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When you can measure what you are speaking about and
express it in numbers, you know something about it; but when
you cannot express it in numbers, your knowledge is of a meagre
and unsatisfactory kind; it may be the beginning of knowledge,
but you have scarcely in your thoughts advanced to the state of

science, whatever the matter may be.
Lord Kelvin
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I am privileged to write the Foreword to this fifth edition of Ladd and
Palmer’s Structure Determination by X-ray Crystallography, a textbook
that is now world renowned and that has helped educate two generations of
crystallographers in the theory and practice of modern crystallography,
myself included. Indeed, a well-worn first edition of this venerable text
remains on my shelves today, now somewhat battered and bruised from
passage through the hands of successive students who have learned the
fundamentals of crystallography from its pages.

This new fifth edition is especially timely, marking as it does a century
of discovery in which X-ray diffraction, and diffraction of other radiations,
has opened a window to the atomic world. From fundamental knowledge of
atomic interactions and chemical bonds in the simplest materials to the
atomic resolution analysis of the molecular machines of the cell, crystallo-
graphic science underpins much of our understanding of the world we live in
today. In recent years, advances in diffraction theory, automated technolo-
gies, and computational tools have helped move crystallography from a
specialist discipline to a standard laboratory tool across many fields of
science. In some fields, these advances have been so spectacularly successful
that the solution of the crystal structures of all but the most challenging
systems is now considered largely routine. At the same time, the develop-
ment of a new generation of high powered synchrotron, neutron and, most
recently, free electron laser facilities are pushing crystallographic science to
new frontiers, aiming to provide diffraction from single molecules, to locate
light atoms such as hydrogen in crystal structures, and to move beyond static
crystal structures towards time-resolved analyses of structural dynamics at
pico-second timescales.

For the interdisciplinary students of today seeking a thorough and
detailed understanding of the principles and methods of modern crystallog-
raphy, Ladd and Palmer remains as essential and relevant today as when it
first appeared some 35 years ago. Building from the fundamental concepts of
crystallography, through crystal symmetry to the mathematical formalism of
diffraction and on to the principle and practice of structure determination, the
text provides an excellent introduction to the techniques and applications of
crystallography, illustrated throughout by applications to real world pro-
blems. The fifth edition is expanded and enhanced with updated examples
and description of recent technical developments and achievements in X-ray
crystallography and benefits from a completely new chapter that describes



the application of neutron crystallography in structural science. This is an
important addition. Neutrons are scattered by atomic nuclei and have a
magnetic moment. Hence, neutron diffraction can be used to determine
accurate atomic and magnetic structures of materials. With a new generation
of neutron sources and instruments now coming on-line, these properties will
be increasingly exploited in fundamental studies of new inorganic, organic,
and biological systems, of superconducting and magnetic materials, and for
structure-function analysis of hydrogen atoms in macromolecules.

Extending the scope of this classic text beyond the purely X-ray Crystal-
lography of its title to include diffraction of other radiations acknowledges
some of the new frontiers and ever-increasing impact of crystallographic
analysis in structural sciences. As has been the case for the last 35 years,
Ladd and Palmer is set to educate and equip the students of today to drive and
inspire the developments of tomorrow!

Neutron Sciences Directorate
Oak Ridge National Laboratory, TN, USA Dean A.A. Myles

Foreword



We were honoured to be asked by Springer, New York to prepare a fifth
edition of Structure Determination by X-ray Crystallography. First published
in 1977 under the Plenum imprint, this book has received wide acclaim in
both teaching and research in X-ray crystallography because of its extensive
and detailed coverage of all aspects of the subject.

As we prepare this new edition, we are entering the centenary of the
discovery of X-ray diffraction in 1912, the beginning of X-ray crystallogra-
phy as a science in its own right. Today, X-ray crystallography and the
complementary technique of neutron diffraction together provide the most
powerful tools for the investigation and elucidation of crystal and molecular
structures. X-ray and neutron crystallography may be described as the sci-
ence of the structure of materials, in the widest sense of the phrase, and their
ramifications are evident across a broad spectrum of scientific endeavour.

The power of computers and available software has unleashed an unprec-
edented ability to carry out with speed the complicated calculations involved
in crystal structure determination on a desktop PC. This is paralleled by the
availability of powerful X-ray and neutron sources and low temperature
devices for facilitating measurements at liquid nitrogen temperature or
lower, which provide ever higher precision in the determination of crystal
structures. However, a detailed knowledge of the theory underlying the
process of crystal structure determination is still required in order both to
ensure that the literature contains correct well-determined structures and to
understand the complexities introduced by features such as disorder and
twinning in crystals. There are many pitfalls in crystal structure determina-
tion to trap the unwary.

In this new edition, we have continued the approach that has been well
reviewed in its earlier editions. We have always kept in mind that students
meeting X-ray crystallography for the first time are encountering a new disci-
pline, and not merely extending the range of a subject already studied. In
consequence, we have chosen, for example, to discuss the geometry and sym-
metry of crystals in rather more detail than is found in other books on this
subject, for it is our experience that some of the difficulties that students meet in
introductory X-ray crystallography lie in their unfamiliarity with a three-
dimensional concept, whether they be final-year undergraduate or post-graduate
students in chemistry, biochemistry, materials science, geology, bioinformatics,
information technology, or physics. Both low molecular weight (small
molecules) and macromolecular methods (proteins) are covered in detail.

Xi



Xii Preface to the Fifth Edition

As well as retaining and thoroughly revising the overall contents of the
earlier editions, we have added a significant chapter on neutron diffraction
studies, and sections introducing Molecular Modelling and Structure Predic-
tion. In order to maintain a workable size for the book, a number of elabora-
tions of mainly mathematical argument have been stored as Web Appendices
on the website http://extras.springer.com.

Although several novel methods have been added to the armoury of
crystal structure determination, we limit our discussion principally to Patter-
son interpretation, Direct Methods, Isomorphous and Molecular Replace-
ment and Powder Crystallography, and developments from them. The basic
problem remains the determination of the phases of X-ray reflections, and
this problem is addressed in these techniques discussed herein. In order to
simulate the actual process of structure determination, we are fortunate to be
able to include the XRAY program package prepared by Dr. Neil Bailey and
colleagues of the University of Sheffield, and we are grateful to him for
permission to use it in the present context. It has been modified (M.L.) for PC
operation and several enhancements made, including the presentation of
Fourier contour maps on the monitor. Although this package uses two-
dimensional data, much valuable insight into X-ray structure determination
can be gained, and a number of sets of X-ray data are included.

There are now numerous computer packages available for the many
aspects of crystallography that are in current use. We have referred to them
freely within the text, and they have been collected in an appendix together
with a reference to a source for each so that they become readily available to
the practising crystallographer. There are numerous references to each chap-
ter including website addresses for topics of crystallographic importance.
References among the text are given as “Sect. 1.2.3,” which refers to that
section in Chap. 1, or as “(3.4)” which refers to that equation in Chap. 3.

Each chapter contains a set of problems designed to assist the reader in the
understanding of the textual material, and detailed tutorial solutions are
provided. Some of these problems require computer assistance, and a set of
programs has been designed and included with the Web material and dated 1
January 2013 (Version 5.1). In this context, we are grateful to Dr. Jan Vissser
of the Technisch Physische Dienst, Delft, Professor Armel Le Bail of Labor-
atoire Fluorures, Université du Main, Le Mans, and Professor A L Spek of the
University of Utrecht for the continued incorporation of the programs ITO12,
ESPOIR, and LEPAGE, respectively, in the Program Suite for this book.
Finally we thank Springer Science + Business Media for inviting this edition
and bringing it to a state of completion.

University of Surrey
Guildford, England Mark Ladd

Birkbeck College
London, England Rex Palmer


http://extra.springer.com

Every effort has been made to ensure the correct functioning of the software
associated with this book. However, the reader planning to use the software
should note that, from the legal point of view, there is no warranty, expressed
or implied, that the programs are free from error or will prove suitable for a
particular application; by using the software the reader accepts full responsi-
bility for all the results produced, and the authors and publisher disclaim all
liability from any consequences arising from the use of the software. The
software should not be relied upon for solving a problem, the incorrect
solution of which could result in injury to a person or loss of property. If
you do use the programs in such a manner, it is at your own risk. The authors
and publisher disclaim all liability for direct or consequential damages
resulting from your use of the programs.
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Physical Constants and Other

Numerical Data

Atomic mass unit ny 1.6605 x 107" kg
Avogadro constant L 6.0221 x 10* mol™!
Bohr radius for hydrogen ap 52918 x 107" m
Boltzmann constant k 1.3806 x 1072 JTK™!
Elementary charge e 1.6022 x 107" C
Permittivity of a vacuum € 8.8542 x 1072 Fm™!
Planck constant 6.6261 x 10737 s
Rest mass of the electron Me 9.1094 x 107" kg
Rest mass of the neutron my, 1.6749 x 107*" kg
Rest mass of the proton m, 1.6726 x 107" kg
Speed of light in a vacuum c 2.9979 x 108 ms ™!
Conversions
1 eV (electron-volt) = 1.6022 x 10°'77J
1A (Angstrém unit) = 107 m = 0.1 nm
Prefixes to Units
femto  pico nano micro milli centi deci kilo mega giga
f P n u m c d k M G
10" 10"” 10° 10° 10° 100* 10" 10 10° 10°
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Projected Revision of Sl Units

The year 1960 saw the publication of Le Systeme international d’ unites (the SI)
as a rational and coherent system of units for scientific research and communi-
cation. A projected revised SI aims to eliminate certain infelicities in the current
system, particularly in relation to the kilogram, kelvin, mole, and ampere. The
standard kilogram, a Pt—Ir alloy, was adopted as a standard in 1889, but has very
slowly lost material over the intervening years. In the case of the kelvin, the
purity and isotopic composition of water need to be defined for a complete
specification of its triple point, which is used in fixing the kelvin.

The new SI scheme will define the values of certain constants exactly.
Thus, it begins with the speed of light (¢), which was set exactly as
2.99792458 x 10° m s~ ' in 1983. A re-definition of the other fundamental
SI units can then be projected. For example, the kilogram will be defined
such that the Planck constant (%) is exactly 6.6260693 x 1073* J s, then the
kilogram will be fixed, since hv = E = mc? and the metre and second have
defined values.

The metre is defined in terms of the speed of light, and the second as the
distance travelled by light in a vacuum in 1/(2.99792458 x 10%) s. The
second was given originally as 1/(8.6400 x 10%) of the mean solar day, but
in 1967 it was re-defined as the duration of 9.192631770 x 10° periods of the
radiation corresponding to the transition between two hyperfine levels in the
ground state of 133Cs at 0°K; these two units will be unaltered.

The mole hitherto based on the molar mass of '*C will be revised to that
mass of the isotope which makes the Avogadro constant exactly
6.0221415 x 10** per mole. Changes have also been proposed for the
ampere, but the candela remains unaltered.

Notwithstanding the value of the SI, certain traditional units are still in
common use. Thus the Angstrém (1 A =107'° m) remains a very conve-
nient unit in crystallography for quoting interatomic distances and wave-
lengths. Detailed accounts of the history, revisions, and proposed changes of the
fundamental units in the system may be found in the published literature'-.
These changes in the fundamental units will not affect the numerical values
involved in the text of this book or in its set problems.

"http://physics.nist.gov/cuu/Units/
2 Mills IM, Mohr PJ, Quinn TJ, Taylon BN, Williams ER (2011) Phil Trans Roy Soc. 369:3907ff
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Notation

These notes provide a key to the main symbols and constants used throughout
the book. Inevitably, some symbols have more than one use. This feature arises
partly from general usage in X-ray crystallography, and partly from a desire to
preserve a mnemonic character in the notation wherever possible. It is our
belief that, in context, no confusion will arise. Where several symbols are
closely linked, they are listed together under the first member of the set. Two
or more applications of one and the same symbol are separated by a semicolon.

A'(hkl)
B'(hki)
A(hkl)
B(hkl)

A

A

a, b, c

& w

)

SISHSIERAES

d(hkl)
d"(hkl)

Da

E

E|

E, E(hkl)

Components of the structure factor, measured along the real and
imaginary axes of an Argand diagram

Components of the geometrical structure factor, measured along the real
and imaginary axes of an Argand diagram

A-face-centred unit cell; absorption correction factor

Angstrom unit

Unit-cell edges parallel to the x, y, and z axes, respectively, of a crystal;
intercepts made by the parametral plane on the x, y, and z axes
respectively; glide planes with translational components of a/2, b/2, and ¢/
2, respectively

Unit-cell edge vectors parallel to the x, y, and z axes, respectively

Reciprocal unit-cell edges associated with the x”, y*, and z* axes,
respectively

Reciprocal unit-cell vectors associated with the x*, y*, and z* axes,
respectively

B-face-centred unit cell; overall isotropic temperature factor
Isotropic temperature factor for the jth atom

C-face-centred unit cell

Not constrained by symmetry to equal

Speed of light; as a subscript: calculated, as in |F,|
Experimentally measured crystal density

Calculated crystal density

Interplanar spacing

Interplanar spacing of the (hkl) family of planes

Distance in reciprocal space

Distance from the chosen origin of the reciprocal lattice to the Akith
reciprocal lattice point

Dalton; equivalent to m,
Normalized structure factor (E value), including phase
Amplitude of normalized structure factor, E (an “observed” value)

Normalized structure factor in centrosymmetric crystals (an “observed”
value)

Normalized structure factor calculated from the atomic positions in the
unit cell

Total energy of the Aklth diffracted beam from one unit cell
Electron charge

Exponential function

Estimated standard deviation

(continued)
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F(hki) Structure factor for the Akl spectrum referred to one unit cell, including
phase

F*(hki) Conjugate of F(hkl), including phase

|F| or F Modulus, or amplitude, of the structure factor F (excluding phase); |F]| is
superfluous notation, but frequently used informally

F, Observed structure “factor” (only ever an amplitude); |F,| is superfluous
notation, but frequently used informally

1t Atomic scattering factor / for the jth atom

fio Atomic scattering factor for the jth atom at a given sin 0/4

g Glide line in two-dimensional space groups

& Atomic scattering factor for the jth atom, in a crystal, corrected for

thermal vibrations

H Hexagonal (triply primitive) unit cell

(hkl)/(hkil) Miller / Miller—Bravais indices (of planes) associated with the x, y, and z
axes or the x, y, u, and z axes, respectively—any single index containing
two digits has a comma placed after such an index

{hkl} Form of (hkl) planes

hkl Reciprocal lattice point corresponding to the (4k/) family of planes

h Vector with components £, k, [ in reciprocal space

h Miller index parallel to the x axis; Planck’s constant

1 Body-centred unit cell; intensity of reflection

1,(hkl) Observed intensity of reflection from the (/k/) planes referred to one unit
cell

g Imaginary axis on an Argand diagram

i v/—1; an operator that rotates a quantity on an Argand diagram through

90° in a right-handed (counterclockwise) sense from the real axis

K Scale factor for F,(hkl) data

k Miller index parallel to the y axis; Boltzmann constant

/ Miller index parallel to the z axis

L Lorentz correction factor

my Atomic mass unit

M, Relative molecular mass (molecular “weight”)

m Mirror plane

N Number of atoms per unit cell

n Glide plane, with translational component of (a + b)/2, (b + ¢)/2, or
(c + a)2

ny, no, N3 Principal refractive indices in a biaxial crystal

o Subscript: observed, as in [Fy(hkl)|

o Superscript, as in 25°C

P Probability; Patterson function; Polarization correction factor

P(uvw) Patterson function at the fractional coordinates u, v, w in the unit cell

P Polarization correction factor

Di Probability of the ith state of a system

R Rhombohedral unit cell; rotation axis of degree R; reliability factor
(several R parameters are in current use)

R Inversion axis of degree R

R Real axis on an Argand diagram

rms Root mean square

RU Reciprocal lattice unit

S Statistical distribution parameter; 2 sin 0/

s, s(hkl), s(h)  Sign of a centric reflection, |F| or |E|
(continued)
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Tio Thermal vibration parameter for the jth atom at a given sin 6/4

[UV W] Zone or direction symbol

<UVW> Form of zone axes or directions

(uvw) Components of a vector in Patterson space

U? Mean-square amplitude of vibration

\%4 Volume

V. Volume of a unit cell

w Probability or number of arrangements of a system

w Weight factor

X,V U, Z Crystallographic reference axes descriptors

X, Y, Z Spatial coordinates, in absolute measure, of a point with respect to the x, y,
and z axes

X, 9,z Spatial fractional coordinates in a unit cell parallel to x, y, z, respectively

Xjy Vj» Zj Spatial fractional coordinates of the jth atom in a unit cell parallel to x, y,
z, respectively

[x, B, v] Line parallel to the x axis and intersecting the y and z axes at f§ and 7,
respectively

oy, 7 Plane normal to the z axis and intersecting it at y

+{x,y,z ...} x,yz %yZ...

V4 Number of formula entities of mass M,,. per unit cell

Z; Atomic number of the jth atom in a unit cell

o, B,y Angles between the pairs of unit-cell edges bc, ca, and ab, respectively

oc*, ﬁ*, y* Angles between the pairs of reciprocal unit-cell edges b*c*, c*a*, and a*b*,
respectively

0 Path difference

e, e(hkl) Statistical weight of a reflection (epsilon factor)

& W Principal refractive indices for a uniaxial crystal

0 Bragg angle

K Reciprocal space constant

) Wavelength

u Linear absorption coefficient

v Frequency

p(xyz) Electron density at the point x, y, z (units are length73)

[ Interfacial (internormal) angle

p(hkl), p(h), ¢ Phase angle associated with a structure factor

Y 40 (cos y, cos W, cos m) direction cosines of a line with respect to the x, y,
and z axes

w Angular frequency
Q Azimuthal angle in experimental methods; ohm
X, <X> Average value of X



1.1 Brief Historical Introduction

Crystals, with their plane faces, sharp angles, and color, have excited interest since the earliest times.
Their color and decorative qualities are recorded in the Bible [1]: we need not start as far back as that, but
will consider instead some of the highlights in the build-up of the science of Crystallography.

The Swiss naturalist Conrad Gessner [2] observed in 1564 that “one crystal differs from another in
its angles, and consequently in its figure,” and Pliny [3], Caesalpinus [4], and Buffon [5] also denied
“the fixity of crystals.” Niels Stensen, a Dane, also known as Nicolaus Steno [6], showed in 1669 that
crystals of quartz, although of varying edge lengths, nevertheless preserved constant angles between
corresponding faces, an observation that led, after further work, to the law of constant interfacial
angles (q.v.), sometimes called Steno’s law. Some examples of Steno’s figures for quartz are shown in
Fig. 1.1. Pliny referred to quartz as krustallos (Gk. kpvatoiloo = ice), believing it to be ice
permanently congealed by intense cold: “rain-water and pure snow are needed for its formation.”
In the same year, Bartholinus [7] published his work on the Iceland Spar modification of calcium
carbonate: he measured the interfacial angles (q.v.) of crystal fragments and found that “the
(cleavage) fragments have the same shape as the original crystal.”

Johannes Kepler, best known for his research in astronomy, worked sometime for Emperor Rudolph IT
of Austria, who was somewhat negligent in paying salaries. Kepler, who was without money with which
to purchase a Christmas present for a friend in 1611, wrote a booklet entitled The Six-Cornered Snowflake
[8], Fig. 1.2. He had noticed that snow crystals of whatever shape always exhibited sixfold symmetry. He
speculated on a relationship between the snow crystal and a hexagonal close packing of spheres: he
recognized the genre of crystal symmetry, which was to be developed about two centuries years later.
Jokingly, he passed off his “New Year’s Gift” as a mere “nothing” (like his finances), making a play on the
word nix, which means “snowflake” in Latin but “nothing” in Lower German, Kepler’s language.

Over the period 1688—1705, many investigations by the Italian physicist Giovanni Guglielmini [9]
confirmed and extended the work of Steno, and during 1772—-1783, about a century after Steno, the
Frenchman Jean-Baptiste Romé de 1’Isle [10] carried out an extensive series of measurements that
confirmed fully Steno’s findings: he stated further, as a law, that “the interfacial angles of a crystal
material are characteristic of it.” In his work, he made much use of the contact goniometer, developed by
Arnould Carangeot [11], for measuring interfacial angles on crystals.

His compatriot René Just (Abbé) Haiiy [12] published a treatise on mineralogy in 1801 in which he
envisaged crystals built up by stacking identical blocks of structural material in ways that led to the
shapes of crystals, thus explaining Steno’s law. He was led to this view by the observation that when

M. Ladd and R. Palmer, Structure Determination by X-ray Crystallography: 1
Analysis by X-rays and Neutrons, DOI 10.1007/978-1-4614-3954-7_1,
© Springer Science+Business Media New York 2013
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Fig. 1.1 Examples of Steno’s drawings of transverse sections of different crystal specimens of quartz, SiO,; the
interfacial angles are 120° or (120/2)° in each case

« TheSix-
ornered

SNOW

A NIEW YEAR’S GIFET

»JOHANN KEPL:R

Fig. 1.2 The cover (in translation) of Kepler’s booklet on The Six-Cornered Snowflake; some of Kepler’s many
drawings of snowflakes appear on the cover (reproduced by courtesy of Paul Dry Books)
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Fig. 1.3 Examples of Haiiy’s figures. (a) Rhombic dodecahedron formed from stacked cubes, as in garnet (idealized
formula Ca3Al,Si304,). (b) Pentagonal dodecahedron formed from stacked cubes, as in K;Mn,(SOy);. (¢) Scalenohe-
dron formed from stacked rhombohedra, as in calcite, CaCO;

crystals of calcite were broken, they always formed rhombohedral-shaped fragments whatever the
shape of the original crystal, an observation similar to that made by Bartholinus. Other crystals cleaved
into different shapes, such as cubes; Fig. 1.3 illustrates some of Hatiy’s figures. He laid the foundation
for the law of rational intercepts (q.v.), which demonstrated, albeit implicitly, a shape for the unit cell
(q.v.) of a crystal. He described also different crystal shapes, or habits, obtained by the packing of
different shaped blocks.

In the period 1804—1815, the German scientists Christian Weiss [13] and Frederick Mohs [14],
independently, identified the six “major” crystal systems (q.v.)—it seems that they did not distinguish
between the two systems that we now recognize as trigonal and hexagonal. Another German scientist
Johann Hessel [15] determined the 32 crystallographic point groups (q.v.) in 1835 and his compatriot
Moritz Frankenheim [16] also described six crystal systems and, additionally, the 32 crystal classes in
1842. Crystal classes are names for the general forms (q.v.) of crystals, of which we shall have more to
say later, Sect. 1.4.2; Fig. 1.4 illustrates two examples of crystal class.

A next landmark was that contained in the work of William Miller, 1839, who proposed an
unambiguous notation for specifying the orientations of the faces of a crystal, leading to the Miller
Indices [17] (q.v.), based on the scalar equation of a plane; the law of rational indices is clear from
Miller’s work—the descriptor “law of rational ratios of intercepts” is perhaps more apt.

The regular arrangements of points in space were addressed by August Bravais [18] in 1846, who
derived the 14 Bravais lattices. Actually, Frankenheim had derived 15 such lattices in 1842, but
Bravais showed that two of them were identical. For his infelicity, Frankenheim’s name is frequently
omitted from a discussion of lattices, albeit the nature of his 15th lattice was never completely clear.

Continuing the development of crystal symmetry, we have at the end of the nineteenth century,
Yevgraf Fyodorov [19] (in Russia), Artur Schonflies [20] (in Germany), and William Barlow [21]
(in Britain), all independently, describing the 230 ordered spatial patterns, or space groups (q.v.), that
represented the possible ways of arranging infinite arrays of points (atoms) regularly in space,
commensurate with the 14 Bravais lattices.

By that time, the work of mineralogists and mathematicians had led to a well-defined study of the
external form (morphology) of crystals, as well as to predictions about their internal structure. The
totality of mineralogical studies was collected in the extensive six-volume treatise ChemischeKris-
tallographie of Paul von Groth, the first part of which was published in 1904. The time was right for a
major breakthrough, and we arrive at the year 1912 and the inception of the study of crystals by X-ray
diffraction methods: X-ray Crystallography was born.
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Fig. 1.4 Examples

of crystal classes:

(a) Rhombic disphenoid,
showing left-hand and
right-hand enantiomorphs
(q.v.). (b) Hex(akis)
octahedron

The classic experiment [22], suggested by Laue,' and performed by Paul Friedrich and Walter
Knipping, demonstrated the diffraction of X-rays from a crystal of copper sulfate. This material was,
perhaps, not the best choice because of its low (triclinic) symmetry. Nevertheless, the diffraction
effects showed conclusively both that crystals were periodic in three dimensions and that X-rays
possessed wave-like properties. Figure 1.5 shows X-ray diffraction patterns from early experiments on
X-ray diffraction.

The results from this work may be said to be a landmark in the development of modern science.
The diffraction technique that was initiated by Laue was improved quickly by W. L. Bragg, in his
work on crystals of the alkali-metal halides and other crystals. Barlow, one of those who had derived
the space groups earlier, had also developed structure models for some metallic elements, and simple
binary compounds such as sodium chloride, cesium chloride, and zinc blende. None of his results was
proved at that time: all were speculative, but remarkably accurate, as it turned out.

Bragg [23] investigated the X-ray diffraction patterns of sodium chloride and other alkali halides
and zinc blende (ZnS). He found that the models suggested by Barlow were correct, and other models
proposed by Barlow, such as cubic close-packed and hexagonal close-packed structures for metallic
elements, were confirmed. The number of structure analyses grew very rapidly: Fig. 1.6 is a stereo-
view of the structure of sodium chloride, NaCl. Several stereoviews are used in this book in order to

"In 1913, Laue’s father was raised to the ranks of hereditary nobility; Laue then became von Laue.
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Fig. 1.5 The first X-ray diffraction photograph by Friedrich et al. [22]. (a) Copper sulfate pentahydrate, CuSO,-5H,0,
showing no symmetry. (b) Zinc blende (the first crystal structure to be fully determined), ZnS, showing fourfold symmetry
(Bragg WH, Bragg WL (1949) The crystalline state, vol 1. G. Bell and Sons)

Fig. 1.6 Stereoview of the face-centered cubic unit cell and its environs for the crystal structure of sodium chloride:

O =Cl,0=Na"

demonstrate clearly the three-dimensional nature of crystal structures, and Appendix A describes the
process of stereoviewing, and the construction of a simple stereoviewer.

The early structure analyses were carried out with the aid of an X-ray ionization spectrometer, the
forerunner of the modern single-crystal X-ray diffractometer, designed largely by W. H. Bragg [24].
Generally, the name Bragg refers to W. L. Bragg, but his father (W. H.) also played a highly significant
role at the very beginning of the technique of crystal structure analysis by X-ray diffraction.

X-ray diffraction provides the most powerful technique for probing the internal structures of crystals
and for determining with high precision the actual atomic arrangement in space. Figure 1.7 shows a
three-dimensional contour map of the electron density in a medium-sized molecule, euphenyl iodoace-
tate [25], C3,Hs30,1. The contour lines join points of equal electron density in the structure; hydrogen
atoms are not revealed in this map because of their relatively small scattering power for X-rays.

If we assume that the centers of atoms are located at the maxima in the electron density map, we can
deduce the molecular model in Fig. 1.8a; the chemical structural formula is shown for comparison in
Fig. 1.8b. The iodine atom is represented by the large number of contours at the extreme left of Fig. 1.7.
The carbon and oxygen atoms are depicted by approximately equal numbers of contours. The atoms in the
side chain, shown on the extreme right of the figure, have contours that are spaced further apart. Thermal
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Fig. 1.7 Three-dimensional electron density contour map for euphenyl iodoacetate, as seen along the b direction of the
unit cell; the contours connect points of equal electron density: the electron density contours have been drawn on a set of
perspex sheets and stacked normal to b

Fig. 1.8 Euphenyl iodoacetate, C3,H530,1. (a) Molecular model, excluding hydrogen atoms. (b) Chemical structural
formula: the orientations at carbon atoms 13, 14, and 17 are o, f3, and o, respectively (standard numbering)

vibrations of the atoms are most severe in this portion of the molecule, and they have the effect of smearing
out the electron density, so that its gradient, represented by the closeness of the contours, is less steep than
in other parts of the molecule.

Molecules of much greater complexity than that in this example are now being investigated;
the structures of proteins, enzymes, and nucleic acids—the ‘“elements” of life itself—are
being revealed by powerful X-ray diffraction techniques [25a].
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1.2  The Crystalline State

A crystalline substance may be defined as a homogeneous solid having an ordered internal atomic
arrangement” and a definite overall chemical composition, albeit non-stoichiometric in some exam-
ples. In addition to the more obvious manifestations of crystalline materials, like sugar and common
salt, other substances, such as cellophane sheet and fibrous asbestos, which reveal different degrees of
long-range order (extending over many atomic dimensions), may be described as crystalline.

With the unaided eye, fragments of glass and of quartz look similar to each other, yet quartz is
crystalline and glass is non-crystalline, or amorphous. Glass has an atomic arrangement that displays only
very short-range order (extending over a few atomic dimensions). Figure 1.9 illustrates the structures of
quartz and silica glass; both of them are based on the same atomic group, the tetrahedral SiO, structural
unit, but in quartz these groups are arranged regularly throughout three-dimensional space.

A crystal may be defined as a substance that is crystalline and periodic in three dimensions and
bounded by plane faces. We have now made the useful distinction that crystalline substances exhibit
long-range order in three dimensions or less, whereas crystals have both this three-dimensional
regularity and plane bounding faces; see also Sect. 1.4.3.

1.2.1 Crystallographic Reference Axes

In describing the external features of crystals, we make use of relationships in coordinate geometry. It
is important to set up a system of reference axes, and three such axes are needed in the description of a
crystal, Fig. 1.10. By convention, the x, y, and z crystallographic reference axes are set parallel to
important directions in the crystal. We shall see later that these directions (crystal edges, or possible
crystal edges) are related closely to the symmetry of the crystal; in some cases, a choice of non-
orthogonal axes then will arise naturally.

It is usual to work with right-handed axes. In Fig. 1.11, +y and +z are in the plane of the paper, as
shown, and +x is directed forward; the succession +x — +y — +z simulates an anticlockwise screw
motion, which is one way of describing right-handed axes. Notice the selection of the interaxial angles o,
f, and y and the mnemonic connection between their positions and the directions of the x, y, and z axes.

1.2.2 Equation of a Plane

The plane ABC shown in Fig. 1.12 intercepts the x, y, and z axes (which need not be orthogonal) at A,
B, and C, respectively. ON is the perpendicular from the origin O to the plane; it has the length d, and
its direction cosines (see Web Appendix WAL1) are cos y, cos ¥, and cos @ with respect to OA, OB,
and OC, respectively, which have the lengths a, b, and ¢, and P is any point X, ¥, Z in the plane ABC.
Let PK be parallel to OC and meet the plane AOB at K, and let KM be parallel to OB and meet OA at M.
Then the lengths of OM, MK, and KP are X, Y, and Z, respectively. Since ON is the projection of
OP on to ON, it is equal to the sum of the projections OM, MK, and KP all on to ON. Hence,

d=Xcosy+YcosW +Zcosw (1.1)

2 See also Sect. 8.9.
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Fig. 1.9 Arrangements of
SiOy structural units (the
darker spheres represent
Si). (a) a-Quartz. (b) Silica
glass (reproduced by
courtesy of NPL)

In AOAN, d = OA cos y = a cos y. Similarly, d = b cos ¥ = ¢ cos w; dividing by d:
(X/a)+ (Y/b)+ (Z/c) =1 (1.2)

Equation (1.2) is the intercept form of the equation of the plane ABC.

1.2.3 Indices of Planes and the Law of Rational Intercepts

Miller Indices

The faces of a crystal are planes in three-dimensional space. Once the crystallographic axes are
chosen, a parametral plane may be defined and any other plane described by reference to it in terms of
three numbers £, k, and /. If the parametral plane is designated by integral values of 4, k, and [,
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4 Z axis

y axis

Fig. 1.10 Idealized tetragonal crystal with orthogonal (mutually perpendicular) axes x, y, and z drawn in

Z axis

y axis

X axis

Fig. 1.11 Right-handed, general crystallographic axes x, y, and z, and the interaxial angles o, 5, and y

normally (111), then the indices of all other crystal faces are small integer values, rarely more than 5.
This result is known as the law of rational intercepts (indices) (q.v.) and has a basis in lattice theory.
A notation for describing the faces of a crystal was introduced first by William Whewell in 1825 and
developed fully by Miller [17] in 1839, and A, k, and [ are the Miller indices.

In Fig. 1.13, let the parametral plane (111) be ABC, making intercepts a, b, and ¢ on the
crystallographic axes x, y, and z, respectively. Another plane LMN makes corresponding intercepts
of lengths a/h, b/k, and c/l. The Miller indices of plane LMN are expressed by the ratios of the
intercepts of the parametral plane to those of the plane LMN. If in the figure, a/h = a/4, b/k = b/3,
and ¢/l = ¢/2,then LMN is (432), see also Sect. 2.3. If fractions occur in formulating 4, k, or /, they are
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Fig. 1.12 Plane ABC in three-dimensional space; ON, of length d, is the normal to the plane from the origin O

cleared by multiplication throughout by the lowest common denominator. Conditions of parallelism
to axes and intercepts on the negative sides of the axes lead respectively to zero or negative values for
h, k, and I. Thus, ABDE is the plane (110), BDFG is (010), and PBQ is (213).3 It may be noted that it
has not been necessary to assign numerical values to either a, b, and ¢ or o, ff, and y in order to
describe the crystal faces by their Miller indices. In the next chapter, we shall identify a, b, and ¢ with
the edges of the crystal unit cell in a lattice, but this relationship is not needed at present.

The preferred choice of the parametral plane leads to small numerical values for the Miller indices
of crystal faces. If LMN had been chosen as (111), then ABC would have been (346). Summarizing,
we may say that the plane (hkl) makes intercepts a/h, b/k, and ¢/l along the crystallographic x, y, and z
axes, respectively, where a, b, and ¢ are the corresponding intercepts made by the parametral plane.
The conventional choice of reference axes leads to special relationships between the intercepts a, b, c,
and the (111) parametral plane, and between the interaxial angles o, ff and 7, in all crystals other than
triclinic (g.v.).

From (1.1) and (1.2), the intercept equation of the general plane (hkl) may be written as

(hX/a) + (kY /b) + (IZ/c) = 1 (1.3)
The equation of the parallel plane passing through the origin is
(hX/a)+ (kY /b) + (IZ/c) =0 (1.4)

it must satisfy the condition X = Y = Z = 0. It follows from (1.4) that the Miller indices of a crystal
plane cannot be determined if the origin is chosen on that plane.

3Read as “bar-two one bar-three,” or “two-bar one three-bar” in the USA.
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X axis

Fig. 1.13 Miller indices of planes: OA = a, OB = b, OC = c; ABC is the parametral plane (111), and LMN is the
plane (hkl)
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Fig. 1.14 Miller-Bravais indices (hkil). The crystallographic axes are labeled x, y, u, z, and the plane (2354) is shown;
the parametral plane is (1121)

Miller-Bravais Indices

In crystals that exhibit sixfold or threefold symmetry referred to hexagonal axes, see Table 1.3, four
axes of reference may be used, an extension of the Miller indices due to Bravais [18]. The axes are
designated x, y, u, and z; the x, y, and u axes lie in one plane, at 120° to one another, and the z axis is
perpendicular to the x, y, u plane, Fig. 1.14; the sequence x, y, u, z is right-handed. Planes in these
crystals are described by four numbers, the Miller—Bravais indices h, k, i, and /. The index i is not
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independent of /4 and k: thus, if the plane ABC in Fig. 1.14 intercepts the x and y axes at a/2 and b/3,
for example, then the u axis is intercepted at —u/5. If also the z axis is intercepted at ¢/4, then the plane
is designated (2354). From Problem 1.14, we show that, in general, i = —(h + k).

Law of Rational Intercepts

Planes that appear as external crystal faces are those most densely populated by the units of
structure. Consider a P orthorhombic lattice, Fig. 2.4. The (010) planes are more densely populated
in proportion to 1/ac than are the (110) planes at 1/(cva? + b?) which, in turn, are more densely
populated than, say, the (210) at 1/(cva? + 4b?). The more densely populated planes are those of
wider spacing in a given material: d is proportional to the reticular density or to 1/reticular area. The
planes with the lower values of S2, where S% = B2 + 2 + 12, lead to the more stable (lower energy)
crystal state. If we consider a cubic crystal, for example, then d = a/(h*+ k* + 12)"/? = a/S, from
Table 2.4, so that for the three cubic lattices, Fig. 2.4, we have:

P
hkI 100 110 111 210 211 221
§? 1 2 3 5 6 9

Showing a preference for hexahedral {100} forms, as in caesium chloride or sodium chlorate.

I
ki 110 200 211 310 420 442
s? 2 4 6 10 20 36

Showing a preference for dodecahedral {110} forms, as in garnet structures.

F
mkl 111 200 220 310 420 422
§? 3 4 8 10 20 246

Showing a preference for octahedral {111} forms, as in diamond and calcium fluoride. Thus, on
grounds of stability, planes of larger d-values (smaller values of 4, k, and /) are to be expected.

1.2.4 Axial Ratios

If both sides of (1.4) are multiplied by b, we obtain

hX iz
— 4+ kY +—=0 1.5
a/b HRY - 7 (1.5)
The quantities a/b and ¢/b are termed axial ratios; they can be deduced from an analysis of the
crystal morphology, but not the individual values of a, b, or c.

1.2.5 Zones

Most well formed crystals have their faces arranged in groups of two or more with respect to certain
directions in the crystal. In other words, crystals exhibit symmetry; this feature is an external
manifestation of the ordered arrangement of atoms in the crystal. Figure 1.15 illustrates zircon,


http://dx.doi.org/10.1007/978-1-4614-3954-7#Fig4_2
http://dx.doi.org/10.1007/978-1-4614-3954-7#Tab4_2
http://dx.doi.org/10.1007/978-1-4614-3954-7#Fig4_2
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Fig. 1.15 A highly symmetric crystal (zircon, ZrSiO,), showing the Miller indices of some of its faces. What are the
Miller indices of the other faces on this crystal?

ZrSiOy4, an example of a highly symmetric crystal. It is evident that several faces have a given
direction in common. Such faces are said to lie in a zone, and the common direction is called a zone
axis. Any two faces, (h1ky/1) and (hyk,!,), define a zone. The zone axis is the line of intersection of the
two planes and is given by the solution of the equations

(mX/a) + (kY/b) + (LZ/c) =0

(haX/a) + (koY /b) + (bZ/c) = 0 (1.6)

for the two planes passing through the origin (since we are concerned here only with the directional-
ity). The solution is given by the line

X _ Y _ V4 1.7
a(kllz — kgll) b(llhz — lzhl) C(h1k2 — hzkl) ’
which must also pass through the origin. It may be written as
X/(aU) = Y/(bV) = Z/(cW) (1.8)

where [UVW] is called the zone symbol.
If any other face (4kl) lies in the same zone as that defined by (h,k,l;) and (h,k,l,), then it follows
from immediately from (1.4) and (1.8), that

hU +kV +IW = 0 (1.9)

which is an expression of the Weiss zone law [13]. For if planes (h,k/,), (hoksl»), and (hkl) lie in one
and the same zone (fautozonal), then applying (1.6) to (hk/) and using (1.8) in the result leads to (1.9).
We shall show this result in another way in Sect. 2.5.4.


http://dx.doi.org/10.1007/978-1-4614-3954-7#Sec12_2
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a To teley4_._-/-f.
e —
Parallel light —ooe.
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Fig. 1.16 Optical goniometry. (a) Principle of the reflecting goniometer; AB and BC represent two adjacent tautozonal
faces on the crystal. (b) Two-circle optical goniometer; the crystal rotates about the vertical circle (the zone axis
through O), and the telescope and collimator rotate about the horizontal circle

In the zircon crystal, the vertical (prism) faces lie in one zone. If the prism faces are indexed in the
usual manner, as in Fig. 1.15, then, from (1.7) and (1.8), the corresponding zone symbol is [001]. The
symbols [UVW] and [U V W] refer to lines that are collinear, but of opposite sense. From (1.9), we see
that (110) and (100) are faces in the [001] zone, but (111) is not. Other relationships follow from (1.9) ina
similar way. In the manipulation of these equations, it may be noted that a zone axis is described by
[UVW], the simplest symbol; the axes that may be described as [nU, nV, naW] (n = 0, £1, £2,...) are
coincident with [UVW] 1_n crystal morphology. From (1.6), a zone symbol cannot be determined from

two faces (kl) and ( k [). Thus, although both the (110) and (110) planes lie in the [001] zone, this zone
symbol could not be determined from these two planes alone.

Angle Between Two Directions (Zone Axes)
The angle 0 between two directions [UVW] and [U'V'W’] is given by

g = "o Tovw (1.10)
r[va]r[U/V/W/]

the evaluation of which follows from (2.16).


http://dx.doi.org/10.1007/978-1-4614-3954-7#Equ16_2
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Constancy of Interfacial Angles

The law of constant interfacial angles states that in all crystals of the same substance, angles between
corresponding faces have a constant value. Interfacial angles may be measured by a goniometer, the
first of which was that developed by Carangeot [11], as we noted earlier.

The principle of the more precise reflecting goniometer is shown in Fig. 1.16a, which forms the basis
of modern optical goniometry. A crystal is arranged to rotate about a zone axis O, which is set
perpendicular to a plane containing the incident and crystal-reflected light beams. Parallel light reflected
from the face AB is received by a telescope. If the crystal is rotated in a clockwise direction, a reflection
from the face BC is received next when the crystal has been turned through the angle ®; then, the
interfacial angle is 180 — ®°. Accurate goniometry brought a quantitative significance to observable
angular relationships in crystals. Figure 1.16b illustrates a simple two-circle optical goniometer.

1.3  Stereographic Projection: Brief Survey

A representation of the many faces of a crystal by means of a convenient two-dimensional illustration
may be achieved by means of a stereographic projection, or stereogram. Figure 1.17 shows a cubic
crystal set within a sphere of arbitrary radius, with the normals to the sets of crystal faces drawn to
intersect the sphere. Lines are drawn from the intersections with the sphere to meet the horizontal
plane, or primitive, which becomes the plane of projection. An intersection from the upper hemi-
sphere on to the horizontal plane, a pole, is marked as ® and that from the lower hemisphere as O;
where the two coincide the notation used is the dot inside the circle. Thus, we obtain Fig. 1.18, which
may be indexed for the given crystal as shown in Fig. 1.19. Later in this chapter, we shall introduce a
modification for the notation of points on a stereogram, for reasons that will be there described.

Fig. 1.17 Spherical
projection of the cubic
crystal showing three forms < 1SN
of planes: cube—faces b, e, = - N S‘(‘)" ————— =
d, and parallel faces; ==

octahedron—faces r, m, n, 4 N
q, and Parallel faces; g b N {7/ 11 \\\ \ f
rhombic dodecahedron— . |

faces f, g, p, 0, ¢, a, and | \
parallel faces. The x, y, and m
z axes are chosen parallel to
important (symmetry) /
directions in the crystal; the / o
radius of the sphere is a ,/ q

arbitrary. The inclined ’

great circle, b, m, o', ¢',. . ., .
projects as G3G} in
Fig. 1.18
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Fig. 1.18 Stereogram of
the crystal shown in
Fig. 1.17; the zone circle
(great circle) GG, symbol
[101], passes through e, g,
a,n,e,q,ad,n'; the zone
circle G, G} symbol [110],
passes through f, r, d, ¢', 1,
¥, d, g; the zone circle
G3GY, symbol [011], passes
!

through b, m, o', ¢, b', nt,
0,q

Fig. 1.19 Stereogram in
Fig. 1.18 indexed, taking r
as 111. The zone
containing (100) and (111)
is [011], and that containing
(010) and (001) is [100].
From (1.7), (1.8), and (1.9),
it follows that the face

p common to these two
zones is (011)
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The important feature of the stereogram for our purposes is that it preserves the interfacial angles
of the crystal and, hence, displays faithfully the crystal symmetry. A more detailed description of the
stereographic projection may be found in the Web Appendix WA?2.

1.4  External Symmetry of Crystals

The existence of faces on a crystal in groups of two or more, in a similar orientation with respect to
some line or plane in the crystal, is a manifestation of symmetry. The crystal drawing of zircon in
Fig. 1.15 shows several sets of symmetrically arranged faces.

Few of us have difficulty in recognizing symmetry in two-dimensional pictures of objects such as a
dumbbell, the three-legged emblem of the Isle of Man, a Maltese cross, the five-petal Tudor rose, the
six-pointed Star of David; see Problem 1.10(c). But it is a rather different matter when we are dealing
with three-dimensional objects.

The problem arises first from the fact that we can see all parts of a two-dimensional object
simultaneously, and thus we take in the relation of the parts to the whole; but we cannot do that so
easily with three-dimensional objects. Secondly, while some three-dimensional objects, such as
flowers, pencils, and architectural columns, are simple enough for us to visualize and to rotate in
our mind’s eye, few of us have a natural gift for mentally perceiving and manipulating more complex
three-dimensional objects. Nevertheless, the art of doing so can be developed with suitable aids and
patience. If, initially, you have problems, take heart. You are not alone and, like many before you, you
will be surprised at how swiftly the required facility can be acquired. Engineers, architects, and
sculptors may be blessed with a natural three-dimensional visualization aptitude, but they have
learned to develop it—particularly by making and handling models.

Standard practice in the past was to reduce three-dimensional objects to one or more two-dimensional
drawings (projections and elevations): it was cheap, well suited to reproduction in books, and less
cumbersome than handling three-dimensional models. In this book, we shall continue to use such two-
dimensional representations where appropriate, but to rely on them exclusively only delays the acquisi-
tion of a three-dimensional visualization ability. Fortunately, we can now use stereoscopic image pairs,
such as that shown in Fig. 1.6. These illustrations are a great help, but, because they provide a view from
only one standpoint, they are not always quite the equal of models that can be examined by hand.

Symmetry

Symmetry may be defined as that spatial property of a body (or pattern) by which the body (or pattern) can
be brought from an initial state to another indistinguishable state by means of a certain operation—a
symmetry operation. For our purposes, the operation will be considered to take place in n-dimensional
space (n = 1,2, or 3) and to represent an action with respect to a symmetry element.

Symmetry Elements and Symmetry Operations
A symmetry element is a geometrical entity (point, line, or plane) in a body or assemblage, with which is
associated an appropriate symmetry operation. The symmetry element is strictly conceptual, but it is
convenient to accord it a sense of reality. The symmetry element connects all parts of the body or
assemblage as a number of symmetrically related parts. The term assemblage is often useful because it
describes more obviously a bundle of radiating face normals, Fig. 1.17, or a number of bonds emanating
from a central atom in the case of a molecule or ion, Fig. 1.34, to which these symmetry concepts equally
apply.

The symmetry operation corresponding to a symmetry element, when applied to a body, converts
it to a state that is indistinguishable from the initial state of that body, and thus the operation reveals
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Fig. 1.20 Some two-dimensional objects and their point-group symbols. The motifs are built up from the asymmetric
unit (a), by operating on it according to the point-group symmetry. Note that, except in (a), the symmetry element
intersects the asymmetric unit and lies at the center of each figure

the symmetry inherent in the body. In many cases, different symmetry operations can reveal one
and the same symmetry element. Thus, 3' (=3), 3%, and 3° (=3) may be regarded as either multiple
steps of 3, a threefold operation (q.v.), or single-step operations in their own, but all are contained
within the same single symmetry element, 3. The latter idea is of particular importance in the study
of group theory. Symmetry elements may occur singly in a body, as in Fig. 1.20, for example, or in
certain combinations, as in the example of Fig. 1.22.

Point Groups
A set of interacting symmetry operations in a finite body, or just one such element, is referred to as a point
group. A point group may be defined as a set of symmetry operations the action of which leaves at least
one point unmoved: this point is taken as the origin of the reference axes for the body, through which all
symmetry elements pass. The assembly of points defining a rotation axis or a mirror plane is effectively
unmoved by their operations.

It can be contended that, in real objects, since they are imperfect, even if only on a microscopic
scale, an indistinguishable second state can be obtained only by a rotation of 360° (or 0°); this
operation is identity, or “doing nothing.” For practical purposes, however, the effects of most
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@ f
8 m
Fig. 1.21 Stereograms of the point groups of the objects in Fig. 1.20; the conventional graphic symbols forR (R = 1,
2, 3, 4, 6) and m are shown

imperfections are small, and although our discussion of symmetry will be set up in terms of ideal
geometrical objects, the extension of the results to real situations is scientifically rewarding.

The observable symmetry may depend upon the nature of the examining probe, and different
results for a given material may arise in terms of its optical, magnetic, and photoelastic properties,
and from neutron diffraction, Sect. 11.1. Here, we shall be concerned with the symmetry shown by
directions in space, such as the normals to the faces on crystals, or the bond directions in chemical
species. Such angular relationships can be presented conveniently on stereograms, Sect. 1.3, and we
shall draw fully on this method of representation in the ensuing discussion.

Several concepts in symmetry can be introduced conveniently with two-dimensional objects;
subsequently, the third dimension can be introduced mainly as a geometrical extension of the two-
dimensional ideas. There is a single one-dimensional point group; it is more difficult to grasp
conceptually, and we shall not be particularly concerned with it in this book.

1.4.1 Two-Dimensional Point Groups

“We proceeded straight from plane geometry to solid bodies in motion without considering solid
bodies first on their own. The right thing is to proceed from second dimension to third, which brings us


http://dx.doi.org/10.1007/978-1-4614-3954-7#Sec1_11
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Fig. 1.22 Further two-dimensional objects with their stereograms and point groups. (a) 2mm. (b) 3m. (¢) 4mm.
(d) 6mm
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Table 1.1 Two-dimensional point groups and notation

Symbol meaning, appropriate to position occupied

System Point groups First position Second position Third position
Oblique 1,2 Rotation about a point - -
Rectangular 1m* As above m Ll x -

2mm As above m L x mLly
Square As above - -

4mm As above mlx,y mat45°tox,y
Hexagonal 3 As above - -

3m As above mlx,yu -

6 As above - -

6mm As above mLlx,yu mat30°tox,y, u

*Usually written as m, but the full symbol is given here in order to clarify the positions of the symmetry elements in the
symbol

to cubes and other three-dimensional figures” [26]. If we examine the two-dimensional objects in
Fig. 1.20, we can discover two types of symmetry elements that can bring an object from one state to
another indistinguishable state: parts (a) to (e) of Fig. 1.20 depict rotational symmetry, whereas (f)
shows reflection symmetry.

Rotation Symmetry

A two-dimensional object possesses rotational symmetry of degree R (or R-fold symmetry) about a point if
it can be brought from one state to another indistinguishable state by each and every rotation of (360/R)°
about that symmetry point. Figure 1.20a—e illustrate the rotational symmetry elements R equal to 1,2, 3, 4,
and 6, respectively. The onefold element is the identity element and is crystallographically trivial; every
object has onefold symmetry.

Reflection Symmetry

A two-dimensional object possesses reflection symmetry, symbol m, if it can be brought from one
state to another indistinguishable state by reflection across the symmetry line. The operation is not
one that we can perform physically with an object, unlike rotation, but we can appreciate from the
object itself (and its stereogram) that m symmetry is present. The m line divides the figure into its
asymmetric unit, \_, , and a mirror image or enantiomorph of this unit, ,_~~, which situation (left-
hand-right-hand relationship) is characteristic of reflection symmetry, Fig. 1.20f.

Each of the objects in Fig. 1.20 has a symmetry pattern that can be described by a two-dimensional
point group, and it is convenient to illustrate these point groups by stereograms. Figure 1.21 shows
stereograms for the two-dimensional point groups 1, 2, 3, 4, 6, and m. It should be noted that in using
stereogram-like drawings to illustrate two-dimensional symmetry, the representative points (poles)
must fall on the perimeter; such situations may represent special forms (q.v.) on the stereograms of
three-dimensional objects.

Combinations of R and m lead to four more point groups; they are illustrated in Fig. 1.22. We have
deliberately omitted point groups in whichR = 5andR > 7, for areason that will be discussed in Chap. 2.

It is convenient to allocate the ten two- dimensional point groups to two-dimensional systems and
to choose reference axes for the objects in close relation to the directions of their symmetry elements.
Table 1.1 lists these systems, together with the meanings of the positions in the point-group symbols.
It should be noted that combinations of m with R (R > 2) introduce additional reflection lines of a
different crystallographic form. In the case of 3m, however, these additional m lines are coincident
with the first set; the symbol 3mm is not meaningful.


http://dx.doi.org/10.1007/978-1-4614-3954-7_2
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Fig. 1.23 Stereoview of a
hypothetical C4 molecule;

the 4 axis is in the vertical
direction

It is important to remember the relative orientations of the symmetry elements in the point groups
and the variations in the meanings of the positions in the different systems. In the two-dimensional
hexagonal system, three axes may be chosen in the x, y plane; this selection corresponds with the
use of Miller—Bravais indices in three dimensions.

1.4.2 Three-Dimensional Point Groups

The symmetry elements encountered in three dimensions are rotation axes (R), inversion axes (R),
and a reflection (mirror) plane (m). A center of symmetry can be present also, although this symmetry
element may be included in a point group that contains the element R, as we shall see, and a check for
this must be made.

The operations of rotation and reflection are similar to those in two dimensions, except that the
geometric extensions of the operations are now increased to rotation about a /ine and reflection across
a plane, respectively.

Inversion Axes
An object is said to possess an inversion (strictly, roto-inversion) axis* R if it can be brought from one
state to another indistinguishable state by the combined actions of rotation by (360/R)° about the axis
and inversion through a point on the axis that also serves as the origin point; the two actions comprise
a single symmetry operation. Like mirror symmetry, Sect. 1.4.1, the inversion axis is a physically
non-performable symmetry operation on a model, but it may be represented conveniently on a
stereogram. It is a little more difficult to envisage this operation than those of rotation and reflection.
Figure 1.23 illustrates a hypothetical molecule having a vertical 4 axis: the stereoscopic effect can be
created by using a stereoviewer (see Appendix A for instructions for making a model with 4
symmetry). In crystals, R in R, can take only the values 1, 2, 3, 4, and 6; this is sometimes referred
to as the crystallograpic restriction theorem. A simple explanation for this restriction is that only
figures that are based on these rotational symmetries can be stacked together to fill space completely
in a periodic manner, as Fig. 1.27 shows; see also Sect. 1.4.3. A further discussion of these restrictions
on R is given in Sect. 2.6.

In pictorial representations of the three-dimensional point groups, it is helpful to indicate the third
dimension on their stereograms and, in addition, to illustrate the change-of-hand relationship that

“Read as “bar-R”, or “R-bar” in the United States.
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a b
0(2) (3)@
¢ (2)0
O(4)
o1 o)

Fig. 1.24 Stereograms of general forms. (a) Point group 2 (axis horizontal and in the plane of the stereogram).
(b) Point group 4 (axis normal to the plane of the stereogram). In (a), the point @ is rotated through 180° to O: (1) and
(2). In (b), the point @ is rotated through 90° and then inverted through the origin to O; this combined operation
generates, in all, four symmetry-equivalent points: (1) — (4) — (3) — (2)

a b
@
¢ tilon
(4)
*om

Fig. 1.25 (a) Stereograms from Fig. 1.24 in the revised notation: the different natures of points (2) in (a) and (2) and
(4) in (b), all with respect to point (1), are now clear
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occurs with R (including m) symmetry operations. For example, referring to Fig. 1.24, the element
2 lying in the plane of projection and the element 4 normal to the plane of projection, when acting on a
point derived from the upper hemisphere (symbol @), both move the point into the lower hemisphere
region (symbol O). Both operations involve a reversal of the sign of the vertical coordinate, but only 4
involves also a change of hand, and this distinction is not clear from the conventional stereogram
notation. Consequently, we shall adopt a symbolism, shown in Fig. 1.25, that is common to three-
dimensional space groups, and which will affect the necessary distinction.

With the modified notation, a representative point in the upper, /-positive hemisphere will now be
shown by O*, signifying, for example, the face (/kl), or its pole. A change of hemisphere to (hkl) will
be indicated by O, and a change-of-hand on reflection or inversion by ®+ or ®— Fig. 1.25. This
notation may appear to nullify partially the purpose of a stereogram. However, although the
stereogram is a two-dimensional diagram, it is helpful here to convey a three-dimensional impression
clearly, and this notation is used as an aid to this end.

Figure 1.26a shows a stereogram for point group m. The inverse diad (2) is lying normal to the m
plane. A consideration of the two operations in the given relative orientations shows that they produce
equivalent actions. It is conventional to use the symbol m for this operation, although sometimes it is
helpful to employ the symbol 2 instead; potassium tetrathionate, Fig. 1.26b, crystallizes in point group .
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Fig. 1.26 Point group m. (a) Stereogram showing equivalence of m and 2 (the graphic symbol (| used here for 2 is
useful, albeit not conventional). (b) Crystal of potassium tetrathionate (K,S,Og), point group m

We shall not be concerned here to derive the crystallographic point groups—and there are several
ways in which it can be done’—but to give, instead, a scheme which allows them to be worked
through simply and adequately for present purposes. In addition, the program EULR, Sect. 13.2,
shows how the combinations of symmetry operations based on R and R[R =1,2,3,4and 6) lead
inter alia to the 32 crystallographic point groups. The symbols for rotation and reflection symmetry in
three dimensions are similar to those already discussed; certain additional symbols are now required,
and Table 1.2 lists them all.

Crystal Classes

There are 32 crystal classes that describe the possible types of crystals that occur. Each class has a
name that corresponds to the general form on the crystal, and each class is characterized by a point
group. A crystal form is the set {/kl} of faces (hkl) related by the point group of the crystal: if it is
“general” then none of the (hkl) faces lies on symmetry elements; if it is a special form, then the faces
of the set lie on symmetry elements.

Two crystal classes were illustrated in Fig. 1.4: the rhombic disphenoid class (a) belongs to the
orthorhombic system (to be discussed next) and shows point group 222; it has four similar scalene
triangle faces and can exist in enantiomorphic forms. An example is Mozartite, CaMn(SiO,4)(OH), which
was first noted in 1991, the 200th anniversary of the death of Mozart. Another, less exotic, example is
Epsomite, MgSO,4-7H,0. The hexakisoctohedron (cl. Gk. hexakis—six times; aka hexoctahedron) of
class (b) belongs to the cubic system with point group m3m and is exhibited by some specimens of native
silver; each face is a regular octahedron sub-divided into six equal triangular faces.

Crystal Systems and Point-Group Scheme

Crystals are grouped into seven systems according to the characteristic symmetry listed in Table 1.3.
The characteristic symmetry refers to that minimum necessary for classification of a crystal in a given
system; a crystal of a given system may contain more than its characteristic symmetry.

3 See Bibliography (Ladd 1989).
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Fig. 1.27 Sections of three-dimensional figures and the rotational symmetries of their smallest structural units; (a—d)
Space-filling patterns. In (e) and (f) the v-marks represent voids in the pattern (see also Problem 1.10a)

Table 1.2 Three-dimensional symmetry symbols

Symbol

BRI =N R W N =

(o))

m

Name

Monad

Diad

Triad

Tetrad

Hexad

Inverse monad
Inverse triad
Inverse tetrad
Inverse hexad

Mirror planeh

Action for indistinguishability

360° (0°) rotation; identity
180° rotation

120° rotation

90° rotation

60° rotation

Inversion®

120° rotation + inversion
90° rotation + inversion
60° rotation + inversion

Reflection across plane

Graphic symbol
None

§ | projection, ‘ Il projection
A | or inclined to projection
. | projection, [l || projection

@ | projection
o]

A | orinclined to projection
@ | projection, [ || projection

Q) | projection
== L projection, { || projection

“R is equivalent to R plus 1 only where R is an odd number: 1 represents the center of symmetry, but 2, 4, and 6 are not
centrosymmetric point groups. For R even, R + 1 =R /m ~
"The symmetry elements m and 2 produce an equivalent operation, with 2 oriented perpendicularly to the mirror plane
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Table 1.3 Crystal systems and their characteristics

Characteristic symmetry axes, Parametral plane intercepts and interaxial angles,
System with their orientation assuming the simplest indexing of faces™®
Triclinic None a@bQc,a@p gy 90°, 120°
Monoclinic One 2 or 2 axis® along y a@b@co=1y=90%p¢90° 120°
Orthorhombic Three mutually perpendicular a¢bQcia=p=y=90°

2 or 2 axes along x, y, and z
Tetragonal One 4 or 4 axis along z a=bQcia=p=y=090°
Trigonal® One 3 axis along z a=b@c,a=L=090%7y=120°
Hexagonal One 6 or 6 axis along z
Cubic Four 3 axes inclined at 54.74° a=b=ca==y=90°

(cos~'1/+/3) to x, y, and z

*We shall see in Chap. 2 that the same relationships apply to conventional unit cells in lattices
The special symbol ¢ should be read as “not constrained by symmetry to equal”

“It must be remembered that 2 is equivalent to an m plane normal to the 2 axis

9For convenience, the trigonal system is referred to hexagonal axes (but see also Table 1.5)

Table 1.4 Crystallographic point-group scheme?®

Type Triclinic Monoclinic Trigonal Tetragonal Hexagonal Cubic®
R 1 2 3 4 6 23
R 1 m 3 4 6 m3
R + center — 2/m — 4/m 6/m —
Orthorhombic
R2 222 32 422 622 432
Rm mm?2 3m 4mm 6mm ~
Rm — 3m 42m 6m2 43m
R2 + center mmm — 4 6 -
—mm —mm m3m
m m

“The reader should consider the implications of the spaces (marked —) in this table ~ ~
®The cubic system is characterized by its four threefold axes; R refers here to the element 2, 2, 4 or 4, but 3 is always
present along (111)

A crystallographic point-group scheme is given in Table 1.4, under the seven crystal systems as
headings. The main difficulty in understanding point groups lies not so much in knowing the action of the
individual symmetry elements, but in appreciating both the relative orientation of the different elements
in a point-group symbol and the fact that this orientation changes among the crystal systems according to
the principal symmetry axis, that is, the rotation axis R of highest degree. These orientations need to be
learned: they form the key to point-group and space-group studies.

Table 1.5 lists the meanings of the three positions in the three-dimensional point-group symbols.
Tables 1.4 and 1.5 should be studied carefully in conjunction with Fig. 1.32. For example,
consider carefully point groups 222 and 422, and note how and why the orientations repre-
sented by the three positions in the symbol change their meanings. In 222, the three symmetry
axes are along x, y, and z, respectively. In 422, 4 is taken along z, by convention; the first
symbol 2 (second position in the symbol) represents both the x and y directions, because they
are equivalent under fourfold symmetry. This combination of 4 and 2 introduces symmetry
along [110] and [110], so that the second symbol 2 represents this symmetry. Similar situations
exist among other point groups where the principal symmetry axis is of degree greater than 2.

The reader should not be discouraged by the wealth of convention which surrounds this part of the
subject. It arises for two main reasons. First, there are many different, equally correct ways of
describing crystal geometry. For example, the unique axis in the monoclinic system could be chosen
as x or z instead of y, or along some arbitrary direction. Secondly, a strict system of notation is
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Table 1.5 Three-dimensional point groups and Hermann—Mauguin notation

Symbol meaning for each position

System Point groups®  First position  Second position Third position
Triclinic 1,1 All directions — -
in crystal
’ —
Monoclinic® 2,m, — 2 and/or 2 — —
m along y
Orthorhombic 222, mm?2, 2 and/or 2 2 and/or 2 along y 2 and/or 2 along z
mmm along x
_ 4 _
Tetragonal 4,4, — 4 and/or 4 - —
m along z
422, 4mm, 4 and/or 4 2 and/or 2 along x, y 2 and/or 2 at 45° to x, y and in xy
_ 4 .
Bom. X mm along z plane, i.e., along (110)
m
Cubic® 23, m3 2 and/or 2 3 and/or 3 at 54°44'% to x, v, z, —
_ along x, y, z i.e., along (111) B
432, 43m, 4 and/or 4 3 and/or 3 at 54°44'4 to X,y,z, 2and/or2 at45°toux,y,z, i.e., along
m3m along x,y,z  i.e., along (111) (110)
_ 6 _
Hexagonal 6,6, — 6 and/or 6 - -
m along z
622, 6mm, 6 and/or 6 2 and/or 2 along x, y, u 2 and/or 2 perpendicular to x, y, u
6m2. 2 mm along z and in xy plane
Trigonal® 3,3 3 and/or 3 - -
~ alongz ~
32, 3m, 3m 3 and/or 3 2 and/or 2 along x, y, u -
along z

aR/m occupies a single position in a point-group symbol because only one direction is involved

®In the monoclinic system, the y axis is taken as the unique 2 or 2 axis. Since 2 = m, then if 2 is along y, the m plane
represented by the same position in the point-group symbol is perpendicular to y. The latter comment applies mutatis
mutandis in other crystal systems (it is best to specify the orientation of a plane by that of its normal)

“Earlier notation uses m3 and m3m for m3 and m3m, respectively

dActually cos!(1/v/3)

°For convenience; the trigonal system is referred to hexagonal axes; on the axes of a thombohedral unit cell (g.v.), the
orientations of the first and second positions of the symbol are [111] and (110), respectively

desirable for the purposes of concise and unambiguous communication of crystallographic material.
With familiarity, the conventions cease to be a problem.

We now consider two point groups in a little more detail in order to elaborate some of the topics
discussed so far.

Point Group mm?2

Once we fix the orientations of two of the symmetry elements in this point group, the third is
introduced in a unique orientation. Referring to Fig. 1.28, we start with mm (m_Lx and m_Ly) as
shown by the thick lines. Point (1), in a general position, is reflected across the m plane perpendicular
to the x axis (m,) to give point (2). This point is now reflected across the second m plane (m,) to (3).
Then either (3) across m, or (1) across m, produces (4). It is evident now that the points in each of the
pairs (1), (3) and (2), (4) are related by the twofold rotation axis along z, which is, here, the line of
intersection of the two m planes.

Point Group 4mm
If we start with the fourfold axis along z and m perpendicular to x, we see straightaway that another 72 plane
(perpendicular to y) is required, Fig. 1.29a, b; the fourfold axis acts on all other symmetry elements in the
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Fig. 1.28 Stereogram, symmetry elements, and general form for point group mm?2

crystal as well as on crystal faces. A general point operated on by the symmetry 4m produces eight points in
all, Fig. 1.29c. The stereogram shows that a second form of (vertical) m planes, lying at 45° to the first set is
introduced, Fig. 1.29d. More concisely, we may say that the normals to the two forms of m planes lie at 45°
to one another. No further points are introduced by the second set of m planes: a fourfold rotation
(1) — (2), followed by reflection across the mirror plane normal to the x axis, (2) — (3), is equivalent
to reflection of the original point across a mirror at45° tox, (1) — (3). The reader should now refer again to
Table 1.5 for the relationship between the positions of the symmetry elements and the point-group
symbols, particularly for the tetragonal and orthorhombic systems, from which these detailed examples
have been drawn.

In this discussion, we have used a general form {hkl} to illustrate the point group, and each
symmetry-equivalent point lies in a general position, point-group symmetry 1, on the stereogram of
the group. The crystal planes that coincide with symmetry planes or symmetry axes are special forms,
and their poles lie on symmetry elements: the forms {110} and {010} in 4mm are examples of special
forms. The need for the general form in a correct description of a point group is illustrated by Fig. 1.30.
The poles of the faces on each of the two stereograms shown are identical, although they may be derived

= 4
from crystals in different classes, 42m and 4mm in this example (and also in — mm).
m

Figure 1.31 shows crystals of these two classes with the {110} form, among others, developed.
In Fig. 1.31b, the presence of only special forms led originally to an incorrect deduction of the point
group of this crystal.

The stereograms for the 32 crystallographic point groups are shown in Fig. 1.32. The conventional
crystallographic axes are drawn once for each system. Two comments on the notation are necessary at
this stage.

The symbol — @ + indicates two points, O" and ®—, immediately below it and related by a mirror
plane in the plane of projection. In the cubic crystal system, the four points related by a fourfold
lying axis in the plane of the stereogram lie on a stereographic small circle, which is a circle on the
surface of the sphere that does not pass through the center of the sphere, Fig. 1.33. In general, two of
the points are projected from the upper hemisphere and the other two points from the lower
hemisphere. We can distinguish them readily by remembering that 2 is a subgroup (q.v.) of both
4 and 4.

The use of the program SYMM for assisting with point-group recognition is described in Sect. 13.3,
and the reader may wish to refer forward at this stage. Appendix B discusses the Schonflies symmetry
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Fig. 1.29 Intersecting
symmetry elements.

(a) One m plane
intersecting the fourfold
axis is inconsistent.

(b) Consistent group of
symmetry elements.

(¢) General form of
points generated by 4m.
(d) Complete stereogram,
point group 4mm

o

y axis

X dxis

\_/

O+ ‘ +0O

O+ +0O

Fig. 1.30 The {110} form

in tetragonal point groups. 110
(a) Point group 42m.
(b) Point group 4mm

110

notation for point groups. Because this notation is also in use in certain contexts, we have written the
equivalent Schonflies symbols in Fig. 1.32, in parentheses, after the Hermann—Mauguin symbols.

Subgroups, Laue Groups, Centrosymmetric Groups, and Projection Symmetry

Subgroups

A subgroup of a given point group is a point group of lower symmetry than the given
group, contained within it and capable of separate existence as a point group. For example, 32 is

- _ 6 _ 4 _ 4 _
a subgroup of 3m, 622, 6m2, —mm, 432 and m3m, whereas 4 is a subgroup of —, 42m, —mm, 43m,
m m m

and m3m. The subgroup principle provides a rationale for some of the graphic symbols
for symmetry elements. Thus, 4 is shown by a square (fourfold rotation), unshaded (to distinguish
it from 4), and with a twofold rotation symbol inscribed (2 is a subgroup of 4).
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Fig. 1.31 Tetragonal a .
crystals showing, among ’ 2 axis b ‘ Z axis
others, the {110} form. (a) I :
Copper pyrites, point group |
42m. (b) Iodosuccinimide, :\
apparent point group 4mm; P \ \ \\
X-ray photographs I ‘Y)~ A -1 =
revealed that the true point | =-F-pr-=
group is 4 N —'r"{ T
-— [
! [
110 :)110 y axis
—..—:"—-T-T— — - g
. R
y axis xjaxis 1
- 1
|

Laue Groups

Point group 1 and point groups that have 1 as a subgroup are centrosymmetric. We shall see later that
X-ray diffraction patterns are, in the absence of significant anomalous dispersion (q.v.), effectively
centrosymmetric, so that the arrangement of spots on the X-ray diffraction photograph of a crystal can
exhibit only the symmetry that would be found from a crystal having the corresponding centrosym-
metric point group. In the case of a crystal belonging to a non-centrosymmetric point group, the
corresponding centrosymmetric point group is simply the given group combined with a center of
symmetry.

There are 11 such point groups; they are called Laue groups,® since symmetry is often investigated
by the Laue X-ray method, Sect. 5.4.1ff. In Table 1.6, the point groups are classified according to their
Laue group, and the symmetry of the Laue flat-plate film photograph is given for directions of the
X-ray beam normal to the crystallographic forms listed.

Laue-Projection Symmetry
The Laue-projection symmetry corresponds to one of the ten two-dimensional points groups. What is
the Laue-projection symmetry on {110} for a crystal of point group 4mm? This question can be

. . 4 .
answered with the stereogram of the corresponding Laue group, — mm. Reference to the appropriate
m

diagram in Fig. 1.32 shows that an X-ray beam traveling normal to {110} encounters 2mm symmetry.
The entries in Table 1.6 can be deduced in this way. The reader should refer again to Table 1.5 and
compare corresponding entries between Tables 1.5 and 1.6

6 Strictly, the term Laue group should be Laue class, but the former is in general use.
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TRICLINIC _
Laue group 1

+ O+

“
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(C,) mma2 (Cy,) 4(Sa)

|
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O+

+O | O+
1(C) 2/m (Czh) mmm (Dlh) A/m (C‘h)
MONOCLINIC ORTHORHOMBIC TETRAGONAL TETRAGONAL
Laue group 2/m Laue group mmm Laue group 4/m Laue group 4mm

o

4.(Cy) 422 (D,)

2.(Cy) 222 (D))

Fig. 1.32 Stereograms showing both the symmetry elements and the general form {4/} in the 32 crystallographic
point groups. The arrangement is by system and common Laue group. The crystallographic axes are named once for
each system and the z axis is chosen normal to the stereogram. The Schonflies symbols are given in parentheses

Point-Group Projection Symmetry
Point-group projection symmetry is the symmetry of the projection of the general form of a point
group on to a plane. Thus, the point-group projection symmetry of 4mm on {110} is m.

Non-crystallographic Point Groups
There are species that exhibit symmetries other than those of the crystallographic point groups.
Indeed, R could, in principle, take any integer value between one and infinity. The statement R = oo
implies cylindrical symmetry; the molecule of carbon monoxide has an oo axis along the C—O bond,
if we assume spherical atoms.

A fivefold symmetry axis is present in uranium heptafluoride, Fig. 1.34, and the point-group

— 5
symbol may be written as 10m2, or —m. The stereogram of this point group is shown in Fig. 1.35;
m

5
the graphic symbol used here for — is not standard.
m

Other examples of non-crystallographic point groups will be encountered among chemical
molecules, and a stereogram can always be used to represent the point-group symmetry. In every
such example, however, the substance crystallizing in one of the seven crystal systems will normally
belong to one of the 32 crystal classes.
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HEXAGONAL
Laue group 6/m Laue group 'gmm
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622 (D)

D
,-g’"’" (Dgp)
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6mm (Cg,) 36
£mm (0,,) 6/m(Cg,) 8m2 (Dy)) 3(Sg)

Fig. 1.32 (continued)

1.4.3 Quasicrystals, Buckyballs, and Icosahedral Symmetry

Quasicrystals
Our main task in this chapter has been the description of classical crystallography, in which a crystal is
defined as an ideally infinite three-dimensional periodic arrangement of atoms, the periodicities being
denoted by the directions of three crystallographic reference axes. Thus, we obtain a crystal structure,
with building blocks of atoms (unit cells, g.v.) aligned so as to fill space. Most crystal structures can be
described in terms of one of the 230 space groups (q.v.), which show the different types of symmetry
elements present in the structures.

Until the year 1982, no scientist anywhere would believe in crystals with rotational symmetry
degrees other than 1, 2, 3, 4, and 6, as we have discussed earlier: crystals had only these symmetries and
were periodic in three dimensions. In that year, however, Professor Daniel Shechtman’ was

"Nobel Laureate in Chemistry, 2011.
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TRIGONAL cusIC B
Laue group 3m Laue group m3

3m(C,) m3 (T,)

Fig. 1.32 (continued)

experimenting with an alloy containing aluminum and manganese, AlgMn; he was concerned about the
appearance of certain areas of the metal surface, Fig. 1.36a, and took a transmission electron micros-
copy (TEM) photograph of that region of the surface. He observed diffraction spots in patterns of ten
extending over the area of reciprocal space (q.v.) recorded, Fig. 1.36b, and he spent the next 2 years
investigating an effect that he found hard to believe. Attempts to explain the results by a process
of crystal twinning were unsuccessful, and after more experimentation he was forced to the conclusion
of having discovered fivefold symmetry in a crystalline material. The crystal structure is aperiodic: it



X axis

y axis

X axis

small circle

Fig. 1.33 Stereogram notation for points related by a fourfold axis (y) lying in the plane of a stereogram. The =+ signs
refer to the z direction. (a) Vertical section normal to the y axis. (b) Corresponding stereogram; the pairs of points
(1)-(2) and (3)—(4) are related by twofold symmetry (subgroup of 4)

Table 1.6 Laue groups and Laue-projection symmetry

System
Triclinic
Monoclinic

Orthorhombic

Tetragonal

Trigonal®

Hexagonal

Cubic

Point groups

1,1
2, m, 2/m
222, mm2, mmm

4,4 and 4/m
422 4mm, }

- 4
42m,—mm
m

33
32, 3m, 3m

6,6,6/m
622, 6mm, }

. 6
6m2, —mm
m

23, m3
432, 43m, m3m

*Referred to hexagonal axes

Laue group

1
2/m
mmm

4/m

m3
m3m

O

Laue-projection symmetry normal to the given form

{100}
1

m
2mm
{001}

4mm

{0001}

6mm

{100}
2mm
4mm

Fig. 1.34 Stereoview of the molecule of uranium heptafluoride, UF;

{010}
1

2
2mm
{100}
m

2mm

{1010}
1
m

m

2mm

{111}

3m

{010}
1

m
2mm
{110}
m

2mm

{1120}
1
2

m

2mm

{110}

2mm



Fig. 1.35 Stereogram of the non-crystallographic point group 10m2 (Ds;,) showing the general form (20 poles), and a
special form of 5 poles lying on the m planes that can be used to represent the five F atoms in one plane in UF;. The
poles for the remaining two F atoms lie at these center of the stereogram, on the 10 axis

Fig. 1.36 Transmission electron microscopy (TEM) on an AlgMn alloy. (a) Surface of the AlsMn alloy, with irregularities
inviting further examination. (b) Copy of Original TEM photograph of the alloy surface taken by Professor Shechtman,
showing a tenfold spot pattern indicative of a crystalline nature, but without the periodicity of classical crystals (reproduced
by courtesy of Professor Shechtman)
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Fig. 1.37 Simulated Laue photograph of an icosahedral quasicrystal with the X-ray beam along a fivefold axis
(reproduced by courtesy of Dr. Steffen Weber)

is space-filling, but with none of the three-dimensional periodicity that characterizes normal crystals.
His first paper on these findings was rejected, but a detailed account was published in 1984 [27].

This alloy structure is denoted a quasicrystal: it has icosahedral symmetry, point group 532;
Fig. 1.37 is a simulated Laue pattern for X-ray diffraction from an icosahedral crystal, with the X-ray
beam along a fivefold axis.

Subsequently, many stable and metastable quasicrystals have been discovered, frequently as binary or
ternary intermetallic compounds containing aluminum as one of the constituents. Icosahedral quasicrys-
tals form one group of quasicrystals and polygonal quasicrystals, two-dimensional quasicrystals with
8-fold (Mn—Fe—Al), 10-fold (Al-Cu—Ni), or 12-fold (Al-Mn-Si) symmetry yet another. The former
group is manifested in the occurrence of sharp diffraction spots and the latter by the presence of a non-
crystallographic rotational symmetry. Figure 1.38 is an example of a simulated zero-layer X-ray
precession photograph (q.v.) from a polygonal crystal showing 12-fold symmetry (decagonal symmetry)
[28]. Two-dimensional quasicrystals symmetry have been reported for rapidly cooled samples
corresponding to the compositions V3Ni, and VsNi;(Si: TEM studies showed that they exhibit
12-fold rotational symmetry but no long-range periodicity [29].

Two-dimensional quasiperiodical structures have been said to occur in medieval mosques and other
decorative tilings. Penrose [30] demonstrated the covering of plane space in a non-periodic manner by
using two differently shaped units, or tiles, and Fig. 1.39 is an example of a Penrose tiling which shows
two superimposed layers of fivefold symmetry. This tiling was extended to three dimensions and,
subsequently, a similarity was discovered between Penrose three-dimensional tiling and icosahedral
quasicrystals. Mackay has shown experimentally [31] that the diffraction pattern from a Penrose plane
tiling has a two-dimensional Fourier transform consisting of sharp J-peaks arranged in a fivefold
symmetry pattern.

In 2009, naturally occurring quasicrystals were found in Russia [32]; in composition they were
Cu-Al—Zn minerals with varying amounts of iron, including an Alg;Cu,4Fe 3 phase; the quasicrystal
grains were stated to be of high crystalline quality [33].

Mathematically, the structures of quasicrystals are derivable by a general method that treats them
as projections of lattices of higher dimensions. The icosahedral quasicrystals found by Shechtman
were shown to be projections from a six-dimensional hypercubic lattice [34]. Whereas three integer
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Fig. 1.38 Simulated zero-layer X-ray precession photograph of a polygonal crystal showing tenfold (decagonal)
symmetry (reproduced by courtesy of Dr. Steffen Weber)

Fig. 1.39 Example of a Penrose tiling [30] that uses just two shapes of tile (reproduced by courtesy of Jeff Preshing)

values, the Miller indices, are sufficient to label reflections in normal crystals, five linearly indepen-
dent vectors are needed for polygonal quasicrystals and six for icosahedral quasicrystals.

As a result of the findings on polygonal crystals and quasicrystals, the International Union of
Crystallography revised the definition of “crystal” as given in Sect. 1.2 to a material capable of
producing a clear-cut diffraction pattern, with ordering that is either periodic or aperiodic. The
concept of an aperiodic crystal was introduced by Schrodinger [35]. He sought to explain how
hereditary information is stored: molecules were deemed too small, amorphous solids were plainly
chaotic, so it had to be a kind of crystal; and as a periodic structure could not encode information, it
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Fig. 1.40 Example of a geodesic dome (reproduced by courtesy of Lotus Domes UK)

had to be aperiodic. Later, DNA was discovered and, although not crystalline, it possesses proper-
ties predicted by Schrodinger—a regular but aperiodic molecule [36]. In this book, however, the
word ‘crystal’ is used in its traditional sense unless otherwise noted.

Buckyballs and Icosahedral Symmetry

The discovery of a new form of a chemical element is a very rare event, but this occurred with the
finding of a new allotropic form of carbon. Mass spectrometric examination of the products of a high-
energy laser interaction with graphite in a helium atmosphere contained fragments with varying
numbers of carbon atoms, their distribution depending upon the pressure of helium [37]. A very stable
carbon atom cluster was found to be Cgq. Stability arises because a sheet of carbon atoms formed a
ball, thereby satisfying fully the valence requirements of carbon.

This situation was met by a structural formation similar to that of a geodesic dome, Fig. 1.40, but
with interlocking pentagons and hexagons, and completed to a full sphere, Fig. 1.41. The Cgg
structure was named buckminsterfullerene [37], after Richard Buckminster Fuller, an American
engineer, who described the geodesic dome in detail. The geodesic dome was actually invented in
1922 by Walther Bauersfeld of the Zeiss optical company: it is a spherical or near-spherical lattice-
type surface formed by a network of great circles, or geodesics, on a sphere. The geodesics intersect to
form a rigid, stress-free triangular structure. Buckminster Fuller developed the mathematics of the
dome and popularized it.

For simplicity, near-spherical fullerenes are termed buckyballs, the simplest stable structure being
buckminsterfullerene [37], Cgo. This buckyball structure has 32 faces: 20 hexagons and 12 pentagons,
Fig. 1.41. Molecules that consist entirely of carbon atoms in the form of hollow spheres, ellipsoids,
and tubes are known as fullerenes. Buckyballs and buckytubes are topics of intense research both in
pure chemistry, in which fullerenes are manipulated to form compounds, and in technological
applications, such as carbon nanotubes.

The Cg fullerene exhibits icosahedral symmetry. As icosahedral symmetry is not compatible with
translational symmetry, there are no associated crystallographic space groups. Nevertheless, icosa-
hedral symmetry can be classified conveniently under the Schonflies point group system:
full icosahedral symmetry [, comprises the following symmetry elements: E (identity), Cs, Cs, C»,
i (center of symmetry), Sy, S¢, 0. Thus, the order of the group, the total number of its symmetry
elements, is 120. Figure 1.42 illustrates icosahedral symmetry; the similarity to Cg is clear in (b).
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Fig. 1.41 Molecular structure of buckminsterfullerene, a C¢o buckyball. There are two different bond lengths: 1.458 A
for the bonds fusing 5- and 6-membered rings and 1.401 A for bonds fusing the 6-membered rings [38] (Harrison P,
McCaw C (2011) Educ Chem 48:113. Reproduced by permission of The Royal Society of Chemistry)

b

Fig. 1.42 Icosahedra. (a) Regular icosahedron of vertex figure 3.3.3.3.3: the vertex figure means that five triangles
meet at a vertex. (b) Truncated icosahedron of vertex figure 5.6.6: one pentagon and two hexagons meet at a vertex. The
symmetry is /,, in each case

The icosahedral group of lower symmetry I has the elements E, Cs, C3, and C»; it is of interest in some
biological fields as it can represent a chiral structure.

1.5 Problems

1.1. The line AC, Fig. P1.1, may be indexed as (12) with respect to the rectangular two-dimensional
axes x and y. What are the indices of the same line with respect to the axes x’ and y, where the
angle X' Oy = 120°? PQ is the parametral line for both sets of axes, and OB/OA = 2.

1.2. Write the Miller indices for planes that make the intercepts given below:

(a) a/2, —=b/2, ||c.
(b) 2a, b/3, c/2.
©) lla, ||b, —c.



40 1 Crystal Morphology and Crystal Symmetry

0o c ) /Q y axis
| / 7
P |
p _ |
i !
e |
- |
A
P~
x' axis .
X axis

Fig. P1.1 Line referred to rectangular and oblique axes
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Fig. P1.2 Matchbox: (a) normal; (b) squashed

(d) a, —b, 3c/A.
e) |la, —b/4, c/3.
(f) —a/4, b2, —c/3.
1.3. Evaluate zone symbols for the pairs of planes given below:
(a) (123), (011).
(b) (203), (111).
(c) (415), (110).
(d) (112), (001).

1.4. What are the Miller indices of the plane that lies in both of the zones [123] and [111]? Why are there,
apparently, two answers to this problem and to each part of Problem 1.3?

1.5. How many different, unique point groups can be obtained from the symbol 422 by replacing one
or more of the rotation axes by roto-inversion axes of the same degree. Write the standard
symbols for the unique point groups so derived.

1.6. Take the cover of a matchbox, Fig. P1.2a.

(a) Ignore the label, and write down its point group.
(b) Squash it diagonally, Fig. P1.2b. What is the point group now?
(c) In each case, what is the point group if the label is not ignored?

1.7. Draw stereograms to show the general form in each of the point groups deduced in Problems 1.6a
and b. Satisfy yourself that in 1.6a three, and in 1.6b two, symmetry operations carried out in
sequence produce a resultant action that is equivalent to another operation in the group.

1.8. How many planes are there in the forms {010}, {110}, and {113} in each of the point groups 2/
m, 42m, and m3?
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Fig. P1.3 Vijentor seal of approval at Valmara, JW

1.9. What symmetry would be revealed by the Laue flat-film photographs where the X-ray beam is
normal to a plane in the form given in each of the examples below?

(a)
(b)
(©
(d)
(e)
®
(®
(h)
(i
)

In some examples, it may help to draw stereograms.

Point group
1
mm2
m
422
3

3m

6
6m2
23
432

Orientation
{100}
{011}
{010}
{120}
{1010}
{1120}
{0001}
{0001}
{111}
{110}

1.10. (a) What is the non-trivial symmetry of the figure obtained by packing a number of equivalent
but irregular quadrilaterals in one plane?
(b) What is the symmetry of the Dobermann in Fig. P1.3? This example illustrates how one can

study symmetry by means of everyday objects.

(c) What is the point group of each of the objects in Fig. P1.4a—e, assuming that they all have

depth, normal to the plane of the diagram?

1.11. Write the point-group symbol for the species (a) to (v) of molecule or ion in Fig. P1.5, in both the
Hermann—Mauguin and Schénflies notations. Use the program SYMM™ with this question for
species (a) to (j) and allocate model numbers as follow:

(a) 90 (b) 49 (c) 3 (d) 18 (e) 42 (f) 91 (g) 30 (h) 16 (i) 65 (j) 71.
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Fig. P1.4 Six symmetrical objects. (a) Dumbbell. (b) Isle of Man style emblem (reproduced by courtesy of Mapsof-
World.com). (¢) Maltese cross. (d) Flower pattern (reproduced by courtesy of Emeritus Professor John Huffman).
(e) Star of David

1.12. What is the point-group projection symmetry for each of the examples in Problem 1.9?

1.13. What are the two-dimensional “Miller Indices” (4k) of the lines that form the perimeter of a
rectangle? Are they the same for a parallelogram? (Choose appropriate x and y axes with the
origin at the center of the figure.)

1.14. Show from Fig. P1.6 that with Miller—Bravais axes i = —(h + k).

1.15. Twelve 1 Q resistors are linked to form the edges of a cube, Fig. P1.7. Use the cubic symmetry
to determine the effective resistance of the assembly of resistors to a current that is developed
by connecting a battery across the ends of a threefold axis.
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Fig. P1.5 (a) Carbonate ion; planar. (b) Tetrabromogold(Il) ion; planar. (¢) Hexachloroplatinum(IV) ion; all
Cl-Pt—Cl angles are 90°. (d) Methane all H-C-H angles are 109.47°. (e) Trichloromethane; pyramidal.
(f) Bromochlorofluoromethane. (g) Benzene; planar. (h) Monochlorobenzene; planar. (i) 1,4-Dichlorobenzene; planar.
(j) 1,2-Bromochlorobenzene; planar. (k) Hydrogen peroxide. (I) Orhophosphoric acid. (m) Dibenzyl.
(n) Hexanitronickelate(II) ion. (o) Dihydrogen phosphate ion; the hydrogen atoms are arranged statistically on
the four positions shown. (p) 1,2,4,-Trichlorobenzene; planar. (q) 2,4,6-Triazidotriazine; planar. (r) trans-1,2-Dichlo-
roethane; planar. (s) Cycloocta-1,5-diene. (t) Tetranitrodiamminocobaltate(III) ion. (u) Pentafluoroantimonate(III) ion.

(v) Thorium tetrabromide
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Fig. P1.5 (continued)
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Fig. P1.5 (continued)



1.5 Problems

Y K o

Fig. P1.5 (continued)

e
s
]
5

47



o
i
A
{

Fig. P1.5 (continued)

1 Crystal Morphology and Crystal Symmetry

o o



References and Bibliography 49

Fig. P1.6 Equivalence of i
and —(h + k) with
Miller-Bravais axes

Fig. P1.7 The cube shown
consists of twelve 1 Q
resistors; the current /
follows a path from A to G
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2.1 Introduction

We continue our study of crystals by investigating the internal arrangements of crystalline materials.
Crystals are characterized by periodicities in three dimensions.' An atomic grouping, or pattern motif
which, itself, may or may not be symmetrical, is repeated again and again by a symmetry mechanism,
namely the space group of the crystal. There are 230 space groups, and each crystal substance belongs
to one or other of them. In its simplest form, a space group may be derived from the repetition of a
pattern motif by the translations of a lattice, as discussed below. It can be developed further by
incorporating additional symmetry elements, as demonstrated through the following text and Problem
2.1. We now enlarge on these ideas, starting with an examination of lattices.

2.2 Lattices

Every crystal has a lattice as its geometrical basis. A lattice may be described as a regular, infinite
arrangement of points in space in which every point has exactly the same environment as any other
point. This description is applicable, equally, in one-, two-, or three-dimensional space.

Lattice geometry in three-dimensional space is described in relation to three noncoplanar basic
repeat (translation) vectors a, b, and ¢. Any lattice point may be chosen as an origin, whence a vector
r to any other lattice point is given by

r=Ua+Vb+ Wc 2.1

where U, V, and W are positive or negative integers or zero, and represent the coordinates of the given
lattice point. The direction (directed line) joining the origin to the points U, V, W; 2U, 2V, 2W; .. ;
nU, nV, nW defines the row [UVW]. A set of such rows, or directions, related by the symmetry
constitutes a form of directions (UVW); compare with zone symbols, Sect. 1.2.5. The magnitude  can
be evaluated by (2.16) mutatis mutandis.”

' We shall not be concerned here with the aperiodic crystalline materials discussed in Sect. 1.4.3.
2“The necessary changes having been made.”

M. Ladd and R. Palmer, Structure Determination by X-ray Crystallography: 51
Analysis by X-rays and Neutrons, DOI 10.1007/978-1-4614-3954-7_2,
© Springer Science+Business Media New York 2013
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- y axis

/x axis

Fig. 2.1 Formation of a net. (a) Row (a one-dimensional lattice) of equally spaced points. (b) Regular stack of rows
forming a net

We consider first lattices in two dimensions; the three-dimensional lattices then become an
extension of the principles that evolve, rather like the symmetry operations discussed in the previous
chapter.

2.2.1 Two-Dimensional Lattices

A two-dimensional lattice is called a net; it may be imagined as being formed by aligning, in a regular
manner, one-dimensional rows of equally spaced points, Fig. 2.1a. The net (lattice) is the array of
points; the connecting lines are a convenience, drawn to aid our appreciation of the lattice geometry.

Since nets exhibit symmetry, they can be allocated to the two-dimensional systems, Sect. 1.4.1,
Table 1.1. The most general net is shown in Fig. 2.1b. A sufficient and representative portion of the
lattice is the unit cell, outlined by the vectors a and b; an infinite number of such unit cells stacked
side by side builds up the net.

The net under consideration exhibits twofold rotational symmetry about each lattice point; conse-
quently, it is placed in the oblique system. The chosen unit cell is primitive, symbol p, which implies that
one lattice point is associated with the area of the unit cell: each point is shared equally by four adjacent
unit cells. In the oblique unit cell, @ @ b, and y € 90 or 120°; angles of 90 or 120° in a lattice imply
symmetry higher than 2.

Consider next the stacking of unit cells in which a ¢ b but y = 90°, Fig. 2.2. The symmetry at
every point is 2mm, and this net belongs to the rectangular system. The net in Fig. 2.3 may be
described by a unit cell in which ' = b’ and 7' € 90 or 120°. It may seem at first that such a net is
oblique, but careful inspection shows that each point has 2mm symmetry, and so this net, too, is
allocated to the rectangular system.

In order to display this fact clearly, a centered (symbol ¢) unit cell is chosen, shown in Fig. 2.3 by
the vectors a and b. This cell has two lattice points per unit-cell area. It is left as an exercise to the
reader to show that a centered, oblique unit cell does not represent a net with a fundamentally
different arrangement of points from that in Fig. 2.1b.

3The symbol ¢ should be read as “not constrained by symmetry to equal.”
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Fig. 2.2 Rectangular net with a p unit cell drawn in

° ° \b" °

Fig. 2.3 Rectangular net with p and ¢ unit cells drawn in; the ¢ unit cell is the standard choice for this net

2.2.2 Choice of Unit Cell

From the foregoing discussion, it will be evident that there is an infinity of ways in which a unit cell might
be chosen for a given lattice (and structure). However, we shall follow a universal crystallographic
convention in choosing a unit cell: the unit cell is the smallest repeat unit for which its delineating vectors
are parallel to, or coincide with, important symmetry directions in the lattice. Returning to Fig. 2.3, the
centered cell is preferred because a and b coincide with the symmetry () lines in the net. The primitive
unit cell (a’, b') is, of course, a possible unit cell, but it does not, in isolation, reveal the lattice symmetry
clearly. The symmetry is still there; it is invariant under choice of unit cell. The following equations show
the necessary equivalence of @’ and b':

d*=a/4+b*/4 (2.2)
W*=d*/4+b°/4 (2.3)

the value of 7" depends only on the ratio a/b.

Two other nets exist, governed by the unit-cell relationshipsa = b,y = 90° anda = b, y = 120°;
their study constitutes the Problem 1.2 at the end of this chapter. The five two-dimensional lattices are
summarized in Table 2.1. A lattice has the highest point-group symmetry of its system at each lattice
point: compare Table 2.1 with Table 1.1 and Table 2.3 with Table 1.5.
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Table 2.1 The five two-dimensional lattices

Unit-cell Symmetry at Unit-cell edges
System symbol(s) lattice points and angles
Oblique p 2 a @ b;y Z90°, 120°
Rectangular p,c 2mm a b;y=90°
Square P 4mm a=>b;y=90°
Hexagonal p 6mm a=>b;y=120°

2.2.3 Three-Dimensional Lattices

The three-dimensional lattices, or Bravais lattices, may be imagined as being developed by the regular
stacking of nets. There are 14 unique ways in which this can be done, and the corresponding Bravais
lattices are distributed, unequally, among the seven crystal systems, as shown in Fig. 2.4. Each lattice is
represented by a unit cell, outlined by three vectors a, b, and c. In accordance with convention, these
vectors are chosen so that they both form a parallelepipedon of smallest volume in the lattice and are
parallel to, or coincide with, important symmetry directions in the lattice; thus, not all conventional unit
cells are primitive. In three dimensions, we encounter unit cells centered on a pair of opposite faces,
body-centered, or centered on all faces. Table 2.2 lists the unit-cell types and their notation.

Fractional Coordinates

A fractional coordinate x is given by X/a, where X is that coordinate in absolute measure (A or nm)
and a is the unit-cell repeat distance in the same direction and in the same units. Thus, a position x at
1.45 A along a unit cell of edge of length 12.34 A corresponds to a fractional coordinate of 0.1175.

Triclinic Lattice

If oblique nets are stacked in a general and regular manner, a triclinic lattice is obtained, Fig. 2.5.
The unit cell is characterized by 1 symmetry at each lattice point, with the conditions a Z b ¢ ¢ and
o B Z v €90 or 120°. This unit cell is primitive (symbol P), which means that one lattice point is
associated with the unit-cell volume; each point is shared equally by eight adjacent unit cells in
three dimensions; refer to Fig. 2.6 for this sharing principle. There is no symmetry direction to
constrain the choice of the unit-cell vectors, and a parallelepipedon of smallest volume can always
be chosen conventionally.

Monoclinic Lattices
The monoclinic system is characterized by one diad (rotation or inversion), with the y axis (and b)
chosen along or parallel to it. The conventional unit cell is specified by the conditions a € b ¢ c,
o =7y =90°and f ¢ 90 or 120°. Figure 2.6 illustrates a stereoscopic pair of drawings of a monoclinic
lattice, showing eight P unit cells; according to convention, the f§ angle is chosen to be oblique.
Reference to Fig. 2.4 shows that there are two conventional monoclinic lattices, symbolized by the
unit-cell types P and C.
A monoclinic unit cell centered on the A faces is equivalent to that described as C; the choice of the
baxis" is governed by symmetry: a and ¢ may be interchanged, but the direction of b must then be reversed
in order to preserve right-handed axes.

*We often speak of the b axis (meaning the y axis) because our attention is usually confined to the unit cell.
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Fig. 2.4 Unit cells of the 14 Bravais lattices; interaxial angles are 90° unless indicated otherwise by a numerical value
or symbol. (1) Triclinic P. (2) Monoclinic P. (3) Monoclinic C. (4) Orthorhombic P. (5) Orthorhombic C. (6)
Orthorhombic /. (7) Orthorhombic F. (8) Tetragonal P. (9) Tetragonal /. (10) Cubic P. (11) Cubic /. (12) Cubic F.
(13) Hexagonal P. (14) Trigonal R. Note that (13) shows three P hexagonal unit cells. A hexagon of lattice points
without the central points in the basal planes shown does not lead to a lattice. Why?
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Table 2.2 Notation for conventional crystallographic unit cells

Miller indices of Fractional coordinates
centred faces in the of centered sites
Centering site(s) Symbol unit cell in the unit cell
None P - -
bc faces A (100) 0, %7%
ca faces B (010) %, 0,%
ab faces C (001) %, %7 0
Body center I - XN
All faces F (100), (010), 0,%,%
(001) %7 07%
220

y axis

Fig. 2.5 Oblique nets stacked regularly at a vector spacing ¢ to form a triclinic lattice

The centering of the B faces is illustrated in Fig. 2.7. In this situation a new unit cell, a’, b’, ¢/, can
be defined by the following equations:

a=a (2.4)
b =b 2.5)

d=a/2+¢/2 (2.6)
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Fig. 2.6 Stereoview showing eight adjacent P unit cells in a monoclinic lattice. The sharing of lattice points among the
unit cells can be seen readily by focusing attention on the central lattice point in the drawings. A similar sharing occurs
with P unit cells of lattices in all systems

Fig. 2.7 Monoclinic lattice showing that B = P; f is the angle between ¢ and a, and ' the angle between ¢’ and a’

If 8 is not very obtuse, an equivalent transformation ¢’ = — a/2 + ¢/2 can ensure that /8’ is obtuse
(by convention). Since ¢’ lies in the ac plane, o/ = 7" = 90°, but 5 Z 90 or 120°. The new monoclinic
cell is primitive; symbolically we may write B = P. Similarly, it may be shown that/ = F = C =
(A), Figs. 2.8 and 2.9.

If the C unit cell, Fig. 2.10, is reduced to primitive as shown, it no longer displays in isolation the
characteristic monoclinic symmetry clearly (see Table 2.3); neither o’ nor ’ is 90°. We may conclude
that there are two distinct monoclinic lattices, described by the unit-cell types P and C.
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Fig. 2.8 Monoclinic lattice showing that I = C

Fig. 2.9 Monoclinic lattice showing that F = C

It may be necessary to calculate the new dimensions of a transformed unit cell. Consider the
transformation B — P, (2.4)—(2.6). Clearly, @’ = a and b’ = b. Taking the scalar product® of (2.6)
with itself, we obtain

5 The scalar (dot) product of two vectors p and q is denoted by p-q, and is equal to pg cos pg, where pq represents the
angle between the (positive) directions of p and q.
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Fig. 2.10 Monoclinic lattice showing that C # P

Table 2.3 The 14 Bravais lattices and their notation

Symmetry at

System Unit cell(s)  lattice points  Axial relationships
Triclinic i 1 aC@bQc,a@ ¢y Z90° 120°
Monoclinic P,C 2/m a@bc,a=7y=90%p¢90° 120°
Orthorhombic P, C,I, F mmm a@bc,a=p=7y=90°

4 = cg=f=7y=90°
Tetragonal P, 1 2 a=bQ@c,a=pf 90

m
Cubic P, I,F m3m a=b=ca=f=y=90°

6 - co = B = 90° y = 120°
Hexagonal P 0 m a=b@ca= =907y =120
Trigonal® RorP 3m a=b=ca=p=y¢90°<120°

Capital letters are used for unit cells in three-dimensional lattices

59

°On hexagonal axes, column 4 would be the same as for the hexagonal system, but the symmetry at each lattice point

remains 3m. This table may be compared with Table 1.3

¢ -c=(a/2+¢/2) (a2 +¢/2)
Hence
? =d* /44 2 /4 + ac(cos f)/2
The new angle f’ is given by
cos ' =a’'-c/d

In order to make 8’ obtuse, it may be necessary to begin with —a/2 in (2.6).
Using (2.6) again and expanding, we obtain

cos B’ = [~a/2 + c(cos B)/2]/c" = (—a + ccos B)/(2¢")

2.7

(2.8)

(2.9)

(2.10)
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where ¢’ is given by (2.8). This type of calculation can be carried out in any crystal system, giving due
consideration to any nontrivial relationships between a, b, and ¢ and between o, f8, and y (see, for
example, Problem 2.3).

Orthorhombic Lattices
The monoclinic system was treated in some detail. It will not be necessary here to give such an
extensive discussion for either the orthorhombic system or the remaining crystal systems. Remember
always to think of the unit cell as a representative portion of its lattice and not as a finite body.
The orthorhombic system is characterized by three mutually perpendicular diad axes (rotation and/or
inversion); the unit-cell vectors are chosen to be parallel to, or to coincide with, these axes.
The orthorhombic unit cell is specified by the relationships a € b € ¢ and o = f =y = 90°. It will
not be difficult for the reader to verify that the descriptors P, C, I, and F are necessary and sufficient in this
system. One way in which this exercise may be carried out is as follows. After centering the P unit cell,
four questions must be considered, in the following order:
1. Does the centered unit cell represent a lattice?
2. If so, is its symmetry, in isolation, different from that of the P unit cell?
3. If the symmetry is unchanged, is the lattice different in type (arrangement of points) from the
lattice or lattices already determined for the given system?
4. Has the unit cell been chosen correctly?
Notice that we answered these questions implicitly in discussing the monoclinic lattices.
The descriptors A, B, and C do not all remain equivalent for orthorhombic space groups in the class
mm?2; it is necessary to distinguish C from A (or B). The reader may like to consider now, or later, why
this distinction is necessary.

Tetragonal Lattices

The tetragonal system is characterized by one tetrad (rotation or inversion) along z (c¢); the unit-cell
conditions are a = b Z ¢ and o = f§ = y = 90°. There are two tetragonal lattices, specified by the
unit-cell symbols P and /, Fig. 2.4; C and F tetragonal unit cells may be transformed to P and I,
respectively, see also Problem 2.4.

Cubic Lattices

The symmetry of the cubic system is characterized by four triad axes at angles of cos~!(1/3) to one
another, or cos ~'(1/ \/§) to x, y, and z; they are the body diagonals (111) of a cube; the unit-cell
conditions are a = b = ¢; o = § = y = 90°. The four threefold axes, in this orientation, introduce
twofold axes along (100); fourfold axes exist in three of the five cubic classes. There are three cubic
Bravais lattices, Fig. 2.4, with conventional unit cells P, I, and F.

Hexagonal Lattice

The basic feature of a hexagonal lattice is that it should be able to accommodate a 6- or 6-fold symmetry
axis. This requirement is achieved by a lattice based on a P unit cell, witha = b Z ¢, = f = 90°, and
y = 120°, the ¢ direction being taken along the unique axis in the lattice.

Lattices in the Trigonal System

A two-dimensional unit cell in which @ = b and y = 120° is compatible with either sixfold or
threefold symmetry; see Fig. 2.22, plane groups p6 and p3. For this reason, the hexagonal lattice (P
unit cell) may be used for certain crystals which belong to the trigonal system. However, as shown in

Fig. 2.11, the presence of two threefold axes within a unit cell, with x, y coordinates of %, % and %, %, and

parallel to the z axis, introduces the possibility of a lattice which, although belonging to the trigonal

system, has a triply primitive unit cell Ryex, with lattice points at 2,1, 1, and 1,2, (in addition to 0, 0, 0)

in the unit cell. Thus, for some trigonal crystals the unit cell will be P, and for others it will be R}y, the
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Fig. 2.11 Trigonal lattice; a
the fractions refer to values
of Cpex. (@) Rhombohedral
(R) unit cell in the obverse
setting developed from a
triply primitive hexagonal
(Rpex) unit cell. In the
reverse setting, the
rhombohedral lattice and
unit cell are rotated about
[111] 60° clockwise with
respect to the Ry, axes.
The ratio of the volumes
of any two unit cells in one
and the same lattice is
equal to the ratio of the
numbers of lattice points in
the two unit-cell volumes.
In the reverse, setting, the
lattice points in the unit cell
lie at %, %,% and %, % %

(b) Plan view of (a) as seen
along Cpex b

latter being distinguished by systematically absent X-ray reflections, Table 3.2. The Ry, cell can be
transformed to a primitive rhombohedral unit cell R, witha = b = cando = f = y € 90 and <120°;
the threefold axis is then along [111]. The R cell may be thought of as a cube extended (or squashed)
along one of its threefold axes.

The lattice based on an R unit cell is the only truly exclusive trigonal lattice, the trigonal lattice
based on a P unit cell being borrowed from the hexagonal system, Table 2.3.

We note in passing that the symbols P, R, A, B, C, I, and F cannot apply, strictly, to lattices [1]; they
are unit-cell symbols, and refer to the types of unit cells already chosen to represent their lattices.
However, terminology such as “P lattice” is in general use and, as long as it is used with understanding,
is perfectly acceptable.
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2.3  Families of Planes and Interplanar Spacings

Figure 2.12 shows one unit cell of an orthorhombic lattice projected on to the a, b plane. The trace of the
(110) plane nearest the origin O is indicated by a dashed line, and the perpendicular distance of this plane
from O is d(110). By repeating the operation of the translation £d(110) on the plane (110), a series, or
family, of parallel, equidistant planes is generated, as shown in Fig. 2.13. Miller indices, Sect. 1.2.3, are
by definition prime to one another: in discussing X-ray diffraction effects, however, it is necessary to
consider planes for which the indices %, k, and / may contain a common factor while still making
intercepts a/h, b/k, and c/l on the x, y, and z axes, respectively, as required by the definition of Miller
indices. It follows that the plane with indices (nh, nk, nl) makes intercepts a/nh, b/nk, and c/nl along x, y,
and z, respectively, and that this plane is nearer to the origin by a factor of 1/n than is the plane (kk/). In
other words, d(nh, nk, nl) = d(hkl)/n.

In general, we denote a family of planes as (hkl) where h, k, and / may contain a common factor.
For example, the (220) family of planes is shown in Fig. 2.14 with interplanar spacing d(220) = d
(110)/2; alternate (220) planes therefore coincide with (110) planes. Note, that an external crystal face
normal to d(hh0) would always be designated (110), since external observations reveal the shape but
not the size for the unit cell.
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Fig. 2.12 One P unit cell in an orthorhombic lattice in projection on (001), showing the trace of the (110) plane
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Fig. 2.14 Family of (220) planes in an orthorhombic lattice, as seen in projection along ¢
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24  Reciprocal Lattice: Geometrical Treatment

Although we shall discuss the reciprocal lattice in detail in the next chapter, it is useful to introduce it
here, because there exists a reciprocal lattice for each of the Bravais lattices. The reciprocal lattice, a
lattice in reciprocal (diffraction) space, is derived here graphically from the Bravais lattice, a lattice in
real (direct) space, and we choose the monoclinic system for an example.

Figure 2.15a represents a monoclinic lattice as seen in projection along the y axis, the normal to the
(010) plane in this example. From the origin O of a P unit cell, lines are drawn normal to families of
planes (kkl) in real space. We note in passing that the normal to a plane (kkl) does not, in general,
coincide with the direction [4k[]: see Sect. 2.2. However, there are special cases, such as [010] and the
normal to (010) in the present example, in which the two directions do coincide.

Along each line, reciprocal lattice points hkl (no parentheses) are marked off such that the distance
from the origin to the first point in any line is inversely proportional to the corresponding interplanar
spacing d(hkl).

z* axis

Fig. 2.15 Direct and reciprocal lattices. (a) Monoclinic P, as seen in projection along b, showing three families of
planes. (b) Corresponding reciprocal lattice showing the points representing these three and other families of planes
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In three dimensions, we refer to d*(100), d*(OIO), and d*(OOI) as a*, b*, and c*, respectively, and so
define a unit cell in the reciprocal lattice. In general,

d*(hkl) = x/d(hkl) 2.11)
where « is a constant. Hence, for the monoclinic system,
a’ =1x/d(100) = k/(asin f§) (2.12)
From Fig. 2.15a, the scalar product a - a* is given by

a-a :aa*cos(ﬁ—90):ak%zx (2.13)

The mixed scalar products, such as a - ¢* are identically zero, because the angle between a and
¢ is 90°.

The reciprocal lattice points form a true lattice with a representative unit cell outlined by a”, b*, and ¢
which, therefore, involves six reciprocal unit-cell parameters in the most general case, three sides a”, b,
and ¢", and three angles o.", f~, and y". The size of the reciprocal unit cell is governed by the choice of the
constant k. In practice, k¥ may be taken as the wavelength /4 of the X-radiation used in an experiment, in
which case reciprocal lattice units are dimensionless. Alternatively, x may be taken as unity, in which case
reciprocal lattice units have the dimensions of length '. The different situations where one or other
convention is used will become clear as we proceed.

A reciprocal lattice row hkl; 2h,2k,21; ... may be considered to be derived from the families of
planes (nh, nk, nl) with n = 1, 2, ..., since d(nh, nk, nl) = d(hkl)/n. Hence,

d* (nh, nk,nl) = nd*(hkl) (2.14)

where d*(hkl) is the distance of the reciprocal lattice point Akl from the origin, expressed in the
appropriate reciprocal lattice units (RU). Since 4, k, and [ are the coordinates of reciprocal lattice
points, the vector d”~ (hkl) is given by

d* (hkl) = ha” + kb* + Ic* (2.15)
Hence, taking the dot product of d*(hkl) with itself, we have

d* (hkl) - d* (hkl) = d**(hkl)
— a1+ B2 4 P
+ 2klb*c* cos o*
+ 2lhc*a* cos B*
+ 2hka*b* cos y* (2.16)

Now d(hkl) may be obtained from (2.11) and (2.16). Simplifications of (2.16) arise through
symmetry constraints on the unit-cell vectors in different crystal systems. The reader should check
the entries in Table 2.4, starting with Table 2.3 and (2.16).
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Table 2.4 Expressions for d">(hkl), and d*(hkl) with & = 1

System d"*(hkl) d*(hkl)
Triclinic Wa? + kb2 + Pc*? 4 2kIb*¢* cos o 1/d">(hkl)
+ 2lhc*a* cos f* + 2hka*b* cos y*
Monoclinic Wa*? + kb2 + Pc*? 4 2hia* ¢* cos f* 1 [W* P 2hlcosp] k? -
{qinzﬂ {; ¢ ac ] ﬁ}
Orthorhombic Ra*? + kb2 + Pe? { }‘
Tetragonal (R 4+ k*)a*? + Pc*? { + k2 2 } '
Hexagonal and (R + k> + hk)a*® + Pc*? 4(n? + k2 +hk) P
trigonal (P) { + 72}
Trigonal (R) [h? + k% + PP + 2(hk + ki + hi)(cos o*)]a*? a*(Ti )7 where
(rhombohedral) T =W+ k> + P + 2(hk + kl + hi)

[(cos? & — cos ) /sin? oc] and
R = (sin? &) /(1 — 3 cos? & + 2 cos’ )

Cubic (h? 4+ k% + P)a*? {hz R+ lz}*l 2

a TRARAP

2.5 Unit-Cell Transformations

Here, we consider the transformations of unit-cell vectors, zone symbols and directions, Miller indices,
reciprocal unit-cell vectors, and fractional coordinates of sites in the unit cell, all involving no
change in the origin of the unit cell. Such transformations are necessary when a nonstandard unit cell
needs to be re-cast in standard form.

2.5.1 Bravais Unit-Cell Vectors
Let a, b, and ¢ be transformed to a’, b’, and ¢’, such that

a’ = s a+spb+siac
b’ = 5214 + Spb 4+ 3¢ .17

!
¢’ = s31a + s3b + s33¢

which may be written in matrix notation as

a S11 S12 813 a
b'| = |su s» ss|-|b (2.18)
d $31 832 833 c
or, more concisely, as
a=S-a (2.19)

where the dot - here symbolizes matrix multiplication; a and a’ represent the two sets of column
vectors a, b, ¢, and a’, b’, ¢/, and S is the 3 x 3 matrix of elements s;. The inverse transformation is
obtained by multiplying both sides of (2.19) by S~ since S - S7! = 1:



66 2 Lattices and Space-Group Theory

a=S"'.a (2.20)
where S™! is the matrix
1 ti2 I3
S'= |t tn 3 (2.21)
131 I3 133

The elements #;; may be obtained by rearranging (2.17), or by the following equations:

i = (=1)"|M;| /8]

$22523 S12513 S12513 (2.22)

IS| = su1 + 521 + 531

5325833 $22823 $22823

where |M};| is the minor determinant of S obtained by striking out its jth row and ith column, and S| is
the determinant value of the matrix S.

2.5.2 Directions (Zone Symbols)

From Sect. 2.2, we have

r=Ua+Vb+Wc (2.23)
and for the transformed cell
r=Ua +Vb +WwW¢d (2.24)
Thus, from (2.23) and (2.24),
a’ a a’
UVWI Y | =Wwvw)|b | =W©wW)S !V (2.25)
c c c
or
(UV'W) = (UvW)S™! (2.26)
Hence, and concisely,
U=Us'=@$"HU (2.27)

where U and U’ are now column vectors.
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Since (S™HT = (ST ™!, pre-multiplication of (2.27) by ST leads to

STU =s"(s"H)'u=U (2.28)

or

u=Ss".U (2.29)

2.5.3 Coordinates of Sites in the Unit Cell
For any point x, y, z in a unit cell, the vector r from the origin to that point is given by
r =xa—+ yb+zc (2.30)

Comparison of this equation with (2.23), and by a procedure similar to (2.24)—(2.28), we see that
coordinates transform as do zone symbols. Thus,

X =@6"Hx (2.31)
2.5.4 Miller Indices
From (2.15) and (2.23), it follows that
d*(hkl) - v = hU + kV + IW (2.32)
Thus, with (2.29),
U U
d*(hkl) -x = [hkl]- | V | = [hkl] - ST- | V' (2.33)
w w’
But also
U/
AWKy v =[WET)- | V! (2.34)
W/

because d(hkl) and d”(W'K'I') are one and the same vector in the same plane but with different indices.
Hence

(WK = [hkl] - ST (2.35)



68 2 Lattices and Space-Group Theory

Transposing
n h
Kl =S |k (2.36)
! /
or
h=S-h (2.37)

where h and h’ are column vectors with components 4, k, [ and /', k', I, respectively. Thus, Miller
indices transform in the same way as do unit-cell vectors in real space. If we operate on both sides of
(2.37) by 7', then
S'-h=S"-S-h
or
h=S"'.n (2.38)
We may note here that if a plane (hk/) lies in the [UVW] zone and the normal to the plane is d* (hkl)

then d*(hkl) - r = 0, then from (2.15) and (2.23), it follows that AU + kV + IW = 0, which is the Weiss
Zone Law, since products such as a-a” and a-b* are unity and zero, respectively (k = 1).

2.5.5 Reciprocal Unit-Cell Vectors

From (2.15), we develop

d*(hkl) = [a"b*c"] - | k
J (2.39)

_ [a*b*c*] . 871 . k/

In the transformed reciprocal unit cell

d*(hkl) = [a""p"* "] | ¥ (2.40)
l/

so that

[a”"b""¢"] = [a*b*c*] - S~ (2.41)
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Transposing
a” a*
b | =" | b (2.42)
c” c*
or
a’ =" a (2.43)

so that reciprocal unit-cell vectors transform in the same way as do zone symbols.
As an example of the transformations that we have just derived, let a transformation matrix from
unit cell 1 to unit cell 2 may be written as

9]

Il
—_— O =
N = O
—_ NI —

Given the plane (1§5) and the site —0.10, 0.15, 0.25 in unit cell 1, determine the corresponding
values for unit cell 2.

Miller indices: hy = h; +1; =6
ky =k —2l;, =13
L=h+2kk+1=0

that is, the plane is (613,0) in unit cell 2.
For the coordinates we need the matrix (S~')". The determinant |S| is 4. Then, applying (2.22),

5/4  1/2 —1/4
S'=1|-1/2 o0 1/2
—1/4 —1/2 1/4

whereupon the transpose becomes

5/4 —1/2 —1/4
SsHf=]12 0o -1)2
—1/4 12 1/4

then the transformed coordinates are

Xy = 5)61/4—}11/2—21/4 = —0.2625
vy =x1/2—21/2 = —0.1750
Zy = —)C14 —|—y1/2—|—21/4 =0.1625

that is, the site —0.2625, —0.1750, 0.1625.
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Fig. 2.16 Mnemonic

x X
scheme for operating on a v v,
matrix or its inverse and its : t‘.
inverse; two examples are ‘ l_ —a | > a’
shown {
x" U a " h a M x U a" h a u-’

al'—)a
% % 2
% b2 2]
B2 T}

and a represents the triplet a, b, ¢, then writing 8’ = Ma, we have

/

2 | 1
a _§a+—3-b+§c

b =-la+ib+ic
r_ 1 2 1
¢ =—-3a—3b+ 3¢
and if the inverse matrix M ! is
(.
X
1 -1 0
0 1 -1
1 1 1

and x’ represents the triplet x’, y’, z’, then

x =x+z
y=—-x+y+z
=-y+z

A reciprocal lattice has the same symmetry as the Bravais lattice from which it was deduced. This
fact may be appreciated from a comparison of the constructions of the reciprocal lattice and the
stereogram. Both of these constructions are built up from normals to planes, so that the symmetry
expressed through the poles of a stereogram is the same as that at the reciprocal lattice points, but the
reciprocal lattice adds dimensions to the representation; see also Sect. 3.4.1.

The transformations that we have discussed can be summarized by the mnemonic scheme in
Fig. 2.16, for any matrix M and its inverse M. The arrow symbols, such as
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a'

should be interpreted as a’ in terms of a, and so on. The scheme for the inverse is equivalent to writing,

x' = (M1)T . x and then multiplying in the usual manner.

2.6 Rotational Symmetries of Lattices

We now discuss analytically the permissible rotational symmetries in the lattices of periodic crystals,
already stated to be of degrees 1, 2, 3, 4, and 6. In Fig. 2.17, let A and B represent two adjacent lattice
points, of repeat distance ¢, in any row. An R-fold rotation axis is imagined to act at each point and to
lie normal to the plane of the diagram. An anticlockwise rotation of ® about A maps B on to B, and a
clockwise rotation of the same value ® about B maps A on to A'. It follows from the geometry of the
figure that AB is parallel to A’B’ and, from the property of lattices, A’B’ = Jt, where J is an integer.
Lines A’S and BT are drawn perpendicular to AB, as shown. Hence,

A’B' =TS = AB — (AT + BS) (2.44)
or
Jt=1t—2tcos ® (2.45)
whence
cos d=(1-J)/2=M)2 (2.46)

B

Fig. 2.17 Rotational symmetry in crystal lattices. Permissible values of ® are 360(0), 180, 120, 90, and 60°,
corresponding to one-, two-, three-, four-, and sixfold rotations, respectively



72 2 Lattices and Space-Group Theory

where M is another integer. Since — 1 < cos ® < 1, it follows from (2.46) that the only admissible
values for M are 0, £1, 2, and these values give rise to the rotational symmetries already discussed.
This treatment gives a quantitative aspect to the packing considerations mentioned previously,
Sect. 1.4.2.

2.7 Space Groups

In order to extend our study of crystals further into the realm of atomic arrangements, we must
consider now the symmetry of extended, ideally infinite, patterns in space. We recall that a point
group describes the symmetry of a finite body, and that a lattice constitutes a mechanism for
repetition, to an infinite extent, by translations parallel to three noncoplanar directions. We may
ask, therefore, what is the result of repeating a point-group pattern by the translations of a Bravais
lattice? It is a space group, and we shall see that it produces an arrangement like atoms in a crystal.

A space group can be described as an infinite set of symmetry elements, the operation with
respect to any of which brings the infinite array of points to which they refer into a state that is
indistinguishable from that before the operation. In practice, we may apply space-group rules to
crystals because the dimensions of crystals used in experimental investigations are very large in
comparison with the repeat distances of the pattern. For example, the dimension a of the face-
centered cubic unit cell of sodium chloride is 0.564 nm. Thus, in a crystal of experimental size
(ca. 0.2, 0.2, 0.2 mm), there are approximately 4.5 x 10" unit cells.

A space group may be considered to be made up of two parts, a pattern motif and a repeat
mechanism. An analogy can be drawn with a wallpaper-type pattern, a simple example of which is
shown in Fig. 2.18a. We shall analyze this pattern.

The conventional unit cell for this pattern is indicated by the vectors a and b. If we choose a pattern
motif consisting of two flowers, Fig. 2.18b, and continue it indefinitely by the repeat vectors a and b,

Fig. 2.18 Wallpaper-type
pattern. (a) Extended pat-
tern. (b) Asymmetric unit,
or pattern motif; the space-
group symmetry applied to
the asymmetric unit gener-
ates the infinite pattern
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Fig. 2.19 Plane group p2. a @)

(a) Twofold symmetry . @)
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/ / / /
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the plane pattern is generated. However, we have ignored the symmetry between the two flowers in
the pattern motif itself. If one flower (1) is reflected across the dashed line (g) to (1") and then translated
by a/2, it then occupies the position of the second flower (2); thus, the pattern represented in Fig. 2.18a
is brought from one state to another indistinguishable state by this symmetry operation. This operation
takes place across a glide line, a symmetry element that occurs in some extended two-dimensional
patterns. The two motions constitute a single symmetry operation.

The necessary and sufficient pattern motif for a whole, extended figure is a single flower,
occupying the asymmetric unit—the unshaded (or shaded) portion of Fig. 2.18b. If the single flower
is repeated by both the glide-line symmetry and the unit-cell translations, that is, overall by the space-
group symmetry, then the infinitely extended pattern is generated. Thus, if we know the asymmetric
unit of a crystal structure, which need not be the whole unit-cell contents, and the space-group symbol
for the crystal, we can generate the whole structure.

2.7.1 Two-Dimensional Space Groups (Plane Groups)

Oblique System
Our discussion leads naturally into two-dimensional space groups, or plane groups. Consider the pattern
motif showing twofold symmetry, illustrated in Fig. 2.19a; the symmetry symbols that we have used in
point groups are continued into the realm of space groups. Next, consider a primitive oblique net,
Fig. 2.19b; it is of infinite extent in the plane, and the framework of lines divides the field, conceptually,
into a number of identical primitive (p) unit cells. An origin is chosen at a lattice point; it could be
anywhere in the unit cell, but is desirably, and conventionally, linked to a symmetry element.

Now, let the motif be repeated around each point in the net, and in the same orientation, with the twofold
rotation points of the motif and the net in coincidence, Fig. 2.19c. It will be seen that additional twofold

rotation points are introduced at the unique fractional coordinates O, %; %, 0; and %,% in each unit cell,
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o o Origin at 2
© © 2 e 1 xy; %)
1 d 2 33
1 c 2 1.0
O O 1 b 2 041
@) O 1 a 2 00

Fig. 2.20 Standard drawing and description of plane group p2. The lines which divide the unit cell into four quadrants
are, as usual, drawn for convenience only

see Sect. 2.2.2. We must always look for such “extra” symmetry elements after the point-group motif
has been operated on by the unit-cell translations. Ultimately, this will be found to be quite straightfor-
ward. Meanwhile, a simple check consists in ensuring that any point on the diagram can be reached
from any other point by means of a single symmetry operation, including translations as necessary. This
plane group is given the symbol p2.

In general, we shall not need to draw several unit cells; one cell will suffice provided that the pattern
motif is completed around all lattice points intercepted by the given unit cell. Figure 2.20 illustrates
the standard drawing of p2: the origin is taken on a twofold point, the x axis runs from top to bottom,
and the y axis runs from left to right. Thus, the origin is considered to be in the top left-hand corner of
the cell as drawn, but each twofold rotation point could be an equivalent origin; we must remember
always that the drawing is a representative portion of an infinite array, whether in two or three
dimensions.

The asymmetric unit (which may be a chemical species) represented here by O, may be placed
anywhere in the unit cell, but for convenience, near the origin. It is then repeated by the symmetry p2
to build up the complete picture, taking care to complete the arrangements around each corner of the
unit cell. The additional twofold points can then be identified. The reader should now carry out this
construction.

The list of fractional coordinates in Fig. 2.20 refers to the unique symmetry-related sites in the unit
cell. The first row of these sites, related by the space-group symmetry, lists the general equivalent
positions. In p2 they are given the coordinates x, y, and X, y. We coulduse 1 — x, 1 — yinstead of ¥, y,
but it is more usual to list the set of coordinates near one and the same origin.

Each coordinate line in the space-group description lists, in order from left to right, the number of
positions in each set, the Wyckoff [2] notation, used for reference purposes, the symmetry at each site
in the set, and the fractional coordinates of all sites in the set.

In a conceptual two-dimensional crystal, or projected real atomic arrangement, the asymmetric
unit may contain either a single atom or a group of atoms. If it consists of part, half, in this plane
group, of one molecule then the whole molecule, as seen in projection at least, must contain twofold
rotational symmetry, or a symmetry of which 2 is a subgroup.

There are four unique twofold rotation points in the unit cell; in the Wyckoff notation they are the sets
(a), (b), (¢), and (d), and they constitute the sets of special equivalent positions, point symmetry 2 in this
plane group. Notice that general positions always have symmetry 1, whereas special positions always
have a higher crystallographic point-group symmetry. Where the unit cell contains fewer (an integral
submultiple) of a species than the number of general equivalent positions in its space group, then it may
be assumed that the species are occupying special equivalent positions and have the symmetry consistent
with that of the special site. Exceptions to this rule may arise in disordered structures, Sect. 8.9.
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Fig. 2.21 Plane groups a ® O]
in the rectangular system.
(a) pm. (b) cm; glide lines O O
(g) are indicated by the
dashed lines
O} O]
O O

1 a m 5
b © ©
@) @)
O
O
o o
O O

Origin on m
Limiting conditions
(0,0, 3,9+
b 1 x,y; X,y. hk: h+k=2n
a m 0,y. As above

Ni=

Rectangular System
We move next to the rectangular system, which includes point groups m and 2mm, and both p and ¢
unit cells. We shall consider first plane groups pm and cm.

The formation of these plane groups may be considered along the lines already described for p2,
and we refer immediately to Fig. 2.21a. The origin is chosen on m, but its y coordinate is not defined
by this symmetry element. In a structure of this symmetry, the origin is specified by fixing arbitrarily
the y coordinate of one of the atoms in the unit cell. In pm, the general equivalent positions are two in
number, and there are two sets of special equivalent positions on m lines.

Plane group cm, Fig. 2.21b, introduces several new features. The coordinate list is headed by the
expression (0, 0; %, %) + ; this means that the two translations 0, O and %,% are added to all the listed
coordinates. Hence, the full list of general (equivalent) positions would read

X, )3 va; %+X,%+y; %_X,%'i‘y
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Given x, the distance % — x, for example, is found by first moving % along the a axis from the origin
and then moving back along the same line by the amount x.

The centering of the unit cell in conjunction with the m lines introduces the glide-line symmetry
element, symbol g and graphic symbol - - - . The glide lines interleave the mirror lines, and their action is
a combination of reflection and translation, the two movements comprising again a single symmetry
operation. The translational component is one half of the repeat distance in the direction of the glide line.
Thus, the pair of general positions x, y and% — X, % + y are related by the g line at x = i, y = 0. We shall
encounter glide lines in any centered plane group where m lines are present, and in certain other groups.
For example, we may ask if there is any meaning to the symbol pg, a glide-symmetry motif repeated by
the translations of a p unit-cell? The answer is that pg is a possible plane group; in fact, it is the symmetry
of the pattern in Fig. 2.18. The differing orientations of the glide lines in Figs. 2.18 and 2.22 (standard) are
expressed by the full symbols pl1g (g L y) and plgl (g L x), respectively.

There is only one set of special positions in ¢m, in contrast to two sets in pm. This situation arises
because the centering condition in cm requires that both mirror lines in the unit cell be included in
one and the same set. If we try to postulate two sets, by analogy with pm, we obtain

+y (2.47)

=

0,y; 1,
and
Ly; Ofor1)i+y (2.48)

However, expressions (2.47) and (2.48) involve only a shift in the origin, and therefore do not
constitute two different sets of special equivalent positions.

We could refer to plane group cm by the symbol cg. If we begin with the origin on g and mark in the
general positions as before, we should find now the glide lines interleaved with m lines. Two patterns that
differ only in the choice of origin or in the numerical values attached to the coordinates of the equivalent
positions do not constitute different space groups. The reader can illustrate this statement by drawing cg,
and by drawing pg also, can show that pm and pg are different. The glide line or, indeed, any translational
symmetry element is not encountered in point groups; it is a property of infinite patterns.

The 17 Plane Groups

The 17 plane groups are illustrated in Fig. 2.22. The two diagrams for each plane group show the general
equivalent positions and the symmetry elements. The asymmetric unit is represented therein by a scalene
triangle instead of by the usual circle. Space groups that are derived by the repetition of a point-group
motif by the lattice translations are termed symmorphic space groups, as with p2, pm, and c2mm, but
otherwise as non-symmorphic space groups, as with pg, p2mg, and p2gg.

Conditions Governing X-Ray Reflection

Our main reason for studying space-group symmetry is that it provides information about the repeat
patterns of atoms in crystal structures. X-ray diffraction spectra are characterized in position by the
indices of the families of planes from which, in the Bragg treatment of diffraction which we
consider in Sect. 3.3.2, the X-rays are considered to be reflected. The pattern of the indices of the
reflecting planes reveals information about the space group of the crystal. Where a space group
contains translational symmetry, certain sets of reflections will be systematically absent from the
experimental diffraction data record. We meet this situation for the first time in cm, Fig. 2.21b; two-
dimensional reflections ik (I = 0) are limited to those for which the sum % + k is an even number.
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Fig. 2.23 Centered rectangular unit cell A, B and primitive unit cell a, b within the same lattice

Figure 2.23 illustrates a rectangular lattice. Two unit cells are depicted on this lattice, a centered
cell with vectors A and B, and a primitive cell with vectors a and b. The relationship between them
is summarized by the equations

A=a—->b
B=a+b (2.49)

We have shown in Sect. 2.5.4 that Miller indices of planes transform in the same way as unit-cell
vectors, so it follows that

H=h—k
(2.50)
K=h+k

where H and K apply to the unit cell A, B and / and £ to the unit cell a, b. Adding equations (2.50), we
obtain

H+K=2h 2.51)

which is even for all values of 4. Thus, in this centered unit cell, reflections can occur only when the
sum of the indices, H + K, is an even integer. This topic is discussed more fully in Sect. 3.7ff,
whereupon the significance of the extreme right-hand column of data in figures such as Figs. 2.21
and 2.24 will become clear.

2.7.2 Plane Groups Related to 2mm

Point group 2mm belongs to the rectangular system and, as a final example in two dimensions, we
shall study plane group p2gg. It is often helpful to recall the “parent” point group of any space group:
we ignore the unit-cell symbol, and replace any translational symmetry elements by the
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Fig. 2.24 Formation and
description of plane group
p2gg
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corresponding nontranslational symmetry elements. Thus, pg is derived from point group m, and p2gg

from 2mm.

In point group 2mm, we know that the two m lines intersect in the twofold rotation point, and this
remains true for plane group p2mm. In p2gg, however, we may not assume that the twofold rotation
point lies at the intersection of the g lines. In our study of point groups, we saw that the symmetry
elements in a given symbol have a definite relative orientation with respect to the crystallographic
axes; this is preserved in the corresponding space groups. Thus, we know that the g lines are normal to
the x and y axes, and we can take an origin, initially, at their intersection, Fig. 2.24a. In Fig. 2.24b, the
general equivalent positions have been inserted; this diagram reveals the positions of the twofold
points, inserted now in Fig. 2.24c¢, together with the additional g lines in the unit cell. The standard
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Fig. 2.25 Occupation of the special positions 0, O and 0,% in p2gg leads to pm (plml) symmetry, even though the
occupying entity has itself symmetry 2

orientation of p2gg places the twofold point at the origin; Fig. 2.24d shows this setting and the
description of this plane group. We see again that two interacting symmetry elements have a
combined action which is equivalent to that of a third symmetry element, but their positions must
be chosen correctly. This question did not arise in point groups because, by definition, all symmetry
elements pass through a point, the origin. What group would arise if we did place the twofold rotation
point at the intersection of the glide lines?

There are two sets of special equivalent positions in p2gg, but the pairs of twofold rotation points
that constitute each set must be selected correctly. One way of ensuring a proper selection is by
inserting the coordinate values of the point-group symmetry element constituting a special position
into the coordinates of the general positions. Thus, by taking x = y = 0, for one of the twofold points,
we obtain a set of special positions with coordinates 0,0 and %, % If we had chosen 0,0 and O,% as a set,
the resulting pattern would not have conformed to p2gg symmetry, but to pm, as Fig. 2.25 shows.
Special positions always form a subset of the general positions, under the same space-group symmetry.

The general equivalent positions give rise to two conditions limiting reflections, because
the structure is “halved” with respect to a for the reflections 40, and with respect to b for the
reflections Ok. The special positions take both of these conditions, and the extra conditions shown,
because occupancy of the special positions in this plane group gives rise to centered arrangements.
The entities occupying special positions must, themselves, be consistent with the symmetry of the
crystal structure.

After the development of the structure factor in Sects. 3.2.3ff and 3.5.1ff, limiting conditions will
be derived analytically.

2.7.3 Three-Dimensional Space Groups

The principles that have emerged from the discussion on plane groups can be extended to
three dimensions. Whereas the plane groups are limited to 17 in number, there are 230 space groups.
We shall limit our discussion to a few space groups mainly in the monoclinic and orthorhombic
systems. We believe this will prove a satisfactory working procedure because many of the important
principles will evolve and, from a practical point of view, a large percentage of crystals belong to these
two systems.

Monoclinic Space Groups
In the monoclinic system, the lattices are characterized by P and C unit-cell descriptors, and the point
groups are 2, m, and 2/m. We consider first space groups P2 and C2.


http://dx.doi.org/10.1007/978-1-4614-3954-7_3#Sec11_3
http://dx.doi.org/10.1007/978-1-4614-3954-7_3#Sec23_3

82 2 Lattices and Space-Group Theory

Xo O Sio
o)
O O

Fig. 2.26 Stereoscopic pair of illustrations of the environs of one unit cell of space group C2; the general equivalent
positions are shown. The diagram reveals nine axes of symmetry 2, and six axes of symmetry 2,. Can you identify
their positions?

5~
O
O O
X
(O~
010
0O O
O

As with the plane groups, we may begin with a motif, which has twofold symmetry, but now about a
line or axis, in three-dimensional space. This motif is arranged in a fixed orientation with respect to the
points of a monoclinic lattice. Figure 2.26 shows a stereoscopic pair of illustrations for a unit cell of
space group C2, drawn with respect to the conventional right-handed axes.

In Fig. 2.27, space groups P2 and C2 are shown in projection. The standard drawing of space-
group diagrams is on the a, b plane of the unit cell, with +x running from top to bottom, +y from left
to right, both in the plane of the paper, and +z directed upwards from the paper. The positive or
negative signs attached to the representative points indicate the z coordinates, that is, in the
symbolism O* and O, the signs stand for z and z, respectively. The relationship with the preferred
stereogram notation Sect. 1.3, will be evident here.

In both P2 and C2, the origin is chosen on 2, and is, thus, defined with respect to the x and z axes,
but not with respect to y; compare pm and cm. How is the origin fixed in Pm? The graphic symbol
for a diad axis in the plane of the diagram is —; if the axis lies at, say, z = i, the symbol — %is used.

In space group P2, the general and special equivalent positions may be derived quite readily. The
special sets (b) and (d) should be noted carefully; they are sometimes forgotten by the beginner
because symmetry elements distant ¢/2 from those drawn in the a, b plane are not indicated on the
conventional diagrams. The diad axis atx = 0, %, for example, relates x, y, zto apoint at x, y, | — z; its
presence, and that of the diad at x = z = % may be illustrated by drawing the space group in projection
on the ac plane of the unit cell. The reader should make this drawing and compare it with Fig. 2.27a.

It is often useful to consider a structure in projection on to one of the principal planes (100), (010),
or (001). The symmetry of a projected space group corresponds to that of a plane group, and the
symmetries of the principal projections are included with the space-group description, Fig. 2.27. The
full plane-group symbols, given in parentheses, indicate the orientations of all symmetry elements,
including identity, in the space group, Table 1.5. In C2, certain projections produce more than one
repeat in some directions; the projected cell dimensions, represented by @’ and b’ are then halved with
respect to their original values. The Miller indices transform with the change of unit cell: thus, for
example, with b halved, 220 becomes 210, and 210 becomes 410 (which is equivalent to halving the &
index in each case).

The projection of C2 on to (100) is shown by Fig. 2.28 in three stages, starting from the y and z
coordinates of the set of general equivalent positions. The symmetry of the projection is determined
by the arrangements of points, now in two dimensions, and the relation between them is clearly that of
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Fig. 2.27 Monoclinic space groups in the standard setting. (a) P2. (b) C2
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Fig. 2.28 Projection of C2 on to (100). (a) y, z Positions from C2 (z axis left to right). (b) Two-dimensional symmetry
elements, m lines, added. (¢) One unit cell: plm (p11m), b’ = b/2, ¢’ = c. Plane groups p11m and plm1 are equivalent
because they correspond only to an interchange of the x and y axes; 1 is the trivial symmetry element

m symmetry. A correct and sufficient projected unit cell is determined by a and b/2. It is important to
remember that, in the plane groups, as in the two-dimensional point groups, all symmetry operations
take place wholly within the plane of the figure.

The general equivalent positions in C2 may be obtained by adding the translations %, %, 0, namely,
those associated with a C unit cell (Table 2.2), to the equivalent positions of P2. This operation is
equivalent to repeating the original twofold motif at the lattice points of the C monoclinic unit cell.
This simple relationship between P and C cells is indicated by the heading (0, 0, 0; %,%, 0) + of the
coordinate list in C2; it may be compared with that for cm, Fig. 2.21b.

There are four sets of special positions in P2, but only two sets in C2; the reason for this has been
discussed in relation to plane groups pm and cm, Sect. 2.7.1.

2.7.4 Screw Axes

Screw axes are symmetry elements that can relate points in an infinite, three-dimensional, regular
array; they are not a feature of point groups. A screw-axis operation may be thought of as a
combination of rotation and translation, although it is a single symmetry operation: an infinitely
long spiral staircase gives an indication of the nature of the symmetry operation.

Imagine that the bottom step, Fig. 2.29, is rotated, anticlockwise, looking in a direction down the
stairs, by 60° about the vertical support, or axis, and then translated upward by one sixth of the repeat
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Fig. 2.29 Spiral staircase: an illustration of 6, screw-axis symmetry

distance between steps in similar orientations; it then takes the place of the second step, which itself
moves upward in a similar manner. Clearly, if this procedure were repeated six times, the bottom step
would reach the position and orientation of the sixth step up; we symbolize this screw axis as 6;.
Infinite length is, theoretically, a requirement because as the bottom step is rotated and translated
upward, so another step, below the figure, comes up into its position in order that indistinguishability
is maintained. The spiral staircases of the Monument in London and of the Statue of Liberty in
New York seem to be of infinite length, and might be considered as macroscopic near-examples of
screw axes. Examine them carefully on your next visit and determine their symmetry nature.

The centering of the unit cell in C2 introduces screw axes which interleave the diad axes,
Fig. 2.27. A screw axis may be designated R,, (p < R) and a screw-axis operation consists of an R-fold
rotation coupled with a translation parallel to the screw axis of p/R times the repeat in the direction of
the axis. Forp = R, the translation parallel to the screw axis is unity, and result of the operation corresponds
effectively to simple rotation: P2, = P2. In C2, the screw axis is of the type 2; and has a translational
component of % parallel to b. The general equivalent positions x, y, z and %— x,% + v,z are related by
a 2, axis along [ﬁ, y,0].% Screw axes are present in the positions shown by their graphic symbol — (see
also Table 2.5).

Limiting Conditions in C2

We referred briefly to limiting conditions in Sect. 2.7.1. The limiting conditions for C2 are listed in Fig. 2.27.
Two of them are placed in parentheses; this notation is used to indicate that they are dependent upon a more
general condition. Thus, since we know that the Akl reflections are limited by the condition /& + k = 2n
(even), because the cell is C-centered, it follows that the 0/ reflections are limited by 7 = 2n (0 is effectively
an even number). There are several other nonindependent conditions that could have been listed.
For example, Okl: k = 2n and h00: h = 2n. However, in the monoclinic system, in addition to the

SWe use this notation to describe lines, in this example, the line parallel to the y axis through x = }—1, z=0.
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Table 2.5 Notation for symmetry axes in space groups, and limiting
conditions for screw axes

Screw-axis orientation Limiting
Symbol Graphic symbol and translation condition
1 None
1 o
2
(normal to paper)
—_—
(parallel to paper)
2 5 [100] a/2 h00: h = 2n
(normal to paper)
(parallel to paper)  [010] b/2 0k0: k = 2n
[001] ¢/2 00i: 1 = 2n
3 A
3 A
3, A [0001] ¢/3 0001: 1 = 3n
3, A [0001] 2¢/3 0001: [ = 3n
4 ¢
i ®
41,45 "* [100] a/4,3a/4 h00: h = 4n
[010] b/4,3b/4 0kO: k = 4n
[001] ¢/4,3c/4 0001 =4n
5 ¢
6 L
6 &
61,65 #* [0001} ¢/6,5¢/6 000/: 1 = 6n
62,64 g X [0001] 2¢/6, 4¢/6 000I: 1 = 3n
63 , [0001] 3c/6 0001 { = 2n

Notes: (1) The 3, and 3, axes are referred to the hexagonal setting of the
trigonal system. (2) Compare the 21, 4,, and 65 axes, the 4; and 43 axes, and
31, 32, 62, 64 axes

hkl reflections, we are concerned particularly only with #0/ and 0O, because the symmetry plane is parallel
to (010) and the symmetry axis is parallel to [010]. This feature is discussed more fully in Sect. 3.7ff.

Space Group P2,

Space groups C2 and C2, are equivalent and may be compared with the pair cm and cg. On the other hand,
P2 contains no translational symmetry, so P2 is a new space group, Fig. 2.30; it occurs with a frequency
of 6% among recorded structures. There are no special positions in P2,. Special positions cannot exist on a
translational symmetry element, since it would mean that the entity placed on such an element consisted
of a pattern of infinite repeat.
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Fig. 2.30 General equivalent positions and symmetry elements in space group P2,

2.7.5 Glide Planes

Consider again Fig. 2.18, but let each dashed line be now the trace of a glide plane normal to b. Whereas
in two dimensions, the direction of translation, after the reflection part of the operation, is unequivocal, in
three dimensions there are several possibilities, although each of them will not necessarily give rise to a
different space group.

In the case of the glide plane normal to b, the reflection is across the mirror plane normal to b, and
the direction of translation could be along a of amount a/2, along ¢ of amount ¢/2, along a diagonal
direction n of amount (a + ¢)/2, or, in certain groups, along a diagonal direction d of amount such as
(a £ ¢)/4. The d-glide plane is not often encountered in practice, and will not be discussed in detail
here [3].

The graphic symbols for glide planes carry information about the glide planes. Thus, in Fig. 2.36, an a-
glide plane at c/4 is shown by the arrow with % adjacent to it. The symbol n may refer to more than one
orientation (Table 2.6), but the space-group symbol here, which relates back to the corresponding point-
group symbol in Table 1.5, provides the necessary information. Thus, if the n-glide plane is normal to a,
the translation component of the n-glide-symmetry operation must be (b + ¢)/2. This is why it is so
important to understand fully the Hermann—Mauguin point-group notation [4], Table 1.5, because that
for space groups follows in a parallel manner. The translational components for screw axes and for glide
planes are always integer fractions of the repeat distances.

If a space group is formed from the combination of a point group with m planes and a lattice of
centered unit cells, glide planes are always introduced into the space group. The nature and direction
of the translations in screw-axis and glide-plane symmetries are implicit in their symbolism (see
Tables 2.5 and 2.6).

Space Group P2,/c

As an example of a space group with glide planes, we shall study P2,/c, a space group encountered
frequently (36%) in practice. This space group is derived from point group 2/m, and must, therefore,
be centrosymmetric. However, the center of symmetry does not lie at the intersection of 2; and c.
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Table 2.6 Notation for symmetry planes in space groups, and limiting conditions for glide planes

Glide plane
orientation Limiting
Symbol Graphic symbol and translation condition
m - 1 paper - -
aper - _
o/ || pap
a e L paper (hOI) a/2 hOl: h = 2n
—-l || paper (hk0) a/2 hkO: h = 2n
b e 1 paper (Okl) b/2 Okl: k = 2n
-—l || paper (hk0) b/2 hkO: k = 2n
C Lpaper (OkI) c/2 Okl: | = 2n
Lpaper (hOI) c/2 hOl: | = 2n
n ————— L paper (OkD) (b + ©)/2 Okl: k + 1 = 2n
Lpaper (hOD) (c + a)/2 hOl: 1+ h =2n
——;l || paper (hkO) (a + b)/2 hkO: h + k = 2n
d T L paper (Okl) (b £ ¢)/4 Okl: k + 1 = 4n
Lpaper (hOD) (c £ a)/4 hOL: 1 + h = 4n
i || paper (hk0) (a + b)/4 hkO: h + k = 4n

Notes: (1) The trigonal system is here referred to hexagonal axes. (2) An arrow shows the direction of the
glide translation. A fraction indicates the z height of the plane. (3) The condition (a + b + ¢)/4 exists for
d-glide planes parallel to {110} in the tetragonal and cubic systems

It is normally desirable to place the origin on a center of symmetry in centrosymmetric space groups
and, in this example, we must determine the appropriate positions of the symmetry elements in the
unit cell. We note here that sometimes an origin will have a point symmetry greater than 1, for
example, 2/m or mmm, but 1 is a subgroup of such symmetries. We shall approach the solution of
this problem in two ways, the first of which is similar to our treatment of plane group p2gg.

Since the screw axis must intersect the glide plane normally, according to the space-group symbol,
the point of intersection will be taken as an origin and the space group drawn, Fig. 2.31. We see now
that the centers of symmetry lie at points such as 0, %, %. This point may be taken as a new origin, and
the space group redrawn, Fig. 2.32; the fraction % placed next to the center of symmetry symbol
indicates its fractional position above (and below) the ab plane.

It is desirable, however, to be able to draw the standard space-group illustration at the outset. From
a choice of origin, and using the full meaning of the space-group symbol, we can obtain the positions
of the symmetry elements by means of a simple scheme:

Let the symmetry elements be placed as follows:

1 at 0, 0, 0 (choice of origin)
2, along [p, y, r], parallel to the y axis
c the plane (x, ¢, z), normal to the y axis

It is important to note that we have employed only the standard choice of origin and the
information contained in the space-group symbol. Next, we carry out the symmetry operations as
shown in the scheme of Fig. 2.33.
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Fig. 2.32 Space group P2,/c with the origin on 1 (standard setting)
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Fig. 2.33 Operation about a 2, axis along the line [p, y, 0]: The x coordinate of point 2 relative to that of point 1 is
2p — x. A similar construction may be used for the y coordinate in the c-glide operation
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<

Fig. 2.34 Stereoview of the unit cell for the structure of diiodo-(N, N, N', N'-tetramethylethylenediamine)zinc(II),
showing the zinc and iodine (larger circles) atoms

The symbol —c is used to indicate that the c-glide translation of % is subtracted, which is
crystallographically equivalent to being added.’

We use the fact that the combined effect of two operations is equivalent to a third operation,
starting from the original point (1). Symbolically, in operator notation, ¢ 2; = 1, that is, 2, followed
by ¢ is equivalent to 1. Thus, points (3) and (4) are one and the same, whence, by comparing
coordinates, p = 0 and ¢ =r = i. Comparison with Fig. 2.32 shows that these conditions lead to
the desired positions of the symmetry elements in P2,/c.

The change in the x coordinate in the operation (1) — (2) is illustrated in Fig. 2.33; the argument
can be applied to any similar situation in other space groups, and we consider one coordinate at a time.
The completion of the details of this space group forms the basis of a problem at the end of this chapter.

We shall not discuss centered monoclinic space groups, but they do not present difficulty once the
primitive space groups have been mastered. Figure 2.34 shows a stereoscopic pair of illustrations of the
zinc and iodine atoms in the structure of diiodo-(N, N, N', N'-tetramethylethylenediamine)zinc(II) [5]. It
crystallizes in space group C2/c with four molecules per unit cell; the zinc atoms lie on twofold axes. The
reader should make a drawing of C2/c, putting in all the symmetry elements and a set of
general equivalent positions, for comparison with Fig. 2.34.

2.7.6 Analysis of the Space-Group Symbol

In this section we consider the general relationship between space-group symbols and point-group
symbols. On encountering a space-group symbol, the first problem is to determine the parent point group.
This process has been discussed, Sect. 2.7.2; here are a few more examples. It is not necessary to have
explored all space groups in order to carry out this exercise:

P2i/c — (21/c) — (2/c) = 2/m
Ibca — mmm

P412,2 — 422

F43c¢ — 43m

7+1 may always be added to a coordinate to give a crystallographically equivalent position.
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Next we must identify a crystal system for each point group:

2/m — monoclinic
mmm — orthorhormbic
422 — tetragonal

43m — cubic

Now, from Table 1.5, we can associate certain crystallographic directions with each symmetry

element in the space group symbol:

P2,/c: Primitive, monoclinic unit cell; c-glide plane L b; 2; axis || b; centrosymmetric.

Ibca: Body-centered, orthorhombic unit cell; b-glide plane L a; c-glide plane L b; a-glide plane L c;
centrosymmetric.

P4,2,2: Primitive, tetragonal unit cell; 4, axis || ¢; 2 axes || a and b; twofold axes at 45° to @ and b, in
the ab plane; non-centrosymmetric.

F43c: Face-centered, cubic unit cell; 4 axes || a, b, and c; threefold axes || (111); c-glide planes L

(110); non-centrosymmetric.

It should be noted carefully that the symmetry elements, where there are more than two present, in
a given space-group symbol may not intersect in the third, equivalent symmetry element, and the
origin must always be selected with care. Appropriate procedures for the monoclinic and orthorhom-
bic systems have been discussed; in working with higher symmetry space groups, similar rules can be
drawn up, as we shall see.

Because of the similarities between space groups and their parent point groups, a reflection
symmetry, for example, in a given orientation with respect to the crystallographic axes always
produces similar changes in the signs of the coordinates. Thus, an m plane perpendicular to z in
point group mmm changes x, y, z to x, y, z. The a-glide plane in Pnma, which is at c¢/4, changes x, y, z to
% + x, y,% — z; the translational components of % are a feature of the space group, but the signs of x, y,
and z are still +, +, and — after the operation, as with mmm.

2.7.7 Orthorhombic Space Groups

We shall consider two orthorhombic space groups, P2,2,2; and Pnma. The first is illustrated in Fig. 2.35;
it should be noted that the three mutually perpendicular 2, axes do not intersect one another in this space
group. Although P2,2,2;, which occurs to the extent of ca. 10%, is a non-centrosymmetric space group,
the three principal projections are centrosymmetric; each corresponds to the two-dimensional space

group p2gg.
Change of Origin
Consider the projection of P2,2,2; on to (001). From the general equivalent positions we obtain the

two-dimensional set of coordinates:

. 1 5. 1 1 .
X, Y5 j_xaya §+X7§_ya x7§+y

It is convenient to change the origin to a twofold rotation point, currently at %, 0. To carry out this
transformation, the coordinates of the new origin are subtracted from the original coordinates:

. 1 o 1 1 . 11
X_Z7y7 1_x7)’7 z+x7§_)’, _x_Z7§+y
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Origin halfway between three pairs of nonintersecting screw axes
Limiting conditions
4 a1l x,y,z; 3-x3,3+2z; 3+x,3-y,z; %i+y, -2z  hk:

Okl:
ROI: None
hkO:
h00: h =2n
0k0: k =2n
00/: [ =2n
Symmetry of special projections
(001) p2gg (100) p2gg (010) p2gg

Fig. 2.35 Space group P2,2,2,. In space-group diagrams, j represents a 2; axis normal to the plane of projection
(Lonsdale K, Henry NFM (1965) International tables for X-ray crystallography, vol I. Kynoch Press. Reproduced by
courtesy of I. U. Cr.)

Next, new variables xq and yq are chosen such that xop = x — % and yo = y. Then, by substitution,
we obtain:

. T Une 1 1 . 1 1
X0, Y03 X0, Y0; §+x()7§_y07 E_x()ai_'_y()

If the subscript is dropped, these coordinates are exactly those given already for p2gg, Fig. 2.24d,
which is the plane group of the projection of P2,2,2; on (001), and also on (100) and (010). This type
of change of origin is useful when studying projections.

The orthorhombic space group Pnma is shown with the origin on 1 in Fig. 2.36. The symbol tells us
that the unit cell is primitive, with an n-glide plane normal to the x axis (see Table 2.6), an m plane normal
to y, and an a-glide plane normal to z. Although this space group is derived from point group mmm, we
have a problem similar to that discussed with P2;/c. The solution of this type of problem depends upon
the fact that, in the standard orientation, m m m =1, and is illustrated fully in Problem 2.10 at the end of
this chapter. It may be noted that a double application of Euler’s theorem is used here:

mm=mm2 and m (mm2)=1

The coordinates of the general and the special equivalent positions can be derived easily from the
diagram. The translational symmetry elements # and a give rise to the limiting conditions shown on
the diagram. Nonindependent conditions are shown in parentheses; in the orthorhombic system, all of the
classes of reflection listed should be considered, as will be discussed in Sect. 3.7ff.


http://dx.doi.org/10.1007/978-1-4614-3954-7_3#Sec27_3
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O+ +©
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Origin at 1
8 d 1 xy,z; Y+x, -y 1~z %3+y,2, 3—x,5, 4+2; Limiting conditions
59,2, Y—x,i+4y,4+z; x,1-y,z; $+x,y,1—2z  hkl: None
Okl: k +1=2n
hOl: None
hk0: h =2n
h00: (h = 2n)
0kO: (k = 2n)
00l: (I = 2n)
4 ¢cm x4z, £3,7; Y-x3, 142, 1+4x 4 i-2 As above
4 b1 003 0,54 300 3410 As above +
4 a1 000 03,0 30,3 333 }hkz;;.+1=z,,;k=2,,
Symmetry of special projections
(011) p2gm (100) c2mm (010) p2gg

Fig. 2.36 Space group Pnma; the full space-group symbol is Pzn—I %‘ % (Lonsdale K, Henry NFM (1965) International
tables for X-ray crystallography, vol I. Kynoch Press. Reproduced by courtesy of I. U. Cr.)

It is useful to remember that among the triclinic, monoclinic, and orthorhombic space groups, at
least, pairs of coordinates which have one sign change of x, y, or z indicate a symmetry plane normal
to the axis of the coordinate with the changed sign. If two sign changes exist, a symmetry axis lies
parallel to the axis of the coordinate that has not changed sign. Three sign changes indicate a center of
symmetry. In these three systems, where any coordinate, say x, is related by symmetry to another at
t — x, that symmetry element intersects the x axis at #/2, by virtue of Fig. 2.33 mutatis mutandis.

2.7.8 Relative Orientations of Symmetry Elements in Space Groups

Earlier in this chapter, we looked briefly at the problem of choosing the relative positions of the
symmetry elements in space groups while keeping a particular symmetry element at a given site, such
as a center of symmetry at the origin in space groups of class 2/m. We now discuss some simple rules
whereby this task can be accomplished readily, with due regard to the relative orientations of the
symmetry elements given by the space-group symbol itself, Tables 1.5 and 2.5. We shall consider
here the symmetry planes and symmetry axes in space groups derived from point groups mmm and
2/m, although the rules can be applied more widely.


http://dx.doi.org/10.1007/978-1-4614-3954-7_1#Tab5_1
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Half-Translation Rule

Location of Symmetry Planes

Consider space group Pnna: the translations associated with the three symmetry planes are (b + ¢)/2,
(c + a)/2 and a/2, respectively. If they are summed, the result T is (@ + b/2 + ¢). We disregard the
whole translations a and c because they refer to unit-cell repetitions. Thus, the center of symmetry is
found displaced by 7/2, or b/4, from the point of intersection of the three symmetry planes 7, n, and a.
This means that, with 1 at the origin, we have nl(0,y,z), n||(x,1,z) and a||(x, y, 0). As a second
example, consider Pmma. The only translation is a/2; thus, T = a/2, and the center of symmetry is
displaced by a/4 from the intersection of m, m and a.

Space group Imma may be formed from Pmma by introducing the body-centering translation 1 317 ;,
Fig. 6.18b. Alternatively, the half-translation rule may be applied to the complete space-group
symbol. In all, Imma contains the translations (¢ + b + ¢)/2 and a/2, so that T = a + (b + ¢)/2, or
(b + ¢)/2; hence, the center of symmetry is displaced by (b + ¢)/4 from the intersection of m, m and a.
This center of symmetry lies in one of the four sets, Wyckoff (a)—(d), that are introduced by the body-
centering translation at 1 » 4, 4, half the [ translation, from a Pmma center of symmetry. This alternative
setting is given in the International Tables for X-Ray Crystallography [3]; it corresponds to that in
Fig. 6.18b with the origin shifted to the center of symmetry at §, 1, 1. Space groups in class mmm based
on A, B, C, and F unit cells similarly introduce additional sets of centers of symmetry. The reader may
care to apply these rules to space group Pnma and then check the result with Fig. 2.36. Note that there
are two sets of special equivalent positions on 1, which is why an origin on either center of symmetry
can be chosen.

Type and Location of Symmetry Axes

The quantity T also shows the types of twofold axes parallel to a, b, and c. Thus, if T contains an a/

2 component, then if a twofold axis parallel to a exists in the space group, it is a 2, axis. Similarly for

twofold axes parallel to y and z. Thus, in Pnna, T = b/2,and so 2, = 2,2, = 2;,and 2, = 2. In Phca,
21212

= (b + ¢ + a)/2; hence, all axes are 2, and the full space-group symbol is PZ ——
ca’

The location of each twofold axis may be obtained from the orientation of the symmetry plane
perpendicular to it, being displaced by half the corresponding glide translation, where appropriate.
Thus, in Pnna, we find 2 along [xy, 1], 2; along [1,y,4] and 2 along [},0, z]. In Pmma, 2, is along [x, 0,
0], 2 is along [0, y, 0] and 2 is along [ 0, z]. The reader may care to continue the study with space
group Pnma, and then check the results against Fig. 2.36.

In the monoclinic space groups of class 2/m, a 2 axis with a translational component of /2 shifts
the center of symmetry by b/4 with respect to the point of intersection of 2; with m; carry out Problem
7.3 and check you result in Tutorial Solution 7.3. In P2/c, the center of symmetry is shifted by c/4 with
respect to 2/c, and in P2,/c the corresponding shift is (b + ¢)/4, see Fig. 2.32.

General Equivalent Positions
Once we know the positions of the symmetry elements in a space-group pattern, the coordinates of the
general equivalent positions in the unit cell follow readily.
Consider Pmma. Following out the above analysis, we may write the orientation of the symmetry
elements:
1 at 0,0,0; choice of origin
my, the plane (},y,z)
my, the plane (x, 0, z)
a, the plane (x, y, 0)


http://dx.doi.org/10.1007/978-1-4614-3954-7_17#Fig18_6
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Taking a point x, y, z across each of the three symmetry planes, we have, from Fig. 2.33:

my |
X, ¥,z E_xay7z

my _
x7y7 z

a
%+xayaz

If these four points are now operated on by 1 the total of eight equivalent positions for Pmma are
obtained: + {x,y,z; 1 —x,y,z; x,¥,2; 3 +x,,Z}.

A similar analysis may be carried out for the space groups in the mm2 class, with respect to origins
on 2 or 2;, although we have not discussed these space groups in this book. For example, work
through the space group Pma*, and check your result with Sect. 3.7.2 and Fig. 3.25, or with the
International Tables for X-ray Crystallography [3].

2,79 Tetragonal and Hexagonal Space Groups

We shall examine one space group from each of the tetragonal and hexagonal systems because new
features arise on account of the higher rotational symmetry in these two systems.

Tetragonal Space Group P4nc

It is evident that this space group is based on the point group 4mm. Reference to Table 1.5 shows that
the symbol has the following interpretation: a fourfold axis along z; n-glide planes normal to x (and to
y, because of the fourfold symmetry); c-glide planes normal to [110] and its fourfold symmetry-
related direction [110]. The orientation of the n glides can be handled in the manner already discussed.

In the case of the ¢ glide, it is straightforward to show, from Problem 2.21, that if the glide plane
intercepts the x and y axes at the value ¢, then a point x, y, z is reflected across the glide plane and
translated to the position g — y,q — x, % + z. Thus, as in Sect. 2.7.5, we can set up the interpretation of
the symbol P4nc, again using Euler’s theorem, that the combination of any two operations is
equivalent to a third operation. Thus, n 4 = ¢, but, in contradistinction to the point group 4mm, the
three operators do not all pass through the origin point.

Let the symmetry elements be placed as follows:

4 along the z axis, that is, the line [0, O, z]
n normal to x, being the plane (x, f, z)
¢ normal to [110], the plane (g, g, z)

A point x, y, z (1) rotated about the 4-axis becomes y, x, z (2); this point is taken across the n glide to
%—y,Zﬁ —x,% +z (3). If we now operate on the original point (1) by the ¢ glide, then x, y, z is
reflected to ¢ — y,q¢ — x, % + z (4). Now, points (3) and (4) are one and the same, so that g = % and
o= i. This setting of the symmetry elements gives rise to the standard diagram for P4nc, shown in
Fig. 2.37. A similar result may be obtained by an initial clockwise rotation and the equivalent n glide
parallel to (o, y, z). The positions of the additional symmetry elements, not apparent from the symbol,
should again be noted. The diagram of the unit cell and its environs is complete, because any point
shown can be reached from any other point on the diagram by a single symmetry operation, plus unit-
cell translations as necessary.

Hexagonal Space Group P6s/m
In this space group we encounter sixfold and threefold rotation operations. From Web Appendix
WAA4, we show that a point x, y, z on hexagonal axes rotated anticlockwise about a 63 screw axis along


http://dx.doi.org/10.1007/978-1-4614-3954-7_3#Sec29_3
http://dx.doi.org/10.1007/978-1-4614-3954-7_3#Fig25_3
http://dx.doi.org/10.1007/978-1-4614-3954-7_1#Tab5_1
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P4 nc No. 104 Pdnc 4mm Tetragonal
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+O O+ +O O+
O O+ O O+
11O O3+
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Origin on 4 Conditions limiting
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and point symmetry General:
. hkl: No conditions
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Special:
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2 a 4 00,z 4434z hkl: h+k+1=2n

Fig. 2.37 Diagrams to show the general equivalent positions and symmetry elements for the tetragonal space group
P4nc (Lonsdale K, Henry NFM (1965) International tables for X-ray crystallography, vol I. Kynoch Press. Reproduced
by courtesy of 1. U. Cr.)

z would be moved to the position x — y, x, % + z. The translation of % accompanying the z coordinate
arises from the translation associated with the 65 axis, namely, a translation of 3/6, or % along z. The
sequence of points obtained by the successive operations of 63 about [0001] are:

X,,7 X—y,X3+7z J,x—y,z; Ey3+7;
(1) (2) (3) (4)
y—x,)?,z; yvyfxv%‘i’z

(5) (6)

Points (1) and (3) are related by a threefold rotation: note that 3 = 62, that is, two successive
operations of 63, whereas points (1) and (4) are related by 2, symmetry. The space group is completed
by introducing the m plane at z = }T: this position ensures that the center of symmetry is at the origin;
actually the symmetry at the origin is 3: 1 is a subgroup of 3. Other important symmetry elements now
in evidence include 6, 3, and 1.

Figure 2.38 illustrates space group P63/m. The 12 general equivalent positions comprise the six
listed above and another six obtained by their inversion across the center of symmetry at the origin; all
coordinates change sign. Consider point (2) reflected across the m plane to x — y,X,5 — z. How may
this point be reached from x, y, z in a single operation? Either a clockwise 3 operation, or an
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Fig. 2.38 Diagrams to show the general equivalent positions and symmetry elements for the hexagonal space group
P63/m (Lonsdale K, Henry NFM (1965) International tables for X-ray crystallography, vol I. Kynoch Press. Reproduced

by courtesy of 1. U. Cr.)

anticlockwise 3% operation, which is equivalent to two successive anticlockwise 3 operations, relates
these two points; we note in passing that both 3 and 3 are symmetry operations in this group, related
to the single symmetry element 3.

A scheme for handling hexagonal space groups, similar to those used for the lower-symmetry
systems, could be devised, but it will be more straightforward to use matrix operations, as we shall

now demonstrate.
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2.8 Matrix Representation of Symmetry Operations

The representation of symmetry operations by matrices has a certain inherent elegance, and is useful

for displaying the close relationship between point groups and space groups. In this discussion, we

shall use the triplet x, y, z to represent a point in three-dimensional space. It could lie on the normal to

the face of a crystal or be an atom in a crystal structure, and we can indicate it concisely by the vector x.
A symmetry operation may be written as

Rx+t=x (2.52)

where x and x’ are column vector triplets before and after the operation, R is a matrix representing the
symmetry operation, and t is a translation vector with components parallel to x, y, and z.

2.8.1 Matrices in Point-Group Symmetry

From the definition of point group, Sect. 1.4, it follows that t is identically zero in a point group. All
symmetry elements pass through a single point, the origin: if it were not the case, then parallel
symmetry axes, for example, could be generated. The consequence of this arrangement for a twofold
axis is shown in Fig. 2.39.

Thus, for point groups, (2.52) reduces to

R x=x' (2.53)

Let R; represent an m plane perpendicular to the x axis, as in the orthorhombic system, for
example. Then, we have

100 X X
01 0 Yyl =1y (2.54)
0 0 1 z z

R, X x/

O
O
w(O+
NOX
O
O

a b c d e

Fig. 2.39 Points 1 and 2, related by the diad (twofold axis) a, when rotated about the axis b produce points 4 and 3. But
3 and 4 are now related by another diad, c. The effect of diad c on points 1 and 2 is to produce points 6 and 5. But these
points are related to 3 and 4 by diad d and to each other by diad e. Now 3 and 4, for example, can be rotated about e, and
so on. Clearly, this process would lead to an infinite number of parallel, equidistant diad axes, together with the
symmetry-related points, a situation that is totally incompatible with a point group
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The multiplication is carried out, as usual, along the row and down the column, with the result at
the intersection marked; that is,

4
pp——
»*

4 (2.55)
R, X x'
X=—1xx+0xy+0xz (2.56)
and similarly for y and z.
Let the triplet X’ now suffer reflection across a mirror plane normal to y, using matrix R,:
1 00 X X
010 yl =1y (2.57)
0 0 1 z z
R, X x”

It should be clear that the relationship between x and x” is that of a twofold rotation about the z
axis. Thus, for the two m planes,

m m=2 (2.58)

as we have seen already, Sect. 1.4.2.
Another way of reaching the same final result is first to combine the two matrices R; and R,

1 00 T 00 100
0 0 1 0 0 1 0 0 1
R, R, R;
and then to use the right-hand side of (2.59) in (2.53):
1 00 X X
010 yl =1y (2.60)
0 0 1 z z
R3 X x”

Equation (2.59) corresponds to operation R, R (R followed by R,), the order of multiplication
following (2.55). If a rotational symmetry axis forming an operator R is less than or equal to degree
2 or to m, the order of multiplication need not be followed, but it is good practice to multiply the
matrices in the standard manner; we can highlight this feature by considering point group 4mm.

The matrices for a fourfold rotation along the z axis and an m plane perpendicular to x are, in order,

mlx 4 along z
100 010 010
010 1 0 0|=(1 00 (2.61)
0 0 1 0 0 1 0 0 1

=
9

=
&

=
&
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Hence, R; Ry = R3, and R; x(x,y,z) = x/(y,x,2); R; represents an m plane symmetry operator
normal to [110]. Multiplying in the reverse order, that is,

(R; Ry)x =x" (2.62)
gives
Ri R, =Ry (2.63)

where x” is now y, X, z, and Ry is a matrix operator representing an m plane normal to [110]. Write out
this matrix. The m planes represented by R; and R, are equivalent under symmetry R, or R,, but lead
to physically different sites. Thus, if we are expecting x’ from x and obtain x” instead, it may be
confusing and, in considering some physical properties, could be significantly different. All other
point groups may be treated in the standard manner just described.

2.8.2 Matrices in Space-Group Symmetry

In space-group symmetry, t in (2.52) is not necessarily equal to zero. Such a situation will exist
whenever the space group under consideration contains translational symmetry. We will consider first
space group P2,/c, Sect. 2.7.5. As before, we set the origin on 1 (R3), 2; (Ry) along [p, y, r], and ¢
(R,) the plane (x, ¢, z). The operation R; followed by R,, from our previous discussion, may be
formulated as

100 0 1 00O 2p 1 00O 0
0 1 0|+ |2¢|-{0 1 Of+]1 01 0[+]0 (2.64)
0 0 1 ] 0 0 1 2r 00 1 0
Rz 12 Rl t] R3 t?

Matrix R; is just that for twofold rotation about a line parallel to the y axis, as represented above,
and R, is the matrix for an m plane normal to y, as given above. The translation vectors t; and t, may
be obtained from the setting, following the argument relating to Fig. 2.33. Matrix Rj is the multipli-
cation R, R and, clearly, is equivalent to a center of symmetry (1) at the origin. Since, by definition
of the standard origin, t; must be zero, we have the translation vectors

tp+t;=t3=0 (2.65)

It follows that p =0, ¢ :i and r = %, as before. These results may be regarded as a matrix

justification of the scheme used in Sect. 2.7.5, and expressed in the half-translation rule, Sect. 2.7.8.
As a final example, we shall consider space group Pnma, see Sect. 2.7.7. From the symbol, we can
write
R;: n is the plane (p, y, z) with n-translation 0
R,: m is the plane (x, ¢, z) with no translation
Rj;: a is the plane (x, y, r) with a-translation %, 0,0
R,: 1 is the center of symmetry at 0,0,0 (no translation)
We know that, for space groups in the mmm class, we have

11
202

R; R; R, =R, (2.66)
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Hence,

1 00 1 0 0 0] [T 0o 2p
01 0|+]0 01 0[+|2¢| [0 1 Of+]13
00 1 2r 00 1 0] |0 0 1 3
R; t3 R, ty R; t
100 0
=0 1 0|+]0
00 1 0
R4 ty
(2.67)
And we have
ts+t,+t=t,=0 (2.68)

Multiplying the matrices and adding the translation vectors we obtain p = 1,¢ =1, and r = § as
222

given in Fig. 2.36. The full symbol of point group mmm is — — —, so that in Pnma there are 2 or 2,
mmm

axes normal to the symmetry planes. We can obtain the results readily from (2.67), inserting the
values of p, g, and r into the translation vectors; if the fraction % appears in line with the x coordinate in

a plane normal to x, then the axis is 2, and similarly for the y and z positions. Hence, the full symbol
for this space group is P% % %. The same result could be achieved with the scheme used for
solving Problem 2.10, perhaps with less elegance.

The essential difference between point groups and space groups rests in the translation vectors, and
the infinite space to which the space groups refer. Symmorphic space groups such as Pm, C2/m, and
Imm2, some of which contain translational symmetry elements, do not need any special treatment to
determine the orientation of the symmetry elements with respect to the origin, since the symmorphic
space groups contain the point-group symbol, the origin is given immediately, for example, on m in
Pm, at 2/m (1) in C2/m, and along mm?2 in Imm2; all translation vectors in equations such as (2.64) are
zero in these space groups. The half-translation rule, once understood, is the simplest method of
locating the origin, certainly for the non-symmorphic space groups in the monoclinic and orthorhom-
bic systems, which represent the majority of known crystals.

29 Diffraction Symbols

We look ahead briefly to some results in later chapters, and note that after a crystal has been examined to
the extent that indices can be assigned to the X-ray diffraction spectra, the totality of the diffraction
information can be assembled into a diffraction symbol. This parameter includes the Laue group and the
symmetry determined through the systematic absences.
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Table 2.7 Orthorhombic space group diffraction symbols

Diffraction symbol

mmmP
mmmP
mmmP
mmmP
mmmP

mmmP
mmmP
mmmP
mmmP
mmmP
mmmP
mmmP
mmmP
mmmP
mmmP
mmmP
mmmP
mmmP
mmmP
mmmC

mmmC
mmmC

mmmC
mmmC
mmmC
mmmC
mmml

mmml
mmml
mmml
mmmF
mmmF
mmmF

2
2

[

S T T T SIS ST e

d
d

2
2

S Qo &0

ol o o o

d
d

Point group
222 mm?2
. P222 Pmm?2
2; P222,
. P2,2,2
2, P2,2,2,

Pc2m = Pma2
Pcm2y =\ Pmc2,
Pnm2, = Pmn2,
Pcc2

Pca2,

Pba2

Pnc2

Pna2,

Pnn2

S QI I = & 9

Cm2m =\ Amm2

2, 222,

Cmc2, = [ Cmc2,
C2cm = Ama?
C2ma = Abm2

C2ca = Aba2
Cec2

1222 Imm?2
{1212121 }
Ima2
Iba2

F222 Fmm?2
. Fdd2
d

mmm
Pmmm

Pcmm = Pmma

Pnmm = Pmmn
Pcem

Pcam = Pbcm
Pbam

Pnem = Pmna
Pnam = Pnma
Pnnm

Pcca

Pbca

Pccn

Pban

Pbcn

Pnna

Pnnn

Cmmm

Cmem

Cmma
Cmca
Ceem
Ccca
Immm

Imam = Imma
Ibam

Ibca

Fmmm

Fddd

Notes: (1) Space groups shown in bold type, e.g. P2,224, are uniquely determinable when the Laue group is known. (2)
Space groups shown in italic type, e.g. Pccm, are not uniquely determinable even when the Laue group is known. (3)
Special pairs of space groups are enclosed in brackets, e.g. [[222, [2,2,2,]. (4) Space groups enclosed in parentheses,
e.g. Pma2, Pc2m, are determinable if the point group and its orientation are known. (5) In rows containing two symbols,
e.g. Pc2m and Pma?2, the symbol on the right is the standard setting, whether or not it is in parentheses

In Table 2.7, we list the diffraction symbols for the orthorhombic space groups. A full discussion
of diffraction symbols for the 230 space groups may be found in the International Tables for X-Ray
Crystallography (2002, Volume A) or (1965, Volume I).
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2,10 Some Other Types of Symmetry

The symmetry concepts dealt with so far have referred to the classical “non-color” groups. Consideration of
other patterns, such as those of wallpapers, tiled walls and floors of the Alhambra, reveal the existence of
color symmetry, the simplest example of which is black-white symmetry.

An example of the classical symmetry that we have been studying is shown in Fig. 2.40. At the
bottom of the illustration there are three fourfold rotation points, assuming a two-dimensional pattern.
If we choose the center point as an origin, then another three points in identical orientation form the
corners of a plane unit cell, set at 45° to the borders of the figure. It may be found convenient to make
a copy of the figure for this study. Not surprisingly, twofold rotation points exist at the mid-points of
the unit-cell edges, but the fourfold point at the center of the unit cell is in a different orientation from
those at the corners. There are also m lines and g lines in the pattern: the plane group is p4mg: see also
Fig. 2.22; pAmg = p4gm by interchange of axes.

2.10.1 Black-White Symmetry

The simplest nonclassical symmetry is black-white symmetry, of which Fig. 2.41 is an example. The
elements of this pattern are black beetles and white beetles, and the same symmetry elements as in
Fig. 2.40 are present in this illustration. The m lines in the figure are classical, but the g lines involve a
color change from white to black and vice versa as do the fourfold rotation points. The plane group may
be designated p4’gm.

Fig. 2.40 Classical plane
group of symmetry pdmg
(see also Fig. 2.22) (Mac-
gillavry CH (1965) Sym-

metry aspects of
M. C. Escher’s periodic
drawings. Reproduced

by courtesy of 1. U. Cr.).
Scheltema and Holkema,
Bohn (for 1. U. Cr., 1976)
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Fig. 2.41 Black/white
plane group of symmetry
p4 gm (Macgillavry CH
(1965) Symmetry aspects
of M. C. Escher’s periodic
drawings. Reproduced by
courtesy of I. U. Cr.)

Potassium Chloride

A practical example of very closely black-white symmetry is found in the structure of potassium chloride,
which consists of the isoelectronic K* and Cl~ ions, Fig. 2.42. Because X-rays are scattered by electrons
in a crystal structure, each of these species appears identical in an X-ray beam. Thus, the structure
appeared on first examination to be based on a cubic P unit cell,® since the resolution of the X-ray pattern
at that time was not high.

After other alkali halides, notably sodium chloride, had been examined and their structures found
to be cubic F, a more detailed examination showed that potassium chloride, too, was cubic F, and the
true repeat distance was revealed. The X-ray reflections that would have been indicated the F cubic
structure of potassium chloride were too weak to be revealed by the first experiments with the X-ray
ionization spectrometer. The correct repeat period is found also by neutron scattering, since the
scattering powers of the K* and CI~ species differ significantly for neutron radiation, Sect. 12.5.

2.10.2 Color Symmetry

As an example of color symmetry, we examine Fig. 2.43. It comprises fish in four different colors and
orientations, but all fish of any given color have identical orientations. The 90° difference in
orientation between the pairs white-green, green-red, red-blue, and blue-white fish indicate the
presence of fourfold color-rotation points. The almost square elements of fins, of sequence white,

8 See Bibliography (Bragg 1949).


http://dx.doi.org/10.1007/978-1-4614-3954-7_12#Sec1_12
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OOOOO
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OEOEO
OOOEOE

Fig. 2.42 The structure of potassium chloride, KCl, as seen in projection on to a cube face. Since K™ and Cl~ are
isoelectronic (18 electrons each), their scattering of X-rays (q.v.) is closely similar

Fig. 2.43 An example of a color symmetry plane group (Macgillavry CH (1965) Symmetry aspects of M. C. Escher’s
periodic drawings. Reproduced by courtesy of I. U. Cr.)
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green, red, blue, at the bottom center of the figure and three others in similar orientation form the
corners of a square unit cell.

The fourfold color-rotation point at the center of the unit cell, consisting of areas of fish tails,
shows the same color sequence but in a different orientation. The twofold rotation points are again
evident at the mid-points of the cell edges. In this pattern, however, the twofold rotations involve a
change of color, as indicated by the motifs at the fourfold rotation points: they are twofold color-
rotation points.

For further discussions on black-white and color symmetry, the reader is referred to the works of
Macgillavry and Shubnikov listed in the Bibliography at the end of the chapter.

2.11 Problems

2.1. Figure P2.1a shows the molecule of cyclosporin H repeated by translations in two dimensions.
In Fig. P2.1b, the molecules are related also by twofold rotation operations, while still subjected
to the same translations as in Fig. P2.1a. Four parallelogram-shaped, adjacent repeat units of
pattern from an ideally infinite array are shown in each diagram. Convince yourself that

Fig. P2.1 (a) The mole-
cule of cyclosporin H
repeated by translations in
two dimensions. (b) The
molecules are related also
by twofold rotation opera-
tions




2.1

2.2.

2.3.

24.

2.5.
2.6.

2.7.

2.8.

2.9.

2.10.

Problems 107

Fig. P2.1a is formed by repeating a single molecule by the unit-cell translations shown, and that
Fig. P2.1b follows from it by the addition of a single twofold operation acting at any parallelo-
gram corner. Furthermore, for Fig. P2.1b state in words:

(a) The locations of all twofold symmetry operators belonging to a single parallelogram unit.
(b) How many of these twofold operators are unique to a single parallelogram unit?

Two nets are described by the unit cells (1) a = b, y = 90° and (2) @ = b, y = 120°. In each
case: (a) What is the symmetry at each net point? (b) To which two-dimensional system does
the net belong? (c) What are the results of centering the unit cell?

A monoclinic F unit cell has the dimensions a = 6.000 A, b = 7.000 A, ¢ = 8.000 A, and
f = 110.0°. Show that an equivalent monoclinic C unit cell, with an obtuse [ angle, can
represent the same lattice, and calculate its dimensions. What is the ratio of the volume of the C
cell to that of the F cell?

Carry out the following exercises with drawings of a tetragonal P unit cell:

(a) Center the B faces. Comment on the result.

(b) Center the A and B faces. Comment on the result.

(c) Center all faces. What conclusions can you draw now?

Calculate the length of [312] for both unit cells in Problem 2.3.

The relationships a € b € ¢, o € f Z 90 or 120°, and y = 90° may be said to define a diclinic
system. Is this an eighth system? Give reasons for your answer.

(a) Draw a diagram to show the symmetry elements and general equivalent positions in ¢2mm,
origin on 2mm. Write the coordinates and point symmetry of the general and special positions, in
their correct sets, and give the conditions limiting X-ray reflections in this plane group. (b) Draw a
diagram of the symmetry elements in plane group p2myg, origin on 2; take care not to put the
twofold point at the intersection of m and g. Why? On the diagram, insert each of the motifs P, V,
and Z in turn, each letter drawn in its most symmetrical manner, using the minimum number of
motifs consistent with the space-group symmetry.

(a) Continue the study of space group P2,/c, Sect. 2.7.5. Write the coordinates of the general and
special positions, in their correct sets. Give the limiting conditions for all sets of positions, and write
the plane-group symbols for the three principal projections. Draw a diagram of the space group as
seen along the b axis. (b) Biphenyl, (O)y—Q), crystallizes in space group P2;/c with two molecules
per unit cell. What can be deduced about both the positions of the molecules in the unit cell and the
molecular conformation? The benzene rings in the molecule may be assumed to be planar.

Write the coordinates of the vectors between all pairs of general equivalent positions in P2,/c
with respect to the origin, and note that they are of two types. What is the “weight,” or
multiplicity, of each vector set? Remember that f% and +% in a coordinate are crystallo-
graphically equivalent, because we can always add or subtract 1 from a fractional coordinate
without altering its crystallographic implication.

The orientation of the symmetry elements in the orthorhombic space group Pban may be
written as follows’:

1at 0,0, 0 (choice of origin)

b - glide || (p,y,2)

a - glide || (x,q,z) p(from the space - group symbol)
n - glide || (x,y,7)

°In general, the symbol Il in this context indicates the plane (or line) specified; for example, the b-glide plane will be the
plane (p, y, 2).
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Determine p, ¢, and r from the following scheme, using the fact thatn a b = 1:

L,z =52 -x, —3+yz
[ J
(o e Y

Construct a space-group diagram for Pbam, with the origin at the intersection of the three

symmetry planes. List the coordinates of both the general equivalent positions and the centers

of symmetry. Derive the standard coordinates for the general positions by transforming the

origin to a center of symmetry.

Show that space groups Pa, Pc, and Pn represent the same pattern, but that Ca is different from

Cc. What is the more usual symbol for space group Ca? What would be the space group for Cc

after an interchange of the x and z axes? Is Cn another monoclinic space group?

For each of the space groups P2/c, Pca2,, Cmcm, P42,c, P6,22, and Pa3:

(a) Write down the parent point group and crystal system.

(b) List the full meaning conveyed by the symbol.

(c) State the independent conditions limiting X-ray reflections.

(d) List the Buerger diffraction symbols for these space groups.

Consider Fig. 2.25. What would be the result of constructing this diagram with Z alone, and not

using its mirror image?

(a) Draw a P unit cell of a cubic lattice in the standard orientation.

(b) Center the A faces. What system and standard unit-cell type now exist?

(c) From the position at the end of (b), let ¢ and all other lines parallel to it be angled backward
a few degrees in the ac plane. What system and standard unit-cell type now exist?
From the position at the end of (c), let ¢ and all other lines parallel to it be angled sideways a
few degrees in the bc plane. What system and standard unit-cell type now exist? For (b) to
(d), write the transformation equations that take the unit cell as drawn into its standard
orientation.

Set up matrices for the following symmetry operations: 4 along the z axis, m normal to the y

axis. Hence, determine the Miller indices of a plane obtained by operating on (/k/) by 4, and on

the resulting plane by the operation m. What are the nature and orientation of the symmetry

element represented by the given combination of 4 followed by m?

The matrices for an n-glide plane normal to a and an a-glide plane normal to b in an orthorhom-

bic space group are as follows:

100 71 00 0
01 ol+fo] |01 0|+]3
00 1 0] |0 0 1 3
a t n t

What are the nature and orientation of the symmetry element arising from the combination of #
followed by a? What is the space-group symbol and its class?

(a) Determine the matrices for both a 65 rotation about [0, 0, z] and a c-glide plane normal to the y
axis and passing through the origin in space group P6s;c*. Use the fact that a threefold right-
handed rotation converts the point x, y, z to y, x — y, z, and that 2 3 =6. (b) What is symmetry
represented by the symbol * in the space group symbol and what are the point-group and
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2.19.

2.20.

2.21.

2.22.
2.23.

2.24.
2.25.

space-group symbols? (c) What is the matrix for the symmetry operation found in (b)? (d) Draw a
diagram for the space group. List the number of general equivalent positions, their Wyckoff
notation, point symmetry, coordinates, and conditions limiting reflections for the space group. (d)
Are there any special equivalent positions? If so, list them as under (c).

A unit cell is determined asa = b = 3 ;\, c=9 A, o= f =90°,y = 120°. Later, it proves to

be a triply primitive hexagonal unit cell. With reference to Fig. 2.11, determine the equations

for the unit-cell transformation Ry.x — Ropy, and calculate the parameters of the rhombohedral
unit cell.

In relation to Problem 2.19, given the plane (13*4) and zone symbol [12 x 3] in the hexagonal

unit cell, determine these parameters in the obverse rhombohedral unit cell. The symbol * here

indicates that the three integers given relate to the x, y, and z axes, respectively.

By means of a diagram, or otherwise, show that a site x, y, z reflected across the plane (¢gz) in

the tetragonal system has the coordinates ¢ — y, ¢ — x, z after reflection.

Deduce a diffraction symbol table for the monoclinic space groups.

Draw the projection of an orthorhombic unit cell on (001), and insert the trace of the (210) plane

and the parallel plane through the origin.

(a) Consider the transformation a’ = a/2,b’ = b, ¢’ = ¢. Using the appropriate transformation
matrix, write the indices of the (210) plane with respect to the new unit cell. Draw the new
unit cell and insert the planes at the same perpendicular spacing, starting with the plane
through the origin. Does the geometry of the diagram confirm the indices obtained from the
matrix?

(b) Make a new drawing, like the first, but now consider the transformation a’ = a, b’ = b/2,
¢’ = ¢. What does (210) become under this transformation? Draw the new unit cell and
insert the planes as before. Does the geometry confirm the result from the matrix?

Why are space groups Cmm?2 and Amm?2 distinct, yet Cmmm and Ammm are equivalent?

An orthorhombic P unit cell has the dimensions a = 5.50 A, b =6.75 A, c=12.20 10\, and

their reciprocals (x = 1) are a" =0.1818 1&_1, b" = 0.1481 A‘l, ¢ =0.08197 A", Use the

matrix M to transform: (a) The unit cell. (b) The Miller indices (312). (c) The zone symbol

[102]. (d) The reciprocal unit cell dimensions. (¢) The point x = 0.3142, y = 0.4703,

z = —0.5174.

=
|
= —
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3.1 Generation and Properties of X-Rays

X-rays are an electromagnetic radiation of short wavelength, and can be produced by the sudden
deceleration of rapidly moving electrons at a target material. If an electron falls through a potential
difference of V volt, it acquires an energy eV electron-volt (eV), where e is the charge on an electron.
This energy may be expressed as quanta of X-rays of wavelength /4, where each quantum is given by

A =hc/(eV) 3.1

h being the Planck constant and c¢ the speed of light in vacuum. Substitution of numerical values into
(3.1) leads to

A=124/V (3.2)

where V is measured in kilovolt and / is given in Angstrom units (A). The wavelength range of X-rays
is approximately 0.1-100 A, but for the purposes of practical X-ray crystallography, the range used is
restricted to 0.7-2.5 A.

3.1.1 X-Rays and White Radiation

Except for synchrotron radiation, which is discussed in Sect. 3.1.6, a widely used source of X-rays in
conventional crystallography laboratories is the sealed hot-cathode tube with a rotating anode,
illustrated diagrammatically in Fig. 3.1. Electrons are emitted from a heated tungsten filament, the
cathode, and accelerated by a high voltage, 40 kV or more, towards a water-cooled target anode,
usually made of copper or molybdenum. A large proportion of the energy reaching the target is
dissipated as heat on account of multiple collisions within the target material, but about 10% of it is
converted usefully for X-ray crystallographic purposes. In order to dissipate the heat rapidly and
efficiently, the water-cooled anode is rotated, as indicated in the diagram of Fig. 3.1.

M. Ladd and R. Palmer, Structure Determination by X-ray Crystallography: 11
Analysis by X-rays and Neutrons, DOI 10.1007/978-1-4614-3954-7_3,
© Springer Science+Business Media New York 2013
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Rotating anode Conling wike:

Vacuum chamber 10E-7 Torr * ‘

Focal spot viewed
from cathode

e
Ferrofluidic seal

Focal spot viewed
through Be window
at angle of 6 degrees Cu

g
X-rays ‘////

Be window

Potential difference between
cathode and anode 40 kV

To dissipate the 4 kW load

and prevent the anode from
melting, the hollow water-

cooled anode is rotating at

6000 rpm

Filament current ~100 mA

m Cathode cup

W filament

Fig. 3.1 Schematic diagram of a sealed crystallographic X-ray tube. The target anode is provided with a means
of rotation, so as to aid the dissipation of heat generated by the electron impact on the target and to prolong the life of
the target

As a consequence, a higher accelerating voltage can be applied to the tube, which results in a more
powerful X-ray source. If the energy eV is not too high, there will be a continuous distribution of
X-ray wavelengths, “white” radiation, or Bremsstrahlung (Ger. = braking radiation), as shown in
Fig. 3.2. With an increase in the accelerating voltage V, the intensity of the radiation increases, and
the maximum of the curve moves to shorter wavelengths.
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Fig. 3.2 Variation of intensity with wavelength for an X-ray tube, for three different operating voltages; as V increases,
the maximum wavelength in the continuous spectrum moves to shorter wavelengths, in accordance with (3.2)

3.1.2 Characteristic Radiation

At a particular higher value of V, the impinging electrons excite inner electrons in the target atoms.
Other electrons from higher energy levels then fall back to the inner levels, and their transitions are
accompanied by the emission of X-radiation of high intensity, characteristic of the material of
the target. The X-ray wavelength depends on the energies of the two levels involved, E; and E,
such that

;L:hc/|E2_E1‘ (33)

Figure 3.3 illustrates the curve of radiation intensity against X-ray wavelength, when the accel-
erating voltage is sufficient to excite the K spectrum of the target metal. The K spectrum consists of
the Kx and Kfi wavelengths, which are always produced together, and correspond to electrons
falling back to the K level from the L and M levels respectively. Two slightly different L energy
levels exist, so that the important Ko spectrum consists of two components, Ko; and Koy, of
closely similar wavelength. Similarly, M — K transitions give rise to Kff characteristic radiation.
The wavelengths of the K radiations for a target material of copper are: Kf; = 1.39222 A,
Kp, = 1.38109 A, Ka; = 1.54056 A, and Ko, = 1.54439 A. The mean value for Ko is obtained
by averaging the Ko and Ko, wavelengths in their intensity ratio of 2:1, thus giving the average value
of 1.54184 A for K. The oy, o doublet is resolved when the angle of scatter is large, that is, at high
values of the Bragg angle 6 (q.v.).



114 3 X-Rays and X-Ray Diffraction

Fig. 3.3 Characteristic
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3.1.3 Absorption of X-Rays

All materials absorb X-rays, and the transmitted intensity is attenuated according to an exponential law:
I = Ipexp(—ut) (3.4)

Iy and I are, respectively, the incident and transmitted intensities, u is the linear absorption coefficient
of the material, and ¢ is the path length for X-rays through the material. The absorption of X-rays
increases with the atomic numbers of the elements in the absorbing material.

The variation of u with wavelength is illustrated in Fig. 3.4, which refers to elemental nickel. The
absorption coefficient u of any material decreases approximately as A2, so that as / falls, the energy
of the radiation (sc/A) becomes greater and more penetrating. With continuing decrease in wave-
length, a position is reached where the energy of the radiation is sufficient to eject an electron from the
L energy level of an atom of the material. At this point, known as the absorption edge, or resonance
level, the value of u is greatly enhanced. As the wavelength decreases further, the absorption
coefficient continues to fall off as before. In the case of nickel, this particular L absorption edge
occurs at a wavelength of 1.4886 A.

Absorption edges are important in selecting the correct radiation for a particular application. For
example, copper X-radiation would be unsuitable for materials containing a high percentage of iron.
The K absorption edge for iron is 1.7433 A, so that radiation of this wavelength would be strongly
absorbed by the iron moiety and subsequently re-emitted as the characteristic K spectrum of iron.
In such a case, molybdenum radiation, A(Kx) = 0.71073 A, would be a satisfactory alternative.
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Fig. 3.4 Variation with
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If a material consists of a single elemental species, p in (3.4) may be termed the atomic absorption
coefficient [1] u,, given by

fty = Mypt/ (D) (3.5)

where M, is the relative atomic mass, D, the density of the material, and L the Avogadro constant. Of
more general applicability is the mass absorption coefficient u,, given by u, = wD,, so that
Ua = Um(M/L). For a compound. we have

H=D tn D (3.6)

where pu,,,; is the mass absorption coefficient for the ith species of partial density D,,; in the
compound; D, ; is calculated for the ith species as Dy, ;M ; /M. For example, sodium chloride,
NaCl, has a density of 2165 kg m >, and the relative atomic masses and mass absorption coefficients
for Na and Cl are 22.98 and 3.01 m”* kg~ ', and 35.45 m* kg ' and 10.6 m* kg ™' for Na and ClI,
respectively. Hence, the linear absorption coefficient for NaCl is given by

1= 2165[(3.01 x 22.98/58.43) + (10.6 x 35.45/58.43)] = 1.65 x 10*m™!

and this parameter is needed in the correction of X-ray intensities, Sect. 4.1.3. The attenuation factor
I/ly, for a crystal of NaCl of thickness 0.1 mm in the path of the X-ray beam, is then exp(—1.65
x 10* x 0.1 x 1073, or 0.192.


http://dx.doi.org/10.1007/978-1-4614-3954-7#Sec4_4
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Fig. 3.5 Diagrammatic
superposition of the curves
of Figs. 3.3 and 3.4, for Cu
Ko X-radiation; the
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absorption of the K8 4t 4 400
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3.1.4 Monochromatic Radiation

Usually X-ray structure analysis requires monochromatic radiation, but Figs. 3.2 and 3.3 show that
X-ray sources contain a range of wavelengths. However, and in particular for radiation from a
copper target, we note that the absorption edge for nickel (1.4886 A) lies between the wavelengths
for Cu Ko and Cu Kp radiations. The effect of passing the X-rays from a copper target through a
nickel foil of ca. 0.018 mm thickness is shown in Fig. 3.5, a superposition of Figs. 3.3 and 3.4.
The Kf radiation is almost totally absorbed by the nickel, and the “white” radiation is decreased
significantly in intensity. There is also a loss in intensity of the K« radiation, but the intense part of the
beam behaves as a closely monochromatic, or filtered, radiation. Evidence for a residual presence of
K and white radiation may be seen in Fig. 9.5 as weak reflections just below the strong reflections,
that is, at lesser 0 values; the very strong reflections also show spots from tungsten Lo radiation at
still lower 0 values (4;, = 1.476 A). A similar degree of monochromatization can be obtained with
molybdenum radiation if a filter of zirconium foil is used.

Crystals themselves can act as monochromators through application of the Bragg equation (q.v.);
we consider this topic in Sect. 5.8.1ff.

3.1.5 Collimation

A collimator is used to define the angular limit of the X-ray beam. The simplest collimator is the
pinhole type, a cylindrical device in which the beam is limited usually by two defining circular
apertures together with a guard aperture. The collimation provided is satisfactory in many situations,
and a divergence angle of approximately 0.02 rad is typical. Figure 3.6a illustrates an elegant
apparatus for taking a back-reflection Laue photograph of a metal casting, showing also the type of
collimator just described.


http://dx.doi.org/10.1007/978-1-4614-3954-7#Fig5_8
http://dx.doi.org/10.1007/978-1-4614-3954-7#Sec40_5
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Fig. 3.6 Collimation of X-rays. (a) Colli-
mator employed in a back-reflection Laue
experiment (courtesy of Jackson Electron-
ics Newark, UK)

(b) Cross-section of a multifiber
polycapillary fiber collimator, with
about 400 50 m diameter channels
(Gibson D, Gibson W (2002) Adv X-ray
Anal 45; reproduced by permission of
ICDD)

Improved collimators have been described [2] in which monochromatic X-rays, obtained by
crystal reflection, are guided by multiple reflections within thin-walled borosilicate glass capillary
tubes (Fig. 3.6b). It is necessary for the X-rays to be reflected from the tube walls at less than the
critical angle 0:

0./mrad = 30/V

where the voltage V is measured in ke V. The divergence at input could be 60—120 mrad, or 5-10°, and
2—4 mrad at output. The system allows a useful X-ray flux from Cu Ko radiation to be produced that is
four to five times stronger than that obtained by simple pinhole collimation, with comparable initial
divergence, and the output beam produces uniform diffraction peaks while the higher energy
Bremsstrahlung and background radiations are insignificant.
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Fig. 3.7 Schematic illustration of the Diamond synchrotron facility at Harwell; the numbered sections are described in
the text (reproduced by courtesy of the Diamond Light Source, Harwell Science and Innovation Campus)

3.1.6 Synchrotron Sources

A synchrotron is a large-scale particle accelerator designed primarily as a tool for fundamental studies
in particle physics. However, it has many applications, and in X-ray crystallography it functions as a
very powerful source of X-rays, with an intensity of several orders of magnitude greater than that of
the sealed X-ray tube. It can generate brilliant beams of electromagnetic radiation from infra-red to
X-ray wavelengths.

The Diamond Synchrotron Source

Figure 3.7 is a schematic diagram of the Diamond synchrotron that was opened at Harwell Science

and Innovation Campus in 2007. It consists of several elements, as follow:

 In the injection system (1), an electron gun produces a series of pulses of electrons with an energy
of approximately 90 keV. These electrons are then accelerated in the linear accelerator LINAC,
which raises their energy to about 100 MeV.

« The 100 MeV electrons are further accelerated in the booster synchrotron (2). Thirty-six dipole
bending magnets of field up to 0.8 T are used to curve the electron beam around the bends in the
ring, and then they are ejected from the booster with energy of 3 GeV.

o The storage ring (3) contains 48 bending magnets that curve the electron beam between the
straight sections. The total deflection is 360° and the length of the orbit is 561.6 m. The ring is
under vacuum, and the 3 GeV electrons complete each circuit in 1.9 x 107° s, thus traveling at
98.6% of the speed of light.

» Each beamline (4) comprises three main sections: an optics hutch, an experimental hutch that
houses experimental equipment, and a control hutch, and is designed for a specific experimental
application.

» The front end (5) channels the synchrotron light into a beamline. It monitors the beam in passing
through to the optics hutch.

» The optics hutch (6) contains mirrors and diffraction gratings or crystals, the purpose of which is to
filter the beam so as to obtain the desired radiation wavelength, and also to focus it on to the sample
under investigation.

o The experimental hutch (7) houses the technical equipment for carrying out the experiments and
provides a number of different specialized X-ray detectors for the various kinds of experiments.
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» The control hutch (8) provides the operators with a computer-controlled monitoring system for the
experiment in progress.

» A radiofrequency cavity in the region of (9) contains an electromagnetic field that makes up for the
energy that the electrons lose in the form of synchrotron radiation as they travel around the ring.
There is also Diamond House, which provides for Diamond staff accommodation, meeting, and

conference rooms, and also access to the synchrotron facility itself.

The Diamond 102 beamline, which is concerned with macromolecular X-ray crystallography, has

a flux of about 1.5 x 10'* photon s™' and, typically, an operating wavelength of 0.98 A, giving a

resolution of 1.09 A. Beamlines 103 and 104 are similar to 102, and beamlines 104-1 and 124 are

available for microfocus macromolecular crystallography. A fascinating video-description of a trip

around the Diamond ring may be found at a web site [3].

Polarization of Synchrotron Radiation

An important difference between X-radiation from sealed tube or rotating anode sources and X-rays
produced by a synchrotron is their physical state of polarization; see also Sect. 3.2.4. X-rays generated
from conventional laboratory sources are totally non-polarized unless a crystal monochromator is
employed. In contrast, synchrotron radiation is 100% linearly polarized in the plane of the electron
beam orbit and elliptically polarized above and below the plane. In addition, the output radiation is
pulsed, because the electrons do not form a uniform stream.

Figure 3.8a considers a three-dimensional X-ray wave at the origin, with components of oscillation
vibrating in the y and z directions. The beam from a synchrotron is plane-polarized, with the
component in the z direction being an order of magnitude less in intensity. X-ray beams from crystal
monochromators, because they have undergone Bragg diffraction, are also polarized, but the extent is
considerably less. The effect of this primary or beam polarization of synchrotron radiation on the
intensity of the diffraction pattern must be taken into account during data processing. This is achieved
through application of a polarization factor P that includes a source-dependent property, with
components normal and parallel to the plane of polarization:

P= (I —1.)/(I+1.)

where /) and I, are the intensities of the electrical fields of the X-ray beam along and normal to the
axis of a rotation camera, respectively. The value of P is calibrated for each workstation at a
synchrotron installation. For the Diamond station, P is approximately 0.8, whereas for a graphite
monochromator, P is equal to 0.11.

A typical synchrotron radiation spectrum is shown in Fig. 3.8b and may be compared with that
from the sealed tube. The photon intensity is given in units of photon per second for a horizontal
angular aperture of 1 mrad (3.4 min of arc), with a 1 A beam current and a 0.1% spectral bandwidth,
after performing vertical integration over the full angular divergence of the radiation above and below
the orbital plane.

The flux attainable in practice depends upon the multiplying factors set by the values of the
dependent parameters. A horizontal aperture of an experimental workstation may be less than 1 mrad
for topography, typically 5—10 mrad for the majority of spectroscopy experiments, and up to 40 mrad
for the high-aperture port used for time-resolved measurements. The flux available will change
proportionally if this resolution is varied. The stored current and, hence the photo flux, gradually
decline as electrons are lost by scattering from closed electron orbits. The beam lifetime, that is, the
time of fall to approximately 1/e of the initial intensity, is approximately 8 h.
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Fig. 3.8 (a) A three-
dimensional wave
traversing the origin, with
oscillatory components
vibrating along the x and y
directions: (i) Conventional
X-ray tube radiation, (ii)
Synchrotron radiation (not
to scale). The radiation
from a synchrotron is
plane-polarized, with the z
component an order of
magnitude less than that in
the y direction. The spread
of radiation in the vertical
(z) direction is given as
A= mecz/E, where E is the
electron beam energy.

(b) Spectral curves in the
X-ray region from a normal
bending magnet and a
wiggler fora2 GeV 1 A
beam in the synchrotron
radiation source, and the
types of experiment used in
the wavelength regions
specified. The peak of the
curve is approximately
1.4/, corresponding to the
maximum output of energy
per unit wavelength; A is
the critical wavelength for
the synchrotron
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Insertion Devices: Wigglers and Undulators

The output characteristics of the synchrotron can be modified by devices inserted into the straight
sections between the magnets. An insertion device is an array of magnets which can be inserted into the
straight sections of the storage ring and cause the electron beam to follow a wiggling or undulating
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path, so as to produce more intense, tuneable light. Insertion devices come in two main types: wigglers
and undulators.

A wiggler is an insertion device that consists of an array of dipolar magnets of alternating
polarity which cause the electron beam to follow a wiggling path of oscillations perpendicular to its
general direction. This causes the light to be produced in a wide cone, spanning a broad spectrum of
X-rays. Wigglers are used in beamlines where the priority is for very high energy X-rays.

An undulator, which is more common at the Diamond installation, is an insertion device that
produces a very bright light in a very narrow beam. By varying the separation of the magnet arrays, it
is possible to tune the undulator and choose the energy that is generated. They can be used to produce
very high energy X-rays over a continuous frequency range, which is essential for many experiments,
particularly in protein crystallography.

The synchrotron source may be said to have revolutionized X-ray crystallography in certain
applications. It has enabled a rapid collection of data to be achieved, and so is of great value in
dealing with relatively unstable crystals, such as proteins, with poorly diffracting specimens or
polymers, in time-resolved studies, or in solid-state reactions and other transformations, including
enzyme-catalyzed processes, or in X-ray topographical studies of crystal defects.

Laser-Wakefield Acceleration

Relatively recent work on synchrotron sources has concentrated on a reduction in the physical size of
the accelerator. If a high-powered, femtosecond (10_15 s) laser pulse is focused into a plasma, an
electrostatic wake is produced which can be harnessed to accelerate electrons to GeV energies within
centimeter distances. Electrons become separated from the positive ions, and a ponderomotive force,
which is a non-linear force that a charged particle experiences in an inhomogeneous oscillating
electromagnetic field, arising from the laser light pushes aside the plasma electrons so as to create a
wake from the plasma. The associated electrostatic fields can produce an accelerating field of three to
four orders of magnitude greater than in the conventional accelerator.

In one application of the procedure [4], a laser pulse of 37 fs is fired at a cell of hydrogen gas
atoms, thus energizing the electrons and causing them to break free. The positive attraction of the
nucleus acts to retain the electrons and the result is an oscillation about the nucleus that produces
a plasma wave in the cell. This excitation is similar to the water-wave behind a motorboat; hence, the
term wake-field (or wakefield). Other electrons “ride” this wave at relativistic speeds and so generate
X-rays through their oscillatory changes.

An important feature in the process is the use of a miniature undulator. The combination of a
1.5 cm accelerator and a 30 cm magnetic undulator produced electron energies of 210 MeV. Further
research aims at higher electron energies, so that laser-wakefield acceleration can generate X-rays in
the useful wavelength range for diffraction experiments, and with facilities of centimeter size. This
development has great potential for X-ray studies on proteins and viruses, where powerful X-ray
sources are desirable, because of the low stability of some of these compounds.

3.2  X-Ray Scattering

Scattering occurs generally when electromagnetic radiation interacts with matter. Two everyday
examples of scattering are the blue color of the sky and the haloes around distant car lights at night
that arise from Rayleigh scattering, a highly wavelength-dependent elastic scattering of the light by
gas molecules or dust particles in the air. The pattern seen when looking at a sodium street-lamp
through a stretched handkerchief or an umbrella, which are approximately two-dimensional net
structures, shows an aspect of diffraction similar to that which we shall be discussing with X-rays
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Fig. 3.9 Combined
scattering at two centers
O and A; sy and s are unit
vectors in the incident and
scattered beams,
respectively; ov is a small
volume element at A.

|

and crystals, namely the interaction of radiation with a periodic distribution of matter. The X-ray
scattering from a crystal is described in terms of the intensity of the scattering function and the angle
of scatter.

3.2.1 Scattering by a Single Electron
If a plane monochromatic X-ray beam of wavelength A is incident upon an electron at an

origin O, then the amplitude ¥,y of the scattered beam at a point P in the forward direction at
unit distance from the origin is given by [5]

P = f20%P0 3.7

where ¥ is the amplitude of the incident wave, 26 is the scattering angle, and f> is a constant
of proportionality that we shall discuss more fully shortly.

3.2.2 Scattering by Two or More Electrons
Let a second electron be introduced at a point A, Fig. 3.9. We need now to determine the phase
difference at any point P in the forward direction, where OP is much greater than OA, for the wavelets
scattered by the two electrons. The path difference o between the two wavelets scattered by O and A is
0Y — AX; thus the phase difference ¢ is (27/1)0, that is,

¢ = (2n/2)(0Y — AX) (3.8)

If the distance OA is |r|, then the incident and diffracted waves may be defined by the unit vectors
o and s, respectively, such that AX = r-sg and OY = r-s. Thus,

¢ =2n(r-s—r-s9)/l=2nr-(s/2—so/i) =2nr-S 3.9)

From Fig. 3.10, it is clear that S is a vector normal to a plane through O that may be regarded
conveniently as a reflecting plane; hence,

S=ls—so|/4 (3.10)

so that the magnitude |S|, or S, is equal to 2sin /4.
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Fig. 3.10 Relationship of A
the scattering vector S, or
(s — sg)/4, to the reflecting
plane (hkl). The vector S is
normal to the plane (hkl), 0
and its magnitude |S|, or S,
is 2sin 6/

The amplitude of the wave scattered at P by the two electrons is thus
Yoo = foo + fag exp(i2nr - S) = fop[1 + exp(i27r - S)] (3.11)

The use of the exponential term to represent relative phase is explained below in Sect. 3.2.3 on the
Argand Diagram. In the case that neither of the electrons of the previous example occupies the origin,
so there is no zero relative phase involved, then the number 1 on the right-hand side of (3.11) would
be replaced by another exponential term. In general, the result for n electrons is given by

Y200 = f20 Z exp(i2nr; - S) (3.12)

J=1

This equation assumes that the n scattering species have equal power, which would be true if they
were all electrons, or identical atoms. In the event that the scattering species are unequal, then the
function f>¢9 would be unique to each species and included within the summation as f> ;. The scattering
process itself introduces a phase shift with respect to the origin, but this applies equally to all atoms and
may be ignored for our purposes.

3.2.3 Waves and Wave Sums

In (3.12), we considered the summation of waves of equal scattering power. In general, each
scattering entity will be allocated its own scattering function and phase. Each wave then takes the
form f; exp(i¢;), where ¢; = r; - S. For convenience, we may drop the subscript 0 (or 26) to f; unless
we specifically want to emphasize its dependence on 6; we know that such dependence is always
present. Using de Moivre’s theorem, the exponential term may be expanded into cosine (real) and
sine (imaginary) components: exp(=£i¢) = cos ¢+ isin ¢, and a straightforward way of representing
a wave is in the complex plane of an Argand diagram.
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Fig. 3.11 Combination of j .
the two waves f; exp(i¢,) 0 axis
and f> exp(i¢>), shown as
vectors on an Argand

diagram. The resultant is
F, and its phase is
expressed by the angle
¢ between F and the R
(real) axis

f,sing:

F 1,
¢
]
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Argand Diagram
In Fig. 3.11, we show the combination of two waves of scattering factors f; and f, on an Argand
diagram to give a resultant F, which we shall later identify with the structure factor, Sect. 3.5.1:

F =fiexp(i¢,) + f2 exp(i¢,) (3.13)
F is a scalar quantity but may be manipulated like a vector in the complex plane, having both a
magnitude and direction; exp(i¢p) may be regarded as an operator that rotates f counterclockwise on

an Argand diagram by the angle ¢ measured from the positive, real axis.
The foregoing analysis may be extended to n waves. The resultant sum F is, from (3.13),

F= fiexp(ip,) +frexp(ihy) + - - - + frexpligh,) Zﬁexp ich;) (3.14)

The Argand diagram, Fig. 3.12, expresses (3.14) as a polygon of f~“vectors” for the combination of
six waves, and the resultant F may be expressed as

= [Flexp(i¢) (3.15)
where the amplitude |F| is obtained from
F| = (FF*)'/2 (3.16)

F" is the complex conjugate of F, that is, exp(—i¢), Fig. 3.13. Resolving the resultant F of the six
waves into its real and imaginary components, we have
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Fig. 3.12 Combination of six waves on an Argand diagram: F = Zlejj- exp(i¢;)

9 axis

F(hkl)
B(hki)
(kD) Akl = A kD)
) 2 axis
B'(hkl) = -B'(hkl)
F(hki)

Fig. 3.13 The quantity F(/kl) for a reflection from an (kkl) family of planes and its components A’(hkl) and B’ (hkl);
$(hkl) is the phase angle for F(hikl). The conjugate F'(hikl), or F(h k [), has the same magnitude for A’ and B', but the sign
of B' is reversed; hence ¢(hkl) = —¢(hk1). In a centrosymmetric structure, F(/kl) lies along the real axis, so that F
(hkly = A'(hkl), or F(hkl), and its phase is either O or 7. Then, since A’(hkl) = |F(hkl)| cos ¢, it is common to speak of
the sign of F(hkl), that is, £F(hkl), in a centrosymmetric structure
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[F| = (4" + B (3.17)
where
A = zn:fjcos ; (3.18)
=1
and
B = zn:f] sin ¢ (3.19)
=

The phase ¢ of the resultant F is given by

¢ =tan"'(B'/A") (3.20)

Graphical Representation of Wave Sums

When waves of equal frequency, those in which we are interested, combine, the resultant can be
determined through (3.17-3.20). If two waves are in exact register—path difference, ni—the
resultant amplitude is simply the sum of the individual amplitudes. If the waves are exactly out of
phase—path difference, (n + 1)4/2—the resultant is the difference between the amplitudes. All cases
between these extremes are possible, depending on the values of the amplitudes |F| and phase angles ¢.
In Fig. 3.14, we represent the combination of two waves, one of amplitude 100 (f;) and phase 0°, and
the other of amplitude 50 (f>) and phase 240°, with respect to the origin. From the foregoing, the
amplitude of the resultant becomes

[F| = [(fi cos , + frcos §,)* + (fi sin ¢, +fsin ¢,)*]'/? (3.21)

and the phase of the resultant is

¢ = tan" ' [(fy sinp, + f>sin ¢,)/(fi cos ¢, + f>cos ¢, )] (3.22)

Importance of Correct Phases

As shown in the legend to Fig. 3.14, the resultant amplitude |F| is 86.6 and its phase ¢ is 330°. From
the figure we can see the importance of the correct phase of a wave (reflection). The peaks (atomic
positions) in this figure occur at 330° 4+ 2r (£360°). If, on one hand, we decrease f> to 25, the
resultant amplitude is 90.1, because the sine term subtracts a smaller amount, and the phase is 346°, a
small change in position. If on the other hand, we decrease the phase by half, leaving f, unchanged,
then the resultant amplitude is again 86.6, but the phase (atomic position) is now at +30°, a very
different situation; see Problem 7.11.
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Fig. 3.14 Combination of two waves of amplitudes 100 (f;) and 50 (f>) with phases 0° (¢;) and 240° (¢,), respectively.
The resultant wave has an amplitude |F| and a phase ¢. (a) First wave. (b) Second wave. (c) Resultant wave F, given
by = [(100 + 50 cos 240)* + (50 sin 240)*]'* = 86.6; ¢ = tan~'[(50 sin 240)/(100 + 50 cos 240)] = —30° (330°)
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3.2.4 Coherent and Incoherent Scattering

Coherent (Thomson) Scattering: Polarization

In coherent scattering, the incident and scattered waves have the same wavelength, and there is a definite
phase relationship between the incident and scattered radiations. When X-rays fall upon an electron, the
alternating electric-field vector imparts an alternating acceleration to the electron. Classical electromag-
netic wave theory shows that an accelerated charged particle emits radiation, through a process of
absorption and re-emission, the emitted radiation traveling in all directions for a given angle of scatter. A
theoretical treatment of Thomson scattering [5] shows that the intensity I, of the scattered radiation of
incident intensity /,, defined as power per unit solid angle, is

1
Ly = B [/ (4meocme )] (1 + cos?26)1, (3.23)
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where e is the charge on an electron, ¢ is the permittivity of a vacuum, c is the speed of light in a
vacuum, and m, is the mass of the electron. The factor 1/m. shows how electrons are the only
effective scattering species for X-rays: even the lightest species, hydrogen, although it has the same
magnitude of charge, is ca. 1,840 times heavier than the electron. This result shows also that neutrons
are excluded from the category of X-ray scattering species because they are uncharged particles. The
term %(1 + c0s?20) is a geometrical factor known as the polarization factor p for X-ray scattering,
which we shall encounter further in ensuing chapters.

(1 + cos?20) (3.24)

N —

p:

Incoherent (Compton) Scattering

With incoherent scattering, the wavelength of the scattered radiation is longer than that of the incident
radiation, which implies a loss of energy in the scattering process, owing to elastic collisions of
electrons with photons. An analysis [5] shows that in Compton scattering, the wavelength change o4
is given by

04 = [h/(mec)](1 — cos 20) (3.25)
or, by inserting the fundamental constants in appropriate units,
0/ (A) =0.0243(1 — cos 20) (3.26)

Thomson scattering illustrates the particle property of the electron, whereas Compton scattering
shows its wave nature.

3.2.5 Scattering by an Atom

In an atom, electrons are bound in levels of distinct energies, and in the scattering of X-rays by an
atom both coherent and incoherent scattering are involved. A full analysis of the scattering process
requires a wave-mechanical treatment, involving both modes of scattering, from which we obtain the
electron density function p, where p = YW and ¥ is conjugate to P; if we assume a real nature for
the electron density function then p = |‘P|2, and the expression may be interpreted such that ¥? dr, or
p drz, represents the probability of finding the electron in a volume element dz. We shall use the
Thomson formula only because incoherent scattering contributes to the background radiation and is
but a small fraction of the total intensity in the case of crystalline materials.

Consider a plane of atoms in a crystal. We demonstrate in the ensuing sections that all atoms on this
plane scatter in phase with one another and with the atoms in parallel planes, for a given scattering vector
S. Thus, we need to consider how the electrons in any one atom combine in order to obtain the total
scattering amplitude for the atom.

Let p(r) dt be the probability that an electron in the chosen atom lies in a small volume element dt
distant r from the origin, the center of the atom, where r is the magnitude of the vector r, as shown in
Fig. 3.15. If f(S) represents the scattering power of the atom in the direction S, then we have from the
foregoing:

f(S) = Jp(r) exp(i2znr - S) dt (3.27)
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single atom. A section of a
sphere of radius r, showing
an annular ring of thickness
dr at an angle ¥ to the
scattering vector S. The
volume of the annular ring
is [n(r + dr)? — 7r2)rsin ¥
d¥ = 2nr?sin P d¥ dr
(neglecting second order
terms in dr)

Fig. 3.15 Scattering by a
S

Let S make an angle ¥ with the direction of 7. Then
2nr - S = (4n/A) sin 0 rcos ¥ = mrcos ¥

where m = 4n(sin 0)/A. Since spherical symmetry has been assumed, the volume element dz is a
spherical annulus of radius  and thickness dr on S as axis, so that dt = 2772 d¥ dr.
Let mr cos ¥ = x, so that dx = —mr sin ¥ d¥. Now (3.27) may be expressed as

o0 —mr {o.¢]

—exp(ix) dx = 47rJ 2 p(r)(sinmr) /mr dr (3.28)
0

£(8) = 2nJ

0

o) |

Since m = (4n sin 0)/4, (3.28) may be recast as a function of |S|:

f(S)=4n J:C r*p(r)(sin 2nrS) /(27rS) dr (3.29)

where S is 2sin 0/ .

The atomic scattering factor may be defined as the ratio of the amplitude of coherent scattering
from an atom to that scattering by a single electron at the center of the atom. It follows from (3.29)
that, for scattering in the forward direction, when (sin 27rS)/(27rS) = 1, the expression fgo r2p(r)dr
becomes the total electron density for the atom. Hence, we may write

f(S) =2 (3.30)
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where Z is the total number of electrons in the atom, or atomic number; S = 0 is equivalent to
sin 0 = 0 in terms of the 0-angle.

As an example calculation, we consider the contribution of a Ls electron to f{S). We equate p(r) to
|V 1X|2 and use Slater’s analytical wavefunctions. The Slater one-electron 1s wavefunction ¥, may be
written as (1/+/7) c?/ 2 exp(—c1/r); ¢1is (Z — @)/ag, where o is Slater’s quantum mechanical screening
constant [6] and aq is the Bohr radius for hydrogen. With lithium, for example, o;; = 0.30 and,
remembering that p o Y2 we have from (3.29),

f1s(S) = ZC?/(ES)J rexp(—cyr) sin(2znSr) dr
0
From a table of standard integrals, or by use of the I" function (see Web Appendix WA?7),

J:Oxexp(—ax) sin(bx) dx = 2ab/(a* + bz)2

so that
fis(8) =/ (c} + n?$%)? (3.31)

In lithium, for example, there are two contributions from (3.31) and one contribution from a
similar expression for the 2s electron (see also Problem 3.3). They are added to obtain the value of fat
a given value of S. Atomic scattering factor data are readily available, quoted normally as functions of
sin /1. Such data refer to systems of electrons at rest: at a finite temperature, the effective scattering
from an atom is less than the value at rest, and we shall discuss this situation later in this chapter.
A satisfactory calculation of rest atomic scattering factors is afforded by the equation

4
£s8) = ajexp(—bs®) + ¢ (3.32)

J=1

where s is sin 6/, and the nine constants required by the equation have been recorded for all atomic
and some ionic species [7].

3.3  Scattering by Regular Arrays of Atoms

The interaction of X-rays with a crystal is a complex process, often described as a diffraction
phenomenon although, strictly speaking, it is a combined scattering and interference effect.
Two treatments, those of von Laue and Bragg, describe the process, and we shall consider them in
that order.

3.3.1 Laue Equations
Figure 3.16 represents a regular, one-dimensional array of atoms of spacing b, imagined in three-

dimensional space. Parallel X-rays are incident at an angle ¢, and scattered at an angle ¥, to
the direction of b. The path difference for rays scattered by neighboring centers is represented by
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Fig. 3.16 Diffraction
from a row of scattering
centers, of spacing b along
the y axis. The Laue
equation b(cos ¥, —

cos (o) = ki, orb-S =k,
is satisfied by any
generator of the cone

—= ¥y axis

Fig. 3.17 Several orders
of diffraction can arise
from a row of scattering
centers, for a given value
of ¢,, corresponding to
integral values for k

AQ — BP,orb(cos ¥, — cos ¢»); this difference must be equal to an integral number of wavelengths
for reinforcement to occur, so that

b(cos ¥, —cos¢,) =kl=b-s—b-sp (3.33)

where s and sy have meanings as before. This equation may be written alternatively, using (3.10), as
b-(s—so)/i=b-S=k (3.34)
The generators of a cone of semivertical angle ¥, coaxial with the row in Fig. 3.16, satisfy (3.33).

For a given value of ¢,, there will be a series of cones corresponding to the orders of k (k = 0, 1,
2, ...), as shown in Fig. 3.17.
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The discussion is extended readily to a net a, b, so giving rise to a second condition
a-(s—sg)/i=a-S=h (3.35)

A second cone now intersects the first cone generally in two lines, but for the special case that both
(3.34) and (3.35) hold simultaneously, the two lines coincide and the atoms of the net scatter in phase,
with the incident and diffracted beams lying in the plane of the net.

Generalizing the argument to three dimensions, we obtain the complete Laue equations:

a-S=1h
b-S=k (3.36)
c-S=1

Any of the three possible pairs of equations define scattering from the corresponding net, but for
the particular case that all three equations apply simultaneously, the three-dimensional array scatters
in phase and produces the ikl spectrum.

Referring to Fig. 1.12 mutatis mutandis, we can rewrite (3.36) as

a-S=2asin0/Acosa=h
b-S =2bsinf/icosff =k (3.37)
c¢-S=2csinf/Acosy =1

where £, k, and [ are integers. The direction cosines cos o, cos 3, and cos 7 of the vector S, normal to
the reflecting plane, with respect to the directions of a, b, and c are, therefore, proportional to a/h, b/k,
and c¢/l, respectively. Successive planes (%kl) in the crystal intersect the x, y, and z axes at a/h, b/k, and
c/l, respectively, so that they are parallel to the reflecting plane (4kl). Thus, (3.37) show that a
scattered beam may be considered as derived from the incident beam by “reflection” from the (kkl)
family of planes. Furthermore, if d(hkl) is the interplanar spacing, then from Sect. 1.2.2,

d(hkl) = a/hcoso = b/kcosff =1/ccosy (3.38)
and (3.37) shows that
2d(hkl) sin® = A (3.39)

a relation deduced by Bragg, originally in the form 2d(hkl) sin 6 = nA.

3.3.2 Bragg Equation

The deduction of the Bragg equation, sometimes thought to be ad hoc, was occasioned by the
observation that if a crystal in a position that produced a scattered X-ray beam was rotated through
an angle ¢ to another scattering position, then the scattered beam had been rotated through 2¢, as in
the reflection of light from a plane mirror.

In Fig. 3.18, two planes from a family of planes (hk/) are shown, together with the incident and
reflected rays. The part of the incident beam that is not reflected at a given level passes on to be
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Fig. 3.18 Geometry of
X-ray reflection. The path
difference between the two
typical rays reflected from
successive planes is

(QA; + AR). When this
difference is equal to an
integral number of
wavelengths A, a reflection
is obtained, according to
the Bragg equation

reflected from a deeper level in the crystal. Furthermore, all rays reflected from a given level remain
in phase after reflection, because there is no path difference between them.
The path difference § between the two reflected rays shown is given by

0 = QA + AR = A1A; cos ¢, = A1Ax(cos ¢y + cos ¢,)
— 2414z cos[(9, — §,)/2] cos[(, + b,)/2] (3.40)

which, by simple manipulation, becomes
0 =2dsin0 (3.41)

Since ¢ is independent of ¢, and ¢,, (3.41) applies to all rays in the bundle reflected from
the adjacent planes. By the usual rules that apply to the combination of waves, the reflected rays
will interfere with one another, the interference being at least partially destructive unless the path
difference ¢ is equal to an integral number of wavelengths. Hence, we obtain the Bragg equation, as
originally formulated:

2d'sin 0 = n). (3.42)

where 7 is an integer. The mirror-reflection analogy breaks down in practice because this equation
must be satisfied for a reflection to occur, but the treatment is, nevertheless, a very useful geometrical
way of looking at the X-ray diffraction process.

In (3.42), n is the order of the Bragg reflection. From Sect. 2.4, we recall that d(hkl)/n = d(nh, nk,
nl), with h, k, and [ taking common factors as necessary. Thus, n is included in the definition of d(hkl),
and the Bragg equation now written as

2d(hki) sin O(hkl) = 1 (3.43)

Each reflection from a crystal must now be considered, effectively, as first-order from the (ikl)
family of planes, specified uniquely by their Miller indices. To illustrate this argument further,
Table 3.1 lists data for planes parallel to (120) in a cube of side 5 A.

The Bragg and von Laue treatments are equivalent, and we shall use them as the
occasion demands. It has been convenient for this discussion, although not necessary, to consider


http://dx.doi.org/10.1007/978-1-4614-3954-7#Sec7_2

134 3 X-Rays and X-Ray Diffraction

Table 3.1 Nomenclature for interplanar spacings

Original Bragg notation Current usage
hkl Order dA) hkl dA)
120 1 2.236 120 2.236

2 2.236 240 1.118
3 2.236 360 0.745
4 2.236 480 0.559

Fig. 3.19 Equivalence
of the Laue and Bragg
treatments of X-ray
diffraction

that the scattering material is concentrated at lattice points, or on lattice planes. In general, electron
density is a continuous function, albeit with a lattice-like distribution in the crystal.

3.3.3 Equivalence of the Laue and Bragg Equations

A way of demonstrating the equivalence between the Laue and Bragg treatments is illustrated by
Fig. 3.19. Let p be the spacing between adjacent scattering points A and B in any row of a three-
dimensional lattice. An X-ray beam makes the incident angle ¢ with the row of points, and ¥ is the
angle between the diffracted ray and the same row. A “reflecting” plane must be in such a position as
to make an angle 0 with both rays; the dashed line in the figure is the trace of such a plane. Following
Sect. 3.3.1, we write

p(cos ¥ — cos ¢p) = nl (3.44)
where m is an integer. Expanding (3.44), we obtain — 2psin((¥ + ¢)/2) sin((¥ — ¢)/2) = nA.

It follows from the diagram that ¢ —0 =¥ + 0 so that (¢/2) = (¥/2)+ 0, whereupon
psin((¥ + ¢)/2) =psin(¥ +0) =d and (¥ — $)/2) = (¥/2) — ((¥/2) + 0) = —0. Hence,
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2dsin 0 = ni (3.45)

which is the Bragg equation (3.42) derived above.

3.3.4 Further Analysis of the Path Difference

In (3.12) we expressed the resultant wave from n scattering centers, there thought of as electrons.
Now, we can consider them as atoms each specified in scattering power by f(S).

The contribution to a wave scattered by the Ath atom in a unit cell is given by f4 (S) exp(i2nr, - S),
where the exponential term is the phase of the contribution from the Ath atom. Now the distance r
from the origin to atom A is expressed through

ra = Xaa + yab + z4c¢ (3.46)

where x4, y4, and z4 are the fractional coordinates of atom A, as before. Since |S| = 2 sin 6(hkl) /A,
which from (3.43) is 1/d(hkl), or d"(hkl) (taking x as 1), S is the reciprocal lattice vector d"(hkl).
Applying (2.15) we have

ray-S = (xaa+ yab + zac) - (ha* + kb* 4 Ic*) = hxp + kya + Iz4 (3.47)

sincea-a* =1, and a-b* = 0, and similarly for b and c.
Thus, from (3.12), the phase angle ¢, for an atomic species A and its phase contribution are now
given by 27ry - S, or

(f)A = 27‘[(th + kya + IZA) (3.48)

and the phase contribution is, therefore, exp[i27(hixa + kya + Iza)].

3.4  Reciprocal Lattice: Analytical Treatment

We considered a geometrical derivation of the reciprocal lattice in Sect. 2.4, as we believe that
treatment forms a straightforward introduction to it. Here, we shall discuss the reciprocal lattice in
greater detail.

In considering the stereographic projection, we showed that the morphology of a crystal could be
represented by a bundle of lines, drawn from a point, normal to the faces of the crystal. This description,
although angle-true, lacks linear definition. The representation may be extended by giving each normal a
length that is inversely proportional to the corresponding interplanar spacing in real space, and applying
it to all possible lattice planes, so forming a reciprocal lattice.

Let a Bravais (real-space) lattice be represented by the unit cell vectors a, b, ¢. The reciprocal
lattice unit cell is defined by the vectors a*, b*, c*, such that a” is perpendicular to b and ¢, and so
on. Then,

a*-b=a"-c=b"-a=b"-c=c"-a=¢"-b=0 (3.49)
The magnitudes of the reciprocal unit cell vectors are defined by

a*-a=b*"-b=c"-c=«k (3.50)
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Fig. 3.20 Triclinic unit zaxis
cell, showing its vectors
a, b, and ¢, and the
corresponding reciprocal
unit-cell vectors, a*, b*,
and ¢’

where « is a constant, normally equal to unity in theoretical discussions, and to an X-ray wavelength
in practical applications where the size of the reciprocal lattice is important.

In Fig. 3.20, the z*(c*) axis is normal to the plane a, b. Since ¢ - ¢* = cc* cos /COR, that is, taking
Kk = 1 in this discussion,

¢* =|e*| = 1/(ccos /COR) (3.51)

the magnitude of ¢” in reciprocal space is inversely proportional to the ¢-spacing in real, or Bravais,
space; similar deductions can be made for both a” and b". Since ¢ is normal to both b and ¢, it lies in
the direction of their vector product:

*

¢ =naxhb) (3.52)
where 7) is a constant. Let V be the unit cell volume in real space. Then,
V=c-(axbh) (3.53)

Now a X b is avector of magnitude ab sin ), the area of OADB, directed normal to the plane of a, b
and forming a right-handed set of directions with a and b. Then,

c-c"=nc-(axb)=nV=1 (3.54)
Hence,
" =|c*| = (absiny)/V (3.55)

with values for " and b~ obtained by cyclic permutation.
The angle 7" betweena” and b” can be obtained by the equations of spherical trigonometry (see Web
Appendices WA2 and WA3). From the discussion therein, we derive
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cosy* = (cosacos f —cosy)/ sinasin f§ (3.56)

with corresponding expressions for o and 8~ obtained by cyclic permutation. Simplified expressions
obtain for (3.51)—(3.56) when the crystal symmetry is higher than triclinic.

3.4.1 Reciprocal Lattice Properties

In the Web Appendix WAG6, we derive a number of useful properties of the reciprocal lattice, and we
summarize the results here.

Unit-Cell Volumes in Real and Reciprocal Space
The volume of the unit cell may be evaluated as follows. From (3.53), and expressing a, b, and ¢ in

terms of a set of orthogonal unit vectors, we derive the equation for a unit-cell volume V. in terms of
its six constants, as shown in Web Appendix WAG6; thus

V. = abc(1 — cos® o — cos® f — cos®y + 2 cos o cos ff cos y)l/z (3.57)
In the same Appendix, we show also that
VoV =k (3.58)
where V" is the volume of the reciprocal unit cell and « has the meaning as before.
Interplanar Spacings

From (2.16), the general equation for d (hkl) is obtained in terms of the reciprocal unit cell
constants from

|d* (hkl)|* = (ha* + kb* + Ic*) - (ha* + kb* + Ic*)
= ha*? + Kb + Pc™ 4 2klb*c* cos o + 2Ihc*a* cos f* + 2hka*b* cos y* (3.59)

and so
sin?0(hkl) = 72 /[Ad® (hkl)] = 2*d**(hkl) /4 (3.60)

Simplifications of (3.59) arise in the presence of symmetry higher than triclinic and have been
detailed adequately in Table 2.4.

Angle Between Planes
Given any two planes k| and h,k»l,, the angle between them can be found as the supplement of the
angle between the two normals, d*(hlkll 1) and d*(hzkzlz); this angle is the interfacial angle of
the stereographic projection, Sect. 1.3.

In general, the angle ¢ between the forward directions of two vectors p and q is given through

cosd = (p-4q)/pq (3.61)
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Table 3.2 Limiting conditions for centered unit cells

Structure factor

Unit-cell-type  Limiting conditions Associated translations multiplier G
P None None 1
A hkl: k + 1 = 2n b2 + c/2 2
B hkl: 1 + h = 2n c/2 +al2 2
C hkl: h + k = 2n al2 + b/2 2
1 hkl: h + k+1=12n al2 + b2 + c/2 2
F hkl: h + k = 2n al2 + b2 4
hkl: k + 1 = 2n b2 + c/2
hkl: (I + h = 2n)? c/2 +al2
Rpex’ hkl: —=h + k + 1 = 3npy  a/3 + 2b/3 + 2¢/3 3

2a/3 + b/3 + ¢/3

or

hkl: h — k + 1 = 30, a/3 + 2b/3 + ¢/3 3
2a/3 + b/3 + 2¢/3

*This condition is not independent of the other two
"See Sect. 2.2.3 and Table 2.3

Applying (2.16) for the two planes hk,/, and hyk,l,, we find

cos ¢ = [hhaa** + kikob™ 4 11 1hc** + (kily + kyly)b*c* cos o 4 (Iyhy + Ly )c*a* cos B*
+ (l’llkz + hzkl)a*b* COoS ’y*]/[d* (l’llkl ll)d* (/’12/(212)] (362)

Reciprocity of F and I Unit Cells

We show in the Web Appendix WA6 how an F unit cell reciprocates into an / unit cell (and
conversely), where the / unit cell is defined by the vectors 2aj., 2by., and 2cj. If, as is customary in
practice, we define the reciprocal of an [ unit cell by vectors aj., by, and ¢}, then only those reciprocal
lattice points for which each of & + k, k + / (and / + h) is an even integer belong to the reciprocal of
the 7 unit cell. In other words, Bragg reflections from an F unit cell have indices of the same parity;
see also Sect. 3.7.1 and Table 3.2.

3.4.2 Reciprocal Lattice and Reflection Condition: Ewald Sphere

A section of a reciprocal lattice is shown in Fig. 3.21a: the vectors sy/4 and s/4 lie in the incident and
scattered X-ray beams respectively; a crystal is situated at the point C. The vector QP, which is also the
direction of S, must be normal to an (4kl) plane and have the magnitude 2 sin 6//. When the conditions
for diffraction are satisfied, according to (3.43), S = \d*(hkl)|. A sphere of radius 1/4 is described on
C as center, and passing through Q, the origin of the reciprocal lattice. If another reciprocal lattice
point, such as P, lies on the sphere, then a diffracted beam arises and the vector CP is the direction of
this beam; the incident beam vector is along CQ. The sphere is known as the sphere of reflection, or
Ewald sphere [8], and will be required in subsequent chapters. We note that although we always refer
to the “Ewald” sphere, the first suggestion for this device came from Bernal [9].

Figure 3.21b is an alternative way of looking at the Ewald sphere construction, in this case taking
the radius of the sphere as unity, so that reciprocal space has the units of length'. The conclusions
from the construction are, of course, the same, as we can see: from the figure AQ = 2 and
/APQ = 90°, so that QP = AQ sin0(hkl), or 2sin 0(hkl). From (3.43), 2sin0 (hkl) = A/d(hkl),
and from Sect. 2.4, we may identify the point P with the reciprocal lattice point skl. Hence, QP =
d'(hkl). Since x = /. in this construction, d*(hkl) = 2 sin 0(hkl). Thus, the reflection from the (hkl)
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Fig. 3.21 (a) Sphere of
reflection, radius 1/4, with
the crystal at C, the center.
The origin of the reciprocal
lattice is at Q. When a
reciprocal lattice point,
such as P, lies on the Ewald
sphere, a reflection arises
along the direction CP.

(b) Alternative, equivalent
picture, but with the sphere
of radius 1 (dimensionless),
showing the position of
crystal planes. By
geometry, QP is parallel to
the normal d”(hkl) to the
crystal planes and is now
2sin O(hkl)
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Crystal planes

reciprocal lattice)

P (Reciprocal lattice point
with indices hk/ in
reflecting position)

plane occurs when the Kkl reciprocal lattice point lies on the sphere of reflection, and the direction of

reflection is, again, that of CP.

3.5 Scattering by a Crystal Structure

In Sect. 2.2ff, we discussed the geometrical properties of the lattices on which crystal structures are
based and showed how the arrays of atoms or molecules may be arranged according to space-group
symmetry. We need next to consider the diffraction of X-rays by a crystal. We refer the process of
scattering to a conventional unit cell and determine the resultant effect of all atoms in the unit cell,
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which leads directly to the equation for the structure factor, F. The scattering of X-rays by a crystal
comprises two parts: a geometrical part that depends on the symmetry of the arrangement of its
components, and a structural part that depends upon both the nature of the atoms or molecules
comprising those entities and their relative positions in the unit cell.

3.5.1 Structure Factor Equation

We need to express the equation that has been deduced for F in a manner that includes the coordinates
of the atoms in the unit cell. It follows from (3.46)—(3.48) that the phase for the jth atom, with respect
to the origin, can be represented by 2n(/hx; + ky; + Iz;). Hence, we use this expression in (3.14) to give
the structure factor equation for the Ak/ reflection:

n

F(hkl) = froexpli2n(hy; + ky; + Iz))] (3.63)
j=1

The structure factor F(hkl) is a dimensionless scalar quantity and refers to the combined scattering
from the n atoms in the unit cell to give the Akl spectrum, or equally to the wave from the (ik/) family
of planes, relative to the scattering by a single electron at the origin; see also Sect. 3.2.3. The atomic
scattering factor f; o for the jth atom indicates its dependence on 0, an alternative parameter to S in this
context. Again, frequently the 6 dependence of f is not expressed in the formula, although it is
implicitly always present. The atomic coordinates in (3.63) are fractional values, Sect. 2.2.3, and so
are independent of the size of the unit cell.

3.6 Using the Structure Factor Equation

In the next two sections, we explore some of the properties and applications of the structure factor
equation that are encountered in practical X-ray crystallography. The trigonometrical relations in
Web Appendix WAS may be helpful in some of the ensuing arguments.

3.6.1 Friedel’s Law

Except where anomalous scattering is significant, Sect. 7.6, X-ray diffraction spectra form a centro-
symmetric array. The diffraction spectra from a crystal may be thought of as an expression
of its reciprocal lattice, with each spectrum £kl weighted by the corresponding value of the amplitude
|F(hkl)|, or the intensity I(hkl). Friedel’s law expresses the centrosymmetric property as

I(hkl) = I(hkD) or |F(hkl)| = |F(hk]D)| (3.64)

within the limits of experimental error, and may be derived as follows.

Since the atomic scattering factor is a function of (sin 6)/4, it will have the same value for both the
hkl and h k I reflections. Thus, f = f_g, because reflections from opposite sides of any plane occur at
the same value of the Bragg angle 0.
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From (3.63)
F(hkl) = Z fiexp[—i2n(hx; + ky; + Iz;)] (3.65)
and from Fig. 3.13
F(hkl) = A’ (hkl) + iB' (hkl)F(hk ) = A'(h k1) +iB'(hk[) = A’ (hkl) — iB' (hkl) (3.66)

Hence, the following relations hold:

G (hkl) = —p(hk 1) |F(hkl)| = [F(h k)| = [A” (hkl) + B'*(hki)]'/* (3.67)
and, since I = |F|?

I(hkl) = I(

=
taall
=

(3.68)

which is Friedel’s law.

3.6.2 Structure Factor for a Centrosymmetric Crystal

One of the questions that frequently arises at the outset of a crystal structure determination is whether
or no the space group is centrosymmetric. In a centrosymmetric structure, with the origin on a center
of symmetry, the n atoms in the unit cell lie in related pairs, with coordinates %(x, y, z). From (3.18)
and (3.19), we write for the two parts of the structure factor equation:

n/2
' (hkl) Z filcos 2m(hx; + ky; + Izj) 4 cos 2n(—hx; — ky; — Iz;)]

n/2
=2 ficos 2m(hx; + ky; + Iz}) (3.69)

J=1

where j ranges over the #/2 atoms in the unit cell not related by the center of symmetry.
For B'(hkl), we write

n/2
"(hkl) Zf, sin 27 (hxg 4 kyg + Izg) + sin2n(—hxy — kys — Iz,)] = 0 (3.70)

j=1

Here, B’ = 0 because sin(—¢) = —sin(¢) for all ¢, in accord with (3.20). In this case, A'(hkl) =
F(hkl), and ¢ (hkl) can take only the values 0 or =, so that the phase angle attaches itself to |F(hkl)| as a
positive or negative sign. Hence, we often speak of the signs, s, of reflections in centrosymmetric
crystals, so that F(hkl) = s(hkl) |F(hkl)|. Clearly, these results apply only when the origin of the unit
cell is taken on 1; in any other setting of the origin in a centrosymmetric space group, there will
normally be a non-zero component in B’(hkl). Centrosymmetric crystals usually present fewer
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difficulties to the structure analyst than do non-centrosymmetric crystals because of the above
restriction on the phase angles.

3.7 Limiting Conditions and Systematic Absences

We considered limiting conditions briefly in Sect. 2.7.1; here we investigate them more fully through
the structure factor equation and show how they are handled in several different example symmetries.

An X-ray diffraction pattern can be used to determine the type of unit cell that corresponds to the
chosen system of reference axes. From (3.63), it would be an unexpected coincidence for many
intensities to be zero. With unit cells having no translational symmetry, the intensity of a reflection is
not usually zero for any particular combinations of 4, k, and /, that is, no limiting conditions apply in
such a case. Vanishingly weak intensities may arise for certain reflections because of the particular
structure under investigation; we call these reflections accidental absences, and we shall discuss them
further, in Sect. 4.2.3. In centered unit cells or in the presence of other translational symmetry, glide
planes and screw axes, reflections of certain combinations of A, k, and / are totally absent; we call such
unobservable reflections systematic absences.

3.7.1 Body-Centered Unit Cell

As a first example, we know that in a body-centered (/) unit cell, the atoms are related in pairs as x, y, z
and 1 +x, 1+ y, 14 z. Using (3.63), we have

n/2
F(hkl) = > filexpli2n(hg + ky; + Iz))] + expli2n(h; + kyj + Iz + h/2 + k/2 +1/2)]} - (B.71)

J=1

The term within the braces {...} may be expressed as exp[i2n(hx; + ky; + Iz;)]{1 + expl[i2
n(h+k+1)/2]}. Since h + k + [ is integral, {14 exp[i2n(h+k +1)/2]} =1 + cos[2n(h+ k + 1)
/2] = 2cos*[2n(h+ k +1)/4] = G, where G is a multiplying factor for the reduced structure factor
equation in centered unit cells; in the body-centered unit cell G = 2, so that

n/2
F(hkl) = 2cos*[2m(h + k + 1) /4] > fexpli2n(hx; + ky; + Iz})] (3.72)

J=1

This equation may be broken down into its two components, A’(hkl) and B'(hkl), in the usual way.
Further simplification is possible: in this example, G takes the value 2 if 42 + k + [ is even, and O if
h + k + [is odd. Hence, we write the limiting condition that shows which reflections are permitted by
the geometry of an / unit cell as

Bkl :h+k+1=2n n=0,+1,4+2 ...

The same situation expressed as systematic absences, the condition under which reflections are
forbidden by the space-group geometry, is

Wil h+k+1=2n+1, n=0+1,+2,...
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Both terms are in common use, and the reader should distinguish between them. We could have
reached the same conclusion from (3.71) more speedily: the expression {1 + exp[i2n(h + k + [)/2]} is
equal to 1 + exp(inn), where n is the sum of the integers 4, k, and /, and [1 + exp(inn)] is 2 or O for n
even or odd. But it is preferable to highlight the dependence on 4, k, and /.

Analogous expressions can be derived for any centered unit cell. The G factors for all types of
centering have been summarized in Table 3.2. It is evident that where a reflection arises in a centered
unit cell, the structure factor equation has the same form as that for the corresponding primitive unit
cell, but multiplied by the G factor appropriate to the unit cell type. The summation in the reduced
structure factor equation is then taken over that fraction of atoms not related by the centering
symmetry.

In practice, the diffraction pattern is recorded, indices allocated to the spectra and then scrutinized
for systematic absences, so as to determine the unit cell type. The reader may care to work through the
derivations of F(hkl) for, say, a C and an F unit cell, and determine the limiting conditions for each
unit cell type; see also Sect. 3.8.

3.7.2 Screw Axes and Glide Planes

As we are concerned in this discussion with the geometry of the unit cell rather than the chemical
nature of its contents, it is convenient to introduce the following nomenclature. Let N be the total
number of atoms in the unit cell, and let n of them be the number in the asymmetric unit, with the
number of asymmetric units being m, so that N = nm. Symbolically, we may write

n m

SEDHD

j=1 r=1 s=1

where the sum over r refers to the symmetry-independent atoms, and that over s to the symmetry-
related species. Thus, the structure factor equation contains two parts that may be considered
separately. The sum over m symmetry-related atoms is expressed through the coordinates of a set
of general equivalent positions. Thus,

 (hkl) Z cos 27 (hx, + kys + Iz)

s=1

(3.73)
- (hkl) Z sin 27(hx 4 ky, + Izg)
s=1
Extending to the n atoms in the asymmetric unit, with one such term for each atom,
A’ (hkl) Z 1A (hkl)
(3.74)
B/ (hkl) Z fB,(hkl)

The terms A,(hkl) and B,(hkl) are independent of the nature and arrangement of the atoms in the
asymmetric unit; they are a property of the space-group symmetry and are called geometrical
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structure factors. We shall consider some examples taken from the monoclinic and orthorhombic
systems, in order to show how glide-plane and screw-axis symmetries give rise to limiting conditions
with special classes of reflections. For this discussion, the subscript s in (3.73) need not be retained,
because all m positions are related to the position x, y, z by symmetry, and in the geometrical structure
factors we shall, for simplicity, drop the subscript r.

Space Group P2,
General equivalent positions: x, y, z; )?,% + v, z, see Fig. 2.30.

Geometrical structure factors:

A(hkl) = cos2n(hx + ky + Iz) + cos2n(—hx + ky — Iz + k/2)
=2cos2n(hx + Iz — k/4) cos 2n(ky + k/4) (3.75)

In a similar way,

B(hkl) = sin2n(hx + ky + Iz) + sin2n(—hx + ky — Iz + k/2)
= 2cos2n(hx + Iz — k/4) sin 2n(ky + k/4) (3.76)

Limiting Conditions in P2,
Geometrical structure factors enable us to determine limiting conditions, that is, to predict which
classes of reflections are capable of arising in an X-ray diffraction pattern. If we can show, for given
values of &, k, and /, that both A(hkl) and B(hkl) are systematically zero, then F(hkl) will be zero,
regardless of the atomic positions.

For P2, we can cast (3.75) and (3.76) in the following forms, according to the parity (evenness or
oddness) of k. Expanding (3.75), we have (see Web Appendix WAS):

A(hkl)/2 = [cos 2n(hx + Iz) + cos 2n(k/4) + sin 2n(hx + Iz) sin2n(k/4)]
X [cos 2m(ky) cos2n(k/4) — sin2n(ky) sin2n(k/4)] 3.77)

In expanding the right-hand side of (3.77), terms such as
cos 2n(hx + Iz) cos 2n(k/4) sin 2w (ky) sin 2% (k /4)

occur. This particular term is equivalent to
1 . .
5 cos 2n(hx + Iz) sin2xn(ky) sindn(k/4)

which is zero, because k is an integer. Hence, (3.77) becomes

A(hkl) /2 = [cos 2n(hx + Iz) cos 2m(ky)cos?2m(k/4)] — [sin 2m(hx + Iz)
x sin 27 (ky) sin®2n(k/4)] (3.78)

In a similar manner, we find from (3.76)

B(hkl)/2 = [cos 2n(hx + Iz) sin27(ky) cos®2m(k/4)] + [sin 27 (hx + Iz)
x cos 27(ky) sin®2m(k/4)] (3.79)


http://dx.doi.org/10.1007/978-1-4614-3954-7#Fig30_2
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Separating for k even and k odd, we obtain
k = 2n: A(hkl) = 2 cos 2n(hx + Iz) cos 2n(ky) (3.80)
B(hkl) = 2 cos2n(hx + Iz) sin2n(ky) (3.81)
k=2n+ 1:A(hkl) = —2sin2n(hx + Iz) sin2n(ky) (3.82)
B(hkl) = 2sin2n(hx + Iz) cos2n(ky) (3.83)

Only one systematic condition can be extracted from these equations: if both 4 and / are zero, then
from (3.82) and (3.83).

A(hkl) = B(hkl) = 0

In other words, the limiting conditions associated with a 2, axis are

hkl None (P unit cell)
0k0 k=2n

The example of the 2; axis has been treated in detail; it shows again how a diffraction record may
be used to reveal information about the translational symmetry elements of a space group. We can
show how the limiting conditions for a 2; axis arise from a consideration of the Bragg equation.

Figure 3.22 is a schematic illustration of a 2; symmetry pattern; the motif , represents a structure

at a height z, and O the structure at a height Z after operating on it with the 2, axis. The planes

MM’ represent the family (0k0) and NN’ the family (02k,0).

Reflections of the type (0k0) from MM’ planes are canceled by the reflections from the NN’ planes,
because their phase change relative to MM’ is 180°. Clearly, this result is not obtained with the
02k,0 reflections. Although the figure illustrates the situation for k£ = 1, the same argument can be
applied to any pair of values k and 2k, where k is an odd integer. Limiting conditions for other screw
axes, and in other orientations, can be deduced as above, and the results are summarized in Table 3.3.
Notice that pure rotation axes, as in space group P2, do not introduce any limiting conditions.
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Table 3.3 Limiting conditions for screw axes

Screw axis Orientation Limiting condition Translational component
2, || x h00: h = 2n al2

24 Iy 0kO: k = 2n b/2

24 | z 00/: [ = 2n c/2

3,0r3, | z 000/: I = 3n ¢/3 or 2¢/3

4, 0r4; | z 00/: | = 4n c/4 or 3c/4

4, | z 00/: [ = 2n 2¢/4 (c/2)

6, or 65 | z 000/: | = 6n ¢/6 or 5¢/6

6, or 64 | z 000: I = 3n 2¢/6 (c/3), c/6(2¢/3)

63 | z 000I: [ = 2n 3¢/6 (c/2)

In the cubic system, 44, 43, and 4, axes parallel to x and y exhibit limiting conditions similar to those parallel to z by
cyclic permutation

Centric Zones

Centric zones, sometimes loosely termed centrosymmetric zones, are of particular importance in
crystal structure determination; see also Sect. 4.2.3. In space group P2, and other space groups of
crystal class 2, the 70/ reflections are of special interest. Among (3.80)—(3.83), only (3.80) is relevant
here because zero behaves as an even number, and sin(27ky),—o = 0. Hence,

A(hO1) = 2cos 2n(hx + 1z)  B(hOI) =0 (3.84)

From (3.20), ¢(h0l) is either O or 7; in other words, the [010] zone is centric for this space group.
Centric zones occur in the non-centrosymmetric space groups that have symmetry 2 as a subgroup of
their point groups; see Sects. 1.4.2 and 2.7.3ff.

Space Group Pc
General equivalent positions: x, y, z; X, )7,% +z.
Geometrical structure factors: Proceeding as before, we obtain

A(hkl) =2 cos2n(hx + Iz + 1/4) cos2n(ky — k/4) (3.85)
B(hkl) = 2sin2n(hx + Iz + 1/4) cos2n(ky — 1/4) '
If we expand these equations, as with the example for P24, and then separate the terms for / even
and / odd, we shall find systematic absences only for the /0! reflections. Thus, the limiting
conditions for Pc are

hkl None
h0l [ =2n

The relationship between the index (/) involved in the condition and the symmetry translation (c¢/2)
is clear. A space group diagram for Pc is shown in Fig. 3.23.

Space Group P2,/c

This space group contains the two translational symmetry operations already discussed, namely, a 2,
axis parallel to y and a c-glide normal to y, Fig. 2.32 and Problem 2.8a. It is a centrosymmetric space
group, and the general equivalent positions may be summarized as


http://dx.doi.org/10.1007/978-1-4614-3954-7#Sec13_4
http://dx.doi.org/10.1007/978-1-4614-3954-7# Sec11_1
http://dx.doi.org/10.1007/978-1-4614-3954-7#Sec18_2
http://dx.doi.org/10.1007/978-1-4614-3954-7#Fig32_2
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Fig. 3.23 Space group Pc. (a) Viewed along c. (b) Viewed along b

+ {x,y,z;x,%—y,%—i—z}

Geometrical structure factors: In the standard setting of this space group, the origin is on 1, so that we
can immediately apply (3.69) and (3.70) and write

A(hkl) = 2{cos2n[hx + ky + Iz] + cos 2n[hx — ky + Iz + (k + ) /2] }B(hkl) = 0 (3.86)
Combining the two cosine terms
A(hkl) = 4 cos2n[hx + Iz + (k + 1) /4] cos 2nrlky — (k + 1) /4)]
Separating for k + [ even and odd, we obtain

k+1=2n, A(hkl) = 4 cos 2n(hx + Iz) cos 2m(ky) (3.87)
k+1=2n+1, A(hkl) = —4sin2n(hx + Iz) sin 27 (ky) '

We now deduce the limiting conditions as

hkl None
hol | = 2n (c-glide normal to y)
0kO k=2n (2 axis || y)

These three classes of reflections are important in monoclinic reciprocal space, because only with
them can we determine the characteristic systematic absences in the space groups within this system.
Despite Friedel’s law, the diffraction symmetry reveals the true space group in this example.
Figure 3.24 illustrates weighted reciprocal space levels for a monoclinic crystal of space group Pc,
P2/c, or P2,/c.
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Fig. 3.24 Reciprocal nets in the x*, z* plane appropriate to space groups Pc, P2/c, and P2y/c. (a) k = 0 and (b) k > 0.
The c-glide plane, which is perpendicular to b, causes a halving of the rows parallel to x* when k = 0, so that only the
rows with / = 2n are present. Hence, the true " spacing is not observed on the reciprocal lattice level £ = 0, but can be
determined from higher levels. The symmetry on both levels is 2, in accordance with the diffraction symmetry 2/m:
|F(hkl)| = |F(hk1)|. The reciprocal lattice points are weighted according to [F(hkl)|, or to |F(hkl)|?, and we speak of
such diffraction patterns as weighted reciprocal lattices

Space Group Pma2
From the data in Fig. 3.25 we can write down expressions for the geometrical structure factors:

A(hkl) = cos 2n(hx + ky + Iz) 4+ cos 2n(—hx — ky + Iz) + cos 2n(—hx + ky + iz + h/2)
+ cos2n(hx — ky + Iz + h/2) (3.88)

Combining the first and third, and second and fourth terms, we have

A(hkl) = 2cos2n(ky + Iz 4+ h/4) + cos 2n(hx — h/4) + 2 cos 2n(—ky + Iz + h/4)
x cos2m(hx + h/4) (3.89)

Further simplification of this expression requires the separate parts to contain a common factor.
We return to (3.88) and make a minor alteration to the term cos 2n(hx — ky + Iz + h/2). Since & is an
integer, we may write this term as the crystallographically equivalent term cos 2n(hx — ky + Iz — h/2).
Another way of looking at this process is that the fourth general equivalent position has been changed to
— % + x,y,z, which is equivalent to moving through one repeat a in the negative direction to a
crystallographically equivalent position, a perfectly valid and generally applicable tactic.

Returning to Pma2, (3.89) now becomes

A(hkl) = 2 cos2n(ky + Iz + h/4) cos 2n(hx — h/4)

+2cos2n(—ky + Iz — h/4) cos 2n(hx — h/4) (3.90)

which simplifies to

A(hkl) = [2 cos 2m(hx — h/4)][cos 2n(ky + Iz + h/4) + cos 2n(—ky + Iz — h/4)] (3.91)
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Limiting conditions

4 d 1 'xyz; %7z, s-xyz; 14x,7, 2 hkl:  None
Okl: None
hOl: h=2n
hk0: None
h00: (h=2n)
0k0: None
00/: None

2 ¢cm §,yz; 39z As above

2 b2 03%z; L4z As above +

2 a 2 00,z; 10z hkl: h=2n

Symmetry of special projections
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Fig.3.25 General equivalent positions and symmetry elements in space group Pma2, with the origin on 2; the origin is
not fixed in the z direction by the symmetry elements. The diagram shows inter alia the coordinates of the special
equivalent positions and the limiting conditions

Combining again:

A(hkl) = 4[cos 2n(hx — h/4)] cos 2n(ky + h/4) cos 2nlz (3.92)
Similarly,

B(hkl) = 4[cos2n(hx — h/4)] cos 2n(ky + h/4) sin 27z (3.93)

In the orthorhombic system, seven regions of reciprocal space of particular importance are listed
on the right-hand side of Fig. 3.25. Separating (3.92) and (3.93) for even and odd values of s, we
obtain

h=2n: A(hkl) = 4cos2nhxcos2nky cos2nlz

B(hkl) = 2 cos 2mhx cos 27tky sin 2mlz (3.94)

h=2n+1: A(hkl) = —4sin2nhx sin 27ky cos 2nlz (3.95)
B(hkl) = —4 sin 2mthx sin 27tky sin 27tlz )
from which we find the limiting conditions

hkl None
hol h=2n
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Table 3.4 Limiting conditions for glide planes

Glide plane Orientation Limiting condition Translational component
a 1b hOl: h = 2n al?

a lc hkO: h = 2n al2

b la Okl: k = 2n b/2

b lc hk0: k = 2n b/2

c la Okl: | = 2n c/2

c 1b hol: 1 = 2n c/2

n la Okl: k+1=2n b+ )2
n 1b hOl: 1 + h =2n (c + a)2
n lc hkO: h + k = 2n (a + b)/2
d la Okl: k + 1 =4n (k, | = 2n) b+ )4
d 1b hOl: 1+ h=4n (I, h = 2n) (c £ a)4
d lc hk0: h + k = 4n (h, k = 2n) (a £+ b)/4

The listed condition 4#00: (h = 2n) should be considered carefully. One might be excused for
thinking at first that it implies the existence of a 2 axis parallel to the x axis, but for the knowledge
that there are no symmetry axes parallel to the x axis in class mm?2. This particular limiting condition
is dependent upon the 40/ condition: 400 is in the 40! zone.

We emphasize here that confusion can very easily arise if the limiting conditions are interpreted in
other than the following hierarchal order:

Order of inspection Downward

hkl Unit cell type
Okl Glide plane Lx
hol Glide plane Ly
hk0 Glide plane 1z
h00 2y axis || x
0k0 2 axis || y

00/ 2y axis || z

One should proceed to a lower level in this list only after considering the full implications of the
conditions at higher levels. Conditions such as that for 200 in Pma?2 are called redundant or dependent
and are placed in parentheses on the diagram. Reflections involved in such conditions are certainly
absent from a diffraction record, but do not contribute to the determination of space-group symmetry.
Table 3.4 summarizes the limiting conditions for glide-plane symmetry.

Space Group Pman

This space group may be derived from Pma2 by the addition of an n-glide plane perpendicular to
the z axis, with a translational component of (a + »)/2. We have now seen on several occasions that
it is advantageous to set the origin at 1 wherever possible; Fig. 3.26 shows Pman drawn in this
orientation. It is left to the reader to show that the geometrical structure factors are

A(hkl) = 8 cos 2mhx cos 2n[ky — (h + k) /4] cos 2n[lz + (h + k) /4]

B(hkl) = 0 (5:56)

and subsequently to derive the limiting conditions for this space group.
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Space Group P63/m
Finally here, and in order to show that these manipulations are fundamentally no more difficult with a
space group not based on orthogonal axes, we study the hexagonal space group P6s/m; we will
address the tetragonal system through space group P4nc in a problem.

From Fig. 2.38, we list the coordinates as:

+ {Xa)’azﬁax—%zﬂ_f"'yylz%

I

Origin at 1

.1

1
’ i_x’i—y’z}

=51

Limiting conditions

hkl:
Okl:
hOl:
hkO:
h00:
0kO:
00L:

None
None
h=2n
h+k=2n
(h =2n)
(k =2n)
None

Fig.3.26 Space group Pman. (a) General equivalent positions. (b) Symmetry elements; the origin is on 1. The diagram
shows also the limiting conditions for this space group.

x7)’7§+25)’77¢+)’7%+2§x—)’7x7%+2}


http://dx.doi.org/10.1007/978-1-4614-3954-7#Fig38_2

152 3 X-Rays and X-Ray Diffraction

Since the structure is centrosymmetric, with the origin on 6/m (1), we need consider only the
cosine part of the structure factor equation (B = 0). Thus, following (3.69) we can write the
geometrical structure factor as:

A/2 = cos2n(hx + ky + Iz) + cos 2n(—hy + k[x — y] + Iz) + cos 2n(h[y — x] — kx + I2)
+cos2m(—hx — ky + 1z +1/2) + cos 2m(hy + k[y — x] + 1z +1/2)
+cos2n(hjx —y| + kx + 1z +1/2)

Combining the cosine terms in pairs, we obtain

A/4 = cos2n(lz — 1/4){cos2n(hx + ky + 1/4) + cos 2n(kx + iy + {/4)
+ cos2n(ix + hy +1/4)}

[remember that i = —(h + k)]. We can now separate into equations for / even and / odd by expanding
the cosine terms (you may need Web Appendix WAS):

I =2n: A = 4 cos2nlz{cos 2n(hx + ky) + cos 2n(kx + iy) + cos 2xn(ix + hy)}
[=2n+1: A = —4sin2nlz{sin 2n(hx + ky) + sin 2n(kx + iy) + sin 2z (ix + hy)}

For [ even, there are no reflection conditions; for / odd, A = 0 if # = k = 0. Thus, the only
condition limiting X-ray reflections is 000/ = [ = 2n. The expression above for A/2 differs in a
trivial manner from that given in the International Tables [10]: the value therein may be achieved

1 1
by using initially the crystallographically equivalent position (f§+z), in place of the §+z

employed here.

3.8 Practical Determination of Space Groups from Diffraction Data

The determination of the space group of a crystal is an important and early feature in the X-ray
analysis of its structure. We shall assume that we have available the X-ray diffraction record for the
several examples of monoclinic and orthorhombic crystals to be examined. It is necessary to bear in
mind that X-ray techniques can reveal the presence of that translational symmetry which can arise
through symmetry operations:

1. Translations relating to centering of the unit cell (/2 and/or b/2 and/or c/2).

2. Translations relating to glide planes.

3. Translations relating to screw axes.

or any combination of these symmetry operations. All categories lead to systematic absences, and the
totality of the translational symmetry, together with the Laue group, forms the diffraction symbol,
Sect. 2.9.


http://dx.doi.org/10.1007/978-1-4614-3954-7#Sec28_2
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Table 3.5 Some reflection data for monoclinic

crystal I

hkl 200 401 112 510
201 402 113 020
202 600 114 040
203 110 310 060
400 111 311 080

Table 3.6 Some reflection data for monoclinic

crystal 11

hkl 100 204 111 322
200 402 122 020
300 502 113 040
400 110 311 060
202 310 123 080

Table 3.7 Limiting conditions for the mono-
clinic space groups

Conditions limiting possible
X-ray reflections Space groups
hkl: none P2, Pm, P2/m
hOl: none }

0kO: none

hkl: none

h0l: none
0k0: k = 2n

PZI, le/m

hkl: none
hOl: 1 =2n
0k0: none

} Pc, P2/c
hkl: none P2,/c
hOl: | =2n }
0kO: k = 2n
hkl: h +k =2n
hOl: none }
0k0: none
hkl: h+k =2n
hOl: 1 = 2n(h = 2n) }
0k0: none

C2,Cm, C2/m

Ce, C2/c

3.8.1 Monoclinic Space Groups

Single crystal X-ray photographs taken with a monoclinic crystal showed typically the reflections
listed in Table 3.5.
From the important reflection types, hkl, h0l, and 0k0, we deduce the limiting conditions:

Wkl h+k=2n
"l (h=2n)
0k (k = 2n)

Using Table 3.7, we conclude that for crystal I, the space group is one of C2, Cm, or C2/m.
The diffraction data alone do not distinguish between these three possible space groups; we show in
Sect. 4.2.3ff how this ambiguity might be resolved.

Table 3.6, for monoclinic crystal II, provides the next list of diffraction data for inspection.


http://dx.doi.org/10.1007/978-1-4614-3954-7#Sec13_4
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Table 3.8 Some reflection data for an ortho-
rhombic crystal

hkl 111 011 110 020
112 021 120 040
212 012 310 060
312 101 200 002
322 203 400 004
332 303 600 006

There is no condition on /kl, but h0! are restricted by / being even, and 0k0 by & being even: this
space group is identified uniquely as P2,/c.

The limiting conditions for the 13 monoclinic space groups are listed in Table 3.7, in their standard
orientations. In practice, it is possible, by an inadvertent choice of axes, to find oneself working with a
non-standard space-group symbol. Generally, a fairly straightforward transformation of axes will lead
to the standard setting (see Problems 2.12 and 3.17).

3.8.2 Orthorhombic Space Groups

We begin with the sample data in Table 3.8. From these data, we deduce the conditions below:
Limiting conditions deduced:

hkl ~ None h00 h =2n
0kl None 0k0 k=2n
h0l  None 00/ [=2n
hkO  None

Examining in the prescribed hierarchy, we find only 2, axes parallel to x, y, and z: the space group
is determined uniquely as P2,2,24, Sect. 2.7.7 and Table 2.7.

In the final two examples, we consider only the conclusions drawn from an inspection of the
diffraction records. In the first instance, we have:

hkl None h00 None
Okl k=2n 0k0 (k = 2n)
hol 1 =2n 00/ (I =2n)
hkO None

The diffraction symbol is mmm Pbcx so that the space group is either Pbc2, or Pbcm; the distinction
between them depends upon the presence, or otherwise, of a center of symmetry.
In the second example, we have:

hkl  None h00 (h = 2n)
0kl k=2n 0k0 (k = 2n)
hol | =2n 00/ (I =2n)
hk0 h = 2n

and space group Pbca is uniquely determined.

These results seem quite reasonable and straightforward, but nevertheless, one might be tempted to
question their validity. For example, in the first orthorhombic crystal, is there a space group in class
mmm that would give the same systematic absences as those in Table 3.8? Experience tells us that
there is not. Since no glide planes are indicated by the systematic absences, the three symmetry
planes, if present, would have to be m-planes. Three m-planes could not be involved with three 2,


http://dx.doi.org/10.1007/978-1-4614-3954-7#Sec22_2
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axes unless the unit cell were centered, for example, as in Immm, which would restrict the hkl
reflections to & + k + [ = 2n. Hence, our original conclusion is correct.

3.8.3 Tetragonal Space Groups

4
The following reflections conditions were obtained for two tetragonal crystals of Laue groups —mm
m
and —, respectively. It may help to consider again Table 1.5.
m

(a) hkl :none hkO:h+k=2n Okl:k=2n
P nlz blx

Consulting the International Tables, Volume 1 (or Volume A) on diffraction symbols shows that
4
this space group is P —bm.
n
(b) hkl:h+k+1=2n hkO:h,(k)=2n 00]:1=4n
I alz 4|z

4
This space group is / L
a

3.8.4 Hexagonal Space Groups

The following reflections conditions were obtained for two hexagonal crystals of point groups (a) 622

6
and (b) either —mm or 6mm, respectively.
m

(a) hkil :none 000! :1 = 6n

P 6, or 65
The diffraction symbol is: 622 P 6;(65) * *; thus, the space group is either P6,22 or its enantio-
morph P6522.
(b) hkl:none hOhl: 1= 2n
P clx, (y)

6 6
If the point group is —mm, reference to the International Tables for diffraction symbol — mmPxcx
m m

leads to the space group is P = cm, whereas if the point group is 6mm, similar considerations indicate
m

space group P6scm.

The practicing X-ray crystallographer is assisted by the information on space groups in Volume A
(and the earlier Volume 1) of the International Tables for Crystallography [10].

Combined with a working knowledge of symmetry, these tables enable most symmetry situations
arising in the course of a structure analysis to be treated correctly.

3.9 Problems

3.1. What is the change in wavelength of an X-ray photon scattered incoherently by a free electron
at 45° to the forward direction of the incident beam? If the wavelength of the incident photon is
1 A, what is the energy of the scattered photon?


http://dx.doi.org/10.1007/978-1-4614-3954-7#Tab5_1
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3.4.

3.5.

3.6.

3.7.

3.8.

3.9.

3.10.
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Two identical coherent scattering centers are separated by the distance 24, and X-rays
fall normally on to the line joining the two centers. For 26 = 0 to 180° in steps of 30°, calculate
the scattered amplitudes and intensities as fractions of the results with both scatterers at
one point.

Calculate the atomic scattering factor f for beryllium at (sin 0)/2 = 0.0, 0.2, and 0.5. The
expression for f(1s) has been given in the text. The Slater wave function for the 2s electron
may be given as ¥a = (c3/ 967)'/2rexp(car/2); you may need the general result
Jo? ¥ exp(—ax) sinbx dx = n![(a +ib)"" —(a — ib)""']/[2i(a®>+ b*)"*"], from which the
similar expression given in the text for the 1s wavefunction applies for the case n = 1. The
screening constants for beryllium are o, = 0.3 and azS = 2.05. Compare the results that are
obtained for f with those from the expression f = Z ajexp(—b;s*) + ¢, where s is (sin 0)/2
and the values of a, b, and ¢ for beryllium are listed below

ay b| as b2 as b'; ay b4 C
1.5919 43.6427 1.1278 1.8623 0.5391 103.483 0.7029 0.5420 0.0385

An X-ray tube is operated at 30 kV. What is the energy, in J, associated with each X-ray
photon produced by the tube?

Calculate the transmittance factor (//I) for a I mm crystal plate of benzene (C¢Hg), the density
of which is 1,124 kg m—>. The mass absorption coefficient for Cu Ko X-radiation and the
relative atomic masses are as follow:

C H
wm? kg™! 0.46 0.04
M, 12.01 1.008

There are eight combinations of one to three negative signs among the indices Akl for any
general reflection. With the aid of the geometrical structure factors given in the text, derive the
relationships between the eight forms of the phase angle ¢(hkl) for (a) space group P2; and
(b) space group Pma?2.

A triclinic unit cell has the dimensions a = 7.36 A, b =921 A, c = 13.47 A, and
o = 101.22°, f = 110.62°, y = 123.41°. Calculate (a) the six parameters of the reciprocal
unit cell for Cu Ko radiation (4 = 1.5418 108), and (b) the volumes of the real and reciprocal
unit cells.

In the direct unit cell of Problem 3.7, two atoms are situated at the fractional coordinates 0.10,
0.30, 0.20 and 0.10, 0.15, 0.35 for x, y, z, respectively. By means of vector expressions,
calculate the distance between the two atoms, and the angle subtended at the origin by the
vectors from the origin to each of the two atoms.

Three atoms have the following amplitudes and phases with respect to the real axis of an
Argand diagram:

(a) 13.1, 16.23°

(b) 21.4, 154.87°

(c) 37.9, —113.26°

Calculate the amplitude and phase of the resultant sum.

Express the structure factor equation in a reduced form for an A-face centered unit cell. Hence,
deduce the limiting conditions associated with A centering.
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A two-dimensional structure has four atoms per unit cell, two of type P and two of type Q,
with the following fractional coordinates:

x oy
P, 01 02
P, 09 08
0, 02 07
0, 08 03

Calculate |F(hk)| for the reflections 50,0 5,5 5 and 5 10 in terms of the scattering factors gp
and g, for the two species. If gp = 2g,, what are the phase angles for these reflections?
o-Uranium crystallizes in the orthorhombic system with four uranium atoms in special
positions:

£4{0,y,5 35 + .3}
Use the data below to decide whether y is better chosen as 0.10 or 0.15.

hkl  [F(hkD)|  gu(hkl)
020 885 70.0
110 268.9 80.0

The unit cell dimensions of ¢-uranium are ¢ = 2.85 A, b =587 A, ¢ = 5.00 A. Use the value
of yy from Problem 3.12 to determine the shortest U-U distance in the structure. It may be
helpful to plot the uranium atom positions in a few neighboring unit cells.

In the examples listed below for monoclinic crystals, the conditions limiting possible X-ray
reflections are given. In each case, write the possible space groups corresponding to the
information given.

(a)
hkl None
h0l None
0k0 k=2n
(b)
hkl None
hOl h=2n
0k0 None
(©)
hkl h+k=2n
h0l [ =2n(h =2n)
0k0 (k = 2n)
d
hkl None
h0l None

0kO None
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3.15.

3.16.

3.17.

3.18.

3 X-Rays and X-Ray Diffraction

Repeat Problem 3.14, but for the limiting conditions below relating to orthorhombic crystals.

(@)
hkl None h00 h =2n
Okl None 0kO k=2n
hOl None 00!/ None

hk0O None

(b)
hkl None h00 None
Okl k=2n 0k0 k=2n
hOl None 00!/ None
hkO None

(©)

hkl h+k+1=2n hO0 h=2n
Okl k=2n1=2n O0kO k=2n
hol h+1=2n 00/ [ =2n
hO h+k=2n

(a) Write the independent conditions limiting possible X-ray reflections for the following
space groups: (i) P2,/a; (ii) Pc; (iii) C2; (iv) P2,22; (v) Pcc2; (vi) Imam. In each case, write
the symbols of the space groups, if any, in the same crystal system with the same limiting
conditions. (b) Write the conditions limiting possible X-ray reflections in the monoclinic space
group P2¢/n (non-standard setting). (c) Give the conventional symbols for the space groups
A2/a and B2,22;.

(a) Space group Pcab corresponds to the non-standard setting acbh, that is, a along x, —c along y,
and b along z. What is the symbol in the standard (abc) setting? (b) What is the essential
difference between the space groups represented by the standard symbols Pmna and Pnma?
What are their full symbols?

The absorption correction for a crystal ground into a sphere of radius r is dependent on r, 1, and
0. Assume that extinction effects are negligible and determine the ideal intensity for an ikl
reflection, given that the measured intensity less background is 56.3, and that r = 0.11 mm and
n=182 x 10 m~". For this reflection, 6 = 30°, and some tabulated data are listed above,
corresponding to the numerical integration A = {(1/V) [dx [dy [exp[—u (ro +7)] dz} ',
where ry and r are, respectively, the incident and diffracted paths lengths in the crystal.
Include the 6-dependent Lorentz and polarization corrections.

Transmission factors A for a sphere
of radius R and linear absorption
coefficient p

0r
UR 25 30 35
3.88 3.79 3.70
10.9 10.0 9.26

1
2
3 224 19.5 17.1
4 37.2 31.0 26.3



References 159

3.19. For space group P63/m, what are (a) the Schonflies point group symbol, (b) the full
Hermann—Mauguin point-group and space-group symbols, (c) the crystal system, (d) the crystal
class, (e) the lattice, and (f) the conventional unit cell?

3.20. Using the coordinates of the general equivalent positions for space group P4nc, Fig. 2.37,
derive (a) the geometrical structure factors, (b) the amplitude symmetry, (c) the phase-angle
symmetry.
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4.1 Intensity Expressions and Factors Affecting Intensities

The measurement of the intensity of a diffracted X-ray beam can be carried out photographically by
camera methods, but almost always today by quantum counting with diffractometer techniques.
We can measure either a peak intensity or an integrated intensity, the latter parameter being preferred
for the expression of the intensity of X-ray reflection.

Real crystals are not geometrically perfect, so that a given reflection will be observed over a small,
finite angular range. Hence, we need to be able to determine the area under a curve such as that shown
in Fig. 4.1 in order to represent a total intensity of a reflection. In the photographic method, the peak
intensity is recorded over a grid of points and the integrated result imposed onto a photographic film.
In collecting intensities with a diffractometer, a scintillation counter sweeps through a pre-set angular
range +00,, so recording the total number of counts, or integrated intensity. We shall discuss some of
the practical implications of these techniques in the next chapter, but much of the ensuing discussion
in this chapter will have the collection of intensity data by an X-ray diffractometer and its subsequent
treatment in mind.

The total energy of a given diffraction spectrum E(hkl) at any given angle 0, for a crystal
sufficiently small that absorption may be neglected, and completely bathed in an X-ray beam and
rotating with a uniform angular velocity w, is given for unpolarized incident radiation of incident
intensity Iy, by

E(hkl)w /Iy = Qv (4.1)

where E(hkl)w/Iy is known as the integrated reflection, ov is the volume of the crystal, and Q is
given by

0 = (N?3/sin 200)|[F(hkl)|*[¢* / (Anegmec?) (1 + cos?26,) /2] 4.2)

where N is the number of unit cells per unit volume of the crystal, and the other terms have
their conventional meanings. The derivation of these expressions has been discussed in detail
elsewhere [1].

Since the value of the integrated reflection does not actually depend upon the angular velocity, we
let R(0)I be the radiation reflected at the angle 6y by the crystal, so that R() may be called the
reflecting power. Then,
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R(0) axis

36, 8 +38, 6 axis

Fig. 4.1 Variation of reflection power R(0) with 0; the intensity at the Bragg angle 0y is recorded over the angular
range +£30,

£ JR(H)IO Joodo
so that
Enlly = JR(@) do = Qov (4.3)
The term | R(0) dO expresses the area under the curve in Fig. 4.1. From (4.2), we can write

(1 + cos?20)|F(hkl))? (4.4)

N —

Ew /Iy = KC(hkl)(1/sin20)

where K is a scaling factor and C(hkl) is a factor that depends upon absorption and extinction, both of
which we shall discuss shortly. Essentially, the area under the curve of Fig. 4.1 may be expressed as

JR(H) d6 = KC(hkl)Lp|F(hki)|? (4.5)

where the L and p are the trigonometrical terms in (4.4), to be discussed next.

4.1.1 Polarization and Lorentz Factors

In (4.5), L and p represent the Lorentz and polarization factors, respectively, thus linking the quantity
measured, the reflecting power, to the quantity sought, the corrected |F(hkl)|* value, which we may
refer to as the ideal intensity.

The polarization factor p, discussed in Sect. 3.2.4, takes into account the fact that the output of a
conventional X-ray tube is unpolarized radiation, whereas the radiation after reflection from a crystal plane
is polarized, thus decreasing the intensity of the diffracted beam as a function of the scattering angle 20.


http://dx.doi.org/10.1007/978-1-4614-3954-7_3#Sec12_3
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o

Fig. 4.2 Lorentz factor: sphere of reflection with the crystal at its center Q; O is the origin of the reciprocal lattice, P is
areciprocal lattice point 4kl in the position for a reflection from the corresponding plane. The distance OP is |S|, and the
normal to it represents the velocity vector of P; /QOP = /QPO = (90 — 0)°

Where the incident beam is polarized, for example, after reflection from a crystal monochromator,
the polarization factor is modified to (1 + cos?20c0s?20,)/(1 + cos*20,,), where 20,, is the angle
between the incident and scattered beams at the monochromator.

The Lorentz factor L depends on the diffraction geometry and expresses a time-of-reflection
opportunity for a crystal plane in the X-ray beam. For a rotating crystal with the X-ray beam
normal to a reflecting plane the L factor is 1/(sin20); with a powder specimen it takes the form
2/(sin 0 sin20).

In order to give expression to the Lorentz factor in a particular case, let P be a point on a zero level of
the reciprocal lattice, normal to a rotation axis that passes through its origin O; the crystal is at Q and the
incident X-ray beam direction is QO, as shown in Fig. 4.2. The constant angular velocity of the crystal
is w, so that the reciprocal lattice point P has a linear velocity |S|w. The speed with which P moves
through the surface of the Ewald sphere is the component of its velocity along the radius QP. Since
/QOP = /QPO = (90 — 0)°, the velocity v of the point P as it passes through the sphere is given by

v = w|S|cosd (4.6)

Since |S| = 2sin 0/ 4, the velocity v is equal to (w/4) sin 20. The time ¢ taken for P to pass through the
reflecting position is proportional to 1/v, so that this time-of-reflection is given by

t=k/v=rk/(w|S|cosb) 4.7

where £ is a constant depending on both the size of the reciprocal lattice, in practice, the wavelength
of X-radiation, and the limits £+480 for finite reflection. The denominator in (4.7) depends on the time-
of-reflection opportunity for the given crystal plane; it is the Lorentz factor when the rotation axis is
normal to the reflecting plane. From (4.6), w/v = 1/(|S| cos 0), so that

L=ow/v=2/(2sin0 cos @) = A/(sin 20) (4.8)
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i

e
0~

Fig. 4.3 Primary extinction: the phase changes by reflection at B and C are each /2, so that between the directions BE
and CD, the total phase change is 7. Thus, there is an attenuation of the incident X-ray beam reaching planes deeper into
the crystal

Since both @ and A remain constant, L is equal to 1/ sin 20 for the given experimental arrangement. This
argument assumes x = 1; if k = 4, S = 2 sin 0, and the same result obtains.

4.1.2 Extinction

We consider a crystal bathed in the X-ray beam, under the conditions for normal Bragg reflection,
with all unit cells stacked together in a regular manner. Figure 4.3 shows a family of planes, all in the
same orientation 6 with respect to the X-ray beam. It is clear that the first-reflected ray BC is in the
correct orientation for a second reflection CD, and so on. Since there is always an inherent phase
change of /2 on reflection, the doubly reflected ray CD has a phase difference of © with respect to the
incident ray AB. We note in passing that the phase change of n is neglected in crystal-structure
calculations since it occurs equally for all reflections.

Primary Extinction
In general, rays that are reflected n and (n — 2) times differ in phase by 7, so that the net result is a
reduction in intensity of the incident X-ray beam and, hence, in the diffracted beam in passing through
the crystal. Energy is effectively conserved in this process, because each beam is depleted in energy
by scattering into another beam, while being enhanced in energy by that which is scattered into the
beam itself from other beams [2]. This effect is termed primary extinction, but it is very much reduced
if the crystal is not perfect in its stacking. In fact, very few crystals are perfect: they are composed of
an array of slightly misaligned blocks, constituting the so-called mosaic character of the crystal,
Fig. 4.4. The ranges of geometric perfection are generally very small, less than about 10~ mm, and
even crystals that show primary extinction possess some mosaic character. For the ideally perfect
crystal, I o |F|, whereas for the ideally imperfect crystal, I o |F|*. Since perfection is rare and very
difficult to produce in a specimen, the imperfect state with / o |F|2 is the normal state in X-ray
crystallography.

Primary extinction is most noticeable with low-order, high-intensity reflections and, if it is suspected,
its effect may be very substantially reduced by the thermal shock occasioned by dipping the crystal in
liquid air, thereby increasing the imperfection of the mosaic structure of the crystal.

Secondary Extinction

In Sect. 3.1.3, we considered the absorption of X-rays by materials, a process that is quite independent
of the mechanism of diffraction. However, under Bragg reflection another feature may arise with an
attendant attenuation of the energy of the incident X-ray beam; this effect is known as secondary
extinction.


http://dx.doi.org/10.1007/978-1-4614-3954-7_3#Sec4_3
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Fig. 4.4 Mosaic character in a crystal: the angular misalignment between blocks may vary from 2 to 30 min of arc

Consider a situation in which the first of a set of parallel planes encountered by the X-ray beam
reflects a high proportion of the incident X-ray beam. Then, planes in this set deeper into the crystal
receive less incident intensity, so that they reflect less than would be expected. The effect is most
noticeable with large crystals and intense, often low-order, reflections. Crystals that have a high
degree of imperfection generally show very little secondary extinction, because only a relatively
small number of planes in the set are in the exact reflecting position at a given time. The ideally
imperfect crystal shows least secondary extinction, and often only a few very strong reflections are
affected, and they will not materially affect the structure determination. Nevertheless, it is possible to
bring secondary extinction into a least-squares refinement in terms of an additional variable, the
extinction parameter {; see Sect. 8.4. The quantity then minimized in the refinement of the atomic and
scale parameters is

> wlFo = (1/KQ)[F[? 4.9)

hkl

where F|, is the observed and |F,| the calculated structure factor amplitudes.

4.1.3 Absorption Measurement and Correction

Here we consider how the intensity may be corrected for absorption in obtaining a value for the ideal
intensity [F(hkl)|>.
From (3.4), the transmission factor T for an X-ray beam through a crystal is given by

T =1/l = exp[—pu(t; — 13)] (4.10)

where ¢, and ¢4 are path lengths through the crystal for the incident and diffracted beams, respectively.
If the shape of the crystal is known exactly, then it is possible to correct for absorption:

T=(1/V) JV exp|—pu(t; + t4)] dV @.11)


http://dx.doi.org/10.1007/978-1-4614-3954-7_8#Sec29_8
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X-ray beam

(hkl)
planes
Ewald sphere

RLP

Fig. 4.5 Geometry of the empirical absorption correction: the crystal rotates on the ¢-circle of a diffractometer with
the y-circle at £90°

where dV is an infinitesimal portion of the volume V of the crystal [3]. Frequently, however, the
crystal faces are not sufficiently well defined for this method, and an empirical procedure may be
preferred.

Empirical Absorption Correction with Diffractometer Data
An empirical absorption correction is easily applied to data collected with a diffractometer, Sect.
5.5ff. Consider Fig. 4.5: the incident and diffracted X-rays for a general reflection with ¢ = ¢ will
intersect the transmission profile at ¢ — 0 and ¢y + 9, where

6 = tan ' (tan 0 cos )

Hence, 6 = 0 at y = £+90°. The transmission profile used is that with 0 nearest to the appropriate
equi-inclination angle v where

v = sin"!(sin 0 sin y)

The transmission factor T is given either as the arithmetic mean or as the geometric mean of the
estimated incident and reflected ray transmissions:

T=[T(¢—8)+ Tu(d+0)/2 or T=[I(¢—6T(h+0)" 4.12)

Transmission Profiles
The transmission is measured for axial reflections, y = 90°, as a function of ¢, Fig. 4.5. The
transmission is given by

To(¢) = Ip($)/Ip(max) (4.13)

The variation of T with 0 is neglected as it has the same effect as a small isotropic temperature factor.
A set of profiles of T as a function of ¢ is obtained for different values of 0, and applied in data
processing as detailed above.


http://dx.doi.org/10.1007/978-1-4614-3954-7_5#Sec19_5
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Absorption Correction with Area Detector Data

The empirical method just described requires single Bragg reflections to be isolated and scanned so as
to produce absorption correction curves. This procedure is not possible with intensity data collected
with an area detector, Sect. 5.7, and other methods for applying absorption corrections have been
developed. One commonly used procedure [4] uses a least-squares method to model an empirical
transmission surface as sampled by multiple symmetry-equivalent and/or azimuth rotation-equivalent
intensity measurements. The fitting functions are sums of real spherical harmonics of even order:

Yim[—u(0)] + Yy [—u(l)] (2<1=2n<3)
The arguments of the functions are the components of unit direction vectors, —u(0) relating to the

reverse incident beam and —u(1) to the scattered beam, with respect to crystal-fixed Cartesian axes.
The procedure had been verified against standard absorption correction data.

4.1.4 Scaling

Fluctuations in the incident X-ray beam intensity and possible radiation damage to the crystal may be
monitored on a diffractometer by measuring four standard reflections of moderate intensity at regular
intervals, say, hourly. Two of these reflections should have y-values of approximately 0°, and two
with y near 90°, with each pair approximately 90° apart in ¢. The average of these intensities relative
to the average of their starting values is smoothed and used to rescale the raw intensity data. If S is this

scale factor, different from the scale factor K applied to F,, then the measured intensity 7, meas 1S
corrected to the intensity I, cor:

Io,corr = o‘meas(Lp)71T71571 (414)
with an estimated standard deviation given by

0(Lorr) = Olmeas(Lp) ' T71S7! (4.15)

4.1.5 Merging Equivalent Reflections

Where more than the symmetry-independent region of weighted reciprocal space is measured for any
given reflection, a weighted mean intensity is calculated:

I= ZWJ‘IJ‘/ZWJ (4.16)
J J

where the sum is over all n» measured symmetry-equivalent values of the given reflection, and w; is
given by


http://dx.doi.org/10.1007/978-1-4614-3954-7_5#Sec27_5
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A chi-squared test may be used to detect equivalents that have a systematic error:

=3 i -1)/o (4.18)

J

where the sum is again over n symmetry-equivalent reflections and the number of degrees of freedom
is (n — 1). If 5 exceeds x2_, at a probability level of 0.001, then the symmetry-equivalent reflection
with the highest weighted deviation from the mean, w;(l; — I_j), is rejected and the test repeated on the
remaining equivalents. If n = 2, the smaller intensity value is rejected. The merging Ry, value' is
defined by

R =7 <Z l_f—f,-|> > (Z@) (4.19)

ikl J ikl J

4.1.6 Practical Intensity Expression and its Standard Deviation

We have developed the necessary theory to express the intensity of a reflection and the corrections
that need to be applied to it in order to obtain the ideal intensity. A measurement of intensity involves
values for both the intensity of the reflection, over a range +06,, and the background. These
parameters are measured in diffractometry, by a step-scan moving-window method [5]. The standard
deviation a(/) in [ arising from statistical fluctuations is given by

o(I) = (I + rB + r*B)'/? (4.20)

where r is the ratio of the time spent in measuring the intensity / to that spent in measuring the
background B; typically a value of r is 1.5.
We now express the ideal intensity in a practical form, assuming the absence of primary extinction, as

\E(hkl)|* = I(hk)T~'S™'L™"p™! 4.21)

where I(hkl) represents the intensity of the Akl reflection that has been adjusted for fluctuations in the
incident X-ray beam, corrected for the background B and merged with symmetry-equivalent reflec-
tions, then further corrected for absorption (and extinction) T, for scaling S, and for Lorentz L, and
polarization p factors, to give ideal intensity values on a correct relative scale, with standard
deviations o (/).

All the corrections to intensity values that we have considered so far have been concerned with
adjustments to the experimentally measured expression of the intensity of reflection. There are other
related correcting factors, one of which is the secondary extinction parameter which has already been
discussed; the scale factor for F, that is actually applied to |F.| during refinement, and the temperature
factors are considered next.

'Elsewhere, Ry is also called Ry, Rumerge and Reg.
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4.1.7 Scale Factor for F,

In the initial stage of a structure analysis, the scaling factor K for F, can be calculated by Wilson’s
method, which we describe more fully in the context of intensity statistics, in Sect. 4.2.1. We write the
scaling factor K in terms of F, and |F.| as

|F.| = KF, (4.22)

and a simplistic calculation of K during a structure analysis is evidently

K=>|F| /> F (4.23)

hkl hkl

where the sums are taken over all data for which F, and |F.| are available. Normally, K is adjusted in a
least-squares refinement, where the scale factor is applied inversely to |F,|, as indicated in (4.9).

4.1.8 Thermal Vibrations and the Temperature Factor

The picture of a crystal with a total of j atoms in fixed positions with coordinates x;, y;, z; needs to be
modified to take into account their motion arising from the vibrational thermal energy that the atoms
possess at any finite temperature. Bonding forces permit small degrees of random, relative movement
of atoms, dependent upon the temperature, so that a crystal contains atoms that are vibrating about
their mean positions.

The effect of thermal vibration is that the electron density is smeared out over a finite volume,
rather than being concentrated at the atomic sites. Since the frequencies of vibrations are low relative
to the time taken for an X-ray beam to traverse a crystal under normal experimental conditions, the
crystal may be pictured as a time average of atoms randomly displaced from their mean positions, and
this condition is imposed upon the diffraction pattern of the crystal.

Thermal Vibration in One Dimension

Consider first a one-dimensional periodic arrangement of scattering centers in a row of repeat
distance a, and let the jth scattering species of mean fractional position x; be displaced by a small,
absolute distance u;. Since all unit cells in this structure are not identical, the structure factor F(h),
using (3.63) in the x dimension alone, is given by the time and space average

F(h) =Y _frexpli2nh(x; + uj/a)]

J

= Zﬁexp(iZnhuj/a) exp(i2mhx;)
J

(4.24)

Since the displacements u; are small, the exponential term may be expanded to three terms and,
remembering that for the symmetrical vibrations of simple harmonic motion u; = 0, the average
value of exp(i2nhu;/a) is approximately (1 — anhzu} / az_) to the third term, expressed conveniently,
and to the same approximation, as exp(l — 2n2h2uf /a*). In the one-dimensional analysis,
h/a = 2sin0/4; hence, from (4.23), we obtain


http://dx.doi.org/10.1007/978-1-4614-3954-7_3#Eq63_3l
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ij o exp(—8m2u?/ %sin0) exp(i2mhx;) (4.25)

The factor exp(—8n> u; smzﬂ/l ), where u_j2 is the mean square atomic displacement in the x
direction, modifies f; strlctly f;.0, to take account of thermal vibration. Normally, 8n2uf is written as
the isotropic temperature factor B;, known as the Debye—Waller factor; initially in a structure
determination, an overall value B, Sect. 4.2.1, may be applied to all atoms.

Thermal Vibration in Three Dimensions

We extend the discussion now to three dimensions, that is, to a lattice of scattering centers, or atoms,
so as to obtain an expression analogous to (4.25). From (3.12), we derive an expression for the
observed intensity /, for a lattice of atoms at rest by multiplying this equation by its conjugate, which
leads to:

I =3, exp{i2n[(r, — r,) - S|} (4.26)

where each summation extends over the total number of atoms in the unit cell. Small, vector
displacements u; are now applied to each atom, so that r, is replaced by r, + u,, and similarly for
r,,, so that (4.26) becomes

I, = ¥, Z Zexp{ﬁn rn) - S|} x exp{i2=[(u, — u,,) - S|} (4.27)

The isotropic vibration of the lattice of atoms is expressed by the mean value of the second
exponential term in (4.27). Let 27[(u, — u,,) - S] be written as p, ,,; then, for any particular value of
Dnm» WE Can write its mean value as

exp (ip) = 1 4+1ip — p2/2! —ip3 /3! + p* /4! + ... = 1 — p2/2! 4 p* /4! (4.28)

the mean values of the odd powers of p are zero, because positive and negative displacements are
equally probable. A satisfactory approximation to (4.28) is then

exp (ip) = exp(—p?/2) (4.29)

so that the mean value of (4.26) becomes
=y, Z Z exp{i2n[(r, — ry) - S|}exp(—p2,,/2) (4.30)

Now p,., = (4/A) = sin O(u,, s — u,,s), where u, s is the component of the nth displacement vector
in the direction of the vector S. Hence, we need to evaluate the mean value (i, s — uy, 5)2 which is

equivalent to un st u2, ¢ — U, sl s. We make the approx1mat10n that the couphng of the vibrations of

m,S

atoms in a lattice is negligible, whereupon #, sit,, s = 0, and un s = un ¢ = ”s


http://dx.doi.org/10.1007/978-1-4614-3954-7_3#Eq12_3
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Table 4.1 Debye—Waller corrections for a carbon atom

exp(—B?sin?0/2%)

7" Vsin 0 (4" sin ) f B =2A? B =4A?
0 0 6 6 6

0.10 0.01 5.126 5.024 4.925
0.20 0.04 3.581 3.306 3.052
0.30 0.09 2.502 .090 1.746
0.40 0.16 1.950 1.416 1.028
0.50 0.25 1.685 1.022 0.620
0.60 0.36 1.536 0.748 0.364
0.70 0.49 1.426 0.535 0.201

In (4.26), the double summation contains N> terms. Those with n = m, a total of N, have an
exponential factor of unity and p,,, is equal to zero. Where n # m, p2, /2 is constant, because the
vibration has been taken to be isotropic, and is equal to 2B, where B is now given as

B = 87°ul 4.31)

We can now write (4.27) as

Io = P33 > Y expfi2n[(r, — r,) - S]}exp[-2B(sin®0)/2°] + N (4.32)

n

n#m

In the expression for the mean isotropic temperature factor B, u_§ is the mean square atomic
displacement in the direction of vector S, that is, normal to the reflecting plane to which sinf
corresponds. Table 4.1 shows the effect of the exponential factor on the atomic scattering factor of
carbon, for two values of B and from sin0/4 =0 — 0.7.

A better approximation for temperature correction assumes that the motion remains isotropic, but
allows B to take a particular value B; for each atom j in a unit cell of a structure. This procedure is used
in the least-squares routine in the XRAY program, Sect. 13.4.4. In general, however, each atom in a
structure vibrates anisotropically, and the time-averaged electron density for an atom has the form of
a triaxial ellipsoid. This ellipsoid is represented by a 3 x 3 tensor, where six B;; components are
needed in the most general case of triclinic symmetry; the tensor is symmetric, that is, B;; = Bj;. The
Bj; values can be calculated from the isotropic B; or B values, but normally are allowed to evolve in a
least-squares refinement of atomic parameters.

Thermal vibrations increase the effective volume of the atom, so that interference within the atom
becomes more noticeable. Consequently, f falls off with increasing sin /4 more rapidly than with
that calculated for an atom at rest, as shown in Fig. 4.6. The thermal vibrations of less rigidly retained
atoms in a structure often have higher thermal vibrations than atoms that are more constrained by the
stereochemistry. An example of this effect may be seen on the electron density map in Fig. 1.7: the
carbon atoms in the eight-membered side chain have a greater freedom of movement than do those in
the ring system; consequently, their thermal vibrations are larger and their electron density contours
more diffuse.


http://dx.doi.org/10.1007/978-1-4614-3954-7_13#Sec10_13
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(a)
fie-Tj,e

(b)

(sin 8)/A axis

Fig. 4.6 Atomic scattering factors. (a) Stationary atom, fj . (b) Atom corrected for thermal vibration, f; ¢ T, also
called g; 9, where T}y = exp(—B?sin®0//?).

Statistical Expectation Value of the Debye— Waller Factor
If the unit-cell distribution of the mean square displacement parameters of the atoms is assumed to be
Gaussian, a normal distribution, with a mean y equal to B, and a variance ¢° equal to (B — E)Z, then

the expectation value W2 for the Debye—Waller factor is given as W2 = exp[—2 (% —02s2)2], where

W? = exp(—ZBsz)2 and s = sin /4. This result has been incorporated into procedures for scaling and
normalizing measured intensities to the Wilson expectation values. The procedures can be used to
determine both isotropic iz and og, and anisotropic Ay, and oy, distribution parameters. Tests with
experimental data and refined structural models for several protein crystals have yielded reliable
normalized structure factors, Sect. 4.2.5, with Zy|E— |Ec||/ZhE ~ 5%.

4.2 Intensity Statistics

Statistics form an important adjunct to many aspects of X-ray crystallography. They are used in
assessing the precision of unit-cell and atomic parameters, for predicting the phase angles of
reflections by direct methods, as discussed in Chap. 8, for determining scale and temperature factors,
to name but three. In this section, we shall be concerned with the statistics of intensity distributions,
and we consider first the Wilson statistics, and show how they may be used to obtain scale and
temperature factors for a crystal.

4.2.1 Determining Scale and Temperature Factors

Wilson Plot

An important and familiar aspect of the statistics of the weighted reciprocal lattice is based on the
equation developed by Wilson [6] for the average ideal intensity. We write (3.63), for convenience, in
a compact form:

F(h) = Z gjoexpli2n(h - r;)] (4.33)


http://dx.doi.org/10.1007/978-1-4614-3954-7_8
http://dx.doi.org/10.1007/978-1-4614-3954-7_3#Eq63_3
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where h represents the reciprocal lattice point /kl, r; is the position vector of the jth atom, that is,
r; = xa + yb + zjc; g; o is the atomic scattering factor for the jth atom, f;, modified by a temperature
factor, such as exp(—B2sin>0//?), and the sum is over all atoms in the unit cell.

If we now multiply (4.33) by its conjugate, we obtain an expression for the ideal intensity |F(h)|2:

F()P =Y "gp+> > gjogroexp(i2nh-rj,)
; — 4 (4.34)

J#k

where r;; is the vector distance r; — ry. If the distribution of atoms is uniform over the unit cell, then
the second term on the right-hand side of (4.34) will tend to a negligible value because the many r;;
vectors will tend to cancel one another: then, the average ideal intensity is given by

Fh)|> =g (4.35)
J

and is the basis for obtaining a preliminary scale factor for F', and a temperature factor for f.
Equation (4.35) has been found to hold satisfactorily over a wide range of structures, provided that
the values of F? are averaged over small, local ranges r in reciprocal space, such that f is not varying
rapidly within any range.
Applying the scale and temperature factors to (4.35), we have

K?F,(h)® = exp(—2Bsin®0,/7%) > " f7 (4.36)
J

where 0, is a representative value of 6 for each range and f; o, the corresponding rest-atomic scattering
factor. Taking logarithms of both sides, we write

Ing, =2 In K + 2Bsin®0, /2’ (4.37)

where ¢, is given by

4 = (Zf,-,%,) /Fo(h)é,,. (4.38)
J

and the sum is taken over all j atoms in the unit cell. If In ¢, is plotted against sin>0, / % and the best
straight line drawn, the slope is equal to 2B and the intercept on the ordinate is equal to 2 In K. This
graph is often called a Wilson plot and is best obtained through the following procedure.

Methodology

1. Three-dimensional space is divided into a number of spherical shells, Fig. 4.7a, such that there are
80100 reflections in each range. Although the plot of Fig. 4.7b is against sin’0/ 2%, it is convenient
to form the range demarcations in terms of sin30/ 23, since this parameter has the dimensions of
reciprocal volume; the demarcations can be converted into the equivalent values of sin*0 / 2 later.

2. Average values of F,(h)* for each range are calculated, including either symmetry-equivalent
reflections, or according each reflection in the asymmetric unit its correct multiplicity of planes. It
is necessary also to allocate values to the accidental absences, that is, possible reflections lying
within the experimental Ewald sphere that are too weak to be recorded.
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a
(vos o ) e
b
loge g, axis
Slope = 28
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1
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Fig. 4.7 Scale and temperature factors. (a) Division of reciprocal space into spherical shells; the void region contains
data for which 4, k, [ < 2. (b) Wilson plot: the intercept is 2 In K, and the slope is 2B

Wilson [6] has shown that the most probable values for accidental absences are 0.55F, ,;, for
centrosymmetric crystals, 0.66F, 1,;, for non-centrosymmetric crystals, and 0.59F ,,;, where this
symmetry is undetermined; F, i, is the minimum value of F,(h) in the range under consideration.
Systematic absences are always ignored, as are those in a region up to the second order on each
axis because they are atypical of the general distribution of intensities. In addition, the average
intensity multiple (e-factor) should be applied as a divisor of each intensity value; this parameter is
discussed and tabulated in Sect. 4.2.3.

3. The mean values of sin?f,.//> may be obtained as

sin®0, /2% = % (sin®0, /72 + sin0,,, /%)

where n + 1 is the number of the outer boundary shell defining the rth shell, starting at n = 0 for
which value sin 0 = sin0,,,, Fig. 4.7a. Alternatively, sin29,//l2 values may be obtained as
averages of sin20/ J% over each range. Atomic scattering factor data are tabulated and readily
available [7].

Auxiliary Plot

The Wilson plot can sometimes be non-linear, possibly because (4.35) does not hold well for the
given data. It may be useful to make an auxiliary plot in which the numerator in (4.38) is replaced
by Z,- ij, that is, the sum of the squares of f; at § = 0. Both curves should have the same intercept,
and experience indicates that a compromise between the Wilson and auxiliary plots often leads to a
better result.



4.2 Intensity Statistics 175

4.2.2 Other Aspects of the Wilson Plot

In papers dealing with the calculation of |E| values, Hall and Subramanian consider the Wilson plot in
some detail [8]. They stress the need for the shells in the Wilson plot to be equally populated, which
means that F, values for the accidentally absent reflections should be estimated with care. The
program GENEYV [9] provides two methods for calculating |E| values: one uses the values of B and K
from the linear Wilson plot, whereas the other provides inter alia the options of linear scale, profile
scale, and random fragment; the program GENEV uses Bayesian statistics [10] to obtain reliable
estimates of weak reflections.

Pathological Cases

Assuming that all possible care has been taken in collecting the intensity data, there may still remain
some situations in which the Wilson plot is non-linear, for a variety of reasons: there may be
significant non-zero values of the double summation in (4.34) or the temperature factor is non-
Gaussian, both conditions leading to a partial breakdown of (4.35), on which equation the Wilson
plot is based. Alternatively, the number of atoms in the unit cell may be too low to provide a uniform
distribution; a proportion of atoms may lie on symmetry elements, and so contribute only to certain
reflections; the proportion of heavy atoms in the unit cell may be unduly large; hypersymmetry may
be present. Some of these problems have been addressed by several workers, but no totally
satisfactory procedure has emerged. In most cases, the problem is resolved in the least-squares
refinement of the structure; hypersymmetry is discussed briefly in Sect. 4.2.5.

In handling two-dimensional data, the annular regions of equal area may contain too few reflec-
tions for a true sample of the reciprocal lattice. Then it is possible to employ a batch procedure, that is,
to combine groups (1, 2), (2, 3), (3, 4),. .. before the averages are taken.

In the program XRAY, the routine for the Wilson plot uses this batch technique for the two-
dimensional data sets. Not all of the example data sets provided give equally satisfactory results; this
situation is considered again in Sect. 4.2.5.

4.2.3 Statistics of Reciprocal Space

The weighted reciprocal lattice exhibits four types of regularity and one type that may be described
as irregular; we shall consider them in turn.

Accidental Absences

Accidental absences occur in the diffraction pattern of most structures, and they are disposed in an
irregular manner within the Ewald sphere. From (3.63), it is not surprising to find that there are some
instances where the sum of the vectors f; exp[i2n(hx; + ky; + Iz;)] tend to cancel to a negligible value.
The result depends upon the particular atomic arrangement in the structure rather than on its
symmetry. Such permitted reflections of negligible intensity can be estimated in the manner discussed
in Sect. 4.2.1: it is not uncommon to omit these reflections from a structure analysis, but without real
justification. We now consider regular features of the weighted reciprocal lattice.

Laue Symmetry

The positions of the reciprocal lattice points and the intensities associated with them conform to one
of the Laue groups, that is, one of the eleven centrosymmetric point groups discussed in Sect. 1.4.2.
This situation arises because of Friedel’s Law, Sect. 3.6.1, and holds in all normal situations, that is, in
the absence of resonance excitation, Sect. 3.1.3.


http://dx.doi.org/10.1007/978-1-4614-3954-7_3#Eq63_3
http://dx.doi.org/10.1007/978-1-4614-3954-7_1#Sec11_1
http://dx.doi.org/10.1007/978-1-4614-3954-7_3#Sec25_3
http://dx.doi.org/10.1007/978-1-4614-3954-7_3# Sec4_3
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Systematic Absences

In the presence of translational symmetry, that is, structures with centered unit cells, glide planes,
or screw axes, certain characteristic groups of reflections are absent from the diffraction records,
Sect. 3.7ff. The diffracted energy that is so excluded is redistributed over other reflections. For
example in a C-centered unit cell, ikl reflections are absent for 4 + kK = 2n + 1. However, the
structure factor equation now takes the form

F(hkl) = 2[cos’m(h + k) /4] > g; x expli2n(hx; + ky; + Iz)] (4.39)
j=1

from which it is evident that for the reflections present, (& + k) even, |F(hkl)| has twice the value that
it would have for a corresponding primitive unit cell.

Abnormal Averages

We have shown in Sect. 3.2.3 that the components of (4.33) can be represented in phase and
amplitude on an Argand diagram. All types of symmetry link the r; (r; = x;a + y,b + z;c) in groups
of two or more; (3.69) represents the simplest example of this feature. Thus, Zj gf, which we shall
write as X, is enhanced and becomes a distribution parameter S (not to be confused with
S =2sin0/1):

S=¢r = sng (4.40)
=

Consider space group Pm, where the mirror plane is normal to y and cuts this axis at y = 0; then,
atoms are related in pairs x, y, z, and x, y, z. Simple manipulation shows that the structure factor
equation for this example becomes

n/2
F(hkl) =~ gexpli2n(h; + ky;)](2 cos 2nlz;) = A'(hkl) + iB' (hkI) (4.41)
j=1
where
n/2
A'(hkl) = 2> " g;cos 2m(hx; + Iz;) cos 27ky; (4.42)
j=1
and
n/2
B'(hkl) =2 g;sin2m(hx; + Iz;) cos2mky; (4.43)
j=1

We need now to invoke the central limit theorem which states that in a sequence of independent
random variables xy, xa, . . ., Xj, . . ., X,, where the mean values are expressed by m; and the variances
by UJZ, the sum x = X;x; tends to a normal (Gaussian) distribution, with a mean m equal to X;m; and a

variance ¢* equal to Zjaj;, as the number of terms (n) in the sequence tends, ideally, to infinity.


http://dx.doi.org/10.1007/978-1-4614-3954-7_3#Sec27_3
http://dx.doi.org/10.1007/978-1-4614-3954-7_#Sec11_3
http://dx.doi.org/10.1007/978-1-4614-3954-7_3#Eq69_3

4.2 Intensity Statistics 177

In our application, the mean values A’(hkl) and B’(hkI) both tend to zero, since the positive and
negative values of these terms are equally probable and will tend to cancel one another in a normal
distribution. The variance for a large sample is given generally by

=(1/n)> (=% =(1/n) Zx (4.44)

J

since ¥ = 0 in our example, ¢ = x_]2 . Applying this result first to A’(hkl), the jth individual variance is
given by 2gfcosz2n(hxj + Izj)cos? 2m(ky;). Thus, the variance of A’(hkl) will be equal to A (hkl)*
which, by the central limit theorem, is given by

- n2
A’ (hkl)* Z4gl cos?2n(hxj + Izj)cos*2nky;
Jj=1
o (4.45)
= Z4gfcosz2n(hxj + Izj) cos?2mky;

J=1

It is straightforward to show, since cos?0 = (1/m) jg cos?0 d0, that the average value of cos” 0 is L
Hence, from (4.40),

n/2

A'(hkl)? Z g = (4.46)

In a similar manner, we can show that the average B’ (hkl)2 is also equal to %E,so that

|F(hkl)*| = = (4.47)

However, if we consider the zone of reflections for which & = 0, a similar analysis shows that

[F(h0l)*| = 2% (4.48)

Hence, the e-factor for the infensities in this zone of P2/m is 2. The e-factor is dependent on the crystal
class, and Table 4.2 lists the e-factors that arise in the 32 point groups.

Another way of looking at these ¢-factors is by means of stereograms. Consider Fig. 1.31, point
group 42m, and imagine the radiating normals that give rise to the poles as vectors. When projected
onto the z axis there is a fourfold superposition of the g; vectors, but when projected onto the plane
normal to z there is no such superposition; hence, 4/1 arises for the first direction, along z, that is,
£(00/) = 4 and e(hk0) = 1.

4.2.4 Acentric and Centric Distributions of Structure Factors

The measured intensities of the whole reciprocal lattice or of certain two- or even one-dimensional
regions of it may conform to an acentric,’ a centric, or a hypercentric distribution, and we shall
consider the properties and uses of their distribution functions.

2 . .
Not “non-centrosymmetric” and “centrosymmetric.”


http://dx.doi.org/10.1007/978-1-4614-3954-7_1#Fig31_1
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Table 4.2 Centric reflections and multiples (¢e-factors) for intensities in the 32 crystal classes

Crystal class New diffraction symbol Centric sets Multiples

1 1P None 1/1

1 1P All 1/1

m 2/mP—/— (0k0) 1/2

2 2/mP—/—- (hOl) 2/1

2/m 2/mP—/— All 2/2

mm?2 mmmP—— — [(hk0) masks (h00), (0k0)] 2/2; 2/2; 4/1
222 mmmpP—— — 3 principal zones only 2/1; 2/1; 2/1
mmm mmmP—— — All 4/2; 4/2; 4/2
4 4/mP—/— (hk0) 4/1

4 4/mP—/— (hk0); (00]) 2/1

4/m 4/mP—/— All 4/2

42m 4/mmmP—/— — — [(hkO), {hhO}]; [{AOI}, (00D)] 4/1; 2/1; 2/2
4mm 4/mmmP—/— — — [(hkO), {h00}, {hhO}] 8/1; 2/2; 2/2
422 4/mmmP—/— — — (hk0); {hOL}; {hhl} 4/2; 2/1; 2/1
4/mmm 4/mmmP—/— — — All 8/2; 4/2; 4/2
3 3pP— None 3/1

3 3P- All 3/1

3m(1) 3mlP—— - {hOhO} 6/1; 1/2; 2/1
32(1) 3mIP——— {hOhl} 3/1;2/15 1/1
3m(1) 3mlP—— - All 6/1; 2/2; 2/1
6 6/mP—/— (hk0) 6/1

6 6/mP—/~ (007) 3/2

6/m 6/mP—/— All 6/2

6m2 6/mmmP—/— — — [{hhl}, {hKO}, (00])] 6/2; 2/2; 4/1
6mm 6/mmmP—/— — — [(hk0), {hhO}, {Kh00}] 12/1; 2/2; 2/2
622 6/mmmP—/— — — (hk0); (hOl); (hhl) 6/1; 2/1; 2/1
6/mmm 6/mmmP—/— — — All 12/2; 4/2; 4/2
23 m3P—— {hkO} 2/1; 3/1; 1/1
m3 m3P—— All 4/2; 3/1; 2/1
43m m3mP—— — [{hk0}, {hhO}] 4/1; 6/1; 2/2
432 m3mP—— — {hkO}; {hhl} 4/1; 3/1; 2/1
m3m m3mP—— — All 8/2; 6/1; 4/2

Column 1: Crystal class (also point group symbol)

Column 2: Buerger diffraction symbols: centric zones are underlined, and the unit cell symbol is underlined where the
point group is centrosymmetric. Note that the centric distribution occurs (i) for all A4/ if the lattice is centrosymmetric;
(ii) for a zone if the corresponding projection is centrosymmetric; (iii) for a central lattice row if the corresponding
one-dimensional projection is centrosymmetric

Column 3: Centric reflections are listed explicitly

Column 4: Average intensity crystal class-dependent multiples (e-factors). Each p/g symbol gives the multiple
p (e-factor) for a reciprocal lattice row and ¢ that for the zone normal to the row

Column 5. It may be helpful to recall the full symbols 1m1, 121 (monoclinic m and 2).

Acentric Distribution
In the acentric distribution, typically for space group P1, the components A’(h) and B’(h) of the
structure factor must be considered separately. Following earlier discussions we write A’(h), omitting
the subscript 6 to g, as
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A'(h) = gcos2n(h-1))

=

and its average value over j atoms is zero, as discussed above; then from (4.46)

— & 1
A'(h)? =" gicos?2n(h - 1) = 5z (4.49)
=1

Similarly, B'(h) = 0, and B'(h)* = 13. The probabilities that A’ lies between A’ and A’ + dA’, and
that B’ lies between B’ and B’ + dB’, following a normal distribution of the type P(x) = (27102)71/ 2
exp|—(x — x)* /262, are

P(A) dA' = 1/(n2)? exp(—A"?/T) dA’

) , (4.50)
P.(B') dB' = 1/(nX)"* exp(—B"* /%) dB’

The region of area defined by dA’ dB’ is an infinitesimal portion of an annular ring on an Argand
diagram, Fig. 4.8, distant |F| from the origin. Since A’ and B’ are not correlated, the joint probability
that the structure amplitude |F| lies between |F| and |F| + d|F] is

P.(|F|) d|F| = P4(A")P,(B') dA’ dB' = (1/n%)exp[— (A" + B”*)/Z] dA' dB'
= (1/7Z) exp[(~|F)/Z] diS| (451)
where d|S| represents an area dA’ dB” on the Argand diagram and has the value 27|F| d|F|. Thus, the

joint probability refers to that area of the annular ring on the Argand diagram with radii |F| and
|F| + d|F|, so that the acentric distribution function is

Py (|F|) = (2[F|/Z) exp(~[F[*) /%] (4.52)

Centric Distribution
Space group P1 provides a typical centric distribution of intensity data. The structure factors are real
and are given by the A’ component of the structure factor equation, that is,

n/2

F(h)=A'(h) =2 Z gjcos2n(h - r;) (4.53)
=

where h and r; have the meanings as before. From the central limit theorem, if the set of A’(h) follows

a normal distribution, the mean A’(h) is zero, and the variance A’(h)?” is the sum of /2 terms of the
form 4gf cos?2mn(h - rj), which evaluates to X, the distribution parameter defined above. Hence, the
probability that a structure factor lies between F and F' + dF is given by

P.(F) dF = 1/(2n2)"? exp(—F?/2%) dF (4.54)

and the centric distribution function becomes
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A S axis

F F # axis

Fig. 4.8 Region on an Argand diagram for structure amplitude lying between |F| and |F| + d|F| in an acentric
distribution. In a centric distribution, F can have only two possible values, shown at F; (+|F|) and F, (—|F|)

P.(F) = (21%) " exp(—F?/2%) (4.55)

We note that, if we wish to consider here only the amplitudes of the centric structure factors, a
phase-restricted set, then it follows that

Pe(Famp) = 2P(F) = (2/n%)"* exp(—F?/2%) (4.56)

since the amplitude of F can be derived from either (+)F or (—)F, Fig. 4.8. We use this function in
deriving N.(E) shortly, because we will be concerned only with positive values in the centric
distribution of amplitudes.

Mean Values
We are now in a position to derive mean values for |F| and |F|* and other parameters in the two
distributions derived. The mean value X for any distribution ¢(x) is given generally by

[
Jbx) dx

but, because we are dealing with a normal distribution, f ¢(x) dx = 1, so that the average value of x is
given simply by

X= quﬁ(x) dx (4.57)

The acentric and centric intensity distributions are plotted in terms of |F| in Fig. 4.9. It is evident
that the centric distribution is characterized by a significant proportion of both strong and weak
intensities, whereas the acentric distribution has a low dispersion of intensities. These features can
sometimes be recognized in precession X-ray photographs, Sect. 5.4ff.


http://dx.doi.org/10.1007/978-1-4614-3954-7_5#Sec14_5
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P([F)

|

IF|

Fig. 4.9 Distribution function for structure amplitudes: (a) acentric, m (b) centric (¢). The acentric distribution has a low
dispersion of |F| values, whereas the centric distribution has significant proportions of both small and large |F| values

Because the centric and acentric distributions differ, it is reasonable to suppose that the distributions
may be used to distinguish between centrosymmetric and non-centrosymmetric crystals. We have noted
in Sect. 3.8 that the space group suggested by the diffraction data of a crystal may often be ambiguous.
The cause of the ambiguity lies frequently in Friedel’s law, that is, the inability to determine from the
positions of the diffraction spectra alone whether or not the crystal itself is centrosymmetric.

A parameter that may be used as a discriminator is the ratio of the square of the average |F| to the
average of |F|*:

M = [F/|FP (4.58)

For the acentric distribution, we have

= R 2
Fl = /%) | PP exp(—IFF /)
This integral, and many similar to it, can be solved readily by making use of the properties of the
gamma (I) function (see Web Appendix WA?7). Let |[F|*/Z = ¢, so that 2|F| d|F| = X dr. Then,
|F| =x!/? J "2 exp(—t) dr
0

The term 2 may be written as 13 2*1), so that the value of the integral is I'(3/2) or %nl/ 2 so that

— 1

F| = (n%)"/? (4.59)

NS}

In a similar manner,

FP = (2/%) j |EF exp(~|FP/Z) dF| (4.60)
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By making substitutions as before, it is straightforward to show that the integral in (4.60) equates
to 2. Thus,

1
M, = nE/% = n/4 =085 (4.61)

In a centric distribution, the corresponding parameter M. is readily shown to be
M. = (2X/n)/X =2/n = 0.637 (4.62)

A disadvantage inherent in these discriminators, even when the data are divided into ranges in
which the variation of f (or g) with 6 is small, is that the variation is imposed on the results. It is
preferable, therefore, to use a parameter that is not dependent upon f.

4.2.5 Normalized Structure Factors

In the previous section, we stressed the importance of placing intensity data on a common statistical
scale, and we discussed the e-factor for the crystal classes. For improved statistical results, either
unitary structure factors U(h) or normalized structure factors E(h) are employed: [U(h)|* =

|E(h)|22jgjz/ (Ejgj)Z. We shall use the parameter |E| in discussing intensity statistics and direct

methods.
The normalized structure factor E is given by the equation

E* = |F]® / ey g (4.63)
J

where |F| is on an absolute scale. For special classes of reflections, the ¢-factor must be applied in
accordance with Table 3.10.
From (4.52), the acentric distribution function for normalized structure factors follows as

P4(|E|) = 2|E|exp(~[E[*) (4.64)
and from (4.55), that for the centric distribution is
P.(E) = (2r) "/ exp(—E?/2) (4.65)

Again, as with the centric distribution of |F|, the distribution of |[E| amplitudes in the centric case is
twice that given in (4.65), because |E| here includes both +E and —E:

P.(|E|) = (2/m)"* exp(~[E[*/2) (4.66)

It will be evident that these distribution equations do not involve the atomic scattering factors, so
they are independent of the particular structure. As in the previous section, we can calculate mean
values related to the new variable |E|. For both the acentric and the centric distributions, the average
value of [E|? is unity. For the average value of |E| in the acentric distribution, we have
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Table 4.3 Parameters in the
acentric and centric distributions
of |E| values

Parameter Acentric  Centric
E 0.886 0.798
C.

\Ef ] 0.736 0.968

(|E|2 — 1)2 1 2

_ o0
B = 2j0 EP exp(~[E[Y) dE]

Making the substitution [E|* = ¢, the integral becomes

o0

E| = J 1'% exp(—t) dt
0

Since ' may be written as 2271 the integral becomes I'(3/2), or %l"(l /2), which is %\/ 7. Hence,
E = (0.886. In the case of the centric distribution, a similar calculation shows that @ =0.798.

The parameter \E|2 — 1] offers another useful discriminant between acentric and centric distribu-
tions. Here, we evaluate this parameter for the centric distribution; that for the acentric distribution
forms a problem at the end of the chapter. We now use |[E> — 1] for the centric case—(+E)* = (—E)?:

B 1] = (2/n)"" jw B — 1] exp(~E2/2) dE
0
_ (2/n)1/2jl (1 — E?) exp(—E2/2) dE + (2/m)"2 JOC (B2 — 1) exp(—E2/2) dE
0 1
Since, generally,

J(l —X*)exp(—X*/2)dX = Jd[Xexp(—X2/2)] (4.67)
it follows that

1

R, 1
|E2—1] = (2/n)1/2{ L d[Eexp(—E?/2)] + J

d[Eexp(—E2/2>1}
= (2/n)'*{Eexp(~E*/2)|y + Eexp(—E?/2)|..}

= (2/n)"*2¢71/% = 0.968

A range of parameters can be determined from the probability functions for the two distributions; a
few of them are listed in Table 4.3.

The centric distribution is addressed again through Problems 4.3 and 4.5.
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Table 4.4 Acentric and centric
cumulative distributions

El N(ED  N(ED
0 0 0

0.2 0.039 0.159
0.4 0.148 0.311
0.6 0.302 0.451
0.8 0.473 0.576
1.0 0.632 0.683
1.2 0.763 0.770
1.4 0.859 0.838
1.6 0.923 0.890
1.8 0.961 0.928
2.0 0.982 0.954
2.2 0.992 0.972
24 0.997 0.984
2.6 0.999 0.991
2.8 1.000 0.995
3.0 1.000 0.997

Cumulative Distributions

Rather than considering individual parameters, such as M or E, the determination of the centricity or
otherwise of the distribution may be approached by means of cumulative distributions of |E| values. In
the acentric distribution, the fractional number of |E| values less than or equal to a given value of |E]| is
the integral of the probability function from the lower limit to that given value. Thus, we write for the
acentric distribution

[E|
N.(|E|) = 2J |E| exp(—|E|2)d\E| =1 —exp(—E?) (4.68)
0

Similarly, for the centric distribution, we have

[E|
B T
N, ([E[) = ZJO |E| exp(—|E[") d[E| (4.69)

— erf ([EI/V2)

where erf(. . .) represents the statistical error function, which is tabulated in most texts on statistics.
Table 4.4 list the values of N(|E|) for the two distributions up to |E| = 3.0, and Fig. 4.10 illustrates
these distributions; the region of greatest discrimination is clearly 0<|E|<1.

Hypersymmetry

Hypersymmetry (hyper-centrosymmetry) can arise when non-crystallographic centers of symmetry
are present in the asymmetric unit of a structure. Pyrene [11] and benzo[a]pyrene [12] are examples
of molecules that are, themselves, centrosymmetric; the crystal structure of pyrene has been reported
in space group P2,/a, which is a non-standard setting of P2,/c. The degree of hypersymmetry depends
upon the number of additional centers of symmetry. Figure 4.10 includes the curve for N, (|E|) when
one additional center is present in the asymmetric unit. Further discussions on hypersymmetry may be
found in the literature [13].
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Fig. 4.10 Cumulative distributions N(|E|). The region 0 < |E| < 1 is the most discriminatory, as the curves tend to

converge and actually cross over at higher values of |E|

4.3 Problems

4.1. An organic crystal has a large overall isotropic temperature factor of 6.8 A% What is the
percentage reduction of the atomic scattering factor of a carbon atom at room temperature for
a reflection at = 27.55°, with Cu Ku radiation (4 = 1.5418 A) compared to that for a carbon

(sin O)/A
0

0.1

0.2

0.3

0.4

0.5

fe

6
5.108
3.560
2.494
1.948
1.686

atom at rest scattering under the same conditions? What is the root mean square amplitude of
vibration of the atom in a direction normal to the given reflecting plane? How might the data

collection process for this crystal be improved?

4.2. Calculate the ideal intensities, |F|?, for the 111 and 222 reflections for NaCl and KCI. Hence,
discuss these reflections in the light of Fig. 12.10. The necessary data are as follows: a (NaCl)
=5627 A, a (KCl) =6.278; f values may be calculated from the equation

Zi‘ a; exp(—b;s*) + c;, where s = (sin 0)//, and the constants for the equation are listed below.

ay by az by as
Na* 3.2565 2.6671 3.9362 6.1153 1.3998
K* 7.9578 12.6331 7.4917 0.7674 6.3590
Cl™ 18.2915 0.0066 7.2084 1.1717 6.5337

b4 c
14.0390 0.4040
31.9128 —4.9978

60.4486 —16.3780
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43.
4.4,

4.5.

4.6.

4.7.

4 Intensities and Intensity Statistics

Show that, in the centric distribution, M. (= F /F?) = 0.637. _

The value of [E|* for the acentric distribution is 1.329. Find the value of |E|* for the centric
distribution.

The value of |E2—1| in the centric distribution has been shown to be 0.968. Find
the corresponding value in the acentric distribution.

Compare the statistically distinguishable features of space groups Pm, P2, and P2/m and work
out a scheme for distinguishing between them.

How may one distinguish between the space groups that have the diffraction symbols (a)
mmm Pc * % and (b) mmm C % % x ?
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5.1 Introduction

The preliminary optical examination of crystalline specimens is interesting and useful in its own right
and is a major tool still employed by mineralogists and geologists. However, in structure determina-
tions with modern equipment, it is not uncommon nowadays to by-pass this step and proceed
immediately with X-ray studies. This is because in most cases, the X-ray technique is straightforward
and data can be quickly scanned with a single-crystal X-ray diffractometer, Sects. 5.5 and 5.6, or with
an area detector (see Sect. 5.7), and the suitability and quality of the crystal assessed. There are other
situations, however, where complications may arise, for example, because of an unusual crystal habit,
Sect. 5.3.5, pseudosymmetry, Sects. 7.2.2, 7.5.4, and Sect. 8.5.3, or twinning, Sect. 5.10. In such
cases, it might be possible to extract useful information from an optical examination of a crystal
before the more detailed, costly and time-consuming X-ray methods are tried.

5.2  Crystal Growing

It is frequently the case that the crystals supplied for crystallographic work are not suitable for
immediate use; then, it is necessary to recrystallize the material in order to obtain specimens
appropriate for both X-ray and optical studies.

5.2.1 Growing Crystals for X-Ray Diffraction

In Sect. 10.2ff we give considerable space to the discussion of growing crystals of proteins because
this specialized and important process can be difficult. It is, however, equally important to obtain
good crystals of inorganic and organic smaller-molecule materials, as the quality of the crystal will
influence both the value of an optical investigation and that of the X-ray diffraction data and, thus, of
the structure determination itself. Crystals used for X-ray diffraction are commonly of size ranging
between 0.1 and 0.5 mm, and crystals of such dimensions are generally obtained by a relatively slow
growth process. The slow growth favors the production of crystals that are not twinned (q.v.) or
disordered (q.v.), and from which occluded substances, such as dust or solvent molecules are absent,
except where the solvent is germane to the crystal structure. There are several techniques that are

M. Ladd and R. Palmer, Structure Determination by X-ray Crystallography: 187
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employed in general crystal growing. It is not possible to give strict directions and it is often necessary
to vary the conditions of growth in order to obtain satisfactory crystals.

5.2.2 Crystallization from Solution

In this method a suitable solvent must be found, and it is useful to remember that many inorganic
materials and organic material containing polar functional groups, such as —OH or —CO,H, for
example, will dissolve in water or ethanol. Non-polar molecules frequently dissolve in solvents
such as benzene or toluene. In some cases, mixed solvents are an asset. For example, steroid-like
substances can often be recrystallized well from a mixture of methanol and dichloromethane.

Sufficient material to form a near-saturated solution may be dissolved in warm solvent in a clean
glass vessel protected from direct exposure to the surroundings and allowed to cool slowly. Slow
cooling may be achieved by suspending the crystallization vessel in a Dewar flask or by using a
thermal reservoir. Many variations on this procedure are possible.

Crystallization from solution is essentially a process of concentration of the solution until crystals
begin to form either by cooling a solution of the substance or by slow room-temperature evaporation.
If the vessel in which the crystals are to be grown is very smooth-walled, crystallization may need to
be induced by rubbing the wall of the vessel with a clean glass rod.

5.2.3 Crystallization by Diffusion

Another technique for bringing about crystallization is by diffusion into the solution of a miscible
solvent in which the crystals have a small solubility. Thus, “ibuprofen,” a-methyl-4-(2-methylpropyl)
benzeneaceticacid (C;,H;30,), can be crystallized by diffusion from ethanol/diethylether, and
ammonium nitrate (NH3NO3) can be crystallized by diffusing ethanol into its aqueous solution.

Crystallization by diffusion may be brought about also by introducing the vapor of the solvent in
which the substance is least soluble above the surface of the solution of the substance in a suitable
vessel. This technique and the related hanging-drop method are discussed in Sect. 10.2.9, and are not
restricted to proteins.

5.2.4 Crystallization by Sublimation

Some materials are suitable for crystallization by sublimation; iodine, I, and menthol (C;oH(O) are
substances that can be treated in this manner. In principle, the material is warmed and the vapor
allowed to impinge on a cool surface; it can sometimes be advantageous for the material to be under
reduced pressure. Not surprisingly, the size of the crystals is governed by the rate of sublimation.

5.2.5 Other Issues

There are materials, particularly inorganic and refractory substances and polymers that cannot be
formed into single crystals. They exist as microcrystalline powders of size in the region of 10> mm,
and can rarely be recrystallized to larger dimensions. For this reason, we treat structure determination
from powder materials in Chap. 12, where we show that considerable success has been achieved with
this X-ray technique.


http://dx.doi.org/10.1007/978-1-4614-3954-7_10#Sec12_10
http://dx.doi.org/10.1007/978-1-4614-3954-7_12

5.3 Optical Techniques 189

5.3  Optical Techniques

We discuss first some aspects of the interaction between crystals and two different electromagnetic
radiations, light and X-rays. Light, with its longer wavelength (5000-6000 A) can reveal only limited
information about crystal structures, whereas X-rays with wavelengths of less than about 2 A can be
used to determine the relative positions of atoms in crystals. A preliminary examination of a crystal
aims to determine its space group and unit-cell dimensions, and is generally carried out by X-ray
techniques. However, the optical methods described here are simple but often very effective; they
should be regarded as a desirable prerequisite to an X-ray structure determination, particularly where
automated intensity measurement is used.

5.3.1 Polarized Light

An ordinary light source emits wave trains, or pulses of light, vibrating in all directions perpendicular
to the direction of propagation, as shown in Fig. 5.1; the light is said to be unpolarized. The vibrations
of interest to us are those of the electric vector associated with the waves. Any one of these random
vibrations can be resolved into two mutually perpendicular components, and the resultant vibration
may, therefore, be considered as the sum of all components in these two perpendicular directions. In
order to study the optical properties of crystals, we need to restrict the resultant vibration of the light
source to one direction only by eliminating the component at right angles to it.

A polarizer (P), consisting of a sheet of Polaroid, transmits light vibrating in the horizontal
direction LM and absorbs all components vibrating in the direction perpendicular to LM. Thus,
light passing through the polarizer vibrates in one plane only, and is said to be plane-polarized.
The plane contains the vibration direction that is perpendicular to the direction of propagation and to
the direction of propagation itself. A second Polaroid, the analyzer (A), is placed after the polarizer
and rotated so that its vibration transmission direction (MN) is at 90° to that of the polarizer. It
receives no component parallel to its transmission direction and, therefore, absorbs all the light
transmitted by the polarizer. The two Polaroids are then said to be crossed. This effect may be
demonstrated by cutting a Polaroid sheet marked with a straight line LMN into two sections, P and A.
When superimposed, the two halves will not transmit light if the reference lines (vibration directions)
LM and MN are exactly perpendicular, or crossed. In intermediate positions, the intensity of light

P ﬂ‘
Light
\ completely
NZ' d absorbed
)’/Y\ P
/ Transmitted

Unpolarized M component
light Resolved (plane polarized)
(Random perpendicular M
vibration components .
directions) L Polarizer Analyzer

crossed with P

Fig. 5.1 Production of plane-polarized light by passing unpolarized light through a sheet of Polaroid film (the
polarizer, P). A second, identical sheet of Polaroid (the analyzer, A), rotated through 90° with respect to P, completely
absorbs all light transmitted by P. The lines LM and MN were parallel on the sheet from which P and A were cut
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Table 5.1 Crystal directions readily derivable from an optical study

Optical classification Crystal system Information relating to crystal axes likely to be revealed
Isotropic Cubic Axes may be assigned from the crystal morphology
Anisotropic, uniaxial Tetragonal Direction of the z axis
Hexagonal Direction of the z axis
Trigonal® Direction of the z axis
Anisotropic, biaxial Orthorhombic Direction of at least the x, y, or z axis, possibly all three axes
Monoclinic Direction parallel to the y axis
Triclinic No special relationship between the crystal axes and the

vibration directions

*Referred to hexagonal axes

transmitted varies from a maximum, where they are parallel, to zero (in the crossed position). The
production and use of plane-polarized light by this method is used in the polarizing microscope.

5.3.2 Optical Classification of Crystals

Crystals may be grouped, optically, under two main headings: isotropic crystals and anisotropic, or
birefringent, crystals. All crystals belonging to the cubic system are optically isotropic: the refractive
index of a cubic crystal is independent of the direction of the light incident upon it, and its optical
characteristics are similar to those of glass. Non-cubic crystals exhibit a dependence on direction in
their interaction with light.

Anisotropic crystals are divided into two groups: uniaxial crystals, which have one optically
isotropic section and include the tetragonal, hexagonal, and trigonal crystal systems, and biaxial
crystals, which have two optically isotropic sections and belong to the orthorhombic, monoclinic, or
triclinic crystal systems.

A preliminary optical examination of a crystal will usually show whether it is isotropic, uniaxial,
or biaxial. Distinction between the three biaxial crystal systems is often possible in practice and,
depending on how well developed the crystals are, a similar differentiation may also be effected for
the uniaxial crystals. Even if an unambiguous determination of the crystal system is not forthcom-
ing, the examination should, at least, enable the principal symmetry directions to be identified;
Table 5.1 summarizes this information.

5.3.3 Uniaxial Crystals

As an example of the use of the polarizing microscope, we consider a tetragonal crystal, such as
potassium dihydrogen phosphate (KH,PQOy,), lying on a microscope slide with its y axis parallel to the
axis of the optical path through a microscope, illustrated in Fig. 5.2. The microscope is fitted with a
polarizer (P), and an analyzer (A) which is crossed with respect to P and may be removed from the
optical path. The crystal can be rotated on the microscope stage between P and A. With the Polaroids
crossed and no crystal in between, the field of view is uniformly dark. However, with the crystal
interposed, this situation will not necessarily be obtained.

The tetragonal crystal is lying with its (010) plane on the microscope slide; both the x and z axes are,
therefore, perpendicular to the microscope axis. In general, some of the light passing through the crystal
will be transmitted by the analyzer, even though P and A are crossed. The intensity of the transmitted
light varies as the crystal is rotated on the microscope stage between the polarizer and the analyzer.
During a complete revolution of the stage, the intensity of transmitted light passes through four maxima
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Fig. 5.2 Schematic To eyepiece
experimental arrangement
for examining extinction
directions. A tetragonal

crystal is shown on the

microscope stage, and the /
incident light is

perpendicular to the z axis /

of the crystal

A

y axis

t X axis
z axis CRYSTAL

= - Microscope

stage

axis

Microscope

Unpolarized
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and four minima. At the minimum positions, the crystal is usually only just visible. These positions are
called extinction positions, and they occur at exactly 90° intervals of rotation. Maximum intensity is
observed with the crystal at 45° to these directions.

These changes would be observed if the crystal itself were replaced by a sheet of Polaroid.
Extinction would occur when the vibrations of the “crystal Polaroid” were perpendicular to those
of P or A. A simple explanation of these effects is that the crystal behaves as a polarizer. Incident
plane-polarized light from P is resolved by the crystal into two perpendicular components, Fig. 5.3.
In the tetragonal crystal, the vibration directions associated with this polarizing effect are parallel to
its x and z axes. Rotating the crystal on the microscope stage will, therefore, produce extinction
whenever x and z are parallel to the vibration directions of P and A. The x and z axes of a tetragonal
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Fig. 5.3 Resolution of Polarized components
incident light into
components vibrating
parallel to the x and z axes
of a tetragonal crystal lying € €
with its y axis parallel to the w
incident beam; w and ¢ are

the refractive indices for X axis
light vibrating,
respectively, perpendicular
and parallel to z

y axis

w

/ Zz axis

7

Plane-polarized light propagated
parallel to the y axis

crystal correspond to its extinction directions: it should be remembered that the x and y directions are
equivalent under the fourfold symmetry of the crystal.

5.3.4 Birefringence

The vibration components produced by a crystal are associated with its different refractive indices.
With reference to Fig. 5.3, a tetragonal crystal in light vibrating parallel to the fourfold symmetry axis
(z) has a refractive index ¢, whereas light vibrating perpendicular to z has a different refractive index,
o; the crystal is said to be birefringent, or optically anisotropic. Figure 5.4 represents plane-polarized
light incident in a general direction with respect to the crystallographic axes. It is resolved into two
components, one with an associated refractive index @ and the other with an associated refractive
index &', both vibrating perpendicular to each other and to the direction of incidence. In general, the
value of ¢ lies between those of w and &.

Two special cases arise: one, already discussed, where the incident light is perpendicular to z, for
which ¢ = ¢, and the other where the incident light is parallel to z, for which ¢ = w. It follows that
where the direction of incidence is parallel to the z axis, the refractive index is always w for any
vibration direction in the xy plane. Plane-polarized light incident parallel to the z axis will pass through
the crystal unmodified. In this particular direction, the crystal is optically isotropic, and if rotated on
the microscope stage between crossed Polaroids, it remains in extinction. The z direction of a uniaxial
crystal is called the optic axis, and there is only one such direction in the crystal; it is the fourfold
symmetry axis in the example that we are using.

Identification of the z Axis of a Uniaxial Crystal
A polarizing microscope is usually fitted with eyepiece cross-wires arranged parallel and perpendic-
ular to the vibration directions of the polarizer, and therefore we can relate the crystal vibration
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Fig. 5.4 Uniaxial crystal
showing a light ray OP
resolved into two
components. One
component, with refractive
index w, vibrates in the xy
plane, the other, with
refractive index &', vibrates
parallel to both w and the
ray direction

OP,¢'¢e, 0o
mutually perpendicular

z axis

/-

X axis
y axis

o
Unpolarized
light source

directions to its morphology. There are two important optical orientations for a tetragonal crystal,
namely with the z axis either perpendicular or parallel to the axis of the microscope. These orienta-
tions are, in fact, important for all uniaxial crystals, and will be described in more detail.

z Axis Perpendicular to the Microscope Axis

In this position, shown by Fig. 5.5, a birefringent orientation is always presented to the incident light
beam. Extinction will occur whenever the z axis is parallel to a cross-wire, no matter how the crystal is
rotated, or flipped over, while keeping z normal to the microscope axis. The success of this operation
depends to a large extent on having a crystal with well-developed (hk0) faces. The term straight
extinction is used to indicate that the field of view is dark when a crystal edge is aligned with a cross-
wire. A face of a uniaxial crystal for which one edge is parallel to z, an (%k0) face or to its trace on a
crystal face, such as (h0/), will show straight extinction.

z Axis Parallel to the Microscope Axis
The crystal now presents an isotropic section to the incident light beam, and will remain extinguished
for all rotations of the crystal, while keeping z along the microscope axis. A reasonably thin section of
the crystal is required in order to observe this effect. Because of the needle-shaped habit of the crystal,
it is necessary to cut the crystal carefully so as to obtain the desired specimen, Sect. 5.10.1.

The section of a uniaxial crystal normal to the z axis, if well developed, may provide a clue to the
crystal system. Tetragonal crystals often have edges at 90° to one another, whereas hexagonal and
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Fig. 5.5 Extinction position for a tetragonal crystal lying with its z axis parallel to the microscope slide. Any [UV 0]
direction could be parallel to the microscope axis; extinction will always be straight with respect to the z axis or its trace

b c
’ @ i ]

Fig. 5.6 Idealized uniaxial crystals as seen along the z axis. (a) Tetragonal. (b) Hexagonal. (¢) Trigonal. The refractive
index for light vibrating perpendicular to the z axis is given the symbol w, and the crystals appear isotropic in this
orientation

a

trigonal crystals often exhibit edges at 60 or 120° to one another. These angles are external
manifestations of the internal symmetry; idealized uniaxial crystal sections are shown in Fig. 5.6.

5.3.5 Biaxial Crystals

Biaxial crystals have two optic axes and, correspondingly, two isotropic directions. The reason for
this effect lies in the low symmetry associated with the orthorhombic, monoclinic, and triclinic
systems, which, in turn, results in less symmetric optical characteristics. Biaxial crystals have three
principal refractive indices, n;, n,, and n3 (normally, n; < n, < n3), associated with light vibrating
parallel to three mutually perpendicular directions in the crystal. The optic axes that derive from this
property are not necessarily directly related to the crystallographic axes. We shall not concern
ourselves here with a detailed treatment of the optical properties of biaxial crystals, but will
concentrate on relating the extinction directions to the crystal symmetry.

Orthorhombic Crystals

In the orthorhombic system, the vibration directions associated with ny, n,, and n3 are parallel to the
crystallographic axes, but any combination of x, y, and z with n,, n,, and n3 may occur. Consequently,
recognition of the extinction directions facilitates identification of the directions of the crystallo-
graphic axes. For a crystal with x, y, or z perpendicular to the microscope axis, the extinction,
directions will be either parallel or perpendicular to the axis in question, as illustrated in Fig. 5.7.
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X,y Orz axis————e

Fig. 5.7 Extinction directions in an orthorhombic crystal viewed along the x, y, or z axis

y axis

Z axis

Fig. 5.8 Extinction directions as seen along the x-axis of an orthorhombic crystal with {011} development: an
example of symmetric extinction

If the crystal is a well-developed orthorhombic prism, the three crystallographic axes may be
identified by this optical method. A common alternative habit of orthorhombic crystals has one
axis, x, for example, as a needle axis with the {011} form prominent. The appearance of such a crystal
viewed along x is shown in Fig. 5.8, and is an example of a symmetric extinction.

Monoclinic Crystals

The lower symmetry of monoclinic crystals results in a corresponding modification of the optical
properties in this system. The symmetry axis y is, conventionally, set parallel to one of the vibration
directions; x and z are related arbitrarily to the other two mutually perpendicular vibration directions.
Hence, two directions are of importance in monoclinic crystals, namely, perpendicular to and parallel
to the y axis.

When viewed between crossed Polaroids, a monoclinic crystal lying with its y axis perpendicular
to the microscope axis will always show straight extinction, with the cross-wires parallel (and
perpendicular) to y. Often, the y axis is a well-developed needle axis; rotation of the crystal about
this axis while keeping it perpendicular to the microscope axis will not cause any change in the
position of extinction, Fig. 5.9.
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y axis —

Fig. 5.9 Extinction directions in a monoclinic crystal viewed perpendicular to the y axis: an example of straight
extinction

X axis

Z axis

Fig. 5.10 Extinction directions in a monoclinic crystal viewed along the y axis—an example of oblique extinction. If
the forms developed are pinacoids, that is, {100}, {010}, and {001}, then the extinction angle; the angle between a
crystal edge and a cross-wire will be related in a simple way to the f§ angle

If the monoclinic crystal is arranged so that y is parallel to the microscope axis, the (010) plane will
lie on the microscope slide. Extinction in this position will, in general, be oblique, as shown in
Fig. 5.10, thus giving further evidence for the position of the y-axis direction. The appearance of
extinction in a monoclinic crystal in this orientation may be somewhat similar to that of an
orthorhombic crystal showing prominent {011} development, compare Figs. 5.8 and 5.10, and
confusion may sometimes occur in practice.

Triclinic Crystals

The mutually perpendicular vibration directions associated with n;, n,, and n3 are arbitrarily related to

the crystallographic axes, which are selected initially from morphological and X-ray studies.
Reference to Table 5.1 should now enable the reader to consolidate the ideas presented in the

discussion of extinction directions in the seven crystal systems. Although it gives only limited
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information on the optical properties of crystals, a practical study of a crystal along these lines can
often provide useful information about both its system and its axial directions. Further details on the
optical properties of crystals may be found in standard works on this subject [1].

5.4  Single-Crystal X-Ray Diffraction Techniques: Intensity Data Collection

With the development of sophisticated X-ray diffractometers, there has been a distinct move away
from traditional photographic methods of recording diffraction patterns of crystals, although they still
have a value for displaying a picture of the reciprocal lattice, and for investigating the symmetry or
perfection of crystals. The introduction of various types of area detectors swings methodology away
from the serial, “one reflection at a time,” diffractometer toward image-plate principles, reminiscent of
the earlier photographic techniques. An understanding of Laue and X-ray oscillation photography and
the related geometry is invaluable to those taking the almost inevitable step of progressing from in-
house facilities to the use of the synchrotron. The precession camera [2, 3] is sadly no longer used per
se but was historically a brilliant innovation that allowed undistorted records of the weighted
reciprocal lattice, Sect. 3.4.2, to be produced as a matter of routine. Figure 5.11a, b show zero-level
and first-level precession photographs of the orthorhombic crystal of trypsin. Such records can
however now be produced from intensity data files using software such as that of Bruker AXS
(XPREP/RLATT) [4] thus preserving the art of recording the undistorted reciprocal lattice, Fig. 5.11c.

Over the past 15 years, the role of powder crystallography has been transformed from one of very
minor use in structure analysis to one in which it is rapidly becoming a major alternative choice.
Chap. 12 provides details of the advances that have taken place to revolutionize this method, while
the present chapter discusses the interpretation of the X-ray diffraction data recording techniques in
current use for single crystals and methods for the » data.

5.4.1 Laue Method

The three variables in the Bragg equation provide a basis for the interpretation of X-ray crystallo-
graphic experiments. In the Laue method, Fig. 5.12, the Bragg equation is satisfied by effectively
varying A, utilizing a beam of continuous (white) radiation. Since the crystal is stationary with respect
to the X-ray beam, it acts as a sort of filter, selecting the correct wavelength for each reflection
according to the Bragg equation.

The diffraction spots on a Laue photograph lie on ellipses, all of which have one end of their major
axis at the center of the photographic film, Fig. 5.13. All spots on one ellipse arise through reflections
from planes that lie in one and the same zone. In Fig. 5.14, a zone axis for a given Bragg angle 0 is
represented by ZZ'. A reflected ray is labeled R, and we can simulate the effect of the zone by
imagining the crystal to be rotated about ZZ', taking the reflected beam with it. Rays such as R,
generate a cone, coaxial with ZZ' and with a semivertical angle 6. The lower limit, in the diagram, of
R is the direction (XY) of the X-ray beam, and the general intersection of a circle with a plane (the flat
film) is an ellipse. Hence, we can understand the general appearance of the Laue photograph shown in
Fig. 5.13. On each ellipse, discrete spots appear instead of continuous bands because only those
orientations parallel to zone axes, such as ZZ', that exist for actual crystal planes can give rise to X-ray
reflections.


http://dx.doi.org/10.1007/978-1-4614-3954-7_3#Sec21_3
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Fig. 5.11 Precession photographs. (a) A zero-level precession photograph of an orthorhombic protein crystal, trypsin:
a = 41.5444, b = 113.4716, ¢ = 50.7156, space group P2,2,2. (b) The first-level photograph of the same crystal.
(¢) A simulated precession photograph of an orthorhombic crystal precessing about @ (Cu Ko, A = 1.5418 A).
The undistorted, weighted reciprocal lattice zero level is shown; it enables b*, C*, and o to be measured directly
from the film. The lengths b"and ¢" are magnified by the crystal-to-film distance of 60.00 mm, and the diagram has been
scaled down by a factor of 0.415 (from the original photograph). By direct measurement on the film, 14h"and 14¢” are
67.9 and 68.5 mm, respectively. Hence, b* = (67.9/0.415)/(60 x 14) = 0.1948. Similarly, ¢* = 0.1965. Thus,
a=1791A,b="784Aandy = 90°



5.4 Single-Crystal X-Ray Diffraction Techniques: Intensity Data Collection 199

\

“’"”-:‘. Lead stop
Unfiltered e to absorb

X- :
rays Crystal e direct beam

specimen

Fig. 5.12 Schematic experimental arrangement for taking a Laue photograph on a flat-plate film
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Fig. 5.13 Sketch of a Laue photograph of «-Al,O3; the threefold symmetry direction is normal to the photograph
(along the X-ray beam)
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Fig. 5.14 Geometry of the Laue method: XY, X-ray beam direction; ZZ', a zone axis; R, generator of the cone of
diffracted rays of semi-angle 6, the Bragg angle; Y, central spot on the film and extremity of the major axis of the ellipse

formed by the intersection of the cone with the film
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5.4.2 Symmetry in Laue Photographs

One of the useful features of Laue photographs is the symmetry observable on them. The crystal
orientation with respect to the X-ray beam is selected by the experimenter from morphological and
optical considerations. This orientation, together with the crystal point group, controls the symmetry
on the Laue photograph.

In practice, a complication arises by the introduction of a center of symmetry into an X-ray
diffraction pattern, in normal circumstances, whether or not the crystal is centrosymmetric. This
situation is embodied in Friedel’s law, the theoretical grounds for which have been discussed in
Sect. 3.6.1. As a result of this law, the diffraction pattern may not reveal the true point-group
symmetry of a crystal. It may be recalled that Table 1.6 shows the classification of the 32 crystallo-
graphic point groups according to Laue diffraction symmetry.

It cannot be over emphasized that the Laue group assigned to a crystal describes the symmetry of
the complete X-ray diffraction pattern from that crystal. No single X-ray photograph can exhibit the
complete diffraction symmetry, only that of a selected portion which is a projection on to the film,
along the direction of the X-ray beam, of the symmetry information that would be encountered in that
direction in a crystal having the Laue group of the given crystal.

It follows that in the triclinic system, no symmetry higher than 1 is ever observable on a Laue
photograph. In other crystal systems, the Laue-projection symmetry depends on the orientation of the
crystal with respect to the X-ray beam. Rotation axes of any order reveal their true symmetry when
the X-ray beam is parallel to the symmetry axis. Even-order rotation axes, 2, 4, or 6, give rise to
mirror diffraction symmetry in the plane normal to the rotation axis when the X-ray beam is normal to
that axis. A mirror plane itself shows m symmetry parallel to the mirror plane when the X-ray beam is
contained by the plane. Various combinations of these effects may be observable, depending upon the
Laue group in question.

The nature of the X-ray results, supplementary to those obtained in the optical examination, should
now be evident. Uniaxial crystals can be allocated to their correct systems by a Laue photograph
taken with the X-ray beam along the z axis. The Laue photograph in Fig. 5.13 exhibits the Laue
symmetry 3m. Distinction between the monoclinic and orthorhombic systems, which is not always
possible in an optical examination, is fairly straightforward with Laue photographs, Table 1.6. Cubic
crystals can exhibit a variety of symmetries, but with the X-ray beam along (100) the differentiation
between Laue groups m3 and m3m is clear.

In practice, the symmetry pattern on a Laue photograph is very sensitive to the precise orientation
of the crystal with respect to the X-ray beam [5]. Slight deviation from the ideal position will result in
a distortion of the relative positions and intensities of the spots on the photographs.

5.4.3 Laue Method and Synchrotron Radiation

The synchrotron is an extremely powerful source of X-rays and produces a very wide range of
wavelengths, Sect. 3.1.6, and is ideally suited to the Laue method of recording diffraction patterns.
Since the crystal is in a fixed orientation, the angle of incidence of the X-ray beam is thus set for each
(hkl) plane. For a reflection to take place at a preset 0 angle, the plane must effectively select the
wavelength required to satisfy the Bragg equation. A reflection on a Laue photograph thus comprises
four parameters, the usual 44/ indices and the wavelength selected by the crystal.


http://dx.doi.org/10.1007/978-1-4614-3954-7_3#Sec25_3
http://dx.doi.org/10.1007/978-1-4614-3954-7_1#Tab6_1
http://dx.doi.org/10.1007/978-1-4614-3954-7_1#Tab6_1
http://dx.doi.org/10.1007/978-1-4614-3954-7_3#Sec7_3
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Fig. 5.15 Geometry of Laue diffraction at the level Y = 0 on a film placed perpendicularly to the incident X-ray beam:
C, crystal; P, position of a Bragg reflection; 26, scattering angle

Consider a fixed crystal in a Laue diffraction experiment. For planes (hk/) the preset angle of
incidence is 0, and the wavelength required to be selected for the Bragg equation to be satisfied for the
reflection hkl is A(hkl)g, given by

A(hkl)y = 2d(hkl) sin6 5.1

For planes (25, 2k, 21), the wavelength to be selected is

A(2h,2k,21), = 2d(2h,2k,2]) sin0 (5.2)
From Sect. 2.3,
A(2h,2k,21), = 2d(hkl) sinf/2 = A(hkl),/2 (5.3)
which is easily generalized to
A(nh,nk,nl)y = A(hkl),/n 5.4
Since the Bragg angle 6 is common to the sets of reflections (hkl, 2h, 2k, 21, ..., nh, nk, nl,

n=1,2,3,...) these sets will be superimposed on the Laue photograph. The extent of super-
imposition depends on the range of values of /4 available from the X-ray source, which may be
selected to minimize this overlap of reflections.

The interpretation of a Laue photograph may thus be complicated both by the possible existence of
multiple reflection orders and by the need to assign the correct value of / to each I(hkl) prior to use in
structure analysis. The latter requirement is, of course, necessary in view of the dependence of the
atomic scattering factor f on both 0 and 4. Other factors requiring special attention include sensitivity
characteristics and absorption by the photographic film, both of which are wavelength-dependent.

As an example, consider the following situation: an orthorhombic crystal with a = 10.0 A,
b =15.0 A, ¢ = 20.0 A is mounted with ¢ vertical and perpendicular to the X-ray beam, such that
b makes an angle ¢ of 30° with the beam direction in the horizontal plane. A diffraction spot P occurs
on a flat-plate film such that its coordinates are X mm (horizontal) and Y mm (vertical), the plate
being placed at a distance R mm from the crystal, Fig. 5.15, Y = 0. Since the wavelength is variable,


http://dx.doi.org/10.1007/978-1-4614-3954-7_2#Sec6_2
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X-Ray Beam Direction

Fig. 5.16 Reciprocal net a’b" for an orthorhombic crystal witha = 10 Aand b = 15 A, tilted at ¢ = 30° to the X-ray
beam; c is vertical. The wavelength range chosen is 1.0 A (Amin) to 1.5 A (Amax)- Reciprocal lattice points that can give
rise to diffraction spots on the right-hand side of the film (including the 350 and 470 used in the example calculations)
and on the left-hand side have been emphasized. They lie between the limiting arcs of the Ewald spheres as shown.
The range of 7k0 reflections is limited also by the resolution limit dy,, , which is governed by the crystal. For the
reciprocal net chosen, a = 1/a = 0.1 RU and b= 1/b = 0.0667 RU; the scale is 1 RU = 3.52 cm

we define d*(hkl) from (2.11) with k = 1, which results in the Ewald sphere having a wavelength-
dependent radius of 1/A. Thus, if the extremes of 4 used in the experiment are Ay, and A,.x, the
corresponding Ewald spheres will have radii 1/, and 1/2,,., Fig. 5.16. The reciprocal lattice in this
treatment has fixed dimensions, a° = 1/a, b = 1/b, and ¢ = 1/c. We can predict possible Laue
reflections at ¥ = 0 with the aid of Fig. 5.16. The a"b" reciprocal lattice net is shown rotated at 30° to
the X-ray beam, as described above. Traces of the outer and inner Ewald spheres, corresponding
to the minimum and maximum wavelengths, contain a reciprocal lattice area which includes all
reciprocal lattice points, shown intensified in the diagram, that are able to give rise to Laue reflections
with an appropriate wavelength. The recording geometry relevant to the above experimental arrange-
ment is shown in Fig. 5.15, from which it can be seen that for ¥ = 0 (corresponding to / = 0 in
the example)

tan 26(hk0) = X /R

where X is the horizontal distance of spot P from the origin O, and R is the crystal-film constant.
Reciprocal lattice points lying within the allowed region, Fig. 5.16, include 350, 470, 480, 490.. . .,
313,0, for the limiting wavelengths A, = 1.0 A, Amax = 1.5 A used in the example. We now
determine the coordinates of Laue diffraction spots and the wavelengths used in producing them.

The wavelength selected for a particular d (hk0) can be calculated with reference to Fig. 5.17.
In this diagram


http://dx.doi.org/10.1007/978-1-4614-3954-7_2#Eq11_2
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Fig. 5.17 Geometry of
wavelength selection
through a reciprocal lattice | X-Ray Beam
vector d” (hk0). The angle
¢ defines the crystal
orientation: C, crystal; O,
origin of reciprocal lattice;
CQ, direction of diffracted

beam
Ewald sphere
Radius = 1/\,,/6)
d*(hko)
Parallel to Q
Plane of Film
a*
tane = ha * /kbx = hb/ka
and
0(hk0) = [90 — (¢ + ¢)]
Thus,

A(hk0), = 2d(hk0) sin O(hkO) = 2d(hk0) sin[90 — (¢ + &)] = 2d(hk0) cos(¢ + &)

Taking ¢ = 30°:
1. Reflection 350

tane =3 x 15/(5 x 10) =0.900 ¢ = 41.99°

9 25
d(350) = (W +

=1.3789A 0(350) =90 — (30 + 41.99) = 18.01°

—1/2
) =2.2299A=2.2299 A .". A(350), =2 x 2.2299 cos(30 + 41.99)

Hence for R = 60 mm

X(350) = 60tan(2 x 18.01) = 43.62 mm
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2. Reflection 470

tane =4 x 15/(7 x 10) = 0.8571 &= 40.60°

16 49\ '/
d(470) = (W + F) = 1.6270A  A(470), = 2 x 1.6270 cos(30 + 40.60)
— 1.0809A 0(470) =90 — (30 +40.60) = 19.40° X(470) = 60tan(2 x 19.40)
= 48.24 mm

Note the dependence on these results of the crystal orientation parameter ¢. It is easy to show that
for ¢ = 0°
1. 4(350)y = 3.3148 A
2. M(470)y = 2.4707 A

Thus, neither of these reflections would be recorded for this orientation using the given wavelength
range.

Laue photographs can be scanned optically with a densitometer, which records both intensity and
position of each spot on the film; alternatively, this information can be derived from the diffraction
pattern recorded on a flat reusable CCD plate. These data are then processed by computer using
powerful software, which will index and also refine the unit-cell parameters as required, Sect. 11.2.3ff.

The interpretation of such records, which can contain thousands of spots, is a skilled operation but
usually requires a minimum of user intervention. Knowledge of the crystal unit cell is a useful
prerequisite; otherwise the crystal can be, and usually is, randomly oriented with respect to the
direction of the X-ray beam. With a crystal of high symmetry it is possible to record most of the three-
dimensional diffraction pattern on a single photograph. Being independent of mechanical constraints,
Laue data can be recorded very rapidly, in seconds for good quality crystals at a high-intensity
synchrotron radiation facility using a CCD plate (q.v.) instead of a photographic film. Even the
problem previously mentioned of multiplicity of orders has proved to be less of a difficulty to an
application of the method than at first thought, for example, by using a wavelength range of 0.6-1.6 A
in protein crystallography.

The method thus facilitates novel studies using synchrotron radiation, such as time-dependent
solid-state reactions and enzyme-driven transformations. The latter can be synchronized by employing
tailor-made photosensitive substrates to delay the biochemical reactions until the X-ray experiment is
ready. Such studies provide exciting new dimensions to X-ray crystallography.

There are several important differences between synchrotron radiation and X-rays generated from
a conventional laboratory source. The latter are usually emitted as characteristic radiation from a
copper or molybdenum metal target, and comprise the predominant characteristic o and f§ wave-
lengths, and a more general, less intense, polychromatic background. An appropriately selected metal
filter allows the production an effectively monochromatic beam, Sect. 3.1.4. Synchrotron radiation
(SR) is of extremely high intensity, a property which can be exploited for the examination of weakly
diffracting or very small crystals. A particular wavelength can be selected from the continuous SR
wavelength range by an appropriate filter, for either single-crystal rotation or powder diffraction
experiments. Alternatively, the continuous polychromatic beam can be used for Laue photography
with a stationary crystal, to record diffraction data efficiently and rapidly. Finally, SR has a very low
beam divergence which results in very sharp diffraction spots, Fig. 5.18. This is particularly useful in
providing good intensity data from poorly diffracting crystals, such as proteins, resulting subse-
quently in greatly improved resolution of their X-ray Fourier images.


http://dx.doi.org/10.1007/978-1-4614-3954-7_11#Sec6_11
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5.4.4 Oscillation Method

Flat-Plate Oscillation Technique: Basic Ideas

This technique is now used for both preliminary assessment of the suitability of a crystal prior to
X-ray data collection and data collection itself with monochromatic X-radiation. The diffraction
pattern was originally recorded on a flat film, but has been replaced in modern applications by one of
several electronic devices known as area detectors or position-sensitive devices that we discuss in
Sect. 5.7.

The intensity data are recorded in a series of exposures in which the crystal is rotated or
oscillated through a small angular range dp of about 0.1-2°. For crystals with large unit cells, it
is necessary to employ a large crystal—film distance, at least 60 mm, in order to effect separation of
the diffraction spots on the film. A large effective surface area is necessary in order to record data to
high resolution, that is, to high 0 values, for the production of good quality X-ray structure
determinations. Previously, cameras were designed specifically for this purpose, and employed a
flat-plate film perpendicular to the X-ray beam together with a mechanism for automatically
changing the cassette, a carousel device, thus enabling several exposures to be set concurrently
[6]. Area detectors, Sect. 5.7, are reusable, thus eliminating this requirement.

The geometry necessary to define the (X, Y) coordinates of an upper-level spot on the film or plate
is indicated in Fig. 5.19. In this diagram CO’ is perpendicular to the film plane. Triangle CO'P’ is
right-angled at O’, and PP'O’ at P’; triangles DD'C and PP'C are similar, so that
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Fig. 5.19 Coordinate pair X, Y of the diffraction spot P on a flat-plate oscillation photograph for a general upper-level
reflection: C, crystal; CC’, oscillation, or ¢ axis; O, reciprocal lattice origin; O’, origin of coordinates on the film;
oD =d" (hkl); CP, reflected beam, intersecting the Ewald sphere at D; DD’, perpendicular distance above the zero

level. Since the radius of the Ewald sphere is 1 RU, the radius of the upper level at level ( is

crystal-to-film distance

Y/CP' =(jcD' = /(1)
Y =CP{/(1-0)"?
CP* =R*+ X2
Y= (R*+X3(/(1 =)

where R is the distance CO’.
Further,

r/R=tan20 and 1*=X*+4Y?
where r is the distance PO’. Therefore,
R*tan’20 = X*> + Y2
Combining these results, it follows that
X = R[an®20(1 — %) — '

Y = R{[1 + tan?20]"/*

(1—%); CO' is the

(5.5)

(5.6)

5.7

(5.8)

If a reciprocal lattice axis is parallel to the rotation axis, { RU corresponds to the appropriate level

along the axis.
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We will illustrate these ideas with the following worked example. A protein crystal with a
monoclinic unit cell, a = 30.0 /DX, b =50.0 A, c =40.0 10%, f = 100°, is mounted on an oscillation
camera equipped with a flat-plate cassette placed with its plane perpendicular to the X-ray beam and at a
distance R = 60 mm from the center of oscillation. The b axis of the crystal is vertical and perpendicu-
lar to the X-ray beam, with —a parallel to the beam at the start of a counterclockwise rotation;
X-rays with wavelength of 1.2 A are used in the experiment. Consider the following problems:

1. At what point in the rotation will the 004 reflection take place?

2. Calculate the (X, Y) coordinates (in mm) of the 004 spot on the film, X being the horizontal
coordinate and Y the vertical.

3. Calculate the (X,Y) coordinates (in mm) of the 014 spot on the film.
1. Refer to Fig. 5.18 to see that the required rotation is 0(004), calculated as follows:

d*(004) = 4c*
where ¢* = //csin f=1.2/(40sin 100) =0.03046, so that
d*(004) = 0.1219 = 2 sin 6(004)

Hence, sin 6(004) = 0.06095 and 8(004) = 3.494° (the rotation angle from starting position).
2. From Fig. 5.20, we have

X(004) = Rtan26(004)
= 60tan 6.988
= 7.354 mm
Y(004) = 0mm

3. For the 014 reflection:
{=b"=1/b=10.0240
Using (2.16), it follows that

d*(014) = b** 4 16¢*
= 0.0240% + 16(0.03046)*
=0.01542

so that
d*(014) = 0.1242 = 25sin 0(014)
Hence, sin 0(014) = 0.06210, and 20 = 7.121°, by (5.7). Thus,

X(014) = 60[tan>7.121(1 — 0.0240%) — 0.0240%)"/% = 7.352 mm


http://dx.doi.org/10.1007/978-1-4614-3954-7_2#Eq16_2
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Fig. 5.20 Plan view of flat-plate oscillation geometry, looking down the oscillation axis, CC’ in Fig. 5.19, at C. In the
accompanying example, the y axis of the crystal (C) is perpendicular to the diagram, and coincides with the rotation
axis. Because the crystal is monoclinic, the a'¢” levels superimpose in this orientation. The diagram shows ¢* at
the beginning of an anticlockwise rotation perpendicular to the X-ray beam. The crystal rotates through 6(004) and, at
the reciprocal lattice point 004, d* (004) intersects the Ewald sphere and the 004 reflection is produced. For the
014 reflection, a further small rotation is necessary

and from (5.8)

Y(014) = 60 x 0.0240[1 + tan®7.121]"/? = 1.451 mm

Hence, the 004 reflection has coordinates (7.354, 0.0) mm; the 014, (7.352, 1.451) mm.

5.5 Measurement of the Intensities of Diffraction Data

A variety of options is open to the crystallographer for obtaining measurements of X-ray intensities.
These include the use of a single counter or serial diffractometer, and the latest area detectors. A list
of some of the currently available equipment is to be found in Sect. 5.7.10. Examples include
the computer-controlled four-circle serial diffractometer (Nonius CAD4), and the kappa geometry
CCD diffractometer (Nonius KappaCCD). A cryostream device may be attached for work at low
temperatures.
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5.5.1 Single Counter or Serial Diffractometers

Traditional diffractometers that employ scintillation counters' to detect and measure X-ray reflec-
tions from single crystals, one by one, incorporate a mechanical goniometer to orientate the crystal
into the correct reflecting position for each %kl reflection, and to rotate the counter to receive the
scattered radiation from this single reflection. The energy is transformed electronically into a form
suitable for conversion to /(kk/). Because each reflection is measured individually, with a count time
typically of around 60 s, the process is very slow, particularly for proteins, which routinely involve
the measurement of tens of thousands of reflections. The dynamic range of the instrument is the
quantified range of intensities from very weak to very strong over which the instrument can produce
measured values of intensity. This can be enhanced to enable measurement of very strong reflections
through the use of a calibrated attenuator, such as a strip of nickel foil in the case of copper radiation.
The wider the dynamic range available the better will be the measured set of intensity data. For
relatively unstable crystals, proteins and other macromolecules, the crystal needs to be replaced once
it is observed to be dying. Consequently, several crystals may be required in the production of a
complete data set, which is subsequently achieved by scaling the individual sets together. However,
the accuracy attainable is possibly better than for most other methods, and this advantage offsets the
lengthy time scale that is required for the data collection.

The disadvantages of a slow data-collection rate and the need for several crystals with single
counter diffractometry have been largely overcome by the use of electronic film area detectors and
image plates, which methods we discuss in Sect. 5.7.

5.6  Single-Crystal X-Ray Diffractometry

It has become commonplace for X-ray diffraction data to be collected by means of a diffractometer.
We give here a brief description of the Enraf-Nonius CAD4 kappa-diffractometer. Two other similar
systems are considered later.

5.6.1 Instrument Geometry

The CAD4 kappa-diffractometer is characterized by its k-goniometer, which differs in geometry
from other four-circle diffractometers. The x-goniometer carries the goniometer head and arcs, and
keeps the crystal at the center of the diffractometer throughout the data collection. The k-goniometer
is a combination of three parts, which carry the rotation axes. All axes intersect in the center of the
diffractometer.

The arcs are mounted on the ¢ axis, on the x-block, as shown in Fig. 5.21; the angle of rotation
about this axis is ¢,. The k-block is rotated about the x axis, being itself carried by the w-block.
In turn, the w-block is rotated about the axis (w,) and is carried on the diffractometer base. The angle
4 between the @ and X axes is ca. 50°, and that between the x and ¢ axes is also ca. 50°. Thus, the
goniometer can access all directions of y within about 100° of the zero setting of the instrument. This
suspension gives the CAD4 an enhanced flexibility over the traditional Eulerian cradle. There is also a
20 axis, coinciding with the o axis, which carries the scintillation counter detector. The coincidence
of the ¢ and w axes corresponds to ¥ = 0; w,. = 0 for k in the plane of the diffractometer axes X and

! Similar to Geiger counters.
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Z, with the x block opposite +X, and 26 = 0 when the center of the detector lies in the plane of X and
Z and opposite +X. The definition of ¢, is arbitrary, and a suitable working procedure is arranged.
Starting from k¥ = w, = 0, positive rotations of 0, w, and ¢ move a vector from Y toward X, and a
positive rotation about x moves a vector from Y to a position below the horizontal plane.

5.6.2 Rotation of the Crystal into a Diffracting Position

In the zero position of the CAD4, a vector c is assumed to be attached to the crystal, with components
1, C2, and c5 parallel to X, Y, and Z, respectively. The operation to be applied to ¢ is given in terms of
the angles w,, Kk, ¢,. by

c(o,1,0) = Z(wg) - Y(=a) - Z(x) - Y(a) - Z(,) - |c| (5.9

We can define general clockwise rotations of amounts ¢, ff, and 7y about X, Y, and Z, respectively,
by the following matrices:

1 0 0
X(a), .y =10 cosa sinoa (5.10)
0 —sino cosa
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[cosp 0 —sinp
YB)yz=| 0 1 0 (5.11)
|sinff 0 cosf

[ cosy siny 0
Z())y_x = | —siny cosy 0 (5.12)
0 0 1

In (5.9), « is the angle of rotation of the x-block about Y such that the x and Z axes coincide. The
term Y(—a) in (5.9) returns the goniometer to its original position.

5.6.3 Transformation from Miller Indices to Diffractometer Angles

To set a reflecting plane in the diffracting position, its Miller indices are transformed to a scattering
vector ¢ by an orientation matrix R:

ay by
R=|a, b, c (5.13)
az by <

where the reciprocal unit-cell vectors a*, b*, and ¢ are resolved into components along X, Y, and Z
respectively. Then

1
| =R- |k 5.14)
C3
or
c=R-h (5.15)

Other similar transformations are built into the software of the diffractometer so that the scattering
vector c¢ is brought into the horizontal plane and, via Eulerian forward and inverse transformations,
for mathematical convenience, the values of the angles w,, K, and ¢,, by which the diffractometer
circles must be moved, are determined. Then the intensity of the reflection that corresponds to ¢(w,,
K, ¢,) can be measured and recorded.

5.6.4 Data Collection

The flexible routines that are built into the CAD4 permit selection of the /k/ reflection in differing
ways, including Friedel pairs 4kl and hkl, Sects. 3.6.1 and 7.5. The azimuthal angle, the angle
between the vertical and the normal to the ¢-circle, can be variously specified, including multiple
measurements of reflections at different azimuth values so as to derive an empirical absorption
correction curve as a function of the angle ¢, see Sect. 4.1.3.
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Intensity and background measurements are 