


Fujita

Mathematical Stereochemistry



Also of interest
Mathematical Chemistry and Chemoinformatics: Structure
Generation, Elucidation and Quantitative Structure-Property
Relationships
Kerber, Laue, Meringer, Rücker, Schymanski, 2013

ISBN 978-3-11-030007-9, e-ISBN 978-3-11-025407-5

Enantioselective Catalysis: From Principles to Industrial Production
Goldfuß, 2015

ISBN 978-3-11-034040-2, e-ISBN 978-3-11-034041-9

Scientific Computing: For Scientists and Engineers
Heister, Rebholz, 2015

ISBN 978-3-11-035940-4, e-ISBN 978-3-11-035942-8

Computer Simulation in Physics and Engineering
Steinhauser, 2012

ISBN 978-3-11-025590-4, e-ISBN 978-3-11-025606-2

Chemical Sciences: Zeitschrift für Naturforschung B
G. Müller (Managing Editor)

ISSN 0932-0776, e-ISSN 1865-7117



Shinsaku Fujita

Mathematical
Stereochemistry

|



Author
Shinsaku Fujita

Shonan Institute of Chemoinformatics and Mathematical Chemistry

Kaneko 479-7

258-0019 Kanagawa-ken

Japan

shinsaku_fujita@nifty.com

ISBN 978-3-11-037197-0

e-ISBN (PDF) 978-3-11-036669-3

e-ISBN (EPUB) 978-3-11-038637-0

Set-ISBN 978-3-11-036670-9

Library of Congress Cataloging-in-Publication Data
A CIP catalog record for this book has been applied for at the Library of Congress.

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;

detailed bibliographic data are available on the Internet at http://dnb.dnb.de.

© 2015 Walter de Gruyter GmbH, Berlin/Boston

Printing and binding: CPI books GmbH, Leck

♾ Printed on acid-free paper

Printed in Germany

www.degruyter.com



Preface

Modern stereochemistry is based on an accumulated set of terms which do not always stem
from mathematical foundations. The accumulated set of terms has seemingly worked well to
discuss various aspects of stereochemistry in a qualitative fashion. However, the insufficient
mathematical foundations have provided us with serious confusion even in qualitative dis-
cussions, whether or not we are aware of such insufficiency. The confusion has its sources
in the most fundamental concepts and terminology of modern stereochemistry as follows:
1. Misleading Dichotomy Between Enantiomers and Diastereomers: The term ‘di-

astereomers’ is defined by the well-known (but misleading) dichotomy in modern stere-
ochemistry: “Diastereomers are stereoisomers other than enantiomers.” However, di-
astereomers are incapable of constructing a definite set of molecular entities. On the
other hand, a pair of enantiomers constructs a definite set of molecular entities, which
is categorized to be an equivalence class, mathematically speaking. As a result, the ex-
pression of the dichotomy consists of such terms as belonging to different categories.
Moreover, it does not refer to achiral molecules. Hence, the dichotomy is concluded to
be misleading even though it works as a key concept supporting the theoretical founda-
tions of modern stereochemistry. Unfortunately, all of the textbooks on organic chem-
istry and on stereochemistry adopt the misleading dichotomy so as to reproduce and
spread unconscious confusion.

2. Confusion of Reflections with Permutations: In modern stereochemistry, there ap-
pears frequently such an expression as “The regular tetrahedron of the point group Td

functions as a permutation center or skeleton with four equivalent sites, and models of
stereoisomers are generated by permutation of the ligands among these sites.” This ex-
pression unconsciously causes the confusion of reflections (contained in the point group
Td) with permutations (of ligands). Strictly speaking, such permutations are controlled
by the symmetric group of degree 4 (S[4]), which is a kind of permutation group iso-
morphic to the point group Td . The regular tetrahedron belongs to the symmetric group
S[4] as well as to the point group Td . Thereby, the two groups S[4] and Td have been
frequently mixed up with each other in modern stereochemistry.

3. Misleading Concepts of ‘Stereogenic Units’, ‘Chirality Units’, and ‘Pseudoasym-
metric Units’: To specify absolute configurations, the Cahn-Ingold-Prelog (CIP)
system of stereochemical notation claims that ‘stereogenic units’ for assigning R/S-
stereodescriptors consist of ‘chirality units’ and ‘pseudoasymmetric units’. Thus,
R/S-stereodescriptors are assigned both to enantiomers (‘chirality units’ specified by
uppercase labels ‘R’ and ‘S’) and diastereomers (‘pseudoasymmetric units’ specified by
lowercase labels ‘r’ and ‘s’). This means that the assignment of R/S-stereodescriptors
does not obey a single criterion so long as we obey the-state-of-the-art terminology
of the CIP system. The term ‘stereogenic units’ (= ‘chirality units’ plus ‘pseudoasym-
metric units’), which is considered to generate stereoisomerism, has been coined to
rationalize as if the assignment of R/S-stereodescriptors would obey a single crite-
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rion. Thereby, stereogenicity is misleadingly presumed to connote chirality, whereas
stereogenicity and chirality should be independent of each other. As a result, the re-
lationship between stereogenicity and chirality has not been fully demonstrated in
modern stereochemistry.

4. Misleading Presumption of a Single Pair of Chirality/Achirality: The CIP system
for specifying absolute configurations presumes a single pair of chirality/achirality and
disregards the presence of pairwise properties of other types. As a result, a pair of
R/S-stereodescriptors is misleadingly claimed to be assigned to a pair of enantiomers
with opposite chirality senses, where ‘pseudoasymmetric units’ are regarded as ex-
ceptional cases without considering such pairwise properties of other types. Although
‘pseudoasymmetric units’ as diastereomers (⊂ ‘stereogenic units’) are implicitly paired
during the naming process of the CIP system, the use of the term ‘reflection-invariant’
for a lowercase label (‘r’ or ‘s’) forces us to focus our attention on the pairing of enan-
tiomers. Note that diastereomers are not always paired in general.

5. Misleading Terms of ‘Stereoheterotopic’, ‘Enantiotopic’, and ‘Diastereotopic’:
In order to specify intramolecular environments, pro-R/pro-S-descriptors are assigned
to ‘enantiotopic’ and ‘diastereotopic’ positions, just as R/S-stereodescriptors are as-
signed to enantiomers (‘chirality units’) and diastereomers (‘pseudoasymmetric units’).
Hence, this assignment does not obey a single criterion. To claim that this assign-
ment is seemingly done in a single criterion, the term ‘stereoheterotopic’ has been
coined by means of the term ‘enantiotopic’ plus the term ‘diastereotopic’. As a result,
prostereoisomerism and prochirality are confused in the assignment of pro-R/pro-S-
descriptors, just as stereoisomerism (stereogenicity) and chirality are confused in the
assignment of R/S-stereodescriptors.

These matters should be replaced by a more reasonable set of terms for the purpose
of understanding stereochemistry comprehensively, as introduced detailedly in Chapter 1.
Keep in mind that these matters are concerned with the most fundamental terminology of
modern stereochemistry. This fundamental terminology stems from the theoretical foun-
dations of modern stereochemistry, which have long been developed rather qualitatively
without mathematical basis since the beginning of stereochemistry by van’t Hoff and Le
Bel. As a result, an ad-hoc remedy without mathematical formulations would repeat the
history, so as to provide no substantial solutions. Hence, the task of aiming at a true rem-
edy inevitably requires the restructuring of the theoretical foundations, which results in the
renewal of the fundamental terminology of modern stereochemistry. In particular, the re-
structuring should be based on mathematical formulations, not on qualitative substitutions
of words, nor on non-mathematical coinage of terms. Such a true remedy is the target of the
remaining chapters of this book entitled Mathematical Stereochemistry.

Chapters 2 is devoted to the solution of the first matter described above, where the
importance of equivalence relationships and equivalence classes is emphasized. In partic-
ular, a new flowchart for classifying various kinds of isomers is developed on the basis of
equivalence classes, i.e., isomers as an equivalence class under an isomeric relationship,
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isoskeletomers as an equivalence class under an isoskeletomeric relationship, stereoisomers
as an equivalence class under a stereoisomeric relationship, and (self-)enantiomers as an
equivalence class under an enantiomeric relationship.

Chapter 3 aims at the solution of the first and second matters described above, where
the point-group theory is adopted as a mathematical device after developing the proligand-
promolecule model based on a skeleton. Thereby, we are able to replace the misleading di-
chotomy (the first matter described above) with a new viewpoint: “The set of stereoisomers
consists of definite pairs of (self)-enantiomers, where the relationship between two pairs of
(self)-enantiomers is regarded as being diastereomeric.” Note that a pair of self-enantiomers
indicates an achiral molecule. Mathematically speaking, each pair of (self)-enantiomers is
an equivalence class under the action of the point group of a skeleton. Each set of stereoiso-
mers is an equivalence class of another kind under the action of a stereoisomeric group. The
proligand-promolecule model is useful to avoid the confusion of reflections with permuta-
tions, which has been pointed out as the second matter described above.

It should be emphasized that even the newly-defined diastereomeric relationship de-
scribed in the preceding paragraph does not construct equivalence classes. Without defining
such a stereoisomeric group, however, it is possible to solve the first and second matters to
a great extent by taking account of the point group of the skeleton. In other words, geomet-
ric aspects can be discussed by using point groups, apart from stereoisomeric aspects. This
course is pursued in Chapter 4 to Chapter 8.

According to the point-group theory and the new viewpoint described in the preceding
paragraph, I have developed the unit-subduced-cycle-index (USCI) approach for com-
binatorial enumeration of molecules as 3D structures. I have already published two mono-
graphs concerning this topic (S. Fujita, Symmetry and Combinatorial Enumeration in Chem-
istry, Springer-Verlag, Berlin Heidelberg, 1991; and S. Fujita, Diagrammatical Approach to
Molecular Symmetry and Enumeration of Stereoisomers, Mathematical Chemistry Mono-
graphs Series Vol. 4, Univ. Kragujevac, Kragujevac, 2007).

The USCI approach is based on the concepts of sphericities and chirality fittingness
(CF), which are assigned to equivalence classes (orbits) governed by coset representations.
Chapter 4 is devoted to an introduction to these concepts and to such related topics as the
purely-geometric concept of prochirality.

After foundations of enumeration under point groups are introduced in Chapter 5, the
USCI approach for symmetry-itemized enumeration under point groups is demonstrated in
Chapter 6. The USCI approach supports four methods of combinatorial enumeration, which
are based on unit subduced cycle indices without or with chirality fittingness (USCIs or
USCI-CFs). The USCIs or USCI-CFs are calculated algebraically by starting from the sub-
duction of coset representations. The concept of chirality fittingness (CF), which is derived
from the concept of sphericities (homospheric, enantiospheric, and hemispheric), controls
the modes of accommodating chiral and achiral proligands for producing promolecules.
The USCI approach works well in quantitative and qualitative discussions to understand
stereochemistry from the new viewpoint combined with point groups.
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As a promising method for gross enumeration under point groups, I have developed
the proligand method, where the concept of sphericities of cycles is devised as a substan-
tial extension of the concept of sphericities of orbits in the USCI approach. I have already
published a monograph on the proligand method and related methods developed by my-
self (S. Fujita, Combinatorial Enumeration of Graphs, Three-Dimensional Structures, and
Chemical Compounds, Mathematical Chemistry Monographs Series Vol. 15, Univ. Kragu-
jevac, Kragujevac, 2013). This monograph is a successor to Pólya-Read’s monograph (G.
Pólya and R. C. Read, Combinatorial Enumeration of Groups, Graphs, and Chemical Com-
pounds, Springer-Verlag, New York, 1987), where graphs of Pólya-Read’s monograph are
substantially extended to three-dimensional structures of Fujita’s monograph on the basis of
the extended concept of sphericities of cycles. Chapter 7 is devoted to an introduction of the
proligand method. The proligand method is capable of recursive calculation, as discussed
in Chapter 8 for enumeration of alkanes as 3D structures.

To avoid the confusion of reflections with permutations (the second matter described
above), we should examine permutation groups in comparison with point groups. Chapter
9 aims at demonstrating how permutation groups have been mixed up with point groups in
modern stereochemistry. The concept of RS-permutation groups isomorphic to point groups
is introduced to settle the misleading situations of modern stereochemistry.

To solve the third matter described above, I have developed the stereoisogram
approach, where point groups and RS-permutation groups are integrated to create RS-
stereoisomeric groups. Note that usual permutation groups are restricted to RS-permutation
groups, which are selected to be isomorphic to the corresponding point groups. As shown
in Chapter 10, I have devised stereoisograms as diagrammatic expressions of such RS-
stereoisomeric groups. Each stereoisogram consists of a quadruplet of promolecules,
which are correlated by three relationships, i.e., enantiomeric (due to point groups), RS-
diastereomeric (due to RS-permutation groups), and holantimeric ones (due to ligand-
reflection groups). Thereby, such stereoisograms are categorized into five types (type I–type
V), so that quadruplets of types I, III, and V are concluded to replace such conventional
terms as ‘stereogenic units’, ‘chirality units’, and ‘pseudoasymmetric units’. To show the
usefulness of the stereoisogram approach, Chapter 11 deals with stereoisograms for tetra-
hedral derivatives, while Chapter 12 deals with stereoisograms for allene derivatives.

The crux of the stereoisogram approach (Chapter 10 to Chapter 12) is the rational
introduction of three pairs of attributes, i.e., chirality/achirality, RS-stereogenicity/RS-
astereogenicity, and sclerality/asclerality, which correspond to the three relationships con-
tained in a stereoisogram. These three pairs of attributes are independent of each other, but
may coalesce according to respective stereoisograms of five types. This is sharp contrast
to the fact that modern stereochemistry presumes a single pair of attributes, i.e., chiral-
ity/achirality, and lacks the other pairs of attributes. The limitations of modern stereochem-
istry are concluded to come from misleading rationalization by means of chirality/achirality
as a single pair, as pointed out as the fourth matter describe above.

Chapter 13 deals with stereochemical nomenclature, where the original foundations of
the CIP system for assigning R/S-stereodescriptors (the third matter described above) are
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clarified to be misleading, so that they should be replaced by new foundations originated
from the stereoisogram approach. Among the three pairs of attributes established by the
stereoisogram approach, a pair of RS-stereogenicity/RS-astereogenicity is concerned with
the foundations of the CIP system. In fact, a pair of chirality/achirality (the fourth matter
described above) has nothing to do with the assignability of R/S-stereodescriptors in the CIP
system. It follows that a pair of R/S-stereodescriptors is given to a pair of RS-diastereomers
(but not to a pair of enantiomers).

The stereoisogram approach is also effective to solve the fifth matter described above.
As discussed in Chapter 14, the terms enantiotopic, RS-diastereotopic, and holantitopic
have been coined by the stereoisogram approach, so that the conventional set of terms
‘stereoheterotopic’, ‘enantiotopic’, and ‘diastereotopic’ should be abandoned. This is par-
allel to the remedy that the present set of terms RS-stereoisomeric, enantiomeric, RS-
diastereomeric, and holantimeric should replace the conventional set of terms ‘stereoiso-
meric’, ‘enantiomeric’, and ‘diastereomeric’. Finally, Chapter 15 summarizes the perspec-
tives of mathematical stereochemistry, which would be brought about on the basis of the
stereoisogram approach.

An additional aim of this book is to give a field test of the XΥMTEX system, which has
been developed by myself as a software for drawing structural formulas. I have released
Version 5.01 of the XΥMTEX system in 2013. The XΥMTEX system is attached by an on-
line manual of about 800 pages: S. Fujita, XΥMTEX: Reliable Tool for Drawing Chemical
Structural Formulas, which is available from the following Web sites:
http://xymtex.com/fujitas3/xymtex/xym501/manual/xymtex-manualPS.pdf and

http://www.ctan.org/tex-archive/macros/latex/contrib/xymtex/doc/XyMTeX-manual.pdf

Because all of the structural formulas appearing in this book have been drawn by using the
XΥMTEX system, the usefulness of the XΥMTEX system is clearly demonstrated.

Before closing the preface, it is worthwhile to emphasize the conceptual importance of
the stereoisogram approach from a historical point of view.
– Fujita’s stereoisogram approach creates the intermediate concept of RS-stereoisomers,

which mediates between enantiomers and stereoisomers. Such an intermediate concept
brings about a paradigm shift, so that modern stereochemistry has been restructured
substantially on the basis of mathematical formulations. This fact is parallel to the his-
torical event that Avogadro’s theory has brought about a paradigm shift in chemistry
by creating the intermediate concept of molecule (e.g., H2O), which mediates between
atoms (e.g., hydrogen atoms and oxygen atoms) and substances (e.g., water).

– As a result, Fujita’s stereoisogram approach has stopped the long-standing gap between
van’t Hoff’s way (emphasizing asymmetry and stereoisomerism) and Le Bel’s way
(emphasizing dissymmetry or chirality initiated by Pasteur), which has continuously
puzzled organic chemists from the beginning of stereochemistry over 140 years.

Kanagawa, Japan
May 2015

Shinsaku Fujita
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1 Introduction

1.1 Two-Dimensional versus Three-Dimensional Structures

1.1.1 Two-Dimensional Structures in Early History of Organic Chemistry

Organic-structural theory has been established by Kekulé [1] and Couper [2] in 1858,
soon after Frankland [3] proposed the concept of valency in 1852. The development of
the organic-structural theory has been reinforced by structural formulas named graphic no-
tation, which has been proposed by Crum Brown [4,5] in 1864/1865. The invaluable po-
tentialities of structural formulas have been early pointed out by Frankland in his textbook
published in 1870 [6, Chapter III]: “Graphic Notation.—This mode of notation, although far
too cumbrous for general use, is invaluable for clearly showing the arrangement of the indi-
vidual atoms of a chemical compound. · · · It is also of especial value in rendering strikingly
evident the causes of isomerism in organic bodies.”

In fact, Kekulé’s discussions on the number of isomeric dibromobenzenes [7] can be
expressed by the structural formulas shown in Fig. 1.1, where each benzene ring is presumed
to have delocalized double bonds so as to give a regular hexagonal skeleton. These three
isomers are now designated as ortho (1-1), meta (1-2), and para (1-3), respectively. For the
historical details, see Ihde’s book [8, Chapter 12].

Such structural formulas are two-dimensional (2D) or graphic expressions of molecular
entities, which actually have three-dimensional (3D) structures. In spite of this limitation,
2D-structural formulas enable us to communicate essential properties of the molecules ef-
fectively, e.g., atom compositions and their connectivities. As a result, they are widely used
nowadays as a versatile device for investigation and communication in organic chemistry.

The term graph has been imported into mathemathics by Sylvester [9], so that graph
theory has started as a field of mathematics, as summarized in a book [10, Chapter 4].

Br

Br

Br

Br

Br

Br
1-1 1-2 1-3

Fig. 1.1. Isomeric dibromobenzenes
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1.1.2 Three-Dimensional Structures After Beginning of Stereochemistry

Stereochemistry has been founded by van’t Hoff [11–13] and Le Bel [14,15] in the 1870s,
where their standpoints were different, as pointed out by several reviews [16–18].

The standpoint of van’t Hoff [11–13] stems from the concept of asymmetric carbons,
which are regarded as conditions for exhibiting optical activity and for generating at most 2n

isomers (n: the number of asymmetric carbons) [11,13]. For example, an asymmetric carbon
(*) with achiral ligands A, B, X, and Y is detected by means of a 2D-structural formula
(1-5), which is then extended into 3D-structural formulas (1-4 and 1-6), as shown in Fig.
1.2. Strictly speaking, this process does not require reflection operations, so that a pair of
enantiomers (mirror-image entities) are considered to be generated by a stereoisomerization
process (e.g., an inversion or a pseudorotation). A reflection is subsidiarily used to judge
whether or not the 3D-structural formulas (1-4 and 1-6) are mirror images of each other.

1

3

4

2 C

A

BX
Y

�C*

�4Y

�A1�3B

�X2

1

3

4

2C

A

B X
Y

1-4 1-5 1-6
3D structure 2D structure 3D structure

(graph)

Fig. 1.2. Asymmetric carbon (*) of a 2D structure and the resulting 3D structures.

On the other hand, the standpoint of Le Bel [14,15] emphasizes spacial symmetries
succeeding to Pasteur’s concept of dissymmetry [19] (i.e., chirality due to Kelvin [20]). A
molecular entity (1-4 or 1-6) as a 3D structure is treated as it is, where such a 2D structure
as 1-5 is not always required. Thus the chirality of a molecular entity as a 3D structure
is judged by a reflection operation, which is applied to examine whether or not the mirror
image of 1-4 is superposable to 1-6.

The history of stereochemistry indicates that the concept of asymmetric carbons due to
van’t Hoff has overwhelmed the concept of dissymmetry due to Le Bel’s theory. It follows
that the process shown in Fig. 1.2 is erroneously regarded as equivalent to a reflection op-
eration. This fact is frequently overlooked in modern stereochemistry, so that van’t Hoff’s
theory and Le Bel’s theory are now believed to be integrated into a unified theory. However,
the unification is so seeming as to cause serious confusion in modorn stereochemistry.

1.1.3 Arbitrary Switching Between 2D-Based and 3D-Based Concepts

Organic chemistry has adopted both 2D structures (graphs) and 3D structures, where these
are linked mainly by applying van’t Hoff’s theory. This is a result of the history of organic
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chemistry developed from 2D structures to 3D structures, although actual orgainc com-
pounds are now decided to have 3D structures. Thus, most textbooks on organic chemistry
first describe organic compounds as 2D structures and later introduce stereochemical as-
pects of 3D structures on the basis of van’t Hoff’s theory. It follows that concepts based
on 2D structures (2D-based concepts) and concepts based on 3D structures (3D-based con-
cepts) are mixed in the terminology of organic chemistry. They are switched in a rather
abitrary fashion to meet molecular entities to be considered, although the molecular entities
have 3D structures in the real world.

Br

Br

1-7

⇐=

Br

Br

Br

Br

Br

Br

1-8 1-9 1-9
︸ ︷︷ ︸

enantiomers

Br

Br
1-10

⇐=

Br

Br

Br

Br

Br

Br
1-11 1-12 1-12

︸ ︷︷ ︸

enantiomers

Br

Br
1-13

⇐=

Br

Br

Br

Br
1-14 1-15

Fig. 1.3. Isomeric dibromocyclohexanes.

For example, dibromobenzenes shown in Fig. 1.1 can be discussed with the scope of
2D structures. The three dibromobenzenes (1-1, 1-2, and 1-3) are frequently referred to
as ‘positional isomers’, which are based on 2D structures (graphs). Note that ‘positional
isomers’ are concerned with different constitutions (due to 2D structures), because they are
regarded as one of ‘constitutional isomers’.

If exhaustive hydrogenation of a benzene ring is conducted (even if hypothetical), the
resulting dibromocyclohexanes may be discussed in terms of ‘positional isomers’ as 2D
structures (1-7, 1-10, and 1-13), as shown in Fig. 1.3. However, the dibromocyclohexanes
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themselves are 3D-structural molecular entities (1-8, 1-9, and 1-9; 1-11, 1-12, and 1-12; as
well as 1-14 and 1-15),1 not 2D-structural ones (1-7, 1-10, and 1-13). The definition of the
term ‘positional isomers’ as based on 2D structures cannot be directly applied to the 3D
dibromocyclohexanes. The application of the term ‘positional isomers’ requires the con-
version of the 3D structures into 2D structures. Thus, the set of 3D structures as stereoiso-
mers (1-8, 1-9, and 1-9) is converted into the 2D structure 1-7; the set of 3D structures as
stereoisomers (1-11, 1-12, and 1-12) is converted into the 2D structure 1-10; and the set
of 3D structures as stereoisomers (1-14 and 1-15) is converted into the 2D structure 1-13,
respectively. When we say, for example, that 1-8 and 1-11 are positional isomers, we implic-
itly refer to the corresponding 2D structures 1-7 and 1-10 after conversion. These implicit
conversions are conducted by means of the intuition or experience of organic chemists.

On the other hand, the examination of the 3D structures as they are is necessary to
discuss stereoisomeric relationships between them. Thus, the 3D structure 1-8 is compared
with a set of 1-9 and 1-9, so that the former is determined to be a cis-isomer and the latter set
is determined to be trans-isomers. This comparison is considered to be based on a cis/trans-
isomerization (an epimerization) of 1-8 into 1-9 (or 1-9).

Further, the 3D structure 1-8 is determined to be achiral, while the set of 1-9 and 1-9 is
determined to be a pair of enantiomers. These determinations require reflection operations.

The mixed situations of 2D- and 3D-based concepts may be overcome by the intuition
or experience of organic chemists within the scope of modern stereochemistry. However,
this approach has proved to have limitations, because it has been so qualitative and descrip-
tive as to provide unconscious confusion, as summarized in reviews [21–23]. Even now,
the standard theory of organic chemistry is influenced by the mixed situations of 2D- and
3D-based concepts, as discussed in the next section. It follows that such intuition or expe-
rience of organic chemists should be replaced by a more systematic procedure stemming
from rational theoretical basis.

1.2 Problematic Methodology for Categorizing Isomers and
Stereoisomers2

The arbitrary switching between 2D structures and 3D structures in organic chemistry pro-
vides the terminology of isomerism and stereoisomerism with unconscious confusion.

1 In this discussion, a cyclohexane ring is tentatively drawn as a planar hexagonal diagram. Although this
type of diagram is permitted in accord with stereochemical conventions, conformational changes of a cyclo-
hexane ring should be considered in more detailed discussions. Thus, two chair-form conformers should be
considered as extreme cases, which are interconverted through boat-form conformers. This book adopts the
proligand-promolecule model based on a rigid skeleton. It follows that the effects of conformational changes
are not treated in this book, so as to be open to further publications.
2 This section is based on S. Fujita, “Misleading Classification of Isomers and Stereoisomers in Organic
Chemistry”, Bull. Chem. Soc. Jpn., 87, 1367–1378 (2014).
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1.2.1 Same or Different

There are many terms having the prefix iso- (Greek: isos equal) in scientific fields, especially
in chemistry [8,24]. We are able to obtain a brief list if we glance over an appropriate
dictionary, e.g., isomerism, isomorphism, isotope, isotactic, isotherm, and isotropic, along
with such derivative terms as isopentyl, isobutyl, and stereoisomerism.

These terms have a common feature that each term denotes a set of objects having
the same property in common but different in another property. Note that either the same
property or the different property is sometimes omitted if it is obvious from the context.
For example, the term isomeric (iso-, Greek: isos equal; -mer, Greek: méros part) coined by
Berzelius in 1830 [25] means the relationship between two objects (molecules or related en-
tities) which have the same molecular formula but different chemical or physical properties
(or different three-dimensional (3D) structural formulas, structural-chemically speaking, cf.
Def. 2.6 on page 39).

After the development of stereochemistry, we use a derivative term stereoisomeric
(stereo-, Greek stereós solid, hard) to mean the relationship between two objects (molecules
or related entities) which have the same constitution but different 3D-structural formulas (cf.
Def. 2.5 on page 38). To hold the terminology to be consistent, the term ‘constitutionally
isomeric’ was coined to denote the relationship between two objects which have the same
molecular formula but different constitutions (represented by graphs or 2D-structural for-
mulas, cf. Def. 2.4 on page 38).

As a result, the isomeric relationship turns out to be composed of the stereoisomeric re-
lationship (a 3D-based concept) and the constitutionally-isomeric relationship (a 2D-based
concept), as shown in Fig. 1.4(a). Obviously, the 2D-based concept and the 3D-based con-
cept are misleadingly placed on the same level of Fig. 1.4(a).

isomeric

stereoisomericconstitutionally isomeric

isomers

stereoisomersconstitutional isomers

(a) Misleading category of isomeric relationships (b) Misleading category of isomers

Fig. 1.4. Misleading category of isomeric realtionships and the related category of isomers. A
gray box represents an equivalence relationship or an equivalence class, which has been over-
looked in modern stereochemistry.

The misleading category of isomeric realtionships (Fig. 1.4(a)) is frequently applied to
give the related category of isomers shown in Fig. 1.4(b), which is also misleading. The
misleading features of Fig. 1.4(b) can be also demonstrated by comparing constitutional
isomers as a 2D-based concept with stereoisomers as a 3D-based concept.
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1.2.2 Dual Definition of Isomers

To demonstrate the misleading features of the scheme Fig. 1.4, we should examine the
state-of-the-art definitions of terms on isomerism, which are summarized in Table 1.1 [26].
According to IUPAC Recommendations 1996 [27], the term isomers is defined as follows:
C-Definition I1 “molecular entities (or chemical species, or other equivalent expressions)

which have the same molecular formula but differ in constitutional formulas or stereo-
chemical formulas”,

where the term constitution is defined as “the description of the identity and connectivity
(and corresponding bond multiplicities) of the atoms in a molecular entity (omitting any
distinction arising from their arrangement)” and the term stereochemical formula is defined
as “a three-dimensional (3D) view of a molecule either as such or in a projection”. On the
other hand, stereoisomers are defined as
C-Definition S1 “isomers that possess identical constitution, but which differ in the arrange-

ment of their atoms in space”.

Then, isomers are subdivided into stereoisomers and constitutional isomers [28], where
constitutional isomers are defined as
C-Definition C1 “isomers which differ in constitution”.

Note that the expression ‘C-Definition’ means a conventional definition. The conventional
definitions described above are summarized in Table 1.1.3

Table 1.1. Criteria for Conventional Classification of Isomers [26]

classification same different set of entities

C-Def. I1 isomer molecular formula 2D- or 3D-structural formula 2D or 3D structures

C-Def. C1 constitutional isomer molecular formula 2D-structural formula 2D structures
(constitution, graph) (graphs)

C-Def. S1 stereoisomer 2D-structural formula 3D-structural formula 3D structures
(constitution, graph)

As found in Table 1.1, the conventional definition of isomers (C-Def. I1) is dual with
respect to criteria for difference as well as with respect to sets of entities. Hence, C-Def. I1 is
concluded to be ambiguous, because the difference in constitutional formulas (2D-structural
formulas) does not mean the same effects as the difference in stereochemical formulas (3D-
structural formulas).

To show the duality of C-Def. I1 more clearly, let us examine isomeric butanols shown
in Fig. 1.5. If C-Def. I1 is based on the difference in constitutional formulas (2D-structural

3 Table 1 of [26] is cited after slight modification.
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Fig. 1.5. Isomeric butanols with C4H10O, where hydrogens on carbons are omitted.

formulas), the following set of 2D structures is regarded as a set of isomers:
⎧

⎩1-16 1-17g 1-18 1-19
⎫

⎭ , (1.1)

where 1-16, 1-17g, 1-18, and 1-19 are regarded as 2D structures (graphs).4 On the other
hand, if C-Def. I1 is based on the difference in stereochemical formulas (3D-structural for-
mulas), the following set of 3D structures is regarded as a set of isomers:

⎧

⎩1-16 1-17 1-17 1-18 1-19
⎫

⎭ , (1.2)

where 1-16, 1-17, 1-17, 1-18, and 1-19 are regarded as 3D structures.5 Because the set
of isomers represented by Eq. 1.1 is different from the set of isomers represented by Eq.
1.2, the conventional definition of isomers (C-Def. I1) is concluded to exhibit dual-purpose
supporting both Eq. 1.1 and Eq. 1.2.

In fact, the dual definition of isomers (C-Def. I1) aims at justifying both C-Def. C1 and
C-Def. S1. The first meaning of C-Def. I1, which results in Eq. 1.1, aims at justifying the
definition of constitutional isomers (C-Def. C1). Thus, the set represented by Eq. 1.1 is a
set of constitutional isomers in terms of C-Def. C1, so that the application of C-Def. C1
(constitutional isomers) provides the same set as generated by the first meaning of C-Def.
I1 (isomers). Note that the set of constitutional isomers (Eq. 1.1) has nothing to do with
stereoisomers (C-Def. S1).

On the other hand, the second meaning of C-Def. I1, which results in Eq. 1.2, aims at
justifying C-Def. S1. By the application of C-Def. S1 to the set represented by Eq. 1.2, the
butanols 1-17 and 1-17 are recognized to be stereoisomers with the same constitution:

〈

1-17 1-17
〉

, (1.3)

4 Strictly speaking, the subscript g should be added so as to express 1-16g, 1-18g, and 1-19g in a similar way
to 1-17g. However, the subscript g is omitted for the sake of simplicity.
5 Strictly speaking, the structural formulas of 1-16, 1-18, and 1-19 should be drawn by adding bold wedges
and hashed wedges to specify their 3D structures. Because of achirality, however, these butanols in Fig. 1.5
are drawn without such stereochemical conventions for the sake of simplicity.
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where the pair of angle brackets contains stereoisomers detected. The set of stereoisomers
represented by Eq. 1.3 is linked with the graph 1-17g contained in Eq. 1.1.

As found in the discussions in the preceding paragraphs, the set of constitutional iso-
mers (Eq. 1.1) due to C-Def. C1 is concerned with 2D structures (graphs), while the set of
stereoisomers (Eq. 1.3) selected from Eq. 1.2 by means of C-Def. S1 is concerned with 3D
structures. They are distinct concepts, where the linkage between ‘isomers’ and ‘constitu-
tional isomers’ (C-Def. C1 due to the first meaning of C-Def. I1) is conceptually different
from the linkage between ‘isomers’ and ‘stereoisomers’ (C-Def. S1 due to the second mean-
ing of C-Def. I1). It follows that the schemes shown in Fig. 1.4 are misleading, because such
distinct concepts are placed on the same level as indicating the dichotomy of isomers.

To develop a rational remedy for revising the misleading schemes of Fig. 1.4 as well
as for avoiding the duality in the definition of isomers (C-Def. I1), more implications in the
methodology of modern stereochemistry should be examined. Strictly speaking, 1-16, 1-18,
and 1-19 in Eq. 1.2 (other than 1-17 and 1-17) are not characterized by C-Def. S1, because
C-Def. S1 is concerned with a relationship among two or more 3D structures.6 However,
they can be correlated to the counterpart graphs in Eq. 1.1, just as Eq. 1.3 is correlated to
the graph 1-17g. As a result, Eq. 1.2 is converted into the following set of 3D structures:

⎧

⎩1-16
〈

1-17 1-17
〉

1-18 1-19
⎫

⎭ , (1.4)

which is partially divided by means of C-Def. S1.
The methodology of modern stereochemistry is based on the presumption that the set

represented by Eq. 1.1 (for graphs) corresponds to the set represented by Eq. 1.4 (for 3D
structures) in a one-to-one fashion, where, in particular, the detected set of stereoisomers,
〈

1-17 1-17
〉

, is regarded as a graph 1-17g. Although these two sets (Eq. 1.1 and Eq. 1.4)
are conceptually different (2D vs. 3D), they are forced to be regarded as the same thing by
devising C-Def-I1 of dual-purpose. A more reasonable or mathematical rationalization for
the correspondence between Eq. 1.1 and Eq. 1.4 should be developed in order to reorganiz-
ing the methodology of modern stereochemistry.

Exercise 1.1.
– Apply C-Def. I1, C-Def. C1, and C-Def. S1 to the set of butanols (Fig. 1.5) after adding

isomeric ethers (CH3CH2–O–CH2CH3, CH3CH2CH2–O–CH3, and (CH3)2CH–O–
CH3).

– Discuss the merits of omitting such isomeric ethers so as to restrict the domain of
thinking to the set of butanols (Fig. 1.5).

6 In other words, C-Def. S1 does not define a self-stereoisomeric relationship, which is concerned with a
relationship between a 3D structure and itself. For a revision of C-Def. S1, see Def. 2.5 on page 38.
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Exercise 1.2.
– Apply C-Def. C1 to the set of dibromocyclohexanes as 2D structures listed in Fig. 1.3:

⎧

⎩1-7 1-10 1-13
⎫

⎭ (1.5)

– Confirm that C-Def. C1 cannot be applied to the comparison between 1-8 and 1-9.
– Apply C-Def. S1 to the set of dibromocyclohexanes as 3D structures listed in Fig. 1.3:

⎧

⎩1-8 1-9 1-9 1-11 1-12 1-12 1-14 1-15
⎫

⎭ (1.6)

– Discuss the correspondence between the set of Eq. 1.5 and the set of Eq. 1.6.

1.2.3 Positional Isomers as a Kind of Constitutional Isomers

Positional isomers are defined as
C-Definition P1 “constitutional isomers that have the same carbon skeleton and the same

functional groups but differ from each other in the location of the functional groups on
or in the carbon chain” [29].

Because positional isomers are a kind of constitutional isomers of 2D-basis, they are also
categorized to be a 2D-based concept.

The definition of C-Def. P1 is applied to the set of butanols represented by Fig. 1.5,
where a straight chain CH3CH2CH2CH3 and a branched chain (CH3)2CHCH3 are adopted
as a set of skeletons to be considered.7 Thereby, the set of Eq. 1.1 is converted into the
following divided set:

⎧

⎩

{

1-16 1-17g
} {1-18 1-19}

⎫

⎭ , (1.7)

where each pair of braces consists of positional isomers to be detected.
The definition of C-Def. P1 cannot be applied directly to the set of Eq. 1.2. Instead,

the set of Eq. 1.2 is first converted by means of C-Def. S1 into the set of Eq. 1.4, which
corresponds to Eq. 1.1. Then, the set of Eq. 1.4 is treated by C-Def. P1 to give the following
set of 3D structures:

⎧

⎩

{

1-16
〈

1-17 1-17
〉} {1-18 1-19}

⎫

⎭ , (1.8)

which corresponds to Eq. 1.7 for 2D structures (graphs). If 3D structures such as Eq. 1.2 are
taken into consideration, the test (C-Def. S1) for stereoisomers is prerequisite to the test (C-

7 Because discussions on ‘positional isomers’ require a beforehand selection of skeletons, they are not so
well differentiated from so-called ‘skeletal isomers’. This means that ‘positional isomers’ and ‘skeletal iso-
mers’ should be discussed in an integrated fashion. See Def. 2.10 on page 43 for defining isoskeletomeric
relationships and isoskeletomers.
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Def. P1) for positional isomers (constitutional isomers). So long as modern stereochemistry
remains within a limit of Eq. 1.7 for graphs, it lacks analytical methods for deriving Eq. 1.8
for 3D structures. At present, the linkage of Eq. 1.7 for graphs with Eq. 1.8 for 3D structures
depends upon the intuition or academic training of organic chemists, but not upon a reliable
systematic method based on mathematical formulations.

Exercise 1.3.
– Apply C-Def. P1 to the set represented by Eq. 1.5 of Exercise 1.2.
– Compare this result with the result obtained by applying C-Def. C1 (Exercise 1.2).
– Confirm that C-Def. P1 cannot be applied to the comparison between 1-8 and 1-9 (Fig.

1.3)

1.3 Problematic Methodology for Categorizing Enantiomers
and Diastereomers8

This section is devoted to demonstrating the misleading dichotomy between enantiomers
and diastereomers.

1.3.1 Enantiomers

According to the IUPAC Recommendations 1996 [27], the term enantiomer is defined as
C-Definition E1 “one of a pair of molecular entities which are mirror images of each

other and non-superposable”.

Let us apply C-Def. E1 to the butanols listed in Fig. 1.5, which are collected in the set
represented by Eq. 1.2 for 3D structures. Thereby, we detect a pair of enantiomers 1-17/1-17
to give the following division:

⎧

⎩1-16
[

1-17 1-17
]

1-18 1-19
⎫

⎭ , (1.9)

where a pair of square brackets consists of a pair of enantiomers.
Strictly speaking, the definition of C-Def. E1 is ineffective to detect the achirality of

1-16, 1-18, or 1-19, because C-Def. E1 is concerned with the relationship between a pair of
molecular entities. As discussed later (cf. Def. 2.3 on page 36), an enantiomeric relationship
due to C-Def. E1 is not an equivalence relationship. Hence, the detection of the achirality of
1-16, 1-18, or 1-19 implicitly depends on a reflection operation for superposability, which
cannot be properly treated by C-Def. E1.

8 See Footnote 2.
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1.3.2 Diastereomers

Dichotomy between Enantiomers and Diastereomers
On the other hand, the term diastereomers is defined subsidiarily by starting from stereoiso-
mers and enantiomers as follows:
C-Definition D1 “stereoisomers that are not enantiomers are termed diastereomers”.

Mislow’s review [23] has revealed the historical situations of the coinage of the term di-
astereomers from a viewpoint of “chemical philology”. As a result, stereoisomers are subdi-
vided into enantiomers and diastereomers. Various expressions have appeared to define the
dichotomy between enantiomeric relationships and diastereomeric relationships in IUPAC
rules and in textbooks:

Remark 1.1 (Diastereomeric Relationships and Misleading Dichotomy).
– IUPAC Recommendations 1996 [27, page 2205]: “Diastereoisomerism:

Stereoisomerism other than enantiomerism. Diastereoisomers (or diastereomers)
are stereoisomers not related as mirror images.” Note that the terms ‘stereoiso-
merism’, ‘enantiomerism’, and ‘diastereomerism’ have phenomenological mean-
ings, which are related to stereoisomeric relationships, enantiomeric relation-
ships, and diastereomeric relationships.

– IUPAC Recommendations 2005 [30, page 175]: “Stereoisomers that are mirror
images of one another are called enantiomers (sometimes these have been called
optical isomers), while those that are not are called diastereoisomers (or geomet-
rical isomers).”

– Mislow’s textbook [28, page 51]: “Stereoisomers which are related as object and
nonsuperimposable mirror image are called enantiomers or antipodes, whereas
those which are not so related are called diastereomers.” Note that the term ‘an-
tipodes’ is now obsolete.

– Eliel’s textbook [31, page 1208]: “Stereoisomers: Isomers of identical consti-
tution but different in the arrangement of their atoms in space. Subclasses are
Enantiomers and Diastereomers.”

– Zelewsky’s textbook [32, page 49]: “Stereoisomers can be sharply divided into
two subsets, namely into enantiomers and diastereomers (or diastereoisomers).”

– North’s textbook [33, page 17]: “By definition, any pair of stereoisomers which
are not enantiomers of one another are called diastereomers.”

– Morris’ textbook [34, page 38]: “Diastereomers are stereoisomers that are not
enantiomers.”

The statements collected in Remark 1.1 can be summarized into two distinct schemes,
as illustrated by Fig. 1.6(a) (cf. [35]) or Fig. 1.6(b) (cf. [32, 36–39]). These schemes are
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stereoisomeric

enantiomericdiastereomeric

stereoisomers

enantiomersdiastereomers

(a) Misleading category of stereoisomeric relationships (b) Misleading category of stereoisomers

Fig. 1.6. Misleading category of stereoisomeric relationships and related category of stereoiso-
mers. A gray box represents an equivalence relationship or an equivalence class, which has been
overlooked in modern stereochemistry.

conceptually different from each other, where the former is concerned with relationships,
while the latter is concerned with molecular entities.

Counter-Examples against the Dichotomy
Restricted rotation around a double bond can result in the formation of enantiomers,
which are referred to as ‘geometric enantiomers’. For example, the oximation of meso-2,6-
diphenyl-1-methyl-4-piperidone 1-20, which is achiral because of intramolecular compen-
sation of opposite chirality senses, results in the formation of oximes 1-21 and 1-22, as
shown in Fig. 1.7 [40,41]. These oximes are Z/E-isomers (‘diastereomers’) to each other,
because they are interchangeable by the permutation (syn/anti-isomerization) of the hy-
droxyl group. At the same time, they are enantiomeric to each other because they are mirror
images under reflection (C-Def. E1), i.e., 1-22 = 1-21 (mirror image). The absolute config-
uration of (+)-1-methyl-2,6-diphenyl-4-piperidone oxime is determined to be assinged to
1-21 [42].

1 6

5
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2
N

CH3

Ph

O

Ph

NH2OH

62
N

S

Z

R

CH3

Ph

N
HO

Ph
62

N
S

E

R

CH3

Ph

N
OH

Ph

1-20 1-21 1-22 (= 1-21)
︸ ︷︷ ︸

enantiomers
meso (‘diastereomers’, Z/E-isomers)

Fig. 1.7. ‘Genometric enantiomerism’ for oximes.

So long as we obey C-Def. D1, we are unable to adopt the Z/E-isomerism (the ‘diastere-
omeric’ relationship) between the oximes 1-21 and 1-22 (= 1-21), so that we are forced to
say that they are solely enantiomeric to each other (C-Def. E1). However, this assignment
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Z
C

C

p p

BA

E
C

C

p p

AB

1-23 1-24 (= 1-23)
︸ ︷︷ ︸

enantiomers
(‘diastereomers’, Z/E-isomers)

Fig. 1.8. ‘Genometric enantiomerism’ for double bonds. The symbols A and B represent achiral
ligands in isolation, while the symbols p and p represent a pair of enantiomeric ligands in isola-
tion. The priority sequence is presumed to be A > B > p > p.

due to the dichotomy (C-Def. D1) is unbalanced, because the identification of 1-21 requires
the label Z for the oxime double bond as well as the label R at the position 2 and the label
S at the position 6. The necessity of the label Z indicates that the Z/E-isomerism of 1-21
should be determined in order to assure the differentiation from 1-22 (= 1-21) with the label
E. This case provides a counter-example to C-Def. D1.

A more general example of ‘geometric enantiomers’ is shown in Fig. 1.8, where the
symbols A and B represent achiral ligands in isolation, while the symbols p and p represent
a pair of enantiomeric ligands in isolation. The ethylene derivatives 1-23 and 1-24 are Z/E-
isomers to each other, because the exchange between A and B (or between p and p) causes
cis/trans-isomerization between them. Note that the permutation of p and p (even of A and
B) does not contain reflections (mirror-image formations) of p and p (even A and B). To
assign the labels Z and E, the priority sequence is presumed to be A > B > p > p. At the
same time, they are enantiomeric to each other, because they are mirror images to each other
under reflection (C-Def. E1). This case provides a counter-example to C-Def. D1 in general.

‘Geometric enantiomers’ are also found in the series of cyclobutane derivatives, as
shown in Fig. 1.9 [43]. The cyclobutanes 1-25 and 1-25 are enantiomeric because a mirror
plane can be selected to contain the cyclobutane ring (C-Def. E1). At the same time, they
are ‘diastereomeric’ (Z/E-isomeric) because the permutation (epimerization) of A and B (or
p and p) brings about a Z/E- or cis/trans-isomerization between 1-25 and 1-25. Although the
latter permutation of p and p (even of A and B) does not contain reflections (mirror-image
formations) of p and p (even A and B), it causes the conversion of 1-25 into 1-25, which
corresponds to an enantiomeric relationship. This case provides a further counter-example
to C-Def. D1.

The counter-examples shown in Figs. 1.7–1.9 indicate that the dichotomy due to C-Def.
D1 should be abandoned, even though the various descriptions listed in Remark 1.1 and
the schemes of Fig. 1.6 have been misleasingly widespread. A balanced viewpoint is that
enantiomeric relationships and ‘diastereomeric’ relationships are independent concepts,
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A
p

B
p

B
p

A
p

1-25 1-25
︸ ︷︷ ︸

enantiomers
(diastereomers, Z/E-isomers)

where A = CH3, B = H,

p = RC

Ph

H

CH3

NHCO– p = SC

Ph

H

CH3

–CONH

Fig. 1.9. ‘Geometric enantiomers’ of cyclobutane derivatives. The cyclobutane ring is presumed
to be planar without losing generality.

which may be coincident with each other. Such coincident cases as Figs. 1.7–1.9 should be
more properly taken into consideration than they are.9

More Essential Counter-Examples Against the Dichotomy
More cumbersome but essential situations than the counter-examples shown in Figs. 1.7–1.9
occur in tetrahedral molecular entities. For example, let us examine 1-26 and 1-27 shown
in Fig. 1.10, where each central carbon atom is attached by a pair of enantiomeric ligands p
and p in isolation as well as another pair of enantiomeric ligands q and q in isolation.

By applying C-Def. E1, the tetrahedral molecular entities 1-26 and 1-27 (= 1-26) are
determined to be enantiomeric each other. During the application of C-Def. E1, a reflection
operation works to accomplish the conversion (reflection) of p into p (and p into p) as well
as the conversion of q into q (and q into q) in addition to the reflection at the center of the
teterahedral skeleton. As a result, there occurs the conversion of 1-26 into its mirror image
1-26 (= 1-27).

So long as we obey the dichotomy (C-Def. D1), we are forced to conclude that 1-26
and 1-27 (= 1-26) are in an enantiomeric relationship, not in a ‘diastereomeric’ relationship.
If we keep in mind the counter-examples shown in Figs. 1.7–1.9, there appears a question
whether this conclusion is acceptable or not.

To solve this question, let us apply van’t Hoff’s theory (Fig. 1.2) to 1-26 and 1-27 (=
1-26), as shown in Fig. 1.11, although van’t Hoff’s theory has originally taken account of

9 In this book, the terms coincidence, coalescence, and congluence (and the related terms) are used in the
same meaning for convenience’ sake.
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Fig. 1.10. Coalescence of an enantiomeric relationship and a ‘diastereomeric’ relationship.
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Fig. 1.11. Application of van’t Hoff’s theory to an asymmetric carbon (*) of a 2D structure with a
set of ligands, p, p, q, and q, where the symbols p and p (or q and q) represent a pair of enan-
tiomeric ligands in isolation (when detached).

achiral ligands only. The 2D structure 1-29 is concerned with the central atom, where each
of p, p, q, and q represents an abstract ligand with a chirality sense.

The interconversion between 1-28 (for 1-26) and 1-30 (for 1-27 (= 1-26)) via 1-29 is
not accompanied by the mirror-image formation of ligands. In other words, there occurs
no reflection of p into p (and p into p), nor of q into q (and q into q), so that the process
of converting 1-28 into 1-30 is regarded as the exchange of two ligands (e.g., q and q).
The exchange of two ligands (e.g., q and q) is essentially the same as the permutations
presumed in Figs. 1.7–1.9. Because each of the permutations of Figs. 1.7–1.9 is correlated
to a ‘diastereomeric’ relationship, the relationship between 1-28 and 1-30 is also determined
to be a ‘diastereomeric’ relationship.

Remember that 1-28 and 1-30 is enantiomeric to each other at the same time. Hence,
the enantiomeric relationship between 1-28 and 1-30 (or between 1-26 and 1-27 (= 1-26))
is coincident with the ‘diastereomeric’ relationship between them. So long as we obey the
dichotomy (C-Def. D1), however, we are forced to conclude that 1-28 and 1-30 (= 1-28) are
in an enantiomeric relationship, not in a ‘diastereomeric’ relationship.
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Exercise 1.4.
– Apply van’t Hoff’s theory (Fig. 1.2) to a central carbon of a 2D structure with a set of

ligands, A, B, p, and p, where A and B are achiral ligands and p and p represent a pair
of enantiomeric ligands in isolation.

– Compare this result with Fig. 1.11.
– Apply C-Def. D1 to the resulting molecular entities, which are referred to under the

term ‘pseudoasymmetry’.

1.3.3 Chirality and Stereogenicity

The relational term enantiomeric (C-Def. E1) is closely related to the attributive terms
chirality/achirality. The relational term ‘diastereomeric’ (C-Def. D1) is closely related to
the attributive term stereogenicity. It should be emphasized that modern stereochemistry
presumes a single pair of attributive terms chirality/achirality. The attributive term stere-
ogenicity has no definite counterpart, which would be named non-stereogenicity (or aster-
eogenicity) if such a counterpart is possible. However, modern stereochemistry lacks the
term non-stereogenicity, so that such non-stereogenic cases have not yet been targets of
discussions.

Historically speaking, the introduction of the term stereogenicity has aimed at the revi-
sion [44] of the Cahn-Ingold-Prelog (CIP) system, which was originally based on chirality
[45]. Thereby, the R/S-stereodescriptors of the CIP system has been changed to be based on
stereogenicity. The term chirality linked with the term enantiomeric (C-Def. E1) specifies a
definite pair of enantiomers (two mirror images). In contrast, the term stereogenicity linked
with the term ‘diastereomeric’ (C-Def. D1) is incapable of specifying any definite pair, be-
cause two or more molecular entities may be diastereomeric to one another. To avoid this
paradoxical situation, a pair of R/S-stereodescriptors of the CIP system is still presumed
to be assigned to a pair of enantiomers, where ‘chirality centers’ etc. are categorized as
‘stereogenic units’ to be specified by R/S-stereodescriptors [44]. Hence, chirality and stere-
ogenicity are not well discriminated in modern stereochemistry, although several attempts
have appeared [46,47].

1.4 Total Misleading Features of the Traditional Terminology
on Isomers10

The misleading features of Fig. 1.4 and Fig. 1.6 accumulate in practical judgements on
categories of isomers and stereoisomers.

10 See Footnote 2.
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1.4.1 Total Misleading Flowcharts

By combining Fig. 1.4 with Fig. 1.6, we obtain total misleading flowcharts, as shown in Fig.
1.12.

isomeric

stereoisomericconstitutionally isomeric

enantiomericdiastereomeric

isomers

stereoisomersconstitutional isomers

enantiomersdiastereomers

(a) Misleading categories of
isomeric and stereoisomeric relationships

(b) Misleading categories of
isomers and stereoisomers

Fig. 1.12. Misleading categories of isomeric and stereoisomeric realtionships as well as the re-
lated categories of isomers and stereoisomers. A gray box represents an equivalence relationship
or an equivalence class, which has been overlooked in modern stereochemistry.

In the above discussions, we have used the relational schemes (Fig. 1.4(a), Fig. 1.6(a),
and Fig. 1.12(a)) and the attributive schemes (Fig. 1.4(b), Fig. 1.6(b), and Fig. 1.12(b)) in
an arbitrary or rather loose fashion. However, they should be differentiated more strictly in
further discussions. In the next chapters, more mathematical treatments will be developed
after the introduction of the concepts of equivalence relationships and equivalence classes.

As found in the above discussions, modern stereochemistry suffers from the following
essential drawbacks:
1. Differentiation of relational terms (e.g., isomeric and stereoisomeric) from attributive

terms (e.g., isomers and stereoisomers) is insufficient.
2. Relational terms are used to differentiate between only two molecular entities, where

the concept of equivalence relationships is not taken into consideration. As a result, the
schemes based on relational terms (Fig. 1.4(a), Fig. 1.6(a), and Fig. 1.12(a)) are mis-
leadingly extended to the schemes based on attributive terms (Fig. 1.4(b), Fig. 1.6(b),
and Fig. 1.12(b)).

3. A set of two or more molecular entities cannot be systematically discussed by means
of the schemes based on attributive terms (Fig. 1.4(b), Fig. 1.6(b), and Fig. 1.12(b)),
because the lack of the concept of equivalence classes inhibits proper discussions on
classification of isomers.

4. 2D-based concepts (e.g., constitutional isomers) and 3D-based concepts (e.g., stereoiso-
mers) are mixed without mathematical formulations. The misleading dichotomy be-
tween constitutional isomers and stereoisomers should be replaced by a more rational
scheme.

5. Coincidence between enantiomeric relationships and diastereomeric relationships has
been nullified by presuming the misleading dichotomy between enantiomers and di-
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astereomers. For a remedy against the misleading dichotomy, see a recent review
[48, Chapter 9].

6. The concept of chirality is not fully distinguished from the concept of stereogenicity in
the CIP system.

7. Because of lacking the concept of equivalence classes in Fig. 1.12(b), the number of
such equivalence classes cannot be evaluated. Hence, modern stereochemistry is inca-
pable of the combinatorial enumeration of isomers, so long as it obeys the schemes of
Fig. 1.12.

These essential drawbacks have caused serious confusion, which could not be avoided
so long as modern stereochemistry adopts qualitative or descriptive approaches. The aims
of the present book are to specify such serious confusion and to give rational solutions by
developing mathematical formulations for avoiding the essential drawbacks.

1.4.2 Another Flowchart With Partial Solutions

After Mislow pointed out the brawback of such a flowchart as Fig. 1.12(a) [35], he has
proposed another flowchart shown in Fig. 1.13 on the basis of an isometry. However, the
proposed remedy by this flowchart [35,46] did not fully solve the misleading features de-
scribed above.

Paired structures of equal
atomic composition

(same molecular formula)

I ?

SC ?I1 ?

noyes

noyesyes no

diastereomeric
constitutionally

isomeric
homomeric enantiomeric

Fig. 1.13. Flowchart for classifying pairwise relationships: I = isometric; I1 = related by an isome-
try of the first kind; SC = same constitution [35]. This flowchart lacks the definition of a stereoiso-
meric relationship as well as the concepts of equivalence relationships and equivalence classes.

1. Mislow and Siegel [46] has properly pointed out that the geometric attribute of chirality
(e.g., ‘local symmetry’) and the stereoisomerism (e.g., ‘stereogenicity’) are conceptu-
ally distinct but they may interact. However, their discussions on the interaction are
qualitative and afford no integrated foundation of mathematical basis. In fact, Fig. 1.13
emphasizes the the geometric attribute of chirality by the selection of the top judgement
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(‘I?’) due to an isometry, so that the term ‘stereoisomeric’ does not appear in the right
branch of Fig. 1.13 [35].

2. The flowchart of Fig. 1.13 emphasizes relational terms (e.g., enantiomeric and diastere-
omeric) and makes light of attributive terms (e.g., enantiomers and diastereomers). For
example, the application of Fig. 1.13 to the set represented by Eq. 1.2 (Fig. 1.5) arrives
at the result that the two achiral molecular entities of the same 3D structure (e.g., {1-16,
1-16}) are determined to be homomeric, just as the two chiral molecular entities of the
same 3D structure (e.g., {1-17, 1-17}) are determined to be homomeric. However, this
judgement does not aim at partition for constructing equivalence classes, because the
flowchart of Fig. 1.13 lacks the concept of equivalence relationships and the homomeric
relationship is not recognized as an equivalence relationship.

3. Because of lacking the concept of equivalence classes, the flowchart of Fig. 1.13 is
silent about the results of its application to a set of more than two molecular entities. It
follows that the flowchart does not aim at classifying more than two molecular entities
into sets of stereoisomers or pairs of enantiomers as equivalence classes.

4. Because of lacking the concept of equivalence classes, the flowchart of Fig. 1.13 is
insufficient to evaluate the number of such equivalence classes which are inequivalent
to each other (isomer number). In other words, the flowchart of Fig. 1.13 does not
support combinatorial enumeration of isomers.

5. The flowchart of Fig. 1.13 does not permit coincidence between enantiomeric relation-
ships and diastereomeric relationships, so that the interaction between the geometric at-
tribute of chirality (e.g., ‘local symmetry’) and the stereoisomerism (e.g., ‘stereogenic-
ity’) is not properly estimated. Thus, the ‘I?’ judgement due to an isometry in Fig. 1.13
characterizes the relationship between an object (e.g., 1-4 in Fig. 1.2) and its mirror
image (1-4 = 1-6) by means of a reflection. However, the interconversion between them
can alternatively occur by the process without a reflection (Fig. 1.2), which is regarded
as one embodiment of stereoisomerism (a diastereomeric relationship). The flowchart
of Fig. 1.13 results in the nullification of the process of Fig. 1.2 (a diastereomeric re-
lationship), even though the latter is specified by the attributive term ‘stereogenic’ in
place of the relational term ‘diastereomeric’ [46].

Remark 1.2 (Essential Viewpoints of Fig. 1.12(a) and Fig. 1.13). The scheme of Fig.
1.12(a) separates the term ‘stereoisomeric’ (a 3D-based concept) from the term ‘con-
stitutionally isomeric’ (a 2D-based concept) at the top judgement. This scheme suf-
fers from the duality of the definition of an isomeric relationship (C-Def. I1 in Table
1.1). On the other hand, the flowchart shown in Fig. 1.13 separates the term ‘diastere-
omeric’ (a 3D-based concept) from the term ‘constitutionally isomeric’ (a 2D-based
concept) at the ‘SC?’ judgement. Although the top ‘I?’ judgement due to an isometry
is concerned with 3D structures, the ‘no’ branch of the ‘I?’ judgement contains the
term ‘constitutionally isomeric’ (a 2D-based concept) and the term ‘diastereomeric’
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(a 3D-based concept). To avoid this inconsistency, the term ‘constitutionally isomeric’
(a 2D-based concept) should be temporarily regarded as a 3D-based concept at the
‘I?’ judgement. This is an example of the arbitrary switching between 2D-based and
3D-based concepts, which has been discussed in Subsection 1.1.3.

1.4.3 More Promising Way

In contrast to the flowchart of Fig. 1.13 [35], the present approach lays stress on 3D-based
concepts and on equivalence classes produced by an equivalence relationship even for the
purpose of investigating the geometric attribute of chirality [49]. Thus, an achiral molecular
entity is characterized by a one-membered equivalence class (e.g., [1-16], [1-18], or [1-19]
for Fig. 1.5), while a chiral molecular entity and its mirror image are characterized by a two-
membered equivalence class (e.g., [1-17 1-17]). Thereby, the set of Eq. 1.2 is partitioned
as follows:

⎧

⎩[1-16]
[

1-17 1-17
]

[1-18] [1-19]
⎫

⎭ , (1.10)

which are counted to be equal to 4 by means of the proligand method [49, Table 12.1], as
described below (cf. Section 1.5 and Subsection 2.1.2).

Moreover, Eq. 1.10 is further partitioned via Eq. 1.8 so as to give the following classi-
fication of equivalence classes of various levels:

⎧

⎩

{〈[1-16]〉 〈[

1-17 1-17
]〉} {〈[1-18]〉 〈[1-19]〉}

⎫

⎭ , (1.11)

which meets qualitative and quantitative purposes. Such equivalence classes of various lev-
els will be discussed later. The partition of Eq. 1.11 is further revised by the stereoisogram
approach, as described below.

Because of lacking the concept of equivalence classes, the flowchart of Fig. 1.13 for
classifying pairwise relationships does not aim at such partitions as Eq. 1.10 and Eq. 1.11.
This means that even the flowchart of Fig. 1.13 adopts a qualitative or descriptive approach
without the concepts of equivalence relationships and equivalence classes, just as Fig. 1.12
of modern stereochemistry has adopted.

1.5 Isomer Numbers

The flowcharts shown in Fig. 1.12 mainly aim at qualitative discussions on the the geo-
metric attribute of chirality and stereoisomerism. On the other hand, the flowchart shown
in Fig. 1.13 is focused on qualitative discussions about the geometric attribute of chirality.
These flowcharts of two different types commonly emphasize relationships (not equiva-
lence relationships), so that they make light of equivalence classes, which are important for
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such quantitative purposes as the evaluation of isomer numbers. Even the sets appearing in
Fig. 1.12(b) (e.g., isomers and stereoisomers) are not regarded as equivalence classes in the
state-of-the-art methodology of modern stereochemistry. For the purpose of combinatorial
enumeration, such equivalence classes are counted after developing quantitative formula-
tions based on mathematics.

1.5.1 Combinatorial Enumeration as 2D Structures

The graph theory has provided organic chemistry with quantitative devices for evaluating
isomer numbers. Pólya has developed a powerful theorem referred to under his name [50–
52]. By means of Pólya’s theorem, he has counted benzene derivatives [50,51] as well as
alkanes and substituted alkanes with higher carbon contents [52]. For example, alkanols
with the molecular formulas CnH2n+2O are counted as 2D structures (graphs, constitutional
isomers) by recursive applications of Pólya’s theorem [52], where the number of alkanols
with n = 4 (i.e., butanols) has been combinatorially enumerated to be 4. This result is consis-
tent with the manual enumeration listed in Fig. 1.5, which corresponds to the set represented
by Eq. 1.1.

The unchanged importance of Pólya’s theorem is obvious by the fact that his paper pub-
lished in 1937 [52] was translated into English after 50 years [53]. For an introductory de-
scription on the enumeration of benzenes, see his own textbook [54, Chapter 6]. Interaction
between organic chemistry and graph theory has proved to be successful, as summarized in
reviews [55–58] and books [59–62].

1.5.2 Importance of the Proligand-Promolecule Model

The methodology implied in Le Bel’s theory may be useful to treat 3D structures as they
are. However, Le Bel himself [14] has stated that “In the reasoning which follows, we shall
ignore the asymmetries (originally dissymmetries) which might arise from the arrangement
in space possessed by the atoms and univalent radicals; but shall consider them as spheres
or material points, which will be equal if the atoms or radicals are equal, and different if
they are different. This restriction is justified by the fact, that, up to the present time, it has
been possible to account for all the cases of isomerism observed without recourse to such
arrangement, and the discussion at the end of the paper will show that the appearance of
the rotatory power can be equally well foreseen without the aid of the hypothesis of which
we have just spoken.” (cited from an English translation [15] where the italicized words
are added). Contrary to Le Bel’s statement, the ignorance of the inner arrangement and the
presumption of spheres or material points have caused serious confusion, as found in the
later history of stereochemistry.

Fujita has avoided the ignorance of the inner arrangement of Le Bel’s theory by in-
troducing the proligand-promolecule model [63], where a molecular entity with rotatable
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ligands is treated as a promolecule with proligands, which are regarded as abstract ligands
with chirality or achirality. Thereby, the systematic characterization of the global symmetry
and local symmetries of a molecular entity is accomplished, where the inner arrangement
due to a local symmetry is ascribed to each proligand, which is clarified to be controlled by
subduction of coset representations [64–66]. The importance of the proligand-promolecule
model has been confirmed by using skeletons of high point-group symmetries, e.g., octahe-
dral complexes [67], prismane derivatives [68,69], and adamantane derivatives [70].

1.5.3 Combinatorial Enumeration as 3D Structures

After introducing the concepts of sphericities and chirality fittingness coupled with
the proligand-promolecule model, Fujita has developed the Unit-Subduced-Cycle-Index
(USCI) approach in order to accomplish symmetry-itemized enumeration of chemical com-
pounds as 3D structures [71,72]. Among the four methods of Fujita’s USCI approach,
the fixed-point-matrix (FPM) method [73], the partial-cycle-index (PCI) method [74], and
the elementary-superposition (ES) method [75] have recently been applied to symmetry-
itemized enumeration of cubane derivatives.

To survey gross features without symmetry-itemization, a more simplified approach is
desirable. Fujita’s proligand method has been developed for the purpose of gross enumera-
tions of 3D structures [76–78], where the basis of the concepts of sphericities and chirality
fittingness is changed from equivalence classes (orbits) in Fujita’s USCI approach to cycles
in Fujita’s proligand method. From the viewpoint of 2D- vs. 3D-based concepts, Pólya’s the-
orem for graph enumeration is regarded as a degenerate case of Fujita’s proligand method
for 3D-structural enumeration [49].

For example, alkanols with the molecular formulas CnH2n+2O are counted as 3D struc-
tures by recursive applications of Fujita’s proligand method [79]. Thereby, the number of
alkanols with n = 4 (i.e., butanols) has been combinatorially enumerated to be 4, which is
partially itemized by chirality/achirality, i.e., three achiral butanols and one pair of enan-
tiomeric butanols. This result is consistent with the manual enumeration listed in Fig. 1.5,
which corresponds to the set represented by Eq. 1.4 or more strictly to the set represented
by Eq. 1.9. Compare Eq. 1.4 (or Eq. 1.9) with Eq. 1.1.

By revising the concepts of sphericities and chirality fittingness, Fujita has developed
related methods of gross enumeration [80–82], where various mathematical concepts (e.g.,
characters and double cosets) for cyclic groups are linked with the concepts of sphericities
and chirality fittingness [49]. Among them, Fujita’s proligand method [83], the markaracter
method [84], the characteristic-monomial method [85], the extended-superposition method
[86], and the double-coset-representation method [87] have recently been applied to gross
enumeration of cubane derivatives.

The comparison between Pólya’s theorem and Fujita’s proligand method has been dis-
cussed in reviews [88,89] and Fujita’s recent book [49]. For comparison using alkanes of
high carbon contents (up to 100), see Refs. [90–92] and [49, Capter 13].
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1.6 Stereoisograms

1.6.1 Stereoisograms as Diagrammatic Expressions of RS-Stereoisomeric
Groups

To avoid the drawbacks pointed out in Section 1.4 as well as to cover combinatorial enu-
meration described in Section 1.5, integrated discussions on stereogenicity and chirality are
necessary after developing theoretical or mathematical tools for investigation. Fujita has de-
veloped the stereoisogram approach, where the concept of stereogenicity is restricted to the
concept of RS-stereogenicity, which is integrated with the concept of chirality [93–95]. The
key of this integration is the concepts of RS-diastereomers and holantimers, which are com-
bined with enantiomers. These components are controlled by an RS-stereoisomeric group,
so that the corresponding stereoisogram is devised as its diagrammatic expression.

For example, the pair of 1-4 and 1-6 in Fig. 1.2 is regarded as being RS-diastereomeric
to each other, where 1-4 is regarded as a reference promolecule. Note that the term pro-
molecule is used to denote an abstract molecular entity which is substituted by proligands
as abstract ligands with chirality/achirality. The pair of RS-diastereomers 1-4 and 1-6 is
placed in the horizontal direction of Fig. 1.14(a). The enantiomer 1-4 generated by a reflec-
tion from the reference promolecule 1-4 is placed in the vertical direction of Fig. 1.14(a).
Finally, the reference promolecule 1-4 is converted into its holantimer 1-6 (= 1-4), where the
tetrahedral skeleton of Fig. 1.2 is maintained and the four ligands are converted into mirror
images. The holantimer 1-6 is placed in the diagonal direction of Fig. 1.14(a). The resulting
quadruplet of promolecules are linked with equality symbols or double-headed arrows, so
that there appears a stereoisogram of type I, as discussed later in detail.

In a similar way, by selecting 1-28 of Fig. 1.11 as a reference promolecule, there appear
a stereoisogram of type I, as shown in Fig. 1.14(b).

The horizontal directions of each stereoisogram (Fig. 1.14(a) or (b)) are concerned with
RS-diastereomeric relationships (attribute: RS-stereogenicity); the vertical directions of each
stereoisogram are concerned with enantiomeric relationships (attribute: chirality); and the
diagonal directions of each stereoisogram are concerned with holantimeric relationships
(attribute: sclerality).

Each of the two stereoisograms shown in Fig. 1.14 is characterized by the presence
of equality symbols along the diagonal directions, each of which is referred to as a self-
holantimeric relationship or an ascleral attribute. Thereby, the RS-diastereomeric relation-
ship is concluded to be coincident with the enantiomeric relationship in Fig. 1.14(a) or (b).

1.6.2 Theoretical Foundations and Group Hierarchy

Each stereoisogram is controlled by an RS-stereoisomeric group, which is derived from a
point group of a stereoskeleton at issue. Thereby, a general proof for the existence of five
types of stereoisograms (type I to type V) has been obtained on the basis of the existence



24 1 Introduction

� S

�
C

1

3

4

2 SC

A

BX
Y

�� � 1

3

2

4 RC

A

BY
X

1-4 1-6 (= 1-4)
(1)(2)(3)(4) (1)(2 4)(3)

�

�
	
 ��

��

��

��
�

�

��
�

�

��
	 �

�
	


1

3

2

4 RC

A

BY
X

�� � 1

3

4

2 SC

A

BX
Y

1-4 1-6 (= 1-4)
(1)(2 4)(3) (1)(2)(3)(4)

� S

�
C

1

3

4

2 SC

p

pq
q

�� � 1

3

2

4 RC

p

pq
q

1-28 1-30 (= 1-28)
(1)(2)(3)(4) (1)(2 4)(3)

�

�
	
 ��

��

��

��
�

�

��
�

�

��
	 �

�
	


1

3

2

4 RC

p

pq
q

�� � 1

3

4

2 SC

p

pq
q

1-28 1-30 (= 1-28)
(1)(2 4)(3) (1)(2)(3)(4)

(a) Stereoisogram of type I (b) Stereoisogram of type I

Fig. 1.14. Stereoisograms of type I for demonstrating the coincidence between an enantiomeric
relationship (along the vertical direction) and an RS-diastereomeric relationship (along the hori-
zontal direction).

of five types of subgroups of the RS-stereoisomeric group [96]. The group hierarchy has
been formulated to be composed of point groups, RS-stereoisomeric groups, stereoisomeric
groups, and isoskeletal groups by using an allene skeleton [97,98], an ethylene skeleton
[99], and a square planar skeleton [100].

Stereoisograms of various skeletons of high symmetries have been discussed from a
viewpoint that chirality and RS-stereogenicity are free from the conventional ‘chirality’ and
‘stereogenicity’, e.g., trigonal bipyramidal compounds [101,102], prismane derivatives [68,
69], and octahedral complexes [103–105].

Theoretical foundations of Fujita’s stereoisogram approach have been discussed for the
purpose of providing a new scheme for investigating geometric and stereoisomeric features
in stereochemistry [106], for the purpose of developing theory of organic stereoisomerism in
harmony with molecular symmetry [107], as well as for the purpose of demonstrating three
aspects of absolute configuration [108]. Among the three aspects of absolute configuration,
modern stereochemistry is clarified to emphasize the chiral aspect and to overlook the RS-
stereogenic aspect and the scleral aspect.

1.6.3 Avoidance of Misleading Standpoints of R/S-Stereodescriptors

According to Fujita’s stereoisogram approach, the basis of R/S-stereodescriptors of the CIP
system is changed from ‘stereogenicity’ to RS-stereogenicity as a more definite concept,
which is a common characteristic of type-I, type-III, and type-V stereoisograms [109,110].
As a result, a pair of R/S-stereodescriptors is assigned to a pair of RS-diastereomers (e.g.,
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1-4/1-6 or 1-4/1-6), not to a pair of enantiomers (e.g., 1-4/1-4 or 1-6/1-6). In other words,
the assignment of R/S-stereodescriptors is based on the RS-stereogenic aspect of absolute
configuration, not to the chiral aspect of absolute configuration [108]. Coincidence between
an RS-stereogenic relationship and an enantiomeric relationship has been discussed in such
cases as Fig. 1.14, which work as counter-examples against the misleading dichotomy be-
tween enantiomeric and ‘diastereomeric’ relationships (see Section 1.3). The concept of
chirality (un)faithfulness has been proposed for the purpose that R/S-stereodescriptors de-
termined originally by RS-stereogenicity are interpreted as if they were assigned by chirality
[110]. Thereby, misleading standpoints for R/S-stereodescriptors of the CIP system are ra-
tionally avoided [111], where the conventional terminology has been entirely replaced by
the terminology based on Fujita’s stereoisogram approach. In particular, the ‘stereogenic
centers and axes’ of the CIP system (e.g., ‘chirality centers’ and ‘pseudoasymmetric cen-
ters’) are replaced by promolecules characterized by type-I, type-III, or type-V stereoiso-
grams [111].

1.6.4 Avoidance of Misleading Standpoints of pro-R/pro-S-Descriptors

Long-standing confusion on the term ‘prochirality’ in stereochemistry has been avoided
by Fujita’s stereoisogram approach [112], where the concept of pro-RS-Stereogenicity has
been proposed to accomplish integrated treatment with prochirality redefined. Thereby, pro-
R/pro-S-descriptors have been clarified to be specified by RS-diastereotopic relationships,
not by stereoheterotopic relationships [113,114]. The scope of the concepts of holantimers
contained in stereoisograms has been discussed [70,115], where rational avoidance of mis-
leading standpoints for pro-R/pro-S-descriptors has been accomplished. See also a recent
review [116, Chapter 10]. As a result, the conventional terminology on so-called ‘prochiral-
ity’ has been entirely replaced by the terminology based on Fujita’s stereoisogram approach
[115,117].

1.6.5 Global Symmetries and Local Symmetries

Global Symmetries in the Assignment of R/S-Stereodescriptors
According to Fujita’s stereoisogram approach, the conventional term ‘chiral center’ or
‘stereogenic center’ is replaced by the term RS-stereoisomeric center, which has three
aspects, i.e., RS-stereogenic, chiral, scleral aspects. When we discuss the assignment of
R/S-stereodescriptors, we should focus our attention on the RS-stereogenic aspect. For this
purpose, such an RS-stereoisomeric center is called an RS-stereogenic center in a more
distinctive fashion.

When a molecule has one RS-stereogenic center, its global symmetry and its local sym-
metry can be discussed commonly by examining ligands around the RS-stereogenic center.
Thereby, either one of R/S-stereodescriptors is assigned to specify the RS-stereogenic aspect
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of absolute configuration. Note that the term symmetry is used to denote chirality/achirality,
RS-stereogenicity/RS-astereogenicity, and sclerality/asclerality, collectively.

Local Symmetries in the Assignment of R/S-Stereodescriptors
When a molecule has two or more RS-stereogenic centers, its global symmetry and its local
symmetry should be discussed separately. For the purpose of discussing the assignment of
R/S-stereodescriptors, the local symmetry of each RS-stereogenic center should be discussed
by examining ligands around the RS-stereogenic center.

Let us examine meso-2,6-diphenyl-1-methyl-4-piperidone 1-20 shown in Fig. 1.7. The
global symmetry is characterized by a type-IV stereoisogram, i.e., achiral, RS-astereogenic
and ascleral. Note that modern stereochemistry emphasizes only the achirality.

To examine the local symmetry at the 2-position of 1-20 (marked by a solid circle),
the following four ligands are selected around the 2-position: a phenyl ligand, a hydrogen
atom, a ring branch p = –N(CH3)–CH(Ph)–CH2–C(=O)–CH2– (along positions 1–6–5–4–
3–2), and another ring branch q = CH2–C(=O)–CH2–CH(Ph)—-N(CH3)– (along positions
3–4–5–6–1–2). Thereby, we obtain a promolecule 1-20′2 as a reference promolecule, which
generates a quadruplet of promolecules so as to give a type-III stereoisogram shown in Fig.
1.15(b). Because of the type-III stereoisogram of Fig. 1.15(b), the local symmetry at the
2-position is concluded to be chiral, RS-stereogenic, and scleral.

Although modern stereochemistry takes account of local chirality (under the introduc-
tion of the term ‘chirotopic’ [46]) as well as of ‘stereogenicity’ (under the introduction of
the term ‘stereogenic units’ [44]), the latter concept of ‘stereogenicity’ is not restricted to
the present concept RS-stereogenicity. Moreover, the concept of ‘stereogenicity’ is solely
used during the selection of ‘stereogenic units’, but it turns out to be forgotten during the
process of assigning R/S-stereodescriptors. This means that a pairwise feature of the term
RS-stereogenicity is overlooked by the conventional term ‘stereogenicity’. In fact, the CIP
system fist takes account of 1-20′2 (labelled ‘R’ due to the priority sequence p > Ph > q >

H) and then its enantiomer 1-20′2 (labelled ‘S’ due to the priority sequence p > Ph > q >

H) during the process of assigning R/S-stereodescriptors, where the difference between the
priority sequences is nullified in terms of ‘hierarchical digraph’ [44]. Thus the CIP system
implicitly emphasizes the pair of 1-20′2/1-20′2 (an enantiomeric pair) and overlooks the pair
of 1-20′2/1-31′2 (an RS-diastereomeric pair), even though the CIP system adopts the term
‘stereogenic units’.

The misleading standpoints of R/S-stereodescriptors described in the preceding para-
graph are more clearly demonstrated by translating Fig. 1.15(b) into a stereoisogram using
3D-structural formulas, as illustrated in Fig. 1.15(a). The reference promolecule 1-20′2 of
Fig. 1.15(b) corresponds to the reference 1-202 of Fig. 1.15(a), the 2-position of which is
attached by a solid circle in order to emphasize an RS-stereogenic center to be examined.
The RS-diastereomeric promolecule 1-31′2 of Fig. 1.15(b) is translated into 1-312 of Fig.
1.15(a). The RS-diastereomeric relationship between 1-202 and 1-312 corresponds to the
epimerization of 1-202 into 1-312, where there occurs a permutation between a phenyl lig-
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Fig. 1.15. Stereoisograms of type III for demonstrating local symmetries. (a) The 2-position of
meso-2,6-diphenyl-1-methyl-4-piperidone 1-202 is attached by a solid circle to emphasize an RS-
stereogenic center to be examined. (b) A promolecule 1-20′2 is produced as a reference, where
the two ring moieties centered at the 2-position are regarded as chiral proligands p and q as well
as the substituents Ph and H are regarded as additional proligands.

and and a hydrogen atom at the 2-position. The stereoisogram of Fig. 1.15(a) indicates that a
pair of R/S-stereodescriptors is assigned to the pair of RS-diastereomers 1-202/1-312 (due to
the common priority sequence p > Ph > q > H), not to the pair of enantiomers 1-202/1-202

(due to the different priority sequences p > Ph > q > H and p > Ph > q > H). Note that a
mirror plane is selected as containing the tentative plane of a six-membered ring. It should
be emphasized that the pair of enantiomers 1-202/1-202 is concerned only with the local
symmetry at the 2-position, because 1-20 itself is achiral from the viewpoint of the global
symmetry.

Exercise 1.5.
– Draw a type-IV stereoisogram for characterizing meso-2,6-diphenyl-1-methyl-4-

piperidone 1-20. Compare the resulting diagram with the type-III stereoisogram shown
in Fig. 1.15.

– Assign R/S-stereodescriptors to the 6-position of 1-20 by drawing a stereoisogram con-
cerned with 1-206.

– Compare the label S assigned to 1-206 with the label S assigned to 1-202.
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Correlation Diagrams of Stereoisograms
To comprehend global symmetries and local symmetries, Fujita has developed the con-
cept of correlation diagrams of stereoisograms [118–120], where the global symmetry of
a molecular entity and the local symmetries of the positions of the molecular entity are
separately characterized by respective stereoisograms, which are correlated with one an-
other in terms of correlation diagrams of stereoisograms. Such correlation diagrams are dia-
grammatic expression for the theory of organic stereoisomerism in harmony with molecular
symmetry [107]. They provide us with a powerful device for reorganizing the theoretical
foundations of stereochemistry and stereoisomerism [111].

1.6.6 Enumeration under RS-Stereoisomeric Groups

As an extension of Fujita’s USCI approach under the action of point groups (see Sec-
tion 1.5), quadruplets of RS-stereoisomers have been counted under the action of RS-
stereoisomeric groups [121,122], where the isomer numbers are itemized according to type-
I to type-V stereoisograms. More detailed enumerations of quadruplets of RS-stereoisomers
have been conducted [123,124]. The isomer numbers derived from a tetrahedral skeleton
are itemized according to the subgroups of RS-stereoisomeric groups, where the fixed-
point-matrix (FPM) method and the partial-cycle-index (PCI) method of Fujita’s USCI
approach are extended so as to be combined with Fujita’s stereoisogram approach. These
procedures have been applied to count isomers based on an allene skeleton [125,126]. These
results of enumeration have been discussed from a viewpoint of reorganizing the theoretical
foundations of stereochemistry and stereoisomerism [127].

1.7 Aims of Mathematical Stereochemistry

The theoretical foundations of modern stereochemistry have descriptive nature without
mathematical formulations, where they are intended to aim at investigating qualitative sub-
jects. Even in qualitative investigations on geometric properties, however, the theoretical
foundations of modern stereochemistry have inherent difficulties. Such difficulties are am-
plified more and more in qualitative investigations on stereoisomerism, as shown in Sections
1.2–1.4.

On the other hand, combinatorial enumeration of compounds as one of quantitative
investigations on geometric properties have been investigated in terms of mathematical for-
mulations based on group theory, as discussed in Section 1.5. As such quantitative inves-
tigations, I have published monographs on Fujita’s USCI approach for symmetry-itemized
combinatorial enumeration [71], on the mandala concept to comprehend intra- and inter-
molecular stereochemistry [72], and on Fujita’s proligand method for gross combinatorial
enumeration [49]. The mathematical formulations developed for Fujita’s USCI approach are
capable of supporting investigations on geometric properties, both quantitative and qualita-
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tive, as discussed also in these books [71–49]. However, they are still insufficient to quali-
tative and quantitative investigations on stereoisomerism.

To support qualitative and quantitative investigations on stereoisomerism, I have
later developed Fujita’s stereoisogram approach, as shown in Section 1.6. The concept
of stereoisograms based on mathematical formulations works as a linkage between geomet-
ric properties (chirality) and stereoisomerism (RS-stereogenicity). Thereby, unconscious
confusion in modern stereochemistry [21–23] has been avoided in a qualitative fashion, as
described in reviews [48,116,117]. Moreover, quantitative investigations on stereoisograms
have been recently started as discussed in Subsection 1.6.6.

Mathematical stereochemistry is a new discipline of stereochemistry, which is based on
theoretical foundations due to mathematical formulations. According to Fujita’s stereoiso-
gram approach as one of the fields of mathematical stereochemistry, the conventional termi-
nology of modern stereochemistry is thoroughly revised to cover both geometric properties
and stereoisomerism and both qualitative investigations and quantitative ones
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2 Classification of Isomers1

2.1 Equivalence Relationships of Various Levels of
Isomerism

The methodology of modern stereochemistry has an unconscious tendency to make light of
equivalence relationships and to emphasize inequivalence relationships too much. For the
purpose of realizing problematic situations in isomerism and stereoisomerism, it is impor-
tant to examine whether a relationship specifies equivalence or inequivalence.

2.1.1 Equivalence Relationships and Equivalence Classes

The misleading features of Figs. 1.12(a) and (b) (page 17) as well as the lack of equivalence
classes (orbits) for Fig. 1.13 (page 18) will be discussed detailedly in this subsection after
the introduction of equivalence relationships and equivalence classes.

Let us consider a set of elements (or objects):

X = {· · · , a, · · · , b, · · · , c · · ·}, (2.1)

where the finite number of elements (a, b, c, etc.) are identified under a first given criterion.
Chemically speaking, for example, the elements a, b, c, etc. are molecular entities, each of
which is characterized by a 3D structure as such a first given criterion. For the simplicity’s
sake, the set X (Eq. 2.1) is presume to exhibit no redundancy, so that it contains no dupli-
cation under the first given criterion.2 Supposes that they are classified by another given
criterion, which is called here an equivalence relationship.

According to Def. 4.2 of Ref.[1], an equivalence relationship and an equivalence class
are defined as follows:

Definition 2.1 (Equivalence Relationship). Suppose that a relationship ∼ defined between arbi-
trary two elements (a and b) of a given set X satisfies either of two cases, i.e., a∼ b or a �∼ b. If the
relationship satisfies (1) a∼ a (reflective); (2) a∼ b then b∼ a (symmetric); and (3) a∼ b, b∼ c, then
b∼ c (transitive), then this relationship is called an equivalence relationship.

Definition 2.2 (Equivalence Classes and Partition). By collecting elements equivalent under the
equivalence relationship (Def. 2.1), we can construct a subset of X, which is called an equiva-
lence class. The set X is classified into equivalence classes under the the equivalence relationship
(Def. 2.1). This classification is called a partition in terms of the equivalence relationship (Def. 2.1).

1 This chapter is based on S. Fujita, “Misleading Classification of Isomers and Stereoisomers in Organic
Chemistry”, Bull. Chem. Soc., 87, 1367–1378 (2014).
2 Two elements (objects) of X (Eq. 2.1) may be homomeric. Note that a homomeric relationship depends on
proper rotations belonging to a chiral point group (cf. Remark 2.2).



36 2 Classification of Isomers

Chemically speaking, an equivalence relationship defined by Def. 2.1 aims at the clas-
sification of molecular entities (as elements of X), so that the resulting partition concerning
equivalence classes (Def. 2.2) is interpreted to be the taxonomy of molecular entities un-
der the equivalence relationship. The reflective nature a ∼ a for Def. 2.1 permits a single
membership of an equivalence class.

An equivalence class is often called an orbit, which is distinct from the chemical term
orbital. Note that the term orbital is an abbreviation of the term orbital function, which
is used in quantum chemistry. In this book, the term orbit is mainly used to refer to an
equivalence class of (pro)ligands.

Suppose that the equivalence relationship of Def. 2.1 is applied to the set of Eq. 2.1 to
give the following partition:

{{a b c · · ·} {a′ b′ c′ · · ·} · · ·} , (2.2)

where the set {a b c · · ·} is an equivalence class, while the other set {a′ b′ c′ · · ·} is another
equivalence class. The two equivalence classes are inequivalent to each other under the
equivalence relationship of Def. 2.1.

2.1.2 Enantiomers, Stereoisomers, and Isomers

Enantiomeric Relationships as Equivalence Relationships
The conventional definition of an enantiomeric relationship (C-Def. E1 on page 10 in Sec-
tion 1.3) is incapable of generating an equivalence relationship. As a result, for example, the
application of C-Def. E1 to the butanols listed in Fig. 1.5 (page 7) results in Eq. 1.9 (page
10), in which each achiral molecular entity is not detected as an equivalence class. To avoid
this fault, the following definition is devised according to Def. 2.1:

Definition 2.3 (Enantiomeric Relationship, Chirality/Achirality). The relationship between an ob-
ject3 and its mirror image is called an enantiomeric relationship, where the object and the mirror
image may be superimposable on each other. If they are not superimposable on each other, they
are referred to as being chiral, so as to generate a pair of enantiomers as a two-membered equiva-
lence class. If they are superimposable on each other, they are in a self-enantiomeric relationship,
so as to generate a single achiral object as a one-membered equivalence class.

The term object is a molecular entity, if Def. 2.3 is used in chemistry. The term molecular
entity is used to refer to a molecule or a related object such as a ligand.

Because Def. 2.3 defines an enantiomeric relationship as an equivalence relationship, an
achiral molecular entity as a one-membered equivalence class can be discussed in the same
level as a pair of enantiomeric molecular entities, which is regarded as a two-membered
equivalence class.

3 The term object is used here in place of the mathematical term element in Eq. 2.1, because the latter is
frequently used to denote a chemical element (H, He, etc.).
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Rule 2.1 (Terminology on Enantiomeric Relationships). Note that Def. 2.3 permits a self-
enantiomeric case to designate an achiral molecular entity. To avoid confusion, the rela-
tionship due to Def. 2.3 is referred to as being (self-)enantiomeric, if necessary. The plural
form enantiomers may be used to refer to a pair of chiral objects which are enantiomeric.
The singular form enantiomer may be used to refer to one of a pair of enantiomers, if the
other of the pair is obvious [2].

The application of Def. 2.3 to the butanols listed in Fig. 1.5 (page 7) results in the following
partition:

⎧

⎩[1-16]
[

1-17 1-17
]

[1-18] [1-19]
⎫

⎭ , (2.3)

where a pair of square brackets consists of a pair of (self-)enantiomers. Thus, there ap-
pear three one-membered equivalence classes (i.e., three achiral molecular entities) and one
two-membered equivalence class (a pair of enantiomers). These are inequivalent under an
enantiomeric relationship (Def. 2.3), as counted to be equal to 4. This partition is identical
with Eq. 1.10 (page 20).

The application of Def. 2.3 to a set of isomeric 2,3,4-trihydroxyglutaric acids shown in
Fig. 2.1 generates the following partition:

⎧

⎩[2-1] [2-2]
[

2-3 2-3
]

⎫

⎭ . (2.4)

Thus, there appear two one-membered equivalence classes and one two-membered equiv-
alence class, where each equivalence class is surrounded by a pair of square brackets.
Each of the one-membered equivalence classes corresponds to an achiral molecule [2-1]
or [2-2], while the two-membered equivalence class corresponds to a pair of enantiomers
[
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]
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Fig. 2.1. Classification of Isomeric 2,3,4-trihydroxyglutaric acids into two achiral isomers and one
pair of enantiomers. A pair of square brackets contains a pair of (self)-enantiomers, a pair of an-
gle brackets contains an equivalence class of stereoisomers, and a pair of braces contains an
equivalence class of isoskeletomers.
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Stereoisomeric Relationships as Equivalence Relationships
The term constitution is defined as a criterion for defining a stereoisomeric relationship in
accord with the IUPAC Recommendation 1996 [2].

Definition 2.4 (Constitution). The constitution of a molecular entity describes the identification of
atoms (as a molecular formula) and their connectivity (and corresponding bond multiplicities) in the
molecular entity (omitting any description arising from their spatial arrangement).

In other words, the constitution of a molecular entity can be regarded as a 2D structure (or
a graph including bond multiplicities on its edges).

Thereby, a stereoisomeric relationship is defined as producing a set of stereoisomers as
an equivalence class.

Definition 2.5 (Stereoisomeric Relationship). The relationship between a molecular entity and a
counterpart molecular entity having an identical constitution is called a stereoisomeric relationship.
The molecular entity and the counterpart may be identical with each other. The multiple application
of stereoisomeric relationships produces a distinct set of molecular entities as an equivalence class,
the members of which are called stereoisomers.

The expression ‘the identical constitution’ means that the molecular formula, the connec-
tivity, and the bond multiplicity are identical according to Def. 2.4 (cf. Def. 2.9) and can
be replaced by ‘the identical 2D structure’ or ‘the identical graph’. Compare this definition
with the conventional definition (C-Def. S1) described in Subsection 1.2.2 on page 6.

The application of Def. 2.5 to the butanols listed in Fig. 1.5 (page 7) results in the
following partition:

⎧

⎩〈1-16〉 〈

1-17 1-17
〉 〈1-18〉 〈1-19〉

⎫

⎭ , (2.5)

where a pair of angle brackets indicates an equivalence class. Thus, there appear three one-
membered equivalence classes and one two-membered equivalence classes. Each equiva-
lence class represents a set of stereoisomers. Compare the partition represented by Eq. 2.5
with the partition represented by Eq. 1.4 (page 8) which has been partially divided by means
of C-Def. S1.

The application of Def. 2.5 to a set of isomeric 2,3,4-trihydroxyglutaric acids shown in
Fig. 2.1 generates the following partition:

⎧

⎩

〈

2-1 2-2 2-3 2-3
〉

⎫

⎭ , (2.6)

where a pair of angle brackets represents an equivalence class of stereoisomers. Thus, all of
the 2,3,4-trihydroxyglutaric acids (Fig. 2.1) are classified into a single equivalence class of
stereoisomers.

Isomeric Relationships as Equivalence Relationships
A molecule has a definite molecular formula, which serves as a criterion for determining
isomeric relationships:
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(a) 3D-Based Expressions
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(b) 2D-Based Expressions (Graphs)
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Fig. 2.2. Classification of molecules with the molecular formula C3H8O. (a) 3D-based expres-
sions: A pair of square brackets contains a pair of (self)-enantiomers, a pair of angle brackets
contains an equivalence class of stereoisomers, a pair of braces contains an equivalence class
of isoskeletomers, and a pair of bold parentheses contains an equivalence class of isomers. (b)
2D-based expressions (graphs).

Definition 2.6 (Isomeric Relationships, Isomers). The term isomeric relationship is defined as a
relationship between two molecules (or related entities) which have the same molecular formula
but are not superimposable as 3D structures. The plural form isomers can be used to denote a
definite set (equivalence class) of molecules in an isomeric relationship or any set of molecules in
an isomeric relationship if a fixed reference molecule is considered.

The expression ‘not superimposable’ means having different 3D structural formulas,
structural-chemically speaking; or having different properties, organo-chemically speaking.

It should be noted that Def. 2.6 is capable of avoiding the dual definition (C-Def. I1)
described in Table 1.1 (page 6).

The definition of an isomeric relationship (Def. 2.6) is an equivalence relationship, so
that a one-membered equivalence class is permitted in terms of a self-isomeric relationship.
For example, an equivalence class of isomers with the molecular formula CH4O consists
of a single molecule (methanol,

⎧

⎩CH3OH
⎫

⎭). On the other hand, an equivalence class of
isomers with the molecular formula C2H6O consists of ethanol and dimethyl ether, i.e.,
⎧

⎩C2H5OH CH3OCH3

⎫

⎭.
As for isomers with the molecular formula C3H8O, there appear three isomers listed

in Fig. 2.2. The application of Def. 2.6 generates a three-membered equivalence class of
isomers:

⎧

⎩2-4 2-5 2-6
⎫

⎭ , (2.7)

where a pair of bold parentheses represents a equivalence class of isomers.

Remark 2.1 (Same or different). The three molecules (2-4, 2-5, and 2-6) listed in
Eq. 2.7 should be referred to as being equivalent (same, equal) under an isomeric
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relationship (Def. 2.6), although organic chemists tend to lay stress on the difference
between them.

2.1.3 Inequivalence Relationships

Diastereomeric Relationships as Inequivalence Relationships
The conventional definition of ‘diastereomeric relationship’ or ‘diastereomer’ (C-Def. D1)
described in Subsection 1.3.2 is revised to meet the revised definition of an enantiomeric
relationship as an equivalence relationship (Def. 2.3).

Definition 2.7 (Diastereomeric Relationships). The term diastereomeric relationship is defined as
a relationship between two equivalence classes of (self-)enantiomers, where these two equiva-
lence classes are contained in an equivalence class of stereoisomers and inequivalent under an
enantiomeric relationship (Def. 2.3).

The diastereomeric relaitonship (Def. 2.7) is not an equivalence relationship, so that it is
incapable of generating equivalence classes.

For example, the successive applications of Def. 2.5 (a stereoisomeric relationship) and
Def. 2.3 (an enantiomeric relationship) result in the combination of Eq. 2.6 with Eq. 2.4 as
follows:

⎧

⎩

〈

[2-1] [2-2]
[

2-3 2-3
]〉

⎫

⎭ , (2.8)

which shows that three pairs of (self-)enantiomers construct an equivalence class of
stereoisomers. Note that any two pairs of (self-)enantiomers in Eq. 2.8 are in a diastere-
omeric relationship according to Def. 2.7. Hence, a diastereomeric relationship refers to the
fact that two pairs of (self-)enantiomers in Eq. 2.8 are inequivalent under the action of an
enantiomeric relationship (but equivalent under the action of a stereoisomeric relationship).

Constitutionally-Anisomeric Relationships as Inequivalence Relationships
The conventional definition of ‘constitutionally-isomeric relationship’ or ‘constitutional
isomer’ (C-Def. C1) described in Subsection 1.2.2 is revised to meet the revised defini-
tion of a stereoisomeric relationship as an equivalence relationship (Def. 2.5). The term
constitutionally-anisomeric relationship is coined because it is an inequivalence relation-
ship.

Definition 2.8 (Constitutionally-anisomeric Relationships). The term constitutionally-anisomeric
relationship is defined as a relationship between two equivalence classes of stereoisomers, where
these two equivalence classes are contained in an equivalence class of isomers and inequivalent
under a stereoisomeric relationship (Def. 2.5).

The constitutionally-anisomeric relationship (Def. 2.8) is not an equivalence relationship,
so that it is incapable of generating equivalence classes.
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The isomers listed in Fig. 2.2 (with the molecular formula C3H8O) is determined to
generate an equivalence class shown in Eq. 2.7 under an isomeric relationship (Def. 2.6). By
applying a further application of a stereoisomeric relationship (Def. 2.5), the set represented
by Eq. 2.7 is divided to give the following partition:

⎧

⎩〈2-4〉 〈2-5〉 〈2-6〉
⎫

⎭ , (2.9)

where a pair of angle brackets represents an equivalence class of stereoisomers. Two equiva-
lence classes of stereoisomers (e.g., 〈2-4〉 and 〈2-5〉) are constitutionally-anisomeric to each
other according to Def. 2.8.

By applying a further application of an enantiomeric relationship (Def. 2.3), the set
represented by Eq. 2.9 is divided to give the following partition:

⎧

⎩〈[2-4]〉 〈[2-5]〉 〈[2-6]〉
⎫

⎭ , (2.10)

where a pair of square brackets represents an equivalence class of (self-)enantiomers.

Constitutionally-Isomeric Relationships as a 2D-Based Concept
By starting from the term constitution (Def. 2.4), the term ‘constitutional isomerism’ is
defined in IUPAC Recommendations 1996 [2] (cf. C-Def. C1 in Subsection 1.2.2). This
term is adopted for the sake of convenience, although it is a 2D-based concept.

Definition 2.9 (Constitutional Isomerism as a 2D-based Concept [2]). Constitutional isomerism is
defined as isomerism between structures differing in constitution and described by different line
formula, e.g. CH3OCH3 and CH3CH2OH.

This definition means that a constitutionally-isomeric relationship (i.e., constitutional iso-
merism) is based on the examination of graphs (2D-structural formulas after omitting any
description arising from their spatial arrangement), as discussed in Subsection 1.2.2. As
a result, ‘constitutional isomers’ are defined as compounds that have the same molecular
formula but different graphs (constitutions or 2D structures). In other words, the meaning
of ‘isomeric’ in the term ‘constitutionally-isomeric’ (Def. 2.9) depends on Def. 2.6. See
Table 1.1 (page 6). In contrast, the meaning of ‘anisomeric’ in the term ‘constitutionally-
anisomeric’ (Def. 2.8) depends on Def. 2.5.

Exercise 2.1. Discuss the difference between the term constitutionally-anisomeric (Def.
2.8) and the term constitutionally-isomeric (Def. 2.9). See Subsection 2.1.5.

For example, the isomers listed in Fig. 2.2 (with the molecular formula C3H8O) is
determined to be a set of graphs:

⎧

⎩2-4g 2-5g 2-6g

⎫

⎭ , (2.11)

where each symbol represents a graph corresponding to the 3D structure listed in Fig. 2.2.
The set of graphs (Eq. 2.11) corresponds to the set of equivalence classes of stereoisomers
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(Eq. 2.9) in a one-to-one fashion: 2-4g → 〈2-4〉, 2-5g → 〈2-5〉, and 2-6g → 〈2-6〉. Such a
one-to-one correspondence (bijection) between a set of constitutional isomers (due to Def.
2.9) and an equivalence class of stereoisomers (due to Def. 2.5) holds true in general.

Theorem 2.1. A set of constitutional isomers due to Def. 2.9 corresponds to a set of equivalence
classes of stereoisomers due to Def. 2.5 in a one-to-one fashion.

The conventional definition of an isomeric relationship exhibits dual nature as summarized
in Table 1.1 (page 6). This conventional definition of an isomeric relationship can be re-
placed by Def. 2.6 (an isomeric relationship) because of Theorem 2.1, where the conven-
tional 2D-based definition (Def. 2.9) is successfully linked to the present 3D-based defi-
nition of a stereoisomeric relationship (Def. 2.5). Thereby, the dual nature (Table 1.1) is
avoided rationally. Note that such an equivalence class of stereoisomers is based on 3D
structures, where both Def. 2.5 (a stereoisomeric relationship) and Def. 2.6 (an isomeric
relationship) are based on 3D structures.

Exercise 2.2.
– Confirm Theorem 2.1 by using a set of stereoisomers shown in Fig. 2.1 (2-1, 2-2, 2-3,

and 2-3). See Eq. 2.6.
– Confirm Theorem 2.1 by using the butanols listed in Fig. 1.5 on page 7 (1-16, 1-17,

1-17, 1-18, and 1-19). See Eq. 2.5.

2.1.4 Isoskeletomers as a Missing Link for Consistent Terminology

As discussed in Subsection 1.2.3, ‘positional isomers’ are regarded as a kind of consti-
tutional isomers (Def. 2.9). This means that the term ‘positional isomers’ expresses a 2D-
based concept. To avoid the dual features summarized in Table 1.1 and to develop consistent
terminology, the 2D-based term ‘positional isomers’ should be replaced by a more promis-
ing term of 3D basis.

A hint for carrying out the mission described in the preceding paragraph is hidden in
the history of organic structural chemistry [3,4]. Kekulé [5] discussed the usage of ‘rational
formulas’, which correspond to C2H5OH, C2H5NH2, etc. in the modern mode of representa-
tions. These ‘rational formulas’ represent types of compounds, where C2H5OH stems from
the linkage between a unit C2H5 and another unit OH. Thus, the rational formulas orig-
inally aimed at the taxonomy of organic compounds, which has been later accomplished
by more informative formulas, i.e., 2D-structural formulas, although they are still used un-
der the name condensed structural formulas. Now, the taxonomy of organic compounds
is represented by linking 2D-structural formulas with compound types (e.g., alkanols and
alkylamines), where the linkage has overwhelmed the usage of rational formulas. However,
the methodology based on the usage of rational formula has survived even under the link-



2.1 Equivalence Relationships of Various Levels of Isomerism 43

age, because any parts of a 2D-structural formula can be regarded as units represented by a
rational formula.

By keeping in mind the history described above, let us consider o-, m- and p-
dibromobenzenes (1-1, 1-2, and 1-3), which have been shown in Fig. 1.1 (page 1) of
Section 1.1. They are traditionally called ‘positional isomers’ with no explicit mention of
a benzene ring as a common skeleton (see Subsection 1.2.3). By inverting the viewpoint
of the term, we lay stress on the benzene skeleton according to the taxonomy of organic
chemistry, because the positional isomers are regarded as molecules derived from a benzene
skeleton. This inverted viewpoint is extended to more general cases as follows:

Definition 2.10 (Isoskeletomeric relationship, Isoskeletomers). A skeleton is selected as a mean-
ingful substructure of a 3D-structural formula to be examined. An isoskeletomeric relationship is
defined as a relationship between two molecular entities which contain the same skeleton and
have the same molecular formula. An expression self-isoskeletomeric is permitted, so that the
isoskeletomeric relationship is an equivalence relationship. Then, the resulting molecular entities
called isoskeletomers construct an equivalence class.

The term isoskeletomer is coined on the basis of iso- (Greek: isos equal), skeleto- (Greek:
skeletós withered, dried up) and -mer (Greek: méros part). The expression ‘meaningful’ is
used to emphasize that such a skeleton can be selected according to the aim of discussions
at issue. There are several cases which require two or more related skeletons to categorize
isomers.

Exercise 2.3.
– Examine isoskeletomeric relationships of molecules having the molecular formula

C6H4Br2, where a benzene skeleton, a prismane skeleton, and a Dewar-benzene skele-
ton are selected as skeletons described in Def. 2.10

– Compare the sets of isoskeletomers with the set of Fig. 1.1 by focusing attention on
equivalence classes. Show that the relationship between these sets obey the constitu-
tional isomerism defined by Def. 2.9.

– Confirm stereoisomeric relationships by applying Def. 2.5. Show that the relationship
between the resulting sets obey the constitutional isomerism defined by Def. 2.9. For
enumeration of prismane derivatives, see [6,7].

– Finally, discuss the misleading features of Fig. 1.12 (page 17).

To differentiate equivalence classes of isoskeletomers, the term skeletally-anisomeric
is adopted to emphasize the inequivalence under Def. 2.10:

Definition 2.11 (Skeletally-anisomeric relationship). The term skeletally-anisomeric relationship is
defined as a relationship between two equivalence classes of isoskeletomers, which are inequiva-
lent under an isoskeletomeric relationship (Def. 2.10).

A skeletally-anisomeric relationship is an inequivalent relationship.
The isomers listed in Fig. 2.2 (with the molecular formula C3H8O) generates an equiv-

alence class shown in Eq. 2.7 under an isomeric relationship (Def. 2.6). After we select
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skeletons to be 3D structures corresponding to CH3CH2CH3 and CH3CH2OCH3, we apply
an isoskeletomeric relationship (Def. 2.10) to the set represented by Eq. 2.7. Thereby the
set is divided to give the following partition:

⎧

⎩{2-4 2-5} {2-6}
⎫

⎭ , (2.12)

where a pair of braces represents an equivalence class of isoskeletomers under an isoskele-
tomeric relationship represented by Def. 2.10. The resulting two equivalence classes of
isoskeletomers, {2-4 2-5} and {2-6}, are determined to be skeletally-anisomeric according
to Def. 2.11.

Successive applications of a stereoisomeric relationship (Def. 2.5) and an enantiomeric
relationship (Def. 2.3) convert Eq. 2.12 into the following partition (cf. Eq. 2.9 and Eq.
2.10):

⎧

⎩{〈[2-4]〉 〈[2-5]〉} {〈[2-6]〉}
⎫

⎭ , (2.13)

which is depicted in Fig. 2.2(a).
If we select 2D-based skeletons in place of the 3D-base skeletons of Def. 2.10, the set

of graphs represented by Eq. 2.11 can be divided into the following set:
⎧

⎩

{

2-4g 2-5g
} {

2-6g
}

⎫

⎭ , (2.14)

which is a 2D-based expression for representing ‘positional isomers’ of the conventional
terminology. Note that Eq. 2.14 of 2D basis corresponds to Eq. 2.12 of 3D basis.

Thus, the 3D-structural formula to be examined may be a graph (a 2D-structural for-
mula) or other formulas (e.g., a rational formula), if the examination has a specific pur-
pose. The 15CI Index Guide, 2004 of Chemical Abstracts [8, Appendix IV-B] collects such
skeletons under the name molecular skeletons, e.g., methane, 3,6,9,12-tetraoxatetradecane,
benzene, pyrrolidine, 9H-fluorene, and bicyclo[2.2.1]hept-2-ene.

Exercise 2.4.
– Examine isoskeletomeric relationships of butanols having the molecular formula

C4H10O (Fig. 1.5 on page 7), where a butane skeleton and a 2-methylpropane skeleton
are selected as skeletons described in Def. 2.10.

– Compare this result of 3D basis with the result due to the traditional term ‘positional
isomers’ of 2D basis.

– Confirm stereoisomeric relationships by applying Def. 2.5.

The traditional methodology without isoskeletomeric relationships is examined by the
following exercise. The comparison between Exercise 2.4 and Exercise 2.5 will clarify the
effect of such an intermediate isoskeletomeric relationship.
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Exercise 2.5.
– Examine the same problem of Exercise 2.4 without considering the skeletons described

above. Thus, enumerate isomers of C4H10O directly.
– Confirm stereoisomeric relationships by applying Def. 2.5. See Eq. 2.3.

2.1.5 Constitutionally-Anisomeric Relationships vs.
Constitutionally-Isomeric Relationships

It is worthwhile to compare the term constitutionally-anisomeric of 3D basis (Def. 2.8) with
the term constitutionally-isomeric of 2D basis (Def. 2.9) by using illustrative examples.

Let us examine dichloroethylenes with the molecular formula C2H2Cl2 (Fig. 2.3) by
selecting an ethylene skeleton. According to Def. 2.10, the set of isoskeletomers:

{2-7 2-8 2-9} (2.15)

is obtained as an equivalence class. Then, Def. 2.5 is applied to the set of isoskeletomers (Eq.
2.15). Thereby, the set is subdivided into two sets, i.e., a two-membered set of stereoisomers
〈2-7 2-8〉 and a one-membered set 〈2-9〉, each of which is an equivalence class, because it
has an identical graph (an identical constitution):

{〈2-7 2-8〉 〈2-9〉} . (2.16)

The relationship between 2-7 and 2-8 in the equivalence class 〈2-7,2-8〉 is determined to be
stereoisomeric, more specifically, cis/trans-isomeric or ‘diastereomeric’.
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Fig. 2.3. Isoskeletomers of dichloroethylene. They are subdivided into two sets of stereoisomers.
A pair of square brackets contains a pair of (self)-enantiomers, a pair of angle brackets contains
an equivalence class of stereoisomers, a pair of braces contains an equivalence class of isoskele-
tomers, and a pair of bold parentheses contains an equivalence class of isomers.

From a 3D-based viewpoint, Eq. 2.16 of 3D basis indicates that the set 〈2-7 2-8〉
and the set 〈2-9〉 are inequivalent to each other under the stereoisomeric raltionship de-
fined by Def. 2.5. In other words, the two sets as equivalence classes of stereoisomers are
constitutionally-anisomeric to each other according to Def. 2.8.
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In contrast, from a 2D-based viewpoint, the set 〈2-7 2-8〉 degenerates into a single
graph 2-7g, which corresponds to a constitution represented by C(HCl)=CHCl). Hence, Fig.
2.3 is reparesented by the following 2D-based set:

{

2-7g 2-9g
}

, (2.17)

which is regarded as a set of constitutional isomers according to Def. 2.9. The two graphs
2-7g and 2-9g are constitutionally-isomeric, where the term constitutionally-isomeric is a
2D-based concept. Note that Eq. 2.16 of 3D basis corresponds to Eq. 2.17 of 2D basis in a
one-to-one fashion.

Exercise 2.6.
– Examine isoskeletomeric relationships of molecules having the molecular formula

C4H8, where butene skeletons, a cyclopropane skeleton, and a cyclobutane skeleton
are selected as skeletons described in Def. 2.10.

– Compare the sets of isoskeletomers by focusing attention on equivalence classes. Apply
a skeletally-anisomeric relationship defined by Def. 2.11.

– Confirm stereoisomeric relationships by applying Def. 2.5. Apply Def. 2.8 and discuss
constitutionally-anisomeric relationships.

– Discuss constitutional isomerism as a 2D-based concept (Def. 2.9).
– Discuss the misleading features of Fig. 1.12 (page 17).

2.2 Revised Flowchart for Categorizing Isomers

2.2.1 Design of a Revised Flowchart for Categorizing Isomers

As discussed in Chapter 1, such wide-spread flowcharts as Fig. 1.12 (page 17) and Fig. 1.13
(page 18) more or less suffer from the arbitrary switching between 2D-based and 3D-based
concepts (cf. Subsection 1.1.3 and Remark 1.2 on page 19). To avoid the mixing of 2D- and
3D-based concepts, a flowchart to be designed should be throughout based on 3D-based
concepts, because all molecular entities have 3D structures.

A revised flowchart for categorizing isomers and stereoisomers (Fig. 2.4) is obtained
by emphasizing the following items [9]:
– the explicit consideration to equivalence relationships, which generate equivalence

classes.
– the intermediacy of an isoskeletomeric relationship as an equivalence relationship,

which generates a set of isoskeletomers as an equivalence class.

The respective judgements of the revised flowchart (Fig. 2.4) adopt equivalence re-
lationships defined in the preceding section, i.e., an isomeric relationship (Def. 2.6), an
isoskeletomeric relationship (Def. 2.10), a stereoisomeric relationship (Def. 2.5), and an



2.2 Revised Flowchart for Categorizing Isomers 47

isomeric
relationship

Def. 2.6

⎧

⎩isomers
⎫

⎭

isoskeletomeric
relationship

Def. 2.10

{isoskeletomers}

stereoisomeric
relationship

Def. 2.5

〈stereoisomers〉

enantiomeric
relationship

Def. 2.3

[pairs of (self-)enantiomers]

⎧

⎩

2-10
2-10 2-11 2-12 2-13

2-13
2-14
2-14 2-15 2-16

⎫

⎭

(where the relationship between two sets of isomers is referred to as being
anisomeric or more simply different)

⎧

⎩

{ 2-10
2-10 2-11 2-12 2-13

2-13

} { 2-14
2-14 2-15

}

{ 2-16 }
⎫

⎭

(where the relationship between two pairs of braces is referred to as being
skeletally-anisomeric. See Def. 2.11)

⎧

⎩

{〈 2-10
2-10 2-11

〉

〈 2-12〉
〈 2-13

2-13

〉} { 〈 2-14
2-14 2-15

〉 }

{ 〈 2-16 〉 }
⎫

⎭

(where the relationship between two pairs of angles is referred to as being
constitutionally-anisomeric. See Def. 2.8)

⎧

⎩

{〈[2-10
2-10

]

[2-11 ]
〉

〈[2-12 ]〉
〈[2-13

2-13

]〉} { 〈[2-14
2-14

]

[2-15 ]
〉 }

{ 〈 [2-16 ] 〉 }
⎫

⎭

(where the relationship between two pairs of brackets is referred to as being
diastereomeric. See Def. 2.7)

Fig. 2.4. Flowchart for classifying various kinds of isomers on the basis of equivalence classes.
A pair of bold parentheses represents isomers as an equivalence class under an isomeric rela-
tionship (Def. 2.6). A pair of braces represents isoskeletomers as an equivalence class under an
isoskeletomeric relationship (Def. 2.10), a pair of angle brackets represents stereoisomers as an
equivalence class under a stereoisomeric relationship (Def. 2.5), and a pair of square brackets
represents (self-)enantiomers as an equivalence class under an enantiomeric relationship (Def.
2.3).

enantiomeric relationship (Def. 2.3) in a successive fashion. The resulting equivalence
classes in each level are differentiated by an inequivalence relationship, i.e., an anisomeric
relationship, a skeletally-anisomeric relationship (Def. 2.11), a constitutionally-anisomeric
relationship (Def. 2.8), or a diastereomeric relationship (Def. 2.7).

It should be noted that all of the terms adopted in Fig. 2.4 are 3D-based concepts.
Such 2D-based terms as ‘constitutionally-isomeric’ (Def. 2.9) and ‘positionally isomeric’
(C-Def. P1 in Subsection 1.2.3) are not adopted in Fig. 2.4. Thus, the term ‘constitutionally-
isomeric’ of 2D basis is related to the term constitutionally-anisomeric of 3D basis and the
term ‘positionally isomeric’ of 2D basis is related to the term skeletally-anisomeric of 3D
basis.
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2.2.2 Illustrative Examples

Let us examine the effects of the flowchart of Fig. 2.4 by using the set of cyclic ethers col-
lected in Fig. 2.5. Successive subdivisions produced by applying the respective equivalence
relationships to the set shown in Fig. 2.5 are illustrated in the right column of Fig. 2.4.
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Fig. 2.5. Cyclic ethers with the molecular formula C4H8O. A pair of square brackets contains a
pair of (self)-enantiomers, a pair of angle brackets contains an equivalence class of stereoiso-
mers, and a pair of braces contains an equivalence class of isoskeletomers.

The cyclic ethers 2-10–2-16 have the same molecular formula C4H8O. It follows that
they are isomeric by applying Def. 2.6, so as to generate an equivalence class as surrounded
by a pair of bold parentheses

⎧

⎩· · ·
⎫

⎭. Each pair of isomers selected from the set of isomers
as an equivalence class is referred to as being isomeric. The relationship between the set
of isomers having C4H8O and another set of isomers having the other molecular formula is
referred to being anisomeric or simply being different to each other.

An isoskeletomeric relationship (Def. 2.10) is applied to the set of isomers having the
same molecular formula C4H8O, where an oxirane skeleton, an oxetane skeleton, and a
tetrahydrofuran skeleton are successively selected as skeletons for Def. 2.10. Thereby, the
set of isomers is subdivided into sets of isoskeletomers, each set of which is surrounded by
a pair of braces {· · ·}. That is to say, a set of oxiranes {2-10, 2-10, 2-11, 2-12, 2-13, and
2-13}, a set of oxetanes {2-14, 2-14, and 2-15}, and a one-membered set of tetrahydrofuran
{2-16} are equivalence classes under Def. 2.10.

Two molecules selected from each set (e.g., 2-10 and 2-11 from the set of oxiranes) is
referred to as being isoskeletomeric. The relationship between a set surrounded by a pair of
braces (e.g., the set of oxiranes) and another set surrounded by a pair of braces (e.g., the set
of oxetanes) are referred to as being skeletally-anisomeric.

A stereoisomeric relationship (Def. 2.5) is applied to each of the resulting sets of
isoskeletomers. Thereby each set surrounded by a pair of braces is subdivided into sets
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of stereoisomers, each set of which is surrounded by a pair of angle brackets 〈· · · 〉. For
example, the set represented by

〈

2-10 2-10 2-11
〉

is an equivalence class of stereoisomers.
Two molecules selected from each set (e.g., 2-10 and 2-11) is referred to as being

stereoisomeric. The relationship between a set surrounded by a pair of angle brackets (e.g.,
〈

2-10 2-10 2-11
〉

) and another set surrounded by a pair of angle brackets (e.g., 〈2-12〉) is
referred to as being constitutionally-anisomeric.

An enantiomeric relationship (Def. 2.3) is applied to each of the resulting sets of
stereoisomers. Thereby each set surrounded by a pair of angle brackets is subdivided into
sets of (self-)enantiomers, each set of which is surrounded by a pair of square brackets [· · · ].
Two molecules selected from each set is referred to as being enantiomeric (e.g., 2-10 and
2-10 from the set

[

2-10 2-10
]

). If the set is one-membered (e.g., [2-11]), it is referred to as
being self-enantiomeric (or achiral). The relationship between a set surrounded by a pair of
square brackets (e.g.,

[

2-10 2-10
]

) and another set surrounded by a pair of square brackets
(e.g., [2-11]) is referred to as being diastereomeric, even if these sets are chiral or achiral.

The resulting categories are illustrated in Fig. 2.5, where a pair of square brackets [· · · ]
contains a pair of (self)-enantiomers, a pair of angle brackets 〈· · · 〉 contains an equivalence
class of stereoisomers, and a pair of braces {· · ·} contains an equivalence class of isoskele-
tomers.

Exercise 2.7. Consider acyclic compounds of the molecular formula C4H8O: a ketone
(CH3CH2COCH3), an aldehyde (CH3CH2CH2CHO), and alcohols (CH2=CHCH(OH)CH3,
CH3CH=CHCH2OH, and CH3CH=CHCH2OH). After they are added to the set of molecule
collected in Fig. 2.5, categorize the resulting set of isomers in accord with the flowchart of
Fig. 2.4.

2.2.3 Restriction of the Domain of Isomerism

The domain of isomerism to be examined by the flowchart of Fig. 2.4 can be restricted
appropriately according to the target of our discussions. For example, Exercise 2.7 indicates
that we are able to discuss cyclic ethers shown in Fig. 2.5 without considering isomeric
acyclic compounds.

As an extreme case, the set of oxiranes may be beforehand selected as a starting set:

{

2-10 2-10 2-11 2-12 2-13 2-13
}

. (2.18)

Thereby, the judgement due to the isoskeletomeric relationship is implicitly accomplished
beforehand.

Moreover, the judgement of a stereoisomeric relationship (Def. 2.5) can be omitted
if we aim at discussing geometric attributes of stereochemistry. For example, the direct
application of an enantiomeric relationship (Def. 2.3) to the set represented by Eq. 2.18
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results in the following subdivision:

{[

2-10 2-10
]

[2-11] [2-12]
[

2-13 2-13
]}

, (2.19)

where each two-membered equivalence class indicates a pair of enantiomers and each one-
membered equivalence class indicates an achiral molecule. As a result, the set of Eq. 2.18
contains four (self-)enantiomers, which are categorized into two enantiomeric pairs and two
achiral molecules. In other words, the geometric attributes (in particular, the number of
(self-)enantiomers) have been specified by Eq. 2.19 without considering stereoisomerism.

The process from Eq. 2.18 to Eq. 2.19 provides us with a manual solution of the fol-
lowing enumeration problem:

Exercise 2.8. Consider an oxirane skeleton substituted by alkyl ligands (CH3 and
CH3CH2). How many are there chiral or achiral oxirane derivatives of the molecular for-
mula C4H8O?

2.2.4 Harmonization of 3D-Based Concepts with 2D-Based Concepts

It is worthwhile to mention again that the 2D-based term ‘constitutionally-isomeric’ (Def.
2.9) corresponds to the 3D-based term constitutionally-anisomeric (Def. 2.8), which is cor-
related to the 3D-based term stereoisomeric (Def. 2.5). See Subsection 2.1.5. A 3D-based
set of equivalence classes which are inequivalent under the stereoisomeric relationship (Def.
2.5) corresponds to a set of 2D-based set of ‘constitutional isomers’, where each equivalence
class of stereoisomers (a 3D-basis concept) corresponds to each ‘constitutional isomer’ (a
2D-based concept) in a one-to-one fashion. The flowchart of Fig. 2.4 is throughout based
on the terms of 3D basis, so that it provides us with the following merits for harmonizing
3D-based concepts with 2D-based concepts:
– The duality of the conventional definition of the term ‘isomeric’ (Table 1.1) and the

misleading features of Fig. 1.12(a) and (b) (cf. Remark 1.2) are avoided rationally.
– The arbitrary switching between 2D-based and 3D-based concepts, which is inherent

to the flowchart of Fig. 1.13 (cf. Remark 1.2), is rationally avoided by the flowchart of
Fig. 2.4.

It is convenient to give an appropriate name to a set of equivalence classes of molecules
which are inequivalent under an equivalence relationship. This is because the number of
such inequivalent orbits of molecules, i.e., the size of such a set, is a target of combinatorial
enumeration.
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Rule 2.2 (Terminology on Isomers).
– A set of steric isomers4 is defined as a set of molecules inequivalent under a homomeric

relationship (due to proper rotations belonging to a chiral point group). For example,
each molecule contained in the set represented by Eq. 2.18 has a molecular formula
C4H8O and constructs a one-membered equivalence class under the chiral point group
C2. The six molecules are inequivalent to each other under the chiral point group C2,
so that they are regarded as steric isomers. Then we are permitted to say that there
are six steric isomers.

– A set of 3D-structural isomers is defined as a set of equivalence classes which are
inequivalent under an enantiomeric relationship (an achiral point group). For example,
the molecules with C4H8O in Eq. 2.18 are divided into four pairs of (self-)enantiomers
as equivalence classes (Eq. 2.19). The four pairs of (self-)enantiomers are inequivalent
to each other under an enantiomeric relationship (an achiral point group C2v). They are
regarded as 3D-structural isomers. Then we are permitted to say that there are four
3D-structural isomers.

– A set of constitutional isomers is defined as a set of equivalence classes which
are inequivalent under a stereoisomeric relationship (cf. Def. 2.9).5 For example, the
molecules with C4H8O in Eq. 2.18 are divided in three sets of stereoisomers:

{〈

2-10 2-10 2-11
〉 〈2-12〉 〈2-13 2-13

〉}

(2.20)

under a stereoisomeric relationship. The three sets of stereoisomers (as equivalence
classes) are inequivalent to each other under a stereoisomeric relationship. They are
regarded as constitutional isomers. Then we are permitted to say that there are three
constitutional isomers.

A set of steric isomers, a set of 3D-structural isomers, or a set of constitutional isomers is
concerned with a set of equivalence classes of molecules which have 3D structures (not 2D
structures) and are inequivalent under each equivalence relationship (a homomeric relation-

4 In this book, the term steric isomers is used in place of the term configurational isomers. As defined
in [10, Rule E-1.4(b)], “molecules differing in configuration are termed configurational isomers”, where the
term configuration is concerned with enantiomeric relationships and diastereomeric relationships (containing
cis/trans-isomerism). In other words, the term configurational isomers is based on the preliminary determi-
nation of stereoisomers, while the term steric isomers (also the term 3D-structural isomers) is independent
of stereoisomers. Note that various definitions have been propounded to differentiate configurations from
conformations, as discussed in [10, Appendix 1]. On the other hand, the term steric isomer is adopted in this
book because of the proligand-promolecule model based on a rigid stereoskeleton, where conformational
isomerism is excluded rationally. This book emphasizes the term absolute configuration rather than the term
of a broader meaning containing cis/trans-isomers. In particular, three aspects of absolute configuration will
be introduced, where the chiral aspect of absolute configuration (or an enantiomeric relationship) is differen-
tiated from the RS-stereogenic aspect of absolute configuration (or an RS-diastereomeric relationship).
5 Although Def. 2.9 is a 2D-based definition, the present definition is a 3D-based definition. These two
definitions correspond to each other in a one-to-one fashion.
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ship, an enantiomeric relationship, or a stereoisomeric relationship). It follows that the same
set of isomers can be discussed from a viewpoint of steric isomers, 3D-structural isomers,
or constitutional isomers.
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3 Point-Group Symmetry

3.1 Stereoskeletons and the Proligand-Promolecule Model

3.1.1 Configuration and Conformation

In modern stereochemistry, the structure of a molecular entity is characterized successively
as follows:
1. As discussed in Chapter 2, a molecular entity is characterized first by its constitution

(Def. 2.4 on page 38), which specifies atoms and their connectivity in the form of a 2D
structure (a graph).

2. Then, the molecular entity is characterized to be a 3D structure by means of the term
stereoisomer. Such a 3D structure is characterized by the term configuration as a 3D-
based concept, which is used to designate the arrangements of atoms of a molecular
entity in 3D space without considering differences due to its conformation. The term
configuration is usually used in the form of absolute configuration or relative configu-
ration.

3. A rotation around a bond is characterized to be one of dynamic properties of the molec-
ular entity by the term conformation. Other dynamic properties such as inversion at
nitrogen and valence tautomerism are characterized in additional processes.

If we take account of conformation, the characterization of a molecular entity as a sin-
gle definite entity would be difficult, because such a molecular entity may have the infinite
number of conformers at most.1 It follows that our discussions of the first stage should be
restricted to the domain of thinking that avoids the influence of conformational changes.
Then, the influence of conformational changes will be taken into consideration during sub-
sequent stages of discussions. In other words, the steps 1 and 2 described above are the main
targets of this book and the step 3 will be later investigated in virtue of the results of the
precedent steps 1 and 2.

3.1.2 The Proligand-Promolecule Model

To discuss a molecular entity as a single definite entity having a 3D structure, we adopt the
proligand-promolecule model [1]. By starting from the term ligand, the term proligand is
defined as a more abstract term as follows:

Definition 3.1 (Proligand). A proligand is an abstract ligand which has chirality or achirality, but no
concrete 3D structure.

1 If a rotation around a single bond is energetically forbidden (e.g., a sterically-hindered biphenyl), such a
fixed molecular entity is considered to be a rigid skeleton.
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For the sake of convenience, achiral proligands are represented by uppercase letters (A, B,
X, Y, etc.), while pairs of proligands with opposite chirality senses are represented by pairs
of lowercase letters without and with an overbar (p/p, q/q, etc.).

Remark 3.1 (Ligands and Proligands). The term ligand defined by the IUPAC
Nomenclature of Inorganic Chemistry, Recommendations 1990 [2], i.e., “the atoms
or groups joined to the central atom in an inorganic coordination entity”, can be easily
extended to connote organic compounds, i.e., “the term ‘ligand’ is defined as atoms
or groups joined to a given skeleton, which may be an organic or inorganic entity”.
The term proligand is defined here on the basis of the extended term ligand. The word
‘group’ in the expression ‘atom or group’ would bring about confusion because of the
wide-spread term group of the group theory, although the expression is recommended
by the IUPAC Provisional Recommendations 2004 [3, Rule P-91.1.1].

The expression ‘a given skeleton’ in Remark 3.1 is redefined to give a more definite concept
by presuming the rigidity of a skeleton as follows:

Definition 3.2 (Stereoskeletons). A stereoskeleton (or shortly skeleton) is a rigid 3D entity with a
finite number of substitution positions.

The resulting stereoskeleton is characterized by a point group.2

The combination of Def. 3.1 with Def. 3.2 gives the following definition of pro-
molecules:

Definition 3.3 (Promolecule). A promolecule is a 3D molecular entity in which the substitution po-
sitions of a given stereoskeleton (Def. 3.2) are occupied by a set of proligands.

The resulting promolecule is a rigid entity, the symmetry of which can be characterized by
a subgroup of the point group of the stereoskeleton at issue.3

For example, let us examine achiral 2,3,4-trihydroxyglutaric acids, the 3D structures
of which are depicted in Fig. 3.1 in the form of Fischer-like projections, 3-1 and 3-2. We
focus our attention on the central carbon atom at the 3-position of each molecule, so that
a tetrahedral skeleton 3-5 and four ligands are extracted. Among the four ligands, chiral
ligands CH(OH)–COOH (labelled ‘R’) and C(OH)H–COOH (labelled ‘S’) are regarded as
proligands represented by the lowercase letters p and p, while achiral ligands OH and H are
regarded as proligands represented by uppercase letters A and B. Finally, these proligands

2 The rigidity of a skeleton is not a drawback in further discussions, because the flexibility of a skeleton can
be discussed by presuming interconversion among two or more rigid skeletons.
3 The prefix pro- of the terms proligand and promolecule is used in the sense ‘before’, because a proligand
is a precursor of a ligand and a promolecule is a precursor of a molecule [4, Chapter 21].
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Fig. 3.1. The proligand-promolecule model for 2,3,4-trihydroxygluraric acids.

are placed on the four positions of the tetrahedral skeleton 3-5 to give promolecules 3-3 and
3-4 according to Def. 3.3.

As found easily, the promolecule 3-3 (or 3-4) has a mirror plane containing a A—C—
B plane, so that it is concluded to be achiral. The achirality of the molecule 3-1 (or 3-2)
remains unchaged in the corresponding promolecule 3-3 (or 3-4). This result holds true in
general so as to give the following theorem of conservation of chirality/achirality:

Theorem 3.1 (Conservation of Chirality/Achirality). The chirality/achirality of a given molecule re-
mains unchaged in the corresponding promolecule.

On the other hand, the point-group symmetry of the promolecule 3-3 (or 3-4) is determined
to be Cs, which is a subgroup of Td of the tetrahedral skeleton 3-5. This property holds true
in general so as to give the following theorem:

Theorem 3.2. The point-group symmetry of a promolecule is a subgroup of the corresponding
skeleton from which the promolecule is derived.

On the same line, the point-group symmetry of a molecule is a subgroup of the correspond-
ing skeleton from which the promolecule is derived.

Exercise 3.1.
– Examine the promolecule corresponding to pentaerythritol C(CH2OH)4, which belongs

to the point group D2d .
– Confirm that this molecule is a mismatched molecule discussed below. See [4, Section

21.4].

It should be noted that the point-group symmetry (highest-attainable symmetry) of a
molecule is not always the same as that of the corresponding promolecule. Such an excep-
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tional case is called a mismatched molecule [4, Section 21.4]. Even in such an exceptional
case, Theorem 3.1 assures a geometric relationship between a molecule and the correspond-
ing promolecule.

3.2 Point Groups

3.2.1 Symmetry Axes and Symmetry Operations

The geometric symmetry of a molecular entity (molecule, promolecule, ligand, proligand, or
others) is characterized by a point group, which consists of symmetry operations (rotations
and/or reflections). Each of the operations converts the molecular entity into its homomer
(a supoerposable entity) or its enantiomer (a mirror-image entity), where at least one point
is fixed during the conversion.

Rotation Axes and Rotation Operations
One of representative symmetry operations is a rotation operation, which moves a molecular
entity by a given degree around an axis so as to give its homomeric molecular entity. The
term homomeric means that the original molecular entity and the rotated one are identical
with each other, where they are superimposable on each other with rotations and without
(roto)reflection operations.

For example, suppose that the tetrahedral skeleton 3-5 is rotated by 120◦ around the
C—1 bond (Fig. 3.2). This operation is called a three-fold rotation, which is designated by
an italic symbol C3(1). The C—1 bond is regarded as a three-fold (rotation) axis denoted by
a roman-type symbol C3(1). Thereby, the original skeleton 3-5 is converted into the corre-
sponding homomer 3-5′, as shown in Fig. 3.2.

C

1

32
4

C3(1)-axis

C3(1)

(1)(2 3 4)
rotation

C

1

43
2

3-5 3-5′

Fig. 3.2. Rotation around a C3(1)-axis along the C—1 bond. A numbered tetrahedral skeleton 3-5
is converted into its homomeric skeleton 3-5′ by a three-fold rotation operation C3(1).

The effect of the rotation C3(1) on the four positions of 3-5 is represented by a permu-
tation, which is interpreted to be a product of cycles as follows:

C3(1) ∼
(

1 2 3 4
1 3 4 2

)

= (1)(2 3 4), (3.1)
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where the symbol ∼ indicates the correspondence between a symmetry operation and a
permutation (a product of cycles). Note that the 1-position is fixed as denoted by a 1-cycle
(i.e., (1)), while the other three positions are transformed successively 2← 3← 4← 2 in a
cyclic manner, as denoted by a 3-cycle (i.e., (2 3 4)).

Mirror-Planes for Reflections and Rotoreflection Axes for Rotoreflections
A reflection is an operation which generates the mirror image of an original molecular entity.
If the original molecular entity is superposable on the mirror-image, it is concluded to be
achiral. Such an achiral molecular entity has a mirror plane, which contains fixed points
during the reflection at issue.

C

1

32
4

σd(1)-plane

σd(1)

(1)(2 4)(3)
reflection

C

1

34
2

3-5 3-5

Fig. 3.3. Reflection by a mirror plane for demonstrating chirality/achirality. A numbered tetrahedral
skeleton 3-5 is converted into a mirror-numbered skeleton 3-5 by a reflection operation concern-
ing a mirror plane.

To demonstrate chirality/achirality clearly, we introduce a mirror-numbered skeleton
(e.g., 3-5), which is obtained from a numbered skeleton (e.g., 3-5) by a reflection operation,
as illustrated in Fig. 3.3.

Definition 3.4 (Numbered Skeleton and Mirror-Numbered Skeletons). Suppose that a given skele-
ton has n substitution positions, which are numbered sequentially from 1 to n. A reflection operation
acts on the skeleton to give its mirror image, where each of the n positions is locally reflected in
accord with the global reflection of the skeleton. Such a local reflection is represented by a sequn-
tial number with an overbar, i.e., 1 to n. The resulting mirror immage is called a mirror-numbered
skeleton.

It should be emphasized that a reflection operation causes the formation of a global mirror
image as well as local mirror images.

For example, let examine a mirror plane which contains a plane of 1—C—3 (denoted
as σd(1) by shadowing) in the teterahedral skeleton 3-5. The reflection concerning the mirror
plane σd(1) converts 3-5 into the corresponding mirror image 3-5, as shown in Fig. 3.3.

According to Def. 3.4, the original teterahedral skeleton 3-5 with positions numbered
from 1 to 4 is convered into its mirror image 3-5 named a mirror-numbered skeleton, which
represents the global reflection (i.e., the reflection of the original skeleton with respect to the
central carbon atom) as well as the local reflection (i.e., the reflection of each substitution
position attached by a number with an overbar (1–4)).
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Fig. 3.4. Rotoreflection around an S4(3)-axis which bisects the 1—C—3 angle. A numbered tetra-
hedral skeleton 3-5 is converted into its mirror-image skeleton 3-5′ by a four-fold rotoreflection
operation S4(3).

The effect of the reflection σd(1) on the four positions of 3-5 is represented by a permu-
tation, which is interpreted to be a product of cycles as follows:

σd(1) ∼
(

1 2 3 4
1 4 3 2

)

= (1)(2 4)(3). (3.2)

Note that the 1- or 3-position is fixed but its chirality sense is converted into the opposite
one, as denoted by a 1-cycle with an overbar (i.e., (1) or (3)). On the other hand, the 2-
and 4-positions are transformed successively 2 ← 4 ← 2 in a cyclic manner, where their
chirality senses are changed, as denoted by a 2-cycle with an overbar (i.e., (2 4)).

A rotoreflection is a combined operation of a rotation around an axis and a reflection
about a plane, where there appears the mirror image of an original molecular entity. If the
original molecular entity is superposable on the mirror image, it is concluded to be achiral.

For example, let examine an axis bisecting the angle of 1—C—3, which is denoted
by the symbol S4(3), as shown in the tetrahedral skeleton 3-5 of Fig. 3.4. The rotation by
90◦ around the S4(3)-axis and the successive reflection about the mirror plane perpendicular
to the S4(3)-axis is collectively called a four-fold rotoreflection, which is denoted by the
symbol S4(3). The action of S4(3) on the tetrahedral skeleton 3-5 results in the formation of

the corresponding mirror image 3-5′ with mirror-numbered positions.
The effect of the rotoreflection S4(3) on the four positions of 3-5 is represented by a

permutation, which is interpreted to be a product of cycles as follows:

σd(1) ∼
(

1 2 3 4
2 3 4 1

)

= (1 2 3 4). (3.3)

Note that the 1- to 4-positions are transformed successively 1← 2← 3← 4← 1 in a cyclic
manner, where their chirality senses are changed, as denoted by a 4-cycle with an overbar
(i.e., (1 2 3 4)).

In this book, the term reflection is used to refer collectively to both the terms reflec-
tion and rotoreflection for the sake of simplicity. The expression (roto)reflection is used if
necessary.



3.2 Point Groups 59

Remark 3.2 (Importance of Mirror-Numbered Skeletons). A mirror-numbered skele-
ton (Def. 3.4) is important to specify the effect of reflections. If the four positions of
a tetrahedral skeleton are controlled by the point group Td , such a mirror-numbered
skeleton is so essential as to be taken into consideration. On the other hand, if the
same four positions are controlled by the symmetric group of degree 4 (S[4]), such a
mirror-numbered skeleton is not taken into consideration, although S[4] is isomorphic
to Td . In this book, S[4] is regarded as being isomorphic to the RS-permutation group
Tσ̃ , the properties of which will be examined in Chapter 9.

3.2.2 Construction of Point Groups

A set of symmetry operations (rotations and (roto)reflections) can be generated by examin-
ing the symmetry elements (rotation axes, mirror planes, and rotoreflection axes).

For example, the tetrahedral skeleton 3-5 has symmetry elements shown in Fig. 3.5
(rotation axes, mirror planes, and rotoreflection axes).

y

x

z

C3(1)

C3(2)C3(3)

C3(4)

C2(3), S4(3)
σd(1),σd(6)

C2(2), S4(2)
σd(3),σd(5)

C2(1), S4(1)
σd(2),σd(4)

C
1

3

2
4

3-6(Td)

Fig. 3.5. Rotation axes and mirror planes in the tetrahedral skeleton of Td -symmetry [5].

1. The three-fold rotations C3(i) (i = 1,2,3,4) represents a clockwise rotation by 120◦

around the respective three-fold axes (i.e., C3(i) for i = 1,2,3,4) which run from the
center to the respective positions (numbered as i = 1,2,3,4). Among them, the C3(1)-
rotation is explained in Fig. 3.2.

2. A pair of mirror planes (σd(2)/σd(4), σd(3)/σd(5), or σd(1)/σd(6)) located at the x- y-,
or z-axis represents a perpendicular set of planes containing the respective axis. The
six mirror planes exhibit the following features: σd(2) (containing the 3-C-4 plane) and
σd(4) (containing the 1-C-2 plane) intersect each other perpendicularly at the x-axis;
σd(3) (containing the 2-C-3 plane) and σd(5) (containing the 1-C-4 plane) intersect each
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other perpendicularly at the y-axis; and σd(1) (containing the 2-C-4 plane) and σd(6)

(containing the 1-C-3 plane) intersect each other perpendicularly at the z-axis. Among
them, the σd(1)-plane has been explained in Fig. 3.3

3. The three two-fold axes (C2(1), C2(2), and C2(3)) and the three four-fold rotoreflection
axes (S4(1), S4(2), and S4(3)) run through x-, y-, and z-coordinate axes, respectively.
Among them, the S4(3)-axis has been explained in Fig. 3.4.

These symmetry elements (Fig. 3.5) are accompanied by respective symmetry oper-
ations, so that there appear 12 rotations and 12 (roto)reflections. The total 24 symmetry
operations construct the point group Td for characterizing the tetrahedral skeleton 3-5.4

The operations of the point group Td are collected in Table 3.1. The multiplication table of
the point group Td has once been reported [5, Table 2.2].

In similar ways to Eqs. 3.1–3.3, a set of permutations of degree 4 corresponding to
respective operations are obtained diagrammatically. The resulting product of cycles is col-
lected in the Td(/C3v)-column of Table 3.1. The set of permutations is alternatively obtained
by calculating the coset representation Td(/C3v) algebraically [4]. See Subsection 3.2.5.

3.2.3 Subgroups of a Point Group

A subset of a point group may construct a group, which is called a subgroup [4, Chapters 3
and 4]. Among such subgroups, a set of conjugate subgroups is collectively represented by
a representative subgroup selected appropriately from the set. For example, the point group
Td is characterized by a set of eleven subgroups up to conjugacy:

C1 = {I} (3.4)

C2 = {I,C2(1)} (3.5)

Cs = {I,σd(1)} (3.6)

C3 = {I,C3(1),C
2
3(1)} (3.7)

S4 = {I,S4(1),C2(1),S
3
4(1)} (3.8)

D2 = {I,C2(1),C2(2),C2(3)} (3.9)

C2v = {I,C2(3),σd(1),σd(6)} (3.10)

C3v = {I,C3(1),C
2
3(1),σd(1),σd(2),σd(3)} (3.11)

D2d = {I,C2(1),C2(2),C2(3),σd(1),σd(2),S4(3),S
3
4(3)} (3.12)

T = {I,C2(1),C2(2),C2(3),

4 In this book, each symmetry element is represented by an upshape capital letter (e.g., C3) or a Greek letter
(e.g., σv); each symmetry operation is represented by a italicized capital letter (e.g., C3) or a Greek letter
(e.g., σv); and each point group is represented by a bold-faced italicized capital letter (e.g., C3), which is
based on the Schönflies symbol.
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Table 3.1. Operations of Td and Coset Representation Td(/C3v)

reference operation Td(/C3v) PSI (product of cycle
number* g ∈ Td (product of cycles) sphericity indices) term

A
B

1 I (1)(2)(3)(4) b4
1 s4

1

2 C2(1) (1 2)(3 4) b2
2 s2

2
3 C2(2) (1 4)(2 3) b2

2 s2
2

4 C2(3) (1 3)(2 4) b2
2 s2

2

5 C3(1) (1)(2 3 4) b1b3 s1s3

6 C3(3) (1 2 4)(3) b1b3 s1s3

7 C3(2) (1 4 3)(2) b1b3 s1s3

8 C3(4) (1 3 2)(4) b1b3 s1s3

9 C2
3(1) (1)(2 4 3) b1b3 s1s3

10 C2
3(4) (1 2 3)(4) b1b3 s1s3

11 C2
3(3) (1 4 2)(3) b1b3 s1s3

12 C2
3(2) (1 3 4)(2) b1b3 s1s3

13 σd(1) (1)(2 4)(3) a2
1c2 s2

1s2

16 σd(6) (1 3)(2)(4) a2
1c2 s2

1s2

17 σd(2) (1)(2)(3 4) a2
1c2 s2

1s2

18 σd(4) (1 2)(3)(4) a2
1c2 s2

1s2

21 σd(3) (1)(2 3)(4) a2
1c2 s2

1s2

23 σd(5) (1 4)(2)(3) a2
1c2 s2

1s2

14 S4(3) (1 2 3 4) c4 s4

15 S3
4(3) (1 4 3 2) c4 s4

19 S4(1) (1 4 2 3) c4 s4

20 S3
4(1) (1 3 2 4) c4 s4

22 S3
4(2) (1 2 4 3) c4 s4

24 S4(2) (1 3 4 2) c4 s4

* The reference number corresponds to that of the multiplication table
of Td reported in [5, Table 2.2].

C3(1),C
2
3(1),C3(2),C

2
3(2),C3(3),C

2
3(3),C3(4),C

2
3(4)} (3.13)

Td = {A,B}, (cf. Table 3.1) (3.14)

where a representative subgroup is selected from a set of conjugate subgroups. For example,
the subgroup C3v is a representative of the following conjugate subgroups:

C3v(1) = {I,C3(1),C
2
3(1),σd(1),σd(2),σd(3)}= C3v (3.15)

C3v(2) = {I,C3(2),C
2
3(2),σd(2),σd(5),σd(6)} (3.16)
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C3v(3) = {I,C3(3),C
2
3(3),σd(1),σd(4),σd(5)} (3.17)

C3v(4) = {I,C3(4),C
2
3(4),σd(3),σd(4),σd(6)}. (3.18)

Such non-redundant subgroups as Eqs. 3.4–3.14 are aligned in an ascending order of their
orders to give the following set:

SSGTd = {C1,C2,Cs,C3,S4,D2,C2v,C3v,D2d ,T,Td}, (3.19)

which is called a non-redundant set of subgroups (SSG) for the point group Td .
In general, a non-redundant set of subgroups (SSG) for a given point group G is ob-

tained as follows:

SSGG = {G1(= C1), G2, . . . , Gi, . . . , Gs(= G)}, (3.20)

where the symbol Gi denotes a representative of conjugate subgroups under the action of G
[4, Chapter 2]. For the detailed discussion, see the next chapter.

3.2.4 Maximum Chiral Subgroup of a Point Group

An achiral point group GY is divided into a set GC of rotations and another set of
(roto)reflections. The set GC of rotations is a subgroup of the original point group GY ,
where |GC| = |GY |/2. The GC is called the maximum chiral subgroup of the point group
GY . Then, the point group GY is decomposed into two cosets as follows:

GY = GC +GCσ , (3.21)

where the operation σ is selected appropriately from the set of (roto)reflections. Then, all
of the (roto)reflections are contained in the coset GCσ .

Let us select an element g from GC (g ∈GC). Then, we obtain GCg = GC. This means
that the coset GC (= GCI) is fixed under the action of g ∈ GC. On the other hand, σg is
a (roto)reflection, i.e., σg ∈ GCσ . This means that GCσg = GCσ . The coset GCσ is fixed
under the action of g ∈GC.

Chemically speaking, a given molecular entity A as a reference corresponds to the
coset GC (= GCI), while its enantiomeric entity A corresponds to the other coset GCσ .
The number |GC| of entities corresponding to the coset GC are homomeric to the reference
molecule A under the action of GC. The number |GC| of entities corresponding to the coset
GCσ are homomeric to the reference molecule A under the action of GC.

This holds true for a numbered skeleton and the corresponding mirror-numbered skele-
ton.

Theorem 3.3 (Homomeric Relationship under Point Groups). Suppose that a given numbered
skeleton belongs to an achiral point group. Then the numbered skeleton is fixed (or converted
into a homomer) under the action of the maximum chiral point group. The corresponding mirror-
numbered skeleton (Def. 3.4) is also fixed (or converted into a homomer) under the action of the
maximum chiral point group.
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This theorem gives the mathematical foundation of the term homomeric.
For example, the point group Td (order: |Td | = 24) has the maximum chiral subgroup

T (order: |T| = 12), which is contained in the upper part of Table 3.1, as designated by a
large gray letter A. Thereby, the following coset decomposition is obtained:

Td = T+Tσd(1), (3.22)

where the second coset corresponds to the lower part of Table 3.1, as designated by a large
gray letter B.

Exercise 3.2. Confirm Theorem 3.3 by using the data of Table 3.1. See Fig. 3.2 and Eq.
3.1 for the application of the operation C3(1).

3.2.5 Global and Local Point-Group Symmetries

Diagrammatic Meaning of Orbits
The tetrahedral skeleton 3-5 belongs to the point group Td , which is called the global point-
group symmetry of 3-5. Some pieces of information on orbits of 3-5 are shown in the dia-
grams 3-7 and 3-8 of Fig. 3.6.

Let us focus our attention on the 1-position of 3-5, which is fixed under the subgroup
C3v represented by Eq. 3.11. Mathematically speaking, the subgroup C3v(1) is the stabi-
lizer of the 1-position, where the symbol (1) in the subscript 3v(1) indicates the 1-position.
Chemically speaking, on the other hand, the subgroup C3v(1) is referred to as the local point-
group symmetry of the 1-position of 3-5. The right diagram 3-8 shown in Fig. 3.6 is the top
view of 3-5 through the 1—C bond, which is the C3(1)-axis of the stabilizer C3v(1).

There are four conjugate subgroups with respect to C3v (Eq. 3.11), as shown in Eqs.
3.15–3.18. The subgroup C3v(1) (= C3v) of Eq. 3.15 fixes the 1-position, as shown in the top
view 3-8. Similarly, the subgroup C3v(2) of Eq. 3.16 fixes the 2-position, the subgroup C3v(3)

of Eq. 3.17 fixes the 3-position, and the subgroup C3v(4) of Eq. 3.18 fixes the 4-position. The
conjugacy of these four subgroups assures that the four positions are equivalent under the
global point-group symmetry Td . In other words, the four positions construct an equivalence
class (orbit) as shown in Fig. 3.6,5 where the local point-group symmetries C3v(i) (i = 1–4)
are expressed collectively by the representative subgroup C3v contained in the SSG of the
global point-group symmetry Td (Eq. 3.19).

The four-membered orbit surrounded by a gray double circle in 3-7 is designated by the
symbol Td(/C3v), which has been coined by combining the global point-group symmetry
(Td) and the representative local point-group symmetry C3v [6]. The algebraic meaning of

5 In this book, an equivalence class of positions or proligands in a molecular entity is called an orbit for the
sake of simplicity.
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Fig. 3.6. Local point-group symmetries and orbits for a tetrahedral skeleton (left). The subgroups
C3v(i) (i = 1–4) are the local point-group symmetries of the i-positions, where they are conjugate to
one another. The top view (right) through the 1—C bond (the C3(1)-axis) indicates the local point-
group symmetry C3v(1) of the 1-position. The four positions 1–4 construct an orbit governed by the
coset representation Td(/C3v).

the symbol Td(/C3v) will be later discussed in detail. The number of positions (the size of
the orbit) is calculated to be |Td |/|C3v|= 24/6 = 4.

The central carbon of 3-7 constructs a one-membered orbit governed by the coset rep-
resentation Td(/Td), where the size of the orbit is calculated |Td |/|Td |= 24/24 = 1.

As found in Fig. 3.6, an orbit of substitution positions can be characterized diagram-
matically by the combination of a global point-group symmetry and a local point-group
symmetry. This procedure is summatized as a theorem:

Theorem 3.4 (Orbits Due to Global and Local Point-Group Symmetries). The global point-group
symmetry G of a molecular entity and the local point-group symmetry Gi (⊆G) of a position in the
molecular entity indicate the presence of an orbit of equivalent positions, which is expressed by the
symbol G(/Gi). The size of the orbit is calculated to be |G|/|Gi|.

Algebraic Meaning of Orbits
According to the Chapter 5 of [4], the coset decomposition (strictly the right coset decom-
position) of Td by its subgroup C3v is obtained as follows:6

Td = C3v
1

+C3vC2(1)
2

+C3vC2(3)
3

+C3vC2(2)
4

, (3.23)

where the sequential numbers attached to the respective cosets correspond to the positions
of a tetrahedral skeleton 3-6 shown in Fig. 3.5. The stabilizers of the respective cosets are
calculated to be I−1C3vI = C3v = C3v(1), C−1

2(1)C3vC2(1) = C3v(2), C−1
2(3)C3vC2(3) = C3v(3),

6 For the purpose of using the multiplication table of Td reported in [5, Table 2.2], the right coset
decomposition is used here, where the symbol Td(/C3v) is used to designate the coset representation
based on the right coset decompostion. Note that Eq. 3.23 is equivalent to the left coset decomposition:
Td = C3v

1
+C−1

2(1)C3v
2

+C−1
2(3)C3v

3

+C−1
2(2)C3v

4

, where C−1
2(1) etc. represent the inverse element of C2(1) etc.
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and C−1
2(2)C3vC2(2) = C3v(4), which fix the respective positions of 3-6, as confirmed diagram-

matically (cf. Eqs. 3.15–3.18).
The cosets appearing in the right-hand side of Eq. 3.23 are gathered to give a set of

cosets denoted by the symbol Td/C3v as follows:

Td/C3v = { C3v
1

{

1 5 9
13 17 21

}

, C3vC2(1)
2

{

2 6 10
14 18 22

}

, C3vC2(3)
3

{

4 8 12
16 20 24

}

, C3vC2(2)
4

{

3 7 11
15 19 23

}

}, (3.24)

where a pair of braces below each coset represents operations contained in the coset by
using the reference numbers listed in the leftmost column of Table 3.1.

The action of the operation C3(1) from the right-hand side of each coset contained in
Eq. 3.24 results in the set Td/C3v into a permuted one:

Td/C3v|C3(1)
= { C3v

1
{

5 9 1
17 21 13

}

, C3vC2(3)
3

{

8 12 4
20 24 16

}

, C3vC2(2)
4

{

7 11 3
19 23 15

}

, C3vC2(1)
2

{

6 10 2
18 22 14

}

}. (3.25)

The operations of each coset is concurrently permuted as found in the a pair of braces
below the coset. The representative of each coset is converted into a permuted one, i.e.,
C3v = C3vC3(1) (C3(1): 5 ), C3vC2(3) = C3vC3(4) (C3(4): 8 ), C3vC2(2) = C3vC3(2) (C3(2): 7 ),
or C3vC2(1) = C3vC3(3) (C3(3): 6 ), where there appears no alternation of the chirality sense
of each position.

Exercise 3.3.
– Confirm the following multiplications:

I
1
C3(1)

5
= C3(1)

5
, C2(1)

2
C3(1)

5
= C3(4)

8
, C2(3)

4
C3(1)

5
= C3(2)

7
, C2(2)

3
C3(1)

5
= C3(3)

6
. (3.26)

For the multiplication table of Td , see [5, Table 2.2].
– Examine C3(1) ( 5 ), C3(4) ( 8 ), C3(2) ( 7 ), and C3(3) ( 6 ) by considering which cosets in

Eq. 3.24 contain them.
– Confirm C3v = C3vC3(1) (C3(1): 5 ), C3vC2(3) = C3vC3(4) (C3(4): 8 ), etc. to generate Eq.

3.25.

Because the three-fold rotation C3(1) brings about the conversion of the set Td/C3v into
the other set Td/C3v|C3(1)

, the following permutation is assigned to the operation C3(1):

C3(1) ∼
(

Td/C3v

Td/C3v|C3(1)

)

=

(

1 2 3 4
1 3 4 2

)

= (1)(2 3 4). (3.27)

This permutation is consistent with Eq. 3.1, which is obtained by a diagrammatic derivation
depicted in Fig. 3.2.
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On the other hand, the action of the reflection σd(1) from the right-hand side of each
coset contained in Eq. 3.24 results in the set Td/C3v into another permuted one:

Td/C3v|σd(1)
= { C3v

1
{

13 21 17
1 9 5

}

, C3vC2(2)
4

{

15 23 19
3 11 7

}

, C3vC2(3)
3

{

16 24 20
4 12 8

}

, C3vC2(1)
2

{

14 22 18
2 10 6

}

}, (3.28)

The operations of each coset is concurrently permuted as found in the a pair of braces below
the coset, where the upper row and the lower row are interchanged. The representative of
each coset is converted into a permuted one, i.e., C3v = C3vσd(1) (σd(1): 13 ), C3vC2(3) =
C3vS3

4(3) (S3
4(3): 15 ), C3vC2(2) = C3vσd(6) (σd(6): 16 ), or C3vC2(1) = C3vS4(3) (S4(3): 14 ),

where there occurs the alternation of the chirality sense of each position. This alternation is
emphasized by an overbar over the sequence number for each coset.

Exercise 3.4.
– Confirm the following multiplications:

I
1
σd(1)

13
= σd(1)

13
, C2(1)

2
σd(1)

13
= S3

4(3)
15

, C2(3)
4

σd(1)
13

= σd(6)
16

, C2(2)
3

σd(1)
13

= S4(3)
14

. (3.29)

For the multiplication table of Td , see [5, Table 2.2].
– Examine σd(1) ( 13 ), S3

4(3) ( 15 ), σd(6) ( 16 ), and S4(3) ( 14 ) by considering which
cosets in Eq. 3.24 contain them.

– Confirm C3v = C3vσd(1) (σd(1): 13 ), C3vC2(3) = C3vS3
4(3) (S3

4(3): 15 ), etc. to generate
Eq. 3.28.

Because the reflection σd(1) converts the set Td/C3v into the other set Td/C3v|σd(1)
, the

following permutation is assigned to the reflection σd(1):

σd(1) ∼
(

Td/C3v

Td/C3v|σd(1)

)

=

(

1 2 3 4
1 4 3 2

)

= (1)(2 4)(3), (3.30)

where an overbar over each number represents the alternation of the chirality sense of each
position. This permutation is consistent with Eq. 3.2, which is obtained by a diagrammatic
derivation depicted in Fig. 3.3.

The procedures illustrated in the derivation of Eqs. 3.27 and 3.30 are repeated to cover
all of the operations of Td . The resulting set of permutations is called a coset representa-
tion, which is denoted by the symbol Td(/C3v).7 The obtained permutations (products of
cycles) are identical with those listed in the Td(/C3v)-column of Table 3.1, which have been
alternatively obtained diagrammatically.

7 The term permutation representation is widely used in group theory. The present book adopts the term
coset representation to denote a transitive permutation representation and to emphasize the alternation of
ligand chirality sense.
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Exercise 3.5. Apply the procedures illustrated in the derivation of Eqs. 3.27 and 3.30 to
all of the operations of Td by referring to the multiplication table of Td [5, Table 2.2].

By comparing the present algebraic derivation with the diagrammatic one described
above, the coset representation Td(/C3v) reveals that the global symmetry Td and the local
symmetry C3v can be discussed by relying on the concept of an orbit (an equivalence class)
and the corresponding coset representation.

In general, a given group G and its subgroup Gi generates a coset representation
G(/Gi), which is used to characterize an orbit (equivalence class) of positions with the
local point-group symmetry Gi [4,7]. Thereby, we arrive at an algebraic formulation of
Theorem 3.4, which has been obtained diagrammatically.

According to the SSG shown in Eq. 3.20, the corresponding set of coset representations
(SCR) is obtained as follows:

SCRG = {G(/G1), G(/G2), . . . , G(/Gi), . . . , G(/Gs)}, (3.31)

where G1 = C1 (the identity group) and Gs = G. This SCR will be again discussed in detail
in Chapter 5 (Eq. 5.8 on page 116). For a more detailed discussion, see [4, Chapter 5].

3.3 Point-Group Symmetries of Stereoskeletons

3.3.1 Stereoskeletons of Ligancy 4

Stereoskeletons of ligancy 4 listed in Fig. 3.7 are important to discuss stereochemistry and
stereoisomerism. In particular, a tetrahedral skeleton 3-5 and an allene skeleton 3-9 are bases
for assigning R/S-stereodescriptors, while an ethylene skeleton 3-10 is a basis for assigning
Z/E-descriptors.

Coset Representations of Stereoskeletons of Ligancy 4
As discussed in the preceding section, a tetrahedral skeleton 3-5 belongs to the point group
Td (order 24). The four positions of 3-5 construct an equivalence class (orbit) governed by a
coset representation Td(/C3v), the degree of which is calculated to be |Td |/|C3v|= 24/6 =
4 [8]. See Table 3.1.8

An allene skeleton 3-9 belongs to the point group D2d (order 8), where each of the
four positions belongs to the local point-group symmetry Cs or its conjugate subgroup.
Hence, the four positions of 3-9 construct an equivalence class (orbit) governed by a coset
representation D2d(/Cs). The degree of D2d(/Cs) is calculated to be |D2d |/|Cs|= 8/2 = 4,

8 For the data of Td applied to adamantane derivatives see [9]. For the data of Td applied to edge derivatives
of a tetrahedron, see [10]. See also Appendices of [4].
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Fig. 3.7. Stereoskeletons of ligancy 4.

Table 3.2. Operations of D2d and Coset Representation D2d(/Cs)

operation D2d(/Cs) PSI (product of cycle
g ∈ D2d (product of cycles) sphericity indices) term

A
B

I (1)(2)(3)(4) b4
1 s4

1

C2(1) (1 2)(3 4) b2
2 s2

2
C2(2) (1 4)(2 3) b2

2 s2
2

C2(3) (1 3)(2 4) b2
2 s2

2

σd(1) (1)(2 4)(3) a2
1c2 s2

1s2

σd(2) (1 3)(2)(4) a2
1c2 s2

1s2

S4 (1 2 3 4) c4 s4

S3
4 (1 4 3 2) c4 s4

where Cs = {I,σd(1)} [8,11]. The concrete form of the coset representation D2d(/Cs) is
collected in Table 3.2 in the form of products of cycles.9

The two carbon atoms of 3-9, each of which attached by two substitution positions,
belong to a two-membered orbit governed by the coset representation D2d(/C2v). The lo-
cal point-group symmetry of each carbon is determined to be C2v = {I,C2(3),σd(1),σd(2)},
which is a subgroup of the global point-group symmetry D2d (cf. Table 3.2). Note that each
carbon of the two carbons is fixed under the action of the subgroup C2v. The size of the orbit
is calculated to be |D2d |/|C2v|= 8/4 = 2.

The central atom of the allene skeleton 3-9 belongs to a one-membered orbit governed
by the coset representation D2d(/D2d), because the central atom is fixed under all of the
operation of D2d .

An ethylene skeleton 3-10 belongs to the point group D2h (order 8). The local point-
group symmetry of the 1-position is determined to be C ′′s = {I,σh} [11,15]. Hence, the four
positions of 3-10 construct an equivalence class (orbit) governed by a coset representation

9 For the data of D2d applied to adamantane-2,6-dione derivatives see [12–14]. See also Appendices of [4].
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Table 3.3. Operations of D2h and Coset Representation D2h(/C ′′s )

operation D2h(/C ′′s ) PSI (product of cycle
g ∈ D2h (product of cycles) sphericity indices) term

A
B

I (1)(2)(3)(4) b4
1 s4

1

C2(1) (1 2)(3 4) b2
2 s2

2
C2(2) (1 4)(2 3) b2

2 s2
2

C2(3) (1 3)(2 4) b2
2 s2

2

σh (1)(2)(3)(4) a4
1 s4

1

i (1 4)(2 3) c2
2 s2

2
σd(1) (1 2)(3 4) c2

2 s2
2

σd(2) (1 3)(2 4) c2
2 s2

2

D2h(/C ′′s ), the degree of which is calculated to be |D2h|/|C ′′s |= 8/2 = 4. The concrete form
of the coset representation D2h(/C ′′s ) is collected in Table 3.2 in the form of products of
cycles.10

The two carbon atoms of 3-10 belong to a two-membered orbit governed by the coset
representation D2h(/C ′2v). The local point-group symmetry of each carbon is determined to
be C ′2v = {I,C2(3),σh,σd(2)}, which is a subgroup of the global point-group symmetry D2h

(cf. Table 3.3). Note that each of the two carbons is fixed under the action of C ′2v. The size
of the orbit is calculated to be |D2h|/|C ′2v|= 8/4 = 2.

A square planar skeleton 3-11 belongs to the point group D4h (order 16). The lo-
cal point-group symmetry of the 1-position is determined to be C ′′2v = {I,C2(1),σh,σv(1)}.
Hence, the four positions of 3-11 construct an equivalence class (orbit) governed by a coset
representation D4h(/C ′′2v), the degree of which is calculated to be |D4h|/|C ′′2v|= 16/4 = 4.11

The concrete form of the coset representation D4h(/C ′′2v) is collected in Table 3.4 in the form
of products of cycles.

An oxirane skeleton 3-12 belongs to the point group C2v (order 4). The local point-
group symmetry of the 1-position is determined to be C1 = {I}. Hence, the four positions
of 3-12 construct an equivalence class (orbit) governed by a coset representation C2v(/C1),
the degree of which is calculated to be |C2v|/|C1|= 4/1 = 4 [8]. The concrete form of the
coset representation C2v(/C1) is collected in Table 3.5 in the form of products of cycles.

10 For the data of D2h applied to edge derivatives of tricyclodecanes, see [10].
11 For the data of the point group D4h applied to square planar complexes, see [16].
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Table 3.4. Operations of D4h and Coset Representation D4h(/C ′′2v)

operation D4h(/C ′′2v) PSI (product of cycle
g ∈ D4h (product of cycles) sphericity indices) term

A
B

I (1)(2)(3)(4) b4
1 s4

1

C2(3) (1 3)(2 4) b2
2 s2

2
C ′2(1) (1 2)(3 4) b2

2 s2
2

C ′2(2) (1 4)(2 3) b2
2 s2

2

C2(1) (1)(2 4)(3) b2
1b2 s2

1s2

C2(2) (1 3)(2)(4) b2
1b2 s2

1s2

C4 (1 2 3 4) b4 s4

C3
4 (1 4 3 2) b4 s4

σh (1)(2)(3)(4) a4
1 s4

1

i (1 3)(2 4) c2
2 s2

2
σd(1) (1 2)(3 4) c2

2 s2
2

σd(2) (1 4)(2 3) c2
2 s2

2

σv(1) (1)(2 4)(3) a2
1c2 s2

1s2

σv(2) (1 3)(2)(4) a2
1c2 s2

1s2

S4 (1 2 3 4) c4 s4

S3
4 (1 4 3 2) c4 s4

Table 3.5. Operations of C2v and Coset Representation C2v(/C1)

operation C2v(/C1) PSI (product of cycle
g ∈ C2v (product of cycles) sphericity indices) term

A
B

I (1)(2)(3)(4) b4
1 s4

1

C2 (1 4)(2 3) b2
2 s2

2

σv(1) (1 2)(3 4) c2
2 s2

2
σv(2) (1 3)(2 4) c2

2 s2
2
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Regular Representations of a Stereoskeleton of C2v

If the local point-group symmetry is an identity group C1 = {I}, the corresponding coset
representation G(/C1) is called a regular representation. For detailed discussions of regular
representations, see [5, Section 6.4 and Chapter 7].

Such a regular representation is obtained directly by starting from the multiplication
table of G . Note that each coset ({I}g = {g}, g ∈ G) appearing in the set of cosets G/C1

derived from the coset decomposition consists of a single operation g (∈G) at issue.
As an example, let us obtain the regular representation C2v(/C1). The multiplication

table of C2v is shown in Table 3.6. For the sake of convenience, the multiplication table of
C2v (Table 3.6) contains serial numbers for representing operations. The number 4 at the
intersection between σv(1)-row and σv(2)-row column represents σv(2)σv(1) = C2, where the
successive action of σv(2) (3) and σv(1) (2) results in the same effect of C2 (4).

Table 3.6. Multiplication Table of the Point Group C2v

the 1st operation
I σv(1) σv(2) C2

1 2 3 4
I 1 1 2 3 4

the 2nd σv(1) 2 2 1 4 3
operation σv(2) 3 3 4 1 2

C2 4 4 3 2 1

The regular representation C2v(/C1) is obtained from the multiplication table of C2v

shown in Table 3.6. The σv(1)-row of Table 3.6 corresponds to the following permutation:

σv(1) ∼
(

1 2 3 4
2 1 4 3

)

= (1 2)(3 4), (3.32)

which is identical with the product of cycles in the σv(1)-row of Table 3.5. Note that an over-
bar attached to each number represents a mirror-image formation locally at the numbered
position, while the global mirror-image formation of the oxirane skeleton is represented by
the permuted sequence of the numbers.

The action of the reflection σv(1) on a numbered skeleton 3-12 is illustrated in Fig.
3.8. Because the reflection σv(1) is a mirror-image formation on the basis of a mirror plane
bisecting the oxirane ring perpendicularly through the midpoint of the C—C bond and the
oxygen atom, the action of σv(1) generates a mirror-numbered skeleton 3-12. This result
is consistent with the correspondence between σv(1) and the permutation (1 2)(3 4) (Eq.
3.32). It should be emphasized that such a reflection as σv(1) results in the local mirror-
image formation of the (pro)ligands along with the global mirror-image formation of the
oxirane skeleton.

The two carbon atoms of the oxirane skeleton 3-12 belong to a two-membered orbit
governed by the coset representation C2v(/C ′s). The local point-group symmetry of each
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(1 2)(3 4)
O
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3

2
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3-12 3-12

Fig. 3.8. Action of a reflection on an oxirane skeleton to generate a mirror-numbered skeleton.
The position number with an overbar represents the reverse of chirality sense at the position.

carbon is determined to be C ′s = {I,σv(2)}, which is a subgroup of the global point-group
symmetry C2v (cf. Table 3.5). Note that each of the two carbons is fixed under the action of
C ′s. The size of the orbit is calculated to be |C2v|/|C ′s|= 4/2 = 2.

Exercise 3.6.
– In the continuation of Eq. 3.32, calculate the coset representation C2v(/C1) by using

the multiplication table (Table 3.6). Confirm that the result is identical with the data
collected in Table 3.5.

– Calculate the coset represention C2v(/C ′s), where C ′s = {I,σv(2)}. Confirm that the two
carbon atoms of the oxirane skeleton 3-12 construct a two-membered C2v(/C ′s)-orbit.

The oxygen atom of the oxirane skeleton 3-12 belongs to a one-membered orbit gov-
erned by the coset representation C2v(/C2v). The local point-group symmetry of the oxygen
atom is determined to be C2v, which is identical with the global point-group symmetry C2v

(cf. Table 3.5). Note that the oxygen atom is fixed under the action of C2v. The size of the
orbit is calculated to be |C2v|/|C2v|= 4/4 = 1.

3.3.2 Stereoskeletons of Ligancy 6

Representative stereoskeletons of ligancy 6 are listed in Fig. 3.9.
An octahedral skeleton 3-13 appears in inorganic octahedral complexes. Each coordi-

nation bond is represente by a thick line between a central metal M and a vertex of the
octahedral complex. The vertices are linked with thin lines to visualize the edges of the
octahedron to be examined.

The six positions (vertices) of 3-13 belong to a six-membered orbit governed by the
coset representation Oh(/C4v). The local point-group symmetry of each position is deter-
mined to be C4v of order 8, which is a subgroup of the global point-group symmetry Oh of
order 48. Note that each of the six vertices is fixed under the action of C4v or its conjugate
subgroup. The size of the orbit is calculated to be |Oh|/|C4v|= 48/8 = 6.12

12 For the data of the point group Oh applied to octahedral complexes, see [17–21].
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Fig. 3.9. Stereoskeletons of ligancy 6.

A benzene skeleton 3-14 belongs to the point group D6h of order 24. The three dou-
ble bonds depicted tentatively are delocalized to cover all of the bonds of the benzene ring
so as to exhibit the global point-group symmetry D6h.13 The six positions of 3-13 belong
to a six-membered orbit governed by the coset representation D6h(/C ′2v). The local point-
group symmetry of each position is determined to be C ′2v of order 4, which is a subgroup
of the global point-group symmetry D6h. Note that each of the six positions is fixed un-
der the action of C ′2v or its conjugate subgroup. The size of the orbit is calculated to be
|D6h|/|C ′2v|= 24/4 = 6.

A prismane skeleton 3-15 belongs to the point group D3h of order 12. The six positions
of 3-15 belong to a six-membered orbit governed by the coset representation D3h(/Cs). The
local point-group symmetry of each position is determined to be Cs of order 2, which is
a subgroup of the global point-group symmetry D3h. Note that each of the six positions is
fixed under the action of Cs or its conjugate subgroup. The size of the orbit is calculated to
be |D3h|/|Cs|= 12/2 = 6.14

A cyclopropane skeleton 3-16 belongs to the point group D3h of order 12. The six posi-
tions of 3-16 belong to a six-membered orbit governed by the coset representation D3h(/Cs).
The size of the orbit is calculated to be |D3h|/|Cs|= 12/2 = 6.15

3.3.3 Stereoskeletons of Ligancy 8

Representative stereoskeletons of ligancy 8 are listed in Fig. 3.10.
A cubane skeleton 3-17 with eight positions belongs to the point group Oh of order

48, which is the same as the point group for characterizing the octahedral skeleton 3-13
with six positions. The eight positions of 3-17 belong to an eight-membered orbit governed
by the coset representation Oh(/C3v). The local point-group symmetry of each position is
determined to be C3v of order 6, which is a subgroup of the global point-group symmetry

13 The data of D6h applied to benzene derivatives have been reported [22].
14 For the data of the point group D3h applied to prismane derivatives, see [23–25].
15 For the data of the point group D3h applied to cyclopropane derivatives, see [8,23].
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Fig. 3.10. Stereoskeletons of ligancy 8.

Oh. Note that each of the eight positions is fixed under the action of C3v or its conjugate
subgroup. The size of the orbit is calculated to be |Oh|/|C3v|= 48/6 = 8.16

A cyclobutane skeleton 3-18 with eight positions belongs to the point group D4h of
order 16, which is the same as the point group for characterizing the square planar skeleton
3-11 with four positions. The eight positions of 3-18 belong to an eight-membered orbit
governed by the coset representation D4h(/Cs). The local point-group symmetry of each
position is determined to be Cs of order 2, which is a subgroup of the global point-group
symmetry D4h. Note that each of the eight positions is fixed under the action of Cs or its
conjugate subgroup. The size of the orbit is calculated to be |D4h|/|Cs|= 16/2 = 8.17

A dicyclopropylidenemethane skeleton 3-19 with eight positions belongs to the point
group D2d of order 8, which is the same as the point group for characterizing the allene
skeleton 3-9 with four positions. Note that this diagram is a top view of the allene derivative
with two cyclopropane rings 3-19′. The eight positions of 3-19 belong to an eight-membered
orbit governed by the coset representation D2d(/C1). Because the local point-group sym-
metry of each position is determined to be C1, the coset representation D2d(/C1) is a regular
representation. The size of the orbit is calculated to be |D2d |/|C1|= 8/1 = 8.18

3.3.4 Stereoskeletons Having Two or More Orbits

Naphthalene Skeleton
A naphthalene skeleton 3-20 with eight positions belongs to the point group D2h of order 8.
The action of D2h on the eight positions generates a permutation representation denoted by

16 For the data of the point group Oh applied to cubane derivatives, see [26–33].
17 For the data of the point group D4h applied to cyclobutane derivatives, see [34,35]. See also [16]
18 For the data of the point group D2d applied to dicyclopropylidenemethane, see [7,36–38]. See also
[5, Chapters 6–8].
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PD2h of degree 8 in a similar way to the construction of Table 3.3.19 For example, the action
of the two-fold rotation C2(3) on 3-20 generates a permutation C2(3) ∼ (1 5)(4 8)|(2 8)(3 7),
where the two-fold axis C2(3) is perpendicular to the naphthalene ring and runs through the
center of the central bond of 3-20. The reflection σd(1) on 3-20 generates a permutation
σd(1) ∼ (1 4)(5 8)|(2 3)(7 8), where the mirror plane σd(1) at issue is perpendicular to the
naphathalene ring and bisects the bond attached by 2 and 3 as well as the bond attached by
7 and 8. Each of the resulting eight permutations is divided into two parts as designated by
a vertical bar (|). As a result, the eight positions of 3-20 are divided into two four-membered
orbits, i.e., {1, 4, 5, 8} and {2, 3, 6, 7}. The local point-group symmetry of each position
is determined to be C ′′s = {I,σh}. Hence, each of the two orbits is governed by the coset
representation D2h(/C ′′s ), which is the same as the coset representation for characterizing
the ethylene skeleton 3-10 with four positions. The size of each orbit is calculated to be
|D2h|/|C ′′s |= 8/2 = 4. The above discussion is summarized into the following equation:

PD2h = 2D2h(/C ′′s ). (3.33)

Adamantane and Related Skeletons
As more complex stereoskeletons, Fig. 3.11 shows an adamantane skeleton 3-21 of Td ,
an adamantane-2,6-dione skeleton 3-22 of D2d , and an adamantan-2-one skeleton 3-23 of
C2v.20

An adamantane skeleton 3-21 of Td has two sets of positions, i.e., a twelve-membered
set of bridge positions {1,2, · · · ,12} and a four-membered set of bridgehead positions
{1′,2′,3′,4′}. The former twelve-membered set constructs an equivalence class (orbit),
which is governed by the coset representation Td(/Cs) of degree 12 (= |Td |/|Cs|= 24/2),
because each of the positions is fixed under the subgroup Cs or its conjugate subgroup. On
the other hand, the latter four-membered set constructs an equivalence class (orbit), which
is governed by the coset representation Td(/C3v) of degree 4 (= |Td |/|C3v| = 24/6), be-
cause each of the positions is fixed under the subgroup C3v or its conjugate subgroup. When
the total 16 positions are considered to be represented by a permutation representation PTd ,
they are divided into two orbits according to the following equation:

PTd = Td(/Cs)+Td(/C3v), (3.34)

where the first term of the right-hand side is concerned with the twelve-membered orbit of
bridge positions and the second term is concerned with the four-membered orbit of bridge-
head positions.

19 For the sake of simplicity, such a permutation representation is referred to as a permutation group, if it
does not degenerate.
20 Strictly speaking, even a tetrahedral skeleton 3-5 of ligancy 4 has another one-membered orbit of a central
carbon, which is governed by the coset representation Td(/Td). To discuss derivatives of 3-5, we are able to
focus on the coset representation Td(/C3v) for the four substitution positions.
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Fig. 3.11. Orbits in an adamantane skeleton, an adamantane-2,6-dione skeleton, and an
adamantan-2-one skeleton.

An adamantane-2,6-dione skeleton 3-22 of D2d has two sets of positions, i.e., an eight-
membered set of bridge positions {1,2, · · · ,8} and a four-membered set of bridgehead posi-
tions {1′,2′,3′,4′}. The former eight-membered set constructs an equivalence class (orbit),
which is governed by the coset representation D2d(/C1) of degree 8 (= |D2d |/|C1|= 8/1),
because each of the positions is fixed under the subgroup C1. On the other hand, the latter
four-membered set constructs an equivalence class (orbit), which is governed by the coset
representation D2d(/Cs) of degree 4 (= |D2d |/|Cs| = 8/2), because each of the positions
is fixed under the subgroup Cs or its conjugate subgroup. When the total 12 positions are
considered to be represented by a permutation representation PD2d , they are divided into
two orbits according to the following equation:

PD2d = D2d(/C1)+D2d(/Cs), (3.35)

where the first term of the right-hand side is concerned with the eight-membered orbit of
bridge positions and the second term is concerned with the four-membered orbit of bridge-
head positions.

An adamantan-2-one skeleton 3-23 of C2v has a four-membered orbit of bridge posi-
tions {1,3,5,7} belonging to the coset representation C2v(/C1), another four-membered
orbit of bridge positions {2,4,6,8} belonging to the coset representation C2v(/C1), a two-
membered orbit of bridge positions {9,10} belonging to the coset representation C2v(/C ′s),
a two-membered orbit of bridgehead positions {1′,3′} belonging to the coset representation
C2v(/C ′s), and another two-membered orbit of bridgehead positions {2′,4′} belonging to
the coset representation C2v(/Cs). When the total 14 positions are considered to be repre-
sented by a permutation representation PC2v , they are divided into five orbits according to
the following equation:

PC2v = 2C2v(/C1)+C2v(/Cs)+2C2v(/C ′s), (3.36)

where the total value 14 can be calculated from the data of the right-hand side, i.e.,
2|C2v|/|C1|+ |C2v|/|Cs|+2|C2v|/|C ′s| = 2× 4

1 + 4
2 +2× 4

2 = 14.
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3.4 Point-Group Symmetries of (Pro)molecules

3.4.1 Derivation of Molecules from a Stereoskeleton via Promolecules

The positions of a given stereoskeleton (Def. 3.2) accommodate a set of proligands (Def.
3.1) to generate a promolecule (Def. 3.3) according to the proligand-promolecule model.
For example, the four positions of a tetrahedral skeleton 3-5 accommodate a set of achiral
proligands ABX2 to generate a promolecule 3-24, where the Td-symmetry of the skeleton
3-5 is restricted to the Cs-symmetry of 3-24, as shown in the top row of Fig. 3.12. By placing
A = Cl, B = Br, and X = H, the promolecule 3-24 is converted into bromochloromethane
3-25 as a molecule of the same Cs-symmetry.
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Fig. 3.12. Derivation of molecules from a stereoskeleton via promolecules (the proligand-
promolecule model).

On the other hand, suppose that the four positions of a tetrahedral skeleton 3-5 ac-
commodate a set of proligands ABpp (the bottom row of Fig. 3.12), where the symbols A
and B represent achiral proligands in isolation and the symbols p and p represent a pair
of enantiomeric proligands in isolation.21 The accommodation results in the generation

21 According to the IUPAC Recommendations 1996 [39], the term enantiomorphic is applied to a mirror
image related to groups within a molecular entity. However, this book adopts the term enantiomeric (in iso-
lation), because a (pro)ligand may be incorporated within a (pro)molecule or detached from a (pro)molecule.
When detached, a (pro)ligand may be regarded as a kind of moleular entity with a vacant bond.
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of a promolecule 3-3, where the Td-symmetry of the skeleton 3-5 is restricted to the Cs-
symmetry of 3-3, as shown in the bottom row of Fig. 3.12. By placing A = OH, B = H,
p = CH(OH)–COOH, and p = C(OH)H–COOH, the promolecule 3-3 is converted into an
achiral 2,3,4-trihydroxyglutaric acid 3-1 as a molecule of the same Cs-symmetry.

3.4.2 Orbits in Molecules and Promolecules Derived from Stereoskeletons

Orbits of Equivalent Ligands
The above procedure of deriving promolecules and molecules (Fig. 3.12) can be applied to
respective stereoskeletons discussed in Section 3.3. As a result of such derivation, the point-
group symmetry of each stereoskeleton (Section 3.3) is restricted to its subgroup during the
derivation.

Several derivatives based on a tetrahedral skeleton 3-5 of Td-symmetry are illustrated in
Fig. 3.13, where ligands are selected from hydrogen and halogen atoms (chlorine, bromine,
and fluorine). Their point-group symmetries are subgroups of the point group Td .
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C1(/C1)

3-29 3-30

Fig. 3.13. Orbits in methane derivatives based on a tetrahedral skeleton. Each orbit governed by
a coset representation is designated by a gray solid circle or a shadowed round frame.

According to the subgroup of each derivative, the four points of the original tetrahedral
skeleton 3-5 are divided into several sets of equivalent ligands, where each set constructs an
equivalence class (orbit) in a similar way to the set of four positions in the teterahedral skele-
ton 3-5 (cf. Fig. 3.6). As a rather trivial example, methane 3-26 with four hydrogn atoms
belongs to the point group Td , so that the four hydrogens as ligands construct an equivalence
class (orbit) governed by the coset representation Td(/C3v), just as the tetrahedral skeleton
has a Td(/C3v)-orbit.

By placing a set of three hydrogen atoms and one chlorine atom on the four posi-
tions of 3-5, there appears chloromethane 3-27, as shown in Fig. 3.13. The molecule of
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chloromethane 3-27 belongs to the point group C3v (Eq. 3.11), which is a subgroup of Td .
Note that the three-fold axis (C3) runs along the C—Cl bond.

Determination of Orbits
From a viewpoint of Fujita’s unit-subduced-cycle-index (USCI) approach [4], there are two
ways of discussing the point-group symmetries of (pro)molecules:
1. (Methodology 1: without subduction) The resulting chloromethane molecule 3-27 can

be considered as it is, without referring to the tetrahedral skeleton 3-5. Suppose that a set
of four positions with three hydrogens and one chlorine is represented by a permutation
representation PC3v , because 3-27 belogns to the point group C3v. The three hydrogen
atoms of 3-27 are equivalent to construct an orbit governed by the coset representation
C3v(/Cs), because each hydrogen atom is fixed under the action of the point group Cs,
which is a subgroup of C3v. The one chlorine atom belongs to the local point-group
symmetry C3v, so that the one-membered orbit of the chlorine atom is governed by the
coset representation C3v(/C3v). It follows that we obtain the following equation:

PC3v = C3v(/Cs)+C3v(/C3v). (3.37)

In general, suppose that the positions of a given molecule (or promolecule) belonging
to the point-group symmetry G is characterized by a permutation representation PG.
Then, the permutation representation PG is divided into a sum of coset representations
of G [4,8]:

PG =
s

∑
i=1

αiG(/Gi), (3.38)

where the subgroup Gi (i = 1,2, . . . ,s) covers the SSG of G (Eq. 3.20), the coset rep-
resentation G(/Gi) covers the SCR of G (Eq. 3.31), and the integer αi represents the
multiplicity of the coset representation G(/Gi).

2. (Methodology 2: via subduction) The molecule of chloromethane 3-27 is alternatively
interpreted by referring to the tetrahedral skeleton 3-5 (cf. Fig. 3.12). Then, the coset
representation Td(/C3v) of the tetrahedral skeleton 3-5 is divided into the cosets repre-
sentations C3v(/Cs) and C3v(/C3v) under the restriction to C3v. This process is sym-
bolically represented by the following equation:

Td(/C3v) ↓ C3v = C3v(/Cs)+C3v(/C3v), (3.39)

which is called the subduction of the coset representation Td(/C3v) by C3v [4,7]. Note
that the sum of the sizes of orbits appearing in the right-hand side (|C3v|/|Cs|= 6/2 = 3
and |C3v|/|C3v| = 6/6 = 1) is equal to the size of an orbit appearing in the left-hand
side (|Td |/|C3v|= 24/6 = 4).
In general, let us consider a given stereoskeleton of the point group G, where the coset
representation G(/Gi) governs the |G|/|Gi| positions of the stereoskeleton. Supposed
that the point-group symmetry G of the skeleton is restricted to the subgroup G j. Then
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the positions of the skeleton are divided into a set of orbits in a product molecule of the
point group G j. The process of the division is called a subduction [4, Chapter 9], which
obeys the following equation:

G(/Gi) ↓G j =
v j

∑
k=1

β (i j)
k G j(/H( j)

k ) (3.40)

for i = 1,2, . . .s and j = 1,2, . . .s, where the subgroup H( j)
k covers the SSG of G j and

the coset representation G j(/H( j)
k ) covers the SCR of G j.

Mathematically speaking, Eq. 3.37 does not take account of the concept of subduction, while
Eq. 3.39 takes account of the concept of subduction. Chemically speaking, Eq. 3.37 does
not take account of the original skeleton 3-5, while Eq. 3.39 takes account of the original
skeleton 3-5 explicitly.

As found by comparing between the right-hand side of Eq. 3.37 (Methodology 1) and
that of Eq. 3.39 (Methodology2), these two methodologies are essentially equivalent from
the viewpoint of coset representations to be considered. In particular, both methodologies
are commonly effective to qualitative discussions. However, quantitative applications such
as combinatorial enumerations require Methodology 2 (Eq. 3.40) which explicitly takes
account of stereoskeletons for the proligand-promolecule model.

The following discussions will adopt the second way (Methodology 2) via the concept
of subduction, because the first way (Methodology 1) is easily derived from the second way,
as exemplified by the derivation from Eq. 3.39 to Eq. 3.37. Although the following proce-
dure is concerned with a stereoskeleton with one orbit of positions, it can easily extended to
cover a stereoskeleton with two or more orbits of positions:

Rule 3.1. Procedure for Determining Orbits (Methodology 2).
1. Consider a stereoskeleton having n positions which are equivalent under the global

point-group symmetry G of the stereoskeleton.
2. Determine the stabilizer Gi of one position selected appropriately from the n positions

(cf. Subsection 3.2.5). The group Gi is a subgroup of G and fixes the selected position.
Thereby, the n-positions construct an equivalence class (orbit) governed by the coset
representation G(/Gi).

3. Place a set of ligands (or proligands) on the n positions of the skeleton. Determine the
global point-group symmetry G j of the resultant product. This process is regarded as
the restriction of G to G j, which is represented by a subduction G(/Gi) ↓G j.

4. Select a set of equivalent ligands (or proligands) under G j so as to generate an equiv-
alence class (orbit). Determine the stabilizer H( j)

k of one ligand (or proligand) selected
appropriately from the orbit. Thereby this orbit is governed by the coset representation
G j(/H( j)

k ).
5. The preceding step is repeated to cover all sets of equivalent ligands (or proligands).

The resultant coset representations G j(/H( j)
k ) are collected to give Eq. 3.40.
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Dichloromethane 3-28 shown in Fig. 3.13 is produced by placing a set of ligands (two chlo-
rine atoms and two hydrogen atoms) on the four positions of 3-5. The dichloromethane 3-28
belongs to the point group C2v (Eq. 3.10), which is a subgroup of Td . Note that there appears
a two-fold axis (C2(3)) bisects the angle of Cl—C—Cl and two mirror planes σd(1) and σd(6),
if the point group C2v is selected as a subgroup of Td (cf. Table 3.1). The two chlorine atoms
of 3-28 are equivalent to construct an orbit governed by the coset representation C2v(/Cs),
because each chlorine atom is fixed under the action of the point group Cs = {I,σd(1)} (Eq.
3.6), which is a subgroup of C2v (⊂ Td). The two hydrogen atoms of 3-28 are equivalent to
construct another orbit governed by the coset representation C2v(/C ′s), because each hydro-
gen atom is fixed under the action of the point group C ′s = {I,σd(6)}, which is a subgroup
of C2v (⊂ Td).

In summary, the derivation of dichloromethane 3-28 (C2v) from the tetrahedral skeleton
3-5 (Td) is symbolically represented by the following subduction:

Td(/C3v) ↓ C2v = C2v(/Cs)+C2v(/C ′s), (3.41)

where the sum of the sizes of orbits appearing in the right-hand side (|C2v|/|Cs| +
|C2v|/|C ′s| = 4/2 + 4/2 = 4) is equal to the size of an orbit appearing in the left-hand
side (|Td |/|C3v| = 24/6 = 4). It should be noted that the two groups Cs = {I,σd(1)} and
C ′s = {I,σd(6)} are conjugate within Td but not conjugate within C2v.

Bromochloromethane 3-29 shown in Fig. 3.13 is produced by placing a set of ligands
(two hydrogens, one bromine, and one chlorine) on the four positions of 3-5. The molecule
of bromochloromethane 3-29 belongs to the point group Cs, which is a subgroup of Td . Note
that there appears a mirror plane containing the plane of Cl—C—Br. The two hydrogen
atoms of 3-29 are equivalent to construct an orbit governed by the coset representation
Cs(/C1), because each hydrogen atom is fixed under the action of the point group C1,
which is a subgroup of Cs (⊂ Td). The chlorine atom (or the bromine atom) constructs a
one-membered Cs(/Cs)-orbit, because it is fixed by the mirror plane due to the local point-
group symmetry Cs.

As a result, the derivation of bromochloromethane 3-29 (Cs) from the tetrahedral skele-
ton 3-5 (Td) is symbolically represented by the following subduction:

Td(/C3v) ↓ Cs = Cs(/C1)+2Cs(/Cs), (3.42)

where the sum of the sizes of orbits appearing in the right-hand side (|Cs|/|C1|+ 2×
|Cs|/|Cs| = 2 + 2× 2/2 = 4) is equal to the size of an orbit appearing in the left-hand
side (|Td |/|C3v|= 24/6 = 4).

Bromochlorofluoromethane 3-30 shown in Fig. 3.13 is produced by placing a set of
ligands (hydrogen, one fluorine, one bromine, and one chlorine) on the four positions of
3-5. The molecule of bromochlorofluoromethane 3-30 belongs to the point group C1, which
is a subgroup of Td . Each of the atoms in 3-30 constructs a one-membered orbit governed
by the coset representation C1(/C1), because each atom is fixed under the action of the
point group C1, which is a subgroup of the global symmetry C1.
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The derivation of bromochlorofluoromethane 3-30 (C1) from the tetrahedral skeleton
3-5 (Td) is symbolically represented by the following subduction:

Td(/C3v) ↓ C1 = 4C1(/C1), (3.43)

where the sum of the sizes of orbits appearing in the right-hand side (4×|C1|/|C1| = 4×
1/1 = 4) is equal to the size of an orbit appearing in the left-hand side (|Td |/|C3v|= 24/6 =
4).

3.4.3 The SCR Notation

The set of coset representations (SCR) discussed in Methodology 1 (Eq. 3.38) and the sub-
duction of coset representations due to Methodology 2 (Eq. 3.40) can be applied to detailed
specification of point-group symmetries of molecules [8,40].

The SCR Notation of Methodology 1
Methodology 1 discussed on page 79 (Eq. 3.38) does not take account of a stereoskeleton.
If the number |G|/|Gi| of (pro)ligands A(i) occupy the positions governed by the coset
representation G(/Gi), the resulting (pro)molecule is represented by the following SCR
notation (due to Methodology 1) [8]:22

G[. . . ; /Gi(A
(i)
|G|/|Gi|); . . .]. (3.44)

The molecules listed in Fig. 3.13 are characterized by the following SCR notations,
where the SCR and accommodated atoms for each molecule are aligned according to Eq.
3.44:

3-26 Td [/C3v(H4); /Td(C)] (3.45)

3-27 (Eq. 3.37) C3v[/Cs(H3); 2/C3v(C,Cl)] (3.46)

3-28 (Eq. 3.41) C2v[/Cs(Cl2); /C ′s(H2); /C2v(C)] (3.47)

3-29 (Eq. 3.42) Cs[/C1(H2); 3/Cs(C, Cl, Br)] (3.48)

3-30 (Eq. 3.43) C1[5/C1(C, H, F,Cl, Br)], (3.49)

Central carbon atoms are also specified by the respective SCR notations. Note that the num-
ber before a slash is the multiplicity of the coset representations at issue. For example, the
term 2/C3v(C,Cl) in Eq. 3.46 is an abbreviated form of /C3v(C); /C3v(Cl), which are the
same kind of coset representations, but exhibit different modes of accommodation (the cen-
tral carbon atom and the chlorine atom) in chloromethane 3-27.

22 The original notation of case 1 [8] is adopted after renamed the SCR notation of Methodology 1.
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The SCR Notation of Methodology 2
Methodology 2 discussed on page 79 (Eq. 3.40) takes account of a stereoskeleton. The
subduction of coset representation of the skeleton (Eq. 3.40) is explicitly characterized in
the SCR notation of Methodology 2 [8]:23

G(. . .
∣

∣ /Gi
∣

∣ . . .) ↓G j = G j[. . .
∣

∣ . . . ; /H(i j)
k (A(k(i j))

|G j |/|H(i j)
k |

); . . .
∣

∣ . . .], (3.50)

where the coset representation G(/Gi) of the skeleton is subduced into the G j-symmetry
of the (pro)molecule to be specified. Then, the G j(H

(i j)
k )-orbit of the (pro)molecule accom-

modates the number |G j|/|H(i j)
k | of (pro)ligands represented by A(k(i j)).

The molecules listed in Fig. 3.13 are characterized by the following SCR notations
of Methodology 2. After the subduction of the tetrahedral skeleton into its subgroup, the
resulting SCR and accommodated atoms for each molecule are aligned according to Eq.
3.50:

3-26 Td(/C3v
∣

∣ /Td) ↓ Td [/C3v(H4)
∣

∣ /Td(C)] (3.51)

3-27 (Eq. 3.39) Td(/C3v
∣

∣ /Td) ↓ C3v[/Cs(H3); /C3v(Cl)
∣

∣ /C3v(C)] (3.52)

3-28 (Eq. 3.41) Td(/C3v
∣

∣ /Td) ↓ C2v[/Cs(Cl2); /C ′s(H2)
∣

∣ /C2v(C)] (3.53)

3-29 (Eq. 3.42) Td(/C3v
∣

∣ /Td) ↓ Cs[/C1(H2); 2/Cs(Cl, Br)
∣

∣ /Cs(C)] (3.54)

3-30 (Eq. 3.43) Td(/C3v
∣

∣ /Td) ↓ C1[4/C1(H, F,Cl, Br)
∣

∣ /C1(C)] (3.55)

For example, the four positions of the tetrahedral skeleton is subduced according to Eq. 3.39,
while the local point-group symmetry of the central carbon atom is subduced according to
Td(/Td) ↓C3v = C3v(/C3v). The total feature is expressed by the symbol Td(/C3v

∣

∣ /Td) ↓
C3v. The resulting chloromethane 3-27 is characterized by the SCR notation of Methodol-
ogy 2 shown in Eq. 3.52.

3.4.4 Site Symmetries vs. Coset Representations for Symmetry Notations

It is worthwhile here to point out the merits of the SCR notation [8] in comparison with
other methods for differentiating molecules with the same point-group symmetry. Let us
examine the point group C2v for characterizing dichloromethane (CH2Cl2, 3-28) based on
a tetrahedral skeleton (cf. Eq. 3.47 and Eq. 3.53). A notation assigned to dichloromethane
should be different from those assigned to other C2v-molecules, e.g., water molecule (H2O)
as a planar molecule and adamantan-2-one based on the skeleton 3-23.24

1. Pople’s method is based on ‘framework groups’ [41], which assigns the notation
C2v[C2(C), σv(Cl2), σ ′v(Cl2)] to dichloromethane, where each atom is characterized

23 The original notation of case 2 [8] is slightly modified and renamed the SCR notation of Methodology 2.
24 For additional examples of the SCR notations of C2v-molecules, see [8, Table 8]. In addition, the SCR
notations of D3h-, Td -, D2-, D2d -, and D2h-molecules have also been reported [8].
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Fig. 3.14. Three trigonal bipyramidal derivatives with the composition X3YZ. A central atom (P) is
omitted for the sake of simplicity.

by a framework group. Because the relationship between such a framework group and
a global symmetry is not fully clarified, this notation has drawbacks in the applica-
tion to trigonal bipyramidal complexes, as pointed out by Brocas [42]. In addition, the
formulations due to framework groups have not reached the concepts of coset represen-
tations, their subductions, and orbits. Fujita’s SCR notation [8] is successfully applied
to trigonal bipyramidal complexes [40].

2. Flurry’s method is based on site symmetries [43], which are used to assign the nota-
tion [C2v(C), Cs(Cl2), C ′s(H2)] to dichloromethane. The term ‘site symmetries’ cor-
responds to the term local point-group symmetries in the present context. Because
Flurry’s notation has emphasized site symmetries, it has not reached the concepts of
coset representations, their subductions, and orbits.

3. Fujita’s SCR (set-of-coset-representation) notation is based on coset representations
and their subductions [8,40]. As discussed above, the SCR notation of Methodology
1 [8] adopts the data of a set of coset representations, where the SCR notation shown
in Eq. 3.47 is assigned to dichloromethane. The SCR notation of Methodology 2 [8]
adopts the subduction data (e.g., Eq. 3.41), where the SCR notation shown in Eq. 3.53
is assigned to dichloromethane. The concept of site symmetries (local point-group sym-
metries) for Flurry’s method has been incorporated into the concept of coset represen-
tations for Fujita’s SCR notation, as discussed in our book [4, Chapter 7].25

Brocas [42] has pointed out that three isomers (3-31, 3-32, and 3-33) having the com-
position PX3YZ, which are derived from a trigonal bipyramidal skeleton of D3h, have the
same framework group, i.e., Cs[σ (PXYZ), X(X2)] (Fig. 3.14) according to Pople’s method.
Flurry’s method also gives the same notation [Cs(PXYZ), C1(X2)] to the three isomers. To
differentiate them, Brocas [42] has proposed the modified Schönflies symbols, i.e., Csh for
3-31 as well as Csv for 3-32 and 3-33. However, 3-32 and 3-33 have the same modified
Schönflies symbol Csv yet.

Fujita has discussed the orbits of a trigonal bipyramidal skeleton and their subduction
in detail [8]. The five positions of the skeleton are divided into two orbits, where three

25 For site symmetries applied to the construction of symmetry adapted functions, see [44]. For coset repre-
sentations applied to the same purpose, see [45].
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equatorial positions construct a D3h(/C2v)-orbit (|D3h|/|C2v| = 12/4 = 3), while two ax-
ial positions construct a D3h(/C3v)-orbit (|D3h|/|C3v| = 12/6 = 2). In addition, a central
phosphorus atom constructs a D3h(/D3h)-orbit (|D3h|/|D3h|= 12/12 = 1). These orbits are
subdivided into suborbits during the derivation of 3-31, 3-32, and 3-33. According to Fu-
jita’s SCR notation, the modes of subdivision are specified by the following SCR notations
[8]:

3-31 D3h(/C2v
∣

∣ /C3v
∣

∣ /D3h) ↓ C ′s[3/Cs(X,Y,Z)
∣

∣ /C1(X2)
∣

∣ /Cs(P)] (3.56)

3-32 D3h(/C2v
∣

∣ /C3v
∣

∣ /D3h) ↓ Cs[/C1(X2),/Cs(Z)
∣

∣ 2/Cs(X,Y)
∣

∣ /Cs(P)] (3.57)

3-33 D3h(/C2v
∣

∣ /C3v
∣

∣ /D3h) ↓ Cs[/C1(X2),/Cs(Y)
∣

∣ 2/Cs(X,Z)
∣

∣ /Cs(P)] (3.58)

The comparison between Eq. 3.57 and Eq. 3.58 indicates that three Cs(/Cs)-orbits in 3-32
exhibit different modes of separation from those in 3-33, where the difference stems from
the axial and equatorial positions of the skeleton.
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4 Sphericities of Orbits and Prochirality1

4.1 Sphericities of Orbits

This section introduces the concept of sphericities and the related concept chirality fitting-
ness [1,2], which are defined to characterize equivalence classes (orbits).

4.1.1 Orbits of Equivalent Proligands

As discussed in Chapter 3 (Subsection 3.4.2), point-group symmetries of promolecules can
be investigated by Methodology 1 (Eq. 3.38 on page 79) and Methodology 2 (Eq. 3.40 on
page 80), just as point-group symmetries of molecules have been discussed by these meth-
ods [1]. These methods are based on a common foundation due to a set of orbits contained
in molecules or promolecules. The following theorem is obvious because of the proligand-
promolecule model (Defs. 3.1–3.3 on pages 53–54):

Theorem 4.1 (Conservation of Orbits). A set of orbits in a molecule is maintained in the corre-
sponding promolecule, although the point group of the molecule may be different from that of the
promolecule.

The case in which the molecule and the corresponding promolecule belong to different point
groups is referred to as a mismatched case (cf. Subsection 3.1.2). Theorem 4.1 is related to
Theorem 3.1 (page 55).

For example, the two-membered Cs(/C1)-orbit accommodating two hydrogens and the
one-membered Cs(/Cs)-orbits accommodating respectively a chlorine atom and a bromine
atom in the molecule 3-29 (Fig. 3.13) remain unchanged in the corresponding promolecule
4-1, where we place A = Cl, B = Br, and X = H, as shown in Fig. 4.1. Because both the
molecule 3-29 and the promolecule 4-1 belong to the same point group Cs, the coset repre-
sentations Cs(/C1) and Cs(/Cs) are also maintained during the process of interconversion
between 3-29 and 4-1.

On the other hand, the highest-attainable symmetry of pentaerythritol 4-3 is determined
to be D2d , as shown in a top view of Fig. 4.1. Note that the occupation of a tetrahedral

1 This chapter is based on S. Fujita, “Chirality fittingness of an orbit governed by a coset representation.
Integration of point-group and permutation-group theories to treat local chirality and prochirality”, J. Am.
Chem. Soc., 112, 3390–3397 (1990); S. Fujita, “Stereochemistry and Stereoisomerism Characterized by the
Sphericity Concept”, Bull. Chem. Soc. Jpn., 74, 1585–1603 (2001); S. Fujita, “Prochirality Revisited. An
Approach for Restructuring Stereochemistry by Novel Terminology”, J. Org. Chem., 67, 6055–6063 (2002);
S. Fujita, “Sphericity Governs Both Stereochemistry in a Molecule and Stereoisomerism Among Molecules”,
Chem. Rec., 2, 164–176 (2002); S. Fujita, “Sphericity Beyond Topicity in Characterizing Stereochemical
Phenomena. Novel Concepts Based on Coset Representations and Their Subductions”, Bull. Chem. Soc.
Jpn., 75, 1863–1883 (2002).
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Fig. 4.1. Orbits in promolecules and molecules for characterizing chlorobromomethane (a
matched case) and pentaerythritol (a mismatched case).

skeleton by four hydroxymethyl ligands results in the symmetry restriction from Td to D2d ,
because each hydroxymethyl ligand (CH2OH) belongs to the point group Cs. The four hy-
droxylmethyl ligands construct an orbit governed by the coset representation D2d(/Cs),
where the size of the orbit is calculated to be |D2d |/|Cs|= 8/2 = 4.

By placing A = CH2OH, the molecule 4-3 of D2d is converted into the correspond-
ing promolecule 4-2 of Td . The four-membered D2d(/Cs)-orbit of 4-3 is converted into
the four-membered Td(/C3v)-orbit of 4-2, where the size of the orbit is unchanged to be
|Td |/|C3v|= 24/6 = 4. Theorem 4.1 permits such a case that the point group of the molecule
is different from that of the promolecule. This case is an example of mismatched case.

It should be noted that the promolecule 4-2 is also obtained by starting from methane
3-26 (Fig. 3.13 on page 78) by placing A = H. This case is a matched case, because the
four-membered Td(/C3v)-orbit of the methane molecule 3-26 is unchanged to give the four-
membered Td(/C3v)-orbit of the promolecule 4-2 in accord with Theorem 4.1.

4.1.2 Three Kinds of Sphericities

The next task is to formulate sphericities and chirality fittingness as common properties for
characterizing an orbit of a molecule (e.g., 3-29 and 4-3 in Fig. 4.1) and the corresponding
orbit of the derived promolecule (e.g., 4-1 and 4-2 in Fig. 4.1).
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A coset representation G(/Gi) is classified into three cases according to whether the
global point-group symmetry G and the local point-group symmetry Gi are achiral or chiral.
The terms concerning sphericity have been coined by Fujita to refer to the three cases as
follows [1,2]:

Definition 4.1 (Sphericities for Characterizing Coset Representations and Orbits).
– (Homosphericity) If both the global point-group symmetry G and the local point-group sym-

metry Gi are achiral, the coset representation G(/Gi) is defined as being homospheric. The
corresponding orbit of size |G|/|Gi| is referred to as a homospheric orbit.

– (Enantiosphericity) If the global point-group symmetry G is achiral but the local point-group
symmetry Gi is chiral, the coset representation G(/Gi) is defined as being enantiospheric. The
corresponding orbit of size |G|/|Gi| is referred to as an enantiospheric orbit, which is divided
into two halves of size |G|/2|Gi| under the maximum chiral subgroup of G.

– (Hemisphericity) If both the global point-group symmetry G and the local point-group sym-
metry Gi are chiral, the coset representation G(/Gi) is defined as being hemispheric. The
corresponding orbit of size |G|/|Gi| is referred to as a hemispheric orbit.

Exercise 4.1.
– Assign sphericities to the orbits appearing in the molecules (3-29 and 4-3) and the

promolecules (4-1 and 4-2) listed in Fig. 4.1 (page 88).
– Compare the sphericity of an orbit in each molecule with the sphericity of the corre-

sponding orbit in the derived promolecule.

4.1.3 Chirality Fittingness for Three Modes of Accommodation

The sphericities defined by Def. 4.1 specify the modes of accommodation in the corre-
sponding orbits. The term chirality fittingness is coined by Fujita to refer to the mode of
accommodation which is specified by the sphericity of each orbit [1,2]. Such modes of
accommodation are summarized in Fig. 4.2.

Chirality Fittingness of Homospheric Orbits
Because the local point-group symmetry Gi of a homospheric orbit G(/Gi)-orbit is achiral
according to Def. 4.1, the following theorem is obvious.

Theorem 4.2 (Chirality Fittingness of a Homospheric Orbit). A homospheric G(/Gi)-orbit is capa-
ble of accommodating the number |G|/|Gi| of achiral ligands (or proligands) of the same kind.

The mode of accommodation due to Theorem 4.2 is illustrated in Fig. 4.2(a), where the
homospheric orbit consists of |G|/|Gi| frames, each of which accommodates an achiral
proligand A in isolation.
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(a) Chirality fittingness of a homospheric orbit

A A · · · A
︸ ︷︷ ︸

|G|/|Gi|

(b) Chirality fittingness of an enantiospheric orbit

A A · · · A
A A · · · A
︸ ︷︷ ︸

|G|/2|Gi|

p p · · · p
p p · · · p
︸ ︷︷ ︸

|G|/2|Gi|

p p · · · p
p p · · · p
︸ ︷︷ ︸

|G|/2|Gi|

(c) Chirality fittingness of a hemispheric orbit

A A · · · A
︸ ︷︷ ︸

|G|/|Gi|

p p · · · p
︸ ︷︷ ︸

|G|/|Gi|

p p · · · p
︸ ︷︷ ︸

|G|/|Gi|

Fig. 4.2. Chirality fittingness of orbits of three kinds of sphericities.

The restriction of a homospheric orbit to the maximum chiral subgroup GC (cf. Sub-
section 3.2.4) results in no division, so as to give the following subduction of G(/Gi):

G(/Gi) ↓GC = GC(/G(C)i), (4.1)

where the achiral subgroup Gi of G is restricted to a chiral subgroup G(C)i of the maxi-
mum chiral subgroup GC, where the size of the orbit remain unchanged, i.e., |GC|/|G(C)i|
= |G|/|Gi|.

As found in Fig. 3.13 (page 78), the Td(/C3v)-orbit of 3-26, the C3v(/C3v)- and
C3v(/Cs)-orbit of 3-27, and the C2v(/Cs)- and C2v(/C ′s)-orbit of 3-28 are homospheric
according to Def. 4.1. The D2d(/Cs)-orbit of 4-3 (Fig. 4.1) is also homospheric according
to Def. 4.1. According to Eq. 4.1, we obtain Td(/C3v) ↓ T = T(/C3), C3v(/C3v) ↓ C3 =
C3(/C3), C3v(/Cs) ↓ C3 = C3(/C1), and so on. Each of these homospheric orbits accom-
modates achiral ligands of the same kinds (hydrogens, chlorines, or hydroxymethyls). The
corresponding promolecules have homospheric orbits, each of which accommodates achiral
proligands of the same kind, e.g., the achiral proligand A or B in the Cs(/Cs)-orbit of 4-1
as well as the four achiral A’s in the Td(/C3v)-orbit of 4-2 (Fig. 4.1). These results hold
true in general, so as to give Theorem 4.2 and the illustration of Fig. 4.2(a).

Chirality Fittingness of Enantiospheric Orbits
An enantiospheric G(/Gi)-orbit of size |G|/|Gi| (Def. 4.1) is divided into two halves of
size |G|/2|Gi| under the maximum chiral subgroup GC of G (cf. Subsection 3.2.4). Note
that the two halves become equivalent by reflection operations which are not contained in
the maximum chiral group (G−GC). It follows that the restriction to the maximum chiral
subgroup GC results in the following subduction of G(/Gi) [3]:

G(/Gi) ↓GC = 2GC(/Gi), (4.2)
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where the chiral subgroup Gi of G is also a subgroup of the maximum chiral subgroup GC,
or in several cases,

G(/Gi) ↓GC = GC(/Gi)+GC(/G ′i ), (4.3)

where Gi and G ′i are conjugate under G but not conjugate under GC. Because of |GC| =
|G|/2, the size |GC|/|Gi| (or |GC|/G ′i |) is equal to |G|/2|Gi|.

In order that the two halves are equivalent by reflection operations (G−GC), a set of
ligands (or proligands) contained in one half should be a mirror image of another set of
ligands (or proligands) contained in the other half. This requirement affords the following
theorem:

Theorem 4.3 (Chirality Fittingness of an Enantiospheric Orbit). An enantiospheric G(/Gi)-orbit is
divided into two halves, where one half is capable of accommodating achiral or chiral ligands (or
proligands) of same kind, and the other half is capable of accommodating achiral ligands (or proli-
gands) of the same kind as the original half or chiral ligands (or proligands) of the opposite chirality
sense to the original half.

The mode of accommodation due to Theorem 4.3 is illustrated in Fig. 4.2(b), where the
enantiospheric orbit is divided into two halves, each of which has |G|/2|Gi| frames. The two
sets of frames are filled by achiral proligands A or pairs of chiral proligands p/p in a manner
that the global point-group symmetry G is maintained. Even in the cases of accommodating
achiral proligands A’s, one half of A’s is the mirror image of the other half of A’s.

The Cs(/C1)-orbit of the promolecule 4-1 (or the molecule 3-29) is a two-membered
enantiospheric orbit, which accommodates two achiral proligands X’s (or hydrogen atoms
as achiral ligands) according to Theorem 4.3 and the first illustration of Fig. 4.2(b). It should
be noted that an achiral proligand X (or an achiral ligand H) in isolation is restricted to be
locally chiral after it is incorporated into either half of the Cs(/C1)-orbit of 4-1 (or 3-29).
It is a mirror image of another achiral proligand X (or another achiral ligand H) which is
incorporated into the other half of the Cs(/C1)-orbit.

The Cs(/C1)-orbit of a promolecule 4-4 (Fig. 4.3) exhibits one mode of accommoda-
tion of a pair of chiral proligands p/p, where one half of the Cs(/C1)-orbit accommodates
the proligand p and the other half accommodates the counterpart proligand p according to
the second (or the third) illustration of Fig. 4.2(b). The mode of accommodation can be also
applied to the molecule 4-5.

As found in the Cs(/C1)-orbit of another achiral promolecule 4-6 (Fig. 4.3), an opposite
packing is possible according to the third (or second) illustration of Fig. 4.2(b). This mode
of accommodation can be also applied to the molecule 4-7.

The relationship between 4-4 and 4-6 (or between 4-5 and 4-7) is referred to as
being ‘diastereomeric’ due to modern stereochemistry, or more definitely, as being RS-
diastereomeric due to Fujita’s stereoisogram approach [4–6]. The central atoms of 4-4 and
4-6 (or 4-5 and 4-7) are frequently called ‘pseudoasymmetric atoms’.
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Fig. 4.3. Orbits in promolecules and molecules for characterizing achiral 2,3,4-trihydroxyglutaric
acids. The two modes of packing are controlled by the chirality fittingness of an enantiospheric
Cs(/C1)-orbit.

Chirality Fittingness of Hemispheric Orbits
According to Def. 4.1, a chiral promolecule (or a chiral molecule) has hemispheric orbits,
but no homospheric nor enantiospheric orbits. The following theorem holds true obviously:

Theorem 4.4 (Chirality Fittingness of a Hemispheric Orbit). A hemispheric G(/Gi)-orbit is capable
of accommodating the number |G|/|Gi| of achiral or chiral ligands (or proligands) of the same kind.

The modes of accommodation are illustrated in Fig. 4.2(c).
All of the C1(/C1)-orbits appearing in bromochlorofluoromethane 3-30 (Fig. 3.13 on

page 78) are determined to be hemispheric, where each C1(/C1)-orbit accommodates an
atom H, Cl, Br, or F as an achiral ligand in isolation. Each mode of accommodation obeys
the first illustration of of Fig. 4.2(c). When incorporated, the local point-group symmetry
of each atom (or each achiral ligand) is restricted to be chiral. It should be noted that there
is an enantiomeric counterpart of 3-30, where it exhibits the same point-group symmetric
properties except optical rotations.

4.2 Prochirality

4.2.1 Confusion on the Term ‘Prochirality’

The term ‘prochirality’ has been originally proposed by Hanson to support pro-R/pro-S-
descriptors [7]. The term ‘prochirality’ for supporting pro-R/pro-S-descriptors has caused
continuous confusion, as found in later discussions without mathematical foundations [8–
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12]. This type of confusion is parallel to the confusion on the term ‘chirality’ for supporting
R/S-stereodescriptors of Cahn-Ingold-Prelog (CIP) system [13,14]. Such entangled discus-
sions that have attempted to justify the ‘prochirality’ for supporting pro-R/pro-S-descriptors
should be totally abandoned,2 because it is difficult to select proper and rational parts from
the accumulated discussions.

In fact, the IUPAC Recommendations 1974 [16] has given a polysemous definition of
the term ‘prochirality’ as follows:
– E-4.12(a) [defining the term ‘prochirality’ as a geometric concept]: “An achiral object

having at least one part of features that can be distinguished only by reference to a
chiral object or to a chiral reference frame is said to be prochiral, and the property of
having such a pair of features is termed prochirality. A consequence is that, if one of the
features of the pair in a prochiral object is considered to differ from the other feature,
the resultant object is chiral.”

– E-4.12(b) [defining the term ‘prochirality’ for supporting pro-R/pro-S-descriptors by
Hanson [7]]: “In a molecule an achiral center or atom is said to be prochiral if it would
be held to be chiral when two attached atoms or groups, that taken in isolation are
indistinguishable, are considered to be differ.”

The IUPAC Recommendations 1974 [16] has mainly given examples due to Rule E-4.12(b).
For example, Rule E-4.13 of [16] has exemplified pro-R/pro-S-descriptors by using the
methylene carbon atom of D-(+)-glyceraldehyde CH2(OH)–CH(OH)–CHO, which was de-
scribed in Hanson’s paper [7]. It follows that Rule E-4.12(b) as well as Hanson’s def-
inition permits the presence of a ‘prochiral center’ in such a chiral molecule as D-(+)-
glyceraldehyde, so that this example is contradictory to Rule E-4.12(a). Note that the prefix
pro- of the term prochiral stems from Greek pró- (before in time or place) so as to support
E-4.12(a) rather than E-4.12(b). In this meaning, Rule E-4.12(b) as well as Hanson’s defi-
nition of ‘prochirality’ has nothing to do with chirality as a geometic concept and should be
abandoned.

From the viewpoint of orbits, the methylene carbon atom of D-(+)-glyceraldehyde 4-9
has four ligands, each of which belongs to a one-membered hemispheric C1(/C1)-orbit, as
shown in Fig. 4.4. A proligand A or B in the corresponding promolecule 4-8 is achiral in iso-
lation (when detached) but becomes locally chiral after accommodated in a one-membered
hemispheric C1(/C1)-orbit. The two A’s in 4-8 (as well as two H’s in 4-9) are geometrically
different from each other, so that they are differentiated energetically even under achiral

2 The IUPAC Recommendations 1996 [15] has referred to the term ‘prochirality’ as “This term is used in
different, sometimes contradictory ways; four are listed below.” After the terms ‘stereoheterotopic’, ‘enan-
tiotopic’, and ‘diastereotopic’ were introduced [8,11], the term ‘stereoheterotopic’ has been misleadingly
used for the purpose of rationalize Hanson’s ‘prochirality’ [7]. However, the misleading usage of the term
‘stereoheterotopic’ for this purpose is strongly discouraged, as pointed out by the IUPAC Recommendations
1996 [15].
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Fig. 4.4. Orbits in glyceraldehyde under the point group C1

conditions. Moreover, the methylene carbon atom belongs to a one-membered hemispheric
C1(/C1)-orbit. The corresponding Young’s tableau shown in the rightmost part of Fig. 4.4
clearly demonstrates the inequivalence of the four proligands (two A’s, B and p).

If we obey E-4.12(b) due to Hanson’s definition [7], we are forced to say that the methy-
lene carbon atom is an achiral center or atom, even though it is locally chiral becasue it be-
longs to the one-membered hemispheric C1(/C1)-orbit. Hence, the terminology concerning
‘prochirality’ described in E-4.12(b) (due to Hanson’s definition [7]) is misleading from a
geometric point of view and should be abandoned.

Another confusion has appeared when Hirschmann [11, page 67] claimed that meso-
tartaric acid, which exhibits prochirality due to Rule E-4.12(a) (cf. [17, page 3326]), should
not be called ‘a prochiral compound’ according to Rule E-4.12(b): “In contrast to citric
acid, however, this compound (meso-tartaric acid) contains no prochiral centers since both
C-2 and C-3 are chiral centers with inverse configurations.” In a textbook on biochemistry
by Bentley [18, page 182], on the other hand, meso-tartaric acid was referred to as being
‘prochiral’ by applying Hirschmann’s superposition test [19]. To avoid this inconsistency,
Hirschmann [11] followed Hanson’s recommendation that “prochirality should be regarded
as an attribute of steric elements and not of the complete molecule”, so that his adopted way
was to nullify Rule E-4.12(a). This way is misleading because, logically speaking, there
should appear local prochirality and global prochirality, just as there appear local chirality
and global chirality.

Even under Rule E-4.12(b) for supporting pro-R/pro-S-descriptors by Hanson [7], the
bond between C-2 and C-3 in meso-tartaric acid (in place of “a prochiral center”) can be
regarded as a basis of ‘prochirality’ by considering the mathematical concept of centroid
and bicentroid by Jordan [20]. However, this way causes a further inconsistency, because
chiral tartaric acids are forced to be ‘prochiral’ according to Rule E-4.12(b).

The inconsistency concering the term ‘prochiral’ due to Rule E-4.12(b) has once been
discussed by Mislow and Siegel [17], where they stated “This ploblem (the above incon-
sistency) can be easily avoided if the usage of ‘prochirality’ with reference to prostereoiso-
merism is altogether abandoned, an such a course of action seems at least worthy of consid-
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eration.” The concept of sphericities of orbits proposed by Fujita [1,2] has supported a more
fundamental discussion on meso-tartaric acid [21], as discussed below (see page 108).

A definite solution to such entangled situations has been provided by introducing new
terminology on prochirality, which is based on the concept of sphericities [1,22]. This book
emphasizes the term prochirality based on the concept of sphericities [1,22], although the
new terminology has not so well-known to organic chemists, except that it has been recently
cited in a textbook on organic chemistry [23, page 173].

4.2.2 Prochirality as a Geometric Concept

In this book, the concept of prochirality is definitely used to specify geometric features
of stereochemistry [1,22]. The theoretical foundation of prochirality has been discussed in
terms of G j-blocks (or G j-ligands) contained in an enantiospheric G(/Gi)-orbit [3]. More-
over, the stereoisogram approach developed recently by Fujita [4–6] is capable of settling
long-standing confusion on the term ‘prochirality’ in stereochemistry [24], where the con-
cept of pro-RS-stereogenicity has been proposed to accomplish integrated treatment with
prochirality redefined in this section (Def. 4.2). A recent article by Fujita [25] has discussed
rational avoidance of misleading standpoints of the conventional term ‘prochirality’ for sup-
porting pro-R/pro-S-descriptors.

According to Def. 4.1, an enantiospheric G(/Gi)-orbit has two halves that are equiva-
lent under the global point-group symmetry G but inequivalent under the maximum chiral
subgroup GC (⊂G). Thereby, the term prochirality is defined as follows [1]:

Definition 4.2 (Prochirality). A prochiral molecule or promolecule is defined as an achiral molecule
or promolecule that has at least one enantiospheric orbit (cf. Def. 4.1).

According to Def. 4.2, the following theorem is obvious:

Theorem 4.5 (Signle-Step Synthesis). A prochiral (pro)molecule defined by Def. 4.2 can be con-
verted into a chiral (pro)molecule or its mirror-image conterpart (enantiomer) by a single-step syn-
thesis.

The expression “by a single-step synthesis” in Theorem 4.5 is essential to develop further
discussions. Such a single-step syntesis that differentiates the two halves of an enantio-
spheric orbit (Def. 4.1 and Fig. 4.2(b)) is traditionally called ‘asymmetric synthesis’, but is
referred to as a chiral synthesis in this book.

The key of determining prochirality is to specify the enantiosphericity of a coset repre-
sentation G(/Gi), as summarized in the following procedure:

Rule 4.1. Procedure for Determining Prochirality.
1. Determine a stereoskeleton and ligands to characterize a given molecule according to

the purpose of your discussion.
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2. The detected ligands are transformed into the corresponding proligands (cf. Def. 3.1
on page 53), so that the molecule is converted into the corresponding promolecule (cf.
Def. 3.3 on page 54).

3. Determine the global point-group symmetry G (or simply the global achirality or chirality)
of the promolecule.

4. Classify proligands into equivalence classes (orbits) by gathering proligands convertible
under the global point-group symmetry G. See Subsection 3.4.2.

5. Determine the local point-group symmetry Gi, which fixes any proligand of each equiv-
alence class (orbit). Or simply determine whether Gi is achiral or chiral.

6. Examine and classify G(/Gi) to be homospheric, enantiospheric, or hemispheric (cf.
Def. 4.1)

7. If at least one enantiospheric orbit is present, the promolecule (and the molecule) is
determined to be prochiral (Def. 4.2).

For example, the two proligands X’s in the promolecule 4-1 as well as the two hydro-
gens in the molecule 3-29 (Fig. 4.1) are accommodated in an enantiospheric Cs(/C1)-orbit.
Thereby, 4-1 (or 3-29) is concluded to be a prochiral promolecule (or a prochiral molecule)
according to Def. 4.2.

Either one of the two hydrogens in 3-29 (Fig. 4.1) is substituted for a fluorine atom,
the resultant molecule CHFClBr is chiral so as to exemplifying Theorem 4.5. Either one
of the two X’s in 4-1 is substituted for an achiral proligand Y in isolation, the resultant
promolecule CABXY is chiral so as to exemplify Theorem 4.5.

By placing four hydrogens on the four positions of an oxirane skeleton 3-12 of C2v-
symmetry (Fig. 3.7 on page 68), we obtain oxirane 4-10 with the moleculare formula C2H4O
(Fig. 4.5). The four hydrogens {1,2,3,4} of 4-10 construct an orbit governed by a coset rep-
resentation C2v(/C1), which is determined to be enantiospheric. Oxirane 4-10 is concluded
to be prochiral according to Def. 4.2. The four-membered enantiopheric orbit {1,2,3,4} is
divided into two orbits {1,4} and {2,3} under the maximum chiral subgroup C2. Thereby,
a single-step chiral synthesis is possible according to Theorem 4.5.
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Fig. 4.5. Prochiral oxirane derivatives having enantiospheric orbits.
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Exercise 4.2.
– Depict a pair of enantiomeric E-oxiranes with the composition H2X2 which are gener-

ated from oxirane 4-10.
– Compare enantiosphericity (as an attribute of an orbit) with enantiotopic relationships

by considering the four-membered C2v(/C1)-orbit of 4-10.

2,2-Dimethyloxirane 4-11 is characterized by two two-membered enantiospheric
C ′s(/C1)-orbits, which accommadate two hydrogens and two methyl ligands respectively
(Fig. 4.5). 2,2-Dimethyloxirane 4-11 is concluded to be prochiral according to Def. 4.2.
The two-membered enantiopheric orbit {1,3} with two hydrogens is divided into two
one-membered orbits {1} and {3} under the maximum chiral subgroup C1. Similarly,
the two-membered enantiopheric orbit {2,4} with two methyl ligands is divided into two
one-membered orbits {2} and {4} under the maximum chiral subgroup C1. Thereby, a
single-step chiral synthesis is possible according to Theorem 4.5.

cis-2,3-Dimethyloxirane 4-12 is characterized by two two-membered enantiospheric
Cs(/C1)-orbits, which accommadate two hydrogens and two methyl ligands respectively
(Fig. 4.5). Hence, cis-2,3-dimethyloxirane 4-12 is concluded to be prochiral according to
Def. 4.2. The two-membered enantiopheric orbit {3,4} with two hydrogens is divided into
two one-membered orbits {3} and {4} under the maximum chiral subgroup C1. Similarly,
the two-membered enantiopheric orbit {1,2} with two methyl ligands is divided into two
one-membered orbits {1} and {2} under the maximum chiral subgroup C1. Thereby, a
single-step chiral synthesis is possible according to Theorem 4.5.

The prochirality of cis-2,3-dimethyloxirane 4-12 is based on an oxirane skeleton, which
is in sharp contrast to ‘a prochiral center’ emphasized by Rule E-4.12(b) of the IUPAC Rec-
ommendations 1974 [16]. In other words, the prochirality of 4-12 due to enantiosphericity
has nothing to do with the assignability of pro-R/pro-S-descriptors. This means that the
prochirality based on the concept of sphericities is conceptually distinct from the ‘prochi-
rality’ defined in Rule E-4.12(b) of the IUPAC Recommendations 1974 [16] for supporting
pro-R/pro-S-descriptors by Hanson [7]. The former prochirality should be adopted and the
latter ‘prochirality’ should be abandoned after the term pro-RS-stereogenicity proposed by
Fujita is introduced (cf. Chapter 14).

Exercise 4.3.
– Assign an R/S-stereodescriptor to each carbon atoms of cis-2,3-dimethyloxirane 4-12.
– Discuss the similarity between cis-2,3-dimethyloxirane 4-12 and meso-tartaric acid

from a viewpoint of the assignability of R/S-stereodescriptors.
– Discuss the similarity between the ring C—C bond of 4-12 and the central C—C bond

of meso-tartaric acid from the viewpoint of prochirality.
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4.2.3 Enantiospheric Orbits vs. Enantiotopic Relationships

The attributive term enantiospheric characterizes the property (attribute) of an orbit of
molecular entities. In contrast, modern stereochemistry has traditionally relied on a rela-
tional term enantiotopic, which characterizes the relationship between pairwise entities. For
the purpose of assuring the compatibility of the present approach with the traditional way of
modern stereochemitry, it is convenient to define the relational term enantiotopic by starting
from the attributive term enantiospheric.

Because an enantiospheric G(/Gi)-orbit is divided into two halves as illustrated in Fig.
4.2(b), the relationship between the two halves is characterized by the term enantiotopic
defined as follows [1,2,26]:

Definition 4.3 (Enantiotopic Relationship as One Extreme Case (Membership Criterion)). An
enantiotopic relationship (as one extreme case) is defined as a relationship between one half
and the other half of an enantiospheric orbit (cf. Def. 4.1).

The two halves are separated under internal or external chiral conditions according to Eq.
4.2 or Eq. 4.3. Such an internal chiral condition is accomplished, for example, by a tentative
linkage of a chiral component (cf. Prelog’s rule [27]), while such an external chiral condition
is provided, for example, by the attack of chiral reagents (cf. BINAP [28]).

As an example, let us examine an octachloro derivative 4-13 of the adamantane-2,6-
dione skeleton 3-22 of D2d-symmetry (Fig. 3.11 on page 76). As shown in Fig. 4.6, 4-13
belongs to the point group D2d . According to Def. 4.2, the octachloro derivative 4-13 is
prochiral, because there is an enantiospheric D2d(/C1)-orbit of eight chlorine atoms (num-
bered from 1 to 8). The eight-membered enantiospheric D2d(/C1)-orbit is devided into two
halves, i.e., {1, 2, 3, 4} (shadowed) and {5, 6, 7, 8}, which are equivalent under D2d but in-
equivalent under D2. When the halves {1, 2, 3, 4} and {5, 6, 7, 8} are regarded as blocks in
the enantiospheric D2d(/C1)-orbit, each of the blocks is fixed by the subgroup D2. Hence,
the local point-group symmetry of each block (named D2-block) is determined to be D2,
so that a set of the two D2-blocks (two halves) can be regarded as a two-membered orbit
governed by the coset representation D2d(/D2), which is again enantiospheric. According
to Def. 4.3, one half {1, 2, 3, 4} (shadowed) and the other half {5, 6, 7, 8} in 4-13 are
enantiotopic to each other.

The membership criterion for the term enantiotopic (Def. 4.3) stems from the fact that
the two D2-blocks of in the D2d(/C1)-orbit of 4-13 ({1, 2, 3, 4} (shadowed) and {5, 6,
7, 8}) are equivalent under D2d but inequivalent under D2. This fact provides us with an
alternative defintion of the term enantiotopic (symmetry criterion):

Definition 4.4 (Enantiotopic Relationship as One Extreme Case (Symmetry Criterion)). Two
blocks equivalent under an achiral group G but inequivalent under its maximum chiral subgroup GC

are defined as being enantiotopic.

The membership criterion for the term enantiotopic (Def. 4.3) gives a basis of a further
definition of the term enantiotopic, as shown in Fig. 4.6. If the shadowed 4-13 is regarded
as a product of a hypothetical chiral labelling, the alternative labelling gives 4-13′. The
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Fig. 4.6. An octachloro derivative of D2d and tetrachloro derivatives of D2, which are derived from
an adamantane-2,6-dione skeleton.

hypothetically labeled species, 4-13 and 4-13′, are recognized to be enantiomeric to each
other. Hence, we arrive at an additional criterion for the term enantiotopic, i.e., substitution
criterion:

Definition 4.5 (Enantiotopic Relationship as One Extreme Case (Substitution Criterion)). Two
blocks capable of producing enantiomeric molecular entities by hypothetical chiral labelling are
defined as being enantiotopic.

Suppose that the chlorine atoms of the shadowed block in 4-13 (or 4-13′) are substituted by
hydrogens under chiral conditions (e.g. the attack of chiral reagents). Thereby, a tetrachloro
derivative 4-14 of D2 (or 4-14 of D2) is generated, where 4-14 and 4-14 are enantiomeric to
each other. The conversion of 4-13 of D2d into 4-14 of D2 (or 4-14 of D2) can be regarded
as a chiral synthesis, which consists of a single step. Hence, a prochiral molecule defined
by Def. 4.2 is capable of producing chiral molecules by a single step. The single step is rep-
resented by the following subductions concerning the D2d(/C1)-orbit for each C1-member
and the D2d(/D2)-orbit for each D2-block.

D2d(/C1) ↓ D2 = 2D2(/C1) (4.4)

D2d(/D2) ↓ D2 = 2D2(/D2). (4.5)

As an alternative extreme, each member of an enantiospheric G(/Gi)-orbit has a local
point-group symmetry Gi. If we focus our attention to each member, we obtain the following
definition:
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Definition 4.6 (Enantiotopic Relationship as the Other Extreme Case (Membership Criterion)).
An enantiotopic relationship (as the other extreme case) is defined as a relationship between
any one (pro)ligand in one half and any one (pro)ligand in the other half of an enantiospheric orbit
(Def. 4.1).

Let us examine a chlorine atom at the 1-position of the D2d(/C1)-orbit, as shadowed in
4-131 (Fig. 4.7). The shadowed species 4-131 is regarded as a reference. By applying the
respective operations of D2 to the reference 4-131, there appear four homomeric species,
4-131, 4-132, 4-133, and 4-134, which are equivalent under D2.3 On the other hand, a hypo-
thetical chiral labelling produces a shadowed species 4-13′5 as another reference, as shown
in the right of Fig. 4.7(a). By applying the respective operations of D2 to the reference 4-13′5,
there appear four homomeric species, 4-13′5, 4-13′6, 4-13′7, and 4-13′8. Note that 4-13′5 can
be produced from 4-131 by applying reflection operations (∈ D2d−D2),4 so that 4-131 and
4-13′5 are enantiomeric to each other, if our discussions are restricted to point-group sym-
metries.

By applying Def. 4.6, there appear four enantiotopic relationships, i.e., between 1-Cl
and 5-Cl (4-131 and 4-13′5), between 1-Cl and 6-Cl (4-131 and 4-13′6), between 1-Cl and
7-Cl (4-131 and 4-13′7), as well as between 1-Cl and 8-Cl (4-131 and 4-13′8), if a pair of
reference species is selected to be a pair of 4-131 and 4-13′5. These enantiotopic relationships
correspond to the enantiomeric relationships due to hypothetical chiral labelling shown in
Fig. 4.7(a).

Suppose that the chlorine atom of each shadowed block is substituted by hydrogen
under chiral conditions (e.g. the attack of chiral reagents). Thereby, there emerges a hep-
tachloro derivative 4-15 or 4-15, where 4-15 and 4-15 are enantiomeric to each other. The
conversion of 4-13 of D2d into 4-15 of C1 (or 4-15 of C1) can be regarded as a chiral syn-
thesis, which consists of a single step. Hence, 4-13 is capable of producing chiral molecules
by a single step, so that the prochirality due to Def. 4.2 corresponds to a single-step chi-
ral synthesis. The single step is represented by the following subduction concerning the
D2d(/C1)-orbit for each C1-member:

D2d(/C1) ↓ C1 = 8C1(/C1), (4.6)

which shows each of the remaining seven chlorine atoms or the hydrogen atom belongs to
a one-membered C1(/C1)-orbit.

4.2.4 Chirogenic Sites in an Enantiospheric Orbit

One extreme case defined by Def. 4.3 is concerned with a G(/GC)-orbit derived from
a G(/Gi)-orbit, while the other extreme case defined by Def. 4.6 is concerned with the

3 Strictly speaking, the renumbering of positions is necessary in accord with the operations of D2.
4 Strictly speaking, the renumbering of positions is necessary in accord with the reflections.
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Fig. 4.7. An octachloro derivative of D2d and heptachloro derivatives of C1, which are derived
from an adamantane-2,6-dione skeleton.

G(/Gi)-orbit itself. The former differentiates a block of GC-symmetry (e.g., a D2-block)
from the G(/GC)-orbit so as to yield a GC-molecule (e.g., a D2-molecule from D2d(/D2)
in Fig. 4.6). The latter differentiates a block of Gi-symmetry from the G(/Gi)-orbit so as
to yields a Gi-molecule (e.g., a C1-molecule from D2d(/C1) in Fig. 4.7). To refer to these
cases, a GC-chirogenic site for the former and a Gi-chirogenic site for the latter are used
according to the following definition [3]:

Definition 4.7 (H-Chirogenic Sites). A block selected from either half of a G(/Gi)-orbit is called a
H-chirogenic site, if the differentiation of the block from the remaining part of the orbit produces a
(pro)molecule of a chiral point group H.

This definition stems from the following theorem:

Theorem 4.6 (Presence of Chirogenic Site). Any block in one half of an enantiospheric G(/Gi)-
orbit possesses the counterpart in the other half, where the two blocks are equivalent under the
group G but inequivalent under the maximum chiral point group GC. Each of the blocks is called a
chirogenic site.
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The relationship between the two chirogenic sites of Theorem 4.6 are referred to as being
enantiotopic in a general fashion:

Definition 4.8 (Enantiotopic Relationship as a General Case (Membership Criterion)). An enan-
tiotopic relationship (as a general case) is defined as a relationship between a chirogenic site in
one half and the counterpart chirogenic site in the other half of an enantiospheric orbit (cf. Def.
4.1).

Any block in one half of an enantiospheric G(/Gi)-orbit is a chirogenic site described in
Theorem 4.6. The point-group symmetry H of the chirogenic site is not so easily specified
in order to apply Def. 4.7. However, it can be specified in several cases, as described above.

The case described in Fig. 4.7 is generalized to give the following theorem:

Theorem 4.7. Each Gi-block in a G(/Gi)-orbit is a Gi-chirogenic site.

This has once been reported as Corollary 2 of [3]. This theorem shows that Def. 4.6 is one
extreme case of Def. 4.8.

The case described in Fig. 4.6 is generalized to give the following theorem:

Theorem 4.8. Each of the two halves of a G(/Gi)-orbit is a GC-chirogenic site, where GC is the
maximum chiral subgroup of G.

This is once reported as Theorem 7 of [3]. This theorem shows that Def. 4.3 is the other
extreme case of Def. 4.8.

A regular representation G(/C1) has special properties, as described in Chapter 7 of
[2] and Section 6.4 of [29]. By applying the idea supporting Lemma 7.1 of [2], we are able
to derive the following theorem:

Theorem 4.9. An orbit governed by a regular representation G(/C1) has a chirogenic site that
corresponds to every subgroup.

This is once reported as Theorem 8 of [3].
Let us examine Theorem 4.9 by using the octachloro derivatives of the adamantane-

2,6-dione skeleton. Because the coset representation D2d(/C1) is a regular representation,
the C ′2-block {1,2} is a C ′2-chirogenic site according to Theorem 4.9 (C ′2 ⊂D2d), as shown
in Fig. 4.8. The shadowed species 4-1312 produced by a hypothetical chiral labelling is
selected as a reference. Then there appears a homomeric 4-1334 under the action of the
maximum chiral subgroup D2. On the other hand, another reference 4-13′56 can be selected
to produce homomeric species, 4-13′56 and 4-13′78 under the action of D2. A pair of shad-
owed references, 4-1312 and 4-13′56, can be regarded as a pair of enantiomers, if the action
of reflections is considered under point-group symmetries. Note that the four blocks of
4-1312, i.e., {1,2}, {3,4}, {5,6}, and {7,8}, construct an enantiospheric four-membered
orbit governed by the coset representation D2d(/C ′2). Theorem 4.7 indicates the presence of
a C ′2-chirogenic site. Note that the relationship between {1,2} and {5,6} as well as between
{1,2} and {7,8} is enantiotopic to each other according to Def. 4.8.
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Fig. 4.8. An octachloro derivative of D2d and hexachloro derivatives of C ′2, which are derived from
an adamantane-2,6-dione skeleton.

As shown in Fig. 4.8, the shadowed chlorine atoms are converted into hydrogens under
chiral conditions to give either one of C ′2-molecules, 4-16 and 4-16, which are enantiomeric
to each other.

On the other hand, the C2-block {1,3} in the D2d(/C1)-orbit of the octachloro-
adamantane-2,6-dione is a C2-chirogenic site according to Theorem 4.9 (C2 ⊂ D2d), as
shown in Fig. 4.9. The shadowed species 4-1313 produced by a hypothetical chiral labelling
is selected as a reference. Then there appears a homomeric 4-1324 under the action of the
maximum chiral subgroup D2. Another reference 4-13′57 can be selected to give homo-
meric species, 4-13′57 and 4-13′68. A pair of shadowed references 4-1313 and 4-13′57 can
be regarded as being enantiomeric. Note that the four blocks of 4-1313, i.e., {1,3}, {2,4},
{5,7}, and {6,8}, construct an enantiospheric four-membered orbit governed by the coset
representation D2d(/C2). Theorem 4.7 indicates the presence of a C2-chirogenic site. Note
that the relatioinship between {1,3} and {5,7} as well as between {1,3} and {6,8} is
enantiotopic to each other according to Def. 4.8.

As shown in Fig. 4.9, the shadowed chlorine atoms are converted into hydrogens under
chiral conditions to give either one of C2-molecules, 4-17 and 4-17, which are enantiomeric
to each other.
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Fig. 4.9. An octachloro derivative of D2d and hexachloro derivatives of C2, which are derived from
an adamantane-2,6-dione skeleton.

Exercise 4.4.
– Examine adamanetane-2,6-dione derivatives shown in Fig. 4.10 to determine orbits

contained in them.
– Comfirm that 4-18 and 4-19 are prochiral.
– Apply Theorem 4.7 to 4-18 and 4-19.
– Apply Theorem 4.8 to 4-18 and 4-19.
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Fig. 4.10. Adamantane-2,6-dione derivatives with an enantiospheric orbit. The symbols p and p
represent a pair of enantiomeric proligands in isolation.



4.2 Prochirality 105

��
��
��

��

����
�� ��

1

2

34

5
6

7

8

9

10

11

12

13

14

15
16

17 18

19

20

�
�
��

��

����
�� ��

1

2

34

5
6

7

8

9

10

11

12

13

14

15
16

17 18

19

20

�
�
��

��

����
�� ��

1

2

34

5
6

7

8

9

10

11

12

13

14

15
16

17 18

19

20

4-20 (Th) 4-21 (C2) 4-21 (C2)
︸ ︷︷ ︸

enantiomeric

Fig. 4.11. Eight-membered enantiospheric Th(/C3)-orbit derived from a dodecahedrane skeleton
and its desymmetrization into C2-molecules.

Dodecahedrane5 with the molecular formula C20H20 can be regarded as a stereoskele-
ton of the point group Ih. Combinatorial enumeration based on the dodecahedrane skeleton
has been investigated by Fujita [31–34]. Among the enumerated derivatives [31], there ap-
pears an octa-substituted derivative 4-20 of Th-symmetry, where eight achiral substituents
represented by an open circle construct an enantiospheric orbit governed by the coset repre-
sentation Th(/C3). By using this derivative, let us examine a C2-chirogenic site appearing
in an enantiospheric Th(/C3)-orbit [3]. This examination provides us with an example of
Theorem 4.6 and Def. 4.7.

Suppose that an open circle in 4-20 represents a chlorine atom. The set of eight chlorine
atoms {2,5,7,9,12,14,16,19} constructs an enantiospheric Th(/C3)-orbit (|Th|/|C3| =
24/3 = 8), because each chlorine atom is fixed by the local point-group C3. One half
{2,7,14,19} and the other half {5,9,12,16} are equivalent under the point group Th, but
inequivalent under the maximum chiral point group T.

According to Theorem 4.6, a block {2,7} can be selected as a chirogenic site from one
half {2,7,14,19}. Then, the mirror-image counterpart is determined to be {5,9} selected
from the other half {5,9,12,16}. The local point-group symmetry of the block {2,7} is
determined to be C2, because the hypothetical moiety 2—1—8—7 (containing the block
{2,7}) is fixed by the two-fold axis bisecting the bond 1–8 (and the bond 13–20). The
block {2,7} generates homotopic or enantiotopic chirogenic sites under the action of Th.
Thus, such homotopic chirogenic sites as generated by rotations (∈ T) are determined to
be {2,7}, {2,14}, {2,19}, {7,14}, {7,19}, and {14,19}, which are selected from one half
{2,7,14,19} of the Th(/C3)-orbit. Such enantiotopic chirogenic sites as generated by re-
flections (∈ Th −T) are determined to be {5,9}, {5,12}, {5,16}, {9,12}, {9,16}, and
{12,16}, which are selected from the other half {5,9,12,16} of the Th(/C3)-orbit. The
resulting homotopic or enantiotopic chirogenic sites construct an orbit governed by a coset
representation Th(/C2) (the size: |Th|/|C2| = 24/2 = 12), because each chirogenic site is
fixed by C2 or its conjugate subgroups.

5 Total synthesis of dodecahedrane is extensively studied by Paquette and his coworkers [30].
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According to Theorem 4.7, the block {2,7} belonging to the coset representation
Th(/C2) is concluded to be a C2-chirogenic site. In fact, the substitution of the chlorine
atoms of the block {2,7} by hydrogens (represented by a solid circle) generates a C2-
molecule 4-21, as shown in Fig. 4.11. The counterpart synthesis concerning the block
{5,9} generates another C2-molecule 4-21, which is enantiomeric to 4-21.

Exercise 4.5. cf. [3].
– Apply Theorem 4.7 to 4-20 with a Th(/C3)-orbit in order to generate C3-derivatives,

which are enantiomeric to each other.
– Apply Theorem 4.8 to 4-20 with a Th(/C3)-orbit in order to generate T-derivatives,

which are enantiomeric to each other. Note that T is the maximum chiral subgroup of
Th.

Remark 4.1 (Relational Term enantiotopic vs. Attributive Term enantiospheric).
– The term enantiotopic has been originally coined by Mislow and Raban [35],

where the symmetry criterion and the substitution criterion were proposed to
specify enantiotopicity. The symmetry criterion is that “Groups are said to
be enantiotopic by internal comparison if they can be interchanged only by a
rotation-reflection operations (Sn), and not simply by a rotation [Cn (n > 1)], to
give a structure indistiguishable from the original.” The substitution criterion is
that “If the structueres resulting from substitution of the achiral G groups by an
achiral G ′ group are enantiomers, the groups themselves are enantiotopic.” The
term enantiotopic is a relational term, which specifies a relationship between
paired objects. It makes light of the concept of equivalence classes (orbits).

– The term enantiospheric has been originally coined by Fujita [1] on the basis
of the concept of equivalence classes (orbits), where the membership criterion
(Def. 4.8) is proposed for defining the relational term enantiotopic. The term
enantiospheric is an attributive term, which specifies the property (or attribute)
of an equivalence class (orbit).

– The attributive term enantiospheric is capable of deducing the relational term
enantiotopic, as found in Def. 4.3 (as one extreme case), Def. 4.6 (as the other
extreme case), and Def. 4.8 (as a general case). But the reverse deduction is not
so easy, in particular, without the concept of orbits.

Remark 4.2 (Chirotopic vs. Chirogenic).
– The term chirotopic has originally been coined by Mislow and Siegel [17] to

characterize local chirality. Thus, “any atom, and, by extension, any point or seg-
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ment of the molecular model, chirotopic, whether occupied by an atomic nucleus
or not, that resides within a chiral environment” is characterized as chirotopic.
This means that the term chirotopic is an attributive term. Note that the suffix
‘-topic’ is commonly used in a natural extension of the previous and generally ac-
cepted terminology concerning enantiotopic [35], although the term enantiotopic
is a relational term. It is desirable to differentiate between attributive terms and
relational terms without using such a common suffix.

– Because an chirotopic atom may be present in both achiral and chiral molecular
models, the term chirotopic is not directly related to the term prochirality. From
the present viewpoint of considering equivalence classes (orbits), the term chi-
rotopic is concerned with both an enantiospheric orbit and a hemispheric orbit.
In this book, we use the term locally chiral is used in place of the term chiro-
topic to characterize one half of an enantiospheric orbit as well as the whole of a
hemispheric orbit.

– The term chirogenic has originally been coined by Fujita [3] to chracterize the
local chirality of an enantiospheric orbit, not of a hemispheric orbit. Thereby, the
term chirogenic is directly related to the term prochirality.

4.2.5 Prochirality Concerning Chiral Proligands in Isolation

The chirality fittingness of an enantiospheric orbit shown in Fig. 4.2(b) indicates that a
set of chiral proligands (p) and another same-sized set of enantiomeric proligands (p) in
isolation can be accommodated in the two halves of an enantiospheric orbit. A molecular
entity having such an enantiospheric orbit as filled by p’s and p’s is characterized to be
prochiral according to Def. 4.2. One half filled by p’s and the other half filled by p’s are
enantiotopic to each other according to Def. 4.3. A chirogenic site can be selected from
either one of the two halves to generate chiral molecular entities under chiral conditions (cf.
Exercise 4.4 and Fig. 4.10).

Let us examine the two-membered enantiospheric orbit {p,p} of 4-4 (Fig. 4.3), where
the prolignd p and the other proligand p are enantiotopic to each other. If a selective chi-
ral attack on the proligand p in 4-4 with the composition ABpp generates another chiral
prolignd q, there appears a chiral promolecule 4-22 with the composition ABqp, as shown
in Fig. 4.12. If an opposite chiral attack on the proligand p in 4-4 with the composition
ABpp generates another chiral prolignd q, there appears another chiral promolecule 4-22
with the composition ABqp, as shown in Fig. 4.12. The product promolecules 4-22 and
4-22 are enantiomeric to each other. These results indicate the prochirality of 4-4. Note
that the conversion of the proligand p into q (or p into q) in the promolecule 4-4 cor-
responds, for example, to the esterification of either ligand COOH into COOCH3 in the
2,3,4-trihydroxyglutaric acid 4-5 (Fig. 4.3).
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Fig. 4.12. Prochirality concerning chiral proligands in isolation.

If a selective chiral attack on the proligand p in 4-4 with the composition ABpp gen-
erates an achiral prolignd X, there appears a chiral promolecule 4-23 with the composition
ABXp, as shown in Fig. 4.12. If an opposite chiral attack on the proligand p in 4-4 with the
composition ABpp generates an achiral prolignd X (X = X), there appears another chiral
promolecule 4-23 with the composition ABXp, as shown in Fig. 4.12. The product pro-
molecules 4-23 and 4-23 are enantiomeric to each other. These results indicate the prochi-
rality of 4-4. Note that the conversion of the proligand p into X (or p into X) in the pro-
molecule 4-4 corresponds, for example, to the oxidation of either ligand CH(OH)-COOH
into CO-COOH in the molecule 4-5.

The two-membered enantiospheric orbit {p,p} of 4-6 (Fig. 4.3) exhibits similar behav-
iors so as to generate 4-24 and 4-24 (or 4-25 and 4-25), which are enantiomeric to each
other. These results indicate the prochirality of 4-6.

The troublesome case of meso-tartaric acid described on page 94 is clearly demon-
strated as a prochiral molecule by means of the presence of an enantispheric orbit (Fig.
4.13). The molecule 4-28 of meso-tartaric acid is generated from two chiral ligands of op-
posite chirality senses in isolation (p and p), which are linked through a single bond. The
highest-attainable symmetry of 4-28 is determined to be Cs, so that the two ligands con-
struct a two-membered orbit governed by Cs(/C1), which is enantiospheric. Note that a
mirror plane for the point group Cs is perpendicular to the central C2–C3 bond and runs
through its midpoint. Each ligand is fixed under the identity group C1, which is regarded
as the local point-group symmetry. The presence of an enantiospheric orbit indicates the
prochirality of 4-28.

Another viewpoint is possible by taking account of an orbit of two carboxyl groups
(COOH), an orbit of two hydroxyl groups (OH), and an orbit of two hydrogen atoms (H).
Each of these orbits is governed by a coset representation Cs(/C1), which is enantiospheric.
The presence of enantiospheric orbits indicates the prochirality of 4-28.

A further viewpoint should be added. Suppose that the two chiral ligands are interpreted
as a pair of proligands p and p, which are placed on a dumbbell skeleton 4-26. Thereby,
there appears a promolecule 4-27. The pair of p and p in 4-27 constructs a two-membered
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Fig. 4.13. Prochiral promolecule derived from a dumbbell skeleton for characterizing meso-
tartaric acid.

C∞h(/C∞)-orbit, which is determined to be enantiospheric. Note that a mirror plane for the
global point-group symmetry C∞h is perpendicular to the central bond and runs through its
midpoint. Each proligand is fixed under the infinite rotatory group C∞, which is regarded
as the local point-group symmetry. The presence of an enantiospheric orbit indicates the
prochirality of 4-27.

It is worthwhile to point out the importance of the dumbbell skeleton 4-26 in discussing
molecules with two carbon centers. Mathematically (graph-theoretically) speaking, acyclic
molecules are regarded as trees, which are categorized into centroidal and bicentroidal trees
according to Jordan [20]. Hanson’s pro-R/pro-S-descriptors [7] as well as Cahn-Ingold-
Prelog’s R/S-stereodescriptors[13,14] have laid stress on ‘prochiral centers’ or ‘chiral cen-
ters’, where each molecule is factorized into centroidal trees. However, the above discussion
on meso-tartaric acid indicates that such molecules with two carbon centers should be re-
garded as bicentroidal trees, if global point-group symmetry is taken into consideration.

This approach emphasizing bicentrodal properties has been developed by Fujita [21,
36], where a dumbbell skeleton of D∞h-symmetry is used as a stereoskeleton. By placing
two proligands (A, B: achiral; p, p, q: chiral) on the two positions governed by a coset repre-
sentation D∞h(/C∞v), there appear six promolecules listed in Table 4.1, which summarizes
the subduction of D∞h(/C∞v). Among them, only 4-32 is concluded to be globally prochiral
because it has an enantiospheric C∞h(/C∞)-orbit.

4.2.6 Global Prochirality and Local Prochirality

As found in the preceding discussions, prochirality (global prochirality) appears in an achi-
ral promolecule (or molecule) having at least an enantiospheric orbit (Def. 4.2). Such global
prochirality is characterized by an enantiospheric orbit governed by G(/Gi), where the achi-
ral promolecule (or molecule) belongs to the global symmetry G and the local symmetry Gi

is a chiral subgroup of G.
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Table 4.1. Subduction of D∞h(/C∞v) [21]

subduction generated coset sphericity
of D∞h(/C∞v) representation

D∞h(/C∞v) ↓ D∞h D∞h(/C∞v) homospheric
D∞h(/C∞v) ↓ C∞v 2C∞v(/C∞v) homospheric
D∞h(/C∞v) ↓ C∞h C∞h(/C∞) enantiospheric
D∞h(/C∞v) ↓ D∞ D∞(/C∞) hemispheric
D∞h(/C∞v) ↓ C∞ 2C∞(/C∞) hemispheric

��
����
��
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A
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����
��
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A
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����
��

p

p
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p

p
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p
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q

p

4-29(D∞h) 4-30(C∞v) 4-31(D∞h) 4-32(C∞h) 4-33(C∞) 4-34(C∞)

If an achiral proligand in a homospheric orbit has an inner structure, it may posses an
enantiospheric suborbit, which exhibits local prochirality. Such local prochirality is charac-
terized by an enantiospheric orbit governed by G j(/G( j)

k ), where G j is an achiral subgroup

of the global symmetry G, while G( j)
k is a chiral subgroup of G j.

Let us consider a homospheric G(/G j)-orbit. This is combined with an enantiospheric
G j(/G( j)

k )-suborbit, so as to genarate G(/G( j)
k ), which is determined to be enantiospheric.

The G(/G( j)
k )-orbit results in global prochirality.

Let us examine succinic acid 4-36 shown in Fig. 4.14. The two achiral hydroxymethyl
ligands in the molecule 4-36 construct an orbit governed by C2v(/Cs), which is determined
to be homospheric. The corresponding dumbbell-type promolecule 4-35 with two proli-
gands (A’s) has a homospheric D∞h(/C∞v)-orbit {A,A}, which is determined to be homo-
spheric.

Because each proligand A has an inner structure, the two hydrogen atoms of A (=
CH2OH) construct a suborbit {Hα ,Hβ}, governed by a coset representation Cs(/C1), where
the local symmetry Cs appears in a coset representation C2v(/Cs) in a nested fashion. By
focusing our attention on the 2-carbon, we obtain the promolecule 4-37, where the Cs(/C1)-
suborbit of the two hydrogens {Hα ,Hβ} is explicitly illustrated by surrounding in a gray
box (A = CH2OH and B = COOH). Because the Cs(/C1)-suborbit is enantiospheric, it
brings about local prochirality at the 2-position.

The successive (nested) appearance of C2v(/Cs) and Cs(/C1) results in a coset respre-
sentation C2v(/C1), which governs a four-membered orbit of hydrogens {Hα2,Hβ2,Hα3,Hβ3}
contained in 4-36 (the subscript numbers 2 and 3 represent the 2- and 3-carbon). The enan-
tiospheric C2v(/C1)-orbit indicates that the orbit of the four hydrogens at the 2-carbon and
3-carbon brings about global prochirality.

Let us next examine glycerol 4-39 shown in Fig. 4.15, where its highest-attainable sym-
metry is determined to be Cs. The two hydroxylmethyl ligands construct an orbit governed
by an enantiospheric coset representation Cs(/C1). If we place X = CH2OH, A = H, and B
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Fig. 4.15. Global prochirality and no local prochirality in glycerol. The promolecule 4-38 (A = H
and B = OH) exhibits enantiosphericity, while the molecule 4-39 exhibits enantiosphericity globally.
The promolecule 4-40 (p = CH(OH)CH2OH and B = OH) illustrates no local prochirality at the 1-
position.

= OH, we obtain the corresponding promolecule 4-38. The two achiral proligands {X,X}
construct an enantiospheric Cs(/C1)-orbit. Hence, the molecule 4-39 and the promolecule
4-38 are determined to be prochiral with respect to these enantiospheric orbits.

If we consider the inner structure of 4-39, an orbit of two hydroxyl ligands, an orbit of
two hydrogens {Hα ,Hβ} and another orbit of two hydrogens {Hγ ,Hδ} are all determined to
be enantiospheric because of their coset reptresentation Cs(/C1). These results are parallel
to the enantiospheric Cs(/C1)-orbit of {X,X} in the promolecule 4-38.

If we focus our attention to the 1-position of 4-39, we obtain the promolecule 4-40,
which belongs to C1. Note tha we place p = CH(OH)CH2OH (a chiral proligand in isolation)
and B = OH. The promolecule 4-40 contains no enantiospheric orbits and by no means
exhibits prochirality. In particular, the two hydrogens in 4-40 is inequivalent under the local
symmetry C1, so that Hα belongs to a one-membered C1(/C1)-orbit and Hγ belongs to
another one-membered C1(/C1)-orbit.

Consider the molecule 4-42 of 2,4-dihydroxyglutaric acid. The highest-attainable sym-
metry of 4-42 is determined to be Cs, as shown in Fig. 4.16. The local point-group symmetry
at the 2-position (or 4-position) is restricted to C1, because the 2-position (or 4-position) is
fixed under C1. It follows that the two ligands p and p (= CH(OH)COOH) are fixed under
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Fig. 4.16. Global prochirality in 2,4-dihydroxyglutaric acid. The promolecule 4-41 as well as the
molecule 4-42 has an enantiosphericity Cs(/C1)-orbit of {p,p}. The two hydrognes Hα and Hβ
separately belong to one-membered homospheric Cs(/Cs)-orbits.

C1 but interchangeable under Cs, so as to construct an enantiospheric Cs(/C1)-orbit. The
global prochirality is deduced by the presence of the enantiospheric Cs(/C1)-orbit of {p,p}.

The discussion described in the preceding paragraph holds true for the prochirality of
the corresponding promolecule 4-41. It should be emphasized that the prochirality of 4-41 as
well as of 4-42 (concerning the enantiospheric Cs(/C1)-orbit of {p,p}) essentially exhibits
the same characteristics as the prochirality of the promolecule 4-4 as well as 4-6 (or the
prochirality of the molecule 4-5 as well as 4-7), which have been examined in Fig. 4.12.

The two hydrognes Hα and Hβ in 4-42 as well as in 4-41 separately belong to one-
membered homospheric Cs(/Cs)-orbits. Although Hα and Hβ represent the same hydrogen
atom when detached, they are geometrically different from each other under the accommo-
dated conditions in 4-42 as well as in 4-41. In other words, Hα and Hβ are not interchange-
able under the global symmetry Cs.

Remark 4.3 (Misleading Standpoints for So-Called ‘Factorization’). The so-called
‘factorization’ into ‘chiral centers’ and ‘prochiral centers’ [7] is misleading from the
purely-geometric point of view, because both ‘chiral centers’ [13,14] and ‘prochiral
centers’ [7] are not based on the purely-geometric concepts of chirality and achiral-
ity. Because of the following misleading features, the ‘factorization’ by Hanson [7]
should be abandoned.
– If we obey the so-called ‘factorization’ [7, Model V], we are forced to see that

there are ‘two chiral centers’ (the 2- and 4-carbon atoms) and ‘one prochiral
center’ (the 3-carbon atom) in 2,4-dihydroxyglutaric acid 4-42. As a result of the
‘factorization’, the ‘two chiral centers’ (concerning the two ligands {p,p}) are
excluded from our domain of thinking throughout the subsequent discussions on
‘prochirality’. From the present purely-geometric viewpoint, in contrast, the set
{p,p} constructs a two-membered equivalence class (orbit), which is governed
by an enantiospheric coset representation Cs(/C1), as discussed in Fig. 4.16.
Hence, 4-42 is prochiral with respect to the enantiospheric Cs(/C1)-orbit {p,p}.



References 113

– As a result of the ‘factorization’ [7, Model V], the ‘one prochiral center’ (the
3-carbon atom) in 2,4-dihydroxyglutaric acid 4-42 is concerned with two hydro-
gens (Hα and Hβ ). Note that achiral 2,4-dihydroxyglutaric acid 4-42 is converted
into either one of achiral 2,3,4-trihydroglutaric acids 4-5 (Hα → OH) or 4-7 (Hβ
→ OH) (compare Fig. 4.16 with Fig. 4.3). It is misleading geometrically to use
the term ‘prochiral’ for the purpose of indicating the process of converting an
achiral molecule into another achiral molecule. Moreover, the resultant 4-5 and
4-7 are not enantiomeric, but ‘diastereomeric’ to each other. This fact is incon-
sistent to the original aim of coinage of the term ‘prochirality’.

From the viewpoint of Fujita’s stereoisogram approach [4–6], Cahn-Ingold-
Prelog’s ‘chiral centers’ [13,14] is not based on the purely-geometric concept of chi-
rality as well as Hanson’s ‘prochiral centers’ [7] is not based on the purely-geometic
concept of prochirality. Just as Cahn-Ingold-Prelog’s ‘chiral centers’ [13,14] should
be replaced by a newly-defined RS-stereogenic centers [37] (cf. Chapter 13), Han-
son’s ‘prochirality’ [7] should be replaced by a newly-defined pro-RS-stereogenicity
[25] (cf. Chapter 14).
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5 Foundations of Enumeration Under Point
Groups

5.1 Orbits Governed by Coset Representations

The algebraic meaning of orbits described preliminarily in Subsection 3.2.5 is here demon-
strated in a more general fashion according to Chapter 5 of [1]. Thereby, the procedure for
determining orbits (Rule 3.1 on page 80) is restated algebraically.

5.1.1 Coset Representations

A group G is decomposed by its subgroup Gi into a sum of cosets:

G = Gig1 +Gig2 + · · ·+Gig� + · · ·+Gign, (5.1)

where each representative g� (� = 1,2, · · · ,n, where g1 = I) is selected arbitrarily from the
corresponding coset and n = |G|/|Gi|. This process is called a coset decomposition. The
stabilizer of each coset Gig� is represented by g−1

� Gig�, which is conjugate to Gi. Let us
collect the cosets appearing in the right-hand side of Eq. 5.1 to give an ordered set of cosets:

G/Gi = {Gig1
1

, Gig2
2

, · · · , Gig�
�

, · · · , Gign
n
}, (5.2)

where the sequential numbers are attached below the respective cosets.
Suppose that an element g of G acts on each coset Gig� to give Gig�g. Then, there

appears another ordered set as follows:

G/Gi|g = {Gig1g
1g

, Gig2g
2g

, · · · , Gig�g
�g

, · · · , Gigng
ng
} (5.3)

for g ∈GC, where GC denotes the maximum chiral subgroup of G if the group G represents
an achiral point group.1 The sequential numbers 1g, 2g, etc. represent that the cosets num-
bered by 1, 2, etc. are converted into the cosets numbered by 1g, 2g, etc. on the action of g.
If g represents a reflection (g ∈G−GC), the resulting set is differentiated from Eq. 5.3 by
attaching a sequential number with an overbar:

G/Gi|g = {Gig1g
1g

, Gig2g
2g

, · · · , Gig�g
�

g
, · · · , Gigng

ng
} (5.4)

1 The propositions of this chapter hold true for groups in general, although the discussions on them are
restricted to point groups. For example, G can be selected to be an extended group derived by adding a
reflection operation to the symmetric group of degree n (S[n]).
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for g ∈ G−GC. The conversion of G/Gi (Eq. 5.2) into G/Gi|g (Eq. 5.3 or Eq. 5.4) is
denoted by a permutation as follows:

πg =

(

G/Gi

G/Gi|g

)

=

(

Gig1 Gig2 · · · Gig� · · · Gign

Gig1g Gig2g · · · Gig�g · · · Gigng

)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(

1 2 · · · � · · · n
1g 2g · · · �g · · · ng

)

for g ∈GC

(

1 2 · · · � · · · n
1g 2g · · · �

g · · · ng

)

for g ∈G−GC.

(5.5)

The permutations πg for all elements g’s of G are gathered to give the following set called
a coset representation:

G(/Gi) =
{

πg | ∀g ∈G
}

, (5.6)

where the symbol G(/Gi) is coined by Fujita to emphasize the correspondence between the
global symmetry G and the local symmetry Gi in the action of the point group G [2,3].2

A given group G contains a set of subgroups. After a representative is selected from
each set of conjugate subgroups, such representatives are collected to give a non-redundant
set of subgroups (SSG):

SSGG = {G1, G2, · · · ,Gi, · · · ,Gs}, (5.7)

where the subgroups are ordered in an ascending order of subgroups, G1 = C1 (the identity
group), and Gs = G. See the preliminary discussion on Eq. 3.20 (page 62) and the examples
demonstrated therein.

According to Eq. 5.6 for each subgroup selected from SSGG (Eq. 5.7), we obtain the
following set of coset representations up to conjugacy:

SCRG = {G(/G1), G(/G2), · · · ,G(/Gi), · · · ,G(/Gs)}. (5.8)

See the preliminary discussion on Eq. 3.31 (page 67) and the examples demonstrated
therein. For a more detailed discussion, see [1, Chapter 5].

As an example of obtaining coset representations, let us reexamine Exercise 3.6 (page
72). The SSG of C2v is obtained as follows:

SSGC2v = {C1,C2,Cs,C ′s,C2v}, (5.9)

2 A coset representation is called a transitive permutation representation in a mathematical context. The
term coset representation and the symbol G(/Gi) are adopted in this book for the purpose of emphasiz-
ing the correspondence between algebraic formulations and geometric embodiments through the concept of
equivalence classes (orbits). Note that a coset representation G(/Gi) corresponds to an equivalence class
(orbit) in a one-to-one fashion.
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Table 5.1. Coset Representations of C2v

C2v C2v(/C1) C2v(/C2) C2v(/Cs) C2v(/C ′s) C2v(/C2v)
I (1)(2)(3)(4) (1)(2) (1)(2) (1)(2) (1)

C2 (1 4)(2 3) (1)(2) (1 2) (1 2) (1)
σv(1) (1 2)(3 4) (1 2) (1)(2) (1 2) (1)
σv(2) (1 3)(2 4) (1 2) (1 2) (1)(2) (1)

where C2 = {I
1
,C2

4
}, Cs = {I

1
,σv(1)

2
}, and C ′s = {I

1
,σv(2)

3
}. Note that the number attached

to each operation corresponds to the sequential number of the multiplication table of C2v

(Table 3.6 on page 71). The coset decomposition of C2v by C2 is obtained as follows:

C2v = C2
1
{1 4}

+C2σv(1)
2
{2 3}

(5.10)

Thereby, a set of cosets C2v/C2 is obtained according to Eq. 5.2:

C2v/C2 = { C2
1
{1 4}

,C2σv(1)
2
{2 3}

} I ∼ (1)(2),
(5.11)

which gives a permutation I ∼ (1)(2) by applying Eqs. 5.4 and 5.5. This procedure based
on Eqs. 5.4 and 5.5 is repeated to cover all the operations of C2v, so that the following
permutations are obtained:

C2v/C2|C2
= {C2C2

1
{4 1}

, C2σv(2)
2
{3 2}

} C2 ∼ (1)(2)
(5.12)

C2v/C2|σv(1)
= {C2σv(1)

2
{2 3}

, C2
1
{1 4}

} σv(1) ∼ (1 2)
(5.13)

C2v/C2|σv(2)
= {C2σv(2)

2
{3 2}

, C2C2
1
{4 1}

} σv(2) ∼ (1 2)
(5.14)

The resultant permutations construct a coset representation C2v(/C2), which is collected in
the C2v(/C2)-column of Table 5.1.

Similarly, the coset representations of C2v are obtained by using the multiplication table
shown in Table 3.6. They are collected in Table 5.1.

Exercise 5.1.
– Compare the coset decomposition represented by Eq. 3.23 of the point group Td (on

page 64) with Eq. 5.1 of general cases.
– Examine Td/C3v (Eq. 3.24) and Td/C3v|C3(1)

(Eq. 3.25) as examples of Eq. 5.2 and
Eq. 5.3.

– Examine the permutations represented by Eq. 3.27 and Eq. 3.30 as examples of Eq. 5.5.
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5.1.2 Mark Tables

In general, a permutation representation is represented by a sum of coset representations
(cf. Subsections 3.3.4 and 3.4.2). According to Burnside [4, Definition 180], the mark m
of a permutation representation PGi of G is defined as the number of n symbols which are
left unchanged by every element of G j. The application of the concept of marks has been
described in Chapter 5 of [1], which provides us with a basis of this section.

According to Def. 5.2 of [1], let the symbol mi j be the mark of G j in the coset rep-
resentation G(/Gi). Then, a set of marks mi j for G j ( j = 1,2 . . . ,s) is obtained definitely
to construct a G(/Gi)-row of a table called a table of marks or a mark table, as shown in
Table 5.2. The mark tables of representative point groups have been reported by Fujita’s
monograph [1, Appendix A].

Table 5.2. Mark table of the group G (MG)

coset marks of G j

representation G1 G2 · · · Gi · · · Gs

G(/G1) m11 0 · · · 0 · · · 0
G(/G2) m21 m22 · · · 0 · · · 0

...
...

...
. . .

...
. . .

...
G(/Gi) mi1 mi2 · · · mii · · · 0

...
...

...
. . .

...
. . .

...
G(/Gs) 1 1 · · · 1 · · · 1

The coset representations of C2v shown in Table 5.1 are used to calculate marks of each
coset representation by paying attention to 1-cycles. For example, the C2v(/C2)-column of
Table 5.1 gives the following set of subgroups:

C1 = {I} ∼ {(1)(2)} 2 (5.15)

C2 = {I,C2} ∼ {(1)(2),(1)(2)} 2 (5.16)

Cs = {I,σv(1)} ∼ {(1)(2),(1 2)} 0 (5.17)

C ′s = {I,σv(2)} ∼ {(1)(2),(1 2)} 0 (5.18)

C2v = {I,C2,σv(1),σv(2)} ∼ {(1)(2),(1)(2),(1 2),(1 2)} 0 (5.19)

The mark of each subgroup is shown at the rightmost part of each line. The resultant row
vector (2,2,0,0,0) appears in the C2v(/C2)-row of Table 5.3. This process is repeated to
cover all of the coset representations of Table 5.1. The results are collected in Table 5.3
[1, Table A.5]. This process is essentially equivalent to the subduction C2v(/C2) ↓G j (G j ⊂
G), as described below.
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Table 5.3. Mark table of the group C2v (MC2v
)

coset marks of G j

representation C1 C2 Cs C ′s C2v

C2v(/C1) 4 0 0 0 0
C2v(/C2) 2 2 0 0 0
C2v(/Cs) 2 0 2 0 0
C2v(/C ′s) 2 0 0 2 0
C2v(/C2v) 1 1 1 1 1

Table 5.4. Inverse mark table of the group G (M−1
G )

G j
coset representation

∑i m jiG(/G1) G(/G2) · · · G(/G j) · · · G(/Gs)
G1 m11 0 · · · 0 · · · 0 ∑i m1i

G2 m21 m22 · · · 0 · · · 0 ∑i m2i

...
...

...
. . .

...
. . .

...
...

G j m j1 m j2 · · · m j j · · · 0 ∑i m ji

...
...

...
. . .

...
. . .

...
...

Gs ms1 ms2 · · · ms j · · · mss ∑i msi

Table 5.5. Inverse mark table of the group C2v (M−1
C2v

)

G j
coset representation

∑i m jiC2v(/C1) C2v(/C2) C2v(/Cs) C2v(/C ′s) C2v(/C2v)
C1

1
4 0 0 0 0 1

4
C2 − 1

4
1
2 0 0 0 1

4
Cs − 1

4 0 1
2 0 0 1

4
C ′s − 1

4 0 0 1
2 0 1

4
C2v

1
2 − 1

2 − 1
2 − 1

2 1 0

Because the mark table of G is an s×s square matrix MG, there exists the corresponding
inverse matrix M−1

G in general. It can be generally proved that the inverse mark table M−1
G

is also an s× s lower triangular matrix, as shown in Table 5.4.
The inverse mark table M−1

G plays an important role in combinatorial enumeration. The
properties of the inverse mark table M−1

G have been discussed in detail in Fujita’s mono-
graph [5, Appendix B]. Among such properties, the sum of each row ∑i m ji should be noted
because it has positive values for a cyclic subgroup, but vanishes to zero for a non-cyclic
subgroup in general.

Table 5.5 shows the inverse mark table M−1
C2v

of C2v, which can be directly calculated
from the mark table shown in Table 5.3.

The mark tables of several point groups and their inverses have been collected in Fu-
jita’s monograph [1, Appendices A and B].
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5.1.3 Multiplicities of Orbits

The mark table is regarded as an s× s lower triangular matrix,

MG = (mi j) =

G(/G1)
G(/G2)

...
G(/Gi)

...
G(/Gs)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

m11 0 · · · 0 · · · 0
m21 m22 · · · 0 · · · 0

...
...

. . .
...

. . .
...

mi1 mi2 · · · mii · · · 0
...

...
. . .

...
. . .

...
1 1 · · · 1 · · · 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (5.20)

where mi j = 0 for j > i, mi1 = |G|/|Gi| for all i (the first column), and ms j = 1 for all j (the
last row). Each row of the mark table (Table 5.2) or the corresponding mark matrix (Eq.
5.20) is regarded as a row vector called a fixed-point vector (FPV) of the coset representa-
tion, which is represented as follows:

FPVG(/Gi) = (mi1, mi2, . . . , mi j, . . . , mis) (5.21)

for i = 1,2, . . .s.
Let us consider a permutation representation PG, which contains the coset representa-

tion G(/Gi) of multiplicity αi (for i = 1,2, . . . ,s). The permutation representation is repre-
sented as follows:

PG =
s

∑
i=1

αiG(/Gi), (5.22)

where αi ≥ 0. This equation has once been noted as Eq. 3.38 (page 79). Let the symbol μ j

be the mark of G j in PG. The mark μ j is obtained by examining the number of 1-cycles in
the permutations of G j. Thereby, we obtain an FPV of PG as a row vector:

FPVPG = (μ1, μ2, , . . . , μ j, . . . , μs). (5.23)

According to Eq. 5.22, the FPVPG is obtained by summing up αi×FPVG(/Gi) (Eq. 5.21),
as represented by the following equation:

FPVPG =
s

∑
i=1

αiFPVG(/Gi). (5.24)

The sum represented by Eq. 5.24 is rewritten by combining the elements of Eq. 5.23 with
those of Eq. 5.21. Thereby, each mark μ j is obtained according to the following equation:

μ j = α1m1 j +α2m2 j + · · ·+αimi j + · · ·+αsms j =
s

∑
i=1

αimi j (5.25)

for j = 1,2, . . . ,s. Note that the marks appearing in the right-hand side of Eq. 5.25 are
contained in the j-th column of the mark matrix (Eq. 5.20) or the mark table (Table 5.2),
i.e., mi j for i = 1,2, . . . ,s, where G j is tentatively fixed.
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To memorize the heart of the above derivations, let the symbol MVPG be a multiplicity
vector of coset representations in the permutation representation:

MVPG = (α1, α2, . . . , αi, . . . , αs). (5.26)

Thereby, Eq. 5.25 is rewritten in the form of vectors and a matrix as follows:

FPVPG = MVPG ×MG (5.27)

or more visually in the following equivalent equation:

(μ1, μ2, , . . . , μ j, . . . , μs) = (α1, α2, . . . , αi, . . . , αs)MG. (5.28)

Because our target is to obtain the MVPG , these equations are transformed into the following
equation:

MVPG = FPVPG ×M−1
G (5.29)

or more visually into the following equivalent form:

(α1, α2, . . . , αi, . . . , αs) = (μ1, μ2, , . . . , μ j, . . . , μs)M−1
G . (5.30)

The symbol M−1
G represents the inverse matrix of the mark matrix MG. The inverse is an

s× s lower triangular matrix:

M−1
G = (m ji) =

G(/G1) G(/G2) ··· G(/G j) ··· G(/Gs)
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

m11 0 · · · 0 · · · 0
m21 m22 · · · 0 · · · 0

...
...

. . .
...

. . .
...

mj1 m j2 · · · m j j · · · 0
...

...
. . .

...
. . .

...
ms1 ms2 · · · ms j · · · mss

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.
(5.31)

The inverse mark tables of representative point groups have been reported by Fujita’s mono-
graph [1, Appendix B]. Now, the diagrammatic procedure for determining orbits (Rule 3.1
on page 80) is rationalized algebraically by Eq. 5.29 (or Eq. 5.30).

As shown in Fig. 5.1, adamantan-2-one 5-1 derived from the the adamantan-2-one
skeleton 3-23 (page 76) belongs to C2v, because the substitution of 14 hydrogens does not
change the symmetry C2v of the skeleton (cf. Fig. 3.11 on page 76). The 14 hydrogens of
5-1 are governed by a permutation representation PC2v,5-1 shown in the right part of Fig. 5.1.
The permutation representation is identical with that of the skeleton 3-23, which has been
determined diagrammatically to be the sum of coset representations represented by Eq. 3.36
on page 76 (cf. Rule 3.1 on page 80).

Each subgroup of SSGC2v (Eq. 5.9) is operated to 5-1 to count a mark (the number of
fixed points). Thereby, the following FPV is obtained with respect of the 14 hydrogens:

FPVPC2v ,5-1
= (14,0,2,4,0). (5.32)
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O

H910H

H1

H2

3H

4H

H5

6H

7H

H8

1′H H3′

H4′2′H

5-1

C2v PC2v,5-1

I ∼ (1)(3)(5)(7) (2)(4)(6)(8) (9)(10) (1′)(3′) (2′)(4′)

C2 ∼ (1 3)(5 7) (2 4)(6 8) (9 10) (1′ 3′) (2′ 4′)

σv(1) ∼ (1 7)(3 5) (2 8)(4 6) (9 10) (1′ 3′) (2′)(4′)

σv(2) ∼ (1 5)(3 7) (2 6)(4 8) (9)(10) (1′)(3′) (2′ 4′)

C2v(/C1) C2v(/C1) C2v(/C ′s) C2v(/C ′s) C2v(/Cs)

Fig. 5.1. Adamantan-2-one of C2v and a permutation representation for characterizing 14 hydro-
gens. The permutation representation PC2v ,5-1 is represented by the sum of coset representations
shown in the bottom row.

According to Eq. 5.29 (or Eq. 5.30), the multiplicity vector MVC2v,5-1 is obtained as follows:

MVC2v,5-1 = FPVPC2v ,5-1
×M−1

C2v

= (14,0,2,4,0)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
4 0 0 0 0
− 1

4
1
2 0 0 0

− 1
4 0 1

2 0 0
− 1

4 0 0 1
2 0

1
2 − 1

2 − 1
2 − 1

2 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= (2,0,1,2,0). (5.33)

The inverse mark table M−1
C2v

is calculated from the mark table shown in Table 5.3. The
MVC2v,5-1 derived algebraically (Eq. 5.33) corresponds to the following set of coset repre-
sentations:

PC2v,5-1 = 2C2v(/C1)+C2v(/Cs)+2C2v(/C ′s), (5.34)

which is consistent with Eq. 3.36 (page 76) derived diagrammatically.

5.2 Subduction of Coset Representations

The concept of subduction of coset representations has been proposed by Fujita [2], where
the terms subduction and subduced representation have been introduced to emphasize the
difference from the term restriction of an irreducible representation. The subduction con-
cept has been preliminarily described on page 79 (Eq. 3.40), where it has been introduced
diagrammatically. This section is devoted to a mathematical description on the subduction
concept according to Chapter 9 of [1].3

3 The subduction of coset representations is alternatively formulated in term of double cosets. For the cor-
respondence between the subduction of coset representations and double cosets, see Chapter 9 of [5].
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5.2.1 Subduced Representations

From the permutations contained in the coset representation G(/Gi) (Eq. 5.6), let us select
the permutations corresponding to all of the elements of a subgroup G j (∈ SSGG: Eq. 5.7).
This process is called a subduction of the coset representation and denoted by the sym-
bol G(/Gi) ↓ G j, which is coined by Fujita [2,3]. The resulting representation is called a
subduced representation, which is represented as follows:

G(/Gi) ↓G j =
{

πg | ∀g ∈G j
}

. (5.35)

Note that the subduced representation is not always transitive, although the coset represen-
tation G(/Gi) is transitive.4

A subduced representation G(/Gi) ↓ G j as a non-transitive representation is divided
into a sum of coset representations of G j. As a result, the original orbit governed by G(/Gi)
is divided into a set of suborbits governed by the coset representations of G j.

Suppose that the subgroup G j is characterized by the following SSG:

SSGG j = {H(i j)
1 , H(i j)

2 , . . . , H(i j)
k , . . . , H(i j)

v j }, (5.36)

where each H(i j)
k is equal to a subgroup contained in the SSGG (Eq. Eq. 5.7) or to its conju-

gate subgroup. Then, the subduced representation (Eq. 5.35) is divided into a sum of coset
representations of G j as follows:

G(/Gi) ↓G j =
v j

∑
k=1

β (i j)
k G j(/H( j)

k ) (5.37)

for i = 1,2, . . .s and j = 1,2, . . .s, where the subgroup H( j)
k covers the SSG of G j (Eq. 5.36)

with the multiplicity β (i j)
k . This equation has been already introduced as Eq. 3.40 (page

80), where the multiplicity β (i j)
k has been evaluated diagrammatically. Now, our target is to

calculate the multiplicity β (i j)
k algebraically.

Each G(/Gi)-row of the mark matrix MG (Eq. 5.20) (or equivalently the mark table
shown in Table 5.2) is denoted by FPVG(/Gi) (Eq. 5.21), which is regarded as a fixed-point
vector (FPV). From the elements of FPVG(/Gi) (Eq. 5.21), we select the elements corre-
sponding to the subgroup G j as follows:

FPVG(/Gi)↓G j = (μ(i j)
1 , μ(i j)

2 , . . . ,μ(i j)
� , . . . , μ(i j)

v j ), (5.38)

which can be regarded as a fixed point vector as denoted by the symbol FPVG(/Gi)↓G j . If a
subgroup of SSGG (Eq. 5.7) is separated into two or more subgroups of SSGG j (Eq. 5.36),

4 A transitive representation governs one equivalence class (orbit). A non-transitive representation governs
two or more equivalence classes (orbits).
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the corresponding mark due to conjugacy in FPVG(/Gi) (Eq. 5.21) is used multiply in Eq.
5.38.

Let β (i j)
k be the multiplicity of G j(/H( j)

k ) in G(/Gi) ↓G j, as shown in Eq. 5.37. Then,
we define the corresponding multiplicity vector (MV):

MVG(/Gi)↓G j = (β (i j)
1 , β (i j)

2 , . . . , β (i j)
k , . . . , β (i j)

v j ) (5.39)

In a similar way to the derivation of Eq. 5.29, we obtain:

MVG(/Gi)↓G j = FPVG(/Gi)↓G j ×M−1
G j

, (5.40)

which can be represented more visually in the following equivalent form:

(β (i j)
1 , β (i j)

2 , . . . , β (i j)
k , . . . , β (i j)

v j ) = (μ(i j)
1 , μ(i j)

2 , . . . ,μ(i j)
� , . . . , μ(i j)

v j )M−1
G j

. (5.41)

The symbol M−1
G j

represents the inverse matrix of the mark matrix of G j denoted by the
symbol MG j . The inverse is a v j× v j lower triangular matrix:

M−1
G j

= (m( j)
�k ) =

G j(/H( j)
1 ) G j(/H( j)

2 ) ··· G j(/H( j)
� ) ··· G j(/H( j)

v j )
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

m( j)
11 0 · · · 0 · · · 0

m( j)
21 m( j)

22 · · · 0 · · · 0
...

...
. . .

...
. . .

...
m( j)

�1 m( j)
�2 · · · m( j)

�� · · · 0
...

...
. . .

...
. . .

...
1 1 · · · 1 · · · 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.
(5.42)

The equivalent result to Eq. 5.40 (or Eq. 5.41) has been reported [1, Lemma 9.1].
As found in the preceding paragraphs, Eq. 5.37 (or Eq. 3.40) has now been derived

algebraically by using the mark table of G and the inverse mark table G j. When G j runs
over the SSGG (Eq. 5.7) and independently, Gi of G(/Gi) runs over the SSGG (Eq. 5.7)
(i = 1,2, . . . ,s and j = 1,2, . . . ,s), we obtain a subduction table of G, as shown in Table 5.6.
Representative subduction tables have been reported as Appendix C of [1].

As an example, let us obtain the C2-column of the subduction table of C2v. The mark
table (mark matrix) and its inverse are obtained as follows (cf. Appendices A and B of [1]):

MC2 =

(

2 0
1 1

)

M−1
C2

=

(

1
2 0
− 1

2 1

)

. (5.43)

The C1-, and C2-columns of the mark table of the group C2v (Eq. 5.3) are col-
lected to give fixed-point vectors (FPVs) as a 5× 2 matrix, each row of which represents
FPVC2v(/Gi)↓C2 (i = 1,2, . . .s) according to Eq. 5.38. The calculation by Eq. 5.40 is con-
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Table 5.6. Subduction Table of G

G(/Gi) ↓G j ( j = 1,2, . . . ,s)
· · · ↓G j · · ·

G(/C1)* · · · |G|
|G j |G j(/C1) · · ·

...
...

...
...

G(/Gi) · · · ∑
v j
k=1 β (i j)

k G j(/H( j)
k ) · · ·

...
...

...
...

G(/G)* · · · G j(/G j) · · ·
*G1 = C1 and Gs = G

Table 5.7. Subduction Table of C2v

↓ C1 ↓ C2 ↓ Cs ↓ C ′s ↓ C2v

C2v(/C1) 4C1(/C1) 2C2(/C1) 2Cs(/C1) 2C ′s(/C1) C2v(/C1)
C2v(/C2) 2C1(/C1) 2C2(/C2) Cs(/C1) C ′s(/C1) C2v(/C2)
C2v(/Cs) 2C1(/C1) C2(/C1) 2Cs(/Cs) C ′s(/C1) C2v(/Cs)
C2v(/C ′s) 2C1(/C1) C2(/C1) Cs(/C1) 2C ′s(/C ′s) C2v(/C ′s)
C2v(/C2v) C1(/C1) C2(/C2) Cs(/Cs) C ′s(/C ′s) C2v(/C2v)

ducted in the following matrix multiplication:

C1 C2

C2v(/C1) ↓ C2

C2v(/C2) ↓ C2

C2v(/Cs) ↓ C2

C2v(/C ′s) ↓ C2

C2v(/C2v) ↓ C2

⎛

⎜

⎜

⎜

⎜

⎜

⎝

4 0
2 2
2 0
2 0
1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

FPVs

(

1
2 0
− 1

2 1

)

=

/C1 /C2
⎛

⎜

⎜

⎜

⎜

⎜

⎝

2 0
0 2
1 0
1 0
0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

2C2(/C1)
2C2(/C2)
C2(/C1)
C2(/C1)
C2(/C2)

MVs

, (5.44)

where each row of the resulting 5×2 matrix represents MVC2v(/Gi)↓C2
, which corresponds

to each subduction listed in the rightmost column of Eq. 5.44.
The process of evaluating subductions is repeated to cover all of the subgroups of

SSGC2v . The results are summarized in Table 5.7. The result of Eq. 5.44 appears in the
↓ C2-column of Table 5.7.

Exercise 5.2.
– Apply Eq. 5.35 to the data of Table 5.1. Thus, construct subduced representations

C2v(/Gi) ↓ C2 by selecting permutations corresponding to C2 = {I,C2}.
– Evaluate FPVs by counting the number of 1-cycles contained in each subduction. Com-

pare this result with Eq. 5.44.
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Exercise 5.3.
– Confirm that the four positions denoted by a solid circle in adamantan-2-one 5-2 (Fig.

5.2) construct an orbit governed by the coset representation C2v(/C1).
– Discuss the chirality fittingness of the enantiospheric C2v(/C1)-orbit in 5-2. Thereby,

confirm the prochirality of 5-2 with respect to the C2v(/C1)-orbit.
– Confirm that dioxa derivatives, 5-3 and 5-3, are enantiomeric to each other.
– Discuss the derivation of 5-3 and 5-3 from 5-2 on the basis of the subduction

C2v(/C1) ↓ C2 (Eq. 5.44 and Table 5.7).
– Confirm that oxa derivatives, 5-4 and 5-4, are enantiomeric to each other.
– Discuss the derivation of 5-4 and 5-4 from 5-2 on the basis of the subduction

C2v(/C1) ↓ C1 (the first column of Table 5.7).

O O

O O

O

O O

O

O

O

O

5-2 5-3 5-3 5-4 5-4
︸ ︷︷ ︸

enantiomeric
︸ ︷︷ ︸

enantiomeric

Fig. 5.2. Adamantan-2-one, dioxa derivatives, and oxa derivatives. See Exercise 5.3.

Exercise 5.4.
– In a continuation of Exercise 5.3, confirm that the four positions denoted by a solid

circle in adamantane-2,6-dione 5-5 (Fig. 5.3) construct an orbit governed by the coset
representation D2d(/C ′2). See Fig. 10.3 of [1].

– Discuss the chirality fittingness of the enantiospheric D2d(/C ′2)-orbit in 5-5. Thereby,
confirm the prochirality of 5-5 with respect to the D2d(/C ′2)-orbit.

– Confirm that dioxa derivatives, 5-6 and 5-6, are enantiomeric to each other.
– Discuss the derivation of 5-6 and 5-6 from 5-5 on the basis of the following subduction:

D2d(/C ′2) ↓ D2 = D2(/C ′2)+D2(/C ′′2 ), (5.45)

which has been once noted in [1, Eq. 10.13].
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O
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5-5 5-6 5-6
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enantiomeric

Fig. 5.3. Adamantane-2,6-dione and dioxa derivatives. See Exercise 5.4.

5.2.2 Unit Subduced Cylce Indices (USCIs)

USCIs With Chirality Fittingness
Let the symbols ad , cd , and bd denote sphericity indices for characterizing homospheric,
enantiospheric, or hemispheric coset represensentations or the corresponding orbits (cf. Def.
4.1 on page 89) [1,3]:

Definition 5.1 (Sphericity Indices for Characterizing Coset Representations and Orbits).
– (Sphericity index ad for a homospheric orbit) The sphericity index ad is assigned to a

homospheric G(/Gi)-orbit (G: achiral; and Gi: achiral).
– (Sphericity index cd for an enantiospheric orbit) The sphericity index cd is assigned to an

enantiospheric G(/Gi)-orbit (G: achiral; and Gi: chiral).
– (Sphericity index bd for a hemispheric orbit) The sphericity index bd is assigned to a hemi-

spheric G(/Gi)-orbit (G: chiral; and Gi: chiral).
The subscript d of ad , cd , or bd represents the size of the orbit, i.e., d = |G|/|Gi|.

According to Def. 4.1 (Subsection 4.1.2), each coset representation G j(/H( j)
k ) contained in

the right-hand side of Eq. 5.37 is categorized to be homospheric, enantiospheric, or hemi-
spheric. Then, a unit subduced cycle index with chirality faithfulness (USCI-CF) is defined
on the basis of Eq. 5.37, which represents the subduction G(/Gi) ↓G j [1, Def. 9.3]:

Definition 5.2 (Unit Subduced Cycle Indices with Chirality Fittingness (USCI-CFs)). The coset
representation G j(/H( j)

k ) contained in the right-hand side of Eq. 5.37 is characterized by a spheric-
ity index $d jk ($ = a,c, or b) defined in Def. 5.1. Then, a unit subduced cycle index with chirality
fittingness (USCI-CF) is defined on the basis of Eq. 5.37 as follows:

USCI-CF(G(/Gi) ↓G j ;$d) =
v j

∏
k=1

$
β (i j)

k
d jk

, (5.46)

where $d jk is equal to ad jk , cd jk , or bd jk according to the sphericity of G j(/H( j)
k ) and the subscript

is calculated to be

d jk =
|G j|
|H( j)

k |
. (5.47)

By starting from the data collected in the subduction table of G (Table 5.6), the whole set of
USCI-CFs for G is obtained easily, which is collected as a USCI-CF table of G (Table 5.8).
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Table 5.8. USCI-CF Table of G

G(/Gi) ↓G j ( j = 1,2, . . . ,s)
· · · ↓G j · · ·

G(/C1) · · · $
|G|/|G j |
|G j | · · ·

...
...

...
...

G(/Gi) · · · ∑
v j
k=1 $

β (i j)
k

d jk
· · ·

...
...

...
...

G(/G) · · · $1 · · ·

Table 5.9. USCI-CF Table of C2v

↓ C1 ↓ C2 ↓ Cs ↓ C ′s ↓ C2v

C2v(/C1) b4
1 b2

2 c2
2 c2

2 c4

C2v(/C2) b2
1 b2

1 c2 c2 c2

C2v(/Cs) b2
1 b2 a2

1 c2 a2

C2v(/C ′s) b2
1 b2 c2 a2

1 a2

C2v(/C2v) b1 b1 a1 a1 a1

∑ 1
4

1
4

1
4

1
4 0

For example, the data collected in the subduction table of C2v (Table 5.7) can be con-
verted into the corresponding USCI-CF table of C2v shown in Table 5.9. Note that the ∑-row
of Table 5.9 collects the row sums of the inverse mark table (the ∑i m ji-column of Table 5.5).

The USCI-CF tables for representative point groups have been collected as Appendix
E of Fujita’s monograph [1].

USCIs Without Chirality Fittingness
If no chiral proligands are taken into consideration, chirality fittingness is unnecessary to
be considered. Hence, the sphericity indices $d jk in the USCI-CF (Eq. 5.46 of Def. 5.2)
degenerate into a single dummy variable sd jk (sd jk = ad jk = cd jk = bd jk ), so that the following
definition of a unit subduced cycle index (USCI without chirality fittingness) is obtained
[1, Def. 9.2]:

Definition 5.3 (Unit Subduced Cycle Indices (USCIs)). A unit subduced cycle index (USCI without
chirality fittingness) is defined on the basis of Eq. 5.37 as follows:

USCI(G(/Gi) ↓G j;sd) =
v j

∏
k=1

s
β (i j)

k
d jk

(5.48)

where the subscript of the dummy variable sd jk is calculated to be

d jk =
|G j|
|H( j)

k |
. (5.49)



5.2 Subduction of Coset Representations 129

By placing sd jk = $d jk = ad jk = cd jk = bd jk according to Def. 5.48, Table 5.8 degenerates to
give the USCI table of G shown in Table 5.10.

Table 5.10. USCI Table of G

G(/Gi) ↓G j ( j = 1,2, . . . ,s)
· · · ↓G j · · ·

G(/C1) · · · s
|G|/|G j |
|G j | · · ·

...
...

...
...

G(/Gi) · · · ∑
v j
k=1 s

β (i j)
k

d jk
· · ·

...
...

...
...

G(/G) · · · s1 · · ·

By placing sd jk = ad jk = cd jk = bd jk according to Def. 5.48, Table 5.9 degenerates to
give the USCI table of C2v shown in Table 5.11. Note that the ∑-row of Table 5.11 collects
the row sums of the inverse mark table (the ∑i m ji-column of Table 5.5).

Table 5.11. USCI Table of C2v

↓ C1 ↓ C2 ↓ Cs ↓ C ′s ↓ C2v

C2v(/C1) s4
1 s2

2 s2
2 s2

2 s4

C2v(/C2) s2
1 s2

1 s2 s2 s2

C2v(/Cs) s2
1 s2 s2

1 s2 s2

C2v(/C ′s) s2
1 s2 s2 s2

1 s2

C2v(/C2v) s1 s1 s1 s1 s1

∑ 1
4

1
4

1
4

1
4 0

The USCI tables for representative point groups have been collected as Appendix D of
Fujita’s monograph [1].

Exercise 5.5.
– Show that the power of a1 or b1 appearing in each USCI-CF (Table 5.9) is equal to each

mark (Table 5.3).
– Show that the power of s1 of each USCI (Table 5.11) is equal to each mark (Table 5.3).
– Confirm that these results hold true in general.
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6 Symmetry-Itemized Enumeration Under Point
Groups

6.1 Fujita’s USCI Approach

6.1.1 Historical Comments

A characteristic of Fujita’s USCI (unit-subduced-cycle-index) approach [1] is the effective
application of USCI-CFs (unit subduced cycle indices with chirality fittingness), which are
algebraically derived from the concept of subduction applied to mark tables in combination
with the concepts of sphericities and chirality fittingness.

It is worthwhile to refer to several pioneering works for enumeration, although they did
not reach the concept of USCI-CFs. Sheehan [2] proposed a method based on mark tables
in counting graphs with a given automorphism group. Sheehan’s method can be regarded as
a degenerate enumeration without chirality fittingness from the viewpoint of Fujita’s USCI
approach. Hässelbarth [3] reported a pioneering work based on mark tables in chemical
enumeration. Related methods based on double cosets were proposed by Ruch et al. [4,5]
and Brocas [6]. Mead [7,8] pointed out the relationship between mark tables and double
cosets in isomer counting. These pioneering works did not reach the concept of USCI-CFs,
which in turn requires the development of subduction of coset representations, sphericities,
and chirality fittingness.

As for Fujita’s USCI approach, subduction of coset representations for deriving USCIs
has been proposed by Fujita [9]. Correlation of USCIs to Pólya’s cycle indices has been
clarified by Fujita [10]. Th concept of sphericities applied to the derivation of USCI-CFs
has been reported by Fujita [11,12]. Subduction of coset representations has been applied
to systematic classification of molecular symmetry [13] and to integration of point-group
and permutation-group theories [14]. Related topics have been summarized as a monograph
by Fujita [1]. The importance of the concept of sphericities has been emphasized to discuss
stereochemistry in a molecule and stereoisomerism among molecules [15] as well as to
discuss sphericity beyond topicity in characterizing stereochemical phenomena [16].

6.1.2 USCI-CFs for Itemized Enumeration

A promolecule (or molecule) of G j derived from a stereoskeleton of G is characterized
by the sum of suborbits represented by Eq. 3.40 (obtained diagrammatically in Subsection
3.4.2) and equivalently by Eq. 5.37 (obtained algebraically in Subsection 5.2.1). Each sub-
orbit of the size d jk = |G j|/|H( j)

k | is governed by a coset representation G j(/H( j)
k ), which

accommodates a set of d jk proligands (or ligands) according to the chirality fittingness spec-

ified by the sphericity of G j(/H( j)
k ). According to Def. 5.1 (page 127), the chirality fitting-
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Fig. 6.1. Modes of packing due to the subduction C2v(/C1) ↓ C1 for generating oxirane derivatives.

ness is represented systematically by the sphericity index $d jk (ad jk , cd jk , or bd jk ), which

decides the packing of the G j(/H( j)
k )-suborbit as shown in Fig. 4.2 (page 90).

To grasp the total features of derivation due to subduction of coset representations, let
us examine the derivation based on the oxirane skeleton 3-12 (Fig. 3.7 on page 68), the four
positions of which belong to a four-membered enantiospheric C2v(/C1)-orbit.

The mode of derivation is represented by a function f :

f : { f (1), f (2), f (3), f (4)}, (6.1)

in which the component f (i) (i = 1,2,3,4) represents a substituent accommodated at the
i-position of the numbered skeleton.

First, four substituents are selected from the following ligand inventory:

L1 = {X,Y}, (6.2)

where the symbols X and Y represent achiral proligands in isolation.
As a result of the subduction C2v(/C1) ↓ C1, the four positions are divided into four

one-membered orbits (4C1(/C1), USCI-CF: b4
1), which are differentiated from one an-

other, as surrounded with different frames in 6-1 (Fig. 6.1). Each position of 6-1 as a one-
membered orbit accommodates X or Y independently. For example, the functions f1: {X,
X, X, X} and f2: {Y, X, X, X} generate 6-2 (composition: X4) and 6-3 (composition: X3Y),
respectively.

This process is repeated by noting that each position of 6-1 accommodates X or Y
independently, so that the derivatives f1 to f16 collected in Fig. 6.2 are obtained. Because
each position of 6-1 accommodates X or Y independently, we are safe to place b1 = X+Y.
Thereby, the numbers of f1 to f16 collected in Fig. 6.2 are evaluated with respect to the
compositions (X4, X3Y, etc.) to give the following generating function:

b4
1 : (X+Y)4 = X4 +4X3Y+6X2Y2 +4XY3 +Y4. (6.3)

The coefficients appearing in the right-hand side are shown in the C1-column in the right
part of Fig. 6.2.

As a result of the subduction C2v(/C1) ↓ Cs, the four positions are divided into two
two-membered orbits (2Cs(/C1), USCI-CF: c2

2), which are differentiated from one another
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Fig. 6.2. Orbits of promolecules based on an oxirane skeleton and their fixed-point vectors (vec-
tors of marks). An open circle represents an achiral proligand X in isolation, while a solid circle
represents another achiral proligand Y in isolation. Each row of the right-hand part should be
compared with the corresponding row of the mark table of C2v (Table 5.3 on page 119).
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Fig. 6.3. Modes of packing due to the subduction C2v(/C1) ↓ Cs for generating oxirane derivatives.

as surrounded with different frames in 6-18 (Fig. 6.3). Each orbit of 6-18 accommodates
X2 or Y2 independently. For example, the functions f1: {X, X, X, X} and f8: {Y, Y, X, X}
generate 6-2 (composition: X4) and 6-9 (composition: X2Y2), respectively.

This process is repeated by noting that each position of 6-18 accommodates X2 or Y2

independently, so that the derivatives f1, f8, f9, and f16 are obtained, as collected in Fig.
6.2. Because each position of 6-18 accommodates X2 or Y2 independently, we are safe to
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place c2 = X2 + Y2. Thereby, the numbers of f1, f8, f9, and f16 are evaluated with respect
to the compositions (X4 and X2Y2) to give the following generating function:

c2
2 : (X2 +Y2)2 = X4 +2X2Y2 +Y4. (6.4)

The coefficients appearing in the right-hand side are shown in the Cs-column in the right
part of Fig. 6.2.

Similarly, the generating functions for the subduction of C2v(/C1) by other subgroups
are calculated, as collected in the right part of Fig. 6.2. The results are summarized as a
fixed-point matrix (FPM) (Eq. 6.5).

FPM3-12 =

X4

X3Y
X2Y2

XY3

Y4

C1 C2 Cs C′s C2v
⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1 1 1
4 0 0 0 0
6 2 2 2 0
4 0 0 0 0
1 1 1 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.
(6.5)

The 16 derivatives collected in Fig. 6.2 can be characterized in an alternative viewpoint.
Let the symbol F3-12 represent the set of the 16 derivatives:

F3-12 = { f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14, f15, f16}, (6.6)

The four positions of the skeleton 3-12 are permuted on the action of C2v in terms of the
coset representation C2v(/C1). According to the permutations of the four positions, the set
F3-12 is transformed on the action of C2v as follows:

F3-12|I = { f1√ , f2√ , f3√ , f4√ , f5√ , f6√ , f7√ , f8√ , f9√ , f10√ , f11√ , f12√ , f13√ , f14√ , f15√ , f16√ }

F3-12|C2
= { f1√ , f5, f4, f3, f2, f6√ , f7√ , f9, f8, f11, f10, f15, f14, f13, f12, f16√ }

F3-12|σv(1)
= { f1√ , f3, f2, f5, f4, f7, f6, f8√ , f9√ , f11, f10, f13, f12, f15, f14, f16√ }

F3-12|σv(2)
= { f1√ , f4, f5, f2, f3, f7, f6, f9, f8, f10√ , f11√ , f13, f12, f15, f14, f16√ }

X4 X3Y X2Y2 XY3 Y4

[θ ]1 [θ ]2 [θ ]3 [θ ]4 [θ ]5

(6.7)

where the symbol
√

corresponds to a 1-cycle (a fixed derivative) appearing in a permutation
representation.

The right-hand sides of these equations are divided into five parts according to the com-
positions (X4, X3Y, etc.), which are represented by the partition [θ ] (e.g., [θ ]1 = [4,0;0,0]
and [θ ]2 = [3,1;0,0]). Each division is represented by the following permutations:

λ [θ ]
g =

⎛

⎝

F[θ ]
3-12

F[θ ]
3-12

∣

∣

∣

g

⎞

⎠ for g ∈ C2v, (6.8)

which construct a permutation representation:

Λ
[θ ]
C2v,F3-12

=
{

λ [θ ]
g | ∀g ∈ C2v

}

(6.9)
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The permutation representation may not be transitive, so that it is divided into a sum of coset
representations as follows:

Λ
[θ ]
C2v,F3-12

= ∑
Gi

Aθ iC2v(/Gi), (6.10)

where the summation runs over Gi ∈ SSGC2v and the integer Aθ i represents the multiplic-
ity of each coset representation. It should be noted that the coset representation C2v(/Gi)
governs an orbit of promolecules (derivatives) of Gi. Hence, the subduction C2v(/Gi) ↓G j

gives the corresponding mark (the number of fixed promolecules). For example, the first
X2Y2-row of Fig. 6.2 is concerned with an orbit of C2-promolecules, which indicates the
marks for C2v(/C2) ↓ G j. Hence, each row of the FPM (Eq. 6.5) can be regarded as a
fixed-point vector (FPV) to evaluate the coefficient Aθ i.

Let us collect the coefficients Aθ i to give a 5× 5 matrix called an isomer-counting
matrix (ICM):

ICM3-12 = (Aθ i) (6.11)

By using the FPM (Eq. 6.5), the ICM (Eq. 6.11) is calculated as follows:

ICM3-12 = FPM3-12×M−1
C2v

=

X4

X3Y
X2Y2

XY3

Y4

C1 C2 Cs C′s C2v
⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 1
1 0 0 0 0
0 1 1 1 0
1 0 0 0 0
0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(6.12)

Each element of ICM3-12 indicates the number of derivatives in which an achiral pro-
molecule or a pair of enantiomeric promolecules is counted once. For example, the value 1
at the intersection between the X2Y2-row and the C2 column indicates the presence of one
pair of enantiomers of C2 with the composition X2Y2, i.e., an enantiomeric pair of 6-7 and
6-8 in Fig. 6.2.

Exercise 6.1.
– Classify the 16 derivatives listed in Fig. 6.2 in terms of homomeric and enantiomeric

relationships.
– Then, confirm the data of ICM3-12 (Eq. 6.12).

Let us now examine the effect of chiral proligands, where four substituents are selected
from the following ligand inventory:

L2 = {p,p}. (6.13)

The symbols p and p represent an enantiomeric pair of chiral proligands in isolation. In a
similar way to Fig. 6.2 based on the ligand inventory L1, there appear 16 derivatives based
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on the ligand inventory L2, where the symbol represents p, while the symbol represents
p.

The USCI-CF b4
1 for the subduction C2v(/C1) ↓C1 means that the four positions as four

one-membered orbits (4C1(/C1)) independently accommodate a proligand p or p. By plac-
ing b1 = p + p for such a hemispheric orbit as C1(/C1), the following generating function
is obtained:

b4
1 : (p+p)4 = p4 +4p3p+6p2p2 +4pp3 +p4

= 2× 1
2
(p4 +p4)+8× 1

2
(p3p+pp3)+6p2p2 (6.14)

The coefficients appearing in the right-hand side are shown in the C1-column in the right
part of Fig. 6.4. Because a pair of enantiomers is counted once in the present enumeration,
the term 1

2 (p4 + p4) corresponds to one pair of enantiomers, where a proligand with the
composition p4 is enantiomeric to the counterpart with the composition p4.

The USCI-CF c2
2 for the subduction C2v(/C1) ↓ Cs means that each of the two-

membered enantiospheric orbits (2Cs(/C1)) accommodate a pair of proligands p/p in
accord to the chirality fittingness shown in Fig. 4.2(b). Because there are two modes of
packing, we are able to place c2 = 2pp. As a result, we obtain the following generating
function:

c2
2 : (2pp)2 = 4p2p2. (6.15)

The coefficients appearing in the right-hand side are shown in the Cs-column in the right
part of Fig. 6.4, where the number 4 is factorized into 1, 1, and 2. Note that a pair of p/p is
accommodated in one Cs(/C1)-orbit, independent of another pair of p/p accommodated in
the other Cs(/C1)-orbit (cf. 6-29 or 6-30).

Similarly, the generating functions for the subduction of C2v(/C1) by other subgroups
are calculated, as collected in the right part of Fig. 6.4. The results are summarized as a
fixed-point matrix (Eq. 6.16).

FPM′3-12 =
1
2 (p4 +p4)

1
2 (p3p+pp3)

p2p2

C1 C2 Cs C′s C2v
⎛

⎜

⎝

2 2 0 0 0
8 0 0 0 0
6 2 4 4 2

⎞

⎟

⎠

. (6.16)

Note that the values in the C1-column stem from Eq. 6.14, while the values in the Cs-column
stem from Eq. 6.15.

In place of FPM′3-12 (Eq. 6.16), an alternative form of FPM is convenient for further
algebraic derivation:

FPM′′3-12 =

p4

p3p
p2p2

pp3

p4

C1 C2 Cs C′s C2v
⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 1 0 0 0
4 0 0 0 0
6 2 4 4 2
4 0 0 0 0
1 1 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(6.17)
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C1 C2 Cs C′s C2v

b4
1 b2

2 c2
2 c2

2 c4

1
2 (p4 +p4)

1

3

2

4

O
1
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4

O

2 2 0 0 0 C2v(/C2)

6-19 ( f1) 6-20 ( f2)
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4
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1
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4

O
1
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4

O
1
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4

O

4 0 0 0 0 C2v(/C1)

6-21 ( f3) 6-22 ( f4) 6-23 ( f5) 6-24 ( f6)

1
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1
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4
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1
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1
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2

4

O
1
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4
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6-25 ( f7) 6-26 ( f8) 6-27 ( f9) 6-28 ( f10)

p2p2
1
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4

O

1 1 1 1 1 C2v(/C2v)

6-29 ( f11)

p2p2
1
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4

O

1 1 1 1 1 C2v(/C2v)

6-30 ( f12)

p2p2
1

3

2

4

O
1

3

2

4

O

2 0 0 2 0 C2v(/C′s)

6-31 ( f13) 6-32 ( f14)

p2p2
1
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2

4

O
1
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4

O

2 0 2 0 0 C2v(/Cs)

6-33 ( f15) 6-34 ( f16)

(p
+

p)
4
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2 +

p
2 )2

(2
pp

)2
(2

pp
)2

(2
p

2 p
2 )

Fig. 6.4. Orbits of promolecules based on an oxirane skeleton and their fixed-point vectors (vec-
tors of marks). The symbol represents a chiral proligand p in isolation, while the symbol rep-
resents its enantiomeric proligand p in isolation. Each row of the right-hand part should be com-
pared with the corresponding row of the mark table of C2v (Table 5.3 on page 119).

Let the symbol F′3-12 represent the set of the 16 derivatives collected in Fig. 6.4:

F′3-12 = { f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14, f15, f16}, (6.18)

This set can be treated along a similar line to the set F3-12 (Eq. 6.6) for Fig. 6.2. Hence, in a
parallel way to Eq. 6.12, the FPM (Eq. 6.16) generates the following ICM:

ICM′3-12 = FPM′3-12×M−1
C2v

=
1
2 (p4 +p4)

1
2 (p3p+pp3)

p2p2

C1 C2 Cs C′s C2v
⎛

⎜

⎝

0 1 0 0 0
2 0 0 0 0
0 0 1 1 2

⎞

⎟

⎠

. (6.19)



138 6 Symmetry-Itemized Enumeration Under Point Groups

The alternative FPM represented by Eq. 6.17 generates an alternative ICM as a more
convenient form for algebraic derivation:

ICM′′3-12 = FPM′′3-12×M−1
C2v

=

p4

p3p
p2p2

pp3

p4

C1 C2 Cs C′s C2v
⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 1
2 0 0 0

1 0 0 0 0
0 0 1 1 2
1 0 0 0 0
0 1

2 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(6.20)

The C1-column of Eq. 6.20 contains the value 1 for p3p and the value 1 for pp3. These values
corresponds to the value 2 in the C1-column of Eq. 6.19 because of 2× 1

2 (p3p + pp3). On
the other hand, the C2-column of Eq. 6.20 contains the value 1

2 for p4 and the value 1
2

for p4. These values corresponds to the value 1 in the C2-column of Eq. 6.19 because of
1× 1

2 (p4 +p4).

Exercise 6.2.
– Classify the 16 derivatives listed in Fig. 6.4 in terms of homomeric and enantiomeric

relationships.
– Then, confirm the data of ICM′3-12 (Eq. 6.19) or of ICM′′3-12 (Eq. 6.20).

It should be emphasized that orbits among promolecules can be abstractly discussed
in a parallel fashion to orbits within a promolecule. As found in Figs. 6.2 and 6.4, a set
of homomers (or enantiomers) of each promolecule to be counted is regarded as an
orbit, whose local symmetry represents the point-group symmetry of the promolecule.
For example, the set of enantiomers 6-7 ( f6) and 6-8 ( f7) in Fig. 6.2 can be regarded
as an orbit governed by C2v(/C2), where the local symmetry C2 is the point-group
symmetry of 6-7 and 6-8. The enantiomeric pair of 6-7 and 6-8 is counted once under
the action of C2v. Note that each row shown in the right-hand part of Fig. 6.2 (and
Fig. 6.4) is identical with the corresponding row of the mark table of C2v (Table 5.3
on page 119).

6.1.3 Subduced Cycle Indices for Itemized Enumeration

Subduced Cycle Indices with Chirality Fittingness (SCI-CFs)
Suppose that the substitution positions of a stereoskeleton are controlled by a a permutation
representation PG. Thereby, the substitution positions are divided into a set of orbits ac-
cording to Eq. 5.22 (page 120), where each coset representation G(/Gi) is contained with
multiplicity αi. Because each coset representation G(/Gi) is subduced according to Eq. 5.37
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(page 123), the permutation representation PG (Eq. 5.22) is subduced into G j according to
the following equation:

PG ↓G j =
s

∑
i=1

αiG(/Gi) ↓G j

=
s

∑
i=1

αi

v j

∑
k=1

β (i j)
k G j(/H( j)

k ) (6.21)

Thereby, subduced cycle indices with chirality fittingness (SCI-CFs) are defined as follows:

Definition 6.1 (Subduced Cycle Indices with Chirality Fittingness (SCI-CFs)). When a permuta-
tion representation PG for controlling the substitution positions of a stereoskeleton is represented
by Eq. 6.21, the corresponding subduced cycle index with chirality fittingness (SCI-CF) is defined
as follows:

SCI-CFPG (G j;$d jk ) =
s

∏
i=1

(

USCI-CF(G(/Gi) ↓G j;$d)
)αi

=
s

∏
i=1

(

v j

∏
k=1

$
β (i j)

k
d jk

)αi

(6.22)

where $d jk is equal to ad jk , cd jk , or bd jk according to the sphericity of G j(/H( j)
k ) and the subscript

is calculated to be

d jk =
|G j|
|H( j)

k |
. (6.23)

This definition is a simplified form of Def. 19.3 of Fujita’s monograph [1].

Subduced Cycle Indices Without Chirality Fittingness (SCIs)
The sphericity indices $d jk in Def. 6.1 degenerate into a dummy variable sd jk , so as to give
the following definition of SCIs:

Definition 6.2 (Subduced Cycle Indices without Chirality Fittingness (SCIs)). When a permuta-
tion representation PG for controlling the substitution positions of a stereoskeleton is represented
by Eq. 6.21, the corresponding subduced cycle index (SCI) is defined as follows:

SCIPG (G j ;sd jk ) =
s

∏
i=1

(

USCI-CF(G(/Gi) ↓G j;sd)
)αi

=
s

∏
i=1

(

v j

∏
k=1

s
β (i j)

k
d jk

)αi

(6.24)

where the subscript is calculated to be

d jk =
|G j|
|H( j)

k |
. (6.25)

This definition is a simplified form of Def. 15.1 of Fujita’s monograph [1].
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6.2 The FPM Method of Fujita’s USCI Approach

6.2.1 Fixed-Point Vectors (FPVs) and Multiplicity Vectors (MVs)

Consider a stereoskeleton belonging to point-group symmetry G, where its substitution po-
sitions are controlled by a permutation representation PG (cf. Eq. 5.22 on page 120). Sup-
pose that the substitution positions accommodate proligands selected from a ligand inven-
tory:

L = {X1, . . . ,Xn; p1,p1, . . . , . . . ,pn′ ,pn′ }, (6.26)

where the symbols X1, . . ., and Xn represent achiral proligands in isolation, while the paired
symbols p1/p1, . . ., and pn′ /pn′ represent pairs of enantiomeric proligands in isolation. A
resulting promolecule has the following composition:

Wθ = Xx1
1 · · ·Xxn

n pp1
1 pp1

1 · · · · · ·p
pn′
n′ ppn′

n′ , (6.27)

where the sum of the exponents is equal to the number of the substitution positions (or
equivalently to the degree of the permutation representation PG). The composition can be
alternatively represented by the following partition:

[θ ] = [x1, . . . ,xn; p1, p1, · · · , · · · , pn′ , pn′ ]. (6.28)

For the sake of simplicity, we presume x1 ≥ ·· · ≥ xn; p1 ≥ p1, · · · , pn′ ≥ pn′ ; and p1 ≥ ·· · ≥
pn′ without losing generality.

Just as F3-12 (Eq. 6.6) and F′3-12 (Eq. 6.18) of the oxirane skeleton of C2v are discussed
separately with respect of partitions [θ ] (cf. Eq. 6.7), the present cases of the stereoskeleton
of G can be discussed by focusing our attention on respective partitions [θ ]. Hence, we are
able to treat functions with [θ ] separately:

F[θ ] = { f [θ ]
1 , f [θ ]

2 , . . . , f [θ ]
|F[θ ]|}, (6.29)

which contains homomeric or enantiomeric promolecules of each promolecule with the
partition [θ ] to be counted once. In a similar way to Eq. 6.8 for C2v, the set of functions (Eq.
6.29) generates a permutation λ [θ ]

g on the action of g (∈G):

λ [θ ]
g =

⎛

⎝

F[θ ]

F[θ ]
∣

∣

∣

g

⎞

⎠ for g ∈G. (6.30)

In a similar way to Eq. 6.9 for C2v, the permutation λ [θ ]
g constructs a permutation represen-

tation Λ
[θ ]
G , when g runs over the point group G:

Λ
[θ ]
G =

{

λ [θ ]
g | ∀g ∈G

}

. (6.31)

The permutation representation Λ
[θ ]
G is intransitive in general, so that it is divided into a set of

coset representations. In a similar way to Eq. 6.10 for C2v, such a set of coset representations
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can be represented as follows:

Λ
[θ ]
G = ∑

Gi

Aθ iG(/Gi), (6.32)

where the symbol Aθ i denotes the multiplicity of the G(/Gi)-orbit, which represents the
number of inequivalent promolecules with the partition [θ ] under the action of G.

The division represented by Eq. 6.32 is parallel to the division of Eq. 5.22 (page 120),
although the former is concerned with orbits of promolecules, while the latter concerned
with orbits within a promolecule. Hence, the multiplicity vector MVPG (Eq. 5.26 on page
121) for characterizing substitution positions can be rewritten to give a vector called an
isomer-counting vector (ICV) A[θ ] for characterizing promolecules:

A[θ ] = (Aθ1, · · · ,Aθ j, · · · ,Aθ s). (6.33)

In a similar way to FPVPG (Eq. 5.23 on page 120) for the permutation representation PG, an

FPV for the permutation representation Λ
[θ ]
G is represented by the symbol R[θ ] as follows:

R[θ ] = (ρθ1, · · · ,ρθ j, · · · ,ρθ s), (6.34)

where the symbol ρθ j is used to denote the mark (the number of fixed points) with G j and
[θ ]. In a similar way to Eq. 5.27 (page 121) and Eq. 5.28 (page 121) for PG, the following
equations are obtained to characterize the present case of Λ

[θ ]
G :

R[θ ] = A[θ ]×MG (6.35)

(ρθ1, · · · ,ρθ j, · · · ,ρθ s) = (Aθ1, · · · ,Aθ j, · · · ,Aθ s)MG. (6.36)

Our target of counting inequivalent promolecules under the action of G is now trans-
lated to obtain the isomer-counting vector A[θ ], which is obtained by Eq. 6.35 or Eq. 6.36.
For this purpose, it is necessary to evaluate the FPV R[θ ] represented by Eq. 6.34.

6.2.2 Fixed-Point Matrices (FPMs) and Isomer-Counting Matrices (ICMs)

Recent advances of computer hardware and software (in particular, computer algebra sys-
tems such as Mathematica and Maple) enable us to treat generating functions more and
more easily. As a result, the fixed-point-matrix (FPM) method and the the partial-cycle-
index (PCI) method of USCI approach, both of which are based on generating functions,
become more and more accessible than the early years of the development of the USCI ap-
proach. It follows that the discussions below will mainly depend on the methods based on
generating functions.

Let us construct a matrix called an isomer-counting matrix (ICM) by collecting the
isomer-counting vectors A[θ ] (Eq. 6.33), where [θ ]1, [θ ]2, . . . , [θ ]θ , . . . , [θ ]|θ | are considered

as possible partitions. This means that the permutation representation Λ
[θ ]
G (Eq. 6.31: [θ ]

covers possible partitions) runs to cover the whole of the permutation representation PG:
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Definition 6.3 (Isomer-Counting Matrix (ICM) for Itemized Enumeration).

ICMPG =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

A11 · · · A1 j · · · A1s

A21 · · · A2 j · · · A2s
...

...
...

Aθ1 · · · Aθ j · · · Aθs
...

...
...

A|θ |1 · · · A|θ | j · · · A|θ |s

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (6.37)

The fixed-point matrices (FPMs) introduced for C2v (Eq. 6.5 and Eq. 6.17) can be easily
generalized to define an FPM of G. The FPV (Eq. 6.34) for Λ

[θ ]
G is used to specify each row,

which contains ρθ j as an element for characterizing the number of fixed points with G j and
[θ ]:

Definition 6.4 (Fixed-Point Matrix (FPM) for Itemized Enumeration).

FPMPG =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ρ11 · · · ρ1 j · · · ρ1s

ρ21 · · · ρ2 j · · · ρ2s
...

...
...

ρθ1 · · · ρθ j · · · ρθs
...

...
...

ρ|θ |1 · · · ρ|θ | j · · · ρ|θ |s

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (6.38)

The j-th column of FPMPG (Eq. 6.38) is concerned with the subduction by the sub-
group G j, which corresponds to the SCI defined by Def. 6.1 (Eq. 6.22). The sphericity
index $d jk specifies the mode of packing according to the sphericity at issue, as shown in
Fig. 4.2 (page 90). Hence, the following theorem for evaluating the j-th column of FPMPG
(Eq. 6.38) is obtained:

Theorem 6.1. Suppose that the substitution positions of a stereoskeleton of G accommodate pro-
ligands selected from a ligand inventory L (Eq. 6.26) to give promolecules with the composition Wθ .
A generating function for evaluating the mark ρθ j (the number of fixed promolecules with G j and
[θ ]) is obtained to be:

∑
[θ ]

ρθ jWθ = SCI-CFPG (G j;$d jk )
∣

∣

∣

$d jk
=∑L

(6.39)

for j = 1,2, . . . ,s, where the symbol Wθ denotes the composition represented by Eq. 6.27 and the
symbol $d jk = ∑L denotes the introduction of a ligand-inventory function into the sphericity index
$d jk as follows:

ad jk =
n

∑
�=1

X
d jk
� (6.40)

cd jk =
n

∑
�=1

X
d jk
� +2

n′

∑
�=1

p
d jk/2
� p

d jk/2
� (6.41)

bd jk =
n

∑
�=1

X
d jk
� +

n′

∑
�=1

p
d jk
� +

n′

∑
�=1

p
d jk
� (6.42)

This theorem has been reported in Fujita’s monograph [1, Lemma 19.2].
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In a similar way to Eq. 6.12 or Eq. 6.20 for C2v, we are able to obtain an ICM for G by
using Eq. 6.37 (Def. 6.3) and Eq. 6.38 (Def. 6.4) as follows:

Theorem 6.2 (The FPM Method of Fujita’s USCI Approach). By starting from FPMPG (Eq. 6.38)
evaluated by Theorem 6.1, the number Aθ j of promolecules with the point-group symmetry G j and
the composition Wθ is obtained in the form of the isomer-counting matrix ICMPG (Eq. 6.37) as
follows:

ICMPG = FPMPG ×M−1
G , (6.43)

where the inverse mark table M−1
G is given in Eq. 5.31 (page 121).

This theorem has been reported in Fujita’s monograph [1, Theorem 19.4]. To memorize Eq.
6.43 intuitively, its concrete matrix form is given as follows:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

A11 · · · A1 j · · · A1s

A21 · · · A2 j · · · A2s
...

...
...

Aθ1 · · · Aθ j · · · Aθ s
...

...
...

A|θ |1 · · · A|θ | j · · · A|θ |s

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ρ11 · · · ρ1 j · · · ρ1s

ρ21 · · · ρ2 j · · · ρ2s
...

...
...

ρθ1 · · · ρθ j · · · ρθ s
...

...
...

ρ|θ |1 · · · ρ|θ | j · · · ρ|θ |s

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

×M−1
G . (6.44)

On the other hand, subduced cycle indices without chirality fittingness (SCIs) repre-
sented by Eq. 6.24 (Def. 6.2) can be regarded as a degenerate case of SCI-CFs. It follows
that Theorem 6.1 can be simplified by replacing ligand-inventory functions (ad jk , cd jk , and
bd jk ) into a ligand-inventory function of a single degenerate form:

sd jk =
n

∑
�=1

X
d jk
� . (6.45)

This has been once reported as Lemmas 15.2 and 15.3 in Fujita’s monograph [1]. Theorem
6.2 holds true for the degenerate case, as once reported in [1, Theorem 15.4]

6.2.3 Practices of the FPM Method

Procedure of Enumeration Based on the FPM Method
For the purpose of doing well to solve practical problems of enumeration, we could forget
the proof of Theorems 6.1 and 6.2 for the time being. The following procedure for practical
enumeration is helpful to ‘digest’ the theorems by chewing on a few examples.

Rule 6.1. Procedure of Enumeration Based on the FPM Method.
1. Determine the point group G of a stereoskeleton to be considered. See Section 3.3.
2. Divide the substitution positions of the skeleton into orbits. See Subsection 3.3.4.
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3. Assign a coset representation to each of the orbits in the form of Eq. 5.22.
– For a diagrammatical method, see the procedure for determining orbits (Rule 3.1

on page 80).
– For an algebraic method based on the mark table of G, see Subsection 5.1.3.

4. Necessary data for characterizing the point group G (a mark table, an inverse mark
table, and a USCI-CF table) should be collected.

5. Calculate an SCI-CF for each subgroup by using Eq. 6.22 (Def. 6.1).
6. Evaluate an FPM by using Eq. 6.39 (Theorem 6.1).
7. Calculate an ICM by using Eq. 6.43 (Theorem 6.2).

As a practical example of the above procedure, a Maple programming code for generating
the FPM and the ICM has been reported [17], where cubane derivatives are enumerated on
the basis of the point group Oh.

FPM Method Applied to Adamantan-2-one Derivatives
To exemplify the procedure for enumeration based on the FPM method (Rule 6.1), let us
enumerate derivatives of adamantan-2-one, which has once been examined in Exercise 5.3
(Fig. 5.2 on page 126).

O

1 3

7 5

6

98 10 4

6-35

orbit coset representation
obligatory

minimum valency
Δ1 = {1,3} C2v(/C ′s) C,N
Δ3 = {4,8,9,10} C2v(/C1) C,N,O
Δ2 = {5,7} C2v(/Cs) C,N
Δ4 = {6} C2v(/C2v) C,N,O

Fig. 6.5. Adamantan-2-one skeleton for polyaza, polyoxa-derivatives.

Suppose that the nine skeletal positions of the adamantan-2-one skeleton 6-35 (Fig. 6.5)
are substituted by a set of carbons, nitrogens, and oxygens to produce polyoxa, polyaza-
derivatives.
1. The skeleton 6-35 is determined to belong to the point group C2v by examining its

symmetry elements according to Section 3.3 (Step 1 of Rule 6.1). As for the symmetry
elements of C2v, remember Table 3.5 (page 70) and Eqs. 5.15–5.19 (page 118).

2. The nine skeletal positions (the 2-position is excluded) are divided into bridgehead
{1,3,5,7} and bridge positions {4,6,8,9,10}. By glancing at the skeleton 6-35 ac-
cording to Subsection 3.3.4, these positions are found to be further divided into four
orbits, which are determined to belong to the following coset representations (Steps 2
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and 3 of Rule 6.1). The four bridgehead positions are divided into two orbits, i.e., a two-
membered homosheric orbit Δ1 = {1,3} belonging to C2v(/C ′s) (degree: |C2v|/|C ′s|=
4/2 = 2) and another two-membered homospheric orbit Δ2 = {5,7} belonging to
C2v(/Cs) (degree: |C2v|/|Cs| = 4/2 = 2). The five bridge positions are divided into
two orbits, i.e., a four-membered enantiospheric orbit Δ3 = {4,8,9,10} belonging
to C2v(/C1) (degree: |C2v|/|C1| = 4/1 = 4) and a one-membered homospheric orbit
Δ4 = {6} belonging to C2v(/C2v) (degree: |C2v|/|C2v| = 4/4 = 1). As for the coset
representations of C2v, see Table 5.1 (page 117).

3. The mark table of C2v (Table 5.3 on page 119), the inverse mark table of C2v (Table
5.5 on page 119), and the USCI-CF table of C2v (Table 5.9 on page 128) have already
discussed (Step 4 of Rule 6.1).

4. In order to place carbons, nitrogens, and oxygens on the skeletal positions of 6-35, it is
necessary to take account of obligatory minimum valencies (OMVs) [1, Chapter 14].
Each bridgehead position (in Δ1 and Δ2) has the OMV of 3, which permits the sub-
stitution of an atom with valency 3 or more. This means that the corresponding ligand
inventory is selected as L1 = {C, N}. Hence, a ligand-inventory function is selected as
follows:

ad = bd = cd = Cd +Nd . (6.46)

On the other hand, each bridge position (in Δ3 and Δ4) has the OMV of 2, which
permits the substitution of an atom with valency 2 or more. This means that the cor-
responding ligand inventory is selected as L2 = {C, N, O}. Hence, a ligand-inventory
function is selected as follows:

ád = b́d = ćd = Cd +Nd +Od , (6.47)

where an acute accent is attached to designate the difference in the mode of substitution.
5. Each SCI-CF (Step 5 of Rule 6.1) should take such OMVs into consideration. Hence,

each SCI-CF is composed of two parts surrounded by pairs of parentheses, where one
part is calculated from the USCI-CFs of Δ1 and Δ2, while the other part is calculated
from the USCI-CFs of Δ3 and Δ4 (for the USCI-CF table of C2v, see Table 5.9):

SCI-CF(C1)6-35 = (b4
1)(b́

5
1) =(C+N)4(C+N+O)5 (6.48)

SCI-CF(C2)6-35 = (b2
2)(b́1b́2

2) =(C2 +N2)2(C+N+O)(C2 +N2 +O2)2 (6.49)

SCI-CF(Cs)6-35 = (a2
1c2)(á1ć2

2)=(C+N)2(C2 +N2)

× (C+N+O)(C2 +N2 +O2)2 (6.50)

SCI-CF(C ′s)6-35 = (a2
1c2)(á1ć2

2)=(C+N)2(C2 +N2)

× (C+N+O)(C2 +N2 +O2)2 (6.51)

SCI-CF(C2v)6-35 = (a2
2)(á1ć4) =(C2 +N2)2(C+N+O)(C4 +N4 +O4). (6.52)

6. After Eqs. 6.46 and 6.47 are introduced into the respective SCI-CFs, the resulting func-
tions represented by Eqs. 6.48–6.52 are expanded to give generating functions. The
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coefficients of respective terms CkNlOm are collected to generate an FPM (see Eq. 6.39
of Theorem 6.1). As an example of such an FPM, several values are collected to give
the following FPM (Step 6 of Rule 6.1):

FPM3-12 =

C9

C8N
C8O
C7N2

C7O2

C7NO
C6N3

C6O3

C6N2O
C6NO2

C1 C2 Cs C′s C2v
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1 1 1
9 1 3 3 1
5 1 1 1 1
36 4 6 6 2
10 2 2 2 0
40 0 2 2 0
84 4 10 10 2
10 2 2 2 0

140 4 4 4 2
70 2 6 6 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.
(6.53)

7. According to Eq. 6.43 (Theorem 6.2), the FPV (Eq. 6.53) is multiplied by the inverse
mark table of C2v (M−1

C2v
, Table 5.5) to give the corresponding ICM (Step 7 of Rule

6.1). The resulting ICM (Eq. 6.54) contains the coefficient of the term CkNlOm at the
intersection between the CkNlOm-row and the subgroup-column to be obtained.

ICM3-12 = FPM3-12×M−1
C2v

=

C9

C8N
C8O
C7N2

C7O2

C7NO
C6N3

C6O3

C6N2O
C6NO2

C1 C2 Cs C′s C2v
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 1
1 0 1 1 1
1 0 0 0 1
6 1 2 2 2
1 1 1 1 0
9 0 1 1 0

16 1 4 4 2
1 1 1 1 0

33 1 1 1 2
14 1 3 3 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.
(6.54)

Note that a pair of enantiomers or an achiral derivative is counted once under the point
group C2v.

The C8N-row of the ICM (Eq. 6.54) indicates the presence of one pair of C1-derivatives
(6-36 and 6-36), one Cs-derivative (6-37), one C ′s-derivative (6-38), and one C2v-derivative
(6-39). They are depicted in Fig. 6.6.

On the other hand, the C7N2-row of the ICM (Eq. 6.54) indicates that there are six
pairs of enantiomers of C1 (6-40/6-40, 6-41/6-41, 6-42/6-42, 6-43/6-43, 6-44/6-44, and
6-45/6-45), one pair of enantiomers of C2 (6-46/6-46), two Cs-derivatives (6-47 and 6-48),
two C ′s-derivatives (6-49 and 6-50), and two C2v-derivatives (6-51 and 6-52). They are also
depicted in Fig. 6.6.
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O

N

N

O

N

N

O

N

N

O

N

N

O

N

N

O

N

N

6-43 C1 6-43 C1 6-44 C1 6-44 C1 6-45 C1 6-45 C1
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6-51 C2v 6-52 C2v

Fig. 6.6. Monoaza- or diazaadamantan-2-ones of various point-group symmetries. A vacant ver-
tex indicates the substitution of a carbon atom omitted for the sake of simplicity.
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C8O
O

O

O

O

O

O

6-53 C1 6-53 C1 6-54 C2v
︸ ︷︷ ︸

enantiomer

C7O2

O

O

O

O

O

O

O

OO

O

O O

O

OO

O

O O

6-55 C1 6-55 C1 6-56 C2 6-56 C2 6-57 Cs 6-58 C ′s
︸ ︷︷ ︸

enantiomer
︸ ︷︷ ︸

enantiomer

Fig. 6.7. Monooxa- or dioxaadamantan-2-ones of various point-group symmetries. A vacant ver-
tex indicates the substitution of a carbon atom omitted for the sake of simplicity.

The C8O-row of the ICM (Eq. 6.54) indicates the presence of one pair of C1-derivatives
(6-53 and 6-53) and one C2v-derivative (6-54). They are shown in the first row of Fig. 6.7.

The C7O2-row of the ICM (Eq. 6.54) indicates the presence of one pair of C1-
derivatives (6-55 and 6-55), one pair of C2-derivatives (6-56 and 6-56), one Cs-derivative
(6-57), and one C ′s-derivative (6-58). They are shown in the second row of Fig. 6.7.

The comparison between Fig. 6.6 and Fig. 6.7 illustrates the effect of OMVs. Remem-
ber that each bridgehead position (OMV = 3) does not permit the substitution of a divalent
oxygen atom.

Exercise 6.3. The ligand inventories for enumerating oxirane derivatives, L1 (Eq. 6.2)
and L2 (Eq. 6.13), are combined to give a single ligand inventory:

L = {X,Y; p,p}. (6.55)

Then, enumerate oxirane derivatives with compositions XxYypppp according to the proce-
dure shown above (Rule 6.1).

Exercise 6.4. Depict azaoxa-derivatives by referring to the C7NO-row of the ICM repre-
sented by Eq. 6.54. Compare these structures with those having C7N2 (Fig. 6.6) and those
having C7O2 (Fig. 6.7).
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Tables of Supporting Data
For Step 4 of the above procedure (Rule 6.1), the data of C2, Cs, C3, S4, C2v, D2, C3v, D2d ,
T, Td , C3h, D3, and D3h (mark tables, inverse mark tables, subduction tables, USCI tables,
and USCI-CF tables) are collected in Fujita’s monograph [1, Apendices A–E]. Additional
data have been reported: C5 (mark table, inverse mark table, USCI table) [18], C5v (mark
table, inverse mark table) [19], D5 (mark table, inverse mark table, USCI table) [18], I
(mark table, inverse mark table, USCI table) [18] , D2h (inverse mark table, UCSI table)
[20], D4h (mark table) [21], Th (mark table, inverse mark table, subduction table) [22], Ih

(inverse mark table, USCI-CF table1) [23] and (subduction table) [22] , Oh (mark table,
inverse mark table, enumeration of octahedron complexes) [24] and (mark table, inverse
mark table, USCI-CF table, enumeration of cubane derivatives) [17], S[5] (inverse mark
table, USCI table) [25], and D6h (inverse mark table, UCSI table) [26].

6.3 The PCI Method of Fujita’s USCI Approach

6.3.1 Partial Cycle Indices With Chirality Fittingness (PCI-CFs)

After respective rows of the matrices of Eq. 6.44 are multiplied by the composition Wθ , they
are summed up to give an alternative expression for enumeration:

(

∑
[θ ]

Aθ1Wθ , . . . , ∑
[θ ]

Aθ iWθ , . . . , ∑
[θ ]

Aθ sWθ

)

=

(

∑
[θ ]

ρθ1Wθ , . . . , ∑
[θ ]

ρθ jWθ , . . . , ∑
[θ ]

ρθ sWθ

)

M−1
G , (6.56)

where the subscripts i and j are adjusted in terms of the vector multiplication of the right-
hand side. Each element of these formal vectors is a generating function concerning the
composition Wθ . Each element ∑[θ ] ρθ jWθ ( j = 1,2, . . . ,s) in the right-hand side of Eq.
6.56 has already been evaluated by Eq. 6.39 of Theorem 6.1. This evaluation for giving the
generating functions can be delayed after the formal summation of SCI-CFs.

1 The USCI-CF table of [23, Table 3] contains several misprints. The intersection between the Ih(/C2)-row
and the C3-column: b30

2 should be read as b20
3 ; the intersection between the Ih(/Cs)-row and the C5-column:

b15
5 should be read as b12

5 ; the intersection between the Ih(/Cs)-row and the D2h-column: a3
4c8

6 should be
read as a3

4c6
8; the intersection between the Ih(/C3i)-row and the C3i-column: a2

1c6
3 should be read as a2

1a6
3; the

intersection between the Ih(/C5v)-row and the C3v-column: c4
3 should be read as a4

3; the intersection between
the Ih(/C5v)-row and the D5d -column: a2c10 should be read as a2a10; the intersection between the Ih(/D3d)-
row and the C3i-column: a1c3

3 should be read as a1a3
3; and the intersection between the Ih(/D5d)-row and the

C5i-column: a1c5 should be read as a1a5.
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To conduct the formal summation of SCI-CFs (Eq. 6.22 of Def. 6.1) beforehand, we
first define a formal row vector of SCI-CFs:

V-SCI-CFPG

=
(

SCI-CFPG(G1;$d1k ), · · · , SCI-CFPG(G j;$d jk), · · · , SCI-CFPG(Gs;$dsk)
)

=

(

s

∏
i=1

(

v1

∏
k=1

$
β (i1)

k
d1k

)αi

, · · · ,
s

∏
i=1

(

v j

∏
k=1

$
β (i j)

k
d jk

)αi

, · · · ,
s

∏
i=1

(

vs

∏
k=1

$
β (is)

k
dsk

)αi
)

(6.57)

Thereby, partial cycle indices with chirality fittingness (PCI-CFs) for respective subgroups
Gi are defined in the form of multiplication of the formal vector by the inverse mark table
M−1

G as follows:
(

PCI-CFPG(G1;$d), · · · , PCI-CFPG(Gi;$d), · · · , PCI-CFPG(Gs;$d)
)

= V-SCI-CFPG ×M−1
G , (6.58)

where the sphericity index $d jk is replaced by $d because the products concerning j and k
have been calculated in the right-hand side. The vector calculation is alternatively expressed
by picking up each PCI-CFPG(Gi;$d) to give the following definition:

Definition 6.5 (Partial Cycle Indices With Chirality Fittingness (PCI-CFs)). A partial cycle index
with chirality fittingness (PCI-CF) is defined by the following equation:

PCI-CFPG (Gi;$d) =
s

∑
j=1

m jiSCI-CFPG (G j;$d jk ) =
s

∑
j=1

m ji

s

∏
i=1

(

USCI-CF(G(/Gi) ↓G j;$d jk )
)αi

=
s

∑
j=1

m ji

(

s

∏
i=1

(

v j

∏
k=1

$
β (i j)

k
d jk

)αi
)

(6.59)

for i = 1,2, · · · ,s, where SCI-CFPG comes from Eq. 6.22 of Def. 6.1.

This definition is a simplified form of Def. 19.6 of Fujita’s monograph [1].
According to Eq. 6.56, the PCI-CFs defined in Def. 6.5 give generating functions for

giving the numbers of promolecules Aθ i with Gi and [θ ]:

Theorem 6.3. Suppose that the substitution positions of a stereoskeleton of G accommodate pro-
ligands selected from a ligand inventory L (Eq. 6.26) to give promolecules with the composition Wθ .
A generating function for evaluating the number of promolecules Aθ i with Gi and [θ ] is obtained to
be:

∑
[θ ]

Aθ iWθ = PCI-CFPG (Gi;$d)
∣

∣

∣

$d=∑L
(6.60)

for j = 1,2, . . . ,s, where the symbol Wθ denotes the composition represented by Eq. 6.27 and the
symbol $d = ∑L denotes the introduction of a ligand-inventory function to the sphericity index $d as
follows:

ad =
n

∑
�=1

Xd
� (6.61)

cd =
n

∑
�=1

Xd
� +2

n′

∑
�=1

pd/2
� pd/2

� (6.62)
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bd =
n

∑
�=1

Xd
� +

n′

∑
�=1

pd
� +

n′

∑
�=1

pd
� . (6.63)

This theorem has been reported in Fujita’s monograph [1, Lemma 19.7]. Note that the
ligand-inventory functions Eqs. 6.61–6.63 obey the modes of accommodation due to chiral-
ity fittingness, which have been illustrated in Fig. 4.2 (page 90).

6.3.2 Partial Cycle Indices Without Chirality Fittingness (PCIs)

When the sphericity indices $d jk in Def. 6.5 degenerate into a dummy variable sd jk , the
following definition of PCIs is obtained:

Definition 6.6 (Partial Cycle Indices Without Chirality Fittingness (PCIs)). A partial cycle index
(PCI) is defined by the following equation:

PCIPG (Gi;sd jk ) =
s

∑
j=1

m jiSCIPG (G j;sd jk ) =
s

∑
j=1

m ji

s

∏
i=1

(

USCI(G(/Gi) ↓G j;sd)
)αi

=
s

∑
j=1

m ji

(

s

∏
i=1

(

v j

∏
k=1

s
β (i j)

k
d jk

)αi
)

(6.64)

for i = 1,2, · · · ,s, where SCIPG comes from Eq. 6.24 of Def. 6.2.

This definition succeeds Defs. 16.3 and 16.4 of Fujita’s monograph [1].
Partial cycle indices without chirality fittingness (PCIs) represented by Eq. 6.64 (Def.

6.6) can be regarded as a degenerate case of PCI-CFs. It follows that Theorem 6.3 can
be simplified by replacing ligand-inventory functions (ad jk , cd jk , and bd jk ) into a ligand-
inventory function of a single degenerate form:

sd jk =
n

∑
�=1

X
d jk
� . (6.65)

This has been once reported as Theorem 16.3 and Corollary 16.1 of Fujita’s monograph [1].

6.3.3 Practices of the PCI Method

Procedure of Enumeration Based on the PCI Method
The procedure for enumeration based on the PCI method can be described in a parallel way
to the procedure for enumeration based on the FPM method (Rule 6.1 on page 143). Even
if we forget the proof of Theorem 6.3 for the time being, we are able to do well in practical
enumeration.

Rule 6.2. Procedure of Enumeration Based on the PCI Method. Step 1–Step 5 of Rule
6.1 on page 143 are followed. Then,
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6. Calculate PCI-CFs for the respective subgroups by applying Def. 6.5 to the SCI-CFs
obtained by Step 5.

7. Calculate generating functions by introducing ligand-inventory functions according to
Theorem 6.3.

As a practical example of the above procedure, a Maple programming code for the PCI
method has been reported [27], where cubane derivatives are enumerated on the basis of the
point group Oh.

PCI Method Applied to Oxirane Derivatives
To exemplify the above procedure of the PCI method (Rule 6.2), let us revisit oxirane deriva-
tives based on the skeleton 3-12 (page 68). The previous discussion on oxirane derivatives
(Figs. 6.2 and 6.4) is concerned with the case that USCI-CFs are regarded as SCI-CFs
because of the presence of one orbit of substitution positions. As a result, the previous dis-
cussion can be recognized as an embodiment of Step 1 to Step 5 from the present point
of view. Hence, the collection of USCI-CFs shown at the top of Fig. 6.2 (or Fig. 6.4) can
generate a formal row vector of SCI-CFs (Eq. 6.57), which is represented by

V-SCI-CFPC2v
= (b4

1, b2
2, c2

2, c2
2, c4). (6.66)

The formal row vector is multiplied by the inverse mark table M−1
C2v

(Table 5.5) according to
Eq. 6.58, so as to give the following expression of PCI-CFs (Step 6 of Rule 6.2):

(

PCI-CF3-12(C1), PCI-CF3-12(C2), PCI-CF3-12(Cs), PCI-CF3-12(C′s), PCI-CF3-12(C2v)
)

= (b4
1, b2

2, c2
2, c2

2, c4)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
4 0 0 0 0
− 1

4
1
2 0 0 0

− 1
4 0 1

2 0 0
− 1

4 0 0 1
2 0

1
2 − 1

2 − 1
2 − 1

2 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (6.67)

By means of formal vector calculations, we obtain the following set of PCI-CFs:

PCI-CF3-12(C1) =
1
4

b4
1−

1
4

b2
2−

1
2

c2
2 +

1
2

c4 (6.68)

PCI-CF3-12(C2) =
1
2

b2
2−

1
2

c4 (6.69)

PCI-CF3-12(Cs) =
1
2

c2
2−

1
2

c4 (6.70)

PCI-CF3-12(C ′s) =
1
2

c2
2−

1
2

c4 (6.71)

PCI-CF3-12(C2v) = c4. (6.72)
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Suppose that the four positions of the skeleton 3-12 accommodate a set of four proligands,
which is selected from the following ligand inventory:

L = {A, B, X, Y; p, p, q, q, r, r, s, s}, (6.73)

where the symbols A, B, X, and Y denote achiral proligands, while a pair of p/p, q/q. r/r,
or s/s denote a pair of chiral proligands with opposite chirality senses. By applying Eqs.
6.61–6.63, the following ligand-inventory functions are obtained:

ad = Ad +Bd +Xd +Yd (6.74)

cd = Ad +Bd +Xd +Yd +2
(

pd/2pd/2 +qd/2qd/2 + rd/2rd/2 + sd/2sd/2
)

(6.75)

bd = Ad +Bd +Xd +Yd +pd +pd +qd +qd + rd + rd + sd + sd . (6.76)

The ligand-inventory functions (Eqs. 6.74–6.76) are introduced into the PCI-CFs (Eqs.
6.68–6.72) according to Theorem 6.3. The resulting equations are expanded to give the
following generating functions:

f3-12(C1) = {A3B+ · · ·}+{2× 1
2
(A3p+A3p)+ · · ·}

+{1
2
(A2p2 +A2p2)+ · · ·}+{3A2BX+ · · ·}

+{6× 1
2
(A2Bp+A2Bp)+ · · ·}+{A2pp+ · · ·}+

+{6× 1
2
(A2pq+A2pq)+ · · ·}+6ABXY+

+{12× 1
2
(ABXp+ABXp)+ · · ·}+{6× 1

2
(ABp2 +ABp2)+ · · ·}

+{6ABpp+ · · ·}+{12× 1
2
(ABpq+ABpq)+ · · ·}

+{2× 1
2
(Ap3 +Ap3)+ · · ·}

+{6× 1
2
(Ap2p+App2)+ · · ·}+{6× 1

2
(Ap2q+Ap2q)+ · · ·}

+{12× 1
2
(Appq+Appq)+ · · ·}+{12× 1

2
(Apqr+Apqr)+ · · ·}

+{2× 1
2
(p3p+pp3)+ · · ·}+{2× 1

2
(p3q+p3q)+ · · ·}

++{6× 1
2
(p2pq+pp2q)+ · · ·}+{2× 1

2
(p2q2 +p2q2)+ · · ·}

+{6× 1
2
(p2qq+p2qq)+ · · ·}+{6× 1

2
(p2qr+p2qr)+ · · ·}

+{2ppqq+ · · ·}
+{12× 1

2
(ppqr+ppqr)+ · · ·}+{12× 1

2
(pqrs+pqrs)+ · · ·} (6.77)

f3-12(C2) = {A2B2 + · · ·}+{1
2
(A2p2 +A2p2)+ · · ·}
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Fig. 6.8. Six pairs of enantiomeric oxiranes with the composition ABXY. All of these oxirane
derivatives belong to the point group C1.

+{1
2
(p4 +p4)+ · · ·}+{2× 1

2
(p2q2 +p2q2)+ · · ·} (6.78)

f3-12(Cs) = f3-12(C ′s)

= {A2B2 + · · ·}+{2A2pp+ · · ·}+{p2p2 + · · ·}+{4ppqq+ · · ·} (6.79)

f3-12(C2v) = {A4 + · · ·}+{2p2p2 + · · ·}, (6.80)

where each pair of braces contains a representative of terms of the same type, e.g., the
representative A4 correspond to A4, B4, X4, and Y4. These generating functions contain the
data of the ICMs which have been obtained by the FPM method (Eq. 6.12 and Eq. 6.20;
the symbols X and Y correspond to A and B). It should be noted the present enumeration
counts a pair of enantiomers or an achiral derivative once. For example, the term 6ABXY of
f3-12(C1) (Eq. 6.77) represents the presence of six pairs of enantiomers, which are depicted
in Fig. 6.8.

Exercise 6.5.
– Depict 12 enantiomeric pairs corresponding to the term 12× 1

2 (pqrs+pqrs) of Eq. 6.77.
– Compare these 12 pairs with the six pairs collected in Fig. 6.8. Note that the difference

between them will be discussed in terms of type-I and type-III stereoisograms.

PCI Method Applied to Tetrahedral Derivatives
As a more complicated example of the procedure of the PCI method (Rule 6.2 on page 151),
let us examine a tetrahedral skeleton 3-5 (Fig. 3.7 on page 68). As found in the discussion
described there, the tetrahedral skeleton 3-5 belongs to the point group Td , which is char-
acterized by eleven subgroups listed in the SSG represented by Eq. 3.19 on page 62 (Steps
1 and 2 of Rule 6.2). The four positions of 3-5 construct a four-membered orbit governed
by the coset representation Td(/C3v) (Table 3.1 on page 61), which is regarded as a per-
mutation representation PTd (Step 3 of Rule 6.2). The USCI-CF table and the inverse mark
table (M−1

Td
) have been listed in Fujita’s monograph [1, Table E.10 and Table B.10] (Step 4
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of Rule 6.2). Thereby, we are able to obtain a formal vector of SCI-CFs as follows (Step 5
of Rule 6.2):

V-SCI-CFPTd
= (b4

1, b2
2, a2

1c2, b1b3, c4, b4, a2
2, a1a3, a4, b4, a4). (6.81)

The formal row vector is multiplied by the inverse mark table M−1
Td

according to Eq. 6.58,
so as to give the following expression of PCI-CFs (Step 6 of Rule 6.2):

(PCI-CF3-5(C1), PCI-CF3-5(C2), . . . ,PCI-CF3-5(Td))

= V-SCI-CFPTd
×M−1

Td
. (6.82)

By means of formal vector calculations, we obtain the following set of PCI-CFs:

PCI-CF3-5(C1) =
1
24

b4
1−

1
8

b2
2−

1
4

a2
1c2− 1

6
b1b3 +

1
4

b4

+
1
4

a2
2 +

1
2

a1a3− 1
2

a4 (6.83)

PCI-CF3-5(C2) =
1
4

b2
2−

1
4

c4− 1
4

b4− 1
4

a2
2 +

1
2

a4 (6.84)

PCI-CF3-5(Cs) =
1
2

a2
1c2− 1

2
a2

2−a1a3 +a4; (6.85)

PCI-CF3-5(C3) =
1
2

b1b3− 1
2

a1a3− 1
2

b4 +
1
2

a4 (6.86)

PCI-CF3-5(S4) =
1
2

c4− 1
2

a4 (6.87)

PCI-CF3-5(D2) = 0 (6.88)

PCI-CF3-5(C2v) =
1
2

a2
2−

1
2

a4 (6.89)

PCI-CF3-5(C3v) = a1a3−a4 (6.90)

PCI-CF3-5(D2d) = 0 (6.91)

PCI-CF3-5(T) =
1
2

b4− 1
2

a4 (6.92)

PCI-CF3-5(Td) = a4. (6.93)

These PCI-CFs have been once noted in the articles by the author [15,28].
The four positions of the tetrahedral skeleton 3-5 are substituted by proligands selected

from the proligand inventory L (Eq. 6.73). Theorem 6.3 permits us to adopt the same set of
ligand-inventory functions listed in Eqs. 6.74–6.76, which are introduced into the PCI-CFs
(Eqs. 6.83–6.93). After expansion (Step 7 of Rule 6.2), we obtain the following generating
functions [15,28]:

f3-5(C1) = {2× 1
2

[θ ]11
(ABXp+ABXp)+ · · ·}+{2× 1

2

[θ ]14
(ABpq+ABpq)+ · · ·}

+{2× 1
2

[θ ]18
(Appq+Appq)+ · · ·}+{2× 1

2

[θ ]19
(Apqr+Apqr)+ · · ·}
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+{2× 1
2

[θ ]30
(pqrs+pqrs)+ · · ·}+{2× 1

2

[θ ]29
(ppqr+ppqr)+ · · ·}

+{1
2

[θ ]7
(A2Bp+A2Bp)+ · · ·}+{1

2

[θ ]12

(ABp2 +ABp2)+ · · ·}

+{1
2

[θ ]9
(A2pq+A2pq)+ · · ·}+{1

2

[θ ]16

(Ap2p+App2)+ · · ·}

+{1
2

[θ ]17

(Ap2q+Ap2q)+ · · ·}+{1
2

[θ ]24

(p2pq+pp2q)+ · · ·}

+{1
2

[θ ]26

(p2qq+p2qq)+ · · ·}+{1
2

[θ ]27

(p2qr+p2qr)+ · · ·}

+{
[θ ]28
ppqq+pprr+ · · ·}+{

[θ ]10
ABXY} (6.94)

f3-5(C2) = {1
2

[θ ]5
(A2p2 +A2p2)+ · · ·}+{1

2

[θ ]25

(p2q2 +p2q2)+ · · ·} (6.95)

f3-5(Cs) = {
[θ ]13

2ABpp+2ABqq+ · · ·}+{
[θ ]8

A2pp+ · · ·}

+{
[θ ]6

A2BX+A2BY+ · · ·} (6.96)

f3-5(C3) = {1
2

[θ ]3
(A3p+A3p)+ · · ·}+{1

2

[θ ]15

(Ap3 +Ap3)+ · · ·}

+{1
2

[θ ]22

(p3q+p3q)+ · · ·}+{1
2

[θ ]21

(p3p+pp3)+ · · ·} (6.97)

f3-5(S4) = {
[θ ]23

p2p2 +q2q2 + r2r2 + s2s2} (6.98)

f3-5(C2v) = {
[θ ]4

A2B2 +A2X2 +A2Y2 + · · ·} (6.99)

f3-5(C3v) = {
[θ ]2

A3B+A3X+A3Y+ · · ·} (6.100)

f3-5(T) = {1
2

[θ ]20

(p4 +p4)+ · · ·} (6.101)

f3-5(Td) = {
[θ ]1
A4 +B4 +X4 +Y4} (6.102)

In these generating functions, the coefficient of the term AaBbXxYyppppqqqqrrqrssqs indi-
cates the number of inequivalent (self-)enantiomeric pairs to be counted. Note that such a
term as 1

2 (ABXp+ABXp) indicates the presence of one enantiomeric pair of promolecules
under the point-group symmetry. The enumeration results represented by the generating
functions (Eqs. 6.94–6.102) are consistent with the data listed in Tables 4 and 5 of [28] (and
Table 21.1 of [1]) as tabular forms.

The results shown in Eqs. 6.94–6.102 are illustrated in Fig. 6.9, where a representative
selected from each pair of braces is depicted. For example, 6-94 (Td) with the composition
A4 is a representative for {A4 +B4 +X4 +Y4} appearing in Eq. 6.102.
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Fig. 6.9. Tetrahedral promolecules enumerated under the point group Td . The symbols A, B, X,
and Y represent atoms or achiral ligands. The symbols p, q, r, and s represents chiral ligands,
while each symbol with an overbar represents the corresponding chiral ligand with the opposite
chirality. An arbitrary promolecule is depicted as a representative of each pair of enantiomers.
Types I–V will be discussed later in terms of Fujita’s stereoisogram approach.
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Fig. 6.10. One pair of enantiomeric tetrahedral derivatives with the composition ABXY. These
derivatives belong to the point group C1. This case is categorized as type I in Fujita’s stereoiso-
gram appraoch, as discussed later.

Because the above PCI method counts once a pair of enantiomers or an achiral pro-
molecule, an arbitrary promolecule is depicted as a representative of each pair of enan-
tiomers in Fig. 6.9. For example, the term ABXY of f3-5(C1) (Eq. 6.94) indicates the pres-
ence of one pair of enantiomers with the composition ABXY, i.e., 6-65 and 6-65, which are
depicted in Fig. 6.10. Among them, however, only 6-65 is adopted as a representative in Fig.
6.9. This case is frequently referred to as a so-called ‘asymmetric carbon center’ or ‘chiral-
ity center’. Compare Fig. 6.10 with Fig. 6.8 from the viewpoint of stereoisomerism with
respect to stereoskeletons of ligancy 4 (the oxirane skeleton 3-12 vs. the tetrahedral skele-
ton 3-5). The case of Fig. 6.10 is categorized as type I in Fujita’s stereoisogram approach,
as discussed later.

On the other hand, the term 2× 1
2 (ABXp + ABXp) in Eq. 6.94 indicates the presence

of two pairs of enantiomers. A representative of each pair (e.g., one with the composition
ABXp) is depicted as 6-82 or 6-83 in Fig. 6.9. The pomolecule 6-82 (or 6-83) is accompa-
nied with the corresponding enantiomer 6-82 (or 6-83), as shown in Fig. 6.11. These two
pairs are diastereomeric to each other in terms of Def. 2.7 (page 40).

Similar situations hold true for promolecules 6-84 and 6-85 (for the term 2× 1
2 (ABpq+

ABpq)), 6-86 and 6-87 (for the term 2× 1
2 (Appq + Appq), 6-88 and 6-89 (for the term

2× 1
2 (Apqr + Apqr), 6-90 and 6-91 (for the term 2× 1

2 (ppqr + ppqr), as well as 6-92 and
6-93 (for term 2× 1

2 (pqrs + pqrs). These terms are gathered as the top six terms in the
generating function of C1 (Eq. 6.94). These cases exemplified by Fig. 6.11 are categorized
as type III in Fujita’s stereoisogram appraoch, as discussed later.

Note that the pomolecule 6-82 can be converted into 6-83 by exchanging the proligands
X and p, where the combined process of detachment and reattachment or the inversion pro-
cess via such a planar arrangement as shown in Fig. 1.2 (page 2) is plausible. However,
the pair of 6-82/6-82 is independent of the other pair of 6-83/6-83, so long as the present
enumeration is done under the point group Td . They are counted separately as being in-
equivalent under the point group Td , although they are counted together in terms of the
term 2× 1

2 (ABXp+ABXp) in Eq. 6.94.
The term 2ABpp in the generating function f3-5(Cs) (Eq. 6.96) indicates the presence

of two achiral promolecules with the composition ABpp and the point group Cs. These
achiral promoleclues are depicted as 6-100 and 6-101 in Fig. 6.9, which are diastereomeric
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Fig. 6.11. Two pairs of enantiomeric tetrahedral derivatives with the compositionABXp or ABXp.
These derivatives belong to the point group C1. These two pairs are diastereomeric to each other
in terms of Def. 2.7. This case is categorized as type III in Fujita’s stereoisogram appraoch, as
discussed later.

to each other in terms of Def. 2.7 (page 40). This case is categorized as type V in Fujita’s
stereoisogram appraoch, as discussed later. Note again that the pomolecule 6-100 can be
converted into 6-101 by exchanging the proligands p and p, where the combined process
of detachment and reattachment or the inversion process via such a planar arrangement as
shown in Fig. 1.2 (page 2) is plausible. However, 6-100 is inequivalent to 6-101, so long as
the present enumeration is done under the point group Td .

PCI Method Applied to Allene Derivatives
The procedure of the PCI method (Rule 6.2 on page 151) is also applied to an allene skeleton
3-9 (Fig. 3.7 on page 68), which belongs to the point group D2d . The non-redundant set of
subgroups (SSG) for the point group D2d is found to be:

SSGD2d = {C1,C2,C ′2,Cs,S4,C2v,D2,D2d}, (6.103)

which contains subgroups up to conjugacy (Steps 1 and 2 of Rule 6.2).

3

2

1

4

6-102

(View) =⇒ C C C

4

2

��

3

1

3-9

Fig. 6.12. Convention for drawing allene derivatives

A top view 6-102 shown in Fig. 6.12 is more convenient than the projection formula 3-9
in order to grasp symmetrical features of the allene skeleton. The four positions of 6-102
(= 3-9) construct a four-membered orbit governed by the coset representation D2d(/Cs)
(Table 3.2 on page 68), which is regarded as a permutation representation PD2d (Step 3 of
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Rule 6.2). The USCI-CF table and the inverse mark table (M−1
D2d

) have been listed in Fujita’s
monograph [1, Table E.8 and Table B.8] (Step 4 of Rule 6.2). Thereby, we are able to obtain
a formal vector of SCI-CFs as follows (Step 5 of Rule 6.2):

V-SCI-CFPD2d
= (b4

1, b2
2, b2

2, a2
1c2, c4, a2

2, b4, a4). (6.104)

This formal row vector is multiplied by the inverse mark table M−1
D2d

according to Eq. 6.58,
so as to give the following expression of PCI-CFs (Step 6 of Rule 6.2):

(PCI-CF3-9(C1), PCI-CF3-9(C2), . . . ,PCI-CF3-9(D2d))

= V-SCI-CFPD2d
×M−1

D2d
. (6.105)

By means of formal vector calculations, we obtain the following set of PCI-CFs (Step 6 of
Rule 6.2):

PCI-CF3-9(C1) =
1
8

b4
1−

1
8

b2
2−

1
4

b2
2−

1
4

a2
1c2 +

1
4

a2
2 +

1
4

b4 (6.106)

PCI-CF3-9(C2) =
1
4

b2
2−

1
4

c4− 1
4

a2
2−

1
4

b4 +
1
2

a4 (6.107)

PCI-CF3-9(C′2) =
1
2

b2
2−

1
2

b4 (6.108)

PCI-CF3-9(Cs) =
1
2

a2
1c2− 1

2
a2

2 (6.109)

PCI-CF3-9(S4) =
1
2

c4− 1
2

a4 (6.110)

PCI-CF3-9(C2v) =
1
2

a2
2−

1
2

a4 (6.111)

PCI-CF3-9(D2) =
1
2

b4− 1
2

a4 (6.112)

PCI-CF3-9(D2d) = a4 (6.113)

These PCI-CFs have been once noted in the article by Fujita [29].
The four positions of the allene skeleton 6-102 (=3-9) are substituted by proligands

selected from the proligand inventory L (Eq. 6.73). According to Theorem 6.3, the same
set of ligand-inventory functions as listed in Eqs. 6.74–6.76 are introduced into the PCI-
CFs (Eqs. 6.106–6.113). After expansion (Step 7 of Rule 6.2), we obtain the following
generating functions:

f3-9(C1) = {1
2
(A3p+A3p)+ · · ·}+{A2BX+ · · ·}+{A2pp+ · · ·}

+{6× 1
2
(ABXp+ABXp)+ · · ·}+{2ABpp+ · · ·}

+{6× 1
2
(ABpq+ABpq)+ · · ·}

+{6× 1
2
(Appq+Appq)+ · · ·}+{6× 1

2
(Apqr+Apqr)+ · · ·}
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+{6× 1
2
(pqrs+pqrs)+ · · ·}+{6× 1

2
(ppqr+ppqr)+ · · ·}

+{3× 1
2
(A2Bp+A2Bp)+ · · ·}+{3× 1

2
(ABp2 +ABp2)+ · · ·}

+{3× 1
2
(A2pq+A2pq)+ · · ·}+{3× 1

2
(Ap2p+App2)+ · · ·}

+{1
2
(Ap3 +Ap3)+ · · ·}+{3× 1

2
(Ap2q+Ap2q)+ · · ·}

+{1
2
(p3p+pp3)+ · · ·}+{1

2
(p3q+p3q)+ · · ·}

+{3× 1
2
(p2pq+pp2q)+ · · ·}+{3× 1

2
(p2qq+p2qq)+ · · ·}

+{3× 1
2
(p2qr+p2qr)+ · · ·}+{3ppqq+pprr+ · · ·}

+{3ABXY} (6.114)

f3-9(C2) = {1
2
(A2p2 +A2p2)+ · · ·}+{1

2
(p2q2 +p2q2)+ · · ·} (6.115)

f3-9(C′2) = {A2B2 + · · ·}+{2× 1
2
(A2p2 +A2p2)+ · · ·}

+{p2p2 + · · ·}+{2× 1
2
(p2q2 +p2q2)+ · · ·} (6.116)

f3-9(Cs) = {2ABpp+2ABqq+ · · ·}+{A2pp+ · · ·}
+{A2BX+A2BY+ · · ·}+{A3B+A3X+ · · ·} (6.117)

f3-9(S4) = {p2p2 +q2q2 + r2r2 + s2s2} (6.118)

f3-9(C2v) = {A2B2 +A2X2 +A2Y2 + · · ·} (6.119)

f3-9(D2) = {1
2
(p4 +p4)+ · · ·} (6.120)

f3-9(D2d) = {A4 +B4 +X4 +Y4} (6.121)

In these generating functions, the coefficient of the term AaBbXxYyppppqqqqrrqrssqs indi-
cates the number of inequivalent (self-)enantiomeric pairs to be counted.

The term 3ABXY of f3-9(C1) (Eq. 6.114) indicates the presence of three pairs of enan-
tiomers with the composition ABXY. They are depicted in Fig. 6.13(a).2 This case is fre-
quently referred to as a so-called ‘chirality axis’. Compare this figure (three pairs of enan-

2 The numbering of positions in Fig. 6.13 obeys the action of S[4]×{1,σ}. This means that the reference
promolecule 6-103 (or 6-106) is permuted under the action of S[4]×{1,σ}. This permutation is adopted for
the purpose of examining the relationship between point-group symmetry and permutation-group symmetry
as discussed later. If the action is restricted to that of D2d , on the other hand, the respective pairs {6-103,
6-103}, {6-104, 6-104}, {6-105, and 6-105} should be permuted separately under the action of D2d . In this
permutation, the mode of position numbering for {6-103, 6-103} should be used. For example, 6-104 is
generated by placing { f (1) = A, f (2) = B, f (3) = X, f (4) = Y} on the positions numbered for {6-103,
6-103}. This is the way adopted in the USCI approach for combinatorial enumeration under the action of
D2d . See the modes of numbering in Figs. 6.2 and 6.4 for the cases of an oxirane skeleton.
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(a) Three pairs of enantiomers with ABXY
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(b) Two achiral promolecules and two pairs of enantiomers with ABpp
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Fig. 6.13. Allene derivatives enumerated under the point group D2d . (a) Three pairs of enan-
tiomeric allene derivatives with the composition ABXY. These derivatives belong to the point
group C1. (b) Two achiral promolecules of Cs as well as two pairs of enantiomers of C1, where
they have the compositionABpp.

tiomers for allene derivatives) with Fig. 6.8 (six pairs of enantiomers for oxirane derivatives)
and with Fig. 6.10 (one pair of enantiomers for tetrahedral derivatives) from the viewpoint
of stereoisomerism with respect to stereoskeletons of ligancy 4.

The term 2ABpp in the generating function f3-9(Cs) (Eq. 6.117) indicates the presence
of two achiral promolecules of Cs, i.e., 6-106 and 6-107, which are depicted in Fig. 6.13(b).
Although the appearance of 6-106 and 6-107 seemingly suffers from the duplicated usage
of the skeleton of the same numbering, it stems from two modes of packing of an enantio-
spheric orbit {2,4} of 6-102 (Fig. 6.12) by an enantiomeric pair of chiral proligands p/p
(cf. Fig. 4.2 on page 90). Thus, the function { f (1) = A, f (2) = p, f (3) = B, f (4) = p} is
applied to give 6-106, while the complementary function { f (1) = A, f (2) = p, f (3) = B,
f (4) = p} is applied to give 6-107.

The term 2ABpp of f3-9(C1) (Eq. 6.114) indicates the presence of two pairs of enan-
tiomers with the composition ABpp, i.e., a pair of 6-108 and 6-108 and another pair of 6-109
and 6-109. These are depicted in the bottom row of Fig. 6.13(b).

It is worthwhile to compare Fig. 6.13(a) with Fig. 6.13(b) from a viewpoint of permuta-
tions (detachments and reattachments) of proligands. First, the enantiomers 6-103 and 6-103
are interchanged to each other by the permutation (1)(3)(2 4) of the proligands X and Y.
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In contrast, the permutation (1)(3)(2 4) of the proligands p and p converts the achiral pro-
molecule 6-106 into the other achiral promolecule 6-107. Second, the enantiomers 6-104
and 6-104 are interchanged to each other by the permutation (1)(2)(3 4) of the proligands
B and Y. In contrast, the permutation (1)(2)(3 4) of the proligands p and p converts the
chiral promolecule 6-108 into the other chiral promolecule 6-109, where the former is not
enantiomeric to the latter. Third, the enantiomers 6-105 and 6-105 are interchanged to each
other by the permutation (1)(2 3)(4) of the proligands B and X. In contrast, the permutation
(1)(2 3)(4) of the proligands p and p converts the chiral promolecule 6-109 into the other
chiral promolecule 6-108, where the former is not enantiomeric to the latter.

These examples clearly demonstrate that the effects of permutations are different from
the effects of reflections. Modern stereochemistry has adopted Fig. 6.13(a) as a standard and
regarded Fig. 6.13(b) as an exception. It follows that madern stereochemistry has failed to
integrate Fig. 6.13(a) and and Fig. 6.13(b).

PCI Method Applied to Adamantan-2-one Derivatives
As another example of the procedure of the PCI method (Rule 6.2 on page 151), let us re-
examine the enumeration of polyaza, polyoxa-derivatives of the adamantan-2-one skeleton
6-35 (Fig. 6.5 on page 144). A formal row vector is generated by using the SCI-CFs (Eqs.
6.48–6.52) according to Eq. 6.57 and multiplied by the inverse mark table of C2v (M−1

C2v
,

Table 5.5) according to Eq. 6.58. Thereby, the following PCI-CFs are obtained to meet Eq.
6.59 (Def. 6.5).

PCI-CF(C1)6-35 =
1
4
(b4

1)(b́
5
1)−

1
4
(b2

2)(b́1b́2
2)−

1
4
(a2

1c2)(á1ć2
2)

− 1
4
(a2

1c2)(á1ć2
2)+

1
2
(a2

2)(á1ć4) (6.122)

PCI-CF(C2)6-35 =
1
2
(b2

2)(b́1b́2
2)−

1
2
(a2

2)(á1ć4) (6.123)

PCI-CF(Cs)6-35 =
1
2
(a2

1c2)(á1ć2
2)−

1
2
(a2

2)(á1ć4) (6.124)

PCI-CF(C′s)6-35 =
1
2
(a2

1c2)(á1ć2
2)−

1
2
(a2

2)(á1ć4) (6.125)

PCI-CF(C2v)6-35 =
1
2
(a2

2)(á1ć4), (6.126)

where each SCI-CF in the right-hand sides takes account of OMVs by using sphericity
indices without (OMV = 3) and with acute accents (OMV = 2). The ligand-inventory func-
tions represented by Eqs. 6.46 (OMV = 3) and 6.47 (OMV = 2) are introduced into Eqs.
6.122–6.126. Then, the resulting equations are expanded to give the following generating
functions:

f6-35(C1) = C8N+C8O+6C7N2 +9C7NO+C7O2

+16C6N3 +33C6N2O+14C6NO2 +C6O3

+25C5N4 +67C5N3O+46C5N2O2 +13C5NO3 +C5O4
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+25C4N5 +84C4N4O+79C4N3O2 +33C4N2O3 +5C4NO4

+16C3N6 +67C3N5O+79C3N4O2 +46C3N3O3 +11C3N2O4

+6C2N7 +33C2N6O+46C2N5O2 +33C2N4O3 +11C2N3O4

+C2N2O5 +CN8 +9CN7O+14CN6O2 +13CN5O3

+5CN4O4 +N8O+N7O2 +N6O3 +N5O4 (6.127)

f6-35(C2) = C7N2 +C7O2 +C6N3 +C6N2O+C6NO2 +C6O3

+2C5N4 +3C5N2O2 +2C4N5 +2C4N4O+3C4N3O2 +3C4N2O3

+C3N6 +3C3N4O2 +C2N7 +C2N6O+3C2N5O2 +3C2N4O3

+CN6O2 +N7O2 +N6O3 (6.128)

f6-35(Cs) = C8N+2C7N2 +C7NO+C7O2 +4C6N3 +C6N2O+3C6NO2 +C6O3

+5C5N4 +3C5N3O+5C5N2O2 +2C5NO3

+5C4N5 +2C4N4O+7C4N3O2 +3C4N2O3 +C4NO4

+4C3N6 +3C3N5O+7C3N4O2 +4C3N3O3 +C3N2O4 +C3NO5

+2C2N7 +C2N6O+5C2N5O2 +3C2N4O3 +C2N3O4

+CN8 +CN7O+3CN6O2 +2CN5O3 +CN4O4 +CN3O5

+N7O2 +N6O3 (6.129)

f6-35(C ′s) = C8N+2C7N2 +C7NO+C7O2 +4C6N3 +C6N2O+3C6NO2 +C6O3

+ · · · (omitted, equal to fCs ) (6.130)

f6-35(C2v) = C9 +C8N+C8O+2C7N2 +2C6N3 +2C6N2O+2C5N4 +C5O4

+2C4N5 +2C4N4O+C4NO4 +C4O5 +2C3N6 +2C3N2O4

+2C2N7 +2C2N6O+2C2N3O4 +2C2N2O5 +CN8 +CN4O4

+N9 +N8O+N5O4 +N4O5, (6.131)

where the coefficient of the term CkNlOm represents the number of derivatives having the
composition CkNlOm and the respective point-group symmetry. Several values in the right-
hand sides have already appeared in the corresponding rows of the ICM represented by Eq.
6.54. See also Figs. 6.6 and 6.7 for examples of derivatives counted by Eqs. 6.127–6.131.

6.4 Other Methods of Fujita’s USCI Approach

6.4.1 The Elementary-Superposition Method

The elementary-superposition method of Fujita’s USCI approach [30,31] provides us with
a procedure of evaluating each element ρθ j of the FPV R[θ ] (Eq. 6.34) without relying
on generating functions. For the details of the elementary-superposition method (without
chirality fittingness), see Chapter 18 of [1]. For recent results of cubane derivatives, see
Ref. [32].
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6.4.2 The Partial-Superposition Method

The partial-superposition method of Fujita’s USCI approach [31] provides us with a pro-
cedure of evaluating each SCI-CF contained in a PCI-CF (Eq. 6.59 in Def. 6.5) without
relying on generating functions. For the details of the partial-superposition method (without
chirality fittingness), see Chapter 18 of [1]. Recent results of cubane derivatives by means of
the elementary-superposition method [32] can be easily applied to the partial-superposition
method.

6.5 Applications of Fujita’s USCI Approach

6.5.1 Enumeration of Flexible Molecules

Bond Rotation
Fujita’s USCI approach has been applied to the enumeration of isomers derived from a non-
rigid parent molecule, the non-rigidity of which stems from bond rotations [12]. After the
application of the proligand-promolecule model (cf. Section 3.1), the proligand is restored
to a mobile ligand belonging to a given point group H. The point group G of the skeleton
and the point group H of the mobile ligand are applied in a nested fashion. For example, a
Td(/C3v)-orbit of a tetrahedral skeleton and a C3v(/Cs)-orbit of a methyl ligand is linked
to give Td(/C3v)[C3v(/Cs)]. Such restored ligands can have different 3D structures (e.g.,
a methyl ligand and a phenyl ligand) in the enumeration of non-rigid molecules [33]. The
methyl ligand of dimethyl ether, tetramethylallene, or 2,2-dimethylpropane is replaced by a
substituted methyl ligand to aim at systematic enumeration of non-rigid isomers with given
ligand symmetries [34]. Combinatorial enumeration of non-rigid isomers with given ligand
symmetries has been accomplished on the basis of promolecules with a symmetry of D∞h

[35].

Ring Flipping
1,3,5-Trioxane derivatives have been enumerated by using a pseudo-point group ̂D3h, which
is an extension of a point group C3v for treating the ring flipping of a six-membered chair-
form ring [36]. The pseudo-point group ̂D3h, which is isomorphic to the point group D3h, is
applicable to the enumeration of ammonia derivatives with N-inversion [36].

Cyclohexane derivatives have been enumerated on the basis of a pseudo-point group
̂D6h, which is an extension of a point group D3d for treating the ring flipping of a six-
membered chair-form ring [37]. Systematic design of highly-symmetric cyclohexane
derivatives has been investigated by taking account of the pseudo-point group ̂D6h [38],
where characterization of their energetic and symmetric equivalency has been discussed.
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In a similar way, tetrahydropyran and 1,3-dioxane derivatives [39], 1,4-dioxane and
1,4-oxathiane derivatives [40], as well as spiro[5.5]undecane derivatives [41] have been
enumerated under considering ring flipping.

The ring flipping and N-inversion of piperidine derivatives have been treated in an
integrated fashion by presuming a quadruplet of conformers as a model [42], where an
extended pseudo-point group has been defined.

6.5.2 Enumeration of Molecules Interesting Stereochemically

Ethylene Derivatives
Orbits of faces of ethylene derivatives have been discussed in terms of sphericities [43],
where a two-membered enantiospheric orbit is concluded to exhibit prochirality. The at-
tributive term enantiospheric assigned to such a two-membered orbit is compared with the
relational term enantiotopic. The four positions of an ethylene skeleton 3-10 (page 68) have
been discussed by means of a four-membered D2h(/C ′′s )-orbit [44]. The enumeration of
derivatives under the point group D2h is compared with the enumeration under the permu-
tation group (⊂ S[4]).

Exercise 6.6.
– By referring to [44], apply the PCI method of the USCI approach to the four positions

of the ethylene skeleton 3-10, where they are substituted by proligands selected from
the proligand inventory L (Eq. 6.73).

– Discuss promolecules with the composition ABXY and with the composition ABpp.
See Subsection 9.4.3.

Benzene Derivatives
Symmetry-itemized enumeration of benzene derivatives with achiral and chiral substituents
and relevant derivatives derived from D6h-skeletons (cf. 3-14 on page 73) has been dis-
cussed in terms of Fujita’s USCI approach [26]. The restricted-subduced-cycle-index
(RSCI) method has been proposed for the purpose of counting matchings of graphs [45].
The RSCI method has been applied to discussions on Z-counting polynomials and the
Hosoya index as well as on matching polynomials [45]. Combinatorial enumeration based
on [26](1,2,3,4,5,6)cyclophane of D6h-symmetry has been investigated by means of the
PCI method [46], where the resulting derivatives have been discussed in terms of the SCR
notation for systematic classification of molecular symmetries.
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Prismane Derivatives
Enumeration of cage-shaped molecules derived from a prismane skeleton 3-15 (page 73) has
been discussed in terms of an edge strategy [47]. The restricted-fixed-point-matrix (RFPM)
method, which was developed as an extension of the FPM method of the USCI approach,
has been applied to the enumeration of prismane derivatives under the restricted condition,
where the occupation of a common vertex or the occupation of adjacent edges is avoided
[48]. The restricted-partial-cycle-index (RPCI) method, which was developed by starting
from the PCI method of Fujita’s USCI approach, has been applied to the enumeration of
prismane derivatives under the restricted condition [49].

Cubane Derivatives
The FPM method of Fujita’s USCI approach has been applied to enumeration based on a
cubane skeleton 3-17 (page 74), where a Maple programming code for generating the FPM
and the ICM has been reported [17]. The PCI method of Fujita’s USCI approach has been
applied to enumeration based on a cubane skeleton 3-17 [27], where a Maple programming
code for the PCI method has been reported. Symmetry-itemized enumeration of cubane
derivatives as 3D entities has also been conducted by the elementary-superposition method
of Fujita’s USCI approach [32].

Adamantane Derivatives
Enumeration of cage-shaped molecules based on a tetrahedrane skeleton has been discussed
[50], where adamantane 3-21 (page 76) is generated by expansion of the 6 edges of the tetra-
hedral skeleton. Skeletal isomers of adamantane with given symmetries has been systemat-
ically enumerated by Fujita’s USCI approach [20]. An adamantane skeleton 3-21 has two
types of substitution positions, i.e., four bridgeheads and 12 bridges. Enumeration based
on 3-21 has been conducted systematically [51]. Subductive and inductive derivation for
designing molecules of high symmetry has been formulated on the basis of an adamantane
skeleton [52], where a regular representation Td(/C1) plays a crucial role. Adamantane-
2,6-dione as a D2d-skeleton 3-22 (page 76) has been used to enumerate derivatives by the
FPM method and the elementary-superposition method of Fujita’s USCI approach [30].
The elementary-superposition method has been applied to SCI-CFs, PCI-CFs, and CI-CFs,
where adamantane-2,6-dione 3-22 is used as a D2d-skeleton [31].

Dodecahedrane Derivatives
The USCIs and USCI-CFs of the point group Ih group has been calculated and applied
to systematic enumeration of dodecahedrane derivatives [23]. The restricted-subduced-
cycle-index (RSCI) method for generating Z-counting polynomials and Z-indices as well
as matching polynomials has been developed and applied to dodecahedrane [45]. The
restricted-fixed-point-matrix (RFPM) method based on restricted subduced cycle indices
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has been applied to enumeration of sterically hindered derivatives of dodecahedrane [53].
The restricted-partial-cycle-index (RPCI) method based on restricted subduced cycle in-
dices (RSCIs) has been applied to enumeration of sterically hindered derivatives of dodec-
ahedrane [54].

Icosahedral Derivatives
Enumeration of Fujita’s USCI approach has been discussed by applying the point group I (or
the alternating group A[5]) to the 20 faces of icosahedron [18]. The restricted-partial-cycle-
index (RPCI) method for treating steric hindrance due to monodentate and bidentate ligands
has been applied to enumeration based on an icosahedral skeleton of Ih, where differences
between unrestricted and restricted enumerations are discussed [55].

Fullerene Derivatives
Symmetry-itemized enumeration of fullerene derivatives by the FPM method has been in-
vestigated [56], where the desymmeterization lattice for the Ih(/Cs)-orbit is given and the
numbers of derivatives of C60XnH60−n (n = 1–60) are given in a tabular form. To evaluate
bond-differentiating chiral reactions to give adducts of fullerene, the sphericity concept for
an orbit of bonds is taken into consideration [22]. Thereby, symmetry-itemized enumeration
of C60-adducts have been conducted. The restricted-subduced-cycle-index (RSCI) method
for symmetry-itemized enumeration of Kekulé structures has been applied to fullerene C60

[57]. The restricted-subduced-cycle-index (RSCI) method has been applied to restricted
enumeration of Kekulé structures (perfect matchings of graphs) [58].

6.5.3 Enumeration of Inorganic Complexes

Octahedral Complexes
An octahedral skeleton 3-13 (page 73) belongs to the point group Oh. The six substitu-
tion positions of 3-13 construct a six-membered orbit governed by the coset representation
Oh(/C4v) (|Oh|/|C4v| = 48/8 = 6). Symmetry-itemized enumeration based on 3-13 has
been conducted by using the FPM method [24], where the resulting promolecules are cate-
gorized in terms of the subgroups of Oh. On the other hand, the 12 edges of 3-13 construct
a twelve-membered orbit governed by the coset representation Oh(/C ′′2v) (|Oh|/|C ′′2v| =
48/4 = 12). Symmetry-itemized enumeration based on 3-13 has been conducted by using
the PCI method [59]. The resulting edge configurations are examined with respect to edge
numbers and point-group symmetries, so as to show the modes of substitution of bidentate
and terdentate ligands,
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Ferrocene Derivatives
Ferrocene has a sandwich structure, where two cyclopentadienyl ligands are regarded as
being rotatable from a viewpoint of stereoisomerism. To take account of such a sandwich
structure, ferrocene derivatives have been enumerated by starting from a dumbbell skele-
ton of D∞h (cf. Table 4.1 on page 110), where the two cyclopentadienyl ligands of C5v-
symmetry occupy the two positions of the dumbbell skeleton [19].

Trigonal Bipyramidal Derivatives
The SCR notation of trigonal bipyramidal derivatives has been discussed in detail (cf. Fig.
3.14 on page 84) [13]. The FPM method of Fujita’s USCI approach has been applied to the
enumeration of trigonal bipyramidal complexes [47], where the numbers of isomers with
the composition XlYmZn are itemized with respect to subgroups of D3h. For example, the
[3,1,1]-row3 of Table 4 of [13] indicates there appear two Cs-derivatives, one C ′s-derivative,
and one C3v-derivative. As for the two Cs-derivatives and the one C ′s-derivative, see Fig.
3.14. A more elaborate enumeration taking account of both achiral and chiral proligands
has been accomplished by using the PCI method [60]. This article contains the descrip-
tion on stereoisograms of trigonal bipyramidal compounds, where the pair of concepts
RS-stereogenicity/RS-stereoisomerism is compared with the pair of concepts stereogenic-
ity/stereoisomerism so as to propose a revised interpretation of Berry’s pseudorotation.

Square Planar Complexes
The four positions of a square planar skeleton 3-11 (page 68) construct a four-membered
orbit governed by the coset representation D4h(/C ′′2v) (|D4h|/|C ′′2v| = 16/4 = 4). The PCI
method of Fujita’s USCI approach has been applied to enumeration of square planar com-
plexes with both achiral and chiral proligands [21]. The effect of the point group D4h has
been compared with the effect of the symmetric group of degree 4 (S[4]).

6.5.4 Enumeration of Organic Reactions

Fujita has proposed the concept of imaginary transition structures (ITSs) for representing
organic reactions [61]. A series of articles on the ITS concept have appeared during the
1980s in J. Chem. Inf. Comput. Sci. [61–75], J. Chem. Soc. Perkin II [76], and Bull. Chem.
Soc. Jpn. [77,78]. The accomplishments have been summarized in reviews [79–81] and
Fujita’s monograph [82]. Any subgraphs of ITSs represent reaction types for systematic
classification of organic reactions [76], where there appears a hierarchy of subgraphs, i.e.,

3 The original partition [3,2,1] in the l,m,n-column of [13, Table 4] should be read as [3,1,1], which corre-
sponds to the composition X3YZ.
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basic reaction graphs (BRGs) — reaction graphs (RGs) — reaction center graphs (RCGs)
— imaginary transition structures (ITSs). After hexagonal RGs are enumerated on the basis
of BRGs, the enumeration of hexagonal RCGs based on RGs have been investigated by the
FPM method [83]. A reaction pair is defined as a pair of forward and reverse reactions. To
enumerate reaction pairs, a pseudo-point group ̂D6h is constructed to characterize a skeleton
for generating hexagonal reaction pairs. Then, enumeration of hexagonal reaction pairs has
been conducted by counting the modes of edge substitution on the skeleton of ̂D6h [84].
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7 Gross Enumeration Under Point Groups1

7.1 Counting Orbits

In Subsection 5.1.3, we have discussed multiplicities of orbits, which are itemized in
terms of coset representations, as exemplified by Eq. 5.34 (page 122) for characterizing
adamantan-2-one 5-1 of C2v (Fig. 5.1 on page 122). Thus, the 14 hydrogens of 5-1 are spec-
ified by two C2v(/C1)-orbits, one C2v(/Cs)-orbits, and two C2v(/C ′s)-orbits (Eq. 5.34).
According to our purposes, there would be some cases in which such specification is not
necessary, but only the number of orbits, i.e., the value 5 (= 2+1+2), is required.

To accomplish this task, the Cauchy-Frobenius lemma (so-called Burnside’s lemma)
plays a crucial role. Let PG be a permutation representation of the point group G acting on
a set Δ of positions (or other objects). The permutation representation PG is regarded as a
permutation group of order |PG| (= |G|), if there occurs no degeneration. Suppose that PG
is divided into a set of coset representations, i.e., PG = ∑s

i=1 αiG(/Gi) (Eq. 5.22 on page
120), where each coset representation G(/Gi) governs an orbit Δi. Our task is to obtain the
total number r represented by

r =
s

∑
i=1

αi. (7.1)

Let us examine an orbit Δi governed by G(/Gi). The symbol n(i)
g is used to represent the

number of fixed points under the action of g (∈ G). Because such fixed points in Δi are
concerned with g (∈ Gi), they are counted to be equal to the size |Δi| multiplied by the
number of operations of the stabilizer |Gi|. Hence, we obtain the following theorem:

∑
g∈G

n(i)
g = ∑

g∈Gi

n(i)
g = |Δi| · |Gi|= |G|. (7.2)

Note that the size of the G(/Gi)-orbit is calculated to be |Δi|= |G|/|Gi|. The total number
of fixed points is calculated by summing up the numbers of Eq. 7.2 over Δi (i = 1,2, . . . ,s):

s

∑
i

αi ∑
g∈G

n(i)
g =

s

∑
i

αi|G|= r|G|, (7.3)

which is equal to ∑g∈G ng, where the symbol ng represents the number of fixed points for
each operation g. Hence we obtain a theorem:

1 This chapter is based on S. Fujita, “Graphs to Chemical Structures 1. Sphericity Indices of Cycles for
Stereochemical Extension of Pólya’s Theorem”, Theor. Chem. Acc., 113, 73–79 (2005); S. Fujita, “Graphs
to Chemical Structures 2. Extended Sphericity Indices of Cycles for Stereochemical Extension of Pólya’s
Coronas”, Theor. Chem. Acc., 113, 80–86 (2005); and S. Fujita, “Graphs to Chemical Structures 3. General
Theorems with the Use of Different Sets of Sphericity Indices for Combinatorial Enumeration of Nonrigid
Stereoisomers”, Theor. Chem. Acc., 115, 37–53 (2006).
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Theorem 7.1 (Cauchy-Frobenius).

r =
1
|G| ∑

g∈G
ng. (7.4)

For example, the application of each g (∈C2v) to the 14 hydrogens of adamantan-2-one 5-1
gives the number of fixed hydrogen atoms, which is obtained by counting 1-cycles of each
row collected in the right table of Fig. 5.1 (page 122). Because the 1-cycles are counted to
give nI = 14, nC2 = 0, nσv(1) = 2, and nσv(2) = 4, Theorem 7.1 gives the number of orbits:

r =
1
4
(14+0+2+4) = 5, (7.5)

which is consistent with Eq. 5.34 (page 122).

Exercise 7.1. Confirm Eqs. 7.2 and 7.3 by using the data collected in the right table of
Fig. 5.1 (page 122).

7.2 Pólya’s Theorem of Counting

Before discussing Fujita’s proligand method, we set to work on Pólya’s theorem of count-
ing, where the difference between graphs (2D structures) and 3D structures is not taken
into consideration. Pólya’s theorem directly uses permutation groups, whereas Fujita’s pro-
ligand method puts stress on point groups which are accompanied by permutation represen-
tations (or coset representations). The following discussion on Pólya’s theorem is based on a
compromise standpoint using permutation representations of point groups (not permutation
groups) in order to assure an easy access to Fujita’s proligand method.

Let us reexamine the enumeration based on the oxirane skeleton 3-12, where the 16
derivatives have been listed in Fig. 6.2 (page 133). They are represented as the functions
contained in F3-12 shown by Eq. 6.6 (page 134). The action of g (∈ C2v) on F3-12 is repre-
sented by a permutation λ [θ ]

g (Eq. 6.8 on page 134), which constructs a permutation repre-
sentation Λ

[θ ]
C2v,F3-12

(Eq. 6.9 on page 134). The number of fixed derivatives (fixed functions)
on the action of each permutation is obtained by counting functions checked by

√
in each

row of Eq. 6.7 on page 134 (16, 4, 4, and 4). Hence, the number of derivatives inequivalent
under the action of C2v is calculated to be equal to the number of orbits:

r =
1
4
(16+4+4+4) = 7 (7.6)

by applying Theorem 7.1.
The result of Fujita’s USCI approach in Fig. 6.2 (page 133) is reinterpreted to give Fig.

7.1 by means of Pólya’s counting theorem based on Theorem 7.1.
The number of fixed derivatives under the action of each operation of C2v is evaluated

by using the corresponding cycle term, which has been shown in the cycle-term column of
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I C2 σv(1) σv(2)

Fujita’s proligand method: b4
1 b2

2 c2
2 c2

2 (PSI)
Pólya’s theorem: s4

1 s2
2 s2

2 s2
2 (cycle term)

X4
1

3

2

4

O

��� � 1 1 1 1 C2v(/C2v)

6-2 ( f1)

X3Y
1

3

2

4

O

���
1

3

2

4

O

�� �
1

3

2

4

O

���
1

3

2

4

O

�� � 4 0 0 0 C2v(/C1)

6-3 ( f2) 6-4 ( f3) 6-5 ( f4) 6-6 ( f5)

X2Y2
1

3

2

4

O

��
1

3

2

4

O

�� 2 2 0 0 C2v(/C2)

6-7 ( f6) 6-8 ( f7)

X2Y2
1

3

2

4

O

��
1

3

2

4

O

�� 2 0 2 0 C2v(/Cs)

6-9 ( f8) 6-10 ( f9)

X2Y2
1

3

2

4

O

��
1

3

2

4

O

� � 2 0 0 2 C2v(/C ′s)

6-11 ( f10) 6-12 ( f11)

XY3
1

3

2

4

O

�
1

3

2

4

O

�
1

3

2

4

O

�
1

3

2

4

O

� 4 0 0 0 C2v(/C1)

6-13 ( f12) 6-14 ( f13) 6-15 ( f14) 6-16 ( f15)

Y4
1

3

2

4

O

1 1 1 1 C2v(/C2v)

6-17 ( f16) r = 1
4 ( 16 +4 +4 +4 ) = 7

(X
+

Y
)4

(X
2 +

Y
2 )2

(X
2 +

Y
2 )2

(X
2 +

Y
2 )2

Fig. 7.1. Orbits of promolecules based on an oxirane skeleton and their numbers of fixed points.
An open circle represents an achiral proligand X in isolation, while a solid circle represents an-
other achiral proligand Y in isolation.

Table 3.5 on page 70 (s4
1 for an identity operation I and s2

2 for C2, σv(1), or σv(2)). Note that
such a cycle term is determined by referring to each cycle structure (14) (four one-cycles
for I) or (22) (two two-cycles for C2, σv(1), or σv(2)), as found in Table 3.5. Because we use
the ligand inventory L1 = {X,Y} (Eq. 6.2 on page 132), we obtain the following generating
functions for counting fixed derivatives (fixed functions):

s4
1 for I : (X+Y)4 = X4 +4X3Y+6X2Y2 +4XY3 +Y4 (7.7)

s2
2 for C2, σv(1), σv(2) : (X2 +Y2)2 = X4 +2X2Y2 +Y4 (7.8)

Each coefficient of XxYy appearing in the right-hand sides is equal to the number of func-
tions with the composition Wθ = XxYy, which are inequivalent under C2v, as shown in the
right part of Fig. 7.1. Theorem 7.1 is applied to the right-hand sides of Eqs. 7.7 and 7.8
(×3), which are summed up and divided by |C2v| = 4. The resultant generating function
has the coefficient Aθ of the term Wθ = XxYy, which represents the number of derivatives
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(functions) inequivalent under C2v:

∑
[θ ]

AθWθ =
1
4
{(X+Y)4 +3(X2 +Y2)2}

= X4 +X3Y+3X2Y2 +XY3 +Y4. (7.9)

According to Eq. 7.9, the 16 functions of Fig. 7.1 are categorized into seven orbits, each of
which corresponds to a derivative to be counted once, as aligned in each row. Note that a
pair of enantiomers or an achiral derivative is counted once, because they are regarded as
graphs.

The order of the calculation processes for giving Eq. 7.9 can be reversed without losing
generality. It follows that Theorem 7.1 is applied to the set of cycle terms {s4

1,s
2
2,s

2
2,s

2
2} in

the first step, so as to give a cycle index:

CI(C2v; sd) =
1
4
(

s4
1 +3s2

2
)

, (7.10)

into which a ligand-inventory function sd = Xd +Yd is introduced in the second step. This
reverse procedure gives a generating function equivalent to Eq. 7.9.

The above discussions can be easily extended to a general case. For this purpose, we
first define Pólya’s cycle index:

Definition 7.1 (Pólya’s Cycle Index). Let PG be a permutation representation of G. Suppose that
a permutation pg (∈ PG) has a cycle structure (1ν1 2ν2 · · ·nνn )(pg), where ∑n

i=1 iνi = n. Then, Pólya’s
cycle index is defined as follows:

CI(PG; sd) =
1
|PG| ∑

pg∈PG
(sν1

1 sν2
2 · · ·sνn

n )(pg). (7.11)

The ligand inventory L (Eq. 6.26) is restricted to the set containing only achiral proligands:

L′ = {X1, . . . ,Xm}. (7.12)

A resulting promolecule has the following composition:

Wθ = Xx1
1 · · ·Xxm

m , (7.13)

where the sum of the exponents is equal to the number of the substitution positions (or
equivalently to the degree of the permutation representation PG). The composition can be
represented by

[θ ] : x1 + x2 + · · ·+ xm = n. (7.14)

Thereby, we arrive at Pólya’s theorem of counting:

Theorem 7.2 (Pólya’s Theorem of Counting). Let the symbol Aθ denote the number of derivatives
(orbits) inequivalent under the action of PG. A generating function for Aθ is represented by

∑
[θ ]

AθWθ = CI(PG; sd)
∣

∣

∣

∣

sd=∑L′
, (7.15)
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where the symbol sd = ∑L′ denotes the introduction of the following ligand-inventory function into a
dummy variable sd :

sd =
m

∑
i=1

Xd . (7.16)

This theorem has been once explained in Fujita’s monograph [1, Theorem 13.8].

7.3 Fujita’s Proligand Method of Counting

7.3.1 Historical Comments

After Pólya’s theorem for counting graphs (constitutions) non-equivalent with respect to
a given permutation group was proposed in 1935–1937 [2–5], there have appeared many
articles on its chemical applications, as summarized in books [6–8] and reviews [9–12].

The crux of Pólya’s theorem (Theorem 7.2) is the restriction of (pro)ligands to achiral
ones. That is to say, even if chiral (pro)ligands in isolation are considered, they are regarded
as graphs (as if they were achiral (pro)ligands). This means that Pólya’s theorem takes no
account of the concept of sphericities, as pointed out in a review [13].

After modifying the concept of sphericities (cf. Chapter 4) substantially, Fujita has pro-
posed the proligand method [14–16], where the combination of point groups and their per-
mutation representations (or coset representations) is stressed instead of such direct usage of
permutation groups as found in Pólya’s theorem. For detailed discussions, see Chapter 7 of
Fujita’s monograph [17]. In particular, Pólya’s theorem has been discussed as a degenerate
case of Fujita’s proligand method [17, Section 7.4].

The effects of the modified concept of sphericities for Fujita’s proligand method are
predominant in the enumeration of alkanes and monosubstituted alkanes, as summarized in
Fujita’s account [18]. Thus, combinatorial enumeration of monosubstituted alkanes as three-
dimensional planted trees [19,20] and that of alkanes as centroidal and bicentroidal three-
dimensional trees [21,22] have been investigated by means of Fujita’s proligand method.
Various types of enumeration based on Fujita’s proligand method have been applied to
alkanes and monosubstituted alkanes, e.g., enumeration of primary, secondary, and ter-
tiary monosubstituted alkanes [23], enumeration by the combination of two dichotomies
for three-dimensional trees [24], enumeration by dual recognition as uninuclear and bin-
uclear promolecules [25], enumeration of monosubstituted alkanes [26] and alkanes [27]
itemized with respect to numbers of asymmetric and pseudoasymmetric centers, as well
as enumeration of monosubstituted alkanes [28] and alkanes [29] itemized with respect to
internal branching.
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7.3.2 Sphericities of Cycles

To take account of both chiral and achiral proligands in isolation, we should introduce the
concept of sphericities of cycles in a parallel way to the concept of sphericities of orbits:

Definition 7.2 (Sphericities of Cycles). Suppose that g (∈ G) acts on the set of substitution
positions Δ (|Δ| = n), where the corresponding permutation pg (∈ PG) has a cycle structure
(1ν1 2ν2 · · ·dνd · · ·nνn ) (∑n

i=1 iνi = n). The sphericity of a d-cycle is defined as follows:
– (Homospheric cycles) A d-cycle in pg is defined to be homospheric, if g is an improper

rotation (reflection or rotoreflection) and d is odd.
– (Enantiospheric cycles) A d-cycle in pg is defined to be enantiospheric, if g is an improper

rotation (reflection or rotoreflection) and d is even.
– (Hemispheric cycles) A d-cycle in pg is defined to be hemispheric, if g is a proper rotation

and d is odd or even.

In a parallel way to the chirality fittingness introduced for characterizing orbits (cf. Fig. 4.2
on page 90 as well as Theorems 4.2, 4.3, and 4.4), each d-cycle has chirality fittingness
according to its sphericity.

A homospheric d-cycle (d: odd) fixes an achiral promolecule having d-positions oc-
cupied by achiral proligands of the same kind (e.g., X’s or Y’s), because the action of a
permutation due to the d-cycle causes a reflection to satisfy X = X. Note that chiral proli-
gands are not permitted because they cannot retain the achirality of the promolecule under
the reflection (d is odd). Hence, we obtain the following theorem:

Theorem 7.3 (Chirality Fittingness of a Homospheric Cycle). A homospheric d-cycle is capable of
acting on the number d of achiral ligands (or proligands) of the same kind.

This theorem corresponds to the chirality fittingness of a homospheric orbit on the action
of a cyclic achiral group [17, Theorem 7.3] as well as to Theorem 4.2 (page 89) for the
chirality fittingness of a homospheric orbit on the action of an achiral group. The mode of
action due to Theorem 7.3 is parallel to the illustration shown in Fig. 4.2(a) on page 90.

An enantiospheric d-cycle (d: even) fixes an achiral promolecule having d-positions
occupied by achiral proligands of the same kind (e.g., X’s or Y’s), because the action of
a permutation due to the d-cycle causes a reflection to satisfy X = X. In addition, such an
enantiospheric d-cycle permits the number d/2 of chiral proligands of the same kind (e.g.,
p’s) and the same number d/2 of chiral proligands with opposite chirality sense (e.g., p’s),
because they are totally retain the achirality of the promolecule under the reflection (d is
even). Hence, we obtain the following theorem:

Theorem 7.4 (Chirality Fittingness of an Enantiospheric Cycle). An enantiospheric d-cycle is ca-
pable of acting on the number d of achiral ligands (or proligands) of the same kind as well as on
the number d/2 of chiral proligands of the same kind and the same number d/2 of chiral proligands
with opposite chirality sense.

This theorem corresponds to the chirality fittingness of an enantiospheric orbit on the action
of a cyclic achiral group [17, Theorem 7.1] as well as to Theorem 4.3 (page 91) for the
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I C2 σv(1) σv(2)

Fujita’s proligand method: b4
1 b2

2 c2
2 c2

2 (PSI)

1
2 (p4 +p4)

1

3

2

4

O
1

3

2

4

O

2 2 0 0 C2v(/C2)

6-19 ( f1) 6-20 ( f2)

1
2 (p3p+pp3)

1

3

2

4

O
1

3

2

4

O
1

3

2

4

O
1

3

2

4

O

4 0 0 0 C2v(/C1)

6-21 ( f3) 6-22 ( f4) 6-23 ( f5) 6-24 ( f6)

1
2 (p3p+pp3)

1

3

2

4

O
1

3

2

4

O
1

3

2

4

O
1

3

2

4

O

4 0 0 0 C2v(/C1)

6-25 ( f7) 6-26 ( f8) 6-27 ( f9) 6-28 ( f10)

p2p2
1

3

2

4

O

1 1 1 1 C2v(/C2v)

6-29 ( f11)

p2p2
1

3

2

4

O

1 1 1 1 C2v(/C2v)

6-30 ( f12)

p2p2
1

3

2

4

O
1

3

2

4

O

2 0 0 2 C2v(/C′s)

6-31 ( f13) 6-32 ( f14)

p2p2
1

3

2

4

O
1

3

2

4

O

2 0 2 0 C2v(/Cs)

6-33 ( f15) 6-34 ( f16) r = 1
4 ( 16 +4 +4 +4 ) = 7

(p
+

p)
4

(p
2 +

p
2 )2

(2
pp

)2

(2
pp

)2

Fig. 7.2. Orbits of promolecules based on an oxirane skeleton and their numbers of fixed points.
The symbol represents a chiral proligand p in isolation, while the symbol represents its enan-
tiomeric proligand p in isolation.

chirality fittingness of an enantiospheric orbit on the action of an achiral group. The mode
of action due to Theorem 7.4 is parallel to the illustration shown in Fig. 4.2(b) on page 90.

As examples of enantiospheric cycles with respect to chiral proligands, let us reex-
amine the oxirane derivatives collected in Fig. 6.4 (page 137), where the ligand inventory
L2 = {p,p} (Eq. 6.13 on page 135) is adopted. The reflection σv(1) of the point group C2v

is represented by a permutation (1 2)(3 4), which is characterized by a cycle structure (22)
(Table 3.5 on page 70). According to Theorem 7.4, each 2-cycle is determined to be enantio-
spheric. As found in Fig. 7.2, the 2-cycle represented by (1 2) (or (3 4)) fixes four functions,
i.e., 6-29 ( f11), 6-30 ( f12), 6-33 ( f15), and 6-34 ( f16), each of which is composed of two pairs
of enantiomeric proligands in isolation (the symbol for p’s and the symbol for p’s).
The data are shown in the σv(1)-column of Fig. 7.2.

As for examples of enantiospheric cycles with respect to achiral proligands, the data
shown in the σv(1)-column of Fig. 7.1 are also effective.

A hemispheric d-cycle (d: odd or even) fixes an achiral or a chiral promolecule having
d-positions occupied by achiral or chiral proligands of the same kind (e.g., X’s, Y’s, p’s,
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or p’s), because the action of a permutation due to the d-cycle causes a rotation without
mirror-image formation. Hence, we obtain the following theorem:

Theorem 7.5 (Chirality Fittingness of a Hemispheric Cycle). A hemispheric d-cycle is capable of
acting on the number d of achiral or chiral ligands (or proligands) of the same kind.

This theorem corresponds to the chirality fittingness of a hemispheric orbit on the action of
a cyclic chiral group [17, Theorem 7.5] as well as to Theorem 4.4 (page 92) for the chirality
fittingness of a hemispheric orbit on the action of a chiral group. The mode of action due to
Theorem 7.5 is parallel to the illustration shown in Fig. 4.2(c) on page 90.

As examples of hemispheric cycles with respect to chiral proligands, let us again exam-
ine Fig. 7.2. The two-fold rotation C2 of the point group C2v is represented by a permutation
(1 4)(2 3), which is characterized by a cycle structure (22) (Table 3.5 on page 70). Accord-
ing to Theorem 7.5, each 2-cycle is determined to be hemispheric. As found in Fig. 7.2, the
2-cycle represented by (1 4) (or (2 3)) fixes four functions. Among the fixed functions, 6-19
( f1) and 6-20 ( f2) are respectively composed of four p’s (the symbol ) and four p’s (the
symbol ). On the other hand, 6-29 ( f11) and 6-30 ( f12) are respectively composed of two
p’s and two p’s. Note that the two 2-cycles (1 4) and (2 3) act independently on a set of two
p’s and on another set of two p’s, so that there appear four combinations, i.e., p2/p2, p2/p2,
p2/p2, and p2/p2. The data are shown in the C2-column of Fig. 7.2.

As for examples of hemispheric cycles with respect to achiral proligands, the data
shown in the C2-column of Fig. 7.1 are also effective.

7.3.3 Products of Sphericity Indices

To systematize the process of evaluating the number of fixed functions, we assign a spheric-
ity index to each cycle according to the three types of sphericities defined by Def. 7.2 as
follows:

Definition 7.3 (Sphericity Indices for Characterizing Cycles).
– (Sphericity index ad for a homospheric cycle) The sphericity index ad is assigned to a

homospheric d-cycle.
– (Sphericity index cd for an enantiospheric cycle) The sphericity index cd is assigned to an

enantiospheric d-cycle.
– (Sphericity index bd for a hemispheric cycle) The sphericity index bd is assigned to a

hemispheric d-cycle.

Because each permutation has its cycle structure (1ν1 2ν2 · · ·dνd · · ·nνn) (∑n
i=1 iνi = n) (cf.

Def. 7.2), it is characterized by a product of sphericity indices (PSI):

Definition 7.4 (Products of Sphericity Indices (PSIs)). Suppose that a permutation pg (∈ PG) has
a cycle structure (1ν1 2ν2 · · ·dνd · · ·nνn ) (∑n

i=1 iνi = n), as shown in Def. 7.2. Then, the corresponding
product of sphericity indices is defined as a monomial term:

PSI(pg; $d) = $ν1
1 $ν2

2 · · ·$νd
d · · ·$νn

n , (7.17)

where $d denotes ad , cd , or bd according to Def. 7.3.
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Let us return to Fig. 7.2. The PSIs for C2v are collected in Table 3.5 (page 70). Because we
use the ligand inventory L2 = {p,p} (Eq. 6.13), Theorems 7.3, 7.4, and 7.5 provide us with
the following generating functions for counting fixed derivatives (fixed functions):

b4
1 for I : (p+p)4 = p4 +4p3p+6p2p2 +4pp3 +p4 (7.18)

b2
2 for C2 : (p2 +p2)2 = p4 +2p2p2 +p4 (7.19)

c2
2 for σv(1), σv(2) : (2pp)2 = 4p2p2, (7.20)

where a PSI (Def. 7.4) is shown at the top of each equation. Each coefficient of pppp ap-
pearing in the right-hand sides is equal to the number of functions with the composition
Wθ = pppp, which are inequivalent under C2v, These coefficients are collected in the re-
spective columns of the right part of Fig. 7.2.

Theorem 7.1 is applied to the right-hand sides of Eqs. 7.18–7.20, which are summed
up and divided by |C2v|= 4. The resulting generating function has the coefficient Aθ of the
term Wθ = pppp, which represents the number of derivatives (functions) inequivalent under
C2v:

∑
[θ ]

AθWθ =
1
4
{

(p+p)4 +(p2 +p2)2 +2× (p2 +p2)2}

=
1
2
(p4 +p4)+2× 1

2
(p3p+pp3)+4p2p2 (7.21)

According to Eq. 7.21, the 16 functions of Fig. 7.2 are categorized into seven orbits, each
of which corresponds to a derivative to be counted once, as aligned in each row. Note that a
pair of enantiomers ( 1

2 (p4 +p4) or 1
2 (p3p +pp3)) or an achiral derivative (p2p2) is counted

once.
The order of the calculation processes of Eq. 7.21 can be reversed without losing gen-

erality. It follows that Theorem 7.1 is applied to the set of products of sphericity indices
(PSIs) {b4

1,b
2
2,c

2
2,c

2
2} in the first step, so as to give a cycle index with chirality fittingness

(CI-CF):

CI-CF(C2v; $d) =
1
4
(

b4
1 +b2

2 +2c2
2
)

, (7.22)

into which ligand-inventory functions bd = pd + pd and cd = 2pd/2pd/2 (as well as ad if
necessary) are introduced in the second step. This reverse procedure gives a generating
function equivalent to Eq. 7.21.

The above discussions can be easily extended to a general case. For this purpose, we
first define Fujita’s cycle index with chirality fittingness (CI-CF) by starting the PSIs defined
above (Def. 7.4):

Definition 7.5 (Fujita’s Cycle Index With Chirality Fittingness (CI-CF)). Suppose that a permuta-
tion pg (∈ PG) has a cycle structure (1ν1 2ν2 · · ·dνd · · ·nνn )(pg) (∑n

i=1 iνi = n), as shown in Def. 7.2, and
that the corresponding product of sphericity indices (PSIs) is defined as shown in Def. 7.4. Then,
Fujita’s cycle index with chirality fittingness (CI-CF) is defined as follows:

CI-CF(PG; $d) =
1
|PG| ∑

pg∈PG
PSI(pg; $d)
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=
1
|PG| ∑

pg∈PG
($ν1

1 $ν2
2 · · ·$νd

d · · ·$νn
n )(pg), (7.23)

where $d denotes ad , cd , or bd according to Def. 7.3.

To apply Def. 7.5 to a general case, the ligand inventory L (Eq. 6.26 on page 140) is used as
it is. A resulting promolecule has the composition Wθ represented by Eq. 6.27 (page 140).
The composition can be alternatively represented by the partition [θ ] shown in Eq. 6.28
(page 140). As an extension of the procedure based on Eq. 7.22, the following theorem is
obtained in general:

Theorem 7.6 (Fujita’s Proligand Method of Counting). Suppose that the n positions of a given
skeleton belongs to PG, where the CI-CF is shown in Def. 7.5. The ligand inventory L (Eq. 6.26) is
used to give derivatives with the composition Wθ . Let the symbol Aθ denote the number of such
derivatives (orbits), which are inequivalent under the action of PG. A generating function for Aθ is
represented as follows:

∑
[θ ]

AθWθ = CI-CF(PG; $d)
∣

∣

∣

∣

$d=∑L

, (7.24)

where the symbol $d = ∑L denotes the introduction of the following ligand-inventory functions into
the respective sphericity indices $d :

ad =
n

∑
�=1

Xd
� (7.25)

cd =
n

∑
�=1

Xd
� +2

n′

∑
�=1

pd/2
� pd/2

� (7.26)

bd =
n

∑
�=1

Xd
� +

n′

∑
�=1

pd
� +

n′

∑
�=1

pd
� (7.27)

This theorem with a more elaborate proof has been once described in Fujita’s monograph
[17, Theorem 7.21].

Exercise 7.2.
– The ligand inventories for enumerating oxirane derivatives (cf. Figs. 7.1 and 7.2), L1

(Eq. 6.2) and L2 (Eq. 6.13), are combined to give a single ligand inventory:

L = {X,Y; p,p}. (7.28)

Then, enumerate oxirane derivatives with compositions XxYypppp according to Theo-
rem 7.6 (cf. Eq. 7.22).

– Compare this result with Exercise 6.3 (page 148).
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7.3.4 Practices of Fujita’s Proligand Method

Procedure of Enumeration Based on Fujita’s Proligand Method
To do well with practical problems of enumeration, we may forget the proof of Theorem
7.6 for the time being. What we should do is to obey the following procedure:

Rule 7.1. Procedure of Enumeration Based on Fujita’s Proligand Method.
Step 1–Step 3 of Rule 6.1 on page 143 are followed. Then,

4. Construct a permutation representation PG by combining coset representations (cf. Eq.
5.22 on page 120). Otherwise, such a permutation representation PG can be diagram-
matically obtained by applying each operation of G to the skeleton at issue, because
Fujita’s proligand method does not require the division of the substitution positions into
orbits.

5. Assign a sphericity index (ad , cd , or bd ) to each cycle of a permutation of PG according
to Def. 7.3.

6. Construct a product of sphericity indices (PSIs) to each permutation according to Def.
7.4.

7. Calculate a CI-CF by applying Def. 7.5 to the PSIs obtained above.
8. Calculate a generating function by introducing ligand-inventory functions according to

Theorem 7.6.

As a practical example of the above procedure, cubane derivatives are recently enumer-
ated on the basis of the point group Oh [30], where the calculation processes have simply
followed the utilities of the Maple system for algebraic calculations.

Proligand Method Applied to Tetrahedral Derivatives
As the first example of the procedure of Fujita’s proligand method (Rule 7.1), let us examine
a tetrahedral skeleton 3-5 (Fig. 3.7 on page 68). The skeleton 3-5 belongs to the point group
Td (Step 1–Step 3 of Rule 7.1). The permutation representation PTd for the four positions
of 3-5 is identical with the coset representation Td(/C3v), which has been collected in the
Td(/C3v)-column of Table 3.1 on page 61 (Step 4 of Rule 7.1). The assignment of SIs
(Step 5 of Rule 7.1) and the construction of PSIs (Step 6 of Rule 7.1) produce the PSIs for
respective operations, as summarized in the PSI-column of Table 3.1. Thereby, a CI-CF is
calculated to be the sum of the PSIs divided by |Td |= 24 (Step 7 of Rule 7.1):

CI-CF(Td ;$d) =
1

24
(b4

1 +3b2
2 +8b1b3 +6a2

1c2 +6c4). (7.29)

The CI-CF (Eq. 7.29) can be alternatively obtained by summing up the PCI-CFs represented
by Eqs. 6.83–6.93 (page 155).

The four positions of the tetrahedral skeleton 3-5 are substituted by proligands selected
from the proligand inventory L (Eq. 6.73 on page 153). According to Theorem 7.6, the
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same set of ligand-inventory functions as listed in Eqs. 6.74–6.76 (page 153) is introduced
into the CI-CF (Eq. 7.29). After expansion (Step 8 of Rule 7.1), we obtain the following
generating function for gross enumeration:

f3-5 = {A4 + · · ·}+{A3B+ · · ·}+{1
2
(A3p+A3p)+ · · ·}

+{A2B2 + · · ·}+{1
2
(A2p2 +A2p2)+ · · ·}+{A2BX+ · · ·}

+{1
2
(A2Bp+A2Bp)+ · · ·}+{A2pp+ · · ·}+{1

2
(A2pq+A2pq)+ · · ·}

+{ABXY+ · · ·}+{2× 1
2
(ABXp+ABXp)+ · · ·}+{1

2
(ABp2 +ABp2)+ · · ·}

+{2ABpp+ · · ·}+{2× 1
2
(ABpq+ABpq)+ · · ·}+{1

2
(Ap3 +Ap3)+ · · ·}

+{1
2
(Ap2p+App2)+ · · ·}+{1

2
(Ap2q+Ap2q)+ · · ·}

+{2× 1
2
(Appq+Appq)+ · · ·}+{2× 1

2
(Apqr+Apqr)+ · · ·}

+{1
2
(p4 +p4)+ · · ·}+{1

2
(p3p+pp3)+ · · ·}+{1

2
(p3q+p3q)+ · · ·}

+{p2p2 + · · ·}++{1
2
(p2pq+pp2q)+ · · ·}+{1

2
(p2q2 +p2q2)+ · · ·}

+{1
2
(p2qq+p2qq)+ · · ·}+{1

2
(p2qr+p2qr)+ · · ·}+{ppqq+ · · ·}

+{2× 1
2
(ppqr+ppqr)+ · · ·}+{2× 1

2
(pqrs+pqrs)+ · · ·}. (7.30)

The coefficients of the terms appearing in Eq. 7.30 are consistent with the list of pro-
molecules of Fig. 6.9 (page 157), which has been obtained by the PCI method.

The generating function (Eq. 7.30) can be alternatively obtained by summing up the
generating functions of the respective subgroups (Eqs. 6.94–6.102 on page 156), which are
obtained by the PCI method. For example, the term ABXY in the gross generating function
(Eq. 7.30) indicates the presence of one pair of enantiomers with the composition ABXY
and corresponds to the term ABXY of f3-5(C1) (Eq. 6.94). See Fig. 6.10 (page 158). The
term 2× 1

2 (ABXp+ABXp) in Eq. 7.30 indicates the presence of two pairs of enantiomers
(6-82/6-82 and 6-83/6-83 in Fig. 6.11 on page 159), which are diastereomeric to each other.
This term corresponds to the counterpart appearing in f3-5(C1) (Eq. 6.94). The term 2ABpp
in Eq. 7.30 indicates the presence of two achiral promolecules with the composition ABpp
and the point group Cs (6-100 and 6-101 in Fig. 6.9 on page 157), which are diastereomeric
to each other. The term 2ABpp in Eq. 7.30 corresponds to the counterpart appearing in the
generating function f3-5(Cs) (Eq. 6.96).

Proligand Method Applied to Allene Derivatives
As the second example, let us examine an allene skeleton 3-9 (Fig. 3.7 on page 68) by
means of the above procedure (Rule 7.1). The skeleton 3-9 belongs to the point group D2d
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(Step 1–Step 3 of Rule 7.1). The permutation representation PD2d for the four positions of
3-12 is identical with the coset representation D2d(/Cs), which has been collected in the
D2d(/Cs)-column of Table 3.2 on page 68 (Step 4 of Rule 7.1). The assignment of SIs
(Step 5 of Rule 7.1) and the construction of PSIs (Step 6 of Rule 7.1) produce the PSIs for
respective operations, as summarized in the PSI-column of Table 3.2. Thereby, a CI-CF is
calculated to be the sum of the PSIs divided by |D2d |= 8 (Step 7 of Rule 7.1):

CI-CF(D2d ;$d) =
1
8
(b4

1 +3b2
2 +2a2

1c2 +2c4). (7.31)

The CI-CF (Eq. 7.31) can be alternatively obtained by summing up the PCI-CFs represented
by Eqs. 6.106–6.113 (page 160).

The four positions of the allene skeleton 3-9 (= 6-102 as the top view, cf. Fig. 6.12 on
page 159) are substituted by proligands selected from the proligand inventory L (Eq. 6.73).
According to Theorem 7.6, the same set of ligand-inventory functions as listed in Eqs. 6.74–
6.76 (page 153) is introduced into the CI-CF (Eq. 7.31). After expansion (Step 8 of Rule
7.1), we obtain the following generating function for gross enumeration:

f3-9 = {A4 + · · ·}+{A3B+ · · ·}+{1
2
(A3p+A3p)+ · · ·}

+{2A2B2 + · · ·}+{3× 1
2
(A2p2 +A2p2)+ · · ·}+{2A2BX+ · · ·}

+{3× 1
2
(A2Bp+A2Bp)+ · · ·}+{2A2pp+ · · ·}

+{3× 1
2
(A2pq+A2pq)+ · · ·}+{3ABXY+ · · ·}

+{6× 1
2
(ABXp+ABXp)+ · · ·}+{3× 1

2
(ABp2 +ABp2)+ · · ·}

+{4ABpp+ · · ·}+{6× 1
2
(ABpq+ABpq)+ · · ·}+{1

2
(Ap3 +Ap3)+ · · ·}

+{3× 1
2
(Ap2p+App2)+ · · ·}+{3× 1

2
(Ap2q+Ap2q)+ · · ·}

+{6× 1
2
(Appq+Appq)+ · · ·}+{6× 1

2
(Apqr+Apqr)+ · · ·}

+{1
2
(p4 +p4)+ · · ·}+{1

2
(p3p+pp3)+ · · ·}+{1

2
(p3q+p3q)+ · · ·}

+{2p2p2 + · · ·}++{3× 1
2
(p2pq+pp2q)+ · · ·}+{3× 1

2
(p2q2 +p2q2)+ · · ·}

+{3× 1
2
(p2qq+p2qq)+ · · ·}+{3× 1

2
(p2qr+p2qr)+ · · ·}+{3ppqq+ · · ·}

+{6× 1
2
(ppqr+ppqr)+ · · ·}+{6× 1

2
(pqrs+pqrs)+ · · ·}. (7.32)

The generating function (Eq. 7.32) can be alternatively obtained by summing up the
symmetry-itemized generating functions represented by Eqs. 6.114–6.121 (page 161).



186 7 Gross Enumeration Under Point Groups

Proligand Method Applied to Ethylene Derivatives
Because the four positions of the ethylene skeleton 3-10 (Fig. 3.7 on page 68) construct
an orbit governed by the coset representation D2h(/C ′′s ) (Steps 1–6 of Rule 7.1), the PSIs
collected in Table 3.3 (page 69) are summed up and divided by 8 (= |D2h|), so as to give the
following CI-CF (Step 7 of Rule 7.1):

CI-CF(D2h;$d) =
1
8
(b4

1 +3b2
2 +a4

1 +3c2
2). (7.33)

Suppose that the four positions of the ethylene skeleton 3-10 (page 68) are substituted by
proligands selected from the proligand inventory L (Eq. 6.73 on page 153). According to
Theorem 7.6, the same set of ligand-inventory functions as listed in Eqs. 6.74–6.76 (page
153) is introduced into the CI-CF (Eq. 7.33). After expansion (Step 8 of Rule 7.1), we obtain
the following generating function for gross enumeration:

f3-10 = {A4 + · · ·}+{A3B+ · · ·}+{1
2
(A3p+A3p)+ · · ·}

+{3A2B2 + · · ·}+{3× 1
2
(A2p2 +A2p2)+ · · ·}+{3A2BX+ · · ·}

+{3× 1
2
(A2Bp+A2Bp)+ · · ·}+{3A2pp+ · · ·}

+{3× 1
2
(A2pq+A2pq)+ · · ·}+{6ABXY+ · · ·}

+{6× 1
2
(ABXp+ABXp)+ · · ·}+{3× 1

2
(ABp2 +ABp2)+ · · ·}

+{3ABpp+ · · ·}+{6× 1
2
(ABpq+ABpq)+ · · ·}+{1

2
(Ap3 +Ap3)+ · · ·}

+{3× 1
2
(Ap2p+App2)+ · · ·}+{3× 1

2
(Ap2q+Ap2q)+ · · ·}

+{6× 1
2
(Appq+Appq)+ · · ·}+{6× 1

2
(Apqr+Apqr)+ · · ·}

+{1
2
(p4 +p4)+ · · ·}+{1

2
(p3p+pp3)+ · · ·}+{1

2
(p3q+p3q)+ · · ·}

+{3p2p2 + · · ·}++{3× 1
2
(p2pq+pp2q)+ · · ·}+{3× 1

2
(p2q2 +p2q2)+ · · ·}

+{3× 1
2
(p2qq+p2qq)+ · · ·}+{3× 1

2
(p2qr+p2qr)+ · · ·}+{6ppqq+ · · ·}

+{6× 1
2
(ppqr+ppqr)+ · · ·}+{6× 1

2
(pqrs+pqrs)+ · · ·}. (7.34)

The coefficient of each term in Eq. 7.34 is consistent with the sum of the corresponding row
of the tables obtained by the symmetry-itemized enumeration under the point group D2h

[31, Tables 3 and 4].
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7.3.5 Enumeration of Achiral and Chiral Promolecules

Enumeration Under Maximum Chiral Point Groups
The maximum-chiral point group GC of an achiral point group G is used to enumerate two
chiral promolecules of an enantiomeric pair separately. Thereby, each promolecule, either
chiral or achiral, is counted once under the action of GC, where its homomers generated by
GC are regarded as being undistinguished. Thus, one promolecule is inequivalent to another
promolecule under the action of GC, so that each promolecule belongs to a one-membered
orbit (equivalence class) under the action of GC. For the sake of convenience, the set of
inequivalent promolecules with the composition Wθ under the action of GC is called steric
isomers, although this terminology has somewhat ambiguous nature with respect to the term
isomer (cf. Rule 2.2 on page 51).

Under the action of G, in contrast, an achiral promolecule belongs to a one-membered
orbit, while a pair of enantiomeric chiral promolecules belongs to a two-membered orbit.
For the sake of convenience, the set of inequivalent promolecules with the composition Wθ
under the action of G is called 3D-structural isomers, although this terminology also has
somewhat ambiguous nature with respect to the term isomer (cf. Rule 2.2 on page 51).

The restriction of Def. 7.5 to GC provides us with the following CI-CF for counting
under the action of GC:

Definition 7.6 (CI-CF for Counting Steric Isomers). Suppose that a permutation pg (∈ PGC
) has a

cycle structure (1ν1 2ν2 · · ·dνd · · ·nνn )(pg) (∑n
i=1 iνi = n), as shown in the hemispheric case of Def. 7.2.

The CI-CF for counting steric isomers under the action of GC is defined as follows:

CI-CF(C)(PGC
; bd) =

1
|PGC

| ∑
pg∈PGC

(bν1
1 bν2

2 · · ·bνd
d · · ·bνn

n )(pg). (7.35)

To apply Def. 7.35 to a general case, the ligand inventory L (Eq. 6.26 on page 140) is used as
it is. A resulting promolecule has the composition Wθ represented by Eq. 6.27 (page 140).
The composition can be alternatively represented by the partition [θ ] shown in Eq. 6.28.
Then, Theorem 7.6 is modified to meet GC, so as to give the following theorem:

Theorem 7.7 (Fujita’s Proligand Method of Counting Steric Isomers). Suppose that the n posi-
tions of a given skeleton belongs to PGC

, which is the maximum subgroup of PG. The CI-CF is
shown in Eq. 7.35 of Def. 7.6. The ligand inventory L (Eq. 6.26) is used to give derivatives with
the composition Wθ . Let the symbol A(C)

θ denote the number of such derivatives (orbits), which are

inequivalent under the action of PGC
. A generating function for A(C)

θ is represented as follows:

∑
[θ ]

A(C)
θ Wθ = CI-CF(C)(PGC

; bd)
∣

∣

∣

∣

bd=∑L

, (7.36)

where the symbol bd = ∑L denotes the introduction of the following ligand-inventory function into
the sphericity index bd :

bd =
n

∑
�=1

Xd
� +

n′

∑
�=1

pd
� +

n′

∑
�=1

pd
� . (7.37)
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Achiral and Chiral Promolecules
All of the rotations of a given point group G are contained in its maximum-chiral subgroup
GC, while all of the reflections (rotoreflections) are contained in the complementary set
G−GC. Hence, the summation in the right-hand side of Eq. 7.23 (Def. 7.5) is divided into
two summations:

CI-CF(PG; $d) =
1
|PG| ∑

pg∈PGC

(bν1
1 bν2

2 · · ·bνd
d · · ·bνn

n )(pg)

+
1
|PG| ∑

pg∈PG−PGC

($ν1
1 $ν2

2 · · ·$νd
d · · ·$νn

n )(pg), (7.38)

where the former summation is concerned with GC, while the latter summation is concerned
with G−GC. The former summation has the half value of the CI-CF represented by Eq.
7.35, because of |PG|= 2|PGC |.

Let the symbol A(a)
θ denote the number of achiral promolecules with the composition

Wθ . Let the symbol A(e)
θ denote the number of enantiomeric pairs of chiral promolecules

with the composition Wθ . Because an achiral promolecule or a pair of enantiomers is
counted once by Eq. 7.24 of Theorem 7.6, we obtain the following relationship:

∑
[θ ]

AθWθ = ∑
[θ ]

A(a)
θ Wθ +∑

[θ ]
A(e)

θ Wθ (7.39)

On the other hand, because an achiral promolecule or each of enantiomers is counted once
by Eq. 7.36 of Theorem 7.7, we obtain the following relationship:

∑
[θ ]

A(C)
θ Wθ = ∑

[θ ]
A(a)

θ Wθ +2∑
[θ ]

A(e)
θ Wθ (7.40)

Thereby, we are able to evaluate A(a)
θ and A(e)

θ as follows:

∑
[θ ]

A(a)
θ Wθ = 2∑

[θ ]
AθWθ −∑

[θ ]
A(C)

θ Wθ (7.41)

∑
[θ ]

A(e)
θ Wθ = ∑

[θ ]
A(C)

θ Wθ −∑
[θ ]

AθWθ (7.42)

The evaluation of the right-hand side of Eq. 7.41 or Eq. 7.42 can be done by calculating
the corresponding CI-CF preliminarily without the introduction of ligand-inventory func-
tions. According to Eqs. 7.41 and 7.42, the CI-CF represented by Eq. 7.38 (equivalent to
Eq. 7.23 of Def. 7.5) and the CI-CF represented by Eq. 7.35 are treated to give the following
CI-CFs:

Definition 7.7 (CI-CFs for Counting Achiral Promolecules and Pairs of Enantiomers).

CI-CF(a)(PG; $d) = 2CI-CF(PG; $d)−CI-CF(C)(PG; bd)

=
2
|PG| ∑

pg∈PG−PGC

($ν1
1 $ν2

2 · · ·$νd
d · · ·$νn

n )(pg) (7.43)
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CI-CF(e)(PG; $d) = CI-CF(C)(PG; bd)−CI-CF(PG; $d)

=
1
|PG|

⎧

⎨

⎩

∑
pg∈PGC

(bν1
1 bν2

2 · · ·bνd
d · · ·bνn

n )(pg)

− ∑
pg∈PG−PGC

($ν1
1 $ν2

2 · · ·$νd
d · · ·$νn

n )(pg)

⎫

⎬

⎭

. (7.44)

Note that CI-CF(a)(PG; $d) (Eq. 7.43) is two-times of the (PG − PGC )-part of Eq. 7.38
(equivalent to Eq. 7.23 of Def. 7.5), while CI-CF(e)(PG; $d) (Eq. 7.44) is obtained by ex-
changing plus signs into minus signs with respect to the (PG−PGC )-part of Eq. 7.38. Obvi-
ously, the sum of Eq. 7.43 and Eq. 7.44 is equal to Eq. 7.38 (equivalent to Eq. 7.23 of Def.
7.5).

By combining Eq. 7.41 with Eq. 7.43, we obtain the following theorem for counting
achiral promolecules:

Theorem 7.8 (Fujita’s Proligand Method of Counting Achiral Promolecules). As a continuation of
Theorems 7.6 and 7.7, the number A(a)

θ of achiral promolecules inequivalent under the action of
PG is obtained by the following generating function:

∑
[θ ]

A(a)
θ Wθ = CI-CF(a)(PG; $d)

∣

∣

∣

∣

$d=∑L

, (7.45)

where the symbol $d = ∑L denotes the introduction of the following ligand-inventory functions into
the respective sphericity indices $d of Eq. 7.43:

ad =
n

∑
�=1

Xd
� (7.46)

cd =
n

∑
�=1

Xd
� +2

n′

∑
�=1

pd/2
� pd/2

� (7.47)

bd =
n

∑
�=1

Xd
� +

n′

∑
�=1

pd
� +

n′

∑
�=1

pd
� (7.48)

On the other hand, by combining Eq. 7.42 with Eq. 7.44, we obtain the following theorem
for counting enantiomeric pairs of chiral promolecules:

Theorem 7.9 (Fujita’s Proligand Method of Counting Pairs of Enantiomers). As a continuation of
Theorems 7.6 and 7.7, the number A(e)

θ of pairs of enantiomeric promolecules inequivalent under
the action of PG is obtained by the following generating function:

∑
[θ ]

A(e)
θ Wθ = CI-CF(e)(PG; $d)

∣

∣

∣

∣

$d=∑L

, (7.49)

where the symbol $d = ∑L denotes the introduction of the following ligand-inventory functions into
the respective sphericity indices $d of Eq. 7.44:

ad =
n

∑
�=1

Xd
� (7.50)

cd =
n

∑
�=1

Xd
� +2

n′

∑
�=1

pd/2
� pd/2

� (7.51)



190 7 Gross Enumeration Under Point Groups

bd =
n

∑
�=1

Xd
� +

n′

∑
�=1

pd
� +

n′

∑
�=1

pd
� (7.52)

Examples of Enumerating Achiral and Chiral Promolecules
Achiral and Chiral Tetrahedral Promolecules
By starting from the CI-CF for the enumeration under Td (Eq. 7.29), Eqs. 7.35, 7.43, and
7.44 are applied to the tetrahedral skeleton 3-5 (page 55) of Td so as to give the following
CI-CFs:

CI-CF(C)(T;bd) =
1
12

(b4
1 +3b2

2 +8b1b3) (7.53)

CI-CF(a)(Td ;$d) =
1
12

(6a2
1c2 +6c4) =

1
2
(a2

1c2 + c4) (7.54)

CI-CF(e)(Td ;$d) =
1
24

(b4
1 +3b2

2 +8b1b3−6a2
1c2−6c4). (7.55)

The ligand-inventory functions listed in Eqs. 6.74–6.76 are introduced into these CI-CFs.
The expansions of the resulting equations give the respective generating functions in ac-
cord with Theorems 7.7 (steric isomers), 7.8 (achiral promolecules), and 7.9 (pairs of enan-
tiomeric promolecules).

Exercise 7.3.
– Calculate the generating function obtained by introducing the ligand-inventory func-

tions (Eqs. 6.74–6.76) into the CI-CFs (Eqs. 7.53–7.55).
– Compare the results with the data of the symmetry-itemized enumeration (Eqs. 6.94–

6.102 on page 156) and with those of the gross enumeration (Eq. 7.30).

Achiral and Chiral Allene Derivatives
By starting from the CI-CF for the enumeration under D2d (Eq. 7.31), Eqs. 7.35, 7.43, and
7.44 are applied to the allene skeleton 3-9 (= 6-102 on page 159) of D2d so as to give the
following CI-CFs:

CI-CF(C)(D2;bd) =
1
4
(b4

1 +3b2
2) (7.56)

CI-CF(a)(D2d ;$d) =
1
4
(2a2

1c2 +2c4) =
1
2
(a2

1c2 + c4) (7.57)

CI-CF(e)(D2d ;$d) =
1
8
(b4

1 +3b2
2−2a2

1c2−2c4). (7.58)

The ligand-inventory functions listed in Eqs. 6.74–6.76 are introduced into these CI-CFs.
The expansions of the resulting equations give the respective generating functions in ac-
cord with Theorems 7.7 (steric isomers), 7.8 (achiral promolecules), and 7.9 (pairs of enan-
tiomeric promolecules).
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Exercise 7.4.
– Calculate the generating function obtained by introducing the ligand-inventory func-

tions (Eqs. 6.74–6.76) into the CI-CFs (Eqs. 7.56–7.58).
– Compare the results with the data of the symmetry-itemized enumeration (Eqs. 6.114–

6.121 on page 161) and with those of the gross enumeration (Eq. 7.32).
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8 Enumeration of Alkanes as 3D Structures1

8.1 Surveys With Historical Comments

Enumeration of alkanes and monosubstituted alkanes with given carbon contents is a chal-
lenging target, which has been investigated by chemists and mathematicians over 130 years.
In this chapter, the recent achievement provided by Fujita is discussed how it is in agreement
with stereochemical and mathematical requirements.

There have been three epochs in the history of enumeration of trees (mathematically)
or alkanes (chemically), as pointed out by Fujita’s account article [1],
1. (First epoch) On the 1870s, Cayley a mathematician investigated problems of enumer-

ating rooted trees [2] and trees [3,4]. He already recognized that the mathematical term
trees was essentially equivalent to the chemical term isomers represented by a formula
CkH2k+2, which were later specified in terms of a more systematic term alkanes. Henze
and Blair [5,6] enumerated aliphatic alcohols (rooted trees) and alkanes (trees) after the
development of recursive formulas.2

2. (Second epoch) On the same 1930s as the work conducted by Henze and Blair [5,
6], Pólya developed a versatile theorem named after him (cf. Section 7.2) [8]. The
importance of Pólya’s theorem is obvious by the fact that an English translation [9]
appeared after 50 years. Mention should be made of several extensions [10,11], which
enhanced the versatility of Pólya’s theorem.
Pólya’s theorem was applied to the enumeration of trees (as mathematical objects) or
alkanes (as chemical objects).3 Pólya’s enumeration of trees (or alkanes) was based on
permutation groups without considering reflection operations, where trees were treated
as graphs, but not as 3D structures.
More recently, Robinson et al. [13] reported enumeration of alkanes on the basis of
Otter’s method [14], where reflection operations were partially taken into considera-
tion. However, their formulation suffered from an insufficient differentiation between
permutation groups and point groups, as they misleadingly described “Taking the mir-

1 This chapter is based on S. Fujita, “Graphs to Chemical Structures 4. Combinatorial Enumeration of
Planted Three-Dimensional Trees as Stereochemical Models of Monosubstituted Alkanes”, Theor. Chem.
Acc., 117, 353–370 (2007); S. Fujita, “Graphs to Chemical Structures 5. Combinatorial Enumeration of Cen-
troidal and Bicentroidal Three-Dimensional Trees as Stereochemical Models of Alkanes”, Theor. Chem. Acc.,
117, 339–351 (2007); S. Fujita, “Numbers of Monosubstituted Alkanes as Stereoisomers”, J. Comput. Chem.
Jpn., 6, 59–72 (2007); S. Fujita, “Enumeration of Alkanes as Stereoisomers”, MATCH Commun. Math. Com-
put. Chem., 57, 265–298 (2007); and S. Fujita, “Alkanes as Stereoisomers. Enumeration by the Combination
of Two Dichotomies for Three-Dimensional Trees”, MATCH Commun. Math. Comput. Chem., 57, 299–340
(2007).
2 Accomplishments up to 1936 have been summarized in a book on the graph theory [7, Chapter 4].
3 An introduction by Pólya himself has appeared in a textbook by Pólya et al. [12, Chapter 6].
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ror image is equivalent to reversing the configuration” [13]. In other words, the enu-
merations by Pólya [8,9] and by Robinson et al. [13] did not arrive at the concept of
sphericities.4

3. (Third epoch) On the first decade of this century, Fujita proposed the proligand method
for enumerating promolecules as 3D structures (cf. Section 7.3) [16–18]. Immediately,
Fujita’s proligand method was applied to the enumeration of alkanes as 3D structures
[19,20]. Thereby, the interdisciplinary problems of enumerating planted trees (or mono-
substituted alkanes) and trees (or alkanes), which have been pending over 130 years,
have been solved in agreement with both stereochemical and mathematical require-
ments.

As described in Section 7.3, Fujita’s proligand method is based on the concept of
sphericities of cycles, which succeeds the concept of sphericities of orbits for Fujita’s USCI
approach (cf. Chapter 4). As a result, a cycle index with chirality fittingness (CI-CF) is
devised in place of Pólya’s cycle index (CI), which lacks chirality fittingness. After an ex-
tension with respect to wreath products (coronas), Fujita’s proligand method was applied
to recursive enumeration of planted 3D-trees as stereochemical models of monosubstituted
alkanes [19,21]. Monosubstituted alkanes were categorized into primary, secondary, and ter-
tiary ones, which were respectively enumerated by Fujita’s proligand method [22]. Effects
of asymmetric and pseudoasymmetric centers [23] as well as of internal branching [24,25]
on the numbers of achiral and chiral monosubstituted alkanes were investigated.

By starting from the data of monosubstituted alkanes (alkyl ligands), 3D-trees were
enumerated as stereochemical models of alkanes according to Fujita’s proligand method
[20,26], where they were categorized into centroidal and bicentroidal 3D-trees. After the
proposal of a new dichotomy between balanced 3D-trees and unbalanced ones, 3D-trees
(alkanes) were enumerated by combining the dichotomy with the other dichotomy be-
tween centroidal 3D-trees and bicentroidal ones [27]. An alternative method for enumer-
ating 3D-trees was developed on the basis of the fact that they can be regarded dually as
uninuclear and as binuclear promolecules [15]. Symmetry-itemized numbers of alkanes as
3D-structural isomers were obtained by applying Fujita’s proligand method [28]. Effect of
asymmetric and pseudoasymmetric centers on the numbers of achiral and chiral 3D-trees
(alkanes) was investigated [29]. Achiral and chiral alkanes of given carbon contents were
categorized and enumerated by considering internal branching [30].

4 This point has been discussed in detail [15], where Fujita’s proligand method was combined with dual
recognition as uninuclear and binuclear promolecules.
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8.2 Enumeration of Alkyl Ligands as 3D Planted Trees

8.2.1 Enumeration of Methyl Proligands as Planted Promolecules

Let us first count proligands based on a trigonal pyramidal skeleton 8-1 of C3v (8-1 = 8-1a
in Fig. 8.1) by using a set of (inner) proligands listed in the following ligand inventory:

L8-1 = {H,X,Y; p,p; q,q; r, r}, (8.1)

where the symbols H, X, and Y represent achiral proligands, while the pairs, p/p, q/q, and
r/r, denote enantiomeric pairs of chiral proligands. The proligands to be counted are re-
ferred to under the name planted promolecules [18,19]. Note that this enumeration presumes
that such proligands as based on 8-1 are regarded as a hypothetical kind of promolecules
(named planted promolecules), where the vacant bond of 8-1 is preliminarily substituted
by a dummy substituent ( �). Or more concretely, this enumeration may be regarded as the
enumeration of monosubstituted alkanes (e.g., alkanols, �= OH).

�
1

2
3

�
3

1
2

�
2

3
1

Numbered Skeletons

8-1a, I 8-1b,C3 8-1c,C2
3

(1)(2)(3) (1 3 2) (1 2 3)

�
1

3
2

�
3

2
1

�
2

1
3

Mirror-Numbered Skeletons

8-1d,σv(1) 8-1e,σv(2) 8-1f,σv(3)

(1)(2 3) (1 3)(2) (1 2)(3)

Fig. 8.1. Symmetry operations for a C3v-skeleton (8-1). The identity operation (I) converts 8-1
into itself, where the resulting skeleton is denoted as 8-1a [19]. The top row lists homomeric num-
bered skeletons, while the bottom row lists homomeric mirror-numbered skeletons.

According to Step 4 of Rule 7.1 described on page 183, the permutation representation
PC3v is selected to be equal to the coset representation C3v(/Cs), as shown in Table 8.1 [18,
19]. The permutation representation PC3v (= C3v(/Cs)) is consistent to the behavior of the
three positions of the trigonal pyramid skeleton 8-1 under the action of the point group C3v,
as depicted in Fig. 8.1. The top row of Fig. 8.1 lists homomeric numbered skeletons, while
the bottom row lists homomeric mirror-numbered skeletons. For example, the reflection
σv(1), which is concerned with the mirror plane contained in the plane of 1—C— �, fixes
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Table 8.1. Operations of C3v and Coset Representation C3v(/Cs) [19]

operation C3v(/Cs) PSI (product of cycle
g ∈ C3v (product of cycles) sphericity indices) term

A
B

I (1)(2)(3) b3
1 s3

1
C3 (1 3 2) b3 s3

C2
3 (1 2 3) b3 s3

σv(1) (1)(2 3) a1c2 s1s2

σv(2) (1 3)(2) a1c2 s1s2

σv(3) (1 2)(3) a1c2 s1s2

the 1-position and exchanges the 2- and 3-positions as found in 8-1d (with accompanied by
ligand reflections). Thereby it generates a permutation (a product of cycles):

σv(1) ∼
(

1 2 3
1 3 2

)

= (1)(2 3), (8.2)

where an overbar represents a ligand reflection.
Steps 5 and 6 of Rule 7.1 (page 183) generate the PSIs collected in the PSI-column of

Table 8.1. Then, according to Eq. 7.23 of Def. 7.5 (Step 7 of Rule 7.1), the corresponding
CI-CF is obtained as follows:

CI-CF8-1(C3v,$d) =
1
6
(b3

1 +2b3 +3a1c2), (8.3)

which counts achiral planted promolecules or enantiomeric pairs of chiral planted pro-
molecules.

Because a set of (inner) proligands is selected from the ligand inventory L8-1 (Eq. 8.1),
the following ligand-inventory functions are calculated according to Theorem 7.6 (Step 8 of
Rule 7.1):

ad = Hd +Xd +Yd (8.4)

cd = Hd +Xd +Yd +2pd/2pd/2 +2qd/2qd/2 +2rd/2rd/2 (8.5)

bd = Hd +Xd +Yd +pd +pd +qd +qd + rd + rd . (8.6)

These ligand-inventory functions are introduced into Eq. 8.3 to give the following generat-
ing function:

f8-1 = {H3 +X3 +Y3}+{H2Y+H2X+ · · ·}+HXY

+{1
2
(H2p+H2p)+ · · ·}+{2

2
(HXp+HXp)+ · · ·}+{1

2
(Hp2 +Hp2)+ · · ·}

+{2Hpp+ · · ·}+{2
2
(Hpq+Hpq)+ · · ·}+{2

2
(Hpq+Hpq)+ · · ·}
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+{1
2
(p3 +p3)+ · · ·}+{1

2
(p2p+pp2)+ · · ·}+{1

2
(p2q+p2q)+ · · ·}

+{1
2
(p2q+p2q)+ · · ·}+{2

2
(pqr+pqr)}+{2

2
(pqr+pqr)+ · · ·}

+{2
2
(ppq+ppq)+ · · ·}. (8.7)

This generating function derived from Eq. 8.3 is essentially equivalent to the one described
in [18, Eq. 40 of Example 2].

For further discussions, the planted promolecules enumerated in Eq. 8.7 are shown in
Fig. 8.2, where a representative of each pair of enantiomeric promolecules or that of an
achiral promolecule is depicted with respect to the coefficient of each term of Eq. 8.7. For
example, 8-2 (H3) is a representative of achiral promolecules having H3, X3, Y3. The two
promolecules 8-6 and 8-7 with the composition HXp corresponds to the term 2

2 (HXp +
HXp), which indicates the presence of two pairs of planted promolecules, because each
enantiomeric pair is represented by the term 1

2 (HXp+HXp). The two pairs are inequivalent
under the action of C3v and diastereomeric to each other in accord with Def. 2.7 (page 40).

By starting from the PSI-column of Table 8.1, the CI-CF for counting steric isomers of
planted promolecules is obtained according to Eq. 7.35 (Def. 7.6 on page 187) as follows:

CI-CF(C)
8-1(C3,bd) =

1
3
(b3

1 +2b3). (8.8)

Theorem 7.7 (page 187) shows that this CI-CF can be used to count achiral planted pro-
molecules and chiral planted promolecules, where two enantiomers of each pair are counted
separately.

The ligand-inventory functions (Eqs. 8.4–8.6) are introduced into Eq. 8.8 to give the
following generating function for enumerating steric isomers:

f (C)
8-1 = {H3 +X3 +Y3}+{H2Y+H2X+ · · ·}+2HXY

+{2
2
(H2p+H2p)+ · · ·}+{4

2
(HXp+HXp)+ · · ·}+{2

2
(Hp2 +Hp2)+ · · ·}

+{2Hpp+ · · ·}+{4
2
(Hpq+Hpq)+ · · ·}+{4

2
(Hpq+Hpq)+ · · ·}

+{2
2
(p3 +p3)+ · · ·}+{2

2
(p2p+pp2)+ · · ·}+{2

2
(p2q+p2q)+ · · ·}

+{2
2
(p2q+p2q)+ · · ·}+{4

2
(pqr+pqr)}+{4

2
(pqr+pqr)+ · · ·}

+{4
2
(ppq+ppq)+ · · ·} (8.9)

This generating function derived from Eq. 8.8 is essentially equivalent to the one described
in [18, Eq. 45 of Example 3].5

5 The term 1
2 (H2p+H2p)+ · · ·} of [18, Eq. 45 of Example 3] should be read as 2

2 (H2p+H2p)+ · · ·}.
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Fig. 8.2. Planted promolecules based on the trigonal pyramid skeleton of C3v [19]. The symbols
H, X, and Y represent achiral proligands, while the pairs, p/p, q/q, and r/r, denote enantiomeric
pairs of chiral proligands. The planted promolecules surrounded by a frame box are achiral. The
other planted promolecules are chiral so that an appropriate enantiomer is depicted as a repre-
sentative for each enantiomeric pair.

By combining Eq. 8.3 with Eq. 8.8 in accord with Eq. 7.43 (Def. 7.7 on page 188), the
CI-CF for counting achiral planted promolecules is obtained as follows:

CI-CF(a)
8-1(C3v,$d) = 2CI-CF8-1(C3v,$d)−CI-CF(C)

8-1(C3,bd)

= a1c2, (8.10)

which counts achiral planted promolecules only according to Theorem 7.8 on page 189.
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The ligand-inventory functions (Eqs. 8.4–8.6) are introduced into Eq. 8.10 to give the
following generating function for enumerating achiral planted promolecules:

f (a)
8-1 = 2 f8-1− f (C)

8-1

= {H3 +X3 +Y3}+{H2Y+H2X+ · · ·}+{2Hpp+ · · ·}. (8.11)

This generating function derived from Eq. 8.10 is essentially equivalent to the one described
in [18, Eq. 52 of Example 4].

By combining Eq. 8.3 with Eq. 8.8 in accord with Eq. 7.44 (Def. 7.7 on page 188), the
CI-CF for counting pairs of enantiomeric planted promolecules is obtained as follows:

CI-CF(e)
8-1(C3v,$d) = CI-CF(C)

8-1(C3,bd)−CI-CF8-1(C3v,$d)

=
1
6
(b3

1 +2b3−3a1c2), (8.12)

which counts pairs of chiral planted promolecules only according to Theorem 7.9 on page
189.

The ligand-inventory functions (Eqs. 8.4–8.6) are introduced into Eq. 8.12 to give the
following generating function for enumerating pairs of enantiomeric planted promolecules:

f (e)
8-1 = f (C)

8-1 − f8-1

= HXY

+{1
2
(H2p+H2p)+ · · ·}+{2

2
(HXp+HXp)+ · · ·}+{1

2
(Hp2 +Hp2)+ · · ·}

+{2
2
(Hpq+Hpq)+ · · ·}+{2

2
(Hpq+Hpq)+ · · ·}

+{1
2
(p3 +p3)+ · · ·}+{1

2
(p2p+pp2)+ · · ·}+{1

2
(p2q+p2q)+ · · ·}

+{1
2
(p2q+p2q)+ · · ·}+{2

2
(pqr+pqr)}+{2

2
(pqr+pqr)+ · · ·}

+{2
2
(ppq+ppq)+ · · ·}. (8.13)

This generating function derived from Eq. 8.12 is essentially equivalent to the one described
in [18, Eq. 53 of Example 4].

The generating function f (a)
8-1 (Eq. 8.11) indicates the presence of three types of planted

promolecules, each of which is surrounded by a frame in Fig. 8.2, i.e., 8-2 with the compo-
sition H3, 8-3 with the composition HX2 (appearing as a representative H2X in Eq. 8.11),
as well as 8-9 and 8-10 with the composition Hpp. They are all achiral.

The generating function f (e)
8-1 (Eq. 8.13) covers the remaining planted promolecules

listed in Fig. 8.2 (without being surrounded by a frame). Each represents an appropriate
representative selected from a pair of enantiomeric planted promolecules.
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8.2.2 Recursive Enumeration of Alkyl ligands as Planted Promolecules

Preliminary Examination
Before we discuss recursive enumeration, let us evaluate the number of achiral alkyl ligands
of carbon content 5 by starting from the data of carbon contents up to 4 (k = 1–4) listed
in Fig. 8.3. Note that the symbol Z represents a root (e,g„ the symbol �in Fig. 8.2) or an
achiral mono-valent ligand (e.g., –OH for alkanols). We use the CI-CF for counting achiral
planted promolecules (Eq. 8.10).

The ligand-inventory functions (Eqs. 8.4–8.6) are rewritten to meet this evaluation. The
data listed in Fig. 8.3 (k = 1–4) give the following ligand-inventory functions with respect
of carbon contents up to 4:

ad = 1+ xd + x2d +2x3d +3x4d (8.14)

cd = (1+ xd + x2d +2x3d +3x4d)+(2x4d)

= 1+ xd + x2d +2x3d +5x4d (8.15)

bd = (1+ xd + x2d +2x3d +3x4d)+(2x4d)

= 1+ xd + x2d +2x3d +5x4d , (8.16)

where the coefficient of a dummy variable xk represents the number of inner alkyl ligands
with carbon content k. The value 1 corresponds to the substitution of a hydrogen atom. The
term 2x3d , for example, represents the substitution of the number d of alkyl ligands with
carbon content 3, where the coefficient 2 indicates that there are two alkyl ligands (8-27 and
8-28). The CI-CF represented by Eq. 8.10 is modified to take account of one central atom
to be added by multiplying x. Then, the ligand-inventory functions (Eqs. 8.14 and 8.15) are
introduced into the modified CI-CF. Thereby, the following generating function is obtained:

f (a)
k=5 = xa1c2

= x(1+ x+ x2 +2x3 +3x4)(1+ x2 + x4 +2x6 +5x8)

= x+ x2 +2x3 +3x4 +5x5 + · · · , (8.17)

where the terms up to k = 5 are effective. The coefficient 5 of the term 5x5 indicates the
presence of five achiral alkyl ligands, which is confirmed to be 8-33, 8-34, 8-36, 8-37, and
8-39, as depicted in Fig. 8.3.

Recursive Enumeration of Diploids
Although the terms up to x5 appearing in Eq. 8.17 can be used as a ligand-inventory function
a1 for calculating f (a)

k=6 = xa1c2 recursively, the other ligand-inventory function c2 should be
evaluated in a rational fashion. To do this task, Fujita has proposed the concept of diploids
[19]. Let us transform Eq. 8.15 into the following expression:

c2d = (1+ x2d + x4d +2x6d +3x8d)+(2x8d)
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a)CC: carbon content.

Fig. 8.3. Monosubstituted alkanes of lower carbon contents (k = 1–5) [1]. Each constitutional
isomer is surrounded by a broken-lined box; each 3D-structural isomers (each achiral molecule
or each pair of enantiomeric molecules) is surrounded by a straight-lined box; and each molecule
represents a steric isomer. The symbol Z denotes an atom (e.g., Cl), an achiral ligand (e.g., OH),
or a root (the symbol �in Fig. 8.2), which is regarded as a monovalent substituent. Hydrogen
atoms are omitted for the sake of simplicity. Each asymmetric center is denoted by an asterisk.



202 8 Enumeration of Alkanes as 3D Structures

= 1+(x · x)d +(x2 · x2)d +2(x3 · x3)d +5(x4 · x4)d . (8.18)

Thereby, each enantiospheric orbit concerned with c2d accommodates an enantiomeric pair
of inner proligands, as expressed by (x · x), (x2 · x2), etc., which correspond to ordered set
(diploid), i.e., {8-25,8-25}, {8-26,8-26}, etc. for achiral inner proligands. As for chiral pro-
ligands, a pair of diploids, {8-30,8-30} and {8-30,8-30}, should be taken into consideration
in the form of the term 2(x4 · x4)d (among 5(x4 · x4)d). If we focus our attention on the first
promolecule of each diploid, the enumeration of diploids corresponds to the enumeration of
steric isomers. It follows that the CI-CF represented by Eq. 8.8 is modified by substituting
c2 and c6 for b1 and b3 respectively to calculate a generating function for counting diploids:

f (D)
k=5 =

x2

3
(c3

2 +2c6)

=
x2

3
{(1+ x2 + x4 +2x6 +5x8)3 +2(1+ x6 + x12 +2x18 +5x24)}

= x2 + x4 +2x6 +5x8 +11x10 + · · · , (8.19)

The coefficient 11 of the term 11x10 represents the presence of eleven diploids which are
generated on the basis of 8-37–8-40. For example, a diploid {8-25,8-25} ((x ·x)) and another
diploid {8-27,8-27} ((x3 ·x3)) produces two diploids represented by {8-35,8-35} ((x5 ·x5))
and {8-35,8-35} ((x5 · x5)), where two carbons are added by multiplying x2 in Eq. 8.18.

Recursive Enumeration of Steric Isomers for Alkyl Ligands
The parallelism between diploids and steric isomers permits us to enumerate steric isomers
for alkyl ligands in a similar way. The CI-CF represented by Eq. 8.8 is modified to take
account of one central atom to be added by multiplying x. Then, the ligand-inventory func-
tion (Eqs. 8.16) is introduced into the modified CI-CF. Thereby, the following generating
function is obtained:

f (C)
k=5 =

x
3
(b3

1 +2b3)

=
x
3
{(1+ x+ x2 +2x3 +5x4)3 +2(1+ x3 + x6 +2x9 +5x12)}

= x+ x2 +2x3 +5x4 +11x5 + · · · , (8.20)

The coefficient 11 of the term 11x5 represents the presence of eleven alkyl ligands depicted
in Fig. 8.3.

8.2.3 Functional Equations for Recursive Enumeration of Alkyl ligands

Achiral-Structure Generator and Diploid Generator
The derivation of Eq. 8.17 (k = 5) from Eqs. 8.14 and 8.15 (k = 1–4), the derivation of Eq.
8.19 (k = 5) from Eq. 8.15 (k = 1–4), and the derivation of Eq. 8.20 (k = 5) from Eq. 8.16
(k = 1–4) can be systematized by devising functional equations.
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Let us consider the following generating functions with infinite terms:

a(x) =
∞

∑
k=0

Akxk (8.21)

c(x2) =
∞

∑
k=0

γ2kx2k, (8.22)

where A0 (= 1) or γ0 (= 1) is an initial value for representing a hydrogen atom or a hydrogen
diploid. These infinite polynomials are extensions of Eq. 8.17 and Eq. 8.19 respectively.

The derivation of Eq. 8.17 (k = 5) is extended into the following functional equation:

a(x) = 1+ xa(x)c(x2). (8.23)

This functional equation is an algebraic expression for implementing an achiral structure
generator (Fig. 8.4) on the basis of Fujita’s proligand method, where the left-hand side
(k = n + 1) is evaluated from the right-hand side (k ≤ n) recursively. The first term 1 is
added to evaluate a hydrogen atom and the multiplication of x corresponds to a central
carbon newly-formed. This equation has been once noted by Fujita [19].

The process of obtaining Eq. 8.17 is rewritten as follows. According to Eq. 8.23, Eqs.
8.14 and 8.15 are translated into a functional equation up to carbon content 4:

a(x) = 1+ x+ x2 +2x3 +3x4 (8.24)

c(x2) = 1+ x2 + x4 +2x6 +5x8. (8.25)

Thereby, Eq. 8.17 is translated to represent the recursive process:

a(x) = 1+ xa(x)c(x2)

= 1+ x(1+ x+ x2 +2x3 +3x4)(1+ x2 + x4 +2x6 +5x8)

= 1+ x+ x2 +2x3 +3x4 +5x5 + · · · . (8.26)

Hence, we are able to adopt six terms up to the term 5x5 for the purpose of the next recursion
(k = 5 to k = 6). This adoption is illustrated in Fig. 8.4, where the increment of five 3D
structures with carbon content 5 are shown in the upper-right frame.

The achiral-structure generator shown in Fig. 8.4 is applied repeatedly according to Eq.
8.23. After infinite recursion, we can obtain a set (A∞) of alkyl ligands (or monosubstituted
alkanes) as 3D-structural isomers up to infinite carbon content, as shown in Eq. 8.21. Then
the set A∞ is characterized by a generating function:

a(x) =
∞

∑
k=0

Akxk

= 1(= A0)+ x+ x2 +2x3 +3x4 +5x5 +8x6 +14x7 +23x8 +41x9 +69x10

+122x11 +208x12 +370x13 +636x14 +1134x15

+1963x16 +3505x17 +6099x18 +10908x19 +19059x20
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Achiral 3D structures

{8-25}, {8-26}, {8-27}, {8-28},
{8-29}, {8-31}, {8-32}.

a(x) = 1+ x+ x2 +2x3 +3x4

Achiral-Structure Generator

Fujita’s Proligand Method

Achiral 3D structures

Increment (5x5):
{8-33}, {8-34}, {8-36}, {8-37},
{8-39}.

a(x) = 1+ x+ x2 +2x3 +3x4 +5x5

Diploids

{8-25,8-25}, {8-26,8-26},
{8-27,8-27}, {8-28,8-28},
{8-29,8-29}, {8-31,8-31},
{8-32,8-32},
{8-30,8-30}, {8-30,8-30}

c(x2) = 1+ x2 + x4 +2x6 +5x8

Diploid Generator

Fujita’s Proligand Method

Diploids

Increment (11x10):
{8-33,8-33}, {8-34,8-34},
{8-36,8-36}, {8-37,8-37},
{8-39,8-39},
{8-35,8-35}, {8-35,8-35},
{8-38,8-38}, {8-38,8-38},
{8-40,8-40}, {8-40,8-40}

c(x2) = 1+ x2 + x4 +2x6 +5x8 +11x10

Fig. 8.4. Achiral-structure generator and diploid generator based on Fujita’s proligand method.
Monosubstituted alkanes are generated under the action of the C 3v point group (the coset rep-
resentation C 3v(/C s)). Each constitution which is derived by degeneration of component 3D
structures involved in a pair of braces is counted just once. The number of substituted alkanes
of carbon content k as consitutional isomers appears as the coefficient of the term xk.

H +
C—C—Z

C—C—Z

+ C◦ (x1) at

a generated center
C

C
C◦

HZ

C
C

(x0) {8-26, 8-26} (x4) 8-36 (x5)

Fig. 8.5. Example of the effect of an achiral-structural generator. A central carbon (C◦) is attached
by a hydrogen and the diploid {8-26, 8-26}.

+34129x21 +59836x22 +107256x23 +188576x24 +338322x25 + · · · , (8.27)

where A0 (= 1) is an initial value for representing a hydrogen atom. A Maple programming
code for a recursive calculation up to carbon content 100 and the resulting data in tabular
form have been reported [21].

The effect of an achiral-structure generator (Fig. 8.4) is illstrated in Fig. 8.5, where
a central carbon (C◦) is attached by a hydrogen (x0) and the diploid {8-26, 8-26} (x4) to
give an achiral alkyl ligand 8-36 of carbon content 5. Thereby, it contributes by 1 to the
coefficient 5 of the term 5x5. Note that the symbol Z is a vacant bond (the symbol � in
Fig. 8.2) for an alkyl ligand or a monovalent ligand (e.g., OH and Cl) for a monosubstituted
alkane.

On the other hand, the derivation of Eq. 8.19 (k = 5) is extended into the following
functional equation:

c(x2) = 1+
x2

3
(c(x2)3 +2c(x6)). (8.28)

This functional equation is an algebraic expression for implementing a diploid generator
(Fig. 8.4), where the left-hand side (k = n+1) is evaluated from the right-hand side (k ≤ n)
recursively. The first term 1 is added to evaluate a hydrogen diploid and the multiplication
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Fig. 8.6. Pseudoasymmetric alkyl ligands or monosubstituted alkanes (8-41 and 8-42) of carbon
content 9, where an explicit effect of the diploid generator is realized.

of x2 corresponds to two central carbons newly-formed. This equation has been once noted
by Fujita [19].

The diploid generator shown in Fig. 8.4 is applied repeatedly according to Eq. 8.28.
After infinite recursion, we can obtain a set (Γ∞) of diploids for alkyl ligands (or diploids
for monosubstituted alkanes) up to infinite carbon content, as shown in Eq. 8.22. Then the
set Γ∞ is characterized by a generating function:

c(x2) =
∞

∑
k=0

γ2kx2k

= 1(= γ0)+ x2 + x4 +2x6 +5x8 +11x10

+28x12 +74x14 +199x16 +551x18 +1553x20

+4436x22 +12832x24 +37496x26 +110500x28 +328092x30

+980491x32 +2946889x34 +8901891x36 +27012286x38 +82300275x40

+251670563x42 +772160922x44 +2376294040x46 +7333282754x48

+22688455980x50 + · · · , (8.29)

where γ0 (= 1) is an initial value for representing a hydrogen diploid.
As exemplified in Fig. 8.6, pseudoasymmetric cases can be explained by the explicit

cooperation of the achiral-structure generator and the diploid generator according to Fujita’s
proligand method. Thus, two chiral butan-2-yl ligands (8-30 and 8-30 of carbon content
4) construct two diploids {8-30,8-30} and {8-30,8-30}. The two diploids are regarded as
ordered sets to be differentiated from each other. The former diploid {8-30,8-30} along with
a hydrogen atom generates 8-41 as a pseudoasymmetric alkyl ligand (or a monosubstituted
alkane) of carbon content 9. The latter diploid {8-30,8-30} generates 8-42 in a parallel way.
The products 8-41 and 8-42 are achiral because each of them coincides with itself under
reflection. It should be emphasized that the concept of diploids is essential to characterize
achiral ligands or achiral molecules without exceptions. This treatment is in sharp contrast to
the conventional stereochemistry, which has treated such pseudoasymmetric cases as more
or less exceptional cases.
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Exercise 8.1.
– Confirm that the coefficient of the term x5 is calculated to be x×{1 · x4 + x2 · x2 +3x4 ·

1}= 5x5 by using the data appearing in the middele of Eq. 8.26.
– Calculate the coefficient of x6 recursively by starting from the data up to carbon content

5 (cf. Fig. 8.4).
– Compare the results with the data listed in Fig. 8.9.

Steric-Isomer Generator
In a similar way to Eqs. 8.21 and 8.22, let us consider the following generating functions
with infinite terms

b(x) =
∞

∑
k=0

βkxk, (8.30)

where β0 (= 1) is an initial value for representing a hydrogen atom. This infinite polynomial
is an extension of Eq. 8.20.

The derivation of Eq. 8.20 (k = 5) from Eq. 8.16 (k = 1–4) is extended into the following
functional equation:

b(x) = 1+
x
3
(b(x)3 +2b(x3)), (8.31)

where the left-hand side (k = n+1) is evaluated from the right-hand side (k≤ n) recursively.
The first term 1 is added to evaluate a hydrogen atom and the multiplication of x corresponds
to a central carbon newly-formed. This equation has been once noted by Fujita [19].

The functional equation represented by Eq. 8.31 is an algebraic expression for imple-
menting a steric-isomer generator (Fig. 8.7) on the basis of Fujita’s proligand method, It
should be noted that alkyl ligands or monosubstituted alkanes are generated under the ac-
tion of the coset representation of the C3 point group (Fujita), while they are generated
under the alternating group of degree 3 (A[3]) (Pólya), as discussed later.

Steric isomers

{8-25}, {8-26}, {8-27}, {8-28},
{8-29}, {8-31}, {8-32},
{8-30}, {8-30}

s(x) = 1+ x+ x2 +2x3 +5x4 (Pólya)
b(x) = 1+ x+ x2 +2x3 +5x4 (Fujita)

Steric-isomer generator
Pólya’s Theorem

Fujita’s Proligand Method

Steric isomers

Increment (11x5):
{8-33}, {8-34}, {8-36}, {8-37},
{8-39},
{8-35}, {8-35}, {8-38}, {8-38},
{8-40}, {8-40}

s(x) = 1+ x+ x2 +2x3 +5x4 +11x5 (Pólya)
b(x) = 1+ x+ x2 +2x3 +5x4 +11x5 (Fujita)

Fig. 8.7. Steric-isomer generator based on Pólya’s theorem as well as on Fujita’s proligand
method. Alkyl ligands or monosubstituted alkanes are generated under the action of the alternat-
ing group of degree 3 (A[3]) (Pólya) or under the action of the coset representation of the C3 point
group (Fujita). Each steric entity (3D structure) involved in a pair of braces is counted once. The
number of substituted alkanes of carbon content k as steric isomers appears as the coefficient of
the term xk.
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The steric-isomer generator shown in Fig. 8.7 is applied repeatedly according to Eq.
8.31. After infinite recursion, we can obtain a set (S∞) of alkyl ligands (monosubstituted
alkanes) as steric isomers up to infinite carbon content, as shown in Eq. 8.30. Then the set
S∞ is characterized by a generating function:

b(x) =
∞

∑
k=0

βkxk

= 1(= β0)+ x+ x2 +2x3 +5x4 +11x5

+28x6 +74x7 +199x8 +551x9 +1553x10

+4436x11 +12832x12 +37496x13 +110500x14 +328092x15

+980491x16 +2946889x17 +8901891x18 +27012286x19 +82300275x20

+251670563x21 +772160922x22 +2376294040x23 +7333282754x24

+22688455980x25 + · · · , (8.32)

where β0 (= 1) is an initial value for representing a hydrogen atom. By comparing Eq. 8.32
with Eq. 8.29, we obtain βk = γ2k, although these coefficients are conceptually different.

8.2.4 Achiral Alkyl Ligands and Pairs of Enantiomeric Alkyl Ligands

Let C(x) and B(x) denote generating functions for giving the number of enantiomeric pairs
of chiral alkyl ligands (or monosubstituted alkanes) and the total number of 3D-structural
isomers (a(x)+C(x) = B(x)):

C(x) =
∞

∑
k=0

Ckxk (8.33)

B(x) =
∞

∑
k=0

Bkxk, (8.34)

where C0 (= 0) or B0 (= 1) is an initial value. Because b(x) = a(x) + 2C(x) and B(x) =
a(x)+C(x), we obtain the following equations [19]:

C(x) =
1
2
(b(x)−a(x)) (8.35)

B(x) =
1
2
(b(x)+a(x)). (8.36)

Because a(x) and b(x) are obtained recursively (Eqs. 8.27 and 8.32), the generating func-
tions (Eqs. 8.33 and 8.34) are obtained by means of Eqs. 8.35 and 8.36. The calculated
coefficients of the generating functions, i.e., Ak in Eq. 8.21 (or Eq. 8.27), Ck in Eq. 8.33, and
Bk in Eq. 8.34, are collected in Table 8.2 up to carbon content 50. A Maple program code
for a recursive calculation up to carbon content 100 and the resulting data in tabular form
have been reported [21].
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Table 8.2. Numbers of Alkyl Ligands or Monosubstituted Alkanes as 3D-Structural Isomers [21]

k Ak (Achiral) Ck (Enantiomeric Pairs) Bk (Total Ak +Ck)

1 1 0 1
2 1 0 1
3 2 0 2
4 3 1 4
5 5 3 8
6 8 10 18
7 14 30 44
8 23 88 111
9 41 255 296

10 69 742 811
11 122 2157 2279
12 208 6312 6520
13 370 18563 18933
14 636 54932 55568
15 1134 163479 164613
16 1963 489264 491227
17 3505 1471692 1475197
18 6099 4447896 4453995
19 10908 13500689 13511597
20 19059 41140608 41159667
21 34129 125818217 125852346
22 59836 386050543 386110379
23 107256 1188093392 1188200648
24 188576 3666547089 3666735665
25 338322 11344058829 11344397151
26 596252 35180323336 35180919588
27 1070534 109339097119 109340167653
28 1890548 340508394528 340510285076
29 3396570 1062419370490 1062422767060
30 6008908 3320666310903 3320672319811
31 10801816 10395996250010 10396007051826
32 19139155 32596713516873 32596732656028
33 34422537 102354659356690 102354693779227
34 61074583 321832884381903 321832945456486
35 109894294 1013230630964436 1013230740858730
36 195217253 3193818534035050 3193818729252303
37 351404205 10078773177202180 10078773528606385
38 624913284 31840095204449021 31840095829362305
39 1125291874 100689937510048385 100689938635340259
40 2003090071 318728146981844679 318728148984934750
41 3608175239 1009849492883144730 1009849496491319969
42 6428430129 3202399570304430261 3202399576732860390
43 11582995444 10163870352469178059 10163870364052173503
44 20653101216 32284255140318002679 32284255160971103895
45 37223637886 102625414714074250195 102625414751297888081
46 66420162952 326465312628541253282 326465312694961416234
47 119740546576 1039258352830707100287 1039258352950447646863
48 213802390264 3310561173602401804486 3310561173816204194750
49 385525375648 10552597199971538944446 10552597200357064320094
50 688796847976 33657783567745352117595 33657783568434148965571

8.3 Enumeration of Alkyl Ligands as Planted Trees

8.3.1 Alkyl Ligands or Monosubstituted Alkanes as Graphs

Suppose that the C3v-skeleton 8-1 degenerates to give a graph 8-1g, which is governed by
the symmetric group of degree 3 (S[3]). By placing rd = ad = cd = bd , the CI-CF shown in
Eq. 8.3 is converted into the following CI (without chirality fittingness):

CI8-1g(S
[3],rd) =

1
6
(r3

1 +2r3 +3r1r2). (8.37)
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Constitutional isomers (Graphs)

{8-25}, {8-26}, {8-27}, {8-28},
{8-29}, {8-31}, {8-32},
{8-30,8-30}

r(x) = 1+ x+ x2 +2x3 +4x4

Graph generator

Pólya’s Theorem

Constitutional isomers (Graphs)

Increment (8x5):
{8-33}, {8-34}, {8-36}, {8-37},
{8-39},
{8-35,8-35}, {8-38,8-38},
{8-40,8-40}

r(x) = 1+ x+ x2 +2x3 +4x4 +8x5

Fig. 8.8. Graph generator based on Pólya’s theorem. Alkyl ligands or monosubstituted alkanes
are generated under the action of the symmetric group of degree 3 (S[3]). Each constitution which
is derived by degeneration of component 3D structures involved in a pair of braces is counted just
once. The number of alkyl ligands (or substituted alkanes) of carbon content k as constitutional
isomers appears as the coefficient of the term xk.

Let consider a set (R∞) of alkyl ligands (or monosubstituted alkanes) as graphs up to infinite
carbon content. Suppose that the number Rk of such alkyl ligands (or monosubstituted alka-
nes) of carbon content k appears as the coefficient of the term xk in the following generating
function:

r(x) =
∞

∑
k=0

Rkxk, (8.38)

where R0 (= 1) is an initial value for representing a hydrogen atom. To evaluate Eq. 8.38 on
the basis of Eq. 8.37, we consider the following functional equation:

r(x) = 1+
x
6
(r(x)3 +2r(x3)+3r(x)r(x2)), (8.39)

where the left-hand side (k = n+1) is evaluated from the right-hand side (k≤ n) recursively.
The first term 1 is added to evaluate a hydrogen atom and the multiplication of x corresponds
to a central carbon newly-formed. This equation has been noted by Pólya [8,9].

The process of recursive calculations based on Eq. 8.39 is illustrated by the graph gen-
erator shown in Fig. 8.8, where the graphs of carbon contents k = 5 are derived from the
graphs of lower contents k = 1–4 (corresponding to the 3D structures listed in Fig. 8.3). The
recursive calculations provide the following results:

r(x) =
∞

∑
k=0

Rkxk

= 1(= R0)+ x+ x2 +2x3 +4x4 +8x5 +17x6 +39x7 +89x8 +211x9 +507x10

+1238x11 +3057x12 +7639x13 +19241x14 +48865x15

+124906x16 +321198x17 +830219x18 +2156010x19 +5622109x20

+14715813x21 +38649152x22 +101821927x23 +269010485x24

+712566567x25 + · · · , (8.40)

where R0 (= 1) is an initial value for representing a hydrogen atom.
If the graph 8-1g is governed by the alternating group of degree 3 (A[3]), the CI-CF

represented by Eq. 8.8 degenerates, so as to give a CI without chirality fittingness by placing
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sd = bd :

CI8-1g(A
[3],sd) =

1
3
(s3

1 +2s3). (8.41)

Note that A[3] is isomorphic to the point group C3. Let consider a set (S∞) of alkyl ligands
(or monosubstituted alkanes) as steric isomers up to infinite carbon content. Suppose that the
number Sk of such alkyl ligands (or monosubstituted alkanes) of carbon content k appears
as the coefficient of the term xk in the following generating function:

s(x) =
∞

∑
k=0

Skxk, (8.42)

where S0 (= 1) is an initial value for representing a hydrogen atom. To evaluate Eq. 8.42 on
the basis of Eq. 8.41, we consider the following functional equation:

s(x) = 1+
x
3
(s(x)3 +2s(x3)), (8.43)

where the left-hand side (k = n+1) is evaluated from the right-hand side (k≤ n) recursively.
The first term 1 is added to evaluate a hydrogen atom and the multiplication of x corresponds
to a central carbon newly-formed. This equation has been noted by Pólya [8,9].

By comparing Eq. 8.43 with Eq. 8.31, we find that the same steric-isomer generator as
shown in Fig. 8.7 can be used. Thereby, we are able to obtain Sk = βk, which have been
listed in Eq. 8.32. The data of Sk(= βk) for steric isomers based on A[3] have been reported
in a tabular form up to carbon content 100 [21].

8.3.2 3D Structures vs. Graphs for Characterizing Alkyl Ligands or
Monosubstituted Alkanes

It is worthwhile to compare the results of the above-mentioned enumerations by depicting
alkyl ligands (or monosubstituted alkanes) of carbon content 6 (Fig. 8.9).

The term 28x6 in the generating function b(x) (Eq. 8.32) indicates the presence of 28
alkyl ligands (or monosubstituted alkanes) as steric isomers, which are inequivalent under
the recursive action of the point group C3 (Fujita’s proligand method, β6 = 28) or under the
recursive action of the alternating group of degree 3 A[3] (Pólya’s theorem, S6 = 28). These
28 alkyl ligands (or monosubstituted alkanes) are depicted in Fig. 8.9.

The term 17x6 in the generating function r(x) (Eq. 8.40) indicates the presence of 17
alkyl ligands (or monosubstituted alkanes) as graphs (constitutional isomers), which are
inequivalent under the recursive action of the symmetric group of degree 3 S[3] (Pólya’s
theorem, R6 = 17). These 17 alkyl ligands (or monosubstituted alkanes) as constitutional
isomers are surrounded by a dashed frame in Fig. 8.9, where each set of stereoisomers
surrounded by a dashed box (e.g., 8-59, 8-59, 8-60, and 8-60) is counted once.

The term 8x6 in the generating function a(x) (Eq. 8.27) or the value 8 at the intersection
between the (k = 6)-row and the Ak-column in Table 8.2 indicates the presence of 8 achiral
alkyl ligands (or monosubstituted alkanes) as 3D-structural isomers (8-43–8-50), which are
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Fig. 8.9. Alkyl ligands or monosubstituted alkanes of carbon content 6 [1]. Each of 17 consti-
tutional isomers is surrounded by a broken-lined box; each of 18 3D-structural isomers (each
achiral molecule or each pair of enantiomeric molecules) is surrounded by a straight-lined box;
and each molecule represents a steric entity of 28 steric isomers. The symbol Z denotes an atom
(e.g., Cl) or an achiral ligand (e.g., OH) which is regarded as a monovalent substituent. Hydrogen
atoms are omitted for the sake of simplicity. Each asymmetric center is denoted by an asterisk.
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inequivalent under the recursive action of the point group C3v (Fujita’s proligand method,
A6 = 8). The 8 achiral alkyl ligands (or monosubstituted alkanes) are depicted in the top
part of in Fig. 8.9, where each alkyl ligand is surrounded by a frame box and a dashed box
to show its achirality.

The term 10x6 in the generating function C(x) (Eq. 8.33 or Eq. 8.35) or the value 10
at the intersection between the (k = 6)-row and the Ck-column in Table 8.2 indicates the
presence of 10 pairs of enantiomeric alkyl ligands (or monosubstituted alkanes) as 3D-
structural isomers, which are inequivalent under the recursive action of the point group C3v

(Fujita’s proligand method, C6 = 10). Each of the 10 pairs is surrounded by a solid frame,
as shown in the middle and bottom parts of Fig. 8.9.

The fate of asymmetry and pseudoasymmetry in the enumeration of monosubstituted
alkanes has been discussed in detail [23,31]. Thereby, the 10 enantiomeric pairs are further
divided into eight pairs with x6y and two pairs with x6y2, where the symbol y is a dummy
variable to count asymmetric carbon centers, as shown in the middle and bottom parts of
Fig. 8.9 [31].

The term 18x6 in the generating function B(x) (Eq. 8.34 or Eq. 8.36) or the value 18
at the intersection between the (k = 6)-row and the Bk-column in Table 8.2 indicates the
presence of 18 pairs of alkyl ligands (or monosubstituted alkanes) as 3D-structural isomers,
which are inequivalent under the recursive action of the point group C3v (Fujita’s proligand
method, B6 = 18). Note that one achiral entity or one pair of enantiomeric entities is counted
once in the value B6. We are able to confirm the relationship B6 = A6 +C6 or generally
Bk = Ak +Ck.

The value R6 = 17 for graphs (Pólya’s theorem) corresponds to the value B6 = 18 for
3D-structural isomers (Fujita’s proligand method), where their difference is clearly demon-
strated by the modes of counting, which are illustrated by solid frames and dashed frames
in Fig. 8.9.

8.4 Enumeration of Alkanes (3D-Trees) as 3D-Structural
Isomers

8.4.1 Alkanes as Centroidal and Bicentroidal 3D-Trees

The concept of centroidal and bicentroidal trees has been established by Jordan [32], as
summarized in Biggs-Lloyd-Wilson’s book [7, 3B for Jordan’s paper] and Harary’s book
[33, Theorem 4.3].

Suppose that a tree is given as a non-cyclic graph which has n vertices and e edges
satisfying the relationship n = e+1. Let m be the number of vertices contained in the largest
branch among the branches attaching to the vertex. According to Jordan [32], trees are
classified into two categories, i.e., trees having a centroid and trees having a bicentroid.
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Fig. 8.10. Alkanes and their skeletons as centroidal and bicentroidal 3D-trees, which are enu-
merated as steric isomers or 3D-structural isomers. The symbol © denotes a centroid, while the
symbol ©—© denotes a bicentroid. The factor group K is represented by K = D∞h/C∞, which has
a subgroup represented by K′ = D∞h/C∞v.

Definition 8.1 (Centroidal and Bicentroidal Trees). There emerge two cases:
1. A given tree has an exceptional vertex (M) called a centroid, which satisfies the relationship

m < 1
2 n. The tree is called a centroidal tree.

2. A given tree has two adjacent vertices (M1 and M2), each of which satisfies the relationship m =
1
2 n. The exceptional graph (M1—M2) composed of the two adjacent vertices and the relevant
edge is called a bicentroid. The tree is called a bicentroidal tree.

All of the vertices other than the centroid or the bicentroid in a tree satisfy the relationship
m > 1

2 n. There are no cases in which a given tree has both a centroid and a bicentroid [32].
This concept should be extended to meet 3D-trees for the purpose of enumerating alka-

nes as 3D structures. Obviously, these properties of trees (Def. 8.1) maintain in 3D-trees,
because 3D-trees are regarded as a kind of trees. Thereby, alkanes are categorized into cen-
troidal 3D-trees and bicentroidal 3D-trees [20], as depicted in Fig. 8.10.

The difference between centroidal and bicentroidal 3D-trees can be grasped by a glance
at a bicentroidal 3D-tree. That is to say, the two terminal nodes of a bicentroid carry residues
of equal carbon contents which are halves of the carbon content of the tree or 3D-tree. For
example, the two terminal nodes of a bicentroid (©—© attached by M1 and M2) in the
3D-tree 8-62 carry residues of carbon content 4, i.e., isobutyl and tert-butyl. Otherwise,
a 3D-tree is determined to be centroidal, as exemplified by 8-61, where the centroid (©
attached by M) accommodates four ligands, i.e., methyl, ethyl, isopropyl, and tert-butyl
ligands.
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8.4.2 Enumeration of Centroidal Alkanes (3D-Trees) as 3D-Structural
Isomers

To enumerate centroidal alkanes as 3D-structural isomers, the centroidal 3D-skeleton 8-63
shown in Fig. 8.10 is used as a starting skeleton, where the four positions belong to an
Td(/C3v)-orbit.

Let ̂Ak be the number of achiral centroidal 3D-trees (promolecules or alkanes) of carbon
content k. Let ̂Ck be the number of chiral centroidal 3D-trees (promolecules or alkanes) of
carbon content k, where a pair of enantiomeric 3D-trees is counted just once. Let ̂Bk be
the number of achiral and chiral centroidal 3D-trees (promolecules or alkanes) of carbon
content k, where a pair of enantiomeric 3D-trees is counted just once. In agreement with
the definition of centroidal 3D-trees (Def. 8.1), the terms up to xv are collected to give the
following generating functions:

̂A(x) =
v

∑
k=0

̂Akxk (8.44)

̂C(x) =
v

∑
k=0

̂Ckxk, (8.45)

̂B(x) =
v

∑
k=0

̂Bkxk (8.46)

where v runs stepwise from 0 to infinite. Note that CI-CF(a)(Td ;$d) (Eq. 7.54 on page
190) corresponds to Eq. 8.44, CI-CF(e)(Td ;$d) (Eq. 7.55 on page 190) to Eq. 8.45, and
CI-CF(Td ;$d) (Eq. 7.29 on page 183) to Eq. 8.46. Hence, Eqs. 7.54, 7.55, and 7.29 are
transformed into the following functional equations [27,20]:

̂A(x) =
x
2
(a(x)2c(x2)+ c(x4)) (8.47)

̂C(x) =
x

24
(b(x)4 +3b(x2)2 +8b(x)b(x3)−6a(x)2c(x2)−6c(x4)) (8.48)

̂B(x) =
x

24
(b(x)4 +3b(x2)2 +8b(x)b(x3)+6a(x)2c(x2)+6c(x4)) (8.49)

according to Fujita’s proligand method [16–18]. Note that the multiplication by x is neces-
sary to evaluate the effect of a central carbon atom of the centroidal 3D-skeleton 8-63.6

Because the functional equations under the criterion for centroidal 3D-trees, i.e., a(x)
(Eq. 8.27), c(x2) (Eq. 8.29), and b(x) (Eq. 8.32), have been evaluated recursively, they are
introduced into Eqs. 8.47–8.49 to evaluate ̂A(x) (Eq. 8.44), ̂C(x) (Eq. 8.45), and ̂B(x) (Eq.
8.46).

Suppose that a(x) (Eq. 8.27), c(x2) (Eq. 8.29), and b(x) (Eq. 8.32) have been evaluated
up to the term xm, i.e., a(x)(m) = ∑m

k=0 Akxk, c(x2)(m) = ∑m
k=0 γ2kx2k, and b(x)(m) = ∑m

k=0 βkxk.

6 As found in Eqs. 8.47–8.49 shown above, Eqs. 27–29 of [1] should be corrected by multiplying x to
evaluate the effect of a central carbon atom.
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This means that one of the branch in the resulting centroidal alkane has the maximum num-
ber (m) of carbon content. They are introduced into Eq. 8.47, Eq. 8.48, or Eq. 8.49. Let
the symbol ̂A(x)(m), ̂C(x)(m), and ̂B(x)(m) denote the generating functions generated from
Eq. 8.47, Eq. 8.48, and Eq. 8.49, respectively. Our task is to select the effective terms for
the criterion for centroidal 3D-trees (Def. 8.1) from the terms contained in the generating
functions ̂A(x)(m), ̂C(x)(m), ̂B(x)(m).

According to the criterion for centroidal 3D-trees (Def. 8.1), the power v of the term xv

appearing in the generating function ̂A(x)(m), ̂C(x)(m), or ̂B(x)(m) should satisfy the follow-
ing condition:

1
2

v−1≤ m <
1
2

v (8.50)

or equivalently
2m < v≤ 2m+2. (8.51)

Hence, centroidal alkanes of carbon contents 2m + 1 and 2m + 2 are permitted, so that the
terms x2m+1 and x2m+2 are adopted as the next members of ̂A(x) (Eq. 8.44), ̂C(x) (Eq. 8.45),
or ̂B(x) (Eq. 8.46).

Let the symbol coeff(̂A(x)(m),x2m+1) etc. represent the coefficient of the term x2m+1

appearing in the equation ̂A(x)(m) etc. after expansion. Then, we obtain the following coef-
ficients:

̂A2m+1 = coeff(̂A(x)(m),x2m+1) (8.52)
̂C2m+1 = coeff(̂C(x)(m),x2m+1) (8.53)
̂B2m+1 = coeff(̂B(x)(m),x2m+1) (8.54)

for odd carbon contents as well as the following coefficients:

̂A2m+2 = coeff(̂A(x)(m),x2m+2) (8.55)
̂C2m+2 = coeff(̂C(x)(m),x2m+2) (8.56)
̂B2m+2 = coeff(̂B(x)(m),x2m+2) (8.57)

for even carbon contents. A Maple programming code for these calculations has been re-
ported in addition to the resulting data up to carbon content 100 [27]. The resulting data up
to carbon content 50 are cited in Table 8.3.

For example, the case of m = 4 for Eq. 8.47 can be calculated by the following Maple
programming code:

restart;

Ax := (1/2)*x*(ax^2*cx2 + cx4);

ax := 1 + x + x^2 + 2*x^3 + 3*x^4;

cx2 := 1 + x^2 + x^4 + 2*x^6 + 5*x^8;

cx4 := 1 + x^4 + x^8 + 2*x^12 + 5*x^16;
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Table 8.3. Numbers of Centroidal Alkanes (3D-Trees) as 3D-Structural Isomers [27]

k ̂Ak (Achiral) ̂Ck (Enantiomeric Pairs) ̂Bk (Total)

1 1 0 1
2 0 0 0
3 1 0 1
4 1 0 1
5 3 0 3
6 2 0 2
7 7 2 9
8 7 1 8
9 21 17 38

10 22 24 46
11 61 142 203
12 72 211 283
13 186 1113 1299
14 220 1784 2004
15 567 8780 9347
16 717 15041 15758
17 1755 70750 72505
18 2209 127072 129281
19 5454 584158 589612
20 7149 1091507 1098656
21 17070 4937616 4954686
22 22476 9554169 9576645
23 53628 42617881 42671509
24 72656 84925546 84998202
25 169175 374580272 374749447
26 229676 765735799 765965475
27 535267 3344179169 3344714436
28 743026 6991686639 6992429665
29 1698322 30262422579 30264120901
30 2361476 64535740751 64538102227
31 5400908 277091404722 277096805630
32 7642893 601434086766 601441729659
33 17211368 2563401079994 2563418291362
34 24394779 5652876029848 5652900424627
35 54947147 23930997120150 23931052067297
36 79009726 53534824577018 53534903586744
37 175702378 225225850040744 225226025743122
38 252964410 510446275671249 510446528635659
39 562645937 2135108676616236 2135109239262173
40 819922295 4896888847857945 4896889667780240
41 1804088396 20372874776166747 20372876580255143
42 2631820744 47238611431657314 47238614063478058
43 5791497722 195544787602887105 195544793394384827
44 8536377160 457999551947828613 457999560484205773
45 18611821161 1886989260491307050 1886989279103128211
46 27458156708 4461040369492811082 4461040396950967790
47 59870273288 18298681682556106941 18298681742426380229
48 89120741244 43636081455029159803 43636081544149901047
49 192762694240 178246302421277075465 178246302614039769705
50 287167536146 428497964886295432421 428497965173462968567

f_Ax := sort(expand(Ax), [x], ascending);

m21 := coeff(f_Ax, x^9);

m22 := coeff(f_Ax, x^10);

where the data of a(x) shown by Eq. 8.24 and c(x2) (and c(x4)) shown by Eq. 8.25 are used.
The result of f_Ax indicates the following generating function:

̂A(x)(4) = x+ x2 +2x3 +4x4 +8x5 +9x6 +13x7 +16x8 +21x9 +22x10

+28x11 +31x12 +43x13 +37x14 +34x15 +30x16 +25x17, (8.58)
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where only the terms 21x9 (for v = 2m+1 = 9) and 22x10 (for v = 2m+2 = 10) are effective
among the terms appearing in the right-hand side. As a result, the outputs of m21 and m22
indicate the following values according to Eq. 8.52 and Eq. 8.55:

̂A9 = coeff(̂A(x)(4),x9) = 21 (8.59)
̂A10 = coeff(̂A(x)(4),x10) = 22 (8.60)

The values of ̂C9 = 17 and ̂C10 = 18 (via Eq. 8.48) as well as those of ̂B9 = 24 and ̂B10 = 46
(via Eq. 8.49) are obtained in a similar way. These values are collected in the (k = 9)- and
(k = 10)-rows of Table 8.3.

Exercise 8.2.
– Calculate the values ̂A7 and ̂A8 manually by introducing a(x) = 1 + x + x2 + 2x3 and

c(x2) = 1+ x2 + x4 +2x6 into Eq. 8.47.
– If a Maple system (or another system for algebraic calculations) is available, write a

code for the calculation of this case.

Seven achiral centroidal alkanes of carbon content 8 (̂A8 = 7) and one enantiomeric
pair of chiral centroidal alkanes of carbon content 8 (̂C8 = 1) are shown in Fig. 8.11, where
each centroid is represented by the symbol M.

The centroidal alkanes shown in Fig. 8.11 have the maximum number of carbon content
m = 3 (for those other than 8-71) or m = 2 (for 8-71), which satisfies m < 1

2 n because of
n = 8 (cf. Def. 8.1).

8.4.3 Enumeration of Bicentroidal Alkanes (3D-Trees) as 3D-Structural
Isomers

The dumbbell skeleton 8-64 (Fig. 8.10) as a bicentroidal 3D-skeleton has been characterized
by the coset representation of K(/K′), where the factor group K is represented by K =
D∞h/C∞ and its subgroup is represented by K′ = D∞h/C∞v [27]. Although the factor group
K is suitable to treat the infinite character of the group D∞h, a more intuitive treatment is
adopted here for the simplicity’s sake.

The two positions of 8-64 is alternatively characterized by the coset representation
D∞h(/C∞v) (cf. 4-26 in Fig. 4.13 on page 109). The coset decomposition of D∞h by C∞v is
represented as follows:

D∞h = C∞v + C∞vC2 product of
1 2 cycles PSI

g ∈ C∞ 1 2 (1)(2) b2
1

g ∈ C∞C2 2 1 (1 2) b2

g ∈ C∞h−C∞ 2 1 (1 2) c2

g ∈ C∞v−C∞ 1 2 (1)(2) a2
1

(8.61)
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Fig. 8.11. Seven achiral centroidal alkanes of carbon content 8 and one enantiomeric pair of chi-
ral centroidal alkanes of carbon content 8, where each carbon attached by the symbol M is a
centroid.

Although the treatment of infinite number (∞) is not strict, the following expression is per-
mitted:

D∞h(/C∞v) =
{

(1)(2), . . .
︸ ︷︷ ︸

C∞

, (1 2), . . .
︸ ︷︷ ︸

C∞C2

, (1 2), . . .
︸ ︷︷ ︸

C∞h−C∞

, (1)(2), . . .
︸ ︷︷ ︸

C∞v−C∞

}

, (8.62)

where each permutation (each product of cycles) of the coset representation D∞h(/C∞v) cor-
responds to a product of sphericity cycles (PSI). Thereby, the following CI-CFs are obtained
according to Def. 7.5 (page 181) and Def. 7.7 (page 188):

CI-CF(D∞h,$d) =
1
4
(b2

1 +b2 +a2
1 + c2) (8.63)

CI-CF(a)(D∞h,$d) =
1
2
(a2

1 + c2) (8.64)

CI-CF(e)(D∞h,$d) =
1
4
(b2

1 +b2−a2
1− c2). (8.65)

Let ˜Bk be the number of achiral bicentroidal promolecules (alkanes) plus enantiomeric
pairs of chiral bicentroidal promolecules (alkanes) of carbon content k; let ˜Ak be the num-
ber of achiral bicentroidal promolecules (alkanes) of carbon content k; and let ˜Ck be the
number of chiral bicentroidal promolecules (alkanes) of carbon content k, where each pair
of enantiomers is counted just once. Then, they appear as the coefficients of the following
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generating functions:

˜A(x) =
v

∑
k=0

˜Akxk (8.66)

˜C(x) =
v

∑
k=0

˜Ckxk (8.67)

˜B(x) =
v

∑
k=0

˜Bkxk, (8.68)

each of which contains the terms up to v, where the v runs stepwise from 0 to infinite.
To evaluate the generating functions represented by Eqs. 8.66–8.68, we derive func-

tional equations by substituting a(xd), c(xd), and b(xd) for the SIs (ad , cd , and bd) appear-
ing in the CI-CFs (Eqs. 8.64, 8.65, and 8.63). Thereby, we obtain the following functional
equations:

˜A(x) =
1
2
(

a(x)2 + c(x2)
)

(8.69)

˜C(x) =
1
4
(

b(x)2 +b(x2)−a(x)2− c(x2)
)

(8.70)

˜B(x) =
1
4
(

b(x)2 +b(x2)+a(x)2 + c(x2)
)

. (8.71)

The generating functions a(x) (Eq. 8.27), c(x2) (Eq. 8.29), and b(x) (Eq. 8.32), which
have been evaluated up to the term xm, are introduced into Eq. 8.69, Eq. 8.70, or Eq.
8.71. The resulting generating functions are denoted by the symbols ˜A(x)(m), ˜C(x)(m), and
˜B(x)(m). According to the criterion for bicentroidal 3D-trees (Def. 8.1), the power v of the
term xv appearing in the generating function ˜A(x)(m), ˜C(x)(m), or ˜B(x)(m) should satisfy the
following condition:

m =
1
2

v (8.72)

or
2m = v. (8.73)

Let the symbol coeff(˜A(x)(m),x2m) etc. represent the coefficient of the term x2m appearing
in the equation ˜A(x)(m) etc. after expansion. Then, we obtain the following coefficients:

˜A2m = coeff(˜A(x)(m),x2m) (8.74)
˜C2m = coeff(˜C(x)(m),x2m) (8.75)
˜B2m = coeff(˜B(x)(m),x2m). (8.76)

A Maple programming code for these calculations has been reported in addition to the
resulting data up to carbon content 100 [27]. The resulting data up to carbon content 50 are
cited in Table 8.4.

For example, the case of m = 4 for Eq. 8.69 can be calculated by the following Maple
programming code:
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Table 8.4. Numbers of Bicentroidal Alkanes (3D-Trees) as 3D-Structural Isomers [27]

k ˜Ak (Achiral) ˜Ck (Enantiomeric Pairs) ˜Bk (Total)

2 1 0 1
4 1 0 1
6 3 0 3
8 7 4 11

10 18 24 42
12 46 180 226
14 135 1320 1455
16 364 9768 10132
18 1116 75480 76596
20 3157 601762 604919
22 9660 4915803 4925463
24 28048 41154240 41182288
26 87198 351453279 351540477
28 257498 3052461376 3052718874
30 807024 26910768627 26911575651
32 2416930 240339686928 240342103858
34 7615957 2171035623324 2171043239281
36 23049846 19810906544520 19810929594366
38 72998375 182415868990333 182415941988708
40 222772878 1693333725457536 1693333948230414
42 708229602 15834517778987082 15834518487216684
44 2176253909 149058121470885797 149058123647139706
46 6940071788 1411693338258918016 1411693345198989804
48 21447095265 13444258978638229185 13444259000085324450
50 68575115832 128691508660483996179 128691508729059112011

restart;

AAx := (1/2)*(ax^2 + cx2);

ax := 1 + x + x^2 + 2*x^3 + 3*x^4;

cx2 := 1 + x^2 + x^4 + 2*x^6 + 5*x^8;

f_AAx := sort(expand(AAx), [x], ascending);

m2 := coeff(f_AAx, x^8);

where the data of a(x) shown by Eq. 8.24 and c(x2) shown by Eq. 8.25 are introduced. The
result of f_AAx indicates the following generating function:

˜A(x)(4) = 1+ x+2x2 +3x3 +6x4 +5x5 +6x6 +6x7 +7x8, (8.77)

where only the term 7x8 (for v = 2m = 8) is effective among the terms appearing in the
right-hand side. As a result, the output of m2 indicates the following value according to Eq.
8.74:

˜A8 = coeff(˜A(x)(4),x8) = 7. (8.78)

The value of ˜C8 = 4 (via Eq. 8.70) and the value of ˜B8 = 11 (via Eq. 8.71) are obtained in a
similar way. These values are collected in the (k = 8)-row of Table 8.4
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Fig. 8.12. Seven achiral bicentroidal alkanes of carbon content 8 and four enantiomeric pairs
of chiral bicentroidal alkanes of carbon content 8, where each pair of carbons attached by the
symbol M1 and M2 is a bicentroid.

Exercise 8.3.
– Calculate the value ˜A6 manually by introducing a(x) = 1 + x + x2 + 2x3 and c(x2) =

1+ x2 + x4 +2x6 into Eq. 8.69.
– If a Maple system (or another system for algebraic calculations) is available, write a

code for the calculation of this case.

Seven achiral bicentroidal alkanes of carbon content 8 (˜A8 = 7) and four enantiomeric
pairs of chiral bicentroidal alkanes of carbon content 8 (˜C8 = 4) are shown in Fig. 8.12,
where each bicentroid is represented by the symbol M1—M2.

The bicentroidal alkanes shown in Fig. 8.12 have the maximum number of carbon con-
tent m = 4, which satisfies m = 1

2 n because of n = 8 (cf. Def. 8.1). Chemically speaking,
the bond scission at the centroidal bond M1—M2 leaves two fragments of the same carbon
content 1

2 n, as exemplified by each alkane collected in Fig. 8.12.
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Exercise 8.4.
– Discuss the meso character of 8-79 in comparison with meso-tartaric acid 4-28 in Fig.

4.13 (page 109).
– Compare a set of 8-79, 8-83, and 8-83 with a set of stereoisomeric tartaric acids.

8.4.4 Total Enumeration of Alkanes as 3D-Trees

We have evaluated the values of ̂Ak, ̂Ck, and ̂Bk for centroidal 3D-trees (Eqs. 8.44–8.46)
as well as those of ˜Bk, ˜Ak, and ˜Ck for bicentroidal 3D-trees (Eqs. 8.66–8.68). Hence, total
values can be calculated by summing up the respective data.

Let B(T)
k be the total number of achiral 3D-trees plus enantiomeric pairs of chiral 3D-

trees of carbon content k; let A(T)
k be the total number of achiral 3D-trees of carbon content

k; and let C(T)
k be the total number of chiral 3D-trees of carbon content k, where each pair

of enantiomers is counted just once. Then, they appear as the coefficients of the following
generating functions:

B(x)(T) =
∞

∑
k=0

B(T)
k xk (8.79)

A(x)(T) =
∞

∑
k=0

A(T)
k xk (8.80)

C(x)(T) =
∞

∑
k=0

C(T)
k xk. (8.81)

By means of Eqs. 8.44–8.46 and Eqs. 8.66–8.68, we obtain the following relationships:

B(T)
k = ̂Bk + ˜Bk (8.82)

A(T)
k = ̂Ak + ˜Ak (8.83)

C(T)
k = ̂Ck + ˜Ck. (8.84)

According to Eqs. 8.82–8.84, the data of Table 8.3 and the data of Table 8.4 are summed
up to give the total numbers of alkanes as 3D-trees, which are collected in Table 8.5. Note
that ˜Bk, ˜Ak, and ˜Ck are equal to zero if k is odd.

The values in the (k = 8)-row of Table 8.5 can be confirmed by referring to Figs. 8.11
and 8.12.

Exercise 8.5.
– Depict alkanes with carbon contents k = 4–7 by referring to the data of Table 8.5.
– Categorize them into centroidal and bicentroidal alkanes by referring to the data of

Tables 8.3 and 8.4.
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Table 8.5. Total Numbers of Alkanes (3D-Trees) as 3D-Structural Isomers [27]

k A(T)
k = ̂Ak + ˜Ak C(T)

k = ̂Ck + ˜Ck B(T)
k = ̂Bk + ˜Bk

(Achiral) (Enantiomeric Pairs) (Total)

1 1 0 1
2 1 0 1
3 1 0 1
4 2 0 2
5 3 0 3
6 5 0 5
7 7 2 9
8 14 5 19
9 21 17 38

10 40 48 88
11 61 142 203
12 118 391 509
13 186 1113 1299
14 355 3104 3459
15 567 8780 9347
16 1081 24809 25890
17 1755 70750 72505
18 3325 202552 205877
19 5454 584158 589612
20 10306 1693269 1703575
21 17070 4937616 4954686
22 32136 14469972 14502108
23 53628 42617881 42671509
24 100704 126079786 126180490
25 169175 374580272 374749447
26 316874 1117189078 1117505952
27 535267 3344179169 3344714436
28 1000524 10044148015 10045148539
29 1698322 30262422579 30264120901
30 3168500 91446509378 91449677878
31 5400908 277091404722 277096805630
32 10059823 841773773694 841783833517
33 17211368 2563401079994 2563418291362
34 32010736 7823911653172 7823943663908
35 54947147 23930997120150 23931052067297
36 102059572 73345731121538 73345833181110
37 175702378 225225850040744 225226025743122
38 325962785 692862144661582 692862470624367
39 562645937 2135108676616236 2135109239262173
40 1042695173 6590222573315481 6590223616010654
41 1804088396 20372874776166747 20372876580255143
42 3340050346 63073129210644396 63073132550694742
43 5791497722 195544787602887105 195544793394384827
44 10712631069 607057673418714410 607057684131345479
45 18611821161 1886989260491307050 1886989279103128211
46 34398228496 5872733707751729098 5872733742149957594
47 59870273288 18298681682556106941 18298681742426380229
48 110567836509 57080340433667388988 57080340544235225497
49 192762694240 178246302421277075465 178246302614039769705
50 355742651978 557189473546779428600 557189473902522080578

Exercise 8.6.
– Depict 3,4,5-trimethylheptanes of carbon content 10.
– Discuss the resulting 3D structures in terms of so-called ‘pseudoasymmetry’. See 2,3,4-

trihydroxyglutaric acids (Fig 2.1 on page 37).

It should be noted that the functional equations ̂B(x), ̂A(x), and ̂C(x) (Eqs. 8.47–8.49)
for centroidal 3D-trees cannot be added to the functional equations ˜B(x), ˜A(x), and ˜C(x)
(eqs. 8.69–8.71) for bicentroidal 3D-trees. Simple summations of the two sets of functional



224 8 Enumeration of Alkanes as 3D Structures

equations give erroneous results, because the integer m runs according to Eq. 8.51 for the
former set and runs differently according to Eq. 8.73 for the latter set.

8.5 Enumeration of Alkanes (3D-Trees) as Steric Isomers

8.5.1 Centroidal Alkanes (3D-Trees) as Steric Isomers

In contrast to the enumeration of centroidal alkanes (3D-trees) as 3D-structural isomers
under the action of Td , the enumeration of centroidal alkanes (3D-trees) as steric isomers
is based on the action of the maximum chiral subgroup T. It should be noted that the point
group T is identical with the alternating group A[4] if they acts on the four positions of a
centroidal 3D-skeleton 8-63.

Let ̂Sk be the number of centroidal alkanes (3D-trees) of carbon content k as steric
isomers. In agreement with the definition of centroidal trees (Def. 8.1), the terms up to xv

are collected to give the following generating function:

̂S(x) =
v

∑
k=0

̂Skxk (8.85)

where v runs stepwise from 0 to infinite.
To evaluate the generating function represented by Eq. 8.85, the sphericity index bd in

the CI-CF for T (Eq. 7.53) is replaced by the term b(xd). Thereby we obtain the following
functional equation:

̂S(x) =
x

12
(

b(x)4 +3b(x2)2 +8b(x)b(x3)
)

, (8.86)

where the multiplying by x is required to take account of the centroid of the T-skeleton.
This equation was first noted by Pólya [8,9], who directly used A[4].

Because we have obtained b(x) of alkyl ligands (monosubstituted alkanes) as shown
in Eq. 8.32, the data up to m, i.e., b(x)(m) = ∑m

k=0 βkxk, is introduced into the functional
equation (Eq. 8.86). The resulting function is expanded to give a generating function, where
the terms of x2m+1 and x2m+2 are effective according to Jordan’s criterion of centroidal trees
(Def. 8.1). Their coefficients are adopted as the numbers for carbon content k = 2m+1 and
2m+2. The evaluated values are listed in the ̂Sk-column of Table 8.6.

The nine 3D structures collected in Fig. 8.11 are consistent with the value 9 at the
intersection between the k = 8-row and ̂Sk-column of Table 8.6. Note that each 3D structure
selected from a pair of enantiomers as well as each achiral 3D structure is counted once
during the enumeration of steric isomers.

8.5.2 Bicentroidal Alkanes (3D-Trees) as Steric Isomers

To discuss bicentroidal alkanes (3D-trees) as steric isomers, the maximum chiral subgroup
D∞ of D∞h (cf. Eq. 8.61) is taken into consideration. The two positions of the bicentroidal



8.5 Enumeration of Alkanes (3D-Trees) as Steric Isomers 225

Table 8.6. Numbers of Alkanes (3D-Trees) as Steric Isomers

k ̂Sk ˜Sk S(T)
k = ̂Sk + ˜Sk

(Centroidal) (Bicentroidal) (Total)

1 1 0 1
2 0 1 1
3 1 0 1
4 1 1 2
5 3 0 3
6 2 3 5
7 11 0 11
8 9 15 24
9 55 0 55

10 70 66 136
11 345 0 345
12 494 406 900
13 2412 0 2412
14 3788 2775 6563
15 18127 0 18127
16 30799 19900 50699
17 143255 0 143255
18 256353 152076 408429
19 1173770 0 1173770
20 2190163 1206681 3396844
21 9892302 0 9892302
22 19130814 9841266 28972080
23 85289390 0 85289390
24 169923748 82336528 252260276
25 749329719 0 749329719
26 1531701274 702993756 2234695030
27 6688893605 0 6688893605
28 13984116304 6105180250 20089296554
29 60526543480 0 60526543480
30 129073842978 53822344278 182896187256
31 554188210352 0 554188210352
32 1202875816425 480681790786 1683557607211
33 5126819371356 0 5126819371356
34 11305776454475 4342078862605 15647855317080
35 47862049187447 0 47862049187447
36 107069728163762 39621836138886 146691564302648
37 450451875783866 0 450451875783866
38 1020892804306908 364831810979041 1385724615285949
39 4270217915878409 0 4270217915878409
40 9793778515638185 3386667673687950 13180446189326135
41 40745751356421890 0 40745751356421890
42 94477225495135372 31669036266203766 126146261761339138
43 391089580997271932 0 391089580997271932
44 915999112432034386 298116245118025503 1214115357550059889
45 3773978539594435261 0 3773978539594435261
46 8922080766443778872 2823386683457907820 11745467449901686692
47 36597363424982487170 0 36597363424982487170
48 87272162999179060850 26888517978723553635 114160680977902614485
49 356492605035316845170 0 356492605035316845170
50 856995930059758400988 257383017389543108190 1114378947449301509178

3D-skeleton 8-64 are governed by the coset representation D∞(/C∞). In a similar way to
Eq. 8.61, the CI-CF of this case is obtained as follows:

CI-CF(D∞,$d) =
1
2
(b2

1 +b2). (8.87)

Our target is to obtain the value ˜Sk for enumerating the number of bicentroidal alkanes (3D-
trees) of carbon content k as steric isomers in the form of the following generating function:

˜S(x) =
v

∑
k=0

˜Skxk. (8.88)



226 8 Enumeration of Alkanes as 3D Structures

To evaluate this equation, the CI-CF represented by Eq. 8.87 is converted into the following
functional equation:

˜S(x) =
1
2
(b(x)2 +b(x2)). (8.89)

Because we have obtained b(x) of alkyl ligands (monosubstituted alkanes) as shown
in Eq. 8.32, the data up to m, i.e., b(x)(m) = ∑m

k=0 βkxk, is introduced into the functional
equation (Eq. 8.89). The resulting function is expanded to give a generating function, where
the term x2m is effective according to Jordan’s criterion of bicentroidal trees (Def. 8.1).
The coefficient of the term x2m is adopted as the number for carbon content k = 2m. The
evaluated values are listed in the ˜Sk-column of Table 8.6.

The fifteen 3D structures collected in Fig. 8.12 are consistent with the value 15 at the
intersection between the k = 8-row and ˜Sk-column of Table 8.6. Note that each 3D structure
selected from a pair of enantiomers as well as each achiral 3D structure is counted once
during the enumeration of steric isomers.

8.5.3 Total Enumeration of Alkanes (3D-Trees) as Steric Isomers

Let S(T)
k be the total number of alkanes (3D-trees) as steric isomers:

S(x)(T) =
∞

∑
k=0

S(T)
k xk. (8.90)

By summing up Eq. 8.85 and Eq. 8.88, we obtain the following relationship:

S(T)
k = ̂Sk + ˜Sk. (8.91)

The evaluated values are listed in the S(T)
k -column of Table 8.6.

The nine 3D structures collected in Fig. 8.11 and the fifteen 3D structures collected
in Fig. 8.12 are summed up to give twenty-four 3D structures of carbon content 8, which
are consistent with the value 24 appearing at the intersection between the k = 8-row and
S(T)-column of Table 8.6.

8.6 Enumeration of Alkanes (Trees) as Graphs or
Constitutional Isomers

8.6.1 Alkanes as Centroidal and Bicentroidal Trees

The definitions of centroidal and bicentroidal trees (Def. 8.1) originally aimed at charac-
terizing trees (graphs), not 3D-trees, as proposed by Jordan [32]. In this section, trees are
regarded as degenerate modes of 3D-trees described above. Accordingly, the scheme shown
in Fig. 8.10 for characterizing centroidal and bicentroidal 3D-trees is converted into Fig.
8.13 for characterizing centroidal and bicentroidal trees.
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Fig. 8.13. Alkanes and their skeletons as centroidal and bicentroidal trees, which are enumerated
as graphs (or constitutional isomers). The symbol © (attached by M) denotes a centroid, while the
symbol ©—© (attached by M1 and M2) denotes a bicentroid.

8.6.2 Enumeration of Centroidal Alkanes (Trees) as Constitutional Isomers

To discuss centroidal alkanes (trees) as graphs, the centroidal 3D-skeleton 8-63 character-
ized by the coset representation Td(/C3v) (Fig. 8.10) is replaced by the cnetroidal skeleton
8-86 characterized by the symmetric group S[4] of degree 4 (Fig. 8.13), so that the concept
of sphericities are disregarded.

According to this guideline, Eq. 7.29 degenerates to give the following CI:

CI(S[4];rd) =
1

24
(r4

1 +3r2
2 +8r1r3 +6r2

1r2 +6r4). (8.92)

where we place rd = ad = cd = bd to disregard sphericities. This equation has been noted
by Pólya [8,9] by using S[4] directly according to Def. 7.1 (Eq. 7.11) and Theorem 7.2.

Our target is to obtain the value ̂Rk for enumerating the number of alkanes of carbon
content k as centroidal trees (graphs) in the form of the following generating function:

̂R(x) =
v

∑
k=0

̂Rkxk. (8.93)

To evaluate this equation, the CI represented by Eq. 8.92 is converted into the following
functional equation:

̂R(x) =
x

24
(r(x)4 +3r(x2)2 +8r(x)r(x3)+6r(x)2r(x2)+6r(x4)). (8.94)
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Note that the multiplication by x is necessary to evaluate the effect of a central carbon atom
of the centroidal skeleton 8-86.7

Because we have obtained r(x) of alkyl ligands (monosubstituted alkanes) as shown
in Eq. 8.40, the data up to m, i.e., r(x)(m) = ∑m

k=0 Rkxk, is introduced into the functional
equation (Eq. 8.94). The resulting function is expanded to give a generating function, where
the terms of x2m+1 and x2m+2 are effective according to Jordan’s criterion of centroidal trees
(Def. 8.1). Their coefficients are adopted as the numbers for carbon content k = 2m+1 and
2m+2. The evaluated values are listed in the ̂Rk-column of Table 8.7.

Exercise 8.7. If an appropriate software for algebraic calculations (e.g., Maple and Math-
ematica) is available, conduct the calculation after the introduction of r(x)(m) = ∑m

k=0 Rkxk

(selected from Eq. 8.40) into the functional equation (Eq. 8.94). A code of Maple program-
ming system for this purpose has been reported in [27, Section 6.2], which is available freely
from the Web site of MATCH:
http://match.pmf.kg.ac.rs/content57n2.htm

Among the nine 3D structures collected in Fig. 8.11, a pair of enantiomers 8-72 and
8-72 is regarded as a set of stereoisomers, which coalesce to give a graph 8-72g and is
counted once under the enumeration of constitutional isomers. As a result, the following
partition is obtained:

⎧

⎩〈8-65〉 〈8-66〉 〈8-67〉 〈8-68〉 〈8-69〉 〈8-70〉 〈8-71〉 〈8-72 8-72
〉

⎫

⎭ , (8.95)

where each equivalence class of stereoisomers is surrounded by a pair of angle brackets.
Note that the graph 8-72g corresponds to an equivalence class of stereoisomers represented
by
〈

8-72 8-72
〉

. Hence, there are eight inequivalent entities, which are consistent with the
value 8 appearing at the intersection between the k = 8-row and ̂R-column of Table 8.7.

8.6.3 Enumeration of Bicentroidal Alkanes (Trees) as Constitutional Isomers

To discuss bicentroidal alkanes (trees) as graphs, the bicentroidal 3D-skeleton 8-64 gov-
erned by K(/K′) or D∞h(/C∞v) (Fig. 8.10) is replaced by the bicentroidal skeleton 8-87
governed by S[2] (Fig. 8.13). Although these two skeletons have the same dumbbell shape,
they are different in symmetry properties.

Because the two positions of 8-87 are governed by the symmetric group S[2] of degree
2, they are characterized by the following CI:

CI(S[2];rd) =
1
2
(r2

1 + r2). (8.96)

7 As found in Eq. 8.94 shown above, Eq. 23 of [1] should be corrected by multiplying x to evaluate the effect
of a central carbon atom.



8.6 Enumeration of Alkanes (Trees) as Graphs or Constitutional Isomers 229

Table 8.7. Numbers of Alkanes (Trees) as Graphs or Constitutional Isomers

k ̂Rk ˜Rk R(T)
k = ̂Rk + ˜Rk

(Centroidal) (Bicentroidal) (Total)

1 1 0 1
2 0 1 1
3 1 0 1
4 1 1 2
5 3 0 3
6 2 3 5
7 9 0 9
8 8 10 18
9 35 0 35

10 39 36 75
11 159 0 159
12 202 153 355
13 802 0 802
14 1078 780 1858
15 4347 0 4347
16 6354 4005 10359
17 24894 0 24894
18 38157 22366 60523
19 148284 0 148284
20 237541 128778 366319
21 910726 0 910726
22 1511717 766941 2278658
23 5731580 0 5731580
24 9816092 4674153 14490245
25 36797588 0 36797588
26 64658432 29180980 93839412
27 240215803 0 240215803
28 431987953 185117661 617105614
29 1590507121 0 1590507121
30 2917928218 1193918545 4111846763
31 10660307791 0 10660307791
32 19910436898 7800816871 27711253769
33 72214088660 0 72214088660
34 137041997938 51584238201 188626236139
35 493782952902 0 493782952902
36 950665379038 344632209090 1295297588128
37 3404490780161 0 3404490780161
38 6640556836540 2324190638055 8964747474595
39 23647478933969 0 23647478933969
40 46677743532346 15804057614995 62481801147341
41 165351455535782 0 165351455535782
42 329965311285835 108277583483391 438242894769226
43 1163169707886427 0 1163169707886427
44 2344582517352728 746878494484128 3091461011836856
45 8227162372221203 0 8227162372221203
46 16737981626775790 5183852459907628 21921834086683418
47 58481806621987010 0 58481806621987010
48 120009045820117784 36183320654472855 156192366474590639
49 417612400765382272 0 417612400765382272
50 863868095187587242 253875556559366028 1117743651746953270

Our target is to obtain the value ˜Rk for enumerating the number of alkanes of carbon
content k as bicentroidal trees (graphs) in the form of the following generating function:

˜R(x) =
v

∑
k=0

˜Rkxk. (8.97)

To evaluate this equation, the CI represented by Eq. 8.96 is converted into the following
functional equation:

˜R(x) =
1
2
(r(x)2 + r(x2)). (8.98)
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Because we have obtained r(x) of alkyl ligands (monosubstituted alkanes) as shown
in Eq. 8.40, the data up to m, i.e., r(x)(m) = ∑m

k=0 Rkxk, is introduced into the functional
equation (Eq. 8.98). The resulting function is expanded to give a generating function, where
the term of x2m is effective according to Jordan’s criterion of bicentroidal trees (Def. 8.1).
Their coefficients are adopted as the numbers for carbon content k = 2m. The evaluated
values are listed in the ˜Rk-column of Table 8.7.

Exercise 8.8. If an appropriate software for algebraic calculations (e.g., Maple and Math-
ematica) is available, conduct the calculation after the introduction of r(x)(m) = ∑m

k=0 Rkxk

(selected from Eq. 8.40) into the functional equation (Eq. 8.98). A code of Maple program-
ming system for this purpose has been reported in [27, Section 6.2], which is available freely
from the Web site of MATCH:
http://match.pmf.kg.ac.rs/content57n2.htm

Among the fifteen 3D structures collected in Fig. 8.12, a set of 8-79, 8-83, and 8-83 is
recognized as an equivalence class of stereoisomers, so that the set is counted once under
the enumeration of constitutional isomers. Moreover, each pair of enantiomers linked with
an underbrace as well as each achiral entity is counted once under the enumeration of con-
stitutional isomers. When each equivalence class of stereoisomers is surrounded by a pair
of angle brackets, the following partition is obtained:

⎧

⎩〈8-73〉 〈8-74〉 〈8-75〉 〈8-76〉 〈8-77〉 〈8-78〉 〈8-79 8-83 8-83
〉

〈

8-80 8-80
〉 〈

8-81 8-81
〉 〈

8-82 8-82
〉

⎫

⎭ . (8.99)

Hence, there appear ten equivalence classes of stereoisomers, which are inequivalent un-
der a stereoisomeric relationship during the enumeration of constitutional isomers. See the
flowchart of Fig. 2.4 on page 47, where the judgement due to isoskeletomeric relationships
is omitted to obtain the partition of Eq. 8.99. This value is consistent with the value 10
appearing at the intersection between the k = 8-row and ˜R-column of Table 8.7.

Exercise 8.9.
– Compare the set of 8-79, 8-83, and 8-83 (Fig. 8.12) with the set of tartaric acids, where

the enumeration results as constitutional isomers (Table 8.7) are taken into considera-
tion.

– Discuss the prochirality of 8-79 as a meso-compound by referring to Fig. 4.13 (page
109).
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8.6.4 Total Enumeration of Alkanes (Trees) as Graphs or Constitutional
Isomers

Let R(T)
k be the total number of alkanes as trees (graphs):

R(x)(T) =
∞

∑
k=0

R(T)
k xk. (8.100)

By summing up Eq. 8.93 and Eq. 8.97, we obtain the following relationship:

R(T)
k = ̂Rk + ˜Rk. (8.101)

The evaluated values are listed in the R(T)
k -column of Table 8.7.

The nine 3D structures collected in Fig. 8.11 and the fifteen 3D structures collected in
Fig. 8.12 are respectively partitioned into Eq. 8.95 and Eq. 8.99. Hence, the total number is
found to be 18 (= 8+10) by counting pairs of angle brackets. This value is consistent with
the value 18 appearing at the intersection between the k = 8-row and R(T)

k -column of Table
8.7.
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9 Permutation-Group Symmetry

9.1 Historical Comments

From a group-theoretical point of view, confusion in modern stereochemistry stems from the
fact that permutation groups (e.g., the symmetric group S[4] of degree 4) are misleadingly
used in place of point groups (e.g., Td), as if permutation groups (not point groups) could
describe geometric features (e.g., chirality/achirality) of stereochemistry. This chapter is
devoted to demonstrate how permutation groups have been mixed up with point groups in
modern stereochemistry. The concept of RS-permutation groups isomorphic to point groups
will be introduced to settle the misleading situations of modern stereochemistry.

The application of permutation-group symmetry in chemical fields was first established
by Pólya’s theorem (Section 7.2), where the symmetric group S[n] (degree: n = 3 or 4) or the
alternating group A[n] (degree: n = 3 or 4) was used for the purpose of counting monosub-
stituted alkanes (alkyl ligands) and alkanes, as described in Sections 8.3 and 8.6. There have
appeared its generalization by de Bruijn [1] and its modification by Ruch et al. [2]. The term
permutational isomerism has been defined by Ugi et al. [3,4]. The term stereogenic proposed
by McCasland [5] has been revived by Mislow and Siegel [6], where models of stereoiso-
mers are generated by permutation of ligands among the sites of a tetrahedral skeleton as
a stereogenic center. Thereby, stereoisomers are recognized as prototypes of permutational
isomers and the ‘asymmetric carbon atom’ as the prototype of a ‘stereogenic atom’ [5], as
pointed out by Mislow and Siegel [6].

Even in Mislow-Siegel’s discussion [6], the special effects of chiral ligands are not
properly treated in the action of a permutation. For example, Mislow and Siegel [6, page
3321] stated that transposition of ligands in the trans sites of a chiral hexacoordinate com-
plex with the skeleton 3-13 (page 73) leads to the enantiomorph (e.g., 3-13→ 9-1), while
transposition of ligands in the cis sites does not afford the enantiomorph (e.g., 3-13→ 9-2).
As found in Fig. 9.1, however, the first-half part of this statement presumes that all of the
six ligands are achiral proligands (e.g., A, B, W, X, Y, and Z). In fact, if we take account of
a set of proligands containing chiral proligands (e.g., A, B, X, Y, Z, and p, where p denotes
a chiral proligand), the resulting complex 9-1 with A, B, X, Y, Z, and p is no longer the
enantiomorph of the original complex 3-13 with A, B, X, Y, Z, and p.

This type of misleading presumptions, i.e., disregard of chiral (pro)ligands, have widely
appeared, although a conventional attitude towards such disregard may be tentative accord-
ing to the purpose of discussions. For example, Zelewsky’s textbook [7, page 58] claimed
that “An atomic center in a molecule is called stereogenic if an interchange of two ligands
leads to a stereoisomer. If the stereoisomer obtained is the other enantiomer of a pair, the
atom is a chiral center.” This claim is somewhat misleading, because an interchange of two
ligands is implicitly linked to stereoginicity as well as to chirality. The latter linkage to chi-
rality is permitted only with respect to cases without chiral ligands. Remember that such an
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�1
�4 ��5 �2�3 �6
�M (2 4) permutation*

or (1)(2 4)(3)(5)(6)

�1
�2 ��5 �4�3 �6
�M (1 2) permutation

or (1 2)(3)(4)(5)(6)

�2
�1 ��5 �4�3 �6
�M

9-1 3-13 9-2

C

1

34
2

(2 4) permutation*

or (1)(2 4)(3)
C

1

32
4

(1 2) permutation*

or (1 2)(3)(4)
C

2

31
4

9-3 3-5 9-4

Fig. 9.1. Permutations of two positions in an octahedral skeleton and in a tetrahedral skeleton.

interchange of two ligands is conceptually distinct from a reflection, even though they may
coalesce with each other in cases without chiral ligands.

Moreover, Mislow and Siegel [6, page 3321] stated that “It follows that among chiral
assemblies constructed from achiral permutation frames and achiral ligands, the regular
tetrahedron is the only skeleton in which every transposition of ligands is equivalent to a
reversal in the sense of chirality of ligand assembly.” In fact, if all of the four ligands of 3-5
(page 55) are achiral proligands (e.g., A, B, X, and Y), every transposition of ligands results
in the formation of the enantiomorph (e.g., 9-3 or 9-4). See Fig. 9.1.

In contrast, if we take account of a set of proligands containing chiral proligands (e.g.,
A, B, X, and p, where p denotes a chiral proligand), the resulting entity with A, B, X, and p
(e.g., 9-3 or 9-4) is no longer the enantiomorph of the original entity 3-5 with A, B, X, and
p. Strictly speaking, the word “equivalent” in the expression “every transposition of ligands
is equivalent to a reversal in the sense of chirality of ligand assembly” [6] is misleading,
because cases with chiral ligands are not referred to, so as to be treated as exceptions. Note
that transposition of ligands is conceptually distinct from, and by no means equivalent to a
reflection for a reversal in the sense of chirality of ligand assembly, even though they may
coalesce with each other to provide the equivalent effects.

As found in the preceding historical comments, the distinction between stereogenic-
ity and chirality in cases with chiral ligands is crucial to comprehend stereoisomerism and
molecular geometry. In spite of this feature, the conventional ways described above have
made light of such cases as having chiral ligands, so that main descriptions in the conven-
tional ways have been concerned only with cases without chiral ligands, while cases with
chiral ligands are entirely disregarded or treated at most as exceptions. It follows that a
new theoretical framework for treating achiral and chiral ligands evenly is highly desirable,
where stereogenicity and chirality should be integrated in a consistent fashion.

Fujita has developed the stereoisogram approach to such a new theoretical framework,
where the concept of RS-stereogenicity is proposed as a substantial restriction of the con-
cept of stereogenicity, so as to be integrated meaningfully with the concept of chirality to
treat achiral and chiral ligands evenly [8–10]. Group-theoretically speaking, RS-permutation
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groups are proposed as a substantial restriction of permutation groups [9,11]1 and inte-
grated meaningfully with point groups to give RS-stereoisomeric groups as a new class of
groups. Thus, chirality is linked with point groups, RS-stereogenicity is linked with RS-
permutation groups, and RS-stereoisomerism is linked with RS-stereoisomeric groups. Fu-
jita has divised stereoisograms as diagrammatic expressions of RS-stereoisomeric groups
(and RS-stereoisomerism).

Fujita’s stereoisogram approach has revealed that, just as a pair of enantiomers (or
an achiral molecular entity) bleongs to a point group, a pair of RS-diastereomers (or an
RS-astereogenic entity) belongs to an RS-permutation group. As a result, a point group
is frequently confused with an RS-permutation group in the conventional ways described
above.

In this chapter, the concept of RS-stereogenicity based RS-permutation groups will be
discussed as a substantial restriction of the concept of stereogenicity based on permutation
groups.

9.2 Permutation Groups

9.2.1 Permutation Groups as Subgroups of Symmetric Groups

The six positions of the octahedral skeleton 3-13 (the top row of Fig. 9.1), which are gov-
erned by the coset representation Oh(/C4v) based on the point group Oh (order 48), are
regarded as being alternatively governed by the symmetric group of degree 6 denoted by
the symbol S[6]. The symmetric group S[6] is composed of totally 6! (= 720) permutations.
Among these permutations, the permutations stabilizing the skeleton 3-13 (and its homo-
meric skeletons) construct a permutation group of order 24, which can be equalinzed to the
coset representation O(/C4).2 Note the point group Oh has the maximum chiral subgroup O
(order 24), which has 24 permutations common with the symmetric group S[6], if the coset
representation Oh(/C4v) is taken into consideration. For the simplicity’s sake, the symbol
O is tentatively used to denote a permutation group which is a subgroup of S[6]. Thus, the
group O is a subgroup of the point group Oh as well as a subgroup of the symmetric group
S[6].

For example, a two-fold rotation along the axis 1—6 is represented by the permutation
(1)(2 4)(3 5)(6), which generates a homomer of the original skeleton 3-13. This permuta-
tion is contained in the permutation group O.

1 Integration of point groups and permutation groups has been first reported by Fujita [11], where the term
RS-permutation group was not coined although the concept of RS-permutation groups was substantially de-
scribed by characterizing the elements of the groups. The term RS-permutation group has been coined in a
successive report by Fujita [9].
2 For the coset representation for characterizing the octahedral skeleton 3-13, see recent reports by Fujita
[12–14].
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On the other hand, the permutation (2 4) (or (1)(2 4)(3)(5)(6)∈ S[6]) for the conversion
3-13→ 9-1 is not contained in O. In addition, the permutation (1 2) (or (1 2)(3)(4)(5)(6))∈
S[6]) for the conversion 3-13→ 9-2 is not contained in O. The two permutations (2 4) and
(1 2), however, are different in the effects on the skeleton 3-13 with achiral proligands (A,
B, W, X, Y, and Z), as described above. It is desirable to differentiate the two permutations
(2 4) and (1 2) by formulating an appropriate subgroup of S[6].

The four positions of the octahedral skeleton 3-5 (the bottom row of Fig. 9.1), which are
governed by the coset representation Td(/C3v) based on the point group Td , are regarded
as being alternatively governed by the symmetric group of degree 4 denoted by the sym-
bol S[4]. The symmetric group S[4] is composed of totally 4! (= 24) permutations. Among
these permutations, the permutations stabilizing the skeleton 3-5 (and its homomeric skele-
tons) construct an alternating group A[4] as a permutation group of order 12, which can be
equalinzed to the coset representation T(/C3).3

The permutation (2 4) (or (1)(2 4)(3) ∈ S[4]) for the conversion 3-5→ 9-3 is not con-
tained in A[4]. In addition, the permutation (1 2) (or (1 2)(3)(4)) ∈ S[4]) for the conversion
3-5→ 9-4 is not contained in A[4]. The two permutations (2 4) and (1 2) exhibit the same
effect on the skeleton 3-5 with achiral proligands (A, B, X, and Y), as described above. It is
desirable to rationalize the same effect in S[4], where this rationalization should be consistent
with the two permutations (2 4) and (1 2) which exhibt different effects in S[6].

9.2.2 Permutations vs. Reflections

As found in the left part of Fig. 9.1, the conversion due to the permutation (2 4) from
the numbered skeleton 3-13 to another numbered skeleton 9-1 does not represent a reflec-
tion (a mirror-imange formation), because it takes account of achiral (pro)ligands only and
disregards charal (pro)ligands. These misleading features can be avoided by considering
mirror-numbered skeletons defined by Def. 3.4 (page 57).

According to the proligand-promolecule model combined with Def. 3.4 (page 57), the
reflection concerned with the mirror plane 1–3–6–5 in the numbered skeleton 3-13 is repre-
sented by a permutation (1)(2 4)(3)(5)(6), where an overbar represents the reverse of chi-
rality sense at the position. The reflection (1)(2 4)(3)(5)(6) converts the numbered skeleton
3-13 into the mirror-numbered skeleton 3-13, as shown in Fig. 9.2.4

3 For the coset representation for characterizing the tetrahedral skeleton 3-5, see recent reports by Fujita
[15–17].
4 According to Fujita’s stereoisogram approach, the relationship between 9-1 and 3-13 is holantimeric. The
relationship between 3-13 and 9-1 is RS-diastereomeric. The relationship between 3-13 and 3-13 is enan-
tiomeric. In addition to the three skeletons, an additional skeleton 9-1 holantimeric to the original skeleton
3-13 is taken into consideration. Then, the relationship between 9-1 and 9-1 is enantiomeric, so that the
totally four skeletons construct a stereoisogram.
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�1
�4 ��5 �2�3 �6
�M reflection

(1)(2 4)(3)(5)(6)

�1
�2 ��5 �4�3 �6
�M permutation

(1 2)(3)(4)(5)(6)

�2
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1
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3-5 3-5 3-5′

Fig. 9.2. Reflections vs. Permutations of two positions in an octahedral skeleton and in a tetrahe-
dral skeleton.

The process due to the reflection (1)(2 4)(3)(5)(6), i.e., 3-13 → 3-13 (Fig. 9.2), is
strictly differentiated from the process due to the permutation (2 4), i.e., 3-13→ 9-1 (Fig.
9.1). Note that (1)(2 4)(3)(5)(6) can be regarded as a combined operation of (2 4) (or
(1)(2 4)(3)(5)(6)) with an identity ligand reflection (1)(2)(3)(4)(5)(6). In the case that all
of the six ligands attached are achiral proligands (e.g., A, B, W, X, Y, and Z), the resulting
mirror-numbered skeleton 3-13 (Fig. 9.2) generates a mirror-image complex, because A =
A, B = B, W = W, X = X, Y = Y, and Z = Z, where the symbol A etc. represent the mirror-
image proligand of A etc. in isolation. At the same time, even if we take account of a set
of proligands containing chiral proligands (e.g., A, B, X, Y, Z, and p, where p denotes a
chiral proligand), the resulting complex 3-13 with A, B, X, Y, Z, and p is a mirror-image
of the original complex 3-13 with A, B, X, Y, Z, and p, becuase B = B, X = X, Y = Y,
Z = Z, and p = p. Hence, the permutation (1)(2 4)(3)(5)(6) is paired with the reflection
(1)(2 4)(3)(5)(6), where the pairing stems from the coalescence in cases without chiral
ligands.

Remark 9.1 (Misleading Convention of Modern Stereochemisty). The convention of
modern stereochemisty misleasingly equalizes the permutation (1)(2 4)(3)(5)(6) and
the reflection (1)(2 4)(3)(5)(6) in all cases without and with chiral (pro)ligands.5

This equalization could be justified only if the permutation (1)(2 4)(3)(5)(6) and the
reflection (1)(2 4)(3)(5)(6) bring about the same effect to a skeleton at issue, e.g.,
the case that all of the six ligands attached to the skeleton 3-13 are achiral proligands
(e.g., A, B, W, X, Y, and Z). Such justification is impossible in general, as found
in the above-mentioned discussions. In fact, by comparing the resulting numbered
skeleton 9-1 (Fig. 9.1) with the corresponding mirror-numbered skeleton 3-13 (Fig.
9.2), the misleading feature of the convention is clearly demonstrated in cases with
chiral (pro)ligands (e.g., A, B, X, Y, Z, and p).
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On the other hand, the permutation (1 2)(3)(4)(5)(6) converts 3-13 into 9-5 (Fig. 9.2),
which is not enantiomeric to 3-13.6 In other words, the permutation (1 2)(3)(4)(5)(6) can-
not be regarded as a reflection. Hence, the permutation (1 2)(3)(4)(5)(6) is not paired with
the permutation (1 2)(3)(4)(5)(6) from a viewpoint of enantiomeric relationships.

Let us next consider the application of a reflection to the numbered tetrahedral skeleton
3-5 (Fig. 9.2). According to the proligand-promolecule model combined with Def. 3.4 (page
57), the reflection concerned with the mirror plane 1—C—3 in the numbered skeleton 3-5
is represented by a permutation (1)(2 4)(3), where an overbar represents the reverse of
chirality sense at the position. The reflection (1)(2 4)(3) converts the numbered skeleton
3-5 into the mirror-numbered skeleton 3-5, as shown in Fig. 9.2.7

The process due to the reflection (1)(2 4)(3), i.e., 3-5→ 3-5 (Fig. 9.2), is strictly dif-
ferentiated from the process due to the permutation (2 4), i.e., 3-5 → 9-3 (Fig. 9.1). In a
similar way to the octahedral skeleton 3-13, the tetrahedral skeleton 3-5 can be discussed,
where a set of four achiral prolidands A, B, X, and Y or a set of A, B, X, and p (p: chiral)
is taken into consideration. Hence, the permutation (1)(2 4)(3) is paired with the reflection
(1)(2 4)(3). The pairing stems from coalescence in cases without chiral ligands.

The application of (1 2)(3)(4) to 3-5 generates 3-5′, which is homomeric to 3-5. This
means that (1 2)(3)(4) paired with (1 2)(3)(4) also represents a reflection.

Comparison between Fig. 9.1 and Fig. 9.2 reveals that there are two types of permuta-
tions: that is to say, the permutations with an asterisk in Fig. 9.1 are paired with the reflec-
tions shown in Fig. 9.2, while the permutation without an asterisk remains unpaired with a
reflection.

9.3 RS-Permutation Groups

9.3.1 RS-Permutations and RS-Diastereomeric Relationships

The formulation of numbered skeletons and mirror-numbered skeletons (Def. 3.4 on page
57) has revealed the precence of two types of permuations, i.e., permutations which may be
correlated to reflections and permutations with no correlation to reflections, as discussed in

5 Such a premutation (e.g., (1)(2 4)(3)(5)(6)) as paired with a reflection (e.g., (1)(2 4)(3)(5)(6)) is called
an RS-permutation (Def. 9.1) according to Fujita’s stereoisogram approach.
6 According to Fujita’s stereoisogram approach, the relationship between 9-2 (Fig. 9.1) and 9-5 (Fig. 9.2) is
holantimeric.
7 According to Fujita’s stereoisogram approach, the relationship between 9-3 and 3-5 is holantimeric. The
relationship between 3-5 and 9-3 is RS-diastereomeric. The relationship between 3-5 and 3-5 is enantiomeric.
In addition to the three skeletons, an additional skeleton 9-3 holantimeric to the original skeleton 3-5 is
taken into consideration. Then, the relationship between 9-3 and 9-3 is enantiomeric, so that the totally four
skeletons construct a stereoisogram.
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the preceding section. To differentiate these two types (cf. Remark 9.1), Fujita has coined
the term RS-permutation [9]:

Definition 9.1 (RS-Permutations). Let us consider a permutation on the positions of a given skele-
ton. A permutation which corresponds to a reflection but exhibits no reverse of chirality sense at
each position is called an RS-permutation.

The prefix RS stems from the fact that the concepts of RS-permutations and RS-permutation
groups (not permutations nor permutation groups) have been proved by Fujita [10,18] to be
a basis for the R/S-stereodescriptors of the Cahn-Ingold-Prelog (CIP) system.

An RS-permutation (e.g., (1)(2 4)(3)(5)(6) or (1)(2 4)(3)) is concerned with the pro-
cess converting a numbered-skeleton into another numbered skeleton (e.g., 3-13→ 9-1 or
3-5 → 9-3), while a reflection (e.g., (1)(2 4)(3)(5)(6) or (1)(2 4)(3)) is concerned with
the process converting a numbered-skeleton into a mirror-numbered skeleton (e.g., 3-13→
3-13 or 3-5→ 3-5).

A pair of two (pro)molecules which are convertible by a reflection is called a pair of
enantiomers. To emphasizing the difference between reflections and RS-permutations, the
term RS-diastereomeric is coined by Fujita in the formulation of Fujita’s stereoisogram
approach [8–10]:

Definition 9.2 (RS-Diastereomeric Relationships). Suppose that a (pro)molecule based on a num-
bered skeleton is converted into a (pro)molecule on another numbered skeleton under the action of
an RS-permutation (Def. 9.1). The relationship beween the original (pro)molecule and the product
(pro)molecule is defined as an RS-diastereomeric relationship. The two promolecules are referred
to as a pair of RS-diastereomers.

9.3.2 RS-Permutation Groups vs. Point Groups

RS-Permutation Groups Based on RS-Permutations
To show a RS-permutation group based on RS-permutations, let us re-examine a trigonal
pyramidal skeleton 8-1 shown in Fig. 8.1 (page 195). The trigonal pyramidal skeleton 8-1
can be regarded as a phosphine skeleton 9-6, if the center is considered to be a phosphorus
atom and the solid circle is considered to be a lone pair, as shown in Fig. 9.3.
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..
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2
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8-1 9-6

Fig. 9.3. Trigonal pyramidal skeleton and a phosphine skeleton
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Table 9.1. RS-Permutation Group C3σ̃ , Coset Representation C3σ̃ (/Cσ̃ ), and the Symmetric
Group S[3] of Degree 3

operation C3σ̃ (/Cσ̃ ) S[3] cycle
g ∈ C3σ̃ (product of cycles) (product of cycles) term

A
C

I (1)(2)(3) (1)(2)(3) s3
1

C3 (1 3 2) (1 3 2) s3

C2
3 (1 2 3) (1 2 3) s3

σ̃v(1) (1)(2 3) (1)(2 3) s1s2

σ̃v(2) (1 3)(2) (1 3)(2) s1s2

σ̃v(3) (1 2)(3) (1 2)(3) s1s2

From a viewpoint of point-group symmetry, the three positions of 8-1 is governed by
the coset representation C3v(/Cs), as summarized in Table 8.1 (page 196). As shown in Fig.
8.1 (page 195), each reflection, σv(1) (∼ (1)(2 3)), σv(2) (∼ (1 3)(2)), or σv(3) (∼ (1 2)(3)),
brings about the conversion of the numbered skeleton 8-1a into a mirror-numbered skeleton,
i.e., 8-1a → 8-1d, 8-1a → 8-1e, or 8-1a → 8-1f. It follows that the relationship between
8-1a and 8-1d (or 8-1e or 8-1f) is concluded to be an enantiomeric relationship.

By omitting a ligand reflection, each reflection, σv(1) (∼ (1)(2 3)), σv(2) (∼ (1 3)(2)),
or σv(3) (∼ (1 2)(3)), generates an RS-permutation, σ̃v(1) (∼ (1)(2 3)), σ̃v(2) (∼ (1 3)(2)),
or σ̃v(3) (∼ (1 2)(3)), as collected in Table 9.1. Thereby, the point group C3v is converted
into an RS-permutation group C3σ̃ shown in Table 9.1. The three positions of the trigonal
pyramidal skeleton 8-1 are governed by the coset representation C3σ̃ (/Cσ̃ ). The resulting
RS-permutation group C3σ̃ is isomorphic to the symmetric group S[3] of degree 3, so that
the coset representation C3σ̃ (/Cσ̃ ) can be equalized to S[3], as collected in Table 9.1.

As shown in Fig. 9.4, each RS-permutation, σ̃v(1) (∼ (1)(2 3)), σ̃v(2) (∼ (1 3)(2)), or
σ̃v(3) (∼ (1 2)(3)), brings about the conversion of the numbered skeleton 8-1a into another
numbered skeleton called an RS-numbered skeleton, i.e., 8-1a → 8-1d′, 8-1a → 8-1e′, or
8-1a→ 8-1f′. It follows that the relationship between 8-1a and 8-1d′ (or 8-1e′ or 8-1f′) is
concluded to be an RS-diastereomeric relationship (Def. 9.2), but not to be an enantiomeric
relationship. Compare Fig. 9.4 with Fig. 8.1 (page 195).

The point group C3v has a non-redundant set of subgroups:

SSGC3v = {C1,Cs,C3,C3v}, (9.1)

where the respective subgroups are selected as follows:

C1 = {I} (9.2)

Cs = {I,σv(1)} (9.3)

C3 = {I,C3(1),C
2
3(1)} (9.4)

C3v = {I,C3(1),C
2
3(1),σv(1).σv(2),σv(3)}. (9.5)
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Fig. 9.4. Symmetry operations of the RS-permutation group C3σ̃ for a trigonal pyramidal skeleton
8-1. The identity operation (I) converts 8-1 into itself, where the resulting skeleton is denoted as
8-1a. The top row lists homomeric numbered skeletons, while the bottom row lists homomeric
RS-numberd skeletons.

Because the RS-permutation group C3σ̃ is isomorphic to the point group C3v, its non-
redundant set of subgroups (SSG) is obtained as follows:

SSGC3σ̃ = {C1,Cσ̃ ,C3,C3σ̃}, (9.6)

where the respective subgroups are selected as follows:

C1 = {I} (9.7)

Cσ̃ = {I, σ̃v(1)} (9.8)

C3 = {I,C3(1),C
2
3(1)} (9.9)

C3σ̃ = {I,C3(1),C
2
3(1), σ̃v(1), σ̃v(2), σ̃v(3)}. (9.10)

Enumeration Under RS-Permutation Groups
Let us examine the gross enumeration based on the trigonal pyramidal skeleton 8-1 under
the RS-permutation group C3σ̃ (= S[3]). The cycle terms appearing in Table 9.1 are summed
up and divided by 6 (= |C3σ̃ |) so as to give a cycle index (CI) as follows:

CI8-1(C3σ̃ ,sd) =
1
6
(s3

1 +2s3 +3s1s2). (9.11)

The same CI is alternatively obtained by substituting sd for ad , cd , or bd in the CI-CF shown
in Eq. 8.3 (page 196).
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Suppose that the three positions of 8-1 are substituted by a set of three proligands
selected from the ligand inventory L8-1 (Eq. 8.1 on page 195). Then, the following ligand-
inventory function is obtained:

sd = Hd +Xd +Yd +pd +pd +qd +qd + rd + rd . (9.12)

After Eq. 9.12 is introduced into Eq. 9.11, the resulting equation is expanded to give the
following generating function:

f ′8-1 = {H3 +X3 +Y3}+{H2Y+H2X+ · · ·}+HXY

+{(H2p+H2p)+ · · ·}+{(HXp+HXp)+ · · ·}+{(Hp2 +Hp2)+ · · ·}
+{Hpp+ · · ·}+{(Hpq+Hpq)+ · · ·}+{(Hpq+Hpq)+ · · ·}
+{(p3 +p3)+ · · ·}+{(p2p+pp2)+ · · ·}+{(p2q+p2q)+ · · ·}
+{(p2q+p2q)+ · · ·}+{(pqr+pqr)}+{(pqr+pqr)+ · · ·}
+{(ppq+ppq)+ · · ·}, (9.13)

where a pair of RS-diastereomers is counted once under the RS-permutation group C3σ̃ .
Compare the generating function (Eq. 9.13) obtained under C3σ̃ with Eq. 8.7 (page 197)

obtained under the point group C3v. The promolecules listed in Fig. 8.2 (page 198), where
they are counted originally under the point group C3v, are reinterpreted on the basis of the
generating function (Eq. 9.13) obtained under C3σ̃ . Each pair of promolecules linked with
an underbrace is determined to be RS-diastereomeric, so that it is counted once under the
action of C3σ̃ . For example, the pair of 8-6 and 8-7 in Fig. 8.2 is counted once because it is
determined to be RS-diastereomeric. This mode of counting is confirmed by the coefficient
1 of the term HXp appearing in Eq. 9.13. Note that the counterpart pair of 8-6 and 8-7 is
also determined to be RS-diastereomeric and counted once according to the term HXp in
Eq. 9.13, although it is omitted from Fig. 8.2.

Each planted promolecule (alkyl ligand) listed in Fig. 8.2 belongs to a subgroup of the
point group C3v as well as to a subgroup of the RS-permutation group C3σ̃ . Several pro-
molecules are selected from Fig. 8.2 and their point groups and RS-permutation groups are
listed in Fig. 9.5. Among them, 8-2 (C3v;C3σ̃ ), 8-3 (Cs;Cσ̃ ), 8-4 (C1;C1), or 8-5 (C3;C3)
is characterized by a point group and a RS-permutation group of the same order.

Each of the remaining planted promolecules listed in Fig. 9.5 is characterized by a
point group and an RS-permutation group of different orders. For example, the planted pro-
molecule 8-5 is characterized by the symbol C1;Cσ̃ , which is explained as follows:
– (Point group C1) The action of the point group C3v on 8-5 provides an equivalence

class of F8-5 = {8-5a, 8-5b, 8-5c; 8-5d, 8-5e, 8-5f} by starting from Fig. 8.1 (page 195),
where we put p on 1-position, H on 2-position, and H on 3-position for the numbered
skeletons 8-1a–8-1c as well as p on 1-position, H on 2-position, and H on 3-position for
the mirror-numbered skeletons 8-1d–8-1f (see the discussions on Eq. 6.6). The planted
promolecules {8-5a, 8-5b, 8-5c} are homomeric, that is to say, equivalent under the
maximum point subgroup C3, so that the set of them represents the presence of 8-5 as a
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Fig. 9.5. Point groups and RS-permutation groups assigned to several planted promolecules
listed in Fig. 8.2. A pair of symbols such as C3v;C3σ̃ is assigned to each planted promolecule,
where the former represents a subgroup of the point group C3v, while the latter represents a sub-
group of the RS-permutation group C3σ̃ .

planted promolecule. At the same time, the planted promolecules {8-5d, 8-5e, 8-5f} are
homomeric, that is to say, equivalent under the maximum point group C3, so that the set
of them represents the presence of 8-5 as a planted promolecule. Then, the pair of 8-5
and 8-5 is recognized as a pair of enantiomers. Because the representative promolecule
8-5a (= 8-5) is fixed (stabilized) by the subgroup C1 (⊂ C3v), the point group of 8-5 is
determined to be C1.

– (RS-Permutation group Cσ̃ ) The action of the RS-permutation group C3σ̃ on 8-5 pro-
vides an equivalence class of F′8-5 = {8-5a, 8-5b, 8-5c; 8-5d′, 8-5e′, 8-5f ′} by starting
from Fig. 9.4, where we put p on 1-position, H on 2-position, and H on 3-position for
a set of numbered skeletons 8-1a–8-1c as well as for another set of numbered skele-
tons (RS-numbered skeletons) 8-1d′–8-1f ′. All of the planted promolecules contained
in F′8-5 are equivalent under the RS-permutation group of 8-5. The representative pro-
molecules 8-5a (= 8-5) and 8-5d′ (= 8-5) are identical with each other so as to be fixed
(stabilized) by the subgroup Cσ̃ (⊂ C3σ̃ ). Hence, the RS-permutation group of 8-5 is
determined to be Cσ̃ .

Exercise 9.1.
– Depict planted promolecules contained in F8-5 = {8-5a, 8-5b, 8-5c; 8-5d, 8-5e, 8-5f}

according to Fig. 8.1. Confirm that the point group of 8-5 is determined to be C1.
– Depict planted promolecules contained in F′8-5 = {8-5a, 8-5b, 8-5c; 8-5d′, 8-5e′, 8-5f ′}

according to Fig. 9.4. Confirm that the RS-permutation group of 8-5 is determined to
be Cσ̃ .

– Discuss the symbol Cs;C1 assigned to 8-9 (or 8-10) in Fig. 9.5.
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Exercise 9.2. In a similar way to Fig. 9.5, assign a pair of a point group and an RS-
permutation group to each of the remaining planted promolecules listed in Fig. 8.2 (page
198).

9.3.3 Formulation of RS-Permutation Groups

The above-mentioned transformation of the point group C3v into the RS-permutation group
C3σ̃ is extended into a general case:

Definition 9.3 (RS-Permutation Groups). Suppose that all of the reflection operations of a given
point group are modified by omitting ligand reflection to generate RS-permutations. Then, the re-
sulting group is defined as an RS-permutation group.

If a point group is chiral, the corresponding RS-permutation group due to Def. 9.3 is pre-
sumed to be identical with the original chiral point group. Just as point groups are clas-
sified into achiral and chiral point groups, so RS-permutation groups are classified into
RS-stereogenic and RS-astereogenic RS-permutation groups or simply RS-stereogenic and
RS-astereogenic groups:

Definition 9.4 (RS-Stereogenic and RS-Astereogenic).
– For the sake of convenience, a chiral group (composed of rotations) is also regarded as an

RS-stereogenic group within the scope of an RS-permutation group. An RS-permutation group
having RS-permutations is referred to as an RS-astereogenic group or an RS-non-stereogenic
group.

– If a given molecular entity belongs to an RS-stereogenic group, it is referred to as being RS-
stereogenic.

– If a given molecular entity belongs to an RS-astereogenic group, it is referred to as being
RS-astereogenic or RS-non-stereogenic.

Note that a pair of terms RS-stereogenic/RS-astereogenic for RS-permutation groups corre-
sponds to a pair of terms chiral/achiral for point groups. According to Def. 9.4, the maxi-
mum chiral subgroup of a point group (Subsection 3.2.4) is, at the same time, the maximum
RS-stereogenic subgroup of the corresponding RS-permutation group.

Suppose that an RS-permutation group GX is constructed by starting from an achiral
point group GY (Eq. 3.21 on page 62) according to Def. 9.3. The maximum chiral subgroup
GC of the point group GY is also the maximum RS-stereogenic subgroup of GX , where |GC|
= |GX |/2. Hence, the coset decomposition of GY by GC (Eq. 3.21 on page 62) is converted
into the coset decomposition of GX by GC:

GX = GC +GCσ̃ , (9.14)

where the operation σ̃ is selected appropriately from the set of RS-permutations. Then, all
of the RS-permutations are contained in the coset GCσ̃ .

Let us select an element g from GC (g ∈GC). Then, we obtain GCg = GC. This means
that the coset GC (= GCI) is fixed under the action of g ∈GC. On the other hand, σ̃g is an
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RS-permutation, i.e., σ̃g ∈ GCσ̃ . This means that GCσ̃g = GCσ̃ . The coset GCσ̃ is fixed
under the action of g ∈GC.

The fixation of the cosets under the action of g ∈ GC is interpreted chemically. A
given molecular entity A as a reference corresponds to the coset GC (= GCI), while its
RS-diastereomeric entity ˜A corresponds to the other coset GCσ̃ . The number |GC| of enti-
ties corresponding to the coset GC are homomeric to the reference molecule A under the
action of GC. The number |GC| of entities corresponding to the coset GCσ̃ are homomeric
to the reference molecule ˜A under the action of GC.

Theorem 3.3 (page 62) for point groups is rewritten to meet RS-permutation groups.

Theorem 9.1 (Homomeric Relationship under RS-permutation groups). Suppose that a given
numbered skeleton belongs to an RS-permutation group (which is RS-astereogenic). Then the
numbered skeleton is fixed (or converted into a homomer) under the action of the maximum RS-
stereogenic subgroup. The corresponding RS-numbered skeleton (cf. Fig. 9.4) is also fixed (or
converted into a homomer) under the action of the maximum RS-stereogenic group.

This theorem gives an extended foundation of the term homomeric (cf. Theorem 3.3 on
page 62). For example, the numbered skeletons 8-1a–8-1c listed in the top row of Fig. 9.4
are homomeric under the action of C3, which is the maximum RS-stereogenic subgroup of
the RS-permutation group C3σ̃ . At the same time, the RS-numbered skeletons 8-1d′–8-1f′

listed in the bottom row of Fig. 9.4 are homomeric under the action of C3.
A numbered skeleton (e.g., 8-1a) and the corresponding RS-numbered skeleton (e.g.,

8-1d′) are equivalent under the action of an RS-permutation group (e.g., C3σ̃ which is RS-
astereogenic). They are RS-diastereomeric to each other according to Def. 9.2.

9.3.4 Action of RS-Permutation Groups

The formulation of RS-permutation groups by starting from point groups is suggestive to
demonstrate the action of an RS-permutation group, because a given skeleton is character-
ized by a coset representation of a point group as well as by a coset representation of the
corresponding RS-permutation group. Just as a single point group can act various skeletons
in the form of coset representations, a single RS-permutation group can act various skeletons
in the form of coset representations.

As a skeleton other than the trigonal pyramidal skeleton 8-5 described above, let us
examine a 1-azabicyclo[1.1.1]pentane skeleton 9-7 belonging to the point group C3v. The
six positions of 9-7 construct an orbit governed by the coset representation C3v(/C1). As
shown in Fig. 9.6, the numbered skeleton 9-7a (= 9-7) is converted into another numbered
skeleton (9-7a, 9-7b, or 9-7c) under the action of a rotation (∈ C3) as well as into a mirror-
numbered skeleton (9-7d, 9-7e, or 9-7f) under the action of a reflection (∈ C3v−C3).

The 1-azabicyclo[1.1.1]pentane skeleton 9-7 is alternatively considered to belong to
the RS-permutation group C3σ̂ , as shown in Fig. 9.7. The six positions of 9-7 construct an
orbit governed by the coset representation C3σ̂ (/C1). As shown in Fig. 9.7, the numbered
skeleton 9-7a (= 9-7) is converted into another numbered skeleton (9-7a, 9-7b, or 9-7c)
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Fig. 9.6. Symmetry operations of the point group C3v for a 1-azabicyclo[1.1.1]pentane skeleton
9-7. The identity operation (I) converts 9-7 into itself, where the resulting skeleton is denoted as
9-7a.

under the action of a rotation (∈ C3) as well as into an RS-numbered skeleton (9-7d′, 9-7e′,
or 9-7f′) under the action of an RS-permutation (∈ C3σ̂ −C3).
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Fig. 9.7. Symmetry operations of the RS-permutation group C3σ̃ for a 1-azabicyclo[1.1.1]pentane
skeleton 9-7. The identity operation (I) converts 9-7 into itself, where the resulting skeleton is
denoted as 9-7a.
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Table 9.2. Point Group C3v and RS-Permutation Group C3σ̃ as Well as Coset Representations
C3v(/C1) and C3σ̃ (/C1).

point group C3v RS-permutation group C3σ̃

operation C3v(/C1) PSI operation C3σ̃ (/C1) cycle
g ∈ C3v (product of cycles) g ∈ C3σ̃ (product of cycles) term

A
B

A
C

I (1)(2)(3)(4)(5)(6) b6
1 I (1)(2)(3)(4)(5)(6) s6

1
C3 (1 5 3)(2 6 4) b2

3 C3 (1 5 3)(2 6 4) s2
3

C2
3 (1 3 5)(2 4 6) b2

3 C2
3 (1 3 5)(2 4 6) s2

3

σv(1) (1 2)(3 6)(4 5) c3
2 σ̃v(1) (1 2)(3 6)(4 5) s3

2
σv(2) (1 6)(2 5)(3 4) c3

2 σ̃v(2) (1 6)(2 5)(3 4) s3
2

σv(3) (1 4)(2 3)(5 6) c3
2 σ̃v(3) (1 4)(2 3)(5 6) s3

2

Table 9.3. Terminology for Point Groups vs. for RS-Permutation Groups

point group ⇐⇒ RS-permutation group

(Operations)
— rotation ⇐⇒ — rotation
— reflection ⇐⇒ — RS-permutation

(Pairwise Attributes)
chirality ⇐⇒ RS-stereogenicity
— chiral/achiral ⇐⇒ — RS-stereogenic/RS-astereogenic

(Pairwise Relationships)
— enantiomeric ⇐⇒ — RS-diastereomeric

The coset representation C3v(/C1) for the point group C3v and the coset representation
C3σ̂ (/C1) for the RS-permutation group C3σ̂ are summarized in Table 9.2. The latter coset
representation C3σ̂ (/C1) is regarded as a subgroup of the symmetric group S[6] of degree
6. Note that the coset representation C3σ̂ (/Cσ̃ ) is regarded as the symmetric group S[3], as
shown in Table 9.1.

Table 9.3 summarizes the correspondence between the concepts of point groups
and those of RS-permutation groups. Modern stereochemistry lays stress on a pair of
chirality/achirality even under the action of permutations. As a result, a pair of RS-
stereogenicity/RS-astereogenicity is beyond the scope of modern stereochemistry, so that an
enantiomeric relationship is misleadingly used even when an RS-diastereomeric relationship
should be used.
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9.3.5 Misleading Features of the Conventional Terminology

The conceptual distinction between reflections and RS-permutations is crucial to compre-
hend stereochemistry and stereoisomerism. Hence, more examples would be desirable to
clarify misleading features of the conventional terminology of modern stereochemistry,
where they stem from the lack of the concepts of RS-permutations and RS-permutation
groups.

�
A

B
X1

3

2

σ̃v(1)

(1)(2 3) �
A

X
B1

2

3

9-8 9-9

σv(1) (1)(2 3)

�
A

X
B1

2

3

9-8 (= 9-9)

�
A

p
p1

3

2

σ̃v(1)

(1)(2 3) �
A

p
p1

2

3

9-10 9-11

σv(1) (1)(2 3)

�
A

p
p1

2

3

9-10 (= 9-10)
(a) Case exhibiting coalescence (b) Case exhibiting no coalescence

Fig. 9.8. Distinction between an RS-permutation and a reflection in trigonal pyramidal derivatives.
(a) A case exibiting coalescence between an RS-permutation and a reflection and (b) a case with
no coalescence. The symbol A, B, or X represents an achiral proligand in isolation, while a pair of
p and p represents a pair of enantiomeric proligands in isolation.

As illustrated in Fig. 9.8(a), the action of an RS-permutation σ̃v(1) (∼ (1)(2 3)) on
9-8 with the composition ABX (cf. 8-4 of Fig. 9.5) results in the formation of its RS-
diastereomer 9-9. This mode of conversion is represented by the following partition:

�9-8 9-9�, (9.15)

where a pair of floor brackets represents an equivalence class governed by Cσ̃ (/C1) under
the action of C3σ̃ . The RS-diastereomer 9-9 is identical with its enantiomer 9-8 produced
by the action of a reflection σv(1) (∼ (1)(2 3)) on the original entity 9-8. This mode of
conversion is represented by the following partition:

[9-8 9-9 (= 9-8)] (9.16)

where a pair of square brackets represents an equivalence class governed by Cs(/C1) under
the action of C3v.

Hence, the effect of the RS-permutation σ̃v(1) (∼ (1)(2 3)) coalesces with the effect
of the reflection σv(1) (∼ (1)(2 3)) although the RS-permutation is conceptually different
from the reflection. In other words, the RS-diastereomeric relationship between 9-8 and
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9-9 coalesces with the enantiomeric relationship between 9-8 and 9-8. A seemingly paral-
lel partition of Eq. 9.15 to that of Eq. 9.16 stems from the coalescence between the RS-
diastereomeric relationship (due to C3σ̃ ) and the enantiomeric relationship (due to C3v).

Note that 9-8 belongs to the point group C1 as well as to the RS-permutation group C1.
This exhibits the same feature as 8-4, which is characterized by the symbol C1;C1 in Fig.
9.5.

On the other hand, Fig. 9.8(b) shows that the action of an RS-permutation σ̃v(1) (∼
(1)(2 3)) on 9-10 with the composition App (the symbol A represents an achiral proligand
in isolation, while a pair of p and p represents a pair of enantiomeric proligands in isolation)
results in the formation of its RS-diastereomer 9-11. This mode of conversion is represented
by the following partition:

�9-10 9-11�, (9.17)

where a pair of floor brackets represents an equivalence class governed by Cσ̃ (/C1) under
the action of C3σ̃ .

Because 9-10 is achiral as found under the action of a reflection σv(1) (∼ (1)(2 3)), the
effect of the RS-permutation σ̃v(1) (∼ (1)(2 3)) by no means coalesces with the effect of the
reflection σv(1) (∼ (1)(2 3)). The latter mode of conversion is represented by the following
partition:

[9-10] [9-11], (9.18)

where a pair of square brackets represents an equivalence class governed by Cs(/Cs) under
the action of C3v.

The difference of partitions in Eq. 9.17 and Eq. 9.18 is faithful to our finding that
the RS-permutation is conceptually different from the reflection. Note that 9-10 (or 9-11)
belongs to the point group Cs as well as to the RS-permutation group C1 (cf. 8-9 and 8-10
of Fig. 9.5).

From a group-theoretical point of view, modern stereochemistry lacks the concept of
RS-permutation groups, where worse followed, so that the RS-permutation groups defined
here are confused with point groups. As a result, the action of the RS-permutation σ̃v(1)

(∼ (1)(2 3)) illustrated in Fig. 9.8(a) is misleadingly regarded as a permutation for giving an
enantiomer in modern stereochemistry. At the same time, the action of the RS-permutation
σ̃v(1) (∼ (1)(2 3)) illustrated in Fig. 9.8(b) is regarded as a permutation for giving a diastere-
omer in modern stereochemistry. Thus, the same permutation σ̃v(1) (∼ (1)(2 3)) is related
to enantiomers as well as to diastereomers, because of the dichotomy between enantiomers
and diastereomers in modern stereochemistry (see Section 1.3). Note that the dichotomy be-
tween enantiomers and diastereomers in the modern stereochemistry do not permit the coa-
lescence between enantiomeric relationships and diastereomeric relationships. This exhibits
sharp contrast to the present approach which permits the coalescence between enantiomeric
relationships and RS-diastereomeric relationships, as shown in Fig. 9.8(a). It should be em-
phasized again that the action of the RS-permutation σ̃v(1) (∼ (1)(2 3)) illustrated in Fig.
9.8(a) give an RS-diastereomer 9-9, which eventually coalesces with an enantiomer 9-8 (=
9-9) in the present approach.
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A similar example is obtained from the 1-azabicyclo[1.1.1]pentane skeleton 9-7, as
shown in Fig. 9.9. The promolecule 9-12 with the composition ABX4, which is generated
by putting ABX4 on the six positions of 9-7 (Fig. 9.6 or Fig. 9.7), is an example exhibiting
coalescence between an RS-permutation (the horizontal direction) and a reflection (the ver-
tical direction in Fig. 9.9(a)), while the promolecule 9-14 with the composition X4pp is an
example with no coalescence (Fig. 9.9(b)).

In the present approach, the RS-permutation (1 2)(3 6)(4 5) is used to refer to an RS-
diastereomeric relationship between 9-12 and 9-13 (the horizontal direction in Fig. 9.9(a))
as well as to an RS-diastereomeric relationship between 9-14 and 9-15 (the horizontal di-
rection in Fig. 9.9(b)). It should be emphasized that the RS-permutation (1 2)(3 6)(4 5) is
assigned to an RS-diastereomeric relationship in a one-to-one fashion. And then, the RS-
diastereomeric relationship between 9-12 and 9-13 coalesces with the enantiomeric rela-
tionship between them (the vertical direction in Fig. 9.9(a)).
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X

1 2
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45

6 σ̃v(1)

(1 2)(3 6)(4 5)
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9-12 9-13

σv(1) (1 2)(3 6)(4 5)
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9-12 (= 9-13)
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X
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σv(1) (1 2)(3 6)(4 5)

�N
p p

X
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X

2 1
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3

9-14 (= 9-14)

(a) Case exhibiting coalescence (b) Case exhibiting no coalescence

Fig. 9.9. Distinction between an RS-permutation and a reflection in 1-azabicyclo[1.1.1]pentane
derivatives. (a) A case exhibiting coalescence between an RS-permutation and a reflection and
(b) a case with no coalescence. The symbol A, B, or X represents an achiral proligand in isola-
tion, while a pair of p and p represents a pair of enantiomeric proligands in isolation.

In modern stereochemistry, in contrast, the same permutation (1 2)(3 6)(4 5) is used to
refer to an enantiomeric relationship between 9-12 and 9-13 as well as to a diastereomeric
relationship between 9-14 and 9-15. Note that these two relationships are not permitted
to coalesce with each other by the misleading rule that “diastereoisomerism is stereoiso-
merism other than enantiomerism” or “diastereoisomers (or diastereomers) are stereoiso-
mers not related as mirror images” [19]. As a result, modern stereochemistry depends on the
dual assignment of the permutation (1 2)(3 6)(4 5) to an enantiomeric relationship (enan-
tiomerism) and to a diastereomeric relationship (diastereoisomerism). This dual assignment
is misleading because these two relationships are conceptually distinct.
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Remark 9.2 (RS-Permutations vs. Permutations). If the modes of numbering are ig-
nored, the permutation (1 2)(3)(4)(5)(6) provides the same effect provided by the
RS-permutation σ̃ ∼ (1 2)(3 6)(4 5) for the process of 9-12→ 9-13. However, the per-
mutation (1 2)(3)(4)(5)(6) is not contained in the RS-permutation group C3σ̃ (Table
9.2). The permutations (1 2)(3)(4)(5)(6), (1)(2)(3 4)(5)(6), and (1)(2)(3)(4)(5 6)
correspond to epimerizations at three methylene carbons, respectively. Totally, there
appear 48 (= |C3σ̃ |×23 = 6×8) permutations, which construct a permutation group.
The permutation group (without considering reflections) has a half size of a stereoiso-
meric group (with considering reflections).

Exercise 9.3.
– Assign a point group and an RS-permutation group to 9-12. Examine their orders. Com-

pare them as subgroups of C3v and C3σ̃ .
– Assign a point group and an RS-permutation group to 9-14 (or 9-15). Examine their

orders. Compare them as subgroups of C3v and C3σ̃ .

A further example to be mentioned is the formulation of permutational isomerism by
Ugi et al. [3,4], which suffers from influences brought about by the lack of RS-permutation
groups, as found in the following Remark.

Remark 9.3 (Misleading Concepts and Terminology on Permutational Isomerism).
Although the concept of ‘the racemate group’ is a key for the formulation of per-
mutational isomerism by Ugi et al. [4, 4.1 Definition], it is misleading because the
words ‘racemate’ and ‘enantiomer’ have been used improperly in combination with
permutations. Thus, the relationship between 8-1a and 8-1f′ (Fig. 9.4) has been mis-
leadingly concluded to be ‘enantiomeric’ according to the formulation of permuta-
tional isomerism by Ugi et al. [4, page 28, lines 2–3]. The term ‘the racemate group’
is claimed to specify a ‘racemic’ mixture of the ‘enantiomeric’ tertiary phosphines
8-1a and 8-1f′ [4, 4.2 Example]. However, the terms ‘the racemate group’, ‘racemic’,
and ‘enantiomeric’ are misleading because the relationship between 8-1a and 8-1f′ is
concluded to be RS-diastereomeric, not to be enantiomeric according to the present
method. Although stereoisomerism has once been recognized as prototypes of per-
mutational isomerism by Mislow and Siegel [6], the permutational isomerism by
Ugi et al. [4] and by Mislow and Siegel [6] is unable to cover the exact connota-
tion of stereoisomerism, conceptually speaking, because it lacks the concept of RS-
permutation groups as well as the proper consideration of reflections.
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9.4 RS-Permutation Groups for Skeletons of Ligancy 4

9.4.1 RS-Permutation Group for a Tetrahedral Skeleton

RS-Permutation Group, Point Group, and Symmetric Group of Degree 4
As a representative skeleton of ligancy 4 (cf. Fig. 3.7 on page 68), the point-group symmetry
of a tetrahedral skeleton 3-5 (belonging to the point group Td) has been detailedly discussed
in Section 3.2. The four positions of the tetrahedral skeleton 3-5 construct an orbit governed
by the the coset representation Td(/C3v). According to Def. 9.3, the corresponding RS-
permutation group Tσ̃ can be constructed, where Table 3.1 (page 61) for the point group Td

is transformed into Table 9.4 for the RS-permutation group Tσ̃ .
Just as the point group Td has subgroups represented by Eqs. 3.4–3.14 (page 60) up to

conjugacy, the RS-permutation group Tσ̃ has the following subgroups up to conjugacy:

C1
1= {I} (9.19)

C2
2= {I,C2(1)} (9.20)

Cσ̃
3= {I, σ̃d(1)} (9.21)

C3
4= {I,C3(1),C

2
3(1)} (9.22)

S
˜4

5= {I, ˜S4(1),C2(1), ˜S
3
4(1)} (9.23)

D2
6= {I,C2(1),C2(2),C2(3)} (9.24)

C2σ̃
7= {I,C2(3), σ̃d(1), σ̃d(6)} (9.25)

C3σ̃
8= {I,C3(1),C

2
3(1), σ̃d(1), σ̃d(2), σ̃d(3)} (9.26)

D2σ̃
9= {I,C2(1),C2(2),C2(3), σ̃d(1), σ̃d(2), ˜S4(3), ˜S

3
4(3)} (9.27)

T 10= {I,C2(1),C2(2),C2(3),

C3(1),C
2
3(1),C3(2),C

2
3(2),C3(3),C

2
3(3),C3(4),C

2
3(4)} (9.28)

Tσ̃
11= {A,C}, (cf. Table 9.4) (9.29)

where a representative subgroup is selected from a set of conjugate subgroups. In a similar
way to Eq. 3.19 on page 62 (cf. Eqs. 3.4–3.14), such non-redundant set of subgroups as Eqs.
9.19–9.29 is aligned in an ascending order of the orders, so as to give the following set:

SSGTσ̃ = {
1

C1,
2

C2,
3

Cσ̃ ,
4

C3,
5

S
˜4,

6
D2,

7
C2σ̃ ,

8
C3σ̃ ,

9
D2σ̃ ,

10
T,

11
Tσ̃}, (9.30)

which is called a non-redundant set of subgroups (SSG) for the RS-permutation group Tσ̃ .
For the sake of convenience, a reference number is sequentially attached to each subgroup
in SSGTσ̃ . See the reference numbers attached over the equality symbols in Eqs. 9.19–9.29.

Among the subgroups of Tσ̃ listed in Eq. 9.30, the RS-permutation subgroups C1,
C2, C3, D2, and T are RS-stereogenic, while the RS-permutation subgroups Cσ̃ , S

˜4, C2σ̃ ,



9.4 RS-Permutation Groups for Skeletons of Ligancy 4 253

Table 9.4. RS-Permutation group Tσ̃ , Coset Representation Tσ̃ (/C3σ̃ ), and the Symmetric Group
S[4] of Degree 4

reference operation Tσ̃ (/C3σ̃ ) S[4] cycle
number* g ∈ Tσ̃ (product of cycles) (product of cycles) term

A
C

1 I (1)(2)(3)(4) (1)(2)(3)(4) s4
1

2 C2(1) (1 2)(3 4) (1 2)(3 4) s2
2

3 C2(2) (1 4)(2 3) (1 4)(2 3) s2
2

4 C2(3) (1 3)(2 4) (1 3)(2 4) s2
2

5 C3(1) (1)(2 3 4) (1)(2 3 4) s1s3

6 C3(3) (1 2 4)(3) (1 2 4)(3) s1s3

7 C3(2) (1 4 3)(2) (1 4 3)(2) s1s3

8 C3(4) (1 3 2)(4) (1 3 2)(4) s1s3

9 C2
3(1) (1)(2 4 3) (1)(2 4 3) s1s3

10 C2
3(4) (1 2 3)(4) (1 2 3)(4) s1s3

11 C2
3(3) (1 4 2)(3) (1 4 2)(3) s1s3

12 C2
3(2) (1 3 4)(2) (1 3 4)(2) s1s3

13 σ̃d(1) (1)(2 4)(3) (1)(2 4)(3) s2
1s2

16 σ̃d(6) (1 3)(2)(4) (1 3)(2)(4) s2
1s2

17 σ̃d(2) (1)(2)(3 4) (1)(2)(3 4) s2
1s2

18 σ̃d(4) (1 2)(3)(4) (1 2)(3)(4) s2
1s2

21 σ̃d(3) (1)(2 3)(4) (1)(2 3)(4) s2
1s2

23 σ̃d(5) (1 4)(2)(3) (1 4)(2)(3) s2
1s2

14 ˜S4(3) (1 2 3 4) (1 2 3 4) s4

15 ˜S3
4(3) (1 4 3 2) (1 4 3 2) s4

19 ˜S4(1) (1 4 2 3) (1 4 2 3) s4

20 ˜S3
4(1) (1 3 2 4) (1 3 2 4) s4

22 ˜S3
4(2) (1 2 4 3) (1 2 4 3) s4

24 ˜S4(2) (1 3 4 2) (1 3 4 2) s4

* The reference number corresponds to that of the multiplication table
of Td reported in [20, Table 2.2].

C3σ̃ , D2σ̃ , and Tσ̃ are RS-astereogenic. Note that the RS-stereogenic subgroups of the RS-
permutation group Tσ̃ , i.e., C1, C2, C3, D2, and T, are common to the chiral subgroups of
the point group Td .

As a result, the four positions of 3-5 alternatively construct an orbit governed by the
coset representation Tσ̃ (/C3σ̃ ), which is regarded as identical with the symmetric group
S[4] of degree 4. The SSGTσ̃ has once been reported as SSGS[4] [21, Tables 4 and 5]:

SSGS[4] = {S[4]
1 (= C1),S

[4]
2 ,S[4]

3 ,S[4]
4 ,S[4]

5 ,S[4]
6 ,S[4]

7 ,S[4]
8 ,S[4]

9 ,S[4]
10 ,S

[4]
11(= S[4])}, (9.31)
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where the subgroups of SSGS[4] appear in the same order of the subgroups of SSGTσ̃ (Eq.
9.30). The subscript of each subgroup in Eq. 9.31 corresponds to the reference number
attached over the equality symbol in each of Eqs. 9.19–9.29.

The tetrahedral promolecules listed in Fig. 6.9 (page 157) are characterized by the
subgroups of the point group Td (Eqs. 3.4–3.14). These promolecules are alternatively con-
sidered to be characterized by the subgroups of the RS-permutation group Tσ̃ (Eqs. 9.19–
9.29), as shown in Fig. 9.10. The combinatorial enumerations of tetrahedral promolecules
(Fig. 6.9) have been conducted under the point group Td as well as under the RS-permutation
group Tσ̃ , where the subgroups of Tσ̃ are regarded as the subgroups of the symmetric group
S[4] of degree 4 [21, Tables 4 and 5].

Comparison between Fig. 6.9 (page 157) and Fig. 9.10 provides us with useful pieces
of information on the difference between Td and Tσ̃ .
– Among them, the RS-permutation group of each promolecule listed in type I, III, or

IV has the same order as the point group. For example, the symbol C1;C1 assigned to
6-65 (type I) indicates that the point group C1 and the RS-permutation group C1 have
the same order |C1| = 1. The symbol C1;C1 assigned to 6-82 (type III) indicates that
the point group C1 and the RS-permutation group C1 have the same order |C1| = 1.
The symbol Td ;Tσ̃ assigned to 6-94 (type IV) indicates that the point group Td and the
RS-permutation group Tσ̃ have the same order |Td |= |Tσ̃ |= 24.

– On the other hand, the RS-permutation group of each promolecule listed in type II has
a larger order than the point group. For example, the symbol T;Tσ̃ assigned to 6-67
(type II) indicates that the order of the RS-permutation group Tσ̃ (|Tσ̃ | = 24) is larger
than that of the point group T (|T|= 12).

– On the contrary, the RS-permutation group of each promolecule listed in type V has a
smaller order than the point group. For example, the symbol Cs;C1 assigned to 6-100
(type V) indicates that the order of the RS-permutation group C1 (|C1| = 1) is smaller
than that of the point group Cs (|Cs|= 2).

The classification of types I–V will be discussed later according to the stereoisogram ap-
proach.

Symmetry-Itemized Enumeration of Tetrahedral Derivatives Under the
RS-Permutation Group
Suppose that the tetrahedral skeleton 3-5 (page 55) belongs to Tσ̃ , which has the non-
redundant set of subgroups (SSG) represented by Eq. 9.30. The symmetry-itemized enu-
meration of tetrahedral promolecules under the RS-permutation group Tσ̃ has been reported
in comparison with the enumeration under the point group Td [9,21,22].

Because an RS-permutation exchanges proligands without taking chirality/achirality
into consideration, chirality fittingness is unnecessary to be considered. As a result, a
dummy variable sd is used in place of the sphericity indices ad , bd , and cd . The following
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Fig. 9.10. Tetrahedral promolecules enumerated under the point group Td and Tσ̃ . The symbols
A, B, X, and Y represent atoms or achiral ligands. The symbols p, q, r, and s represents chiral
ligands, while each symbol with an overbar represents the corresponding chiral ligand with the
opposite chirality. An arbitrary promolecule is depicted as a representative of each pair of enan-
tiomers. Types I–V will be discussed later.
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PCIs are obtained according to Fujita’s USCI approach [23]:

PCI3-5(C1) =
1
24

s4
1 +

1
8

s2
2−

1
4

s2
1s2 +

1
3

s1s3− 1
4

s4 (9.32)

PCI3-5(C2) = 0 (9.33)

PCI3-5(Cσ̃ ) =
1
2

s2
1s2− 1

2
s2

2− s1s3 + s4 (9.34)

PCI3-5(C3) = 0 (9.35)

PCI3-5(S˜4) = 0 (9.36)

PCI3-5(D2) = 0 (9.37)

PCI3-5(C2σ̃ ) =
1
2

s2
2−

1
2

s4 (9.38)

PCI3-5(C3σ̃ ) = s1s3− s4 (9.39)

PCI3-5(D2σ̃ ) = 0 (9.40)

PCI3-5(T) = 0 (9.41)

PCI3-5(Tσ̃ ) = s4. (9.42)

These PCIs have been once noted in the author’s articles [9,21,22]. Compare these PCIs for
enumeration under the RS-permutation group Tσ̃ with the PCI-CFs (Eqs. 6.83–6.93 on page
155) for enumeration under the point group Td .

The four positions of the tetrahedral skeleton 3-5 are substituted by proligands selected
from the proligand inventory L (Eq. 6.73 on page 153). According to the degenerate features
of the PCIs (Eqs. 9.32–9.42), we use the following single ligand-inventory function sd ,
which is derived from the ligand-inventory function for bd (cf. Eqs. 6.74–6.76 on page
153):

sd = Ad +Bd +Xd +Yd +pd +qd + rd + sd +pd +qd + rd + sd . (9.43)

The ligand-inventory function (Eq. 9.43) is introduced into the PCIs (Eqs. 9.32–9.42).
The resulting equations are expanded to give the following generating functions:

f ′3-5(C1) = {
[θ ]11

(ABXp+ABXp)+ · · ·}+{
[θ ]14

(ABpq+ABpq)+ · · ·}

+{
[θ ]18

(Appq+Appq)+ · · ·}+{
[θ ]19

(Apqr+Apqr)+ · · ·}

+{
[θ ]30

(pqrs+pqrs)+ · · ·}+{
[θ ]29

(ppqr+ppqr)+ · · ·}

+{
[θ ]28
ppqq+pprr+ · · ·}+{

[θ ]13
ABpp+ABqq+ · · ·}

+{
[θ ]10

ABXY} (9.44)

f ′3-5(Cσ̃ ) = {
[θ ]7

(A2Bp+A2Bp)+ · · ·}+{
[θ ]12

(ABp2 +ABp2)+ · · ·}

+{
[θ ]9

(A2pq+A2pq)+ · · ·}+{
[θ ]16

(Ap2p+App2)+ · · ·}

+{
[θ ]17

(Ap2q+Ap2q)+ · · ·}+{
[θ ]24

(p2pq+pp2q)+ · · ·}
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+{
[θ ]26

(p2qq+p2qq)+ · · ·}+{
[θ ]27

(p2qr+p2qr)+ · · ·}

+{
[θ ]8

A2pp+ · · ·}+{
[θ ]6

A2BX+A2BY+ · · ·} (9.45)

f ′3-5(C2σ̃ ) = {
[θ ]5

(A2p2 +A2p2)+ · · ·}+{
[θ ]25

(p2q2 +p2q2)+ · · ·}

+{
[θ ]23

p2p2 +q2q2 + r2r2 + s2s2}+{
[θ ]4

A2B2 +A2X2 +A2Y2 + · · ·} (9.46)

f ′3-5(C3σ̃ ) = {
[θ ]3

(A3p+A3p)+ · · ·}+{
[θ ]15

(Ap3 +Ap3)+ · · ·}

+{
[θ ]22

(p3q+p3q)+ · · ·}+{
[θ ]21

(p3p+pp3)+ · · ·}

+{
[θ ]2

A3B+A3X+A3Y+ · · ·} (9.47)

f ′3-5(Tσ̃ ) = {
[θ ]20

(p4 +p4)+ · · ·}+{
[θ ]1
A4 +B4 +X4 +Y4}. (9.48)

In these generating functions, the coefficient of the term AaBbXxYyppppqqqqrrqrssqs indi-
cates the number of inequivalent (self-)RS-diastereomeric pairs to be counted. The enumer-
ation results represented by the generating functions (Eqs. 9.44–9.48) are consistent with
the data listed in Tables 4 and 5 of Ref. [21], in which the notation for the subgroups of the
symmetric group S[4] has been used in place of the present notation of the subgroups of the
RS-permutation group Tσ̃ .

Gross Enumeration of Tetrahedral Derivatives Under the RS-Permutation
Group
Let us examine gross enumeration under the RS-permutation group Tσ̃ . Because Tσ̃ is iso-
morphic to S[4], the CI shown in Eq. 8.92 (page 227) is rewritten by substituting sd for rd to
give the following CI for the gross enumeration:

CI(Tσ̃ ;sd) =
1
24

(s4
1 +3s2

2 +8s1s3 +6s2
1s2 +6s4). (9.49)

The ligand-inventory function (Eq. 9.43) is introduced into Eq. 9.49. After expansion,
we obtain the following generating function for gross enumeration:

f ′′3-5 = {A4 + · · ·}+{A3B+ · · ·}+{(A3p+A3p)+ · · ·}
+{A2B2 + · · ·}+{(A2p2 +A2p2)+ · · ·}+{A2BX+ · · ·}
+{(A2Bp+A2Bp)+ · · ·}+{A2pp+ · · ·}+{(A2pq+A2pq)+ · · ·}
+{ABXY+ · · ·}+{(ABXp+ABXp)+ · · ·}+{(ABp2 +ABp2)+ · · ·}
+{ABpp+ · · ·}+{(ABpq+ABpq)+ · · ·}+{(Ap3 +Ap3)+ · · ·}
+{(Ap2p+App2)+ · · ·}+{(Ap2q+Ap2q)+ · · ·}
+{(Appq+Appq)+ · · ·}+{(Apqr+Apqr)+ · · ·}



258 9 Permutation-Group Symmetry

+{(p4 +p4)+ · · ·}+{(p3p+pp3)+ · · ·}+{(p3q+p3q)+ · · ·}
+{p2p2 + · · ·}++{(p2pq+pp2q)+ · · ·}+{(p2q2 +p2q2)+ · · ·}
+{(p2qq+p2qq)+ · · ·}+{(p2qr+p2qr)+ · · ·}+{ppqq+ · · ·}
+{(ppqr+ppqr)+ · · ·}+{(pqrs+pqrs)+ · · ·}. (9.50)

Compare Eq. 9.50 for the RS-permutation group Tσ̃ with Eq. 7.30 (page 184) for the
point group Td . Each pair of RS-diastereomeric promolecules is counted once under the
action of Tσ̃ (Eq. 9.50), while each pair of enantiomers is counted once under the action of
Td (Eq. 7.30).

A pair of RS-diastereomeric promolecules listed in the type-III and type-V frames of
Fig. 9.10 is counted once under the action of Tσ̃ . This means that a pair of RS-diastereomers
linked by an underbrace (Fig. 9.10) is regarded as a single entity to be counted once under
Tσ̃ . For example, a pair of 6-82 and 6-83 with the composition ABXp (type III) is counted
once as the term ABXp has the coefficient 1 in Eq. 9.50 (also Eq. 9.44). A pair of 6-82 and
6-83 with the composition ABXp is separately counted once as the term ABXp has the co-
efficient 1 in Eq. 9.50 (also Eq. 9.44). On the other hand, a pair of achiral RS-diastereomers
6-100 and 6-101 with the composition ABpp is counted once as the term ABpp has the
coefficient 1 in Eq. 9.50 (also Eq. 9.44). Note that 6-100 (or 6-101) belongs to Cs (achiral)
under the point group Td , while it belongs to C1 (RS-stereogenic) under the RS-permutation
group Tσ̃ (cf. so-called ‘pseudoasymmetry’).

Each promolecule listed in the type-I frame of Fig. 9.10 is counted once under the action
of Tσ̃ . For example, the term ABXY in Eq. 9.50 (also Eq. 9.44) indicates the presence of
one pair of RS-diastereomeric promolecules 6-65 and 6-65 with the composition ABXY,
which is counted once under the action of Tσ̃ and coalesces with a pair of enantiomers.
Note that the pair of 6-65 and 6-65 belongs to C1 (as an enantiomeric pair) under the point
group Td (Eq. 6.94 on page 156), while it belongs to C1 (as an RS-diastereomeric pair)
under the RS-permutation group Tσ̃ (Eq. 9.44).

Each promolecule listed in the type-II frame of Fig. 9.10 is counted once under the
action of Tσ̃ . The term A3p in Eq. 9.50 (also Eq. 9.47) indicates the presence of one RS-
astereogenic promolecule 6-68 with the composition A3p (as a self-RS-diastereomeric pair),
while the term A3p indicates the presence of one RS-astereogenic promolecule promolecule
6-68 with the composition A3p (as a self-RS-diastereomeric pair), which is not depicted in
Fig. 9.10. Note that 6-68 and 6-68 are counted separately under the Tσ̃ as found in Eq. 9.50
(also Eq. 9.47).

So-Called Asymmetric Carbon Centers
The concept of ‘asymmetric carbon’ is a key of stereochemistry developed by van’t Hoff
[24,25], However, the term ‘asymmetric carbon’ is now encountered less frequently and
replaced by the more justified term ‘stereogenic center’ or the less justified term ‘chiral
center’ [26]. In spite of such seeming justification, the replacement of the term ‘asymmetry
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carbon’ by the term ‘stereogenic center’ has provided a broader and ambiguous connotation,
because cis/trans-stereoisomerism is also characterized by the term ‘stereogenic’.

(a) Asymmetric vs. RS-Stereogenic
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Y
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(b) Pseudoasymmetric vs. RS-Stereogenic
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Fig. 9.11. Asymmetric carbon (*) or pseudoasymmetric carbon (**) of a 2D structure and RS-
stereogenic carbons (†) of the resulting 3D structures. (a) Asymmetric vs. RS-stereogenic and (b)
pseudoasymmetric vs. RS-stereogenic.

For the purpose of comprehending stereochemistry and stereoisomerism, it is worth-
while to compare the attitudes of several approaches towards the term ‘asymmetric atom’.
1. (Traditional Approach) The concept of ‘asymmetric carbon’ by van’t Hoff [24,25] is

originally concerned with a 2D structure 9-17 with four different achiral proligands
A, B, X, and Y, as shown in Fig. 9.11(a). A rise from 2D to 3D generates chiral pro-
molecules 9-16 (= 6-65 in Fig. 6.9 on page 157 or in Fig. 9.10) and 9-18, which are
regarded as enantiomers in the traditional terminology initiated by van’t Hoff [24,25].
Then such an asymmetric center (*) is correlated to a pair of enantiomers.
On the other hand, a 2D structure 9-20 with four different ligands A, B, p, and p (A
and B: achiral; p/p: a pair of enantiomeric proligands) generates achiral 3D structures
9-19 (= 6-100) and 9-21 (= 6-101), which are regarded as diastereomeric in the tradi-
tional terminology. Because the asymmetric center (**) of 9-20 provides such achiral
promolecules as 9-19 and 9-21, it is called ‘pseudoasymmetric center’ as an exeptional
case of ‘asymmetric center’. In fact, the prefix ‘pseudo’ of the term ‘pseudoasymmet-
ric’ aims at concealing the inconsistency of the term ‘asymmetric’, which is originally
ascribed to a chiral point group C1 assigned to 9-16 and 9-18 but is later required to be
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related to an achiral point group Cs assigned to the promolecule 9-19 (or 9-21) under
the action of the point group Td . This attitude of recognizing exceptions stems from the
implicit but misleading presumption that ‘asymmetry’ should be directly linked with
chirality (or enantiomeric relationships).

2. (Modern Stereochemical Approach) In the terminology of modern stereochemistry, the
concept of ‘asymmetric carbon atom’ is regarded as the prototype of a ‘stereogenic
atom’ [5], as pointed out by Mislow and Siegel [6]. The term ‘stereogenic’ is related
with the term ‘stereoisomeric’, so that it mixes up ‘asymmetric carbon’ (‘chiral center’
related to an enantiomeric relationship, e.g., between 9-16 and 9-18) with ‘pseudoasym-
metric carbon’ (‘pseudoasymmetric center’ related to a diastereomeric relationship,
e.g., between 9-19 and 9-21) as well as with ‘cis/trans-stereoisomeric double bond’
under the coinage of the term ‘stereogenic units’ [26]. As a result, the differentiation
between chirality and stereogenicity is not fully demonstrated under the framework of
the terminology of modern stereochemstry (e.g., the term ‘chiral center’ vs. the term
‘stereogenic center’ [26]). Moreover, the concept of ‘stereogenicity’ is misleadingly
regarded as a common basis for both R/S-stereodescriptors and Z/E-descriptors, which
should be conceptually differentiated from each other.

3. (The Present Stereoisogram Approach) The concept of RS-stereogenicity derived
from RS-permutation groups by Fujita [10,18] integrates (by no means mixes up)
‘asymmetric carbon’ with ‘pseudoasymmetric carbon’ in a rational fashion. The term
‘cis/trans-stereoisomeric double bond’ is automatically excluded by the definition
of RS-permutation groups (Def. 9.3). Moreover, the concept of RS-stereogenicity is
distinct from the concept of chirality.
The promolecule 9-16 (or 9-18) belongs to the RS-permutation group C1 (⊂Tσ̃ ), while
it belongs to the point group C1 (⊂ Td). The promolecule 9-19 (or 9-21) belongs to
the RS-permutation group C1 (⊂ Tσ̃ ), while it belongs to the point group Cs (⊂ Td).
The elucidation of the common RS-permutation group C1 (⊂ Tσ̃ ) is important to in-
dicate that the RS-stereogenic promolecules of C1 (⊂ Tσ̃ ) as 3D structures (9-16/9-18
and 9-19/9-21) correspond to the term ‘asymmetric’ as 2D structures. As a result, the
term ‘pseudoasymmetric’ is unnecessary to be considered under the action of the RS-
permutation group Tσ̃ . If the term ‘pseudoasymmetric’ is maintained for the sake of
historical convenience, the prefix ‘pseudo’ of the term ‘pseudoasymmetric’ should be
related solely to an achiral point group such as Cs assigned to the promolecule 9-19
(or 9-21) under the action of the point group Td . See the RS-stereogenicity-column of
Fig. 9.10, which lists promolecules ascribed to type-I, -III, and -V cases according to
Fujita’s stereoisogram approach [8,9,10].
In the present approach, the term ‘asymmetric carbon’ is restricted to the 2D structures
(e.g., the carbon attached by the symbol * in 9-17 or the carbon attached by the symbol
** in 9-20). This attitude succeeds the implicit connotation of the original definition by
van’t Hoff [24,25], in which an ‘asymmetric carbon’ and a ‘pseudoasymmetric carbon’
are not explicitly differentiated within the scope of 2D structures. The term ‘asymmetric
carbon’ should not be used to specify the 3D structures (e.g., the carbon attached by
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the symbol † in 9-16, 9-18, 9-19, or 9-21), which should be specified by the term RS-
stereogenic carbon.
It should be emphasized that the term RS-stereogenic carbon of the present ap-
proach is more specific than the broader term ‘stereogenic carbon’ of the approach
of modern stereochemistry. The concept of RS-stereogenicity is a single basis for R/S-
stereodescriptors, because Z/E-descriptors for ‘cis/trans-stereoisomeric double bond’
are automatically excluded from the scope of RS-stereogenicity.

Both the relationship between 9-16 and 9-18 and the relationship between 9-19 and
9-21 are determined to be RS-diastereomeric because both the relationships are concerned
with RS-stereogenicity. This mode of classification under the action of the RS-permutation
group Tσ̃ is schematically represented as follows:

Tσ̃ : �9-16 9-18� (9.51)

Tσ̃ : �9-19 9-21�, (9.52)

where a pair of floor brackets represents an equivalence class under the action of Tσ̃ . In
contrast, the mode of classification under the action of the point group Td is schematically
represented as follows:

Td : [9-16 9-18] (9.53)

Td : [9-19] [9-21], (9.54)

where a pair of square brackets represents an equivalence class under the action of Td . In Eq.
9.54, both the symbols [9-19] and [9-21] denote achiral entities, each of which is contained
in a one-membered orbit under Td .

Compare the set of Eqs. 9.51 and 9.52 with the set of Eqs. 9.53 and 9.54. The RS-
diastereomeric relationship between 9-16 and 9-18 (Eq. 9.51) coalesces with the enan-
tiomeric relationship between 9-16 and 9-16 (= 9-18) (Eq. 9.53). In contrast, Eqs. 9.52
and 9.54 exhibit no coalescence.

9.4.2 RS-Permutation Group for an Allene Skeleton

RS-Permutation Group D2σ̃
As another representative skeleton of ligancy 4 (Fig. 3.7 on page 68), the allene skeleton
3-9 belonging to the point group D2d has been detailedly discussed in Section 3.3. The four
positions of the allene skeleton 3-9 construct an orbit governed by the the coset represen-
tation D2d(/Cs). According to Def. 9.3, the corresponding RS-permutation group D2σ̃ can
be constructed, where Table 3.2 (page 68) for the point group D2d is transformed into Table
9.5 for the RS-permutation group D2σ̃ .
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Table 9.5. Operations of D2σ̃ and Coset Representation D2σ̃ (/Cσ̃ )

operation D2σ̃ (/Cσ̃ ) cycle
g ∈ D2σ̃ (product of cycles) term

A
C

I (1)(2)(3)(4) s4
1

C2(1) (1 2)(3 4) s2
2

C2(2) (1 4)(2 3) s2
2

C2(3) (1 3)(2 4) s2
2

σ̃d(1) (1)(2 4)(3) s2
1s2

σ̃d(2) (1 3)(2)(4) s2
1s2

˜S4 (1 2 3 4) s4
˜S3

4 (1 4 3 2) s4

By referring to the non-redundant set of subgroups (SSG) of D2d (Eq. 6.103 on page
159), the SSG of D2σ̃ is obtained as follows:

SSGD2σ̃ = {
1

C1,
2

C2,
2′

C ′2,
3

Cσ̃ ,
5

S
˜4,

7
C2σ̃ ,

6
D2,

9
D2σ̃}, (9.55)

where the reference number is attached to each subgroup in accord with Eq. 9.30, because
D2σ̃ is a subgroup of Tσ̃ . See the reference numbers attached over the equality symbols in

Eqs. 9.19–9.29. Note that
2

C2 and
2′

C ′2 are conjugate within Tσ̃ , but not conjugate within D2σ̃ .

Gross Enumeration of Allene Derivatives Under the RS-Permutation Group
D2σ̃
The combinatorial enumerations of promolecules derived from the allene skeleton 3-9 have
been conducted under the point group D2d as well as under the RS-permutation group D2σ̃
[27, Tables 3 and 4], where the subgroups of D2σ̃ are regarded as the subgroups of S[4]

9
(⊂ S[4]):

SSG
S[4]

9
= {S[4]

1 (= C1),S
[4]
2 ,S[4]

2′ ,S
[4]
3 ,S[4]

5 ,S[4]
7 ,S[4]

6 ,S[4]
9 } (9.56)

where the subgroups of SSG
S[4]

9
appear in the same order of the subgroups of SSGD2σ̃ (Eq.

9.55). The subscript of each subgroup in Eq. 9.56 corresponds to the reference number
attached over the equality symbol in each of Eqs. 9.19–9.29.

To confirm the data obtained under the RS-permutation group D2σ̃ (∼= S[4]
9 ) [27, Table

3], let us examine the gross enumeration of allene derivatives under D2σ̃ . The CI-CF shown
in Eq. 7.31 (page 185) is rewritten by substituting sd for ad , cd , or bd . Thereby, we obtain
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the CI for gross enumeration:

CI(D2σ̃ ;sd) =
1
8
(s4

1 +3s2
2 +2s2

1s2 +2s4). (9.57)

Suppose that the four positions are substituted by proligands selected from the proligand
inventory L (Eq. 6.73 on page 153). Then, the ligand-inventory function shown in Eq. 9.43
is introduced into the CI (Eq. 9.57). After expansion, we obtain the following generating
function for gross enumeration:

f ′3-9 = {A4 + · · ·}+{A3B+ · · ·}+{(A3p+A3p)+ · · ·}
+{2A2B2 + · · ·}+{2(A2p2 +A2p2)+ · · ·}+{2A2BX+ · · ·}
+{2(A2Bp+A2Bp)+ · · ·}+{2A2pp+ · · ·}
+{2(A2pq+A2pq)+ · · ·}+{3ABXY+ · · ·}
+{3(ABXp+ABXp)+ · · ·}+{2(ABp2 +ABp2)+ · · ·}
+{3ABpp+ · · ·}+{3(ABpq+ABpq)+ · · ·}+{(Ap3 +Ap3)+ · · ·}
+{2(Ap2p+App2)+ · · ·}+{2(Ap2q+Ap2q)+ · · ·}
+{3(Appq+Appq)+ · · ·}+{3(Apqr+Apqr)+ · · ·}
+{(p4 +p4)+ · · ·}+{(p3p+pp3)+ · · ·}+{(p3q+p3q)+ · · ·}
+{2p2p2 + · · ·}++{2(p2pq+pp2q)+ · · ·}+{2(p2q2 +p2q2)+ · · ·}
+{2(p2qq+p2qq)+ · · ·}+{2(p2qr+p2qr)+ · · ·}+{3ppqq+ · · ·}
+{3(ppqr+ppqr)+ · · ·}+{3(pqrs+pqrs)+ · · ·}. (9.58)

Compare this generating function with Eq. 7.32 (page 185). The coefficient of each term in
Eq. 9.58 is consistent with the sum of the corresponding row of the tables obtained by the
symmetry-itemized enumeration under the RS-permutation group D2σ̃ (∼= S[4]

9 ) [27, Tables
3 and 4].

RS-Diastereomeric and Enantiomeric Relationships
According to the coefficient 3 of the term 3ABXY in Eq. 9.58, there appear three inequiva-
lent promolecules with the composition ABXY, which belong to C1 under the action of the
RS-permutation group D2σ̃ [27, Table 3]. They are depicted in Fig. 9.12(a).8 Compare this
figure with Fig. 6.13 (page 162) obtained under the point group D2d .

8 The numbering of positions in Fig. 9.12 obeys the action of S[4]. This means that the reference promolecule
6-103 (or 6-106) is permuted under the action of S[4]. If the action is restricted to that of D2σ̃ (∼= S[4]

9 ), the
respective pairs {6-103, 9-22}, {6-104, 9-23}, and {6-105, 9-24} should be permuted separately under the
action of D2σ̃ (∼= S[4]

9 ). In this permutation, the mode of position numbering for {6-103, 9-22} should be used.
For example, 6-104 is generated by placing { f (1) = A, f (2) = B, f (3) = X, f (4) = Y} on the positions
numbered for {6-103, 9-22}. This is the way adopted in the combinatorial enumeration under the action of
D2σ̃ (∼= S[4]

9 ) [27].
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(a) Coalescence Between RS-Diastereomeric and Enantiomeric Relationships
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Fig. 9.12. Allene derivatives (a) with the composition ABXY exhibiting coalescence between RS-
diastereomeric and enantiomeric ralationships as well as (b) with the composition ABpp exhibiting
no coalescence between RS-diastereomeric and enantiomeric ralationships.

Each pair {6-103, 9-22}, {6-104, 9-23}, or {6-105, 9-24} constructs an equiva-
lence class (orbit) under the action of D2σ̃ , so that two molecules of each pair are RS-
diastereomeric to each other. The result of the action of D2σ̃ is summarizied as follows:

{�6-103 9-22� �6-104 9-23� �6-105 9-24�}, (9.59)

where a pair of floor brackets represents an equivalence class under the action of D2σ̃ .
The RS-diastereomeric relationship shown in Fig. 9.12(a) is concluded to coalesce with an
enantiomeric relationship shown in Fig. 6.13(a) (page 162), which has been obtained under
the point group D2d . The result of the action of D2d is summarized as follows:

{[6-103 9-22] [6-104 9-23] [6-105 9-24]}, (9.60)

where a pair of square brackets represents an equivalence class under the action of D2d .
A seemingly parallel partition of Eq. 9.59 to that of Eq. 9.60 stems from the coalescence
between the RS-diastereomeric relationship (due to D2σ̃ ) and the enantiomeric relationship
(due to D2d).

According to the coefficient 3 of the term 3ABpp in Eq. 9.58, there appear three in-
equivalent promolecules with the composition ABpp, which belong to C1 under the action
of the RS-permutation group D2σ̃ [27, Table 3]. They are depicted in Fig. 9.12(b). Each
pair {6-106, 9-25}, {6-108, 9-26}, or {6-109, 9-27} constructs an equivalence class (orbit)
under the action of D2σ̃ , so that two molecules of each pair are RS-diastereomeric to each
other.
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From the viewpoint of the RS-permutation group D2σ̃ (not from the viewpoint of the
point group D2d), the comparison between Fig. 9.12(a) and Fig. 9.12(b) indicates the paral-
lelism of the two cases, each of which consists of three pairs of RS-diastereomers (not three
pairs of enantiomers).

The data depicted in Fig. 9.12(b) exhibit sharp contrast to the data of enumeration under
the point group D2d [27, Table 3], which indicate the presence of two achiral promolecules
of Cs (⊂ D2d) and two enantiomeric pairs of promolecules of C1 (⊂ D2d), as shown in Fig.
6.13(b) on page 162.

It should be emphasized that 6-106 (or 9-25) belongs to C1 under the action of the RS-
permutation group D2σ̃ , so that a pair of RS-diastereomers 6-106 and 9-25 is counted once
under D2σ̃ . This mode of counting is schematically represented as follows:

{�6-106 9-25� �6-108 9-26� �6-109 9-27�}, (9.61)

where a pair of floor brackets represents an equivalence class under the action of D2σ̃ . In
contrast, the same 6-106 (or 9-25) belongs to Cs under the action of the point group D2d , so
that the respective promolecules 6-106 and 9-25 separately counted as two achiral entities
under D2d . This mode of counting is schematically represented in a different fashion from
Eq. 9.61:

{[6-106] [9-25] [6-108 9-27] [6-109 9-26]}, (9.62)

where a pair of square brackets represents an equivalence class under the action of D2d .
Thus, the action of the RS-permutation group D2σ̃ (Eq. 9.61) is clearly differentiated from
the action of the point group D2d (Eq. 9.62). See Remark 9.3 for the confusion between
RS-permutation groups (e.g., C3σ̃ ) and point groups (e.g., C3v), which has been widely
spread in modern stereochemistry. The confusion stems from the misleading extension of
the seemingly parallel partition between Eq. 9.59 and Eq. 9.60 into a general case.

9.4.3 RS-Permutation Group for an Ethylene Skeleton

Degeneration of the Coset Representation of an RS-Permutation Group
As a further representative skeleton of ligancy 4 (Fig. 3.7 on page 68), the ethylene skeleton
3-10 belonging to the point group D2h has been detailedly discussed in Section 3.3. The
four positions of the ethylene skeleton 3-10 construct an orbit governed by the the coset
representation D2h(/C ′′s ). According to Def. 9.3, the corresponding RS-permutation group
D2˜h can be constructed, so that Table 3.3 (page 69) for the point group D2h is transformed
into Table 9.6 for the RS-permutation group D2˜h.

The four position of 3-10 constucts an orbit governed by the coset representation
D2h(/C ′′s ) derived from the point group D2h. The corresponding coset representation
D2˜h(/C

˜h) based on the RS-permutation group D2˜h degenerates to give D2(/C1), because
the operations corresponding to rotations are identical with those corresponding to RS-
permutations.
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Table 9.6. Operations of D2˜h as Well as a Degenerate Coset Representation D2˜h(/C
˜h) and a Non-

Degenerate Coset representation D2˜h(/C1)

operation D2˜h(/C
˜h) cycle D2˜h(/C1) cycle

g ∈ D2˜h (product of cycles) term (product of cycles) term

A
C

I (1)(2)(3)(4) s4
1 (1)(2)(3)(4)(5)(6)(7)(8) s8

1

C2(1) (1 2)(3 4) s2
2 (1 2)(3 4)(5 6)(7 8) s4

2
C2(2) (1 4)(2 3) s2

2 (1 4)(2 3)(5 8)(6 7) s4
2

C2(3) (1 3)(2 4) s2
2 (1 3)(2 4)(5 7)(6 8) s4

2

σ̃h (1)(2)(3)(4) s4
1 (1 5)(2 6)(3 7)(4 8) s4

2

ı̃ (1 4)(2 3) s2
2 (1 8)(2 7)(3 6)(4 5) s4

2
σ̃d(1) (1 2)(3 4) s2

2 (1 2)(3 4)(5 6)(7 8) s4
2

σ̃d(2) (1 3)(2 4) s2
2 (1 3)(2 4)(5 7)(6 8) s4

2

C C

3

1 2

4
8

4

6
2

7
3

5
1

3-10 9-28
D2h(/C ′′s ); D2˜h(/C

˜h) D2h(/C1); D2˜h(/C1)

Fig. 9.13. Skeletons belonging to the point group D2h as well as to the RS-permutation group D2˜h.

It is worthwhile to refer to a cyclopropylidenecyclopropane skeleton 9-28 (Fig. 9.13)
as a non-degenerate case of a coset representation of the RS-permutation group D2˜h. The
eight positions of 9-28 construct an orbit governed by the coset representation D2˜h(/C1) of
the RS-permutation group D2˜h, which is non-degenerate as shown in the right part of Table
9.6. The coset representation D2˜h(/C1) is derived from the coset representation D2h(/C1)
of the point gorup D2h according to Def. 9.3.

Enumeration of Ethylene Derivatives Under the RS-Permutation Group
Because the RS-permutation group D2˜h for characterizing the ethylene skeleton 3-10 turns
out to degenerate to D2, the four positions of 3-10 (Fig. 9.13) is regarded as being governed
by the coset representation D2(/C1). Hence, the cycle terms appearing in the A part of Table
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9.6 are selected to give a cycle index (CI) without chirality fittingness as follows:

CI(D2;sd) =
1
4
(s4

1 +3s2
2), (9.63)

which is a simple application of the Pólya’s theorem (cf. Section 7.2). In other words, the
chirality fittingness based on the concept of sphericities, which has been introduced in Fu-
jita’s proligand method (cf. Section 7.3), is not taken into consideration. Suppose that the
four positions are substituted by proligands selected from the proligand inventory L (Eq.
6.73 on page 153). The ligand-inventory function (Eq. 9.43) is introduced into the CI (Eq.
9.63) and the resulting equation is expanded to give the following generating function:

f ′3-10 = {A4 + · · ·}+{A3B+ · · ·}+{(A3p+A3p)+ · · ·}
+{3A2B2 + · · ·}+{3(A2p2 +A2p2)+ · · ·}+{3A2BX+ · · ·}
+{3(A2Bp+A2Bp)+ · · ·}+{3A2pp+ · · ·}+{3(A2pq+A2pq)+ · · ·}
+{6ABXY+ · · ·}+{6(ABXp+ABXp)+ · · ·}+{3(ABp2 +ABp2)+ · · ·}
+{6ABpp+ · · ·}+{6(ABpq+ABpq)+ · · ·}+{(Ap3 +Ap3)+ · · ·}
+{3(Ap2p+App2)+ · · ·}+{3(Ap2q+Ap2q)+ · · ·}
+{6(Appq+Appq)+ · · ·}+{6(Apqr+Apqr)+ · · ·}
+{(p4 +p4)+ · · ·}+{(p3p+pp3)+ · · ·}+{(p3q+p3q)+ · · ·}
+{3p2p2 + · · ·}++{3(p2pq+pp2q)+ · · ·}+{3(p2q2 +p2q2)+ · · ·}
+{3(p2qq+p2qq)+ · · ·}+{3(p2qr+p2qr)+ · · ·}+{6ppqq+ · · ·}
+{6(ppqr+ppqr)+ · · ·}+{6(pqrs+pqrs)+ · · ·}. (9.64)

The term 6ABXY appearing in Eq. 9.64 indicates the presence of six promolecules
with the composition ABXY, which are inequivalent under the action of the RS-permutation
group D2 (or D2˜h). Each of them (9-29–9-34) belongs to the RS-permutation group C1

(⊂ D2), as depicted in Fig. 9.14(a). For the sake of convenience, the four positions of each
promolecule numbered according to the action of S[4], where the same function { f (1) = A,
f (2) = B, f (3) = X, f (4) = Y} is applied to give each of the promolecules (9-29–9-34). If
the action of D2 (or D2˜h) is focused on, the mode of numbering in 9-29 should be selected,
so that a distinct function (e.g., { f (1) = A, f (2) = Y, f (3) = B, f (4) = X} for 9-29) should
be applied to give each of them (9-29–9-34).

This mode of counting is schematically represented as follows:

{�9-29� �9-30� �9-31� �9-32� �9-33� �9-34�} , (9.65)

where a pair of floor brackets represents an equivalence class under the action of D2 (or
D2˜h).

From the viewpoint of the point group D2h, each of 9-29–9-34 belongs to the point
group C ′′s (= {I,σh}) [27, Table 3]. The term 6ABXY in the generating function for D2h

(Eq. 7.34 on page 186) indicates that there are six achiral promolecules with the composition
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(a) Coalescence Between Self-RS-Diastereomeric and Self-Enantiomeric Relationships

C C

B

A X

Y

1 2

3 4

C C

B

A Y

X

1 4

3 2

C C

X

A B

Y

1 3

2 4

C C

X

A Y

B

1 4

2 3

C C

Y

A X

B

1 2

4 3

C C

Y

A B

X

1 3

4 2

9-29 9-30 9-31 9-32 9-33 9-34
C1(⊂ D2) C1(⊂ D2) C1(⊂ D2) C1(⊂ D2) C1(⊂ D2) C1(⊂ D2)
︸ ︷︷ ︸

Z/E, C1 (⊂ ˜D2)
︸ ︷︷ ︸

Z/E, C1 (⊂ ˜D2)
︸ ︷︷ ︸

Z/E, C1 (⊂ ˜D2)

(b) No Coalescence Between RS-Diastereomeric and Enantiomeric Relationships

C C

B

A p

p

1 2

3 4

C C

B

A p

p

1 4

3 2

C C

p

A B

p

1 3

2 4

C C

p

A p

B

1 4

2 3

C C

p

A p

B

1 2

4 3

C C

p

A B

p

1 3

4 2

9-35 9-36 (= 9-35) 9-37 9-38 9-39 (= 9-38) 9-40 (= 9-37)
C1(⊂ D2) C1(⊂ D2) C1(⊂ D2) C1(⊂ D2) C1(⊂ D2) C1(⊂ D2)
︸ ︷︷ ︸

Z/E, C1 (⊂ ˜D2)
︸ ︷︷ ︸

Z/E, C1 (⊂ ˜D2)
︸ ︷︷ ︸

Z/E, C1 (⊂ ˜D2)

Fig. 9.14. Ethylene derivatives (a) with the composition ABXY exhibiting coalescence between
self-RS-diastereomeric and self-enantiomeric ralationships as well as (b) with the composition
ABpp exhibiting no coalescence between RS-diastereomeric and enantiomeric ralationships.

ABXY. This mode of counting is schematically represented in a different fashion from Eq.
9.65:

{[9-29] [9-30] [9-31] [9-32] [9-33] [9-34]} , (9.66)

where a pair of square brackets represents an equivalence class under the action of D2h. Al-
though there appears a seeming parallelism between Eq. 9.65 and Eq. 9.66, such a seeming
parallelism should not be extended into a general case.

The term 6ABpp appearing in Eq. 9.64 indicates the presence of six promolecules with
the compostion ABpp, which are inequivalent under the action of the RS-permutation group
D2 (or D2˜h). Each of them (9-35–9-40) belongs to the RS-permutation group C1 (⊂ D2), as
depicted in Fig. 9.14(b). This mode of counting is schematically represented as follows:

{�9-35� �9-36� �9-37� �9-38� �9-39� �9-40�} , (9.67)

where a pair of floor brackets represents an equivalence class under the action of D2 (or
D2˜h).

The symmetry-itemized enumeration under the point group D2h indicates the presence
of three pairs of enantiomers [27, Table 3]. This enumeration is confirmed by the gross enu-
meration shown in the generating function of Eq. 7.34 (page 186). Thus the term 3ABpp in
Eq. 7.34 indicates the presence of three pairs of enantiomers, each pair of which is counted
once as an equivalence class under the action of the point group D2h. These are found to be
a pair of 9-35/9-36 (= 9-35), a pair of 9-37/9-40 (= 9-37), and a pair of 9-38/9-39 (= 9-38),
if Fig. 9.14(b) is carefully examined. This mode of counting is schematically represented in
a different fashion from Eq. 9.67:

{

[9-35 9-36 (= 9-35)] [9-37 9-40 (= 9-37)] [9-38 9-39 (= 9-38)]
}

, (9.68)
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where a pair of square brackets represents an equivalence class under the action of D2h.
Thus, the action of the RS-permutation group D2 (or D2˜h) (Eq. 9.67) is clearly differ-

entiated from the action of the point group D2h (Eq. 9.68). See Remark 9.3. The confusion
concerning D2 (or D2˜h) and D2h stems from the misleading extension of the seemingly
parallel partition between Eq. 9.65 and Eq. 9.66 into a general case.

Enumeration of Ethylene Derivatives Under the Permutation Group With
Respect to Z/E-Isomerism
To characterize Z/E-isomerism of an ethylene skeleton 3-10, let us define a new permutation
group called a ZE-permutation group:

˜D2 = D2 +D2ẽ, (9.69)

where the symbol ẽ represents the twist of the double bond, e.g., ẽ∼ (1)(2 4)(3). Note that
the operation ẽ (∼ (1)(2 4)(3)) can be equalized to the operation σ̃d(1) (∼ (1)(2 4)(3)) listed

in Table 9.5. Then, the ZE-permutation group ˜D2 is isomorphic to the group S[4]
9 (∼= D2σ̃ )

described above.9 The data of D2σ̃ (the cycle terms collected in Table 9.5) are used for
the enumeration under the ZE-permutation group ˜D2. Thereby, the following CI without
chirality fittingness is obtained:

CI(˜D2;sd) =
1
8
(s4

1 +3s2
2 +2s2

1s2 +2s4). (9.70)

The ligand-inventory function (Eq. 9.43) is introduced into the CI (Eq. 9.70). The resulting
equation is expanded to give the following generating function:

˜f3-5 = {A4 + · · ·}+{A3B+ · · ·}+{(A3p+A3p)+ · · ·}
+{2A2B2 + · · ·}+{2(A2p2 +A2p2)+ · · ·}+{2A2BX+ · · ·}
+{2(A2Bp+A2Bp)+ · · ·}+{2A2pp+ · · ·}+{2(A2pq+A2pq)+ · · ·}
+{3ABXY+ · · ·}+{3(ABXp+ABXp)+ · · ·}+{2(ABp2 +ABp2)+ · · ·}
+{3ABpp+ · · ·}+{3(ABpq+ABpq)+ · · ·}+{(Ap3 +Ap3)+ · · ·}
+{2(Ap2p+App2)+ · · ·}+{2(Ap2q+Ap2q)+ · · ·}
+{3(Appq+Appq)+ · · ·}+{3(Apqr+Apqr)+ · · ·}
+{(p4 +p4)+ · · ·}+{(p3p+pp3)+ · · ·}+{(p3q+p3q)+ · · ·}
+{2p2p2 + · · ·}++{2(p2pq+pp2q)+ · · ·}+{2(p2q2 +p2q2)+ · · ·}
+{2(p2qq+p2qq)+ · · ·}+{2(p2qr+p2qr)+ · · ·}+{3ppqq+ · · ·}
+{3(ppqr+ppqr)+ · · ·}+{3(pqrs+pqrs)+ · · ·}. (9.71)

9 The symmetry-itemized enumeration under the group S[4]
9 (∼= D2σ̃ ) has been reported in comparison with

the enumeration under the point group D2h [27].
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The term 3ABXY in Eq. 9.71 indicates the presence of three pairs of Z/E-isomers with
the composition ABXY. As a result, the six promolecules listed in Fig 9.14(a) are cate-
gorized into a pair of 9-29/9-30, a pair of 9-31/9-32, and a pair of 9-33/9-34. Note that
each pair constructs an equivalence class, which is counted once under the action of the
ZE-permutation group ˜D2. This mode of counting is schematically represented by Eq. 9.72,
which is derived from Eq. 9.65 by applying the ZE-permutation group ˜D2:

{〈�9-29� �9-30�〉 〈�9-31� �9-32�〉 〈�9-33� �9-34�〉} , (9.72)

where a pair of angle brackets represents an equivalence class under the action of ˜D2.
A seeming parallel partition is obtained by applying ˜D2 to Eq. 9.66 as follows:

{〈[9-29] [9-30]〉 〈[9-31] [9-32]〉 〈[9-33] [9-34]〉} , (9.73)

where a pair of angle brackets represents an equivalence class under the action of ˜D2. Note
that each promolecule in Eq. 9.73 is achiral so that the effect of a reflection does not appear
explicitly.

The term 3ABpp in Eq. 9.71 indicates the presence of three pairs of Z/E-isomers with
the composition ABpp. As a result, the six promolecules listed in Fig 9.14(b) are categorized
into a pair of 9-35/9-36. a pair of 9-37/9-38, and a pair of 9-39/9-40, where each pair con-
structs an equivalence class, which is counted once under the action of the ZE-permutation
group ˜D2. This mode of counting is schematically represented by Eq. 9.74, which is derived
from Eq. 9.65 by applying the ZE-permutation group ˜D2:

{〈�9-35� �9-36�〉 〈�9-37� �9-38�〉 〈�9-39� �9-40�〉} , (9.74)

where a pair of angle brackets represents an equivalence class under the action of ˜D2. Be-
cause 9-37 and 9-40 (= 9-37)] (or 9-38 and 9-39 (= 9-38)) should be paired as a pair of
enantiomers, Eq. 9.74 does not properly support such a mode of pairing.

It is worthwhile to discuss the partition 〈�9-35� �9-36�〉 in Eq. 9.74 from the viewpoint
of ‘geometric enantiomerism’ which has been discussed for Fig. 1.8 (page 13). The symbols
�9-35� and �9-36� indicate that they are separately counted once under the action of D2 (or
D2˜h), so that they are inequivalent to each other under D2 (or D2˜h). Even though D2 (or D2˜h)
is confused with D2h in modern stereochemistry, the enantiomeric relationship between 9-35
and 9-36 cannot be elucidated by the action of D2 (or D2˜h). The partition 〈�9-35� �9-36�〉
in Eq. 9.74 indicates that �9-35� and �9-36� are equivalent to each other under the action of
˜D2. It follows that 9-35 and 9-36 are ‘geometric isomers’ which are characterized by a pair
of Z/E-descriptors. However, Eq. 9.74 cannot indicate an enantiomeric relationship, so that
it is insufficient to derive the term ‘geometric enantiomers’. To derive the term ‘geometric
enantiomers’, strictly speaking, modern stereochemistry mixes up the action of D2 (or D2˜h)
with the action of D2h.

By applying the ZE-permutation group ˜D2 to Eq. 9.68, we obtain the following parti-
tion:

{〈

[9-35 9-36 (= 9-35)]
〉 〈

[9-37 9-40 (= 9-37)] [9-38 9-39 (= 9-38)]
〉}

, (9.75)
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where a pair of angle brackets represents an equivalence class under the action of ˜D2. To
bundle the four promolecules (i.e., [9-37 9-40 (= 9-37)] [9-38 9-39 (= 9-38)]) in a pair of
angle brackets, each pair of enantiomers should be considered in a bundle. This treatment is
rather artificial but can be rationalized later by developing Fujita’s stereoisogram approach.

Exercise 9.4.
– Review a pair of enantiomers and a pair of Z/E-descriptors by examining 9-35–9-40

shown in Fig. 9.14(b).
– Review the difference between the term ‘stereogenicity’ of modern stereochemistry and

the term RS-stereogenicity defined in this chapter.

References

[1] N. G. de Bruijn, Indag. Math., 21, 59–69 (1959).

[2] E. Ruch, W. Hässelbarth, and B. Richter, Theor. Chim. Acta, 19, 288–300 (1970).

[3] I. Ugi, D. Marquarding, H. Klusacek, G. Gokel, and P. Gillespie, Angew. Chem. Int.
Ed. Engl., 9, 703–730 (1970).

[4] I. Ugi, J. Dugundji, R. Kopp, and D. Marquarding, “Perspectives in Theoretical Stereo-
chemistry”, Vol. 36 of Lecture Notes in Chemistry, Springer-Verlag, Heidelberg (1984).

[5] G. E. McCasland, “A New General System for the Naming of Stereoisomers”, Chemi-
cal Abstracts, Columbus (1953).

[6] K. Mislow and J. Siegel, J. Am. Chem. Soc., 106, 3319–3328 (1984).

[7] A. von Zelewsky, “Stereochemistry of Coordination Compounds”, John Wiley & Sons,
Chichester (1996).

[8] S. Fujita, J. Org. Chem., 69, 3158–3165 (2004).

[9] S. Fujita, J. Math. Chem., 35, 265–287 (2004).

[10] S. Fujita, Tetrahedron, 60, 11629–11638 (2004).

[11] S. Fujita, J. Math. Chem., 33, 113–143 (2003).

[12] S. Fujita, MATCH Commun. Math. Comput. Chem., 71, 511–536 (2014).

[13] S. Fujita, MATCH Commun. Math. Comput. Chem., 71, 537–574 (2014).

[14] S. Fujita, MATCH Commun. Math. Comput. Chem., 71, 575–608 (2014).

[15] S. Fujita, J. Math. Chem., 52, 508–542 (2014).

[16] S. Fujita, J. Math. Chem., 52, 543–574 (2014).

[17] S. Fujita, J. Math. Chem., 52, 1514–1534 (2014).

[18] S. Fujita, Tetrahedron: Asymmetry, 25, 1169–1189 (2014).



272 9 Permutation-Group Symmetry

[19] IUPAC Organic Chemistry Division, Pure Appl. Chem., 68, 2193–2222 (1996).

[20] S. Fujita, “Diagrammatical Approach to Molecular Symmetry and Enumeration of
Stereoisomers”, University of Kragujevac, Faculty of Science, Kragujevac (2007).

[21] S. Fujita, Bull. Chem. Soc. Jpn., 74, 1585–1603 (2001).

[22] S. Fujita, Chem. Rec., 2, 164–176 (2002).

[23] S. Fujita, “Symmetry and Combinatorial Enumeration in Chemistry”, Springer-Verlag,
Berlin-Heidelberg (1991).

[24] J. H. van’t Hoff, Archives Néerlandaises des Sciences exactes et naturelles, 9, 445–454
(1874).

[25] J. H. van’t Hoff, A Suggestion Looking to the Extension into Space of the Structural
Formulas at Present Used in Chemistry. And a Note Upon the Relation Between the
Optical Activity and the Chemical Constitution of Organic Compounds, in “Founda-
tions of Stereochemistry, Memoirs of Pasteur, van’t Hoff, Le Bel and Wislicenus”, ed.
by G. M. Richardson, American Book Co., New York (1901) pp 35–46.

[26] G. Helmchen, A. General Aspects. 1. Nomenclature and Vocabulary of Organic Stere-
ochemistry, in “Stereoselective Synthesis. Methods of Organic Chemistry (Houben-
Weyl). Workbench Edition E21”, 4th ed., ed. by G. Helmchen, R. W. Hoffmann, J.
Mulzer, and E. Schaumann, Georg Thieme, Stuttgart New York (1996) Vol. 1 pp 1–74.

[27] S. Fujita, Bull. Chem. Soc. Jpn., 75, 1949–1962 (2002).



10 Stereoisograms and RS-Stereoisomers1

10.1 Stereoisograms as Integrated Diagrammatic
Expressions

As discussed in Section 9.4, point groups are different from RS-permutation groups in the
actions on skeletons of ligancy 4 and so on. Although point groups and RS-permutation
groups exhibit seemingly parallel behaviors towards derivatives of the composition ABXY,
they exhibit different behaviors towards derivatives of the composition ABpp. Modern stere-
ochemistry has selected the seemingly parallel behaviors towards the composition ABXY as
standards for discussions and has regarded the different behaviors towards the composition
ABpp as exceptions. This means that modern stereochemistry has suffered from the duality
of standard cases and exceptional cases without arriving at a single criterion. Thus, the lack
of the concept of RS-permutation groups inhibits proper recognitions of state-of-the-art sit-
uations so as to cause continuous confusion. In this chapter, stereoisograms are introduced
as diagrammatic expressions for integrating point groups and RS-permutation groups.

10.1.1 Elementary Stereoisograms of Skeletons with Position Numbering

Integration of Point Groups and RS-Permutation Groups
To integrate point groups (Chapter 3) and RS-permutation groups (Chapter 9), the stereoiso-
gram approach has been developed by Fujita [1–3]. It should be emphasized that permuta-
tion groups are substantially restricted to RS-permutation groups in order to accomplish the
integration of geometric features and stereoisomeric features in stereochemistry.

Let us first select the numbered skeleton 8-1a as a reference skeleton from the homo-
meric numbered skeletons listed in the top row of Fig. 8.1 (page 195) or in the top row of
Fig. 9.4 (page 241). This skeleton is renumbered to be 10-1, which is placed at the upper-
left corner of Fig. 10.1. The mirror-numbered skeleton 8-1d is selected from the homomeric
mirror-numbered skeletons listed in the bottom row of Fig. 8.1. This skeleton is renumbered
to be 10-1, which is placed at the lower-left corner of Fig. 10.1. Thereby, the vertical direc-
tion of Fig. 10.1 (linked with a double-headed arrow attached by an encircled solid circle)
represents the conversions shown in Fig. 8.1, which are based on the action of the point
group C3v. In other words, the trigonal pyramidal skeleton 10-1 and the mirror-numbered
skeleton 10-1 in the vertical direction are in an enantiomeric relationship.

1 This chapter is based on S. Fujita, “Stereogenicity Revisited. Proposal of Holantimers for Comprehending
the Relationship between Stereogenicity and Chirality”, J. Org. Chem., 69, 3158–3165 (2004); S. Fujita, “In-
tegrated Discussion on Stereogenicity and Chirality for Restructuring Stereochemistry”, J. Math. Chem., 35,
265–287 (2004); and S. Fujita, Pseudoasymmetry, Stereogenicity, and the RS-Nomenclature Comprehended
by the Concepts of Holantimers and Stereoisograms”, Tetrahedron, 60, 11629–11638 (2004).
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The point group C3v (cf. Table 8.1 on page 196) is divided into two parts (A and B) by
the coset decomposition:

C3v = C3
A

+C3σv(1)
B

, (10.1)

where the homomeric numbered skeletons listed in the top row of Fig. 8.1 (page 195) corre-
sponds to the coset C3 (= C3I), while the homomeric mirror-numbered skeletons listed in
the bottom row of Fig. 8.1 corresponds to the coset C3σv(1). Hence, the coset C3 (= C3I) is
represented by the reference numbered skeleton 10-1, while the coset C3σv(1) is represented
by the mirror-numbered skeleton 10-1.

Next, the RS-numbered skeleton 8-1d′ is selected from the homomeric RS-numbered
skeletons listed in the bottom row of Fig. 9.4 (page 241). This skeleton is renumbered to be
10-2, which is placed at the upper-right corner of Fig. 10.1. Thereby, the horizontal direction
of Fig. 10.1 (linked with a double-headed arrow attached by an open circle) represents the
conversions shown in Fig. 9.4, which are based on the action of the RS-permutation group
C3σ̃ . In other words, the skeleton 10-1 and the RS-numbered skeleton 10-2 in the horizontal
direction are in an RS-diastereomeric relationship.

The RS-permutation group C3σ̃ (cf. Table 9.1 on page 240) is divided into two parts (A
and C) by the coset decomposition:

C3σ̃ = C3
A

+C3σ̃v(1)
C

, (10.2)

where the homomeric numbered skeletons listed in the top row of Fig. 9.4 corresponds to
the coset C3 (= C3I), while the homomeric RS-numbered skeletons listed in the bottom row
of Fig. 9.4 corresponds to the coset C3σ̃v(1). Hence, the coset C3 (= C3I) corresponds to the
reference numbered skeleton 10-1, while the coset C3σ̃v(1) corresponds to the RS-numbered
skeleton 10-2.

Ligand-Reflection Groups
Now, let us examine the relationship between the mirror-numbered skeleton 10-1 and the
RS-numbered skeleton 10-2 in the diagonal direction of Fig. 10.1. The interconversion of
10-1 into 10-2 represented by the following equation:

̂Iσv(1) = σ̃v(1) or σv(1) = ̂Iσ̃v(1) (10.3)

where the operation ̂I is represented by ̂I ∼ (1)(2)(3), because of σv(1) ∼ (1)(2 3) and
σ̃v(1) ∼ (1)(2 3). Thus, we obtain:

̂I = σ̃v(1)σ−1
v(1) = σv(1)σ̃−1

v(1) ∼ (1)(2)(3). (10.4)

By using ̂I ∼ (1)(2)(3), we introduce the following operations named ligand reflec-
tions:

̂I = ̂I I = I ̂I (10.5)
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Fig. 10.1. Elementary stereoisogram of numbered trigonal pyramidal skeletons. The other modes
of sequential numbering are permitted without losing generality.

̂C3 = ̂IC3 = C3 ̂I (10.6)
̂C2

3 = ̂IC2
3 = C2

3
̂I, (10.7)

where the skeleton 10-1 is not changed, while the chirality sense of each proligand is con-
verted into the opposite chirality sense. Thereby, we are able to construct the following
group C3̂I named a ligand-reflection group:

C3̂I = {I,C3,C2
3 ,̂I, ̂C3, ̂C2

3} (10.8)

∼ {(1)(2)(3),(1 3 2),(1 2 3),(1)(2)(3),(1 3 2),(1 2 3)}, (10.9)

the elements of which are listed in Table 10.1. Because each position is fixed (stabilized) by
the action of C

̂I = {I,̂I}, Eq. 10.9 is found to be the coset representation C3̂I(/C
̂I).

In a parallel way to Fig. 8.1 (page 195) showing symmetry operations of the point group
C3v as well as to Fig. 9.4 (page 241) showing symmetry operations of the RS-permutation
group C3σ̃ , the action of the ligand-reflection group C3̂I on 8-1 is illustrated in Fig. 10.2,
where the bottom row lists homomeric ligand-mirror-numbered (LM-numbered) skeletons.

The coset decomposition of the ligand-reflection group C3̂I is obtained as follows:

C3̂I = C3
A

+C3̂I
D

, (10.10)

which divides the ligand-reflection group C3̂I into two parts (A and D). The coset C3 (=
C3I) corresponds to the top row of Fig. 10.2, while the coset C3̂I corresponds to the bottom
row which lists homomeric LM-numbered skeletons.

In a similar way to Theorem 3.3 (page 62) for point groups as well as to Theorem
9.1 (page 245) for RS-permutation groups, the term homomeric is used under the action of
ligand-reflection groups in accord with the following theorem:



276 10 Stereoisograms and RS-Stereoisomers

Table 10.1. Operations of C3̂I and Coset Representation C3̂I(/C
̂I)

operation C3̂I(/C
̂I) PSI (product of cycle

g ∈ C3̂I (product of cycles) sphericity indices) term

A
D

I (1)(2)(3) b3
1 s3

1
C3 (1 3 2) b3 s3

C2
3 (1 2 3) b3 s3

̂I (1)(2)(3) a3
1 s3

1
̂C3 (1 3 2) a3 s3
̂C2

3 (1 2 3) a3 s3

�
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�
3

1
2

�
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3
1

Numbered Skeletons

8-1a, I 8-1b,C3 8-1c,C2
3

(1)(2)(3) (1 3 2) (1 2 3)

�
1
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3
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3
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2
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2
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1

LM-Numbered Skeletons

8-1d′′,̂I 8-1e′′, ̂C3 8-1f′′, ̂C2
3

(1)(2)(3) (1 3 2) (1 2 3)

Fig. 10.2. Symmetry operations for a trigonal pyramidal skeleton (8-1) under the ligand-reflection
group C3̂I . The identity operation (I) converts 8-1 into itself, where the resulting skeleton is de-
noted as 8-1a [4]. The top row lists homomeric numbered skeletons, while the bottom row lists
homomeric LM-numbered skeletons.

Theorem 10.1 (Homomeric Relationship under Ligand-Reflection Groups). Suppose that a given
numbered skeleton belongs to a ligand-reflection group (which is ascleral). Then the numbered
skeleton is fixed (or converted into a homomer) under the action of the maximum scleral subgroup.
The corresponding LM-numbered skeleton (cf. Fig. 10.2) is also fixed (or converted into a homo-
mer) under the action of the maximum scleral group.

This theorem gives an extended foundation of the term homomeric. Note that the maxi-
mum chiral subgroup, the maximum RS-stereogenic subgroup, and the maximum scleral
subgroup designates the same group (e.g., C3 for Fig. 10.2).
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To grasp the behavior of (1)(2)(3), let us now consider the point group C3h:

C3h = {I,C3,C2
3 ,σh,S3,S5

3} (10.11)

∼ {(1)(2)(3),(1 3 2),(1 2 3),(1)(2)(3),(1 3 2),(1 2 3)}, (10.12)

where the horizontal mirror plane σh of the point group C3h is represented by σh ∼
(1)(2)(3), because three positions to be considered are governed by the coset representation
C3h(/Cs). The coset decomposition of the point group C3h by C3 is represented as follows:

C3h = C3 +C3σh. (10.13)

Compare Eq. 10.9 with Eq. 10.12. In the parallel way to Eq. 10.12 showing the coset
representation C3h(/Cs), Eq. 10.9 is found to be the coset representation C3̂I(/C

̂I).

Exercise 10.1.
– Place a set of three pairs of proligands p/p on the six positions of the cyclopropane

skeleton 3-16 of D3h (Fig. 3.9 on page 73), where the function denoted by f : f (1) = p,
f (2) = p, f (3) = p, f (4) = p, f (5) = p, and f (6) = p is applied.

– Confirm that the resulting promolecule with the composition p3p3 belongs to the point
group C3h.

– Confirm that the three ring carbons construct an orbit governed by the coset represen-
tation C3h(/Cs).

RS-Stereoisomeric Groups
The LM-numbered skeleton 8-1d′′ is selected from the homomeric LM-numbered skeletons
listed in the bottom row of Fig. 10.2. This skeleton is renumbered to be 10-2, which is placed
at the lower-right corner of Fig. 10.1. Thereby, the diagonal direction of Fig. 10.1 (linked
with a double-headed arrow attached by a solid circle) represents the conversions shown in
Fig. 10.2, which are based on the action of the ligand-reflection group C3̂I . The relationship
between the skeleton 10-1 and the LM-numbered skeleton 10-2 in the diagonal direction is
called a holantimeric relationship.

The completed diagram shown in Fig. 10.1 is called an elementary stereoisogram,
where the vertical directions are concerned with enantiomeric relationships due to the point
group C3v, the horizontal directions are concerned with RS-diastereomeric relationships due
to the RS-permutation group C3σ̃ , and the diagonal directions are concerned with holan-
timeric relationships due to the ligand-reflection group C3̂I . See Fig. 8.1 (page 195) for the
vertical directions, Fig. 9.4 (page 241) for the horizontal directions, and Fig. 10.2 for the
diagonal directions.

Because the point group C3v (Eq. 10.1), the RS-permutation group C3σ̃ (Eq. 10.2), and
the ligand-reflection group C3̂I (Eq. 10.10) contain a maximum subgroup C3 in common,
they are integrated to give a new group called an RS-stereoisomeric group denoted by the
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Table 10.2. RS-Stereoisomeric Group C3vσ̃̂I as Well as Coset Representations C3vσ̃̂I(/Csσ̃̂I)

operation C3vσ̃̂I(/Csσ̃̂I) PSI operation C3vσ̃̂I(/Csσ̃̂I) PSI
g ∈ C3vσ̃̂I (product of cycles) g ∈ C3vσ̃̂I (product of cycles)

A
B

C
D

I (1)(2)(3) b3
1 σ̃v(1) (1)(2 3) b1b2

C3 (1 3 2) b3 σ̃v(2) (1 3)(2) b1b2

C2
3 (1 2 3) b3 σ̃v(3) (1 2)(3) b1b2

σv(1) (1)(2 3) a1c2 ̂I (1)(2)(3) a3
1

σv(2) (1 3)(2) a1c2 ̂C3 (1 3 2) a3

σv(3) (1 2)(3) a1c2 ̂C2
3 (1 2 3) a3

symbol C3vσ̃̂I as follows:

C3vσ̃̂I = C3
A

+C3σv(1)
B

+C3σ̃v(1)
C

+C3̂I
D

, (10.14)

which represents the coset decomposition of C3vσ̃̂I by C3. The operations of C3vσ̃̂I are listed
in Table 10.2, in which the A-part consists of the proper rotations commonly contained in
the three component groups, the B-part consists of the reflections listed in Table 8.1 (the
point group C3v on page 196), the C-part consists of the RS-permutations listed in Table
9.1 (the RS-permutation group C3σ̃ on page 240), and the D-part consists of the ligand
reflections listed in Table 10.1 (the ligand-reflection group C3̂I). These four parts (A, B, C,
and D) correspond to the four cosets appearing in Eq. 10.14.

The above discussions on the RS-stereoisomeric group C3vσ̃̂I hold true in general. To
support further discussions, let us define an RS-stereoisomeric group Ǵ in general by starting
from a point group G.

Definition 10.1 (RS-Stereoisomeric Groups). Suppose that an achiral point group G exhibits a
coset decomposition by the maximum chiral subgroup GC, as found in Eq. 10.15. The correspond-
ing RS-permutation group Gσ̃ is defined by Eq. 10.16, while the corresponding ligand-reflection
group G

̂I is defined by Eq. 10.17:

G = GC
A

+GCσ
B

(10.15)

Gσ̃ = GC
A

+GCσ̃
C

(10.16)

G
̂I = GC

A
+GĈI

D
, (10.17)

where the symbol σ represents a reflection, the symbol σ̃ represents an RS-permutation, and
the symbol ̂I represents a ligand-reflection. Then, the corresponding RS-stereoisomeric group is
defined as follows:

Ǵ = GC
A

+GCσ
B

+GCσ̃
C

+GĈI
D

. (10.18)

The subgroup GC under the RS-stereoisomeric group Ǵ (Eq. 10.18) is called the maximum
normal subgroup. The maximum normal subgroup GC is identical with the maximum chiral
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subgroup GC under the point group G (Eq. 10.15), where GC is a stabilizer of the coset GCσ
(B) as follows:

GCσ = σGC i.e., σ−1GCσ = GC. (10.19)

The maximum normal subgroup GC is identical with the maximum RS-stereogenic sub-
group GC under the RS-permutation group Gσ̃ (Eq. 10.16), where GC is a stabilizer of the
coset GCσ̃ (C) as follows:

GCσ̃ = σ̃GC i.e., σ̃−1GCσ̃ = GC. (10.20)

The maximum normal subgroup GC is identical with the maximum scleral subgroup GC

under the ligand-reflection group G
̂I (Eq. 10.17), where GC is a stabilizer of the coset GĈI

(D) as follows:
GĈI = ̂IGC i.e., ̂I−1GĈI = GC. (10.21)

Because of Eqs. 10.19–10.21, the maximum normal subgroup GC is a stabilizer of each
coset (A, B, C, and D) appearing in the right-hand side of the coset decomposition of Ǵ
by GC (Eq. 10.18). It follows that each coset represented by the letter A, B, C, or D in Eq.
10.18 corresponds to a set of homomers produced under the action of the maximum normal
subgroup GC represented by A.

Exercise 10.2. Confirm that the maximum chiral subgroup C3 of the point group C3v is
identical with the maximum normal subgroup of the corresponding RS-stereoisomeric group
C3vσ̃̂I (Eq. 10.14).

Theorem 3.3 (page 62) for point groups, Theorem 9.1 (page 245) for RS-permutation
groups, and Theorem 10.1 for ligand-reflection groups are integrated to support the term
homomeric under the action of RS-stereoisomeric groups.

Theorem 10.2 (Homomeric Relationship under RS-Stereoisomeric Groups). Suppose that a given
numbered skeleton belongs to an RS-stereoisomeric group. Then, each of the numbered skeleton,
the mirror-numbered skeleton, the RS-numbered skeleton, and the LM-numbered skeleton is fixed
(or converted into a homomer) under the action of the maximum normal subgroup.

This theorem gives an extended foundation of the term homomeric. Note that the letters A,
B, C, and D in Eq. 10.18 correspond to the respective parts of such an elementary stereoiso-
gram as Fig. 10.1.

Remark 10.1 (A Misleading Standpoint of Modern Stereochemistry). Modern stere-
ochemistry confuses Theorem 9.1 (page 245) for RS-permutation groups with Theo-
rem 3.3 (page 62) for point groups. In addition, modern stereochemistry is in entire
ignorance of Theorem 10.1 for ligand-reflection groups. On the other hand, the judge-
ment concerning ‘homomeric’ in the flowchart of Fig. 1.13 (page 18) ignores Theo-
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rem 9.1 (page 245) for RS-permutation groups as well as Theorem 10.1 for ligand-
reflection groups, even though the left branch of the flowchart of Fig. 1.13 can be
regarded to give equivalent effects to Theorem 3.3 (page 62) for point groups.

In contrast, Fujita’s stereoisogram approach has reached an integrated standpoint
based on Theorem 10.2. See Remark 10.2.

10.1.2 Stereoisograms Based on Elementary Stereoisograms

Stereoisograms as Diagrammatic Expressions of RS-Stereoisomeric Groups
Suppose that the three positions of variously numbered skeletons in the elementary
stereoisogram (Fig. 10.1) accommodate a set of proligands selected from a ligand inventory:

L′ = {A,B,X,p,p,q,q, r, r} (10.22)

so as to give a stereoisogram of a derived promolecule. To survey derivatives based on
the trigonal pyramidal skeleton, Fig. 10.3 collects reference promolecules for constructing
stereoisograms [5, Fig. 1].

Let us first consider a set of achiral proligands of the same kind:

f : { f (1) = A, f (2) = A, f (3) = A}, (10.23)

which are placed on the three positions. Thereby, the four skeletons of the elementary
stereoisogram (Fig. 10.1) generate a quadruplet of identical promolecules, as found in Fig.
10.4. Hence, there appear equality symbols in all of the directions of the stereoisogram. The
reference promolecule 10-17 with the composition A3 belongs to the RS-stereoisomeric
group C3vσ̃̂I , so that the action of C3vσ̃̂I generates a set of identical promolecules. Such
stereoisograms as characterized by all equality symbols (Fig. 10.4) are referred to as type
IV.

Second, let us consider a set of achiral proligands in isolation:

f : { f (1) = A, f (2) = B, f (3) = X}, (10.24)

which indicates a proligand A on the 1-position, a proligand B on the 2-position, and a pro-
ligand X on the 3-position. Thereby, the reference skeleton 10-1 in the elementary stereoiso-
gram (Fig. 10.1) generates a reference promolecule 9-8 with the composition ABX (cf. Fig.
9.8(a) on page 248; the same as 10-3 in Fig. 10.3), as depicted in the upper-left corner
of Fig. 10.5. The other skeletons in Fig. 10.1 generate the respective promolecules. Thus,
the mirror-numbered skeleton 10-1 generates its enantiomer 9-8; the RS-numbered skeleton
10-2 generates its RS-diastereomer 9-9; and the LM-numbered skeleton 10-2 generates its
holantimer 9-9. As shown by the equality symbols in the diagonal directions, the reference
promolecule 9-8 is identical with the holantimer 9-9; and the enantiomer 9-8 is identical
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Fig. 10.3. Symmetry-itemized enumeration based on a trigonal pyramidal skeleton under the
RS-stereoisomeric group C3vσ̃̂I . The symbols A, B, and X represent achiral proligands, while
the pairs, p/p, q/q, and r/r, denote enantiomeric pairs of chiral proligands. Two derivative or one
derivative surrounded by each inner box are enantiomeric or an achiral promolecule. Each outer
box shows a quadruplet of a stereoisogram (or a degenerate format) to be counted once under
C3vσ̃̂I , where the corresponding partition [θ ]i and the symbol [RS-stereoisomeric group, point
group, RS-permutation group; type] are attached for specifying symmetry properties.
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Fig. 10.4. Type-IV stereoisogram that consists of a quadruplet of promolecules derived from a
trigonal pyramidal skeleton with composition A3.

with the RS-diastereomer 9-9. In other words, the enantiomeric relationships are congruent
with the RS-diastereomeric relationships. Such stereoisograms as Fig. 10.5 are referred to
as type I.

The reference promolecule 9-8 (the same as 10-3 in Fig. 10.3) belongs to the RS-
stereoisomeric group C

̂I (= {I,̂I}). Thus, the RS-stereoisomeric group C
̂I fixes (stabilizes)

the promolecule 9-8 under the action of C3vσ̃̂I , so as to be consistent with the diagonal
equality symbols.
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Fig. 10.5. Type-I stereoisogram that consists of a quadruplet of promolecules derived from a trig-
onal pyramidal skeleton with composition ABX.



10.1 Stereoisograms as Integrated Diagrammatic Expressions 283

� S

�
C

�
A

p
p1

3

2

�� �
�

A
p

p1
2

3

9-10 9-11
(1)(2)(3) (1)(2 3)

	
 ���
��	
��


���
	 	


�
A

p
p1

2

3

�� �
�

A
p

p1
3

2

9-10 (= 9-10) 9-11 (= 9-11)
(1)(2 3) (1)(2)(3)

Fig. 10.6. Type-V stereoisogram that consists of a quadruplet of promolecules derived from a
trigonal pyramidal skeleton with composition App.

Let us next consider the following set of proligands:

f : { f (1) = A, f (2) = p, f (3) = p}, (10.25)

where the symbols p and p represent a pair of enantiomeric proligands in isolation. Thereby,
the reference skeleton 10-1 in the elementary stereoisogram (Fig. 10.1) generates a reference
promolecule 9-10 with the composition App (cf. Fig. 9.8(b) on page 248; the same as 10-19
in Fig. 10.3), as depicted in the upper-left corner of Fig. 10.6. The other skeletons in Fig.
10.1 generate the respective promolecules. Thus, the mirror-numbered skeleton 10-1 gen-
erates its enantiomer 9-10; the RS-numbered skeleton 10-2 generates its RS-diastereomer
9-11; and the LM-numbered skeleton 10-2 generates its holantimer 9-11. As shown by the
equality symbols in the vertical directions, the reference promolecule 9-10 and the RS-
diastereomer 9-11 are achiral. Such stereoisograms as Fig. 10.6 are referred to as type V.

The reference promolecule 9-10 or 9-11 in Fig. 10.6 (10-19 or 10-20 in Fig. 10.3) is
achiral and belongs to the RS-stereoisomeric group Cs (= {I,σv(1)}), which is also regarded
as a point group. Thus, the RS-stereoisomeric group Cs fixes (stabilizes) the promolecule
9-10 or 9-11 under the action of C3vσ̃̂I , so as to be consistent with the vertical equality
symbols.

Let us further consider the following set of proligands:

f : { f (1) = A, f (2) = p, f (3) = p}. (10.26)

Thereby, the reference skeleton 10-1 in the elementary stereoisogram (Fig. 10.1) generates
a reference promolecule 10-4 with the composition Ap2, which is depicted in the upper-left
corner of Fig. 10.7. The other skeletons in Fig. 10.1 generate the respective promolecules.
Thus, the mirror-numbered skeleton 10-1 generates its enantiomer 10-4; the RS-numbered
skeleton 10-2 generates its RS-diastereomer 10-21; and the LM-numbered skeleton 10-4
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Fig. 10.7. Type-II stereoisogram that consists of a quadruplet of promolecules derived from a
trigonal pyramidal skeleton with composition Ap2 or Ap2.

generates its holantimer 10-21. Note that there appear equality symbols in the horizontal
directions of Fig. 10.7, because 10-21 is identical with 10-4 as well as 10-21 is identical
with 10-4. Such stereoisograms as Fig. 10.7 are referred to as type II.

The reference promolecule 10-4 belongs to the RS-stereoisomeric group Cσ̃ (=
{I, σ̃v(1)}), which is also regarded as an RS-permutation group. Thus, the RS-stereoisomeric
group Cσ̃ fixes (stabilizes) the promolecule 10-4 under the action of C3vσ̃̂I , so as to be
consistent with the horizontal equality symbols.

Finally, let us consider the following set of proligands:

f : { f (1) = p, f (2) = A, f (3) = B}. (10.27)

Thereby, the reference skeleton 10-1 in the elementary stereoisogram (Fig. 10.1) generates a
reference promolecule 10-9 with the composition ABp, as depicted in the upper-left corner
of Fig. 10.8. The other skeletons in Fig. 10.1 generate the respective promolecules shown
in Fig. 10.8. Thus, the mirror-numbered skeleton 10-1 generates its enantiomer 10-9; the
RS-numbered skeleton 10-2 generates its RS-diastereomer 10-10; and the LM-numbered
skeleton 10-4 generates its holantimer 10-10. Note that there appear no equality symbols in
Fig. 10.8. Such stereoisograms as Fig. 10.8 are referred to as type III.

The reference promolecule 10-9 belongs to the RS-stereoisomeric group C1 (= {I}).
Thus, the RS-stereoisomeric group C1 fixes (stabilizes) the promolecule 10-9 under the
action of C3vσ̃̂I , so as to be consistent with the absence of equality symbols.

Three Relationships and Three Attributes in a Stereoisogram
As found in Figs. 10.4–10.8, there appear three relationships in a streoisogram. They cor-
respond to three pairwise attributes, as summarized in Table 10.3. The vertical directions
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Fig. 10.8. Type-III stereoisogram that consists of a quadruplet of promolecules derived from a
trigonal pyramidal skeleton with composition ABp or ABp.

Table 10.3. Relationships and Attributes Appearing in Stereoisograms.

symbol relationship attribute

[Point-group symmetry] (Concerned with reflections 	
)
�� 	
 enantiomeric chiral	
 (self-enantiomeric) achiral

[RS-permutation-group symmetry] (Concerned with RS-permutations �)
�� � RS-diastereomeric RS-stereogenic� (self-RS-diastereomeric) RS-astereogenic

[Ligand-reflection-group symmetry] (Concerned with ligand reflections 	)
�� 	 holantimeric scleral	 (self-holantimeric) ascleral

of each stereoisogram (cf. Figs. 10.4–10.8) are concerned with enantiomeric relation-
ships, which stem from a pair of attributes related to point-group symmetry, i.e., chiral-
ity/achirality; the horizontal directions are concerned with RS-diastereomeric relationships,
which stem from another pair of attributes related to RS-permutation-group symmetry,
i.e., RS-stereogenicity/RS-astereogenicity; and the diagonal directions are concerned with
holantimeric relationships, which stem from a further pair of attributes related to ligand-
reflection-group symmetry, i.e., sclerality/asclerality.

Remark 10.2 (A Single Pair in Modern Stereochemistry). Modern stereochemistry
is based on a pair of chirality/achirality as a single pair. In other words, mod-
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ern stereochemistry has not pay attention to the other two pairs of attributes, i.e.,
a pair of RS-stereogenicity/RS-astereogenicity and a pair of sclerality/asclerality.
As a result, conventional discussions in modern stereochemistry (in particular, on
R/S-stereodescriptors [6,7] and on pro-R/pro-S-descriptors [8]) have misleadingly
mixed up the pair of chirality/achirality with the pair of RS-stereogenicity/RS-
astereogenicity. For Fujita’s stereoisogram approach for reorganizing theoretical
foundations of such stereochemical nomenclature, see his recent articles [9–12].

For the sake of simplicity, three pairs of attributes in a stereoisogram are represented by a
type index [−/a, −/a, −/a], where the symbol ‘−’ represents chirality, RS-stereogenicity,
or sclerality, while the symbol ‘a’ represents achirality, RS-astereogenicity, or asclerality.
Thereby, a stereoisogram is characterized by a type index: [−,−,a] for type I, [−,a,−] for
type II, [−,−,−] for type III, [a,a,a] for type IV, and [a,−,−] for type V.

Stereoisograms of Five Types
Three pairs of −/a in each type index permit eight (= 23) possibilities of type indices,
among which a type index with two a’s results in the type index [a,a,a]. Because the type
indices [a,a,−], [a,−,a], and [−,a,a] are impossible to characterize stereoisograms, there
remain 5 (= 8− 3) possibilities, which show the existence of five types of stereoisograms
(types I–V).

A more mathematical proof is based on Eq. 10.14 (or Eq. 10.18 in general). Because
C3 is a normal subgroup of C3vσ̃̂I , we obtain the following factor group:

C3vσ̃̂I/C3 = {C3
A

, C3σv(1)
B

, C3σ̃v(1)
C

, C3̂I
D
}, (10.28)

which is isomorphic to the Klein four-group of order 4 or to the point group C2v. Hence, the
factor group C3vσ̃̂I/C3 has five subgroups, just as the Klein four-group has five subgroups
and as the point group C2v has five subgroups.

Because the four cosets contained in the factor group C3vσ̃̂I/C3 correspond to the four
skeletons contained in the elementary stereoisogram (Fig. 10.1), the existence of five types
of stereoisograms is proven. The above proof holds in general, because the point group C3v

can be changed to any achiral point groups.
The five subgroups of the factor group C3vσ̃̂I/C3 are listed as follows:

Type I : C3̂I/C3 = {C3
A

, C3̂I
D
} (10.29)

Type II : C3σ̃ /C3 = {C3
A

, C3σ̃v(1)
C
} (10.30)

Type III : C3/C3 = {C3
A
} (10.31)



10.2 Enumeration Under RS-Stereoisomeric Groups 287

Type IV : C3vσ̃̂I/C3 = {C3
A

, C3σv(1)
B

, C3σ̃v(1)
C

, C3̂I
D
} (10.32)

Type V : C3v/C3 = {C3
A

, C3σv(1)
B
}, (10.33)

where these subgroups are correlated to five types of stereoisograms. The factor group
C3/C3 for type III serves as an identity element of the factor group C3vσ̃̂I/C3, which
is assigned to type IV. The factor group C3̂I/C3 for type I is correlated to the ligand-
reflection group C3̂I (Eq. 10.10); the factor group C3σ̃ /C3 for type II is correlated to the
RS-permutation group C3σ̃ (Eq. 10.2); and the factor group C3v/C3 for type V is correlated
to the point group C3v (Eq. 10.1).

The cosets attached by A and D in Eq. 10.29 are coupled with the diagonal data of Fig.
10.1, so that the diagonal equality symbols of a type-I stereoisogram can be deduced. The
cosets attached by A and C in Eq. 10.30 are coupled with the horizontal data of Fig. 10.1, so
that the horizontal equality symbols of a type-II stereoisogram can be deduced. The cosets
attached by A and B in Eq. 10.33 are coupled with the vertical data of Fig. 10.1, so that the
vertical equality symbols of a type-V stereoisogram can be deduced. As one extreme case,
Eq. 10.31 of type III results in the absence of equality symbols. As the other extreme case,
Eq. 10.32 of type IV results in the full appearance of equality symbols.

In summary, Fig. 10.9 schematically illustrates such stereoisograms of five types, where
the symbols A and A (or B and B) represent a pair of enantiomers based on a given skeleton
(e.g., a trigonal pyramidal skeleton). For example, the A at the upper-left position of each
stereoisogram is selected from the promolecules listed in Fig. 10.3. For concrete examples
of stereoisograms, see Figs. 10.4–10.8.

10.2 Enumeration Under RS-Stereoisomeric Groups

A quadruplet of RS-stereoisomers contained in a stereoisogram is an equivalence class un-
der the action of an RS-stereoisomeric group. Both the FPM method (cf. Subsection 6.2) and
the PCI method (cf. Subsection 6.3), which have been originally developed for enumeration
under point groups in Fujita’s USCI approach [14], can be extended to support enumera-
tion under RS-stereoisomeric groups [15,16]. In this section, we focus our attention to the
extension and application of the PCI method.

10.2.1 Subgroups of the RS-Stereoisomeric Group C3vσ̃̂I

Non-Redundant Set of Subgroups
The RS-stereoisomeric group C3vσ̃̂I is isomorphic to the point group D3d , which has once
been referred to as a subgroup of a pseudo-point group [17–19]. The point group D3d is also
isomorphic to the point group D3h, which has been applied to symmetry-itemized enumera-
tion of various compounds according to Fujita’s USCI approach [20,21]. Hence, the data of
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Fig. 10.9. Stereoisograms for representing RS-stereoisomers of five types. This figure is a modi-
fication of Fig. 6 of [3] and of Fig. 2 of [13]. The symbols A and A (or B and B) represent a pair of
enantiomers based on a given skeleton (e.g., a trigonal pyramidal skeleton).
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the point group D3d or D3h can be applied to discuss the properties of the RS-stereoisomeric
group C3vσ̃̂I .

The point group D3d has the following non-redundant set of subgroups (SSG):

SSGD3d = {
1

C1,
2

C2,
3

Cs,
4

Ci,
5

C3,
6

C2h,
7

D3,
8

C3v,
9

C3i,
10

D3d}. (10.34)

In a similar way, the point group D3h has the following non-redundant set of subgroups
(SSG):

SSGD3h = {
1

C1,
2

C2,
3

Cs,
4

C ′s,
5

C3,
6

C2v,
8

C3v,
9

C3h,
7

D3,
10

D3h}, (10.35)

where the sequence of subgroups obeys the sequence described in previous references [14,
20,21]. The sequence of subgroups in Eq. 10.34 is adopted in the present book, because the
sequence 2, 3, and 4 and the sequence 7, 8, and 9 give parallel effects.

The RS-stereoisomeric group C3vσ̃̂I isomorphic to D3d or D3h has the corresponding
non-redundant set of subgroups:

SSGC3vσ̃̂I
= {

1
C1,

2
Cσ̃ ,

3
Cs,

4
C
̂I ,

5
C3,

6
Csσ̃̂I ,

7
C3σ̃ ,

8
C3v,

9
C3̂I ,

10
C3vσ̃̂I}, (10.36)

where each subgroup corresponds to the counterpart subgroup collected in Eq. 10.34, as in-
dicated by an attached sequential number. Each subgroup of the SSG (Eq. 10.36) is selected
as a representative of conjugate subgroups:

C1
1=

III
{I} (10.37)

Cσ̃
2=
II
{I, σ̃v(1)} (10.38)

Cs
3=
V
{I,σv(1)} (10.39)

C
̂I

4=
I
{I,̂I} (10.40)

C3
5=

III
{I,C3,C2

3} (10.41)

Csσ̃̂I
6=

IV
{I, σ̃v(1),σv(1),̂I} (10.42)

C3σ̃
7=
II

I, C3, C2
3 ,

︸ ︷︷ ︸

A

σ̃v(1), σ̃v(2), σ̃v(3)
︸ ︷︷ ︸

C

} (10.43)

C3v
8=
V
{I, C3, C2

3 ,
︸ ︷︷ ︸

A

σv(1), σv(2), σv(3)
︸ ︷︷ ︸

B

} (10.44)

C3̂I
9=
I
{I, C3, C2

3 ,
︸ ︷︷ ︸

A

̂I, ̂C3, ̂C2
3

︸ ︷︷ ︸

D

} (10.45)

C3vσ̃̂I
10=
IV
{I, C3, C2

3 ,
︸ ︷︷ ︸

A

σv(1), σv(2), σv(3),
︸ ︷︷ ︸

B

σ̃v(1), σ̃v(2), σ̃v(3),
︸ ︷︷ ︸

C

̂I, ̂C3, ̂C2
3

︸ ︷︷ ︸

D

}, (10.46)
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where the sequential number over each equality symbol represents the reference to the cor-
responding point group and the Roman number under each equality symbol represents the
type of the subgroup, as discussed below.

Five Types of Subgroups
The subgroups of the SSG (Eq. 10.36) are categorized into five types according to the factor
groups shown by Eqs. 10.29–10.33:

Type I: SG[I] = {
4

C
̂I ,

9
C3̂I} (10.47)

Type II: SG[II] = {
2

Cσ̃ ,
7

C3σ̃} (10.48)

Type III: SG[III] = {
1

C1,
5

C3} (10.49)

Type IV: SG[IV] = {
6

Csσ̃̂I ,
10

C3vσ̃̂I} (10.50)

Type V: SG[V] = {
3

Cs,
8

C3v}, (10.51)

where the reference number above each symbol of an RS-stereoisomeric group corresponds
to the reference number attached on the equality symbol of each equation listed in Eqs.
10.37–10.46. Note that a reflection is represented by a σ -symbol with no accent; an RS-
permutation is represented by a symbol with a tilde accent; and a ligand reflection is repre-
sented by a symbol with a hat accent. The largest subgroup contained in each type of Eqs.
10.47–10.51 gives the factor group listed in each of Eqs. 10.29–10.33 (e.g., C3̂I of Eq. 10.47
gives C3̂I/C3 of Eq. 10.29).

10.2.2 Coset Representations

The discussions on coset representations of point groups in Subsection 5.1.1 can be applied
to RS-stereoisomeric groups. Each subgroup Ǵi contained in SSGC3vσ̃̂I

(Eq. 10.36) corre-

sponds to a coset representation C3vσ̃̂I(/Ǵi), as shown in the following list:

SCRC3vσ̃̂I
= {

1
C3vσ̃̂I(/C1),

2
C3vσ̃̂I(/Cσ̃ ),

3
C3vσ̃̂I(/Cs),

4
C3vσ̃̂I(/C

̂I),
5

C3vσ̃̂I(/C3),
6

C3vσ̃̂I(/Csσ̃̂I),
7

C3vσ̃̂I(/C3σ̃ ),
8

C3vσ̃̂I(/C3v),
9

C3vσ̃̂I(/C3̂I),
10

C3vσ̃̂I(/C3vσ̃̂I)}. (10.52)

For example, the coset representation C3vσ̃̂I(/Csσ̃̂I) is obtained through a coset decomposi-
tion of C3vσ̃̂I by Csσ̃̂I , as collected in Table 10.2.
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Exercise 10.3.
– A staggered conformation of an ethane skeleton belongs to the point group D3d . Con-

sider an orbit of three planes corresponding to the reflection operations (σd(1), σd(2), and
σd(3)). Confirm that a coset representation for characterizing the orbit is D3d(/C2h).

– An eclipsed conformation of an ethane molecule belongs to the point group D3h. Con-
sider an orbit of three planes corresponding to the reflection operations (σv(1), σv(2),
and σv(3)). Confirm that a coset representation for characterizing the orbit is D3h(/C2v)
(cf. [20, Table 4]).

– Compare these coset representations with the coset representation C3vσ̃̂I(/Csσ̃̂I) listed
in Table 10.2.

Exercise 10.4.
– The three carbon atoms of a cyclopropane skeleton 3-16 of D3h (Fig. 3.9 on page 73)

construct an orbit. Confirm that a coset representation for characterizing the orbit is
D3h(/C2v) (cf. [20, Table 4]).

– Compare this coset representation with the coset representation C3vσ̃̂I(/Csσ̃̂I) listed in
Table 10.2.

The concrete forms of coset representations of the point group D3h, which is isomorphic
to the RS-stereoisomeric group C3vσ̃̂I , have been reported [20, Table 4].

10.2.3 Mark Table and its Inverse

Mark tables or tables of marks, which have been developed by Burnside [22], are one of the
key data necessary to Fujita’s USCI approach [14]. The discussions on mark tables of point
groups in Subsection 5.1.2 can be extended to be applied to RS-stereoisomeric groups. For
example, the coset representation C3vσ̃̂I(/Csσ̃̂I) shown in Table 10.2 gives the following
fixed-point vector (FPV):

FPVC3vσ̃̂I(/Csσ̃̂I)
= (3,1,1,3,0,1,0,0,0,0), (10.53)

which is obtained by counting the numbers of fixed points (1-cycles) under the action of the
respective subgroups (Eqs. 10.37–10.46). This procedure is repeated to cover all of the coset
representations shown in Eq. 10.52. The resulting FPVs are collected to give a table of marks
or a mark table. The resulting mark table for C3vσ̃̂I (Table 10.4) can be regarded as a 10×10
square matrix, which is denoted by the symbol MC3vσ̃̂I

. Because the RS-stereoisomeric group
C3vσ̃̂I and the point group D3d are isomorphic to each other, they have a common mark table
shown in Table 10.4. The mark table of the point group D3h, which is isomorphic to C3vσ̃̂I
or D3d , has been reported in [20, Table 5] and [14, Table A.13].
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Table 10.4. Mark Table of the RS-Stereoisomeric Group C3vσ̃̂I and of the Point Group D3d

MD3d
C1 C2 Cs Ci C3 C2h D3 C3v C3i D3d

MC3vσ̃̂I
C1 Cσ̃ Cs C

̂I C3 Csσ̃̂I C3σ̃ C3v C3̂I C3vσ̃̂I

D3d(/C1) C3vσ̃̂I(/C1) 12 0 0 0 0 0 0 0 0 0
D3d(/C2) C3vσ̃̂I(/Cσ̃ ) 6 2 0 0 0 0 0 0 0 0
D3d(/Cs) C3vσ̃̂I(/Cs) 6 0 2 0 0 0 0 0 0 0
D3d(/Ci) C3vσ̃̂I(/C

̂I) 6 0 0 6 0 0 0 0 0 0
D3d(/C3) C3vσ̃̂I(/C3) 4 0 0 0 4 0 0 0 0 0
D3d(/C2h) C3vσ̃̂I(/Csσ̃̂I) 3 1 1 3 0 1 0 0 0 0
D3d(/D3) C3vσ̃̂I(/C3σ̃ ) 2 2 0 0 2 0 2 0 0 0
D3d(/C3v) C3vσ̃̂I(/C3v) 2 0 2 0 2 0 0 2 0 0
D3d(/C3i) C3vσ̃̂I(/C3̂I) 2 0 0 2 2 0 0 0 2 0
D3d(/D3d) C3vσ̃̂I(/C3σ̃̂I) 1 1 1 1 1 1 1 1 1 1

In general, a mark table exhibits a lower-triangular format, as exemplified by Table
10.4. Mark tables are used to calculate subductions of coset representations, which have
been developed by Fujita [14].

The inverse of the mark table or the inverse mark table is also important to Fujita’s
USCI approach [14]. The discussions on inverse mark tables of point groups in Subsection
5.1.2 can be extended to be applied to RS-stereoisomeric groups. As shown in Table 10.5,
the resulting inverse mark table denoted by the symbol M−1

C3vσ̃̂I
or M−1

D3d
(Table 10.5) is also

regarded as a 10×10 square matrix, which exhibits a lower-triangular format.
The inverse mark table of the point group D3h, which is isomorphic to C3vσ̃̂I or D3d ,

has been reported in [20, Table 6], [21, Table 1], and [14, Table B.13].
The properties of such inverse mark tables have been discussed in Appendix B of Fu-

jita’s monograph [23] in general. One of the remarkable properties is shown in the row-sum
column of Table 10.5, where the sum of row elements is positive for each cyclic subgroup,
while it is equal to zero for each non-cyclic subgroup. The total value of the row sums over
the SSG is equal to 1. Note that the point group C3i (the C3i,C3̂I-row of Table 10.5, cf.
Eq. 10.45) has a positive sum, because it is alternatively denoted by the symbol S6, which
is a cyclic subgroup of order 6 generated from a rotoreflection S6 as a generator. Such an
inverse mark table as Table 10.5 is used to calculate isomer-counting matrices (ICMs) in
the fixed-point-matrix (FPM) method or to derive partial cycle indices (PCIs) in the partial-
cycle-index (PCI) method, where both of the methods are devised as powerful methods for
symmetry-itemized enumeration under Fujita’s USCI approach [14].

10.2.4 Subduction for RS-Stereoisomeric Groups

The discussions on subduction of point groups in Subsection 5.2.1 are also effective to RS-
stereoisomeric groups. The subduction for a point group G (Eq. 5.37 on page 123) can be
easily extended to an RS-stereoisomeric group Ǵ. Thus, Eq. 5.37 is extended to cover Ǵ, so
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Table 10.5. Inverse Mark Table of the RS-Stereoisomeric Group C3vσ̃̂I and of the Point Group D3d

M−1
D3d

/C1 /C2 /Cs /Ci /C3 /C2h /D3 /C3v /C3i /D3d row
M−1

C3vσ̃̂I
/C1 /Cσ̃ /Cs /C

̂I /C3 /Csσ̃̂I /C3σ̃ /C3v /C3̂I /C3vσ̃̂I sum

C1 C1
1

12 0 0 0 0 0 0 0 0 0 1
12

C2 Cσ̃ − 1
4

1
2 0 0 0 0 0 0 0 0 1

4
Cs Cs − 1

4 0 1
2 0 0 0 0 0 0 0 1

4
Ci C

̂I − 1
12 0 0 1

6 0 0 0 0 0 0 1
12

C3 C3 − 1
12 0 0 0 1

4 0 0 0 0 0 1
6

C2h Csσ̃̂I
1
2 − 1

2 − 1
2 − 1

2 0 1 0 0 0 0 0
D3 C3σ̃

1
4 − 1

2 0 0 − 1
4 0 1

2 0 0 0 0
C3v C3v

1
4 0 − 1

2 0 − 1
4 0 0 1

2 0 0 0
C3i C3̂I

1
12 0 0 − 1

6 − 1
4 0 0 0 1

2 0 1
6

D3d C3vσ̃̂I − 1
2

1
2

1
2

1
2

1
2 −1 − 1

2 − 1
2 − 1

2 1 0

that the subduced representation Ǵ(/Ǵi) ↓ Ǵ j is divided into a sum of coset representations
of a subgroup Ǵ j as follows:

Ǵ(/Ǵi) ↓ Ǵ j =
v́ j

∑
k=1

β́ (i j)
k Ǵ j(/H́( j)

k ) (10.54)

for i = 1,2, . . . ś and j = 1,2, . . . ś, where the subgroup H́( j)
k covers the following SSG of Ǵ j

with the multiplicity β́ (i j)
k (cf. Eq. 5.36 on page 123):

SSGǴ j
= {H́(i j)

1 , H́(i j)
2 , . . . , H́(i j)

k , . . . , H́(i j)
v́ j
}. (10.55)

Each H́(i j)
k is equal to a subgroup contained in the SSGǴ (e.g., Eq. 10.36) or to its conju-

gate subgroup. The results of the subduction C3vσ̃̂I(/Csσ̃̂I) ↓ Ǵ j (for Ǵ j ∈ SSGC3vσ̃̂I
) are

summarized in Table 10.6.

Table 10.6. Subduction of C3vσ̃̂I(/Csσ̃̂I) into Subgroups of C3vσ̃̂I

Subgroup Subduction
USCI-CF USCI

TEM
(↓ Ǵ j) (C3vσ̃̂I(/Csσ̃̂I) ↓ Ǵ j) ̂Nj ̂N

(I)
j
̂N(II)

j
̂N(III)

j
̂N(IV )

j
̂N(V )

j

1 C1 3C1(/C1) b3
1 s3

1
1
12 0 0 1

12 0 0
2 Cσ̃ Cσ̃ (/C1)+Cσ̃ (/Cσ̃ ) b1b2 s1s2

1
4 0 1

2 − 1
4 0 0

3 Cs Cs(/C1)+Cs(/Cs) a1c2 s1s2
1
4 0 0 − 1

4 0 1
2

4 C
̂I 3C

̂I(/C
̂I) a3

1 s3
1

1
12

1
6 0 − 1

12 0 0
5 C3 C3(/C1) b3 s3

1
6 0 0 1

6 0 0
6 Csσ̃̂I Csσ̃̂I(/C

̂I)+Csσ̃̂I(/Csσ̃̂I) a1a2 s1s2 0 − 1
2 − 1

2
1
2 1 − 1

2
7 C3σ̃ C3σ̃ (/Cσ̃ ) b3 s3 0 0 0 0 0 0
8 C3v C3v(/Cs) a3 s3 0 0 0 0 0 0
9 C3̂I C3̂I(/C

̂I) a3 s3
1
6

1
3 0 − 1

6 0 0
10 C3vσ̃̂I C3vσ̃̂I(/Csσ̃̂I) a3 s3 0 0 0 0 0 0
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Table 10.7. Subduction Table of the RS-Stereoisomeric Group C3vσ̃̂I

1 2 3 4 5 6 7 8 9 10
C1 Cσ̃ Cs C

̂I C3 Csσ̃̂I C3σ̃ C3v C3̂I C3vσ̃̂I
1 C3vσ̃̂I(/C1) 12C1(/C1) 6Cσ̃ (/C1) 6Cs(/C1) 6C

̂I(/C1) 4C3(/C1) 3Csσ̃̂I(/C1) 2C3σ̃ (/C1) 2C3v(/C1) 2C3̂I(/C1) C3vσ̃̂I(/C1)
2 C3vσ̃̂I(/Cσ̃ ) 6C1(/C1) 2Cσ̃ (/C1) 3Cs(/C1) 3C

̂I(/C1) 2C3(/C1) Csσ̃̂I(/C1) 2C3σ̃ (/Cσ̃ ) C3v(/C1) C3̂I(/C1) C3vσ̃̂I(/Cσ̃ )
+2Cσ̃ (/Cσ̃ ) +Csσ̃̂I(/Cσ̃ )

3 C3vσ̃̂I(/Cs) 6C1(/C1) 3Cσ̃ (/C1) 2Cs(/C1) 3C
̂I(/C1) 2C3(/C1) Csσ̃̂I(/C1) C3σ̃ (/C1) 2C3v(/Cs) C3̂I(/C1) C3vσ̃̂I(/Cs)

+2Cs(/Cs) +Csσ̃̂I(/Cs)
4 C3vσ̃̂I(/C

̂I) 6C1(/C1) 3Cσ̃ (/C1) 3Cs(/C1) 6C
̂I(/C

̂I) 2C3(/C1) 3Csσ̃̂I(/C
̂I) C3σ̃ (/C1) C3v(/C1) 2C3̂I(/C

̂I) C3vσ̃̂I(/C
̂I)

5 C3vσ̃̂I(/C3) 4C1(/C1) 2Cσ̃ (/C1) 2Cs(/C1) 2C
̂I(/C1) 4C3(/C3) Csσ̃̂I(/C1) 2C3σ̃ (/C3) 2C3v(/C3) 2C3̂I(/C3) C3vσ̃̂I(/C3)

6 C3vσ̃̂I(/Csσ̃̂I) 3C1(/C1) Cσ̃ (/C1) Cs(/C1) 3C
̂I(/C

̂I) C3(/C1) Csσ̃̂I(/C
̂I) C3σ̃ (/Cσ̃ ) C3v(/Cs) C3̂I(/C

̂I) C3vσ̃̂I(/Csσ̃̂I)
+Cσ̃ (/Cσ̃ ) +Cs(/Cs) +Csσ̃̂I(/Csσ̃̂I)

7 C3vσ̃̂I(/C3σ̃ ) 2C1(/C1) 2Cσ̃ (/Cσ̃ ) Cs(/C1) C
̂I(/C1) 2C3(/C3) Csσ̃̂I(/Cσ̃ ) 2C3σ̃ (/C3σ̃ ) C3v(/C3) C3̂I(/C3) C3vσ̃̂I(/C3σ̃ )

8 C3vσ̃̂I(/C3v) 2C1(/C1) Cσ̃ (/C1) 2Cs(/Cs) C
̂I(/C1) 2C3(/C3) Csσ̃̂I(/Cs) C3σ̃ (/C3) 2C3v(/C3v) C3̂I(/C3) C3vσ̃̂I(/C3v)

9 C3vσ̃̂I(/C3̂I) 2C1(/C1) Cσ̃ (/C1) Cs(/C1) 2C
̂I(/C

̂I) 2C3(/C3) Csσ̃̂I(/C
̂I) C3σ̃ (/C3) C3v(/C3) 2C3̂I(/C3̂I) C3vσ̃̂I(/C3̂I)

10 C3vσ̃̂I(/C3σ̃̂I) C1(/C1) Cσ̃ (/Cσ̃ ) Cs(/Cs) C
̂I(/C

̂I) C3(/C3) Csσ̃̂I(/Csσ̃̂I) C3σ̃ (/C3σ̃ ) C3v(/C3v) C3̂I(/C3̂I) C3vσ̃̂I(/C3vσ̃̂I)

The procedure of calculating Table 10.6 is repeated to cover all of the subgroups Ǵi ap-
pearing in C3vσ̃̂I(/Ǵi). Thereby, the subduction C3vσ̃̂I(/Ǵi) ↓ Ǵ j (for Ǵi, Ǵ j ∈ SSGC3vσ̃̂I

) is
obtained in a parallel way to the subduction D3d(/C2h) ↓G j (G j ∈ SSGD3d ) or D3h(/C2v) ↓
G j (G j ∈ SSGD3h ). The results of the subduction are collected to form a subduction table
such as Table 10.7. Note that the data listed in the subduction-column of Table 10.6 appear
in the C3vσ̃̂I(/Csσ̃̂I)-row (the 6th row) of Table 10.7.

The subduction table of the point group D3h, which is isomorphic to the RS-stereoisomeric
group C3vσ̃̂I , has been reported in [20, Table 12] and [14, Table C.13].2

10.2.5 USCI-CFs for RS-Stereoisomeric Groups

Properties of Orbits Under the Action of RS-Stereoisomeric Groups
Fujita’s USCI approach, which has originally been developed on the basis of point groups
[14,24], is extended so as to be applied to RS-stereoisomeric groups derived from point
groups [9,15]. For example, the trigonal pyramidal skeleton 8-1 belonging to the point group
C3v is alternatively regarded as belonging to the RS-stereoisomeric group C3vσ̃̂I , so that the
orbit of the three positions is governed by the coset representation C3vσ̃̂I(/Csσ̃̂I) of degree
3, which is calculated to be |C3vσ̃̂I |/|Csσ̃̂I | = 12/4 = 3. The elements of C3vσ̃̂I(/Csσ̃̂I) are
listed in Table 10.2. The coset representation C3vσ̃̂I(/Csσ̃̂I) is derived by the extension of the
coset representation C3v(/Cs) of the point group C3v, where the global RS-stereoisomeric
group C3vσ̃̂I is an extension of the point group C3v, while the local RS-stereoisomeric group
Csσ̃̂I is an extension of the point group Cs.

For the purpose of extending the concept of sphericities to be applicable to RS-
stereoisomeric groups, the chirality/achirality of point groups is extended to meet RS-
stereoisomeric groups as follows:

2 The subduction of D3h(/Cs) ↓ C2v should be corrected to be read as C2v(/C1)+C2v(/Cs) in Table C.13.
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Definition 10.2 (Ex-Chiral and Ex-Achiral). An RS-stereoisomeric group Ǵ is ex-achiral if it con-
tains an reflection (B) and/or a ligand reflection (D); and it is ex-chiral if it is composed of rotations
(A) and/or RS-permutations (C). See Table 10.2 for C3vσ̃̂I . The prefix ex of the term ex-achiral or
ex-chiral denotes extended.

Then, the concept of sphericities is extended to cover RS-stereoisomeric groups as follows
[15]:

Definition 10.3 (Extended Sphericities of RS-Stereoisomeric Groups). A coset representation
Ǵ(/Ǵi) defined under an RS-stereoisomeric group Ǵ is characterized by either one of three
kinds of sphericities in an extended fashion:
1. The coset representation Ǵ(/Ǵi) is determined to be homospheric if both Ǵ and Ǵi are ex-

achiral RS-stereoisomeric groups. It is characterized by a sphericity index ad .
2. The coset representation Ǵ(/Ǵi) is determined to be enantiospheric if Ǵ is an ex-achiral RS-

stereoisomeric group and Ǵi is an ex-chiral RS-stereoisomeric group. It is characterized by a
sphericity index cd .

3. The coset representation Ǵ(/Ǵi) is determined to be hemispheric if both Ǵ and Ǵi are ex-
chiral RS-stereoisomeric groups. It is characterized by a sphericity index bd .

The subscript d of each sphericity index is the degree of Ǵ(/Ǵi), which is calculated to be d =
|Ǵ|/|Ǵi|.

According to its extended sphericity, an orbit governed by the coset representation Ǵ(/Ǵi)
is called a Ǵ(/Ǵi)-orbit, which is characterized by the sphericity index, ad , cd , or bd . For
example, the coset representation C3vσ̃̂I(/Csσ̃̂I) is determined to be homospheric, because
the global symmetry C3vσ̃̂I is ex-achiral and the local symmetry Csσ̃̂I is also ex-achiral.
Hence, a C3vσ̃̂I(/Csσ̃̂I)-orbit of the three positions in the trigonal pyramidal skeleton 8-1 is
characterized by the sphericity index a3, where |C3vσ̃̂I |/|Csσ̃̂I |= 12/4 = 3.

Just as a G(/Gi)-orbit exhibits chirality fittingness according to its sphericity [14,24],
a Ǵ(/Ǵi)-orbit exhibits chirality fittingness according to its extended sphericity [15]:

Theorem 10.3 (Chirality Fittingness due to Extended Sphericities). A d-membered homospheric
orbit accommodates d achiral proligands of the same kind in isolation; a d-membered enantio-
spheric orbit accommodates d achiral proligands of the same kind or pairwise d/2 chiral proligands
and d/2 enantiomeric proligands in isolation; and a d-membered hemispheric orbit accommodates
d achiral or chiral proligands of the same kind in isolation.

USCI-CF Tables Under the Action of RS-Stereoisomeric Groups
By applying discussions on point groups (Subsection 5.2.2) to RS-stereoisomeric groups, a
unit subduced cycle index with chirality faithfulness (USCI-CF) is defined on the basis of
Eq. 10.54:

Definition 10.4 (USCI-CFs for an RS-Stereoisomeric Group). The coset representation Ǵ j(/H́( j)
k )

contained in the right-hand side of Eq. 10.54 is characterized by a sphericity index $d jk ($ = a, c, or
b) defined in Def. 10.3. Then, a unit subduced cycle index with chirality faithfulness (USCI-CF) is
defined on the basis of Eq. 10.54 as follows:

USCI-CF(Ǵ(/Ǵi) ↓ Ǵ j ;$d) =
v́ j

∏
k=1

$
β́ (i j)

k
d jk

, (10.56)
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where $d jk is equal to ad jk , cd jk , or bd jk according to the sphericity of Ǵ j(/H́( j)
k ) and the subscript

is calculated to be

d jk =
|Ǵ j|
|H́( j)

k |
. (10.57)

This definition shows that Eq. 10.56 for an RS-stereoisomeric group Ǵ corresponds to Eq.
5.46 (page 127) for a point group G (Subsection 5.2.2). Mathematically speaking, Def.
10.4 for RS-stereoisomeric groups is equivalent to Def. 5.2 (page 127) for point groups.
Note that the maximum ex-chiral subgroup (i.e., the maximum RS-permutation group) of
an ex-achiral RS-stereoisomeric group Ǵ has an order of |Ǵ|/2, just as the maximum chiral
subgroup of an achiral point group G has an order of |G|/2. By applying Def. 10.4 to the
data collected in the subduction-column of Table 10.6, we obtain USCI-CFs collected in the
USCI-CF-column of the same table.

By starting from the data collected in the subduction table of Ǵ (e.g., Table 10.7), the
whole set of USCI-CFs for Ǵ is obtained easily. Thus, the data collected in Table 10.7 for
the RS-stereoisomeric group C3vσ̃̂I give the USCI-CF table of C3vσ̃̂I , as shown in Table 10.8.
Note that the USCI-CFs collected in the USCI-CF-column of Table 10.6 appear in the the
C3vσ̃̂I(/Csσ̃̂I)-row (the 6th row) of Table 10.8.

The USCI-CF table of the point group D3h, which is isomorphic to the point group D3d

and to the RS-stereoisomeric group C3vσ̃̂I , has been reported in Ref. [24, Table 15]3, Ref.
[21, Table 2]4, and Ref. [14, Table E.13].5

Table 10.8. USCI-CF Table of the RS-Stereoisomeric Group C3vσ̃̂I

1 2 3 4 5 6 7 8 9 10
D3d C1 C2 Cs Ci C3 C2h D3 C3v C3i D3d

C3vσ̃̂I C1 Cσ̃ Cs C
̂I C3 Csσ̃̂I C3σ̃ C3v C3̂I C3vσ̃̂I

1 D3d(/C1) C3vσ̃̂I(/C1) b12
1 b6

2 c6
2 c6

2 b4
3 c3

4 b2
6 c2

6 c2
6 c12

2 D3d(/C2) C3vσ̃̂I(/Cσ̃ ) b6
1 b2

1b2
2 c3

2 c3
2 b2

3 c2c4 b2
3 c6 c6 c6

3 D3d(/Cs) C3vσ̃̂I(/Cs) b6
1 b3

2 a2
1c2

2 c3
2 b2

3 a2c4 b6 a2
3 c6 a6

4 D3d(/Ci) C3vσ̃̂I(/C
̂I) b6

1 b3
2 c3

2 a6
1 b2

3 a3
2 b6 c6 a2

3 a6

5 D3d(/C3) C3vσ̃̂I(/C3) b4
1 b2

2 c2
2 c2

2 b4
1 c4 b2

2 c2
2 c2

2 c4

6 D3d(/C2h) C3vσ̃̂I(/Csσ̃̂I) b3
1 b1b2 a1c2 a3

1 b3 a1a2 b3 a3 a3 a3

7 D3d(/D3) C3vσ̃̂I(/C3σ̃ ) b2
1 b2

1 c2 c2 b2
1 c2 b2

1 c2 c2 c2

8 D3d(/C3v) C3vσ̃̂I(/C3v) b2
1 b2 a2

1 c2 b2
1 a2 b2 a2

1 c2 a2

9 D3d(/C3i) C3vσ̃̂I(/C3̂I) b2
1 b2 c2 a2

1 b2
1 a2 b2 c2 a2

1 a2

10 D3d(/D3d) C3vσ̃̂I(/C3σ̃̂I) b1 b1 a1 a1 b1 a1 b1 a1 a1 a1

3 The USCI-CF (and USCI) for the subduction of D3h(/C ′s) ↓ D3 should be corrected to be read as b6 (s6)
in Table 15.
4 The USCI-CF for the subduction of D3h(/Cs) ↓ Cs should be corrected to be read as a2

1c2
2 in Table 2. The

USCI-CF (and USCI) for the subduction of D3h(/C ′s) ↓ D3 should be read as b6 (s6) in Table 2.
5 The USCI-CF for the subduction of D3h(/C ′s) ↓D3 should be corrected to be read as b6 in Table E.13. The
corresponding USCI should be read as s6 in Table D.13.
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10.2.6 SCI-CFs for RS-Stereoisomeric Groups

The substitution positions of a stereoskeleton, which are controlled by a permutation rep-
resentation PG for a point group G (Subsection 6.1.3), are alternatively regarded as being
controlled by a permutation representation PǴ under the action of the corresponding RS-
stereoisomeric group Ǵ. Thereby, Eq. 6.21 (page 139) for a point group G is converted to
support the present case of an RS-stereoisomeric group Ǵ according to Def. 10.4:

PǴ ↓ Ǵ j =
ś

∑
i=1

άiǴ(/Ǵi) ↓ Ǵ j

=
ś

∑
i=1

άi

v́ j

∑
k=1

β́ (i j)
k Ǵ j(/H́( j)

k ). (10.58)

By referring to Eq. 10.58, Def. 6.1 (page 139) for point groups is extended to support
the present case of RS-stereoisomeric groups:

Definition 10.5 (SCI-CFs for RS-Stereoisomeric Groups). When a permutation representation
PǴ for controlling the substitution positions of a stereoskeleton is represented by Eq. 10.58, the
corresponding subduced cycle index with chirality fittingness (SCI-CF) is defined as follows:

SCI-CFPǴ
(Ǵ j;$d jk ) =

ś

∏
i=1

(

USCI-CF(Ǵ(/Ǵi) ↓ Ǵ j;$d)
)άi

=
ś

∏
i=1

(

v́ j

∏
k=1

$
β́ (i j)

k
d jk

)άi

(10.59)

where $d jk is equal to ad jk , cd jk , or bd jk according to the sphericity of Ǵ j(/H́( j)
k ) and the subscript

is calculated to be

d jk =
|Ǵ j|
|H́( j)

k |
. (10.60)

10.2.7 The PCI Method for RS-Stereoisomeric Groups

The FPM method (Subsection 6.2) and the PCI method (Subsection 6.3), which have been
originally developed as powerful tools of enumeration under the action of point groups in
Fujita’s USCI approach, can be easily extended to support enumeration under the action of
RS-stereoisomeric groups. Thus, USCI-CFs for an RS-stereoisomeric group (Def. 10.4) is
adopted in place of USCI-CFs for a point group (Def. 5.2 on page 127); and SCI-CFs for an
RS-stereoisomeric group (Def. 10.5) is adopted in place of SCI-CFs for a point group (Def.
6.1 on page 139). The following discussions are based on the PCI method (cf. Subsection
6.3).

The definition of PCI-CFs for point groups (Def. 6.5 on page 150) is extended to support
the corresponding RS-stereoisomeric groups:
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Definition 10.6 (PCI-CFs for RS-Stereoisomeric Groups). A partial cycle index with chirality fit-
tingness (PCI-CF) is defined by the following equation:

PCI-CFPǴ
(Ǵi;$d) =

ś

∑
j=1

ḿ jiSCI-CFPǴ
(Ǵ j;$d jk ) =

ś

∑
j=1

ḿ ji

ś

∏
i=1

(

USCI-CF(Ǵ(/Ǵi) ↓ Ǵ j;$d jk )
)άi

=
ś

∑
j=1

ḿ ji

⎛

⎝

ś

∏
i=1

(

v́ j

∏
k=1

$
β́ (i j)

k
d jk

)άi
⎞

⎠ (10.61)

for i = 1,2, · · · , ś, where SCI-CFPǴ
comes from Eq. 10.59 of Def. 10.5. The symbol ḿ ji denotes an

element of the inverse mark table M−1
Ǵ

(e.g., Table 10.5 for Ǵ = C3vσ̃̂I ).

Theorem 6.3 (page 150) for point groups can be extended to the present case of RS-
stereoisomeric groups, where the ligand inventory L (Eq. 6.26 on page 140) for point
groups can be used to select proligands to be accommodated. The PCI-CFs defined in Def.
10.6 give generating functions for giving the numbers of quadruplets Áθ i with Ǵi and [θ ]:

Theorem 10.4. Suppose that the substitution positions of a stereoskeleton belonging to an RS-
stereoisomeric group Ǵ accommodate proligands selected from a ligand inventory L (Eq. 6.26)
to give promolecules with the composition Wθ . A generating function for evaluating the number of
quadruplets of promolecules Áθ i with Ǵi and [θ ] is obtained to be:

∑
[θ ]

Áθ iWθ = PCI-CFPǴ
(Ǵi;$d)

∣

∣

∣

$d=∑L
(10.62)

for j = 1,2, . . . , ś, where the symbol Wθ denotes the composition represented by Eq. 6.27 and the
symbol $d = ∑L denotes the introduction of a ligand-inventory function to the sphericity index $d as
follows:

ad =
n

∑
�=1

Xd
� (10.63)

cd =
n

∑
�=1

Xd
� +2

n′

∑
�=1

pd/2
� pd/2

� (10.64)

bd =
n

∑
�=1

Xd
� +

n′

∑
�=1

pd
� +

n′

∑
�=1

pd
� (10.65)

Note that the ligand inventory L (Eq. 6.26), the composition Wθ (Eq. 6.27), and the parti-
tion [θ ] (Eq. 6.28) for Theorem 10.4 are common with those of Theorem 6.3, because the
substitution positions of the same stereoskeleton are considered to belong to a point group
G or alternatively to an RS-stereoisomeric group Ǵ.

According to Theorem 10.4, let us now examine enumeration of trigonal pyramidal
derivatives under the action of the RS-stereoisomeric group C3vσ̃̂I . A manual derivation
of trigonal pyramidal derivatives is summarized in Fig. 10.3, where a quadruplet of each
stereoisogram is counted once, as surrounded by an outer box.

The data of the USCI-CF-column of Table 10.6 (or the C3vσ̃̂I(/Csσ̃̂I)-row of Table
10.8) are regarded as a formal row vector of SCI-CFs, which is multiplied by the inverse
mark table M−1

C3vσ̃̂I
(Table 10.5). Thereby, PCI-CFs for the RS-stereoisomeric group C3vσ̃̂I
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are obtained according to Def. 10.6.

PCI-CF(C1) =
1
12

b3
1−

1
4

b1b2− 1
4

a1c2− 1
12

a3
1 +

1
6

b3 +
1
2

a1a2− 1
6

a3 (10.66)

PCI-CF(Cσ̃ ) =
1
2

b1b2− 1
2

a1a2− 1
2

b3 +
1
2

a3 (10.67)

PCI-CF(Cs) =
1
2

a1c2− 1
2

a1a2 (10.68)

PCI-CF(C
̂I) =

1
6

a3
1−

1
2

a1a2 +
1
3

a3 (10.69)

PCI-CF(C3) = 0 (10.70)

PCI-CF(Csσ̃̂I) = a1a2−a3 (10.71)

PCI-CF(C3σ̃ ) =
1
2

b3− 1
2

a3 (10.72)

PCI-CF(C3v) = 0 (10.73)

PCI-CF(C3̂I) = 0 (10.74)

PCI-CF(C3vσ̃̂I) = a3 (10.75)

Suppose that a trigonal pyramidal skeleton 8-1 accommodates a set of three proligands
which is selected from the ligand inventory L′ (Eq. 10.22). According to Theorem 10.4, we
use the following ligand-inventory functions:

ad = Ad +Bd +Xd (10.76)

cd = Ad +Bd +Xd +2pd/2pd/2 +2qd/2qd/2 +2rd/2rd/2 (10.77)

bd = Ad +Bd +Xd +pd +qd + rd +pd +qd + rd . (10.78)

These ligand-inventory functions are introduced into each PCI-CF (Eqs. 10.66–10.75) to
give a generating function, in which the coefficient of the term AaBbXxppppqqqqrrqr indi-
cates the number of fixed promolecules to be counted.

Because A, B, etc. appear symmetrically, the term can be represented by the following
partition:

[θ ] = [a,b,x; p, p,q,q,r,r], (10.79)

where we put a ≥ b ≥ x; p≥ p, q ≥ q, r ≥ r; and p≥ q ≥ r without losing generality. For
example, the ligand inventory L′ (Eq. 10.22) gives terms corresponding to the following
partitions:

[θ ]1 = [3,0,0;0,0,0,0,0,0] (for A3 etc.) (10.80)

[θ ]2 = [2,1,0;0,0,0,0,0,0] (for A2B etc.) (10.81)

[θ ]3 = [2,0,0;1,0,0,0,0,0] (for A2p etc.) (10.82)

[θ ]4 = [1,1,1;0,0,0,0,0,0] (for ABX) (10.83)

[θ ]5 = [1,1,0;1,0,0,0,0,0] (for ABp etc.) (10.84)

[θ ]6 = [1,0,0;2,0,0,0,0,0] (for Ap2 etc.) (10.85)
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[θ ]7 = [1,0,0;1,1,0,0,0,0] (for App etc.) (10.86)

[θ ]8 = [1,0,0;1,0,1,0,0,0] (for Apq etc.) (10.87)

[θ ]9 = [0,0,0;3,0,0,0,0,0] (for p3 etc.) (10.88)

[θ ]10 = [0,0,0;2,1,0,0,0,0] (for p2p etc.) (10.89)

[θ ]11 = [0,0,0;2,0,1,0,0,0] (for p2q etc.) (10.90)

[θ ]12 = [0,0,0;1,1,1,0,0,0] (for ppq etc.) (10.91)

[θ ]13 = [0,0,0;1,0,1,0,1,0] (for pqr etc.) (10.92)

The ligand-inventory functions (Eqs. 10.76–10.78) are introduced into the PCI-CFs
(Eqs. 10.66–10.75) so as to give the following generating functions:

fC1 = {1
2

[θ ]5
(ABp+ABp)+ · · ·}+{1

2

[θ ]8
(Apq+Apq)+ · · ·}

+{1
2

[θ ]12
(ppq+ppq)+ · · ·}+{1

2

[θ ]13
(pqr+pqq)+ · · ·} (10.93)

fCσ̃ = {1
2

[θ ]3
(A2p+A2p)+ · · ·}+{1

2

[θ ]6
(Ap2 +Ap2)+ · · ·}

+{1
2

[θ ]10

(p2p+pp2)+ · · ·}+{1
2

[θ ]11

(p2q+p2q)+ · · ·} (10.94)

fCs = {
[θ ]7
App+ · · ·} (10.95)

fC
̂I
=

[θ ]4
ABX (10.96)

fC3 = 0 (10.97)

fCsσ̃̂I
= {

[θ ]2
A2B+ · · ·} (10.98)

fC3σ̃ = {1
2

[θ ]9
(p3 +p3)+ · · ·} (10.99)

fC3v = 0 (10.100)

fC3̂I
= 0 (10.101)

fC3vσ̃̂I
= {

[θ ]1
A3 + · · ·}, (10.102)

where the partitions [θ ]i (i = 1 – 13) are attached to the corresponding compositions.
Each term corresponds to one quadruplet of a stereoisogram, the reference promolecule

of which is shown in Fig. 10.3. For example, the term 1
2 (ABp + ABp) appearing in Eq.

10.93 indicates the presence of one quadruplet 10-9 of a stereoisogram, which is de-
noted by the symbol [θ ]5; [C1, C1, C1; III]. The outer box containing a quadruplet of
10-9/10-9/10-10/10-10 indicates that the quadruplet is counted once under the action of the
RS-stereoisomeric group C3vσ̃̂I , although the quadruplet is divided into two pairs of enan-
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tiomers 10-9/10-9 and 10-10/10-10 under the action of the point group C3v, as surrounded
by an inner box. The corresponding stereoisogram of type III has been shown in Fig. 10.8.

Exercise 10.5. Confirm that each term of Eqs. 10.93–10.102 corresponds to a quadruplet
surrounding by an outer box in Fig. 10.3. Note that a quadruplet may degenerate into one
pair of enantiomers (type I or type II), one achiral promolecule (type IV), or a set of two
achiral promolecules (type V).

10.2.8 Type-Itemized Enumeration by the PCI Method

Let ḿ ji be the ji-element of the inverse mark table M−1
Ǵ

(e.g., Table 10.5 for M−1
C3vσ̃̂I

). The

Ǵ j-row is tentatively fixed and the row is summed up according to the categorization of type
I–V (e.g. Eqs. 10.47–10.51 for C3vσ̃̂I) as follows:

̂N(I)
j = ∑

Ǵi∈SG[I]

ḿ ji (10.103)

̂N(II)
j = ∑

Ǵi∈SG[II]

ḿ ji (10.104)

̂N(III)
j = ∑

Ǵi∈SG[III]

ḿ ji (10.105)

̂N(IV )
j = ∑

Ǵi∈SG[IV]

ḿ ji (10.106)

̂N(V )
j = ∑

Ǵi∈SG[V]

ḿ ji (10.107)

̂Nj = ̂N(I)
j + ̂N(II)

j + ̂N(III)
j + ̂N(IV )

j + ̂N(V )
j , (10.108)

where SG[I]–SG[V] are concerned with five types of the RS-stereoisomeric group Ǵ. When
Ǵ j runs over SSGǴ, a type-enumeration matrix (TEM) for type-itemized enumerations is
generated as an |SSGǴ|×6 matrix, where the j-th row (TEM j) as a row vector is represented
as follows:

TEM j = (̂Nj, ̂N
(I)
j , ̂N(II)

j , ̂N(III)
j , ̂N(IV )

j , ̂N(V )
j ). (10.109)

The respective elements of TEM j for SSGC3vσ̃̂I
are collected in Table 10.6.

The definition of PCI-CFs (Def. 10.6) is modified to generate CI-CFs for characterizing
five types are calculated by starting from ̂N(K)

j (K = I – V ).

Definition 10.7 (CI-CFs for Five Types). A cycle index with chirality fittingness (CI-CF) is defined
by the following equation:

CI-CF[K](Ǵ;$d) =
ś

∑
j=1

̂N(K)
j SCI-CFPǴ

(Ǵ j;$d jk ) =
ś

∑
j=1

̂N(K)
j

ś

∏
i=1

(

USCI-CF(Ǵ(/Ǵi) ↓ Ǵ j ;$d jk )
)άi
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=
ś

∑
j=1

̂N(K)
j

⎛

⎝

ś

∏
i=1

(

v́ j

∏
k=1

$
β́ (i j)

k
d jk

)άi
⎞

⎠ (10.110)

for K = I – V , where SCI-CFPǴ
comes from Eq. 10.59 of Def. 10.5. The symbol ̂N(K)

j denotes an
element of the TEM (Eq. 10.109).

The CI-CFs due to Def. 10.7 are alternatively obtained by adding PCI-CFs categorized by
each of SG[I]–SG[V] of Ǵ (e.g., Eqs. 10.47–10.51 for C3vσ̃̂I).

In a similar way to Theorem 10.4 concerning PCI-CFs, the CI-CFs defined in Def. 10.7
give generating functions for giving the numbers of quadruplets T́θK with type K (I to V)
and [θ ]:

Theorem 10.5. Suppose that the substitution positions of a stereoskeleton belonging to an RS-
stereoisomeric group Ǵ accommodate proligands selected from a ligand inventory L (Eq. 6.26 on
page 140) to give promolecules with the composition Wθ . A generating function for evaluating the
number of quadruplets of promolecules T́θK with type K (I to V) and [θ ]: is obtained to be:

∑
[θ ]

T́θKWθ = CI-CF[K](Ǵ;$d)
∣

∣

∣

$d=∑L
(10.111)

for K = I – V , where the symbol Wθ denotes the composition represented by Eq. 6.27 (page 140)
and the symbol $d = ∑L denotes the introduction of a ligand-inventory function to the sphericity
index $d represented by Eqs. 10.63–10.65.

The data of the USCI-CF-column of Table 10.6 (or the C3vσ̃̂I(/Csσ̃̂I)-row of Table 10.8) are
regarded as a formal row vector of SCI-CFs, which is multiplied by the TEM listed also in
Table 10.8. Thereby, CI-CFs for characterizing five types are calculated according to Def.
10.7. Alternatively, the CI-CFs for characterizing five types are calculated by starting from
Eqs. 10.66–10.75 according to Eqs. 10.47–10.51:

CI-CF[I](C3vσ̃̂I) = PCI-CF(C
̂I)+PCI-CF(C3̂I)

=
1
6

a3
1−

1
2

a1a2 +
1
3

a3 (10.112)

CI-CF[II](C3vσ̃̂I) = PCI-CF(Cσ̃ )+PCI-CF(C3σ̃ )

=
1
2

b1b2− 1
2

a1a2 (10.113)

CI-CF[III](C3vσ̃̂I) = PCI-CF(C1)+PCI-CF(C3)

=
1
12

b3
1−

1
4

b1b2− 1
4

a1c2− 1
12

a3
1

+
1
6

b3 +
1
2

a1a2− 1
6

a3 (10.114)

CI-CF[IV](C3vσ̃̂I) = PCI-CF(Csσ̃̂I)+PCI-CF(C3vσ̃̂I)

= a1a2 (10.115)

CI-CF[V](C3vσ̃̂I) = PCI-CF(Cs)+PCI-CF(C3v)

=
1
2

a1c2− 1
2

a1a2 (10.116)
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These CI-CFs corresponds to the CI-CFs reported in [5].6

According to Theorem 10.5, the ligand-inventory functions (Eqs. 10.76–10.78) are in-
troduced into the CI-CFs (Eqs. 10.112–10.116) so as to give the following generating func-
tions:

f [I] =
[θ ]4

ABX (10.117)

f [II] = {1
2

[θ ]3
(A2p+A2p)+ · · ·}+{1

2

[θ ]6
(Ap2 +Ap2)+ · · ·}+{1

2

[θ ]9
(p3 +p3)+ · · ·}

+{1
2

[θ ]10

(p2p+pp2)+ · · ·}+{1
2

[θ ]11

(p2q+p2q)+ · · ·} (10.118)

f [III] = {1
2

[θ ]5
(ABp+ABp)+ · · ·}+{1

2

[θ ]8
(Apq+Apq)+ · · ·}

+{1
2

[θ ]12
(ppq+ppq)+ · · ·}+{1

2

[θ ]13
(pqr+pqq)+ · · ·} (10.119)

f [IV] = {
[θ ]1
A3 + · · ·}+{

[θ ]2
A2B+ · · ·} (10.120)

f [V] = {
[θ ]7
App+ · · ·} (10.121)

Each term corresponds to one quadruplet of a stereoisogram, the reference promolecule
of which is shown in Fig. 10.3.

10.2.9 Gross Enumeration Under RS-Stereoisomeric Groups

Cycle Indices with Chirality Fittingness
The first column of the TEM (Eq. 10.109) is the collection of the row sums of an inverse
mark table (e.g., the row-sum-column of Table 10.5 for the RS-stereoisomeric group C3vσ̃̂I).

According to a general discussion on inverse mark tables in Appendix B of Fujita’s
monograph [23], the definition of CI-CFs for point groups (e.g., [14,25]) can be extended
to support RS-stereoisomeric groups:

Definition 10.8 (CI-CF for Gross Enumeration). A cycle index with chirality fittingness (CI-CF) is
defined by the following equation:

CI-CF(Ǵ;$d) =
ś

∑
j=1

̂NjSCI-CFPǴ
(Ǵ j;$d jk ) =

ś

∑
j=1

̂Nj

ś

∏
i=1

(

USCI-CF(Ǵ(/Ǵi) ↓ Ǵ j;$d jk )
)άi

6 Eq. 10.112 is a half of Eq. 28 of Ref.[5] (CI-CF[I](C3)); Eq. 10.113 is a half of Eq. 24 of Ref.[5]
(CI-CF[II](C3)); Eq. 10.114 is a quarter of Eq. 30 of Ref.[5] (CI-CF[III](C3)); Eq. 10.115 is identical with
Eq. 18 of Ref.[5] (CI-CF[IV](C3)); Eq. 10.116 is a half of Eq. 20 of Ref.[5] (CI-CF[V](C3)). Note that the
calculations of Ref.[5] have been conducted under the action of the point group C3, while the present calcu-
lations (Eqs. 10.112–10.116) are conducted under the action of the RS-stereoisomeric group C3vσ̃̂I .
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=
ś

∑
j=1

̂Nj

⎛

⎝

ś

∏
i=1

(

v́ j

∏
k=1

$
β́ (i j)

k
d jk

)άi
⎞

⎠ (10.122)

where SCI-CFPǴ
comes from Eq. 10.59 of Def. 10.5. The symbol ̂Nj denotes an element appearing

in the first column the TEM (Eq. 10.109).

Def. 10.8 means that a CI-CF is obtained by summing up PCI-CFs over the subgroups of
SSGǴ. As for the RS-stereoisomeric group C3vσ̃̂I , a CI-CF for gross enumeration is obtained
by summing up the PCI-CFs listed in Eqs. 10.66–10.75 or equivalently by summing up the
CI-CFs listed in Eqs. 10.112–10.116:

CI-CF(C3vσ̃̂I) =
1
12

b3
1 +

1
4

b1b2 +
1
4

a1c2 +
1
12

a3
1 +

1
6

b3 +
1
6

a3. (10.123)

The ligand-inventory functions (Eqs. 10.76–10.78) are introduced into the CI-CF (Eq.
10.123) so as to give the following generating function:

f [T] = {A3 + · · ·}+{A2B+ · · ·}
+

1
2
{(A2p+A2p)+ · · ·}+ABX+{1

2
(ABp+ABp)+ · · ·}

+{1
2
(Ap2 +Ap2)+ · · ·}+{App+ · · ·}+ 1

2
(Apq+Apq)+ · · ·}

+{1
2
(p3 +p3)+ · · ·}+{1

2
(p2p+pp2)+ · · ·}+{1

2
(p2q+p2q)+ · · ·}

+{1
2
(ppq+ppq)+ · · ·}+{1

2
(pqr+pqr)+ · · ·}. (10.124)

The Proligand Method for Gross Enumeration
The proligand method developed by Fujita [23,26–28] does not require the data of sub-
groups such as mark tables and inverse mark tables during gross enumeration under point
groups. Fujita’s proligand method can be extended to be applied to gross enumeration under
an RS-stereoisomeric group. Thus, Def. 7.5 (page 181) is extended as follows:

Definition 10.9 (Cycle Index With Chirality Fittingness (CI-CF) for RS-Stereoisomeric Groups).
Suppose that a permutation pg (∈ PǴ) has a cycle structure (1ν1 2ν2 · · ·dνd · · ·nνn )(pg) (∑n

i=1 iνi = n),
as shown in Def. 7.2 (page 178) and that the corresponding product of sphericity indices (PSIs)
shown in Def. 7.4 (page 180) is extended to meet the requirement of RS-stereoisomeric groups.
Then, a cycle index with chirality fittingness (CI-CF) is defined as follows:

CI-CF(PǴ; $d) =
1
|PǴ|

∑
pg∈PǴ

PSI(pg; $d)

=
1
|PǴ|

∑
pg∈PǴ

($ν1
1 $ν2

2 · · ·$νd
d · · ·$νn

n )(pg), (10.125)

where $d denotes ad , cd , or bd after Def. 10.3 is extended to meet sphericities of cycles.
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According to Def. 10.9, the products of sphericity indices listed in the PSI-column of Table
10.1 are summed up and divided by 12 (= |C3vσ̃̂I |) so as to give the following CI-CF:

CI-CF′(C3vσ̃̂I) =
1

12
(

b3
1 +3b1b2 +2b3 +3a1c2 +a3

1 +2a3
)

, (10.126)

which is identical with Eq. 10.123. Hence, a generating function identical with Eq. 10.124 is
obtained by introducing the ligand-inventory functions (Eqs. 10.76–10.78) into Eq. 10.126.

10.3 Comparison with Enumeration Under Subgroups

10.3.1 Comparison with Enumeration Under Point Groups

The reference promolecule of a stereoisogram, which belongs to an RS-stereoisomeric
group, can be alternatively regarded as belonging to a point group. Let us now examine a
trigonal pyramidal skeleton 8-1 (page 195) under the action of the point group C3v.

Because the USCI-CFs of the coset representation C3v(/Cs) [14, Table E.7] and the
inverse mark table of C3v [14, Table B.7] have been reported, Fujita’s USCI approach is
applied to the three positions of 8-1. Thereby, the PCI-CFs are obtained according to Def.
6.5 (page 150) in a formal matrix calculation:

(

PCI-CF′(C1),PCI-CF′(Cs),PCI-CF′(C3),PCI-CF′(C3v)
)

= (b3
1,a1c2,b3,a3)

⎛

⎜

⎜

⎜

⎝

1
6 0 0 0
− 1

2 1 0 0
− 1

6 0 1
2 0

1
2 −1 − 1

2 1

⎞

⎟

⎟

⎟

⎠

. (10.127)

This equation gives the following PCI-CFs under the action of the point group C3v:

PCI-CF′(C1) =
1
6

b3
1−

1
2

a1c2− 1
6

b3 +
1
2

a3 (10.128)

PCI-CF′(Cs) = a1c2−a3 (10.129)

PCI-CF′(C3) =
1
2

b3− 1
2

a3 (10.130)

PCI-CF′(C3v) = a3. (10.131)

The ligand-inventory functions (Eqs. 10.76–10.78) are introduced into the PCI-CFs
(Eqs. 10.128–10.131). The expansion of the resulting equations give the following generat-
ing functions:

f ′C1
= {2× 1

2

[θ ]5
(ABp+ABp)+ · · ·}+{2× 1

2

[θ ]8
(Apq+Apq)+ · · ·}

+{2× 1
2

[θ ]12
(ppq+ppq)+ · · ·}+{2× 1

2

[θ ]13
(pqr+pqq)+ · · ·}
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+{1
2

[θ ]3
(A2p+A2p)+ · · ·}+{1

2

[θ ]6
(Ap2 +Ap2)+ · · ·}

+{1
2

[θ ]10

(p2p+pp2)+ · · ·}+{1
2

[θ ]11

(p2q+p2q)+ · · ·}

+
[θ ]4

ABX (10.132)

f ′Cs
= {

[θ ]7
2App+ · · ·}+{

[θ ]2
A2B+ · · ·} (10.133)

f ′C3
= {1

2

[θ ]9
(p3 +p3)+ · · ·} (10.134)

f ′C3v
= {

[θ ]1
A3 + · · ·}. (10.135)

The terms of these generating functions are consistent to the data depicted in Fig. 10.3.
Note that a set of one or two promolecules surrounded in an inner box is counted once
as a (self-)enantiomeric pair under the action of the point group C3v. For example, the
term 2× 1

2 (ABp + ABp) ([θ ]5) in the generating function f ′C1
(Eq. 10.132) indicates the

presence of two enantiomeric pairs, i.e., one pair of 10-9/10-9 surrounded by an inner box
and the other pair of 10-10/10-10 surrounded by another inner box, as found in Fig. 10.3.
In contrast, a quadruplet of 10-9/10-9/10-10/10-10 surrounded by an outer box constructs a
type-III stereoisogram, which is counted once under the RS-stereoisomeric group C3vσ̃̂I .

The generating functions for the RS-stereoisomeric group C3vσ̃̂I (Eqs. 10.93–10.102)
are concerned with numbers of inequivalent quadruplets (or stereoisograms), while the gen-
erating functions of the point group C3v (Eqs. 10.132–10.135) are concerned with numbers
of inequivalent pairs of enantiomers. These two types of generating functions are correlated
by referring to Fig. 10.9. The following theorem holds true in general according to Fig. 10.9.

Theorem 10.6 (Quadruplets and Pairs of Enantiomers).
– A quadruplet of a type-I stereoisogram consists of one pair of enantiomers.
– A quadruplet of a type-II stereoisogram consists of one pair of enantiomers.
– A quadruplet of a type-III stereoisogram consists of two pairs of enantiomers.
– A quadruplet of a type-IV stereoisogram consists of one achiral promolecule.
– A quadruplet of a type-V stereoisogram consists of two achiral promolecules.

The PCI-CFs for the point group C3v (Eqs. 10.128–10.128) can be calculated from the
PCI-CFs for the RS-stereoisomeric group C3vσ̃̂I (Eqs. 10.66–10.75), where Theorem 10.6
requires the multiplication by 2 if a subgroup of C3vσ̃̂I is classified to type III or type V.

PCI-CF′(C1) = 2PCI-CF(C1)+PCI-CF(Cσ̃ )+PCI-CF(C
̂I)

=
1
6

b3
1−

1
2

a1c2− 1
6

b3 +
1
2

a3 (10.136)

PCI-CF′(Cs) = 2PCI-CF(Cs)+PCI-CF(Csσ̃̂I)

= a1c2−a3 (10.137)

PCI-CF′(C3) = 2PCI-CF(C3)+PCI-CF(C3σ̃ )+PCI-CF(C3̂I)
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=
1
2

b3− 1
2

a3 (10.138)

PCI-CF′(C3v) = 2PCI-CF(C3v)+PCI-CF(C3vσ̃̂I)

= a3. (10.139)

The resulting PCI-CFs (Eqs. 10.136–10.139) are identical with the PCI-CFs (Eqs.
10.128–10.131) obtained directly by Fujita’s USCI approach. Note that the RS-stereoisomeric
groups selected for Eq. 10.136 satisfy C1 ∩C3v = C1, Cσ̃ ∩C3v = C1, and C

̂I ∩C3v =
C1; the RS-stereoisomeric groups selected for Eq. 10.137 satisfy Cs ∩ C3v = Cs and
Csσ̃̂I ∩C3v = Cs; · · · ; as well as the RS-stereoisomeric groups selected for Eq. 10.139
satisfy C3v∩C3v = C3v and C3vσ̃̂I ∩C3v = C3v.

Exercise 10.6.
– Enumerate trigonal pyramidal promolecules under the action of the chiral point group

C3, where each promolecule is counted once.
– Derive the relationship between the enumeration under C3 and the enumeration under

C3vσ̃̂I in a similar way to Theorem 10.6. See Footnote 6.

10.3.2 Comparison with Enumeration Under RS-Permutation Groups

The reference promolecule of a stereoisogram, which belongs to an RS-stereoisomeric
group, can be alternatively regarded as belonging to an RS-permutation group. Let us now
examine a trigonal pyramidal skeleton 8-1 under the action of the RS-permutation group
C3σ̃ .

Because the RS-permutation group C3σ̃ is isomorphic to the point group C3v, the three
positions of the trigonal pyramidal skeleton 8-1 construct an orbit governed by C3σ̃ (/Cσ̃ ).
In a similar way to Eq. 10.127, the PCIs are obtained in a formal matrix calculation:

(

PCI′(C1),PCI′(Cσ̃ ),PCI′(C3),PCI′(C3σ̃ )
)

= (s3
1,s1s2,s3,s3)

⎛

⎜

⎜

⎜

⎝

1
6 0 0 0
− 1

2 1 0 0
− 1

6 0 1
2 0

1
2 −1 − 1

2 1

⎞

⎟

⎟

⎟

⎠

. (10.140)

This equation gives the following PCIs under the action of the RS-permutation group C3σ̃ :

PCI′(C1) =
1
6

s3
1−

1
2

s1s2 +
1
3

s3 (10.141)

PCI′(Cσ̃ ) = s1s2− s3 (10.142)

PCI′(C3) = 0 (10.143)

PCI′(C3σ̃ ) = s3. (10.144)
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The ligand-inventory functions (Eqs. 10.76–10.78) degenerate into a single function:

sd = Ad +Bd +Xd +pd +qd + rd +pd +qd + rd , (10.145)

which is introduced into the SCIs (Eqs. 10.141–10.144). The expansion of the resulting
equations give the following generating functions:

f ′′C1
= {

[θ ]5
(ABp+ABp)+ · · ·}+{

[θ ]8
(Apq+Apq)+ · · ·}

+{
[θ ]12

(ppq+ppq)+ · · ·}+{
[θ ]13

(pqr+pqq)+ · · ·}

+{
[θ ]7
App+ · · ·}+

[θ ]4
ABX (10.146)

f ′′Cσ̃
= {

[θ ]3
(A2p+A2p)+ · · ·}+{

[θ ]6
(Ap2 +Ap2)+ · · ·}

+{
[θ ]10

(p2p+pp2)+ · · ·}+{
[θ ]11

(p2q+p2q)+ · · ·}

+{
[θ ]2

A2B+ · · ·} (10.147)

f ′′C3
= 0 (10.148)

f ′′C3σ̃
= {

[θ ]9
(p3 +p3)+ · · ·}+{

[θ ]1
A3 + · · ·}. (10.149)

Note that a pair of RS-diastereomers is counted once under the action of an RS-
permutation group. For example, the term ABp ([θ ]5) in the generating function f ′′C1

(Eq.
10.146) indicates the presence of one pair of RS-diastereomers 10-9/10-10, while the coun-
terpart term ABp indicates the presence of one pair of RS-diastereomers 10-9/10-10, as
depicted in Fig. 10.3. Thus, a quadruplet of a type-III stereoisogram is divided into two
pairs of RS-diastereomers under the RS-permutation group C3σ̃ .

The generating functions for the RS-stereoisomeric group C3vσ̃̂I (Eqs. 10.93–10.102)
are concerned with numbers of inequivalent quadruplets (or stereoisograms), while the gen-
erating functions of the RS-permutation group C3σ̃ (Eqs. 10.146–10.149) are concerned
with numbers of inequivalent pairs of RS-diastereomers. These two types of generating
functions are correlated by referring to Fig. 10.9. The following theorem holds true in gen-
eral according to Fig. 10.9.

Theorem 10.7 (Quadruplets and Pairs of RS-Diastereomers).
– A quadruplet of a type-I stereoisogram consists of one pair of RS-diastereomers.
– A quadruplet of a type-II stereoisogram consists of two RS-astereogenic promolecules.
– A quadruplet of a type-III stereoisogram consists of two pairs of RS-diastereomers.
– A quadruplet of a type-IV stereoisogram consists of one RS-astereogenic promolecule.
– A quadruplet of a type-V stereoisogram consists of one pair of RS-diastereomers.

Exercise 10.7. Compare Theorem 10.7 with Theorem 10.6.
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The PCIs for the RS-permutation group C3σ̃ (Eqs. 10.141–10.144) can be calculated
from the PCI-CFs for the RS-stereoisomeric group C3vσ̃̂I (Eqs. 10.66–10.75) by putting
sd = ad = cd = bd , where Theorem 10.7 requires the multiplication by 2 if a subgroup of
C3vσ̃̂I is classified to type II or type III.

PCI′(C1) = 2PCI-CF(C1)+PCI-CF(Cs)+PCI-CF(C
̂I)

=
1
6

s3
1−

1
2

s1s2 +
1
3

s3 (10.150)

PCI′(Cσ̃ ) = 2PCI-CF(Cσ̃ )+PCI-CF(Csσ̃̂I)

= s1s2− s3 (10.151)

PCI′(C3) = 2PCI-CF(C3)+PCI-CF(C3v)+PCI-CF(C3̂I)

= 0 (10.152)

PCI′(C3σ̃ ) = 2PCI-CF(C3σ̃ )+PCI-CF(C3vσ̃̂I)

= s3. (10.153)

The resulting PCIs (Eqs. 10.150–10.153) are identical with the PCIs (Eqs. 10.141–10.144)
obtained directly by Fujita’s USCI approach. Note that the RS-stereoisomeric groups se-
lected for Eq. 10.150 satisfy C1 ∩C3σ̂ = C1, Cs ∩C3σ̂ = C1, and C

̂I ∩C3σ̂ = C1; the RS-
stereoisomeric groups selected for Eq. 10.151 satisfy Cσ̃ ∩C3σ̂ = Cσ̃ and Csσ̃̂I∩C3σ̂ = Cσ̃ ;
the RS-stereoisomeric groups selected for Eq. 10.152 satisfy C3 ∩C3σ̂ = C3, C3v ∩C3σ̂ =
C3, and C3̂I ∩C3σ̂ = C3; as well as the RS-stereoisomeric groups selected for Eq. 10.153
satisfy C3σ̃ ∩C3σ̂ = C3σ̃ and C3vσ̃̂I ∩C3σ̂ = C3σ̃ .

Exercise 10.8. During the derivation of Eqs. 10.150–10.153, omit the procedure of
putting sd = ad = cd = bd . Then, confirm that Eqs. 10.150–10.153 are converted into poly-
nomials with the variable bd , where the terms with ad and/or cd vanish.

10.3.3 Comparison with Enumeration Under Maximum-Chiral Point
Subgroups

The reference promolecule of a stereoisogram, which belongs to an RS-stereoisomeric
group, can be alternatively regarded as belonging to a maximum-chiral point group (cf.
Subsection 7.3.5). Note that the maximum-chiral point group is the maximum subgroup
of a point group, and at the same time, the maximum subgroup of the corresponding
RS-permutation groups (cf. Def. 10.1).

Let us now examine a trigonal pyramidal skeleton 8-1 under the action of the maximum-
chiral point group C3. Suppose that the three positions of the trigonal pyramidal skeleton
8-1 construct an orbit governed by C3(/C1). For the inverse mark table of the point group
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C3, see Table B.3 of [14]. For the USCI-CF table of C3, see Table E.3 of [14]. Thereby, the
PCI-CFs are obtained in a formal matrix calculation:

(

PCI-CF′′(C1),PCI-CF′′(C3)
)

= (b3
1,b3)

(

1
3 0
− 1

3 1

)

. (10.154)

This equation gives the following PCI-CFs under the action of the the maximum-chiral
subgroup C3:

PCI-CF′′(C1) =
1
3

b3
1−

1
3

b3 (10.155)

PCI-CF′′(C3) = b3. (10.156)

The ligand-inventory function bd (Eq. 10.78) is introduced into the PCI-CFs (Eqs.
10.155 and 10.155). The expansion of the resulting equations give the following generating
functions:

f ′′′C1
= {

[θ ]5
2(ABp+ABp)+ · · ·}+{

[θ ]8
2(Apq+Apq)+ · · ·}

+{
[θ ]12

2(ppq+ppq)+ · · ·}+{
[θ ]13

2(pqr+pqq)+ · · ·}

+{
[θ ]3

(A2p+A2p)+ · · ·}+{
[θ ]6

(Ap2 +Ap2)+ · · ·}

+{
[θ ]10

(p2p+pp2)+ · · ·}+{
[θ ]11

(p2q+p2q)+ · · ·}

+
[θ ]4

2ABX+{
[θ ]7

2App+ · · ·}+{
[θ ]2

A2B+ · · ·} (10.157)

f ′′′C3
= {

[θ ]9
(p3 +p3)+ · · ·}{

[θ ]1
A3 + · · ·}. (10.158)

Note that each promolecule is counted once under the action of a maximum-chiral point
subgroup. For example, the term 2ABp ([θ ]5) in the generating function f ′′′C1

(Eq. 10.157)
indicates the presence of two promolecules 10-9 and 10-10, while the counterpart term
2ABp indicates the presence of two promolecules 10-9 and 10-10. Thus, a quadruplet of a
type-III stereoisogram is divided into four promolecules.

The generating functions for the RS-stereoisomeric group C3vσ̃̂I (Eqs. 10.93–10.102)
are concerned with numbers of inequivalent quadruplets (or stereoisograms), while the gen-
erating functions of the maximum-chiral group C3 (Eqs. 10.157 and 10.158) are concerned
with numbers of inequivalent promolecules. These two types of generating functions are
correlated by referring to Fig. 10.9. The following theorem holds true in general according
to Fig. 10.9.

Theorem 10.8 (Quadruplets and Respective Promolecules).
– A quadruplet of a type-I stereoisogram consists of two promolecules.
– A quadruplet of a type-II stereoisogram consists of two promolecules.
– A quadruplet of a type-III stereoisogram consists of four promolecules.
– A quadruplet of a type-IV stereoisogram consists of one promolecule.
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– A quadruplet of a type-V stereoisogram consists of two promolecules.

The PCI-CFs for the maximum-chiral point group C3 (Eqs. 10.155 and 10.156) can be
calculated from the PCI-CFs for the RS-stereoisomeric group C3vσ̃̂I (Eqs. 10.66–10.75),
where Theorem 10.8 requires the multiplication by 4 or by 2 according to type I to V.

PCI-CF′′(C1) = 4PCI-CF(C1)+2PCI-CF(Cσ̃ )+2PCI-CF(C
̂I)

+2PCI-CF(Cs)+PCI-CF(Csσ̃̂I)

=
1
3

b3
1−

1
3

b3 (10.159)

PCI-CF′′(C3) = 4PCI-CF(C3)+2PCI-CF(C3σ̃ )+2PCI-CF(C3̂I)

+2PCI-CF(C3v)+PCI-CF(C3vσ̃̂I)

= b3 (10.160)

The resulting PCI-CFs (Eqs. 10.159 and 10.160) are identical with the PCI-CFs (Eqs.
10.155 and 10.156) obtained directly by Fujita’s USCI approach. As for Eq. 10.159, the
selected RS-stereoisomeric groups satisfy C1 ∩C3 = C1, Cσ̃ ∩C3 = C1, a C

̂I ∩C3 = C1

Cs ∩C3 = C1 and Csσ̃̂I ∩C3 = C1. The RS-stereoisomeric groups selected for Eq. 10.160
satisfy C3∩C3 = C3, C3σ̃ ∩C3 = C3, C3̂I ∩C3 = C3, C3v∩C3 = C3 and C3vσ̃̂I ∩C3 = C3.

10.4 RS-Stereoisomers as Intermediate Concepts

Before closing this chapter, it is worthwhile to point out the importance of the concept of
stereoisograms in the theoretical framework of stereoisomerism. A stereoisogram generates
a quadruplet of RS-stereoisomers, which is an equivalence class under the action of an
RS-stereoisomeric group. This means that such a quadruplet of RS-stereoisomers can be
regarded as a new hierarchical item.

In contrast to modern stereochemistry which has adopted the hierarchy of molecu-
lar entities — enantiomers — stereoisomers, Fujita’s stereoisogram approach has demon-
strated the hierarchy of (pro)molecular entities — enantiomers — RS-stereoisomers —
stereoisomers. Thus, Fujita’s stereoisogram approach creates the intermediate concept of
RS-stereoisomers, which mediates between enantiomers and stereoisomers.

Such an intermediate concept brings about a paradigm shift, so that modern stereo-
chemistry has been restructured substantially on the basis of mathematical formulations.
Thus, the hierarchy of modern stereochemistry emphasizes pairs of enantiomers (or achi-
ral molecules), which are based on a single pair of attributes (chirality/achirality). In con-
trast, the hierarchy of Fujita’s stereoisogram approach emphasizes five types of quadruplets
of RS-stereoisomers, which are based on three pairs of attributes (chirality/achirality, RS-
stereogenicity/RS-astereogenicity, and sclerality/asclerality).
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11 Stereoisograms for Tetrahedral Derivatives1

11.1 RS-Stereoisomeric Group Tdσ̃̂I and Elementary
Stereoisogram

Tetrahedral promolecules enumerated under the point group Td are listed in Fig. 6.9 (page
157), where a pair of (self-)enantiomers is counted once as an equivalence class under Td .
On the other hand, tetrahedral promolecules enumerated under the RS-permutation group
Tσ̃ are listed in Fig. 9.10 (page 255), where a pair of (self-)RS-diastereomers is counted
once as an equivalence class under Tσ̃ . In this chapter, the point group Td and the RS-
permutation group Tσ̃ are integrated into an RS-stereoisomeric group Tdσ̃̂I according to the
discussions of Chapter 10 on Fujita’s stereoisogram approach.

The point group Td (cf. Table 3.1 on page 61), the RS-permutation group Tσ̃ (cf. Ta-
ble 9.4 on page 253), and the ligand-reflection group T

̂I have a common subgroup T, as
summarized in the following coset decompositions:

Td = T
A

+Tσ
B

(11.1)

Tσ̃ = T
A

+Tσ̃
C

(11.2)

T
̂I = T

A
+T̂I

D
. (11.3)

These three groups are integrated into an RS-stereoisomeric group Tdσ̃̂I as follows:

Tdσ̃̂I = T
A

+Tσ
B

+Tσ̃
C

+T̂I
D

, (11.4)

which represents the coset decomposition of Tdσ̃̂I by T.
The operations of Tdσ̃̂I and the coset representation Tdσ̃̂I(/C3vσ̃̂I) are listed in Table

11.1, where the symbols A, B, C, and D correspond to the respective cosets appearing in Eq.
11.4. For the A- and B-parts, see Table 3.1 of the point group Td . For the A- and C-parts,
see Table 9.4 of the RS-permutation group Tσ̃ . Detailed discussions in [1] have indicated
that the RS-stereoisomeric group Tdσ̃̂I is isomorphic to the point group Oh, so that the coset
representations Tdσ̃̂I(/C3vσ̃̂I) and Oh(/D3d) consist of an identical set of permutations.

Suppose that the four positions of the tetrahedral skeleton 3-5 (page 55) are controlled
by the RS-stereoisomeric group Tdσ̃̂I through the coset representation Tdσ̃̂I(/C3vσ̃̂I). The

1 This chapter is based on S. Fujita, “Symmetry-Itemized Enumeration of Quadruplets of RS-Stereoisomers:
I — The Fixed-Point Matrix Method of the USCI Approach Combined with the Stereoisogram Approach”,
J. Math. Chem., 52, 508–542 (2014); S. Fujita, “Symmetry-Itemized Enumeration of Quadruplets of RS-
Stereoisomers: II — The Partial-Cycle-Index Method of the USCI Approach Combined with the Stereoiso-
gram Approach”, J. Math. Chem., 52, 543–574 (2014); and S. Fujita, “Stereoisograms for Reorganizing the
Theoretical Foundations of Stereochemistry and Stereoisomerism: I. Diagrammatic Representations of RS-
Stereoisomeric Groups for Integrating Point Groups and RS-Permutation Groups”, Tetrahedron: Asymmetry,
25, 1153–1168 (2014).
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Table 11.1. Operations of Tdσ̃̂I and Coset Representation of Tdσ̃̂I(/C3vσ̃̂I) vs. Operations of Oh

and Coset Representation of Oh(/D3d)

operation Oh(/D3d) or Tdσ̃̂I(/C3vσ̃̂I) operation Oh(/D3d) or Tdσ̃̂I(/C3vσ̃̂I)
g ∈Oh g ∈ Tdσ̃̂I (product of cycles) PSI g ∈Oh g ∈ Tdσ̃̂I (product of cycles) PSI

A C
B D

I I (1)(2)(3)(4) b4
1 C′2(6) σ̃d(1) (1)(2 4)(3) b2

1b2

C2(1) C2(1) (1 2)(3 4) b2
2 C′2(1) σ̃d(6) (1 3)(2)(4) b2

1b2

C2(2) C2(2) (1 4)(2 3) b2
2 C′2(4) σ̃d(5) (1 4)(2)(3) b2

1b2

C2(3) C2(3) (1 3)(2 4) b2
2 C′2(2) σ̃d(2) (1)(2)(3 4) b2

1b2

C3(1) C3(1) (1)(2 3 4) b1b3 C′2(5) σ̃d(3) (1)(2 3)(4) b2
1b2

C3(3) C3(3) (1 3 4)(3) b1b3 C′2(3) σ̃d(4) (1 2)(3)(4) b2
1b2

C3(2) C3(2) (1 4 3)(2) b1b3 C3
4(3)

˜S4(3) (1 2 3 4) b4

C3(4) C3(4) (1 3 2)(4) b1b3 C4(3)
˜S3

4(3) (1 4 3 2) b4

C2
3(1) C2

3(1) (1)(2 4 3) b1b3 C3
4(1)

˜S3
4(1) (1 4 2 3) b4

C2
3(4) C2

3(4) (1 2 3)(4) b1b3 C4(1)
˜S4(1) (1 3 2 4) b4

C2
3(3) C2

3(3) (1 4 2)(3) b1b3 C4(2)
˜S3

4(2) (1 2 4 3) b4

C2
3(2) C2

3(2) (1 3 4)(2) b1b3 C3
4(2)

˜S4(2) (1 3 4 2) b4

σd(1) σd(1) (1)(2 4)(3) a2
1c2 i ̂I (1)(2)(3)(4) a4

1

σd(6) σd(6) (1 3)(2)(4) a2
1c2 σh(3)

̂C2(1) (1 2)(3 4) c2
2

σd(2) σd(2) (1)(2)(3 4) a2
1c2 σh(2)

̂C2(2) (1 4)(2 3) c2
2

σd(4) σd(4) (1 2)(3)(4) a2
1c2 σh(1)

̂C2(3) (1 3)(2 4) c2
2

σd(3) σd(3) (1)(2 3)(4) a2
1c2 S5

6(1)
̂C3(1) (1)(2 3 4) a1a3

σd(5) σd(5) (1 4)(2)(3) a2
1c2 S5

6(3)
̂C3(3) (1 4 2)(3) a1a3

S4(3) S4(3) (1 2 3 4) c4 S5
6(2)

̂C3(2) (1 4 3)(2) a1a3

S3
4(3) S3

4(3) (1 4 3 2) c4 S5
6(4)

̂C3(4) (1 2 3)(4) a1a3

S4(1) S4(1) (1 4 2 3) c4 S6(1)
̂C2

3(1) (1)(2 4 3) a1a3

S3
4(1) S3

4(1) (1 3 2 4) c4 S6(4)
̂C3(4)2 (1 3 2)(4) a1a3

S3
4(2) S3

4(2) (1 2 4 3) c4 S6(3)
̂C2

3(3) (1 2 4)(3) a1a3

S4(2) S4(2) (1 3 4 2) c4 S6(2)
̂C2

3(2) (1 3 4)(2) a1a3

twelve operations listed in the A-part of Table 11.1 (or the coset TI (= T) of Eq. 11.4) gener-
ate a reference-numbered skeleton 11-1 and its homomeric skeletons, where they are equiv-
alent under the subgroup T (cf. Theorem 10.2 on page 279). The reference-numbered skele-
ton 11-1 is placed in the upper-left corner of Fig. 11.1, which is an elementary stereoisogram
for 11-1 (= 3-5). The twelve operations listed in the B-part of Table 11.1 (or the coset Tσ
of Eq. 11.4) generate a mirror-numbered skeleton 11-1 and its homomeric skeletons, where
they are equivalent under the subgroup T. The twelve operations listed in the C-part of
Table 11.1 (or the coset Tσ̃ of Eq. 11.4) generate an RS-numbered skeleton 11-2 and its ho-
momeric skeletons, where they are equivalent under the subgroup T. The twelve operations
listed in the D-part of Table 11.1 (or the coset T̂I of Eq. 11.4) generate an LM-numbered
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BC

1

34
2

�� � DC

1

32
4

11-1 11-2
(1)(2 4)(3) (1)(2)(3)(4)

Fig. 11.1. Elementary stereoisogram of numbered tetrahedral skeletons. The other modes of
sequential numbering are permitted without losing generality.

skeleton 11-2 and its homomeric skeletons, where they are equivalent under the subgroup
T. The quadruplet of 11-1/11-1/11-2/11-2 is arranged to give an elementary stereoisogram
shown in Fig. 11.1.

Suppose that the four positions of the tetrahedral skeleton 3-5 (= 11-1) are substituted
by a set of proligands selected from a ligand inventory L (Eq. 6.73 on page 153). To sur-
vey stereoisograms generated from the tetrahedral skeleton, Fig. 11.2 collects reference
promolecules for constructing stereoisograms [2, Fig. 1]. When each promolecule listed in
Fig. 11.2 is placed to fill the four positions of the reference skeleton 11-1, there appears a
quadruplet of promolecules according to the elementary stereoisogram of Fig. 11.1.

11.2 Stereoisograms of Five Types for Tetrahedral
Derivatives

The list of stereoisograms of five types (Fig. 10.9 on page 288) is effective to tetrahedral
derivatives.

11.2.1 Type-I Stereoisograms of Tetrahedral Derivatives

When a promolecule 11-3 with the composition ABXY is selected as a reference from Fig.
11.2, the elementary stereoisogram (Fig. 11.1) generates a type-I stereoisogram shown in
Fig. 11.3, which is characterized by the presence of diagonal equality symbols.

The promolecule 11-3 shown in Fig. 11.2 is attached by a pair of square brackets [C
̂I ,

C1, C1; I], which indicates the RS-stereoisomeric group C
̂I , the point group C1, and the RS-
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RS-astereogenic RS-stereogenic

Type I

C

A

BY
X

11-3 ([θ ]10)
[C
̂I , C1, C1; I]

C

p

pq
q

11-4 ([θ ]28)
[Cσ̂ , C1, C1; I]

chiral

Type II

C

p

pp
p

11-5 ([θ ]20)
[Tσ̃ , T, Tσ̃ ; II]

C

p

AA
A

11-6 ([θ ]3)
[C3σ̃ , C3, C3σ̃ ; II]

C

A

pp
p

11-7 ([θ ]15)
[C3σ̃ , C3, C3σ̃ ; II]

C

q

pp
p

11-8 ([θ ]22)
[C3σ̃ , C3, C3σ̃ ; II]

C

p

pp
p

11-9 ([θ ]21)
[C3σ̃ , C3, C3σ̃ ; II]

C

A

Ap
p

11-10 ([θ ]5)
[C2σ̃ , C2, C2σ̃ ; II]

C

p

pq
q

11-11 ([θ ]25)
[C2σ̃ , C2, C2σ̃ ; II]

C

A

Ap
B

11-12 ([θ ]7)
[Cσ̃ , C1, Cσ̃ ; II]

C

A

Aq
p

11-13 ([θ ]9)
[Cσ̃ , C1, Cσ̃ ; II]

C

A

Bp
p

11-14 ([θ ]12)
[Cσ̃ , C1, Cσ̃ ; II]

C

A

pp
p

11-15 ([θ ]16)
[Cσ̃ , C1, Cσ̃ ; II]

C

A

qp
p

11-16 ([θ ]17)
[Cσ̃ , C1, Cσ̃ ; II]

C

p

pq
p

11-17 ([θ ]24)
[Cσ̃ , C1, Cσ̃ ; II]

C

p

pq
q

11-18 ([θ ]26)
[Cσ̃ , C1, Cσ̃ ; II]

C

p

pr
q

11-19 ([θ ]27)
[Cσ̃ , C1, Cσ̃ ; II]

Type III

C

A

Bp
X

11-20 ([θ ]11)
[C1, C1, C1; III]

C

A

Bq
p

11-21 ([θ ]14)
[C1, C1, C1; III]

C

A

qp
p

11-22 ([θ ]18)
[C1, C1, C1; III]

C

A

rq
p

11-23 ([θ ]19)
[C1, C1, C1; III]

C

p

pr
q

11-24 ([θ ]29)
[C1, C1, C1; III]

C

p

qs
r

11-25 ([θ ]30)
[C1, C1, C1; III]

achiral

Type IV

C

A

AA
A

11-26 ([θ ]1)
[Tdσ̃̂I , Td , Tσ̃ ; IV]

C

B

AA
A

11-27 ([θ ]2)
[C3vσ̃̂I , C3v, C3σ̃ ; IV]

C

A

AB
B

11-28 ([θ ]4)
[C2vσ̃̂I , C2v, C2σ̃ ; IV]

C

p

pp
p

11-29 ([θ ]23)
[S4σ̃ σ̂ , S4, C2σ̃ ; IV]

C

B

XA
A

11-30 ([θ ]6)
[Csσ̃̂I , Cs, Cσ̃ ; IV]

C

A

Ap
p

11-31 ([θ ]8)
Csσ̃ σ̂ , Cs, Cσ̃ ; IV

Type V

C

A

Bp
p

11-32 ([θ ]13)
[Cs, Cs, C1; V]

Fig. 11.2. Reference promolecules of quadruplets of RS-stereoisomers (Types I to V) for tetrahe-
dral promolecules. The symbols A, B, X, and Y represent atoms or achiral ligands. The symbols
p, q, r, and s represents chiral ligands, while each symbol with an overbar represents the corre-
sponding chiral ligand with the opposite chirality. An arbitrary promolecule is depicted as a rep-
resentative of each quadruplet of RS-stereoisomers. The compound number and its partition is
attached to each promolecule. The RS-stereoisomeric group, the point group, the RS-permutation
group, and the stereoisogram type are placed in a bracket attached to each promolecule. A gray
box is drawn to show a chirality-unfaithful case [3].
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Fig. 11.3. Stereoisogram of type I on the basis of a tetrahedral skeleton. The promolecule
11-3 belongs to the RS-stereoisomeric group C

̂I and to the point group C1. A pair of R/S-
stereodescriptors, ‘R’ and ‘S’, is assigned to a pair of RS-diastereomers 11-3/11-33 (or
11-3/11-33) where the priority sequence A > B > X > Y is presumed.

permutation group C1, and a stereoisogram type (type I). Note that the RS-stereoisomeric
group C

̂I (= {I,̂I}) corresponds to the equality symbols located in the diagonal directions
of the type-I stereoisogram shown in Fig. 11.3.

The other promolecule 11-4 with the composition ppqq in the type-I frame of Fig. 11.2
generates a type-I stereoisogram in a similar way to Fig. 11.3.

Exercise 11.1. Draw a stereoisogram of 11-4 with the composition ppqq. Confirm that
the resulting stereoisogram belongs to type I.

11.2.2 Type-II Stereoisograms of Tetrahedral Derivatives

An enantiomeric pair of chiral 2,3,4-trihydroxyglutaric acids 11-34 and 11-34 can be re-
garded as an enantiomeric pair of promolecules 11-14 and 11-14, which have the composi-
tions ABp2 and ABp2 respectively, if we focus our attention to the central 3-carbon atom.
When the promolecule 11-14 with the composition ABp2 is selected as a reference, the el-
ementary stereoisogram (Fig. 11.1) generates a type-II stereoisogram shown in Fig. 11.4,
which is characterized by the presence of horizontal equality symbols.

The promolecule 11-14 shown in Fig. 11.2 is attached by a pair of square brackets
[Cσ̃ , C1, Cσ̃ ; II]. The RS-stereoisomeric group Cσ̃ (= {I, σ̃d(1)}) corresponds to the equality
symbols located in the horizontal directions of the type-II stereoisogram shown in Fig. 11.4.
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Fig. 11.4. Stereoisogram of type II on the basis of a tetrahedral skeleton. The promolecule 11-14
belongs to the RS-stereoisomeric group Cσ̃ and to the point group C1.

The promolecules 11-5–11-19 in the type-II frame of Fig. 11.2 generate type-II
stereoisograms in a similar way to Fig. 11.4.

Exercise 11.2. Draw a stereoisogram for an appropriate promolecule selected from 11-5–
11-19. Confirm that the resulting stereoisogram belongs to type II.

11.2.3 Type-III Stereoisograms of Tetrahedral Derivatives

When a promolecule 11-20 with the composition ABXp is selected as a reference from Fig.
11.2, the elementary stereoisogram (Fig. 11.1) generates a type-III stereoisogram shown
in Fig. 11.5, which is characterized by the absence of equality symbols in any directions.
The promolecule 11-20 has the composition ABXp, because it is enantiomeric to the ref-
erence promolecule 11-20. The promolecule 11-36 has the composition ABXp, because
it is RS-diastereomeric to the reference promolecule 11-20. The promolecule 11-36 has the
composition ABXp, because it is holantimeric to the reference promolecule 11-20. The four
promolecules are different molecular entities from each other.

The promolecule 11-20 shown in Fig. 11.2 is attached by a pair of square brackets [C1,
C1, C1; III]. The RS-stereoisomeric group C1 (= {I}) corresponds to the absence of equality
symbols in any directions, as found in the type-III stereoisogram of Fig. 11.5.

The promolecules 11-20–11-25 in the type-III frame of Fig. 11.2 generate type-III
stereoisograms in a similar way to Fig. 11.5.
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Fig. 11.5. Chirality-faithful stereoisogram of type III on the basis of a tetrahedral skeleton. The
promolecule 11-20 belongs to the RS-stereoisomeric group C1 and to the point group C1. A pair
of R/S-stereodescriptors, ‘R’ and ’S’, is assigned to a pair of RS-diastereomers 11-20/11-36 (or
11-20/11-36), where the priority sequence A > B > X > p (or A > B > X > p) is presumed. Thus,
this stereoisogram exhibits chirality faithfulness. The same pair of R/S-stereodescriptors is ob-
tained by presuming the priority sequence A > p > B > X (or A > p > B > X).

Exercise 11.3. Draw a stereoisogram for an appropriate promolecule selected from
11-20–11-25. Confirm that the resulting stereoisogram belongs to type III.

11.2.4 Type-IV Stereoisograms of Tetrahedral Derivatives

When a promolecule 11-30 with the composition A2BX is selected as a reference from
Fig. 11.2, the elementary stereoisogram (Fig. 11.1) generates a type-IV stereoisogram
shown in Fig. 11.6, which is characterized by the presence of equality symbols in all di-
rections. Hence, the resulting quadruplet of promolecules degenerates into a single achiral
promolecule.

The promolecule 11-30 shown in Fig. 11.2 is attached by a pair of square brackets
[Csσ̃̂I , Cs, Cσ̃ ; IV]. The RS-stereoisomeric group Csσ̃̂I (= {I, σ̃d(1),̂I,σd(1)}) corresponds to
the presence of equality symbols in all directions, as found in the type-IV stereoisogram of
Fig. 11.6.

The promolecules 11-26–11-31 in the type-IV frame of Fig. 11.2 generate type-IV
stereoisograms in a similar way to Fig. 11.6.
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Fig. 11.6. Stereoisogram of type IV on the basis of a tetrahedral skeleton. The promolecule 11-30
belongs to the RS-stereoisomeric group Csσ̃̂I and to the point group Cs.

Exercise 11.4. Draw a stereoisogram for an appropriate promolecule selected from
11-26–11-31. Confirm that the resulting stereoisogram belongs to type IV.

11.2.5 Type-V Stereoisograms of Tetrahedral Derivatives

Two achiral 2,3,4-trihydroxyglutaric acids 11-38 and 11-39 can be regarded as an RS-
diastereomeric pair of promolecules 11-32 and 11-40 which have the same composition
ABpp, if we focus our attention to the central 3-carbon atom. When the promolecule 11-32
is selected as a reference, the elementary stereoisogram (Fig. 11.1) generates a type-V
stereoisogram shown in Fig. 11.7, which is characterized by the presence of vertical equality
symbols.

The promolecule 11-32 shown in Fig. 11.2 is attached by a pair of square brackets [Cs,
Cs, C1; V]. The RS-stereoisomeric group Cs (= {I,σd(1)}) is a subgroup of Td and of Tdσ̃̂I ,
so that it corresponds to the presence of vertival equality symbols, as found in the type-V
stereoisogram of Fig. 11.7.

It should be noted that the type-V frame of Fig. 6.9 (page 157) indicates that there ap-
pear two promoleculs 6-100 and 6-101 under the action of point group Td , whereas they
degenerate to give a single representative 11-32, as found in the type-V frame of Fig.
11.2. Thus, the single representative 11-32 produces a quadruplet of Fig. 11.7 under the
action of the RS-stereoisomeric group Tdσ̃̂I , where the quadruplet consists of a pair of RS-
diastereomers 11-32/11-40 (= 6-100/6-101).
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Fig. 11.7. Stereoisogram of type V on the basis of a tetrahedral skeleton. The promolecule
11-32 belongs to the RS-stereoisomeric group Cs and the point group Cs. A pair of R/S-
stereodescriptors, ‘r ’ and ’s’, is assigned to a pair of RS-diastereomers 11-32/11-40, where the
priority sequence A > B > p > p (or A > p > p> B) is presumed. The lowercase letters are used
because of chirality unfaithfulness.

Exercise 11.5. Compare the group Cs under the action of the point group Td with the
group Cs under the action of the RS-stereoisomeric group Tdσ̃̂I . Note that 6-100 and 6-101
are inequivalent under the point group Td . In contrast, they (= 11-32 and 11-40) are bun-
dled into a single quadruplet, which is regarded as an equivalence class under the RS-
stereoisomeric group Tdσ̃̂I (cf. Fig. 11.7).

Remark 11.1. When we consider an RS-stereoisomeric group such as Tdσ̃̂I , a quadru-
plet of promolecules such as Fig. 11.7 is regarded as a single entity to be discussed,
i.e., an equivalence class under the RS-stereoisomeric group. The action of the RS-
stereoisomeric group Tdσ̃̂I on the quadruplet (e.g., Fig. 11.7 of type V) results in the
stabilization (fixation) of the quadruplet by a subgroup of Tdσ̃̂I . In the case of Fig.
11.7, the subgroup Cs (⊂ Tdσ̃̂I) stabilizes the quadruplet.

On the other hand, when we consider a point group such as Td , each pair of
(self-)enantiomeric promolecules in a stereoisogram (e.g., each of the two achiral
promolecules in Fig. 11.7) is regarded as an entity to be discussed, i.e., an equiva-
lence class under the point group. The action of the point group Td on each pair of
(self-)enantiomeric promolecules in the stereoisogram (Fig. 11.7) results in the stabi-
lization (fixation) of the pair of (self-)enantiomers by a subgroup of Td . In the case
of Fig. 11.7, the subgroup Cs (⊂ Td) stabilizes the pair of (self-)enantiomers.
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It should be noted that Cs as a subgroup of the RS-stereoisomeric group Tdσ̃̂I is
distinct from Cs as a subgroup of the point group Td in target entities, i.e., a quadru-
plet vs. pairs of (self-)enantiomers in a stereoisogram.

11.3 Enumeration Under the RS-Stereoisomeric Group Tdσ̃̂I

The FPM method of the USCI approach has been extended to support RS-stereoisomeric
groups and applied to enumeration under the RS-stereoisomeric group Tdσ̃̂I [1]. As dis-
cussed in Section 10.2, the PCI method has been extended to accomplish the same purpose
[4]. As a continuation of Section 10.2, we adopt the extended PCI method in enumeration
under Tdσ̃̂I in this section,

11.3.1 Non-Redundant Set of Subgroups and Five Types of Subgroups

The RS-stereoisomeric group Tdσ̃̂I is isomorphic to the point group Oh [1]. The point group
Oh has the following non-redundant set of subgroups (SSG) [5]:

SSGOh =

{

1
C1,

2
C2,

3
C ′2,

4
Cs,

5
C ′s,

6
Ci,

7
C3,

8
C4,

9
S4,

10
D2,

11
D ′2,

12
C2v,

13
C ′2v,

14
C ′′2v,

15
C2h,

16
C ′2h,

17
D3,

18
C3v,

19
C3i,

20
D4,

21
C4v,

22
C4h,

23
D2d ,

24
D ′2d ,

25
D2h,

26
D ′2h,

27
T,

28
D3d ,

29
D4h,

30
O,

31
Th,

32
Td ,

33
Oh

}

, (11.5)

where the subgroups are aligned in the ascending order of their orders. In a parallel way, a
non-redundant set of subgroups (SSG) for Tdσ̃̂I is obtained as follows [1]:

SSGTdσ̃̂I
=
{

1
C1,

2
C2,

3
Cσ̃ ,

4
Cσ̂ ,

5
Cs,

6
C
̂I ,

7
C3,

8
S
˜4,

9
S4,

10
D2,

11
C2σ̃ ,

12
C2σ̂ ,

13
C2v,

14
Csσ̃ σ̂ ,

15
C2̂I ,

16
Csσ̃̂I ,

17
C3σ̃ ,

18
C3v,

19
C3̂I ,

20
D2σ̃ ,

21
S
˜4σ̂ ,

22
S
˜4̂I ,

23
D2d ,

24
S4σ̃ σ̂ ,

25
D2̂I ,

26
C2vσ̃̂I ,

27
T,

28
C3vσ̃̂I ,

29
D2dσ̃̂I ,

30
Tσ̃ ,

31
T
̂I ,

32
Td ,

33
Tdσ̃̂I

}

, (11.6)

where the subgroups are aligned in the ascending order of their orders. For the convenience
of cross reference, sequential numbers from 1 to 33 are attached to the respective subgroups.
According to the discussion of [1], the 33 subgroups of SSGTdσ̃̂I

are categorized into five
types:

Type I: SG[I] = {
4

Cσ̂ ,
6

C
̂I ,

12
C2σ̂ ,

15
C2̂I ,

19
C3̂I ,

25
D2̂I ,

31
T
̂I} (11.7)
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Type II: SG[II] = {
3

Cσ̃ ,
8

S
˜4,

11
C2σ̃ ,

17
C3σ̃ ,

20
D2σ̃ ,

30
Tσ̃} (11.8)

Type III: SG[III] = {
1

C1,
2

C2,
7

C3,
10
D2,

27
T} (11.9)

Type IV: SG[IV] = {
14

Csσ̃ σ̂ ,
16

Csσ̃̂I ,
21

S
˜4σ̂ ,

22
S
˜4̂I ,

24
S4σ̃ σ̂ ,

26
C2vσ̃̂I ,

28
C3vσ̃̂I ,

29
D2dσ̃̂I ,

33
Tdσ̃̂I} (11.10)

Type V: SG[V] = {
5

Cs,
9

S4,
13

C2v,
18

C3v,
23

D2d ,
32
Td}, (11.11)

which correspond to stereoisograms of five types shown in Fig. 11.2. Note that each sub-
group of type I (Eq. 11.7) is characterized by a subscript containing a hat accent; each
subgroup of type II (Eq. 11.8) is characterized by a subscript containing a tilde accent; each
subgroup of type III (Eq. 11.8) is contained in T and characterized by a subscript containing
no accents; each subgroup of type IV (Eq. 11.10) is characterized by a subscript containing
both hat and tilde accents; and each subgroup of type V (Eq. 11.11) is contained in Td and
characterized by a subscript containing no accents.

Because we find that Td is a common subgroup of Oh and Tdσ̃̂I and because we find
the correspondence between Td (⊂Oh) and Tσ̃ (⊂ Tdσ̃̂I) as well as between Th (⊂Oh) and
T
̂I (⊂ Tdσ̃̂I), we are able to construct each subgroup by referring to the five types shown in

Eqs. 11.7–11.11:
1. (Type-III Subgroups) The subgroups categorized to type III (Eq. 11.9) are identical with

the five subgroups of the point group T:

C1
1= {I} (11.12)

C2
2= {I,C2(1)} (11.13)

C3
7= {I,C3(1),C

2
3(1)} (11.14)

D2
10= {I,C2(1),C2(2),C2(3)} (11.15)

T 27= {A} (11.16)

2. (Type-V Subgroups) The subgroups categorized to type V (Eq. 11.11) are identical with
the six subgroups of Td (except those of T):

Cs
5= {I,σd(1)} (11.17)

S4
9= {I,S4(3),C2(3),S

3
4(3)} (11.18)

C2v
13= {I,C2(3),σd(1),σd(6)} (11.19)

C3v
18= {I,C3(1),C

2
3(1),σd(1),σd(2),σd(3)} (11.20)

D2d
23= {I,C2(1),C2(2),C2(3),σd(1),σd(6),S4(3),S

3
4(3)} (11.21)

Td
32= {A,B} (11.22)

3. (Type-II Subgroups) The subgroups categorized to type II (Eq. 11.8) are the subgroups
of Tσ̃ (−T):

Cσ̃
3= {I, σ̃d(1)} (⊃ C1) (11.23)
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S
˜4

8= {I, ˜S4(3),C2(3), ˜S
3
4(3)} (⊃ C2) (11.24)

C2σ̃
11= {I,C2(3), σ̃d(1), σ̃d(6)} (⊃ C2) (11.25)

C3σ̃
17= {I,C3(1),C

2
3(1), σ̃d(1), σ̃d(2), σ̃d(3)} (⊃ C3) (11.26)

D2σ̃
20= {I,C2(1),C2(2),C2(3), σ̃d(1), σ̃d(6), ˜S4(3), ˜S

3
4(3)} (⊃ D2) (11.27)

Tσ̃
30= {A,C} (⊃ T) (11.28)

which correspond to the six subgroups of O (except those of T). Each of the symbols
contains a tilde accent in its suffix. For example, the symbol C2σ̃ stems from the largest
subgroup C2 (as a common subgroup to Td) and from an uncommon operation σ̃d(1).
The symbol S

˜4 is adopted for the purpose of avoiding the confusion with C2σ̃ .
4. (Type-I Subgroups) The subgroups categorized to type I (Eq. 11.7) are the subgroups

of T
̂I (−T):

Cσ̂
4= {I, ̂C2(3)} (⊃ C1) (11.29)

C
̂I

6= {I,̂I} (⊃ C1) (11.30)

C2σ̂
12= {I,C2(3), ̂C2(1), ̂C2(2)} (⊃ C2) (11.31)

C2̂I
15= {I,C2(3), ̂C2(3),̂I} (⊃ C2) (11.32)

C3̂I
19= {I,C3(1),C

2
3(1),

̂I, ̂C3(1), ̂C
2
3(1)} (⊃ C3) (11.33)

D2̂I
25= {I,C2(1),C2(2),C2(3),̂I, ̂C2(1), ̂C2(2), ̂C2(3)} (⊃ D2) (11.34)

T
̂I

31= {A,D} (⊃ T) (11.35)

which correspond to the seven subgroups of Th (except those of T). The names of the
subgroups are characterized by the symbols with a hat accent.

5. (Type-IV Subgroups) The nine subgroups of Oh (except those of T, Td , O, and Th)
correspond to the following subgroups of Tdσ̃̂I :

Csσ̃ σ̂
14= {I, σ̃d(1), ̂C2(3),σd(6)} (⊃ Cs) (11.36)

Csσ̃̂I
16= {I, σ̃d(1),̂I,σd(1)} (⊃ Cs) (11.37)

S
˜4σ̂

21= {I, ˜S4(3),C2(3), ˜S
3
4(3),

̂C2(1), ̂C2(2),σd(1),σd(6)} (⊃ S
˜4,C2v) (11.38)

S
˜4̂I

22= {I, ˜S4(3),C2(3), ˜S
3
4(3),

̂I, ̂C2(3),S4(3),S
3
4(3)} (⊃ S

˜4,S4) (11.39)

S4σ̃ σ̂
24= {I,C2(3), σ̃d(1), σ̃d(6), ̂C2(1), ̂C2(2),S4(3),S

3
4(3)} (⊃ S4) (11.40)

C2vσ̃̂I
26= {I,C2(3), σ̃d(1), σ̃d(6),̂I, ̂C2(3),σd(1),σd(6)} (⊃ C2v) (11.41)

C3vσ̃̂I
28= {I,C3(1),C

2
3(1), σ̃d(1), σ̃d(2), σ̃d(3),

̂I, ̂C3(1), ̂C
2
3(1),σd(1),σd(2),σd(3)} (⊃ C3v) (11.42)

D2dσ̃̂I
29= {I,C2(1),C2(2),C2(3), σ̃d(1), σ̃d(6), ˜S4(3), ˜S

3
4(3),
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̂I, ̂C2(1), ̂C2(2), ̂C2(3),σd(1),σd(6),S4(3),S
3
4(3)} (⊃ D2d) (11.43)

Tdσ̃̂I
33= {A,B,C,D} (⊃ Td) (11.44)

These RS-stereoisomeric groups are categorized to type IV (Eq. 11.8). The names of the
subgroups are characterized by the symbols with both a hat accent and a tilde accent.
The symbol S

˜4σ̂ is based on the subgroup S
˜4 in place of C2v. The symbol S

˜4̂I is based
on the subgroup S

˜4 in place of S4.

11.3.2 Subduction of Coset Representations

The mark table of the point group Oh has been reported in [5, Table 1] and [6, Table 1].
The inverse mark table of the point group Oh has been reported in [5, Table 2] and [6, Table
2]. The USCI-CF table of the point group Oh has been reported in [6, Table 4 and 5].
They are applicable to enumeration under the isomorphic RS-stereoisomeric group Tdσ̃̂I by
considering the correspondence between their SSGs (Eq. 11.5 and Eq. 11.6).

Because of the isomorphism between Tdσ̃̂I and Oh, the inverse mark table M−1
Tdσ̃̂I

has
been reported in the form of a 33×33 lower triangular matrix (Eq. 53 of [1]):

M−1
Tdσ̃̂I

= M−1
Oh

= (m ji) =
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜
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⎜
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⎜
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⎜
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⎜
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⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

− 1
16

1
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

− 1
8 0 1

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

− 1
16 0 0 1

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

− 1
8 0 0 0 1

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

− 1
48 0 0 0 0 1

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

− 1
12 0 0 0 0 0 1

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 − 1
8 0 0 0 0 0 1

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 − 1
8 0 0 0 0 0 0 1

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1

24 − 1
8 0 0 0 0 0 0 0 1

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
8 − 1

8 − 1
4 0 0 0 0 0 0 0 1

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
8 − 1

8 0 − 1
4 0 0 0 0 0 0 0 1

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
8 − 1

8 0 0 − 1
4 0 0 0 0 0 0 0 1

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
4 0 − 1

4 − 1
4 − 1

4 0 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
8 − 1

8 0 − 1
8 0 − 1

8 0 0 0 0 0 0 0 0 1
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
4 0 − 1

4 0 − 1
4 − 1

4 0 0 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
4 0 − 1

2 0 0 0 − 1
4 0 0 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
4 0 0 0 − 1

2 0 − 1
4 0 0 0 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1

12 0 0 0 0 − 1
6 − 1

4 0 0 0 0 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1
4 0 0 0 0 0 − 1

4 0 − 1
4 − 1

4 0 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1
4 0 0 0 0 0 − 1

4 0 0 0 − 1
4 − 1

4 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0 0 0

0 1
4 0 0 0 0 0 − 1

4 − 1
4 0 0 0 0 0 − 1

4 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0 0

0 1
4 0 0 0 0 0 0 − 1

4 − 1
4 0 0 − 1

4 0 0 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0

0 1
4 0 0 0 0 0 0 − 1

4 0 − 1
4 − 1

4 0 0 0 0 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 0 0

− 1
6

1
4 0 1

4 0 1
12 0 0 0 − 1

12 0 − 1
4 0 0 − 1

4 0 0 0 0 0 0 0 0 0 1
6 0 0 0 0 0 0 0 0

− 1
2

1
4

1
2

1
4

1
2

1
4 0 0 0 0 − 1

4 0 − 1
4 − 1

2 − 1
4 − 1

2 0 0 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0

1
12 0 0 0 0 0 − 1

4 0 0 − 1
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

4 0 0 0 0 0 0

− 1
2 0 1

2 0 1
2

1
2

1
2 0 0 0 0 0 0 0 0 −1 − 1

2 − 1
2 − 1

2 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 −1 0 0 0 0 0 1
2

1
2

1
2

1
2

1
2

1
2 0 1

2 0 0 0 0 − 1
2 − 1

2 − 1
2 − 1

2 − 1
2 − 1

2 − 1
2 0 0 1 0 0 0 0

− 1
4 0 1

2 0 0 0 1
4 0 0 1

4 0 0 0 0 0 0 − 1
2 0 0 − 1

2 0 0 0 0 0 0 − 1
4 0 0 1

2 0 0 0

− 1
12 0 0 0 0 1

6
1
4 0 0 1

12 0 0 0 0 0 0 0 0 − 1
2 0 0 0 0 0 − 1

6 0 − 1
4 0 0 0 1

2 0 0

− 1
4 0 0 0 1

2 0 1
4 0 0 1

4 0 0 0 0 0 0 0 − 1
2 0 0 0 0 − 1

2 0 0 0 − 1
4 0 0 0 0 1

2 0
1
2 0 − 1

2 0 − 1
2 − 1

2 − 1
2 0 0 − 1

2 0 0 0 0 0 1 1
2

1
2

1
2

1
2 0 0 1

2 0 1
2 0 1

2 −1−1− 1
2 − 1

2 − 1
2 1
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.(11.45)
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Table 11.2. Subduction of Tdσ̃̂I(/C3vσ̃̂I)

Subgroup Subduction
USCI-CF USCI

TEM
(↓ Ǵ j) (Tdσ̃̂I(/C3vσ̃̂I) ↓ Ǵ j) ̂Nj ̂N

(I)
j
̂N(II)

j
̂N(III)

j
̂N(IV )

j
̂N(V )

j

1 C1 4C1(/C1) b4
1 s4

1
1
48 0 0 1

48 0 0

2 C2 2C2(/C1) b2
2 s2

2
1
16 0 0 1

16 0 0

3 Cσ̃ Cσ̃ (/C1)+2Cσ̃ (/Cσ̃ ) b2
1b2 s2

1s2
1
8 0 1

4 − 1
8 0 0

4 Cσ̂ 2Cσ̂ (/C1) c2
2 s2

2
1
16

1
8 0 − 1

16 0 0

5 Cs Cs(/C1)+2Cs(/Cs) a2
1c2 s2

1s2
1
8 0 0 − 1

8 0 1
4

6 C
̂I 4C

̂I(/C
̂I) a4

1 a4
1

1
48

1
24 0 − 1

48 0 0

7 C3 C3(/C1)+C3(/C3) b1b3 s1s3
1
6 0 0 1

6 0 0

8 S
˜4 S

˜4(/C1) b4 s4
1
8 0 1

4 − 1
8 0 0

9 S4 S4(/C1) c4 s4
1
8 0 0 − 1

8 0 1
4

10 D2 D2(/C1) b4 s4 0 0 0 0 0 0

11 C2σ̃ C2σ̃ (/Cσ̃ )+C2σ̃ (/C′σ̃ ) b2
2 s2

2 0 0 0 0 0 0

12 C2σ̂ C2σ̂ (/C1) c4 s4 0 0 0 0 0 0

13 C2v C2v(/Cs)+C2v(/C′s) a2
2 s2

2 0 0 0 0 0 0

14 Csσ̃ σ̂ Csσ̃ σ̂ (/Cσ̃ )+Csσ̃ σ̂ (/Cs) a2c2 s2
2 0 − 1

4 − 1
4

1
4

1
2 − 1

4

15 C2̂I 2C2̂I(/C
̂I) a2

2 s2
2 0 0 0 0 0 0

16 Csσ̃̂I Csσ̃̂I(/C
̂I)+2Csσ̃̂I(/Csσ̃̂I) a2

1a2 s2
1s2 0 − 1

4 − 1
4

1
4

1
2 − 1

4

17 C3σ̃ C3σ̃ (/Cσ̃ )+C3σ̃ (/C3σ̃ ) b1b3 s1s3 0 0 0 0 0 0

18 C3v C3v(/Cs)+C3v(/C3v) a1a3 s1s3 0 0 0 0 0 0

19 C3̂I C3̂I(/C
̂I)+C3̂I(/C3̂I) a1a3 s1s3

1
6

1
3 0 − 1

6 0 0

20 D2σ̃ D2σ̃ (/Cσ̃ ) b4 s4 0 0 0 0 0 0

21 S
˜4σ̂ S

˜4σ̂ (/Cs) a4 s4 0 − 1
4 − 1

4
1
4

1
2 − 1

4

22 S
˜4̂I S

˜4̂I(/C
̂I) a4 s4 0 − 1

4 − 1
4

1
4

1
2 − 1

4

23 D2d D2d(/Cs) a4 s4 0 0 0 0 0 0

24 S4σ̃ σ̂ S4σ̃ σ̂ (/Cσ̃ ) c4 s4 0 − 1
4 − 1

4
1
4

1
2 − 1

4

25 D2̂I D2̂I(/C
̂I) a4 s4 0 0 0 0 0 0

26 C2vσ̃̂I C2vσ̃̂I(/Csσ̃̂I)+C2vσ̃̂I(/C′
sσ̃̂I

) a2
2 s2

2 0 1
4

1
4 − 1

4 − 1
2

1
4

27 T T(/C3) b4 s4 0 0 0 0 0 0

28 C3vσ̃̂I C3vσ̃̂I(/Csσ̃̂I)+C3vσ̃̂I(/C3vσ̃̂I) a1a3 s1s3 0 0 0 0 0 0

29 D2dσ̃̂I D2dσ̃̂I(/Csσ̃̂I) a4 s4 0 1
2

1
2 − 1

2 −1 1
2

30 Tσ̃ Tσ̃ (/C3σ̃ ) b4 s4 0 0 0 0 0 0

31 T
̂I T

̂I(/C3̂I) a4 s4 0 0 0 0 0 0

32 Td Td(/C3v) a4 s4 0 0 0 0 0 0

33 Tdσ̃̂I Tdσ̃̂I(/C3vσ̃̂I) a4 s4 0 0 0 0 0 0

The four positions of the tetrahedral skeleton 3-5 (page 55) construct an orbit gov-
erned by a coset representation Tdσ̃̂I(/C3vσ̃̂I), the degree of which is calculated to be
|Tdσ̃̂I |/|C3vσ̃̂I |= 48/12 = 4. The subduction of the coset representation Tdσ̃̂I(/C3vσ̃̂I) by a
subgroup Ǵ j is shown in Table 11.2, which is cited from [1, Table 2].
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According to Eq. 10.56 (Def. 10.4 on page 295), the data of the subduction-column of
Table 11.2 give the corresponding USCI-CFs, as collected in the USCI-CF-column of Table
11.2. The USCI-CFs collected in the USCI-CF-column of Table 11.2 are identical with the
USCI-CFs collected in the Oh(/D3d)-row of the USCI table of Oh [6, Table 4 and 5].

11.3.3 The PCI Method for the RS-Stereoisomeric Group Tdσ̃̂I

PCI-CFs for Characterizing Subgroups
The PCI-CFs for RS-stereoisomeric group Tdσ̃̂I are calculated according to Def. 10.6 (page
298). To accomplish this calculation, the data of the USCI-CF-column of Table 11.2 are
regarded as a formal row vector of SCI-CFs, which is multiplied by the inverse mark table
M−1

Tdσ̃̂I
(Eq. 11.45), as represented schematically to be:
(

PCI-CF(C1),PCI-CF(C2), . . . ,PCI-CF(Ǵ j), . . . ,PCI-CF(Tdσ̃̂I)
)

= (b4
1,b

2
2,b

2
1b2,c2

2,a
2
1c2,a4

1,b1b3,b4,c4,b4,b2
2,c4,a2

2,a2c2,a2
2,a

2
1a2,

b1b3,a1a3,a1a3,b4,a4,a4,a4,c4,a4,a2
2,b4,a1a3,a4,b4,a4,a4,a4)×M−1

Tdσ̃̂I
(11.46)

Thereby, PCI-CFs for every subgroups of SSGTdσ̃̂I
(Eq. 11.6) are obtained as follows, where

the sequential numbers are shown over the respective equality symbols for the convenience
of cross reference:

PCI-CF(C1)
1=

III

1
48

b4
1−

1
48

a4
1−

1
8

b2
1b2 +

1
4

a2
1a2− 1

8
a2

1c2 +
1
6

b1b3− 1
6

a1a3

+
1

16
b2

2−
1
4

a2
2 +

1
4

a2c2− 1
16

c2
2 +

1
8

c4− 1
8

b4 (11.47)

PCI-CF(C2)
2=

III
0 (11.48)

PCI-CF(Cσ̃ ) 3=
II

1
4

b2
1b2− 1

4
a2

1a2− 1
2

b1b3 +
1
2

a1a3− 1
4

b2
2 +

1
2

a2
2

− 1
4

a2c2 +
1
2

b4− 1
2

a4 (11.49)

PCI-CF(Cσ̂ ) 4=
I

1
8

a2
2−

1
4

a2c2 +
1
8

c2
2−

1
4

c4 +
1
4

a4 (11.50)

PCI-CF(Cs)
5=
V

1
4

a2
1c2− 1

4
a2

1a2 +
1
4

a2
2−

1
4

a2c2 (11.51)

PCI-CF(C
̂I)

6=
I

1
24

a4
1−

1
4

a2
1a2 +

1
3

a1a3 +
1
8

a2
2−

1
4

a4 (11.52)

PCI-CF(C3)
7=

III
0 (11.53)

PCI-CF(S
˜4)

8=
II

0 (11.54)

PCI-CF(S4)
9=
V

0 (11.55)

PCI-CF(D2)
10=
III

0 (11.56)
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PCI-CF(C2σ̃ ) 11=
II

1
4

b2
2−

1
4

a2
2−

1
4

b4− 1
4

c4 +
1
2

a4 (11.57)

PCI-CF(C2σ̂ ) 12=
I

0 (11.58)

PCI-CF(C2v)
13=
V

0 (11.59)

PCI-CF(Csσ̃ σ̂ ) 14=
IV

1
2

a2c2− 1
2

a2
2 (11.60)

PCI-CF(C2̂I)
15=
I

0 (11.61)

PCI-CF(Csσ̃̂I)
16=
IV

1
2

a2
1a2−a1a3− 1

2
a2

2 +a4 (11.62)

PCI-CF(C3σ̃ ) 17=
II

1
2

b1b3− 1
2

a1a3− 1
2

b4 +
1
2

a4 (11.63)

PCI-CF(C3v)
18=
V

0 (11.64)

PCI-CF(C3̂I)
19=
I

0 (11.65)

PCI-CF(D2σ̃ ) 20=
II

0 (11.66)

PCI-CF(S
˜4σ̂ ) 21=

IV
0 (11.67)

PCI-CF(S
˜4̂I)

22=
IV

0 (11.68)

PCI-CF(D2d)
23=
V

0 (11.69)

PCI-CF(S4σ̃ σ̂ ) 24=
IV

1
2

c4− 1
2

a4 (11.70)

PCI-CF(D2̂I)
25=
I

0 (11.71)

PCI-CF(C2vσ̃̂I)
26=
IV

1
2

a2
2−

1
2

a4 (11.72)

PCI-CF(T) 27=
III

0 (11.73)

PCI-CF(C3vσ̃̂I)
28=
IV

a1a3−a4 (11.74)

PCI-CF(D2dσ̃̂I)
29=
IV

0 (11.75)

PCI-CF(Tσ̃ ) 30=
II

1
2

b4− 1
2

a4 (11.76)

PCI-CF(T
̂I)

31=
I

0 (11.77)

PCI-CF(Td)
32=
V

0 (11.78)

PCI-CF(Tdσ̃̂I)
33=
IV

a4 (11.79)
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Note that a Roman numeral below each equality symbol represents the stereoisogram type
at issue (types I–V). These PCI-CFs have once been noted in [4].

Generating Functions for Symmetry-Itemized Enumeration
Suppose that the four positions of the tetrahedral skeleton 3-5 (page 55) are substituted by
a set of proligands selected from a ligand inventory L (Eq. 6.73 on page 153). According to
Theorem 10.4 (page 298), which is an extended version of Theorem 19.6 (or Theorem 9.7)
of [7], we use the following ligand-inventory functions:

ad = Ad +Bd +Xd +Yd (11.80)

cd = Ad +Bd +Xd +Yd +2pd/2pd/2 +2qd/2qd/2 +2rd/2rd/2 +2sd/2sd/2 (11.81)

bd = Ad +Bd +Xd +Yd +pd +qd + rd + sd +pd +qd + rd + sd , (11.82)

where the power d/2 appearing in Eq. 11.81 is an integer because the subscript d of cd is
always even in the light of the enantiosphericity of the corresponding orbit.

The ligand-inventory functions (Eqs. 11.80–11.82) are introduced into the PCI-CFs
(Eqs. 11.47–11.79). After expansion of the resulting equations, the following generating
functions for symmetry-itemized enumeration under Tdσ̃̂I are obtained:

fC1
1=
III
{1

2

[θ ]11
(ABXp+ABXp)+ · · ·}+{1

2

[θ ]14
(ABpq+ABpq)+ · · ·}

+{1
2

[θ ]18
(Appq+Appq)+ · · ·}+{1

2

[θ ]19
(Apqr+Apqr)+ · · ·}

+{1
2

[θ ]30
(pqrs+pqrs)+ · · ·}+{1

2

[θ ]29
(ppqr+ppqr)+ · · ·} (11.83)

fCσ̃
3=
II
{1

2

[θ ]7
(A2Bp+A2Bp)+ · · ·}+{1

2

[θ ]12

(ABp2 +ABp2)+ · · ·}

+{1
2

[θ ]9
(A2pq+A2pq)+ · · ·}+{1

2

[θ ]16

(Ap2p+App2)+ · · ·}

+{1
2

[θ ]17

(Ap2q+Ap2q)+ · · ·}+{1
2

[θ ]24

(p2pq+pp2q)+ · · ·}

+{1
2

[θ ]26

(p2qq+p2qq)+ · · ·}+{1
2

[θ ]27

(p2qr+p2qr)+ · · ·} (11.84)

fCσ̂
4=
I
{

[θ ]28
ppqq+pprr+ · · ·} (11.85)

fCs
5=
V
{

[θ ]13
ABpp+ABqq+ · · ·} (11.86)

fC
̂I

6=
I

[θ ]10
ABXY (11.87)

fC2σ̃
11=
II
{1

2

[θ ]5
(A2p2 +A2p2)+ · · ·}+{1

2

[θ ]25

(p2q2 +p2q2)+ · · ·} (11.88)
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fCsσ̃ σ̂
14=
IV
{

[θ ]8
A2pp+ · · ·} (11.89)

fCsσ̃̂I

16=
IV
{

[θ ]6
A2BX+A2BY+ · · ·} (11.90)

fC3σ̃
17=
II
{1

2

[θ ]3
(A3p+A3p)+ · · ·}+{1

2

[θ ]15

(Ap3 +Ap3)+ · · ·}

+{1
2

[θ ]22

(p3q+p3q)+ · · ·}+{1
2

[θ ]21

(p3p+pp3)+ · · ·} (11.91)

fS4σ̃ σ̂
24=
IV
{

[θ ]23

p2p2 +q2q2 + r2r2 + s2s2} (11.92)

fC2vσ̃̂I

26=
IV
{

[θ ]4
A2B2 +A2X2 +A2Y2 + · · ·} (11.93)

fC3vσ̃̂I

28=
IV
{

[θ ]2
A3B+A3X+A3Y+ · · ·} (11.94)

fTσ̃
30=
II
{1

2

[θ ]20

(p4 +p4)+ · · ·} (11.95)

fTdσ̃̂I

33=
IV
{

[θ ]1
A4 +B4 +X4 +Y4} (11.96)

where generating functions of zero value are omitted (cf. the sequential numbers above the
equality symbols). The coefficient of the term AaBbXxYyppppqqqqrrqrssqs in each generat-
ing function indicates the number of fixed promolecules (quadruplets) to be counted. These
generating functions have been once noted in [4].

Because A, B, etc. appear symmetrically in the generating functions (Eqs. 11.83–
11.96), each pair of braces contains at least one representative of such symmetrically ap-
pearing terms, which can be represented by the following partition:

[θ ] = [a,b,x,y; p, p,q,q,r,r,s,s], (11.97)

where we put a ≥ b ≥ x ≥ y, p ≥ p, q ≥ q, r ≥ r, s ≥ s, and p ≥ q ≥ r ≥ s without losing
generality:

[θ ]1 = [4,0,0,0;0,0,0,0,0,0,0,0] (for A4 etc.) (11.98)

[θ ]2 = [3,1,0,0;0,0,0,0,0,0,0,0] (for A3B etc.) (11.99)

[θ ]3 = [3,0,0,0;1,0,0,0,0,0,0,0] (for A3p etc.) (11.100)

[θ ]4 = [2,2,0,0;0,0,0,0,0,0,0,0] (for A2B2 etc.) (11.101)

[θ ]5 = [2,0,0,0;2,0,0,0,0,0,0,0] (for A2p2 etc.) (11.102)

[θ ]6 = [2,1,1,0;0,0,0,0,0,0,0,0] (for A2BX etc.) (11.103)

[θ ]7 = [2,1,0,0;1,0,0,0,0,0,0,0] (for A2Bp etc.) (11.104)

[θ ]8 = [2,0,0,0;1,1,0,0,0,0,0,0] (for A2pp etc.) (11.105)
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[θ ]9 = [2,0,0,0;1,0,1,0,0,0,0,0] (for A2pq etc.) (11.106)

[θ ]10 = [1,1,1,1;0,0,0,0,0,0,0,0] (for ABXY) (11.107)

[θ ]11 = [1,1,1,0;1,0,0,0,0,0,0,0] (for ABXp etc.) (11.108)

[θ ]12 = [1,1,0,0;2,0,0,0,0,0,0,0] (for ABp2 etc.) (11.109)

[θ ]13 = [1,1,0,0;1,1,0,0,0,0,0,0] (for ABpp etc.) (11.110)

[θ ]14 = [1,1,0,0;1,0,1,0,0,0,0,0] (for ABpq etc.) (11.111)

[θ ]15 = [1,0,0,0;3,0,0,0,0,0,0,0] (for Ap3 etc.) (11.112)

[θ ]16 = [1,0,0,0;2,1,0,0,0,0,0,0] (for Ap2p etc.) (11.113)

[θ ]17 = [1,0,0,0;2,0,1,0,0,0,0,0] (for Ap2q etc.) (11.114)

[θ ]18 = [1,0,0,0;1,1,1,0,0,0,0,0] (for Appq etc.) (11.115)

[θ ]19 = [1,0,0,0;1,0,1,0,1,0,0,0] (for Apqr etc.) (11.116)

[θ ]20 = [0,0,0,0;4,0,0,0,0,0,0,0] (for p4 etc.) (11.117)

[θ ]21 = [0,0,0,0;3,1,0,0,0,0,0,0] (for p3p etc.) (11.118)

[θ ]22 = [0,0,0,0;3,0,1,0,0,0,0,0] (for p3q etc.) (11.119)

[θ ]23 = [0,0,0,0;2,2,0,0,0,0,0,0] (for p2p2 etc.) (11.120)

[θ ]24 = [0,0,0,0;2,1,1,0,0,0,0,0] (for p2pq etc.) (11.121)

[θ ]25 = [0,0,0,0;2,0,2,0,0,0,0,0] (for p2q2 etc.) (11.122)

[θ ]26 = [0,0,0,0;2,0,1,1,0,0,0,0] (for p2qq etc.) (11.123)

[θ ]27 = [0,0,0,0;2,0,1,0,1,0,0,0] (for p2qr etc.) (11.124)

[θ ]28 = [0,0,0,0;1,1,1,1,0,0,0,0] (for ppqq etc.) (11.125)

[θ ]29 = [0,0,0,0;1,1,1,0,1,0,0,0] (for ppqr etc.) (11.126)

[θ ]30 = [0,0,0,0;1,0,1,0,1,0,1,0] (for pqrs etc.) (11.127)

Each term appearing in Eqs. 11.83–11.96) is attached by a partition [θ ]i for the sake of cross
reference. Thereby, the data of the generating functions (Eqs. 11.83–11.96) are found to be
consistent with the isomer-counting matrices (ICMs) obtained by the FPM method reported
previously [1].

Exercise 11.6. Check each term appearing in Eqs. 11.83–11.96 by referring to Fig. 11.2.
Note that each representative promolecule with its composition (e.g., ABXY for 11-3) is
attached by a partition (e.g., [θ ]10 for 11-3) and a symbol for characterizing symmetry item-
ization (e.g., [C

̂I , C1, C1; I] for 11-3).
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11.3.4 Type-Itemized Enumeration by the PCI Method

CI-CFs for Characterizing Five Types of Stereoisograms
Cycle indices with chirality fittingness (CI-CFs) for characterizing five types are calculated
according to the categorization of Eqs. 11.7–11.11, where we start from the data of PCI-CFs
(Eqs. 11.47–11.79).

CI-CF[I](Tdσ̃̂I) = PCI-CF(Cσ̂ )+PCI-CF(C
̂I)+PCI-CF(C2σ̂ )

+PCI-CF(C2̂I)+PCI-CF(C3̂I)+PCI-CF(D2̂I)+PCI-CF(T
̂I)

=
1
24

a4
1−

1
4

a2
1a2 +

1
3

a1a3 +
1
4

a2
2−

1
4

a2c2 +
1
8

c2
2−

1
4

c4 (11.128)

CI-CF[II](Tdσ̃̂I) = PCI-CF(Cσ̃ )+PCI-CF(S
˜4)+PCI-CF(C2σ̃ )

+PCI-CF(C3σ̃ )+PCI-CF(D2σ̃ )+PCI-CF(Tσ̃ )

=
1
4

b2
1b2− 1

4
a2

1a2 +
1
4

a2
2−

1
4

a2c2 +
1
4

b4− 1
4

c4 (11.129)

CI-CF[III](Tdσ̃̂I) = PCI-CF(C1)+PCI-CF(C2)+PCI-CF(C3)

+PCI-CF(D2)+PCI-CF(T)

=
1
48

b4
1−

1
48

a4
1−

1
8

b2
1b2 +

1
4

a2
1a2− 1

8
a2

1c2 +
1
6

b1b3− 1
6

a1a3

+
1
16

b2
2−

1
4

a2
2 +

1
4

a2c2− 1
16

c2
2 +

1
8

c4− 1
8

b4 (11.130)

CI-CF[IV](Tdσ̃̂I) = PCI-CF(Csσ̃ σ̂ )+PCI-CF(Csσ̃̂I)+PCI-CF(S
˜4σ̂ )

+PCI-CF(S
˜4̂I)+PCI-CF(S4σ̃ σ̂ )+PCI-CF(C2vσ̃̂I)

+PCI-CF(C3vσ̃̂I)+PCI-CF(D2dσ̃̂I)+PCI-CF(Tdσ̃̂I)

=
1
2

a2
1a2− 1

2
a2

2 +
1
2

a2c2 +
1
2

c4 (11.131)

CI-CF[V](Tdσ̃̂I) = PCI-CF(Cs)+PCI-CF(S4)+PCI-CF(C2v)

+PCI-CF(C3v)+PCI-CF(D2d)+PCI-CF(Td)

=
1
4

a2
1c2− 1

4
a2

1a2 +
1
4

a2
2−

1
4

a2c2. (11.132)

These CI-CFs for type-itemized enumeration can be alternatively obtained by starting from
the data of the USCI-CF-column and of the TEM-column of Table 11.2 according to Def.
10.7 (page 301). These CI-CFs have been once noted in [4].

The CI-CFs (Eq. 11.128–11.132) are verified by comparison with those of [8], which
have been calculated by means of an alternative method of type itemization without subdivi-
sion through the 33 subgroups of SSGTdσ̃̂I

. That is to say, CI-CF[I] (Eq. 11.128) is identical

with Eq. 83 of [8]; CI-CF[II] (Eq. 11.129) with Eq. 84 of [8]; CI-CF[III] (Eq. 11.130) with Eq.
85 of [8]; CI-CF[IV] (Eq. 11.131) with Eq. 81 of [8]; and CI-CF[V] (Eq. 11.132) is identical
with Eq. 82 of [8].
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Generating Functions for Type-Itemized Enumeration
The ligand-inventory functions (Eqs. 11.80–11.82) are introduced into the CI-CFs (Eqs.
11.128–11.132) so as to give the following generating functions:

f [I] = {
[θ ]28
ppqq+pprr+ · · ·}+

[θ ]10
ABXY (11.133)

f [II] = {1
2

[θ ]7
(A2Bp+A2Bp)+ · · ·}+{1

2

[θ ]12

(ABp2 +ABp2)+ · · ·}

+{1
2

[θ ]9
(A2pq+A2pq)+ · · ·}+{1

2

[θ ]16

(Ap2p+App2)+ · · ·}

+{1
2

[θ ]17

(Ap2q+Ap2q)+ · · ·}+{1
2

[θ ]24

(p2pq+pp2q)+ · · ·}

+{1
2

[θ ]26

(p2qq+p2qq)+ · · ·}+{1
2

[θ ]27

(p2qr+p2qr)+ · · ·}

+{1
2

[θ ]5
(A2p2 +A2p2)+ · · ·}+{1

2

[θ ]25

(p2q2 +p2q2)+ · · ·}

+{1
2

[θ ]3
(A3p+A3p)+ · · ·}+{1

2

[θ ]15

(Ap3 +Ap3)+ · · ·}

+{1
2

[θ ]22

(p3q+p3q)+ · · ·}+{1
2

[θ ]21

(p3p+pp3)+ · · ·}

+{1
2

[θ ]20

(p4 +p4)+ · · ·} (11.134)

f [III] = {1
2

[θ ]11
(ABXp+ABXp)+ · · ·}+{1

2

[θ ]14
(ABpq+ABpq)+ · · ·}

+{1
2

[θ ]18
(Appq+Appq)+ · · ·}+{1

2

[θ ]19
(Apqr+Apqr)+ · · ·}

+{1
2

[θ ]30
(pqrs+pqrs)+ · · ·}+{1

2

[θ ]29
(ppqr+ppqr)+ · · ·} (11.135)

f [IV] = {
[θ ]8

A2pp+ · · ·}+{
[θ ]6

A2BX+A2BY+ · · ·}

+{
[θ ]23

p2p2 +q2q2 + r2r2 + s2s2}+{
[θ ]4

A2B2 +A2X2 +A2Y2 + · · ·}

+{
[θ ]2

A3B+A3X+A3Y+ · · ·}+{
[θ ]1
A4 +B4 +X4 +Y4} (11.136)

f [V] = {
[θ ]13

ABpp+ABqq+ · · ·}. (11.137)

These generating functions have been once noted in [4].
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Exercise 11.7. Check each term appearing in the generating functions (Eqs. 11.133–
11.137) by referring to Fig. 11.2, where representative promolecules are categorized into
five types.

The generating functions (Eqs. 11.133–11.137) are also obtained by starting from the
generating functions for the respective subgroups (Eq. 11.83–11.96), where these are added
according to the categories shown in Eqs. 11.7–11.11. The generating functions (Eqs.
11.133–11.137) are identical with Eqs. 86–90 of [8], which have been calculated by an
alternative method.

Exercise 11.8.
– Calculate a CI-CF for gross enumeration under the RS-stereoisomeric group Tdσ̃̂I ac-

cording to Def. 10.8 (page 303). For the USCI-CFs and the TEM of Tdσ̃̂I , see Table
11.2.

– Apply Def. 10.9 (page 304) to another calculation of the CI-CF for Tdσ̃̂I . For PSIs
necessary to this calculation, see the PSI-column Table 11.1.

– Confirm that the two modes of calculations generate identical CI-CFs.

11.4 Comparison with Enumeration Under Subsymmetries

11.4.1 Enumeration of Tetrahedral Promolecules Under the Point-Group
Symmetry

The enumeration of tetrahedral promolecules under the point-group symmetry has been
already discussed in Chapter 5. According to Theorem 10.6 (page 306), the symmetry-
itemized generating functions under the action of the point group Td (Eqs. 6.94–6.102) are
correlated to those under the action of Tdσ̃̂I (Eqs. 11.83–11.96).

f3-5(C1) = 2 fC1 + fCσ̃ + fCσ̂ + fC
̂I

(11.138)

f3-5(C2) = fC2σ̃ (11.139)

f3-5(Cs) = 2 fCs + fCsσ̃ σ̂ + fCsσ̃̂I
(11.140)

f3-5(C3) = fC3σ̃ (11.141)

f3-5(S4) = fS4σ̃ σ̂ (11.142)

f3-5(C2v) = fC2vσ̃̂I
(11.143)

f3-5(C3v) = fC3vσ̃̂I
(11.144)

f3-5(T) = fTσ̃ (11.145)

f3-5(Td) = fTdσ̃̂I
, (11.146)
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where the generating functions other than Eqs. 11.83–11.96 are omitted in the right-hand
sides for the simplicity’s sake, because they vanish to zero.

The terms appearing in the right-hand sides of the generating functions represented
by Eqs. 6.94 ( f3-5(C1)), 6.95 ( f3-5(C2)), 6.97 ( f3-5(C3)), 6.101 ( f3-5(T)) cover all of the
promolecules collected in the type-I, type-II, and type-III frames of Fig. 6.9 (page 157).
All of these promolecules are concluded to be chiral. This conclusion is confirmed by the
RS-stereoisomeric groups appearing in the right-hand sides of Eqs. 11.138, 11.139, 11.141,
and 11.145. As shown in Eqs. 11.7–11.11, these RS-stereoisomeric groups belong to type I,
II, or III, which exhibits chirality.

On the other hand, the terms appearing in the right-hand sides of the generating func-
tions represented by Eqs. 11.140 ( f3-5(Cs)), 11.142 ( f3-5(S4)), 11.143 ( f3-5(C2v)), 11.144
( f3-5(C3v)), and 11.146 ( f3-5(Td)) cover all of the promolecules collected in the type-IV
and type-V frames of Fig. 6.9 (page 157). All of these promolecules are concluded to be
achiral. This conclusion is confirmed by the RS-stereoisomeric groups appearing in the
right-hand sides of Eqs. 11.140–11.144, and 11.146. As shown in Eqs. 11.7–11.11, these
RS-stereoisomeric groups belong to type IV or V, which exhibits achirality.

The validity of the alternative calculation by Eqs. 11.138–11.146 is confirmed by the
derivation of the PCI-CFs (Eqs. 6.83–6.93) from the PCI-CFs (Eqs. 11.47–11.79). Accord-
ing to Theorem 10.6 (page 306), the PCI-CFs of type-III and type-V among Eqs. 11.47–
11.79 are multiplied by 2:

PCI-CF3-5(C1) = 2PCI-CF(C1)+PCI-CF(Cσ̃ )+PCI-CF(Cσ̂ )+PCI-CF(C
̂I)

=
1

24
b4

1−
1
8

b2
2−

1
4

a2
1c2− 1

6
b1b3 +

1
4

b4

+
1
4

a2
2 +

1
2

a1a3− 1
2

a4 (11.147)

PCI-CF3-5(C2) = 2PCI-CF(C2)+PCI-CF(S
˜4)+PCI-CF(C2σ̃ )

+PCI-CF(C2σ̂ )+PCI-CF(C2̂I)

=
1
4

b2
2−

1
4

c4− 1
4

b4− 1
4

a2
2 +

1
2

a4 (11.148)

PCI-CF3-5(Cs) = 2PCI-CF(Cs)+PCI-CF(Csσ̃ σ̂ )+PCI-CF(Csσ̃̂I)

=
1
2

a2
1c2− 1

2
a2

2−a1a3 +a4; (11.149)

PCI-CF3-5(C3) = 2PCI-CF(C3)+PCI-CF(C3σ̃ )+PCI-CF(C3̂I)

=
1
2

b1b3− 1
2

a1a3− 1
2

b4 +
1
2

a4 (11.150)

PCI-CF3-5(S4) = 2PCI-CF(S4)+PCI-CF(S
˜4σ̂ )+PCI-CF(S

˜4̂I)+PCI-CF(S4σ̃ σ̂ )

=
1
2

c4− 1
2

a4 (11.151)

PCI-CF3-5(D2) = 2PCI-CF(D2)+PCI-CF(D2σ̃ )+PCI-CF(D2̂I)

= 0 (11.152)

PCI-CF3-5(C2v) = 2PCI-CF(C2v)+PCI-CF(C2vσ̃̂I)
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=
1
2

a2
2−

1
2

a4 (11.153)

PCI-CF3-5(C3v) = 2PCI-CF(C3v)+PCI-CF(C3vσ̃̂I)

= a1a3−a4 (11.154)

PCI-CF3-5(D2d) = 2PCI-CF(D2d)+PCI-CF(D2dσ̃̂I)

= 0 (11.155)

PCI-CF3-5(T) = 2PCI-CF(T)+PCI-CF(Tσ̃ )+PCI-CF(T
̂I)

=
1
2

b4− 1
2

a4 (11.156)

PCI-CF3-5(Td) = 2PCI-CF(Td)+PCI-CF(Tdσ̃̂I)

= a4. (11.157)

Note that, as for PCI-CF3-5(Gi) (Gi ∈ SSGTd ), the PCI-CF of Ǵ j (Ǵ j ∈ SSGTdσ̃̂I
) is adopted

if Ǵ j ∩Td = Gi. The resulting PCI-CFs (Eqs. 11.147–11.157) are identical with the PCI-
CFs calculated by Fujita’s USCI approach (Eqs. 6.83–6.93 on page 155).

11.4.2 Enumeration of Tetrahedral Promolecules Under the
RS-Permutation-Group Symmetry

The enumeration of tetrahedral promolecules under the RS-permutation group has been al-
ready discussed in Chapter 9. The generating functions (Eqs. 9.44–9.48 on page 256) cal-
culated under the action of the RS-permutation group Tσ̃ can be correlated to those listed
in Eqs. 11.83–11.96, which are calculated under the action of the RS-stereoisomeric group
Tdσ̃̂I .

They are concerned with the numbers of inequivalent (self-)RS-diastereomeric pairs, so
that the quadruplet of each type-II (or type-III) stereoisogram consists of two inequivalent
(self-)RS-diastereomeric pairs, while the quadruplet of each type-I (or type-IV, or type-
V) stereoisogram consists of one (self-)RS-diastereomeric pairs (Theorem 10.7 on page
308). Thereby, the generating functions represented by Eqs. 9.44–9.48 can be alternatively
obtained by starting from Eqs. 11.83–11.96. For example, the four groups C1, Cσ̂ , Cs, and
C
̂I as subgroups of Tdσ̃̂I degenerate into the subgroup C1 of Tσ̃ , because of C1∩Tσ̃ = C1,

Cσ̂ ∩Tσ̃ = C1, Cs ∩Tσ̃ = C1, and C
̂I ∩Tσ̃ = C1. It follows that the generating function

f ′3-5(C1) (Eq. 9.44) can be calculated by the sum represented by 2 fC1 + fCσ̂ + fCs + fC
̂I
,

in which the coefficient 2 of the term 2 fC1 stems from the type-III feature of the subgroup
C1 (⊂ Tσ̃ ). In a similar way, the generating functions represented by Eqs. 9.44–9.48 are
alternatively calculated as follows:

f ′3-5(C1) = 2 fC1 + fCσ̂ + fCs + fC
̂I

(11.158)

f ′3-5(Cσ̃ ) = 2 fCσ̃ + fCsσ̃ σ̂ + fCsσ̃̂I
(11.159)

f ′3-5(C2σ̃ ) = 2 fC2σ̃ + fS4σ̃ σ̂ + fC2vσ̃̂I
(11.160)

f ′3-5(C3σ̃ ) = 2 fC3σ̃ + fC3vσ̃̂I
(11.161)
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f ′3-5(Tσ̃ ) = 2 fTσ̃ + fTdσ̃̂I
, (11.162)

where the generating functions other than Eqs. 11.83–11.96 are omitted in the right-hand
sides for the simplicity’s sake, because they vanish to zero.

Exercise 11.9. Derive the PCI (Eqs. 9.32–9.42 on page 256) from the PCI-CFs (Eqs.
11.47–11.79). See the derivation of Eqs. 10.150–10.153 (page 309).

The terms appearing in the right-hand side of the generating function f ′3-5(C1) (Eq.
9.44 on page 256) cover all of the promolecules collected in the type-I, type-III, and type-
V frames of Fig. 9.10 (page 255). All of these promolecules are concluded to be RS-
stereogenic, so as to be specified by R/S-stereodescriptors, which will be discussed later.
This conclusion is confirmed by the RS-stereoisomeric groups appearing in the right-hand
side of Eq. 11.158. As shown in Eqs. 11.7–11.11, the RS-stereoisomeric groups C

̂I and Cσ̂
are categorized to type I; C1 is categorized to type III; and Cs is categorized to type V.

The terms appearing in the right-hand side of the generating function f ′3-5(Cσ̃ ) (Eq.
9.45 on page 257) cover all of the promolecules (type II or type IV) specified by pro-R/pro-
S-descriptors. This point will be discussed later.

The validity of the alternative calculation by Eqs. 11.158–11.162 is confirmed by the
derivation of the PCI (Eqs. 9.32–9.42 on page 256) from the PCI-CFs (Eqs. 11.47–11.79).
According to Theorem 10.7 (page 308), the PCI-CFs of type-II and type-III among Eqs.
11.47–11.79 are multiplied by 2:

PCI-CF′3-5(C1) = 2PCI-CF(C1)+PCI-CF(Cs)+PCI-CF(Cσ̂ )+PCI-CF(C
̂I)

=
1
24

b4
1 +

1
8

b2
2−

1
4

b2
1b2 +

1
3

b1b3− 1
4

b4 (11.163)

PCI-CF′3-5(C2) = 2PCI-CF(C2)+PCI-CF(S4)+PCI-CF(C2v)

+PCI-CF(C2σ̃ )+PCI-CF(C2̂I)

= 0 (11.164)

PCI-CF′3-5(Cσ̃ ) = 2PCI-CF(Cσ̃ )+PCI-CF(Csσ̃ σ̂ )+PCI-CF(Csσ̃̂I)

=
1
2

b2
1b2− 1

2
b2

2−b1b3 +b4 (11.165)

PCI-CF′3-5(C3) = 2PCI-CF(C3)+PCI-CF(C3v)+PCI-CF(C3̂I)

= 0 (11.166)

PCI-CF′3-5(S˜4) = 2PCI-CF(S
˜4)+PCI-CF(S

˜4σ̂ )+PCI-CF(S
˜4̂I)

= 0 (11.167)

PCI-CF′3-5(D2) = 2PCI-CF(D2)+PCI-CF(D2d)+PCI-CF(D2̂I)

= 0 (11.168)

PCI-CF′3-5(C2σ̃ ) = 2PCI-CF(C2σ̃ )+PCI-CF(S4σ̃ σ̂ )+PCI-CF(C2vσ̃̂I)

=
1
2

b2
2−

1
2

b4 (11.169)
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PCI-CF′3-5(C3σ̃ ) = 2PCI-CF(C3σ̃ )+PCI-CF(C3vσ̃̂I)

= b1b3−b4 (11.170)

PCI-CF′3-5(D2σ̃ ) = 2PCI-CF(D2σ̃ )+PCI-CF(D2dσ̃̂I)

= 0 (11.171)

PCI-CF′3-5(T) = 2PCI-CF(T)+PCI-CF(Td)+PCI-CF(T
̂I)

= 0 (11.172)

PCI-CF′3-5(Tσ̃ ) = 2PCI-CF(Tσ̃ )+PCI-CF(Tdσ̃̂I)

= b4, (11.173)

where the terms containing ad and/or cd vanish to give zero values. Note that, as for
PCI-CF3-5(Gi) (Gi ∈ SSGTσ̃ ), the PCI-CF of Ǵ j (Ǵ j ∈ SSGTdσ̃̂I

) is adopted if Ǵ j ∩Tdσ̃̂I =
Gi.

The resulting PCI-CFs (Eqs. 11.163–11.173) are identical with the PCIs (Eqs. 9.32–
9.42 on page 256) if we put sd = bd .

11.4.3 Comparison with Enumeration Under Maximum-Chiral Point
Subgroups

As discussed in Subsection 10.3.3, the reference promolecule of a stereoisogram, which
belongs to an RS-stereoisomeric group, can be alternatively regarded as belonging to a
maximum-chiral point group (cf. Subsection 7.3.5). The practices of enumeration under
the action of T are open to readers as an exercise:

Exercise 11.10. The data of the point group T have been reported in Fujita’s monograph
[7], e.g., the inverse mark table [7, Table B.9] and the USCI-CF table [7, Table E.9].
– Calculate PCI-CFs for characterizing the tetrahedral skeleton 3-5 (page 55) under the

action of T.
– Calculate generating functions, where each promolecule is counted once under the ac-

tion of T.

The validity of the calculation for Exercise 11.10 is confirmed by the derivation of
PCI-CFs from the PCI-CFs (Eqs. 11.47–11.79). According to Theorem 10.8 (page 310),
the PCI-CFs of type-III among Eqs. 11.47–11.79 are multiplied by 4; and the PCI-CFs of
type-I, II, and V among Eqs. 11.47–11.79 are multiplied by 2.

PCI-CF′′3-5(C1) = 4PCI-CF(C1)+2PCI-CF(Cs)+2PCI-CF(Cσ̂ )+2PCI-CF(C
̂I)

+2PCI-CF(Cσ̃ )+PCI-CF(Csσ̃ σ̂ )+PCI-CF(Csσ̃̂I)

=
1
12

b4
1−

1
4

b2
2−

1
3

b1b3 +
1
2

b4 (11.174)

PCI-CF′′3-5(C2) = 4PCI-CF(C2)+2PCI-CF(S4)+2PCI-CF(C2v)
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+2PCI-CF(C2σ̃ )+2PCI-CF(C2̂I)

+2PCI-CF(S
˜4)+PCI-CF(S

˜4σ̂ )+PCI-CF(S
˜4̂I)

+2PCI-CF(C2σ̃ )+PCI-CF(S4σ̃ σ̂ )+PCI-CF(C2vσ̃̂I)

=
1
2

b2
2−

1
2

b4 (11.175)

PCI-CF′′3-5(C3) = 4PCI-CF(C3)+2PCI-CF(C3v)+2PCI-CF(C3̂I)

+2PCI-CF(C3σ̃ )+PCI-CF(C3vσ̃̂I)

= b1b3−b4 (11.176)

PCI-CF′′3-5(D2) = 4PCI-CF(D2)+2PCI-CF(D2d)+2PCI-CF(D2̂I)

+2PCI-CF(D2σ̃ )+PCI-CF(D2dσ̃̂I)

= 0 (11.177)

PCI-CF′′3-5(T) = 4PCI-CF(T)+2PCI-CF(Td)+2PCI-CF(T
̂I)

+2PCI-CF(Tσ̃ )+PCI-CF(Tdσ̃̂I)

= b4, (11.178)

where the terms containing ad and/or cd vanish during summation. Note that, as for
PCI-CF3-5(Gi) (Gi ∈ SSGT), the PCI-CF of Ǵ j (Ǵ j ∈ SSGTdσ̃̂I

) is adopted if Ǵ j ∩T = Gi.

11.4.4 Confusion Between the Point-Group Symmetry and the
RS-Permutation-Group Symmetry

Each promolecule shown in Fig. 11.2 is a representative of a set of terms contained in each
pair of braces in the generating functions, i.e., Eqs. 11.83–11.96 (page 329) under the action
of RS-stereoisomeric group Tdσ̃̂I , Eqs. 6.94–6.102 (page 156) under the action of the point
group Td , or Eqs. 9.44–9.48 (page 256) under the action of the RS-permutation group Tσ̃ .
For the convenience of cross reference, each pair of braces in these generating functions is
characterized by the partition ([θ ]i, i = 1–30) attached above.

Each promolecule shown in Fig. 11.2 is attached by a pair of brackets which con-
tains a list of its RS-stereoisomeric group (cf. Eqs. 11.83–11.96), its point group (cf. Eqs.
6.94–6.102), its RS-permutation group (cf. Eqs. 9.44–9.48), and the stereoisogram type. For
example, the bracket symbol [C

̂I , C1, C1; I] attached to 11-3 (Fig. 11.2) indicates that the
promolecule 11-3 belongs to the RS-stereoisomeric group C

̂I (cf. Eq. 11.83), to the point
group C1 (cf. Eq. 6.94), and to the RS-permutation group C1 (cf. Eq. 9.44); as well as 11-3
is characterized by a type-I stereoisogram.

Point-group symmetry is effective to discuss geometrical features of stereochem-
istry, while RS-permutation-group symmetry is concerned with the assignment of R/S-
stereodescriptors to type-I, type-III, and type-V promolecules. They are conceptually dis-
tinct, although they have been closely linked in the practice of organic chemistry.
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The two modes of enumerations under subsymmetries, i.e., the generating functions
(Eqs. 6.94–6.102 on page 156) under the point-group symmetry and the generating func-
tions (Eqs. 9.44–9.48 on page 256) under the RS-permutation-group symmetry, clearly
demonstrate that modern stereochemistry has confused the point-group symmetry with the
RS-permutation-group symmetry. As found by this quantitative comparison based on com-
binatorial enumeration, the confusion stems from the fact that modern stereochemistry is
restricted to qualitative discussions without mathematical formulations.

The enumerations under subsymmetries have been integrated to accomplish the enu-
meration under RS-stereoisomeric-group symmetry, i.e., the generating functions repre-
sented by Eqs. 11.83–11.96. Thereby, we are able to obtain reliable mathematical formula-
tions on the basis of stereoisograms.
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12 Stereoisograms for Allene Derivatives1

12.1 RS-Stereoisomeric Group D2dσ̃̂I and Elementary
Stereoisogram

Allene derivatives have been enumerated under the point group D2d by the PCI method
of Fujita’s USCI approach, where the generating functions are shown in Eqs. 6.114–6.121
(page 161) in a symmetry-itemized fashion. The allene skeleton 3-9 (or a top view 6-102)
is depicted in Fig. 6.12 on page 159. Three pairs of enantiomeric allene derivatives with
the composition ABXY are depicted in Fig. 6.13(a) on page 162. Two achiral allene deriva-
tives and two pairs of enantiomeric allene derivatives as promolecules with the composition
ABpp are depicted in Fig. 6.13(b). Gross enumeration of allene derivative under the point
group D2d has been conducted to give a generating function Eq. 7.32 (page 185), while
gross enumeration under the RS-permutation group D2σ̃ has been conducted to give a gen-
erating function shown in Eq. 9.58 (page 263). The next task is to integrate these results on
the basis of Fujita’s stereoisogram approach.

In this chapter, the point group D2d and the RS-permutation group D2σ̃ are integrated
into an RS-stereoisomeric group D2dσ̃̂I according to the discussions of Chapter 10. As for
recent reports on this topic, see [1–4].

The coset representation D2d(/Cs) of the point group D2d is shown in Table 3.2 (page
68). The coset representation D2σ̃ (/Cσ̃ ) of the RS-permutation group D2σ̃ is shown in Table
9.5 (page 262). The corresponding ligand-reflection group D2̂I can be easily constructed
according to the discussions of Chapter 10. These three groups have a common subgroup
D2, as summarized in the following coset decompositions:

D2d = D2
A

+D2σ
B

(12.1)

D2σ̃ = D2
A

+D2σ̃
C

(12.2)

D2̂I = D2
A

+D2̂I
D

, (12.3)

where the symbol σ represents a reflection, the symbol σ̃ represents an RS-permutation,
and the symbol ̂I represents a ligand reflection. These three groups are integrated into an
RS-stereoisomeric group D2dσ̃̂I as follows:

D2dσ̃̂I = D2
A

+D2σ
B

+D2σ̃
C

+D2̂I
D

, (12.4)

1 This chapter is based on S. Fujita, “Symmetry-Itemized Enumeration of RS-Stereoisomers of Allenes. I.
The Fixed-Point Matrix Method of the USCI Approach Combined with the Stereoisogram Approach”, J.
Math. Chem., 52, 1717–1750 (2014); and S. Fujita, “Symmetry-Itemized Enumeration of RS-Stereoisomers
of Allenes. II. The Partial-Cycle-Index Method of the USCI Approach Combined with the Stereoisogram
Approach”, J. Math. Chem., 52, 1751–1793 (2014).
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Table 12.1. Operations of D2dσ̃̂I and Coset Representation of D2dσ̃̂I(/Csσ̃̂I) vs. Operations of D4h

and Coset Representation of D4h(/C ′′′2v)

operation D4h(/C′′′2v) or D2dσ̃̂I(/Csσ̃̂I) operation D4h(/C′′′2v) or D2dσ̃̂I(/Csσ̃̂I)
g ∈ D4h g ∈ D2dσ̃̂I (product of cycles) PSI g ∈ D4h g ∈ D2dσ̃̂I (product of cycles) PSI

A C
B D

I I (1)(2)(3)(4) b4
1 C ′2(1) σ̃d(1) (1)(2 4)(3) b2

1b2

C2(3) C2(3) (1 3)(2 4) b2
2 C ′2(2) σ̃d(2) (1 3)(2)(4) b2

1b2

C2(1) C2(1) (1 2)(3 4) b2
2 C4 ˜S4 (1 2 3 4) b4

C2(2) C2(2) (1 4)(2 3) b2
2 C3

4
˜S3

4 (1 4 3 2) b4

σd(1) σd(1) (1)(2 4)(3) a2
1c2 σh ̂I (1)(2)(3)(4) a4

1
σd(2) σd(2) (1 3)(2)(4) a2

1c2 i ̂C2(3) (1 3)(2 4) c2
2

S4 S4 (1 2 3 4) c4 σv(1)
̂C2(1) (1 2)(3 4) c2

2
S3

4 S3
4 (1 4 3 2) c4 σv(2)

̂C2(2) (1 4)(2 3) c2
2
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Fig. 12.1. Elementary stereoisogram of numbered allene skeletons. The other modes of sequen-
tial numbering are permitted without losing generality.

which represents the coset decomposition of D2dσ̃̂I by D2.
The operations of D2dσ̃̂I and coset representation of D2dσ̃̂I(/Csσ̃̂I) are listed in Table

12.1, where the symbols A, B, C, and D correspond to the respective cosets appearing in
Eq. 12.4. The A- and B-parts of Table 12.1 stem from Table 3.2 (page 68) of the point group
D2d . The A- and C-parts stem from Table 9.5 (page 262) of the RS-permutation group D2σ̃ .
Recent detailed discussions in [3] have indicated that the RS-stereoisomeric group D2dσ̃̂I
is isomorphic to the point group D4h, so that the coset representations D2dσ̃̂I(/Csσ̃̂I) and
D4h(/D ′′′2v) consist of an identical set of permutations. For the point group D4h, see the
discussions on square-planar complexes [5].

Suppose that the four positions of the allene skeleton 3-9 (top view: 6-102 on page
159) are controlled by the RS-stereoisomeric group D2dσ̃̂I through the coset representation
D2dσ̃̂I(/Csσ̃̂I). Let us adopt the top view 6-102 (page 159) in the following discussions.
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The four operations listed in the A-part of Table 12.1 (or the coset D2I (= D2) of
Eq. 12.4) are operated onto the allene skeleton 6-102 (= 3-9). As a result, there appear a
reference-numbered skeleton 12-1 and its homomeric skeletons, where the term homomeric
means that they are equivalent with each other under the subgroup D2 (cf. Theorem 10.2 on
page 279). The reference-numbered skeleton 12-1 is placed at the uppe-left corner of Fig.
12.1 to construct an elementary stereoisogram. In a similar way, the four operations listed in
the B-part (or the coset D2σ of Eq. 12.4) generate a mirror-numbered skeleton 12-1 and its
homomeric skeletons; the four operations listed in the C-part (or the coset D2σ̃ of Eq. 12.4)
generate a RS-numbered skeleton 12-2 and its homomeric skeletons; and the four operations
listed in the D-part (or the coset D2̂I of Eq. 12.4) generate a ligand-mirror (LM)-numbered
skeleton 12-2 and its homomeric skeletons. The quadruplet of 12-1/12-1/12-2/12-2 is ar-
ranged to give an elementary stereoisogram shown in Fig. 12.1.

12.2 Stereoisograms of Five Types for Allene Derivatives

The list of stereoisograms of five types shown in Fig. 10.9 (on page 288) is effective to
allene derivatives.

12.2.1 Type-I Stereoisograms of Allene Derivatives

Let us examine the allene derivatives with with the composition ABXY collected in
Fig. 6.13 (page 162), i.e., three enantiomeric pairs of allene derivatives (6-103/6-103,
6-104/6-104, and 6-105/6-105).

When the promolecule 6-103 (= 12-3) with the composition ABXY is selected as a
reference, the elementary stereoisogram (Fig. 12.1) generates a type-I stereoisogram shown
in the left of Fig. 12.2, which is characterized by the presence of diagonal equality symbols.
The diagonal equality symbols are concerned with asclerality, so that each promolecule con-
tained in such a type-I stereoisogram is chiral, RS-stereogenic, and ascleral. The quadruplet
of 12-3/12-3/12-4/12-4 (the left diagram of Fig. 12.2) is counted once on the action of the
RS-stereoisomeric group D2dσ̃̂I .

In a parallel way, the middle stereoisogram of type I is concerned with 6-104 (= 12-5),
and the right stereoisogram of type I is concerned with 6-105 (= 12-7).

As found in Fig. 12.2, each quadruplet degenerates into a single pair of enantiomers,
12-3/12-3 (= 6-103/6-103), 12-5/12-5 (= 6-104/6-104), or 12-7/12-7 (= 6-105/6-105), which
is counted once under the point group D2d (cf. the term 3ABXY of Eq. 6.114 on page 161).
On the other hand, each quadruplet can be regarded to degenerate into a single pair of
RS-diastereomers, 12-3/12-4 (= 12-3), 12-5/12-6 (= 12-5), or 12-7/12-8 (= 12-7), which is
counted once under the RS-permutation group D2σ̃ . See the term 3ABXY in Eq. 9.58 on
page 263.
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Fig. 12.2. Three quadruplets of allene promolecules with the composition ABXY, which are in-
equivalent under the RS-stereoisomeric group D2dσ̃̂I . Each quadruplet is contained in a type-I
stereoisogram under D2dσ̃̂I . Each reference promolecule belongs to the RS-stereoisomeric group
C
̂I and to the point group C1.

As characterized by a type-I stereoisogram (Fig. 12.2), each pair of enantiomers (e.g.,
12-3/12-3) is, at the same time, regarded as a pair of RS-diastereomers in a degenerate
fashion. The three quadruplets, which are recognized to be the three pairs of enantiomers
(as well as the three pairs of RS-diastereomers), are inequivalent to each other under the
RS-stereoisomeric group D2dσ̃̂I , although they have the same composition ABXY on the
basis of the same allene skeleton. Hence, they are isoskeletomeric to each other but not
RS-diastereomeric to each other.

The promolecules listed in Fig. 12.3 are representatives for constructing type-I
stereoisograms in a similar way to Fig. 12.2. Three promolecules linked with an under-
brace (*) have the same composition but produce three different stereoisograms of type
I. Note that two or more promolecules with the symbol ¶1 (or ¶2, ¶3, ¶4) have the same
partition but belong to different types of stereoisograms. For example, 12-9 attached by ¶1
(type I) has the same composition A2B2 ([θ ]4) as 12-64 attached by ¶1 (type IV) shown in
Fig. 12.9, where these two promolecules belong to different types of stereoisograms. Note
that 12-9 and 12-64 are inequivalent under the RS-stereoisomeric group D2dσ̃̂I . Hence, they
are isoskeletomeric to each other but not RS-diastereomeric to each other.

Exercise 12.1. Draw a stereoisogram for an appropriate promolecule selected from Fig.
12.3. Confirm that the resulting stereoisogram belongs to type I.

Exercise 12.2. Compare Fig. 12.2 for allene derivatives with the composition ABXY with
Fig. 11.3 (page 317) for tetahedral derivatives with the same composition.
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Fig. 12.3. Representatives of type-I quadruplets for allene derivatives [3]. The partitions [θ ]i (i =
1–30) are shown in Eqs. 11.98–11.127. The RS-stereoisomeric groups are accompanies with the
corresponding point groups, RS-permutation groups, and stereoisogram types.

12.2.2 Type-II Stereoisograms of Allene Derivatives

When a promolecule with the composition ABp2, i.e., 12-16, is selected as a reference,
the elementary stereoisogram (Fig. 12.1) generates a type-II stereoisogram shown in Fig.
12.4, which is characterized by the presence of horizontal equality symbols. The horizontal
equality symbols are concerned with RS-astereogenicity, so that each promolecule contained
in such a type-II stereoisogram is chiral, RS-astereogenic, and scleral.

The promolecules listed in Fig. 12.5 are representatives for constructing type-II
stereoisograms in a similar way to Fig. 12.4. Each promolecule attached by a dagger
with a number (†1 etc.) has counterparts with the same composition but belong to dif-
ferent types of stereoisograms. For example, 12-19 attached by †1 (type II) has the same
composition A2p2 ([θ ]5) as 12-34 attached by †1 (type III) shown in Fig. 12.7. They are
inequivalent to each other under the RS-stereoisomeric group D2dσ̃̂I , although they have the
same composition A2p2 on the basis of the same allene skeleton. As another example, the
promolecule 12-16†5 collected in Fig. 12.5 is isoskeletomeric to the promolecule 12-32†5

collected in Fig. 12.7, where the former is characterized by the type-II stereoisogram (Fig.
12.4), while the latter is characterized by the type-III stereoisogram (Fig. 12.6).

Exercise 12.3. Draw a stereoisogram for an appropriate promolecule selected from Fig.
12.5. Confirm that the resulting stereoisogram belongs to type II.
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Fig. 12.4. Type-II stereoisogram of allene derivatives. One quadruplet of allene promolecules with
the composition ABp2 or ABp2, which is counted once under the RS-stereoisomeric group D2dσ̃̂I .
The quadruplet is contained in a type-II stereoisogram under D2dσ̃̂I . The reference promolecule
belongs to the RS-stereoisomeric group Cσ̃ and to the point group C1.
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Fig. 12.5. Representatives of type-II quadruplets for allene derivatives [3]. The partitions [θ ]i (i =
1–30) are shown in Eqs. 11.98–11.127. The RS-stereoisomeric groups are accompanies with the
corresponding point groups, RS-permutation groups, and stereoisogram types.
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Exercise 12.4. Compare Fig. 12.4 for allene derivatives with the composition ABp2 with
Fig. 11.4 (page 318) for tetahedral derivatives with the same composition.

12.2.3 Type-III Stereoisograms of Allene Derivatives

When another promolecule with the composition ABp2, i.e., 12-32 attached by †5, is se-
lected as a reference from Fig. 12.7, the elementary stereoisogram (Fig. 12.1) generates a
type-III stereoisogram shown in Fig. 12.6, which is characterized by no equality symbols.
The absence of equality symbols indicates that each promolecule contained in such a type-
III stereoisogram is chiral, RS-stereogenic, and scleral.
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Fig. 12.6. Type-III stereoisogram of allene derivatives. One quadruplet of allene promolecules
with the composition ABp2 or ABp2, which is counted once under the RS-stereoisomeric group
D2dσ̃̂I . The quadruplet is contained in a type-III stereoisogram under D2dσ̃̂I . The reference pro-
molecule belongs to the RS-stereoisomeric group Cσ̃ and to the point group C1.

The four promolecules contained in the type-III stereoisogram (Fig. 12.6) are different
to each other under the action of the chiral point group D2, so that they are counted sepa-
rately to give value 4 (cf. Theorem 10.8 on page 310). Each pair of enantiomers 12-32/12-32
(or 12-33/12-33) is an equivalence class under the action of the achiral point group D2d , so
that it is counted once under D2d . There appear two pairs of enantiomers inequivalent un-
der D2d (cf. Theorem 10.6 on page 306). Each pair of RS-diastereomers 12-32/12-33 (or
12-32/12-33) is an equivalence class under the action of the RS-permutation group D2σ̃ , so
that it is counted once under D2σ̃ . There appear two pairs of RS-diastereomers inequivalent
under D2σ̃ (cf. Theorem 10.7 on page 308). The quadruplet of the type-III stereoisogram
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Fig. 12.7. Representatives of type-III quadruplets for allene derivatives [3]. The partitions [θ ]i
(i = 1–30) are shown in Eqs. 11.98–11.127. The RS-stereoisomeric groups are accompanies with
the corresponding point groups, RS-permutation groups, and stereoisogram types.
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(Fig. 12.6) is an equivalence class under the action of the RS-stereoisomeric group D2dσ̃̂I ,
so that it is counted once under D2dσ̃̂I .

The promolecules listed in Fig. 12.7 are representatives for constructing type-III
stereoisograms in a similar way to Fig. 12.6.

The promolecule 12-41‡1 (type III) has the same composition ABpp ([θ ]13) as 12-69‡1

(type V) shown in Fig. 12.9. They are inequivalent to each other under the RS-stereoisomeric
group D2dσ̃̂I , although they have the same composition ABpp on the basis of the same allene
skeleton.

Exercise 12.5.
– Draw a stereoisogram for an appropriate promolecule selected from Fig. 12.7. Confirm

that the resulting stereoisogram belongs to type III.
– In particular, draw stereoisograms for 12-38–12-40 having the compostition ABXp

([θ ]11). The resulting type-III stereoisograms should be compared with the type-III
stereoisogram shown in Fig. 11.5 (page 319) for tetahedral derivatives having the same
composition.

Exercise 12.6. Compare the type-III stereoisogram shown in Fig. 12.6 for allene deriva-
tives having the composition ABp2 with the type-II stereoisogram shown in Fig. 11.4 (page
318) for tetahedral derivatives having the same composition. See also Exercise 12.4.

12.2.4 Type-IV Stereoisograms of Allene Derivatives

When a promolecule with the composition A4, i.e., 12-62, is selected as a reference, the
elementary stereoisogram (Fig. 12.1) generates a type-IV stereoisogram shown in Fig. 12.8,
which is characterized by the presence of equality symbols in all the directions. Thus, there
appears a single promolecule which is characterized to be achiral, RS-astereogenic, and
ascleral.

The promolecules listed in the top row of Fig. 12.9 are representatives for constructing
type-IV stereoisograms in a similar way to Fig. 12.8.

Exercise 12.7.
– Draw a stereoisogram for an appropriate promolecule selected from the top row of Fig.

12.9. Confirm that the resulting stereoisogram belongs to type IV.
– In particular, draw a type-IV stereoisogram for 12-67 having the compostition A2BX

([θ ]6). The resulting stereoisogram should be compared with the type-IV stereoisogram
shown in Fig. 11.6 (page 320) for tetahedral derivatives having the same composition.
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Fig. 12.8. Type-IV stereoisogram of an allene derivative. One quadruplet of allene promolecules
with the composition A4, which is counted once under the RS-stereoisomeric group D2dσ̃̂I . The
quadruplet is contained in a type-IV stereoisogram under D2dσ̃̂I . The reference promolecule be-
longs to the RS-stereoisomeric group D2dσ̃̂I and to the point group D2d .
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Fig. 12.9. Representatives of type-IV and type-V quadruplets for allene derivatives. The partitions
[θ ]i (i = 1–30) are shown in Eqs. 11.98–11.127. The RS-stereoisomeric group of each represen-
tative is accompanied with the corresponding point group, RS-permutation group, and stereoiso-
gram type, as shown in a pair of square brackets.

12.2.5 Type-V Stereoisograms of Allene Derivatives

There appears one promolecule 12-69 as a reference of a type-V stereoisogram, as shown in
the left of Fig. 12.10. The type-V stereoisogram is characterized by the presence of vertical
equality symbols, so that 12-69 is characterized to be achiral, RS-stereogenic, and scleral.
The RS-stereogenicity means the presence of a pair of RS-diastereomers 12-69/12-70, which
are achiral as listed in the upper row of Fig. 6.13(b) on page 162 (6-106/6-107).
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Fig. 12.10. Type-V stereoisogram of allene derivatives (left) and the related type-III stereoisogram
(right). Each promolecule is characterized by the composition ABpp.

The right diagram of Fig. 12.10 shows the related type-III stereoisogram, which con-
tains a quadruplet of promolecules having the same composition ABpp, as designated by
the attached symbol ‡1 in Fig. 12.7 (12-41‡1 ([θ ]13)) and Fig. 12.9 (12-69‡1 ([θ ]13)).
The quadruplet of 12-41/12-41/12-71/12-71 is counted once under the action of the RS-
stereoisomeric group D2dσ̃̂I . For symmetry-itemized enumeration of allene derivatives with
ABpp under the point group D2d , see the bottom row of Fig. 6.13(b) on page 162, where a
pair of enantiomers is counted once. Note that the enantiomeric pair of 6-108/6-108 is iden-
tical with the pair of 12-41/12-41 and that the enantiomeric pair of 6-109/6-109 is identical
with the pair of 12-71/12-71.

Exercise 12.8. Compare the type-V stereoisogram shown in Fig. 12.10 (left) for allene
derivatives having the composition ABpp with the type-V stereoisogram shown in Fig. 11.7
(page 321) for tetahedral derivatives having the same composition.

Exercise 12.9. Rule P-92.1.6 of IUPAC Provisional Recommendations 2004 [6] spec-
ifies ‘pseudoasymmetric axes’ by stereodescriptors ‘ra’ and ‘sa’. For example, 12-72 is
named (3R,4ra,5S)-4-(2-Bromoethenylidene)heptane-3,5-dithiol, as shown in Fig. 12.11.
Draw a stereoisogram for 12-72 by using the corresponding top view 12-73. Confirm that
the resulting stereoisogram belongs to type V. Note that the label ‘ra’ or ‘sa’ assigned to a
‘pseudoasymmetric axis’ is rationalized to be assigned to a type-V promolecule in Fujita’s
stereoisogram approach (see Chapter 13).
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Fig. 12.11. (3R,4r a,5S)-4-(2-Bromoethenylidene)heptane-3,5-dithiol.

12.3 Enumeration Under the RS-Stereoisomeric Group D2dσ̃̂I

The FPM method of the USCI approach has been extended to support RS-stereoisomeric
groups and applied to enumeration under the RS-stereoisomeric group D2dσ̃̂I [3]. On the
other hand, the PCI method has been extended to accomplish the same purpose [4]. In this
section, we apply the extended PCI method to enumeration under D2dσ̃̂I .

12.3.1 Non-Redundant Set of Subgroups and Five Types of Subgroups

The RS-stereoisomeric group D2dσ̃̂I is isomorphic to the point group D4h [3]. The point
group D4h has the following non-redundant set of subgroups (SSG) [5]:

SSGD4h =

{

1
C1,

2
C2,

3
C ′2,

4
C ′′2 ,

5
Cs,

6
C ′s,

7
C ′′s ,

8
Ci,

9
C4,

10
S4,

11
C2v,

12
C ′2v,

13
C ′′2v,

14
C ′′′2v,

15
C2h,

16
C ′2h,

17
C ′′2h,

18
D2,

19
D ′2,

20
C4v,

21
C4h,

22
D2d ,

23
D ′2d ,

24
D2h,

25
D ′2h,

26
D4,

27
D4h

}

, (12.5)

where the subgroups are aligned in the ascending order of their orders. For the convenience
of cross reference, sequential numbers from 1 to 27 are attached to the respective subgroups.
In a parallel way, a non-redundant set of subgroups (SSG) for the RS-stereoisomeric group
D2dσ̃̂I is obtained as follows [3]:

SSGD2dσ̃̂I

=

{

1
C1,

2
C2,

3
C ′2,

4
Cσ̃ ,

5
Cσ̂ ,

6
Cs,

7
C
̂I ,

8
C ′σ̂ ,

9
S
˜4,

10
S4,

11
C2σ̂ ,

12
C2v,

13
C2̂I ,

14
Csσ̃̂I ,

15
C ′2̂I ,

16
C ′2σ̂ ,

17
Csσ̃ σ̂ ,

18
D2,

19
C2σ̃ ,

20
S
˜4σ̂ ,

21
S
˜4̂I ,

22
D2d ,

23
S4σ̃ σ̂ ,

24
D2̂I ,

25
C2vσ̃̂I ,

26
D2σ̃ ,

27
D2dσ̃̂I

}

, (12.6)

where the subgroups are aligned in the ascending order of their orders. For the convenience
of cross reference, sequential numbers from 1 to 27 are attached to the respective subgroups.
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According to the discussion of [3], the 27 subgroups of SSGD2dσ̃̂I
are categorized into

five types:

Type I: SG[I] = {
5

Cσ̂ ,
7

C
̂I ,

8
C ′σ̂ ,

11
C2σ̂ ,

13
C2̂I ,

15
C ′2̂I ,

16
C ′2σ̂ ,

24
D2̂I} (12.7)

Type II: SG[II] = {
4

Cσ̃ ,
9

S
˜4,

19
C2σ̃ ,

26
D2σ̃ ,} (12.8)

Type III: SG[III] = {
1

C1,
2

C2,
3

C ′2,
18
D2} (12.9)

Type IV: SG[IV] = {
14

Csσ̃̂I ,
17

Csσ̃ σ̂ ,
20

S
˜4σ̂ ,

21
S
˜4̂I ,

23
S4σ̃ σ̂ ,

25
C2vσ̃̂I ,

27
D2dσ̃̂I} (12.10)

Type V: SG[V] = {
6

Cs,
10
S4,

12
C2v,

22
D2d}. (12.11)

Because we find that D2d is a common subgroup of D4h and D2dσ̃̂I and because we
find the correspondence between D4 (⊂ D4h) and D2σ̃ (⊂ D2dσ̃̂I) as well as between D2h

(⊂ D4h) and D2̂I (⊂ D2dσ̃̂I), we are able to construct each subgroup by referring to the five
types shown in Eqs. 12.7–12.11:
1. (Type-III Subgroups) The four subgroups of the point group D2 are also the subgroups

of the RS-stereoisomeric group D2dσ̃̂I .

C1
1= {I} (12.12)

C2
2= {I,C2(3)} (12.13)

C ′2
3= {I,C2(1)} (12.14)

D2
18= {I,C2(3),C2(1),C2(2)} (12.15)

These RS-stereoisomeric groups are categorized to type III.
2. (Type-V Subgroups) The four subgroups of D2d (except those of D2) are, at the same

time, recognized as the subgroups of the RS-stereoisomeric group D2dσ̃̂I :

Cs
6= {I,σd(1)} (12.16)

S4
10= {I,S4,C2(3),S

3
4} (12.17)

C2v
12= {I,C2(3),σd(1),σd(2)} (12.18)

D2d
22= {I,C2(3),C2(1),C2(2),σd(1),σd(2),S4,S3

4} (12.19)

These RS-stereoisomeric groups are categorized to type V.
3. (Type-II Subgroups) The four subgroups of D4 (except those of D2) correspond to the

following subgroups of D2σ̃ (−D2).

Cσ̃
4= {I, σ̃d(1)} (⊃ C1) (12.20)

S
˜4

9= {I, ˜S4(3),C2(3), ˜S
3
4(3)} (⊃ C2) (12.21)

C2σ̃
19= {I,C2(3), σ̃d(1), σ̃d(2)} (⊃ C2) (12.22)
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D2σ̃
26= {I,C2(1),C2(2),C2(3), σ̃d(1), σ̃d(2), ˜S4(3), ˜S

3
4(3)} (⊃ D2) (12.23)

The symbols of the subgroups are selected by designating a common subgroup to D2d

(denoted in a pair of parentheses) which is attached by a suffix to refer to an uncom-
mon operation. Each of the symbols contains a tilde accent in its suffix. For example,
the symbol C2σ̃ stems from the largest subgroup C2 (as a common subgroup to D2d)
and from an uncommon operation σ̃d(1). The symbol S

˜4 is adopted for the purpose of
avoiding the confusion with C2σ̃ . These RS-stereoisomeric groups are categorized to
type II.

4. (Type-I Subgroups) The eight subgroups of D2h (except those of D2) correspond to the
following subgroups of D2̂I (−D2).

Cσ̂
5= {I, ̂C2(1)} (⊃ C1) (12.24)

C
̂I

7= {I,̂I} (⊃ C1) (12.25)

C ′σ̂
8= {I, ̂C2(3)} (⊃ C1) (12.26)

C2σ̂
11= {I,C2(3), ̂C2(1), ̂C2(2)} (⊃ C2) (12.27)

C2̂I
13= {I,C2(1), ̂C2(1),̂I} (⊃ C2) (12.28)

C ′2̂I
15= {I,C2(3), ̂C2(3),̂I} (⊃ C2) (12.29)

C ′2σ̂
16= {I,C2(1), ̂C2(3), ̂C2(2)} (⊃ C2) (12.30)

D2̂I
24= {I,C2(1),C2(2),C2(3),̂I, ̂C2(1), ̂C2(2), ̂C2(3)} (⊃ D2) (12.31)

The names of the subgroups are characterized by the symbols with a hat accent. These
RS-stereoisomeric groups are categorized to type I.

5. (Type-IV Subgroups) The seven subgroups of D4h (except those of D2, D2d , D4, and
D2h) correspond to the following subgroups of D2dσ̃̂I .

Csσ̃̂I
14= {I, σ̃d(1),̂I,σd(1)} (⊃ Cs) (12.32)

Csσ̃ σ̂
17= {I, σ̃d(1), ̂C2(3),σd(2)} (⊃ Cs) (12.33)

S
˜4σ̂

20= {I, ˜S4(3),C2(3), ˜S
3
4(3),

̂C2(1), ̂C2(2),σd(1),σd(2)} (⊃ S
˜4,C2v) (12.34)

S
˜4̂I

21= {I, ˜S4(3),C2(3), ˜S
3
4(3),

̂I, ̂C2(3),S4(3),S
3
4(3)} (⊃ S

˜4,S4) (12.35)

S4σ̃ σ̂
23= {I,C2(3), σ̃d(1), σ̃d(2), ̂C2(1), ̂C2(2),S4(3),S

3
4(3)} (⊃ S4) (12.36)

C2vσ̃̂I
25= {I,C2(3), σ̃d(1), σ̃d(2),̂I, ̂C2(3),σd(1),σd(2)} (⊃ C2v) (12.37)

D2dσ̃̂I
27= {I,C2(1),C2(2),C2(3), σ̃d(1), σ̃d(2), ˜S4(3), ˜S

3
4(3),

̂I, ̂C2(1), ̂C2(2), ̂C2(3),σd(1),σd(6),S4(3),S
3
4(3)} (⊃ D2d) (12.38)

The names of the subgroups are characterized by the symbols with both a hat accent
and a tilde accent. These RS-stereoisomeric groups are categorized to type IV.
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12.3.2 Subduction of Coset Representations

The mark table of the point group D4h has been reported in [5, Table 3]. The inverse mark
table of the point group D4h has been reported in [3, Eq. 109]. They are applicable to enu-
meration under the isomorphic RS-stereoisomeric group D2dσ̃̂I by considering the corre-
spondence between their SSGs (Eq. 12.5 and Eq. 12.6).

The inverse mark table M−1
D2dσ̃̂I

reported in the form of a 27×27 lower triangular matrix
is cited here (Eq. 109 of [3]):

M−1
D2dσ̃̂I

= M−1
D4h

= (m ji)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

− 1
16

1
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

− 1
8 0 1

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

− 1
8 0 0 1

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

− 1
8 0 0 0 1

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

− 1
8 0 0 0 0 1

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

− 1
16 0 0 0 0 0 1

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

− 1
16 0 0 0 0 0 0 1

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 − 1
8 0 0 0 0 0 0 1

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 − 1
8 0 0 0 0 0 0 0 1

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
8 − 1

8 0 0 − 1
4 0 0 0 0 0 1

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
8 − 1

8 0 0 0 − 1
4 0 0 0 0 0 1

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
4 0 − 1

4 0 − 1
4 0 − 1

4 0 0 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
4 0 0 − 1

4 0 − 1
4 − 1

4 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0 0 0 0

1
8 − 1

8 0 0 0 0 − 1
8 − 1

8 0 0 0 0 0 0 1
4 0 0 0 0 0 0 0 0 0 0 0 0

1
4 0 − 1

4 0 − 1
4 0 0 − 1

4 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0 0

1
4 0 0 − 1

4 0 − 1
4 0 − 1

4 0 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0

1
8 − 1

8 − 1
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

4 0 0 0 0 0 0 0 0 0
1
8 − 1

8 0 − 1
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

4 0 0 0 0 0 0 0 0

0 1
4 0 0 0 0 0 0 − 1

4 0 − 1
4 − 1

4 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0

0 1
4 0 0 0 0 0 0 − 1

4 − 1
4 0 0 0 0 − 1

4 0 0 0 0 0 1
2 0 0 0 0 0 0

0 1
4 0 0 0 0 0 0 0 − 1

4 0 − 1
4 0 0 0 0 0 − 1

4 0 0 0 1
2 0 0 0 0 0

0 1
4 0 0 0 0 0 0 0 − 1

4 − 1
4 0 0 0 0 0 0 0 − 1

4 0 0 0 1
2 0 0 0 0

− 1
2

1
4

1
2 0 1

2 0 1
4

1
4 0 0 − 1

4 0 − 1
2 0 − 1

4 − 1
2 0 − 1

4 0 0 0 0 0 1
2 0 0 0

− 1
2

1
4 0 1

2 0 1
2

1
4

1
4 0 0 0 − 1

4 0 − 1
2 − 1

4 0 − 1
2 0 − 1

4 0 0 0 0 0 1
2 0 0

0 1
4 0 0 0 0 0 0 − 1

4 0 0 0 0 0 0 0 0 − 1
4 − 1

4 0 0 0 0 0 0 1
2 0

0 −1 0 0 0 0 0 0 1
2

1
2

1
2

1
2 0 0 1

2 0 0 1
2

1
2 − 1

2 − 1
2 − 1

2 − 1
2 − 1

2 − 1
2 − 1

2 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟
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⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (12.39)

The four positions of the allene skeleton 3-9 (page 68) construct an orbit governed by a
coset representation D2dσ̃̂I(/Csσ̃̂I), the degree of which is calculated to be |D2dσ̃̂I |/|Csσ̃̂I |=
16/4 = 4. The subduction of the coset representation D2dσ̃̂I(/Csσ̃̂I) by a subgroup Ǵ j is
shown in Table 12.2, which is cited from [3, Table 3].

According to Eq. 10.56 (Def. 10.4 on page 295), the data of the subduction-column of
Table 12.2 give the corresponding USCI-CFs, as collected in the USCI-CF-column of Table
12.2.

12.3.3 The PCI Method for the RS-Stereoisomeric Group D2dσ̃̂I

PCI-CFs for Characterizing Subgroups
The PCI-CFs for RS-stereoisomeric group D2dσ̃̂I are calculated according to Def. 10.6 (page
298). To accomplish this calculation, the data of the USCI-CF-column of Table 12.2 are
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Table 12.2. Subduction of D2dσ̃̂I(/Csσ̃̂I) [3]

Subgroup Subduction
USCI-CF USCI

TEM
(↓ Ǵ j type) (D2dσ̃̂I(/Csσ̃̂I) ↓ Ǵ j) ̂Nj ̂N

(I)
j
̂N(II)

j
̂N(III)

j
̂N(IV )

j
̂N(V )

j

1 C1 III 4C1(/C1) b4
1 s4

1
1
16 0 0 1

16 0 0

2 C2 III 2C2(/C1) b2
2 s2

2
1
16 0 0 1

16 0 0

3 C′2 III 2C′2(/C1) b2
2 s2

2
1
8 0 0 1

8 0 0

4 Cσ̃ II Cσ̃ (/C1)+2Cσ̃ (/Cσ̃ ) b2
1b2 s2

1s2
1
8 0 1

4 − 1
8 0 0

5 Cσ̂ I 2Cσ̂ (/C1) c2
2 s2

2
1
8

1
4 0 − 1

8 0 0

6 Cs V Cs(/C1)+2Cs(/Cs) a2
1c2 s2

1s2
1
8 0 0 − 1

8 0 1
4

7 C
̂I I 4C

̂I(/C
̂I) a4

1 a4
1

1
16

1
8 0 − 1

16 0 0

8 C′σ̂ I 2C′σ̂ (/C1) c2
2 s2

2
1
16

1
8 0 − 1

16 0 0

9 S
˜4 II S

˜4(/C1) b4 s4
1
8 0 1

4 − 1
8 0 0

10 S4 V S4(/C1) c4 s4
1
8 0 0 − 1

8 0 1
4

11 C2σ̂ I C2σ̂ (/C1) c4 s4 0 0 0 0 0 0

12 C2v V C2v(/Cs)+C2v(/C′s) a2
2 s2

2 0 0 0 0 0 0

13 C2̂I I 2C2̂I(/C
̂I) a2

2 s2
2 0 0 0 0 0 0

14 Csσ̃̂I IV Csσ̃̂I(/C
̂I)+2Csσ̃̂I(/Csσ̃̂I) a2

1a2 s2
1s2 0 − 1

4 − 1
4

1
4

1
2 − 1

4

15 C′
2̂I

I 2C′
2̂I

(/C
̂I) a2

2 s2
2 0 0 0 0 0 0

16 C′2σ̂ I C′2σ̂ (/C1) c4 s4 0 0 0 0 0 0

17 Csσ̃ σ̂ IV Csσ̃ σ̂ (/Cσ̃ )+Csσ̃ σ̂ (/Cs) a2c2 s2
2 0 − 1

4 − 1
4

1
4

1
2 − 1

4

18 D2 III D2(/C1) b4 s4 0 0 0 0 0 0

19 C2σ̃ II C2σ̃ (/Cσ̃ )+C2σ̃ (/C′σ̃ ) b2
2 s2

2 0 0 0 0 0 0

20 S
˜4σ̂ IV S

˜4σ̂ (/Cs) a4 s4 0 − 1
4 − 1

4
1
4

1
2 − 1

4

21 S
˜4̂I IV S

˜4̂I(/C
̂I) a4 s4 0 − 1

4 − 1
4

1
4

1
2 − 1

4

22 D2d V D2d(/Cs) a4 s4 0 0 0 0 0 0

23 S4σ̃ σ̂ IV S4σ̃ σ̂ (/Cσ̃ ) c4 s4 0 − 1
4 − 1

4
1
4

1
2 − 1

4

24 D2̂I I D2̂I(/C
̂I) a4 s4 0 0 0 0 0 0

25 C2vσ̃̂I IV C2vσ̃̂I(/Csσ̃̂I)+C2vσ̃̂I(/C′
sσ̃̂I

) a2
2 s2

2 0 1
4

1
4 − 1

4 − 1
2

1
4

26 D2σ̃ II D2σ̃ (/Cσ̃ ) b4 s4 0 0 0 0 0 0

27 D2dσ̃̂I IV D2dσ̃̂I(/Csσ̃̂I) a4 s4 0 1
2

1
2 − 1

2 −1 1
2

regarded as a formal row vector of SCI-CFs, which is multiplied by the inverse mark table
M−1

D2dσ̃̂I
(Eq. 12.39), as represented schematically as follows:

(

PCI-CF(C1),PCI-CF(C2), . . . ,PCI-CF(Ǵ j), . . . ,PCI-CF(D2dσ̃̂I)
)

= (b4
1,b

2
2,b

2
2,b

2
1b2,c2

2,a
2
1c2,a4

1,c
2
2,b4,c4,c4,a2

2,a
2
2,a

2
1a2,a2

2,

c4,a2c2,b4,b2
2,a4,a4,a4,c4,a4,a2

2,b4,a4)×M−1
D2dσ̃̂I

. (12.40)

Thereby, PCI-CFs for every subgroups of SSGD2dσ̃̂I
(Eq. 12.6) are obtained as follows:

PCI-CF(C1)
1=

III

1
16

b4
1−

1
16

a4
1−

1
8

b2
1b2 +

1
4

a2
1a2− 1

8
a2

1c2− 1
16

b2
2
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+
1
4

a2c2− 3
16

c2
2 +

1
8

b4 +
3
8

c4− 1
2

a4 (12.41)

PCI-CF(C2)
2=
III

0 (12.42)

PCI-CF(C ′2)
3=
III

1
4

b2
2−

1
4

a2
2−

1
4

b4− 1
4

c4 +
1
2

a4 (12.43)

PCI-CF(Cσ̃ ) 4=
II

1
4

b2
1b2− 1

4
a2

1a2− 1
4

b2
2 +

1
2

a2
2−

1
4

a2c2 (12.44)

PCI-CF(Cσ̂ ) 5=
I

1
4

c2
2−

1
4

a2
2−

1
2

c4 +
1
2

a4 (12.45)

PCI-CF(Cs)
6=
V

1
4

a2
1c2− 1

4
a2

1a2 +
1
4

a2
2−

1
4

a2c2 (12.46)

PCI-CF(C
̂I)

7=
I

1
8

a4
1−

1
4

a2
1a2− 1

8
a2

2 +
1
4

a4 (12.47)

PCI-CF(C ′σ̂ ) 8=
I

1
8

a2
2−

1
4

a2c2 +
1
8

c2
2−

1
4

c4 +
1
4

a4 (12.48)

PCI-CF(S
˜4)

9=
II

0 (12.49)

PCI-CF(S4)
10=
V

0 (12.50)

PCI-CF(C2σ̂ ) 11=
I

0 (12.51)

PCI-CF(C2v)
12=
V

0 (12.52)

PCI-CF(C2̂I)
13=
I

1
2

a2
2−

1
2

a4 (12.53)

PCI-CF(Csσ̃̂I)
14=
IV

1
2

a2
1a2− 1

2
a2

2 (12.54)

PCI-CF(C ′
2̂I

) 15=
I

0 (12.55)

PCI-CF(C ′2σ̂ ) 16=
I

1
2

c4− 1
2

a4 (12.56)

PCI-CF(Csσ̃ σ̂ ) 17=
IV

1
2

a2c2− 1
2

a2
2 (12.57)

PCI-CF(D2)
18=
III

0 (12.58)

PCI-CF(C2σ̃ ) 19=
II

1
4

b2
2−

1
4

a2
2−

1
4

b4− 1
4

c4 +
1
2

a4 (12.59)

PCI-CF(S
˜4σ̂ ) 20=

IV
0 (12.60)

PCI-CF(S
˜4̂I)

21=
IV

0 (12.61)

PCI-CF(D2d)
22=
V

0 (12.62)

PCI-CF(S4σ̃ σ̂ ) 23=
IV

1
2

c4− 1
2

a4 (12.63)
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PCI-CF(D2̂I)
24=
I

0 (12.64)

PCI-CF(C2vσ̃̂I)
25=
IV

1
2

a2
2−

1
2

a4 (12.65)

PCI-CF(D2σ̃ ) 26=
II

1
2

b4− 1
2

a4 (12.66)

PCI-CF(D2dσ̃̂I)
27=
IV

a4, (12.67)

where the sequential numbers are shown over the respective equality symbols for the con-
venience of cross reference.

Generating Functions for Symmetry-Itemized Enumeration
Suppose that the four positions of the allene skeleton 3-9 (page 68) are substituted by a
set of proligands selected from a ligand inventory L (Eq. 6.73 on page 153). According to
Theorem 10.4 (page 298), we use the ligand-inventory functions shown in Eqs. 11.80–11.82
(page 329), which are common to the tetrahedral skeleton 3-5 (page 55).

The ligand-inventory functions (Eqs. 11.80–11.82) are introduced into the PCI-CFs
(Eqs. 12.41–12.67). After expansion of the resulting equations, the following generating
functions are obtained:

fC1
1=

III
{1

2

[θ ]7
(A2Bp+A2Bp)+ · · ·}+{1

2

[θ ]9
(A2pq+A2pq)+ · · ·}

+{3
2

[θ ]11
(ABXp+ABXp)+ · · ·}+{1

2

[θ ]12

(ABp2 +ABp2)+ · · ·}

+{
[θ ]13

ABpp+ · · ·}+{3
2

[θ ]14
(ABpq+ABpq)+ · · ·}

+{1
2

[θ ]16

(Ap2p+App2)+ · · ·}+{1
2

[θ ]17

(Ap2q+Ap2q)+ · · ·}

+{3
2

[θ ]18
(Appq+Appq)+ · · ·}+{3

2

[θ ]19
(Apqr+Apqr)+ · · ·}

+{1
2

[θ ]24

(p2pq+pp2q)+ · · ·}+{1
2

[θ ]26

(p2qq+p2qq)+ · · ·}

+{1
2

[θ ]27

(p2qr+p2qr)+ · · ·}+{3
2

[θ ]29
(ppqr+ppqr)+ · · ·}

+{3
2

[θ ]30
(pqrs+pqrs)+ · · ·} (12.68)

fC ′2
3=

III
{1

2

[θ ]5
(A2p2 +A2p2)+ · · ·}+{1

2

[θ ]25

(p2q2 +p2q2)+ · · ·} (12.69)

fCσ̃
4=
II
{1

2

[θ ]3
(A3p+A3p)+ · · ·}+{1

2

[θ ]7
(A2Bp+A2Bp)+ · · ·}
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+{1
2

[θ ]9
(A2pq+A2pq)+ · · ·}+{1

2

[θ ]12

(ABp2 +ABp2)+ · · ·}

+{1
2

[θ ]15

(Ap3 +Ap3)+ · · ·}+{1
2

[θ ]16

(Ap2p+App2)+ · · ·}

+{1
2

[θ ]17

(Ap2q+Ap2q)+ · · ·}+{1
2

[θ ]21

(p3p+pp3)+ · · ·}

+{1
2

[θ ]22

(p3q+p3q)+ · · ·}+{1
2

[θ ]24

(p2pq+pp2q)+ · · ·}

+{1
2

[θ ]26

(p2qq+p2qq)+ · · ·}+{1
2

[θ ]27

(p2qr+p2qr)+ · · ·} (12.70)

fCσ̂
5=
I
{

[θ ]8
A2pp+A2qq+ · · ·}+{

[θ ]28
2ppqq+2pprr+ · · ·} (12.71)

fCs
6=
V
{

[θ ]13
ABpp+ABqq+ · · ·} (12.72)

fC
̂I

7=
I
{

[θ ]6
A2BX+A2BY · · ·}+{

[θ ]10
3ABXY} (12.73)

fC ′σ̂
8=
I
{

[θ ]28
ppqq+ · · ·} (12.74)

fC2̂I

13=
I
{

[θ ]4
A2B2 + · · ·} (12.75)

fCsσ̃̂I

14=
IV
{

[θ ]2
A3B+ · · ·}+{

[θ ]6
A2BX+ · · ·} (12.76)

fC2σ̂ ′
16=
I
{

[θ ]23

p2p2 + · · ·} (12.77)

fCsσ̃ σ̂
17=
IV
{

[θ ]8
A2pp+ · · ·} (12.78)

fC2σ̃
19=
II
{1

2

[θ ]5
(A2p2 +A2p2)+ · · ·}+{1

2

[θ ]25

(p2q2 +p2q2)+ · · ·} (12.79)

fS4σ̃ σ̂
23=
IV
{

[θ ]23

p2p2 + · · ·} (12.80)

fC2vσ̃̂I

25=
IV
{

[θ ]4
A2B2 + · · ·} (12.81)

fD2σ̃
26=
II
{1

2

[θ ]20

(p4 +p4)+ · · ·} (12.82)

fD2dσ̃̂I

27=
IV
{

[θ ]1
A4 +B4 +X4 +Y4} (12.83)

where generating functions of zero value are omitted (cf. the sequential numbers above the
equality symbols). The coefficient of the term AaBbXxYyppppqqqqrrqrssqs or the partition
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[θ ]i (Eqs. 11.98–11.127 on page 330) indicates the number of inequivalent quadruplets of
promolecules to be counted.

The terms appearing in fCσ̂ (Eq. 12.71), fC
̂I

(Eq. 12.73), fC ′σ̂
(Eq. 12.74), fC2̂I

(Eq.
12.75), and fC2σ̂ ′ (Eq. 12.77) correspond to type-I stereoisograms, so that they are confirmed
by the reference promolecules listed in Fig. 12.3. It should be noted that the molecules with
the composition ppqq ([θ ]28) are separately counted by the term 2ppqq ([θ ]28) in Eq. 12.71
(12-13 and 12-14 of Cσ̂ ) and by the term ppqq ([θ ]28) in Eq. 12.74 (12-15 of C ′σ̂ ).

In a similar way, the terms appearing in fCσ̃ (Eq. 12.70), fC2σ̃ (Eq. 12.79), and fD2σ̃
(Eq. 12.82) correspond to type-II stereoisograms, so that they are confirmed by the ref-
erence promolecules listed in Fig. 12.5. The terms appearing in fC1 (Eq. 12.68) and fC ′2
(Eq. 12.69) correspond to type-III stereoisograms, so that they are confirmed by the refer-
ence promolecules listed in Fig. 12.7. The terms appearing in fCsσ̃̂I

(Eq. 12.77), fCsσ̃ σ̂ (Eq.
12.78), fS4σ̃ σ̂ (Eq. 12.80), fC2vσ̃̂I

(Eq. 12.81), and fD2dσ̃̂I
(Eq. 12.83) correspond to type-IV

stereoisograms. Hence, they are confirmed by referring to the top row of Fig. 12.9. The
term ABpp ([θ ]13) appearing in fCs (Eq. 12.72) corresponds to a type-V stereoisogram,
which can be confirmed by referring to the bottom row of Fig. 12.9.

12.3.4 Type-Itemized Enumeration by the PCI Method

CI-CFs for Characterizing Five Types of Stereoisograms
To obtain CI-CFs for characterizing five types of stereoisograms, the PCI-CFs listed in Eqs.
12.41–12.67 are added according to the definitions shown by Eqs. 12.7–12.11. Note that the
symbols I–V below the equality symbols in the PCI-CFs (Eqs. 12.41–12.67) represent the
categories of the five types. Thereby, we obtain the following type-itemized CI-CFs [4]:

CI-CF[I] = PCI-CF(Cσ̂ )+PCI-CF(C
̂I)+PCI-CF(Cσ̂ ′)+PCI-CF(C2σ̂ )

+PCI-CF(C2̂I)+PCI-CF(C ′2̂I)+PCI-CF(C ′2σ̂ )+PCI-CF(D2̂I)

=
1
8

a4
1−

1
4

a2
1a2 +

1
4

a2
2−

1
4

a2c2 +
3
8

c2
2−

1
4

c4 (12.84)

CI-CF[II] = PCF-CF(Cσ̃ )+PCF-CF(S
˜4)+PCF-CF(C2σ̃ )+PCF-CF(D2σ̃ )

=
1
4

b2
1b2− 1

4
a2

1a2 +
1
4

a2
2−

1
4

a2c2 +
1
4

b4− 1
4

c4 (12.85)

CI-CF[III] = PCF-CF(C1)+PCF-CF(C2)+PCF-CF(C ′2)+PCF-CF(D2)

=
1

16
b4

1−
1
16

a4
1−

1
8

b2
1b2 +

1
4

a2
1a2− 1

8
a2

1c2

+
3
16

b2
2−

1
4

a2
2 +

1
4

a2c2− 3
16

c2
2−

1
8

b4 +
1
8

c4 (12.86)

PCI-CF[IV] = PCF-CF(Csσ̃̂I)+PCF-CF(Csσ̃ σ̂ )+PCF-CF(S
˜4σ̂ )+PCF-CF(S

˜4̂I)

+PCF-CF(S4σ̃ σ̂ )+PCF-CF(C2vσ̃̂I)+PCF-CF(D2dσ̃̂I)

=
1
2

a2
1a2− 1

2
a2

2 +
1
2

a2c2 +
1
2

c4 (12.87)
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PCI-CF[V] = PCF-CF(Cs)+PCF-CF(S4)+PCF-CF(C2v)+PCF-CF(D2d)

=
1
4

a2
1c2− 1

4
a2

1a2 +
1
4

a2
2−

1
4

a2c2 (12.88)

These CI-CFs for type-itemized enumeration can be alternatively obtained by a formal ma-
trix calculation in a similar way to Eq. 12.40, where the inverse mark table (M−1

D2dσ̃̂I
) is

replaced by the type-enumeration matrix (TEM) shown in the right part of Table 12.2.

Generating Functions for Type-Itemized Enumeration
The ligand-inventory functions (Eqs. 11.80–11.82 on page 329) are introduced into the CI-
CFs (Eqs. 12.84–12.88), so as to give the following generating functions:

f [I] = {
[θ ]8

A2pp+A2qq+ · · ·}+{
[θ ]28

3ppqq+3pprr+ · · ·}

+{
[θ ]6

A2BX+A2BY · · ·}+{
[θ ]10

3ABXY}+

+{
[θ ]4

A2B2 + · · ·}+{
[θ ]23

p2p2 + · · ·} (12.89)

f [II] = {1
2

[θ ]3
(A3p+A3p)+ · · ·}+{1

2

[θ ]7
(A2Bp+A2Bp)+ · · ·}

+{1
2

[θ ]9
(A2pq+A2pq)+ · · ·}+{1

2

[θ ]12

(ABp2 +ABp2)+ · · ·}

+{1
2

[θ ]15

(Ap3 +Ap3)+ · · ·}+{1
2

[θ ]16

(Ap2p+App2)+ · · ·}

+{1
2

[θ ]17

(Ap2q+Ap2q)+ · · ·}+{1
2

[θ ]21

(p3p+pp3)+ · · ·}

+{1
2

[θ ]22

(p3q+p3q)+ · · ·}+{1
2

[θ ]24

(p2pq+pp2q)+ · · ·}

+{1
2

[θ ]26

(p2qq+p2qq)+ · · ·}+{1
2

[θ ]27

(p2qr+p2qr)+ · · ·}

+{1
2

[θ ]5
(A2p2 +A2p2)+ · · ·}+{1

2

[θ ]25

(p2q2 +p2q2)+ · · ·}

+{1
2

[θ ]20

(p4 +p4)+ · · ·} (12.90)

f [III] = {1
2

[θ ]7
(A2Bp+A2Bp)+ · · ·}+{1

2

[θ ]9
(A2pq+A2pq)+ · · ·}

+{3
2

[θ ]11
(ABXp+ABXp)+ · · ·}+{1

2

[θ ]12

(ABp2 +ABp2)+ · · ·}

+{
[θ ]13

ABpp+ · · ·}+{3
2

[θ ]14
(ABpq+ABpq)+ · · ·}
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+{1
2

[θ ]16

(Ap2p+App2)+ · · ·}+{1
2

[θ ]17

(Ap2q+Ap2q)+ · · ·}

+{3
2

[θ ]18
(Appq+Appq)+ · · ·}+{3

2

[θ ]19
(Apqr+Apqr)+ · · ·}

+{1
2

[θ ]24

(p2pq+pp2q)+ · · ·}+{1
2

[θ ]26

(p2qq+p2qq)+ · · ·}

+{1
2

[θ ]27

(p2qr+p2qr)+ · · ·}+{3
2

[θ ]29
(ppqr+ppqr)+ · · ·}

+{3
2

[θ ]30
(pqrs+pqrs)+ · · ·}

+{1
2

[θ ]5
(A2p2 +A2p2)+ · · ·}+{1

2

[θ ]25

(p2q2 +p2q2)+ · · ·} (12.91)

f [IV] = {
[θ ]2

A3B+ · · ·}+{
[θ ]6

A2BX+ · · ·}+{
[θ ]8

A2pp+ · · ·}

+{
[θ ]23

p2p2 + · · ·}+{
[θ ]4

A2B2 + · · ·}+{
[θ ]1
A4 +B4 +X4 +Y4} (12.92)

f [V] = {
[θ ]13

ABpp+ABqq+ · · ·}. (12.93)

The generating function f [I] (Eq. 12.89) is the sum of the generating functions of the
subgroups contained in SG[I] (Eq. 12.7). They are confirmed by the reference promolecules
listed in Fig. 12.3. In particular, the term 3ppqq ([θ ]28) is the sum of the term 2ppqq in Eq.
12.71 and the term ppqq in Eq. 12.74. The total value 3 is consistent with the presence of
12-13, 12-14, and 12-15, as shown in Fig. 12.3.

In a similar way, the generating function f [II] (Eq. 12.90) is the sum of the generat-
ing functions of the subgroups contained in SG[II] (Eq. 12.8). They are confirmed by the
reference promolecules listed in Fig. 12.5. The generating function f [III] (Eq. 12.91) is the
sum of the generating functions of the subgroups contained in SG[III] (Eq. 12.9). They are
confirmed by the reference promolecules listed in Fig. 12.7. The generating function f [IV]

(Eq. 12.92) is the sum of the generating functions of the subgroups contained in SG[IV] (Eq.
12.10). They are confirmed by the reference promolecules listed in the top row of Fig. 12.9.
The generating function f [V] (Eq. 12.93) is the sum of the generating functions of the sub-
groups contained in SG[V] (Eq. 12.11). They are confirmed by the reference promolecules
listed in the bottom row of Fig. 12.9.

12.4 Comparison with Enumeration Under Subsymmetries

12.4.1 Enumeration of Allene Promolecules Under the Point-Group
Symmetry

The enumeration of allene promolecules under the point-group symmetry D2d has been
already discussed in Chapter 5. The PCI-CFs for symmetry-itemized enumeration of allene
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derivatives have been calculated to give Eqs. 6.106–6.113 (page 160). The corresponding
generating functions are shown in Eqs. 6.114–6.121 (page 161).

According to Theorem 10.6 (page 306), the symmetry-itemized generating functions
under the action of the point group D2d (Eqs. 6.114–6.121 on page 161) can be correlated
to those under the action of D2dσ̃̂I (Eqs. 12.68–12.83).

The relationship between the enumeration under D2d and the enumeration under D2dσ̃̂I
can be confirmed by the derivation of the PCI-CFs of D2d (Eqs. 6.106–6.113 on page 160)
from the PCI-CFs of D2dσ̃̂I (Eqs. 12.41–12.67), where Theorem 10.6 (page 306) is taken
into consideration.

These tasks are open to readers as an exercise:

Exercise 12.10.
– In a similar way to the procedure described for Td in Section 11.4, correlate the gen-

eration functions for D2d (Eqs. 6.114–6.121 on page 161) to those for D2dσ̃̂I (Eqs.
12.68–12.83).

– In a similar way to the procedure described for Td in Section 11.4, derive the PCI-CFs
of D2d (Eqs. 6.106–6.113 on page 160) from the PCI-CFs of D2dσ̃̂I (Eqs. 12.41–12.67).

12.4.2 Enumeration of Allene Promolecules Under the
RS-Permutation-Group Symmetry

Gross enumeration of allene derivatives under the RS-permutation group D2σ̃ has been
discussed in Chapter 9. Symmetry-itemized enumeration of allene derivatives under D2σ̃
(� S[4]

9 , cf. Eq. 9.56 on page 262) has been reported, where the coefficients of the gener-

ating functions calculated from PCIs the subgroups of S[4]
9 in a tabular form [7, Tables 3

and 4] and the required PCIs for the subgroups of S[4]
9 are given in the form of functions

concerning sd [7, Eqs. 16–23]. These PCIs for S[4]
9 are permitted to be adopted as the PCIs

for D2σ̃ , which can be derived from the PCI-CFs of D2d (Eqs. 6.106–6.113 on page 160) by
putting sd = ad = cd = bd , where the correspondence among the SSGs of D2d (Eq. 6.103
on page 159), D2σ̃ (Eq. 9.55 on page 262), and S[4]

9 (Eq. 9.56 on page 262) is taken into
consideration.

The PCIs for D2σ̃ (containing sd) obtained from Eqs. 6.106–6.113 correspond to PCI-
CFs for D2σ̃ (containing bd), which are, in turn, derived by starting from the PCI-CFs of
D2dσ̃̂I (Eqs. 12.41–12.67) according to Theorem 10.7 (page 308).

This task is open to readers as an exercise:
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Exercise 12.11.
– In a similar way to the procedure described for Tσ̃ in Section 11.4, derive the PCI-CFs

of D2σ̃ from the PCI-CFs of D2dσ̃̂I (Eqs. 12.41–12.67).
– Confirm that the resulting PCI-CFs of D2σ̃ consists of only terms of bd’s with disap-

pearance of terms of ad and/or cd .
– Prove the disappearance of terms of ad and/or cd in general.
– By putting sd = bd , calculate the PCIs for D2σ̃ .
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13 Stereochemical Nomenclature1

13.1 Absolute Configuration

13.1.1 Single Pair of Attributes ‘Chirality/Achirality’ in Modern
Stereochemistry

In the glossary of the IUPAC Recommendations 1996 [1], the term configuration is defined
as “In the context of stereochemistry, the term is restricted to the arrangement of atoms of
a molecular entity in space that distinguishes stereoisomers, the isomerism between which
is not due to conformation differences. See also absolute configuration and relative config-
uration”. And then, the term absolute configuration is defined as “The spatial arrangement
of the atoms of a chiral molecular entity (or group) and its stereochemical description, e.g.,
R or S.”

The term ‘stereogenic’ has later been proposed to rationalize the foundations of R/S-
stereodescriptors [2]. Helmchen [3, Section 1.3] has pointed out that the term chirality ele-
ment is one of problematic terms: “This previously common term should be used with care.
More appropriate is the term stereogenic unit”. However, Helmchen [3, Table 1] maintains
the usage of the terms ‘chirality center’ (⊂ ‘chirality units’) and ‘pseudoasymmetric center’.
(⊂ ‘pseudoasymmetric units’). Moreover, Rule 91.1.1.1 of Provisional Recommendations
2004 [4] refers to the term ‘stereogenic unit’ and points out the presence of three kinds of
stereogenic units (a central atom such as a chirality center, a central bond such as a chiral-
ity axis, and a double bond). Then, it states “. . . A chirality center, formerly known as an
‘asymmetric atom’, is the classical example of a stereogenic unit.” and shows an example
of assigning an R-descriptor to a ‘chirality center’ of Xabcd.

The term ‘stereogenic centers’ is used to designate a pair of Cl-substituted carbons
in cis- and trans-1,3-dichlorocyclobutanes, where interchange of two ligands (Cl and H)
at a ‘stereogenic’ center leads to a stereoisomer [5, Fig. 3.8]. It is to be noted that the
dichlorocyclobutanes are achiral. This means that ‘stereogenic’ centers may be chiral or
achiral.

The discussions in the preceding paragraphs demonstrate that the terminology concern-
ing ‘chirality center’, ‘stereogenic unit’, and absolute configuration is suffering from serious
confusion because of the lack of an appropriate mathematical framework. In particular, the
relationship between ‘chirality center’ and ‘stereogenic unit’ has been discussed in a qual-

1 This chapter is based on S. Fujita, “Three Aspects of an Absolute Configuration on the Basis of the
Stereoisogram Approach and Revised Terminology on Related Stereochemical Concepts”, J. Math. Chem.,
52, 1514–1534 (2014); and S. Fujita, “Stereoisograms for Reorganizing the Theoretical Foundations of Stere-
ochemistry and Stereoisomerism: II. Rational Avoidance of Misleading Standpoints for R/S-Stereodescriptors
of the Cahn-Ingold-Prelog System”, Tetrahedron: Asymmetry, 25, 1169–1189 (2014).
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itative fashion, because these terms have not been defined definitely from a mathematical
point of view.

If we obey the above-mentioned terminology of modern stereochemistry, a plausible
(but misleading) interpretation may be summarized as follows:

Remark 13.1 (Misleading Interpretation due to Modern Stereochemistry). A ‘chiral-
ity center’ is a kind of a stereogenic unit and the absolute configuration of such a
‘chirality center’ is characterized by a label R or S.

Although this interpretation is seemingly plausible, it suffers from serious confusion: the
concept of absolute configuration is linked solely with the concept of chirality. Because the
concept of absolute configuration is linked with the label R or S due to the Cahn-Ingold-
Prelog (CIP) system, the label R or S is misleadingly linked with chirality after considering
the connotation of ‘chirality ⊂ stereogenicity’. The confusion stems from the following
over-simplified foundation of modern stereochemistry:

Remark 13.2 (Over-Simplified Theoretical Foundation of Modern Stereochemistry).
Modern stereochemistry is based on a single pair of attributes chirality/achirality in
the discussions on absolute configuration and on R/S-stereodescriptors.

13.1.2 Three Pairs of Attributes in Fujita’s Stereoisogram Approach

To avoid such confusion, Fujita has proposed the concepts of RS-diastereomers and
holantimers in addition to enantiomers, which are integrated to give a quadruplet of RS-
stereoisomers contained in a stereoisogram [6,7]. Such quadruplets of RS-stereoisomers
are characterized by a new concept of RS-stereoisomeric groups [8–11]. As summarized
in Chapters 10–12, the crux of Fujita’s stereoisogram approach is to clarify three pairs of
attributes:

Rule 13.1. There are three pairs of attributes on the basis of Fujita’s stereoisogram ap-
proach, i.e., a pair of chirality/achirality, a pair of RS-stereogenicity/RS-astereogenicity, and
a pair of sclerality/asclerality, as summarized in Table 10.3 (page 285).

This exhibits a sharp contrast to modern stereochemistry, which presumes only one pair
of chirality/achirality and disregards the other pairs of attributes. Note that the term ‘stere-
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ogenicity’ of modern stereochemistry is not restricted to permit such a consistent treatment
as provided by the term RS-stereogenicity of Fujita’s stereoisogram approach.

An attribute chirality is linked with an enantiomeric relationship as a pairwise relation-
ship, which is concerned with a (pro)molecular entity and its enantiomeric entity (mirror-
image entity). Note that a self-enantiomeric relationship means achirality. Another attribute
RS-stereogenicity is linked with an RS-diastereomeric relationship as a pairwise relation-
ship, which is concerned with a (pro)molecular entity and its RS-diastereomeric entity. Note
that a self-RS-diastereomeric relationship means RS-astereogenicity. An additional attribute
sclerality is linked with a holantimeric relationship as a pairwise relationship, which is con-
cerned with a (pro)molecular entity and its holantimeric entity. Note that a self-holantimeric
relationship means asclerality.

Rule 13.2. There are three types of pairwise relationships on the basis of Fujita’s stereoiso-
gram approach, i.e., an enantiomeric relationship concerning a pair of enantiomers; an RS-
diastereomeric relationship concerning a pair of RS-diastereomers; and a holantimeric re-
lationship concerning a pair of holantimers, as summarized in Table 10.3 (page 285).

This exhibits a sharp contrast to modern stereochemistry, which presumes only an enan-
tiomeric relationship and disregards the other pairwise relationships. Note that the term
‘diastereomeric’ of modern stereochemistry is not restricted to permit such a consistent
treatment as provided by the term RS-diastereomeric of Fujita’s stereoisogram approach.

Exercise 13.1. Review the distinction between the term ‘diastereomeric’ of modern stere-
ochemistry and the term RS-diastereomeric of Fujita’s stereoisogram approach. Review the
distinction between the term ‘stereogenic’ of modern stereochemistry and the term RS-
stereogenic of Fujita’s stereoisogram approach.

13.1.3 Three Aspects of Absolute Configuration

In accord with the three pairs of attributes and with the three types of pairwise relationships,
the term absolute configuration is concluded to exhibit three aspects [12]:
1. Chiral aspect: The chiral aspect of the term absolute configuration is generated by

reflection operations and corresponds to enantiomeric relationships, each of which is
concerned with the appearance of a pair of enantiomers.

2. RS-Stereogenic aspect: The RS-stereogenic aspect of the term absolute configuration
is generated by RS-permutation operations and corresponds to RS-diastereomeric
relationships, each of which is concerned with the appearance of a pair of RS-
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diastereomers. The RS-diastereomers of each pair are differentiated by the R/S-
stereodescriptors due to the CIP system.

3. Scleral aspect: The scleral aspect of the term absolute configuration is generated by
ligand-reflection operations and corresponds to holantimeric relationships, each of
which is concerned with the appearance of a pair of holantimers.

It follows that the term absolute configuration is determined by examining properties of a
quadruplet of RS-stereoisomers, which belongs to one of the five types of stereoisograms.
The definition of the term absolute configuration appearing in the IUPAC Recommendations
1996 [1] should be revised to connote the three aspects described above.

13.2 Quadruplets of RS-Stereoisomers as Equivalence
Classes

13.2.1 Three Types of Pairwise Relationships in a Quadruplet of
RS-Stereoisomers

As discussed in Section 1.3, the dichotomy between enantiomers and diastereomers, which
is widely adopted in modern stereochemistry, suffers from the confusion of the chiral as-
pect with the RS-stereogenic aspect during discussions on absolute configuration. From
a mathematical point of view [13], enantiomeric relationships (Def. 2.3 on page 36) and
stereoisomeric relationships (Def. 2.5 on page 38) serve as respective criteria for catego-
rizing molecules into equivalence classes, while diastereomeric relationships (Def. 2.7 on
page 40) are unable to generate equivalence classes.2

As discussed in Chapters 5 and 7, Fujita’s USCI approach [14] is based on enantiomeric
relationships as equivalence relationships, so that it counts each pair of enantiomers (or
each achiral entity) once during combinatorial enumeration of tetrahedral entities under the
point group Td . As discussed in Chapters 10–12, on the other hand, a quadruplet of RS-
stereoisomers contained in a stereoisogram is an equivalence class, which is characterized
by enantiomeric relationships, RS-diastereomeric relationships, and holantimeric relation-
ships. As for tetrahedral derivatives, a quadruplet of RS-stereoisomers is counted once under
the RS-stereoisomeric group Tdσ̃̂I (cf. Chapter 11).

The data summarized in Table 10.3 (page 285) are illustrated in Fig. 13.1 by using a
tetrahedral skeleton 13-1, where four substituents are represented by solid circles or half-

2 Suppose that a molecule (e.g., 13-2) is diastereomeric to a reference molecule (e.g., 13-1). Then, another
molecule (e.g., 13-2) enantiomeric to the former molecule is also diastereomeric to the reference molecule
(e.g., 13-1). This means that a set of diastereomeric molecules (e.g., 13-2 and 13-2) contains a pair of enan-
tiomeric molecules. In other words, a holantimeric relationship devised by Fujita’s stereoisogram approach
is regarded as a diastereomeric relationship in modern stereochemistry.
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Fig. 13.1. Enantiomeric, RS-diastereomeric, and holantimeric relationships in a tetrahedral skele-
ton. A solid circle and a half-tone solid circle at a vertex represent a pair of enantiomeric ligands
in isolation. They may coalesce to give an achiral ligand in isolation.

tone solid circles in order to illustrate the interconversion of chirality senses during the
action of operations listed in Table 11.1 (page 314). Note that the A-part of Table 11.1 gen-
erates homomers, which are regarded as being equivalent to the original skeleton 13-1. The
four vertices are numbered sequentially according to an elementary stereoisogram shown in
Fig. 11.1 (page 315):
1. The reference promolecule 13-1 is converted into 13-1 by means of a reflection opera-

tion, where the four substituents (proligands) represented by solid circles are converted
into their counterparts with an opposite chirality sense (a half-tone solid circle). The
pair of proligands may coalesce to give an achiral proligand in isolation. The resulting
pair, 13-1/13-1, is in an enantiomeric relationship (if chiral) or in a self-enantiomeric
relationship (if achiral).

2. The reference promolecule 13-1 is converted into 13-2 by means of an RS-permutation
operation, where the four substituents (proligands) represented by solid circles maintain
chirality sense in isolation. The resulting pair, 13-1/13-2, is in an RS-diastereomeric
relationship (if RS-stereogenic) or in a self-RS-diastereomeric relationship (if RS-
astereogenic).

3. The reference promolecule 13-1 is converted into 13-2 by means of a ligand-reflection
operation, where the four substituents (proligands) represented by solid circles are con-
verted into their counterparts with an opposite chirality sense (a half-tone solid circle).
The pair of proligands may coalesce to give an achiral proligand in isolation. The result-
ing pair, 13-1/13-2, is in a holantimeric relationship (if scleral) or in a self-holantimeric
relationship (if ascleral).
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13.2.2 Formulation of Stereoisograms as Quadruplets of RS-Stereoisomers

By starting from Fig. 13.1, the elementary stereoisogram shown in Fig. 11.1 generates a
stereoisogram shown in Fig. 13.2, in which the four positions of each entity are substituted
by solid circles or half-tone solid circles. By using such solid circles or half-tone solid
circles, enantiomeric relationships along the vertical directions are clearly differentiated
from RS-diastereomeric relationships along the the horizontal directions in Fig. 13.2.
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Fig. 13.2. Stereoisogram concerning a quadruplet of 13-1, 13-1, 13-2, and 13-2. The double-
headed arrows may be changed into equality symbols according to the five types of stereoiso-
grams.

The quadruplet of RS-stereoisomers (13-1, 13-1, 13-2, and 13-2) and the corresponding
stereoisogram are governed by an RS-stereoisomeric group Tdσ̃̂I , which is an extension of
the point group Td (cf. Chapter 11). Fujita’s USCI (unit-subduced-cycle-index) approach
has been extended to enumerate tetrahedral entities under the RS-stereoisomeric group Tdσ̃̂I ,
where each quadruplet of RS-stereoisomers (Type I–V) is counted once as discussed in
Chapter 11 [15,16]. The reference promolecule for such a quadruplet of RS-stereoisomers
is fixed (stabilized) by a subgroup of the RS-stereoisomeric group Tdσ̃̂I , just as the reference
promolecule for a pair of enantiomers is fixed (stabilized) by a subgroup of the point group
Td .

13.3 Inner Structures of Promolecules

The four vertices of a tetrahedral skeleton construct an orbit governed by the coset rep-
resentation Tdσ̃̂I(/C3vσ̃̂I), where the global symmetry Tdσ̃̂I and the local symmetry C3vσ̃̂I
characterize the behavior of the four vertices. To characterize the global and local symme-
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tries of a derivative, subduction of Tdσ̃̂I(/C3vσ̃̂I) to each subgroup Ǵ j (⊂ Tdσ̃̂I) is listed in
Table 11.2 (page 326). Such subduction provides us with useful pieces of information on
inner structures of promolecules to be specified by R/S-stereodescriptors.

13.3.1 Inner Structures of RS-Stereogenic Promolecules

According to Fujita’s stereoisogram approach, RS-stereogenic promolecules (type I, III,
and type V) are concluded to be specified by R/S-stereodescriptors because of the RS-
stereogenicity common to type I, III, and type V (not because of chirality). This conclusion
is clearly demonstrated by examining their inner structures.

Inner Structures of Type-I Promolecules
To derive a promolecule having a type-I stereoisogram, the subgroup Ǵ j is selected from Eq.
11.7 (page 322). The symmetry-itemized enumeration under Tdσ̃̂I indicates the presence of
the promolecule 11-3 of C

̂I with the composition ABXY. The type-I stereoisogram of 11-3
is shown in Fig. 11.3 (page 317).

The inner structure of 11-3 is characterized by the following subduction of the RS-
stereoisomeric group Tdσ̃̂I :

Tdσ̃̂I(/C3vσ̃̂I) ↓ C
̂I = 4C

̂I(/C
̂I), (13.1)

which is taken from the 6th row of Table 11.2 (page 326). Hence, each proligand A, B,
X, or Y constructs a one-membered C

̂I(/C
̂I)-orbit. This behavior is illustrated by Young’s

tableau shown in the intersection of the type-I row and the RS-stereoisomerism column of
Fig. 13.3.

Under the point group Td , the following subduction is obtained [14, Table C.10]:

Td(/C3v) ↓ C1 = 4C1(/C1). (13.2)

Hence, each proligand A, B, X, or Y constructs a one-membered C1(/C1)-orbit under the
point group Td . This behavior is illustrated by Young’s tableau shown in the intersection of
the type-I row and the chirality column of Fig. 13.3.

Under the RS-permutation group Tσ̃ , the following subduction is obtained:

Tσ̃ (/C3σ̃ ) ↓ C1 = 4C1(/C1) (13.3)

Hence, each proligand A, B, X, or Y constructs a one-membered C1(/C1)-orbit under the
RS-permutation group Tσ̃ . This behavior is illustrated by Young’s tableau shown in the
intersection of the type-I row and the RS-stereogenicity column of Fig. 13.3.

The inequivalence of all the proligands (A, B, X, or Y) is illustrated by a gray-coloring
of Young’s tableau, so that 11-3 of type I is specified by R/S-stereodescriptors.
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RS-stereoisomerism chirality RS-stereogenicity sclerality
RS-stereoisomeric- point-group RS-permutation- ligand-reflection-

group symmetry symmetry group symmetry group symmetry
(under Tdσ̃̂I) (under T d) (under Tσ̃ ) (under T

̂I)

type I 4C
̂I(/C

̂I) 4C1(/C1) 4C1(/C1) 4C
̂I(/C

̂I)
(e.g., 11-3)

A
B
X
Y

A
B
X
Y

A
B
X
Y

A
B
X
Y

type III 4C1(/C1) 4C1(/C1) 4C1(/C1) 4C1(/C1)
(e.g., 11-20)

A
B
X
p

A
B
X
p

A
B
X
p

A
B
X
p

type V Cs(/C1)+2Cs(/Cs) Cs(/C1)+2Cs(/Cs) 4C1(/C1) 4C1(/C1)
(e.g., 11-32)

p p
A
B

p p
A
B

p
p
A
B

p
p
A
B

type II Cσ̃ (/C1)+2Cσ̃ (/Cσ̃ ) 4C1(/C1) Cσ̃ (/C1)+2Cσ̃ (/Cσ̃ ) 4C1(/C1)
(e.g., 11-14)

p p
A
B

p
p
A
B

p p
A
B

p
p
A
B

type IV Csσ̃ σ̂ (/Cσ̃ )+Csσ̃ σ̂ (/Cs) Cs(/C1)+2Cs(/Cs) Cσ̃ (/C1)+2Cσ̃ (/Cσ̃ ) 2Cσ̂ (/C1)
(e.g., 11-31)

A A
p p

p p
A
A

A A
p
p

A A
p p

Csσ̃̂I(/C
̂I)+2Csσ̃̂I(/Csσ̃̂I) Cs(/C1)+2Cs(/Cs) Cσ̃ (/C1)+2Cσ̃ (/Cσ̃ ) 4C

̂I(/C
̂I)

(e.g., 11-30)
A A
B
X

A A
B
X

A A
B
X

A
A
B
X

Fig. 13.3. Chiral aspects due to the point-group symmetry, RS-stereogenic aspects due to the
RS-permutation-group symmetry, and scleral aspects due to the ligand-reflection-group symmetry
[17]. These three aspects are conceptually distinct to one another. They are integrated to char-
acterize the total features of five types, which are represented by the RS-stereoisomeric-group
symmetry.



13.3 Inner Structures of Promolecules 373

Inner Structures of Type-III Promolecules
To derive a promolecule having a type-III stereoisogram, the subgroup Ǵ j is selected from
Eq. 11.9 (page 323). The symmetry-itemized enumeration under Tdσ̃̂I indicates the presence
of the promolecule 11-20 with the composition ABXp. The type-III stereoisogram of 11-20
is shown in Fig. 11.5 (page 319).

The inner structure of 11-20 is characterized by the following subduction of the RS-
stereoisomeric group Tdσ̃̂I :

Tdσ̃̂I(/C3vσ̃̂I) ↓ C1 = 4C1(/C1), (13.4)

which is taken from the first row of Table 11.2 (page 326). Hence, each proligand A, B,
X, or p constructs a one-membered C1(/C1)-orbit. This behavior is illustrated by Young’s
tableau shown in the intersection of the type-III row and the RS-stereoisomerism column of
Fig. 13.3.

The promolecule 11-20 behaves under the point group Td in a similar way to Eq. 13.2.
Hence, each proligand A, B, X, or p constructs a one-membered C1(/C1)-orbit under the
point group Td . This behavior is illustrated by Young’s tableau shown in the intersection of
the type-III row and the chirality column of Fig. 13.3.

The promolecule 11-20 behaves under the RS-permutation group Tσ̃ in a similar way
to Eq. 13.3. Hence, each proligand A, B, X, or p constructs a one-membered C1(/C1)-orbit
under the RS-permutation group Tσ̃ . This behavior is illustrated by Young’s tableau shown
in the intersection of the type-III row and the RS-stereogenicity column of Fig. 13.3.

The inequivalence of all the proligands (A, B, X, or p) is illustrated by a gray-coloring
of Young’s tableau, so that 11-20 of type III is specified by R/S-stereodescriptors.

Inner Structures of Type-V Promolecules
To derive a promolecule having a type-V stereoisogram, the subgroup Ǵ j is selected from
Eq. 11.11 (page 323). The symmetry-itemized enumeration under Tdσ̃̂I indicates the pres-
ence of the promolecule 11-32 (or 11-40) of Cs with the composition ABpp. The type-V
stereoisogram of 11-32 (or 11-40) is shown in Fig. 11.7 (page 321).

The inner structure of 11-32 (or 11-40) is characterized by the following subduction of
the RS-stereoisomeric group Tdσ̃̂I :

Tdσ̃̂I(/C3vσ̃̂I) ↓ Cs = Cs(/C1)+2Cs(/Cs), (13.5)

which is taken from the 5th row of Table 11.2 (page 326). Hence, a pair of proligands p/p
constructs a two-membered enantiospheric orbit, while each of achiral proligands A and
B constructs a one-membered homospheric orbit under the action of the RS-stereoisomeric
group Tdσ̃̂I . This behavior is illustrated by Young’s tableau shown in the intersection of the
type-V row and the RS-stereoisomerism column of Fig. 13.3.

Under the point group Td , the following subduction is obtained [14, Table C.10]:

Td(/C3v) ↓ Cs = Cs(/C1)+2Cs(/Cs). (13.6)
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Hence, a pair of proligands p/p constructs a two-membered enantiospheric orbit, while each
of achiral proligands A and B constructs a one-membered homospheric orbit under the point
group Td . This behavior is illustrated by Young’s tableau shown in the intersection of the
type-V row and the chirality column of Fig. 13.3.

Under the RS-permutation group Tσ̃ , the following subduction is obtained:

Tσ̃ (/C3σ̃ ) ↓ C1 = 4C1(/C1). (13.7)

Hence, each proligand A, B, p, or p constructs a one-membered C1(/C1)-orbit under the
RS-permutation group Tσ̃ . This behavior is illustrated by Young’s tableau shown in the
intersection of the type-V row and the RS-stereogenicity column of Fig. 13.3.

The inequivalence of all the proligands (A, B, p, or p) under the RS-permutation group
Tσ̃ is illustrated by a gray-coloring of Young’s tableau, so that 11-32 (or 11-40) of type V
is specified by R/S-stereodescriptors.

13.3.2 Inner Structures of RS-Astereogenic Promolecules

According to Fujita’s stereoisogram approach, RS-astereogenic promolecules (type II and
type IV) are concluded not to be specified by R/S-stereodescriptors. This conclusion is
clearly demonstrated by examining their inner structures.

Inner Structures of Type-II Promolecules
As a representative of type-II promolecules, the inner structure of 11-14 with the compo-
sition ABp2 is characterized by the following subduction of the RS-stereoisomeric group
Tdσ̃̂I :

Tdσ̃̂I(/C3vσ̃̂I) ↓ Cσ̃ = Cσ̃ (/C1)+2Cσ̃ (/Cσ̃ ), (13.8)

which is taken from the third row of Table 11.2 (page 326). Hence, a pair of proligands p’s
constructs a two-membered hemispheric Cσ̃ (/C1)-orbit, while each of achiral proligands
A and B constructs a one-membered hemispheric Cσ̃ (/Cσ̃ )-orbit under the action of the
RS-stereoisomeric group Tdσ̃̂I . This behavior is illustrated by Young’s tableau shown in the
intersection of the type-II row and the RS-stereoisomerism column of Fig. 13.3. Note that
the type-II stereoisogram of 11-14 is shown in Fig. 11.4 (page 318).

Under the point group Td , the following subduction is obtained [14, Table C.10]:

Td(/C3v) ↓ C1 = 4C1(/C1). (13.9)

Hence, each of achiral or chiral proligands (A, B, p, or p) constructs a one-membered hemi-
spheric orbit under the point group Td . This behavior is illustrated by Young’s tableau shown
in the intersection of the type-II row and the chirality column of Fig. 13.3.

Under the RS-permutation group Tσ̃ , the following subduction is obtained:

Tσ̃ (/C3σ̃ ) ↓ Cσ̃ = Cσ̃ (/C1)+2Cσ̃ (/Cσ̃ ). (13.10)
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Hence, a pair of chiral proligands p’s in isolation constructs a two-membered RS-hemitropic
Cσ̃ (/C1)-orbit, while each of achiral proligands A and B in isolation constructs a one-
membered RS-hemitropic Cσ̃ (/Cσ̃ )-orbit under the action of the RS-permutation group
Tσ̃ .3 This behavior is illustrated by Young’s tableau shown in the intersection of the type-II
row and the RS-stereogenicity column of Fig. 13.3.

The presence of a two-membered Cσ̃ (/C1)-orbit indicates the equivalence between
two p’s as illustrated by the top row of the Young’s tableau, so that 11-14 of type-II is not
characterized by R/S-stereodescriptors.

Exercise 13.2.
– Show that the central atom of 11-14 of type II (Fig. 11.4 on page 318) belongs to a one-

membered C1(/C1)-orbit under the action of the point group Td . Discuss that the local
chirality of the central atom of 11-14 is not characterized by R/S-stereodescriptors.

– Show that the central atom of 11-14 of type II (Fig. 11.4 on page 318) belongs to a one-
membered Cσ̃ (/Cσ̃ )-orbit under the action of the RS-permutation group Tσ̃ . Discuss
that the local RS-astereogenicity of the central atom of 11-14 is not characterized by
R/S-stereodescriptors.

– Discuss the local chirality and the local RS-astereogenicity in combination with the
global chirality and the global RS-astereogenicity.

Inner Structures of Type-IV Promolecules
For the purpose of comparing the inner structure of 11-32 (or 11-40) of type V (the com-
position ABpp), let us examine the promolecule 11-31 of type IV (the composition A2pp),
which is listed in Fig. 11.2 (page 316).

Exercise 13.3. Draw the stereoisogram of 11-31 by referring to the type-IV stereoiso-
gram of Fig. 11.6 (page 320).

The promolecule 11-31 is characterized by the following subduction of the RS-
stereoisomeric group Tdσ̃̂I :

Tdσ̃̂I(/C3vσ̃̂I) ↓ Csσ̃ σ̂ = Csσ̃ σ̂ (/Cσ̃ )+Csσ̃ σ̂ (/Cs), (13.11)

which is taken from the 14th row of Table 11.2 (page 326). Hence, a pair of proligands
p/p constructs a two-membered enantiospheric Csσ̃ σ̂ (/Cσ̃ )-orbit, while a pair of proligands
A’s of the same kind constructs a two-membered homospheric Csσ̃ σ̂ (/Cs)-orbit under the
action of the RS-stereoisomeric group Tdσ̃̂I . This behavior is illustrated by Young’s tableau

3 The term RS-hemitropic will be introduced later.
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shown in the intersection of the upper type-IV row and the RS-stereoisomerism column of
Fig. 13.3.

Under the point group Td , the following subduction is obtained [14, Table C.10]:

Td(/C3v) ↓ Cs = Cs(/C1)+2Cs(/Cs). (13.12)

Hence, a pair of p/p constructs a two-membered enantiospheric Cs(/C1)-orbit, while
each achiral promolecule selected from two A’s constructs a one-membered homospheric
Cs(/Cs)-orbit under the point group Td . This behavior is illustrated by Young’s tableau
shown in the intersection of the upper type-IV row and the chirality column of Fig. 13.3.

Exercise 13.4. Under the point group Td , the subduction (Eq. 13.6) for 11-32 of type V
(with the composition ABpp) is the same as the subduction (Eq. 13.12) for 11-31 of type IV
(with the composition A2pp).
– Compare 11-32 with 11-31 from the viewpoint of chirality fittingness.
– Confirm the validity of Young’s tableaux collected in the chirality-column of Fig. 13.3.
– Discuss that the assignability of R/S-stereodescriptors of the CIP system is not based

on chirality.

Under the RS-permutation group Tσ̃ , the following subduction is obtained:

Tσ̃ (/C3σ̃ ) ↓ Cσ̃ = Cσ̃ (/C1)+2Cσ̃ (/Cσ̃ ). (13.13)

Hence, a pair of proligands A’s constructs a two-membered RS-hemitropic Cσ̃ (/C1)-
orbit, while each of chiral proligands p and p constructs a one-membered RS-hemitropic
Cσ̃ (/Cσ̃ )-orbit under the action of the RS-stereoisomeric group Tdσ̃̂I . This behavior is
illustrated by Young’s tableau shown in the intersection of the upper type-IV row and the
RS-stereogenicity column of Fig. 13.3.

The presence of a two-membered Cσ̃ (/C1)-orbit indicates the equivalence between
two A’s as illustrated by the top row of Young’s tableau, so that 11-31 of type-IV is not
characterized by R/S-stereodescriptors.

Exercise 13.5.
– Examine the inner structure of 11-30 of type IV (the composition A2BX) according to

the lower Type-IV row of Fig. 13.3.
– Compare 11-30 of type IV with 11-3 of type I (the composition ABXY).

13.4 Assignment of Stereochemical Nomenclature

From a viewpoint of Fujita’s stereoisogram approach, the CIP system for assigning R/S-
stereodescriptors [2,18] is concerned with the RS-stereogenic aspect of absolute configura-
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tion, not with the chiral aspect of absolute configuration. In other words, the CIP priority
system characterizes a pair of RS-diastereomers, but not a pair of enantiomers.

13.4.1 Single Criterion for Giving RS-Stereodescriptors

As illustrated by the gray-colored Young tableaux in Fig. 13.3, the four proligands in a
tetrahedral promolecule of type I, III, or V are inequivalent to one another under the RS-
permutation group Tσ̃ . As a result, such a promolecule of type I, III, or V is RS-stereogenic,
so that there appears a pair of RS-diastereomers, which is characterized by a pair of R/S-
stereodescriptors:

Rule 13.3. (R/S-Stereodescriptors Assigned by RS-Stereogenicity) [17]. A stereoisogram
of type I, III, or V is characterized to be RS-stereogenic, so that the correspond-
ing promolecules are called RS-stereogenic promolecules. Among them, a pair of RS-
diastereomers is differentiated by a pair of R/S-stereodescriptors of the CIP system. In other
words, the R/S-stereodescriptors are concerned with the RS-stereogenic aspect of absolute
configuration, not with the chiral aspect of absolute configuration.

As illustrated by Young’s tableaux in the chirality column of Fig. 13.3, promolecules of type
I [−,−,a] and III [−,−,−] are chiral under the point group Td (cf. Fig. 11.3 on page 317
and Fig. 11.5 on page 319), while promolecules of type V [a,−,−] are achiral (Fig. 11.7 on
page 321). Hence, the chirality and achirality of such promolecules have nothing to do with
the assignment of R/S-stereodescriptors of the CIP system. By adopting a single criterion
based on the RS-stereogenicity, the assignment of R/S-stereodescriptors of the CIP system is
concluded to decide a pairwise RS-diastereomeric relationship, not a pairwise enantiomeric
relationship, as surrounded by a solid-line frame in Table 13.1 [19]. The inequivalence be-
tween four proligands in a type-I, III, or V promolecule is clearly demonstrated by each
Young’s tableau shadowed in the RS-stereogenicity column of Fig. 13.3.

On the other hand, promolecules of type II [−,a,−] or IV [a,a,a] are characterized
to be RS-astereogenic, as illustrated by Young’s tableaux in the RS-stereogenicity column
of Fig. 13.3. They are not targets of R/S-stereodescriptors of the CIP system. Note that
the promolecule 11-14 of type II (page 316) is not specified by R/S-stereodescriptors of
the CIP system, even though all of its proligands A, B, p, and p are inequivalent to one
another as shown in Young’s tableau at the chirality column. This fact demonstrates that
the chiral aspect of absolute configuration is not concerned with the assignability of R/S-
stereodescriptors.
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Table 13.1. Single Criterion for Giving RS-Stereodescriptors of the CIP system in Fujita’s
Stereoisogram Approach [19]

type index chirality RS-stereogenicity

Type I [−,−,a] chiral RS-stereogenic
(enantiomeric) (RS-diastereomeric)

Type III [−,−,−] chiral RS-stereogenic
(enantiomeric) (RS-diastereomeric)

Type V [a,−,−] achiral RS-stereogenic
(self-enantiomeric) (RS-diastereomeric)

︸ ︷︷ ︸

(chirality faithfulness)

13.4.2 RS-Diastereomers: the CIP Priority System

Let us apply the procedure of the sequence rules of the CIP system [2,18,20] to a given
promolecule with proligands.4 Then, the proligands in the promolecule can be arranged
according to a priority sequence. Suppose that achiral or chiral proligands {a, b, c, d} are
placed on the four positions of a tetrahedral promolecule, where such a priority sequence is
represented as a > b > c > d tentatively, where the symbol > denotes ‘has priority over’.
We here adopt the following RS-stereogenicity rule expressed by Fujita [17] and abandon
the ‘chirality rule’ expressed by Prelog and Helmchen [2].

Rule 13.4. (The RS-Stereogenicity Rule) [17]. Among proligands in an RS-stereogenic pro-
molecule (a type-I, type-III, or type-V promolecule) to be considered, the proligand of lowest
precedence is placed in the back side and the remaining proligands of higher precedence
are placed on the front side of viewing. The path of the sequence of the higher proligands is
examined whether it turns to right (clockwise) or left (anti-clockwise). According to this exam-
ination, the RS-stereogenic promolecule is assigned the RS-stereogenic label R (Rectus,
right) or S (Sinister, left), or if chirality-unfaithful, r or s.

The assignment of R/S-stereodescriptors according to the RS-stereogenicity rule is illus-
trated in Fig. 13.4, where a pair of numbered and RS-numbered skeletons shown in the
middle row of Fig. 13.1 is adopted to accommodate a set of four proligands with a priority
sequence a > b > c > d. It follows that 13-3 and 13-4 are RS-diastereomeric, but not enan-
tiomeric. In other words, the interconversion between 13-3 and 13-4 is not a mirror-image

4 The practices for determining the order of precedence in the CIP system [2,4,18] are maintained to be
unchanged in Fujita’s stereoisogram approach, except that a digraph of a molecule is divided into digraphs
of proligands according to the proligand-promolecule model. See [17].
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Fig. 13.4. R/S-Stereodescriptors assigned to a pair of RS-diastereomers according to the RS-
stereogenicity rule, where the priority sequence is presumed to be a > b > c > d. The path of the
sequence of the higher proligands is determined to be a→ b→ c, after the proligand of lowest
precedence (d) is located in the background.

formation, so that it stems from the RS-permutation between the proligands b and c after
these proligands are presumed to be detached.

Remark 13.3. (Comments on the abandoned ‘chirality rule’) [17]. The ‘chirality rule’
is expressed by Prelog and Helmchen [2]: “Among ligands of highest precedence
the path of their sequence is followed from the preferred side of the model, that is,
the side remote from the group of lowest precedence, and, depending on whether
the path turns to right or left, the chirality unit will be assigned the chiral label R
or S, of if pseudoasymmetric, r or s.” The ‘chirality rule’ is replaced by the RS-
stereogenicity rule in Fujita’s stereoisogram approach. Thus, the term ‘chirality rule’
is replaced by the term RS-stereogenicity rule; the term ‘chirality unit’ is replaced by
the term RS-stereogenic promolecule; the term ‘chiral label’ is replaced by the term
RS-stereogenic label; as well as the expression ‘if pseudoasymmetric’ is replaced by
the expression if chirality-unfaithful. The concept of chirality faithfulness will be dis-
cussed later.

The scheme shown in Fig. 13.4 is integrated to give a stereoisogram of type III (Fig. 13.5),
where 13-3 and 13-4 are placed in the top horizontal direction. The mirror-image promole-
cues with proligands a, b, c, and d, i.e., 13-5 and 13-6, are generated as depicted in the
bottom horizontal direction. They are RS-diastereomeric to each other. If the priority se-
quence a > b > c > d produces another priority sequence a > b > c > d,5 the resulting
pair of 13-5 and 13-6 is specified by an alternative pair of labels ‘S’ and ‘R’. It should be
emphasized that a priority sequence a > b > c > d is conceptually different from a priority
sequence a > b > c > d, even if the former provides the latter in most cases.6

5 This is not always true, as found in chirality-unfaithful cases.
6 These cases are referred to by the term chirality-faithful in Fujita’s stereoisogram approach.
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Fig. 13.5. Assignment of R/S-stereodescriptors to each pair of RS-diastereomers in terms of a
priority sequence a > b > c > d (for 13-5/13-6) or another priority sequence a > b > c > d (for
13-5/13-6).

The stereoisogram shown in Fig. 13.5 clearly demonstrates that a pair of enantiomers
13-5/13-5 (or 13-6/13-6) is not examined in the above-mentioned process of assigning R/S-
stereodescriptors (Rule 13.4), so long as the different priority sequences a > b > c > d and
a > b > c > d are applied. In other words, R/S-stereodescriptors specify the RS-stereogenic
aspect, but not the chiral aspect of abosolute configuration.

13.4.3 R/S-Stereodescriptors and Stereoisograms

R/S-Stereodescriptors Assigned to RS-Stereogenic Promolecules of Type I
The promolecule 11-3 with the composition ABXY is characterized by the stereoisogram
of type I (Fig. 11.3 on page 317). The RS-stereogenicity rule (Rule 13.4) is applied to the
promolecule 11-3 by adopting the priority sequence A > B > X > Y. Thereby, 11-3 is
determined to have R. The RS-stereogenic label ‘S’ is assigned to its RS-diastereomer 11-33
(Fig. 11.3).

Because achiral proligands A, B, X, Y satisfy A = A, B = B, X = X, and Y = Y under
reflections, the priority sequence A > B > X > Y applied originally to 11-3 can be applied
to its enantiomer 11-3. As indicated by diagonal equality symbols in Fig. 11.3, the pair of
RS-diastereomers 11-3/11-33 coincides with a pair of enantiomers 11-3/11-3 in the case of
a stereoisogram of type I. This means that the assignment based on the RS-diastereomeric
relationship for a type I case can be safely regarded as the assignment to the enantiomeric
relationship. This is an example of chirality-faithful case, which will be later discussed in
general.



13.4 Assignment of Stereochemical Nomenclature 381

Exercise 13.6. By referring to Fig. 9.11(a) on page 259, discuss the term ‘asymmetric’ vs.
the term RS-stereogenic from the viewpoint of Fujita’s stereoisogram approach. Note that
the term ‘asymmetric’ has nothing to do with the chiral aspect of absolute configuration (cf.
Fig. 13.3).

R/S-Stereodescriptors Assigned to RS-Stereogenic Promolecules of Type III
The promolecule 11-20 with the composition ABXp gives a stereoisogram shown in Fig.
11.5 (page 319). A pair of RS-diastereomers 11-20 and 11-36 is characterized by a pair of
R/S-stereodescriptors, ‘R’ and ’S’, by using the priority sequence A > p > B > X, which is
obtained by placing A = OH, p = CH2CH(ClF), B = CH2CH3, and X = H for 1-chloro-1-
fluoropentan-3-ol. On the other hand, another pair of RS-diastereomers, 11-20 and 11-36 is
characterized by a pair of opposite R/S-stereodescriptors, ’S’ and ‘R’, by using the priority
sequence A > p > B > X.

This case is categorized into a chirality-faithful type-III case according to Fujita’s
stereoisogram approach. A pair of enantiomers 11-20/11-20 is permitted to be designated
by a pair of R/S-stereodescriptors, ‘R’ and ’S’, although the priority sequences A > p > B
> X presumed for 11-20 is different from the priority sequence A > p > B > X presumed
for 11-20. Among the type-III promolecules listed in Fig. 11.2 (page 316), the promolecules
which are not surrounded by a gray box are designated by R/S-stereodescriptors in a similar
way.

R/S-Stereodescriptors Assigned to RS-Stereogenic Promolecules of Type V
Let us examine a pair of RS-diastereomers 11-32/11-40, which is derived from a pair of achi-
ral 2,3,4-trihydroxyglutaric acids 11-38/11-39, as shown in Fig. 11.7 (page 321). Because
the priority sequence A > p > p > B is obtained for the achiral 2,3,4-trihydroxyglutaric
acids, the pair of RS-diastereomers 11-32/11-40 are characterized by a pair of labels ‘r’ and
‘s’. The lowercase labels are used to emphasize that the case of type V is chirality-unfaithful,
as discussed in the next subsection.

Exercise 13.7. By referring to Fig. 9.11(b) on page 259, discuss the term ‘pseudoasym-
metric’ vs. the term RS-stereogenic from the viewpoint of Fujita’s stereoisogram approach.
Confirm that the term ‘pseudoasymmetric’ mixes up the chirality aspect and the RS-
stereogenic ascpect of absolute configuration (cf. Fig. 13.3).
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13.4.4 Chirality Faithfulness

Chirality Faithfulness vs. Reflection Invariance
The lowercase labels r and s are used for specifying ‘pseudoasymmetric units’ by the
coinage of the term ‘reflection-invariant’ in the CIP system [2]. The determination of the
lowercase labels based on the term ‘reflection-invariant’ emphasizes enantiomeric relation-
ships and implicitly nullifies the participation of RS-diastereomeric relationships.

In contrast, Fujita’s stereoisogram approach has adopted the concept of chirality
faithfulness [12,21,22] to rationalize the assignment of lowercase labels. In Fujita’s
stereoisogram approach, a pair of R/S-stereodescriptors assigned originally to a pair of
RS-diastereomers is interpreted to be assigned to a pair of enantiomers. And then, the
interpretation is examined to be faithful or unfaithful.

Chirality-Faithful and Chirality-Unfaithful Cases
The term chirality-faithful is defined to comprehend type-I and most type-III stereoisograms
[22]:

Definition 13.1. (Chirality-faithful absolute configurations) If the stereodescriptor of a reference
promolecule, R (or S), is identical with that of its holantimer, R (or S), this case is referred to as
being chirality-faithful and characterized by uppercase labels.

If chirality-faithful, a pair of R/S-stereodescriptors originally based on the RS-diastereomeric
relationship is allowed to be interpreted to be given to the enantitiomeric relationship.
This allowed interpetation is also referred to as being chirality-faithful, so that the R/S-
stereodescriptors are designated in uppercase labels.

On the other hand, the term chirality-unfaithful is defined to comprehend type-V and
some type-III stereoisograms [22]:

Definition 13.2. (Chirality-unfaithful absolute configurations) If the stereodescriptor of a reference
promolecule, R (or S), is opposite to that of its holantimer, S (or R), this case is referred to as being
chirality-unfaithful and characterized by lowercase labels.

If chirality-unfaithful, a pair of R/S-stereodescriptors originally based on the proper RS-
diastereomeric relationship is not allowed to be interpreted to be given to the enantiomeric
relationship. This forbidden interpretation is also referred to as being chirality-unfaithful,
so that the R/S-stereodescriptors are designated in lowercase labels.

Remark 13.4. The term chirality-unfaithful is capable of deriving the conventional
term ‘reflection-invariant’, while the term ‘reflection-invariant’ is incapable of de-
riving the present term chirality-unfaithful. This is because the conventional term
‘reflection-invariant’ lacks the concepts of RS-diastereomeric relationships and RS-
stereogenicity.
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Fig. 13.6. Chirality-unfaithful stereoisogram of type III [17]. The promolecule 13-7 belongs to the
RS-stereoisomeric group C1 and to the point group C1. A pair of R/S-stereodescriptors, ‘r ’ and ’s’,
is assigned to a pair of RS-diastereomers 13-7/13-8 (or 13-7/13-8), where the priority sequence A
> p > p> q (or A > p > p> q) is presumed. This stereoisogram exhibits chirality unfaithfulness.

As designated by a gray box in Fig. 11.2 (page 316), type-V promolecules (e.g., 11-32/11-40
in Fig. 11.7 on page 321) always exhibit chirality-unfaithful nature.

Among the type-III promolecules listed in Fig. 11.2 (page 316), promolecules sur-
rounded by a gray box are chirality-unfaithful, so that they are designated by lowercase R/S-
stereodescriptors. For example, the promolecule 11-22 (= 13-7) listed in Fig. 11.2 generates
a type-III stereoisogram shown in Fig. 13.6. Because the reference promolecule 13-7 (=
11-22) and its holantimer 13-8 have opposite labels, this type-III case is chirality-unfaithful
according to Def. 13.2. Hence, the central atom of 13-7 is designated by a lowercase la-
bel ‘r’ and its RS-diastereomer 13-8 is designated by a label ‘s’. On the other hand, the
central atom of 13-7 is designated by a lowercase label ‘r’ and its RS-diastereomer 13-8 is
designated by a label ‘s’. As a result, a pair of enantiomers 13-7/13-7 has the same label ‘r’.

Exercise 13.8. The promolecule 13-7 (= 11-22) shown in Fig. 13.6 is derived by con-
verting an achiral prolignad B into a chiral proligand q in the reference promolecule 11-32
(Fig. 11.7 on page 321).
– Draw a stereoisogram by converting a proligand B into q in 11-32.
– Discuss the chirality-unfaithful nature of the resulting type-III stereoisogram.
– Discuss the difference between RS-stereoisomerism and stereoisomerism.
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13.4.5 Stereochemical Notations for Other Skeletons

Allene Derivatives
Stereochemical notation for allene derivatives has been discussed on the bais of three aspects
of absolute configuration [23]. To judge whether or not the R/S-stereodescriptors (assigned
originally on the basis of the RS-stereogenic aspect of an absolute configuration) are per-
mitted to be applied to the chiral aspect, the concept of chirality faithfulness [21] is used
after redefined.

Oxirane Derivatives
The scope and limitations of R/S-stereodescriptors for oxirane derivatives have been
discussed on the basis of three aspects of absolute configuration [24]. Thereby, R/S-
stereodescriptors of the CIP system are found to specify local symmetries at each ring
positions of an oxirane derivative. The specification of global symmetry of oxirane deriva-
tives requires other types of descriptors, which have been proposed in [22], i.e., Ra/Sa-
descriptors and Z/E-descriptors.

Trigonal Bipyramidal Compounds
Stereoisograms of trigonal bipyramidal compounds have been categorized into five types
(Types I–V). Among them, stereoisograms of Types I, III, andV are shown to be capable of
giving C/A-descriptors because of their RS-stereogenicity (or RS-diastereomeric relation-
ships) [25]. A revised interpretation of Berry’s pseudorotation has been discussed [26].

Prismane Derivatives
After combinatorial enumeration of prismane derivatives, the stereoisograms of prismane
derivatives have been discussed [27]. A C/A-convention for characterizing absolute config-
urations has been proposed on the basis of Fujita’s stereoisogram approach [28]. Chirality,
RS-stereogenicity, and sclerality of prismane derivatives have been discussed by putting em-
phasis on the independence between chirality and RS-stereogenicity, on extended features
of pseudoasymmetry, and on the assignability of C/A-descriptors [28].

Octahedral Complexes
The relationship between RS-stereoisomeric groups and stereoisomeric groups has been
discussed by using octahedral complexes as examples, where the difference between RS-
stereogenicity and stereogenicity has been determined decisively after group-theoretical
consideration [29,30]. Thereby, stereogenicity has nothing to do with the capability of
giving C/A-descriptors. The assignability of C/A-descriptors has been ascribed to RS-
stereogenicity (or RS-diastereomeric relationships), but not to chirality [30]. Thereby,
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Fujita’s stereoisogram approach, which has originally been developed to rationalize or-
ganic stereochemistry [6,13,31], is clarified to be effective to inorganic stereochemistry
[29,30,32].
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14 Pro-RS-Stereogenicity Based on Orbits1

14.1 Prochirality vs. Pro-RS-Stereogenicity

A pair of pro-R/pro-S-descriptors is clarified to be assigned to a pair of RS-diastereotopic
proligands, which is characterized under pro-RS-stereogenicity. In general, the pro-RS-
stereogenicity is ascribed to the presence of an RS-enantiotropic orbit of proligands, which
are divided into RS-diastereotopic halves. The term ‘prochirality’ for assigning a pair of
pro-R/pro-S-descriptors in modern stereochemistry should be abandoned and replaced by
the term pro-RS-stereogenicity. The term prochirality should be used in a purely geometric
meaning (cf. Section 4.2).

14.1.1 Prochirality as a Geometric Concept

Modern stereochemistry uses the term ‘prochirality’ in different, sometimes contradictory
ways, as pointed out in IUPAC Recommendations 1996 [1]. In contrast, the present book is
based on the standpoint that the term prochirality should be used as a geometric concept for
discussing point-group symmetries of molecular entities, as discussed detailedly in Section
4.2. The prochirality of a promolecule (as an abstract molecular entity) is ascribed to the
presence of at least one enantiospheric orbit of proligands. Such an enantiospheric orbit
of proligands is divided into two halves, which are interconvertible by a reflection. The
mode of packing two halves with proligands is controlled by chirality fittingness (cf. Fig.
4.2(b) on page 90). The two halves are separated energetically under an appropriate chiral
condition, so that the attack of a chiral reagent to either one half produces the corresponding
chiral compound selectively. The two halves are enantiotopic, if we obey the terminology of
modern stereochemistry. The attributive term enantiospheric for characterizing an orbit of
proligands corresponds to the relational term enantiotopic for characterizing the relationship
between two positions (cf. Remark 4.1 on page 106).

It should be emphasized that the concept of prochirality as a geometric concept should
not be used to assign pro-R/pro-S-descriptors, just as the concept of chirality as a geometric
concept should not be used to assign R/S-stereodescriptors (cf. Chapter 13).

1 This chapter is based on S. Fujita, “Stereogenicity/Astereogenicity as Global/Local Permutation-Group
Symmetry and Relevant Concepts for Restructuring Stereochemistry”, J. Math. Chem., 33, 113–143 (2003);
S. Fujita, “Complete Settlement of Long-Standing Confusion on the Term ‘Prochirality’ in Stereochemistry.
Proposal of Pro-RS-Stereogenicity and Integrated Treatment with Prochirality”, Tetrahedron, 62, 691–705
(2006); and S. Fujita, “Stereoisograms for Reorganizing the Theoretical Foundations of Stereochemistry and
Stereoisomerism: III. Rational Avoidance of Misleading Standpoints for Pro-R/Pro-S-Descriptors”, Tetrahe-
dron: Asymmetry, 25, 1190–1204 (2014).
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14.1.2 Pro-RS-Stereogenicity as a Stereoisomeric Concept

Just as the term RS-stereogenicity has been coined to rationalize the assignment of R/S-
stereodescriptors in Fujita’s stereoisogram approach (cf. Chapter 13), the term pro-RS-
stereogenicity should be coined to rationalize the assignment of pro-R/pro-S-descriptors.
Thereby, the term ‘prochirality’ used in the misleading rationalization of pro-R/pro-S-
descriptors by Hanson [2] (cf. Section 4.2) is abandoned thoroughly and should be replaced
by the term pro-RS-stereogenicity.

To rationalize the assignment of pro-R/pro-S-descriptors, the term pro-RS-stereogenicity
should be used as a stereoisomeric concept for discussing RS-permutation-group symme-
tries of molecular entities (cf. Chapter 9). This means that equivalence classes (orbits) under
the action of an RS-permutation group are examined in a parallel way to equivalence classes
(orbits) under the action of a point group.

14.1.3 Prochirality and Pro-RS-Stereogenicity for Tetrahedral Derivatives

Necessary data for surveying the difference between prochirality and pro-RS-stereogenicity
are added to the list shown in Fig. 11.2 (page 316). Thereby, we are able to obtain Fig. 14.1
[3], where a frame box is drawn to show pro-RS-stereogenicity, a dashed frame box is drawn
to show prochirality [4], and a gray box is drawn to show a chirality-unfaithful case [5].

In the remaining parts of this chapter, we focus our attention on pro-RS-stereogenicity,
which aims at rational avoidance of misleading standpoints for pro-R/pro-S-descriptors. The
discussions to be developed for pro-RS-stereogenicity are parallel to those of prochirality
developed in Section 4.2, where the importance of orbits (equivalence classes) will be em-
phasized.

14.2 Orbits under RS-Permutation Groups

14.2.1 RS-Tropicity

An RS-permutation group Gσ̃ as a subgroup of an RS-stereoisomeric group Ǵ is represented
by the coset decomposition of Eq. 10.16 (Def. 10.1 on page 278). Hence, each subgroup of
the RS-permutation group Gσ̃ is categorized either one of two types, i.e., an RS-stereogenic
group and an RS-astereogenic group, where an RS-stereogenic group consists of elements
selected from G(C), while an RS-astereogenic group consists of elements selected from G(C)

and G(C)σ̃ .
When the RS-permutation group Gσ̃ acts on a set of equivalent proligands, this set is

regarded as an equivalence class (orbit) governed by a coset representation Gσ̃ (/Gσ̃(i)),
where Gσ̃ is a global symmetry, while Gσ̃(i) (⊂ Gσ̃ ) is a local symmetry. The definition
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Fig. 14.1. Reference promolecules of quadruplets of RS-stereoisomers (Types I to V) for tetra-
hedral promolecules, which are attached by the data of prochirality and pro-RS-stereogenicity
[3]. As for the symbols, see the caption of Fig. 11.2. An arbitrary promolecule is depicted as a
representative of each quadruplet of RS-stereoisomers. A gray box is drawn to show a chirality-
unfaithful case [5]. A frame box is drawn to show pro-RS-stereogenicity, while a dashed frame box
is drawn to show prochirality [4].
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of RS-tropicities for RS-permutation groups is given in a parallel way to the definition of
sphericities for point groups (Def. 4.1 on page 89).

The term RS-tropicity has been coined by Fujita to refer to three cases generated by the
coset representation Gσ̃ (/Gσ̃(i)) [6]:2

Definition 14.1 (RS-Tropicities for Characterizing Coset Representations and Orbits).
– (RS-Homotropicity) If both the global RS-permutation-group symmetry Gσ̃ and the local RS-

permutation-group symmetry Gσ̃(i) are RS-astereogenic, the coset representation Gσ̃ (/Gσ̃(i))
is defined as being RS-homotropic. The corresponding orbit of size |Gσ̃ |/|Gσ̃(i)| is referred to
as an RS-homotropic orbit.

– (RS-Enantiotropicity) If the global RS-permutation-group symmetry Gσ̃ is RS-astereogenic,
but the local RS-permutation-group symmetry Gσ̃(i) is RS-stereogenic, the coset repre-
sentation Gσ̃ (/Gσ̃(i)) is defined as being RS-enantiotropic. The corresponding orbit of size
|Gσ̃ |/|Gσ̃(i)| is referred to as an RS-enantiotropic orbit, which is divided into two halves of size
|Gσ̃ |/2|Gσ̃(i))| under the maximum RS-stereogenic subgroup of Gσ̃ .

– (RS-Hemitropicity) If both the global RS-permutation-group symmetry Gσ̃ and the local RS-
permutation-group symmetry Gσ̃(i) are RS-stereogenic, the coset representation Gσ̃ (/Gσ̃(i))
is defined as being RS-hemitropic. The corresponding orbit of size |Gσ̃ |/|Gσ̃(i)| is referred to
as an RS-hemitropic orbit.

For example, the subgroups contained in the SSG of the RS-permutation group Tσ̃ (Eq. 9.30
on page 252) are categorized into the following types:

RS-stereogenic group {
1

C1,
2

C2,
4

C3,
6

D2,
10
T} and (14.1)

RS-astereogenic group {
3

Cσ̃ ,
5

S
˜4,

7
C2σ̃ ,

8
C3σ̃ ,

9
D2σ̃ ,

11
Tσ̃}. (14.2)

The four positions of a tetrahedral skeleton construct an orbit governed by the coset
representation Tσ̃ (/C3σ̃ ), the degree of which is calculated to be |Tσ̃ |/|C3σ̃ | = 24/6 =
4. Because both Tσ̃ and C3σ̃ are RS-astereogenic, the coset representation Tσ̃ (/C3σ̃ ) is
determined to be RS-homotropic.

Exercise 14.1. Discuss conceptual parallelism between sphericities (Def. 4.1 on page 89)
and RS-tropicities (Def. 14.1).

14.2.2 Pro-RS-Stereogenicity as a Stereoisomeric Concept

A recent article by Fujita [3] has discussed rational avoidance of misleading standpoints
of the conventional term ‘prochirality’ for supporting pro-R/pro-S-descriptors. Instead, the
term pro-RS-stereogenicity [6] is defined by starting from the term RS-enantiotropicity (Def.
14.1):

2 The original terms with suffix tropicity [7] are restricted to the terms with RS-tropicity [6] in order to avoid
confusion due to the similar term topicity.
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Definition 14.2 (Pro-RS-Stereogenicity). A pro-RS-stereogenic molecule or promolecule is de-
fined as an RS-astereogenic molecule or promolecule that has at least one RS-enantiotropic orbit
(cf. Def. 14.1)

Exercise 14.2. Discuss conceptual parallelism between prochirality (Def. 4.2 on page 95)
and pro-RS-stereogenicity (Def. 14.2).

According to Def. 14.2, the following theorem is obvious:

Theorem 14.1 (Single-Step Conversion). A pro-RS-stereogenic (pro)molecule defined by Def.
14.2 can be converted into an RS-stereogenic (pro)molecule or its RS-diastereomeric counterpart
by a single-step conversion (RS-permutation).

The expression “by a single-step conversion” in Theorem 14.1 is essential to develop further
discussions.

Exercise 14.3. Discuss conceptual parallelism between Theorem 4.5 (page 95) and The-
orem 14.1.

Let us examine the tetrahedral promolecules surrounded by a solid-line frame in Fig.
14.1. Def. 14.2 indicates that pro-RS-stereogenicity appears among type-II promolecules
(the type index: [−,a,−]) or among type IV-promolecules (the type index [a,a,a]).

As the first example, we take account of the type-II promolecule 11-12 surrounded by
a solid frame in Fig. 14.1. This promolecule with the composition A2Bp corresponds to
D-(+)-glyceraldehyde 4-9 (page 94).

As shown in Section 4.2, the four positions of the type-II promolecule 11-12 are sepa-
rated into four one-membered C1(/C1)-orbits under the action of the point group Td . The
mode of separation has been illustrated by the diagram 4-8, as shown in Fig. 4.4 (page 94).
At the same time, the mode of separation is schematically represented by Young’s tableau
shown in the rightmost part of Fig. 4.4.

Under the action of the RS-permutation group Tσ̃ , the four positions of the type-II
promolecule 11-12 are separated in accord with the following subduction:

Tdσ̃̂I(/C3vσ̃̂I) ↓ Cσ̃ = Cσ̃ (/C1)+2Cσ̃ (/Cσ̃ ), (14.3)

which has once been noted as Eq. 13.8 (page 374). Hence, the mode of separation is il-
lustrated by the diagram 14-1 or by the diagram 14-2 shown in Fig. 14.2. The two A’s
in 14-1 (or the two H’s in 14-2) construct a two-membered Cσ̃ (/C1)-orbit, which is RS-
enantiotropic according to Def. 14.1, because the global symmetry Cσ̃ is RS-astereogenic,
while the local symmetry C1 is RS-stereogenic. The proligand B (or p) belongs to a one-
membered Cσ̃ (/Cσ̃ )-orbit, which exhibits RS-homotropicity according to Def. 14.1. The
diagram 14-1 indicates that the type-II promolecule 11-12 (= 14-1) is pro-RS-stereogenic
according to Def. 14.2, because of the presence of the RS-enantiotropic Cσ̃ (/C1)-orbit. The
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promolecule molecule Young’s tableau
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B
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Fig. 14.2. Orbits in glyceraldehyde under the RS-permutation group Cσ̃

mode of separation is schematically represented by Young’s tableau shown in the rightmost
part of Fig. 14.2.

Exercise 14.4. Compare Fig. 14.2 with Fig. 4.4 (page 94). Discuss the difference between
the orbits under the point group and the orbits under the RS-permutation group.

In a similar way, each promolecule of Cσ̃ , which is surrounded by a solid-line frame
in Fig. 14.1, exhibits pro-RS-stereogenicity becasue of the presence of an RS-enantiotropic
Cσ̃ (/C1)-orbit.

Exercise 14.5. Discuss the pro-RS-stereogenicity of 11-14 (Fig. 14.1) by referring to the
type-II row of Fig. 13.3 (page 372).

14.3 pro-R/pro-S-Descriptors

14.3.1 RS-Diastereotopic Relationships

Modern stereochemistry relys on relational terms rather than attributive terms. Just as the
attributive term enantiospheric is related to the relational term enantiotopic under the point-
group symmetry (Def. 4.3 on page 98), the ralational term RS-diastereotopic is coined by
Fujita, starting from the attributive term RS-enantiotropic. Because an RS-enantiotropic
Gσ̃ (/Gσ̃(i))-orbit is divided into two halves as shown in Def. 14.1, the relationship between
the two halves is characterized by the term RS-diastereotopic defined as follows [8]:

Definition 14.3 (RS-Diastereotopic Relationship). An RS-diastereotopic relationship is defined
as a relationship between one half and the other half of an RS-enantiotropic orbit (Def. 14.1).

The two halves are differentiated to derive RS-stereogenic promolecules, so that they are
specified by pro-R/pro-S-descriptors. For the sake of simplicity, each half is considered to
consist of a single member, when pro-R/pro-S-descriptors are given.
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Exercise 14.6. Discuss the parallelism between the term enantiotopic (Def. 4.3 on page
98) and the term RS-diastereotopic (Def. 14.3).

14.3.2 Single Criterion for Giving pro-R/pro-S-descriptors

In a pararell way to the assignment of R/S-stereodescriptors by a single criterion due to RS-
stereogenicity (Rule 13.3 on page 377 and Table 13.1 on 378), the assignment of pro-R/pro-
S-descriptors is conducted by a single criterion due to pro-RS-stereogenicity (Def. 14.2 and
Theorem 14.1). Thus, a pair of RS-diastereotopic proligands (Def. 14.3) is determined to
have a pair of pro-R/pro-S-descriptors of the pro-R/pro-S system [9].

Rule 14.1. (pro-R/pro-S-Descriptors Assigned by Pro-RS-Stereogenicity) [3]. A proligand
selected from a pair of RS-diastereotopic proligands in a pro-RS-stereogenic promolecule
(cf. Def. 14.2, Theorem 14.1, and Def. 14.3) is described as pro-R (or pro-r ) if, when it is
arbitrarily assigned CIP priority over the other proligand of the pair, then the configuration
of the thus generated RS-stereogenic promolecule is assigned the R–stereodescriptor (or
r -stereodescriptor). Along the same procedure, the other proligand is described as pro-S (or
pro-s).

As shown in Table 14.1 [4], the concept of pro-RS-stereogenicity is concluded to be a single
criterion for giving pro-R/pro-S-descriptors in accord with Fujita’s stereoisogram approach.
This is parallel to the concept of RS-stereogenicity as a single criterion for giving R/S-
stereodescriptors (Table 13.1 on page 378).

Table 14.1. Single Criterion for Giving pro-R/pro-S-Descriptors in Fujita’s Stereoisogram Ap-
proach [4].

stereoisogram change prochirality pro-RS-stereogenicity

(achiral→ chiral & RS-astereogenic→ RS-stereogenic)
Type IV→ I [a,a,a]→ [–,–,a] (Fig. 14.6) prochiral pro-RS-stereogenic

(enantiotopic) (RS-diastereotopic)
(RS-astereogenic→ RS-stereogenic)

Type IV→ V [a,a,a]→ [a,–,−] (Fig. 14.5(c)) – pro-RS-stereogenic
(–) (RS-diastereotopic)

Type II→ III [−,a,−]→ [−,–,−] (Fig. 14.3) – pro-RS-stereogenic
(–) (RS-diastereotopic)

︸ ︷︷ ︸

(chirality-faithfulness)



394 14 Pro-RS-Stereogenicity Based on Orbits

Remark 14.1. (Comments on the terminology of modern stereochemistry) [3]. Rule
14.1 is a conceptual revision of the pro-R/pro-S-descriptors described in the IU-
PAC Recommendations 1996 [1], where the term ‘stereoheterotopic’ is replaced by
the term RS-diastereotopic and the term ‘prochiral’ is replaced by the term pro-RS-
stereogenic.3 Rule 14.1 indicates that pro-R/pro-S-descriptors are concerned with RS-
diastereotopic relationships, but not with stereoheterotopic relationships (nor with
enantiotopic relationships). Thereby, they are controlled by a single criterion summa-
rized in Table 14.1 (as surrounded by a solid-line frame).

14.3.3 Probe Stereoisograms for Assining pro-R/pro-S-Descriptors

As examined in Exercise 14.5, the type-II promolecule 11-14 (Fig. 14.1) is determined to
be pro-RS-stereogenic. The inner structure has been discussed by using Young’s tableaux
shown in the type-II-row of Fig. 13.3 (page 372), where the two proligands p’s construct
a two-membered RS-enantiotropic Cσ̃ (/C1)-orbit. Hence, the promolecule 11-14 is con-
cluded to be pro-RS-stereogenic, so that the two proligands p’s are diferrentiated by pro-
R/pro-S-descriptors.

The assignment of pro-R/pro-S-descriptors can be conducted by using a probe stereoiso-
gram, which is derived a stereoisogram of a pro-RS-stereogenic promolecule. For example,
the type-II stereoisogram of 11-14 (Fig. 11.4 on page 318), which has been determined to
be pro-RS-stereogenic as described in the preceding paragraph, is converted into a probe
stereoisogram (Fig. 14.3) to assign pro-R/pro-S-descriptors as follows:
1. By labelling the two proligands p’s with α and β , the promolecule 11-14 (Fig. 11.4)

is converted into a promolecule 11-14α , which constructs a stereoisogram of type III
tentatively. Such a tentative type-III stereoisogram is called a probe stereoisogram, as
shown in Fig. 14.3.

2. The pair of RS-diastereomeric promolecules 11-14α and 11-14β in the tyep-III probe
stereoisogram (Fig. 14.3) indicates that the proligands pα and pβ are differentiated
under the RS-permutation group Tσ̃ . The proligands pα and pβ are RS-diastereotopic

3 It should be noted that the term ‘stereoheterotopic’ is defined as “Either enantiotopic or diastereotopic” in
the IUPAC Recommendations 1996 [1]. Thus, the conventional term ‘stereoheterotopic’ misleadingly mixes
up ‘enantiotopic’ and ‘diastereotopic’, just as the terms ‘enantiomeric’ and ‘diastereomeric’ are mixed up to
generate the term ‘stereoheteromeric’ (= ‘stereoisomeric’). This mixing-up is unreasonable because ‘enan-
tiotopic’ (or ‘enantiomeric’) is correlated to chirality, while ‘diastereotopic’ (or ‘diastereomeric’) is corre-
lated to stereogenicity. Remember the oversimplified dichotomy between enantiomers and diastereomers (cf.
Remark 1.1 on page 11). In Fujita’s stereoisogram approach, the term RS-diastereotopic (Def. 14.3) is coined
after the concept of pro-RS-stereogenicity is developed.
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Fig. 14.3. Probe stereoisogram generated by stereoisogram change from type II to type III for
testifying pro-RS-stereogenicity [3].

to each other. It follows that the original type-II promolecule 11-14 is concluded to be
pro-RS-stereogenic with respect of the two p’s. This conclusion is consistent with the
conclusion derived from the presence of an RS-enantiotropic orbit (cf. Exercise 14.5).

3. The proligand pα in 11-14α is determined to have pro-R, because 11-14α is determined
to have an R-stereodescriptor under a tentative priority sequence A > B > pα > pβ or
A > pα > pβ > B. Note that proligand pα to be labelled has precedence over the other
pβ . On the other hand, the proligand pα in 11-14β is determined to have pro-S because
11-14β is specified to have an S-stereodescriptor.

It should be emphasized that the RS-diastereotopic relationship between the proli-
gands pα and pβ corresponds to the RS-diasteomeric relationship between the tentative
promolecules 11-14α and 11-14β in the probe stereoisogram of Fig. 14.3.

The pro-RS-stereogenicity of 11-14 corresponds to the conversion of 11-14 (type II)
into 11-20 (type III) or to the conversion of 11-14 (type II) into 11-21 (type III), where an
RS-astereogenic (and chiral) promolecule is converted into an RS-stereogenic (and chiral)
promolecule in a single desymmetrization step.

Exercise 14.7.
– Draw a probe stereoisogram for differentiated two A’s of the type-II promolecule 11-12

(= 14-1 in Fig. 14.2).
– Discuss the pro-RS-stereogenicity of 11-12 and assign pro-R/pro-S-descriptors to the

two A’s.
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Probe stereoisograms devised by Fujita [3,8] provide us with information on the dif-
ference between prochirality and pro-RS-stereogenicity. Compare the type-II stereoisogram
of Fig. 11.4 (page 318) for the promolecule 11-14 with the corresponding type-III probe
stereoisogram of Fig. 14.3 for the tentative promolecule 11-14α . The RS-astereogenicity
of Fig. 11.4 (the self-RS-diastereomeric relationship represented by an equality symbol
in a horizontal direction) is converted into the RS-stereogenicity of Fig. 14.3 (the RS-
diastereomeric relationship represented by a double-headed arrow in a horizontal direction).
The process from RS-astereogenicity to RS-stereogenicity (Fig. 11.4→ Fig. 14.3) indicates
pro-RS-stereogenicity.

On the other hand, the chirality of Fig. 11.4 (the enantiomeric relationship represented
by a double-headed arrow in a vertical direction) is converted into the chirality of Fig. 14.3
(the enantiomeric relationship represented by a double-headed arrow in a vertical direction).
This conversion is accompanied with no change of chirality, so that it is not concerned with
prochirality.

14.3.4 Misleading Interpretation of ‘Prochirality’ in Modern Stereochemistry

According to Fujita’s stereoisogram approach, 2,3,4-trihydroxypentane 14-3 shown in Fig.
14.4(a) is chiral and RS-astereogenic, as characterized by a stereoisogram of type II (cf. Fig.
11.4 on page 318). The pro-RS-stereogenicity of 14-3 is determined by placing A = OH, X
= H, and p = R-CH(OH)CH3, where each proligand p is indicated by an oval box in Fig.
14.4(a). Thereby, 14-3 corresponds to a promolecule with the composition ABp2, so that it
gives a probe stereoisogram shown in Fig. 14.3.

The probe stereoisogram shown in Fig. 14.3 indicates that the proligand pα (assigned
to be pro-R) and the proligand pβ (assigned to be pro-S) are in an RS-diastereotopic re-
lationship, not in an enantiotopic relationship. It follows that the 2,3,4-trihydroxypentane
14-3 with pα and pβ is pro-RS-stereogenic, not prochiral at the C-3 in terms of Fujita’s
stereoisogram approach.

A hypothetical replacement of CH3 by 13CH3 in the proligand pα generates a proligand
q (= S-CH(OH)13CH3). The resulting promolecule 14-4 belongs to type III (cf. 11-21). The
R-configuration at the C-3 of 14-4 enable us to assign the pro-R-descriptor to the proligand
pα of 14-3. Note that the priority sequence is considered to be A > q > p > B. This
assignment due to a tentative replacement is consistent with the assignment due to the probe
stereoisogram of Fig. 14.3.

It is worthwhile to cite Fig. 23 of [10] (and Fig. 8.18 of [11]) as an example of mis-
leading interpretation of ‘prochirality’ in modern stereochemistry (Fig. 14.4(b)), where the
C-3 atom of 14-3′ is determined to be ‘Achiral, prochiral’. This terminology of ‘prochiral-
ity’ claims that the ‘achiral’ central C-3 atom of 14-3′ changes into the ‘chiral’ C-3 atom
of 14-4′ during the hypothetical replacement from 14-3′ to 14-4′. This claim is erroneous,
geometrically speaking, because the C-3 atom of 14-3 (also 14-3′) is locally chiral as well as
the global symmetry of 14-3 (also 14-3′) is determined to be chiral. This reasoning is con-
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Fig. 14.4. Consistent concept of pro-RS-stereogenicity vs. misleading concept of ‘prochirality’
[3]. (a) Consistent interpretation in the stereoisogram approach of the present book, where the
C-3 atom is chiral and RS-astereogenic so as to exhibit pro-RS-stereogenicity. (b) Misleading
interpretation in modern stereochemistry [10,11], where the C-3 atom is erroneously recognized
as being ‘achiral’ and ‘prochiral’ in spite of the local chirality of the C-3 atom.

sistent with Fujita’s stereoisogram approach, where the two p’s are concluded to belong to
a two-membered RS-enantiotropic Cσ̃ (/C1)-orbit (cf. Eq. 14.3) under the action of the RS-
permutation group Tσ̃ , while they are concluded to belong separately to two one-membered
hemispheric C1(/C1)-orbits (cf. the type-II row of Fig. 13.3 on page 372) under the action
of the point group Td .

Exercise 14.8. By referring to the type-II row of Fig. 13.3 (page 372), try the following
exercises:
– Confirm that the C-3 atom of 14-3 shown in Fig. 14.4(a) belongs to a one-membered

C1(/C1)-orbit under the point group Td .
– Confirm that the C-3 atom of 14-3 belongs to a one-membered Cσ̃ (/Cσ̃ )-orbit under

the RS-permutation group Tσ̃ .
– Demonstrate the misleading characterization of ‘Achiral and prochiral’ at the C-3 atom

of 14-3′ in Fig. 14.4(b).
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14.4 Pro-RS-Stereogenicity Distinct From Prochirality

14.4.1 Simultaneity of Prochirality and Pro-RS-Stereogenicity in a Type-IV
Promolecule

The promolecule 11-31 with the composition A2pp in Fig. 14.1 is categorized into type IV,
where its stereoisogram is shown in Fig. 14.5(a). The symmetry of 11-31 is characterized
by the index: [Csσ̃ σ̂ ,Cs,Cσ̃ ; IV]. Let us first examine 11-31 from a viewpoint of orbits.

As found in the upper type-IV row of Fig. 13.3 (page 372), the four positions of
11-31 are divided into two orbits, where two proligands A2 construct a two-membered
Csσ̃ σ̂ (/Cσ̃ )-orbit and a pair of p and p constructs a two-membered Csσ̃ σ̂ (/Cs)-orbit. This
mode of division is controlled by the subduction listed in the 14th row of Table 11.2 (page
326). The corresponding Young’s tableau is shown at the intersection between the upper
type-IV-row and the RS-stereoisogram-column in Fig. 13.3 (page 372).

Under the point group Cs, the four proligands of 11-31 are divided into one two-
membered enantiospheric Cs(/C1)-orbit (accommodating a pair of p and p) and two one-
membered homospheric Cs(/Cs)-orbits (accommodating two A’s separately). This mode of
division is controlled by the subduction listed in the 5th row of of Table 11.2, which can
be equalized to the subduction under the point group Cs. The presence of an enantiospheric
Cs(/C1)-orbit indicates the prochirality of 11-31. The corresponding Young’s tableau is
shown at the intersection between the upper type-IV-row and the chirality-column in Fig.
13.3.

Under the RS-permutation group Cσ̃ , the four proligands of 11-31 are divided into one
two-membered RS-enantiotropic Cσ̃ (/C1)-orbit (accommodating two A’s) and two one-
membered RS-homotropic Cσ̃ (/Cσ̃ )-orbits (accommodating p and p separately). This mode
of division is controlled by the subduction listed in the third row of of Table 11.2, which
can be equalized to the subduction under the RS-permutation group Cσ̃ . The presence of
an RS-enantiotropic Cσ̃ (/C1)-orbit indicates the pro-RS-stereogenicity of 11-31. The cor-
responding Young’s tableau is shown at the intersection between the upper type-IV-row and
the RS-stereogenicity-column in Fig. 13.3.

It follows that 11-31 exhibits the simultaneous appearance of prochirality and pro-RS-
stereogenicity, where the prochirality is concerned with the Cs(/C1)-orbit of p and p, while
the pro-RS-stereogenicity is concerned with the Cσ̃ (/C1)-orbit of two A’s. Note that the
assignability of pro-R/pro-S-descriptors depends on the RS-enantiotropic Cσ̃ (/C1)-orbit of
two A’s.

The conclusions described in the preceding paragraph can be confirmed by drawing
probe stereoisograms shown in Fig. 14.5.
1. The probe stereoisogram shown in Fig. 14.5(b) aims at testifying prochirality, where a

pair of proligands p and p are differentiated by labelling α or β . The resulting probe
stereoisogram belongs to type II. The vertical equality symbols in the original stereoiso-
gram (Fig. 14.5(a)) are changed into vertical double-headed arrows in Fig. 14.5(b), so
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Fig. 14.5. Probe stereoisograms generated from a type-IV stereoisogram exhibiting simultane-
ity of prochirality and pro-RS-stereogenicity. (a) Original stereoisogram of Type IV. (b) Change
from type IV to type II for testifying prochirality. (c) Change from type IV to type V for testifying
pro-RS-stereogenicity. Tentative differentiations of appropriate proligands (labels α and β ) in a
promolecule of type IV (11-31) generate hypothetical promolecules of type II (left) and type V
(right), which construct probe stereoisograms.

that the promolecule 11-31 is concluded to be prochiral. This type of prochirality is not
a target of pro-R/pro-S-descriptors.

2. The probe stereoisogram shown in Fig. 14.5(c) aims at testifying pro-RS-stereogenicity,
where two A’s are differentiated by labelling α or β . The resulting probe stereoisogram
belongs to type V. The horizontal equality symbols in the original stereoisogram (Fig.
14.5(a)) are changed into horizontal double-headed arrows in Fig. 14.5(c), so that the
promolecule 11-31 is concluded to be pro-RS-stereogenic. The proligand Aα in 11-31α ′
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is determined to have pro-r, while the proligand Aα in 11-31β ′ is determined to have
pro-s under a tentative priority sequence Aα > Aβ > p > p. The lowercase labels ‘pro-
r’ and ‘pro-s’ are used, because the probe stereoisogram (Fig. 14.5(c)) belongs to type
V, where the lowercase labels ‘r’ and ‘s’ are assigned to the central atoms.

The probe stereoisograms shown in Figs. 14.5(b) and (c) demonstrate a simultaneous
appearance of an enantiotopic relationship (prochirality) and an RS-diastereotopic relation-
ship (pro-RS-stereogenicity) in the promolecule 11-31. Note again that the enantiotopic
relationship (prochirality due to enantiosphericity) is concerned with a pair of proligands p
and p as an orbit under the point group Td , while the RS-diastereotopic relationship (pro-
RS-stereogenicity due to RS-enantiotropicity) is concerned with a pair of proligands A’s of
the same kinds as an orbit under the RS-permutation group Tσ̃ .

14.4.2 Coincidence of Prochirality and Pro-RS-stereogenicity

The promolecule 11-30 with the composition A2BX (Fig. 14.1 on page 389) is characterized
by a stereoisogram of type IV shown in Fig. 11.6 (page 320). The symmetry of 11-30 is
characterized by the index: [Csσ̃̂I ,Cs,Cσ̃ ; IV]. Let us examine 11-30 from a viewpoint of
orbits.

As found in the lower type-IV-row of Fig. 13.3 (page 372), the four positions of
11-30 are divided into three orbits, where two proligands A2 construct a two-membered
Csσ̃̂I(/Cσ̃ )-orbit, while a proligand B (or X) constructs a one-membered Csσ̃̂I(/Csσ̃̂I)-orbit.
This mode of division is controlled by the subduction listed in the 16th row of Table 11.2
(page 326). The corresponding Young’s tableau is shown at the intersection between the
lower type-IV-row and the RS-stereoisogram-column in Fig. 13.3 (page 372).

Under the point group Cs, the four proligands of 11-30 are divided into three orbits, i.e.,
one two-membered enantiospheric Cs(/C1)-orbit (accommodating two A’s) and two one-
membered homospheric Cs(/Cs)-orbits (accommodating B or X separately). This mode of
division is controlled by the subduction listed in the 5th row of of Table 11.2, which can
be equalized to the subduction under the point group Cs. The presence of an enantiospheric
Cs(/C1)-orbit indicates the prochirality of 11-30. The corresponding Young’s tableau is
shown at the intersection between the lower type-IV-row and the chirality-column in Fig.
13.3.

Under the RS-permutation group Cσ̃ , the four proligands of 11-30 are divided into one
two-membered RS-enantiotropic Cσ̃ (/C1)-orbit (accommodating two A’s) and two one-
membered RS-homotropic Cσ̃ (/Cσ̃ )-orbits (accommodating B or X separately). This mode
of division is controlled by the subduction listed in the third row of of Table 11.2, which
can be equalized to the subduction under the RS-permutation group Cσ̃ . The presence of
an RS-enantiotropic Cσ̃ (/C1)-orbit indicates the pro-RS-stereogenicity of 11-30. The cor-
responding Young’s tableau is shown at the intersection between the lower type-IV-row and
the RS-stereogenicity-column in Fig. 13.3.
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Fig. 14.6. Probe stereoisogram of type I produced from a type-IV stereoisogram for testifying the
coincidence of prochirality and pro-RS-stereogenicity.

It follows that prochirality and pro-RS-stereogenicity coincide with each other in
11-30, where the orbit of two A’s is characterized by the enantiospheric coset representation
Cs(/C1) under the point-group symmetry as well as by the RS-enantiotropic coset repre-
sentation Cσ̃ (/C1) under the RS-permutation-group symmetry. Note that the assignability
of pro-R/pro-S-descriptors depends on the RS-enantiotropic Cσ̃ (/C1)-orbit of two A’s.

The conclusions described in the preceding paragraph can be confirmed by drawing a
probe stereoisogram shown in Fig. 14.6. By labelling two proligands A’s with α and β , the
promolecule 11-30 is converted into a hypothetical promolecule 11-30α , which generates a
probe stereoisogram of type I as shown in Fig. 14.6.

The probe stereoisograms shown in Fig. 14.6 aims at testifying both prochirality and
pro-RS-stereogenicity, where two proligands A’s are differentiated by labelling α or β . The
resulting probe stereoisogram belongs to type I.

The vertical equality symbols in the original stereoisogram (Fig. 11.6 on page 320) are
changed into vertical double-headed arrows in Fig. 14.6. At the same time, the horizon-
tal equality symbols in the original stereoisogram (Fig. 11.6) are changed into horizontal
double-headed arrows in Fig. 14.6. It follows that the promolecule 11-30 is concluded to
be prochiral and pro-RS-stereogenic with respect to the two A’s. In other words, the probe
stereoisogram shown in Fig. 14.6 demonstrates the coincidence of an enantiotopic rela-
tionship (prochirality) and an RS-diastereotopic relationship (pro-RS-stereogenicity) in the
promolecule 11-30.

Because the tentative promolecule 11-30α has an R-configuration under the priority
sequence Aα > Aβ > B > X, the precedent Aα is determined to be pro-R. Because the
tentative promolecule 11-30β has an S-configuration under the priority sequence Aα > Aβ

> B > X, the precedent Aα is determined to be pro-S. Note that the tentative promolecues
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11-30α and 11-30β are RS-diastereomeric to each other in the probe stereoisogram of type
I (Fig. 14.6), so that the two A’s in the original stereoisogram of type IV (Fig. 11.6) can be
labelled as pro-R and pro-S.

Although the labels pro-R and pro-S are originally assigned to a pair of RS-diastereotopic
A’s on the basis of pro-RS-stereogenicity, they are interpreted to be assigned to a pair of
enantiotopic A’s on the basis of prochirality in this case. It should be emphasized that a pair
of RS-diastereotopic A’s (due to pro-RS-stereogenicity) is conceptually distinct from a pair
of enantiotopic A’s (due to prochirality), although they coincide with each other in this case.

14.4.3 Prochiral (but Already RS-Stereogenic) Promolecules

The promolecule 11-32 with the composition ABpp (Fig. 14.1 on page 389) is character-
ized by a type-V stereoisogram shown in Fig. 11.7 (page 321). The symmetry of 11-32 is
characterized by the index: [Cs,Cs,C1;V]. The examinination of 11-32 from a viewpoint of
orbits have been conducted in Section 13.3, where orbits to be examined are produced by
the subductions shown in Eq. 13.6 (page 373) for the point group Td and in Eq. 13.7 (page
374) for the RS-permutation group Tσ̃ .

The presence of an enantiospheric Cs(/C1)-orbit (cf. Eq. 13.6) indicates the prochiral-
ity of 11-32. The corresponding Young’s tableau is shown at the intersection between the
type-V-row and the chirality-column in Fig. 13.3. On the other hand, the presence of four
RS-hemitropic C1(/C1)-orbits (cf. Eq. 13.7) indicates that 11-32 is already RS-stereogenic,
so that R/S-stereodescriptors can be assigned. The corresponding Young’s tableau is shown
at the intersection between the type-V-row and the RS-stereogenicity-column in Fig. 13.3
(page 372).

It follows that the prochirality of 11-32 cannot be characterized by pro-R/pro-S-
descriptors, because pro-R/pro-S-descriptors is concerned with pro-RS-stereogenicity, but
not with prochirality.

The promolecule 11-32 of type V as a prochiral (but already RS-stereogenic) pro-
molecule can be examined by drawing a probe stereoisogram shown in Fig. 14.7. By la-
belling two proligands p and p with α and β , the type-V stereoisogram of 11-32 (Fig. 11.7
on page 321) is converted into a type-III probe stereoisogram (Fig. 14.7), which contains a
tentative promolecule 11-32α as a reference.

The horizontal double-headed arrrows in the original type-V stereoisogram (Fig. 11.7
on page 321) maintain in the corresponding type-III probe stereoisogram (Fig. 14.7), where
they represent RS-diasteromeric relationships (and RS-stereogenicity). On the other hand,
the vertical equality symbols (self-enantiomeric relationships and achirality) in the original
type-V stereoisogram (Fig. 11.7) change into double-headed arrows (enantiomeric relation-
ships and chirality) in the corresponding type-III probe stereoisogram (Fig. 14.7).

The prochirality of 11-32 corresponds to the conversion of 11-32 (or its RS-diastereomer
of type V) into 11-20 (type III) or the conversion of 11-32 (type V) into 11-21 (type III),
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Fig. 14.7. Probe stereoisogram of type III generated by stereoisogram change from type V to type
III for testifying prochirality.

where an achiral (and RS-stereogenic) promolecule is converted into a chiral (and RS-
stereogenic) promolecule in a single desymmetrization step.

14.5 Pro-RS-Stereogenicity for pro-R/pro-S-Descriptors

Modern stereochemisty lays too much stress on coincident cases of prochirality and pro-
RS-stereogenicity, where all of the four proligands are achiral in isolations. As discussed
in Subsection 14.4.2, the two A’s of the promolecule 11-30 with the composition A2BX
(Fig. 11.6 on page 320) are enantiotopic to each other; and, at the same time, they are
RS-diastereotopic each other according to Fujita’s stereoisogram approach. Modern stereo-
chemistry lacks an RS-diastereotopic relationship as a pairwise relationship, so that a pair
of pro-R/pro-S-descriptors is misleadingly presumed to be assigned directly to a pair of
enantiomers in the case of 11-30. As commented in Footnote 3, the coinage of the term
‘stereoheterotopic’ (‘enantiotopic’ + ‘diastereotopic’) conceals the misleading presumption
of modern stereochemistry. Note that the term RS-diastereotopic is conceptually distinct
from the term enantiotopic in Fujita’s stereoisogram appraoch, whereas the term ‘stereo-
heterotopic’ contains the term ‘enantiotopic’ in modern stereochemistry.

The final conclusion of this chapter is that the terminology on ‘prochirality’ by Han-
son [2] should be thoroughly abandoned and replaced by the terminology on pro-RS-
stereogenicity due to Fujita’s stereoisogram approach [3,8]. Moreover, the use of the term
‘stereoheterotopic’ should be abandoned and replaced by the term RS-diastereotopic due to
Fujita’s stereoisogram approach [3,8].
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Remark 14.2. (Comments on the stereochemical terminology) [3]. Eliel (page 21 of
[10]) has claimed that “Just as chiral centers can be labelled R or S not only in enan-
tiomers but also in many diastereomers, so the designations pro-R and pro-S are not
confined to enantiotopic ligands but may also be used for a number of diastereotopic
ones (for exception, see below).” This claim is misleading and should be abandoned,
so as to be replaced by the single criterion summarized in Table 14.1, which is derived
from Rule 14.1 in Fujita’s stereoisogram approach. Thus, we should say that “Just as
RS-stereogenic centers are labelled R or S in RS-diastereomers (not in enantiomers),
so the designations pro-R and pro-S should be confined to RS-diastereotopic proli-
gands.” Note that there are coincident cases between RS-diastereotopic relationships
and enantiotopic ones (cf. 11-30).
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15 Perspectives

15.1 Enumeration of Highly Symmetric Molecules

This book is devoted to the introduction of Fujita’s USCI approach in Chapter 5 as well
as Fujita’s proligand method in Chapter 7. These approaches are versatile to combinatorial
enumeration in general. The future task is to pursue further applications of these approaches
to symmetry-interesting molecules, in particular, highly symmetric molecules.

Fujita’s USCI approach [1,2] supports four methods of symmetry-itemized enumera-
tion of three-dimensional (3D) structures, i.e.,
1. the fixed-point-matrix (FPM) method based on generating functions derived from sub-

duced cycle indices (SCIs) and mark tables [3–5],
2. the partial-cycle-index (PCI) method based on generating functions derived from partial

cycle indices (PCIs) [6,7],
3. the elementary-superposition method [8], and
4. the partial-superposition method [6,8].

Among the four methods of the USCI approach [1], the former three have been compared
by starting from a common cubane skeleton of the point group Oh, i.e., symmetry-itemized
enumeration of cubane derivatives as 3D entities by the FPM method [9], by the PCI method
[10], and by the elementary-superposition method [11]. These articles would be templates
for further investigations of highly symmetric molecules by means of Fujita’s USCI ap-
proach.

Fujita’s proligand method for enumerating 3D structures [12] is a substantial extension
of Pólya’s method for enumerating graphs [13]. Fujita’s proligand method is accompanied
with several related methods for gross enumeration of 3D structures, which have been also
developed by Fujita [12]. They have been compared by starting from a common cubane
skeleton of the point group Oh, i.e., gross enumeration of cubane derivatives by Fujita’s pro-
ligand method [14], by the markaracter method [15], by the characteristic-monomial method
[16], by the extended-superposition method [17], and by the double-coset-representation
method [17]. These articles would be templates for further investigations of highly symmet-
ric molecules by means of Fujita’s proligand method and the related methods.

15.2 Interaction of Orbits of Different Kinds

This book emphasizes the importance of the concept of equivalence classes (orbits) de-
rived from the concept of equivalence relationships. Although the discussions of this book
aim mainly at the orbits of vertices (substitution positions, substituents, proligands, etc.),
extended discussions on the orbits of edges (bonds etc.) are permitted under parallel theo-
retical foundations. For example, there have appeared the enumeration of organic reactions
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by counting substructures of imaginary transition structures (ITS) [18,19], the sphericity
concept for an orbit of bonds during the enumeration of fullerene C60-adducts [20], the
enumeration of edge configurations on a regular octahedron [21], and so on.

When Fujita’s USCI approach is applied to enumeration of Kekulé structures, the selec-
tion of two adjacent edges (adjacent double bonds) is not permitted and should be excluded
by reasonable procedures. For this purpose, a joint position of two adjacent edges should
be detected to exclude adjacent edges. In other words, the methodology for enumerating
edge configurations should be extended to take interaction of orbits of different kinds into
consideration.

The restricted-subduced-cycle-index (RSCI) method has been developed by Fujita to
accomplish symmetry-itemized enumeration of Kekulé structures and applied to fullerene
C60 [22]. The RSCI method has been applied to the counting of matchings of graphs,
which are used to obtain Z-counting polynomials and the Hosoya index as well as to cal-
culate matching polynomials [23]. By starting from the FPM method and the PCI method
of Fujita’s USCI approach, the restricted-fixed-point-matrix (RFPM) method [24] and the
restricted-partial-cycle-index (RPCI) method [25], both of which are based on restricted
subduced cycle indices, have been developed by Fujita and applied to enumeration of 3D
structures derived from a dodecahedrane skeleton under a restriction condition. Recently,
the RSCI method has been introduced in a series of review articles [26–29]. This series
would be templates for further investigations of Kekulé structures and perfect matchings of
graphs.

15.3 Correlation Diagrams of Stereoisograms

In this book, Fujita’s stereoisogram approach is discussed by selecting skeletons of a sin-
gle focused center (e.g., a tetrahedral skeleton and an allene skeleton) in the form of the
proligand-promolecule model. The remaining task is to examine molecules characterized
by multiple stereoisograms of RS-stereoisomeric centers in isolation. The concept of cor-
relation diagrams of stereoisograms has been developed by Fujita to characterize a set of
stereoisomers [30]. Correlation diagrams of stereoisograms are capable of solving most
problems which have been left unsolved within the traditional terminology of stereochem-
istry and related chemoinformatics practices, e.g., over-simplified features of the conven-
tional dichotomy between enantiomers and diastereomers, incomplete separation of RS-
stereogenicity from chirality, unconscious disregard of local RS-stereogenicity and con-
fusion of it with local chirality, implications of reflection-invariant cases of the CIP pri-
ority system, and others [31]. Correlation diagrams of stereoisograms for characterizing
stereoisomers of cyclobutane derivatives have been discussed as more complicated cases
[32]. Correlation diagrams of stereoisograms have been used to comprehend the global
and local symmetries of oxirane derivatives [33]. Thereby, R/S-stereodescriptors of the CIP
system have been found to specify local symmetries at respective positions of an oxirane
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derivative, so that the global symmetry of the oxirane derivative requires the other types of
descriptors (Ra/Sa-descriptors and Z/E-descriptors) proposed in [34].

Theory of organic stereoisomerism in harmony with molecular symmetry has been de-
veloped by starting from RS-stereoisomeric groups correlated to stereoisograms and their
correlation diagrams, where a set of epimerizations at RS-stereogenic centers of a stere-
oskeleton is taken into consideration to formulate a stereoisomeric group [35]. This course
would be one of promising formulations for rationalizing stereoisomerism.

15.4 Group Hierarchy

Group hierarchy stems from Fujita’s stereoisogram approach for integrating geometric as-
pects and stereoisomerism in stereochemistry, where a quadruplet of RS-stereoisomers un-
der an RS-stereoisomeric group, a set of stereoisomers under a stereoisomeric group, and a
set of isoskeletomers under an isoskeletal group are recognized as respective equivalences
classes (orbits) of molecular entities [34]. This group hierarchy is illustrated by a flowchart
shown in Fig. 15.1(a) or by a simplified flowchart shown in Fig. 15.1(b). On the other hand,
the revised flowchart shown in Fig. 2.4 (page 47) is redrawn to give Fig. 15.1(c) from a
group-theoretical point of view.

The judgement due to an enantiomeric relationship in Fig. 2.4 (or due to a point group
in Fig. 15.1(c)) is replaced by the successive judgements due to an RS-stereoisomeric group
and due to stereoisograms in Fig. 15.1(a) or by the successive judgements due to an RS-
stereoisomeric group and due to a point group in Fig. 15.1(b). Thereby, the final categories
of Fig. 2.4 (or Fig. 15.1(c)) are pairs of enantiomers, while the final categories of Fig.
15.1(a) are type-I to type-V quadruplets. Even in Fig. 15.1(b), pairs of enantiomers as final
categories are linked with type-I to type-V quadruplets because of the intervention of the
judgement due to an RS-stereoisomeric group.

As found in Figs. 15.1(a) and (b), the concept of RS-stereoisomers mediates between
enantiomers and stereoisomers, which have been directly linked with each other in the
conventional flowchart of modern stereochemistry (even in a revised form shown in Fig.
15.1(c)). Such an intermediate concept as created by Fujita’s stereoisogram approach has
brought about a paradigm shift, so that modern stereochemistry has been restructured sub-
stantially on the basis of mathematical formulations, as described in this book. This fact is
parallel to the historical event that Avogadro’s theory has brought about a paradigm shift
in chemistry by creating the intermediate concept of molecule (e.g., H2O), which mediates
between atoms (e.g., hydrogen atoms and oxygen atoms) and substances (e.g., water).

From an alternative point of view, Fujita’s stereoisogram approach summarized by the
flowchart of Fig. 15.1(a) can be regarded as an integration of van’t Hoff’s way and Le Bel’s
way (cf. Subsection 1.1.2). Note that modern stereochemistry lays stress on van’t Hoff’s
way and treats inconsistent cases due to Le Bel’s way (e.g., pseudoasymmetry, the CIP
system, and the pro-R/pro-S system) as exceptions in an ad-hoc fashion.
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group
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〈stereoisomers〉
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Fig. 15.1. Flowchart for classifying various kinds of isomers on the basis of equivalence classes
[34]. (a) Full flowchart in which the lowest judgement based on stereoisograms uses the com-
bination of equivalence classes due to three subgroups of the RS-stereoisomeric group, i.e., a
point group, an RS-permutation group, and a ligand-reflection group. (b) Simplified flowchart in
which the lowest judgement uses a point group. (c) Revised conventional flowchart with no RS-
stereoisomeric group.

Fujita’s proligand method, which was developed originally for combinatorial enumer-
ation under point groups (Chapter 7) [36], has been extended to meet the group hierarchy
(Fig. 15.1(b)) [34]. Combinatorial enumerations under respective levels of the group hierar-
chy have been conducted to count inequivalent pairs of (self-)enantiomers under a point
group, inequivalent quadruplets of RS-stereoisomers under an RS-stereoisomeric group,
inequivalent sets of stereoisomers under a stereoisomeric group, and inequivalent sets of
isoskeletomers under an isoskeletal group [37]. Two kinds of compositions have been used
for the purpose of representing molecular formulas in an abstract fashion, that is to say, the
compositions for differentiating proligands having opposite chirality senses and the compo-
sitions for equalizing proligands having opposite chirality senses. Thereby, the classifica-
tions of isomers have been accomplished in a systematic fashion. Because stereoskeletons
of ligancy 4 (i.e., a tetrahedral skeleton, an allene skeleton, an ethylene skeleton, an oxi-
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rane skeleton, a square planar skeleton, and a square pyramidal skeleton) have been used as
examples, we are able to have wider perspectives by examining other skeletons in general.

15.5 Non-Rigid Molecules and Conformations

The concept of coronas by Pólya [13,38] and a generalized wreath product method by Bala-
subramanian [39] have been applied to gross enumerations of non-rigid organic compounds,
where inner ligands are considered to be graphs or structureless objects.

On the other hand, Fujita’s USCI approach has provided powerful methods of symmetry-
itemized enumerations, where the concept of coronas (equivalent to wreath products) are
extended to support symmetry-itemized enumerations of non-rigid organic compounds
[40–42]. Systematic enumerations of non-rigid compounds with given ligand symmetries
have been investigated, where inner ligands are considered to have 3D structures [42,43].
Symmetry-itemized enumeration of flexible cyclohexane derivatives has been conducted
according to Fujita’s USCI approach [44].

The concept of pseudo-point groups has been proposed by Fujita for the purpose of
symmetry characterization and combinatorial enumeration of non-rigid compounds [45–
47]. The concept of pseudo-point groups has been applied to cyclohexane derivatives [48].

A group-theoretical framework for characterizing ring flipping and N-inversion has
been developed on the basis of extended pseudo-point groups [49]. Thereby symmetry-
itemized enumeration of piperidine derivatives has been conducted.

Flexibility in inorganic complexes can be treated on the basis of Fujita’s stereoisogram
approach. Thus, a revised interpretation of Berry’s pseudorotation has been reported by
examining stereoisograms of trigonal bipyramidal compounds [50]. Stereoisograms of oc-
tahedral complexes are examined to discuss RS-stereogenicity vs. stereogenicity as well as
RS-stereoisomerism vs. stereoisomerism [51]. Thus, flexibility in octahedral complexes has
been investigated within the scope of Fujita’s stereoisogram approach.

Conformational change due to bond rotations around a single bond can be treated as an
interconversion among two or more (rigid) conformers, which are governed by pseudo-point
groups. This is open to future investigation.

15.6 Interdisciplinary Nature of Mathematical
Stereochemistry

Before closing this book, the interdisciplinary nature of mathematical stereochemistry
should be revisited in practical levels as well as in conceptual levels. Thereby, a motivation
for pursuing further possibilities of mathematical stereochemistry would be enhanced in
both chemistry and mathematics.
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15.6.1 Mathematical and Stereochemical Barriers In Practical Levels

During the process of investigation and communication on mathematical stereochemistry,
tools for drawing structural formulas and tools for typesetting mathematical equations are
both important. From the viewpoint of chemistry, ChemDraw, ChemSketch, etc. are avail-
able as powerful tools for drawing structural formulas, whereas the typesetting of mathe-
matical equations by Word is not so convenient as compared with the TEX/LATEX utilities.
From the viewpoint of mathematics, the TEX/LATEX utilities are available as powerful tools
for typesetting mathematical equations, whereas the original TEX/LATEX system lacks tools
for drawing structural formulas.

If the state-of-the-art situations in scientific software are taken into consideration, the
selection of the TEX/LATEX is inevitable for the purpose of satisfactory typesetting of math-
ematical equations. Although the TEX/LATEX system is not so familiar to chemists (i.e., a
mathematical barrier) and although tools for drawing structural formulas (such as Chem-
Draw and ChemSketch) are not so familiar to mathematicians (i.e., a stereochemical bar-
rier), the combination of TEX/LATEX with ChemDraw (or ChemSketch) would be the most
promising selection to do well in investigation and communication on mathematical stere-
ochemistry. However, switching between two different types of software would provide
chemists and mathematicians with some troublesome feelings. These situations indicate
that a LATEX utility for drawing structural formulas is highly desirable to be coupled with
the original TEX/LATEX system.

The XΥMTEX system was developed by myself (Fujita) and released in 1993 as a LATEX
utility for drawing structural formulas, the manual of which was published as a book in 1997
[52]. The PostScript-compatible mode supported by XΥMTEX version 4.00 can be used to
draw structural formulas of high printing quality [53], so that it enabled us to publish a book
for surveying organic compounds for color photography in 2004 [54]. The book published
in 2007 was concerned with a new concept of mandalas, which was proposed as a basis
for rationalizing enumeration of 3D structures [2]. The book published in 2013 was con-
cerned with the proligand method proposed by myself (Fujita) to enumerate 3D structures
[12]. In addition, the present book, which will be published in 2015, is concerned mainly
with Fujita’s stereoisogram approach. These books contain many mathematical equations
as well as structural formulas because of interdisciplinary nature, where the mathematical
equations have been typeset by the original TEX/LATEX utilities and the structural formulas
have been drawn by the XΥMTEX system. Moreover, the on-line manual [55] of the XΥMTEX
system Version 5.01 itself provides us with an illustrative example for publishing a book
which contains both chemical structural formulas and mathematical equations.

In recent review articles [56,57], the merits of the XΥMTEX system for publishing inter-
disciplinary chemistry/mathematics books were emphasized. It follows that the combination
of the XΥMTEX system with the TEX/LATEX system would be promising as a practical tool for
investigation and communication on mathematical stereochemistry, which is an interdisci-
plinary field of chemistry and mathematics [58].
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15.6.2 Mathematical and Stereochemical Barriers In Conceptual Levels

Fujita’s USCI approach has been referred to as ‘an organic chemistry paradox in Era of
Fujita’ by El-Basil in his review [59]. By keeping the monograph of 1991 [1] in mind,
mathematical and stereochemical barriers against Fujita’s USCI approach have been carica-
tured under the name of ‘the Heavens of Fujita’ [60, Fig. 35]. El-Basil has pointed out that
such heavens can only be reached by mathematics, so long as an organic chemist (who is
not interested in mathematics) is trying to make his way through such heavens.

Although a similar situation concerning mathematical and stereochemical barriers
holds true for inorganic stereochemistry, von Zelewsky has maintained a different attitude
in his textbook on inorganic stereochemistry [61, page 11], i.e., “It will be useful to put
mathematics to work in order to develop some concepts of stereochemistry further, but
the experimental chemist will always find well-defined simple concepts more useful than
mathematical derivations.” after the citation of Pólya’s book [13], Fujita’s book [1], and
so on. However, Fujita’s stereoisogram approach derived mathematically in the present
book has clarified that a fundamental set of ‘well-defined simple concepts more useful than
mathematical derivations’ is misleading. It should be noted that such ‘simple concepts’
would become truly ‘well-defined’ and ‘more useful’ only after mathematical derivations.

In order to bridge across the barriers to ‘the Heavens of Fujita’, diagrammatic devices
have been introduced as the first remedy for avoiding mathematical barriers [2], where ab-
stract mathematical concepts of Fujita’s USCI approach are visualized diagrammatically. As
the second remedy, Fujita’s USCI approach has been simplified to develop Fujita’s proligand
method [12]. As the third remedy, Fujita’s stereoisogram approach has been developed as a
higher-level integration (the present book), so that it provides us with broader perspectives
of mathematical stereochemistry. Thereby, mathematical and stereochemical barriers have
become lower and lower to both chemists and mathematicians. Thus, the caricature of ‘the
Heavens of Fujita’ is redrawn to give Fig. 15.2, where a bridge with broader perspectives is
added as a new matter.

15.7 Reorganizing the Theoretical Foundations of
Stereochemistry and Stereoisomerism

As formulated in Chapter 10, RS-stereoisomeric groups and their stereoisograms are capable
of constructing a strict and succinct mathematical framework for reorganizing modern stere-
ochemistry. The group-subgroup relationship concerned with an RS-stereoisomeric group,
e.g., Tdσ̃̂I for a tetrahedral skeleton, permits us to accomplish qualitative and quantita-
tive discussions on stereochemistry (concerning geometric properties) and stereoisomerism
(concerning changes of configurations), as clarified by a review [62]. Thereby, mislead-
ing standpoints for R/S-stereodescriptors of the CIP system have been avoided rationally
[63]. In a parallel way, related misleading standpoints for pro-R/pro-S-descriptors have been
avoided rationally [64]. Although the traditional practices of assigning R/S-stereodescriptors
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Fig. 15.2. Mathematical barriers and stereochemical barriers. This figure is a revision of El-Basil’s
caricature [60, Fig. 35].

and pro-R/pro-S-descriptors can be maintained, their theoretical foundations have been thor-
oughly revised by means of Fujita’s stereoisogram approach. It follows that the descriptions
of textbooks on organic chemistry and on stereochemistry should be thoroughly revised in
conceptually deeper levels, but not in superficial verbal levels.
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cycle structure 304
– — (22) 179
cycle term 174, 241, 266, 269
cyclic group 22
cyclic subgroup 119
cyclobutane 13
– 1,3-dichloro- — 365
– stereoisomer of — 406
cyclohexane 165, 409
– dibromo- — 3

cyclopentadienyl 169
cyclophane
– [26](1,2,3,4,5,6)- — 166
cyclopropane
– — skeleton 277
– cyclopropylidene- — 266

D

de Bruijn 233
decomposition
– coset — 115
degree
– — of coset representation 67
derivation
– algebraic — 67
– diagrammatic — 67
– inductive — 167
– subductive — 167
derivative
– sterically hindered — 168
– trigonal pyramidal — 298
desymmetrization step
– single — 395
diagonal direction 277
diastereoisomer 11, 250
diastereoisomerism 11, 250
diastereomer 11, 40, 250, 404
– conventional definition of — 11
diastereomeric 45, 91
– — relationship 40
diastereotopic 93, 404
dichotomy
– — between enantiomers and diastereo-

mers 11, 249, 368
– misleading — 25
difference
– — between prochirality and pro-RS-stere-

ogenicity 388
dimethyl ether 39
dioxane
– 1,3- — 166
– 1,4- — 166
diploid 200
– hydrogen — 203
diploid generator 204
direction
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– diagonal — 277
– horizontal — 277
– vertical — 277
dissymmetry 2
dodecahedrane 105, 167
double bond 12
– delocalized — 1
– oxime — 13
– twist of — 269
double coset 122, 131
– — representation 22
duality
– — of the term ‘isomeric’ 50
dumbbell 217
– — skeleton 169

E

edge 168, 212
– — substitution 170
– orbit of — 405
edge configuration
– enumeration of — 406
El-Basil 411
element
– chirality — 365
– symmetry — 59
elementary-superposition 405
– — method 164
Eliel 11
enantiomer 11, 239, 366, 404
– — and quadruplet 306
– conventional definition of — 10
– geometric — 12
enantiomeric 100, 236
– — relationship 23, 36, 285, 369
– — relationship (coalescence) 249
– — relationship and chirality 367
enantiomerism 11, 250
– geometric — 270
enantiomorph 233
enantiospheric 106
– — as an attributive term 98
– — C2v(/C1)-orbit 132
– — cycle 178
– — G(/Gi)-orbit 90
– — orbit 89, 105, 107, 387, 398, 400

enantiospheric orbit
– chirality fittingness of — 91
– eight-membered — 98
– four–membered — 96
– two halves of — 95
– two-membered — 91
enantiosphericity 89
– — of coset representation 95
– extended — 295
– prochirality due to — 400
enantiotopic 93, 106, 404
– — as a relational term 98
– definition of — 98, 99
– general definition of — 102
– membership criterion of — 98
– relational term — 387
– symmetry criterion of — 98
enantiotopic relationship 100
entity
– molecular — 36
enumeration
– — of alkane 177, 193
– — of edge configurations 406
– — of Kekulé structures 406
– — of monosubstituted alkane 177
– — of organic reactions 405
– — of quadruplets 28
– — under point group 334, 362
– — under RS-permutation group 336
– graph — 22
– gross — 22
– itemized — 141
– recursive — 200
– symmetry-itemized — 22, 405
– symmetry-itemized — under Tdσ̃̂I 329
– symmetry-itemized — under Tσ̃ 254
– type-itemized — 301, 332, 361
epimerization 4, 26, 251
equality symbol
– absence of — 284, 318
– diagonal — 282, 315, 343
– horizontal — 284, 317, 345
– vertical — 283, 320, 350
equation
– functional — 202
– mathematical — 410
equatorial position 85
equivalence class 17, 35, 63, 78, 106, 368
– — by Cs(/Cs) 249
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– — by Cσ̃ (/C1) 249
– — of isomers 39
– — of isoskeletomers 44
– — of stereoisomers 38
– — under D2 or D2˜h 267
– — under D2d 264, 347
– — under D2dσ̃̂I 349
– — under D2h 268
– — under D2σ̃ 264, 347
– — under Td 261, 313
– — under Tσ̃ 261, 313
– importance of — 405
equivalence relationship 17, 35, 368, 405
Era of Fujita 411
ES method 22
ethane 291
ethanol 39
ether
– cyclic — 48
– dimethyl — 165
ethylene
– — skeleton 186, 265
– face of — 166
– Z/E-isomer of — 13
ex-achiral 295
ex-chiral 295
exponent 140
expression
– diagrammatic — 235
extended superposition 22
extended-superposition method 405

F

factor group 286
– — C3vσ̃̂I/C3 286
– — K 217
factorization 112
ferrocene 169
Fischer 54
fixation 321
flexibility 409
flipping
– ring — 165, 409
floor bracket 248
flowchart 17, 18, 407
– revised — 46

fluorene
– 9H- — 44
fluorine 78, 96
Flurry 84
formation
– mirror-image — 71, 379
formula
– 2D-structural — 1, 42
– 3D-structural — 2
– condensed structural — 42
– constitutional — 6
– molecular — 38
– rational — 42
– stereochemical — 6
– structural — 1, 410
four-group
– Klein — 286
FPM 134
– — for itemized enumeration 142
– alternative form of — 136
FPM method 22, 405
– — of Fujita’s USCI approach 143
– procedure of — 143
FPV 120, 123, 135, 291
framework group 83
Frankland 1
Frobenius 173
Fujita21, 23, 84, 89, 95, 106, 107, 109, 116,

122, 131, 169, 174, 177, 193, 194, 206,
234, 239, 273, 366, 378, 396

fullerene
– — C60 406
– adduct of — 168
– symmetry-itemized enumeration of — 168
function
– — for mode of derivation 132
– generating — 132, 136
– ligand-inventory — 142, 143, 145, 151,

153, 196, 242, 256, 257, 263, 299
– orbital — 36
functional equation 202
– — a(x) 203
– — ̂A(x) 214
– — ˜A(x) 219
– — ̂B(x) 214
– — ˜B(x) 219
– — b(x) 206
– — ̂C(x) 214
– — ˜C(x) 219
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– — c(x2) 204
– — ̂R(x) 227
– — ˜R(x) 229
– — r(x) 209
– — ̂S(x) 224
– — ˜S(x) 226
– — s(x) 210

G

general criterion
– — for enantiotopic 102
generating function 132, 136
– — ˜A(x) 219
– — A(x)(T) 222
– — ˜B(x) 219
– — B(x)(T) 222
– — ˜C(x) 219
– — C(x)(T) 222
– — for achiral planted promolecules 199
– — for adamantan-2-ones 163
– — for allene derivatives 160
– — for Áθ i 298
– — for C3 310
– — for C3σ̃ 308
– — for C3v 305
– — for D2dσ̃̂I 358
– — for diploids 202
– — for enantiomeric planted promolecules

199
– — for five types 303
– — for gross enumeration 184–186, 257,

263, 304
– — for PCI-CF 150, 300
– — for PCI-CFs of oxiranes 153
– — for planted promolecules 197
– — for SCI-CFs of adamantan-2-ones 145
– — for Tdσ̃̂I 329
– — for tetrahedral derivatives 155
– — for Tσ̃ 256
– — for T́θK 302
– — for type-itemized enumeration 333, 361
– — ̂R(x) 227
– — ˜R(x) 229
generator 292
– achiral structure — 203
– diploid — 204

– graph — 209
– steric-isomer — 206, 210
geometric
– — attribute 18, 49
– — concept 93
– — enantiomer 12, 270
– — isomer 270
global symmetry 26
– — Tdσ̃̂I 370
glossary
– — of IUPAC 365
glutaric acid
– 2,3,4-trihydroxy- — 78, 107
– 2,4-dihydroxy- — 111
– achiral 2,3,4-trihydroxy- — 320, 381
– chiral 2,3,4-trihydroxy- — 317
glyceraldehyde
– D-(+)- — 93, 391
glycerol 110
graph 1, 41, 193, 209, 210
– — theory 1, 21
– matching of — 166
– non-cyclic — 212
– perfect matching of — 168, 406
graph generator 209
gross enumeration
– — of cubanes 405
– — under RS-permutation group 241
– — under Tσ̃ 257
– generating function for — 184
group 54
– — hierarchy 23, 407
– — theory 54
– achiral — 98
– automorphism — 131
– chiral — 244
– cyclic — 22
– cyclic achiral — 178
– cyclic chiral — 180
– factor — 286
– functional — 9
– hydroxyl — 12
– identity — 116
– isoskeletal — 24, 407
– ligand-reflection — 275, 341
– maximum chiral — 90
– permutation — 233
– point — 56, 143
– pseudo-point — 165, 409
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– RS-astereogenic — 244
– RS-permutation — 235
– RS-stereogenic — 244
– RS-stereoisomeric — 23, 277

H

halogen 78
Hanson 92, 109
Harary 212
hardware 141
Hässelbarth 131
Heavens of Fujita 411
Helmchen 365, 378
hemispheric
– — cycle 178
– — orbit 89
hemispheric orbit
– chirality fittingness of — 92
hemisphericity 89
– extended — 295
Henze 193
hept-2-ene
– bicyclo[2.2.1]- — 44
heptane
– 3,4,5-trimethyl- — 223
heptane-3,5-dithiol
– 4-(2-bromoethenylidene)- — 351
hexacoordinate
– — complex 233
hierarchy 311
– — of subgraph 169
– group — 407
hindrance
– steric — 168
Hirschmann 94
holantimer 23, 366
holantimeric 236
– — relationship 23, 277, 285, 369
– — relationship and sclerality 367
homomeric 56, 62
– — relationship 62
– — under ligand-reflection group 275
– — under RS-permutation group 245
– — under RS-stereoisomeric group 279
homospheric
– — cycle 178

– — orbit 89, 398, 400
homospheric orbit
– chirality fittingness of — 89
homosphericity 89
– extended — 295
homotopic 105
horizontal direction 277
Hosoya 166
– — index 166, 406
hydroxymethyl 110

I

ICM 135, 141, 331
– alternative — 138
icosahedron 168
ICV 141
identity element 287
identity group 116
identity operation 276
Ihde 1
imaginary transition structure 169, 406
index
– cycle — 176
– Hosoya — 166
– partial cycle — 150
– sphericity — 127, 180
– subduced cycle — (SCI) 139
– subduced cycle — (SCI-CF) 139, 297
– type — 286, 378
– unit subduced cycle — 22
Ingold 93, 109
inner structure
– — of type-I promolecule 371
– — of type-II promolecule 374
– — of type-III promolecule 373
– — of type-IV promolecule 375
– — of type-V promolecule 373
intransitive 140
inventory
– ligand — 132, 135, 140, 153
inverse
– — element 64
– — mark table 119
– — matrix 119, 121
– — of mark table 292
– lower-triangular — mark table 292
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inverse mark table
– — of C3vσ̃̂I 292
– — of D2dσ̃̂I 355
– — of Tdσ̃̂I 325
inversion 2, 53
– N- — 165
irreducible representation
– restriction of — 122
isobutyl 5
isomer 39, 187
– — number 21, 28
– 3D-structural — 51, 187, 207
– cis- — 4
– configurational — 51
– constitutional — 3, 40, 51
– conventional definition of — 6
– conventional definition of constitutional —

6
– geometric — 270
– geometrical — 11
– positional — 3, 9, 42
– steric — 51, 187
– trans- — 4
isomeric
– — relationship 38
– constitutionally — 5
isomerism 5, 365
– permutational — 251
isomerization
– cis/trans- — 4, 13
– syn/anti- — 12
isometry 19
isomorphic
– — S[4] and Td 59
isomorphism 5
– — between Oh and Tdσ̃̂I 325
isopentyl 5
isoskeletal group 24, 407
isoskeletomer 43
– set of — 407
isoskeletomeric 344
isotactic 5
isotherm 5
isotope 5
isotropic 5
ITS 169, 406
– — concept 169
– subgraph of — 169

J

Jordan 109, 212

K

Kekulé 1, 42
Kelvin 2
ketone 49
Klein 286

L

label
– chiral — 379
– lowercase — 382
– RS-stereogenic — 379
– uppercase — 382
labelling
– hypothetical chiral — 100
lattice
– desymmeterization — 168
Le Bel 2, 407
lemma
– Burnside’s — 173
– Cauchy-Frobenius — 173
ligancy
– — 4 67
– — 6 72
– — 8 73
ligand 54, 131
– — inventory 153
– methyl — 165
– mobile — 165
– mono-valent — 200
– phenyl — 165
ligand inventory 132, 135, 140, 145, 176,

182, 280
ligand reflection 196, 274, 278, 369
– identity — 237
ligand-inventory
– — function 151
ligand-reflection group 275
– — C3̂I 275, 277
– — D2̂I 341
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– — G
̂I 278

– — T
̂I 313

Lloyd 212
LM-numbered skeleton 275, 277
local symmetry 26
– — C3vσ̃̂I 370
lone pair 239
lowercase
– — label 381, 382

M

mandala 410
manual
– on-line — 410
Maple 141, 183, 204, 219
– — programming code 167, 215, 219
mark 118
– tables of — 291
mark matrix 120
mark table 118, 131, 144, 291, 405
– — of C2v 118
– — of C3vσ̃̂I 291
– — of D3d 291
– inverse — 144, 292
– inverse — M−1

C2v
122

– inverse — M−1
D2dσ̃̂I

355

– inverse — M−1
G 119, 143

– inverse — M−1
G j

124

– inverse — M−1
Tdσ̃̂I

325

– inverse — of C2v 119
– lower-triangular — 292
markaracter method 22, 405
matching
– — of graph 166
– — polynomial 166, 167, 406
Mathematica 141
matrix
– fixed-point — (FPM) 134, 142
– inverse — 121
– isomer-counting — (ICM) 135, 141, 331
– lower triangular — 120, 121
– mark — 120
– type-enumeration — 301
maximum subgroup 277
McCasland 233

Mead 131
membership criterion
– — for enantiotopic 98, 99
meta 1
methane 44, 78
– bromochloro- — 77, 81
– bromochlorofluoro- — 81, 92
– chloro- — 79
– dichloro- — 81
methanol 39
method
– characteristic-monomial — 22, 405
– double-coset-representation — 22, 405
– elementary-superposition (ES) — 22
– elementary-superposition — 164, 405
– extended-superposition — 22, 405
– fixed-point-matrix (FPM) — 22, 28, 405
– Fujita’s proligand — 22
– markaracter — 22, 405
– Otter’s — 193
– partial-cycle-index (PCI) — 22, 28, 405
– partial-superposition — 165, 405
– restricted-fixed-point-matrix (RFPM) —

167, 406
– restricted-partial-cycle-index (RPCI) —

167, 168, 406
– restricted-subduced-cycle-index (RSCI) —

166, 406
– RSCI — 166
methyl
– — ligand 165
mirror image 2, 57, 91, 250
– global — 57
– local — 57
mirror plane 27, 55, 57, 59, 81
– — σd(1) 57
– a pair of — 59
– a perpendicular set of — 59
mirror-image formation 71
mirror-numbered
– — skeleton 57, 195, 273
Mislow 11, 18, 94, 106, 233, 251
mixture
– racemic — 251
model
– proligand-promolecule — 21, 53, 77, 165,

236
molecular
– — entity 36
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– — formula 38
molecular symmetry
– systematic classification of — 131
molecule 77
– — CHFClBr 96
– — of G j 131
– acyclic — 109
– cage-shaped — 167
– derivation of — 77
– highly symmetric — 405
– matched — 88
– mismatched — 56, 87
– non-rigid — 165
– symmetry-interesting — 405
monodentate 168
monograph
– Fujita’s — 119, 169, 182, 292
Morris 11
multiplication table 117
– — of C2v 71
– — of Td 60
multiplicity 120
– — of coset representation 79
– — of G(/Gi)-orbit 141
– — vector 121
– — vector (MV) 124
– bond — 38
MV 124

N

N-inversion 165, 409
nitrogen 144
nomenclature
– stereochemical — 286
non-redundant set
– — of subgroups 62
normal subgroup
– maximum — 278
North 11
notation
– graphic — 1
– SCR — 166, 169
– stereochemical — 384
number
– — of orbits 173
numbered skeleton 195, 236, 273

O

octahedral
– — skeleton 168, 235
octahedral complex 22
– enumeration of — 168
– inorganic — 72
– stereochemical notation for — 384
octahedron
– regular — 406
OMV 145
operation
– (roto)reflection — 56
– — ̂I 274
– — of D2dσ̃̂I 342
– — of Td 60
– — of Tdσ̃̂I 313
– symmetry — 56
optical activity 2
orbit 35, 63, 78, 106
– — among promolecules 138
– — Δi 173
– — due to global and local symmetries 64
– — of bonds 168
– — of edges 405
– — of vertices 405
– — within a promolecule 138
– C1(/C1)- — 371, 402
– C

̂I(/C
̂I)- — 371

– conservation of — 87
– Cs(/C1)- — 87, 96, 398, 400
– Cs(/Cs)- — 81, 87, 398, 400
– Cσ̃ (/C1)- — 398, 400
– Cσ̃ (/Cσ̃ )- — 398, 400
– Csσ̃̂I(/Cσ̃ )- — 400
– Csσ̃̂I(/Csσ̃̂I)- — 400
– D2d(/C1)- — 98
– D3h(/C3v)- — 85
– enantiospheric — 89, 105, 107
– hemispheric — 89
– homospheric — 89
– importance of — 405
– multiplicity of — 173
– number of — 173
– procedure for determining — 80
– RS-enantiotropic — 390, 391
– RS-hemitropic — 390, 402
– RS-homotropic — 390
– sphericity of — 178
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– Td(/C3v)- — 88
orbital 36
orbital function 36
order 254
organic reaction
– classification of — 169
– enumeration of — 405
ortho 1
Otter 193
overbar 66, 196, 236
oxathiane
– 1,4- — 166
oxetane 48
oxime
– Z/E-isomer of — 12
oxirane 48, 174, 179, 407
– — ring 71
– — skeleton 96, 132, 152
– 2,2-dimethyl- — 97
– cis-2,3-dimethyl- — 97
– stereochemical notation for — 384
oxygen 71, 144

P

pair
– reaction — 170
Paquette 105
para 1
paradigm shift 311, 407
paradox
– organic chemistry — 411
parenthesis
– bold — 39
partial cycle index
– — with chirality fittingness (PCI-CF) 150,

298
– — without chirality fittingness (PCI) 151
partial-superposition 405
– — method 165
partition 36, 140, 228, 230, 249
– — [θ ] 182, 298, 330
– seemingly parallel — 249
Pasteur 2
PCI 151, 405
– — for C3σ̃ 307
– — method 151

– — for Tσ̃ 256
PCI method 22, 405
– procedure of — 151
PCI-CF 150
– — for adamantan-2-ones 163
– — for allene derivatives 160
– — for C3 310
– — for C3v 305
– — for C3vσ̃̂I 298
– — for D2dσ̃̂I 355
– — for RS-stereoisomeric group 298
– — for Tdσ̃̂I 327
– — for tetrahedral derivatives 155
pentaerythritol 55, 87
pentan-3-ol
– 1-chloro-1-fluoro- — 381
pentane
– 2,3,4-trihydroxy- — 396
perfect matching
– — of graph 168, 406
permutation 12, 56, 116, 134
– — representation 134
permutation group 166, 174, 251
– — of order 12 236
– — of order 24 235
– — without reflection 193
– enumeration under — 166
– ZE- — 269
permutation representation 174
– — Λ

[θ ]
G 140

– — PC2v
76, 121

– — PC3v
79, 195

– — PD2d
76, 159, 185

– — PD2h
74

– — PǴ 297
– — PG 79, 120, 139, 173, 176
– — PTd

75, 154, 183
– transitive — 66, 116
permutational isomerism 233, 251
phenyl
– — ligand 165
philology
– chemical — 11
phosphine 239
– tertiary — 251
phosphorus 85, 239
photography
– color — 410
piperidine 166
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plane
– a pair of mirror — 59
– mirror — 55, 57, 59
planted promolecule 195, 242
– achiral — 200
planted tree 194
– three-dimensional — 177
point
– fixed — 57, 291
point group 56, 143
– — C1 249, 315
– — C2 149
– — C2v 69, 149, 286
– — C3 149
– — C3h 149, 277
– — C3i 292
– — C3v 63, 149, 212
– — C5 149
– — C5v 149, 169
– — Cs 55, 149
– — D2 149
– — D2d 55, 67, 74, 149, 261, 341, 347, 362
– — D2h 68, 149, 166, 265
– — D3 149
– — D3d 287
– — D3h 73, 149, 287
– — D4h 69, 74, 149, 342
– — D5 149
– — D6h 73, 149
– — G 278
– — I 149, 168
– — Ih 105, 149, 167, 168
– — integrated 273
– — Oh 72, 73, 144, 149, 168, 235, 405
– — S4 149
– — S6 292
– — T 63, 105, 149
– — Td 55, 149, 183, 236, 252, 313, 334,

370
– — Th 105, 149
– maximum-chiral — 187, 309, 338
– subgroup of — 60
point-group symmetry
– — of promolecule 55
– global — 63, 89
– local — 63, 89
Pólya 21, 174, 193, 206
Pólya’s theorem 233
– — of counting 174, 176

polynomial
– infinite — 203
– matching — 166, 167, 406
– Z-counting — 166, 167, 406
Pople 83
position
– axial — 85
– bridge — 75
– bridgehead — 75
– equatorial — 85
– substitution — 54
positional isomer 42
Prelog 93, 109, 378
Prelog’s rule 98
presumption
– misleading — of modern stereochemistry

403
primary 177
priority sequence 378
– tentative — 395
prismane 22, 167
– stereochemical notation for — 384
pro-R/pro-S-descriptor 25, 92, 93, 109, 388,

392
– — by pro-RS-stereogenicity 393
– assignability of — 398
pro-RS-stereogenicity 95, 388, 390, 396
– — due to RS-enantiotropicity 400
– — for textitpro-R/pro-S-descriptor 393
probe stereoisogram 394
– — of type I 401
– — of type-III 402
procedure
– — for determining orbits 80
– — for determining prochirality 95
– — for Fujita’s proligand method 183
– — of FPM method 143
– — of PCI method 151
prochiral center 112
prochirality 92, 387
– — as geometric concept 95
– — as purely-geometric concept 113
– — due to enantiosphericity 400
– — for faces of ethylene 166
– — of meso-tartaric acid 108
– global — 109
– Hanson’s — 93
– local — 110
– misleading interpretation of — 396
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– polysemous definition of — 93
– procedure for determining — 95
product
– — of cycles 56
– — of sphericity indices (PSI) 180
programming code
– Maple — 167, 204, 215, 219
projection
– Fischer-like — 54
proligand 22, 53, 77, 131, 195
– — inventory 256, 263
– achiral — 77, 132
– chiral — 135
– disregard of chiral — 233
– enantiomeric — 77
– inner — 195
– mirror-image — 237
proligand method 177, 410
– — for allene derivatives 184
– — for ethylene derivatives 186
– — for tetrahedral derivatives 183
– Fujita’s — 22, 174, 177, 194, 267, 304,

405
– Fujita’s — for achiral promolecules 189
– Fujita’s — for pairs of enantiomers 189
– Fujita’s — for steric isomers 187
– Fujita’s — of counting 182
promolecule 22, 54, 77
– — of G j 131
– binuclear — 177, 194
– dumbbell-type — 110
– planted — 195, 242
– reference — 23
– tentative — 395
– tetrahedral — 313
– trigonal pyramidal — 307
– type-I, type-III, or type-V — 25
– uninuclear — 177, 194
proof
– — for five types of stereoisograms 286
propane
– 2,2-dimethyl- — 165
prototype
– — of a stereogenic atom 233
– — of permutational isomerism 251
pseudo-point group
– — ̂D3h 165
– — ̂D6h 165, 170
– extended — 166

pseudoasymmetric 91, 379
– — alkyl ligand 205
– — axis 351
– — center 194, 259, 365
– — unit 365
pseudoasymmetry 16, 223
pseudorotation 2
– Berry’s — 169, 409
PSI 180, 304
– construction of — 183, 185
pyrrolidine 44

Q

quadruplet 298
– — and enantiomer 306
– — and respective promolecule 310
– — and RS-diastereomer 308
– — of promolecules 23
– — of RS-stereoisomers 28, 366, 368, 370,

407
– — of type-III stereoisogram 347
– enumeration of — 28
– number of — Áθ i 298
– type-I to type-V — 407
quantum chemistry 36

R

R/S-stereodescriptor 16, 24, 93, 109, 239,
260, 365, 371

– — assigned by RS-stereogenicity 377
Raban 106
racemate group 251
racemic mixture 251
reaction
– forward — 170
– organic — 169
– reverse — 170
reaction center graph
– — (RCG) 170
reaction graph
– — (RG) 170
– basic — (BRG) 170
reaction pair 170
– hexagonal — 170
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Rectus 378
recursion 203
recursive calculation 209
– Maple code for — 204
reflection 2, 56, 193, 236, 278, 369
– global — 57
– ligand — 196, 274, 278
– local — 57
reflection-invariant 382
reflective
– — nature 36
regular representation 71, 102
– — C2v(/C1) 71
– — Td(/C1) 167
relational term 17, 98, 106
relationship
– anisomeric — 47
– constitutionally-anisomeric — 40, 47
– constitutionally-isomeric — 40
– diastereomeric — 40, 47
– enantiomeric — 23, 36, 47, 249, 273, 285
– enantiotopic — 100
– equivalence — 17, 35
– holantimeric — 23, 277, 285
– homomeric — 62
– isomeric — 38, 46
– isoskeletomeric — 43, 46
– RS-diastereomeric — 23, 239, 240, 249,

274, 285
– skeletally-anisomeric — 43, 47
– stereoisomeric — 38, 46
– three — 284
representation
– coset — 116
– irreducible — 122
– permutation — 134
– regular — 71
– subduced — 122
RFPM method 167, 406
RG
– hexagonal — 170
ring
– — flipping 165
– benzene — 1
– chair-form — 165
– oxirane — 71
rise
– — from 2D to 3D 259
Robinson 193

root 200
rotation 56
– — axis 56, 59
– bond — 165, 409
– proper — 278
– three-fold — 56
rotoreflection 58
– — S4(3) 58
– four-fold — 58
rotoreflection axis 59
– four-fold — 60
row vector
– — of SCI-CF 152
RPCI method 167, 168, 406
RS-astereogenic 244, 369
RS-astereogenic group 388
– — C3σ̃ 390
– — Tσ̃ 390
RS-astereogenicity
– RS-stereogenicity/— 285
RS-diastereomer 23, 239, 249, 366, 404
– quadruplet and — 308
RS-diastereomeric 91, 236
– — relationship 23, 239, 240, 285, 369
– — relationship (coalescence) 249
– — relationship and RS-stereogenicity 367
RS-diastereotopic
– — proligand 404
– — relationship 25, 392
RS-enantiotropic
– — orbit 390, 391, 397, 398, 400
RS-enantiotropicity 390
– pro-RS-stereogenicity due to — 400
RS-hemitropic
– — orbit 390
RS-hemitropicity 390
RS-homotropic
– — orbit 390, 398, 400
RS-homotropicity 390
RS-non-stereogenic 244
RS-numbered skeleton 240, 274
RS-permutation 237, 239, 240, 244, 278,

369, 379
RS-permutation group 235, 239, 244
– — C1 249, 317
– — C3σ̂ 245
– — C3σ̃ 240, 307
– — D2˜h 265, 266
– — D2σ̃ 261, 341, 347
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– — Gσ̃ 278, 388
– — integrated 273
– — Tσ̃ 59, 252, 313, 336, 371
– lack of — 251
– RS-astereogenic — 244
– RS-stereogenic — 244
RS-permutation-group
– — symmetry 388
RS-stereogenic 244, 369
– — carbon 261
– — center 25, 404
– — group 388
– — label 379
RS-stereogenic aspect
– — of absolute configuration 367, 377
RS-stereogenicity 23, 24, 234, 260
– — and RS-diastereomeric relationship367
– — for type-I, type-III, or type-V 337
– — rule 378
– —/RS-astereogenicity 285, 366
RS-stereoisomer 366
– quadruplet of — 28
RS-stereoisomeric
– — center 25, 406
– term — 25
RS-stereoisomeric group 23, 28, 235, 366
– — C1 284
– — C3vσ̃̂I 277, 280, 287
– — C

̂I 282, 315
– — Cs 283
– — Cσ̃ 284, 317
– — D2dσ̃̂I 341, 349
– — Ǵ 278
– — Tdσ̃̂I 313, 370
RS-stereoisomerism 235
RS-tropicity 390
RSCI 166
RSCI method 166, 406
Ruch 131, 233
rule
– Prelog’s — 98

S

sandwich 169
scheme
– attributive — 17

– relational — 17
Schönflies 84
Schönflies symbol 60
– modified — 84
SCI 139, 405
SCI-CF 139, 144, 145, 297
– — for RS-stereoisomeric group 297
– formal row vector of — 327
– formal summation of — 149
scleral 369
scleral aspect
– — of absolute configuration 368
sclerality 23
– — and holantimeric relationship 367
– —/asclerality 285, 366
SCR 67, 82
SCR notation 166, 169
– — of Methodology 1 82, 84
– — of Methodology 2 83, 84
– Fujita’s — 84, 85
secondary 177
self-enantiomer 37
self-enantiomeric
– — (or achiral) 49
– — relationship 36, 369
self-holantimeric
– — relationship 369
self-isoskeletomeric 43
self-RS-diastereomeric
– — pair 258
– — relationship 369
set
– — Δ 173
Sheehan 131
SI
– assignment of — 185
Siegel 18, 94, 106, 233, 251
single bond 409
single criterion
– — by RS-stereogenicity 377
single-step
– — conversion by RS-permutation 391
Sinister 378
site
– — symmetry 84
– chirogenic — 101
skeletally-anisomeric 43
skeleton
– — of G 131
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– — of Ih 105
– — of ligancy 4 67, 158
– — of ligancy 6 72
– — of ligancy 8 73
– 1-azabicyclo[1.1.1]pentane — 245
– adamantan-2-one — 75, 121
– adamantane — 75
– adamantane-2,6-dione — 75, 98
– allene — 67, 190, 261, 341, 358
– benzene — 43, 73
– bicentroidal — 228
– butene — 46
– centroidal — 228
– cubane — 73, 167, 405
– cyclobutane — 46, 74
– cyclopropane — 46, 73, 277, 291
– cyclopropylidenecyclopropane — 266
– Dewar-benzene — 43
– dicyclopropylidenemethane — 74
– dodecahedrane — 105
– dumbbell — 108, 169, 217
– ethane — 291
– ethylene — 45, 68, 186, 265
– homomeric — 314
– ligand-mirror (LM)-numbered — 315, 343
– LM-numbered — 275, 277
– mirror-numbered — 57, 195, 236, 273,

314, 343
– molecular — 44
– naphthalene — 74
– numbered — 57, 132, 195, 236, 273
– octahedral — 72, 168, 235
– oxetane — 48
– oxirane — 48, 69, 96, 132, 152, 174
– phosphine — 239
– prismane — 43, 73, 167
– reference-numbered — 314, 343
– rigid — 53
– RS-numbered — 240, 274, 314, 343
– square planar — 69, 169
– square pyramidal — 409
– stereo- — 54
– tetrahedral — 23, 55, 67, 183, 190, 252,

313
– tetrahydrofuran — 48
– trigonal bipyramidal — 84
– trigonal pyramidal — 195, 239, 273
software 141
– scientific — 410

sphericity 22, 88, 131
– — of cycle 178, 194
– — of orbit 178
– concept of — 131, 267
– extended — 295
– extended concept of — 294
sphericity index 127, 132, 254
– — for cycle 180
– product of — 304
– product of — (PSI) 180
spiro[5.5]undecane 166
square
– — planar complex 169
– — planar skeleton 169
– — pyramidal skeleton 409
square bracket 37, 248, 249
square matrix 119
SSG 116, 123
– — of C3σ̃ 241
– — of C3v 241
– — of C3vσ̃̂I 289
– — of D2dσ̃̂I 352
– — of D2σ̃ 262
– — of D3d 289
– — of D3h 289
– — of D4h 352
– — of G 62
– — of Oh 322
– — of S[4] 253
– — of Td 62
– — of Tdσ̃̂I 322
– — of Tσ̃ 252
stabilization 321
stabilizer 64, 115, 279
stereochemical notation
– — for allene 384
stereochemistry
– beginning of — 2
– development of — 5
– history of — 2
– inorganic — 385, 411
– intra- and intermolecular — 28
– mathematical — 29
– modern — 2
– organic — 385
– traditional terminology of — 406
stereodescriptor
– R/S- — 16, 24
stereogenic 233, 365
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– — atom 260
– — center 258
– — unit 26, 260, 365
stereogenicity 16, 24, 260
stereoheterotopic 93
– — abandoned 394, 403
– — relationship 25
stereoisogram 23, 235, 236, 366, 368
– — of five types 323
– — of type I 23, 282, 380
– — of type II 284, 396
– — of type III 284
– — of type IV 280, 400
– — of type V 283
– — type 317
– correlation diagram of — 28, 406
– elementary — 277, 315, 343, 370
– five types of — 23, 286
– multiple — 406
– probe — 394
– probe — for pro-RS-stereogenicity 399
– probe — for prochirality 398
– tentative type-III — 394
– type-I — 315, 343, 360
– type-II — 317, 345, 360
– type-III — 318, 347, 360
– type-IV — 319, 349, 360
– type-V — 320, 350, 360, 402
stereoisogram approach
– — by Fujita 95
– Fujita’s —23, 91, 113, 158, 234, 286, 313,

341, 366, 379, 404
stereoisomer 53, 228, 230, 250, 365
– conventional definition of — 6
– set of — 406
stereoisomeric 5
– — relationship 38
stereoisomerism 5, 11, 131, 250, 251
– cis/trans- — 259
– theory of organic — 407
stereoisomerization 2
stereoskeleton 54, 109
– — of G 131
– — of Ih 105
– — of ligancy 4 67, 158, 408
– — of ligancy 6 72
– — of ligancy 8 73
steric hindrance 168
steric isomer 51, 187

steric-isomer
– — generator 206, 210
structure
– 2D — 259
– 3D — 1, 194
– cycle — 304
– imaginary transition — (ITS) 169
– inner — 110
– Kekulé — 168
– sandwich — 169
structure generator
– achiral — 203
subduced cycle index
– — with chirality fittingness 139, 297
– — without chirality fittingness 139
– unit — 127
subduced representation
– — Ǵ(/Ǵi) ↓ Ǵ j 293
subduction 100, 122
– — C2v(/C1) ↓ C1 132
– — C2v(/C1) ↓ Cs 132
– — C3vσ̃̂I(/Csσ̃̂I) ↓ Ǵ j 293
– — for Ǵ 292
– — for RS-stereoisomeric group 292
– — of coset representation 79, 122
– — of D2dσ̃̂I(/Csσ̃̂I) 355
– — of D∞h(/C∞v) 109
– — of Tdσ̃̂I(/C3vσ̃̂I) 326, 371
– — table 124, 294
– — Td(/C3v) ↓ C1 371
– — Tdσ̃̂I(/C3vσ̃̂I) ↓ C1 373
– — Tdσ̃̂I(/C3vσ̃̂I) ↓ C

̂I 371
– — Tdσ̃̂I(/C3vσ̃̂I) ↓ Cs 373
– — Tdσ̃̂I(/C3vσ̃̂I) ↓ Cσ̃ 374, 391
– — Tdσ̃̂I(/C3vσ̃̂I) ↓ Csσ̃ σ̂ 375
– — Tσ̃ (/C3σ̃ ) ↓ C1 371, 374
– — Tσ̃ (/C3σ̃ ) ↓ Cσ̃ 374, 376
– — under RS-permutation group 398
– — Td(/C3v) ↓ Cs 373
subduction table
– — of C2v 124, 125
– — of C3vσ̃̂I 294
– — of D3h 294
– — of G 124
subgraph
– — of ITS 169
– hierarchy of — 169
subgroup 60
– — of Oh 322
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– — of Td 60
– — of Tdσ̃̂I 322

– — S[4]
9 262

– conjugate — 60, 73, 123, 293
– cyclic — 119, 292
– five types of — 290
– maximum — 277
– maximum chiral — 62, 90
– maximum chiral — GC 278
– maximum normal — 278
– maximum RS-stereogenic — 244
– non-cyclic — 119, 292
– non-redundant set of — (SSG) 62, 116,

241, 252, 262, 289, 322, 352
– normal — 286
– type-I — 324, 354
– type-II — 323, 353
– type-III — 323, 353
– type-IV — 324, 354
– type-V — 323, 353
suborbit 85
– Cs(/C1)- — 110
– enantiospheric — 110
– sum of — 131
substituent 132
– achiral — 105
– achiral and chiral — 166
– dummy — 195
– monovalent — 211
substitution
– — position 54
– chiral — 99
– edge — 170
substitution criterion 106
– — for enantiotopic 99
succinic acid 110
switching
– — between 2D- and 3D-based concepts50
– arbitrary — 4
Sylvester 1
symmetric group
– — of degree 3 208, 240
– — of degree 4 59, 236, 253
– — of degree 6 235, 247
– — S[3] 240
– — S[4] 59, 236, 253
– — S[5] 149
– — S[6] 235, 247
– — S[n] 233

symmetry
– — element 59
– — operation 56
– D∞h- — 109
– global — 22, 26
– global point-group — 63, 89
– highest-attainable — 55, 87, 110
– local — 22, 26
– local point-group — 63, 89
– point-group — 55
– site — 84
– term — 26
– Th- — 105
symmetry criterion 106
– — for enantiotopic 98
synthesis
– asymmetric — 95
– chiral — 95, 100
– signle-step — 95
system
– Cahn-Ingold-Prelog (CIP) — 239
– computer algebra — 141
– Maple — 183
– pro-R/pro-S — 393

T

table
– — of marks 118
– mark — 118
– multiplication — 60
– subduction — 124, 294
– USCI-CF — 127, 144
tableau
– Young’s — 94, 371, 398
tartaric acid 222
– chiral — 94
– meso- — 94, 108, 222
– set of — 230
tautomerism
– valence — 53
taxonomy 36
– — of organic compounds 42
TEM 301, 332, 361
terdentate 168
term
– attributive — 16, 17, 98, 106
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– relational — 17, 98, 106
tertiary 177
tetradecane
– 3,6,9,12-tetraoxa- — 44
tetrahedral
– — skeleton 23, 67, 183, 190, 252, 313
tetrahedral promolecule 313
– — of type I, III, or V 377
– achiral and chiral — 190
– enumeration of — 336
– four positions of — 378
tetrahydrofuran 48
tetrahydropyran 166
TEX/LATEX 410
theorem 42, 55, 102, 142, 173, 189, 306,

308, 310
– — for chirality fittingness 89, 91, 92, 178,

180, 295
– — for chirogenic site 101
– — for conservation of orbit 87
– — for enumerating quadruplets 298
– — for Fujita’s proligand method 182, 187
– — for homomeric relationship 62, 245,

275, 279
– — for orbit 64
– — for regular representation 102
– — for signle-step synthesis 95
– — for single-step conversion 391
– — for the PCI method 150
– — for types of quadruplets 302
– — of conservation of chirality/achirality 55
– Cauchy-Frobenius — 173
– Pólya’s — 21, 193, 267
theory
– graph — 1, 21
– group — 54
– Le Bel’s — 21
– permutation-group — 131
– point-group — 131
– van’t Hoff’s — 14
topicity 131
total number
– — of achiral 3D-trees 222
– — of alkanes (3D-trees) 222, 226
– — of alkanes (trees) 231
transition structure
– imaginary — 406
transitive 116, 123, 135
tree 109, 193

– 3D- — 194
– balanced 3D- — 194
– bicentroidal — 109, 212, 228
– bicentroidal 3D- — 194, 213
– centroidal — 109, 212, 227
– centroidal 3D- — 194, 213
– planted — 177, 194
– planted 3D — 194
– unbalanced 3D- — 194
triangular matrix
– lower — MG 120
– lower — M−1

G 121
trigonal bipyramidal
– — complex 84, 169
– — skeleton 84
– stereochemical notation for — compound

384
trigonal pyramidal
– — derivative 298
– — promolecule 307
– — skeleton 195, 239, 273
trioxane
– 1,3,5- — 165
twist
– — of double bond 269
type index 286, 378

U

Ugi 233, 251
uninuclear
– — promolecule 177
unit
– chirality — 365, 379
– pseudoasymmetric — 365
– stereogenic — 26, 365
unit subduced cycle index 22, 127
uppercase
– — label 382
USCI 128
– Fujita’s — (unit-subduced-cycle-index) ap-

proach 370
USCI approach 22
– Fujita’s — 22, 131, 256, 287, 336, 368,

405
USCI table
– — of C2v 129
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– — of G 129
USCI-CF 127, 131, 327
– — for RS-stereoisomeric group 295
USCI-CF table 144
– — of C2v 128
– — of C3vσ̃̂I 296
– — of D3h 296
– — of G 127

V

valence tautomerism 53
valency
– obligatory minimum — (OMV) 145
van’t Hoff 2, 258, 407
variable 309
– dummy — 128, 139, 151, 200, 212, 254
vector
– fixed-point — 291
– fixed-point — (FPV) 120, 123, 135
– isomer-counting — (ICV) 141
– multiplicity — 121, 124
vertex 212
– orbit of — 405
vertical direction 277

W

Wilson 212
Word 410
wreath product 194

X

XΥMTEX 410

Y

Young 94
Young’s tableau 371, 398

Z

Z/E-descriptor 260, 270
Z/E-isomer 270
ZE-permutation group 269
– — ˜D2 269
Zelewsky 11, 233, 411
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