are sensitive to liquids, it may not be possible to

perform the experiments necessary to effect deuteration, Sect. 11.7; help can be obtained from

appropriate websites [16–18].

Perdeuteration or Biodeuteration
Neutron protein crystallography provides a powerful complement to X-ray crystallography by

enabling key hydrogen atoms to be located in biological structures where they cannot be seen by

X-ray analysis alone. The neutron Laue diffractometer LADI, run jointly by EMBL and ILL at the
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ILL high flux reactor in Grenoble, is a dedicated facility for neutron protein crystallography at high-

resolution (1.5 Å) and provides 10–100-fold gains in efficiency compared with conventional neutron

diffractometers. The availability of a fully deuterated (perdeuterated or biodeuterated) protein

eliminates the hydrogen incoherent scattering contribution to the background and brings approxi-

mately tenfold improvements in the signal to noise ratios.

The production of deuterium-labeled macromolecules is carried out using bacterial expression

systems incorporating perdeuterated glycerol (CH2OH)2CHOH as the sole carbon source in the Deuter-

ation Laboratory at Grenoble [19]. Protein crystals are grown using methods described in Chap. 10, but

with D2O replacing H2O. A recent paper [20] provides an up to date example of this type of research.

The aim of the facility at the Institut Laue-Langevin, in collaboration with the European Molecular

Biology Laboratory, is to provide a focus for scientists wishing to make their own deuterated

materials prior to carrying out neutron scattering experiments. In support of the effort to encourage

deuteration studies, a major EU grant has been obtained jointly by ILL, EMBL, the University of

Oxford, and the Institut de Biologie Structurale, Grenoble in order to develop different protocols and

procedures of deuteration both for neutron scattering and NMR studies.

11.6 Examples of Structure Determination by Neutron Crystallography

We now discuss in detail three recent examples of single-crystal analyses that have been enhanced

through the use of neutron diffraction. The first example is an atomic resolution study of a small

organic molecule, the second is an intermediate resolution study of a lectin protein molecule, and the

third is a high-resolution analysis of the 11-membered peptide cyclosporin H. All three examples

combine, for reasons given previously, the neutron study with a parallel X-ray study, and they

illustrate different aspects of the current state of neutron diffraction technology, indicating its

versatility and potential. We show during the determination of the first structure how potential pitfalls

of “black box” crystallography can be encountered.

11.7 X-Ray and Neutron Structure of 1,8-(3,6,9-Trioxaundecane-1,
11-diyldioxy)-9,10-dihydro-10-10 dimethylanthracene-9-ol [21]

This compound was prepared in high yield by bis-methylation of anthralin at the 10-position,

followed by bis-O-alkylation to give a ketone (I) that was reduced to the alcohol by sodium amalgam.

A detailed molecular structure of the formal hydrolysis product, Fig. 11.6, of the parent cationic form,

Fig. 11.7, was required.

The product has been shown from combined X-ray and neutron diffraction analyses to be

1,8-(3,6, 9-trioxaundecane-1,11-diyldioxy)-9,10-dihydro-10,10-dimethylanthracene-9-ol, and is the

parent compound for an important series of derivatives; unequivocal positions for the hydrogen

atoms were obtained from this study. Both sets of data were measured on single crystal four-circle

diffractometers with monochromatic radiation. In terms of the X-ray analysis, there were 96 carbon
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atoms and 28 oxygen atoms per unit cell. A solution of this structure by direct methods was therefore

quite feasible. In the neutron structure diffraction analysis, a further 128 hydrogen atoms of compara-

ble size (in neutron diffraction terms) to the carbon and oxygen atoms were present per unit cell.

Solution of the neutron structure ab initio was therefore not attempted; it was solved by a Fourier

expansion of the X-ray structure. This process was not impaired by the changes in unit cell related to

the different experimental temperatures used in the two analyses. The crystal and structure analyses

data for this compound are summarized in Table 11.2.

11.7.1 Experimental

Sample Preparation
The slow evaporation of an ethanolic solution yielded crystals of melting point 151–153�C, which
were used in the crystallographic studies. No attempt was made to exclude water from the purified

solvent used for crystallization. However, the presence of water in the crystalline material was not

evident from its spectra.

Fig. 11.7 The cationic form of the compound illustrated by Fig. 11.6

Fig. 11.6 Themolecular structure of 1,8-(3,6,9-trioxaundecane-1,11-diyldioxy)-9,10-dihydro-10,10-dimethylanthracene-9-ol
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X-Ray Diffraction Measurements
A crystal was centered on a Nonius CAD4 diffractometer. The software package CAD4 Express 1988

was used to determine a unit cell and orientation matrix based on 25 reflections selected by the

software, employing Cu Ka radiation. The diffractometer system, in automatic mode, favored an

orthorhombic C-centered cell which refined to the dimensions listed in Table 11.2.

The assignment of crystal system by the software was based solely on the close proximity of the

cell angles to 90�. This software was designed to collect one asymmetric unit of intensity data for the

initially assigned point group, there being no automatic Laue check facility at this stage. However, it

was possible to carry out a check for Laue symmetry after data collection, but this was not an easy

procedure to carry out with this version of the software. We note that the later version of the software

Table 11.2 X-ray and neutron crystal data for 1,8-(3,6,9-Trioxaundecane-11-diyldioxy)-9,10-

dihydro-10,10,10-dimethylanthracene-9-ol

Chemical formula C24H30O6·H2O

Mr 432.50

Color/shape Colorless/plates

X-ray Neutron

Temperature 293(2) K 15 K

Crystal system/space group Monoclinic/P21 Monoclinic/P21

Unit cell dimensions/Å

(25 reflections with 25 < y < 30�)
a 12.845(5) 12.605(5)
b 14.575(3) 14.458(3)
c 13.779(2) 13.588(2)
b 117.72(2)� 117.12(2)�

Unit cell volume/Å3 Vc 2283.6(1) 2204.1(1)

Z (2 molecules/asymmetric unit) 4 4

Dc (g cm�3) 1.258 1.302

mc (cm
�1) 0.754 0.754

Diffractometer/scan Nonius CAD4/o�2y D19 ILL/o

Radiation Cu Ka Neutron

Monochromator Graphite Graphite

Wavelength (Å) 1.54180 1.538, 1.312

Crystal dimensions (mm) 0.35, 0.25, 0.20 2.5, 1.6, 0.2

Reflections measured 17753 1931

Independent/observed 9092/9092 1931/1881

Rint 0.0459

ymax� 72.93 46.12

Range of h, k, l � 15;�18;�17 10� 11; 0� 13; �9� 12

Data processing CAD4-Express 1992 RETREAT

Structure solution SHELX-S-86 From X-ray

Structure refinement SHELXL-97 SHELXL-97

Refinement method Full-matrix least-squares on F2

Data/restraints/parameters 9092/217/605 1881/1/507

Goodness-of-fit on F2 0.908 0.779

Final R [I > 2s(I)] R1/wR2 0.0619/0.1506 0.0462/0.1184

R indices (all data) R1/wR2 0.1001/0.1688 0.04093/0.1320

Absolute structure parameter 0.25(35)

Largest diff. peak/hole 0.232/-0.260 0.055/�0.058
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(CAD4 Express, 1994) does carry out a Laue check in automatic mode prior to data collection proper.

Intensity data were routinely collected for one asymmetric unit of assumed orthorhombic reciprocal

space, for 1 < y < 74�.
The space group was assigned by inspection of the systematic absences in the intensity data, after

processing in C2221. The unit cell was calculated to include eight molecules of C24H30O6 (two

molecules per asymmetric unit). It was discovered subsequently, during refinement of the structure,

that there were additionally two water molecules per asymmetric unit. It should be noted that the X-

ray results were obtained under some pressure, being required urgently in order to coordinate with a

scheduled neutron data collection time at ILL. Therefore, the X-ray analysis proceeded at this stage

without any hint that an extraordinary situation would soon arise as a result of a very unusual

geometrical relationship between the unit-cell parameters. These parameters appeared to be quite

reasonable at this stage of the analysis. The crystal had moderate diffracting power and good single-

crystal quality was indicated from the diffractometer readings incorporated into the software. The first

X-ray data set, after processing and correction for Lorentz and polarization effects, gave 2572 unique

intensities, 1395 with Fo > 4s(Fo), and with few symmetry repeats Rint was indeterminate.

The direct methods program SHELX-S produced no solution in space group C2221. The mono-

clinic space group C21 was then tried (non-standard, c-unique setting: determine what this is

equivalent to and draw a space-group diagram). It produced an outstanding solution giving a

promising E map which contained the essential features of both molecules in the unit cell, despite

being based on only part of the monoclinic data set, through an incorrect assumption of the point

group. This structure failed to refine properly, owing to the incompleteness of the “orthorhombic”

intensity data set. The best R-factor achieved with this model using isotropic thermal displacement

parameters was 0.24, with a data/parameter ratio of 10.8.

A second set of intensity data was collected, with the unit cell constrained to be monoclinic, an

option allowed by the software. The data for the monoclinic unit-cell and other data are listed in

Table 11.2. A total of 9092 unique, corrected (excluding absorption) intensities was recorded, 4804

with Fo > 4s(Fo), with Rint ¼ 4.59%. Subsequent refinement of the X-ray structure, Sect. 11.7.2,

confirmed this assignment of unit cell and space group.

Neutron Diffraction Measurements
Prior to the start of the neutron diffraction data collection, the reflection indices and cell parameters of the

octant of X-ray diffraction data that had been collected in the monoclinic C-centered setting were

transformed to a primitive, monoclinic setting with b-axis unique and space group P21. A crystal with

approximate dimensions 2.5, 1.6, 0.2 mm was mounted on a vanadium support on the D19 four-circle

diffractometer at ILL, with the longest unit-cell dimension of the plate along the diffractometer f-axis.

The neutron wavelength was 1.538 Å and an initial scan of reciprocal space located six reflections which

could be indexed and a preliminary orientation matrix calculated. Additional reflections, which were

expected to be of significant intensity on the basis of the X-ray data, were then located and an improved

orientation matrix established.

The 4 � 64� area detector of D19 enabled the three-dimensional peak shapes of the Bragg

reflections to be monitored, and neither splitting nor streaking was observed. The crystal was cooled

to 15 K while a strong reflection was continuously monitored and a new orientation matrix estab-

lished. The peak shapes of a number of reflections were checked. Collection of the � h�k �l data

commenced in shells of 2y ¼ 92�, using o-scans in equatorial geometry. The area detector allowed

additional reflections to be measured and so checks were made of mirror-related reflections and

repeated measurements of the same or Friedel-related (q.v.) reflections, as well as the usual three

reference reflections repeated regularly during data collection.The wavelength was then changed to

1.312 Å in order to measure higher-angle data, a new orientation matrix calculated and data collection
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continued using normal beam geometry. Because of a slow helium leak, a significant reduction in

detector efficiency had occurred. Nevertheless, the efficiency was effectively constant on the time

scale of the experiment, but this situation, and the rather small crystal volume of 0.8 mm3, contributed

to the fact that half of the intensity data were weak, although significantly above background. The

program RETREAT was used to integrate the Bragg peaks in three dimensions. No absorption

correction was applied, although the crystal shape would have caused certain reflections to have

suffered significant absorption effects. The data were merged and sorted to provide 1931 unique

reflections.

11.7.2 Structure Analysis and Refinement

X-ray Structure
Using the monoclinic X-ray data set, the direct methods routine in SHELX-S produced an

outstanding solution to the structure in space group P21. The corresponding E map revealed the

positions of all non-hydrogen atoms in both molecules (here designated A and B). Difference

electron density maps indicated the presence of bound water in each molecule. The structure was

completed and refined by full-matrix least-squares on jFj2, with anisotropic displacement para-

meters for non-hydrogen atoms, and isotropic parameters for the hydrogen atoms, which were fixed

geometrically in riding mode. Methyl group hydrogen atoms were located using the circular Fourier

facility in SHELXL-93; only one hydrogen atom was found on each water molecule in the

difference electron density maps.

The structure refined to convergence with SHELX-97 with a mean s/err of 0.020 (max. 0.071); soft

constraints (SADI) were applied in order to equilibrate bond distances between molecules A and B.

The final measures of agreement for a total of 9092 reflections with I > 2s(I) and 605 parameters are

listed in Table 11.2 together with those for the neutron analysis which follows.

Neutron Structure
At the start of the refinement, the coordinates from the X-ray refinement were used together with the

Fo data from neutron diffraction. Unexpectedly there was no agreement, although the unit-cell

parameters from the two sets of measurements were in close agreement, and any difference could

be ascribed to the temperature difference between the two sets of measurement conditions. This

situation, which gave considerable cause for concern, was traced eventually to the idiosyncrasies in

the shape of the unit cell. Thus, when the transformation from the original X-ray, apparently

rectangular, C-centered cell to the correct, primitive monoclinic cell was made, two alternative but

extremely similar unit cells could be chosen as shown in Fig. 11.8. It transpired that, by chance, one

unit cell had been chosen for the X-ray data collection and the other for the neutron data. The two

intensity data sets were therefore not matched. In order to rectify this situation, the indices and cell

parameters of the neutron data were suitably transformed and the analysis was then carried out as

described below.

The b-angle now established differs from that listed in Table 11.2 because the g-angle was

inadvertently and incorrectly assumed to be exactly 90� instead of the true value of 90.10�.
The atomic coordinates from the X-ray refinement, which were now compatible with the trans-

formed unit cell and hkl neutron data (at R ¼ 0.10), were used as the starting set for the neutron

structure. Isotropic refinement led rapidly to an R-factor of 0.06. Although the X-ray structure had

revealed most of the hydrogen atoms, one hydrogen atom from each water molecule had been

undetected. A difference neutron synthesis revealed the missing atoms. Refinement was undertaken by
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full-matrix least-squares on jFj2, with isotropic displacement parameters for all atoms. The structure was

refined to convergence using SHELX-97. The final measures of agreement are listed in Table 11.2.

The least-squares refinement converged with a mean s/err of 0.006 (max. �0.12). Neutron scattering

lengths were taken from Volume III of the International Tables for X-ray Crystallography (1952).

11.7.3 Discussion of the Structure

The unit cell dimensions for the “orthorhombic” unit cell, suggested by the version of the software for

the CAD4 then available, were a ¼ 12.856(1) Å, b ¼ 24.396(4) Å, c ¼ 14.564(2) Å, a ¼ 89.98

(1)�, b ¼ 89.987(9)�, g ¼ 90.10(1)�. The potential for designing automated diffractometer systems

without adequate symmetry checks and the dangers of misuse with some automated diffractometer

systems became clear. We emphasize strongly the importance of the role of photographic methods,

which are still in use in many laboratories and teaching schools, and/or an early Laue photograph to

check the determination of the Laue group and crystal system. We believe that many important

Fig. 11.8 Relationship between alternative unit-cell transformations. (a) Crystal unit cells. (b) Reciprocal lattice. Note
that I is the ab face corresponding to the original C-centred X-ray unit cell. The angle g of this unit cell is not exactly

90 but ¼90.1(1)� and consequently the derived primitive true monoclinic cells II (the transformed X-ray cell) and

III (the original neutron cell) have slightly different b angles of 117.93(2) and ¼117.12(2)�, respectively. Only the

values of unit-cell parameters c and b are changed by this modification, and the indices transform as h0 ¼ h; k0 ¼
�k; l0 ¼ �ðlþ hÞ
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structures may be passed over or discarded through a failure to use, or simply a lack of awareness, of

these procedures. The other crystallographic situation illustrated by this structure is the possibility of

different unit-cell choices appearing identical, with the consequential difficulties in the comparison

of structural data.

11.7.4 Hydrogen Bonding

The hydrogen bonding was elucidated from the neutron diffraction results. Molecules A and B exhibit

similar hydrogen bonding patterns, there being strong interactions between each molecule and its

solvated water, Figs. 11.9 and 11.10. There are no hydrogen bonds between the molecules A and B, or

otherwise.

Each molecule includes a hydrogen-bonded water molecule which stabilizes the macrocyclic ring

structure. Both molecules A and B exhibit very close pseudo-symmetry across a plane perpendicular to

the molecular plane and through atoms C(9) and O(18); in addition they show predominantly planar

structures. The crystal packing includes hydrogen bonding patterns for molecules A and B, with three

strong interactions between eachmolecule and its solvatedwater. TheX-ray analysis failed to reveal one

hydrogen atom per water molecule, each being subsequently included after location and refinement in

the neutron analysis. The initial automatic assignment of a very convincing “orthorhombic” X-ray unit

cell and the subsequent monoclinic transformations in the two analyses reaffirms the need for caution in

applying procedures automatically.

Fig. 11.9 Molecule A from the neutron diffraction analysis, showing the water molecule and the hydrogen bonding

(built by Accelerys)
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11.8 The Pointless Program in CCP4

We conclude this section on a slightly more optimistic note. It has been drawn to our attention that

since the above research was undertaken a new CCP4 program known as Pointless [22] has become

available. Using the observed Fo(hkl) data, this program determines all the possible Laue groups

consistent with the unit cell, which is based on cell dimension restraints. It does this by matching

potential symmetry equivalent reflections. For chiral systems, the Laue group uniquely implies the

point group. It then checks sets of reflections which may be systematically absent to suggest a

possible space group. There is no check for unit-cell centering, that is, no check for whole classes of

reflections having zero intensity, although there is a check for potentially centered reflections missing

from the list. Strictly speaking, the program determines the “Patterson group” rather than the Laue

group, since the Laue group is a point group, but not combined with any unit-cell centring type (P, C,

I, F, H, or R). Unit-cell centring is included in the reported Laue group, and re-indexing from the

original setting may change the unit-cell type.

11.9 Determination of the Positions of the Deuterium Atoms of the Bound
Water Molecules in the Lectin Protein Concanavalin A by Neutron Laue
Crystallography [23]

11.9.1 Introduction

Concanavalin A is a saccharide binding protein isolated from the Jack Bean and is the most

thoroughly studied member of a class of proteins known as plant hemagglutinins or lectins [24]. Its

biological role is unknown, but it is thought to mediate cell–cell interactions by binding to polysac-

charide on the cell surface. It may also have an antifungal plant-defense role. The molecule has a

Fig. 11.10 The structure of molecule B, built from molecule A using Accelerys and drawn with RASMOL
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molecular weight of 25 kDa, contains 237 amino acids, and binds a calcium and a transition metal ion,

for example Mn, as in the present structure.

Structural studies by neutron diffraction permit elucidation of hydrogen/deuterium exchange,

which can yield vital information for the understanding of catalytic processes at the molecular

level [25]. This approach exploits the difference in neutron scattering lengths between hydrogen

and deuterium, which are equal under X-ray diffraction. Hydrogen atoms constitute a large proportion

of any biological material and to understand the structure or the catalytic mechanism of such

materials it is desirable to locate those atoms. Exchanging hydrogen for deuterium in a neutron

diffraction experiment has three advantages:

1. A possible reduction of the incoherent scattering by hydrogen.

2. Deuterium has a neutron scattering length of 6.671, which is similar in sign and magnitude to those

of the other atoms of the protein, whereas hydrogen has a scattering length of �3.739; this allows

contrast-variation studies.

3. Deuteration also improves the determination of water deuterium atom positions, as the scattering

lengths of deuterium and oxygen are both positive in sign and the shape of the D2O nuclear density

indicates the D2O orientation.

A high level of D2O exchange is important in a detailed study of boundwater by neutron diffraction.

In addition to the bulk water and water of hydration, which comprise approximately 50% of most

protein crystals, the exchangeable atoms are those attached to nitrogen or oxygen atoms, namely:

1. Main chain N–-H bonds (except in prolines).

2. The side chains of Thr, Tyr, Asn, Ser, His, Lys, Arg, Trp, and Gln with N–H or O–H bonds.

3. The side chains of Asp and Glu, if originally protonated.

The unexchangeable hydrogen atoms in the structure are those attached to carbon atoms, as in C–H

bonds, for example. In concanavalin A, there are 399 exchangeable hydrogen atoms and 1356 that are

non-exchangeable.

11.9.2 Deuteration of the Concanavalin A Crystals

Large crystals of concanavalin A were selected for the neutron study. They were transferred to a 1 ml

portion of crystallization buffer in a tightly sealed test tube. The D2O solution was changed four times

during the four-month soaking period. The crystal form studied here has the space group I222. The

chosen crystal, of dimensions 3, 2.5, 2 mm, was mounted in a quartz capillary and used for neutron

diffraction data collection on the LADI diffractometer at ILL, as discussed above.

11.9.3 Data Collection and Analysis

In the data collection, the range of neutron energies corresponding to a wavelength range of

2.49–3.52 Å was obtained using a system of silicon crystal mirrors each with 748 alternating

74–90 Å thick titanium and nickel layers. The shift towards shorter wavelength helps to enhance

the resolution of the data. A total of 20 neutron Laue images were collected from �60 to +54� in

intervals of 6�. The exposure time per image was 23.5 h; 5 min were needed to scan and download the

data from the image plate and one minute to erase it before re-use.

The neutron Laue data were processed using the Daresbury Laboratory software developed for

synchrotron Laue data processing, but modified for neutron Laue data with a cylindrical detector

geometry of diameter 318.3 mm. The orientation of the crystal was determined by automatic indexing
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of the spots using the LAUEGENprogram, aswas the prediction of the spots of each image. The unit cell

was refined by LAUEGEN and the unit-cell parameters determined were a ¼ 88.7 Å, b ¼ 86.5 Å, and

c ¼ 62.5 Å. The resolution limit was 2.4 Å. The INTLAUE program was used for integration of each

Laue reflection, and the LAUENORM program was used to derive the wavelength-normalization curve

using the intensities of symmetry equivalent reflections measured at different wavelengths. This

essentially puts all of the reflections on the same wavelength basis. A unique set of 8605 reflections

from these measurements was produced giving a final working neutron data at 2.4 Å resolution.

The neutron Laue geometry employs a much broader band of neutron wavelengths than a

monochromatic beam and, with a very large image-plate detector, allows data collection in a

reasonable time, days instead of months, for small crystals and structures with large unit cells.

11.9.4 X-Ray Model Refinement

In order to carry out a neutron diffraction refinement of the concanavalin A structure, a good quality

starting model at an appropriate resolution was first needed, and to this end an X-ray data set was

measured using a crystal of dimensions 1.6, 0.95, 0.5 mm deuterated under the same conditions as the

crystal used for the neutron diffractionmeasurements. TheX-ray data set was collected using anR-AXIS

II area detector with Cu Ka (rotating anode) radiation. The data were processed in DENZO/SCALE-

PACK. The refined unit-cell parameters were a ¼ 89.11 Å, b ¼ 87.58 Å, and c ¼ 63.26 Å. There were

24110 unique reflections to a resolution of 1.7 Å. The X-ray structure was generated with respect to this

data set using as a starting model the coordinates from the PDB file [26] and refined using X-PLOR to

1.8 Å resolution. In this X-ray model, hydrogen (deuterium) atoms were generated for the bound water

oxygen atoms using X-PLOR.

11.9.5 Neutron Structure Refinement

The refinedX-ray structure of the deuterated crystal at a resolution of 1.8 Å, determined as described in

the previous section, was used as the starting model for the neutron refinement using X-PLOR version

3.851. The structure, including the calculated hydrogen atoms, comprised 3566 protein atoms and 148

water molecules. The neutron scattering lengths used throughout all the subsequent refinements were

those of the Atomic Energy of Canada (1992) as shown in Table 11.1 and 11.3.

The unit cell used was determined during the course of the Cu Ka X-ray data reduction. Using

LSQKAB [27], the two models were superimposed and the average displacements for the 444 bound

water molecules calculated to be 0.04 Å. For water molecule six, featured in Fig. 11.11, the oxygen

atom shift was 0.03 Å. The interpretation of hydrogen/deuterium exchange in the peptide chain was

also needed and, in order to undertake this, the output model of the final cycle of X-PLOR neutron

Table 11.3 Bound neutron coherent scattering

lengths

Atom type Scattering length (fm)

H �3.74

D 6.67

C 6.65

N 9.36

Ca 4.70

Mn �3.73
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refinement was input to SHELXL to determine the occupancy refinement. To determine the extent of

hydrogen/deuterium exchange of the N–DH amides on the protein (228 atoms), the occupancy of each

exchangeable hydrogen atom was tied to the occupancy of a deuterium atom so that the sum of their

occupancies was constrained to be equal to 1.0. The occupancies of hydrogen and deuterium varied

from 0 to 1.0 for most of the peptides.

11.9.6 The Bound Water Structure

There are 148 bound water molecules to be investigated. Many water molecules appear as D2O with

elongated positive density. The water deuterium atoms are thereby important contributors to

the overall scattering. There are many examples where the initial hydrogen atom positions assigned

by X-PLOR to the X-ray model were not found in the nuclear density map, but after refinement

against the neutron data the fit to the density was greatly improved and taken to be correct. These are

water molecules that are hydrogen-bond donors or acceptors either with the protein or with other

water molecules, for example, in water clusters. Figure 11.11 is a stereo illustration of a well-ordered

D2O molecule where the oxygen atom and its two deuterium atoms enhance one another so to give a

positive neutron density with a shape evident for the nuclear density. Two water molecules, numbered

22 and 27 in the PDB file 1c57, which may be downloaded from the Protein Data Bank, are

coordinated to the Mn atom in the transition metal-binding site, and another two water molecules,

numbers 29 and 30, are coordinated to the Ca atom in the nearby calcium-binding site. They are

illustrated in Figs. 11.12, 11.13, and 11.14. Of the 148 defined bound waters, 93 are in the primary

hydration shell and 55 are in the secondary hydration shell.

11.9.7 The Metal Sites

The transition metal manganese is coordinated to Glu8, Asp10, Asp19, His24, and two D2O water

molecules. The neutron scattering length for manganese is �0.373, essentially the same as the

scattering length of hydrogen, and is observable in the negative density. The distances of Mn and

Ca from their ligands as determined in this study by the X-ray refinement are shown in Tables 11.4

and 11.5, respectively.

Fig. 11.11 Stereo diagram showing the orientation of a well-ordered molecule of D2O, number 6 in the PDB, in the

neutron density
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11.9.8 The Saccharide Binding Site

In the saccharide-free crystal form studied here, the saccharide binding site is occupied by the three water

molecules 31, 34, and 33, which form hydrogen bonds to the protein as shown in Figs. 11.15 and 11.16.

Water molecule 31 is hydrogen bonded to both water molecules 33 and 34. It is probable that water

molecule 33 is hydrogen bonded to water molecule 34, and thus the three water molecules are linked

to form a triangle. These water molecules fill the binding site snugly and water molecules 33 and 34

form hydrogen bonds to the adjacent protein. Water molecule 33 donates deuterium to form a

Fig. 11.12 Mn coordination sphere, Table 11.4, drawn with RASMOL; see also Problem 11.5

Fig. 11.13 The Mn coordination sphere
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hydrogen bond to Asp208 OD1, while its oxygen atom can form a hydrogen bond to the adjacent

Asn14 HD22. Water molecule 34 is close enough to form hydrogen bonds to Tyr100 HN and

Asp208 OD2.

11.9.9 Conclusion

This neutron diffraction study has provided details of the manganese ligand environment, that is,

the coordination of the hydrogen and deuterium atoms of the two associated water molecules that

are necessary for an in-depth understanding of features such as the EPR spectroscopy of Conca-

navalin A. The extensive direct soaking of the crystal in D2O has yielded the deuterium atom

Fig. 11.14 The Mn and Ca coordination spheres; note the common link from OD1 (Asp 10)

Table 11.4 The Mn coordination-sphere

ligands

Mn–Ligand Distance (Å)

Mn-OE1 (Glu8) 2.19

Mn-OD1 (Asp10) 2.17

Mn-OD1 (Asp19) 2.24

Mn-NE2 (His24) 2.28

Mn-O (water 22) 2.17

Mn-O (water 27) 2.28

Table 11.5 The Ca coordination-sphere

ligands

Ca–Ligand Distance (Å)

Ca-OD1 (Asp10) 2.47

Ca-OD2 (Asp10) 2.48

Ca-O (Tyr12) 2.34

Ca-OD1 (Asn14) 2.36

Ca-OD2 (Asp19) 2.44

Ca-O (water 29) 2.42

Ca-O (water 30) 2.38
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positions of the bound water molecules. The reduction of the number of hydrogen atoms via this

D2O soaking method has also enhanced the neutron diffraction resolution.

Neutron diffraction of the bound D2Omolecules, even at the relatively low resolution of this study,

is seen to be more effective than ultra-high-resolution X-ray diffraction, assigning many more

Fig. 11.15 The saccharide binding site, drawn by RASMOL

Fig. 11.16 Saccharide binding site details, built by Accelerys
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coordinates of the deuterium atoms in bound D2O; 62 complete D2O molecules were revealed, plus

20 with only one deuterium atom, as well as oxygen. In comparison, for the bound water in the ultra-

high-resolution X-ray structure, there are only twelve complete H2O molecules, plus 35 with one

hydrogen atom visible, as well as oxygen, and 272 with no hydrogen atom visible even at 110 K.

Thus, the complementarity of the neutron and X-ray approaches is clearly evident.

In the saccharide binding site of concanavalin A, the neutron study has revealed the deuterium

atoms of the bound water molecules at that binding site. As a sugar ligand approaches the receptor

binding site on the protein, the mutual orientation of these water molecules together is now known.

This is a new level of detail for molecular recognition and molecular modeling studies in the future.

Joint X-Ray and Neutron Refinement
It may be noted that it is possible to combine X-ray diffraction data with neutron diffraction data and

to carry out refinement using both sets of data simultaneously. In this way the data-parameter ratio

can be substantially increased, thus effecting significant improvements in the refined model. This has

been undertaken most extensively on protein structures [28]. The best results are obtained if the same

crystal can be used in the measurement of both sets of data, or if this is not possible to use two crystals

grown in the same crystallization experiment. This ensures that the two crystals are isomorphous.

11.10 The Neutron Structure of the Formyl Peptide Receptor Antagonist
Cyclosporin H (CsH) Unambiguously Determines the Solvent and
Hydrogen Bonding Structure for Crystal Form II [16]

11.10.1 Introduction

In the final example of these three recent neutron diffraction studies, we describe the analysis carried out

on Cyclosporin H in order to resolve some minor problems that were encountered in an earlier X-ray

study: we do not report that study [29] here, but use the X-ray coordinates from it in this neutron structure

determination. Single-crystal neutron diffraction data have been collected at 20 K to a resolution of

1.05 Å on a crystal of the inverse formyl peptide receptor agonist Cyclosporin H (CsH-II) on the

VIVALDI Laue diffractometer at ILL, Grenoble. The solvent structure and hydrogen bonding network

of CsH-II have been unambiguously determined by single-crystal neutron diffraction; the agreement

factor on jFj2 is 13.5% for all 2726 reflections. All hydrogen atom positions, including methyl group

orientations, have been determined by crystallographic refinement. The neutron diffraction structure of

cyclosporin H provides unique and complementary insights into methyl orientation, hydrogen bonding,

and solvent interactions that are not available from X-ray analysis alone.

The hydrogen atoms in a biological material play an essential part in its structure and function. For a

full understanding of hydrogen bonding and solvent structure, it is essential to know the accurate

locations of the hydrogen atoms in various situations: terminal –CH3, –OH groups, and solvated water

molecules. Neutron diffraction enhances the possibility of determining their locations reliably. Cyclos-

porins are cyclic undecapeptides of fungal origin, the best known of which, cyclosporin A (CsA), is a

lead clinical immunosuppressant; cyclosporin H is an inverse formyl peptide receptor agonist, differing

from CsA only in the chiral inversion of MeVal-11 from L to D configuration. The peptide sequence of

cyclosporin H is (L)Bmt-(L)Abu-Sar-(L)MeLeu-(L)Val-(L)MeLeu-(L)Ala-(D)Ala-(L)MeLeu-(L)

MeLeu-(D)MeVal. The X-ray structure of CsA crystallized from chloroform shows a very similar

conformation to that determined by both 1H and 13C NMR spectroscopy in chloroform solution.

Several other crystal forms of CsA and derivatives, crystallized from a range of solvents,

including ethanol, ether, and acetone, have also been examined; in most cases the CsA
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conformation is very similar to within about 0.2 Å for a-carbon atoms. These studies include

crystallographic (X-ray and neutron) and NMR spectroscopic studies of CsA and its complex

with cyclophilin.

Two detailed X-ray crystal structure determinations of CsH [30], crystallized in the presence or in

the absence of Mg2+ (forms I and II, respectively), have been undertaken at 0.80 Å resolution and

have identified structural and surface features important for biological activity which may aid the

future design of new CsH derivatives. A major and surprising outcome of this X-ray study was the

observation that a minor local chemical change between CsA and CsH— the chiral inversion of one

peptide—is associated with a major structural transformation from open b-sheet in CsA to a saddle-

shaped “baseball-stitch” conformation in CsH, Fig. 11.17a, b.

CsH forms I and II both adopt the same saddle-shaped secondary structure, and the peptide bonds

in this highly convoluted loop conformation are all trans. Unlike CsA, with just one ordered water

molecule in the crystal structure, the structures of both CsH forms are heavily solvated, with eight and

seven water molecules, respectively. Of the seven solvation water molecules in CsH form II, O1W is

extremely well ordered, as judged by the refined anisotropic displacement parameters. Consideration

of its interactions with neighboring atoms rules out the possibility that this could be a coordinated

Mg2+ cation, which implies that these cations improve crystal ordering without being incorporated

into the structure itself.

Here we describe the analysis of CsH form II by neutron diffraction. The positions of all hydrogen

atoms in the peptide and solvent molecules were determined by crystallographic refinement.

Fig. 11.17 A single stereochemical inversion at residue 11 induces the conversion of Cyclosporin A (a) to cyclosporin
H (b); the structures adopt dramatically different loop configurations. The peptide nitrogen atoms are labeled. CsA data

was taken from PDB 2WFJ, and the figures drawn with RASMOL
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11.10.2 Experimental

Highly purified cyclosporin H samples were supplied by Sandoz–Novartis, Basle, and crystals of CsH

form-II were grown over twenty-one days at �20�C from methanol in the presence of magnesium

perchlorate in partially sealed glass vials. Magnesium perchlorate was observed to extend the

resolution of the X-ray diffraction pattern and to have a stabilizing effect on the structure, especially

the long MeBmt-1 side chain, which is considerably disordered in the absence of the perchlorate. The

crystals disintegrate spontaneously on exposure to air or water. For this reason it was not possible to

deuterate the sample, unlike concanavalin A discussed above.

Neutron Data Collection and Processing
A crystal of cyclosporin H with approximate dimensions 0.5, 0.5, 0.3 mm was dipped in Fomblin

oil, wrapped in thin aluminum foil, mounted on a thin V-pin, and rapidly cooled to 20 K in a cryo-

refrigerator. Data were collected on VIVALDI. Eight Laue diffraction patterns were collected on a

cylindrical image-plate detector at 10–20� intervals in a rotation of the crystal perpendicular to the

incident beam. The crystal was held stationary during each 7-h Laue exposure, and then rotated to

the next Laue position where it was held stationary again. The reflections were indexed using the

program LAUEGEN and integrated using the program ARGONNE_BOXES, which is based on a

two-dimensional implementation of the three-dimensional minimum s(I)/I algorithm [31]. Correc-

tion for absorption was unnecessary owing to the small nearly isotropic sample volume. The

integrated reflections were wavelength normalized and scaled using the program LSCALE. A

total of 9222 reflections was recorded of which 2849 were independent, resulting in 71.8% overall

completeness for the resolution range 9.7–1.05 Å. Shell-wise merging and completeness statistics

were computed with SCALA. Five percent (123) of the reflections were segregated for Rfree

calculations in order to monitor the refinement and help avoid the risk of over-fitting the data.

Data collection, processing, and refinement statistics are presented in Table 11.6.

Since only the ratios between unit-cell dimensions could be accurately determined using the white

beam Laue technique, the cell dimensions obtained by monochromatic X-ray diffraction at 298 K

were used to index the neutron data. The crystal displayed anisotropic contraction with cooling, and it

was necessary to refine the axis-length ratios: with the a axis held constant at 17.4 Å, the length of the

c axis decreased by 3% from 23.2 to 22.4 Å. The unit cell length esd values from monochromatic

X-ray measurement at room temperature were used for analysis.

11.10.3 Structure Refinement

Refinement against jFj2 was performed using the Windows version of SHELXL-97. Initial atomic

positions, including riding hydrogen atoms, were obtained from the results of the earlier X-ray

structure, to which we have referred already. Owing to the relatively low data/parameter ratio, the

refinement protocol was based on macromolecular refinement techniques, starting with a rigid-body

refinement, then successively easing the restraints after each round of refinement and rebuilding,

computing Rfree on jFj2at each step to monitor over-fitting of the data. In order to compensate for the

change in unit-cell parameters relative to those at room temperature, the AFIX 9 command was used

in the initial refinement cycle to model a “breathing” rigid-body fit. This initial refinement cycle with

only 226 parameters resulted in an agreement factor of R(jFj2) of 28% and an Rfree(jFj2) of 34%.

Inspection of the initial nuclear density map showed well-resolved nuclear density for all atoms in the

cyclic peptide, including clear nuclear density for a methyl rotor at residue 4, which had been

modeled in the wrong conformation in the X-ray structure. The density for the hydrogen atoms on
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some solvent molecules was less clear, and ambiguous hydrogen atoms were deleted during this

round of rebuilding. In the second round of least-squares refinement, the cyclic molecule was fitted as

twelve rigid peptides and seven rigid water molecules.

Constraints were replaced with soft restraints as refinement progressed; finally, many of the

restraints were removed entirely. Default SHELXL weights were employed for restraints, except for

DELU (0.0001) and ISOR (0.005–0.01). Several common distances and angles were restrained to

refined FVAR parameters. In the final cycle of refinement, these were: methyl C–H, amide N–H, water

O–H, carbon C–H, C–C, N–CA and C¼O bond distances; methyl H–C–H and water H–O–H angles.

Releasing these restraints caused the R1,free index to increase from 0.168 to 0.183 with only modest

diminishment of R1, so the restraints were retained. Refinement statistics are listed in Table 11.6.

After completion of the refinement, each water molecule was omitted in turn for the calculation of

least-squares water-omit maps. Every water hydrogen atom reappeared in its simulated annealing omit

map with negative density greater in magnitude than 3s in the Fo � jFjc nuclear density map,

Table 11.6 Crystal and neutron structure refinement data for CsH-II

Empirical formula C62H123N11O18

Mr 1309.00

Temperature (K) 20(2)

Neutron wavelength (Å) 1.2–2.6

Crystal system Orthorhombic

Space group P212121

Unit cell dimensions (Å) a ¼ 17.392(2)
b ¼ 19.3729(10)
c ¼ 22.437(3)

Volume (Å3) 7559.6(14)

Z 4

Resolution range (last shell) (Å) 9.69–1.05(1.11–1.05)

Rmerge 0.109(0.112)

Rmeas (all I+ and I�) 0.124(0.130)

Rpim (all I+ and I�) 0.057(0.064)

Total number of observations 9184(857)

Total number unique 2849(309)

Mean((I)/s) 9.7(7.2)

Completeness 71.8(55.5)

Multiplicity 3.2(2.8)

Dc/Mg (m�3) 0.288

F(000) 160

Crystal size (mm) 0.5, 0.5, 0.5

Index ranges 0 � h � 16; 0 � k � 18; 0 � l � 21

Reflections collected 9222

Independent reflections 2849

Reflections used for SHELX 2726

Rint 0.1140

Overall completeness (last shell) 71.8%(55.5%)

Refinement method Full-matrix least-squares on jFj2
Data/restraints/parameters 2726/998/1303

Goodness-of-fit on jFj2 1.572

Final R indices [I > 2s(I)] R1 ¼ 0.1222, wR2 ¼ 0.2906

R indices (all data) R1 ¼ 0.1382, wR2 ¼ 0.2988
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Fig. 11.18a–g. Figure 11.19 shows a view of the neutron structure. The final maps and ellipsoid plots

were of high quality, Fig. 11.20.

Cyclosporin H-II with co-crystallized water has 217 atoms. With full positional and anisotropic

thermal displacement parameters for all non-hydrogen atoms (the U values for some methyl hydrogen

Fig. 11.18 (a–g) Mosiac of the water molecules in CsH in the “water-omit-refinement” Fo � jFcj nuclear difference
density. Nuclear density is contoured at 3s (blue) and �3s (red)

Fig. 11.19 View of CsH neutron structure
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atoms were constrained to 1.5 times that of their carbon atom), the number of refined parameters in the

final refinement cycle totaled 1303.With 2849 independent reflections and 217 atoms, the resulting data/

atom ratio was 13.1 with a data/parameter ratio of 2.2. A total of 998 restraints was used for refinement:

185 to restrain chemically comparable bonds to common lengths, 73 to restrain angles, and 740 to

restrain anisotropic thermal displacement ellipsoids. Refined bond lengths and angles generally com-

pared well with those from the X-ray refinement, except that the C–H, N–H, and O–H bonds refined to

larger values. Least-squares refinement of all atomic coordinates and anisotropic temperature factors

resulted in a final agreement factor ofR1(F
2) ¼ 0.122 for 2191 independent reflections withF > 4s(F).

Relevant crystallographic data are summarized in Table 11.6. The unconventional nomenclature for

atom labeling reflects the presence of D-peptides and several non-standard amino acids; atom naming

follows that established in the X-ray structure analysis of cyclosporin H-II.

11.10.4 Description of the Neutron Structure and Comparison
with the X-Ray Structure

The overall structure of CsH-II is a saddle-shaped, cyclic undecapeptide, Fig. 11.17a, b; the peptide

sequence of CsH is (L)Bmt-(L)Abu-Sar-(L)MeLeu-(L)Val-(L)MeLeu-(L)Ala-(D)Ala-(L)

MeLeu-(L)MeLeu-(D)MeVal. There are several non-standard amino acids in the polypeptide, includ-

ing seven residues with methylated amide nitrogen atoms. Position 1 is assigned to the amino acid with

the longest unbranched side chain, L-MeBMT. Position 2 is L-Abu. The amide nitrogen atoms at

residues 1, 3, 4, 6, 8, 9, 10, and 11 are methylated. Residues 8 and 11 have the D-configuration at the a-

C position (chiral inversion relative to the usual L-amino acid configuration). While six of the seven

water molecules make at least one hydrogen bond with the peptide chain, Fig. 11.18a–g, water

molecule seven does not interact directly with cyclosporin H, and may thus be described as occupying

Fig. 11.20 (a) 2Fo�jFcj nuclear density for residue 4 of CsH-II is shown to display the map quality. Positive density at

the 2s level is shown in teal, at �2s in orange. (b) An ORTEP plot with ellipsoids shown at the 50 % confidence level.

The hydrogen atoms are displayed with the radii proportional to refined U values
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the second hydration sphere. Not coincidentally, the oxygen atom of water molecule seven exhibits the

largest thermal motion and weakest nuclear density of all the water oxygen atoms, Fig. 11.18g.

The room temperature X-ray and cryo-neutron structures were superposed by the program LSQKAB,

using the a-carbon atoms for alignment, Fig. 11.21; individual atom-by-atom displacements were com-

puted with Perl Script. The average displacement for the 11 a-carbon atoms is 0.11 Å; for all peptide non-

hydrogen atoms, the average displacement is 0.15 Å; for all water oxygen atoms, it is 0.16 Å. For all

peptide hydrogen atoms, the average displacement is 0.27 Å; for water hydrogen atoms, it is 0.26 Å. The

shifts are not anisotropic, that is, they do not correspond to shifts along the contracted cell axis.As neutrons

are scattered by nuclei rather than electron clouds, the C–H, N–H, and O–H bond lengths are generally

0.14, 0.28, and 0.05 Å, respectively, longer than in the X-ray structure, Fig. 11.19, the largest difference

being 0.56 Å at HW42, water molecule four.

There are minor differences in hydrogen atom positions at solvent sites 3, 4, 6, and 7.

The maximum atomic displacements between the X-ray structure and the neutron structure arose for

the methyl hydrogen atoms of the amide nitrogen atom of residue 4. This methyl rotor had been

misoriented by 60� in the X-ray structure determination. As would be expected, the hydrogen bonds

found are consistent for both the X-ray and the neutron analyses. That is, all of the hydrogen bonds

determined in the neutron study were also recognized in the X-ray structure. As in the X-ray structure,

there is no indication of Mg2+ ions in the neutron structure, and it may be concluded that the presence of

these ions in the crystallization mediummerely serves to aid the crystallization process. This conclusion

is supported by the distinct negative nuclear density for hydrogen atoms obtained in water-omit maps for

every water molecule in the neutron structure analysis.

11.10.5 Conclusion

The complete atomic structure of cyclosporin H form II has been determined by single-crystal neutron

diffraction. The relatively low data/parameter ratio required a mixed refinement strategy, similar to that

employed in protein crystallography, Sect. 11.8. The unambiguous determination of all hydrogen atom

positions completes the high-resolution single-crystal structure of cyclosporin H form II. The water

hydrogen bonding interactions have now been directly determined, confirming that hydrogen bonding

patterns inferred from X-ray refinement were essentially correct, but with minor differences, especially

in the positions of hydrogen atoms on the solventmolecules. The refined neutron structure is illustrated in

Figs. 11.22 and 11.23.

Fig. 11.21 The refined NH bond lengths in the neutron structure: average 1.135 Å compared with 0.86 Å in the X-ray

structure
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Fig. 11.22 Neutron data allowed correction of a CH3 group orientation at residue 4. X-ray structure is shown in teal

and green. Neutron structure in blue (C atoms and 2s nuclear density) and purple (H atoms and –2s nuclear density).

C–H bond lengths refined to larger values in the neutron structure.

Fig. 11.23 CsH neutron structure showing the seven water molecules and trace of the main chain N1–N11. All water

hydrogen atoms were determined experimentally. Thermal ellipsoids are plotted at 85% probability. The drawing was

made with ORTEP-III/RASTER as implemented in the program suite WinGX and generated by ORTEP-3 for

Windows. The main chain trace was drawn by RASMOL and inserted independently
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11.11 Problems

11.1. A neutron beam has a wavelength spread of 1.0–2.0 Å. The beam is not quite parallel, the

angular divergence being �0.25� from the ideal path. The beam is monochromatized with a

single crystal of lead (cubic, a ¼ 4.954 Å) by reflection from the (111) face. (a) At what angle

should the (111) planes be set so as to give a wavelength of 1.25 Å? (b) What would be the

approximate spread of wavelength in the monochromatized beam?

11.2. Sodium hydride has the sodium chloride structure type, with a ¼ 4.88 Å, Na+ at 0, 0, 0, and H�

at 0, 0, 1/2. Using the data below, calculate F(111) and F(220) for NaH and NaD, for both

X-rays and neutrons; the temperature factor may be neglected for the X-ray case. First,

formulate a simplified structure factor equation for the calculation.

fNaþð111Þ 8.1 bNaþZ 0.35

fH�=D� ð111Þ 0.38 bH�Z �0.37

fNaþ ð220Þ 6.7 bD�Z 0.67

fH�=D� ð220Þ 0.21

11.3. When using the VIVALDI instrument to collect neutron diffraction data, why might it be

necessary first to undertake preliminary studies of a crystal using X-ray diffraction?

11.4. The neutron spallation beam at ORNL is extremely powerful. Why is it recommended that

users should supply crystals as large as 1 mm3, whereas VIVALDI users can frequently

collect excellent neutron diffraction data on much smaller crystals?

11.5. Calculate the wavelength of a neutron beam having an associated temperature T ¼ 273 K.

11.6. Use RASMOL to reproduce as closely as possible Fig. 11.12 showing the Mn coordination

sphere in Concanavalin A. Table 8.4 may also be useful.

Suggested strategy:

1. Download the program RASMOL.

2. Go to the PDB website and download PDB file 1scs.

3. Read the file 1scs using RASMOL.

4. Maximize the display.

5. Locate the independent command display for RASMOL which will be at the bottom of your

screen.

6. Enter the following commands using this display:
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Powder Diffraction 12

12.1 Introduction

The powder method was devised by Hull soon after the discovery of X-ray diffraction, and developed

in detail by Hull [1] and by Debye and Scherrer [2]. Since that time, X-ray diffraction from powdered

specimens has been used in divers investigations of materials. The main interest in this book is

structure determination for which powder methods have, until recent years, been inappropriate,

mainly because of the problem of overlap of the X-ray reflections which causes three-dimensional

data information to collapse on to a one-dimensional powder record. The vast improvement in

instrument technology in recent years has led to powder photographs and diffractograms of sufficient

precision to be interpretable in terms of the underlying crystal structures, and powder techniques have

now been developed as a very significant tool in X-ray structure determination. Before launching into

this topic, however, we summarize here some of the many applications of X-ray powder diffraction

other than in crystal structure determination.

12.1.1 Identification

An X-ray powder diffraction data file was inaugurated by Hanawalt in 1930, and his work has

developed into the powder index of today. Well over a half a million substances have been indexed

and recorded, and are represented by the Powder Diffraction File (PDF) of the International Centre

for Diffraction Data (ICDD) [3], formerly the Joint Committee for Powder Diffraction Studies, which

maintains a database of powder diffraction patterns, including inter alia the d-spacings and relative

intensities of observable data.

12.1.2 Crystallinity: Size and Strain Broadening

Crystals produce sharp X-ray diffraction peaks, whereas amorphous materials, such as glass, liquids,

and some polymers, produce a few diffraction maxima and a diffuse background. A decrease in

crystallite size in a crystal sample causes an increase in the width of diffraction maxima, often

characterized by the peak full width at half maximum height (FWHM), b, which is related to the mean

crystallite size l by b ¼ Kl=ðl cos yÞ, where the scale factor K is 0.89 for spherical crystallites, 0.94

M. Ladd and R. Palmer, Structure Determination by X-ray Crystallography:

Analysis by X-rays and Neutrons, DOI 10.1007/978-1-4614-3954-7_12,
# Springer Science+Business Media New York 2013

585



for cubic grains and otherwise generally close to unity. Powder methods can be used to determine the

degree of crystallinity by comparing the intensity of the background pattern to that of the sharp peaks.

Most real crystals contain imperfections which produce distortions in the microstructure. Both

decrease in crystallite size and increase of strain in a crystal will cause broadening of the recorded

diffraction peaks. The Williamson-Hall analysis [4] allows both size and strain to be determined

through the expression bhkl ¼ 2ed�hkl þ1=l, where b and l are as before and e is the microstrain. A plot

of b against 1/l leads to values for both the crystallite size and the microstrain.

12.1.3 Unit-Cell Parameters

Powder diffraction data can be indexed and unit-cell parameters determined readily for cubic,

hexagonal, and tetragonal crystals. Other crystal systems present more difficulty and we address

this matter in Sect. 12.5, where we shall see that the most important factor is the precision obtainable

in the measurement of 2y from the diffraction data.

12.1.4 Expansion Properties

The unit-cell parameters depend on temperature and pressure. Changes in the d-spacings with

changes in temperature or pressure allow the thermal expansivity and bulk modulus to be determined.

As with the unit-cell parameters, measurements of 2y are required. The bulk modulus K is given by

the expression K ¼ �Vð@p=@VÞT, and accurate unit-cell parameters are required to determine the

volume change under uniform compression.

12.1.5 Phase Transitions and Alloy Systems

At certain critical conditions of temperature and pressure, a crystal may change its structure to a

polymorphic form, and this is revealed by the appearance of new peaks in the diffraction record and

the disappearance of some exhibited previously. Allied to this property is the study of alloy systems.

Figure 12.1 shows an early powder pattern of the binary silver-cadmium alloy system [5], and

Fig. 12.2 is the phase diagram [7] deduced from that study.

12.2 Crystal Structure Analysis with Powders

In recent years, great progress has been made in the determination of crystal structures from powder

data, and these developments in the powder method have added a new and powerful tool for the

determination of the structures of the many substances that could be obtained only in microcrystalline

form, of particle size ca. 10�3 mm. This topic forms the subject matter for the rest of this chapter;

more detailed discussions of powder methods can be found in the literature [8–11].

12.2.1 Crystal Structure Determination Scheme

A scheme for the structure determination of a crystal from powder diffraction data may be set out in

five stages:
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Fig. 12.1 Early X-ray powder photographs of silver–cadmium alloys, taken with Fe Ka X-radiation. Silver, the

a-phase, takes up cadmium into solid solution to the extent of ca. 40 % Cd. The unit-cell side a of the cubic a-phase is

proportional to the concentration cCd of cadmium (Vegard’s law [6]). Since the metallic radius of cadmium (1.50 Å) is

greater than that of silver (1.44 Å), lines in the a-phase move to lower y as cCd increases. Several films show a1a2
splitting at high y (after Westgren and Phragmén, loc. cit. [4])
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1. Collecting and indexing the powder diffraction pattern, and determining the unit cell

2. Identifying the space group from the diffraction record, if possible

3. Decomposing the powder pattern into integrated intensity data, I(hkl)

4. Solving the phase problem

5. Refining the model structure

As with single-crystal X-ray analysis, the first three stages lead to the acquisition of a set of relative

Fo(hkl) data; the indexed data will enable the space group to be determined as far as possible. The phase

problem may be tackled by traditional Patterson or direct methods, or with direct-space techniques such

as Monte Carlo or genetic algorithms, which make use of the power of modern computers. The

refinement of the structure follows the Rietveld technique, developed in the late 1960s, which has been

the driving force for the extension of the powder method to the more complex materials now studied.

The experimental data collection procedures have progressed greatly since the initial film based

camera techniques, leading to refined camera methods and then to diffractometer methods, and with

neutron and synchrotron sources as well as X-rays.

12.3 Basis of the Powder Method

The geometrical basis of X-ray powder photography is illustrated in Fig. 12.3. In the camera method,

monochromatic, collimated X-rays enter along a diameter of the cylindrical camera, through a small

hole in the X-ray film, and exit through a diametrically opposed aperture into a beam trap. In this type

Fig. 12.2 The phase equilibrium diagram for the silver–cadmium system [5]; silver and cadmium form a continuous

range of solid solutions, up to 42.5% Cd; the range at the high cadmium end is much smaller (reproduced by courtesy of

John Wiley and Sons)
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of camera, the specimen is a very finely ground powder contained in a thin-walled borosilicate glass

capillary tube, so providing a cylindrical-shaped specimen. The mounting for the sample tube is

provided with mechanical slides, so that it can be adjusted to rotate on its axis within its own volume.

The rotation serves to increase the effective randomness of the orientations of the crystallites in the

sample, but is not a necessary feature of the method itself. Other experimental techniques may require

a specimen in the form of a flat plate.

Typical reflection positions on a powder film are shown at A1 and A2, at a scattering angle of 2y.

From the geometry of the camera, it is clear that y is obtained from

arc A1A2 ¼ 4Ry (12.1)

where R is the radius of the film. Since the crystallites lie in all possible orientations, the Bragg

equation for a given reflection hkl is satisfied by any generator of a cone of semi-vertical angle 2yhkl
and axis along the transmitted X-ray beam. A complete cone of diffraction spots intercepts the

cylindrical film strip in circular arcs, A1 and A2, of uniform intensity. If all possible orientations do not

exist, as when the crystallites are too large, the arcs are broken to give a “spotty” powder photograph.

When the Bragg equation is satisfied for a reflection to occur, we have

sin2y ¼ l2=ð4d2Þ (12.2)

so that d values are also obtainable. An important limitation of the powder method is immediately

evident, namely, that we can measure only one geometrical parameter, the Bragg angle y for each

reflection.

Fig. 12.3 The basic Debye–Scherrer arrangement for X-ray diffraction from polycrystalline specimens: C, camera

housing of radius R, with film strip F fitted tightly against its inner surface; X, incident X-ray beam traveling along a

diameter of the camera; H1 and H2, two small, diametrically opposed holes in the camera and film; S, the powder

specimen; L, trap for the transmitted X-ray beam; A1 and A2, positions of two arcs of one and the same powder

reflection; 2y, the angle of scatter (twice the Bragg angle)
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For a structure analysis, we know that we must obtain the unit-cell dimensions, the space group,

and the hkl indices for each reflection together with its integrated intensity. Until the development of

both high speed computing and improvements in the data collection procedures, the task was

formidable, although some simplification arises for high-symmetry materials.

12.4 Data Collection

In powder diffraction work, many fewer resolved reflections are available than with single-crystal

X-ray crystallography. In addition, the problem of determining the unit-cell dimensions, space group,

and indices and intensities of reflections is less straightforward.

Powdered specimens contain numerous very small crystallites arranged in completely random

orientations, so that there is no explicit information on the location of a reciprocal lattice point other

than its distance d* from the origin. A powder pattern is a collapsed, tangential projection of the

weighted reciprocal lattice, in which each diffraction maximum is characterized by its Bragg angle y

and its intensity.

Powder lines have a significant breadth and tend to merge or overlap with both increasing y and

increasing unit-cell size. A sample containing crystallites that are too large may be ground in an

appropriate apparatus, made from agate or tungsten carbide. Care must be exercised because over-

grinding could introduce strain with consequent line broadening

In order that powder lines should be sufficiently well resolved for their positions to be measured to

better than the desired 0.01� in y, it is necessary that the X-radiation is monochromatic, very finely

focused on to the film, and produces a low intensity of background radiation.

12.4.1 Guinier-Type Cameras

One method of obtaining the desired experimental conditions is with a Guinier-type camera, employ-

ing a curved crystal monochromator. This X-ray monochromator consists essentially of an asymmet-

rically ground, curved crystal of quartz, silicon, or germanium. The (10�10) planes of a quartz crystal,

or the (111) planes of silicon or germanium, are set to diffract at a prearranged angle to the crystal

surface, Fig. 12.4a. The crystal is ground to a cylinder of radius 2R and then bent over the fitting area.

X-rays from the line focus of the X-ray tube strike the crystal as a divergent bundle. In the crystal, a

narrow wave band is separated from the polychromatic source by diffraction according to the Bragg

equation. The diffracted rays leave the crystal as a convergent bundle, at the glancing angle y. The

most intense spectral line is the Ka1, and the crystal is set to reflect this wavelength, with the

elimination of other wavelengths from the diffracted beam, albeit with a slight loss in the a1 intensity.

Figure 12.4b shows the location of the various determinants involved in the setting of the crystal

monochromator. The distance a between the line focus F of the X-ray tube and the center of the

crystal, and the distance b between the center of the crystal and the focal line F0 are maintained

constant for different wavelengths by a judicious choice of t, the angle between the (10�10) or (111)

planes and the crystal surface. This feature allows a change of X-ray tube (and wavelength) without

major alterations in the experimental arrangement.

The principle of Guinier operation is illustrated in Fig. 12.4c. The Guinier-type camera can

function in transmission geometry, as with low–medium absorbing specimens, or in reflection

geometry, in the case of strongly absorbing materials. In the photographic technique, the X-ray

film is mounted on the Seeman–Bohlin focusing cylinder. Figure 12.5 shows a complete Guinier-type
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Fig. 12.4 (a) A curved crystal monochromator, showing the incident divergent bundle of rays from the X-ray tube at F

reflected at the glancing angle y, and the bundle convergent at the point F0. (b) The curved crystal, showing the

determinants involved in the setting of the crystal; the constancy of a and b with change of wavelength depends on the

correct choice of t. (c) The principle of the Guinier method, showing the disposition of X-ray tube, monochromator,

powder specimen, and focusing cylinder. The focusing cylinder carries a photographic film, or can be replaced by a

scintillation counter (diffractometer) or an imaging plate (imaging camera) (courtesy Huber Diffraktionstechnik GmbH,

83253 Rimsting, Germany)
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film-camera assembly for flat, powdered specimens. If the final film is assessed with a vernier

measuring instrument, the desired accuracy in y can be achieved.

12.4.2 Image Plate Camera

In a modern development of the Guinier technique, the X-ray film is replaced by an image (photo-

stimulated) plate, leading to greatly improved speed of data collection without loss of the accuracy

that is so important in powder indexing. The X-ray imaging plate is a flexible strip, like an X-ray film,

Fig. 12.4 (continued)

Fig. 12.5 Huber–Guinier Powder Camera assembly (courtesy Huber Diffraktionstechnik GmbH, 83253 Rimsting,

Germany)
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that contains a metastable phosphor, such as a deposited 150 mm layer of BaFBr.Eu(II) which

contains F-centers (color centers) in an organic binder, as discussed in Sect. 5.7.3.

The advantages of the imaging plate are parallel data collection over a large area, with high

dynamic range, good resolution, and digital readout. The image-recorded intensity tends to decay

with time, so that the plates are best handled in darkened conditions.

Figure 12.6 is a schematic diagram of the Huber Imaging-Plate Guinier camera. The incident beam

is monochromatic Ka1 X-radiation, focused on to powder specimen in a flat holder. The camera

enclosuremay be evacuated, so as to decrease the background scattering. The imaging plate containing

the powder pattern is scanned by a laser, and software handles the scanned data to produce a profile

record and data files. Collection times may be reckoned in minutes, particularly where a synchrotron

source is available. After use, the imaging plate is restored to its original condition by means of the

halogen erasure lamp. The data files are produced in a format appropriate for Rietveld refinement

(q.v.). Fuller details of the performance of the camera are available from the manufacturer [12].

12.4.3 Powder Diffractometers

The diffractometer is the primary instrument for recording powder diffraction spectra, whether produced

by X-ray or neutron radiation sources. Many X-ray powder diffractometers use the Bragg-Brentano

Fig. 12.6 Schematic diagram of the Huber Imaging Powder Camera. The powder pattern, collected on the imaging

plate, is scanned by a laser and then digitized for computer analysis (courtesy Huber Diffraktionstechnik GmbH, 83253

Rimsting, Germany)
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parafocusing principle in reflection geometry, Fig. 12.7. The take-off angle of X-rays from the tube

anode is about 6�, impinging as a divergent beam at the monochromator. In a high-resolution experi-

mental arrangement, the pre-sample crystal monochromator, of the type in Fig. 12.4b, removes the

unwanted Ka2 radiation, since the path of this radiation from the monochromator deviates from that of

theKa1. The reflectedX-rays converge at a knife-edge slit and then diverge on to the specimen. Scattered

X-rays from the flat sample converge at a receiving slit and are received at the proportional counter, gas

or solid state device, detector assembly. The detector rotates about the sample axis synchronously

through twice the angular rotation of the sample in the y/2y scan mode. The effective source, receiving

slit and sample lie on the focusing circle, which has a radius that depends on y. It is important to avoid

preferred orientation in the flat plate powder sample when preparing it for diffractometer [13].

The sample is spun about an axis normal to the plate so as to obtain a good average diffraction

record. It is also desirable to move the capillary tube containing the powder sample such that a different

part of it is irradiated as the data collection proceeds, so as to counteract the effects of any decomposition

of the sample. Figure 12.8 illustrates a typical high-resolution powder diffractometer assembly.

Synchrotron Radiation
The use of synchrotron radiation instead of X-rays leads to better resolution, but in view of the cost of

SR facilities, it is necessary to carry out a preliminary X-ray examination, as with single crystals, so as

to obtain the unit-cell data and to index the pattern. Particular advantages of synchrotron radiation are

the high intensity and excellent vertical collimation, leading to greatly improved resolution compared

with laboratory X-ray sources. These features decrease the difficulties caused by overlapping reflec-

tions, and have enabled structures of considerable complexity to be solved, such as that of the

compound La3Ti5Al15O37, which has 60 atoms in the asymmetric unit [14].

12.4.4 Diffractometry at a Neutron Source

We have discussed features of neutron diffraction in detail in Chap. 11, and the technique is of

importance in structural studies with powder specimens. The majority of neutron research projects are

Fig. 12.7 Schematic diagram of a powder diffractometer with Bragg-Brentano parafocusing: S, X-ray source focus;

M, curved-crystal monochromator; F, adjustable receiving slit; O, rotation axis; D detector; R, radius of focusing circle

(after Huber Diffraktionstechnik GmbH, 83253 Rimsting, Germany)
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Fig. 12.8 (a) The Stoe STADI P powder diffractometer system: the radiation is Ka1, in the range available from Fe to

Mo targets; the focusing circle diameter is 130 mm, the 2y range is 0–140�, and the minimum step size is 0.0005�.
Intensities are measured by a scintillation counter, and the whole operation is handled by built-in structure-solving

software. (b) A diffractogram of solecite, a calcium-containing zeolite, measured in the Debye–Scherrer transmission

mode in a capillary of 0.3 mm diameter: calculated and experimental peaks (with probable errors indicated), positions

of main peaks (vertical lines) and, below, the difference curve are shown (courtesy Stoe & Cie GmbH, Darmstadt,

Germany)
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carried out at the nuclear reactor at the Institut Laue-Langevin in Grenoble. The fission process used

to produce a neutron flux generates much heat and has to be water-cooled, by D2O. The deuterated

water also slows the “thermal” neutrons to the ambient temperature, leading to a neutron source of

wavelength of 1–2 Å.

Owing to the size of the neutron beam, the single crystal for the monochromator must be large.

Typically, germanium crystals are cut so that the (hhl) planes, often the (220), are in a position to act

as a monochromatic source. Filters may be incorporated in order to select a particular wavelength.

Neutrons are detected mainly by absorption in a gas (often helium) proportional counter. In the

detection process, the (n, g) reaction is

3
2Heþ 1

0n ! 4
2Heþ g

and the energy of the g-radiation is proportional to the intensity of the X-ray signal. The quantum

efficiency Q of the detector is given by

Q ¼ 1� expðsplÞ

where s is the neutron cross section, p is the pressure of the helium gas, and l is the length of the

chamber of the proportional counter.

The resolution is high and the peak shape, though complicated, is well understood and can be

modeled very satisfactorily in a refinement process. Because the neutron cross section, the neutron

equivalent of the X-ray form factor, is almost constant over the whole range of sin y=l, atomic

coordinates and temperature factors can be obtained with high precision. The method can be applied

both at low temperatures and at high pressures. Figure 12.9 is a diagrammatic illustration of a high-

resolution powder diffractometer at the Institut Laue-Langevin that uses a neutron source and a

graphite filter. It was designed to achieve the ultimate resolution, Dd=d ¼ 5� 10�4, limited only by

Fig. 12.9 Schematic

diagram of the D2B very

high-resolution, two-axis

neutron powder

diffractometer D2B at the

Institut Laue-Langevin

(reproduced from the

“yellow book” by courtesy

of the Institut Laue-

Langevin, Grenoble)
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particle size. Data can be collected on a 500 mg sample in a few hours and on a gram sample in a few

minutes, with obvious advantages.

Crystal Structure of Benzene
The crystal structure of benzene at low temperature has been studied by this technique [15].

Notwithstanding its highly symmetrical molecular shape, benzene crystallizes in the orthorhombic

system, with space group Pbca: a ¼ 7.3551(3) Å, b ¼ 9.3712(4) Å, c ¼ 6.6994(3) Å, and four

molecules in the unit cell; the figures in parentheses are the estimated standard deviations of the

unit-cell parameters.

The molecules lie in special positions of this space group so that the molecular symmetry that is

indicated crystallographically is only �1. In practice, deuterated benzene was used because the incoherent

scattering from hydrogen results in a very high background level; deuteration of hydrogen-containing

materials is standard practice with neutron experiments. Furthermore, the neutron scattering length for

deuterium is positive at 6.671 fm1 whereas that for hydrogen is �3.739 fm.

The precision of the structure analysis can be judged from the following bond length parameters,

quoted in Å:

C1�C2 ¼ 1:3969ð7Þ; C1�D1 ¼ 1:0879ð9Þ
C2�C3 ¼ 1:3970ð8Þ; C1�D1 ¼ 1:0869ð9Þ
C3�C1 ¼ 1:3976ð7Þ; C1�D1 ¼ 1:0843ð8Þ

The mean values for C–C and C–D are 1.3972(5) Å and 1.0864(7) Å, respectively. The differ-

ences between the individual C–C and C–D bond lengths are not significant at the 3s level, so that

there is no evidence to show that the geometry of benzene is other than truly hexagonal. For further

discussions on neutron diffractometry, the reader is referred to the literature [16, 17].

Time-of-Flight Techniques
Time-of-flight (TOF) techniques use a polychromatic beam and a pulsed neutron source. From the de

Broglie equation, it follows that the neutron wavelength is inversely proportional to its speed. By

detecting the time of arrival of each neutron of a particular pulse, its wavelength and the corresponding

d-spacing can be determined:

l ¼ h=mnv ¼ ht=mnl ¼ 2d sin y

where l is the flight path length and t is the TOF. By differentiating the above expression, it follows

that a long flight path and large scattering angle enable good resolution at small d values to be

achieved. The TOF technique permits good use of the total neutron energy. Peak shapes are more

complicated and consequently more difficult to model than those from monochromatic sources.

Time-Resolved Studies: MYTHEN Detector
The MYTHEN single-photon-counting silicon microstrip detector has been developed at the Swiss

Light Source of the Paul Scherrer Institute, Switzerland [18] for time-resolved powder diffraction

experiments. In these experiments, a reaction is triggered rapidly and synchrotron X-rays used to probe

the structural changes as a function of time. This technique has application, for example, in the study of

1 fm ¼ femtometer, 10�15 m.
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how protein molecules behave under protein action. The procedure needs sub-second time resolution,

and the Laue stationary crystal method is used.

The MYTHEN detector [19] allows the acquisition of diffraction patterns over 120� in 2y in

fractions of seconds. The quality of the data obtainable is comparable with that of normal high-

resolution detectors in terms of FWHM resolution and in profile shape. It has the additional advantage

of fast and simultaneous acquisition of the full diffraction pattern. MYTHEN is therefore highly

desirable for time-resolved studies, such as radiation damage in organic compounds [20].

12.5 Indexing Powder Patterns

The simplest powder diffraction pattern is obtained for cubic crystals. In the cubic system, (12.2) may

be written as

sin2y ¼ l2

4a2
ðh2 þ k2 þ l2Þ ¼ l2

4a2
Nc (12.3)

where Nc is the integer sum ðh2 þ k2 þ l2Þ. It follows that the values of sin2 y must exhibit integer

ratios with cubic crystals, within the limits of experimental error, and that the integer Nc follows one

of the three clearly defined possible patterns: 1,2,3,4,. . . for a P unit cell; 2,4,6,8,. . . for I; and

3,4,8,11,. . . for F, according to the known limiting conditions for X-ray reflections. Hence, the

indexing of a cubic substance is normally a simple matter. But even with this high symmetry, more

than one reflection can have the same value of y. For example, pairs such as 300 and 221 (Nc ¼ 9),

and 411 and 330 (Nc ¼ 18) are superimposed on the X-ray film. Certain values of Nc, such as 7, 15,

23, 28, 31,. . ., in general, m2(n � 1) values, where m and n are integers, cannot arise in the cubic

system because they cannot be derived as the sum of the squares of three integers. Although the unit

cell can be identified readily, we see that there is already a problem in assigning the correct relative

intensities to these superimposed reflections.

We referred to an apparent P unit cell for potassium chloride in Sect. 2.10.1. It is, perhaps,

interesting here to note that Fig. 12.10 shows indexed powder photographs of sodium and potassium

Fig. 12.10 Indexed X-ray powder photographs for KCl and NaCl. Both structures have the space group Fm�3m, but the
apparent absence of powder lines with h, k, and l all odd in KCl causes it to appear as Pm�3m with a spacing

aapparent ¼ atrue/2 (after Bragg, The Crystalline State, vol 1, [94])
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chlorides. Although both potassium chloride and sodium chloride have the same structure type, the

absences in the pattern for potassium chloride caused it to be considered as primitive cubic at first.

The reflections for which h, k, and l are all odd integers are accidental absences, that is, reflections too

weak to be recorded; see Sect. 4.2.3.

Powder patterns may be indexed by trial and error methods for simple crystal structures of the

cubic, tetragonal, and hexagonal systems, by use of equations like (12.3), but as the crystal structure

becomes complex, with lower symmetry and larger unit-cell dimensions, the problem is enhanced:

the powder lines become very close, merging into and overlapping one another, so that indexing and

intensity measurement become increasingly difficult.

12.5.1 General Indexing

The indexing of powder diffraction patterns is carried out today by computer programs, and success

in this process depends to some extent on the complexity of the structure, and to a very large extent on

the accuracy of the primary y-data. An early general procedure for indexing was set out by Ito [21].

We recall the general equation for d*(hkl), developed in Sect. 2.4:

d�2ðhklÞ ¼ h2a�2 þ k2b�2 þ l2c�2 þ 2klb�c� cos a� þ 2lhc�a� cos b� þ 2hka�b� cos g� (12.4)

Generally, this equation is cast in terms of Q values, for convenience, such that Qhkl ¼ d�2ðhklÞ,
QA ¼ a�2; . . . ;QD ¼ 2b�c� cos a�; . . . , and so on, so that

Qhkl ¼ h2QA þ k2QB þ l2QC þ klQD þ lhQE þ hkQF (12.5)

It follows that

Qhkl ¼ 4
sin2yðhklÞ

l2
(12.6)

Magnesium Tungstate
As an example, Table 12.1 lists a set of 40Q values formagnesium tungstate,MgWO4 collected by a film

technique. Any three noncoplanar reciprocal lattice vectors define a possible unit cell. A unit cell thus

chosen may not be the smallest, conventional unit cell, but if it is a satisfactory cell it may subsequently

be transformed as we discuss shortly. We will consider Ito’s method by means of this hand-solved

example.

Normally, there will be no a priori knowledge of three suitable noncoplanar vectors. Hence, we

consider the first three lines in the diffraction pattern, and label them initially as Q100, Q010, and Q001,

so that here we have a* ¼ 0.1761 Å, b* ¼ 0.2131 Å, and c* ¼ 0.2683 Å. We look through the pattern

for multiples of these values, so as to improve the values of the reciprocal parameters by averaging the

results. For example, Q200 ¼ 4Q100 ¼ 0.1240, and line number 7 at Q ¼ 0.1239 is evidently Q200,

within experimental error. Proceeding in this way as far as possible, we obtain the average values

a* ¼ 0.1761 Å, b* ¼ 0.2131 Å, and c* ¼ 0.2684 Å.

Next, we consider a zone in which one index is zero, say, hk0. If the angle g* is not 90�, we would
expect to find two lines symmetrically disposed about the position that would correspond to Q110 if g

*

was 90�. For example, assuming correctness so far, Q100 + Q010 ¼ 0.0764. In the list of Q values, we
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have line 4 at 0.0764, and no pair of lines exists symmetrically disposed about this position, as there

would be if g* was not 90�. Thus, we conclude that line 4 is 110, and that g* ¼ 90�.
We expect now to find other Qhk0 values among those listed in Table 12.1. For example,

Q210 ¼ 4QA þ QB ¼ 0:1694, so that the line at 0.1695 corresponds to Q210 in the given data. A few

hk0 lines are listed in Table 12.2, showing that we are on the right lines.

In a similar manner, Q010 þ Q001 ¼ 0:1174. There is no line of this Q value, but lines 5 and 6 are

nearly symmetrically disposed about this position, so that these lines may be taken as 0�11 and 011.

Since Q011 � Q0�11 ¼ 4b�c� cos a�, it follows that a* ¼ 89.45�. As before, we can now check for the

presence of Q0kl values, as desired. For example, Q021 ¼ 4Q020 þ Q001 þ 2QDð4b�c� cos a�Þ ¼
0:2558; similarly, Q02�1 ¼ 0:2514. These Q values correspond to lines 17 and 16.

We seek b* in a similar manner. By trial and error in this way, it is found ultimately that lines

11 and 32 are nearly symmetrically disposed about the calculated value, 0.3190, of Q102. Hence, b
*

evaluates to 49.11�. Summarizing the results, we have the reciprocal unit cell

a� ¼ 0:1761
�
A; b� ¼ 0:2131

�
A; c� ¼ 0:2684

�
A

a� ¼ 89:45�; b� ¼ 49:11�; g� ¼ 90:00�

Table 12.1 Values of Q from the powder diffraction pattern of

magnesium tungstate

Line number Q Line number Q

1 0.0310 21 0.3246

2 0.0454 22 0.3322

3 0.0720 23 0.3364

4 0.0764 24 0.3418

5 0.1164 25 0.3451

6 0.1186 26 0.3505

7 0.1239 27 0.3646

8 0.1649 28 0.3723

9 0.1695 29 0.3824

10 0.1816 30 0.4016

11 0.1957 31 0.4083

12 0.2077 32 0.4432

13 0.2123 33 0.4465

14 0.2386 34 0.4500

15 0.2436 35 0.4608

16 0.2517 36 0.4659

17 0.2563 37 0.4770

18 0.2793 38 0.4863

19 0.2884 39 0.4918

20 0.3055 40 0.4960

Table 12.2 Some calculated and observed

Qhk0 values for magnesium tungstate

hk0 Qcalc Qobs

110 0.0764 0.0764

210 0.1694 0.1695

310 0.3244 0.3246

120 0.2126 0.2123

220 0.3056 0.3055
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Finally, we obtain the direct space unit cell; Sects. 3.4 and 13.6.3—program RECIP, and then

calculate the Q values, Sect. 13.6.9, so as to identify and index all lines in the diffraction record, as

shown in Table 12.3. The results show good agreement between Qobs and Qcalc for most of the lines,

although certain fits suggest that some errors exist among the data. We see already in this fairly simple

example the importance of the accurate experimental measurement of y values.

12.5.2 Reduced and Conventional Unit Cells

From the results so far, the crystal system of magnesium tungstate appears to be triclinic. However,

we must determine whether or not this unit cell is the conventional unit cell for the lattice, that is, it is

correctly related to the lattice symmetry according to the conventions that we have discussed in

earlier chapters. The real space unit cell is derived using the equations developed in Sect. 3.4, or with

the program RECIP by entering the reciprocal unit-cell parameters, with the constant K equal to 1.

Thus, we obtain

a ¼ 7:512
�
A; b ¼ 4:693

�
A; c ¼ 4:929

�
A

a ¼ 90:72�; b ¼ 130:89�; g ¼ 89:52�

or, in the usual order of increasing unit-cell lengths, as

a ¼ 4:693
�
A; b ¼ 4:929

�
A; c ¼ 7:512

�
A

a ¼ 130:89�; b ¼ 89:52�; g ¼ 90:72�

Table 12.3 Indices and Q values for magnesium tungstate

Line hkl Qcalc Qobs Line hkl Qcalc Qobs

1 100 0.03101 0.0310 21 310 0.32444 0.3249

2 010 0.04541 0.0454 22 41�2 0.33250 0.3322

3 001 0.07203 0.0720 23 012 0.33568 0.3364

4 110 0.07644 0.0764 24 22�2 0.34197 0.3418

5 01�1 0.11637 0.1164 25 32�1 0.34491 0.3451

6 011 0.11851 0.1186 26 3�2�1 0.34937 0.3505

7 200 0.12403 0.1239 27 211 0.36626 0.3646

8 101 0.16491 0.1649 28 12�2 0.37272 0.3723

9 2�10 0.16948 0.1695 29 1�2�2 0.38135 0.3824

10 020 0.18165 0.1816 30 40�3 0.40195 0.4016

11 30�2 0.19597 0.1957 31 030 0.40871 0.4083

12 21�2 0.20791 0.2077 32 21�3 0.44324 0.4432

13 3�1�1 0.21202 0.2123 33 41�3 0.44409 0.4465

14 11�2 0.23864 0.2386 34 2�1�3 0.44973 0.4500

15 3�1�2 0.24357 0.2436 35 320 0.46063 0.4608

16 02�1 0.25177 0.2517 36 02�2 0.46548 0.4659

17 021 0.25582 0.2563 37 4�2�2 0.47534 0.4770

18 300 0.27908 0.2793 38 1�12 0.48616 0.4863

19 002 0.28812 0.2884 39 112 0.49041 0.4918

20 220 0.30562 0.3055 40 400 0.49614 0.4960
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The order makes no difference to the reduced cell; it alters only the transformation matrix between

the input and the reduced unit cells. A two-stage process now allows the determination of the reduced

and conventional unit cells.

The unit-cell parameters derived from the indexing procedure are transformed to a unique, reduced

unit cell based on the three shortest noncoplanar translations in the lattice—a Niggli-reduced cell

[22, 23]; such a unit cell is always primitive. In the second stage, the distribution of twofold axes is

determined, because it will define the lattice symmetry [24], Sect. 1.4.2 and Table 1.5. We know, for

example, that the normal to a plane in a lattice that contains p intersecting twofold axes is itself a

p-fold axis, and that a mirror plane exists normal to a p-fold axis (p ¼ 2, 4, 6) in a lattice.

The two-stage procedure, which is lengthy manually, has been brought together in the program

LEPAGE [25]. We describe this program further in Sect. 13.6.10, but for the moment we use it with

the unit cell derived from indexing the MgWO4 diffraction pattern. Thus, we obtain

a (Å) b (Å) c (Å) a (�) b (�) g (�)

Input cell P 4.693 4.929 5.712 130.89 89.52 90.72

Reduced cell P 4.693 4.930 5.679 90.12 90.01 90.72

Conventional cell P 4.693 4.929 5.679 90.12 90.01 90.72

We see that the reduced and conventional unit cells are identical in this example. Further

interpretation now depends upon the error permitted in the collinearity of the twofold axes in the

real and reciprocal unit cells, the “2-axis criterion (in the program).” Ideally, it should be zero.

However, there will be experimental errors in the data that are conveyed to the parameters; if we

dismiss these errors, we may fail to recognize the true symmetry. In the present case, if all angles are

regarded as 90� within experimental error, the lattice is P orthorhombic, with a 2-axis criterion of 1�.
A more realistic situation could be to set a and b at 90�; then we obtain monoclinic P, under the more

stringent 2-axis criterion of 0.5�:

a ¼ 4:693 Å; b ¼ 5:679 Å; c ¼ 4:929Å
a ¼ 90ð89:88Þ�; b ¼ 90:72�; g ¼ 90�

where the unit cell has been rearranged so that the unique angle is b. Notice that this result would have

been obtained immediately from the first reduction by imposing monoclinic symmetry. Some of the

difficulty in this indexing analysis for magnesium tungstate arose from the fact that the data was not

of the highest quality. The modern camera and, particularly, the diffractometer techniques described

above ensure data of a sufficiently high quality.

12.5.3 Computer Indexing of the Diffraction Pattern

We have shown that determining the unit cell by hand can be a slow process, and it is not surprising to

find that the literature today abounds with computer programs for indexing a powder pattern. Most of

these programs that serve to determine the unit cell are stand-alone programs, but a few are part of a

structure-solving and refinement package that leads to a complete structure determination, just like

the single-crystal methods that we have described already.

Indexing a powder pattern, by whatever method, is an inductive process: we must deduce the

indices of the diffraction lines from the experimental Q values. The first 20–30 lines in a pattern,

starting from the low-y region, are most important in indexing, because Qcalc involves the square of

the indices, and so errors in Qobs become more important as y increases. We examine first the ITO

(named after T. Ito, who devised the general method) program system.
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ITO Program System
The program ITO12 is the 12th version of this program system [26]; a later version is now available,

Sect. 13.7, but it is only very slightly different from version 12; see also Appendix D. It is a deductive

program based on the properties of crystal zones, that is, planes of reciprocal lattice points passing

through the origin, and is often described as zone-indexing. It performs best when given 30–40

accurately measured powder lines.

Any zone is specified by three parameters; for example, the zone hk0 may be formulated by

Qhk0 ¼ h2QA þ k2QB þ hkQF (12.7)

Two Q values are selected and assigned as Q100 and Q010, similar to the procedure in Sect. 12.3.

Expanding (12.7), we have

Qhk0 ¼ h2Q100 þ k2Q010 þ 2hkðQ100Q010Þ1=2 cos g� (12.8)

Let

2hkðQ100Q010Þ1=2 cos g� ¼ R

¼ Qhk0 � h2Q100 � k2Q010

hk
(12.9)

Values forQhk0 are obtained from the experimental data, and used in the right-hand term of (12.9) so as

to obtain a list of jRj values.Agreements in jRj, within a permitted error, are then used to find a value for the

angle g*. Zones that are found are checked and reduced, and the three zone parameters refined by least

squares. Zone quality is determined by a parameter 1/P, where P is the probability that a zone is found by

chance.Pairs of zoneswith a common roware sought and the angle between themcalculated.Theunit cells

found are reduced and transformed to standard form, and thefirst 20 lines indexedwhere possible. Thefit is

assessed by theM20 parameter:

M20 ¼
Q20

2 �QN20

(12.10)

where Q20 is the Q value for the 20th indexed line, �Q is the average error between Qobs and Qcalc for

the first 20 lines, and N20 is the number of lines, observed and calculated, up to Q20. The program is

optimized for the lower symmetry systems, orthorhombic, monoclinic, and triclinic. High-symmetry

lattices may be reported in an orthorhombic setting, with a note that a higher symmetry lattice may

exist.

Notes on the practical use of the program ITO appear in Sect. 13.7, and problems on it are given at

the end of this chapter. The data for magnesium tungstate, Sect. 12.5.1, when used with ITO12, led

to the unit-cell dimensions a ¼ 4.929 Å, b ¼ 5.678 Å, c ¼ 4.693 Å, a ¼ 90�, b ¼ 90.77�, and
g ¼ 90�, in good agreement with the values derived in the worked example of this substance.

CRYSFIRE Program System
The program system CRYSFIRE provides a detailed set of procedures for indexing powder patterns.

In common with all methods, a prerequisite is a set of Q values with errors less than ca. 0.01� in y. As
we have seen, this level is achievable experimentally, but the number of lines and their potential

overlap increases as d*3. Since powder lines have a finite width, clear resolution exists only at the

lower y values; at higher values of y, they merge into semi-continuous profiles of mainly unresolved
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maxima, each of which may contain 5–50 peaks. As long as the average discrepancy between the

observed and calculatedQ values is less than about 5%, the true unit cell can be extracted from among

other approximate solutions.

A wholly exhaustive search is prohibitive. We have shown in Sect. 2.2.2 that a lattice can be

described by any number of alternative unit cells, recognized by having the same reduced unit cell

and volume. Less satisfactory solutions will usually occur, but they may be recognized through

goodness-of-fit parameters, such asM20, defined by (12.10); the higher the values of these parameters,

the better is the fit.

The program system CRYSFIRE is actually a master automatic-indexing script, which operates

through another program CRYS acting as a front-end “wizard” to a collection of eight indexing

programs written by other workers of lengthy experience in the field of powder indexing, each having

its own strategy and its own best applicability. The CRYSFIRE system has succeeded in indexing

numerous powder patterns of all symmetries [27, 28].

As an example of indexing with CRYSFIRE, a set of 40 Q values for a particular powder sample

was input to the program. A series of possible solutions were obtained, listed in Table 12.4 in order of

number of lines I20 listed out of the first 20, together with the figure of meritM20, the unit-cell volume

and other parameters, and the particular link of the program that produced the solution. The program

also recorded other possible solutions with I20 less than 19. All solutions are indicated as either

orthorhombic or monoclinic.

The first solution listed in Table 12.4, with the highest figure of merit and with I20 equal to 20,

reproduced all 40 observed Q values, although the experimental error in some lines was greater than

the best achievable. This result may be regarded as the most probable, and a good starting point for

further investigations. From a perusal of the indices found by the program, the following limiting

conditions were deduced:

hkl : hþ k ¼ 2n 0kl : ðk ¼ 2nÞ h0l : ðh ¼ 2nÞ

hk0 : ðhþ k ¼ 2nÞ

h00 : ðh ¼ 2nÞ 0k0 : ðk ¼ 2nÞ

00l : None

Hence, we may conclude that the best solution is, a ¼ 6.321 Å, b ¼ 7.746 Å, and c ¼ 11.482 Å,

reordered so that c > b > a, with the possible space group being one of Cmmm, Cmm2, and C222.

However, at this stage we have not considered the problem of overlapping lines, and it may be

Table 12.4 Some results of an indexing with CRYSFIRE

I20 M20 V (Å3) a (Å) b (Å) c (Å) a (�) b (�) g (�) Link

20 22.3 562.15 7.746 11.482 6.321 90.00 90.00 90.00 ITO12

20 21.2 280.53 5.000 11.475 4.991 90.00 101.6 90.00 KOHL

20 12.6 560.97 9.982 11.475 5.000 90.00 101.6 90.00 KOHL

20 12.1 562.15 7.746 11.481 6.321 90.00 90.00 90.00 ITO12

20 9.0 561.64 9.995 11.505 4.986 90.00 104.3 90.00 TREOR90

20 6.5 1966.5 16.737 11.507 10.210 90.00 90.00 90.00 DICVOL91

20 6.0 623.25 13.048 4.894 11.090 90.00 118.3 90.00 TREOR90

19 24.5 561.56 7.742 11.473 5.001 90.00 90.00 90.00 KOHL

19 8.0 561.90 9.973 11.508 5.001 90.00 101.8 90.00 TREOR90
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necessary to review the deduction of the space group after the powder pattern has been decomposed

into integrated intensities.

We consider briefly some of the remaining solutions in Table 12.4. The second solution indicates a

smaller unit-cell volume, with an apparently monoclinic unit cell. It can be explained by the

transformation (from solution 1) a0 ¼ a=2þ b=2, b0 ¼ b, c0 ¼ �a=2þ c=2, to give a P unit cell,

but it would not be chosen as the conventional cell. The penultimate solution in Table 12.4, with

M20 ¼ 24.5, is almost as satisfactory, and would probably make a suitable starting point in the

absence of solution 1. Several other solutions also involve an interaxial angle greater than 90�. The
only other apparently different orthorhombic unit cell listed in Table 12.4 has a volume of 1966.5 Å3,

where the transformation (from cell 1) a0 ¼ 2a + c leads to the value 16.732 Å, and ja + cj is
approximately 10.0 Å. Thus, we have a set of unit cells within one and the same lattice, and we

have chosen the most probable and conventional one.

We note in passing that the CRYSFIRE suite is a very powerful indexing system. However,

because of the demise of the author in 2005, this suite is no longer under development, but is available

from CCP14. We discuss indexing systems with built-in structure solving and refinement in

Sect. 12.8.2.

12.6 Extracting Integrated Intensities from a Powder Pattern

At this stage, it is always prudent to check whether or no the pattern now indexed has already been

recorded and to what extent the structure has been determined, by reference to the ICDD [3] records,

to which we referred in Sect. 12.1. If we find a “new” pattern, we proceed to obtain the intensity data.

The extraction of individual intensities from a powder pattern is complicated by the overlapping of

reflections in the pattern. Overlaps may be exact, as imposed by symmetry, or accidental, arising from

near-equivalence of d values for nonequivalent reflections. Pattern decomposition is usually carried

out either by the Le Bail procedure, which is based on the Rietveld method for determining Fo, or by

the Pawley procedure, which is a least-squares approach with constraints.

12.7 The Rietveld Procedure

It is clear from Fig. 12.3 that the circle of which A1A2 is an arc is one of a set arising in reciprocal

space from a very large number of randomly oriented crystallites in the sample. The intensity of each

such diffraction record depends on the crystal structure, overlaps of reflections, and the physical and

structural features of the diffraction procedure itself that we have discussed above.

The Rietveld refinement [29, 30] is a complex curve fitting problem. The model parameters,

atomic coordinates, and thermal parameters and occupancies are subjected to a least-squares

procedure so as to obtain the best fit between the whole experimental powder diffraction profile

and the corresponding pattern calculated from the trial structure. In this way, the explicit decomposi-

tion of overlapping reflections can be avoided, because only the points along the observed and

calculated profiles, and not the individual reflections, are compared.

A powder diffractometer record consists of a number of peaks, some overlapped, over a smooth

background; the intensities follow a Poisson distribution which, with sufficient counts at each

measurement step, is very closely Gaussian. The powder pattern is, thus, digitized into i steps to

give an intensity function yi; the digitizing parameter is either the scattering angle 2y for X-rays or a

velocity function in the case of TOF neutron studies. At each step i, there is an observed profile

intensity yo,i and a background yb,i. A corresponding calculated profile intensity yc,i is a mathematical
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expression for the ith step comprising the adjustable parameters of the model: x, y, z coordinates,

temperature factors, population parameters, and geometrical factors of the experiment. Hence, yc,i
may be written in the form

yc;i ¼ yb þ
X

yh (12.11)

where yb is a background intensity and the summation term (h ¼ hkl ) includes the Bragg reflections

around the powder pattern step. When the number of observations, the profile measuring points,

exceeds the number of parameters, a least-squares minimization M becomes appropriate for fitting a

function to the observed data:

M ¼
X

wðyo � ycÞ2 (12.12)

The weight for any term is calculated from the variance in the corresponding measurement of yo,

and the calculated profile is given by

yc ¼ KjFhj2FðPhÞ (12.13)

where K is a constant that includes the scale and other experimental factors and F(Ph) is a profile

function. Equation (12.13) represents a multidimensional surface with many minima. The minimum

is found from

X
wðyo � ycÞ

@yc
@pi

¼ 0 (12.14)

pi being the ith adjustable parameter.

Several different forms have been used for the profile function F: one of the simplest, which is

appropriate for constant wavelength neutron data, is the Gaussian

ffiffiffiffiffiffiffiffiffi
C

pH2
j

s
exp �C

ð2yi � 2yjÞ2
H2

j

" #
(12.15)

where C is 4 ln 2 and Hj is the full width of the peak at half-maximum height of the jth Bragg

reflection. The pseudo-Voigt distribution, which is a combination of a Gaussian and a Lorentzian, is

used frequently to model the peak shape in X-ray diffraction patterns [31]; the Gaussian is of the form

noted above, while the Lorentzian may be expressed as

2

pHj

1þ 4
ð2yi � 2yjÞ2

H2
j

" #�1

(12.16)

The best fit of the calculated pattern to the observed pattern is judged by means of numerical

criteria. Some of the criteria functions used are

RF ¼
P

j

ffiffiffiffiffiffiffiffiffi
Iobs;j

p
�

ffiffiffiffiffiffiffiffiffiffi
Icalc;j

p�

�

�

�

P

j

ffiffiffiffiffiffiffiffiffi

Iobs;j
p (12.17)
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which is the conventional R-factor, but written in terms of
ffiffi
I

p
instead of jFj;

RB ¼
P

j jIobs;j � Icalc;jjP
j Iobs;j

(12.18)

which is called the Bragg R-factor;

Rp ¼
P

j jyobs;j � ycalc;jjP
j yobs;j

(12.19)

which is the profile R-factor; and

Rwp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j wjðyobs;j � ycalc;jÞ2
P

j wjðyobs;jÞ2

vuut (12.20)

which is the weighted profile R-factor: wj is a weighting factor for the jth point. A goodness-of-fit

indicator w2 is also used, given by

w2 ¼ ðRwp=ReÞ2 (12.21)

where Re is the statistically expected R-factor:

Re ¼
N � Pþ C
P

j wjðyobs;jÞ2
(12.22)

Here, N is the number of observations j in the experimental powder profile, P is the number of

parameters refined, and C is the number of constraints. In general, N is much greater than (P + C) so

that the numerator tends closely to N. We shall indicate values for these parameters in the next

section. Probably the most meaningful parameter is Rwp, since the numerator is the residual in (12.12)

that is minimized. However, it is sensitive to a small number of poor agreements, which could arise

from impurity.

The Rietveld method, now used generally for powder studies, was programmed first by Rietveld

[26], but it is now available in many program packages. The system RIETAN (see Appendix D), which

is a system similar to GSAS, offers additionally a choice of three minimization algorithms that can be

introduced under user-control in one and the same minimization process.

A problem with Rietveld refinement, as with other forms of minimization, is the possibility of

converging into a false minimum. The risk can be ameliorated by making reasonable variations to the

starting model and refining, hopefully, to the same minimum. The three algorithms provided in

RIETAN also provide for a possible way out of false minima. Guidelines for structure refinement

using the Rietveld method have been published by the International Union of Crystallography (IUCr)

Commission on Powder Diffraction [32].

12.7.1 The Le Bail Method

In this procedure, Le Bail et al. extended a method used by Rietveld [29, 33] to extract intensities for

the calculation of Fourier maps during the course of a whole-profile refinement to the case where no

initial structural model is available.
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In the Rietveld procedure, the profile is defined by a number j of digitized points and, in the case of

a resolved peak, the background-subtracted points are summed. For overlapping peaks 1 and 2, the

integrated intensities Jobs are obtained through the equations

J1obs ¼
X

j

I1;calcq1;j

I1;calcq1;j þ I2;calcq2;j
ðPj � BjÞ (12.23)

J2obs ¼
X

j

I2;calcq2;j

I1;calcq1;j þ I2;calcq2;j
ðPj � BjÞ (12.24)

where J1,obs is equal to m1F
2
o;1; m1 is the multiplicity factor for Fo,1, I1,calc is the calculated value of

F2
o;1 based on an appropriate model, and q1,j contains the Lorentz, polarization, absorption (if

necessary), and shape factors associated with peak 1, and similarly for peak 2, (Pj � Bj) is the

measured (peak � background) term for the jth point in the pattern. By summing (12.23) and (12.24)

we obtain

J1;obs þ J2;obs ¼
X

j

ðPj � BjÞ (12.25)

so that the sum of the peak areas is equal to the background-subtracted area, as in the case of resolved

peaks.

The Le Bail procedure itself [34] is essentially an iterative version of that of Rietveld, Sect. 12.7, to

evaluate jFj, in which the observed peak area for the nth iteration is used as the calculated peak area

for the (n + 1)th iteration; generally, a rapid convergence is obtained for overlapping reflections. The

procedure is programmed and available in systems such as FULLPROF and GSAS (Appendix D). It

is said that the Le Bail method has led to a marked and radical increase in the ability to solve

structures from powder diffraction data.

12.7.2 The Pawley Method

An alternative procedure for determining peak intensities in the absence of a structural model has

been given by Pawley [35]. Whereas the Rietveld procedure is a least-squares analysis of a diffraction

pattern where the principal variable parameters are peak position, peak shape, and those parameters

dependent on peak area (atomic coordinates, thermal parameters, and intensity correction factors), the

Pawley method is a least-squares analysis of the powder pattern in which the variable parameters are

again peak position and shape but those concerning the peak area are the peak area itself. No

structural model is needed, and the method is available in the program system ALLHKL [35, 36].

In both the Le Bail and Pawley algorithms, the variables that are related to peak positions and shapes

are the same as in the Rietveld structure refinement method.

12.8 Examples of Solved Structures

Once the intensity data are available, attempts can be made to solve the phase problem, so as to obtain a

structural model that can be subjected to at least a partial refinement. The attack may take place by

means of the so-called traditional approach, that is, by Patterson or direct methods along the lines
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discussed for single crystals, or newer techniques such as Monte Carlo, simulated annealing, and

maximum entropy can be brought to bear on the problem. As with single-crystal structure determi-

nation, Patterson methods tend to be applied where heavy atoms are present in the molecules, and a

direct method is used mainly for equal-atom structures. Refinement usually involves a combination

of difference-Fourier syntheses to locate any missing atoms and Rietveld whole-profile structure

refinement. We shall examine some structures with a view to indicating the stages that have been

found necessary in obtaining satisfactory solutions.

12.8.1 Traditional Methods

Calcium Uranate
The early work by Rietveld was carried out with data obtained by neutron diffraction, but the use of

X-rays, and particularly with a synchrotron source, is now well developed. Figure 12.11 shows an

early diffractogram obtained by neutron diffraction on calcium uranate, CaUO4. The fitted and

experimental profiles show excellent agreement [37].

Manganese Phosphate Monohydrate
This structure, originally thought to be a 1

1

2
H2O hydrate, was solved by Patterson methods [38],

using X-ray powder diffractometer data collected at a synchrotron source. X-rays of wavelength

1.3208 Å were selected by means of a Ge (111) monochromator, and the radiation scattered in the

vertical plane was measured.

The pattern was indexed by the program ITO, and the unit cell at anM20 of 196 had the dimensions

a ¼ 6.916 Å, b ¼ 7.475 Å, c ¼ 7.361 Å, and b ¼ 112.32�; Z was 4, and the space group either Cc or

Fig. 12.11 Neutron diffraction pattern of a powdered sample of CaUO4, measured at l ¼ 2.565 Å; the full line shows

the calculated profile and the dots indicate the observed profile
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C2/c from systematic absences. We may note here that it may be inadvisable to decide the presence or

absence of a center of symmetry solely by statistical tests, as the distribution of Fo values can be

affected by the methods of pattern decomposition [39, 40]; space group C2/c was confirmed by the

structure analysis.

Pattern decomposition was carried out with the pseudo-Voigt function, leading to 61 intensity

data; Fig. 12.12 shows a typical modeled peak. The intensity data were used to generate a Patterson

map. The manganese atom coordinates were determined from this map and a difference-Fourier

synthesis located the phosphorus and three oxygen atoms.

Refinement was carried out by minimizing the function
P

j wjðyobs;j � Cycalc;jÞ2, where the terms

have the meanings already discussed, and C is a scaling constant. The weights for each jth point were

calculated from the expression wj ¼ ½ðyj þ bjÞ� ¼ s2ðbjÞ��1
, where bj is the background at the jth

point and s(bj) is the esd of bj. During refinement it was determined that the substance was, in fact, a

monohydrate. Satisfactory final refinement was achieved, with the following agreement factors:

RB ¼ 4:74%; Rp ¼ 12:2%; Rwp ¼ 16:1%; Re ¼ 15:4%; w2 ¼ 1:1

Cimetidine
The structure of cimetidine, C10H16N6S, has been solved from powder diffraction data [41]. In

this example, a diffractometer and a synchrotron source of wavelength 1.4599(1) Å were used to

obtain the data. The diffractogram was indexed by the program TREOR (M20 ¼ 176) and the pattern

decomposed by a modified Pawley method. Several attempts were made with direct methods pro-

grams, which located only sulfur and three other atoms. Further phase extraction was carried out with

the direct methods program SIR88 (see below).

The structure was completed by iterative Fourier and least-squares procedures. A difference-Fourier

synthesis then located all hydrogen atoms.After finalRietveld refinement, the structure convergedwith the

following residuals:

RB ¼ 1:9%; Rwp ¼ 8:5%; Re ¼ 6:9%; w2 ¼ 1:5

It is noteworthy that in the absence of the hydrogen atoms RB and Rwp were 11.3% and 16.2%,

respectively. Figure 12.13 illustrates the profile refinement of cimetidine with and without the

inclusion of the hydrogen atoms.

Fig. 12.12 Manganese

phosphate monohydrate,

MnPO4�H2O, modeled

profile: plot of the intensity

of the observed (dots) and

calculated (solid line)

profiles as a function of 2y

for the 31�1 peak. The lower
difference curve shows

the accuracy of the pseudo-

Voigt modeling function
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12.8.2 SIR Program System

In the context of direct methods here, SIR, as in SIR2004 [36], refers to phase determination by the

method of seminvariants representations and should not be confused with SIR as used in Chaps. 7 and

10 wherein it means single isomorphous replacement.

A structure seminvariant is a linear combination of phases, the value of which is uniquely determined

by the crystal structure alone, irrespective of the choice of permissible origin. For example, in space group

P21 (y axis unique), f(h0l) is a seminvariant if h and l are both even. Again, if h1 þ h2 þ h3 ¼ 2n,

k1 þ k2 þ k3 ¼ 0, and l1þ l2 þ l3 ¼ 2n0,where bothn andn0 are integers, thenfðh1Þ þ fðh2Þ þ fðh3Þ is

Fig. 12.13 Rietveld

profile refinement of

cimetidine. (a) With

hydrogen atoms included,

Rwp ¼ 8.5 %. (b) Without

hydrogen atoms included,

Rwp ¼ 16.2 % (after

Cernik loc. cit.)
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a seminvariant. Further discussions of the properties of structure seminvariants may be found in the

literature [42].

The SIR method is based on the estimation of 1- and 2-phase structure seminvariants and 3- and

4-phase structure invariants, according to the theory of representations [43, 44]. The program

functions in all space groups without user intervention, although a knowledge of partial structure

moieties may be exploited with advantage. A later version of SIR, SIR2008, has been published

[45, 46] (see also Appendix D).

Silver–Pyrazole Complex
The structure of the silver–pyrazole complex [Ag(pz)]3 (pz ¼ pyrazole), C9H9N6Ag6, has been

solved by direct methods [47] as part of a program investigating complexes between pyrazole,

C3H4N2, and copper or silver.

Powder diffractometer data were collected with graphite-monochromatized X-radiation of wave-

length 1.5418 Å, at values of 17–85� in 2y-steps of 0.02�. The program TREOR was used to index the

pattern, and it gave the orthorhombic unit cell a ¼ 13.13 Å, b ¼ 10.56 Å, and c ¼ 8.79 Å with

M20 ¼ 15. The indexed data suggested the space group Pbcn, which was confirmed by the structure

analysis. The refined unit cell had the dimensions a ¼ 13.1469(4), b ¼ 10.5702(10), and

c ¼ 8.7921(4). Since Z ¼ 4, there are 12 Ag(pz) moieties in the unit cell.

Pattern decomposition was achieved by the Pawley method through application of the program

ALLHKL to 924 reflection data, using 3400 points. The program SIRPOW92 (see below) was used to

extract a direct methods trial model comprising the three silver atoms in the asymmetric unit, one of

which lies on a twofold axis. At this stage, Rp ¼ 0.29 and Rwp ¼ 0.37. The structure was completed and

Rietveld refinement, excluding hydrogen atoms, converged with the following set of indicating para-

meters:

RF ¼ 6:0%; Rp ¼ 11:5%; Rwp ¼ 14:9%;

Re ¼ 6:6%; w2 ¼ 5:1

The value of w2 is larger than normal for a refined structure. It has been noted [48] that the

parameters Re and w
2 depend on the intensity counting statistics and are, at best, only gross goodness-

of-fit parameters.

12.8.3 EXPO Program System

The program SIRPOW92 that was employed in the structure determination just described has been

incorporated into the powerful structure-solving program system EXPO that is now much used. The

main addition to the SIRPOW92 system is the routine EXTRA, the purpose of which is to

provide for the decomposition of the pattern according to the Le Bail algorithm. Figure 12.14

illustrates the flow diagram for EXPO. Advances in pattern decomposition have made it possible

to introduce into EXTRA the positivity of the electron density and Patterson functions, the

treatment of pseudo-translational symmetry and preferred orientation, and the availability of a

partial structure. Such information, when detected in SIRPOW, is recycled as shown in

Fig. 12.14, so as to obtain better extracted values for F2
o. Additional user-friendly facilities

include contouring of Fourier maps, representation of crystal structures by coordination polyhe-

dra, and automatic preliminary Rietveld refinement, which is triggered when the structure is

incomplete. A more recent innovation is the labeling of peaks in electron density maps, based on

chemical information rather than on electron density peak heights [36].
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The EXPO system has been made available to the academic community by the courtesy of its

authors, and can be obtained from a web site (see Appendix D); several versions have been described

in the literature [49, 50], the latest version [51] being EXPO2009.

12.9 Direct-Space Methods

Direct-space methods, not to be confused with traditional direct methods, have evolved from model

building techniques in which chemical information is used in order to construct a sensible structural

model. Such a model can then be used as a basis for calculating a diffraction pattern with which to

compare the measured pattern. The inclusion of information on bond lengths, bond angles, connec-

tivities, torsion angles, orientation, and position means that a very large number of chemically

sensible models could be produced. Thus, computing power must be brought to bear in order for

such an approach to be practicable. Encoding frequently results in algorithms being specific to a given

class of compounds.

In the case of molecular compounds, information on bond lengths and bond angles is well

documented, so that the number of variables is reduced to that defining orientation and position,

and possibly torsion. In the case of zeolite structures, for example, the chemical composition and

connectivities of structural units are of significance in designing useful structural models.

Fig. 12.14 Flow diagram for the program system EXPO; structural information detected by SIRPOW can be recycled

to EXTRA, so as to obtain more reliable intensity data (after Altomare et al., loc. cit. [49])
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An alternative approach involves generating a model by the random placement of atoms of the

required number and types in the unit cell, then applying shifts to the atoms in predetermined

amounts, and calculating and comparing patterns so as to find a best fit. Constraints in terms of

known chemical information can be introduced into the model, so as to increase the plausibility of the

model and to reduce the time consumption of computing facilities. We consider examples of these

and other related techniques in the remainder of this section.

12.9.1 Zeolites and the FOCUS Algorithm

Zeolite structures have many important applications as molecular sieves, absorbents, catalysts, and

ion-exchange materials. These properties are related to both their unusual structures and, in particular,

to their framework topologies, that is, the way in which the tetrahedral structural units are linked in

the solid state. As zeolites are microcrystalline, powder diffraction proves to be the only method

available for their detailed structural examination.

The structures are complex, often with high symmetry, such as P
63

m
mc or Fm�3c, and can have unit

cells, with dimensions up to 40 Å, so that a high degree of overlap of diffraction maxima arises.

Generally, direct methods have been used for solving the structures, with difference-Fourier synthesis

and Rietveld profile refinement to complete and refine the structure [16].

A different approach is used in the program environment FOCUS [52], indicated in Fig. 12.15,

where Fourier recycling is combined with a specialized topology search and topology classification

scheme. The method makes use of crystal-chemical information such as chemical composition,

probable interatomic distances, and the fact that all zeolite structures have three-dimensional four-

connected frameworks, in order to aid in the interpretation of electron density maps.

TheQ values of about 20 high-accuracy powder lines serve to determine the unit-cell parameters and

index the pattern. The space group follows from the indexed lines, and integrated intensities are extracted.

Random phases consistent with the space group are assigned to the extracted reflection inten-

sities and an electron density map generated. If enough of the phases are (by chance) correct, some

of the features of the structure will appear, and an attempt is made to interpret the map using the

chemical information outlined above. The resulting model is then used to generate new phases and

a new electron density map. This Fourier interpretation and recycling procedure is continued until

either phase convergence or a maximum number of cycles is reached. Then the process is started

again, if necessary, with a new set of random phases. Each time an electron density map is

generated, a search is also made for a three-dimensional four-connected net.

If one is found, it is classified and written to a file. The procedure is terminated when a sufficient

number of such nets have been found. The net that occurs most frequently is usually the correct

framework structure. The model is then used as a starting point for structure completion and Rietveld

refinement. Figure 12.16 illustrates the FOCUS algorithm, the detail of that section of Fig. 12.15 that

is enclosed by dashed lines.

12.9.2 Zinc–Silicate Complex VIP-9

As an example of a large structure solved only when the FOCUS procedure was applied, we cite the

zinc-silicate molecular sieve complex [54] VPI-95. The synthesized material corresponds in chemical

composition to Rb38–43K5–10[Si96Zn24O240]�48H2O, from chemical analysis and 29Si NMR spectros-

copy. Room temperature powder patterns were collected on a Scintag XDS 2000 powder
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diffractometer, operating in Bragg-Brentano geometry, with a flat-plate sample and Cu Ka radiation

(l ¼ 1.54184 Å). Most of the peaks were indexed on a hexagonal unit cell, with a � 9.9 Å and

c � 37 Å.

A sample exchanged with (NH4Þþ was used, in addition to the as-synthesized sample, in order to

obtain high-resolution powder patterns at the European Synchrotron Radiation Facility (ESRF) at

Grenoble. The pattern of the (NH4Þþ-exchanged sample was indexed completely in space group

P
42
n
cm, with a ¼ 9.8946 Å and c ¼ 36.8715 Å. The framework topology was determined by applying

the FOCUS procedure, as described above. While a preliminary Rietveld refinement indicated that

the topologywas probably correct, thismodelwas not pursued because the exchangewas incomplete and

the detection of (NH4Þþ in the presence of H2O would be difficult.

The pattern of the as-synthesized material was indexed only in space group P41212, with

a ¼ 9.8837(1) Å and c ¼ 73.6505(6) Å, an approximate doubling along c compared to the

(NH4Þþ-exchanged compound. Rietveld refinement was applied with restraints on the (Si, Zn)–O

bond length, and the O–(Si, Zn)–O and (Si, Zn)–O–(Si, Zn) bond angles. A series of difference-Fourier

Fig. 12.15 The FOCUS

structure-solving

environment, tailored to the

solving of zeolite

structures. The essential

algorithm for the zeolites is

enclosed in dashed lines;

the remaining blocks in the

diagram refer to standard

procedures [53]
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maps based on iteratively improved models led to better agreement, but only as far as RF ¼ 0.167 and

Rwp ¼ 0.453.

By applying further chemical reasoning to the model, together with a new series of difference-Fourier

maps and Rietveld refinement, gradual improvements in the model were obtained. The final refinement

converged atRF ¼ 0.069,Rwp ¼ 0.147,Re ¼ 0.099, and w2 ¼ 2.2. In all, 170 structural parameters were

refined, which is one of the largest framework topology structures solved from powder data without

manual intervention. Figure 12.17 showsprofiles for theRietveld refinement of the as-synthesizedVIP-10.

The framework topology has seven T-sites, or nodes [51, 55] in the asymmetric unit. The

framework can be described in terms of two types of layers linked by isolated tetrahedra,

Fig. 12.16 The FOCUS

algorithm in detail

(compare Fig. 11.14):

automatic Fourier

recycling and topology

searching is carried out

here (after Grosse-

Kuntsleve, loc. cit. [53])
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Figs. 12.18 and 12.19. The simpler layer A is a 4.82 net, which is a two-dimensional string of

undulating 4-membered rings (4-rings) and 8-rings, as shown in Fig. 12.18.

The building unit of layers B is a polyhedron consisting of a 3-ring with three bent 5-rings attached

to it, which may be termed a [533] structural unit. The polyhedra share 3-ring faces on one side, and

5-ring edges on the other side, thus forming infinite chains parallel to h110i. Neighboring, parallel
chains are shifted relative to one another by a half-chain length, and these structural units are new to

zeolite data.

12.10 Monte Carlo Method

In this approach, a series of structural models in direct space is generated by random movements of

a set of atoms in the unit cell, and each state of the system is evaluated on the basis of the agreement

between the observed and calculated powder diffraction patterns. The models are postulated

independently of the diffraction data, and once a satisfactory model has been obtained, it is refined

by the Rietveld procedure. The atom positions may be chosen independently at random, as a group of

atoms known to be part of the structure, particularly if the group forms a rigid body, or in terms of the

connectivity of a molecule. In the latter case, the molecule is usually described in terms of internal

coordinates, that is, bond lengths, bond angles, and torsion angles, that are converted into Cartesian

coordinates, and the variables are the orientation and positions of the molecule in the unit cell. In some

cases, unknown torsion angles may be additional variables.

The Monte Carlo method itself is based on the well-known Metropolis algorithm [56], and each

state of the system is tested by calculating a residual Rwp, rather than an energy term as in its original

applications. An initial configuration of atoms xi is displaced in a random manner but with

Fig. 12.17 Profile refinement for VIP-9, 0–30� (top) and 30–60� (bottom) in 2y. In each diagram, the top, middle and

bottom profiles refer to the observed, calculated, and difference patterns, respectively
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constraints, relating, for example, to the amount of change permitted in the parameters of the set xi,
which may involve translations (in x, y, z), rotations about orthogonal axes (in y, f, C) and torsion

movements (in t1, t2, t3, . . .).

After each movement, the powder pattern is calculated, scaled to the observed pattern, and the

whole-profile Rwp factor calculated. Alternatively, the extracted intensities can be used as long as an

account is taken of the correlations between neighboring reflections [57].

Each trial structure is assessed on the basis of the difference Z, such that

Z ¼ RwpðxcurrentÞ � RwpðxpreviousÞ (12.26)

(Z 	 0), xcurrent is accepted; if Z > 0, xcurrent is accepted with a probability exp(�Z/S), where S is a

scaling factor that operates like the energy parameter kT in the more conventional applications of the

Metropolis algorithm [58]. It follows that the probability for rejection is [1 � exp(�Z/S)]: if xcurrent is
rejected, the previous trial structure now becomes “current.” These stages are repeated, Fig. 12.20, so

generating aMarkov chain, that is, a sequence of events in which the outcome of each step is independent

of the previous step; the probability of the change xi ! xj depends only on the states i and j. Eventually,
the event showing the lowestRwp value is subjected to Rietveld refinement. This technique has now been

applied successfully to a number of structures [11, 59]. An important feature of theMetropolis algorithm

is that it biases the generation of configurations towards those that are significant for the true solution.

p-Bromophenylethanoic Acid
An interesting application of the Monte Carlo method elucidated the previously unknown structure of

p-bromophenylethanoic acid, BrC6H4CH2CO2H [60]. By computer indexing of the first 20 lines

of the powder pattern, the unit-cell dimension found were a ¼ 16.020 Å, b ¼ 4.607 Å, c ¼ 11.715 Å,

and b ¼ 109.33�. The systematic absences indicated space group P21/c, with Z ¼ 4.

The Monte Carlo technique was applied in two stages. In stage 1, the bromine atom alone was

used. Of 1000 moves, one was found to be the most probable, at Rwp ¼ 5.2%; the value of Rwp for a

Fig. 12.18 The framework topology of VIP-9 viewed along [110]; oxygen atoms have been omitted for clarity.

Layer B at z ¼ 1

2
is rotated by 90� with respect to those at z ¼ 0 and 1. Similarly layer A at z ¼ 3

4
is rotated by 90�

relative to that at z ¼ 1

4
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totally random placement is ca. 55%. In the second stage, the bromine atom was constrained in its best

determined position, and the rigid C7 fragment of the molecule rotated at random about an axis

passing through the bromine atom. From the best fit model from this stage, the remaining atoms were

obtained by difference-Fourier methods, and Rietveld refinement of the structure converged at

Rwp ¼ 6.66%.

Figure 12.21 illustrates the powder diffraction profiles from the Rietveld refinement. The differ-

ence between the stage 1 and final bromine atom positions was 0.2 Å, and other differences up to

1.3 Å were recorded for other atoms. This analysis shows well the power of this technique, which may

now be considered one of the standard methods in the crystallographer’s armory.

Another structure that has been solved successfully by the Monte Carlo method is that of 5-

bromonicotinic acid [61].

Fig. 12.19 Layer-like

building units in VIP-9:

layer A, 4.82 net; layer B,

chains of [533] polyhedra
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Fig. 12.20 Monte Carlo cycling procedure. If a trial structure xi is accepted, it becomes xi+1 and is cycled back;

otherwise xi is returned for new random movements

Fig. 12.21 Profile refinement for p-BrC6H4CH2CO2H; the experimental points are marked + and the calculated

profile is the full line. The lower line is the difference-Fourier profile



12.10.1 Simulated Annealing

The simulated annealing procedure [62] can be combined with the Monte Carlo method. In this case,

the Metropolis algorithm is applied as before but with a systematic decreasing of the parameter S in

the exponential function above, which is similar to a decrease in temperature of the energy quantity

kT. The temperature controls the potential energy surface that is scanned, and the Metropolis loop

accepts the lower energy solution. A higher energy solution can be accepted if the temperature is

raised. The starting value of S is set such that all trial structures are accepted; then, as S is decreased,

so the poorer fits (larger Rp values) are excluded. The final structure, the best fit, is then subjected to

Rietveld refinement. In cases where the model does not contain the whole structure, the remainder can

usually be located by difference-Fourier synthesis, Sect. 8.4.5.

Variations in this procedure have been proposed differing in the selection of the S parameter [63]

and the rate at which it is changed or in the generation of trial configurations. One such variant has

been incorporated into the program system DASH [65].

12.11 ESPOIR Program System

While Monte Carlo methods imply an element of random-sampling, the fitting of a model to

scattering data in this context is sometimes termed a reverse Monte Carlo procedure. The program

system ESPOIR [35, 66] employs the reverse Monte Carlo technique coupled with simulated

annealing for ab initio structure determination. It can use a completely random starting model, or

else incorporates a structural entity of known geometry, in which case it functions similar to

molecular replacement.

The program fits the starting model to either Fo data extracted from a powder pattern, or to single-

crystal data in the unlikely event that one of the single-crystal techniques fails. The author of the

ESPOIR program system has kindly consented to its inclusion with the suite of programs supplied

with this book.

An innovative and important computer-time-saving feature of this program relates to the problem

of overlapping peaks. Direct-space methods generally either fit the raw data to a model and derive

measures of fit for each model, or fit some equation involving the extracted Fo data, taking into

account overlapping of peaks. ESPOIR follows a method intermediate between these two: instead of

fitting the raw data, a pseudo powder pattern P(2y) is reconstructed from the extracted Fo data. In this

way no background, Lorentz, polarization, absorption, asymmetry, profile shape, or reflection

multiplicity corrections have to be considered. A Gaussian shape function G is used for fast

calculation and gross approximation to the overlapping, and the best fit between the pseudo pattern

and the calculated pattern may be judged from the parameter Rwp, where

Rwp ¼
P

jPð2yÞobs � KPð2yÞcalcjP
Pð2yÞobs

(12.27)

where P(2y)obs ¼ GFo and K is a scale factor. Simulated annealing is introduced so as to reduce

progressively the magnitude of the atomic displacements. An additional variable parameter permits

the acceptance of Monte Carlo events that do not necessarily decrease Rwp, so as to avoid false

minima; about 40% of such events are retained typically. Nevertheless, at least ten independent runs

are recommended for a chance of success. With a more complex structural problem, more runs may

be needed.
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The ESPOIR procedure is illustrated with examples and problems at the end of Sect. 13.8ff. It

must be borne in mind that ESPOIR is a program for obtaining a starting model for further

refinement, either by the Rietveld technique or by traditional procedures. As with all other

procedures, ESPOIR is not guaranteed to lead to success: (Fr. espoir ¼ hope).

a-Lanthanum Tungstate
a-Lanthanum tungstate, La2W2O9, crystallizes in space group P�1, with a ¼ 7.2489(1) Å, b ¼ 7.2878

(1) Å, c ¼ 7.0435(1) Å, a ¼ 96.367(1)�, b ¼ 94.715(1)�, g ¼ 70.286(1)�, and Z ¼ 2. Diffraction

patterns were obtained with both X-rays (Cu Ka) and neutrons (l ¼ 1.5939 Å). The pattern was

indexed by TREOR to give a single triclinic solution (M20 ¼ 24). Using the X-ray data, intensities

were extracted by the program FULLPROF and the structure solved by SHELXS-86 to locate two

lanthanum and two tungsten sites. No full solution was found at this stage: the scattering from oxygen

in the presence of lanthanum and tungsten is relatively weak.

The structure was solved with the neutron data using the program ESPOIR [67]. A [WO4]

tetrahedron was first used as a rigid-body search fragment, rotating around fixed positions for

tungsten and lanthanum. However, Rp would reduce no lower than 25%. Finally, the lanthanum

and tungsten positions were fixed at the coordinates given by the X-ray study, and nine oxygen atoms

searched with ESPOIR by a random approach, using the neutron data. An Rp of 6.2% was achieved,

and then the whole neutron pattern subjected to a final Rietveld refinement. Figure 12.22 illustrates

the final profile refinement, and Table 12.5 summarizes results from the X-ray and neutron studies.

The differences between the two tabulated sets of results probably relate to preferred orientation,

which was considered to be the cause of the failure to find the oxygen atoms by difference-Fourier

synthesis, thus leading to the poorer agreement indices. One aspect of the structure is shown in

projection in Fig. 12.23. The tungsten atoms are of two types: W1 is coordinated by five oxygen

atoms forming a trigonal bipyramid, whereas W2 is coordinated octahedrally. This structure could

explain the failure of the models based on [WO4] tetrahedral units. The sharing of corners builds up

Fig. 12.22 Final profile refinement for a-La2W2O9: circles, observed pattern; full line, calculated pattern; vertical

lines, reflection positions; bottom profile, difference pattern
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4-rings to give [W4O18] structural units in a cyclo-tungstate structure. The two lanthanum atoms are

coordinated, respectively, by nine and ten oxygen atoms.

12.12 Powder Diffraction with Proteins

X-ray diffraction analysis of the structure of a protein is often limited by the availability of suitable

single crystals. However, it has been shown that the absence of single crystals may not present an

insurmountable difficulty in this field any more than it does in materials science, as powder diffraction

techniques have developed to the point where, as we have seen in the previous section, complex

oxides, zeolites, and small organic molecular structures are often solved from powder data alone.

12.12.1 T3R3 Zinc–Insulin Complex

The applicability of powder diffraction methods to proteins has been demonstrated, for example, with

the structure solution and refinement of a new variant of the T3R3 human zinc–insulin complex [68],

produced by mechanically grinding a polycrystalline sample.

Table 12.5 Results from the X-ray and neutron data collection for a-

La2W2O9

X-ray Neutron

Number of reflections 1317 1366

Number of parameters refined 58 69

Peak-shape function Pseudo-Voigt Pseudo-Voigt

RB 0.114 0.030

Rp 0.156 0.060

Rwp 0.186 0.069

Re 0.064 0.019

Fig. 12.23 Projection of the structure of a-La2W2O9 along a, showing the two environments of the tungsten atoms
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High-resolution synchrotron X-ray powder-diffraction data were used to solve this crystal struc-

ture by molecular replacement adapted for Rietveld refinement. A complete Rietveld refinement of

the 1630-atom protein structure, achieved by combining 7981 stereochemical restraints with a 4800-

step (dmin ¼ 3.24 Å) powder-diffraction pattern, yielded the residuals Rwp ¼ 3.73%, Rp ¼ 2.84%,

and RF ¼ 8.25%.

It was found that the grinding-induced phase change was accompanied by 9.5 and 17.2� rotations
of the two T3R3 moieties in the crystal structure. The material reverts in 2–3 days to give the original

T3R3 crystal structure. A Rietveld refinement of this 815-atom protein structure, by combining 3886

stereochemical restraints with a 6000-step (dmin ¼ 3.06 Å) powder-diffraction pattern, yielded the

residuals Rwp ¼ 3.46%, Rp ¼ 2.64%, and RF ¼ 7.10%.

The ability, demonstrated by this work, to solve and refine a protein crystal structure from powder

diffraction data indicates that this approach could be employed, for example, to examine structural

changes in a series of protein derivatives in which the structure of one member is known from a single-

crystal study. An interesting paper on the application of powder methods to proteins has been given in

the literature [69].

12.13 Maximum Entropy in Crystal Structure Analysis

12.13.1 Most Probable Distribution

Entropy is a thermodynamic concept that may be used to describe the degree of order in a system.

Although it was defined originally in terms of the operation of heat engines, it can also be addressed in

terms of the probability of a system at a molecular level.

Initially, imagine L gaseous electrons behaving ideally, where L is the Avogadro number,

constrained to one-half V1 of a total containing volume V2 and then allowed to expand reversibly at

constant temperature so as to occupy the total volume V2. The probability that any given electron is

now present in the volume V1 is
1

2
. The probability that two such electrons are present in V1 and the

probability that the two electrons are in the volume V1 would be ð1
2
Þ2, since these two events are

uncorrelated. Thus, the probability that all L electrons occupy the volume V1 is ð
1

2
ÞL, and W1/W2 is,

therefore, ð1
2
ÞL, where W1 is less than W2. Since any similar ratio of volumes could be chosen,

W1/W2 ¼ (V1/V2)
L. From the study of heat engines, we know that the heat change qrev in the expansion

of a gas behaving ideally from a volume V1 to a volume V2 is given by qrev ¼ nRT ln(V2=V1Þ per mole,

where n is the amount of substance and R is the universal gas constant. But qrev/T is a measure of the

molar entropy change DS, so that DS ¼ R lnðV2=V1Þ. In our analysis, n ¼ 1 and the volume that of the

electron gas;

DS ¼ S2 � S1 ¼ R lnðV2=V1Þ ¼ Rðln W2 � ln W1�1=L ¼ ðR=LÞ½ln W2 � ln W1�
¼ kB½ln W2 � ln W1� (12.28)

where kB is the Boltzmann constant. Thus the entropy of a system is identified with probability

through the Boltzmann equation:

S ¼ kB ln W (12.29)
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We can look upon the probability W as the number of ways a system can be constructed within

a fixed framework. Consider distributing five identical but distinguishable electrons among a set

of boxes B0–B4 such that the total number of boxes is 10. The possible arrangements are set out

in Table 12.6.

Of the 381 possible arrangements, one distribution is four times more probable than the next most

probable distribution. As the number of electrons increases, one distribution becomes outstandingly

more probable: this is the maximum entropy distribution and is assumed to be the true distribution.

12.13.2 Electron Density Map

Consider the grid points at which an electron density map is normally calculated. The number of

electrons available for these sites is given and the unit cell defines the boundaries for the electron

distribution. If the electrons were distributed at random, a map could be produced but it would be

unlikely to be correct. The number of ways in which the electrons can be arranged to form a map is a

measure of the probability that we need to determine.

The problem is similar to that described for the distribution of electrons in boxes, but instead of

electrons in boxes we have electrons in cells corresponding to the grid points at which an electron

density map is calculated. We consider a total of N electrons in a unit cell divided intoM grid points.

The first electron has a choice of N cells in which to go: a mutually exclusive assignment has a

probability pi ¼ ni=N, where pi is the probability of the ith electron assignment and ni the number of

electrons assigned in that choice. If the total number of electrons is large, the probability of any

particular result is the multinomial distribution familiar in Maxwell-Boltzmann-statistics: P(p) ¼
W/MN, where W is given by

W ¼ N!

n1!n2!n3! . . . nm!
(12.30)

The most probable result is that which maximizes the value ofW, the total number of arrangements

of the N electrons among the M cells. We write

Table 12.6 Numbers W of arrangements of five electrons among

five boxes B0–B4

B4 B3 B2 B1 B0 W

1 1 1 1 1 5!/1! ¼ 120

2 1 2)

2 2 1)

1 2 2) 5!(2!2!)

1 2 2 ) 30 each ¼ 180

2 2 1)

2 1 2 )

1 3 1)

1 1 3 ) 5!/5! ¼ 80

3 1 1) 20 each

1 3 1

5 1
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1

N
ln W ¼ 1

N
ln

N!

n1!n2! . . . nM

� �

¼ 1

N
ln

N!

Np1!Np2! . . .NpM

� �

¼ 1

N
ln N!�

X

M

i¼1

ln Npi!

 !

(12.31)

Applying Stirling’s approximation for factorials:

1

N
ln W ¼ 1

N
N lnN �

X

M

i¼1

Npi lnNpi

 !

¼ lnN �
X

M

i�1

pi lnNpi

¼ lnN � lnN
X

M

i¼1

pi �
X

M

i¼1

pi ln pi ¼ 1�
X

M

i¼1

pi

 !

lnN �
X

M

i¼1

pi ln pi

¼ �
X

M

i¼1

pi ln pi (12.32)

We showed in Sect. 12.13.1 that entropy is proportional to ln W, so that

S / �
X

M

i¼1

pi ln pi (12.33)

Replacing pi by the more usual symbol for electron density, we write

S / �
X

M

i¼1

ri lnðri=riÞ (12.34)

where ri is the electron density in the ith grid cell and ri is a reference density. Themaximum value of S

gives the most probable electron density distribution. Desirably [70], the reference density can

incorporate constraints, such as the total number of electrons in the unit cell or reflections with

known phase, or it may be taken as
P

i ri. The maximum entropy method has been discussed in the

literature [71, 72] and used successfully to solve structures [70]. The method has been programmed

successfully in BayMEM [73, 74], which can be used for crystallographic applications of the

maximum entropy method. It can derive the electron density in the unit cell from phased X-ray

diffraction data. Different types of Bayesian prior probable densities are available.

12.14 Log-Likelihood Gain in the Phase Problem

In 1984, Bricogne, and Bricogne and co-workers published approaches to the solution of the phase

problem that involved a combination of multi-solution, maximum entropy, and likelihood ranking

techniques [75–79].

12.14.1 Basis Set and Expansion of Reflections

We start with the preliminary data and the extraction of intensities, as already discussed. The extracted

intensities can be divided into an “overlapped” set and a “non-overlapped” set. For example, in the
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structure determination of Mg3BN3 [80], only about 3% of the intensity was overlapped, whereas with

1,3,4,6-tetrathiopentalene-2,5-dione [81], C4O2S4, about 60% of reflections were overlapped.

An origin is set by assigning appropriate phases to a number of reflections, preferably of large jEj
values, according to the rules already discussed; thesen reflections constitute the starting, or basis, set {B}.

The determination of jEj values requires the use of aWilson plot or aK-curve procedure, Sects. 4.2.1 and

8.2.1. The basis set is used as constraints in constructing a maximum entropy map m(x) [82], where
maximum entropy has been discussed in Sect. 12.13ff. The Fourier transform of m(x) reproduces the set
{B} and also estimates structure amplitudes and phases for m non-basis set reflections, {N}.

Reflections from {N} are added to {B} with appropriate phases: 0 or p for centric reflections and


p/4, 
 3p/4 for acentric reflections, Sect. 8.2.9. Each phase combination creates a node: nc centric

reflections create 2nc nodes and acentric phases create 4na nodes. The nodes develop a phase tree in

which the root node is the origin-fixing reflection set from which subsequent levels are built by phase

permutations.

12.14.2 Log-Likelihood Gain

Following Bricogne [83], a log-likelihood gain (LLG) expression is formulated as

LLG ¼ LH� LH0 (12.35)

where LH is the LLG function, namely, the probability that a given overlap of a set of Eh,0 values and

the corresponding jEh,cj from maximum entropy calculations, and LH0 represents the null hypothesis,

that is, with zero number of calculated intensities. Table 12.7 shows some results from an LLG

calculation. The inclusion of overlapped reflections generally leads to the best result. With four

second-level node phases for the structure of lithium zirconium diphosphate [9], Li6Zr2O7, space

group C2/c, there are 148 non-overlapped and 109 overlapped reflections. Node 135 generated a

correct electron density map. Here, entropy is a poor figure of merit but LLG, including overlaps,

indicates the correct solution well.

12.14.3 Centroid Maps

In maximum entropy calculations, centroid electron density maps [84], including overlapped reflec-

tions, are most useful. These maps employ experimentally determined jEj values with phases from the

relevant tree node for the basis set reflections, whereas non-basis set reflections incorporate jEj
amplitudes generated from the jFj data set and phases generated from a maximum entropy process

and with Sim-type weighting.

Table 12.7 LLG data for Li6Zr2O7

Node Entropy LLG (non-overlap) LLG (all data)

135 �2.03 7.10 15.1

109 �1.75 5.93 12.8

99 �1.87 4.89 11.3

97 �2.90 7.51 12.5
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12.15 Genetic Algorithms

Another optimization technique, apart fromMonte Carlo and simulated annealing, is based on genetic

algorithms [85, 86] which make use of the evolutionary strategy of Darwinian theory.

The procedure follows a series of steps [87]:

1. An individual random starting population, normally of a given size, is generated, and may be

likened to a chromosome. The components are a collection of variables of the crystal structure, the

genes xj, (j ¼ 1, 2, . . . n).

2. The individual is characterized by its fitness, that is, the degree to which its calculated diffraction

pattern agrees with the experimentally observed pattern.

3. Then, by applying the genetic operators of crossover and mutation, new and improved structures

are produced from a population and subjected to fitness tests.

In a crossover, or mating, the chromosomes of two individuals, or parents, are cut, either singly

or at multiple points, and the cut parts interchanged:

Parent 1 Parent 2

Initial state ABCDEF GHIJKL

Crossover state ABCJKL GHIDEF

Mutation can be carried out by assigning a new random value to one or more of the xi genes, or by

inverting a variable through the origin.

4. Natural selection is applied in the form of a fitness test: by the principle of the “survival of the

fittest,” the population evolves towards a correct, or substantially correct structure, suitable for

further refinement.

The processes 1–4 represent one generation; further generation are executed by cycling back until a

global minimum is found. In common with least-squares refinement and other minimization proce-

dures, a local minimum may be encountered leading to a stagnation in the population. The way out is

always the fitness test based on a comparison of Fo and jFcj. The genetic algorithm technique has been

programmed and has solved crystal structures successfully [88].

12.16 Energy Minimization Techniques

We have described a method of structure analysis by energy minimization in the context of single

crystal studies in Sect. 9.11.3. It has been shown that a similar process can be successful with data

obtained by powder methods [89]. The procedure with powder data can be summarized in the

following stages:

• The experimental powder pattern is indexed and, where possible, the space group deduced

• A plausible structure is devised based on standard molecular geometry, with constraints dependent

upon symmetry and upon packing parameters, such as the unit-cell dimensions, and positional and

orientational disposition of the molecule within the asymmetric unit

• Possible crystal structures are calculated by minimization of the lattice energy of the postulated

structure model, and powder patterns are calculated for the possible structures

• The better solutions are selected by comparison with the experimental powder pattern and then

subjected to Rietveld refinement, so as to obtain a minimum lattice energy structure
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12.17 Concluding Remarks

The examples of structure determination discussed in this chapter demonstrate the feasibility of

solving crystal structures from powder diffraction data. It is to be expected that the methods will

become even more widely used in future, since it opens the way for the investigation of a wide

spectrum of materials that have previously resisted detailed structural analysis. At the present time,

however, it remains that the resolution obtained from powder diffraction is not yet as good as that

obtained from single crystal studies.

The totality of techniques has been well reviewed [90–92] (and Bibliography), and many programs

and program systems have been devised that address both the individual stages and the complete

process of solving crystal structures from powder data [32]. The serious powder analyst is strongly

recommended to consult these literature sources. In addition, there are several important references

relating to work that have not all been published elsewhere that can be accessed from web sites; they

are listed in Table 12.8.

As an example of the results obtainable with state-of-the-art equipment, we illustrate the

high-resolution powder diffraction pattern of (E)-1-cyclopropyl-6-fluoro-4-oxo-7-(4-(3-oxo-3-phenyl-

prop-1-enyl)piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid, Fig. 12.24 (R ¼ C6H5). It was

taken at the Diamond Light Source synchrotron, which was discussed in Sect. 3.1.6, on beamline

IO3with a wavelength of 0.9763 Å over a period of 1 s, and recorded on a Dectris Pilatus 6M large area

pixel detector. The photograph is shown in Fig. 12.25.

Table 12.8 Crystallographic data on web sites

Topic Web site

Structure determination from Powder

Diffractometry Round Robin (SDPDRR)

http://www.cristal.org/SDPDRR/index.html, http://www.ccp14.ac.

uk/ccp/web-mirrors/armel/SDPDRR/index.html

Optimum data collection strategy http://www.ccp14.ac.uk/solution/powder_data_collection.html,

http://www.ccp.14.ac.uk/solution/gsas/convert_vct_data_to_gsas.

html

Discussion on variable count time (VCT)

data collection

http://www.ccp14.ac.uk/solution/vct/index.html

Fig. 12.24 The molecular structure of (E)-1-cyclopropyl-6-fluoro-4-oxo-7-(4-(3-oxo-3-phenylprop-1-enyl)piper-

azin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (R ¼ C6H5)
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12.18 Problems

12.1. A cylindrical powder camera has a radius of 57.30 mm. A given powder specimen is examined

with Cu Ka radiation. At what value of the Bragg angle y would the a1a2 doublet begin to be

resolved on the film, if the lines in that region of the film are of approximately 0.5 mm

thickness? The a1 and a2 components have wavelengths 1.5405 Å and 1.5443 Å, respectively,

and an intensity ratio a1:a2 ¼ 2.

12.2. The following sequence of sin2 y values was measured for lines on a powder photograph of a

cubic substance taken with Cu Ka radiation, l ¼ 1.5148 Å. Determine (a) the unit-cell type, (b)

the indices of the lines, (c) a best value for the unit-cell dimension a. For (c), plot a, calculated

for each line, against f ðyÞ ¼ 1
2
ðcos2y= sin yþ cos2y=yÞ, with y in radian, and extrapolate to f

(y) ¼ 0. This (Nelson–Riley) function tends to compensate for errors arising from absorption,

specimen eccentricity, camera radius, and beam-divergence.

0:0465; 0:0635; 0:1717; 0:2486;

0:3712; 0:4170; 0:5394; 0:5544;

0:6609; 0:7368

Fig. 12.25 The powder diffraction pattern of crystals of the compound in Fig. 12.24. The grid lines are a feature of the

detector system, and do not influence the measurement of intensities (Sample supplied by Professor Ali El Dissouky

(Alexandria University). Powder record by courtesy of J. Nicholson and E. Shotton, Diamond Light Source, UK.)
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12.3. Confirm the values of the parameters for the reduced unit cell ofmagnesium tungstate discussed in

Sects. 12.3 and 12.3.1 with the program LEPAGE: use the default value of the collinearity

parameter C, and also C ¼ 0.5�.
12.4. The followingunit-cell parameterswerededuced froman indexedpowderphotograph:a ¼ 8.515Å,

b ¼ 8.515 Å, c ¼ 6.021 Å, a ¼ 135.0�, b ¼ 69.3�, g ¼ 90.00�. Determine the reduced and

conventional unit cell, and list its parameters. What is the ratio of the volume of the conventional

unit cell to that of the given unit cell?

12.5. The following values (104Q) were obtained for the first 40 lines on an accurate powder

diffraction record of the microcrystalline single substance X. Deduce by induction a possible

unit cell. Remember that the first three lines need not necessarily correspond with a*, b*, and

c*. Hence, index the lines on the basis of this unit cell. What can be said about the unit-cell

type and space group for crystal X? Obtain the reduced and conventional unit cells, using

the program LEPAGE. If the conventional unit cell is different from the unit cell first derived,

transform the indices. What now are the conventional unit-cell type and the possible

space group(s)?

Line number 104Q Line number 104Q

1 83.1 21 892.4

2 810.1 22 916.0

3 172.2 23 962.3

4 2410.8 24 981.7

5 332.6 25 9910.1

6 356.1 26 1016.0

7 416.0 27 1105.0

8 421.5 28 11210.0

9 4310.3 29 1134.0

10 516.9 30 1248.0

11 5510.8 31 12410.0

12 642.9 32 1308.0

13 648.6 33 1330.0

14 683.3 34 1361.0

15 688.8 35 13610.0

16 732.1 36 1397.0

17 748.4 37 14110.0

18 801.5 38 1425.0

19 837.2 39 1444.0

20 884.5 40 1461.0

12.6. In this problem and the next two, sets of data are provided to demonstrate the power and

applicability of computer indexing, using the program ITO12. The first data set has been

included with the suite of computer programs, because it is vital to set up the data in the

prescribed format. For those familiar with FORTRAN, the fields for numerical input are

F10.5; see also Sect. 13.7 for comments on ITO12. Crystal XL1: data are provided as values

of 104Q; Q values are sometimes defined as 104=d2hkl. Use the program to determine the

unit-cell parameters and as much information as possible about the space group.
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12.7. Crystal XL2: data are provided as values of 104 Q. Use the program to determine the unit-cell

parameters and as much information as possible about the space group.

12.8. Crystal XL3: data are provided as values of 2y. Use the program to determine the unit-cell

parameters and as much information as possible about the space group.

Problems on structure-solving from power data are presented in Chapter 13, wherein ESPOIR

is discussed further.
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Computer-Aided Crystallography 13

13.1 Introduction

This chapter has been designed to further the knowledge gained from a study of the earlier chapters of

this book. The computer programs that are supplied as theWeb Program Packages and described here

are complementary to that work, and enable the reader to gain practical experience of concepts and

methods germane to X-ray structure analysis. While these stand-alone programs are provided for

quick and easy access for problem solving within the context of this book, we emphasize that the

serious structure analyst must also refer to the other important program systems readily available.

13.1.1 Collaborative Computational Projects

The Collaborative Computational Projects Number 4, for Macromolecular Crystallography (CCP4),

and Number 14 for Powder and Small-Molecule Single-Crystal Diffraction (CCP14), aim to collect

and support the best and most commonly used programs for crystal structure determination by single-

crystal and powder techniques. The software is located on web sites [1, 2] and is freely available to

workers in the academic and research communities, and the wide dissemination of new ideas,

techniques, and practice is encouraged.

Computing is an essential feature in any modern X-ray crystallographic investigation. Here, we can

provide only a flavor of what is available, but enough, we hope, to demonstrate the great importance of

an intelligent application of computational methods to this subject. The program suite provided here

has the following functions:

• To study the derivation of point groups;

• To carry out systematic point-group recognition using crystal or molecular models;

• To simulate the procedures and calculations involved in the determination of crystal structures by

X-ray diffraction data from both single-crystal and powder specimens.

• To carry out various other related computations.

On the basis of a familiarity with these programs, it should be only a small step to proceed, when

needed, with the more comprehensive and detailed crystallographic software to which we have

referred here and in earlier chapters.

The Web Program Packages can be accessed under the web site reference http://extras.springer.
com. The programs are very straightforward to use, and it is recommended that the complete suite of

M. Ladd and R. Palmer, Structure Determination by X-ray Crystallography:

Analysis by X-rays and Neutrons, DOI 10.1007/978-1-4614-3954-7_13,
# Springer Science+Business Media New York 2013
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programs, together with the data files supplied, should be downloaded to a folder in the PC, according

to instructions given on the web site by the publisher (the ISBN number of the book will be needed).

The programs may be amended from time to time, as improvements and additions are applied to

them. The first set with this fifth edition will be dated 1 January 2012 (Version 5.1), so that any date

after that implies a revision or addition to those programs, and will be so notified on the web site.

However, the programs ITO12, ESPOIR, and LEPAGE will not be subject to such changes unless

they are first revised by their own authors.

13.1.2 Structure of the Web Program Packages

The companion program suite comprises four folders: XRSYST contains the programs for the single-

crystal techniques, PDSYST contains the programs for powder techniques, POWDER contains a single

program system (ESPOIR) also for powder data, and GNSYST contains all other general programs

referred to in the text and problem sections of the book; all the folders contain data as necessary. There

are also six GINO files present, concerned with plotting Fourier maps: they must remain unaltered.

The structure of the program suite is illustrated in Fig. 13.1. In general, the programs, which are

provided as IBM-compatible .EXE files, are opened by a double click on the program name or icon. In

some cases, it can be helpful to open the programs in a Command Prompt window and enlarge the

screen. We now describe the different programs and their uses in detail, with the aid of examples.

13.2 Derivation of Point Groups (EULR)

In Sect. 1.4ff we discussed the symmetry operations R and �R (R ¼ 1, 2, 3, 4, 6), taken singly or in

combinations, and gave stereogram representations of them in Fig. 1.32 of that chapter. The first

nontrivial combinations of symmetry operations follow from combining R with �1, and it is easy to

show, with the aid of stereograms, that R and �1 together lead to R/m for R ¼ 2, 4, and 6; for R ¼ 1

↓
↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

PROGRAM

SUITE

XRSYST PDSYST POWDER GNSYS

XRAYa

(AND GINO

        FILES)

MAKDAT

+

Data Sets

ITO12

LEPAGE

Q-VALS

RECIP

+

Data Sets

ESPOIR

RASMOLb

+

Data Sets

EULR

FOUR1D

FOUR2D

INTXYZ

LSLI

MATOPS

MOLGOM

SQUARE

SYMM

TRANS1

ZONE

+

Data Sets

Fig. 13.1 Structure of the

program packages on web

site http://extras.springer.

com (the IBSN number of

the book will be needed

here). aThere are also six

files (five .DLL and one .

CON) present concerned

with plotting that must

remain unaltered. bThe

RASMOL file is concerned

with drawing. There are

also two other data files in

POWDER for each

substance that must remain

unaltered: one with crystal

data (.DAT) and one with

reflection data (.HKL)
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and 3, point groups �R already include �1 as an operation in the group. Thus, we have quickly derived 13

crystallographic point groups: 1, 2, 3, 4, 6, �1, m ( � �2), �3, �4, �6, 2/m, 4/m, and 6/m.

The point groups that contain more than one symmetry operator display the essence of Euler’s

theorem on the combination of rotations. We have used this theorem implicitly in Sect. 1.4.2,

explicitly in Sect. 2.8ff, and we may state it formally as

R2R1 � R3 (13.1)

which means that, from a given situation, symmetry operation R1 followed by operation R2 is

equivalent to operation R3 applied to the original situation, and we know from the definition of

point group that the three symmetry operations have at least one point in common. We saw this

theorem in operation in the examples of point groups mm2 and 4mm, Figs. 1.28 and 1.29, and it is the

basis of a procedure for determining the remainder of the 32 crystallographic point groups. In general,

the order of carrying out the symmetry operations is important, although the result is not affected with

symmetry operations of degree 2 or less.

We next combine the operations R with another symmetry, operation, say 2, and we need to know

immediately the relative orientations of the rotation axes R and 2 that we use symbolically to

represent these operations. Are they perpendicular to each other or even coincident, and are there

other possibilities to consider?

The program EULR, opened by a double click on the file name, has been devised to follow the

steps of the derivation of point groups described elsewhere, for example, in the references that appear

on the monitor screen when this program is opened. This program is not interactive, but it shows how

Euler’s theorem can be used with the combinations of operations 2 and the permitted values of R to

develop six sets of orientations of rotation axes.

Then, independently of the program, consider replacing two of the rotation axes in each of the six

sets by inversion axes. Why not just one of the rotation axes, or all three of them?

As a final step, we must consider if any new point groups are obtained by incorporating a center of

symmetry into any point group where one is not already present. An extension of the program caters

for certain non-crystallographic point groups that are encountered in studying the symmetry of simple

molecules.

13.3 Point-Group Recognition (SYMM)

There are several ways in which one can approach systematically the recognition of the point group of

a crystal or a molecular model. In the method used here [3], molecules and crystals are divided into

four symmetry types, Table 13.1, dependent upon the presence of a center of symmetry and one

mirror plane or more, or a center of symmetry alone, or one mirror plane or more but no center of

Table 13.1 Crystallographic point groups typed by m and/or �1 or neither

Neither m nor �1 Only m Only �1 Both m and �1

1, 2, 3, 4, �4, 6 m, mm2, 3m �1, �3 2

m
, mmm, �3m

222, 32, 422 4mm, �42m 4

m
,
4

m
mm

622, 23, 432 �6, 6mm 6

m
,
6

m
mm

�6m2, �43m m�3, m�3m
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symmetry, or neither of these symmetry elements; hence, the first step in the scheme is a search for

these elements.

In order to demonstrate the presence of a center of symmetry, place the given model in any

orientation on a flat surface; then, if either the plane through the uppermost atoms (for a chemical

species), or the uppermost face (for a crystal), is parallel to the plane surface supporting the model

and the two planes in question are both equivalent and inverted across the center of the model, then a

center of symmetry is present.

If a mirror plane is present, it divides the model into enantiomorphic (right-hand/left-hand) halves.

A correct identification of these symmetry elements at this stage places the model into one of the four

types listed in Table 13.1.

The reader may care to examine a cube or a model of the SF6 molecule, which shows both a center

of symmetry and mirror planes, and a tetrahedron or a model of the CH4 molecule, which shows

mirror planes but no center of symmetry. Models of a cube and a tetrahedron may be constructed

easily:

Cube

Draw a square of side, say 40 mm, on a thin card. On each side of this square draw another identical

square. Lightly score the edges of the first square and fold the other four to form five faces of a cube,

and fasten with “Selotape.” There is an advantage in leaving the sixth face of the cube open, as we

shall see, but we shall imagine its presence when needed.

Tetrahedron

On similar card, draw an equilateral triangle of side ca. 39
ffiffiffi
2

p
mm. On each side of the triangle, draw

another identical triangle. Lightly score the edges of the first triangle, fold the other three triangles in

the same sense to meet at an apex, and fasten with “Selotape.”

Note that on placing the tetrahedron inside the cube, it will be found that an edge of the tetrahedron

is a face diagonal of the cube, thus aligning the symmetry elements common to both models.

If these models are to be used with the point-group recognition program, allocate model numbers

7 and 19 for the cube (or SF6) and tetrahedron (or CH4), respectively. The identification of the point

group of a model then proceeds along the lines indicated by the block diagram of Fig. 13.2, on which

the program SYMM is based [4].

After assigning the model to one of the four “types,” the principal rotation axis, the rotation axis of

highest degree, is identified, together with the number of such axes if more than one, the presence and

orientations of mirror planes, twofold rotation axes, and so on.

The program SYMM is interactive and the directions on the monitor screen should be followed.

If an incorrect response is given during a path through the program, the user will be returned to that

question in the program where the error occurred, for an alternative response to be made. Two such

returns are allowed before the program rejects that particular examination for a further preliminary

appraisal.

It is necessary that the crystal and molecular models to be used are allocated a model number

appropriate to their symmetry, and Table 13.2 provides the necessary key, based on Krantz wood

crystal models, together with molecular examples or possible molecular examples of the point

groups; a set of solid crystal models, appropriately numbered, is equally satisfactory.

It will be realized that some of the molecules listed are not rigid bodies, and will show the

required symmetry only if their functional groups are orientated correctly. The program responds to

the non-crystallographic point groups 1m and 1=m only. The 1 symbol is replaced by the word

infinity in the program description itself, but zero is used to input 1 to the program when asked for

the point-group symbol.
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13.4 Structure Determination Simulation (XRAY)

The purpose of the XRAY program package is to facilitate an understanding of the practical

applications of techniques of structure determination by single-crystal X-ray diffraction that we

have discussed in the earlier chapters, albeit here in two dimensions. Example structures have been

selected that give, in projection, results that are readily interpretable in terms of chemical structures.

It is all too easy, we believe, to use modern, sophisticated structure-solving packages without really

understanding the nature of the calculations taking place within them. In particular, for reasons that we

have discussed in Sect. 11.7.1, very subtle difficulties are sometimes encountered.

A subsidiary program, MAKDAT, enables sets of primary data to be constructed in the precise

format required by XRAY. Alternatively, one may choose to prepare a data set independently, in which

case the layout of data shown by the example sets provided should be followed exactly.

It is stressed that the program system does not teach the subject of structure determination. Rather,

it provides the basic concepts with a medium for their exploration, and so relates closely to techniques

Table 13.2 Point groups and model numbers for the program SYMM with molecular examples

or possible examples

Point group Model number/s Example or possible example

Crystallographic point groups
1 91 CHBrClF, monochlorofluoromethane
2 77 H2O2, hydrogen peroxide
3 84, 93 H3PO4, phosphoric acid
4 85, 94 (CH3)4C4, tetramethylcyclobutadiene
6 88, 97 C6ðCH3Þ�6, hexamethylcyclohexadienyl
�1 78, 79 C6H5CH2CH2C6H5, dibenzyl
�3 48 [Ni(NO2)6]

4�, hexanitronickel(II) ion
�4 86, 95 [H2+PO4]

�, dihydrogen phosphate ion
�6 89, 98 C3H3N3(N3)3, 2,4,6-triazidotriazine
2/m 68–70, 72–75, 80 CHCl¼CHCl, trans-1,2-dichloroethene
4/m 56 [Ni(CN)4]

2�, tetracyanonickel(II) ion
6/m 37 C6(CH3)6, hexamethylbenzene
m ð�2Þ 83, 92, 99 C6H5Cl3, 1,2,4-trichlorobenzene
mm2 16, 64, 71, 76 C6H5Cl, chlorobenzene
3m 42 CHCl3, trichloromethane
4mm 87, 96, 100 [SbF5]

2�, pentafluoroantimony(III) ion
6mm 81 C6(CH2Cl)6, hexa (chloromethyl) benzene
222 67 C8H12,cycloocta-1,5-diene
32 43, 47 [S2O6]

2�, dithionate ion
422 55 Co(H2O)4Cl2, tetraaquodichlorocobalt
622 36 C6(NH2)6, hexaminobenzene
mmm 59–63, 65, 66 C6H4Cl2, 1,4-dichlorobenzene
�6m2 44–46, 90 [CO3]

2�, carbonate ion
4/m mm 49–54 [AuBr4]

�, tetrabromogold(III) ion
6/m mm 29–35 C6H6, benzene
�42m 57, 58 ThBr4, thorium tetrabromide
�3m 38–41 C6H12, chair-cyclohexane
23 27 C(CH3)4, 2,2-dimethylpropane
m�3 22–25 [Co(NO2)6]

3�, hexanitrocobalt(III) ion
�43m 17–21, 28 CH4, methane
432 26 C8(CH3)8, octamethylcubane
m�3m 1–15 SF6, sulfur hexafluoride

Non-crystallographic point groups
�82m – S8, sulfur
5 – C5(CH3Þ

�
5, pentamethylcyclopentadienyl

5m – C5H5NiNO, nitrosylcyclopentadienylnickel
�1�0m2 – (C5H5)2Re, bis-cyclopentadienylruthenium
�5m – (C5H5)2Fe, bis-cyclopentadienyliron
1m 101 HCl, hydrogen chloride
1=m 102 CO2, carbon dioxide
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that are in use today. The program is interactive, and the messages on the monitor screen indicate the

steps to be carried out by the user. Nevertheless, it will be useful to discuss here some of the features

and capabilities of the system.

Each data set contains information about the crystal unit cell, crystal symmetry in the appropriate

projection, wavelength of radiation used, a set of Fo(hk0) data, and other information required for the

calculation of electron density maps, structure factors, and jEj values. As the procedures are two-

dimensional, the symbols a, b, g, h, k, x, y, and so on are employed. Where the projection is other than

that on (001), appropriate adjustments are made in setting up the primary data file; thus, true y and z

become x and y to the program.

The following basic procedures may be carried out within the XRAY program package:

• Patterson function, normal and sharpened

• Superposition (minimum) function

• Structure factor calculation

• Least-squares refinement

• Electron density function

• Direct methods: calculation of jEj values
• Direct methods: calculation of E map

• Distances and angles calculation

• Scale and temperature factors by Wilson’s method

• jEj values calculated from the structure

The program is executed in the usual manner. Several PAUSE situations occur throughout the

routines in the system, so that material on the screen may be read. Continuation is effected by just

depressing the Enter key. All primary data file names must be four-letter words plus the suffix .TXT,

for example, NIOP.TXT, corresponding to a nickel o-phenanthroline complex, although only the first

four letters of the name, NIOP, are used to call the data set; the program checks for the suffix .TXT. A

name for the output results file, say NOUT, is entered at the keyboard. In some routines, such as the

calculation of jEj values, other output files are organized, with appropriate messages to the screen.

Certain other files pertaining to coordinates are created at an appropriate stage, and their significance

will become clear later. The particular calculations available are then listed on the monitor screen,

and we shall give a brief description of each routine in turn.

13.4.1 Patterson Function

The Patterson function P(uv) may be calculated using either F2
o or a “sharpened” mode, in which the

coefficients used are ðjEj2 � 1Þ values, thus providing a sharpened, origin-removed Patterson map.

For the sharpened Patterson, jEj values must be first calculated, and the program so directs. Then, the

system returns to the Patterson routine. Sharpening generally introduces a small number of spurious

maxima, and it is always useful to compare sharpened and unsharpened maps.

The Patterson and electron density maps may be viewed as contoured maps on the screen, which

enhances the interactive nature of the program system. It is possible, for example, to determine the

coordinates of the heavy atom directly from the map on the screen, then go to the structure factor

routine and input the heavy atom x, y coordinates, so as to obtain partial phase information, and

thence calculate a first electron density map. It should be possible then to recognize other atom

peaks from this first Fourier map, so beginning the process of structure determination by successive

Fourier synthesis.

At some stage it may be helpful to print and contour a Patterson or electron density figure field, so

as to get a clearer picture of the projection, particularly where contours below the relative level 10 are
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involved. All Fourier maps are scaled to a maximum of 100, and 10 is the lowest level that is

contoured on the screen.

It should be noted that, if the WINDOWS “screen saver” comes into operation while a plot is on

the screen, then owing to some delay, the cross-wires might become fixed in position. On reactivating

the plot, a second, mobile cross-wires may appear. To avoid these events, the screen saver may be

deactivated.

13.4.2 Superposition Function

This routine calculates a minimum function M(x, y) at each grid point of the projection, Sect. 7.4.6:

Mðx; yÞ ¼ Minimum of fPðxþ Du1; yþDv1Þ;Pðxþ Du2; yþ Dv2Þ; . . . ;Pðxþ Dun; yþ DvnÞg where

Du1;Dv1;Du2;Dv2; :::Dun;Dvn represent n displacement vectors, which may indicate either atom

positions or a set of vectors, including 0; 0, obtained from a partial interpretation of a Patterson map;

symmetry-related positions should be entered. The grid points x and y are determined by the values

set in the primary data. The minimum function, if successful, should indicate atomic positions that

can then be used as discussed above.

13.4.3 Structure Factor Calculation

Each atom contributing to the structure factor calculation requires the following data:

1. Atom type identity number: a list is given at the start of the routine.

2. Fractional x and y coordinates of the atoms.

3. Population parameter: 1, unless the atom is in a special position.

4. An overall (isotropic) temperature factor is given initially from the primary data; it may be altered

by routine 10. In either case, the value will be allocated to each atom, in preparation for subsequent

refinement.

In the calculation of structure factors, the coordinates may be entered either from a file or at the

keyboard. If entered at the keyboard, the final line must be END. If entered from a file, the file must be

named XYS.TXT and the first line must be the number of atoms to follow. The output from this

routine is self-explanatory, and after an jFcj calculation and least-squares refinement, the current

coordinates are retained in the file COORDS.TXT. This file may be invoked in a subsequent

calculation, or edited as desired, before being used as input data. The file XYS.TXT remains

unaltered by the program.

13.4.4 Least-Squares Refinement

The routine uses the atoms already located. It may be just the heavy atoms, or a number of other atoms

may be included as well. The routine uses the diagonal least-squares approximation to the ideal full-

matrix procedure: it is fast, and satisfactory for emphasizing the principles involved. The x and y

coordinates and the isotropic temperature factor B (initially the same for each atom, from the primary

data) are refined.

The changes dx, dy, and dB are determined and applied to each atom, and the R factor listed

together with other parameters. The cycle can be repeated until no further improvement is obtained,

as judged by near-constancy in the R factor, or by very small changes in the dx and dy shifts. The scale
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factor is determined as SjFcj/SFo and may be applied to the data at the end of any cycle of refinement.

In this diagonal approximation, 60% of the calculated shifts are applied by the program. The value

may be altered at any cycle, as desired. At each cycle, the new coordinates are stored in the file

COORDS.TXT (see Solution 13.1 for the results).

13.4.5 Electron Density Maps

When some phase information becomes available, an electron density summation with the phases

allocated to the corresponding Fo data should reveal a portion of the structure, if the information from

the partial structure is correct. Then, more atom positions can be interpreted from the map and built

into the next structure factor calculation, and so on.

The same program routine will also calculate a difference electron density map, using Fo � jFcj as
coefficients, provided that the R factor is less than 0.3. In the difference synthesis, atoms placed

incorrectly appear as low or negative density regions whereas unallocated atomic positions will show

positive density, both relative to the general level of the figure field. It follows that when all atom

positions have been determined correctly, the difference map figures should show a nearly level,

ideally zero, figure field. Thus, a difference map may be used to make appropriate adjustments to

atomic positions.

Sometimes a fairly well-refined structure may show a significant positive region on the difference

map, which may indicate the presence of solvent of crystallization. We note also that incorrect

temperature factors can lead to variations in the level of the figure field, although this effect would be

expected to be small when individual temperature factors are applied, as from a least-squares

refinement.

13.4.6 Direct Methods: Calculation of |E| Values

We have shown that jEj values may be calculated from the equation

jEj2 ¼
K2F2

o

e
P
j

f 2j expð�Bl�2 sin2 yÞ

( ) (13.2)

where the symbols have the meanings as described elsewhere, and the values of B and K may be

obtained from a Wilson plot. However, a single isotropic B factor may not be representative of the

structure; consequently, a Wilson plot may deviate from linearity. In an alternative procedure [5], we

write

jEj2 ¼
KðsÞF2

o;corr

e
P
j

f 2j

( ) (13.3)

where K(s) is a factor that includes adjustments for the scaling of Fo and the temperature effect on fj.

In implementing this method, a number n of ranges is set up in equal increments of s2, where

s ¼ (sin y)/l. For each range, K(s) is computed as
P

es2
P

F2
o

�

, where each value of Fo is given
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its appropriate reflection multiplicity, according to the space group. The K(s) values, then as a

function of s, are interpolated [6] so as to derive F2
o;corr for each reflection. Then, jEj2 is given by

jEj2 ¼ jFo;corrj2
es2

(13.4)

It is desirable to enter only the s and K(s) values corresponding to the extreme ends of the data

range, because extrapolation, particularly at the low y end of a K-curve, can be uncertain. Data are

output to the monitor that enable these values to be estimated. A facility is provided for printing in the

main output file any reflections excluded by the procedure. There should be none, but if there are any,

it means that the values entered for the extreme ends of the K-curve have not been chosen

satisfactorily.

The jEj values are written to a file EVALS, together with some statistics of the jEj distribution; jEj
values greater than or equal to a chosen limit, ELIM, are written to the main output file, and a

P
2

listing is set up in the file SIG2, in descending order of jEj magnitude. The file EDATA contains the

jEj values greater than or equal to ELIM arranged in parity groups.

The program comes to a halt at this stage, so that the
P

2 listing can be printed and signs for the

jEj values developed along the lines already discussed in the text; see Sect. 8.2.2. Data sets are

provided only for centrosymmetric structures, but similar procedures are used at the beginning of a

determination of a non-centrosymmetric crystal structure. In practice, it may be necessary to re-run

the jEj values link with a slightly lower value of the limit ELIM, if insufficient data are produced for a

successful sign determination process.

After a set of signs has been determined, the next program, Routine, 7, is used to prepare an E map.

Alternatively, where the plane group is p2gg, the program FOUR2D, Sect. 13.6.2, can be used.

13.4.7 Calculation of E Maps

An jEj map is an electron density map calculated, in the case of a centrosymmetric structure,

with �jEj values. This routine in the program provides for a straightforward transfer of the jEj
values, with their signs as determined through the

P
2 routine, to a Fourier calculation. As jEj values

are sharpened coefficients, a few spurious peaks may be anticipated. Thus, chemical knowledge has to

be brought to bear on the extraction of a sensible chemical structure or fragment. Once this has been

done, and shown to be satisfactory, electron density calculations may be carried out with normal Fo

coefficients.

This link of the program, however, permits modifications of signs, for further E maps, without

restarting the system from scratch. A second call to routine 7 lists the current set of data as h, k, and s.

A value of zero for the sign s indicates an unsigned reflection which does not contribute to the E map.

To the question “Do you want to retain some of the current values of cos(phi)?” the answer no implies a

re-input of new signs. The answer yes implies that some changes are desired, and the opportunity to do

so follows. The changes are then made, and a further E map calculated.

From the E map, atomic positions should be found that can be entered into the structure factor

calculation, with or without a least-squares refinement, and an Fo Fourier map then calculated as

described above.

644 13 Computer-Aided Crystallography



13.4.8 Bond Lengths and Bond Angles

This routine calculates bond lengths and bond angles, and distances between nonbonded atoms in the

structures. The amount of information extracted depends on the distance limits input to the routine.

Generally, there is no need to set a limit greater than the van der Waals contact distances, typical

values of which are listed in Table 13.3. In interpreting the results from this routine, it must be

remembered that, in working in two dimensions, some variations from standard numerical values are

to be expected, because of the distortion of the molecule in projection. In order to minimize this

effect, however, structures have been selected in which the plane of the molecule lies nearly in the

plane of the projection.

13.4.9 Scale and Temperature Factors by Wilson’s Method

The general procedure of Wilson’s method has been discussed elsewhere, and is implemented in this

routine. The data output contains a breakdown of the individual parts of the calculation. In particular, it

lists the data for plotting the Wilson line, and thus checking on the linearity of the plot.

For reliable statistics, the portion of reciprocal space under consideration should include all

reflections other than systematic absences. Accidental absences, that is, reflections with intensities

too low to be recorded, should be included at values 0.55 of the localized minimum Fo, that is, the

minimum Fo in a given range, for a centric distribution, and 0.66 of the localized minimum Fo for an

acentric distribution. Some of the data sets do not have the accidental absences included. The NO2G

data is, however, complete in this respect. A check on this aspect of a data set is given by inspecting

the number of reflections in each of the ranges of the Wilson plot routine; they should be approxi-

mately equal.

13.4.10 |E| Values Calculated from the Structure

This link has been incorporated to show how jEj values may be calculated from a crystal structure. It

follows that all atoms, preferably including hydrogen atoms, must be present in their correct

locations. Then, jE(hk)j is calculated from

jEðhkÞj ¼ 1
ffiffiffiffiffiffiffiffiffiffi

ehks2
p ðA2

Z þ B2
ZÞ

1=2
(13.5)

Table 13.3 Van der Waals radii for some common species

Atom Radius (Å) Atom Radius (Å)

H 1.20 C 1.85

N 1.50 O 1.40

F 1.35 Si 2.10

P 1.90 S 1.83

Cl 1.80 As 2.00

Se 2.00 Br 1.95

Sb 2.20 Te 2.20

I 2.15 –CH3 2.00

>CH2 2.00 –C6H5 1.85a

aHalf-thickness of the phenyl ring
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where ehk is the epsilon factor for the hk reflection, s2 is given by

s2 ¼
X

j

Z2
j (13.6)

and AZ and BZ are given by

AZ ¼
X

j

Zj cos 2pðhxj þ kyjÞ; BZ ¼
X

j

Zj sin 2pðhxj þ kyjÞ (13.7)

and the sums are taken over the N atoms in a complete unit cell. It may be noted that the temperature

factor is not involved in the definition of jEj, because for a “point atom” fj ¼ Zj for all h, k. The phase

associated with jEj is given generally by tan–1(BZ/AZ), having due regard to the sign of both AZ and BZ,

but will be 0 or p for centrosymmetric structures. It follows that the term E(00)1 is given by

ð
P

j ZjÞ=ð
P

j Z
2
j
Þ1=2 which, for identical atoms, is

ffiffiffiffi

N
p

; the value of E(00) is listed, with jEj statistics
in the results files EVALS and ECALC.

13.5 Crystal Structure Analysis Problems

These problems have been devised in conjunction with the XRAY program system. The different data

sets may not all operate equally well with all methods of structure solving provided by the system.

Hence, although the operations available are indicated on the monitor screen during execution of the

program, we suggest here those procedures by which satisfactory results may be obtained for each

data set provided. Organic species mostly have been chosen because it is not difficult to find examples

that show well resolved and interpretable projections.

There are certain features associated with working in two dimensions that we should remember:

• Because of the relatively small amount of data and a certain degree of inclination of the molecule

to the plane of projection, some bond lengths and angles will not calculate to typical values.

• Fourier maps will not necessarily be true to scale, and will not present the b angle in oblique

projections, but they will be satisfactory insofar as they give good practice with the structure

determining methods, and enable atoms to be located. When the axis of projection is not

perpendicular to the plane of projection, the true axes of the projection should be modified by

an angular term. For example, for a monoclinic unit cell projected on to (100), the axes are b and

c sin b. The sinb term may be important where the coordinates are measured from a map and the

b-angle is very different from 90�. For the projection of a triclinic cell on to (001), the axes are

a sin b and b sin a. However, since coordinates are almost always refined by least squares, the

correction may often be ignored.

• It is rare to be able to locate hydrogen atoms in structures determined from projections, but they

may be positioned by geometrical considerations.

The XRAY program is entered as already described. Generally, it will help to enlarge the screen.

Solutions are provided for the structure determinations in Sects. 13.5.1 and 13.5.6 but, with other

1E(00) ¼ E(000).
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examples, the correctness of the results should be judged according to the criteria of correctness

already discussed.

13.5.1 Ni o-Phenanthroline Complex (NIOP)

Enter the data file name NIOP and then a name for the general output file, say NOUT. The compound

crystallizes in space group P212121, the plane group of the projection is p2gg and Z ¼ 4. Open the

menu, select the Patterson link, carry out Patterson and sharpened Patterson syntheses, and plot the

maps on the screen. Print at least one of the maps, so as to make for easy comparison with the other. In

p2gg, the general equivalent positions are

� x; y; 1
2
þ x; 1

2
� y

� �

so that interatomic vectors will have the Patterson coordinates

� 2x; 2y; 1
2
; 1
2
� 2y; 1

2
� 2x; 1

2
Þ

�

On the screen, along the lines x ¼
1

2
and y ¼

1

2
there are two large peaks that may be taken as

Ni–Ni vectors; they are double-weight (why?). From them we obtain the atomic coordinates as ca.

0.24, 0.18; the peak corresponding to the 2x, 2y vector is not well resolved in this projection. Other

peaks indicate possible Ni–S vectors, but the results may not be completely satisfactory. It may be

useful to keep copies of the Patterson maps for later reference.

Use the coordinates of the nickel atom in the asymmetric unit to calculate structure factors and

then an electron density map. This map shows the Ni atom positions and two other strong peaks to

which the S atoms can be allocated. Repeat the structure factor and electron density calculations with

these atoms (three per asymmetric unit), or first apply a least-squares refinement. The electron density

map may not be obvious to interpret in terms of all carbon atoms. If necessary, print the asymmetric

unit of the Fourier map and contour it carefully; the lowest contour on these plots is 10 and the

maximum is 100.

It may help in this example to contour the figure field at level 5. Search for peaks that would make

up the picture of the phenanthroline complex, Fig. 13.3. It may not be possible to find all the

remaining atomic positions at this stage, but enough will be located to enable a better electron density

map to be calculated.

When all 21 atoms, excluding hydrogen, have been found, several cycles of least-squares refine-

ment, with scale factor adjustment, should converge with an R-factor of about 9.8%, which is

probably the best result that can be obtained with this data set. The difference electron density map

at this stage will be almost featureless. A small, negative peak near the location of the nickel atom

may indicate that the isotropic temperature factor is not a completely satisfactory approximation for

this species, or that there are insufficient terms for true convergence of the Fourier series, Sects. 6.2.1

and 6.9.1.

Bond lengths and angles may be calculated. Because the c dimension is only 4.77 Å, the molecule

is quite well resolved in this projection, and the lengths and angles should have fairly sensible

chemical values. The results for the nickel and sulfur atoms are Ni–S(1) ¼ 1.953 Å, Ni–S

(2) ¼ 1.917 Å, and S(1)–Ni–S(2) ¼ 95.08�; small variations from these values may reflect the

state of the refinement.
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13.5.2 2-Amino-4,6-dichloropyrimidine (CL1P)

The title compound, C4H3N3Cl2, crystallizes in space group P21/awith Z ¼ 4. The plane group of the

projection on (010) is p2, doubled along the x-axis because of the translation of the a-glide plane. The

data for this structure and for CL2P produce satisfactory Wilson plots.

There are two chlorine atoms in the asymmetric unit, not related by symmetry. Hence, these two

chlorine atoms together with the two related by the twofold symmetry will give rise to eight non-

origin Cl–Cl vectors:

Type 1, single weight for each: � ð2x1; 2y1Þ; �ð2x2; 2y2Þ
Type 2, double weight for each: � ðx2 � x1; y2 � y1Þ; �ðx2 þ x1; y2 þ y1Þ where the single-weight

vectors terminate at the corners of a parallelogram, and the double-weight vectors terminate at the

mid-points of its sides.

Solve the Patterson projection for positions of the chlorine atoms, and then complete the structure

determination for the non-hydrogen atoms. It will be helpful to print more than one copy of the

Patterson map, and then to join them such that the origin is at the center of the composite. (Hint: the

coordinates of one of the chlorine atoms are ca. 0.16, 0.16.)

The data for this projection will refine to ca. 12.1%. The bond lengths and angles from this

projection indicate a tilt of the molecule out of the plane of projection.

13.5.3 2-Amino-4-methyl-6-chloropyrimidine (CL2P)

Consider the unit cell data for this compound, C4H6N2Cl, and that for the dichloropyrimidine

just studied:

2-Amino-4-methyl-6-chloropyrimidine 2-Amino-4,6-dichloropyrimidine

a (Å) 16.426 16.447

b (Å) 4.000 3.845

c (Å) 10.313 10.283

b (�) 109.13 107.97

Z 4 4

Space group P21/a P21/a

Fig. 13.3 The molecular structure of C12H14N6S2Ni
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The two sets of crystal data are sufficiently similar for the two pyrimidine derivatives to be treated

as isomorphous. Hence, it should be possible to allocate trial atomic coordinates from the structure of

the dichloropyrimidine; one of the chlorine atoms in the dichloro-compound has been replaced here

by a methyl group.

Calculate Patterson maps for this compound and, by comparison with the previous structure,

obtain atomic coordinates for a trial structure of this compound. Then refine the trial structure by

successive Fourier syntheses and least squares. Alternatively, use the coordinates from CL1P mutatis

mutandis and calculate a first electron density map.

This data set refines to an R value of approximately 12.3%, but some of the bond lengths differ

from the accepted values for this compound because of the inclination of the molecule to the plane of

projection.

13.5.4 m-Tolidine Dihydrochloride (MTOL)

m-Tolidine dihydrochloride, crystallizes in space group I2, a non standard setting of C2, with Z ¼ 2.

The molecules occupy special positions on twofold axes. The plane group is p2 in the projection on to

(010). Thus, the chlorine atoms are related by twofold symmetry to give a Patterson vector at 2x, 2z.

The projection can be solved by the heavy-atom method, and refined to ca. 22% with the given

data. The atoms are well resolved, albeit with some distortion and the bond lengths are at variance

with standard values, because no account can be taken of the third dimension in their calculation from

this projection.

13.5.5 Nitroguanidine (NO2G)

Nitroguanidine, C(NH2)2NNO2, crystallizes in space group Fdd2, with the unit cell dimensions

a ¼ 17.639 Å, b ¼ 24.873 Å, c ¼ 3.5903 Å, and Z ¼ 16. The small c dimension, approximately

equal to the van der Waals nonbonded distance between carbon atoms, means that good resolution

will arise in the projection on (001). The plane group of this projection is p2gg, with the a and b

dimensions halved and four molecules in the transformed unit cell.

This structure is suitable for the direct methods procedure. In two dimensions, two reflections

suffice to fix the origin provided they are chosen one from any two of the parity groups h even/k

odd, h odd/k even, h odd/k odd; h even k even is a structure seminvariant and cannot be used to restrict

the origin.

In p2gg, the sign relationships in reciprocal space may be summarized as sðhkÞ ¼ sðh kÞ ¼
ð�1Þhþk

sð�hkÞ, so that both positive and negative signs will be generated by the
P

2 equation.

One or more letter symbols may be used as necessary, in order to aid the sign allocation process.

In some cases, the signs attaching to such letters evolve during the procedure; otherwise, trial

E maps must be constructed with permuted values for the letter signs. This structure will refine to an

R value of approximately 5%.

As an alternative procedure at the E map stage, the data can be assembled as lines of h, k, jEj, s(E),

and used in conjunction with the program FOUR2D, which has been written for plane group p2gg.
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13.5.6 Bis(6-sulfanyloxy-1,3,5-triazin-2(1H)-one) (BSTO)

This compound, (C3H2N3O2S)2, crystallizes in space group P21/m, with Z ¼ 2, so that the molecules

occupy special positions on m-planes. In projection on (010), the plane group is p2 and the molecules

occupy general positions in the plane group.

The Patterson maps indicate more than one peak of similar height in the asymmetric unit, so that it

may be necessary to investigate both of them in order to find a good trial structure. This structure

responds well to the superposition technique, so that the solution is not as difficult as might have been

expected. Refinement to ca. 15.5% can be achieved.

13.5.7 2-S-methylthiouracil (SMTX and SMTY)

2-S-methylthiouracil, C4H6N2OS, is triclinic, with space group P�1 and Z ¼ 2. Data for the (100) and

(010) projections are supplied, for which the plane group is p2 in each case. This structure may

present more difficulty than that in the previous example, because several peaks of similar height

occur in the Patterson maps.

The correct choice refines here to ca. 13.0% (R ¼ 7.3% with three-dimensional data has been

reported in the literature). The molecule is mostly well resolved, but not all atoms, particularly the

carbon attached to sulfur, are clearly resolved in this projection. Note that, for the (100) projection, the

axes marked x and y on the plot are, strictly, y sin g and z sin b, respectively.

The second data set for this compound relates to the (010) projection. By solving it, a three-

dimensional model for the compound can be built up.

The given selection of problems provides good practice in current, basic structure-solving meth-

ods. Other problems can be built up as desired; data for suitable structures can be found in the early

volumes of Acta Crystallographica. If you do this, remember to adopt the correct format.

13.6 General Crystal Structure and Other Programs

13.6.1 One-Dimensional Fourier Summation (FOUR1D)

This program calculates a one-dimensional Fourier summation, r(x). The data comprise lines of index

h and coefficients A(h) and B(h),which must be available in a file named ABDAT.TXT (example

given). If r(x) is centrosymmetric, B(h) should be entered as zero for each data line. The figure field

for r(x) is established in the file RHOX.TXT from whence it can be plotted; it is normalized to a

maximum value of 50. The file FUNCTN.TXT contains the true values of the data in a form suitable

for the Fourier transform program TRANS1. The desired interval of subdivision N is entered at the

keyboard; its maximum value in the program is 100.

13.6.2 Two-Dimensional Fourier Summation (FOUR2D)

This program computes a two-dimensional Fourier summation for plane group p2gg. The datamust be in

a file named TWODAT.TXT (example given) as lines of h, k, Fo, and s; s is the sign (�1) that multiplies

Fo. The interval of subdivision is 40 along both the x and y axes, and the output from the file RHOXY.
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TXT may be joined along the duplicated lines y ¼ 20. Four molecules are contained within the unit

cell of the plot, which is normalized to a maximum of 100. Contour the plot in steps of 10 units.

The source code FOUR2D.F90 for this program, written in FORTRAN 90, is also supplied.

Those conversant with FORTRAN 90 may wish to modify this program for other plane groups.

The procedure is straightforward [7], making use of the electron density equations given in the

International Tables for X-ray Crystallography, vol I [8]. Consider, for example, plane groups p2:

we can write r(xy) as

rðxyÞ ¼ KðCT
2FC1 � ST2GS1Þ (13.8)

where K is a constant involving the normalization of the output results, CT
2 and ST2 are the transposes

of matrices of cos(2phX) and sin(2phnY), of order hmax � nX (nX ¼ nY ¼ 0/40, 1/40, 2/40,. . ., as set

currently in the program), and C1 and S1 are matrices of cos(2pknY/b) and sin(2pknY/b), of order

kmax � nY. In plane group p2, F and G are matrices of order hmax � kmax, with elements

½FoðhkÞ þ FoðhkÞ� and ½FoðhkÞ� FoðhkÞ�, respectively. A step to form these elements could be

inserted into the program.

13.6.3 One-Dimensional Fourier Transform (TRANS1)

This program calculates the Fourier transform of a one-dimensional function f(x). The function is

divided into an even number of intervals, up to a maximum of 100, and contained, one datum to a line,

in the file FUNCTN.TXT; only the values of the function are used as data. The number of data (the

interval N of subdivision of the function) is entered at the keyboard, followed by the maximum

frequency hmax for the output coefficients.

Because of sampling conditions, Sect. 6.6.7, if N is chosen as 30, hmax could be conveniently

10–15. The output in the file ABDAT.TXT can then be used with FOUR1D to recreate the original

function, f(x). Note: Because FOUR1D writes a file named FUNCTN.TXT, the original values of this

function will be lost unless saved in another file.

13.6.4 Reciprocal Unit Cell (RECIP)

This program determines the parameters of the reciprocal unit cell from those of the corresponding

direct space unit cell (or vice versa) and the volumes of both cells. The input consists of the reciprocal

constant K (chosen as unity here) and the parameters a, b, c, a, b, and y, say, 5.0 Å, 6.0 Å, 7.0 Å, 90.0�,

105.0�, and 90.0�. The output is self-explanatory.

13.6.5 Molecular Geometry (MOLGOM)

This program calculates bond lengths, bond angles, and torsion angles. It requires the following data

input from a file named MOLDAT.TXT (example given):

Unit-cell parameters: 5.0, 6.0, 7.0, 90.0, 105.0, 90.0

Number of atoms (e.g.,)

Atom number and x, y, z coordinates
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As prompted, the atoms forming a torsion angle are entered at the keyboard. The convention

relating to the sign of the torsion angle has been discussed, Sect. 8.5.2 and Appendix C. The results

are listed in the file GEOM.TXT. Note that a program error at the torsion angle stage means that either

the data is incorrect or that a torsion angle cannot be defined by the order of the atoms given. If the

coordinates are in absolute measure, as with the test data, then a, b and c are each entered as unity.

13.6.6 Internal and Cartesian Coordinates (INTXYZ)

This program converts the geometry of a molecule in terms of its internal coordinates, that is, bond

lengths, bond angles, and torsion angles, to a set of Cartesian coordinates for the molecule. The data

must be supplied from a file named CART.TXT (example given), and take the form of lines of atom

code number, bond angle, torsion angle, bond length, as indicated on the monitor screen (with results)

after the program is opened; the convention for torsion angles given in Appendix C applies. The first

entry is always

0 0:0 0:0 0:0

In subsequent lines, the code number of the current atom is the atom number of a previous atom to

which the current atom is linked. As an example of input data, consider the molecular fragment shown

here in Fig. 13.4, with its internal coordinates, or geometry, as given. Then the input data has the

following format:

Atom code number

(not entered) Input data for file CART.TXT

1 0 0.0 0.0 0.0

2 1 0.0 0.0 1.49

3 2 109.0 0.0 1.50

4 3 110.0 0.0 1.54

5 4 107.0 180.0 1.51

6 4 105.0 �30.0 1.52

Atom number 1 is at the origin, and the fragment 1–2–3–4–5 is planar. Does the 4–6 bond lie

above or below this plane? The Cartesian coordinates given by the program are in the file

METRIC.TXT as:

Atom X Y Z

1 0.0000 0.0000 0.0000

2 �1.4900 0.0000 0.0000

3 �1.9784 1.4183 0.0000

4 �0.7815 2.3874 0.0000

5 �1.3472 3.7875 0.0000

6 0.32437 1.64686 0.7341
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13.6.7 Linear Least Squares (LSLI)

This program determines the best-fit straight line to a series of data points that must number at least 3

and, in this program, cannot exceed 100. Data must be entered from the keyboard or from a file named

LSSQ.TXT (example given). The first two lines of data, title, and number of data pairs, must always

be entered at the keyboard. Then the remainder of the data follow in lines of xi, yi; unit weights for

each observation are assumed in this program.

It is implicit that errors in x are significantly smaller than those in y. The goodness-of-fit is reflected

by the values of s(a), s(b), and Pearsons’s r coefficient. If the errors in the parameters a and b are to

be propagated to another quantity z, then they follow the law given in Sect. 8.6.

13.6.8 Matrix Operations (MATOPS)

This program accepts an input of two 3 � 3 matricesA and B, and forms A + B,A � B,A � B,AT,

BT, Trace(A), Trace(B), Det(A), Det(B), Cofactor(A), Cofactor(B), A�1, and B�1. If results are

required on only one matrix, A, then B is set by the program as the unit matrix

1 0 0

0 1 0

0 0 1

0
@

1
A

13.6.9 Q Values (QVALS)

This program is useful in conjunction with work on indexing powder diffraction patterns. Given the

unit cell parameters a, b, and c in Å, and a, b, and g in degrees, the program produces a set of values of

104Q; maximum values for h, k, and l are also entered at the keyboard. Provision is made for the

indices k and l to take negative values. Thus, in any symmetry higher than triclinic, duplicate values

of Q will be generated and may be discarded as required. The results are in the file INDEX.

Fig. 13.4 Hypothetical fragment C6, for input to program INTXYZ
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13.6.10 Le Page Unit-Cell Reduction (LEPAGE)

This program was written by A.L. Spek of the University of Utrecht and kindly made available by him

to the academic community. For reduction, choose the D-option when prompted, and enter the unit

cell parameters as indicated, one to a line. It may be desirable to vary the “2-axis criterion” by means

of the C-option.

The program reports inter alia the input unit cell, the reduced unit cell, the conventional

crystallographic unit cell (which may be the same as the reduced cell), and the transformation

matrices for a, b, c and x, y, z. Other options are provided by the program, but they need not concern

us here. Note that this program refers to the triclinic system by the symbol a: the alternative name for

the triclinic system is anorthic.

A useful mnemonic for using any transformation matrix M and its inverse has been given in Sect.

2.5.5 and the scheme of Fig. 2.16 in the same chapter.

13.6.11 Zone symbols/Miller indices (ZONE)

This program calculates the Miller indices of a plane from the input of two zone symbols, or the

symbol of a zone from the input of the Miller indices for two planes.

13.7 Automatic Powder Indexing: ITO12

This program has been made available to the academic community by courtesy of Dr. J. Vissser,

Technisch Physische Dienst, Delft [9]. The format of the input data is very specific and must be

followed. The data file must be named ITOINP.DAT, and set out as follows; the parentheses indicate

FORTRAN formats:

Line 1: Title, up to 80 alphanumeric characters (A80).

Line 2: Leave blank; it is related to a number of parameters that take default values in the program,

and which we need not discuss here.

Line 3: Four parameters: a zeroshift, 0.0 is recommended; a print controlminimum value ofM20 for a

lattice to be printed, 4.0 is recommended; a print control minimum value of lines indexed for a

lattice to be printed, 14.0 is recommended; the number of data, between 20 and 40. These four

parameters are entered as real numbers, and terminate at character numbers 10, 20, 30, and 40,

respectively, in the line (4F10.5).

Lines 4: The data, 104Q or sin2 y or 2y values (in ascending order), or d (in descending order), in n

lines each containing eight such values, the data ending at character numbers 10, 20,. . .,80 in each

line (8F10.5).

Line 5: Leave blank.

Line 6: The word END as its first three characters (A3).

An example input file ITOINP.DAT, which relates to Problem 9.6a, is provided with the Program

Suite POWDER folder. One output file is generated by the program, and provides an echo of the input

data file. A second output file contains the results of the indexing; it is mostly self-explanatory.

However, the following column heads have meanings as follow:
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The best results follow based on the first 20 indexed lines, and then those based on all lines in the

data set, up to 40; finally the best, refined unit cells are printed. From a study of the observed

reflections, deductions may be made about the space group of the crystal. The program and example

data set are together in a folder named ITO12.

13.8 Automatic Powder Structure Solving: ESPOIR

This program has been made available to the academic community by courtesy of Professor A Le

Bail, Laboratoire Fluorures, Université du Main, Le Mans, and we discussed it in Sect. 12.11. Only

the essentials needed to run a data set are included here, and the reader is referred to an original

reference [10] for a fuller exposition of the features of this technique.

We follow through a sequence of instructions for using ESPOIR. Because a large number of files

can be generated in using this program, we have placed the program and data in a separate directory,

named POWDER.

13.8.1 Aragonite

As a first example, we consider the aragonite form of calcium carbonate, CaCO3. The space group is

Pmcn, a nonstandard setting of Pnma. Since there are four formula entities per unit cell, the Ca and C

atoms lie on special positions, but the oxygen atoms could occupy one set of general positions plus

one set of special positions or three sets of special positions. In practice, both arrangements may need

to be tried. We report here the successful choice, that is, with occupancies of
1

2
for each of Ca, C, and

O1, and unit occupancy for O2. The following procedure is typical:

Open Espoir.exe.

From the Espoir window: File ! Open File and Open Arag.dat

From the Espoir window: Run ! Espoir

A number (10) of tests follow; the end is signified by the Run Terminate box

From the Espoir window: View ! Open .spf for the chosen, best run. Open .imp for the run data and

the 10 test results.

The chosen set of x, y, z coordinates is shown below, together with general equivalent position

appropriate to space group Pmcn; the parameters can be refined by least squares.

NEWNR New sequence number for the zone after evaluation (cp. OLDNR)

A Provisional value of QA for the zone

B Provisional value of QB

FMAAS Provisional value of QF

QUALITY Measure of fit for the zone based on probability theory

OLDNR Old sequence number

CNTR Flag, equal to 0 for primitive zone or 1 for a centered zone

NOBS & NCALC Number of observed and calculated lines used in evaluating QUALITY

ZERSHFT Estimate of 2y zero error for the zone
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The known parameters for the Aragonite structure are given below, showing that there is good

agreement with the structure determined, taking into account symmetry-related atoms:

x y z

Ca 1
4

0.4151 0.2405

C 1
4

0.7621 0.0852

O1
1
4

0.9222 0.0956

O2 0.4735 0.6807 0.0873

13.8.2 a-Alumina (Corundum)

In the POWDER folder there are three pairs of files for a-alumina, labeled Al2O3A, Al2O3B, and

Al2O3C. For each of A, B, and C, one file type (.dat) contains crystal data and program settings, and

the other (.hkl) contains the Fo(hkl) data. We consider just Al2O3A, in which the structure is treated

from scratch, applying distance constraints for Al–Al of 3.0, Al–O of 1.6, and O–O of 1.6 Å,

respectively. We know also the space group, R�3c, and that Z ¼ 6. This data contains more output

options, as we shall see.

Open Espoir.exe.

From the Espoir window: File ! Open File and Open Al2O3A.dat.

From Espoir window: Run ! Espoir.

Ten test trials are now performed, followed by Run Terminate.

From the Espoir window: Open ! View. The .spf and .imp files are present, as with previous run. In

addition, several other flies are presented; of particular interest are Profile and Structure.

From the Espoir window: Open ! Profile. The red plot shows the pattern of agreement between

calculated and observed jFj values, whereas the blue plot is the difference pattern, which highlights
their discrepancies. Close Profile.

From the Espoir window: View ! Structure. The RASMOL program is now invoked.

From the RasWin window: Open ! Display.

Under Display, Sticks, Spacefill and Ball & Sticks are probably the most useful. Select Ball &

Spokes.

From the RasWin window: Open ! Colours. Select ! CPK (normal).

From the RasWin window: Open! Options. Select Specular. This mode enhances the appearance of

the model. Under Option, the links Labels is useful, but can be best seen withMonochrome (under

Colours). A Stereo link also exists under Options. A stereo viewer will be needed, and it may be

necessary to decrease the horizontal distance between the stereo pairs.

From the RasWin window: Open! Export, and write the diagram in the .BMP mode for subsequent

printing.

On returning to the original folder (POWDER), a number of new files relating to Al2O3A will

be found. One of the files, Al2O3Astru (a .dat file), contains structural data about the crystal and

x y z x y z

Ca 0.7552 0.9150 0.2602 �x; 1
2
þ y; 1

2
� z ! 0.2448 0.4150 0.2498

C 0.2498 0.7624 0.0859 x; y; z ! 0.2498 0.7624 0.0959

O1 0.7553 0.0781 0.9074 �x; �y; �z ! 0.2447 0.9219 0.0926

O2 0.5289 0.3188 0.9123 �x; �y; �z ! 0.4711 0.6812 0.0877
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the view, together with a list of x, y, z coordinates found from that run; the results for two such

runs were:

x y z

A1 Al 0.6667 0.3333 0.9812

O 0.0000 0.6667 0.7500

A2 Al 0.3274 0.6725 0.8146

O 0.6887 0.9995 0.2498

The two runs do not show apparently the same coordinates because of the random nature of the

process. We shall discuss these results shortly, but first we consider the other two data sets.

Next, carry out the procedure with Al2O3B. This data set is arranged to fit to the Fo data rather than a

regenerated pattern, and makes use of chosen values for the occupation numbers; the execution time

is much shorter. One set of coordinates, the best fit, will be produced.

From the View window: Select Al2O3B.spf.

Alternatively, return to the POWDER folder: Select A12O3B.spf. The results of two runs are

listed below.

x y z

B1 Al 0.3422 0.6702 0.8146

O 0.6417 0.6716 0.9165

B2 Al 0.3414 0.6668 0.8146

O 0.3424 0.9772 0.9159

Finally, repeat the second procedure now with Al2O3C. In this example, the constraints of the

special positions of the type 0, 0, z for Al and x, 0,
1

4
for O have been added to the data set.We obtain

the coordinates and a plot of the best-fit structure. Two such runs are shown below:

x y z

C1 A1 0.0000 0.0000 0.6470

O 0.6940 0.0000 0.2500

C2 A1 0.0000 0.0000 0.6479

O 0.3060 0.0000 0.2500

In order to interpret the totality of these results, we list the special positions for space group R�3c

with Z ¼ 6, and the centers of symmetry in the unit cell:

ð0; 0; 0; 1
3
; 2
3
; 2
3
; 2
3
; 1
3
; 1
3
Þþ

12 Al at� ð0; 0; z; 0; 0; 1
2
þ zÞ 18O at � ðx; 0; 1

4
; 0; x; 1

4
; �x; �x; 1

4
Þ

�1 at ð0; 0; 0; 0; 0; 1
2
; 0; 1

2
; 0; 1

2
; 0; 0; 0; 1

2
; 1
2
; 1

2
; 0; 1

2
; 1

2
; 1
2
; 0; 1

2
; 1
2
; 1
2
Þ

The program does not necessarily select all atoms from one and the same asymmetric unit, so that

we have to consider the full implication of the space group symmetry and choice of origin. For

example, we take result C2 as a norm. Then, if O in set Cl is moved across the center of symmetry at

1,0,0, that set then agrees with C2. In sets B, we add the translations 2
3
; 1
3
; 1
3
in each case, which leads to

	0, 	0, 0.1479 (�0.6479); 	0, 	0, 0.1479 (�0.6479) for B1: and 	0, 	0, 0.1479 and 	0, 	0,
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0.2492 for B2, both of which agree reasonably with set C. In a similar way, set A can be transformed

to 0, 0, 0.6479 and 0, 0.3333, 0.2500, and 	0, 	0, 0.1479 (�0.6479) and 0.3113, 	0,0.2498. Except

for Al2O3C, where the constraints are strong, we would not always expect to get the same numerical

values exactly in subsequent trials, because of the random nature of the movement of the atoms.

Recently reported parameters for the a-alumina structure are:

13.9 Problems

The problems for this chapter arise throughout the text itself, Sect. 13.5.1ff. Solutions are provided

for two of them.
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O 0.3064 0 1
4
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Appendix A: Stereoviews
and Crystal Models

A.1 Stereoviews

Stereoviews of crystal structures began to be used to illustrate three-dimensional structures in 1926.

Nowadays, this technique is quite commonplace, and computer programs exist (see Appendices D4

and D8.7) that prepare the two views needed for producing a three-dimensional image of a crystal or

molecular structure.

Two diagrams of a given object are necessary in order to form a three-dimensional visual image.

They should be approximately 63 mm apart and correspond to the views seen by the eyes in normal

vision. Correct viewing of a stereoscopic diagram requires that each eye sees only the appropriate half

of the complete illustration, and there are two ways in which it may be accomplished.

The simplest procedure is with a stereoviewer. A supplier of a stereoviewer that is relatively

inexpensive is 3Dstereo.com. Inc., 1930 Village Center Circle, #3-333, Las Vegas, NV 89134, USA.

The pair of drawings is viewed directly with the stereoviewer, whereupon the three-dimensional

image appears centrally between the two given diagrams.

Another procedure involves training the unaided eyes to defocus, so that each eye sees only the

appropriate diagram. The eyes must be relaxed and look straight ahead. The viewing process may be

aided by holding a white card edgeways between the two drawings. It may be helpful to close the eyes

for a moment, then to open them wide and allow them to relax without consciously focusing on the

diagram.

Finally, we give instructions whereby a simple stereoviewer can be constructed with ease. A pair

of plano-convex or bi-convex lenses, each of focal length approximately 100 mm and diameter

approximately 30 mm, is mounted between two opaque cards such that the centers of the lenses

are approximately 63 mm apart. The card frame must be so shaped that the lenses may be brought

close to the eyes. Figure A.1 illustrates the construction of the stereoviewer.

A.2 Model of a Tetragonal Crystal

A model similar to that illustrated in Fig. 1.23 can be constructed easily. This particular model has

been chosen because it exhibits a four-fold inversion axis, which is one of the more difficult symmetry

elements to appreciate from drawings.

M. Ladd and R. Palmer, Structure Determination by X-ray Crystallography:

Analysis by X-rays and Neutrons, DOI 10.1007/978-1-4614-3954-7,
# Springer Science+Business Media New York 2013
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A good quality paper or thin card should be used for the model. The card should be marked out in

accordance with Fig. A.2 and then cut out along the solid lines, discarding the shaded portions. Folds

are made in the same sense along all dotted lines, the flaps ADNP and CFLM are glued internally, and

the flap EFHJ is glued externally. What is the point group of the resulting model?

Fig. A.1 Construction of a simple stereoviewer. Cut out two pieces of card as shown and discard the shaded portions.

Make cuts along the double lines. Glue the two cards together with lenses EL and ER in position, fold the portions A and

B backward, and engage the projection P into the cut atQ. Strengthen the fold with a strip of “Sellotape.” View from the

side marked B. It may be helpful to obscure a segment on each lens of maximum depth ca. 30 % of the lens diameter,

closest to the nose region
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Fig. A.2 Construction of a tetragonal crystal with a �4 axis: NQ ¼ AD ¼ BD ¼ BC ¼ DE ¼ CE ¼ CF ¼
KM ¼ 100 mm; AB ¼ CD ¼ EF ¼ GJ ¼ 50 mm; AP ¼ PQ ¼ FL ¼ KL ¼ 20 mm; AQ ¼ DN ¼ CM ¼ FK ¼
FG ¼ FH ¼ EJ ¼ 10 mm
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Appendix B: Schönflies’
Symmetry Notation

Theoretical chemists and spectroscopists generally use the Schönflies notation for describing

point-group symmetry but, although both the crystallographic (Hermann–Mauguin) and Schönflies

notations are adequate for point groups, only the Hermann–Mauguin system is satisfactory also for

space groups.

The Schönflies notation uses the rotation axis and mirror plane symmetry elements that we have

discussed in Sect. 1.4.2, albeit with differing notation, but introduces the alternating axis of symmetry

in place of the roto-inversion axis.

B.1 Alternating Axis of Symmetry

A crystal is said to have an alternating axis of symmetry Sn of degree n, if it can be brought from one state

to another indistinguishable state by the operation of rotation through (360/n)� about the axis and

reflection across a plane normal to that axis, overall a single symmetry operation. It should be stressed

that this plane is not necessarily a mirror plane in the point group.

Operations Sn are non-performable physically with models (see Sects. 1.4.1 and 1.4.2). Figure B.1

shows stereograms for S2 and S4; crystallographically, we recognize them as �1 and �4, respectively.

The reader should consider what point groups are obtained if the plane of the diagram were a mirror

plane in point groups S2 and S4.

B.2 Symmetry Notations

Rotation axes are symbolized by Cn in the Schönflies notation (cyclic group of degree n); n takes the

meaning ofR in theHermann–Mauguin system.Mirror planes are indicated by subscripts v, d, andh; v and

d refer to mirror planes containing the principal axis, and h indicates a mirror plane normal to that axis. In

addition, d refers to those vertical planes that are set diagonally, between the crystallographic axes normal

to the principal axis.
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The mirror plane symmetry element is denoted by s in the Schönflies system. The symbol Dn

(dihedral group of degree n) is introduced for point groups in which there are n two-fold axes in a

plane normal to the principal axis of degree n. The cubic point groups are represented through the

special symbols T (tetrahedral) and O (octahedral). In point group symbols, subscripts h and d are

used to indicate the presence of horizontal and vertical (dihedral) mirror planes, respectively

Table B.1 compares the Schönflies and Hermann–Mauguin symmetry notations.

Fig. B.1 Stereograms of point groups: (a) S2, (b) S4

Table B.1 Schönflies and Hermann–Mauguin pointgroup symbols

Schönflies Hermann–Mauguina Schönflies Hermann–Mauguina

C1 1 D4 422

C2 2 D6 622

C3 3 D2h mmm

C4 4 D3h
�6m2

C6 6

Ci, S2 �1 D4h 4

m
mm

Cs, S1 m; 2

S6 �3
S4 �4 D6h 6

m
mm

C3h, S3 �6a

C2h 2/mb D2d
�42m

C4h 4/mb D3d
�3m

C6h 6/mb T 23

C2v mm2 Th m�3m
C3v 3m O 432

C4v 4mm Td �43m
C6v 6mm Oh m3m

D2 222 C1v 1
D3 32 D1h 1=mð �1Þ
aThe usual Schönflies symbol for �6 is C3h (3/m). The reason that 3/m

is not used in the Hermann–Mauguin system is that point groups

containing the element �6 describe crystals that belong to the hexago-

nal system rather than to the trigonal system; �6 cannot operate on a

rhombohedral lattice.

bR/m is an acceptable way of writing
R

m
; but R/mmm is not as

satisfactory as
R

m
mm; R/mmm is a marginally acceptable alternative.
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Appendix C: Cartesian Coordinates

In calculations that lead to results in absolute measure, such as bond distance and angle calculations

and location of hydrogen-atom positions, it may be desirable to convert the crystallographic

fractional coordinates x, y, z, which are dimensionless, to Cartesian (orthogonal) coordinates X, Y,

and Z, in Å or nm.

C.1 Cartesian to Crystallographic Transformation and Its Inverse

Instead of considering immediately the transformation A ¼ Ma, it is simpler to consider first the

inverse transformation a ¼ M�1 a, where M is the transformation matrix for the triplet AðA;B;CÞ to
the triplet aða; b; cÞ, because the components of a along the Cartesian axes are direction cosines (see

Web Appendix WA1).

Figure C.1 illustrates the two sets of axes. Let A be a unit vector along a, B a unit vector normal to

a, and in the a, b plane, and C a unit vector normal to both A and B.
Then, we can write

a=a

b=b

c=c

2
64

3
75 ¼

l1 m1 n1

l2 m2 n2

l3 m3 n3

2
64

3
75

A

B

C

2
64

3
75 (C.1)

From the figure, we can write down some of the elements of M�1:

M�1 ¼
1 0 0

cos g sin g 0

cos b m3 n3

2
64

3
75 (C.2)

From the properties of direction cosines, we have

cos a ¼ l2l3 þ m2m3 þ n2n3 ¼ cos b cos gþ m3 sin g

so that

m3 ¼ ðcos a� cos b cos gÞ= sin g ¼ � cos a� sin b (C.3)
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Since the sums of the squares of the direction cosines is unity,

n23 ¼ 1� cos2b� sin2bcos2a� ¼ sin2bsin2a�

so that

n3 ¼ sin b sin a� ¼ v= sin g (C.4)

since1 V ¼ abc sin a* sin b sin g, and v here refers to the volume of the unit parallelepiped a/a, b/b,
c/c, that is, v ¼ (1 � cos2 a � cos2 b � cos2 g + 2 cos a cos b cos g). Hence, we can write the

transformation in terms of the direct unit-cell parameters, multiplying the lines of the matrix by a, b,

or c, as appropriate:

a

b

c

2
664

3
775 ¼

a 0 0

b cos g b sin g 0

c cos b cðcos a� cos b cos gÞ= sin g cv= sin g

2
664

3
775

A

B

C

2
664

3
775 (C.5)

which, in matrix notation, is a ¼ M�1 A. From the transformations discussed in Sect. 2.5.5, we have

X ¼ ðM�1ÞTx, or

X

Y

Z

2
64

3
75 ¼

a b cos g c cosb

0 b sin g cðcos a� cos b cos gÞ= sin g
0 0 cv= sin g

2
64

3
75

x

y

z

2
64

3
75 (C.6)

The deduction of M, the inverse of M�1, is straightforward for a 3 � 3 matrix, albeit somewhat

laborious, and can be found in most elementary treatments of vectors. Thus, we have A ¼ M a and

x ¼ MTX, where

Fig. C.1 A, B and C are unit vectors on Cartesian (orthogonal) axes X, Y, Z, and a/a, b/b, and c/c are unit vectors on the
conventional crystallographic axes x, y, z

1Buerger MJ (1942) X-ray crystallography. Wiley, New York.
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M ¼
1=a 0 0

� cos g=ða sin gÞ 1=ðb sin gÞ 0

ðcos g cos a� cos bÞ=ðav sin bÞ ðcos g cos b� cos aÞ=ðbv sin gÞ sin g=ðcvÞ

0
B@

1
CA (C.7)

The transformation (C.6) is employed in the program INTXYZ (see Sect. 13.6.6) for the calcula-

tion of bond lengths, bond angles, and torsion angles from crystallographic parameters. The sign of a

torsion angle is governed by the convention discussed in Section 8.5.2. For the sequence of atoms,

P, Q, R, S in Fig. C.2, the torsion angle wPQRS is positive if a clockwise rotation of PQ about QR,

as seen along QR, brings PQ over RS.

Fig. C.2 Convention for torsion angles: wPQRS is reckoned positive as shown, when the atom succession P � Q � R

� S is viewed along QR
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Appendix D: Crystallographic Software

This Appendix lists software for X-ray and neutron crystallographic applications that are available to the

academic community. The list is not exhaustive, and many of the packages are listed under one or other

section of the Collaborative Computational Projects.2,3 Often, the program systems are mirrored by the

Engineering and Physical Sciences Research Council (EPSRC) funded CCP projects,4 which have

mirror sites in the U. S. A. and in Canada. In addition to the programs referenced here, a complete set

of crystallographic programs has been promulgated elsewhere.5

The program systems are divided into a number of sections, and an appropriate reference has been

provided for each entry, including author, e-mail address, and web site reference as appropriate.

• Single Crystal Suites

• Single Crystal Structure Solving Programs

• Single Crystal Twinning Software

• Freestanding Structure Visualization Software

• Powder Diffraction Data: Powder Indexing Suites

• Structure Solution from Powder Diffraction Data

• Software for Macromolecular Crystallography

Data Processing; Fourier and Structure Factor Calculations; Molecular Replacement; Single

and Double Isomorphous Replacement; Software for Packing and Molecular; Geometry; Software

for Graphics and Model Building; Software for Molecular Graphics and Display; Software for

Refinement; Software for Molecular Dynamics and Energy Minimization; Data Bases

• Bioinformatics

Molecular Modelling Software; External Links; Useful Homepages

D.1 Single Crystal Suites

Most single crystal program suites have a large variety of functionality; WinGX is an example of a

suite linking to several other programs in a seamless manner via graphical user interfaces. In most

cases, programs link to multiple versions of a structure solution program, such as SHELXS-97 or

SIR2008.

2 http://www.ccp4.ac.uk.
3 http://www.ccp14.ac.uk.
4 http://www.epsrc.ac.uk/Pages/default.aspx.
5 http://ww1.iucr.org/sincris-top/logiciel/lmno.html#O.
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D.2 Single Crystal Structure Solution Programs

CAOS

Automated Patterson method. Spagna R et al. http://www.ic.cnr.it/caos/what.html

CRYSTALS 14.23

Watkin D. http://www.xtl.ox.ac.uk

DIRDIF 2008

Automated Patterson methods and fragment searching: Windows version ported by L. Farrugia and

available via the WinGX website. http://www.chem.gla.ac.uk/~louis/software/dirdif/

OLEX2

User-friendly structure solution and refinement suite with inter alia archiving and report generation.

Dolomanov OV et al (2008) J Appl Crystallogr 42:339. http://olex2.org

PATSEE

Fragment searching methods. http://www.ccp14.ac.uk/ccp/web-mirrors/patsee/egert/html/patsee.

html. Windows version by Farrugia, L. and available via the WinGX website.

System S

SHELXS, DIRDIF, SIR, and CRUNCH for solution; EXOR, DIRDIF, SIR, and CRUNCH for autobuild-

ing; SHELXL for refinement. Spek AL. http://www.ccp14.ac.uk/tutorial/platon/index.html

SIR 2008

http://www.ba.ic.cnr.it/content/il-milione-and-sir2008

SNB (SHAKE AND BAKE)

Direct methods. Weeks CM et al. http://www.hwi.buffalo.edu/SnB

WinGX

SHELXS, DIRDIF, SIR, and PATSEE for solution; DIRDIF phases for autobuilding; SHELX for

refinement. Farrugia L. http://www.chem.gla.ac.uk/~louis/software/wingx

D.3 Single Crystal Twinning Software

TWIN 3.0

Kahlenberg V et al. http://www.ccp14.ac.uk/solution/twinning/index.html

TwinRotMac

Spek AL. http://www.ccp14.ac.uk/solution/ twinning/index.html

Windows version by Farrugia L. http://www.chem.gla.ac.uk/~louis/software/platon

D.4 Freestanding Structure Visualization Software

ORTEP-III

Burnett MN et al. http://www.chem.gla.ac.uk/~louis/software/ortep3/
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D.5 Powder Diffraction Data: Powder Indexing Suites (Dedicated and Other)

Checkcell

Laugier J. http://www.ccp14.ac.uk/tutorial/lmgp/achekcelld.htm

CRYSFIRE

Shirley R. http://www.ccp14.ac.uk/tutorial/crys/ (includes the programs ITO, DICVOL, TREOR,

TAUP, KOHL, LZON, LOSH, and FJZN, but is no longer under development)

DICVOL91

Louër D. http://www.ccp14.ac.uk/tutorial/crys/program/dicvol91.htm

ITO12/13

Visser JW. http://www.iucr.org/resources/commissions/crystallographic-computing/software-museum

ITO15 (Included in FULLPROF)

Visser J et al. http://www.ill.eu/sites/fullprof/php/programs.html

LOSH/LZON

Bergmann J et al. http://www.ccp14.ac.uk/tutorial/tutorial.htm

TAUP/Powder

Taupin D. http://www.ccp14.ac.uk/tutorial/crys/taup.htm

TREOR90 (Included in FULLPROF)

http://www.ill.eu/sites/fullprof/php/programsdc cc.html?pagina¼Treor90

D.6 Powder Pattern Decomposition

ALLHKL

Pawley GS. http://www.ccp14.ac.uk/solution/pawley/index.html

WPPF

Hatashi S, Toraya H. http://www.icdd.com/resources/axa/vol41/V41_66.pdf

D.7 Structure Solution from Powder Diffraction Data

ESPOIR

Mileur M, Le Bail A. http://www.cristal.org/sdpd/espoir/

EXTRA (Included in EXPO)

http://www.ccp14.ac.uk/tutorial/expo/index.html

FULLPROF

http://www.ill.eu/sites/fullprof/
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GSAS

http://www.ccp14.ac.uk/solution/gsas

RIETAN

Izumi F. http://homepage.mac.com/fujioizumi/download/download_Eng.html

SIRPOW (Included in EXPO)

http://www.ccp14.ac.uk/tutorial/expo/index.html

POWDER SOLVE

http://accelrys.com/resource-center/case-studies/powder-solve.html

D.8 Software for Macromolecular Crystallography

Much of the software listed in this section is fast moving, and the CCP sites1,2 should be consulted for

the latest developments.

D.8.1 Data Processing

HKL 4 (Includes DENZO, XDISPLAY, and SCALEPACK)

Gerwith D (2003) The HKL manual, 6th edn. http://www.hkl-xray.com/hkl_web1/hkl/manual_

online.pdf

STRATEGY

Ravelli RBG et al. http://www.crystal.chem.uu.nl/distr/strategy.html

PREDICT

Noble M. http://biop.ox.ac.uk/www/distrib/predict.html

D.8.2 Fourier and Structure Factor Calculations

SFALL (Structure Factors). http://www.ccp4.ac.uk/html/sfall.html

FFT (Fast Fourier Transform). http://www.ccp4.ac.uk/html/fft.html

D.8.3 Molecular Replacement

AmoRe

Navaza J (Autostruct 2001). http://www.ccp4.ac.uk/autostruct/amore/

CNS Solve 1.1

Brünger AT et al. http://cns.csb.yale.edu/v1.1/

MOLREP

Vagin AA. alexei@ysbl.york.ac.uk
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MOLPACK

Wang D et al. http://www.ccp4.ac.uk/html/molrep.html

REPLACE

http://como.bio.columbia.edu/tong/Public/Replace/replace.html

D.8.4 Schematic Structure Plots

LIGPLOT

Laskowski RA. http://www.ebi.ac.uk/thornton-srv/software/LIGPLOT/

SHELXS-86

Location of heavy-atom positions. Sheldrick GM (1994) Crystallographic computing, 3rd edn.

Oxford University Press, Oxford

D.8.5 Software for Packing, Molecular Geometry, Validation and Deposition

COOT

Emsley P et al (2010) Acta Cryst D66:486. http://lmb.bioch.ox.ac.uk/coot/

PROCHECK

Laskowski RS et al. http://www.ebi.ac.uk/thornton-srv/software/PROCHECK

WHATCHECK

Hooft RWW et al. http://www.ccp4.ac.uk/dist/ccp4i/help/modules/valdep.html

D.8.6 Software for Graphics and Model Building

FRODO

Jones TA. http://www.mendeley.com/research/tek-frodo-new-version-frodo-tektronix-graphics-sta-

tions/

O

Jones TA et al. http://xray0.princeton.edu/~phil/Facility/ono.html

TURBO-FRODO

Jones TA et al. Bio-graphics. http://www.afmb.univ-mrs.fr/-TURBO-

D.8.7 Software for Molecular Graphics and Display

MERCURY

http://www.ccdc.cam.ac.uk/products/csd_system/ mercury_csd/index.php

ORTEP

Barnes CL (1997) ORTEP-3 for Windows, J Appl Cryst 30:568 [based on ORTEP-III by Johnson CK

and Burnett MN.]
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RASMOL

Sayle R. http://www.umass.edu/microbio/rasmol/

RASTER 3.0

Bacon DJ et al. http://skuld.bmsc.washington.edu/raster3d

SETOR

Evans SV. http://www.ncbi.nlm.nih.gov/pubmed/8347566

MOLSCRIPT 1.4

Kraulis PJ. http://www.avatar.se/molscript

BOBSCRIPT 2.4 (Extension to MOLSCRIPT 1.4)

Esnouf R. http://www.csb.yale.edu/userguides/graphics/bobscript/bobscript.html

D.8.8 Software for Refinement

X-PLOR 3.1

Brünger AT. http://yalepress.yale.edu/book.asp?isbn¼9780300054026

CNS Solve 1.1

Brünger AT et al. http://cns.csb.yale.edu/v1.1/

RESTRAIN

Driessen HPC et al. http://scripts.iucr.org/cgi-bin/paper?gl0109

SHELXS-86

Sheldrick GM (1994) Crystallographic computing, 3rd edn. Oxford University Press, Oxford

SHELX-97 and SHELXL-97

Sheldrick GM. http://shelx.uni-ac.gwdg.de/SHELX/

REFMAC 5

http://www.ccp4.ac.uk/html/refmac5.html

D.8.9 Software for Molecular Dynamics and Energy Minimization

SYBYL-X

http://tripos.com/index.php?family¼modules,SimplePage,,,&page¼SYBYL-X

D.8.10 Data Bases

Protein Data Bank (PDB)

http://www.pdb.org/pdb/static.do?p¼search/index.html

Basic Local Alignment Search Tool (BLAST)

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE¼ Proteins

Cambridge Crystallographic Data Centre (CCDC)

http://www.ccdc.cam.ac.uk
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ReLiBase (Finds Ligands for Protein Families)

http://www.ccdc.cam.ac.uk/free_services/reliba se_free/

ChemSpider (Contains Much Chemical Information on ca. 25 Million Compounds)

http://cs.m.chemspider.com

D.8.11 Synchrotron Web Page

http://www.esrf.eu/computing/scientific/people/srio/publications/SPIE04_XOP.pdf

D.9 Bioinformatics

D.9.1 Molecular Modelling Software

The sources listed below provide software for molecular modelling. Some of them, for example,

COSMOS and Sybyl are listed above. Others are readily obtained from the web sites that are given by

the names, for example, Abaloneclassical: http://www.sciencedirect.com/science/article/pii/

S0928493110002894.

The following names may be interrogated in a similar manner:

• Abaloneclassical
• ADFquantum
• AMBERclassical

• Ascalaph Designerclassical and quantum [http://en.wikipedia.org/wiki/Main_Page#cite_note-0]

• AutoDock

• AutoDock Vina

• BALLView

• Biskit

• BOSSclassical
• Cerius2

• CHARMMclassical

• Chimera

• Coot [http://en.wikipedia.org/wiki/Main_Pa ge#cite_note-1]

• COSMOS (software) [http://en.wikipedia.org/wiki/Main_Page#cite_note-2]

• CP2Kquantum

• CPMDquantum

• Culgi

• Discovery Studioclassical and quantum [http://en.wikipedia.org/wiki/Main_Page#cite_note-3]

• DOCKclassical

• Fireflyquantum
• FoldX

• GAMESS (UK)quantum
• GAMESS (US)quantum
• GAUSSIANquantum

• Ghemical

• Gorgon [http://en.wikipedia.org/wiki/Main_ Page#cite_note-4]

• GROMACSclassical
• GROMOSclassical
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• InsightIIclassical and quantum

• LAMMPSclassical
• Lead Finderclassical [http://en.wikipedia.org/wiki/Main_Page#cite_note-5]

• LigandScout

• MacroModelclassical
• MADAMM [http://en.wikipedia.org/wiki/Main_Page#cite_note-6; http://en.wikipedia.org/wiki/

Main_Page#cite_note-Cerqueira-7]

• MarvinSpace [http://en.wikipedia.org/wiki/Main_Page#cite_note-8]

• Materials and Processes Simulations [http://en.wikipedia.org/wiki/Main_Page#cite_note-9]

• Materials Studioclassical and quantum [http://en.wikipedia.org/wiki/Main_Page#cite_note-10]

• MDynaMixclassical
• MMTK

• Molecular Docking Server

• Molecular Operating Environment

(MOE)classical and quantum

• MolIDEhomology modelling [http://en.wikipedia.org/wiki/Main_Page#cite_note-11]

• Molsoft ICM [http://en.wikipedia.org/wiki/Main_Page#cite_note-12]

• MOPACquantum

• NAMDclassical

• NOCH

• Oscail X

• PyMOLvisualization

• Q-Chemquantum

• ReaxFF

• ROSETTA

• SCWRLside-chain prediction [http://en.wikipedia.org/wiki/Main_Page#cite_note-13]

• Sirius

• Spartan (software)quantum [http://en.wikipedia.org/wiki/Main_Page#cite_note-14]

• StruMM3D (STR3DI32) [http://en.wikipedia.org/wiki/Main_Page#cite_note-15]

• Sybyl (software)classical [http://en.wikipedia.org/wiki/Main_Page#cite_note-16]

• MCCCS Towhee [http://en.wikipedia.org/wiki/Main_Page#cite_note-17]

• TURBOMOLEquantum

• VMDvisualization

• VLifeMDSIntegrated molecular modelling and simulation

• WHAT IF [http://en.wikipedia.org/wiki/Main_Page#cite_note-18]

• xeo [http://en.wikipedia.org/wiki/Main_Page #cite_note-19]

• YASARA [http://en.wikipedia.org/wiki/Main_Page#cite_note-20]

• Zodiac (software) [http://en.wikipedia.org/wiki/Main_Page#cite_note-21]

D.9.2 External Links

These links relate to important sites on molecular modelling and molecular simulation, but are by no

means exhaustive.

Center for Molecular Modelling at the National Institutes of Health (NIH) (U.S. Government

Agency): http://www.bing.com/search?q¼Center+for+Molecular+Modelling+at++the+National

+Institutes+of+Health+%28NIH%29+%28U.S.+Government+Agency%29&src¼ie9tr
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http://en.wikipedia.org/wiki/Main_Page#cite_note-8
http://en.wikipedia.org/wiki/Main_Page#cite_note-9
http://en.wikipedia.org/wiki/Main_Page#cite_note-10
http://en.wikipedia.org/wiki/Main_Page#cite_note-11
http://en.wikipedia.org/wiki/Main_Page#cite_note-12
http://en.wikipedia.org/wiki/Main_Page#cite_note-13
http://en.wikipedia.org/wiki/Main_Page#cite_note-14
http://en.wikipedia.org/wiki/Main_Page#cite_note-15
http://en.wikipedia.org/wiki/Main_Page#cite_note-16
http://en.wikipedia.org/wiki/Main_Page#cite_note-17
http://en.wikipedia.org/wiki/Main_Page#cite_note-18
http://en.wikipedia.org/wiki/Main_Page#cite_note-19
http://en.wikipedia.org/wiki/Main_Page#cite_note-20
http://en.wikipedia.org/wiki/Main_Page#cite_note-21
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http://www.bing.com/search?q=Center+for+Molecular+Modelling+at++the+National+Institutes+of+Health+%28NIH%29+%28U.S.+Government+Agency%29&src=ie9tr
http://www.bing.com/search?q=Center+for+Molecular+Modelling+at++the+National+Institutes+of+Health+%28NIH%29+%28U.S.+Government+Agency%29&src=ie9tr


Molecular Simulation, details for theMolecular Simulation journal, ISSN: 0892-7022 (print), 1029-

0435 (online): http://www.bing.com/sear ch?q¼Center+for+MolecularModelling+at+the+National

+Institutes+of+Health+%28NIH%29+%28U.S.+Government+Agency%29&src¼ie9tr

The Cheminfo Network and Community of Practice in Informatics and Modelling: http://www.

bing.com/search?q¼The+Cheminfo+Network+and+Community+of+Practice+in+Informatics

+and+Modelling.&src¼ie9tr

D.9.3 Useful Homepages

These sites relate to situations wherein extensive work on protein crystallography is being persued.

Again, it is not an exhaustive list.

York Structural Biology Laboratory

http://www.york.ac.uk/chemistry/research/groups/ ysbl/

COSMOS—Computer Simulation of Molecular Structures

http://www.mybiosoftware.com/3d-molecular-model/1968

Accelrys Inc.

http://accelrys.com/

http://www.ccp4.ac.uk

http://www.ccp14.ac.uk

http://epsrc.ac.uk/Pages/default.aspx

http://ww1.iusr.org/sincris-top/logicel/Imno.html#O

Appendix D 677

http://www.bing.com/search?q=Center+for+MolecularModelling+at+the+National+Institutes+of+Health+%28NIH%29+%28U.S.+Government+Agency%29&src=ie9tr
http://www.bing.com/search?q=Center+for+MolecularModelling+at+the+National+Institutes+of+Health+%28NIH%29+%28U.S.+Government+Agency%29&src=ie9tr
http://www.bing.com/search?q=Center+for+MolecularModelling+at+the+National+Institutes+of+Health+%28NIH%29+%28U.S.+Government+Agency%29&src=ie9tr
http://www.bing.com/search?q=Center+for+MolecularModelling+at+the+National+Institutes+of+Health+%28NIH%29+%28U.S.+Government+Agency%29&src=ie9tr
http://www.bing.com/search?q=The+Cheminfo+Network+and+Community+of+Practice+in+Informatics+and+Modelling.&src=ie9tr
http://www.bing.com/search?q=The+Cheminfo+Network+and+Community+of+Practice+in+Informatics+and+Modelling.&src=ie9tr
http://www.bing.com/search?q=The+Cheminfo+Network+and+Community+of+Practice+in+Informatics+and+Modelling.&src=ie9tr
http://www.bing.com/search?q=The+Cheminfo+Network+and+Community+of+Practice+in+Informatics+and+Modelling.&src=ie9tr
http://www.bing.com/search?q=The+Cheminfo+Network+and+Community+of+Practice+in+Informatics+and+Modelling.&src=ie9tr
http://www.york.ac.uk/chemistry/research/groups/ysbl/
http://www.mybiosoftware.com/3d-molecular-model/1968
http://accelrys.com/
http://www.ccp4.ac.uk
http://www.ccp14.ac.uk
http://epsrc.ac.uk/Pages/default.aspx
http://ww1.iusr.org/sincris-top/logicel/Imno.html#O


Appendix E: Structure Invariants, Structure
Seminvariants, Origin and Enantiomorph
Specifications

E.1 Structure Invariants

As we have seen in Sect. 2.2.2, there is an infinite number of ways in which a crystal unit cell may be

chosen. Conventionally, however, any crystal lattice is represented by one of the 14 Bravais lattices

described in Sect. 2.2.3. For a given unit cell, the origin of the x, y, and z coordinates can be relocated

for convenience, as we have seen in Sect. 2.7.7 for space group P212121. The possible effects of such

origin transformations were mentioned in Sect. 6.6.4, when discussing of Fourier transforms. As a

general rule, the origin of a given space group is chosen with respect to its symmetry elements; for

example, in centrosymmetric space groups the origin is specified on a center of symmetry. Conven-

tions associated with the specification of the origin are fully described for all space groups in the

literature. With no symmetry elements apart from the lattice translations, space group P1 is the

exception and can accommodate an origin of coordinates in any arbitrary position. We discuss here

relationships between structure factors that arise from changes in the location of the coordinate origin.

Following (3.63) we write the structure factor in the form

FðhÞ ¼
X

j

fj expði2ph � rjÞ (E.1)

where h represents a reciprocal lattice vector corresponding to reflection hkl and rj is the real space
vector corresponding to the point x, y, z, so that h � rj ¼ hxj þ kyj þ lzj. If the origin is changed to the

point r0, then (E.1) becomes

FðhÞr0 ¼
X

j

fj exp½i2ph � ðrj � r0Þ�

¼
X

j

fj expði2ph � rjÞ expð�i2ph � r0Þ
(E.2)
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Thus, we can write

FðhÞr0 ¼ FðhÞ expð�i2ph � r0Þ (E.3)

so that

jFðhÞr0 j ¼ jFðhÞj (E.4)

and

fðhÞr0 ¼ fðhÞr � 2ph � r0 (E.5)

Thus, a change of origin leaves the amplitude of the structure factor unaltered, but changes the

phase by � 2ph � r0whatever the value of r0. The relationships (E.3)–(E.5) apply equally to the

normalized structure factors E(hkl) that are used in direct methods of phase determination. We can

illustrate (E.3)–(E.5) by a simple example.

Consider an atom at 0.3, 0.2, 0.7 in space group P1. For a reflection, say 213, and taking f as 1.0,

we find A0
1 ¼ 0.8090, B0

1 ¼ �0.5878, so that jF1j ¼ 1 and f1 ¼ 324�. We change the origin to the

point 0.1, 0.1, 0.1, whereupon A0
2 ¼ �0.3090, B0

2 ¼ 0.9511, so that jF2j ¼ 1 and f2 ¼ 108�.
Finally, using the third term in (E.5), we find Df ¼ 2ph � r0
¼ 360 ½2 � ð0:1Þ þ 1� ð0:1Þ þ 3�ð0:1Þ� ¼ 216, which is equal to f1 � f2. (Remember to set

tan�1(B0/A0) in the correct quadrant according to the signs of A0 and B0, and to evaluate f in the

positive range 0–2p.)

The values of jEj are determined by the structure, whatever the origin, whereas the values of f are

determined by both the structure and the choice of origin. Thus, the values of jEj alone cannot determine

unique values for the phases.We need a process to obtain phases from the values of jEj that incorporates a
specification of the origin. Consider the product of three normalized structure factors in the absence of

symmetry, that is, for space group P1. From (3.15), we can write

E1E2E3 ¼ jE1jjE2jjE3j exp½iðfðh1Þ
þ ðfðh2Þ þ ðfðh3Þ� (E.6)

If the origin is moved from 0,0,0 to a point r0, it follows from the foregoing that (E.6) becomes

E1E2E3 ¼ jE1jjE2jjE3j exp½�i2pðh1 þ h2 þ h3Þ � r0� (E.7)

Thus, the condition that the product of three structure factors be a structure invariant N3, that is, a

change of origin has no effect on its value in the non-centrosymmetric space group P1, is that

h1 þ h2 þ h3 ¼ 0 (E.8)

Equation (E.8) is a triplet structure invariant; it may be extended to a quartet such that the product

of four structure factors is a structure invariant N4 if

h1 þ h2 þ h3 þ h4 ¼ 0 (E.9)
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and more:

NÞn ¼
Yn

j¼1

EðhjÞ (E.10)

provided that the condition

Xn

j¼1

hj ¼ 0 (E.11)

For n ¼ 1, the structure factor, which is a structure invariant, is E(0) and has a phase of zero for any

origin. For n ¼ 2, h1 + h2 ¼ 0, or h2 ¼ �h1 so that E1E2 ¼ E(h1)E(�h1) ¼ jE(h1)j2, which is phase

independent. For n > 2, we have (E.10) and (E.11) as already discussed. For n ¼ 3 or more, we have

equations such as (E.8) and (E.9).

E.2 Structure Seminvariants

Equations such as (E.8) apply also to P�1, because the sums of the indices, as in (E.13) below, are each

zero. However, consider next a structure with symmetry P�1, wherein the origin is chosen, normally,

on one of the eight centers of symmetry unique to the unit cell. In the presence of symmetry elements,

it is always desirable to choose the origin on one of these elements, albeit such a choice may not

define the origin point uniquely, such as on the twofold axis parallel to the line [0,y,0] in space group

P2.

The normally permitted origins in P�1 are listed in Table 8.2. In general, the sign of E(hkl) depends

on the choice of origin except for reflection in the group eee, for which reflections6

ðhklÞ modulo2 ð222Þ ¼ ð000Þ (E.12)

Such reflections are structure seminvariants (semi-invariants) since their signs (phases) do not

change for variation among the permitted origins. If three structure factors are chosen from different

parity groups, other than eee, such that

h1 þ h2 þ h3; k1 þ k2 þ k3; l1 þ l2 þ l3 modulo ð222Þ (E.13)

then the product of the three structure factors is not a structure seminvariant (semi-invariant), and can

be either positive or negative. An arbitrary sign can be chosen for each such structure factor in the

product, and for one of the eight possible origins the choice will be true, and the origin is fixed

according to that choice. Thus, for example, the reflections 10�6, 40�1, and 71�4 may be chosen to

specify an origin, and if we allocate a + sign arbitrarily to each, the origin is defined as 0, 0, 0. If we

choose instead the reflections 10�6, 40�1, and �507, then the origin is not specified uniquely because the

determinant is less than or equal to zero. The triplet is not linearly independent (see E.14 and text):

6 a � b modulo n if a � b ¼ kn, where k is an integer.
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1 þ 4 � 5 ¼ 0, 0 þ 0 þ 0 ¼ 0 and �6 � 1 þ 7 ¼ 0, or oee + eeo + oeo ¼ oee, which does not

constitute linear independence. The relation h1 + h2 + h3 ¼ 0 modulo (222) has no special signifi-

cance in space group P1.

The structure invariants and structure seminvariants have been well described in the literature for

all space groups.7–11

E.2.1 Difference Between Structure Invariant and Structure Seminvariant

Consider two triplets Eð3�32ÞEð012ÞEð�32�4Þ and Eð3�32ÞEð012ÞEð344Þ. The first product is a structure
invariant because the sums h1 + h2 + h3, k1 + k2 + k3 and l1 + l2 + l3 are each equal to zero. It is a

structure invariant inP1 andP�1wherever the origin point is placed in the unit cell. The second product is

a structure seminvariant because the sums h1 + h2 + h3, k1 + k2 + k3 and l1 + l2 + l3 are each equal to

zero modulo (2), and its sign (phase) is not changed by moving to another permitted origin in P�1, but it

would change if the origin were moved to a general point in the unit cell. Note that in both examples,

these reflections would not serve to specify an origin because the parities sum to eee in each case.

E.3 Origin Specification

From the foregoing, we see that for space group P1, which contains no symmetry other than that of

the basic translations, three reflections that form a linearly independent combination will specify the

origin. The three reflections E(h1k1l1), E(h2k2l2), and E(h3k3l3) will specify an origin provided that the

determinant D satisfies the condition

D ¼
h1 k1 l1
h2 k2 l2
h3 k3 l3

�

�

�

�

�

�

�

�

�

�

�

�

> 0 (E.14)

or D modulo (222) ¼ 	1; the determinant is evaluated in the normal manner.

Normally, the position 0, 0, 0 is chosen for the origin in P1; there is no purpose in choosing any

other site. The three independent phases can be given values between 0 and 2p; generally they are

chosen as zero.

In any space group of symmetry greater than 1, the origin is normally chosen on that symmetry

element. We have discussed the case for P�1 sufficiently for our purposes in Sect. 8.2.2.

E.4 Choice of Enantiomorph

In any of the 65 enantiomorphous space groups listed in Table 10.1, there exists the need to specify a

molecular enantiomorph. From (E.1) we can write

7Hauptman H, Karle J (1953) The solution of the phase problem I, ACA monograph 3.
8 idem. (1956) Acta Crystallogr 9:45.
9 idem. ibid. (1959) 12:93.
10Karle J, Hauptman H (1961) ibid. 14:217.
11Lessinger L, Wondratschek H (1975) ibid. A31:382.
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jEðhÞj ¼
X

j

Zj exp½i2pðh � rjÞ�
�

�

�

�

�

�

�

�

�

�

(E.15)

If each rj is replaced by its inverse, the right-hand side of (E.15) and, hence, jE(h)j remain unchanged.

The jEj values relate to both a structure and its inverse, or roto-reflection, through a point. If this point is
the origin 0, 0, 0, then the structure factors are E(h) and its conjugate E*(h) and its phases are f(h) and
�f(h). Thus, the two values for a structure invariant differ only in sign.

If a structure invariant phase is 0 or p, then it has the same value for both enantiomorphs. If a

structure invariant is enantiomorph-sensitive, then its value differs significantly from 0 or p, and its

value may be specified arbitrarily within this range, generally a value of p/2, p/4, or 3p/4. Of course,

the structure determined may not correspond to the true chemical configuration and that problem must

be addressed (see Sect. 7.6.1). The selection of an enantiomorph has been discussed in a practical

manner through the structure analysis in Sect. 8.2.10.
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Tutorial Solutions

Solutions 1

1.1. Extend CA to cut the x0 axis in H. All angles in the figure are easily calculated (OA = OC = x).

EvaluateOP, or a0 (1.623x), andOH (2.732x). ExpressOH, the required intercept on the x0 axis,
as a fraction of a0 (1.683). The intercept along b0 (and b) remains unaltered, so that the fractional

intercepts of the line CA are 1.683 and 1/2 along x0 and y respectively. Hence, CA has the Miller

indices (0.5941, 2), or (1, 3.366), referred to the oblique axes.

1.2. (a) h = a/(a/2) = 2, k ¼ b=ð�b=2Þ ¼ �2, l = c/1 = 0; hence ð2 �2 0Þ. Similarly,

(b) (164) (c) ð0 0 �1Þ (d) ð3 �3 4Þ (e) ð0 �4 3Þ (f) ð�4 2 �3Þ
1.3. Use (1.6), (1.7), and (1.8). More simply, set down the planes twice in each of the two rows,

ignore the first and final indices in each row, and then cross-multiply, similarly to the evaluation

of a determinant.

1 2 3 1 2 3

� � �
0 1 1 0 1 0

Hence, U = 2 � (�3) = 5, V = 0 � 1 = �1, W = �1 � 0 = �1 so that the zone symbol is

½5 �1 �1�. If we had written the planes down in the reverse order, we would have obtained ½�5 1 1�.
(What is the interpretation of this result?) Similarly:

(b) ½3 �5 2� (c) ½�1 �1 �1� (d) [110]
1.4. Use (1.9) or, more simply, set down the procedure as in Solution 1.3, but with zone symbols,

which leads to ð5 2 3Þ. This plane and ð5 2 3Þ are parallel; [UVW] and ½UVW� are coincident.
1.5. Formally, one could write 422, 4 2 �2, 4 �2 2, 4 �2 �2, �4 2 2, �4 2 �2, �4 �2 2, �4 �2 �2. However, the interac-

tion of two inversion axes leads to an intersecting pure rotation axis, so that all symbols with

one or three inversion axes are invalid. Now �4 2 �2 and �4 �2 2 are equivalent under rotation of the x

and y axes in the x, y plane by 45 deg, so that there remain 422, 4 �2 �2, and �4 2 �2 as unique point

groups. Their standard symbols are 422, 4mm, and �4 2m, respectively. Note that if we do

postulate a group with the symbol 4 2 �2, for example, it is straightforward to show, with the aid

of a stereogram, that it is equivalent to, and a non-standard description of
4

m
mm.

1.6. (a) mmm (b) 2/m (c) 1

1.7. Refer to Fig. S1.1 (a) mmm;mmm � �1 (b) 2=m; 2m � �1
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1.8.

{010} f1 1 0g f1 1 3g
2/m 2 4 4

4 2m 4 4 8

m3 6 12 24

1.9. (a) 1; (b)m; (c) 2; (d)m; (e) 1; (f) 2; (g) 6; (h) 6mm; (i) 3; (j) 2mm. (Did you remember to use the

Laue group for each example?)

1.10. (a) From a thin card, cut out four but identical quadrilaterals; when fitted together, they make a

(plane) figure of symmetry 2. (b) m. (A beer “jug” has the same symmetry.) (c) a, 1=m; b, 3;
4

m
mm; d, 102m; e,

6

m
mm; f, m.

1.11.

(a) �6m 2 D3h

(b) 4

m
mm

D4h

(c) m�3m Oh

(d) �4 3m Td

(e) 3m C3v

(f) 1 C1

(g) 6

m
mm

D6h

(h) mm2 C2v

(i) mmm D2h

(j) mm2 C2v

(k) 2 C2

(l) 3 C3

(m) 1 Ci

(n) 3 S6

(o) 4 S4

(p) m Cs

(q) 6 C3h

(r) 2/m C2h

(s) 222 D2

(t) 422 D4

(u) 4mm C4v

(v) 4 2m D2d

Fig. S2.1
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1.12. Remember first to project the general form of the point group on to a plane of the given form,

and then relate the projected symmetry to one of the two-dimensional point groups. In some

cases, you will have more than one set of representative points in two dimensions.

(a) 2 (b) m (c) 1 (d) m (e) 1 (f) 1 (g) 3 (h)3m (i) 3 (j) 2mm

1.13. (10), (01), ð1 0Þ, ð0 1Þ. They are the same for the parallelogram, provided that the axes are

chosen parallel to the sides of the figure.

1.14. Refer to Fig. S1.2, and from the definition of Miller indices: OA = a/h; OB = b/k. Let the plane

(hkil) intercept the u axis at p; drawDE parallel to AO. SinceOD bisects<AOB, AOD = 60 deg,

so that DODE is equilateral; hence OD ¼ DE ¼ OE ¼ p. Triangles EBD and OBA are similar;

hence EB/DE = OB/OA = (b/k)/(a/h). Now EB = b/k � p, and from the above, it follows that

p ¼ ab=ðakþ bhÞ. Since a = b = u, from the symmetry, u/p = h þ k. We write u/p as�i, since

p lies on the negative side of the u axis (OD = �u/p), so that

i ¼ �ðhþ kÞ

1.15. Refer to Chap. 1, Fig. P1.6; the points ACGEmark out one of the diagonalm planes of the cube.

From the symmetry of the cube, the currents through the resistors have the values as shown.

Hence, any path through the cube from A to G has a resistance of 5/6 O.

Fig. S1.2
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Solutions 2

2.1. The translations, equal to the lengths of the two sides of any parallelogram unit, repeat the

molecule ad infinitum in the two dimensions shown. A two-fold rotation point placed at any

corner of a parallelogram is, itself, repeated by the same translations (see Fig. P2.1).

(i) The two-fold rotation points lie at each corner, half-way along each edge and at the

geometrical center of each parallelogram unit.

(ii) There are fourunique two-fold points per parallelogramunit: one at a corner, one at the center of

each of two non-collinear edges, and one at the geometrical center.

2.2.

(i) (ii)

(a) 4mm 6mm

(b) Square Hexagonal

(c) (i) If unit cell is centered, then another square can be drawn to form a conventional unit cell

of half the area of the centered unit cell.

(ii) If unit cell is centered it is no longer hexagonal; each point is degraded to the 2mm

symmetry of the rectangular system, and may be described by a conventional p unit cell.

The transformation equations in each example are:

a0 ¼ a=2þ b=2; b0 ¼ �a=2þ b=2

Note. A regular hexagon of “lattice” points with another point placed at its center is not a

centered hexagonal unit cell: it represents three adjacent p hexagonal unit cells in different

relative orientations. (Without the point at the center, the hexagon of points is not even a

lattice.)

2.3. A C unit cell may be obtained by the transformations:

aC ¼ aF; bC ¼ bF; cC ¼ �aF=2þ cF=2:

The new c dimension is obtained from evaluating the dot product:

ð�a=2þ c=2Þ � ð�a=2þ c=2Þ

to give c0 5.7627 Å; a and b are unchanged. The angle b0 in the transformed unit cell is obtained

by evaluating

cos b 0 ¼ a · ð�a=2þ c=2Þ=a 0c 0 ¼ ð�aþ c cos bÞ=ð2c 0Þ

so that b0 = 139.29�.
VCðC cellÞ=VFðF cellÞ ¼ 1

2
. (Count the number of unique lattice points in each cell: each lattice

point is associated with a unique portion of the volume.)

2.4. (a) The symmetry is no longer tetragonal, although the lattice is true: it is now orthorhombic.

(b) The tetragonal symmetry is apparently restored, but the lattice is no longer true: the lattice

points are not all in the same environment in the same orientation.

(c) A tetragonal F unit cell is formed and represents a true tetragonal lattice.
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However, tetragonal F is equivalent to tetragonal I (of smaller volume) under the transfor-

mation

aI ¼ aF=2þ bF=2; bI ¼ �aF=2þ bF=2; c0I ¼ cF

2.5. F unit cell: r2½312�=Å
2 ¼ r½312� � r½31�2� ¼ 32a2þ12b2þ22c2þ2 � 3 � ð�2Þ � 6� 8� cos 110, so

that r = 28.64 Å. To obtain the value in the C unit cell, we could repeat this calculation with

the dimensions of the C unit cell, leading to 28.64 Å. Alternatively, we could use the

transformation matrix to obtain the F equivalent of ½31�2�c, and then use the original F cell

dimensions on it. The matrix for this F cell in terms of the C is:

S ¼
1 0 0

0 1 0

1 0 2

2
4

3
5 so that ðS�1ÞT ¼

1 0 � 1
2

0 1 0

0 0 1
2

2
4

3
5

Then, ½UVW�F¼ðS�1ÞT �½UVW�C¼½41�1�F, so that r½41�1�F ¼ 28:64 Å .

2.6. It is not an eighth crystal system because the symmetry at each lattice point is �1. It is a special

case of the triclinic system in which the g angle is 90�.
2.7. (a) Plane group c2mm is shown in Fig. S2.1, with the coordinates listed below it.

(b) Plane group p2mg is shown in Fig. S2.2; this diagram also shows the minimum number of

motifs p, V, and Z.

Note that if the symmetry elements are arranged with 2 at the intersection ofm and g, they

do not form a group. Attempts to draw such an arrangement lead to continued halving of the

repeat distance parallel to the g line.

Fig. S2.1
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2.8. (a)

Space group P21/c is shown in Fig. S2.3, on the (010) plane.

(b) Figure S2.4 shows the molecular formula of biphenyl, excluding the hydrogen atoms.

The two molecules in the unit cell lie on any set of special positions, Wyckoff (a)–(d),

with the center of the C(1)–C(1)0 bond on �1. Hence, the molecule is centrosymmetric and

planar. The planarity imposes a conjugation on the molecule, including the C(1)–C(1)0

bond. (This result is supported by the bond lengths C(1)–C(1)0 
 1.49 Å and Carom–-

Carom 
 1.40 Å. In the free-molecule state, the rings rotate about the C(1)–C(1)0 bond to

the energetically favorable conformation with the ring planes at approximately 45� to

each other).

Fig. S2.2

Fig. S2.3
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2.9. Each pair of positions forms two vectors, between the origin and the points: 	{(x2 � x1),

(y2 � y1), (z2 � z1)}. Thus, there is a single vector at each of the positions:

2x; 2y; 2z; 2�x; 2�y; 2�z; 2x; 2�y; 2z; 2�x; 2y; 2�z

and two superimposed vectors at each of the positions:

2x; 1=2; 1=2 þ 2z; 0; 1=2 þ 2y; 1=2; 2�x; 1=2; 1=2 � 2z; 0; 1=2 � 2y; 1=2

Note: � ð2x; 1=2; 1=2 þ 2zÞ � 2�x; 1=2; 1=2 �2z

2.10.

Since �x; �y; �z and 2p � x, 2q � y, 2r � z are one and the same point, p = q = r = 0, so that the

three symmetry planes intersect in a center of symmetry at the origin.

Otherwise, by applying the half-translation rule, T ¼ a=2þ b=2þ a=2 þb=2 ¼ 0. Hence,

the center of symmetry lies at the intersection of the three symmetry planes.

2.11. Figure S2.5 shows space group Pbam.

Fig. S2.4

Fig. S2.5
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Coordinates of general equivalent positions

x; y; z; 1=2 � x; 1=2 � y; z; 1=2 þ x; �y; z; �x; 1=2 þ y; z;

x; y; �z; 1=2 � x; 1=2 � y; �z; 1=2 þ x; �y; �z; �x; 1=2 þ y; �z

Coordinates of centers of symmetry

1=4; 1=4; 0; 1=4; 3=4; 0; 3=4; 1=4; 0; 3=4; 3=4; 0;

1=4; 1=4; 1=2; 1=4; 3=4; 1=2; 3=4; 1=4; 1=2; 3=4; 3=4; 1=2

Change of origin to 1
4
; 1
4
; 0:

(i) Subtract 1
4
; 1
4
; 0 from the above set of coordinates of general equivalent positions.

(ii) Let x0 ¼ x� ¼, y0 = y � ¼, and z0 = z.

(iii) After making all substitutions, drop the subscript, and rearrange to give:

	 fx; y; z; x; y; z; 1=2 þ x; 1=2 � y; z; 1=2 � x; 1=2 þ y; zg

This result may be confirmed by redrawing the space group with the origin on �1.

2.12. Figure S2.6 shows two adjacent unit cells of space group Pn on the (010) plane. In the

transformation to Pc, only the c spacing is changed:

cPc
¼ �aPn

þ cPn

Hence, Pn � Pc. By interchanging the labels of the x and z axes, which are not constrained by

the two-fold symmetry, we see that Pc � Pa. Note that it is necessary to invert the sign on b, so
as to preserve a right-handed set of axes. The translation a/2 in the C unit cell in Cmmeans that

Ca � Cm. Since there is no half-translation along c in Cm, Cm is not equivalent to Cc, although

Cc is equivalent to Cn. If the x and z axes in Cc are interchanged, with due attention to b, the
symbol becomes Aa. (The standard symbols among these groups are Pc, Cm, and Cc.)

2.13. P2/c

(a) 2/m; monoclinic.

(b) Primitive unit cell; c-glide plane ⊥ b; two-fold axis jj b.
(c) h0l: l = 2n.

(d) 12/m1 P . c.

Fig. S2.6
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Pca21
(a) mm2; orthorhombic.

(b) Primitive unit cell; c-glide plane ⊥ a; a-glide plane ⊥ b; 21 axis jj ic.
(c) 0kl: l = 2n; h0l: h = 2n.

(d) mmm P c a .

Cmcm

(a) mmm; orthorhombic.

(b) C-face centered unit cell; m plane ⊥ a; c-glide plane ⊥ b; m plane ⊥ c.

(c) hkl: h + k = 2n; h0l :l = 2n.

(d) mmm C . c .

P�421c

(a) �42m; tetragonal.

(b) Primitive unit cell; �4 axis jj c; 21 axes jj a and b; c-glide planes ⊥ [110] and ½1�10�.
(c) hhl: l = 2n; h00: h = 2n.

(d)
4

m
mm P . 21 c

P6122

(a) 622; hexagonal.

(b) Primitive unit cell; 61 axis jj c; two-fold axes jj a, b, and u; two-fold axes 30� to a, b, and u,
and in the (0001) plane.

(c) 000 l: l = 6n (Similarly for P6522).

(d)
6

m
mm P61 . . .

Pa�3

(a) m�3; cubic.

(b) Primitive unit cell; a-glide plane ⊥ b (equivalent statements are b-glide plane ⊥ c, c-glide

plane ⊥ a); three-fold axes jj [111], ½1�11�, ½�111�, and ½�111�.
(c) 0kl: k = 2n; (equivalent statements are h0l: l = 2n; hk0: h = 2n.)

(d) m�3 Pa.

2.14. Plane group p2; the unit cell repeat along b is halved, and g has the particular value of 90�.
Note that, because of the contents of the unit cell, it cannot belong to the rectangular

two-dimensional system.

2.15. (a) Refer to Fig. 2.24, number 10, for a cubic P unit cell (vectors a, b, and c).
(b) Tetragonal P

aP = b/2 þ c/2
bP = �b/2 þ c/2
cP = a

(c) Monoclinic C

aC = c
bC = �b
cC = a

(d) Triclinic P

aT = a
bT = b/2 þ c/2
cT = �b/2 þ c/2
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2.16.
�4 along z m?b

0 1 0

�1 0 0

0 0 �1

2
64

3
75

1 0 0

0 �1 0

0 0 1

2
64

3
75

R1 R2

R2R1h = h0. Forming first R3 = R2R1, remembering the order of multiplication, we then

evaluate

0 1 0

1 0 0

0 0 �1

2
64

3
75

h

k

l

2
64

3
75 ¼

k

h

�l

2
64

3
75

R3 h h0

that is, R3h = h0, so that h0 ¼ kh�l; R3 represents a two-fold rotation axis along [110].

2.17. The matrices are multiplied in the usual way, and the components of the translation vectors are

added, resulting in

�1 0 0

0 �1 0

0 0 1

2
4

3
5þ

1=2
1=2
1=2

2
4

3
5

which corresponds to a 21 axis along 1=4;½ 1=4; z�. The space group symbol is Pna21.

2.18. (a) We can see from the hexagonal stereograms (Fig. 1.32) that 2 32 � 6. Hence the matrix for

63 about [0, 0, z] is

1 1 0

1 0 1

0 0 1

2
4

3
5þ

0

0
1=2

2
4

3
5

and that for the c- glide is

0 1 0

1 0 0

0 0 1

2
4

3
5þ

0

0
1=2

2
4

3
5

(b) Since the sum of the translation vectors of 63 and c is zero, the symbol � represents an m

plane; the point-group symbol is 6mm and the space-group symbol is P63cm.

(c) The matrix for the m plane in this space group is given by (remember to multiply the matrices

and add the translation vectors)
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0 1 0

�1 0 0

0 0 1

2
664

3
775þ

0

0

1=2

2
664

3
775

1 1 0

1 0 0

0 0 1

2
664

3
775þ

0

0

1=2

2
664

3
775

63 c

¼

1 0 0

1 1 0

0 0 1

2
664

3
775þ

0

0

0

2
664

3
775

m

(d) Refer to Fig. S2.7; not all symmetry symbols are entirely standard (red = c glide; m =

mirror plane). The general equivalent positions are:

12 d 1 x; y; z; x� y; x; 1=2 þ z; y; x� y; z; x; y; 1=2 þ z; y� x; x; z; y; y� x; 1=2 þ z;

y; x; 1=2 þ z; x; y� x; z; y� x; y; 1=2 þ z; y; x; z; x; x� y; 1=2 þ z; x� y; y; z:

There are three sets of special equivalent positions:

6 c m x; 0; z; x; x; 1=2 þ z; 0; x; z; x; 0; 1=2 þ z; x; x; z; 0; x; 1=2 þ z

4 b 3 1=3; 2=3; z; 2=3; 1=3; z; 1=3; 2=3; 1=2 þ z; 2=3; 1=3; 1=2 þ z

2 a 3m 0; 0; z; 0; 0; 1=2 þ z

Wyckoff site Limiting conditions

d hkil none

hh2hl none

hh0l none

c as above

b as above + hkil: l = 2n

a as for site b

[Courtesy Professor Steven Dutch, University of Wisconsin-Green Bay]

Fig. S2.7
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2.19. From Chap. 2, Fig. 2.11, it follows that

aR ¼ 2aH=3þ bH=3þ cH=3

bR ¼ �aH=3þ bH=3þ cH=3

cR ¼ �aH=3� 2bH=3þ cH=3

Following Sect. 2.2.3, we have aR � aR ¼ ð2aH=3þ bH=3þ cH=3Þ� ð2aH=3þ bH=3þ cH=3Þ ¼

3a2=9þ c2=9 ¼ 12 Å2, so that aR ¼ 3.464 Å. Similarly, cos aR ¼ ð2aH=3þ bH=3þ cH=3Þ�

ð�aH=3þ bH=3þ cH=3Þ=a2R, so that aR = 51.32�. (Remember that a = b = c and a = b = g in

a rhombohedral unit cell.)

2.20. The transformation matrix S for Rhex ! Robv is given, from the solution to Problem 2.19, by

S ¼
2=3 1=3 1=3

�1=3 1=3 1=3

�1=3 �2=3 1=3

2
64

3
75

and its inverse is

S�1 ¼
1 �1 0

0 1 �1

1 1 1

2
4

3
5

so that the transpose becomes

ðS�1ÞT ¼
1 0 1
�1 1 1

0 �1 1

2
4

3
5

Hence (13*4)hex is transformed to ð32�1Þobv, and ½1�2*3�hex to [405]obv.

Fig. S2.8
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2.21. Figure S2.8 illustrates the reflection of x, y, z across the plane (qqz), where OC = OW = q, so

that OCW = 45� Q is the point q � x, q � y, z, and the remainder of the diagram is self-

explanatory.

As an alternative procedure, we know that in point group 4mm, 4my = mdiag. Hence, x, y is

transformed to �y, �x by the operation mdiag. If we now move the origin to the point �q, �q, it

follows that �y, �x then becomes q � y, q � x.

2.22.

Diffraction symbol Point group

2 m 2/m

12/m1 P · · · P2 Pm P2/m

12/m1 P · c · Pc P2/c

12/m1 P · 21 · P21 P21/m

12/m1 P · 21/c · P21/c

12/m1 C · · · C2 Cm C2/m

12/m1 C · c · Cc C2/c

2.23. (a) From the matrix

1=2 0 0

0 1 0

0 0 1

2
4

3
5; (210) becomes (110) and may be confirmed by drawing

to scale.

(b) From the matrix

1 0 0

0 1=2 0

0 0 1

2
4

3
5; (210) becomes (410), after clearing the fraction.

By drawing to scale, we see that the original (210) plane is now the second plane from the

origin in the (410) family of planes; d(410)new = d(210)old/2 under the given transforma-

tion. In each case, the Miller index corresponding to the unit cell halving is also halved.

2.24. In Cmm2, the polar (two-fold) axis is normal to the centered plane, but parallel to it in Amm2.

Cmmm and Ammm are equivalent by interchange of axes, so that they are not two distinct

arrangements of points.

2.25. (a) a0 = 4.850, b0 = 6.150, c0 = 7.963 Å

(b) (12,12,7)

The following matrix may be helpful

ðM�1ÞT ¼
1=2 1=4 1=2
1=2 0 1

0 1 2

2
4

3
5

(c) ½338�
(d) 0.09486, 0.008930, 0.3120 Å-1

(e) x0 = �0.2192, y0 = 0.6745, z0 = �0.5645

Solutions 3

3.1. dl/Å = 0.0243 (1 � cos45) = 0.00712. Energy/J ¼ hc/(1 + 0.00712) ¼ 1.97� 10�15.

3.2. Set an origin at the center of a line joining the two scattering centers; then the coordinates are

	l. The amplitude of the separated points Al ¼ 2 cosð2p� l� 2l�1 sin y� cos yÞ ¼
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2 cosð2p sin 2yÞ, the angle between r and S being y. For the two centers at one point (r = 0) the

amplitude Ap = 2. Hence:

2y Ratio Al/Ap Intensity

0 1 1

30, 150 �1 1

60, 120 0.666 0.444

90 1 1

180 1 1

3.3. We proved in the text that f1s ¼ c41=ðc41 þ p2S2Þ2 ; where c1=(4�0.3)/0.529 = 6.994 Å�1 and

S = 2(sin y)/l. For the 2s contribution, the integral
Ð1
0

x3 expð�axÞ sin bx dx evaluates to

4(a3b � ab3)/(a2 + b2)4, so that f2s, becomes ½2pc52=ð96pSÞ�� 3�16pSc2½c
2
2 � ð2pSÞ2�=½c2 þ

4p2S2�4 ¼ c62½c22 � 4p2S2Þ=ðc22 þ 4p2S2Þ4; where c2 = (4 � 2.05)/0.529 = 3.685 Å�1. Hence:

Scattering formula Exponential formula

sin y=lZ f1s f2s (2f1s þ 2f2s) f

0.0 1.000 1.000 4.000 4.002

0.2 0.938 0.116 2.108 2.060

0.5 0.692 �0.0082 1.368 1.360

3.4. Photon energy = hv= hc/l = hc/(hc/eV) = 1.6021� 10�19� 30000 = 4.806� 10�15 J.

3.5. Mr(C6H6) = 78.11. Mr(C)/Mr(C6H6) = 0.154; Mr(H)/Mr(C6H6) = 0.0129. Hence, m = 1124

[0.154 � 0.46 � 6) + (0.0129 � 0.04 � 6)] = 481.2 m�1, so that the transmittance (I/I0) is

exp(�481.2 � 1 � 10�3) = 0.618, or 61.8 %.

3.6. It is necessary to note carefully the changes in sign of both A(hkl) and B(hkl). Thus, the

following diagram is helpful, together with the changes in sign of the argument of the

trigonometric functions. For example, if both A and B change sign, f is not unaltered by

canceling the signs, but becomes p + f

P21: Use (3.80)–(3.83) for k even and k odd

k ¼ 2n : fðhklÞ ¼ �fð�h �k �lÞ ¼ �fðh �k lÞ ¼ fð�h k �lÞ 6¼ fð�hklÞ
fð�hklÞ ¼ �fðh �k �lÞ ¼ fðhk�lÞ ¼ �fð�h �k lÞ

k ¼ 2nþ 1 : fðhklÞ ¼ �fð�h �k �lÞ ¼ p� fðh�klÞ ¼ pþ fð�h k �lÞ 6¼ fð�h k lÞ
fð�hklÞ ¼ �fðh �k �lÞ ¼ pþ fðhk �lÞ ¼ p� fð�h �k lÞ
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Pma2: Use (3.94) and (3.95) for h even and odd

h even : fðhklÞ ¼ �fð�h �k �lÞ ¼ fð�h k lÞ ¼ fðh �k lÞ ¼ �fðh k �lÞ ¼ �fðh �k �lÞ
¼ �fð�h k �lÞ ¼ fð�h �k lÞ

h odd : fðhklÞ ¼ �fð�h �k �lÞ ¼ pþ fð�h k lÞ ¼ pþ fðh �k lÞ ¼ �fðh k �lÞ
¼ p� fðh �k �lÞ ¼ p� fð�h k �lÞ ¼ fð�h �k lÞ

3.7. From the equations developed in Sects. 3.4 and 3.4.1, but taking the reciprocal space constant k as

the X-ray wavelength of 1.5418 Å, we find:

a* = 0.30314, b* = 0.23115, c* = 0.14096, a* = 60.182, b* = 55.878, g* = 47.591�.
V = 618.916 Å3; V* = 5.9218 � 10�3. The reciprocal unit-cell lengths are dimensionless here,

and V* may be calculated as l3/V.

3.8. If r1 and r2 are the distances of the two atoms from the origin, then we use r1 = x1a + y1b +

z1c and r2 = x2a + y2b + z2c. Then r1 = (r1·r1)
1/2 (not forgetting the cross-products), and

similarly for r2. The angle y at the origin is given by cos y = r1·r2/(r1 r2). Thus, the two

distances are 2.986 and 4.310 Å, and y = 45.58�.
3.9. The resultant R is obtained in terms of the amplitude jRj and phase f from

Rj j¼ ½ðSjA cosfjÞ2 þ ðSjB sinfjÞ2�
1=2 ¼ ½ð�21:763Þ2 þð�22:070Þ2�1=2 ¼ 31:00, and f =

tan�1[(�22.070)/(�21.763)] = 45.40�, but because both the numerator and denominator are

negative the phase angle lies in the third quadrant, and 180� must be added to give f = 225.40�.
3.10. A-centering implies pairs of positions x, y, z and x; 1

2
þ y; 1

2
þ z. Hence, we write

FðhklÞ ¼
Xn=2

j¼1

fjfexp½i2pðhxj þ kyj þ lzjÞ� þ exp½i2pðhxj þ kyj þ lzj þ k 2þ l 2== Þ�g

The terms within the braces {} may be expressed as exp[i2p(hxj + kyj + lzj)]{1 + exp[i2p(k/

2 + l/2)]} which is 2 for (k + l) even, and zero for (k + l) odd (einp = 1/0 for n even/odd).

Hence, the limiting condition is hkl: k + l = 2n.

3.11. The coordinates show that the structure is centrosymmetric. Hence, Fðhk0Þ ¼
Aðhk0Þ ¼ 2½gP cos 2pðhxP þ kyPÞ þgQ cos 2pðhxQ þ kyQÞ�

hk A(hk) hk A(hk) hk A(hk) hk A(hk)

5 0 2(�gP + gQ) 0 5 2(gP�gQ) 5 5 2(�gP � gQ) 5 10 2(�gP + gQ)

For gP = 2gQ, f (0 5) = 0, f (5 0) = f (5 5) = f (5 10) = p.

3.12. F(hk0) = 4gU cos 2p[kyU + (h + k)/4] cos 2p(h + k)/4 which, because (h + k) is even in the

data, reduces to F(hk0) = 4gU cos 2p kyU.

hk0 jF(hk0)y=0.10j jF(hk0)y=0.15j
020 86.5 86.5

110 258.9 188.1

Hence, 0.10 is the better value for yU in terms of the two reflections given.

3.13. The shortest U–U distance dU–U is from 0; y; 1
4
to 0; �y; 3

4
, so that dU–U = [(0.20b)2 + (0.5

c)2]1/2 = 2.76 Å.

3.14. (a) P21, P21/m; (b) Pa, P2/a; (c) Cc, C2/c; (d) P2, Pm, P2/m.
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3.15. (a) P21212; (b) Pbm2, Pbmm; (c) Ibm2, Ibmm. Note that Ibm2, for example, might have been

named Icm21: normally, where more than one symmetry element lies in a given orientation, the

rules of precedence in naming is m > a > b > c > n > d and 2 > 21. In a few cases the rules

may be ignored. For example, I4cm could be named I4bm, but with the origin on 4, the c-glides

pass through the origin, and the former symbol is preferred.

Writing example (c) with the redundancies indicated, we have

hkl: h + k + l = 2n

0kl: k = 2n, (l = 2n) or l = 2n, (k = 2n)

h0l: (h + l = 2n)

hk0: (h + k = 2n)

h00: (h = 2n)

0k0: (k = 2n)

00l: (l = 2n)

3.16. (a)

(i) h0l: h = 2n; 0k0: k = 2n.

(ii) h0l: l = 2n

(iii) hkl: h + k = 2n

(iv) h00: h = 2n

(v) 0kl: l = 2n; h0l : l = 2n

(vi) hkl : h + k + l = 2n; h0l: h = 2n

Other space groups with the same conditions: (i) None; (ii) P2/c; (iii) C2, C2/m; (iv) None;

(v) Pccm; (vi) Ima2 (I2am)

(b) hkl: None

h0l: h + l = 2n

0k0: k = 2n

(c) C2/c; C222

3.17. (a) In the given setting x0 and a are normal to a c-glide, y0 and �c are normal to an a-glide, and z0

and b are normal to a b-glide. In the standard setting, x is along x0 and the plane normal to

has its glide in the new y direction, so that it is a b-glide; y is along z0 and the plane normal

to it is a glide now in the direction of z, a c glide; z is along �y0 and the plane normal to it is

now an a-glide. Thus, the symbol in the standard setting is Pbca.

(b) In Pmna the symmetry leads to translations of (c + a)/2 and a/2, overall c/2, and in Pnma

the translations arising are a/2, b/2, and c/2. Hence, the full symbol for Pmna is P
2

m

2

n

21

a
,

whereas that for Pnma is P
21

n

21

m

21

a
.

3.18. mR = 2.00, so that A = 10.0. Hence, jF(hkl)j2 = I � Lp�1 � A = 56.3 � 0.625 � 1.1547

� 10.0 = 406.3.

3.19. ðaÞ C6h ðbÞ
6

m
11; P

63

m
11 (c) Hexagonal/Trigonal (d) Hexagonal (e) Hexagonal (f) P.

3.20. In this example, we need the A and B terms of the geometrical structure factor. From the

coordinates of the general equivalent position, we have

A ¼ cos 2pðhxþ kyþ lzÞ þ cos 2pð�hx� kyþ lzÞ þ cos 2pð�hyþ kxþ lzÞ þ cos 2pðhy� kxþ lzÞ

þ cos 2p hx� kyþ lzþ hþ k þ l

2

� �

þ cos 2p �hxþ kyþ lzþ hþ k þ l

2

� �

þ cos 2p hyþ kxþ lzþ hþ k þ l

2

� �

þ cos 2p �hy� kxþ lzþ hþ k þ l

2

� �
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Combining the terms appropriately:

A=2 ¼ cos 2plzfcos 2pðhxþ kyÞ þ cos 2pð�hyþ kxÞg þ cos 2p lzþ hþ k þ l

2

� �

cos 2pðhx� kyÞ

þ cos 2p lzþ hþ k þ l

2

� �

cos 2pðhyþ kxÞ

The expansion of cos 2p lzþ hþ k þ l

2

� �

shows that we need to consider the cases of

h + k + l even and odd, and recalling that cosP	 cosQ ¼ cosP cosQ� sinP sinQ, we find

the following:

h +k + l = 2n

A ¼ 4 cos 2plzðcos 2phx cos 2pky� sin 2phy sin 2pkxÞ

Similarly

B ¼ 4 sin 2plzðcos 2phx cos 2pky� sin 2phy sin 2pkxÞ

From the equations for jF(hkl)j and f(hkl), we find h + k + l = 2n + 1.

Proceeding in a similar manner, we now find

A ¼ 4 cos 2plzð� sin 2phx sin 2pkyþ sin 2phy sin 2pkxÞ

and

B ¼ � 4 sin 2plzð� sin 2phx sin 2pkyþ sin 2phy sin 2pkxÞ

It is clear now that for h + k + l odd, A = B = 0 if h = 0, or k = 0, or h = 	k. Hence, the limiting

conditions: 0kl: k + l = 2n12 (h0l: h + l = 2n), and hhl: l = 2n. The first of these conditions

corresponds to an n-glide ⊥a, (b) while the second indicates a c-glide ⊥<110>, consistent with

space group P4nc.

Solutions 4

4.1. For thegiven reflection, (sin y)/l = 0.30, forwhich fC = 2.494.Hence, exp[�B(sin2y)/l2] = 0.5423,

so that fC,27.55� = 1.352, which is 54.2 % of what its value would be at rest. The root mean square

displacement is [6.8/(8p2)]1/2 = 0.29 Å. Since vibrational energy is proportional to kT, where k is the

Boltzmann constant, a reduced temperature factor with concomitant enhanced scattering would be

achieved by conducting the experiment at a low temperature.

4.2. For NaCl, d111 ¼ a=
p
3 ¼ 2:2487 Å, so that (sin y111)/l = 0.1539 Å�1 and (sin y222)/

l = 0.3078 Å�1. Similarly, for KCl, (sin y111)/l = 0.1379 Å�1 and (sin y222)/l = 0.1379 Å�1.

12 [h + k + l ¼ 2n + 1 → k + l ¼ 2n + 1 for h ¼ 0].
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Using the structure factor equation for the NaCl structure type, we have

Fð111Þ ¼ 4½fNaþ=Kþ þ fCl� cosð3pÞ� ¼ 4½fNaþ=Kþ� fCl� �, whereas F(222) = 4[fNa
+
/K
+ + fCl

�].

Thus, we obtain the following results:

111 222

NaCl KCl NaCl KCl

(sin y)/l 0.1539 0.1379 0.3078 0.2759

f+ 8.979 15.652 6.777 11.576

f� 13.593 14.207 9.387 9.997

F �18.46 1.445 64.66 86.29

Remembering that wemeasure jFj2, it is clear that jF(111)j for KCl is relatively vanishingly small.

4.3. F ¼ ð2=pSÞ1=2
Ð1
0

F expð�F2=2SÞdF. Let F2=2S ¼ t, so that dF ¼ ðS=2tÞ1=2dt.
Then, F ¼ ð2S=pÞ1=2

Ð1
0

t0 expð�tÞdt. Since t0 = t(1�1), the integral (see Web Appendix WA7)

is G(1) = 1, Hence, F ¼ ð2S=pÞ1=2.
Making the above substitution again, we have F2 ¼ ð2S=pÞ1=2

Ð1
0

t1=2 expð�tÞdt ¼ ð2S=p1=2Þ
1=2 Gð1=2Þ ¼ S.

Thus, Mc ¼ ð2S=pÞ=S ¼ 2=p ¼ 0:637.
4.4. E3 ¼ ð2=pÞ1=2

Ð1
0

E3 expð�E2=2ÞdE. Let E2=2 ¼ t, so that dE = (2t)�1/2dt. Then,

E3 ¼ ð8=pÞ1=2
Ð1
0

t expð�tÞ dt ¼ ð8=pÞ 1
2
Gð2Þ ¼ 1:596.

4.5.

jE2 � 1j ¼ 2

ð1

0

jE2 � 1jE expð�E2Þ dE

By making the substitution E2 = t, we have

jE2 � 1j ¼
ð1

0

ð1� tÞ expð�tÞ dtþ
ð1

1

ðt� 1Þ expð�tÞdt

¼ ð�e�tj10 þ ðte�tj10 þ ðe�tj10 � ðte�tj11 � ðe�tj11 þ ðe�tj11
¼ 2=e ¼ 0:736

4.6. The statistically distinguishable features of classes 2, m and 2/m are summarized as follows:

P2 Pm P2/m

hkl 1A 1A 1C

h0l 1C 2A 2C

0k0 2A 1C 2C

When finding the average intensities, do not mix the h0l and 0k0 reflections either with

themselves or with the hkl reflections until the space-group ambiguity has been resolved. Instead

get them from some other zone, excluding any terms it contains that lie in [h0l] or [0k0] zones,

and check the distribution of this chosen zone. If it is centric, the space group is P2/m. To

distinguish between the other two space group, examine the distribution in the [h0l] zone.

Generally there will be insufficient 0k0 reflections alone to give reliable results.

4.7. (a) mmmPc - - leaves the following space groups unresolved:

Pcm21 2/2; 2/2; 4(1)

Pc2m 2/2; 4/(1); 2/2

Pcmm (4/2; 4/2; 4/2)
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The numbers are the multiples for the principal rows and zones (see Table 4.2). Parentheses

indicate centric zones or the complete weighted reciprocal lattice. One would examine the

distribution in both the [h0l] and [0k0] zones. Alternatively, an examination of the [0k0]

zone, excluding the h0l and 0k0 data, could be considered. A centric distribution would

identify Pccm. The other two could be separated by reference to zones, but distinction may

be difficult at this stage.

(b) mmmC - - - leaves the following space groups unresolved:

Cmm2 2/2; 2/2; 4(1)

Cm2m 2/2; 4/(1); 2/2

C222 2/(1); 2/(1) 2/(1)

Cmmm (4/2; 4/2; 4/2)

Again, parentheses indicate centric zones or the complete weighted reciprocal lattice. All

principal zones must be examined in order to resolve the ambiguities here.

Solutions 5

5.1. (a) The crystal system is tetragonal, and the Laue group is
4

m
mm; the optic axis lies along the

needle axis (z) of the crystal.

(b) The section is in extinction for any rotation in the x,y plane, normal to the needle axis; the

section is optically isotropic.

(c) For a general oscillation photograph with the X-ray beam normal to z, the symmetry is m.

For a symmetrical oscillation photograph with the beam along a, b or any direction in the

form h110i at the mid-point of the oscillation, the symmetry is 2mm.

5.2. (a) The crystal system is orthorhombic.

(b) Suitable axes may be taken parallel to three non-coplanar edges of the brick.

(c) Symmetry m.

(d) Symmetry 2mm, with the m lines horizontal and vertical.

5.3. (a) Monoclinic, or possibly orthorhombic.

(b) If monoclinic, p is parallel to the y axis. If orthorhombic, p is parallel to one of x, y, or z.

(c) (i) Mount the crystal perpendicular to p, about either q or r, and take a Laue photograph with

the X-ray beam parallel to p. If the crystal is monoclinic, symmetry 2 would be observed. If

orthorhombic, the symmetry would be 2mm, with the m lines in positions on the film that

define the directions of the crystallographic axes normal to p. If the crystal is rotated such

that the X-rays travel through the crystal perpendicular to p, a vertical m line would appear

on the Laue photograph of either a monoclinic or an orthorhombic crystal. (ii) Use the same

crystal mounting as in (i), but take a symmetrical oscillation photograph with the X-ray

beam parallel or perpendicular to p at the mid-point of the oscillation. The rest of the answer

is as in (i).

5.4. Refer to Fig. S5.1. Let hmax represent the maximum value sought. Since we are concerned with

a large d* value, we take l 
 0.2 Å, the minimum value in the white radiation. Now

d* = ha* = (2/l) sin y and since, from the diagram, y is the angle subtended at the circumfer-

ence by d*, y = 20�, so that hmax is the integral part of 2=ð0:2lÞ sin 20, which is 17.

The X-coordinate on the film is 60 tan 40 = 50.35 mm. The half-width of the film is

62.5 mm, so the 17,00 reflection will be recorded on the film.
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5.5. For the first film, we can write IðhklÞ þ Ið2h; 2k; 2lÞ ¼ 300, and for the second film,

after absorption, we have 0:35IðhklÞ þ 0:65Ið2h; 2k; 2lÞ ¼ 130. Solving these equations gives

I(hkl) = 216.7 and I(2h, 2k, 2l) ¼ 83.3.

5.6. (a) For symmetry 2mm in Laue group m�3m, the X-ray beam must be traveling along a <110>

direction (Table 1.6); we will choose [110], so that a and b lie in the horizontal plane; c is then

the vertical direction.

(b) We can use Fig. 5.17, changing the sign of�a*, and with f = 45� because XO is [110] for the

present problem. For an inner spot, it follows readily that 2y = tan�1(43.5/60.0), so that 2y =

35.94�, and e = 27.03� (Chap. 5, Fig. 5.17).
(c) Now, tan 27:03 ¼ 0:5102 ¼ h=k, since a = b. In the given orientation, the reflections on the

horizontal line are hk0 and, since the unit cell is F, h and k must be both even, with k = 2h,

from above. Possible reflections are, therefore, 240, 480, 612,0, . . . It is straightforward to

show that l ¼ 2a sin y=
ffiffiffiffi
N

p
, where N = h2 + k2.

For 240, l = 0.746 Å, for 480, l = 0.373 Å, which is unreasonably small in crystallographic

work.We note from the orientation of the a and b axes (a* and b*) that one of h and kmust be

negative; we can choose k. For an outer spot, we find in a similar manner that tan e = 0.3418,

so that k = 3h. Reasonable indices correspond to h = 2 and k = 6, again with one index

negative; here, l = 0.753 Å. To summarize:

The X-ray beam is along [110]. For the inner spots: y = 17.97�; 2 �4 0 and 4 �2 0;

l = 0.746 Å. For the outer spots: y = 26.13�; 2�60 and 6�20; l = 0.753 Å.

5.7. Since the crystal is uniaxial, it must be hexagonal, tetragonal, or trigonal. The Laue symmetry

along axis 1 indicates that the crystal is trigonal, referred to hexagonal axes, and that axis 1 is

therefore c. Following Chap. 5, Sect. 5.4.3, we find for the repeat distances along the three axes:

Fig. S5.1
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Axis 1 2 3

Repeat=Å 15:65 8:264 4:772

The smallest repeat distance corresponds to the unit-cell dimension a, direction ½10�10�, Laue
symmetry 2 (Chap. 1, Fig. 1.36 and Table 1.6). Axis 2 must be a direction in the x, y plane, and it

is straightforward to show that it is the repeat distance along ½12�30�, Laue symmetrym. Thus, we

have: a = b = 4.772, c = 15.65 Å; a = b = 90�, g = 120�; the Laue group is �3m.

5.8. Applying the Bragg equation, l ¼ 2d sin y, where d = 6.696/2 Å. Thus, (a) y0002 (Cu) = 13.31�,
and (b) y0002 (Mo) = 6.093�.

5.9. (a) The data indicate a pseudo-monoclinic unit cell with g unique. Following Chap. 2, Sect. 2.5,

we find a = b = 6.418, c = 3.863 Å. It would appear that the c dimension is true, and that

the ab plane is centered. It is straightforward to show that a and b are the half-diagonals of a

rectangle with sides a0 = a � b and b0 = a + b. Thus, the orthorhombic unit cell has the

dimensions a = 3.062, b = 12.465, and c = 3.863 Å. The transformation can be written as

atrue = Madiff, where

M ¼
1 �1 0

1 1 0

0 0 1

2
4

3
5

(b) The reciprocal cell is transformed according to a�true ¼ ðM�1ÞTa�diff . The transpose of the

inverse matrix is

1=2 �1=2 0

1=2 1=2 0

0 0 1

2
64

3
75

Hence, a* = 0.2321, b* = 0.05702, c* = 0.1840. These values may be confirmed by dividing

the “true” values, for the orthorhombic cell, into the wavelength.

5.10. (a) Refer to Sect. 5.2.4: tan 2ymax ¼ r=R, where r is the radius of the plate, 172.5 mm.

2dmin sin ymax ¼ 1:05= ð2� 1:0Þ ¼ 0:525; and ymax ¼ 63:336�. Hence, R ¼ 172:5=

tan 63:336; or 86:6mm.

(b) The whole image would shrink but would still contain the same amount of data, and the

spots would become closer together.

(c) Some of the pattern would be lost because the angle subtended at the edge of the plate would

become less: the spots would then be further apart.

5.11. (a) A 5, B 1, C 0.1 mm

(b) A 450, B 250, C 80 mm

(c) A 12, B 60, C 300 s

Solutions 6

6.1.
Ð c=2
�c=2 sinð2pmx=cÞ cosð2p n x=cÞdx ¼

Ð c=2
�c=2 f

1

2
sin½2pðmþ nÞx=c� þ 1

2
sin½2pðm� nÞx=c�gdx

using identities from Web Appendix WA5. Integration leads to � ½c=2pðmþ nÞ� cos½2p
ðmþ nÞx=c� jc=2�c=2 � ½c=2pðm� nÞ� cos½2pðm� nÞx=c�jc=2�c=2. Since m and n are integers the

integral is zero for m 6¼ n. For m = n, the original integral becomes
Ð c=2
�c=2

1
2
sinð4pmx=cÞ dx,

which is also zero.
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6.2. A plot of r(x) as a function of x (in 40ths) shows peaks at 0, 20, and 40 for Mg (as expected),

and at ca 8.25, 11.75, 28.25, and 31.75, for the 4F atoms per repeat unit a; thus, xF is 	(0.206;

0.706). Only the function to a/4 need be calculated, since there is m symmetry across the points
1
4
ð10=40Þ; 1

2
ð20=40Þ and 3

4
ð30=40Þ.

(a) The first three terms alone are insufficient to resolve clearly the pairs of fluorine peaks that

are closest in projection.

(b) Changing the sign of the 600 reflection results in single peaks for fluorine at 10/40 and

30/40. The error in sign (phase) is clearly the more serious fault.

6.3. GðSÞ ¼
Ð p
�p

a exp ði2pSxÞ dx ¼ a
Ð p
�p

cos ð2pSxÞ þ ia
Ð p
�p

sinð2pSxÞ dx. The second integral is

zero, because the integrand is an odd function. Hence,

GðSÞ ¼ a ð2p SÞ sinð2pSxÞjp�p ¼ 2ap sinð2pSpÞ=2pSpÞ

and we retain the parameters which would obviously cancel, so as to preserve the characteristic

sin (ax)/(ax) form. To obtain the original function, we evaluate

f ðxÞ ¼ ða=pÞ
ð1

�1
ð1=SÞ sinð2pSpÞ expð�i2pxSÞ dS ¼ ða=pÞ

ð1

�1
ð1=SÞ sinð2pSpÞ cosð2pxSÞ dS

where the sine term from the expanded integrand is zero as before. Using results from Web

Appendix WA5, the integral becomes

ða=2pÞ
ð1

�1
ð1=SÞ sinð2pSðpþ xÞ� dSþ

ð1

�1
ð1=SÞ sinð2pSðp� xÞ�

� �

dS

aðp� xÞ
ð1

�1
sin½2pSðp� xÞ�=½2pðp� xÞ� dS:

From Web Appendix WA9,
Ð1
�1 ðsin y=yÞ dy ¼ p; hence, we derive

f ðxÞ ¼ ða=2Þðpþ xÞ=jpþ xj þ ða=2Þðp� xÞ=jp� xj:

It is clear from this result that f(x) = a for j x j < p, f(x) = a/2 for x = 	p, and f(x) = 0 for

j x j = 0, which correspond to the starting conditions.

6.4.

Gðf Þ ¼ A

ð1

�1
cosð2pf0tÞ expð�i2pftÞ dt

¼ ðA=2Þ
ð1

�1
f½expði2pf0tÞ þ expð�i2pftÞ� expð�i2pf tÞg dt

¼ ðA=2Þ
ð1

�1
fexp½�i2pðf � f0Þt� þ exp½�i2pðf þ f0Þt�g dt

¼ ðA=2Þdðf þ f0Þ þ ðA=2Þdðf � f0Þ:

In the inversion, the d-function repeats the function at f = f0. Thus,

f ðtÞ ¼ ðA=2Þ
ð1

�1
½dðf þ f0Þ þ dðf � f0Þ� expði2pftÞ df¼ ðA=2Þ½expði2pf0tÞ þ expð�i2pf0tÞ�

¼ A cosð2pf0tÞ:
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6.5. The molecules have the displacements p and �p from the origin. Hence, the total transform

GT(S) is given by

GTðSÞ ¼ G0ðSÞ expði2pp � SÞ þ G�
0ðSÞ expð�i2p p � SÞ

Using results from Sect. 3.2.3, we can write G0(S) = jG0j exp(if), and G�
0ðSÞ ¼ jG0j exp ð�fÞ,

where f is a phase angle. Hence,

GTðSÞ ¼ jG0j expði2pp � Sþ fÞ þ expð�i2pp � S� fÞf ¼ 2jG0j cosð2pp � Sþ fÞ

As discussed in Sect. 6.6.3, the maximum value of the transform is 2jG0j, at those points where

cos(2pp·S + f) is equal to unity. In this example, however, such points do not lie in planes and,

consequently, the fringe systems are curved rather than planar.

6.6. The atoms related by the screw axis would have the fractional coordinates x, y, z and

�x; 1
2
þ y; 1

2
� z. From (6.50), we have

GðSÞ ¼
Xn=2

j¼1

fj exp½i2pðhxj þ kyj þ lzjÞ� þ exp½i2pð�hxj þ kyj � lzj þ k=2þ l=2Þ�
� 	

where the summation is over n/2 atoms in the unit cell not related by the 21 symmetry. Hence,

GðSÞ ¼
X

n=2

j¼1

fjfexp½i2pkyjfexp½i2pðhxj þ lzjÞþ exp½i2pð�hxj � lzj þ k=2þ l=2Þ�g

In a general transform, h, k, and l could take any values. However, in a crystal they are integers,

but in order to obtain a special condition, we must also consider the case that h = l = 0:

GðSÞh¼l¼0 ¼ 2
X

n=2

j¼1

fj expði2pkyj½expðipkÞ�Þ

Then, we have G(S)h=l=0 = 0 for k = 2n + 1, that is, the 0k0 reflections are systematically

absent when k is odd.

6.7. Figure S6.1 indicates the nodal lines for the P–S fringe system. Since the transform is chosen to

be positive at the origin, 	 regions can be allocated to the transform, as shown. Hence, the

intense reflections can be allocated signs, as follow:

240� 250� 410 � 520 �
650+ 710+ 720 + 820 +

�130þ �140þ �230þ �240þ
�370þ �440� �470þ �530�
�540� �670� �710� �760�
�910þ �920þ 10; 00þ 10; 10þ
10; 20þ

6.8. In Fig. S6.2, the three points are plotted in (a).A transparency ismadeof the structure in (a), inverted

in the origin. The structure (a) is then drawn three times on the transparency, with each of the atoms

of the inversion, in turn, over the origin of (a), and in the same orientation. The completed diagram

(b) is the required convolution: the six triangles outlined in (b) all produce the same set of nine

vectors (three superimposed at the origin).
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Fig. S6.1

Fig. S6.2
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6.9. Figure S6.3 shows the contoured figure field of Fig. S6.2. The same triangles are revealed,

giving six sets of atom coordinates, as follow:

1 0.15, 0.10 �0.15,�0.10 �0.05, 0.30

2 0.05, 0.20 �0.05,�0.20 �0.20,�0.20

3 0.10,�0.10 �0.10, 0.10 �0.20,�0.30

4 0.05,�0.30 0.15, 0.10 �0.15,�0.10

5 0.25, 0.00 0.05, 0.20 �0.05,�0.20

6 0.10,�0.10 �0.10, 0.10 0.20, 0.30

6.10. The transform is positive in sign at the origin. Hence, by noting the succession of contours

along the 00l row, we arrive at the following result:

001 002 003 004 005 006

+ � + + � �

6.11. The transform of f(x) is given by

fTðxÞ ¼
1ffiffiffiffiffiffi
2p

p
ð1

�1
½expð�x2=2Þ expði2pSxÞ�dx ¼ 2ffiffiffiffiffiffi

2p
p

ð1

0

½expð�x2=2Þ cosð2pSxÞ�dx;

because fT(x) is an even function. Hence, using standard tables of integrals,

Fig. S6.3
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fTðxÞ ¼
2ffiffiffiffiffiffi
2p

p
ffiffiffi
p

p

2
ffiffiffiffiffiffiffiffi
1=2

p expð�4p2S2=2Þ ¼ expð�2p2S2Þ:

The transform of g(x), gT(x), is a d-function with the origin at the point x = 2, so that gT(x) =

exp(i4pS), from Sect. 6.6.8. Hence, c(x) = fT(x)*gT(x) = exp(i4pS � 2p2S2).

6.12. (a) As h is increased, the form of f(x) approaches a square more and more closely.

(b) m-lines occur at 	¼, that is, at 15/60 and 45/60 in x

(c) At x = 0 and 2p the sine term in (6.15) is zero, so that f(x) = p/2. At x = p, the sine term is

sin(2ph)30/60, or sin(ph). Since h is an integer, then again f(x) = p /2.

Solutions 7

7.1. In P21/c, the general positions are 	 ðx; y; z; x; 1
2
� y; 1

2
þ zÞ, so that AðhklÞ ¼

2fcos 2pðhxþ kyþ lzÞ þ cos 2pðhx� kyþ lzþ k=2þ l=2Þg¼ 4 cos 2pðhxþ lz þ k=4þl=4Þ
cos 2pðky� k=4� l=4Þ. Introducing the y-coordinate of ¼, AðhklÞ ¼ 4 cos 2pðhxþ
lzþ k=4þ l=4Þ cos 2pðl=4Þ, so that the hkl reflections will be systematically absent for

l = 2n + 1. The indication is that the c spacing should be halved, so that the true unit cell

contains two species in space group P21 (see Fig. S7.1). This problem illustrates the conse-

quences of sitting an atom on a glide plane: although we have considered here a hypothetical

structure containing one atom in the asymmetric unit, in a multi-atom structure, an atom may,

by chance, be situated on a translational symmetry element.

7.2. Refer to Chap. 2, Fig. 2.37, and Figs. S7.2 and S7.3.13 There are eight rhodium atoms in the unit

cell. If the atoms are in general positions, the minimum separation of atoms across any m plane

is 1=2 � 2y. For any value of y, the distance would be too small to accommodate two rhodium

atoms. Hence, they must occupy two sets of special positions. Positions on centers of symmetry

may be excluded on the same grounds as above. Thus, the atoms are located on two sets of m

planes as follow:

4 Rh	 ðx1; 1=4; z1; 1=2 � x1; 3=4; 1=2 þ z1Þ
4Rh	 ðx2; 1=4; z2; 1=2 � x2; 3=4; 1=2 þ z2Þ

Fig. S7.1

13Mooney R, Welch AJE (1954) Acta Crystallogr 7:49.

710 Tutorial Solutions



7.3. The space group is P21/m. The molecular symmetry cannot be �1, but it can be m.

Hence, we can make the following assignments:

(a) Cl on m; (b) N on m; (c) two C on m, with four other C probably in general positions; (d)

sixteen H in four sets of general positions, two H (in N–H groups) on m, and two H from CH3

groups onm—those that have their C atoms onm. This arrangement is shown in Fig. S7.4a. The

species CH3, H1 and H2 lie above and below the m plane. The alternative space group P21 was

considered, but the full structure analysis14 confirmed P21/m. Figure S7.4b illustrates P21/m,

and is reproduced from the International Tables for X-ray Crystallography, Vol. I, by kind

permission of the International Union of Crystallography.

7.4. AðhhhÞ ¼ 4fgPt þ gK½cos 2pð3h=4Þ þ cos 2pð9h=4Þ� þ 6gCl½3 cos 2pðhxÞ�g, where the factor
4 relates to an F unit cell (see Sect. 3.7.1). B(hhh) = 0, so that F(hhh) = A(hhh), and A(hhh)

Fig. S7.2

Fig. S7.3

14Lindgren J, Olovsson I (1968) Acta Crystallogr B24:554.
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simplifies to 4fgPtþ 2gK cosð3ph=2Þ þ 6gCl cosð2phxÞg. We can now calculate F(hhh) for the

two values of x given:

x = 0.23 x = 0.24

hhh Fo jFcj K1Fo jFcj K2Fo

111 491 340.6 314.7 317.4 329.5

222 223 152.2 142.9 159.5 149.6

333 281 145.2 180.1 190.8 188.6

K1 = 0.641 R1 = 0.11 K2 = 0.671 R2 = 0.036

Clearly x = 0.24 is the preferred value. Pt–Cl = 2.34 Å. For a sketch and the point group, see

Problem 1.11(c) and its solution.

7.5. AUðhklÞ ¼ 2 cos 2pðhxþ kyþ l=4Þþcos 2pð�hxþ kyþ l=4þ h=2þ k=2Þf g ¼ 4fcos 2p½kyþ
ðhþ k þ lÞ=4� cos 2p½hx� ðhþ kÞ =4�g. For (200), AU / j cos 2p ð2x� 1

2
Þj and, for this

reflection to have zero intensity, 2pð2x� 1
2
Þ 
 ð2nþ 1Þp 2= . For n = 1, x 
 �1/8 (by sym-

metry, the values 1/8, 5/8, and 7/8 are included). Conveniently, we choose the smallest of the

Fig. S7.4
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symmetry-related values, that is, 1/8. For (111), and using this value for

x; AU / cos 2pðyþ 3=4Þ cos 2pð1=8 � 1=2Þ. For high intensity, j cos 2pðyþ 3=4Þj 
 0; np.

For n = 0, y = ¾ (and ¼ by symmetry). For n = 1, y is again 1
4
and ¾. Proceeding in this

manner with (231) leads to y = 1/6 (by symmetry, the values 1/3, 2/3, and 5/6 are included),

and with (040) we find y = 3/16 (by symmetry, 5/16, 11/16, and 13/16 are included). The

mean for the three value of y is (1/4 + 1/6 + 3/16)/3, or approximately 0.20.

7.6. Since there are two molecules per unit cell in P21/m in this structure, and the molecules cannot

have �1 symmetry, the special positions sets 	 ðx; 1
4
; zÞ are selected. TheB, C, andN atoms lie onm.

Since the shortest distance between m planes is 3.64 Å, the F1, B, N, C, and H1 atoms must lie on

one and the samem plane (see Fig. S7.5a). Hence, the remaining two F and four H atoms must be

placed symmetrically across the samem plane. These conclusions were borne out by the structure

analysis.15 Figure S7.5b is a stereoview of the packing diagram for CH3NH2BF3, showing the H1,

C, N, B and three F atoms. The m plane is normal to the vertical direction in the diagram and the

remaining two pairs of H atoms are disposed across the m plane as described above.

7.7. (a) (i) jFðhklÞj ¼ jFð�h �k �lÞj; (ii) jFð0klÞj ¼ jFð0 �k �lÞj; (iii) jFðh0lÞj ¼ jFð�h 0 �lÞj
(b) (i) jFðhklÞj ¼ jFð�h �k �lÞj ¼ jFðh �k lÞ;

(ii) jFð0klÞj ¼ Fð0 �k �lÞj ¼ jFð0 �k lÞ

(iii) jFðh0lÞj ¼ jFð�h 0 �lÞj

Fig. S7.5

15Geller S, Hoard JL (1950) Acta Crystallogr 3:121.
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(c) (i) jFðh k lÞj ¼ jFð�h �k �lÞj ¼ jFð�h k lÞj ¼ jFðh �k lÞj ¼ jFðh k �lÞj
(ii) jFð0 k lÞj ¼ jFð0 �k �lÞj ¼ jFð0 �k lÞj;
(iii) jFðh 0 lÞj ¼ jFð�h 0 �lÞj ¼ jFð�h 0 lÞj

Any combination of 	hkl not listed follows the pattern of (a) (i). In (b), for example,

jFð�h 0 lÞj ¼ jFðh 0 �lÞj

7.8. (a) In Pa, the symmetry element relates the sites x, y, z and 1
2
þ x; y; z, so that the Harker line is

½1=2 v 0�. In P2/a, the Harker section is (u 0 w) and the line ½12 v 0�.
In P2221, there are three Harker sections, (0 v w), (u 0 w), and ðu v 1

2
Þ.

(b) The Harker section (u 0 w) must arise through the symmetry-related sites x, y, z and �x; y; �z,

which correspond to a two-fold axis along y. Similarly, the line [0v0] arises from a mirror

plane in the Patterson normal to y. Since the crystal is non-centrosymmetric, the space

group must be P2 or Pm. If it is P2, there must be, by chance, closely similar y coordinates

for many of the atoms in the structure. If it is Pm, chance coincidences occur between the x

and z coordinates. [These conditions are somewhat unlikely, especially when many atoms

are present, so that Harker sections and lines can sometimes be used to distinguish between

space groups that are not determined by diffraction symmetry alone.]

7.9. (a) P21/n, a non-standard setting of P21/c (see also Chap. 2, Problem 2.12).

(b) The S–S vectors have the following Patterson coordinates:

(1) 	 ð1
2
; 1
2
þ 2y; 1

2
Þ Double weight

(2) 	 ð1
2
þ 2x; 1

2
; 1
2
þ 2zÞ Double weight

(3) 	(2x, 2y, 2z) Single weight

(4) 	 ð2x; 2�y; 2zÞ Single weight

Section v ¼ 1
2

Type 2 vector x = 0.182, z = 0.235

Section v = 0.092 Type 1 vector y = 0.204

Section v = 0.408 Type 3 or 4 vector x = 0.183, y = 0.204, z = 0.234

Thus we have four S–S vectors at: 	(0.183, 0.204, 0.235; 0.683, 0.296, 0.735). Any one of the

other seven centers of symmetry, unique to the unit cell, may be chosen as the origin,

whereupon the coordinates would be transformed accordingly. The sulfur atom positions are

plotted in Fig. S7.6 [Small differences in the third decimal places of the coordinates determined

from the maps in Problems 7.9 and 7.10 are not significant.]

Fig. S7.6
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7.10. (a) By direct measurement, the sulfur atom coordinates are S (0.266, 0.141) and S0 (�0.266,

�0.141)

(b) Draw an outline of the unit cell on tracing paper, and plot the position of –S on it. Place the

tracing over the idealized Patterson map (Fig. P7.2), in the same orientation, with

the position of –S over the origin of the Patterson map, and copy the Patterson map on

to the tracing (Fig. S7.7a). On another tracing, carry out the same procedure with respect to

the position of �S0 (Fig. S7.7b). Superimpose the two tracings (Fig. S7.7c). Atomic

positions correspond to positive regions of the two superimposed maps.

Fig. S7.7
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7.11. (a) The summation to form P(v) can be carried out with program FOUR1D. In using the program,

each data line should contain k,Fo(0k0)
2, and 0.0, the zero datum representing theB coefficient

of the Fourier series. P(v) shows three non-origin peaks. If the highest of them is assumed to

arise from theHf–Hf vector, then yHf = 0.105; the smaller peaks are Hf–Si vectors, fromwhich

we could obtain approximate y parameters for the silicon atoms. Their difference in height

arisesmainly from the fact that one of them is, in projection, close to the origin peak. However,

the simplified structure factor equation for Fo(0k0), based on the hafnium atoms alone, is

Foð0k0Þ / cosð2pkyHfÞ

so that the signs of the reflections, ignoring the weak reflections 012,0 and 016,0, are, in order,

+ � � + + �. (b) We can now calculate r(y) with these signs attached to the Fo(0k0) values.

From the result, we obtain yHf = 0.107, ySi1 = 0.033, and ySi2 = 0.25. These values for ySi lead

to vectors which appear on P(v). We conclude that the small peak on r(y) at y = 0.17 is

spurious, arising most probably from both the small number of data and experimental errors

in them.

7.12. Since the sites of the replaceable atoms are the same in each derivative, and the space group is

centrosymmetric, we can write FðM1Þ ¼ FðM2Þ þ 4ðfM1 � fM2Þ, where f may be approximated

by the corresponding atomic number, Z. Hence, we can draw up the following table:

(a)

M

h NH4 K Rb T1

1 � � + +

2 a + + +

3 + + + +

4 � a + +

5 + + + +

6 � � a +

7 a + + +

8 a + + +

a = Indeterminate, because F is small or zero.

(b) The peak at 0 represents K and Al, superimposed in projection. The peak at 0.35 would then

be presumed to be due to the S atom.

(c) The effect of the isomorphous replacement of S by Se can be seen at once in the increases in

Fo(555) and Fo(666) and decrease in Fo(333). These changes are not in accord with the

findings in (b). Comparison of the two electron density plots shows that dS/Se must be

0.19 (the x coordinate is d=
ffiffiffi
3

p
). The peak at 0.35 arises from a superposition of oxygen

atoms in projection, and is not appreciably altered by the isomorphous replacement.

7.13. A ¼ 100 cos 60þ ðfo þ Df 0Þ cos 36þ 8 cos126 ¼ 50þ 40:046� 4:702 ¼ 85:344: B ¼ 100

sin 60þðfo þ Df 0Þ sin 36þ 8 sin 126 ¼ 86:603þ 29:095þ 6:472 ¼ 122:17. Hence, jF(010)j =
149.0, and f (010) = 55.06�. For the 0�10 reflection, we have A ¼ 100 cos 60þ
ð fo þ Df 0Þ cos 36þ 8 cos 54¼ 50þ40:046þ 4:702 ¼ 94:748: B ¼ 100 sinð�60Þ þ ðfo þ Df 0Þ
sinð�36Þ þ 8 sin 54 ¼ �86:603� 29:095þ 6:472 ¼ �109:226. Hence, jFð0�10Þj ¼ 144:6,
and fð0�10Þ ¼ � 49.06�.

7.14. Draw a circle, at a suitable scale, to represent an amplitude jFPj of 858. From the center of this

circle, set up a “vector” to represent jFH1jexp(if1), where jFH1j = 141 and f1 = (78 + 180) deg.
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At the termination of this vector, draw a circle of radius 756 to represent jFPH1j. Repeat this
procedure for the other two derivatives (Fig. S7.8). The six intersections 1–10, 2–20, and 3–30 are
strongest in the region indicated by •- - -•. The required phase angle fM , calculated from (7.50),

lies in this region. The centroid phase angle fB is biased slightly towards point 1.

7.15. Cos(hx � f) expands to cos hx cosfþ sin hx sinf which, for f = p/2, reduces to sinhx.

Hence, cðxÞ ¼ p=2þ 2
P1

h¼1 ð1=hÞ sin hx ¼ p=2þ 2
P1

h¼1 ð1=hÞ cosðhx� fÞ: This equation

resembles closely a Fourier series (see Sect. 6.2).

7.16. (a) The total mass of protein per unit cell is 18000Z � 1.6605 � 10�24 g, where Z is the number

of protein molecules per unit cell. Since there is an equal mass of solvent water in the unit cell,

D/2Z = (18000 � 1.6605 � 10�24)/(40 � 50 � 60 � 10�24 sin 100�) = 0.2529 g cm�3, so

thatD = 0.5058Z g cm-3. Sensible values for Z in C2 are 4 and 2. The former leads to a density

that is much too large for a protein; Z = 2 gives D = 1.012 g cm–3, which is an acceptable

answer.

(b) In space group C2 there are four general equivalent positions (see Sect. 2.7.3). Since Z = 2,

the protein molecule must occupy special positions on twofold axes, so that the molecule

has symmetry 2.

7.17. In the notation of the text, we have for F(hkl)

FHðþÞ ¼ F0HðþÞ þ iF00HðþÞ
and for jFð�h �k �lÞj

FHð�Þ ¼ F0Hð�Þ þ iF00Hð�Þ

where F0HðþÞ and F0Hð�Þ are the structure factor components derived from the real part of (7.64)

and (7.66), and F00HðþÞ and F00Hð�Þ are its anomalous components. It is clear from Fig. S7.9 that

Fig. S7.8
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the moduli jFH(+)j and jFH(�)j are equal, but that fH(+) 6¼ fH(�). In terms of the structure

factor equations, we can write a single atom vector for h and �h

FðhÞ ¼ ðf 0 þ iDf 00Þ exp½ið2ph � rþ p=2Þ�
Fð�hÞ ¼ ðf þ iDf 00Þ exp½�ið2ph � rþ p=2Þ�

from which we have jFðhÞj ¼ Fð�hÞj, but fðhÞ 6¼ fð�hÞ; p/2 acts in the same sense (positive) in

each case.

7.18. In the notation of the text, and for a centrosymmetric structure, we have FPHðþÞ ¼
APðþÞ þ A0

HðþÞ þ iA00
HðþÞ where

APðþÞ ¼
XNP

j¼1

fj cos 2pðhxj þ kyj þ lzjÞ

A0
HðþÞ ¼

XNH

j¼1

f 0j cos 2pðhxj þ kyj þ lzjÞ

A00
HðþÞ ¼

XNH

j¼1

Df 00j cos 2pðhxj þ kyj þ lzjÞ

Clearly, jFðh k lÞj ¼ jFð�h �k �lÞj ¼ ðA2þ B2Þ1=2, where A ¼ APðþÞ þ A0
HðþÞ and B ¼ A00

H

ðþÞ; fðhklÞ ¼ fð�h �k �lÞ ¼ tan�1 ðB=AÞ, and cannot equal 0 or p because of the finite value of

A00
HðþÞ.

7.19. If, for a crystal of a given space group, Friedel’s Law breaks down, then the diffraction

symmetry reverts to that of the corresponding point group. Thus, we have

jF(hkl)j equivalents Bijvoet pairs

(a) C2 (2) hkl=�h k �l hkl=�h k �lwith h �k l=�h �k �l

(continued)

Fig. S7.9
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(b) Pm (m) hkl=h �k l hkl=h �k lwith �h k �l=�h �k �l

(c) P212121 (222) hkl=h �k �l=�h k �l=�h �k l hkl=h �k �l=�h k �l=�h �k l with h k l=h �k l=h k �l=�h �k �l

(d) P4(4) hkl=�k h l=�h �k l=k �h l hkl=�k h l=�h �k l=k �h l with k �h �l=h k �l=�k h �l=�h �k �l

Strictly, pairs related as hkl and �h �k �l should be discounted, as they are, of course, Friedel pairs.

7.20. The number N of symmetry-independent reciprocal lattice points with a range 0 < y < ymax is

33.510 Vc sin
3 y/(l3Gm), from Chap. 7. The volume Vc of the unit cell is 6 � 104 Å3,G = 1 for

a P unit cell, and m, the number of symmetry-equivalent general reflections, is 8 for the Laue

group mmm. Hence, N = 74466.7 sin3 ymax.

(a) 0 < y < 10� : sin3 ymax = 5.236 � 10�3, so that N = 389 (779 if we consider the hkl and
�h �k l reflections).

(b) 10 < y < 20� : sin3 ymax = 4.001 � 10�2, so that N = 2979 � 389, or 2590.

(c) 20 < y < 25�: sin3 ymax = 7.548 � 10�3, so that N = 5620 � 2979, or 2641.

The resolution, defined in terms of dmin, is dmin = l/(2 sin ymax)

(a) For ymax = 10�: dmin = 4.32 Å

(b) For ymax = 20�: dmin = 2.19 Å

(c) For ymax = 25�: dmin = 1.77 Å

Solutions 8

8.1. A possible set, with the larger jEj values, is 705, 6 1 7, and 8�1 4. Reflection 4 2 �6 is a structure

seminvariant, and 203 is linearly related to the pair 8�1�4 and 6�1�7. Reflection 43 2 has a low jEj
value, so that triple relationships involving it would not have a high probability. Alternative sets

are 705, 203, 8�1�4 and 705, 203, 6 �1 �7. A vector triplet exists between 81 4, 42�6, and 4�32.

8.2. The equations for A and B lead to the following relationships:

jFðhklÞj ¼ jFð�h�k �l Þj ¼ jFðh�klÞj ¼ jFð�hk�lÞj 6¼ jFð�hklÞj; jFð�hklÞj ¼ jFðhk�lÞj

Because of the existence of the k/4 term, the phase relationships depend on the parity of k:

k ¼ 2n : fðhklÞ ¼ �fðh k lÞ ¼ �fðh�klÞ ¼ fð�hk�l 6¼ fð�hklÞ;
fð�hklÞ ¼ fðhk�lÞ

k ¼ 2nþ 1 : fðhklÞ ¼ �fð�h �k �lÞ ¼ p� fðh�klÞ ¼ pþ fð�hk�lÞ 6¼ fð�hkl;
fð�hklÞ ¼ pþ fðhk�lÞ

8.3. Set (b) would be chosen: there is a redundancy in set (a) among 041, �162, and �123, because

jFð041Þj¼ jFð0 �4 1Þj in this space group. In space group C2/c, h + k is even for reflections to

occur, so that reflections 012, �123, 162, and �162 would not occur. The origin could be fixed by

223 and 13�7: there are only four parity groups for a C-centered unit cell.

8.4. Following the procedure given in Chap. 4, Sect. 4.2, it will be found that K = 4.0 	 0.4,

and B = 6.6 	 0.3 Å2. Since B ¼ 8p2U2, the root mean square atomic displacement is

[6.6/(8p2)]1/2, or 0.29 Å. (You were not expected to derive the standard errors in K and

B; they are quoted in order to give an idea of the precision obtainable from a Wilson plot.)

8.5. A plot of the atomic positions in the unit cell and its environs shows that the shortest Cl. . .Cl

contact distance is between atoms at ¼, y, z, and 3=4; �y; z. Hence, d
2(Cl. . .Cl) = a2/4 + 4y2b2,
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so that d(Cl. . .Cl) = 4.639 Å. The superposition of errors (see Sect. 8.6) shows that the variance

of d(Cl. . .Cl) is obtained from

½2dsðdÞ�2 ¼ 2asðaÞ=4½ �2 þ ½8y2bsðbÞ�2 þ ½8b2ysðyÞ�2

so that s(d) = 0.026 Å. (It may be noted that this answer calculates as 0.02637 Å to four

significant figures. Note. If we use only the third term, that in s(y), then the result is 0.02626 Å.

Thus, the error in a distance between atoms arises mostly from the errors in the corresponding

atomic coordinates.)

8.6. In the first instance we average the sum of fk and fh–k, namely, (�37 � 3 � 54 + 38 + 13)/6,

or �7.17�. Applying the tangent expression leads to the better value of �11.32�.
8.7. Vectors of the type labeled P1- - - -P2 will not occur in the search Patterson as they involve

atoms, in the region of P1, within the additional loop of the target molecule that are absent in

the search molecule. Only the search molecule will be positioned by rotation and translation,

and the missing parts of the structure, particularly in the loop, need to be located initially using

Fourier and possibly least-squares methods, as in small-molecule analysis.

8.8. (a) It is not clear how the side chain comprising atoms 8–13 is oriented with respect to the rest of

the molecule, which is predominantly flat. The facility in the PATSEE program for varying the

linkage torsion angle could be used but was not necessary in practice because a sufficiently large

independent search fragment was available.

(b) By chance the molecular graphics program oriented the search model, which is perfectly

flat, to be in the XY plane. Hence all Z coordinates are zero in this plane.

(c) The CHEM-X (or ChemSketch) program allows a chemical model of the molecule to be

constructed and provides coordinates for the atoms. These coordinates are given not as

fractional coordinates but as Å values with respect to the internal orthogonal axis system of

the program. To convert to fractional coordinates for the purpose of this problem, the X, Y, and

Z values were each divided by 100 for all atoms. This set then belongs to an artificial unit cell

with dimensions given in the question.

8.9. In Fig. S8.1, OP = 1.400 Å, OQ = 1.400 sin 60, and Q1 = 1.400 cos 60. Thus:

Coordinates in the unit cell are:

Atom 1: X = 0.700 Y = 1.212 Z = 0.000

Atom 2: X = 1.400 Y = 0.000 Z = 0.000

Atom 3: X = 0.700 Y = �1.212 Z = 0.000

Atom 4: X = �0.700 Y = �1.212 Z = 0.000

Atom 5: X = �1.400 Y = 0.000 Z = 0.000

Atom 6: X = �0.700 Y = 1.212 Z = 0.000

Fractional coordinates in the given unit cell:

Atom 1: X = 0.237 Y = 0.211 Z = 0.000

Atom 2: X = 0.473 Y = 0.000 Z = 0.000

Atom 3: X = 0.237 Y = �0.211 Z = 0.000

Atom 4: X = �0.237 Y = �0.211 Z = 0.000

Atom 5: X = �0.473 Y = 0.000 Z = 0.000

Atom 6: X = �0.237 Y = 0.211 Z = 0.000
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8.10. From Chap. 4, (4.34) and Chap. 8, (8.1), with N atoms per unit cell, assuming scaled Fo values,

dividing throughout by
PN

j¼1 g
2
j;y (the e factor is assumed to be unity), gives

Ej j2 ¼ 1þ


1
XN

j¼1
g2j;y

. �X

j6¼k

gj;ygk;y exp i2ph � rj;k
� 

 !

The second term on the right-hand side represents sharpened jFj2 coefficients [see also Chap. 7,

(7.19)]. The term in the Patterson function that creates the origin peak,
PN

j¼1 g
2
j;y, is now unity,

so that a Patterson function with coefficients (jEj2 � 1) produces a sharpened Patterson

function with the origin peak removed.

8.11. (a) When using Molecular Replacement in macromolecular crystallography the search and

target molecules should be compatible in size as well as in their three-dimensional

structures. If this is not the case problems may be encountered in obtaining a dominant

solution to MR. The more possible solutions which have to be inspected, using Fourier

methods, the more laborious the process becomes, maybe to the point where the analysis

becomes untenable.

(b) For small-molecule analysis it is more usual for the search “molecule” to be a fairly small

fragment of the target molecule. In this case the search molecule must be as accurate as

possible in bond lengths and angles because the data are at atomic resolution and the

Patterson peaks similarly resolved. Programs such as PATSEE allow for more complex

search molecules to be used which have one degree of torsional freedom, thus increasing the

size of the whole search fragment.

8.12. The required determinant is

Eð0Þ EðhÞ Eð2hÞ
Eð�hÞ Eð0Þ EðhÞ
Eð�2hÞ Eð�hÞ Eð0Þ

�

�

�

�

�

�

�

�

�

�

�

�

� 0, which evaluates as

Eð0Þ3þEðhÞ2Eð�2hÞþEð2hÞ½Eð�hÞ�2� Eð0ÞjEð2hÞj2�Eð0ÞEðhÞj2�Eð0ÞjEðhÞj2� 0 or Eð0Þ
fEð0Þ2 � jEð2hÞj2� 2jEðhÞj2g þ 2 jEðhÞj2 Eð2hÞ� 0. Inserting the given values for E(0),

jE(h)j, and jE(2h)j, we obtain 3f9� 4� 8gþ 8ð	2Þ� 0, from which it is clear E(2h) is

positive in sign in order to satisfy the determinant expression.

8.13. For the first triplet, h + k + l = 0 0 0 modulo (2 2 2), where h = h1 + h2 + h3, and similarly for

k and l. Hence, the triplet is a structure seminvariant. The second triplet is also a structure

seminvariant, for the same reason. In the third triplet, h + k + l = 0 0 0 and is a structure

invariant. None of these triplets is suitable for specifying an origin because their determinants

are either zero or zero modulo 2 (see Appendix E).

8.14. Apply the structure factor (3.63). (a) In space group P21, the [010] zone is centric, plane group

p2, so that B0 ¼ 0 and A0 ¼ 2 cos 2p½ð1� 0:3Þ þ ð3� 0:1Þ�, so that jFj = 1.62 and f = 180�.

Fig. S8.1
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(b) (i) Space group P212121 in projection on to (h0l) becomes plane group p2gg, with

coordinates 	(x, z; ½ � x, ½ + z). Proceeding as in (a), jFj = 0.38 and f = 180�. (ii) In the

standard orientation, the coordinates are (see Fig. 2.35): x, z; ½ � x, ½ + z; ½ + x, �z; �x,

½ � z. Proceeding as before, A0 = 0 and B0 = �1.18, so that jFj = 1.18 and f = –90�. Alter-
natively, we recall from Appendix E that the phase change for an origin shift r is –2ph.r, which
is –2p(¾), so that f = 180 – 270 = �90�.

Solutions 9

9.1. (a) In space groupP21, symmetry-related vectors have the coordinates 	 ð2x; 1=2; 2zÞ; the I–I vector

in the half unit cell is easily discerned. By measurement on the map, x1 = 0.422 and zI = 0.144,

with respect to the origin O.

(b) The contribution of the iodine atoms, FI, to the structure factors is given by 2fI cos 2p

(0.422xI + 0.144zI). Hence, the following table:

hkl (sin y)/l 2fI fI Fo

001 0.026 105 65 40

0014 0.364 67 67 37

106 0.175 88 �20 33

300 0.207 84 �8 35

The signs of 001, 0014, and 106 are probably +, +, and �, respectively. The magnitude

jFI (300)j is a small fraction of Fo, and could easily be outweighed by the contribution from

the rest of the structure. Thus, its sign remains uncertain from the data given. Small

variations in the values determined for fI are acceptable; they derive, most probably, from

small differences in the graphical interpolation of the fI values.

(c) The shortest I–I vector is that between the positions listed above. Hence, dI–I = {[2 � 0.422

� 7.26]2 + [0.5 � 11.55]2 + [2 � 0.144 � 19.22]2 + [2 � 0.422 � 0.144 � 7.26 � 19.22

cos (94.07)]}1/2 = 10.05 Å.

9.2. A S2 listing is prepared as follows:

h k h � k jE(h)j jE(k)j jE(h – k)j
0018 081 0817 9.5

011 024 035 5.0

026 035 0.5

021 038 059 0.4

0310 059 0.4

024 035 059 9.6

038 059 0817 7.2

081 011,7 6.0

081 011,9 10.2

0310 059 081 7.9

081 011,9 9.2

(Note the convention, that a two-figure Miller index takes a comma after it unless it is the

third index.)

In space group P21/a, sðhklÞ ¼ sð�h �k �lÞ ¼ ð�1Þhþk
sðh �k lÞ, and sðh k �lÞ ¼ ð�1Þhþk

sð�h k lÞ.
In using only two-dimensional reflections from the data set, we need just two reflections to
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specify an origin, say, 0, 0. We take s(081) = s(011,9) = + and proceed to the determination of

signs, as follows:

The two indications for s(021) and the single indication for s(026) will have low probabilities,

because of low jEj values, and must be regarded as unreliable at this stage. Within the data set, no

conclusion can be reached about s(a); both + and� signs are equally likely. Reflection 0312 does

not interact within the data set.

9.3. The space group is P21/c, from Chap. 9, Table 9.4. Thus, sjEðhklÞj ¼ sjEð�h �k �lÞj
¼ ð�1Þkþ1

sjEðh �k lÞj; for the hk reflections, set l = 0 in these relationships. Figure S9.1 shows

the completed chart. A S2 listing follows; an N indicates that no new relationships were

derivable with the reflection so marked; negative signs are represented by bars over the jEj values.

S2 Listing

Number h k h � k jEhj jEkj jEh�kj
1 300 040 3�40 3.5

2 840 5 40 6.0

3 570 2 70 10.0

4 700 570 2�70 13.0

5 800 670 2�70 10.1

6 340 5�40 7.7

7 411,0 4 11; 0 4.9

8 040 8�40 4.2

9 730 0 �4 0 770 3.1

10 5 �4 0 270 6.9

11 040 N

12 340 7�70 �4 1 1; 0 4.1

(continued)
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An origin at 0, 0 may be chosen by specifying 270 (eoe, and occurring four times) and 540 (oee,

and occurring three times), both as +. From the S2 listing, we now have:

Number Conclusion Comments

10 s(730) = +

7 s(800) = � s ð411; 0Þ ¼ �sð4 11; 0Þ
5 s(670) = +

6 s(340) = � Sign propagation has ended.

Now let s(040) = a

1 s(300) = �a

2 s(840) = �a

3 s(570) = �a

4 s(700) = a

8 s(840) = �a

9 s(770) = a

11 s(411,0) = �a

Fig. S9.1

13 540 N

14 840 N

15 270 N

16 570 N

17 670 N

18 770 N

19 411,0 N
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The symbol a would be determined by calculating electron density maps with both + and �
values, and assessing the results in terms of sensible chemical entities. In a more extended,

experimental data set, the sign of a may evolve. No S2 relationship is noticeably weak, and the

above solution to the problem may be regarded as acceptable.

9.4. (a) Use Chap. 8, Sect. 8.5.1, (8.105); since a = g = 90 deg, the fourth and sixth terms on the

right-hand side are zero. Thus, the bond length is 2.119 Å. From Sect. 8.6, (8.114), the esd

evaluates to 0.0001 Å. Thus, we write S(1)–S(2) = 2.119(1) Å.

(b) Writing down all Patterson vectors on the x,z projection of space group P21, we obtain:

A
2x1, 2z1; 2x2, 2z2
–2x1, –2z1; –2x2, –2z2
B
x1 – x2, z1 – z2; –x1 – x2, –z1 – z2; –x1 + x2, –z1 + z2; x1 + x2, z1 + z2;

–x1 – x2, –z1 + z2; x1 + x2, z1 + z2; x1 – x2, z1 – z2; –x1 – x2, –z1 – z2
Group A vectors are of single weight whereas group B vectors are of double weight. Hence the

vectors around the origin would have the geometry shown in Fig. S9.2, and we expect the

following arrangement, excluding the origin peak:

where S1D1 = D1S2 = S3D3 = D3S4 and S2D2 = D2S3 = S4D4 = D4S1.

Solutions 10

10.1. The number N of unit cells in a crystal is V(crystal)/V(unit cell). Both crystals have the volume

V(crystal) = 2.4 � 10�2 mm3. The protein unit-cell volume V(protein) = 60000 Å3, or

60000 � 10�21 mm3. The total number of protein unit cells NP is therefore = 4 � 1014.

For the organic crystal unit cell, V(organic) = 1800 Å3, or 1800 � 10�21 mm3, so that the

total number of organic unit cells N0 is 1.333 � 1016.

From Chap. 4, (4.1) and (4.2), we write

EðhklÞ ¼ ðI0=oÞðN
2l3Þ½e4=m2

ec
4�LpAjFðhklÞj2VðcrystalÞ (S10.1)

where N is the number of unit cells per unit volume of the crystal, L, p, and A are the Lorentz,

polarization, and absorption correction factors, and the other symbols have their usual meanings.

Historically, this equation was derived in 191416 and confirmed by careful measurements on

a crystal of sodium chloride in 192117. In (S10.1), E (hkl) is the experimentally derived quantity

and jF(hkl)j is the term required in X-ray analysis. For our purposes, we write

Fig. S9.2

16Darwin CG (1914) Philosophical Magazine 27, 315.
17Bragg WL, James RW, Bosanquet CM (1921) Philosophical Magazine 42:1.
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EðhklÞ / N2 ¼ ½Ncells=VðcrystalÞ�2 (S10.2)

where Ncells is the total number of unit cells in the crystal volume V(crystal). Since diffraction

power D is proportional to energy, we have for the two cases under discussion:

D ðorganicÞ=D ðproteinÞ ¼ ½NcellsðorganicÞ NcellsðproteinÞ= �2 ¼ ½ð1:333� 1016Þ=ð4� 1014Þ�2
¼ 1110:6

Based on these considerations alone, the organic crystal will diffract over 1000 times more

powerfully than the protein crystal. However, most protein data sets are now collected with

synchrotron radiation, the intensity of which more than makes up for the deficiency in

diffracting power calculated above. Other factors affect the intensity: in particular, it follows

from Chap. 4, Sect. 4.2.1 that a local average value of jF(hkl)j2 is proportional to Ncf
2 if, for

simplicity, we assume an equal-atom structure, where Nc is here the number atoms per unit cell,

which, to a first approximation, is proportional to the V (unit cell). Hence, the diffracting power

of the crystal is directly proportional to V(unit cell), so that the above “squared effect” is

somewhat diminished by the second factor.

10.2. The experimental arrangement and coordinate systems are shown in the diagram, Fig. S10.2.

For the powder ring, the two coordinates Yd and Zd will be the same, that is, 70 mm, and the

distance D is 300 mm. The angle subtended from O by the diffracted beam is 2y so that

tan2y = 70/300, or y = 6.654�. From the Bragg equation, l = 0.811 Å.

10.3. (Following on from 10.2.) Let the separation of spots for the 300 Å spacing be DZd; then

DZd=D ¼ tan 2y for a single diffraction order. Using the Bragg equation, we have 2 � 300 �

sin y = 0.811 and y = 0.0774 deg. If DZd ¼ 1mm then D = 1/tan 2y = 370 mm. Using a value

of D of 450 mm will be more than adequate. Note that the intensity falls off as the square of the

distance, so that, in practice, moving the detector too far away will be costly in terms of lost

data for a weakly diffracting protein crystal.

10.4. The information on limiting conditions indicates that there is either a 61 or a 65 screw axis in the

crystal (Chap. 2, Table 10.2). As the Laue symmetry is
6

m
mm, it follows from Chap. 10, Table

Fig. S10.2
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10.1 that space group is either P6122 or P6522. Only the X-ray analysis can resolve this

remaining ambiguity. Note that 61 and 65 screw operations are left-hand–right-hand opposites;

only one can be correct for a given protein crystal.

10.5. The volume Vc is 3.280 � 106 Å3. Substituting known values into the equation Dc =mZMPmu/

Vc(1 � s) gives 0.383 m/(1 � s) for Dc, where m is the number of molecules per asymmetric

unit, and s is the fractional solvent content to be found by trial and error. Assuming that m is 1

molecule per asymmetric unit and s is 0.68, that is, the crystal contains 68% solvent by weight

(the top value of the known range), then it follows that Dc = 1.20 g cm�3, a reasonable result.

Note that we could make s = 0.70, slightly higher than normal, and this would give Dc = 1.28

g cm�3, which is again quite acceptable. The important result for the structure analysis is that

m = 1 so that Z = 12.

As s from the above analysis is on the high side, we increase the number of molecules m to 2.

Then Dc = 2 � 0.383 m/(1 � s), or 0.766/(1 � s) which, for Dc = 1.4 g cm3 (see Chap. 10,

Sect. 10.4.7), gives s = 0.45. This result is again reasonable, so that there is some ambiguity for

this protein. All that can be done is to bear these results in mind during the X-ray analysis, and

make use of any other facts which are known about the crystal. In the case of the protein MLI, it

was known that the crystals diffracted X-rays only poorly, which is often a sign of high solvent

content, and this fact is more consistent with m = 1.

10.6. The expected number of reflections ¼ 4:19Vc=d
3
min, or 563450; this number includes all

symmetry-related reflections. Since the Laue symmetry (Chap. 1, Table 1.6) is
6

m
mm, the

number of unique data is 1/24 times the number in the complete sphere, namely, 23479. If only

21000 reflections are recorded, the data set would be approximately 89 % complete at the

nominal resolution of 2.9 Å. This result corresponds more appropriately to 3.0 Å resolution

(working backwards). Note that the above discussion is based on the number of reciprocal

lattice points scanned in data collection and processing. Because protein crystals diffract

poorly the number of reflections with significant intensities may well be as low as 50 %.

These weak data do actually contain structural information and will usually be retained in the

working data set.

10.7. The asymmetric unit is one protein molecule. About 10% of the 27000 Da is hydrogen leaving

27000 � 2700 = 24300 Da, which is equivalent to 2025 carbon atoms (C = 12). For the atoms

in the water molecules to be located (neglecting hydrogen atoms) we add a further 30 % of this

number. The total number of non-hydrogen atoms to be located is then 2025 + 608, or 2633

(O = 16). The number of parameters required for isotropic refinement (3 positional and 1

temperature factor per non-hydrogen atom) is (2633 � 4) + 1 (scale factor), or 10533. The

unit-cell volume is 58.2 � 38.3 � 54.2 sin (106.5), which equates to 115840 Å3. Using the

equation for the number N of reciprocal lattice points in the whole sphere at a given resolution

limit, 4:19Vc d3min

�
, and dividing by a factor 4 for (Laue group 2/m) we have the following

results for the different resolutions:

Reflections in 1 asymmetric unit Data/parameter ratio

6 Å N = 2246/4 = 562 0.053

2.5 Å N = 31066/4 = 7766 0.74

1 Å N = 485400/4 = 121342 11.7

Comments. The 6 Å structure is completely unrefinable. The 2.5 Å structure is refinable, but

only if heavily restrained. The 1 Å isotropic model structure should refine provided the data

quality is adequate.
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10.8. From the general expression Web Appendix A4, (WA4.6), with g = 120� and f = 120�, we
derive the matrix

0 �1 0

1 �1 0

0 0 1

2
64

3
75 which; together with the translation vector

0

0
2
3

2
64

3
75

for the 32 screw axis, leads to the general equivalent position set: x, y, z; �y, x� y; 2
3
þ z;

y � x; �x; 1
3
þ z. The only condition limiting reflections is 000l: = 3n.

10.9. If the protein belongs to a family, or group, of proteins having similar functions or biological

or other properties in common, and the structure of one member of the family is known, either

from an ab initio or other structure determination, molecular replacement can be attempted.

The method usually requires the two proteins involved in MR to have amino acid sequences

which correspond either identically or are of very similar types, that is, conserved for at least

30% of their total lengths (30% homology). Note that if the two proteins crystallize in the same

space group and have very similar unit cells, they are very likely to be isomorphous, and the

new structure should be determinable initially by Fourier methods alone. If the protein belongs

to a new family for which no known structures exist, an ab inito method, MIR or MAD, has to

be used for structure analysis. In the case of MAD, a tuneable source of synchrotron radiation

is required.

Solutions 11

11.1. (a) From the Bragg equation, 1.25 = 2d(111) sin y(111). Since dð111Þ ¼ a=
p
3,

y(111) = 12.62�. (b) Differentiating the Bragg equation with respect to y, we obtain

dl ¼ 2dð111Þ cos yð111Þ dy. Remembering that dy here is measured in radian, dl = 0.0243 Å.

11.2. For the NaCl structure type, we can write F(hkl) = 4[fNa
+ + (�1)lfH

�
/D

�]. Hence, the following

results are obtained:

(111) (220)

NaH NaD NaH NaD

X-rays 30.9 30.9 27.6 27.6

Neutrons 2.88 –1.28 –0.08 4.08

11.3. VIVALDI uses a white-beam Laue technique to record the diffraction data. Consequently each

diffraction record (spot) will have a different wavelength associated with it which will have first

to be determined in order for the spot to be assigned its hkl indices. This would usually require

the unit cell of the crystal to be known, which would be easier to carry out first with

monochromatic X-rays in the user’s laboratory.

11.4. The spallation neutron beam at ORNL has been filtered in order to cover as small a wavelength

range as is required in order to measure the data on a four-circle diffractometer. This would

result in some loss of beam flux (power) which, in turn, would require the use of larger crystals

in order to produce good quality diffraction data. VIVALDI uses a Laue white radiation

technique which does not require the use of flux reducing filters.

11.5. Applying Chap. 11, (11.3) gives l = 1.865 Å. [Work out the units of A in (11.3).]

11.6. The final picture should look something like Chap. 11, Fig. 11.12. It can be exported and saved

in a variety of ways from the RASMOL menu.
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Solutions 12

12.1. Since R = 57.30 mm, 1 mm on the film is equal to 1� in y. Thus, 0.5 mm = 0.5� = 0.00873 rad.

The mean Cu Ka wavelength is 1.5418 Å. Differentiating the Bragg equation with respect to y:

dl ¼ 2d cos y dy ¼ l cot y dy

Since dl = 0.0038, we have cot y = 0.0038/(1.5418 � 0.00873) = 0.2823, so that y 
 74�,
the angle at which the a1a2 doublet would be resolved under the given conditions.

12.2. Perusal of the cubic unit-cell types leads us to expect that (sin2y)/n for the first line (the low y

region) where n = 1, 2, 3, . . . , would result in a factor that would divide into all other experimental

values of sin2y to give integer or near-integer results.By trial,wefind that, for thefirst line, (sin2y)/3

leads to a sequence of values that correspond closely to those for a cubicF unit cell. Thus, dividing

all other values of sin2y by 0.0155 we obtain:

Line no. sin2y/0.0155 N a/Å hkl y/o

1 3.00 3 6.192 111 12.45

2 4.10 4 6.118 200 14.60

3 11.08 11 6.170 311 24.48

4 16.04 16 6.185 400 29.91

5 23.95 24 6.199 422 37.54

6 26.90 27 6.203 333, 511 40.22

7 34.80 35 6.210 531 47.26

8 35.77 36 6.212 600, 442 48.12

9 42.64 43 6.218 533 54.39

10 47.54 48 6.222 444 59.13

Some accidental absences appear in this sequence of lines. Extrapolation of a v. f(y) by the

method of least squares (program LSLI) gives a = 6.217 Å. However, lines 1 and 2 produce

significantly greater errors of fit than do the remaining eight lines. Since low-angle measure-

ments tend to be less reliable, we can justifiably exclude lines 1 and 2. Least squares on lines 3

to 10 gives a probably better value, a = 6.223 Å.

12.3. The LEPAGE program gives the following results with the C-factor set at 1�:
Reduced Cell: P 4.693, 4.929, 5.679 Å; 90.12, 90.01, 90.72�

Conventional cell: Orthorhombic P 4.693, 4.929, 5.679 Å; 90.12, 90.01, 90.72�,
where all three angles are assumed to be 90� within experimental error. If we select the more

stringent LEPAGE parameter C = 0.5�, we obtain
Reduced Cell: P 4.693, 4.929, 5.679 Å; 90.12, 90.01, 90.7�

Conventional cell: Monoclinic P 4.693, 5.679, 4.929 Å; 90.72, 89.99�

where a and gmay taken now to be 90� within experimental error. The parameters are reordered

so that b is the unique angle.

12.4. From the program LEPAGE, we find:

Reduced Cell: P 6.021, 6.021, 8.515 Å; 110.70, 110.70, 90.01�

Conventional cell: Tetragonal I 6.021, 6.021, 14.75 Å; 90.00, 90.00, 90.00�

V(conventional unit cell)/V(given unit cell) = 2.
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12.5. Let lines 1, 2, and 3 be 100, 010, and 001, respectively. Then, from multiples of their Q values,

we have a* = 0.09118 (average of 100, 200, 300, and 400; lines 1, 5, 17, and 33, respectively),

b* = 0.09437 (average of 010, 020, 030, and 040; lines 2, 6, 18, and 38, respectively), and

c* = 0.1312 (average of 002 and 003; lines 3 and 15, respectively). Consider next the possible

hk0 lines. Q110 = Q100 + Q010 = 172.2; this line has been allocated to 001, which is probably

erroneous. Continue with the [001] zone:

hk0 Qhk0 Line number

110 172.2 3

120 439.5 9

130 885.0 20

210 421.5 8

220 688.8 15

230 1134.3 29

310 837.0 19

320 1104.3 27

This zone is well represented, and it follows that g* is 90�. If line 4 is now taken as 001, then

line 25 could be 002. We check this assignment by forming expected Q0kl values:Q011 = 338.9,

but there is no line at this Q value, nor a pair of lines equidistant above and below this value,

as there would be if the assignment is correct and a* 6¼ 90�. Q021 = 606.2, but this line fails the

above test. It seems probable that line 4 is not 001. However, it must involve the l index and

one of the indices h or k. If it is 101, then, for b* = 90�, Q001 = 249.8 � 83.1 = 166.7, and if

it is 011, then, for a* = 90�, Q001 = 249.8 � 89.1 = 160.7. For the second of these assign-

ments, although a line at 160.7 is not present, there are the multiples 002 and 003 at lines

12 (642.8) and 39 (1446.3), respectively. With this assumption, line 4 is 011, line 12 is 002,

and line 39 is 003.

Confirmation arises from 012, 021, and 022 at lines 16 (731.9), line 10 (517.1), and line 25

(999.2). Thus, an average c* = 0.1267 and a* = 90�. We now search for h0l lines. For b* = 90�,
Q101 = 243.8; this line cannot be fitted into the pattern. Q102 = 725.9: there is no line at this

value, but lines 11 and 21 are very nearly equidistant (166.1 and 166.5) from 725.9. Hence, the

difference, 332.6 is 104 (8c* a* cos b*), so that b* = 68.91�. We have now a set of reciprocal

unit-cell parameters from which, since two angles are 90�, the direct unit cell is calculated as

b = 111.09�, a = 1/(a* sin b) = 11.755, b = 1/b* = 10.597, c = 1/(c* sin b) = 8.459 Å. We

make the conventional interchange of a and c, so that b is the unique angle, and c > b > a, and

now apply the further check of calculating the Q values for this unit cell, using the program

QVALS, with the results listed in Table S12.1.

In using this program, we remember that the unit cell appears to be monoclinic, so that we

need to consider hkl and h k �l reflections. From Table S12.1, it is evident that several reflections

overlap, within the given experimental error. The unit cell type is P. The h0l reflections are

present only when h is an even integer. The reflections 30�3 and 300, at the Q values 1444.8 and

1444.9, respectively are probably not present and overlapped by the 23�2 and 230. Hence, the

space group is probably Pa (non-standard form of Pc) or P2/a (non-standard form of P2/c).

To consider if the symmetry is actually higher than monoclinic, the unit cell is reduced, using
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the program LEPAGE. We find that the first unit cell is reduced, but the conventional unit cell is

orthorhombic B (� C or A), with a high degree of precision:

a ¼ 8:459; b ¼ 10:597; c ¼ 21:935 A; a ¼ b ¼ g ¼ 90:00o

Since Miller indices transform as unit-cell vectors, we find from the transformation matrix

given by the program LEPAGE that hB = �h, kB = �k, and lB = h + 2l; the transformed

indices are listed in Table S12.2. We note that the indices are listed as directly transformed.

If we were dealing with structure factors, we could negate all the negative indices, because

jFðhklÞj¼jFðh k lÞ ¼ jFðh k lÞj ¼ jFðh �k lÞj ¼ jFðh k �lÞj in the orthorhombic system.

Table S12.1 Observed and calculated Q values

for substance X and the hkl indices of the lines

referred to the first unit cell

Q(obs) hkl Q(calc)

83.1 0 0 1 83.1

89.1 0 1 0 89.1

172.2 0 1 1 172.2

249.8 1 1 0 249.6

1 1 �1 249.6

332.6 0 0 2 332.5

356.1 0 2 0 356.2

416.0 1 1 �2 415.8

1 1 1 415.9

421.5 0 1 2 421.6

439.3 0 2 1 439.3

516.9 1 2 �1 516.7

1 2 0 516.7

559.8 2 0 �1 559.0

642.9 2 0 �2 642.1

2 0 0 642.2

648.6 2 1 �1 648.1

683.3 1 2 �2 683.0

1 2 1 683.0

688.8 0 2 2 688.7

732.1 2 1 �2 731.2

2 1 0 731.2

748.4 0 0 3 748.2

1 1 �3 748.4

1 1 2 748.4

801.5 0 3 0 801.5

837.2 0 1 3 837.3

884.5 0 3 1 884.6

892.4 2 0 �3 891.5

2 0 1 891.6

916.0 2 2 �1 915.2

962.3 1 3 �1 962.0

1 3 0 962.0

(continued)

Tutorial Solutions 731



From an inspection of the hkl indices in Table S12.2 for the transformed unit cell, we find

hkl: h + l = 2n

0kl: None

h0l: h = 2n; (l = 2n)

hk0: (h = 2n)

Table S12.1 (continued)

981.7 2 1 �3 980.6

2 1 1 980.6

999.1 2 2 �2 998.3

2 2 0 998.4

1016. 1 2 �3 1015.5

1 2 2 1015.6

1015. 0 2 3 1104.4

1129. 1 3 �2 1128.2

1 3 1 1128.3

1134. 0 3 2 1134.0

1248. 1 1 �4 1247.2

1 1 3 1247.2

1249. 2 2 �3 1247.7

2 2 1 1247.8

1308. 2 0 �4 1307.2

2 0 2 1307.3

1330. 0 0 4 1330.1

1361. 2 3 �1 1360.5

1369. 3 1 �2 1367.6

31�1 1367.6

1397. 2 1 �4 1396.2

2 1 2 1396.3

1419. 0 1 4 1419.2

1425. 0 4 0 1424.8

1444. 2 3 �2 1443.6

2 3 0 1443.6

1461. 1 3 �3 1460.8

1 3 2 1460.8

Table S12.2 Transformation of the hkl indices from the monoclinic (first) unit cell to the orthorhombic B unit

cell

h k l hB kB lB h k l hB kB lB

0 0 1 ! 0 0 2 1 3 �1 ! �1 �3 �1

0 1 0 ! 0 �1 0 1 3 0 ! �1 �3 1

0 1 1 ! 0 �1 2 2 1 �3 ! �2 �1 �4

1 1 0 ! �1 �1 1 2 1 1 ! �2 �1 4

1 1 �1 ! �1 �1 �1 2 2 �2 ! �2 �2 �2

(continued)
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giving the diffraction symbol as B . a . which, under the transformation a0 = a, b0 = c, c0 = �c,
becomes C � � a. Hence, the space group is either Cmma or C2ma (� Abm2).

12.6. Crystal XL1: a = 6.425, b = 9.171, c = 5.418 Å, a = 90, b = 90, g = 90�. The unit cell is

orthorhombic. The systematic absences indicate the diffraction symbol as mmm P n a � � ,

which corresponds to either Pna21 or Pnam. The latter is the ac b setting of Pnma. [Reported:

KNO3; 9.1079, 6.4255, 5.4175 Å; Pbnm, which is the cab setting of Pnma.] The LEPAGE

reduction confirms the above cell as reduced and conventional, under reordering, such that

a < b < c. What is the space group now?

12.7. Crystal XL2: a = 10.482, b = 11.332, c = 3.757 Å, a = 90, b = 90, g = 90�. The unit cell is

orthorhombic, with space group Pbca. The LEPAGE reduction confirms the above cell as

reduced and conventional, under reordering such that a < b < c.

12.8. Crystal XL3: a = 6.114, b = 10.722, c = 5.960 Å, a = 97.59, b = 107.25, g = 77.42�. The unit
cell is triclinic, space group P1 or P�1. The LEPAGE reduction gives a = 5.960, b = 6.114,

c = 10.722 Å, a = 77.42, b = 82.41, g = 72.75�. [Reported: CuSO4.5H2O: 6.1130, 10.7121,

5.9576 Å, 82.30, 107.29, 102.57�; P�1.]

Table S12.2 (continued)

h k l hB kB lB h k l hB kB lB

0 0 2 ! 0 0 4 2 2 0 ! �2 �2 2

0 2 0 ! 0 �2 0 1 2 �3 ! �1 �2 �5

1 1 �2 ! �1 �1 �3 1 2 2 ! �1 �2 5

1 1 1 ! �1 �1 3 0 2 3 ! 0 �2 6

0 1 2 ! 0 �1 4 1 3 �2 ! �1 �3 �3

0 2 1 ! 0 �2 2 1 3 1 ! �1 �3 3

1 2 �1 ! �1 �2 �1 0 3 2 ! 0 �3 4

1 2 0 ! �1 �2 1 1 1 �4 ! �1 �1 �7

2 0 �1 ! �2 0 0 1 1 3 ! �1 �1 7

2 0 �2 ! �2 0 �2 2 2 �3 ! �2 �2 �4

2 0 0 ! �2 0 2 2 2 1 ! �2 �2 4

2 1 �1 ! �2 �1 0 2 0 �4 ! �2 0 �6

1 2 �2 ! �1 �2 �3 2 0 2 ! �2 0 6

1 2 1 ! �1 �2 3 0 0 4 ! 0 0 8

0 2 2 ! 0 �2 4 2 3 �1 ! �2 �3 0

2 1 �2 ! �2 �1 �2 3 1 �2 ! �3 �1 �1

2 1 0 ! �2 �1 2 3 1 �1 ! �3 �1 1

0 0 3 ! 0 0 6 2 1 �4 ! �2 �1 �6

1 1 �3 ! �1 �1 �5 2 1 2 ! �2 �1 6

1 1 2 ! �1 �1 5 0 1 4 ! 0 �1 8

0 3 0 ! 0 �3 0 0 4 0 ! 0 �4 0

0 1 3 ! 0 �1 6 2 3 �2 ! �2 �3 �2

0 3 1 ! 0 �3 2 2 3 0 ! �2 �3 2

2 0 �3 ! �2 0 �4 1 3 �3 ! �1 �3 �5

2 0 1 ! �2 0 4 1 3 2 ! �1 �3 5

2 2 �1 ! �2 �2 0
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Solutions 13

The solutions given here apply to the structure determinations of (1) the nickel o-phenanthroline

complex (NIOP) and (2) 2-S-methylthiouracil (SMTX& SMTY). The correctness of the other XRAY

structure examples should be judged by both the state of the refinement achieved and the chemical

plausibility of the structure, as discussed in Sect. 8.7.

13.1. NIOP
Table S13.1 lists the refined x, y and B parameters for the atoms in the Ni o-phenanthroline

complex; two-dimensional refinement by XRAY to R 
 9.8 %.

Table S13.1

Atom x y Pop. B/Å2

Ni 0.23511 0.17804 1.000 2.02

S1 0.31780 0.10370 1.000 2.10

S2 0.15409 0.10022 1.000 2.21

C1 0.46164 0.15015 1.000 2.05

C2 0.39174 0.22786 1.000 2.22

C3 0.32252 0.24182 1.000 3.55

C4 0.14559 0.23252 1.000 1.14

C5 0.08009 0.21567 1.000 2.83

C6 0.00165 0.13681 1.000 2.08

C7 0.00321 0.95462 1.000 5.63

C8 0.27653 0.44349 1.000 2.91

C9 0.47796 0.08704 1.000 0.85

C10 0.39398 0.16063 1.000 2.09

C11 0.33069 0.30042 1.000 3.47

C12 0.27678 0.33480 1.000 2.85

C13 0.31090 0.39206 1.000 2.40

C14 0.18671 0.44236 1.000 4.71

C15 0.15426 0.37717 1.000 3.69

C16 0.19049 0.33477 1.000 1.65

C17 0.14168 0.29263 1.000 1.35

C18 0.07108 0.16047 1.000 3.90

Note: The total number of non-hydrogen atoms in the molecule is 21. The ID

numbers refer to atoms as follow: 1 Ni, 2 S, 3 N, 4 C.
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13.2. SMTX and SMTY
Figure S13.1 shows the molecular structure of 2-S-methylthiouracil. Not all angles have been

listed; the values for S–CH3 and C(l)–S–CH3 will evolve from your result for the position of

the –CH3 group.

Fig. S13.1
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Index

A
Ab initio methods, 425, 438, 463

Absences in x-ray diffraction spectra

accidental, 142

local average intensity for, 287

systematic

for centered unit cell, 142, 252

and geometric structure factor, 144ff

for glide planes, 142–152, 176

and limiting conditions, 142–152

and m plane, 154

for screw axes, 142ff, 176

and translational symmetry, 142,

152, 176

Absolute configuration of chiral entities, 328

Absorption

coefficients, 114, 156, 337

correction, 166, 211, 233, 406,

426, 725

edge, 114, 325, 335

effects

with neutrons, 564

with x-rays, 114ff, 164, 406

measurement of, 165ff

Accuracy. See Precision

3-β-Acetoxy-6,7-epidithio-19-norlanosta-5,7,9,11-

tetraene

absolute configuration of, 465

chemistry of, 465

crystal structure of, 465

Airy disk, 247, 249

Alkali-metal halides, 4

Alternating axis of symmetry, 663

Alums, crystal structure of, 346

Amorphous substance, 7, 585

Amplitude symmetry, 159, 358, 433. See also

Phase, symmetry

Angle. See also Bond lengths and angles

Bragg, 201

dihedral, 428, 469

Eulerian, 518

of incidence, 200, 225

interaxial, 7, 9, 26, 55, 605

interfacial, 1, 15, 137, 226

between lines, 134

between planes, 137, 138, 411, 590

torsion, 411, 652

Ångstrøm unit, 111

Angular frequency

Anisotropic thermal vibration. See Thermal vibrations

Anisotropy, optical, 192. See also Biaxial crystals;

Uniaxial crystals

Anomalous dispersion, 30, 468, 505, 527

Anomalous scattering

and diffraction symmetry, 330ff

and heavy atoms, 333ff

and phasing reflections, 325, 334

and protein phasing, 337

and structure factor, 325, 332ff, 338

and symmetry, 330–332

Aperiodic crystals, 37, 51

Aperiodic structure, 38, 338

Area detector, 167, 187, 197, 205ff, 233,

504, 563ff. See also Intensity measurement

Argand diagram, 123ff, 156, 176ff, 321,

336, 362

Assemblage, 17

Asymmetric unit, 21, 73

Asymmetry parameter, 413

Atom

mass of, 156

scattering by, 335, 347

Atomic number, 130, 286

Atomic scattering factor

and anomalous scattering, 325, 332ff

corrections to, 485

and electron density, 129

exponential formula for, 670

factors affecting, 161ff

and spherical symmetry of atoms, 247

temperature correction of, 171

variation with, 248

ATPsynthase

docking with oligomycin, 471, 481

domains in, 472ff

structure of, 480

Attenuation, 116, 164, 257

Average intensity multiple. See Epsilon

(ε) factor

Averaging function. See Patterson, function

M. Ladd and R. Palmer, Structure Determination by X-ray Crystallography:

Analysis by X-rays and Neutrons, DOI 10.1007/978-1-4614-3954-7,
# Springer Science+Business Media New York 2013
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Axes

Cartesian right-handed, 167

conventional, 10, 60, 81

crystallographic, 8ff

for hexagonal system, 22, 59

Axial ratios, 12

B
Background scattering

with neutrons, 554

with x-rays, 554, 593

Balanced filter, 223, 225. See also Monochromators

Barlow, W., 3

Bayesian statistics, 175

Beam stop, 442

Beevers–Lipson strips, 345

Bernal, J.D., 138, 491, 541

Bessel function, 246, 266, 365, 399

B factor, 169ff, 173

Biaxial crystals

optical behaviour of, 190

refractive indices of, 190

Bijvoet difference, 305, 331

Bijvoet pairs, 306, 327ff, 347, 527, 718

Biodeuteration. See Perdeuteration

Bioinformatics, 471, 481. See also ATP synthase;

Oligomycins A, B, C

Biological molecules, 489

Biomolecular modelling, 471

Birefringence, 192ff

Bond lengths and angles

neutron, 417

tables of, 410

x-ray, 410

Bragg equation, 132, 134

Bragg reflection (diffraction)

and Laue diffraction, 200, 223

equivalence of with Bragg reflection, 134

order of, 133

Bragg, W.H., 4

Bragg, W.L., 4

Bravais, A., 3

Bravais lattices

and crystal systems, 54, 60, 64

direct, 63

notation and terminology of, 61

plane, 55, 57, 62

reciprocal, 63ff

representative portion of, 52, 60, 74

rotational symmetry of, 52, 71, 74, 94, 98

and space groups, 72ff

symmetry of, 70, 97–99

tables of, 59

three-dimensional, 54

translations, 51 ff, 72

two-dimensional, 52ff, 73ff

unit cells of, 52ff, 72ff, 86, 93

vector, 65ff

Buckyballs, 32–39

C
Camera methods, importance of, 588, 590

Capillary crystal mount, 496, 508, 568

Carangeot, A., 1, 15

Carbon monoxide, molecular symmetry of, 31

CCD. See Charge-coupled device (CCD);

Charge-coupled type area detector (CCD)

CCP4. See Collaborative computational projects

CCP14. See Collaborative computational projects

Central limit theorem, 176

Centred unit cells

in three dimensions, 56

Centre of symmetry (inversion)

alternative origins on, 95

and diffraction pattern, 330

Centric reflection. See Signs of reflections in

centrosymmetric crystals

Centric zones, 146, 178, 703

Centrosymmetric crystals

point groups of, 18–31

projection of, 17, 23ff, 36

structure, 32, 36

structure factor for, 141

and x-ray patterns, 103

zones (see Centric zones)

Change of hand, 22, 23, 491

Change of origin, 90, 252, 353, 692. See also

Origin, change of

Characteristic symmetry, 24, 26

Characteristic x-radiation, 113

Charge-coupled type area detector (CCD), 217ff

Chirality, 327, 534, 539–540

Chi-square (χ2) distribution, 411

Closure error, 321, 322

CMOS. See Complementary metal-oxide

semiconductor (CMOS)

Coherent scattering. See Scattering, coherent

Collaborative computational projects, 635

Collimation, 117, 504, 594

Collimator

multiple beam, 116

traditional, 116

Complementary metal-oxide semiconductor

(CMOS), 221

Complex numbers

conjugate of, 124, 367

plane, 123, 325

Compton scattering. See Scattering, incoherent

Computer graphics, 325, 420, 506

Computer prediction of crystal structure

developments in, 425

lattice energy and, 423

programs for, 422

Conformational parameters, 411, 471

Constant interfacial angles, law of, 1, 15

Convolution

and crystal structure, 264

and diffraction, 261

folding integral, 262ff

738 Index



and structure solution, 266ff

transform of, 261ff

Coordinates

Cartesian, 414, 434, 617, 652

fractional, 54, 65, 135

orthogonal, 151, 720

symmetry related, 74, 290, 308, 722

transformation of axes of, 353

Copper

pyrites crystal, 30

sulphate, 4, 5

Corrections to measured intensities

absorption, 165ff

extinction, 164, 168

Lorentz, 162, 168, 456

polarization, 162, 168, 456

scale, 169, 174, 456

temperature factor, 169ff, 456

Correct phases, importance of, 126

Correlation coefficient, 523

Cross vector, 318, 384, 520

Crown ether derivative, 574

Cryoprotectants for proteins, 491, 543

Crystal. See also Crystalline substance

class, 3, 24, 31, 146, 159, 177, 182, 331

and ε factor, 177, 182, 352

classification of

by optics, 90

by symmetry, 24

definition of, 37

density of

calculated, 444

measured, 444

external symmetry of, 17ff

faces of, 9ff, 28, 62, 166, 193

geometry of, 26, 311

growth of, 492ff

habit of, 3, 187, 440, 455

ideally imperfect, 164

ideally perfect, 164

imperfections in, 164, 586

internal symmetry of (see Space groups)

lattice (see Lattice)

models of, 638

monoclinic, 147, 152ff, 195, 288, 401, 434

mosaic character in, 164, 165

mounting of, 499ff, 508, 545, 703

optical classification of, 190

perfection of, 164, 197

periodicity in, 35

permitted symmetry of, 212

point group (see Point groups)

size of, 328, 494, 558, 577

as stack of unit cells, 1, 52, 164

symmetry and physical properties of, 17

unit cell of, 53, 54

Crystal growing

by diffusion, 188

from solution, 155, 188

by sublimation, 188

Crystalline state, 4, 6ff

Crystalline substance, 7

Crystallographic computing. See Software for

crystallography

Crystallographic point groups. See also

Point groups

and crystal systems, 3, 24ff, 200

derivation of, 636

and general form, 3, 23ff, 40, 687

and Laue groups, 29ff

notation for, 15, 29

recognition of, scheme for, 24ff, 636

restrictions on, 22

and space groups, 26, 38

and special form, 24, 28, 35

stereograms for, 15, 19ff, 29, 31, 177

tables of, 26, 30

Crystallographic software. See Software for

crystallography

Crystal models, 638

Crystal morphology, 1ff

Crystal systems

and characteristic symmetry, 24, 26

and crystallographic axes, 8, 28

cubic, 12, 15, 28, 190

hexagonal, 22, 59, 61, 94, 155, 599

and lattices, 51ff

and Laue groups, 29ff, 502

monoclinic, 147, 152ff, 195, 288, 401, 434

and optical behaviour, 190

orthorhombic, 24, 60, 100, 154, 157,

194ff, 201, 230, 281, 342,

404, 434, 703

and point group scheme, 25ff

recognition of, 28

and symmetry in Laue photographs, 552

table of, 26

tetragonal, 26, 190, 502

triclinic, 26, 190, 502

trigonal, 26, 190, 502

CSD. See Data bases

Cube, model of, 638

Cubic crystal system, 28

D
Data bases

Cambridge crystallographic data base (CSD), 387,

417, 539

International Centre for Diffraction Data

(ICSD), 585

Protein data base, 482, 674

Research Collabotory for Structural Bioinfomatics

(RCSB), 418

searching of, 359

Data collection

strategy

with neutrons, 551ff, 563, 568, 576, 623

with x-rays, 197ff, 219, 225, 564, 623
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Data processing

neutron, 562

x-ray, 562

Data/variables ratio, 406

Debye–Waller expectation factor, 170

Delta (δ) function, 258–259

de Moivre’s theorem, 123, 240, 250, 283

Density

calculated, 115, 273

and contents of unit cell, 273

importance of, 444, 513

measurement of, 466

optical, 204

Detector

neutron, 555, 558

x-ray, 118, 222, 508

Determination of absolute configuration, 326

Deuteration, 554ff, 597

Diad, 23, 54, 81, 97

Diagonal (n) glide plane, 86, 94, 107, 150

Diamond (d) glide plane, 86

Difference-Fourier series, 615. See also Fourier series

and correctness of structure analysis

and least-squares refinement, 309, 384, 391, 393ff,

419, 524, 532, 610, 649

Difference-Patterson, 316

anomalous, 334

Diffraction. See also X-ray scattering (diffraction)

by atoms, 130, 549, 561, 573

by crystals, 552ff

grating, 118, 253, 261

by holes, 245, 249

pattern, 4, 18, 33, 51, 103, 200ff (see also Atomic

scattering factor)

of assemblage, 17

of atoms, 245

of holes, 245, 249, 250

by regular arrays of scattering centres, 130ff

symbol, 100ff, 152ff, 178, 186, 697, 732, 733

of visible light, 235, 245

Diffractometer

CAD4 (Nonius)

data collection with, 211, 389

structure determination with, 212

kappa CCD (Nonius)

crystal positioning, 210

data collection and strategies, 394

instrument geometry, 209

scans, ω/θ and θ, 212

optical, 249ff

powder, 204, 417, 418, 585–632, 654

serial, 208, 504 (see also Intensity measurement

single-counter, Intensity measurement

single-crystal)

transformations with, 211

Dihedral group, 428, 469

Directions

angle between, 14

cosines, 7, 132 (see also Web Appendix WA1)

Direct lattices, 63, 508. See also

Bravais lattices

Direct methods of phase determination

Σ1 equation, 366, 376

Σ2 equation, 355ff, 370

enantiomorph selection, 367

example of the use of, 377, 525

experience with, 366, 372, 391

figures of merit in, 384ff, 395

origin specification, 354, 369

Sayre’s equation, 270

starting set in, 354ff, 372

structure invariant, 352ff, 372

structure seminvariant, 354

success with, 372

symbolic addition, 359ff

use of SHELX in, 372ff

Direct methods of phasing, 352, 516

Direct-space methods, 588, 613ff, 621

Discrepancy index. See R factors

Disorder

dynamic, 404, 420

in single crystals, 419ff

static, 420

Disphenoid, 4, 24

Distribution

acentric, 177ff, 352, 467, 645

centric, 177ff, 352, 456, 645, 703

cumulative, 184, 388

Gaussian, 172, 176

transform of, 258

mean values of, 180

parameter, 172, 176

radial, 246, 419

Duality, 551

E
Electromagnetic radiation, interaction of crystal with,

121, 189

Electron

particle properties of, 128

scattering, 121ff, 140

wave nature of, 128

Electron density, 5, 128, 134ff, 169ff, 241ff, 278ff,

355ff, 446ff, 502ff, 564ff, 612ff, 641ff. See also

Difference-Fourier series

ball-and-stick model for, 279

computation and display of, 279

contour map of, 5, 254, 420

and criteria for correctness of structure

analysis, 416

determined from partial structures, 303

equations for, 243, 278, 285, 651

fitting to, 536

and Fourier series, 241, 273, 416, 513

and Fourier transform of, 528

and hydrogen atom positions, 280, 476

interpretation of, 278ff, 513, 527, 531, 614

in large molecule analysis, 324
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map, 5, 171, 266, 279, 293, 301ff, 339, 416, 459ff,

513ff, 563, 607, 625, 642

non-negativity of, 362

and Patterson function, 282, 612, 641

peak heights and peak weights in, 279, 612

periodicity of, 241

and phase problem, 243

projections of, 242, 279ff, 446, 641

superposition of peaks in, 281

pseudosymmetry in, 308, 320

real nature of, 128

resolution of, 278, 423, 447, 513, 530

standard deviation of, 416

structure factors and, 244, 513, 641, 648

successive Fourier refinement and, 309

units of, 245

E maps

calculation of, 360

‘sharp’ nature of, 361

Epsilon (ε) factor, 177, 352, 646

Equivalent positions, 74, 78, 82, 94. See also General

equivalent positions; Special equivalent positions

Errors, 415

superposition of, 415, 720

Esd. See Estimated standard deviation (esd)

Estimated standard deviation (esd), 415

jEj values, 175, 183, 287, 643. See also Direct methods

of phase determination calculation of

distribution of, 182ff, 352, 365, 456

statistics of, 644

structure factors and, 182, 641

Evans-Sutherland picture system, 420

Even function, 255, 258, 709

Ewald, P.P.

construction, 138

Ewald sphere, 138, 163, 173, 202ff

Extinction

optical

for biaxial crystals, 190, 194ff

for uniaxial crystals, 190

x-ray

parameter, 165, 168

primary, 164

secondary, 164ff

F
FAST detector, 215

Fast freezing, 496ff

Fast Fourier transform (FFT), 272, 339, 513, 672

Federov, E.S. See Fyodorov, Y.

Figure of merit (FOM), 321ff, 377ff, 528, 604, 627

File

cif, 416

pdb, 532, 535, 569

Filtered x-radiation. See Monochromators

Flack parameter, 305, 326ff, 468. See also Determination

of absolute configuration; Hamilton ratio test

Flash freezing (shock cooling), 501

Focusing mirrors

folding integral (see Convolution; Integrals)

Franks, A., 225

Göbel, 235

FOM. See Figure of merit (FOM)

Form

of directions, 51

of planes, 15

Fourier analysis. See Fourier series

Fourier, J.B., 236

Fourier map

difference electron density, 324

electron density, 641

Fo-jFcj map, 266

2Fo-jFcj map, 423, 530, 536, 537, 579

Fourier series, 235ff, 281, 285, 309, 361, 416, 460, 513,

648, 716, 717. See also Difference-Fourier series

coefficients of, 240, 258, 266, 285, 302, 309, 361,

460, 716

exponential form of, 240

frequency variable in, 241, 257

one-dimensional, 241, 257, 346, 651

partial, 301ff

refinement with successive, 309, 468, 531

series termination errors in, 240, 416

in structure analysis, 236, 266, 273, 281

summation of, 239, 344, 651

three-dimensional, 241ff, 463

two-dimensional, 36, 243ff, 651

wavenumber variable in, 237

weighting of coefficients for, 302

Fourier summation tables. See BeeversûLipson strips

Fourier transform

of atom, 245ff

and change of origin, 252

conjugate of, 125, 367 (see also Friedel’s law)

of electron density, 528

of euphenyl iodoacetate, 259

fast, 339, 513

generalized, 246ff

general properties of, 261

and heavy-atom technique, 266

of hole, 245ff

inverse of, 255ff

of molecule, 248

and optical diffractometer, 249

and Patterson function, 273, 282ff, 372

phase free (see Fourier transform; Patterson, function)

of platinum phthalocyanine, 253, 266

practice with, 249ff

reconstruction of image by, 252ff

representation of, 246, 253ff

sampling, 239, 257

and sign relationships, 268

structure factors as, 240, 266, 309

and systematic absences, 252, 270

transform of, 36, 235ff, 338, 528, 627, 651

of two or more holes, 250ff

of unit cell, 248

and weighted reciprocal lattice, 259ff
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Four-phase structure invariants. See Quartets

Fractional coordinates, 54ff, 65, 106, 248

Frankenheim, M.L., 3

Fraunhofer diffraction, 245

Free rotation, 420

Friedel pairs, 211, 305, 325, 331, 719.

See also Bijvoet pairs

Friedel’s law, 140, 147, 175, 181, 200, 228, 237, 243, 330,

342, 358, 374, 718

and absorption edges, 325

Friedrich, W., 5

Fringe function, 250ff, 262

Fullerenes, 38

Fyodorov, Y., 3

G
Gamma (Γ) function, 181. See alsoWeb Appendix WA7

Gaussian function, 258

General equivalent positions, 74ff, 89ff, 143ff

molecules in, 106

General form of planes, 30. See also Form

for crystallographic point groups, 31

Generator, x-ray. See X-rays, generators

Geodesic dome, 38

Geometric structure factor, 340ff, 358, 433

Gessner, C., 1

Glass (silica) structure, 7

Glide line, 73, 75, 76, 80

Glide plane, 86, 94, 142ff, 176, 275

Goniometer

contact, 1

optical, 14

x-ray, 441

Graphic symmetry symbols, 25, 73, 87, 695. See also

Stereograms

change of hand, 21, 491

for diad axis, 81

for glide line, 73, 76

for glide plane, 86

for inverse monad (centre of symmetry), 25

for inversion axis, 22, 685 (see also

Roto-inversion axes)

for mirror line, 76

for mirror plane, 22ff, 200, 637, 695

for pole, 21, 28

for representative point, 21

for rotation axes, 22, 26, 200

for rotation points, 74, 102

for screw axes, 83ff, 142, 176, 276

table of, 25, 85

Great circle, 15, 38

Guglielmini, G., 1

H
Half-translation rule, 93ff, 691

Hamilton ratio test, 468. See also Flack parameter

determination of absolute configuration, 468

Harker (and non-Harker) sections of the Patterson

function, 287, 310ff, 450, 468

Hauptman, H., 355, 362, 435

Haüy, R.J. (Abbé), 1

Heavy-atom method, 301ff, 386, 439, 649. See also

Anomalous dispersion; Isomorphous replacement;

Patterson, search; Patterson, selection; Structure

analysis

examples of, 303, 308

and Fourier transform, 266

limitations of, 310

and Patterson function, 310, 315

Hermann-Mauguin notation, 27, 29, 41, 86, 159

and Schönflies notation, 29, 41, 159

Hessel, J.F.C., 3

Hexad, 25

Hexagonal crystal system, 1, 22, 26, 34, 155

Hexagonal two-dimensional system, 22

Hexamethylbenzene, 270, 355, 640

Hex(akis)octahedron, 4, 24

Hierarchy for considering limiting conditions, 154

High Flux Isotope Reactor (HFIR) (ORNL,

Tennessee), 556

High-resolution transmission electron microscopy

(HRTEM), 236

Homology modelling, 481

HRTEM. See High-resolution transmission electron

microscopy (HRTEM)

Hydrogen atom positions, 280, 340, 376, 419, 475, 549,

558, 570ff

Hydrogen atoms, 5, 279, 339ff, 406ff, 419, 468, 549.

See also Light atoms

bonds with, 408

location of

by calculation, 340, 406

by difference-Fourier, 279

Hypersymmetry, 175, 184

I
I(hkl), 140, 161ff, 305

ICDD. See International Centre for Diffraction

Data (ICDD)

Icosahedral group, 39

ICSD. See Data bases; Inorganic Crystal Structure

Database (ICSD)

Ideal intensity, 162

Identity symmetry element, 38, 81

Image formation, 235–236

Image plate, 209, 215ff, 504ff, 592. See also Intensity

measurement

Implication diagram, 318

Incoherent scattering, 127ff, 554ff, 597. See also

Scattering

Independent reflections, 329, 394, 577

Indexing reflections, 441

Indistinguishability in symmetry, 25

In-house data collection, 219

Inorganic Crystal Structure Database

(ICSD), 418

Integral sin x / x. See Web Appendix WA7

Integrated reflection, 161, 576
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Intensity

averages,

abnormal, 176

enhanced, 176, 310

data, 197

data collection, 197ff, 305

data quality, 304

distributions (see Distribution)

expressions for, 161ff

factors affecting, 161

ideal (see Ideal Intensity)

measurement of, 167, 189, 221, 282, 303, 325, 444,

456, 474, 504, 599

relative, 230

of scattered x-rays (see X-ray scattering (diffraction)

by crystals)

statistics of, 161ff, 228, 359

variance of, 506

weighted mean, 167

Intensity data, 197

chi-squared test for equivalent reflections in, 168

completeness of, 510

merging of equivalent reflections in, 167

scaling of, 167

by Wilson’s method, 169, 313, 445ff, 641, 646

Intensity measurement

by area detector

charge-coupled type, 217

FAST type, 215

background radiation in, 128, 590

by diffractometer

powder, 593ff, 605ff

serial, 208, 504

single-counter, 208, 504

by image plate, 215ff

Interatomic distances, 385, 409, 463, 614

Interference of x-rays

constructive, 225

destructive, 133

and finite atom size, 171

Intermolecular contact distances, 408, 451

Intermolecular potential, 433

International Centre for Diffraction Data (ICDD), 117,

585, 605

International Union of Crystallography (IUCr), 37,

607, 711

Internuclear distance, 419

Interplanar spacings, 62, 132ff

Inversion axes, 22, 637, 659. See also Roto-inversion axes

Ionic radii, 416

table of, 416

Ionization spectrometer, x-ray, 5, 103

Isomorphous pairs, 312

Isomorphous replacement, 306, 312ff, 334, 346, 514–515,

531, 716. See also Heavy-atom method

for alums, 346

multiple (MIR), 314, 320ff, 337, 346, 496ff, 503,

513ff, 527, 531, 534, 545, 728

for proteins, 514

single (SIR), 314, 319ff, 335, 503, 527, 611 (see also

Powder method; Seminvariant representations

(SIR))

single, with anomalous scattering (SIRAS and

MIRAS), 335ff, 503, 527

Isomorphous replacement, single, with anomalous

scattering, 335ff, 503, 527

Isotropic crystals. See Optically isotropic crystals

Isotropic thermal vibrations. See Thermal vibrations

Isotropy, 166ff, 171ff, 190ff, 287

IUCr. See International Union of Crystallography (IUCr)

J
Joint Committee on Powder Diffraction Standards

(JCPDS). See International Centre for

Diffraction Data

K
Karle–Hauptman inequalities, 435

Karle, J., 355, 359

Kepler, J., 1

Knipping, P., 4

K-spectrum, 113ff

L
Lack of closure error. See Closure error

LADI-III (ILL, Grenoble), 555

Laser wakefield acceleration, 121

Lattice energy, 422ff, 430, 628. See also Computer

prediction of crystal

structure

minimization of, 423, 628

and thermodynamic stability, 433, 483

Lattices. See Bravais lattices

Lattice, two-dimensional, 52, 60

Laue class. See Laue group

Laue equations, 130

Laue group

and point group, 30, 101, 175, 200, 330, 502

projection symmetry of, 29, 34, 200

Laue method. See also Laue x-ray image/photograph

experimental arrangement for, 199, 202

and synchrotron radiation, 200ff

Laue projection symmetry, 30, 34, 200

Laue symmetry, 175, 180, 225, 288, 509, 545,

562, 704, 726

Laue treatment of x-ray diffraction, 76, 130ff

equivalence with Bragg treatment, 134

Laue x-ray image/photograph. See also Laue method

symmetry of, 200

and uniaxial crystals, 190, 200

Layer lines, 230. See also Oscillation method

Least squares refinement

data errors, 406

data/variables ratio, 406

and estimated standard deviation, 406

and light atoms, 419

and parameter refinement, 401ff

precision in, 405
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Least squares refinement (cont.)

refinement against jFoj and jFoj2, 410
refinement strategy, 405ff

rigid-body constraint in, 534

scale factor in, 406, 444

and secondary extinction in, 137

special positions in, 405

strategy in, 405

temperature factors in, 402ff

unit-cell dimensions, 401

and weights, 406

Light atoms, 301, 310, 386, 419, 467, 549. See also

Hydrogen atom positions

Limiting conditions. See also Geometric structure factor;

Space groups unit cell, centred; Translational

symmetry

hierarchal order of considering, 150

non-independent (redundant), 84, 91

redundant (see Non-independent limiting

conditions)

in space group P21, 144

in space group Pc, 146

in space group P21/c, 146

in space group Pma2, 148

and systematic absences, 142

for translational symmetry, 142

for unit-cell types, 138

Limiting sphere, 281. See also Ewald sphere;

Sphere of reflection

Line, equation of, 13, 135

intercept form of, 8

Liquid nitrogen shock cooling, 219, 394. See also

Fast freezing

Liquids, x-ray diffraction from, 273, 419

Long-range order, 7

Lonsdale, K., 91ff, 355

Lorentz factor, 163

Low energy neutrons, 573

Low temperature measurements, 208

M
Macromolecular structure analysis

flow diagram for, 490

free-R factor (see also Macromolecular structure

analysis; Protein structure analysis; Rfree)

heavy-atoms derivatives for, 306

multiple isomorphous replace (MIR) in structure

factors in, 501

temperature factors in, 501

protein, crystallization of

‘click’ test in, 494

improvement of crystals, 496

precipitants, 493

quality screening, 495

protein, make-up

L-amino acids, 499

amino acid sequence, 497

α-carbon atom, 489, 499

polypeptide chain, 489

primary structure, 489

secondary structure, 490

tertiary structure, 490

protein, properties, 491

protein, purity, 492

protein, structure analysis

cryo-crystallography, 499

crystal mounting for, 498

crystal selection, 501

data collection

with area detector, 197

by camera, 197

by diffractometer, 197, 209

with image plate, 209, 500

problems in and possible cures, 508

radiation sources in, 593

example structure determination, Ricin

Agglutinin (RCA)

AmoRe algorithm, 525

density, 510

difference electron density, 512

electron density in, 512

errors in, 510

2Fo-jFcj map for, 514

geometry of molecule, 387

initial MR model, 527

number of reflections in data set, 281

omit map for, 514

Patterson function for, 282ff

phase information and density modification

in programs for, 527ff

phasing by MAD in, 527

phasing by single isomorphous

techniques in, 527

radius of integration, 525

resolution, of data, 304

R factor, 511

Rfree, 503

self-rotation function for, 509, 520

solvent analysis, 536

space group for, 509

structure validation, 537

unit cell of, 509

heavy-atoms derivatives for, 497,

514, 527

intensity data for, 506

Laue symmetry, 509

multiple isomorphous replace (MIR) in, 496,

514, 527

multiple isomorphous replace (MIR) in:

structure factors in, 527

NCS (see Non-crystallographic symmetry)

non-crystallographic symmetry, 518ff, 523

post-refinement, 506ff

profile fitting, 506

temperature factors in, 501

unit cell determination, 509

MAD. See Multiple wavelength anomalous

dispersion (MAD)
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Magnetic

field effect, 119, 121

materials, 128

moment, 549

scattering

amplitude, 128

form factor, 128

of neutrons, 553

Matrix

inverse of, 405, 705

multiplication of, 65

notation, 65

representation of symmetry operations, 97ff

transformation, 69, 108, 230, 602, 654, 689, 696, 731

transpose of, 651, 705

Maximum entropy, 609, 624

Maximum likelihood, 516, 535

Mean planes, 414

Miller–Bravais indices, 11, 22

Miller indices

common factor in, 602

in stereograms, 70

transformations of, 69

Miller, W., 3, 9

Minimum function, 293, 641. See also Patterson,

superposition

MIR. See Multiple isomorphous replacement

MIRAS. See Multiple isomorphous replacement with

anomalous scattering

Mirror plane, 18, 22ff, 86, 132, 176, 200, 288, 412, 501,

602, 637, 714

Mirror symmetry. See Reflection symmetry

Model

bias, 516, 527, 538

building, 513, 523ff, 613

structure, 4, 278, 306, 325, 380, 400, 416ff, 513, 531,

533ff, 588, 628, 727

Modulus, 262, 301, 586

Mohs, F., 3

Molecular

geometry, 327, 336, 408ff, 433, 451ff, 471, 513, 529ff,

628, 652

graphics, 385, 388, 434, 516, 527, 531, 541, 554, 720

programs for, 385

Molecular replacement

correct solution, recognition of, 523

phases from, 524

programs for, 518

rigid-body refinement in, 524

rotation function in, 523

search model in, 522

data bases, use of, 522

search Patterson function for, 522

subunits in, 524

target Patterson function for, 522

translation function, 522

Monad, 25

Monochromators

double-type, 224

filter type, 224

single-type, 224

for synchrotron radiation, 225

Monoclinic crystal system, 195

Morphology, 1–49ff, 135, 190, 226, 508

Mosaic spread, 220

Motif, 18, 72ff, 83, 105, 145, 425, 689

MR. See Molecular replacement (MR)

Multiple isomorphous replacement (MIR), 314, 320,

496, 517

Multiple isomorphous replacement with anomalous

scattering (MIRAS), 527

Multiple wavelength anomalous dispersion (MAD), 337,

503, 527. See also Protein (macromolecule),

structure determination of

Multiplicity of reflection data, 511

Multisolution procedure, 372

Multiwire proportional counter (MWPC), 213

N
Naphthalene, 265, 275

symmetry analysis of, 275

Net, 52, 73, 106, 121, 132, 164, 202, 236, 251, 551, 614.

See also Lattice

Neutron

crystallography, 550, 560

density map, 570, 576

detectors, 471, 557

diffraction

complementary to x-ray diffraction, 549, 553

data collection by, 552

Laue method in, 552

location of light atoms by, 549

with monochromatic radiation, 560

refinement of light atoms by, 550, 564, 574

structure determination examples by, 560, 574

time-resolved Laue method in, 560

scattering, 103, 419, 550ff, 560, 565

scattering length, 549, 553ff, 568, 597

sources of, 551, 559

spallation source, 551, 558

spectrum, 555

thermal, 553

Nickel tungstate, 276

Niggli cell, 602

Non-crystallographic point groups, 31, 637, 640

Non-crystallographic structure. See Aperiodic structure

Non-crystallographic symmetry, 491, 518ff

Non-independent limiting conditions, 84, 91

Normal distribution, 172, 177, 179, 180

Normalized structure factor, 172, 182ff, 351ff

Notation, xxxiii, 15, 21, 23ff, 54ff, 74, 85ff,

134, 362, 663

Nucleic acids, 471, 496, 521

Numerical data, 64, 132, 339, 534, 555

O
Oblique axes, 40

Oblique extinction, 196, 289, 440

Index 745



Oblique two-dimensional system, 21, 52, 73. See also

Plane groups

Occupancy, 80, 570, 656

Oligomycins A, B, C

absolute configuration of, 472ff

crystal structure of, 474

docking of, 471, 481

hydrogen bonds in, 473, 477, 484

Omit map, 514, 577, 580

Omitted coordinates, 375, 577

Optical classification of crystals, 190

Optical diffraction pattern, 251

Optical diffractometer, 249

Optically anisotropic crystals, 192

Optically isotropic crystals, 192

Optical methods of crystal examination, 190, 466

Optic axis

and biaxial crystals, 194

and crystallographic axes, 192

and uniaxial crystals, 193

Order of diffraction, 131

Orientation of crystals, 226, 384, 574

Origin

change of, 90, 252, 353, 692

choice of, 76, 87, 93, 106, 253, 354, 372, 657

Origin-fixing reflections, 352ff, 359, 458, 627

Orthogonal axes, 7, 151, 519, 618

Orthogonal function, 9, 137, 151, 215, 382, 525. See also

Web Appendix WA8

Orthorhombic crystal system, 342, 426, 577. See also

Crystal systems

Oscillation method, 205ff

Oscillation record (image/photograph), 197, 206, 221,

229, 441, 506. See also Layer lines

experimental arrangement for, 199, 202

flat-plate technique in, 199, 205

and protein crystal, 207

symmetry indications from, 305, 441

Over-determination, 282, 533, 538

P
Packing, 3, 295, 298ff, 385ff, 408, 428ff, 493,

628, 673

Parametral line, 39

Parametral plane, 8, 26

Parity, 138, 144, 353, 354, 367ff, 459, 644, 649, 719

Parity group, 354, 369, 459, 644, 649, 719

Partial-structure phasing. See also Phase, determination

effective power of, 301

for proteins, 400, 539

for small molecules, 538

Path difference

analysis of, 135

in Bragg reflection, 164, 201, 552

PATSEE Patterson search program

crystal packing in, 385

detailed examples of use of, 28, 418

example structure analysis, 388

expansion and refinement in, 386, 391, 397

interatomic vectors in, 267, 381ff

molecular orientation in, 382

Patterson function, storage of in, 387

refinement with, 384

rotation search, 387, 395

strategy for, 388

search model construction for, 384ff

scattering power of, 389ff

translation search, 387

vector verification, comparison with, 381, 388

Pattern motif, 51, 72

and asymmetric unit, 72

Patterson

function (see also Harker sections; Peaks of

Patterson function)

centrosymmetry of, 284

convolution and, 266, 271

electron density product in, 283

Fourier series of, 235ff

Fourier transform of, 235ff

heavy atom in, 310

Laue symmetry of, 288

as map of interatomic vectors, 284

non-origin peaks in, 286

one-dimensional, 241

origin peak in, 269, 285, 291, 296, 299, 352, 435,

521, 716, 725

over-sharpening of, 287

packing analysis in, 298

partial electron density from, 463

peaks in, 285, 463

practical evaluation of, 283

in projection, 279, 446

resolution of, 287, 381, 387

search methods (see Patterson, search)

sharpened, 287, 352

solution of phase problem and, 289ff

successive Fourier refinement and, 257

symmetry analysis in, 288

space group Pm, 288

and symmetry-related and symmetry-

independent atoms, 286

three-dimensional, 286

and vector interactions, 289

search

crystal packing in, 285

deconvolution by, 286

expansion of structure from, 286

figures of merit in, 385, 395

general procedure with, 381

overlap in, 523

random angle triplets in, 384

refinement of structure from, 531

rotation stage in, 382, 397, 523

search structure, 381

for small molecules, 375, 382ff, 522

target structure for, 382ff

translation stage in, 384, 395, 523

vectors in, 381ff
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sections

for papaverine hydrochloride, 297

selection, 310ff

space, 285, 286, 288, 292, 447

space group, 286

superposition, 293 (see also Minimum function)

Peaks. See also Patterson, function

arbitrariness in location of, 296

cross-vector, 384

electron density, in, 284

in Harker lines and sections, 289, 448

heights and weights

in electron density, 278, 612

in Patterson function, 285

implication diagram for, 318

non-origin, 286, 317, 380, 386

Patterson, 285, 296, 382, 524

positions of, 285

spurious, 287, 361, 371, 460

and symmetry-related atoms, 288,

290, 302

weights of, 285

Peaks of Patterson function, 285, 296

Penrose tiling, 36

Perdeuteration, 559

Periodicity, 35, 236, 241

Periodic table, 256

Phase. See also Partial-structure phasing; Structure

analysis; Structure factor

angle, 125, 135, 141, 156, 159, 172, 216, 253, 301,

308, 323, 330, 361, 363, 367, 502, 703, 717

annealing, 376ff

by anomalous scattering, 140, 305, 325ff, 527

best, 323, 351, 377

in centrosymmetric crystals, 141, 270, 302, 353, 361

change, 145, 164, 248, 325, 624, 722

combined, 130, 336, 627

determination, 351ff, 516, 611

difference, 122, 164, 251

direct methods of determining, 351ff

error in, 302, 321

extension, 376, 528, 588

heavy-atom method of determining, 301

importance of correct, 126

in non-centrosymmetric crystals, 141, 302, 334, 361ff

from Patterson function, 282ff, 641

power, 123–108, 135, 244, 301, 306

probability methods, 351 (see also Direct methods)

problem, 243, 253, 281ff, 310, 335, 351, 527, 588,

608, 626

in space group P1, 179, 270, 289, 352, 358, 433,

622, 650

in space group P21, 86, 106, 146, 184, 259, 296, 330,

367, 377, 432, 466, 524, 564, 611, 647, 710, 721

of structure factor, 351 (see also Structure factor)

symmetry, 358, 433, 457

variance of, 179, 363, 535

of wave, 124, 363

of resultant wave, 127, 135

Phase symmetry, 358, 433, 457

Photograph. See X-rays, photograph

Photon, 119, 128, 155, 214, 221, 597, 698

PILATUS detector. See Complementary metal-oxide

semiconductor (CMOS)

Plane groups, 60, 73ff, 102ff, 394, 446, 644ff, 689, 693.

See also Projections; Two-dimensional system

the 17 patterns of, 76

by symbol

cm, 75, 78, 81, 83

c2mm, 76

p2, 73, 446, 651, 693, 721

pg, 76, 79

p2gg, 76, 78, 87, 90, 644, 649, 721

pm, 75, 80, 100, 153, 176, 186, 286, 288

Planes

equation of, 3, 7, 451

intercept form of, 8

family of, 62, 125, 132, 140, 164, 697

form of, 15

indices (Miller) for, 8ff, 37ff, 56, 62ff, 78, 81, 107,

133, 211, 359, 654, 687, 731

mirror, 18, 22, 25, 28, 87, 99, 132, 176, 200, 288, 412,

413, 501, 602, 637, 638, 714

multiplicity of, 173, 511 (see also Epsilon

(å) factor)

spacing of, 12

Platinum derivative of ribonuclease, 317

Point atom, 287, 351, 460, 646

Point groups. See also Crystallographic point groups;

Non-crystallographic point groups; Stereograms

centrosymmetric, 25, 175

and crystal systems, 24

derivation of, 636

examples of (crystals and molecules), 637ff

incompatibility with translation, 97

key to study of, 26

and Laue groups, 29, 229, 444

matrix representation of, 97ff

non-crystallographic, 31, 35, 184, 640

notation for, 29

one-dimensional, 19

point group mm2, 27

point group 4mm, 27, 94, 98, 695

projection symmetry of, 30, 42

recognition scheme for, 637ff

and space groups, 97, 100

three-dimensional

Hermann-Mauguin symbols for, 27, 29, 159

Schönflies symbols for, 29, 31

two-dimensional, 19, 30, 83

Pointless program, 567

Polarization correction, 158, 212, 475

Polarized light, 189, 228

and structure analysis, 189

Polarizing microscope

analyser, 190

examples of use of, 190

polarizer, 189
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Polarizing microscope (cont.)

Polaroid, 189

Pole. See Stereogram

Polypeptide, 313, 319, 327, 394, 489ff, 516, 528, 540, 579

Position-sensitive detector. See Area detector

by computer, 618

CRYSFIRE program system in, 603

figures of merit in, 395, 459

general indexing, 599

in high-symmetry systems, 268

ITO12 program system in, 603

by Ito’s method, 599

of magnesium tungstate, 599

Powder method

basis of, 588

Bragg-Brentano geometry in, 593, 614

centroid maps in, 627

conventional unit cells in, 601

crystallite size in, 585

data collection in, 590

overlap of lines in, 590

data indexing (see Powder indexing)

difference-Fourier method in, 619

model building with, 613

zeolites as examples of

FOCUS algorithm for, 614

with Fourier recycling, 614

topology studies in, 614

zinc-silicate complex VIP-9, structure of, 614

energy minimization in, 628

expansivity by, 586

genetic algorithms in, 588, 627

geometry of, 590, 606

and Guinier-type cameras, 590

image plate in, 592

identification by, 585

image plate camera, 592

log-likelihood gain in, 626

maximum entropy in, 624

and Monte Carlo technique of structure solving

acceptance criteria in, 606

Markov chain in, 618

Metropolis algorithm in, 618

and Niggli cell, 602

with simulated annealing, 621

starting model for, 622

MYTHEN detector in

neutron source for, 597

diffractometry with, 597

peak modelling in, 596

phase transitions by, 586

and protein structures, 624

reduced unit cells, 602, 629, 654 (see also Niggli cell)

refinement, 588, 593ff, 605

R factors in, 493

Rietveld refinement in, 593, 605ff, 614, 618ff

by Patterson method, 609

seminvariant (see Structure seminvariant)

simulated annealing in, 531ff, 609, 621

SIR program system for, 611

specimen preparation for

mounting of, 589

preferred orientation in, 594, 612, 622

strain broadening by, 585

time-of-flight studies in, 597

time-resolved studies in, 597

unit-cell parameters by, 509, 510, 515, 586

unit-cell reduction (LEPAGE), 654

use of synchrotron radiation in, 594

and zinc-insulin T3R3 complex, 623

Powder pattern

integrated intensities, extraction of

by Le Bail method, 605

overlap problem in, 552

by Pawley method, 608ff

Rietveld whole-profile refinement, 609

x-ray structure determination, scheme of

operation, 585

Precession method, 36, 197, 233, 330, 506

unit-cell dimensions from, 401, 516

Precision, 308, 405, 415. See also Errors

Precision of calculations, 415

Primary extinction. See Extinction

Primitive, 15, 52, 54

circle, 15, 89

plane, 15

unit cell, 52, 54

Principal symmetry axis, 26, 98

Probability of triple product sign relationship, 355ff

Programs. See Software for crystallography, Web

program suite

Projections. See also Space groups; Stereograms

centrosymmetric, 313ff, 487

electron density, 242, 280

Patterson, 299, 300, 310, 316, 649

spherical, 15

stereographic, 15ff, 50, 135

Proportional counter, 213, 594

Protein alphabet, 489

Protein Data Bank (PDB), 380, 417, 481–483, 514, 531ff,

569ff, 582

Protein structure analysis, 422, 514, 528, 539ff

Protein (macromolecule), structure determination of

by anomalous scattering, 503

by co-crystallization, 496, 515

electron density, properties of, 513

2Fo-jFcj map, 423, 514, 530ff, 579

heavy-atom location in, 523

by heavy-atom method, 386, 649

by molecular replacement (MR), 381ff, 516ff

by multiple isomorphous replacement (MIR), 314,

320, 496, 517

MIR model, 516

by multiple wavelength anomalous dispersion

(MAD), 503, 527, 545, 728

and non-crystallographic symmetry, 518ff, 523

phases, determination of, 514ff

post refinement of, 506
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and powder methods

example structure determination, zinc-insulin

T3R3 complex, 623

structure analysis of, 586

use of synchrotron radiation in, 594, 726

preparation of derivatives for, 515

sign determination for centric reflections of, 315

structure analysis of (see Macromolecular structure

analysis)

Pseudosymmetry, 186, 226, 308, 320, 412, 468, 566

in trial structure, 309

Q
Quantum theory, 111, 130, 161, 482, 555, 596

Quartets, 372ff, 399

Quartz, crystal structure of, 2, 7, 225, 441, 491, 568, 590

Quasicrystals, 32ff

R
Radial distribution function, 246

Radiation damage, 167, 220, 598

Radi

ionic, 416

van der Waals, 645

Ramachandran plot, 531, 535, 540

Rational intercepts (indices), law of, 3, 8ff

Rayleigh formula, 235

Real space, 63, 68, 135ff, 230, 254ff, 292, 355, 601

Reciprocal lattice. See also Lattice; Unit cell.

analytical treatment of, 135ff. See also Web

Appendix WA6

diffraction pattern as weighted, 148

geometrical treatment of, 63

points of, in limiting sphere, 281

properties of, 137

and reflection conditions, 138

rows in, 64, 178, 443

and sphere of reflection, 138 (see also Ewald sphere)

statistics of, 175

symmetry of, 70, 197, 719

unit cell in, 64, 135, 261, 265

volume of, 281

unit cell-size in, 312

units of, 64, 260, 281

vector treatment of, 135

weighted, 148, 172, 197, 252, 259ff, 270, 330,

590, 703

Recombinant protein expression, 522. See also Selenium-

mutated methionine

Rectangular axes. See Axes

Rectangular two-dimensional system, 693

two-dimensional (plane) space groups, 73, 90

Reduced structure factor equation. See Geometric

structure factor

Reduced unit cell. See Unit cell, reduction of

Redundant (non-independent) limiting conditions, 150

Reference axes. See Axes

Refinement. See Least squares refinement

Reflecting power, 161

Reflection (mirror) line, 22

Reflection (mirror) plane, 22

Reflections. See also Limiting conditions; Signs of

reflections; Structure analysis; X-ray scattering

number of in data set, 281

origin-fixing, 352ff, 359, 433, 458, 627

unobserved, 142

local average intensity for, 287

Reflection, sphere of. See Ewald sphere

Reflection symmetry. See also Symmetry

of square-wave function, 238

in three dimensions, 24

in two dimensions, 21

Reflection, x-ray

integrated, 161, 576

intensity, theory of, 219, 221, 347, 389, 474,

491, 504

phase change on, 145, 164, 248

Refractive index, 190ff, 236, 273, 440, 466

Reliability (R) factors, 303ff. See also R factors

and correctness of structure analysis, 416–418

and parameter refinement, 642

Repeat period of a function, 103, 237, 241, 283

Repeat vector, 72

Repetition, 51, 72, 76, 93

Replaceable site, 334

Resolution, 119, 192, 202, 235ff, 304, 324, 335ff. See also

Reflections, number of in data set

optical, 236

Rayleigh formula for, 235

by x-rays, 522

Resonance level, 114ff

Resultant phase, 376

Resultant wave, 127, 135

Reticular density, 12

R factors, 303ff, 339, 416, 503, 537, 607. See also

Reliability factors

Ranom, 306

Rderiv, 306

Rdiff, 306

Rfree, 307, 503, 523, 538, 576

Rint, 168, 220, 304, 328, 389, 416, 505, 511, 562, 577

Riso, 306

Rλ,

Rmeas, 577

Rmerge, 168, 304, 577

Rfree, 307, 503, 523, 538, 576

Rhombic dodecahedron, 3, 15

Rhombohedral symmetry,

Rhombohedral unit cell, 27, 61, 108, 696

Ribonuclease, 315ff, 422, 493, 530, 537

platinum derivative of, 317

Richard, B.F., 38

Rietveld refinement, 593, 605ff. See also Powder method

chi-squared test in, 168

false minima in, 607

profile functions in

Gaussian, 606

pseudo-Voigt, 610

Index 749



Rietveld refinement (cont.)

R factors in

Bragg, 607

conventional, 306, 503, 533, 607

profile, 607

statistical expectation, 172

weighted-profile, 607

Right-handed coordinate system, 210

Rigid-body

motion,

refinement, 524ff, 576

Ring conformation, 412, 478

Romé de l’Isle, J.-B., 1

Root-mean square amplitude of vibration, 185

Rotating crystal measurement, 163

Rotational symmetry, 21ff, 32ff, 52, 71ff, 94, 98,

414, 519

Rotation axis, 18, 26, 71, 163, 200ff, 229, 505, 594, 638,

659, 694

Rotation function, 384, 387, 397, 516, 518ff

Rotation function search, 523

Rotation matrices, 98. See also Web Appendix WA4

Rotation point, 73ff, 90, 102, 368, 688

Rotation x-ray photograph, 212

Roto-inversion axes, 40

Row, 51ff, 131ff

R ratio, 326

S
Sampling interval, 257, 284, 346

Sayre’s equation, 270

Scale factor, 167, 173, 282, 307, 401ff, 444ff, 504, 532,

585, 621, 647, 727

Scaling of intensity data, 167. See also Intensity data,

scaling of

Scan procedure, 212

Scattering. See also Anomalous scattering; X-ray

scattering (diffraction) by crystals

anomalous (see Anomalous scattering)

coherent, 127, 155, 549, 569

everyday examples of, 121

factor

for neutrons, 553

for x-rays, 124, 129, 142, 155

incoherent, 127, 549, 554, 560, 597

of light, 128

ratio, r, 302

vector, 124, 129, 211

Schönflies, A., 3

Schönflies notation

and Hermann–Mauguin notation, compared, 41

for point groups, 86, 159

Scintillation counter, 161, 209, 504, 591, 595

Screw axis

limiting conditions for, 84

notation for, 84

Search structure, 381, 430, 503, 514

Secondary extinction. See Extinction

Seeding, 474, 496

Selenium-mutated methionine, 527

Self-rotation function, 510, 518ff

Self-translation function, 441, 517

Self-vector set, 382, 387

Seminvariant. See Structure seminvariant

Seminvariant representations (SIR), 611

Series termination error, 240, 287, 416, 550

Shake and Bake, 399

SHELX-99, 304ff, 326, 349, 374ff, 393, 407ff, 532,

538, 564

example analysis with, 377ff

SHELX program system, 374

Shock cooling (flash freezing), 501

Sigma one (Σ1), formula for, 376

Sigma two (Σ2). See also Signs of reflections in

centrosymmetric crystals

examples of, 360

formula for, 359

listing, 358, 370

and symbolic addition, 359

Sigma weighting, 365

Sign determination. See also Centrosymmetric crystals;

Direct methods of phasing; Sigma two;

Triple product relationship

of reflections in centrosymmetric crystals, 355

by symbolic addition, 359

Significance test, 410

Sign relationships and Fourier transform, 268

Signs of reflections in centrosymmetric crystals, 141

Silica glass, 7

Simulated annealing, 376, 427, 531ff, 577, 609, 621, 627.

See also Powder method

Single-crystal x-ray diffraction techniques, 197ff

data collection in, 197

Single isomorphous replacement (SIR), 314, 335,

503, 611

Single isomorphous replacement with anomalous

scattering, 335, 503

Sinusoidal wave, 251

SIR. See Single isomorphous replacement (SIR)

SIRAS. See Isomorphous replacement, single, with

anomalous scattering

Site directed mutagenesis and Siras, 522

Slater wavefunction, 155

Small-angle scattering, 223

Small circle, 28

Small-molecule structures, 304ff, 375, 382, 399, 532

Sodium chloride, 4, 72, 103, 115, 235, 493,

582, 599, 725

Software for crystallography, 344

Solid state detector, 594

Solvent flattening, 528

Solvent of crystallization, 274, 420, 643

Space-filling patterns, 25

Space groups

‘additional’ symmetry elements of, 94

ambiguity in determination of, 269, 319

center of symmetry in, 22, 30, 38, 88, 94, 141, 200

enantiomorphous pairs of, 327, 367
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equivalent positions in

general, 74, 83, 93, 274, 288, 296

special, 74

fractional coordinates in, 54, 74, 244, 260, 282, 309

and geometric structure factor, 358

hexagonal, 94, 151, 155

limiting conditions for x-ray reflection in, 598

matrix representation of, 97ff

monoclinic, 81ff, 107, 152, 158, 327ff, 389, 493,

519, 563

origin shift for, 93 (see also Origin, change of)

orthorhombic, 59, 90, 101, 106, 154, 329, 426, 577

pattern for, 33, 72, 509

and point groups, 86ff

practical determination of, 152ff

projections of, 36, 487

as repetition of point group pattern by Bravais

lattice, 72

‘special’ pairs of, 101

standard diagrams for, 94

symbol, analysis of, 89

table of, 92, 101, 352, 431, 456

tetragonal, 94, 154

theory, 51ff

three-dimensional, 7, 23, 80

three-dimensional by symbol

C2, 39, 81, 240

Imma, 247

P1,

P1: amplitude and phase symmetry for, 261,

273, 569ff

P1: diagram for, 286, 293

P1: jjEj statistics for, 644
P1: general equivalent positions in, 149

P1: origin-fixing reflections in, 352ff, 458

P2, 81, 289

P21
P21: amplitude and phase symmetry for, 282,

314, 320

P21: diagram for, 276, 309

P21: general equivalent positions in, 148, 656

P21: geometric structure factor for, 358

P21: limiting conditions in, 85

P21: origin-fixing reflections for, 458

P212121, 90, 101, 154, 347, 352, 367, 423,

434, 473, 502, 577, 647, 719

Pc

Pc: equivalence with Pa and Pn, 142

Pc: general equivalent positions in, 149

Pc: geometric structure factor for, 358

Pc: limiting conditions in, 146

Pc: reciprocal net for, 148

P21/c

P21/c: amplitude and phase symmetry, 126

P21/c: analysis of symbol for, 152

P21/c: diagram for, 148, 276

P21/c: general equivalent positions in, 149

P21/c: geometric structure factor for, 358

P21/c: limiting conditions in, 153

P21/c: origin-fixing reflections in, 352ff, 458

P21/c: special equivalent positions in, 149, 151

P63/m, 95, 96, 151

Pma2, 101, 148

Pman, 150

Pmma, 93, 101, 298

P4nc, 94, 151

Pnma, 90, 99–101, 655

two-dimensional (see Plane groups)

Space groups unit cell, centred, 565

Special equivalent positions, 74, 149, 151. See also

Equivalent positions

molecules in, 74

Special form, 21ff, 35

Special intensity distributions. See Distribution

Sphere of reflection, 138, 163, 249. See also Ewald sphere

Spherical harmonics, 167

Spherical projection, 15

Spherical symmetry, 129, 247

Spherical triangle, 38

Spherical trigonometry, 136. See also Web

Appendix WA3

Square two-dimensional system, 52

Square wave

as Fourier series, 240

Fourier transform of, 255

termination errors for, 240

Standard deviation of electron density, 416

Statistics. See Intensity, statistics

Stensen, N., 1

Step-scan moving window measurement, 168

Stereogram. See also Point groups; Projections;

Stereographic projection

fundamental properties of, 556

indexing of, 28

notation for, 23, 34, 81

for point groups, 28

for three-dimensional point groups, 22

for two-dimensional point groups, 20

uses of, 17, 27

Stereograms, 15ff, 70, 81, 177, 520, 636, 659, 694

Stereographic projection, 15ff, 50, 135. See also

Stereograms, Web Appendix WA2

Stereoscopic images. See Stereoviewer; Stereoviews

Stereoviewer, 5, 659ff

Stereoviews, 4, 22, 34, 57, 89, 274, 277, 319, 454,

470, 713

Straight extinction, 193ff, 229, 289, 440, 455

Structural data. See Bond lengths and angles; Data bases;

Ionic radii; van der Waals contact distances

Structure analysis. See also Direct methods of phase

determination; Heavy-atom method; Reflection,

x-ray; X-ray scattering (diffraction) by crystals

accuracy of (see Precision of calculations)

of atropine, 327, 329, 394

of 5-azauracil, 422

of azidopurine monohydrate, 280

of benzene, 597

of 1-benzyl-1H-tetrazole, 329, 426
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Structure analysis. (cont.)

of bisdiphenylmethyldiselenide, 289, 295

of bromobenzo[b]indeno[1,2-e]pyran, 439

of calcium uranate, 609

of cholesteryl iodide, 327

of cimetidine, 610

computer use in, 223, 325, 384, 422

of concanavalin A, 568, 576

of coumarin derivative, 390, 392

criteria for correctness, 406, 416

of crown ether derivative, 574

of cyclosporin H, 560, 574ff

diiodo-(N, N, N’, N’)-tetramethylethylenediamine)

zinc(II), 89

errors in trial structure during, 303

euphenyl iodoacetate, 5, 260, 280

of α-lanthanum tungstate, 622

limitations of, 419

of manganese phosphate monohydrate, 609

and neutron diffraction, 568 (see also Crown ether

derivative)

as over-determined problem, 533

of papaverine hydrochloride, 274

of p-bromophenylethanoic acid, 618

phase problem in, 253, 282ff, 351, 527, 588, 608

of potassium dihydrogen phosphate, 190, 549

of potassium dimercury, 296

of potassium hexachloroplatinate (IV), 285

of potassium 2-hydroxy-3,4-dioxocyclobut-1-en-1-

olate monohydrate, 455

precision of, 596

preliminary stages of, 509, 518, 531

of proteins, 6, 514

pyridoxal phosphate oxime dehydrate, 352ff

symbolic addition in, 359, 368

refinement in, 385, 533, 550, 588

of ricin agglutinin, 509, 512, 520ff

of silver-pyrazole complex, 612

and symmetry analysis, 290

1,8-(3,6,9-trioxaundecane-1,11-diyldioxy)-9,10-

dihydro-10,10-dimethylanthracene-9-ol, 560

tubercidin, 367, 372

of zeolites, 614, 623

of zinc–insulin complex (T3R3), 623

of zinc–silicate complex (VIP-9), 614

Structure factor. See also Phase, determination; Phase,

of structure factor

agreement of, 338, 357, 401

amplitude of

absolute scale of, 215, 351, 563

invariance under change of origin, 253, 353

amplitude symmetry of, 159, 358, 389, 433

with anomalous scattering, 325ff

applications of equation for, 174ff, 249, 276, 351, 532,

582, 702, 714

for body-centred (l) unit cell, 142

calculated, 165, 303, 386, 406, 503, 533

for centrosymmetric crystal, 141

change of origin and, 252, 353

conjugate, 367

defined, 179, 240, 306, 363, 400

equation for, 140

as Fourier transform of electron density, 235ff

generalized form of, 242, 244

geometric, 340ff, 358, 433

invariance of under change of origin, 253, 353

local average value of, 287

normalized, 172, 182, 351, 400

observed, 165, 306, 533

and parity group, 354

phase of, 140, 180, 301

phase symmetry of, 358, 457

plotted on Argand diagram, 124ff

reduced equation for, 142

representation as vector, 97, 135, 318

sign-determining formula for, 315, 355ff, 458

and special equivalent positions sets

for space group P21, 85, 144, 156

for space group Pc, 146

for space group P21/c, 146, 358

for space group Pma2, 148, 156

for space group Pman, 150

and symmetry elements, 373

and translational symmetry, 176

unitary, 182, 366

Structure invariant, 352, 372, 389, 400, 435, 612, 692

Structure refinement

from neutron data, 569

from x-ray data, 569

Structure seminvariant, 354, 369, 372, 435, 459, 611, 649,

719, 721

Subgroup, 28, 34, 74, 87, 95,

146, 247

Subunit, 471, 473, 479ff, 491, 524

Superposition technique, 300, 650

Symbolic addition procedure, 359

advantages and disadvantages of, 371

Symbolic phases, 360, 369, 372

Symbolic signs for reflections, 360, 459

Symmetric extinction, 195

Symmetry

black-white, 102ff

potassium chloride, 103

characteristic, 24, 26

colour, 102ff

cylindrical, 31

definition of, 36

of diffraction pattern, 330

examples of molecular, 637

external, 17–39

glide plane, 86, 142, 150, 275, 501

and indistinguishability, 25

internal, 194

inversion axis, 22 (see also Roto-inversion axes)

of Laue photograph, 199

mirror (see Reflection symmetry)

notations for, 85, 87

onefold, 21
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operation, 17, 22, 40, 52, 73ff, 94ff, 146, 152, 228,

378, 384, 390, 405, 452, 491, 636

operator, 99, 106, 637

permitted, 175, 372

and physical properties, 99

rotational, 21, 25, 32, 36, 52, 71, 74, 94, 98, 414, 519

screw axis, 84, 144, 356

and structure analysis, 5

translational, 38, 76ff, 85ff, 120, 142ff, 176, 252,

275, 710

of x-ray diffraction pattern, 4, 30, 142, 200, 290,

330, 509

Symmetry analysis, 275ff, 290, 346

Symmetry axis

alternating, See Schönflies notation

principal, 26

Symmetry elements. See also Symmetry operations,

combinations of

combinations of, 21

geometrical extension of, 19

matrix representation of, 97ff

notation for, 85ff

sign changes in, 92

in three dimensions, 22ff

in two dimensions, 19ff

Symmetry-equivalent points. See Equivalent positions

Symmetry-independent species, 143

Symmetry operations, combinations of, 24, 636

Symmetry operator, 99, 106, 637

Symmetry plane. See Reflection plane

Symmetry point, 21, 36, 74, 87, 106

Symmetry-related atoms and molecules, 317

Synchrotron radiation (SR)

diamond installation for, 121

filtered, 116 (see also Monochromators)

insertion devices for

undulators, 120

wigglers, 120

oscillation method with, 205ff

worked example of, 207

photon intensity from, 119

polarization of radiation from, 119

radiation flux from, 117

sources, 118, 223, 504

Systematic absences. See Absences; Limiting conditions

Systems

three-dimensional, 21, 27 (see also Crystal systems)

two-dimensional, 21, 52, 73

T
Tangent formula, 362ff, 372ff

Target structure, 381ff, 434, 503, 522

Temperature factor. See also Thermal vibrations

anisotropic, 444, 449, 579

correction, 402

isotropic, 166ff, 171ff, 190ff, 287, 445

and scale factor, 168, 173, 282, 307, 401ff, 504, 585,

621, 647, 727

Termination errors in Fourier series, 240, 416

Tetrad, 25, 60

Tetragonal crystal system. See also Crystal systems

model of a crystal in,

optical behaviour of crystals in, 190ff

space groups in, 154

symmetry of, 9, 26ff, 192

unit cells in, 60, 90, 409

Tetrahedron, model of, 638

Thermal vibrations. See also Temperature factor

anisotropic, 171

Debye–Waller factor, 170

statistical expectation value of, 172

isotropic, 282, 433

and mean square atom displacement, 170

one-dimensional analysis of, 169

and smearing of electron density, 6

three-dimensional analysis, 403

Thomson scattering. See Coherent; Scattering

Three-phase structure invariants. See Triplets

Tiled CCD, 219, 222. See also Charge-coupled type

area detector (CCD)

Time-of-flight neutron diffractometer, 558

Time-of-reflection opportunity, 163

Transformations

of coordinate axes, 69, 353

of coordinates in unit cell, 60, 647

of directions, 58, 65

inverse, 65, 211, 255

of Miller indices, 68, 81, 731

mnemonic for, 654

of reciprocal unit cell vectors, 65, 68, 211

of unit cell vectors, 54ff, 78, 731

of zone symbols, 65ff

Translation

function, 517ff, 523ff

search, 387ff

vector, 51, 97, 99, 100, 384, 692, 669

symmetry, 38, 76, 78, 79, 85, 91, 99, 100, 142,

145, 146, 152, 176, 275, 276, 707

Transmission

factor, 159, 165

profile, 166

Triad, 25, 60, 227

Trial-and-error method, 273, 599, 600, 727

Triclinic crystal system, 190

Trigonal crystal system, 190

Trigonal lattice, 61

Trigonometric formulae, 140, 162, 237. See also Web

Appendix WA5

Triple phase relationship (TPR), 374, 376

Triple product relationship, 360, 363

Triple product sign relationship. See also Signs of

reflections in centrosymmetric crystals

physical interpretation of, 356

Σ2 formula for, 355ff

Triplets, 97, 268, 355, 363, 372ff, 400, 433ff, 451ff, 486,

523, 721

Triply primitive hexagonal unit cell, 61, 108

Tungsten Lα-radiation, 116
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Twin

axis of, 226

contact, 227

hemitropic, 226

interpenetrant, 226

lamellar, 227, 228

mechanical separation of, 226

symmetric, 226

Twinning

in calcite, 227

composition plane in, 226

in fluorite, 227

in gypsum, 226

merohedral, 228

morphology of, 226

non-merohedral, 228

pseudo-merohedral, 228

x-ray diffraction and, 228

Two-dimensional system, 21, 52, 106, 693

U
Uniaxial crystals. See also Anisotropy, optical; Crystal;

Optically anisotropic crystals

defined, 192

idealized cross-section of, 194

idealized interference figure for, 171

and Laue photograph, 200

optic axis of, 192

Unit cell. See also Bravais lattices; Reciprocal lattice

centred, 550, 565

contents of, 73, 264, 273ff, 290, 298, 342, 518

conventional choice of, 10

dimensions of, 401, 423, 466, 555

limiting conditions for type of, 80ff, 106, 138, 142ff,

249, 510, 598, 604

notation for, 54

number of lattice points in, 55, 57, 61

one-dimensional, 52, 169, 178, 241, 282, 284, 427

parameters

errors in, 390, 599

measurement of, 506

primitive, 52ff, 73ff

reciprocity of F and I, 138

reduction of, 569, 654

scattering of x-rays by, 103, 282

symbols for, 52ff, 73, 178

three-dimensional, 54ff, 83, 244

transformations of, 65ff, 565

translations associated with type of, 138

triply primitive hexagonal, 60

volume of, 54, 137

Units, prefixes to, 408

‘Unobserved’ reflections. See Reflections, unobserved

Uranium heptafluoride, molecular symmetry of, 34

V
van der Waals contact distances, 224, 645, 649

Vector interactions, 288ff, 342. See also Vectors

Vectors. See also Vector interactions

algebra and reciprocal lattice, 173

complex, 124, 381

cross, 318, 384

interatomic, in Patterson map, 284, 381ff,

518ff, 647

map, 285

overlap, 293

repeat, 72

scalar product of, 58, 64

superposition map, 267

translation, 51, 97ff, 384, 694, 728

triplet, 97, 355ff, 457, 719

vector product of, 136

verification, 381, 388

Velocity, wave, 558

Vibration directions, 189ff

Volume

of real (direct) unit cell, 63

of reciprocal unit cell, 137, 281

von Groth, P., 3

von Laue, M., 4, 130, 133

W
Wave

amplitude of, 123

and Argand diagram, 124ff

combinations, 124ff, 133, 248

energy associated with, 120, 522

phase of, 123, 241

resultant of combination of, 127, 135

Wavelength

of neutrons, 596

of x-rays, 111ff, 164, 189, 202ff

Wave sums, graphical representation of, 123ff

Web appendix materials.

See also http://extras.springer.com

angle between planes, 137

angle between two lines, 132

direct and reciprocal unit-cell volumes, 136

direction cosines, 7, 353

interplanar spacing, 136

plane trigonometry formulae, 136

reciprocal lattice, 137

reciprocity of I and F unit cells, 138

rotation matrices, 94

spherical trigonometry, 136

Web program packages.

See also http://extras.springer.com

general

coordinate transformation (INTXYZ), 652

linear least squares (LSLI), 653

matrix operations (MATOPS), 653

molecular geometry (MOLGOM),

327, 649

one-dimensional Forier transform (TRANS1),

256, 651

one-dimensional Fourier series (FOUR1D), 256,

257, 270, 650

two-dimensional Fourier series (FOUR2D),

644, 650

source code for, 651
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point groups

derivation (EULR), 24, 636

recognition (SYMM), 28, 379, 390, 396, 637ff

powder

direct-reciprocal unit-cell parameters (RECIP),

601, 652

indexing, automatic, 568, 604

CRYSFIRE, 604

ITO12, 654

Q values (QVALS), 653

strucure determination (ESPOIR), 621ff

unit-cell reduction (LEPAGE), 602, 654

structure determination, simulated (XRAY)

data preparation (MAKDAT), 640

direct methods, 268, 355

example data sets for, 175, 504, 516, 554, 641

fourier series(electron density), 241

geometry (distance-angle), 415

least-squares refinement, 375, 384, 407, 419

Patterson function, 282ff, 641

Patterson superposition, 341

structure factors, 501ff

Wilson method, 169 Web program suite,

http://extras.springer.com

Weight

function for, 285

measurement of, 606

Weighted reciprocal lattice, 148, 172ff, 197, 259ff,

330, 590,703

Weighted tangent formula, 363ff. See also Tangent

formula

Weiss, C.S., 3

Weissenberg photograph, 441

unit cell dimensions from, 441

Weissenbrg chart, 445

Weiss zone law, 13, 68

Whewell, W., 9

‘White’ radiation, 111ff, 197, 230, 443, 703, 728

Wilson, A.J.C., 173

Wilson plot, 172, 400, 446, 627, 644ff, 690

auxillary plot, 174

Wyckoff space group notation, 74

X
X-radiation

copper, 114ff

dependence on wavelength, 123, 140

filtered (see Monochromators)

molybdenum, 220, 328

monochromatic, 205, 230, 552, 593

tungsten, 116

‘white,’ 111ff, 197, 230, 443, 703, 728

X-rays. See also X-radiation

absorption of, 114ff

characteristic, 113

detectors, 118, 213, 222, 508

diffraction and reciprocal lattice, 136, 197, 202, 232,

504, 509 (see also Reciprocal lattice)

diffraction by liquids (see Liquids, x-ray diffraction

from)

diffraction pattern (see also X-ray scattering by

crystals; X-rays, diffraction photograph/image)

centrosymmetric nature of, 29, 140

and Friedel’s law, 140, 147, 332

and geometric structure of crystal, 358

intensity in, 474, 504

position in, 143, 200, 289, 510, 575

symmetry of, 36, 146, 200

as weighted reciprocal lattice, 148, 172ff, 197,

259ff, 330

diffraction photograph/image

important features of, 121, 225

indexing of, 23, 592

by Laue method, 197ff

measurement of intensity of reflection on, 304

by oscillation method, 205

for powder sample, 594

by precession method, 36, 180, 197, 233, 330, 506

for single crystal, 152, 187ff, 375,

441, 501

extinction of, 195

generation of, 217

generators

Bruker AXS, 197, 215, 225

Rigaku MSC, 223

rotating anode, 111ff, 219ff, 337, 504, 569

non-focussing property of, 503

photograph, 30, 152, 180, 200, 212, 259, 330, 332,

440, 441, 466

properties of, 111ff

reflections (see Reflection, x-ray)

tube

rotating anode, 111ff, 219ff, 337, 504, 569

sealed tube, 119, 223, 337

wavelengths of, 111ff, 136, 230, 347, 511, 699

wave-like properties of, 4

X-ray scattering (diffraction) by crystals. See also

Diffraction; Reflection; X-rays,

diffraction pattern; X-rays, diffraction

photograph/image

anomalous, 140, 306, 325, 330ff

by atom, 128, 331

Bragg treatment of, 76, 134

coherent, 127, 549, 569

Compton (see Scattering, incoherent)

by crystal structure, 5, 553

as a Fourier analysis, 240

generalized treatment of, 201

incoherent, 127, 155, 549, 554, 560ff, 597

and indices of planes, 8ff, 78

intensity

ideal, 159ff, 172ff

Laue treatment of, 133

equivalence with Bragg treatment, 76, 134

from monoclinic crystals, 152

order of, 576

for orthorhombic crystals, 152

phase difference in, 164

by regular array of atoms, 130ff

for single crystal, 501, 556
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X-ray scattering (diffraction) by crystals. (cont.)

by single electron, 122, 139

and space group determination, 228, 501

and symmetry of Patterson function, 273, 383

theory of, 127

Thomson (see Coherent; Scattering)

total energy of, 161

by two or more electrons, 122, 624

from unit cell, 286, 626, 650

vector, 136, 386, 450

X-ray scattering (diffraction) by lattice array of

scattering points

one-dimensional, 19, 52, 131, 169, 264

three-dimensional, 241ff, 285, 328, 446

two-dimensional, 121, 175, 236, 251, 279

Y
Young’s fringes, 250

Z
Zinc sulphide, 4

Zone

axis, 13ff, 197ff

circle, 16

indexing (see Powder indexing)

symbol, 13, 40, 51, 65ff, 108, 654
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