
Logical
Foundations of
Cyber-Physical
Systems

André Platzer

Logical Foundations of Cyber-Physical Systems

André Platzer

Logical Foundations
of Cyber-Physical Systems

André Platzer
Computer Science Department
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

The content of the book and the image used on the book cover are based upon work performed
at Carnegie Mellon University and supported by the National Science Foundation under
NSF CAREER Award CNS-1054246.

https://doi.org/10.1007/978-3-319-63588-0

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.

ISBN 978-3-319-63587-3 ISBN 978-3-319-63588-0 (eBook)

Library of Congress Control Number: 2018946565

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein
or for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-63588-0

v

Endorsements

This excellent textbook marries design and analysis of cyber-physical systems with
a logical and computational way of thinking. The presentation is exemplary for find-
ing the right balance between rigorous mathematical formalization and illustrative
case studies rooted in practical problems in system design.

Rajeev Alur, University of Pennsylvania

This book provides a wonderful introduction to cyber-physical systems, covering
fundamental concepts from computer science and control theory from the perspec-
tive of formal logic. The theory is brought to life through many didactic examples,
illustrations, and exercises. A wealth of background material is provided in the text
and in an appendix for each chapter, which makes the book self-contained and ac-
cessible to university students of all levels.

Goran Frehse, Université Grenoble Alpes

[The author] has developed major important tools for the design and control of
those cyber-physical systems that increasingly shape our lives. This book is a ‘must’
for computer scientists, engineers, and mathematicians designing cyber-physical
systems.

Anil Nerode, Cornell University

As computing interfaces increasingly with our physical world, resulting in so-
called cyber-physical systems, our foundations of computing need to be enriched
with suitable physical models. This book strikes a wonderful balance between rig-
orous foundations for this next era of computing with illustrative examples and ap-
plications that drive the developed methods and tools. A must read book for anyone
interested in the development of a modern and computational system science for
cyber-physical systems.

George J. Pappas, University of Pennsylvania

This definitive textbook on cyber-physical systems lays the formal foundations
of their behavior in terms of a single logical framework. Platzer’s logic stands out
among all other approaches because it provides a uniform treatment of both the dis-
crete and continuous nature of cyber-physical systems, and does not shy away from
their complex behavior due to stochasticity, uncertainty, and adversarial agents in
the environment. His computational thinking approach makes this work accessible
to practicing engineers who need to specify and verify that cyber-physical systems
are safe.

Jeannette M. Wing, Columbia University

vi

Foreword

I first met André when he was just finishing his PhD and gave a job talk at CMU (he
got the job). I was a visiting researcher and got to take the young faculty candidate
out for lunch. André talked about verifying cyber-physical systems (CPS) using
“differential dynamic logic” and theorem proving. I was skeptical, for one because
related approaches had only seen modest success, and also because my money was
on a different horse. A few years before, I had developed a model checker (PHAVer),
and was working on a second one, called SpaceEx. At the time, these were the only
verification tools that, on the push of a button, could verify certain benchmarks from
CPS and other domains involving continuous variables that change with time. I was
quite proud of them and, for me, algorithmic verification was the way to go. But
André was determined to make theorem proving work in practice, and indeed, he
advanced the field to an extent that I did not think possible. André and his team first
developed the logical framework, then built a very capable theorem prover for CPS
(KeYmaera), successfully applied it to industrial case studies like airplane collision
avoidance, and, finally, addressed important application issues such as validating the
model at runtime.

The book in front of you provides a comprehensive introduction on how to rea-
son about cyber-physical systems using the language of logic and deduction. Along
the way, you will become familiar with many fundamental concepts from computer
science, applied mathematics, and control theory, all of which are essential for CPS.
The book can be read without much prior knowledge, since all necessary back-
ground material is provided in the text and in appendices for many chapters. The
book is structured in the following four parts. In the first part, you will learn how to
model CPS with continuous variables and programming constructs, how to specify
requirements and how to check whether the model satisfies the requirements using
proof rules. The second part adds differential equations for modeling the physical
world. The third part introduces the concept of an adversary, who can take actions
that the system can not influence directly. In a control system, the adversary can
be the environment, which influences the system behavior through noise and other
disturbances. Making decisions in the presence of an adversary means trying to be
prepared for the worst case. The fourth part adds further elements for reasoning
soundly and efficiently about systems in applications, such as using real arithmetic
and – my favorite – monitor conditions. Monitor conditions are checked while the
system is in operation. As long as they hold, one can be sure that not only the model
but also the actual CPS implementation satisfy the safety requirements.

By now André and his group have handled an impressive number of case studies
that are beyond the capabilities of any model checker I know. Fortunately for me
and my horse, the converse is also still true, since some problems can in practice
only be solved numerically using algorithmic approaches. If your goal is to obtain a
rock-solid foundation for CPS from the beautiful and elegant perspective of logics,
then this is the book for you.

Goran Frehse, Associate Professor, Université Grenoble Alpes, Grenoble, 2017

vii

Acknowledgements

This textbook is based on the lecture notes for the Foundations of Cyber-Physical

Systems undergraduate course I taught in the Computer Science Department at
Carnegie Mellon University. The textbook would have been impossible without
the feedback from the students and helpful discussions with the teaching assis-
tants João Martins, Annika Peterson, Nathan Fulton, Anastassia Kornilova, Bran-
don Bohrer, and especially Sarah Loos who TAed for the first instance in Fall 2013
and co-instructed for the intensive courses at ENS Lyon, France, in Spring 2014 and
at MAP-i, Braga, Portugal in Summer 2014. Based on the experience with earlier
Ph.D.-level courses, this course was originally designed as an undergraduate course
but then extended to master’s students and eventually Ph.D. students.

I appreciate the feedback of all my students on this textbook, but also by my post-
docs Stefan Mitsch, Jean-Baptiste Jeannin, Khalil Ghorbal, and Jan-David Quesel. I
am especially thankful to Sarah Loos’s formative comments on the earliest draft and
Yong Kiam Tan’s careful extensive feedback for the final version. I am also grate-
ful to Jessica Packer’s exhaustive consistency checking on the textbook structuring
and to Julia Platzer for crucial advice on illustrations. I am most indebted to the de-
velopers Stefan Mitsch and Nathan Fulton of the KeYmaera X prover for verifying
cyber-physical systems, and very much appreciate also the KeYmaera X contribu-
tions by Brandon Bohrer, Yong Kiam Tan, Jan-David Quesel, and Marcus Völp.
For help with the book process, I am grateful to the copyeditor and Ronan Nugent
from Springer. Especially, however, I thank my family, without whose patience and
support this book would not exist.

This textbook captures findings from the NSF CAREER Award on Logical Foun-

dations of Cyber-Physical Systems, which I am very grateful to have received. I also
benefitted from Helen Gill’s advice as a program manager when this project started.

Funding

This material is based upon work supported by the National Science Foundation
under NSF CAREER Award CNS-1054246.

Any opinions, findings, and conclusions or recommendations expressed in this
publication are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

Pittsburgh, December 2017 André Platzer

viii

Disclaimer

This book is presented solely for educational purposes. While best efforts have been
used in preparing this book, the author and publisher make no representations or
warranties of any kind and assume no liabilities of any kind with respect to the
accuracy or completeness of the contents and specifically disclaim any implied war-
ranties of merchantability or fitness of use for a particular purpose. Neither the au-
thor nor the publisher shall be held liable or responsible to any person or entity with
respect to any loss or incidental or consequential damages caused, or alleged to have
been caused, directly or indirectly, by the information contained herein. No warranty
may be created or extended by sales representatives or written sales materials.

Contents

1 Cyber-Physical Systems: Overview 1

1.1 Introduction . 1
1.1.1 Cyber-Physical Systems Analysis by Example 2
1.1.2 Application Domains . 3
1.1.3 Significance . 4
1.1.4 The Importance of Safety 4

1.2 Hybrid Systems Versus Cyber-Physical Systems 6
1.3 Multi-dynamical Systems . 7
1.4 How to Learn About Cyber-Physical Systems 10
1.5 Computational Thinking for Cyber-Physical Systems 12
1.6 Learning Objectives . 12
1.7 Structure of This Textbook . 15
1.8 Summary . 18
References . 19

Part I Elementary Cyber-Physical Systems 25

2 Differential Equations & Domains 27

2.1 Introduction . 27
2.2 Differential Equations as Models of Continuous Physical Processes 28
2.3 The Meaning of Differential Equations 31
2.4 A Tiny Compendium of Differential Equation Examples 33
2.5 Domains of Differential Equations 39
2.6 Syntax of Continuous Programs 41

2.6.1 Continuous Programs . 41
2.6.2 Terms . 42
2.6.3 First-Order Formulas . 43

2.7 Semantics of Continuous Programs 45
2.7.1 Terms . 45

ix

x Contents

2.7.2 First-Order Formulas . 47
2.7.3 Continuous Programs . 51

2.8 Summary . 52
2.9 Appendix . 53

2.9.1 Existence Theorems . 53
2.9.2 Uniqueness Theorems . 54
2.9.3 Linear Differential Equations with Constant Coefficients . . 55
2.9.4 Continuation and Continuous Dependency 57

Exercises . 58
References . 61

3 Choice & Control 63

3.1 Introduction . 63
3.2 A Gradual Introduction to Hybrid Programs 65

3.2.1 Discrete Change in Hybrid Programs 66
3.2.2 Compositions of Hybrid Programs 66
3.2.3 Decisions in Hybrid Programs 68
3.2.4 Choices in Hybrid Programs 69
3.2.5 Tests in Hybrid Programs 71
3.2.6 Repetitions in Hybrid Programs 73

3.3 Hybrid Programs . 75
3.3.1 Syntax . 75
3.3.2 Semantics . 77

3.4 Hybrid Program Design . 82
3.4.1 To Brake, or Not to Brake, That Is the Question 82
3.4.2 A Matter of Choice . 83

3.5 Summary . 84
3.6 Appendix: Modeling the Motion of a Robot Around a Bend 85
Exercises . 87
References . 92

4 Safety & Contracts 95

4.1 Introduction . 95
4.2 A Gradual Introduction to CPS Contracts 97

4.2.1 The Adventures of Quantum the Bouncing Ball 98
4.2.2 How Quantum Discovered a Crack in the Fabric of Time . . 101
4.2.3 How Quantum Learned to Deflate 103
4.2.4 Postcondition Contracts for CPS 105
4.2.5 Precondition Contracts for CPS 106

4.3 Logical Formulas for Hybrid Programs 107
4.4 Differential Dynamic Logic . 110

4.4.1 Syntax . 110
4.4.2 Semantics . 112

4.5 CPS Contracts in Logic . 115
4.6 Identifying Requirements of a CPS 118

Contents xi

4.7 Summary . 122
4.8 Appendix . 123

4.8.1 Intermediate Conditions for a Proof of Sequential Composi-
tions . 124

4.8.2 A Proof of Choice . 126
4.8.3 A Proof of Tests . 127

Exercises . 129
References . 134

5 Dynamical Systems & Dynamic Axioms 137

5.1 Introduction . 137
5.2 Intermediate Conditions for CPS 139
5.3 Dynamic Axioms for Dynamical Systems 142

5.3.1 Nondeterministic Choices 142
5.3.2 Soundness of Axioms . 146
5.3.3 Assignments . 146
5.3.4 Differential Equations . 148
5.3.5 Tests . 151
5.3.6 Sequential Compositions 152
5.3.7 Loops . 155
5.3.8 Diamonds . 156

5.4 A Proof of a Short Bouncing Ball 157
5.5 Summary . 159
5.6 Appendix . 160

5.6.1 Modal Modus Ponens Has Implications on Boxes 160
5.6.2 Vacuous State Change if Nothing Relevant Ever Changes . . 162
5.6.3 Gödel Generalizes Validities into Boxes 162
5.6.4 Monotonicity of Postconditions 163
5.6.5 Of Free and Bound Variables 164
5.6.6 Free and Bound Variable Analysis 165

Exercises . 168
References . 172

6 Truth & Proof 173

6.1 Introduction . 173
6.2 Truth and Proof . 175

6.2.1 Sequents . 177
6.2.2 Proofs . 179
6.2.3 Propositional Proof Rules 180
6.2.4 Soundness of Proof Rules 185
6.2.5 Proofs with Dynamics . 187
6.2.6 Quantifier Proof Rules . 190

6.3 Derived Proof Rules . 192
6.4 A Sequent Proof for the Single-Hop Bouncing Ball 193
6.5 Real Arithmetic . 195

xii Contents

6.5.1 Real Quantifier Elimination 196
6.5.2 Instantiating Real-Arithmetic Quantifiers 199
6.5.3 Weakening Real Arithmetic by Removing Assumptions . . 200
6.5.4 Structural Proof Rules in Sequent Calculus 201
6.5.5 Substituting Equations into Formulas 203
6.5.6 Abbreviating Terms to Reduce Complexity 203
6.5.7 Creatively Cutting Real Arithmetic to Transform Questions 204

6.6 Summary . 205
Exercises . 206
References . 209

7 Control Loops & Invariants 211

7.1 Introduction . 211
7.2 Control Loops . 213
7.3 Induction for Loops . 215

7.3.1 Induction Axiom for Loops 215
7.3.2 Induction Rule for Loops 217
7.3.3 Loop Invariants . 220
7.3.4 Contextual Soundness Requirements 223

7.4 A Proof of a Happily Repetitive Bouncing Ball 225
7.5 Splitting Postconditions into Separate Cases 230
7.6 Summary . 232
7.7 Appendix . 233

7.7.1 Loops of Proofs . 233
7.7.2 Breaking Loops of Proofs 235
7.7.3 Invariant Proofs of Loops 238
7.7.4 Alternative Forms of the Induction Axiom 239

Exercises . 241
References . 243

8 Events & Responses 245

8.1 Introduction . 245
8.2 The Need for Control . 247

8.2.1 Events in Control . 248
8.2.2 Event Detection . 250
8.2.3 Dividing Up the World . 255
8.2.4 Event Firing . 259
8.2.5 Event-Triggered Verification 260
8.2.6 Event-Triggered Control Paradigm 261
8.2.7 Physics Versus Control Distinctions 263

8.3 Summary . 263
Exercises . 264
References . 266

Contents xiii

9 Reactions & Delays 267

9.1 Introduction . 267
9.2 Delays in Control . 269

9.2.1 The Impact of Delays on Event Detection 272
9.2.2 Model-Predictive Control Basics 273
9.2.3 Design-by-Invariant . 275
9.2.4 Sequencing and Prioritizing Reactions 276
9.2.5 Time-Triggered Verification 279

9.3 Summary . 281
Exercises . 282
References . 284

Part II Differential Equations Analysis 285

10 Differential Equations & Differential Invariants 287

10.1 Introduction . 287
10.2 A Gradual Introduction to Differential Invariants 289

10.2.1 Global Descriptive Power of Local Differential Equations . 290
10.2.2 Intuition for Differential Invariants 291
10.2.3 Deriving Differential Invariants 293

10.3 Differentials . 295
10.3.1 Syntax . 295
10.3.2 Semantics of Differential Symbols 296
10.3.3 Semantics of Differential Terms 299
10.3.4 Derivation Lemma with Equations of Differentials 301
10.3.5 Differential Lemma . 303
10.3.6 Differential Invariant Term Axiom 304
10.3.7 Differential Substitution Lemmas 306

10.4 Differential Invariant Terms . 308
10.5 A Differential Invariant Proof by Generalization 310
10.6 Example Proofs . 311
10.7 Summary . 313
10.8 Appendix . 315

10.8.1 Differential Equations Versus Loops 315
10.8.2 Differential Invariant Terms and Invariant Functions 318

Exercises . 320
References . 321

11 Differential Equations & Proofs 323

11.1 Introduction . 323
11.2 Recap: Ingredients for Differential Equation Proofs 326
11.3 Differential Weakening . 327
11.4 Operators in Differential Invariants 329

11.4.1 Equational Differential Invariants 329

xiv Contents

11.4.2 Differential Invariant Proof Rule 331
11.4.3 Differential Invariant Inequalities 332
11.4.4 Disequational Differential Invariants 335
11.4.5 Conjunctive Differential Invariants 336
11.4.6 Disjunctive Differential Invariants 338

11.5 Differential Invariants . 339
11.6 Example Proofs . 341
11.7 Assuming Invariants . 343
11.8 Differential Cuts . 346
11.9 Differential Weakening Again . 350
11.10 Differential Invariants for Solvable Differential Equations 350
11.11 Summary . 352
11.12 Appendix: Proving Aerodynamic Bouncing Balls 353
Exercises . 358
References . 360

12 Ghosts & Differential Ghosts 363

12.1 Introduction . 363
12.2 Recap . 366
12.3 A Gradual Introduction to Ghost Variables 366

12.3.1 Discrete Ghosts . 366
12.3.2 Proving Bouncing Balls with Sneaky Solutions 368
12.3.3 Differential Ghosts of Time 374
12.3.4 Constructing Differential Ghosts 375

12.4 Differential Ghosts . 378
12.5 Substitute Ghosts . 383
12.6 Limit Velocity of an Aerodynamic Ball 384
12.7 Axiomatic Ghosts . 387
12.8 Summary . 388
12.9 Appendix . 389

12.9.1 Arithmetic Ghosts . 389
12.9.2 Nondeterministic Assignments & Ghosts of Choice 390
12.9.3 Differential-Algebraic Ghosts 392

Exercises . 394
References . 395

13 Differential Invariants & Proof Theory 397

13.1 Introduction . 397
13.2 Recap . 400
13.3 Comparative Deductive Study: Relativity Theory for Proofs 401
13.4 Equivalences of Differential Invariants 402
13.5 Differential Invariants & Arithmetic 403
13.6 Differential Invariant Equations 405
13.7 Equational Incompleteness . 407
13.8 Strict Differential Invariant Inequalities 410

Contents xv

13.9 Differential Invariant Equations as Differential Invariant Inequalities 412
13.10 Differential Invariant Atoms . 413
13.11 Summary . 414
13.12 Appendix: Curves Playing with Norms and Degrees 414
Exercises . 416
References . 416

Part III Adversarial Cyber-Physical Systems 419

14 Hybrid Systems & Games 421

14.1 Introduction . 421
14.2 A Gradual Introduction to Hybrid Games 424

14.2.1 Choices & Nondeterminism 424
14.2.2 Control & Dual Control 426
14.2.3 Demon’s Derived Controls 427

14.3 Syntax of Differential Game Logic 428
14.3.1 Hybrid Games . 429
14.3.2 Differential Game Logic Formulas 432
14.3.3 Examples . 433

14.4 An Informal Operational Game Tree Semantics 439
14.5 Summary . 443
Exercises . 444
References . 447

15 Winning Strategies & Regions 449

15.1 Introduction . 449
15.2 Semantics of Differential Game Logic 451

15.2.1 Limits of Reachability Relations 451
15.2.2 Set-Valued Semantics of Differential Game Logic Formulas 452
15.2.3 Winning-Region Semantics of Hybrid Games 453

15.3 Semantics of Repetition in Hybrid Games 458
15.3.1 Repetitions with Advance Notice 458
15.3.2 Repetitions as Infinite Iterations 460
15.3.3 Inflationary Semantics of Repetition 465
15.3.4 Characterizing Winning Repetitions Implicitly 469

15.4 Semantics of Hybrid Games . 473
15.5 Summary . 476
Exercises . 476
References . 478

16 Winning & Proving Hybrid Games 479

16.1 Introduction . 479
16.2 Semantical Considerations . 481

16.2.1 Monotonicity . 481
16.2.2 Determinacy . 482

xvi Contents

16.3 Dynamic Axioms for Hybrid Games 484
16.3.1 Determinacy . 484
16.3.2 Monotonicity . 485
16.3.3 Assignments . 486
16.3.4 Differential Equations . 486
16.3.5 Challenge Games . 488
16.3.6 Choice Games . 488
16.3.7 Sequential Games . 490
16.3.8 Dual Games . 490
16.3.9 Repetition Games . 492
16.3.10 Proof Rules for Repetition Games 494

16.4 Example Proofs . 495
16.5 Axiomatization . 498

16.5.1 Soundness . 499
16.5.2 Completeness . 501

16.6 There and Back Again Game . 503
16.7 Summary . 504
Exercises . 504
References . 507

17 Game Proofs & Separations 509

17.1 Introduction . 509
17.2 Recap: Hybrid Games . 510
17.3 Separating Axioms . 511
17.4 Repetitive Diamonds – Convergence Versus Iteration 516
17.5 Summary . 519
17.6 Appendix: Relating Differential Game Logic and Differential Dy-

namic Logic . 520
Exercises . 521
References . 521

Part IV Comprehensive CPS Correctness 523

18 Axioms & Uniform Substitutions 525

18.1 Introduction . 525
18.2 Axioms Versus Axiom Schemata 528
18.3 What Axioms Want . 530
18.4 Differential Dynamic Logic with Interpretations 533

18.4.1 Syntax . 533
18.4.2 Semantics . 535

18.5 Uniform Substitution . 536
18.5.1 Uniform Substitution Rule 537
18.5.2 Examples . 539
18.5.3 Uniform Substitution Application 542

Contents xvii

18.5.4 Uniform Substitution Lemmas 545
18.5.5 Soundness . 546

18.6 Axiomatic Proof Calculus for dL 547
18.7 Differential Axioms . 549
18.8 Summary . 551
18.9 Appendix: Uniform Substitution of Rules and Proofs 551
Exercises . 552
References . 555

19 Verified Models & Verified Runtime Validation 557

19.1 Introduction . 557
19.2 Fundamental Challenges with Inevitable Models 559
19.3 Runtime Monitors . 562
19.4 Model Compliance . 565
19.5 Provably Correct Monitor Synthesis 568

19.5.1 Logical State Relations . 569
19.5.2 Model Monitors . 571
19.5.3 Correct-by-Construction Synthesis 571

19.6 Summary . 573
Exercises . 574
References . 575

20 Virtual Substitution & Real Equations 577

20.1 Introduction . 577
20.2 Framing the Miracle . 580
20.3 Quantifier Elimination . 583

20.3.1 Homomorphic Normalization for Quantifier Elimination . . 585
20.3.2 Substitution Base . 587
20.3.3 Term Substitutions for Linear Equations 588

20.4 Square Root
√· Virtual Substitutions for Quadratics 590

20.4.1 Square Root Algebra . 592
20.4.2 Virtual Substitutions of Square Roots 595

20.5 Optimizations . 599
20.6 Summary . 599
20.7 Appendix: Real Algebraic Geometry 600
Exercises . 601
References . 603

21 Virtual Substitution & Real Arithmetic 607

21.1 Introduction . 607
21.2 Recap: Square Root

√· Virtual Substitutions for Quadratics 609
21.3 Infinity ∞ Virtual Substitution . 609
21.4 Infinitesimal ε Virtual Substitution 612
21.5 Quantifier Elimination by Virtual Substitution for Quadratics . . . 618
21.6 Optimizations . 623

xviii Contents

21.7 Summary . 624
21.8 Appendix: Semialgebraic Geometry 625
Exercises . 625
References . 627

Index 629

Operators & Axioms 637

List of Figures

1.1 Airplane example: Which control decisions are safe for aircraft col-
lision avoidance? . 2

1.2 Multi-dynamical systems aspects of CPS 8
1.3 Dependencies and suggested reading sequences of the chapters . . 17

2.1 Vector field with one solution of a differential equation 29
2.2 Vector field with one solution of accelerated straight-line motion . 30
2.3 Discretizations of differential equations with a discretization time

step . 31
2.4 Differential equation solution condition 32
2.5 Constant differential equation . 33
2.6 Linear differential equation . 33
2.7 A solution of the rotational differential equations 36
2.8 Another solution of the rotational differential equations with initial

values 1 . 37
2.9 A faster solution of the rotational differential equations with initial

values 1 . 37
2.10 A solution of the time square oscillator and the damped oscillator . 38
2.11 System x′ = f (x)&Q follows the differential equation x′ = f (x) for

any duration but cannot leave evolution domain Q 41
2.12 Illustration of the dynamics of continuous programs 51

3.1 An illustration of the behavior of an instantaneous discrete change . 66
3.2 Fixed acceleration, velocity, and position change over time 67
3.3 Acceleration, velocity, and position change over time 68
3.4 Transition semantics and example dynamics of hybrid programs . . 78
3.5 Nested transition semantics pattern for (α;β)∗ 81
3.6 Nested transition semantics pattern for (α ∪β)∗ 81
3.7 Transition structure of the acceleration/braking example 83
3.8 Illustration of a Dubins path consisting of a sequence of lines and

maximally curved circle segments 86

xix

xx List of Figures

3.9 Illustration of the Dubins dynamics of a point (x,y) moving in di-
rection (v,w) along a dashed curve with angular velocity ω 86

3.10 Hybrid automaton for a car that can accelerate or brake 91

4.1 Sample trajectory of a bouncing ball 98
4.2 Sample trajectory of a bouncing ball with a crack in the floor . . . 101
4.3 Sample trajectory of a bouncing ball over its hybrid time domain . 102
4.4 Hybrid time domain for the sample trajectory of a bouncing ball . . 103
4.5 Sample trajectory of a bouncing ball that ultimately lies down flat . 104
4.6 Transition semantics of modalities in dL formulas 115
4.7 Sample trajectory of a bouncing ball in an anti-gravity field 118
4.8 Sample trajectory of a bouncing ball with anti-damping 120
4.9 Sample trajectory of a bouncing ball with upwards initial velocity . 120
4.10 Sample trajectory of a bouncing ball dribbling with fast initial ve-

locity . 121

5.1 Sample trajectory of a single-hop bouncing ball 140
5.2 Intermediate conditions for sequential compositions 142
5.3 Illustration of dynamic axiom for sequential composition 154
5.4 Summary of sound differential dynamic logic axioms from this

chapter . 160
5.5 Additional axioms and proof rules for hybrid systems 171

6.1 Propositional proof rules of sequent calculus 180
6.2 A simple propositional example proof in sequent calculus 184
6.3 A simple example proof with dynamics in sequent calculus 189
6.4 Quantifier sequent calculus proof rules 190
6.5 Sequent calculus proof for gravity above ground 193
6.6 Proof rules of the dL sequent calculus considered in this chapter . . 206

7.1 Successively using induction axiom I at each state reached after
running iterations of α∗ . 218

7.2 Sequent calculus proof shape for bouncing ball 226
7.3 Sequent calculus proof for bouncing ball with split 231
7.4 Summary of proof rules for loops, generalization, monotonicity,

and splitting boxes . 232
7.5 Loops of proofs: iterating and splitting the box 234
7.6 Loops of proofs: iterating and generalizing the box 236
7.7 Loops of proofs: intermediate generalizations 238
7.8 Derivation of backwards unwinding axiom from alternative induc-

tion axiom . 240

8.1 Sample trajectory of a bouncing ball bouncing freely 248
8.2 Sample trajectory of a ping-pong ball 249
8.3 Sample trajectory of a ping-pong ball which misses one event . . . 250

List of Figures xxi

8.4 Sample trajectory of a ping-pong ball, sometimes actuating early,
sometimes late . 252

8.5 Sample trajectory of a ping-pong ball with the controller firing mul-
tiple times for the same event . 258

8.6 Sample trajectory of a ping-pong ball with the controller firing mul-
tiple times for the same event on the event boundary 258

9.1 Sample trajectory of a ping-pong ball, sometimes actuating early,
sometimes late . 270

9.2 Sample trajectory of a time-triggered ping-pong ball missing the
first event . 272

9.3 Sample trajectory of a time-triggered ping-pong ball missing dif-
ferent events with different sampling periods 274

9.4 Sample trajectory of a time-triggered ping-pong ball failing to con-
trol on the ground . 276

9.5 Sample trajectory of a time-triggered ping-pong ball stuck on the
ground . 277

10.1 Vector field and one solution of a differential equation that does not
enter the unsafe regions . 292

10.2 One scenario for the rotational dynamics and relationship of a di-
rection vector to the radius and angle 293

10.3 Differential invariant remains true in the direction of the dynamics . 294
10.4 Semantics of differential symbol x′ along differential equation . . . 299
10.5 Differential form semantics of differentials: their value depends on

the point as well as on the direction of the vector field at that point . 301
10.6 Differential invariant of the indicated dynamics 311
10.7 Two differential invariants of the indicated self-crossing dynamics . 312
10.8 Two differential invariants of the indicated dynamics for the Motzkin

polynomial . 313
10.9 Axioms for differential invariant terms of differential equations

without solutions . 314

11.1 Differential weakening axiom DW 328
11.2 Equal rate of change from equal initial value 330
11.3 Differential invariant for safety 332
11.4 Lesser or equal rate of change from lesser or equal initial value . . 333
11.5 Cubic dynamics proof . 334
11.6 Cubic dynamics . 334
11.7 Lesser or equal rate of change from lesser initial value 334
11.8 Unsound attempt to use disequalities 335
11.9 Linear evolution of x′ = 1 . 335
11.10 Different rates of change from different initial values do not prove

anything . 336
11.11 Soundness proof for conjunctive differential invariant axiom 337

xxii List of Figures

11.12 Differential invariant proof for bouncing ball in gravity 338
11.13 Soundness proof for disjunctive differential invariant axiom 339
11.14 Damped-oscillator time trajectory and invariant in phase space . . . 342
11.15 Illustration of the Dubins dynamics of a point (x,y) moving in di-

rection (v,w) along a dashed curve with angular velocity ω 343
11.16 If the solution of the differential equation can never leave region C

and enter the red region ¬C, then this unreachable region ¬C can
be cut out of the state space without changing the dynamics of the
system . 347

11.17 Trajectory with vector field and evolution of an increasingly damped
oscillator . 348

11.18 Differential cut proof for the increasingly damped oscillator 348
11.19 If the solution of the differential equation can never leave region D

and enter the region ¬D, then this unreachable region ¬D can also
be cut out of the state space without changing the dynamics of the
system . 349

11.20 Axioms and proof rules for differential invariants and differential
cuts of differential equations . 353

12.1 Exponential decay along x′ = x always makes matters worse for
x > 0 . 376

12.2 Differential ghost y as counterweight for exponential decay along
x′ = x . 378

12.3 Explosive differential ghosts that do not exist long enough would
unsoundly limit the duration of solutions 379

12.4 Differential ghost y to balance exponential growth along x′ = x . . 381
12.5 Differential ghost y as counterweight for square resistance along

x′ = x2 . 383
12.6 Velocity of aerodynamic ball approaches limit velocity 385
12.7 Dubins aircraft dynamics . 387
12.8 Reparametrize for differential axiomatization 388
12.9 Axioms and proof rules for ghosts and differential ghosts where y

is new . 389
12.10 Axioms for nondeterministic assignments 391

13.1 Equivalent solutions with quite different differential structure . . . 405
13.2 Differential invariance chart . 414
13.3 p-norm inclusions . 416

14.1 Turning hybrid game α into the dual hybrid game αd corresponds
to turning a chessboard around by 180◦ so that the players control
the choices in αd that the opponent has in α 427

14.2 Angel and Demon accelerating or braking by a and d, respectively,
the cart at position x, which is moving with velocity x 431

List of Figures xxiii

14.3 Velocities and accelerations of two robots on a one-dimensional
planet . 435

14.4 Goalie in robot soccer moves and, if within radius 1, can capture
the ball . 438

14.5 Operational game semantics for hybrid games of dGL 440
14.6 The filibuster game formula looks as though it might be non-

determined and not have a truth-value 442

15.1 Denotational semantics of hybrid games as Angel’s winning region 456
15.2 Denotational semantics of hybrid games as Demon’s winning region 457
15.3 Monotonicity: it is easier to win into larger sets of winning states

Y ⊇ X . 457
15.4 Game trees for x = 1∧a = 1→ 〈((x :=a;a :=0)∩ x :=0)∗〉x 6= 1 . 459
15.5 Iteration ςn

α(X) of ςα(·) from winning condition X 461
15.6 Winning regions ςα(Z) of sets Z ⊆ ςα∗(X) are already included in

ςα∗(X) since ςα(Z) is just one more round away from Z 463
15.7 Iteration ςω+1

α (X) of ςα(·) from winning condition X = [0,1) stops
when applying ςα(·) to the ωth infinite iteration ςω

α (X) 464
15.8 Illustration of infinitely many ordinals up to ωω 465
15.9 Transfinite iteration ς∞

α (X) of ςα(·) from winning condition X re-
sults in winning region ςα∗(X) of repetition 466

15.10 Illustration of denotational semantics of winning region of hybrid
game repetitions . 471

16.1 Proof of the two-robot dance . 497
16.2 Differential game logic axiomatization 498
16.3 “There and back again game” . 503
16.4 Differential game logic derived axioms for box modalities 505
16.5 Differential game logic derived axioms for Demon’s controls . . . 505
16.6 More hybrid systems axioms, some of which are sound for hybrid

games . 506

17.1 Differential game logic axiomatization (repeated) 511
17.2 Separating axioms sound for hybrid systems but not hybrid games . 512
17.3 dGL Angel proof for non-game system Example 17.1

x≥ 0→ 〈(x :=x 1)∗〉0≤ x < 1 518
17.4 dGL Angel proof for demonic choice game Example 17.2

x = 1∧a = 1→ 〈(x :=a;a :=0∩ x :=0)∗〉x 6= 1 518
17.5 dGL Angel proof for 2-Nim-type game Example 17.3

x≥ 0→ 〈(x :=x 1∩ x :=x 2)∗〉0≤ x < 2 518
17.6 dGL Angel proof for hybrid game Example 17.4

〈(x :=1;x′ = 1d∪ x :=x 1)
∗〉0≤ x < 1 519

18.1 Recursive application of uniform substitution σ 542
18.2 Differential dynamic logic axioms and proof rules 548
18.3 Differential equation axioms and differential axioms 549

xxiv List of Figures

19.1 ModelPlex monitors sit between controller and actuator to check
the controller’s decisions for compliance with the model based on
sensor data with veto leading to a safe fallback action 563

19.2 Use of ModelPlex monitors along a system run 564
19.3 Sample run of a bouncing ball that ultimately lies down flat 566

20.1 The geometric counterpart of quantifier elimination for ∃y is pro-
jection onto the x axis . 585

20.2 Roots of different quadratic functions p 591
20.3 Polynomial equations describe (real) affine (algebraic) varieties . . 601

21.1 Illustration of the value of different quadratic functions p where
p ∞
x̄
≡ true . 612

21.2 Illustration of the sign after the second root for quadratic functions 617
21.3 Illustration of roots e and infinitesimal offsets e + ε checked by

virtual substitution . 620
21.4 Systems of polynomial inequalities describe semialgebraic sets . . 626

List of Tables

2.1 Operators and meaning in first-order logic of real arithmetic (FOL) . 52

3.1 Statements and effects of hybrid programs (HPs) 85
3.2 Classification of hybrid programs and correspondence to dynamical

systems . 90

4.1 Operators and (informal) meaning in differential dynamic logic (dL) 123

10.1 Correspondence map between loops and differential equations . . . 316

14.1 Operators and (informal) meaning in differential game logic (dGL) . 443
14.2 Statements and effects of hybrid games (HGs) 444

20.1 Overview of decidability notions (e.g., for the validity problem) . . 581
20.2 The miracle of reals: overview of FOL validity problems 582

xxv

List of Expeditions

2.1 Naming conventions . 44
2.2 Semantic brackets [[·]] : Trm→ (S→ R) 47
3.1 Operator precedence for hybrid programs 77
3.2 HP semantics [[·]] : HP→℘(S×S) 81
4.1 Three Laws of Robotics . 105
4.2 Invariant contracts for CPS . 107
4.3 Operator precedence for differential dynamic logic 113
4.4 Set-valued dL semantics [[·]] : Fml→℘(S) 115
4.5 Principle of Cartesian Doubt . 123
5.1 Admissibility caveats for the p(x) notation in axioms 148
6.1 Quantifier elimination . 197
9.1 Zeno paradox . 278
10.1 Denotational semantics . 298
10.2 Differential algebra . 317
10.3 Semantics of differential algebra 318
10.4 Lie characterization of invariant functions 319
13.1 Proving differences in set theory and linear algebra 409
13.2 Topology in real analysis . 411
15.1 Ordinal numbers . 467
15.2 Ordinal arithmetic . 468
21.1 Infinite challenges with infinities in extended reals 613
21.2 Nonstandard analysis: infinite challenges with infinitesimal ε 618

xxvii

List of Theorems

T 2.1 Peano’s existence theorem . 53
T 2.2 Picard-Lindelöf uniqueness theorem 54
P 2.1 Linear differential equations with constant coefficients 55
P 2.2 Continuation of solutions . 57
P 2.3 Lipschitz estimation . 58
L 5.1 [∪] axiom of nondeterministic choice 144
L 5.2 [:=] assignment axiom . 147
L 5.3 [′] solution axiom . 149
L 5.4 [′] solution with domain axiom 149
L 5.5 [?] test axiom . 151
L 5.6 [;] composition axiom . 153
L 5.7 [∗] iteration axiom . 155
L 5.8 〈·〉 duality axiom . 157
T 5.1 Soundness . 159
L 5.9 K modal modus ponens axiom . 161
L 5.10 []∧ boxes distribute over conjunctions 161
L 5.11 V vacuous axiom . 162
L 5.12 G Gödel generalization rule . 162
L 5.13 M[·] monotonicity rule . 163
L 6.1 ∧R conjunction rule . 185
T 6.1 Soundness . 186
L 6.2 Contextual equivalence . 188
L 6.3 R real arithmetic . 195
T 6.2 Tarski’s quantifier elimination . 197
L 6.4 i∀ reintroducing universal quantifiers 198
L 6.5 [:=]= equational assignment rule 204
L 7.1 I induction axiom . 217
L 7.2 ind induction rule . 219
L 7.3 Loop invariant rule . 221
P 7.1 Quantum is safe . 230
L 7.4 MR monotonicity right rule . 237

xxix

xxx List of Theorems

L 7.5
←
[∗] backwards iteration axiom . 239

L 7.6 [∗∗] double iteration axiom . 240
P 8.1 Event-triggered ping-pong is safe 263
P 9.1 Time-triggered ping-pong is safe 280
L 10.1 Derivation lemma . 302
L 10.2 Differential lemma . 304
L 10.3 Differential invariant term axiom 305
L 10.4 Mean-value theorem . 305
L 10.5 Differential assignment . 307
L 10.6 DE differential effect axiom . 307
L 10.7 Differential invariant term rule 309
T 10.1 Lie’s characterization of invariant terms 319
L 11.1 DW differential weakening axiom 327
L 11.2 dW differential weakening proof rule 328
L 11.3 dI differential invariant proof rule 331
L 11.4 DI differential invariant axiom . 340
L 11.5 dC differential cut proof rule . 346
P 11.1 Increasingly damped oscillation 347
L 11.6 DC differential cut axiom . 349
P 11.2 Aerodynamic Quantum is safe . 357
L 12.1 iG discrete ghost rule . 367
L 12.2 DG differential ghost axiom . 379
L 12.3 dG differential ghost rule . 380
L 12.4 dA differential auxiliaries rule . 380
P 12.1 Aerodynamic velocity limits . 386
L 13.1 Differential invariants and propositional logic 402
L 13.2 Differential invariants and arithmetic 403
P 13.1 Equational deductive power . 406
P 13.2 Equational incompleteness . 408
P 13.3 Strict barrier incompleteness . 410
P 13.4 Equational definability . 412
T 13.1 Atomic incompleteness . 413
L 15.1 Monotonicity . 456
L 15.2 Intersection closure . 471
L 15.3 Transfinite inflation leads to a least fixpoint 473
T 16.1 Consistency & determinacy . 483
L 16.1 [·] determinacy axiom . 484
L 16.2 M monotonicity rule . 485
L 16.3 〈:=〉 assignment axiom . 486
L 16.4 〈′〉 solution axiom . 487
L 16.5 〈′〉 solution with domain axiom 487
L 16.6 〈?〉 test axiom . 488
L 16.7 〈∪〉 axiom of choice . 489
L 16.8 〈;〉 composition axiom . 490
L 16.9 〈d〉 duality axiom . 491

List of Theorems xxxi

L 16.10 〈∗〉 iteration axiom . 493
L 16.11 FP fixpoint rule . 494
P 16.1 Push-around carts are safe . 496
P 16.2 Robot dance is safe . 497
T 16.2 Soundness of dGL . 500
T 16.3 Relative completeness of dGL . 502
L 16.12 Evolution domain reduction . 503
L 18.1 V vacuous axiom . 536
L 18.2 [:=] assignment axiom . 536
T 18.1 Uniform substitution . 538
L 18.3 Uniform substitution for formulas 546
T 18.2 Axiomatization of dL . 551
T 18.3 Uniform substitution of rules . 552
P 19.1 Correct bouncing-ball model monitor 571
T 20.1 Virtual substitution of linear equations 589
L 20.1 Uniform substitution of linear equations 590
T 20.2 Virtual substitution of quadratic equations 591
L 20.2 Virtual substitution lemma for square roots 595
L 21.1 Virtual substitution lemma for infinities 612
L 21.2 Virtual substitution lemma for infinitesimals 617
T 21.1 Virtual substitution of quadratic constraints 618
T 21.2 Tarski-Seidenberg . 625

Chapter 1

Cyber-Physical Systems: Overview

Synopsis Cyber-physical systems combine cyber capabilities with physical capabil-
ities to solve problems that neither part could solve alone. This chapter provides an
informal introduction to cyber-physical systems, setting the stage for this textbook.
The primary purpose is a lightweight overview of the technical and nontechnical
characteristics of cyber-physical systems, an overview of some of their application
domains, and a discussion of their prospects and challenges. The chapter also infor-
mally outlines and explains the approach taken in this book to address crucial safety
challenges in cyber-physical systems.

1.1 Introduction

This chapter provides a lightweight introduction to cyber-physical systems (CPS),
which combine cyber capabilities (computation and/or communication as well as
control) with physical capabilities (motion or other physical processes).

Note 1 (CPS) Cyber-physical systems combine cyber capabilities with physical
capabilities to solve problems that neither part could solve alone.

Cars, aircraft, and robots are prime examples, because they move physically in
space in a way that is determined by discrete computerized control algorithms that
adjust the actuators (e.g., brakes) based on sensor readings of the physical state. De-
signing these algorithms to control CPSs is challenging due to their tight coupling
with physical behavior. At the same time, it is vital that these algorithms be cor-
rect, since we rely on CPSs for safety-critical tasks such as keeping aircraft from
colliding.

How can we provide people with cyber-physical systems they can bet their
lives on? – Jeannette Wing

1© Springer International Publishing AG, part of Springer Nature 2018

A. Platzer, Logical Foundations of Cyber-Physical Systems,

https://doi.org/10.1007/978-3-319-63588-0_1

https://doi.org/10.1007/978-3-319-63588-0_1
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63588-0_1&domain=pdf

2 1 Cyber-Physical Systems: Overview

Since cyber-physical systems combine cyber and physical capabilities, we need
to understand both to understand CPS. It is not enough to understand both capabil-
ities only in isolation, though, because we also need to understand how the cyber
and the physics elements work together, i.e., what happens when they interface and
interact, because this is what CPSs are all about.

1.1.1 Cyber-Physical Systems Analysis by Example

Airplanes provide a rich source of canonical examples for cyber-physical systems
analysis challenges. While they are certainly not the only source of examples, air-
planes quickly convey both a spatial intuition for their motion and an appreciation
for the resulting challenges of finding out where and how to fly an airplane.

Fig. 1.1 Airplane example: Which control decisions are safe for aircraft collision avoidance?

If a pilot has gotten into a situation where her airplane is too close to other air-
craft, see Fig. 1.1, then it would be immensely helpful to give the pilot good advice
about how best to maneuver to resolve the situation. Of course, such advice needs

1.1 Introduction 3

to be given quickly and safely. There is not enough time to carefully plan out every
possible trajectory of the the pilot’s ownship and of all other intruder aircraft, but a
quick response is needed right away, which is what computers are good at. But the
advice also has to be safe such that it reliably separates the aircraft always under all
relevant scenarios of when and how exactly the pilots will respond to the advice. For
the ownship (following the thick blue trajectory), Fig. 1.1 gives a schematic illustra-
tion of unsafe zones (in shades of red, darker with more imminent danger) resulting
from the given intruder aircraft (gray).

More generally, this begs the question of which control decisions are safe for
aircraft collision avoidance. How can one predict right away whether given control
decisions for the airplane and intruder aircraft are guaranteed to be safe in the fu-
ture or whether they could possibly lead to a collision? How can a computer control
program be designed that reaches safe decisions and gives good advice to pilots suf-
ficiently quickly? What would constitute a safety argument for such a pilot decision
support system that justifies why the system always gives safe collision avoidance
advice that the pilot can follow confidently?

1.1.2 Application Domains

Cyber-physical systems provide prospects of improved safety and efficiency in
numerous application domains [2, 29, 30, 60]. Examples include both fully au-
tonomous self-driving cars and improved driver assistance technology for cars such
as lane-keeping assistants or distance-keeping assistants [1, 11, 31, 34], where com-
puter control technology helps people drive cars more safely and more efficiently.
Both pilot decision support systems [22, 23, 57, 66] and full autopilots for unmanned
drone aircraft fall under this paradigm. In the former, the computer focuses on an
advisory rôle where it gives decision support to pilots, who are in charge. But au-
topilots also automate the flight during certain well-defined phases of the flight,
such as in normal cruise flight or during landing. The case of drones provides more
comprehensive automation where the computer is in primary control of the drone
for extended periods of time and remote pilots limit themselves to only providing
certain control decisions every once in a while. Other applications include train
protection systems [35, 58], power plants [13], medical devices [25, 30], mobile
robots that operate in the vicinity of humans [36, 41], and robotic surgery systems
[7, 26]. Autonomous underwater vehicles (AUVs) also need computer control for
sustained operation since their operating conditions only provide infrequent oppor-
tunities for human intervention. Many other application domains are of relevance,
though, because the principle of using computer control to help physical systems is
quite general.

4 1 Cyber-Physical Systems: Overview

1.1.3 Significance

Cyber-physical systems can help in many ways. Computers support the human
driver in a car by taking control of the car either in full or partially for a certain
period of time. For example, the computer can help prevent accidents by keeping
the car in the lane in case the human driver is inattentive and it decelerates when the
driver fails to notice that the car in front is braking. Of course, the tricky bit is that
the computer needs to be able to reliably detect the circumstances where a correction
of the car’s trajectory is in order. In addition to the nontrivial challenges of reliably
sensing other cars and lanes, the computer needs to distinguish user-intended lane
changing from accidental lane departures, for example based on whether the driver
signaled a lane change by a turn signal, and apply steering corrections appropriately.

In aerospace, computers can not only support pilots during figurative and literal
fair-weather phases of the flight such as cruise flight, but can also help by providing
pilots with quick collision avoidance advice whenever two or more aircraft get too
close together. Since that is a very stressful situation for the pilots, good advice on
how to get out of it again and avoid possible collisions is absolutely crucial. Like-
wise remote pilots cannot necessarily monitor all flight paths of drones closely all
the time, such that computer assistance would help prevent collisions with com-
mercial aircraft or other drones. Besides detection, the primary challenges are the
uncertainties of when and how exactly the respective aircraft follow their trajecto-
ries and, of course, the need to prevent follow-on conflicts with other aircraft. While
already quite challenging for two aircraft, this problem gets even more complicated
in the presence of multiple aircraft, possibly with different flight characteristics.

For railway applications, technical safety controllers are also crucial, because
the braking distances of trains1 exceed the field of vision so that the brakes need
to be applied long before another train is in sight. One challenge is to identify a
safe braking distance that works reliably for the train and track conditions without
reducing the expected overall performance by braking too early, which would limit
operational suitability. Unlike a maximum use of the conventional service brake,
full emergency brakes on a train may also damage the rails or wheels and are, thus,
only used in the event of a true emergency.

1.1.4 The Importance of Safety

Wouldn’t it be great if we could use computers to leverage the advances in safety
and efficiency in the CPS application domains? Of course, the prerequisite is that
the cyber-physical systems themselves need to be safe, otherwise the cure might
be worse than the disease. Safety is paramount to ensure that the cyber-physical
systems that are meant to improve safety and efficiency actually help. So, the key
question is:

1 Heavy freight trains as well as high-speed trains need a braking distance of 2.5 km to 3.3 km.

1.1 Introduction 5

How do we make sure cyber-physical systems make the world a better place?

Because the world is a difficult place, this is rather a difficult question to answer.
An answer needs enough understanding of the world (in a model of the relevant
part of the world), the control principles (what control actions are available and
what their effect is on the physical world) and their implementation in a computer
controller, as well as the requisite safety objectives (what precisely discriminates
safe from potentially unsafe behavior). This leads to the following rephrasing [53]:

How can we ensure that cyber-physical systems are guaranteed to meet their
design goals?

Whether we can trust a computer to control physical processes depends on how
it has been programmed and on what will happen if it malfunctions. When a lot is at
stake, computers need to be guaranteed to interact correctly with the physical world.

The rationale pursued in this textbook argues that [53]:

1. Computers would perfectly earn our trust to control physical processes if only
they came with suitable guarantees.

2. Safety guarantees require appropriate analytical foundations.
3. A foundational core that is common to all application domains is more useful

than different mathematics for each area, e.g., a special mathematics for trains.
4. Foundations have already revolutionized the digital parts of computer science

and, indirectly, the way our whole society works.
5. But we need even stronger foundations when software reaches out into our

physical world, because they directly affect our physical environment.

These considerations lead to the following conclusion:

Because of the impact that they can have on the real world, cyber-physical
systems deserve proofs as safety evidence.

As has already been argued on numerous other occasions [2–6, 9, 10, 12, 18,
19, 27, 28, 32, 33, 37–40, 42–45, 60, 63–65, 68], the correctness of such systems
needs to be verified, because testing may miss bugs. This problem is confounded,
though, because the behavior of a CPS under one circumstance can radically differ
from the behavior under another, especially when complex computer decisions for
different objectives interact. Of course, due to their involvement in models of reality,
the safety evidence should not be limited to proofs alone either, but needs to include
appropriate testing as well. But without the generality resulting from mathematical
proofs, it is ultimately impossible to obtain strong safety evidence beyond the iso-
lated experience with the particular situations covered by the test data [49, 56, 69].
Even statistical demonstrations of safety by test driving are nearly impossible [24].

6 1 Cyber-Physical Systems: Overview

1.2 Hybrid Systems Versus Cyber-Physical Systems

While the defining criterion that cyber-physical systems combine cyber capabilities
with physical capabilities makes it easy to recognize them in practice, this is hardly a
precise mathematical criterion. For the characteristic behavior of a system, it should
be mostly irrelevant whether it happens to be built literally by combining an actual
computer with a physical system, or whether it is built in another way, e.g., by
combining the physical system with a small embedded controller achieving the same
performance, or maybe by exploiting a biochemical reaction to control a process.

Indeed, cyber-physical systems share mathematical characteristics, too, which
are in many ways more important for our endeavor than the fact that they happen
to be built from cyber components and from physical components. While a full
understanding of the mathematical characteristics of cyber-physical systems will
keep us busy for the better part of this book, it is reasonably straightforward to
arrive at what is at the core of all mathematical models of cyber-physical systems.
From a mathematical perspective, cyber-physical systems are hybrid systems (or
extensions thereof):

Note 2 (Hybrid systems) Hybrid systems are a mathematical model of dynam-
ical systems that combine discrete dynamics with continuous dynamics. Their
behavior includes both aspects that change discretely one step at a time and
aspects that change continuously as continuous functions over time.

For example, the aircraft in Fig. 1.1 fly continuously along their trajectories as a
continuous function of continuous time, because real aircraft do not jump around in
space with discrete jumps. Every once in a while, though, the pilot and/or autopilot
reaches a decision about turning in a different direction to avoid a possible colli-
sion with intruder aircraft. These discrete decisions are best understood as a discrete
dynamics in discrete time, because they happen one step after another. The system
reaches one discrete decision for a collision avoidance course, follows it continu-
ously for a certain period of time, and then re-evaluates the resulting situation later
to see whether a better decision becomes possible.

Similarly, a car controller decides to accelerate or brake, which is best understood
as a discrete dynamics, because there is a discrete instant of time where that decision
is reached and scheduled to take effect. The car’s continuous motion down the road,
instead, is best understood as a continuous dynamics, because it changes the position
as a continuous function of time.

In the most naïve interpretation, the cyber components of cyber-physical systems
directly correspond to the discrete dynamics of hybrid systems while the physical
components of cyber-physical systems directly correspond to the continuous dy-
namics of hybrid systems. While possibly a good mental model initially, this view
will ultimately turn out to be too simplistic. For example, there are events in phys-
ical models that are best described by a discrete dynamics even if they come from
the physics. For instance, the touchdown of an airplane on the ground can be consid-
ered as causing a discrete state change by a discrete dynamics from flying to driving

1.3 Multi-dynamical Systems 7

even if the runway that the aircraft touches down on is quite physical and not a cyber
construct at all. Conversely, for some purposes, some of the computations happen
so frequently and so quickly that we best understand them as if they were running
continuously even if that is not entirely true. For instance, a digital PID controller2

for an inner-loop flight controller that quickly adjusts the ailerons, rudders, and ele-
vators of an aircraft can sometimes be considered as having a continuous effect even
if it is actually implemented as a digital device with a fast clock cycle.

In fact, this is one of the most liberating effects of understanding the world from
a hybrid systems perspective [53]. Since the mathematical principles of hybrid sys-
tems accept both discrete and continuous dynamics, we do not have to either coerce
all aspects of a system model into the discrete to understand it with discrete mathe-
matics or force all system aspects into a continuous understanding to analyze it with
continuous techniques. Instead, hybrid systems make it perfectly acceptable to have
some aspects discrete (such as the decision steps of a digital controller) and others
continuous (such as continuous-time motion), while allowing modeling decisions
about ambivalent aspects. For some purposes, it might be better to model the touch-
down of an aircraft as a discrete state change from in-the-air to on-the-ground. For
other purposes, such as developing an autopilot for landing, it is important to take
a more fine-grained view, because the aircraft will simply take off again if it is still
going too fast even if its state changes to on-the-ground. Hybrid systems enable such
tradeoffs.

Overall, hybrid systems are not the same as cyber-physical systems. Hybrid sys-
tems are mathematical models of complex (often physical) systems, while cyber-
physical systems are defined by their technical characteristics. Nevertheless, ex-
hibiting a hybrid systems dynamics is such a common feature of cyber-physical
systems that we will take the liberty of using the notions cyber-physical system and
hybrid system quite interchangeably in Parts I and II of this book.

Despite this linguistic simplification, you should note that hybrid systems can be
nontechnical. For example, certain biological mechanisms can be captured well with
hybrid system models [65] or genetic networks [17] even if they have nothing to do
with cyber-physical systems. Conversely, a number of cyber-physical systems fea-
ture additional aspects beyond hybrid systems, such as adversarial dynamics (stud-
ied in Part III), distributed dynamics [47], or stochastic dynamics [46].

1.3 Multi-dynamical Systems

Owing to the fact that cyber-physical systems can have more dynamical aspects than
just those of hybrid systems, this book follows the more general multi-dynamical
systems principle [48, 53] of understanding cyber-physical systems as a combina-
tion of multiple elementary dynamical aspects.

2 Proportional-integral-derivative or PID controllers control a system by a linear combination of
the error, the integral of the error over time, and the derivative of the error.

8 1 Cyber-Physical Systems: Overview

Note 3 (Multi-dynamical system) Multi-dynamical systems [48] are mathe-
matical models of dynamical systems characterized by multiple facets of dy-
namical systems, schematically summarized in Fig. 1.2.

Fig. 1.2 Multi-dynamical
systems aspects of CPS

d
is

c
re

te contin

u
o

u
s

n
o
n
d
e
t

s
to

c
h
a
s
tic

a
d
v
e
rs

a
ri
a
l

CPSs involve computer control decisions and are, thus, discrete. CPSs are also
continuous, because they evolve along differential equations of motion or of other
physical processes. CPSs are often uncertain, because their behavior is subject to
choices coming from either environmental variability or from intentional uncertain-
ties that simplify their model. This uncertainty can manifest in different ways. Un-
certainties make CPSs stochastic when good information about the distribution of
choices is available [46]. Uncertainties make CPSs nondeterministic when no com-
mitment about the resolution of choices is made. Uncertainties make CPSs adver-

sarial when they involve multiple agents with potentially conflicting goals or even
active competition in a game [52, 55]. Verifying that CPSs work correctly requires
dealing with many of these dynamical features at the same time. Sometimes, CPSs
require even more dynamical features, such as distributed dynamics [47].

Hybrid systems are the special case of multi-dynamical systems that combine
discrete and continuous dynamics, and will be considered in Parts I and II. Hybrid

games are multi-dynamical systems that combine discrete, continuous, and adver-
sarial dynamics that will be studied in Part III. Stochastic hybrid systems are multi-
dynamical systems that combine discrete, continuous, and stochastic dynamics, but
are beyond the scope of this book [8, 46]. Distributed hybrid systems are multi-
dynamical systems combining discrete, continuous, and distributed dynamics [47].

Multi-dynamical systems study complex CPSs as a combination of multiple el-
ementary dynamical aspects. Throughout this textbook, we will come to appreciate
how this approach helps to tame the complexity of CPSs by understanding that their
complexity just comes from combining lots of simple dynamical effects with one an-
other. The overall system is quite complex, but each of its pieces is better behaved,
since it only has one dynamics as opposed to all of them at once. What miracle trans-
lates this descriptive simplification of a CPS described as a combination of multiple
dynamical aspects into an analytic simplification of multiple dynamical systems that
can be considered side by side during analysis? The descriptive simplification is a

1.3 Multi-dynamical Systems 9

helpful modeling advantage to disentangle different dynamical aspects of the system
into separate aspects of a model. But the biggest impact of multi-dynamical systems
is in how they enable an analytic simplification of studying and analyzing the indi-
vidual dynamical aspects separately while still yielding results about the combined
multi-dynamical system. How does the descriptive advantage of a multi-dynamical
systems composition carry over to an analytic advantage?

The key to this mystery is to integrate the CPS dynamics all within a single, com-

positional logic [48, 53]. Compositionality means that the meaning of a construct is
a simple function of the meaning of the pieces [61]. For example, the meaning of the
logical conjunction operator ∧ (read as “and”) is a simple function of the meaning
of its pieces. The formula A∧B (read as “A and B”) is true exactly if A is true and
B is true, too. Another way to say this is that the set of states of a system in which
formula A∧B is true is exactly the intersection of the set of states in which A is true
with the set of states in which B is true, because it is this intersection of states in
which both A and B are true. This (simple) insight will already enable us to analyze
a system separately for the questions of whether A is true and whether B is true in
order to find out whether the conjunction A∧B is true. Achieving compositionality
for other CPS operators is more demanding but equally impactful.

Since compositionality is an intrinsic feature starting from the very semantics
of logic [14, 16, 20, 21, 59, 62], logics naturally reason compositionally, too. For
example, a proof of the formula A∧B consists of a combination of a proof of A

together with a proof of B, because the two of those proofs together justify that A

and B are both true, which means that A∧B is true. This makes it possible to take
advantage of the compositionality in the formulas of a logic also when reasoning
about formulas in the logic. A proof of A∧B decomposes into a proof of the simpler
subformula A together with a proof of the simpler subformula B.

With suitable generalizations of logics to embrace multi-dynamical systems [42,
44, 46, 47, 49, 52, 54, 55], this compositionality generalizes to CPS. We “just” need
to make compositionality work for the CPS operators, which are, of course, more
complicated than a mere logical ∧ operator. Verification works by constructing a
proof in such a multi-dynamical systems logic. The whole proof verifies a complex
CPS. Yet, each proof step only reasons separately about one dynamical aspect at a
time, for example, an isolated discrete assignment or the separate local dynamics of
a differential equation, each captured in a separate, modular reasoning principle.

Multi-dynamical systems also impact and simplify the presentation of the Log-
ical Foundations of Cyber-Physical Systems. The compositionality principles of
logic and multi-dynamical systems considerably tame the conceptual complexity
of CPS by making it possible to focus on one aspect at a time, one chapter after
another, without losing the ability to combine the understanding attained for each
aspect. This gradual approach effectively conveys the principles for a successful
separation of concerns for CPS.

10 1 Cyber-Physical Systems: Overview

1.4 How to Learn About Cyber-Physical Systems

There are two primary ways of learning about cyber-physical systems.

Onion Model

The Onion Model follows the natural dependencies of the layers of mathematics
going outside in, peeling off one layer at a time, and progressing to the next layer
when all prerequisites have been covered. This would require the CPS student to
first study all relevant parts of computer science, mathematics, and engineering,
and then return to CPS in the big finale. That would require the first part of this
book to cover real analysis, the second part differential equations, the third part
conventional discrete programming, the fourth part classical discrete logic, the fifth
part theorem proving, and finally the last part cyber-physical systems. In addition to
the significant learning perseverance that the Onion Model requires, a downside is
that it misses out on the integrative effects of cyber-physical systems that can bring
different areas of science and engineering together, and which provide a unifying
motivation for studying them in the first place.

Scenic Tour Model

This book follows the Scenic Tour Model, which starts at the heart of the matter,
namely cyber-physical systems, going on scenic expeditions in various directions to
explore the world around as we find the need to understand the respective subject
matter. The textbook directly targets CPS right away, beginning with simpler layers
that the reader can understand in full before moving on to the next challenge.

For example, the first layer comprises CPSs without feedback control, which
allow simple finite open-loop controls to be designed, analyzed, and verified without
the technical challenges considered in later layers of CPS. Likewise, the treatment of
CPS is first limited to cases where the dynamics can be solved in closed form, such
as straight-line accelerated motion of Newtonian dynamics, before generalizing to
systems with more challenging differential equations that can no longer be solved
explicitly. This gradual development where each level is mastered and understood
and practiced in full before moving to the next level is helpful to tame complexity.
The Scenic Tour Model has the advantage that we stay on cyber-physical systems the
whole time, and leverage CPS as the guiding motivation for understanding more and
more about the connected areas. It has the disadvantage that the resulting gradual
development of CPS does not necessarily always present matters in the same way
that an after-the-fact compendium would treat it. This textbook compensates by
providing appropriate technical summaries and by highlighting important results for
later reference in boxes, with a list of theorems and lemmas in the table of contents.
A gradual development can also be more effective at conveying the ideas, reasons,
and rationales behind the development compared to a final compendium.

1.4 How to Learn About Cyber-Physical Systems 11

Besides the substantial organizational impact that this “CPS first” approach has
throughout the presentation of this book, the Scenic Tour Model is most easily no-
ticeable in the Expedition boxes that this textbook provides. Every part of this text-
book is written in a simple style bringing mathematical results in as needed, and with
an emphasis on intuition. The Expedition boxes invite the reader to additionally con-
nect to other areas of science that are of no crucial relevance for the immediate study
of CPS nor the remainder of the textbook, but still provide a link to another area, in
case the reader happens to be familiar with it or takes this link as an inspiration to
explore that other area of science further.

Prerequisites

Even if deliberately light on prerequisites, this textbook cannot start from zero ei-
ther. Its primary assumptions are some prior exposure to basic programming and
elementary mathematics. Specifically, the textbook assumes that the reader has had
some prior experience with computer programming (such as what is covered in a
first semester undergraduate course taught in any programming language covering
if-then-else conditionals and loops).

While Chap. 2 starts out with an intuitive and a rigorous treatment of differential
equations and provides a few conceptually important meta-results in its appendix,
this book is no replacement for a differential equations course. But it also does
not have to be. The concepts required for CPS from differential equations will be
picked up and expanded upon at a light pace throughout this textbook. The textbook
does, however, assume that the reader is comfortable with simple derivative and
differential equation notation. For example, Chap. 2 will discuss how x′ = v,v′ = a is
a differential equation, in which the time-derivative x′ of position x equals velocity v,
whose time-derivative v′ in turn equals the acceleration a. This differential equation
characterizes accelerated motion of a point x with velocity v and acceleration a along
a straight line.

While a good deal of the interest in this textbook comes from its general appli-
cability, it is also structured to minimize dependency on prerequisites. In particular,
Part I of this book can already be understood if the reader is familiar with the differ-
ential equation x′ = v,v′ = a for accelerated motion of point x along a straight line.
While Part II provides analytic tools for studying systems with significantly more
general differential equations, it is enough to have an intuition for the differential
equation x′ = y,y′ = x characterizing rotation of the point (x,y) around the origin.
Of course, this textbook studies other differential equations in some illustrative ex-
amples as well, but those are not on the critical path to understanding the rest of this
book.

Most crucially, however, the textbook assumes that the reader has been exposed
to some form of mathematical reasoning before (such as either in a calculus or anal-
ysis course or in a matrix or linear algebra course or a mathematics course for com-
puter scientists or engineers). The particular contents covered in such a prior course
are not at all as important as the mathematical experience itself with mathematical

12 1 Cyber-Physical Systems: Overview

concept developments and proofs. This textbook develops a fair amount of logic
on its own as part of the way of understanding cyber-physical systems. A prior un-
derstanding of logic is, thus, not necessary for the study of this book. And, in fact,
the Foundations of Cyber-Physical Systems undergraduate course that the author
teaches at Carnegie Mellon University and on which this textbook is based counts
as fulfilling a Logics/Languages elective or Programming Languages requirement
without prior background in either.

1.5 Computational Thinking for Cyber-Physical Systems

The approach that this book follows takes advantage of Computational Thinking
[67] for cyber-physical systems [50]. Due to their subtleties and the intricate interac-
tions of complex control software with the physical world, cyber-physical systems
are notoriously challenging. Logical scrutiny, formalization, and thorough safety
and correctness arguments are, thus, critical for cyber-physical systems. Because
cyber-physical system designs are so easy to get wrong, these logical aspects are an
integral part of CPS design and critical to understanding their complexities.

The primary attention of this book, thus, is on the foundations and core princi-
ples of cyber-physical systems. The book tames some of the complexities of cyber-
physical systems by focusing on a simple core programming language for CPS. The
elements of the programming language are introduced hand in hand with their rea-
soning principles, which makes it possible to combine CPS program design with
their safety arguments. This is important, not just because abstraction is a key factor
for success in CPS, but also because retrofitting safety is not possible in CPS.

To simplify matters, the chapters in this textbook are also organized to care-
fully reveal the complexities of cyber-physical systems in layers. Each layer will
be covered in full, including its programmatic, semantic, and logical treatment, be-
fore proceeding to the next level of complexity. For example, the book first studies
single-shot control before considering control loops, and only then proceeds to sys-
tems with differential equations that cannot be solved in closed form. Adversarial
aspects are covered subsequently.

1.6 Learning Objectives

The respective learning objectives are identified at the beginning of each chapter,
both textually and with a schematic diagram. They are organized along the three
dimensions modeling and control, computational thinking, and CPS skills. The most
important overall learning objectives throughout this textbook are the following.

Modeling and Control: In the area of Modeling and Control (MC), the most im-
portant goals are to

1.6 Learning Objectives 13

• understand the core principles behind CPS. The core principles are important
for effectively recognizing how the integration of cyber and physical aspects
can solve problems that no part could solve alone.

• develop models and controls. In order to understand, design, and analyze CPSs,
it is important to be able to develop models of the various relevant aspects of a
CPS design and to design controllers for the intended functionalities based on
appropriate specifications.

• identify the relevant dynamical aspects. It is important to be able to identify
which types of phenomena of a CPS have a relevant influence for the purpose
of understanding a particular property of a particular system. These allow us
to judge, for example, when it is important to manage adversarial effects, and
when a nondeterministic model is sufficient.

Computational Thinking: In the area of Computational Thinking (CT), the most
important goals are to

• identify safety specifications and critical properties. In order to develop correct
CPS designs, it is important to identify what “correctness” means, how a design
may fail to be correct, and how to make it correct if it is not correct yet.

• understand abstraction in system designs. The power of abstraction is essential
for the modular organization of CPSs, and for the ability to reason about sep-
arate parts of a system independently. Because of the overwhelming practical
challenges and numerous levels of detail, abstraction is even more critical than
it already is in conventional software design.

• express pre- and postconditions and invariants for CPS models. Pre- and post-
conditions allow us to capture under which circumstance it is safe to run a CPS
or a part of its design, and what safety entails. They allow us to achieve what
abstraction and hierarchies achieve at the system level: decompose correctness
of a full CPS into correctness of smaller pieces. The fundamental notion of
invariants achieves a similar decomposition by establishing which relations of
variables remain true no matter how long and how often the CPS runs.

• use design-by-invariant. In order to develop correct CPS designs, invariants are
an important structuring principle guiding what the control has to maintain in
order to preserve the invariant and, thereby, safety. This guidance simplifies
the design process, because it applies locally at the level of individual local-
ized control decisions that preserve invariants without explicitly having to take
system-level closed-loop properties into account.

• reason rigorously about CPS models. Reasoning is required to ensure correct-
ness and find flaws in a CPS design. Both informal reasoning and formal rea-
soning in a logic are important objectives for being able to establish correctness.

• verify CPS models of appropriate scale. This textbook covers the science of
how to prove CPSs. You can gain practical experience through its exercises
and appropriately scoped projects in the theorem prover KeYmaera X. This
experience will help you learn how best to select the most interesting questions
in formal verification and validation. Formal verification is not only critical but,
given the right abstractions, quite feasible in high-level CPS control designs.

14 1 Cyber-Physical Systems: Overview

CPS Skills: In the area of CPS skills, the most important goals are to

• understand the semantics of a CPS model. What may be easy in a classical
isolated program becomes very demanding when that program interfaces with
effects in the physical world. A precise understanding of the nuanced meaning
of a CPS model is fundamental to reasoning, along with an understanding of
how it will execute. A deep understanding of the semantics of CPS models is
also obtained by carefully relating their semantics to their reasoning principles
and aligning them in perfect unison.

• develop an intuition for operational effects. Intuition for the joint operational
effect of a CPS is crucial. For example, it is crucial to understand what the effect
of a particular discrete computer control algorithm will be on a continuous plant.

• identify control constraints. An operational intuition guides our understanding
of the operational effects and, along with their precise logical rendition, their
impact on finding correct control constraints that make a CPS controller safe.

• understand opportunities and challenges in CPS and verification. While the
beneficial prospects of CPS for society are substantial, it is crucial to also de-
velop an understanding of their inherent challenges and of approaches to mini-
mize the impact of potential safety hazards. Likewise, it is important to under-
stand the ways in which formal verification can best help improve the safety of
system designs.

This textbook will give the reader the required skills to formally analyze the cyber-
physical systems that are all around us – from power plants to pacemakers and
everything in between – so that when you contribute to the design of a CPS, you are
able to understand important safety-critical aspects and feel confident designing and
analyzing system models. Other beneficial by-products include that cyber-physical
systems provide a well-motivated exposure to numerous other areas of mathematics
and science in action.

CT

M&C CPS

identify safety specifications for CPS
rigorous reasoning about CPS
understand abstraction & architectures
programming languages for CPS
verify CPS models at scale

cyber+physics models & controls
core principles of CPS
relate discrete+continuous dynamics

semantics of CPS models
operational effects
identify control constraints
opportunities and challenges

1.7 Structure of This Textbook 15

1.7 Structure of This Textbook

This textbook consists of four main parts, which develop different levels of the log-
ical foundations of cyber-physical systems. You are now reading the introduction.

Elementary Cyber-Physical Systems

Part I studies elementary cyber-physical systems characterized by a hybrid system
dynamics whose continuous dynamics can still be solved in closed form. Differen-
tial equations are studied as models of continuous dynamics, while control programs
are considered for the discrete dynamics. Part I investigates differential dynamic
logic for specifying properties and axioms for reasoning about CPS. It further inves-
tigates appropriate structuring principles for proofs and the handling of control loops
via loop invariants, and discusses both event-triggered and time-triggered control.
This part provides an extensive introduction to the wonders and challenges of cyber-
physical systems, but still isolates most of the reasoning challenges in the search for
discrete loop invariants since their differential equations can still be solved explic-
itly. While enabling interesting and challenging considerations about CPSs, Part I
limits the level of interaction and subtlety in their safety arguments. The insights
from Part I already enable, for example, a comprehensive study of controllers for
safe acceleration and braking of a car along a straight lane.

Differential Equations Analysis

Part II considers advanced cyber-physical systems whose dynamics cannot be solved
in explicit closed form. Most crucially, this necessitates indirect forms for analyz-
ing the safety of a CPS, because solutions are no longer available. Based on the
understanding of discrete induction for control loops from Part I, Part II develops
induction techniques for differential equations. In addition to developing differen-
tial invariants as induction techniques for differential equations, this part studies
differential cuts that make it possible to prove and then use lemmas about differ-
ential equations. It also considers so-called differential ghosts, which can simplify
safety arguments by adding extra variables (ghost variables or auxiliary variables)
with additional differential equations into the dynamics to balance out generalized
energy invariants. Part II is required for handling safety arguments for CPS with
nonsolvable dynamics such as robots racing on a circular race track or driving along
curves in the plane or for aircraft flying along three-dimensional curves.

Adversarial Cyber-Physical Systems

Part III advances the understanding of cyber-physical systems to cover hybrid games
mixing discrete dynamics, continuous dynamics, and adversarial dynamics. Based

16 1 Cyber-Physical Systems: Overview

on the understanding of hybrid systems models for CPSs from Part I and invariants
for differential equations from Part II, Part III shifts the focus to an exploration of
hybrid games, in which the interaction of different players with different objectives
is a dominant aspect. Unlike hybrid systems, in which all choices are nondeterminis-
tic, hybrid games give different choices to different players at different times. Part III
is required for handling safety arguments for CPSs in which multiple agents inter-
act with possibly conflicting goals, or with the same goals but possibly conflicting
actions resulting from different perceptions of the world.

Comprehensive CPS Correctness

Part IV complements the CPS foundations from the previous parts with an account
of what it takes to round out a comprehensive correctness argument for a cyber-
physical system. Part IV condenses the logical reasoning principles of CPS from
Parts I and II into a completely axiomatic style that makes it easy to implement
logical reasoning with an extremely parsimonious logical framework based solely
on uniform substitutions. Since the nuances of cyber-physical systems provide am-
ple opportunity for subtle discrepancies, Part IV also investigates a logical way to
tame the subtle relationship of CPS models to CPS implementations. The logical
foundations of model safety transfer can synthesize provably correct monitor condi-
tions that, if checked to hold at runtime, are guaranteed to imply that offline safety
verification results about CPS models apply to the present run of the actual CPS im-
plementation. Finally, this part considers logical elements of reasoning techniques
for the real arithmetic that is used in CPS verification.

Online Material

The theory exercises provided at the end of the chapters are designed to actively
check the understanding of the material and provide routes for further developments.
In addition, the reader is invited to advance his or her understanding of the mate-
rial by practicing CPS proving in the KeYmaera X verification tool [15], which is an
aXiomatic Tactical Theorem Prover for Hybrid Systems that implements differential
dynamic logic [48, 49, 51, 54]. For technical reasons, the concrete syntax in KeY-
maera X has a slightly different ASCII notation, but, other than that, KeYmaera X
closely follows the theory of differential dynamic logic as presented in this book.
For educational purposes, this textbook also focuses on a series of instructive sim-
pler examples instead of the technical complexities of full-blown applications that
are reported elsewhere [22, 26, 31, 35, 36, 57, 58].

The Web page for this book is at the following URL:

http://www.lfcps.org/lfcps/

http://www.lfcps.org/lfcps/

1.7 Structure of This Textbook 17

1 Introduction

2 Differential Equations & Domains 3 Choice & Control

4 Safety & Contracts

5 Dynamical Systems & Dynamic Axioms 6 Truth & Proof

7 Control Loops & Invariants

8 Events 9 Reactions & Delays 10 Differential Invariants 14–17 Hybrid Games

I Elementary CPS III Adversarial CPS
11 Differential Equations & Proofs

12 Differential Ghosts

13 Differential Proof Theory
II Advanced CPS

18 Axioms & Uniform Subst.

19 Verified Models & Runtime Validation

20 Virtual Substitution & Real Equations

21 Virtual Substitution & Real Arithmetic

IV Comprehensive CPS

Fig. 1.3 Dependencies and suggested reading sequences of the chapters

Suggested Reading Sequence

Even if the basic suggested reading order in this book is linear, this textbook can
be read in many different ways. Except for most of the foundation developed in
Part I, the other parts of this book are independent and can be read in any order.
The dependencies among the topics in the chapters are shown in Fig. 1.3. Weak
dependencies on some small number of concepts are indicated as dashed lines, as
these topics might be presented in a different order. The core of the textbook is the
chapters that lead to Elementary CPS (Part I) in Fig. 1.3, including either Chaps. 8
or 9 or both. An integral part for Advanced CPS is Chaps. 10 and 11, along with an

18 1 Cyber-Physical Systems: Overview

optional study of the topic of differential ghosts for advanced differential equations
in Chap. 12.

Different reading sequences are possible for this textbook. The minimal core for
an understanding of elementary cyber-physical systems consists of Chaps. 1–7 from
Part I. A minimal course emphasizing experience with system modeling covers the
Chaps. 1–9 that lead to Part I on Elementary CPS in Fig. 1.3. For a minimal course
emphasizing CPS reasoning Chaps. 1–7 would be followed by Chaps. 10–11 from
Part II, possibly including Chap. 12 for advanced reasoning techniques. The other
chapter sequences are independent. After Chaps. 1–9, any sequence of the other
topics following the reader’s interest is possible since the hybrid game chapters
Chaps. 14–17 in Part III are independent of the subsequent topics in Part IV, which
are, in turn, mostly independent of one another.

This textbook features an active development leading the reader through a crit-
ical and self-propelled development of the core aspects of cyber-physical systems.
Especially at places marked as follows . . .

Before you read on, see if you can find the answer for yourself.

. . . the reader is advised to work toward an answer before comparing it with the de-
velopment pursued in the textbook. Of course, when comparing answers, the reader
should keep in mind that there is more than one correct way of developing the
material. The reader may have found a perfectly correct answer that just was not
anticipated in the writing of the textbook. That represents a great opportunity to
investigate advantages and downsides of the respective approaches.

1.8 Summary

This chapter gave an informal overview of application domains for cyber-physical
systems, which combine cyber capabilities such as communication, computation,
and control with physical capabilities such as motion or chemical process control.
It motivated the need for careful designs and comprehensive safety analyses, which
will be developed in this book. Closely related is the mathematical notion of hybrid
systems, which are dynamical systems that combine discrete dynamics with con-
tinuous dynamics. Despite the fact that they are different notions (cyber-physical
systems are based on the technical characteristics, while hybrid systems are a math-
ematical model), this textbook simplifies matters by using the two notions inter-
changeably in Parts I and II. More advanced models of cyber-physical systems will
be deferred to Part III after the hybrid systems model has been understood well in
Part I and Part II.

This chapter set the stage for the multi-dynamical systems approach that this
textbook follows. Multi-dynamical systems are characterized by multiple facets of
dynamical systems whose compositionality in a logic of dynamical systems enables
a separation of concerns for CPS. The multi-dynamical systems view directly ben-
efits the presentation in this book as well, by making it possible to focus on one

1.8 Summary 19

aspect at a time without losing the ability to combine the understanding attained for
each aspect.

References

[1] Matthias Althoff and John M. Dolan. Online verification of automated road
vehicles using reachability analysis. IEEE Trans. on Robotics 30(4) (2014),
903–918. DOI: 10.1109/TRO.2014.2312453.

[2] Rajeev Alur. Formal verification of hybrid systems. In: EMSOFT. Ed. by
Samarjit Chakraborty, Ahmed Jerraya, Sanjoy K. Baruah, and Sebastian Fis-
chmeister. New York: ACM, 2011, 273–278. DOI: 10.1145/2038642.2
038685.

[3] Rajeev Alur. Principles of Cyber-Physical Systems. Cambridge: MIT Press,
2015.

[4] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A. Hen-
zinger, Pei-Hsin Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and
Sergio Yovine. The algorithmic analysis of hybrid systems. Theor. Comput.

Sci. 138(1) (1995), 3–34. DOI: 10.1016/0304-3975(94)00202-T.
[5] Rajeev Alur, Thomas Henzinger, Gerardo Lafferriere, and George J. Pappas.

Discrete abstractions of hybrid systems. Proc. IEEE 88(7) (2000), 971–984.
[6] Michael S. Branicky. General hybrid dynamical systems: modeling, analysis,

and control. In: Hybrid Systems. Ed. by Rajeev Alur, Thomas A. Henzinger,
and Eduardo D. Sontag. Vol. 1066. LNCS. Berlin: Springer, 1995, 186–200.
DOI: 10.1007/BFb0020945.

[7] Davide Bresolin, Luca Geretti, Riccardo Muradore, Paolo Fiorini, and Tiziano
Villa. Formal verification applied to robotic surgery. In: Coordination Con-

trol of Distributed Systems. Ed. by Jan H. van Schuppen and Tiziano Villa.
Vol. 456. Lecture Notes in Control and Information Sciences. Berlin: Springer,
2015, 347–355. DOI: 10.1007/978-3-319-10407-2_40.

[8] Luminita Manuela Bujorianu. Stochastic Reachability Analysis of Hybrid

Systems. Berlin: Springer, 2012. DOI: 10.1007/978-1-4471-2795-6.
[9] Edmund M. Clarke, E. Allen Emerson, and Joseph Sifakis. Model checking:

algorithmic verification and debugging. Commun. ACM 52(11) (2009), 74–
84. DOI: 10.1145/1592761.1592781.

[10] Jennifer M. Davoren and Anil Nerode. Logics for hybrid systems. IEEE 88(7)
(2000), 985–1010. DOI: 10.1109/5.871305.

[11] Akash Deshpande, Aleks Göllü, and Pravin Varaiya. SHIFT: a formalism
and a programming language for dynamic networks of hybrid automata. In:
Hybrid Systems. Ed. by Panos J. Antsaklis, Wolf Kohn, Anil Nerode, and
Shankar Sastry. Vol. 1273. LNCS. Springer, 1996, 113–133. DOI: 10.1007
/BFb0031558.

[12] Laurent Doyen, Goran Frehse, George J. Pappas, and André Platzer. Verifica-
tion of hybrid systems. In: Handbook of Model Checking. Ed. by Edmund M.

https://doi.org/10.1109/TRO.2014.2312453
https://doi.org/10.1145/2038642.2038685
https://doi.org/10.1145/2038642.2038685
https://doi.org/10.1016/0304-3975(94)00202-T
https://doi.org/10.1007/BFb0020945
https://doi.org/10.1007/978-3-319-10407-2_40
https://doi.org/10.1007/978-1-4471-2795-6
https://doi.org/10.1145/1592761.1592781
https://doi.org/10.1109/5.871305
https://doi.org/10.1007/BFb0031558
https://doi.org/10.1007/BFb0031558

20 1 Cyber-Physical Systems: Overview

Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem. Springer,
2018. Chap. 30. DOI: 10.1007/978-3-319-10575-8_30.

[13] G. K. Fourlas, K. J. Kyriakopoulos, and C. D. Vournas. Hybrid systems mod-
eling for power systems. Circuits and Systems Magazine, IEEE 4(3) (2004),
16–23. DOI: 10.1109/MCAS.2004.1337806.

[14] Gottlob Frege. Begriffsschrift, eine der arithmetischen nachgebildete Formel-

sprache des reinen Denkens. Halle: Verlag von Louis Nebert, 1879.
[15] Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp, and André

Platzer. KeYmaera X: an axiomatic tactical theorem prover for hybrid sys-
tems. In: CADE. Ed. by Amy Felty and Aart Middeldorp. Vol. 9195. LNCS.
Berlin: Springer, 2015, 527–538. DOI: 10.1007/978-3-319-21401-
6_36.

[16] Gerhard Gentzen. Untersuchungen über das logische Schließen I. Math. Zeit.

39(2) (1935), 176–210. DOI: 10.1007/BF01201353.
[17] Radu Grosu, Grégory Batt, Flavio H. Fenton, James Glimm, Colas Le Guer-

nic, Scott A. Smolka, and Ezio Bartocci. From cardiac cells to genetic regu-
latory networks. In: CAV. Ed. by Ganesh Gopalakrishnan and Shaz Qadeer.
Vol. 6806. LNCS. Berlin: Springer, 2011, 396–411. DOI: 10.1007/978-
3-642-22110-1_31.

[18] Thomas A. Henzinger. The theory of hybrid automata. In: LICS. Los Alami-
tos: IEEE Computer Society, 1996, 278–292. DOI: 10.1109/LICS.1996
.561342.

[19] Thomas A. Henzinger and Joseph Sifakis. The discipline of embedded sys-
tems design. Computer 40(10) (Oct. 2007), 32–40. DOI: 10.1109/MC.20
07.364.

[20] David Hilbert. Die Grundlagen der Mathematik. Abhandlungen aus dem Sem-

inar der Hamburgischen Universität 6(1) (1928), 65–85. DOI: 10.1007
/BF02940602.

[21] Charles Antony Richard Hoare. An axiomatic basis for computer program-
ming. Commun. ACM 12(10) (1969), 576–580. DOI: 10.1145/363235.3
63259.

[22] Jean-Baptiste Jeannin, Khalil Ghorbal, Yanni Kouskoulas, Aurora Schmidt,
Ryan Gardner, Stefan Mitsch, and André Platzer. A formally verified hybrid
system for safe advisories in the next-generation airborne collision avoidance
system. STTT 19(6) (2017), 717–741. DOI: 10.1007/s10009-016-04
34-1.

[23] Taylor T. Johnson and Sayan Mitra. Parametrized verification of distributed
cyber-physical systems: an aircraft landing protocol case study. In: ICCPS.
Los Alamitos: IEEE, 2012, 161–170. DOI: 10.1109/ICCPS.2012.24.

[24] Nidhi Kalra and Susan M. Paddock. Driving to Safety – How Many Miles of

Driving Would It Take to Demonstrate Autonomous Vehicle Reliability? Tech.
rep. RAND Corporation, 2016. DOI: 10.7249/RR1478.

[25] BaekGyu Kim, Anaheed Ayoub, Oleg Sokolsky, Insup Lee, Paul L. Jones,
Yi Zhang, and Raoul Praful Jetley. Safety-assured development of the GPCA
infusion pump software. In: EMSOFT. Ed. by Samarjit Chakraborty, Ahmed

https://doi.org/10.1007/978-3-319-10575-8_30
https://doi.org/10.1109/MCAS.2004.1337806
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/BF01201353
https://doi.org/10.1007/978-3-642-22110-1_31
https://doi.org/10.1007/978-3-642-22110-1_31
https://doi.org/10.1109/LICS.1996.561342
https://doi.org/10.1109/LICS.1996.561342
https://doi.org/10.1109/MC.2007.364
https://doi.org/10.1109/MC.2007.364
https://doi.org/10.1007/BF02940602
https://doi.org/10.1007/BF02940602
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1007/s10009-016-0434-1
https://doi.org/10.1007/s10009-016-0434-1
https://doi.org/10.1109/ICCPS.2012.24
https://doi.org/10.7249/RR1478

1.8 Summary 21

Jerraya, Sanjoy K. Baruah, and Sebastian Fischmeister. New York: ACM,
2011, 155–164. DOI: 10.1145/2038642.2038667.

[26] Yanni Kouskoulas, David W. Renshaw, André Platzer, and Peter Kazanzides.
Certifying the safe design of a virtual fixture control algorithm for a surgical
robot. In: HSCC. Ed. by Calin Belta and Franjo Ivancic. ACM, 2013, 263–
272. DOI: 10.1145/2461328.2461369.

[27] Kim Guldstrand Larsen. Verification and performance analysis for embedded
systems. In: TASE 2009, Third IEEE International Symposium on Theoretical

Aspects of Software Engineering, 29-31 July 2009, Tianjin, China. Ed. by
Wei-Ngan Chin and Shengchao Qin. IEEE Computer Society, 2009, 3–4.
DOI: 10.1109/TASE.2009.66.

[28] Edward Ashford Lee and Sanjit Arunjumar Seshia. Introduction to Embedded

Systems — A Cyber-Physical Systems Approach. Lulu.com, 2013.
[29] Insup Lee and Oleg Sokolsky. Medical cyber physical systems. In: DAC. Ed.

by Sachin S. Sapatnekar. New York: ACM, 2010, 743–748.
[30] Insup Lee, Oleg Sokolsky, Sanjian Chen, John Hatcliff, Eunkyoung Jee,

BaekGyu Kim, Andrew L. King, Margaret Mullen-Fortino, Soojin Park, Alex
Roederer, and Krishna K. Venkatasubramanian. Challenges and research di-
rections in medical cyber-physical systems. Proc. IEEE 100(1) (2012), 75–
90. DOI: 10.1109/JPROC.2011.2165270.

[31] Sarah M. Loos, André Platzer, and Ligia Nistor. Adaptive cruise control:
hybrid, distributed, and now formally verified. In: FM. Ed. by Michael Butler
and Wolfram Schulte. Vol. 6664. LNCS. Berlin: Springer, 2011, 42–56. DOI:
10.1007/978-3-642-21437-0_6.

[32] Jan Lunze and Françoise Lamnabhi-Lagarrigue, eds. Handbook of Hybrid

Systems Control: Theory, Tools, Applications. Cambridge: Cambridge Univ.
Press, 2009. DOI: 10.1017/CBO9780511807930.

[33] Oded Maler. Control from computer science. Annual Reviews in Control

26(2) (2002), 175–187. DOI: 10.1016/S1367-5788(02)00030-5.
[34] Sayan Mitra, Tichakorn Wongpiromsarn, and Richard M. Murray. Verifying

cyber-physical interactions in safety-critical systems. IEEE Security & Pri-

vacy 11(4) (2013), 28–37. DOI: 10.1109/MSP.2013.77.
[35] Stefan Mitsch, Marco Gario, Christof J. Budnik, Michael Golm, and André

Platzer. Formal verification of train control with air pressure brakes. In: Relia-

bility, Safety, and Security of Railway Systems. Modelling, Analysis, Verifica-

tion, and Certification - Second International Conference, RSSRail 2017, Pis-

toia, Italy, November 14-16, 2017, Proceedings. Ed. by Alessandro Fantechi,
Thierry Lecomte, and Alexander Romanovsky. Vol. 10598. LNCS. Springer,
2017, 173–191. DOI: 10.1007/978-3-319-68499-4_12.

[36] Stefan Mitsch, Khalil Ghorbal, David Vogelbacher, and André Platzer. For-
mal verification of obstacle avoidance and navigation of ground robots. I. J.

Robotics Res. 36(12) (2017), 1312–1340. DOI: 10.1177/02783649177
33549.

https://doi.org/10.1145/2038642.2038667
https://doi.org/10.1145/2461328.2461369
https://doi.org/10.1109/TASE.2009.66
https://doi.org/10.1109/JPROC.2011.2165270
https://doi.org/10.1007/978-3-642-21437-0_6
https://doi.org/10.1017/CBO9780511807930
https://doi.org/10.1016/S1367-5788(02)00030-5
https://doi.org/10.1109/MSP.2013.77
https://doi.org/10.1007/978-3-319-68499-4_12
https://doi.org/10.1177/0278364917733549
https://doi.org/10.1177/0278364917733549

22 1 Cyber-Physical Systems: Overview

[37] Anil Nerode. Logic and control. In: CiE. Ed. by S. Barry Cooper, Benedikt
Löwe, and Andrea Sorbi. Vol. 4497. LNCS. Berlin: Springer, 2007, 585–597.
DOI: 10.1007/978-3-540-73001-9_61.

[38] Anil Nerode and Wolf Kohn. Models for hybrid systems: automata, topolo-
gies, controllability, observability. In: Hybrid Systems. Ed. by Robert L.
Grossman, Anil Nerode, Anders P. Ravn, and Hans Rischel. Vol. 736. LNCS.
Berlin: Springer, 1992, 317–356.

[39] NITRD CPS Senior Steering Group. CPS vision statement. NITRD. 2012.
[40] George J. Pappas. Wireless control networks: modeling, synthesis, robust-

ness, security. In: Proceedings of the 14th ACM International Conference on

Hybrid Systems: Computation and Control, HSCC 2011, Chicago, IL, USA,

April 12-14, 2011. Ed. by Marco Caccamo, Emilio Frazzoli, and Radu Grosu.
New York: ACM, 2011, 1–2. DOI: 10.1145/1967701.1967703.

[41] Erion Plaku, Lydia E. Kavraki, and Moshe Y. Vardi. Hybrid systems: from
verification to falsification by combining motion planning and discrete search.
Form. Methods Syst. Des. 34(2) (2009), 157–182. DOI: 10.1007/s10703
-008-0058-5.

[42] André Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reas.

41(2) (2008), 143–189. DOI: 10.1007/s10817-008-9103-8.
[43] André Platzer. Differential Dynamic Logics: Automated Theorem Proving

for Hybrid Systems. PhD thesis. Department of Computing Science, Univer-
sity of Oldenburg, 2008.

[44] André Platzer. Differential-algebraic dynamic logic for differential-algebraic
programs. J. Log. Comput. 20(1) (2010), 309–352. DOI: 10.1093/logcom/
exn070.

[45] André Platzer. Logical Analysis of Hybrid Systems: Proving Theorems for

Complex Dynamics. Heidelberg: Springer, 2010. DOI: 10.1007/978-3-
642-14509-4.

[46] André Platzer. Stochastic differential dynamic logic for stochastic hybrid pro-
grams. In: CADE. Ed. by Nikolaj Bjørner and Viorica Sofronie-Stokkermans.
Vol. 6803. LNCS. Berlin: Springer, 2011, 446–460. DOI: 10.1007/978-
3-642-22438-6_34.

[47] André Platzer. A complete axiomatization of quantified differential dynamic
logic for distributed hybrid systems. Log. Meth. Comput. Sci. 8(4:17) (2012).
Special issue for selected papers from CSL’10, 1–44. DOI: 10 . 2168 /
LMCS-8(4:17)2012.

[48] André Platzer. Logics of dynamical systems. In: LICS. Los Alamitos: IEEE,
2012, 13–24. DOI: 10.1109/LICS.2012.13.

[49] André Platzer. The complete proof theory of hybrid systems. In: LICS. Los
Alamitos: IEEE, 2012, 541–550. DOI: 10.1109/LICS.2012.64.

[50] André Platzer. Teaching CPS foundations with contracts. In: CPS-Ed. 2013,
7–10.

[51] André Platzer. A uniform substitution calculus for differential dynamic logic.
In: CADE. Ed. by Amy Felty and Aart Middeldorp. Vol. 9195. LNCS. Berlin:
Springer, 2015, 467–481. DOI: 10.1007/978-3-319-21401-6_32.

https://doi.org/10.1007/978-3-540-73001-9_61
https://doi.org/10.1145/1967701.1967703
https://doi.org/10.1007/s10703-008-0058-5
https://doi.org/10.1007/s10703-008-0058-5
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1093/logcom/exn070
https://doi.org/10.1093/logcom/exn070
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-642-22438-6_34
https://doi.org/10.1007/978-3-642-22438-6_34
https://doi.org/10.2168/LMCS-8(4:17)2012
https://doi.org/10.2168/LMCS-8(4:17)2012
https://doi.org/10.1109/LICS.2012.13
https://doi.org/10.1109/LICS.2012.64
https://doi.org/10.1007/978-3-319-21401-6_32

1.8 Summary 23

[52] André Platzer. Differential game logic. ACM Trans. Comput. Log. 17(1)
(2015), 1:1–1:51. DOI: 10.1145/2817824.

[53] André Platzer. Logic & proofs for cyber-physical systems. In: IJCAR. Ed. by
Nicola Olivetti and Ashish Tiwari. Vol. 9706. LNCS. Berlin: Springer, 2016,
15–21. DOI: 10.1007/978-3-319-40229-1_3.

[54] André Platzer. A complete uniform substitution calculus for differential dy-
namic logic. J. Autom. Reas. 59(2) (2017), 219–265. DOI: 10.1007/s108
17-016-9385-1.

[55] André Platzer. Differential hybrid games. ACM Trans. Comput. Log. 18(3)
(2017), 19:1–19:44. DOI: 10.1145/3091123.

[56] André Platzer and Edmund M. Clarke. The image computation problem in
hybrid systems model checking. In: HSCC. Ed. by Alberto Bemporad, Anto-
nio Bicchi, and Giorgio C. Buttazzo. Vol. 4416. LNCS. Springer, 2007, 473–
486. DOI: 10.1007/978-3-540-71493-4_37.

[57] André Platzer and Edmund M. Clarke. Formal verification of curved flight
collision avoidance maneuvers: a case study. In: FM. Ed. by Ana Cavalcanti
and Dennis Dams. Vol. 5850. LNCS. Berlin: Springer, 2009, 547–562. DOI:
10.1007/978-3-642-05089-3_35.

[58] André Platzer and Jan-David Quesel. European Train Control System: a case
study in formal verification. In: ICFEM. Ed. by Karin Breitman and Ana
Cavalcanti. Vol. 5885. LNCS. Berlin: Springer, 2009, 246–265. DOI: 10.10
07/978-3-642-10373-5_13.

[59] Vaughan R. Pratt. Semantical considerations on Floyd-Hoare logic. In: 17th

Annual Symposium on Foundations of Computer Science, 25-27 October

1976, Houston, Texas, USA. Los Alamitos: IEEE, 1976, 109–121. DOI: 10
.1109/SFCS.1976.27.

[60] President’s Council of Advisors on Science and Technology. Leadership un-

der challenge: information technology R&D in a competitive world. An As-
sessment of the Federal Networking and Information Technology R&D Pro-
gram. Aug. 2007.

[61] Dana Scott and Christopher Strachey. Towards a mathematical semantics

for computer languages. Tech. rep. PRG-6. Oxford Programming Research
Group, 1971.

[62] Raymond M. Smullyan. First-Order Logic. Mineola: Dover, 1968. DOI: 10
.1007/978-3-642-86718-7.

[63] Paulo Tabuada. Verification and Control of Hybrid Systems: A Symbolic Ap-

proach. Berlin: Springer, 2009. DOI: 10.1007/978-1-4419-0224-5.
[64] Ashish Tiwari. Abstractions for hybrid systems. Form. Methods Syst. Des.

32(1) (2008), 57–83. DOI: 10.1007/s10703-007-0044-3.
[65] Ashish Tiwari. Logic in software, dynamical and biological systems. In:

LICS. IEEE Computer Society, 2011, 9–10. DOI: 10.1109/LICS.201
1.20.

[66] Claire Tomlin, George J. Pappas, and Shankar Sastry. Conflict resolution for
air traffic management: a study in multi-agent hybrid systems. IEEE T. Au-

tomat. Contr. 43(4) (1998), 509–521. DOI: 10.1109/9.664154.

https://doi.org/10.1145/2817824
https://doi.org/10.1007/978-3-319-40229-1_3
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1145/3091123
https://doi.org/10.1007/978-3-540-71493-4_37
https://doi.org/10.1007/978-3-642-05089-3_35
https://doi.org/10.1007/978-3-642-10373-5_13
https://doi.org/10.1007/978-3-642-10373-5_13
https://doi.org/10.1109/SFCS.1976.27
https://doi.org/10.1109/SFCS.1976.27
https://doi.org/10.1007/978-3-642-86718-7
https://doi.org/10.1007/978-3-642-86718-7
https://doi.org/10.1007/978-1-4419-0224-5
https://doi.org/10.1007/s10703-007-0044-3
https://doi.org/10.1109/LICS.2011.20
https://doi.org/10.1109/LICS.2011.20
https://doi.org/10.1109/9.664154

24 1 Cyber-Physical Systems: Overview

[67] Jeannette M. Wing. Computational thinking. Commun. ACM 49(3) (2006),
33–35. DOI: 10.1145/1118178.1118215.

[68] Jeannette M. Wing. Five deep questions in computing. Commun. ACM 51(1)
(2008), 58–60. DOI: 10.1145/1327452.1327479.

[69] Paolo Zuliani, André Platzer, and Edmund M. Clarke. Bayesian statistical
model checking with application to Simulink/Stateflow verification. Form.

Methods Syst. Des. 43(2) (2013), 338–367. DOI: 10.1007/s10703-013
-0195-3.

https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1145/1327452.1327479
https://doi.org/10.1007/s10703-013-0195-3
https://doi.org/10.1007/s10703-013-0195-3

Part I

Elementary Cyber-Physical Systems

Overview of Part I on Elementary Cyber-Physical Systems

The first part of this book studies elementary cyber-physical systems (CPSs) in a
gradual way by developing their models and reasoning principles one layer at a
time. This part first considers CPSs without feedback control, which allow designs
and analysis with finite-horizon open-loop controls, before considering the chal-
lenges of feedback control mechanisms in which a system repeatedly takes sensor
information into account to decide how best to act. The focus in this first part is on
CPSs limited to cases where the dynamics can still be solved in closed form, which
simplifies analytic understanding considerably. An analytic treatment of CPSs with
more complicated dynamics will be covered subsequently in Part II.

Part I lays the foundation for cyber-physical systems by presenting both CPS pro-
gramming language models and their semantics. It introduces differential dynamic
logic dL as the logic of dynamical systems, which provides the fundamental basis
for understanding cyber-physical systems and serves as the language of choice for
rigorously specifying and verifying CPSs. Proof-structuring principles will be dis-
cussed as well to organize our CPS reasoning and make sure we do not lose track of
what CPS correctness arguments need to show. The important control paradigms of
open-loop control, closed-loop control, time-triggered control, and event-triggered
control are discussed along with lessons about their models and common analysis
insights.

Chapter 2

Differential Equations & Domains

Synopsis The primary goal of this chapter is to obtain a solid working intuition
for the continuous dynamics part of cyber-physical systems. It provides a brief in-
troduction to differential equations with evolution domains as models of continuous
physical processes. While focusing on an intuitive development, this chapter lays
the foundation for an operational understanding of continuous processes. For ref-
erence, it discusses some of the elementary theory of differential equations. This
chapter also introduces the first-order logic of real arithmetic as a language for de-
scribing the evolution domains to which continuous processes are restricted when
forming hybrid systems.

2.1 Introduction

Cyber-physical systems combine cyber capabilities with physical capabilities. You
already have experience with models of computation and algorithms for the cyber
part of CPS if you have seen the use of programming languages for computer pro-
gramming. In CPS, we do not program computers, though, but rather program CPSs
instead. Hence, we program computers that interact with physics to achieve their
goals. In this chapter, we study models of physics and the most elementary part of
how they can interact with the cyber part. Physics by and large is obviously a deep
subject. But for CPS, one of the most fundamental models of physics is sufficient at
first, that of ordinary differential equations.

While this chapter covers the most important parts of differential equations, it is
not to be misunderstood as a diligent coverage of the fascinating area of ordinary
differential equations. What you need to get started with the book is an intuition
about differential equations, as well as an understanding of their precise meaning.
This will be developed in the present chapter. Subsequently, we will return to the
topic of differential equations for a deeper understanding of differential equations
and their proof principles a number of times in later chapters, especially Part II. The
other important aspect that this chapter develops is first-order logic of real arith-

27© Springer International Publishing AG, part of Springer Nature 2018

A. Platzer, Logical Foundations of Cyber-Physical Systems,

https://doi.org/10.1007/978-3-319-63588-0_2

https://doi.org/10.1007/978-3-319-63588-0_2
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63588-0_2&domain=pdf

28 2 Differential Equations & Domains

metic for the purpose of representing domains and domain constraints of differen-
tial equations, which is of paramount significance in hybrid systems. More detailed
treatments of differential equations can be found, e.g., in the seminal book by Walter
[10] or elsewhere [2, 4, 8, 9].

The most important learning goals of this chapter are:

Modeling and Control: We develop an understanding of one core principle behind
CPS: the case of continuous dynamics and differential equations with evolution
domains as models of the physics part of CPS. We introduce first-order logic of
real arithmetic as the modeling language for describing evolution domains of
differential equations.

Computational Thinking: Both the significance of meaning and the descriptive
power of differential equations will play key roles, foreshadowing many impor-
tant aspects underlying the proper understanding of cyber-physical systems. We
will also begin to learn to carefully distinguish between syntax (which is nota-
tion) and semantics (what carries meaning), a core principle for both logic and
computer science that continues to be crucial for CPS.

CPS Skills: We develop an intuition for the continuous operational effects of CPS
and devote significant attention to understanding the exact semantics of differ-
ential equations, which has some subtleties in store for us.

CT

M&C CPS

semantics of differential equations
descriptive power of differential equations
syntax versus semantics

continuous dynamics
differential equations
evolution domains
first-order logic

continuous operational effects

2.2 Differential Equations as Models of Continuous Physical

Processes

Differential equations model processes in which the state variables of a system
evolve continuously in time. A differential equation describes quite concisely how
the system evolves over time. It describes how the variables change locally, so it, ba-
sically, indicates the direction in which the variables evolve at each point in space.

2.2 Differential Equations as Models of Continuous Physical Processes 29

Fig. 2.1 shows the respective directions in which the system evolves by a vector at
each point and illustrates one solution as a curve in two-dimensional space that fol-
lows those vectors everywhere. Of course, the figure would be rather cluttered if we
were to try to indicate the vector at literally each and every point, of which there are
uncountably infinitely many. But this is a shortcoming only of our illustration, not
of the mathematical realities. Differential equations actually define such a vector for
the direction of evolution at every point in space.

Fig. 2.1 Vector field (left) and vector field with one solution of a differential equation (right)

As an example, suppose we have a car whose position is denoted by x. Cars have
a tendency to move, so the car’s position x will change over time. How the value of
variable x changes over time depends on how fast the car is driving. Let v denote the
velocity of said car. Since v is the velocity of the car, its position x changes according
to the velocity. So, the position x changes such that its derivative x′ is v, which we
denote by the differential equation x′ = v. This differential equation means that the
time-derivative of the position x equals the velocity v. So how x evolves depends
on v. If the velocity is v = 0, then the position x does not change at all and the car
might be parked or in a traffic jam. If v > 0, then the position x keeps on increasing
over time. How fast x increases depends on the value of v, a bigger v give a quicker
changes in x, because the time-derivative of x equals v in the differential equation
x′ = v.

Of course, the velocity v itself may also be subject to change over time. The car
might accelerate, so let a denote its acceleration. Then the velocity v changes with
time-derivative a, that is by the differential equation v′ = a. Overall, the car then
follows the differential equation (really a differential equation system):1

x′ = v,v′ = a

1 Note that the value of x changes over time, so it is really a function of time. Hence, the notation
x′(t) = v(t),v′(t) = a is sometimes used. It is customary, however, to eloquently suppress the argu-
ment t for time and just write x′ = v,v′ = a instead. In the physics literature, the notation ẋ is often

30 2 Differential Equations & Domains

That is, the position x of the car changes with time-derivative v, which, in turn,
changes with time-derivative a.

What we mean by this differential equation, intuitively, is that the system always
follows a direction (or vector field shown in Fig. 2.2) where, at all points (x,v), the
direction vectors have their direction for positions point in a direction that equals
the current v while their direction for velocities points in the same direction a. The
system is always supposed to follow exactly in the direction of those direction vec-
tors at every point. What does this mean exactly? How can we understand it doing
that at all of the infinitely many points?

Fig. 2.2 Vector field with
one solution of accelerated
straight-line motion

-��� ��� ��� ��� ��� ���
-���

-���

���

���

���

���

�

�

To sharpen our intuition for this aspect, consider a one-dimensional differential
equation with a position x that changes over time t starting at initial state 1 at initial
time 0: (

x′(t) = 1
4 x(t)

x(0) = 1

)

For a number of different time discretization steps ∆ ∈ {4,2,1, 1
2}, Fig. 2.3 illus-

trates what an approximate pseudo-solution would look like that only respects the
differential equation at the times that are integer multiples of ∆ and is in blissful
ignorance of the differential equation in between these grid points. Such a pseudo-
solution corresponds to what is obtained by explicit Euler integration [3]. The true
solution of the differential equation should, however, also respect the direction that
the differential equation prescribes at all the other uncountably infinitely many time
points in between. Because this differential equation is quite well behaved, the dis-
cretizations still approach the true continuous solution x(t) = e

t
4 as ∆ gets smaller.

But differential equations come with a lot of surprises when anyone attempts to
understand them from a discrete perspective. No matter how small a discretization

used when referring to the time-derivative of x. We prefer the mathematical notation x′, because
dots are more easily overlooked, especially on longer names, and are hard to typeset in ASCII.

2.3 The Meaning of Differential Equations 31

t
0

x

1

2

∆ = 8

2

∆ = 4

1

1.5

2.25

3.375

∆
=

2

1 2 3 4 5 6 7 8

∆
=

1
∆
=

1
2

e
t
4

Fig. 2.3 Discretizations of differential equations with discretization time step ∆

∆ > 0 we choose, that discretization will be arbitrarily far away from the true con-
tinuous solution for large t.

2.3 The Meaning of Differential Equations

We have obtained an intuitive understanding of how differential equations describe
the direction of the evolution of a system as a vector field from Fig. 2.1. But some
questions remain. What exactly is a vector field? What does it mean to describe di-
rections of evolution at literally every point in space, of which there are uncountably
infinitely many? Could these directions not possibly contradict each other so that

the description becomes ambiguous? What is the exact meaning of a differential
equation in the first place?

The only way to truly understand any system is to understand exactly what each
of its pieces does. CPSs are demanding, and misunderstandings about their effect
often have far-reaching consequences. So let us start by making the pieces of a CPS
unambiguous. The first piece is differential equations.

Note 4 (Importance of meaning) The physical impacts of CPSs do not leave
much room for failure. We want to immediately get into the habit of always
studying the behavior and exact meaning of all relevant aspects of a CPS.

An ordinary differential equation in explicit form is an equation y′(t) = f (t,y)
where y′(t) is meant to be the derivative of y with respect to time t and f is a
function of time t and the current state y. A solution is a differentiable function Y of
time that satisfies this equation when substituted into the differential equation, i.e.,

32 2 Differential Equations & Domains

when substituting Y (t) for y and the time-derivative Y ′(t) of Y at t for y′(t). That is,
the time-derivative of the solution at each time is equal to the differential equation’s
right-hand side, as illustrated for time t = 1 in Fig. 2.4.

Fig. 2.4 Differential equation
solution condition: time-
derivative shown in red at
t = 1 equals right-hand side
of differential equation at all
times

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5
t

0.2

0.4

0.6

0.8

x

In the next chapter, we will study a more elegant definition of a solution of a
differential equation that is well-attuned with the concepts in this book. But first, we
consider the (equivalent) classical mathematical definition of a solution.

Definition 2.1 (Ordinary differential equation). Let f : D→Rn be a function
on a domain D⊆ R×Rn, i.e., an open and connected subset. The function Y :
J→ Rn is a solution on the interval J ⊆ R of the initial value problem

(
y′(t) = f (t,y)
y(t0) = y0

)

(2.1)

with ordinary differential equation (ODE) y′ = f (t,y), if, for all times t ∈ J

1. solution Y is in the domain (t,Y (t)) ∈ D,
2. time-derivative Y ′(t) exists and is Y ′(t) = f (t,Y (t)), and
3. initial value Y (t0) = y0 is respected at the initial time, also t0 ∈ J.

If f : D→Rn is continuous, then Y : J→Rn is continuously differentiable, be-
cause its derivative Y ′(t) is f (t,Y (t)), which is continuous as f is continuous
and Y is differentiable so continuous. Similarly if f is k-times continuously dif-
ferentiable then Y is k+ 1-times continuously differentiable. The definition is
analogous for higher-order differential equations, i.e., those involving higher-
order derivatives such as y′′(t) or y(n)(t) for n > 1.

Let us consider the intuition for this definition. A differential equation (system)
can be thought of as a vector field such as the one in Fig. 2.1, where, at each point,
the vector shows in which direction the solution evolves. At every point, the vector
corresponds to the right-hand side of the differential equation. A solution of a differ-
ential equation adheres to this vector field at every point, i.e., the solution (e.g., the
solid curve in Fig. 2.1) locally follows the direction indicated by the vector of the
right-hand side of the differential equation. There are many solutions of the differ-

2.4 A Tiny Compendium of Differential Equation Examples 33

ential equation corresponding to the vector field illustrated in Fig. 2.1. For the initial
value problem (2.1), however, solutions also have to start at the prescribed position
y0 at the initial time t0 and then follow the differential equations or vector field from
this point. In general, there can still be multiple solutions for the same initial value
problem, but not for well-behaved differential equations (Sect. 2.9.2).

2.4 A Tiny Compendium of Differential Equation Examples

While cyber-physical systems do not necessitate a treatment and understanding of
every differential equation you could ever think of, they do still benefit from a work-
ing intuition about differential equations and their relationships to their solutions.
The following list of examples indicate by a * which differential equations play an
important rôle in this book (Example 2.4, Example 2.5 and Example 2.7), compared
to the ones that are merely listed to support a general intuition about the different
possibilities that might happen when working with differential equations.

Example 2.1 (A constant differential equation). Some differential equations are easy
to solve, especially those with constant right-hand sides. The initial value problem

(
x′(t) = 1

2
x(0) = 1

)

describes that x initially starts at 1 and always changes at the rate 1/2. It has the
solution x(t) = 1

2 t 1 shown in Fig. 2.5. How can we verify that this is indeed a
solution? This can be checked easily by inserting the solution into the differential
equation and initial value equation and checking that they evaluate to the desired
values according to the initial value problem:

(
(x(t))′ = (1

2 t 1)′ = 1
2

x(0) = 1
2 ·0 1 = 1

)

0 t

x

1

1

 1

x
′ =

1
2

 1+ 1
2 t

0 t

x

1

3

1

3e 2(t 1)

x ′
=

2
x

Fig. 2.5 Constant differential equation Fig. 2.6 Linear differential equation

34 2 Differential Equations & Domains

Example 2.2 (A negative linear differential equation). Consider an initial value
problem whose right-hand side is a linear function with a negative coefficient

(
x′(t) = 2x(t)
x(1) = 3

)

in which the rate of change of x(t) depends on the current value of x(t) and is in fact
 2x(t), so the rate of change gets smaller (more negative) as x(t) gets bigger. This
problem describes exponential decay and has the solution x(t) = 3e 2(t 1) shown in
Fig. 2.6, which starts at the initial time t = 1. The test, again, is to insert the solution
into the (differential) equations of the initial value problems and check:

(
(3e 2(t 1))′ = 6e 2(t 1) = 2x(t)

x(1) = 3e 2(1 1) = 3

)

Example 2.3 (A positive linear differential equation). The initial value problem
(

x′(t) = 1
4 x(t)

x(0) = 1

)

shown alongside different discretizations of it in Fig. 2.3 on p. 31 describes exponen-
tial growth and has the true continuous solution x(t) = e

t
4 , which can be checked in

the same way as for the previous example:
(

(e
t
4)′ = e

t
4 (t

4)
′ = e

t
4 1

4 = 1
4 x(t)

e
0
4 = 1

)

Of course, none of the discretizations actually satisfies these equations, except at the
discretization points (the multiples of the respective discretization step ∆). Since the
discretizations only satisfy the equation x′(t) = 1

4 x(t) at integer multiples of ∆ and

nowhere else, they do not agree with the actual differential equation solution e
t
4

anywhere other than at the initial time t = 0.

Example 2.4 (* Accelerated motion in a straight line). Consider the important dif-
ferential equation system x′ = v,v′ = a and the initial value problem

x′(t) = v(t)
v′(t) = a

x(0) = x0

v(0) = v0

(2.2)

This differential equation states that the position x(t) changes with a time-derivative
equal to the respective current velocity v(t), which, in turn, changes with a time-
derivative equal to the acceleration a, which remains constant. The position and
velocity start at the initial values x0 and v0. This initial value problem is a symbolic

initial value problem with symbols x0,v0 as initial values (not specific numbers like
5 and 2.3). Moreover, the differential equation has a constant symbol a, and not a

2.4 A Tiny Compendium of Differential Equation Examples 35

specific number like 0.6, in the differential equation. When concrete numbers x0 =
0,v0 = 0,a = 0.5 are chosen, the initial value problem (2.2) becomes numerical and
has the vector field shown in Fig. 2.2. The initial value problem (2.2) corresponds to
a vectorial differential equation with vector y(t) := (x(t),v(t)) of dimension n = 2:

y′(t) =

(
x

v

)′
(t) =

(
v(t)

a

)

y(0) =

(
x

v

)

(0) =

(
x0

v0

)

(2.3)

The solution of this initial value problem is

x(t) =
a

2
t2 + v0t + x0

v(t) = at + v0

We can show that this is the solution by inserting the solution into the (differential)
equations of the initial value problems and checking:

(a
2 t2 + v0t + x0)

′ = 2 a
2 t + v0 = v(t)

(at + v0)
′ = a

x(0) = a
2 02 + v00+ x0 = x0

v(0) = a0+ v0 = v0

Example 2.5 (* A two-dimensional linear differential equation for rotation). In the
important differential equation system v′ = w,w′ = v with initial value problem

v′(t) = w(t)
w′(t) = v(t)
v(0) = 0
w(0) = 1

(2.4)

the rate of change of v(t) gets bigger as w(t) gets bigger but, simultaneously, the
rate of change of w(t) is v(t) so it gets smaller as v(t) gets bigger and vice versa.
This differential equation describes a rotational effect (Fig. 2.7) with solution

v(t) = sin(t)

w(t) = cos(t)

That this is the solution can also be checked by inserting the solution into the (dif-
ferential) equations of the initial value problems and checking:

(sin(t))′ = cos(t) = w(t)
(cos(t))′ = sin(t) = v(t)

v(0) = sin(0) = 0
w(0) = cos(0) = 1

36 2 Differential Equations & Domains

v

w

1 2 3 4 5 6
t

-1.0

-0.5

0.5

1.0

Fig. 2.7 A solution of the rotational differential equations v and w over time t (left) and in phase
space with coordinates w over v (right)

Example 2.6 (A similar two dimensional linear differential equation). Consider the
same differential equation system v′ = w,w′ = v from Example 2.5 but with dif-
ferent initial values than (2.4):

v′(t) = w(t)
w′(t) = v(t)
v(0) = 1
w(0) = 1

This differential equation still describes a rotational effect (Fig. 2.8), but the solution
now is

v(t) = cos(t)+ sin(t)

w(t) = cos(t) sin(t)

Showing that this is the solution amounts to inserting the solution into the (differen-
tial) equations of the initial value problems and checking:

(cos(t)+ sin(t))′ = sin(t)+ cos(t) = w(t)
(cos(t) sin(t))′ = sin(t) cos(t) = v(t)

v(0) = cos(0)+ sin(0) = 1
w(0) = cos(0) sin(0) = 1

Example 2.7 (* An adjustable linear differential equation for rotation). In the im-
portant differential equation system v′ = ωw,w′ = ωv with initial value problem

v′(t) = ωw(t)
w′(t) = ωv(t)
v(0) = 0
w(0) = 1

(2.5)

the rate of change of v(t) gets bigger as w(t) gets bigger but, simultaneously, the
rate of change of w(t) is v(t) so it gets smaller as v(t) gets bigger and vice versa.

2.4 A Tiny Compendium of Differential Equation Examples 37

v

w

1 2 3 4 5 6
t

-1.5

-1.0

-0.5

0.5

1.0

1.5

-1.5 -1.0 -0.5 0.5 1.0 1.5
v

-1.5

-1.0

-0.5

0.5

1.0

1.5

w

Fig. 2.8 Another solution of the rotational differential equations v and w over time t with initial
values v(0) = w(0) = 1 (left) and in phase space with coordinates w over v (right)

But in all places, the rate of change is multiplied by a constant parameter ω , which
represents the angular velocity. Bigger magnitudes of ω give faster rotations and
positive ω gives clockwise rotations. This differential equation describes a rotational
effect (Fig. 2.9) with solution

v(t) = sin(ωt)

w(t) = cos(ωt)

v

w

1 2 3 4 5 6
t

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0
v

-1.0

-0.5

0.5

1.0

w

Fig. 2.9 A faster solution of the rotational differential equations v and w over time t with initial
values v(0) = 0,w(0) = 1 and ω = 2 (left) and in phase space with coordinates w over v (right)

Some differential equations mention the time variable t, which means that the
required time-derivatives change over time.

Example 2.8 (Time square oscillator). Consider the following differential equation
system x′(t) = t2y,y′(t) = t2x, which explicitly mentions the time variable t, and
the initial value problem

38 2 Differential Equations & Domains

x′(t) = t2y

y′(t) = t2x

x(0) = 0
y(0) = 1

(2.6)

The solution shown in Fig. 2.10(left) illustrates that the system stays bounded but
oscillates increasingly quickly. In this case, the solution is

x(t) = sin

(
t3

3

)

y(t) = cos
(

t3

3

)

 (2.7)

Note that there is no need to mention time variable t itself in the differential equa-

x

y

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

x

y
1 2 3 4 5 6

-1.5

-1.0

-0.5

0.5

1.0

Fig. 2.10 A solution of the time square oscillator (left) and of the damped oscillator (right) up to
time 6.5

tion. We could just as well have added an extra clock variable s with differential
equation s′ = 1 and initial value s(0) = 0 to serve as a proxy for time t. This leads
to a system equivalent to (2.6) without explicit dependency on the time variable t,
since the proxy s behaves in the same way as time t but is an ordinary state variable:

x′(t) = s2y

y′(t) = s2x

s′(t) = 1
x(0) = 0
y(0) = 1
s(0) = 0

This transformation to use s instead of t makes the differential equation autonomous

because its right-hand side does not depend on the actual time variable t.

In this example, the solution oscillates increasingly quickly. The following ex-
ample has no time-dependence and a constant frequency but the amplitude of the
oscillation decreases over time.

Example 2.9 (Damped oscillator). Consider the linear differential equation x′ =
y,y′ = 4x 0.8y and the initial value problem

2.5 Domains of Differential Equations 39

x′(t) = y

y′(t) = 4x 0.8y

x(0) = 1
y(0) = 0

(2.8)

The solution shown in Fig. 2.10(right) illustrates that the dynamical system decays
over time. In this case, the explicit global solution representing the dynamical sys-
tem is more difficult to write down explicitly but a function that solves it still exists.

Note 5 (Descriptive power of differential equations) As a very general phe-
nomenon, observe that solutions of differential equations can be much more
involved than the differential equations themselves, which is part of the repre-
sentational and descriptive power of differential equations. Pretty simple dif-
ferential equations can describe quite complicated physical processes.

2.5 Domains of Differential Equations

Now we understand precisely what a differential equation is and how it describes a
continuous physical process. In CPS, however, physical processes are not running in
isolation, but interact with cyber elements such as computers or embedded systems.
When and how do physics and cyber elements interact?

The first thing we need to understand for that is how to describe when physics
stops so that the cyber elements take control of what happens next. Obviously,
physics does not literally stop evolving, but rather keeps on evolving all the time.
Yet, the cyber parts only take effect every now and then, because they only provide
input into physics by way of changing the actuators every once in a while. So, our
intuition may imagine physics “pauses” for a period of duration 0 and lets the cyber
take action to influence the inputs on which physics is based. In fact, cyber may in-
teract with physics over a period of time or after computing for some time to reach a
decision. But the phenomenon is still the same. At some point, cyber is done sensing
and deliberating and deems it time to act (if cyber never acts, it’s boring and will
be discarded). At this moment of time, physics needs to “pause” for a conceptual
period of time of imaginary duration 0 to give cyber a chance to act.

The cyber and the physics can interface in more than one way. Physics might
evolve and the cyber elements interrupt physics periodically to make measurements
of the current state of the system in order to decide what to do next (Chap. 9). Or
the physics might trigger certain conditions or events that cause cyber elements to
compute their respective responses to these events (Chap. 8). Another way to look
at this is that a differential equation that a system follows forever without further
intervention by anything would not describe a particularly well-controlled system.
If physics on its own were already to drive cars safely, we would not need any cyber
or any control in the first place. But since physics has not quite passed the driver’s
license test yet, proper control is rather on the crucial side.

40 2 Differential Equations & Domains

All those ways have in common that our model of physics not only needs to
explain how the state changes over time with a differential equation, but it also
needs to specify when physics stops evolving to give cyber a chance to perform
its task. This information is what is called an evolution domain Q of a differential
equation, which describes a region that the system cannot leave while following that
particular continuous mode of the system. If the system were ever about to leave this
region, it would stop evolving right away (for the purpose of giving the cyber parts
of the system a chance to act) before it leaves the evolution domain. Of course, the
overall idea will be for physics to resume once cyber is done inspecting and acting,
but that is a matter for Chap. 3.

Note 6 (Evolution domain constraint) A differential equation x′ = f (x) with

evolution domain Q is denoted by

x′ = f (x)&Q

using a conjunctive notation (&) between the differential equation and its evo-
lution domain. This notation x′ = f (x)&Q signifies that the system obeys both

the differential equation x′ = f (x) and the evolution domain Q. The system fol-
lows this differential equation for any duration while inside the region Q, but is
never allowed to leave the region described by Q. So the system evolution has
to stop while the state is still in Q.

If, e.g., t is a time variable with t ′ = 1, then x′ = v,v′ = a, t ′ = 1& t ≤ ε describes
a system that follows the differential equation at most until time t = ε and not any

further, because the evolution domain Q
def≡ (t ≤ ε) would be violated after time ε .

That can be a useful model of the kind of physics that gives the cyber elements a
chance to act at the latest at time ε , because physics is not allowed to continue be-

yond time t = ε . The evolution domain Q
def≡ (v ≥ 0), instead, restricts the system

x′ = v,v′ = a&v≥ 0 to nonnegative velocities. Should the velocity ever be about
to become negative while following the differential equation x′ = v,v′ = a, then
the system stops evolving before the velocity becomes negative. In a similar way
x′ = v,v′ = a&v≤ 10 describes a physics that has its velocity limited by an upper
bound of 10. But, honestly, keeping the velocity of a car below 10 will also end up
requiring some effort on the part of the cyber controller, not just the physics, which
is a phenomenon that we will come back to in Chaps. 8 and 9.

In the first two scenarios illustrated in Fig. 2.11, the system starts at time 0 inside
the evolution domain Q, which is depicted as a shaded green region in Fig. 2.11.
Then the system follows the differential equation x′ = f (x) for any period of time,
but has to stop before it leaves Q. Here, it stops at different choices for the stopping
time r.

In contrast, consider the scenario shown on the right of Fig. 2.11. The system
stops at time r and is not allowed to evolve until time s, because—even if the sys-
tem would be back in the evolution domain Q at that time—it has already left the
evolution domain Q between time r and s (indicated by dotted lines), which is not

2.6 Syntax of Continuous Programs 41

t

x

Q

ν

ω

0 r

x′ = f (x)&Q

t

x

Q

ν

ω

0 r

x′ = f (x)&Q

t

x

Q

ν

Q

ω

0 r s

x′ = f (x)&Q

Fig. 2.11 System x′ = f (x)&Q follows the differential equation x′ = f (x) for any duration r but
cannot leave the (green) evolution domain Q

allowed. Physics x′ = f (x)&Q cannot sneak out of its respective evolution domain
Q hoping that we will not notice, not even temporarily. Consequently, the continu-
ous evolution on the right of Fig. 2.11 will also stop at time r at the latest and cannot
continue any further.

Now that we know what the evolution domain constraint Q of a differential equa-
tion is supposed to do, the question is how we can properly describe it in a CPS
model? We will need some logic for that. For one thing, we should start getting pre-
cise about how to describe the evolution domain Q for a differential equation, just
as we have become precise about the understanding of a differential equation itself.
The most critical bit of an evolution domain is the question of which points satisfy
Q and which ones doesn’t, which is what logic is good at making precise.

2.6 Syntax of Continuous Programs

After these preparations for understanding differential equations and domains, we
start developing a precise mathematical model. The differential equations with their
evolution domains will ultimately need a way of interfacing with discrete computer
control programs, because hybrid system models of cyber-physical systems com-
bine discrete dynamics and continuous dynamics. The conceptually easiest and most
compositional way to make that happen is to integrate continuous dynamics seam-
lessly into the computer control programs. This book develops the programming
language of hybrid programs, which contain discrete features in addition to the dif-
ferential equations. Hybrid programs and their analysis is developed in layers one
after another. For now, we focus on the first layer of this programming language,
which contains only the most crucial feature of continuous dynamics.

2.6.1 Continuous Programs

The first element of the syntax of hybrid programs is purely continuous programs.

42 2 Differential Equations & Domains

Note 7 (Continuous programs) Layer 1 of hybrid programs (HPs) comprises
continuous programs. If x is a variable, e any term possibly containing x, and
Q a formula of first-order logic of real arithmetic, then continuous programs
are of the form

α ::= x′ = e&Q

Continuous programs consist of a single statement of the form x′ = e&Q. In
later chapters, we will add more statements to form hybrid programs, but we just
focus on differential equations for the continuous dynamics for now. The continuous

evolution x′ = e&Q expresses that, from the present value of variable x, the system
follows the differential equation x′ = e for some amount of time within the evolution

domain constraint Q. What form formula Q can take will be defined below. But it
has to enable an unambiguous definition of the set of points that satisfy Q, because
the continuous evolution is not allowed to ever leave that region. Further x is a
variable, but is also allowed to be a vector of variables and, then, e is a vector of
terms of the same dimension. This corresponds to the case of differential equation
systems such as

x′ = v,v′ = a&(v≥ 0∧ v≤ 10)

Differential equations are allowed without an evolution domain constraint Q as well:

x′ = y,y′ = x+ y2

which corresponds to choosing true for Q, since the formula true is true everywhere
and, thus, actually imposes no condition on the state whatsoever, because every
state easily satisfies the formula true with flying colors. Of course, we will have to
be more precise about what terms e are allowed and what formulas Q are allowed,
which is what we will pursue next.

2.6.2 Terms

A rigorous definition of the syntax of hybrid programs also depends on defining
what a term e and what a formula Q of first-order logic of real arithmetic are. Terms
e occur on the right-hand side of differential equations, and formulas Q are their
evolution domains.

Definition 2.2 (Terms). A term e is a polynomial term defined by the grammar
(where e, ẽ are terms, x is a variable, and c is a rational number constant)

e, ẽ ::= x | c | e+ ẽ | e · ẽ

This grammar2 means that a term e (or a term ẽ) is either a variable x, or a
rational number constant c ∈ Q such as 0 or 1 or 5/7, or a sum of terms e, ẽ, or it is

2 From a formal languages perspective, it would be fine to use the equivalent grammar

2.6 Syntax of Continuous Programs 43

a product of terms e, ẽ, which are again built in this way recursively. The cases of
variables x or constants c are called atomic terms. The other cases take two terms as
input to produce more complex terms and are called compound terms. The addition
term e+ ẽ, for example, consists of two terms e and ẽ. So does the multiplication
term e · ẽ. Subtraction e ẽ is another useful case, but it turns out that it is already
included, because the subtraction term e ẽ is already definable by the term e+
(1) · ẽ. That is why we will not worry about subtraction in developing the theory,
but use it in our examples regardless. Unary negation e is helpful, too, but also
already included as 0 e. For example, 4+ x ·2 and x ·2+ y · y are terms and 4 · x
y ·y+1 will also be considered as a term even if it really should have been written as
((4 · x)+(((1) · y) · y))+1. Definition 2.2 yields all polynomials. The polynomial
x3 +5x2 x+4 can, e.g., be represented by the term x · x · x+5 · x · x+(1) · x+4.

If you were to implement the syntax of terms in a computer program, you could
implement the four cases of the syntax of terms in Definition 2.2 as constructors of
a data type. An atomic term can either be constructed by providing a variable x or a
computer representation of a rational number c ∈ Q. Compound terms can be con-
structed with the sum constructor e+ ẽ when providing two previously constructed
terms e, ẽ. Or they can be constructed with the product constructor e · ẽ. That way,
every concrete term such as x · 2+ y · y can be represented in the data structure by
calling the respective constructors with the appropriate arguments.

2.6.3 First-Order Formulas

The formulas of first-order logic of real arithmetic are defined as usual in first-
order logic, except that, being the logic for real arithmetic, it also uses the spe-
cific language of real arithmetic, for example e≥ ẽ for greater-or-equal. First-order
logic supports the logical connectives not (¬), and (∧), or (∨), implies (→), and
bi-implication alias equivalence (↔), as well as quantifiers for all (∀) and exists (∃).
In the first-order logic of real arithmetic, ∀,∃ quantify over the reals R.

Definition 2.3 (Formulas of first-order logic of real arithmetic). The formu-

las of first-order logic of real arithmetic are defined by the following grammar
(where P,Q are formulas of first-order logic of real arithmetic, e, ẽ are terms,
and x is a variable):

P,Q ::= e≥ ẽ | e = ẽ | ¬P | P∧Q | P∨Q | P→ Q | P↔ Q | ∀xP | ∃xP

e ::= x | c | e+ e | e · e

with a single nonterminal e. We use the slightly more verbose form with two redundant nonter-
minals e, ẽ just to emphasize directly that a term can be a sum e+ ẽ of any arbitrary and possibly
different terms e, ẽ and does not have to consist of sums e+ e of one and the same term e. The two
presentations of the grammar are equivalent.

44 2 Differential Equations & Domains

The usual abbreviations are allowed, such as e≤ ẽ for ẽ≥ e and e< ẽ for¬(e≥ ẽ)
and will be used in examples even if the theory does not need to be bothered with
them.

Example formulas we saw before as evolution domains are t ≤ ε , which we mean
as a bound on time t, as well as v ≥ 0, which we used as a velocity bound. But
these first-order logic formulas themselves do not tell us that t is a time and v a
velocity, which is the rôle of the differential equations. However, the formula v≥ 0
quite precisely instructs us where it is true (which is what it semantics will define
rigorously). Whenever the value of velocity v is greater-or-equal 0, the formula v≥ 0
will be true, otherwise false. The formula t ≤ ε ∧v≥ 0, which is the conjunction of
the formulas t ≤ ε and v≥ 0, is used as a domain for systems that evolve at most till
time ε and also cannot move backwards. An implication t ≥ 2→ v≤ 5 may be used
as an evolution domain to say that if the system is beyond time 2, then the velocity
is at most 5.

The quantifiers for all (∀) and exists (∃) over the reals are less relevant for evo-
lution domains and become more important in later chapters of the book. They are
already shown here because they are a characteristic part of first-order logic. For
example, ∀x∃y(y > x) expresses that for all real numbers x there is a real number
y that is larger than x. The formula ∃x(x · x = 2) expresses that there is a real num-
ber whose square is 2, which is true thanks to the real number

√
2. But the formula

∃x(x · x = 1) is not true over the reals, because the squares of all real numbers are
nonnegative and the imaginary unit i, which satisfies i2 = 1, is not a real number.
The formula ∃y(x < y∧ y < x+1) is also true, no matter what the value of x is, but
would be false over the integers, which suffer from a clear lack of numbers between
x and x+1.

Expedition 2.1 (Naming conventions)

In this book, we generally follow these naming conventions (programs, func-
tion, and predicate symbols will be introduced in later chapters):

Letters Convention

x,y,z variables
e, ẽ terms
P,Q formulas
α,β programs
c constant symbols
f ,g,h function symbols
p,q,r predicate symbols

In any application context, it may be better to deviate from this convention and
follow the naming conventions of the application. For example, x is often used
for position, v for velocity, and a for acceleration, even if all are variables.

2.7 Semantics of Continuous Programs 45

2.7 Semantics of Continuous Programs

This is the first of many occasions in this textbook where we observe a distinct di-
chotomy between syntax and semantics. The syntax defines the notation, i.e., what
questions can be written down and how. But to the innocent bystander and any self-
respecting logician, the syntax just provides a long list of funny, arbitrary symbols,
until their intended meaning has been clarified. The syntax is only given meaning
by the semantics, which defines what real or mathematical object each element of
the syntax stands for. The symbols that the syntax uses are arbitrary and completely
meaningless until the semantics defines what the symbols mean. Of course, the syn-
tax is cleverly chosen to already remind us of what it is supposed to stand for.

Note 8 (Syntax versus semantics) Syntax just defines arbitrary notation. Its
meaning is defined by the semantics.

It is by way of this clear distinction of syntactic and semantic objects that we
will ultimately develop a nuanced and accurate understanding of the relationships
between mathematical meaning and computer-based insights. Without such a clear
distinction, there can be no subsequent alignment and relation. Numerous mistakes
in reasoning can be traced back to the lack of a clear separation of the syntactic
object-level and semantic meta-level elements of a development. Object-level ex-
pressions are expressions in the language (for example first-order logic). Meta-level
statements are statements about the language, phrased, for example, in mathematics
or English.

2.7.1 Terms

The meaning of a continuous evolution x′ = e&Q depends on understanding the
meaning of term e. A term e is a syntactic expression. The meaning of a term e

is given by the real number to which it evaluates. In a term, e, the symbol +, of
course, means addition of real numbers, · means multiplication, and the meaning of
the constant symbol 5/7 is the rational number five sevenths.

But the overall value of term e also depends on how we interpret the variables
appearing in the term e. What values those variables have changes depending on the
current state of the CPS. A state needs to let us know what real values all variables
of e have, before we are able to say what real value term e evaluates to in that state.
In fact, a state ω is nothing but a mapping from variables to real numbers, such
that it associates a real value ω(x) with each variable x. The set of states is denoted
S. In other words, if V is the set of all variables, then a state ω ∈S is a function
ω : V → R whose value ω(x) ∈ R at x ∈ V indicates the real value that variable x

has in state ω .
Since the value of a term depends on the state, we will use the notation ω[[e]] for

the real value that the term e evaluates to in state ω . This notation is reminiscent of

46 2 Differential Equations & Domains

function application ω(e), but when a state is a function ω : V → R, then ω(e) is
only defined if e is a variable, not if it is a term x+7. The notation ω[[e]], thus, lifts
to terms e the value that the state ω assigns only to variables x ∈ V .

Definition 2.4 (Semantics of terms). The value of term e in state ω ∈S is a
real number denoted ω[[e]] and is defined by induction on the structure of e:

ω[[x]] = ω(x) if x is a variable

ω[[c]] = c if c ∈Q is a rational constant

ω[[e+ ẽ]] = ω[[e]]+ω[[ẽ]]

ω[[e · ẽ]] = ω[[e]] ·ω[[ẽ]]

That is, the value of a variable x in state ω is given directly by the state ω ,
which is a mapping from variables to real numbers. A rational constant c such as
0.5 evaluates to itself. The value of a sum term of the form e+ ẽ in a state ω is
the sum of the values of the subterms e and ẽ in ω , respectively. Those lines of
Definition 2.4 already explain that ω[[x+ y]] = ω(x)+ω(y). Likewise, the value of
a product term of the form e · ẽ in a state ω is the product of the values of the
subterms e and ẽ in ω , respectively. Each term has a value in every state, because
each case of the syntactic form of terms (Definition 2.2) has been given a semantics
in Definition 2.4. The semantics of every term, thus, is a mapping from states ω ∈S

to the real value ω[[e]] that the term e evaluates to in the respective state ω .
The value of a variable-free term like 4+5 ·2 does not depend on the state ω at

all. In this case, the value is 14. The value of a term with variables, like 4+ x · 2,
depends on what value the variable x has in state ω . Suppose ω(x) = 5, then the
value is also ω[[4+ x ·2]] = 4+ω(x) ·2 = 14. However, for ν(x) = 2, it evaluates to
ν [[4+ x ·2]] = 4+ν(x) ·2 = 8, instead. While, technically, the state ω is a mapping
from all variables to real numbers, the values that ω gives to most variables are
immaterial; only the values of the variables that actually occur in the term have any
influence (Sect. 5.6.5). So while the value of 4+ x · 2 very much depends on the
value of x, it does not depend on the value that variable y has since y does not even
occur in the term 4+ x · 2. This is in contrast to the term x · 2+ y · y whose value
depends on the values of both x and y but not on z, so for ω(x) = 5 and ω(y) = 4, it
evaluates to ω[[x ·2+ y · y]] = ω(x) ·2+ω(y) ·ω(y) = 26.

The way that Definition 2.4 defines a semantics for terms directly corresponds
to the definition of a recursive function in a functional programming language by
distinguishing the respective constructors of the data types for terms. For each con-
structor, there is a corresponding case that defines its value in the argument state.
And if that function makes a recursive call, as in the cases of ω[[e+ ẽ]] and ω[[e · ẽ]],
it does so on terms that are smaller to make sure the function terminates and is well
defined on all inputs.

2.7 Semantics of Continuous Programs 47

Expedition 2.2 (Semantic brackets [[·]] : Trm→ (S→ R))

There are multiple equivalent ways of understanding Definition 2.4. The most
elementary understanding is, as written, to understand it as defining the real
value ω[[e]] in a state ω for each term e by an inductive definition on the struc-
ture of e. If e is a variable, the first line is applicable, if e is a rational constant
symbol the second line. If e is a sum term, then the third line, and the fourth
line is applicable if e is a product term. Since every term fits to exactly one of
those four shapes and the right-hand sides use the definition on smaller sub-
terms of e that have already received a value by this definition, the definition is
well defined.

More eloquently, Definition 2.4 can be read as defining an operator [[·]] that
defines the semantics of a term e as a mapping [[e]] : S→ R from states to real
numbers such that the real value ω[[e]] is computed according to the equations in
Definition 2.4. That is, the function [[e]] is defined by induction on the structure
of e:

[[x]] : S→ R; ω 7→ ω(x) if x is a variable

[[c]] : S→ R; ω 7→ c if c ∈Q is a rational constant

[[e+ ẽ]] : S→ R; ω 7→ ω[[e]]+ω[[ẽ]]

[[e · ẽ]] : S→ R; ω 7→ ω[[e]] ·ω[[ẽ]]

The notation for evaluating [[e]] at state ω is still ω[[e]]. For example, the last
line defines the function [[e · ẽ]] as the function [[e · ẽ]] : S→R that maps state ω
to the real value given by the product ω[[e]] ·ω[[ẽ]] of the values ω[[e]] and ω[[ẽ]].

The two ways of understanding Definition 2.4 are equivalent. The former is
more elementary. The latter generalizes more directly to defining a semantics
for other syntactic objects when choosing a different semantic domain than
S→ R. When Trm is the set of terms, the semantic brackets for terms define
an operator [[·]] : Trm → (S → R) that defines the meaning [[e]] for each term
e ∈ Trm, which, in turn, defines the real value ω[[e]] ∈ R for each state ω ∈S.
In a functional programming language, the difference between the two styles
of definition of the semantics of terms is exactly currying, i.e., translating a
function that takes multiple arguments into a sequence of functions each of
which only takes a single argument.

2.7.2 First-Order Formulas

Unlike for terms, the value of a logical formula is not a real number but instead
true or false. Whether a logical formula evaluates to true or false still depends on
the interpretation of its symbols. In first-order logic of real arithmetic, the meaning
of all symbols except the variables is fixed. The meaning of terms and of formulas
of first-order logic of real arithmetic is as usual in first-order logic, except that +

48 2 Differential Equations & Domains

really means addition, · means multiplication, ≥ means greater or equals, and the
quantifiers ∀x and ∃x quantify over the reals. As always in first-order logic, the
meaning of ∧ is conjunction and that of ∨ is disjunction, etc. The meaning of the
variables in the formula is again determined by the state ω of the CPS.

In direct analogy to the real-valued semantics ω[[e]] ∈ R of terms e, we might
define a boolean-valued semantics ω[[P]] ∈ {true, false} for formulas P that defines
what truth-value (true or false) the formula P has in state ω (Exercise 2.10). How-
ever, our interest is ultimately in understanding which formulas are true, because
the complement then also already tells us which formulas are false. That is why it
simplifies matters if we define the semantics via the set of states [[P]] in which for-
mula P is true. Then ω ∈ [[P]] will say that formula P is true in state ω . The opposite
ω 6∈ [[P]] says that formula P is not true so false in state ω . For consistency with
other books, this chapter uses the satisfaction relation notation ω |= P instead of
ω ∈ [[P]], but they mean the same thing.

Definition 2.5 (First-order logic semantics). The first-order formula P is true
in state ω , is written ω |= P, and is defined inductively as follows:

• ω |= e = ẽ iff ω[[e]] = ω[[ẽ]]
That is, an equation e = ẽ is true in a state ω iff the terms e and ẽ evaluate
to the same number in ω according to Definition 2.4.

• ω |= e≥ ẽ iff ω[[e]]≥ ω[[ẽ]]
That is, a greater-or-equals inequality is true in a state ω iff the term on the
left evaluates to a number that is greater than or equal to the value of the
right term.

• ω |= ¬P iff ω 6|= P, i.e., if it is not the case that ω |= P

That is, a negated formula ¬P is true in state ω iff the formula P itself is
not true in ω .

• ω |= P∧Q iff ω |= P and ω |= Q

That is, a conjunction is true in a state iff both conjuncts are true in said
state.

• ω |= P∨Q iff ω |= P or ω |= Q

That is, a disjunction is true in a state iff either of its disjuncts is true in
said state.

• ω |= P→ Q iff ω 6|= P or ω |= Q

That is, an implication is true in a state iff either its left-hand side is false
or its right-hand side is true in said state.

• ω |= P↔ Q iff (ω |= P and ω |= Q) or (ω 6|= P and ω 6|= Q)
That is, a bi-implication is true in a state iff both sides are true or both sides
are false in said state.

• ω |= ∀xP iff ωd
x |= P for all d ∈ R

That is, a universally quantified formula ∀xP is true in a state iff its kernel

P is true in all variations of the state, no matter what real number d the
quantified variable x evaluates to in the variation ωd

x defined below.

2.7 Semantics of Continuous Programs 49

• ω |= ∃xP iff ωd
x |= P for some d ∈ R

That is, an existentially quantified formula ∃xP is true in a state iff its
kernel P is true in some variation of the state, for a suitable real number d

that the quantified variable x evaluates to in the variation ωd
x .

If ω |= P, then we say that P is true at ω or that ω is a model of P. Otherwise,
i.e., if ω 6|= Q, we say that P is false at ω . A formula P is valid, written � P, iff
ω |= P for all states ω . Formula P is called satisfiable iff there is a state ω such
that ω |= P. Formula P is unsatisfiable iff there is no such ω . The set of states
in which formula P is true is written [[P]] = {ω : ω |= P}.

The definition of the semantics of quantifiers uses state modifications, i.e., ways
of changing a given state ω around by changing the value of a variable x but leaving
the values of all other variables alone. The notation ωd

x ∈S denotes the state that
agrees with state ω ∈S except for the interpretation of variable x, which is changed
to the value d ∈ R. That is, the state ωd

x has the same values that the state ω has for
all variables other than the variable x, and the value of the variable x in ωd

x is d:

ωd
x (y)

def
=

{

d if y is the modified variable x

ω(y) if y is another variable
(2.9)

The formula x > 0∧ x < 1 is satisfiable, because all it takes for it to be true is
a state ω in which, indeed, the value of x is a real number between zero and one,
such as 0.592. The formula x > 0∧ x < 0 is unsatisfiable, because it is kind of hard
(read: impossible) to find a state which satisfies both conjuncts at once. The formula
x> 0∨x< 1 is valid, because there is no state in which it would not be true, because,
surely, x will either be positive or smaller than one.

In the grand scheme of things, the most exciting formulas are the ones that are
valid, i.e., � P, because that means they are true no matter what state a system is in.
Valid formulas, and how to find out whether a formula is valid, will keep us busy
quite a while in this textbook. Consequences of a formula set Γ are also amazing,
because, even if they may not be valid per se, they are true whenever Γ is. For
this chapter, however, it is more important which formulas are true in a given state,
because that is what we need to make sense of an evolution domain of a continuous
evolution, which would be futile if it were true in all states.

For example, the formula ∃y(y > x) is valid, so � ∃y(y > x), because it is true,
i.e., ω ∈ [[∃y(y > x)]], in all states ω , as there always is a real number y that is a little
larger than the value of x, whatever real value x might have in ω . The formula t ≤ ε
is not valid. Its truth-value depends on the value of its variables t and ε . In a state
ω with ω(t) = 0.5 and ω(ε) = 1, the formula is true, so ω ∈ [[t ≤ ε]]. But in a state
ν with ν(t) = 0.5 and ν(ε) = 0.1, the formula is false, so ν 6∈ [[t ≤ ε]]. In a state ω
with ω(t) = 0.5 and ω(ε) = 1 and ω(v) = 5, even the formula t ≤ ε ∧ v≥ 0 is true,
so ω ∈ [[t ≤ ε ∧ v≥ 0]], because both ω ∈ [[t ≤ ε]] and ω ∈ [[v≥ 0]].

As will be elaborated in Sect. 5.6.5, the only relevant information from the state
is the values of the free variables, i.e., those that occur outside the scope of quan-

50 2 Differential Equations & Domains

tifiers for that variables. For example the truth-value of ∃y(y2 ≤ x) depends on the
value that its free variable x has in the state, but does not depend on the value of
variable y, because the existential quantifier ∃y will give y a new value anyhow. For
example, ω ∈ [[∃y(y2 ≤ x)]] for a state ω with ω(x) = 5, regardless of what ω(y)
is and regardless of ω(z), because z does not occur at all and y only occurs in the
scope of a quantifier. But ν 6∈ [[∃y(y2 ≤ x)]] in state ν with ν(x) = 1, because it is
impossible to find a real number whose square is less than or equal to 1. Come to
think of it, x ≥ 0 would have been an easier way to state ∃y(y2 ≤ x), because the
two formulas are equivalent, i.e., have the same truth-value in every state. All states
define real values for all variables, because states are (total) functions from the vari-
ables to the reals. But the only relevant values are the values of the free variables of
the formula.

A formula P is valid iff the formula ∀xP is valid, because validity means truth in
all states, which includes all real values for all variables, in particular the variable
x. Likewise, P is satisfiable iff the formula ∃xP is satisfiable, because satisfiability
means truth in some state, which provides a real value for all variables, even vari-
able x. In a similar way, we could prefix universal quantifiers explicitly for all free
variables when asking for validity, because that implicitly quantifies over all real
values of all variables. We could also prefix existential quantifiers explicitly for the
free variables when asking for satisfiability.

Of course, which quantifier we implicitly mean for a formula with free variables
such as ∀y(y2 > x) depends. If we ask whether ∀y(y2 > x) is true in the state ω with
ω(x) = 1, there is no implicit quantifier, because we ask about that specific state,
and the answer is yes, so ω ∈ [[∀y(y2 > x)]]. When asking whether ∀y(y2 > x) is true
in the state ν with ν(x) = 0, then the answer is no, since ν 6∈ [[∀y(y2 > x)]]. If we
ask whether ∀y(y2 > x) is valid, we do not provide a specific state, because validity
requires truth in all states, so implicitly quantifies all free variables universally. The
answer is no, because ∀y(y2 > x) is not valid as witnessed by the above state ν . The
variation ∀y(y2 ≥ x2) is valid, written � ∀y(y2 ≥ x2). If we ask whether ∀y(y2 >
x) is satisfiable, we do not provide a specific state either, because the question is
whether there is a state ω with ω ∈ [[∀y(y2 > x)]], so the free variables are implicitly
quantified existentially. The answer is yes as witnessed by the above state ω .

With the semantics, we now know how to evaluate whether an evolution do-
main Q of a continuous evolution x′ = e&Q is true in a particular state ω or not.
If ω ∈ [[Q]], then the evolution domain Q holds in that state. Otherwise (i.e., if
ω 6∈ [[Q]]), Q does not hold in ω . Yet, in which states ω do we even need to check the
evolution domain? We need to find some way of saying that the evolution domain
constraint Q is checked for whether it is true (i.e., ω ∈ [[Q]]) in all states ω along the
solution of the differential equation. That will be the next item on our agenda.

2.7 Semantics of Continuous Programs 51

2.7.3 Continuous Programs

The semantics of continuous programs surely depends on the semantics of their
pieces, which include terms and formulas. The latter have now both been defined,
so the next step is giving continuous programs themselves a proper semantics.

In order to keep things simple, all we care about for now is the observation that
running a continuous program x′ = e&Q takes the system from an initial state ω to
a new state ν . And, in fact, one crucial aspect to notice is that there is not only one
state ν that x′ = e&Q can reach from ω just as there is not only one solution of the
differential equation x′ = e. Even in cases where there is a unique solution of maxi-
mal duration, there are still many different solutions differing only in the duration of
the solution. Thus, the continuous program x′ = e&Q can lead from initial state ω
to more than one possible state ν . Which states ν are reachable from an initial state
ω along the continuous program x′ = e&Q exactly? Well, these should be the states
ν to which ω can be connected with a solution of the differential equation x′ = e

that remains entirely within the set of states where the evolution domain constraint
Q holds true, as illustrated in Fig. 2.12. Giving this a precise meaning requires going
back and forth between syntax and semantics carefully.

Definition 2.6 (Semantics of continuous programs). The state ν is reach-
able from initial state ω by the continuous program x′1 = e1, . . . ,x

′
n = en &Q

iff there is a solution ϕ of some duration r ≥ 0 along x′1 = e1, . . . ,x
′
n = en &Q

from state ω to state ν , i.e., a function ϕ : [0,r]→S such that:

• initial and final states match: ϕ(0) = ω,ϕ(r) = ν ;
• ϕ respects the differential equations: For each variable xi, the value

ϕ(ζ)[[xi]] = ϕ(ζ)(xi) of xi at state ϕ(ζ) is continuous in ζ on [0,r] and,
if r > 0, has a time-derivative of value ϕ(ζ)[[ei]] at each time ζ ∈ [0,r], i.e.,

dϕ(t)(xi)

dt
(ζ) = ϕ(ζ)[[ei]]

• the value of other variables y 6∈ {x1, . . . ,xn} remains constant throughout
the continuous evolution, that is ϕ(ζ)[[y]] = ω[[y]] for all times ζ ∈ [0,r];

• and ϕ respects the evolution domain at all times: ϕ(ζ) ∈ [[Q]] for each
ζ ∈ [0,r].

Fig. 2.12 Illustration of the
dynamics of continuous pro-
grams

t

x

Q

ν

ω

0 r

x′ = e&Q

ζ

x
′ =

e

52 2 Differential Equations & Domains

Observe that this definition is explicit about the fact that variables without dif-
ferential equations do not change during a continuous program. The semantics is
explicit change: nothing changes unless a program statement specifies how. Further
observe the explicit passing from syntax to semantics3 by the use of the semantics
function [[·]] in Definition 2.6. Finally note that for duration r = 0, no condition is
imposed on the time-derivative, because there are no time-derivatives for a function
that is only defined at 0. Consequently, the only conditions that Definition 2.6 im-
poses for duration 0 are that the initial state ω and final state ν agree and that the
evolution domain constraint Q is respected at that state: ω ∈ [[Q]]. Later chapters will
have a slightly refined understanding, but Definition 2.6 is sufficient for Part I.

2.8 Summary

This chapter gave a precise semantics to differential equations and presented first-
order logic of real arithmetic, which we use for the evolution domain constraints
within which differential equations are supposed to stay. The operators in first-order
logic of real arithmetic and their informal meaning is summarized in Table 2.1.

While this chapter provided an important continuous foundation, all its elements
will be revisited in more detail in subsequent chapters. The semantics of continuous
programs will be revisited in their interaction with discrete programs in Chap. 3.
First-order logic will be substantially generalized in more detail in Chap. 4. In fact,
even the set of terms will be extended in Part II but will be with us throughout the
book.

Table 2.1 Operators and meaning in first-order logic of real arithmetic (FOL)

FOL Operator Meaning
e = ẽ equals true iff values of e and ẽ are equal
e≥ ẽ greater or equals true iff value of e greater-or-equal to ẽ

¬P negation / not true iff P is false
P∧Q conjunction / and true iff both P and Q are true
P∨Q disjunction / or true iff P is true or if Q is true
P→ Q implication / implies true iff P is false or Q is true
P↔ Q bi-implication / equivalent true iff P and Q are both true or both false
∀xP universal quantifier / for all true iff P is true for all values of real variable x

∃xP existential quantifier / exists true iff P is true for some values of real variable x

3 This important aspect is often overlooked. Informally, one might say that x obeys x′ = e, but this
cannot mean that the equation x′ = e holds true, because it is not even clear what the meaning of
x′ would be. A syntactic variable x has a meaning in a single state, but a time-derivative cannot.
The semantical value of x along a function ϕ , instead, can have a well-defined derivative at time ζ .
This requires passing back and forth between syntax and semantics.

2.9 Appendix 53

2.9 Appendix

For your reference, this appendix already contains a short primer on some impor-
tant results about differential equations from the literature [10]. While not crucial
for the immediate technical development in subsequent chapters, this appendix is a
helpful resource to come back to as desired for important meta-results for the gen-
eral theory of differential equations. This appendix also lists useful counterexamples
highlighting that the assumptions of the respective theorems are necessary.

The most crucial insights are that continuous differential equations have solutions
(Sect. 2.9.1) and locally Lipschitz continuous differential equations (such as contin-
uously differentiable differential equations) have unique solutions (Sect. 2.9.2).

2.9.1 Existence Theorems

Classical theorems guarantee existence and/or uniqueness of solutions of differ-
ential equations (not necessarily closed-form solutions with elementary functions,
though). The existence theorem is due to Peano [6]. A proof can be found in the
literature [10, Theorem 10.IX].

Theorem 2.1 (Peano’s existence theorem). Let f : D→ Rn be a continuous

function on an open, connected domain D ⊆ R×Rn. Then, the initial value

problem (2.1) with (t0,y0) ∈ D has a solution. Every solution of (2.1) can be

continued arbitrarily close to the boundary of D.

Peano’s theorem only proves that a solution exists, not for what duration it exists.
Still, it shows that every solution can be continued arbitrarily close to the boundary

of the domain. That is, the closure of the graph of the solution is not a compact
subset of D, which means [10, §6.VII] that the solution exists either globally on
[0,∞) or on a bounded interval [0,r) with the solution approaching the boundary of
D or an infinite norm at r. The graph graph(y) of a function y : J→ D is the subset
{(t,y(t)) : t ∈ J} of J×D.

Peano’s theorem shows the existence of solutions of continuous differential equa-
tions on open, connected domains, but there can still be multiple solutions.

Example 2.10 (Nonunique solutions). The initial value problem with the following
continuous differential equation

(

y′ = 3
√

|y|
y(0) = 0

)

has multiple solutions, for example

54 2 Differential Equations & Domains

y(t) = 0

y(t) =

(
2
3

t

) 3
2

y(t) =

{

0 for t ≤ s

2
3 (t s)

) 3
2 for t > s

where s≥ 0 can be any nonnegative real number.

2.9.2 Uniqueness Theorems

As usual in mathematics, Ck(D,Rn) denotes the space of k times continuously
differentiable functions from domain D to Rn. The Euclidean norm of a vector
v = (v1, . . . ,vn) is denoted by ‖v‖ =

√

∑
n
i=1 v2

i .
If (the right-hand side of) the differential equation is continuously differentiable,

then the Picard-Lindelöf theorem gives a stronger result than Peano’s theorem. It
shows that the solution is unique. For this, recall that a function f : D→Rn with D⊆
R×Rn is called Lipschitz continuous with respect to y iff there is an L ∈R such that
for all (t,y),(t, ȳ) ∈ D,

‖ f (t,y) f (t, ȳ)‖ ≤ L‖y ȳ‖.

If the partial derivative ∂ f (t,y)
∂y

exists and is bounded on D, then f is Lipschitz

continuous with L = max(t,y)∈D ‖ ∂ f (t,y)
∂y
‖ by the mean value theorem. Similarly, f

is locally Lipschitz continuous iff for each (t,y) ∈ D, there is a neighborhood in
which f is Lipschitz continuous. In particular, if f is continuously differentiable,
i.e. f ∈C1(D,Rn), then f is locally Lipschitz continuous.

The Picard-Lindelöf theorem [5], which is also known as the Cauchy-Lipschitz
theorem, guarantees existence and uniqueness of solutions (except, of course, that
the restriction of any solution to a sub-interval is again a solution). A proof can be
found in the literature [10, Theorem 10.VI]

Theorem 2.2 (Picard-Lindelöf uniqueness theorem). Let f : D→ Rn be a

continuous function on an open, connected domain D⊆ R×Rn that is locally

Lipschitz continuous with respect to y (e.g., f ∈ C1(D,Rn)). Then the initial

value problem (2.1) with (t0,y0) ∈ D has a unique solution.

The Picard-Lindelöf theorem does not indicate the duration of the solution. It
only shows that the solution is unique on a nonempty open interval. Under the as-
sumptions of the Picard-Lindelöf theorem, every solution can be extended to a solu-
tion of maximal duration arbitrarily close to the boundary of D by Peano’s theorem.

2.9 Appendix 55

Example 2.11 (Quadratic). The initial value problem
(

y′ = y2

y(0) = 1

)

has the unique solution y(t) = 1
1 t

of maximal duration on the domain t < 1. It can-
not be extended to include its singularity at t = 1, though, but can get arbitrarily
close. At the singularity it converges to the boundary ±∞ of the domain R.

The following global uniqueness theorem shows a stronger property of a global
solution on [0,a] when the domain is a global stripe [0,a]×Rn. It is a corollary to
Theorems 2.1 and 2.2, but used prominently in the proof of Theorem 2.2, and is of
independent interest. A direct proof of the following global version of the Picard-
Lindelöf theorem can be found in the literature [10, Proposition 10.VII].

Corollary 2.1 (Global uniqueness theorem of Picard-Lindelöf). Let f :
[t0,a]×Rn → Rn be a continuous function that is Lipschitz continuous with

respect to y. Then, there is a unique solution of the initial value problem (2.1)
on [t0,a].

As Example 2.11 illustrates, local Lipschitz continuity is not enough to guarantee
the existence of a global solution that Corollary 2.1 concludes from global Lipschitz
continuity.

2.9.3 Linear Differential Equations with Constant Coefficients

For the common class of linear differential equation systems with constant coeffi-
cients there is a well-established theory for obtaining closed-form solutions of initial
value problems using classical techniques from linear algebra.

Proposition 2.1 (Linear differential equations with constant coefficients).

For a constant matrix A ∈ Rn×n, the initial value problem

(
y′(t) = Ay(t)+b(t)
y(τ) = η

)

(2.10)

has the (unique) solution

y(t) = eA(t τ)η +
∫ t

τ
eA(t s)b(s) ds

where exponentiation of matrices is defined by the usual power series (gener-

alized to matrices):

eAt =
∞

∑
n=0

1
n!

Antn

56 2 Differential Equations & Domains

A proof, more details, and generalizations can be found in the literature [10,
§18.VI]. If the matrix A is nilpotent, i.e., An = 0 for some n ∈ N, and the terms b(t)
are polynomials in t, then the solution of the initial value problem is a polynomial
function, because the exponential series stops at An and is then a finite polynomial
in t

eAt =
∞

∑
k=0

1
k!

Aktk =
n 1

∑
k=0

1
k!

Aktk

Since products and sums of polynomials are polynomials (polynomials form what
is known as an algebra [1]) and polynomials in the variable t are closed under in-
tegration (meaning integrating a univariate polynomial in the variable t will yield
another such polynomial), the solution identified in Proposition 2.1 is a polynomial.
Furthermore, this solution is unique by Theorem 2.2. Such polynomials are espe-
cially useful for formal verification, because the resulting arithmetic is decidable.
But the assumptions needed to guarantee such simple solutions are quite strong.

Example 2.12 (Accelerated motion in a straight line). In the initial value problem
from Example 2.4 on p. 34, we guessed the solution of the differential equation sys-
tem and then checked that it is the right solution by inserting it into the differential
equations. But how do we compute the solution in the first place without having to
guess? The differential equations x′ = v,v′ = a from (2.2) are linear with constant
coefficients. In vectorial notation where we denote y(t) := (x(t),v(t)), the vectorial
equivalent (2.3) of (2.2) can be rewritten in explicit linear form (2.10) as follows:

y′(t) =

(
x

v

)′
(t) =

(
0 1
0 0

)(
x(t)
v(t)

)

+

(
0
a

)

=: Ay(t)+b(t)

y(0) =

(
x

v

)

(0) =

(
x0

v0

)

=: η

This linear differential equation system has the form of Proposition 2.1 with a con-
stant coefficient matrix A. First, we compute the exponential series for the matrix A,
which terminates quickly because A2 = 0:

eAt =
∞

∑
n=0

1
n!

Antn = A0 +At +
1
2!

A2
︸︷︷︸

0

t2 + A2
︸︷︷︸

0

∞

∑
n=3

1
n!

An 2tn

=

(
1 0
0 1

)

+

(
0 1
0 0

)

t =

(
1 t

0 1

)

Now Proposition 2.1 can be used to compute a solution of this differential equation:

2.9 Appendix 57

y(t) = eAtη +
∫ t

0
eA(t s)b(s) ds

=

(
1 t

0 1

)(
x0

v0

)

+
∫ t

0

(
1 t s

0 1

)(
0
a

)

ds

=

(
x0 + v0t

v0

)

+
∫ t

0

(
at as

a

)

ds

=

(
x0 + v0t

v0

)

+

(∫ t
0(at as) ds
∫ t

0 a ds

)

=

(
x0 + v0t

v0

)

+

(
ats a

2 s2

as

)∣
∣
∣
∣

s=t

s=0

=

(
x0 + v0t

v0

)

+

(
at2 a

2 t2

at

)

(

a ·02 a
2 ·02

a ·0

)

=

(
x0 + v0t + a

2 t2

v0 +at

)

The last equation is exactly the solution we guessed and checked in Example 2.4.
Now we have computed it constructively. An alternative way of computing solutions
of differential equations is by proof [7].

2.9.4 Continuation and Continuous Dependency

Occasionally it is helpful to know that solutions of differential equations can be
continued by concatenation toward a maximal interval of existence. The following
result is a componentwise generalization of a classical result [10, Proposition 6.VI]
to vectorial differential equations and can be used to extend solutions.

Proposition 2.2 (Continuation of solutions). Let f : D→ Rn be a continu-

ous function on the open, connected domain D ⊆ R×Rn. If ϕ is a solution of

differential equation y′ = f (t,y) on [0,b) whose image ϕ([0,b)) lies within a

compact set A ⊆ D, then ϕ can be continued to a solution on [0,b]. Further-

more, if ϕ1 is a solution of differential equation y′ = f (t,y) on [0,b] and ϕ2 is

a solution of y′ = f (t,y) on [b,c] with ϕ1(b) = ϕ2(b), then their concatenation

ϕ(t) :=

{

ϕ1(t) for 0≤ t ≤ b

ϕ2(t) for b < t ≤ c

is a solution on [0,c].

The solution of a Lipschitz continuous initial value problem depends continu-
ously on the initial values and permits error estimation from the Lipschitz constants.
A proof and generalizations are elsewhere [10, Proposition 12.V].

58 2 Differential Equations & Domains

Proposition 2.3 (Lipschitz estimation). Let f : D→Rn be a continuous func-

tion that is Lipschitz continuous with Lipschitz constant L with respect to y on

the open, connected domain D⊆ J×Rn with an interval J. Let y be a solution

on J of the initial value problem y′(t) = f (t,y(t)),y(0) = y0 and z an approxi-

mate solution in the sense that

‖z(0) y(0)‖ ≤ γ, ‖z′(t) f (t,z(t))‖ ≤ δ

then for all t ∈ J:

‖y(t) z(t)‖ ≤ γeL|t|+
δ

L
(eL|t| 1)

Here J is any interval with 0 ∈ J and graph(y),graph(z)⊆ D.

Exercises

2.1. Suppose ω(x) = 7, then explain why the value of 4+x ·2 in ω is ω[[4+ x ·2]] =
18. What is the value of the same term 4+ x ·2 in a state ν with ν(x) = 4? What
is the value of the term 4+ x · 2+ x · x · x in the same state ν? How does its value
change in a state where ν(x) = 4 but also ν(y) = 7? Suppose ω(x) = 7 and ω(y) =
 1, explain why x · 2+ y · y evaluates to ω[[x ·2+ y · y]] = 15. What is the value of
x ·2+ y · y in a state ν with ν(x) = 4 and ν(y) = 7?

2.2. Subtraction e ẽ is already implicitly available as a term, because it is defin-
able via e+(1) · ẽ. In practice, we can, thus, pretend e ẽ is in the syntax, while
theoretical investigations can ignore e ẽ as it is not an official part of the syntax.
What about negation e? Is negation implicitly already available as well? What
about division e/ẽ and powers eẽ?

2.3 (Speeding). Consider a car that is driving on a road with a speed limit of either
35 mph or 50 km/h when a deer darts onto the road at a distance in front of the car
that is just enough for the car to stop when driving at the speed limit. Suppose the
car was speeding at 45 mph or 70 km/h, instead. How fast is the car still going when
it meets the surprised deer? You may assume brakes of effective deceleration a =
 6m/s2, which is typical for some road conditions. How does the answer change
when the driver needs a reaction time of 2 seconds?

2.4 (Changing accelerations). Some settings of idealized physics benefit from con-
sidering not just position x, its rate of change velocity v, and its rate of change ac-
celeration a, but also the continuous rate of change of the acceleration a, which is
called jolt or jerk j. Jolt may happen, for example, when changing gears abruptly or
when not releasing the brakes of a car when it is about to come to a standstill. Solve
the resulting differential equation of accelerated acceleration in a straight line:

2.9 Appendix 59

x′ = v,v′ = a,a′ = j

2.5 (Robot moving along a planar circular curve). This exercise develops dif-
ferential equations for the continuous dynamics of a robot that is moving in the
two-dimensional plane. Consider a robot at a point with coordinates (x,y) that is
facing in direction (v,w). While the robot is moving along the dashed curve, this
direction (v,w) is simultaneously rotating with angular velocity ω .

x

y

(v,w)

ϑ

ω

Develop a differential equation system describing how the position and direction
of the robot change over time. Build your way up to that differential equation by
first considering just the rotation of (v,w), then considering the motion of (x,y) in
a fixed direction (v,w), and then putting both types of behavior together. Can you
subsequently generalize the dynamics to also include an acceleration of the linear
ground speed when the robot is speeding up?

2.6. A number of differential equations and some suggested solutions are listed in
the following table. Are these correct solutions? Are these all solutions? Are there
other solutions? In what ways are the solutions characteristically more complicated
than their differential equations?

ODE Solution
x′ = 1,x(0) = x0 x(t) = x0 + t

x′ = 5,x(0) = x0 x(t) = x0 +5t

x′ = x,x(0) = x0 x(t) = x0et

x′ = x2,x(0) = x0 x(t) = x0
1 tx0

x′ = 1
x
,x(0) = 1 x(t) =

√
1+2t

y′(x) = 2xy,y(0) = 1 y(x) = e x2

x′(t) = tx,x(0) = x0 x(t) = x0e
t2
2

x′ =
√

x,x(0) = x0 x(t) = t2

4 ± t
√

x0 + x0

x′ = y,y′ = x,x(0) = 0,y(0) = 1 x(t) = sin t,y(t) = cos t

x′ = 1+ x2,x(0) = 0 x(t) = tan t

x′(t) = 2
t3 x(t) x(t) = e

1
t2 non-analytic

x′(t) = et2
no elementary closed form

2.7 (**). Would the differential equation semantics defined in Definition 2.6 change
when we only require the differential equation to be respected at all times ζ ∈ (0,r)
in an open interval rather than at all times ζ ∈ [0,r] in a closed interval?

60 2 Differential Equations & Domains

2.8. Review the theory of ordinary differential equations. Investigate which theo-
rems from this chapter’s appendix apply to the example differential equations given
in this chapter.

2.9 (Valid quantified formulas). Using the semantics of quantifiers, show that the
following first-order logic formulas are valid, i.e., true in all states:

(∀x p(x))→ (∃x p(x))

(∀x p(x))→ p(e)

∀x(p(x)→ q(x))→ (∀x p(x)→∀xq(x))

In the second formula, e is any term and p(e) should be understood here as resulting
from the formula p(x) by replacing all (free) occurrences of variable x by term e.
An occurrence of x in p(x) within the scope of another quantifier for x is not free but
bound, so will not be substituted. Some care is needed to avoid capture, i.e., that x

does not occur in the scope of a quantifier binding a variable of e, because replacing
x with e would then bind a free variable of e.

2.10 (* Two-valued semantics). The semantics of terms is defined by a real-valued
mapping [[e]] : S → R in Expedition 2.2. The semantics of formulas was given in
Definition 2.5 by defining the set of states [[P]] in which formula P is true. Give
an equivalent definition of the semantics of first-order formulas using a function
[[P]]B : S→ {true, false} that defines the truth-value [[P]]B(ω) of formula P in each
state ω . Prove equivalence of the semantics by showing that the new truth-value
semantics evaluates to the truth-value true if and only if the formula P is true at ω:

[[P]]B(ω) = true iff ω ∈ [[P]]

2.11 (Term interpreter). In a programming language of your choosing, fix a recur-
sive data structure for terms from Definition 2.2 and fix some finite representation
for states where all variables have rational values instead of reals. Write a term in-
terpreter as a computer program that, given a state ω and a term e, computes the
value of ω[[e]] by implementing Definition 2.4 as a recursive function. Write a simi-
lar interpreter for first-order formulas from Definition 2.3 that, given a state ω and a
formula P, reports “yes” if and only if ω ∈ [[P]]. Which cases are problematic?

2.12 (** Set-valued semantics). There are at least two styles of giving a meaning
to a logical formula. One way is to inductively define a satisfaction relation |= that
holds between a state ω and a dL formula P, written ω |= P, whenever the formula
P is true in the state ω . Its definition includes, among other cases, the following
notational variant of Definition 2.5:

ω |= e≥ ẽ iff ω[[e]]≥ ω[[ẽ]]
ω |= P∧Q iff ω |= P and ω |= Q

The other way is to inductively define, for each dL formula P, the set of states,
written [[P]], in which P is true. Its definition will include, among other cases, the

2.9 Appendix 61

following:
[[e≥ ẽ]] = {ω : ω[[e]]≥ ω[[ẽ]]}
[[P∧Q]] = [[P]]∩ [[Q]]

Complete both styles of defining the semantics and prove that they are equivalent.
That is, ω |= P iff ω ∈ [[P]] for all states ω and all first-order formulas P.

Such a proof can be conducted by induction on the structure of P. That is, con-
sider each case, say P∧Q, and prove ω |= P∧Q iff ω ∈ [[P∧Q]] from the inductive
hypothesis that the conjecture already holds for the smaller subformulas:

ω |= P iff ω ∈ [[P]]

ω |= Q iff ω ∈ [[Q]]

2.13. Explain which formulas you expect to be particularly common as evolution
domain constraints in cyber-physical systems.

References

[1] Nicolas Bourbaki. Algebra I: Chapters 1–3. Elements of mathematics. Berlin:
Springer, 1989.

[2] Kenneth Eriksson, Donald Estep, Peter Hansbo, and Claes Johnson. Com-

putational Differential Equations. Cambridge: Cambridge University Press,
1996.

[3] Leonhard Euler. Institutionum calculi integralis. St Petersburg: Petropoli,
1768.

[4] Philip Hartman. Ordinary Differential Equations. Hoboken: John Wiley,
1964.

[5] M. Ernst Lindelöf. Sur l’application de la méthode des approximations suc-
cessives aux équations différentielles ordinaires du premier ordre. Comptes

rendus hebdomadaires des séances de l’Académie des sciences 114 (1894),
454–457.

[6] Giuseppe Peano. Demonstration de l’intégrabilité des équations différen-
tielles ordinaires. Mathematische Annalen 37(2) (1890), 182–228. DOI: 10
.1007/BF01200235.

[7] André Platzer. A complete uniform substitution calculus for differential dy-
namic logic. J. Autom. Reas. 59(2) (2017), 219–265. DOI: 10.1007/s108
17-016-9385-1.

[8] William T. Reid. Ordinary Differential Equations. Hoboken: John Wiley,
1971.

[9] Gerald Teschl. Ordinary Differential Equations and Dynamical Systems.
Providence: AMS, 2012.

[10] Wolfgang Walter. Ordinary Differential Equations. Berlin: Springer, 1998.
DOI: 10.1007/978-1-4612-0601-9.

https://doi.org/10.1007/BF01200235
https://doi.org/10.1007/BF01200235
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/978-1-4612-0601-9

Chapter 3

Choice & Control

Synopsis This chapter develops the central dynamical systems model for describ-
ing the behavior of cyber-physical systems with a programming language. It com-
plements the previous understanding of continuous dynamics with an understand-
ing of the discrete dynamics caused by choices and controls in cyber-physical sys-
tems. The chapter interfaces the continuous dynamics of differential equations with
the discrete dynamics of conventional computer programs by directly integrating
differential equations with discrete programming languages. This leverages well-
established programming language constructs around elementary discrete and con-
tinuous statements to obtain hybrid programs as a core programming language for
cyber-physical systems. In addition to embracing differential equations, semantical
generalizations to mathematical reals as well as operators for nondeterminism are
important to make hybrid programs appropriate for cyber-physical systems.

3.1 Introduction

Chapter 2 saw the beginning of cyber-physical systems, yet emphasized only their
continuous part in the form of differential equations x′ = f (x). The sole interface
between continuous physical capabilities and cyber capabilities was by way of their
evolution domain. The evolution domain Q in a continuous program x′ = f (x)&Q

imposes restrictions on how far or how long the system can evolve along that differ-
ential equation. Suppose a continuous evolution has succeeded, and the system stops
following its differential equation, e.g., because the state would otherwise leave the
evolution domain Q if it kept going. Then what happens now? How does the cyber
part take control? How do we describe what the cyber elements compute afterwards?
What descriptions explain how cyber interacts with physics?

An overall understanding of a CPS ultimately requires an understanding of the
joint model with both its discrete dynamics and its continuous dynamics. It takes
both to understand, for example, what effect a discrete car controller has, via its
engine and steering actuators, on the continuous physical motion of a car down the

63© Springer International Publishing AG, part of Springer Nature 2018

A. Platzer, Logical Foundations of Cyber-Physical Systems,

https://doi.org/10.1007/978-3-319-63588-0_3

https://doi.org/10.1007/978-3-319-63588-0_3
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63588-0_3&domain=pdf

64 3 Choice & Control

road. Continuous programs are powerful for modeling continuous processes, such
as continuous motion. They cannot—on their own—model discrete changes of vari-
ables, however.1 Such discrete state change is a good model for the impact of com-
puter decisions on cyber-physical systems, in which computation decides to, say,
stop speeding up and apply the brakes instead. During the evolution along a differ-
ential equation, such as x′ = v,v′ = a for accelerated motion along a straight line, all
variables change continuously over time, because the solution of a differential equa-
tion is (sufficiently) smooth. Discontinuous change of variables, such as a change
of acceleration from a = 2 to a = 6 by applying the brakes instead arises from a
discrete change of state resulting from how computers compute decisions one step
at a time. Time passes while differential equations evolve, but no time passes dur-
ing an immediate discrete change (it is easy to model computations that take time
by mixing both). What could be a model for describing such discrete changes in a
system?

Discrete change can be described by different models. The most prominent ones
are conventional programming languages, in which everything takes effect one dis-
crete step at a time, just like computer processors operate one clock cycle at a time.

CPSs combine cyber and physics, though. In CPS, we do not program computers,
but program cyber-physical systems instead. We program the computers that control
the physics, which requires programming languages for CPSs to involve physics,
and integrate differential equations seamlessly with discrete computer operations.
The basic idea is that discrete statements are executed by a computer processor,
while continuous statements are handled by the physical elements, such as wheels,
engines, or brakes. CPS programs need a mix of both to accurately describe the
combined discrete and continuous dynamics.

Does it matter which discrete programming language we choose to enrich with
the continuous statements from Chap. 2? It might be argued that the hybrid aspects
are more important for CPS than the discrete language. After all, there are many
conventional programming languages that are Turing-equivalent, i.e., that compute
the same functions [3, 10, 26]. Yet there are numerous significant differences even
among discrete programming languages that make some more desirable than others
[7]. For the particular purposes of CPS, we will identify additional desired features.
We will develop what we need as we go, culminating in the programming language
of hybrid programs [16–21], which plays a fundamental rôle in this book.

Other areas such as automata theory and the theory of formal languages [10] or
Petri nets [15] also provide models of discrete change. There are ways of augment-
ing these models with differential equations as well [1, 4, 13, 14]. But programming
languages are uniquely positioned to extend their virtues of built-in composition-
ality. Just as the meaning and effect of a conventional program is a function of its
pieces, the meaning and operation of a hybrid program is also a function of its parts.

The most important learning goals of this chapter are:

1 There is a much deeper sense [20] in which continuous dynamics and discrete dynamics have
surprising similarities regardless. But even so, these similarities rest on the foundations of hybrid
systems, which we need to understand first.

3.2 A Gradual Introduction to Hybrid Programs 65

Modeling and Control: This chapter plays a pivotal rôle in understanding and de-
signing models of CPSs. We develop an understanding of the core principles
behind CPS by studying how discrete and continuous dynamics are combined
and interact to model cyber and physics, respectively. We see the first example
of how to develop models and controls for a simple CPS. Even if subsequent
chapters will blur the overly simplistic categorization of cyber=discrete versus
physics=continuous, it is useful to equate them for now, because cyber, compu-
tation, and decisions quickly lead to discrete dynamics, while physics naturally
gives rise to continuous dynamics. Later chapters will show that some physical
phenomena are better modeled with discrete dynamics, while some controller
aspects also have a manifestation in the continuous dynamics.

Computational Thinking: We introduce and study the important phenomenon of
nondeterminism, which is crucial for developing faithful models of a CPS’s en-
vironment and helpful for developing effective models of the CPS itself. We
emphasize the importance of abstraction, which is an essential modular orga-
nization principle in CPS as well as all other parts of computer science. We
capture the core aspects of CPS in the programming language of hybrid pro-
grams.

CPS Skills: We develop an intuition for the operational effects of CPS. And we
will develop an understanding for the semantics of the programming language
of hybrid programs, which is the CPS model on which this textbook is based.

CT

M&C CPS

nondeterminism
abstraction
programming languages for CPS
semantics
compositionality

models
core principles
discrete+continuous

operational effect
operational precision

3.2 A Gradual Introduction to Hybrid Programs

This section gradually introduces the operations that hybrid programs provide, one
step at a time. Its emphasis is on their motivation and an intuitive development
before subsequent sections provide a comprehensive view. The motivating examples

66 3 Choice & Control

we consider now are naïve but still provide a good introduction to the world of
CPS programming. With more understanding, we will later be able to augment their
designs.

3.2.1 Discrete Change in Hybrid Programs

Discrete change happens immediately in computer programs when a new value is
assigned to a variable. The statement x :=e assigns the value of term e to variable
x by evaluating the term e and assigning the result to the variable x. It leads to a
discrete, discontinuous change, because the value of x does not vary smoothly over
time but radically when the value of e is suddenly assigned to x.

Fig. 3.1 An illustration of the
behavior of an instantaneous
discrete change at time = 0

t

x

0

ω

ν

This gives us a discrete model of change, x :=e, in addition to the continuous
model of change, x′ = f (x)&Q, from Chap. 2. We can now model systems that
are either discrete or continuous. Yet, how can we possibly model proper CPSs
that combine cyber and physics with one another and that, thus, simultaneously
combine discrete and continuous dynamics? We need such hybrid behavior every
time a system has both continuous dynamics (such as the continuous motion of a
car down the street) in addition to discrete dynamics (such as shifting gears).

3.2.2 Compositions of Hybrid Programs

One way cyber and physics can interact is if a computer provides input to physics.
Physics may mention variables such as a for acceleration, and the computer program
sets its value depending on whether the computer program wants to accelerate or
brake. That is, cyber may set the values of actuators that affect physics.

In this case, cyber and physics interact in such a way that first the cyber part does
something and physics then follows. Such a behavior corresponds to a sequential
composition (α;β) in which first the HP α on the left of the sequential composition
operator (;) runs and, when it’s done, the HP β on the right of operator ; runs. The

3.2 A Gradual Introduction to Hybrid Programs 67

following HP2

a :=a+1; {x′ = v,v′ = a} (3.1)

will first let cyber perform a discrete change of setting acceleration variable a to
a+1 and then let physics follow the differential equation3 x′′ = a, which describes
accelerated motion of the point x along a straight line. The overall effect is that
cyber instantly increases the value of the acceleration variable a and physics then
lets x evolve continuously with that acceleration a (increasing velocity v continu-
ously with derivative a). HP (3.1) models a situation where the desired acceleration
is commanded once to increase and the robot then moves with that fixed acceler-
ation; see Fig. 3.2. The curve for position looks almost linear in Fig. 3.2, because
the velocity difference is so small, which is a great example of how misleading vi-
sual representations can be compared to rigorous analysis methods. The sequential
composition operator (;) has the same effect that it has in programming languages
such as Java. It separates statements that are to be executed sequentially one after
the other. If you look closely, you will find a minor subtle difference, because pro-
gramming languages such as Java or C expect ; at the end of every statement, not
just between sequentially composed statements. This syntactic difference is incon-
sequential, and a common trait of mathematical programming languages.

1 2 3 4 5 6 7
t

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

a

1 2 3 4 5 6 7
t

-2

0

2

4

6

v

m

1 2 3 4 5 6 7
t

-2

0

2

4

6

8

10

x

Fig. 3.2 Fixed acceleration a (left), velocity v (middle), and position x (right) change over time t

The HP in (3.1) executes control (it sets the acceleration for physics), but it has
very little choice, or rather no choice at all. So only if the CPS is very lucky will an
increase in acceleration be the right action to remain safe forever. Quite likely, the
robot will have to change its mind ultimately, which is what we investigate next.

But first observe that the constructs we saw so far, assignments, sequential com-
positions, and differential equations, already suffice to exhibit typical hybrid sys-
tems dynamics. The behavior shown in Fig. 3.3 could be exhibited by this hybrid
program:

2 Note that the parentheses around the differential equation are redundant and will often be left out
in the textbook or in scientific papers. HP (3.1) would be written a :=a+1; x′ = v,v′ = a. Round
parentheses are often used in theoretical developments, while braces are useful for programs to
disambiguate grouping in bigger CPS applications.
3 We frequently use x′′ = a as an abbreviation for x′ = v,v′ = a, even if x′′ is not officially permitted
in the KeYmaera X theorem prover for hybrid systems.

68 3 Choice & Control

a := 2; {x′ = v,v′ = a};
a :=0.25; {x′ = v,v′ = a};
a := 2; {x′ = v,v′ = a};
a :=0.25; {x′ = v,v′ = a};
a := 2; {x′ = v,v′ = a};
a :=0; {x′ = v,v′ = a}

-

-

-

-

-

-

m

-

Fig. 3.3 Acceleration a (left), velocity v (middle), and position x (right) change over time t, with a
piecewise constant acceleration changing discretely at instants of time while velocity and position
change continuously over time

Can you already spot a question that comes up about how exactly we run this pro-
gram? We will postpone the formulation of and answer to this question to Sect. 3.2.6.

3.2.3 Decisions in Hybrid Programs

In general, a CPS will have to check conditions on the state to see which action to
take. Otherwise the CPS could not possibly be safe and, quite likely, will also not
take the correct actions to get to its goal. One way of programming these conditions
is the use of an if-then-else statement, as in classical discrete programs:

if(v < 4)a :=a+1elsea := b;

{x′ = v,v′ = a} (3.2)

This HP will check the condition v < 4 to see whether the current velocity is still
less than 4. If it is, then a will be increased by 1. Otherwise, a will be set to b

for some braking deceleration constant b > 0. Afterwards, i.e., when the if-then-

else statement in the first line has run to completion, the HP will again evolve x

continuously with acceleration a along the differential equation in the second line.
The HP (3.2) takes only the current velocity into account to reach a decision on

whether to accelerate or brake. That is usually not enough information to guarantee
safety, because a robot doing that would be so fixated on achieving its desired speed
that it would happily speed into any walls or other obstacles along the way. Conse-
quently, programs that control robots also take other state information into account,
for example sufficient distance x m to an obstacle m from the robot’s position x:

3.2 A Gradual Introduction to Hybrid Programs 69

if(x m > s)a :=a+1elsea := b;

{x′ = v,v′ = a} (3.3)

Whether that is safe depends on the choice of the required safety distance s. Con-
trollers could also take both distance and velocity into account for the decision:

if(x m > s∧ v < 4)a :=a+1elsea := b;

{x′ = v,v′ = a} (3.4)

Note 9 (Iterative design) To design serious controllers, you will usually de-
velop a series of increasingly more intelligent controllers for systems that
face increasingly challenging environments. Designing controllers for robots
or other CPSs is a serious challenge. You will want to start with simple con-
trollers for simple circumstances and only move on to more advanced chal-
lenges when you have fully understood and mastered the previous controllers,
what behavior they guarantee and what functionality they are still missing. If
a controller is not even safe under simple circumstances (for example when it
only knows how to brake), it will not be safe in more complex cases either.

3.2.4 Choices in Hybrid Programs

A common feature of CPS models is that they often include only some but not all
detail about the system. This is for good reasons, because full detail about everything
can be overwhelming and is often a distraction from the really important aspects of
a system. A (somewhat) more complete model of (3.4) might have the following
shape, with some further formula S as an extra condition for checking whether to
actually accelerate based on battery efficiency or secondary considerations which
are not safety-critical:

if(x m > s∧ v < 4∧S)a :=a+1elsea := b;

{x′ = v,v′ = a} (3.5)

Consequently, (3.4) is not actually a faithful model of (3.5), because (3.4) insists
that the acceleration would always be increased just because x m> s∧v< 4 holds,
unlike (3.5), which also checks the additional condition S. Likewise, (3.3) certainly
is no faithful model of (3.5). But it looks simpler.

How can we describe a model that is simpler than (3.5) because it ignores the de-
tails of S yet that is still faithful to the original system? What we want this model to
do is characterize that the controller may either increase acceleration by 1 or brake.
All acceleration should certainly only happen when certain safety-critical conditions
are met. But the model should make less commitment than (3.3) about the precise
circumstances under which braking is chosen. After all, braking may sometimes just
be the right thing to do, for example when arriving at the goal. So we want a model

70 3 Choice & Control

that allows braking under more circumstances than (3.3) without having to model
precisely under what circumstances that is. If a system with more behavior is safe,
then the actual implementation will be safe as well, because it will only ever exer-
cise some of the verified behavior [12]. The extra behavior in the system might, in
fact, occur in reality whenever there are minor lags or discrepancies. So it is good
to have the extra assurance that some flexibility in the execution of the system will
not break its safety guarantees.

Note 10 (Abstraction) Successful CPS models often include only the relevant
aspects of the system and elide irrelevant detail. The benefit of doing so is that
the model and its analysis become simpler, enabling us to focus on the critical
parts without being bogged down in tangentials. This is the power of abstrac-

tion, probably the primary secret weapon of computer science. It does take
considerable skill, however, to find the best level of abstraction for a system, a
skill that you will continue to sharpen throughout your entire career.

Let us take the development of this model step by step. The first feature that
the controller in the model has is a choice. The controller can choose to increase
acceleration or to brake, instead. Such a choice between two actions is denoted by
the choice operator ∪ :

(a :=a+1∪a := b);

{x′ = v,v′ = a} (3.6)

When running this hybrid program, the first thing that happens is that the first state-
ment (before the ;) runs, which is a choice (∪) between whether to run a :=a+1
or whether to run a := b. That is, the choice is whether to increase acceleration
a by 1 or whether to reset a to b for braking. After this choice (i.e., after the ;
sequential composition operator), the system follows the usual differential equation
x′′ = a describing accelerated motion along a line.

Now, wait. There was a choice. Who chooses? How is the choice resolved?

Note 11 (Nondeterministic ∪) The choice (∪) is nondeterministic. That is,
every time a choice α ∪ β runs, exactly one of the two choices, α or β , is
chosen to run. The choice is nondeterministic, i.e., there is no prior way of
telling which of the two choices is going to be chosen. Both outcomes are
perfectly possible and a safe system design needs to be prepared to handle
either outcome.

The HP (3.6) is a faithful abstraction [12] of (3.5), because every way (3.5) can
run can be mimicked by (3.6) so that the outcome of (3.6) corresponds to that of
(3.5). Whenever (3.5) runs a :=a+1, which happens exactly if x m > s∧ v < 4∧S

is true, (3.6) only needs to choose to run the left choice a :=a+1. Whenever (3.5)
runs a := b, which happens exactly if x m > s∧ v < 4∧S is false, (3.6) needs to
choose to run the right choice a := b. So all runs of (3.5) are possible runs of (3.6).
Furthermore, (3.6) is much simpler than (3.5), because it contains less detail. It does
not mention the complicated extra condition S. However, (3.6) is a little too permis-

3.2 A Gradual Introduction to Hybrid Programs 71

sive, because it suddenly allows the controller to choose a :=a+1 even when it is
already too fast or even at a small distance from the obstacle. That way, even if (3.5)
was a safe controller, (3.6) is still unsafe, and, thus, not a very suitable abstraction.

3.2.5 Tests in Hybrid Programs

In order to build a faithful yet not overly permissive abstraction of (3.5), we need to
restrict the permitted choices in (3.6) so that there is enough flexibility, but only so
much that the acceleration choice a :=a+1 can only be chosen when it is currently
safe to do so. The way to do that is to use tests on the current state of the system.

A test ?Q is a statement that checks the truth-value of a first-order formula Q

of real arithmetic in the current state. If Q holds in the current state, then the test
passes, nothing happens, and the HP continues to run normally. If, instead, Q does
not hold in the current state, then the test fails, and the system execution is aborted
and discarded. That is, when ω is the current state, then ?Q runs successfully with-
out changing the state when ω ∈ [[Q]]. Otherwise, i.e., if ω 6∈ [[Q]], the run of ?Q is
aborted and not considered any further, because it did not play by the rules of the
system.

Of course, it can be difficult to figure out which control choice is safe under what
circumstances, and the answer also depends on whether the safety goal is to limit
speed or to remain at a safe distance from other obstacles. For the model in this
chapter, we simply pretend that v < 4 is the appropriate safety condition and revisit
the question of how to design and explain such conditions in later chapters.

The test statement ?(v < 4) alias ?v < 4 can be used to change (3.6) so that it
allows acceleration only when v < 4, while braking is still allowed always:

(?v < 4; a :=a+1)∪a := b

)
;

{x′ = v,v′ = a} (3.7)

The first statement of (3.7) is a choice (∪) between (?v < 4; a :=a+1) and a := b.
All choices in hybrid programs are nondeterministic, so either outcome is always
possible. In (3.7), this means that the left choice can always be chosen, just as well
as the right one. The first statement that happens in the left choice, however, is the
test ?v < 4, which the system run has to pass in order to be able to continue. In
particular, if v < 4 is indeed true in the current state, then the system passes that
test ?v < 4 and the execution proceeds to after the sequential composition (;) to run
a :=a+1. If v < 4 is false in the current state, however, the system fails the test
?v < 4 and that run is aborted and discarded. The right option to brake is always
available, because it does not involve any tests to pass.

72 3 Choice & Control

Note 12 (Discarding failed runs) System runs that fail tests ?Q are discarded
and not considered any further, because a failed run did not play by the rules
of the system. It is as if those failed system execution attempts had never hap-
pened. Even if one execution attempt fails, other runs may still be successful.
Operationally, you can imagine finding them by backtracking through all the
possible choices in the system run and taking alternative choices instead.

In principle, there are always two choices when running (3.7). However, which
ones actually run successfully depends on the current state. If the car is currently
slow (so the test ?v < 4 will succeed), then both options of accelerating and braking
are possible and can execute successfully. Otherwise, only the braking choice exe-
cutes, because trying the left choice will fail its test ?v < 4 and be discarded. Both
choices formally exist but only one will succeed in that case.

Note 13 (Successful runs) Notice that only successfully executed runs of HPs
will be considered, and all others will be discarded because they did not play
by the rules. For example, ?v < 4; v :=v+1 can only run in states where v < 4,
otherwise there are no runs of this HP. Failed runs are discarded entirely, so the
HP v := v+ 1; ?v < 4 can also only run in states where v < 3. Operationally,
you can imagine running the HP step by step and rolling all its changes back
if any test ever fails. The velocity increases by v := v+ 1, but this change is
undone and the entire run discarded unless the subsequent test ?v < 4 succeeds
for the new value.

Comparing (3.7) with (3.5), we see that (3.7) is a faithful abstraction of the more
complicated (3.5), because all runs of (3.5) can be mimicked by (3.7). Yet, unlike
the intermediate guess (3.6), the improved HP (3.7) still retains the critical infor-
mation that acceleration is only allowed by (3.5) when v < 4. Unlike (3.5), (3.7)
does not restrict the cases where acceleration can be chosen to those that also sat-
isfy v < 4∧S. Hence, (3.7) is more permissive than (3.5). But (3.7) is also simpler
and only contains crucial information about the controller. Hence, (3.7) is a more
abstract faithful model of (3.5) that retains just the relevant detail. Studying the ab-
stract (3.7) instead of the more concrete (3.5) has the advantage that only relevant
details need to be understood while irrelevant aspects can be ignored. It also has the
additional advantage that a safety analysis of the more abstract (3.7), which allows
lots of behavior, will imply safety of the special concrete case (3.5) but also implies
safety of other implementations of (3.7). For example, replacing S by a different
condition in (3.5) still gives a special case of (3.7). So if all behaviors of (3.7) are
safe, all behaviors of that different replacement will already be safe. With a single
verification result about a more general, more abstract system, we can verify a whole
class of systems rather than just one particular system. This important phenomenon
[12] will be investigated in more detail in later parts of the book.

Of course, which details are relevant and which ones can be simplified depends
on the analysis question at hand, a question that we will be better equipped to an-

3.2 A Gradual Introduction to Hybrid Programs 73

swer in a later chapter. For now, suffice it to say that (3.7) has the relevant level of
abstraction for our purposes.

Note 14 (Broader significance of nondeterminism) Nondeterminism comes
up in the above cases for reasons of abstraction and to focus the system model
on the most critical aspects of the system while suppressing irrelevant detail.
This simplification is one important reason for introducing nondeterminism in
system models, but there are other important reasons as well. Whenever a sys-
tem includes models of its environment, nondeterministic models are crucial,
because we often have only a partial understanding of what the environment
will do. A car controller for example, will not always know for sure what other
cars or pedestrians in its environment will do, exactly, so that nondeterministic
models are the only faithful representations.

A pretty reasonable model of the controller of the acceleration c of another
car in our environment is to nondeterministically either accelerate or brake, e.g.,
c :=2∪ c := b, because we cannot perfectly predict which one is going to happen,
anyhow.

Note the notational convention that sequential composition ; binds more strongly
than nondeterministic choice∪ so we can leave parentheses out without changing
(3.7):

?v < 4; a :=a+1∪a := b
)
;

{x′ = v,v′ = a} (3.7*)

3.2.6 Repetitions in Hybrid Programs

The hybrid programs above were interesting, but only allowed the controller to
choose what action to take at most once. All controllers so far inspected the state
in a test or in an if-then-else condition and then chose what to do once, only to let
physics take control subsequently by following a differential equation. That makes
for rather short-lived controllers. They have a job only once in their lives. And most
decisions they reach may end up being bad ones at some point. Say, one of those
controllers, e.g., (3.7), inspects the state and finds it still okay to accelerate. If it
chooses a :=a+1 and then lets physics move with the differential equation x′′ = a,
there will probably come a time at which increased acceleration is no longer such a
great idea. But the controller of (3.7) has no way to change its mind, because it has
no more choices and cannot exercise any control anymore.

If the controller of (3.7) is supposed to be able to make a second control choice
later after physics has followed the differential equation for a while, then (3.7) can
simply be sequentially composed with itself:

74 3 Choice & Control

(?v < 4; a :=a+1)∪a := b

)
;

{x′ = v,v′ = a};

(?v < 4; a :=a+1)∪a := b

)
;

{x′ = v,v′ = a}

(3.8)

In (3.8), the cyber controller can first choose to accelerate or brake (depending on
whether v < 4 is true in the present state), then physics evolves along differential
equation x′′ = a for some while, then the controller can again choose whether to
accelerate or brake (depending on whether v < 4 is true in the state reached then),
and finally physics again evolves along x′′ = a.

For a controller that is supposed to be allowed to have a third control choice,
copy and paste replication would again help:

(?v < 4; a :=a+1)∪a := b

)
;

{x′ = v,v′ = a};

(?v < 4; a :=a+1)∪a := b

)
;

{x′ = v,v′ = a};

(?v < 4; a :=a+1)∪a := b

)
;

{x′ = v,v′ = a}

(3.9)

But this is neither a particularly concise nor a particularly useful modeling style.
What if a controller might need 10 control decisions or 100? Or what if there is no
way of telling ahead of time how many control decisions the cyber part will have to
take to reach its goal? Think of how many control decisions you might need when
driving in a car from Paris to Rome. Do you even know that ahead of time? Even if
you do, do you want to model a system by explicitly replicating its controller that
often?

Note 15 (Repetition) As a more concise and more general way of describing
repeated control choices, hybrid programs allow for the repetition operator ∗,
which works like the Kleene star operator in regular expressions, except that
it applies to a hybrid program α as in α∗. It repeats α any number n ∈ N of
times, including 0, by a nondeterministic choice.

The programmatic way of summarizing (3.7), (3.8), (3.9) and the infinitely many
more n-fold replications of (3.7), for any n ∈ N, is by using a repetition operator:

(
(?v < 4; a :=a+1)∪a := b

)
;

{x′ = v,v′ = a}
)∗ (3.10)

This HP can repeat (3.7) any number of times (0,1,2,3,4,. . .). Of course, it would not
be very meaningful to repeat a loop half a time or minus 5 times, so the repetition
count n ∈ N still has to be some natural number.

3.3 Hybrid Programs 75

But how often does a nondeterministic repetition like (3.10) repeat then? That
choice is again nondeterministic.

Note 16 (Nondeterministic ∗) Repetition (∗) is nondeterministic. That is, pro-
gram α∗ can repeat α any number (n ∈ N) of times. The choice how often to
run α is nondeterministic, i.e., there is no prior way of telling how often α will
be repeated.

However, hold on, every time the loop in (3.10) is run, how long does the contin-
uous evolution along {x′ = v,v′ = a} in that loop iteration take? Or, actually, even in
the loop-free (3.8), how long does the first x′′ = a take before the controller has its
second control choice? How long did the continuous evolution take in (3.7) even?

There is a choice even in following a single differential equation! However deter-
ministic the solution of the differential equation itself may be. Even if the solution
of the differential equation is unique (which it is in the sufficiently smooth cases that
we consider, according to Chap. 2), it is still a matter of choice how long to follow
that solution. The choice is, as always in hybrid programs, nondeterministic.

Note 17 (Nondeterministic x′ = f (x)) The duration of evolution of a differen-
tial equation (x′ = f (x)&Q) is nondeterministic (except that the evolution can
never be so long that the state leaves Q). That is, x′ = f (x)&Q can follow the
solution of x′ = f (x) for any amount of time (0≤ r ∈ R) within the interval of
existence of the solution within Q. The choice how long to follow x′ = f (x) is
nondeterministic, i.e., there is no prior way of telling how long x′ = f (x) will
evolve (except that it can never leave Q).

3.3 Hybrid Programs

Based on the above gradual motivation, this section formally defines the program-
ming language of hybrid programs [18, 20], in which all of the operators motivated
above are allowed.

3.3.1 Syntax of Hybrid Programs

Formal grammars have worked well to define the syntax of terms e and first-order
logic formulas Q in Chap. 2, which is why we, of course, continue to use a grammar
to define the syntax of hybrid programs.

76 3 Choice & Control

Definition 3.1 (Hybrid program). Hybrid programs are defined by the fol-
lowing grammar (α,β are HPs, x is a variable, e is a term possibly containing
x, e.g., a polynomial in x, and Q is a formula of first-order logic of real arith-
metic):

α,β ::= x :=e | ?Q | x′ = f (x)&Q | α ∪β | α;β | α∗

The first three cases are called atomic HPs, the last three compound HPs, because
they are built out of smaller HPs. The assignment x :=e instantaneously changes the
value of variable x to the value of term e with a discrete state change. The differen-

tial equation x′ = f (x)&Q follows a continuous evolution from the present value of
x along the differential equation x′ = f (x) for any amount of time but restricted to
the domain of evolution Q, where x′ denotes the time-derivative of x. It goes without
saying that x′ = f (x)&Q is an explicit differential equation, so no derivatives occur
in f (x) or Q. Recall that a differential equation x′ = f (x) without an evolution do-

main constraint is short for x′ = f (x)& true, since that imposes no restriction on the
duration of the continuous evolution. The test action ?Q is used to define conditions.
Its effect is that of a no-op if the formula Q is true in the current state; otherwise,
like an abort statement would, it allows no transitions. That is, if the test succeeds
because formula Q holds in the current state, then the state does not change (it was
only a test), and the system execution continues normally. If the test fails because
formula Q does not hold in the current state, however, then the system execution
cannot continue, and is cut off, discarded, and not considered any further since it is
a failed execution attempt that did not play by the rules of the HP.4

Nondeterministic choice α ∪β , sequential composition α;β , and nondetermin-
istic repetition α∗ of programs are as in regular expressions but generalized to the
semantics of hybrid systems. Nondeterministic choice α ∪β expresses behavioral
alternatives between the runs of α and β . That is, the HP α ∪β can choose nonde-
terministically to follow the runs of HP α , or, instead, to follow the runs of HP β .
The sequential composition α;β models that the HP β starts running after HP α
has finished (β never starts if α does not terminate successfully). In α;β , the runs
of α take effect first, until α terminates (if it does), and then β continues. Observe
that, like repetitions, continuous evolutions within α can take more or less time,
which causes uncountable nondeterminism. This nondeterminism occurs in hybrid
systems because they can operate in so many different ways, which is reflected in
HPs. Nondeterministic repetition α∗ is used to express that the HP α repeats any
number of times, including zero times. When following α∗, the runs of HP α can
be repeated over and over again, any nondeterministic number of times (≥0).

4 The effect of the test ?Q is the same as that of if(Q)skipelseabort where skip has no effect and
abort aborts and discards the system run. Indeed, skip is equivalent to the trivial test ?true and
abort is equivalent to the impossible test ?false. But then we would have to add if-then-else, skip
and abort, which HPs already provide for free.

3.3 Hybrid Programs 77

Expedition 3.1 (Operator precedence for hybrid programs)

In practice, it is useful to save parentheses by agreeing on notational operator

precedences. Unary operators (including repetition ∗) bind more strongly than
binary operators and ; binds more strongly than ∪ , so α;β ∪ γ ≡ (α;β)∪ γ and
α ∪β ;γ ≡ α ∪ (β ;γ). Especially, α;β ∗ ≡ α;(β ∗).

3.3.2 Semantics of Hybrid Programs

After having developed a syntax for CPS and an operational intuition for its effects,
we seek operational precision in its effects. That is, we will pursue one important
leg of computational thinking and give an unambiguous meaning to all operators of
HPs. We will do this in pursuit of the realization that the only way to be precise
about an analysis of CPS is to first be precise about the meaning of the models of
CPS. Furthermore, we will leverage another important leg of computational think-
ing rooted in logic by exploiting that the right way of understanding something is to
understand it compositionally as a function of its pieces [6]. So we will give mean-
ing to hybrid programs by giving a meaning to each of their operators. Thereby,
a meaning of a large HP is merely a function of the meaning of its pieces. This
is the style of denotational semantics for programming languages due to Scott and
Strachey [25].

There is more than one way to define the meaning of a program, including defin-
ing a denotational semantics [24], an operational semantics [24], a structural oper-
ational semantics [22], or an axiomatic semantics [9, 23]. For our purposes, what
is most relevant is how a hybrid program changes the state of the system. Conse-
quently, the semantics of hybrid programs considers what (final) state ν is reachable
by running an HP α from an (initial) state ω . Semantical models that expose more
detail, e.g., about the internal states during the run of an HP, are possible [11] but
can be ignored for most purposes in this book.

Recall that a state ω : V → R is a mapping from variables to R, which assigns
a real value ω(x) ∈ R to each variable x ∈ V . The set of states is denoted S. The
meaning of an HP α is given by a reachability relation [[α]]⊆S×S on states. So
(ω,ν) ∈ [[α]] means that final state ν is reachable from initial state ω by running HP
α . From any initial state ω , there might be many states ν that are reachable because
the HP α may involve nondeterministic choices, repetitions, or differential equa-
tions, so there may be many different states ν for which (ω,ν) ∈ [[α]]. From other
initial states ω , there might be no reachable states ν at all for which (ω,ν) ∈ [[α]].
So [[α]] is a proper relation, not a function.

HPs have a compositional semantics [17–19]. Recall from Chap. 2 that the value
of term e in state ω is denoted by ω[[e]]. Further, ω ∈ [[Q]] denotes that first-order
formula Q is true in state ω , where [[Q]]⊆S is the set of all states in which for-
mula Q is true. The semantics of an HP α is then defined by its reachability relation
[[α]]⊆S×S. The notation α∗ for loops comes from the notation ρ∗ for the re-

78 3 Choice & Control

ω ν
x := e

t

x

0

ω

ν if ν(x) = ω[[e]]
and ν(z) = ω(z) for z 6= x

ω ν

x′ = f (x)&Q

t

x

Q

ν

ω

0 r

x′ = f (x)&Q

x
′ =

f (
x)

ω

?Q

if ω ∈ [[Q]]
ω

?Q
/

if ω 6∈ [[Q]]

t

x

0

ω no change if ω ∈ [[Q]]
otherwise no transition

ω

ν1

ν2

α

β

α ∪β

t

x
ω ν1

ν2

ω µ ν

α;β

α β t

x

µ

ω ν

ω ω1 ω2 ν

α∗

α α α t

x

ω ν

Fig. 3.4 Transition semantics (left) and example dynamics (right) of hybrid programs

flexive, transitive closure of a relation ρ . Graphical illustrations of the transition
semantics of hybrid programs defined below and possible example dynamics are
depicted in Fig. 3.4. The left of Fig. 3.4 illustrates the generic shape of the transition
structure [[α]] for transitions along various cases of hybrid programs α from state ω
to state ν . The right of Fig. 3.4 shows examples of how the value of a variable x may
evolve over time t when following the dynamics of the respective hybrid program α .

3.3 Hybrid Programs 79

Definition 3.2 (Transition semantics of HPs). Each HP α is interpreted se-
mantically as a binary reachability relation [[α]]⊆S×S over states, defined
inductively by:

1. [[x :=e]] = {(ω,ν) : ν = ω except that ν [[x]] = ω[[e]]}
That is, final state ν differs from initial state ω only in its interpretation of
the variable x, which ν changes to the value that the right-hand side term e

has in the initial state ω .
2. [[?Q]] = {(ω,ω) : ω ∈ [[Q]]}

That is, the final state ω is the same as the initial state ω (no change) but
there is such a transition only if test formula Q holds in ω , otherwise no
transition is possible at all and the system is stuck because of a failed test.

3. [[x′ = f (x)&Q]] = {(ω,ν) : ϕ(0) = ω except at x′ and ϕ(r) = ν for a solu-
tion ϕ : [0,r]→S of any duration r satisfying ϕ |= x′ = f (x)∧Q}
That is, the final state ϕ(r) is connected to the initial state ϕ(0) by a contin-
uous function of some duration r ≥ 0 that solves the differential equation
and satisfies Q at all times; see Definition 3.3.

4. [[α ∪β]] = [[α]]∪ [[β]]
That is, α ∪β can do exactly any of the transitions that α can do as well as
any of the transitions that β is capable of. Every run of α ∪β has to choose
whether it follows α or β , but cannot follow both at once.

5. [[α;β]] = [[α]]◦ [[β]] = {(ω,ν) : (ω,µ) ∈ [[α]],(µ,ν) ∈ [[β]]}
That is, the meaning of α;β is the compositiona [[α]]◦ [[β]] of relation [[β]]
after [[α]]. Thus, α;β can do any transitions that go through any interme-
diate state µ to which α can make a transition from the initial state ω and
from which β can make a transition to the final state ν .

6. [[α∗]] = [[α]]∗ =
⋃

n∈N
[[αn]] with αn+1 ≡ αn;α and α0 ≡?true.

That is, α∗ can repeat α any number of times, i.e., for any n ∈ N, α∗ can
act like the n-fold sequential composition αn ≡ α;α;α; . . . ;α

︸ ︷︷ ︸

n times

would.

a The notational convention for composition of relations is flipped compared to the compo-
sition of functions. For functions f and g, the function f ◦g is the composition f after g that
maps x to f (g(x)). For relations R and T , the relation R◦T is the composition of T after R,
so first follow relation R to an intermediate state and then follow relation T to the final state.

To keep things simple, this definition uses simplifying abbreviations for differential
equations. Chapter 2 provides full detail, including the definition for differential
equation systems. The semantics of loops can also be rephrased equivalently as:

[[α∗]] =
⋃

n∈N
{(ω0,ωn) : ω0, . . . ,ωn are states such that (ωi,ωi+1) ∈ [[α]] for all i < n}

For later reference, we repeat the definition of the semantics of differential equa-
tions separately:

80 3 Choice & Control

Definition 3.3 (Transition semantics of ODEs).

[[x′ = f (x)&Q]] =
{
(ω,ν) : ϕ(0) = ω except at x′ and ϕ(r) = ν for a solution

ϕ:[0,r]→S of any duration r satisfying ϕ |= x′ = f (x)∧Q
}

where ϕ |= x′ = f (x)∧Q, iff for all times 0≤ z≤ r: ϕ(z) ∈ [[x′ = f (x)∧Q]]

with ϕ(z)(x′)
def
= dϕ(t)(x)

dt
(z) and ϕ(z) = ϕ(0) except at x,x′.

The condition that ϕ(0) = ω except at x′ is explicit about the fact that the ini-
tial state ω and the first state ϕ(0) of the continuous evolution have to be identical
(except for the value of x′, for which Definition 3.3 only provides a value along ϕ).
Part I of this book does not track the values of x′ except during continuous evolu-
tions. But that will change in Part II, for which Definition 3.3 is already prepared
appropriately.

Observe that ?Q cannot run from an initial state ω with ω 6∈ [[Q]], in particu-
lar [[?false]] = /0. Likewise, x′ = f (x)&Q cannot run from an initial state ω with
ω 6∈ [[Q]], because no solution of any duration, not even duration 0, starting in ω will
always stay in the evolution domain Q if it already starts outside Q. A nondetermin-
istic choice α ∪β cannot run from an initial state from which neither α nor β can
run. Similarly, α;β cannot run from an initial state from which α cannot run, nor
from an initial state from which all final states after α make it impossible for β to
run. Assignments and repetitions can always run, e.g., by repeating 0 times.

Example 3.1. When α denotes the HP in (3.8) on p. 74, its semantics [[α]] is a relation
on states connecting the initial to the final state along the differential equation with
two control decisions according to the nondeterministic choice, one at the beginning
and one after following the first differential equation. How long is that, exactly?
Well, that’s nondeterministic, because the semantics of differential equations is such
that any final state after any permitted duration is reachable from a given initial
state. So the duration for the first differential equation in (3.8) could be one second
or two or 424 or half a second or zero or π or any other nonnegative real number.
This would be very different for an HP whose differential equation has an evolution
domain constraint, because that limits how long a continuous evolution can take.
The exact duration is still nondeterministic, but it cannot ever evolve outside its
evolution domain.

By plugging one transition structure pattern into another, Fig. 3.4 illustrates the
generic shape of transition structures for more complex HPs. For example, Fig. 3.5
illustrates the transition structure of (α;β)∗ and Fig. 3.6 illustrates (α ∪β)∗. This
plugging in is directly analogous to how the semantics of bigger programs is defined
by recursively following their semantics in Definition 3.2 based on their respective
top-level operator.

3.3 Hybrid Programs 81

Fig. 3.5 Nested transition
semantics pattern for (α;β)∗

ω ω1 ω2 ν

(α;β)∗

α β α β α β

Fig. 3.6 Nested transition
semantics pattern for (α ∪β)∗

ω

ω1
1

ω2
1

ω1
2

ω2
2

ω3
2

ω4
2

ν1

ν2

ν3

ν4

ν5

ν6

ν7

ν8

α

β

α ∪β

α

β

∪

α

β

∪

∪

∪

∪

∪

(α ∪β)
∗

(α ∪β) ∗

Expedition 3.2 (HP semantics [[·]] : HP→℘(S×S))

The semantics of an HP α from Definition 3.2 directly defines the transition
relation [[α]]⊆S×S of initial and final states inductively, for each HP α:

[[x :=e]] = {(ω,ν) : ν = ω except that ν [[x]] = ω[[e]]}
[[?Q]] = {(ω,ω) : ω ∈ [[Q]]}
[[x′ = f (x)&Q]] =

{
(ω,ν) : ϕ(0) = ω except at x′ and ϕ(r) = ν for a solution

ϕ:[0,r]→S of any duration r satisfying ϕ |= x′ = f (x)∧Q
}

[[α ∪β]] = [[α]]∪ [[β]]
[[α;β]] = [[α]]◦ [[β]] = {(ω,ν) : (ω,µ) ∈ [[α]],(µ,ν) ∈ [[β]]}
[[α∗]] = [[α]]∗ =

⋃

n∈N
[[αn]] with αn+1 ≡ αn;α and α0 ≡?true

When HP is the set of hybrid programs, the semantic brackets define an opera-
tor [[·]] : HP→℘(S×S) that defines the meaning [[P]] for each hybrid program
α ∈ HP, which, in turn, defines the transition relation [[α]] ⊆ S ×S where
(ω,ν) ∈ [[α]] indicates that final state ν is reachable from initial state ω when
running HP α . The powerset ℘(S×S) is the set of all subsets of the Carte-
sian product S×S of the set of states S with itself. The powerset℘(S×S),
thus, is the set of binary relations on S.

82 3 Choice & Control

3.4 Hybrid Program Design

This section discusses some early lessons on good and bad modeling choices in
hybrid systems. As our understanding of the subject matter advances throughout
this textbook, we will find additional insights into tradeoffs and caveats. The aspects
that can easily be understood on a pure modeling level will be discussed now.

3.4.1 To Brake, or Not to Brake, That Is the Question

As a canonical example for a system that has to make a choice, consider a ground
robot at position x moving with velocity v and acceleration a along a straight line.
This results in the differential equation x′ = v,v′ = a. When driving along a straight
line, the ground robot has the control decision to either set the acceleration to a posi-
tive value A> 0 by the discrete assignment a :=A or set it to a negative value b< 0
by the discrete assignment a := b. The control question is when to brake and when
not to brake (so accelerate since, for simplicity, this example does not allow coasting
with a constant velocity). Let’s call the condition under which acceleration can be
chosen QA and the condition under which braking can be chosen Qb:

(?QA; a :=A∪ ?Qb; a := b); {x′ = v,v′ = a}

)∗
(3.11)

What concrete formulas to best use for the tests ?QA and ?Qb depends on the
control objectives and is often quite nontrivial to determine. If the system can stay
in its continuous evolution for an unbounded amount of time, then it is virtually
never safe to accelerate, so QA will need to be false. Consequently, we assume that
ε is the reaction time, so the maximal amount of time that a continuous evolution
can take before it stops and gives the discrete controller a chance to react to the
new situation again. The HP, thus, includes a clock t measuring the progress of
time along t ′ = 1, which is reset with t := 0 before the differential equation and
bounded by the evolution domain t ≤ ε . Finally, if the controller chooses a negative
acceleration with a := b, then the differential equation system x′ = v,v′ = a will
ultimately move backwards when v < 0. In order to model that braking will not
make the robot move backwards, we add v≥ 0 to the evolution domain constraint.

Taking these thoughts about braking and acceleration into account, we refine HP
(3.11) with a clock and a lower velocity bound 0:

(?QA; a :=A∪ ?Qb; a := b); t :=0; {x′ = v,v′ = a, t ′ = 1&v≥ 0∧ t ≤ ε}

)∗

(3.12)
The structure of the transition semantics for HP (3.12) according to the patterns in

Fig. 3.4 is shown in Fig. 3.7. Any path through Fig. 3.7 that passes all tests along the
way corresponds to an execution of HP (3.12), and vice versa. In particular, if a test
fails, such as ?QA, then only the other nondeterministic choices are available, which

3.4 Hybrid Program Design 83

is why it is important that at least one choice is always allowed. If both tests ?QA

and ?Qb pass in the current state, then both nondeterministic choices are available.

∪

?QA

?Qb

a :=A

a :=
b

t :=0 x′ = v,v′ = a

t ′ = 1
&v≥0∧t≤ε

Fig. 3.7 Transition structure of the acceleration/braking example (3.12)

For verification purposes, it is often a good idea to design conditions QA and Qb

that overlap. Executing a controller may best be done in a deterministic way, which
would argue for a disjoint design of QA and Qb. But verification models benefit
from nondeterminism, because if highly nondeterministic models have no unsafe
behaviors then all more specific refinements have no unsafe behaviors either [12].
In particular, the controller is only guaranteed to remain responsive if there is always
at least one option that can be chosen, which is obvious when choosing the trivial
test ?true for ?Qb, which always allows the control to choose braking. Of course,
when the control objective is to avoid collision with a moving obstacle in front of
our robot, then it is always safe to brake, but only sometimes safe to accelerate. So,
QA has to be some condition that ensures sufficient distance to the moving obstacle,
which depends on how good the brakes are and several other parameters as well
(Exercise 3.7).

3.4.2 A Matter of Choice

Let us change the HP from (3.8) and consider the following modification instead:

?v < 4; a :=a+1;

{x′ = v,v′ = a};
?v < 4; a :=a+1;

{x′ = v,v′ = a}

(3.13)

Then some behavior that was possible in (3.8) is no longer possible for (3.13). Let β
denote the HP in (3.13), then the semantics [[β]] of β now only includes relations be-
tween initial and final states which can be reached by acceleration choices (because
there are no braking choices in β). Note that the duration of the first differential
equation in (3.13) is suddenly bounded, because if x keeps on accelerating for too

84 3 Choice & Control

long during the first differential equation, the intermediate state reached then will
violate the test ?v < 4, which, according to the semantics of tests, will fail and be
discarded.

That is what makes (3.13) a bad model, because it truncates and discards behavior
that the real system still possesses. Even if the controller in the third line of (3.13) is
not prepared to handle the situation where the test ?v< 4 fails, it might fail in reality.
In that case, the controller in (3.13) simply runs out of choices. A more realistic and
permissive controller, thus, also handles the case if that test fails, at which point we
are back at (3.8).

Similarly, Qb

def≡ false is a bad controller design for (3.12), because it categorically
disallows braking and, unrealistically, assumes ?QA to hold all the time.

Note 18 (Controllers cannot discard cases) While subsequent chapters dis-
cuss cases where hybrid programs use tests ?Q in crucial ways to discard non-
permitted behaviors of the environment, great care needs to be exercised that
controllers also handle the remaining cases. A bad controller

?(v < 4); α

only handles the case where v < 4 and ignores all other circumstances, which
renders the controller incapable of reacting and, thus, unsafe when v ≥ 4. A
better controller design always considers the case when a condition is not sat-
isfied and handles it appropriately as well:

(?(v < 4);α)∪ (?(v≥ 4); . . .)

Liveness proofs can tell the two cases of controllers apart, but appropriate de-
sign principles of being prepared for both outcomes of each test go a long way
in improving the controllers.
Similarly bad controller designs result from careless evolution domains:

a := b; {x′ = v,v′ = a&v > 4}

The differential equations in this controller silently assume the velocity will
always stay above 4, which is clearly not always the case when braking. Acci-
dental divisions by zero are another source of trouble in CPS controllers.

3.5 Summary

This chapter introduced hybrid programs as a model of cyber-physical systems,
summarized in Table 3.1. Hybrid programs combine differential equations with con-
ventional program constructs and discrete assignments. The programming language
of hybrid programs embraces nondeterminism as a first-class citizen and features

3.6 Appendix: Modeling the Motion of a Robot Around a Bend 85

differential equations that can be combined to form hybrid systems using the com-
positional operators of hybrid programs.

Table 3.1 Statements and effects of hybrid programs (HPs)

HP Notation Operation Effect
x :=e discrete assignment assigns current value of term e to variable x

x′ = f (x)&Q continuous evolution follow differential equation x′ = f (x) with-
in evolution domain Q for any duration

?Q state test / check test first-order formula Q at current state
α; β seq. composition HP β starts after HP α finishes
α ∪β nondet. choice choice between alternatives HP α and HP β
α∗ nondet. repetition repeats HP α any n ∈ N times

Hybrid programs take advantage of the structuring principles of programming
languages and emphasize the composition operators ; and ∪ and ∗, which combine
smaller hybrid programs to make bigger hybrid programs and have a simple compo-
sitional semantics. Hybrid programs resemble regular expressions, except that they
start from discrete assignments, tests, and differential equations as a basis instead
of individual letters of a formal language. Regular expressions allow a language-
theoretic study of formal languages and have an automata-theoretic counterpart
called finite automata [10]. Similarly, hybrid programs have hybrid automata [2,
8] as an automata-theoretic counterpart, which are explored in Exercise 3.18.

3.6 Appendix: Modeling the Motion of a Robot Around a Bend

This appendix develops a hybrid program model describing how a robot can drive
along a sequence of lines and circular curve segments in the two-dimensional plane.
This dynamics is called Dubins car dynamics [5], because it also describes the high-
level motion of a car in the plane or of an aircraft remaining at the same altitude
(Fig. 3.8).

Suppose there is a robot at a point with coordinates (x,y) that is facing in direc-
tion (v,w). The robot moves into the direction (v,w), whose norm

√
v2 +w2, thus,

simultaneously determines the constant linear speed: how quickly the robot is mov-
ing on the ground. Suppose that direction (v,w) is simultaneously rotating with an
angular velocity ω as in Example 2.7 (Fig. 3.9). The differential equations describ-
ing the motion of this robot are

x′ = v,y′ = w,v′ = ωw,w′ = ωv

The time-derivative of the x coordinate is the component v of the direction and the
time-derivative of the y coordinate is the component w of the direction. The angular
velocity ω determines how fast the direction (v,w) rotates. Bigger magnitudes of

86 3 Choice & Control

Fig. 3.8 Illustration of a
Dubins path consisting of a
sequence of lines and maxi-
mally curved circle segments

(x,y)

(v,w)
ω

Fig. 3.9 Illustration of the
Dubins dynamics of a point
(x,y) moving in direction
(v,w) along a dashed curve
with angular velocity ω

x

y

(v,w)

ϑ

ω

ω give faster rotations of (v,w) so tighter curves for the position (x,y). Positive ω
make the robot drive a right curve (when indeed plotting x as the x-axis and y as the
y-axis as in Fig. 3.9). The robot will follow a straight line when ω = 0, because the
direction (v,w) then does not change.

Now if a robot can steer, its controller can change the angular velocity to make a
left curve (ω < 0), a right curve (ω > 0), or drive straight ahead (ω = 0). One might
very well imagine a robot controller that additionally chooses sharp turns (ω with
big magnitude) or gentle turns (ω with small magnitude), but let’s not consider this
yet. After all, Lester Dubins proved that the shortest curve connecting two points
with such a dynamics consists of a sequence of line segments and maximally sharp
turns [5].5 If we simply assume that 1 and -1 are the extreme angular velocities, the
hybrid program for the ground robot steering and moving in the plane is

((ω := 1∪ω :=1∪ω :=0); {x′ = v,y′ = w,v′ = ωw,w′ = ωv}
)∗

(3.14)

Repeatedly, in a loop, this HP allows a choice of extreme left curves (ω := 1),
extreme right curves (ω :=1), or motion in a straight line (ω :=0). After this discrete
controller, the robot follows the continuous motion described by the differential
equations for a nondeterministic period of time.

If the safety goal of the robot is never to collide with any obstacles, then HP
(3.14) cannot possibly be safe, because it allows arbitrary left and right curves and

5 If you build a self-driving car following such a path with straight lines and maximal curvature,
don’t be surprised if no passenger stays for a second ride. But robots are less fixated on comfort.

3.6 Appendix: Modeling the Motion of a Robot Around a Bend 87

straight-line motion for any arbitrary amounts of time under any arbitrary condi-
tions. HP (3.14) would even allow the controller to choose a left curve if that is the
only direction that will immediately make the robot collide with an obstacle.

Consequently, each of the three control actions in HP (3.14) is only acceptable
under certain conditions. After solving Exercise 3.9 you will have found logical for-
mulas Q 1,Q1,Q0 such that Qω indicates when it is safe to drive along the curve
corresponding to angular velocity ω , which will transform the unsafe HP (3.14) into
the following HP with a more constrained controller:

((?Q 1;ω := 1∪ ?Q1;ω :=1∪ ?Q0;ω :=0);{x′ = v,y′ = w,v′ = ωw,w′ = ωv})∗

It is perfectly fine if multiple of the conditions Q 1,Q1,Q0 are true in the same state,
because that gives the controller a number of different control options to choose
from. For example, there might be many states in which both a left curve and driving
straight are safe. Of course, it would not be useful at all if there is a state in which all
conditions Q 1,Q1,Q0 are false, because the controller runs out of control choices
and is then completely stuck, which is not very safe either. Grotesquely useless
would be a controller that chose an impossible condition like 1 < 0 for all three
formulas Q 1,Q1,Q0, because that robot can then never move anywhere, which is
incredibly boring even for the most polite and patient robots. Yet, a robot that is
initially stopped and never even begins to move at least does not bump into any
walls. What is much worse is a controller that happily begins to drive and then
fails to offer any acceptable control choices. That is why it is important that the
disjunction Q 1∨Q1∨Q0 is true in every state, because the robot then always has
at least one permitted choice.

Well, can this disjunction be true in every state? Since the conditions Qω are sup-
posed to guarantee that the robot will never collide with an obstacle when following
the trajectory with angular velocity ω , none of them can be true in a state where the
robot has already collided to begin with. It is up to the robot controller to ensure
that such a collision state is never reached. Hence, the disjunction Q 1 ∨Q1 ∨Q0

should be true in every collision-free state. How to design the Qω is your challenge
for Exercise 3.9.

Exercises

3.1. The semantics of an HP α is its reachability relation [[α]]. For example,

[[x :=2 · x;x :=x+1]] = {(ω,ν) : ν(x) = 2 ·ω(x)+1 and ν(z) = ω(z) for all z 6= x}

Describe the reachability relation of the following HPs in similarly explicit ways:

1. x :=x+1; x :=2 · x
2. x :=1∪ x := 1
3. x :=1∪ ?(x≤ 0)

88 3 Choice & Control

4. x :=1; ?(x≤ 0)
5. ?(x≤ 0)
6. x :=1∪ x′ = 1
7. x :=1; x′ = 1
8. x :=1; {x′ = 1&x≤ 1}
9. x :=1; {x′ = 1&x≤ 0}

10. v :=1; x′ = v

11. v :=1; {x′ = v}∗
12. {x′ = v,v′ = a&x≥ 0}

3.2. The semantics of hybrid programs (Definition 3.2) requires evolution domain
constraints Q to hold always throughout a continuous evolution. What exactly hap-
pens if the system starts in a state where Q does not hold to begin with?

3.3 (If-then-else). Sect. 3.2.3 considered if-then-else statements for hybrid pro-
grams. But they no longer showed up in the grammar of hybrid programs. Is this
a mistake? Can you define if(P)α elseβ from the operators that HPs do provide?

3.4 (If-then-else). Suppose we add the if-then-else-statement if(P)α elseβ to the
syntax of HPs. Define a semantics [[if(P)α elseβ]] for if-then-else statements and
explain how it relates to Exercise 3.3.

3.5 (Switch-case). Define a switch statement that runs the statement αi if formula
Pi is true, and chooses nondeterministically if multiple conditions are true:

switch (

case P1 : α1

case P2 : α2

...

case Pn : αn

)

What would need to be changed to make sure only the statement αi with the first
true condition Pi executes?

3.6 (While). Suppose we add the while loop while(P)α to the syntax of HPs. As
usual, while(P)α is supposed to run α if P holds, and, whenever α finishes, repeat
again if P holds. Define a semantics [[while(P)α]] for while loops. Can you define a
program that is equivalent to while(P)α from the original syntax of HPs?

3.7 (To brake, or not to brake, that is the question). Besides the positions of the
robot and the position of the obstacle in front of it, what other parameters does the
acceleration condition in (3.12) depend on if it is supposed to ensure that the robot
does not collide with any obstacles on the straight line that it is driving along? Can
you determine a corresponding formula QA that would guarantee safety?

3.6 Appendix: Modeling the Motion of a Robot Around a Bend 89

3.8 (Two cars). Develop a model of the motion of two cars along a straight line,
each of which has its own position, velocity, and acceleration. Develop a controller
model that allows the leader car to accelerate or brake freely while limiting the
choices of the follower car such that it will never collide with the car in front of it.

3.9 (Runaround robot). You are in control of a robot moving with constant ground
speed in the two-dimensional plane, as in Sect. 3.6. It can follow a left curve
(ω := 1), a right curve (ω :=1), or go straight (ω :=0). Your job is to find logical
formulas Q 1,Q1,Q0 such that Qω indicates when it is safe to drive along the curve
corresponding to angular velocity ω:

((?Q 1;ω := 1∪ ?Q1;ω :=1∪ ?Q0;ω :=0);{x′ = v,y′ = w,v′ = ωw,w′ = ωv})∗

For the purpose of this exercise, fix one point (ox,oy) as an obstacle and consider
this HP safe if it can never reach that obstacle. Does your HP always have at least
one choice remaining or can it get stuck such that no choice is permitted? Having
succeeded with these challenges, can you generalize your robot model and safety
constraints to one where the robot can accelerate to speed up or brake to slow down?

3.10 (Other programming languages). Consider your favorite programming lan-
guage and discuss in what ways it introduces discrete change and discrete dynamics.
Can it model all behavior that hybrid programs can describe? Can your program-
ming language model all behavior that hybrid programs without differential equa-
tions can describe? How about the other way around? And what would you need to
add to your programming language to cover all of hybrid systems? How would you
best do that?

3.11 (Choice vs. sequence). Can you find a discrete controller ctrl and a continuous
program plant such that the following two HPs have different behaviors?

(ctrl; plant)∗ versus (ctrl∪plant)∗

3.12 (Nondeterministic assignments). Suppose we add a new statement x :=∗ for
nondeterministic assignment to the syntax of HPs. The nondeterministic assignment

x :=∗ assigns an arbitrary real number to the variable x. Define a semantics [[x :=∗]]
for the x :=∗ statement.

3.13 (Nondeterministic choices from nondeterminism and if-then-else). Exer-
cise 3.3 explored that if-then-else can be defined from nondeterministic choices.
Once we add nondeterministic assignments, however, we could have defined it con-
versely. Using an auxiliary variable z, show that α ∪β has the same behavior as:

z :=∗; if(z > 0)α elseβ

3.14 (Nondeterministic repetitions from nondeterminism and while). The Exer-
cise 3.6 explored that while loops can be defined from nondeterministic repetitions.
Once we add nondeterministic assignments, however, we could have defined it con-
versely. Using an auxiliary variable z, show that α∗ has the same behavior as:

90 3 Choice & Control

z :=∗; while(z > 0)(z :=∗; α)

3.15 (Set-valued semantics). The semantics of hybrid programs (Definition 3.2) is
defined as a transition relation [[α]]⊆S×S on states. Define an equivalent seman-
tics using functions R(α) : S→ 2S from the initial state to the set of all final states,
where 2S denotes the powerset of S, i.e., the set of all subsets of S. Define this
set-valued semantics R(α) without referring to the transition relation semantics [[α]],
and prove that it is equivalent, i.e.,

ν ∈ R(α)(ω) iff (ω,ν) ∈ [[α]]

Likewise, define an equivalent semantics based on functions ς(α) : 2S → 2S from
the set of possible final states to the set of initial states that can end in the given set
of final states. Prove that it is equivalent, i.e., for all sets of states X ⊆S

ω ∈ ς(α)(X) iff there is a state ν ∈ X such that (ω,ν) ∈ [[α]]

3.16 (Switched systems). Hybrid programs come in different classes; see Table 3.2.
A continuous program is an HP that only consists of one continuous evolution of the
form x′ = f (x)&Q. A discrete system corresponds to an HP that has no differential
equations. A switched continuous system corresponds to an HP that has no assign-
ments, because it does not have any instant changes of state variables but merely
switches mode (possibly after some tests) from one continuous mode into another.

Table 3.2 Classification of hybrid programs and correspondence to dynamical systems

HP class Dynamical systems class
only ODE continuous dynamical systems
no ODE discrete dynamical systems
no assignment switched continuous dynamical systems
general HP hybrid dynamical systems

Consider an HP in which the variables are partitioned into state variables (x,v),
sensor variables (m), and controller variables (a):

(
(?x < m 5; a :=A)∪a := b

)
;

{x′ = v,v′ = a}
)∗

Transform this HP into a switched program that has the same behavior on the ob-
servable state and sensor variables but is a switched system, so does not contain any
assignments. The behavior of controller variables is considered irrelevant for the
purpose of this transformation as long as the behavior of the other state variables
x,v is unchanged.

3.17 (** Program interpreter). In a programming language of your choosing, fix a
recursive data structure for hybrid programs from Definition 3.1 and fix some finite

3.6 Appendix: Modeling the Motion of a Robot Around a Bend 91

representation for states where all variables have rational values instead of reals.
Write a program interpreter as a computer program that, given an initial state ω and
a program α , successively enumerates possible final states ν that can be reached
by α from ω , that is (ω,ν) ∈ [[α]], by implementing Definition 3.2. Resolve nonde-
terministic choices in the transition either by user input or by randomization. What
makes the differential equation case particularly challenging?

3.18 (** Hybrid automata). The purpose of this exercise is to explore hybrid au-
tomata [2, 8], which are an automata-theoretic model for hybrid systems. Instead of
the compositional language operators of hybrid programs, hybrid automata empha-
size different continuous modes with discrete transitions between them. The system
follows a continuous evolution while the automaton is in a node (called a location).
Discrete jumps happen when following an edge of the automaton from one location
to another. Hybrid automata augment finite automata with the specification of a dif-
ferential equation and evolution domain in each location and with a description of
the discrete transition (called a reset) for each edge in addition to a condition (called
a guard) specifying when that edge can be taken.

Fig. 3.10 Hybrid automaton
for a car that can accelerate or
brake

accel

x′ = v

v′ = a

brake

x′ = v

v′ = a

v ≥ 0

a :=−b

v < 4

a := a+ 1

v < 4

a := a+1

Figure 3.10 shows a hybrid automaton with two locations and three transitions
between them, which starts in location accel as indicated by the initial arrow. While
in location accel, the system follows the differential equation x′ = v,v′ = a. While in
brake it follows x′ = v,v′ = a&v≥ 0. When the automaton is in location brake and
guard condition v < 4 is satisfied, then it can transition along the edge to location
accel, which will change a by executing reset a := a+ 1. When the automaton is
in accel, then it can transition along the edge to brake, which will execute a := b.
This transition is always possible, because that edge has no guard. If v < 4, then the
automaton can also transition from accel back to accel, which will execute a :=a+1.

1. Modify the hybrid automaton in Fig. 3.10 so that it directly corresponds to the
hybrid program (3.10).

2. Draw a hybrid automaton for the hybrid program in Sect. 3.6.
3. Define the syntax of hybrid automata consisting of a (finite) set X of state vari-

ables and a (finite) set Loc of locations interconnected by a (finite) set Edg

of edges where each location ℓ ∈ Loc has a differential equation Flow(ℓ) and
evolution domain constraint Inv(ℓ) and where each edge e ∈ Edg has a guard
condition Guard(e) and a reset Reset(e) list of assignments. Also define the
initial conditions by a formula Init(ℓ) per location ℓ ∈ Loc specifying in which
region (if any) the hybrid automaton is allowed to start initially.

92 3 Choice & Control

4. A state of a hybrid automaton is a pair (ℓ,ω) consisting of a location ℓ ∈ Loc

and an assignment ω : X → R of real numbers to the variables X . Define the
semantics of hybrid automata by defining which states (k,ν) are reachable from
initial state (ℓ,ω) by running the hybrid automaton.

5. Every finite automaton can be implemented in imperative programming lan-
guages with the help of a variable q storing the present location of the automaton
that is updated to reflect the transition from one location to another. By analogy,
show how every hybrid automaton can be implemented as a hybrid program
with one additional variable q for the location. If we assume that the locations
Loc are a set of distinct real numbers, the fact that the hybrid automaton is in
location ℓ will correspond to the location variable q having value ℓ in the hybrid
program.

6. Explain how the states (ℓ,ω) reachable by a hybrid automaton correspond to
the states ωℓ

q reachable by the corresponding hybrid program in which location
variable q has value ℓ.

References

[1] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A. Hen-
zinger, Pei-Hsin Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and
Sergio Yovine. The algorithmic analysis of hybrid systems. Theor. Comput.

Sci. 138(1) (1995), 3–34. DOI: 10.1016/0304-3975(94)00202-T.
[2] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei-Hsin Ho.

Hybrid automata: an algorithmic approach to the specification and verifica-
tion of hybrid systems. In: Hybrid Systems. Ed. by Robert L. Grossman, Anil
Nerode, Anders P. Ravn, and Hans Rischel. Vol. 736. LNCS. Berlin: Springer,
1992, 209–229. DOI: 10.1007/3-540-57318-6_30.

[3] Alonzo Church. A note on the Entscheidungsproblem. J. Symb. Log. 1(1)
(1936), 40–41.

[4] René David and Hassane Alla. On hybrid Petri nets. Discrete Event Dynamic

Systems 11(1-2) (2001), 9–40. DOI: 10.1023/A:1008330914786.
[5] Lester Eli Dubins. On curves of minimal length with a constraint on average

curvature, and with prescribed initial and terminal positions and tangents.
American Journal of Mathematics 79(3) (1957), 497–516. DOI: 10.2307
/2372560.

[6] Gottlob Frege. Begriffsschrift, eine der arithmetischen nachgebildete Formel-

sprache des reinen Denkens. Halle: Verlag von Louis Nebert, 1879.
[7] Robert Harper. Practical Foundations for Programming Languages. 2nd ed.

Cambridge Univ. Press, 2016. DOI: 10.1017/CBO9781316576892.
[8] Thomas A. Henzinger. The theory of hybrid automata. In: LICS. Los Alami-

tos: IEEE Computer Society, 1996, 278–292. DOI: 10.1109/LICS.1996
.561342.

https://doi.org/10.1016/0304-3975(94)00202-T
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1023/A:1008330914786
https://doi.org/10.2307/2372560
https://doi.org/10.2307/2372560
https://doi.org/10.1017/CBO9781316576892
https://doi.org/10.1109/LICS.1996.561342
https://doi.org/10.1109/LICS.1996.561342

3.6 Appendix: Modeling the Motion of a Robot Around a Bend 93

[9] Charles Antony Richard Hoare. An axiomatic basis for computer program-
ming. Commun. ACM 12(10) (1969), 576–580. DOI: 10.1145/363235.3
63259.

[10] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to

Automata Theory, Languages, and Computation. 3rd ed. Pearson, Marlow,
2006.

[11] Jean-Baptiste Jeannin and André Platzer. dTL2: differential temporal dy-
namic logic with nested temporalities for hybrid systems. In: IJCAR. Ed.
by Stéphane Demri, Deepak Kapur, and Christoph Weidenbach. Vol. 8562.
LNCS. Berlin: Springer, 2014, 292–306. DOI: 10.1007/978-3-319-0
8587-6_22.

[12] Sarah M. Loos and André Platzer. Differential refinement logic. In: LICS. Ed.
by Martin Grohe, Eric Koskinen, and Natarajan Shankar. New York: ACM,
2016, 505–514. DOI: 10.1145/2933575.2934555.

[13] Anil Nerode and Wolf Kohn. Models for hybrid systems: automata, topolo-
gies, controllability, observability. In: Hybrid Systems. Ed. by Robert L.
Grossman, Anil Nerode, Anders P. Ravn, and Hans Rischel. Vol. 736. LNCS.
Berlin: Springer, 1992, 317–356.

[14] Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine. An ap-
proach to the description and analysis of hybrid systems. In: Hybrid Systems.
Ed. by Robert L. Grossman, Anil Nerode, Anders P. Ravn, and Hans Rischel.
Vol. 736. LNCS. Berlin: Springer, 1992, 149–178. DOI: 10.1007/3-540
-57318-6_28.

[15] Ernst-Rüdiger Olderog. Nets, Terms and Formulas: Three Views of Concur-

rent Processes and Their Relationship. Cambridge: Cambridge University
Press, 1991, 267.

[16] André Platzer. Differential dynamic logic for verifying parametric hybrid
systems. In: TABLEAUX. Ed. by Nicola Olivetti. Vol. 4548. LNCS. Berlin:
Springer, 2007, 216–232. DOI: 10.1007/978-3-540-73099-6_17.

[17] André Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reas.

41(2) (2008), 143–189. DOI: 10.1007/s10817-008-9103-8.
[18] André Platzer. Logical Analysis of Hybrid Systems: Proving Theorems for

Complex Dynamics. Heidelberg: Springer, 2010. DOI: 10.1007/978-3-
642-14509-4.

[19] André Platzer. Logics of dynamical systems. In: LICS. Los Alamitos: IEEE,
2012, 13–24. DOI: 10.1109/LICS.2012.13.

[20] André Platzer. The complete proof theory of hybrid systems. In: LICS. Los
Alamitos: IEEE, 2012, 541–550. DOI: 10.1109/LICS.2012.64.

[21] André Platzer. A complete uniform substitution calculus for differential dy-
namic logic. J. Autom. Reas. 59(2) (2017), 219–265. DOI: 10.1007/s108
17-016-9385-1.

[22] Gordon D. Plotkin. A structural approach to operational semantics. Tech.
rep. DAIMI FN-19. Denmark: Aarhus University, 1981.

[23] Vaughan R. Pratt. Semantical considerations on Floyd-Hoare logic. In: 17th

Annual Symposium on Foundations of Computer Science, 25-27 October

https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1007/978-3-319-08587-6_22
https://doi.org/10.1007/978-3-319-08587-6_22
https://doi.org/10.1145/2933575.2934555
https://doi.org/10.1007/3-540-57318-6_28
https://doi.org/10.1007/3-540-57318-6_28
https://doi.org/10.1007/978-3-540-73099-6_17
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1109/LICS.2012.13
https://doi.org/10.1109/LICS.2012.64
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/s10817-016-9385-1

94 3 Choice & Control

1976, Houston, Texas, USA. Los Alamitos: IEEE, 1976, 109–121. DOI: 10
.1109/SFCS.1976.27.

[24] Dana S. Scott. Outline of a Mathematical Theory of Computation. Technical
Monograph PRG–2. Oxford: Oxford University Computing Laboratory, Nov.
1970.

[25] Dana Scott and Christopher Strachey. Towards a mathematical semantics

for computer languages. Tech. rep. PRG-6. Oxford Programming Research
Group, 1971.

[26] Alan M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proc. Lond. Math. Soc. 42(1) (1937), 230–265. DOI: 10.11
12/plms/s2-42.1.230.

https://doi.org/10.1109/SFCS.1976.27
https://doi.org/10.1109/SFCS.1976.27
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230

Chapter 4

Safety & Contracts

Synopsis This chapter provides a lightweight introduction to safety specification
techniques for cyber-physical systems. It discusses how program contracts general-
ize to CPS by declaring expectations on the initial states together with guarantees
for all possible final states of a CPS model. Since assumptions and guarantees can be
quite subtle for CPS applications, it is important to capture them early during a CPS
design. This chapter introduces differential dynamic logic, a logic for specifying
and verifying hybrid systems, which provides a formal underpinning for the precise
meaning of CPS contracts. In subsequent chapters, differential dynamic logic plays
a central rôle in rigorous verification of CPSs as well. This chapter also develops the
running example of Quantum the bouncing ball, which is a hopelessly impoverished
CPS but still features many of the important dynamical aspects of CPS in a perfectly
intuitive setting.

4.1 Introduction

In the previous chapters, we have studied models of cyber-physical systems and the
use of hybrid programs as their programming language [21, 22, 25, 30]. The distin-
guishing feature of hybrid programs are differential equations and nondeterminism
alongside the usual classical control structures and discrete assignments. Together,
these features provide powerful and flexible ways of modeling even very challeng-
ing systems and very complex control principles. This chapter will start the study
of ways of making sure that the resulting behavior, however flexible and powerful
it may be, also meets the required safety and correctness standards. Powerful and
flexible CPSs would not be very useful if they failed to meet certain crucial safety
demands.

In case you have already experienced contracts in conventional discrete program-
ming languages, you will have observed how they make properties and input re-
quirements of programs explicit. You will probably have seen how contracts can be
checked dynamically at runtime, and, if they fail, this alerts you right away to flaws

95© Springer International Publishing AG, part of Springer Nature 2018

A. Platzer, Logical Foundations of Cyber-Physical Systems,

https://doi.org/10.1007/978-3-319-63588-0_4

https://doi.org/10.1007/978-3-319-63588-0_4
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63588-0_4&domain=pdf

96 4 Safety & Contracts

in the design of the program. In that case, you have experienced first hand that it is
much easier to find and fix problems in programs starting from the first contract that
failed in the middle of the program, rather than from the mere observation about
the symptoms that ultimately surface when the final output of the program is not as
expected. In particular, unless you check the output dynamically with a contract or
manually every time, you may not even notice that something is wrong.

Another aspect of contracts that you may or may not have had the opportunity
to observe is that they can be used in proofs, which show that every program run
will satisfy the contracts, as opposed to just the ones you have tried. Every time
the requirements hold for the input, the output will promise to meet its guarantees.
Unlike in dynamic checking, the scope of correctness arguments with proofs extends
far beyond the test cases that have been tried, however cleverly the tests may have
been chosen. After all, testing can only show the presence of bugs, never quite their
absence [32, 40]. Both uses of contracts, dynamic checking and rigorous proofs, are
very helpful to check whether a system does what we intend it to, as has been argued
repeatedly in the literature [5, 14, 17, 18, 34, 36, 39].

The principles of contracts help cyber-physical systems [3, 21, 22, 27] as well.
Yet, their use in proving may, arguably, be more important than their use in dynamic
checking. The reason has to do with the physical impact of CPS as well as the non-
negotiability of the laws of physics. The reader is advised to imagine a situation
where a self-driving car is propelling him or her down the street. Suppose the car’s
control software is covered with contracts all over, but all of them are exclusively
for dynamic checking, none have been proved. If that self-driving car speeds up to
100 mph on a 55 mph highway and drives up very close to a car in front of it, then
dynamically checking the contract “keep at least a distance of 1 meter to the car in
front” no longer helps. If that contract fails, the car’s software will know that it made
a mistake, but it has become too late to do anything about it, because the brakes of
the car cannot possibly slow the car down quickly enough. The car is “trapped in its
own physics,” in the sense that it has run out of all safe control options and can only
brace itself for impact. While there are effective ways of making use of dynamic
contract checking also in CPS [19], the design of those contracts requires proof to
ensure that they respond early enough and that safety is always maintained.

For those reasons, this textbook will focus on the rôle of proofs as correctness
arguments for CPS contracts much more than on their use in dynamical checking.
Due to the physical consequences of malfunctions, correctness requirements on CPS
are also more stringent. Subtle nuances in their behavior may require significantly
more challenging arguments than, e.g., mere array-bounds checking for classical
programs. For those reasons, we will approach CPS proofs with a fair amount of
rigor. But such rigorous reasoning is already a story for a later chapter.

The focus of this chapter will first be to just understand CPS contracts them-
selves. As a useful modeling and specification exercise, we will develop a model of
a bouncing ball and identify all requirements for it to be safe. Along the way, how-
ever, this chapter develops an intuitive understanding of the rôle of requirements and
contracts in CPS as well as important ways of formalizing CPS properties and their

4.2 A Gradual Introduction to CPS Contracts 97

analysis. The material in this chapter provides an intuitive gradual introduction to
correctness specification techniques for CPS [20–22, 25, 30].

The most important learning goals of this chapter are:

Modeling and Control: We deepen our understanding of the core principles be-
hind CPS by internalizing discrete and continuous aspects of CPS in logical
formulas, which enable us to make precise statements about the expected be-
havior of a CPS. This forms a crucial stepping stone toward analytic reasoning
principles.

Computational Thinking: We develop an example that is equally simple and in-
structive, to learn how to identify specifications and critical properties of CPS.
Even if the example we look at, the bouncing ball, is a hopelessly impover-
ished CPS, it still conveys the formidable subtleties involved in hybrid systems
models, which are crucial for understanding CPS. This chapter is devoted to
contracts in the form of pre- and postconditions for CPS models. We will begin
to rigorously specify our requirements and expectations for CPS models, which
is critical to getting CPS right. In order to enable mathematically rigorous and
unambiguous specifications, this chapter introduces differential dynamic logic

dL [21, 22, 25, 30] as the specification and verification language for CPS that
we will be using throughout this textbook.

CPS Skills: We will begin to deepen our understanding of the semantics of CPS
models by tentatively relating it to their reasoning principles. This alignment
will only be fully covered in the next chapter, though.

CT

M&C CPS

rigorous specification
contracts
preconditions
postconditions
differential dynamic logic

discrete+continuous
analytic specification

model semantics
reasoning principles

4.2 A Gradual Introduction to CPS Contracts

This section provides a gradual and informal introduction to contracts for cyber-
physical systems. Its focus is on an intuitive development of the need for contracts,

98 4 Safety & Contracts

which provides the motivation for a subsequent rigorous development of a logic for
CPS in which every aspect has an unambiguously well-defined meaning. This sec-
tion also introduces the running example of Quantum the bouncing ball, which will
be with us as a simple intuitive yet surprisingly representative example throughout
the book.

A model of accelerated motion along a straight line with a choice of increasing
acceleration or braking was considered in Sect. 3.2. That model did perform inter-
esting control choices and we could continue to study it in this chapter. In order to
sharpen our intuition about CPS, we will, however, prefer to study a very simple
but also very intuitive system instead. Developing this example will be yet another
welcome modeling exercise.

4.2.1 The Adventures of Quantum the Bouncing Ball

Once upon a time, there was a little bouncing ball called Quantum. Day in, day
out, Quantum had nothing else to do but bounce up and down the street until he was
tired of doing even that, which, in fact, rarely happened, because bouncing was such
a joy for him (Fig. 4.1). Quantum the bouncing ball really was not much of a CPS,
because bouncing balls do not actually have any interesting decisions to make. At
least, Quantum was quite content without having to face any decisions, although, he
will discover in Chap. 8 how empowering, subtle, and intriguing decisions can be.
For one thing, Quantum did not even bring his computer, so he already lacked one
simple indicator of qualifying as a cyber-physical system.

Fig. 4.1 Sample trajectory of
a bouncing ball (plotted as
height over time)

t

x

2

4

6

8

10

12

t0 t1 t2 t3 t4 t5 t6

But Quantum nevertheless forms a perfectly reasonable hybrid system, because,
after a closer look, the system turns out to involve both discrete and continuous
dynamics. The continuous dynamics is caused by gravity, which is pulling the ball
down and makes it fall down from the sky in the first place. The discrete dynamics
comes from the singular discrete event of what happens when the ball hits the ground
and bounces back up. There are a number of ways of modeling the ball and its impact
on the ground with physics. They include a whole range of different, and either less

4.2 A Gradual Introduction to CPS Contracts 99

or more realistic, physical effects such as gravity, aerodynamic resistance, the elastic
deformation on the ground, and so on and so forth. But the little bouncing ball,
Quantum, didn’t study enough physics to know anything about those effects. And
so Quantum had to go about understanding the world in easier terms. Quantum was
a clever little bouncing ball, though, so he had also experienced the phenomenon of
sudden change and was trying to use that to his advantage.

When looking for a very simple model of what the bouncing ball does, it is easier
to describe it as a hybrid system. The ball at height x is falling subject to gravity g:

x′′ = g

That is, the height x changes with the second time-derivative g along the differen-
tial equation x′′ = g with constant gravity factor g. When it hits the ground, which
is assumed at height x = 0, the ball bounces back and jumps back up in the air. Yet,
as every child knows, the ball tends to come back up a little less high than before.
Given enough time to bounce around, it will ultimately even lie flat on the ground
forever until it is picked up again and thrown high up in the air. Quantum was no
stranger to this common experience on the physical effects of bouncing.

So Quantum went ahead to model the impact on the ground as a discrete phe-
nomenon and sought ways of describing what happens to make the ball jump back
up. One attempt to understand this could be to make the ball jump back up rather
suddenly by increasing its height x by, say, 10 when the ball hits the ground x = 0:

x′′ = g;

if(x = 0)x :=x+10
(4.1)

This HP first follows the differential equation in the first line continuously for some
time and then, after the sequential composition (;), performs the discrete computa-
tion in the second line to increase x by 10 if it is presently on the ground x = 0.
Such a model may be useful to describe other systems, but would be rather at odds
with our physical experience with bouncing balls, because the ball in reality slowly
climbs back up rather than suddenly starting out way up in the air again.

Quantum ponders about what happens when he hits the ground. Quantum does
not suddenly get teleported to a new position above ground as HP (4.1) would sug-
gest. Instead, the ball suddenly changes its direction but not position. A moment
ago, Quantum used to fall down with a negative velocity (i.e., one that is pointing
down toward the ground) and then, all of a sudden, he climbs back up with a posi-
tive velocity (pointing up into the sky). In order to be able to write such a model, the
velocity v will be made explicit in the bouncing ball’s differential equation system:

{x′ = v,v′ = g};
if(x = 0)v := v

(4.2)

Now the differential equation system {x′ = v,v′ = g} expresses that the time-
derivative of height x is the vertical velocity v whose time-derivative is g. Of
course, something keeps happening after the bouncing ball reverses its direction

100 4 Safety & Contracts

because it hits the ground. Physics continues until it hits the ground again:

{x′ = v,v′ = g};
if(x = 0)v := v;

{x′ = v,v′ = g};
if(x = 0)v := v

(4.3)

Then, of course, physics moves on again, so the model actually involves a repetition:

{x′ = v,v′ = g};
if(x = 0)v := v

)∗ (4.4)

It is good that repetitions (∗) in HP are nondeterministic, because Quantum has no
way of knowing ahead of time how many iterations of the control loop he will take.
Yet, Quantum is now rather surprised. For if he follows HP (4.4), it seems as if he
should always be able to climb back up to his initial height again. Excited about that
possibility, Quantum tries and tries again, but he never really succeeds to bounce
back up quite as high as he was before. So there must have been something wrong
with the model in (4.4), Quantum concludes, and sets out to fix (4.4).

Having observed himself rather carefully when bouncing around for a while,
Quantum concludes that he feels just a little bit slower when bouncing back up than
he used to when falling down. Indeed, Quantum feels less energetic on his way up.
So his velocity must not only flip direction from down to up at a bounce on the
ground, but also seems to shrink in magnitude. Quantum swiftly calls the corre-
sponding damping factor c and quickly comes up with a better model of himself:

{x′ = v,v′ = g};
if(x = 0)v := cv

)∗ (4.5)

Now, if the ball is on the ground, its velocity will flip but its magnitude willshrink
by damping factor c. Yet, running that model in clever ways, Quantum observes that
model (4.5) could make him fall through the cracks in the ground. Terrified at that
thought, Quantum quickly sets the physics right, lest he falls through the cracks in
space before he has a chance to fix his very own model of physics. The issue with
(4.5) is that its differential equation isn’t told when to stop, so it could evolve for
too long a time below ground and just fail the subsequent test x = 0 as shown in
Fig. 4.2. Yet, Quantum luckily remembers from Chap. 2 that this purpose is exactly
what evolution domains were meant for. Above ground is where he wants to remain,
and so the evolution domain constraint x≥ 0 is what Quantum asks dear physics to
kindly obey, since the floor underneath Quantum is of rather sturdy build. Unlike in
poor Alice’s case [2], the floor comes without rabbit holes to fall through:

{x′ = v,v′ = g&x≥ 0};
if(x = 0)v := cv

)∗ (4.6)

4.2 A Gradual Introduction to CPS Contracts 101

Fig. 4.2 Sample trajectory of
a bouncing ball (plotted as
height over time) with a crack
in the floor

t

x

2

4

6

8

10

12

t0 t1 t2 t3

Now, indeed, physics will have to stop evolving before gravity has made our little
bouncing ball Quantum fall through the ground. Yet, physics could still choose to
stop evolving while the ball is high up in the sky. In that case, the ball will not yet be
on the ground and line 2 of (4.6) would have no effect because x 6= 0 still. This is not
exactly a catastrophe, however, because the loop in (4.6) could simply repeat, which
would allow physics to continue to evolve along the same differential equation just
a little bit further. Thankfully, the evolution domain constraint . . .&x ≥ 0 prevents
all ill-fated attempts to follow the differential equation below ground, because those
would not satisfy x≥ 0 all the time.

Being quite happy with model (4.6), the bouncing ball Quantum goes on to ex-
plore whether the model does what he expects it to do. Of course, had Quantum
read this book already, he would have marched right into a rigorous analysis of the
model. Since Quantum is still a CPS rookie, he takes a detour along visualization
road, and first shoots a couple of pictures of what happens when simulating model
(4.6). Thanks to a really good simulator, these simulations all come out looking
characteristically similar to Fig. 4.1.

4.2.2 How Quantum Discovered a Crack in the Fabric of Time

After a little while idly simulating his very own personal model, Quantum decides
to take out his temporal magnifying glasses and zoom in really close to see what
actually happens when his model (4.6) bounces on the ground (x = 0). At that point
in time, the differential equation is forced to stop due to the evolution domain x≥ 0.
So the continuous evolution stops and a discrete action happens that inspects the
height and, if x = 0, discretely changes the velocity to cv instantly in no time.

At the continuous point in time of the first bounce—Quantum records the time
t1—the ball observes a succession of different states. First at continuous time t1,
Quantum has position x = 0 and velocity v = 5. But then, after the discrete assign-
ment of (4.6) runs, yet still at real time t1, it has position x = 0 and velocity v = 4.
This temporal chaos cannot possibly go on like that, thought Quantum, and decided

102 4 Safety & Contracts

to give an extra natural number index j ∈N to distinguish the two successive occur-
rences of continuous time t1. So, for the sake of illustration, he called (t1,0) the first
point in time where Quantum was in state x = 0,v = 5, and then went on to call
(t1,1) the second point in time where he was in state x = 0,v = 4.

t

x

j

2

4

6

8

10

12

t0 t1 t2 t3 t4 t5 t6

Fig. 4.3 Sample trajectory of a bouncing ball plotted as position x over its hybrid time domain
with discrete time step j and continuous time t

In fact, Quantum’s temporal magnifying glasses worked so well that he suddenly
discovered he had accidentally invented an extra dimension for time: the discrete
time step i∈N in addition to the continuous time coordinate t ∈R. Quantum plotted
the continuous R-valued time coordinate in the t axis of Fig. 4.3 while separating
the N-valued discrete step count of the hybrid time into the j axis and leaving the x

axis for position. In Fig. 4.3, Quantum now observed the first simulation of model
(4.6) with his temporal magnifiers activated to fully appreciate its hybrid nature in
its full blossom. And, indeed, if Quantum looks at the hybrid time simulation from
Fig. 4.3 and turns his temporal magnifiers off again, the extra dimension of discrete
steps j vanishes again, leaving behind only the pale shadow of the execution in the
x over t face, which agrees with the layman’s simulation shown in Fig. 4.1. Even the
projection of the hybrid time simulation from Fig. 4.3 to the j over t time face leads
to a curious illustration, shown in Fig. 4.4, of what the temporal magnifying glasses
revealed about how hybrid time has evolved in this particular simulation.

Armed with the additional intuition about the operations of HP (4.6) that these
sample executions in Fig. 4.1 and its hybrid version Fig. 4.3 provide, Quantum now

4.2 A Gradual Introduction to CPS Contracts 103

t

j

1

2

3

4

5

6

7

8

9

10

11

12

t0 t1 t2 t3 t4 t5 t6

Fig. 4.4 Hybrid time domain for the sample trajectory of a bouncing ball with discrete time step j

and continuous time t

feels prepared to ask the deeper questions. Will his model (4.6) always do the right
thing? Or was he just lucky in the particular simulation shown in Fig. 4.1 and mag-
nified in Fig. 4.3? What even is the right behavior for a proper bouncing ball? What
are its most important properties? And for what purpose even? How could they
be specified unambiguously? And, ultimately, how can Quantum possibly convince
himself that these properties are true before he ever bounces around again idly and
at potential risk of harm?

4.2.3 How Quantum Learned to Deflate

While half of Quantum’s mind is already in hot pursuit of the pressing questions of
correctness and personal safety he raised in the previous section, the other half is
still wondering what went wrong with his model if the model does not even know
how to lie still any more. Scrutinizing each and every simulation (Figs. 4.1 and 4.3)
of the bouncing ball’s model from every angle of time again, he learns that every
which way balls bounce according to HP (4.6), they do not ever seem to stop bounc-
ing. Bewildered about this distinct possibility, Quantum gave it a try and bounced
around like he had never bounced before. After a number of unsuccessful attempts,
he lay down to think, realizing that something must be rather counterfactual about
the model if it seriously predicted he would always bounce, when, in reality, Quan-
tum ultimately always runs out of steam and just lies flat on his back as in Fig. 4.5.

If Quantum wants to describe reality, the model (4.6) needs some fixing. Halfway
through his sophisticated development of better models with increasingly high-
fidelity mixes of elastic and plastic deformation of balls at a bounce, friction, and the
rôle of energy loss, Quantum suddenly has a pretty clever idea. Of course, all these
models of deformations and frictions and energies and whatnot would be needed for
a model of highly precise physics. Yet, if Quantum is merely trying to describe the

104 4 Safety & Contracts

Fig. 4.5 Sample trajectory
of a bouncing ball (plotted
as height over time) that
ultimately lies down flat

t

x

2

4

6

8

10

12

t0 t1 t2 t3 t4

qualitative behavior of a bouncing ball, he might as well try to leverage the power
of abstraction that he read about in Chap. 3. On a big ideas level, when Quantum
bounces on the ground, he either bounces back up with reduced velocity v := cv

or he just lies flat with no velocity at all v := 0. Figuring out exactly which case
happens when would put Quantum back into the mode of describing increasingly
precise physics and measuring all kinds of specific coefficients and parameters in
those models. But just describing the fact that one of the two options can happen
when on the ground is quite easy just with a nondeterministic choice (∪):

{x′ = v,v′ = g&x≥ 0};
if(x = 0)(v := cv∪ v :=0)

)∗ (4.7)

This new and improved HP now allows with reasonable accuracy all behavior that
Quantum observes when trying to bounce around. The model also allows some extra
behavior that he never quite got actual physics to do for him, such as never stopping
bouncing around, so (4.7) is an overapproximation. Comparing notes with his high-
fidelity physics models, though, Quantum cannot help but appreciate the relative
simplicity of (4.7) and would much rather seek to analyze the simpler hybrid sys-
tems model (4.7) than try an analysis of a more precise but also significantly more
difficult physical model. Quantum now sees first hand how abstraction can create
simplicity and will be sure to keep that in mind in all future endeavors.

Speaking of simplicity: even if Quantum now appreciates HP (4.7) as the better
model compared to the simpler HP (4.6) on account of giving the physics an option
to have the ball lie flat after some bounce, Quantum still prefers to first investigate
the simpler model (4.6) for the pressing correctness questions that now have Quan-
tum’s full attention. It is also a distinct possibility that Quantum already took a peek
at Exercise 4.16, in which the more involved model (4.7) will be considered.

4.2 A Gradual Introduction to CPS Contracts 105

4.2.4 Postcondition Contracts for CPS

Having developed an elegant hybrid systems model of bouncing balls, Quantum
subsequently proceeds to state his expectations about its behavior. Hybrid programs
α are useful models for CPS. They describe with a program the behavior of a CPS,
ultimately captured by their semantics [[α]]⊆S×S, which is a reachability re-
lation on states (Chap. 3). Yet, reliable development of CPS also needs a way of
ensuring that this behavior will be as expected. For one thing, we want the behavior
of a CPS to always satisfy certain crucial safety properties. A robot, for example,
should never do anything unsafe such as running over a human being.

Expedition 4.1 (Three Laws of Robotics)

Safety of robots has been aptly defined by Isaac Asimov’s Three Laws of
Robotics [1]:
1© A robot may not injure a human being or, through inaction, allow a human

being to come to harm.
2© A robot must obey the orders given to it by human beings, except where

such orders would conflict with the First Law.
3© A robot must protect its own existence as long as such protection does not

conflict with the First or Second Law.
Sadly, their exact rendition in logic or anything similarly precise still remains
quite a challenge due to language ambiguities and similar minor nuisances that
kept scientists busy for a good deal of a century since. The Three Laws of
Robotics are not the answer. They are the inspiration!

Even if Quantum, the little bouncing ball, may be less safety-critical than a proper
CPS, he is still quite interested in his own safety. Quantum wants to make sure that
he couldn’t ever fall through the cracks in the ground. And even though he would
love to jump all the way up to the moon, Quantum turns out to be rather terrified
of big heights. Come to think of it, he would never want to jump any higher than
he was in the very beginning. So, when H denotes initial height, Quantum wants
to know whether his height will always stay within 0 ≤ x ≤ H when following HP
(4.6).

Scared of what otherwise might happen to him if 0≤ x≤ H should ever be vio-
lated, Quantum decides to make his goals for HP (4.6) explicit. Fortunately, Quan-
tum excelled in basic programming courses, where contracts have been used to make
behavioral expectations for programs explicit. Even though Quantum clearly no
longer deals with plain conventional programs, but rather a hybrid program, Quan-
tum still decides to put an ensures(F) contract in front of HP (4.6) to express that
all runs of that HP are expected to lead only to states in which logical formula F is
true. Quantum even uses two postconditions, one for each of his expectations. For
the time being, Quantum temporarily uses the following notation to indicate the two

106 4 Safety & Contracts

expected postconditions that the bouncing ball HP is supposed to ensure:

ensures(0≤ x)

ensures(x≤ H)

{x′ = v,v′ = g&x≥ 0};
if(x = 0)v := cv

)∗

(4.8)

Subsequent sections will quickly abandon this ensures(F) notation in favor of a
more elegant and more logical approach. But for now, Quantum is quite happy with
documenting what his model is expected to achieve.

4.2.5 Precondition Contracts for CPS

Having read up a lot about conventional program contracts, Quantum immediately
begins to wonder whether the ensures() contracts in HP (4.8) would, in fact, always
be true after running that HP. After all, acrophobic Quantum would really like to
rely on this contract never failing. In fact, he prefers to see that logical contract met
before he even dares to try another careless bounce ever again.

Quantum’s deliberations eventually lead him to conclude that whether ensures()
contract in (4.8) works out will depend on the initial values that the bouncing ball
starts out with. Quantum thinks of H as the initial height, but HP (4.8) cannot know
that. Indeed, the contracts would be rather hard to fulfill if H = 5, because 0 ≤ x

and x≤ H could not possibly both be true then.
So, Quantum decides he should demand a requires(x = H) contract with the

precondition x = H to say that the height, x, of the bouncing ball is initially H.
Since that still does not ensure that 0≤ x has a chance of holding, Quantum requires
0≤ H to hold initially as well, leading to

requires(x = H)

requires(0≤ H)

ensures(0≤ x)

ensures(x≤ H)

{x′ = v,v′ = g&x≥ 0};
if(x = 0)v := cv

)∗

(4.9)

With this informal introduction to the need for and purpose of contracts in cyber-
physical systems, it is about time for the development to become more general again.
We will, thus, develop a systematic approach to CPS contracts before returning to a
further study of whether the contracts expressed in Quantum’s HP (4.9) really hold.

4.3 Logical Formulas for Hybrid Programs 107

Expedition 4.2 (Invariant contracts for CPS)

In addition to preconditions and postconditions, loop invariants play a promi-
nent rôle in contracts for conventional imperative programs, because they con-
stitute the major logical mode for understanding loops. Preconditions state what
is expected to hold before the program runs. Postconditions state what is guar-
anteed to hold after the program runs. And loop invariants indicate what is true
every time a loop body executes, so before and after every run of the loop body.
In C-style programs, for example, invariants are associated with loops:

i = 0;

while (i < 10)

// loop_invariant(0 <= i && i <= 10)

{

i++;

}

Dijkstra’s algorithm for computing the greatest common divisor of a and b

needs a loop invariant and a precondition, as gcd(5,0) would not terminate:

// requires(x!=0 && y!=0)

x=a; y=b; u=b; v=a;

while (x!=y)

// loop_invariant(2*a*b == u*x + v*y)

{

if (x>y) {

x=x-y; v=v+u;

} else {

y=y-x; u=u+v;

}

}

Such loop invariants will also play an equally important rôle in CPS (Chap. 7),
but they first require additional developments to become meaningful.

4.3 Logical Formulas for Hybrid Programs

CPS contracts play a very useful rôle in the development of CPS programs or, in
fact, any other CPS models. Using them as part of their design right from the very
beginning is a good idea, probably much more crucial than it is when developing
conventional programs, because CPSs have more stringent requirements on safety.

However, we do not only want to program CPSs, we also want to and will have
to understand thoroughly what CPS programs and their contracts mean, and how we
convince ourselves that the CPS contracts are respected by the CPS program. This
is where mere contracts are at a disadvantage compared to the full features of logic.

108 4 Safety & Contracts

Note 19 (Logic is for specification and reasoning) Logic allows not only the
specification of a whole CPS program, but also an analytic inspection of its
parts as well as argumentative relations between contracts and program parts.

Logic was invented for precise statements, justifications, and ways of system-
atizing rational human thought and mathematical reasoning [6, 8–13, 16, 37, 38].
Logic saw influential generalizations to enable precise statements and reasoning
about conventional discrete programs [5, 14, 34], and other aspects, including modes
of truth such as necessity and possibility [15] or temporal relations of truth [33, 35].

What cyber-physical systems need, though, is, instead, a logic for precise state-
ments and reasoning about their dynamical systems. So CPSs need logics of dynam-
ical systems [25, 29], of which the most fundamental representative is differential

dynamic logic (dL) [20–22, 25, 26, 30], the logic of hybrid systems. Differential dy-
namic logic allows direct logical statements about hybrid programs and, thus, serves
as the logic of CPS programs in Parts I and II of this textbook for both specification
and verification purposes, and still forms the basis for Parts III and IV. Additional
multi-dynamical systems aspects beyond hybrid systems are discussed elsewhere
[23–25, 28, 29, 31], some of which will be picked up in Part III of this textbook.

The most important feature of differential dynamic logic for our purposes is that
it allows us to refer to hybrid systems. Chapter 2 introduced first-order logic of real
arithmetic, which was used to describe evolution domain constraints of differential
equations, and made it possible to refer to conjunctions or disjunctions of compar-
isons of (polynomial) terms with quantifiers over real-valued variables.

Note 20 (Limits of first-order logic for CPS) First-order logic of real arith-
metic is a crucial basis for describing what is true and false about CPSs, be-
cause it allows us to refer to real-valued quantities such as positions and ve-
locities and their arithmetic relations. Yet, that is not quite enough, because
first-order logic describes what is true in a single state of a system. It has no
way of referring to what will be true in future states of a CPS, nor of describ-
ing the relationship of the initial state of the CPS to the final state of the CPS.
Without such a capability, it is impossible to refer to what preconditions were
true before the CPS started and how this relates to what postconditions are true
afterwards.

Recall from Sect. 3.3.2 that the relation [[α]]⊆S×S is what ultimately consti-
tutes the semantics of HP α . It defines which new state ν ∈ S is reachable from
which initial state ω ∈S in HP α , in which case we write (ω,ν) ∈ [[α]].

Note 21 (Differential dynamic logic principle) Differential dynamic logic,
which is denoted dL, extends first-order logic of real arithmetic with operators
that refer to the future states of a CPS, that is to the states that are reachable by
running a given HP. The logic dL provides a modal operator [α], parametrized
by HP α , which refers to all states reachable by this HP α according to the
reachability relation [[α]]⊆S×S of its semantics. For any HP α , this modal

4.3 Logical Formulas for Hybrid Programs 109

operator [α] can be placed in front of any dL formula P. The resulting dL

formula
[α]P

expresses that all states reachable by HP α satisfy formula P.
The logic dL also provides another modal operator 〈α〉, parametrized by HP
α , that can be placed in front of any dL formula P. The dL formula

〈α〉P

expresses that there is at least one state reachable by HP α for which P holds.
The modalities [α] and 〈α〉can be used to express necessary or possible prop-
erties of the transition behavior of α , since they refer to all or some runs of α .
The formula [α]P is pronounced “α box P” and 〈α〉P is “α diamond P.”

With the help of dL’s modalities, an ensures(E) postcondition for an HP α can be
expressed directly as a logical formula in differential dynamic logic:

[α]E

In particular, the first CPS postcondition ensures(0 ≤ x) for the bouncing ball HP
in (4.8) can be stated as a dL formula:

[

{x′ = v,v′ = g&x≥ 0}; if(x = 0)v := cv

)∗
]0≤ x (4.10)

The second CPS postcondition ensures(x ≤ H) for the bouncing ball HP in (4.8)
can be stated as a dL formula as well:

[

{x′ = v,v′ = g&x≥ 0}; if(x = 0)v := cv

)∗
]x≤ H (4.11)

The logic dL allows all other logical operators from first-order logic, including con-
junction (∧). So, the two dL formulas (4.10) and (4.11) can be stated together as a
single dL formula consisting of the logical conjunction of (4.10) and (4.11):

[

{x′ = v,v′ = g&x≥ 0}; if(x = 0)v := cv

)∗
]0≤ x

∧ [

{x′ = v,v′ = g&x≥ 0}; if(x = 0)v := cv

)∗
]x≤ H

(4.12)

Stepping back, we could have combined the two postconditions ensures(0 ≤ x)
and ensures(x≤ H) into a single postcondition ensures(0 ≤ x∧ x ≤ H) using a
conjunction in the postcondition instead. The translation of that into dL would have
gotten us an alternative way of combining both statements about the lower and upper
bound on the height of the bouncing ball into a single dL formula:

[

{x′ = v,v′ = g&x≥ 0}; if(x = 0)v := cv

)∗
] (0≤ x∧ x≤ H) (4.13)

Which way of representing what we expect bouncing balls to do is better? Like
(4.12) or like (4.13)? Are they equivalent? Or do they express different things?

110 4 Safety & Contracts

Before you read on, see if you can find the answer for yourself.

There is a very simple argument within the logic dL that shows that dL formulas
(4.12) and (4.13) are equivalent. It even shows that the same equivalence holds not
just for these particular formulas but for any dL formulas of the same form:

[α]P∧ [α]Q is equivalent to [α](P∧Q) (4.14)

The equivalence of [α]P∧ [α]Q and [α](P∧Q) can in turn be expressed as a logical
formula with the equivalence operator (↔) giving a formula that is true in all states:

[α]P∧ [α]Q↔ [α](P∧Q)

This equivalence will be investigated in more detail in a later chapter, but it is useful
to observe it now already in order to sharpen our intuition about dL and anticipate
possible use cases for its flexibility.

Having said that, do we believe dL formula (4.12) should be valid so true in all
states? Should (4.13) be valid? Well, they should certainly either agree to both be
valid or agree to both not be valid since they are equivalent by (4.14). But is (4.12)
valid now or is it not? Before we study this question in any further detail, the first
question should be what it means for a modal formula [α]P to be true. What is its
semantics? Better yet, what exactly is its syntax in the first place?

4.4 Differential Dynamic Logic

Based on the gradual motivation and informal introduction in this chapter, this sec-
tion now defines differential dynamic logic [20–22, 25, 26, 30], which plays a central
rôle as an unambiguous notation and our basis for rigorous reasoning techniques for
CPS throughout this book. Differential dynamic logic uses the terms from Sect. 2.6.2
on p. 42 and the hybrid programs from Sect. 3.3.1 on p. 76.

4.4.1 Syntax of Differential Dynamic Logic

The formulas of differential dynamic logic are defined like the formulas of first-
order logic of real arithmetic (Sect. 2.6.3) with the additional capability of using
modal operators [α] and 〈α〉 for any hybrid program α . The dL formula [α]P ex-
presses that all states after all runs of HP α satisfy dL formula P. The dL formula
〈α〉P expresses that there is a run of HP α that leads to a state in which dL for-
mula P is true. In the modal formulas [α]P and 〈α〉P, the formula P is called the
postcondition.

4.4 Differential Dynamic Logic 111

Definition 4.1 (dL formula). The formulas of differential dynamic logic (dL)
are defined by the following grammar (where P,Q are dL formulas, e, ẽ are
(polynomial) terms, x is a variable, and α is an HP):

P,Q ::= e = ẽ | e≥ ẽ | ¬P | P∧Q | P∨Q | P→ Q | ∀xP | ∃xP | [α]P | 〈α〉P

Operators >,≤,<,↔ are definable, e.g., P↔ Q≡ (P→ Q)∧ (Q→ P).

Of course, all first-order real-arithmetic formulas from Chap. 2 are also dL for-
mulas and will mean exactly the same. Occasionally, we will use the backwards
implication P← Q, which is just alternative notation for the implication Q→ P.

The dL formula [x :=5]x > 0 expresses that x is always positive after assigning 5
to it, which is quite trivially true, because the new value 5 that x assumes is, indeed,
positive. The formula [x :=x+1]x > 0 expresses that x is always positive after in-
crementing it by one in a discrete change, which is only true in some states but false

in others whose value of x is too small. With an extra implication, the dL formula
x ≥ 0→ [x :=x+1]x > 0 is valid, so true in all states, though, because x will cer-
tainly be positive after an increment if it was nonnegative initially. This implication
expresses that in all states satisfying the left-hand side assumption x ≥ 0, the right-
hand side [x :=x+1]x > 0 is true, which, in turn, says that after incrementing x, it
will have become positive. The implication is trivially true in all states falsifying the
assumption x≥ 0, because implications are true if their left-hand side is false.

The program x :=x+1 can only be run in exactly one way, so quantifying over all
runs of x :=x+1 in the box modality [x :=x+1] is indistinguishable from quantify-
ing over one run of x :=x+1 in the diamond modality 〈x :=x+1〉. More interesting
things happen for other HPs. The formula [x :=0;(x :=x+1)∗]x ≥ 0 is valid, since
incrementing x any number of times after assigning 0 to x will still yield a nonnega-
tive number. The conjunction [x :=x+1]x > 0∧ [x :=x 1]x < 0 is true in an initial
state where x is 0.5, but is not valid, because it is false when x starts out at 10.

Likewise, the dL formula [x′ = 2]x > 0 is not valid, because it is false in initial
states with negative x values. But x > 0→ [x′ = 2]x > 0 is valid, since x will al-
ways increase along the differential equation x′ = 2. Similarly, [x :=1;x′ = 2]x > 0
is valid, because x remains positive along ODE x′ = 2 after first assigning 1 to x.

Quantifiers and modalities can be mixed as well. For example, the dL for-
mula x > 0→∃d [x′ = d]x > 0 is valid, since if x starts positive, then there is a
value for variable d, e.g., 2, which will always keep x positive along x′ = d. The
formula ∃x∃d [x′ = d]x > 0 is valid, since there is an initial value for x, e.g., 1
and a value for d, e.g., 2, such that x stays positive always after any continuous
evolution along x′ = d starting from that initial value of x. Even a conjunction
∃x∃d [x′ = d]x > 0∧∃x∃d [x′ = d]x < 0 is valid, because there, indeed, is an ini-
tial value for x and slope d such that x always stays positive along x′ = d for those
choices, but there also is an initial value for x, e.g., 1, and a d, e.g., 2, such that
x always stays negative along x′ = d. In this case, different values have to be cho-
sen for x and d in the two conjuncts to make the whole formula evaluate to true,
but that is perfectly allowed for different quantifiers in different places. Universal

112 4 Safety & Contracts

quantifiers and modalities combine as well. For example, ∀x [x :=x2;x′ = 2]x≥ 0 is
valid, because for all values of x, after assigning the (nonnegative) square of x to x,
following differential equation x′ = 2 for any amount of time keeps x nonnegative.

The box modality [α] in the dL formula [α]P expresses that its postcondition P is
true after all runs of HP α . By contrast, the diamond modality 〈α〉 in the dL formula
〈α〉P expresses that its postcondition P is true after at least one run of HP α . Even
if the diamond modality is not yet that important in the earlier parts of this book,
some examples are already discussed here.

For example, dL formula 〈x′ = 2〉x > 0 is valid, since whatever initial value x

has, it will ultimately be positive at some point after just following the differen-
tial equation x′ = 2 for long enough. The dL formula 〈x′ = d〉x > 0 is not valid,
but it is at least true in an initial state whose d value is 2 or otherwise positive. In
fact, 〈x′ = d〉x > 0 is equivalent to x > 0∨ d > 0. In particular, ∃d 〈x′ = d〉x > 0
is valid, because there is a choice of d for which x will eventually be positive after
following the ODE x′ = d long enough. Even the following conjunction is valid:
∃d 〈x′ = d〉x > 0∧∃d 〈x′ = d〉x < 0, because the first conjunct is true by the pre-
vious argument and the second conjunct is true since a possibly different choice
for the initial value of d will ultimately get x negative along ODE x′ = d with an
appropriate (and different) choice of d such as 2.

Modalities can also be nested, because any dL formula can be used as a postcon-
dition. For example, dL formula x > 0→ [x′ = 2]〈x′ = 2〉x < 0 is valid, because
if x starts positive, then no matter how long one follows the differential equation
x′ = 2, there is a way of subsequently following the differential equation x′ = 2
for some amount of time such that x becomes negative. All it takes is sufficient
patience. In fact, for the same reason, even the following dL formula is valid:

x > 0→ [x′ = 2](x > 0∧〈x′ = 2〉x = 0)

It expresses that, from any positive initial value of x, any duration of following x′ = 2
will lead to a state in which x is still positive but for which it is also still possible to
follow x′ = 2 for some (larger) amount of time to make the final value of x zero.

Before you get yourself confused, beware that equality signs can occur in differ-
ential dynamic logic formulas and their hybrid programs in different rôles now:

Expression Rôle
x :=e Discrete assignment in HP assigning new value of e to variable x

x′ = f (x) Differential equation in HP for continuous evolution of variable x

x = e Equality comparison in dL formula that can be true or false

?x = e Testing x for equality comparison in an HP, only continue if true

4.4.2 Semantics of Differential Dynamic Logic

For dL formulas that are also formulas of first-order real arithmetic (i.e., formulas
without modalities), the semantics of dL formulas is the same as that of first-order

4.4 Differential Dynamic Logic 113

Expedition 4.3 (Operator precedence for differential dynamic logic)

To save parentheses, the notational conventions have unary operators (includ-
inga ¬, quantifiers ∀x,∃x, modalities [α],〈α〉 as well as HP operator ∗) bind
more strongly than binary operators. We let ∧ bind more strongly than ∨, which
binds more strongly than →,↔, and let ; bind more strongly than ∪ . Arith-
metic operators +, , · associate to the left. All logical and program operators
associate to the right.

These precedences imply that quantifiers and modal operators bind strongly,
i.e., their scope only extends to the formula immediately after. So, [α]P∧Q≡
([α]P)∧Q and ∀xP∧Q ≡ (∀xP)∧Q and ∀xP→ Q ≡ (∀xP)→ Q. They im-
ply α;β ∪ γ ≡ (α;β)∪ γ and α ∪β ;γ ≡ α ∪ (β ;γ) and α;β ∗ ≡ α;(β ∗) like in
regular expressions. All logical and program operators associate to the right,
most crucially P→ Q→ R≡ P→ (Q→ R). To avoid confusion, we do not
adopt precedence conventions between →,↔ but expect explicit parentheses.
So P→ Q↔ R is illegal and explicit parentheses are required to distinguish
P→ (Q↔ R) from (P→ Q)↔ R. Likewise P↔ Q→ R is illegal and explicit
parentheses are required to distinguish P↔ (Q→ R) from (P↔ Q)→ R.

a It is debatable whether quantifiers are unary operators: ∀x is a unary operator on formulas
but ∀ is an operator with mixed arguments (one variable and one formula). In higher-order
logic with λ -abstractions λx.P for the function that maps x to P, the operator ∀ can be under-
stood by considering ∀xP as an operator on functions: ∀(λx.P). Similar cautionary remarks
apply to the understanding of modalities as unary operators. The primary reason for adopting
this convention is that it mnemonically simplifies the precedence rules.

real arithmetic. The semantics in Chap. 2 inductively defined the satisfaction relation
ω |= P, which holds iff formula P is true in state ω , and then collected the set of
states [[P]] in which P is true. Now, we define the semantics of dL formulas right
away by simultaneously defining the set of states [[P]] in which formula P is true.
The two styles of definition are equivalent (Exercise 4.13), but the latter is more
convenient here.

The semantics of modalities [α] and 〈α〉 quantifies over all (for the box modality
[α]) or over some (for the diamond modality 〈α〉) of the (final) states reachable by
following HP α , respectively.

Definition 4.2 (dL semantics). The semantics of a dL formula P is the set of
states [[P]]⊆S in which P is true, and is defined inductively as follows:

1. [[e = ẽ]] = {ω : ω[[e]] = ω[[ẽ]]}
That is, an equation is true in the set of states ω in which the terms on the
two sides evaluate to the same real number according to Definition 2.4.

2. [[e≥ ẽ]] = {ω : ω[[e]]≥ ω[[ẽ]]}
That is, a greater-or-equals inequality is true in states ω where the term on

114 4 Safety & Contracts

the left evaluates to a number that is greater than or equal to that on the
right.

3. [[¬P]] = ([[P]])∁ = S \ [[P]]
That is, a negated formula ¬P is true in the complement of the set of states
in which the formula P itself is true. So ¬P is true iff P is false.

4. [[P∧Q]] = [[P]]∩ [[Q]]
That is, a conjunction is true in the intersection of the states where both
conjuncts are true. So P∧Q is true iff P and Q are true.

5. [[P∨Q]] = [[P]]∪ [[Q]]
That is, a disjunction is true in the union of the set of states where either of
its disjuncts is true. So P∨Q is true iff P or Q (or both) are true.

6. [[P→ Q]] = [[P]]∁∪ [[Q]]
That is, an implication is true in the states where its left-hand side is false
or its right-hand side is true. So P→ Q is true iff P is false or Q is true.

7. [[P↔ Q]] = ([[P]]∩ [[Q]])∪ ([[P]]∁∩ [[Q]]∁)
That is, a bi-implication is true in the states where both sides are true or
both sides are false. So P↔ Q is true iff P,Q are both false or both true.

8. [[∀xP]] = {ω : ν ∈ [[P]] for all states ν that agree with ω except on x}
That is, a universally quantified formula ∀xP is true in a state iff its kernel
P is also true in all variations of the state that have other real values for x.

9. [[∃xP]] = {ω : ν ∈ [[P]] for some state ν that agrees with ω except on x}
That is, an existentially quantified formula ∃xP is true in a state iff its
kernel P is true in some variation of the state that has a potentially different
real value for x.

10. [[[α]P]] = {ω : ν ∈ [[P]] for all states ν such that (ω,ν) ∈ [[α]]}
That is, a box modal formula [α]P is true in state ω iff its postcondition P

is true in all states ν that are reachable by running α from ω .
11. [[〈α〉P]] = [[α]]◦ [[P]] = {ω : ν ∈ [[P]] for some state ν with (ω,ν) ∈ [[α]]}

That is, diamond modal formula 〈α〉P is true in state ω iff its postcondition
P is true in at least one state ν that is reachable by running α from ω .

If ω ∈ [[P]], then we say that P is true in state ω . The literature sometimes
also uses the satisfaction relation notation ω |= P synonymously for ω ∈ [[P]].
A formula P is valid, written � P, iff it is true in all states, i.e., [[P]] = S, so
ω ∈ [[P]] for all states ω . A formula P is a consequence of a set of formulas Γ ,
written Γ � P, iff, for each state ω: If (ω ∈ [[Q]] for all Q ∈ Γ) then ω ∈ [[P]].

The semantics of modal formulas [α]P and 〈α〉P in differential dynamic logic is
illustrated in Fig. 4.6, showing how the truth of P at (all or some) states νi reachable
by α from initial state ω relates to the truth of [α]P or 〈α〉P at state ω .

In a state where HP α cannot run, the formula [α]P is (vacuously) true, because
all states reached after following α satisfy the formula P simply because there are
no such states. For example, [?x≥ 5]false is exactly true in all states in which the
value of x is less than 5, because the HP ?x≥ 5 cannot execute successfully at all
then, because it fails the test. This is to be contrasted with the formula 〈?x≥ 5〉false,

4.5 CPS Contracts in Logic 115

ω

ν1

ν

νn

[α]P

P

[[α]]
P

P

ω

ν1

ν

νn

〈α〉P

[[α]]
P

Fig. 4.6 Transition semantics of modalities in dL formulas

Expedition 4.4 (Set-valued dL semantics [[·]] : Fml→℘(S))

The semantics of a term e directly defines the real-valued function [[e]] : S→ R

from states to the real value that the term evaluates to in that state (Expedi-
tion 2.2 on p. 47). Similarly, Definition 4.2 directly defines inductively, for each
dL formula P, the set of states, written [[P]]⊆S, in which P is true:

[[e≥ ẽ]] = {ω : ω[[e]]≥ ω[[ẽ]]}
[[P∧Q]] = [[P]]∩ [[Q]]
[[P∨Q]] = [[P]]∪ [[Q]]

[[¬P]] = [[P]]∁ = S \ [[P]]
[[〈α〉P]] = [[α]]◦ [[P]] = {ω : ν ∈ [[P]] for some state ν such that (ω,ν) ∈ [[α]]}
[[[α]P]] = [[¬〈α〉¬P]] = {ω : ν ∈ [[P]] for all states ν such that (ω,ν) ∈ [[α]]}
[[∃xP]] = {ω : ν ∈ [[P]] for some state ν that agrees with ω except on x}
[[∀xP]] = {ω : ν ∈ [[P]] for all states ν that agree with ω except on x}

When Fml is the set of dL formulas, the semantic brackets for formulas define
an operator [[·]] : Fml→℘(S) that defines the meaning [[P]] for each dL formula
P ∈ Fml, which, in turn, defines the set of states [[P]] ⊆S in which P is true.
The powerset ℘(S) is the set of all subsets of the set of states S.

which is not true in any state, because it claims the existence of an execution of HP
?x≥ 5 to a state where false holds true, which never holds. Contrast this with the
formula 〈?x≥ 5〉x < 7, which is true exactly in all states satisfying x≥ 5 and x < 7.

4.5 CPS Contracts in Logic

Now that we know what truth and validity are in differential dynamic logic, let’s
go back to the previous question. Is dL formula (4.12) valid? Is (4.13) valid?
Actually, let’s first ask whether they are equivalent, i.e., whether the dL formula

116 4 Safety & Contracts

(4.12)↔ (4.13) is valid. Expanding the abbreviations this is the question of whether
the following dL formula is valid:

(

[

{x′ = v,v′ = g&x≥ 0}; if(x = 0)v := cv

)∗
]0≤ x

∧ [

{x′ = v,v′ = g&x≥ 0}; if(x = 0)v := cv

)∗
]x≤ H

)

↔ [

{x′ = v,v′ = g&x≥ 0}; if(x = 0)v := cv

)∗
] (0≤ x∧ x≤ H)

(4.15)

Exercise 4.1 gives you an opportunity to convince yourself that the equivalence
(4.12)↔ (4.13) is indeed valid.1 So if (4.12) is valid, then (4.13) is valid as well
(Exercise 4.2). But is (4.12) valid?

Before you read on, see if you can find the answer for yourself.

Certainly, (4.12) is not true in a state ω where ω(x)< 0, because from that initial
state, zero repetitions of the loop (which is allowed by nondeterministic repetition,
Exercise 4.4) lead to the same state ω in which 0 ≤ x is still false. The initial state
is a possible final state for any HP of the form α∗, because it can repeat 0 times.
Thus, (4.12) only has a chance of being true in initial states that satisfy further
assumptions, including 0≤ x and x≤H. That is what the preconditions were meant
for in Sect. 4.2.5. How can we express a precondition contract in a dL formula?

Preconditions serve a very different rôle than postconditions do. Postconditions
of HP α are expected to be true after every run of α , which is difficult to express
in first-order logic (to say the least), but straightforward using the modalities of dL.
Do we also need any additional logical operator to express preconditions?

The meaning of precondition requires(A) of HP α is that A is assumed to hold
before the HP starts. If A holds when α starts, then its postcondition ensures(B)
holds after all runs of HP α . What if A does not hold when the HP starts?

If precondition A does not hold initially, then all bets are off, because the person
who started the HP did not obey the requirements that need to be met before the HP
can be started safely. The effects of ignoring precondition A are about as useful and
predictable as what happens when ignoring the operating requirements “operate in
a dry environment only” for a robot when it is submerged in the deep sea. If you are
lucky, it will come out unharmed, but the chances are that its electronics will suffer
considerably. The CPS contract requires(A) ensures(B) for an HP α promises that
B will always hold after running α if A was true initially when α started. Thus, the
meaning of a precondition can be expressed easily using an implication

A→ [α]B (4.16)

1 This equivalence also foreshadows the fact that CPS provides ample opportunity for questions
about how multiple system models relate to one another. The dL formula (4.15) relates three dif-
ferent properties of three occurrences of one and the same hybrid program, for example. The need
to relate different properties of different CPSs will arise frequently throughout this book even if
it may lie dormant for the moment. You are advised to already take notice that this is possible,
because dL can form any arbitrary combination and nesting of all its logical operators.

4.5 CPS Contracts in Logic 117

because an implication is valid if, in every state in which the left-hand side is true,
the right-hand side is also true. The implication (4.16) is valid (� A→ [α]B), if,
indeed, for every state ω in which precondition A holds (ω ∈ [[A]]), it is the case that
all runs of HP α lead to states ν (with (ω,ν) ∈ [[α]]) in which postcondition B holds
(so ν ∈ [[B]]). By the nature of implication, the dL formula (4.16) does not say what
happens in states ω in which the precondition A does not hold (so ω 6∈ [[A]]).

How does formula (4.16) talk about the runs of an HP and postcondition B again?
Recall that the dL formula [α]B is true in exactly those states in which all runs of
HP α lead only to states in which postcondition B is true. The implication in (4.16),
thus, ensures that this holds in all (initial) states that satisfy precondition A.

Note 22 (Contracts to dL Formulas) Consider HP α with a CPS contract
using a single requires(A) precondition and single ensures(B) postcondition:

requires(A)

ensures(B)

α

This CPS contract can be expressed directly as a logical formula in dL:

A→ [α]B

dL formulas of this shape are very common and correspond to Hoare triples

[14] but for hybrid systems instead of conventional programs. Hoare triples, in
turn, are modeled after Aristotle’s syllogisms.

CPS contracts with multiple preconditions and multiple postconditions can di-
rectly be expressed as dL formulas as well (Exercise 4.5).

Recall HP (4.9), which is shown here with both preconditions combined into one
joint precondition and both postconditions combined into one postcondition:

requires(0≤ x∧ x = H)

ensures(0≤ x∧ x≤ H)

{x′ = v,v′ = g&x≥ 0};
if(x = 0)v := cv

)∗

(4.17)

The dL formula expressing that the CPS contract for HP (4.17) holds is:

0≤ x∧ x = H→
[
{x′ = v,v′ = g&x≥ 0}; if(x = 0)v := cv

)∗]
(0≤ x∧ x≤ H)

(4.18)
So to find out whether (4.17) satisfies its CPS contract, we need to ask whether the
corresponding dL formula (4.18) is valid. In other words, dL gives CPS contracts an
unambiguous meaning.

We will need some operational way that allows us to tell whether such a dL

formula is valid, i.e., true in all states, because mere inspection of the semantics

118 4 Safety & Contracts

alone is not a particularly scalable way of approaching validity questions. Such an
operational way of determining the validity of dL formulas by proof will be pursued
in the next chapter.

4.6 Identifying Requirements of a CPS

Before trying to prove any formulas to be valid, it is a pretty good idea to check
whether all required assumptions have been found that are necessary for the for-
mula to hold. Otherwise, the proof will fail and we will need to start over after
having identified the missing requirements from the failed proof attempt. So let us
scrutinize dL formula (4.18) and ponder whether there are any circumstances un-
der which it is not true. Even though the bouncing ball is a rather impoverished
CPS (it noticeably suffers from a lack of control), its immediate physical intuition
still makes the ball a particularly insightful example for illustrating how critical it
is to identify the right requirements. Besides, unlike for heavy-duty CPS, we trust
you have had ample opportunities to become familiar with the behavior of bouncing
balls before.

Maybe the first thing to notice is that the HP mentions g, which is meant to
represent the standard gravitational constant, but the formula (4.18) never actually
says that. Certainly, if gravity were negative (g < 0), bouncing balls would function
rather differently in quite an astonishing way. They would suddenly become floating
balls disappearing into the sky and would lose all the joy of bouncing around; see
Fig. 4.7.

Fig. 4.7 Sample trajectory of
a bouncing ball in an anti-
gravity field with g < 0

So let’s modify (4.18) to assume g = 9.81:

0≤ x∧ x = H ∧g = 9.81→
[
{x′ = v,v′ = g&x≥ 0}; if(x = 0)v := cv

)∗]
(0≤ x∧ x≤ H) (4.19)

Let’s undo unnecessarily strict requirements right away, though. What would the
bouncing ball do if it were set loose on the moon instead of on Earth? Would it

4.6 Identifying Requirements of a CPS 119

still fall? Things are much lighter on the moon! Yet, they still fall down, which is
what gravity is all about, just with a different constant (1.6 on the moon and 25.9 on
Jupiter). Besides, none of those constants was particularly precise. Earth’s gravity
is more like 9.8067. The behavior of the bouncing ball depends on the value of that
parameter g. But its qualitative behavior and whether it obeys (4.18) does not.

Note 23 (Parameters) A common feature of CPSs is that their behavior is
subject to parameters, which can have quite a non-negligible impact. It is very
hard to determine precise values for all parameters by measurements. When
one particular concrete numeric value for a parameter has been assumed to
prove a property of a CPS, it is not clear whether that property holds for the
true system, which may in reality have a slightly different parameter value.
Instead of concrete numerical values for a parameter, our analysis can proceed
just fine by treating the parameter as a symbolic parameter, i.e., a variable such
as g, which is not assumed to hold a specific numerical value like 9.81. In-
stead, we only assume certain constraints about the parameter, say g > 0 with-
out choosing a specific value. If we then analyze the CPS with this symbolic
parameter g, all analysis results will continue to hold for any concrete choice
of g respecting its constraints (here g > 0). This results in a stronger statement
about the system, which is less fragile, because it does not break down just
because the true g is ≈ 9.8067 rather than the previously assumed g = 9.81.
More general statements with symbolic parameters can even be easier to prove
than statements about systems with specific magic numbers chosen for their
parameters, because their assumptions are explicit.

In light of these thoughts, we might assume 9 < g < 10 to be the gravitational
constant for Earth. Yet, we can also just consider all bouncing balls on all planets in
the solar system or elsewhere at once by assuming only g > 0 instead of g = 9.81 as
in (4.19), since this is the only aspect of gravity that the usual behavior of a bouncing
ball depends on:

0≤ x∧ x = H ∧g > 0→
[
{x′ = v,v′ = g&x≥ 0}; if(x = 0)v := cv

)∗]
(0≤ x∧ x≤ H) (4.20)

Do we expect dL formula (4.20) to be valid, i.e., true in all states? What could
possibly go wrong? The insight from modifying (4.18) to (4.19) and finally to (4.20)
started with the observation that (4.18) did not include any assumptions about its
parameter g. It is worth noting that (4.20) also does not assume anything about c.
Bouncing balls clearly would not work as expected if c > 1, because such anti-
damping would cause the bouncing ball to jump back up higher and higher and
higher and ultimately as high up as the moon, clearly falsifying (4.20); see Fig. 4.8.

Being a damping factor, we also expect c≥ 0 (despite Exercise 4.15). Yet, (4.20)
really only has a chance of being true when we assume that c is not too big:

120 4 Safety & Contracts

Fig. 4.8 Sample trajectory
of a bouncing ball with anti-
damping c > 1

0≤ x∧ x = H ∧g > 0∧1≥ c≥ 0→
[
{x′ = v,v′ = g&x≥ 0}; if(x = 0)v := cv

)∗]
(0≤ x∧ x≤ H) (4.21)

Is (4.21) valid now? Or does its truth still depend on assumptions that have not been
identified yet? Is there some requirement we forgot about? Or did we find them all?

Before you read on, see if you can find the answer for yourself.

Now, all parameters (H,g,c) have some assumptions in (4.21), which is a good
thing. But what about velocity variable v? Why is there no assumption about it yet?
Should there be one? Unlike g and c, velocity v changes over time. What is its initial
value allowed to be? What could go wrong?

Indeed, the initial velocity v of the bouncing ball could be positive (v > 0), which
would make the bouncing ball climb initially, clearly exceeding its initial height H;
see Fig. 4.9. This would correspond to the bouncing ball being thrown high up in
the air in the beginning, so that its initial velocity v is upwards from its initial height
x = H. Consequently, (4.21) has to be modified to assume v≤ 0 holds initially:

0≤ x∧ x = H ∧ v≤ 0∧g > 0∧1≥ c≥ 0→
[
{x′ = v,v′ = g&x≥ 0}; if(x = 0)v := cv

)∗]
(0≤ x∧ x≤ H) (4.22)

Fig. 4.9 Sample trajectory of
a bouncing ball climbing with
upwards initial velocity v > 0

4.6 Identifying Requirements of a CPS 121

Now there finally are assumptions about all parameters and variables of (4.22).
That does not mean that we found the right assumptions! But it is still a good san-
ity check. Before wasting cycles on trying to prove or otherwise justify (4.22), let’s
see once more whether we can find an initial state ω that satisfies all assumptions
v ≤ 0∧ 0 ≤ x∧ x = H ∧ g > 0∧ 1 ≥ c ≥ 0 on the left-hand side of the implication
in (4.22) such that ω nevertheless does not satisfy the right-hand side of the impli-
cation in (4.22). Such an initial state ω falsifies (4.22) and would, thus, represent a
counterexample to formula (4.22). Is there still a counterexample to (4.22)? Or have
we successfully identified all assumptions so that it is now valid?

Before you read on, see if you can find the answer for yourself.

Formula (4.22) still has a problem. Even if the initial state satisfies all require-
ments in the antecedent of (4.22), the bouncing ball might still jump higher than
it ought to, i.e., higher than its initial height H. That happens if the bouncing ball
initially has a very large downwards velocity, so if v is a lot smaller than 0 (some-
times written v≪ 0). If v is a little smaller than 0, then the damping c will eat up
enough of the ball’s kinetic energy so that it cannot jump back up higher than it was
initially (H). But if v is a lot smaller than 0, then it starts falling down with so much
kinetic energy that the damping on the ground does not slow it down enough, so
the ball will come bouncing back higher than it was originally, like when dribbling
a basketball; see Fig. 4.10. Under which circumstance this happens depends on the
relationship of the initial velocity and height to the damping coefficient.

Fig. 4.10 Sample trajectory
of a bouncing ball dribbling
with fast initial velocity v < 0

We could explore this relationship in more detail. But it is easier to infer it by
conducting a proof. So we modify (4.22) to simply assume v = 0 initially:

0≤ x∧ x = H ∧ v = 0∧g > 0∧1≥ c≥ 0→
[
{x′ = v,v′ = g&x≥ 0}; if(x = 0)v := cv

)∗]
(0≤ x∧ x≤ H) (4.23)

Is dL formula (4.23) valid now? Or does it still have a counterexample?

Before you read on, see if you can find the answer for yourself.

122 4 Safety & Contracts

It seems that all required assumptions have been identified to make the dL for-
mula (4.23) valid so that the bouncing ball described in (4.23) satisfies the post-
condition 0 ≤ x ≤ H. But after so many failed starts and missing assumptions and
requirements for the bouncing ball, it is a good idea to prove (4.23) once and for
all beyond any doubt. It certainly is a good idea to prove dL formulas about more
subtle CPS models, too.

In order to be able to prove dL formula (4.23), however, we need to investigate
how proving works in CPS. How can dL formulas be proved? And, since first-order
formulas are dL formulas as well, one part of the question will be: how can first-
order formulas be proved? How can real arithmetic be proved? How can require-
ments for the safety of CPS be identified systematically? All these questions will be
answered in this textbook, but not all of them already in this chapter.

In order to make sure we only need proof techniques for a minimal set of opera-
tors of dL, let’s simplify (4.23) by getting rid of its if-then-else (Exercise 4.17):

0≤ x∧ x = H ∧ v = 0∧g > 0∧1≥ c≥ 0→
[
{x′ = v,v′ = g&x≥ 0}; (?x = 0;v := cv∪ ?x 6= 0)

)∗]
(0≤ x∧ x≤ H)

(4.24)

Having added these crucial assumptions to the dL formula, Quantum quickly
rephrases contract (4.17) by incorporating what we learned for dL formula (4.24):

requires(0≤ x∧ x = H ∧ v = 0)

requires(g > 0∧1≥ c≥ 0)

ensures(0≤ x∧ x≤ H)

{x′ = v,v′ = g&x≥ 0};
if(x = 0)v := cv

)∗

(4.25)

Observing the non-negligible difference between the original conjecture (4.19)
and the revised and improved conjecture (4.24) leads us to adopt the principle of
Cartesian Doubt from Expedition 4.5.

4.7 Summary

This chapter introduced differential dynamic logic (dL), whose operators and their
informal meaning is summarized in Table 4.1. Their precise semantics was reported
in Sect. 4.4.2 on p. 112. The most important aspect of differential dynamic logic is
its ability to directly refer to possible or necessary reachability properties of hybrid
programs. The fact that it is possible for hybrid program α to reach a state where
formula P is true is directly expressed by the dL formula 〈α〉P. That HP α nec-
essarily only leads to (final) states where formula P is true is expressed by [α]P.
Differential dynamic logic is closed under all operators, so HP modalities, proposi-

4.8 Appendix 123

Expedition 4.5 (Principle of Cartesian Doubt)

In 1641, René Descartes suggested an attitude of systematic doubt where he
would be skeptical about the truth of all beliefs until he found a reason that the
beliefs were justified [4]. This influential principle is now known as Cartesian

Doubt or skepticism.
We will have perfect justifications: proofs. But until we have found proof,

it is helpful to adopt the principle of Cartesian Doubt in a weak and pragmatic
form. Before setting out on the journey to prove a conjecture, we first scrutinize
it to see whether we can find a counterexample that would make it false. Such a
counterexample will not only save us a lot of misguided effort in trying to prove
a false conjecture, but also helps us identify missing assumptions in conjectures
and justifies our assumptions to be necessary. If, without making assumption
A, a counterexample to a conjecture exists, then A is necessary.

tional connectives, and quantifiers can be nested arbitrarily often, leading to a pretty
flexible specification language for CPS. Beyond its capability to capture the mean-
ing of CPS contracts rigorously, subsequent chapters will develop the specification
logic dL into a verification logic that can be used to prove dL specifications.

For future chapters, we should also keep the bouncing ball example and its sur-
prising subtleties in mind.

Table 4.1 Operators and (informal) meaning in differential dynamic logic (dL)

dL Operator Meaning
e = ẽ equals true iff values of e and ẽ are equal
e≥ ẽ greater equals true iff value of e greater-or-equal to ẽ

¬P negation / not true iff P is false
P∧Q conjunction / and true iff both P and Q are true
P∨Q disjunction / or true iff P is true or if Q is true
P→ Q implication / implies true iff P is false or Q is true
P↔ Q bi-implication / equivalent true iff P and Q are both true or both false
∀xP universal quantifier / for all true iff P is true for all values of variable x

∃xP existential quantifier / exists true iff P is true for some values of variable x

[α]P [·] modality / box true iff P is true after all runs of HP α
〈α〉P 〈·〉 modality / diamond true iff P is true after at least one run of HP α

4.8 Appendix

This appendix already features some first reasoning aspects of CPS even if a fully
systematic account of CPS reasoning will be pursued from scratch in more elegant

124 4 Safety & Contracts

ways in subsequent chapters, one operator at a time. Especially for readers who
have seen the Floyd-Hoare calculus for conventional programs [5, 14] or who prefer
to start with a concrete example, this appendix can be a useful stepping stone for
reaching that level of generality. This appendix begins a semiformal study of the
bouncing ball, which is an optional but useful preparation for the next chapter.

4.8.1 Intermediate Conditions for a Proof of Sequential

Compositions

Before proceeding any further with ways of proving dL formulas, let’s simplify
(4.24) grotesquely by removing the loop:

0≤ x∧ x = H ∧ v = 0∧g > 0∧1≥ c≥ 0→
[
{x′ = v,v′ = g&x≥ 0};(?x = 0;v := cv∪ ?x 6= 0)

]
(0≤ x∧ x≤ H) (4.26)

Removing the loop clearly changes the behavior of the bouncing ball quite radically.
It no longer bounces particularly well. All it can do now is fall and, if it reaches the
floor, have its velocity reversed without actually ever climbing back up. So if we
manage to prove (4.26), we certainly have not shown the actual dL formula (4.24).
But it’s a start, because the behavior modeled in (4.26) is a part of the behavior of
(4.24). So it is useful (and easier) to understand the loop-free HP (4.26) first.

The dL formula (4.26) has a number of assumptions 0≤ x∧ x = H ∧ v = 0∧g >
0∧ 1 ≥ c ≥ 0 that can be used during the proof. It claims that the postcondition
0≤ x∧x≤H holds after all runs of the HP in the [·] modality. The top-level operator
inside the modality of (4.26) is a sequential composition (;), for which we need to
find a proof argument.

The HP in (4.26) first follows a differential equation and then a discrete pro-
gram (?x = 0;v := cv∪?x 6= 0). This leads to different intermediate states after the
differential equation and before the discrete program.

Note 24 (Intermediate states of sequential compositions) The first HP α in a
sequential composition α;β may reach a whole range of states, which represent
intermediate states for the sequential composition α;β , i.e., states that are final
states for α and initial states for β . The intermediate states of α;β are the states
µ in the semantics [[α;β]] from Chap. 3:

[[α;β]] = [[α]]◦ [[β]] = {(ω,ν) : (ω,µ) ∈ [[α]],(µ,ν) ∈ [[β]] for some µ}

Can we find a way of summarizing what all intermediate states between the dif-
ferential equation and the discrete program of (4.26) have in common? They differ
by how long the CPS has followed the differential equation.

If the system has followed the differential equation of (4.26) for time t, then the
resulting velocity v(t) at time t and height x(t) at time t will be

4.8 Appendix 125

v(t) = gt, x(t) = H g

2
t2 (4.27)

This answer can be found by integrating or solving the differential equations (Ex-
ample 2.4 on p. 34). This knowledge (4.27) is useful but it is not (directly) clear how
to use it to describe what all intermediate states have in common, because the time t

in (4.27) is not available as a variable in the HP (4.26).2 Can the intermediate states
be described by a relation of the variables that (unlike t) are actually in the system?
That is, an arithmetic formula relating variables x,v,g,H?

Before you read on, see if you can find the answer for yourself.

One way of producing a relation from (4.27) is to get the units aligned and get rid
of time t. Time drops out of the “equation” when squaring the identity for velocity:

v(t)2 = g2t2, x(t) = H g

2
t2

and multiplying the identity for position by 2g:

v(t)2 = g2t2, 2gx(t) = 2gH 2
g2

2
t2

Then substituting the first equation into the second yields

2gx(t) = 2gH v(t)2

This equation does not depend on time t, so we expect it to hold after all runs of the
differential equation irrespective of t:

2gx = 2gH v2 (4.28)

We conjecture the intermediate condition (4.28) to hold in the intermediate state
of the sequential composition in (4.26). In order to prove (4.26) we can, thus, de-
compose our reasoning into two parts. The first part will prove that the intermediate
condition (4.28) indeed holds after all runs of the first differential equation. The sec-
ond part will assume (4.28) to hold and prove that all runs of the discrete program
in (4.26) from any state satisfying (4.28) satisfy the postcondition 0≤ x∧ x≤ H.

Note 25 (Intermediate conditions as contracts for sequential composition)

For an HP that is a sequential composition α;β an intermediate condition is
a formula that characterizes the intermediate states in between HPs α and β .
That is, for a dL formula

A→ [α;β]B

2 Following these thoughts a bit further reveals how (4.27) can actually be used perfectly well to
describe intermediate states when changing HP (4.26) a little bit. But working with solutions is
still not the way that gets us to the goal the quickest, usually, because of their difficult arithmetic.

126 4 Safety & Contracts

an intermediate condition is a formula E such that the following dL formulas
are valid:

A→ [α]E and E→ [β]B

The first dL formula expresses that intermediate condition E characterizes the
intermediate states accurately, i.e., E actually holds after all runs of HP α from
states satisfying A. The second dL formula says that the intermediate condition
E characterizes intermediate states well enough, i.e., E is all we need to know
about a state to conclude that all runs of β end up in B. That is, from all states
satisfying E (including those that result by running α from a state satisfying
A), B holds after all runs of β .

To prove (4.26), we conjecture that (4.28) is an intermediate condition, which
requires us to prove the following two dL formulas:

0≤ x∧ x = H ∧ v = 0∧g > 0∧1>c≥0→ [x′ = v,v′ = g&x≥ 0]2gx = 2gH v2

2gx = 2gH v2→ [?x = 0;v := cv∪ ?x 6= 0] (0≤ x∧ x≤ H)
(4.29)

Let’s focus on the second formula in (4.29). Do we expect to be able to prove it? Do
we expect it to be valid?

Before you read on, see if you can find the answer for yourself.

The second formula of (4.29) claims that 0≤ x holds after all runs of the hybrid
program ?x = 0;v := cv∪ ?x 6= 0 from all states that satisfy 2gx = 2gH v2. That
is a bit much to hope for, however, because 0 ≤ x is not even ensured in the pre-
condition of this second formula. So the second formula of (4.29) is not valid. How
can this problem be resolved? By adding 0≤ x to the intermediate condition (4.28),
thus, requiring us to prove these two formulas:

0≤ x∧ x = H ∧ v = 0∧g > 0∧1≥ c≥ 0→
[x′ = v,v′ = g&x≥ 0](2gx = 2gH v2∧ x≥ 0)

2gx = 2gH v2∧ x≥ 0→ [?x = 0;v := cv∪ ?x 6= 0] (0≤ x∧ x≤ H)

(4.30)

Proving the first formula in (4.30) requires us to handle differential equations,
which we will get to in Chap. 5. The second formula in (4.30) is the one whose
proof is discussed first.

4.8.2 A Proof of Choice

The second formula in (4.30) has a nondeterministic choice (∪) as the top-level
operator in its [·] modality. How can we prove a formula of the form

A→ [α ∪β]B (4.31)

4.8 Appendix 127

Recalling its semantics from Chap. 3,

[[α ∪β]] = [[α]]∪ [[β]]

HP α ∪β has two possible behaviors. It can run as HP α does or as HP β does. And
it is chosen nondeterministically which of the two behaviors happens. Since the
behavior of α ∪β can be either α or β , proving (4.31) requires proving B to hold
after α and after β . More precisely, (4.31) assumes A to hold initially, otherwise
(4.31) is vacuously true. Thus, proving (4.31) allows us to assume A and requires us
to prove that B holds after all runs of α (which is permitted behavior for α ∪β) and
to prove that, assuming A holds initially, B holds after all runs of β (which is also
permitted behavior of α ∪β).

Note 26 (Proving choices) For an HP that is a nondeterministic choice α ∪β ,
we can prove

A→ [α ∪β]B

by proving the following dL formulas:

A→ [α]B and A→ [β]B

Using these thoughts on the second formula of (4.30), we can prove that formula
if we manage to prove both of the following dL formulas:

2gx = 2gH v2∧ x≥ 0→ [?x = 0;v := cv] (0≤ x∧ x≤ H)

2gx = 2gH v2∧ x≥ 0→ [?x 6= 0] (0≤ x∧ x≤ H)
(4.32)

4.8.3 A Proof of Tests

Consider the second formula of (4.32). Proving it requires us to understand how to
handle a test ?Q in a modality [?Q]. The semantics of a test ?Q from Chap. 3

[[?Q]] = {(ω,ω) : ω ∈ [[Q]]} (4.33)

says that a test ?Q completes successfully without changing the state in any state
ω in which Q holds (i.e., ω ∈ [[Q]]) and fails to run in all other states (i.e., where
ω 6∈ [[Q]]). How can we prove a formula with a test

A→ [?Q]B (4.34)

This formula expresses that, from all initial states that satisfy A, all runs of ?Q reach
states satisfying B. When is there such a run of ?Q at all? There is a run of ?Q from
state ω if and only if Q holds in ω . So the only cases to worry about are initial
states that satisfy Q; otherwise, the HP in (4.34) cannot execute and fails miserably
so that the run is discarded. Hence, we get to assume Q holds, as HP ?Q does not

128 4 Safety & Contracts

otherwise execute. In all states that the HP ?Q reaches from states satisfying A,
(4.34) conjectures that B holds. By (4.33), the final states that ?Q reaches are the
same as the initial state (as long as they satisfy Q so that HP ?Q can be executed at
all). That is, postcondition B needs to hold in all states from which ?Q runs (i.e., that
satisfy Q) and that satisfy the precondition A. So (4.34) can be proved by proving

A∧Q→ B

Note 27 (Proving tests) For an HP that is a test ?Q, we can prove

A→ [?Q]B

by proving the following dL formula:

A∧Q→ B

Using this for the second formula of (4.32), Note 27 reduces proving the second
formula of (4.32)

2gx = 2gH v2∧ x≥ 0→ [?x 6= 0] (0≤ x∧ x≤ H)

to proving
2gx = 2gH v2∧ x≥ 0∧ x 6= 0→ 0≤ x∧ x≤ H (4.35)

Now we are left with arithmetic that we need to prove. Proofs for arithmetic and
propositional logical operators such as ∧ and→will be considered in a later chapter.
For now, we notice that the formula 0≤ x in the right-hand side of→ is justified by
assumption x ≥ 0 if we flip the inequality around. Yet, x ≤ H does not follow from
the left-hand side of (4.35), because we lost our assumptions about H somewhere.

How could that happen? We used to know x ≤ H in (4.26). We still knew about
it in the first formula of (4.30). But we somehow let it disappear from the second
formula of (4.30), because we chose an intermediate condition that was too weak.

This is a common problem in trying to prove properties of CPSs or of any other
mathematical statements. One of our intermediate steps might have been too weak,
so that our attempt to prove the property fails and we need to revisit how we got
there. For sequential compositions, this is actually a nonissue as soon as we move on
(in the next chapter) to a proof technique that is more useful than the intermediate
conditions from Note 25. But similar difficulties can arise in other parts of proof
attempts.

In this case, the fact that we lost x ≤ H can be fixed by including it in the inter-
mediate conditions, because it can be shown to hold after the differential equation.
Other crucial assumptions have also suddenly disappeared in our reasoning. An ex-
tra assumption 1≥ c≥ 0, for example, is crucially needed to justify the first formula
of (4.32). It is much easier to see why that particular assumption can be added to
the intermediate contract without changing the argument much. The reason is that c

never ever changes during the system run so if 1≥ c was true initially, it is still true.

4.8 Appendix 129

Note 28 (Changing assumptions in a proof) It is very difficult to come up
with bug-free code. Just thinking about your assumptions really hard does not
ensure correctness. But we can gain confidence that our system does what we
want it to by proving that certain properties are satisfied.
Assumptions and arguments in a hybrid program frequently need to be changed
during the search for a proof of safety. It is easy to make subtle mistakes in
informal arguments such as “I need to know C here and I would know C if I
had included it here or there, so now I hope the argument holds”. This is one
of many reasons why we are better off if our CPS proofs are rigorous, because
we would rather not end up in trouble because of a subtle flaw in a correctness
argument. The rigorous, formal proof calculus for differential dynamic logic
(dL) that we develop in Chaps. 5 and 6 will help us avoid the pitfalls of informal
arguments. The theorem prover KeYmaera X [7] implements a proof calculus
for dL, which supports such mathematical rigor.
A related observation from our informal arguments in this chapter is that we
desperately need a way to keep an argument consistent as a single argument
justifying one conjecture, quite the contrary to the informal loose threads of
argumentation we have pursued in this chapter for the sake of developing intu-
ition. Consequently, we will investigate what holds all arguments together and
what constitutes an actual proof in Chap. 6, a proof in which the relationship
of premises to conclusions via proof steps is rigorous.

Moreover, there are two loose ends in our arguments. For one, the differential
equation in (4.30) is still waiting for an argument that can help us prove it. Also, the
assignment in (4.32) still needs to be handled and its sequential composition needs
an intermediate contract (Exercise 4.18). Both will be pursued in the next chapter,
where we move to a much more systematic and rigorous reasoning style for CPS.

Exercises

4.1. Show that (4.15) is valid. It is okay to focus only on this example, even though
the argument is more general, because the following dL formula is valid for any
hybrid program α:

[α]F ∧ [α]G↔ [α](F ∧G)

4.2 (Equivalence). Let A,B be dL formulas. Suppose A↔ B is valid and A is valid
and show that B is then valid, too. Suppose A ↔ B is valid and you replace an
occurrence of A in another formula P with B to obtain formula Q. Are P and Q then
equivalent, i.e., is P↔ Q valid? Why?

4.3. Let A,B be dL formulas. Suppose A↔ B is true in state ω and A is true in state
ω . That is, ω ∈ [[A↔ B]] and ω ∈ [[A]]. Is B true in state ω? Prove or disprove. Is B

valid? Prove or disprove.

130 4 Safety & Contracts

4.4. Let α be an HP and let ω be a state. Prove or disprove each of the following
cases:

1. If ω 6∈ [[P]] then does ω 6∈ [[[α∗]P]] have to hold?
2. If ω 6∈ [[P]] then does ω 6∈ [[〈α∗〉P]] have to hold?
3. If ω ∈ [[P]] then does ω ∈ [[[α∗]P]] have to hold?
4. If ω ∈ [[P]] then does ω ∈ [[〈α∗〉P]] have to hold?

4.5 (Multiple pre/postconditions). Suppose you have an HP α with a CPS contract
using multiple preconditions A1, . . . ,An and multiple postconditions B1, . . . ,Bm:

requires(A1)

requires(A2)

...

requires(An)

ensures(B1)

ensures(B2)

...

ensures(Bm)

α

How can this CPS contract be expressed in a dL formula? If there are multiple alter-
native was to express it, discuss the advantages and disadvantages of each option.

4.6 (Late contracts). dL formula (4.18) represents the canonical way of turning the
precondition of a contract into an implication and putting the postcondition after
the modality. There are other ways of capturing contract (4.17) as a dL formula.
The following formula initially only assumes x = H but has an implication as a
postcondition. Is it also a correct logical rendition of contract (4.17)?

x = H→
[
{x′ = v,v′ = g&x≥ 0}; if(x = 0)v := cv

)∗]
(0≤H→ 0≤x∧ x≤H)

(4.36)

4.7 (Systematically late contracts). This question compares canonical and late
phrasings of precondition/postcondition contracts by shifting formulas from pre-
conditions to postconditions. For simplicity assume that x is the only variable that
α modifies. Are the following two dL formulas equivalent?

A(x)→[α]B(x)

x = x0→[α](A(x0)→ B(x))

For example, is (4.36) logically equivalent to (4.18)?

4.8. For each of the following dL formulas, determine whether they are valid, satis-
fiable, and/or unsatisfiable:

4.8 Appendix 131

1. [?x≥ 0]x≥ 0.
2. [?x≥ 0]x≤ 0.
3. [?x≥ 0]x < 0.
4. [?true]true.
5. [?true]false.
6. [?false]true.
7. [?false]false.
8. [x′ = 1& true]true.
9. [x′ = 1& true]false.

10. [x′ = 1& false]true.
11. [x′ = 1& false]false.
12. [(x′ = 1& true)∗]true.
13. [(x′ = 1& true)∗]false.
14. [(x′ = 1& false)∗]true.
15. [(x′ = 1& false)∗]false.
16. x≥ 0→ [x′ = v,v′ = a]x≥ 0.
17. x > 0→ [x′ = x2]x > 0.
18. x > 0→ [x′ = y]x > 0.
19. x > 0→ [x′ = x]x > 0.
20. x > 0→ [x′ = x]x > 0.

4.9. For each of the following dL formulas, determine whether they are valid, satis-
fiable, and/or unsatisfiable:

1. x > 0→ [x′ = 1]x > 0
2. x > 0→ [x′ = 1]x < 0
3. x > 0→ [x′ = 1]x≥ 0
4. x > 0→ [(x :=x+1)∗]x > 0
5. x > 0→ [(x :=x+1)∗]x > 1
6. [x :=x2 +1;x′ = 1]x > 0.
7. [(x :=x2 +1;x′ = 1)

∗
]x > 0.

8. [(x :=x+1;x′ = 1)∗; ?x > 0;x′ = 2]x > 0
9. x = 0→ [x′ = 1;x′ = 2)]x < 0.

10. x≥ 0∧ v≥ 0→ [x′ = v,v′ = 2]x≥ 0.

4.10. For each of the following dL formulas, determine whether they are valid, sat-
isfiable, and/or unsatisfiable:

1. 〈x′ = 1〉x < 0
2. x > 0∧〈x′ = 1〉x < 0
3. x > 0∧〈x′ = 1〉x < 0
4. x > 0→ 〈x′ = 1〉x > 0
5. [(x :=x+1)∗]〈x′ = 1〉x < 0.
6. x > 0→ [x′ = 2]

x > 0∧ [x′ = 1]x > 0∧〈x′ = 2〉x = 0

)

7. 〈x′ = 2〉[x′ = 1]〈x′ = 5〉x > 0
8. ∀x〈x′ = 1〉x < 0
9. ∀x [x′ = 1]x≥ 0

132 4 Safety & Contracts

10. ∃x [x′ = 1]x < 0
11. ∀x∃d (x≥ 0→ [x′ = d]x≥ 0)
12. ∀x(x≥ 0→∃d [x′ = d]x≥ 0)
13. [x′ = 1]

x≥ 0→ [x′ = 2]x≥ 0

)

14. [x′ = 1]x≥ 0→ [x′ = 2]x≥ 0
15. [x′ = 2]x≥ 0→ [x′ = 1]x≥ 0
16. 〈x′ = 2〉x≥ 0→ [x′ = 1]x≥ 0

4.11. For each j,k ∈ {satisfiable,unsatisfiable,valid} answer whether there is a for-
mula that is j but not k. Also answer for each such j,k whether there is a formula
that is j but its negation is not k. Briefly justify each answer.

4.12. Replace α with a concrete HP that makes the following dL formulas valid or
explain why such an HP does not exist. For an extra challenge do not use assign-
ments in α .

[α]false

[α∗]false

[α]x > 0↔ 〈α〉x > 0

[α]x > 0↔ [α]x > 1

[α]x > 0↔¬[α ∪α]x > 0

[α]x = 1∧ [α]x = 2

4.13 (Set-valued semantics). There are at least two styles of giving a meaning to a
logical formula. One way is to inductively define a satisfaction relation |= that holds
between a state ω and a dL formula P, written ω |= P, whenever the formula P is
true in the state ω . Its definition includes, among other cases, the following:

ω |= P∧Q iff ω |= P and ω |= Q

ω |= 〈α〉P iff ν |= P for some state ν such that (ω,ν) ∈ [[α]]
ω |= [α]P iff ν |= P for all states ν such that (ω,ν) ∈ [[α]]

The other way is to directly inductively define, for each dL formula P, the set of
states, written [[P]], in which P is true. Its definition includes, among other cases, the
following:

[[e≥ ẽ]] = {ω : ω[[e]]≥ ω[[ẽ]]}
[[P∧Q]] = [[P]]∩ [[Q]]

[[¬P]] = [[P]]∁ = S \ [[P]]
[[〈α〉P]] = [[α]]◦ [[P]] = {ω : ν ∈ [[P]] for some state ν such that (ω,ν) ∈ [[α]]}
[[[α]P]] = [[¬〈α〉¬P]] = {ω : ν ∈ [[P]] for all states ν such that (ω,ν) ∈ [[α]]}
[[∃xP]] = {ω : ν ∈ [[P]] for some state ν that agrees with ω except on x}
[[∀xP]] = {ω : ν ∈ [[P]] for all states ν that agree with ω except on x}

Prove that both styles of defining the semantics are equivalent. That is ω |= P iff
ω ∈ [[P]] for all states ω and all dL formulas P.

4.8 Appendix 133

Such a proof can be conducted by induction on the structure of P. That is, you
consider each case, say P∧Q, and prove ω |= P∧Q iff ω ∈ [[P∧Q]] from the induc-
tive hypothesis that the conjecture already holds for the smaller subformulas:

ω |= P iff ω ∈ [[P]]

ω |= Q iff ω ∈ [[Q]]

4.14 (Rediscover Quantum). Help Quantum the bouncing ball with a clean-slate
approach. Pull up a blank sheet of paper and double check whether you can help
Quantum identify all the requirements that imply the following formula:

[
{x′ = v,v′ = g&x≥ 0};
if(x = 0)v := cv

)∗]
(0≤ x≤ H)

What are the requirements for the following formula to be true in which the order
of the sequential composition is swapped so that the discrete step comes first?

[
if(x = 0)v := cv;

{x′ = v,v′ = g&x≥ 0}
)∗]

(0≤ x≤ H)

4.15. What would happen with the bouncing ball if c < 0? Consider a variation of
the arguments in Sect. 4.6 where instead of the assumption in (4.21), you assume
c < 0. Is the formula valid? What happens with a bouncing ball of damping c = 1?

4.16 (Deflatable Quantum). Help Quantum the bouncing ball identify all require-
ments that imply the following formula, in which the bouncing ball might deflate
and lie flat using the model from Sect. 4.2.3:

[
{x′ = v,v′ = g&x≥ 0};
if(x = 0)(v := cv∪ v :=0)

)∗]
(0≤ x≤ H)

4.17. We went from (4.23) to (4.24) by removing an if-then-else. Explain how this
works and justify why it is okay to do this transformation. It is okay to focus only
on this case, even though the argument is more general.

4.18 (*). Find an intermediate condition for proving the first formula in (4.32). The
proof of the resulting formulas is complicated significantly by the fact that assign-
ments have not yet been discussed in this chapter. Can you find a way of proving
the resulting formulas before the next chapter develops how to handle assignments?

4.19 (**). Sect. 4.8.1 used a mix of systematic and ad hoc approaches to produce an
intermediate condition that was based on solving and combining differential equa-
tions. Can you think of a more systematic rephrasing?

4.20 (**). Note 25 in Sect. 4.8.1 gave a way of showing a property of a sequential
composition

134 4 Safety & Contracts

A→ [α;β]B

by identifying an intermediate condition E and showing

A→ [α]E and E→ [β]B

Can you already see a way of exploiting the operators of differential dynamic logic
to show the same formula without having to be creative by inventing a clever inter-
mediate condition E?

4.21 (**). How could formula (4.30) be proved using its differential equation?

4.22 (Direct velocity control). Real cars have proper acceleration and braking.
What would happen if cars had direct control of velocity with instantaneous ef-
fect? Your job is to fill in the blanks with a test condition that makes sure the car
with position x and velocity v and reaction time ε cannot exceed the stoplight m.

x≤ m∧V ≥ 0→
[
(?__________;v :=V ∪ v :=0);

t :=0;

{x′ = v, t ′ = 1& t ≤ ε}
)∗]

x≤ m

References

[1] Isaac Asimov. Runaround. Astounding Science Fiction (Mar. 1942).
[2] Lewis Carroll. Alice’s Adventures in Wonderland. London: Macmillan, 1865.
[3] Patricia Derler, Edward A. Lee, Stavros Tripakis, and Martin Törngren.

Cyber-physical system design contracts. In: ICCPS. Ed. by Chenyang Lu,
P. R. Kumar, and Radu Stoleru. New York: ACM, 2013, 109–118. DOI: 10
.1145/2502524.2502540.

[4] René Descartes. Meditationes de prima philosophia, in qua Dei existentia et

animae immortalitas demonstratur. 1641.
[5] Robert W. Floyd. Assigning meanings to programs. In: Mathematical Aspects

of Computer Science, Proceedings of Symposia in Applied Mathematics. Ed.
by J. T. Schwartz. Vol. 19. Providence: AMS, 1967, 19–32. DOI: 10.1007
/978-94-011-1793-7_4.

[6] Gottlob Frege. Begriffsschrift, eine der arithmetischen nachgebildete Formel-

sprache des reinen Denkens. Halle: Verlag von Louis Nebert, 1879.
[7] Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp, and André

Platzer. KeYmaera X: an axiomatic tactical theorem prover for hybrid sys-
tems. In: CADE. Ed. by Amy Felty and Aart Middeldorp. Vol. 9195. LNCS.

https://doi.org/10.1145/2502524.2502540
https://doi.org/10.1145/2502524.2502540
https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1007/978-94-011-1793-7_4

4.8 Appendix 135

Berlin: Springer, 2015, 527–538. DOI: 10.1007/978-3-319-21401-
6_36.

[8] Gerhard Gentzen. Untersuchungen über das logische Schließen I. Math. Zeit.

39(2) (1935), 176–210. DOI: 10.1007/BF01201353.
[9] Gerhard Gentzen. Die Widerspruchsfreiheit der reinen Zahlentheorie. Math.

Ann. 112 (1936), 493–565. DOI: 10.1007/BF01565428.
[10] Kurt Gödel. Über die Vollständigkeit des Logikkalküls. PhD thesis. Univer-

sität Wien, 1929.
[11] Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica

und verwandter Systeme I. Monatshefte Math. Phys. 38(1) (1931), 173–198.
DOI: 10.1007/BF01700692.

[12] Kurt Gödel. Über eine bisher noch nicht benützte Erweiterung des finiten
Standpunktes. Dialectica 12(3-4) (1958), 280–287. DOI: 10.1111/j.174
6-8361.1958.tb01464.x.

[13] David Hilbert and Wilhelm Ackermann. Grundzüge der theoretischen Logik.
Berlin: Springer, 1928.

[14] Charles Antony Richard Hoare. An axiomatic basis for computer program-
ming. Commun. ACM 12(10) (1969), 576–580. DOI: 10.1145/363235.3
63259.

[15] Saul A. Kripke. Semantical considerations on modal logic. Acta Philosophica

Fennica 16 (1963), 83–94.
[16] Gottfried Wilhelm Leibniz. Generales inquisitiones de analysi notionum et

veritatum. 1686.
[17] Francesco Logozzo. Practical verification for the working programmer with

codecontracts and abstract interpretation - (invited talk). In: VMCAI. Ed. by
Ranjit Jhala and David A. Schmidt. Vol. 6538. LNCS. Berlin: Springer, 2011,
19–22. DOI: 10.1007/978-3-642-18275-4_3.

[18] Bertrand Meyer. Applying design by contract. Computer 25(10) (Oct. 1992),
40–51. DOI: 10.1109/2.161279.

[19] Stefan Mitsch and André Platzer. ModelPlex: verified runtime validation of
verified cyber-physical system models. Form. Methods Syst. Des. 49(1-2)
(2016). Special issue of selected papers from RV’14, 33–74. DOI: 10.10
07/s10703-016-0241-z.

[20] André Platzer. Differential dynamic logic for verifying parametric hybrid
systems. In: TABLEAUX. Ed. by Nicola Olivetti. Vol. 4548. LNCS. Berlin:
Springer, 2007, 216–232. DOI: 10.1007/978-3-540-73099-6_17.

[21] André Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reas.

41(2) (2008), 143–189. DOI: 10.1007/s10817-008-9103-8.
[22] André Platzer. Logical Analysis of Hybrid Systems: Proving Theorems for

Complex Dynamics. Heidelberg: Springer, 2010. DOI: 10.1007/978-3-
642-14509-4.

[23] André Platzer. Stochastic differential dynamic logic for stochastic hybrid pro-
grams. In: CADE. Ed. by Nikolaj Bjørner and Viorica Sofronie-Stokkermans.
Vol. 6803. LNCS. Berlin: Springer, 2011, 446–460. DOI: 10.1007/978-
3-642-22438-6_34.

https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/BF01201353
https://doi.org/10.1007/BF01565428
https://doi.org/10.1007/BF01700692
https://doi.org/10.1111/j.1746-8361.1958.tb01464.x
https://doi.org/10.1111/j.1746-8361.1958.tb01464.x
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1007/978-3-642-18275-4_3
https://doi.org/10.1109/2.161279
https://doi.org/10.1007/s10703-016-0241-z
https://doi.org/10.1007/s10703-016-0241-z
https://doi.org/10.1007/978-3-540-73099-6_17
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-642-22438-6_34
https://doi.org/10.1007/978-3-642-22438-6_34

136 4 Safety & Contracts

[24] André Platzer. A complete axiomatization of quantified differential dynamic
logic for distributed hybrid systems. Log. Meth. Comput. Sci. 8(4:17) (2012).
Special issue for selected papers from CSL’10, 1–44. DOI: 10 . 2168 /
LMCS-8(4:17)2012.

[25] André Platzer. Logics of dynamical systems. In: LICS. Los Alamitos: IEEE,
2012, 13–24. DOI: 10.1109/LICS.2012.13.

[26] André Platzer. The complete proof theory of hybrid systems. In: LICS. Los
Alamitos: IEEE, 2012, 541–550. DOI: 10.1109/LICS.2012.64.

[27] André Platzer. Teaching CPS foundations with contracts. In: CPS-Ed. 2013,
7–10.

[28] André Platzer. Differential game logic. ACM Trans. Comput. Log. 17(1)
(2015), 1:1–1:51. DOI: 10.1145/2817824.

[29] André Platzer. Logic & proofs for cyber-physical systems. In: IJCAR. Ed. by
Nicola Olivetti and Ashish Tiwari. Vol. 9706. LNCS. Berlin: Springer, 2016,
15–21. DOI: 10.1007/978-3-319-40229-1_3.

[30] André Platzer. A complete uniform substitution calculus for differential dy-
namic logic. J. Autom. Reas. 59(2) (2017), 219–265. DOI: 10.1007/s108
17-016-9385-1.

[31] André Platzer. Differential hybrid games. ACM Trans. Comput. Log. 18(3)
(2017), 19:1–19:44. DOI: 10.1145/3091123.

[32] André Platzer and Edmund M. Clarke. The image computation problem in
hybrid systems model checking. In: HSCC. Ed. by Alberto Bemporad, Anto-
nio Bicchi, and Giorgio C. Buttazzo. Vol. 4416. LNCS. Springer, 2007, 473–
486. DOI: 10.1007/978-3-540-71493-4_37.

[33] Amir Pnueli. The temporal logic of programs. In: FOCS. IEEE, 1977, 46–57.
[34] Vaughan R. Pratt. Semantical considerations on Floyd-Hoare logic. In: 17th

Annual Symposium on Foundations of Computer Science, 25-27 October

1976, Houston, Texas, USA. Los Alamitos: IEEE, 1976, 109–121. DOI: 10
.1109/SFCS.1976.27.

[35] Arthur Prior. Time and Modality. Oxford: Clarendon Press, 1957.
[36] Dana S. Scott. Logic and programming languages. Commun. ACM 20(9)

(1977), 634–641. DOI: 10.1145/359810.359826.
[37] Thoralf Skolem. Logisch-kombinatorische Untersuchungen über die Erfüll-

barkeit oder Beweisbarkeit mathematischer Sätze nebst einem Theorem über
dichte Mengen. Videnskapsselskapets skrifter, 1. Mat.-naturv. klasse 4 (1920),
1–36.

[38] Alfred North Whitehead and Bertrand Russell. Principia Mathematica. Cam-
bridge: Cambridge Univ. Press, 1910.

[39] Dana N. Xu, Simon L. Peyton Jones, and Koen Claessen. Static contract
checking for Haskell. In: POPL. Ed. by Zhong Shao and Benjamin C. Pierce.
New York: ACM, 2009, 41–52. DOI: 10.1145/1480881.1480889.

[40] Paolo Zuliani, André Platzer, and Edmund M. Clarke. Bayesian statistical
model checking with application to Simulink/Stateflow verification. Form.

Methods Syst. Des. 43(2) (2013), 338–367. DOI: 10.1007/s10703-013
-0195-3.

https://doi.org/10.2168/LMCS-8(4:17)2012
https://doi.org/10.2168/LMCS-8(4:17)2012
https://doi.org/10.1109/LICS.2012.13
https://doi.org/10.1109/LICS.2012.64
https://doi.org/10.1145/2817824
https://doi.org/10.1007/978-3-319-40229-1_3
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1145/3091123
https://doi.org/10.1007/978-3-540-71493-4_37
https://doi.org/10.1109/SFCS.1976.27
https://doi.org/10.1109/SFCS.1976.27
https://doi.org/10.1145/359810.359826
https://doi.org/10.1145/1480881.1480889
https://doi.org/10.1007/s10703-013-0195-3
https://doi.org/10.1007/s10703-013-0195-3

Chapter 5

Dynamical Systems & Dynamic Axioms

Synopsis This central chapter develops a logical characterization of the dynamics
of hybrid programs in differential dynamic logic. It investigates fundamental com-
positional reasoning principles that capture how the truth of a property of a more
complex hybrid program relates to the truth of corresponding properties of simpler
program fragments. This leads to dynamic axioms for dynamical systems, with one
axiom for each type of dynamics. These dynamic axioms enable rigorous reasoning
about CPS models and begin an axiomatization of differential dynamic logic, which
turns the specification logic dL into a verification logic for CPS. While more ad-
vanced aspects of loops and differential equations will be discussed in subsequent
chapters, this chapter lays a pivotal foundation for all dynamical aspects of differ-
ential dynamic logic and its hybrid programs.

5.1 Introduction

Chap. 4 demonstrated how useful and crucial CPS contracts are for CPS. Their rôle
and understanding goes beyond dynamic testing. In CPS, proven CPS contracts are
infinitely more valuable than dynamically tested contracts, because, without suffi-
cient care, dynamical tests of contracts at runtime of a CPS generally leave open
very little flexibility for reacting to them in any safe way. After all, the failure of a
contract indicates that some safety condition that was expected to hold is no longer
true. Unless provably sufficient safety margins and fallback plans remain, the CPS
is already in trouble then.1

Consequently, CPS contracts really shine in relation to how they are proved for
CPS. Understanding how to prove CPS contracts requires us to understand the dy-
namical effects of hybrid programs in more detail. This deeper understanding of

1 However, in combination with formal verification, the Simplex architecture can be understood
as exploiting the relationship of dynamic contracts for safety purposes [14]. ModelPlex, which is
based on differential dynamic logic, lifts this observation to a fully verified link from verified CPS
models to verified CPS executions [4].

137© Springer International Publishing AG, part of Springer Nature 2018

A. Platzer, Logical Foundations of Cyber-Physical Systems,

https://doi.org/10.1007/978-3-319-63588-0_5

https://doi.org/10.1007/978-3-319-63588-0_5
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63588-0_5&domain=pdf

138 5 Dynamical Systems & Dynamic Axioms

the effects of hybrid program operators is not only useful for conducting proofs,
but also for developing and sharpening our intuition about hybrid programs. This
phenomenon illustrates the more general point that proof and effect (and/or mean-

ing) are intimately linked. Truly understanding effect is ultimately the same as, as
well as a prerequisite to, understanding how to prove properties of that effect [6,
8, 9, 11]. You may have seen this point demonstrated already in other treatises on
programming languages, but it will shine in this chapter.

The route we choose to get to this level of understanding involves a closer look
at the structure of the effect that hybrid programs have on states. This will enable
us to devise authoritative proof principles for differential dynamic logic and hybrid
programs [5, 6, 8, 9, 11]. This chapter will give us the essential reasoning tools for
cyber-physical systems and is, thus, of crucial relevance.

The focus of this chapter is on a systematic development of the basic reasoning
principles for cyber-physical systems. The goal is to cover all cyber-physical sys-
tems by identifying one fundamental reasoning principle for each of the operators
of differential dynamic logic and, specifically, its hybrid programs. Once we have
such a reasoning principle for each of the operators, the basic idea is that any ar-
bitrary cyber-physical system can be analyzed by combining the various reasoning
principles with one another, compositionally, by inspecting one operator at a time.

Note 29 (Logical guiding principle: Compositionality) Since every CPS is
modeled by a hybrid programa and all hybrid programs are combinations of
simpler hybrid programs using one of a handful of program operators (such
as ∪ and ; and ∗), all CPSs can be analyzed if only we identify one suitable
analysis technique for each of the operators.

a To faithfully represent complex CPSs, some models need an extension of hybrid programs,
e.g., to hybrid games [10] or distributed hybrid programs [7], in which case suitable general-
izations of the logical approach presented here work.

With enough understanding, this guiding principle ultimately succeeds [9–11].
It does, however, take more than one chapter to get there. This chapter settles for
a systematic development of the reasoning principles for elementary operators in
hybrid programs, leaving a detailed development of the others to later chapters.

This chapter is of central significance for the Foundations of Cyber-Physical Sys-
tems. It is the first of many chapters in this textbook where we observe a logical
trichotomy between syntax, semantics, and axiomatics.

Note 30 (Logical trinity) The concepts developed in this chapter illustrate the
more general relation of syntax (which is notation), semantics (which carries
meaning), and axiomatics (which internalizes semantic relations into universal
syntactic transformations). These concepts and their relations jointly form the
significant logical trinity of syntax, semantics, and axiomatics.

5.2 Intermediate Conditions for CPS 139

Axiomatics

Syntax Semantics

For example, the syntax for conjunction is A∧B. The semantics of A∧B is that
A∧B is true iff A is true and B is true. Its axiomatics will tell us that a proof of A∧B

consists of a proof of A together with a proof of B, which is what will be explored
in Chap. 6. Since the semantics is compositional (the meaning of A∧B is that it is
true whenever both A and B are true), the reasoning will be compositional, too, so
that a proof of A∧B can be decomposed into a proof of A and a separate proof of B.
This chapter sets out to make the same kind of logical compositionality happen for
all other operators of cyber-physical systems.

The most important learning goals of this chapter are:

Modeling and Control: We will understand the core principles behind CPS by un-
derstanding analytically and semantically how cyber and physical aspects are
integrated and interact in CPS. This chapter will also begin to explicitly relate
discrete and continuous systems, which ultimately leads to a fascinating view
on understanding hybridness [9].

Computational Thinking: This chapter is devoted to the core aspects of reason-
ing rigorously about CPS models, which is critical to getting CPS right. CPS
designs can be flawed for very subtle reasons. Without sufficient rigor in their
analysis it can be impossible to spot the flaws, and it can be even more challeng-
ing to say for sure whether and why a design is no longer faulty. This chapter
systematically develops one reasoning principle for each of the operators of hy-
brid programs. This chapter begins an axiomatization of differential dynamic
logic dL [8, 9, 11] to lift dL from a specification language to a verification lan-
guage for CPS.

CPS Skills: We will develop a deep understanding of the semantics of CPS models
by carefully relating their semantics to their reasoning principles and aligning
them in perfect unison. This understanding will also enable us to develop a
better intuition for the operational effects involved in CPS.

5.2 Intermediate Conditions for CPS

Recall the bouncing ball from p. 122 in Chap. 4:

0≤ x∧ x = H ∧ v = 0∧g > 0∧1≥ c≥ 0→
[
{x′ = v,v′ = g&x≥ 0}; (?x = 0;v := cv∪ ?x 6= 0)

)∗]
(0≤ x∧ x≤ H)

(4.24*)

140 5 Dynamical Systems & Dynamic Axioms

CT

M&C CPS

rigorous reasoning about CPS
dL as a verification language

cyber+physics interaction
relate discrete+continuous

align semantics+reasoning
operational CPS effects

To simplify the subsequent discussion, let’s again drop the repetition (∗) for now:

0≤ x∧ x = H ∧ v = 0∧g > 0∧1≥ c≥ 0→
[
{x′ = v,v′ = g&x≥ 0};(?x = 0;v := cv∪ ?x 6= 0)

]
(0≤ x∧ x≤ H) (5.1)

Of course, dropping the repetition grotesquely changes the behavior of the bouncing
ball. It cannot even really bounce any longer now. It can merely fall and reverse its
velocity vector when on the ground but is then stuck. The single-hop bouncing ball
can only follow the first blue hop but not the gray remainder hops in Fig. 5.1. This
degenerate model fragment is, nevertheless, an insightful stepping stone toward a
proof of the full model. If we manage to prove (5.1), we certainly have not shown the
full bouncing-ball formula (4.24) with its loop. But it’s a start, because the behavior
modeled in (5.1) is a part of the behavior of (4.24). So it is useful (and easier for us)
to understand (5.1) first.

Fig. 5.1 Sample trajectory
of a single-hop bouncing
ball (plotted as height over
time) that can follow the first
blue hop but is incapable of
following the remaining hops
shown in gray

The dL formula (5.1) has assumptions 0≤ x∧ x = H ∧ v = 0∧g > 0∧1≥ c≥ 0
that can be used during the proof. It claims that the postcondition 0≤ x∧x≤H holds
after all runs of the HP in the [·] modality. The top-level operator in the modality of
(5.1) is a sequential composition (;), for which we need to find a proof argument.2

2 The way we proceed here to prove (5.1) is actually not the recommended way. We will develop
an easier way. But it is instructive to understand the more verbose approach we take first. The first
approach also prepares us for the challenges that lie ahead when proving properties of loops.

5.2 Intermediate Conditions for CPS 141

The HP in (5.1) follows a differential equation first and then, after the sequential
composition (;), proceeds to run a discrete program (?x = 0;v := cv∪?x 6= 0). De-
pending on how long the HP follows its differential equation, the intermediate state
after the differential equation and before the discrete program will be different.

Note 31 (Intermediate states of sequential compositions) The first HP α
in a sequential compositions α;β may reach a whole range of states, which
represent intermediate states for the sequential composition α;β , i.e., states
that are final states for α and initial states for β . The intermediate states of
α;β are the states µ in the semantics [[α;β]] from Chap. 3:

[[α;β]] = [[α]]◦ [[β]] = {(ω,ν) : (ω,µ) ∈ [[α]],(µ,ν) ∈ [[β]] for some µ}

One can summarize what all intermediate states between the differential equation
and the discrete program of (5.1) have in common. They differ by how long the
CPS has followed the differential equation. But the intermediate states still have in
common that they satisfy a logical formula E. Which logical formula that is, is, in
fact, instructive to find out, but of no immediate concern for the rest of this chapter.
So we invite you to find out how to choose E for (5.1) before you compare your
answer to the one we developed in Sect. 4.8.1 already.

For an HP that is a sequential composition α;β an intermediate condition is a
formula that characterizes the intermediate states in between HP α and β . That is,
for a dL formula

A→ [α;β]B

an intermediate condition is a formula E such that the following dL formulas are
valid:

A→ [α]E and E→ [β]B

The first dL formula expresses that intermediate condition E characterizes the inter-
mediate states accurately, i.e., E actually holds after all runs of HP α from states
satisfying A. The second dL formula says that the intermediate condition E charac-
terizes intermediate states well enough, i.e., E is all we need to know about a state
to conclude that all runs of β end up in B. That is, from all states satisfying E (in
particular from those that result by running α from a state satisfying A), B holds
after all runs of β . Depending on the precision of the intermediate condition E, this
argument may require showing that B holds after all runs of β from extra states that
are not reachable from ω by running α but happen to satisfy E (unlabeled nodes in
Fig. 5.2).

Intermediate condition contracts for sequential compositions are captured more
concisely in the following proof rule by Tony Hoare [3]:

H;
A→ [α]E E→ [β]B

A→ [α;β]B

The two dL formulas above the bar of the rule are called premises. The dL formula
below the bar is called the conclusion. The above argument (informally) justifies the

142 5 Dynamical Systems & Dynamic Axioms

Fig. 5.2 Intermediate condi-
tions for sequential composi-
tions

E

ω

µ1

µ2

µn

ν1

ν2

ν3

ν4

νn

[α;β]B

α

B

B

β
B

B

B

β

β

B

B

β

proof rule: if both premises are valid then the conclusion is valid, too. So, if we have
a proof for each of the two premises, rule H; gave us a proof of the conclusion.

Since we will soon identify a better way of proving properties of sequential com-
positions, we do not pursue rule H; further now. Yet, there are some circumstances
under which an intermediate condition as in H; actually simplifies your reasoning.

For now, we remark that, given an intermediate condition E, the rule H; splits a
proof of (5.1) into a proof of the following two premises, which we saw in Chap. 4:

0≤ x∧ x=H ∧ v=0∧g > 0∧1≥c≥0→
[
x′ = v,v′ = g&x≥ 0

]
E (4.29*)

E→
[
?x = 0;v := cv∪ ?x 6= 0

]
(0≤x∧ x≤H)

(4.30*)

5.3 Dynamic Axioms for Dynamical Systems

This section develops axioms for decomposing dynamical systems, which are of
central significance in this textbook. Each axiom describes the effect of one operator
on hybrid programs in terms of simpler hybrid programs, thereby simultaneously
serving as an explanation and as a basis for rigorous reasoning.

5.3.1 Dynamic Axioms for Nondeterministic Choices

By the logical guiding principle of compositionality (Note 29), the next operator that
we need to understand in order to proceed with a proof of (5.1) is the nondeterminis-
tic choice ?x = 0;v := cv∪ ?x 6= 0, which is the top-level operator in the modality

5.3 Dynamic Axioms for Dynamical Systems 143

of (4.30). By the compositionality principle, we zero in on the nondeterministic
choice operator ∪ and pretend we already know how to handle all other opera-
tors in the formula. If we succeed in reducing the property of the nondeterministic
choice in formula (4.30) to properties of its subprograms, then we can subsequently
develop axioms that actually handle the remaining operators.

Recall the semantics of nondeterministic choice from Sect. 3.3.2:

[[α ∪β]] = [[α]]∪ [[β]] (5.2)

Remember that [[α]] is a reachability relation on states, where (ω,ν) ∈ [[α]] iff HP
α can run from state ω to state ν . Let us illustrate graphically what (5.2) means:

ω

ν1

ν2

α
P

β
P

α ∪β

[α ∪β]P

According to the reachability relation [[α]], a number of states νi are reachable by
running HP α from some initial state ω .3 According to [[β]], a number of (possibly
different) states νi are reachable by running HP β from the same initial state ω . By
the semantic equation (5.2), running α ∪β from ω can give us exactly any of those
possible outcomes that result from either running α or β . And there was nothing
special about the initial state ω . The same principle holds for all other states as well.

Note 32 (∪) The nondeterministic choice α ∪β can lead to exactly the states to
which either α could take us or to which β could take us or to which both could
lead. The dynamic effect of a nondeterministic choice α ∪β is that running it
at any time results in a behavior either of α or of β , nondeterministically. So
both the behaviors of α and β are possible when running α ∪β .

If we want to understand whether and where dL formula [α ∪β]P is true, we
need to understand which states the modality [α ∪β] refers to. In which states does
P have to be true so that [α ∪β]P is true in state ω?

By definition of the semantics, P needs to be true in all states that α ∪ β can
reach from ω according to [[α ∪β]] for [α ∪β]P to be true in ω . Referring to the
semantics (5.2) or looking at its illustration shows us that this includes all states
that α can reach from ω according to [[α]], hence [α]P has to be true in ω . It also
includes all states that β can reach from ω , hence [β]P has to be true in ω .

Consequently,
ω ∈ [[[α]P]] and ω ∈ [[[β]P]] (5.3)

are necessary conditions for

3 The diagram only illustrates one such state ν1 for visual conciseness. But ν1 should be thought
of as a generic representative for any such state that α can reach from the initial state ω .

144 5 Dynamical Systems & Dynamic Axioms

ω ∈ [[[α ∪β]P]] (5.4)

That is, unless (5.3) holds, (5.4) cannot possibly hold. So (5.3) is necessary for (5.4).
Are there any states missing? Are there any states that (5.4) would require to satisfy
P, which (5.3) does not already ensure? No, because, by (5.2), α ∪β does not admit
any behavior that neither α nor β can exhibit. Hence (5.3) is also sufficient for (5.4),
i.e., (5.3) implies (5.4). So (5.3) and (5.4) are equivalent.

When adopting a more logical language again, this justifies

ω ∈ [[[α ∪β]P↔ [α]P∧ [β]P]]

This reasoning did not depend on the particular state ω but holds for all ω . There-
fore, the formula [α ∪β]P↔ [α]P∧ [β]P is valid, written:

� [α ∪β]P↔ [α]P∧ [β]P

Exciting! We have just proved our first axiom to be sound (a proof is in Sect. 5.3.2).

Lemma 5.1 ([∪] axiom of nondeterministic choice). The axiom of (nonde-
terministic) choice is sound, i.e., all its instances are valid:

[∪] [α ∪β]P↔ [α]P∧ [β]P

Nondeterministic choices split into their alternatives in axiom [∪]. From right to
left: If all α runs lead to states satisfying P (i.e., [α]P is true) and all β runs lead to
states satisfying P (i.e., [β]P is true), then all runs of HP α ∪β , which may choose
between following α and following β , also lead to states satisfying P (i.e., [α ∪β]P
is true). The converse implication from left to right holds, because α ∪β can run all
runs of α and all runs of β , so all runs of α (and of β) lead to states satisfying P if
[α ∪β]P. We will mark the structurally complex formula in blue.

Armed with this axiom [∪] at our disposal, we can now easily make the following
inference just by invoking the equivalence that [∪] justifies:

[∪]
A→ [α]B∧ [β]B

A→ [α ∪β]B

Let’s elaborate. If we want to prove the conclusion at the bottom

A→ [α ∪β]B (5.5)

then we can instead prove the premise at the top

A→ [α]B∧ [β]B (5.6)

because by [∪], or rather an instance of [∪] formed by using B for P, we know

[α ∪β]B↔ [α]B∧ [β]B (5.7)

5.3 Dynamic Axioms for Dynamical Systems 145

Since (5.7) is a valid equivalence, its left-hand side and its right-hand side are equiv-
alent. Wherever its left-hand side occurs, we can equivalently replace it with its
right-hand side, since the two are equivalent.4 Thus, replacing the left-hand side of
(5.7) in the place where it occurs in (5.5) with the right-hand side of (5.7) gives
us the formula (5.6), which is equivalent to (5.5). After all, according to the valid
equivalence (5.7) justified by axiom [∪], (5.6) can be obtained from (5.5) just by
replacing a formula with one that is equivalent (recall Exercise 4.2).

Actually, stepping back, the same argument can be made to go from (5.6) to (5.5)
instead of from (5.5) to (5.6), because (5.7) is an equivalence. Both ways of using
[∪] are perfectly correct, although the direction that gets rid of the ∪ operator is
more useful, because it makes progress (getting rid of an HP operator).

Yet axiom [∪] can also be useful in many more situations. For example, axiom
[∪] also justifies the inference

[∪]
[α]A∧ [β]A→ B

[α ∪β]A→ B

which follows from the left-to-right implication of equivalence axiom [∪].
For the bouncing ball, axiom [∪] will decompose formula (4.30) and reduce it to

E→
[
?x = 0;v := cv

]
(0≤x∧ x≤H)∧

[
?x 6= 0

]
(0≤x∧ x≤H) (5.8)

A general design principle behind all dL axioms is most noticeable in axiom [∪].
All equivalence axioms of dL are primarily intended to be used by reducing the blue
formula on the left to the (structurally simpler) formula on the right. Such a reduc-
tion symbolically decomposes a property of a more complicated system α ∪β into
separate properties of smaller fragments α and β . While we might end up with more
subproperties (like we do in the case of axiom [∪]), each of them is structurally sim-
pler, because it involves fewer program operators. This decomposition of systems
into their fragments makes the verification problem tractable and is good for scala-
bility purposes, because it reduces the study of complex systems successively to a
study of many but smaller subsystems, of which there are only finitely many. For
these symbolic structural decompositions, it is very helpful that dL is a full logic that
is closed under all logical operators [10, 11], including disjunction and conjunction,
for then both sides in axiom [∪] are dL formulas again (unlike in Hoare logic [3]).
This also turns out to be an advantage for computing invariants [2, 6, 12].

Axiom [∪] allows us to understand and handle [α ∪β]P properties. If we find ap-
propriate axioms for all the other operators of hybrid programs, including ; , ∗,:=,x′,
then we have a way of handling all hybrid programs, because we merely need to
simplify the verification question by subsequently decomposing it with the respec-
tive axiom. Even if a full account of this principle is significantly more complicated,
such recursive decomposition indeed ultimately succeeds [9, 11].

4 This will be made formal in Chap. 6 following contextual equivalence reasoning [11].

146 5 Dynamical Systems & Dynamic Axioms

5.3.2 Soundness of Axioms

The definition of soundness in Lemma 5.1 was not specific to axiom [∪], but applies
to all dL axioms, so we discuss soundness once and for all.

Definition 5.1 (Soundness). An axiom is sound iff all its instances are valid,
i.e., true in all states.

From now on, every time we see a formula of the form [α ∪β]P, we remember
that axiom [∪] identifies the corresponding formula [α]P∧ [β]P that is equivalent to
it. Whenever we find a formula [γ ∪δ]Q, we also remember that axiom [∪] says that
formula [γ]Q∧ [δ]Q is equivalent to it, just by instantiation [11] of axiom [∪]. The
fact that axiom [∪] is sound ensures that we do not need to worry about whether
such reasoning is correct every time we need it. Soundness of [∪] guarantees that
every instance of [∪] is sound [11]. We can, thus, treat axiom [∪] syntactically and
mechanically and apply it as needed, like a machine would.

But because soundness is such a big deal (a conditio sine qua non in logic, i.e.,
something without which logic could not be), we will prove the soundness of axiom
[∪] carefully, even if we essentially already did that in our informal argument above.

Proof (of Lemma 5.1). The fact that axiom [∪] is sound can be proved as fol-
lows. Since [[α ∪β]] = [[α]]∪ [[β]], we have that (ω,ν) ∈ [[α ∪β]] iff (ω,ν) ∈ [[α]]
or (ω,ν) ∈ [[β]]. Thus, ω ∈ [[[α ∪β]P]] iff both ω ∈ [[[α]P]] and ω ∈ [[[β]P]]. ⊓⊔

Why is soundness so critical? Well, because, without it, we could accidentally de-
clare a system safe that is not in fact safe, which would defeat the whole purpose
of verification and possibly put human lives in jeopardy when they are entrusting
their lives to an unsafe CPS. Unfortunately, soundness is actually not granted in all
verification techniques for hybrid systems. But we will make it a point in this book
to only ever use sound reasoning and to scrutinize all verifications for soundness
right away. Soundness is something that is relatively easy to establish in a logic and
proof approach, because it localizes into the separate study of soundness of each of
its axioms.

5.3.3 Dynamic Axioms for Assignments

Part of the dL formula (5.8) that remains to be shown after using the [∪] axiom in-
volves another sequential composition ?x = 0;v := cv. But even if Sect. 5.2 already
discussed one possibility for reducing safety properties of sequential compositions
to properties of the parts using appropriate intermediate conditions, we still need a
way of handling the remaining assignment and test. Let’s start with the assignment.

HPs may involve discrete assignments. Recall their semantics from Sect. 3.3.2:

[[x :=e]] = {(ω,ν) : ν = ω except that ν [[x]] = ω[[e]]}

5.3 Dynamic Axioms for Dynamical Systems 147

ω ν

p(e)
x := e

p(x)

How can dL formula [x :=e]p(x) be rephrased equivalently in simpler ways? It
expresses that p(x) holds always after assigning the value of term e to variable x.
Well, in fact, there is exactly one way of assigning e to x. So, the formula [x :=e]p(x)
expresses that p(x) holds after changing the value of x to that of e.

Lemma 5.2 ([:=] assignment axiom). The assignment axiom is sound:

[:=] [x :=e]p(x)↔ p(e)

The assignment axiom [:=] expresses that p(x) is true after the discrete assign-
ment assigning term e to x iff p(e) was already true before that change, since the
assignment x :=e will change the value of variable x to the value of e.

For example, axiom [:=] immediately allows us to conclude that the dL formula
[x :=a · x]x · (x+1)≥ 0 is equivalent to the first-order formula (a ·x) · (a ·x+1)≥ 0,
which is formed by replacing all free occurrences of x in postcondition x ·(x+1)≥ 0
with its new value a · x.

If we succeed in splitting (5.8) into pieces, including its sequential composition
[?x = 0;v := cv](0≤x∧x≤H) with yet another intermediate condition F according
to Sect. 5.2, we will eventually have to prove a number of dL formulas including

F → [v := cv](0≤x∧ x≤H)

The assignment axiom [:=] equivalently reduces this formula to F → 0≤x∧ x≤H,
because the affected variable v does not occur in the postcondition. That is quite
peculiar for the bouncing ball, because it will make the damping coefficient c disap-
pear entirely from the proof. While we are always happy to see complexity reduced,
this should make us pause our train of thought for a moment. Chapter 4 taught us
that the safety of the bouncing ball depends on the damping coefficient being c≤ 1.
How could the proof ever possibly succeed if we misplace c in the proof?

Before you read on, see if you can find the answer for yourself.

While the bouncing ball exhibits unsafe behavior if c > 1, that counterexample
requires the ball to bounce back up from the ground, which is a capability that
the simplified single-hop bouncing ball (5.1) lost compared to the full model with
its repetition. That explains why our attempt to prove (5.1) can succeed when it
removes c, but also indicates that we will need to make sure not to ignore the velocity
v, whose change depends on c in a proof of the repetitive bouncing ball (Chap. 7).

148 5 Dynamical Systems & Dynamic Axioms

Expedition 5.1 (Admissibility caveats for the p(x) notation in axioms)

There is a simple elegant way of understanding the notation p(x) and p(e)
in axiom [:=], which, unfortunately, needs more elaboration than this chapter
provides. After that sophistication, uniform substitutions [11], which we inves-
tigate in Part IV, justify that both can be read as predicate symbol p applied to
the variable x to form p(x) and applied to the term e to form p(e), respectively.
Uniform substitutions replace predicate symbols (similarly for function sym-
bols) as long as no p(e) occurs in the scope of a quantifier or modality binding
a variable of their replacements other than the occurrences in e itself.

Till then, we need a simple, intuitive, but correct reading of p(x) and p(e)
in axiom [:=] and elsewhere. The basic idea is that p(e) stands for the same
formula that p(x) does, except that all free occurrences of x are replaced by e

and that this substitution requires that x does not occur in p(x) in a quantifier
for or a modality with an assignment or with a differential equation for x or a
variable of e. For example, [x :=x+ y]x≤ y2↔ x+y≤ y2 is an instance of [:=],
but [x :=x+ y]∀y(x ≤ y2)↔ ∀y(x+ y ≤ y2) is not, because a variable of x+ y

is bound in p(x). Indeed, y would refer to different variables in the two sides so
needs to be renamed first. Likewise, [x :=x+ y][y :=5]x≥ 0↔ [y :=5]x+ y≥ 0
is no instance of [:=], because a variable of x+ y is bound by y := 5 in p(x).
Free and bound variables will be defined in Sect. 5.6.5.

5.3.4 Dynamic Axioms for Differential Equations

Some of the decompositions of the bouncing-ball safety property led to safety prop-
erties of differential equations, for example (4.29) discussed again at the end of
Sect. 5.2.

HPs often involve differential equations. Recall their semantics from Sect. 3.3.2.

Definition 3.3 (Transition semantics of ODEs).

[[x′ = f (x)&Q]] =
{
(ω,ν) : ϕ(0) = ω except at x′ and ϕ(r) = ν for a solution

ϕ:[0,r]→S of any duration r satisfying ϕ |= x′ = f (x)∧Q
}

where ϕ |= x′ = f (x)∧Q, iff for all times 0≤ z≤ r: ϕ(z) ∈ [[x′ = f (x)∧Q]] with

ϕ(z)(x′)
def
= dϕ(t)(x)

dt
(z) and ϕ(z) = ϕ(0) except at x,x′.

ω ν
x′ = f (x)

p(x)
x :=y(t)

5.3 Dynamic Axioms for Dynamical Systems 149

One possible approach to prove properties of differential equations is to work
with a solution if one is available (and expressible in dL). Indeed, probably the first
thing you learned about what to do with differential equations was to solve them.

Lemma 5.3 ([′] solution axiom). The solution axiom schema is sound:

[′] [x′ = f (x)]p(x)↔∀t≥0 [x :=y(t)]p(x) (y′(t) = f (y))

where y(·) solves the symbolic initial value problem y′(t) = f (y),y(0) = x.

Solution y(·) is unique since f (x) is smooth (Theorem 2.2). Given such a solution
y(·), continuous evolution along differential equation x′ = f (x) can be replaced by
a discrete assignment x :=y(t) with an additional quantifier for the evolution time t.
It goes without saying that variables such as t are fresh in axiom [′] and other ax-
ioms. Conventional initial value problems (Definition 2.1) are numerical with con-
crete numbers as initial values, not symbolic variables x. This is not enough for
our purpose, because we need to consider all states in which the ODE can start,
which may be uncountably many. That is why axiom [′] solves one symbolic initial
value problem, instead, since we can hardly solve uncountably many numerical ini-
tial value problems. Observe that axiom [′] refers to y(t) at all times t ≥ 0, which
implies that the global solution y needs to exist for all times for axiom [′].

Note 33 (Discrete vs. continuous dynamics) Notice something quite intrigu-
ing and peculiar about axiom [′]. It relates a property of a continuous system
to a property of a discrete system. The HP on the left-hand side describes a
smoothly changing continuous process, while the right-hand side describes
an abruptly, instantaneously changing discrete process. Still, their respective
properties coincide, thanks to the time quantifier. This is the beginning of an
astonishingly intimate relationship of discrete and continuous dynamics [9].

What we have seen so far about the dynamics of differential equations does not
yet help us prove properties of differential equations with evolution domain con-
straints (x′ = f (x)&q(x)). It also does not yet tell us what to do if we cannot solve
the differential equation or if the solution is too complicated to be expressed as a
term. We will get to those matters in more detail in Part II. But the evolution domain
constraint q(x) can be handled directly as well by adding a condition checking that
the evolution domain was always true until the point in time of interest:

Lemma 5.4 ([′] solution with domain axiom). This axiom schema is sound:

[′] [x′ = f (x)&q(x)]p(x)↔∀t≥0

(∀0≤s≤t q(y(s)))→ [x :=y(t)]p(x)

)

where y(·) solves the symbolic initial value problem y′(t) = f (y),y(0) = x.

The effect of the additional constraint on q(x) is to restrict the continuous evolu-
tion such that its solution y(s) remains in the evolution domain q(x) at all intermedi-
ate times s≤ t. This constraint simplifies to true if the evolution domain q(x) is true,

150 5 Dynamical Systems & Dynamic Axioms

which makes sense, because there are no special constraints on the evolution (other
than the differential equations) if the evolution domain is described by true; hence
it is the full state space. In fact, because both axioms from Lemmas 5.3 and 5.4 give
essentially the same result if q(x) is true, we gave both the same name [′]. For axiom
schema [′], it is important, however, that x′ = f (x)&q(x) is an explicit differential
equation, so no x′ occurs in f (x) or q(x) (or p(x)), because otherwise the notions of
solutions become more complicated.

Axiom [′] explains the rôle of evolution domain constraints quite directly. The dL

formula [x′ = f (x)&q(x)]p(x) is true iff the postcondition p(x) is true in all states
that can be reached by following the solution of the differential equation x′ = f (x)
if that solution has always been in the evolution domain q(x) at all times.

In order to build our way up to using axiom [′] on the formula (4.29) that was
repeated in Sect. 5.2, first consider a case with only one differential equation:

A→ [x′ = v]E

Axiom [′] swiftly uses the unique solution x(t) = x+ vt to reduce this formula to:

A→∀t≥0 [x :=x+ vt]E

Let’s add the second differential equation, the one for velocity v, back in:

A→ [x′ = v,v′ = g]p(x) (5.9)

Axiom [′] simplifies this formula, too, but things become a bit more complicated:

A→∀t≥0 [x :=x+ vt g

2
t2]p(x) (5.10)

First of all, the solution for x became more complex, because the velocity v now
keeps changing over time in (5.9). That is perfectly in line with what we have
learned about the solutions of differential equations in Chap. 2. Thinking carefully,
we notice that (5.10) is the correct reduction of (5.9) by axiom schema [′] only if
its postcondition p(x) indeed only mentions the position x and not the velocity v. In
fact, this is the reason why the postcondition was somewhat suggestively phrased as
p(x) in (5.9) to indicate that it is a condition on x. For a postcondition p(x,v) on x

and v or a general postcondition E that can mention any variable, axiom schema [′]
for differential equation systems solves all such differential equations. Thus,

A→ [x′ = v,v′ = g]E (5.11)

simplifies by axiom schema [′] to:

A→∀t≥0 [x :=x+ vt g

2
t2; v :=v gt]E (5.12)

Now, the only remaining issue is that even this insight does not quite take care of
handling the bouncing ball’s gravity property (4.29), since that is restricted to the

5.3 Dynamic Axioms for Dynamical Systems 151

evolution domain constraint x ≥ 0. But adapting these thoughts to the presence of
an evolution domain constraint has now become as easy as switching from using ax-
iom schema [′] from Lemma 5.3 without evolution domains to, instead, using axiom
schema [′] from Lemma 5.4 with evolution domains. Then

A→ [x′ = v,v′ = g&x≥ 0]E

simplifies by the evolution domain solution axiom schema [′] from Lemma 5.4 to

A→∀t≥0
(
∀0≤s≤t (x+ vs g

2
s2 ≥ 0)

)
→ [x :=x+ vt g

2
t2; v :=v gt]E

)

Significantly more advanced techniques for proving properties of more compli-
cated differential equations, including differential equations without closed-form
solutions, will be explored in Part II.

5.3.5 Dynamic Axioms for Tests

The bouncing-ball formula includes test statements, which we need to handle with
an appropriate axiom as well. Recall their semantics from Sect. 3.3.2:

[[?Q]] = {(ω,ω) : ω ∈ [[Q]]}

ω

?Q

if ω ∈ [[Q]]
ω

?Q
/

if ω 6∈ [[Q]]

How can we equivalently rephrase [?Q]P, which expresses that P always holds
after running the test ?Q successfully? Tests do not change the state but impose
conditions on the current state. Hence, P is always true after running ?Q only if P is
already true initially, but there is only a way of running ?Q if Q is also true.

Lemma 5.5 ([?] test axiom). The test axiom is sound:

[?] [?Q]P↔ (Q→ P)

Tests in [?Q]P are proven by assuming that the test succeeds with an implication
in axiom [?], because test ?Q can only make a transition when condition Q actually
holds true. In states where test ?Q fails, no transition is possible and the failed at-
tempt to run the system is discarded. If no transition exists for an HP α , there is
nothing to show for [α]P formulas, because their semantics requires P to hold in
all states reachable by running α , which is vacuously true if no states are reachable.
From left to right, axiom [?] for dL formula [?Q]P assumes that formula Q holds true
(otherwise there is no transition and thus nothing to show) and shows that P holds

152 5 Dynamical Systems & Dynamic Axioms

after the resulting no-op. The converse implication from right to left is by case dis-
tinction. Either Q is false, so ?Q cannot make a transition and there is nothing to
show, or Q is true, but then also P is true according to the implication.

For example, the part [?x 6= 0](0≤x∧ x≤H) of dL formula (5.8) can be replaced
equivalently by the first-order formula x 6= 0→ 0≤x∧ x≤H using axiom [?]. After
all, the two formulas are equivalent according to the equivalence in axiom [?].

5.3.6 Dynamic Axioms for Sequential Compositions

For sequential compositions α;β , Sect. 5.2 proposed the use of an intermediate con-
dition E characterizing all intermediate states between α and β by way of Hoare’s
proof rule following the idea from Fig. 5.2:

H;
A→ [α]E E→ [β]B

A→ [α;β]B

This proof rule can, indeed, sometimes be useful, but it comes with a significant
cost compared to the simplicity and elegance of axiom [∪]. When using rule H; from
the desired conclusion to the premises, it does not say how to choose the intermedi-
ate condition E. Using rule H; successfully requires us to find the right intermediate
condition E, for if we don’t, the proof won’t succeed, as we had seen in Sect. 4.8.1.
If rule H; were all we have at our disposal for sequential compositions, then we
would have to invent a good intermediate condition E for every single sequential
composition in the system.

Fortunately, differential dynamic logic provides a better way that we also identify
by investigating the dynamical system resulting from α;β . Recall from Sect. 3.3.2:

[[α;β]] = [[α]]◦ [[β]] def
= {(ω,ν) : (ω,µ) ∈ [[α]],(µ,ν) ∈ [[β]] for some µ} (5.13)

By its semantics, the dL formula [α;β]P is true in a state ω iff P is true in all
states that α;β can reach according to [[α;β]] from ω , i.e., all those states for which
(ω,ν) ∈ [[α;β]]. Which states are those? And how do they relate to the states reach-
able by α or by β alone? They do not relate to those in a way that is as direct as for
axiom [∪]. But they still relate, and they do so by way of (5.13).

Postcondition P has to be true in all states reachable by α;β from ω for [α;β]P to
be true at ω . By (5.13), those are exactly the states ν to which we can get by running
β from an intermediate state µ to which we have gotten from ω by running α . Thus,
for [α;β]P to be true at ω , it is necessary that P holds in all states ν to which we can
get by running β from an intermediate state µ to which we get by running α from
ω . Consequently, [α;β]P is only true at ω if [β]P holds in all those intermediate
states µ to which we can get from ω by running α . How do we characterize those
states? How can we then express these thoughts in a single logical formula of dL?

5.3 Dynamic Axioms for Dynamical Systems 153

Before you read on, see if you can find the answer for yourself.

If we want to express that [β]P holds in all states µ to which we can get from ω
by running α , then that is exactly what the truth of dL formula [α][β]P at ω means,
because this is precisely the semantics of the modality [β]:

ω µ ν

α;β
[α;β]P

[α][β]P

α

[β]P
β

P

Consequently, if [α][β]P is true in ω , then so is [α;β]P, as µ ∈ [[[β]P]] at all such µ:

ω ∈ [[[α][β]P→ [α;β]P]]

Reexamining the argument backwards, we see the converse implication also holds,

ω ∈ [[[α;β]P→ [α][β]P]]

The same argument works for all states ω , so both implications are even valid.

Lemma 5.6 ([;] composition axiom). The composition axiom is sound:

[;] [α;β]P↔ [α][β]P

Proof. Since [[α;β]] = [[α]]◦ [[β]], we have that (ω,ν) ∈ [[α;β]] iff (ω,µ) ∈ [[α]] and
(µ,ν) ∈ [[β]] for some intermediate state µ . Hence, ω ∈ [[[α;β]P]] iff µ ∈ [[[β]P]] for
all µ with (ω,µ) ∈ [[α]]. That is ω ∈ [[[α;β]P]] iff ω ∈ [[[α][β]P]]. ⊓⊔
Sequential compositions are proven using nested modalities in axiom [;]. From right
to left: If, after all α-runs, it is the case that all β -runs lead to states satisfying P

(i.e., [α][β]P holds), then all runs of the sequential composition α;β lead to states
satisfying P (i.e., [α;β]P holds), because α;β cannot do anything but follow α
through some intermediate state to run β . The converse implication uses the fact
that if after all α-runs all β -runs lead to P (i.e., [α][β]P), then all runs of α;β lead
to P (that is, [α;β]P), because the runs of α;β are exactly those that first do any α-
run, followed by any β -run. Again, it is crucial that dL is a full logic that considers
reachability statements as modal operators, which can be nested, for then both sides
in axiom [;] are dL formulas.

Axiom [;] directly explains sequential composition α;β in terms of a structurally
simpler formula, one with nested modal operators but simpler hybrid programs. Us-
ing axiom [;] by reducing occurrences of its left-hand side to its right-hand side de-
composes formulas into structurally simpler pieces, thereby making progress. One
of the many ways of using axiom [;] is, therefore, captured in this proof rule:

[;]R
A→ [α][β]B

A→ [α;β]B

154 5 Dynamical Systems & Dynamic Axioms

Rule [;]R is easily justified from axiom [;] just by applying the equivalence [;]. Com-
paring rule [;]R to Hoare’s rule H;, the new rule [;]R is easier to use, because it does
not require us to first identify and provide an intermediate condition E like rule H;
would. It does not branch into two premises, which helps to keep the proof lean. Is
there a way of reuniting [;]R with H; by using the expressive power of dL?

Before you read on, see if you can find the answer for yourself.

Yes, indeed, there is a smart choice for the intermediate condition E that makes

H; behave almost as the more efficient [;]R would. The clever choice E
def≡ [β]B:

[;]R
A→ [α][β]B [β]B→ [β]B

A→ [α;β]B

which trivializes the right premise, because all formulas imply themselves, and
makes the left premise identical to that of rule [;]R. Differential dynamic logic in-
ternalizes ways of expressing necessary and possible properties of hybrid programs
and makes both first-class citizens in the logic. That cuts down on the amount of
input that is needed when conducting proofs. Referring back to Fig. 5.2, rule [;]R
corresponds to the case of rule H; when using [β]B as the most precise intermediate
condition E that implies that all runs of β satisfy B; see Fig. 5.3.

The sequential composition axiom [;] can be used to justify rule [;]R, which is
why the latter rule will not be mentioned any more. The axiom can also be used di-
rectly to justify replacing any subformula of the form [α;β]P with the corresponding
[α][β]P or vice versa. For example, axiom [;] can be used to simplify formula (5.8)
to the following equivalent:

E→ [?x = 0][v := cv](0≤x∧ x≤H)∧
[
?x 6= 0

]
(0≤x∧ x≤H)

This formula can be simplified further by axioms [?] and [:=] to a first-order formula:

E→ (x = 0→ 0≤x∧ x≤H)∧ (x 6= 0→ 0≤x∧ x≤H)

Fig. 5.3 Illustration of dy-
namic axiom for sequential
composition

ω

µ1

µ2

µn

ν1

ν2

ν3

ν4

νn

[α;β]B

[α][β]B
[β]B

α

[β]B

B

B

β
B

B

B

β

β

5.3 Dynamic Axioms for Dynamical Systems 155

5.3.7 Dynamic Axioms for Loops

At this point, all HP operators have an axiom except for repetitions. Recall the se-
mantics of loops from Sect. 3.3.2:

[[α∗]] = [[α]]∗ =
⋃

n∈N
[[αn]] with αn+1 ≡ αn;α and α0 ≡?true

How can we prove the property [α∗]P of a loop? Is there a way of reducing
properties of loops to properties of simpler systems in similar ways to the other
axioms of differential dynamic logic?

Before you read on, see if you can find the answer for yourself.

It turns out that repetitions do not support such a straightforward decomposition
into obviously simpler pieces as the other HP operators did. Why is that? Running a
nondeterministic choice α ∪β amounts to running either HP α or β , both of which
are smaller than the original α ∪β . Running a sequential composition α;β amounts
to first running HP α and then running β , both of which are smaller. But running
a nondeterministic repetition α∗ amounts to either not running anything at all or
running α at least one time, so running α once and then subsequently running α∗

to run any number of repetitions of α again. The latter is hardly a simplification
compared to what HP α∗ started out with. Nevertheless, there is a way of casting
these thoughts into an axiom that reduces dL formula [α∗]P to an equivalent one at
least in some sense of the word “reduction.”

ω ν

α∗

P∧ [α][α∗]P
α

[α∗]P

α α
P

α∗

Lemma 5.7 ([∗] iteration axiom). The iteration axiom is sound:

[∗] [α∗]P↔ P∧ [α][α∗]P

Proof. Since loops repeat either zero times or at least one time, it is easy to see from
their semantics that:

[[α∗]] = [[α0]]∪ [[α;α∗]]

Let ω ∈ [[[α∗]P]], then ω ∈ [[P]] by choosing zero iterations and ω ∈ [[[α][α∗]P]] by
choosing at least one iteration. Conversely, let ω ∈ [[P∧ [α][α∗]P]]. Then consider a
run of α∗ from ω to ν with n ∈ N iterations, i.e., (ω,ν) ∈ [[αn]]. The proof shows
ν ∈ [[P]] by considering all cases of n:

156 5 Dynamical Systems & Dynamic Axioms

0. Case n = 0: Then ν = ω satisfies ν ∈ [[P]] by the first conjunct.
1. Case n ≥ 1: There is a state µ with (ω,µ) ∈ [[α]] and (µ,ν) ∈ [[αn 1]]. By the

second conjunct, µ ∈ [[[α∗]P]]. Hence, ν ∈ [[P]], since (µ,ν) ∈ [[αn 1]]⊆ [[α∗]].
⊓⊔

Axiom [∗] is the iteration axiom, which partially unwinds loops. It uses the fact
that P always holds after repeating α (i.e., [α∗]P), if P holds at the beginning (so P

holds after zero repetitions), and if, after one run of α , P holds after every number of
repetitions of α , including zero repetitions (i.e., [α][α∗]P). So axiom [∗] expresses
that [α∗]P holds iff P holds immediately and after one or more repetitions of α .

The same axiom [∗] can be used to unwind loops N ∈N times, which corresponds
to Bounded Model Checking [1], which Chap. 7 will investigate. If the formula is
not valid, a bug has been found, otherwise N increases. An obvious issue with this
simple approach is that we can never stop increasing how often we unroll the loop
if the formula is actually valid, because we can never find a bug then. Chap. 7 will
discuss proof techniques for repetitions based on loop invariants that are not subject
to this issue. In particular, axiom [∗] is characteristically different from the other
axioms discussed in this chapter. Unlike the other axioms, axiom [∗] does not exactly
get rid of the formula on the left-hand side. It just puts it in a different syntactic
place, which does not sound like much progress.5

5.3.8 Axioms for Diamonds

All previous axioms were for box modalities [α] with a specific shape of the hybrid
program α . The diamond modalities 〈α〉 also deserve axioms in order to equip them
with rigorous reasoning principles. The most economical way of doing that is to
understand, once and for all, for any arbitrary HP α , the relationship of the diamond
modality 〈α〉 to the box modality [α].

Recall the semantics of modalities from Definition 4.2:

[[〈α〉P]] = {ω : ν ∈ [[P]] for some state ν such that (ω,ν) ∈ [[α]]}
[[[α]P]] = {ω : ν ∈ [[P]] for all states ν such that (ω,ν) ∈ [[α]]}

Both modalities are based on the reachability relation [[α]]⊆S×S corresponding
to the HP α . The difference is that [α]P is true in a state ω iff P is true in all states
ν that HP α can reach from ω , while 〈α〉P is true in a state ω iff P is true in at least

one state ν that HP α can reach from ω . This makes the modalities 〈α〉 and [α]
duals. If 〈α〉P is true in a state, so there is a way of running α to a state where P is
true, then [α]¬P could not possibly be true in that state as well, because P is already
true in one state that α reaches, so ¬P cannot be true in the same state. Likewise, if
〈α〉P is false in a state, then [α]¬P must be true, because, apparently, there is no way

5 With a much more subtle and tricky analysis, it is possible to prove that [∗] still makes sufficient
progress by revealing the loop’s recursion [10]. But this is far beyond the scope of this book.

5.4 A Proof of a Short Bouncing Ball 157

of running α to a state where P is true, so ¬P must be true in all states reached after
running α (which could even be the empty set of states). These thoughts lead to the
duality axiom, which is the direct counterpart of the equivalence ∃xP↔ ¬∀x¬P,
just for modalities.

Lemma 5.8 (〈·〉 duality axiom). The diamond duality axiom is sound:

〈·〉 〈α〉P↔¬[α]¬P

5.4 A Proof of a Short Bouncing Ball

Now that we have understood so many axioms, let us use them to prove the (single-
hop) bouncing ball that we have begun to consider:

0≤ x∧ x = H ∧ v = 0∧g > 0∧1≥ c≥ 0→
[
{x′ = v,v′ = g&x≥ 0};(?x = 0;v := cv∪ ?x 6= 0)

]
(0≤ x∧ x≤ H) (5.1*)

Before proceeding, let’s modify the hybrid program ever so subtly in two ways so
that there’s no longer an evolution domain, just so that we do not have to deal with
evolution domains yet. We boldly drop the evolution domain constraint and make
up for it by modifying the condition in the second test:

0≤ x∧ x = H ∧ v = 0∧g > 0∧1≥ c≥ 0→
[
{x′ = v,v′ = g};(?x = 0;v := cv∪ ?x≥ 0)

]
(0≤ x∧ x≤ H) (5.14)

Hold on, why is that okay? Doesn’t our previous investigation say that Quantum
could suddenly fall through the cracks in the floor if physics evolves for hours before
giving the poor bouncing-ball controller a chance to react? To make sure Quantum
does not panic in light of this threat, solve Exercise 5.12 to investigate.

To fit things on the page more succinctly, we use some abbreviations:

A
def≡ 0≤ x∧ x = H ∧ v = 0∧g > 0∧1≥ c≥ 0

B(x,v)
def≡ 0≤ x∧ x≤ H

{x′′ = g} def≡ {x′ = v,v′ = g}

With these abbreviations, (5.14) turns into

A→ [x′′ = g;(?x = 0;v := cv∪ ?x≥ 0)]B(x,v) (5.14*)

Successively applying the axioms is all it takes to obtain a proof for bouncing balls:

158 5 Dynamical Systems & Dynamic Axioms

A→∀t≥0

(H g

2 t2 = 0→ B(H g
2 t2, c(gt)))∧ (H g

2 t2 ≥ 0→ B(H g
2 t2, gt))

)

[:=]
A→∀t≥0 [x :=H g

2 t2]

(x = 0→ B(x, c(gt)))∧ (x≥ 0→ B(x, gt))

)

[:=]
A→∀t≥0 [x :=H g

2 t2][v := gt]

(x = 0→ B(x, cv))∧ (x≥ 0→ B(x,v))

)

[;]
A→∀t≥0 [x :=H g

2 t2;v := gt]

(x = 0→ B(x, cv))∧ (x≥ 0→ B(x,v))

)

[′]
A→ [x′′ = g]

(x = 0→ B(x, cv))∧ (x≥ 0→ B(x,v))

)

[:=]
A→ [x′′ = g]

(x = 0→ [v := cv]B(x,v))∧ (x≥ 0→ B(x,v))

)

[?],[?]
A→ [x′′ = g]

[?x = 0][v := cv]B(x,v)∧ [?x≥ 0]B(x,v)

)

[;]
A→ [x′′ = g]

[?x = 0;v := cv]B(x,v)∧ [?x≥ 0]B(x,v)

)

[∪]
A→ [x′′ = g][?x = 0;v := cv∪ ?x≥ 0]B(x,v)

[;]
A→ [x′′ = g;(?x = 0;v := cv∪ ?x≥ 0)]B(x,v)

The dL axioms indicated on the left justify that the dL formulas in the two ad-
jacent rows are equivalent. Since each step in this proof is justified by using a dL

axiom, the conclusion at the very bottom of this derivation is proved if the premise
at the very top can be proved, because truth is then inherited by the bottom from the
top by soundness of the axioms. That premise at the top

A→∀t≥0

(H g

2
t2 = 0→ B(H g

2
t2,cgt))∧ (H g

2
t2 ≥ 0→ B(H g

2
t2, gt))

)

expands out to a real arithmetic formula when expanding the abbreviations:

0≤ x∧ x = H ∧ v = 0∧g > 0∧1≥ c≥ 0→
∀t≥0

(H g

2
t2 = 0→ 0≤ H g

2
t2∧H g

2
t2 ≤ H)

∧ (H g

2
t2 ≥ 0→ 0≤ H g

2
t2∧H g

2
t2 ≤ H)

)

In this case, this remaining premise can easily be seen to be valid. The assumption
H g

2 t2 = 0 in the middle line directly implies the first conjunct of the middle line’s
right-hand side

0≤ H g

2
t2∧H g

2
t2 ≤ H

and reduces the remaining second conjunct to 0 ≤ H, which the assumption in the
first line assumed (0≤ x = H). Similarly, the assumption H g

2 t2 ≥ 0 in the last line
implies the first conjunct of its right-hand side

0≤ H g

2
t2∧H g

2
t2 ≤ H

and its second conjunct holds by assumption g > 0 from the first line and the real-
arithmetic fact that t2 ≥ 0.

How exactly first-order logic and first-order real-arithmetic formulas such as this
one can be proved in general, however, is an interesting topic for a later chapter. For
now, we are happy to report that we have just formally verified our very first CPS.
We have found a proof of (5.14). Exciting!

5.5 Summary 159

Okay, admittedly, the CPS we just verified was only a bouncing ball. And all we
know about it now is that it won’t fall through the cracks in the ground or jump high
up to the moon. But big steps for mankind start with a small step by someone.

Yet, before we get too carried away in the excitement, we still need to remember
that the formula (5.14) that we proved only expresses safety of a single-hop bounc-
ing ball. So there’s still an argument to be made about what happens if the bouncing
ball repeats. And a rather crucial argument too, because bouncing balls let loose in
the air tend not to jump any higher anyhow without hitting the ground first, which
is where the model (5.14) stops prematurely, because it is missing a repetition. So
let’s put worrying about loops on the agenda for an upcoming chapter (Chap. 7).

Yet, there is one more pressing issue with the proof for the bouncing ball that we
derived. It worked in a somewhat undisciplined chaotic way, by using dL axioms all
over the place. This liberal proof style can be useful for manual proofs and creative
shortcuts. Since the dL axioms are sound, even such a liberal proof is still a proof.
And liberal proofs can even be very creative. But liberal proofs are also somewhat
unfocused and non-systematic, which makes them unreasonable for automation pur-
poses and can also get humans lost if the problems at hand are more complex than
the single-hop bouncing ball. That is the reason why we will investigate more fo-
cused, more systematic, and more algorithmic proofs in Chap. 6.

The other thing to observe is that the above proof, however liberal it might have
been, already had a lot more structure to it than we have made explicit so far. This
structure will be uncovered in the next chapter as well.

5.5 Summary

The differential dynamic logic axioms that we have seen in this chapter are sum-
marized in Fig. 5.4. These are dynamic axioms for dynamical systems, i.e., axioms
in differential dynamic logic (dL) that characterize dynamical systems operators in
terms of structurally simpler dL formulas. All it takes to understand the bigger sys-
tem is to apply the appropriate axiom and investigate the smaller remainders. To
summarize the individual soundness lemmas of this chapter, the axioms of dL that
are listed in Fig. 5.4 are sound, i.e., valid and so are all their instances [9, 11].

Theorem 5.1 (Soundness). The dL axioms listed in Fig. 5.4 are sound. That

is, all their instances are valid, i.e., true in all states.

There are further axioms and proof rules of differential dynamic logic that later
chapters will examine, which are also all proved sound in prior work [8, 9, 11]. The
reasoning principles and axioms identified so far are fundamental and we will carry
them with us throughout the whole textbook. Axiomatics crystallizes a semantic
relationship in a syntactic expression (the axiom), which we justify to be sound
from the semantics once and then use mechanically any number of times in our CPS
proofs. In fact, this will turn out to work so well that differential dynamic logics

160 5 Dynamical Systems & Dynamic Axioms

also enjoy completeness guarantees about provability of all valid formulas with its
axioms from elementary properties [5, 9, 11]. But we will not pursue completeness
until we have reached the most appropriate level of understanding in a generalization
in Chap. 16.

The equivalence axioms in Fig. 5.4 are primarily meant to be used by replacing
the left-hand side (marked in blue) with the structurally simpler right-hand side.
With the notable exception of iteration axiom [∗], using these equivalences from left
to right decomposes a property of a more complex HP into properties of obviously
simpler subprograms.

Fig. 5.4 Summary of sound differential dynamic logic axioms from this chapter

[:=] [x :=e]p(x)↔ p(e)

[?] [?Q]P↔ (Q→ P)

[′] [x′ = f (x)]p(x)↔∀t≥0 [x :=y(t)]p(x) (y′(t) = f (y))

[∪] [α ∪β]P↔ [α]P∧ [β]P

[;] [α;β]P↔ [α][β]P

[∗] [α∗]P↔ P∧ [α][α∗]P

〈·〉 〈α〉P↔¬[α]¬P

5.6 Appendix

This appendix provides additional axioms for dL that provide conceptual insights
and are sometimes useful for shortcuts in proofs. These additions are not on the
critical path for most CPSs, but still advance our general structural understanding.

5.6.1 Modal Modus Ponens Has Implications on Boxes

Each of the axioms discussed in this chapter was specific to one operator of dL. But
there are also axioms that are common to all hybrid programs α .

The next axiom provides a way of shoving implications through box modalities.
If we would like to show [α]Q but only know [α]P, then what do we need to know
about the relationship of P and Q for [α]P to imply [α]Q?

Before you read on, see if you can find the answer for yourself.

5.6 Appendix 161

It would suffice if P were to imply Q unconditionally, because if all runs of α
satisfy P, then all runs of α also satisfy Q when P implies Q. But, in fact, it even
suffices if P only implies Q after all runs of α , because [α]Q only claims that Q

holds after all runs of α , not in general.

Lemma 5.9 (K modal modus ponens axiom). The modal modus ponens ax-
iom is sound:

K [α](P→ Q)→ ([α]P→ [α]Q)

Proof. To show soundness, consider any state ω in which the assumed left-hand side
[α](P→Q) of the implication is true, so ω ∈ [[[α](P→ Q)]], and show that the right-
hand side is true as well. In order to show that [α]P→ [α]Q is true in ω , assume
that its respective left-hand side is true, so ω ∈ [[[α]P]], and show that its right-hand
side [α]Q is true in ω . In order to show the latter ω ∈ [[[α]Q]], we consider any state
ν with (ω,ν) ∈ [[α]] and need to show ν ∈ [[Q]]. Using the assumption ω ∈ [[[α]P]],
we know that ν ∈ [[P]] since (ω,ν) ∈ [[α]]. Using the assumption ω ∈ [[[α](P→ Q)]],
we also know that ν ∈ [[P→ Q]] since (ω,ν) ∈ [[α]]. Now ν ∈ [[P]] and ν ∈ [[P→ Q]]
imply ν ∈ [[Q]], which concludes the proof of ω ∈ [[[α]Q]], because ν was an arbi-
trary state with (ω,ν) ∈ [[α]]. ⊓⊔

Axiom K distributes an implication over a box modality. It can be used to show
postcondition Q of HP α by instead proving [α]P if the new postcondition P implies
the original postcondition Q after all runs of the respective program α . For example,
x2 > 0 implies x > 0 after all runs of x := x · x, but not in general, because that
particular program happens to assign a nonnegative value to x, which is required for
x2 > 0 to imply x > 0. But showing x2 > 0 after x := x · x would still suffice by K to
also show postcondition x > 0 for this program. Admittedly, that is no easier in this
particular case, but may help in others. Of course, if P→ Q is valid, so true in all
states, then it is also true after all runs of α (Gödel’s generalization rule G explored
in Sect. 5.6.3), such that formula [α]P will imply [α]Q by axiom K.

One way of using axiom K is from right to left in order to reduce a proof of [α]Q
to a proof of [α]P together with a proof of [α](P→Q). Such a use of axiom K can be
understood as showing postcondition Q by, instead, proving another postcondition
P and then merely showing that the already-established postcondition Q implies the
originally desired postcondition P after all runs of HP α .

Implication is not the only operator that box modalities distribute over. They also
distribute over conjunctions.

Lemma 5.10 ([]∧ boxes distribute over conjunctions). This axiom is sound:

[]∧ [α](P∧Q)↔ [α]P∧ [α]Q

The formula []∧ would be a sound axiom. The only reason why it is not officially
adopted as an axiom is because it already follows from axiom K (Exercise 5.17).

162 5 Dynamical Systems & Dynamic Axioms

5.6.2 Vacuous State Change if Nothing Relevant Ever Changes

The axioms discussed in the main part of this chapter were not just specific to one
operator of dL, but also, for good reasons, are very precise about capturing the exact
effect of the respective programs. That is not always required. Sometimes a coarse
overapproximation of the effect of a program suffices for an argument. That happens
if the variables that a postcondition p depends on are not even modified by program
α . In that case, p is always true after running α if p was true before, because its
truth-value does not change when running a program α that does not change the
free variables of p. This reasoning is captured in the vacuous axiom V.

Lemma 5.11 (V vacuous axiom). The vacuous axiom is sound:

V p→ [α]p (FV (p)∩BV (α) = /0)

where no free variable of p is bound (written) in α .

Axiom V makes it possible to prove that the truth of a formula p is pre-
served when running an HP α that does not modify the free variables of p. For
example, if x > z holds initially, then it continues to hold always after running
y′ = x, because that program changes neither x nor z but merely y (and y′). Indeed,
x > z→ [y′ = x]x > z by axiom V. Of course, because y is changed by the HP y′ = x

and read by postcondition x > y, axiom V does not apply to x > y→ [y′ = x]x > y,
which is indeed false in an initial state where x = 1 and y = 0.

5.6.3 Gödel Generalizes Validities into Boxes

Axiom V expresses that the truth of a formula is preserved when running HP α
if the formula has no free variables modified by α . There is also a way to show
that a formula P always holds after running an HP α even if that HP modifies free
variables of P. But that requires more than just the truth of the formula P in the
initial state. After all, any arbitrary HP α might very well affect the truth-value of a
formula if it modifies the free variables of P.

But if formula P is not just true initially but valid, so true in all states, then it will
certainly still be true always after running any HP α no matter what variables that
program modifies. So, if P is valid, then [α]P is valid as well. Obviously: If P is true
in all states, then it is also true in all states that can be reached after running α .

Lemma 5.12 (G Gödel generalization rule). The Gödel rule is sound:

G
P

[α]P

5.6 Appendix 163

Proof. Soundness for proof rules means that validity of the premise implies validity
of the conclusion. If premise P is valid, then it is true in all states. Then the con-
clusion [α]P is valid, because it is true in any state ω , since ν ∈ [[P]] for all states ν
including all states ν for which (ω,ν) ∈ [[α]]. ⊓⊔

This is our first example of a proof rule. If we can prove its premise P above the
bar, then it is valid, so the conclusion [α]P below the bar is proved by rule G. For
example, x2 ≥ 0 is valid, so by G is also true after any HP, which implies validity of
[x′ = x3 +1]x2 ≥ 0. The truth of the postcondition x2 ≥ 0 simply does not depend
on the HP x′ = x3 +1 at all, because the postcondition is true in any state.

5.6.4 Monotonicity of Postconditions

Gödel’s generalization rule G is a global version of the axiom V in the sense that
rule G expresses that validity of P in all states is preserved after an [α] modality
while axiom V expresses that the truth of p (in the initial state) is preserved after an
[α] modality if α does not modify variables of p.

Similarly, the proof rule M[·] is a global version of axiom K in the sense that rule
M[·] uses validity of an implication P→ Q, while axiom K merely requires truth
of P→ Q (albeit after all runs of α). Rule M[·] is the monotonicity rule expressing
that if P implies Q, so Q is true in every state where P is true (premise), then [α]P
also implies [α]Q, so [α]Q is true in ever state where [α]P is true (conclusion).
Obviously: if Q is true in every state in which P is true, then [α]Q is true in every
state in which [α]P is true, because P being true after all runs of α implies that Q is
then also true after all runs of α .

Lemma 5.13 (M[·] monotonicity rule). The monotonicity rules are sound:

M[·] P→ Q

[α]P→ [α]Q
M

P→ Q

〈α〉P→ 〈α〉Q

Proof. If the premise P→Q is valid, then Q is true in every state in which P is true
in, because [[P]] ⊆ [[Q]]. Consequently, in every state in which [α]P is true, [α]Q is
true, too, because if all runs of α lead to states satisfying P then they also all lead to
states satisfying Q. In any state ω for which ω ∈ [[[α]P]], it is the case that ν ∈ [[P]],
hence also ν ∈ [[Q]], for all states ν with (ω,ν) ∈ [[α]]. That implies ω ∈ [[[α]Q]].
Soundness of rule M is similar. Alternatively, rule M[·] can also be proved sound by
deriving it from Gödel’s generalization rule G using axiom K (Exercise 5.19). ⊓⊔

For example, [x :=1;x′ = x2 +2x4]x3 ≥ x2 is difficult to prove directly. But
proving [x :=1;x′ = x2 +2x4]x ≥ 1 will turn out to be surprisingly easy in Part II
based on the intuition that the right-hand side x2 + 2x4 of the ODE will only

164 5 Dynamical Systems & Dynamic Axioms

make x increase above 1, never fall below 1. And the postcondition x ≥ 1 eas-
ily implies the original postcondition x3 ≥ x2. This example shows how mono-
tonicity rule M[·] can simplify proofs by reducing the proof of a difficult formula
[x :=1;x′ = x2 +2x4]x3≥ x2 to the proof of formula [x :=1;x′ = x2 +2x4]x≥ 1 with
a different postcondition x≥ 1, which implies the original postcondition x3 ≥ x2.

Observe how this proof with monotonicity rule M[·] is characteristically differ-
ent from what Gödel’s generalization rule G gives. Gödel’s G gives us a proof for a
postcondition that is true in all states and, thus, not a particularly informative post-
condition specific to the particular HP. Monotonicity rule M gives us an insightful
postcondition x3 ≥ x2 from a proof of another postcondition x ≥ 1 that is informa-
tive, because it is always true after HP x :=1;x′ = x2 +2x4 but not after HP x′ = 1.

Unlike Gödel’s generalization rule G, monotonicity rule M[·] has a direct coun-
terpart, rule M, for diamond modalities. A diamond counterpart for rule G cannot
exist, because even if P is valid, that does not mean that 〈α〉P is valid, because there
may not be a way of running α to any final state at all. For example, 〈?false〉true

is not valid, because there is no way of satisfying its test ?false. That problem does
not come up in the diamond montononicity rule M, because its conclusion already
assumes 〈α〉P so there is a way of running HP α .

5.6.5 Of Free and Bound Variables

The vacuous axiom V from Sect. 5.6.2 and our understanding of the assignment
axiom [:=] from Sect. 5.3.3 used a concept of free and bound variables. Free vari-
ables are all those that the value or semantics of an expression depends on. Bound
variables are all those that can change their value during an HP.

For example, the free variables of term x ·2+y ·y are {x,y} but not z, because that
term does not even mention z so its value depends only on the values of x,y but not
on that of z. Likewise, the free variables of HP a := b; x′ = v,v′ = a are {b,x,v}
but not a, because its value is only read after a is written to. The bound variables of
that HP are a,x,v (and also x′,v′ if you look closely because both change their value
by virtue of what it means to solve a differential equation) but not b, because b is
only read but never written to. The free variables of the formula ∀x(x2 ≥ y+ z) are
just {y,z}, not x, which receives a new value by the quantifier.

Definition 5.2 (Static semantics). The static semantics defines the free vari-

ables, which are all variables that the value of an expression depends on. It also
defines the bound variables, which can change their value during the evaluation
of an expression.

5.6 Appendix 165

FV(e) =
{

x ∈ V : there are ω = ω̃ on {x}∁ such that ω[[e]] 6= ω̃[[e]]
}

FV(P) =
{

x ∈ V : there are ω = ω̃ on {x}∁ such that ω ∈ [[P]] 6∋ ω̃
}

FV(α) =
{

x ∈ V : there are ω, ω̃,ν with ω = ω̃ on {x}∁ and (ω,ν) ∈ [[α]]

but no ν̃ with ν = ν̃ on {x}∁ such that (ω̃, ν̃) ∈ [[α]]
}

BV(α) =
{

x ∈ V : there are (ω,ν) ∈ [[α]] such that ω(x) 6= ν(x)
}

A variable x ∈ V is a free variable of a term e if the value of e depends on the
value of x, i.e., there are two states ω and ω̃ that only differ in the value of variable
x (so they agree on the complement {x}∁ of the singleton set {x}) where e has
different values in the two states ω and ω̃ . Likewise x ∈ V is a free variable of a
formula P if there are two different states agreeing on {x}∁ such that P is true in
one but false in the other. For an HP α , a variable x ∈ V is a free variable if, from
two different states agreeing on {x}∁, there is a run of α in one of them but no
corresponding run of α in the other (with merely a different value of x). A variable
x ∈ V is a bound variable of HP α if there is a run of α that changes the value of x.

While every state defines a real value for every variable, the truth-value of a
formula only depends on the values of its free variables. Likewise, the real value of
a term only depends on the values of its free variables, and likewise for programs
[11]. Only the bound variables of an HP α can change their value when running α .

The dynamic semantics gives a precise meaning to HPs (Chap. 3) and dL formu-
las (Chap. 4) but is inaccessible for effective reasoning purposes (unlike the syntac-
tic axioms that this chapter provides). By contrast, the static semantics of dL and
HPs defines only simple aspects of the dynamics concerning the variable usage that
can also be read off more directly from the syntactic structure without running the
programs or evaluating their dynamical effects, as we will see next. In fact, Defini-
tion 5.2 is somewhere in between. In a single definition, it captures quite concisely
what the free and bound variables of a term, formula, or program are. But it does
so using the dynamic semantics, which would have to be evaluated. The next sec-
tion shows how (sound overapproximations of) the free and bound variables can be
computed by distinguishing the cases of how a term, formula, or program was built.

5.6.6 Free and Bound Variable Analysis

Computing the set of free and bound variables according to Definition 5.2 precisely
is impossible, because every nontrivial property of programs is undecidable [13].
For example, it takes at least a moment’s thought to see that, despite first appear-
ances, x is not actually read and y not actually written to in the HP

z :=0;(y :=x+1;z′ = 1;?z < 0∪ z := z+1)

Fortunately, any supersets of the sets of free and bound variables will work cor-
rectly, for example for the conditions for the vacuous axiom V in Sect. 5.6.2. Such
supersets of the sets of free variables and bound variables are quite easily com-

166 5 Dynamical Systems & Dynamic Axioms

putable directly from the syntax. The easiest approach would be to simply take the
set of all variables that are ever read anywhere, which is a simple superset of the free
variables. The set of variables that are ever written to is an obvious superset of the
bound variables. Those may yield too many variables, because a ∈ V is not actually
free in the following HP a := b; x′ = v,v′ = a even if it is read somewhere, because
it is written to first, so receives its value during the computation.

With more thought, more precise sound (super-)sets of free and bound vari-
ables can be computed equally easily by keeping track of variables that are writ-
ten before they are read [11], but they will inevitably still be overapproximations.
Bound variables x of a formula are those that are bound by ∀xor ∃x , but also those
that are bound by modalities such as [x :=5y] or 〈x′ = 1〉 or [x :=1∪ x′ = 1] or
[x :=1∪ ?true] because of the assignment to x or differential equation for x they
contain. The scope of the bound variable x is limited to the quantified formula or to
the postcondition and remaining program of the modality.

Definition 5.3 (Bound variable). The set BV(P) ⊆ V of (syntactically) bound

variables of dL formula P is defined inductively as

BV(e≥ ẽ) = /0 accordingly for =,>,≤,<
BV(¬P) = BV(P)

BV(P∧Q) = BV(P)∪BV(Q) accordingly for ∨,→,↔
BV(∀xP) = BV(∃xP) = {x}∪BV(P)

BV([α]P) = BV(〈α〉P) = BV(α)∪BV(P)

The set BV(α) ⊆ V of (syntactically) bound variables of HP α , i.e., all those that
may potentially be written to, is defined inductively as

BV(x :=e) = {x}
BV(?Q) = /0

BV(x′ = f (x)&Q) = {x,x′}
BV(α ∪β) = BV(α;β) = BV(α)∪BV(β)

BV(α∗) = BV(α)

In a differential equation x′ = f (x) both x and x′ are bound, both change their value.
The free variables of a quantified formula are defined by removing its bound

variables, e.g., FV(∀xP) = FV(P) \{x}, since all occurrences of x in P are bound.
The bound variables of a program in a modality act in a similar way, except that
the program itself may read variables during the computation, so its free variables
need to be taken into account. By analogy to the quantifier case, it is often suspected
that FV([α]P) might be defined as FV(α)∪ (FV(P) \BV(α)). But that would be
unsound, because [x :=1∪ y :=2]x ≥ 1 would have no free variables then, contra-
dicting the fact that its truth-value depends on the initial value of x. The reason is
that x is a bound variable of that program, but only written to on some but not on all
paths. So the initial value of x may be needed to evaluate the truth of the postcon-

5.6 Appendix 167

dition x ≥ 1 on some execution paths. If a variable is must-bound, so written to on
all paths of the program, however, it can safely be removed from the free variables
of the postcondition. The static semantics, thus, first defines the subset of variables
that are must-bound (MBV(α)), so must be written to on all execution paths of α .

Definition 5.4 (Must-bound variable). The set MBV(α) ⊆ BV(α) ⊆ V of (syn-
tactically) must-bound variables of HP α , i.e., all those that must be written to on
all paths of α , is defined inductively as

MBV(x :=e) = {x}
MBV(?Q) = /0

MBV(x′ = f (x)&Q) = {x,x′}
MBV(α ∪β) = MBV(α)∩MBV(β)

MBV(α;β) = MBV(α)∪MBV(β)

MBV(α∗) = /0

Finally, the static semantics defines which variables are free so may be read. The
definition of free variables is simultaneously inductive for formulas (FV(P)) and
programs (FV(α)) owing to their mutually recursive syntactic structure. The set
FV(e)⊆ V of (syntactically) free variables of term e is the set of those that occur in
e, at least till Chap. 10. The differential terms (e)′ that will be introduced in Chap. 10
have as free variables also all differential symbols that are primed versions of the
free variables of e, so FV((e)′) = FV(e)∪FV(e)′, e.g., FV((x+ y)′) = {x,x′,y,y′}.
Definition 5.5 (Free variable). The set FV(P) of (syntactically) free variables of
dL formula P, i.e., all that occur in P outside the scope of quantifiers or modalities
binding them, is defined inductively as

FV(e≥ ẽ) = FV(e)∪FV(ẽ) accordingly for =,≤
FV(¬P) = FV(P)

FV(P∧Q) = FV(P)∪FV(Q)

FV(∀xP) = FV(∃xP) = FV(P)\{x}
FV([α]P) = FV(〈α〉P) = FV(α)∪ (FV(P)\MBV(α))

The set FV(α)⊆ V of (syntactically) free variables of HP α , i.e., all those that may
potentially be read, is defined inductively as

FV(x :=e) = FV(e)

FV(?Q) = FV(Q)

FV(x′ = f (x)&Q) = {x}∪FV(f (x))∪FV(Q)

FV(α ∪β) = FV(α)∪FV(β)

FV(α;β) = FV(α)∪ (FV(β)\MBV(α))

FV(α∗) = FV(α)

168 5 Dynamical Systems & Dynamic Axioms

The variables of dL formula P, whether free or bound, are V(P) = FV(P)∪BV(P).
The variables of HP α , whether free or bound, are V(α) = FV(α)∪BV(α).

Both x and x′ are bound in x′ = f (x)&Q since both change their value. Only x is
added to the free variables, because the behavior of the differential equation depends
on the initial value of x, not on that of x′ (as a careful look at Definition 3.3 reveals).

These syntactic definitions are correct [11], i.e., they compute supersets of the
semantic definitions of the static semantics from Definition 5.2 (Exercise 5.23). Of
course [13], syntactic computations may give bigger sets, e.g., FV(x2 x2) = {x}
even if the value of this unsimplified term really depends on no variable, and
BV(x :=x) = {x} even if this change is a no-op.

Exercises

5.1 (Necessity of assumptions). Identify which of the assumptions of (5.14) are
actually required for the proof of (5.14). Which formulas could we have dropped
from 0≤ x∧ x = H ∧ v = 0∧g > 0∧1≥ c≥ 0 and still been able to prove:

0≤ x∧ x = H ∧ v = 0∧g > 0∧1≥ c≥ 0→
[x′′ = g;(?x = 0;v := cv∪ ?x≥ 0)](0≤ x∧ x≤ H)

5.2. Show that the following axiom would be sound

Q∧P→ [?Q]P

5.3. Would the following be a sound axiom? Prove or disprove.

[x :=e]P↔ 〈x :=e〉P

5.4. Use the axioms developed in this chapter to prove validity of this dL formula:

x≥ 0→ [v :=1;(v :=v+1∪ x′ = v)]x≥ 0

5.5 (Solutions at the endpoint). Prove that the following axiom is sound when y is
the unique global solution:

∀t≥0 [x :=y(t)](q(x)→ p(x))→ [x′ = f (x)&q(x)]p(x) (y′(t) = f (y))

5.6. When misplacing the parentheses in axiom [′] to obtain the following formula,
would it be a sound axiom, too? Prove or disprove.

[x′ = f (x)&q(x)]p(x)↔∀t≥0∀0≤s≤t

q(y(s))→ [x :=y(t)]p(x)

)
(y′(t) = f (y))

As in axiom [′], you can assume y to be the unique global solution for the corre-
sponding symbolic initial value problem.

5.6 Appendix 169

5.7 (Solutions of systems). The dL formula (5.12) was suggested as a result of using
axiom schema [′] on dL formula (5.11). Would the converse order of solutions have
worked as well to reduce (5.11) to the following formula instead?

A→∀t≥0 [v :=v gt; x :=x+ vt g

2
t2]E

5.8. The axioms of dynamic logic are also useful to prove the correctness of discrete
programs. Find a way of proving the following formula which expresses that a triple
of clever assignments swaps the values of two variables in place:

x = a∧ y = b→ [x :=x+ y; y :=x y; x :=x y](x = b∧ y = a)

5.9. Would either of the following axioms be a good replacement for the [∗] axiom?
Are they sound? Are they useful?

[α∗]P↔ P∧ [α∗]P
[α∗]P↔ [α∗](P∧ [α][α∗]P)

5.10 (Soundness of dynamic axioms). All axioms need to be proved to be sound.
This textbook only gave a proper proof for some axioms, because proofs are pub-
lished elsewhere [9]. Turn the informal arguments for the other axioms into proper
soundness proofs using the semantics of dL formulas.

5.11 (Diamond axioms). This chapter identified axioms for all formulas of the form
[α]P but none for formulas of the form 〈α〉P. Identify and justify these missing
axioms. Explain how they relate to the ones given in Fig. 5.4. Find out whether you
made a mistake by proving them sound.

5.12 (Give bouncing ball back its evolution domain). Explain why the subtle
transformation from (5.1) to (5.14) was okay in this particular case.

5.13 (Nondeterministic assignments). Continuing Exercise 3.12, suppose a new
statement x :=∗ for nondeterministic assignment is added to HPs, which assigns an
arbitrary real number to the variable x. The new syntactic construct of nondetermin-
istic assignment needs a semantics to become meaningful:

7. [[x :=∗]] = {(ω,ν) : ν = ω except for the value of x, which can be any real}
Develop an axiom for [x :=∗]P and an axiom for 〈x :=∗〉P that rephrase both in
terms of simpler logical connectives, and prove soundness of these axioms.

5.14 (Differential assignments). Hybrid programs allow discrete assignments x :=e

to any variable x ∈ V . In Part II, we will discover the important rôle that differential
symbols x′ play. Part II will end up considering differential symbols x′ as variables
and will allow discrete assignments x′ :=e to differential symbols x′ that instan-
taneously change the value of x′ to that of e. Develop a semantics for these dif-

ferential assignments x′ :=e. Develop an axiom for [x′ :=e]p(x) and an axiom for
〈x′ :=e〉p(x), and prove soundness of these axioms.

170 5 Dynamical Systems & Dynamic Axioms

5.15 (If-then-else). Exercise 3.4 defined a semantics for the if-then-else statement
if(Q)α elseβ that was added into the syntax of HPs for this purpose. Develop an
axiom for [if(Q)α elseβ]P and an axiom for 〈if(Q)α elseβ 〉P that decompose the
effect of the if-then-else statement in logic. Then prove soundness of these axioms.

5.16 (K〈·〉 modal modus ponens for 〈·〉). Develop an analogue of the modal modus
ponens axiom K from Sect. 5.6.1 but for 〈α〉 modalities instead of [α] modalities.

K [α](P→ Q)→ ([α]P→ [α]Q)

5.17 (K knows that boxes distribute over conjunctions). Show that axiom []∧,
which distributes boxes over conjunctions

[]∧ [α](P∧Q)↔ [α]P∧ [α]Q

can be derived from the modal modus ponens axiom K from Sect. 5.6.1.

5.18 (Distributivity and non-distributivity). Axioms K and []∧ show how box
modalities distribute over conjunctions and implications. Do they also distribute
over other logical connectives? Which of the following formulas are valid?

[α](P∨Q)→ [α]P∨ [α]Q

[α]P∨ [α]Q→ [α](P∨Q)

[α](P↔ Q)→ ([α]P↔ [α]Q)

([α]P↔ [α]Q)→ [α](P↔ Q)

[α]¬P→¬[α]P

¬[α]P→ [α]¬P

How about diamond modalities? Which of the following are valid?

〈α〉(P→ Q)→ (〈α〉P→ 〈α〉Q)

(〈α〉P→ 〈α〉Q)→ 〈α〉(P→ Q)

〈α〉(P∧Q)→ 〈α〉P∧〈α〉Q
〈α〉P∧〈α〉Q→ 〈α〉(P∧Q)

〈α〉(P∨Q)→ 〈α〉P∨〈α〉Q
〈α〉P∨〈α〉Q→ 〈α〉(P∨Q)

〈α〉(P↔ Q)→ (〈α〉P↔ 〈α〉Q)

(〈α〉P↔ 〈α〉Q)→ 〈α〉(P↔ Q)

〈α〉¬P→¬〈α〉P
¬〈α〉P→ 〈α〉¬P

5.19 (Monotonicity rules). Prove that the monotonicity rule M[·] (Sect. 5.6.4) de-
rives from Kripke’s modal modus ponens axiom K (Sect. 5.6.1) and Gödel’s gener-

5.6 Appendix 171

alization rule G (Sect. 5.6.3). That is, find a proof of the conclusion [α]P→ [α]Q of
rule M[·] assuming that you already have a proof of its premise P→ Q.

5.20 (〈·〉monotonicity rule). Give a direct semantic soundness proof for the mono-
tonicity rule M for the diamond modality in the same style, in which soundness
was proved for the monotonicity rule M[·] for the box modality (Sect. 5.6.4). Then
propose a diamond modality version of axiom K that would make it possible to
derive rule M similarly to how rule M[·] was derived from axiom K and rule G in
Exercise 5.19. Prove soundness of that newly proposed axiom.

5.21 (Sound and not-so-sound suggested axioms). Are any of the following sug-
gested axioms sound? Are any of them useful?

Resignment axiom [x :=e]P↔ P

Detest axiom [?Q]P↔ [?P]Q
Axiom of nondeterment choice [α ∪β]P↔ [α]P
Axiom of sequential confusion [α;β]P↔ [β]P
Axiom of reiteration [α∗]P↔ [α∗][α∗]P
Duelity axiom 〈α〉P↔¬[α]P
Coconditional axiom [if(Q)α]P↔ (Q→ [α]P)
Unassignment axiom [x :=e]p↔ p (x is not free in p)
Reassignment axiom [x :=e][x :=e]p(x)↔ p(e)

Kmodal modus nonsens 〈α〉(P→ Q)→ (〈α〉P→ 〈α〉Q)
In each case, prove soundness or construct a counterexample, i.e., an instance of the
suggested axiom that is not a valid formula.

5.22 (Extra axioms and extra proof rules). Show that the additional axioms and
proof rules listed in Fig. 5.5 are sound. If possible, try to derive them directly from
other axioms, otherwise give a soundness proof using the semantics of dL.

M 〈α〉(P∨Q)↔ 〈α〉P∨〈α〉Q

B ∃x〈α〉P↔ 〈α〉∃xP (x 6∈α)

VK p→ ([α]true→[α]p) (FV(p)∩BV(α) = /0)

R
P1∧P2→ Q

[α]P1∧ [α]P2→ [α]Q

Fig. 5.5 Additional axioms and proof rules for hybrid systems

5.23 (***). Show that the definitions of (syntactically) free and bound variables
from Sect. 5.6.6 are correct, i.e., they are supersets of the semantic definitions of
free and bound variables from Sect. 5.6.5. Under what circumstances are they proper
supersets, i.e., contain additional variables? As a first step, simplify the definitions in
Sect. 5.6.6 by producing simpler supersets if this simplifies your correctness proof.

172 5 Dynamical Systems & Dynamic Axioms

References

[1] Edmund M. Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded
model checking using satisfiability solving. Form. Methods Syst. Des. 19(1)
(2001), 7–34. DOI: 10.1023/A:1011276507260.

[2] Khalil Ghorbal and André Platzer. Characterizing algebraic invariants by dif-
ferential radical invariants. In: TACAS. Ed. by Erika Ábrahám and Klaus
Havelund. Vol. 8413. LNCS. Berlin: Springer, 2014, 279–294. DOI: 10.1
007/978-3-642-54862-8_19.

[3] Charles Antony Richard Hoare. An axiomatic basis for computer program-
ming. Commun. ACM 12(10) (1969), 576–580. DOI: 10.1145/363235.3
63259.

[4] Stefan Mitsch and André Platzer. ModelPlex: verified runtime validation of
verified cyber-physical system models. Form. Methods Syst. Des. 49(1-2)
(2016). Special issue of selected papers from RV’14, 33–74. DOI: 10.10
07/s10703-016-0241-z.

[5] André Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reas.

41(2) (2008), 143–189. DOI: 10.1007/s10817-008-9103-8.
[6] André Platzer. Logical Analysis of Hybrid Systems: Proving Theorems for

Complex Dynamics. Heidelberg: Springer, 2010. DOI: 10.1007/978-3-
642-14509-4.

[7] André Platzer. A complete axiomatization of quantified differential dynamic
logic for distributed hybrid systems. Log. Meth. Comput. Sci. 8(4:17) (2012).
Special issue for selected papers from CSL’10, 1–44. DOI: 10 . 2168 /
LMCS-8(4:17)2012.

[8] André Platzer. Logics of dynamical systems. In: LICS. Los Alamitos: IEEE,
2012, 13–24. DOI: 10.1109/LICS.2012.13.

[9] André Platzer. The complete proof theory of hybrid systems. In: LICS. Los
Alamitos: IEEE, 2012, 541–550. DOI: 10.1109/LICS.2012.64.

[10] André Platzer. Differential game logic. ACM Trans. Comput. Log. 17(1)
(2015), 1:1–1:51. DOI: 10.1145/2817824.

[11] André Platzer. A complete uniform substitution calculus for differential dy-
namic logic. J. Autom. Reas. 59(2) (2017), 219–265. DOI: 10.1007/s108
17-016-9385-1.

[12] André Platzer and Edmund M. Clarke. Computing differential invariants of
hybrid systems as fixedpoints. Form. Methods Syst. Des. 35(1) (2009). Spe-
cial issue for selected papers from CAV’08, 98–120. DOI: 10.1007/s107
03-009-0079-8.

[13] H. Gordon Rice. Classes of recursively enumerable sets and their decision
problems. Trans. AMS 74(2) (1953), 358–366. DOI: 10.2307/1990888.

[14] Danbing Seto, Bruce Krogh, Lui Sha, and Alongkrit Chutinan. The Simplex
architecture for safe online control system upgrades. In: American Control

Conference. Vol. 6. 1998, 3504–3508. DOI: 10.1109/ACC.1998.7032
55.

https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1007/978-3-642-54862-8_19
https://doi.org/10.1007/978-3-642-54862-8_19
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1007/s10703-016-0241-z
https://doi.org/10.1007/s10703-016-0241-z
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.2168/LMCS-8(4:17)2012
https://doi.org/10.2168/LMCS-8(4:17)2012
https://doi.org/10.1109/LICS.2012.13
https://doi.org/10.1109/LICS.2012.64
https://doi.org/10.1145/2817824
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/s10703-009-0079-8
https://doi.org/10.1007/s10703-009-0079-8
https://doi.org/10.2307/1990888
https://doi.org/10.1109/ACC.1998.703255
https://doi.org/10.1109/ACC.1998.703255

Chapter 6

Truth & Proof

Synopsis This chapter augments the dynamic axioms for dynamical systems from
the previous chapter with the full mathematical rigor of a proof system. This proof
system enables rigorous, systematic proofs for cyber-physical systems by providing
systematic structuring mechanisms for their correctness arguments. The most im-
portant goals of such a proof system are that it guarantees to cover all cases of a
correctness argument, so all possible behavior of a CPS, and that it provides guid-
ance on which proof rules to apply. Its most important feature is the ability to use
the dynamic axioms for dynamical systems that we already identified for rigorous
reasoning about hybrid programs. A high-level interface of proofs with reasoning
for real arithmetic as well as techniques for logically simplifying real-arithmetic
questions are discussed as well.

6.1 Introduction1

Chap. 5 investigated dynamic axioms for dynamical systems, i.e., axioms in differ-
ential dynamic logic (dL) that characterize dynamical systems operators in terms
of structurally simpler dL formulas. All it takes to understand the bigger system,
thus, is to apply the appropriate axiom and investigate the smaller remainders. That
chapter did not quite show all important axioms yet, but it still revealed enough to
prove a property of a bouncing ball. While that chapter showed exactly how all the
respective local properties of the system dynamics could be proved by invoking the
corresponding dynamic axiom, it has not become clear yet how these individual in-
ferences are best tied together to obtain a well-structured proof. That is what this
chapter will identify.

1 By both sheer coincidence and by higher reason, the title of this chapter turns out to be closely
related to the subtitle of a well-known book on mathematical logic [1], which summarizes the
philosophy pursued here in a way that is impossible to improve upon any further: To truth through

proof.

173© Springer International Publishing AG, part of Springer Nature 2018

A. Platzer, Logical Foundations of Cyber-Physical Systems,

https://doi.org/10.1007/978-3-319-63588-0_6

https://doi.org/10.1007/978-3-319-63588-0_6
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63588-0_6&domain=pdf

174 6 Truth & Proof

After all, there’s more to proofs than just axioms. Proofs also have proof rules
for combining fragments of arguments into a bigger proof by well-structured proof
steps. Proofs, thus, are defined by the glue that holds axioms together into a single
cohesive argument justifying its conclusion.

Granted, the working principle we followed with the axioms in Chap. 5 was quite
intuitive. We repeatedly identified a subformula that we could simplify to an equiv-
alent formula by applying any of the dL equivalence axioms from left to right. Since
all dL axioms reduce more complex formulas on the left to structurally simpler
formulas on the right, successively using them also simplified the conjecture corre-
spondingly. That is quite systematic for such a simple mechanism.

Recall that our proof about the (single-hop) bouncing ball from the previous
chapter still suffered from at least two issues, though. While it was a sound proof
and an interesting proof, the way we came up with it was somewhat undisciplined.
We just applied axioms seemingly at random at all kinds of places all over the log-
ical formula. After we see such a proof, that is not a concern, because we can just
follow its justifications and appreciate the simplicity and elegance of the steps it took
to justify the conclusion.2 But better structuring would certainly help us find proofs
more constructively in the first place. The second issue was that the axioms for the
dynamics that Chap. 5 showed us did not actually help in proving the propositional
logic and arithmetic parts remaining at the end. So we were left with informal justi-
fications of the resulting arithmetic, which leaves plenty of room for subtle mistakes
in correctness arguments.

The present chapter addresses both issues by imposing more structure on proofs
and, as part of that, handle the operators of first-order logic that differential dynamic
logic inherits (propositional connectives such as ∧,∨,¬,→) and quantifiers (∀,∃).
As part of the structuring, we will make ample and crucial use of the dynamic ax-
ioms from Chap. 5. Howevr, they will be used in a more structured way than so far,
in a way that focuses their use on the top level of the formula and in the direction
that actually simplifies the formula.

While Chap. 5 laid down the most fundamental cornerstones of the Foundations
of Cyber-Physical Systems and their rigorous reasoning principles, the present chap-
ter revisits these fundamental principles and shapes them into a systematic proof
approach. The chapter is loosely based on previous work [14, Section 2.5.2]. The
most important learning goals of this chapter are:

Modeling and Control: This chapter deepens our understanding from the previous
chapter of how discrete and continuous systems relate to one another in the
presence of evolution domain constraints, a topic that the previous chapter only
touched upon briefly. It also makes precise how proofs can reason soundly when
only assuming evolution domains to hold in the end compared to the fact that
evolution domains have to hold always throughout a continuous evolution.

2 Indeed, the proof in Chap. 5 was creative in that it used axioms quite carefully in an order that
minimizes the notational complexity. But it is not easy to come up with such (nonsystematic)
shortcut proofs even if the KeYmaera X prover makes this relatively straightforward with its proof-
by-pointing feature [8].

6.2 Truth and Proof 175

Computational Thinking: Based on the core rigorous reasoning principles for
CPS developed in Chap. 5, this chapter is devoted to reasoning not only rigor-
ously but also systematically about CPS models. Systematic ways of reasoning
rigorously about CPS are, of course, critical to getting more complex CPS right.
The difference between the axiomatic way of reasoning rigorously about CPSs
[15] as put forth in Chap. 5 and the systematic way [13, 14] developed here is
not a big difference conceptually, but more a difference in pragmatics.
That does not make it less important, though, and the occasion to revisit it gives
us a way of deepening our understanding of systematic CPS analysis principles.
This chapter explains ways of developing CPS proofs systematically and is an
important ingredient for verifying CPS models of appropriate scale. The chapter
also adds a fourth leg to the logical trinity of syntax, semantics, and axiomat-
ics considered in Chap. 5. It adds pragmatics, by which we mean the question
of how to use axiomatics to justify the syntactic renditions of the semantical
concepts of interest. That is, how best to go about conducting a proof to justify
truth of a CPS conjecture. An understanding of such pragmatics follows from a
more precise understanding of what a proof is and what arithmetic does.

CPS Skills: This chapter is mostly devoted to sharpening our analytic skills for
CPS. We will also develop a slightly better intuition for the operational effects
involved in CPS in that we understand in which order we should worry about
operational effects and whether that has an impact on the overall understanding.

CT

M&C CPS

systematic reasoning for CPS
verifying CPS models at scale
pragmatics: how to use axiomatics to justify truth
structure of proofs and their arithmetic

discrete+continuous relation
with evolution domains

analytic skills for CPS

6.2 Truth and Proof

Truth is defined by the semantics of logical formulas. The semantics gives a mathe-
matical meaning to formulas that, in theory, could be used to establish the truth of a
logical formula by expanding all semantic definitions. In practice, this is quite infea-
sible, for one thing, because quantifiers of differential dynamic logic quantify over
real numbers (after all their variables may represent real quantities such as velocity

176 6 Truth & Proof

and position). Yet, there are (uncountably) infinitely many of those, so determining
the truth value of a universally quantified logical formula directly by working with
its semantics is impossibly challenging since that would require instantiating it with
infinitely many real numbers, which would keep us busy for quite a while.

The semantics is even more challenging to deal with in the case of the hybrid
systems in the modalities of differential dynamic logic formulas, because hybrid
systems have so many possible behaviors and are highly nondeterministic. Literally
following all possible behaviors to check all reachable states hardly sounds like a
way that would ever enable us to stop and conclude the system is safe. Except,
of course, if we happened to be lucky and found a bug during just one execution,
because that would be enough to falsify the formula. Yet, in fact, even following just
one particular execution of a hybrid system can be tricky, because that still involves
the need to compute a solution of its differential equations and check their evolution
domain constraints at all times.

We are, nevertheless, interested in establishing whether a logical formula is true,
no matter how complicated that may be, because we would very much like to know
whether the hybrid systems they refer to can be used safely. Or, come to think of
it, we are interested in finding out whether the formula is valid, since truth of a
logical formula depends on the state (see the definition of semantics ω ∈ [[P]] in
Definition 4.2) whereas validity of a logical formula is independent of the state (see
the definition of validity � P), because validity means truth in all states. Validity of
formulas is what we ultimately care about, because we want our safety analysis to
hold in all permitted initial states of the CPS, not just one particular initial state ω ,
because we may not even know the exact initial state of the CPS. In that sense, valid
logical formulas are the most valuable ones. We should devote all of our efforts to
finding out what is valid, because that will allow us to draw conclusions about all
states, including the real-world state as well.

While exhaustive enumeration and simulation is hardly an option for systems
as challenging as CPSs, the validity of logical formulas can be established by other
means, namely by producing a proof of that formula. Like the formula itself, but un-
like its semantics, a proof is a syntactical object that is amenable, e.g., to represen-
tation and manipulation in a computer. The finite syntactical argument represented
in a proof witnesses the validity of the logical formula that it concludes. Proofs can
be produced in a machine. They can be stored to be recalled as evidence for the
validity of their conclusion. And they can be checked by humans or machines for
correctness. Proofs can even be inspected for analytic insights about the reasons for
the validity of a formula, which goes beyond the mere factual statement of validity.
A proof justifies the judgment that a logical formula is valid, which, without such a
proof as evidence, is no more than an empty claim. Empty claims are hardly useful
foundations for building any cyber-physical systems on.

Truth and proof should be related intimately, however, because we only want to
accept proofs that actually imply truth, i.e., proofs that imply their consequences to
be valid if their premises are. That is, proof systems should be sound in order to al-
low us to draw reliable conclusions from the existence of a proof. This textbook will
exercise great care to identify sound reasoning principles. The converse and equally

6.2 Truth and Proof 177

intriguing question is that of completeness, i.e., whether all valid formulas can be
proved, which turns out to be much more subtle [13, 16–18] and won’t concern us
until much later in this textbook.

6.2.1 Sequents

The proof built from axioms in Sect. 5.4 to justify a safety property of a bouncing
ball was creative and insightful, but also somewhat spontaneous or maybe even
disorganized. In fact, it has not even quite become particularly obvious what exactly
a proof was, except that it is somehow supposed to glue axioms together into a single
cohesive argument. But that is not a definition of a proof.3

In order to have a chance of conducting more complex proofs, we need a way of
structuring the proofs and keeping track of all questions that come up while working
on a proof as well as all assumptions that are available. But despite all the lamenting
about the proof in Sect. 5.4, it has, secretly, been much more systematic than we
were aware of at the time. Even if it went in a non-systematic order as far as the
application order of the axioms was concerned, we still structured the proof quite
well (unlike the ad hoc arguments in Sect. 4.8). So part of what this chapter needs
to establish is to turn this lucky coincidence of a proper proof structure into an
intentional principle. Rather than just coincidentally structuring the proof well, we
want to structure all proofs well and make them all systematic by design.

Throughout this textbook, we will use sequents, which give us a structuring
mechanism for conjectures and proofs. Sequent calculus was originally developed
by Gerhard Gentzen [9, 10] for studying properties of natural deduction calculi, but
sequent calculi have had tremendous success for numerous other purposes since.

In a nutshell, sequents are a standard form for logical formulas that is convenient
for proving purposes, because it neatly aligns all available assumptions on the left
of the sequent turnstile ⊢ and gathers what needs to be shown on the right.

Definition 6.1 (Sequent). A sequent is of the form

Γ ⊢ ∆

where the antecedent Γ and succedent ∆ are finite sets of dL formulas. The
semantics of Γ ⊢ ∆ is that of the dL formula

∧

P∈Γ P → ∨

Q∈∆ Q.

The antecedent Γ can be thought of as the list of formulas we assume to be true,
whereas the succedent ∆ can be understood as formulas for which we want to show
that at least one of them is true, assuming all formulas of Γ are true. So for proving
a sequent Γ ⊢ ∆ , we assume all Γ and want to show that one of the ∆ is true. For
some simple sequents of the form Γ ,P ⊢ P,∆ where, among another set of formulas

3 It would have been very easy to define, though, by inductively defining formulas to be provable
if they are either instances of axioms or follow from provable formulas using modus ponens [15].

178 6 Truth & Proof

Γ in the antecedent and another set of formulas ∆ in the succedent, literally the
same formula P is in the antecedent and the succedent, we directly know that they
are valid, because we can certainly show P if we already assume P. In fact, we will
use this as a way of finishing a proof. For other sequents, it is more difficult to see
whether they are valid (true under all circumstances) and it is the purpose of a proof
calculus to provide a means to find out.

The basic idea in sequent calculus is to successively transform all formulas such
that Γ forms a list of all assumptions and ∆ the set of formulas that we would like
to conclude from Γ (or, to be precise, the set ∆ whose disjunction we would like to
conclude from the conjunction of all formulas in Γ). For example, when a formula
of the form P∧Q is in the antecedent, we will identify a proof rule that simplifies
P∧Q in the sequent Γ ,P∧Q ⊢ ∆ by replacing it with its two subformulas P and Q

to lead to Γ ,P,Q ⊢ ∆ , because assuming the two formulas P and Q separately is the
same as assuming the conjunction P∧Q, but involves smaller formulas.

Arguably the easiest way of understanding sequent calculus would be to inter-
pret Γ ⊢ ∆ as the task of proving one of the formulas in the succedent ∆ from all
of the formulas in the antecedent Γ . But since dL is a classical logic, not an in-
tuitionistic logic, we need to keep in mind that it is actually enough for proving a
sequent Γ ⊢ ∆ to just prove the disjunction of all formulas in ∆ from the conjunc-
tion of all formulas in Γ . For the proof rules of real arithmetic, we will later make
use of this fact by considering the sequent Γ ⊢ ∆ as an abbreviation for the formula
∧

P∈Γ P → ∨

Q∈∆ Q, because the two have the same semantics in dL. Indeed, a proof
of the sequent z = 0 ⊢ x≥ z,x < z2 is only possible with this disjunctive interpreta-
tion of the succedent. We cannot say whether x≥ z is true or whether x < z2 is true,
but if z = 0 is assumed, it is a classical triviality that their disjunction is true.

Empty conjunctions
∧

P∈ /0 P are equivalent to true. Empty disjunctions
∨

P∈ /0 P are
equivalent to false.4 Hence, the sequent ⊢ A means the same as the formula A. The
empty sequent ⊢ means the same as the formula false. The sequent A ⊢ means the
same as formula A→ false. Starting off a proof question is easy, too, because if we
would like to prove a dL formula P, we turn it into a sequent with no assumptions,
since we do not initially have any, and set out to prove the sequent ⊢ P.

Note 34 (Nonempty trouble with empty sequents) If you ever reduce a con-
jecture about your CPS to proving the empty sequent ⊢ , then you are in trou-
ble, because the empty sequent ⊢ means the same as the formula false and it
is impossible to prove false, since false isn’t ever true. In that case, either you
have taken a wrong turn in your proof, e.g., by discarding an assumption that
was actually required for the conjecture to be true, or your CPS might take a
wrong turn, because its controller can make a move that is actually unsafe.

4 Note that true is the neutral element for the operation ∧ and false the neutral element for the
operation ∨. That is A∧ true is equivalent to A for any A and A∨ false is equivalent to A. So true

plays the same rôle for ∧ that 1 plays for multiplication. And false plays the rôle for ∨ that 0 plays
for addition. Another aspect of sequents Γ ⊢ ∆ that is worth mentioning is that other notations
such as Γ =⇒ ∆ or Γ → ∆ are also sometimes used in the literature.

6.2 Truth and Proof 179

In order to develop sequent calculus proof rules, we will again follow the logical
guiding principle of compositionality from Chap. 5 by devising one suitable proof
rule for each of the relevant operators. Only this time, we have two cases to worry
about for each operator. We will need one proof rule for the case where the operator
occurs in the antecedent so that it is available as an assumption. The corresponding
rule for ∧ will be called the ∧L rule since it operates on the left of the ⊢ sequent
turnstile. And we will need another proof rule for the case where that operator occurs
in the succedent so that it is available as an option to prove. That rule for ∧ will be
called the∧R rule since it is for∧ and operates on the right of the ⊢ sequent turnstile.
Fortunately, we will find a clever way of simultaneously handling all of the modality
operators at once in sequent calculus by using the dL axioms from Chap. 5.

6.2.2 Proofs

Before developing any particular proof rules for sequent calculus, let us first under-
stand what a proof is, what it means to prove a logical formula, and how we know
whether a proof rule is sound so that it actually implies what it tries to prove.

Definition 6.2 (Global soundness). A sequent calculus proof rule of the form

Γ1 ⊢ ∆1 . . . Γn ⊢ ∆n

Γ ⊢ ∆

is sound iff validity of all premises (i.e., the sequents Γi ⊢ ∆i above the rule bar)
implies validity of the conclusion (i.e., the sequent Γ ⊢ ∆ below the rule bar):

If � (Γ1 ⊢ ∆1) and . . . and � (Γn ⊢ ∆n) then � (Γ ⊢ ∆)

Recall that the meaning of a sequent Γ ⊢ ∆ is
∧

P∈Γ P → ∨

Q∈∆ Q by Defini-
tion 6.1, so that � (Γ ⊢ ∆) stands for �

 ∧

P∈Γ P → ∨

Q∈∆ Q
)

in Definition 6.2.
A formula P is provable or derivable (in the dL sequent calculus) if we can find

a dL proof for it that concludes the sequent ⊢ P at the bottom from no premises and
that has only used dL sequent proof rules to connect the premises to their conclusion.
The rules id,⊤R and⊥L we discuss below will prove particularly obvious sequents
such as Γ ,P ⊢ P,∆ from no premises and, thereby, provide a way of finishing a
proof. The shape of a dL sequent calculus proof, thus, is a tree with axioms at the
top leaves and the formula that the proof proves at the bottom root.

When constructing proofs, however, we start with the desired goal ⊢ P at the
bottom, since we want ⊢ P as the eventual conclusion of the proof. We work our
way backwards to the subgoals until they can be proven to be valid. Once all sub-
goals have been proven to be valid, they entail their respective conclusions, which,
recursively, entail the original goal ⊢ P. This property of preserving truth or pre-
serving validity is called soundness (Definition 6.2). When constructing proofs, we
work bottom-up from the goal to the subgoals and apply all proof rules from the

180 6 Truth & Proof

desired conclusion to the required premises. Once we have found a proof, we justify
formulas conversely from the leaves top-down to the original goal at the bottom, be-
cause validity transfers from the premises to the conclusion with sound proof rules.

construct proofs upwards

x

Γ1 ⊢ ∆1 . . . Γn ⊢ ∆n

Γ ⊢ ∆

y

validity transfers downwards

We write ⊢dL P iff dL formula P can be proved with dL rules from dL axioms.
That is, a dL formula is inductively defined to be provable in the dL sequent calculus
iff it is the conclusion (below the rule bar) of an instance of one of the dL sequent
proof rules, whose premises (above the rule bar) are all provable. In particular, since
we will make sure that all dL proof rules are sound, the conclusion at the very bottom
of the proof will be valid, because all its premises had a (shorter) proof and were,
thus, valid by soundness of the respective proof rule that was used. A formula Q is
provable from a set Φ of formulas, denoted by Φ ⊢dL Q, iff there is a finite subset
Φ0 ⊆Φ of formulas for which the sequent Φ0 ⊢ Q is provable.

6.2.3 Propositional Proof Rules

The first logical operators encountered during proofs are usually propositional logi-
cal connectives, because many dL formulas use shapes such as A→ [α]B to express
that all behaviors of HP α lead to safe states satisfying B when starting the system
in initial states satisfying A. For propositional logic, dL uses the standard proposi-
tional rules with the cut rule, which are listed in Fig. 6.1. These propositional rules
decompose the propositional structure of formulas and neatly divide everything up
into assumptions (which will ultimately be moved to the antecedent) and what needs
to be shown (which will be moved to the succedent). The rules will be developed
one at a time in the order that is most conducive to their intuitive understanding.

Fig. 6.1 Propositional proof rules of sequent calculus

¬R
Γ ,P ⊢ ∆

Γ ⊢ ¬P,∆

¬L
Γ ⊢ P,∆

Γ ,¬P ⊢ ∆

∧R
Γ ⊢ P,∆ Γ ⊢ Q,∆

Γ ⊢ P∧Q,∆

∧L
Γ ,P,Q ⊢ ∆

Γ ,P∧Q ⊢ ∆

∨R
Γ ⊢ P,Q,∆

Γ ⊢ P∨Q,∆

∨L
Γ ,P ⊢ ∆ Γ ,Q ⊢ ∆

Γ ,P∨Q ⊢ ∆

→R
Γ ,P ⊢ Q,∆

Γ ⊢ P→ Q,∆

→L
Γ ⊢ P,∆ Γ ,Q ⊢ ∆

Γ ,P→ Q ⊢ ∆

id
Γ ,P ⊢ P,∆

cut
Γ ⊢ C,∆ Γ ,C ⊢ ∆

Γ ⊢ ∆

⊤R
Γ ⊢ true,∆

⊥L
Γ , false ⊢ ∆

6.2 Truth and Proof 181

Rules for Propositional Connectives

Proof rule ∧L is for handling conjunctions (P∧Q) as one of the assumptions in the
antecedent on the left of the sequent turnstile (⊢). Assuming the conjunction P∧Q

is the same as assuming each conjunct P as well as Q separately.

∧L
Γ ,P,Q ⊢ ∆

Γ ,P∧Q ⊢ ∆

Rule ∧L expresses that if a conjunction P∧Q is among the list of available assump-
tions in the antecedent, then we might just as well assume both conjuncts (P and
Q, respectively) separately. Assuming a conjunction P∧Q is the same as assuming
both conjuncts P and Q. So, if we set out to prove a sequent of the form in the
conclusion (Γ ,P∧Q ⊢ ∆), then we can justify this sequent by instead proving the
sequent in the corresponding premise (Γ ,P,Q ⊢ ∆), where the only difference is that
the two assumptions P and Q are now assumed separately in the premise rather than
jointly as a single conjunction, as in the conclusion.

If we keep on using proof rule ∧L often enough, then all conjunctions in the
antecedent will ultimately have been split into their smaller pieces. Recall that the
order of formulas in a sequent Γ ⊢ ∆ is irrelevant because Γ and ∆ are sets, so we
can always pretend that the formula to which we want to apply the rule ∧L is last
in the antecedent. Rule ∧L takes care of all conjunctions that appear as top-level
operators in antecedents even if its notation seems to indicate it would expect P∧Q

at the end of the antecedent. Of course, ∧L does not say how to prove A∨ (B∧C) ⊢
C or A∨¬(B∧C) ⊢C, because here the conjunction B∧C is not a top-level formula
in the antecedent but merely occurs somewhere deep inside as a subformula. But
there are other logical operators to worry about as well, whose proof rules will
decompose the formulas and ultimately reveal B∧C at the top-level somewhere in
the sequent.

Proof rule ∧R is for handling conjunction P∧Q in the succedent by proving P

and, in a separate premise, also proving Q:

∧R
Γ ⊢ P,∆ Γ ⊢ Q,∆

Γ ⊢ P∧Q,∆

Rule ∧R has to prove two premises, because if we are trying to prove a sequent
Γ ⊢ P∧Q,∆ with a conjunction P∧Q in its succedent, it would not be enough at all
to just prove Γ ⊢ P,Q,∆ , because the meaning of the succedent is a disjunction, so
it would only enable us to conclude the weaker Γ ⊢ P∨Q,∆ . Proving a conjunction
in the succedent as in the conclusion of ∧R, thus, requires proving both conjuncts.
It needs a proof of Γ ⊢ P,∆ and a proof of Γ ⊢ Q,∆ . This is why rule ∧R splits the
proof into two premises, one for proving Γ ⊢ P,∆ and one for proving Γ ⊢ Q,∆ . If
both premises of rule ∧R are valid then so is its conclusion. To see this, it is easier to
first consider the case where ∆ is empty. A proof of Γ ⊢ P together with a proof of
Γ ⊢ Q implies that Γ ⊢ P∧Q is valid, because the conjunction P∧Q follows from
the assumptions Γ if both P and Q individually follow from Γ . Rule ∧R is justified
by arguing by cases, once for the case where the disjunction corresponding to ∆ is
false (in which case the argument for Γ ⊢ P∧Q suffices) and once where it is true

182 6 Truth & Proof

(in which case the conclusion is true without P∧Q). Overall, proof rule ∧R captures
that proving a conjunction P∧Q amounts to proving both P and Q separately.

Proof rule ∨R is similar to rule ∧L but for handling disjunctions in the succe-
dent. If we set out to prove the sequent Γ ⊢ P∨Q,∆ in the conclusion with a dis-
junction P∨Q in the succedent, then we might as well split the disjunction into its
two disjuncts and prove the premise Γ ⊢ P,Q,∆ instead, since the succedent has a
disjunctive meaning anyhow, so both sequents mean the same formula.

Proof rule ∨L handles a disjunction in the antecedent. When the assumptions
listed in the antecedent of a sequent contain a disjunction P∨Q, then there is no
way of knowing which of the two disjuncts can be assumed, merely that at least one
of them is assumed to be true. Rule ∨L, thus, splits the proof into cases. The left
premise considers the case where the assumption P∨Q held because P was true.
The right premise considers the case where assumption P∨Q held because Q was
true. If both premises are valid (because we can find a proof for them), then, either
way, the conclusion Γ ,P∨Q ⊢ ∆ will be valid no matter which of the two cases
applies. Overall, rule ∨L captures that assuming a disjunction P∨Q requires two
separate proofs that assume each disjunct instead.

Proof rule→R handles implications in the succedent by using the implicational
meaning of sequents. The way to understand it is to recall how we would prove
an implication in mathematics. In order to prove an implication P→ Q, we would
assume the left-hand side P (which rule →R pushes into the assumptions listed
in the antecedent) and try to prove its right-hand side Q (which →R thus leaves
in the succedent). This is how left-hand sides of implications ultimately end up as
assumptions in the antecedent. Rule→R, thus, captures that proving an implication
P→ Q amounts to assuming the left-hand P and proving the right-hand Q.

Proof rule →L is more involved. It it used to handle assumptions that are im-
plications P→ Q. When assuming an implication P→ Q, we can only assume its
right-hand side Q (second premise) after we have shown its respective assumption
P on its left-hand side (first premise). Another way to understand it is to recall that
classical logic obeys the equivalence (P→Q)≡ (¬P∨Q) and then to use the other
propositional rules. Rule →L captures that using an assumed implication P→ Q

allows us to assume its right-hand side Q if we can prove its left-hand side P.
Proof rule ¬R proves a negation ¬P by, instead, assuming P. Again, the easiest

way of understanding this rule is for an empty ∆ in which case rule ¬R expresses
that the way to prove a negation ¬P in the succedent of the conclusion is to in-
stead assume P in the antecedent in the premise and prove a contradiction, which
is the formula false that an empty succedent means. When ∆ is not empty, argu-
ing by cases of whether the disjunction ∆ is true or false will again do the trick.
Alternatively, rule ¬R can be understood using the semantics of sequents from Def-
inition 6.1, since a conjunct P on the left-hand side of an implication is semantically
equivalent to a disjunct ¬P on the right-hand side in classical logic. Overall, rule
¬R captures that to prove a negation ¬P, it is enough to assume P and prove a
contradiction (or the remaining options ∆).

Proof rule ¬L handles a negation ¬P among the assumptions in the antecedent
of the conclusion by, instead, pushing P into the succedent of the premise. Indeed,

6.2 Truth and Proof 183

for the case of empty ∆ , if P were shown to hold from the remaining assumptions
Γ , then Γ and ¬P imply a contradiction in the form of the empty sequent, which
is false. A semantic argument using the semantics of sequents also justifies ¬L di-
rectly since a conjunct ¬P on the left-hand side of an implication is semantically
equivalent to a disjunct P on the right-hand side in classical logic.

Identity and Cut Rules

All these propositional rules make progress by splitting operators. There is exactly
one proof rule for each propositional logical connective on each side of the turnstile.
All it takes is to look at the top-level operator of a formula and use the appropriate
propositional sequent calculus rule from Fig. 6.1 to split the formula into its pieces.
Such splitting will ultimately lead to atomic formulas, i.e., formulas without any
logical operators. But there is no way to ever stop the proof yet. That is what the
identity rule id from Fig. 6.1 is meant for. The identity rule id closes a goal (there
are no further subgoals, which we sometimes mark by a ∗ instead of a sequent to
indicate that we didn’t just forget to finish the proof), because assumption P in the
antecedent trivially implies P in the succedent (the sequent Γ ,P ⊢ P,∆ is a simple
syntactic tautology). If, in our proving activities, we ever find a sequent of the form
Γ ,P ⊢ P,∆ , for any formula P, we can immediately use the identity rule id to close
this part of the proof. The proof attempt succeeds if all premises are closed by id,
or by other closing rules such as ⊤R (it is trivial to prove the valid formula true) or
⊥L (assuming the unsatisfiable formula false means assuming the impossible).

Rule cut is Gentzen’s cut rule [9, 10], which can be used for case distinctions
or to prove a lemma and then use it. The right premise assumes any additional for-
mula C in the antecedent that the left premise shows in the succedent. Semantically:
regardless of whether C is actually true or false, both cases are covered by proof
branches. Alternatively, and more intuitively, the cut rule is a fundamental lemma
rule. The left premise proves an auxiliary lemma C in its succedent, which the right
premise then assumes in its antecedent for the rest of the proof (again consider the
case of empty ∆ first to understand why this is sound). We only use cuts in an or-
derly fashion to derive simple rule dualities and to simplify meta-proofs. In practical
applications, cuts are not needed in principle. In practice, complex CPS proofs still
make use of cuts for efficiency reasons. Cuts can be used, for example, to substan-
tially simplify arithmetic, or to first prove lemmas and then make ample use of them,
in a number of places in the remaining proof.

Even though we write sequent rules as if the principal formula (which is the one
that the sequent rule acts on such as P∧Q in rules ∧R and ∧L) were at the end of
the antecedent or at the beginning of the succedent, respectively, the sequent proof
rules can be applied to other formulas in the antecedent or succedent, respectively,
because we consider their order to be irrelevant. Antecedents and succedents are
finite sets.

184 6 Truth & Proof

Sequent Proof Example

Even if the propositional sequent proof rules could hardly be the full story behind
reasoning for cyber-physical systems, they still provide a solid basis and deserve to
be explored with a simple example.

Example 6.1. A propositional proof of the exceedingly simple formula

v2 ≤ 10∧b > 0→ b > 0∧ (¬(v≥ 0)∨ v2 ≤ 10) (6.1)

is shown in Fig. 6.2. The proof starts with the desired goal as a sequent at the bottom:

⊢ v2 ≤ 10∧b > 0→ b > 0∧ (¬(v≥ 0)∨ v2 ≤ 10).

and proceeds by applying suitable sequent proof rules upwards until we run out of
subgoals and have finished the proof (the notation ∗ is used to indicate when there
are no subgoals, which happens after rules id,⊤R,⊥L).

∗
id

v2 ≤ 10,b > 0 ⊢ b > 0
∧L

v2 ≤ 10∧b > 0 ⊢ b > 0

∗
id

v2 ≤ 10,b > 0 ⊢ ¬(v≥ 0),v2 ≤ 10
∧L

v2 ≤ 10∧b > 0 ⊢ ¬(v≥ 0),v2 ≤ 10
∨R

v2 ≤ 10∧b > 0 ⊢ ¬(v≥ 0)∨ v2 ≤ 10
∧R

v2 ≤ 10∧b > 0 ⊢ b > 0∧ (¬(v≥ 0)∨ v2 ≤ 10)
→R ⊢ v2 ≤ 10∧b > 0→ b > 0∧ (¬(v≥ 0)∨ v2 ≤ 10)

Fig. 6.2 A simple propositional example proof in sequent calculus

The first (i.e., bottom-most) proof step applies proof rule →R to move the im-
plication (→) to the sequent level by moving its left-hand side into the assumptions
tracked in the antecedent. The next proof step applies rule ∧R to split the proof into
the left branch for showing that conjunct b > 0 follows from the assumptions in the
antecedent and the right branch for showing that conjunct ¬(v≥ 0)∨ v2 ≤ 10 fol-
lows from the antecedent also. On the left branch, the proof closes with an axiom
id after splitting the conjunction ∧ in the antecedent into its conjuncts with rule ∧L.
We mark closed proof goals with ∗, to indicate that we did not just stop writing but
that a subgoal is actually proved successfully. Of course, the left branch closes with
rule id, because its assumption b > 0 in the antecedent trivially implies the formula
b > 0 in the succedent, as the two formulas are identical. The right branch closes
with rule id after splitting the disjunction (∨) in the succedent with rule ∨R and then
splitting the conjunction (∧) in the antecedent with rule ∧L. On the right branch, the
first assumption formula v2 ≤ 10 in the antecedent trivially implies the last formula
in the succedent, v2 ≤ 10, because the two are identical, so rule id applies.

Now that all branches of the proof have closed (with id and marked by ∗), we
know that all leaves at the top are valid. Since the premises are valid, each appli-
cation of a proof rule ensures that their respective conclusions are valid also, by

6.2 Truth and Proof 185

soundness. By recursively following this proof from the leaves at the top to the orig-
inal root at the bottom, we conclude that the original goal at the bottom is valid and
formula (6.1) is, indeed, true in all states. The conjecture that formula (6.1) is valid
is exactly what the proof in Fig. 6.2 justifies.

While this proof does not prove any particularly exciting formula, it still shows
how a proof can be built systematically in the dL calculus and gives an intuition
as to how validity is inherited from the premises to the conclusions. The proof has
been entirely systematic. All we did to come up with it was successively inspect
the top-level operator in one of the logical formulas in the sequent and apply its
corresponding propositional proof rule to find the resulting subgoals. All the while
we were doing this, we carefully watched to see if the same formula shows up in the
antecedent and succedent, for then the rule id closes that subgoal. There would be
no point in proceeding with any other proof rule if the rule id closes a subgoal.

Most interesting formulas will not be provable with the sequent proof rules we
have seen so far, because those were only for propositional connectives. So, next,
set out to find proof rules for the other operators of differential dynamic logic.

6.2.4 Soundness of Proof Rules

Before proceeding with an investigation of additional sequent calculus proof rules,
notice that the sequent proof rules for propositional logic are sound [9, 10, 14] ac-
cording to the global soundness notion defined in Definition 6.2. We consider only
one of the proof rules here to show how soundness works. Soundness is crucial,
however, so you are invited to prove soundness for the other rules (Exercise 6.7).

Lemma 6.1 (∧R conjunction rule). Proof rule ∧R is sound.

Proof. Consider any instance for which both premises Γ ⊢ P,∆ and Γ ⊢ Q,∆ are
valid and show that the conclusion Γ ⊢ P∧Q,∆ is valid. To show the latter, con-
sider any state ω . If there is a formula G ∈ Γ in the antecedent that is not true in
ω (i.e., ω 6∈ [[G]]) there is nothing to show, because ω ∈ [[Γ ⊢ P∧Q,∆]] then holds
trivially, because not all assumptions in Γ are satisfied in ω . Likewise, if there is
a formula D ∈ ∆ in the succedent that is true in ω (i.e., ω ∈ [[D]]) there is noth-
ing to show, because ω ∈ [[Γ ⊢ P∧Q,∆]] then holds trivially, because one of the
formulas in the succedent is already satisfied in ω . Hence, the only interesting
case to consider is the case where all formulas in G ∈ Γ are true in ω and all
formulas D ∈ ∆ are false. In that case, since both premises were assumed to be
valid, and Γ is true in ω but ∆ false in ω , the left premise implies that ω ∈ [[P]]
and the right premise implies that ω ∈ [[Q]]. Consequently, ω ∈ [[P∧Q]] by the se-
mantics of ∧. Thus, ω ∈ [[Γ ⊢ P∧Q,∆]]. As the state ω was arbitrary, this implies
� (Γ ⊢ P∧Q,∆), i.e., the conclusion of the considered instance of ∧R is valid. ⊓⊔

In the rest of this chapter and, in fact, the whole textbook, we will scrutinize each
proof rule to make sure it is sound according to Definition 6.2. We also make sure

186 6 Truth & Proof

that all dL axioms are sound according to Definition 5.1. This implies that the dL

proof calculus will only ever prove valid dL formulas, which is a conditio sine qua

non in logic, that is, a condition without which logic could not be.
Recall from Sect. 6.2.2 that we write ⊢dL P iff dL formula P can be proved with

dL rules from dL axioms. And recall from Chap. 4 that we write � P iff formula P

is valid, i.e., true in all states.

Theorem 6.1 (Soundness). The dL sequent calculus is sound. That is, if a dL

formula P has a proof in dL’s sequent calculus, i.e., ⊢dL P, then P is valid, i.e.,

� P.

Proof. We only consider a schematic proof focusing on the structure of the sound-
ness argument based on previous soundness considerations such as Lemma 5.1 and
Lemma 6.1. Elaborate proofs of soundness for all cases are elsewhere [13, 16, 18].
A dL formula P is proved iff there is a proof of the sequent ⊢ P in dL’s sequent
calculus. Since more general shapes of sequents occur during the sequent proof,
we show the stronger statement that every sequent Γ ⊢ ∆ that has a proof in dL’s
sequent calculus is valid (that is � (Γ ⊢ ∆) in the sense of Definition 6.1).

We show this by induction on the structure of the sequent calculus proof. That is,
we prove that all base cases for small proofs with zero proof steps have valid con-
clusions. Then we consider all bigger proofs, and assume the induction hypothesis
that all smaller proofs already have valid conclusions to show that one more proof
step will still make the new conclusion valid.

0. The only proofs without proof steps are the ones that consist only of a dL ax-
iom. Each dL axiom has been proved to be sound, for example in Chap. 5. All
instances of sound axioms are valid dL formulas by Definition 5.1.

1. Consider a proof ending in a proof step with some number of premises n≥ 0:

Γ1 ⊢ ∆1 . . . Γn ⊢ ∆n

Γ ⊢ ∆
(6.2)

The respective subproofs for the premises Γi ⊢ ∆i are smaller, since they have
one fewer proof step. So, by induction hypothesis, their respective conclusions
Γi ⊢ ∆i are all valid (i.e., their corresponding dL formula from Definition 6.1 is
valid):

� (Γi ⊢ ∆i) for all i ∈ {1,2, . . . ,n}
Because all of the finitely many dL proof rules that could be used in proof step
(6.2) are sound (e.g., Lemma 6.1), the definition of soundness of proof rules
(Definition 6.2) implies that the conclusion of the proof rule used in (6.2) is
valid, which is � (Γ ⊢ ∆). ⊓⊔

Of course, the obligation is on us to ensure that we will, indeed, only ever add sound
axioms (Definition 5.1) and sound proof rules (Definition 6.2) to the dL calculus, or
else we will lose the crucial soundness theorem Theorem 6.1 and no longer have any
faith in any proofs.

6.2 Truth and Proof 187

6.2.5 Proofs with Dynamics

Now that we have identified a left and a right proof rule for all propositional con-
nectives we can literally continue the logical guiding principle of connectivity and
proceed to also identify a left and a right proof rule for all top-level operator in all
modalities.

Sequent Calculus Proof Rules for Dynamics

We could add a pair of sequent calculus proof rules for nondeterministic choices in
box modalities, one in the antecedent (rule [∪]R) and one in the succedent ([∪]L):

[∪]R Γ ⊢ [α]P∧ [β]P,∆
Γ ⊢ [α ∪β]P,∆

[∪]L Γ , [α]P∧ [β]P ⊢ ∆

Γ , [α ∪β]P ⊢ ∆

These rules directly follow from the axioms from Chap. 5, though, and, thus,
lead to quite a lot of unnecessary duplication of concepts.5 Furthermore, such a list
of sequent rules is less flexible than the axioms from Chap. 5. The sequent rules
[∪]R,[∪]L can only be applied when a nondeterministic choice is at the top-level
position of a sequent, not when it occurs somewhere in a subformula, such as at
the underlined position in the following sequent near the bottom of the proof of
single-hop bouncing balls from Sect. 5.4:

A ⊢ [x′′ = g][?x = 0;v := cv∪ ?x≥ 0]B(x,v) (6.3)

Substituting Equals for Equals

Thus, instead of writing down a pair of (rather redundant and quite inflexible) se-
quent rules for each dynamic axiom, we instead cover all axioms at once. The key
observation was already foreshadowed in Chap. 5:

Note 35 (Substituting equals for equals) If an equivalence P↔ Q is a valid
formula, then any occurrence of its left-hand side P in any subformula can be
replaced by its right-hand side Q (or vice versa), equivalently.

For example, using at the underlined position in the middle of dL formula (6.3)
the equivalence

[?x = 0;v := cv∪ ?x≥ 0]B(x,v)↔ [?x = 0;v := cv]B(x,v)∧ [?x≥ 0]B(x,v)
(6.4)

5 One subsequent difference will be that applying rule ∧R to the premise of rule [∪]R will split the
proof into two premises while subsequently applying ∧L to the premise of rule [∪]L will not.

188 6 Truth & Proof

which is a direct instance of axiom [∪] [α ∪β]P↔ [α]P∧ [β]P from Chap. 5, the
formula (6.3) is equivalent to

A ⊢ [x′′ = g]

[?x = 0;v := cv]B(x,v)∧ [?x≥ 0]B(x,v)

)
(6.5)

since (6.5) is constructed from (6.3) by replacing the left-hand side of equivalence
(6.4) by its right-hand side in the middle of formula (6.3) at the indicated position.

Contextual Equivalence

The intuition of substituting equals for equals serves us well and is perfectly suffi-
cient for all practical purposes. Logic is ultimately about precision, though, which
is why we elaborate Note 35 as follows [18].

Lemma 6.2 (Contextual equivalence). The contextual equivalence rewriting

rules are sound:

CER
Γ ⊢ C(Q),∆ ⊢ P↔ Q

Γ ⊢ C(P),∆
CEL

Γ ,C(Q) ⊢ ∆ ⊢ P↔ Q

Γ ,C(P) ⊢ ∆

Proof. Rules CER and CEL derive with a cut from the contextual equivalence rule:

CE
P↔ Q

C(P)↔C(Q)

⊓⊔

That is, if the equivalence P↔ Q in the second premise is proved, then P can be
replaced by Q in any context C(_) anywhere in the succedent (rule CER) or in the
antecedent (rule CEL) in the first premise. Here we read C(_) as the context in which
the formula P occurs in the formula C(P) and read C(Q) as the result of replacing
P in that context C(_) by Q. While a concise technical treatment and precise defini-
tions of contexts and soundness proof for CER,CEL is surprisingly simple [18], this
intuitive understanding is enough for our purposes here. If P and Q are equivalent
(second premise of CER and of CEL), then we can replace P by Q no matter in
what context C(_) they occur in the sequents in the succedent (CER) or antecedent
(CEL), respectively. These contextual equivalence rules provide the perfect lifting
device to use all equivalence axioms from Chap. 5 in any context in any proof.

Of course, it is crucial that P and Q are actually equivalent (second premise of
CER and CEL) unconditionally without any assumptions from Γ , because those
assumptions from Γ may no longer hold in the context C(_). For example, even if
x = 1 and x2 = 1 are equivalent when assuming x≥ 0, that assumption is no longer
available in the context [x := 1]_, so the following cannot be proved by CER:

x≥ 0 ⊢ [x := 1]x2 = 1 x≥ 0 ⊢ x = 1↔ x2 = 1

x≥ 0 ⊢ [x := 1]x = 1

6.2 Truth and Proof 189

This inference would, indeed, be unsound (written), because the premises are valid
but the conclusion is not.

The flexible device of contextual equivalence rewriting by CER,CEL enables
flexible and intuitive reasoning steps. Of course, we should still take care to use the
axioms in the direction that actually simplifies the problem at hand. The dL axioms
such as axiom [∪] are primarily meant to be used for replacing the left-hand side
[α ∪β]P with the structurally simpler right-hand side [α]P∧ [β]P, because that di-
rection of use assigns meaning to [α ∪β]P in logically simpler terms, i.e., as a struc-
turally simpler logical formula. Furthermore, that direction reduces a dL formula to
a formula with more formulas but smaller hybrid programs, which will terminate
after finitely many such reductions, because every hybrid program only has finitely
many subprograms.

Finally note that we will usually not explicitly mention the use of CEL and
CER in proofs but only mention the axiom that they invoked. For example, the
sequent proof step reducing conclusion (6.3) to premise (6.5) using axiom [∪] (and,
of course, the implicit rule CER) is simply written as

[∪]
A ⊢ [x′′ = g]

[?x = 0;v := cv]B(x,v)∧ [?x≥ 0]B(x,v)

)

A ⊢ [x′′ = g][?x = 0;v := cv∪ ?x≥ 0]B(x,v)

In fact the full proof in Sect. 5.4 can suddenly be understood as a sequent proof in
this way by adding a sequent turnstile ⊢ and implicitly using CER in addition to the
respective indicated dynamic axioms.

⊢ v2 ≤ 10∧ (b)> 0→ b > 0∧ (¬(v≥ 0)∨ v2 ≤ 10)
[:=] ⊢ [c :=10]

v2 ≤ 10∧ (b)> 0→ b > 0∧ (¬(v≥ 0)∨ v2 ≤ c)

)

[:=] ⊢ [a := b][c :=10]

v2 ≤ 10∧ a > 0→ b > 0∧ (¬(v≥ 0)∨ v2 ≤ c)

)

[;] ⊢ [a := b;c :=10]

v2 ≤ 10∧ a > 0→ b > 0∧ (¬(v≥ 0)∨ v2 ≤ c)

)

Fig. 6.3 A simple example proof with dynamics in sequent calculus

Sequent Proof Example with Dynamics

See Fig. 6.3 for a simple example proof. This proof is not very interesting. Inciden-
tally, though, the proof in Fig. 6.3 ends with a premise at the top that is identical to
the (provable) conclusion at the bottom of Fig. 6.2. So gluing the two proofs together
leads to a proof of the conclusion at the bottom of Fig. 6.3:

[a := b;c :=10]

v2 ≤ 10∧ a > 0→ b > 0∧ (¬(v≥ 0)∨ v2 ≤ c)

)

Since this completes the proof (no more premises) and dL proof rules and axioms are
sound, this conclusion is valid, so true in all states. Most crucially, this dL formula

190 6 Truth & Proof

now has the proof as a finite and entirely syntactic justification of why it is valid.
That is certainly more practical than enumerating all of the infinitely many possible
real values for the variables and checking whether the semantics evaluates to true.

A minor wrinkle foreshadowing further developments is that the proof in Fig. 6.3
ends in a formula mentioning (b) > 0 while the proof in Fig. 6.2 starts with
a formula mentioning b > 0 in the same place. The two formulas are, of course,
equivalent, but, in order to really glue both proofs togther, we still need to add some
proof rule that justifies this arithmetic transformation. We could add the following
special purpose proof rule for this purpose, but will ultimately decide on adding a
much more powerful proof rule instead (Sect. 6.5):

Γ ,θ > 0 ⊢ ∆

Γ , (θ)> 0 ⊢ ∆

6.2.6 Quantifier Proof Rules

When trying to make the proof for the bouncing ball from Sect. 5.4 systematic by
turning it into a sequent calculus proof, the first propositional step succeeds with rule
→R, then a couple of steps succeed in splitting the hybrid program with dynamic
axioms from Chap. 5, but, ultimately, the differential equation solution axiom [′]
produces a quantifier for time that still needs to be handled. Of course, even a mere
inspection of the syntax of dL shows that there are logical operators that have no
proof rules yet, namely the universal and existential quantifiers.

Fig. 6.4 Quantifier sequent calculus proof rules

∀R Γ ⊢ p(y),∆

Γ ⊢ ∀x p(x),∆
(y 6∈ Γ ,∆ ,∀x p(x))

∀L Γ , p(e) ⊢ ∆

Γ ,∀x p(x) ⊢ ∆
(arbitrary term e)

∃R Γ ⊢ p(e),∆

Γ ⊢ ∃x p(x),∆
(arbitrary term e)

∃L Γ , p(y) ⊢ ∆

Γ ,∃x p(x) ⊢ ∆
(y 6∈ Γ ,∆ ,∃x p(x))

The quantifier proof rules are listed in Fig. 6.4 and work much as in mathemat-
ics. In the proof rule ∀R, we want to show a universally quantified property. When
a mathematician wants to show a universally quantified property ∀x p(x) to hold, he
could choose a fresh symbol6 y and set out to prove that p(y) holds. Once he has
found a proof for p(y), the mathematician remembers that y was arbitrary and his
proof did not assume anything special about the value of y. So he concludes that
p(y) must indeed hold for all y since y was arbitrary, and that, hence, ∀x p(x) holds
true. For example, to show that the square of all numbers is nonnegative, a mathe-
matician could start out by saying “let y be an arbitrary number,” prove y2 ≥ 0 for

6 In logic, these fresh symbols are known as Skolem function symbols [20] or Herbrand function
symbols [11], except that here we can just use fresh variables for the same purpose.

6.2 Truth and Proof 191

that y, and then conclude ∀x(x2 ≥ 0), since y was arbitrary. Proof rule ∀R makes
this reasoning formally rigorous. It chooses a new variable symbol y and replaces
the universally quantified formula in the succedent by a formula for y. Notice, of
course, how crucially important it is to actually choose a new symbol y that has not
been used free anywhere else in the sequent before. Otherwise, we would assume
special properties about y in Γ ,∆ that we would not be justified to assume. In fact,
it is enough if the variable y just is no free variable in the sequent Γ ⊢ ∀x p(x),∆ , in
which case the variable x itself can be used for the fresh symbol y; see Sect. 5.6.5.

In proof rule ∃R, we want to show an existentially quantified property. When
a mathematician proves ∃x p(x), he can directly produce any specific term e as
a witness for this existential property and prove that, indeed, p(e), for then he
would have shown ∃x p(x) with this witness. For example, to show that there is
a number whose cube is less than its square, a mathematician could start by say-
ing “let me choose, say, 2 1

2 and show the property for 2 1
2 .” Then he can prove

(2 1
2)3 < (2 1

2)2, because 0.125 < 0.25, and conclude that there, thus, is such a
number, i.e., ∃x(x3 < x2), because 2 1

2 was a perfectly good witness. This reason-
ing is exactly what proof rule ∃R enables. It allows the choice of any term e for
x and accepts a proof of p(e) as a proof of ∃x p(x). Unlike in rule ∀R, it is per-
fectly normal for the witness e to mention other variables. For example, a witness
for a > 0 ⊢ ∃x(x > y2∧ x < y2 +a) is y2 + a

2 ; any such witness depends on y and a.
However note that the claim “e is a witness” may turn out to be wrong, for ex-

ample, the choice 2 for x would have been a pretty bad start for attempting to show
∃x(x3 < x2). Consequently, proof rule ∃R is sometimes discarded in favor of a rule
that keeps both options p(e) and ∃x p(x) in the succedent. KeYmaera X instead
allows proof steps to be undone if a proof attempt failed. If the proof with e is suc-
cessful, the sequent is valid and the part of this proof can be closed successfully.
If the proof with e later turns out to be unsuccessful, another proof attempt can be
started.

This approach already hints at a practical problem. If we are very smart about
our choice of the witness e, rule ∃R leads to very short and elegant proofs. If not,
we may end up going in circles without much progress in the proof. That is why
KeYmaera X allows you to specify a witness if you can find one (and you should
if you can, because that gives significantly faster proofs) but also allows you to
keep going without a witness, e.g., by applying axioms to the formula p(e) without
touching the quantifier.

Rules ∀L,∃L are dual to ∃R,∀R. In proof rule ∀L, we have a universally quan-
tified formula in the assumptions (antecedent) that we can use, instead of in the
succedent, which we want to show. In mathematics, when we know a universal fact,
we can use this knowledge for any particular instance. If we know that all positive
numbers have a square root, then we can also use the fact that 5 has a square root,
because 5 is a positive number. Hence from assumption ∀x(x > 0→∃y(x = y2)) in
the antecedent, we can also assume the particular instance 5 > 0→∃y(5 = y2) that
uses 5 for x. Rule ∀L can produce an instance p(e) of the assumption ∀x p(x) for an
arbitrary term e. We sometimes need the universal fact ∀x p(x) for multiple instan-
tiations with e1,e2,e3 during the proof. Fortunately, rule ∀L is also sound when it

192 6 Truth & Proof

keeps the assumption ∀x p(x) in the antecedent so that it can be used repeatedly to
obtain different instances.

In proof rule ∃L, we can use an existentially quantified formula from the an-
tecedent. If we know an existential fact in mathematics, then we can give a name to
the object that we then know does exist. If we know that there is a smallest integer
less than 10 that is a square, we can call it y, but we cannot denote it by a different
term like 5 or 4+2, because they may be (and in fact are) the wrong answer. Rule ∃L
gives a fresh name y to the object that was assumed to exist. Since it does not make
sense to give a different name to the same object later, ∃x p(x) is removed from the
antecedent when rule ∃L adds p(y).

Note how the quantifier proof rules in Fig. 6.4 continue the trend of the proposi-
tional sequent calculus rules in Fig. 6.1: they decompose logical formulas into sim-
pler subformulas. Admittedly, the instances e chosen in rules ∃R,∀L can be rather
large terms. But that is a matter of perspective. All it takes is for us to understand that
concrete terms, no matter how large, are still structurally simpler than quantifiers.

6.3 Derived Proof Rules

The universal quantifier rule ∀L for the antecedent shown in Fig. 6.4 does not retain
the universal assumption ∀x p(x) in the antecedent even though it could. The follow-
ing proof rule helps in cases where multiple instantiations of a universal assumption
are needed, because it can be used repeatedly to produce p(e) and p(ẽ):

∀∀L Γ ,∀x p(x), p(e) ⊢ ∆

Γ ,∀x p(x) ⊢ ∆

But it is not very practical to adopt every possible proof rule. Instead, the newly
suggested proof rule ∀∀L is a derived rule, which means that it can be proved using
the other proof rules already. Obviously, the only other proof rule that can produce
an assumption p(e) from the assumption ∀x p(x) is rule ∀L from Fig. 6.4, and that
rule swallows said assumption.

What we can do to derive ∀∀L is to first copy the assumption ∀x p(x) to obtain
a duplicate, and then use ∀L to turn one copy into p(e), leaving the other copy of
∀x p(x) for later use. Only how do we copy assumptions?

Would it even be fine to duplicate assumptions in a sequent? Fortunately, se-
quents consist of a finite set of assumptions Γ and a finite set ∆ , so that assuming
the same formula twice does not change the meaning of the sequent (Sect. 6.5.4).

Operationally, assumptions can be duplicated by the cut rule to prove the formula
∀x p(x) as a new lemma, which is trivial because it is among the assumptions, and
we can then subsequently work with the extra assumption. This derives rule ∀∀L by
the following sequent calculus proof:

∗
idΓ ,∀x p(x) ⊢ ∀x p(x),∆

Γ ,∀x p(x), p(e) ⊢ ∆
∀LΓ ,∀x p(x),∀x p(x) ⊢ ∆

cut Γ ,∀x p(x) ⊢ ∆

6.4 A Sequent Proof for the Single-Hop Bouncing Ball 193

This sequent calculus proof starts with the conclusion of derived rule ∀∀L at
the bottom and ends with only the premises that rule ∀∀L has at the top. What
makes rule ∀∀L a derived rule is that we can use it in any proof and expand it into
the above more verbose proof using rules cut,id,∀L instead. The big advantage of
derived rules over new proof rules is that derived rules do not need a soundness
proof from the semantics, because they merely combine other proof rules that were
already established to be sound (Theorem 6.1).

6.4 A Sequent Proof for the Single-Hop Bouncing Ball

Recall the bouncing-ball abbreviations from Sect. 5.4:

A
def≡ 0≤x∧ x=H ∧ v=0∧g>0∧1≥c≥0

B(x,v)
def≡ 0≤ x∧ x≤ H

{x′′ = g} def≡ {x′ = v,v′ = g}

And consider the single-hop bouncing-ball formula again:

A→ [x′′ = g;(?x = 0;v := cv∪ ?x≥ 0)]B(x,v) (5.14*)

Sect. 5.4 already had a proof of (5.14) with the dynamic axioms from Chap. 5. By
simply adding a sequent turnstile ⊢ this happens to be a sequent calculus proof,
too. Instead of repeating this proof in sequent calculus style, we consider a similar
property where we now include the evolution domain but leave out the discrete part:

A→ [x′′ = g&x≥ 0]B(x,v) (6.6)

To prove (6.6), we convert it to a sequent and conduct the sequent calculus proof
shown in Fig. 6.5. This proof boldly states that the first premise closes, except that

→L

R
∗

A,r≥0 ⊢ 0≤r≤r
[:=]

A,r≥0,H g
2 r2≥0 ⊢ B(H g

2 r2, gt)

A,r≥0, [x :=H g
2 r2]x≥0 ⊢ [x :=H g

2 r2]B(x,v)

∀L
A,r≥0,0≤r≤r→ [x :=H g

2 r2]x≥0 ⊢ [x :=H g
2 r2]B(x,v)

→R
A,r≥0,∀0≤s≤r [x :=H g

2 s2]x≥0 ⊢ [x :=H g
2 r2]B(x,v)

→R
A,r≥0 ⊢ ∀0≤s≤r [x :=H g

2 s2]x≥0→ [x :=H g
2 r2]B(x,v)

∀R
A ⊢ r≥0→ (∀0≤s≤r [x :=H g

2 s2]x≥0→ [x :=H g
2 r2]B(x,v))

[′]
A ⊢ ∀t≥0(∀0≤s≤t [x :=H g

2 s2]x≥0→ [x :=H g
2 t2]B(x,v))

→R
A ⊢ [x′′ = g&x≥0]B(x,v)

⊢ A→ [x′′ = g&x≥0]B(x,v)

Fig. 6.5 Sequent calculus proof for gravity above ground

194 6 Truth & Proof

A,r≥0 ⊢ 0≤r≤r

is not exactly an instance of the rule id. Even here we need simple arithmetic to
conclude that 0 ≤ r ≤ r is equivalent to r ≥ 0 by reflexivity and flipping sides, at
which point the first premise turns into a formula that can be closed by the id rule:

id
∗

A,r≥0 ⊢ r≥0

A full formal proof and a KeYmaera X proof, thus, need an extra proof step of
arithmetic in the left premise (marked by rule R). In paper proofs, we will frequently
accept such minor steps as abbreviations but always take note of the reason. In the
above example, we might, for example remark alongside R the arithmetic reason “by
reflexivity of ≤ and flipping 0≤ r to r ≥ 0.”

The second remaining premise in the above proof is

A,r≥0,H g

2
r2 ≥ 0 ⊢ B(H g

2
r2, gt)

which, when resolving abbreviations turns into

0≤x∧ x=H ∧ v=0∧g>0∧1≥c≥0,r≥0,H g

2
r2 ≥ 0 ⊢ 0≤ H g

2
r2∧H g

2
r2 ≤ H

This sequent is proved using rule ∧R plus simple arithmetic for its branch

0≤x∧ x=H ∧ v=0∧g>0∧1≥c≥0,r≥0,H g

2
r2 ≥ 0 ⊢ 0≤ H g

2
r2

We again cite the arithmetic reason as “by flipping 0 ≤ H g
2 r2 to H g

2 r2 ≥ 0.”
Some more arithmetic is needed on the respective right branch resulting from ∧R:

0≤x∧ x=H ∧ v=0∧g>0∧1≥c≥0,r≥0,H g

2
r2 ≥ 0 ⊢ H g

2
r2 ≤ H

where we note the arithmetic reason “g> 0 and r2 ≥ 0.” Finishing the above sequent
proof as discussed for the second premise, thus, shows that dL formula (6.6) at the
conclusion of the proof is provable. This time, we have a well-structured and entirely
systematic sequent calculus proof in which proof rules and axioms are only used on
the top level.

In order to make sure you do not forget why some arithmetic facts are true, you
are strongly advised to write down such arithmetic reasons in your paper proofs
to justify that the arithmetic is valid. KeYmaera X provides a number of ways for
proving real arithmetic that will be discussed next.

6.5 Real Arithmetic 195

6.5 Real Arithmetic

What, in general, can be done to prove real arithmetic? We managed to convince
ourselves with ad-hoc arithmetic reasons that the simple arithmetic in the above
proofs was fine. But that is neither a proper proof rule nor should we expect to get
away with such simple arithmetic arguments for the full complexity of CPS.

Chapters 20 and 21 in Part IV will discuss the handling of real arithmetic in much
more detail. For now, the focus is on the most crucial elements for proving CPSs.
Differential dynamic logic and KeYmaera X make use of a fascinating miracle: the
fact that first-order logic of real arithmetic, however challenging it might sound, is
perfectly decidable according to a seminal result by Alfred Tarski [22]. First-order

logic of real arithmetic (FOLR) is the fragment of dL consisting of quantifiers over
reals and propositional connectives of polynomial (or rational) term arithmetic with
(real-valued) variables and rational constant symbols such as 5

7 , but no modalities.
The most immediate way of incorporating uses of real-arithmetic reasoning into
our proofs is, thus, by the rule R, which proves all sequents whose corresponding
formulas in FOLR are valid, which is decidable.

Lemma 6.3 (R real arithmetic). First-order logic of real arithmetic is decid-

able so that all valid facts of FOLR are obtained by this proof rule:

R
Γ ⊢ ∆

(if
∧

P∈Γ

P→
∨

Q∈∆

Q is valid in FOLR)

The proof rule R is remarkably different from all other proof rules we ever con-
sider in this book. All other axioms and proof rules provide straightforward syntactic
transformations that are easily implementable on a computer, for example in the the-
orem prover KeYmaera X [8]. The real arithmetic proof rule R, however, has a side
condition about a formula being valid in real arithmetic, which it is not at all obvi-
ous how to check, but fortunately is still decidable. It is the conceptually simplest
interface between proof-theoretic logic on the one side and model-theoretic alge-
braic decision procedures for real arithmetic on the other side. The real arithmetic
proof rule R proves exactly the sequents representing valid formulas in first-order
real arithmetic. But the formula actually has to be in first-order real arithmetic, so
cannot contain any modalities or differential equations, which are out of scope for
Tarski’s result.

Example 6.2. For example, proof rule R proves the following list of sequents because
they represent valid first-order real arithmetic formulas:

R
∗

⊢ x2 ≥ 0
R

∗
x > 0 ⊢ x3 > 0

R
∗

⊢ x > 0↔∃yx5y2 > 0
R

∗
a > 0,b > 0 ⊢ y≥ 0→ ax2 +by≥ 0

196 6 Truth & Proof

But rule R does not prove x2 > 0 ⊢ x > 0, because it is not valid. Rule R does not
prove x≥ 0,v > 0 ⊢ [x′ = v]x≥ 0, either, because it is not in pure real arithmetic.

6.5.1 Real Quantifier Elimination

On the surface, proof rule R represents all we need to know at this stage about first-
order real arithmetic. How does that miracle work, though? Without any doubt, the
most complex features of first-order real arithmetic are its quantifiers. And even if a
real-arithmetic formula has no quantifiers, we can pretend it does by prefixing it with
universal quantifiers for all free variables (forming the universal closure). After all,
if we want to show a formula is valid, then we need to show it is true for all values of
all its variables, which semantically corresponds to having all universal quantifiers
in front. That is why an understanding of first-order real arithmetic proceeds by
understanding the rôle of quantifiers over the reals.

In a nutshell, the notation QE(P) denotes the use of real-arithmetic reasoning on
formula P to obtain a formula QE(P) over the same free variables that is equivalent
to P but simpler, because QE(P) is quantifier-free. When starting with a first-order
real-arithmetic formula P in which all variables are quantified, the quantifier-free
equivalent QE(P) has no variables, so directly evaluates to either true or false.

Example 6.3. Real quantifier elimination yields, e.g., the following equivalence:

QE(∃x(ax+b = 0)) ≡ (a 6= 0∨b = 0) (6.7)

The two sides are easily seen to be equivalent, i.e.,

� ∃x(ax+b = 0)↔ (a 6= 0∨b = 0) (6.8)

because a linear equation with nonzero inhomogeneous part has a solution iff its
linear part is nonzero as well. And a constant equation (with a = 0) only has a
solution if b = 0. The left-hand side of the equivalence may be hard to evaluate,
because it conjectures the existence of an x and it is not clear how we might get
such a real number for x, since there are so many reals. The right-hand side, instead,
is trivial to evaluate, because it is quantifier-free and directly says to compare the
values of a and b to zero and that an x such that ax+b= 0 will exist if and only if a 6=
0 or b = 0. This is easy to check at least if a,b are either concrete numbers or fixed
parameters for your CPS. Then all you need to do is make sure your choices for those
parameters satisfy these constraints. If a or b is a symbolic term (not mentioning x

otherwise the equivalence (6.8) is false and QE gives a different result), then (6.8)
still identifies the conditions for the existence of an x such that ax+b = 0.

Example 6.4. Quantifier elimination also handles universal quantifiers:

QE(∀x(ax+b 6= 0)) ≡ (a = 0∧b 6= 0)

6.5 Real Arithmetic 197

Expedition 6.1 (Quantifier elimination)

One of Alfred Tarski’s many seminal results from the 1930s proves quantifier
elimination and decidability for real arithmetic [22].

Definition 6.3 (Quantifier elimination). A first-order logic theory (such
as first-order logic FOLR over the reals) admits quantifier elimination if,
for each formula P, a quantifier-free formula QE(P) can be effectively
associated with P that is equivalent, i.e., P↔ QE(P) is valid.

Theorem 6.2 (Tarski’s quantifier elimination). The first-order logic of

real arithmetic admits quantifier elimination and is, thus, decidable.

That is, there is an algorithm that accepts any first-order real-arithmetic formula
P in FOLR as input and computes a formula QE(P) in FOLR that is equivalent
to P but quantifier-free (and does not mention new variables or function sym-
bols either).

The operation QE can be assumed to evaluate ground formulas (i.e., without
variables) such as 1+9

4 < 2+1, yielding a decision procedure for closed formu-
las of this theory (i.e., formulas without free variables, which one obtains when
forming the universal closure by prefixing the formula with universal quanti-
fiers for all free variables). For a closed formula P, all it takes is to compute its
quantifier-free equivalent QE(P) by quantifier elimination. The closed formula
P is closed, so has no free variables or other free symbols, and neither will its
quantifier-free equivalent QE(P). Hence, P as well as its equivalent QE(P) are
equivalent to either true or false. Yet, QE(P) is quantifier-free, so which one it
is can be found out simply by evaluating the (variable-free) concrete arithmetic
in QE(P).

While a full account of the nuances of quantifier elimination [2, 3, 5–7, 12,
19, 21–23] is beyond the scope of this book, one useful procedure for quantifier
elimination in real arithmetic will be investigated in Chaps. 20 and 21.

Again, both sides are easily seen to be equivalent, because all x ensure ax+ b 6= 0
only if b is nonzero and no x can cancel b since a = 0. This proves the validity:

� ∀x(ax+b 6= 0)↔ (a = 0∧b 6= 0)

Overall, if we have quantifiers, QE can remove them for us. But we first need
such quantifiers. Rules ∀R,∃R,∀L,∃R went through a lot of trouble to get rid of the
quantifiers in the first place. Oh my! That makes it kind of hard to eliminate them
equivalently later on. Certainly the proof rules in Fig. 6.4 have not been particularly
careful about eliminating quantifiers equivalently. Just think of what might happen
if we did try to use rule ∃R with the wrong witness. That is certainly cheaper than
quantifier elimination, but hardly as precise and useful.

198 6 Truth & Proof

Yet, if we misplaced a quantifier using the ordinary quantifier rules from Fig. 6.4,
then all we need to do is to dream it up again and we are back in business for elimi-
nating quantifiers by QE. The key to understanding how that works is to recall that
the fresh (Skolem) variable symbols introduced by rule ∀R were originally univer-
sal. And, in fact, whether they were or were not, we can always prove a property by
proving it with an extra universal quantifier ∀x in front.

Lemma 6.4 (i∀ reintroducing universal quantifiers). This rule is sound:

i∀ Γ ⊢ ∀xP,∆

Γ ⊢ P,∆

With the rule i∀, we can reintroduce a universal quantifier, which can then
promptly be eliminated again by QE.

Example 6.5. Together with rule i∀, quantifier elimination can decide whether FOLR

formula ∃x(ax+ b = 0) is valid. The equivalence (6.7) already indicates that there
are values of a and b that falsify ∃x(ax + b = 0), because there are values that
falsify the equivalent formula a 6= 0∨b = 0. The direct way to decide this formula
by quantifier elimination first uses i∀ for the remaining free variables a,b and then
handles the fully quantified universal closure by quantifier elimination to obtain a
quantifier-free equivalent (with the same free variables, so none):

QE(∀a∀b∃x(ax+b = 0)) ≡ false

So rule i∀ can reintroduce a universal quantifier, which can then be eliminated
again by QE. Wait, why did it make sense to first swallow a quantifier with the
lightweight rule ∀R and then later reintroduce it with rule i∀ and then eliminate it
once again with the big steamroller in the form of QE?

Before you read on, see if you can find the answer for yourself.

It can be pretty useful to get quantifiers out of the way first using the quick
rules ∀R,∃R,∀L,∃L, because other sequent rules such as propositional rules only
work at the top level, so quantifiers need to be moved out of the way before any
other proof rules can be applied.7 If the formula underneath the quantifier contains
modalities with hybrid programs, then it is too much to ask QE to solve them for us
as well. The key is to first get rid of quantifiers by using extra symbols, work out the
proof arguments for the remaining hybrid program modalities and then reintroduce
quantifiers using i∀ to ask QE for the answer to the remaining real arithmetic.

Example 6.6. The following sequent proof illustrates how a quantifier is first han-
dled by rule ∀R, then dynamic axioms handle the modalities and finally a universal
quantifier is reintroduced using rule i∀ before quantifier elimination proves the re-
sulting arithmetic. In fact, the top most use of rule i∀ also introduces a universal

7 The exception are contextual equivalence rules CER,CEL, which, fortunately, can even proceed
within the context of a quantifier. This can be particularly helpful for existential quantifiers.

6.5 Real Arithmetic 199

quantifier for x, which was never quantified in the original goal. All free variables
are implicitly universally quantified, which fits with the fact that we seek to prove
validity, so truth in all states for all real values of all variables. Besides, rule i∀ can
always introduce a universal quantifier to prove a formula if that succeeds.

∗
R ⊢ ∀x∀d

d ≥ x→ 0≥ 0∧ x+d ≥ 0

)

i∀ ⊢ ∀d

d ≥ x→ 0≥ 0∧ x+d ≥ 0

)

i∀ ⊢ d ≥ x→ 0≥ 0∧ x+d ≥ 0
[:=] ⊢ d ≥ x→ 0≥ 0∧ [x :=x+d]x≥ 0
[:=] ⊢ d ≥ x→ [x :=0]x≥ 0∧ [x :=x+d]x≥ 0
[∪] ⊢ d ≥ x→ [x :=0∪ x :=x+d]x≥ 0
∀R ⊢ ∀d

d ≥ x→ [x :=0∪ x :=x+d]x≥ 0

)

While this is a rather canonical proof structure, dynamic axioms can be applied
anywhere. So, in this case, we could have skipped the rule ∀R and directly apply the
dynamic axioms, bypassing also the need to reintroduce ∀d using rule i∀ later.

Example 6.7. Even if quantifier elimination handles existential quantifiers just as
well as universal quantifiers, some care is needed with existential quantifiers. The
additional complication is that when we turn an existential quantifier into a witness
with rule ∃R, even with a variable as a witness, then there is no way of getting said
existential quantifier back later, but only a stronger universal quantifier using rule
i∀. A formula with a genuine existential quantifier, though, usually cannot be proved
by using the same formula with a universal quantifier instead, even if it would be
sound to do so. That is why the following sequent proof uses dynamic axioms in the
middle of the formula directly until the remaining formula is pure arithmetic such
that rule R can handle it:

∗
R ⊢ ∀x

x≥ 0→∃d

d ≥ 0∧0≥ 0∧ x+d ≥ 0

))

i∀ ⊢ x≥ 0→∃d

d ≥ 0∧0≥ 0∧ x+d ≥ 0

)

[:=] ⊢ x≥ 0→∃d

d ≥ 0∧0≥ 0∧ [x :=x+d]x≥ 0

)

[:=] ⊢ x≥ 0→∃d

d ≥ 0∧ [x :=0]x≥ 0∧ [x :=x+d]x≥ 0

)

[∪] ⊢ x≥ 0→∃d

d ≥ 0∧ [x :=0∪ x :=x+d]x≥ 0

)

6.5.2 Instantiating Real-Arithmetic Quantifiers

Real arithmetic can be very challenging. That does not come as a surprise, because
cyber-physical systems and the behavior of dynamical systems themselves is chal-
lenging. On the contrary, it is pretty amazing that differential dynamic logic reduces
challenging questions about CPSs to just plain real arithmetic. Of course, that means
that you may be left with challenging arithmetic, of quite noticeable computational

200 6 Truth & Proof

complexity. This is one part where you can use your creativity to master challeng-
ing verification questions by helping the KeYmaera X prover figure them out. While
there will soon be more tricks in your toolbox to overcome the challenges of arith-
metic, we discuss some of them in this chapter.

Providing instantiations for quantifier rules ∃R,∀L can significantly speed up
real-arithmetic decision procedures. The proof in Sect. 6.4 instantiated the universal
quantifier ∀s for an evolution domain constraint by the endpoint r of the time inter-
val using quantifier proof rule ∀L. This is a very common simplification that speeds
up arithmetic significantly (Note 36). It does not always work, though, because the
instance one guesses may not always be the right one. Even worse, there may not
always be a single instance that is sufficient for the proof.

Note 36 (Extreme instantiation) The proof rules ∀L for universal quantifiers
in the antecedent and ∃R for existential quantifiers in the succedent allow in-
stantiation of the quantified variable x with any term e. Such an instantiation is
very helpful if only a single instance e is important for the argument.
For quantifiers coming from the handling of evolution domains in axiom [′]
from Lemma 5.4, most uses only require a single time instance, where an ex-
tremal value for time is often all it takes. The proof steps that often helps then
is instantiation of the intermediate time s by the end time t:

∗
RΓ , t≥0 ⊢ 0≤t≤t, . . .

. . .
Γ , t≥0,q(y(t)) ⊢ [x :=y(t)]p(x)

→LΓ , t≥0,0≤t≤t→ q(y(t)) ⊢ [x :=y(t)]p(x)
∀L Γ , t≥0,∀0≤s≤t q(y(s)) ⊢ [x :=y(t)]p(x)
→R Γ , t≥0 ⊢ (∀0≤s≤t q(y(s)))→ [x :=y(t)]p(x)
→R Γ ⊢ t≥0→

(∀0≤s≤t q(y(s)))→ [x :=y(t)]p(x)

)

∀R Γ ⊢ ∀t≥0

(∀0≤s≤t q(y(s)))→ [x :=y(t)]p(x)

)

[′] Γ ⊢ [x′ = f (x)&q(x)]p(x)

This happens so frequently that KeYmaera X defaults to just using this instan-
tiation. Similar instantiations can simplify arithmetic in other cases as well.

6.5.3 Weakening Real Arithmetic by Removing Assumptions

It can be very useful to just drop arithmetic assumptions that are irrelevant for the
proof to make sure they are no distraction for real-arithmetic decision procedures.

In the proof in Sect. 6.4, the left premise was

A,r≥0 ⊢ 0≤r≤r

The proof of this sequent did not make use of A at all. Here, the proof worked easily.
But if A were a very complicated formula, then proving the same sequent might have

6.5 Real Arithmetic 201

been very difficult, because our proving attempts could have been distracted by the
presence of A and all the lovely assumptions it provides. We might have applied
lots of proof rules to A before finally realizing that the sequent is proved because of
r≥0 ⊢ 0≤r≤r alone.

While quantifier elimination is not based on applying propositional proof rules,
unnecessary assumptions can still cause considerable distraction [14, Chapter 5].
Think of how much easier it is to see that ax2 + bx ≥ 0 is true if somebody only
tells you the relevant assumptions a≥ 0,bx≥ 0 rather than listing a lot of other true
but presently useless assumptions about the values of a,b, and x. Consequently, it
often saves a lot of proof effort to simplify irrelevant assumptions away as soon as
they have become unnecessary. Fortunately, sequent calculus already comes with a
general-purpose proof rule for the job called weakening (WL,WR, which will be
elaborated in Sect. 6.5.4), which we can use on our example from the left premise
in the proof of Sect. 6.4 to remove the assumption A:

r≥0 ⊢ 0≤r≤r
WL

A,r≥0 ⊢ 0≤r≤r

Note 37 (Occam’s assumption razor) Think how hard it would be to prove a
theorem with all the facts in all books of mathematics as assumptions. Compare
this to a proof from just the two facts that matter for that proof.

You are generally advised to get rid of assumptions that you no longer need. This
will help you manage the relevant facts about your CPS, will make sure you stay on
top of your CPS agenda, and will also help the arithmetic in KeYmaera X to succeed
much more quickly. Just be careful not to discard an assumption that you still need.
But if you accidentally do, then that alone can also be a valuable insight, because
you just found out what the safety of your system critically depends on.

Finally, recall how the real-arithmetic proof of the first premise in Note 36 did
not need the potentially long list of unnecessary assumptions in Γ . And, in fact, the
proof also weakened away the modal formula [x :=y(t)]p(x) from the sequent with
WR to make the sequent arithmetic and amenable to real-arithmetic rule R.

6.5.4 Structural Proof Rules in Sequent Calculus

The antecedent and succedent of a sequent are considered as sets. That implies that
the order of formulas is irrelevant, and we implicitly adopt what is called the ex-

change rule and do not distinguish between the following two sequents

Γ ,A,B ⊢ ∆ and Γ ,B,A ⊢ ∆

ultimately since A∧B and B∧A are equivalent. Nor do we distinguish between

Γ ⊢ C,D,∆ and Γ ⊢ D,C,∆

202 6 Truth & Proof

ultimately since C∨D and D∨C are equivalent. Antecedent and succedent are con-
sidered to be sets, not multisets, so we implicitly adopt what is called the contraction

rule and do not distinguish between the two sequents

Γ ,A,A ⊢ ∆ and Γ ,A ⊢ ∆

because A∧A and A are equivalent. It does not matter whether we make an assump-
tion A once or multiple times. Nor do we distinguish between

Γ ⊢ C,C,∆ and Γ ⊢ C,∆

because C∨C and C are equivalent. We could adopt these exchange rules and con-
traction rules explicitly, but usually leave them implicit:

PR
Γ ⊢ Q,P,∆

Γ ⊢ P,Q,∆

PL
Γ ,Q,P ⊢ ∆

Γ ,P,Q ⊢ ∆

cR
Γ ⊢ P,P,∆

Γ ⊢ P,∆

cL
Γ ,P,P ⊢ ∆

Γ ,P ⊢ ∆

The only structural rule of sequent calculus that we will find reason to use ex-
plicitly in practice is the weakening proof rule (alias hide rule) that can be used to
remove formulas from the antecedent (WL) or succedent (WR), respectively:

WR
Γ ⊢ ∆

Γ ⊢ P,∆

WL
Γ ⊢ ∆

Γ ,P ⊢ ∆

Weakening rules are sound, since it is always fine to prove a sequent with more
formulas in the antecedent or succedent by a proof that uses only some of those
formulas. Proof rule WL proves the conclusion Γ ,P ⊢ ∆ from the premise Γ ⊢ ∆ ,
which dropped the assumption P. Surely, if premise Γ ⊢ ∆ is valid, then conclusion
Γ ,P ⊢ ∆ is valid as well, because it even has one more (unused) assumption avail-
able, namely P. Proof rule WR proves the conclusion Γ ⊢ P,∆ from the premise
Γ ⊢ ∆ , which is fine because Γ ⊢ ∆ just has one less (disjunctive) option in its
succedent. To see why that is sound, recall the disjunctive meaning of succedents.

At first sight, weakening may sound like a stupid thing to do in any proof, because
rule WL discards available assumptions (P in the antecedent) and rule WR discards
available options (P in the succedent) for proving the statement. This seems to make
it harder to prove the statement after using a weakening rule. But weakening is
actually useful for managing computational and conceptual proof complexity by
enabling us to throw away irrelevant assumptions. These assumptions may have
been crucial for another part of the proof, but have just become irrelevant for the
particular sequent at hand, which can, thus, be simplified to Γ ⊢ ∆ . Weakening, thus,
streamlines proofs, which also helps speed up arithmetic immensely (Sect. 6.5.3).

Of course, the opposite of the weakening rules would be terribly unsound. We
cannot just invent extra assumptions out of thin air just because we feel like wanting

6.5 Real Arithmetic 203

to have them at our disposal. But once we have the assumptions, we are free to not
use them. That is, the premise of WL implies the conclusion but not vice versa.

6.5.5 Substituting Equations into Formulas

If we have an equation x = e among our assumptions (in the antecedent), it is often
significantly more efficient to use that equation for substituting e for all other occur-
rences of x instead of waiting for a real-arithmetic decision procedure to figure this
out. If we have x = e among our assumptions, then any (free) occurrence of x can
be replaced by e, both in the succedent as well as in the antecedent:

=R
Γ ,x = e ⊢ p(e),∆

Γ ,x = e ⊢ p(x),∆
=L

Γ ,x = e, p(e) ⊢ ∆

Γ ,x = e, p(x) ⊢ ∆

It would be okay to use the equation in the other direction for replacing all oc-
currences of e by x, because the equation e = x is equivalent to x = e by symmetry.
Both proof rules, =R and =L, apply an equation x = e from the antecedent to an oc-
currence of x in the antecedent or succedent to substitute e for x. By using the proof
rule sufficiently often, multiple occurrences of x in Γ and ∆ can be substituted. Es-
pecially if x does not occur in e, then using the proof rules =R,=L exhaustively and
weakening x = e away by rule WL removes the variable x entirely, which is what
quantifier elimination will otherwise have to achieve by a complex algorithm.

Quantifier elimination would have been able to prove the same fact, but with sig-
nificantly more time and effort. So you are advised to exploit these proof shortcuts
whenever you spot them. Of course, KeYmaera X is clever enough to spot certain
uses of equality rewriting as well, but you may be a better judge of how you would
like to structure your proof, because you are more familiar with your CPS of interest.

6.5.6 Abbreviating Terms to Reduce Complexity

The opposite of exhaustively substituting in equations by rules =L,=R can also be
helpful sometimes. When there are complicated terms whose precise relation to
the other variables is not important, then a new variable can be introduced as an
abbreviation for the complicated term.

For example, the following sequent looks complicated but becomes easy when
we abbreviate all occurrences of the complex term a

2 t2 + vt + x by a new variable z:

a≥ 0,v≥ 0, t ≥ 0,0≤ a

2
t2 + vt + x
︸ ︷︷ ︸

z

,
a

2
t2 + vt + x
︸ ︷︷ ︸

z

≤ d,d ≤ 10 ⊢ a

2
t2 + vt + x
︸ ︷︷ ︸

z

≤ 10

204 6 Truth & Proof

The sequent resulting from that abbreviation lost how exactly the value of the new
variable z relates to the values of a, t,v,x but exposes the simple transitivity argument
that easily proves the sequent by rule R:

a≥ 0,v≥ 0, t ≥ 0,0≤ z,z≤ d,d ≤ 10 ⊢ z≤ 10

This is especially obvious after another few weakening steps to discard the now
obviously irrelevant assumptions a≥ 0,v≥ 0, t ≥ 0.

A proof rule for introducing such abbreviations will be investigated in Chap. 12.
In fact, the proof rule for introducing such abbreviations will turn out to be just the
inverse of another useful proof rule for assignments, rule [:=]=.

Using the assignment axiom [:=] will substitute the right-hand side e of an as-
signment x := e for the variable x (if that is admissible). An alternative is the equa-
tional assignment proof rule [:=]=, which turns an assignment x :=e into an equation
y = e for a fresh variable y that has not been used in the sequent yet.

Lemma 6.5 ([:=]= equational assignment rule). This is a derived rule:

[:=]=
Γ ,y = e ⊢ p(y),∆

Γ ⊢ [x :=e]p(x),∆
(y new)

Proof. The proof deriving rule [:=]= from the other axioms and proof rules, espe-
cially the assignment axiom [:=], is shown in prior work [18, Theorem 40]. ⊓⊔

Of course, it is important for soundness of rule [:=]= that the variable y is fresh
and not used in Γ ,∆ , or even e, because the following would, otherwise, incorrectly
prove an invalid formula from a premise that is only valid because of the impossible
assumption y = y+1 that rule [:=]= introduces:

y = y+1 ⊢ y > 5

⊢ [x :=y+1]x > 5

6.5.7 Creatively Cutting Real Arithmetic to Transform Questions

Weakening is not the only propositional proof rule that can help accelerate arith-
metic. The cut rule is not just a logical curiosity, but can actually be shockingly
helpful in practice [4]. It can speed up real arithmetic a lot to use a cut to replace a
difficult arithmetic formula with a simpler one that is sufficient for the proof.

For example, suppose p(x) is a big and very complicated formula of first-order
real arithmetic. Then proving the following formula

(x y)2 ≤ 0∧ p(y)→ p(x)

6.6 Summary 205

by real arithmetic will turn out to be surprisingly difficult and can take ages (even
if it ultimately terminates). Yet, upon closer inspection, (x y)2 ≤ 0 implies that
y = x, which makes the rest of the proof easy since p(y) easily implies p(x) if,
indeed, x = y. How do we exhibit a proof based on these thoughts?

The critical idea for such a proof work is to use a creative cut with suitable
arithmetic. Choosing x = y as the cut formula C, we use the rule cut and proceed:

∗
R (x y)2 ≤ 0 ⊢ x = y

WR (x y)2 ≤ 0 ⊢ x = y, p(x)
WL(x y)2 ≤ 0, p(y) ⊢ x = y, p(x)

∗
id

p(y),x = y ⊢ p(y)
=R

p(y),x = y ⊢ p(x)
WL(x y)2 ≤ 0, p(y),x = y ⊢ p(x)

cut (x y)2 ≤ 0, p(y) ⊢ p(x)
∧L (x y)2 ≤ 0∧ p(y) ⊢ p(x)
→R ⊢ (x y)2 ≤ 0∧ p(y)→ p(x)

Indeed, the left premise is proved easily using real arithmetic. The right premise
is proved trivially by the equality substitution proof rule =R to propagate that x

is y, and then rule id. Observe that proofs like this one benefit substantially from
weakening to get rid of superfluous assumptions, thereby simplifying the resulting
arithmetic.

6.6 Summary

The sequent proof rules for differential dynamic logic that this chapter showed are
summarized in Fig. 6.6. They are sound [13, 16, 18].

Theorem 6.1 (Soundness). The dL sequent calculus is sound. That is, if a dL

formula P has a proof in dL’s sequent calculus, i.e., ⊢dL P, then P is valid, i.e.,

� P.

The primary responsibility of the sequent calculus is to organize our thoughts
and proofs to ensure that a proof is never finished before all cases in all premises
are proved. Its most crucial aspect is its direct ability to use all the dynamic axioms
from Chap. 5 and later parts of this book by replacing one side of the equivalences
with the other. Formally, this is what the contextual equivalence rules CEL,CER
allow, but we can also happily work with the mental model of substituting equals
for equals. That is, any equivalence P↔ Q proved from the axioms allows us to
replace P with Q.

There are further proof rules of differential dynamic logic that later chapters
will examine [13, 15, 16, 18], but this chapter laid a rock-solid foundation for CPS
verification. In addition to having seen the foundation and working principles of
how systematic CPS proofs assemble arguments, this chapter discussed techniques
to tame the complexity of real arithmetic.

206 6 Truth & Proof

Fig. 6.6 Proof rules of the dL sequent calculus considered in this chapter

¬R
Γ ,P ⊢ ∆

Γ ⊢ ¬P,∆

¬L
Γ ⊢ P,∆

Γ ,¬P ⊢ ∆

∧R
Γ ⊢ P,∆ Γ ⊢ Q,∆

Γ ⊢ P∧Q,∆

∧L
Γ ,P,Q ⊢ ∆

Γ ,P∧Q ⊢ ∆

∨R
Γ ⊢ P,Q,∆

Γ ⊢ P∨Q,∆

∨L
Γ ,P ⊢ ∆ Γ ,Q ⊢ ∆

Γ ,P∨Q ⊢ ∆

→R
Γ ,P ⊢ Q,∆

Γ ⊢ P→ Q,∆

→L
Γ ⊢ P,∆ Γ ,Q ⊢ ∆

Γ ,P→ Q ⊢ ∆

id
Γ ,P ⊢ P,∆

cut
Γ ⊢ C,∆ Γ ,C ⊢ ∆

Γ ⊢ ∆

⊤R
Γ ⊢ true,∆

⊥L
Γ , false ⊢ ∆

WR
Γ ⊢ ∆

Γ ⊢ P,∆

WL
Γ ⊢ ∆

Γ ,P ⊢ ∆

∀R Γ ⊢ p(y),∆

Γ ⊢ ∀x p(x),∆
(y 6∈ Γ ,∆ ,∀x p(x))

∀L Γ , p(e) ⊢ ∆

Γ ,∀x p(x) ⊢ ∆
(arbitrary term e)

∃R Γ ⊢ p(e),∆

Γ ⊢ ∃x p(x),∆
(arbitrary term e)

∃L Γ , p(y) ⊢ ∆

Γ ,∃x p(x) ⊢ ∆
(y 6∈ Γ ,∆ ,∃x p(x))

CER
Γ ⊢ C(Q),∆ ⊢ P↔ Q

Γ ⊢ C(P),∆

CEL
Γ ,C(Q) ⊢ ∆ ⊢ P↔ Q

Γ ,C(P) ⊢ ∆

=R
Γ ,x = e ⊢ p(e),∆

Γ ,x = e ⊢ p(x),∆

=L
Γ ,x = e, p(e) ⊢ ∆

Γ ,x = e, p(x) ⊢ ∆

Exercises

6.1. Prove the soundness of the following special purpose proof rule and use it to
continue the proof in Fig. 6.3 similarly to the proof in Fig. 6.2:

Γ ,θ > 0 ⊢ ∆

Γ , (θ)> 0 ⊢ ∆

6.2 (*). Since we are not adding the proof rule from Exercise 6.1 to the dL proof
calculus, show how you can derive the same proof step using a creative combination
of arithmetic and the other proof rules.

6.3. The sequent calculus proof in Fig. 6.2 proves the following dL formula

v2 ≤ 10∧b > 0→ b > 0∧ (¬(v≥ 0)∨ v2 ≤ 10)

Its proof only used propositional sequent calculus rules and no arithmetic or dy-
namic axioms. What does that mean about the validity of the following formula
with the same propositional structure?

x5 = y2 +5∧a2 > c2→ a2 > c2∧ (¬(z < x2)∨ x5 = y2 +5)

6.4 (Bouncing-ball sequent proof). Using just dL axioms and arithmetic, Sect. 5.4
showed a proof of a single-hop bouncing-ball formula:

6.6 Summary 207

0≤ x∧ x = H ∧ v = 0∧g > 0∧1≥ c≥ 0→
[
{x′ = v,v′ = g};(?x = 0;v := cv∪ ?x≥ 0)

]
(0≤ x∧ x≤ H) (5.14*)

What is the minimal change to make this proof a proof in the dL sequent calculus?
Additionally conduct a sequent calculus proof for formula (5.14) that only applies
proof rules and axioms at the top level.

6.5 (Proof practice). Give dL sequent calculus proofs for the following formulas:

x > 0→[x :=x+1∪ x′ = 2]x > 0

x > 0∧ v≥ 0→[x :=x+1∪ x′ = v]x > 0

x > 0→[x :=x+1∪ x′ = 2∪ x :=1]x > 0

[x :=1;(x :=x+1∪ x′ = 2)]x > 0

[x :=1;x :=x 1;x′ = 2]x≥ 0

x≥ 0→[x :=x+1∪ (x′ = 2;?x > 0)]x > 0

x2 ≥ 100→[(?x > 0;x′ = 2)∪ (?x < 0;x′ = 2)]x2 ≥ 100

6.6. Could we have used the following proof rule for ∧ instead of rule ∧R? Is it
sound? Does it have any advantages or disadvantages compared to rule ∧R?

Γ ⊢ P,∆ Γ ,P ⊢ Q,∆

Γ ⊢ P∧Q,∆

6.7 (Propositional soundness). Prove soundness for the structural and proposi-
tional sequent proof rules considered in Fig. 6.1.

6.8 (Bi-implication). Prove that these proof rules for bi-implication are sound:

↔R
Γ ,P ⊢ Q,∆ Γ ,Q ⊢ P,∆

Γ ⊢ P↔ Q,∆

↔L
Γ ,P→ Q,Q→ P ⊢ ∆

Γ ,P↔ Q ⊢ ∆

6.9. Without alluding to dynamic axiom [∪] or contextual equivalence CER, give a
direct semantical soundness proof for the following sequent proof rules:

[∪]R
Γ ⊢ [α]P∧ [β]P,∆

Γ ⊢ [α ∪β]P,∆

[∪]L
Γ , [α]P∧ [β]P ⊢ ∆

Γ , [α ∪β]P ⊢ ∆

[∪]R2
Γ ⊢ [α]P,∆ Γ ⊢ [β]P,∆

Γ ⊢ [α ∪β]P,∆

[∪]L2
Γ , [α]P, [β]P ⊢ ∆

Γ , [α ∪β]P ⊢ ∆

6.10 (dL sequent proof rules). Develop dynamic sequent calculus proof rules for
the modalities similar to either the rules [∪]R and [∪]L that this chapter discussed
briefly but did not pursue or similar to the rules [∪]R2 and [∪]L2 from Exercise 6.9.
Prove soundness for these sequent calculus proof rules. You can use a general argu-
ment that soundness of the dynamic sequent proof rules follows from soundness of

208 6 Truth & Proof

the dL axioms considered in Chap. 5, but you first need to prove soundness of those
dL axioms (Exercise 5.10).

6.11. If we define the formula true as 1 > 0 and the formula false as 1 > 2, then are
the proof rules ⊤R and ⊥L derivable from the other proof rules?

6.12. Let y(t) be the solution at time t of the differential equation x′ = f (x) with
initial value y(0) = x. Show that the following sequent proof rule, which checks the
evolution domain q(x) at the end, is sound:

Γ ⊢ ∀t≥0

[x :=y(t)](q(x)→ p(x))

)
,∆

Γ ⊢ [x′ = f (x)&q(x)]p(x),∆

Would the following also be a sound axiom? Prove or disprove.

[x′ = f (x)&Q]P↔∀t≥0

[x :=y(t)](Q→ P)

)

Is the following sequent proof rule sound, which checks the evolution domain q(x)
at the beginning and at the end?

Γ ⊢ ∀t≥0

q(x)→ [x :=y(t)](q(x)→ p(x))

)
,∆

Γ ⊢ [x′ = f (x)&q(x)]p(x),∆

6.13 (*). Generalize the solution axiom schema [′] for differential equations from
Chap. 5 to the case of systems of differential equations:

x′1 = e1, . . ,x
′
n = en &Q

First consider the easier case where Q≡ true and n = 2.

6.14 (MR monotonicity right rule). Prove that the following formulation of the
monotonicity rule is sound. Either give a direct semantical soundness proof or derive
rule MR from rule M[·] from Lemma 5.13.

MR
Γ ⊢ [α]Q,∆ Q ⊢ P

Γ ⊢ [α]P,∆

6.15. Sect. 5.2 argued why the following proof rule is sound

H;
A→ [α]E E→ [β]B

A→ [α;β]B

Prove that rule H; is indeed sound. Would the following be a sound axiom? Or can
you find a counterexample?

[α;β]B↔ ([α]E)∧ (E→ [β]B)

6.16. By Sect. 6.5.1, quantifier elimination can be used to show the equivalence

6.6 Summary 209

QE(∃x(ax+b = 0)) ≡ (a 6= 0∨b = 0) (6.7*)

What is the result of applying quantifier elimination to ∃x(ax2+bx+c= 0) instead?

6.17 (Derived propositional rules). Prove that the following rules are derived rules:

cutR
Γ ⊢ Q,∆ Γ ⊢ Q→ P,∆

Γ ⊢ P,∆

cutL
Γ ,Q ⊢ ∆ Γ ⊢ P→ Q,∆

Γ ,P ⊢ ∆

6.18 (Propositional completeness). A formula of propositional logic only uses the
logical connectives ∧,∨,¬,→ and abstract atomic formulas such as p,q. For exam-
ple, the propositional formula p∧¬q→ ¬(q∨¬p) is valid, whatever truth-values
p and q have. Give an informal argument why every valid formula of propositional
logic can be proved using the propositional sequent proof rules from Fig. 6.1.

References

[1] Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory:

To Truth Through Proof. 2nd. Dordrecht: Kluwer, 2002. DOI: 10.1007/97
8-94-015-9934-4.

[2] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in Real

Algebraic Geometry. 2nd. Berlin: Springer, 2006. DOI: 10.1007/3-540-
33099-2.

[3] Jacek Bochnak, Michel Coste, and Marie-Francoise Roy. Real Algebraic Ge-

ometry. Vol. 36. Ergeb. Math. Grenzgeb. Berlin: Springer, 1998. DOI: 10.1
007/978-3-662-03718-8.

[4] George Boolos. Don’t eliminate cut. Journal of Philosophical Logic 13(4)
(1984), 373–378. DOI: 10.1007/BF00247711.

[5] George E. Collins. Quantifier elimination for real closed fields by cylindrical
algebraic decomposition. In: Automata Theory and Formal Languages. Ed.
by H. Barkhage. Vol. 33. LNCS. Berlin: Springer, 1975, 134–183. DOI: 10
.1007/3-540-07407-4_17.

[6] George E. Collins and Hoon Hong. Partial cylindrical algebraic decomposi-
tion for quantifier elimination. J. Symb. Comput. 12(3) (1991), 299–328. DOI:
10.1016/S0747-7171(08)80152-6.

[7] James H. Davenport and Joos Heintz. Real quantifier elimination is doubly
exponential. J. Symb. Comput. 5(1/2) (1988), 29–35. DOI: 10.1016/S074
7-7171(88)80004-X.

https://doi.org/10.1007/978-94-015-9934-4
https://doi.org/10.1007/978-94-015-9934-4
https://doi.org/10.1007/3-540-33099-2
https://doi.org/10.1007/3-540-33099-2
https://doi.org/10.1007/978-3-662-03718-8
https://doi.org/10.1007/978-3-662-03718-8
https://doi.org/10.1007/BF00247711
https://doi.org/10.1007/3-540-07407-4_17
https://doi.org/10.1007/3-540-07407-4_17
https://doi.org/10.1016/S0747-7171(08)80152-6
https://doi.org/10.1016/S0747-7171(88)80004-X
https://doi.org/10.1016/S0747-7171(88)80004-X

210 6 Truth & Proof

[8] Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp, and André
Platzer. KeYmaera X: an axiomatic tactical theorem prover for hybrid sys-
tems. In: CADE. Ed. by Amy Felty and Aart Middeldorp. Vol. 9195. LNCS.
Berlin: Springer, 2015, 527–538. DOI: 10.1007/978-3-319-21401-
6_36.

[9] Gerhard Gentzen. Untersuchungen über das logische Schließen I. Math. Zeit.

39(2) (1935), 176–210. DOI: 10.1007/BF01201353.
[10] Gerhard Gentzen. Untersuchungen über das logische Schließen II. Math. Zeit.

39(3) (1935), 405–431. DOI: 10.1007/BF01201363.
[11] Jacques Herbrand. Recherches sur la théorie de la démonstration. Travaux de

la Société des Sciences et des Lettres de Varsovie, Class III, Sciences Mathé-

matiques et Physiques 33 (1930), 33–160.
[12] Dejan Jovanović and Leonardo Mendonça de Moura. Solving non-linear

arithmetic. In: Automated Reasoning - 6th International Joint Conference,

IJCAR 2012, Manchester, UK, June 26-29, 2012. Proceedings. Ed. by Bern-
hard Gramlich, Dale Miller, and Ulrike Sattler. Vol. 7364. LNCS. Berlin:
Springer, 2012, 339–354. DOI: 10.1007/978-3-642-31365-3_27.

[13] André Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reas.

41(2) (2008), 143–189. DOI: 10.1007/s10817-008-9103-8.
[14] André Platzer. Logical Analysis of Hybrid Systems: Proving Theorems for

Complex Dynamics. Heidelberg: Springer, 2010. DOI: 10.1007/978-3-
642-14509-4.

[15] André Platzer. Logics of dynamical systems. In: LICS. Los Alamitos: IEEE,
2012, 13–24. DOI: 10.1109/LICS.2012.13.

[16] André Platzer. The complete proof theory of hybrid systems. In: LICS. Los
Alamitos: IEEE, 2012, 541–550. DOI: 10.1109/LICS.2012.64.

[17] André Platzer. Differential game logic. ACM Trans. Comput. Log. 17(1)
(2015), 1:1–1:51. DOI: 10.1145/2817824.

[18] André Platzer. A complete uniform substitution calculus for differential dy-
namic logic. J. Autom. Reas. 59(2) (2017), 219–265. DOI: 10.1007/s108
17-016-9385-1.

[19] Abraham Seidenberg. A new decision method for elementary algebra. Annals

of Mathematics 60(2) (1954), 365–374. DOI: 10.2307/1969640.
[20] Thoralf Skolem. Logisch-kombinatorische Untersuchungen über die Erfüll-

barkeit oder Beweisbarkeit mathematischer Sätze nebst einem Theorem über
dichte Mengen. Videnskapsselskapets skrifter, 1. Mat.-naturv. klasse 4 (1920),
1–36.

[21] Gilbert Stengle. A Nullstellensatz and a Positivstellensatz in semialgebraic
geometry. Math. Ann. 207(2) (1973), 87–97. DOI: 10.1007/BF0136214
9.

[22] Alfred Tarski. A Decision Method for Elementary Algebra and Geometry.
2nd. Berkeley: University of California Press, 1951.

[23] Volker Weispfenning. Quantifier elimination for real algebra — the quadratic
case and beyond. Appl. Algebra Eng. Commun. Comput. 8(2) (1997), 85–101.
DOI: 10.1007/s002000050055.

https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/BF01201353
https://doi.org/10.1007/BF01201363
https://doi.org/10.1007/978-3-642-31365-3_27
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1109/LICS.2012.13
https://doi.org/10.1109/LICS.2012.64
https://doi.org/10.1145/2817824
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.2307/1969640
https://doi.org/10.1007/BF01362149
https://doi.org/10.1007/BF01362149
https://doi.org/10.1007/s002000050055

Chapter 7

Control Loops & Invariants

Synopsis This chapter advances the analytical understanding of cyber-physical sys-
tems to cover control loops. While the syntax and semantics of hybrid programs
from previous chapters already discussed loops, their logical characterization was
so far limited to unfolding by the iteration axiom. That suffices for systems with a
fixed finite number of control actions in a fixed finite number of repetitions of the
control loop, but is not enough to understand and analyze the most interesting CPSs
with unbounded time-horizons reaching an unbounded number of control decisions
over time. This chapter uses the fundamental concept of invariants to handle loops
and develops their operational intuition. CPS invariants are developed systemati-
cally based on inductive formulations of dynamic axioms for repetitions.

7.1 Introduction

Chap. 5 introduced rigorous reasoning for hybrid program models of cyber-physical
systems, which Chap. 6 extended to a systematic and coherent reasoning approach
for cyber-physical systems. Our understanding of the language exceeds our under-
standing of the reasoning principles, though, because we have not seen any credible
ways of analyzing loops yet, despite the fact that loops are a perfectly harmless and
common part of CPSs. In fact, computational thinking would argue that we do not
truly understand an element of a programming language or a system model if we
do not also understand ways of reasoning about them. This chapter sets out to make
sure our analysis capabilities catch with on our modeling skills. This is, of course,
all part of the agenda we set forth initially to study the language of cyber-physical
systems gradually in layers that we master completely before advancing to the next
challenge. The next challenge is control loops.

Chap. 3 demonstrated how important control is in CPS and that control loops
are a very important feature for making this control happen. Without loops, CPS
controllers are limited to short finite sequences of control actions, which are rarely
sufficient to get our CPS anywhere. With loops, CPS controllers shine, because they

211© Springer International Publishing AG, part of Springer Nature 2018

A. Platzer, Logical Foundations of Cyber-Physical Systems,

https://doi.org/10.1007/978-3-319-63588-0_7

https://doi.org/10.1007/978-3-319-63588-0_7
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63588-0_7&domain=pdf

212 7 Control Loops & Invariants

can inspect the current state of the system, take action to control the system, let
the physics evolve, and then repeat these steps in a loop over and over again to
slowly get the state where the controller wants the system to be. Loops truly make
feedback happen, by enabling a CPS to sense state and act in response to that over
and over again. Think of programming a robot to drive on a highway. Would you be
able to do that without some means of repetition or iteration as in repeated control?
Probably not, because you would need to write a CPS program that monitors the
traffic situation frequently and reacts in response to what the other cars do on the
highway. There’s no way of telling ahead of time, how often the robot will need to
change its mind when it’s driving a car on a highway.

A hybrid program’s way of exercising repetitive control actions is the repetition
operator ∗, which can be applied to any hybrid program α . The resulting hybrid
program α∗ repeats α any number of times, nondeterministically. That may be zero
times or one time or 10 times or

Now, the flip side of the fact that control loops are responsible for a lot of the
power of CPS is that they can also be tricky to analyze and fully understand. After
all, it is easier to get a handle on what a system does in just one step than to un-
derstand what it will do in the long run when the CPS is running for any arbitrary
amount of time. This is the CPS analogue of the fact that ultra-short-term predictions
are often much easier than long-term predictions. It is easy to predict the weather a
second into the future but much harder to predict next week’s weather.1

The main insight behind the analysis of loops in CPS is to reduce the (com-
plicated) analysis of their long-term global behavior to a simpler analysis of their
local behavior for one control cycle. This principle significantly reduces the analytic
complexity of loops in CPS. It leverages invariants, i.e., aspects of the system be-
havior that do not change as time progresses, so that our analysis can rely on them
no matter how long the system already evolved. Invariants turn out also to lead to
an important design principle for CPS, even more so than in programs. The signifi-
cance of invariants in understanding CPS is not a coincidence, because the study of
invariants (as with other mathematical structures) is also central to a large body of
mathematics.

Since it is of central importance to develop a sense of how the parts of a proof
fit together and what impact changes to preconditions or invariants have on a proof,
this chapter will be very explicit about developing sequent calculus proofs to give
you a chance to understand their structure. These proofs will also serve as a useful
exercise to practice our skills on the sequent calculus reasoning for CPS that Chap. 6
developed. After some practice, subsequent chapters will often appeal in more intu-
itive ways to the canonical structure that a proof will have and focus on developing
only its most crucial elements: invariants, because the remaining proof is relatively
straightforward.

The most important learning goals of this chapter are:

1 Of course, Nils Bohr already figured this out when he said that “prediction is very difficult,
especially if it’s about the future.”

7.2 Control Loops 213

Modeling and Control: We develop a deeper understanding of control loops as a
core principle behind CPS that ultimately underlies all feedback mechanisms in
CPS control. This chapter also intensifyies our understanding of the dynamical
aspects of CPS and how discrete and continuous dynamics interact.

Computational Thinking: This chapter extends the rigorous reasoning approach
from Chap. 5 to systems with repetitions. This chapter is devoted to the devel-
opment of rigorous reasoning techniques for CPS models with repetitive control
loops or other loopy behavior, a substantially nontrivial problem in theory and
practice. Without understanding loops, there is no hope of understanding the
repetitive behavior of feedback control principles that are common to almost all
CPSs. Understanding such behavior can be tricky, because so many things can
change in the system and its environment over the course of the runtime of even
just a few lines of code if that program runs repeatedly to control the behavior
of a CPS. That is why the study of invariants, i.e., properties that do not change
throughout the execution of the system, are crucial for their analysis. Invariants
constitute the single most insightful and most important piece of information
about a CPS. As soon as we understand the invariants of a CPS, we almost un-
derstand everything about it and will even be in a position to design the rest
of the CPS around these invariants, a process known as the design-by-invariant
principle. Identifying and expressing invariants of CPS models will be a part of
this chapter as well.
The first part of the chapter shows a systematic development of invariance prin-
ciples for loops from an axiomatic basis. The second part of the chapter focuses
on loop invariants themselves along with their operational intuition.
Another aspect that this chapter reinforces is the important concept of global
proof rules, which, just like Gödel’s generalization rule G, for soundness rea-
sons cannot keep the sequent context.

CPS Skills: We will develop a better understanding of the semantics of CPS models
by understanding the core aspects of repetition and relating its semantics to
corresponding reasoning principles. This understanding will lead us to develop
a higher level of intuition for the operational effects involved in CPS by truly
understanding what control loops fundamentally amount to.

7.2 Control Loops

Recall Quantum, the little acrophobic bouncing ball from Chap. 4:

requires(0≤ x∧ x = H ∧ v = 0)

requires(g > 0∧1≥ c≥ 0)

ensures(0≤ x∧ x≤ H)

{x′ = v,v′ = g&x≥ 0};
if(x = 0)v := cv

)∗

(4.25*)

214 7 Control Loops & Invariants

CT

M&C CPS

rigorous reasoning for repetitions
identifying and expressing invariants
global vs. local reasoning
relating iterations to invariants
finitely accessible infinities
operationalize invariant construction
splitting & generalizations

control loops
feedback mechanisms
dynamics of iteration

semantics of control loops
operational effects of control

The contracts above have been augmented with the ones that we have identified
in Chap. 4 by converting the initial contract specification into a logical formula in
differential dynamic logic and then identifying the required assumptions to make it
true in all states:

0≤ x∧ x = H ∧ v = 0∧g > 0∧1≥ c≥ 0→
[
{x′ = v,v′ = g&x≥ 0}; if(x = 0)v := cv

)∗]
(0≤ x∧ x≤ H) (4.23*)

As we do not wish to be bothered by the presence of the additional if-then-else

operator, which is not officially part of the minimal set of operators that differential
dynamic logic dL provides, we rewrite (4.23) equivalently to:

0≤ x∧ x = H ∧ v = 0∧g > 0∧1≥ c≥ 0→
[
{x′ = v,v′ = g&x≥ 0}; (?x = 0;v := cv∪ ?x 6= 0)

)∗]
(0≤ x∧ x≤ H) (7.1)

In Chap. 4, we had an informal understanding why (7.1) is valid (true in all
states), but no formal proof, albeit we proved a much simplified version of (7.1) in
which we simply threw away the loop. Such ignorance is clearly not a correct way
of understanding loops. Equipped with our refined understanding of what proofs
are from Chap. 6, let’s make up for that now by properly proving (7.1) in the dL

calculus.
However, before going for a proof of this bouncing-ball property, however much

Quantum may long for it, let us first take a step back and understand the rôle of
loops in more general terms. Their semantics has been explored in Chap. 3 with
unwinding-based reasoning in Chap. 5.

Quantum had a loop in which physics and its bouncing control alternated. Quan-
tum desperately needs a loop for he doesn’t know ahead of time how often he would
bounce today. When falling from a great height, Quantum bounces quite a bit. Quan-

7.3 Induction for Loops 215

tum also had a controller, albeit a rather impoverished one. All it can do is inspect
the current height, compare it to the ground floor (at height 0) and, if x = 0, flip its
velocity vector around after some casual damping by factor c. That is not a whole
lot of flexibility for control choices, but Quantum was still rather proud to serve
such an important rôle in controlling the ball’s behavior. Indeed, without the con-
trol action, Quantum would never bounce back from the ground but would keep on
falling forever—what a frightful thought for the acrophobic Quantum. On second
thought Quantum would, actually, not even fall for very long without its controller,
because of the evolution domain x≥ 0 for physics x′′ = g&x≥ 0, which only al-
lows physics to evolve for time zero if the ball is already at height 0, because gravity
would otherwise try to pull it further down, except that the x≥ 0 constraint won’t
have it. So, in summary, without Quantum’s control statement, it would simply fall
and then lie flat on the ground without time being allowed to proceed. That would
not sound very reassuring and certainly not as much fun as bouncing back up, so
Quantum is really jolly proud of the controller.

This principle is not specific to the bouncing ball, but, rather, quite common in
CPS. The controller performs a crucial task, without which physics would not evolve
in the way that we want it to. After all, if physics did already always do what we
want it to without any input from our side, we would not need a controller for it in
the first place. Hence, control is crucial and understanding and analyzing its effect
on physics is one of the primary responsibilities in CPS. After the implication in
(7.1) is quickly consumed by the→R proof rule, the trouble starts right away since
Quantum needs to prove the safety of the loop.

7.3 Induction for Loops

This section develops induction principles for loops by systematically developing
their intuition starting from the insights behind the iteration axiom.

7.3.1 Induction Axiom for Loops

Recall the loop semantics from Sect. 3.3.2 and its unwinding axiom from Sect. 5.3.7:

[[α∗]] = [[α]]∗ =
⋃

n∈N
[[αn]] with αn+1 ≡ αn;α and α0 ≡?true

216 7 Control Loops & Invariants

ω ν

α∗

P∧ [α][α∗]P
α

[α∗]P

α α
P

α∗

Lemma 5.7 ([∗] iteration axiom). The iteration axiom is sound:

[∗] [α∗]P↔ P∧ [α][α∗]P

Using the iteration axiom [∗] from left to right, it “reduces” a safety property

[α∗]P (7.2)

of a loop α∗ to the following equivalent dL formula:

P∧ [α][α∗]P (7.3)

The isolated left formula P and the [α] modality in the resulting formula (7.3) are
simpler than the original (7.2) and could, thus, be analyzed using the other dL ax-
ioms. The only catch is that the postcondition [α∗]P of the [α] modality in (7.3) is as
complicated as the original dL formula (7.2). While the iteration axiom [∗] unpacked
necessary conditions for the original repetition property (7.2), the true question of
whether P always holds after repeating α any number of times remains, albeit nested
within an extra [α]. That does not look like a lot of progress in analyzing (7.2). In
fact, it looks like using the iteration axiom [∗] makes matters more complicated
(unless perhaps a counterexample has been identified along the way). The iteration
axiom [∗] can still be useful to explicitly uncover the effect of one round of a loop.

Since (7.2) and (7.3) are equivalent, formula [α∗]P can only be true if P holds
initially. So, if, in some state ω , we are trying to establish ω ∈ [[[α∗]P]], then we
only have a chance if the necessary condition ω ∈ [[P]] holds in the initial state ω .
By the equivalent (7.3), ω ∈ [[[α∗]P]] can also only hold if ω ∈ [[[α]P]] since the
loop in [α][α∗]P may repeat 0 times (Exercise 7.2). So, we might as well estab-
lish the necessary condition ω ∈ [[P→ [α]P]] since we already needed to assume
ω ∈ [[P]]. Showing the implication P→ [α]P in state ω is a little easier than show-
ing [α]P, because the implication assumes P. This shows µ ∈ [[P]] in any state µ
after the first loop iteration, but since its α-successors will all also have to satisfy
P for ω ∈ [[[α∗]P]] to hold, we again need to show the same remaining condition
P→ [α]P, just in a different state µ .

If, instead, we manage to prove P→ [α]P in all states we get to by repeating
α , not just the initial state ω , then we know P holds in all states after running α
twice from ω , since we already know that P holds in all states µ after running α
once from ω . By induction, no matter how often α is repeated, we know P is true
afterwards if only P was true initially and P→ [α]P is always true after repeating
α , i.e., [α∗](P→ [α]P) is true in the current state, which is ω ∈ [[[α∗](P→ [α]P)]].

7.3 Induction for Loops 217

These thoughts lead to the induction axiom I expressing that a property P is
always true after repeating HP α iff P is true initially and if, after any number of
repetitions of α , P always holds after one more repetition of α if it held before.

ω ν

P

α∗

α α α

P
α∗ P→ [α]P

Lemma 7.1 (I induction axiom). The induction axiom is sound:

I [α∗]P↔ P∧ [α∗](P→ [α]P)

Proof. Let ω ∈ [[[α∗]P]], then ω ∈ [[P]] by choosing 0 iterations and ω ∈ [[[α∗][α]P]]
by choosing at least one iteration, which implies ω ∈ [[[α∗](P→ [α]P)]]. Conversely,
let ω ∈ [[P∧ [α∗](P→ [α]P)]]. Then consider a run of α∗ from ω to ν with n ∈ N

iterations, i.e., (ω,ν) ∈ [[αn]]. The proof shows ν ∈ [[P]] by induction on n (Fig. 7.1).

0. Case n = 0: Then ν = ω satisfies ν ∈ [[P]] by the first conjunct.
1. Case n + 1: By induction hypothesis for n, all states µ with (ω,µ) ∈ [[αn]]

are assumed to satisfy µ ∈ [[P]]. Thus, µ ∈ [[[α]P]] by the second conjunct
ω ∈ [[[α∗](P→ [α]P)]] since (ω,µ) ∈ [[αn]]⊆ [[α∗]]. Hence, ν ∈ [[P]] for all states
ν with (µ,ν) ∈ [[α]]. Thus, ν ∈ [[P]] for all states ν with (ω,ν) ∈ [[αn+1]]. ⊓⊔

The [α∗] modality on the right-hand side of axiom I is necessary for soundness,
because it would not be enough to merely show that the implication P→ [α]P is
true in the current state. That is, the following formula would be an unsound axiom

[α∗]P↔ P∧ (P→ [α]P)

because its instance

[(x :=x+1)∗]x≤ 2↔ x≤ 2∧ (x≤ 2→ [x :=x+1]x≤ 2)

is not true in a state ω with ω(x) = 0, so it is also not valid. The [α∗] modality on
the right-hand side of axiom I ensures that P→ [α]P is not just true in the current
state, but true in all states reached after iterating the loop α∗ any number of times.

7.3.2 Induction Rule for Loops

Even if axiom I has a pleasantly inductive flair to it, using it directly does not make
matters any better compared to the iteration axiom [∗]. Using axiom I to prove a

218 7 Control Loops & Invariants

ω ν

P

α∗

α α α

α∗

P→ [α]P

ω ν

P

α∗

α P α α

α∗
P→ [α]P

ω ν

P

α∗

α P α P α

α∗ P→ [α]P

ω ν

P

α∗

α P α P α
P

α∗
P→ [α]P

Fig. 7.1 Successively using induction axiom I at each state reached after running iterations of α∗

property of a loop (its left-hand side) will still reduce to proving a different property
of a loop (its right-hand side). Why should the postcondition P→ [α]P be any easier
to prove after the loop α∗ than the original postcondition P?

The clou, however, is that the postcondition P→ [α]P in the right-hand side
of induction axiom I can also be proved differently. Gödel’s generalization rule G,
which was already discussed in Sect. 5.6.3, provides a way of proving postcondi-
tions of arbitrary box modalities, even with loops, if the postcondition has a proof.
Valid formulas (premise) are also true after all runs of any HP α (conclusion).

Lemma 5.12 (G Gödel generalization rule). The Gödel rule is sound:

G
P

[α]P

Generalization rule G can be used to prove [α∗](P→ [α]P) by proving the post-
condition P→ [α]P. This leads to the induction rule, which reduces the proof that
P always holds after repeating α (succedent of conclusion) provided that P was

7.3 Induction for Loops 219

true initially (antecedent) to a proof of the induction step P→ [α]P (premise). The
induction rule is a derived rule, i.e., it is proved from other axioms and proof rules.

Lemma 7.2 (ind induction rule). The loop induction rule ind is derived:

ind
P ⊢ [α]P

P ⊢ [α∗]P

Proof. Derived rule ind derives from axiom I using rule G for the inductive step:

∗
id

P ⊢ P

P ⊢ [α]P
→R ⊢ P→ [α]P
G

P ⊢ [α∗](P→ [α]P)
∧R

P ⊢ P∧ [α∗](P→ [α]P)
I

P ⊢ [α∗]P

⊓⊔

The induction rule ind derives easily from the induction axiom I. Its premise ex-
presses that P is inductive, i.e., true after all runs of α if P was true before. If P

is inductive (premise), then P is always true after any number of repetitions of α∗

(succedent of conclusion) if P is true initially (antecedent of the conclusion).
Loop induction rule ind requires the postcondition P to occur verbatim in the

succedent’s antecedent. But the rule does not directly apply for sequents Γ ⊢ [α∗]P
in which the antecedent Γ merely implies P but does not literally include it. The
difference is easily overcome with a use of the cut rule, though, which, with a cut of
P, can get the required formula P into the antecedent for the ind rule:

Γ ⊢ P,∆
WRΓ ⊢ P, [α∗]P,∆

P ⊢ [α]P
ind

P ⊢ [α∗]P
WL,WRΓ ,P ⊢ [α∗]P,∆

cut Γ ⊢ [α∗]P,∆

Example 7.1. The only actual difference between the induction axiom I and the loop
induction rule ind is that the latter already went a step further with the generalization
rule G to discard the [α∗] modality, which makes rule ind more practical but also
comes at a loss of precision. For example, the following simple dL formula is valid:

x≥ 0∧ v = 0→ [(v :=v+1;x′ = v)
∗
]x≥ 0 (7.4)

By induction axiom I, the valid formula (7.4) is equivalent to

x≥ 0∧ v = 0→ x≥ 0∧ [(v :=v+1;x′ = v)
∗
]

x≥ 0→ [v :=v+1;x′ = v]x≥ 0

)

(7.5)
Nevertheless, the induction step to which rule ind would reduce the proof of (7.4) is
not valid:

x≥ 0→ [v :=v+1;x′ = v]x≥ 0 (7.6)

220 7 Control Loops & Invariants

The reason why, unlike the formula (7.5) resulting from the induction axiom I, the
induction step (7.6) resulting from rule ind is not valid is simply that rule ind dis-
cards the modality [(v :=v+1;x′ = v)∗] by Gödel generalization G. Discarding this
modality misses out on its effect on the state, which changes the values of x and v.
But since the change of x in (7.6) depends on the value of v, the postcondition x≥ 0
of (7.4) cannot possibly suffice for the induction step (7.6).

The formula for the induction step needs to be strengthened to retain information
about the value of v always remaining nonnegative when discarding the repetition
modality when rule ind tries to prove (7.5) by generalization. That is why the next
section investigates ways of using the formula x≥ 0∧v≥ 0 as an invariant to prove
(7.4) even if its postcondition did not talk about v.

7.3.3 Loop Invariants

Even if the induction rule ind captures the core essentials of induction, that rule does
not necessarily result in a successful proof. Unlike the induction axiom I, which is
an equivalence, the premise of the induction rule ind does not have to be valid even
if its conclusion is valid, because the Gödel generalization rule G, which is used
to derive rule ind from axiom I, discards modality [α∗]. Where axiom I was overly
precise with its induction step after repetition, rule ind loses all information about
the loop in the induction step. It can happen that the formula P→ [α]P is not valid
in all states, but only true after repeating α any number of times (which is what
the subformula [α∗](P→ [α]P) in axiom I expresses). In other words, the truth of
P→ [α]P might depend on a certain property that happens to always hold after
repeating α , but does not follow from assumption P alone. But to establish such
an auxiliary property to always hold after repeating α would also need a proof by
induction just like P.

In fact, that phenomenon is quite familiar from mathematics. Some inductive
proofs require a stronger formulation of the induction hypothesis for the proof to
succeed. The proof of Fermat’s Last Theorem is not an inductive proof assuming
that an +bn 6= cn for n > 2 has already been proved for all smaller natural numbers.

Fortunately, the monotonicity rule M[·], which was discussed in Sect. 5.6.4, al-
ready provides a way of suitably generalizing the postcondition of [α∗] to another
formula for which the premise of induction rule ind will be proved successfully. If
P implies Q (premise of M[·]), then [α]P implies [α]Q (conclusion).

Lemma 5.13 (M[·] monotonicity rule). The monotonicity rules are sound:

M[·] P→ Q

[α]P→ [α]Q
M

P→ Q

〈α〉P→ 〈α〉Q

The monotonicity rule M[·] turns the bare-bones induction rule ind into the more
useful loop invariant rule, which proves a safety property P of a loop α∗ by prov-

7.3 Induction for Loops 221

ing that some loop invariant J is true initially (first premise), is inductive (second
premise), and finally implies the original postcondition P (third premise).

Lemma 7.3 (Loop invariant rule). The loop invariant rule is derived:

loop
Γ ⊢ J,∆ J ⊢ [α]J J ⊢ P

Γ ⊢ [α∗]P,∆

Proof. Rule loop is derived from the derived rule ind using a cut with J → [α∗]J
and weakening WL,WR (used without notice):

J ⊢ [α]J
ind

J ⊢ [α∗]J
→RΓ ⊢ J→ [α∗]J,∆

Γ ⊢ J,∆

J ⊢ P
M[·][α∗]J ⊢ [α∗]P

→LΓ ,J→ [α∗]J ⊢ [α∗]P,∆
cut Γ ⊢ [α∗]P,∆

⊓⊔

ω ν

α∗

J

[α∗]P
α

J→ [α]J

α α

J→ P

First observe that the inductive invariant J occurs in all premises but not in the
conclusion of rule loop. That means, whenever we apply the loop invariant rule to
a desired conclusion, we get to choose what invariant J we want to use it for. Good
choices of J will lead to a successful proof of the conclusion. Bad choices of J will
stall the proof, because some of the premises cannot be proved.

The first premise of rule loop says that the initial state, about which we assume
Γ (and that ∆ does not hold), satisfies the invariant J, i.e., the invariant is initially
true. The second premise of rule loop shows that the invariant J is inductive. That
is, whenever J was true before running the loop body α , then J is always true again
after running α . The third premise of rule loop shows that the invariant J is strong
enough to imply the postcondition P that the conclusion was interested in.

Rule loop says that postcondition P holds after any number of repetitions of α if
some invariant J holds initially (left premise), if that invariant J remains true after
one iteration of α from any state where J was true (middle premise), and if that
invariant J finally implies the desired postcondition P (right premise). If J is true
after executing α whenever J has been true before (middle premise), then, if J holds
in the beginning (left premise), J will continue to hold, no matter how often we
repeat α in [α∗]P, which is enough to imply [α∗]P if J implies P (right premise).

Taking a step back, these three premises correspond to the proof steps one would
use to show that the contract of an ordinary program with a requires() contract Γ

222 7 Control Loops & Invariants

(and not ∆), an ensures(P) contract, and a loop invariant J is correct. Now, we have
this reasoning in a more general and formally more precisely defined context. We
no longer need to appeal to intuition to justify why such a proof rule is fine, but
can evoke a soundness proof for loop. We will also no longer be limited to informal
arguments to justify invariance for a program but can do actual solid and rigorous
formal proofs if we combine proof rule loop with the other proof rules from Chap. 6.

Invariants are crucial concepts for conventional programs and continue to be even
more crucial for cyber-physical systems, where change is ubiquitous and any iden-
tification of aspects that remain unchanged over time is a blessing.

Of course, the search for suitable loop invariants J to be used with the loop invari-
ant rule can be as much of a challenge as the search for invariants in mathematics.
Yet, the fact that the difference between the equivalence in the induction axiom I
and the induction steps of rules loop and ind is the absence of the [α∗] modality
provides some guidance on what kind of information loop invariants J need. Loop
invariants J may need to communicate something else that is also always true after
running α∗ and carries just information about the past behavior during α∗ to imply
that they are preserved after running α once more.

Example 7.2 (Stronger invariants). Consider an obvious example of a purely dis-
crete loop to illustrate the rôle of loop invariants in proving the safety of loops:

x≥ 8∧5≥ y∧ y≥ 0→ [(x :=x+ y; y :=x 2 · y)∗]x≥ 0

This formula is valid. A proof with loop invariant J starts like this:

→R

loop
x≥ 8∧5≥ y∧ y≥ 0 ⊢ J J ⊢ [x :=x+ y; y :=x 2 · y]J J ⊢ x≥ 0

x≥ 8∧5≥ y∧ y≥ 0 ⊢ [(x :=x+ y; y :=x 2 · y)∗]x≥ 0
⊢ x≥ 8∧5≥ y∧ y≥ 0→ [(x :=x+ y; y :=x 2 · y)∗]x≥ 0

A direct proof with the postcondition x ≥ 0 as invariant J cannot succeed, because
the induction step is not valid, since x≥ 0 is not guaranteed to be true after x :=x+y

if the inductive hypothesis only guarantees x≥ 0 about the previous state if y might
be negative. The loop invariant J needs to imply the postcondition x ≥ 0 but also
contain additional information about the variable y that the change of x depends on.

The initial condition x≥ 8∧5≥ y∧ y≥ 0 also fails to be an invariant J since its
induction step is not valid, because 5 ≥ y is no longer guaranteed to be true after
x := x + y; y := x 2 · y, e.g., if x = 8,y = 0 holds initially. The loop invariant J

needs to be implied by the precondition, but may have to be weaker because the
precondition itself does not have to remain true always when repeating the loop.

The loop invariant J, thus, has to be somewhere between the precondition (first
premise) and the postcondition (third premise). It needs to involve bounds on both
x and y, because the change of x depends on y and vice versa (second premise).
The first assignment x := x+ y obviously preserves x ≥ 0 if also y ≥ 0. The loop
body obviously preserves this y ≥ 0 if x ≥ y. Indeed, the conjunction x ≥ y∧ y ≥ 0
succeeds as loop invariant J:

7.3 Induction for Loops 223

→R

loop

R
∗

x≥8∧5≥y∧ y≥0 ⊢ J
[;]

[:=]

R
∗

J ⊢ x+ y≥ x y∧ x y≥ 0
J ⊢ [x :=x+ y][y :=x 2 · y]J
J ⊢ [x :=x+ y; y :=x 2 · y]J R

∗
J ⊢ x≥0

x≥ 8∧5≥ y∧ y≥ 0 ⊢ [(x :=x+ y; y :=x 2 · y)∗]x≥ 0
⊢ x≥ 8∧5≥ y∧ y≥ 0→ [(x :=x+ y; y :=x 2 · y)∗]x≥ 0

A similar proof uses the loop invariant x≥ 0∧ y≥ 0 to prove Example 7.1.

Note 38 (Of loop invariants and relay races) Loop invariants J are the proof
analogue of a relay race. The initial state needs to show they have the baton
J. Every state along the way after repeating α∗ any number of times needs to
wait to receive the baton J and then pass the baton J to the next state after
running the next leg α of the relay race α∗. When the final state receives the
baton J, that baton needs to carry enough information to meet the goal’s safety
condition P. Finding a loop invariant J is like designing the baton that makes
all these passing phases work out as easily as possible.

7.3.4 Contextual Soundness Requirements

Since the loop rule derives via monotonicity rule M[·] from rule ind, which derives
via Gödel’s generalization G, it should not come as a surprise that it is crucial for
soundness that the sequent context formulas Γ and ∆ disappear from the middle and
last premises of loop. It is equally soundness-critical that no context Γ ,∆ carries
over to the premise of rules G,M[·],M,ind. All those premises result from discarding
the [α∗] modality, which ignores its effect. That is sound as long as no context Γ ,∆
is preserved, which represents assumptions about the initial state before [α∗], which
may no longer be true after [α∗]. For the loop rule, information Γ ,∆ about the initial
state is only available to show that J is initially true (first premise), but no longer
during the induction step (second premise) or use case (third premise).

Example 7.3 (No context). The context Γ ,∆ cannot be kept in the ind rule without
losing soundness:

x = 0,x≤ 1 ⊢ [x :=x+1]x≤ 1

x = 0,x≤ 1 ⊢ [(x :=x+1)∗]x≤ 1

This inference is unsound, because the premise is valid but the conclusion is not,
since x ≤ 1 will be violated after two repetitions. Even if x = 0 is assumed initially
(antecedent of conclusion), it cannot be assumed in the induction step (premise),
because it is no longer true after iterating the loop any nonzero number of times.
Almost the same counterexample shows that the middle premise of the loop rule
cannot keep a context soundly. The following counterexample shows that the third
premise of rule loop also cannot keep a context without losing soundness:

224 7 Control Loops & Invariants

x = 0 ⊢ x≥ 0 x≥ 0 ⊢ [x :=x+1]x≥ 0 x = 0,x≥ 0 ⊢ x = 0

x = 0 ⊢ [(x :=x+1)∗]x = 0

With some more thought, assumptions about constant parameters that cannot change
during the HP α∗ could be kept around without endangering soundness. This can be
proved with the help of the vacuity axiom V from Sect. 5.6.2 (Exercise 7.8).

With Lemma 7.3, the loop invariant rule already has a simple and elegant sound-
ness proof that simply derives it by monotonicity M[·] (Lemma 5.13) from the in-
duction rule ind, which, in turn, is derived using Gödel’s generalization rule G from
the induction axiom I. Since loop invariants are such a fundamental concept, and
since Example 7.3 just made us painfully aware how careful we need to be to keep
CPS reasoning principles sound, we provide a second soundness proof directly from
the semantics even if that proof is entirely redundant and more complicated than the
first proof of Lemma 7.3.

Proof (of Lemma 7.3). In order to prove that rule loop is sound, we assume that all
its premises are valid and need to show that its conclusion is valid, too. So let �
Γ ⊢ J,∆ and � J ⊢ [α]J and � J ⊢ P. In order to prove that � Γ ⊢ [α∗]P,∆ , consider
any state ω and show that ω ∈ [[Γ ⊢ [α∗]P,∆]]. If one of the formulas Q∈Γ does not
hold in ω (that is ω 6∈ [[Q]]) or if one of the formulas in Q ∈ ∆ holds in ω (ω ∈ [[Q]]),
then there is nothing to show, because the formula that the sequent Γ ⊢ [α∗]P,∆
represents already holds in ω , either because one of the conjunctive assumptions Γ
is not met in ω or because one of the other disjunctive succedents ∆ already holds.
Consequently, let all Q ∈ Γ be true in ω and all Q ∈ ∆ be false in ω or else there is
nothing to show.

In that case, however, the first premise implies that ω ∈ [[J]] because all its as-
sumptions (which are the same Γ) are met in ω and all alternative succedents (which
are the same ∆) do not already hold.2

In order to show that ω ∈ [[[α∗]P]], consider any run (ω,ν) ∈ [[α∗]] from the initial
state ω to some state ν and show that ν ∈ [[α]]. According to the semantics of loops
from Chap. 3, (ω,ν) ∈ [[α∗]] if and only if, for some natural number n ∈ N that
represents the number of loop iterations, there is a sequence of states µ0,µ1, . . . ,µn

such that µ0 = ω and µn = ν such that (µi,µi+1) ∈ [[α]] for all i < n. The proof that
µn ∈ [[J]] is now by induction on n.

0. If n = 0, then ν = µ0 = µn = ω , which implies by the first premise that ν ∈ [[J]].
1. By induction hypothesis, µn ∈ [[J]]. By the second premise, � J ⊢ [α]J, in partic-

ular for state µn we have µn ∈ [[J→ [α]J]], recalling the semantics of sequents.
Combined with the induction hypothesis, this implies µn ∈ [[[α]J]], which means
that µ ∈ [[J]] for all states µ such that (µn,µ) ∈ [[α]]. Hence, µn+1 ∈ [[J]] because
(µn,µn+1) ∈ [[α]].

This implies, in particular, that ν ∈ [[J]], because µn = ν . By the third premise,
� J ⊢ P. In particular, ν ∈ [[J→ P]], which with ν ∈ [[J]] implies ν ∈ [[P]]. This con-

2 In future soundness proofs, we will fast-forward to this situation right away, but it is instructive
to see the full argument once.

7.4 A Proof of a Happily Repetitive Bouncing Ball 225

cludes the soundness proof, since ν was an arbitrary state such that (ω,ν) ∈ [[α∗]],
so ω ∈ [[[α∗]P]]. ⊓⊔

7.4 A Proof of a Happily Repetitive Bouncing Ball

Now that he understands the principles of how to prove loops in CPSs, Quantum is
eager to put these skills to use. Quantum wants to relieve himself of his acrophobic
fears once and for all by proving that he won’t ever have to be afraid of excess
heights > H again nor of falling through the cracks in the ground to heights < 0.

Abbreviations have served Quantum well in trying to keep proofs on one page:

A
def≡ 0≤ x∧ x = H ∧ v = 0∧g > 0∧1≥ c≥ 0

B(x,v)
def≡ 0≤ x∧ x≤ H

x′′..
def≡ {x′ = v,v′ = g}

Note the somewhat odd abbreviation for the differential equation just to condense
notation. With these abbreviations, the bouncing-ball conjecture (7.1) turns into

A→ [(x′′..;(?x = 0;v := cv∪ ?x 6= 0))∗]B(x,v) (7.1*)

This formula is swiftly turned into the sequent at the top using proof rule→R:

A ⊢ [(x′′..;(?x = 0;v := cv∪ ?x 6= 0))∗]B(x,v)
→R ⊢ A→ [(x′′..;(?x = 0;v := cv∪ ?x 6= 0))∗]B(x,v)

Its premise leaves a loop to worry about, which gives Quantum a chance to practice
what he learned in this chapter.

The first thing that Quantum will need for the proof of (7.1) is the appropriate
choice for the invariant J to be used in the loop invariant proof rule loop. Quantum
will use a dL formula j(x,v) for the invariant when instantiating J in the proof rule
loop. But Quantum is still a little unsure about how exactly to define that formula
j(x,v), not an unusual situation when trying to master the understanding of a CPS.
Can you think of a good choice for the formula j(x,v) to help Quantum?

Before you read on, see if you can find the answer for yourself.

I don’t know about you, but Quantum settles for the choice of using the post-
condition as an invariant, because that is what he wants to show about the behavior:

j(x,v)
def≡ 0≤ x∧ x≤ H (7.7)

Because Quantum is so proud of his wonderful invariant j(x,v), he even uses it to
perform a generalization with the newly acquired skill of the generalization proof

226 7 Control Loops & Invariants

rule MR in the inductive step to completely separate the proof about the differential
equation and the proof about the bouncing dynamics.3 Quantum conducts the proof
in Fig. 7.2.

loop

A ⊢ j(x,v) [;]

MR

j(x,v) ⊢ [x′′..]j(x,v) [∪]
∧R

[;]

[?]

[:=]
j(x,v),x = 0 ⊢ j(x, cv)

j(x,v),x=0 ⊢ [v := cv]j(x,v)
j(x,v) ⊢ [?x=0][v := cv]j(x,v)
j(x,v) ⊢ [?x=0;v := cv]j(x,v)

[?]
j(x,v),x 6=0 ⊢ j(x,v)

j(x,v) ⊢ [?x 6=0]j(x,v)
j(x,v) ⊢ [?x = 0;v := cv]j(x,v)∧ [?x 6= 0]j(x,v)

j(x,v) ⊢ [?x = 0;v := cv∪ ?x 6= 0]j(x,v)
j(x,v) ⊢ [x′′..][?x = 0;v := cv∪ ?x 6= 0]j(x,v)

j(x,v) ⊢ [x′′..;(?x = 0;v := cv∪ ?x 6= 0)]j(x,v)
j(x,v) ⊢ B(x,v)

→R
A ⊢ [

x′′..;(?x = 0;v := cv∪ ?x 6= 0)

)∗
]B(x,v)

⊢ A→ [

x′′..;(?x = 0;v := cv∪ ?x 6= 0)

)∗
]B(x,v)

Fig. 7.2 Sequent calculus proof shape for bouncing ball (7.1)

The proof in Fig. 7.2 has five premises remaining to be proved. Quantum is pretty
sure how to prove the first premise (A ⊢ j(x,v)), corresponding to the initial condi-
tion, because 0≤ x≤ H is true initially as 0≤ x = H follows from A. Quantum also
knows how to prove the last premise (j(x,v) ⊢ B(x,v)), because the invariant j(x,v) from
(7.7) is equal to the desired postcondition B(x,v), so this is proved by the identity rule
id.

But Quantum runs into unforeseen(?) trouble with the inductive step in the mid-
dle. While the third and fourth premise succeed, the second premise j(x,v) ⊢ [x′′..]j(x,v)
with the differential equation resists all proof attempts for the choice (7.7). That
makes sense, because, even if the current height is bounded by 0≤ x≤H before the
differential equation, there is no reason to believe it will remain bounded afterwards
if this is all we know about the bouncing ball. If the ball were just below x = H, it
would still ultimately exceed H if its velocity were too big.

Ah, right! We actually found that out about the bouncing ball in Chap. 4 already
when we were wondering under what circumstances it might be safe to let a ball
bounce around. As a matter of fact, everything we learned by the Principle of Carte-
sian Doubt about when it is safe to start a CPS is valuable information to preserve
in the invariant. If it wasn’t safe to start a CPS in a state, chances are, it wouldn’t be
safe either if we kept it running in such a state as we do in an inductive step.

Well, so Quantum found a (poor) choice of an invariant j(x,v) in (7.7) that just
cannot be proved because of the inductive step. What to do?, wonders Quantum.

Before you read on, see if you can find the answer for yourself.

3 This is not necessary and Quantum might just as well not have used MR and gone for a direct
proof using [′] right away instead. But it does save us some space on the page, and also showcases
a practical use of proof rule MR.

7.4 A Proof of a Happily Repetitive Bouncing Ball 227

There was trouble in the induction step, because x≤ H could not be proved to
be inductive. But Quantum does not despair. Quantum can demand a little less from
the invariant and use the following weaker choice for j(x,v) instead of (7.7):

j(x,v)
def≡ x≥ 0 (7.8)

Armed with this new choice for an invariant, Quantum quickly gets to work con-
structing a new proof for (7.1). After frantically scribbling a couple of pages with
sequent proofs, Quantum experiences a déjà vu and notices that his new proof has
exactly the same form as the last sequent proof he began, just with a different choice
for the logical formula j(x,v) to be used as the invariant when applying the loop
rule with the choice (7.8) rather than (7.7) for j(x,v). Fortunately, Quantum already
worked with an abbreviation last time he started a proof, so it is actually not sur-
prising after all to see that the proof structure stays exactly the same and that the
particular choice of j(x,v) only affects the premises, not the way the proof unraveled
its program statements in the modalities.

Inspecting the five premises of the above sequent proof attempt in light of the
improved choice (7.8) for the invariant, Quantum is delighted to find that the induc-
tive step works out just fine. The height stays above ground always by construction
with the evolution domain constraint x≥ 0 and is not changed in the subsequent
discrete bouncing control. The initial condition (A ⊢ j(x,v)) also works out alright,
because 0≤ x was among the assumptions in A. Only this time, the last premise
(j(x,v) ⊢ B(x,v)) falls apart, because x≥ 0 is not at all enough to conclude the part
x≤ H of the postcondition. What’s a ball to do to get himself verified these days?

Before you read on, see if you can find the answer for yourself.

Quantum takes the lesson from Cartesian Doubt to heart and realizes that the in-
variant needs to transport enough information about the state of the system to make
sure the inductive step has a chance of holding true. In particular, the invariant des-
perately needs to preserve knowledge about the velocity, because how the height
changes depends on the velocity (after all the differential equation reads x′ = v, . . .),
so it would be hard to get a handle on height x without first understanding how
velocity v changes, which it does in v′ = g and at the bounce. Indeed, this is an
entirely syntactic reason why neither (7.7) nor (7.8) could have worked out as in-
variants for the proof of (7.1). They only mention the height x, but how the height
changes in the bouncing-ball HP depends on the velocity, which also changes. So
unless the invariant preserves knowledge about v, it cannot possibly guarantee much
about height x, except the fact x ≥ 0 from the evolution domain constraint, which
does not suffice to prove the postcondition 0≤ x≤ H.

Fine, so Quantum quickly discards the failed invariant choice from (7.7), which
he is no longer quite so proud of, and also gives up on the weaker version (7.8), but
instead shoots for a stronger invariant, which is surely inductive and strong enough
to imply safety:

j(x,v)
def≡ x = 0∧ v = 0 (7.9)

228 7 Control Loops & Invariants

This time, Quantum has learned his lesson and won’t blindly set out to prove the
property (7.1) from scratch again, but, rather, be clever about it and realize that he
is still going to find the same shape of the sequent proof attempt above, just with,
once again, a different choice for the invariant j(x,v). So Quantum quickly jumps to
conclusions and inspects the famous 5 premises of the above sequent proof attempt.
This time, the postcondition is a piece of cake and the inductive step works like a
charm (no velocity, no height, no motion). But the initial condition is giving Quan-
tum quite a bit of a headache, because there is no reason to believe the ball would
initially lie flat on the ground with velocity zero.

For a moment there, Quantum fancied the option of simply editing the initial
condition A to include x = 0, because that would make this proof attempt work out
just fine. But then he realized that this would mean that he would from now on be
doomed to always start the day at speed zero on the ground, which would not lead
to all that much excitement for a cheerful bouncing ball. That option would be safe,
but a bit too much so for lack of motion.

What, then, is poor Quantum supposed to do to finally get a proof without losing
all those exciting initial conditions?

Before you read on, see if you can find the answer for yourself.

This time, Quantum thinks about the invariant question really hard and has a
smart idea. Thinking back to where the idea of the loop invariants came from in the
first place, they are replacements for the postcondition P that make [α∗](P→ [α]P)
provable despite discarding the [α∗] modality. They are stronger versions of the
postcondition P, and need to at least imply that the postcondition P always holds
after running α once, but, in fact, even need to imply they themselves continue to
hold after α . For this to work out, their rôle is to capture whatever we still need to
know about the previous runs of α∗.

If the loop invariant has to work for any number of loop iterations, it certainly
has to work for the first few loop iterations. In particular, the loop invariant J is not
unlike an intermediate condition of α;α . Quantum already identified an intermedi-
ate condition for the single-hop bouncing ball in Sect. 4.8.1. Maybe that will prove
useful as an invariant, too:

j(x,v)
def≡ 2gx = 2gH v2∧ x≥ 0 (7.10)

After all, an invariant is something like a permanent intermediate condition, i.e., an
intermediate condition that keeps on working out alright for all future iterations. The
bouncing ball is not yet sure whether this will work but it seems worth trying!

The shape of the proof in Fig. 7.2 again stays exactly the same, just with a dif-
ferent choice of j(x,v), this time coming from (7.10). The remaining famous five
premises are then proved easily. The first premise A ⊢ j(x,v) is proved using x = H

and v = 0:

0≤ x∧ x = H ∧ v = 0∧g > 0∧1≥ c≥ 0 ⊢ 2gx = 2gH v2∧ x≥ 0

7.4 A Proof of a Happily Repetitive Bouncing Ball 229

Expanding the abbreviations, the second premise j(x,v) ⊢ [x′′..]j(x,v) is

2gx = 2gH v2∧ x≥ 0 ⊢ [x′ = v,v′ = g&x≥ 0](2gx = 2gH v2∧ x≥ 0)

a proof that we have seen in previous chapters (Exercise 7.1). The third premise
j(x,v),x = 0 ⊢ j(x, cv) is

2gx = 2gH v2∧ x≥ 0,x = 0 ⊢ 2gx = 2gH (cv)2∧ x≥ 0

which would be proved easily if we knew c = 1. Do we know c = 1? No, we do
not know c = 1, because we only assumed 1≥ c≥ 0 in A. But we could prove this
third premise easily if we edited the definition of the initial condition A to include
c = 1. That is not the most general statement about bouncing balls, but let’s happily
settle for it till Exercise 7.5. Even then, however, we still need to augment j(x,v) to
include c = 1 as well, since we otherwise would have lost this knowledge before
we need it in the third premise. Having misplaced critical pieces of knowledge is a
phenomenon you may encounter when you are conducting proofs. In such cases, you
should trace where you lost the assumption in the first place and put it back in. But
then you have also learned something valuable about your system, namely which
assumptions are crucial for the correct functioning of which part of the system.

The fourth premise, j(x,v),x≥ 0 ⊢ j(x,v) is proved splendidly whatever the abbre-
viations stand for simply using the identity rule id. In fact, Quantum could have
noticed this earlier already but might have been distracted by his search for a good
choice for the invariant j(x,v). This is but one indication of the fact that it may pay to
take a step back from a proving effort and critically reflect on what all the pieces of
the argument rely on exactly. Finally, the fifth premise j(x,v) ⊢ B(x,v), which is

2gx = 2gH v2∧ x≥ 0 ⊢ 0≤ x∧ x≤ H

is proved by arithmetic as long as we know g > 0. This condition is already included
in A. But we still managed to forget about that in our invariant j(x,v). So, again, the
constant parameter assumption g > 0 should have been included in the invariant
j(x,v), which, overall, should have been defined as

j(x,v)
def≡ 2gx = 2gH v2∧ x≥ 0∧ (c = 1∧g > 0) (7.11)

This is nearly the same definition as (7.10) except that assumptions about the system
parameter choices are carried through. The last two conjuncts are trivially invariant,
because neither c nor g changes while the little bouncing ball falls. As written, the
loop invariant rule, unfortunately, still needs to have these constant assumptions in-
cluded in the invariant, because it wipes the entire context Γ ,∆ , which is crucial for
soundness (Sect. 7.3.4). Exercise 7.8 investigates simplifications for this nuisance
that will enable you to elide the trivial constant part c = 1∧ g > 0 from the invari-
ant. Redoing the proof with the new loop invariant (7.11) will succeed, as will the
proof in Sect. 7.5.

230 7 Control Loops & Invariants

For the record, we now really have a full sequent proof of the undamped bouncing
ball with repetitions. Quantum is certainly quite thrilled about this achievement!

Proposition 7.1 (Quantum is safe). This dL formula has a proof and is, thus, valid:

0≤ x∧ x = H ∧ v = 0∧g > 0∧1 = c→
[

{x′ = v,v′ = g&x≥ 0};(?x = 0;v := cv∪ ?x 6= 0)

)∗
](0≤ x∧ x≤ H) (7.12)

Since invariants are a crucial part of a CPS design, you are encouraged to de-
scribe invariants in your hybrid programs. KeYmaera X will make use of the invari-
ants annotated using the @invariant contract in hybrid programs to simplify your
proof effort. But KeYmaera X solved Exercise 7.8 already, so it does not require
a list of the constant expressions in the @invariant contracts. It is a good idea to
rephrase (7.12) by explicitly including the invariant contract in the hybrid program
for documentation as well as verification purposes:

0≤ x∧ x = H ∧ v = 0∧g > 0∧1 = c→
[

{x′ = v,v′ = g&x≥ 0};
(?x = 0;v := cv∪ ?x 6= 0)

)∗
@invariant(2gx = 2gH v2∧ x≥ 0)]

(0≤ x∧ x≤ H)

(7.13)

Indeed, assumptions about constant parameters, which are trivially invariant, do not
need to be listed, as the next section will explain.

7.5 Splitting Postconditions into Separate Cases

The invariant j(x,v) from formula (7.10) was not quite enough for proving the
bouncing-ball property (7.12) since we need constant parameter assumptions from
the modified invariant (7.11). Redoing the proof with the new invariant succeeds.
But it would be easier if there was a way of reusing the old proof by threading
the misplaced assumptions through to where we need them. Of course, we can-
not simply add assumptions into the middle of a proof without losing soundness
(Sect. 7.3.4). But Quantum wonders whether we might get away with doing that
if it is merely a matter of adding assumptions about constant parameters such as
c = 1∧g > 0?

Indeed, there are two interesting insights about clever proof structuring that we
can learn from this desire. One insight is an efficient way of proving the preservation
of assumptions about constant parameters. The other is about modularly separating
the reasoning into proofs for separate postconditions.

The dynamic axioms from Chap. 5 and the sequent proof rules from Chap. 6 de-
compose correctness analysis along the top-level operators, which, e.g., split the
analysis into separate questions along the top-level operators in the hybrid pro-
grams. But it is also possible to split the reasoning along the postcondition to show

7.5 Splitting Postconditions into Separate Cases 231

[α](P∧Q) by proving [α]P and [α]Q separately. If the HP α satisfies both the safety
postcondition P and the safety postcondition Q, then it also satisfies the safety post-
condition P∧Q, and vice versa, using the following result from Sect. 5.6.1.

Lemma 5.10 ([]∧ boxes distribute over conjunctions). This axiom is sound:

[]∧ [α](P∧Q)↔ [α]P∧ [α]Q

The axiom []∧ can decompose the box modality in the induction step along the
conjunction in the loop invariant j(x,v)∧ q to conduct separate proofs that j(x,v) is
inductive (second premise in Fig. 7.3) and that the additional invariant q, which is
defined as c = 1∧g > 0, is inductive (third premise). In Fig. 7.3, bb denotes the loop
body of the bouncing ball (7.12). Observe how the induction proof in the second
premise is literally the same proof as the previous proof in Fig. 7.2, except that the
missing assumption q is now available. The remaining proof that the additional loop
invariant q is also inductive is isolated in the third premise.

∗
R

A ⊢ j(x,v)∧q

see Fig. 7.2
j(x,v),q ⊢ [bb]j(x,v)

∗
Vj(x,v),q ⊢ [bb]q

∧R j(x,v),q ⊢ [bb]j(x,v)∧ [bb]q
∧L j(x,v)∧q ⊢ [bb]j(x,v)∧ [bb]q
[]∧ j(x,v)∧q ⊢ [bb](j(x,v)∧q)

∗
Rj(x,v)∧q ⊢ B(x,v)

loop
A ⊢ [bb∗]B(x,v)

Fig. 7.3 Sequent calculus proof for bouncing ball (7.12) with split

There is an additional interesting twist in the proof in Fig. 7.3, though. The proof
of its third premise establishes that formula q is inductive for the bouncing ball bb.
This could be proved by successively decomposing the HP bb using the various
dynamic axioms for sequential compositions, nondeterministic choices, differential
equations, etc. While that proof would work, it is significantly more efficient to
prove it in a single step using the axiom V (from Sect. 5.6.2) for postconditions of
box modalities that do not change any of the variables in the postcondition, so that
the postcondition is true after all runs of the HP if only it is true before.

Lemma 5.11 (V vacuous axiom). The vacuous axiom is sound:

V p→ [α]p (FV (p)∩BV (α) = /0)

where no free variable of p is bound (written) in α .

When used like this, the axioms []∧ and V justify that constant parameter as-
sumptions can be kept around without any harm to the proof (Exercise 7.8).

232 7 Control Loops & Invariants

7.6 Summary

This chapter focused on developing and using the concept of invariants for CPS.
Invariants enable us to prove properties of CPSs with loops, a problem of ubiquitous
significance, because hardly any CPS get by without repeating some operations in
a control loop. Invariants constitute the single most insightful and most important

piece of information about a CPS, because they tell us what we can rely on no matter

how long a CPS runs. Invariants are a fundamental force of computer science, and
are just as important in mathematics and physics.

The axioms and proof rules investigated in this chapter are summarized in
Fig. 7.4. While the loop invariant rule (loop) is the most practical approach for loops,
the induction axiom I is an equivalence and explains the core principle of loop in-
duction more directly. The loop invariant rule loop also derives directly from the
induction axiom I by monotonicity rule M[·] and generalization rule G.

Fig. 7.4 Summary of proof rules for loops, generalization, monotonicity, and splitting boxes

I [α∗]P↔ P∧ [α∗](P→ [α]P)

G
P

[α]P

M[·] P→ Q

[α]P→ [α]Q

loop
Γ ⊢ J,∆ J ⊢ [α]J J ⊢ P

Γ ⊢ [α∗]P,∆

MR
Γ ⊢ [α]Q,∆ Q ⊢ P

Γ ⊢ [α]P,∆

[]∧ [α](P∧Q)↔ [α]P∧ [α]Q

V p→ [α]p (FV (p)∩BV (α) = /0)

The development that led to invariants has some interesting further consequences
especially for finding bugs in CPSs by unrolling loops and disproving the resulting
premises. But this bounded-model-checking principle is of limited use for ultimately
verifying safety, because it only considers the system some finite number of steps in
the future. This chapter focused on proving [α∗]P formulas, which were based on
invariants, so properties that do not change. The discussion of proof techniques for
proving 〈α∗〉P formulas will be postponed till Sect. 17.4, which will use variants,
so properties that do change and steadily make progress toward the goal P.

In our effort to help the bouncing ball Quantum succeed with his proof, we saw
a range of reasons why an inductive proof may not work out and what needs to be
done to adapt the invariant.

7.7 Appendix 233

7.7 Appendix

This appendix provides an alternative way of motivating the loop induction rule only
from successively unwinding a loop with the iteration axiom [∗] that works without
using the more elegant induction axiom I.

7.7.1 Loops of Proofs

The iteration axiom [∗] can be used to turn a safety property of a loop

A→ [α∗]B (7.14)

into the following equivalent dL formula:

A→ B∧ [α][α∗]B

What can we do to prove that loop? Investigating our proof rules from previous
chapters, there is exactly one that addresses loops: the iteration [∗] axiom again.
Recall that, unlike sequent proof rules, axioms do not dictate where they can be
used, so we might as well use them anywhere in the middle of the formula. Hence
using axiom [∗] on the inner loop yields

A→ B∧ [α](B∧ [α][α∗]B)

Let’s do that again because that was so much fun and use the [∗] axiom on the only
occurrence of [α∗]B to obtain

A→ B∧ [α](B∧ [α](B∧ [α][α∗]B)) (7.15)

This is all very interesting but won’t exactly get us any closer to a proof, because
we could keep expanding the ∗ star forever that way. How do we ever break out of
this loop of never-ending proofs?

Before we get too disillusioned about our progress with axiom [∗] so far, notice
that (7.15) still allows us to learn something about α and whether it always satisfies
B when repeating α . Since [∗] is an equivalence axiom, formula (7.15) still expresses
the same thing as (7.14), i.e., that postcondition B always holds after repeating α
when A was true in the beginning. Yet, (7.15) explicitly singles out the first three
runs of α . Let’s make this more apparent with the derived axiom []∧ for box splitting
from Sect. 5.6.1. Using this valid equivalence turns (7.15) into

A→ B∧ [α]B∧ [α][α](B∧ [α][α∗]B)

Using []∧ again gives us

234 7 Control Loops & Invariants

A→ B∧ [α]B∧ [α]([α]B∧ [α][α][α∗]B)

Using []∧ once more gives

A→ B∧ [α]B∧ [α][α]B∧ [α][α][α][α∗]B (7.16)

A ⊢ B A ⊢ [α]B A ⊢ [α][α]B A ⊢ [α][α][α][α∗]B
∧R,∧R,∧R

A ⊢ B∧ [α]B∧ [α][α]B∧ [α][α][α][α∗]B
[]∧

A ⊢ B∧ [α]B∧ [α]([α]B∧ [α][α][α∗]B)
[]∧

A ⊢ B∧ [α]B∧ [α][α](B∧ [α][α∗]B)
[]∧

A ⊢ B∧ [α]

B∧ [α](B∧ [α][α∗]B)

)

[∗]
A ⊢ B∧ [α](B∧ [α][α∗]B)

[∗]
A ⊢ B∧ [α][α∗]B

[∗]
A ⊢ [α∗]B

Fig. 7.5 Loops of proofs: iterating and splitting the box

Fig. 7.5 illustrates the proof construction so far.4 Looking at it this way, (7.16) could
be more useful than the original (7.14), because, even though the two formulas are
equivalent, (7.16) explicitly singles out the fact that B has to hold initially, after
doing α once, after doing α twice, and that [α∗]B has to hold after doing α three
times. Even if we are not quite sure what to make of the latter [α][α][α][α∗]B,
because it still involves a loop, we are quite certain how to understand and handle
the first three:

A→ B∧ [α]B∧ [α][α]B (7.17)

If this formula is not valid, then, certainly, neither is (7.16) and, thus, neither is the
original (7.14). Hence, if we find a counterexample to (7.17), we disproved (7.16)
and (7.14). That can actually be rather useful!

However, if (7.17) is valid, we do not know whether (7.16) and (7.14) are, since
they involve stronger requirements (B holds after any number of repetitions of α).
What can we do then? Simply unroll the loop once more by using [∗] on (7.15) to
obtain

A→ B∧ [α](B∧ [α](B∧ [α](B∧ [α][α∗]B))) (7.18)

Or, equivalently, use axiom [∗] on (7.16) to obtain the equivalent:

A→ B∧ [α]B∧ [α][α]B∧ [α][α][α](B∧ [α][α∗]B) (7.19)

4 Observe the ∧R,∧R,∧R at the top, which is not to be taken as an indication that the proof is
stuttering, but merely meant as a notational reminder that the ∧R proof rule was actually used
three times for that step. Because it will frequently simplify the notation, we will take the liberty
of applying multiple rules at once like that without saying which derivation it was exactly. In fact,
mentioning ∧R three times seems a bit repetitive, so we simply abbreviate this by writing ∧R even
if we used the rule ∧Rthree3 times and should have said ∧R,∧R,∧R.

7.7 Appendix 235

By sufficiently many uses of axiom []∧, (7.18) and (7.19) are both equivalent to

A→ B∧ [α]B∧ [α][α]B∧ [α][α][α]B∧ [α][α][α][α][α∗]B (7.20)

which we can again examine to see if we can find a counterexample to the first part:

A→ B∧ [α]B∧ [α][α]B∧ [α][α][α]B

If yes, we disproved (7.14), otherwise we use axiom [∗] once more.

Note 39 (Bounded model checking) This process of iteratively unrolling a
loop with the iteration axiom [∗] and then checking the resulting (loop-free)
conjuncts is called Bounded Model Checking and has been used with extraor-
dinary success, e.g., in the context of finite-state systems [2]. The same princi-
ple can be useful to disprove properties of loops in differential dynamic logic
by unwinding the loop, checking to see whether the resulting formulas have
counterexamples and, if not, unrolling the loop once more. With certain com-
putational refinements, this idea has found application in hybrid systems [1, 3,
5, 6] despite certain inevitable limits [9].

Suppose such a bounded model checking process has been followed to unroll the
loop N ∈ N times. What can you conclude about the safety of the system?

If a counterexample is found or the formula can be disproved, then we are certain
that the CPS is unsafe. If, instead, all but the last conjunct in the Nth unrolling of
the loop are provable then the system will be safe for N 1 steps, but we cannot
conclude anything about the safety of the system after more than N 1 steps. On
the other hand, what we learn about the behavior of α from these iterations can still
inform us about possible invariants.

7.7.2 Breaking Loops of Proofs

Proving properties of loops by unwinding them forever with axiom [∗] is not a
promising strategy, unless we find that the conjecture is not valid after a number
of unwindings. Or unless we do not mind being busy with the proof forever for in-
finitely many proof steps (which would never get the acrophobic bouncing ball off
the ground either with the confidence that a safety argument provides). One way or
another, we will have to find a way to break the loop apart to complete our reasoning.

How can we prove the premises of Fig. 7.6? Sect. 7.7.1 investigated one way,
which essentially amounts to Bounded Model Checking. Can we be more clever and
prove the same premises in a different way? Preferably one that is more efficient and
allows us to get the proof over with after finitely many steps?

There is not all that much we can do to improve the way we prove the first
premise (A ⊢ B). We simply have to bite the bullet and do it, armed with all our
knowledge of arithmetic from Chap. 6. But it’s actually very easy at least for the

236 7 Control Loops & Invariants

[∗]

[∗]

[∗]

∧R

A ⊢ B MR

A ⊢ [α]J1 ∧R

J1 ⊢ B MR

J1 ⊢ [α]J2 ∧R

J2 ⊢ B
J2 ⊢ [α]J3 . . .

J2 ⊢ [α][α∗]B
J2 ⊢ B∧ [α][α∗]B

J1 ⊢ [α](B∧ [α][α∗]B)
J1 ⊢ B∧ [α](B∧ [α][α∗]B)

A ⊢ [α]

B∧ [α](B∧ [α][α∗]B)

)

A ⊢ B∧ [α]

B∧ [α](B∧ [α][α∗]B)

)

A ⊢ B∧ [α](B∧ [α][α∗]B)
A ⊢ B∧ [α][α∗]B

A ⊢ [α∗]B

Fig. 7.6 Loops of proofs: iterating and generalizing the box

bouncing ball. Besides, no dynamics have actually happened yet in the first premise,
so if we despair in proving this one, the rest cannot become any easier either. For
the second premise, there is not much that we can do either, because we will have
to analyze the effect of the loop body α running once at least in order to be able to
understand what happens if we run α repeatedly.

Yet, what’s with the third premise A ⊢ [α][α]B? We could just approach it as is
and try to prove it directly using the dL proof rules. Alternatively, however, we could
try to take advantage of the fact that it is the same hybrid program α that is running
in the first and the second modality. Maybe they should have something in common
that we can exploit as part of our proof?

How could that work? Can we possibly find something that is true after the first
run of α and is all we need to know about the state for [α]B to hold? Can we
characterize the intermediate state after the first α and before the second α? Suppose
we manage to do that and identify a formula E that characterizes the intermediate
state in this way. How do we use this intermediate condition E to simplify our proof?

Recall the intermediate condition contract version of the sequential composition
proof rule from Chap. 4 that we briefly revisited in Chap. 5:

H;
A→ [α]E E→ [β]B

A→ [α;β]B

Chap. 5 ended up dismissing the intermediate contract rule H; in favor of the more
general axiom

[;] [α;β]P↔ [α][β]P

But, let us revisit rule H; just the same and see whether we can learn something from
its way of using intermediate condition E. The first obstacle is that the conclusion of
the H; rule does not match the form we need for A ⊢ [α][α]B. That’s not a problem in
principle, because we can use axiom [;] backwards from right-hand side to left-hand
side in order to turn A ⊢ [α][α]B back into

A ⊢ [α;α]B

7.7 Appendix 237

and then use rule H; to generalize with an intermediate condition E in the middle.
However, this is what we generally want to stay away from, because using the ax-
ioms both forwards and backwards can get our proof search into trouble because we
might loop around trying to find a proof forever without making any progress, by
simply using axiom [;] forwards and then backwards and then forwards again and so
on until the end of time. Such a looping proof does not strike us as useful. Instead,
we’ll adopt a proof rule that has some of the properties of H; but is more general.
It is called generalization and allows us to prove any stronger postcondition Q for a
modality, i.e., a postcondition that implies the original postcondition P.

Lemma 7.4 (MR monotonicity right rule). This is a derived proof rule:

MR
Γ ⊢ [α]Q,∆ Q ⊢ P

Γ ⊢ [α]P,∆

Proof. Rule MR can be derived from the monotonicity rule M[·] from Lemma 5.13:

Γ ⊢ [α]Q,∆

Q ⊢ P
M[·]Γ , [α]Q ⊢ [α]P,∆

cut Γ ⊢ [α]P,∆

⊓⊔

Because the proof rule MR is just a cut away from monotonicity rule M[·], we will
also just say that we prove by M[·] even if we really also used it together with a cut
as in rule MR.

If we apply rule MR on the third premise A ⊢ [α][α]B of our bounded-model-
checking-style proof attempt with the intermediate condition E for Q that we assume
we have identified, then we end up with

A ⊢ [α]E E ⊢ [α]B
MR

A ⊢ [α][α]B

Let us try to use this principle to see whether we can find a way to prove

A→ B∧ [α](B∧ [α](B∧ [α](B∧ [α][α∗]B))) (7.18*)

Using rules ∧R and MR a number of times for a sequence of intermediate conditions
E1,E2,E3 derives the proof in Fig. 7.7.

This particular derivation is still not very useful because it still has a loop in
one of the premises, which is what we had originally started out with in (7.14) in
the first place. But the derivation hints at a useful way we could possibly shortcut
proofs. To lead to a proof of the conclusion, the above derivation requires us to prove
the premises

238 7 Control Loops & Invariants

∧R

A ⊢ B MR

A ⊢ [α]E1 ∧R

E1 ⊢ B MR

E1 ⊢ [α]E2 ∧R

E2 ⊢ B MR

E2 ⊢ [α]E3 ∧R
E3 ⊢ B E3 ⊢ [α][α∗]B

E3 ⊢ B∧ [α][α∗]B
E2 ⊢ [α](B∧ [α][α∗]B)

E2 ⊢ B∧ [α](B∧ [α][α∗]B)
E1 ⊢ [α](B∧ [α](B∧ [α][α∗]B))

E1 ⊢ B∧ [α](B∧ [α](B∧ [α][α∗]B))
A ⊢ [α](B∧ [α](B∧ [α](B∧ [α][α∗]B)))

→R
A ⊢ B∧ [α](B∧ [α](B∧ [α](B∧ [α][α∗]B)))

⊢ A→ B∧ [α](B∧ [α](B∧ [α](B∧ [α][α∗]B)))

Fig. 7.7 Loops of proofs: intermediate generalizations

A ⊢ [α]E1

E1 ⊢ [α]E2

E2 ⊢ [α]E3

as well as some other premises. What is an easy way to make that happen? What if
all the intermediate conditions Ei were the same? Let’s assume they are all the same
condition E, that is, E1 ≡ E2 ≡ E3 ≡ E. In that case, most of the resulting premises
actually turn out to be one and the same premise:

E ⊢ B

E ⊢ [α]E

except for the two left-most and the right-most premise. Let us leverage this obser-

vation and develop a proof rule for which the same intermediate condition is used

for all iterations of the loop. Furthermore, we would even know the first premise

A ⊢ [α]E

if we could prove that the precondition A implies E:

A ⊢ E

because we already have E ⊢ [α]E as one of the premises.

7.7.3 Invariant Proofs of Loops

The condition E ⊢ [α]E identified in the previous section seems particularly useful,
because it basically says that whenever the system α starts in a state satisfying E, it
will stay in E, no matter which of the states in E it was when the system started in
the first place. It sounds like the system α∗ cannot get out of E if it starts in E, since
all that α∗ can do is to repeat α some number of times. But every time we repeat α ,

7.7 Appendix 239

the sequent E ⊢ [α]E expresses that we cannot leave E that way. So no matter how
often our CPS repeats α∗, it will still reside in E.

The other condition that the previous section identified as crucial is E ⊢ B. And,
indeed, if E does not imply the postcondition B that we have been interested in in
the first place, then E is a perfectly true invariant of the system, but not really a very
useful one as far as proving B goes.

What else could go wrong in a system that obeys E ⊢ [α]E, i.e., where this se-
quent is valid, because we found a proof for it? Indeed, the other thing that could
happen is that E is an invariant of the system that implies safety, but our system
just does not initially start in E; then we still don’t know whether it’s safe. Tak-
ing all three conditions together, we arrive exactly at the loop induction rule from
Lemma 7.3.

7.7.4 Alternative Forms of the Induction Axiom

In the literature [4, 7, 8, 10], the induction axiom is classically presented as

II [α∗](P→ [α]P)→ (P→ [α∗]P)

instead of the slightly stronger and more intuitive form developed in Sect. 7.3.1:

I [α∗]P↔ P∧ [α∗](P→ [α]P)

The classical axiom II is equivalent to the sufficiency direction “←” of the equiv-
alence axiom I just by propositional rephrasing, because both axioms need both P

and [α∗](P→ [α]P) to imply [α∗]P. The derivation of the necessity direction “→”
of the equivalence axiom I from II needs a more elaborate argument.

The proof first derives the backwards iteration axiom from either the “←” neces-
sity direction of induction axiom I (or axiom II) with the help of others.

Lemma 7.5 (
←
[∗] backwards iteration axiom). This axiom is derived:

←
[∗] [α∗]P↔ P∧ [α∗][α]P

Proof. The sufficiency direction “←” of axiom
←
[∗] directly derives from the suffi-

ciency direction “←” of the induction axiom I or its equivalent classical axiom II
using monotonicity rule M[·], because postcondition [α]P is stronger than P→ [α]P:

240 7 Control Loops & Invariants

∗
id

P ⊢ P

∗
id [α]P,P ⊢ [α]P
→R [α]P ⊢ P→ [α]P
M[·][α∗][α]P ⊢ [α∗](P→ [α]P)

∧R
P, [α∗][α]P ⊢ P∧ [α∗](P→ [α]P)

∧L,I
P∧ [α∗][α]P ⊢ [α∗]P

→R ⊢ P∧ [α∗][α]P→ [α∗]P

The necessity direction “→” of
←
[∗] is derived using [∗],G,MR,[]∧ from axiom II or

its equivalent sufficiency direction “←” of axiom I as shown in Fig. 7.8. ⊓⊔

∗
id

P, [α][α∗]P ⊢ P
∧L

P∧ [α][α∗]P ⊢ P
[∗] [α∗]P ⊢ P

∗
⊢ P∧[α][α∗]P→ [α][α∗]P

[∗] ⊢ [α∗]P→ [α][α∗]P
G ⊢ [α∗]([α∗]P→ [α][α∗]P)
II [α∗]P ⊢ [α∗][α∗]P

∗
∧L,id [α]P∧[α][α][α∗]P ⊢ [α]P
[]∧ [α](P∧ [α][α∗]P) ⊢ [α]P
[∗] [α][α∗]P ⊢ [α]P

∧L,WL
P∧ [α][α∗]P ⊢ [α]P

[∗] [α∗]P ⊢ [α]P
MR [α∗]P ⊢ [α∗][α]P

∧R [α∗]P ⊢ P∧ [α∗][α]P
→R ⊢ [α∗]P→ P∧ [α∗][α]P

Fig. 7.8 Derivation of backwards unwinding axiom from alternative induction axiom

With the help of the backwards iteration axiom
←
[∗], the proof of the necessity

direction “→” of axiom I is straightforward, because the only difference is the ad-
ditional assumption P in the postcondition:

∗
id

P ⊢ P

∗
id [α]P,P ⊢ [α]P
→R [α]P ⊢ P→ [α]P
M[·] [α∗][α]P ⊢ [α∗](P→ [α]P)
∧L,WL

P∧ [α∗][α]P ⊢ [α∗](P→ [α]P)
←
[∗] [α∗]P ⊢ [α∗](P→ [α]P)

∧R [α∗]P ⊢ P∧ [α∗](P→ [α]P)
→R ⊢ [α∗]P→ P∧ [α∗](P→ [α]P)

This completes the derivation of the induction axiom I from its classical formu-
lation II using the other axioms.

This proof proved [α∗]P→ [α∗][α∗]P, which has a stronger formulation.

Lemma 7.6 ([∗∗] double iteration axiom). This axiom is derived:

[∗∗] [α∗;α∗]P↔ [α∗]P

7.7 Appendix 241

Proof. The composition axiom [;] reduces the proof to two directions of which the
direction “←” was already proved in the middle branch of Fig. 7.8:

∗
∧L,id[α∗]P∧[α][α∗][α∗]P ⊢ [α∗]P
[∗] [α∗][α∗]P ⊢ [α∗]P

∗ (Fig. 7.8)
[α∗]P ⊢ [α∗][α∗]P

↔R ⊢ [α∗][α∗]P↔ [α∗]P
[;] ⊢ [α∗;α∗]P↔ [α∗]P

⊓⊔

Derived axiom [∗∗] is mostly meant to be used from left to right in order to collapse
two subsequent loops into a single loop. Its diamond modality counterpart can also
be useful to split a loop 〈α∗〉P into two separate loops 〈α∗;α∗〉P:

〈∗∗〉 〈α∗;α∗〉P↔ 〈α∗〉P

This splitting can be useful, e.g., to show that, on an empty soccer field, a robot can
kick the ball into the goal in a control loop. After duplicating the control loop by
axiom 〈∗∗〉, it is sufficient to show that the first control loop can navigate the robot
close enough to the goal to have a chance to score, and then the second control loop
can repeat until a goal is scored.

Exercises

7.1. Give a sequent proof for:

2gx = 2gH v2∧ x≥ 0→ [x′ = v,v′ = g&x≥ 0](2gx = 2gH v2∧ x≥ 0)

Does this property also hold if we remove the evolution domain constraint x ≥ 0?
That is, is the following formula valid?

2gx = 2gH v2∧ x≥ 0→ [x′ = v,v′ = g](2gx = 2gH v2∧ x≥ 0)

7.2. Section 7.3.1 argued that both P and [α]P follow from (7.3). Show how [α]P
is, indeed, implied by applying the iteration axiom [∗] one more time to (7.3).

7.3 (Invariant candidates for bouncing balls). Could the bouncing ball use any of
the following formulas as invariants to prove (7.1)? Explain why.

j(x,v)
def≡ (x = 0∨ x = H)∧ v = 0

j(x,v)
def≡ 0≤ x∧ x≤ H ∧ v2 ≤ 2gH

j(x,v)
def≡ 0≤ x∧ x≤ H ∧ v≤ 0

242 7 Control Loops & Invariants

7.4. Conduct a sequent proof for (7.12) without the monotonicity rule MR.

7.5 (Damped bouncing balls). Section 7.4 proved the bouncing-ball formula (7.12)
in the dL sequent calculus for the case c = 1 of no damping at the bounce. Putting
aside Quantum, actual bouncing balls are less perfect and only achieve damping
coefficients satisfying 0≤ c≤ 1. Identify a suitable invariant and conduct a sequent
calculus proof for this generalization.

7.6. Identify loop invariants proving the following dL formulas:

x > 1→ [(x :=x+1)∗]x≥ 0

x > 5→ [(x :=2)∗]x > 1

x > 2∧ y≥ 1→ [(x :=x+ y;y :=y+2)∗]x > 1

x > 2∧ y≥ 1→ [(x′ = y)
∗
]x > 1

x > 2∧ y≥ 1→ [(x :=y;x′ = y)
∗
]x≥ 1

x = 1→ [(x :=2x+1)∗]x≤ 0

x = 1→ [({x′ = 2})∗]x≥ 5

x = 5∧ c > 1∧d > c→ [({x′ = c+d})∗]x≥ 0

x = 1∧u > x→ [(x :=2;{x′ = x2 +u})∗]x≥ 0

x = 1∧ y = 2→ [(x :=x+1;{x′ = y,y′ = 2})∗]x≥ 0

x≥ 1∧ v≥ 0→ [

{x′ = v,v′ = 2}

)∗
]x≥ 0

x≥ 1∧ v > 0∧A > 0→ [

(a :=0∪a :=A);{x′ = v,v′ = a}

)∗
]x≥ 0

7.7. Give a direct semantic soundness proof for rule ind and contrast its soundness
proof with the soundness proof of rule loop to observe similarities and differences.

7.8 (Constant parameter assumptions). As Example 7.3 showed, it would be un-
sound for either the loop invariant rule or its core counterpart rule ind to keep the
context Γ ,∆ in the induction step (or in the third premise of rule loop). With ad-
equate care, some select formulas from Γ and ∆ can still be kept without losing
soundness. These are the formulas from Γ and ∆ that only refer to constant param-
eters that do not change during the HP α∗. Give a semantic argument why such a
constant formula q in Γ or ∆ can be kept soundly. Then show how q can be retained
in the induction step with the help of the vacuous axiom V from Sect. 5.6.2.

7.9 (Far induction). The far induction axiom is for quicker inductions since its
induction step takes two steps at once. Is it sound? Prove that it is or show a coun-
terexample.

[α∗]P↔ P∧ [α∗](P→ [α][α]P)

7.10 (Unwound). The appendix motivated the loop invariant proof rule via system-
atic unwinding considerations in Sect. 7.7.2. We unwound loops in two different
ways either directly in Fig. 7.6 or with intermediate generalizations in Fig. 7.7. Both

7.7 Appendix 243

approaches ultimately took us to the same inductive principle. But if unwinding is all
that we are interested in, then which of the two ways of unwinding is more efficient?
Which one produces feweer premises that are distractions in the argument? Which
one has fewer choices of different intermediate conditions Ei in the first place?

7.11 (First arrival). Show that the first arrival axiom is sound, which says that if P

is reachable by repeating α , then P is either true right away or one can repeat P to a
state where P is not true yet but will become true after the next iteration of α:

FA 〈α∗〉P→ P∨〈α∗〉(¬P∧〈α〉P)

7.12 (*Dribbling basket balls). Identify a requirement on the initial state of the
bouncing ball that allows it to move initially, so is more general than v = 0. Prove
that this variation of the bouncing ball is safe.

References

[1] Alessandro Cimatti, Sergio Mover, and Stefano Tonetta. SMT-based sce-
nario verification for hybrid systems. Formal Methods in System Design 42(1)
(2013), 46–66. DOI: 10.1007/s10703-012-0158-0.

[2] Edmund M. Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded
model checking using satisfiability solving. Form. Methods Syst. Des. 19(1)
(2001), 7–34. DOI: 10.1023/A:1011276507260.

[3] Andreas Eggers, Martin Fränzle, and Christian Herde. SAT modulo ODE: a
direct SAT approach to hybrid systems. In: Automated Technology for Veri-

fication and Analysis, 6th International Symposium, ATVA 2008, Seoul, Ko-

rea, October 20-23, 2008. Proceedings. Ed. by Sung Deok Cha, Jin-Young
Choi, Moonzoo Kim, Insup Lee, and Mahesh Viswanathan. Vol. 5311. LNCS.
Berlin: Springer, 2008, 171–185. DOI: 10.1007/978-3-540-88387-
6_14.

[4] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. Cambridge:
MIT Press, 2000.

[5] Soonho Kong, Sicun Gao, Wei Chen, and Edmund M. Clarke. dReach:
δ -reachability analysis for hybrid systems. In: Tools and Algorithms for

the Construction and Analysis of Systems - 21st International Conference,

TACAS 2015, Held as Part of the European Joint Conferences on Theory

and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Pro-

ceedings. Ed. by Christel Baier and Cesare Tinelli. Vol. 9035. LNCS. Berlin:
Springer, 2015, 200–205.

[6] Carla Piazza, Marco Antoniotti, Venkatesh Mysore, Alberto Policriti, Franz
Winkler, and Bud Mishra. Algorithmic algebraic model checking I: chal-
lenges from systems biology. In: CAV. Ed. by Kousha Etessami and Sriram
K. Rajamani. Vol. 3576. LNCS. Berlin: Springer, 2005, 5–19. DOI: 10.100
7/11513988_3.

https://doi.org/10.1007/s10703-012-0158-0
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1007/978-3-540-88387-6_14
https://doi.org/10.1007/978-3-540-88387-6_14
https://doi.org/10.1007/11513988_3
https://doi.org/10.1007/11513988_3

244 7 Control Loops & Invariants

[7] André Platzer. The complete proof theory of hybrid systems. In: LICS. Los
Alamitos: IEEE, 2012, 541–550. DOI: 10.1109/LICS.2012.64.

[8] André Platzer. A complete uniform substitution calculus for differential dy-
namic logic. J. Autom. Reas. 59(2) (2017), 219–265. DOI: 10.1007/s108
17-016-9385-1.

[9] André Platzer and Edmund M. Clarke. The image computation problem in
hybrid systems model checking. In: HSCC. Ed. by Alberto Bemporad, Anto-
nio Bicchi, and Giorgio C. Buttazzo. Vol. 4416. LNCS. Springer, 2007, 473–
486. DOI: 10.1007/978-3-540-71493-4_37.

[10] Vaughan R. Pratt. Semantical considerations on Floyd-Hoare logic. In: 17th

Annual Symposium on Foundations of Computer Science, 25-27 October

1976, Houston, Texas, USA. Los Alamitos: IEEE, 1976, 109–121. DOI: 10
.1109/SFCS.1976.27.

https://doi.org/10.1109/LICS.2012.64
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/978-3-540-71493-4_37
https://doi.org/10.1109/SFCS.1976.27
https://doi.org/10.1109/SFCS.1976.27

Chapter 8

Events & Responses

Synopsis Having already understood the analytical implications of control loops
in cyber-physical systems via their logical characterizations with unwinding and
invariants, this chapter investigates their impact on the important design paradigm
of event-triggered control systems, also known as event-driven control systems. In
such a system the controllers respond to certain events whenever they happen. The
resulting event detection for the various events of interest is then executed in a con-
trol loop. A safe controller makes the appropriate response for each of the events
of relevance. This direct response principle for the respective events provides sys-
tematic ways of designing event-triggered CPS controllers and leads to relatively
simple safety arguments. But event-triggered systems are hard if not impossible to
implement, because they require perfect event detection. That makes this chapter an
ideal setting for a number of crucial modeling lessons for CPS.

8.1 Introduction

Chapter 3 already saw the importance of control and loops in CPS models, Chap. 5
presented a way of unwinding loops iteratively to relate repetition to runs of the loop
body, and Chap. 7 finally explained the central inductive proof principle for loops
using invariants.

That has been a lot of attention on loops, but there are even more things to be
learned about loops. This is no coincidence, because loops or other forms of rep-
etitions are one of the most difficult challenges in CPS [3–6]. The other difficult
challenge comes from the differential equations. If differential equations are simple
and there are no loops, CPSs suddenly become easy (they are even decidable [4]).

This chapter will focus on how these two difficult parts of CPS interact: how
loops interface with differential equations. That interface is ultimately the con-
nection between the cyber and the physical part, which, as we have known since
Chap. 2, is fundamentally represented by the evolution domain constraints that de-
termine when physics pauses to let cyber look and act.

245© Springer International Publishing AG, part of Springer Nature 2018

A. Platzer, Logical Foundations of Cyber-Physical Systems,

https://doi.org/10.1007/978-3-319-63588-0_8

https://doi.org/10.1007/978-3-319-63588-0_8
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63588-0_8&domain=pdf

246 8 Events & Responses

This and the next chapter focus on two important paradigms for making cyber
interface with physics to form cyber-physical systems. The two paradigms play an
equally important rôle in classical embedded systems. One paradigm is that of event-

triggered control, where responses to events dominate the behavior of the system,
and an action is taken whenever one of the events is observed. The other paradigm is
time-triggered control, which uses periodic actions to influence the behavior of the
system at certain frequencies. Both paradigms follow naturally from an understand-
ing of hybrid program principles for CPS. Event-triggered control will be studied in
this chapter, while time-triggered control will be pursued in the next chapter. Both
chapters come with complementary lessons that are important in the design of vir-
tually any CPS model and controller but are also important in simple embedded
systems. Events and correct responses to events will be our challenge of choice for
this chapter.

Based on the understanding of loops from Chap. 7, the most important learning
goals of this chapter are:

Modeling and Control: This chapter provides a number of crucial lessons for
modeling CPSs. We develop an understanding of one important design paradigm
for control loops in CPS: event-triggered control. The chapter studies ways of
developing models and controls corresponding to this feedback mechanism,
which is based on issuing appropriate control responses for each of the rele-
vant events of a system. This will turn out to be surprisingly subtle to model.
The chapter focuses on CPS models with continuous sensing, i.e., we assume
that sensor data is available and can be checked always.

Computational Thinking: This chapter uses the rigorous reasoning techniques for
CPS loops with invariants from Chap. 7 based on the axiomatic reasoning ap-
proach from Chap. 5 to study CPS models with event-triggered control. As a
running example, the chapter builds on the bouncing ball that has served us
so well for conveying subtleties of hybrid system models in an intuitive exam-
ple. This time, we add control decisions to the bouncing ball, turning it into a
vertical ping-pong ball, which retains the intuitive simplicity of the bouncing
ball, while enabling us to develop generalizable lessons about how to design
event-triggered control systems correctly. While the chapter could hardly claim
to show how to verify CPS models of any appropriate scale, the foundations laid
in this chapter definitely carry significance for numerous practical applications,
because the design of safe event-triggered controllers follows the same princi-
ples developed in a simple representative example here. It is easier to first see
how cyber and physics interact in an event-triggered way for the significantly
simpler and familiar phenomenon of bouncing balls, which provides the same
generalizable lessons but in a simpler setting.

CPS Skills: This chapter develops an understanding of the precise semantics of
event-triggered control, which can often be surprisingly subtle even if superfi-
cially simple. This understanding of the semantics will also guide our intuition
of the operational effects caused by event-triggered control. Finally, the chapter
shows a brief first glimpse of higher-level model-predictive control and design
by invariant, even if a lot more can be said about that topic.

8.2 The Need for Control 247

CT

M&C CPS

using loop invariants
design event-triggered control

modeling CPS
event-triggered control
continuous sensing
feedback mechanisms
control vs. physics

semantics of event-triggered control
operational effects
model-predictive control

8.2 The Need for Control

Having gotten accustomed to the little acrophobic bouncing ball Quantum since
Chap. 4, this chapter will simply stick to that. Yet, Quantum asks for more action
now, for he had so far no choice but to wait until he was down on the ground at height
x = 0. When his patience paid off so that he finally observed height x = 0, then his
only action was to make his velocity bounce back up. Frustrated by this limited menu
of actions to choose from, Quantum begs for a ping-pong paddle. Thrilled at the
opportunities opened up by flailing around with a ping-pong paddle, Quantum first
performs some experiments to use it in all kinds of directions. But he never knew
where he was going to land if he tried the ping-pong paddle sideways so he quickly
gave up the thought of sideways actuation. The ball probably got so accustomed to
his path of going up and down on the spot that he embraced the thought of keeping
it that way. With the help of the ping-pong paddle, Quantum has high hopes to do
the same, just faster without risking the terrified moments inflicted on him by his
acrophobic attitude to heights. Setting aside all Münchausian concerns about how
effective ping-pong paddles can be for the ball if the ball is using the paddle on itself
in light of Newton’s third law about opposing forces, let us investigate this situation
regardless.1 After all, the ping-pong-crazy bouncing ball Quantum still has what it
takes to make control interesting: the dynamics of a physical system and decisions
on when to react and how to react to the observed status of the system.

Chapter 7 proved the undamped bouncing ball with repetitions (shown in Fig. 8.1):

1 If you find it hard to imagine a bouncing ball that uses a ping-pong paddle to pat itself on its top
to propel itself back down to the ground again, just step back and consider the case where the ping-
pong ball has a remote control to activate a device that moves the ping-pong paddle downwards.
That will do just as well, but is less fun. Besides, Baron Münchhausen would surely be horribly
disappointed if we settled for such a simple explanation for the need for control.

248 8 Events & Responses

Fig. 8.1 Sample trajectory
of a bouncing ball bouncing
freely (plotted as position
over time)

0≤ x∧ x = H ∧ v = 0∧g > 0∧1 = c→
[

{x′ = v,v′ = g&x≥ 0};(?x = 0;v := cv∪ ?x 6= 0)

)∗
](0≤ x∧ x≤ H)

(7.12*)

With this pretty complete understanding of bouncing balls, let’s examine how to
turn the simple bouncing ball into a fancy ping-pong ball using clever actuation of
a ping-pong paddle. Quantum tried to actuate the ping-pong paddle. By making the
ping-pong paddle solely move up and down, Quantum ultimately figured out that
the ball would go back down pretty fast as soon as he got a pat on the top from the
paddle. He also learned that the upwards direction turned out to be not just difficult
but also rather dangerous. Moving the ping-pong paddle upwards from underneath
the ball was rather tricky and only made the ball fly up even higher than before. Yet,
that is what the acrophobic bouncing ball Quantum did not enjoy at all, so he only
ever used the ping-pong paddle to push the ball downwards. Moving the ping-pong
paddle sidewards would make the bouncing ball leave its favorite path of going up
and down on the same spot.

8.2.1 Events in Control

As a height that Quantum feels comfortable with, he chooses the magic number 5
and so he wants to establish 0≤ x ≤ 5 to always hold as Quantum’s favorite safety
condition. The ball further installs the ping-pong paddle at a similar height so that he
can actuate somewhere between height 4 and 5. He exercises great care to make sure
he only moves the paddle downwards when the ball is underneath, never upwards
when it is above, because that would take him frightfully high up. Thus, the effect
of the ping-pong paddle will only be to reverse the ball’s direction. For simplicity,
Quantum figures that being hit by a ping-pong paddle might have a similar effect to
being hit by the floor, except with a possibly different bounce factor f ≥ 0 instead
of the damping coefficient c.2 So the paddle actuated this way is simply assumed to
have the effect v := f v. Since Quantum can decide to use the ping-pong paddle as

2 The real story is a bit more complicated, but Quantum does not know any better yet.

8.2 The Need for Control 249

Fig. 8.2 Sample trajectory of
a ping-pong ball (plotted as
position over time) with the
indicated ping-pong paddle
actuation range

he sees fit (within the ping-pong paddle’s reach between height 4 and 5), the ping-
pong model is obtained from the bouncing-ball model by adding this additional
(nondeterministic) choice to the HP. A sample trajectory for the ping-pong ball,
where the ping-pong paddle is used twice is illustrated in Fig. 8.2. Observe how the
use of the ping-pong paddle (here only at height x = 5) makes the ball bounce back
faster.

Taking these thoughts into account, the ball devises a new and improved HP for
ping-pong and conjectures its safety as expressed in the following dL formula:

0≤ x∧ x≤ 5∧ v≤ 0∧g > 0∧1≥ c≥ 0∧ f ≥ 0→
[
{x′ = v,v′ = g&x≥ 0};
(?x = 0;v := cv∪ ?4≤ x≤ 5;v := f v∪ ?x 6= 0)

)∗]
(0≤ x≤ 5)

(8.1)

Having taken the Principle of Cartesian Doubt from Chap. 4 to heart, the aspiring
ping-pong ball Quantum first scrutinizes conjecture (8.1) before setting out to prove
it. What could go wrong?

For one thing, (8.1) allows the right control options of using the paddle by
?4≤ x≤ 5;v := f v but it also always allows the wrong choice ?x 6= 0 when above
ground. Remember that nondeterministic choices are just that: nondeterministic! So
if Quantum is unlucky, the HP in (8.1) could run so that the middle choice is never
chosen and, if the ball has a large downwards velocity v initially, it will jump back
up higher than 5 even if it was below 5 initially. That scenario falsifies (8.1). A
concrete counterexample can be constructed, e.g., from initial state ω with

ω(x) = 5,ω(v) = 1010,ω(c) =
1
2
,ω(f) = 1,ω(g) = 10

A less extreme scenario is shown in Fig. 8.3, where the first control at around time
3 works flawlessly but the second event is missed.

Despite this setback in his first control attempt, Quantum is thrilled by the extra
prospect of a proper control decision for him to make. So Quantum “only” needs
to figure out how to restrict the control decisions such that nondeterminism will
only ever take one of the (possibly many) correct control choices, quite a common
problem in CPS control. How can Quantum fix this bug in his control and turn

250 8 Events & Responses

Fig. 8.3 Sample trajectory
of a ping-pong ball (plotted
as position over time) that
misses one event to actuate
the ping-pong paddle

himself into a daring ping-pong ball? The problem with the controller in (8.1) is that
it permits too many choices, some of which are unsafe. Restricting these choices and
making them more deterministic is what it takes to ensure the ping-pong paddle is
actuated as intended:

0≤ x∧ x≤ 5∧ v≤ 0∧g > 0∧1≥ c≥ 0∧ f ≥ 0→
[
{x′ = v,v′ = g&x≥ 0};
(?x = 0;v := cv∪ ?4≤ x≤ 5;v := f v∪ ?x 6= 0∧ x < 4∨ x > 5)

)∗]
(0≤ x≤ 5)

(8.2)
Recalling the if(E)α elseβ statement from Chap. 3, the same system can be mod-
eled equivalently:

0≤ x∧ x≤ 5∧ v≤ 0∧g > 0∧1≥ c≥ 0∧ f ≥ 0→
[
{x′ = v,v′ = g&x≥ 0};
(?x = 0;v := cv∪ ?x 6= 0; if(4≤ x≤ 5)v := f v)

)∗]
(0≤ x≤ 5)

Or, using if-then-else again, as the even shorter equivalent formula

0≤ x∧ x≤ 5∧ v≤ 0∧g > 0∧1≥ c≥ 0∧ f ≥ 0→
[
{x′ = v,v′ = g&x≥ 0};
if(x = 0)v := cvelse if(4≤ x≤ 5)v := f v

)∗]
(0≤ x≤ 5)

(8.3)

Is conjecture (8.3) valid?

Before you read on, see if you can find the answer for yourself.

8.2.2 Event Detection

The problem with the controller in (8.3) is that, even though it exercises the appro-
priate control choice whenever the controller runs, the model does not ensure the

8.2 The Need for Control 251

controller will ever run at all when needed. The paddle control only runs after the
differential equation stops, which can be almost any time. The differential equation
is only guaranteed to stop when the ball bounces on the ground (x = 0), because
its evolution domain constraint x≥ 0 would not be satisfied any longer on its way
further down. Above ground, the differential equation model does not provide any
constraints on how long it might evolve. Recall from Chap. 2 that the semantics of
differential equations is nondeterministic in that the system can follow a differential
equation any amount of time, as long as it does not violate the evolution domain con-
straints. In particular, the HP in (8.3) might miss the interesting event 4≤ x≤ 5 that
the ping-pong ball’s paddle control wanted to respond to. The system might simply
skip over that region by following the differential equation x′ = v,v′ = g&x ≥ 0
obliviously until the event 4≤ x≤ 5 has passed.

How can the HP from (8.3) be modified to make sure that the event 4 ≤ x ≤ 5
will always be noticed and never missed?

Before you read on, see if you can find the answer for yourself.

Essentially the only way to prevent the system from following a differential equa-
tion for too long is to restrict the evolution domain constraint, which is the predom-
inant way to make cyber and physics interact. Indeed, that is what the evolution
domain constraint . . .&x≥ 0 in (8.3) did in the first place. Even though this domain
was introduced for different reasons (first principle arguments that light balls never
fall through solid ground), its secondary effect was to make sure that the ground
controller ?x = 0;v := cv will never miss the right time to take action and reverse
the direction of the ball from falling to climbing.

Note 40 (Evolution domains detect events) Evolution domain constraints of
differential equations in hybrid programs can detect events. That is, they can
make sure the system evolution stops whenever an event happens on which the
control wants to take action. Without such evolution domain constraints, the
controller is not necessarily guaranteed to execute but may miss the event.

Following these thoughts further indicates that the evolution domain somehow
ought to be augmented with more constraints that ensure the interesting event 4 ≤
x≤ 5 will never be missed accidentally. How can this be done? Should the event be
conjoined to the evolution domain as follows?

0≤ x∧ x≤ 5∧ v≤ 0∧g > 0∧1≥ c≥ 0∧ f ≥ 0→
[
{x′ = v,v′ = g&x≥ 0∧4≤ x≤ 5};
if(x = 0)v := cvelse if(4≤ x≤ 5)v := f v

)∗]
(0≤ x≤ 5)

Before you read on, see if you can find the answer for yourself.

Of course not! This evolution domain would be entirely counterfactual and re-

quire the ball to always be at a height between 4 and 5, which is hardly the right

252 8 Events & Responses

physical model for any self-respecting bouncing ball. How could the ball ever fall
to the ground and bounce back, this way? It couldn’t.

Yet, on second thoughts, the way the event x = 0 got detected by the HP was not
by including . . .&x = 0 in the evolution domain constraint, either, but by merely
including the inclusive limiting constraint . . .&x ≥ 0, which made sure the system
could perfectly well evolve before the event domain x = 0, but that it just couldn’t
rush past the event x = 0. What would the inclusion of such an inclusive limiting
constraint correspond to for the intended ping-pong paddle event 4≤ x≤ 5?

When the ball is hurled up into the sky, the last point at which action has to be
taken to make sure not to miss the event 4 ≤ x ≤ 5 is x = 5. The corresponding in-
clusive limiting constraint x≤ 5 thus should be somewhere in the evolution domain
constraint. This is in direct analogy to the fact that the rôle of the evolution domain
constraint x ≥ 0 is to guarantee detection of the discrete event x = 0 in the discrete
action that makes the ball bounce back up.

0≤ x∧ x≤ 5∧ v≤ 0∧g > 0∧1≥ c≥ 0∧ f ≥ 0→
[
{x′ = v,v′ = g&x≥ 0∧ x≤ 5};
if(x = 0)v := cvelse if(4≤ x≤ 5)v := f v

)∗]
(0≤ x≤ 5)

(8.4)

Is this the right model? Is dL formula (8.4) valid? Will its HP ensure that the critical
event 4≤ x≤ 5 will not be missed?

Before you read on, see if you can find the answer for yourself.

Formula (8.4) is valid. And, yet, (8.4) is not at all the appropriate formula to

consider! It is absolutely crucial to understand why.
First, however, note that the HP in (8.4) allows the use of the ping-pong paddle

anywhere in the height range 4≤ x≤ 5. Its evolution domain constraint enforces that
this event 4≤ x≤ 5 will be noticed at the latest at height x = 5. So when exactly the
ping-pong paddle is exercised in that range is nondeterministic (even if the control
is written deterministically), because the duration of the differential equation is still
chosen nondeterministically. This allows the ping-pong paddle to be controlled at
the last height x = 5 or before it reaches height x = 5 as in Fig. 8.4.

Fig. 8.4 Sample trajectory of
a ping-pong ball (plotted as
position over time) with the
indicated ping-pong paddle
actuation range, sometimes
actuating early, sometimes
late

8.2 The Need for Control 253

Notice that (8.4) does not make sure that the critical event 4≤ x ≤ 5 will not be
missed in the case of a ball that is climbing up above the lower trigger 4 but starts
falling down again already before it exceeds the upper trigger 5 of the event. Such
a possible behavior of the ping-pong ball was already shown in Fig. 8.2. Yet, this
is not actually problematic, because missing out on the chance to actuate the ping-
pong paddle in a situation where the paddle is not needed to ensure height control is
just missing an opportunity for fun, not missing a critical control choice.

But there is a much deeper problem with (8.4). Formula (8.4) is perfectly valid.
But why? Because all runs of the differential equation x′ = v,v′ = g&x≥ 0∧x≤ 5
remain within the safety condition 0≤ x≤ 5 by construction. None of them are ever
allowed to leave the region x≥ 0∧ x≤ 5, which, after all, is their evolution domain
constraint. So formula (8.4) is trivially safe, because it says that a system that is
constrained to not leave x≤ 5 cannot leave x≤ 5, which is a pretty trivial insight.
A more careful proof involves that, every time around the loop, the postcondition
holds trivially, because the differential equation’s evolution constraint maintains it
by definition, and the subsequent discrete control never changes the only variable
x on which the postcondition depends. Hold on, the loop does not have to run but
might be skipped over by zero iterations. Yet, in that case, the precondition ensures
the postcondition, so, indeed, (8.4) is valid, but only quite trivially so.

Note 41 (Non-negotiability of physics) It is a good idea to make systems safe
by construction; but not by changing the laws of physics, because physics is
unpleasantly non-negotiable. If the only reason why a CPS model is safe is
because we forgot to model all relevant behavior of the real physical system
and modeled another universe instead, then correctness statements about those
inadequate models do not apply to reality. We do not make this world any safer
by writing CPS programs for another universe!
One common cause of counterfactual models is too restrictive evolution do-
main constraints that rule out physically realistic behavior.

That is what happened in (8.4). Quantum got so carried away with trying not to
miss the event 4≤ x≤ 5 that he forgot to include a behavior in the model that takes
place after the event has happened.

Contrast this with the rôle of the evolution domain constraint . . .&x≥ 0, which
came into the system because of physics: to model the guaranteed bouncing back
from the ground and to prevent the ball from falling through the ground. The con-
straint x≥ 0 models physical limitations of balls which cannot fall through solid
soil. The evolution domain constraint . . .&x≤ 5 got added to the ping-pong HP for
an entirely different reason. It came into play to model what our controller does,
and inaptly so, because our feeble attempt ruled out physical behavior that could
actually have happened in reality. There is no reason to believe that physics would
be so kind to only evolve within x≤ 5 just because our controller model wants to
respond to an event then. Remember never to do that. Ever!

254 8 Events & Responses

Note 42 (Physical constraints versus control constraints) Some constraints
of system models are included for physical reasons; other constraints are added
later to describe the controller. Take care to ensure not to accidentally limit
the behavior of physics when all you meant to do is impose a constraint on
your system controller. Physics will not listen to your desires! This applies to
evolution domain constraints but also other aspects of your system model such
as tests. It is fine to limit the force that the ping-pong paddle exerts, because
that is for the controller to decide. But it is not a good idea for a controller to
limit or change the values of gravity or damping coefficients, because that is
rather hard to implement without first leaving the planet.

To belabor the point more formally, we could have told directly from a proof of
formula (8.4) that its model is broken. Let us use the following abbreviations:

A
def≡ 0≤ x∧ x≤ 5∧ v≤ 0∧g > 0∧1≥ c≥ 0∧ f ≥ 0

B(x)
def≡ 0≤ x∧ x≤ 5

{x′′ = ..&x≥0∧x≤5} def≡ {x′ = v,v′ = g&x≥ 0∧ x≤ 5}

ctrl
def≡ if(x = 0)v := cvelse if(4≤ x≤ 5)v := f v

The proof of formula (8.4) is completely straightforward:

∗
R

A ⊢ B(x)

∗
R

x≥ 0∧ x≤ 5 ⊢ B(x)
V

x≥ 0∧ x≤ 5 ⊢ [ctrl]B(x)
dW

B(x) ⊢ [{x′′ = ..&x≥0∧x≤5}][ctrl]B(x)
[;]

B(x) ⊢ [{x′′ = ..&x≥0∧x≤5};ctrl]B(x)

∗
R

B(x) ⊢ B(x)
loop

A ⊢ [({x′′ = ..&x≥0∧x≤5};ctrl)∗]B(x)

In addition to the vacuous axiom V from Lemma 5.11 for unmodified postcondi-
tions, this sequent proof uses the differential weakening proof rule dW, which will
later be explored in full in Lemma 11.2 of Chap. 11, but is already easy to understand
right now.3 The differential weakening proof rule dW proves any postcondition P of
a differential equation that is implied by its evolution constraint Q:

dW
Q ⊢ P

Γ ⊢ [x′ = f (x)&Q]P,∆

This is a beautiful and simple proof of (8.4) but there’s a catch. Can you spot it?

Before you read on, see if you can find the answer for yourself.

3 For solvable differential equations, rule dW can, of course, be derived from solution axiom [′] by
appropriate generalization steps. But rule dW is sound for any other differential equation, which is
why it will be explored in Chap. 11 of Part II, which focuses on advanced differential equations.

8.2 The Need for Control 255

The above proof of (8.4) worked entirely by the differential weakening rule dW
and the vacuous axiom V. The differential weakening rule dW discards the dif-
ferential equation {x′ = v,v′ = g} and works entirely from the evolution domain
constraint. The vacuous axiom V discards the controller ctrl since its postcondition
B(x) does not read any of the variables that the HP ctrl writes, which is just v.

Well, that is a remarkably efficient proof. But the fact that it entirely discarded

the differential equation and controller everywhere shows that the property is in-
dependent of the differential equation and controller and, thus, holds for any other
controller that does not assign to x and any other differential equation (bouncing ball
under gravity or not) that shares the same evolution domain constraint x≥ 0∧x≤ 5.

Note 43 (Irrelevance) After having constructed a proof, we can go back and
check which assumptions, which evolution domain constraints, which differ-
ential equations, and which parts of the controller were needed to establish it.
This is not just useful to identify crucial versus irrelevant assumptions, but is
also insightful to identify which part of a controller or dynamics can be changed
without affecting the truth of the property. If almost every aspect of a controller
and differential equation turns out to be irrelevant, we should be wary about the
model. More generally, the set of facts and expressions on which a proof de-
pends informs us how general or how unique its conclusion is. If a proof was
independent of most aspects of a hybrid program, then it states a very broadly
applicable general property, but also does not tell us any particularly deep fact
that is unique to this specific hybrid program.

Consequently, the fact that the differential equations and controllers were irrel-
evant for the above proof of (8.4) confirms again that its physics model is broken,
because our practical experience clearly demonstrates that safety of the ping-pong
ball really depends on a clever use of the ping-pong paddle.

8.2.3 Dividing Up the World

Let’s make up for this modeling mishap by developing a model that has both behav-
iors, the behaviors before and after the event, just in different continuous programs
so that the decisive event in the middle cannot accidentally be missed.

0≤ x∧ x≤ 5∧ v≤ 0∧g > 0∧1≥ c≥ 0∧ f ≥ 0→
[
({x′ = v,v′ = g&x≥ 0∧ x≤ 5}∪{x′ = v,v′ = g&x > 5});
if(x = 0)v := cvelse if(4≤ x≤ 5)v := f v

)∗]
(0≤ x≤ 5)

(8.5)

Instead of the single differential equation with a single evolution domain con-
straint in (8.4), the HP in (8.5) has a (nondeterministic) choice between two dif-
ferential equations, here actually both the same, with two different evolution do-

256 8 Events & Responses

main constraints. The left continuous system is restricted to the lower physics space
x≥ 0∧ x≤ 5, the right continuous system is restricted to the upper physics space
x > 5. Every time the loop repeats, there is a choice of either the lower physics
equation or the upper physics equation. But the system can never stay in these dif-
ferential equations for too long, because, e.g., when the ball is below 5 and speeding
upwards very fast, then it cannot stay in the left differential equation above height
5, so it will have to stop evolving continuously and give the subsequent controller a
chance to inspect the state and respond in case the event 4≤ x≤ 5 happened.

Now dL formula (8.5) has a much better model of events than the ill-advised
(8.4). Is formula (8.5) valid?

Before you read on, see if you can find the answer for yourself.

The model in (8.5) is, unfortunately, horribly broken. We meant to split the con-
tinuous evolution space into the regions before and after the event 4≤ x≤ 5. But we
overdid it, because the space is now fractured into two disjoint regions, the lower
physics space x ≥ 0∧ x ≤ 5 and the upper physics space x > 5. How can the ping-
pong ball ever transition from one to the other? Certainly, as the ball moves upwards
within the lower physics space x ≥ 0∧ x ≤ 5, it will have to stop evolving at x = 5
at the latest. But then even if the loop repeats, the ball still cannot continue in the
upper physics space x > 5, because it is not quite there yet. Being at x = 5, it is an
infinitesimal step away from x > 5. Of course, Quantum will only ever move contin-
uously along a differential equation. There is no continuous motion that would take
the ball from the region x ≥ 0∧ x ≤ 5 to the disjoint region x > 5 without leaving
them. In other words, the HP in (8.5) has accidentally modeled that there will never
ever be a transition from lower to upper physics space nor the other way around,
because of an infinitesimal gap in between.

Note 44 (Connectedness and disjointness in evolution domains) Evolution
domain constraints need to be thought out carefully, because they determine the
respective regions within which the system can evolve. Disjoint or unconnected
evolution domain constraint regions often indicate that the model will have to
be thought over again, because there cannot be any continuous transitions from
one domain to the other if they are not connected. Even infinitesimal gaps in
domain constraints can cause mathematical curiosities in a model that make it
physically unrealistic.

Let’s close the infinitesimal gap between x ≥ 0∧ x ≤ 5 and x > 5 by including
the boundary x = 5 in both domains:

0≤ x∧ x≤ 5∧ v≤ 0∧g > 0∧1≥ c≥ 0∧ f ≥ 0→
[
((x′ = v,v′ = g&x≥ 0∧ x≤ 5)∪ (x′ = v,v′ = g&x≥ 5));

if(x = 0)v := cvelse if(4≤ x≤ 5)v := f v
)∗]

(0≤ x≤ 5)

(8.6)

Now there is a proper separation into lower physics x≥ 0∧ x≤ 5 and upper
physics x≥ 5 but the system can be in either physics space at the switching bound-

8.2 The Need for Control 257

ary x = 5. This makes it possible for the ball to pass from lower physics into upper
physics or back, but only at the boundary x = 5, which, in this case, is the only point
that the two evolution domain constraints have in common.

In fact, it is generally a good idea to work with overlapping (and often closed)
evolution domain constraints to minimize the likelihood of accidentally causing in-
finitesimal gaps in the domains of the model.

Now dL formula (8.6) has a much better model of events than the ill-advised
(8.4). Is formula (8.6) valid?

Before you read on, see if you can find the answer for yourself.

When the ball is jumping up from the ground, the model in (8.6) makes it im-
possible for the controller to miss the event 4 ≤ x ≤ 5, because the only evolution
domain constraint in the HP that applies at the ground is x ≥ 0∧ x ≤ 5. And that
evolution domain stops being true above 5. Yet, suppose the ping-pong ball was
flying up from the ground following the continuous program in the left choice and
then stopped its evolution at height x = 4.5, which always remains perfectly within
the evolution domain x ≥ 0∧ x ≤ 5 and is, thus, allowed. Then, after the sequential
composition between the middle and last line of (8.6), the controller in the last line
of (8.6) runs, notices that the formula 4 ≤ x ≤ 5 for the event checking is true, and
changes the velocity according to v := f v, corresponding to the assumed effect of
a pat with the paddle. That is actually its only choice in such a state, because the
controller is deterministic, much unlike the differential equation. Consequently, the
velocity has just become negative since it was positive before as the ball was climb-
ing up. So the loop can repeat and the differential equation runs again. However,
then the differential equation might evolve until the ball is at height x = 4.25, which
will eventually happen since its velocity stays negative till the ground. If the differ-
ential equation stops then, the controller will run again, determine that 4 ≤ x ≤ 5
is true still and so take action to change the velocity to v := f v again. That will,
however, make the velocity positive again, since it was previously negative as the
ball was in the process of falling. Hence, the ball will keep on climbing now, which,
again, threatens the postcondition 0≤ x≤ 5. Will this falsify (8.6) or is it valid?

Before you read on, see if you can find the answer for yourself.

On second thoughts, that alone still will not cause the postcondition to evalu-
ate to false, because the only way the bouncing ball can evolve continuously from
x = 4.25 is by the continuous program in the left choice of (8.6). And that differ-
ential equation is restricted to the evolution domain x≥ 0∧ x≤ 5, which causes the
controller to run before leaving x ≤ 5. That is, the event 4 ≤ x ≤ 5 will again be
noticed by the controller so that the ping-pong paddle pats the ball back down; see
Fig. 8.5.

However, exactly the same reasoning applies also to the case where the ball suc-
cessfully made it up to height x = 5, which is the height at which any climbing ball
has to stop its continuous evolution, because it would otherwise violate the evolution
domain x≥ 0∧ x≤ 5. As soon as that happens, the controller runs, notices that the
event 4≤ x ≤ 5 is true, and responds with the ping-pong paddle to cause v := f v.

258 8 Events & Responses

Fig. 8.5 Sample trajectory
of a ping-pong ball (plotted
as position over time) with
the controller firing multiple
times for the same event

If, now, the loop repeats, yet the continuous evolution evolves for duration zero only,
which is perfectly allowed, then the condition 4≤ x≤ 5 will still be true so that the
controller again notices this “event” and responds with ping-pong paddle v := f v.
That will make the velocity positive, the loop can repeat, the continuous program on
the right of the choice can be chosen since x≥ 5 holds true, and then the bouncing
ball can climb and disappear into nothingness high up in the sky if only its velocity
has been large enough. Such a behavior is shown in Fig. 8.6. The second illustration
in Fig. 8.6 uses the artistic liberty of delaying the second ping-pong paddle use just
a tiny little bit to make it easier to tell the two ping-pong paddle uses apart, even
if that is not actually quite allowed by the HP model, because such behavior would
actually be reflected by a third ping-pong paddle use as in Fig. 8.5.

Fig. 8.6 Sample trajectory of a ping-pong ball (plotted as position over time) with the controller
firing multiple times for the same event on the event boundary x = 5 between lower and upper
physics

Ergo, (8.6) is not valid. What a pity! Poor Quantum would still have to be afraid
of heights when following the control in (8.6). How can this problem be resolved?

Before you read on, see if you can find the answer for yourself.

8.2 The Need for Control 259

8.2.4 Event Firing

The problem in (8.6) is that its left differential equation makes sure never to miss
out on the event 4 ≤ x ≤ 5 but its control may respond to it multiple times. Should
each occasion of 4≤ x≤ 5 even be called a separate event? Quite certainly repeated
responses to the same event according to control (8.6) cause trouble.

Note 45 (Multi-firing of events) In event-triggered control, exercise care to
ensure whether you want events to fire only once when they occur for the first
time, or whether the system stays safe even if the same event is detected and
responded to multiple times in a row. The latter systems are more robust.

One way of solving this problem is to change the condition in the controller to
make sure it only responds to the 4 ≤ x ≤ 5 event when the ball is on its way up,
i.e., when its velocity is not negative (v≥ 0). That is what Quantum had in mind
originally, but, in the great tradition of sophisticated systems, neglected to control it
appropriately. The ping-pong paddle should only be actuated downwards when the
ball is flying up.

These thoughts lead to the following variation:

0≤ x∧ x≤ 5∧ v≤ 0∧g > 0∧1≥ c≥ 0∧ f ≥ 0→
[
({x′ = v,v′ = g&x≥ 0∧ x≤ 5}∪{x′ = v,v′ = g&x≥ 5});
if(x = 0)v := cvelse if(4≤ x≤ 5∧ v≥ 0)v := f v

)∗]
(0≤ x≤ 5)

(8.7)

Because the paddle action v := f v will disable the condition v≥ 0 for nonzero
velocities, the controller in (8.7) can only respond once to the event 4≤ x≤ 5 to turn
the upwards velocity into a downwards velocity, scaled by f (Exercise 8.1). Unlike
in (8.6), this control decision cannot be immediately revertes inadvertently by the
controller.

Is dL formula (8.7) valid?

Before you read on, see if you can find the answer for yourself.

Yes, formula (8.7) is valid. Finally! Note that it is still the case in (8.7) that, every
time around the loop, there will be a nondeterministic choice to evolve within lower
physics x≥ 0∧ x≤ 5 or within upper physics x ≥ 5. This choice is nondeterminis-
tic, so any outcome will be possible. If the left differential equation is chosen, the
subsequent continuous evolution must be confined to x≥ 0∧ x≤ 5 and stop before
leaving that lower physics region to give the controller a chance to check for events
and respond. If the right differential equation is chosen, the subsequent continuous
evolution must be limited to x ≥ 5 and must stop before leaving that upper physics
region to give the controller a chance to inspect. In fact, the only way of leaving the
upper physics space is downwards (with velocity v < 0), which, unlike in (8.6), will
not trigger a response from the subsequent control in (8.7), because that controller
checks for v≥ 0.

260 8 Events & Responses

8.2.5 Event-Triggered Verification

How can dL formula (8.7) be proved, so that we have unquestionable evidence that it
is, indeed, valid? The most critical element of a proof is finding a suitable invariant.
What could be the invariant for proving (8.7)?

Before you read on, see if you can find the answer for yourself.

The postcondition
5≥ x≥ 0 (8.8)

is an obvious candidate for an invariant. If it is true, it trivially implies the postcon-
dition 0≤ x≤ 5 and it holds in the initial state. It is not inductive, though, because
a state that satisfies only (8.8) could follow the second differential equation if it
satisfied x ≥ 5. In that case, if the velocity were positive, the invariant (8.8) would
be violated immediately. Hence, at the height x = 5, the control has to make sure
that the velocity is negative, so that the right differential equation in (8.7) has to stop
immediately. Can (8.8) be augmented with a conjunction v≤ 0 to form an invariant?

5≥ x≥ 0∧ v≤ 0

No, that would not work either, because the bounce on the ground immediately
violates that invariant, since the whole point of bouncing is that the velocity will
become positive again. In fact, the controller literally only ensures v ≤ 0 at the
event, which is detected at x = 5 at the latest that is the safety-critical decision
point. Gathering these thoughts, it turns out that the dL formula (8.7) can be proved
in the dL calculus using the invariant

5≥ x≥ 0∧ (x = 5→ v≤ 0) (8.9)

This invariant retains that the possible range of x is safe but is just strong enough to
also remember the correct control choice at the event boundary x = 5. It expresses
that the ball is either in lower physics space or at the boundary of both physics
spaces. But if the ball is at the boundary of the physics spaces, then it is moving
downwards. Invariant (8.9) follows the general principle of augmenting the expected
postcondition with just enough information to guarantee safe control choices at all
the critical handovers between the respective modes or decisions.

That is the reason why (8.9) is easily seen to be an invariant of (8.7). The invariant
(8.7) is initially true, because the ball is initially in range and moving down. The
invariant trivially implies the postcondition, because it consists of the postcondition
plus an extra conjunction. The inductive step is most easily seen by considering
cases. If the position before the loop body ran was x < 5, then the only physics
possible to evolve is lower physics, which, by construction, implies the conjunct
5 ≥ x ≥ 0 from its evolution domain constraint. The extra conjunct x = 5→ v ≤ 0
is true after the loop body has run, since, should the height actually be 5, which
is the only case for which this extra conjunct is not already vacuously true, then
the controller made sure to turn the velocity downwards by checking 4 ≤ x ≤ 5∧

8.2 The Need for Control 261

v ≥ 0 and negating the velocity. If the position before the loop body was x ≥ 5
then the invariant (8.9) implies that the only position it could have had is x = 5
in which case either differential equation could be chosen. If the first differential
equation is chosen, the reasoning for the induction step is as for the case x < 5. If
the second differential equation is chosen, then the invariant (8.9) implies that the
initial velocity is v ≤ 0, which implies that the only possible duration that keeps
the evolution domain constraint x ≥ 5 of the upper physics true is duration 0, after
which nothing has changed so the invariant still holds.

Observe how the scrutiny of a proof, which necessitated the transition from the
broken invariant (8.8) to the provable invariant (8.9), has pointed us to subtleties
with events and how ping-pong balls would become unsafe if they fired repeatedly.
We discovered these issues by careful formal modeling with our “safety first” ap-
proach and a good dose of Cartesian Doubt. But had we not noticed it, the proof
would not have let us get away with such oversights, because the (unreflected) in-
variant candidate (8.8) would not have worked, nor would the broken controller (8.6)
have been provable. Of course, having a proof is not a replacement for exercising
good judgment over a model to begin with.

Finally, recall that (global) invariants need to be augmented with the usual mun-
dane assumptions about the unchanged variables, like c≥ 0∧g > 0∧ f ≥ 0, unless
we use the more clever techniques from Sect. 7.5 that automatically preserve as-
sumptions about constant parameters.

8.2.6 Event-Triggered Control Paradigm

The model that (8.7) and the other controllers in this section adhere to is called
event-triggered control or sometimes also an event-triggered architecture.

Note 46 (Event-triggered control) One common paradigm for controller de-
sign is event-triggered control, in which the controller runs in response to cer-
tain events that happen in the system. The controller might possibly run under
other circumstances as well—when in doubt, the controller simply skips over
without any effect if it does not want to change anything about the behavior
of the system. But event-triggered controllers assume they will run for sure
whenever certain events in the system happen.
These events cannot be all too narrow, or else the system will not be imple-
mentable, though. For example, it is nearly impossible to build a controller that
responds exactly at the point in time when the height of the bouncing ball is
x = 9.8696. Chances are high that any particular execution of the system will
have missed this particular height. Care must be taken in event-triggered de-
sign models also that the events do not inadvertently restrict the evolution of
the system for the behavioral cases outside of events or after the events have
happened. Those executions must still be verified.

262 8 Events & Responses

Are we sure in model (8.7) that events are taken into account faithfully? That
depends on what exactly we mean by an event like 4≤ x≤ 5. Do we mean that this
event happens for the first time? Or do we mean every time this event happens? If
multiple successive runs of the ping-pong ball’s controller see this condition satis-
fied, do these count as the same or as separate instances of that event happening?
Comparing the validity of (8.7) with the non-validity of (8.6) illustrates that these
subtleties can have considerable impact on the system. Hence, a precise understand-
ing of events and careful modeling is required.

The controller in (8.7) only takes an action for event 4 ≤ x ≤ 5 when the ball
is on the way up. Hence, the evolution domain constraint in the right continuous
evolution is x≥ 5. If we wanted to model the occurrence of event 4 ≤ x ≤ 5 also
when the ball is on its way down, then we would have to have a differential equation
with evolution domain x ≥ 4 to make sure the system does not miss 4 ≤ x ≤ 5
when the ball is on its way down either, without imposing that it would have to
notice x = 5 already. This can be achieved by splitting the evolution domain regions
appropriately, but was not necessary for (8.7) since the controller never responds to
balls falling down, only those climbing up.

Note 47 (Subtleties with events) Events are a slippery slope and great care
needs to be exercised to use them without introducing an inadequate execu-
tional bias into the model.

There is a highly disciplined way of defining, detecting, and responding to gen-
eral events in differential dynamic logic based on the there and back again axiom of
differential dynamic logic [4]. That is, however, much more complicated than the
simpler account shown here.

Finally, notice that the proof of (8.7) was almost independent of the differential
equation and just a consequence of the careful choice of the evolution domain con-
straint to reflect the events of interest as well as getting the controller responses to
these events right. That is, ultimately, the reason why the invariant (8.9) could be so
simple. This also often contributes to making event-triggered controllers easier to
get right.

Note 48 (Correct event-triggered control) As long as a controller responds
in the right ways to the right events, event-triggered controllers can be built
rather systematically and are relatively easy to prove correct. But beware! You
have to get the handling of events right, otherwise you only end up with a proof
about counterfactual physics, which is not at all helpful since your actual CPS
then follows an entirely different kind of physics.

8.3 Summary 263

8.2.7 Physics Versus Control Distinctions

Note 49 (Physics versus control) Observe that some parts of hybrid program
models represent facts and constraints from physics, and other parts represent
controller decisions and choices. It is a good idea to keep the facts straight
and remember which part of a hybrid program model comes from which. Es-
pecially, whenever a constraint is added because of a controller decision, it is
good practice to carefully think through what happens if this is not the case.
That is how we ended up splitting physics into different evolution domain con-
straints, for example.

Partitioning the hybrid program in the verified dL formula (8.7) into the parts that
come from physics (typographically marked like physics) and the parts that come
from control (typographically marked like control) leads to the following.

Proposition 8.1 (Event-triggered ping-pong is safe). This dL formula is valid:

0≤ x∧ x≤ 5∧ v≤ 0∧g > 0∧1≥ c≥ 0∧ f ≥ 0→
[
({x′ = v,v′ = g&x≥ 0∧ x≤ 5}∪{x′ = v,v′ = g&x≥ 5});
if(x = 0)v := cvelse if(4≤ x≤ 5∧ v≥ 0)v := f v

)∗]
(0≤ x≤ 5)

(8.7*)

There could have been a second evolution domain constraint x≥ 0 for the physics
in the second differential equation. But that evolution domain constraint was elided,
because it is redundant in the presence of the evolution domain constraint x≥ 5
coming from the controller. Only controller constraints have been added compared
to the initial physical model of the bouncing ball (7.12) that was entirely physics.
This is a good indicator that the design was proper, because it did not alter the
physics but merely added controller program parts, including control event detection
by splitting differential equations into separate modes.

8.3 Summary

This chapter studied event-triggered control, which is one important principle for
designing feedback mechanisms in CPSs and embedded systems. The chapter illus-
trated the most important aspects for a running example of a ping-pong ball. Even
if the impoverished ping-pong ball went vertically and may not be the most exciting
application of control in the world, the effects and pitfalls of control events were
sufficiently subtle already to merit focusing on a simple intuitive case.

Event-triggered control assumes that all events are detected perfectly and right
away. The event-triggered controller in (8.7) took some precautions by defining the
event of interest for using the ping-pong paddle to be 4≤ x≤ 5. This may look like a
big event in space to be noticed in practice, except when the ball moves too quickly,
in which case the event 4 ≤ x ≤ 5 is over rather quickly. However, the model still

264 8 Events & Responses

has x≤ 5 as a hard limit in the evolution domain constraint to ensure that the event
will never be missed in its entirety as the ball is rushing upwards.

Event-triggered control assumes permanent continuous sensing of the event of
interest, because the hard limit of the event is ultimately reflected in the evolution
domain constraint of the differential equation. This evolution domain constraint
is checked permanently according to its semantics (Chap. 3). That gives event-
triggered controllers quite simple mathematical models but also often makes them
impossible to implement faithfully for lack of continuous-sensing capabilities.

Event-triggered control models can still be useful abstractions of the real world
for systems that evolve slowly but sense quickly, because that is close enough to per-
manent sensing to still detect events quickly enough. Event-triggered control gives
bad models for systems that change their state much more quickly than the sensors
can catch up. Even in cases where event-triggered controllers are no good match for
reality, they can still be helpful stepping stones for the analysis and design of the
more realistic time-triggered controllers [1, 2] that the next chapter investigates. If
a controller is not even safe when events are detected instantly and perfectly, it will
not be safe when events may be discovered only sporadically with certain delay.

Exercises

8.1. Can the ping-pong paddle in (8.7) ever respond to the event 4≤ x≤ 5 twice in
a row? What would happen if it did?

8.2. Is the ping-pong ball’s loop invariant (8.9) also an invariant for just its two
differential equations?

8.3. Are any of the following formulas invariants for proving (8.7)?

0≤ x≤ 5∧ (x = 5→ v≤ 0)∧ (x = 0→ v≥ 0)

0≤ x < 5∨ x = 5∧ v≤ 0

8.4. Would the invariant (8.9) succeed in proving a variation of (8.7) in which the
controller conjunction ∧v ≥ 0 is removed? If so explain why. If not, explain which
part of the proof will fail and why.

8.5. Would a generalization of formula (8.7) be valid in which the assumption v≤ 0
on the initial state is dropped? If yes, give a proof. If not, show a counterexample
and explain how to fix this problem in a way that leads to a generalization of (8.7)
that is still a valid formula.

8.6. Could we replace the two differential equations in (8.7) with a single differential
equation and a disjunction of their evolution domain constraints to retain a valid
formula?

8.3 Summary 265

0≤ x∧ x≤ 5∧ v≤ 0∧g > 0∧1≥ c≥ 0∧ f ≥ 0→
[
{x′ = v,v′ = g&(x≥ 0∧ x≤ 5)∨ x≥ 5};
if(x = 0)v := cvelse if(4≤ x≤ 5∧ v≥ 0)v := f v

)∗]
(0≤ x≤ 5)

8.7. Conduct a sequent proof proving the validity of dL formula (8.7). In the sprit of
proof irrelevance, carefully track which assumptions are used for which case?

8.8. The hybrid program in (8.4) was an inadequate model of physics because it ter-
minated the world beyond height 5. Model (8.6) fixed this by introducing the same
differential equation with the upper physics world and a nondeterministic choice.
Would the following model have worked just as well? Would it be valid? Would it
be an adequate model?

0≤ x∧ x≤ 5∧ v≤ 0∧g > 0∧1≥ c≥ 0∧ f ≥ 0→
[
{x′ = v,v′ = g&x≥ 0∧ (x = 5→ v≤ 0)};
if(x = 0)v := cvelse if(4≤ x≤ 5)v := f v

)∗]
(0≤ x≤ 5)

What about the evolution domain constraint . . .&x≥ 0∧ x 6= 5 instead?

8.9. What happens if we add an inner loop to (8.7)? Will the formula be valid? Will
it be an adequate model of physics?

0≤ x∧ x≤ 5∧ v≤ 0∧g > 0∧1≥ c≥ 0∧ f ≥ 0→
[
({x′ = v,v′ = g&x≥ 0∧ x≤ 5}∪{x′ = v,v′ = g&x≥ 5})∗;
if(x = 0)v := cvelse if(4≤ x≤ 5∧ v≥ 0)v := f v

)∗]
(0≤ x≤ 5)

8.10. Modify the event-triggered controller such that its event detection also spots
the event 4 ≤ x ≤ 5 when descending at the latest at height 4 instead of always at
height 5. Make sure this modified controller is safe and find a loop invariant for its
proof.

8.11 (*). Design a variation of the event-triggered controller for the ping-pong ball
that is allowed to use the ping-pong paddle within height 4≤ x≤ 5 but has a relaxed
safety condition that accepts 0 ≤ x ≤ 2 · 5. Make sure to only force the use of the
ping-pong paddle when necessary. Find an invariant and conduct a proof.

8.12 (2D ping-pong events). Design and verify the safety of a ping-pong controller
that goes sideways with horizontal motion like in ordinary ping-pong matches.

8.13 (Robot chase). You are in control of a robot tailing another one in hot pur-
suit on a straight road. You can accelerate (a :=A) or brake (a := b). But so can
the robot you’re following! Your job is to design an event-triggered model whose
controller makes sure the robots do not crash.

266 8 Events & Responses

References

[1] Sarah M. Loos. Differential Refinement Logic. PhD thesis. Computer Sci-
ence Department, School of Computer Science, Carnegie Mellon University,
2016.

[2] Sarah M. Loos and André Platzer. Differential refinement logic. In: LICS. Ed.
by Martin Grohe, Eric Koskinen, and Natarajan Shankar. New York: ACM,
2016, 505–514. DOI: 10.1145/2933575.2934555.

[3] André Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reas.

41(2) (2008), 143–189. DOI: 10.1007/s10817-008-9103-8.
[4] André Platzer. The complete proof theory of hybrid systems. In: LICS. Los

Alamitos: IEEE, 2012, 541–550. DOI: 10.1109/LICS.2012.64.
[5] André Platzer. Differential game logic. ACM Trans. Comput. Log. 17(1)

(2015), 1:1–1:51. DOI: 10.1145/2817824.
[6] André Platzer. A complete uniform substitution calculus for differential dy-

namic logic. J. Autom. Reas. 59(2) (2017), 219–265. DOI: 10.1007/s108
17-016-9385-1.

https://doi.org/10.1145/2933575.2934555
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1109/LICS.2012.64
https://doi.org/10.1145/2817824
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/s10817-016-9385-1

Chapter 9

Reactions & Delays

Synopsis Time-triggered control systems are an important control paradigm. Event-
triggered controllers focus on correct responses to appropriate events, which are as-
sumed to be detected perfectly, which simplifies their design and analysis but makes
them hard to implement. Time-triggered controllers, instead, focus on reacting to
changes within certain reaction delays. Implementations become more straightfor-
ward using controllers that repeatedly execute within a certain maximum time pe-
riod, or execute periodically with at least a certain frequency. While time-triggered
control models can be easier to develop than event-triggered control models, the ad-
ditional effects of reaction delays complicate the control logic and safety arguments.

9.1 Introduction

Chapter 7 explained the central proof principle for loops using invariants. Chapter 8
studied the important feedback mechanism of event-triggered control and made cru-
cial use of invariants for rigorously reasoning about event-triggered control loops.
Those invariants uncovered important subtleties with events that could be easily
missed. In Chap. 8, we, in fact, already noticed these subtleties thanks to our “safety
first” approach to CPS design, which guided us to exercise the scrutiny of Cartesian
Doubt on the CPS model before even beginning a proof.

However, even if the final answer for the event-triggered controller for the ping-
pong ball was rather clear and systematic, event-triggered control had an unpleas-
antly large number of modeling subtleties in store for us. Even in the end, event-
triggered control has a rather high level of abstraction, because it assumes that all
events are detected perfectly and right away with continuous sensing. The event-
triggered model has x ≤ 5 as a hard limit in the evolution domain constraint of the
differential equation to ensure that the event 4≤ x≤ 5 will never ever be missed as
the ball is rushing upwards.

As soon as we want to implement such a perfect event detection, it becomes clear
that real controller implementations can usually only perform discrete sensing, i.e.,

267© Springer International Publishing AG, part of Springer Nature 2018

A. Platzer, Logical Foundations of Cyber-Physical Systems,

https://doi.org/10.1007/978-3-319-63588-0_9

https://doi.org/10.1007/978-3-319-63588-0_9
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63588-0_9&domain=pdf

268 9 Reactions & Delays

checking sensor data every once in a while at certain discrete points in time, when-
ever new measurements come from the sensor and when the controller has a chance
to check whether the measurement is about to exceed height 5. Most controller
implementations, thus, only end up checking for an event every once in a while,
whenever the controller happens to run, rather than permanently as event-triggered
controllers pretend.

This chapter, thus, focuses on the second important paradigm for making cy-
ber interface with physics to form cyber-physical systems: the paradigm of time-

triggered control, which uses periodic actions to affect the behavior of the system
only at discrete points in time with certain frequencies. This is to be contrasted with
the paradigm from Chap. 8 of event-triggered control, where responses to events
dominate the behavior of the system and an action is taken whenever one of the
events is observed. The two paradigms play an equally important rôle in classical
embedded systems and both paradigms arise naturally from an understanding of the
hybrid program principle for CPS.

Based on the understanding of loops from Chap. 7, the most important learning
goals of this chapter are:

Modeling and Control: This chapter provides a number of crucial lessons for
modeling CPSs and designing their controls. We develop an understanding of
time-triggered control, which is an important design paradigm for control loops
in CPS. This chapter studies ways of developing models and controls corre-
sponding to this feedback mechanism, which is easier to implement but will
turn out to be surprisingly subtle to control. Knowing and contrasting both
event-triggered and time-triggered feedback mechanisms helps with identify-
ing relevant dynamical aspects in CPS coming from events and reaction delays.
This chapter focuses on CPS models assuming discrete sensing, i.e., sensing at
(nondeterministically chosen) discrete points in time.

Computational Thinking: This chapter uses the rigorous reasoning approach from
Chapters 5 and 7 to study CPS models with time-triggered control. As a running
example, the chapter continues to develop the extension from bouncing balls to
vertical ping-pong balls, now using time-triggered control. We again add control
decisions to the bouncing ball, turning it into a ping-pong ball, which retains the
intuitive simplicity of the bouncing ball, while enabling us to develop generaliz-
able lessons about how to design time-triggered control systems correctly. The
chapter will crucially study invariants and show a development of the powerful
technique of design-by-invariant in a concrete example.

CPS Skills: This chapter develops an understanding of the semantics of time-
triggered control. This understanding of the semantics will guide our intuition
about the operational effects of time-triggered control and especially the impact
it has on finding correct control constraints. An understanding of both is crucial
for finding good tradeoffs to determine which parts of a model are faithfully
understood as event-triggered and where time-triggered control is more accu-
rate. Finally, the chapter studies some aspects of higher-level model-predictive
control.

9.2 Delays in Control 269

CT

M&C CPS

using loop invariants
design time-triggered control
design-by-invariant

modeling CPS
designing controls
time-triggered control
reaction delays
discrete sensing

semantics of time-triggered control
operational effect
finding control constraints
model-predictive control

9.2 Delays in Control

Event-triggered control is a useful and intuitive model matching our expectation that
controllers react in response to certain critical conditions or events that necessitate
intervention by the controller. However, one of its difficulties is that event-triggered
control with its continuous-sensing assumption can be hard or impossible to im-
plement in reality. On a higher level of abstraction, it is very intuitive to design
controllers that react to certain events and change the control actuation in response
to what events have happened. Closer to the implementation, this turns out to be dif-
ficult, because actual computer control algorithms do not actually run all the time,
only sporadically every once in a while, albeit sometimes very often. Implementing
event-triggered control faithfully would, in principle, require permanent continuous
monitoring of the state to check whether an event has happened and respond ap-
propriately. That is not particularly realistic, because fresh sensor data will only be
available every once in a while, and controller implementations will only run at cer-
tain discrete points in time, causing delays in processing. Actuators may sometimes
take time to get going. Think of the reaction time it takes you to turn the insight “I
want to hit this ping-pong ball there” into action so that your ping-pong paddle will
actually hit the ping-pong ball. Sometimes the ping-pong paddle acts early, some-
times late; see Fig. 9.1. Or think of the time it takes to react to the event “the car in
front of me is turning on its red taillights” by appropriately applying the brakes.

Back to the drawing board. Let us reconsider the original dL formula (8.3) for
the ping-pong ball (Fig. 9.1) from which we started out to design the event-triggered
version in (8.7).

0≤ x∧ x≤ 5∧ v≤ 0∧g > 0∧1≥ c≥ 0∧ f ≥ 0→
[
{x′ = v,v′ = g&x≥ 0};
if(x = 0)v := cvelse if(4≤ x≤ 5)v := f v

)∗]
(0≤ x≤ 5)

(8.3*)

270 9 Reactions & Delays

Fig. 9.1 Sample trajectory of
a ping-pong ball (plotted as
position over time) with the
indicated ping-pong paddle
actuation range, sometimes
actuating early, sometimes
late

This simplistic formula (8.3) turned out not to be valid, because its differential
equation was not guaranteed to be interrupted when the event 4 ≤ x ≤ 5 happens.
Consequently, (8.3) needs some other evolution domain constraint to make sure all
continuous evolutions are stopped at some point for the control to have a chance to
react to situation changes. Yet, it should not be something like . . .&x≤ 5 as in (8.7),
because continuously monitoring for x≤ 5 requires permanent continuous sensing
of the height, which is difficult to implement.

Note 50 (Physical versus controller events) The event x = 0 in the (physics)
controller as well as the (physics) evolution domain constraint x≥ 0 for de-
tecting the event x = 0 are perfectly justified in the bouncing-ball and ping-
pong-ball models, because both represent physics. Physics is very well capable
of keeping a ball above the ground, no matter how much checking for x = 0
it takes to make that happen. The ball just does not suddenly fall through the
ground because physics looked the other way and forgot to check its evolution
domain constraint x≥ 0! In our controller code, however, we need to exercise
care when modeling events and their reactions. The controller implementa-
tions will not have the privilege of running all the time, which only physics
possesses. Cyber happens every once in a while (even if it may execute quite
quickly and quite frequently), while physics happens all the time. Controllers
cannot sense and compute and act literally all the time.

How else could the continuous evolution of physics be interrupted to make sure
the controller actually runs? By bounding the amount of time that physics is allowed
to evolve before running the controller again. Before we can talk about time, the
model needs to be changed to include some variable, let’s call it t, that reflects the
progress of time with a differential equation t ′ = 1:

0≤ x∧ x≤ 5∧ v≤ 0∧g > 0∧1≥ c≥ 0∧ f ≥ 0→
[
{x′ = v,v′ = g, t ′ = 1&x≥ 0∧ t ≤ 1};
if(x = 0)v := cvelse if(4≤ x≤ 5)v := f v

)∗]
(0≤ x≤ 5)

(9.1)

Of course, the semantics of hybrid programs included some notion of time already,
but it was inaccessible in the program itself because the duration r of differential

9.2 Delays in Control 271

equations was not a state variable that the model could read (Definition 3.2). No
problem, (9.1) simply added a time variable t that evolves along the differential
equation t ′ = 1 just like time itself does. In order to bound the progress of time by
1, the evolution domain includes . . .& t ≤ 1 and declares that the clock variable t

evolves with time as t ′ = 1.
Oops, that does not actually quite do it, because the HP in (9.1) restricts the

evolution of the system so that it will never ever evolve beyond time 1, no matter
how often the loop repeats. It imposes a global bound on the progress of time. That
is not what we meant to say! Rather, we wanted the duration of each individual
continuous evolution to be at most one second. The trick is to reset the clock t to
zero by a discrete assignment t :=0 before the continuous evolution starts:

0≤ x∧ x≤ 5∧ v≤ 0∧g > 0∧1≥ c≥ 0∧ f ≥ 0→
[

t :=0;{x′ = v,v′ = g, t ′ = 1&x≥ 0∧ t ≤ 1};
if(x = 0)v := cvelse if(4≤ x≤ 5)v := f v

)∗]
(0≤ x≤ 5)

(9.2)

In order to bound the duration by 1, the evolution domain includes . . .& t ≤ 1 and
the variable t is reset to 0 by t :=0 right before the differential equation. Hence, t

represents a local clock measuring how long the evolution of the differential equa-
tion was. Its bound of 1 ensures that physics gives the controller a chance to react
at least once per second. The system could stop the continuous evolution more of-
ten and earlier, because this model has no lower bound on t. Even if possible, it is
inadvisable to constrain the model unnecessarily by lower bounds on the duration.

Before going any further, let’s take a step back to notice an annoyance in the
way the control in (9.2) was written. It is written in the style in which the original
bouncing ball and the event-triggered ping-pong ball were phrased: continuous dy-
namics followed by control. That has the unfortunate effect that (9.2) lets physics
happen before control does anything, which is not a very safe start. In other words,
the initial condition would have to be modified to assume the initial control choice
was fine. That would duplicate part of the control into the assumptions on the initial
state. Instead, let’s switch the statements from plant;ctrl to ctrl;plant to make sure
control always happens before physics does anything:

0≤ x∧ x≤ 5∧ v≤ 0∧g > 0∧1≥ c≥ 0∧ f ≥ 0→
[

if(x = 0)v := cvelse if(4≤ x≤ 5)v := f v;

t :=0;{x′ = v,v′ = g, t ′ = 1&x≥ 0∧ t ≤ 1}
)∗]

(0≤ x≤ 5)

(9.3)

Now that dL formula (9.3) has an upper bound on the time it takes between two
subsequent control actions, is it valid? If so, which invariant can be used to prove
it? If not, which counterexample shows its invalidity?

Before you read on, see if you can find the answer for yourself.

Even though (9.3) ensures a bound on how long it may take at most until the
controller inspects the state and reacts, there is still a fundamental issue with (9.3).

272 9 Reactions & Delays

Fig. 9.2 Sample trajectory of
a time-triggered ping-pong
ball (as position over time),
missing the first event

We can try to prove (9.3) and inspect the non-provable cases in the proof to find out
what the issue is. Or we can just think about what could go wrong. The controller
of (9.3) runs at the latest after one second (hence at least once per second) and then
checks whether 4≤ x≤ 5. But if 4≤ x≤ 5 was not true when the controller ran last,
there is no guarantee that this event will be detected reliably when the controller
runs next. In fact, the ball might very well have been at x = 3 at the last controller
run, then evolved continuously to x = 6 in a second and missed the event 4≤ x≤ 5
that it was supposed to detect (Exercise 9.2); see Fig. 9.2. Worse than that, the ping-
pong ball has then not only missed the exciting event 4≤ x≤ 5 but already became
unsafe.

Similarly, driving a car would be unsafe if you were to only open your eyes once
a minute and monitor whether there is a car right in front of you. Too many things
could happen in between that should prompt you to brake.

9.2.1 The Impact of Delays on Event Detection

How can this problem with formula (9.3) be solved? How can the CPS model make
sure the controller does not miss its time to take action? Waiting until 4 ≤ x ≤ 5
holds true is not guaranteed to be the right course of action for the controller.

Before you read on, see if you can find the answer for yourself.

The problem with (9.3) is that its controller is unaware of its own delay. It does
not take into account how the ping-pong ball could move further before it gets a
chance to react next. If the ball is already close to the ping-pong paddle’s intended
range of actuation, then the controller had better take action already if it is not sure
whether it can still safely wait to take action till next time the time-triggered con-
troller runs.

9.2 Delays in Control 273

Note 51 (Delays may miss events) Delays in controller reactions may cause
events to be missed that it was supposed to monitor. When that happens, there
is a discrepancy between an event-triggered understanding of a CPS and the
real time-triggered implementation. Delays may make controllers miss events
especially when slow controllers monitor events in relatively small regions for
a fast-moving system. This relationship deserves special attention to make sure
the impact of delays on a system controller cannot make it unsafe.
It is often a good idea to first understand and verify an event-triggered design
of a CPS controller to identify correct responses to the respective events and
subsequently refine it to a time-triggered controller to analyze and verify that
CPS in light of its reaction time. Discrepancies in this analysis hint at problems
that event-triggered designs will likely experience at runtime and they indicate
a poor event abstraction. Controllers need to be aware of their own delays to
foresee what they might otherwise miss.

The ping-pong controller would be in trouble if x > 5 might already hold in
its next control cycle after the continuous evolution, which would be outside the
operating range of the ping-pong paddle (and already unsafe). Due to the evolution
domain constraint, the continuous evolution can take at most 1 time unit, after which
the ball will be at position x+v g

2 as previous chapters already showed by solving
the differential equation. Choosing gravity g = 1 to simplify the math, the controller
would be in trouble in the next control cycle after 1 second, which would take the
ball to position x+ v 1

2 > 5, if x > 5 1
2 v holds now.

9.2.2 Model-Predictive Control Basics

The idea is to make the controller now act based on how it predicts the state might
evolve until the next control cycle (this is a very simple example of model-predictive

control because the controller acts based on what its model predicts). Chap. 8 al-
ready discovered for the event-triggered case that the controller only wants to trig-
ger the ping-pong paddle action if the ball is still flying up, not if it is already on its
way down. Making (9.3) aware of the future in this way leads to

0≤ x∧ x≤ 5∧ v≤ 0∧g = 1∧1≥ c≥ 0∧ f ≥ 0→
[

if(x = 0)v := cvelse if((x > 5
1
2
 v)∧ v≥ 0)v := f v;

t :=0;{x′ = v,v′ = g, t ′ = 1&x≥ 0∧ t ≤ 1}
)∗]

(0≤ x≤ 5)

(9.4)

Is conjecture (9.4) about the future-aware controller valid? If so, which invariant
can be used to prove it? If not, which counterexample shows its invalidity?

Before you read on, see if you can find the answer for yourself.

274 9 Reactions & Delays

The controller in formula (9.4) has been designed based on the prediction that
the future may evolve for 1 time unit. If an action will no longer be possible in 1
time unit, because the event x ≤ 5 has passed in that future time instant, then the
controller in (9.4) takes action right now already. That is a good start. The issue
with that approach, however, is that there is no guarantee at all that the ping-pong
ball will fly for exactly 1 time unit before the controller is asked to act again (and
the postcondition is checked). The controller in (9.4) checks whether the ping-pong
ball would be too far up after one time unit and does not intervene unless that is the
case. Yet, what if the ball only flies for 1

2 a time unit? Clearly, if the ball will be safe
after 1 time unit, which is what the controller in (9.4) checks, it will also be safe
after just 1

2 a time unit, right?

Before you read on, see if you can find the answer for yourself.

Wrong! The ball may well be below height 5 again after 1 time unit but still
could have been above 5 in between the current point of time and the time that
is 1 time unit from now. Then the safety of the controller will be a mere rope of
sand, because this incorrect controller will have a false sense of safety after having
checked what happens 1 time unit from now, in complete ignorance of whether the
behavior was actually safe until then. Such trajectories are shown in Fig. 9.3 from
the same initial state and the same controller, just with different sampling periods.
What a bad controller design if its behavior depends on the sampling period! But
worse than that, such a bouncing ball will not be safe if it has been above 5 between
two sampling points. After all, the bouncing ball follows a ballistic trajectory, which
first climbs and then falls.

Fig. 9.3 Sample trajectory of a time-triggered ping-pong ball (as position over time), missing
different events with different sampling periods

9.2 Delays in Control 275

9.2.3 Design-by-Invariant

In order to get to the bottom of this, we need a quantity that tells us what the ball
will do at all times, without mentioning the time variable explicitly, because we can
hardly have the controller check its safety predictions at all times 0, 0.1, 0.25, 0.5,
0.786, . . . , of which there are infinitely many anyhow.

Come to think of it, we were already investigating what we can say about a
bouncing ball independently of the time when we were designing loop invariants
for its proof in Sect. 7.4:

2gx = 2gH v2∧ x≥ 0∧ (c = 1∧g > 0) (7.11*)

This formula was proved to be an invariant of the bouncing ball, which means it
holds true always while the bouncing ball is bouncing around. Invariants are the
most crucial information about the behavior of a system that we can rely on all the
time. Since (7.11) is only an invariant of the bouncing dynamics not the ping-pong
ball, it, of course, only holds until the ping-pong paddle hits, which changes the
control. But until the ping-pong paddle is used, (7.11) summarizes concisely all we
need to know about the state of the bouncing ball at all times. Of course, (7.11) is an
invariant of the bouncing ball, but it still needs to be true initially. The easiest way to
make that happen is to assume (7.11) at the beginning of the ping-pong ball’s life.1

Because (7.11) only conducted the proof of the bouncing ball invariant (7.11)
for the case c = 1 to simplify the arithmetic, the ping-pong ball now adopts this
assumption as well. To simplify the arithmetic and arguments, let us also adopt the
assumption f = 1 in addition to c = 1∧g = 1 for the proofs.

Substituting safety-critical height 5 for H in the invariant (7.11) for this instance
of parameter choices leads to a condition when the energy exceeds safe height 5:

2x > 2 ·5 v2 (9.5)

as an indicator of the fact that the ball might end up climbing too high, because its
energy would allow it to. Adding this condition (9.5) to the controller (9.4) leads to

2x = 2H v2∧0≤ x∧ x≤ 5∧ v≤ 0∧g = 1∧1 = c∧1 = f ≥ 0→
[

if(x = 0)v := cvelse if((x > 5
1
2
 v∨2x > 2 ·5 v2)∧ v≥ 0)v := f v;

t :=0;{x′ = v,v′ = g, t ′ = 1&x≥ 0∧ t ≤ 1}
)∗]

(0≤ x≤ 5)

(9.6)

The bouncing ball invariant (7.11) is now also assumed to hold in the initial state.

1 Note that H is a variable that does not need to coincide with the upper height limit 5 as it did in
the case of the bouncing ball, because the ping-pong ball has more control at its fingertips. In fact,
the most interesting case is if H > 5 in which case the ping-pong ball will only stay safe because

of its control. One way to think of H is as an indicator of the energy of the ball showing how high
it might jump up if not for all its interaction with the ground and the ping-pong paddle.

276 9 Reactions & Delays

Is dL formula (9.6) about the time-triggered controller valid? As usual, it is best
to use an invariant or a counterexample for justification.

Before you read on, see if you can find the answer for yourself.

Formula (9.6) is “almost valid.” But it is still not valid for a very subtle reason.
It is great to have the help of proofs to catch those subtle issues. The controller in
(9.6) takes action for two different conditions on the height x. However, the ping-
pong paddle controller actually only runs in (9.6) if the ball is not at height x = 0,
otherwise the ground performs the control action of reversing the direction of the
ball. Now, if the ball is flat on the floor already (x = 0) yet its velocity so incredibly
high that it will rush past height 5 in less than 1 time unit, then the ping-pong paddle
controller will not even have had a chance to react before it is too late, because it
does not execute on the ground according to (9.6); see Fig. 9.4.

Fig. 9.4 Sample trajectory
of a time-triggered ping-
pong ball (as position over
time), failing to control on the
ground

9.2.4 Sequencing and Prioritizing Reactions

Fortunately, these thoughts already indicate how the problem with multiple control
actions can be fixed. We turn the nested if-then-else cascade into a sequential com-
position of two separate if-then statements that will ensure the ping-pong paddle
controller runs even if the bouncing ball is still on the ground (Exercise 9.3).

2x = 2H v2∧0≤ x∧ x≤ 5∧ v≤ 0∧g = 1∧1 = c∧1 = f →
[

if(x = 0)v := cv ; if((x > 5
1
2
 v∨2x > 2 ·5 v2)∧ v≥ 0)v := f v;

t :=0;{x′ = v,v′ = g, t ′ = 1&x≥ 0∧ t ≤ 1}
)∗]

(0≤ x≤ 5)

(9.7)

Now, is formula (9.7) finally valid, please? If so, using which invariant? Other-
wise, show a counterexample.

Before you read on, see if you can find the answer for yourself.

9.2 Delays in Control 277

Yes, formula (9.7) is valid. What invariant can be used to prove formula (9.7)?
Formula (9.7) is valid, which, for g= c= f = 1, can be proved with this invariant:

2x = 2H v2∧ x≥ 0∧ x≤ 5 (9.8)

This invariant instantiates the general bouncing ball invariant (7.11) for the present
case of parameter choices and augments it with the desired safety constraint x≤ 5.

Yet, is the controller in (9.7) useful? That is where the problem lies now. The
condition (9.5) that is the second disjunct in the controller of (9.7) checks whether
the ping-pong ball could possibly ever fly up all the way to height 5. If this is ever
true, it might very well be true long before the bouncing ball even approaches the
critical control cycle where a ping-pong paddle action needs to be taken. In fact, if
(9.5) is ever true, it will also be true at the very beginning. After all, the formula
(7.11), from which condition (9.5) derived, is an invariant, so always true for the
bouncing ball. What would that mean?

That would cause the controller in (9.7) to take action right away at the mere
prospects of the ball ever being able to climb way up high, even if the ping-pong
ball is still close to the ground and pretty far away from the last triggering height
5. That would make the ping-pong ball quite safe, since (9.7) is a valid formula.
But it would also make it rather conservative and would not allow the ping-pong
ball to bounce around nearly as much as it wants to. It would make the bouncing
ball lie flat on the ground, because of an overly anxious ping-pong paddle. That is
a horrendously acrophobic bouncing ball if it never even starts bouncing around in
the first place. And the model would even require the (model) world to end, because
there can be no progress beyond the point in time where the ball gets stuck on the
ground. How can the controller in (9.7) be modified to resolve this problem?

Fig. 9.5 Sample trajectory of
a time-triggered ping-pong
ball (as position over time),
stuck on the ground

Before you read on, see if you can find the answer for yourself.

The idea is to restrict the use of the second if-then disjunct (9.5) in (9.7) to
slow velocities, in order to make sure it only applies to the occasions that the first
controller disjunct x > 5 1

2 v misses, because the ball will have been above height
5 in between. Only with slow velocities will the ball ever move so slowly that it is

278 9 Reactions & Delays

Expedition 9.1 (Zeno paradox)

There is something quite surprising about how (9.7) may cause time to freeze.
But, come to think of it, time did already freeze in mere bouncing balls!

The duration between two hops on the ground of a bouncing ball keeps on
decreasing rapidly. If, for simplicity, the respective durations are 1, 1

2 ,
1
4 ,

1
8 , . . .,

then these durations sum to

∞

∑
i=0

1
2i

=
1

1 1
2

= 2

which shows that the bouncing-ball model will make the (model) world freeze
almost to a complete stop, because it can never reach time 2 nor any time after.
The bouncing ball model disobeys what is called divergence of time, i.e., that
the real time keeps diverging to ∞. The reason this model prevents time from
progressing beyond 2 is that the bouncing-ball model switches directions on
the ground more and more frequently. This may be very natural for bouncing
balls, but can cause subtleties and issues in other control systems if they switch
infinitely often in finite time.

The name Zeno paradox comes from the Greek philosopher Zeno (ca. 490–
430 BC) who found a paradox when fast runner Achilles gives the slow Tor-
toise a head start of 100 meters in a race: In a race, the quickest runner can
never overtake the slowest, since the pursuer must first reach the point whence
the pursued started, so that the slower must always hold a lead – recounted in
Aristotle, Physics VI:9, 239b15.

Pragmatic solutions to counteract the Zeno paradox in bouncing balls add a
statement to the model that makes the ball stop when the remaining velocity on
the ground is too small. For example:

if(x = 0∧ 0.1 < v < 0.1)(v :=0;{x′ = 0})

This statement switches to a differential equation that does not change position
but, unlike the differential equation x′ = v,v′ = g&x ≥ 0 for the bouncing
ball, can be followed for any duration when x = 0∧ v = 0.

9.2 Delays in Control 279

near its turning point to begin its descent and start falling down again before 1 time
unit. And only then can the first condition miss that the ball is able to evolve above
5 within 1 time unit. When is a velocity slow in this respect?

For the ball to turn around and descend, it first needs to reach velocity v = 0 by
continuity (during the flying phase) on account of the mean-value theorem. In grav-
ity g = 1 the ball can reach velocity 0 within 1 time unit exactly when its velocity
was v < 1 before the differential equation, because the velocity changes according
to v(t) = v gt. Consequently, adding a conjunct v < 1 to the second disjunct in the
controller makes sure that the controller only checks for turnaround when it might
actually happen during the next control cycle.

2x = 2H v2∧0≤ x∧ x≤ 5∧ v≤ 0∧g = 1∧1 = c∧1 = f →
[

if(x = 0)v := cv; if((x > 5
1
2
 v∨2x > 2 ·5 v2∧ v < 1)∧ v≥ 0)v := f v;

t :=0;{x′ = v,v′ = g, t ′ = 1&x≥ 0∧ t ≤ 1}
)∗]

(0≤ x≤ 5)
(9.9)

This dL formula is valid and provable with the same invariant (9.8) that was
already used to prove (9.7). It has a much more aggressive controller than (9.7),
though, so it is more fun for the ping-pong ball to bounce around with it.

Note 52 (Design by invariant) Designing safe controller actions by follow-
ing the system invariant is a great idea. After having identified an invariant for
the bare-bones system (such as the bouncing ball), the remainder of the con-
trol actions can be designed safely by ensuring that each of them preserves the
invariant. For example, the ping-pong paddle is used if the ball might violate
the invariant. Some care is needed to avoid limiting the system unnecessarily.
The reaction time determines which control cycle has the last chance to act to
keep the invariant maintained. Of course, design-by-invariant does not extend
to changing the laws of physics to please our controllers. But once the appro-
priate invariants have been identified for physics, the design of the controller
can follow the objective of always maintaining the safety-critical invariants.

9.2.5 Time-Triggered Verification

The easiest way of proving that dL formula (9.9) is valid is to show that the invariant
(9.8) holds after every line of code. Formally, this reasoning by lines corresponds
to a number of uses of the generalization proof rule MR from Lemma 7.4 to show
that the invariant (9.8) remains true after each line if it was true before. The first
statement if(x = 0)v := cv does not change the truth-value of (9.8), i.e.,

2x = 2H v2∧ x≥ 0∧ x≤ 5→ [if(x = 0)v := cv](2x = 2H v2∧ x≥ 0∧ x≤ 5)

280 9 Reactions & Delays

is valid, because, when c = 1, the statement can only change the sign of v and (9.8)
is independent of signs, because the only occurrence of v satisfies (v)2 = v2. Simi-
larly, the second statement if((x > 5 1

2 v∨2x > 2 ·5 v2∧ v < 1)∧ v≥ 0)v := f v

does not change the truth-value of (9.8). That is the formula

2x = 2H v2∧ x≥ 0∧ x≤ 5→

[if((x > 5
1
2
 v∨2x > 2 ·5 v2∧ v < 1)∧ v≥ 0)v := f v]

(2x = 2H v2∧ x≥ 0∧ x≤ 5)

is valid, because, at least for f = 1, the second statement can also only change the
sign of v, which is irrelevant for the truth-value of (9.8). Finally, the relevant parts
of (9.8) are a special case of (7.11), which has already been shown to be an invariant
for the bouncing-ball differential equation and, thus, continues to be an invariant
when adding a clock t ′ = 1& t ≤ 1, which does not occur in (9.8). The additional
invariant x≤ 5 that (9.8) has compared to (7.11) is easily taken care of using the
corresponding knowledge about potential height H.

Note 53 (Time-triggered control) One common paradigm for designing con-
trollers is time-triggered control, in which controllers run periodically or
pseudo-periodically with certain frequencies to inspect the state of the system.
Time-triggered systems are closer to implementation than event-triggered con-
trol. They can be harder to build, however, because they invariably require the
designer to understand the impact of delay on control decisions. That impact
is important in reality, however, and, thus, effort invested in understanding the
impact of time delays usually pays off in designing a safer system that is robust
to bounded time delays.

Partitioning the hybrid program in the verified dL formula (9.9) into the parts that
come from physics (typographically marked like physics) and the parts that come
from control (typographically marked like control) leads to the following.

Proposition 9.1 (Time-triggered ping-pong is safe). This dL formula is valid:

2x = 2H v2∧0≤ x∧ x≤ 5∧ v≤ 0∧g = 1∧1 = c∧1 = f →
[

if(x = 0)v := cv; if((x > 5
1
2
 v∨2x > 2 ·5 v2∧ v < 1)∧ v≥ 0)v := f v;

t :=0;{x′ = v,v′ = g, t ′ = 1&x≥ 0∧ t ≤ 1}
)∗]

(0≤ x≤ 5)
(9.9*)

Part of the differential equation, namely t ′ = 1, comes from the controller, because
it corresponds to putting a clock on the controller and running it with at least the
sampling frequency 1 (coming from the evolution domain constraint t ≤ 1).

9.3 Summary 281

9.3 Summary

This chapter studied time-triggered control, which, together with event-triggered
control from Chap. 8, is an important principle for designing feedback mechanisms
in CPS and embedded systems. The chapter illustrated the most important aspects
for a running example of a ping-pong ball. Despite or maybe even because of its sim-
plicity, the ping-pong ball was an instructive source for the most important subtleties
involved with time-triggered control decisions. Getting time-triggered controllers
correct requires predictions about how the system state might evolve over short pe-
riods of time (one control cycle). The effects and subtleties of time-triggered actions
in control were sufficiently subtle to merit focusing on a simple intuitive case.

Unlike event-triggered control, which assumes continuous sensing, the time-
triggered control principle is more realistic by only assuming the availability and
processing of sensor data at discrete instants of time (discrete sensing). Time-
triggered system models avoid the modeling subtleties that events tend to cause
for the detection of events. It is, thus, often much easier to get the models right and
implementable for time-triggered systems than it is for event-triggered control. The
price is that the burden of event-detection is then brought to the attention of the CPS
programmer, whose time-triggered controller will now have to ensure it predicts and
detects events early enough before it is too late to react to them. That is what makes
time-triggered controllers more difficult to get correct, but is also crucial because
important aspects of reliable event detection may otherwise be brushed under the
rug, which does not help the final CPS become any safer either.

CPS design often begins by pretending the idealized world of event-triggered
control (if the controller is not even safe when events are checked and responded
to continuously, it is broken already) and then subsequently morphing the event-
triggered controller into a time-triggered controller. This second step then often
indicates additional subtleties that were missed in the event-triggered design. The
additional insights gained in time-triggered controllers are crucial whenever the sys-
tem reacts slowly or whenever it reacts quickly but needs a high precision in event
detection to remain safe. For example, the reaction time for ground control deci-
sions to reach a rover on Mars are so prohibitively large that they could hardly be
ignored. Reaction times in a surgical robotics system that is running at, say, 55 Hz,
are still crucial even if the system is moving slowly and reacting quickly, because
the required precision of the system is in the sub-millimeter range [1]. But reaction
times will have less of an impact for parking a slowly moving car somewhere in an
empty football stadium.

Overall, the biggest issues with event-triggered control, besides sometimes being
hard to implement, are the subtleties involved in properly modeling event detection
without accidentally defying the laws of physics in pursuit of an event. But control-
ling event-triggered systems is reasonably straightforward as long as the events are
chosen well. In contrast, finding a model is relatively easy in time-triggered control,
but identifying appropriately safe controller constraints takes a lot more thought,
leading, however, to important insights about the system at hand. It is possible to
provide the best of both worlds by systematically reducing the safety proof of an

282 9 Reactions & Delays

(implementable) time-triggered controller to the (easier) safety proof of an event-
triggered controller along with corresponding compatibility conditions [2, 3].

Exercises

9.1 (Time bounds). HP (9.3) imposes an upper bound on the duration of a contin-
uous evolution. Can you impose an upper bound 1 and lower bound 0.5? Is there
relevant safety-critical behavior in the system that is then no longer considered?

9.2. Give an initial state for which the controller in (9.3) would skip over the event
without noticing it.

9.3. What would happen if the controller in (9.7) used the ping-pong paddle while
the ball is still on the ground? To what physical phenomenon does that correspond?

9.4. The formula (9.9) with the time-triggered controller with reaction time at most
1 time unit is valid. Yet, if a ball is let loose ever so slightly above ground with a very
fast negative velocity, couldn’t it possibly bounce back and exceed the safe height
5 faster than the reaction time of 1 time unit? Does that mean the formula ought to
have been falsifiable? No! Identify why and give a physical interpretation.

9.5. The controller in (9.9) runs at least once a second. How can you change the
model and controller so that it runs at least twice a second? What changes can you
make to the controller to reflect that increased frequency? How do you need to
change (9.9) if the controller only runs reliably at least once every two seconds?
Which of those changes are safety-critical, which are not?

9.6. What happens if we misread the binding precedences and think the condition
v < 1 is added to both disjuncts in the controller in (9.9)?

2x = 2H v2∧0≤ x∧ x≤ 5∧ v≤ 0∧g = 1∧1 = c∧1 = f →
[

if(x = 0)v := cv; if((x > 5
1
2
 v∨2x > 2 ·5 v2)∧v < 1∧ v≥ 0)v := f v;

t :=0;{x′ = v,v′ = g, t ′ = 1&x≥ 0∧ t ≤ 1}
)∗]

(0≤ x≤ 5)

Is the resulting formula still valid? Find an invariant or counterexample.

9.7. Conduct a sequent proof proving the validity of dL formula (9.9). Is it easier to
follow a direct proof or is it easier to use the generalization rule MR for the proof?

9.8. The event-triggered controller we designed in Chap. 8 monitored the event 4≤
x ≤ 5. The time-triggered controller in Sect. 9.2, however, ultimately only took the
upper bound 5 into account. How and under what circumstances can you modify
the controller so that it really only reacts to the event 4≤ x≤ 5 rather than under all
circumstances where the ball is in danger of exceeding 5?

9.3 Summary 283

9.9. Devise a controller that reacts if the height changes by 1 when comparing the
height before the continuous evolution to the height after. Can you make it safe?
Can you implement it? Is it an event-triggered or a time-triggered controller? How
does it compare to the controllers developed in this chapter?

9.10. The ping-pong ball proof relied on the parameter assumptions g = c = f = 1
for mere convenience of the resulting arithmetic. Develop a time-triggered model,
controller, invariant, and proof for the general ping-pong ball without these unnec-
essarily strong simplifying assumptions.

9.11. Show that the ping-pong ball (9.9) can also be proved safe using just the invari-
ant 0 ≤ x ≤ 5 (possibly including assumptions on constants such as g > 0). Which
assumptions on the initial state does this proof crucially depend on?

9.12 (*). Design a variation of the time-triggered controller for the ping-pong ball
that is allowed to use the ping-pong paddle within height 4≤ x≤ 5 but has a relaxed
safety condition that accepts 0 ≤ x ≤ 2 · 5. Make sure to only force the use of the
ping-pong paddle when necessary. Find an invariant and conduct a proof.

9.13 (2D ping-pong time). Design and verify the safety of a ping-pong controller
that goes sideways with horizontal motion like in ordinary ping-pong matches. What
is the impact of reaction time?

9.14 (Robot chase). You are in control of a robot tailing another one in hot pursuit.
You can accelerate (a :=A), brake (a := b), or coast (a :=0). But so can the robot
you’re following! Your job is to fill in the blanks with test conditions that make the
robots not crash.

x≤ y∧ v = 0∧A≥ 0∧b > 0→
[
(c :=A∪ c := b∪ c :=0);

(?__________;a :=A ∪ ?__________;a := b ∪ ?__________;a :=0);

t :=0;{x′ = v,v′ = a,y′ = w,w′ = c, t ′ = 1&v≥ 0∧w≥ 0∧ t ≤ ε}
)∗

]
x≤ y

9.15 (Zeno’s paradox of Achilles and the Tortoise). Hybrid systems make trans-
parent the two different world models with which Zeno described the race of the fast
runner Achilles against the slow Tortoise (Expedition 9.1). Achilles is at position a

running with velocity v. The Tortoise is at position t crawling with velocity w < v.
The model of successive motion uses separate differential equations, where Achilles
first moves for duration s till he reaches the position t where the Tortoise was, which
already moved on with its smaller velocity w for the same duration:

s :=0;

{a′ = v,s′ = 1&a≤ t}; ?a = t;{t ′ = w,s′ = 1&s≥ 0}; ?s = 0

)∗

Compare this to simultaneous motion in a combined differential equation system:

s :=0;{a′ = v, t ′ = w,s′ = 1}

284 9 Reactions & Delays

Show that Achilles a will never reach Tortoise t in the first model despite v > w

if a < t holds initially. For the second model prove that postcondition a = t will
eventually be true (with the help of a diamond modality). Then contrast both models
with what happens when another Greek philosopher stumbles upon the race track,
distracting Achilles with questions about other paradoxical models of motion.

References

[1] Yanni Kouskoulas, David W. Renshaw, André Platzer, and Peter Kazanzides.
Certifying the safe design of a virtual fixture control algorithm for a surgical
robot. In: HSCC. Ed. by Calin Belta and Franjo Ivancic. ACM, 2013, 263–
272. DOI: 10.1145/2461328.2461369.

[2] Sarah M. Loos. Differential Refinement Logic. PhD thesis. Computer Sci-
ence Department, School of Computer Science, Carnegie Mellon University,
2016.

[3] Sarah M. Loos and André Platzer. Differential refinement logic. In: LICS. Ed.
by Martin Grohe, Eric Koskinen, and Natarajan Shankar. New York: ACM,
2016, 505–514. DOI: 10.1145/2933575.2934555.

https://doi.org/10.1145/2461328.2461369
https://doi.org/10.1145/2933575.2934555

Part II

Differential Equations Analysis

Overview of Part II on Differential Equations Analysis

This part of the book advances the study of cyber-physical systems to those whose
dynamics can no longer be solved in closed form. If solutions of differential equa-
tions are no longer available or are too complicated, then indirect methods need to
be used to analyze their properties. Just as induction is the crucial technique for
understanding the behavior of loops in programs and in control systems from a lo-
cal perspective, this part studies crucial generalizations of induction techniques to
differential equations. The understanding gained so far in Part I for the intuition be-
hind loop invariants will be a useful basis for extensions to differential equations.
The primary remaining challenge is the development of a differential counterpart
of induction, which is elusive in differential equations, because the very notion of a
“next step” on which discrete induction is based is not at all meaningful in a con-
tinuous evolution. In addition to differential invariants as a sound generalization of
induction to differential equations, this part studies differential cuts, which make it
possible to prove and then use lemmas about the behavior of differential equations,
and differential ghosts, which add new differential equations to the dynamics to en-
able additional invariants relating old and new variables. While the rôle of cuts for
lemmas as well as ghost variables for additional state are well understood in dis-
crete systems, both continue to play an arguably even more important rôle in the
understanding of differential equations.

This Part II also provides a lightweight introduction to the meta-theory of dif-
ferential equations by investigating the beginning of the provability theory for dif-
ferential equations. While such a theory is not necessarily on the critical path for
an understanding of practical invariant generation questions for cyber-physical sys-
tems, it still provides helpful intuition and insights about relationships between dif-
ferent invariants and different proof search approaches. It also serves as a relatively
accessible, well-motivated, and intuitive segue into the study of proof theory, i.e.,
the theory of proofs or of proofs about proofs in the concrete setting of differential
equations.

Chapter 10

Differential Equations & Differential Invariants

Synopsis This chapter leaves the realm of cyber-physical systems whose differen-
tial equations are solvable in closed form. Without closed-form solvable differential
equations, the continuous dynamics of cyber-physical systems becomes much more
challenging. The change is as noticeable and significant as the change from single-
shot control systems to systems with an unbounded number of interactions in a con-
trol loop. All of a sudden, we can no longer pretend each differential equation could
be replaced by an explicit representation of a function that describes the resulting
state at time t along with a quantifier for t. Instead, differential equations have to
be handled implicitly based on their actual dynamics as opposed to their solution.
This leads to a remarkable shift in perspective opening up a new world of fascina-
tion in the continuous dynamical aspects of cyber-physical systems, and it begins
by ascribing an entirely new meaning to primes in cyber-physical system models.

10.1 Introduction

So far, this textbook explored only one way to deal with differential equations: the
[′] axiom schema from Lemma 5.3. Just like almost all other axioms, this axiom [′]
is an equivalence, so it can be used to reduce a property of a more complex HP, in
this case a differential equation, to a structurally easier logical formula.

[′] [x′ = f (x)]p(x)↔∀t≥0 [x :=y(t)]p(x) (y′(t) = f (y))

However, in order to use the [′] axiom for a differential equation x′ = f (x), we must
first find a symbolic solution to the symbolic initial value problem (i.e., a func-
tion y(t) such that y′(t) = f (y) and y(0) = x). But what if the differential equation
does not have such an explicit closed-form solution y(t)? Or what if y(t) cannot
be written down in first-order real arithmetic? Chapter 2 allows many more differ-
ential equations to be part of CPS models than just the ones that happen to have
simple solutions. These are the differential equations we will look at in this chapter

287© Springer International Publishing AG, part of Springer Nature 2018

A. Platzer, Logical Foundations of Cyber-Physical Systems,

https://doi.org/10.1007/978-3-319-63588-0_10

https://doi.org/10.1007/978-3-319-63588-0_10
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63588-0_10&domain=pdf

288 10 Differential Equations & Differential Invariants

to provide rigorous reasoning techniques for them. In fact, the rigorous proofs for
differential equations that this part of the textbook explores even simplify proofs of
solvable differential equations and will ultimately make the solution axiom schema
[′] superfluous.

You may have previously seen a whole range of methods for solving differential
equations. These are indubitably useful for many common cases. But, in a certain
sense, “most” differential equations are impossible to solve, because they have no
explicit closed-form solution with elementary functions, for instance [18]:

x′′(t) = et2

Even if they do have solutions, the solution may no longer be in first-order real
arithmetic. Example 2.5 showed that, for certain initial values, the solution of

x′ = y,y′ = x

is x(t) = sin(t),y(t) = cos(t), which is not expressible in real arithmetic (recall that
both are infinite power series) and leads to undecidable arithmetic [6]. The sine
function, for example, needs infinitely many powers, which does not give a finite
term in first-order real arithmetic:

sin(t) = t t3

3!
+

t5

5!
 t7

7!
+

t9

9!
 . . .

This chapter reinvestigates differential equations from a more fundamental per-
spective, which will lead to a way of proving properties of differential equations
without using their solutions. It seeks unexpected analogies among the seemingly
significantly different dynamical aspects of discrete dynamics and of continuous
dynamics. The first and quite influential observation is that differential equations
and loops have more in common than one might suspect.1 Discrete systems may be
complicated, but have a powerful ally: induction as a way of establishing truth for
discrete dynamical systems by generically analyzing the one step that it performs
(repeatedly like the body of a loop). What if we could use induction for differential
equations? What if we could prove properties of differential equations directly by
analyzing how these properties change along the differential equation rather than
having to find a global solution first and inspecting whether it satisfies that property
at all times? What if we could tame the analytic complexity of differential equations
by analyzing the generic local “step” that a continuous dynamical system performs
(repeatedly). The biggest conceptual challenge will, of course, be in understanding
what exactly the counterpart of a step even is for continuous dynamical systems,
because there is no such thing as a next step for a differential equation that evolves
in continuous time.

This chapter is of central significance for the Foundations of Cyber-Physical Sys-
tems. The analytic principles begun in this chapter will be a crucial basis for ana-
lyzing all complex CPSs. The most important learning goals of this chapter are:

1 In fact, discrete and continuous dynamics turn out to be proof-theoretically quite related [12].

10.2 A Gradual Introduction to Differential Invariants 289

Modeling and Control: This chapter will advance the core principles behind CPS
by developing a deeper understanding of their continuous dynamical behavior.
This chapter will also illuminate another facet of how discrete and continuous
systems relate to one another, which ultimately leads to a fascinating view on
understanding hybrid systems [12].

Computational Thinking: This chapter exploits the computational thinking prin-
ciples in their purest form by seeking and exploiting surprising analogies be-
tween discrete dynamics and continuous dynamics, however different the two
may appear at first sight. This chapter is devoted to rigorous reasoning about
the differential equations in CPS models. Such rigorous reasoning is crucial
for understanding the continuous behavior that CPSs exhibit over time. With-
out sufficient rigor in their analysis it can be impossible to understand their
intricate behavior and spot subtle flaws in their control or say for sure whether
and why a design is no longer faulty. This chapter systematically develops one
reasoning principle for equational properties of differential equations that is
based on induction for differential equations [8, 13]. It follows an axiomatic
logical understanding of differential invariants via differential forms [14]. Sub-
sequent chapters expand the same core principles developed in this chapter to
the study of general invariant properties of differential equations. This chapter
continues the axiomatization of differential dynamic logic dL [11, 12] pursued
since Chap. 5 and lifts dL’s proof techniques to systems with more complex
differential equations. The concepts developed in this chapter form the differ-
ential facet illustrating the more general relation of syntax (which is notation),
semantics (which carries meaning), and axiomatics (which internalizes seman-
tic relations into universal syntactic transformations). These concepts and their
relations jointly form the significant logical trinity of syntax, semantics, and ax-
iomatics. This chapter studies the differential facet of this logical trinity. Finally,
the verification techniques developed in this chapter are critical for verifying
CPS models of appropriate scale and technical complexity.

CPS Skills: We will develop a deeper understanding of the semantics of the contin-
uous dynamical aspects of CPS models and develop and exploit a significantly
better intuition for the operational effects involved in CPS. In addition to ex-
hibiting semantic nuances, this understanding is critical to rigorous reasoning
for all but the most elementary cyber-physical systems.

10.2 A Gradual Introduction to Differential Invariants

This section provides a gradual development of the intuition behind differential in-
variants. Such an incremental development is useful to understand the working prin-
ciples and to understand why differential invariants work the way they do. It can also
support our intuition when designing systems or proofs for them.

290 10 Differential Equations & Differential Invariants

CT

M&C CPS

discrete vs. continuous analogies
rigorous reasoning about ODEs
induction for differential equations
differential facet of logical trinity

understanding continuous dynamics
relate discrete+continuous

semantics of continuous dynamics
operational CPS effects

10.2.1 Global Descriptive Power of Local Differential Equations

Differential equations let the physics evolve continuously, possibly for longer peri-
ods of time. They describe such global behavior locally, however, just by the right-
hand side of the differential equation.

Note 54 (Local descriptions of global behavior by differential equations)

The key principle behind the descriptive power of differential equations is that
they describe the evolution of a continuous system over time using only a lo-
cal description of the direction in which the system evolves at any point in
space. The solution of a differential equation is a global description of how
the system evolves. The differential equation itself is a local characterization.
While the global behavior of a continuous system can be subtle, complex, and
challenging, its local description as a differential equation is much simpler.
This difference between local description and global behavior, which is funda-
mental to the descriptive power of differential equations, can be exploited for
proofs.

Recall the semantics of differential equations from Chap. 3:

Definition 3.3 (Transition semantics of ODEs).

[[x′ = f (x)&Q]] =
{
(ω,ν) : ϕ(0) = ω except at x′ and ϕ(r) = ν for a solution

ϕ:[0,r]→S of any duration r satisfying ϕ |= x′ = f (x)∧Q
}

where ϕ |= x′ = f (x)∧Q, iff for all times 0≤ z≤ r: ϕ(z) ∈ [[x′ = f (x)∧Q]]

with ϕ(z)(x′)
def
= dϕ(t)(x)

dt
(z) and ϕ(z) = ϕ(0) except at x,x′.

The solution ϕ describes the global behavior of the system, which is specified
locally by the right-hand side f (x) of the differential equation x′ = f (x).

Chap. 2 has shown a number of examples illustrating the descriptive power of
differential equations, that is, examples in which the solution was very complicated

10.2 A Gradual Introduction to Differential Invariants 291

even though the differential equation was rather simple. This is a strong property
of differential equations: they can describe even complicated processes in simple
ways. However, this representational advantage of differential equations does not
carry over into the verification when verification is stuck with proving properties of
differential equations only by way of their solutions, which, by the very nature of
differential equations, are more complicated again.

This chapter, thus, investigates ways of proving properties of differential equa-
tions using the differential equations themselves, not their solutions. This leads to
differential invariants [8, 13, 14], which can perform induction for differential equa-
tions just based on their local dynamics. In fact, loops and differential equations have
a lot more in common [12] than meets the eye (Sect. 10.8.1).

10.2.2 Intuition for Differential Invariants

Just as inductive invariants are the premier technique for proving properties of loops,
differential invariants [7–9, 13, 14] provide the primary inductive technique we use
for proving properties of differential equations (without having to solve them). Re-
call the loop induction proof rule from Sect. 7.3.3

loop
Γ ⊢ F,∆ F ⊢ [α]F F ⊢ P

Γ ⊢ [α∗]P,∆

The core principle behind loop induction is that the induction step for proving
[α∗]P investigates the loop body as the local generator α and shows that it never
changes the truth-value of the invariant F (see the middle premise F ⊢ [α]F of proof
rule loop from Sect. 7.3.3 or the only premise of the core essentials induction proof
rule ind from Sect. 7.3.2). Let us try to establish the same inductive principle, just
for differential equations. The first and third premise of the loop rule transfer easily
to differential equations. The challenge is to figure out what the counterpart of the
induction step F ⊢ [α]F would be since, unlike loops, differential equations do not
have a notion of “one step.”

What does the local generator of a differential equation x′ = f (x) tell us about
the evolution of a system? And how does it relate to the truth of a formula F all
along the solution of that differential equation? That is, to the truth of the dL for-
mula [x′ = f (x)]F expressing that all runs of x′ = f (x) lead to states satisfying F .
Figure 10.1 depicts an example of a vector field for a differential equation (plotting
the right-hand side of the differential equation as a vector at every point in the state
space), a global solution (in red), and an unsafe region ¬F (shown in blue). The
safe region F is the complement of the blue unsafe region ¬F . Of course, it is quite
impossible to draw the appropriate direction vector of the differential equation at
literally every point in the state space in Fig. 10.1, so we have to settle for a few.

One way of proving that [x′ = f (x)]F is true in a state ω would be to compute
the solution from that state ω , and check every point in time along the solution to

292 10 Differential Equations & Differential Invariants

Fig. 10.1 Vector field and
one solution of a differential
equation that does not enter
the blue unsafe regions

see whether it is in the safe region F or the unsafe region ¬F . Unfortunately, there
are uncountably infinitely many points in time to check. Furthermore, that only con-
siders a single initial state ω , so proving validity of a formula would require con-
sidering all of the uncountably infinitely many possible initial states and computing
and following a solution in each of them. That is why this naïve approach does not
compute.

A similar idea can still be made to work when the symbolic initial-value problem
can be solved with a symbolic initial value x and a quantifier for time can be used,
which is what the solution axiom [′] does. Yet, even that only works when a solution
to the symbolic initial-value problem can be computed and the arithmetic resulting
from the quantifier for time can be decided. For polynomial solutions, this works
by Tarski’s quantifier elimination (Sect. 6.5). But polynomial solutions come from
very simple systems only (the nilpotent linear differential equation systems from
Sect. 2.9.3).

Reexamining the illustration in Fig. 10.1, we suggest an entirely different way
of checking whether the system could ever lead to an unsafe state in ¬F when
following the differential equation x′ = f (x). The intuition is the following. If there
were a vector in Fig. 10.1 that pointed from a safe state in F to an unsafe state ¬F

(in the blue region), then following the differential equation along that vector would
get the system into the unsafe region ¬F . If, instead, all vectors only pointed from
safe states to safe states in F , then, intuitively, following such a chain of vectors
would only lead from safe states to safe states. So if the system also started in a
safe state, it would stay safe forever. In fact, this also illustrates that we have some
leeway in how we show [x′ = f (x)]F . We do not need to know where exactly the
system evolves to, just that it remains somewhere in F .

Let us make this intuition rigorous to obtain a sound proof principle that is per-
fectly reliable in order to be usable in CPS verification. What we need to do is to
find a way of characterizing how the truth of F changes when moving along the
differential equation. That will then enable us to show that the system only evolves
in directions in which the formula F stays true.

10.2 A Gradual Introduction to Differential Invariants 293

Fig. 10.2 One scenario for
the rotational dynamics and
relationship of direction vec-
tor (v,w) to radius r and angle
ϑ

ϑ

v

w

w
=

r
co

sϑ

v
r sinϑ

r

10.2.3 Deriving Differential Invariants

How can the intuition about directions of evolution of a logical formula F with
respect to differential equation x′ = f (x) be made rigorous? Let’s develop step by
step.

Example 10.1 (Rotational dynamics). As a guiding example, consider a conjecture
about the rotational dynamics from Example 2.5 where v and w represent the coor-
dinates of a direction vector rotating clockwise in a circle of radius r (Fig. 10.2):

v2 +w2 = r2→ [v′ = w,w′ = v]v2 +w2 = r2 (10.1)

The conjectured dL formula (10.1) is valid, because, indeed, if the vector (v,w)
is initially at distance r from the origin (0,0), then it will always remain at that dis-
tance when rotating around the origin, which is what the dynamics does. That is, the
point (v,w) will always remain on the circle of radius r. But how can we prove that?
In this particular case, we could possibly investigate solutions, which are trigono-
metric functions (although the solutions indicated in Fig. 10.2 are not at all the only
solutions). With those solutions, we could perhaps find an argument why they stay
at distance r from the origin. But the resulting arithmetic will involve power series,
which makes it unnecessarily difficult. The argument for why the simple dL formula
(10.1) is valid should be an easy one. And it is, after we have discovered the right
proof principle as this chapter will do.

First, what is the direction in which a continuous dynamical system evolves?
The direction is exactly described by the differential equation, because the whole
point of a differential equation is to describe in which direction the state evolves at
every point in space. So the direction which a continuous system obeying x′ = f (x)
follows from state ω is described by the time-derivative, which is exactly the value
ω[[f (x)]] of term f (x) in state ω . Recall that the term f (x) can mention x and other
variables so its value ω[[f (x)]] depends on the present state ω .

294 10 Differential Equations & Differential Invariants

Fig. 10.3 Differential invari-
ant F remains true in the
direction of the dynamics

¬
¬F

F
F

Note 55 (“Formulas that remain true in the direction of the dynamics”)

Proving dL formula [x′ = f (x)]F does not really require us to answer where
exactly the system evolves to but just how the evolution of the system relates
to the formula F and the set of states ω in which F evaluates to true. It is
enough to show that the system only evolves in directions in which formula F

will stay true (Fig. 10.3).

A logical formula F is ultimately built from atomic formulas that are compar-
isons of (polynomial or rational) terms such as e = 5 or v2 +w2 = r2. Let e denote
such a (polynomial) term in the variable (vector) x that occurs in the formula F .
The semantics of a polynomial term e in a state ω is the real number ω[[e]] to which
it evaluates. In which direction does the value of e evolve when following the dif-
ferential equation x′ = f (x) for some time? That depends both on the term e that
is being evaluated and on the differential equation x′ = f (x) that describes how the
respective variables x evolve over time.

Note 56 (Directions) Directions of evolutions are described by derivatives.
After all, the differential equation x′ = f (x) states that the time-derivative of x

is f (x).

To find out how the value of a term changes, let’s differentiate the term of inter-
est and see what that tells us about how its value evolves over time. Wait, what do
the resulting derivatives actually mean? That is a crucial question, but let us, nev-
ertheless, take the inexcusable liberty of postponing this question till later and just
develop a first intuition for now.

Example 10.2 (Differentiating terms in rotational dynamics). Which of the terms
should be differentiated when trying to understand how the truth-value of the post-
condition in (10.1) changes? Since that is not necessarily clear so far, let’s rewrite
formula (10.1) and consider the following equivalent (Exercise 10.2) dL formula,
which only has a single interesting term to worry about:

v2 +w2 r2 = 0→ [v′ = w,w′ = v]v2 +w2 r2 = 0 (10.2)

Differentiating the only relevant term v2 +w2 r2 in the postcondition of (10.2)
gives

(v2 +w2 r2)′ = 2vv′+2ww′ 2rr′ (10.3)

Of course, differentiating v2 +w2 r2 does not just result in 2v+2w 2r, because
its value also depends on how the variables themselves change so on the derivative
v′ of v, etc. If only we knew what the symbols v′,w′, and r′ mean in (10.3). The

10.3 Differentials 295

differential equation of (10.2) seems to indicate that v′ equals w and w′ equals v.
Would it be okay to replace the left-hand side w′ of the differential equation with its
right-hand side v in (10.3)? That would lead to

2vv′+2ww′ 2rr′ = 2vw+2w(v) 2rr′ (10.4)

which clearly would be 0 if only r′ were 0. Well, maybe we could consider r′ to be
0, since r does not come with a differential equation, so r is not supposed to change,
which is what the differential equation r′ = 0 would tell us, too.

Lo and behold! This might lead to a possible proof because 2vw+ 2w(v) is
indeed 0. We just do not know whether it is a proof yet. What proof rules should we
have applied to prove (10.2)? Why are they sound proof rules? Was it okay to sub-
stitute the right-hand side of the differential equation for its left-hand side in (10.4)?
Can we differentiate terms to find out how they change over time? What do the re-
spective primed symbols v′,w′,r′ mean? What is the meaning of the operator (·)′
that we used on the term v2 +w2 r2 in (10.3)? How do we know that this operator
makes the two sides of (10.3) equal? Or maybe even: do differential equations mind
being substituted in?

These are a bunch of important questions on the road to turning the intuition of
Example 10.2 into sound proof principles. Let’s answer them one at a time.

10.3 Differentials

In order to clarify the intuition we followed for motivating differential invariant
reasoning, we first add x′ and (e)′ officially to the syntax since we used them in our
reasoning in Example 10.2. The second step is to define their meaning. And the third
step of the logical trinity is to develop axioms that can be proved sound with respect
to the semantics and that enable correct syntactic reasoning about such primes.

10.3.1 Syntax of Differentials

The first step for understanding reasoning with differentiation is to ennoble the
primes of x′ and (e)′ and officially consider them as part of the language of dif-
ferential dynamic logic by adding them to its syntax. For every variable x add a
corresponding differential symbol x′ that can be used like any other variable, but, in
a differential equation x′ = f (x), of course, x′ serves the special purpose of denoting
the time-derivative of its associated variable x. For every term e, add the differen-

tial term (e)′. Formally, both really should have been part of differential dynamic
logic all along, but our understanding only caught up with that fact in this chapter.
Besides, it was easier to first suppress these primes and exclusively have them in
differential equations in Part I.

296 10 Differential Equations & Differential Invariants

Definition 10.1 (dL Terms). A term e of (differential-form) differential dy-

namic logic is defined by the grammar (where e, ẽ are terms, x is a variable
with corresponding differential symbol x′, and c a rational number constant):

e ::= x | x′ | c | e+ ẽ | e ẽ | e · ẽ | e/ẽ | (e)′

For emphasis, when primes are allowed, the logic is also called differential-form

differential dynamic logic [14], but we will continue to just call it differential dy-
namic logic. The formulas and hybrid programs of (differential-form) differential
dynamic logic are built as in Sects. 3.3 and 4.4. The semantics remains unchanged
except that the new additions of differential terms (e)′ and differential symbols x′

need to be outfitted with a proper meaning.
It is, of course, important to take care that division e/ẽ only makes sense in a

context where the divisor ẽ is guaranteed not to be zero in order to avoid undefined-
ness. We only allow division to be used in a context where the divisor is ensured not

to be zero!

10.3.2 Semantics of Differential Symbols

The meaning of a variable symbol x is defined by the state ω as ω(x), so its value
ω[[x]] in state ω is directly looked up from the state via ω[[x]] = ω(x). It is crucial
to understand the significant subtleties and substantial challenges that arise when
trying to give meaning to a differential symbol x′ or anything else with a derivative
connotation such as the differential term (e)′ of term e. The meaning of term e in
state ω is ω[[e]] and, thus, the meaning of the differential term (e)′ in state ω is
written ω[[(e)′]]. But now that we know how it’s written, how is ω[[(e)′]] defined?

The first mathematical reflex may be to set out for a definition of x′ and (e)′

in terms of a time-derivative d
dt

of something. But there is no time and, thus, no
time-derivative in an isolated state ω . We cannot possibly define something like

ω[[(e)′]]
???
=

dω[[e]]

dt

because time t does not even occur anywhere on the right-hand side. In fact, it is
entirely meaningless to ask for the rate of change of the value of anything over time
in a single isolated state ω! For time-derivatives to make sense, we at least need a
concept of time and the values understood as a function of time. That function needs
to be defined on a big enough interval for derivatives to have a chance to become
meaningful. And the function needs to be differentiable so that the time-derivatives
even exist to begin with. In the presence of discrete state change, not every value
will always have a time-derivative even if we were to keep its history around. None
of this is the case when we try to define what the value ω[[(e)′]] of the syntactic term
(e)′ would be in the state ω .

10.3 Differentials 297

The next mathematical reflex may be to say that the meaning of x′ and (e)′ de-
pends on the differential equation. But the meaning of (e)′ in state ω is ω[[(e)′]], so
there simply is no differential equation to speak of. Nothing can have a meaning
that depends on something else outside, because that violates all principles of deno-
tational semantics. Notice how useful it is that the principles of logic prompted us
to be precise about the definition ω[[(e)′]] of the meaning of (e)′. Without the help
of the mathematical rigor of logic, we might have just fallen for innocently writing
down some primes and differential operators, and ultimately would have woken up
surprised if this led us to “conclude” something that is not actually true.

While neither time-derivatives nor differential equations can come to the rescue
to give x′ or (e)′ a meaning, it is important to understand why the lack of having
a value and a meaning would cause complications for the fabrics of logic. De-
notational semantics defines the meaning of all expressions compositionally in a
modular fashion and without reference to outside elements, such as the differential
equation in which they also happen to occur. The meaning of terms is a function
of the state, and not a function of the state and the context or purpose for which it
happens to have been mentioned at the moment.

The mystery of giving meaning to differential symbols is resolved by declaring
the state to be responsible for assigning a value not just to all variables x ∈ V but
also to all differential symbols x′ ∈ V ′. A state ω is a mapping ω : V ∪V ′ → R

assigning a real number ω(x) ∈ R to each variable x ∈ V and also a real num-
ber ω(x′) ∈ R to each differential symbol x′ ∈ V ′. For example, when ω(v) =
1/2,ω(w) =

√
3/2,ω(r) = 5 and ω(v′) =

√
3/2,ω(w′) = 1/2,ω(r′) = 0 the term

2vv′+2ww′ 2rr′ evaluates to

ω[[2vv′+2ww′ 2rr′]] = 2ω(v) ·ω(v′)+2ω(w) ·ω(w′) 2ω(r) ·ω(r′) = 0

A differential symbol x′ can have any arbitrary real value in a state ω . Along
the solution ϕ : [0,r]→S of a differential equation, however, we know precisely
what value x′ has. Or at least we do, if its duration r is nonzero so that we are not
just talking about an isolated point ϕ(0) again. At any point in time z ∈ [0,r] along
such a continuous evolution ϕ , the differential symbol x′ has the same value as the
time-derivative d

dt
of the value ϕ(t)(x) of x over time t at the specific time z [8, 11,

14], because that is what we needed to make sense of the equation x′ = f (x).

Definition 3.3 (Transition semantics of ODEs).

[[x′ = f (x)&Q]] =
{
(ω,ν) : ϕ(0) = ω except at x′ and ϕ(r) = ν for a solution

ϕ:[0,r]→S of any duration r satisfying ϕ |= x′ = f (x)∧Q
}

where ϕ |= x′ = f (x)∧Q, iff for all times 0≤ z≤ r: ϕ(z) ∈ [[x′ = f (x)∧Q]]

with ϕ(z)(x′)
def
= dϕ(t)(x)

dt
(z) and ϕ(z) = ϕ(0) except at x,x′.

The value of differential symbol x′ at time z ∈ [0,r] along a solution ϕ : [0,r]→S

of a differential equation x′ = f (x)&Q is equal to the analytic time-derivative at z:

298 10 Differential Equations & Differential Invariants

Expedition 10.1 (Denotational semantics)

The whole paradigm of denotational semantics, initiated for programming lan-
guages by Dana Scott and Christopher Strachey [16], is based on the principle
that the semantics of an expression of a programming language should be the
mathematical object that it denotes. That is, a denotational semantics is a func-
tion assigning a mathematical object ω[[e]] from a semantic domain (here R) to
each term e, depending on the state ω .

The meaning of terms, thus, is a function [[·]] : Trm→ (S→ R) that maps
each term e ∈ Trm to the function [[e]] : S→ R giving the real value ω[[e]] ∈ R

that the term e has in each state ω ∈S. In fact, this is exactly how the semantics
of terms of dL has been defined in Chap. 2 in the first place. For classical logics
such as first-order logic, this denotational semantics has always been the natural
and dominant approach since Gottlob Frege [1].

Scott and Strachey [16], however, pioneered the idea of leveraging the de-
notational style of semantics to give meaning to programming languages. And,
indeed, dL’s hybrid programs have a denotational semantics. The meaning of an
HP α is the reachability relation [[α]]⊆S×S that it induces on the states S.
Correspondingly, the (denotational) meaning of hybrid programs as defined in
Chap. 3 is a function [[·]] : HP→℘(S×S) assigning a relation [[α]]⊆S×S

in the powerset ℘(S×S) of the product S×S to each HP α .
A crucial feature of denotational semantics, however, is compositionality.

The meaning [[e+ ẽ]] of a compound such as e+ ẽ should be a simple function of
the meanings [[e]] and [[ẽ]] of its pieces e and ẽ. This compositionality is exactly
the way the meaning of differential dynamic logic is defined. For example,

ω[[e+ ẽ]] = ω[[e]]+ω[[ẽ]] for all states ω

With a point-wise understanding of +, this can be summarized as

[[e+ ẽ]] = [[e]]+ [[ẽ]]

ϕ(z)(x′)
def
=

dϕ(t)(x)

dt
(z) (10.5)

Intuitively, the value ϕ(z)(x′) of x′ is, thus, determined by considering how the value
ϕ(z)(x) of x changes along the solution ϕ when we change time z “only a little bit.”
Visually, it corresponds to the slope of the tangent of the value of x at time z; see
Fig. 10.4. A subtlety poses the case of a solution of duration r = 0, in which case
there still is no time-derivative to speak of. If r = 0, the more detailed explanation
of Definition 3.3 in Sect. 3.3.2 ignores condition (10.5) leaving only the requirement
that ω and ν agree except for the value of x′ and that ν ∈ [[x′ = f (x)∧Q]].

10.3 Differentials 299

Fig. 10.4 Semantics of dif-
ferential symbol x′ along
differential equation

0 t

ϕ(t)(x)

x0 ϕ(z
)(x
′)x′ = x3

z

ϕ(z)(x)

Now we finally figured out the answer to the question of what symbol x′ means
and what its value is. It all depends on the state. And nothing but the state! Along
differential equations, we know a lot about the value of x′, otherwise we know less.

The values assigned to x′ by the states ϕ(z) visited along a solution ϕ : [0,r]→S

of a differential equation x′ = f (x)&Q will have a close relationship, namely (10.5)
and ϕ(z) ∈ [[x′ = f (x)]]. But that relationship is by virtue of ϕ being a solution of
a differential equation, so that the family of states ϕ(z) for z ∈ [0,r] have a unique
link. It is perfectly consistent to have one state ω in which ω(x′) = 1 and another
equally isolated state ν in which ν(x′) =

√
8. In fact, that is just what happens for

the initial state ω and final state ν when following the differential equation x′ = x3

from ω(x) = 1 for 1
4 time units. If we do not know that ω and ν are the initial and

final states of that differential equation or if we do not know that it was exactly for
1
4 time units that we followed it, there is no reason to suspect much of a relationship
between the values of ω(x′) and ν(x′).

Differential symbols x′ have a meaning now as being interpreted directly by the
state. Yet, what is the meaning of a differential term (e)′ such as (v2 +w2 r2)′?

Before you read on, see if you can find the answer for yourself.

10.3.3 Semantics of Differential Terms

At this point it should no longer be a surprise that the first mathematical reflex of
understanding differential terms (e)′ as time-derivatives will quickly fall short of
its own expectations, because there still is no time-derivative in the isolated state ω
that the value ω[[(e)′]] has at its disposal. Likewise, we still cannot ask any differ-
ential equations occurring somewhere else in the context, because that would break
compositionality and would not explain the meaning in an isolated formula such as
(10.3). Unfortunately, though, we cannot follow the same solution and ask the state
to assign any arbitrary real value to each differential term. After all, there should be a
close relationship of ω[[(2x2)′]] and ω[[(8x2)′]] namely that 4ω[[(2x2)′]] = ω[[(8x2)′]],
and an arbitrary state would not respect this relationship if it were to remember arbi-
trary and unrelated real values for all possible differential terms. Thus, the structure
and meaning of the term e should contribute to the meaning of (e)′.

300 10 Differential Equations & Differential Invariants

The value of (e)′ is supposed to tell us something about how the value of e

changes. But it is not and could not possibly be change over time to which this
is referring, because there is no time or time-derivative to speak of in an isolated
state ω . The trick is that we can still determine how the value of e will change, just
not over time. We can tell just from the term e itself how its value will change locally
depending on how its constituents change.

Recall that the partial derivative
∂ f
∂x
(ξ) of a function f with respect to the vari-

able x at the point ξ characterizes how the value of f changes as the variable x

changes at the point ξ , so when keeping all values of all variables at the point ξ ,
except for small local changes of the value of x. The term 2x2 will locally change ac-
cording to the partial derivative of its value with respect to x, but the overall change
will also depend on how x itself changes locally. The term 5x2y also changes accord-
ing to the partial derivative of its value with respect to x but it additionally changes
according to its partial derivative with respect to y and overall also depends on how
x and y themselves change locally.

The clou is that the state ω already has the values ω(x′) of all differential symbols
x′ at its disposal, which, qua Definition 3.3, are reminiscent of the direction that x

would be evolving to locally, if only state ω were part of a solution of a differential
equation. The value ω(x′) of differential symbol x′ acts like the “local shadow” of
the time-derivative dx

dt
at ω if only that derivative even existed at that point to begin

with. But even if that time-derivative cannot exist at a general isolated state, we can
still understand the value ω(x′) that x′ happens to have in that state as the direction
that x would evolve in locally at that state. Likewise the value ω(y′) of y′ can be
taken to indicate the direction that y would evolve in locally at that state. Now all it
takes is a way to accumulate the change by summing it all up to lead to the meaning
of differentials [14].

Definition 10.2 (Semantics of differentials). The semantics of differential
term (e)′ in state ω is the value ω[[(e)′]] defined as

ω[[(e)′]] = ∑
x∈V

ω(x′) · ∂ [[e]]
∂x

(ω)

The value ω[[(e)′]] is the sum of all (analytic) spatial partial derivatives at ω of
the value [[e]] of e by each variable x ∈ V multiplied by the corresponding direction
of evolution (tangent) described by the value ω(x′) of differential symbol x′ ∈ V ′.

That sum over all variables x ∈ V has finite support (only finitely many sum-
mands are nonzero), because term e only mentions finitely many variables x and the
partial derivative with respect to variables x that do not occur in e is 0, so does not
contribute to the sum. The spatial derivatives exist since the evaluation ω[[e]] is a
composition of smooth functions such as addition, multiplication, etc., so is itself
smooth. Recall that the partial derivative with respect to variable x ∈ V of the value
[[e]] of e at state ω ∈S represents how the value of ω[[e]] changes with the value of
x. It is defined as the limit of the corresponding difference quotient as the new value

10.3 Differentials 301

κ ∈ R that x has in state ωκ
x converges to the value ω(x) that x has in state ω:

∂ [[e]]

∂x
(ω) = lim

κ→ω(x)

ωκ
x [[e]] ω[[e]]

κ ω(x)

Overall the (real) value of (e)′ depends not just on e itself and the values in
the current state ω of the variables x that occur in e but also on the direction in
which these variables are taken to evolve according to the values of the respective
differential symbols x′ in ω; see Fig. 10.5.

Fig. 10.5 Differential form
semantics of differentials:
their value depends on the
point as well as on the direc-
tion of the vector field at that
point

→ R

Example 10.3 (Rotational dynamics). In state ω , the differential term (v2+w2 r2)′

from the rotational dynamics has the semantics:

ω[[(v2 +w2 r2)′]] = ω(v′) ·ω[[2v]]+ω(w′) ·ω[[2w]] ω(r′) ·ω[[2r]]

Example 10.4. In a state ω , the differential term (x3y+2x+1)′ has the semantics:

ω[[(x3y+2x+5)′]] = ω(x′) ·ω[[3x2y+2]]+ω(y′) ·ω[[x3]]

10.3.4 Derivation Lemma with Equations of Differentials

Observe one quite crucial byproduct of adopting differentials as first-class citizens
in dL. Differentiation, the process of forming derivatives that we used in (10.2), was
previously an amorphous operation without proper semantic counterparts. While it
might have been clear how to differentiate a term, it was quite unclear what that
really meant in a state. Using Definition 10.2, both sides of the equation (10.2) now
have a precise semantics and, indeed, both sides always have the same value.

Differentiation has now simply become the perfectly meaningful use of equations
of differential terms. For example, the use of Leibniz’s product rule of differentiation
simply corresponds to the use of the following equation:

(e · k)′ = (e)′ · k+ e · (k)′ (10.6)

Equations have a well-defined meaning on reals and both sides of the equation (10.6)
have a semantics by Definition 10.2, which can be shown to agree. Equation (10.6)

302 10 Differential Equations & Differential Invariants

is an ordinary formula that is an equation of differential terms equating the differ-
ential (e · k)′ of the product term e · k to the sum of terms (e)′ · k and e · (k)′. After
establishing that the equation (10.6) is a valid formula, differentiating a product such
as x3 · y simply amounts to using the corresponding instance of (10.6) to justify

(x3 · y)′ = (x3)′ · y+ x3 · (y)′

Corresponding equations of differentials hold for all other term operators.

Lemma 10.1 (Derivation lemma). The following equations of differentials

are valid formulas so sound axioms:

+′ (e+ k)′ = (e)′+(k)′

 ′ (e k)′ = (e)′ (k)′

·′ (e · k)′ = (e)′ · k+ e · (k)′

/′ (e/k)′ =

(e)′ · k e · (k)′

)
/k2

c′ (c())′ = 0 (for numbers or constants c())

x′ (x)′ = x′ (for variable x ∈ V)

Proof. We only consider the summation case of the proof, which is reported in full
elsewhere [14].

ω[[(e+ k)′]] = ∑
x

ω(x′)
∂ [[e+ k]]

∂x
(ω) = ∑

x

ω(x′)
∂ ([[e]]+ [[k]])

∂x
(ω)

= ∑
x

ω(x′)
(∂ [[e]]

∂x
(ω)+

∂ [[k]]

∂x
(ω)
)

= ∑
x

ω(x′)
∂ [[e]]

∂x
(ω)+∑

x

ω(x′)
∂ [[k]]

∂x
(ω)

= ω[[(e)′]]+ω[[(k)′]] = ω[[(e)′+(k)′]]

⊓⊔

This gives us a way of computing simpler forms for differentials of terms by
applying the equations of Lemma 10.1 from left to right, which will, incidentally,
lead us to the same result that differentiation would have, except now the result
has been obtained by a chain of logical equivalence transformations on differen-
tials each of which is individually grounded semantically with a soundness proof.
It also becomes possible to selectively apply equations of differentials as needed in
a proof without endangering soundness. Who would have figured that our study of
differential equations would lead us down a path to study equations of differentials?

By axiom x′, the differential (x)′ of a variable x is simply its corresponding dif-
ferential symbol x′, because they have the same semantics. The differential (c())′

10.3 Differentials 303

of a constant symbol c() is 0, because constant symbols do not change their value
when the value of any variable changes, because no variables even occur. The dif-
ferential of a division e/k uses a division, which is where we need to make sure not
to accidentally divide by zero. Yet, in the definition of (e/k)′, the division is by k2,
which, fortunately, has the same roots that k already has, as k = 0↔ k2 = 0 is valid
for any term k. Hence, in any context in which e/k is defined, its differential (e/k)′

will also be defined.

Example 10.5. Computing the differential of a term like v2 +w2 is now easy just by
using the respective equations from Lemma 10.1 in sequence as indicated:

(v2 +w2)′
+′
= (v · v)′+(w ·w)′
·′
= ((v)′ · v+ v · (v)′)+((w)′ ·w+w · (w)′)
x′
= v′ · v+ v · v′+w′ ·w+w ·w′ = 2vv′+2ww′

When r is a constant function symbol, an additional use of axiom c′ also justifies

(v2 +w2 r2)′ = 2vv′+2ww′

10.3.5 Differential Lemma

Now that we have obtained a precise semantics of differential symbols x′ and dif-
ferentials (e)′ that is meaningful in any arbitrary state ω , no matter how isolated it
may be, it is about time to come back to the question of what we can now learn from
studying their values along a differential equation.

Along the solution ϕ of a differential equation, differential symbols x′ do not
have arbitrary values but, at all times z, are interpreted as time-derivatives of the
value of x by Definition 3.3:

ϕ(z)[[(x)′]] = ϕ(z)(x′)
def
=

dϕ(t)(x)

dt
(z) (10.5*)

The key insight is that this equality of the value of differentials with analytic time-
derivatives along a differential equation continues to hold not just for differentials
of variables x but also for differentials (e)′ of arbitrary terms e.

The following central lemma [14], which is the differential counterpart of the
substitution lemma, establishes the connection between the semantics of syntactic
differentials of terms and semantic differentiation as an analytic operation to obtain
analytic time-derivatives of the semantics of terms along differential equations. It
will allow us to draw analytic conclusions about the behavior of a system along a
differential equation from the values of differentials obtained syntactically.

304 10 Differential Equations & Differential Invariants

Lemma 10.2 (Differential lemma). Let ϕ |= x′ = f (x)∧Q for some solution

ϕ : [0,r]→S of duration r > 0. Then for all times 0 ≤ z ≤ r and all terms e

defined all along ϕ with FV(e)⊆ {x}:

ϕ(z)[[(e)′]] =
dϕ(t)[[e]]

dt
(z)

Proof. Prior work reports the full proof [14], which is mostly by chain rule:

dϕ(t)[[e]]

dt
(z)

chain
= ∑

x

∂ [[e]]

∂x
(ϕ(z))

dϕ(t)(x)

dt
(z) =∑

x

∂ [[e]]

∂x
(ϕ(z))ϕ(z)(x′) = ϕ(z)[[(e)′]]

The proof uses that ϕ(z)(x′) equals dϕ(t)(x)
dt

(z) along the solution ϕ of x′ = f (x). ⊓⊔
In particular, ϕ(z)[[e]] is continuously differentiable in z. The same result applies
to vectorial differential equations as long as all free variables of the term e have
some differential equation so that their differential symbols agree with the time-
derivatives.

Note 57 (Differential lemma clou) Lemma 10.2 shows that the analytic time-
derivatives coincide with the values of differentials. The clou with Lemma 10.2
is that it equates precise but sophisticated analytic time-derivatives with purely
syntactic differentials. The analytic time-derivatives on the right-hand side of
Lemma 10.2 are mathematically precise and pinpoint exactly what we are in-
terested in: the rate of change of the value of e along solution ϕ . But they are
unwieldy for computers, because analytic derivatives are ultimately defined in
terms of limit processes and also need a whole solution to be well-defined. The
syntactic differentials on the left-hand side of Lemma 10.2 are purely syntactic
(putting a prime on a term) and even their simplifications via the recursive use
of the axioms from Lemma 10.1 are computationally tame.
Having said that, in order to be useful, the syntactic differentials need to be
aligned with the intended analytic time-derivatives, which is exactly what
Lemma 10.2 achieves. To wit, even differentiating polynomials and rational
functions is much easier syntactically than by unpacking the meaning of ana-
lytic derivatives in terms of limit processes every time.

10.3.6 Differential Invariant Term Axiom

The differential lemma immediately leads to a first proof principle for differential
equations. If the differential (e)′ is always zero along a differential equation, then
e will always be zero if and only if it was zero initially. For emphasis, we use the
backwards implication P← Q as alternative notation for the converse forward im-
plication Q→ P.

10.3 Differentials 305

Lemma 10.3 (Differential invariant term axiom). This axiom is sound:

DI

[x′ = f (x)]e = 0↔ e = 0

)
← [x′ = f (x)] (e)′ = 0

Proof. To prove that axiom DI is sound, we need to show the validity of the formula

[x′ = f (x)] (e)′ = 0→

[x′ = f (x)]e = 0↔ e = 0

)

Consider any state ω in which the assumption is true, so ω ∈ [[[x′ = f (x)] (e)′ = 0]],
and show that ω ∈ [[[x′ = f (x)]e = 0↔ e = 0]]. Now, ω ∈ [[[x′ = f (x)]e = 0]] di-
rectly implies ω ∈ [[e = 0]] when following the differential equation for duration
0. To show the converse implication, assume ω ∈ [[e = 0]]. If ϕ is a solution of
x′ = f (x), then the assumption implies that ϕ |= (e)′ = 0 since all restrictions of
solutions are again solutions. Consequently, Lemma 10.2 implies

0 = ϕ(z)[[(e)′]] =
dϕ(t)[[e]]

dt
(z) (10.7)

This implies that the term e always evaluates to zero along ϕ by the mean-value
theorem (Lemma 10.4 below), since it initially started out 0 (by initial ω ∈ [[e = 0]])
and had 0 change over time by (10.7). Hold on, that use of Lemma 10.2 was, of
course, predicated on having a solution ϕ of duration r > 0 (otherwise there are no
time-derivatives to speak of). Yet, solutions of duration r = 0 also already satisfy
e = 0 from the assumption ω ∈ [[e = 0]]. Strictly speaking [14], this proof requires
that x′ is not free in e. ⊓⊔

This proof uses the mean-value theorem [17, §10.10]:

Lemma 10.4 (Mean-value theorem). If g : [a,b]→ R is continuous and dif-

ferentiable in the open interval (a,b), then there is a ξ ∈ (a,b) such that:

g(b) g(a) = g′(ξ)(b a)

The only nuisance with axiom DI is that it never proves any interesting properties
on its own. It reduces a proof of the postcondition e = 0 for a differential equation to
the question of whether e = 0 is true initially but also to a proof of the postcondition
(e)′ = 0 for the same differential equation. This is similar to how the loop induction
axiom I from Lemma 7.1 reduced the proof of postcondition P of a loop to another
postcondition P→ [α]P of the same loop, so that we ultimately still needed the
generalization rule G to get rid of the loop entirely. But just generalization rule G
alone will not quite suffice for differential equations.

For Example 10.1, a use of axiom DI would lead to

306 10 Differential Equations & Differential Invariants

⊢ [v′ = w,w′ = v]2vv′+2ww′ 2rr′ = 0
DI

v2 +w2 r2 = 0 ⊢ [v′ = w,w′ = v]v2 +w2 r2 = 0
→R ⊢ v2 +w2 r2 = 0→ [v′ = w,w′ = v]v2 +w2 r2 = 0

Without knowing anything about v′ and w′ and r′ in the postcondition, we have no
chance of finishing this proof. Certainly the generalization rule G cannot succeed
because the postcondition 2vv′+ 2ww′ 2rr′ = 0 alone is not always true. In fact,
it should not be valid, because whether a postcondition e = 0 is an invariant of a
differential equation does not just depend on the differential (e)′ of the term in the
postcondition, but also on the differential equation itself. What stands to reason is
to use the right-hand sides of the differential equations for their left-hand sides; the
two sides of the equation are supposed to be equal! The question is how to justify
that that’s sound.

10.3.7 Differential Substitution Lemmas

Lemma 10.2 shows that, along a differential equation, the value of the differential
(e)′ of term e coincides with the analytic time-derivative of the value of term e. The
value of a differential term (e)′ depends on the term itself as well as the value of
its variables x and their corresponding differential symbols x′. Along a differential
equation x′ = f (x), the differential symbols x′ themselves actually have a simple
interpretation: their values equal the right-hand side f (x).

The direction in which the value of a term e evolves as the system follows
a differential equation x′ = f (x) depends on the differential (e)′ of the term
e as well as on the differential equation x′ = f (x) that locally describes the
evolution of its variable x over time.

What we need is a way of using the differential equation x′ = f (x) to soundly
replace occurrences of the differential symbol x′ from its left-hand side with the
corresponding right-hand side f (x) of the differential equation. Naïve replacement
would be unsound, because that might violate the scope of the formula where x′

equals f (x). Discrete assignments x :=e were ultimately handled in axiom [:=] from
Lemma 5.2 by substituting the new value e for the variable x, and the axiom is
already mindful of scoping challenges. The trick is to use the same assignments but
for assigning terms to differential symbols x′ instead of variables x. Since x′ already
always has the value f (x) when following the differential equation x′ = f (x) along
its solution ϕ , assigning f (x) to x′ by a discrete assignment x′ := f (x) has no effect.

10.3 Differentials 307

Lemma 10.5 (Differential assignment). If ϕ |= x′ = f (x)∧Q for a solution

ϕ : [0,r]→S of any duration r ≥ 0, then

ϕ |= P↔ [x′ := f (x)]P

Proof. The proof [14] is a direct consequence of the fact that the semantics of differ-
ential equations (Definition 3.3) requires that ϕ(z) ∈ [[x′ = f (x)]] holds for all times
z all along ϕ . Consequently, the assignment x′ := f (x) that changes the value of x′ to
be the value of f (x) will have no effect, since x′ already does have that value along
the differential equation. Thus, P and [x′ := f (x)]P are equivalent along ϕ . ⊓⊔

Using this equivalence at any state along a differential equation x′ = f (x) gives rise
to a simple axiom characterizing the effect that a differential equation has on its
differential symbol x′. Following a differential equation x′ = f (x) requires x′ and
f (x) to always have the same value along the differential equation.

Lemma 10.6 (DE differential effect axiom). This axiom is sound:

DE [x′ = f (x)&Q]P↔ [x′ = f (x)&Q][x′ := f (x)]P

While axiom DE performs a no-op, its benefit is that it makes the effect that a
differential equation has on the differential symbol available as a discrete assign-
ment.

The last ingredient is to use the assignment axiom [:=] from Lemma 5.2 also
for discrete assignments x′ :=e to differential symbol x′ instead of just for discrete
assignments x :=e to variable x:

[:=] [x′ :=e]p(x′)↔ p(e)

Let’s continue the proof for Example 10.1:

⊢ [v′ = w,w′ = v]2v(w)+2w(v) 2rr′ = 0
[:=] ⊢ [v′ = w,w′ = v][v′:=w][w′:= v]2vv′+2ww′ 2rr′ = 0
DE ⊢ [v′ = w,w′ = v]2vv′+2ww′ 2rr′ = 0
DI

v2 +w2 r2 = 0 ⊢ [v′ = w,w′ = v]v2 +w2 r2 = 0
→R ⊢ v2 +w2 r2 = 0→ [v′ = w,w′ = v]v2 +w2 r2 = 0

Oops, that did not make all differential symbols disappear, because r′ is still around,
since r did not have a differential equation in (10.2) to begin with. Stepping back,
what we mean by a differential equation like v′ = w,w′ = v that does not mention
r′ is that r is not supposed to change. If r were supposed to change during a contin-

308 10 Differential Equations & Differential Invariants

uous evolution, then there would have to be a differential equation for r describing
how exactly r changes.

Note 58 (Explicit change) Hybrid programs are explicit change. Nothing
changes unless an assignment or differential equation specifies how (compare
the semantics from Chap. 3 and the bound variables in Sect. 5.6.5). In particu-
lar, if a differential equation (system) x′ = f (x) does not mention z′, then the
variable z does not change during x′ = f (x), so x′ = f (x) and x′ = f (x),z′ = 0
are the same. Strictly speaking this equivalence only holds when z′ itself also
does not occur elsewhere in the program or formula, which is a condition that
is usually met. The subtle nuance is that only x′ = f (x) will leave the value of
z′ untouched, but x′ = f (x),z′ = 0 will change z′ to 0 by Definition 3.3.
Even if KeYmaera X has a rigorous treatment with uniform substitutions of
free constant symbols, it suffices for our paper proofs to assume z′ = 0 without
further notice for variables z that do not change during a differential equation.

Since (10.2) does not have an r′, Note 58 implies that instead of its differential
equation v′ = w,w′ = v we could have used v′ = w,w′ = v,r′ = 0, which, with
DE, would give rise to an extra [r′:=0], which we will assume implicitly from now
on after showing its use explicitly just once.

∗
R ⊢ 2vw 2wv 0 = 0
G ⊢ [v′ = w,w′ = v]2v(w)+2w(v) 0 = 0
[:=] ⊢ [v′ = w,w′ = v][v′:=w][w′:= v][r′:=0]2vv′+2ww′ 2rr′=0
DE ⊢ [v′ = w,w′ = v]2vv′+2ww′ 2rr′ = 0
DI

v2+w2 r2=0 ⊢ [v′ = w,w′ = v]v2 +w2 r2 = 0
→R ⊢ v2 +w2 r2 = 0→ [v′ = w,w′ = v]v2 +w2 r2 = 0

This is amazing, because we found out that the value of v2 +w2 r2 does not
change over time along the differential equation v′ = w,w′ = v. And we found
that out without ever solving the differential equation, just by a few lines of simple
but mathematically rigorous symbolic proof steps.

10.4 Differential Invariant Terms

In order to be able to use the above reasoning as part of a sequent proof efficiently,
let’s package up the argument in a simple proof rule. As a first shot, we stay with
equations of the form e = 0, which gives us soundness for the following proof rule.

10.4 Differential Invariant Terms 309

Lemma 10.7 (Differential invariant term rule). The following special case

of the differential invariants proof rule is sound, i.e., if its premise is valid then

so is its conclusion:

dI
⊢ [x′:= f (x)](e)′ = 0

e = 0 ⊢ [x′ = f (x)]e = 0

Proof. We could prove soundness of this proof rule by going back to the semantics
and lemmas we proved about it. The easier soundness proof is to prove that it is a
derived rule, meaning that it can be expanded into a sequence of other axiom and
proof rule applications that we have already seen to be sound:

⊢ [x′ := f (x)](e)′ = 0
G ⊢ [x′ = f (x)&Q][x′ := f (x)](e)′ = 0

DE ⊢ [x′ = f (x)&Q](e)′ = 0
DI

e = 0 ⊢ [x′ = f (x)&Q]e = 0

This proof shows dI to be a derived rule because it starts with the premise of rule dI
as the only open goal and ends with the conclusion of rule dI, using only proof rules
we already know are sound. ⊓⊔

Notice that Gödel’s generalization rule G was used to derive dI, so it would not be
sound to retain a sequent context Γ ,∆ in its premise (except, as usual, assumptions
about constants). After all, its premise represents an induction step for a differential
equation. Just like in loop invariants, we cannot assume the state considered in the
induction step will still satisfy whatever we knew in the initial state.

This proof rule enables us to prove dL formula (10.2) easily in sequent calculus:

∗
R ⊢ 2vw+2w(v) 0 = 0
[:=] ⊢ [v′:=w][w′:= v]2vv′+2ww′ 0 = 0
dI

v2 +w2 r2 = 0 ⊢ [v′ = w,w′ = v]v2 +w2 r2 = 0
→R ⊢ v2 +w2 r2 = 0→ [v′ = w,w′ = v]v2 +w2 r2 = 0

Taking a step back, this is an exciting development, because, thanks to differential
invariants, the property (10.2) of a differential equation with a nontrivial solution
has a very simple proof that we can easily check. The proof did not need to solve
the differential equation, which has infinitely many solutions with combinations of
trigonometric functions.2 The proof only required deriving the postcondition and
substituting in the differential equation.

2 Granted, the solutions in this case are not quite so terrifying. They are all of the form

v(t) = acos t +bsin t, w(t) = bcos t asin t

But the special functions sin and cos still fall outside the decidable parts of arithmetic.

310 10 Differential Equations & Differential Invariants

10.5 A Differential Invariant Proof by Generalization

So far, the differential invariant term proof rule dI works for

v2 +w2 r2 = 0→ [v′ = w,w′ = v]v2 +w2 r2 = 0 (10.2*)

with an equation v2 +w2 r2 = 0 normalized to having 0 on the right-hand side.
But it does not work for the original formula

v2 +w2 = r2→ [v′ = w,w′ = v]v2 +w2 = r2 (10.1*)

because its postcondition is not of the form e = 0. Yet, the postcondition v2 +w2
r2 = 0 of (10.2) is trivially equivalent to the postcondition v2 +w2 = r2 of (10.1),
just by rewriting the polynomials on one side, which is a minor change. That is an
indication that differential invariants can perhaps do more than what proof rule dI
already knows about.

But before we pursue any further our discovery of what else differential invariants
can do for us, let us first understand a very important proof principle.

Note 59 (Proof by generalization) If you do not find a proof of a formula, it
can sometimes be easier to prove a more general property from which the one
you were looking for follows.

This principle, which may at first appear paradoxical, turns out to be very helpful.
In fact, we have made ample use of Note 59 when proving properties of loops by
induction. The loop invariant that needs to be proved is usually more general than
the particular postcondition one is interested in. The desirable postcondition follows
from having proved a more general inductive invariant.

Recall the monotonicity right rule MR from Lemma 7.4:

MR
Γ ⊢ [α]Q,∆ Q ⊢ P

Γ ⊢ [α]P,∆

Instead of proving the desirable postcondition P of α (conclusion), proof rule MR
makes it possible to prove the postcondition Q instead (left premise) and prove that
Q is more general than the desired P (right premise). Generalization MR can help
us prove the original dL formula (10.1) by first turning the postcondition into the
form of the (provable) (10.2) and adapting the precondition using a corresponding
cut with v2 +w2 r2 = 0, whose first premise v2 +w2 = r2 ⊢ v2 +w2 r2 = 0 is
elided but is proved by R:

10.6 Example Proofs 311

→R

MR

cut

dI

[:=]

R
∗

⊢ 2vw+2w(v) 0 = 0
⊢ [v′:=w][w′:= v]2vv′+2ww′ 0

v2 +w2 r2 = 0 ⊢ [v′ = w,w′ = v]v2 +w2 r2 = 0
v2 +w2 = r2 ⊢ [v′ = w,w′ = v]v2 +w2 r2 = 0

R
∗

v2 +w2 r2 = 0 ⊢ v2 +w2 = r2

v2 +w2 = r2 ⊢ [v′ = w,w′ = v]v2 +w2 = r2

⊢ v2 +w2 = r2→ [v′ = w,w′ = v]v2 +w2 = r2

This is a possible way of proving the original (10.1), but also unnecessarily com-
plicated. Differential invariants can prove (10.1) directly once we generalize proof
rule dI appropriately. For other purposes, however, it is still important to have the
principle of generalization Note 59 in our repertoire of proof techniques.

10.6 Example Proofs

Of course, differential invariants are just as helpful for proving properties of other
differential equations, of which this section lists a few.

Example 10.6. A simple proof shows the differential invariant illustrated in Fig. 10.6.

∗
R ⊢ 2x(x2)y+ x2(2xy) = 0
[:=] ⊢ [x′:= x2][y′:=2xy]2xx′y+ x2y′ 0 = 0
dI

x2y 2 = 0 ⊢ [x′ = x2,y′ = 2xy]x2y 2 = 0
→R ⊢ x2y 2 = 0→ [x′ = x2,y′ = 2xy]x2y 2 = 0

Fig. 10.6 Differential invari-
ant (illustrated in thick red) of
the indicated dynamics

-��� ��� ��� ��� ��� ���
-���

-���

���

���

���

���

�

�

312 10 Differential Equations & Differential Invariants

Example 10.7 (Self-crossing). Another example is the invariant property illustrated
in Fig. 10.7. It is proved easily using dI:

∗
R ⊢ 2x(2y)+3x2(2y) 2y(2x 3x2) = 0
[:=] ⊢ [x′:= 2y][y′:= 2x 3x2]2xx′+3x2x′ 2yy′ 0 = 0
dI

x2 + x3 y2 c = 0 ⊢ [x′ = 2y,y′ = 2x 3x2]x2 + x3 y2 c = 0
→R ⊢ x2 + x3 y2 c = 0→ [x′ = 2y,y′ = 2x 3x2]x2 + x3 y2 c = 0

Fig. 10.7 Two differential invariants (illustrated in thick red) of the indicated self-crossing dynam-
ics for Example 10.7 for different values of c

Example 10.8 (Motzkin). Another nice example is the Motzkin polynomial, which
is an invariant of the following dynamics (see Fig. 10.8):

x4y2 + x2y4 3x2y2 +1 = c→
[x′ = 2x4y+4x2y3 6x2y,y′ = 4x3y2 2xy4 +6xy2]x4y2+x2y4 3x2y2+1 = c

This dL formula is proved directly by dI, again after normalizing the equation to
have right-hand side 0 (where . . abbreviates the antecedent):

∗
R ⊢ 0 = 0

[:=] ⊢ [x′:=2x4y+4x2y3 6x2y][y′:= 4x3y2 2xy4 +6xy2](x4y2 + x2y4 3x2y2 +1 c)′ = 0

dI . . ⊢ [x′ = 2x4y+4x2y3 6x2y,y′ = 4x3y2 2xy4 +6xy2]x4y2 + x2y4 3x2y2 +1 c = 0

→R ⊢ . .→ [x′ = 2x4y+4x2y3 6x2y,y′ = 4x3y2 2xy4 +6xy2]x4y2 + x2y4 3x2y2 +1 c = 0

The proof step [:=] is simple, but requires some space:

10.7 Summary 313

(x4y2 + x2y4 3x2y2 +1 c)′ = (4x3y2 +2xy4 6xy2)x′+(2x4y+4x2y3 6x2y)y′

After substituting in the differential equation, this gives

(4x3y2 +2xy4 6xy2)(2x4y+4x2y3 6x2y)

+(2x4y+4x2y3 6x2y)(4x3y2 2xy4 +6xy2)

which simplifies to 0 after expanding the polynomials, and, thus, leads to the equa-
tion 0 = 0, which is easy arithmetic. Note that the arithmetic complexity is reduced
when we hide unnecessary contexts as shown in Sect. 6.5.3.

(Thanks to Andrew Sogokon for the nice Example 10.8.)

Fig. 10.8 Two differential invariants (illustrated in thick red) of the indicated dynamics for the
Motzkin polynomial for Example 10.8 for different values of c

10.7 Summary

This chapter showed one form of differential invariants: the form where the dif-
ferential invariants are terms whose value always stays 0 along all solutions of a
differential equation. The next chapter will use the tools developed in this chapter to
investigate more general forms of differential invariants and more advanced proof
principles for differential equations. They all share the important discovery in this
chapter: that properties of differential equations can be proved using the differential
equation rather than its solution.

The most important technical insight of this chapter was that even very compli-
cated behavior that is defined by mathematical properties of the semantics can be

314 10 Differential Equations & Differential Invariants

captured by purely syntactical proof principles using differentials. The differential
lemma proved that the values of differentials of terms coincide with the analytic
derivatives of the values. The derivation lemma gave us the usual rules for com-
puting derivatives as equations of differentials. The differential assignment lemma
allowed us the intuitive operation of substituting differential equations into terms.
Proving properties of differential equations using a mix of these simple proof princi-
ples is much more civilized and effective than working with solutions of differential
equations. The proofs are also computationally easier, because the proof arguments
are local and derivatives even decrease the polynomial degrees. The resulting ax-
ioms are summarized in Fig. 10.9 except the differential induction axiom DI since it
will be generalized in Chap. 11.

Fig. 10.9 Axioms for differential invariant terms of differential equations without solutions

DE [x′ = f (x)&Q]P↔ [x′ = f (x)&Q][x′ := f (x)]P

+′ (e+ k)′ = (e)′+(k)′

 ′ (e k)′ = (e)′ (k)′

·′ (e · k)′ = (e)′ · k+ e · (k)′

/′ (e/k)′ =

(e)′ · k e · (k)′

)
/k2

c′ (c())′ = 0 (for numbers or constants c())

x′ (x)′ = x′ (for variable x ∈ V)

The principles begun in this chapter have significantly more potential, though,
and are not limited to proving only properties of the rather limited form e = 0. Sub-
sequent chapters will make use of the results obtained and build on the differential
lemma, derivation lemma, and differential assignment lemma to develop more gen-
eral proof principles for differential equations. But at least on open and connected
evolution domains, the differential invariance proof rule dI is pretty powerful, be-
cause it is able to prove all invariant terms, i.e., all terms that never change their
value along the differential equation (as Sect. 10.8.2 will explore). There also is
a way of deciding equational invariants of algebraic differential equations using a
higher-order generalization of differential invariants called differential radical in-
variants [2].

10.8 Appendix 315

10.8 Appendix

This appendix discusses optional topics such as the relationship of differential equa-
tions to loops, the relationship to differential algebra, and the relationship of the
differential invariant term proof rule to Sophus Lie’s characterization of invariant
functions.

10.8.1 Differential Equations Versus Loops

One way of developing an intuition for the purpose of differential invariants leads
through a comparison of differential equations with loops. This perhaps surprising
relation can be made completely rigorous and is at the heart of a deep connection
equating discrete and continuous dynamics proof-theoretically [12]. This chapter
will stay at the surface of this surprising connection but it still leverages the relation
of differential equations to loops for our intuition.

To get started with relating differential equations to loops, compare

x′ = f (x) vs. (x′ = f (x))
∗

How does the differential equation x′ = f (x) compare to the same differential equa-
tion in a loop (x′ = f (x))∗ instead? Unlike the differential equation x′ = f (x), the re-
peated differential equation (x′ = f (x))∗ can run the differential equation x′ = f (x)
repeatedly any number of times. Albeit, on second thoughts, does that get the repet-
itive differential equation (x′ = f (x))∗ to any more states than where the differential
equation x′ = f (x) could evolve to?

Not really, because chaining lots of solutions of differential equations from a
repetitive differential equation (x′ = f (x))∗ together will still result in a single solu-
tion for the same differential equation x′ = f (x) that we could have followed all the
way. This is precisely what a classical result about the continuation of solutions is
about (Proposition 2.2).

Note 60 (Looping differential equations) The loop (x′ = f (x))∗ over a differ-
ential equation is equivalent to x′ = f (x), written (x′ = f (x))∗ ≡ (x′ = f (x)),
i.e., they have the same transition semantics:

[[(x′ = f (x))
∗
]] = [[x′ = f (x)]]

That is, differential equations “are their own loop”.3

In light of Note 60, differential equations already have some aspects in common
with loops. Like nondeterministic repetitions, differential equations might stop right

3 Beware not to confuse this with the case for differential equations with evolution domain con-
straints, which is subtly different (Exercise 10.1).

316 10 Differential Equations & Differential Invariants

away. Like nondeterministic repetitions, differential equations can evolve for longer
or shorter durations and the choice of duration is nondeterministic. Like in nondeter-
ministic repetitions, the outcome of the evolution of the system up to an intermediate
state influences what happens in the future. And, in fact, in a deeper sense, differen-
tial equations actually really do correspond to loops executing their discrete Euler
approximations [12].

With this rough relation in mind, let’s advance the dictionary translating differen-
tial equation phenomena into loop phenomena and back. The local description of a
differential equation as a relation x′ = f (x) of the state to its derivative corresponds
to the local description of a loop by a repetition operator ∗ applied to the loop body
α . The global behavior of a global solution of a differential equation x′ = f (x) cor-
responds to the full global execution trace of a repetition α∗, but they are similarly
unwieldy objects to handle. Because the local descriptions are so much more con-
cise than the respective global behaviors, but still carry all information about how
the system will evolve over time, we also say that the local relation x′ = f (x) is the
generator of the global system solution and that the loop body α is the generator

of the global behavior of repetition of the loop. Proving a property of a differential
equation in terms of its solution corresponds to proving a property of a loop by un-
winding it (infinitely often) using axiom [∗] from Chap. 5. These comparisons are
summarized in Table 10.1.

Table 10.1 Correspondence map between loops and differential equations

loop α∗ differential equation x′ = f (x)

can repeat 0 times can evolve for duration 0

repeat any number n ∈ N of times evolve for any duration r ∈ R,r ≥ 0

effect depends on previous loop iteration effect depends on the past solution

local generator is loop body α local generator is x′ = f (x)

full global execution trace global solution ϕ : [0,r]→S

proof by unwinding iterations with axiom [∗] proof by global solution with axiom [′]

proof by induction with loop invariant rule loop proof by differential invariant

Now, Chap. 7 made the case that unwinding the iterations of a loop can be a
rather tedious way of proving properties about the loop, because there is no good
way of ever stopping unwinding, unless a counterexample can be found after a finite
number of unwindings. This is where working with a global solution of a differen-
tial equation with axiom [′] is actually more useful, because the solution, if we can
write it down in first-order real arithmetic, can be handled completely because of
the quantifier ∀t≥0 over all durations. But Chap. 7 introduced induction with invari-
ants as the preferred way of proving properties of loops, by, essentially, cutting the
loop open and arguing that the generic state after any run of the loop body has the
same characterization as the generic state before. After all these analogous corre-
spondences between loops and differential equations, the obvious question is what

10.8 Appendix 317

the differential equation analogue of a proof concept would be that corresponds to
proofs by induction for loops, which is the premier technique for proving loops.

Induction can be defined for differential equations using what are called differ-

ential invariants [8, 13, 14]. They have a similar principle to the proof rules for
induction for loops. Differential invariants prove properties of the solution of the
differential equation using only its local generator: the right-hand side of the differ-
ential equation.

Expedition 10.2 (Differential algebra)

Even though the following names and concepts are not needed for this text-
book, let’s take a brief scientific expedition to align the findings on equations
of differentials with the algebraic structures from differential algebra [3, 15] in
order to illustrate their systematic principle. The condition in axiom c′ defines
(rational) number symbols alias literals as differential constants, which do not
change their value during continuous evolution. Their derivative is zero. The
number symbol 5 will always have the value 5 and never change by anything
other than 0. The condition in axiom +′ and the Leibniz or product rule from ·′
are the defining conditions for derivation operators on rings. The derivative of
a sum is the sum of the derivatives (additivity or a homomorphic property with
respect to addition, i.e., the operator (·)′ applied to a sum equals the sum of
the operator applied to each summand) according to axiom +′. Furthermore,
the derivative of a product is the derivative of one factor times the other fac-
tor plus the one factor times the derivative of the other factor as in axiom ·′.
The condition in axiom ′ is a derived rule for subtraction according to the
identity e k = e+(1) · k and again expresses a homomorphic property, now
with respect to subtraction rather than addition.

The equation in axiom x′ uniquely defines the operator (·)′ on the differen-

tial polynomial algebra spanned by the differential indeterminates x ∈ V , i.e.,
the symbols x that have indeterminate derivatives x′. It says that we understand
the differential symbol x′ as the derivative of the symbol x for all state variables
x ∈ V . Axiom /′ canonically extends the derivation operator (·)′ to the differ-

ential field of quotients by the usual quotient rule. As the base field R has no
zero divisorsa, the right-hand side of axiom /′ is defined whenever the original
division e/k can be carried out, which, as we assumed for well-definedness, is
guarded by k 6= 0.

a In this setting, R has no zero divisors, because the formula ab = 0→ a = 0∨b = 0 is valid,
i.e., a product is zero only if a factor is zero.

318 10 Differential Equations & Differential Invariants

Expedition 10.3 (Semantics of differential algebra)

The view of Expedition 10.2 sort of gave (e)′ a meaning, but, when we think
about it, did not actually define it. Differential algebra studies the structural
algebraic relations of, e.g., the derivative (e+ k)′ to the derivatives (e)′ plus (k)′

and is incredibly effective at capturing and understanding them. But algebra—
and differential algebra is no exception—is, of course, deliberately abstract
about the question of what the individual pieces mean, because algebra is the
study of structure, not the study of the meaning of the objects that are being
structured in the first place. That is why we can learn all about the structure
of derivatives and derivation operators from differential algebra, but have to
go beyond differential algebra to complement it with a precise semantics that
relates to what is needed to understand the mathematics of real CPSs.

10.8.2 Differential Invariant Terms and Invariant Functions

It is not a coincidence that the examples in this chapter were provable by differ-
ential invariant proof rule dI, because that proof rule can handle arbitrary invariant
functions.

Despite the power that differential invariant terms offer, challenges lie ahead in
proving properties. Theorem 10.1 from Expedition 10.4 gives an indication where
challenges remain.

Example 10.9 (Generalizing differential invariants). This dL formula is valid

x2 + y2 = 0→ [x′ = 4y3,y′ = 4x3]x2 + y2 = 0 (10.9)

but cannot be proved directly using dI, because x2 + y2 is not an invariant function of
the dynamics. In combination with generalization (MR to change the postcondition
to the equivalent x4 + y4 = 0) and a cut (to change the antecedent to the equivalent
x4 + y4 = 0), however, there is a proof using differential invariants dI:

∗
R ⊢ 4x3(4y3)+4y3(4x3) = 0
[:=] ⊢ [x′:=4y3][y′:= 4x3]4x3x′+4y3y′ = 0
dI

x4 + y4 = 0 ⊢ [x′ = 4y3,y′ = 4x3]x4 + y4 = 0
cut,MR

x2 + y2 = 0 ⊢ [x′ = 4y3,y′ = 4x3]x2 + y2 = 0
→R ⊢ x2 + y2 = 0→ [x′ = 4y3,y′ = 4x3]x2 + y2 = 0

The use of MR leads to another branch x4 + y4 = 0 ⊢ x2 + y2 = 0 that is elided
above. Similarly, the cut rule leads to another branch x2 + y2 = 0 ⊢ x4 + y4 = 0 that
is also elided. Both is proved easily using real arithmetic (R).

10.8 Appendix 319

Expedition 10.4 (Lie characterization of invariant functions)

The proof rule dI works by deriving the postcondition and substituting the dif-
ferential equation in:

dI
⊢ [x′:= f (x)](e)′ = 0

e = 0 ⊢ [x′ = f (x)]e = 0

There is something quite peculiar about rule dI. Its premise is independent of
the constant term in e. If, for any constant symbol c, the formula e = 0 is re-
placed by e c = 0 in the conclusion, then the premise of rule dI stays the
same, because c′ = 0. Consequently, if dI proves

e = 0 ⊢ [x′ = f (x)]e = 0

then it also proves

e c = 0 ⊢ [x′ = f (x)]e c = 0 (10.8)

for any constant c. This observation is the basis for a more general result, which
simultaneously proves all formulas (10.8) for all c from the premise of dI.

On open connected domains, equational differential invariants are even a
necessary and sufficient characterization of invariant functions, i.e., functions
that are invariant along the dynamics of a system, because, whatever value c

that function had in the initial state, the value will stay the same forever. The
equational case of differential invariants is intimately related [10] to the seminal
work by Sophus Lie on what are now called Lie groups [4, 5].

Theorem 10.1 (Lie’s characterization of invariant terms). Let

x′ = f (x) be a differential equation system and let Q be a domain, i.e.,

a first-order formula of real arithmetic characterizing a connected open

set. The following proof rule is a sound global equivalence rule, i.e., the

conclusion is valid if and only if the premise is:

dIc

Q ⊢ [x′:= f (x)](e)′ = 0

⊢ ∀c

e = c→ [x′ = f (x)&Q]e = c

)

How could this happen? How could the original formula (10.9) be provable only
after generalizing its postcondition to x4 + y4 = 0 and not before?

320 10 Differential Equations & Differential Invariants

Note 61 (Strengthening induction hypotheses) An important phenomenon
we already encountered in Chap. 7 and other uses of induction is that, some-
times, the only way to prove a property is to strengthen the induction hypothe-
sis. Differential invariants are no exception. It is worth noting, however, that the
inductive structure in differential invariants includes their differential structure.
And, indeed, the derivatives of x4 + y4 = 0 are different and more conducive to
an inductive proof for Example 10.9 than those of x2 + y2 = 0 even if both have
the same set of solutions.

Theorem 10.1 explains why x2 + y2 = 0 was doomed to fail as a differential
invariant while x4 + y4 = 0 succeeded. All formulas of the form x4 + y4 = c for
all c are invariants of the dynamics in (10.9), because the proof succeeded. But
x2 + y2 = c is only an invariant for the lucky choice c = 0 and only equivalent to
x4 + y4 = 0 for this case.

Exercises

10.1 (Repeating differential equations with domains). Note 60 explained that
(x′ = f (x))∗ is equivalent to x′ = f (x). Does the same hold for differential equa-
tions with evolution domain constraints? Are the hybrid programs (x′ = f (x)&Q)∗

and x′ = f (x)&Q equivalent or not? Justify or modify the statement and justify the
variation.

10.2. We argued that dL formulas (10.1) and (10.2) are equivalent and then went on
to find a proof of (10.2). Continue this proof of (10.2) to a proof of (10.1) using the
generalization rule MR and the cut rule.

10.3 (Derivation lemma proof). Prove the other cases of Lemma 10.1 where the
term is a variable x or a subtraction e k or multiplication e · k or division e/k.

10.4 (Absence of solutions). What happens in the proof of Lemma 10.3 if there is
no solution ϕ? Show that this is not a counterexample to axiom DI, but that the
axiom is sound in that case, too.

10.5. Carry out the polynomial computations needed to prove Example 10.8 using
proof rule dI.

10.6 (Rotation with angular velocity ω). Example 10.1 considered a rotation of
vector (v,w) with angular velocity 1. Suppose the vector (v,w) is rotating with an
arbitrary fixed angular velocity ω . Even if the vector rotates more quickly or slowly,
it still always remains on the circle of radius r. Prove the resulting dL formula using
differential invariants:

v2 +w2 = r2→ [v′ = ωw,w′ = ωv&ω 6= 0]v2 +w2 = r2

10.8 Appendix 321

10.7. Prove the following dL formulas using differential invariants:

xy = c→ [x′ = x,y′ = y,z′ = z]xy = c

4x2 +2y2 = 1→ [x′ = 2y,y′ = 4x]4x2 +2y2 = 1

x2 +
y3

3
= c→ [x′ = y2,y′ = 2x]x2 +

y3

3
= c

x2+4xy 2y3 y = 1→ [x′ = 1+4x 6y2,y′ = 2x 4y]x2+4xy 2y3 y = 1

10.8 (Hénon-Heiles). Prove a differential invariant of a Hénon-Heiles system for
the motion of a star at (x,y) flying in direction (u,v) around the center of the galaxy:

1
2
(u2 + v2 +Ax2 +By2)+ x2y 1

3
εy3 = 0→

[x′ = u,y′ = v,u′ = Ax 2xy,v′ = By+ εy2 x2]

1
2
(u2 + v2 +Ax2 +By2)+ x2y 1

3
εy3 = 0

References

[1] Gottlob Frege. Begriffsschrift, eine der arithmetischen nachgebildete Formel-

sprache des reinen Denkens. Halle: Verlag von Louis Nebert, 1879.
[2] Khalil Ghorbal and André Platzer. Characterizing algebraic invariants by dif-

ferential radical invariants. In: TACAS. Ed. by Erika Ábrahám and Klaus
Havelund. Vol. 8413. LNCS. Berlin: Springer, 2014, 279–294. DOI: 10.1
007/978-3-642-54862-8_19.

[3] Ellis Robert Kolchin. Differential Algebra and Algebraic Groups. New York:
Academic Press, 1972.

[4] Sophus Lie. Vorlesungen über continuierliche Gruppen mit geometrischen

und anderen Anwendungen. Leipzig: Teubner, 1893.
[5] Sophus Lie. Über Integralinvarianten und ihre Verwertung für die Theorie der

Differentialgleichungen. Leipz. Berichte 49 (1897), 369–410.
[6] André Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reas.

41(2) (2008), 143–189. DOI: 10.1007/s10817-008-9103-8.
[7] André Platzer. Differential Dynamic Logics: Automated Theorem Proving

for Hybrid Systems. PhD thesis. Department of Computing Science, Univer-
sity of Oldenburg, 2008.

[8] André Platzer. Differential-algebraic dynamic logic for differential-algebraic
programs. J. Log. Comput. 20(1) (2010), 309–352. DOI: 10.1093/logcom/
exn070.

https://doi.org/10.1007/978-3-642-54862-8_19
https://doi.org/10.1007/978-3-642-54862-8_19
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1093/logcom/exn070
https://doi.org/10.1093/logcom/exn070

322 10 Differential Equations & Differential Invariants

[9] André Platzer. Logical Analysis of Hybrid Systems: Proving Theorems for

Complex Dynamics. Heidelberg: Springer, 2010. DOI: 10.1007/978-3-
642-14509-4.

[10] André Platzer. A differential operator approach to equational differential in-
variants. In: ITP. Ed. by Lennart Beringer and Amy Felty. Vol. 7406. LNCS.
Berlin: Springer, 2012, 28–48. DOI: 10.1007/978-3-642-32347-8
_3.

[11] André Platzer. Logics of dynamical systems. In: LICS. Los Alamitos: IEEE,
2012, 13–24. DOI: 10.1109/LICS.2012.13.

[12] André Platzer. The complete proof theory of hybrid systems. In: LICS. Los
Alamitos: IEEE, 2012, 541–550. DOI: 10.1109/LICS.2012.64.

[13] André Platzer. The structure of differential invariants and differential cut
elimination. Log. Meth. Comput. Sci. 8(4:16) (2012), 1–38. DOI: 10.216
8/LMCS-8(4:16)2012.

[14] André Platzer. A complete uniform substitution calculus for differential dy-
namic logic. J. Autom. Reas. 59(2) (2017), 219–265. DOI: 10.1007/s108
17-016-9385-1.

[15] Joseph Fels Ritt. Differential equations from the algebraic standpoint. Vol. 14.
Colloquium Publications. New York: AMS, 1932.

[16] Dana Scott and Christopher Strachey. Towards a mathematical semantics

for computer languages. Tech. rep. PRG-6. Oxford Programming Research
Group, 1971.

[17] Wolfgang Walter. Analysis 1. 3rd ed. Berlin: Springer, 1992. DOI: 10.1007
/978-3-662-38453-4.

[18] Eberhard Zeidler, ed. Teubner-Taschenbuch der Mathematik. Wiesbaden:
Teubner, 2003. DOI: 10.1007/978-3-322-96781-7.

https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-642-32347-8_3
https://doi.org/10.1007/978-3-642-32347-8_3
https://doi.org/10.1109/LICS.2012.13
https://doi.org/10.1109/LICS.2012.64
https://doi.org/10.2168/LMCS-8(4:16)2012
https://doi.org/10.2168/LMCS-8(4:16)2012
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/978-3-662-38453-4
https://doi.org/10.1007/978-3-662-38453-4
https://doi.org/10.1007/978-3-322-96781-7

Chapter 11

Differential Equations & Proofs

Synopsis Furthering the remarkable shift in perspective toward a more thorough
investigation of the wonders of the continuous dynamics of cyber-physical systems,
this chapter advances logical induction techniques for differential equations from
differential invariant terms to differential invariant formulas. Its net effect will be
that not just the real value of a term can be proved to be invariant during a differen-
tial equation but also the truth-value of a formula. Differential invariants can prove
that, e.g., the sign of a term never changes even if its value changes. Continuing the
axiomatization of the differential equation aspects of differential dynamic logic, this
chapter exploits a differential equation twist of Gerhard Gentzen’s cut principle to
obtain differential cuts that prove and then subsequently use properties of differen-
tial equations. The chapter will also advance the intuitions behind the continuous
operational effects involved in CPS.

11.1 Introduction

Chapter 10 introduced equational differential invariants of the form e = 0 for differ-
ential equations that are significantly more general than the ones supported by the
solution axiom [′] from Chap. 5. Axiom [′] equivalently replaces properties of dif-
ferential equations with universally quantified properties of solutions, but is limited
to differential equations that have explicit closed-form solutions whose resulting
arithmetic can be handled (mostly polynomials or rational functions). But axiom
[′] at least works for any arbitrary postcondition. The equational differential invari-
ant proof rule dI supports general differential equations, but is limited to equational
postconditions of the form e = 0.

The goal of this chapter is to generalize the differential invariant proof rule to
work for more general postconditions but retain the flexibility with the more com-
plicated differential equations that differential invariants provide. Indeed, the prin-
ciples developed in Chap. 10 generalize beautifully to logical formulas other than
the limited form e = 0. While [x′ = f (x)]e = 0 expresses that the value of term e

323© Springer International Publishing AG, part of Springer Nature 2018

A. Platzer, Logical Foundations of Cyber-Physical Systems,

https://doi.org/10.1007/978-3-319-63588-0_11

https://doi.org/10.1007/978-3-319-63588-0_11
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63588-0_11&domain=pdf

324 11 Differential Equations & Proofs

never changes and remains 0 along the differential equation x′ = f (x), other logical
formulas such as [x′ = f (x)]e≥ 0 allow term e to change its value as long as its sign
remains nonnegative so that e≥ 0 is invariant and its truth-value remains true.

This chapter will establish generalizations that make the differential invariant
proof rule work for formulas F of more general forms. The core of the differential
invariant proof rule is its use of the differential (e)′ of the involved terms to de-
termine quantities that, along the differential equation, are locally equal to the rate
of change of the term e over time. The tricky bit is that it is conceptually signifi-
cantly more challenging to apply derivative-based invariant principles to formulas
than to terms. While invariant terms already had enough surprises in store for us in
Chap. 10, they ultimately ended up relating in simple, sound, and well-defined ways
to the intuitive concept of time-derivatives of values as rates of change along differ-
ential equations. But what could possibly be the counterpart of the rate of change or
time-derivative for a formula? Formulas are either true or false, which makes it dif-
ficult to understand what their rate of change should be. While derivatives of terms
can, at least intuitively, be understood as the question of how a function changes its
value in the reals R at close-by points, it is not at all clear how to understand a small
change to a close-by value when the only possible values of the formula are boolean
in the set {true, false}. We cannot just say “the truth-value of formula P changes
just a little bit when the state changes its values just a little bit along the differential
equation” in any particularly simple meaningful way.

Fortunately, these considerations already provide some intuitive guidance toward
an answer. Even if there is no wiggle room in the set of truth-values {true, false},
we still want to use differential reasoning to argue that small changes of the points
lead to close-by truth-values, so stay true if they were true initially, because there
simply are no truth-values close to true other than true itself. Of course, the most
subtle and most crucial part will be defining and justifying the differential (F)′ of a
formula such that the shape of the differential invariant proof rule is sound:

dI
Q ⊢ [x′:= f (x)](F)′

F ⊢ [x′ = f (x)&Q]F

If, for example, the formula F in the conclusion is e = 0 and the evolution domain
constraint Q is true, then Chap. 10 demonstrated that (e)′ = 0 is a sound choice for
the formula (F)′ in the premise of rule dI. This chapter investigates generalizations
of rule dI that work for more general shapes of formula F than just e= 0. Differential
invariants were originally introduced with another semantics [4, 5], but we follow an
advanced axiomatic logical reading of differential invariants via differential forms
[12] that also simplifies their intuitive understanding.

This chapter advances the capabilities of differential invariants that Chap. 10
started and continues to be of central significance for the Foundations of Cyber-
Physical Systems in all but the most elementary CPSs. The most important learning
goals of this chapter are:

Modeling and Control: This chapter continues the study of the core principles be-
hind CPS by developing a deeper understanding of how continuous dynamical

11.1 Introduction 325

behavior affects the truth of logical formulas. The differential invariants devel-
oped in this chapter also have significance for developing models and controls
using the design-by-invariant principle.

Computational Thinking: This chapter exploits computational thinking, continu-
ing the surprising analogies between discrete dynamics and continuous dynam-
ics discovered in Chap. 10. It is devoted to rigorous reasoning about differential
equations in CPS models, which is crucial for understanding the continuous
behavior that CPSs exhibit over time. This chapter systematically expands on
the differential invariant terms for equational properties of differential equa-
tions developed in Chap. 10 and generalizes the same core principles to the
study of general properties of differential equations. Computational thinking is
exploited in a second way by generalizing Gentzen’s cut principle, which is
of seminal significance in discrete logic, to differential equations. This chapter
continues the axiomatization of differential dynamic logic dL [9, 10] pursued
since Chap. 5 and lifts dL’s proof techniques to systems with more complex
properties of more complex differential equations. The concepts developed in
this chapter continue the differential facet illustrating the more general relation
of syntax (which is notation), semantics (which carries meaning), and axiomat-

ics (which internalizes semantic relations into universal syntactic transforma-
tions). These concepts and their relations jointly form the significant logical

trinity of syntax, semantics, and axiomatics. Finally, the verification techniques
developed in this chapter are critical for verifying CPS models of appropriate
scale and technical complexity.

CPS Skills: The focus in this chapter is on reasoning about differential equations.
As a beneficial side effect, we will develop better intuition for the operational
effects involved in CPS by getting better tools for understanding how exactly
state changes while the system follows a differential equation and what proper-
ties of the system will not change.

CT

M&C CPS

discrete vs. continuous analogy
rigorous reasoning about ODEs
beyond differential invariant terms
differential invariant formulas
cut principles for differential equations
axiomatization of ODEs
differential facet of logical trinity

understanding continuous dynamics
relate discrete+continuous

operational CPS effects
state changes along ODE

326 11 Differential Equations & Proofs

11.2 Recap: Ingredients for Differential Equation Proofs

Before studying differential invariant formulas in greater detail, we first recall the
semantics of differential equations from Chap. 3 and the semantics of differentials
from Chap. 10:

Definition 3.3 (Transition semantics of ODEs).

[[x′ = f (x)&Q]] =
{
(ω,ν) : ϕ(0) = ω except at x′ and ϕ(r) = ν for a solution

ϕ:[0,r]→S of any duration r satisfying ϕ |= x′ = f (x)∧Q
}

where ϕ |= x′ = f (x)∧Q, iff for all times 0≤ z≤ r: ϕ(z) ∈ [[x′ = f (x)∧Q]]

with ϕ(z)(x′)
def
= dϕ(t)(x)

dt
(z) and ϕ(z) = ϕ(0) except at x,x′.

Definition 10.2 (Semantics of differentials). The semantics of differential
term (e)′ in state ω is the value ω[[(e)′]] defined as

ω[[(e)′]] = ∑
x∈V

ω(x′) · ∂ [[e]]
∂x

(ω)

Our approach for more general differential invariants will leverage the fact that
the following results from Chap. 10 already capture differential terms (e)′ and how
their values relate to the change of the value of the term e over time, as well as
the differential effects of differential equations on differential symbols. Equations
of differentials can be used to compute with differentials akin to the process of
forming derivatives which is called differentiation.

Lemma 10.1 (Derivation lemma). The following equations of differentials are

valid formulas so sound axioms:

+′ (e+ k)′ = (e)′+(k)′

 ′ (e k)′ = (e)′ (k)′

·′ (e · k)′ = (e)′ · k+ e · (k)′

/′ (e/k)′ =

(e)′ · k e · (k)′

)
/k2

c′ (c())′ = 0 (for numbers or constants c())

x′ (x)′ = x′ (for variable x ∈ V)

The value of a differential, at least along a differential equation, equals the ana-
lytic time-derivative.

11.3 Differential Weakening 327

Lemma 10.2 (Differential lemma). Let ϕ |= x′ = f (x)∧Q for some solution

ϕ : [0,r]→S of duration r > 0. Then for all times 0 ≤ z ≤ r and all terms e

defined all along ϕ with FV(e)⊆ {x}:

ϕ(z)[[(e)′]] =
dϕ(t)[[e]]

dt
(z)

Differential equations can be substituted in via their differential effect.

Lemma 10.5 (Differential assignment). If ϕ |= x′ = f (x)∧Q for a solution

ϕ : [0,r]→S of any duration r ≥ 0, then

ϕ |= P↔ [x′ := f (x)]P

Lemma 10.6 (DE differential effect axiom). This axiom is sound:

DE [x′ = f (x)&Q]P↔ [x′ = f (x)&Q][x′ := f (x)]P

These results are already more general and work for any postcondition P, not
just normalized equations e = 0. Lemma 10.1 covers differentials of any polynomial
(and rational) term. Lemma 10.2 relates their values to the change of value over
time. Just the specific formulation of the differential invariant axiom needs to be
generalized based on Lemma 10.2 to cover more general postconditions.

11.3 Differential Weakening

Just as the differential effect axiom DE perfectly internalizes the effect that differen-
tial equations have on the differential symbols, the differential weakening axiom in-
ternalizes the semantic effect of their evolution domain constraints (Definition 3.3).
Of course, the effect of an evolution domain constraint Q is not to change the values
of variables, but rather to limit the continuous evolution to always remain within the
set of states [[Q]] where Q is true. There are multiple ways of achieving that [12] and
you are invited to discover them.

One simple but useful way is the following differential weakening axiom, some-
what reminiscent of the way axiom DE is phrased but for domain Q.

Lemma 11.1 (DW differential weakening axiom). This axiom is sound:

DW [x′ = f (x)&Q]P↔ [x′ = f (x)&Q](Q→ P)

Since differential equations can never leave their evolution domain constraints
(Fig. 11.1), any property P is true after the differential equation if and only if it is

328 11 Differential Equations & Proofs

true whenever the evolution domain constraint Q is. The evolution domain constraint
Q is always true throughout all evolutions of x′ = f (x)&Q by Definition 3.3. We
will see later that axiom DW justifies once and for all that the evolution domain
constraint Q can be assumed soundly during any proof reasoning about differential
equation x′ = f (x)&Q.

Fig. 11.1 Differential weak-
ening axiom DW

t

x

Q

ν

ω

0 r

x′ = f (x)&Q

¬Q

On its own, the differential weakening axiom DW has the same shortcoming
as the differential effect axiom DE and differential invariant axiom DI. They re-
duce one property of a differential equation to another property of that differential
equation. Following up with a generalization rule G after the differential weakening
axiom DW leads to the following differential weakening sequent proof rule that can
be quite useful.

Lemma 11.2 (dW differential weakening proof rule). The differential weak-

ening proof rule derives from axiom DW:

dW
Q ⊢ P

Γ ⊢ [x′ = f (x)&Q]P,∆

The system x′ = f (x)&Q will stop before it leaves Q, hence, if Q implies P (i.e.,
the region Q is contained in the region P), then P is always true after the continuous
evolution, no matter what the actual differential equation x′ = f (x) does.

Of course, it is crucial for soundness that rule dW drops the context Γ ,∆ , which
could not soundly be available in the premise (Exercise 11.3). The context Γ con-
tains information about the initial state, which is no longer guaranteed to remain
true in the final state. As usual, keeping assumptions about constants around would
be acceptable (Sect. 7.5). Yet, on its own, even rule dW cannot prove particularly in-
teresting properties, because it only work when Q is rather informative. Differential
weakening can, however, be useful to obtain partial information about the domains
of differential equations or in combination with stronger proof rules (Sect. 11.8).
If an entire system model is proved with just differential weakening dW, then this
indicates that the model may have assumed overly strong evolution domain con-
straints, because its property would be true independently of the differential equa-
tions (Sect. 8.2.2).

11.4 Operators in Differential Invariants 329

11.4 Operators in Differential Invariants

This section develops ways of handling logical and arithmetical operators in differ-
ential invariants. Thanks to axiom DW, we will soon see that the evolution domain
constraint Q can be assumed during the induction step. All differential invariant
rules have the same shape but differ in how they define the differential formula (F)′

in the induction step depending on F :

dI
Q ⊢ [x′:= f (x)](F)′

F ⊢ [x′ = f (x)&Q]F

For the case where F is of the form e = 0 and Q is true, Chap. 10 justifies that this
rule dI is sound when defining (e = 0)′ to be (e)′ = 0. This leaves other shapes of
the postcondition F and the evolution domain constraint Q to worry about. The dif-
ferential invariant proof rules can also all be derived directly from corresponding
differential induction axioms, given an appropriate definition and justification of
(F)′. We first emphasize an intuitive gradual development, postponing the sound-
ness proof until all cases of the rule have been developed.

11.4.1 Equational Differential Invariants

While Chap. 10 provided a way of proving postconditions of the form e = 0 for
unsolvable differential equations, there are more general logical formulas that we
would like to prove to be invariants of differential equations, not just the polynomial
equations normalized such that they are single terms equaling 0. Direct proofs for
postconditions of the form e = k should work in almost the same way. In order to set
the stage for the rest of this chapter, we develop an induction axiom and proof rule
for differential equations with postcondition e = k and simultaneously generalize
it to the presence of evolution domain constraints Q using our newly discovered
differential weakening principles captured in axiom DW.

Thinking back to the soundness proof for the case e = 0 in Sect. 10.3.6, the argu-
ment was based on the value of ϕ(t)[[e]] as a function of time t. The same argument
can be made by considering the difference ϕ(t)[[e k]] for postconditions of the form
e = k. How does the inductive step for formula e = k need to be defined to make a
corresponding differential invariant proof rule sound? That is, for what premise is
the following a sound proof rule when e and k are arbitrary terms?

⊢ ???

e = k ⊢ [x′ = f (x)]e = k

Before you read on, see if you can find the answer for yourself.

The following rule would make sense:

330 11 Differential Equations & Proofs

⊢ [x′:= f (x)](e)′ = (k)′

e = k ⊢ [x′ = f (x)]e = k

This rule for equational differential invariants captures the intuition that e always
stays equal to k if it was initially (antecedent of conclusion) and the differential of
term e is the same as the differential of k when using the right-hand side f (x) of the
differential equation x′ = f (x) for its left-hand side x′. For the case Q ≡ true, this
rule fits the general shape of rule dI when we mnemonically define the “differential”
of an equation e = k as the formula

(e = k)′
def≡ ((e)′ = (k)′)

This definition as the equation (e)′ = (k)′ of the differentials of the two sides makes
intuitive sense, because the truth-value of an equation e = k does not change if the
left- and right-hand side quantities have the same rate of change (Fig. 11.2).

Fig. 11.2 Equal rate of
change from equal initial
value (drawn slightly apart for
visualization)

0 t

k
e

The way we justified the soundness of the e = 0 case of the differential invariant
proof rule dI in Sect. 10.4 was by deriving it from a corresponding differential invari-
ant axiom DI, which captured the fundamental induction principle for terms along
differential equations in more elementary ways. Let us pursue the same approach
for the invariant e = k.

DI=

[x′ = f (x)&Q]e = k↔ [?Q]e = k

)
← [x′ = f (x)&Q)](e)′ = (k)′

This axiom expresses that, if (e)′ = (k)′ always holds after the differential equation
so that terms e and k always have the same rate of change, then e and k always
have the same value after the differential equation if and only if they have the same
value initially after the test ?Q. The reason for the test ?Q is that the postcondition
e = k is vacuously true always after the differential equation x′ = f (x)&Q when
it starts outside its evolution domain constraint Q, because there is no evolution
of the differential equation then. Correspondingly, the initial check [?Q]e = k gets
to assume the test ?Q passes, because otherwise there is nothing to show. Overall,
axiom DI= expresses that two quantities that evolve with the same rate of change
will always remain the same iff they start from the same value initially (Fig. 11.2).

Instead of going through a soundness proof for DI=, however, we directly gen-
eralize the proof principles further and see whether differential invariants can prove
even more formulas for us. We will later prove the soundness of the general differ-
ential invariant axiom, from which DI= derives as a special case.

11.4 Operators in Differential Invariants 331

11.4.2 Differential Invariant Proof Rule

Just as Sect. 11.4.1 did with axiom DI= for the case of equational postconditions e=
k, this section provides induction axioms for postconditions of differential equations
that are all of the form

DI

[x′ = f (x)&Q]P↔ [?Q]P

)
← [x′ = f (x)&Q)](P)′

This axiom expresses that, if a yet-to-be-defined differential formula (P)′ always
holds after the differential equation so that P never changes its truth-value, then
P is always true after the differential equation if and only if P was true initially
after the test ?Q. Since [x′ = f (x)&Q]P always implies [?Q]P by Definition 3.3 (us-
ing that x′ 6∈ FV(P)∪FV(Q)), only the converse implication needs the assumption
[x′ = f (x)&Q](P)′. For each of the subsequently considered cases of (P)′, we only
need to prove the validity of the following formula to prove the soundness of DI:

[x′ = f (x)&Q](P)′→ ([?Q]P→ [x′ = f (x)&Q]P)

For each case of this differential induction axiom DI, we obtain a corresponding
differential invariant proof rule for free.

Lemma 11.3 (dI differential invariant proof rule). The differential invariant

proof rule derives from axiom DI:

dI
Q ⊢ [x′:= f (x)](F)′

F ⊢ [x′ = f (x)&Q]F

Proof. Proof rule dI derives from axiom DI as follows:

∗
id

F,Q ⊢ F
→R

F ⊢ Q→ F
[?]

F ⊢ [?Q]F

Q ⊢ [x′ := f (x)](F)′
→R ⊢ Q→ [x′ := f (x)](F)′
G ⊢ [x′ = f (x)&Q](Q→ [x′ := f (x)](F)′)

DW ⊢ [x′ = f (x)&Q][x′ := f (x)](F)′
DE ⊢ [x′ = f (x)&Q](F)′

DI
F ⊢ [x′ = f (x)&Q]F

⊓⊔

The basic idea behind rule dI is that the premise of dI shows that the differen-
tial (F)′ holds within evolution domain Q when substituting the differential equa-
tions x′ = f (x) into (F)′. If F holds initially (antecedent of conclusion), then F itself
always stays true (succedent of conclusion). Intuitively, the premise gives a condi-
tion showing that, within Q, the differential (F)′ along the differential constraints
points inwards or transversally to F but never outwards to ¬F , as illustrated in

332 11 Differential Equations & Proofs

Fig. 11.3 Differential invari-
ant F for safety

¬
¬F

F
F

Fig. 11.3. Hence, if we start in F and, as indicated by (F)′, the local dynamics never
points outside F , then the system always stays in F when following the dynamics.

Observe how useful it is that we have assembled an array of independent reason-
ing principles, differential effect DE, differential weakening DW, and generalization
G, to combine and bundle the logically more elementary axiom DI to the more use-
ful proof rule dI. Such modular combinations of reasoning principles are not just
easier to prove sound, but also more flexible because they allow free variations in
the argument structure. Recall, though, that the use of Gödel’s generalization rule G
for the derivation of dI implies it would be unsound to retain a sequent context Γ ,∆
in its premise (except, as usual, assumptions about constants).

Example 11.1 (Rotational dynamics). Consider the system of rotational dynamics
v′ = w,w′ = v from Example 10.1 on p. 293 once again. This dynamics is com-
plicated in that the solution involves trigonometric functions, which are generally
outside decidable classes of arithmetic. Yet, we can easily prove interesting prop-
erties about it using dI and decidable polynomial arithmetic. For instance, dI can
directly prove formula (10.1), i.e., that v2 +w2 = r2 is a differential invariant of the
dynamics, using the following proof:

∗
R ⊢ 2vw+2w(v) = 0
[:=] ⊢ [v′:=w][w′:= v]2vv′+2ww′ = 0
dI

v2 +w2 = r2 ⊢ [v′ = w,w′ = v]v2 +w2 = r2

→R ⊢ v2 +w2 = r2→ [v′ = w,w′ = v]v2 +w2 = r2

This proof is easier and more direct than the MR monotonicity proof in Chap. 10.

11.4.3 Differential Invariant Inequalities

The differential invariant axioms and proof rules considered so far give a good un-
derstanding of how to prove equational invariants. What about inequalities? How
can they be proved?

Before you read on, see if you can find the answer for yourself.

11.4 Operators in Differential Invariants 333

The primary question to generalize the differential invariant proof rule is again
how to mnemonically define a “differential,” which we do as follows:

(e≤ k)′
def≡ ((e)′ ≤ (k)′)

This gives the following differential invariant axiom, which we simply call DI again:

[x′ = f (x)&Q]e≤ k↔ [?Q]e≤ k

)
← [x′ = f (x)&Q)](e≤ k)′

The only difference to the general axiom DI is the definition of the differential
(e≤ k)′ and its soundness proof. The intuition is that a quantity e with smaller or
equal rate of change than that of k starting from a smaller or equal value initially will
always remain smaller or equal (Fig. 11.4). Lemma 11.3 derives the corresponding
case of the differential induction rule dI from this axiom:

Q ⊢ [x′:= f (x)](e≤ k)′

e≤ k ⊢ [x′ = f (x)&Q]e≤ k

Fig. 11.4 Lesser or equal rate
of change from lesser or equal
initial value

0 t

e
k

Example 11.2 (Cubic dynamics). Similarly, differential induction can easily prove
that 1

3 ≤ 5x2 is an invariant of the cubic dynamics x′ = x3; see the proof in Fig. 11.5
for the dynamics in Fig. 11.6. To apply the differential induction rule dI, we
form the derivative of the differential invariant F ≡ 1

3 ≤ 5x2, which results in the
dL formula (F)′ ≡ (1

3 ≤ 5x2)′ ≡ 0≤ 5 ·2xx′. Now, the differential induction rule
dI takes into account that the derivative of state variable x along the dynamics
is known. Substituting the differential equation x′ = x3 into the inequality yields
[x′:=x3](F)′ ≡ 0≤ 5 ·2xx3, which is a valid formula and is closed by quantifier
elimination with rule R.

Differential invariants that are inequalities are not just a minor variation of equa-
tional differential invariants, because they can prove more. That is, it can be shown
[11] that there are valid formulas that can be proved using differential invariant in-
equalities but cannot be proved just using equations as differential invariants. Some-
times, you need to be prepared to look for inequalities that you can use as differential
invariants. The converse is not true. Everything that is provable using equational dif-
ferential invariants is also provable using differential invariant inequalities [11], but
you should still look for equational differential invariants if they give easier proofs.

334 11 Differential Equations & Proofs

∗
R ⊢ 0≤ 5 ·2x(x3)
[:=] ⊢ [x′:=x3]0≤ 5 ·2xx′
dI 1

3 ≤ 5x2 ⊢ [x′ = x3] 1
3 ≤ 5x2 0 t

x

x0
x′ = x3

Fig. 11.5 Cubic dynamics proof Fig. 11.6 Cubic dynamics

Strict inequalities could also be used as differential invariants when defining their
“differentials” mnemonically as

(e < k)′
def≡ ((e)′ < (k)′)

However, we, instead, prefer a slightly relaxed definition that is also sound:

(e < k)′
def≡ ((e)′ ≤ (k)′)

The intuition is again that a quantity e that starts from a smaller initial value than k

and has no larger rate of change than that of k will always remain smaller (Fig. 11.7).
The cases e≥ k and e > k work analogously.

Fig. 11.7 Lesser or equal rate
of change from lesser initial
value

0 t

e

k

Example 11.3 (Rotational dynamics). An inequality property can be proved easily
for the rotational dynamics v′ = w,w′ = v using the following proof:

∗
R ⊢ 2vw+2w(v)≤ 0
[:=] ⊢ [v′:=w][w′:= v]2vv′+2ww′ ≤ 0
dI

v2 +w2 ≤ r2 ⊢ [v′ = w,w′ = v]v2 +w2 ≤ r2

→R ⊢ v2 +w2 ≤ r2→ [v′ = w,w′ = v]v2 +w2 ≤ r2

Example 11.4 (Odd-order dynamics). The following proof easily proves a simple
invariant with only even powers of a dynamics with only odd powers:

11.4 Operators in Differential Invariants 335

∗ (unsound)

⊢ 1 6= 0

x 6= 5 ⊢ [x′ = 1]x 6= 5 0 t

x

x
′ = 1

x0 + t

Fig. 11.8 Unsound attempt to use disequali-
ties

Fig. 11.9 Linear evolution of x′ = 1

∗
R ⊢ 2x6 +14x4 +4x2 ≥ 0
[:=] ⊢ [x′:=x5 +7x3 +2x]2xx′ ≥ 0
dI

x2 ≥ 2 ⊢ [x′ = x5 +7x3 +2x]x2 ≥ 2

Example 11.5 (Even-order dynamics). The following proof easily proves a simple
invariant with only odd powers of a dynamics with only even powers:

∗
R ⊢ 2x6 +12x4 +10x2 ≥ 0
[:=] ⊢ [x′:=x4 +6x2 +5]2x2x′ ≥ 0
dI

x3 ≥ 2 ⊢ [x′ = x4 +6x2 +5]x3 ≥ 2

Similar straightforward proofs work for any other appropriate sign condition on an
odd power of a purely even dynamics or an even power of a purely odd dynamics,
because the resulting arithmetic has only even powers and, thus, positive signs when
added.

11.4.4 Disequational Differential Invariants

The case that is missing in differential invariant proof rules of atomic formulas is
for postconditions that are disequalities e 6= k? How can they be proved?

Before you read on, see if you can find the answer for yourself.

By analogy to the previous cases, one might expect the following definition:

(e 6= k)′
?≡ ((e)′ 6= (k)′) ???

It is crucial for soundness of differential invariants that (e 6= k)′ is not defined
that way! In the counterexample in Fig. 11.8, variable x can reach x = 0 without
its derivative ever being 0; again, see Fig. 11.9 for the dynamics. Of course, just
because e and k start out different, does not mean they will always stay different if
they evolve with different derivatives. Au contraire, it is because they evolve with
different derivatives that they might catch each other (Fig. 11.10).

336 11 Differential Equations & Proofs

Fig. 11.10 Different rates of
change from different initial
values do not prove anything

0 t

k

e

Instead, if e and k start out different and evolve with the same derivative, they
will always stay different. So the sound definition is slightly unexpected:

(e 6= k)′
def≡ ((e)′ = (k)′)

11.4.5 Conjunctive Differential Invariants

The next case to consider is where the invariant that we want to prove is a conjunc-
tion F ∧G. The crucial question then is again what a “differential” (F ∧G)′ would
be that measures the rate of change in truth-values of the conjunction F ∧G.

Before you read on, see if you can find the answer for yourself.

Of course, there aren’t many changes of truth-values to speak of, because there
are only two: true and false. But, still, no change in truth-value is a good thing for
an invariant argument. An invariant should always stay true if it is true initially. To
show that a conjunction F ∧G is invariant it is perfectly sufficient to prove that both
are invariant. This can be justified separately, but is more obvious when recalling
how box distributes over conjunctions.

Lemma 5.10 ([]∧ boxes distribute over conjunctions). This axiom is sound:

[]∧ [α](P∧Q)↔ [α]P∧ [α]Q

Consequently, the mnemonic “differential” for conjunction is the conjunction of
the differentials:

(A∧B)′ ≡ (A)′∧ (B)′

Soundness of this definition can be established by deriving it with the help of derived
axiom []∧ to split each of the postconditions into separate conjuncts; see Fig. 11.11.
The remaining premise in Fig. 11.11 is equivalent to the conjunction

[x′ = f (x)&Q](A)′→ [?Q]A→ [x′ = f (x)&Q]A

)

∧

[x′ = f (x)&Q](B)′→ [?Q]B→ [x′ = f (x)&Q]B

)

Both conjuncts derive from axiom DI by induction hypothesis, because they have
simpler postconditions.

11.4 Operators in Differential Invariants 337

[]∧
⊢ [x′ = f (x)&Q](A)′∧[x′ = f (x)&Q](B)′→ [?Q]A∧[?Q]B→[x′ = f (x)&Q]A∧[x′ = f (x)&Q]B

⊢ [x′ = f (x)&Q](A∧B)′→ [?Q](A∧B)→ [x′ = f (x)&Q](A∧B)

Fig. 11.11 Soundness proof for conjunctive differential invariant axiom

Lemma 11.3 derives the corresponding case of the differential induction rule dI
from this axiom, which enables us to prove conjunctions as in this example:

∗
R ⊢ 2vw+2w(v)≤ 0∧2vw+2w(v)≥ 0
[:=] ⊢ [v′:=w][w′:= v](2vv′+2ww′ ≤ 0∧2vv′+2ww′ ≥ 0)
dI

v2+w2≤r2∧ v2+w2≥r2 ⊢ [v′ = w,w′ = v](v2 +w2 ≤ r2∧ v2 +w2 ≥ r2)

Of course, a manual proof using axiom []∧ to conduct two separate proofs that
the left conjunct is a differential invariant and that, separately, the right conjunct
also is a differential invariant would have worked equally well. As the invariant
v2 +w2 ≤ r2∧ v2 +w2 ≥ r2 is equivalent to v2 +w2 = r2, the above proof gives yet
another proof of (10.1) when combined with a corresponding use of the generaliza-
tion rule MR.

Example 11.6 (Bouncing ball’s gravity). One of the major complications in the
bouncing-ball proofs in Chap. 5 and Chap. 7 was the somewhat unwieldy arithmetic
resulting from solving the differential equations. Its loop invariant can be proved
more easily without solutions directly by differential invariants:

j(x,v)
def≡ 2gx = 2gH v2∧ x≥ 0 (7.10*)

The only complication is that this conjunction is not a differential invariant for the
bouncing ball’s dynamics x′ = v,v′ = g&x≥ 0, because x ≥ 0 is not inductive
since the resulting induction step v≥ 0 obtained from the differential (x≥ 0)′ is not
valid because the velocity is negative on the way down.

Just like the justification for (A∧B)′ ≡ (A)′ ∧ (B)′ did, the proof in Fig. 11.12
also uses the []∧ axiom to split the postcondition and conduct independent proofs
for independent questions. The trend for the conjunct x ≥ 0 is potentially unsafe,
because negative velocities would ultimately violate x ≥ 0 if it wasn’t for the evo-
lution domain constraint keeping the ball above ground. Only the first conjunct is a
differential invariant. The second conjunct can be proved by differential weakening
(dW), because x≥ 0 is the evolution domain. Observe how the arithmetic in differ-
ential invariant reasoning is rather tame, because it is obtained by differentiation.
This is quite unlike the arithmetic with solutions, which is obtained by integration.

338 11 Differential Equations & Proofs

∗
R

x≥0 ⊢ 2gv = 2v(g)
[:=]

x≥0 ⊢ [x′:=v][v′:= g]2gx′ = 2vv′
dI 2gx=2gH v2 ⊢ [x′′= g&x≥0]2gx=2gH v2

∗
id

x≥0 ⊢ x≥0
dW ⊢ [x′′= g&x≥0]x≥0

[]∧ 2gx=2gH v2,x≥ 0 ⊢ [x′′ = g&x≥0](2gx=2gH v2∧ x≥0)

Fig. 11.12 Differential invariant proof for bouncing ball in gravity

11.4.6 Disjunctive Differential Invariants

The next case to consider is where the invariant that we want to prove is a disjunc-
tion A∨B. Our other lemmas take care of how to handle differential effects and
differential weakening, if only we define the correct “differential” (A∨B)′. How?

Before you read on, see if you can find the answer for yourself.

The “differential” of a conjunction is the conjunction of the differentials. So, by
analogy, it might stand to reason to define the “differential” of a disjunction as the
disjunction of the differentials.

(A∨B)′
?≡ (A)′∨ (B)′ ???

Let’s give it a try:

unsound
R ⊢ 2vw+2w(v) = 0∨5v+ rw≥ 0
[:=] ⊢ [v′:=w][w′:= v]2vv′+2ww′ = 0∨ r′v+ rv′ ≥ 0

v2 +w2 = r2∨ rv≥ 0 ⊢ [v′ = w,w′ = v,r′ = 5](v2 +w2 = r2∨ rv≥ 0)

That would be spectacularly wrong, however, because the formula at the bottom is
not actually valid, so it does not deserve a proof, even if the formula at the top is
valid. We have no business proving formulas that are not valid and if we ever could,
we would have found a serious unsoundness in the proof rules.

For soundness of differential invariants, it is crucial that the “differential” (A∨B)′

of a disjunction is defined, e.g., conjunctively as (A)′∧ (B)′ instead of as (A)′∨ (B)′.
From an initial state ω that satisfies ω ∈ [[A]], and hence ω ∈ [[A∨B]], the for-
mula A∨B is only sustained differentially if A itself is a differential invariant, not
if B is. For instance, v2 +w2 = r2∨ rv≥ 0 is not an invariant of the above differen-
tial equation, because rv≥ 0 will be invalidated if we just follow the circle dynamics
long enough. So if the disjunction was true because rv≥ 0 was true at the beginning,
it does not stay invariant, even if the other disjunct v2 +w2 = r2 is invariant.

Instead, splitting differential invariant proofs over disjunctions by the ∨L rule is
the way to go, and, in fact, by axiom []∧, also justifies the choice

11.5 Differential Invariants 339

(A∨B)′
def≡ (A)′∧ (B)′

∗
id

A ⊢ A,B
∨R

A ⊢ A∨B

⊢ [x′:= f (x)](A)′
dI

A ⊢ [x′ = f (x)]A
MR

A ⊢ [x′ = f (x)](A∨B)

∗
id

B ⊢ A,B
∨R

B ⊢ A∨B

⊢ [x′:= f (x)](B)′
dI

B ⊢ [x′ = f (x)]B
MR

B ⊢ [x′ = f (x)](A∨B)
∨L

A∨B ⊢ [x′ = f (x)](A∨B)
→R ⊢ A∨B→ [x′ = f (x)](A∨B)

Soundness of the differential induction axiom with this definition of the differentials
of disjunctions can be proved directly (Fig. 11.13). The proof uses that [?Q](A∨B)
is indeed equivalent to [?Q]A∨ [?Q]B because both are equivalent to Q→ A∨B.
From disjunct [?Q]A, the assumption [x′ = f (x)&Q](A)′ makes it possible to derive
[x′ = f (x)&Q]A from axiom DI by induction hypothesis (it has a simpler postcon-
dition), from which [x′ = f (x)&Q](A∨B) derives by monotonicity rule M[·]. Sim-
ilarly, disjunct [?Q]B derives [x′ = f (x)&Q]B, from which [x′ = f (x)&Q](A∨B)
also derives by monotonicity rule M[·].

11.5 Differential Invariants

Differential invariants are a general proof principle for proving invariants of differ-
ential equations. Summarizing what this chapter has discovered so far leads to a
single axiom DI for differential invariants, from which the corresponding differen-
tial invariant proof rule dI derives.

Definition 11.1 (Differential). The following definition generalizes the differ-
ential operator (·)′ from terms to real-arithmetic formulas:

(F ∧G)′ ≡ (F)′∧ (G)′

(F ∨G)′ ≡ (F)′∧ (G)′

(e≥ k)′ ≡ (e)′ ≥ (k)′ accordingly for ≤,=
(e > k)′ ≡ (e)′ ≥ (k)′ accordingly for <

(e 6= k)′ ≡ (e)′ = (k)′

The operation mapping F to [x′:= f (x)](F)′ is also called the Lie-derivative of
F with respect to x′ = f (x).

[]∧
⊢ [x′ = f (x)&Q](A)′∧ [x′ = f (x)&Q](B)′→ ([?Q]A∨ [?Q]B→ [x′ = f (x)&Q](A∨B))

⊢ [x′ = f (x)&Q](A∨B)′→ [?Q](A∨B)→ [x′ = f (x)&Q](A∨B)

Fig. 11.13 Soundness proof for disjunctive differential invariant axiom

340 11 Differential Equations & Proofs

By Definition 11.1, the “differential” (F)′ of formula F uses the differential (e)′

of the terms e that occur within F . It is possible to lift differential invariants to quan-
tifiers [7], but for our purposes here, it is enough to assume quantifier elimination
has been applied to first eliminate the quantifiers equivalently (Sect. 6.5).

Just like for the initial condition check [?Q]P, a minor twist on the DI axiom
shows that the induction step [x′ = f (x)&Q](P)′ can also assume Q, because no
evolution is possible if the system starts outside Q.

Lemma 11.4 (DI differential invariant axiom). This axiom is sound:

DI

[x′ = f (x)&Q]P↔ [?Q]P

)
← (Q→ [x′ = f (x)&Q](P)′)

The general form of the differential invariant proof rule is derived as in Sect. 11.4.2.

Lemma 11.3 (dI differential invariant proof rule). The differential invariant

proof rule derives from axiom DI:

dI
Q ⊢ [x′:= f (x)](F)′

F ⊢ [x′ = f (x)&Q]F

This proof rule enables us to easily prove (10.2) and all previous proofs as well.
The following version dI’ can be derived easily from the more fundamental, es-
sential form dI similarly to how the most useful loop induction rule loop derives
from the essential form ind. We do not use the version dI’ in practice, because it is
subsumed by a more general proof technique investigated in Sect. 11.8.

dI’
Γ ⊢ F,∆ Q ⊢ [x′:= f (x)](F)′ F ⊢ ψ

Γ ⊢ [x′ = f (x)&Q]ψ,∆

Proof (of Lemma 11.4). A detailed axiomatic proof of axiom DI is located else-
where [12]. The proof of one implication was already in Sect. 11.4.2:

[x′ = f (x)&Q]P→ [?Q]P

The proof of the following implication will be by induction on the structure of P:

[x′ = f (x)&Q](P)′→

[?Q]P→ [x′ = f (x)&Q]P

)
(11.1)

This proof directly implies the validity of the following direction, because the dif-
ferential equation cannot run if Q is not initially true and then also fails test ?Q:

Q→ [x′ = f (x)&Q](P)′

)
→

[?Q]P→ [x′ = f (x)&Q]P

)

The proof of the validity of (11.1) is by structural induction on P. The case of so-
lutions of duration 0 follows directly from the assumption [?Q]P by Definition 3.3
(using that x′ 6∈ FV(P)∪FV(Q)).

11.6 Example Proofs 341

1. If P is of the form e ≥ 0, so (P)′ is (e)′ ≥ 0, then consider a state ω satisfying
[x′ = f (x)&Q](e)′ ≥ 0 and [?Q]e≥ 0. To show that ω ∈ [[[x′ = f (x)&Q]e≥ 0]],
consider any solution ϕ : [0,r] → S with ϕ |= x′ = f (x)∧Q and ϕ(0) = ω

except at x′. By Lemma 10.2, the function h(t)
def
= ϕ(t)[[e]] is differentiable on

[0,r] if r > 0 and, provided FV(e)⊆ {x}, its time-derivative is

dh(t)

dt
(z) =

dϕ(t)[[e]]

dt
(z) = ϕ(z)[[(e)′]]≥ 0

for all times z ∈ [0,r] by the assumption ω ∈ [[[x′ = f (x)&Q](e)′ ≥ 0]]. Since h

is differentiable, there is some 0 < ξ < r by the mean-value theorem such that:

h(r) h(0)
︸︷︷︸

≥0

= (r 0)
︸ ︷︷ ︸

>0

dh(t)

dt
(ξ)

︸ ︷︷ ︸

≥0

≥ 0 (11.2)

Since h(0)≥ 0 by ω ∈ [[[?Q]e≥0]], this implies h(r)≥ 0. Hence, ϕ(r) ∈ [[e≥ 0]].
Thus, ω ∈ [[[x′ = f (x)&Q]e≥ 0]] since this proof works for any solution ϕ .

2. If P is of the form e ≥ k the above case applies to the equivalent e k ≥ 0,
whose differential (e)′ (k)′ ≥ 0 is equivalent to the differential (e)′ ≥ (k)′.

3. If P is of the form e = k, a simple variation of the above proof applies. Al-
ternatively, consider the equivalent e ≥ k ∧ k ≥ e, which has a differential
(e)′ ≥ (k)′ ∧ (k)′ ≥ (e)′ that is equivalent to the differential (e)′ = (k)′. The
minor twist is that this needs a shift in the well-founded induction to artificially
consider conjunctions of inequalities smaller than equations.

4. If P is of the form e > k, a simple variation of the above proof applies, since
its differential (e)′ ≥ (k)′ is equivalent to the differential of e ≥ 0. The only
additional thought is that the initial assumption h(0) > 0 implies h(r) > 0 by
(11.2).

5. If P is of the form A∧B, then the derivation in Fig. 11.11 concludes the validity
of (11.1) for postcondition A∧ B from the validity of (11.1) for the smaller
postcondition A as well as the smaller postcondition B, which are both valid by
induction hypothesis.

6. If P is of the form A∨B, then the derivation in Fig. 11.13 concludes the validity
of (11.1) for postcondition A∨ B from the validity of (11.1) for the smaller
postcondition A as well as the smaller postcondition B, which are both valid by
induction hypothesis. ⊓⊔

Generalizations to systems of differential equations are quite straightforward.

11.6 Example Proofs

So that we gain more experience with differential invariants, this section studies a
few example proofs.

342 11 Differential Equations & Proofs

Example 11.7 (Quartic dynamics). The following simple dL proof uses rule dI to
prove an invariant of a quartic dynamics:

∗
R

a≥ 0 ⊢ 3x2((x 3)4 +a)≥ 0
[:=]

a≥ 0 ⊢ [x′:=(x 3)4 +a]3x2x′ ≥ 0
dI

x3 ≥ 1 ⊢ [x′ = (x 3)4 +a&a≥ 0]x3 ≥ 1

Rule dI directly makes the evolution domain constraint a≥ 0 available as an as-
sumption in the premise, because the continuous evolution is never allowed to leave
it.

Example 11.8 (Damped oscillator). Consider x′ = y,y′ = ω2x 2dωy, which is
the differential equation for the damped oscillator with the undamped angular fre-
quency ω and the damping ratio d. See Fig. 11.14 for one example of an evolution
along this continuous dynamics. Figure 11.14 shows an evolution of x over time t

t

x

-��� -��� -��� ��� ��� ��� ���

-���

-���

-���

���

���

���

���

�

�

Fig. 11.14 Damped-oscillator time trajectory (left) and invariant in phase space (right)

on the left and a trajectory in the x,y state space on the right, which does not leave
the green elliptic region ω2x2 + y2 ≤ c2. General symbolic solutions of symbolic
initial-value problems for this differential equation can become surprisingly diffi-
cult. A differential invariant proof, instead, is very simple:

∗
R ω ≥ 0∧d ≥ 0 ⊢ 2ω2xy 2ω2xy 4dωy2 ≤ 0
[:=] ω ≥ 0∧d ≥ 0 ⊢ [x′:=y][y′:= ω2x 2dωy]2ω2xx′+2yy′ ≤ 0
dI ω2x2 + y2 ≤ c2 ⊢ [x′ = y,y′ = ω2x 2dωy&(ω ≥ 0∧d ≥ 0)]ω2x2 + y2 ≤ c2

Observe that rule dI directly makes the evolution domain constraint ω ≥ 0∧d ≥ 0
available as an assumption in the premise, because the continuous evolution is never
allowed to leave it.

11.7 Assuming Invariants 343

11.7 Assuming Invariants

Let’s make the dynamics more interesting and see what happens. Suppose there is a
robot at a point with coordinates (x,y) that is facing in direction (v,w). Suppose the
robot moves with constant (linear) velocity into direction (v,w). Suppose the direc-
tion (v,w) is simultaneously rotating as in Example 10.1 with an angular velocity ω
as in Example 2.7 (Fig. 3.9). Then the resulting differential equations are:

x′ = v,y′ = w,v′ = ωw,w′ = ωv

because the derivative of the x coordinate is the component v of the direction and

Fig. 11.15 Illustration of the
Dubins dynamics of a point
(x,y) moving in direction
(v,w) along a dashed curve
with angular velocity ω

x

y

(v,w)

ϑ

ω

the derivative of the y coordinate is the component w of the direction. The angular
velocity ω determines how fast the direction (v,w) rotates. Consider the conjecture

(x 1)2+(y 2)2 ≥ p2→ [x′ = v,y′ = w,v′ = ωw,w′ = ωv](x 1)2+(y 2)2 ≥ p2

(11.3)
This conjecture expresses that the robot at position (x,y) will always stay at distance
≥p from the point (1,2) if it started there. Let’s try to prove conjecture (11.3):

⊢ 2(x 1)v+2(y 2)w≥ 0
[:=] ⊢ [x′:=v][y′:=w]2(x 1)x′+2(y 2)y′ ≥ 0
dI (x 1)2 +(y 2)2 ≥ p2 ⊢ [x′ = v,y′ = w,v′ = ωw,w′ = ωv](x 1)2 +(y 2)2 ≥ p2

Unfortunately, this differential invariant proof does not work. As a matter of fact,
fortunately it does not work out, because conjecture (11.3) is not valid, so we will not
be able to prove it with a sound proof technique. Conjecture (11.3) is too optimistic.
Starting from a bad direction far far away, the robot will get too close to the point
(1,2). Other directions may be fine.

Inspecting the above failed proof attempt, we could prove (11.3) if we knew
something about the direction (v,w) that would allow the remaining premise to be
proved. What could that be?

Before you read on, see if you can find the answer for yourself.

Certainly, if we knew v = w = 0, the resulting premise would be proved. Yet, that
case is pretty boring because it corresponds to the point (x,y) being stuck forever.
A more interesting case in which the premise would easily be proved is if we knew

344 11 Differential Equations & Proofs

x 1 = w and y 2 = v. In what sense could we “know” x 1 = w∧ y 2 =
v? Certainly, we would have to assume this compatibility condition for directions
versus position is true in the initial state, otherwise we would not necessarily know
the condition holds true where we need it. So let’s modify (11.3) to include this
assumption:

x 1 = w∧ y 2 = v∧ (x 1)2 +(y 2)2 ≥ p2→
[x′ = v,y′ = w,v′ = ωw,w′ = ωv](x 1)2 +(y 2)2 ≥ p2 (11.4)

Yet, the place in the proof where we need to know x 1 = w∧ y 2 = v for the
above sequent proof to continue is in the middle of the inductive step. How can we
make that happen?

Before you read on, see if you can find the answer for yourself.

One step in the right direction is to check whether x 1 = w∧ y 2 = v is a
differential invariant of the dynamics, so it stays true forever if it is true initially:

not valid

⊢ v = (ωv)∧w = ωw
[:=] ⊢ [x′:=v][y′:=w][v′:=ωw][w′:= ωv](x′ = w′∧ y′ = v′)
dI

x 1= w∧y 2=v ⊢ [x′ = v,y′ = w,v′ = ωw,w′ = ωv](x 1 = w∧ y 2 = v)

This prove does not quite work out, because the two sides of the equations are off
by a factor of ω and, indeed, x 1 = w∧y 2 = v is not an invariant unless ω = 1.
On second thoughts, that makes sense, because the angular velocity ω determines
how quickly the robot turns, so if there is any relation between position and direction
at all, it should somehow depend on the angular velocity ω .

Let’s refine the conjecture to incorporate the angular velocity on the side of the
equation where it was missing in the above proof and consider ω(x 1) = w∧
ω(y 2) = v instead. That knowledge would still help the proof of (11.3), just with
the same extra factor on both terms. So let’s modify (11.4) to use this assumption
on the initial state:

ω(x 1) = w∧ω(y 2) = v∧ (x 1)2 +(y 2)2 ≥ p2→
[x′ = v,y′ = w,v′ = ωw,w′ = ωv](x 1)2 +(y 2)2 ≥ p2 (11.5)

A simple proof shows that the new addition ω(x 1) = w∧ω(y 2) = v is a
differential invariant of the dynamics, so it holds always if it holds at the beginning:

∗
R ⊢ ωv = (ωv)∧ωw = ωw
[:=] ⊢ [x′:=v][y′:=w][v′:=ωw][w′:= ωv](ωx′ = w′∧ωy′ = v′)
dI ω(x 1)= w∧ω(y 2)=v ⊢ [x′ = v,y′ = w,v′ = ωw,w′ = ωv](ω(x 1)= w∧ω(y 2)=v)

11.7 Assuming Invariants 345

Now, how can this freshly proved invariant ω(x 1) = w∧ω(y 2) = v be
made available in the previous proof? Perhaps we could prove (11.5) using the con-
junction of the invariant we want with the additional invariant we need:

(x 1)2 +(y 2)2 ≥ p2∧ω(x 1) = w∧ω(y 2) = v

That does not work (eliding the antecedent in the conclusion just for space reasons):

⊢ 2(x 1)v+2(y 2)w≥ 0∧ωv = (ωv)∧ωw = ωw
[:=] ⊢ [x′:=v][y′:=w][v′:=ωw][w′:= ωv](2(x 1)x′+2(y 2)y′ ≥ 0∧ωx′ = w′∧ωy′ = v′)
dI . . ⊢ [x′ = v,y′ = w,v′ = ωw,w′ = ωv]((x 1)2 +(y 2)2 ≥ p2∧ω(x 1)= w∧ω(y 2)=v)

because the right conjunct in the premise is still proved beautifully but the left
conjunct in the premise needs to know the invariant, while the differential invari-
ant proof rule dI does not make the invariant F available in the antecedent of the
premise.

In the case of loops, the invariant F can be assumed to hold before the loop body
in the induction step (the other form loop of the loop invariant rule):

ind
P ⊢ [α]P

P ⊢ [α∗]P

By analogy, we could augment the differential invariant proof rule dI similarly to
include the invariant in the assumptions. Is that a good idea?

Before you read on, see if you can find the answer for yourself.

It looks tempting to suspect that rule dI could be improved by assuming the
differential invariant F in the antecedent of the premise:

dI??
Q∧F ⊢ [x′:= f (x)](F)′

F ⊢ [x′ = f (x)&Q]F
sound?

After all, we really only care about staying safe when we are still safe since we
start safe. Rule dI?? would indeed easily prove the formula (11.5), which might
make us cheer. But implicit properties of differential equations are a subtle business.
Assuming F as in rule dI?? would, in fact, be unsound, as the following simple
counterexample shows, which “proves” an invalid property using the unsound proof
rule dI??:

(unsound)

v2 2v+1 = 0 ⊢ 2vw 2w = 0

v2 2v+1 = 0 ⊢ [v′:=w][w′:= v](2vv′ 2v′ = 0)

v2 2v+1 = 0 ⊢ [v′ = w,w′ = v]v2 2v+1 = 0

Of course, v2 2v+1 = 0 does not stay true for the rotational dynamics, because
v changes! And there are many other invalid properties that the unsound proof rule
dI?? would claim to “prove,” for example.

346 11 Differential Equations & Proofs

(unsound)

 (x y)2 ≥ 0 ⊢ 2(x y)(1 y)≥ 0

 (x y)2 ≥ 0 ⊢ [x′:=1][y′:=y](2(x y)(x′ y′)≥ 0)
 (x y)2 ≥ 0 ⊢ [x′ = 1,y′ = y]((x y)2 ≥ 0)

Assuming an invariant of a differential equation during its own proof is, thus, ter-
ribly incorrect, even though it has been suggested numerous times in the literature.
There are some cases for which rule dI?? or variations of it are still sound, but these
are nontrivial [2, 3, 5, 8, 11]. The reason why assuming invariants for their own
proof is problematic for the case of differential equations is subtle [5, 11]. In a nut-
shell, the proof rule dI?? assumes more than it knows, so that the argument becomes
cyclic. The antecedent only provides the invariant at a single point and Chap. 10
already explained that derivatives are not particularly well defined at a single point.
That is one of the reasons why we had to exercise extraordinary care in our argu-
ments to define precisely what derivatives and differentials were to begin with in
Chap. 10. Unlike time-derivatives, differentials have meaning in isolated states.

11.8 Differential Cuts

Instead of these ill-guided attempts to assume invariants for their own proof, there
is a complementary proof rule for differential cuts [4, 5, 8, 11] that can be used to
strengthen assumptions about differential equations in a sound way.

Lemma 11.5 (dC differential cut proof rule). The differential cut proof rule

is sound and derives from axiom DC, which will be considered subsequently:

dC
Γ ⊢ [x′ = f (x)&Q]C,∆ Γ ⊢ [x′ = f (x)&(Q∧C)]P,∆

Γ ⊢ [x′ = f (x)&Q]P,∆

The differential cut rule works like a logical cut, but for differential equations.
Recall the cut rule from Chap. 6, which can be used to prove a formula C in the left
premise as a lemma and then assume it in the right premise:

cut
Γ ⊢ C,∆ Γ ,C ⊢ ∆

Γ ⊢ ∆

Similarly, differential cut rule dC proves a property C of a differential equation
in the left premise and then assumes C to hold in the right premise, except that
it assumes C to hold during a differential equation by restricting the behavior of
the system. To prove the original postcondition P from the conclusion, rule dC re-
stricts the system evolution in the right premise to the subdomain Q∧C of Q, which
changes the system dynamics but is a pseudo-restriction, because the left premise
proves that C is an invariant anyhow (e.g., using rule dI). Note that rule dC is spe-
cial in that it changes the dynamics of the system (it adds a constraint to the system

11.8 Differential Cuts 347

evolution domain region), but it is still sound, because this change does not reduce
the reachable set, thanks to the left premise; see Fig. 11.16

Fig. 11.16 If the solution of the differential equation can never leave region C and enter the red
region ¬C (left), then this unreachable region ¬C can be cut out of the state space without changing
the dynamics of the system by restricting it to C (right)

The benefit of rule dC is that C will (soundly) be available as an extra assumption
for all subsequent dI uses in the right premise (see, e.g., the use of the evolution
domain constraint in Example 11.8). In particular, the differential cut rule dC can
be used to strengthen the right premise with more and more auxiliary differential
invariants C that will be available as extra assumptions in the right premise, once
they have been proven to be differential invariants in the left premise.

Example 11.9 (Increasingly damped oscillator). The damped oscillator in Exam-
ple 11.8 was easily provable, but its proof crucially depended on having the damp-
ing coefficient d ≥ 0 in the evolution domain constraint so that the induction step
knew that the damping coefficient was not negative. In the following increasingly
damped oscillator, the damping coefficient changes (albeit in arbitrary ways):

ω2x2+y2≤ c2∧d≥ 0→ [x′ = y,y′ = ω2x 2dωy,d′ = 7&ω ≥ 0]ω2x2+y2≤ c2

This makes the damped oscillator apply increasing damping, but the system still
always stays in the ellipse (Fig. 11.17). A direct proof with a differential invariant
will fail, because of the lack of knowledge about the damping coefficient d, which,
after all, is now changing. But the indirect proof in Fig. 11.18 succeeds. It uses a
differential cut with d ≥ 0 to first prove, in the left branch, that d always remains
nonnegative by a differential invariant argument, and then continues the right branch
as in Example 11.8 using the new added evolution domain constraint d ≥ 0.

Proposition 11.1 (Increasingly damped oscillation). This dL formula is valid:

ω2x2+y2≤ c2∧d≥ 0→ [x′ = y,y′ = ω2x 2dωy,d′ = 7&ω ≥ 0]ω2x2+y2≤ c2

348 11 Differential Equations & Proofs

-��� -��� -��� ��� ��� ��� ���

-���

-���

-���

���

���

���

x

y
1 2 3 4 5 6

-1.5

-1.0

-0.5

0.0

0.5

1.0

Fig. 11.17 Trajectory with vector field and evolution of an increasingly damped oscillator

∗
R ω ≥ 0 ⊢ 7≥ 0
[:=]ω ≥ 0 ⊢ [d′:=7]d′ ≥ 0
dI

d ≥ 0 ⊢ [x′ = y,y′ = ω2x 2dωy,d′=7&ω≥0]d ≥ 0 proof as in Example 11.8

dC
d≥0 ⊢ [above]d≥0 ω2x2+y2≤c2 ⊢ [x′=y,y′= ω2x 2dωy,d′=7&ω≥0∧d≥0]ω2x2+y2≤c2

ω2x2 + y2 ≤ c2,d ≥ 0 ⊢ [x′ = y,y′ = ω2x 2dωy,d′ = 7&ω ≥ 0]ω2x2 + y2 ≤ c2

Fig. 11.18 Differential cut proof for the increasingly damped oscillator

Example 11.10 (Robot formula). Proving the robot formula (11.5) in a sound way
is now easy using a differential cut dC by ω(x 1) = w∧ω(y 2) = v after we
abbreviate (x 1)2 +(y 2)2 ≥ p2 by A and ω(x 1) = w∧ω(y 2) = v by B:

∗
R

B ⊢ 2(x 1)v+2(y 2)w≥ 0
[:=]

B ⊢ [x′:=v][y′:=w](2(x 1)x′+2(y 2)y′ ≥ 0)
dI ⊳ A ⊢ [x′=v,y′=w,v′=ωw,w′= ωv&ω(x 1)= w∧ω(y 2)=v](x 1)2+(y 2)2≥p2

dC
A,B ⊢ [x′ = v,y′ = w,v′ = ωw,w′ = ωv](x 1)2 +(y 2)2 ≥ p2

The first premise of the use of rule dC that is elided above (marked by ⊳) is proved:

∗
R ⊢ ωv = (ωv)∧ωw = ωw
[:=] ⊢ [x′:=v][y′:=w][v′:=ωw][w′:= ωv](ωx′ = w′∧ωy′ = v′)
dI ω(x 1)= w∧ω(y 2)=v ⊢ [x′=v . .](ω(x 1)= w∧ω(y 2)=v)

Amazing. Now we have a proper sound proof of the quite nontrivial robot motion
property (11.5). And it even is a surprisingly short proof.

It is not always enough to just do a single differential cut. Sometimes, you may
want to do a differential cut with a formula C, then use C on the right premise
of dC to prove a second differential cut with a formula D and then on its right
premise have C ∧D available to continue the proof; see Fig. 11.19. For example,
we could also have gotten a proof of (11.5) by first doing a differential cut with
ω(x 1) = w, then continuing with a differential cut with ω(y 2) = v, and then

11.8 Differential Cuts 349

finally uising both to prove the postcondition (Exercise 11.6). Using this differential
cut process repeatedly has turned out to be extremely useful in practice and even
simplifies the invariant search, because it leads to several simpler properties to find
and prove instead of a single complex property [6, 13, 14].

Fig. 11.19 If the solution of the differential equation can never leave region D and enter the top
red region ¬D (left), then this unreachable region ¬D can also be cut out of the state space without
changing the dynamics of the system by restricting it further to D (right)

It is straightforward to prove the differential cut rule dC sound from the seman-
tics. The other differential equation proof rules were, however, proved sound by
deriving them from corresponding axioms, which are, in turn, proved sound from
the semantics. That approach also works for differential cuts.

Lemma 11.6 (DC differential cut axiom). This axiom is sound:

DC

[x′ = f (x)&Q]P↔ [x′ = f (x)&Q∧C]P

)
← [x′ = f (x)&Q]C

Proof. Any state that satisfies [x′ = f (x)&Q]P also satisfies [x′ = f (x)&Q∧C]P,
because every solution of ϕ |= x′ = f (x)∧Q∧C also solves ϕ |= x′ = f (x)∧Q.

Conversely, consider an initial state ω satisfying the assumption [x′ = f (x)&Q]C.
Thus, starting in ω , every solution ϕ that satisfies ϕ |= x′ = f (x)∧Q also satisfies C

after the solution, so all along the solution, because every restriction of a solution
is a solution. Thus, if solution ϕ starts in ω and satisfies ϕ |= x′ = f (x)∧Q, it also
satisfies ϕ |= x′ = f (x)∧Q∧C, so that the assumption ω ∈ [[[x′ = f (x)&Q∧C]P]]
implies ω ∈ [[[x′ = f (x)&Q]P]]. ⊓⊔

The differential cut rule dC derives directly from the differential cut axiom DC.
Compared to rule dC, the axiom DC has the additional information that the right
premise and conclusion of rule dC are, indeed, equivalent if the left premise is valid.

350 11 Differential Equations & Proofs

11.9 Differential Weakening Again

Observe how differential weakening from Sect. 11.3 can be useful in combination
with differential cuts. For example, after having performed the differential cut il-
lustrated in Fig. 11.16 and, then, subsequently, performing the differential cut illus-
trated in Fig. 11.19, all unsafe blue regions have been cut out of the state space, so
that the system in Fig. 11.19(right) is trivially safe by differential weakening, be-
cause there are no more unsafe blue regions. That is, the ultimate evolution domain
constraint Q∧C∧D after the two differential cuts with C and with D trivially im-
plies the safety condition F , i.e., Q∧C∧D ⊢ F is valid. But notice that it took the
two differential cuts to make differential weakening useful. The original evolution
domain constraint Q was not strong enough to imply safety, since there were still
unsafe blue regions in the original system in Fig. 11.16(left) and even still in the
intermediate system in Fig. 11.19(left) obtained after one differential cut with C.

If the system starts in an initial state where the evolution domain constraint is not
satisfied, the system is stuck so cannot evolve for any duration, not even for duration
0. Any postcondition holds after all continuous evolutions of x′ = f (x)&Q if there
simply are none. In particular in a state where the evolution domain constraint Q

is false, the differential invariant axiom DI proves [x′ = f (x)&Q]false, because the
assumption Q in the induction step is not satisfied and the test ?Q in [?Q]false fails.

Such a proof, thus, is closed by a differential cut dC with false followed by a
use of differential invariant axiom DI and differential weakening dW to show that
the original postcondition follows from the augmented evolution domain constraint
Q∧ false. An easier proof is to use the monotonicity rule MR to prove the new post-
condition false, which trivially implies the original postcondition P, and is proved
by differential invariant axiom DI if the initial condition A implies ¬Q so that the
conjunction A∧Q is a contradiction (even (false)′ ≡ true holds by Exercise 11.10):

A,Q ⊢ false
→R

A ⊢ Q→ false
[?]

A ⊢ [?Q]false

A,Q ⊢
WR

A,Q ⊢ [x′ = f (x)&Q](false)′
DI

A ⊢ [x′ = f (x)&Q]false

∗
R

false ⊢ P
MR

A ⊢ [x′ = f (x)&Q]P

11.10 Differential Invariants for Solvable Differential Equations

The primary motivation for studying differential invariants, differential cuts, and
differential weakening was the need for advanced induction techniques for advanced
differential equations that have no closed-form solutions in decidable arithmetic. For
such advanced differential equations, the solution axiom schema [′] cannot be used
or leads to undecidable arithmetic. But differential invariant style reasoning is still
helpful even for simpler differential equations that have (rational) solutions.

11.10 Differential Invariants for Solvable Differential Equations 351

Example 11.11 (Differential cuts prove falling balls). Recall the dL formula for a
falling ball that was a part of the bouncing-ball proof from Chap. 7:

2gx = 2gH v2∧ x≥ 0→ [x′′ = g&x≥ 0](2gx = 2gH v2∧ x≥ 0) (11.6)

where {x′′ = g&x≥ 0} def≡ {x′ = v,v′ = g&x≥ 0}

Chap. 7 proved dL formula (11.6) using the solution of the differential equations
with the solution axiom schema [′]. Yet, dL formula (11.6) can also be proved with a
mix of differential invariants, differential cuts, and differential weakening, instead:

∗
id

x≥ 0∧2gx=2gH v2 ⊢ 2gx = 2gH v2∧ x≥ 0
dW⊳ 2gx = 2gH v2 ⊢ [x′′ = g&x≥0∧2gx=2gH v2](2gx=2gH v2∧ x≥0)
dC 2gx = 2gH v2 ⊢ [x′′ = g&x≥ 0](2gx = 2gH v2∧ x≥ 0)

The elided premise (marked ⊳) after dC is proved by differential invariants:

∗
R

x≥ 0 ⊢ 2gv = 2v(g)
[:=]

x≥ 0 ⊢ [x′:=v][v′:= g]2gx′ = 2vv′
dI 2gx = 2gH v2 ⊢ [x′′ = g&x≥ 0]2gx = 2gH v2

Note that differential weakening (dW) works for proving the postcondition x ≥ 0,
but dI would not work for proving x≥ 0, because its derivative is (x≥ 0)′ ≡ v≥ 0,
which is not an invariant of the bouncing ball since its velocity ultimately becomes
negative when it is falling again under gravity.

The above proof is elegant and has notably easier arithmetic than the arithmetic
required when working with solutions of the bouncing ball in Chap. 7.

Note 62 (Differential invariants lower degrees) Differential invariant proof
rule dI works by differentiation, which lowers polynomial degrees. The dif-
ferential equation solution axiom [′] works with solutions, which ultimately
integrate the differential equation and, thus, increase the degree. The computa-
tional complexity of the resulting arithmetic is, thus, often in favor of differen-
tial invariants even in cases where the differential equations can be solved so
that the solution axiom [′] would be applicable.

Since the first conjunct of the postcondition in (11.6) is not needed for the proof
of the second conjunct, a similar differential invariant proof can also be obtained
using derived axiom []∧ to split the postcondition instead of dC to nest it:

[]∧
dI

[:=]

R
∗

x≥ 0 ⊢ 2gv = 2v(g)

x≥ 0 ⊢ [x′:=v][v′:= g]2gx′ = 2vv′

2gx = 2gH v2 ⊢ [x′′ = g&x≥ 0]2gx = 2gH v2dW

id
∗

x≥ 0 ⊢ x≥ 0
2gx = 2gH v2 ⊢ [x′′ = g&x≥ 0]x≥ 0

2gx = 2gH v2 ⊢ [x′′ = g&x≥ 0](2gx = 2gH v2∧ x≥ 0)

352 11 Differential Equations & Proofs

This is how it pays to pay attention to which parts of a postcondition hold by which
principle. The second conjunct x≥ 0 follows from the evolution domain alone and,
thus, holds by dW. The first conjunct is inductive and follows by dI.

Besides the favorably simple arithmetic coming from differential invariants, the
other reason why the above proofs worked so elegantly is that the invariant was a
clever choice that we came up with in a creative way in Chap. 4. There is nothing
wrong with being creative. On the contrary! Please always be creative!

11.11 Summary

This chapter introduced very powerful proof rules for differential invariants, with
which you can prove even complicated properties of differential equations in easy
ways. Just like in the case of loops, where the search for invariants is nontrivial,
differential invariants require some smarts (or good automatic procedures) to be
found. Yet, once differential invariants have been identified, the proof follows easily.

The new proof rules and axioms that they are based on are summarized in
Fig. 11.20. For convenience, the derivation axioms and axiom DE from Chap. 10
are included again. Differential invariants follow the intuition of proving properties
of differential equations that get more true over time along the differential equa-
tion. Or they prove properties that at least do not get less true along a differential
equation, so will remain true if they start true. The differential invariant proof rule
determines locally whether a property remains true along a differential equation by
inspecting the differential of the postcondition in the direction that the right-hand
side of the differential equation indicates. Since the resulting premise is formed by
differentiation and substitution, it is relatively easy to check whether the resulting
real arithmetic is true.

If the postcondition of a differential equation is getting less true along the dy-
namics of the differential equation, however, then additional thoughts are needed.
For example, differential cuts (axiom DC and corresponding rule dC) provide a way
of enriching the dynamics with a property C that is first proved to be an invariant
itself. The differential cut principle makes it possible to prove a sequence of addi-
tional properties of differential equations and then to use them subsequently in the
proof. Differential cuts are powerful reasoning principles, because they can exploit
additional implicit structure in the system by proving and then using lemmas about
the behavior of the system. In particular, differential cuts can make into differential
invariants properties that have not been differential invariants before by first restrict-
ing the domain to a smaller subset on which the property actually is an invariant.
Indeed, differential cuts are a fundamental proof principle for differential equations,
satisfying the No Differential Cut Elimination theorem [11], because some proper-
ties can only be proved with differential cuts, not without them. Yet another way
properties of differential equations that are not differential invariants directly can be
made inductive will be explored in the next chapter.

11.12 Appendix: Proving Aerodynamic Bouncing Balls 353

Fig. 11.20 Axioms and proof rules for differential invariants and differential cuts of differ-
ential equations

dI
Q ⊢ [x′:= f (x)](F)′

F ⊢ [x′ = f (x)&Q]F
dW

Q ⊢ P

Γ ⊢ [x′ = f (x)&Q]P,∆

dC
Γ ⊢ [x′ = f (x)&Q]C,∆ Γ ⊢ [x′ = f (x)&(Q∧C)]P,∆

Γ ⊢ [x′ = f (x)&Q]P,∆

DW [x′ = f (x)&Q]P↔ [x′ = f (x)&Q](Q→ P)

DI

[x′ = f (x)&Q]P↔ [?Q]P

)
← (Q→ [x′ = f (x)&Q](P)′)

DC

[x′ = f (x)&Q]P↔ [x′ = f (x)&Q∧C]P

)
← [x′ = f (x)&Q]C

DE [x′ = f (x)&Q]P↔ [x′ = f (x)&Q][x′ := f (x)]P

+′ (e+ k)′ = (e)′+(k)′

 ′ (e k)′ = (e)′ (k)′

·′ (e · k)′ = (e)′ · k+ e · (k)′

/′ (e/k)′ =

(e)′ · k e · (k)′

)
/k2

c′ (c())′ = 0 (for numbers or constants c())

x′ (x)′ = x′ (for variable x ∈ V)

11.12 Appendix: Proving Aerodynamic Bouncing Balls

This section studies a hybrid system with differential invariants. Remember the
bouncing ball whose safety was proved in Chap. 7?

The little acrophobic bouncing ball has graduated from its study of loops and
control and yearningly thinks back to its joyful time when it was studying continu-
ous behavior. Caught up in nostalgia, Quantum the bouncing ball suddenly discovers
that it unabashedly neglected the effect that air has on bouncing balls all the time. It
sure is fun to fly through the air, so the little bouncing ball swiftly decides to make
up for that oversight by including a proper aerodynamical model in its favorite dif-
ferential equation. The effect that air has on the bouncing ball is air resistance and,
it turns out, air resistance gets stronger the faster the ball is flying. After a couple of
experiments, the little bouncing ball finds out that air resistance is quadratic in the
velocity with an aerodynamic damping factor r > 0.

Now the strange thing with air is that air is always against the flying ball! Air
always provides resistance, no matter in which direction the ball is flying. If the
ball is hurrying upwards, the air holds it back and slows it down by decreasing its
positive speed v > 0. If the ball is rushing back down to the ground, the air still
holds the ball back and slows it down, only then that actually means increasing the

354 11 Differential Equations & Proofs

negative velocity v < 0, because that corresponds to decreasing the absolute value
|v|. How can that be modeled properly?

One way of modeling this situation would be to use the (discontinuous) sign
function signv that has value 1 for v > 0, value 1 for v < 0, and value 0 for v = 0:

x′ = v,v′ = g (signv)rv2 &x≥ 0 (11.7)

That, however, gives a differential equation with a discontinuous right-hand side
[1]. Instead, the little bouncing ball has learned to appreciate the philosophy behind
hybrid systems, which advocates for keeping the continuous dynamics simple and
moving discontinuities and switching aspects to where they belong: the discrete
dynamics. After all, switching and discontinuities are what the discrete dynamics is
good at.

Consequently, the little bouncing ball decides to split modes and separate the
upward-flying part v≥ 0 from the downward flying part v≤ 0 and offer the system
a nondeterministic choice between the two:1

x≤ H ∧ v = 0∧ x≥ 0∧g > 0∧1≥ c≥ 0∧ r ≥ 0→
[

if(x = 0)v := cv;

({x′ = v,v′ = g rv2 &x≥0∧ v≥0}∪{x′ = v,v′ = g+ rv2 &x≥0∧ v≤0})
)∗

]
(0≤ x≤ H)

(11.8)
In pleasant anticipation of the new behavior that this aerodynamic bouncing ball

model provides, the little bouncing ball is eager to give it a try. Before daring to
bounce around with this model, though, the acrophobic bouncing ball first wants
to be convinced that it would be safe to use, i.e., the model actually satisfies the
height limit property in (11.8). So the bouncing ball first sets out on a proof adven-
ture. After writing down several ingenious proof steps, the bouncing ball finds out
that its previous proof does not carry over. For one thing, the nonlinear differential
equations can no longer be solved quite so easily. That makes the solution axiom
[′] rather useless. But, fortunately, the little bouncing ball brightens up again as it
remembers that unsolvable differential equations were what differential invariants
were good at. And the ball is rather keen on trying them in the wild, anyhow.

However, first things first. The first step of the proof after rule→R is the search
for an invariant for the loop induction proof rule loop. Yet, since the proof of (11.8)
cannot work by solving the differential equations, we will also need to identify
differential invariants for the differential equations. If we are lucky, maybe the same
invariant could even work for both? Whenever we are in such a situation, we can
search from both ends and either identify an invariant for the loop first and then try
to adapt it to the differential equation, or, instead, look for a differential invariant
first.

1 Note that the reasons for splitting modes and offering a nondeterministic choice between them
are not controller events as they have been in Chap. 8, but, rather, come from the physical model
itself. The mechanism is the same, though, whatever the reason for splitting.

11.12 Appendix: Proving Aerodynamic Bouncing Balls 355

Since we know the loop invariant for the ordinary bouncing ball from (7.10), let’s
look at the loop first. The loop invariant for the ordinary bouncing ball was

2gx = 2gH v2∧ x≥ 0

We cannot really expect the equation in this invariant to work out for the aerody-
namic ball (11.8) as well, because the whole point of the air resistance is that it
slows the ball down. Since air resistance always works against the ball’s motion, the
height is expected to be less:

Jx,v
def≡ 2gx≤ 2gH v2∧ x≥ 0 (11.9)

In order to check right away whether this invariant that we suspect to be a loop
invariant works for the differential equations as well, let’s check for differential
invariance:

∗
R

g > 0∧ r ≥ 0,x≥ 0∧ v≥ 0 ⊢ 2gv≤ 2gv+2rv3

g > 0∧ r ≥ 0,x≥ 0∧ v≥ 0 ⊢ 2gv≤ 2v(g rv2)
[:=]

g > 0∧ r ≥ 0,x≥ 0∧ v≥ 0 ⊢ [x′:=v][v′:= g rv2](2gx′ ≤ 2vv′)
dI

g > 0∧ r ≥ 0,2gx≤ 2gH v2 ⊢ [x′ = v,v′ = g rv2 &x≥ 0∧ v≥ 0]2gx≤ 2gH v2

Note that for this proof to work, it is essential to keep the constants g > 0∧ r ≥ 0
around, or at least r ≥ 0. The easiest way of doing that is to perform a differential
cut dC with g > 0∧ r ≥ 0 and prove it to be a (trivial) differential invariant, because
both parameters do not change, to make g > 0∧ r ≥ 0 available in the evolution
domain constraint for the rest of the proof.2

The differential invariant proof for the other ODE in (11.8) works as well:

∗
R

g > 0∧ r ≥ 0,x≥ 0∧ v≤ 0 ⊢ 2gv≤ 2gv 2rv3

g > 0∧ r ≥ 0,x≥ 0∧ v≤ 0 ⊢ 2gv≤ 2v(g+ rv2)
[:=]

g > 0∧ r ≥ 0,x≥ 0∧ v≤ 0 ⊢ [x′:=v][v′:= g+ rv2]2gx′ ≤ 2vv′
dI

g > 0∧ r ≥ 0,2gx≤ 2gH v2 ⊢ [x′ = v,v′ = g+ rv2 &x≥ 0∧ v≤ 0]2gx≤ 2gH v2

After this preparation, the rest of the proof of (11.8) is a matter of checking whether
(11.9) is also a loop invariant. Except that the above two sequent proofs do not ac-
tually quite prove that (11.9) is a differential invariant, but only that its left conjunct
2gx≤ 2gH v2 is. Would it work to add the right conjunct x≥ 0 and prove it to be
a differential invariant?

Not exactly, because rule dI would lead to [x′:=v](x′ ≥ 0) ≡ v ≥ 0, which is
obviously not always true for bouncing balls (except in the mode x≥ 0∧ v≥ 0).
However, after proving the above differential invariant after a differential cut (elided
use of the above proof is marked by ⊳ in the next proof), a differential weakening
argument by dW easily shows that the relevant part x≥ 0 of the evolution domain
constraint always holds after the differential equation:

2 Since this happens so frequently, KeYmaera X keeps constant parameter assumptions in the
context using the vacuous axiom V as in Sect. 7.5.

356 11 Differential Equations & Proofs

dC

dW

id
∗

x≥0∧ v≤0∧2gx≤2gH v2 ⊢ 2gx≤ 2gH v2∧ x≥ 0
⊳ 2gx≤ 2gH v2 ⊢ [x′ = v,v′ = g+ rv2 &x≥0∧ v≤0∧2gx≤2gH v2](2gx≤2gH v2∧ x≥0)

. .2gx≤ 2gH v2 ⊢ [x′ = v,v′ = g+ rv2 &x≥ 0∧ v≤ 0](2gx≤ 2gH v2∧ x≥ 0)

From these pieces it now remains to prove that (11.9) is a loop invariant of (11.8).
Without abbreviations, this proof will not fit on a page:

Ax,v
def≡ x≤ H ∧ v = 0∧ x≥ 0∧g > 0∧1≥ c≥ 0∧ r ≥ 0

Bx,v
def≡ 0≤ x∧ x≤ H

x′′&v≥0
def≡ {x′ = v,v′ = g rv2 &x≥ 0∧ v≥ 0}

x′′&v≤0
def≡ {x′ = v,v′ = g+ rv2 &x≥ 0∧ v≤ 0}

Jx,v
def≡ 2gx≤ 2gH v2∧ x≥ 0

loop

Ax,v ⊢ Jx,v [;]

MR

Jx,v ⊢ [if(x = 0)v := cv]Jx,v [∪]
∧R

Jx,v ⊢ [x′′&v≥0]Jx,v Jx,v ⊢ [x′′&v≤0]Jx,v

Jx,v ⊢ [x′′&v≥0]Jx,v∧ [x′′&v≤0]Jx,v

Jx,v ⊢ [x′′&v≥0∪ x′′&v≤0]Jx,v

Jx,v ⊢ [if(x = 0)v := cv][x′′&v≥0∪ x′′&v≤0]Jx,v

Jx,v ⊢ [if(x = 0)v := cv;(x′′&v≥0∪ x′′&v≤0)]Jx,v
Jx,v ⊢ Bx,v

Ax,v ⊢ [(if(x = 0)v := cv;(x′′&v≥0∪ x′′&v≤0))∗]Bx,v

The first and last premise are proved by simple arithmetic using g > 0∧ v2 ≥ 0.
The third and fourth premise have been proved above by a differential cut with a
subsequent differential invariant and differential weakening. That only leaves the
second premise to worry about, which is proved as follows:

Jx,v,x = 0 ⊢ Jx, cv
[:=]Jx,v,x = 0 ⊢ [v := cv]Jx,v
→R Jx,v ⊢ x = 0→ [v := cv]Jx,v
[?] Jx,v ⊢ [?x = 0][v := cv]Jx,v
[;] Jx,v ⊢ [?x = 0;v := cv]Jx,v

∗
id Jx,v,x 6= 0 ⊢ Jx,v
→R Jx,v ⊢ x 6= 0→ Jx,v
[?] Jx,v ⊢ [?x 6= 0]Jx,v

∧R Jx,v ⊢ [?x = 0;v := cv]Jx,v∧ [?x 6= 0]Jx,v
[∪] Jx,v ⊢ [?x = 0;v := cv∪ ?x 6= 0]Jx,v

Jx,v ⊢ [if(x = 0)v := cv]Jx,v

This sequent proof first expands the if() with the axiom from Exercise 5.15 since
if(Q)α is an abbreviation for ?Q;α ∪ ?¬Q. The resulting right premise is proved
trivially by axiom (there was no state change in the corresponding part of the execu-
tion), the left premise is proved by arithmetic, because 2gH v2 ≤ 2gH (cv)2

since 1≥ c≥ 0. This completes the sequent proof for the safety of the aerodynamic
bouncing ball expressed in dL formula (11.8). That is pretty neat!

11.12 Appendix: Proving Aerodynamic Bouncing Balls 357

Proposition 11.2 (Aerodynamic Quantum is safe). This dL formula is valid:

x≤ H ∧ v = 0∧ x≥ 0∧g > 0∧1≥ c≥ 0∧ r ≥ 0→
[

if(x = 0)v := cv;

({x′ = v,v′ = g rv2 &x≥0∧ v≥0}∪{x′ = v,v′ = g+ rv2 &x≥0∧ v≤0})
)∗

]
(0≤ x≤ H)

It is about time for the newly upgraded aerodynamic acrophobic bouncing ball to
notice a subtlety in its (provably safe) model. The bouncing ball innocently split the
differential equation (11.7) into two modes, one for v≥ 0 and one for v≤ 0, when
developing the model (11.8). This seemingly innocuous step required more thought
than the little bouncing ball put into it at the time. Of course, the single differential
equation (11.7) could, in principle, switch between velocity v≥ 0 and v≤ 0 any
arbitrary number of times during a single continuous evolution. The HP in (11.8)
that splits the mode, however, enforces that the ground controller if(x = 0)v := cv

will run in between switching from the mode v≥ 0 to the mode v≤ 0 or back. On its
way up when gravity is just about to win out and pull the ball back down again, that
is of no consequence, because the trigger condition x = 0 will not hold then anyhow,
unless the ball really started the day without much energy (x = v = 0). On its way
down, the condition may very well be true, namely when the ball is currently on
the ground and just inverted its velocity. In that case, however, the evolution domain
constraint x≥ 0 would have forced a ground controller action in the original system
already anyhow.

So even if, in this particular model, the system could not in fact actually switch
back and forth between the two modes too often in ways that would really matter,
it is important to understand how to properly split modes in general, because that
will be crucial for other systems. What the little bouncing ball should have done to
become aerodynamical in a systematic way is to add an additional mini-loop around
just the two differential equations, so that the system could switch modes repeatedly
without requiring a discrete ground controller action to happen. This leads to the
following dL formula with a systematic mode split, which is provably safe just the
same (Exercise 11.7):

x≤ H ∧ v = 0∧ x≥ 0∧g > 0∧1≥ c≥ 0∧ r ≥ 0→
[

if(x = 0)v := cv;

({x′ = v,v′ = g rv2 &x≥0∧ v≥0}∪{x′ = v,v′ = g+ rv2 &x≥0∧ v≤0})∗
)∗

]
(0≤ x≤ H)

(11.10)

358 11 Differential Equations & Proofs

Exercises

11.1. Since ω does not change in this dL formula, its assumption ω ≥ 0 can be
preserved soundly during the induction step for differential invariants (rule dI):

ω ≥ 0∧ x = 0∧ y = 3→ [x′ = y,y′ = ω2x 2ωy]ω2x2 + y2 ≤ 9

Give a corresponding dL sequent calculus proof. How does the proof change if you
do not preserve assumptions about constants in the context?

11.2 (Differential invariant practice). Prove the following formulas using differ-
ential invariants, differential cuts, and differential weakening as required:

xy2 + x≥ 7→ [x′ = 2xy,y′ = 1+ y2]xy2 + x≥ 7

x≥ 1∨ x3 ≥ 8→ [x′ = x4 + x2](x≥ 1∨ x3 ≥ 8)

x x2y≥ 2∧ y 6= 5→ [x′ = x2,y′ = 1+2xy]x x2y≥ 2

x≥ 2∧ y≥ 22→ [x′ = 4x2,y′ = x+ y4]y≥ 22

x≥ 2∧ y = 1→ [x′ = x2y+ x4,y′ = y2 +1]x3 ≥ 1

x = 1∧ y = 1→ [x′ = 6x2 +6xy2,y′ = 12xy 2y3] 2xy3 +6x2y≥ 0

x≥ 2∧ y = 1→ [x′ = x2y3 + x4y,y′ = y2 +2y+1]x3 ≥ 8

x = 1∧ y = 2∧ z≥ 8→ [x′ = x2,y′ = 4x,z′ = 5y]z≥ 8

x3 4xy≥ 99→ [x′ = 4x,y′ = 3x2 4y]x3 4xy≥ 99

11.3 (Wrong differential weakening). Show that the following variation of the dif-
ferential weakening rule dW would be unsound:

Γ ,Q ⊢ P,∆

Γ ⊢ [x′ = f (x)&Q]P,∆

11.4 (Weak differentials of strong inequations). Prove that both of the following
alternative definitions yield a sound differential invariant proof rule:

(e < k)′ ≡ ((e)′ < (k)′)

(e < k)′ ≡ ((e)′ ≤ (k)′)

11.5 (Disequalities). We have defined

(e 6= k)′ ≡ ((e)′ = (k)′)

Suppose you remove this definition so that you can no longer use the differential
invariant proof rule for formulas involving 6=. Can you derive a proof rule to prove
such differential invariants regardless? If so, how? If not, why not?

11.12 Appendix: Proving Aerodynamic Bouncing Balls 359

11.6. Prove dL formula (11.5) by first doing a differential cut with ω(x 1) = w,
then continue with a differential cut with ω(y 2) = v, and then finally use both to
prove the original postcondition. Compare this proof to the proof in Sect. 11.8.

11.7 (Aerodynamic bouncing ball). The aerodynamic-bouncing-ball model silently
imposed that no mode switching could happen without ground control being exe-
cuted first. Even if that is not an issue for the bouncing ball, prove the more general
formula (11.10) with its extra loop for more mode switching regardless. Compare
the resulting proof to the sequent proof for (11.8).

11.8 (Generalizations). Sect. 5.6.4 explained how the proof of the dL formula
[x :=1;x′ = x2 +2x4]x3 ≥ x2 can be reduced by monotonicity rule M[·] to a proof of
[x :=1;x′ = x2 +2x4]x≥ 1. Prove both formulas in the dL calculus. Is there a direct
proof of the first formula using rule dI without first generalizing it to a proof of the
second formula?

11.9 (Differential invariants assuming initial domains). The least that the proof
rules for differential equations get to assume is the evolution domain constraint Q,
because the system does not evolve outside it. Prove soundness for the following
slightly stronger formulation of dI that assumes Q to hold initially:

Γ ,Q ⊢ F,∆ Q ⊢ [x′:= f (x)](F)′

Γ ⊢ [x′ = f (x)&Q]F,∆

11.10 (Differentials of logical constants). Prove the following definitions to be
sound for the differential invariant proof rule:

(true)′ ≡ true

(false)′ ≡ true

Show how you can use them to prove the formula

A→ [x′ = f (x)&Q]B

in the case where A→¬Q is provable, i.e., where the system initially starts outside
the evolution domain constraint Q. Can you derive both definitions from arithmetic
definitions of the formulas true and false?

11.11 (Runaround robot). Identify differential cuts and differentials to prove the
runaround robot control model from Exercise 3.9.

11.12 (Solutions without solution axiom schemata). Prove the following formula
with differential cuts, differential invariants, and differential weakening and without
using the solution axiom schema [′].

x = 6∧ v≥ 2∧a = 1→ [x′ = v,v′ = a]x≥ 5

Grab a big sheet of paper and then also similarly prove

x = 6∧ v≥ 2∧a = 1∧ j ≥ 0→ [x′ = v,v′ = a,a′ = j]x≥ 5

360 11 Differential Equations & Proofs

References

[1] Jorge Cortés. Discontinuous dynamical systems: a tutorial on solutions, non-
smooth analysis, and stability. IEEE Contr. Syst. Mag. 28(3) (2008), 36–73.

[2] Khalil Ghorbal and André Platzer. Characterizing algebraic invariants by dif-
ferential radical invariants. In: TACAS. Ed. by Erika Ábrahám and Klaus
Havelund. Vol. 8413. LNCS. Berlin: Springer, 2014, 279–294. DOI: 10.1
007/978-3-642-54862-8_19.

[3] Khalil Ghorbal, Andrew Sogokon, and André Platzer. Invariance of conjunc-
tions of polynomial equalities for algebraic differential equations. In: SAS.
Ed. by Markus Müller-Olm and Helmut Seidl. Vol. 8723. LNCS. Berlin:
Springer, 2014, 151–167. DOI: 10.1007/978-3-319-10936-7_10.

[4] André Platzer. Differential Dynamic Logics: Automated Theorem Proving
for Hybrid Systems. PhD thesis. Department of Computing Science, Univer-
sity of Oldenburg, 2008.

[5] André Platzer. Differential-algebraic dynamic logic for differential-algebraic
programs. J. Log. Comput. 20(1) (2010), 309–352. DOI: 10.1093/logcom/
exn070.

[6] André Platzer. Logical Analysis of Hybrid Systems: Proving Theorems for

Complex Dynamics. Heidelberg: Springer, 2010. DOI: 10.1007/978-3-
642-14509-4.

[7] André Platzer. Quantified differential invariants. In: HSCC. Ed. by Marco
Caccamo, Emilio Frazzoli, and Radu Grosu. New York: ACM, 2011, 63–72.
DOI: 10.1145/1967701.1967713.

[8] André Platzer. A differential operator approach to equational differential in-
variants. In: ITP. Ed. by Lennart Beringer and Amy Felty. Vol. 7406. LNCS.
Berlin: Springer, 2012, 28–48. DOI: 10.1007/978-3-642-32347-8
_3.

[9] André Platzer. Logics of dynamical systems. In: LICS. Los Alamitos: IEEE,
2012, 13–24. DOI: 10.1109/LICS.2012.13.

[10] André Platzer. The complete proof theory of hybrid systems. In: LICS. Los
Alamitos: IEEE, 2012, 541–550. DOI: 10.1109/LICS.2012.64.

[11] André Platzer. The structure of differential invariants and differential cut
elimination. Log. Meth. Comput. Sci. 8(4:16) (2012), 1–38. DOI: 10.216
8/LMCS-8(4:16)2012.

[12] André Platzer. A complete uniform substitution calculus for differential dy-
namic logic. J. Autom. Reas. 59(2) (2017), 219–265. DOI: 10.1007/s108
17-016-9385-1.

[13] André Platzer and Edmund M. Clarke. Computing differential invariants of
hybrid systems as fixedpoints. In: CAV. Ed. by Aarti Gupta and Sharad Malik.
Vol. 5123. LNCS. Springer, 2008, 176–189. DOI: 10.1007/978-3-540
-70545-1_17.

[14] André Platzer and Edmund M. Clarke. Computing differential invariants of
hybrid systems as fixedpoints. Form. Methods Syst. Des. 35(1) (2009). Spe-

https://doi.org/10.1007/978-3-642-54862-8_19
https://doi.org/10.1007/978-3-642-54862-8_19
https://doi.org/10.1007/978-3-319-10936-7_10
https://doi.org/10.1093/logcom/exn070
https://doi.org/10.1093/logcom/exn070
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1145/1967701.1967713
https://doi.org/10.1007/978-3-642-32347-8_3
https://doi.org/10.1007/978-3-642-32347-8_3
https://doi.org/10.1109/LICS.2012.13
https://doi.org/10.1109/LICS.2012.64
https://doi.org/10.2168/LMCS-8(4:16)2012
https://doi.org/10.2168/LMCS-8(4:16)2012
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/978-3-540-70545-1_17
https://doi.org/10.1007/978-3-540-70545-1_17

11.12 Appendix: Proving Aerodynamic Bouncing Balls 361

cial issue for selected papers from CAV’08, 98–120. DOI: 10.1007/s107
03-009-0079-8.

https://doi.org/10.1007/s10703-009-0079-8
https://doi.org/10.1007/s10703-009-0079-8

Chapter 12

Ghosts & Differential Ghosts

Synopsis While working toward yet another fundamental reasoning technique for
differential equations, this chapter describes somewhat surprising uses of additional
auxiliary variables, called ghosts, in the modeling of and reasoning about cyber-
physical systems. A discrete ghost is an extra variable introduced with an assign-
ment into the proof (or model) for the sake of analyzing the model. A differential

ghost is an extra variable that is added into the dynamics of a system with a quite
arbitrarily made-up differential equation for the purposes of analyzing the system.
What might at first sound counterproductive, because it increases the dimension
of the system, will, upon closer inspection, turn out to be helpful for proving pur-
poses, because the differential ghost variables provide additional quantities relative
to whose (arbitrarily chosen) continuous evolution the behavior of the system can
be understood. With a clever choice of the new differential equations for the differ-
ential ghosts, it can also become easier to understand the evolution of the original
variables, because there is something else to relate to. Differential ghosts can make
quite a surprising difference in our understanding of differential equations and can
even explain how differential equations can be solved as part of an ordinary differ-
ential invariants proof.

12.1 Introduction

Chapters 10 and 11 equipped us with powerful tools for proving properties of dif-
ferential equations without having to solve them. Differential invariants (dI) [3, 6]
prove properties of differential equations by induction based on the right-hand side
of the differential equation, rather than its much more complicated global solution.
Differential cuts (dC) [3, 6] make it possible to first prove another property C of a
differential equation and then change the dynamics of the system so that it will be re-
stricted to never leave region C, which can, thus, be assumed about the system from
then on. Differential cuts are a fundamental proof principle that can make inductive

363© Springer International Publishing AG, part of Springer Nature 2018

A. Platzer, Logical Foundations of Cyber-Physical Systems,

https://doi.org/10.1007/978-3-319-63588-0_12

https://doi.org/10.1007/978-3-319-63588-0_12
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63588-0_12&domain=pdf

364 12 Ghosts & Differential Ghosts

properties that are not otherwise invariants [6]. They do so by soundly changing the
evolution domain constraints after a suitable proof of invariance.

Yet, not every true property of a differential equation can be proved even with the
help of differential cuts [6]. There is yet another way of transforming the dynamics
of the system to enable new proofs that were not possible before [6]. This transfor-
mation uses differential ghosts [6, 8] to soundly change the differential equations
themselves instead of just changing their evolution domain constraints as differen-
tial cuts do. Of course, editing the differential equations should make us even more
nervous about soundness than editing the evolution domain already did (in Chap. 11
before we knew how to do so soundly).

Differential ghosts are extra variables that are introduced into the differential
equation system solely for the purposes of the proof. This existence just for analytic
purposes is where the spooky name “ghost” comes from. Ghosts (or auxiliaries)
refer to aspects of a model that do not exist in reality but are merely introduced for
the sake of its analysis. Ghosts are not really present in the actual system, but just
invented to make the story more interesting or, rather, the proof more conclusive.

In fact, ghost variables can also be useful for a proof when they remain entirely
discrete variables that only change by discrete assignments, in which case they are
called discrete ghosts. Such discrete ghosts are used to remember an intermediate
state during the execution, which makes it possible to conduct a proof that relates
the new value of the variable to the old value stored in the discrete ghost. Why
would that be useful? Well, because it is sometimes easier to analyze the change of
a variable than the value of the variable itself. In such cases, it is easier to show that
the value of a variable increases compared to the discrete ghost and so stays above
10 if it started out above 10 than it is to directly show that the value always stays
above 10.

Discrete ghosts and differential ghosts serve a similar intuitive purpose: they re-
member intermediate state values so that the relation of the values at intermediate
states to the values at final states can be analyzed. The difference is that differen-
tial ghosts also update their value continuously at will along their very own special
differential equation, which, if cleverly chosen, makes it particularly easy to con-
duct a proof. Discrete ghosts only receive a value during their own instantaneous
discrete assignments but remain constant during differential equations. Ghosts give
the proof a way of referring to how the state used to be that is no more. There are
many reasons for introducing ghost state into a system, which will be investigated
in this chapter.

One intuitive motivation for introducing a differential ghost is for proofs of prop-
erties that get less true over time, so that differential invariance techniques alone can-
not prove them, because differential invariants prove properties that become more
true over time (or at least not less true). If a postcondition such as x > 0 is getting
less true over time, because the value of x continuously decreases, but the rate at
which it decreases decreases too, then its value may still be above 0 always depend-
ing on its asymptotic behavior in the limit. In that case, it is useful to introduce a
new differential ghost whose value relates to the change of the value of x in compar-
ison to the present value of x. A particularly cleverly chosen differential ghost can

12.1 Introduction 365

serve as a counterweight to the change of truth of the original postcondition, and
will then serve as an (evolving) point of reference, e.g., when the rate of change of
the truth-value is changing over time. Similar differential ghosts are often needed
to capture energy changes in systems with energy loss or energy gain. Technical
details on differential ghosts are reported in prior work [6, 8].

The most important learning goals of this chapter are:

Modeling and Control: This chapter does not have much impact on modeling and
control of CPS, because, after all, the whole point of ghosts and differential
ghosts is that they are only added for the purposes of the proof. However, it can
still sometimes be helpful to add such ghost and differential ghost variables into
the original model right away. It is good style to mark such additional variables
in the model and controller as ghost variables in order to retain the fact that they
do not need to be included in the final system executable except for monitoring.

Computational Thinking: This chapter leverages computational thinking princi-
ples for the purpose of rigorous reasoning about CPS models by analyzing how
extra dimensions can simplify or enable reasoning about lower-dimensional sys-
tems. From a state space perspective, extra dimensions are a horrible idea, be-
cause, e.g., the number of points on a gridded space grows exponentially in the
number of dimensions (curse of dimensionality). From a reasoning perspective,
however, the important insight of this chapter is that extra state variables some-
times help and may even make reasoning possible that is otherwise impossible
[6]. One intuition why extra ghost state may help reasoning is that it can be
used to consume the energy that a given dissipative system is leaking (simi-
lar to the reason dark matter has been speculated to exist) or produce the energy
that a given system model consumes. The addition of such extra ghost state then
enables invariants of generalized energy constants involving both original and
ghost state that was not possible using only the original state. That is, ghost state
may cause new energy invariants. This chapter continues the trend of general-
izing important logical phenomena from discrete to continuous systems. The
verification techniques developed in this chapter are critical for verifying some
CPS models of appropriate scale and technical complexity but are not necessary
for all CPS models. A secondary goal of this chapter is to develop more intuition
and deeper understanding of differential invariants and differential cuts.

CPS Skills: The focus in this chapter is on reasoning about CPS models, but there
is an indirect impact on developing better intuitions for operational effects in
CPS by introducing the concept of relations of state to extra ghost state. A good
grasp of such relations can substantially help with the intuitive understanding
of CPS dynamics. The reason is that ghosts and differential ghosts enable extra
invariants, which enable stronger statements about what we can rely on as a
CPS evolves. They also enable relational arguments about how the change of
some quantity over time relates to the change of another auxiliary quantity.

366 12 Ghosts & Differential Ghosts

CT

M&C CPS

rigorous reasoning about ODEs
extra dimensions for extra invariants
higher-dimensional retreat
extra state enables reasoning
invent dark energy
intuition for differential invariants
states and proofs
verify CPS models at scale

none: ghosts are for proofs
mark ghosts in models
syntax of models
solutions of ODEs

relations of state
extra ghost state
CPS semantics

12.2 Recap

Recall the proof rules for differential invariants (dI), differential weakening (dW)
and differential cuts (dC) for differential equations from Chap. 11:

Note 63 (Proof rules for differential equations)

dI
Q ⊢ [x′:= f (x)](F)′

F ⊢ [x′ = f (x)&Q]F
dW

Q ⊢ P

Γ ⊢ [x′ = f (x)&Q]P,∆

dC
Γ ⊢ [x′ = f (x)&Q]C,∆ Γ ⊢ [x′ = f (x)&(Q∧C)]P,∆

Γ ⊢ [x′ = f (x)&Q]P,∆

12.3 A Gradual Introduction to Ghost Variables

This section provides a gradual introduction to various forms of ghost variables. It
focuses on the motivation and intuition for what ghost variables are good for and
how they can help us condcut a proof.

12.3.1 Discrete Ghosts

The discrete way of adding ghost variables is to introduce a new ghost variable y

into a proof that remembers the value of any arbitrary term e for later usage. This
can be useful in a proof in order to have a name, y, that recalls the value of e later

12.3 A Gradual Introduction to Ghost Variables 367

on in the proof, especially when the value of e changes subsequently during the
execution of an HP α in the remaining modalities. Such a discrete ghost y makes it
possible to relate the value of e before and after the run of that hybrid program α .

Lemma 12.1 (iG discrete ghost rule). The following is a sound proof rule for

introducing an auxiliary variable or (discrete) ghost y:

iG
Γ ⊢ [y :=e]p,∆

Γ ⊢ p,∆
(y new)

Proof. Rule iG derives from assignment axiom [:=] from Chap. 5, which proves

p↔ [y :=e]p

because the new variable y does not occur in p (which can be thought of as a nullary
predicate symbol here, which is why we write it lowercase following a principle we
will explore in Chap. 18). ⊓⊔

The discrete ghost rule iG directly derives from the assignment axiom [:=] since
it merely applies axiom [:=] backwards to introduce a ghost variable y that was not
there before. This is an example exploiting the flexibility of equivalence axioms to
be used forwards as well as backwards. Of course, it is important to retain a forward
momentum in the proof and not apply assignment axiom [:=] to the premise of iG,
which would make the carefully dreamt-up discrete ghost y go away again:

Γ ⊢ p,∆
[:=]Γ ⊢ [y :=e]p,∆
iG Γ ⊢ p,∆

Making ghosts go away would be a great goal for the Ghostbusters, but would not
exactly make proof attempts productive. If we were really planning on eliminating
the discrete ghost, then we should never have introduced it with rule iG in the first
place. After observing that discrete ghosts are fancy names for backwards assign-
ments and, thus, sound, the next question is what they could possibly be good for.

Discrete ghosts can be interesting when formula p in rule iG contains modalities
that change variables of the term e so that y can remember the value that e had before
that change. For example,

xy≥ 2 ⊢ [c :=xy][x′ = x,y′ = y]xy≥ 2
iG

xy≥ 2 ⊢ [x′ = x,y′ = y]xy≥ 2

This proof memorizes in the discrete ghost variable c the value that the interesting
term xy had before the differential equation started. It is not obvious how to complete
the proof, because substituting c away using the assignment axiom [:=] would undo
the pleasant effect that rule iG had, because the whole point of the new variable c

368 12 Ghosts & Differential Ghosts

is that it does not occur elsewhere.1 The only way the proof can make progress is
by applying a proof rule to the differential equation, which is not top-level. We can
either just keep the assignment around and directly use axioms at the postcondition,
or we can first turn the assignment into an equation with this derived proof rule.

Lemma 6.5 ([:=]= equational assignment rule). This is a derived rule:

[:=]=
Γ ,y = e ⊢ p(y),∆

Γ ⊢ [x :=e]p(x),∆
(y new)

With that rule we can proceed as if nothing has happened:

∗
R ⊢ 0 = xy+ x(y)
[:=] ⊢ [x′:=x][y′:= y]0 = x′y+ xy′
dI

xy≥ 2,c = xy ⊢ [x′ = x,y′ = y]c = xy ⊲
MR

xy≥ 2,c = xy ⊢ [x′ = x,y′ = y]xy≥ 2
[:=]= xy≥ 2 ⊢ [c :=xy][x′ = x,y′ = y]xy≥ 2

iG
xy≥ 2 ⊢ [x′ = x,y′ = y]xy≥ 2

The generalization step MR leads to a second premise that has been elided
(marked by ⊲) and is proved, e.g., by vacuous axiom V, because the discrete ghost c

starts out above 2 by antecedent and never changes its value during the differential
equation. This particular property is also proved directly quite easily, but the proof
technique of discrete ghosts is of more general interest beyond this demonstration.
The next section provides one common source of such examples.

Notice that even the initial height H of the bouncing-ball model in Sect. 4.5 could
have been considered a discrete ghost for the purpose of remembering the initial
height via H := x initially. The only reason why it is not a pure discrete ghost is
because it is also used in the postcondition, so the safety conjecture cannot be stated
without H. The variable H is part of the property, not just part of the proof.

12.3.2 Proving Bouncing Balls with Sneaky Solutions

Recall the dL formula for a falling ball in the bouncing-ball proof from Chap. 7:

2gx= 2gH v2∧x≥0→ [{x′ = v,v′ = g&x≥0}](2gx= 2gH v2∧x≥0) (11.6*)

1 This potentially surprising phenomenon happens for other ghosts as well, because, the whole
point of ghosts is to compute something that the original model and property do not depend on.
Sufficiently sophisticated forms of dead-code elimination would get rid of ghosts, which would be
counterproductive for the proof. In fact, dead-code elimination for compilers and ghosts for proofs
are the same phenomenon, only backwards, because, applied from bottom to top, the discrete ghost
rule iG introduces a variable that is dead code as opposed to eliminating it.

12.3 A Gradual Introduction to Ghost Variables 369

This formula was already proved twice: once in Chap. 7 using the solution axiom
schema [′] and once in Sect. 11.10 on p. 350 using a mix of differential invariants
with differential weakening, because the postcondition was cleverly constructed as
an invariant of the bouncing ball in Chap. 4 already.

It’s a good idea to be clever! But it also pays to be systematic and develop a
rich toolbox of techniques for proving properties of differential equations. Is there
a way to prove (11.6) without such a distinctively clever invariant that works as a
differential invariant right away? Yes, of course, there is one, because (11.6) can
even be proved using solution axiom [′]. How many proofs does a formula need
these days before we stop proving it?

Well, of course, every formula only needs one proof and then lives happily valid
ever after. But it turns out that interesting things happen when we systematically
try to understand how to make a proof happen that does not use the solution axiom
[′] and, yet, still uses solution-based arguments. Can you conceive a way to use
solutions for differential equations without invoking the actual solution axiom [′]?

Before you read on, see if you can find the answer for yourself.

The solution of a differential equation should be invariant along the differen-
tial equation, because it describes an identity that always holds when following the
differential equation. The solution for balls falling in gravity according to (11.6) is

x(t) = x+ vt g

2
t2

v(t) = v gt

where x denotes the initial position and v0 the initial velocity while x(t) and v(t)
denote the position and velocity, respectively, after duration t. Now, the only trouble
is that these equations cannot possibly be used as straight-out differential invariants,
because x(t) is not even allowed in the language we considered so far.2 After the
differential equation, the name for the position at that time is simply x and the name
for velocity is just v. Obviously, v = v gt would not be a very meaningful equation
as time goes on, so we somehow need to identify a new name for the old value that
the position initially had before the differential equation, and likewise for the old
velocity. This leads to the following rephrasing of the solution where x and v denote
the variables after the differential equation at time t and x0 and v0 those before:

x = x0 + v0t g

2
t2

v = v0 gt
(12.1)

These equations are legitimate formulas and could possibly be differentially cut into
(11.6) by dC, but there are still some nuanced subtleties with that approach.

2 Function symbol applications like x(t) will enter dL officially in Chap. 18, but that does not alter
the considerations we are about to make.

370 12 Ghosts & Differential Ghosts

Before you read on, see if you can find the answer for yourself.

Even if we mentioned that we intend v0 to mean the initial value of velocity be-
fore the differential equation, there is no way that the proof will know this unless
we do something about it. In particular, the proof will fail, because the resulting
arithmetic is not true for all values of x0 and v0. Fortunately, there is a perfect proof
rule that fits the task as if it had been made for this job. Before handling the differ-
ential equation, the proof rule iG can introduce a discrete ghost x0 that remembers
the initial value of x in the new discrete ghost variable x0 for later reference. And the
rule iG can be used again to remember the initial value of v in the discrete ghost v0.
From then on, the variables x0 and v0 really are the initial values of x and v before
the ODE.

Now that the proof is equipped with a way of referring to the initial values, the
next question is how exactly to go about differentially cutting the solutions (12.1)
into the differential equations by dC. Maybe the most immediate suggestion would
be to use rule dC with a conjunction of the two equations in (12.1) to get the solution
into the system as quickly as possible. That will not work, however, because x =
x0 + v0t g

2 t2 only is the correct solution for x′ = v after we have established that
v = v0 gt also is the correct solution of the differential equation v′ = g on which
x depends.

In retrospect, this ordering of differential cuts makes sense, because the differ-
ential equation x′ = v,v′ = g explicitly indicates that the change of x depends on v

whose change, in turn, depends on g, which remains constant. Consequently, we first
need to convey with a differential cut what the behavior of v is before we proceed to
investigate the behavior of x, which, after all, depends on v.

Now, we are ready for a proof with solutions that does not use the solution axiom
schema [′]. In order to prevent us from accidentally being too clever and exploiting
pure differential invariance principles again as in Sect. 11.10, we will pretend not to
know anything about the specific precondition and postcondition and just call them
A and B(x,v). Of course, we’ll need a time variable t ′ = 1 in order to write a solution
over time. Consider the following formulation of the dL formula (11.6):

A ⊢ [{x′ = v,v′ = g, t ′ = 1&x≥ 0}]B(x,v) (12.2)

where A
def≡ 2gx = 2gH v2∧ x≥ 0

B(x,v)
def≡ 2gx = 2gH v2∧ x≥0

{x′′ = g, t ′ = 1} def≡ {x′ = v,v′ = g, t ′ = 1}

The proof begins by introducing a discrete ghost v0 to remember the initial ve-
locity of the bouncing ball and then differentially cuts the solution v = v0 tg into
the system and proving it to be differentially invariant:

12.3 A Gradual Introduction to Ghost Variables 371

iG

dC

dI

[:=]

R
∗

x≥ 0 ⊢ g = 1g

x≥ 0 ⊢ [v′:= g][t ′:=1]v′ = t ′g
A ⊢ [v0 :=v][x′′= g, t ′=1&x≥0]v=v0 tg

A ⊢ [v0 :=v][x′′= g, t ′=1&x≥0∧ v=v0 tg]B(x,v)

A ⊢ [v0 :=v][x′′ = g, t ′ = 1&x≥ 0]B(x,v)

A ⊢ [x′′ = g, t ′ = 1&x≥ 0]B(x,v)

Observe how the differential invariant rule dI made the sequent context A as well as
the assignment [v0 :=v] disappear, which is important for soundness, because both
only hold in the initial state. That both are affected would be particularly easy to
see if we had turned the assignment v0 :=v into an equation v0 = v with rule [:=]=.
Besides, [v0 :=v] has to disappear from the induction step: if v0 is the initial value
of v then v0 does not remain equal to v as the ball falls along v′ = g.

The left premise in the above proof proved by trivial arithmetic (rule R). The
right premise in the above proof is proved as follows by first introducing yet another
discrete ghost x0 with iG that remembers the initial position so that it can be referred
to in the solution. The solution x = x0 + v0t g

2 t2 can then be differentially cut into
the system by dC and is proved to be differentially invariant by dI using the new
evolution domain v = v0 tg:

∗
id

x≥ 0∧ v = v0 tg ⊢ v = v0 2 g
2 t

[:=]
x≥ 0∧ v = v0 tg ⊢ [x′:=v][t ′:=1]x′ = v0t ′ 2 g

2 tt ′
dI

A ⊢ [x0 :=x][v0 :=v][x′′ = g, t ′ = 1&x≥ 0∧ v = v0 tg]x = x0 + v0t g
2 t2⊲

dC
A ⊢ [x0 :=x][v0 :=v][x′′ = g, t ′ = 1&x≥ 0∧ v = v0 tg]B(x,v)

iG
A ⊢ [v0 :=v][x′′ = g, t ′ = 1&x≥ 0∧ v = v0 tg]B(x,v)

The differential cut proof step (dC) has a second premise using the cut which is
elided above (marked by ⊲) and is proved directly by differential weakening (dW):

dW
x≥ 0∧ v = v0 tg∧ x = x0 + v0t g

2 t2 ⊢ B(x,v)

A ⊢ [x0 :=x][v0 :=v][x′′ = g, t ′ = 1&x≥ 0∧ v = v0 tg∧ x = x0+v0t g
2 t2]B(x,v)

After expanding B(x,v), the resulting formula can be proved by real arithmetic, but
it has a twist! First of all, the arithmetic can be simplified substantially using the
equality substitution rule =R from Chap. 6 to replace v by v0 tg and replace x by
x0+v0t g

2 t2 and use subsequent weakening (WL) to get rid of both equations after
use. This simplification reduces the computational complexity of real arithmetic:

⊢ 2g(x0 + v0t g
2 t2) = 2gH (v0 tg)2

WL
x≥0 ⊢ 2g(x0+v0t g

2 t2) = 2gH (v0 tg)2

∗
id

x≥ 0 ⊢ x≥ 0
∧R

x≥ 0 ⊢ 2g(x0 + v0t g
2 t2) = 2gH (v0 tg)2∧ x≥0

WL
x≥ 0,v = v0 tg,x = x0 + v0t g

2 t2 ⊢ 2g(x0 + v0t g
2 t2) = 2gH (v0 tg)2∧ x≥0

=R
x≥ 0,v = v0 tg,x = x0 + v0t g

2 t2 ⊢ 2gx = 2gH (v0 tg)2∧ x≥ 0
=R

x≥ 0,v = v0 tg,x = x0 + v0t g
2 t2 ⊢ 2gx = 2gH v2∧ x≥ 0

∧L
x≥ 0∧ v = v0 tg∧ x = x0 + v0t g

2 t2 ⊢ 2gx = 2gH v2∧ x≥ 0

Observe how this use of equality substitution and weakening helped simplify the
arithmetic complexity of the formula substantially and even helped to eliminate a

372 12 Ghosts & Differential Ghosts

variable (v) right away. This can be useful to simplify arithmetic in many other cases
as well. Both eliminating variables as well as applying and hiding equations right
away can often simplify the complexity of handling real arithmetic. The arithmetic
in the remaining left branch

2g
(

x0 + v0t g

2
t2
)

= 2gH (v0 tg)2

expands by polynomial arithmetic and cancels as indicated:

2g
(

x0 + v0t g
2 t2
)

= 2gH v2
0 + 2v0tg + t2g2

Those cancellations simplify the arithmetic, leaving the remaining condition

2gx0 = 2gH v2
0 (12.3)

Indeed, this relation characterizes exactly how H, which turns out to have been the
maximal height, relates to the initial height x0 and initial velocity v0. In the case of
initial velocity v0 = 0, for example, the equation (12.3) collapses to x0 = H, i.e., that
H is the initial height in that case. Consequently, the computationally fastest way of
proving the resulting arithmetic is to first prove by a differential cut dC that (12.3)
is a trivial differential invariant (even by the vacuous axiom V), resulting in a proof
of (11.6); see Exercise 12.3.

However, as we go through all proof branches again to check that we really have
a proof, we notice a subtle but blatant oversight. Can you spot it, too?

The very first left-most branch with the initial condition for the differential in-
variant v = v0 = tg cannot, actually, be proved. The catch is that we silently assumed
t = 0 to be the initial value for the new clock t, but our proof did not actually say so.
Oh my, what can possibly be done about this glitch?

Before you read on, see if you can find the answer for yourself.

There are multiple approaches and, in fact, the most elegant approach will have
to wait till the next section. But one feature that we have just learned about can be
exploited again to talk about the change of time without having to assume that time
t starts at 0. Discrete ghosts to the rescue! Even though we do not know the initial
value of the differential ghost t, we can simply use a discrete ghost again to call it
t0 and get on with it. Will that work? Can you work it out? Or should we start a
revision of the proof to find out?

∗
R

x≥ 0 ⊢ g = 1g
[:=]

x≥ 0 ⊢ [v′:= g][t ′:=1]v′ = 0 (t ′ 0)g
dI

A ⊢ [t0 := t][v0 :=v][x′′ = g, t ′ = 1&x≥ 0]v = v0 (t t0)g ⊲
dC

A ⊢ [t0 := t][v0 :=v][x′′ = g, t ′ = 1&x≥ 0]B(x,v)

iG
A ⊢ [v0 :=v][x′′ = g, t ′ = 1&x≥ 0]B(x,v)

The proof continues similarly with this elided premise (marked ⊲ above):

12.3 A Gradual Introduction to Ghost Variables 373

A ⊢ [t0 := t][v0 :=v][x′′ = g, t ′ = 1&x≥ 0∧ v = v0 (t t0)g]B(x,v)

As this proof shows, everything works as expected as long as we realize that this
requires a change of the invariants used for the differential cuts. The solution of
the velocity to differentially cut in will be v = v0 (t t0)g and the solution of the
position to differentially cut in subsequently will be x = x0 + v0(t t0) g

2 (t t0)
2.

With some thought you can also make sure to use the discrete ghosts for the initial
values cleverly to initialize it at 0, which is significantly more convenient.

Note 64 (Ghost solutions) Whenever there is a solution of a differential equa-
tion that we would like to make available to a proof without using the solution
axiom schema [′], a differential cut and subsequent differential invariant can
be used to cut the solution as an invariant into the system after a discrete ghost
that remembers the initial values needed to express the solution. The tricky part
is that solutions depend on time, and time may not be part of the differential
equation system. If there is no time variable, however, an additional differential
equation first needs to be added that pretends to be time.

For the case of the bouncing ball, this proof looks unnecessarily complicated,
because the solution axiom [′] could have been used instead right away, instead. Yet,
even if this particular proof was more involved, the arithmetic ended up being nearly
trivial in the end (which Note 62 on p. 351 already observed to hold in general for
differential invariant proofs). But the same proof technique of adding ghost variables
as needed can be pretty useful in more complicated systems.

Note 65 (On the utility of ghosts) Adding ghosts as needed can be useful in
more complicated systems that do not have computable solutions, but in which
other relations between initial (or intermediate) and final state can be proved.
The same technique can also be useful for cutting in solutions when only part
of a differential equation system admits a polynomial solution.

For example, the differential equation system v′1 = ωv2,v
′
2 = ωv1,v

′ = a, t ′ = 1
is difficult, because it has non-polynomial solutions. Still, one part of this differential
equation, the velocity v′ = a, is easily solved. Yet, the solution axiom [′] is not appli-
cable, because no real-arithmetic solution of the whole differential equation system
exists (except when ω = 0). Regardless, after suitable discrete ghosts, a differen-
tial cut with the solution v = v0 +at of v′ = a adds this precise knowledge about the
time-dependent change of the variable v to the evolution domain for subsequent use.

The ghost solution technique is a useful technique to prove properties of dif-
ferential equations by using solutions that are first proved to be solutions (with a
differential cut) and then used in the remaining proof (e.g., by differential weaken-
ing). Unlike the solution axiom schema [′], the ghost solution approach also works
if only part of a differential equation system can be solved, simply by cutting the
required part of the solutions into the differential equations.

374 12 Ghosts & Differential Ghosts

12.3.3 Differential Ghosts of Time

When we look back, the formula (12.2) that we now proved with ghost solutions
had a differential equation t ′ = 1 for time that was not actually part of the original
formula (11.6). Does that matter? Well, without having a time variable t, we could
hardly have even meaningfully written down the solutions (12.1). It does not seem
fair that this formula only has a proof by a differential cut with a solution if it already
has a differential equation t ′ = 1 for time to begin with! Even if t ′ = 1 is not in the
original differential equation, there should be a way to add it into the problem.

Indeed, come to think about it, every differential equation deserves a time vari-
able if it really needs one. It does not actually change the system if we simply add a
new differential equation for a time variable into it. Of course, we had better make
sure that the variable is actually new and do not accidentally reuse a variable that
was already present. For example, squeezing x′ = 1 into the differential equation
x′ = v,v′ = g for falling balls would seriously confuse the system dynamics, be-
cause x can hardly simultaneously follow x′ = v and the conflicting x′ = 1. We also
cannot just squeeze in g′ = 1 without significantly affecting the dynamics of bounc-
ing balls, because gravity g was supposed to be a constant in x′ = v,v′ = g and
would suddenly be increasing over time in x′ = v,v′ = g,g′ = 1. But if we refrain
from making any of those silly mistakes and do not change the dynamics that was
already there but merely add a dynamics that was not there yet, then adding a new
time variable seems like a fine thing to do.

Now, if we want a way of adding a time variable into differential equation sys-
tems, we can add a proof rule just for exactly that purpose. The following proof rule
makes it possible to add a new differential equation for time:

Γ ⊢ [x′ = f (x), t ′ = 1&Q]P,∆

Γ ⊢ [x′ = f (x)&Q]P,∆
(t fresh) (12.4)

A soundness justification for this proof rule would use that, as long as t is a fresh
variable that does not occur in the conclusion, then a proof of safety of the bigger
differential equation system with t ′ = 1 implies safety of the differential equation
without it. Indeed, this proof rule could have been used to prove the original falling
ball formula (11.6) from the above proof of (12.2). For once, the issue with this
proof rule is not one of soundness, but rather a matter of economy of reasoning
principles.

Proof rule (12.4) does a fine job of adding clocks but cannot do anything else. If
we ever want to add another differential equation into a differential equation system,
this narrow-minded proof rule is of no use. So before we end up wasting more time
with the special case of time as a motivation, let’s proceed right away with the gen-
eral case of differential ghosts, which are ghost variables with made-up differential
equations.

12.3 A Gradual Introduction to Ghost Variables 375

12.3.4 Constructing Differential Ghosts

Differential ghosts are ghost variables that are added into a differential equation
system for the purpose of conducting a proof. The proof technique of differential
ghosts is not limited to adding just the differential equation t ′ = 1 for time, but can
add other differential equations y′ = g(x,y) into the differential equation system as
well. In previous chapters, it has served us very well to first develop an axiomatic
formulation and then proceed to package it up as the most useful proof rule subse-
quently. Let’s proceed in the same way.

When we have a formula [x′ = f (x)&Q]P about a differential equation (or a
system) x′ = f (x)&Q, then we can add a new differential equation y′ = g(x,y) for
a new variable y to obtain [x′ = f (x),y′ = g(x,y)&Q]P. At what initial value does
this new differential equation y′ = g(x,y) for the new differential ghost y start?

Before you read on, see if you can find the answer for yourself.

For the purposes of adding a differential ghost for a time variable t ′ = 1 for ghost
solutions in Sect. 12.3.3 it would be best if the new variable were to start at 0. But
for other use cases it might be much better to start the differential ghost elsewhere
at a point that best fits the subsequent proof. Does it matter for soundness where the
differential ghost y starts?

Since the differential ghost y is a new variable that was not in the original ques-
tion and is merely added for the sake of the argument, it can also start at any initial
state that we like. This phenomenon is somewhat similar to discrete ghosts, which
can also soundly assume any arbitrary initial value by rule iG. This calls for the use
of an existential quantifier for the initial value of the differential ghost y, because
any initial value would justify the original formula. And, in fact, also vice versa, the
original formula implies the existence of an initial value for the ghost y for which
the bigger differential equation system x′ = f (x),y′ = g(x,y)&Q always stays in P.
These thoughts lead to the following formulation of the differential ghost axiom:

DG [x′ = f (x)&Q]P↔∃y [x′ = f (x),y′ = g(x,y)&Q]P (12.5)

Of course, y needs to be a new variable that does not occur in [x′ = f (x)&Q]P,
since y is not much of a differential ghost if it was around before. Besides, it would
be unsound to add a new differential equation for a variable that was used for a
different purpose previously. If x′ = f (x)&Q always stays in P, then there is an
initial value for the differential ghost such that the augmented differential equation
system x′ = f (x),y′ = g(x,y)&Q also always stays in P, and vice versa.

Certainly, the rule (12.4) for adding time can be derived from axiom DG when
we use 1 for g(x,y). In fact, when we cleverly instantiate by rule ∃R the existential
quantifier for the ghost with 0, even the following improved rule can be derived:

Γ , t = 0 ⊢ [x′ = f (x), t ′ = 1&Q]P,∆

Γ ⊢ [x′ = f (x)&Q]P,∆
(t fresh)

376 12 Ghosts & Differential Ghosts

This rule is more helpful for ghost solutions because it makes sure the differential
equation actually starts at time t = 0, which simplifies the arithmetic considerably.

But other differential equations y′ = g(x,y) can be added by axiom DG as well.
How general can they be? And what are they good for? Is there a limit to what
differential equations can be added?

Before you read on, see if you can find the answer for yourself.

During the soundness proof for axiom DG it will turn out that there is a limit
to the differential equations that can be added soundly. But before proceeding with
this crucial question, we take the inexcusable liberty of first exploring potential use
cases of differential ghost axiom DG to sharpen our intuition and learn to appreciate
what more general differential ghosts could be good for.

Example 12.1 (Matters get worse without differential ghosts). A guiding example
for the use of differential ghosts is the following simple formula:

x > 0→ [x′ = x]x > 0 (12.6)

This formula is not susceptible to differential invariance proofs using just the rule dI,
because the trend along x′ = x for the truth-value of the postcondition x > 0 makes
matters worse over time (the trend in Fig. 12.1 is negative even if its exponential
solution x0e t still just stays positive). The differential x≥ 0 of x > 0 is invalid:

not valid
⊢ x≥ 0

[:=] ⊢ [x′:= x]x′ ≥ 0
dI

x > 0 ⊢ [x′ = x]x > 0

Fig. 12.1 Exponential decay
along x′ = x always makes
matters worse for x > 0

0 t

x
x0

x0e t

x ′= x

With significantly more thought, it can be shown that there is no indirect way
of making (12.6) provable with the help of differential cuts either [6]. But even if
along x′= x the postcondition x> 0 tends toward becoming false, the rate at which
it is becoming false is slowing down as well, because the differential equation is
x′ = x (and not x′ = x 1 where the extra offset 1 would indeed ultimately
make x negative). While x > 0 is racing to the bottom, the rate at which x changes
along x′ = x simultaneously races to the bottom (toward 0). That begs the question
of which of those two limit processes wins. If only we had a way to relate their
progress to an extra quantity that could serve as a counterweight to the change of x

and describe to what extent the rate at which x changes is being held up.

12.3 A Gradual Introduction to Ghost Variables 377

Suppose we had a differential ghost as an additional variable y with some differ-
ential equation that is still to be determined, which we can use as such a counter-
weight. What relationship of x and y would imply that x must be positive so that the
postcondition x > 0 is true? If we think back to Lie’s characterization of invariant
terms in Sect. 10.8.2, then we recall that differential invariants are perfect at prov-
ing invariant terms that never change their value. The simplest equation of x and y

that implies x > 0 is xy2 = 1, because y2 is surely nonnegative and, thus, x must be
positive if its product with the nonnegative number y2 is 1 (or any other positive
number). And, in fact, ∃yxy2 = 1 is even equivalent to x > 0.

Now, the only remaining question is by what differential equation should the dif-
ferential ghost y change over time to preserve the invariant xy2 = 1, which would im-
ply the desired postcondition x > 0. This is the cool thing about differential ghosts:
We get to choose their differential equations at our pleasure as g(x,y) in axiom DG.
Everywhere else the variables change according to their very own fixed differential
equations that the original hybrid system comes with. But differential ghosts are
different. We can make them change any way we want! We just need to make up
our mind and choose cleverly to make our favorite proofs work out. How would we
need y to change?

Before you read on, see if you can find the answer for yourself.

It may sound like a big open question. But it is completely systematic how we
need a differential ghost to evolve if we want to make a formula such as xy2 = 1
an invariant. The formula will be an invariant if its differential x′y2 + x2yy′ = 0 is
proved along the differential equation. The differential equation already tells us that
x′ is x, but we have not settled on our favorite differential equation for y′ yet.
Of course, the resulting formula xy2 +2xyy′ = 0 is best made true by a choice of
y
2 for y′, which we find by simply solving xy2 +2xyy′ = 0 for y′. That calls for
the differential ghost y′ = y

2 with which we set out for a proof of (12.6) using the
dynamics illustrated in Fig. 12.2:

∗
R

xy2 = 1 ⊢ x > 0

∗
R ⊢ xy2 +2xy

y
2 = 0

[:=] ⊢ [x′:= x][y′:= y
2]x
′y2 + x2yy′ = 0

dI
x > 0,xy2 = 1 ⊢ [x′ = x,y′ = y

2]xy2 = 1
∃R,cut

x > 0 ⊢ ∃y [x′ = x,y′ = y
2]xy2 = 1

MR
x > 0 ⊢ ∃y [x′ = x,y′ = y

2]x > 0
DG

x > 0 ⊢ [x′ = x]x > 0

The monotonicity step MR replaces the original postcondition x > 0 with the
desired postcondition xy2 = 1 that implies x > 0. Recall that ∃yxy2 = 1 is equivalent
to x > 0, which makes it particularly easy to see3 why this monotonicity step also
works in the context ∃y. From the desired equation xy2 = 1 it would be easy to read

3 Just like modalities and universal quantifiers, existential quantifiers also satisfy the monotonicity
rule that ∃yP→∃yQ can be derived from P→ Q.

378 12 Ghosts & Differential Ghosts

off the concrete witness
√

1
x

for the existential quantifier instantiation step ∃R since
x > 0 initially. But since existence of such a y is all that matters for the proof, it
is enough to prove ∃yxy2 = 1 from the antecedent x > 0, which is straightforward
real arithmetic. Things get worse in the original variable x but we hold it up still
against the trend with the help of the additional differential ghost variable y and its
counterweight dynamics. Nice, this proof with a creative differential ghost gave us
a surprising but systematic proof for exponential decay formula (12.6).

Fig. 12.2 Differential ghost
y as counterweight for expo-
nential decay along x′ = x

0 t

x
x0

x ′= x

y
′ =

y
2

xy2 = 1

12.4 Differential Ghosts

Now that we have seen the benefit of dreaming up an entirely new differential equa-
tion for a differential ghost for the sole purpose of doing a proof, it is about time to
come back and see whether there are any limitations on the differential equations
that can be added as differential ghosts for the purposes of a proof. What could
possibly go wrong? Because the new variables are really new, adding new variables
with new differential equations should not affect the original differential equations,
because they cannot mention the differential ghosts (which would not otherwise be
new).

The catch is that there is still a pretty subtle influence that additional differential
equations can have on a preexisting differential equation system. If poorly chosen,
then extra differential equations for differential ghosts can limit the duration of ex-
istence of the solution of the joint differential equation system. It would not help to
make a real system any safer if we were to compose it with a differential ghost that
makes the imaginary world explode before the real system has a chance to run into
an unsafe state. Blowing up the world does not make it any safer.

Example 12.2 (Nonexistent differential ghosts). It would be unsound to add a differ-
ential ghost if its solution does not exist for at least as long as the original differen-
tial equation system has a solution. Otherwise the following unsound proof attempt
would reduce a conclusion that is not valid to a premise that is valid by adding a
differential ghost y′ = y2+1 whose solution y(t) = tan t does not even exist for long
enough to make x≤ 6 false (as illustrated in Fig. 12.3):

12.4 Differential Ghosts 379

x = 0,y = 0 ⊢ [x′ = 1,y′ = y2 +1]x≤ 6
∃R

x = 0 ⊢ ∃y [x′ = 1,y′ = y2 +1]x≤ 6

x = 0 ⊢ [x′ = 1]x≤ 6

Fig. 12.3 Explosive differen-
tial ghosts that do not exist
long enough would unsoundly
limit the duration of solutions

When adding a differential ghost into a differential equation system it is, thus,
crucial for soundness that the ghost differential equation has a solution that exists at
least as long as the solutions of the rest of the differential equation system exist. The
easiest way of making that happen is if the new differential equation added for the
differential ghost y is linear in y, so of the form y′ = a(x) · y+b(x). The terms a(x)
and b(x) can be any terms of dL mentioning any number of variables any number
of times, but they cannot mention y, because y′ = a(x) · y+ b(x) would not, then,
be linear in y. This leads to the following (soundness-critical) correction for the
formulation of the differential ghost axiom from (12.5) that we initially suspected
in Sect. 12.3.4.

Lemma 12.2 (DG differential ghost axiom). The differential ghost axiom

DG is sound:

DG [x′ = f (x)&Q]P↔∃y [x′ = f (x),y′ = a(x) · y+b(x)&Q]P

where y is a new variable, not occurring in the left-hand side [x′ = f (x)&Q]P
or in a(x) or inb(x).

Proof (Sketch). The proof, which is reported in full in prior work [8], uses a slight
generalization of Corollary 2.1 from Sect. 2.9.2 to show that the new differential
equation y′ = a(x) · y+b(x) has a solution that exists at least as long as the solution
of x′ = f (x) exists. The required Lipschitz condition follows from the fact that a(x)
and b(x) in y′ = a(x) · y+b(x) have continuous values over time and, thus, assume
their maximum on the compact interval of existence of the solution of x. ⊓⊔

Axiom DG can be used to show that a property P holds after a differential equa-
tion if and only if it holds for some initial value y after an augmented differential
equation with an extra y′ = a(x) · y+ b(x) that is linear in y so still has a solution
that exists for sufficiently long. The case where x′ = f (x) is a (vectorial) differential
equation system is similar, giving y′ = a(x) · y+b(x) the opportunity to mention all
variables other than the new y in a(x) and b(x).

y

x

���
Π

2
Π ������

3 Π
2

2 Π
t

-6

-4

-2

0

2

4

380 12 Ghosts & Differential Ghosts

A proof rule for differential ghosts derives from a direct use of axiom DG.

Lemma 12.3 (dG differential ghost rule). This proof rule derives from DG:

dG
Γ ⊢ ∃y [x′ = f (x),y′ = a(x) · y+b(x)&Q]P,∆

Γ ⊢ [x′ = f (x)&Q]P,∆
(where y is new)

Proof. Proof rule dG is derived by a straightforward application of axiom DG. ⊓⊔

As illustrated in Example 12.1, it is almost always beneficial to subsequently re-
place the postcondition P with a formula that makes use of the differential ghost y.
The following rule dA was the first form [6] of differential ghosts and already bun-
dles axiom DG up with others into a commonly useful form that adds a differential
ghost while simultaneously replacing the postcondition to use the ghost.

Lemma 12.4 (dA differential auxiliaries rule). The differential auxiliaries
rule for introducing new auxiliary differential variables y derives from DG:

dA
⊢ F ↔∃yG G ⊢ [x′ = f (x),y′ = a(x) · y+b(x)&Q]G

F ⊢ [x′ = f (x)&Q]F

Proof. Rule dA is derived from DG with transformations of the postcondition:

∃yG ⊢ F

G ⊢ F

F ⊢ ∃yG Γ ,G ⊢ [x′ = f (x),y′ = a(x) · y+b(x)]G,∆
∃R,cut Γ ,F ⊢ ∃y [x′ = f (x),y′ = a(x) · y+b(x)]G,∆

MR Γ ,F ⊢ ∃y [x′ = f (x),y′ = a(x) · y+b(x)]F,∆
DG Γ ,F ⊢ [x′ = f (x)]F,∆

⊓⊔

By the right premise of rule dA, for any y, G is an invariant of the extended dynam-
ics. Thus, G always holds after the evolution for some y (its value can be different
than in the initial state), which still implies F by the left premise. Since y is fresh
and its linear differential equation does not limit the duration of solutions of x on
Q, this implies the conclusion. Since y is fresh, y does not occur in Q, and, thus,
its solution does not leave Q, which would incorrectly restrict the duration of the
evolution.

Intuitively, rule dA can help us to prove properties, because it may be easier to
characterize how x changes in relation to an auxiliary differential ghost variable y

with a suitable differential equation (y′ = a(x) · y+b(x)) compared to understanding
the change of x in isolation. As usual, it would not be sound to keep the context Γ ,∆
on the first premise of rule dA, because we have no reason to believe it would still
hold after the differential equation, where we only know G (for some current value
of y) according to the second premise but need to conclude that F also holds.

We conclude this section with a series of instructive examples that convey how
differential ghosts are used as a powerful proof technique for differential equations.

12.4 Differential Ghosts 381

In all examples the differential equation for the differential ghost is constructed en-
tirely systematically as in Sect. 12.3.4 from the property that we want to be invariant.

Example 12.3 (Differential ghosts describe exponential growth). Exponential decay
is not the only kind of dynamics that benefits from a differential ghost. Exponential
growth is also proved just by flipping the sign of the differential ghost (Fig. 12.4).

∗
R ⊢ x > 0↔∃yxy2 = 1

∗
R ⊢ xy2 +2xy(y

2) = 0
[:=] ⊢ [x′:=x][y′:= y

2]x
′y2 + x2yy′ = 0

dI
xy2 = 1 ⊢ [x′ = x,y′ = y

2]xy2 = 1
dA

x > 0 ⊢ [x′ = x]x > 0

Fig. 12.4 Differential ghost y

to balance exponential growth
along x′ = x

0 t

x

x0
x
′ =

x

y ′= y
2

xy2 = 1

Example 12.4 (Exponential difference). It is equally easy to prove that x will never
become zero along an exponential decay x′ = x. In this case, the condition on x

and the additional differential ghost y that is equivalent to x 6= 0 is ∃yxy = 1, which
requires the counterweight differential equation y′ = y to become invariant:

∗
R ⊢ x > 0↔∃yxy = 1

∗
R ⊢ xy+ xy = 0
[:=] ⊢ [x′:= x][y′:=y]x′y+ xy′ = 0
dI

xy = 1 ⊢ [x′ = x,y′ = y]xy = 1
dA

x 6= 0 ⊢ [x′ = x]x 6= 0

Example 12.5 (Weak exponential decay). Proving that x≥ 0 is an invariant for expo-
nential decay x′ = x results in two cases, the case where x = 0 and the case where
x > 0. Distinguishing between the two cases results in a successful proof. It is easier,
however, to keep them together by rephrasing the desired invariant x ≥ 0 with the
equivalent ∃y(y > 0∧ xy≥ 0) using a corresponding differential ghost y′ = y:

382 12 Ghosts & Differential Ghosts

∗
R ⊢ x≥0↔∃y(y>0∧ xy≥0)

∗
R ⊢ xy+ xy≥ 0
[:=] ⊢ [x′:= x][y′:=y]x′y+ xy′ ≥ 0
dI ⊳ xy≥0 ⊢ [x′ = x,y′ = y]xy≥0
[]∧

y>0∧ xy≥0 ⊢ [x′ = x,y′ = y](y>0∧ xy≥0)
dA

x≥ 0 ⊢ [x′ = x]x≥ 0

The []∧ derived axiom leads to another premise (marked by ⊳), which proves with
yet another differential ghost just like in Example 12.3, just carrying x′= x around:

∗
R ⊢ y > 0↔∃zyz2 = 1

∗
R ⊢ yz2 +2yz(z

2) = 0
[:=] ⊢ [y′:=y][z′:= z

2]y
′z2 + y2zz′ = 0

dI
yz2 = 1 ⊢ [x′ = x,y′ = y,z′ = z

2]yz2 = 1
dA

y > 0 ⊢ [x′ = x,y′ = y]y > 0

Example 12.6 (Exponential equilibrium). Proving that x = 0 is an invariant for ex-
ponential decay x′ = x succeeds by rephrasing it with the equivalent invariant
∃y(y > 0∧ xy = 0) and then following an analogue of Example 12.5. Alternatively,
the splitting axiom []∧ can directly reuse the proof of Example 12.5 to show that
both x≥ 0 and x≤ 0 are invariants of x′ = x, which implies that their conjunction
x = 0 is invariant as well.

These examples are indicative of how proofs for other differential equations
work. Systems with a different asymptotic behavior need a correspondingly shifted
differential ghost.

Example 12.7 (Shifted exponentials). The following formula

x3 > 1→ [x′ = x 1]x3 > 1

needs a differential ghost y′ = y
2 with an inequality (x + 1)y2 > 0 instead of an

equation in order for the second branch to be proved by y2 ≥ 0:

∗
R ⊢ x3> 1↔∃y(x+1)y2>0

∗
R ⊢ xy2 +2xy

y
2 +2y

y
2 ≥ 0

[:=] ⊢ [x′:= x][y′:= y
2]x
′y2 +(x+1)2yy′ ≥ 0

dI (x+1)y2>0 ⊢ [x′ = x,y′ = y
2](x+1)y2 > 0

dA
x3 > 1 ⊢ [x′ = x 1]x3 > 1

Example 12.8 (Square resistance). The differential equations for differential ghosts
may depend on previously existing variables, for example, when proving that x > 0
is an invariant along x′ = x2 with the differential ghost y′ = x

2 y (Fig. 12.5).

12.5 Substitute Ghosts 383

Fig. 12.5 Differential ghost
y as counterweight for square
resistance along x′ = x2

0 t

x

x0

x′ = x2

y
′ =

x
2
y

xy2 = 1

∗
R ⊢ x > 0↔∃yxy2 = 1

∗
R ⊢ x2y2 +2xy(x

2 y) = 0
[:=] ⊢ [x′:= x2][y′:= x

2 y]x′y2 + x2yy′ = 0
dI

xy2 = 1 ⊢ [x′ = x2,y′ = x
2 y]xy2 = 1

dA
x > 0 ⊢ [x′ = x2]x > 0

Example 12.9 (Square activation). Proving that x > 0 is an invariant along x′ = x2

would also work with a differential ghost with a flipped sign. But that is unneces-
sarily difficult, because x > 0 is getting more true along x′ = x2 anyhow, so a direct
differential invariant proof suffices.

∗
R ⊢ x2 ≥ 0
[:=] ⊢ [x′:=x2]x′ ≥ 0
dI

x > 0 ⊢ [x′ = x2]x > 0

12.5 Substitute Ghosts

Ghosts even give us a, shockingly spooky, way of generating differential equations
for differential ghosts on the fly as needed for proofs to work out. That might sound
scary but is amazingly useful. To see how it works, invent your own differential
ghost y′ = with a still-unspecified right-hand side , which is nothing but
a substitute ghost or a common spooky cloud, and just keep “proving” as if nothing
had happened:

∗
R ⊢ x > 0↔∃yxy2 = 1

could prove if = y
2

⊢ xy2 +2xy = 0
[:=] ⊢ [x′:= x][y′:=]x′y2 + x2yy′ = 0
dI

xy2 = 1 ⊢ [x′ = x,y′ =]xy2 = 1
dA

x > 0 ⊢ [x′ = x]x > 0

384 12 Ghosts & Differential Ghosts

The right premise could be proved if only were chosen to be y
2 , in which

case the premise xy2 +2xy = 0 is quite easily proved. That, of course, was
a bit too spooky for the soundness-loving truth-connoisseur. So let’s instantiate the
spooky cloud with its concrete choice y

2 and start all over with a proper proof:

∗
R ⊢ x > 0↔∃yxy2 = 1

∗
R ⊢ xy2 +2xy

y
2 = 0

[:=] ⊢ [x′:= x][y′:= y
2]x
′y2 + x2yy′ = 0

dI
xy2 = 1 ⊢ [x′ = x,y′ = y

2]xy2 = 1
dA

x > 0 ⊢ [x′ = x]x > 0

Fortunately, this proper dL proof confirms the suspicion of a proof that we de-
veloped above. In that sense, all is fair in how we come up with a proof, even if we
use spooky ghost arguments where is involved.4 But in the end, it is crucial to
conduct a proper proof with sound proof rules to ensure the conclusion is valid.

It can be shown [6] that there are properties such as this one that crucially need
differential ghosts (alias differential auxiliaries) to be proved, which makes differ-
ential ghosts a powerful proof technique.

12.6 Limit Velocity of an Aerodynamic Ball

This section considers an insightful application of differential ghosts to prove
asymptotic limit velocities. Safe position bounds were proved for the aerodynamic
bouncing ball in Sect. 11.12: Unlike the original bouncing ball (4.6) from Sect. 4.2.1,
the interesting twist is that its differential equation x′ = v,v′ = g+ rv2 &x ≥ 0∧
v≤ 0 includes quadratic air resistance rv2 working against the direction of motion.
In preparation for the subsequent development, we assume positive aerodynamic re-
sistance r > 0 instead of r≥ 0. The central argument in the proof of safety showed a
velocity-dependent position bound by rule dI while the aerodynamic ball is falling:

∗
R

g > 0∧ r > 0,x≥ 0∧ v≤ 0 ⊢ 2gv≤ 2gv 2rv3

g > 0∧ r > 0,x≥ 0∧ v≤ 0 ⊢ 2gv≤ 2v(g+ rv2)
[:=]

g > 0∧ r > 0,x≥ 0∧ v≤ 0 ⊢ [x′:=v][v′:= g+ rv2]2gx′ ≤ 2vv′
dI

g > 0∧ r > 0,2gx≤ 2gH v2 ⊢ [x′ = v,v′ = g+ rv2 &x≥ 0∧ v≤ 0]2gx≤ 2gH v2

From every velocity bound (initially v = 0) the invariant 2gx≤ 2gH v2 enables
us to read off a corresponding position bound on the change of position x compared
to fixed altitude H. But how fast could the aerodynamic bouncing ball be falling?

Before you read on, see if you can find the answer for yourself.

4 Of course, is not quite as spooky as one might suspect. It can be made rigorous with function
symbols that are subsequently substituted uniformly [8], as we discuss in Chap. 18.

12.6 Limit Velocity of an Aerodynamic Ball 385

Surely the original bouncing ball (4.6) from Sect. 4.2.1 could go arbitrarily fast if
it is falling from a sufficiently high altitude, because its velocity permanently keeps
increasing in absolute value along x′ = v,v′ = g&x≥ 0. But the aerodynamic ball
is a different matter, because its aerodynamic resistance keeps increasing with the
square of its velocity along x′ = v,v′ = g+ rv2 &x≥ 0∧ v≤ 0. Is there a maximal
velocity for aerodynamic balls?

The higher the (absolute value of the) velocity v, the higher the air resistance
rv2. And indeed, the velocity v will not change anymore if the right-hand side of its
differential equation has value 0:

v′ = 0 iff g+ rv2 = 0 iff v =±
√

g

r

Points where the right-hand side of the differential equation is 0 are called equi-

librium points. In this case, of course, the position will still keep on changing, but

the velocity is at an equilibrium when v = ±
√

g
r
. Recall how lucky we are for the

division that the aerodynamic resistance coefficient r is not 0 (but then again, there
would not otherwise be any limit to the velocity if r were 0). Consequently, we will
prove that the (negative!) velocity is indeed always larger than the limit velocity

√

g/r, so smaller than
√

g/r in absolute value as shown in Fig. 12.6:

g > 0∧ r > 0∧ v >
√

g

r
→ [x′ = v,v′ = g+ rv2 &x≥ 0∧ v≤ 0]v >

√
g

r

Fig. 12.6 Velocity of aerody-
namic ball approaches limit
velocity

x

v

��� ��� ��� ��� �

-��

-��

-��

��

��

Now the tricky bit is that, even though this dL formula is valid, it is not prov-
able by differential invariants alone, because postcondition v >

√
g/r is getting

less true over time. After all, the velocity keeps decreasing along v′ = g+ rv2

making v >
√

g/r less and less true as time progresses. The point is that, even if
v >

√
g/r is getting less true, because the signed difference v+

√
g/r between the

two sides keeps decreasing forever, the rate at which the difference is decreasing
is simultaneously shrinking, too. Indeed,

√
g/r is the limit velocity of the aerody-

namic ball, because the ball will converge to velocity
√

g/r in the limit as time
converges to infinity t→ ∞, but will never truly reach this asymptotic limit velocity

386 12 Ghosts & Differential Ghosts

in finite time. Differential cuts do not exactly help, because they either help estab-
lish a limit velocity but then also become less true over time so are not provable
by differential invariants, or they are differential invariants but then do not provide
asymptotic velocity bounds.

This calls for the help of a differential ghost to serve as counterweight to the
change in value. What differential equation that differential ghost needs to balance
the property is hard to predict. But the canonical property that the differential ghost
y needs to satisfy to imply the postcondition v >

√
g/r is ∃yy2(v+

√
g/r) = 1,

because the two formulas are equivalent since v >
√

g/r iff v+
√

g/r > 0, which it
has to be to obtain 1 when multiplied by some square y2 ≥ 0.

From this new postcondition y2(v+
√

g/r) = 1 we can easily determine what the
differential equation for the differential ghost y needs to be. All we need to do is
first compute its differential like axiom DI would:

2yy′(v+
√

g/r)+ y2v′ = 0

Next, we substitute in the differential equation for v′ like axiom DE would:

2yy′(v+
√

g/r)+ y2(g+ rv2) = 0

Finally, we solve for y′ to find out what differential equation makes it invariant:

y′ = r/2(v
√

g/r)y

This construction tells us all we need to complete the proof. The proof assumes
fixed parameters g > 0∧ r > 0 everywhere to make

√
g/r well-defined. The elided

premise v >
√

g/r↔∃yy2(v+
√

g/r)=1 of dA (marked ⊳) is proved by arithmetic.

∗
R ⊢ ry2(v2 g/r)+ y2(g+ rv2) = 0

⊢ 2y(r/2(v
√

g/r)y)(v+
√

g/r)+ y2(g+ rv2) = 0
[:=] ⊢ [x′:=v][v′:= g+ rv2][y′:= r/2(v

√
g/r)y]2yy′(v+

√
g/r)+ y2v′ = 0

dI ⊳ y2(v+
√

g/r) = 1 ⊢ [x′ = v,v′ = g+ rv2,y′ = r/2(v
√

g/r)y]y2(v+
√

g/r) = 1
dA

v >
√

g/r ⊢ [x′ = v,v′ = g+ rv2]v >
√

g/r

Proposition 12.1 (Aerodynamic velocity limits). This dL formula is valid:

g > 0∧ r > 0∧ v >
√

g

r
→ [x′ = v,v′ = g+ rv2 &x≥ 0∧ v≤ 0]v >

√
g

r

A similar construction always makes it possible to construct suitable differential
ghosts [5, 6], but it is crucial for the proof that their solutions exist for long enough,
which they do in the case of linear differential equations.

12.7 Axiomatic Ghosts 387

12.7 Axiomatic Ghosts

This section is devoted to yet another kind of ghosts: axiomatic ghosts. While irrele-
vant for simple systems, axiomatic ghosts are the way to go for systems that involve
special functions such as sin,cos, tan, etc.

At a coordination level, the planar in-flight dynamics of an aircraft at x can be
described by the following differential equation system [12]:

x′1 = vcosϑ x′2 = vsinϑ ϑ ′ = ω (12.7)

That is, the linear velocity v of the aircraft changes both planar position coordi-
nates x1 and x2 in the (planar) direction corresponding to the aircraft’s current orien-
tation ϑ . During curved flight, the angular velocity ω of the aircraft simultaneously
changes the orientation ϑ of the aircraft (Fig. 12.7).

Fig. 12.7 Dubins aircraft
dynamics

x1

x2

y1

y2

v

ω e

ϑ̄

ρ

Unlike for straight-line flight with ω = 0, the nonlinear dynamics in (12.7) is dif-
ficult to analyze [12] for curved flight with angular velocity ω 6= 0. Solving (12.7)
requires the Floquet theory of differential equations with periodic coefficients [13,
Theorem 18.X] and yields mixed polynomial expressions with multiple trigonomet-
ric functions. Even more challenging is the verification of properties of the states
that the aircraft reach by following these solutions, which requires proving that com-
plicated formulas with mixed polynomial arithmetic and trigonometric functions
hold true for all values of state variables and all possible evolution durations. How-
ever, quantified arithmetic with trigonometric functions is undecidable by Gödel’s
incompleteness theorem [2, 11].

To obtain polynomial dynamics, we differentially axiomatize [3] the trigonomet-
ric functions in the dynamics and reparametrize the state correspondingly. Instead
of angular orientation ϑ and linear velocity v, we use the linear speed vector

(v1,v2)
def
= (vcosϑ ,vsinϑ) ∈ R2

which describes both the linear speed
√

v2
1 + v2

2 = v and the orientation of the air-
craft in space; see Fig. 12.8. Substituting this coordinate change into differential
equations (12.7) immediately yields x′1 = v1 and x′2 = v2. What differential equa-
tions the new axiomatic ghost variables v1,v2 obeys, is found by simple symbolic
differentiation and substituting in differential equation system (12.7):

388 12 Ghosts & Differential Ghosts

Fig. 12.8 Reparametrize for
differential axiomatization

x1

x2

vsinϑ = v2

v1 = vcosϑ

(v1,
v2)

v′1= (vcosϑ)′ = v′ cosϑ + v(sinϑ)ϑ ′ = (vsinϑ)ω = ωv2

v′2 = (vsinϑ)′ = v′ sinϑ + v(cosϑ)ϑ ′ = (vcosϑ)ω = ωv1

The middle equality holds when assuming constant linear velocity (v′ = 0). Hence,
equations (12.7) can be rephrased as the following differential equation:

x′1 = v1 , x′2 = v2 , v′1 = ωv2 , v′2 = ωv1 (12.8)

y′1 = e1 , y′2 = u2 , u′1 = ρu2 , u′2 = ρu1 (12.9)

Differential equation (12.8) expresses that position x = (x1,x2) changes according to
the linear speed vector (v1,v2), which in turn rotates according to ω . Simultaneous
movement together with a second aircraft at y ∈ R2 having linear speed (u1,u2) ∈
R2 (also indicated with angle ϑ̄ in Fig. 12.7) and angular velocity ρ corresponds
to the additional differential equation system (12.9). Differential equations capture
simultaneous dynamics of multiple traffic agents succinctly using conjunction.

This differential axiomatization obtains polynomial differential equations. Their
solutions still involve the same complicated nonlinear trigonometric expressions, so
solutions still give undecidable arithmetic. But differential-invariant-type arguments
work with the differential equations themselves and not with their solutions, so dif-
ferential axiomatization actually helps when proving properties, because the solu-
tions are still as complicated as they have always been, but the differential equations
have become easier. The same technique helps when handling other special func-
tions in other cases by differential axiomatization: introduce new ghost variables for
the special functions and determine their differential equations by symbolic differ-
entiation and substitution of the old differential equations.

12.8 Summary

The major lesson from this chapter is that it can sometimes be easier to relate a
variable to its initial value or to other quantities than to understand its value in isola-
tion. Ghosts, in their various forms, let us achieve that by adding auxiliary variables
into the system dynamics, so that the values of the original variables of interest
can be related to the values of the ghosts. Sometimes such ghosts are necessary
to prove properties. Differential ghosts are especially useful for asymptotic prop-

12.9 Appendix 389

erties or for proving properties whose trend alone makes them less true over time.
The phenomenon that relations between state and ghost variables are sometimes
easier to prove than just standalone properties of state variables applies frequently.
This chapter shines a light on the power of relativity theory of differential equa-
tions in the sense of relating variables to one another. The ghost axioms and proof
rules to introduce either discrete or continuous auxiliary variables are summarized
in Fig. 12.9.

Fig. 12.9 Axioms and proof rules for ghosts and differential ghosts where y is new

DG [x′ = f (x)&Q]P↔∃y [x′ = f (x),y′ = a(x) · y+b(x)&Q]P

dG
Γ ⊢ ∃y [x′ = f (x),y′ = a(x) · y+b(x)&Q]P,∆

Γ ⊢ [x′ = f (x)&Q]P,∆

dA
⊢ F ↔∃yG G ⊢ [x′ = f (x),y′ = a(x) · y+b(x)&Q]G

F ⊢ [x′ = f (x)&Q]F

iG
Γ ⊢ [y :=e]p,∆

Γ ⊢ p,∆
(y new)

This chapter also showcased a number of other useful proof techniques and even
showed how properties of differential equations can be proved using solution-like
arguments if only part of the differential equation system can be solved.

12.9 Appendix

This appendix provides a few additional cases where different kinds of ghost vari-
ables occur, e.g., for arithmetical purposes such as division or roots.

12.9.1 Arithmetic Ghosts

The easiest way to see why it sometimes makes sense to add variables into a system
model is to take a look at divisions. Divisions are not officially part of real arith-
metic, because divisions are definable indirectly. The point is that subtractions b c

are definable as the term b+(1) · c but divisions need a whole formula to be de-
finable. For example, when a division b/c is ever mentioned in a term, then we can
characterize a new variable q that remembers the value of b/c by indirectly char-
acterizing q in terms of b and c by multiplication without / and then subsequently
using q wherever b/c first occurred:

q :=
b

c
 q :=∗; ?qc = b q :=∗; ?qc = b∧ c 6= 0

390 12 Ghosts & Differential Ghosts

where q:=∗ is the nondeterministic assignment that assigns an arbitrary real number
to q. The first transformation (written) characterizes q = b/c indirectly by mul-
tiplying up c as qc = b. The second transformation then conscientiously remembers
that divisions only make sense when we avoid dividing by zero. After all, divisions
by zero excel at causing a lot of trouble. Divisions by zero won’t stop for anything
when causing trouble, not even when something that is as important and impact-
ful as cyber-physical systems are concerned. The above transformation can be used
when b/c occurs in the middle of a term, too:

x:=2+
b

c
+e q:=∗; ?qc= b; x:=2+q+e q:=∗; ?qc= b∧c 6= 0; x:=2+q+e

Here q is called an arithmetic ghost, because q is an auxiliary variable that is only
added to the program for the sake of defining the arithmetic quotient b

c
. In similar

ways we can define other functions such as square roots using an arithmetic ghost:

x :=a+
√

4y q :=∗; ?q2 = 4y; x :=a+q

But we should again scrutinize to make sure we realize that 4y should be nonnega-
tive for the square root to make sense, and we could indeed add that into the test. We
settle on not doing so, since non-negativity already follows from q2 = 4y. Systematic
transformations of divisions and square roots will also be considered in Chap. 20.

12.9.2 Nondeterministic Assignments & Ghosts of Choice

The HP statement x :=∗ that has been used in Sect. 12.9.1 is a nondeterministic

assignment that assigns an arbitrary real number to x. Comparing with the syntax of
hybrid programs from Chap. 3, however, it turns out that such a statement is not in
the official language of hybrid programs:

α,β ::= x :=e | ?Q | x′ = f (x)&Q | α ∪β | α;β | α∗ (12.10)

What now?
One possible solution, which is the one taken in the implementation of the hybrid

systems theorem prover KeYmaera [10] and its successor KeYmaera X [1], is to
solve Exercise 5.13 and add the nondeterministic assignment x :=∗ as a statement
to the syntax of hybrid programs.

α,β ::= x :=e | ?Q | x′ = f (x)&Q | α ∪β | α;β | α∗ | x :=∗

Consequently, the new syntactic construct of nondeterministic assignments needs a
semantics to become meaningful:

7. [[x :=∗]] = {(ω,ν) : ν = ω except for the value of x, which can be any real}

12.9 Appendix 391

Nondeterministic assignments also need axioms or proof rules so that they can be
understood and analyzed in proofs (Exercise 5.13). Those are reported in Fig. 12.10.

Fig. 12.10 Axioms for nondeterministic assignments

〈:∗〉 〈x :=∗〉P↔∃xP

[:∗] [x :=∗]P↔∀xP

Axiom 〈:∗〉 says that there is one way of assigning an arbitrary value to x so
that P holds afterwards (i.e., 〈x :=∗〉P holds) if and only if P holds for some value
of x (i.e., ∃xP holds). And axiom [:∗] says that P holds for all ways of assigning an
arbitrary value to x (i.e., [x :=∗]P holds) if and only if P holds for all values of x (i.e.,
∀xP holds), because x might have any such value after running x :=∗, and because
the [α] means that the postcondition needs to be true after all ways of running α .

An alternative approach for adding nondeterministic assignments x :=∗ to hy-
brid programs is to reconsider whether we even have to add a new construct for
x :=∗ or whether it can be expressed in other ways. That is, to understand whether
x :=∗ is truly a new program construct or whether it can be defined in terms of the
other hybrid program statements from (12.10). Is x :=∗ definable by another hybrid
program?

Before you read on, see if you can find the answer for yourself.

According to the proof rules [:∗] and 〈:∗〉, nondeterministic assignments x :=∗
can be expressed equivalently by suitable quantifiers. But that does not help at all
in the middle of a program, where we can hardly write down a quantifier to express
that the value of x now changes.

There is another way, though. Nondeterministic assignment x :=∗ assigns any
real number to x. One hybrid program that has essentially the same effect of giving
x any arbitrary real value [4, Chapter 3] is

x :=∗ def≡ x′ = 1∪ x′ = 1 (12.11)

That is not the only definition of x :=∗, though. An equivalent definition is [7]:

x :=∗ def≡ x′ = 1; x′ = 1

When working through the intended semantics of the left-hand side x :=∗ shown
in Case 7 above and the actual semantics of the right-hand side of (12.11) accord-
ing to Chap. 3, it becomes clear that both sides of (12.11) have the same effect.5

5 Observe a subtlety that, unlike the nondeterministic assignment, the differential equations also
have an impact on the value of x′, which is fine since most programs do not read x′ any further, but
needs extra care with an additional discrete ghost z otherwise: z :=x′;{x′ = 1∪ x′ = 1};x′ := z

392 12 Ghosts & Differential Ghosts

Hence, the above definition (12.11) captures the intended concept of giving x any
arbitrary real value, nondeterministically. And, in particular, just like if-then-else,
nondeterministic assignments do not really have to be added to the language of hy-
brid programs, because they can already be defined. Likewise, no proof rules have
to be added for nondeterministic assignments, because there are already proof rules
for the constructs used in the right-hand side of the definition of x :=∗ in (12.11).
Since the above proof rules 〈:∗〉,[:∗] for x :=∗ are particularly easy, though, it is
usually more efficient to include them directly, which is what KeYmaera X does.

What may, at first sight, appear slightly spooky about (12.11), however, is that the
left-hand side x :=∗ is clearly an instant change in time where x changes its value
instantaneously to some arbitrary new real number. That is not so for the right-hand
side of (12.11), which involves two differential equations, which take time to follow.

The clue is that this passage of time is not observable in the state of the system.
Consequently, the left-hand side of (12.11) really means the same as the right-hand
side of (12.11). Remember from earlier chapters that time is not special. If a CPS
wanted to refer to time, it would have a clock variable t with the differential equa-
tion t ′ = 1. With such an addition, however, the passage of time t would become
observable in the value of variable t and, hence, a corresponding variation of the
right-hand side of (12.11) would not be equivalent to x :=∗ at all (indicated by 6≡):

x :=∗ 6≡ {x′ = 1, t ′ = 1}∪{x′ = 1, t ′ = 1}

The two sides differ, because the right side exposes the amount of time t it took to
get the value of x to where it should be, which, secretly, records information about
the absolute value of the change that x underwent from its old to its new value. That
change is something that the left-hand side x :=∗ knows nothing about.

12.9.3 Differential-Algebraic Ghosts

The transformation in Sect. 12.9.1 can eliminate all divisions, not just in assign-
ments, but also in tests and all other hybrid programs, with the notable exception of
differential equations. Eliminating divisions in differential equations turns out to be
a little more involved.

The following elimination using a (discrete) arithmetic ghost q is correct:

x′ =
2x

c
&c 6= 0∧ x+1

c
> 0 q:=∗; ?qc= 1; {x′ = 2xq&c 6= 0∧(x+1)q> 0}

where the extra ghost variable q is supposed to remember the value of 1
c
.

The following attempt with a (discrete) arithmetic ghost q, however, would
change the semantics rather radically:

x′ =
c

2x
&2x 6= 0∧ c

2x
> 0 q :=∗; ?q2x = 1; {x′ = cq&2x 6= 0∧ cq > 0}

12.9 Appendix 393

because q then only remembers the inverse of the initial value of 2x, not the inverse
of the value of 2x as x evolves along the differential equation x′ = c

2x
. That is q

has a constant value during the differential equation but, of course, the quotient c
2x

changes over time as x does.
One way to proceed is to figure out how the value of the quotient q = 1

2x
changes

over time as x changes by x′ = c
2x

. By deriving what q stands for, that results in

q′ =

(
1
2x

)′
=
 2x′

4x2 =
 2 c

2x

4x2 = c

4x3

Alas, we are unlucky here, because that gives yet another division to keep track of.
The other and entirely systematic way to proceed is to lift nondeterministic

assignments q to differential equations q′ = ∗ with the intended semantics that
q changes arbitrarily over time while following that nondeterministic differential
equation:6

q′ =
b

c
 q′ = ∗&qc = b q′ = ∗&qc = b∧ c 6= 0

While it is more complicated to give a semantics to q′ = ∗, the idea behind the
transformation is completely analogous to the case of discrete arithmetic ghosts:

x′ = 2+
b

c
+ e x′ = 2+q+ e,q′ = ∗&qc = b

 x′ = 2+q+ e,q′ = ∗&qc = b∧ c 6= 0

Variable q is a differential-algebraic ghost in the sense of being an auxiliary variable
in the differential-algebraic equation for the sake of defining the quotient b

c
.

Together with the reduction of divisions in discrete assignments from Sect. 12.9.1,
along with the insight that divisions in tests and evolution domain constraints can
always be rewritten to division-free form, this sketches a reduction showing that
hybrid programs and differential dynamic logic do not need divisions [4]. The ad-
vantage of eliminating divisions this way is that differential dynamic logic does not
need special precautions for divisions and that the handling of zero divisors is made
explicit in the way the divisions are eliminated from the formulas. In practice, how-
ever, divisions are useful, yet great care has to be exercised to make sure that no
inadvertent divisions by zero could ever cause troublesome singularities.

6 The precise meaning of the nondeterministic differential equation q′ = ∗ is reported elsewhere
[4, Chapter 3]. It is the same as the differential-algebraic constraint ∃d q′ = d, but differential-
algebraic constraints have not been introduced in this textbook, either. Differential games also
provide an elegant understanding [9]. The intuition of allowing arbitrary changes of the value of q

over time is fine, though, for our purposes.

394 12 Ghosts & Differential Ghosts

Note 66 (Divisions)

divide by zero
1
0

Whenever dividing, exercise great care not to acci-
dentally divide by zero, for that will cause quite some
trouble. More often than not, this trouble corresponds
to missing requirements in the system. For example
v2

2b
may be a good stopping distance when braking

to a stop from initial velocity v, except when b = 0,
which corresponds to having no brakes at all.

Exercises

12.1 (Conditions for discrete ghosts). Identify a minimal set of conditions neces-
sary for proof rule iG from Sect. 12.3.1 to be sound. Show a counterexample for
each of the remaining conditions to illustrate why it is necessary.

12.2. Augment the discrete ghost proofs in Sect. 12.3.1 to a full sequent proof of

xy 1 = 0→ [x′ = x,y′ = y]xy = 1

12.3. Augment the proofs in Sect. 12.3.2 as described to obtain a full sequent proof
of (11.6). Be advised to find a big sheet of paper, first.

12.4. For each of the following formulas provide a differential ghost proof:

x < 0→ [x′ = x]x < 0

4x > 4→ [x′ = x 1]4x > 4

x > 0→ [x′ = 5x]x > 0

x > 2→ [x′ = x+2]4x > 2

x > 1→ [x′ = x+1]x > 1

x > 4→ [x′ = x]x > 4

x5 > 0→ [x′ = 2x]x5 > 0

x > 0→ [x′ = x2]x > 0

x > 0→ [x′ = x4]x > 0

x > 0→ [x′ = x5]x > 0

12.5 (Parachute). While traveling on a plane, your robot at height x with vertical
velocity v finds a parachute that it can open (r := p with parachute resistance p) or
keep closed (r = a with air resistance a). Of course, once deployed the parachute
stays open. Your job is to fill in the blanks of a parachute controller with a test
condition and a precondition that makes sure the robot opens the parachute early
enough to land with bounded velocity.

12.9 Appendix 395

g > 0∧ p > r = a > 0∧ x≥ 0∧ v < 0∧__________→
[
(?r = a∧__________∪ r := p);

t :=0; {x′ = v,v′ = g+ rv2, t ′ = 1& t ≤ ε ∧ x≥ 0∧ v < 0}
)∗

]
(x = 0→ v≥ m)

� � � � ��

�

��

��

��
�

References

[1] Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp, and André
Platzer. KeYmaera X: an axiomatic tactical theorem prover for hybrid sys-
tems. In: CADE. Ed. by Amy Felty and Aart Middeldorp. Vol. 9195. LNCS.
Berlin: Springer, 2015, 527–538. DOI: 10.1007/978-3-319-21401-
6_36.

[2] Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica
und verwandter Systeme I. Monatshefte Math. Phys. 38(1) (1931), 173–198.
DOI: 10.1007/BF01700692.

[3] André Platzer. Differential-algebraic dynamic logic for differential-algebraic
programs. J. Log. Comput. 20(1) (2010), 309–352. DOI: 10.1093/logcom/
exn070.

[4] André Platzer. Logical Analysis of Hybrid Systems: Proving Theorems for

Complex Dynamics. Heidelberg: Springer, 2010. DOI: 10.1007/978-3-
642-14509-4.

[5] André Platzer. A differential operator approach to equational differential in-
variants. In: ITP. Ed. by Lennart Beringer and Amy Felty. Vol. 7406. LNCS.
Berlin: Springer, 2012, 28–48. DOI: 10.1007/978-3-642-32347-8
_3.

[6] André Platzer. The structure of differential invariants and differential cut
elimination. Log. Meth. Comput. Sci. 8(4:16) (2012), 1–38. DOI: 10.216
8/LMCS-8(4:16)2012.

[7] André Platzer. Differential game logic. ACM Trans. Comput. Log. 17(1)
(2015), 1:1–1:51. DOI: 10.1145/2817824.

[8] André Platzer. A complete uniform substitution calculus for differential dy-
namic logic. J. Autom. Reas. 59(2) (2017), 219–265. DOI: 10.1007/s108
17-016-9385-1.

https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/BF01700692
https://doi.org/10.1093/logcom/exn070
https://doi.org/10.1093/logcom/exn070
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-642-32347-8_3
https://doi.org/10.1007/978-3-642-32347-8_3
https://doi.org/10.2168/LMCS-8(4:16)2012
https://doi.org/10.2168/LMCS-8(4:16)2012
https://doi.org/10.1145/2817824
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/s10817-016-9385-1

396 12 Ghosts & Differential Ghosts

[9] André Platzer. Differential hybrid games. ACM Trans. Comput. Log. 18(3)
(2017), 19:1–19:44. DOI: 10.1145/3091123.

[10] André Platzer and Jan-David Quesel. KeYmaera: a hybrid theorem prover for
hybrid systems. In: IJCAR. Ed. by Alessandro Armando, Peter Baumgartner,
and Gilles Dowek. Vol. 5195. LNCS. Berlin: Springer, 2008, 171–178. DOI:
10.1007/978-3-540-71070-7_15.

[11] Daniel Richardson. Some undecidable problems involving elementary func-
tions of a real variable. J. Symb. Log. 33(4) (1968), 514–520. DOI: 10.230
7/2271358.

[12] Claire Tomlin, George J. Pappas, and Shankar Sastry. Conflict resolution for
air traffic management: a study in multi-agent hybrid systems. IEEE T. Au-

tomat. Contr. 43(4) (1998), 509–521. DOI: 10.1109/9.664154.
[13] Wolfgang Walter. Ordinary Differential Equations. Berlin: Springer, 1998.

DOI: 10.1007/978-1-4612-0601-9.

https://doi.org/10.1145/3091123
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.2307/2271358
https://doi.org/10.2307/2271358
https://doi.org/10.1109/9.664154
https://doi.org/10.1007/978-1-4612-0601-9

Chapter 13

Differential Invariants & Proof Theory

Synopsis This advanced chapter studies some meta-properties of differential equa-
tions proving. It investigates aspects of the proof theory of differential equations,
i.e., the theory of proofs about differential equations. While the primary focus in
this chapter is on their theoretical significance, it also provides insights into the
practical questions of what types of differential invariants to search for under which
circumstances. The primary tool is the proof-theoretical device of relative deductive
power, i.e., the question of whether all properties provable with technique A are
also provable with technique B. These results leverage appropriate insights about
properties of real arithmetic and of differential equations.

13.1 Introduction

Chapters 10 and 11 equipped us with powerful tools for proving properties of differ-
ential equations without having to solve them. Differential invariants (dI) [10, 16]
prove properties of differential equations by induction based on the right-hand side
of the differential equation, rather than its much more complicated global solution.
Differential cuts (dC) [10, 16] make it possible to prove another property C of a
differential equation and then change the evolution domain of the dynamics of the
system so that it is restricted to never leave that region C. Differential cuts turn out
to be very useful when stacking inductive properties of differential equations on top
of each other, so that easier properties are proved first and then assumed during the
proof of the more complicated properties. In fact, in some cases, differential cuts
are crucial for proving properties in the first place [5, 10, 14]. Differential weaken-

ing (dW) [10] proves simple properties that are entailed directly by the evolution
domain, which becomes especially useful after the evolution domain constraint has
been augmented sufficiently by way of a differential cut. Differential ghosts (dG)
can prove properties by changing the dynamics of the system when adding a new
differential equation for a new variable that was not there before. Differential ghosts
are useful to, e.g., prove properties of systems with changing energy, where it helps

397© Springer International Publishing AG, part of Springer Nature 2018

A. Platzer, Logical Foundations of Cyber-Physical Systems,

https://doi.org/10.1007/978-3-319-63588-0_13

https://doi.org/10.1007/978-3-319-63588-0_13
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63588-0_13&domain=pdf

398 13 Differential Invariants & Proof Theory

to relate the change of state in the original system to auxiliary quantities that merely
reflect a mathematical value for the sake of the argument, even if it is not part of the
original system. In some cases, differential ghosts are crucial for proving properties,
because they cannot be proved without them [14].

Just as in the case of loops, where the search for invariants is nontrivial, finding
differential invariants also requires considerable smarts (or good automatic proce-
dures [4, 7, 12, 17]). Once a differential invariant has been identified, however, the
proof follows easily, which is a computationally attractive property.

Finding invariants of loops is very challenging. It can be shown to be the only
fundamental challenge in proving safety properties of conventional discrete pro-
grams [8]. Likewise, finding invariants and differential invariants is the only funda-
mental challenge in proving safety properties of hybrid systems [9, 11, 13, 15]. A
more delicate analysis even shows that just finding differential invariants is the only
fundamental challenge for hybrid systems safety verification [13].

That is reassuring, because, at least, we know that the proofs will work1 as soon
as we find the right differential invariants. But it also tells us that we can expect the
search for differential invariants (and invariants) to be quite challenging, because
cyber-physical systems are extremely challenging. But it is worth the trouble, be-
cause CPSs are so important. Fortunately, differential equations also enjoy many
pleasant properties that we can exploit to help us find differential invariants.

At the latest after this revelation, we fully realize the importance of studying and
understanding differential invariants. So let us set out to develop a deeper under-
standing of differential invariants right away. The part of their understanding that
this chapter develops is how various classes of differential invariants relate to each
other in terms of what they can prove. There are properties that only differential
invariants of the form A can prove, because differential invariants of the form B

cannot ever succeed in proving them? Or are all properties provable by differential
invariants of the form A also provable by differential invariants of the form B?

These relations between classes of differential invariants tell us which forms of
differential invariants we need to search for and which forms of differential invari-
ants we don’t need to bother considering. A secondary goal of this chapter besides
this theoretical understanding is the practical development of better intuition about
differential invariants and a more thorough appreciation of their effects. Some at-
tention during the theoretical proofs will give us a generalizable understanding of
which cases can or cannot be proved by which shape of differential invariants.

This chapter is based on prior work [14] and strikes a balance between compre-
hensive handling of the subject matter and core intuition. Many proofs in this chap-
ter are simplified and only prove the core argument, while leaving out other aspects.
Those—very important—further details of a comprehensive argument are beyond
the scope of this textbook, however, and can be found elsewhere [14]. For example,
this chapter will not study whether indirect proofs could conclude the same prop-
erties but will focus on the easier base case of direct proofs. With a more thorough
analysis [14], it turns out that indirect proofs with the usual sequent calculus rules do

1 Even if it may still be a lot of work to make the proofs work out in practice, at least they become
possible, which is a good first step.

13.1 Introduction 399

not change the results reported in this chapter, but the proofs become significantly
more complicated and require a more precise choice of the sequent calculus formu-
lation. In this chapter, we will also not always prove all statements conjectured in a
theorem. The remaining proofs can be found in the literature [14].

Note 67 (Proof theory of differential equations) The results in this chapter
are part of the proof theory of differential equations, i.e., the theory of what
can be proved about differential equations and with what techniques. They are
proofs about proofs, because they prove relations between the provability of
logical formulas with different proof calculi. That is, they relate the statements
“formula P can be proved using A ” and “formula P can be proved using B.”

The most important learning goals of this chapter are:

Modeling and Control: This chapter helps in understanding the core argumenta-
tive principles behind CPS and sheds more light on the pragmatic question of
how to tame their analytic complexity.

Computational Thinking: An important part of computer science studies ques-
tions about the limits of computation or, more generally, develops an under-
standing of what can be done and what cannot be done. Either in absolute
terms (computability theory studies what is computable and what is not) or in
relative terms (complexity theory studies what is computable in a characteris-
tically quicker way or within classes of resource bounds on time and space).
The answer is especially fundamental because it is independent of the model of
computation, by the Church-Turing thesis [2, 20]. Often, the most significant
understanding of a problem space starts with what cannot be done (the theorem
of Rice [19] says that all nontrivial properties of programs are not computable)
or what can be done (every problem that can be solved with a deterministic algo-
rithm in polynomial time can also be solved with a nondeterministic algorithm
in polynomial time, with the converse being the P versus NP [3] problem).
The primary purpose of this chapter is to develop such an understanding of
the limits of what can and what cannot be done in the land of proofs about

differential equations. Not all aspects of this deep question will be possible to
answer in one chapter, but it will feature the beginning of the proof theory of

differential equations, i.e., the theory of provability and proofs about differential
equations. Proof theory is, of course, also of interest in other cases, but we will
study it in the case that is most interesting and illuminating for cyber-physical
systems: the case of proofs about differential equations.
The primary, scientific learning goals of this chapter are, thus, to develop a fun-
damental understanding of what can and cannot be proved in what ways about
differential equations. This helps us in our search for differential invariants for
applications, because such an understanding prevents us from asking the same
analytic question again in equivalent ways (if two different classes of differen-
tial invariants prove the same properties and one of them already failed then
there is no need to try the other) and guides our search toward the required

400 13 Differential Invariants & Proof Theory

classes of differential invariants (by next choosing a class that can prove funda-
mentally more about properties of the requisite form).
The secondary, pragmatic learning goal is to practice inductive proofs about
differential equations using differential invariants and to develop an intuition for
which verification question to best address in which way. In these ways, both
fundamentally and pragmatically, the primary direct impact of this chapter is to
further our understanding of rigorous reasoning about CPS models as well as
how to verify CPS models of appropriate scale, in which more than one mode
of reasoning is often needed for the various parts and aspects of the system.
Finally this chapter has beneficial side effects informing differential invariant
search and deepening our intuition about differential equation proofs.

CPS Skills: This chapter serves no direct purpose in CPS Skills that the author
can think of, except indirectly via its impact on their analysis by informing
differential invariant search.

CT

M&C CPS

limits of computation
proof theory for differential equations
provability of differential equations
nonprovability of differential equations
proofs about proofs
relativity theory for proofs
inform differential invariant search
intuition for differential equation proofs

core argumentative principles
tame analytic complexity

improved analysis

13.2 Recap

Recall the following proof rules for differential equations from Chaps. 11 and 12:

Note 68 (Proof rules for differential equations)

dI
Q ⊢ [x′:= f (x)](F)′

F ⊢ [x′ = f (x)&Q]F
dW

Q ⊢ P

Γ ⊢ [x′ = f (x)&Q]P,∆

13.3 Comparative Deductive Study: Relativity Theory for Proofs 401

dC
Γ ⊢ [x′ = f (x)&Q]C,∆ Γ ⊢ [x′ = f (x)&(Q∧C)]P,∆

Γ ⊢ [x′ = f (x)&Q]P,∆

dG
Γ ⊢ ∃y [x′ = f (x),y′ = a(x) · y+b(x)&Q]P,∆

Γ ⊢ [x′ = f (x)&Q]P,∆

With cuts and generalizations, earlier chapters have already shown that the fol-
lowing can be proved:

cut,MR
A ⊢ F F ⊢ [x′ = f (x)&Q]F F ⊢ B

A ⊢ [x′ = f (x)&Q]B
(13.1)

This proof step is useful for replacing a precondition A and a postcondition B

with another invariant F that implies postcondition B (third premise) and is implied
by precondition A (first premise) and is an invariant (second premise), which will
now be done frequently in this chapter without further notice.

13.3 Comparative Deductive Study: Relativity Theory for Proofs

In order to find out what we can do when we have unsuccessfully searched for a
differential invariant of one form, we need to understand what other form of dif-
ferential invariants might work out better. If we have been looking for differential
invariants of the form e = 0 with a term e without success and then move on to
search for differential invariants of the form e = k, then we cannot expect to be any
more successful than before, because e = k can be rewritten as e k = 0, which is of
the first shape again. So we should, for example, try finding inequational differential
invariants of the form e≥ 0, instead. In general, this begs the question of which gen-
eralizations would be silly (because differential invariants of the form e = k cannot
prove any more than those of the form e = 0) and which might be smart (because
e≥ 0 might still succeed even if everything of the form e = 0 failed).

As a principled answer to questions like these, we study the relations of classes
of differential invariants in terms of their relative deductive power. That is, we study
whether some properties are only provable using differential invariants from the
class A , not using differential invariants from the class B, or whether all properties
provable with differential invariants from class A are also provable with class B.

As a basis, we consider a propositional sequent calculus with logical cuts (which
simplify glueing derivations together) and real arithmetic (denoted by proof rule R)
along the lines of what we saw in Chap. 6; see [14] for precise details. By DI we
denote the proof calculus that, in addition, has general differential invariants (rule
dI with arbitrary quantifier-free first-order formula F) but no differential cuts (rule
dC) or differential ghosts (rule dG). For a set Ω ⊆ {≥,>,=,∧,∨} of operators, we
denote by DI Ω the proof calculus where the differential invariant F in rule dI is
further restricted to the set of formulas that uses only the operators in the set Ω . For

402 13 Differential Invariants & Proof Theory

example, DI =,∧,∨ is the proof calculus that allows only and/or-combinations of
equations to be used as differential invariants. Likewise, DI ≥ is the proof calculus
that only allows atomic weak inequalities e≥ k to be used as differential invariants.

We consider classes of differential invariants and study their relations. If A and
B are two classes of differential invariants, we write A ≤B if all properties prov-
able using differential invariants from A are also provable using differential invari-
ants from B. We write A 6≤B otherwise, i.e., when there is a valid property that
can only be proven using differential invariants of A \B. We write A ≡B for
equal deductive power if A ≤B and B ≤A . We write A < B for strictly more
deductive power of B if A ≤B and B 6≤A . Classes A and B are incomparable
if A 6≤B and B 6≤A .

For example, the properties provable by differential invariants of the form e = 0
are the same as the properties provable by differential invariants of the form e = k.
That justifies DI = ≡DI =0 where DI =0 denotes the class of properties prov-
able with differential invariants of the form e = 0. Trivially, DI = ≤DI =,∧,∨, be-
cause every property provable with differential invariants of the form e = k is also
provable with differential invariants that additional are allowed to use conjunctions
and disjunctions. Likewise, DI ≥ ≤DI ≥,∧,∨. But the converses are not so clear,
because one might suspect that propositional connectives help.

13.4 Equivalences of Differential Invariants

Before we go any further, let us study whether there are straight out equivalence
transformations on formulas that preserve differential invariance. Every equivalence
transformation that we have for differential invariant properties helps us to structure
the proof search space and also helps to simplify the meta-proofs in the proof theory
of differential equations. For example, we should not expect F ∧G to be a differen-
tial invariant for proving a property when G∧F was not. Neither would F ∨G be
any better as a differential invariant than G∨F .

Lemma 13.1 (Differential invariants and propositional logic). Differential

invariants are invariant under propositional equivalences. That is, if F ↔ G

is an instance of a propositional tautology then F is a differential invariant of

x′ = f (x)&Q if and only if G is.

Proof. In order to prove this, we consider any property that is proved with F

as a differential invariant and show that the propositionally equivalent formula
G also works. Let F be a differential invariant of a differential equation system
x′ = f (x)&Q and let G be a formula such that F ↔ G is an instance of a proposi-
tional tautology. Then G is a differential invariant of x′ = f (x)&Q, because of the
following formal proof:

13.5 Differential Invariants & Arithmetic 403

∗
F ⊢ G

∗
[:=]

Q ⊢ [x′:= f (x)](G)′

dI
G ⊢ [x′ = f (x)&Q]G

∗
G ⊢ F

cut,MR
F ⊢ [x′ = f (x)&Q]F

The bottom proof step is easy to see using (13.1), which follows from rules cut and
MR, because precondition F implies the new precondition G and postcondition F is
implied by the new postcondition G propositionally. Subgoal Q ⊢ [x′:= f (x)](G)′ is
provable, by the assumption that F is a differential invariant, so Q ⊢ [x′:= f (x)](F)′

provable. Note that (G)′ is ultimately a conjunction formed over the differentials of
all atomic formulas of G. The set of atoms of G is identical to the set of atoms of F ,
because atoms are not changed by equivalence transformations with propositional

tautologies. Furthermore, dL has a propositionally complete base calculus [14]. ⊓⊔

In all subsequent proofs, we can use propositional equivalence transformations by
Lemma 13.1. In the following, we will also implicitly use equivalence reasoning for
pre- and postconditions à la (13.1) as we have done in Lemma 13.1. Because of
Lemma 13.1, we can, without loss of generality, work with arbitrary propositional
normal forms for proof search.

13.5 Differential Invariants & Arithmetic

Depending on the reader’s exposure to differential structures, it may come as a shock
that not all logical equivalence transformations carry over to differential invariants.
Differential invariance is not necessarily preserved under real-arithmetic equiva-
lence transformations.

Lemma 13.2 (Differential invariants and arithmetic). Differential invari-

ants are not invariant under equivalences of real arithmetic. That is, if F ↔ G

is an instance of a first-order real-arithmetic tautology, then F may be a differ-

ential invariant of x′ = f (x)&Q yet G may not.

Proof. There are two formulas that are equivalent in first-order real arithmetic but,
for the same differential equation, one of them is a differential invariant by dI, the
other one is not (because their differential structures differ). Since 5≥ 0, the formula
x2 ≤ 52 is equivalent to 5≤ x∧ x≤ 5 in first-order real arithmetic. Nevertheless,
x2 ≤ 52 is a differential invariant of x′ = x by the following formal proof:

∗
R ⊢ 2x2 ≤ 0
[:=] ⊢ [x′:= x]2xx′ ≤ 0
dI

x2 ≤ 52 ⊢ [x′ = x]x2 ≤ 52

404 13 Differential Invariants & Proof Theory

But the equivalent 5≤ x∧ x≤ 5 is not a differential invariant of x′ = x:

not valid

⊢ 0≤ x∧ x≤ 0
[:=] ⊢ [x′:= x](0≤ x′∧ x′ ≤ 0)
dI 5≤ x∧ x≤ 5 ⊢ [x′ = x](5≤ x∧ x≤ 5)

⊓⊔

For proving the property in the proof of Lemma 13.2 we need to use (13.1) with
the differential invariant F ≡ x2 ≤ 52 and cannot use 5≤ x∧ x≤ 5 directly. Both
formulas are true for the exact same real values but their differential structure is dif-
ferent, because quadratic functions have different derivatives than linear functions.

By Lemma 13.2, we have to be explicit about using equivalences when in-
vestigating differential invariance, because some equivalence transformations af-
fect whether a formula is a differential invariant. Not just the elementary real-

arithmetical equivalence of having the same set of satisfying assignments matters,
but also the differential structures that differential invariance depends on need to be
compatible. Some equivalence transformations that preserve the set of solutions still
destroy the differential structure. It is the equivalence of real differential structures

that matters. Recall that differential structures are defined locally in terms of the
behavior in neighborhoods of a point, not at the point itself.

Lemma 13.2 illustrates a notable point about differential equations. Many dif-
ferent formulas characterize the same set of satisfying assignments. But not all of
them have the same differential structure. Quadratic polynomials have inherently
different differential structure than linear polynomials even in cases where they
happen to have the same set of solutions over the reals. The differential structure
is finer-grained information. This is similar to the fact that two elementarily equiva-
lent models of first-order logic can still be non-isomorphic. Both the set of satisfying
assignments and the differential structure matter for differential invariance. In par-
ticular, there are many formulas with the same solutions but different differential
structures. The formulas x2 ≥ 0 and x6 + x4 16x3 +97x2 252x+262≥ 0 have
the same solutions (all of R), but very different differential structure; see Fig. 13.1.

The first two rows in Fig. 13.1 correspond to the polynomials from the two cases
above. The third row is a structurally different degree 6 polynomial with again the
same set of solutions (R) but a rather different differential structure. Figure 13.1
illustrates that (p)′ can already have a very different characteristic even if the re-
spective sets of satisfying assignments of p≥ 0 are identical.

We can, however, always normalize all atomic subformulas to have right-hand
side 0, that is, of the form p = 0, p≥ 0, or p > 0. For instance, p≤ q is a differential
invariant if and only if q p≥ 0 is, because p≤ q is equivalent (in first-order real
arithmetic) to q p≥ 0. Moreover, for any variable x and term e, [x′:=e](p)′ ≤ (q)′

is equivalent to [x′:=e](q)′ (p)′ ≥ 0 in first-order real arithmetic, because the post-
condition (p)′ ≤ (q)′ is equivalent to (q)′ (p)′ ≥ 0 in real arithmetic.

13.6 Differential Invariant Equations 405

-3 -2 -1 1 2 3 4
x

5

10

15

p

-3 -2 -1 1 2 3 4
x

-6

-4

-2

2

4

6

8

p
¢

-3 -2 -1 1 2 3 4
x

1000

2000

3000

4000

p

-3 -2 -1 1 2 3 4
x

-2000

-1000

1000

2000

3000

p
¢

-2 2 4 6
x

5

10

15

20

25

30

p

-2 2 4 6
x

-20

-10

10

20

p
¢

Fig. 13.1 Equivalent solutions (p ≥ 0 on the left) with quite different differential structure ((p)′

plotted on the right)

13.6 Differential Invariant Equations

Of course, we already know that DI = ≤DI =,∧,∨ by definition, because every
property provable without propositional logic in the differential invariants is also
provable if we are allowed to use propositional logic. Indeed, for equational differ-
ential invariants e = k, alias differential invariant equations, propositional operators
do not add to the deductive power [10, 14].

406 13 Differential Invariants & Proof Theory

Proposition 13.1 (Equational deductive power). The deductive power of dif-

ferential induction with atomic equations is identical to the deductive power

of differential induction with propositional combinations of polynomial equa-

tions. That is, each formula is provable with propositional combinations of

equations as differential invariants iff it is provable with only atomic equations

as differential invariants:

DI = ≡DI =,∧,∨

How can we prove this positive statement about provability?

Before you read on, see if you can find the answer for yourself.

One direction is simple. Proving DI = ≤DI =,∧,∨ is obvious, because every
proof using a single differential invariant equation e1 = e2 also is a proof that is
allowed to use a propositional combination of differential invariant equations: the
propositional combination that just consists of the only conjunct e1 = e2 without
making use of any of the propositional operators.

The other way around DI = ≥DI =,∧,∨ is more difficult. If a formula can be
proved using a differential invariant that is a propositional combination of equations,
such as e1 = e2∧ k1 = k2, how can it possibly be proved using just a single equation?

Note 69 (Proofs of equal provability) A proof of Proposition 13.1 needs to
show that every such provable property is also provable with a structurally sim-
pler differential invariant. It effectively needs to transform proofs with proposi-
tional combinations of equations as differential invariants into proofs with just
differential invariant equations. And, of course, the proof of Proposition 13.1
needs to prove that the resulting equations are provably differential invariants
and still prove the same properties as before.
This is a general feature of proof theory. At the heart of the arguments, it
often involves proof transformations. This explains why proof theory is a
meta-theory conducting proofs about proofs: mathematical proofs about for-
mal proofs.

Proof (of Proposition 13.1). Let x′ = f (x) be the (vectorial) differential equation to
consider. We show that every differential invariant that is a propositional combina-
tion F of polynomial equations is expressible as a single atomic polynomial equa-
tion (the converse inclusion is obvious). We can assume F to be in negation normal
form by Lemma 13.1 (recall that negations are resolved and 6= can be assumed not
to appear). Then we reduce F inductively to a single equation using the following
transformations:

• If F is of the form e1 = e2∨ k1 = k2, then F is equivalent to the single equation
(e1 e2)(k1 k2) = 0. Furthermore, the formula in the induction step of dI,
[x′:= f (x)](F)′ ≡ [x′:= f (x)]((e1)

′ = (e2)
′∧ (k1)

′ = (k2)
′) directly implies

13.7 Equational Incompleteness 407

[x′:= f (x)]((e1 e2)(k1 k2))
′ = 0

≡ [x′:= f (x)]

((e1)

′ (e2)
′)(k1 k2)+(e1 e2)((k1)

′ (k2)
′) = 0

)

which implies that the differential structure is compatible. So, the inductive step
for (e1 e2)(k1 k2) = 0 will succeed if the inductive step for e1 = e2∨ k1 = k2

succeeded. The converse implication does not hold, but also does not have to
hold for this proof to work out, because we are merely saying that if the dis-
junction of equations is a differential invariant then the more complex single
equation will also be, not vice versa.

• If F is of the form e1 = e2∧ k1 = k2, then F is equivalent to the single equation
(e1 e2)

2 +(k1 k2)
2 = 0. Also, the formula in the induction step of rule dI,

[x′:= f (x)](F)′ ≡ [x′:= f (x)]

(e1)

′ = (e2)
′∧ (k1)

′ = (k2)
′) implies

[x′:= f (x)]

((e1 e2)

2 +(k1 k2)
2)′=0

)

≡ [x′:= f (x)]

2(e1 e2)((e1)

′ (e2)
′)+2(k1 k2)((k1)

′ (k2)
′) = 0

)

Consequently propositional connectives of equations can successively be replaced
by their equivalent arithmetic equations in pre- and postconditions, and the corre-
sponding induction steps are still provable for the single equations. ⊓⊔

Observe that the polynomial degree is increased quadratically by the reduction in
Proposition 13.1, but, as a trade-off, the propositional structure is simplified. Conse-
quently, differential invariant search for the equational case can either exploit propo-
sitional structure with lower-degree polynomials or suppress the propositional struc-
ture at the expense of higher degrees. This trade-off depends on the real-arithmetic
decision procedure, but is often enough in favor of keeping propositional struc-
ture, because the proof calculus can still exploit the logical structure to decompose
the verification question before invoking real arithmetic. There are cases, however,
where such reductions are formidably insightful [12].

Equational differential invariants, thus, enjoy a lot of beautiful properties, includ-
ing characterizing invariant functions [12] and generalizing to a decision procedure
for algebraic invariants of algebraic differential equations [4].

13.7 Equational Incompleteness

Despite the fact that Proposition 13.1 confirms how surprisingly expressive single
equations are, focusing exclusively on differential invariants with equations reduces
the deductive power, because sometimes only differential invariant inequalities can
prove properties.

408 13 Differential Invariants & Proof Theory

Proposition 13.2 (Equational incompleteness). The deductive power of dif-

ferential induction with equational formulas is strictly less than the deductive

power of general differential induction, because some inequalities cannot be

proven with equations.

DI = ≡DI =,∧,∨ < DI

DI ≥ 6≤DI = ≡DI =,∧,∨
DI > 6≤DI = ≡DI =,∧,∨

How can such a proposition with a negative answer about provability be proved?

Before you read on, see if you can find the answer for yourself.

The proof strategy for the proof of Proposition 13.1 involved transforming dL

proofs into other dL proofs to prove the inclusion DI = ≥DI =,∧,∨. Can the same
strategy prove Proposition 13.2? No, because we need to show the opposite! Propo-
sition 13.2 conjectures DI ≥ 6≤DI =,∧,∨, which means that there are true proper-
ties that are only provable using a differential invariant inequality e1 ≥ e2 and not
using any differential invariant equations or propositional combinations thereof.

For one thing, this means that we must find a property that a differential invariant
inequality can prove. That ought to be easy enough, because Chap. 11 showed us
how useful differential invariants are. But then a proof of Proposition 13.2 also re-
quires a proof of why that very same formula cannot possibly ever be proved using
only differential invariant equations or their propositional combinations. That is a
proof about nonprovability. Proving provability in proof theory amounts to produc-
ing a proof (in dL’s sequent calculus). Proving nonprovability most certainly does
not mean it will be enough to write something down that is not a proof. After all,
just because one proof attempt fails does not mean that other attempts will not be
successful.

You have experienced this while you were working on proving the more challeng-
ing exercises of this textbook. The first proof attempt might have failed miserably
and been impossible to ever complete. But, come the next day, you had a better idea
with a different proof, and suddenly the same property turned out to be perfectly
provable even if the first proof attempt failed.

How can we prove that all proof attempts do not work?

Before you read on, see if you can find the answer for yourself.

One way of showing that a logical formula cannot be proved is by giving a coun-
terexample, i.e., a state that assigns values to the variables that falsify the formula.
That, of course, does not help us prove Proposition 13.2, because a proof of Propo-
sition 13.2 requires us to find a formula that can be proved with DI ≥ (so it cannot
have any counterexamples, since it is perfectly valid), just cannot be proved with
DI =,∧,∨. Proving that a valid formula cannot be proved with DI =,∧,∨ requires us
to show that all proofs in DI =,∧,∨ do not prove that formula.

13.7 Equational Incompleteness 409

Expedition 13.1 (Proving differences in set theory and linear algebra)

Recall what you know about sets. The way to prove that two sets M,N have the
same “number” of elements is to come up with a pair of functions Φ : M→ N

and Ψ : N→M between the sets and then prove that Φ ,Ψ are inverses of each
other, i.e., Φ(Ψ(y)) = y and Ψ(Φ(x)) = x for all x ∈ M,y ∈ N to show that
there is a bijection between the sets M and N. Proving that two sets M,N do
not have the same “number” of elements works entirely differently, because that
requires a proof for all pairs of functions Φ : M→ N and Ψ : N→M that there
is an x ∈ M such that Ψ(Φ(x)) 6= x or a y ∈ N such that Φ(Ψ(y)) 6= y. Since
writing down every such pair of functions Φ ,Ψ is a lot of work (an infinite
amount of work if M and N are infinite), indirect criteria such as cardinality or
countability are used instead, e.g., for proving that the reals R and rationals Q
cannot possibly have the same number of elements, because Q is countable but
R is not (by Cantor’s diagonal argument [1, 18]).

Recall vector spaces from linear algebra. The way to prove that two vector
spaces V,W are isomorphic is to think hard and construct a function Φ : V →W

and a function Ψ : W → V and then prove that Φ ,Ψ are linear functions and
inverses of each other. Proving that two vector spaces V,W are not isomorphic
works entirely differently, because that requires a proof that all pairs of func-
tions Φ : V →W and Ψ : W → V are either not linear or not inverses of each
other. Proving the latter literally is again a lot (usually an infinite amount) of
work. Instead, indirect criteria are used. One proof that two vector spaces V,W
are not isomorphic might show that the two have different dimensions and then
prove that isomorphic vector spaces always have the same dimension, so V and
W cannot possibly be isomorphic.

By analogy, proving non-provability leads to a study of indirect criteria about
proofs of differential equations.

Note 70 (Proofs of different provability) Proving non-reducibility A 6≤B for
classes of differential invariants requires an example formula P that is provable
in A plus a proof that no proof using B proves P. The preferred way of doing
that is to find an indirect criterion that all conclusions of all proofs in B possess
but that P does not have, so that the proofs using B cannot possibly succeed in
proving P.

Proof (of Proposition 13.2). Consider any positive term a > 0 (e.g., 5 or x2 + 1 or
x2 + x4 + 2). The following proof proves a formula by differential invariants with
the weak inequality x≥ 0:

410 13 Differential Invariants & Proof Theory

∗
R ⊢ a≥ 0
[:=] ⊢ [x′:=a]x′ ≥ 0
dI

x≥ 0 ⊢ [x′ = a]x≥ 0

The same formula is not provable with an equational differential invariant, however.
Any univariate polynomial p that is zero on all x≥ 0 is the zero polynomial and,
thus, an equation of the form p = 0 cannot be equivalent to the half space x≥ 0. By
the equational deductive power theorem (Proposition 13.1), the above formula then
is not provable with any Boolean combination of equations as differential invari-
ant either, because propositional combinations of equational differential invariants
prove the same properties that single equational differential invariants do, and the
latter cannot succeed in proving x≥ 0→ [x′ = a]x≥ 0.

The other parts of the theorem that involve generalizations of the non-provability
argument to other indirect proofs using cuts, etc., are proved elsewhere [14]. ⊓⊔

It might be tempting to think that at least equational postconditions only need
equational differential invariants for their proof. But that is not the case either [14].
So even if the property you care to prove involves only equations, you may still need
to generalize your proof arguments to consider inequalities instead.

13.8 Strict Differential Invariant Inequalities

We show that, conversely, focusing on strict inequalities p > 0 also reduces the de-
ductive power, because equations are obviously missing and there is at least one
proof where this matters. That is, what are called strict barrier certificates do not
prove (nontrivial) closed invariants.

Proposition 13.3 (Strict barrier incompleteness). The deductive power of

differential induction with strict barrier certificates (formulas of the form

e > 0) is strictly less than the deductive power of general differential induc-

tion:

DI > < DI

DI = 6≤DI >

Proof. The following proof proves a formula by equational differential induction:

∗
R ⊢ 2xy+2y(x) = 0
[:=] ⊢ [x′:=y][y′:= x]2xx′+2yy′ = 0
dI

x2 + y2 = c2 ⊢ [x′ = y,y′ = x]x2 + y2 = c2

13.8 Strict Differential Invariant Inequalities 411

But the same formula is not provable with a differential invariant of the form e > 0.
An invariant of the form e > 0 describes an open set and, thus, cannot be equivalent
to the (nontrivial) closed set where x2 + y2 = c2 holds true. The only sets that are
both open and closed in (the Euclidean space) Rn are the empty set /0 (described
by the formula false) and the full space Rn (described by the formula true), both
of which do not prove the property of interest, because true does not imply the
postcondition and false does not hold initially. The other parts of the theorem are
proved elsewhere [14]. ⊓⊔

Expedition 13.2 (Topology in real analysis)

The following proofs distinguish open sets from closed sets, which are concepts
from real analysis (or topology). Roughly: A closed set is one whose boundary
belongs to the set, for example the solid unit disk of radius 1. An open set is
one for which no point of the boundary belongs to the set, for example the unit
disk of radius 1 without the outer circle of radius 1.

closed solid disk
x2 + y2 ≤ 1

with boundary

open disk
x2 + y2 < 1

without boundary

A set O⊆Rn is open iff, around every point of O, there is a small neighborhood
that is contained in O. That is, for all points a ∈ O there is an ε > 0 such that
every point b of distance at most ε from a is still in O. A set C⊆Rn is closed iff
its complement is open. Because Rn is what is called a complete metric space,
a set C⊆Rn is closed iff every convergent sequence of elements in C converges
to a limit in C (so C is closed under limits).

One takeaway message is that it makes sense to check whether the desired in-
variant is an open or a closed set and use differential invariants of the suitable type
for the job. Of course, both e = 0 and e≥ 0 might still work for closed sets.

Beware, however, that openness and closedness depend on the ambient space.
One proof in Chap. 12, for example, proved the strict inequality x > 0 to be an in-
variant of the differential equation x′ = x by reducing it to a proof of invariance
of the equation xy2 = 1 with an additional differential ghost y′ = y

2 . Seemingly, this
proves an open set to be an invariant by using a closed set, but the whole dimension
of the state space changes due to the new variable y. And, indeed, the set of all x for
which there is a y such that xy2 = 1 is again the open set described by x > 0.

412 13 Differential Invariants & Proof Theory

13.9 Differential Invariant Equations as Differential Invariant

Inequalities

Weak inequalities e≥ 0, however, do subsume the deductive power of equational
differential invariants e = 0. After some thought, this is somewhat obvious on the
algebraic level but we will see that it also does carry over to the differential structure.

Proposition 13.4 (Equational definability). The deductive power of differen-

tial induction with equations is subsumed by the deductive power of differential

induction with weak inequalities:

DI =,∧,∨ ≤DI ≥

Proof. By Proposition 13.1, we only need to show that DI = ≤DI ≥, because
Proposition 13.1 implies DI =,∧,∨ = DI =. Let e = 0 be an equational differential
invariant of a differential equation x′ = f (x)&Q. Then we can prove the following:

∗
[:=],R

Q ⊢ [x′:= f (x)](e)′ = 0
dI

e = 0 ⊢ [x′ = f (x)&Q]e = 0

Then, the inequality e2 ≥ 0, which is equivalent to e = 0 in real arithmetic, also is
a differential invariant of the same dynamics by the following dL proof:

∗
[:=],R

Q ⊢ [x′:= f (x)] 2e(e)′ ≥ 0
dI e2 ≥ 0 ⊢ [x′ = f (x)&Q](e2 ≥ 0)

The subgoal for the differential induction step is provable: if we can prove that Q

implies [x′:= f (x)](e)′ = 0 according to the first sequent proof, then we can also
prove that Q implies [x′:= f (x)] 2e(e)′ ≥ 0 for the second sequent proof, because
the postcondition (e)′ = 0 implies 2e(e)′ ≥ 0 in first-order real arithmetic. ⊓⊔

Note that the differential invariant view of reducing properties of differential
equations to differential properties in local states is crucial to make the last proof
work. It is obvious that (e)′ = 0 implies 2e(e)′ ≥ 0 holds in any single state. With-
out differential invariance arguments, it is harder to relate this to the truth-values of
corresponding properties along differential equations. By Proposition 13.4, differen-
tial invariant search with weak inequalities can suppress equations. Note, however,
that the polynomial degree is increased quadratically by the reduction in Proposi-
tion 13.4. In particular, the polynomial degree is increased quartically by the reduc-
tions in Proposition 13.1 and Proposition 13.4 one after another to turn propositional
equational formulas into single weak inequalities. This quartic increase of the poly-
nomial degree is likely a too-serious computational burden for practical purposes
even if it is a valid reduction in theory.

13.10 Differential Invariant Atoms 413

13.10 Differential Invariant Atoms

Next we see that, with the notable exception of pure equations (Proposition 13.1),
propositional operators do increase the deductive power of differential invariants.

Theorem 13.1 (Atomic incompleteness). The deductive power of differential

induction with propositional combinations of inequalities exceeds the deduc-

tive power of differential induction with atomic inequalities.

DI ≥ < DI ≥,∧,∨
DI > < DI >,∧,∨

Proof. Consider any term a ≥ 0 (e.g., 1 or x2 + 1 or x2 + x4 + 1 or (x y)2 + 2).
Then the formula x≥ 0∧ y≥ 0→ [x′ = a,y′ = y2](x≥ 0∧ y≥ 0) is provable using
a conjunction in the differential invariant:

∗
R ⊢ a≥ 0∧ y2 ≥ 0
[:=] ⊢ [x′:=a][y′:=y2](x′ ≥ 0∧ y′ ≥ 0)
dI

x≥ 0∧ y≥ 0 ⊢ [x′ = a,y′ = y2](x≥ 0∧ y≥ 0)

By a sign argument similar to that in the proof of [10, Theorem 2] and [11, Theo-
rem 3.3], no atomic formula is equivalent to x≥ 0∧ y≥ 0. Basically, no formula of
the form p(x,y)≥ 0 for a polynomial p can be equivalent to x≥ 0∧ y≥ 0. This is
because that would imply that p(x,0) ≥ 0↔ x ≥ 0 for all x, which, as p(x,0) is a
univariate polynomial with infinitely many roots (every x ≥ 0), implies that p(x,0)
is the zero polynomial, which is not equivalent to x≥ 0, because the zero polyno-
mial is also zero on x < 0. Similar arguments work for p(x,y)> 0 and p(x,y) = 0.
Thus, the above property cannot be proven using an atomic differential invariant.
The proof for a postcondition x > 0∧ y > 0 is similar.

The other—quite substantial—parts of the proof are proved elsewhere [14]. ⊓⊔

Note that the formula in the proof of Theorem 13.1 is provable, e.g., using dif-
ferential cuts (dC) with two atomic differential induction steps, one for x≥ 0 and
one for y≥ 0. Yet, a similar, significantly more involved, argument can be made to
show that the deductive power of differential induction with atomic formulas (even
when using differential cuts) is still strictly less than the deductive power of gen-
eral differential induction; see [10, Theorem 2]. This just needs another choice of
differential equation and a more involved proof.

Consequently, in the case of inequalities, propositional connectives can be quite
crucial when looking for differential invariants even in the presence of differential
cuts.

414 13 Differential Invariants & Proof Theory

13.11 Summary

Figure 13.2 summarizes the findings on provability relations of differential equa-
tions explained in this chapter and others reported in the literature [14]. This chap-
ter considered the differential invariance problem, which, by a relative completeness
argument [9, 13], is at the heart of hybrid systems verification. To better understand
structural properties of hybrid systems, more than a dozen (16) relations between
the deductive power of several (9) classes of differential invariants have been iden-
tified and analyzed. An understanding of these relations helps guide the search for
suitable differential invariants and also provides an intuition for exploiting indirect
criteria such as open/closedness of sets as a guide.

The results require a symbiosis of elements of logic with real-arithmetical, dif-
ferential, semialgebraic, and geometrical properties. Future work includes investi-
gating further this new field called real differential semialgebraic geometry, whose
development has only just begun [5–7, 14].

DI= DI=,∧,∨

DI> DI>,∧,∨

DI≥ DI≥,∧,∨

DI

DI≥,=,∧,∨

DI>,=,∧,∨

A
strict

inclusion

B

A

equivalent
B

A

incomparable
B

DIΩ : properties verifiable using differential invariants built with operators from Ω

Fig. 13.2 Differential invariance chart (strict inclusions A < B, equivalences A ≡B, and in-
comparabilities A 6≤B, B 6≤A for classes of differential invariants are indicated)

13.12 Appendix: Curves Playing with Norms and Degrees

The proof of Lemma 13.2 showed a case where a formula with a higher-degree
polynomial was needed to prove a property that a lower-degree polynomial could
not prove. The conclusion from the proof of Lemma 13.2 is not that it is always
better to use differential invariants of higher degrees, just because that worked in
this particular proof.

For example, the following proof for an upper bound t on the supremum norm
‖(x,y)‖∞ of the vector (x,y) defined as

‖(x,y)‖∞ ≤ t
def≡ t ≤ x≤ t ∧ t ≤ y≤ t (13.2)

13.12 Appendix: Curves Playing with Norms and Degrees 415

is significantly easier for the curved dynamics:
∗

R
v2 +w2 ≤ 1 ⊢ 1≤ v≤ 1∧ 1≤ w≤ 1

[:=]
v2 +w2 ≤ 1 ⊢ [x′:=v][y′:=w][v′:=ωw][w′:= ωv][t ′:=1](t ′≤x′≤t ′∧ t ′≤y′≤t ′)

dI ⊳v2+w2≤1∧ x=y=t=0 ⊢ [x′ = v,y′ = w,v′ = ωw,w′ = ωv, t ′ = 1&v2+w2≤1]‖(x,y)‖∞ ≤ t
dC

v2+w2≤1∧ x=y=t=0 ⊢ [x′ = v,y′ = w,v′ = ωw,w′ = ωv, t ′ = 1]‖(x,y)‖∞ ≤ t

where the first premise of the differential cut (dC) above is elided (marked ⊳) and
proved as in Example 11.3. This proof shows that a point (x,y) starting with linear
velocity at most 1 and angular velocity ω from the origin will not move further than
the time t in supremum norm.

This simple proof is to be contrasted with the following proof attempt for a cor-
responding upper bound on the Euclidean norm ‖(x,y)‖2 defined as

‖(x,y)‖2 ≤ t
def≡ x2 + y2 ≤ t2 (13.3)

for which a direct proof fails:
not valid

v2 +w2 ≤ 1 ⊢ 2xv+2yw≤ 2t
[:=]

v2 +w2 ≤ 1 ⊢ [x′:=v][y′:=w][v′:=ωw][w′:= ωv][t ′:=1](2xx′+2yy′ ≤ 2tt ′)
dI ⊳v2+w2≤1∧ x=y=t=0 ⊢ [x′ = v,y′ = w,v′ = ωw,w′ = ωv, t ′ = 1&v2+w2≤1]‖(x,y)‖2 ≤ t
dC

v2+w2≤1∧ x=y=t=0 ⊢ [x′ = v,y′ = w,v′ = ωw,w′ = ωv, t ′ = 1]‖(x,y)‖2 ≤ t

An indirect proof is still possible but much more complicated. But the proof using
the supremum norm (13.2) is much easier than the proof using the Euclidean norm
(13.3) in this case. In addition, the arithmetic complexity decreases, because supre-
mum norms are definable in linear arithmetic (13.2) unlike the quadratic arithmetic
required for Euclidean norms (13.3). Finally, the simpler proof is, up to a factor of√

2, just as good, because quantifier elimination easily proves that the supremum
norm ‖ · ‖∞ and the standard Euclidean norm ‖ · ‖2 are equivalent, i.e., their values
are identical up to constant factors:

∀x∀y(‖(x,y)‖∞ ≤ ‖(x,y)‖2 ≤
√

n‖(x,y)‖∞) (13.4)

∀x∀y(1√
n
‖(x,y)‖2 ≤ ‖(x,y)‖∞ ≤ ‖(x,y)‖2) (13.5)

where n is the dimension of the vector space, here 2. That makes sense, because if,
e.g., the coordinate with maximal absolute value is at most 1, then the Euclidean
distance can be at most 1. And the extra factor of

√
2 is easily justified by Pythago-

ras’ theorem. An illustration of the inclusion relationships of the unit discs in the
various norms can be found in Fig. 13.3.

416 13 Differential Invariants & Proof Theory

Fig. 13.3 p-norm inclusions

‖ · ‖∞ ≤ 1√
2

‖ · ‖2 ≤ 1

‖ · ‖∞ ≤ 1

‖ · ‖2 ≤
√

2

Exercises

13.1. Prove the norm relations (13.4) and (13.5). Use these relations in a sequent
proof to relate the successful proof with a bound on the supremum norm ‖(x,y)‖∞

to a corresponding result about a bound on the Euclidean norm ‖(x,y)‖2.

13.2. Prove the relation DI > ≤ DI >,∧,∨, i.e., that all properties provable using
differential invariants of the form p > q are also provable using propositional com-
binations of these formulas as differential invariants.

13.3. Prove the relation DI ≥ ≡DI ≤,∧,∨.

13.4. Prove the relation DI ≥,∧,∨ ≡DI ≥,=,∧,∨.

13.5. Let DI true denote the proof calculus in which only the formula true is al-
lowed as a differential invariant. Prove the relation DI true < DI =.

13.6. Let DI false denote the proof calculus in which only the formula false is al-
lowed as a differential invariant. Prove the relation DI false < DI >.

13.7. Prove the relation DI =,∧,∨ < DI ≥,∧,∨.

13.8. Prove the relation DI >,∧,∨ < DI >,=,∧,∨.

13.9. What is the relationship of DI x=0 compared to DI x2=0? That is, are there
formulas that are only provable with invariants of the form x = 0 but not x2 = 0, or
vice versa?

References

[1] Georg Cantor. Über eine elementare Frage der Mannigfaltigkeitslehre. Jahres-

bericht der Deutschen Mathematiker-Vereinigung 1 (1891), 75–78.

13.12 Appendix: Curves Playing with Norms and Degrees 417

[2] Alonzo Church. A note on the Entscheidungsproblem. J. Symb. Log. 1(1)
(1936), 40–41.

[3] Stephen A. Cook. The complexity of theorem-proving procedures. In: STOC.
Ed. by Michael A. Harrison, Ranan B. Banerji, and Jeffrey D. Ullman. New
York: ACM, 1971, 151–158. DOI: 10.1145/800157.805047.

[4] Khalil Ghorbal and André Platzer. Characterizing algebraic invariants by dif-
ferential radical invariants. In: TACAS. Ed. by Erika Ábrahám and Klaus
Havelund. Vol. 8413. LNCS. Berlin: Springer, 2014, 279–294. DOI: 10.1
007/978-3-642-54862-8_19.

[5] Khalil Ghorbal, Andrew Sogokon, and André Platzer. Invariance of conjunc-
tions of polynomial equalities for algebraic differential equations. In: SAS.
Ed. by Markus Müller-Olm and Helmut Seidl. Vol. 8723. LNCS. Berlin:
Springer, 2014, 151–167. DOI: 10.1007/978-3-319-10936-7_10.

[6] Khalil Ghorbal, Andrew Sogokon, and André Platzer. A hierarchy of proof
rules for checking differential invariance of algebraic sets. In: VMCAI. Ed. by
Deepak D’Souza, Akash Lal, and Kim Guldstrand Larsen. Vol. 8931. LNCS.
Berlin: Springer, 2015, 431–448. DOI: 10.1007/978-3-662-46081-
8_24.

[7] Khalil Ghorbal, Andrew Sogokon, and André Platzer. A hierarchy of proof
rules for checking positive invariance of algebraic and semi-algebraic sets.
Computer Languages, Systems & Structures 47(1) (2017), 19–43. DOI: 10
.1016/j.cl.2015.11.003.

[8] David Harel, Albert R. Meyer, and Vaughan R. Pratt. Computability and com-
pleteness in logics of programs (preliminary report). In: STOC. New York:
ACM, 1977, 261–268.

[9] André Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reas.

41(2) (2008), 143–189. DOI: 10.1007/s10817-008-9103-8.
[10] André Platzer. Differential-algebraic dynamic logic for differential-algebraic

programs. J. Log. Comput. 20(1) (2010), 309–352. DOI: 10.1093/logcom/
exn070.

[11] André Platzer. Logical Analysis of Hybrid Systems: Proving Theorems for

Complex Dynamics. Heidelberg: Springer, 2010. DOI: 10.1007/978-3-
642-14509-4.

[12] André Platzer. A differential operator approach to equational differential in-
variants. In: ITP. Ed. by Lennart Beringer and Amy Felty. Vol. 7406. LNCS.
Berlin: Springer, 2012, 28–48. DOI: 10.1007/978-3-642-32347-8
_3.

[13] André Platzer. The complete proof theory of hybrid systems. In: LICS. Los
Alamitos: IEEE, 2012, 541–550. DOI: 10.1109/LICS.2012.64.

[14] André Platzer. The structure of differential invariants and differential cut
elimination. Log. Meth. Comput. Sci. 8(4:16) (2012), 1–38. DOI: 10.216
8/LMCS-8(4:16)2012.

[15] André Platzer. Differential game logic. ACM Trans. Comput. Log. 17(1)
(2015), 1:1–1:51. DOI: 10.1145/2817824.

https://doi.org/10.1145/800157.805047
https://doi.org/10.1007/978-3-642-54862-8_19
https://doi.org/10.1007/978-3-642-54862-8_19
https://doi.org/10.1007/978-3-319-10936-7_10
https://doi.org/10.1007/978-3-662-46081-8_24
https://doi.org/10.1007/978-3-662-46081-8_24
https://doi.org/10.1016/j.cl.2015.11.003
https://doi.org/10.1016/j.cl.2015.11.003
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1093/logcom/exn070
https://doi.org/10.1093/logcom/exn070
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-642-32347-8_3
https://doi.org/10.1007/978-3-642-32347-8_3
https://doi.org/10.1109/LICS.2012.64
https://doi.org/10.2168/LMCS-8(4:16)2012
https://doi.org/10.2168/LMCS-8(4:16)2012
https://doi.org/10.1145/2817824

418 13 Differential Invariants & Proof Theory

[16] André Platzer. A complete uniform substitution calculus for differential dy-
namic logic. J. Autom. Reas. 59(2) (2017), 219–265. DOI: 10.1007/s108
17-016-9385-1.

[17] André Platzer and Edmund M. Clarke. Computing differential invariants of
hybrid systems as fixedpoints. Form. Methods Syst. Des. 35(1) (2009). Spe-
cial issue for selected papers from CAV’08, 98–120. DOI: 10.1007/s107
03-009-0079-8.

[18] Willard Van Quine. On Cantor’s theorem. J. Symb. Log. 2(3) (1937), 120–
124. DOI: 10.2307/2266291.

[19] H. Gordon Rice. Classes of recursively enumerable sets and their decision
problems. Trans. AMS 74(2) (1953), 358–366. DOI: 10.2307/1990888.

[20] Alan M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proc. Lond. Math. Soc. 42(1) (1937), 230–265. DOI: 10.11
12/plms/s2-42.1.230.

https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/s10703-009-0079-8
https://doi.org/10.1007/s10703-009-0079-8
https://doi.org/10.2307/2266291
https://doi.org/10.2307/1990888
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230

Part III

Adversarial Cyber-Physical Systems

Overview of Part III on Adversarial Cyber-Physical Systems

This part fundamentally advances our understanding of cyber-physical system mod-
els by including an entirely new dynamical aspect of dynamical systems. The previ-
ous parts of this textbook thoroughly studied hybrid systems with their interacting
discrete and continuous dynamics and elaborated their respective proof principles.
There were choices in the hybrid system’s evolution, but these were all resolved
nondeterministically, so in an arbitrary, non-purposeful way.

Part III now explores what happens when there are different agents with different
goals in the dynamics of a hybrid system, so that its choices may also be resolved
differently by the different players at different times. Part III studies the adversar-

ial dynamics of two players interacting on the discrete and continuous dynamics
of hybrid systems, which leads to hybrid games. Unlike the hybrid systems models
of cyber-physical systems that were studied in Parts I and II, the hybrid games of
Part III provide mixed discrete, continuous, and adversarial dynamics. Hybrid games
are for two players. Hybrid systems correspond to single-player hybrid games in
which the only player is nondeterminism (or games in which the other player never
has any choices to make). Adversarial dynamics gives more freedom in the over-
all dynamics of the system. It is important whenever multiple agents interact with
possibly conflicting goals or possibly conflicting actions resulting from different
perceptions of the world. Despite these significant generalizations of the system dy-
namics, the elementary understanding of cyber-physical systems from Parts I and II
will continue to be generalizable quite seamlessly to cover hybrid games.

Chapter 14

Hybrid Systems & Games

Synopsis This chapter begins the study of an entirely new model of cyber-physical
systems: that of hybrid games, which combine discrete, continuous, and adversarial
dynamics. While hybrid systems with their discrete and continuous dynamics have
served us well in the analysis of cyber-physical systems so far, other cyber-physical
systems crucially require an understanding of additional dynamical effects. Adver-
sarial dynamics is relevant whenever choices in the system can be resolved by dif-
ferent players. This happens frequently in CPSs with multiple agents who may or
may not agree on a common goal or who, even if they share a common goal, may
act differently based on a different perception of the world. This chapter discusses
the far-reaching consequences of this insight and advances hybrid programs to a
programming language for hybrid games.

14.1 Introduction

Hybrid systems have served us well throughout this textbook as a model of cyber-
physical systems [1, 3, 7, 11]. But contrary to what we simply pretended in Parts I
and II, hybrid systems and cyber-physical systems are not the same. Hybrid systems
can also serve as models of other systems that are not cyber-physical per se, i.e., they
are not built as a combination of cyber and computing capabilities with physical ca-
pabilities. Some biological systems can be understood as hybrid systems, because
they combine discrete activation of genes and continuous biochemical reactions. Or
physical processes can be understood as hybrid if things happen at very different
speeds. Then, there is a slow process about which a continuous understanding is
critical as well as a very fast process in which a discrete abstraction might be suf-
ficient. Just think back to the bouncing ball where a discrete understanding of the
event of the bounce was more suitable even if a continuous deformation occurs, but
at a much faster pace than the continuous falling due to gravity. None of those ex-
amples is particularly cyber-physical. Nevertheless, they can be naturally modeled
as hybrid systems, because their fundamental characteristic is the interaction of dis-

421© Springer International Publishing AG, part of Springer Nature 2018

A. Platzer, Logical Foundations of Cyber-Physical Systems,

https://doi.org/10.1007/978-3-319-63588-0_14

https://doi.org/10.1007/978-3-319-63588-0_14
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63588-0_14&domain=pdf

422 14 Hybrid Systems & Games

crete and continuous dynamics, which is exactly what hybrid systems are good for.
Hybrid systems are a mathematical model of dynamical systems with mixed dis-
crete and continuous dynamics, whether cyber-physical or not. Hence, despite their
good match, not all hybrid systems are cyber-physical systems.

One important point of this chapter is that the converse is not true either. Not all
cyber-physical systems are hybrid systems! The reason for that is not that cyber-
physical systems lack discrete and continuous dynamics, but, rather, that they in-
volve also additional dynamical aspects. It is a pretty common phenomenon in
cyber-physical systems that they involve several dynamical aspects, which is why
they are best understood as multi-dynamical systems, i.e., systems with multiple
dynamical features [4–7, 9, 10, 12].

In a certain sense, applications often have a +1 effect on dynamical aspects.
Your analysis might start out focusing on some number of dynamical aspects only to
observe during the elaboration of the analysis that there is another part of the system
for which one more dynamical aspect is relevant than was originally anticipated.
The bouncing ball is an example to which a preliminary analysis might first ascribe
an entirely continuous dynamics, just to find out after a while that the singularity
of bouncing back from the ground can be more easily understood by a discrete
dynamics. Whenever you are analyzing a system, be prepared to find one more
dynamical aspect around the corner! That is yet another reason why it is useful to
have flexible and general analysis techniques grounded in logic that still work even
after a new dynamical aspect has been found.

Of course, it is not going to be feasible to understand all multi-dynamical system
aspects at once in this chapter. But this chapter is going to introduce one absolutely
fundamental dynamical aspect: adversarial dynamics [9, 12]. Adversarial dynamics
comes from multiple players that, in the context of a CPS, interact on a hybrid
system and are allowed to make their respective choices arbitrarily, in pursuit of
their goals. The combination of discrete, continuous, and adversarial dynamics leads
to hybrid games. Unlike hybrid systems, hybrid games allow choices in the system
dynamics to be resolved adversarially by different players with different objectives.

Hybrid games are necessary in situations where multiple agents actively com-
pete. The canonical situation of a hybrid game would, thus, be when two teams of
robots play robot soccer, moving around physically in space, controlled according
to discrete computer decisions, and in active competition to score goals in oppo-
site directions on the field. The robots in a robot soccer match can’t agree on the
direction in which they try to get the ball rolling. This leads to a mix of discrete,
continuous, and adversarial dynamics for truly competitive reasons.

It turns out, however, that hybrid games also come up for reasons of analytic

competition, that is, where possible competition is assumed only for the sake of a
worst-case analysis. Consider a robot that is interacting with another robot, let’s call
it the roguebot. You are in control of the robot, but somebody else is controlling
the roguebot. Your objective is to control your robot so that it will not run into the
roguebot no matter what. That means you need to find some way of using your con-
trol choices for your robot so that it makes progress toward its goal but will remain
safe for all possible control choices that the roguebot might follow. After all, you

14.1 Introduction 423

do not know exactly how the other roguebot is implemented and how it will react to
your control decisions. That makes your robot play a hybrid game with the roguebot
in which your robot is trying to safely avoid collisions. The roguebot might behave
sanely and try to stay safe as well. But the roguebot’s objectives might differ from
yours, because its objective is not to get your robot to your goal. The roguebot rather
wants to get to its own goal instead, which might cause unsafe interference when-
ever the roguebot takes an action in pursuit of its goal that is not in your robot’s
interest. If your robot caused a collision, because it chose an action that was incom-
patible with the roguebot’s action, your robot would certainly be faulty and be sent
back to the design table. And even when both robots perfectly agree on the same
goal, their actions might still cause unintended interferences when their perception
of the world differ. In that case the two robots could take conflicting actions despite
pursuing the same goal, just because they each thought the state of the world was a
little different. Just imagine a common goal of not colliding with a rule that whoever
is further west moves even further to the west. Now if both robots think they are the
one that is further west because their sensors tell them that, then they might still
collide even if both really didn’t mean to.

Alas, when you try to understand how you need to control your robot to stay safe,
it can be instructive to think about what the worst-case action of a roguebot might
be to make life difficult for you. When a test engineer is trying to demonstrate under
which circumstance a simulation of your robot controller exhibits a faulty behavior,
so that you can learn from the cases where your control does not work, they actually
play a hybrid game with you. If your robot wins and stays safe, that is an indication
of a good robot design at least in this scenario. But if the test engineer wins and
shows an unsafe trace, then you still win even if you lose this particular simulation,
because you learn more about the corner cases in your robot control design than
when staring at simulation movies where everything is just fair-weather control.

This chapter is based on prior work [9], where more information can be found on
logic and hybrid games. The most important learning goals of this chapter are:

Modeling and Control: We identify an important additional dynamical aspect, the
aspect of adversarial dynamics, which adds an adversarial way of resolving the
choices in the system dynamics. This dynamical aspect is important for under-
standing the core principles behind CPS, because multiple agents with possibly
conflicting actions are featured frequently in CPS applications. Such conflict-
ing actions might be chosen due to different goals or different perceptions of the
world. It is helpful to learn under which circumstance adversarial dynamics is
important for understanding a CPS and when it can be neglected without loss.
CPSs in which all choices are resolved against you or all choices are resolved
for you can already be described and analyzed in differential dynamic logic us-
ing its box and diamond modalities [7]. Adversarial dynamics is interesting in
mixed cases, where some choices fall in your favor and others turn out against
you. Another important goal of this chapter is to develop models and controls
of CPS with adversarial dynamics corresponding to multiple agents.

Computational Thinking: This chapter follows fundamental principles from logic
and computational thinking to capture the new phenomenon of adversarial dy-

424 14 Hybrid Systems & Games

namics in CPS models. We leverage core ideas from programming languages by
extending syntax and semantics of program models and specification and veri-
fication logics with a new operator for duality to incorporate adversariality in a
modular way into the realm of hybrid systems models. This leads to a composi-
tional model of hybrid games with compositional operators. Modularity makes
it possible to generalize our rigorous reasoning principles for CPS to hybrid
games while simultaneously taming their complexity. This chapter introduces
differential game logic dGL [9, 12] extending by adversarial dynamics the fa-
miliar differential dynamic logic, which has been used as the specification and
verification language for CPS in Parts I and II. Computer science ultimately is
about analysis such as worst-case analysis, expected-case analysis, or correct-
ness analysis. Hybrid games enable analysis of CPSs at a more fine-grained
level in between worst-case analysis and best-case analysis. In the dL formula
[α]P all choices are resolved against us in the sense that [α]P is only true if P

holds after all runs of α . In the dL formula 〈α〉P all choices are resolved in our
favor in the sense that 〈α〉P is true if P holds after at least one run of α . Hybrid
games can be used to attribute some but not all of the choices in a system to
an opponent while leaving others to be resolved favorably. Finally, this chap-
ter provides a perspective on advanced models of computation with alternating
choices.

CPS Skills: We add a new dimension into our understanding of the semantics of a
CPS model: the adversarial dimension corresponding to how a system changes
state over time as multiple agents react to each other. This dimension is crucial
for developing an intuition for the operational effects of multi-agent CPS. The
presence of adversarial dynamics will cause us to reconsider the semantics of
CPS models to incorporate the effects of multiple agents and their mutual reac-
tions. This generalization, while crucial for understanding adversarial dynamics
in CPS, also shines a helpful complementary light on the semantics of hybrid
systems without adversariality by causing us to reflect on the rôle of choices.

14.2 A Gradual Introduction to Hybrid Games

This section gradually introduces the operations that hybrid games provide one step
at a time. Its emphasis is on their motivation and an intuitive development starting
from hybrid systems before subsequent sections provide a comprehensive view.

14.2.1 Choices & Nondeterminism

The first thing to remind ourselves about is that hybrid systems also already come
with choices, and for good reasons, too.

14.2 A Gradual Introduction to Hybrid Games 425

CT

M&C CPS

fundamental principles of computational thinking
logical extensions
programming language modularity principles
compositional extensions
differential game logic
best/worst-case analysis
models of alternating computation

adversarial dynamics
conflicting actions
multi-agent systems
angelic/demonic choice

multi-agent state change
CPS semantics
reflections on choices

Note 71 (Choices in hybrid systems) Hybrid systems involve choices. They
manifest in hybrid programs as nondeterministic choices α ∪β whether to run
HP α or HP β , in nondeterministic repetitions α∗ where the choice is how often
to repeat α , and in differential equations x′ = f (x)&Q where the choice is how
long to follow that differential equation. All those choices, however, have been
resolved in one way, i.e., by the same entity or player: nondeterminism.

In which way the various choices are resolved depends on the context. In the
box modality [α] of differential dynamic logic [1, 3, 7, 11], all nondeterminism is
resolved in all possible ways so that the modal formula [α]P expresses that formula
P holds for all ways in which the choices in HP α could be resolved. In the diamond
modality 〈α〉, instead, all nondeterminism is resolved in some way so that formula
〈α〉P expresses that formula P holds for at least one way of resolving the choices in
HP α . The modality decides the mode of nondeterminism. The modal formula [α]P
expresses that P holds necessarily after running α while 〈α〉P expresses that P is
possible after α .

In particular, choices in α help 〈α〉P, because what this formula calls for is some

way of making P happen after α . If α has many possible behaviors, this is easier to
satisfy. Choices in α hurt [α]P, however, because this formula requires P to hold for
all those choices. The more choices there are, the more difficult it is to make sure
that P holds after every single combination of those choices.

In differential dynamic logic, choices in α help uniformly (when they occur in
〈α〉P) or make matters more difficult uniformly (when they occur in [α]P).

That is why these various forms of choices in hybrid programs have been called
nondeterministic. They are “unbiased.” All possible resolutions of the choices in α
can happen nondeterministically when running α . Which possibilities we care about

426 14 Hybrid Systems & Games

(all or some) just depends on the modality around it. However, in each hybrid sys-
tems modality, all choices are uniformly resolved in one way, because we can only
wrap one modality around the hybrid program. We cannot say that some choices
within a modality are meant to help, others are meant to hinder.

By nesting other modalities in the postconditions, we can still express some lim-
ited form of alternation in how choices resolve:

[α1]〈α2〉[α3]〈α4〉P

This dL formula expresses that after all choices of HP α1 there is a way of running
HP α2 such that for all ways of running HP α3 there is a choice of running HP α4

such that postcondition P is true. But that still only gives an opportunity for four
rounds of alternation of choices in HPs and is not particularly concise even for that
purpose. What we need is a more general way of ascribing actions to agents that
allows an unbounded number of alternation of choices.

14.2.2 Control & Dual Control

Another way of looking at the choices that are to be resolved during the runs of a
hybrid program α is that they can be resolved by one player. Let’s call her Angel,
because she helps us so much in making 〈α〉P formulas true. Whenever a choice is
about to happen (by running the program statements α ∪β , α∗, or x′ = f (x)&Q),
Angel is called upon to see how the choice is supposed to be resolved this time.
When playing α ∪β , Angel chooses whether to play α or β . When playing α∗,
Angel decides how often to play α . And when playing x′ = f (x)&Q, Angel decides
how long to follow this differential equation within Q. Since Angel gets to choose,
α ∪β is also called angelic choice and α∗ is called angelic repetition.

From that perspective, it sounds easy enough to add a second player. Let’s call
him Demon as Angel’s perpetual opponent.1 Only so far, Demon will probably be
quite bored after a while, when he realizes that he never actually gets to decide
anything in the game, because Angel has all the fun in choosing how the game
world unfolds and Demon just sits around idly and in apathy. So, to keep Demon
engaged, we need to introduce some choices that fall under Demon’s control.

One thing we could do to keep Demon interested in playing along in the hy-
brid game is to add a pair of shiny new controls especially for him. They might
be called α ∩β for Demon’s choice between α or β and α× for repetition of α
under Demon’s control. In fact, Demon might even demand an operation for contin-
uous evolution under Demon’s reign. But that would cause quite a lot of attention
to Demon’s controls, which might make him feel overly majestic. Let’s not do that,
because we don’t want Demon to get any ideas.

1 The names are quite arbitrary. But the responsibilities of such ontologically loaded names are
easier to remember than those of neutral but boring player names such as player I and player II.

14.2 A Gradual Introduction to Hybrid Games 427

Instead, we will find it sufficient to add just a single operator to hybrid programs:
the duality operator ·d that can be used on any hybrid game α . What αd does is to
give all control that Angel had in game α to Demon, and, vice versa, all control that
Demon had in α to Angel. The dual operator, thus, is a little bit like what happens
when you turn a chessboard around by 180◦ in the middle of the game to play the
game from the opponent’s perspective. Whoever played the choices of player White
previously will suddenly control Black, and whoever played Black now controls
White (Fig. 14.1). Turning the game around twice as in (αd)d restores the original
game α . With just this single duality operator, Demon still gets his own set of con-
trols (α ∩β , α×, and {x′ = f (x)&Q}d) by suitably nesting the operators, but we
did not have to give him those controls specifically. Yet, now those extra controls
are not special but simply an aspect of a more fundamental principle: duality.

80Z0Z0s0Z
7o0Z0Z0j0
6Po0o0ZpZ
5Z0oPZ0Z0
40Z0ZQZnl
3Z0Z0Z0Z0
20OPZ0O0Z
1Z0Z0Z0ZB

a b c d e f g h

8
0Z0Z0s0Z

7
o0Z0Z0j0

6
Po0o0ZpZ

5
Z0oPZ0Z0

4
0Z0ZQZnl

3
Z0Z0Z0Z0

2
0OPZ0O0Z

1
Z0Z0Z0ZB
abcdefgh

d

d

Fig. 14.1 Turning hybrid game α into the dual hybrid game αd corresponds to turning a chess-
board around by 180◦ so that the players control the choices in αd that the opponent has in α

14.2.3 Demon’s Derived Controls

Just as nondeterminism was in charge of all choices in a hybrid system, Angel has
full control over all choices in each of the operators of hybrid games except when
the operator ·d comes into play. All choices within the scope of an odd number of
·d belong to Demon, because ·d makes the players switch sides. Demon’s controls,
i.e., direct controls for Demon, can be defined as derived operators with the duality
operator ·d from Angel’s controls. Indeed, (αd)d, the dual of a dual, is the original
game α , just like flipping a chessboard around twice results in the original chess-
board. That is why it only matters whether a choice occurs within the scope of an
odd number of ·d (Demon’s choice) or an even number of ·d (Angel’s choice).

Demonic choice α ∩β will play either hybrid game α or hybrid game β by De-
mon’s choice. It is defined by (αd∪β d)d. The choice for the ∪ operator belongs to
Angel, yet since it is nested within ·d, that choice goes to Demon, except that the ·d
operators around hybrid games α and β restore the original ownership of controls.
The hybrid game (αd∪β d)d corresponds to turning the chessboard around, thus,

428 14 Hybrid Systems & Games

giving the choice between αd and β d that would have been Angel’s to Demon, and
then turning the chessboard in either αd or β d back again to either α or β .

Demonic repetition α× repeats hybrid game α as often as Demon chooses to.
It is defined by ((αd)

∗
)d. The choice in the ∗ operator belongs to Angel, but goes

to Demon in a ·d context, while the choices in the α subgame underneath stay as
they were originally thanks to the additional ·d operator that restores the game back
to normal responsibilities. Again, ((αd)

∗
)d corresponds to turning the chessboard

around, thus giving the choice of repetition that would have been Angel’s to Demon,
yet turning the chessboard in αd around again to play the original α .

The dual differential equation {x′ = f (x)&Q}d follows the same dynamics as
x′ = f (x)&Q except that, because of the duality operator, Demon now chooses the
duration. He has to choose a duration during which Q holds all the time. Hence
he loses when Q does not hold in the current state. Similarly, the dual test ?Qd

will make Demon lose the game immediately if the formula Q does not hold in
the current state, just as the test ?Q will make Angel lose the game immediately if
the formula Q does not hold currently. Dual assignment (x :=e)d is equivalent to
ordinary assignment x :=e, because assignments never involve any choices to begin
with, so it does not matter which player plays them.

Angel’s control operators and Demon’s control operators correspond to each
other by duality:

⋄ Angel Ops

∪ choice
∗ repeat
x′ = f (x) evolve
?Q challenge

⋄ Demon Ops

∩ choice
× repeat
x′ = f (x)d evolve
?Qd challenge

d

d

Because the double dual (αd)d is the same as the game α , we never have to use
the duality operator ·d except in Demon’s choice ∩, Demon’s repetition ×, or around
differential equations and tests. But it is more systematic to just allow ·d everywhere.

14.3 Syntax of Differential Game Logic

Differential game logic (dGL) is a logic for studying properties of hybrid games
[9]. The idea is to describe the game form, i.e., rules, dynamics, and choices of the
particular hybrid game of interest, using a program notation and to then study its
properties by proving the validity of logical formulas that refer to the existence of
winning strategies for objectives of those hybrid games. This is analogous to how
a differential dynamic logic formula [α]P separately describes the dynamics of the
hybrid system as a hybrid program α and the property of interest in the modality’s
postcondition P.

14.3 Syntax of Differential Game Logic 429

14.3.1 Hybrid Games

Even though hybrid game forms only describe the form of the game with its dy-
namics and rules and choices, not the actual objective, they are still simply called
hybrid games just for simplicity of terminology. The objective for a hybrid game is
defined in the postcondition of the modal logical formula that refers to that hybrid
game form. During a hybrid game the players can only lose by violating the rules
of the game, never win. The proper winning condition is specified in the dGL for-
mula. Hybrid games (HGs in Definition 14.1) and differential game logic formulas
(Definition 14.2) are defined subsequently.

Definition 14.1 (Hybrid games). The hybrid games of differential game logic

dGL are defined by the following grammar (α,β are hybrid games, x is a vector
of variables, f (x) is a vector of (polynomial) terms of the same dimension, and
Q is a dGL formula or just a formula of first-order real arithmetic):

α,β ::= x :=e | x′ = f (x)&Q | ?Q | α ∪β | α;β | α∗ | αd

The only syntactical difference of hybrid games compared to hybrid programs
for hybrid systems as in Chap. 3 is that, unlike hybrid programs, hybrid games also
allow the dual operator αd. This minor syntactic change will require us to reinterpret
the meaning of the other operators in a much more flexible way in order to make
sense of the presence of subgames within the games in which the players already
interact. The basic principle is that whenever there used to be nondeterminism in the
hybrid program semantics, there will now be a choice that is up to Angel in the hy-
brid game semantics. But don’t be fooled! The parts of such a hybrid game may still
be hybrid games, in which players interact, rather than just a single system running.
So all operators of hybrid games still need to be carefully understood as games, not
just the duality operator ·d, because all operators can be applied to subgames that
mention ·d or be part of a context that mentions a ·d duality.

The atomic games of dGL are assignments, continuous evolutions, and tests. In
the deterministic assignment game (or discrete assignment game) x :=e, the value
of variable x changes instantly and deterministically to that of e by a discrete jump
without any choices to resolve, just as it already was the case for the HP x :=e.
In the continuous evolution game (or continuous game) x′ = f (x)&Q, the system
follows the differential equation x′ = f (x) where the duration is Angel’s choice.
But Angel is not allowed to choose a duration that would, at any time, take the state
outside the region where evolution domain constraint formula Q holds. In particular,
Angel is deadlocked and loses immediately if Q does not hold in the current state,
because she cannot even evolve for duration 0 then without being outside Q.2 The

2 The most common case for Q is a formula of first-order real arithmetic, but any dGL formula will
work (Definition 14.2). Evolution domain constraints turn out to be unnecessary, because they can
be defined using hybrid games. In the ordinary differential equation x′ = f (x), the term x′ denotes
the time-derivative of x and f (x) is a polynomial term that may mention x and other variables. More
general forms of differential equations are possible [2, 3, 12], but will not be considered explicitly.

430 14 Hybrid Systems & Games

test game or challenge ?Q has no effect on the state, except that Angel loses the
game immediately if dGL formula Q does not hold in the current state, because she
failed the test she was supposed to pass. The test game ?Q challenges Angel and
she loses immediately if she fails. Angel does not win just because she passes the
challenge ?Q, but at least the game continues. So passing challenges is a necessary
condition to win games. Failing challenges, instead, immediately makes Angel lose.
That makes tests ?Q in hybrid games the direct game counterpart of tests ?Q in
hybrid programs. In order to properly track who won, we just need to get used to the
notion of losing a game, instead of just aborting and discarding an HP execution.

The compound games of dGL are sequential, choice, repetition, and duals. The
sequential game α;β is the hybrid game that first plays hybrid game α and then,
when hybrid game α terminates without a player having lost already (so no chal-
lenge in α failed), continues by playing game β . When playing the choice game

α ∪β , Angel chooses whether to play hybrid game α or play hybrid game β . Like
all the other choices, this choice is dynamic, i.e., every time α ∪β is played, Angel
gets to choose again whether she wants to play α or β this time. She is not bound by
whatever Angel chose last time. The repeated game α∗ plays hybrid game α repeat-
edly and Angel chooses, after each play of α that terminates without a player having
lost already, whether to play the game again or not, although she cannot choose to
play indefinitely but has to stop repeating ultimately. Angel is allowed to stop α∗

right away after zero iterations of α . Most importantly, the dual game αd is the same
as playing the hybrid game α with the rôles of the players swapped. That is Demon
decides all choices in αd that Angel has in α , and Angel decides all choices in αd

that Demon has in α . Players who are supposed to move but deadlock lose. Thus,
while the test game ?Q causes Angel to lose if formula Q does not hold, the dual test

game (or dual challenge) (?Q)d instead causes Demon to lose if Q does not hold.
For example, if α describes the game of chess, then αd is chess where the players

switch sides. If α , instead, describes a hybrid game where you are controlling your
robot and a test engineer controls the roguebot, then αd describes the dual game
where you take control of the roguebot and the test engineer is stuck with your
robot controls. If your test engineer is out for lunch, you can also play both robots.
You just have to remember to play them both faithfully according to their objectives
and can’t cheat to make the test engineer’s roguebot run away in terror just because
that would make the job of your own robot easier. The real world isn’t likely to
make robot control so easy for you later. In fact, this pretend-play is another good
way of understanding the intuition behind the duality operator. When playing αd,
you pretend to play for the other player in game α , respecting his objectives.

The dual operator ·d is the only syntactic difference of hybrid games compared
to hybrid systems [1, 8], but a fundamental one [9], because it is the only oper-
ator where control passes from Angel to Demon or back. Without ·d all choices
are resolved uniformly by Angel without interaction. The presence of ·d requires a
thorough semantic generalization throughout the logic to cope with such flexibility.

Example 14.1 (Push-around cart). Consider a cart at position x moving along a
straight line with velocity v that both Angel and Demon are pushing around si-
multaneously. Depending on whether they push or pull the cart, the two players will

14.3 Syntax of Differential Game Logic 431

x

v

d a

Fig. 14.2 Angel and Demon accelerating or braking by a and d, respectively, the cart at position
x, which is moving with velocity x

each exert either an accelerating force or a braking force on x (Fig. 14.2):

(a :=1∪a := 1); (d :=1∪d := 1)d; {x′ = v,v′ = a+d}

)∗
(14.1)

First Angel chooses (by ∪) a positive or negative acceleration a, then Demon
chooses a positive or negative acceleration d. This choice is Demon’s because the
choice ∪ occurs within the scope of a duality operator ·d, so what used to be An-
gel’s choice becomes Demon’s choice. Recall that it does not matter who controls
the assignments, because they come without a choice. Finally, the game follows the
differential equation system x′ = v,v′ = a+d in which the sum of both accelerations
a and d chosen by Angel and Demon, respectively, take effect, because the sum of
all forces acts as acceleration on the cart x with unit mass. The cart is a point x, so
Demon can’t cheat and use his force to make it fall over. The duration of the dif-
ferential equation is Angel’s choice. Finally the game repeats (∗), as often as Angel
wants, because Demon is bored and walks away from the cart if Angel ever decides
to stop playing. Each round of this repetition, Angel does not know which choice
Demon will use for d, because she chooses a first before the sequential composition
(;). This is unlike the following hybrid game where Demon chooses first:

(d :=1∪d := 1)d; (a :=1∪a := 1); {x′ = v,v′ = a+d}

)∗
(14.2)

But Angel controls the duration of the differential equation in both (14.1) and (14.2),
so she can still choose duration 0 if she does not like Demon’s choice of d. He just
might choose the same inopportune value for d during the next repetition, so Angel
will ultimately have to accept some decision by Demon and evolve for a positive
duration or else the cart will never move anywhere, which would be permitted but
incredibly boring for everyone. Whichever player decides on the acceleration last,
so Demon in (14.1) and Angel in (14.2), can decide to keep the velocity unchanged
by playing the opposite acceleration value such that a+d = 0.

Which choices and decisions are particularly clever ones for Angel and Demon
is a separate question and depends on the objective of the hybrid game, which is
what dGL formulas will be used for. Hybrid systems lack the ability to express that
the choice of a in (14.1) and (14.2) is Angel’s while the choice of d is Demon’s. A
hybrid system could also have choices (without ·d duals):

(d :=1∪d := 1); (a :=1∪a := 1); {x′ = v,v′ = a+d}

)∗

432 14 Hybrid Systems & Games

But then all choices are nondeterministic, so resolved by the same player and either
all help (if in a diamond modality) or all hurt (if in a box modality). In hybrid game
(14.2), however, the choice of the acceleration d helps Demon while the choice of
the acceleration a helps Angel, as do the choice of the duration of the differential
equation and the number of repetitions.

Demon’s controls such as α ∩β and α× can be defined with the help of the
duality operator ·d as in Sect. 14.2.3. In α×, Demon chooses after each play of α
whether to repeat the game, but cannot play indefinitely so he has to stop repeating
ultimately. By duality, this follows from the fact that, in α∗, Angel also chooses after
each play of α whether to repeat the game but she cannot play indefinitely.

Example 14.2 (Push-around cart). Demon’s control operators rephrase (14.1) as

(a :=1∪a := 1); (d :=1∩d := 1); {x′ = v,v′ = a+d}

)∗

Strictly speaking, d :=1∩d := 1 is ((d :=1)d ∪ (d := 1)d)d. But that is equiva-
lent to (d :=1∪d := 1)d, because deterministic assignments x :=e are equivalent
to dual assignments (x :=e)d, since both involve no choice. Similarly, (14.2) is

(d :=1∩d := 1); (a :=1∪a := 1); {x′ = v,v′ = a+d}

)∗

These were a lot of games but not a lot of purpose yet, which is where the dGL

formulas come in. We consider them next.

14.3.2 Differential Game Logic Formulas

Hybrid games describe how the world can unfold when Angel and Demon interact
according to their respective control choices. They explain the rules of the game,
how Angel and Demon interact, and what the players can choose to do, but not who
wins the game, nor what the respective objectives of the players are.3 The actual
winning conditions are specified by logical formulas of differential game logic.

We cannot continue the same understanding of modalities from Part I and Part II
of this book, where the dL formula [α]P says that all runs of HP α satisfy P while
the dL formula 〈α〉P says that at least one run of HP α satisfies P. It is not very
meaningful to talk about all runs or some run of a hybrid game, because the whole
point of games is that they provide a number of choices to the different players that
may unfold differently in response to one another. Since the players have objectives,
only some of those choices will manifest and be in their interest. What the players
choose to do depends on what their opponent did before and vice versa. It is not
particularly interesting if a player can lose a game by playing entirely stupidly. What
is much more exciting is the question of whether the player can win if she plays in
a clever way. And it is maximally compelling if a player even has a consistent way

3 Except that players lose if they disobey the rules of the game by failing their respective challenges.

14.3 Syntax of Differential Game Logic 433

of always winning the game, no matter what the opponent is trying. Then the player
has a winning strategy, i.e., a way to resolve her actions that will always win the
game for all strategies that her opponent might try. This makes game play quite
interactive; one has to find some choice for the player and consider all options for
the opponent.

Modal formulas 〈α〉P and [α]P refer to hybrid games and the existence of win-
ning strategies for Angel and Demon, respectively, in a hybrid game α with a win-
ning condition specified by a logical formula P.

Definition 14.2 (dGL formulas). The formulas of differential game logic dGL

are defined by the following grammar (P,Q are dGL formulas, e, ẽ are terms, x

is a variable, and α is a hybrid game):

P,Q ::= e≥ ẽ | ¬P | P∧Q | ∃xP | 〈α〉P | [α]P

Other operators >,=,≤,<,∨,→,↔,∀x can be defined, e.g., ∀xP≡ ¬∃x¬P.
The modal formula 〈α〉P expresses that Angel4 has a winning strategy to achieve

P in hybrid game α , i.e., Angel has a strategy to reach any of the states satisfy-
ing dGL formula P when playing hybrid game α , no matter what strategy Demon
chooses. The modal formula [α]P expresses that Demon has a winning strategy to
achieve objective P in hybrid game α , i.e., a strategy to reach any of the states
satisfying P, no matter what strategy Angel chooses. The same game is played in
[α]P as in 〈α〉P with the same choices resolved by the same players. The difference
between the two dGL formulas is the player whose winning strategy they refer to.
Both use the set of states where dGL formula P is true as the set of winning states for
that player. The winning condition is defined by the modal formula; α only defines
the hybrid game form, not when the game is won, which is what P does. Hybrid
game α defines the rules of the game, including conditions on state variables that,
if violated, cause the present player to lose for violation of the rules of the game.
The dGL formulas 〈α〉P and [α]¬P consider complementary winning conditions for
Angel and Demon. Of course, the propositional logical connectives ¬,∧,∨,→ still
mean what they always do and the quantifiers ∃xP and ∀xP quantify over the reals.

14.3.3 Examples

This section discusses some examples of hybrid games and states differential game
logic formulas expressing properties of winning strategies for these games.

Example 14.3 (Push-around cart). Continuing Example 14.1, consider a dGL for-
mula for the cart-pushing hybrid game from (14.2):

4 It is easy to remember which modal operator is which. The formula 〈α〉P clearly refers to Angel’s
winning strategies because the diamond operator 〈·〉 has wings. This is consistent with the fact that
Angel takes charge of what nondeterminism used to do in dL, so 〈α〉P is where Angel’s control
∪ , ∗,x′ = f (x) helps, just as nondeterminism helped in the diamond modality of dL.

434 14 Hybrid Systems & Games

v≥ 1→
[
(d :=1∪d := 1)d; (a :=1∪a := 1); {x′ = v,v′ = a+d}

)∗]
v≥ 0

This dGL formula expresses that Demon has a winning strategy to ensure that the
cart’s velocity v is nonnegative if it initially started at v ≥ 1. That would have been
trivial if we had considered hybrid game (14.1), in which Demon chooses d after
Angel chose a such that the choice d := a would trivially ensure v′ = 0. But De-
mon’s choice d := 1 still makes sure that the velocity will never decrease, whether
Angel subsequently chooses to also push (a :=1) or to slow the cart down (a := 1).
For the same reason, Demon also has a winning strategy to achieve x≥ 0 if the cart
initially starts with v≥ 0 at x≥ 0. That is, the following formula is valid:

x≥0∧v≥0→
[
(d :=1∪d := 1)d; (a :=1∪a := 1); {x′ = v,v′ = a+d}

)∗]
x≥ 0

When replacing the box modality by a diamond modality, the formula

x≥ 0→
〈
(d :=1∪d := 1)d; (a :=1∪a := 1); {x′ = v,v′ = a+d}

)∗〉
x≥ 0

expresses that Angel also has a winning strategy to achieve x≥ 0 in the same hybrid
game starting from just the initial condition x ≥ 0. But even if that dGL is valid
as well, it is trivially valid, because Angel controls repetition (∗) and can simply
decide on 0 iterations which makes the game stay in the initial state where x ≥ 0
already holds. The same would happen if Demon were to control the repetition with
Demon’s repetition × instead of Angel’s repetition ∗ as long as Angel still controls
the differential equation, because she can simply go for duration 0 every time:

x≥ 0→
〈
(d :=1∪d := 1)d; (a :=1∪a := 1); {x′ = v,v′ = a+d}

)×〉
x≥ 0

Without that assumption x≥ 0 on the initial state, however,

〈
(d :=1∪d := 1)d; (a :=1∪a := 1); {x′ = v,v′ = a+d}

)∗〉
x≥ 0

is not valid, because, unless v is already nonnegative initially, Demon can always
play d := 1, which will make it impossible for Angel to give it a positive velocity
a+d. If Angel is stronger than Demon, the corresponding dGL formula is valid:

〈
(d :=1∪d := 1)d; (a :=2∪a := 2); {x′ = v,v′ = a+d}

)∗〉
x≥ 0

All that Angel needs to do to achieve x ≥ 0 is to push really hard with a :=2 and
continuously evolve for long enough. More subtly, even if Demon has the same
strength, Angel, nevertheless, has a winning strategy to achieve x2 ≥ 100:

〈
(d :=2∪d := 2)d; (a :=2∪a := 2);

t :=0; {x′ = v,v′ = a+d, t ′ = 1& t ≤ 1}
)∗〉

x2 ≥ 100
(14.3)

Angel has no influence on Demon’s decision on d. But all it takes for Angel is to
play a := 2 if v > 0 and play a := 2 if v < 0 to ensure that the sign of v never
changes, whatever Demon plays, and, thus, x will eventually either grow above 10

14.3 Syntax of Differential Game Logic 435

or shrink below 10. If v = 0 initially, then Angel first plays a := d to mimic De-
mon in the first round and make v nonzero, which she can since Demon decides
first and Angel controls the differential equation’s duration. Hence, (14.3) is valid,
too. If (14.3) did not have a time bound on the duration of the evolution, it would
be more obviously valid without repeating, because Angel could just mimic Demon
once and then follow the differential equation for a long time. The differential equa-
tion is Angel’s choice, but she has an evolution domain constraint t ≤ 1 to worry
about. Since clock t ′ = 1 was reset to t :=0 before, she cannot follow the differential
equation for more than 1 time unit without losing for violation of the rules of the
game. Thus, both players get to change their control variables at least once a second
but Angel controls when exactly. Every time they get to change control variables d

and a, Demon chooses first (before the sequential composition).

1D planet
w

v u

e

f g

Fig. 14.3 Velocities v, f and accelerations u,g of two robots at w and e on a one-dimensional planet

Example 14.4 (WALL·E and EVE robot dance). Consider a game of the two robots
WALL·E and EVE moving on a rather flat one-dimensional planet (Fig. 14.3):

(w e)2 ≤ 1∧ v = f →
〈
(u :=1∩u := 1);

(g :=1∪g := 1);

t :=0;{w′ = v,v′ = u,e′ = f , f ′ = g, t ′ = 1& t ≤ 1}d)×

〉
(w e)2 ≤ 1

(14.4)
Despite the dimensionally somewhat impoverished planet, this dGL formula pro-
vides a canonical use case for a hybrid game. Robot WALL·E is at position w with
velocity v and acceleration u and plays the part of Demon. Robot EVE is at position
e with velocity f and acceleration g and plays the part of Angel.

The antecedent of (14.4) before the implication assumes that WALL·E and EVE
start close to one another (distance at most 1) and with identical velocities. The
objective of EVE, who plays Angel’s part in (14.4), is to be close to WALL·E (i.e.,
(w e)2 ≤ 1) as specified after the 〈·〉 modality in the succedent. The hybrid game
proceeds as follows. Demon WALL·E controls how often the hybrid game repeats by
operator ×. In each iteration, Demon WALL·E first chooses (with Demon’s choice
operator ∩) to accelerate (u :=1) or brake (u := 1), then Angel EVE chooses (with

436 14 Hybrid Systems & Games

Angel’s choice operator ∪) whether to accelerate (g :=1) or brake (g := 1). Every
time that the × loop repeats, the players get to make that choice again. They are not
bound by what they chose in the previous iterations. Yet, depending on the previous
choices, the state will have evolved differently, which influences indirectly what
moves a player needs to choose to win. After this sequence of choices of u and g

by Demon and Angel, respectively, a clock variable t is reset to t := 0. Then the
hybrid game follows a differential equation system such that the time-derivative of
WALL·E’s position w is his velocity v and the time-derivative of v is his acceleration
u; simultaneously, the time-derivative of EVE’s position e is her velocity f and the
time-derivative of f is her acceleration g. The time-derivative of clock variable t

is 1, yet the differential equation is restricted to the evolution domain t ≤ 1 so it
can at most be followed for 1 time unit. Angel controls the duration of differential
equations. Yet, this differential equation is within a dual game due to the operator
·d around it, so Demon actually controls the duration of the continuous evolution.
Here, both WALL·E and EVE evolve continuously but Demon WALL·E decides
how long. He cannot choose durations > 1, because that would make him violate
the evolution domain constraint t ≤ 1 and lose. So both players can change their
control after at most one time unit, but Demon decides when exactly. Similar games
can be studied for robot motion in higher dimensions using dGL.

The dGL formula (14.4) is valid, because Angel EVE has a winning strategy to
get close to WALL·E by mimicking Demon’s choices. Recall that Demon WALL·E
controls the repetition ×, so the fact that the hybrid game starts EVE off close to
WALL·E is not sufficient for EVE to win the game. Mimicking by g := u will also
only work so easily because both start with the same initial velocity v = f . The hy-
brid game in (14.4) would be trivial if Angel were to control the repetition (because
she would then win just by choosing not to repeat) or if Angel were to control the
differential equation (because she would then win by always just evolving for dura-
tion 0). Hybrid games are most interesting when the choices are not already stacked
in one player’s favor. The analysis of (14.4) is more difficult if the first two lines in
the hybrid game are swapped so that Angel EVE chooses g before Demon WALL·E
chooses u, because she cannot play the copy strategy if Angel has to choose first.

Example 14.1 had a single differential equation system in which the controls of
Angel and Demon mix via x′′ = a+d, while Example 14.4 had a bigger differen-
tial equation system consisting of differential equations w′ = v,v′ = u that belong to
WALL·E and other differential equations e′ = f , f ′ = g that belong to EVE, which
are joined together with time t ′ = 1. Both players evolve their respective variables
together. The question of whether the resulting combined differential equation sys-
tem is under Angel’s or Demon’s control is separate, and just depends on who gets
to decide on the duration. This is in direct analogy to a loop body in which multiple
operations by Angel and Demon might occur but still one of the two players needs
to be responsible for deciding how often to repeat the loop itself, because the players
might never come to an agreement if both were in charge of the same operator.

Example 14.5 (WALL·E and EVE and the world). The game in (14.4) accurately
reflects the situation when WALL·E, who plays the part of Demon, is in control of

14.3 Syntax of Differential Game Logic 437

time since the differential equation occurs within an odd number of ·d operators.
But this is not the only circumstance in which (14.4) is the right game to look at for
EVE. Suppose there really is a third player, the external environment, which controls
time. So, neither WALL·E nor EVE really gets to decide on how long differential
equations are followed, nor on how often the loop repeats.

EVE can use a common modeling device to conservatively attribute the control
of the differential equation to WALL·E, even if time is really under the control
of a third player, the external environment. EVE’s reason for this model would be
that she is certainly not in control of time, so there is no reason to believe that
time would help her. EVE, thus, conservatively cedes control of time to Demon,
which corresponds to assuming that the third player of the external environment is
allowed to collaborate with WALL·E to form an aggregate Demon player consisting
of WALL·E and the environment. If, as the validity of the resulting formula (14.4)
indicates, Angel EVE wins against the Demon team consisting of WALL·E and the
world, then she wins no matter what WALL·E and the external world decide to do.

This answers what hybrid game EVE needs to analyze to find out when she has
a winning strategy for all actions of WALL·E and the world. When WALL·E wants
to analyze his winning strategies he cannot just use the [·] modality for the same
hybrid game as in (14.4) anymore, because that hybrid game was formed by conser-
vatively attributing the external world’s control of time to Demon. However, Demon
WALL·E can use the same modeling device to flip the world’s differential equation
control over to Angel’s control by removing the ·d to conservatively associate the en-
vironment with his opponent (and negate the postcondition to consider the opposite
goal):

(w e)2 ≤ 1∧ v = f →
[
(u :=1∩u := 1);

(g :=1∪g := 1);

t :=0;{w′ = v,v′ = u,e′ = f , f ′ = g, t ′ = 1& t ≤ 1}
)×

]
(w e)2 > 1

(14.5)
Observe how a three-player game of WALL·E, EVE, and the environment can be
analyzed by combining the dGL formulas (14.4) and (14.5) propositionally, which
then analyze the same game from different perspectives of different possible collab-
orations. The dGL formula expressing that neither (14.4) nor (14.5) is true, is true in
exactly the states where WALL·E and EVE draw, because the external environment
can choose the winner by helping either WALL·E or EVE. Here, (14.5) is unsatis-
fiable, because Demon needs to move first, so Angel can always mimic him to stay
close.

The WALL·E and EVE examples were games for analytic purposes. WALL·E
and EVE are not actually in adversarial competition with opposing objectives. They
just did not know each other any better yet when they first met. And they still suffer
some amount of uncertainty about each other’s decisions, which can lead to a game
situation for lack of better knowledge. The next example is one of true adversarial

competition where the two players seriously complete.

438 14 Hybrid Systems & Games

x

y,g

(v,
+w)

(v,
w)

+u

 u

(x,y) g

Fig. 14.4 Goalie g in robot soccer moves with velocity ±u up or down and, if within radius 1, can
capture the ball (x,y) moving with velocity (v,±w) sloped up or downards.

Example 14.6 (Goalie in robot soccer). Consider two robots engaged in a robot soc-
cer match. Demon’s robot is in possession of the ball and has a free kick toward the
goal. Angel’s robot is a goalie at position g who is trying hard to prevent Demon’s
robot from scoring a goal (Fig. 14.4). The ball is at position (x,y). Demon can either
kick to roll the ball with vectorial velocity (v,w) into the left corner of the goal or
with velocity (v, w) into its right corner. Angel’s goalie robot can repeatedly move
up or down near the goal line with linear velocity u or u. She will capture the ball
if the ball (v,w) is within radius 1 of the goalie (0,g), i.e., if x2 +(y g)2 ≤ 1. The
two robots (and thus also the ball) are initially assumed to be at different x coordi-
nates but the same y coordinate, with the ball being kicked toward the goal (v > 0):

x < 0∧ v > 0∧ y = g→
〈
(w :=+w∩w := w);

(u :=+u∪u := u);{x′ = v,y′ = w,g′ = u}

)∗〉
x2 +(y g)2 ≤ 1

(14.6)

Demon’s robot only has one control decision, in line 2, which is the direction in
which he kicks the ball. Once the ball is rolling, there’s no turning back. Angel sub-
sequently has a series of control decisions, both how often to repeat the subsequent
control loop but also whether to move the goalie up or down (in line 3) and how

14.4 An Informal Operational Game Tree Semantics 439

long to follow the differential equation where the ball at position (x,y) rolls with
velocity (v,w) in that direction and the goalie at position g moves with velocity u.

Whether dGL formula (14.6) is true depends on the relationship of the initial
ball position x to the respective velocities v,w,u. The easiest case where it is true is
w = u, in which case the vertical velocity w of the ball is identical to the goalie’s
velocity u, so that a mimic strategy u :=w will make Angel win and capture the ball.
More generally,

(x

v

)2
(u w)2 ≤ 1 (14.7)

implies that (14.6) is true. The time it takes for the ball to reach the goal line when
moving with horizontal velocity v is x/v. During that time the ball moves a dis-
tance of x

v
w laterally in the y-direction, while the goalie moves a distance x

v
u.

Since y= g initially, the two positions will then be within capture distance 1 if (14.7)
holds initially.

14.4 An Informal Operational Game Tree Semantics

Due to the subtleties and shift of perspective that hybrid games provide, the treat-
ment of a proper semantics for differential game logic will be deferred to the next
chapter. A graphical illustration of the choices that arise when playing hybrid games
is depicted in Fig. 14.5. The nodes where Angel gets to decide are shown as dia-
monds ⋄, the nodes where Demon decides are shown as boxes ⋄. Circle nodes ◦
are shown when it depends on the remaining hybrid game which player gets to de-
cide. Dashed edges indicate Angel’s actions to choose from, solid edges
indicates Demon’s actions, while zigzag edges indicate that a hybrid game is
played and the respective players move as specified by that game.

The actions are the choice of real duration for x′ = f (x)&Q, the choice of play-
ing the left or the right subgame for a choice game α ∪β , and, after each round of
a repetition, the choice of whether to stop or repeat in a repeated game α∗. The se-
quential game α;β has no actions to decide, except that game β starts after game α
is done. There are no particular actions for the duality operator ·d, which, however,
flips the rôles of the players by flipping box nodes ⋄ that are under Demon’s control
with diamond nodes ⋄ that are under Angel’s control. Mnemonically, ·d makes all
nodes roll over by 45◦ so that boxes ⋄ turn into diamonds ⋄ and diamonds ⋄ turn
into boxes ⋄. Assignments and tests also have no particularly interesting actions,
except that Angel loses game ?Q unless Q is true in the current state.

The game tree action principles can be made rigorous in an operational game se-
mantics [9], which conveys the intuition of interactive game play for hybrid games,
relates to classical game theory and descriptive set theory, but is beyond the scope
of this textbook, because Chap. 15 will investigate a significantly simpler denota-
tional semantics. Observe how all choices involve at most two possibilities except
differential equations, which have uncountably infinitely many choices, one option

440 14 Hybrid Systems & Games

ω

x :=e

ω
ω[[e]]
x

x
:=

e
ω

x′ = f (x)&Q

ϕ(r)

r

ϕ(t)

t

ϕ(0)
0

ω

?Q

ω

?Q

ω
∈
[[Q

]]

ω

α ∪β

ω

tκ

β

t j

β

t1

β

right

ω

sλ

α

si

α

s1

α

lef
t

ω

α;β

tλ

r
λ1
λ

β

r
j

λ

β

r1
λ

β

α

ti

r
λi
i

β

r1
i

β

α

t1

r
λ1
1

β

r
j
1

β

r1
1

β

α

ω

α∗

ω

...

α

...

α

repeatst
op

α

...

α

...

α

repeatst
op

α

repeatst
op

α

...

α

...

α

repeatst
op

α

...

α

...

α

repeatst
op

α

repeatst
op

α

repeat

ω

st
op

ω

α

t0

tκt jt1

s0

sλsis1

ω

αd

t0

tκt jt1

s0

sλsis1

d

Fig. 14.5 Operational game semantics for hybrid games of dGL

14.4 An Informal Operational Game Tree Semantics 441

for each nonnegative duration r ∈ R. Of course, some of those durations may be a
pretty bad idea if they would fail the evolution domain constraint, but that is up to
the respective player to decide.

A strategy for a player in a hybrid game can be understood as a way of selecting
a (state-dependent) action at each of the nodes of the game tree where that player
has the choice, so an action at each diamond node for a strategy for Angel or an
action at each box node for a strategy for Demon. A winning strategy is a strategy
that leads to a winning state for all of the opponent’s strategies.

As an example to illustrate some of the subtle nuances in defining an appropriate
semantics for hybrid games, consider the discrete filibuster formula:

〈(x :=0∩ x :=1)∗〉x = 0 (14.8)

It is Angel’s choice whether to repeat (∗), but every time Angel repeats, it is De-
mon’s choice (∩) whether to play x :=0 or x :=1. What is the truth-value of the dGL

formula (14.8)?
The game in this formula never deadlocks, because each player always has at

least one remaining move (here even two because Angel can stop or repeat and De-
mon can assign 0 or 1 to x). But it may appear that the game has perpetual checks,
because no strategy helps either player win the game; see Fig. 14.6. Every time An-
gel chooses to repeat, hoping for an outcome of x= 0, Demon can stubbornly choose
to play the right subgame x :=1 to make x one. That will not make Demon win ei-
ther, because Angel is still in charge of deciding about repeating, which she will
want to do to avoid the catastrophic outcome x = 1 that would make her lose. But
next time around the loop, the situation is essentially unchanged, because Demon
will still not want to give in and will, thus, cleverly play x :=1 again. How can that
happen in this game and what can be done about it?

Before you read on, see if you can find the answer for yourself.

The mystery of the filibuster game can be solved when we remember that the
game still ultimately has to stop in order that we may inspect who finally won the
game. Angel is in charge of the ∗ repetition and she can decide whether to stop or
repeat. The filibuster game has no tests, so the winner only depends on the final state
of the game, because both players are allowed to play arbitrarily without having to
pass any tests in between. Angel wins a game play if x = 0 holds in the final state
and Demon wins if x 6= 0 holds in the final state. What do the strategies indicated in
Fig. 14.6 suggest? They postpone the end of the game, but if they did so indefinitely,
there would never be a final state in which it could be evaluated who won. That
is, indeed, not a way for anybody to win anything. Yet, Angel is in charge of the
repetition ∗, so it is her responsibility to stop repeating eventually to evaluate who
won. Consequently, the semantics of hybrid games allows the player in charge of a
repetition to repeat as often as she wants, but she cannot repeat indefinitely. This will
become apparent in the denotational semantics of hybrid games we will investigate
in Chap. 15. Thus, (14.8) is false unless the winning condition x = 0 already holds
initially, which allows Angel to just never repeat anything at all.

442 14 Hybrid Systems & Games

X

X

1

1

10

0

10
⋄

repeat

0
⋄

st
op

repeat
1

⋄
st

op

0

0

10
⋄

repeat

0
⋄

st
op

repeat

X

st
op

Fig. 14.6 The filibuster game formula 〈(x :=0∩ x :=1)∗〉x = 0 looks as though it might be non-
determined and not have a truth-value (unless x = 0 initially) when the strategies follow the thick
actions. Angel’s action choices are illustrated by dashed edges from dashed diamonds, Demon’s
action choices by solid edges from solid squares, and double lines indicate identical states with the
same continuous state and a subgame of the same structure of subsequent choices. States where
Angel wins are marked by ⋄ and states where Demon wins by ⋄

The same phenomenon happens in the hybrid filibuster game:

〈(x :=0;x′ = 1d)
∗〉x = 0 (14.9)

Both players can let the other one win. Demon can let Angel win by choosing to
evolve his differential equation x′ = 1d for duration 0. And Angel can let Demon win
by choosing to stop the repetition even if x 6= 0. Only because Angel will ultimately
have to stop repeating does the formula in (14.9) have a proper truth-value and the
formula is false unless x = 0 already holds initially.

It is of similar importance that the players cannot decide to follow a differential
equation forever (duration ∞), because that would make this game nondetermined:

〈(x′ = 1d;x :=0)
∗〉x = 0 (14.10)

14.5 Summary 443

If players were allowed to evolve along a differential equation forever (duration
∞), then Demon would have an incentive to evolve along x′ = 1d forever in the
continuous filibuster (14.10). As soon as he stops the ODE, Angel can stop the
loop and wins because of the subsequent assignment x :=0. But Angel cannot win
without Demon stopping. Since Demon can evolve along x′ = 1d for any finite real

amount of time he wants, he will ultimately have to stop so that Angel wins and
(14.10) is valid.

Table 14.1 Operators and (informal) meaning in differential game logic (dGL)

dGL Operator Meaning
e = ẽ equals true iff values of e and ẽ are equal
e≥ ẽ greater or equal true iff value of e greater-or-equal to ẽ

¬P negation / not true iff P is false
P∧Q conjunction / and true iff both P and Q are true
P∨Q disjunction / or true iff P is true or if Q is true
P→ Q implication / implies true iff P is false or Q is true
P↔ Q bi-implication / equiv. true iff P and Q are both true or both false
∀xP universal quantifier true iff P is true for all values of variable x

∃xP existential quantifier true iff P is true for some value of variable x

[α]P [·] modality / box true iff Demon has winning strategy to achieve P in HG α
〈α〉P 〈·〉 modality / diamond true iff Angel has winning strategy to achieve P in HG α

14.5 Summary

This chapter saw the introduction of differential game logic, summarized in Ta-
ble 14.1, which extends the familiar differential dynamic logic with capabilities for
modeling and understanding hybrid games. Hybrid games combine discrete dy-
namics, continuous dynamics, and adversarial dynamics, summarized in Table 14.2.
Compared to hybrid systems, the new dynamical aspect of adversarial dynamics is
captured entirely by the duality operator ·d. Without it, hybrid games are single-
player hybrid games, which are equivalent to hybrid systems. But the adversarial
dynamics caused by the presence of the duality operator ·d also made us reflect on
the semantics of all other composition operators for hybrid games.

After this chapter showed an informal and intuitive discussion of the actions that
hybrid games allow, the next chapter gives a rigorous semantics to differential game
logic and its hybrid games.

444 14 Hybrid Systems & Games

Table 14.2 Statements and effects of hybrid games (HGs)

HG Notation Operation Effect
x :=e assignment game deterministically assigns value of e to variable x

x′ = f (x)&Q continuous game differential equation for x with term f (x) with-
in first-order constraint Q (evolution domain)

?Q test / challenge Angel loses unless formula Q holds at current state
α; β sequential game HG β starts after HG α finishes
α ∪β choice game Angel chooses between alternatives HG α or HG β
α∗ repeated game Angel repeats HG α any finite number of times
αd dual game swaps rôles of Angel and Demon in HG α

Exercises

14.1 (One-player games). Single-player hybrid games, i.e., d-free hybrid games,
are just hybrid programs. For each of the following formulas, convince yourself that
it has the same meaning whether you understand it as a differential dynamic logic
formula with a hybrid system or as a differential game logic formula with a hybrid
game (that happens to have only a single player):

〈x :=0∪ x :=1〉x = 0

[x :=0∪ x :=1]x = 0

〈(x :=0∪ x :=1); ?x = 1〉x = 0

[(x :=0∪ x :=1); ?x = 1]x = 0

〈(x :=0∪ x :=1); ?x = 0〉x = 0

[(x :=0∪ x :=1); ?x = 0]x = 0

〈(x :=0∪ x :=1)∗〉x = 0

[(x :=0∪ x :=1)∗]x = 0

〈(x :=0∪ x :=x+1)∗〉x = 0

[(x :=0∪ x :=x+1)∗]x = 0

14.2 (Single-player push-around carts). Hybrid game (14.2) was a single-player
formulation in which all choices go to player Angel and Demon has nothing to do.
Is the following dGL formula about it valid?

v≥ 1→ 〈

(d :=1∪d := 1); (a :=1∪a := 1); {x′ = v,v′ = a+d}

)∗〉v≥ 0

Is the following dGL formula with a box modality valid, too?

v≥ 1→ [

(d :=1∪d := 1); (a :=1∪a := 1); {x′ = v,v′ = a+d}

)∗
]v≥ 0

What does this imply about the required cleverness for appropriate control choices
in similar hybrid games that we considered in Example 14.3? Even if we have not
even fully considered a semantics let alone a proof calculus for hybrid games yet,

14.5 Summary 445

can you still find a proof justifying the validity or a counterexample for the above
two single-player hybrid game formulas?

14.3. In which states is the following dGL formula true and what is Demon’s win-
ning strategy in those states

[

({x′ = 1}∪{x′ = 1});({y′ = 1}d∩{y′ = 1}d)

)∗
]x < y

In which states is this variation true and what is Demon’s winning strategy?

[

({x′ = 1}∪{x′ = 1});({y′ = 1}d∩{y′ = 1}d)

)∗
] (x y)2 < 5

These dGL formulas have disconnected physics, where the duration of evolution of
Angel’s differential equation may have nothing to do with the duration of evolution
of Demon’s differential equation. Most games synchronize in time, however. The
following dGL formula has different control choices for the different players but the
differential equations are combined into a single differential equation system under
Angel’s control of time. In which states is the following formula true and what is
Demon’s winning strategy?

[

(v :=1∪ v := 1);(w :=1∩w := 1){x′ = v,y′ = w}

)∗
] (x y)2 < 5

14.4. Consider the following dGL formulas and identify under which circumstance
they are true:

〈(x :=x+1;{x′ = x2}d∪ x :=x 1)
∗〉(0≤ x < 1)

〈(x :=x+1;{x′ = x2}d∪ (x :=x 1∩ x :=x 2))
∗〉(0≤ x < 1)

14.5. Write down a valid formula that characterizes an interesting game between
two robots and convince yourself whether it is valid or not.

14.6 (Robot simple chase game). The following dGL formula characterizes a one-
dimensional game of chase between a robot at position x and another robot at po-
sition y, each with instant control of the velocity v among a, a,0 for x (Angel’s
choice) and velocity w among b, b,0 for y (Demon’s subsequent choice). The
game repeats any number of control rounds following Angel’s choice (∗). Angel
is trying to get her robot x close to Demon’s robot y. Under which circumstances is
the formula true?

〈
(v :=a∪ v := a∪ v :=0);

(w :=b∩w := b∩w :=0);

{x′ = v,y′ = w}
)∗〉

(x y)2 ≤ 1

14.7 (Say when). For each of the following dGL formulas identify the set of states
in which it is true and characterize this set by a formula of real arithmetic. For each
case, briefly sketch the player’s winning strategy when it is true and explain why the
dGL formula is false in all other states:

446 14 Hybrid Systems & Games

〈x := 1∪ (x := 0∩ x := y)〉x≥0

〈

x := x+2∪ (x := x 1;{x′ = 1}d)

)∗〉0<x≤2

〈x :=x+2;x :=x 1〉x≥0

〈x := x 1∪ (x := 0∩ x := y2 +1)〉x≥0

〈x := y 1∪ ({x′ = 1}d;x := x+2)〉x≥0

〈x := y∪ (x′ = 2;{x′ = 1}d;x := x+2)〉x≥0

[(x := x∩ x′ = 2)∗]x≥0

〈(v :=v∩ v := v);(w :=w∪w := w)〉v = w

〈(v :=v∩ v := v);{x′ = v,y′ = w}〉x = y

〈(v :=v∩ v := v);(w :=w∪w := w);{x′ = v,y′ = w}〉x = y

〈(x :=x 1∩n :=n 1;?(n≥ 0)d;x :=x2)
∗〉x < 0

[(x := x∩ x′ = x2)
∗
]x≥0

〈

x := 0∪

(x := x+1;{x′ = 1}d)∪ x := x 1

))∗〉0<x≤1

〈

x :=x2∪ (x :=x+1∩ x′ = 2)

)∗〉x > 0

〈

(x := x+1;{x′ = x2}d)∪ (x := x 1;{x′ = 1}d)

)∗〉0≤x≤2

〈

(x := x+1;{x′ = 1}d)∪ (x := x 1;{x′ = 1}d)

)∗〉0≤x≤2

〈

(x := x+1;{x′ = 1}d)∪ (x := x 1;{x′ = 1}d)

)∗〉0≤x≤2

14.8 (* Robot chase). The following dGL formula characterizes a two-dimensional
game of chase between a robot at position (x1,x2) facing in direction (d1,d2) and a
robot at position (y1,y2) facing in direction (e1,e2). Angel has direct control over
the angular velocity ω among 1, 1,0 for robot (x1,x2) and, subsequently, Demon
has direct control over the angular velocity ρ among 1, 1,0 for robot (y1,y2). The
game repeats any number of control rounds following Angel’s choice (∗). Angel is
trying to get her robot close to Demon’s robot. Is the following dGL formula valid?
Can you identify some circumstances under which it is true? Or some circumstances
under which it is false?
〈(

(ω :=1∪ω := 1∪ω :=0);

(ρ :=1∩ρ := 1∩ρ :=0);

{x′1=d1,x
′
2=d2,d

′
1= ωd2,d

′
2=ωd1,y

′
1=e1,y

′
2=e2,e

′
1= ρe2,e

′
2=ρe1}d

)∗〉
(x1 y1)

2 +(x2 y2)
2 ≤ 1

14.9 (Goalies with resistance). Robot soccer balls have the irritating tendency to
slow down after they have been kicked. Extend Example 14.6 with a model that
takes the slowdown due to roll resistance and/or air resistance into account. Can you
identify a condition under which the resulting formula is true? On a straight line, a

14.5 Summary 447

point x of mass m with velocity v on flat terrain follows the differential equation

x′ = v,v′ = av2 cgm

with gravity g = 9.81 . . . , a small roll resistance coefficient c and an even smaller
aerodynamic coefficient a. What changes to say that no goal is scored?

References

[1] André Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reas.

41(2) (2008), 143–189. DOI: 10.1007/s10817-008-9103-8.
[2] André Platzer. Differential-algebraic dynamic logic for differential-algebraic

programs. J. Log. Comput. 20(1) (2010), 309–352. DOI: 10.1093/logcom/
exn070.

[3] André Platzer. Logical Analysis of Hybrid Systems: Proving Theorems for

Complex Dynamics. Heidelberg: Springer, 2010. DOI: 10.1007/978-3-
642-14509-4.

[4] André Platzer. Stochastic differential dynamic logic for stochastic hybrid pro-
grams. In: CADE. Ed. by Nikolaj Bjørner and Viorica Sofronie-Stokkermans.
Vol. 6803. LNCS. Berlin: Springer, 2011, 446–460. DOI: 10.1007/978-
3-642-22438-6_34.

[5] André Platzer. A complete axiomatization of quantified differential dynamic
logic for distributed hybrid systems. Log. Meth. Comput. Sci. 8(4:17) (2012).
Special issue for selected papers from CSL’10, 1–44. DOI: 10 . 2168 /
LMCS-8(4:17)2012.

[6] André Platzer. Dynamic logics of dynamical systems. CoRR abs/1205.4788

(2012).
[7] André Platzer. Logics of dynamical systems. In: LICS. Los Alamitos: IEEE,

2012, 13–24. DOI: 10.1109/LICS.2012.13.
[8] André Platzer. The complete proof theory of hybrid systems. In: LICS. Los

Alamitos: IEEE, 2012, 541–550. DOI: 10.1109/LICS.2012.64.
[9] André Platzer. Differential game logic. ACM Trans. Comput. Log. 17(1)

(2015), 1:1–1:51. DOI: 10.1145/2817824.
[10] André Platzer. Logic & proofs for cyber-physical systems. In: IJCAR. Ed. by

Nicola Olivetti and Ashish Tiwari. Vol. 9706. LNCS. Berlin: Springer, 2016,
15–21. DOI: 10.1007/978-3-319-40229-1_3.

[11] André Platzer. A complete uniform substitution calculus for differential dy-
namic logic. J. Autom. Reas. 59(2) (2017), 219–265. DOI: 10.1007/s108
17-016-9385-1.

[12] André Platzer. Differential hybrid games. ACM Trans. Comput. Log. 18(3)
(2017), 19:1–19:44. DOI: 10.1145/3091123.

https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1093/logcom/exn070
https://doi.org/10.1093/logcom/exn070
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-642-22438-6_34
https://doi.org/10.1007/978-3-642-22438-6_34
https://doi.org/10.2168/LMCS-8(4:17)2012
https://doi.org/10.2168/LMCS-8(4:17)2012
https://doi.org/10.1109/LICS.2012.13
https://doi.org/10.1109/LICS.2012.64
https://doi.org/10.1145/2817824
https://doi.org/10.1007/978-3-319-40229-1_3
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1145/3091123

Chapter 15

Winning Strategies & Regions

Synopsis This chapter identifies a simple denotational semantics for hybrid games
based on their winning regions, i.e., the set of states from which there is a winning
strategy that wins the game for all strategies that the opponent might choose. Such a
denotational semantics continues the successful trend in this book of understanding
all operators in a compositional way. That is, the meaning of a compound hybrid
game is a simple function of the meaning of its pieces. For repetitions in hybrid
games, such a semantics will turn out to be surprisingly subtle, which will uncover
a surprisingly rich complexity in hybrid games that is characteristically different
from that of hybrid systems. This is the first indication that hybrid games come with
their own unique sets of challenges beyond what hybrid systems already have in
store for us.

15.1 Introduction

This chapter continues the study of hybrid games and their specification and veri-
fication logic, differential game logic [4], that Chap. 14 started. Chapter 14 saw the
introduction of differential game logic with a primary focus on identifying and high-
lighting the new dynamical aspect of adversarial dynamics for modeling purposes.
The meaning of hybrid games in differential game logic had been left informal,
based on the intuition one relates to interactive gameplay and decisions in game
trees. While it is possible to turn such a tree-type semantics into an operational
semantics for hybrid games [4], the resulting development is technically rather in-
volved. Even if such an operational semantics is informative and touches on inter-
esting concepts from descriptive set theory, it is quite unnecessarily complicated.

This chapter will, thus, be devoted to developing a much simpler yet rigorous
semantics, a denotational semantics for hybrid games. Chapter 14 already high-
lighted subtleties such as how never-ending game play ruins determinacy (i.e., that
one player always has a winning strategy), simply because there never is a state in
which the winner is declared. Especially the aspect of repetition and its interplay

449© Springer International Publishing AG, part of Springer Nature 2018

A. Platzer, Logical Foundations of Cyber-Physical Systems,

https://doi.org/10.1007/978-3-319-63588-0_15

https://doi.org/10.1007/978-3-319-63588-0_15
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63588-0_15&domain=pdf

450 15 Winning Strategies & Regions

with differential equations will need careful attention now. The denotational seman-
tics will make this subtle aspect crystal-clear.

This chapter is based on previous work [4], where more information can be found
on logic and hybrid games. The most important learning goals of this chapter are:

Modeling and Control: We further our understanding of the core principles be-
hind CPS for the adversarial dynamics resulting from multiple agents with pos-
sibly conflicting actions that occur in many CPS applications. This time, we
devote attention to the nuances of their precise semantics. These observations
will eventually uncover subtleties in the semantics of adversarial repetitions
that makes them conceptually better behaved than the highly transfinite iterated
winning-region construction. A byproduct of this development shows fixpoints
in action, which play a prominent rôle in the understanding of other classes of
models.

Computational Thinking: This chapter follows fundamental principles from com-
putational thinking to capture the semantics of the new phenomenon of adver-
sarial dynamics in CPS models. We leverage core ideas from programming lan-
guages by extending syntax and semantics of program models and specification
and verification logics with the complementary operator of duality to incorpo-
rate adversariality in a modular way into the realm of hybrid systems models.
This leads to a compositional model of hybrid games with compositional op-
erators that each have a compositional semantics. Modularity makes it possible
to generalize our rigorous reasoning principles for CPS to hybrid games while
simultaneously taming their complexity. This chapter introduces the semantics
of differential game logic dGL [4], which adds adversarial dynamics to the dif-
ferential dynamic logic that has been used as the specification and verification
language for CPS in the other parts of this textbook. Because of the fundamental
rôle that alternation plays in hybrid games, this chapter also provides a perspec-
tive on advanced models of computation with alternating choices. Finally, the
chapter will encourage us to reflect on the relationship of denotational and op-
erational semantics. The former focuses on the mathematical object to which
a syntactic expression refers. The latter instead has an emphasis on the actions
that happen successively as the game unfolds.

CPS Skills: This chapter focuses on developing and understanding the semantics of
CPS models with adversarial dynamics corresponding to how a system changes
state over time as multiple agents react to each other. This understanding is cru-
cial for developing an intuition for the operational effects of multi-agent CPSs.
The presence of adversarial dynamics will cause us to reconsider the semantics
of CPS models to incorporate the effects of multiple agents and their mutual
reactions. This generalization, while crucial for understanding adversarial dy-
namics in CPS, also shines a helpful complementary light on the semantics of
hybrid systems without adversariality by causing us to reflect on the meaning
of choices. The semantics of hybrid games genuinely generalizes the semantics
of hybrid systems from earlier chapters.

15.2 Semantics of Differential Game Logic 451

CT

M&C CPS

fundamental principles of computational thinking
logical extensions
PL modularity principles
compositional extensions
differential game logic
denotational vs. operational semantics

adversarial dynamics
adversarial semantics
adversarial repetitions
fixpoints

CPS semantics
multi-agent operational effects
mutual reactions
complementary hybrid systems

15.2 Semantics of Differential Game Logic

What is the most elegant way of defining a semantics for differential game logic?
How can a semantics be defined at all? First of all, the dGL formulas P that are used
in the postconditions of dGL modal formulas 〈α〉P and [α]P define the winning
conditions for the hybrid game α . When playing the hybrid game α , we, thus, need
to know the set of states in which the winning condition P is satisfied, because that
is the region that the respective player wants to reach. That set of states in which P

is true is denoted [[P]], which defines the semantics of dGL formula P. Recall that
ω ∈ [[P]] indicates that state ω is among the set of states in which P is true. The state
ω in a hybrid game is still just a mapping that assigns real numbers to all variables,
just as in hybrid programs, because that is what is needed to make sense of terms
such as x · y+2 and formulas such as x2 ≥ x · y+2 in the hybrid game. A state ω is
a mapping from variables to R. The set of states is denoted S.

15.2.1 Limits of Reachability Relations

The semantics of hybrid games is more subtle than that of hybrid systems. The
semantics of a hybrid program α is simply a reachability relation [[α]] ⊆ S×S

where (ω,ν) ∈ [[α]] indicates that final state ν is reachable from initial state ω by
running HP α . That made it possible to define the semantics of the dL formula 〈α〉P
via

[[〈α〉P]] = {ω ∈S : ν ∈ [[P]] for some ν with (ω,ν) ∈ [[α]]} for HP α (15.1)

This approach does not suffice for hybrid games. First of all, the reachability relation
(ω,ν) ∈ [[α]] is only defined when α is a hybrid program, not when it is a hybrid

452 15 Winning Strategies & Regions

game. And it is not even clear whether a reachability relation is all that it takes to
understand the semantics of a hybrid game, because mere reachability information
about states hardly retains enough information to represent the interactive aspects
of gameplay in which some choices are better than others for the respective players.
But the deeper reason is that the shape (15.1) is too restrictive. Criteria of this shape
would require Angel to single out a single state ω that satisfies the winning condition
ν ∈ [[P]] and then get to that state ν by playing hybrid game α from ω . Yet, all that
Demon then has to do to spoil this plan is lead the play into a different state (even
one in which Angel would also have won) but which is different from the projected
state ν . More generally, winning into a single state is really difficult.

15.2.2 Set-Valued Semantics of Differential Game Logic Formulas

Winning by leading the play into one of several states that satisfy the winning con-
dition is more feasible. If we know the whole set of states [[P]] where postcondition
P is true as the winning condition, then the hybrid game α uniquely determines the
set of states from which Angel has a winning strategy in the game α to reach a state
in [[P]]. This winning region in hybrid game α for Angel’s winning condition [[P]]
will be denoted ςα([[P]]). More generally, for any set of states X ⊆S, will ςα(X)
denote the set of states from which Angel has a winning strategy in the hybrid game
α to reach a state in Angel’s winning condition X . Correspondingly, δα(X) will de-
note the set of states from which Demon has a winning strategy in the hybrid game
α to reach a state in Demon’s winning condition X . Both sets will be defined in
Sect. 15.2.3.

For a subset X ⊆S the complement S \X is denoted X∁. The notation ωd
x from

(2.9) on p. 49 still denotes the state that agrees with state ω except for the interpre-
tation of variable x, which is changed to d ∈ R. The value of term e in state ω is
denoted by ω[[e]] as in Definition 2.4. The denotational semantics of dGL formulas
will be defined in Definition 15.1 by simultaneous induction along with the denota-
tional semantics, ςα(·) and δα(·), of hybrid games, defined in Definition 15.2, be-
cause dGL formulas are defined by simultaneous induction with hybrid games. The
(denotational) semantics of a hybrid game α defines for each set of Angel’s winning
states X ⊆S the winning region, i.e., the set of states ςα(X) from which Angel has
a winning strategy to achieve X (whatever strategy Demon chooses). The winning

region of Demon, i.e., the set of states δα(X) from which Demon has a winning
strategy to achieve X (whatever strategy Angel chooses) is defined later as well.

Definition 15.1 (dGL semantics). The semantics of a dGL formula P is the
subset [[P]]⊆S of states in which P is true. It is defined inductively as follows:

1. [[e≥ ẽ]] = {ω ∈S : ω[[e]]≥ ω[[ẽ]]}
That is, the set of states in which e≥ ẽ is true is the set in which the value
of e is greater than or equal to the value of ẽ.

15.2 Semantics of Differential Game Logic 453

2. [[¬P]] = ([[P]])∁

That is, the set of states in which ¬P is true is the complement of the set
of states in which P is true.

3. [[P∧Q]] = [[P]]∩ [[Q]]
That is, the set of states in which P∧Q is true is the intersection of the set
of states in which P is true with the set of states in which Q is true.

4. [[∃xP]] = {ω ∈S : ωr
x ∈ [[P]] for some r ∈ R}

That is, the states in which ∃xP is true are those which only differ in the
real value of x from a state in which P is true.

5. [[〈α〉P]] = ςα([[P]])
That is, the set of states in which 〈α〉P is true is Angel’s winning region to
achieve [[P]] in hybrid game α , i.e., the set of states from which Angel has
a winning strategy in hybrid game α to reach a state where P holds.

6. [[[α]P]] = δα([[P]])
That is, the set of states in which [α]P is true is Demon’s winning region
to achieve [[P]] in hybrid game α , i.e., the set of states from which Demon
has a winning strategy in hybrid game α to reach a state where P holds.

A dGL formula P is valid, written � P, iff it is true in all states, i.e., [[P]] = S.

The semantics ςα(X) and δα(X) of Angel’s and Demon’s winning regions for
winning condition X in hybrid game α will be defined next.

15.2.3 Winning-Region Semantics of Hybrid Games

Definition 15.1 uses the winning regions ςα(·) and δα(·) for Angel and Demon, re-
spectively, in the hybrid game α . Rather than taking a detour to understand those by
operational game semantics (as in Chap. 14), the winning regions of hybrid games
can be defined directly, giving a denotational semantics to hybrid games.1 The win-
ning regions for Angel are illustrated in Fig. 15.1, for Demon in Fig. 15.2.

Definition 15.2 (Semantics of hybrid games without repetition). The se-

mantics of a hybrid game α is a function ςα(·) that, for each set of Angel’s
winning states X ⊆S, gives the winning region, i.e., the set of states ςα(X)
from which Angel has a winning strategy to achieve X (whatever strategy De-
mon chooses). It is defined inductively as follows:

1 The semantics of a hybrid game is not merely a reachability relation between states as for hybrid
systems [3], because the adversarial dynamic interactions and nested choices of the players have
to be taken into account. For brevity, the informal explanations sometimes say “win the game”
when really they mean “have a winning strategy to win the game”. The semantics of differential
equations could be augmented to ignore the initial value of the differential symbol x′ as in Part II.
This is not pursued for simplicity, because considering x′ :=∗;x′ = f (x)&Q has the same effect.

454 15 Winning Strategies & Regions

1. ςx:=e(X) = {ω ∈S : ω
ω[[e]]
x ∈ X}

That is, an assignment x :=e wins a game into X from any state ω whose

modification ω
ω[[e]]
x that changes the value of x to ω[[e]] is in X .

2. ςx′= f (x)&Q(X) = {ϕ(0) ∈S : ϕ(r) ∈ X for some solution ϕ : [0,r]→S

of any duration r ∈ R satisfying ϕ |= x′ = f (x)∧Q}
That is, Angel wins the differential equation x′ = f (x)&Q into X from any
state ϕ(0) from which there is a solution ϕ of x′ = f (x) of any duration r

that remains in Q all the time and leads to a final state ϕ(r) ∈ X .
3. ς?Q(X) = [[Q]]∩X

That is, Angel wins into X for a challenge ?Q from the states that satisfy Q

to pass the challenge and are already in X , because challenges ?Q do not
change the state. Angel only achieves winning condition X in game ?Q in
the states in X that also satisfy the test formula Q.

4. ςα∪β (X) = ςα(X)∪ ςβ (X)
That is, Angel wins a game of choice α ∪β into X whenever she wins
game α into X or wins β into X (by choosing a subgame for which she has
a winning strategy).

5. ςα;β (X) = ςα(ςβ (X))
That is, Angel wins a sequential game α;β into X whenever she has a
winning strategy in game α to achieve ςβ (X), i.e., to make it to one of the
states from which she has a winning strategy in game β to achieve X .

6. ςα∗(X) will be defined later.
7. ςαd(X) = (ςα(X

∁))∁

That is, Angel wins αd to achieve X in exactly the states in which she does
not have a winning strategy in game α to achieve the opposite X∁.

Since the players switch sides in a dual game αd, Angel’s winning region ςαd(X)
from which she has a winning strategy to achieve X in the dual game αd is the same
as the complement (ςα(X

∁))∁ of the set ςα(X
∁) where Angel would have a win-

ning strategy in the game α to achieve the complement region X∁ where she loses
the dual game αd. The winning region ςα(X

∁) corresponds to Angel simulating De-
mon’s controls in αd by playing Angel’s controls in α but for Demon’s objective X∁

instead of Angel’s objective X . The complement of this region then is the winning
region ςαd(X) where Angel has a winning strategy in the dual game αd to achieve X ,
because she would not have had a winning strategy to achieve X∁ when simulating
Demon with pretend-play in game α .

After having defined the winning region ςα(X) from which Angel has a winning
strategy to achieve X in the hybrid game α , the next question is how to define the
winning region δα(X) from which Demon has a winning strategy to achieve X in
the hybrid game α . Together, these define the functions used in the semantics of
dGL formulas (Definition 15.1). For discrete assignments x :=e, the winning region
ςx:=e(X) for Angel is the same as the winning region δx:=e(X) for Demon in the same
game with the same winning condition X , because there are no choices to resolve in
a discrete assignment. But for differential equations, the winning regions are very

15.2 Semantics of Differential Game Logic 455

different, because Angel is in control of the duration of the differential equation,
so Demon only has a chance if the differential equation starts in X (because Angel
could follow it for duration 0 from the evolution domain) and stays in X all the time
(because Angel could follow it for any other duration within the evolution domain).
Likewise, since Angel gets to decide how to resolve a choice α ∪ β , Demon can
only win if he wins both subgames.

Definition 15.3 (Semantics of hybrid games without repetition, continued).

The winning region of Demon, i.e., the set of states δα(X) from which Demon
has a winning strategy to achieve X (whatever strategy Angel chooses) is de-
fined inductively as follows:

1. δx:=e(X) = {ω ∈S : ω
ω[[e]]
x ∈ X}

That is, an assignment x :=e wins a game into X from any state ω whose

modification ω
ω[[e]]
x that changes the value of x to ω[[e]] is in X .

2. δx′= f (x)&Q(X) = {ϕ(0) ∈ S : ϕ(r) ∈ X for all durations r ∈ R and all
solutions ϕ : [0,r]→S satisfying ϕ |= x′ = f (x)∧Q}
That is, Demon wins the differential equation x′ = f (x)&Q into X from
any state ϕ(0) from which all solutions ϕ of x′ = f (x) of any duration r

that remain within Q all the time lead to states ϕ(r) ∈ X in the end.
3. δ?Q(X) = ([[Q]])∁∪X

That is, Demon wins into X for a challenge ?Q from the states which vio-
late Q so that Angel fails her challenge ?Q or that are already in X , because
challenges ?Q do not change the state. Demon achieves the winning con-
dition X in game ?Q in the states in X (whether or not Q holds) as well as
in the states in which Angel fails test formula Q.

4. δα∪β (X) = δα(X)∩δβ (X)
That is, Demon wins a game of choice α ∪β into X whenever he wins α
into X and wins β into X (because Angel might choose either subgame).

5. δα;β (X) = δα(δβ (X))
That is, Demon wins a sequential game α;β into X whenever he has a
winning strategy in game α to achieve δβ (X), i.e., to make it to one of the
states from which he has a winning strategy in game β to achieve X .

6. δα∗(X) will be defined later.
7. δαd(X) = (δα(X

∁))∁

That is, Demon wins αd to achieve X in exactly the states in which he does
not have a winning strategy in game α to achieve the opposite X∁.

Strategies do not occur explicitly in the dGL semantics, because the semantics is
based on the existence of winning strategies, not on the strategies themselves. Just
like the semantics of dL, the semantics of dGL is compositional, i.e., the semantics
of a compound dGL formula is a simple function of the semantics of its pieces.
Likewise, the semantics of a compound hybrid game is a simple function of the
semantics of its pieces. Also observe how the existence of a strategy in hybrid game

456 15 Winning Strategies & Regions

X

ςx:=e(X)

Xx
′ =

f (
x)

ςx′= f (x)(X)

X

[[Q]]

ς?Q(X)

ςα (X)

ςβ
(X
)

Xςα∪β (X)

ςα (ςβ (X)) ςβ (X) X

ςα;β (X)

X∁

X

ςα (X
∁)

ςα (X
∁)∁

ςαd (X)

Fig. 15.1 Denotational semantics of hybrid games as Angel’s winning region

α to achieve X is independent of any game and dGL formula surrounding α , but
just depends on the remaining game α itself and on the goal X .

Even if we will only prove the following monotonicity property of winning re-
gions in Chap. 16 after having defined a semantics of repetition, we already state it
now, because it provides useful intuition. The semantics is monotone [4], i.e., larger
sets of winning states have larger winning regions, because it is easier to win into
larger sets of winning states (Fig. 15.3).

Lemma 15.1 (Monotonicity). The dGL semantics is monotone, that is, both

ςα(X)⊆ ςα(Y) and δα(X)⊆ δα(Y) for all X ⊆ Y .

Note the big qualitative difference in the denotational semantics style of defining
the winning region ςα(X) in Definition 15.2 compared to the operational semantics
captured (informally) in Sect. 14.4. The denotational semantics directly associates
with a hybrid game α and a winning condition X the set of states from which player
Angel has a winning strategy in game α to achieve X . This results in a simple in-

15.2 Semantics of Differential Game Logic 457

X

δx:=e(X)

X

x
′ =

f (
x)

δx′= f (x)(X)

X

[[Q]]

δ?Q(X)

δ
α (X)

δβ
(X
)

Xδα∪β (X)

δα (δβ (X)) δβ (X) X

δα;β (X)

X∁

X

δα (X
∁)

δα (X
∁)∁

δαd (X)

Fig. 15.2 Denotational semantics of hybrid games as Demon’s winning region

Fig. 15.3 Monotonicity: it is
easier to win into larger sets
of winning states Y ⊇ X

X

Y

ςα (X)

ςα (Y)

ductive definition of ςα(X) based on the structure of α . The game trees from the
operational semantics in Sect. 14.4 give a more direct operational intuition of how
a game can be played by moving along the edges of its game graph. But rigorously
defining the structure of such an (infinite) graph and what it means to have a win-
ning strategy in it is technically more involved and complicates subsequent analysis,
compared to the more convenient denotational semantics. There are other circum-
stances where an operational semantics is more useful, so it is good to be familiar
with both styles to choose the best fit for any question at hand.

458 15 Winning Strategies & Regions

15.3 Semantics of Repetition in Hybrid Games

Before going any further we need to define a semantics for repetition, which will
turn out to be surprisingly subtle. The final answer in Sect. 15.3.4 is not quite so
complicated, but it takes considerable deliberation to get there. Since the insights
along the way are of general interest and nicely illuminate interesting complexities
of hybrid games, we do not mind taking a careful route toward understanding the
rôle of repetition in hybrid games.

15.3.1 Repetitions with Advance Notice

Definition 15.2 is still missing a definition for the semantics of repetition in hybrid
games. With αn+1 ≡ αn;α and α0 ≡?true, the semantics of repetition in hybrid
systems was

[[α∗]] =
⋃

n∈N
[[αn]]

The obvious counterpart for the semantics of repetition in hybrid games would be

ςα∗(X)
?
=
⋃

n<ω

ςαn(X) (15.2)

where ω is the first infinite ordinal (if you have never seen ordinals before, just read
n < ω as n is in the natural numbers, i.e., as n ∈ N). Would that give the intended
meaning to repetition? Would Angel be forced to stop in order to win if the game of
repetition were played this way? Yes, she would, because, even though there is no
bound on the number of repetitions that she can choose, for each natural number n,
the resulting game ςαn(X) is finite.

Would this definition capture the intended meaning of repeated game play?

Before you read on, see if you can find the answer for yourself.

The issue is that each way of playing a repetition according to (15.2) would re-
quire Angel to choose a natural number n ∈N of repetitions and expose this number

to Demon when playing αn so that he would know how often Angel decided to
repeat before he even has to make a move.

That would lead to what is called the advance notice semantics [5] for α∗, which
requires the players to announce the number of times that game α will be repeated
when the loop begins. The advance notice semantics defines ςα∗(X) as

⋃

n<ω ςαn(X)
and defines δα∗(X) as

⋂

n<ω δαn(X). When playing α∗, Angel, thus, announces to
Demon the number of repetitions n < ω when the game α∗ starts and Demon an-
nounces the number of repetitions when the game α× starts. This advance notice
makes it easier for Demon to win loops α∗ and easier for Angel to win loops α×,
because the opponent announces an important feature of their strategy immediately,

15.3 Semantics of Repetition in Hybrid Games 459

as opposed to revealing whether or not to repeat the game once more one iteration
at a time as we had meant with the operational game trees in Chap. 14.

If we gave repetition an advance notice semantics, then that would be a big disad-
vantage for the player controlling repetitions. The following formula, for example,
is valid in dGL, but would not be valid in the advance notice semantics (Fig. 15.4):

x = 1∧a = 1→ 〈((x :=a;a :=0)∩ x :=0)∗〉x 6= 1 (15.3)

11

11

01

01

01

⋄
10

10

00

⋄
00

⋄

repeat

10

⋄

st
op

repeat

01
⋄

st
op

10

10

00
⋄

00
⋄

repeat

10

⋄

st
op

repeat

11

⋄

st
op

11

11

01

01

01
⋄

10
⋄

10

00
⋄

00
⋄

10

00

00
⋄

00
⋄

00

00
⋄

00
⋄

3

11

01

01
⋄

10
⋄

10

00
⋄

00
⋄

2

11

01
⋄

10
⋄

1

11
⋄

0 . . .

Fig. 15.4 Game trees for x = 1∧ a = 1→ 〈α∗〉x 6= 1 with game α ≡ (x :=a;a :=0)∩ x :=0 (no-
tation: x,a). (left) valid in dGL by strategy “repeat once and repeat once more if x = 1, then stop”
(right) false in advance notice semantics by the strategy “n 1 choices of x :=0 followed by
x :=a;a :=0 once”, where n is the number of repetitions Angel announced

The game starts with x and a both being 1 and asks whether Angel has a winning
strategy to reach x 6= 1 with a repetition that she controls but Demon gets to choose
whether 0 or a is put into x. The catch is that whenever the value of x is copied over
to x in Demon’s left choice, then a is zeroed out, so this only helps him once.

If, in the advance notice semantics, Angel announces when the repetition starts
that she has chosen n repetitions of the game, then Demon wins with flying colors

460 15 Winning Strategies & Regions

by choosing the right choice x :=0 option n 1 times followed by the left choice of
x :=a;a :=0 in the last repetition. This strategy would not work in the dGL seman-
tics, where Angel is free to decide whether to repeat α∗ after each repetition based
on the resulting state of the game. Inspecting the state makes a big difference to
deciding whether to stop. If x has the value 0, then Angel decides to stop, otherwise
she repeats. If Demon played the right choice x :=0, Angel stops. If he played the
left choice x :=a;a :=0, then Angel decides to repeat but will stop after the next
iteration, regardless of which option Demon chose. The winning strategy for (15.3)
indicated with ⋄© in Fig. 15.4(left) shows that this dGL formula is valid.

Of course, there are also formulas that would be valid in the advance notice
semantics but are not valid in dGL, for example, the dual of formula (15.3):

x = 1∧a = 1→ [((x :=a;a :=0)∩ x :=0)∗]x = 1

Just as an advance notice semantics would make it easy for Demon to win α∗ games
with repetitions under Angel’s control, it would also make it easy for Angel to win
α× games with repetitions under Demon’s control.

The advance notice semantics misses out on the existence of perfectly reasonable
winning strategies, because it is just not interactive enough for proper hybrid game
play. The dGL semantics is more general and gives the player in charge of repetition
more control to inspect the state before having to decide on whether to repeat again.
If you ever really need parts of a game where the number of repetitions is announced
to the other player ahead of time, then it is easy to model them (Exercise 15.2).

Despite being built in direct analogy to the semantics of repetition in hybrid
systems, the advance notice semantics is inappropriate for hybrid games, be-
cause it is very difficult for a CPS to predict ahead of time exactly how many
iterations of a control cycle it will take to get to the goal.

For hybrid systems, it does not matter whether the number of iterations for a rep-
etition is chosen ahead of time or afterwards, because there are no surprises during
its evolution. All choices are consistently resolved by nondeterminism. This corre-
sponds to all choices being resolved by Angel, which means she can always choose
every choice in the best possible way. But for games, Demon can have a number
of surprises in store for Angel, so that she will have to wait and see to decide how
often to repeat.

15.3.2 Repetitions as Infinite Iterations

The trouble with the semantics in Sect. 15.3.1 is that Angel’s move for the repetition
reveals too much to Demon, because Demon can inspect the remaining game αn to
find out how long the game will be played before he even has to make his first move.

Let’s try to undo this. Instead of considering a choice over all n-fold repetitions
αn that reveals the chosen number n, we could consider a semantics that iterates n

15.3 Semantics of Repetition in Hybrid Games 461

times the winning region of α for any arbitrary finite number n (see Fig. 15.5):

ςα∗(X)
?
=
⋃

n<ω

ςn
α(X) (15.4)

ςn
α (X) · · · ς3

α (X) ς2
α (X) ςα (X) X

Fig. 15.5 Iteration ςn
α (X) of ςα (·) from winning condition X

This semantics is called the ω-semantics and also denoted ςω
α (X). All we need to

do then is to define the iteration of the winning-region construction. For any winning
condition X ⊆ S, the n-times iterated winning region ςn

α(X) of α is defined by
induction on n as

ς0
α(X)

def
= X

ςκ+1
α (X)

def
= X ∪ ςα(ς

κ
α (X))

The only states from which a repetition can win without repeating are the ones that
start at the goal X already (ς0

α(X) = X). The states from which a repetition can win
into the set X with up to κ + 1 repetitions are those that start in X as well as all
the states for which there is a winning strategy in the hybrid game α to achieve a
state in ςκ

α (X). That is, the construction successively applies ςα(·) while retaining
the winning condition X :

ς0
α(X) = X

ς1
α(X) = X ∪ ςα(X)

ς2
α(X) = X ∪ ςα(X ∪ ςα(X))

ς3
α(X) = X ∪ ςα(X ∪ ςα(X ∪ ςα(X)))

ς4
α(X) = X ∪ ςα(X ∪ ςα(X ∪ ςα(X ∪ ςα(X))))

...

Does this give the right semantics for repetition of hybrid games? Does it match
the existence of winning strategies that we were hoping to define?

Before you read on, see if you can find the answer for yourself.

462 15 Winning Strategies & Regions

The surprising answer is no for a very subtle but also very fundamental reason.
The existence of winning strategies for α∗ does not coincide with the ωth iteration
of α .

Would the following dGL formula be valid with the semantics from (15.4)?

〈(x :=1;x′ = 1d
︸ ︷︷ ︸

β

∪ x :=x 1
︸ ︷︷ ︸

γ

)

︸ ︷︷ ︸

α

∗〉(0≤ x < 1) (15.5)

Before you read on, see if you can find the answer for yourself.

As usual, [a,b) denotes the interval from a inclusive to b exclusive. Using
the abbreviations indicated in (15.5) such as α ≡ β ∪ γ , it is easy to see that
ςn

α([0,1)) = [0,n+1) for all n ∈ N by a simple inductive proof:

ς0
β∪γ([0,1)) = [0,1)

ςn+1
β∪γ ([0,1)) = [0,1)∪ ςβ∪γ(ς

n
β∪γ([0,1)))

IH
= [0,1)∪ ςβ∪γ([0,n+1))

= [0,1)∪ ςβ ([0,n+1))∪ ςγ([0,n)) = [0,1)∪ /0∪ [1,n+2) = [0,n+1+1)

Consequently, the ω-semantics from (15.4) consists of all nonnegative reals:
⋃

n<ω

ςn
α([0,1)) =

⋃

n<ω

[0,n+1) = [0,∞) (15.6)

Hence, the ω-semantics from (15.4) indicates that the hybrid game (15.5) can be
won only from initial states in [0,∞), that is, for those that satisfy 0≤ x.

Unfortunately, this is complete nonsense! True, the hybrid game in dGL formula
(15.5) can be won from all initial states that satisfy 0 ≤ x. But it can also be won
from all other initial states! The only twist is that Angel may need an unbounded
number of iterations to win it from initial states with x < 0, because Demon can
increase the value of x arbitrarily far during his differential equation. In fact, there
are cases where the ω-semantics is minuscule compared to the true winning region
and arbitrarily far away from the truth [4].

For the formula (15.5), the ω-semantics misses out on Angel’s perfectly reason-
able winning strategy “first choose x :=1;x′ = 1d and then always choose x :=x 1
until stopping at 0 ≤ x < 1.” This winning strategy wins from every initial state in
R, which is a much bigger set than the set of nonnegative reals from (15.6).

This winning strategy justifies that the dGL formula (15.5) is valid. Yet, is there
a direct way to see that (15.6) is not the final answer for (15.5) without putting the
winning-region computations aside and constructing a separate ingenious winning
strategy, which would undermine the whole point of using winning regions for the
semantics?

Before you read on, see if you can find the answer for yourself.

15.3 Semantics of Repetition in Hybrid Games 463

The crucial observation comes from a closer inspection of what exactly we did
to arrive at (15.6). The fact (15.6) shows that the hybrid game in (15.5) can be won
from all nonnegative initial values with at most ω (that is “first countably infinitely
many”) steps. The induction step proving ςn

α([0,1)) = [0,n+1) for all n∈N showed
that if, for whatever reason (by inductive hypothesis really), [0,n) is in the winning
region, then [0,n+1) also is in the winning region by simply applying ςα(·) to [0,n).

How about doing exactly that again? For whatever reason (i.e., by the above
argument), [0,∞) is in the winning region. Doesn’t that mean that ςα([0,∞)) should
again be in the winning region by exactly the same inductive argument above?

Before you read on, see if you can find the answer for yourself.

Note 72 (+1 argument) Whenever a set Z is in the winning region ςα∗(X) of
repetition, then ςα(Z) is in the winning region ςα∗(X) as well, because it is just
one round away from Z and α∗ can simply repeat once more. That is,

if Z ⊆ ςα∗(X) then ςα(Z)⊆ ςα∗(X)

Fig. 15.6 Winning regions
ςα (Z) of sets Z ⊆ ςα∗ (X) are
already included in ςα∗ (X)
since ςα (Z) is just one more
round away from Z

ςα (Z)\ ςα∗ (X)
/0

ςα∗ (X) ςα (Z) Z

Applying Note 72, which is illustrated in Fig. 15.6, to the situation at hand works
as follows. The fact (15.6) explains that at least [0,∞) ⊆ ς(β∪γ)∗([0,1)) is in the
winning region of repetition. By Note 72, the winning region ς(β∪γ)∗([0,1)) also
contains the one-step winning region ςβ∪γ([0,∞)) ⊆ ς(β∪γ)∗([0,1)) of [0,∞). Com-
puting what that is gives

ςβ∪γ([0,∞)) = ςβ ([0,∞))∪ ςγ([0,∞)) = R∪ [0,∞) = R

Beyond that, the winning region cannot contain anything else, because R is the
whole state space already (since there is only one variable in this hybrid game) and
it is kind of hard to add anything to that. Indeed, trying to use the winning-region
construction once more on R does not change the result:

ςβ∪γ(R) = ςβ (R)∪ ςγ(R) = R∪R= R

464 15 Winning Strategies & Regions

This result, then, coincides with what the ingenious winning strategy above told us
as well: formula (15.5) is valid, because there is a winning strategy for Angel from
every initial state. However, the repeated ςβ∪γ(·) winning-region construction seems
more systematic than an ingenious guess of a smart winning strategy. So it gives a
more constructive and explicit semantics.

Let’s recap. It took us more than infinitely many steps to find the winning region
of the hybrid game described in (15.5). After infinitely many iterations to arrive at
ςω

α ([0,1)) =
⋃

n<ω ςn
α([0,1)) = [0,∞), it took us one more step to arrive at

ς(β∪γ)∗([0,1)) = ςω+1
α ([0,1)) = R

where we denote the number of steps we took overall by ω + 1, since it was one
more step than (first countably) infinitely many (i.e., ω many); see Fig. 15.7 for
an illustration. More than infinitely many steps to get somewhere are plenty. Even
worse: there are cases where even ω +1 is not enough iterations to get to the seman-
tics of repetition. The number of iterations needed to find ςα∗(X) could in general
be much larger than just a little more than first countably infinitely many [4].

ςω+1
α (X) ςω

α (X) · · · ς3
α (X) ς2

α (X) ςα (X) X

Fig. 15.7 Iteration ςω+1
α (X) of ςα (·) from winning condition X = [0,1) stops when applying ςα (·)

to the ωth infinite iteration ςω
α (X)

The existence of the above winning strategy is found at level ςω+1
α ([0,1)) = R.

Even though any particular use of the winning strategy in any game play uses only
some finite number of repetitions of the loop, the argument that it will always work
requires >ω many iterations of ςα(·), because Demon can change x to an arbitrarily
big value, so that ω many iterations of ςα(·) are needed to conclude that Angel has a
winning strategy for any positive value of x. There is no smaller upper bound on the
number of iterations it takes Angel to win. Angel cannot even promise ω as a bound
on the repetition count, which is what the ω-semantics would effectively require her
to do. But strategies do converge after ω +1 iterations for (15.5).

The ω-semantics is inappropriate, because it can be arbitrarily far away from
characterizing the winning region of hybrid games.

15.3 Semantics of Repetition in Hybrid Games 465

15.3.3 Inflationary Semantics of Repetition

Despite the quite discouraging fact that infinitely many iterations of the winning-
region construction ςα(·) do not suffice to accurately describe the winning region of
repetition α∗, there still is a way of rescuing the situation if we simply keep iterating.
We just need to repeat the construction more than infinitely often, leading us into the
wonderful world of ordinals. Even if we will ultimately discard this higher iteration
semantics with ordinals in favor of a simpler semantics of repetition in Sect. 15.3.4,
we still learn interesting subtle nuances about hybrid games by pursuing a little more
iteration at first.

Fig. 15.8 Illustration of infinitely many ordinals up to ωω , including 0 < 1 < 2 < · · · < ω <
ω +1 < · · ·< ω ·2 < ω ·2+1 < · · ·< ω2 < ω2 +1 < · · ·< ω2 +ω < ω2 +ω +1 < · · ·

The key to understanding ordinals is that each ordinal κ always has a successor

ordinal κ + 1 but every set of ordinals also has a least upper bound λ , called the
limit ordinal if it is not already a successor ordinal. For example, ω is the first
infinite ordinal, and the smallest ordinal that is bigger than all natural numbers. But
ω also has a successor ordinal ω +1, which, in turn, has a successor ordinal ω +2,

466 15 Winning Strategies & Regions

and all those have a least upper bound ω ·2 (Fig. 15.8). All ordinals starting at ω are
called transfinite ordinals, because there are infinitely many smaller ordinals.

When we apply the winning-region construction ςα(·) for each successor ordinal
κ +1, but take the union of all previous winning regions at limit ordinals λ such as
ω , the semantics of repetition can be defined using transfinite iteration (Fig. 15.9):

ς∞
α (X) · · · ς3

α (X) ς2
α (X) ςα (X) X

ςα∗ (X)

Fig. 15.9 Transfinite iteration ς∞
α (X) of ςα (·) from winning condition X results in winning region

ςα∗ (X) of repetition

ς0
α(X)

def
= X

ςκ+1
α (X)

def
= X ∪ ςα(ς

κ
α (X)) κ +1 is a successor ordinal

ςλ
α (X)

def
=
⋃

κ<λ

ςκ
α (X) λ 6= 0 is a limit ordinal

The semantics of repetition is the union of all winning regions for all ordinals:

ςα∗(X) = ς∞
α (X)

def
=

⋃

κ ordinal

ςκ
α (X) (15.7)

Note 73 (Infinite iterations infinitely often) Unfortunately, hybrid games re-
quire rather big infinite ordinals until this inflationary style of computing their
winning regions stops [4]. That translates into an infinite amount of work and
then some more, infinitely often, to compute the winning region. Hardly the
sort of thing we would like to wait for to find out who wins a game.

This semantics for repetition from (15.7) provides the correct answer if we do
not mind the highly transfinite number of iterations it needs. Unfortunately, even
the pretty infinite ordinal ωω is not enough for all hybrid games [4, Theorem 3.8].
The semantics we pursue in Sect. 15.3.4 is much easier in this respect, it just does
not provide the same insights about the iterative complexities of hybrid games.

With this refined understanding of iteration, look back at dGL formula (15.5) and
observe what the above argument about the winning-region computation terminat-
ing at ω + 1 implies about bounds on how long it takes Angel to win the game in
(15.5). Since the winning region only terminates at ω + 1, she could not win with

15.3 Semantics of Repetition in Hybrid Games 467

Expedition 15.1 (Ordinal numbers)

Ordinals extend natural numbers. Natural numbers are inductively defined as
the (smallest) set N containing 0 and the successor n+1 of every number n∈N
that is in the set. Natural numbers are totally ordered: given any two different
natural numbers, one number is going to be strictly smaller than the other one.
For every finite set of natural numbers there is a smallest natural number that’s
bigger than all of them. Ordinals extend this beyond infinity. They just refuse to
stop after all natural numbers have been written down. Taking all those (count-
ably infinitely many) natural numbers {0,1,2,3, . . .}, there is a smallest ordi-
nal that’s bigger than all of them. This ordinal is ω , the firsta infinite ordinal:
0 < 1 < 2 < 3 < · · · < ω Unlike the ordinals 1,2,3, . . . from the natural num-
bers, the ordinal ω is a limit ordinal, because it is not the successor of any other
ordinal. The ordinals 1,2,3, . . . are successor ordinals, because each of them is
the successor n+1 of another ordinal n. The ordinal 0 is special, because it is
not a successor ordinal of any ordinal or natural number.

Ordinals are keen on ensuring that every ordinal has a successor and for
every set of ordinals there is a bigger ordinal. So, ω must have a successor,
which is the successor ordinal ω +1, the successor of which is ω +2, etc.:

0 < 1 < 2 < 3 < 4 < · · ·< ω < ω +1 < ω +2 < ω +3 < ω +4 < · · ·

Of course, in ordinal land, there ought to be an ordinal that’s bigger than even
all of those ordinals as well. It’s the limit ordinal ω +ω = ω ·2, at which point
we have counted to countable infinity twice already and will keep on finding
bigger ordinals, because even ω ·2 will have a successor, namely ω ·2+1:

0 < 1 < 2 < · · ·< ω < ω +1 < ω +2 < · · ·ω ·2 < ω ·2+1 < ω ·2+2 < · · ·

Now the set of all these will have a bigger ordinal ω ·2+ω =ω ·3, which again
has successors and so on. That happens infinitely often so that ω ·n will be an
ordinal for any natural number n ∈ N. All those infinitely many ordinals will
still have a limit ordinal that’s bigger than all of them, which is ω ·ω = ω2.
That one again has a successor ω2 +1 and so on (Fig. 15.8):

0< 1< 2< · · ·ω <ω+1<ω+2< · · ·ω ·2<ω ·2+1< · · ·ω ·3<ω ·3+1< · · ·
ω2 < ω2+1 < · · ·ω2+ω < ω2+ω+1 < · · ·ωω < · · ·ωωω

< · · ·ωCK
1 < · · ·ω1· · ·

The first infinite ordinal is ω , the Church-Kleene ordinal ωCK
1 is the first nonre-

cursive ordinal, and ω1 is the first uncountable ordinal. Every ordinal κ is either
a successor ordinal, i.e., the smallest ordinal κ = ι +1 greater than some ordi-
nal ι , or a limit ordinal, i.e., the supremum of all smaller ordinals. Depending
on the context, 0 is considered a limit ordinal or separate.

a For a moment read “ω = ∞” as infinity, but you will realize in an instant that this naïve view
does not go far enough, because there will be ample reason to distinguish different infinities.

468 15 Winning Strategies & Regions

any finite bound n ∈N on the number of repetitions it takes her to win. Even though
she will surely win in the end according to her winning strategy, she has no way
of saying how long that would take. Not that Angels will ever do this, but suppose
she were to brag to impress Demon by saying she could win (15.5) within n ∈ N

repetitions, then it would be impossible for her to keep that promise. No matter how
big a bound n ∈ N she were to choose, Demon could still always spoil it from any
negative initial state by evolving his differential equation x′ = 1d for much longer
than n time units so that it takes Angel more than n rounds to decrease the resulting
value down to the interval [0,1) again.

This illustrates the dual of the discussion on the advance notice semantics in
Sect. 15.3.1, which showed that Demon could make Angel win faster than she an-
nounced just to make her lose in the final round. In (15.5), Demon can always make
Angel win later than she promised even if she ultimately will still win. This is the
sense in which ω+1 is the best bound on the number of rounds it takes Angel to win
the hybrid game in (15.5). Consequently, a variation of the advance notice semantics
based on Angel announcing that she will repeat at most n ∈ N times (as opposed to
exactly n ∈ N times) does not capture the semantics of repetition appropriately.

Expedition 15.2 (Ordinal arithmetic)

Ordinals support addition, multiplication, and exponentiation, which can be
defined by induction on the second argument quite similarly to how they are
defined for natural numbers. The only oddity is that these operations are non-
commutative. The constructions distinguish the case of successor ordinals,
which are direct successors of a smaller ordinal compared to limit ordinals,
which are the least upper bounds, over all smaller ordinals:

ι +0 = ι

ι +(κ +1) = (ι +κ)+1 for successor ordinals κ +1

ι +λ =
⊔

κ<λ

ι +κ for limit ordinals λ

ι ·0 = 0

ι · (κ +1) = (ι ·κ)+ ι for successor ordinals κ +1

ι ·λ =
⊔

κ<λ

ι ·κ for limit ordinals λ

ι0 = 1

ικ+1 = ικ · ι for successor ordinals κ +1

ιλ =
⊔

κ<λ

ικ for limit ordinals λ

where
⊔

denotes the supremum or least upper bound. Carefully note ordinal
oddities like the noncommutativity coming from 2 ·ω = 4 ·ω and ω ·2 < ω ·4.

15.3 Semantics of Repetition in Hybrid Games 469

15.3.4 Characterizing Winning Repetitions Implicitly

Section 15.3.3 culminated in a semantics of repetition defined as the union of all
winning regions for all ordinals by an explicit (albeit wildly infinite) construction
(15.7). Is there a more immediate way of characterizing the winning region ςα∗(X)
of repetition implicitly rather than by explicit construction? This thought will lead
to a beautiful illustration of Bertrand Russell’s enlightening bon mot:

The advantages of implicit definition over construction are roughly those of theft over hon-
est toil. — Bertrand Russell (slightly paraphrased)

The iterated winning-region construction (15.7) describes the semantics of repe-
tition by iterating from below, i.e., starting from ς0

α(X) =X and adding states. Could
the semantics of repetition be characterized more indirectly but more concisely from
above? With an implicit characterization instead of an explicit construction?

The +1 argument (Note 72) implies ςα(Z)⊆ ςα∗(X) for any set Z ⊆ ςα∗(X). In

particular, the set Z
def
= ςα∗(X) itself satisfies

ςα(ςα∗(X))⊆ ςα∗(X) (15.8)

After all, repeating α once more from the winning region ςα∗(X) of repetition of α
cannot give us any states that did not already have a winning strategy in α∗, because
α∗ could have just been repeated one more time itself. Consequently, if a set Z ⊆S

claims to be the winning region ςα∗(X) of repetition, it at least has to satisfy

ςα(Z)⊆ Z (15.9)

because, by (15.8), the true winning region ςα∗(X) does satisfy (15.9). Thus, strate-
gizing along α from Z does not give anything that Z does not already know about.

Is there anything else that such a set Z needs to satisfy to qualify for being the
winning region ςα∗(X) of repetition? Is there only one choice for Z? Or many? If
there are multiple choices, which Z is it? Does such a Z always exist, even?

Before you read on, see if you can find the answer for yourself.

One such Z always exists, even though it may be rather boring. The empty set

Z
def
= /0 looks like it would satisfy (15.9) because it is rather hard to win a game that

requires Angel to enter the empty set of states /0 to win.
On second thoughts, ςα(/0)⊆ /0 does not actually always hold for all hybrid games

α . It is violated for states from which Angel can make sure Demon violates the rules
of the game α by losing a challenge or failing to comply with evolution domain
constraints. When Q is a nontrivial formula like x > 0 Demon fails ?Qd sometimes:

ς?Qd(/0) = (ς?Q(/0∁))∁ = ([[Q]]∩S)∁ = ([[Q]])∁ = [[¬Q]] 6⊆ /0

Yet, then the set of states [[¬Q]] that make Demon violate the rules satisfies (15.9):

470 15 Winning Strategies & Regions

ς?Qd([[¬Q]]) = (ς?Q([[¬Q]]∁))∁ = (ς?Q([[Q]]))∁ = ([[Q]]∩ [[Q]])∁ = [[¬Q]]⊆ [[¬Q]]

But even in cases where the empty set /0 satisfies (15.9), it may be too small.
Likewise, even if the set of states where Demon violates the rules immediately sat-
isfies (15.9), this set may still be too small. Angel is still in charge of repetition
and can decide how often to repeat and whether to repeat at all. The winning region
ςα∗(X) of repetition of α should at least also contain the winning condition X , be-
cause the winning condition X is particularly easy to reach when already starting in
X because Angel can then simply decide to stop fooling around and just repeat zero
times. Consequently, if a set Z ⊆S claims to be the winning region ςα∗(X), then it
has to satisfy (15.9) and also satisfy

X ⊆ Z (15.10)

Both conditions (15.9), (15.10) together can be summarized in one condition.

Note 74 (Pre-fixpoint) Every candidate Z for the winning region ςα∗(X) satis-
fies the pre-fixpoint condition:

X ∪ ςα(Z)⊆ Z (15.11)

Again: what is this set Z that satisfies (15.11)? Is there only one choice? Or
many? If there are multiple choices, which Z is the right one for the semantics of
repetition? Does such a Z always exist, even?

Before you read on, see if you can find the answer for yourself.

One such Z certainly exists. The empty set does not qualify unless X = /0 (and
even then /0 actually only works if Demon cannot be tricked into violating the rules
of the game). The set X itself is too small as well, unless the game has no incentive to

start repeating, because ςα(X)⊆ X . But the full state space Z
def
= S always satisfies

(15.11) trivially, so (15.11) definitely has a solution. Now, the whole space is a
little too big to call it Angel’s winning region independently of the hybrid game
α . Even if the full space may very well be the winning region for a particularly
Demonophobic Angel-friendly hybrid game like (15.5), the full state space is hardly
the right winning region for any arbitrary hybrid game α∗. It definitely depends
on the hybrid game α and the winning condition P whether Angel has a winning
strategy for 〈α〉P or not. For example for Demon’s favorite game where he always
wins, the winning region ςα∗(X) of Angel had better be /0, not S. Thus, the largest
solution Z of (15.11) hardly qualifies.

So which solution Z of (15.11) do we define to be ςα∗(X) now?

Before you read on, see if you can find the answer for yourself.

Among the many sets Z that solve (15.11), the largest one is not informative, be-
cause the largest Z simply degrades to the full state space S. So smaller solutions Z

are preferable. Which one? How do multiple solutions relate to each other? Suppose

15.3 Semantics of Repetition in Hybrid Games 471

Y,Z are both solutions of (15.11). That is

X ∪ ςα(Y)⊆ Y (15.12)

X ∪ ςα(Z)⊆ Z (15.13)

Then, by the monotonicity lemma (Lemma 15.1)

X ∪ ςα(Y ∩Z)
mon
⊆ X ∪ (ςα(Y)∩ ςα(Z))

(15.12),(15.13)
⊆ Y ∩Z (15.14)

Hence, by (15.14), the intersection Y ∩Z of solutions Y and Z of (15.11) also is a
solution of (15.11).

Lemma 15.2 (Intersection closure). For any two solutions Y,Z of the prefix

condition (15.11), the intersection Y ∩Z is a solution of (15.11) as well.

Whenever there are two solutions Z1,Z2 of (15.11), their intersection Z1 ∩ Z2

solves (15.11) as well. When there’s yet another solution Z3 of (15.11), the intersec-
tion Z1∩Z2∩Z3 also solves (15.11). Similarly the intersection of any larger family
of solutions solves (15.11). If we keep on intersecting solutions, we will arrive at
smaller and smaller solutions until, some fine day, there’s not going to be a smaller
one. This yields the smallest solution Z of (15.11), which is ςα∗(X).

Note 75 (Semantics of repetitions) Among the many Z that solve (15.11),
ςα∗(X) is defined to be the smallest Z that solves prefix condition (15.11):

ςα∗(X) =
⋂

{Z ⊆S : X ∪ ςα(Z)⊆ Z} (15.15)

In other words, the winning region ςα∗(X) is the smallest set Z that already con-
tains the winning condition X and the set of states ςα(Z) from which Angel can
win into Z with one more round of game α . Hence, adding to Z the set of states
ςα(Z) where one more round would win does not change the set Z, as illustrated in
Fig. 15.10.

ςα (ςα∗ (X))\ ςα∗ (X)
/0

ς∞
α (X) · · · ς3

α (X) ς2
α (X) ςα (X) X

ςα∗ (X)

Fig. 15.10 Illustration of denotational semantics of winning region of hybrid game repetitions

472 15 Winning Strategies & Regions

The fact that ςα∗(X) is defined as the smallest of all these sets makes sure that
Angel only wins games by a well-founded number of repetitions. That is, she only
wins a repetition if she ultimately stops repeating, not by postponing termination
forever with a filibuster [4].

The characterization in terms of iterated winning regions from Sect. 15.3.3 leads
to the same set ςα∗(X), but the (least pre-fixpoint or) least fixpoint characterization
(15.15) is easier to describe and reason with. Understanding why the two styles of
definition of the semantics lead to the same result will take some thought.

The set on the right-hand side of (15.15) is an intersection of solutions, thus,
a solution by Lemma 15.2 (or its counterpart for arbitrary families of solutions).
Hence ςα∗(X) itself satisfies the prefix condition (15.11):

X ∪ ςα(ςα∗(X))⊆ ςα∗(X) (15.16)

Also compare this with where we came from when we argued for (15.8). Could it
be the case that the inclusion in (15.16) is strict, i.e., not equals? No this cannot

happen, because ςα∗(X) is the smallest such set. That is, by (15.16), the set Z
def
=

X ∪ ςα(ςα∗(X)) satisfies Z ⊆ ςα∗(X) and, thus, by Lemma 15.1:

X ∪ ςα(Z)
mon
⊆ X ∪ ςα(ςα∗(X)) = Z

Thus, the set Z
def
= X∪ςα(ςα∗(X)) satisfies the condition X∪ςα(Z)⊆Z from (15.15).

Since ςα∗(X) is the smallest such set by (15.15), it is a subset of Z:

ςα∗(X)⊆ Z = X ∪ ςα(ςα∗(X))

Consequently, with (15.16), this implies that both inclusions hold, so ςα∗(X) = Z.
Thus, the least pre-fixpoint ςα∗(X) satisfies not just the pre-fixpoint inclusion (15.11)
but it even satisfies the fixpoint equation:

X ∪ ςα(ςα∗(X)) = ςα∗(X)

Note 76 (Semantics of repetitions, fixpoint formulation) The semantics or
winning region ςα∗(X) of repetition is a fixpoint solving the equation

X ∪ ςα(Z) = Z (15.17)

It is the least fixpoint, i.e., the smallest set Z solving the equation (15.17). That
is, it satisfies

ςα∗(X) =
⋂

{Z ⊆S : X ∪ ςα(Z) = Z} (15.18)

Due to the seminal fixpoint theorem of Knaster-Tarski [6], the least fixpoint se-
mantics ςα∗(X) from (15.15) alias (15.18) gives the same set of states as the infla-
tionary semantics (15.7), because the semantics is monotone (Lemma 15.1). That is,

15.4 Semantics of Hybrid Games 473

after iterating the winning-region construction in Sect. 15.3.3 for all (large enough)
ordinals starting from X , the result will be the least fixpoint of (15.17).

Lemma 15.3 (Transfinite inflation leads to a least fixpoint).

ςα∗(X)
def
=
⋂

{Z ⊆S : X ∪ ςα(Z)⊆ Z} = ς∞
α (X)

def
=

⋃

κ ordinal

ςκ
α (X)

But the iterated winning-region constructions go significantly transfinite [4], way
beyond the first infinite ordinal ω .

The situation for Demon’s winning region for repetition is analogously. The dif-
ference is that Angel controls repetition α∗, so Demon only has a winning strategy
to achieve X if he starts in X (because Angel might repeat 0 times) and has a win-
ning strategy to stay in X all the time. Postponing termination forever will make
Demon win if only he stays in X , because Angel is in charge of repetition and will
ultimately have to stop repeating. Consequently, the winning region for Demon for
Angel’s repetition is the largest fixpoint.

Note 77 (Demon’s winning region for repetition)

δα∗(X) =
⋃

{Z ⊆S : X ∩δα(Z) = Z}=
⋃

{Z ⊆S : Z ⊆ X ∩δα(Z)}

The winning region δα∗(X) is the largest set Z that is contained in the winning
condition X and in the set of states δα(Z) where Demon has a winning strategy to
remain in Z for one more round of game α . This set is the largest fixpoint, because
Demon does not mind repeating indefinitely, since he knows that Angel will ulti-
mately have to stop repeating at some point anyhow. He only needs to make sure
not to have left the winning condition X , because he cannot know how often Angel
will choose to repeat.

15.4 Semantics of Hybrid Games

The semantics of hybrid games from Sect. 15.2.3 was still pending a definition of the
winning regions ςα(·) and δα(·) for Angel and Demon, respectively, in the hybrid
game α . Rather than taking a detour to understand those by an operational game
tree semantics (as in Chap. 14), or in terms of transfinitely iterated winning-region
constructions (Sect. 15.3.3), the winning regions of all hybrid games can be defined
directly (Sect. 15.3.4), giving a denotational semantics to hybrid games.

The only difference of the following semantics compared to the previous Defini-
tion 15.2 is the new case of repetition α∗ illustrated in Fig. 15.10.

474 15 Winning Strategies & Regions

Definition 15.4 (Semantics of hybrid games). The semantics of a hybrid

game α is a function ςα(·) that, for each set of Angel’s winning states X ⊆S,
gives the winning region, i.e., the set of states ςα(X) from which Angel has a
winning strategy to achieve X (whatever strategy Demon chooses). It is defined
inductively as follows:

1. ςx:=e(X) = {ω ∈S : ω
ω[[e]]
x ∈ X}

That is, an assignment x :=e wins a game into X from any state ω whose

modification ω
ω[[e]]
x that changes the value of x to ω[[e]] is in X .

2. ςx′= f (x)&Q(X) = {ϕ(0) ∈S : ϕ(r) ∈ X for some solution ϕ : [0,r]→S

of any duration r ∈ R satisfying ϕ |= x′ = f (x)∧Q}
That is, Angel wins the differential equation x′ = f (x)&Q into X from any
state ϕ(0) from which there is a solution ϕ of x′ = f (x) of any duration r

that remains in Q all the time and leads to a final state ϕ(r) ∈ X .
3. ς?Q(X) = [[Q]]∩X

That is, Angel wins into X for a challenge ?Q from the states which satisfy
Q to pass the challenge and are already in X , because challenges ?Q do not
change the state. Angel only achieves winning condition X in game ?Q in
the states in X that also satisfy the test formula Q.

4. ςα∪β (X) = ςα(X)∪ ςβ (X)
That is, Angel wins a game of choice α ∪β into X whenever she wins α
into X or wins β into X (by choosing a subgame she has a winning strategy
for).

5. ςα;β (X) = ςα(ςβ (X))
That is, Angel wins a sequential game α;β into X whenever she has a
winning strategy in game α to achieve ςβ (X), i.e., to make it to one of the
states from which she has a winning strategy in game β to achieve X .

6. ςα∗(X) =
⋂{Z ⊆S : X ∪ ςα(Z)⊆ Z}

That is, Angel wins a game of repetition α∗ into X from the smallest set of
states Z that includes both X and the set of states ςα(Z) from which Angel
can achieve Z in one more round of game α .

7. ςαd(X) = (ςα(X
∁))∁

That is, Angel wins αd to achieve X in exactly the states in which she does
not have a winning strategy in game α to achieve the opposite X∁.

Definition 15.5 (Semantics of hybrid games, continued). The winning re-

gion of Demon, i.e., the set of states δα(X) from which Demon has a winning
strategy to achieve X (whatever strategy Angel chooses) is defined inductively:

1. δx:=e(X) = {ω ∈S : ω
ω[[e]]
x ∈ X}

That is, an assignment x :=e wins a game into X from any state ω whose

modification ω
ω[[e]]
x that changes the value of x to ω[[e]] is in X .

2. δx′= f (x)&Q(X) = {ϕ(0) ∈ S : ϕ(r) ∈ X for all durations r ∈ R and all
solutions ϕ : [0,r]→S satisfying ϕ |= x′ = f (x)∧Q}

15.4 Semantics of Hybrid Games 475

That is, Demon wins the differential equation x′ = f (x)&Q into X from
any state ϕ(0) from which all solutions ϕ of x′ = f (x) of any duration r

that remain within Q all the time lead to states ϕ(r) ∈ X in the end.
3. δ?Q(X) = ([[Q]])∁∪X

That is, Demon wins into X for a challenge ?Q from the states which vio-
late Q so that Angel fails her challenge ?Q or that are already in X , because
challenges ?Q do not change the state. Demon achieves the winning con-
dition X in game ?Q in the states in X (whether or not Q holds) as well as
in the states in which Angel fails test formula Q.

4. δα∪β (X) = δα(X)∩δβ (X)
That is, Demon wins a game of choice α ∪β into X whenever he wins α
into X and wins β into X (because Angel might choose either subgame).

5. δα;β (X) = δα(δβ (X))
That is, Demon wins a sequential game α;β into X whenever he has a
winning strategy in game α to achieve δβ (X), i.e., to make it to one of the
states from which he has a winning strategy in game β to achieve X .

6. δα∗(X) =
⋃{Z ⊆S : Z ⊆ X ∩δα(Z)}

That is, Demon wins a game of repetition α∗ into X from the biggest set
of states Z that is included both in X and in the set of states δα(Z) from
which Demon can achieve Z in one more round of game α .

7. δαd(X) = (δα(X
∁))∁

That is, Demon wins αd to achieve X in exactly the states in which he does
not have a winning strategy in game α to achieve the opposite X∁.

The semantics of dGL is still compositional, i.e., the semantics of a compound
dGL formula is a simple function of the semantics of its pieces, and the semantics
of a compound hybrid game is a function of the semantics of its pieces.

The semantics of ςα∗(X) is a least fixpoint, which results in a well-founded rep-
etition of α , i.e., Angel can repeat any number of times but she ultimately needs to
stop at a state in X in order to win. The semantics of δα∗(X) is a greatest fixpoint,
for which Demon needs to achieve a state in X after every number of repetitions,
because Angel might choose to stop at any time, but Demon still wins if he only
postpones Angel’s victory forever, because Angel ultimately has to stop repeating.

Thus, for the formula [α∗]P, Demon already has a winning strategy if he only has
a strategy that is not losing by preventing P indefinitely, because Angel eventually
has to stop repeating anyhow and will then end up in a state not satisfying P, which
makes her lose. For Demon’s repetition [α×]P the situation is dual, so Demon will
ultimately have to stop repeating and get to state P in finite time. But Angel is happy
to postpone Demon’s victory forever, because Demon will eventually have to stop
since he is in charge of Demon’s repetition α×.

476 15 Winning Strategies & Regions

15.5 Summary

This chapter saw the introduction of a proper formal semantics for differential game
logic and hybrid games. This resulted in a simple denotational semantics, where the
meaning of all formulas and hybrid games is a simple function of the meaning of its
pieces. The only possible outlier was the semantics of repetition, which turned out
to be somewhat subtle and ultimately required higher-ordinal iterations of winning-
region constructions. This led to an insightful appreciation for the complexities,
challenges, and flexibilities of hybrid games. But the final word on the semantics
of repetition was a simpler implicit characterization via fixpoints. The next chapter
will leverage their semantic basis for the next leg in the logical trinity: axiomatics.
That will enable us to succinctly reason about hybrid games and whether our player
of interest has a winning strategy.

The concepts that we touched upon in this chapter are of independent interest.
Fixpoints play a huge rôle in many areas of science [1, 2, 7]. Ordinals are also of
more general interest. Differences between operational and denotational semantics
are more broadly impactful beyond CPS.

Exercises

15.1. Use the semantics of differential game logic to explain why the following
formulas are valid and then give a corresponding winning strategy:

〈x :=x2;(x :=x+1∩ x :=x+2)〉x > 0

〈x :=x2∪ (x :=x+1∩ x :=x+2)〉x > 0

〈x :=x2∪ (x :=x+1∩ x′ = 2)〉x > 0

[(x :=x2∪ x := x2);(x :=x+1∩ x :=x 1)]x2 ≥ 1

〈(x :=x2∩ x := x2);{x′ = 1};(x :=x+1∩ x :=x 1)〉x2 ≥ 1

[(x :=x2∪ ?x < 0;x := x);{x′ = 1};(x :=x+1∩ x :=0)]x2 ≥ 1

15.2 (Modeling advance notice semantics). The advance notice semantics from
Sect. 15.3.1 was discarded in favor of the more general semantics of repetition in
Sect. 15.3.4, which allows the player controlling repetition to decide arbitrarily each
round based on observing the state. Suppose, however, that you have a game where
you do want to allow Angel to repeat α any (finite) number of times but you require
that she announces the number of repetitions of α ahead of time, just like in the ad-
vance notice semantics. Construct a hybrid game that requires Angel to disclose the
intended number of repetitions of α to Demon ahead of time even in the semantics
of Definition 15.4.
Hint: you can use additional variables.

15.5 Summary 477

15.3. The formula (15.5) was shown to need ω +1 iterations of the winning region
construction to terminate with the following answer justifying the validity of (15.5):

ςα∗([0,1)) = ςω+1
α ([0,1)) = ςα([0,∞)) = R

What happens if the winning region construction is used once more to compute
ςω+2

α ([0,1))? How often does the winning region construction need to be iterated to
justify validity of

〈(x :=x+1;x′ = 1d∪ x :=x 1)
∗〉(0≤ x < 1)

15.4. Explain how often you will have to repeat the winning-region construction
from Sect. 15.3.3 to show that the following dGL formulas are valid:

〈(x :=x+1;x′ = 1d∪ x :=x 1)
∗〉(0≤ x < 1)

〈(x :=x 1;y′ = 1d∪ y :=y 1;z′ = 1d∪ z := z 1)
∗〉(x < 0∧ y < 0∧ z < 0)

15.5 (* Clockwork ω). How often does the winning-region construction from
Sect. 15.3.3 need to be iterated to justify validity of

〈(?y < 0;x :=x 1;y′ = 1d∪ ?z < 0;y :=y 1;z′ = 1d∪ z := z 1)
∗〉x < 0

Give a winning strategy for Angel. Do the answers change for the following for-
mula?

〈(?y < 0;x :=x 1;y′ = 1d∪ ?z < 0;y :=y 1;z′ = 1d∪ z := z 1)
∗〉

(x < 0∧ y < 0∧ z < 0)

15.6. Can you find dGL formulas for which the winning-region construction takes
even longer to terminate? How far can you push this?

15.7 (Monotonicity). Prove Lemma 15.1 by induction on the structure of α .

15.8 (Doubly recursive inflationary semantics*). The inflationary semantics of
repetition was defined as

ς0
α(X)

def
= X

ςκ+1
α (X)

def
= X ∪ ςα(ς

κ
α (X)) κ +1 is a successor ordinal

ςλ
α (X)

def
=
⋃

κ<λ

ςκ
α (X) λ 6= 0 is a limit ordinal

Show that we could also have modified the successor ordinal case κ + 1 with two
recursive calls without changing the final outcome:

ςκ+1
α (X)

def
= ςκ

α (X)∪ ςα(ς
κ
α (X))

478 15 Winning Strategies & Regions

References

[1] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking.
Cambridge: MIT Press, 1999.

[2] Andrzej Granas and James Dugundji. Fixed Point Theory. Berlin: Springer,
2003. DOI: 10.1007/978-0-387-21593-8.

[3] André Platzer. The complete proof theory of hybrid systems. In: LICS. Los
Alamitos: IEEE, 2012, 541–550. DOI: 10.1109/LICS.2012.64.

[4] André Platzer. Differential game logic. ACM Trans. Comput. Log. 17(1)
(2015), 1:1–1:51. DOI: 10.1145/2817824.

[5] Jan-David Quesel and André Platzer. Playing hybrid games with KeYmaera.
In: IJCAR. Ed. by Bernhard Gramlich, Dale Miller, and Ulrike Sattler.
Vol. 7364. LNCS. Berlin: Springer, 2012, 439–453. DOI: 10.1007/978
-3-642-31365-3_34.

[6] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pa-

cific J. Math. 5(2) (1955), 285–309.
[7] Eberhard Zeidler. Nonlinear Functional Analysis and Its Applications. Vol. II/A.

Berlin: Springer, 1990. DOI: 10.1007/978-1-4612-0985-0.

https://doi.org/10.1007/978-0-387-21593-8
https://doi.org/10.1109/LICS.2012.64
https://doi.org/10.1145/2817824
https://doi.org/10.1007/978-3-642-31365-3_34
https://doi.org/10.1007/978-3-642-31365-3_34
https://doi.org/10.1007/978-1-4612-0985-0

Chapter 16

Winning & Proving Hybrid Games

Synopsis This chapter begins the development of the logical characterization of
the dynamics of hybrid games, which proves from which states which player can
win which game. It investigates compositional reasoning principles with dynamic
axioms for adversarial dynamical systems, where each axiom captures how the exis-
tence of a winning strategy for a more complex hybrid game relates to the existence
of corresponding winning strategies for simpler game fragments. These dynamic
axioms enable rigorous reasoning for adversarial CPS models and axiomatize dif-
ferential game logic, which turns the specification logic dGL into a verification logic
for CPS. This is the cornerstone for lifting hybrid systems reasoning techniques to
hybrid games.

16.1 Introduction

This chapter continues the study of hybrid games and their logic, differential game
logic [11], whose syntax was introduced in Chap. 14 and whose semantics was de-
veloped in Chap. 15. This chapter furthers the development of differential game
logic to the third leg of the logical trinity: its axiomatics. It will focus on the devel-
opment of rigorous reasoning techniques for hybrid games as models of CPSs with
adversarial dynamics. Without such analysis and reasoning techniques, a logic that
only comes with syntax and semantics can be used as a specification language with a
precise meaning, but it is not very helpful for actually analyzing and verifying hybrid
games. It is the logical trinity of syntax, semantics, and axiomatics that gives log-
ics the power to serve as well-founded specification and verification languages with
a (preferably concise) syntax, an unambiguous semantics, and actionable analytic
reasoning principles. Thus, this chapter is the hybrid games analogue of Chap. 5,
where we investigated dynamic axioms for dynamical systems but did not know
about adversarial dynamics yet. Indeed, after the logical sophistication we achieved
throughout the textbook, this chapter will settle for a (Hilbert-type) proof calculus
predominantly with axioms as in Chap. 5 as opposed to the more easily automatable

479© Springer International Publishing AG, part of Springer Nature 2018

A. Platzer, Logical Foundations of Cyber-Physical Systems,

https://doi.org/10.1007/978-3-319-63588-0_16

https://doi.org/10.1007/978-3-319-63588-0_16
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63588-0_16&domain=pdf

480 16 Winning & Proving Hybrid Games

sequent calculus from Chap. 6. A sequent calculus can be built around the axioms
of dGL in the same way that the sequent calculus of Chap. 6 was built around the dL

axioms from Chap. 5, resulting in the same proof-structuring advantages.
Playing hybrid games is fun. Winning hybrid games is even more fun. But the

most fun comes from proving that you’ll win a hybrid game. Only don’t tell your
opponent that you have proved that you have a winning strategy, because he might
not want to play this game with you any more.

This chapter is based on [11], where more information can be found on logic and
hybrid games. The most important learning goals of this chapter are:

Modeling and Control: We advance our understanding of the core principles be-
hind CPS with hybrid games by understanding analytically and semantically
how discrete, continuous, and the adversarial dynamics resulting, e.g., from
multiple agents are integrated and interact in CPS. Fixpoints in the semantics
of repetitions of games will provide one important aspect for the subsequent
development of rigorous reasoning techniques.

Computational Thinking: This chapter is devoted to the development of rigorous
reasoning techniques for CPS models involving adversarial dynamics, which is
critical to getting CPSs with such interactions right. Hybrid games provide even
more subtle interactions than hybrid systems did, which makes it even more
challenging to say for sure whether and why a design is correct without suffi-
cient rigor in its analysis. After Chap. 15 captured the semantics of differential
game logic and hybrid games compositionally, this chapter exploits the com-
positional meaning to develop compositional reasoning principles for hybrid
games. This chapter systematically develops one reasoning principle for each
of the operators of hybrid programs, resulting in a compositional verification
approach. A compositional semantics is de facto a necessary but not a sufficient
condition for the existence of compositional reasoning principles. Despite the
widely generalized semantics of hybrid games compared to hybrid systems, this
chapter will strive to generalize reasoning techniques for hybrid systems to hy-
brid games as smoothly as possible. This leads to a modular way of integrating
adversariality into the analysis of hybrid systems models while simultaneously
taming their complexity. This chapter provides an axiomatization of differential
game logic dGL [11] to lift dGL from a specification language to a verification
language for CPS with adversarial dynamics.

CPS Skills: We will develop a deep understanding of the semantics of CPS models
with adversariality by carefully relating their semantics to their reasoning prin-
ciples and aligning them in perfect unison. This understanding will also enable
us to develop better intuition for the operational effects involved in CPS.

In our quest to develop rigorous reasoning principles for hybrid games, we will
strive to identify compositional reasoning principles that align in perfect unison with
the compositional semantics of hybrid games developed in Chap. 15. This enterprise
will be enlightening and, for the most part, quite successful. And, in fact, the reader
is encouraged to start right away with the development of a proof calculus for dif-
ferential game logic and later compare it with the one that this textbook develops.

16.2 Semantical Considerations 481

CT

M&C CPS

rigorous reasoning for adversarial dynamics
compositional reasoning from compositional semantics
modular addition of adversarial dynamics
axiomatization of dGL

analytical & semantical interaction
of discrete+continuous+adversarial
fixpoints

CPS semantics
align semantics and reasoning
operational CPS effects

The part, where this will turn out to be rather difficult is repetition, which is why the
textbook take a scenic detour through the characterization of its semantics.

16.2 Semantical Considerations

Before submerging completely into the development of rigorous reasoning tech-
niques for hybrid games as models for CPS with adversarial dynamics, however, it
will be wise to take a short detour by investigating some simple properties of their
semantics. This section discusses simple but important meta-properties of the se-
mantics of hybrid games that we will make use of subsequently, but which are also
of independent interest.

16.2.1 Monotonicity

As Chap. 15 already conjectured, the semantics is monotone [11], i.e., larger sets
of winning states have larger winning regions. It is easier to win into larger sets of
winning states (Fig. 15.3 on p. 457), which can be proved by inspection of Defini-
tion 15.4 on p. 474.

Lemma 15.1 (Monotonicity). The dGL semantics is monotone, that is, both

ςα(X)⊆ ςα(Y) and δα(X)⊆ δα(Y) for all X ⊆ Y .

Proof. The proof is a simple check of Definition 15.4 based on the observation that
X only occurs with an even number of negations in the semantics. It is proved by
induction on the structure of the hybrid game α . So when proving Lemma 15.1 for
a hybrid game α , we assume that it has already been proved for all subgames of α .

1. ς?Q(X) = [[Q]]∩X ⊆ [[Q]]∩Y = ς?Q(Y), because X ⊆ Y .

482 16 Winning & Proving Hybrid Games

2. The cases of discrete assignments and differential equations are equally simple.
3. ςα∪β (X) = ςα(X)∪ ςβ (X)⊆ ςα(Y)∪ ςβ (Y) = ςα∪β (Y), because monotonicity

is already assumed to hold for the subgames α and β of α ∪ β by induction
hypothesis.

4. ςβ (X) ⊆ ςβ (Y) by induction hypothesis for the subgame β , because X ⊆ Y .
Hence, ςα;β (X) = ςα(ςβ (X)) ⊆ ςα(ςβ (Y)) = ςα;β (Y) by induction hypothesis
for the subgame α , because ςβ (X)⊆ ςβ (Y).

5. ςα∗(X) =
⋂{Z ⊆S : X ∪ςα(Z)⊆ Z}⊆⋂{Z ⊆S : Y ∪ςα(Z)⊆ Z}= ςα∗(Y)

if X ⊆ Y .
6. X ⊆ Y implies X∁ ⊇ Y∁, hence ςα(X

∁) ⊇ ςα(Y
∁), so ςαd(X) = (ςα(X

∁))∁ ⊆
(ςα(Y

∁))∁ = ςαd(Y).

The proof showing δα(X)⊆ δα(Y) when X ⊆ Y is left for Exercise 16.6. ⊓⊔

While monotonicity is of independent interest, it also implies that the least fix-
point in ςα∗(X) and greatest fixpoint in δα∗(X) are well defined at all [4, Lem. 1.7].

16.2.2 Determinacy

Every particular match played in a hybrid game is won by exactly one player, be-
cause hybrid games are zero-sum (one player’s loss is another player’s win) and
there are no draws (the outcome of a particular game play is never inconclusive be-
cause every final state is won by one of the players). This is a simple property of
each individual match. All we need to do for one particular match is to wait until the
players are done playing, which will happen eventually, and then check the winning
condition in the final state.

Hybrid games satisfy a much stronger property: determinacy, i.e., from any initial
situation, one of the players always has a winning strategy to force a win, regardless
of how the other player chooses to play. Determinacy is quite a strong property
indicating that for every state, there is a player who can force a win, so there is
a winning strategy that will make that player win every single match in the given
hybrid game from that initial state, no matter what the opponent does.

If, from the same initial state, both Angel and Demon had a winning strategy
for opposing winning conditions, then something would be terribly inconsistent. It
cannot possibly happen that Angel has a winning strategy in hybrid game α to get
to a state where ¬P and, from the same initial state, Demon supposedly also has a
winning strategy in the same hybrid game α to get to a state where P holds. Af-
ter all, a winning strategy is a strategy that makes that player win no matter what
strategy the opponent follows. If both players had such winning strategies for win-
ning conditions ¬P and P, respectively, then their strategies would take the final
state simultaneously to ¬P and to P, which is impossible. Hence, for any initial
state, at most one player can have a winning strategy for complementary winning
conditions. This argues for the validity of ¬([α]P∧〈α〉¬P), which can be proved
(Theorem 16.1 below).

16.2 Semantical Considerations 483

So hybrid games are consistent, because it cannot happen that both players have
a winning strategy for complementary winning conditions in the same state. But
maybe no one has a winning strategy, i.e., both players can let the other player win,
but cannot win strategically themselves (recall, e.g., the filibuster example from
Chap. 14, which first appeared as if no player has a winning strategy but then turned
out to make Demon win, because Angel needs to stop her repetition eventually). For
hybrid games at least one (in fact, exactly one) player has a winning strategy for
complementary winning conditions from any initial state [11]. This property, called
determinacy, is important to be able to assign classical truth-values to formulas,
because their modalities refer to the existence of winning strategies. If it is not clear
which player has a winning strategy then we cannot say whether formulas of the
form 〈α〉P and [α]P are true.

If Angel has no winning strategy to achieve ¬P in hybrid game α , then Demon
has a winning strategy to achieve P in the same hybrid game α , and vice versa.

Theorem 16.1 (Consistency & determinacy). Hybrid games are consistent
and determined, i.e., � ¬〈α〉¬P↔ [α]P.

Proof. The proof shows by induction on the structure of α that ςα(X
∁)∁ = δα(X)

for all X ⊆S, which implies the validity of ¬〈α〉¬P↔ [α]P using X
def
= [[P]]. For

the most part, the proof only expands Definition 15.4 and Definition 15.5 directly.

1. ςx:=e(X
∁)∁ = {ω ∈S : ω

ω[[e]]
x 6∈ X}∁ = ςx:=e(X) = δx:=e(X)

2. ςx′= f (x)&Q(X
∁)∁ = {ϕ(0) ∈S : ϕ(r) 6∈ X for some 0≤ r ∈ R and some (dif-

ferentiable) ϕ : [0,r]→S such that dϕ(t)(x)
dt

(ζ) = ϕ(ζ)[[f (x)]] and ϕ(ζ) ∈ [[Q]]

for all 0≤ ζ ≤ r}∁ = δx′= f (x)&Q(X), because the set of states from which there

is no winning strategy for Angel to reach a state in X∁ prior to leaving [[Q]] along
x′ = f (x)&Q is exactly the set of states from which x′ = f (x)&Q always stays
in X (until leaving [[Q]] in case that ever happens).

3. ς?Q(X
∁)∁ = ([[Q]]∩X∁)∁ = ([[Q]])∁∪ (X∁)∁ = δ?Q(X)

4. ςα∪β (X
∁)∁ = (ςα(X

∁)∪ ςβ (X
∁))∁ = ςα(X

∁)∁ ∩ ςβ (X
∁)∁ = δα(X)∩ δβ (X) =

δα∪β (X)

5. ςα;β (X
∁)∁ = ςα(ςβ (X

∁))∁ = ςα(δβ (X)∁)∁ = δα(δβ (X)) = δα;β (X)

6. ςα∗(X
∁)∁ =

(
⋂{Z ⊆S : X∁∪ ςα(Z)⊆ Z}

)∁

=
(
⋂{Z ⊆S : (X ∩ ςα(Z)

∁)∁ ⊆ Z}
)∁

=
(
⋂{Z ⊆S : (X ∩δα(Z

∁))∁ ⊆ Z}
)∁

=
⋃{Z ⊆S : Z ⊆ X ∩δα(Z)}= δα∗(X) 1

7. ςαd(X∁)∁ = (ςα((X
∁)∁)∁)∁ = δα(X

∁)∁ = δαd(X) ⊓⊔

1 The penultimate equation follows from a µ-calculus [7] equivalence that the greatest fixpoint
νZ.ϒ (Z) of ϒ (Z) is the same as the complement ¬µZ.¬ϒ (¬Z) of the least fixpoint µZ.¬ϒ (¬Z)
of the dual ¬ϒ (¬Z). Applicability of this equation uses the insights from Chap. 15 that least pre-
fixpoints are fixpoints and greatest post-fixpoints are fixpoints for monotone functions.

484 16 Winning & Proving Hybrid Games

The determinacy direction of Theorem 16.1 is � ¬〈α〉¬P→ [α]P, which is
propositionally equivalent to � 〈α〉¬P∨ [α]P, implying that from all initial states,
either Angel has a winning strategy to achieve ¬P or Demon has a winning strat-
egy to achieve P. The consistency direction of Theorem 16.1 is � [α]P→¬〈α〉¬P,
i.e., � ¬([α]P∧〈α〉¬P), which implies that there is no state from which both De-
mon has a winning strategy to achieve P and, simultaneously, Angel has a winning
strategy to achieve ¬P.

16.3 Dynamic Axioms for Hybrid Games

This section develops axioms for decomposing hybrid games [11], which will make
it possible to reason rigorously about hybrid games. We continue the compositional-
ity principles of logic such that each axiom describes one operator on hybrid games
in terms of simpler hybrid games. The major twist compared to the dynamic ax-
ioms for dynamical systems described by hybrid programs from Chap. 5 is that the
dynamic axioms now need to capture the existence of winning strategies in hybrid
games and handle the subtle challenges of interactive game play.

What gives us hope to identify reasonable axioms is that the semantics of dGL is
well behaved, because the meaning of each hybrid game is a function of the meaning
of its subgames.

16.3.1 Dynamic Axioms for Determinacy

The easiest way to get started with an axiomatization for the operators of differential
game logic is to internalize the insights from the semantical results in Sect. 16.2 as
logical axioms.

Consistency and determinacy (Theorem 16.1) showed that � ¬〈α〉¬P↔ [α]P is
valid. That is, if Angel has no winning strategy to achieve ¬P then Demon has
a winning strategy to achieve P in the same hybrid game α , and vice versa. This
insight helpfully related box and diamond modalities, but Theorem 16.1 is not yet
available in our proofs, because it is about validity or truth, not proof.

All it takes to use Theorem 16.1 in proofs is to internalize it as an axiom.

Lemma 16.1 ([·] determinacy axiom). The determinacy axiom is sound:

[·] [α]P↔¬〈α〉¬P

Proof. Soundness of axiom [·], i.e., that each of its instances is valid, directly fol-
lows from Theorem 16.1. ⊓⊔

After we adopt [·] as an axiom and give a soundness proof for it, we can, from now
on, just use the determinacy principle by referring to axiom [·]. We do not need to

16.3 Dynamic Axioms for Hybrid Games 485

worry on a case-by-case basis whether it can be used in a proof, because we settled
its soundness question once and for all. Of course, Theorem 16.1 sort of says the
same thing as axiom [·] does, but proofs do not come with a mechanism for applying
external mathematical theorems, while they very much come with a mechanism for
applying logical axioms.

16.3.2 Monotonicity

Transliterating Theorem 16.1 into the axiomatization of dGL was straightforward,
almost copy-and-paste. What is the axiomatic counterpart of Lemma 15.1?

Before you read on, see if you can find the answer for yourself.

Lemma 15.1 says that ςα(X)⊆ ςα(Y) if X ⊆ Y . What is the logical counterpart
of ςα(X) and of ςα(Y)?

Of course the logical counterpart of ςα(X) cannot possibly be 〈α〉X , because
that is not even a syntactically well-formed formula when X ⊆S is a set of states.
But for a logical formula P, the dGL formula 〈α〉P corresponds to ςα([[P]]), because
[[〈α〉P]] = ςα([[P]]) by Definition 15.1. Likewise, when Q is another logical formula,
then 〈α〉Q corresponds to ςα([[Q]]). What does the inclusion ςα([[P]])⊆ ςα([[Q]]) cor-
respond to?

Before you read on, see if you can find the answer for yourself.

Since ςα([[P]])⊆ ςα([[Q]]) is [[〈α〉P]]⊆ [[〈α〉Q]], this inclusion of sets of states
of truth is equivalent to the validity of the dGL formula 〈α〉P→ 〈α〉Q. Now
Lemma 15.1 does not imply that 〈α〉P→ 〈α〉Q is valid. Lemma 15.1 only implies
� 〈α〉P→ 〈α〉Q under the assumption that [[P]]⊆ [[Q]]. What is a corresponding rig-
orous reasoning principle in the dGL proof calculus?

Before you read on, see if you can find the answer for yourself.

The logical internalization of the monotonicity principle from Lemma 15.1 as a
proof principle is the following proof rule.

Lemma 16.2 (M monotonicity rule). The monotonicity rules are sound:

M
P→ Q

〈α〉P→ 〈α〉Q M[·] P→ Q

[α]P→ [α]Q

Proof. This proof rule is sound, i.e., validity of all premises (here just one) implies
validity of the conclusion, which directly follows from Lemma 15.1. If the premise
P→ Q is valid, then [[P]] ⊆ [[Q]], which implies [[〈α〉P]]⊆ [[〈α〉Q]] by Lemma 15.1,
which says that the conclusion 〈α〉P→ 〈α〉Q is valid. Rule M[·] is similar. ⊓⊔

This lemma is identical to Lemma 5.13 on p. 163, except that the new lemma
applies to arbitrary hybrid games α , not just to hybrid programs as Lemma 5.13 did.

486 16 Winning & Proving Hybrid Games

Of course, Lemma 15.1 cannot be internalized as the following formula:

(P→ Q)→ (〈α〉P→ 〈α〉Q) (16.1)

The formula (16.1) only assumes the implication P→ Q to be true in the current
state, while rule M assumes the implication P→ Q is valid, so true in all states,
including the final states that Angel is trying to achieve to win 〈α〉P.

The validity from Theorem 16.1 gave rise to an axiom for dGL while the con-
ditional validity from Lemma 15.1 leads to a proof rule with a premise for the as-
sumption and a conclusion.

16.3.3 Dynamic Axioms for Assignments

The semantics of hybrid games is a set-valued semantics, giving the set of states
from which Angel has a winning strategy to achieve set X ⊆ S as the winning
region ςα(X)⊆S. But except for the style of definition, assignments x :=e still have
the same semantics that they had in hybrid systems, because assignments have a
deterministic result and involve no choices by any player whatsoever. Consequently,
Angel has a winning strategy in the discrete assignment game x :=e to achieve p(x)
iff p(e) is true, because the assignment x := e exactly has the effect of changing the
value of the variable x to the value of e.

Lemma 16.3 (〈:=〉 assignment axiom). The assignment axiom is sound:

〈:=〉 〈x :=e〉p(x)↔ p(e)

16.3.4 Dynamic Axioms for Differential Equations

Unlike discrete assignments, differential equations involve a choice, namely An-
gel’s choice of duration. Recall that the winning-region semantics of differential
equations from Definition 15.4 is the set of all states from which there is a solution
of the differential equation to the winning condition:

ςx′= f (x)(X) = {ϕ(0) ∈S : ϕ(r) ∈ X for some solution ϕ : [0,r]→S of any

duration r ∈ R satisfying ϕ |= x′ = f (x)}

A schematical illustration of what this region looks like is as follows:

16.3 Dynamic Axioms for Hybrid Games 487

Xx
′ =

f (
x)ςx′= f (x)(X)

If we have a solution y(·) of the initial value problem y′(t) = f (y),y(0) = x, then
Angel has a winning strategy for 〈x′ = f (x)〉p(x) iff there is a duration t ≥ 0 such
that p(x) holds after assigning the solution y(t) to x.

Lemma 16.4 (〈′〉 solution axiom). The solution axiom schema is sound:

〈′〉 〈x′ = f (x)〉p(x)↔∃t≥0〈x :=y(t)〉p(x) (y′(t) = f (y))

where y(·) solves the symbolic initial value problem y′(t) = f (y),y(0) = x.

While differential equations are games that provide a choice for Angel, they, at
least, do not give any choices to the other player Demon. That is why there is only
one quantifier, the existential quantifier for time, because it is up to Angel to choose
her favorite time t to reach p(x). The soundness proof for axiom 〈′〉 is essentially
the same as the correctness argument for the solution axiom [′] for hybrid programs
from Lemma 5.3, based on the assumption that y(·) is a solution of the differential
equation.

The solution axiom schema 〈′〉 inherits the same shortcomings that solution ax-
iom schema [′] for hybrid systems already had. It only works for simple differential
equations for which Angel happens to have a solution. More complicated differen-
tial equations need the induction techniques for differential equations from Part II,
which continue to work in hybrid games and generalize to differential games [13].

As stated, the axiom schema 〈′〉 also does not support differential equations
with evolution domain constraints. While a corresponding generalization is quite
straightforward, hybrid games ultimately turn out to provide a more elegant ap-
proach for evolution domains (Sect. 16.6). For convenience, we state the evolution
domain constraint version of axiom 〈′〉 regardless.

Lemma 16.5 (〈′〉 solution with domain axiom). This axiom is sound:

〈′〉 〈x′ = f (x)&q(x)〉p(x)↔∃t≥0

(∀0≤s≤t q(y(s)))∧〈x :=y(t)〉p(x)

)

where y(·) solves the symbolic initial value problem y′(t) = f (y),y(0) = x.

488 16 Winning & Proving Hybrid Games

16.3.5 Dynamic Axioms for Challenge Games

Test games or challenge games ?Q require Angel to pass the test Q or else she will
lose the game prematurely for violating the rules of the game. Angel only achieves
winning condition X in game ?Q in the states in X that also satisfy the test formula
Q, because she will otherwise lose the game for violation of the rules. Recall the
semantics of test games from Definition 15.4:

ς?Q(X) = [[Q]]∩X (16.2)

An illustration of the winning region in (16.2) is:

X

[[Q]]

ς?Q(X)

Correspondingly, if Angel wants to win 〈?Q〉P then she will have to be in a state
where the postcondition P is already true, because tests do not change the state so P

can only be true after ?Q if P was already true before. Furthermore, that initial state
will also have to satisfy the test condition Q or else she will lose for having violated
the rules of the game by failing her test.

Lemma 16.6 (〈?〉 test axiom). The test axiom is sound:

〈?〉 〈?Q〉P↔ Q∧P

Proof. The axiom is sound iff each of its instances is valid, i.e., true in all states.
The equivalence is valid iff the set of all states [[〈?Q〉P]] where its left-hand side is
true is equal to the set of states [[Q∧P]] where its right-hand side is true. Indeed,
[[〈?Q〉P]] = ς?Q([[P]]) = [[Q]]∩ [[P]] = [[Q∧P]]. ⊓⊔

16.3.6 Dynamic Axioms for Choice Games

Proving the existence of winning strategies in a choice game α ∪ β is more diffi-
cult, because this hybrid game involves a choice by Angel and may involve further
choices by both players in the respective subgames α and β . Recall the semantics
of choice games from Definition 15.4, which is a union of the semantics for the
subgames:

ςα∪β (X) = ςα(X)∪ ςβ (X) (16.3)

16.3 Dynamic Axioms for Hybrid Games 489

Let us illustrate what (16.3) means:

ςα (X)

ςβ
(X
)

Xςα∪β (X)

According to the winning region semantics (16.3), the states from which there is a
winning strategy in the game α ∪β for Angel to achieve X is the union of the set of
states from which Angel has a winning strategy in the left subgame α to achieve X

and the set of states from which Angel has a winning strategy in the right subgame
β to achieve X . Consequently, 〈α ∪β 〉P is true, i.e., Angel has a winning strategy to
achieve P in α ∪β , iff Angel has a winning strategy to achieve P in α or a winning
strategy to achieve P in β .

Lemma 16.7 (〈∪〉 axiom of choice). The axiom of game of choice is sound:

〈∪〉 〈α ∪β 〉P↔ 〈α〉P∨〈β 〉P

Proof. The axiom is sound iff each of its instances is valid, i.e., true in all states.
The equivalence is valid iff the set of all states [[〈α ∪β 〉P]] where its left-hand side
is true is equal to the set of states [[〈α〉P∨〈β 〉P]] where its right-hand side is true.
[[〈α ∪β 〉P]] = ςα∪β ([[P]]) = ςα([[P]])∪ ςβ ([[P]]) = [[〈α〉P]]∪ [[〈β 〉P]] = [[〈α〉P∨〈β 〉P]]

⊓⊔

Proving existence of a winning strategy for Angel in a game of choice under An-
gel’s control in 〈α ∪β 〉P merely amounts to proving the disjunction 〈α〉P∨〈β 〉P.

For Demon’s choice α ∩β , Angel has to invest more work to prove that she has
a winning strategy for it, because her opponent Demon gets to make the choice.
Consequently, Angel only has a winning strategy if she has a winning strategy for
both subgames that Demon might choose:

〈α ∩β 〉P↔ 〈α〉P∧〈β 〉P (16.4)

Even if this formula is valid, it will not be adopted as an axiom, because (16.4) can
be derived easily from the choice axiom 〈∪〉 together with the duality axiom 〈d〉,
which we will explore later. After all, Demon’s choice α ∩β is built with a derived
operator that is defined as the double dual (αd∪β d)d from Angel’s choice.

490 16 Winning & Proving Hybrid Games

16.3.7 Dynamic Axioms for Sequential Games

The next case to consider is a proof of existence of winning strategies in a sequential
game α;β . Recall the semantics of sequential games from Definition 15.4, which is
a composition of the winning regions:

ςα;β (X) = ςα(ςβ (X)) (16.5)

An illustration of what (16.5) means is the following:

ςα(ςβ (X)) ςβ (X) X

ςα;β (X)

Thus, the set of states from which Angel has a winning strategy for α;β is the
composition, so the winning region in which she has a strategy in α to reach the
winning region for β . The formula characterizing from which states Angel has a
winning strategy in the game β to achieve postcondition P is the dGL formula 〈β 〉P.
Consequently, the formula characterizing from which states Angel has a winning
strategy in the game α to reach 〈β 〉P is 〈α〉〈β 〉P. By (16.5), that formula is exactly
equivalent to 〈α;β 〉P characterizing the states from which Angel has a winning
strategy in game α;β to achieve P.

Lemma 16.8 (〈;〉 composition axiom). The composition axiom is sound:

〈;〉 〈α;β 〉P↔ 〈α〉〈β 〉P

Proof. The semantics of the composition of the modal operators 〈α〉 and 〈β 〉 exactly
corresponds to the semantics of the modal operator 〈α;β 〉 for the sequential compo-
sition game: [[〈α;β 〉P]] = ςα;β ([[P]]) = ςα(ςβ ([[P]])) = ςα([[〈β 〉P]]) = [[〈α〉〈β 〉P]] ⊓⊔

16.3.8 Dynamic Axioms for Dual Games

So far, all the axioms for hybrid games looked conspicuously familiar. Such a struc-
tural similarity may be somewhat surprising, because the new axioms of this chapter
allow hybrid games, which have an entirely new semantics with adversarial dynam-
ics compared to the hybrid systems from Part I.

But then again, hybrid systems are special cases of hybrid games, the ones that do
not need the other player, because HPs do not mention the duality operator so that
control never passes to Demon. Every axiom for hybrid games also holds for hybrid

16.3 Dynamic Axioms for Hybrid Games 491

systems, because hybrid systems are special cases of hybrid games. In retrospect it
is, thus, not quite so surprising that the reasoning principles for hybrid games have a
lot in common with reasoning principles for hybrid systems, even if they need new
soundness proofs, because hybrid games have a more general semantics.

For the duality operator in the dual game αd, however, we will run out of luck
trying to find inspiration from generalizations of corresponding reasoning principles
for hybrid systems, because the whole point is that the duality operator is the only
difference between hybrid systems and hybrid games. Hybrid systems cannot yet
know how to handle αd, because αd is a hybrid game but not a hybrid system.

Recall the semantics of dual games from Definition 15.4:

ςαd(X) = ςα(X
∁)∁ (16.6)

An illustration of what (16.6) means is the following:

X∁

X

ςα(X
∁)

ςα(X
∁)∁

ςαd(X)

Now, how does that turn into a logical axiom? The complement X∁ corresponds

to negation ¬P of the postcondition P. Hence, the logical internalization of ςα([[P]]
∁)

corresponds to 〈α〉¬P and its complement ςα([[P]]
∁)∁ corresponds to ¬〈α〉¬P.

Lemma 16.9 (〈d〉 duality axiom). The duality axiom is sound:

〈d〉 〈αd〉P↔¬〈α〉¬P

Proof. [[〈αd〉P]] = ςαd([[P]]) = ςα([[P]]
∁)∁ = ςα([[¬P]])∁ = ([[〈α〉¬P]])∁ = [[¬〈α〉¬P]]

⊓⊔
Example 16.1 (Demon’s choice). Since Demon’s choice α ∩ β is (αd ∪ β d)d, the
duality axiom 〈d〉 and the axiom for Angel’s choice 〈∪〉 can be used to derive the
axiom (16.4) for Demon’s choice:

∗
〈α〉P∧〈β 〉P↔ 〈α〉P∧〈β 〉P

¬(¬〈α〉¬¬P∨¬〈β 〉¬¬P)↔ 〈α〉P∧〈β 〉P
〈d〉 ¬(〈αd〉¬P∨〈β d〉¬P)↔ 〈α〉P∧〈β 〉P
〈∪〉 ¬〈αd∪β d〉¬P↔ 〈α〉P∧〈β 〉P
〈d〉 〈(αd∪β d)d〉P↔ 〈α〉P∧〈β 〉P

〈α ∩β 〉P↔ 〈α〉P∧〈β 〉P

492 16 Winning & Proving Hybrid Games

Having proved this formula once, we can, from now on, just use the corresponding
derived axiom for Demon’s choice instead of reproving it every time:

〈∩〉 〈α ∩β 〉P↔ 〈α〉P∧〈β 〉P

[∩] [α ∩β]P↔ [α]P∨ [β]P
The derived axiom [∩] for Demon’s winning strategy in Demon’s choice can be
derived directly from derived axiom 〈∩〉:

∗
[α]P∨ [β]P↔ [α]P∨ [β]P

[·] ¬〈α〉¬P∨¬〈β 〉¬P↔ [α]P∨ [β]P
¬(〈α〉¬P∧〈β 〉¬P)↔ [α]P∨ [β]P

〈∩〉 ¬〈α ∩β 〉¬P↔ [α]P∨ [β]P
[·] [α ∩β]P↔ [α]P∨ [β]P

16.3.9 Dynamic Axioms for Repetition Games

The remaining challenge is axioms for repetition games α∗. Repetitions in hybrid
games turned out to be semantically significantly more subtle than repetitions in
hybrid systems (Chap. 15). Recall the semantics of repetition games from Defini-
tion 15.4, where we finally settled on defining it as a least fixpoint of the winning
regions of α , because iteration went quite transfinite:

ςα∗(X) =
⋂

{Z ⊆S : X ∪ ςα(Z)⊆ Z}=
⋂

{Z ⊆S : X ∪ ςα(Z) = Z} (16.7)

The second equation uses that the least pre-fixpoint was also a least fixpoint (Note 76
on p. 472). This semantics (16.7) is best illustrated as follows:

ςα(ςα∗(X))\ ςα∗(X)
/0

ς∞
α (X) · · · ς3

α(X) ς2
α(X) ςα(X) X

ςα∗(X)

By the second equation of (16.7), ςα∗(X) is a fixpoint of X ∪ ςα(Z) = Z, so

ςα∗(X) = X ∪ ςα(ςα∗(X)) (16.8)

How can (16.8) be internalized as a syntactic reasoning principle in logic?

16.3 Dynamic Axioms for Hybrid Games 493

Before you read on, see if you can find the answer for yourself.

As usual, the set of states X ⊆S does not fit into a logical formula, but its logical
counterpart is a logical formula P, whose semantics [[P]] will be some set of states.
Consequently, the left-hand side of (16.8) corresponds to the logical formula 〈α∗〉P
expressing that Angel has a winning strategy in the repeated hybrid game α∗ to
achieve P. What does the right-hand side of (16.8) correspond to?

Since the set X is internalized by the logical formula P, ςα∗(X) corresponds to the
logical formula 〈α∗〉P, because [[〈α∗〉P]] = ςα∗([[P]]). Consequently, X ∪ςα(ςα∗(X))
corresponds to the logical formula P∨〈α〉〈α∗〉P. This leads to the following axiom.

Lemma 16.10 (〈∗〉 iteration axiom). The iteration axiom is sound:

〈∗〉 〈α∗〉P↔ P∨〈α〉〈α∗〉P

Proof. The proof is a direct consequence of the fact that the winning region of
repetition is a fixpoint (Note 76). Since [[〈α∗〉P]] = ςα∗([[P]]) is a fixpoint, we have
[[〈α∗〉P]] = [[P]]∪ ςα([[〈α∗〉P]]). Thus, [[P∨〈α〉〈α∗〉P]] = [[P]]∪ [[〈α〉〈α∗〉P]] = [[P]]∪
ςα([[〈α∗〉P]]) = [[〈α∗〉P]]. ⊓⊔

This axiom 〈∗〉 is identical to the iteration axiom for hybrid systems (which is the
diamond version of Lemma 5.7), except that its soundness justification is completely
different. But, once proved sound, the reasoning with axiom 〈∗〉 works in the same
way. Does the axiom 〈∗〉 say all there is to say about repetition in hybrid games?

Before pursuing this question, first observe that the iteration axiom 〈∗〉 for An-
gel’s winning strategy in Angel’s repetition implies a corresponding iteration axiom
for Demon’s winning strategy in Demon’s repetition.

Example 16.2 (Demon’s repetition). Since Demon’s repetition α× is ((αd)
∗
)d, the

duality axiom 〈d〉 and determinacy axiom [·] turn Angel’s iteration axiom 〈∗〉 into a
corresponding iteration axiom for Demon’s winning strategy

[×] [α×]P↔ P∨ [α][α×]P

This derived axiom [×] can be proved easily:

∗
P∨ [α][α×]P↔ P∨ [α][α×]P

P∨ [α][((αd)
∗
)d]P↔ P∨ [α][α×]P

〈d〉,[·]
P∨〈αd〉〈(αd)

∗〉P↔ P∨ [α][α×]P
〈∗〉 〈(αd)

∗〉P↔ P∨ [α][α×]P
〈d〉,[·] [((αd)

∗
)d]P↔ P∨ [α][α×]P

[α×]P↔ P∨ [α][α×]P

The derivation of the diamond modality for Demon’s repetition is correspondingly

〈×〉 〈α×〉P↔ P∧〈α〉〈α×〉P

494 16 Winning & Proving Hybrid Games

16.3.10 Proof Rules for Repetition Games

The iteration axiom [∗] was established to be sound in Sect. 5.3.7, but Chap. 7 identi-
fied a significantly more useful approach of proving properties of loops by induction.
Similarly, one might wonder whether the iteration axiom 〈∗〉 really already captures
all there is to say about repetition in hybrid games.

Taking a step back, axiom 〈∗〉 expresses that 〈α∗〉P is a fixpoint of (16.8), which
follows from (16.7), but does not convey that, among all the possible fixpoints,
〈α∗〉P is the least fixpoint. How can this be rendered in a logical proof principle?

Before you read on, see if you can find the answer for yourself.

Since 〈α∗〉P is the least fixpoint, the set of all states in which it is true is a
subset of any other fixpoint. The logical internalization is that if Q is a logical for-
mula whose semantics also satisfies the fixpoint condition from (16.7), then the set
of states where 〈α∗〉P is true is smaller, that is [[〈α∗〉P]] ⊆ [[Q]], which means that
〈α∗〉P→ Q is valid. Since it is, here, a little more convenient to work with the pre-
fixpoint condition from (16.7), saying that the logical formula Q is a pre-fixpoint
amounts to assuming that P∨〈α〉Q→ Q is valid.

Lemma 16.11 (FP fixpoint rule). The fixpoint rule is sound:

FP
P∨〈α〉Q→ Q

〈α∗〉P→ Q

Proof. The proof is a direct consequence of the fact that the winning region of rep-
etition is the least fixpoint (Note 76). Assume the premise P∨〈α〉Q→ Q is valid,
i.e., [[P∨〈α〉Q]]⊆ [[Q]]. That is, [[P]]∪ςα([[Q]]) = [[P]]∪ [[〈α〉Q]] = [[P∨〈α〉Q]]⊆ [[Q]].
Thus, Q is a pre-fixpoint of Z = [[P]] ∪ ςα(Z). By monotonicity (Lemma 15.1),
[[〈α∗〉P]] = ςα∗([[P]]) is the least fixpoint [8, Appendix A]. Hence, [[〈α∗〉P]] ⊆ [[Q]],
which implies that 〈α∗〉P→ Q is valid. ⊓⊔

Together with the iteration axiom 〈∗〉, the fixpoint proof rule FP is in most direct
correspondence with the semantics of repetition in hybrid games, which is defined
as a least fixpoint. The iteration axiom 〈∗〉 expresses that 〈α∗〉P is a fixpoint while
rule FP expresses that it is the least fixpoint.

Admittedly, though, the fixpoint rule FP can be a bit unwieldy to use. Fortunately,
the old familiar loop invariant rule, generalized to hybrid games, can be derived from
the fixpoint rule FP and even vice versa [11, Lemma 4.1].

Corollary 16.1 (ind loop invariant rule). The loop invariant proof rule is de-

rived:

ind
P→ [α]P

P→ [α∗]P

Proof. The proof uses contraposition, i.e., that A→ B is equivalent to ¬B→¬A in
classical logic or similarly simple propositional rewriting at the steps that are not

16.4 Example Proofs 495

marked:
⊢ P→ [α]P
⊢ P→ P∧ [α]P

[·] ⊢ P→ P∧¬〈α〉¬P

⊢ ¬P∨〈α〉¬P→¬P
FP ⊢ 〈α∗〉¬P→¬P

⊢ P→¬〈α∗〉¬P
[·] ⊢ P→ [α∗]P

This proof shows that rule ind is a derived rule, since its conclusion can be proved
from rule FP using the other axioms and propositional reasoning. ⊓⊔

Based on our improved understanding of structuring proofs with sequents from
Chap. 6, it is easy to see that a corresponding sequent formulation of rule ind is
derived from rules→R,cut:

ind
P ⊢ [α]P

P ⊢ [α∗]P

Example 16.3 (Invariants and fixpoints for Demon’s repetition). Since Demon’s rep-
etition α× is ((αd)

∗
)d, the duality axiom 〈d〉 and determinacy axiom [·] turn De-

mon’s invariant rule ind for Angel’s repetition into a corresponding invariant rule
for Angel’s winning strategy in Demon’s repetition:

ind×
P→ 〈α〉P

P→ 〈α×〉P

Likewise, Demon’s counterpart for Demon’s repetition of the fixpoint rule FP de-
rives by duality axiom 〈d〉 and determinacy axiom [·]:

FP×
P∨ [α]Q→ Q

[α×]P→ Q

The proofs of correctness for rules ind× and FP× are explored in Exercise 16.5.

16.4 Example Proofs

This section shows how the dGL axioms can be used to prove the existence of win-
ning strategies for some hybrid games.

Example 16.4. The dual filibuster game formula from Chap. 14 is proved easily in
the dGL calculus by going back and forth between players [11] using abbreviations
∩,×:

496 16 Winning & Proving Hybrid Games

∗
R

x = 0 ⊢ 0 = 0∨1 = 0
〈:=〉

x = 0 ⊢ 〈x :=0〉x = 0∨〈x :=1〉x = 0
〈∪〉

x = 0 ⊢ 〈x :=0∪ x :=1〉x = 0
〈d〉

x = 0 ⊢ ¬〈(x :=0∪ x :=1)d〉¬x = 0
x = 0 ⊢ ¬〈x :=0∩ x :=1〉¬x = 0

[·]
x = 0 ⊢ [x :=0∩ x :=1]x = 0

ind
x = 0 ⊢ [(x :=0∩ x :=1)∗]x = 0

[·]
x = 0 ⊢ ¬〈(x :=0∩ x :=1)∗〉¬x = 0

〈d〉
x = 0 ⊢ 〈(x :=0∩ x :=1)∗d〉x = 0
x = 0 ⊢ 〈(x :=0∪ x :=1)×〉x = 0

Example 16.5 (Push-around cart). Recall the following dGL formula about the
push-around cart game from Example 14.3:

x≥0∧v≥0→
[
(d :=1∪d := 1)d; (a :=1∪a := 1); {x′ = v,v′ = a+d}

)∗]
x≥ 0

Using Demon’s choice and the fact that the duals of assignments are the assignments
themselves, recall that this dGL formula is equivalent to

x≥0∧v≥0→
[
(d :=1∩d := 1); (a :=1∪a := 1); {x′ = v,v′ = a+d}

)∗]
x≥ 0

J ⊢ [{x′ = v,v′ = 1+1}]J∧ [{x′ = v,v′ = 1+1}]J
[:=]

J ⊢ [a :=1][{x′ = v,v′ = a+1}]J∧ [a := 1][{x′ = v,v′ = a+1}]J
[∪]

J ⊢ [a :=1∪a := 1][{x′ = v,v′ = a+1}]J
[;]

J ⊢ [(a :=1∪a := 1); {x′ = v,v′ = a+1}]J
[:=]

J ⊢ [d :=1][(a :=1∪a := 1); {x′ = v,v′ = a+d}]J
∨R,WR

J ⊢ [d :=1][(a :=1∪a := 1); {x′ = v,v′ = a+d}]J∨ [d := 1] . . .
[∩]

J ⊢ [d :=1∩d := 1][(a :=1∪a := 1); {x′ = v,v′ = a+d}]J
[;]

J ⊢ [(d :=1∩d := 1); (a :=1∪a := 1); {x′ = v,v′ = a+d}]J
ind

J ⊢ [

(d :=1∩d := 1); (a :=1∪a := 1); {x′ = v,v′ = a+d}

)∗
]x≥ 0

Choosing the loop invariant J
def≡ x ≥ 0∧ v ≥ 0 will complete this proof, because

both remaining differential equation properties can be proved by solving them:

[′],[:=]
x≥ 0∧ v≥ 0 ⊢ ∀t≥0(x+ vt + t2 ≥ 0∧ v+2t ≥ 0)

J ⊢ [{x′ = v,v′ = 1+1}]J

[′],[:=]
x≥ 0∧ v≥ 0 ⊢ ∀t≥0(x+ vt ≥ 0∧ v≥ 0)

J ⊢ [{x′ = v,v′ = 0}]J
They can also both be proved directly by differential invariants from Part II.

Proposition 16.1 (Push-around carts are safe). This dGL formula is valid:

x≥0∧v≥0→
[
(d :=1∩d := 1); (a :=1∪a := 1); {x′ = v,v′ = a+d}

)∗]
x≥ 0

16.4 Example Proofs 497

∗
R

J ⊢ ∀t≥0

(w+ vt + 1

2 t2 e f t 1
2 t2)2 ≤ 1∧ v+ t = f + t

)

[′],〈:=〉
J ⊢ 〈t :=0〉[{w′′ = 1,e′′ = 1}]J

∨R,WR
J ⊢ 〈t :=0〉[{w′′ = 1,e′′ = 1}]J∨〈t :=0〉[{w′′ = 1,e′′ = 1}]J

[·]
J ⊢ 〈t :=0〉¬〈{w′′ = 1,e′′ = 1}〉¬J∨〈t :=0〉¬〈{w′′ = 1,e′′ = 1}〉¬J

〈d 〉
J ⊢ 〈t :=0〉〈{w′′ = 1,e′′ = 1}d〉J∨〈t :=0〉〈{w′′ = 1,e′′ = 1}d〉J

〈;〉
J ⊢ 〈t :=0;{w′′ = 1,e′′ = 1}d〉J∨〈t :=0;{w′′ = 1,e′′ = 1}d〉J

〈:=〉
J ⊢ 〈g :=1〉〈t :=0;{w′′ = 1,e′′ = g}d〉J∨〈g := 1〉〈t :=0;{w′′ = 1,e′′ = g}d〉J

〈∪〉
J ⊢ 〈g :=1∪g := 1〉〈t :=0;{w′′ = 1,e′′ = g}d〉J

〈;〉
J ⊢ 〈(g :=1∪g := 1); t :=0;{w′′ = 1,e′′ = g}d〉J

〈:=〉
J ⊢ 〈u :=1〉〈(g :=1∪g := 1); t :=0;{w′′ = u,e′′ = g}d〉J ⊲

∧R
J ⊢ 〈u :=1〉〈(g :=1∪g := 1); t :=0;{w′′ = u,e′′ = g}d〉J∧〈u := 1〉 . . .

〈∩〉
J ⊢ 〈u :=1∩u := 1〉〈(g :=1∪g := 1); t :=0;{w′′ = u,e′′ = g}d〉J

〈;〉
J ⊢ 〈(u :=1∩u := 1); (g :=1∪g := 1); t :=0;{w′′ = u,e′′ = g}d〉J

ind×
J ⊢ 〈

(u :=1∩u := 1); (g :=1∪g := 1); t :=0;{w′′ = u,e′′ = g}d

)×〉(w e)2≤1

Fig. 16.1 Proof of the two-robot dance

Example 16.6 (WALL·E and EVE robot dance). Recall the following dGL formula
about a robot dance from Example 14.4:

(w e)2 ≤ 1∧ v = f →
〈
(u :=1∩u := 1);

(g :=1∪g := 1);

t :=0;{w′ = v,v′ = u,e′ = f , f ′ = g, t ′ = 1& t ≤ 1}d)×

〉
(w e)2 ≤ 1

(14.4)

With loop invariant J
def≡ (w e)2 ≤ 1∧ v = f , the proof of dGL formula (14.4)

is shown in Fig. 16.1. The (crucial) branch proving that a winning strategy also
exists when Demon chooses u := 1 is elided (marked ⊲) but quite similar. When
conducting a proof for the existence of Angel’s winning strategy (a 〈·〉 formula),
note how Angel’s choices turn into conjunctions while Demon’s choices turn into
disjunctions.

After we finish the proof in Fig. 16.1, we see that the rules ∨R,WR can already
discard the right disjunct earlier than they did. This is a common phenomenon in
hybrid games. In hindsight, proofs make it easy to see the best options. But proofs
also become simpler if we identify clever actions early.

Proposition 16.2 (Robot dance is safe). This dGL formula is valid:

(w e)2 ≤ 1∧ v = f →
〈
(u :=1∩u := 1);

(g :=1∪g := 1);

t :=0;{w′ = v,v′ = u,e′ = f , f ′ = g, t ′ = 1& t ≤ 1}d)×

〉
(w e)2 ≤ 1

498 16 Winning & Proving Hybrid Games

These proofs illustrate that proving properties of hybrid games is entirely analo-
gous to proving properties of hybrid systems. All we need to pay attention to is to
only use the axioms of differential game logic and not accidentally those of differ-
ential dynamic logic from Part I. Of course, the two logics share most axioms. For
example, we still prove box properties of loops by a proof rule with loop invariants.

16.5 Axiomatization

The axiomatization for differential game logic [11] that we just developed gradually
is summarized in Fig. 16.2.

Fig. 16.2 Differential game logic axiomatization

[·] [α]P↔¬〈α〉¬P

〈:=〉 〈x :=e〉p(x)↔ p(e)

〈′〉 〈x′ = f (x)〉p(x)↔∃t≥0〈x :=y(t)〉p(x) (y′(t) = f (y))

〈?〉 〈?Q〉P↔ Q∧P

〈∪〉 〈α ∪β 〉P↔ 〈α〉P∨〈β 〉P

〈;〉 〈α;β 〉P↔ 〈α〉〈β 〉P

〈∗〉 〈α∗〉P↔ P∨〈α〉〈α∗〉P

〈d〉 〈αd〉P↔¬〈α〉¬P

M
P→ Q

〈α〉P→ 〈α〉Q

FP
P∨〈α〉Q→ Q

〈α∗〉P→ Q

ind
P→ [α]P

P→ [α∗]P

The determinacy axiom [·] describes the duality of winning strategies for com-
plementary winning conditions of Angel and Demon, i.e., that Demon has a winning
strategy to achieve P in hybrid game α if and only if Angel does not have a counter
strategy, i.e., winning strategy to achieve ¬P in the same game α . The determinacy
axiom [·] internalizes Theorem 16.1. Axiom 〈:=〉 is the assignment axiom. In the
differential equation axiom 〈′〉, y(·) is the unique [14, Theorem 10.VI] solution of
the symbolic initial value problem y′(t) = f (y),y(0) = x. The duration t how long
to follow solution y is for Angel to decide, hence existentially quantified. It goes
without saying that variables such as t are fresh in Fig. 16.2.

16.5 Axiomatization 499

Axioms 〈?〉, 〈∪〉, and 〈;〉 are as in differential dynamic logic [10] except that their
meaning is quite different, because they refer to winning strategies of hybrid games
instead of reachability relations of systems. The challenge axiom 〈?〉 expresses that
Angel has a winning strategy to achieve P in the test game ?Q exactly from those
positions that are already in P (because ?Q does not change the state) and that satisfy
Q for otherwise she would fail the test and lose the game immediately. The axiom
of choice 〈∪〉 expresses that Angel has a winning strategy in a game of choice α ∪β
to achieve P iff she has a winning strategy in either hybrid game α or in β , because
she can choose which one to play. The sequential game axiom 〈;〉 expresses that
Angel has a winning strategy in a sequential game α;β to achieve P iff she has a
winning strategy in game α to achieve 〈β 〉P, i.e., to get to a position from which she
has a winning strategy in game β to achieve P. The “←” direction of the iteration
axiom 〈∗〉 characterizes 〈α∗〉P as a pre-fixpoint. It expresses that, if the game is
already in a state satisfying P or if Angel has a winning strategy for game α to
achieve 〈α∗〉P, i.e., to get to a position from which she has a winning strategy for
game α∗ to achieve P, then, either way, Angel has a winning strategy to achieve
P in game α∗. The “→” direction of 〈∗〉 can already be derived by other axioms
[11]. The dual axiom 〈d〉 characterizes dual games. It says that Angel has a winning
strategy to achieve P in dual game αd iff Angel does not have a winning strategy
to achieve ¬P in game α . Combining dual game axiom 〈d〉 with the determinacy
axiom [·] yields〈αd〉P↔ [α]P, i.e., that Angel has a winning strategy to achieve P

in αd iff Demon has a winning strategy to achieve P in α . Similar reasoning derives
[αd]P↔ 〈α〉P.

Monotonicity rule M is the generalization rule of monotonic modal logic C [2]
and logically internalizes monotonicity (Lemma 15.1). It expresses that, if the im-
plication P→ Q is valid, then, wherever Angel has a winning strategy in a hybrid
game α to achieve P, she also has a winning strategy to achieve Q, because Q holds
wherever P does. So rule M expresses that easier objectives are easier to win. Fix-
point rule FP characterizes 〈α∗〉P as a least pre-fixpoint. It says that, if Q is another
formula that is a pre-fixpoint, i.e., that holds in all states that satisfy P or from
which Angel has a winning strategy in game α to achieve that condition Q, then Q

also holds wherever 〈α∗〉P does, i.e., in all states from which Angel has a winning
strategy in game α∗ to achieve P.

The proof rule FP and the induction rule ind are equivalent in the sense that one
can be derived from the other in the dGL calculus [11]. How the loop induction rule
ind derives from the fixpoint rule FP was shown in Corollary 16.1.

16.5.1 Soundness

Summarizing the individual lemmas that established the soundness of the axioms
allows us to conclude that the dGL proof calculus is sound [11]. In analogy to
Sect. 6.2.2, we write ⊢dGL P iff dGL formula P can be proved with dGL rules from
dGL axioms. Likewise, we write Γ ⊢dGL P iff dGL formula P can be proved from

500 16 Winning & Proving Hybrid Games

the set of formulas Γ . In particular, ⊢dGL P iff /0 ⊢dGL P. We write � P iff P is valid,
i.e., true in all states (Definition 15.1). The two notions are intimately related by
soundness.

Theorem 16.2 (Soundness of dGL). The dGL axiomatization in Fig. 16.2 is

sound, i.e., all provable formulas are valid. That is,

⊢dGL P implies � P

Proof. An axiomatization or proof calculus is sound iff all provable formulas are
valid. There are a lot of provable formulas, so this might call for a lot of work. But, as
in Part I and Part II, by far the best way of establishing soundness of a proof calculus
is by exploiting logical compositionality principles to show that each axiom and
proof rule is sound individually. An axiom is sound iff each of its instances is a valid
formula. A proof rule is sound iff the validity of all its premises implies the validity
of its conclusion. Once all axioms and all proof rules are sound, every formula that
has a proof will be valid, because a proof must end with axioms (which are sound
so only have valid instances) and must have used proof rules in between (which,
if sound, make the conclusion valid since the premises were valid). Most axioms
have been proved sound already in their respective lemmas (such as Lemmas 16.7
and 16.11). The full proof can be found in prior work [11]. ⊓⊔

This gives us a sound proof approach for CPSs that are as challenging as hybrid
games. What exactly did we prove the axioms sound for again? What does sound
mean and entail exactly?

Note 78 (The miracle of soundness) Soundness of the dGL proof calculus
means that all dGL formulas that are provable using the dGL calculus are valid,
a conditio sine qua non for logic, i.e., a condition without which logic could
not be. It would not make sense to prove a formula if that proof would not even
entail the formula’s validity, i.e., that it is true in all states.
For a proof calculus to be sound, every formula that it proves with any proof has
to be valid. Fortunately, proofs are composed from axioms by proof rules. So all
we need to do to ensure that a proof calculus is sound is to prove its few axioms
to be sound and then everything we ever derive from them by sound proof
rules is correct as well, no matter how big and complicated. A proof is a long
combination of many simple arguments, each of which just involves one of the
axioms or proof rules. Once each of those finitely many axioms and proof rules
is proved to be sound, all those infinitely many proofs that can be conducted
in the dGL proof calculus become sound as well. That is compositionality in
its finest form for the soundness argument. It is soundness that ultimately links

semantics and axiomatics in perfect unisona so that axiomatic proof coincides

with semantic truth, an important aspect of the logical trinity.
One subtlety is that a proof might use many instances of the same finite axiom
list. Then the soundness proof for the axioms has to work for any instance.

16.5 Axiomatization 501

This aspect is often left implicit in soundness arguments, although a rigorous
treatment can be given by distinguishing axioms from axiom schemes [11, 12].

a In search of perfection, completeness is another important aspect in achieving perfect uni-
son, which, incidentally, holds for differential game logic as well [11].

16.5.2 Completeness

Soundness is the most crucial condition for any proof calculus of any logic, and is
especially crucial for something as impactful and safety-critical as cyber-physical
systems. By soundness, every formula with a proof is valid. The most intriguing
condition, however, is the converse: whether the calculus is complete, i.e., can prove
all formulas that are valid. That would be very exciting, because we would then
know that whenever a formula is valid, there’s a proof for it, so if we have not found
it yet, we just need to look a little harder.

In particular, even if we deleted all axioms and proof rules, then the resulting
empty proof calculus would be sound, just not at all useful, because we could not
prove anything with it. Completeness considers the question of whether the proof
calculus comes with all the axioms and proof rules that it needs in order to be able
to do “all” proofs in it. Certainly, if we were to delete all axioms and proof rules that
handle the ∪ operator, then the calculus would become quite incomplete, because
we could no longer prove any interesting properties of hybrid games with a choice.
But even if every operator has a corresponding axiom, it is not clear whether those
axioms are enough to prove every valid property about them. Repetitions, for ex-
ample, come with two reasoning principles, the iteration axiom 〈∗〉 and the fixpoint
rule FP, which serve different purposes.

Sadly, absolute completeness would be too good to be true for something as ex-
pressive as differential game logic, because Gödel’s second incompleteness theorem
shows that every system extending first-order natural number arithmetic of addition
and multiplication is incomplete [3]. While differential game logic does not directly
provide natural numbers, it still characterizes them indirectly as the set of all values
of x for which repeatedly subtracting 1 can lead to 0:

〈(x :=x 1)∗〉x = 0

And, indeed, thinking back to previous chapters, there were quite a few challenges
in proving properties of hybrid systems as well as hybrid games. The primary chal-
lenge in Part I was the need to find invariants for loops. The primary challenge
in Part II was in finding differential invariants for differential equations. It can be
shown that these are essentially the only fundamental challenges in CPS verifica-
tion [10, 11].

502 16 Winning & Proving Hybrid Games

Differential game logic supports relative completeness, i.e., its axiomatization
can prove every valid dGL formula from elementary tautologies. The dGL axioma-
tization is complete relative to any differentially expressive2 logic [11].

Theorem 16.3 (Relative completeness of dGL). The dGL calculus is a com-
plete axiomatization of hybrid games relative to any differentially expressive

logic L, i.e., every valid dGL formula is provable in the dGL calculus from L

tautologies. That is,

� P implies L ⊢dGL P

In fact, the name axiomatization is reserved for proof calculi that do not just come
with soundness guarantees but provide completeness guarantees as well. Indeed, the
differential dynamic logic axiomatization has soundness and completeness guaran-
tees relative to any differentially expressive logic as well [9, 10, 12]. So we were
justified in calling it an axiomatization in Part I and Part II.

The rôle of the differentially expressive logic L relative to which completeness
is proved is particularly intuitive for differential dynamic logic. By the first rela-
tive completeness theorem [9, 10], differential dynamic logic is complete relative to
properties of differential equations, so if a dL formula is valid then it can be proved
using the dL axioms from elementary valid properties of differential equations. Of
course, we need to be able to prove the safety of the differential equations (e.g.,
using differential invariants) in order to be able to understand a hybrid system. But
by the first relative completeness theorem, it is enough to worry about differential
equations, because the dL axioms will then be able to prove the hybrid system, too.
By the second relative completeness theorem [10], differential dynamic logic is also
complete relative to purely discrete dynamics, so if a dL formula is valid then it can
also be proved using the dL axioms from elementary valid properties of discrete
systems. Again one needs to be able to master loops (by finding appropriate loop in-
variants), but the dL axioms can then prove the whole hybrid system, too. In fact, dL

is complete relative to any differentially expressive logic [12], of which the purely
continuous as well as the purely discrete fragment are two canonical examples.

These insights give rise to a relative decision procedure for differential dynamic
logic [10], which decides differential dynamic logic from an oracle for L. Such a
relative decision procedure is an algorithm that accepts any (without loss of gener-
ality fully quantified) dL formula as input and will correctly output “valid” or “not
valid” by asking a finite number of questions to an oracle for L.

2 A logic L that is closed under first-order connectives is differentially expressive (for dGL) if
every dGL formula P has an equivalent P♭ in L and all equivalences of the form 〈x′ = f (x)〉G↔
(〈x′ = f (x)〉G)♭ for formulas G in L are provable in its calculus.

16.6 There and Back Again Game 503

16.6 There and Back Again Game

Quite unlike in hybrid systems and (poor test3) differential dynamic logic [9, 10],
every hybrid game containing a differential equation x′ = f (x)&Q with evolution
domain constraints Q can be replaced equivalently by a hybrid game without evolu-
tion domain constraints. Evolution domains are definable in hybrid games [11] and
can, thus, be removed equivalently.

Lemma 16.12 (Evolution domain reduction). Evolution domains of differen-

tial equations are definable as hybrid games: For every hybrid game there is

an equivalent hybrid game that has no evolution domain constraints, i.e., all

continuous evolutions are of the form x′ = f (x).

Proof. For notational convenience, assume vectorial differential equation x′ = f (x)
to contain a clock x′0 = 1 and that t0 and z are fresh variables. Then a differential
equation x′ = f (x)&Q(x) with evolution domain is equivalent to the hybrid game:

t0 :=x0; x′ = f (x); (z :=x;z′ = f (z))d; ?(z0 ≥ t0→ Q(z)) (16.9)

See Fig. 16.3 for an illustration. Suppose the current player is Angel. The idea be-

t

x,z

Q

z :=x
Angel plays forward game, reverts flow and time x0;
Demon checks Q in backwards game until initial t0x′ = f (x)

t0 :=x0 r

z′ = f (z)

Fig. 16.3 “There and back again game”: Angel evolves x forwards in time along x′ = f (x), Demon
checks evolution domain backwards in time along z′ = f (z) on a copy z of the state vector x

hind (16.9) is that the fresh variable t0 remembers the initial time x0, and Angel
then evolves forward along x′ = f (x) for any amount of time (Angel’s choice). Af-
terwards, the opponent Demon copies the state x into a fresh variable (vector) z that
he can evolve backwards along (z′ = f (z))d for any amount of time (Demon’s
choice). The original player Angel must then pass the challenge ?(z0 ≥ t0→ Q(z)),
i.e., Angel loses immediately if Demon was able to evolve backwards and leave
region Q(z) while satisfying z0 ≥ t0, which checks that Demon did not evolve back-
ward for longer than Angel evolved forward, i.e., to before the initial time. Other-
wise, when Angel passes the test, the extra variables t0,z become irrelevant (they are
fresh) and the game continues from the current state x that Angel chose originally
(by selecting a duration for the evolution that Demon could not invalidate). ⊓⊔
3 Poor test means that each test ?Q uses only first-order formulas Q. If modalities are used within
Q, then ?Q is a rich test.

504 16 Winning & Proving Hybrid Games

From now on, Lemma 16.12 can eliminate all evolution domain constraints
equivalently in hybrid games. While evolution domain constraints are fundamental
parts of standard hybrid systems [1, 5, 6, 9], they turn out to be mere convenience
notation for hybrid games. In that sense, hybrid games are more fundamental than
hybrid systems, because they feature elementary operators. In theory, we never have
to worry about evolution domains any more, because they are just part of the other
operators for hybrid games. In practice, it still helps to handle evolution domain
constraints directly, because axioms like DW for differential weakening and DI for
differential invariants are conceptually easier than the reduction in (16.9).

16.7 Summary

This chapter developed an axiomatization for differential game logic [11]. The re-
sulting axioms, summarized in Fig. 16.2 on p. 498, coincide with corresponding
axioms for hybrid systems. But they needed entirely new soundness justification,
because, due to the interactive game play features caused by the presence of the du-
ality operator, the semantics of hybrid games is significantly more general than that
of hybrid systems. The simple syntactic reasoning principles of differential game
logic are substantially more succinct than the corresponding subtleties with purely
semantical arguments. Just contrast the simplicity of the axiomatization with the
enormous (more than infinite) number of iterations needed in semantical arguments
about winning regions for repetition from Chap. 15.

This dGL axiomatization provides a strong foundation for hybrid games. But
Parts I and II also studied other reasoning principles for hybrid systems that we
have not yet considered for hybrid games. It is not necessarily obvious, e.g., whether
Gödel’s generalization rule is sound for dGL, which is what Chap. 17 will explore:

G
P

[α]P

Exercises

16.1 (Diamond proofs). Use the dGL axioms to prove the following formulas:

〈x := x∪ (x :=x+1∩ x :=x+2)〉x > 0

〈(x := x+1∪ x :=x+1)∩ x :=2〉x > 0

〈(x :=x∪ x := x);(x :=x+1∩ x :=x+2)〉x > 0

〈x :=x2∪ (x :=x+1∩ x′ = 2)〉x > 0

〈x := x∪ (x′ = 1∩ x′ = 2)〉x≥ 0

〈x := x∪ (x :=x+2∩ x′ = 2)〉x≥ 0

16.7 Summary 505

〈

x := x∪ (x :=x+2∩ x′ = 2)

)∗〉x≥ 0

16.2. Explain how determinacy relates to the two possible understandings of the
filibuster example discussed in (14.8) on p. 441.

16.3 (Box modalities). Show that the dGL axioms for box modalities in Fig. 16.4
are derived by duality (with duality axiom 〈d〉 and determinacy axiom [·]) from the
dGL axioms for diamond modalities.

Fig. 16.4 Differential game logic derived axioms for box modalities

〈·〉 〈α〉P↔¬[α]¬P

[:=] [x :=e]p(x)↔ p(e)

[′] [x′ = f (x)]p(x)↔∀t≥0 [x :=y(t)]p(x) (y′(t) = f (y))

[?] [?Q]P↔ (Q→ P)

[∪] [α ∪β]P↔ [α]P∧ [β]P

[;] [α;β]P↔ [α][β]P

[∗] [α∗]P↔ P∧ [α][α∗]P

[d] [αd]P↔¬[α]¬P

M[·] P→ Q

[α]P→ [α]Q

16.4 (Demon’s controls). Show that the dGL axioms for Demon’s controls in
Fig. 16.5 are derived from the definition of Demon’s control operators (with the
help of the duality axiom 〈d〉 and determinacy axiom [·]).

Fig. 16.5 Differential game logic derived axioms for Demon’s controls

〈∩〉 〈α ∩β 〉P↔ 〈α〉P∧〈β 〉P

[∩] [α ∩β]P↔ [α]P∨ [β]P

〈×〉 〈α×〉P↔ P∧〈α〉〈α×〉P

[×] [α×]P↔ P∨ [α][α×]P

16.5 (Demon’s repetition). Use the duality axiom 〈d〉 and determinacy axiom [·] to
show that the following proof rules for Demon’s repetition are derived rules:

506 16 Winning & Proving Hybrid Games

ind×
P→ 〈α〉P

P→ 〈α×〉P FP×
P∨ [α]Q→ Q

[α×]P→ Q

16.6 (Demon’s monotonicity). Prove the second part of Lemma 15.1, i.e., that the
inclusion δα(X)⊆ δα(Y) holds for all hybrid games α and all sets X ⊆ Y .

16.7 (Box proofs). Use the dGL axioms and proof rules to prove the following for-
mulas:

[x := x2∪ (x :=x∩ x := x)]x≤ 0

[x := x2∪ (x′ = 2∪ x′ = 1)d]x≤ 0

[(x :=x2∩ x := x2)∪ ({x′ = 1}d∩{x′ = 2})]x≤ 0

x≥ 0→ [

x :=x+1∪{x′ = 2};{x′ = 1}d)∗]x≥ 0

x≥ 0→ [

x :=x+1∪ (t :=0;{x′ = 5, t ′ = 1& t ≤ 1}∩{x′ = 2})

)∗
]x≥ 0

16.8 (Unsound axioms). Not all hybrid systems axioms can be used for hybrid
games. Prove that the following perfectly valid hybrid systems axiom is unsound
for hybrid games by giving a counterexample, i.e., an instance of the axiom that is
not a valid dGL formula:

[]∧ [α](P∧Q)↔ [α]P∧ [α]Q

16.9 (What about other hybrid systems axioms?). Chaps. 5 and 7 and Exer-
cises 5.22 and 7.11 identified several other useful axioms and proof rules for hybrid
systems, summarized in Fig. 16.6. All hybrid games axioms are sound for hybrid
systems, but not vice versa. Identify which of the axioms and proof rules listed in
Fig. 16.6 are also sound for hybrid games and which ones are not.

K [α](P→ Q)→ ([α]P→ [α]Q) M[·]
P→ Q

[α]P→ [α]Q
←
M 〈α〉(P∨Q)→ 〈α〉P∨〈α〉Q M 〈α〉P∨〈α〉Q→ 〈α〉(P∨Q)

I [α∗]P↔ P∧ [α∗](P→ [α]P) ind
P→ [α]P

P→ [α∗]P

B 〈α〉∃xP→∃x〈α〉P (x 6∈α)
←
B ∃x〈α〉P→ 〈α〉∃xP

V p→ [α]p (FV(p)∩BV(α) = /0) VK p→ ([α]true→[α]p)

G
P

[α]P
M[·]

P→ Q

[α]P→ [α]Q

R
P1∧P2→ Q

[α]P1∧ [α]P2→ [α]Q
M[·]

P1∧P2→ Q

[α](P1∧P2)→ [α]Q

FA〈α∗〉P→ P∨〈α∗〉(¬P∧〈α〉P)
←
[∗] [α∗]P↔ P∧ [α∗][α]P [*] [α∗]P↔ P∧ [α][α∗]P

Fig. 16.6 More hybrid systems axioms, some of which are sound for hybrid games

16.7 Summary 507

16.10 (Robot simple chase game). Following up on the one-dimensional game
of chase between a robot at position x and another robot at position y from Exer-
cise 14.6, now fill in the blanks with a suitable precondition and prove that Demon
then has a winning strategy to avoid capture:

__________→
[

(v :=a∪ v := a∪ v :=0);

(w :=b∩w := b∩w :=0);

{x′ = v,y′ = w}
)∗]

(x y)2 ≥ 1

References

[1] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei-Hsin Ho.
Hybrid automata: an algorithmic approach to the specification and verifica-
tion of hybrid systems. In: Hybrid Systems. Ed. by Robert L. Grossman, Anil
Nerode, Anders P. Ravn, and Hans Rischel. Vol. 736. LNCS. Berlin: Springer,
1992, 209–229. DOI: 10.1007/3-540-57318-6_30.

[2] Brian F. Chellas. Modal Logic: An Introduction. Cambridge: Cambridge
Univ. Press, 1980. DOI: 10.1017/CBO9780511621192.

[3] Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica
und verwandter Systeme I. Monatshefte Math. Phys. 38(1) (1931), 173–198.
DOI: 10.1007/BF01700692.

[4] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. Cambridge:
MIT Press, 2000.

[5] Thomas A. Henzinger. The theory of hybrid automata. In: LICS. Los Alami-
tos: IEEE Computer Society, 1996, 278–292. DOI: 10.1109/LICS.1996
.561342.

[6] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya.
What’s decidable about hybrid automata? In: STOC. Ed. by Frank Thom-
son Leighton and Allan Borodin. New York: ACM, 1995, 373–382. DOI: 10
.1145/225058.225162.

[7] Dexter Kozen. Results on the propositional µ-calculus. Theor. Comput. Sci.

27(3) (1983), 333–354. DOI: 10.1016/0304-3975(82)90125-6.
[8] Dexter Kozen. Theory of Computation. Berlin: Springer, 2006.
[9] André Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reas.

41(2) (2008), 143–189. DOI: 10.1007/s10817-008-9103-8.
[10] André Platzer. The complete proof theory of hybrid systems. In: LICS. Los

Alamitos: IEEE, 2012, 541–550. DOI: 10.1109/LICS.2012.64.
[11] André Platzer. Differential game logic. ACM Trans. Comput. Log. 17(1)

(2015), 1:1–1:51. DOI: 10.1145/2817824.
[12] André Platzer. A complete uniform substitution calculus for differential dy-

namic logic. J. Autom. Reas. 59(2) (2017), 219–265. DOI: 10.1007/s108
17-016-9385-1.

https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1017/CBO9780511621192
https://doi.org/10.1007/BF01700692
https://doi.org/10.1109/LICS.1996.561342
https://doi.org/10.1109/LICS.1996.561342
https://doi.org/10.1145/225058.225162
https://doi.org/10.1145/225058.225162
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1109/LICS.2012.64
https://doi.org/10.1145/2817824
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/s10817-016-9385-1

508 16 Winning & Proving Hybrid Games

[13] André Platzer. Differential hybrid games. ACM Trans. Comput. Log. 18(3)
(2017), 19:1–19:44. DOI: 10.1145/3091123.

[14] Wolfgang Walter. Ordinary Differential Equations. Berlin: Springer, 1998.
DOI: 10.1007/978-1-4612-0601-9.

https://doi.org/10.1145/3091123
https://doi.org/10.1007/978-1-4612-0601-9

Chapter 17

Game Proofs & Separations

Synopsis The primary purpose of this chapter is to compare the proof principles of
hybrid games versus those of hybrid systems. Having established reasoning princi-
ples for hybrid games in the previous chapter, our attention shifts to contrasting and
identifying what the actual difference really is. Despite being rooted in a different se-
mantics, hybrid game axioms are surprisingly close to those for hybrid systems. But
there are also some major soundness-critical discrepancies to notice. These findings
are important for correctly reasoning about hybrid games, but also shine a comple-
mentary light on reasoning principles for hybrid systems by highlighting which ones
crucially depend on the absence of adversarial dynamics.

17.1 Introduction

This chapter continues the study of hybrid games and their logic, differential game
logic [4]. After Chap. 14 introduced hybrid games and Chap. 15 developed their
winning-region semantics, Chap. 16 achieved major breakthroughs in their under-
standing by studying the axioms of hybrid games. The resulting simple axioms made
it surprisingly easy to prove correctness properties of hybrid games with dGL in
ways that were quite similar to how we have already successfully proved properties
of hybrid systems with dL in this book.

Of course, it should make us wonder why two logics that are based on such differ-
ent conditions (hybrid systems versus hybrid games) end up being so surprisingly
close in their axioms. And, indeed, upon closer inspection, we will find notable
differences that we definitely need to respect when analyzing hybrid games. The
chapter starts out with a comparison of the axioms of hybrid systems versus hybrid
games and inspects what we have missed so far when considering hybrid game ax-
ioms. We will find a surprising logical robustness that even two semantically quite
different logics end up having, for the most part, quite similar axioms.

This chapter is based on prior work [4], where more information can be found on
logic and hybrid games. The most important learning goals of this chapter are:

509© Springer International Publishing AG, part of Springer Nature 2018

A. Platzer, Logical Foundations of Cyber-Physical Systems,

https://doi.org/10.1007/978-3-319-63588-0_17

https://doi.org/10.1007/978-3-319-63588-0_17
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63588-0_17&domain=pdf

510 17 Game Proofs & Separations

Modeling and Control: While the primary learning objectives in this chapter come
from computational thinking, modeling and control observations still find out
in passing that continuous and adversarial dynamics also mix in the form of
differential games to which differential game logic generalizes [5]. A coverage
of those findings is beyond the scope of this textbook, though.

Computational Thinking: This chapter solidifies our understanding of rigorous
reasoning techniques for CPS models involving adversarial dynamics. Its pri-
mary purpose is to identify which hybrid systems reasoning principles are still
sound for hybrid games and which ones crucially depend on the absence of
adversariality. This delineation is critical to ensure that no incorrect arguments
enter our proofs for CPSs with adversarial interactions. This refined understand-
ing of what is sound and what is not also leads to a new appreciation for the
robustness of logic. Finally, these findings shine a complementary light on what
is specific to hybrid systems and what is more general.

CPS Skills: We will develop a complementary understanding of CPS models and
how they are impacted by the presence or absence of adversariality. Being
rooted in a syntactic characterization of the difference of hybrid systems and
hybrid games, this understanding will make it easier to pinpoint what the exact
nuances in different CPS operations and arguments are.

CT

M&C CPS

rigorous reasoning for adversarial dynamics
miracle of soundness
separations
axiomatization of dGL

differential games
systems versus games

CPS semantics

17.2 Recap: Hybrid Games

Recall a result from Chap. 16 and, in Fig. 17.1, the axiomatization of differential
game logic [4] that Chap. 16 discussed.

Theorem 16.1 (Consistency & determinacy). Hybrid games are consistent
and determined, i.e., � ¬〈α〉¬P↔ [α]P.

17.3 Separating Axioms 511

Fig. 17.1 Differential game logic axiomatization (repeated)

[·] [α]P↔¬〈α〉¬P

〈:=〉 〈x :=e〉p(x)↔ p(e)

〈′〉 〈x′ = f (x)〉p(x)↔∃t≥0〈x :=y(t)〉p(x) (y′(t) = f (y))

〈?〉 〈?Q〉P↔ Q∧P

〈∪〉 〈α ∪β 〉P↔ 〈α〉P∨〈β 〉P

〈;〉 〈α;β 〉P↔ 〈α〉〈β 〉P

〈∗〉 〈α∗〉P↔ P∨〈α〉〈α∗〉P

〈d〉 〈αd〉P↔¬〈α〉¬P

M
P→ Q

〈α〉P→ 〈α〉Q

FP
P∨〈α〉Q→ Q

〈α∗〉P→ Q

ind
P→ [α]P

P→ [α∗]P

17.3 Separating Axioms

Parts I and II of this textbook identified a number of useful axioms for hybrid sys-
tems. Chapter 16 did the same for hybrid games, albeit at a faster pace, because
the earlier parts of this book already prepared us well for the typical challenges
when developing and using axioms. When we compare the axioms of differential
game logic dGL (Fig. 17.1) to those of differential dynamic logic dL, we notice that
they share significant similarities. But the dGL axioms already had more involved
soundness justifications, most notably in axiom [·], which is a simple observation for
hybrid systems (all runs satisfy P iff it is not the case that there is a run satisfying
¬P) but already needs the full determinacy theorem Theorem 16.1 as justification
for hybrid games.

Without any doubt, the axioms of differential game logic in Fig. 17.1 are sound
for hybrid systems as well, because every hybrid system is a (single-player) hybrid
game. In fact, except of course the duality axiom 〈d〉, they all look surprisingly close
to the axioms for hybrid systems from Chaps. 5 and 7. Many look almost identical
when comparing dL axioms in Fig. 5.4 on p. 160 to the box modality formulation
of the dGL axioms in Fig. 16.4 on p. 505. If they look so close, couldn’t we have
arrived at the dGL axioms more quickly by inferring them from dL axioms?

Well not quite, because all axioms for hybrid games are sound for hybrid systems,
since all hybrid systems are hybrid games, but not the other way around! We need to
pay more attention and conduct more refined proofs to justify that axioms are even

512 17 Game Proofs & Separations

sound for hybrid games, not just hybrid systems, because hybrid games can exhibit
more behaviors. Of course, we could still have used hybrid systems axioms as an
inspiration for possible hybrid games axioms, precisely because of the fact that an
axiom can only work for hybrid games if it is, at least, sound for hybrid systems.
But once we list hybrid system axioms, we need to scrutinize them very carefully to
ensure they continue to be sound for hybrid games, still. In fact, the best preparation
for this chapter is to do exactly that by first solving Exercise 16.9.

Before you read on, see if you can find the answer for yourself.

In order to understand the fundamental difference between hybrid systems and
hybrid games, it is instructive to investigate separating axioms, i.e., axioms of hybrid
systems that are not sound for hybrid games. Some of these axioms that are sound
for hybrid systems but not for hybrid games are summarized in Fig. 17.2.

K [α](P→ Q)→ ([α]P→ [α]Q) M[·]
P→ Q

[α]P→ [α]Q
←
M 〈α〉(P∨Q)→ 〈α〉P∨〈α〉Q M 〈α〉P∨〈α〉Q→ 〈α〉(P∨Q)

I [α∗]P↔ P∧ [α∗](P→ [α]P) ind
P→ [α]P

P→ [α∗]P

B 〈α〉∃xP→∃x〈α〉P (x 6∈α)
←
B ∃x〈α〉P→ 〈α〉∃xP

V p→ [α]p (FV(p)∩BV(α) = /0) VK p→ ([α]true→[α]p)

G
P

[α]P
M[·]

P→ Q

[α]P→ [α]Q

R
P1∧P2→ Q

[α]P1∧ [α]P2→ [α]Q
M[·]

P1∧P2→ Q

[α](P1∧P2)→ [α]Q

FA 〈α∗〉P→ P∨〈α∗〉(¬P∧〈α〉P)
←
[∗] [α∗]P↔ P∧ [α∗][α]P [*] [α∗]P↔ P∧ [α][α∗]P

Fig. 17.2 Separating axioms: The axioms and rules on the left are sound for hybrid systems but
not for hybrid games. The related axioms or rules on the right are sound for hybrid games

Detailed counterexamples showing that the axioms on the left of Fig. 17.2 are
unsound for hybrid games are reported in previous work [4], but let us investigate
the intuition for the difference causing their unsoundness in hybrid games. Kripke’s
modal modus ponens K from Lemma 5.9 is unsound for hybrid games: even if De-
mon can play robot soccer so that his robots score a goal every time they pass the
ball (they just never try to even pass the ball) and Demon can also play robot soccer
so that his robots always pass the ball (somewhere in some random direction), that
does not mean Demon has a strategy to always score goals in robot soccer, because
that is significantly more difficult to achieve. The problem with axiom K for hybrid
games is that Demon’s strategies in its two assumptions can be incompatible, which
is something that cannot happen in hybrid systems where both box modalities refer
to all runs of HP α .

17.3 Separating Axioms 513

A concrete counterexample illustrating why K is unsound for hybrid games is

[x :=0∩ (x :=1∪ x := 1)](x 6= 0→ x > 0)→

[x :=0∩ (x :=1∪ x := 1)]x 6= 0→ [x :=0∩ (x :=1∪ x := 1)]x > 0

)

The first assumption is true, because Demon can play left (x :=0), which trivially
satisfies the postcondition x 6= 0→ x > 0. The second assumption is true, because
Demon can play right (x :=1∪ x := 1), which satisfies x 6= 0 whichever way Angel
decides. But there is no winning strategy that enables Demon to achieve x > 0,
because playing left makes x zero and playing right enables Angel to play right
(x := 1), too.

As Chap. 16 showed, the closely related monotonicity rule M[·] is sound also
for hybrid games. The difference of monotonicity rule M[·] to the unsound Kripke
axiom K is that it requires the implication P→ Q in the premise to be valid, so true
in all states, not just in the states that some of Demon’s winning strategies reaches as
axiom K requires. The converse monotonicity axiom

←
M, however, is also unsound

for hybrid games: just because Angel EVE has a strategy to be close to WALL·E or
far away does not mean EVE either has a strategy to always end up close to WALL·E
or a strategy to always be far away. It is a mere triviality to be either close or far,
because if EVE isn’t close to WALL·E then she’s far away. Period. But consistently
staying close may be about as challenging as consistently always staying far away.
The other direction of the monotonicity axiom M is still sound, because if there is
a winning strategy for Angel to achieve P in hybrid game α then she also has a
winning strategy to achieve the easier P∨Q, because P implies P∨Q.

The induction axiom I from Lemma 7.1 is unsound for hybrid games: just be-
cause Demon has a strategy for his soccer robots (e.g., power down) that, no matter
how often α∗ repeats, Demon still has a strategy such that his robots do not run out
of battery for just one more control cycle (one control cycle does not need a lot of
battery), that does not mean he has a strategy to keep his robots’ batteries nonempty
all the time, because that would require quite a revolution in battery designs. The
problem is that one more round may be possible for Demon with the appropriate
control choices even if the winning condition cannot be sustained forever. The loop
induction rule ind (Corollary 16.1) is sound for hybrid games, because its premise
requires that P→ [α]P be valid so true in all states, not just true for one particular
winning strategy of Demon in the hybrid game α∗.

The Barcan axiom B, which provides a way of commuting modalities with like-
minded quantifiers [1], is unsound for hybrid games: just because the winner of a
robot soccer tournament who satisfies P can be chosen for x after the robot game α
does not mean it is possible to predict this winner x before the game α . By contrast,
the converse Barcan axiom

←
B [1] is sound for hybrid games since, if x is known

before the game α , selecting the winner for x can still be postponed until after the
game, because that is much easier. The reason why both Barcan axioms are sound
for hybrid systems is that all choices are nondeterministic in hybrid systems, so
there is no opponent that will take an unexpected turn, which is why predicting x

ahead of time is possible.

514 17 Game Proofs & Separations

The vacuous axiom V from Lemma 5.11, in which no free variable of p is bound
by α , is unsound for hybrid games. Even if p does not change its truth-value during
α does not mean it is possible for Demon to reach any final state at all without
being tricked into violating the rules of the game along the way by Angel. With
an additional assumption ([α]true) implying that Demon has a winning strategy to
reach any final state at all (in which true holds, which imposes no condition), the
possible vacuous axiom VK is still sound for hybrid games. Similarly, Gödel’s rule
G from Lemma 5.12 is unsound for hybrid games: even if P holds in all states,
Demon may still fail to win [α]P if he loses prematurely since Angel tricks Demon
into violating the rules during the hybrid game α . The following counterexample is
an instance of Gödel’s rule G with a valid premise but a conclusion that is equivalent
to false:

true

[?falsed]true

The monotonicity rule M[·] is again similar to Gödel’s G but sound for hybrid games,
because its assumption at least implies that Demon has a winning strategy to get to
P at all, which then implies by the premise that he also has a winning strategy to
get to the easier Q. Likewise, the regularity rule R is unsound for hybrid games:
just because Demon’s soccer robots have a strategy to focus all robots on strong
defense and another strategy to, instead, focus them all on strong offense that does
not mean he has a strategy to win robot soccer even if simultaneously strong defense
and strong offense together might imply victory (premise), because offensive and
defensive strategies are in conflict. Demon cannot possibly send all his robots both
into offense and into defense at the same time, because they won’t know which way
to go. They have to choose. A special instance of the monotonicity rule M[·] is the
closest rule that is still sound, because its assumption requires Demon to achieve
both P1 and P2 at the same time with the same strategy, which, by the premise,
implies Q.

The first-arrival axiom FA, which is the dual of the induction axiom I, is unsound
for hybrid games: just because Angel’s robot has a strategy to ultimately capture
Demon’s faster robot with less battery does not mean she either starts with capture
or has a strategy to repeat her control cycle so that she exactly captures Demon’s
robot during the next control cycle, as Demon might save up his energy and speed
up just when Angel expected to catch him. Having a better battery, Angel will still
ultimately win even if Demon speeds ahead, but not in the round she thought she
would be able to predict.

Another way of understanding why several hybrid systems axioms summarized
in Fig. 17.2 are not sound for hybrid games is that hybrid games can turn box modal-
ities into diamond modalities by duality and vice versa. After all, the duality axiom
〈d〉 together with the determinacy axiom [·] derive

〈αd〉P↔ [α]P

[αd]P↔ 〈α〉P

17.3 Separating Axioms 515

Consequently, if an axiom such as K were sound for hybrid games, then it would
also be sound for the hybrid game αd instead of α , which, by axioms 〈d〉,[·], turns its
box modalities into diamond modalities, but the resulting pure diamond formulation
of K is not even sound for hybrid systems:

〈α〉(P→ Q)→ (〈α〉P→ 〈α〉Q)

Note 79 (One game’s boxes are another game’s diamonds) If a hybrid sys-
tems axiom is not also sound when replacing box modalities with diamond
modalities and vice versa, then it cannot possibly be sound for hybrid games.

This principle does not explain all cases listed in Fig. 17.2, though! Not even the
backwards iteration axiom

←
[∗] from Lemma 7.5 on p. 239 is sound for hybrid games,

however innocently similar the backwards iteration axiom
←
[∗] may be to the (sound)

forward iteration axiom [∗]. The only difference between the unsound
←
[∗] and the

sound axiom [∗] is whether α or the repetition α∗ comes first. But that makes a
significant difference for hybrid games, because in [α∗][α]P Demon will observe
when Angel stopped the repetition α∗ but the winning condition P is only checked
after one final round of α . Consequently, the right-hand side of the unsound

←
[∗] gives

Demon one round of early notice about when Angel is going to stop the game, which
she will not do in the left-hand side of

←
[∗]. For example, because of inertia, Demon’s

robot can easily make sure that it is still moving for one round even though he turned
its power off. But that does not mean that the Robot will always keep on moving
when its power is off. The following easier instance of hybrid systems axiom

←
[∗] is

not valid, so the axiom is unsound for hybrid games:

[(x :=a;a :=0∩ x :=0)∗]x = 1↔
x = 1∧ [(x :=a;a :=0∩ x :=0)∗][x :=a;a :=0∩ x :=0]x = 1

If a = 1 initially, then the right-hand side is true by Demon’s winning strategy of
always playing x :=0 in the repetition but playing x :=a;a :=0 afterwards. The left-
hand side is not true, because all that Angel needs to do is repeat sufficiently often
at which point Demon will have caused x to be 0, because he cannot predict when
Angel will stop. By the sequential composition axiom [;], the two formulas from
axioms [∗] and

←
[∗] are equivalent to the following two formulas, respectively:

[α∗]P↔ P∧ [α; α∗]P from [∗] by [;]

[α∗]P↔ P∧ [α∗; α]P from
←
[∗] by [;]

From a hybrid systems perspective, the HP α; α∗ is equivalent to the HP α∗; α ,
but that does not extend to hybrid games! Hybrid game α∗; α corresponds to Angel
announcing the end of the game one round before the game is over, which makes it
easier for Demon to win. Unrolling loops in the beginning is acceptable in hybrid
games, but unrolling them in the end may change their semantics! Unrolling loops

516 17 Game Proofs & Separations

at the end as in
←
[∗] is not sound for hybrid games, because it requires predicting the

end of the game prematurely.

17.4 Repetitive Diamonds – Convergence Versus Iteration

More fundamental differences between hybrid systems and hybrid games also exist
in terms of convergence rules, even if these have not played a prominent rôle in
this textbook. These differences are discussed in detail elsewhere [4]. In a nutshell,
Harel’s convergence rule [2] is not separating, because it is sound for dGL, just
unnecessary, and, furthermore, not even particularly useful for hybrid games [4].
The hybrid version of Harel’s convergence rule [3] for dL makes it possible to prove
diamond properties of loops. It reads as follows (where v does not occur in α):

con
p(v)∧ v > 0 ⊢ 〈α〉p(v 1)

Γ ,∃v p(v) ⊢ 〈α∗〉∃v≤0 p(v),∆
(v 6∈ α)

The convergence rule con uses a variant p(v), which is the diamond counterpart
of an invariant of the induction rule loop for box modalities of repetitions. Just as
an invariant expresses what never changes as a loop executes (Chap. 7), a variant
expresses what does change and make progress toward a goal when a loop executes.
The dL proof rule con expresses that the variant p(v) holds for some nonpositive real
number v≤ 0 after repeating α sufficiently often if p(v) holds for any real number
at all in the beginning (antecedent) and, by premise, p(v) can decrease after some
execution of α by 1 (or another positive real constant) if v > 0. This rule can be used
to show positive progress (by 1) with respect to p(v) by executing α . The variant
p(v) is an abstract progress measure that can decrease by at least 1 unless already at
the goal and will, thus, eventually reach the goal (for a nonpositive distance v≤ 0).

Just as the induction rule ind is often used with a separate premise for the initial
and postcondition check (loop from Chap. 7), rule con is often used in the following
derived form that we simply also call con since it will be easy enough for us now to
disambiguate which of the two versions of the rule we are referring to:

con
Γ ⊢ ∃v p(v),∆ ⊢ ∀v>0(p(v)→ 〈α〉p(v 1)) ∃v≤0 p(v) ⊢ Q

Γ ⊢ 〈α∗〉Q,∆
(v 6∈ α)

The following sequent proof shows how convergence rule con with x < n+ 1 for
p(n) can be used to prove a simple dL liveness property of a discrete HP:

→R

con

R
∗

x≥0 ⊢ ∃nx<n+1
∀R
→R

〈:=〉
R

∗
x < n+1∧n > 0 ⊢ x 1 < n

x<n+1∧n>0 ⊢ 〈x :=x 1〉x<n 1+1
⊢ x<n+1∧n>0→ 〈x :=x 1〉x<n 1+1
⊢ ∀n>0(x<n+1→ 〈x :=x 1〉x<n 1+1)

R
∗

∃n≤0 x<n+1 ⊢ x<1
x≥ 0 ⊢ 〈(x :=x 1)∗〉x < 1
⊢ x≥ 0→ 〈(x :=x 1)∗〉x < 1

17.4 Repetitive Diamonds – Convergence Versus Iteration 517

Let’s compare how dGL proves diamond properties of repetitions based on the
iteration axiom 〈∗〉. In addition to the iteration axiom 〈∗〉, the following proofs for
diamond repetitions employ a clever use of the uniform substitution proof rule US,
which concludes that any substitution instance of a provable formula is provable,
too. That is, if φ has a proof, then the instance σ(φ) that is obtained by performing
any (admissible) uniform substitution σ on φ is valid, too:

US
φ

σ(φ)

Uniform substitutions replace function symbols with suitable terms and predicate
symbols by logical formulas. For example, a uniform substitution σ may substi-
tute an abstract predicate symbol p such that p(x) is replaced with the dL formula
〈(x :=x 1)∗〉(0≤ x < 1) of the (same) free variable x. Uniform substitution will be
explored in Chap. 18 of Part IV, but its intuition can already be easily understood,
which is all we need right now. For the time being, all that is important to know
about it is that rule US substitutes formulas for predicate symbols and has appropri-
ate implementations that check and ensure soundness. Using it from the conclusion
to its premise, rule US can be used to abstract formulas by predicate symbols. And
all we need to know about predicate symbols is that they are indeed symbolic in the
sense that unlike for a concrete logical formula such as 0≤ x < 1 we do not know a
priori when exactly p(x) is true.

Example 17.1 (Non-game system). The same simple non-game dGL formula

x≥ 0→ 〈(x :=x 1)∗〉0≤ x < 1

above is provable without con, as shown in Fig. 17.3, where 〈α∗〉0≤ x < 1 is short
for 〈(x :=x 1)∗〉(0 ≤ x < 1). Note that, as in the subsequent proofs, the extra as-
sumption for cut near the bottom of the proof in Fig. 17.3 is provable by 〈∗〉,∀R:

∗
〈∗〉 ⊢ 0≤ x < 1∨〈x :=x 1〉〈α∗〉0≤ x < 1→ 〈α∗〉0≤ x < 1
∀R ⊢ ∀x(0≤ x < 1∨〈x :=x 1〉〈α∗〉0≤ x < 1→ 〈α∗〉0≤ x < 1)

The rôle of the predicate symbol in Fig. 17.3 is to have p(x) serve as an abstract
formula standing for 〈(x :=x 1)∗〉(0 ≤ x < 1). Since the premise of rule US can
be proved for the abstract predicate p(x), its conclusion for the concrete formula
〈(x :=x 1)∗〉(0≤ x < 1) in place of p(x) is valid by rule US as well.

Example 17.2 (Choice game). The dGL formula

x = 1∧a = 1→ 〈(x :=a;a :=0∩ x :=0)∗〉x 6= 1

is provable as shown in Fig. 17.4, where β ∩ γ is short for x :=a;a :=0∩ x :=0 and
〈(β ∩ γ)∗〉x 6= 1 is short for 〈(x :=a;a :=0∩ x :=0)∗〉x 6= 1.

Example 17.3 (2-Nim-type game). The dGL formula

518 17 Game Proofs & Separations

∗
R ∀x(0≤ x < 1∨ p(x 1)→ p(x))→ (x≥ 0→ p(x))
〈:=〉 ∀x(0≤ x < 1∨〈x :=x 1〉p(x)→ p(x))→ (x≥ 0→ p(x))
US ∀x(0≤x<1∨〈x :=x 1〉〈α∗〉0≤ x < 1→ 〈α∗〉0≤ x < 1)→ (x≥ 0→ 〈α∗〉0≤ x < 1)

〈∗〉,∀R,cut
x≥ 0→ 〈α∗〉0≤ x < 1

Fig. 17.3 dGL Angel proof for non-game system Example 17.1 x≥ 0→ 〈(x :=x 1)∗〉0≤ x < 1

∗
R ∀x(x 6= 1∨ p(a,0)∧ p(0,a)→ p(x,a))→ (true→ p(x,a))

〈;〉,〈:=〉 ∀x(x 6= 1∨〈β 〉p(x,a)∧〈γ〉p(x,a)→ p(x,a))→ (true→ p(x,a))
〈∪〉,〈d 〉 ∀x(x 6= 1∨〈β ∩ γ〉p(x,a)→ p(x,a))→ (true→ p(x,a))

US ∀x(x 6= 1∨〈β ∩ γ〉〈(β ∩ γ)∗〉x 6= 1→ 〈(β ∩ γ)∗〉x 6= 1)→ (true→ 〈(β ∩ γ)∗〉x 6= 1)
〈∗〉,∀R,cut

true→ 〈(β ∩ γ)∗〉x 6= 1
R

x = 1∧a = 1→ 〈(β ∩ γ)∗〉x 6= 1

Fig. 17.4 dGL Angel proof for demonic choice game Example 17.2
x = 1∧a = 1→ 〈(x :=a;a :=0∩ x :=0)∗〉x 6= 1

x≥ 0→ 〈(x :=x 1∩ x :=x 2)∗〉0≤ x < 2

is provable as shown in Fig. 17.5, where β ∩ γ is short for x :=x 1∩ x :=x 2 and
〈(β ∩ γ)∗〉0≤x<2 is short for 〈(x :=x 1∩ x :=x 2)∗〉0≤ x < 2.

∗
R ∀x(0≤x<2∨ p(x 1)∧ p(x 2)→ p(x))→ (true→ p(x))
〈:=〉 ∀x(0≤x<2∨〈β 〉p(x)∧〈γ〉p(x)→ p(x))→ (true→ p(x))
〈∪〉,〈d 〉 ∀x(0≤x<2∨〈β ∩ γ〉p(x)→ p(x))→ (true→ p(x))

US ∀x(0≤x<2∨〈β ∩ γ〉〈(β ∩ γ)∗〉0≤x<2→〈(β ∩ γ)∗〉0≤x<2)→(true→〈(β ∩ γ)∗〉0≤x<2)
〈∗〉,∀R,cut

true→ 〈(β ∩ γ)∗〉0≤x<2
R

x≥ 0→ 〈(β ∩ γ)∗〉0≤x<2

Fig. 17.5 dGL Angel proof for 2-Nim-type game Example 17.3
x≥ 0→ 〈(x :=x 1∩ x :=x 2)∗〉0≤ x < 2

Example 17.4 (Hybrid game). The dGL formula

〈(x :=1;x′ = 1d∪ x :=x 1)
∗〉0≤ x < 1

is provable as shown in Fig. 17.6, where the notation 〈(β ∪ γ)∗〉0≤x<1 is short for
〈(x :=1;x′ = 1d∪ x :=x 1)

∗〉(0 ≤ x < 1): The proof steps for β use in 〈′〉 that
t 7→ x+ t is the solution of the differential equation, so the subsequent use of 〈:=〉
substitutes 1 in for x to obtain t 7→ 1+ t. Recall from Chap. 16 that the winning
regions for this formula need >ω iterations to converge. It is still provable easily.

17.5 Summary 519

∗
R ∀x(0≤ x < 1∨∀t≥0 p(1+ t)∨ p(x 1)→ p(x))→ (true→ p(x))
〈:=〉 ∀x(0≤ x < 1∨〈x :=1〉¬∃t≥0〈x :=x+ t〉¬p(x)∨ p(x 1)→ p(x))→ (true→ p(x))
〈′〉 ∀x(0≤ x < 1∨〈x :=1〉¬〈x′ = 1〉¬p(x)∨ p(x 1)→ p(x))→ (true→ p(x))
〈;〉,〈d 〉 ∀x(0≤ x < 1∨〈β 〉p(x)∨〈γ〉p(x)→ p(x))→ (true→ p(x))
〈∪〉 ∀x(0≤ x < 1∨〈β ∪ γ〉p(x)→ p(x))→ (true→ p(x))
US ∀x(0≤x<1∨〈β ∪ γ〉〈(β ∪ γ)∗〉0≤x<1→〈(β ∪ γ)∗〉0≤x<1)→(true→〈(β ∪ γ)∗〉0≤x<1)

〈∗〉,∀R,cut
true→ 〈(β ∪ γ)∗〉0≤x<1

Fig. 17.6 dGL Angel proof for hybrid game Example 17.4
〈(x :=1;x′ = 1d∪ x :=x 1)

∗〉0≤ x < 1

A downside of the approach of using uniform substitution rule US with the iter-
ation axiom 〈∗〉 to prove diamond properties of loops is that the resulting arithmetic
(marked R) mixes real arithmetic with predicate symbols, which is quite challenging.
This is a reason to still take note of the convergence rule con despite its limitations.

17.5 Summary

This chapter solidified our understanding of rigorous reasoning principles for hy-
brid games by developing an appreciation for the axiomatic differences of hybrid
systems versus hybrid games. While the previous chapter emphasized the aspects
of surprising similarities of hybrid systems and hybrid games reasoning, this chap-
ter now carefully emphasized the differences. We have explored intuitive reasons,
which make it easier to remember which axioms can carry over from hybrid sys-
tems to hybrid games. But it is, of course, crucial for soundness in our arguments to
understand precisely which hybrid systems axioms continue to be sound for hybrid
games.

The sophisticated differential equation reasoning principles from Part II that
prove properties of differential equations without the need for explicit closed-form
solutions carry over to hybrid games, because they do not involve any game aspects.
More importantly, though, differential invariants generalize to differential games
that directly combine continuous and adversarial dynamics by allowing both play-
ers to provide continuous-time input on which the differential equation depends [5].
The idea is to give both players the ability to provide input controls during the con-
tinuous system while following a differential game.

520 17 Game Proofs & Separations

17.6 Appendix: Relating Differential Game Logic and

Differential Dynamic Logic

Now that we have come to appreciate the value of soundness, couldn’t we have
known about that, for the most part, before the soundness result of Theorem 16.2?
Most dGL axioms look rather familiar when we compare them to the dL axioms
from Chap. 5. Does that not mean that these same axioms are already trivially
sound? Why did we go to the (admittedly rather minor) trouble of proving Theo-
rem 16.2?

Before you read on, see if you can find the answer for yourself.

It is not quite so easy. After all, we could have given the same syntactical operator
∪ an entirely different meaning for hybrid games than before for hybrid systems.
Maybe we could have been silly and flipped the meaning of ; and ∪ around just to
confuse everybody. The fact of the matter is, of course, that we did not. The operator
∪ still means choice, just for hybrid games rather than hybrid systems. So can we
deduce the soundness of the dGL axioms in Fig. 17.1 from the soundness of the
corresponding dL axioms from Chap. 5 and focus on the new axioms, only?

Before we do anything of the kind, we first need to convince ourselves that the
dL semantics really coincide with the more general dGL semantics in case there are
no games involved. How can that be done? Maybe by proving the validity of all
formulas of the following form

〈α〉P
︸ ︷︷ ︸

in dL

↔ 〈α〉P
︸ ︷︷ ︸

in dGL

(17.1)

for dual-free hybrid games α , i.e., those that do not mention d (not even indirectly
hidden in the abbreviations ∩,×).

Before you read on, see if you can find the answer for yourself.

The problem with (17.1) is that it is not directly a formula in any logic, because
the↔ operator can hardly be applied meaningfully to two formulas from different
logics. Well, of course, every dL formula is a dGL formula, so the left-hand side
of (17.1) could be embedded into dGL. But then (17.1) would become well-defined
but is only stating a mere triviality. Everything is equivalent to itself, which is not a
gigantic insight to write home about.

Instead, a proper approach would be to rephrase the well-intended but ill-fated
(17.1) semantically:

ω ∈ [[〈α〉P]]
︸ ︷︷ ︸

in dL

iff ω ∈ [[〈α〉P]]
︸ ︷︷ ︸

in dGL

(17.2)

which is equivalent to

ν ∈ [[P]] for some ν with (ω,ν) ∈ [[α]]
︸ ︷︷ ︸

statement about reachability in dL

)
iff ω ∈ ςα([[P]])
︸ ︷︷ ︸

winning in dGL

17.6 Appendix: Relating Differential Game Logic and Differential Dynamic Logic 521

Equivalence (17.2) can be shown. In fact, Exercise 3.15 in Chap. 3 already devel-
oped an understanding of the dL semantics based on sets of states, preparing for
(17.2).

The trouble is that, besides requiring a proof itself, the equivalence (17.2) will
still not quite justify soundness of the dGL axioms in Fig. 17.1 that look innocuously
like dL axioms. Equivalence (17.2) is for dual-free hybrid games α . But even if the
top-level operator in axiom 〈∪〉 is not d, that dual operator can still occur within α
or β , which can only be made sense of with a game semantics.

Consequently, we are much better off proving soundness for the dGL axioms
according to their actual semantics, like in Theorem 16.2, as opposed to trying half-
witted ways out that only make soundness matters worse.

Exercises

17.1 (Good and bad axioms). Prove each of the axioms on the left of Fig. 17.2 to be
unsound for hybrid games. For each of the axioms, provide a concrete dGL formula
that is an instance of that axiom but not a valid formula. For the unsound proof rules
on the left of Fig. 17.2 give an instance where the premise is valid but the conclusion
is not. Then go on to show a way of using each of the reasoning principles on the
right of Fig. 17.2 for a hybrid game.

17.2. Prove the following dGL formula with the iteration and uniform substitution
technique as in Example 17.2

〈

x :=x2∪ (x :=x+1∩ x′ = 2)

)∗〉x > 0

17.3 (***). The following formula was proved using dGL’s hybrid games proof
rules in Fig. 17.3

x≥ 0→ 〈(x :=x 1)∗〉0≤ x < 1

Try to see whether you can prove it using the convergence rule con instead.

References

[1] Ruth C. Barcan. The deduction theorem in a functional calculus of first order
based on strict implication. J. Symb. Log. 11(4) (1946), 115–118.

[2] David Harel, Albert R. Meyer, and Vaughan R. Pratt. Computability and com-
pleteness in logics of programs (preliminary report). In: STOC. New York:
ACM, 1977, 261–268.

[3] André Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reas.

41(2) (2008), 143–189. DOI: 10.1007/s10817-008-9103-8.

https://doi.org/10.1007/s10817-008-9103-8

522 17 Game Proofs & Separations

[4] André Platzer. Differential game logic. ACM Trans. Comput. Log. 17(1)
(2015), 1:1–1:51. DOI: 10.1145/2817824.

[5] André Platzer. Differential hybrid games. ACM Trans. Comput. Log. 18(3)
(2017), 19:1–19:44. DOI: 10.1145/3091123.

https://doi.org/10.1145/2817824
https://doi.org/10.1145/3091123

Part IV

Comprehensive CPS Correctness

Overview of Part IV on Comprehensive CPS Correctness

This part shifts perspective yet again and investigates techniques that lead to com-
prehensive correctness arguments for cyber-physical systems. Based on rigorous
reasoning principles for elementary cyber-physical systems from Part I and rigorous
reasoning principles for continuous dynamics with unsolvable differential equations
from Part II, this part now explores the most fundamental remaining elements that
make it possible to give a pervasive correctness result for a CPS. Without rigor-
ous axiomatizations of hybrid systems as in Part I, and of differential equations in
Part II, and/or of hybrid games as in Part III, it is very difficult to reason soundly
about CPSs. But even with the help of such sound axiomatizations, there is still
some remaining potential for error in the subtle world of cyber-physical systems.

Part IV provides a number of unrelated approaches that help safeguard different
aspects of correctness analysis results for CPSs. First, this part provides a com-
pletely axiomatic approach for hybrid systems based on uniform substitutions that
enables a simple and correct implementation of differential dynamic logic reasoning
with an extremely parsimonious logical framework. Uniform substitutions provide
a convenient framework for conducting flexible proofs about CPSs that can be im-
plemented in a simple straightforward way. This framework treats axioms as data
in the object logic and reduces the required mechanism for sound theorem proving
to just the uniform substitution algorithm. This makes it easy to implement sim-
ple but powerful theorem provers for hybrid systems from an extraordinarily small
soundness-critical core.

Part IV also investigates a logical way to tame the subtle relationship of CPS
models to CPS implementations in a provably correct way. Since the nuances of
cyber-physical systems provide ample opportunity for subtle discrepancies, the re-
lationship of CPS models to CPS implementations is rather nontrivial. It is quite
important for the comprehensive success of a CPS analysis and design effort to
identify the relevant parts of physics on the appropriate level of abstraction. But
that leaves open the question of how to justify that the physical model is adequate.
Techniques from the logical foundations of model safety transfer can synthesize
provably correct monitor conditions that, if checked to hold at runtime, are provably
guaranteed to imply that offline safety verification results about CPS models apply
to the present run of the actual CPS implementation. This crucial link is needed
to make safety results for CPS models transfer to CPS implementations. The link
can be characterized and tamed elegantly in differential dynamic logic using the dia-
mond modality that played a less prominent rôle in Parts I and II but already became
significantly more relevant in Part III.

Finally, Part IV considers logical elements of reasoning techniques for the real
arithmetic to which the differential dynamic logic axiomatizations reduce CPS cor-
rectness. Real-arithmetic verification is pervasive in CPSs and comes up in all CPS
verification. Part IV explains virtual substitutions, which provide a systematic logi-
cal approach that is practically significant for real-arithmetic formulas at least of up
to polynomial degree 3. Techniques for higher degrees are beyond the scope of this
textbook, but one simple technique will be explained nevertheless.

Chapter 18

Axioms & Uniform Substitutions

Synopsis This chapter explores a succinct approach for soundly implementing rig-
orous reasoning for hybrid systems. Unlike previous chapters, this chapter is not
concerned with identifying new reasoning principles for cyber-physical systems,
but, rather, focuses on how they can best be implemented correctly. Uniform sub-
stitutions are identified as a simple concept based upon which differential dynamic
logic proof systems can be implemented quite easily. Uniform substitutions uni-
formly instantiate predicate symbols by formulas. Since all reasoning can be re-
duced to finding the appropriate sequence of uniform substitutions, this makes it
possible to implement theorem provers with a small soundness-critical core.

18.1 Introduction

The logic and reasoning principles for hybrid systems (Part I), differential equations
(Part II), and hybrid games (Part III) identified in previous chapters are conducive to
quite simple correctness arguments. Proof principles decouple the question of what
a correct argument is from the question of how to find it. Soundness even of the
biggest and most complicated proofs directly follows from the soundness of each
of the proof steps. Every proof step uses one of a small set of dL axioms and proof
rules, which can each be proved sound individually quite easily. The transfer of
soundness was already rooted in Definition 6.2 on p. 179, which defined a proof rule
to be sound iff the validity of all premises implies the validity of the conclusion. For
axioms, Definition 5.1 on p. 146 defined an axiom to be sound iff all its instances are
valid. Since proofs only consist of axioms composed with proof rules, this implies
that the conclusion of every (completed) proof is valid.

The remaining challenge for soundness of proofs is to ensure that all axioms and
proof rules are also implemented correctly in a theorem prover. The primary obstacle
is that the reasoning principles identified so far were considered as axiom schemata,
i.e., they stand for an infinite family of formulas of the same shape. That is easily
said, but still needs some form of implementation. Moreover, a fair number of the

525© Springer International Publishing AG, part of Springer Nature 2018

A. Platzer, Logical Foundations of Cyber-Physical Systems,

https://doi.org/10.1007/978-3-319-63588-0_18

https://doi.org/10.1007/978-3-319-63588-0_18
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63588-0_18&domain=pdf

526 18 Axioms & Uniform Substitutions

axiom schemata have soundness-critical side conditions that need to be respected to
guarantee soundness. That these soundness-critical side conditions cannot be elided
is most obvious in the vacuous axiom schema from Lemma 5.11:

V p→ [α]p (FV (p)∩BV (α) = /0)

Of course, every use of axiom schema V needs to ensure that the same formula p

is used in the precondition and the postcondition. But without checking that no free
variable of p is written to in the hybrid program α , it would be quite unsound to
conclude that p always holds after running HP α if p was true initially. After all, if
α changes a variable that p reads, its truth-value may change. It is only thanks to
this side condition that the following invalid formula is not provable by axiom V:

x≥ 0→ [x′ = 5]x≥ 0

The differential equation solution axiom schema from Lemma 5.3 has even more
complicated side conditions:

[′] [x′ = f (x)]p(x)↔∀t≥0 [x :=y(t)]p(x) (y′(t) = f (y))

The soundness-critical side conditions for axiom schema [′] are:

1. The variable t needs to be fresh and cannot have occurred already, because it is
supposed to represent the independent variable for time.

2. The function of time y(·) needs to solve the differential equation y(t)′ = f (y(t))
and needs to be defined at all times that the quantifier for t quantifies over,
because the continuous dynamics of the differential equation can only be equiv-
alently replaced by a discrete assignment when y(·) is the correct solution of the
differential equation.

3. The solution y(·) needs to solve the symbolic initial value condition y(0) = x

for the variable x, because we usually do not have a specific numerical initial
value when using axiom schema [′].

4. The solution y(·) needs to cover all solutions parametrically, e.g., when the so-
lution has different shapes for different choices of the initial value x.

5. The postcondition p(x) cannot have differential symbol x′ as a free variable,
because it receives the value f (x) after the differential equation but retains the
initial value after the discrete assignment to x.1

A correct implementation of axiom schema [′], thus, amounts to an algorithm ac-
cepting every formula of this shape after checking all the required side conditions.
Fortunately, Part II already provided a substantially more elegant way of proving
properties of differential equations by induction that also makes the solution axiom
schema [′] superfluous [8], because it can be replaced by appropriate differential
cuts to augment the evolution domain with the solution after a suitable differential
ghost has shifted the dynamics into the time domain t ′ = 1 (Chap. 12). But the fact

1 Of course, this is easily fixed by adding an assignment x′ := f (x) after the assignment to x.

18.1 Introduction 527

remains that axiom schemata have a tendency to require a somewhat unwieldy set of
side conditions that are soundness-critical and, thus, need to be enforced for every
reasoning step. Compared to verification algorithms that do not even benefit from
a similar logical foundation, it is still substantially easier to devise correct imple-
mentations of individual axiom schemata and then glue them together with correct
implementations of proof rules. But this chapter will find a more straightforward
way that is even easier to get correct.

The primary observation to make this happen comes from a shift in perspec-
tive that distinguishes between axioms and axiom schemata. An axiom is a single
valid formula that is adopted as a basis for reasoning in a proof calculus. An ax-

iom schema stands for an infinite family of formulas of the same shape (subject to
the required side conditions) and, thus, needs to be implemented with an algorithm.
Implementing an axiom is trivial, because an axiom is just a single formula in the
object logic. The only downside is that the only formula that an axiom enables us to
prove is literally that formula in verbatim, which we are rarely interested in proving.

Consequently, the missing element for a reasoning system that is based on axioms
is a mechanism for instantiating them. Church’s uniform substitutions [2] provide
such a mechanism for first-order logic. Uniform substitutions make it possible to in-
stantiate predicate symbols by formulas and check the required conditions to ensure
that that instantiation is sound. Generalizing uniform substitutions from first-order
logic to differential dynamic logic leads to the corresponding mechanism to imple-
ment flexible dL proving parsimoniously with uniform substitution as essentially
the only proof rule [7, 8].

Differential dynamic logic provides sound reasoning principles. Uniform sub-
stitutions make it easy to implement them correctly. Uniform substitutions are the
secret for simple sound hybrid systems provers such as KeYmaera X [3]. This chap-
ter has a major impact, enabling the 1,700 lines of soundness-critical code in KeY-
maera X compared to the 66,000 lines of soundness-critical code2 in its predecessor
KeYmaera [9], which implements a schematic sequent calculus for dL [5].

The most important learning goals of this chapter are:

Modeling and Control: We will eventually see how the shift in perspective to ax-
ioms gives us an opportunity to reflect on the significance of the local meaning
of differentials in hybrid systems.

Computational Thinking: This chapter investigates the relationship and funda-
mental difference of axioms versus axiom schemata. This philosophical dis-
tinction leads to a significant algorithmic impact on the style of implementing
hybrid systems reasoning. This chapter explores the local meaning of axioms,
which is the axiomatic counterpart of how generic points are understood as
a nondegenerate generalization of concrete points in algebraic geometry. The
fundamental concept of uniform substitutions will be explored, which makes
it possible to use axioms as if they were axiom schemata without the need for
any additional mechanisms or side condition checking. This purely axiomatic

2 These numbers are to be taken with a grain of salt because the two provers were implemented in
different programming languages.

528 18 Axioms & Uniform Substitutions

reconsideration of the proof calculus for differential dynamic logic will lead to
a new level of appreciation for what the axioms of differential dynamic logic
already offered throughout this book without us noticing.

CPS Skills: We identify techniques for a parsimonious straightforward implemen-
tation of CPS reasoning. These techniques enable a modular implementation of
the logic and the prover mostly independently in parallel, which reduces com-
plexity and makes it easier to advance the reasoning techniques.

CT

M&C CPS

axiom vs. axiom schema
algorithmic impact of philosophical difference
local meaning of axioms
generic axioms like generic points
uniform substitution

local meaning of differentials parsimonious CPS reasoning implementation
modular implementation of logic ‖ prover

18.2 Axioms Versus Axiom Schemata

Recall the axiom [∪] for hybrid programs with a nondeterministic choice α ∪β from
Lemma 5.1 on p. 144:

[∪] [α ∪β]P↔ [α]P∧ [β]P (18.1)

The innocent way of reading (18.1) is as an axiom schema [∪]. An axiom schema is
meant to stand for the infinite family of formulas that have the shape of that axiom
schema, so α,β are schema variables or placeholders for arbitrary HPs and P is a
placeholder for an arbitrary dL formula. The left-hand side of axiom schema [∪]
applies for any dL formula of the form [α ∪β]P, so to any box modality of any HP
that begins with a nondeterministic choice as the top-level operator and has any HPs
as subprograms and any dL formula as a postcondition. For example, the left-hand
side of axiom schema [∪] fits dL formula [x :=x+1∪ x′ = x2]x ≥ 0, which implies
that the axiom schema [′] justifies the following equivalence:

[x :=x+1∪ x′ = x2]x≥ 0↔ [x :=x+1]x≥ 0∧ [x′ = x2]x≥ 0 (18.2)

Of course, this is not the only dL formula that needs to be recognized to be of the
shape that axiom schema [∪] indicates. Here are a few more:

18.2 Axioms Versus Axiom Schemata 529

[x′ = x2∪ x :=x+1]x≥ 0↔ [x′ = x2]x≥ 0∧ [x :=x+1]x≥ 0

[x′ = 5∪ x′ = x]x2 ≥ 5↔ [x′ = 5]x2 ≥ 5∧ [x′ = x]x2 ≥ 5

[v :=v+1;x′ = v∪ x′ = 2]x≥ 5↔ [v :=v+1;x′ = v]x≥ 5∧ [x′ = 2]x≥ 5

A direct implementation of axiom schema [∪] consists of an algorithm that takes
a dL formula as an input and decides whether that formula is of the form of schema
[∪]. Of course, it is crucially important that literally the same postcondition is used
for all three modalities of axiom schema [∪]. And it is important that the same HP
is used in the left part of the nondeterministic choice α ∪β and in the first modality
[α] on the right-hand side, and that the same HP is used in the right part of α∪β that
is also used in the second modality [β] on the right-hand side.3 Axiom schema [∪]
does not even have any side conditions yet, but it already comes with a few tedious
conditions to check (if implementing it in an imperative programming language) or
match correctly (in a functional programming language with pattern matching).

A more conscious way of reading (18.1) is as an axiom [∪] that literally only
refers to one dL formula:

[α ∪β]P↔ [α]P∧ [β]P (18.3)

Of course, we will still have to make sure that (18.3) actually is a syntactically
well-formed dL formula, which it is not presently. The only formula that such an
axiom [∪] ever proves is (18.3). That alone is not so useful, but an axiom is easily
implemented, just by copying the dL formula (18.3) from axiom [∪] into the prover.

Alonzo Church’s seminal observation is that the sole operation it takes to make
more use of an axiom is to provide a uniform substitution mechanism that replaces
parts of formulas with other formulas [2]. The trick is to identify when such a re-
placement is sound. Of course, Church did not know about differential dynamic
logic yet, so he settled for first-order logic. But with a sufficiently generalized no-
tion of uniform substitutions for differential dynamic logic [8], we can prove the dL

formula (18.3) from axiom [∪] and then use a uniform substitution to prove (18.2)
from (18.3). All this takes is the uniform substitution that substitutes x := x+ 1 for
α and substitutes x′ = x2 for β and simultaneously also substitutes x≥ 0 for P uni-
formly everywhere in (18.3).

Now, the one crucial missing piece is a precise definition of this uniform substi-
tution mechanism. The other crucial element is a precise understanding of whether
and what the uniform substitution mechanism needs to check to ensure that all its
replacements preserve soundness. And the final missing element is the question of
what precise form the syntactic expressions α , β , and P take in (18.1) if it is to be
taken literally as an axiom. Then the same process needs to be repeated with an ax-
iomatic reinterpretation of all other dL axioms to find out how they can all be read
as axioms instead of as significantly more complicated axiom schemata.

3 If the formula that is used in place of P has a modality, then the textual description of the places
where these occur is, of course, slightly more complex, but they are still in the same places of the
expression tree corresponding to the formula.

530 18 Axioms & Uniform Substitutions

Admittedly, on a sheet of paper, it is more convenient to work with axiom
schemata, because we are now already so well trained to pay attention to make no
incorrect reasoning steps by checking all required side conditions. But for precision
purposes in a formal verification tool it is substantially easier to work with axioms
instead, because the uniform substitution mechanism only needs to be understood
and implemented once and because the axioms can be implemented by copy-and-
paste. And even when working on a sheet of paper it may be easier to just remember
a single uniform substitution mechanism instead of a diverse list of side conditions.

18.3 What Axioms Want

If the axiom of nondeterministic choice [∪] is internalized as an axiom, not as an ax-
iom schema, then what syntactic elements of differential dynamic logic do the parts
of its formula (18.1) correspond to? Suddenly, α and β need to be concrete HPs
in the syntax of dL as opposed to schematic variables or placeholders for concrete
HPs. Likewise the postcondition P needs to be a concrete dL formula. In fact, re-
visiting the differential dynamic logic axiom schemata from Chap. 5, there are three
different cases of postconditions:

[:=] [x :=e]p(x)↔ p(e)

[∪] [α ∪β]P↔ [α]P∧ [β]P

V p→ [α]p (FV (p)∩BV (α) = /0)

The postcondition p of the vacuous axiom schema V cannot have any variable
free that is bound by the HP α . But anything that is not written to by HP α can
still be mentioned in p, which is the whole point of this axiom compared to Gödel’s
generalization proof rule G. In comparison, the postcondition p(x) of the assignment
axiom schema [:=] should be allowed to mention variable x despite the fact that
it is written to in the HP x := e. That is why the postcondition p(x) mentions x

explicitly. The postcondition on the left-hand side of axiom schema [:=] can have
the argument x free in the same places that the formula p(e) on the right-hand side
of that axiom schema has term e. Its postcondition p(x) can still mention other free
variables besides x, because no other variable is written to in the discrete assignment
x := e. The postcondition P of the axiom schema of nondeterministic choice [∪],
instead, can have any free variables without reservation, because the axiom is correct
whether or not the HPs α ∪β , α , or β modify the values of free variables of P.

Predicate Symbols

Predicate symbols explain all three cases of postconditions with one joint mecha-
nism. The postcondition p in axiom V has a predicate symbol p with 0 arguments,

18.3 What Axioms Want 531

so it has no special permission to have its truth-value depend on any particular free
variables. The postcondition p(x) in axiom [:=] has a predicate symbol p with vari-
able x as its only argument, so its truth-value can depend on the value of x since
[x :=e] binds no other variables, x is the only variable that needs explicit permission
to be mentioned in the context [x :=e]p(x). When reading the postcondition P in
axiom [∪] as p(x̄) for a predicate symbol p that receives the vector x̄ of all variables
as argument, so its truth-value can depend on the values of all variables, then all
cases of postconditions are covered by corresponding predicate symbols that only
differ in the number of their arguments.

It is conceptually easier to read the axioms [:=],[∪],V as axioms, so concrete
dL formulas, with predicate symbols as postconditions instead of placeholders for
formulas. The concrete dL formula p(x) from axiom [:=] literally tells us that its
truth-value depends on variable x and apparently nothing else. The formula p from
axiom V directly indicates that its truth-value does not depend on the values of any
variables. And the case p(x̄), which is how we read P in axiom [∪], indicates that its
truth-value may depend on the values of all variables x̄. We no longer need to keep
in mind what other dL formulas the respective postconditions might stand for, but
we see the concrete dL formula explicitly.

Separately, we can then worry about what formulas are acceptable as drop-in
replacements for predicate symbols. We can find out which replacements are fine
once and for all, and independently of the particular axiom at hand. This separa-
tion of concerns is liberating because it enables us to understand the soundness of
an axiom via the validity of its dL formula independently of the soundness of the
mechanism that generalizes and replaces syntactic elements of the axioms with other
concrete dL expressions. For example, the concrete instance (18.2) can be obtained
from the concrete dL formula (18.3) of axiom [∪] by the uniform substitution

σ = {α 7→ x :=x+1, β 7→ x′ = x2, P 7→ x≥ 0}

This substitution σ substitutes HP x :=x+1 for α and HP x′ = x2 for β and dL

formula x≥ 0 for P alias p(x̄). Of course, this will require us to better understand
the substitution process itself and the rôle of the HPs α and β . But let us first stay
on the topic of how to interpret predicate symbols.

Unlike a formula such as x2 > 5, which comes with a fixed interpretation of when
it is true, namely exactly when the square of the value of x exceeds 5, a predicate
symbol p does not have a fixed meaning, but is subject to our interpretation. That
is what makes it a symbol, because it stands for something. Certainly, a predicate
symbol can take different truth-values depending on its argument. So for example,
depending on the value of its argument e, the formula p(e) in axiom [:=] will be true

or false. But if two terms e and ẽ are evaluated to the same real value, then p(e) and
p(ẽ) will, of course, either both be true consistently, or both be false consistently.
Likewise, the predicate symbol p with 0 arguments in axiom V may be either true or
false. But since it does not take any arguments at all, its truth-value does not depend
on the values of any variables, so is independent of the state, and will either be true

consistently everywhere or false consistently everywhere. Indeed, if the assumption

532 18 Axioms & Uniform Substitutions

p of axiom V holds then the arity 0 predicate symbol p is true, which makes it
true everywhere, even after running HP α , because its truth-value visibly does not
depend on the values of any variables. If, instead p is false, then the assumption of
axiom V is not met, so its implication is trivially true.

Function Symbols

Predicate symbols capture the different cases of formulas in dL axioms. Similarly,
in the assignment axiom [:=], the term e needs to be a concrete dL term, but one
that can take on any value, because that is what a schema variable placeholder in
the corresponding axiom schema [:=] would be able to do. A function symbol with
0 arguments plays that rôle, because a function symbol can be evaluated to any real
value, but will then have the same value in all states since it has no variables in its 0
arguments, just as predicate symbols can evaluate to any truth-value.

The following concrete dL formula can, then, be used as assignment axiom [:=]

[x :=c()]p(x)↔ p(c()) (18.4)

with predicate symbol p of arity 1 and function symbol c() of arity 0. For example,
the concrete instance

[x :=x2 1]x≥ 0↔ x2 1≥ 0 (18.5)

can be obtained from (18.4) by the uniform substitution

σ = {c() 7→ x2 1, p(·) 7→ (· ≥ 0)} (18.6)

This substitution σ substitutes the term x2 1 for the arity 0 function symbol c()
and substitutes the greater-or-equal zero comparison formula for the arity 1 predi-
cate symbol p. To indicate that every occurrence of the predicate symbol p of any
argument is affected and substituted with the corresponding ≥ 0 comparison, the
substitution substitutes p(·) with a dL formula in which the dot · marks where the
argument goes in the resulting dL formula. So for any argument e, the formula p(e)
will be replaced with σ(e)≥ 0. Of course, the substitution σ will also need to be
applied to the argument e of p(e), not just to the predicate symbol p, which is why
σ(e)≥ 0 is substituted for p(e) and not just e≥ 0 when forming (18.5) from (18.4)
by (18.6). The result of applying the substitution σ to e is denoted σ(e) and will be
defined properly later.

Program Constant Symbols

Finally, we return to the rôle that the HPs α and β play in axiom [∪]. On the one
hand, both need to be concrete HPs for axiom [∪] to become a concrete dL formula.
On the other hand, neither α nor β has a concrete specific behavior, because the

18.4 Differential Dynamic Logic with Interpretations 533

axiom [∪] works for whatever HPs α and β do. Consequently, the HPs we use for
α and β in axiom [∪] are what we call program constant symbols and can have
any arbitrary behavior. Just as predicate symbols do not have a fixed interpretation
but might be true of any argument, and just as function symbols f do not have a
fixed interpretation but might have any real value as a function of the argument’s
value, so program constant symbols do not have a fixed interpretation but might
have any arbitrary behavior. Depending on its interpretation, a program constant
symbol might possibly transition from any initial state to any final state, because its
behavior is not described explicitly as it would be in the case of a specific differential
equation or discrete assignment.

18.4 Differential Dynamic Logic with Interpretations

After having realized what syntactic elements dL axioms need so that they can be
faithfully represented as concrete axioms instead of axiom schemata, the first thing
we do is officially add those elements to the syntax of differential dynamic logic [8].
Of course, we could have added them right away when introducing hybrid programs
in Chap. 3 and differential dynamic logic in Chap. 4, but that would have been a
distraction, because we did not need them until now.

18.4.1 Syntax

Differential dynamic logic dL is as usual, except that function symbols, predicate

symbols, and program constant symbols are added. Function symbols are usually
written f ,g,h, predicate symbols p,q,r, and program constant symbols are written
a,b,c. Each function and predicate symbol expects a fixed number of terms as argu-
ments, called its arity. When f is a function symbol of arity n, then f (e1, . . . ,en) is
now also allowed as a term for any n terms e1, . . . ,en. Likewise, when p is a predi-
cate symbol of arity n, then p(e1, . . . ,en) is now a formula for any n terms e1, . . . ,en.
But f (e1, . . . ,en 1) is not a term, because the function symbol f of arity n has not
even received sufficiently many arguments. When we have a function that can, say,
add two numbers that we pass as arguments, then we cannot just call this function
with one argument or with seven arguments, but need to provide exactly two.

Function symbols are essentially a more liberal generalization of built-in term
operators, such as +, which has arity 2, is written infix as e1 + e2 instead of as
+(e1,e2), and always means addition. Function symbols can have a different num-
ber of arguments, but also always expect exactly the same number of arguments as
indicated by their arity. Function symbols of arity 0 are also called constant symbols,
because their value does not depend on any arguments. The use of a function symbol
c of arity 0 is sometimes written as c() with empty parentheses for emphasis. In fact,
we already allowed rational numbers as constant symbols of arity 0 when originally

534 18 Axioms & Uniform Substitutions

defining terms. The meaning of a rational number constant is, of course, also fixed.
The meaning of the rational number constant 1 is always 1 and the meaning of the
rational number constant 1/2 is always the real number 0.5.

By contrast, function symbols are more general, because they are actually meant
as symbols. That is, they do not have a fixed meaning once and for all time, but
are symbolic, so their meaning is subject to interpretation. Similarly, predicate sym-
bols are symbols so their meaning depends on our interpretation, and likewise for
program constant symbols.

Definition 18.1 (Terms). A term e is defined by augmenting the grammar from
Definition 2.2 on p. 42 with the following case (where e1, . . . ,en are n terms and
f is a function symbol of arity n):

e ::= f (e1, . . . ,en) | . . .

Definition 18.2 (Hybrid program). Hybrid programs are defined by augment-
ing the grammar from Definition 3.1 on p. 76 with the following case (where a

is any program constant symbol):

α,β ::= a | . . .

Definition 18.3 (dL formula). The formulas of differential dynamic logic (dL)
are defined by augmenting the grammar from Definition 4.1 on p. 111 with the
following case (where e1, . . . ,en are terms and p is an arity n predicate symbol):

P ::= p(e1, . . . ,en) | . . .

For emphasis, we might call the resulting logic differential dynamic logic with

interpretations, but continue to just call it dL, because we just neglected to consider
these extensions until now, since they were not necessary for our understanding yet.

This extension of the syntax of dL makes it possible to phrase all axioms we
saw before as axioms with concrete dL formulas (instead of as axiom schemata that
represent their infinitely many instances subject to side conditions). For example,
the axiom schemata we considered as motivating examples above turn into

[:=] [x :=c()]p(x)↔ p(c())

[∪] [a∪b]p(x̄)↔ [a]p(x̄)∧ [b]p(x̄)

V p→ [a]p

18.4 Differential Dynamic Logic with Interpretations 535

18.4.2 Semantics

The semantics of function symbols, predicate symbols, and program constant sym-
bols is actually easy, but it comes with a twist compared to all other definitions of
semantics we saw anywhere else in this textbook. The whole point of function sym-
bols, predicate symbols, and program constant symbols is that they are symbolic, so
they do not come with a fixed interpretation. Consequently, unlike for the binary +
operator, which always means addition, the semantics of a term mentioning a func-
tion symbol f of arity 2 depends on how we interpret the symbol f , which may be
addition or multiplication or any other reasonable function from two reals to a real.

In order to be able to evaluate to a real number any term in any state, we fix an
interpretation I that assigns a (sufficiently smooth4) n-ary function I(f) : Rn → R

to every function symbol f of arity n. Given such an interpretation I, we can easily
evaluate every term in any state ω just by looking up in the interpretation I the
corresponding function I(f) for every function symbol f in the term and using the
variable values from the state ω .

Definition 18.4 (Semantics of terms). The value of term e in state ω ∈S for
interpretation I is a real number denoted ω[[e]] and is defined by augmenting
Definition 2.4 with the following case:

ω[[f (e1, . . . ,en)]] = I(f)

ω[[e1]], . . . ,ω[[en]]

)
if f is a function symbol of arity n

That is, in state ω , a function symbol application is evaluated to the result of the
function I(f) applied to the real values ω[[ei]] to which the respective argument
terms ei are evaluated in the state ω .

As predicate symbols have no fixed interpretation either, the interpretation I also
assigns an n-ary relation I(p)⊆Rn to every predicate symbol p of arity n. With such
an interpretation, the set of states in which a formula is true can be defined easily.

Definition 18.5 (dL semantics). The semantics of a dL formula P for inter-
pretation I is the set of states [[P]] ⊆ S in which P is true, and is defined by
augmenting Definition 4.2 with the following case:

12. [[p(e1, . . . ,en)]] =
{

ω :

ω[[e1]], . . . ,ω[[en]]

)
∈ I(p)

}

That is, a predicate symbol application is true in the set of states ω in which
the arguments terms ei are evaluated to a tuple of real numbers that is in
the relation I(p).

A formula P is valid, written � P, iff it is true in all states of all interpretations
I, i.e., [[P]] = S, so ω ∈ [[P]] for all states ω and all interpretations I.

4 Functions that are continuously differentiable are smooth enough for our purposes.

536 18 Axioms & Uniform Substitutions

Finally, the interpretation I also assigns a reachability relation I(a) ⊆S×S to
every program constant symbol a. As usual, (ω,ν) ∈ [[a]] indicates that final state ν
is reachable from initial state ω in the HP a.

Definition 18.6 (Transition semantics of HPs). Each HP α is interpreted se-
mantically as a binary reachability relation [[α]]⊆S×S over states for each
interpretation ω , and is defined by augmenting Definition 3.2 with the case:

7. [[a]] = I(a)
That is, the reachability relation for program constant symbol a is an arbi-
trary state transition relation determined by the interpretation I.

With this extension of the semantics, it is now easy to see that the dL formula in
the V axiom is valid. In fact, this is the easiest possible proof of the soundness of
the vacuous axiom V (Lemma 5.11).

Lemma 18.1 (V vacuous axiom). The vacuous axiom is sound:

V p→ [a]p

Proof. The truth of an arity 0 predicate symbol p just depends on the interpretation
I but not on the state ω since p does not have any variables. Consequently, either p is
interpreted to be true by I, in which case [a]p is true as well, because if p holds in all
states then it also holds in all states reachable after running HP a. Or p is interpreted
to be false by I, in which case the assumption p is false and the implication p→ [a]p
is vacuously true. ⊓⊔

Likewise the equivalence of the dL formula in the assignment axiom [:=] is easily
seen to be valid (Lemma 5.2).

Lemma 18.2 ([:=] assignment axiom). The assignment axiom is sound:

[:=] [x :=c()]p(x)↔ p(c())

Proof. Predicate symbol p is true of x after assigning the new value c() to x (so
[x :=c()]p(x)) iff predicate symbol p is true of the new value c() (so p(c())). ⊓⊔

18.5 Uniform Substitution

A uniform substitution σ substitutes function symbols with terms, predicate sym-
bols with formulas, and program constant symbols with hybrid programs, and it
does so uniformly, e.g., it uses the same HP as replacement for program constant
symbol b in all places.5 The result of applying the uniform substitution σ to dL

5 Replacing the same program constant symbol b with different HPs in different places would be
very illogical and break all structure there ever was. Let’s don’t ever be so silly!

18.5 Uniform Substitution 537

formula φ is denoted σ(φ). Similarly, σ(θ) denotes the result of applying the uni-
form substitution σ to term θ and σ(α) denotes the result of applying the uniform
substitution σ to HP α . They will all be defined rigorously in Sect. 18.5.3.

The substitution σ defines a term σ f as a replacement for each arity 0 function
symbol f . The substitution σ also defines a dL formula σ p as a replacement for
each arity 0 predicate symbol p. It also defines a hybrid program σa for each pro-
gram constant symbol a. Applying the substitution σ will replace every occurrence
of program constant symbol a uniformly with the HP σa and every occurrence of
arity 0 function symbol f with σ f and every occurrence of arity 0 predicate sym-
bol p with the corresponding replacement σ p. For function and predicate symbols
with arguments, the reserved function symbol · is used as a placeholder to indicate
where the argument goes. For an arity 1 function symbol f , the substitution defines
a term whose occurrences of function symbol · indicate where the argument of f

is placed. For an arity 1 predicate symbol p, the substitution defines a dL formula
whose occurrences of function symbol · indicate where the argument of p goes.

The notation for describing a uniform substitution σ that substitutes term e1 for
arity 1 function symbol f and substitutes term e2 for arity 0 function symbol c,
and that substitutes dL formula φ1 for arity 1 predicate symbol p and substitutes
dL formula φ2 for arity 0 predicate symbol q and substitutes hybrid program α for
program constant symbol a is

σ = { f (·) 7→ e1,c 7→ e2, p(·) 7→ φ1,q 7→ φ2,a 7→ α} (18.7)

The occurrences of reserved arity 0 function symbol · in the term e1 and in the
formula φ1, respectively, indicate where the arguments of f and of p, respectively,
go in the replacement. We have already seen examples of uniform substitutions in
Sect. 18.3. The uniform substitution σ in (18.7) replaces arity 1 function symbol
f and predicate symbol p, arity 0 function symbol c and predicate symbol q, and
program constant symbol a but leaves all other symbols alone. The domain of sub-
stitution σ is the set of all symbols it replaces, so { f ,c, p,q,a} for (18.7).

18.5.1 Uniform Substitution Rule

Church’s uniform substitution proof rule US says that the result σ(φ) of applying
a uniform substitution σ to a valid formula φ is valid, too. Its generalization to
differential dynamic logic is sound as well [8]. The intuition is that, if a formula φ
is valid, so true in all states with any interpretation of its predicate, function, and
program constant symbols, then it is also valid after substituting concrete formulas
in for its predicate symbols, etc., because the predicate symbol very well may be
interpreted to have the same truth-value as its substitute formula. The tricky part is
the correct handling of arguments of the predicate symbols and of variables in the
replacements, because variables may have different values in different subformulas.

538 18 Axioms & Uniform Substitutions

Theorem 18.1 (Uniform substitution). The proof rule US is sound:

US
φ

σ(φ)

So if formula φ has a proof, then its uniform substitution instance σ(φ) has a
proof, too, just by applying the uniform substitution proof rule US. The uniform

substitution mechanism checks that it does not introduce a free variable in a context

in which it is bound in σ(φ). If the uniform substitution σ applied to φ were to
introduce a free variable x into a context in which x has been bound, then σ(φ) is
not defined, because it clashes, and the proof rule US is not applicable to φ .

Before proceeding with an exact definition of the uniform substitution mecha-
nism constructing σ(φ) in Sect. 18.5.3, we explore a number of representative ex-
amples to gain intuition for the rôle of rule US in proving.

The formula (¬¬p)↔ p, for example, is valid (in classical logic). When we pick
any dL formula ψ , then also valid will be the formula that results from (¬¬p)↔ p

by uniformly substituting all occurrences of arity 0 predicate symbol p with this
formula ψ . For example, the uniform substitution σ = {p 7→ [x′ = x2]x≥ 0} proves

US
(¬¬p)↔ p

(¬¬[x′ = x2]x≥ 0)↔ [x′ = x2]x≥ 0

Any other formula could have been used as a replacement for p (consistently every-
where) as well and rule US would have proved the result from (¬¬p)↔ p.

Substitutions are more subtle when working, e.g., from the formula (∀x p)↔ p.
This formula expresses for an arity 0 predicate symbol p that p is true for all x if and
only if p is true in the current state, which makes apparent sense, because the arity 0
predicate symbol p quite visibly does not mention any variables that its truth-value
would depend on. In fact, it is precisely this absence of the mention of x that the
validity of the formula (∀x p)↔ p depends on. We cannot possibly soundly replace
p with x≥ 0, because that would lead to

clash
(∀x p)↔ p

∀x(x≥ 0)↔ x≥ 0

which is unsound, because not all values of x are nonnegative (left) just because the
present value of x is nonnegative (right) in the current state. Indeed, the uniform
substitution mechanism will clash when applying σ = {p 7→ x≥ 0} to (∀x p)↔ p,
because σ would introduce the free variable x in the replacement for p in a context
∀x p in which x refers to a bound variable, such that the variable x in the replace-
ments for the two occurrences of p would possibly refer to two different values. The
requirement that the replacement for p does not have x as a free variable is quite
consistent with our original reason why the premise (∀x p)↔ p was valid at all.

18.5 Uniform Substitution 539

Variables other than x can be mentioned free in the replacement for p, though,
because they are not bound anywhere where p occurs. For example, the uniform
substitution σ = {p 7→ y≥ 0} enables rule US to prove

US
(∀x p)↔ p

∀x(y≥ 0)↔ y≥ 0

18.5.2 Examples

The primary, but not the only, use case of the uniform substitution proof rule US is
that it makes it possible to instantiate axioms with specific dL formulas. The follow-
ing examples will, thus, have an axiom as premise, which is proved in the dL calcu-
lus just by mentioning its name. The primary focus will be on demonstrating how
uniform substitutions work, when they clash, and why that is soundness-critical.

How Uniform Substitutions Handle Arguments

Rule US proves, for example, (18.5) from (18.4) with uniform substitution (18.6):

US
[x :=c()]p(x)↔ p(c())

[x :=x2 1]x≥ 0↔ x2 1≥ 0

Intuitively, this uniform substitution replaces all occurrences of function symbol c()
with x2 1 while also replacing all occurrences of predicate symbol p with a greater-
or-equal-to-zero comparison. Of course, in addition to substituting (· ≥ 0) for p(·),
the uniform substitution is also used on all arguments e of p in any subformula p(e).
So σ uniformly replaces every occurrence of p(e) with σ(e) ≥ 0. In particular, σ
replaces p(x) with x≥ 0 but p(c()) with x2 1≥ 0.

The uniform substitution σ = {c() 7→ x2 1, p(·) 7→ (· ≥ x)}, instead, clashes
for the same formula, because the replacement for p(·) would introduce the free
variable x in a context [x :=x2 1]_ in which x is bound:

clash
[x :=c()]p(x)↔ p(c())

[x :=x2 1]x≥ x↔ x2 1≥ x
(18.8)

It is crucial for soundness that this substitution clashes, because the premise is valid
(axiom [:=]) but the conclusion is not, because the postcondition x≥ x of the assign-
ment is valid, but the right-hand side x2 1≥ x is not. This makes sense, because all
free occurrences of x in the postcondition are affected by the assignment x :=x2 1,
so the substitution {p(·) 7→ (· ≥ x)} does not select all occurrences of x for the ·
placeholder. In contrast, the uniform substitution σ = {c() 7→ x2 1, p(·) 7→ (· ≥ ·)}
gives the perfectly acceptable result

540 18 Axioms & Uniform Substitutions

US
[x :=c()]p(x)↔ p(c())

[x :=x2 1]x≥ x↔ x2 1≥ x2 1

Likewise, the uniform substitution σ = {c() 7→ x2 1, p(·) 7→ (2(·)≥ ·)} results in

US
[x :=c()]p(x)↔ p(c())

[x :=x2 1]2x≥ x↔ 2(x2 1)≥ x2 1

In comparison, the uniform substitution σ = {c() 7→ x2 1, p(·) 7→ (· ≥ y)} is
acceptable, because, even if the replacement for p(·) introduces the free variable y,
it only introduces it in the context [x :=x2 1]_ in which y is not bound either:

US
[x :=c()]p(x)↔ p(c())

[x :=x2 1]x≥ y↔ x2 1≥ y

Observe how the explicit argument x in the subformula p(x) of the premise makes
it possible for the substitute x ≥ y to mention x instead of placeholder · in its re-
placement (· ≥ y). But as (18.8) demonstrated, even such a mention of x as an argu-
ment does not give license to use variable x anywhere else in the replacements. Of
course, the argument x in p(x) only indicates an explicit license for a possible depen-
dence on x, not that p(x) has to depend on x. For example, this uniform substitution
σ = {c() 7→ 2x+1, p(·) 7→ (y2 ≥ y)} does not use the · argument placeholder:

US
[x :=c()]p(x)↔ p(c())

[x :=2x+1]y2 ≥ y↔ y2 ≥ y

Uniform substitutions can also have predicates in which the argument place-
holder · appears in more deeply nested positions. For example, the uniform sub-
stitution σ = {c() 7→ x2, p(·) 7→ [(y := ·+ y)∗](· ≥ y)} is acceptable, because it does
not introduce any free variables in a context in which they are bound:

US
[x :=c()]p(x)↔ p(c())

[x :=x2][(y :=x+ y)∗](x≥ y)↔ [(y :=x2 + y)∗](x2 ≥ y)

How Uniform Substitutions Handle Constant Predicate Symbols

Without the original formula mentioning x as an argument in p(x), the uniform
substitution cannot use x in a context in which x is bound. For example, the uniform
substitution σ = {a 7→ x′ = 5, p 7→ (x≤ 5)} clashes, because the replacement for p

introduces the free variable x into the context [x′ = 5]_ in which x is bound, which
is the context that results from applying σ to [a]p:

clash
p→ [a]p

x≤ 5→ [x′ = 5]x≤ 5

18.5 Uniform Substitution 541

It is crucial for soundness that this substitution clashes, because the premise is valid
(axiom V), but the conclusion is not, because x does not stay below 5 forever when
following the differential equation x′ = 5. This is precisely what the side condition
of axiom schema V from Lemma 5.11 prevents, too. But unlike axiom schemata,
rule US does not need special purpose knowledge about how to prevent such incor-
rect uses for the particular case of axiom V. It provides a generic mechanism.

In contrast, the uniform substitution σ = {a 7→ x′ = 5, p 7→ (y≤ 5)} works fine,
because it only introduces free variable y in the resulting context [x′ = 5]_ in which
y is not bound anyhow:

US
p→ [a]p

y≤ 5→ [x′ = 5]y≤ 5

The uniform substitution σ = {a 7→ (v := v+ 1;{x′ = v,v′ = b}), p 7→ (y ≤ b)}
works fine, because its function and predicate symbols only introduce free variables
y and b in a context in which they are possibly read but never written:

US
p→ [a]p

y≤ b→ [v :=v+1;{x′ = v,v′ = b}]y≤ b

Telling the respective good and bad cases of axiom instantiation attempts apart
is what uniform substitutions achieve without having to provide any side conditions
that are specific to the particular formulas or axiom schemata at hand. Uniform
substitutions provide a uniform answer, once and for all, to the question of which
instantiations of formulas are sound because they preserve validity.

How Uniform Substitutions Handle Program Constant Symbols

When working from the assignment axiom [:=] with its postcondition p(x) or from
the vacuous axiom V with its postcondition p, the uniform substitution rule US
needs to check for capture of other variables, which is important for soundness.
When working from the nondeterministic choice axiom [∪] with its postcondition
p(x̄), instead, then this postcondition has explicit permission to mention all vari-
ables x̄, such that any dL formula can be accepted as replacement. The uniform
substitution σ = {a 7→ v := cv, b 7→ x′′ = g, p(x̄) 7→ 2gx≤ 2gH v2} yields

US
[a∪b]p(x̄)↔ [a]p(x̄)∧ [b]p(x̄)

[v := -cv∪ x′′=-g]2gx≤2gH v2↔ [v := -cv]2gx≤2gH v2∧ [x′′=-g]2gx≤2gH v2

As usual, x′′ = g is short for {x′ = v,v′ = g}.

542 18 Axioms & Uniform Substitutions

18.5.3 Uniform Substitution Application

A uniform substitution can replace any number of function, predicate, or program
constant symbols simultaneously. The notation σ f (·) denotes the replacement for
f (·) according to σ , i.e., the value σ f (·) of function σ at f (·). By contrast, σ(φ)
denotes the result of applying σ to φ which we defined now (likewise for σ(θ)
and σ(α)). The notation f ∈ σ signifies that σ replaces function symbol f , i.e.,
σ f (·) 6= f (·), so f is in the domain of σ . Likewise, the notation p ∈ σ signifies that
σ replaces predicate symbol p, and correspondingly a ∈ σ means that σ replaces
program constant symbol a.

Fig. 18.1 Recursive application of uniform substitution σ

σ(x) = x for variable x ∈ V

σ(f (e)) = (σ(f))(σ(e))
def
= {· 7→ σ(e)}(σ f (·)) for function symbol f ∈ σ

σ(g(e)) = g(σ(e)) for function symbol g 6∈ σ
σ(e+ ẽ) = σ(e)+σ(ẽ)

σ(e · ẽ) = σ(e) ·σ(ẽ)
σ((e)′) = (σ(e))′ if σ is V -admissible for e

σ(e≥ ẽ) ≡ σ(e)≥ σ(ẽ) likewise for >,=,<,≤
σ(p(e)) ≡ (σ(p))(σ(e))

def≡ {· 7→ σ(e)}(σ p(·)) for predicate symbol p ∈ σ
σ(q(e)) ≡ q(σ(e)) for predicate symbol q 6∈ σ
σ(¬φ) ≡ ¬σ(φ)

σ(φ ∧ψ) ≡ σ(φ)∧σ(ψ) likewise for ∨,→,↔
σ(∀xφ) ≡ ∀xσ(φ) if σ is {x}-admissible for φ
σ(∃xφ) ≡ ∃xσ(φ) if σ is {x}-admissible for φ
σ([α]φ) ≡ [σ(α)]σ(φ) if σ is BV(σ(α))-admissible for φ
σ(〈α〉φ) ≡ 〈σ(α)〉σ(φ) if σ is BV(σ(α))-admissible for φ

σ(a) ≡ σa for program constant symbol a ∈ σ
σ(b) ≡ b for program constant symbol b 6∈ σ

σ(x :=e) ≡ x :=σ(e)
σ(x′ = e&Q) ≡ x′ = σ(e)&σ(Q) if σ is {x,x′}-admissible for e,Q

σ(?Q) ≡ ?σ(Q)
σ(α ∪β) ≡ σ(α)∪σ(β)

σ(α;β) ≡ σ(α);σ(β) if σ is BV(σ(α))-admissible for β
σ(α∗) ≡ (σ(α))∗ if σ is BV(σ(α))-admissible for α

Figure 18.1 defines the result σ(φ) of applying to a dL formula φ the uniform

substitution σ that uniformly replaces all occurrences of a function f by a term (in-
stantiated with its respective argument of f) and all occurrences of a predicate p by
a formula (instantiated with its argument) as well as of a program constant symbol
a by a program. Each case in Fig. 18.1 applies the uniform substitution recursively.6

In each case, the uniform substitution application mechanism checks that the substi-
tution is admissible for the bound variables of the operator, i.e., σ will not introduce

6 This makes the uniform substitution a homomorphism, because the substitution of an addition is
the addition of substitutions: σ(e+ ẽ) = σ(e)+σ(ẽ) and accordingly for all other operators.

18.5 Uniform Substitution 543

free variables in the scope of an operator in which they are bound (which will be
defined in Definition 18.7 below).

For example, for the case σ(∀xφ), the set of bound variables that σ needs to be
admissible for φ is {x}, because if σ were to introduce free variable x while forming
σ(φ), then x would be incorrectly captured by quantifier ∀x. Suppose the substitu-
tion σ were to replace an arity 0 predicate symbol p that occurs in φ with the formula
x ≥ 0; then within the scope of the quantifier of ∀xφ , this formula x ≥ 0 refers to
a different variable called x, namely the one bound by the universal quantifier ∀x
and no longer the free variable x. That is why such a uniform substitution is not de-
fined, because it is not admissible. This is crucial for soundness, e.g., for the formula
p↔∀x p, because the substitution would otherwise replace p inconsistently with the
same formula x ≥ 0 but referring to different values of x in different places, since
one of the newly introduced occurrences of x in the resulting x ≥ 0↔ ∀x(x ≥ 0)
is in the scope of a quantifier binding x. In the case of a modal formula σ([α]φ),
the bound variables that are taboo and cannot be introduced as free variables when
forming the substituted postcondition σ(φ) are the bound variables BV(σ(α)) of
the substituted HP σ(α). In the case of a differential equation σ(x′ = e&Q), the
bound variables {x,x′} are taboo and cannot be introduced as free variables when
forming σ(e) or σ(Q), since the differential equation changes the values of both.

Arguments are put in for the placeholder · recursively by uniform substitution
{· 7→ σ(θ)} in Fig. 18.1, which is well-defined since it replaces the placeholder
function symbol · of arity 0 by the readily substituted argument σ(θ). Recall the
definition of the free variables FV(P) as well as the bound variables BV(P) of for-
mula P from Sects. 5.6.5 and 5.6.6.

Definition 18.7 (Admissible uniform substitution). A uniform substitu-
tion σ is U-admissible for formula φ (or term θ or HP α , respectively) with
respect to the variables U ⊆ V iff FV(σ |Σ(φ))∩U = /0, where σ |Σ(φ) is the
restriction of substitution σ that only replaces symbols that occur in φ , and
FV(σ) =

⋃

f∈σ FV(σ f (·))∪⋃p∈σ FV(σ p(·)) is the set of free variables that
σ introduces for function or predicate symbols.
A uniform substitution σ is admissible for φ (or θ or α , respectively) iff the
bound variables U of each operator of φ are not free in the substitution on its
arguments, i.e., σ is U-admissible. These admissibility conditions are listed
explicitly in Fig. 18.1, which defines the result σ(φ) of applying σ to φ . For
each case in Fig. 18.1, the taboo set U whose U-admissibility is required of σ
is exactly the set of variables that are bound by its top-level operator.

The substitution σ is said to clash and its result σ(φ) (or σ(θ) or σ(α)) is not
defined if σ is not admissible, in which case rule US is not applicable either. All the
admissibility conditions in Fig. 18.1 are easily summarized:

If you bind a free variable, you go to logic jail!

Note that the free variables FV(σ) of a substitution σ are only defined as the
union of the free variables of the replacements for its function symbols f and pred-

544 18 Axioms & Uniform Substitutions

icate symbols p, not the program constant symbols, because programs may already
read the full state and change it to a new state. Likewise, replacements of predicate
symbols p(x̄) with all variables x̄ as arguments are disregarded in the free variable
determination, because they apparently already have explicit permission to depend
on the values of all variables and, thus, do not introduce any new free variables.

Finally, observe that σ is already U-admissible for formula φ if the sufficient
condition FV(σ)∩U = /0 holds. The only reason for Definition 18.7 to restrict the
admissibility check to the restriction σ |Σ(φ) of the substitution to the symbols that
actually occur in the affected formula φ is that there is no need for the substitution
to clash if σ introduces free variables for function or predicate symbols that do not
even occur in φ . For example, σ = {p(·) 7→ (· ≤ y),q 7→ (x≤ 5)} is {x}-admissible

for φ
def
= (x > 2∧ p(y)), because the dangerous predicate symbol q with its free vari-

able x that would not be {x}-admissible does not even occur in φ , so the substitution
is restricted to σ |Σ(φ) = {p(·) 7→ (· ≤ y)}, whose only free variable is y. Neither the
original substitution σ nor its restriction σ |Σ(φ) are {y}-admissible for φ , because
both have y as a free variable. The original substitution σ also would not be {x}-
admissible for ψ

def≡ (x > 2∧ p(y)∧ q), because its replacement for the predicate
symbol q that occurs in ψ has x as a free variable.

For example, this uniform substitution σ = {a 7→ x′ = 5, p 7→ (y≤ 5)} succeeds:

US
p→ [a]p

y≤ 5→ [x′ = 5]y≤ 5

It uses the uniform substitution mechanism in Fig. 18.1 and also y 6∈ BV(x′ = 5):

σ(p→ [a]p)≡ σ(p)→ σ([a]p)≡ σ(p)→ [σ(a)]σ(p)

≡σ p→ [σa]σ p≡ y≤ 5→ [x′ = 5]y≤ 5

In addition to the previous examples, we consider a few very insightful ones. The
uniform substitution σ = {p(·) 7→ (· ≥ 0), q 7→ (y < 0)} works fine, because it only
introduces free variable y in the context ∀x_ in which y is not bound:

US
∀x(p(x)∨q)↔ (∀x p(x))∨q

∀x(x≥ 0∨ y < 0)↔ (∀x(x≥ 0))∨ y < 0

The application of uniform substitution according to Fig. 18.1 is straightforward:

σ(∀x(p(x)∨q)↔ (∀x p(x))∨q)≡ σ(∀x(p(x)∨q))↔ σ((∀x p(x))∨q)

≡∀x(σ(p(x)∨q))↔ σ(∀x p(x))∨σ(q)≡ ∀x(σ(p(x))∨σ(q))↔∀xσ(p(x))∨σ(q)

≡∀x(x≥ 0∨ y < 0)↔ (∀x(x≥ 0))∨ y < 0

This substitution uses that x is not free in the replacement for q.
In contrast, uniform substitution σ = {p(·) 7→ (· ≥ 0), q 7→ (x < 0)} clashes as

its replacement for q introduces free variable x in a context ∀x_ in which it is bound:

18.5 Uniform Substitution 545

clash
∀x(p(x)∨q)↔ (∀x p(x))∨q

∀x(x≥ 0∨ x < 0)↔ (∀x(x≥ 0))∨ x < 0

This is soundness-critical, because the left formula is valid (every number is either
greater-or-equal or smaller than 0) but the right formula is not, because it is equiv-
alent to x < 0, which imposes a condition on the present value of x. The uniform
substitution application σ(∀x(p(x)∨ q)) clashes, because σ is not {x}-admissible
for p(x)∨q on account of the replacement x < 0 for q having free variable x which
would already be bound by the ∀x quantifier. Of course, this makes sense, because a
disjunction can only be pulled outside the scope of a quantifier if it does not actually
use the quantified variable. That is precisely what the premise expresses. Indeed, the
premise can be proved from other quantifier axioms.

Observe that it is crucial for soundness that even an occurrence of p(x) in a
context where x is bound does not permit free variable x to be mentioned in the
replacement except in the places of the · placeholder. For example, uniform substi-
tution σ = {c() 7→ 0, p(·) 7→ (· ≥ x)} clashes when used on the assignment axiom
[:=], because the replacement for p(·) would introduce the extra free variable x in a
context [x :=0]_ in which x is bound:

clash
[x :=c()]p(x)↔ p(c())

[x :=0]x≥ x↔ 0≥ x

The premise is valid (axiom [:=]) but the conclusion is not, because the postcondi-
tion x≥ x of the assignment is valid, but the right-hand side 0≥ x is not. The reason
is that the free variable x in the replacement (· ≥ x) for p(·) would refer to the vari-
able bound by x :=0 in the substitute for p(x) but would refer to a free variable x in
the substitute for p(c()).

Uniform substitutions also need to pay attention when substituting in the argu-
ment. For example, σ = {c() 7→ y2, p(·) 7→ [(y := ·+ y)∗](· ≥ y)} clashes when ap-
plied to the assignment axiom [:=] while substituting the replacement y2 for c() for
the argument placeholder · in the replacement for p(c()), since that would introduce
free variable y into a context [(y := ·+ y)∗](· ≥ y) where it is bound:

clash
[x :=c()]p(x)↔ p(c())

[x :=y2][(y :=x+ y)∗](x≥ y)↔ [(y :=y2 + y)∗](y2 ≥ y)

This is, of course, crucial for soundness because the left loop always adds to y the
same value in each round (the square of the initial value of y) while the right loop,
instead, always adds to y the square of the most recent value of y.

18.5.4 Uniform Substitution Lemmas

The key to understanding why the rule US is sound is the uniform substitution
lemma that relates the syntactic change that a uniform substitution makes to a cor-

546 18 Axioms & Uniform Substitutions

responding semantic reinterpretation called adjoint interpretation. The idea is that
instead of syntactically replacing a predicate symbol p with another formula when
forming the result σ(φ) of a uniform substitution σ , one might just as well modify
the interpretation of the predicate symbol p. The uniform substitute σ(φ) of a for-
mula is true in state ω in an interpretation I iff the formula φ itself is true in ω in its
adjoint interpretation σ∗ω I. The semantic modification of adjoint interpretations has
the same effect as the syntactic uniform substitution but on the semantics.

For example, recall that to prove (18.5) from (18.4) we used US with substitution

σ = {c() 7→ x2 1, p(·) 7→ (· ≥ 0)} (18.6*)

US
[x :=c()]p(x)↔ p(c())

[x :=x2 1]x≥ 0↔ x2 1≥ 0

Instead of syntactically substituting (· ≥ 0) for p(·) everywhere, we could have
reinterpreted predicate symbol p in a different way, namely such that σ∗ω I(p) holds
true iff its argument is greater-or-equal 0. And instead of syntactically substituting
x2 1 for c() everywhere, we could have reinterpreted function symbol c() such
that σ∗ω I(c()) has the value that x2 1 has in state ω . In the so-modified adjoint
interpretation σ∗ω I the original [x :=c()]p(x)↔ p(c()) now has exactly the same
meaning that the substituted formula [x :=x2 1]x≥ 0↔ x2 1≥ 0 has in I.

Since the exact details of this construction are inconsequential for the purposes
of this textbook, we refer to previous work [8] for a precise construction of the ad-
joint interpretation σ∗ω I for I,ω in this way. The only important point is that adjoint
interpretations enable the following uniform substitution lemma, whose proof can
be found in previous work [8, Lemma 24].

Lemma 18.3 (Uniform substitution for formulas). The uniform substitution

σ and its adjoint interpretation σ∗ω I for I,ω have the same semantics for all

formulas φ :

ω ∈ I[[σ(φ)]] iff ω ∈ σ∗ω I[[φ]]

18.5.5 Soundness

Equipped with the uniform substitution lemma, which equates the semantics of a
uniform substitute with the semantics of the original in an adjoint interpretation, it
is now easy to establish the soundness of proof rule US (Theorem 18.1). Of course,
the uniform substitution proof rule US is only applicable if its uniform substitution
is defined, so respects its admissibility conditions.

18.6 Axiomatic Proof Calculus for dL 547

Theorem 18.1 (Uniform substitution). The proof rule US is sound:

US
φ

σ(φ)

Proof. The proof [8] uses that truth of the substituted formula is equivalent to truth
of the original formula in the adjoint interpretation to conclude that validity of the
premise in all interpretations implies validity in the adjoint interpretation so validity
of the conclusion. Let the premise φ of rule US be valid, i.e., ω ∈ I[[φ]] for all states
ω and for all interpretations I of the program, predicate, and function symbols.
To show that the conclusion is valid, consider any state ω and any interpretation
I and show that ω ∈ I[[σ(φ)]]. By Lemma 18.3, the uniformly substituted formula
σ(φ) is true in state ω of interpretation I iff the original formula φ is true in state
ω of the adjoint interpretation σ∗ω I that has already been modified according to
the substitution σ , that is ω ∈ I[[σ(φ)]] iff ω ∈ σ∗ω I[[φ]]. Now ω ∈ σ∗ω I[[φ]] holds,
because ω ∈ I[[φ]] for all states ω and interpretations I, including for state ω and
interpretation σ∗ω I, by premise. ⊓⊔

The other missing ingredient for the uniform substitution proof rule US is the
exact definition of the free and bound variables, which is needed in the definition
of admissibility (Definition 18.7). Those were already reported in Sect. 5.6.6. The
only addition is the definition of free and bound variables for the newly added func-
tion and predicate symbols as well as program constant symbols. For function and
predicate symbols this is just a matter of asking the argument terms:

FV(f (e1, . . . ,ek)) = FV(e1)∪·· ·∪FV(ek)

FV(p(e1, . . . ,ek)) = FV(e1)∪·· ·∪FV(ek)

BV(p(e1, . . . ,ek)) = /0

The interpretations of a program constant symbol a can read and write any variable
from the set V of all variables but is not guaranteed to write any particular variable
so has no must-bound variables:

FV(a) = V

BV(a) = V

MBV(a) = /0

18.6 Axiomatic Proof Calculus for dL

A purely axiomatic formulation of the differential dynamic logic axiomatization [8]
is shown in Fig. 18.2. The axioms listed in Fig. 18.2 are axioms, so concrete dL for-

548 18 Axioms & Uniform Substitutions

Fig. 18.2 Differential dynamic logic axioms and proof rules

[:=] [x :=c()]p(x)↔ p(c())

[?] [?q]p↔ (q→ p)

[∪] [a∪b]p(x̄)↔ [a]p(x̄)∧ [b]p(x̄)

[;] [a;b]p(x̄)↔ [a][b]p(x̄)

[∗] [a∗]p(x̄)↔ p(x̄)∧ [a][a∗]p(x̄)

〈·〉 〈a〉p(x̄)↔¬[a]¬p(x̄)

K [a](p(x̄)→ q(x̄))→ ([a]p(x̄)→ [a]q(x̄))

I [a∗]p(x̄)↔ p(x̄)∧ [a∗](p(x̄)→ [a]p(x̄))

V p→ [a]p

G
p(x̄)

[a]p(x̄)

∀ p(x)

∀x p(x)

MP
p→ q p

q

mulas, and not axiom schemata that stand for an infinite collection of formulas. The
axioms are sound, i.e., valid dL formulas. Besides the cases we already discussed so
far, these axioms are formed by using program constant symbols a and b as concrete
hybrid programs and by using p(x̄) as a concrete formula for the postconditions that
have no admissibility requirement. During uniform substitution with rule US, those
program constant symbols a and b and the formulas p(x̄) and q(x̄) in the axioms
can, in turn, be substituted with arbitrary HPs and dL formulas, respectively.

The only exception is the test axiom [?], which might have been phrased as either
of the following two dL formulas:

[?q]p↔ (q→ p) (18.9)

[?q(x̄)]p(x̄)↔ (q(x̄)→ p(x̄)) (18.10)

It looks as if the second formulation (18.10) would be more flexible, because its
explicit mention of the list of all variables in p(x̄) and q(x̄) make it obvious that
the axiom can be instantiated with any arbitrary dL formulas for the test ?q(x̄) and
postcondition p(x̄). However, the first formulation (18.9) is sufficient, because any
arbitrary dL formulas can already be substituted in for the arity 0 predicate symbols
p and q as well, since no variables are bound anywhere in (18.10), so its intersection
with any arbitrary set of free variables of any substitution will always be empty.

Soundness of the axioms and proof rules in Fig. 18.2 follows from soundness of
the corresponding axiom schemata and proof rule schemata in Chap. 5 and Chap. 7
from Part I of this textbook. The concrete axioms in Fig. 18.2 are instances of the
previous axiom schemata, even if their soundness would have been easier to prove
directly [8]. Implementing the axioms of Fig. 18.2 in a theorem prover is now
straightforward, because each axiom is just a single concrete dL formula that the

18.7 Differential Axioms 549

prover needs to remember. It can be shown that the uniform substitution proof rule
US can prove all instances of these axioms that are required for completeness [8].

18.7 Differential Axioms

The axiomatic approach discussed in this chapter is not limited to logically inter-
nalizing the CPS reasoning principles from Part I but works equally well elsewhere,
including the proof principles for differential equations from Part II. The key ingre-
dient enabling such an approach for differential equations is the differential forms
that we have already gotten to know in Part II. A purely axiomatic formulation of
the differential equation axioms and axioms for differentials of dL [8] is shown in
Fig. 18.3. These axioms are special instances of the axiom schemata from Part II,
which explains their soundness.

Fig. 18.3 Differential equation axioms and differential axioms

DW [x′ = f (x)&q(x)]p(x)↔ [x′ = f (x)&q(x)](q(x)→ p(x))

DI

[x′ = f (x)&q(x)]p(x)↔ [?q(x)]p(x)

)
← (q(x)→ [x′ = f (x)&q(x)](p(x))′)

DC

[x′ = f (x)&q(x)]p(x)↔ [x′ = f (x)&q(x)∧ r(x)]p(x)

)
← [x′ = f (x)&q(x)]r(x)

DE [x′ = f (x)&q(x)]p(x̄)↔ [x′ = f (x)&q(x)][x′ := f (x)]p(x̄)

DG [x′ = f (x)&q(x)]p(x)↔∃y [x′ = f (x),y′ = a(x) · y+b(x)&q(x)]p(x)

DS [x′ = c()&q(x)]p(x)↔∀t≥0

(∀0≤s≤t q(x+ c()s))→ [x :=x+ c()t]p(x)

)

+′ (f (x̄)+g(x̄))′ = (f (x̄))′+(g(x̄))′

 ′ (f (x̄) g(x̄))′ = (f (x̄))′ (g(x̄))′

·′ (f (x̄) ·g(x̄))′ = (f (x̄))′ ·g(x̄)+ f (x̄) · (g(x̄))′

/′ (f (x̄)/g(x̄))′ =

(f (x̄))′ ·g(x̄) f (x̄) · (g(x̄))′

)
/g(x̄)2

c′ (c())′ = 0 (for numbers or constants c())

x′ (x)′ = x′ (for variable x ∈ V)

The structural advantages of uniform substitutions are exploited in the axioms
listed in Fig. 18.3. Since the arity 1 function symbols a and b in the differential
ghost axiom DG receive argument x, their respective replacements also have special
permission to depend on x. Their uniform substitution replacements can, thus, also
have free variable x and any other variable but not the new differential ghost y,
because y is bound by y′ = a(x) · y+ b(x). The replacements for a(x) and b(x) in

550 18 Axioms & Uniform Substitutions

axiom DG can, thus, overall mention any variable other than the differential ghost y.
It is crucial for soundness (Chap. 12) that the replacements for a(x) and b(x) do not
have free variable y, because the new differential equation y′ = a(x) · y+b(x) is not
otherwise guaranteed to have a solution of sufficient duration when y′ = a(x) · y+
b(x) is not actually linear since the replacements for a(x) or b(x) secretly depend on
y. Unlike for another variable z, the axiom DG needs to provide special permission
in the form a(x) and b(x) to depend on x, because x is bound by x′ = f (x).

Observe how much easier it is to establish the soundness of the concrete axiom
DG with its concrete mentions of free variables compared to establishing what pre-
cise relationships of variable occurrences are soundly acceptable in the schematic
instances of DG. The uniform substitution mechanism in the form of rule US takes
care of these generalization and instantiation questions once and for all, as opposed
to on a case-by-case basis for each axiom schema again.

Looking through the axioms in Fig. 18.3, it is also important that x′ is not
free in the postcondition p(x) of the differential invariant axiom DI, because x′

is guaranteed to equal f (x) in [x′ = f (x)&q(x)]p(x) but not in [?q(x)]p(x). In-
deed, uniform substitution maintains this during instantiation, because x′ is bound
by x′ = f (x)&q(x) so cannot occur in the replacements for the postcondition p(x)
without special permission. This is unlike for axiom DW, where the postcondition
p(x) also disallows a mention of x′ for simplicity even if it would have been per-
fectly sound, because all occurrences of p(x) are in the scope of [x′ = f (x)&q(x)].

Similarly, it is important for the solution axiom DS to not have x′ in the post-
condition p(x), because otherwise an additional assignment [x′ :=c()]p(x) would
be needed instead of p(x) on the right-hand side to propagate the effect that the
differential equation x′ = c()&q(x) has on x′. Of course, it is even more important
for the replacement of the arity 0 constant symbol c() in the differential equation to
not have x as a free variable, because x+ c()t would not otherwise be the correct
solution of the differential equation x′ = c(). The constant differential equation ax-
iom DS is weaker than the full solution axiom schema [′], because it only works for
differential equations with constant (symbolic) right-hand side. But axiom DS can
be used along with a differential ghost DG to introduce time t ′ = 1 and with dif-
ferential cuts DC to introduce and then prove by DI the solutions of other solvable
differential equations [8] similar to the approach discussed in Chap. 12.

The arity 0 function symbol c() in axiom c′ cannot be substituted with formulas
that mention variables, because, similarly to a quantifier, the differential operator
(. . .)′ does not accept the introduction of variables. The reason why the differential
operator (. . .)′ does not allow any new variables to be introduced during uniform
substitution is that the value of (xy)′ equals the value of x′y+ xy′ and depends on
x,x′,y,y′, which is why it is important to know all free variables of any (. . .)′ term.

In particular, the arity 0 function symbol c() in axiom c′ can be replaced by
constant terms like 5 · 2 or 5+ b() for an arity 0 (constant) function symbol such
as b() for braking force, but not by a term like 5+ x with a new variable whose
differential would indeed depend on the value of variables x and x′.

This is to be contrasted with axiom +′ whose occurrence of f (x̄) and g(x̄) can
be replaced by any arbitrary terms, because they already mention all variables x̄,

18.9 Appendix: Uniform Substitution of Rules and Proofs 551

so no new variables remain to be introduced during uniform substitution. Indeed,
differentials act as specified in axioms +′, ′,·′,/′ on the arithmetic operations for
any terms f (x̄),g(x̄), but the differential 0 as specified in axiom c′ only applies to
terms that are actually constant and cannot have any free variables. Uniform substi-
tutions make it very easy to distinguish between the two cases just by the syntactic
expressions used in the respective concrete axiom formulas.

18.8 Summary

The main insight of this chapter is that uniform substitutions provide a simple and
modular way of implementing differential dynamic logic reasoning for hybrid sys-
tems. Based on a straightforward recursive implementation of uniform substitution,
the soundness-critical part of a theorem prover reduces to mere copy-and-paste of
the concrete formulas adopted as axioms. The resulting proof calculus continues to
be sound and complete relative to any differentially expressive logic [8], including
first-order logic of differential equations [5, 6] and discrete dynamic logic [6].

Theorem 18.2 (Axiomatization of dL). The uniform substitution dL calculus

listed in Figs. 18.2 and 18.3 is a sound and complete axiomatization of hybrid

systems relative to any differentially expressive logic L, i.e., every valid dL

formula is provable in the dL calculus from L tautologies.

This succinct approach explains the small soundness-critical core of the uniform
substitution prover KeYmaera X [3] and why it was relatively easy to cross-verify it
[1] both in Isabelle/HOL [4] and in Coq [10]. In fact, with a minor generalization of
the set of symbols that uniform substitutions can instantiate, it is easy to derive the
contextual equivalence rewriting rules (Lemma 6.2) from uniform substitution [8]
as well, which are featured prominently to apply axioms in context. The Appendix
explores that all other proof rules of dL are not schematic but axiomatic proof rules

consisting of concrete dL formulas instantiated by uniform substitutions [8].

18.9 Appendix: Uniform Substitution of Rules and Proofs

Uniform substitutions are not limited to be used on axioms, but can also be used on
proof rules

φ1 . . . φn

ψ

or entire proofs that conclude ψ from the premises φ1 to φn (likewise for sequents).
We just need to use the same uniform substitution on the premises that we use for
the conclusion. By Lemma 18.3, using the same uniform substitution everywhere
semantically corresponds to fixing and using the same interpretation I everywhere.

552 18 Axioms & Uniform Substitutions

An inference or proof rule is locally sound iff its conclusion is valid in any in-
terpretation I in which all its premises are valid. All locally sound proof rules are
sound, because if all premises are valid in all interpretations, then local soundness
makes the conclusion valid in each of the interpretations. But locally sound proof
rules can also be soundly substituted uniformly, which preserves local soundness.

Theorem 18.3 (Uniform substitution of rules). All uniform substitution in-

stances (with FV(σ) = /0) of locally sound inferences are locally sound:

φ1 . . . φn

ψ
locally sound implies

σ(φ1) . . . σ(φn)

σ(ψ)
locally sound

The idea behind the proof of Theorem 18.3 [8] is that, by Lemma 18.3, the truth
of the right premises σ(φi) in a state ω and interpretation I is equivalent to the
truth of the corresponding left premises φi in ω and adjoint interpretation σ∗ω I. By
local soundness of the left inference, if all premises φi are valid in interpretation
σ∗ω I, then so is its conclusion ψ , which, by Lemma 18.3, implies that the substituted
conclusion σ(ψ) is valid in I. The assumption that FV(σ) = /0 is used to ensure that
the same argument works in one adjoint interpretation σ∗ω I regardless of the state ω .
If n = 0 so that ψ has a proof, then this theorem also holds when FV(σ) 6= /0, since
soundness and local soundness are equivalent notions for n = 0 premises.

Theorem 18.3 explains how all proof rules of dL (except US) are axiomatic proof

rules that are merely pairs of concrete dL formulas. For example, generalization rule

G
p(x̄)

[a]p(x̄)

is a pair of concrete dL formulas. Rule G can be instantiated with Theorem 18.3 to:

x2 ≥ 0

[x :=x+1;(x′ = x∪ x′ = 2)]x2 ≥ 0

using the uniform substitution

σ = {a 7→ x :=x+1;(x′ = x∪ x′ = 2), p(x̄) 7→ x2 ≥ 0}

All of a sudden, the only proof rule that needs an implementation as an algo-
rithm is the uniform substitution mechanism itself that is used in rule US and The-
orem 18.3. All other axioms and axiomatic proof rules are just concrete data.

Exercises

18.1. Give the result of applying the uniform substitution rule US with substitution
σ = {a 7→ {x′′ = g&x≥ 0}, b 7→?(x = 0);v := cv, p(x̄) 7→ 2gx≤ 2gH v2} to

18.9 Appendix: Uniform Substitution of Rules and Proofs 553

the following formulas, respectively:

[a∪b]p(x̄)↔ [a]p(x̄)∧ [b]p(x̄)
[a;b]p(x̄)↔ [a][b]p(x̄)

[a∗]p(x̄)↔ p(x̄)∧ [a][a∗]p(x̄)
〈a〉p(x̄)↔¬[a]¬p(x̄)

[a∗]p(x̄)↔ p(x̄)∧ [a∗](p(x̄)→ [a]p(x̄))

18.2 (Clash or not). The uniform substitution proof rule US checks that the substi-
tution σ has no replacements that would introduce a free variable in a context where
that variable is bound. List the conclusion that rule US produces when being applied
with the given substitution on the following examples or explain why and how US
clashes, and explain whether it is soundness-critical that US clashes:

[x := c()]p(x)↔ p(c()) σ = {c() 7→ 0, p(·) 7→ (·= x)}
[x := c()]p(x)↔ p(c()) σ = {c() 7→ y+1, p(·) 7→ [y :=1;(y := ·)∗]y≤1}
[x′ = c()]p(x)↔∀t≥0 [x :=x+ t · c()]p(x) σ = {c() 7→ x, p(·) 7→ (· ≥ 0)}

18.3 (Make it clash). Let p an arity 0 predicate symbol. Give a uniform substitution
σ for which it is necessary for soundness that US clashes when being applied to

p→ [a]p

Can you also give a uniform substitution that clashes when applied to the following?

[a;b]p(x̄)↔ [a][b]p(x̄)

18.4. Give the result of applying uniform substitution rule US with substitution
σ = {c() 7→ x · y2 +1, p(·) 7→ (y+ · ≥ z)} on the following formulas or explain
why and how US clashes:

[u :=c()]p(u)↔ p(c())

[x :=c()]p(x)↔ p(c())

[y :=c()]p(y)↔ p(c())

[z :=c()]p(z)↔ p(c())

[u :=c()]p(u)↔∀u(u = c()→ p(u))

[x :=c()]p(x)↔∀x(x = c()→ p(x))

[y :=c()]p(y)↔∀y(y = c()→ p(y))

[z :=c()]p(z)↔∀z(z = c()→ p(z))

If σ clashes, give a “similar” uniform substitution that would not clash.

18.5. What is the result of applying rule US to the [:=] axiom with the substitution
σ = {c() 7→ x+y, p(·) 7→ [z := ·+1;(z := z+ ·)∗·+1≥ 0]}? For each of the follow-

554 18 Axioms & Uniform Substitutions

ing formulas, either say which uniform substitution proves it by rule US from axiom
[:=], or explain why no such uniform substitution exists.

[x := x]x2 ≥ 2x↔ (x)2 ≥ 2(x)

[x :=y+1][(z := z+ x)∗]x2 ≥ z↔ [(z := z+ y+1)∗](y+1)2 ≥ z

[x :=2x][(z := z+ x)∗]x2 ≥ z↔ [(z := z+2x)∗](2x)2 ≥ z

[x :=2x][(z := z+ x;z := z+ x)∗]x2 ≥ z↔ [(z := z+2x;z := z+ x)∗](2x)2 ≥ z

[x := z+1][(z := z+ x)∗]x2 ≥ z↔ [(z := z+ z+1)∗](z+1)2 ≥ z

[x := z][x′ = 2x]x≥ 0↔ [z′ = 2z]z≥ 0

[x := z+1][x′ = 2x]x≥ 0↔ [z′ = 2z]z≥ 0

18.6 (Local soundness). Theorem 18.3 shows that locally sound proof rules can be
uniformly substituted. Show that all proof rules of dL except US are locally sound.

18.7 (Renaming). Uniform substitutions are perfect for substituting formulas for
predicate symbols, terms for function symbols, and programs for program constant
symbols. Yet, no matter how many uniform substitutions we try to use on the assign-
ment axiom [:=], it will always be the variable x that it assigns to. The only other
axioms that even mention variable names are the differential variable axiom x′, the
quantifier generalization rule ∀, and the differential equation axioms (which resolve
this question by generalizing to systems of differential equations, however).

In order to prove instances of these axioms with other variable names, it would
be helpful to have a proof rule for renaming. Renaming can be done in at least two
different ways. Uniform renaming renames a variable x to a variable y uniformly
everywhere. Bound renaming only renames one bound occurrence of a variable x

to y (and, of course, consistently renames occurrences of x within the scope of this
bound occurrence to y), which can be used to prove ∀x p(x)↔ ∀y p(y). Uniform
renaming, for example, proves

UR
x≥ 0∧∀x(x2 ≥ 0)→ [x :=x+1]x > 0

y≥ 0∧∀y(y2 ≥ 0)→ [y :=y+1]y > 0

Bound renaming, instead, proves

BR
x≥ 0∧∀x(x2 ≥ 0)→ [x :=x+1]x > 0

x≥ 0∧∀x(x2 ≥ 0)→ [y :=x+1]y > 0

Give a precise construction defining both styles of renaming proof rules and care-
fully identify all requirements for soundness. If you are up for a challenge, prove
both rules sound.

18.9 Appendix: Uniform Substitution of Rules and Proofs 555

References

[1] Brandon Bohrer, Vincent Rahli, Ivana Vukotic, Marcus Völp, and André
Platzer. Formally verified differential dynamic logic. In: Certified Programs

and Proofs - 6th ACM SIGPLAN Conference, CPP 2017, Paris, France, Jan-

uary 16-17, 2017. Ed. by Yves Bertot and Viktor Vafeiadis. New York: ACM,
2017, 208–221. DOI: 10.1145/3018610.3018616.

[2] Alonzo Church. Introduction to Mathematical Logic. Princeton: Princeton
University Press, 1956.

[3] Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp, and André
Platzer. KeYmaera X: an axiomatic tactical theorem prover for hybrid sys-
tems. In: CADE. Ed. by Amy Felty and Aart Middeldorp. Vol. 9195. LNCS.
Berlin: Springer, 2015, 527–538. DOI: 10.1007/978-3-319-21401-
6_36.

[4] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL

— A Proof Assistant for Higher-Order Logic. Vol. 2283. LNCS. Berlin:
Springer, 2002.

[5] André Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reas.

41(2) (2008), 143–189. DOI: 10.1007/s10817-008-9103-8.
[6] André Platzer. The complete proof theory of hybrid systems. In: LICS. Los

Alamitos: IEEE, 2012, 541–550. DOI: 10.1109/LICS.2012.64.
[7] André Platzer. A uniform substitution calculus for differential dynamic logic.

In: CADE. Ed. by Amy Felty and Aart Middeldorp. Vol. 9195. LNCS. Berlin:
Springer, 2015, 467–481. DOI: 10.1007/978-3-319-21401-6_32.

[8] André Platzer. A complete uniform substitution calculus for differential dy-
namic logic. J. Autom. Reas. 59(2) (2017), 219–265. DOI: 10.1007/s108
17-016-9385-1.

[9] André Platzer and Jan-David Quesel. KeYmaera: a hybrid theorem prover for
hybrid systems. In: IJCAR. Ed. by Alessandro Armando, Peter Baumgartner,
and Gilles Dowek. Vol. 5195. LNCS. Berlin: Springer, 2008, 171–178. DOI:
10.1007/978-3-540-71070-7_15.

[10] The Coq development team. The Coq proof assistant reference manual. Ver-
sion 8.0. LogiCal Project. 2004.

https://doi.org/10.1145/3018610.3018616
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1109/LICS.2012.64
https://doi.org/10.1007/978-3-319-21401-6_32
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/978-3-540-71070-7_15

Chapter 19

Verified Models & Verified Runtime Validation

Synopsis This chapter provides an important twist on cyber-physical systems anal-
ysis. Without any doubt, formal verification provides crucial safety information for
CPSs with exhaustive coverage of all the infinitely many possible behaviors that no
finite amount of testing could ever provide. The catch is that the safety result then
covers all behavior of the verified CPS models, but only provides safety guarantees
for the actual CPS implementation to the extent that this implementation fits the
model. Obtaining good enough models of physics is a nontrivial challenge in and
of itself. This chapter provides a systematic way to transfer the safety guarantees
about a CPS model to safety results for the actual implementation with the help of
provably correct runtime compliance monitors. When run on the CPS implementa-
tion, these runtime monitors validate the actual execution in a verified way against
the verified models that were proved safe previously.

19.1 Introduction

Since cyber-physical systems provide so many interesting control challenges of sub-
tle interactions with the uncertainties and complexities of the physical world, it is
quite nontrivial to get them right. Due to the large number of ways in which the
behavior of the relevant systems can interact, full coverage is best achieved with the
support of formal verification and validation techniques. In order to have the ben-
efit of full coverage of safety for all possible behaviors, it is, of course, necessary
to provide a model of the system under scrutiny, including a model not just of its
controllers but also the relevant part of physics.

Models of reality come with certain inevitable challenges. The world is a com-
plicated place, which implies that our models of the world will either also be ex-
ceedingly complex or else focus on certain simpler fragments. The trick is to focus
exclusively on the relevant aspects of reality and devise a model of the physical
dynamics that makes use of simplifying abstractions, including nondeterministic
overapproximations, as much as possible. Just recall how hybridness and nonde-

557© Springer International Publishing AG, part of Springer Nature 2018

A. Platzer, Logical Foundations of Cyber-Physical Systems,

https://doi.org/10.1007/978-3-319-63588-0_19

https://doi.org/10.1007/978-3-319-63588-0_19
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63588-0_19&domain=pdf

558 19 Verified Models & Verified Runtime Validation

terminism helped simplify the bouncing-ball model in Chap. 4 and Sect. 11.12 by
giving it more behavior than realistically possible but in ways that make it easier to
describe. What is relevant and how do we make sure that the model covers reality?

When we are done with a proof of safety, we have the most exhaustive guarantee
for the particular question about the particular model in the differential dynamic
logic formula that we proved. While this proves that model to be safe, it only verifies
the actual CPS implementation to the extent that this implementation fits the model.
How can we establish that it really does? More generally, how can we have the
model’s safety result transfer to the safety of the actual implementation?

As we have already seen in Part I, we can hardly squeeze an actual self-driving
car into a logical modality in a formula and expect to prove any meaningful prop-
erties about this mix of a syntactic expression and a physical object. Besides, any
such attempt would still be missing out on the physical model of relevance for the
car’s motion and the behavior of its environment.

Instead, we will take a more subtle route and produce a monitor program to be
run on the CPS implementation that will check all the time whether the present
behavior fits what the model in the safety proof assumed, which ensures that the
safety result about the CPS model applies to the present reality. But that monitor
will be accompanied by a proof that it performs this checking in provably correct
ways such that a successful response from the monitor program implies that the
specific behavior of the concrete implementation is safe.

While a substantially more detailed technique can be found in previous work [5],
this chapter emphasizes a simple intuitive approach to overcoming the challenges of
model mismatches. The most important learning goals of this chapter are:

Modeling and Control: The crucial lesson of this chapter is that there are in-

evitable differences of models compared to reality, because it is infeasible or
even impossible to model all complexities of reality exactly. Fortunately, it
also is not necessary to model all of reality to make predictions about a cyber-
physical system affecting only a part of the world! But even then, there are
nontrivial challenges in making sure that the models provide an adequate level
of detail. This chapter investigates systematic ways of ensuring that the real
system complies with the model, or, vice versa, the model fits reality. Another
sideline will be a few insights about the impact that safety considerations have
on architectural design, because clever system architectures simplify the safety
argument by helping to reduce safety to a smaller subsystem.

Computational Thinking: Relationships between truth and proof are of funda-
mental significance in logic and are the backbone of soundness and complete-
ness considerations. A unique twist in cyber-physical systems is the fundamen-
tal challenge that, despite all soundness in the proof calculus, there can still be
discrepancies between proofs in a model and truth in reality. While a sound
proof makes perfect guarantees about the system behavior in the model, these
guarantees only apply to the real system if accurate models of the system can
be obtained. For CPS, this includes the daunting task of finding models not only
of the controllers but also of the physical dynamics. This problem is fundamen-
tal and cannot be overcome by shifting to more precise models. Seemingly, the

19.2 Fundamental Challenges with Inevitable Models 559

problem might be sidestepped by working with CPS data and experiments, but
those have no predictive power without again assuming a corresponding model
of reality, which leads to a vicious circle of assumptions either way.
This chapter gives a high-level account of a technique called ModelPlex [5],
which provides a way of cutting through this Gordian knot of models and as-
sumptions by combining offline proof with verifiably correct online monitoring.
By turning a theorem prover upside down, ModelPlex generates provably cor-
rect monitor conditions that, if checked to hold at runtime, are provably guar-
anteed to imply that the offline safety verification results about the CPS model
apply to the present run of the actual CPS implementation so that it is prov-
ably safe. This results in a correct-by-construction approach leveraging dynamic
contracts to transfer proofs about models to CPS implementations.

CPS Skills: This chapter provides ways of taming CPS complexity by making it
possible to isolate safety-critical parts and by providing disciplined ways of
working with simplified models without losing the connection to the real CPS.
It introduces the important pragmatic concept of runtime validation with online
monitors that check the behavior of the real CPS implementation at runtime.
Their primary purpose is to check for deviations of predictions about the be-
havior of the system compared to the actual observed runs and stop the system
safely whenever potentially dangerous deviations are detected.

CT

M&C CPS

proof in a model vs. truth in reality
tracing assumptions
turning provers upside down
correct-by-construction
dynamic contracts
proofs for CPS implementations

models vs. reality
inevitable differences
model compliance
architectural design

tame CPS complexity
runtime validation
online monitor
prediction vs. run

19.2 Fundamental Challenges with Inevitable Models

In differential dynamic logic [7–9], models can be expressed directly as a hybrid
program with its discrete controller actions and continuous differential equations

560 19 Verified Models & Verified Runtime Validation

that interact according to the program operators. After specifying the correctness
properties of interest in differential dynamic logic, this logic provides rigorous rea-
soning techniques for proving the correctness properties as we saw in Part I for ele-
mentary CPS and in Part II for advanced CPS with sophisticated continuous dynam-
ics. Once we are done with such a proof, we have achieved a major advancement of
our understanding of the system and have obtained a rigorous safety argument why
the controllers keep the CPS safe according to the dL formula.

Indubitably, such a rigorous safety result provides a lot of confidence in the cor-
rect design of the system, especially since it is even accompanied by an undeniable
proof as a safety certificate. The more nuanced subtlety, however, is that we need
to make sure we have phrased the dL formula correctly. This formula contains the
preconditions, controller, physical model, and postconditions. For the sake of illus-
tration, consider a typical dL formula of this shape:

A→ [(ctrl;plant)∗]B (19.1)

Asking René Descartes for help with his skepticism, what could still go wrong even
after we have a proof of (19.1)? What would happen if we wrote down the wrong
postcondition B? If we ask the wrong question, we will get a perfect answer but
for a question we are not interested in. It is, thus, of paramount importance that we
review postcondition B carefully to make sure it really expresses all safety-critical
properties of significance for the system.

What would happen if we used the wrong precondition A? Unlike in postcondi-
tion B, we cannot have forgotten a crucial condition in the precondition A, because
the dL formula (19.1) would otherwise just not have a proof. What might happen,
still, is that the precondition A on the initial state is overly conservative, so that we
cannot turn the CPS on safely in as many circumstances as we would like. That
is a pity but at least not unsafe, except when A is never true, because it contains
a contradiction, in which case (19.1) is vacuously true, because its assumption is
impossible. It is, thus, helpful to prove satisfiability of all preconditions as a sanity
check.

Note 80 (Impossible assumptions) Whenever you make an assumption in your
model or safety property, it is a good idea to check whether that assumption is
possible. It is an even better idea to prove that it is at least satisfiable, so there
is a state in which it is true.

What else could have gone wrong in phrasing the safety conjecture (19.1)? We
could have described the controller ctrl incorrectly. Or, rather, there could have been
an important discrepancy between what our controller model ctrl says it does and
what an actual software implementation or low-level microcontroller really does.
Differential refinement logic [3, 4] is an extension of differential dynamic logic that
provides a systematic approach for relating more abstract controllers with safety
proofs to more concrete controllers with additional efficiency properties that inherit
safety for free. As we saw in Part I, more abstract models are often easier to verify
than models containing full detail. If we were to choose a very different implementa-

19.2 Fundamental Challenges with Inevitable Models 561

tion platform or, say, the additional semantic ambiguities of a low-level C program,
we would still need some way of establishing a guaranteed link between what was
verified in (19.1) and the code that is really running on the CPS in the end.

Finally, and most critically, we could have gotten the physical model plant wrong
in (19.1). What would happen then? Well, then our CPS would be in trouble. If we
accidentally wrote down the physical model of a train and prove the dL formula in
(19.1), we cannot expect it to control a rocket satisfactorily, because their physical
dynamics are so different on account of the noticeable absence of rails in space. But
even if we got the basic principles of the physical model right, yet missed some of
its crucial aspects, then our proof of (19.1) would have limited predictive power for
reality.

For the controller ctrl, the savior might be to move it closer to the implementation
with increasingly fine-grained details, possibly absorbing the verification complex-
ity shock with refinement proof techniques [4]. Maybe the same approach would
help for the physical model plant? Well it would. And then again it would not!
On the one hand, safety results about increasingly higher-fidelity models improve
the range of behaviors where the safety results apply to reality. On the other hand,
even higher-fidelity models are still just that: models of reality. Even a model with
Schrödinger’s equation of quantum mechanics [10] is still only a model of reality,
and not even a very useful one for describing and predicting the motion of cars on the
road, because quantum mechanics is more relevant for particles that are significantly
smaller than cars. A model with Einstein’s field equations of general relativity [2]
is also still a model of reality, and not any more useful for describing a car, because
that is more relevant for fast objects close to the speed of light, which is forbidden
for cars on most highways.

Be that as it may, some models are pretty useful for making predictions about
reality. This attitude [6] has been well-captured by George Box’s [1] slogan.

Note 81 (George Box) All models are wrong but some are useful.

So, we will still continue to use models, because they enable predictions, but will
from now on be more aware of the fact that models come with certain tradeoffs of
analyzability and accuracy.

Is there a way to sidestep the issue by just not using any models in the first
place? In fact, what can we even do without a model? We can run experiments and
gather sample data about the behavior of a system. While that is certainly quite
useful, too, it is important to understand that we will still need models to enable any
predictions at all. Generality comes from the use of models! Unless we fix a model
of how the behavior at the setup of the experiment relates to the behavior in other
circumstances, the data alone will not provide any predictive power. Is the altitude
of where your car drives relevant for its operation? Probably not. Yet, does the slope
of the road affect its behavior? Quite likely. Does the weather have any influence?
Unless we at least make some such dependence and independence assumptions in
a model, there is no way that we can ever conjecture with any amount of certainty

562 19 Verified Models & Verified Runtime Validation

that our car will need at least 16 m to brake to a standstill from 35 mph (or roughly
50 km/h) next time, too, no matter where else we have already tried.

So it looks like, for better or for worse, we are stuck with the use of models
at least for the physics. Is there anything at all that we can do to make sure our
guarantees about the CPS models transfer to the actual CPS implementations? That
is what this chapter investigates.

19.3 Runtime Monitors

To begin with, assume that we have put the lessons from Parts I and II to good use
by having come up with a proof of a dL formula, e.g., of the illustrative shape:

A→ [(ctrl;plant)∗]B (19.1*)

Now all that remains is to figure out a way to make sure that this safety result about
the CPS model (ctrl;plant)∗ transfers to the actual CPS implementation. If offline
results alone do not check whether all parts of (19.1) fit the real CPS, then let us
investigate runtime monitors that address this question online when the CPS runs.

Checking that the initial condition A applies for the real CPS is straightforward
as long as all its quantities can be measured. In that case, all it takes is to evaluate at
runtime whether the formula A is true in the initial state and only permit the CPS to
be turned on if it is. That’s still relatively straightforward (if every relevant quantity
is physically measurable).

Monitoring the postcondition B to see whether it is true would be equally straight-
forward. But that is not actually useful at all, because if B is ever false, then the
system is already hopelessly unsafe by definition and there is nothing that can be
done about it anymore, since we cannot just go back in time and do things differ-
ently. Just think of a postcondition B expressing that the controlled car should have
positive distance to other cars. Once that condition evaluates to false, the cars have
collided and all hope for a happy ending is lost. Well, maybe matters get better if
we work with a postcondition B that has an extra margin such as a distance of 1 m at
least? That does not really help either, because once that safety margin is violated,
the car might already be going so fast that a collision is unavoidable regardless.

So, the most challenging aspect in runtime monitoring is to find out what pre-
cise condition should be monitored, and to identify what exactly one knows about
the system behavior if that monitor condition is checked successfully. Proofs play a
crucial rôle in identifying what needs to be monitored, and they are certainly fun-
damental in proving what correctness properties the resulting monitors come with,
meaning what one knows about the CPS if the monitors all evaluate to true.

Continuing down the list, how can we monitor the controller ctrl in (19.1) to
see whether the real CPS fits it? For various reasons, the controller implementa-
tion in the CPS may have slight discrepancies compared to its higher-level control
model ctrl. For example, the controller might have been implemented in a low-

19.3 Runtime Monitors 563

level language such as C, or might use preexisting legacy code, or might have been
synthesized from a Stateflow/Simulink model, or it might be running low-level mi-
crocontroller machine code. More fundamentally, recall that the controller model
ctrl includes a model of the discrete actions of agents in the environment, such as
the nondeterministic choice of acceleration or braking for the car in front, where we
may not have access to the actual implementation. All these factors contribute to
potential deviations of the actual controllers compared to the controller model ctrl.
What can we monitor to check whether the real CPS fits to the model ctrl?

Before you read on, see if you can find the answer for yourself.

The most important impact of the controller ctrl is to decide how to set control
variables for the physical dynamics plant after suitable computations based on cer-
tain measurements of sensor inputs. All these final control variable decisions in the
real controller (let’s call it γctrl) should be monitored and checked for compatibility
with what the controller model ctrl permits. Of course, due to nondeterminism, the
real controller implementation γctrl can reach different decisions than the model ctrl,
but it should only ever reach decisions that the verified controller model ctrl at least
allows. If, in any circumstance, the real controller implementation γctrl ever decides
to assign values to control variables that the verified model ctrl does not allow, then
these are potentially unsafe and should be rejected for safety reasons.

ModelPlex

Sensors

Controller

Compliance

Monitor
Fallback

Actuators

Fig. 19.1 ModelPlex monitors sit between controller and actuator to check the controller’s de-
cisions for compliance with the model based on sensor data with veto leading to a safe fallback
action

Such a controller monitor inspects each and every resulting decision by the con-
troller implementation for compliance with the verified controller model ctrl based
on the current sensor data and vetoes the decision if ctrl does not allow it; see
Fig. 19.1. Of course, the resulting controller monitor cannot just reject a control
decision, but must also override it with a safe fallback action to execute on plant

instead. Figuring out such a safe fallback action is not always obvious either. But
at least it is an easier problem, because that safe fallback action just needs to keep
the system in safe stasis without doing anything particularly useful. In a car, for
example, this last resort action might consist of applying emergency brakes, cutting
the engine’s power, and asking the human to investigate. In an aircraft, it might be

564 19 Verified Models & Verified Runtime Validation

flying in a loitering circle until the problematic situation is resolved. In a quadrotor
drone, it might be hovering in place.

γi

νi−1 νi ν̃i νi+1

...

γi−2

⊆ α
∗

γi−1

?

⊆ α
∗

γctrl

?

⊆ ctrl

γplant

plant

γi+1

Model

monitor

model adequate?

Controller

monitor

control safe?

Prediction

monitor

until next cycle?

Fig. 19.2 Use of ModelPlex monitors along a system run

Let us assume that we have already found and proved safe such a safe fallback
action, since that is an easier problem. That leaves open the question of how we
can best monitor and determine whether an observed controller action of the real
controller implementation γctrl fits the verified model ctrl. While you are invited to
think about this challenge already, we will postpone it and first consider another
challenge.

Proceeding further, how can we monitor the physical model plant in (19.1) to see
whether the real CPS physics fits it? That is even more subtle, because, no matter
what we try, the real physical world does not come with any source code that we can
run or read to try to find out whether it fits the model plant. Instead, the only chance
is to try out the physical system and observe what it does to see whether it fits the
model plant. Interestingly, that is already quite well aligned with the approach we
settled on for the real controller γctrl, just for completely different reasons.

Somewhat similar to the controller monitor, which models just the responsibili-
ties of the controller for compliance with ctrl, the model monitor models the whole
system for compliance with the model ctrl;plant that includes the physical model.1

The model monitor will inspect the data from the current state νi and the data from
the previous state νi 1 when it ran last to check whether the transition from νi 1 to νi

can be explained by the model ctrl;plant. If that transition fits the model ctrl;plant,
then since all repetitions of said model from a safe initial state satisfying A (which
we checked at runtime initially) are safe (satisfying B by the offline proof), then the
concrete run of the real CPS implementation ending in νi is also safe. If the tran-
sition νi 1 to νi does not fit ctrl;plant, however, then the safety proof of the CPS
model (19.1) does not apply to the current execution, so the model monitor vetoes
and initiates a safe fallback action.

1 The reason for monitoring the whole control loop body ctrl;plant instead of just separately the
physics plant is that this provides better guarantees [5] and also works if the HP is of any arbitrary
form other than (ctrl;plant)∗.

19.4 Model Compliance 565

19.4 Model Compliance

Based on these general runtime monitoring principles, the primary remaining ques-
tion is how to actually check a concrete system execution for compliance with the
verified model (ctrl;plant)∗ from (19.1). Of course, it is relatively easy to check
whether the initial state satisfies the precondition A, or at least it is easy when all
its relevant quantities can be measured appropriately. But the same is not true for
the hybrid program (ctrl;plant)∗, because of all the nondeterminism and differen-
tial equations that it involves. It, thus, takes a more clever approach to determine
whether the real system execution fits the hybrid program (ctrl;plant)∗. This sec-
tion motivates and intuitively develops such an approach with the simple example
of a bouncing ball.

Example 19.1 (Bouncing-ball monitors). As a simple guiding example, recall the
familiar acrophobic bouncing ball Quantum that has been with us ever since Chap. 4:

0≤ x∧ x = H ∧ v = 0∧g > 0∧1≥ c≥ 0→
[
{x′ = v,v′ = g&x≥ 0}; (?x = 0;v := cv∪ ?x 6= 0)

)∗]
(0≤ x∧ x≤ H)

(4.24)

This formula has been proved in Proposition 7.1 (with the additional assumption
c = 1 that Exercise 7.5 showed can be removed again). This led to a perfect proof of
safety for Quantum, if only Quantum actually fits the hybrid model in the formula
(4.24) that was proved in dL’s sequent calculus.

You might already have noticed in earlier chapters that Quantum is easily startled.
Even before reading Expedition 4.5 on p. 123, Quantum was already a natural born
Cartesian skepticist. His level of scrutiny and skeptical doubt only increased after
reading Chap. 19. Since Quantum really wants to get things right, he checks the
initial condition of formula (4.24) and then figures out how to check whether the
real execution fits the hybrid program model in (4.24).

Figuring that the differential equations in (4.24) are surely the best possible dif-
ferential equations that could ever exist (since they are meant to describe bounc-
ing balls, after all), Quantum first only worries about the discrete controller part
of (4.24). Is there a logical formula characterizing that a controller implementation
switching from position x and velocity v to new position x+ and velocity v+ fits the
discrete controller in (4.24)?

Before you read on, see if you can find the answer for yourself.

A run of an actual discrete controller implementation changing the position from
x to x+ and the velocity from v to v+ (leaving all other variables alone) only faith-
fully fits the controller in (4.24) if the following logical formula evaluates to true:

x = 0∧ v+ = cv ∨ x > 0∧ v+ = v

)
∧ x+ = x (19.2)

566 19 Verified Models & Verified Runtime Validation

This formula represents a controller monitor if no physical motion ever happens.
Certainly, the conjunct x+ = x needs to be true for an execution to faithfully run
the discrete controller of (4.24), because the discrete dynamics of the bouncing ball
does not affect the ball’s altitude but merely its velocity. Furthermore, it is either the
case that the ball runs the first control branch so is presently on the ground (x = 0)
and the new velocity v+ after the discrete ground controller is the damped version
 cv of the previous velocity v, or it is the case that the ball is still in the air (x > 0
because of the second control branch ?x 6= 0 together with the evolution domain
constraint x ≥ 0) and then the velocity is unaltered (v+ = v). Every run satisfying
controller monitor (19.2) fits an execution of the discrete controller (4.24).

In retrospect, it is reasonably obvious how controller monitor (19.2) relates to the
controller in HP (4.24), with a disjunction corresponding to the controller’s choices
and conjunctions accumulating the conditions of tests and effects of assignments.
Of course, the particular discrete controller in (4.24) is deterministic and, hence,
so is the monitor (19.2). But the same principle applies for controllers with ample
nondeterminism, in which case the resulting monitor condition is more flexible.

To validate the controller model, Quantum takes out his favorite oscilloscope and
plenty of other measuring devices and quickly evaluates controller monitor (4.24)
for a number of trial bounces in a high-fidelity simulation environment (Fig. 19.3).

Fig. 19.3 Sample run of a
bouncing ball (plotted as
height over time) that ulti-
mately lies down flat

t

x

2

4

6

8

10

12

t0 t1 t2 t3 t4

The controller implementation holds up pretty well with respect to controller
monitor (19.2) for quite a while, except that the ball ultimately dares to just lie flat on
the ground. If the implemented controller turns v = 3 to v+ = 0, then this is clearly
a violation of (19.2) and flagged as such at time t4. Quantum was initially tempted
to dismiss t4 as a measurement error but decided after retrying a few times that there
must be an actual controller model mismatch. Indeed, looking back at (4.24), its HP
does not yet include the refinements from Sect. 4.2.3 that enable bouncing balls to
ultimately deflate and lie flat when their energy is insufficient to jump back up.

The controller implementation is not the only aspect of reality with the potential
for a mismatch between model and reality. In fact, much more challenging than the
controller’s implementation is the implementation of physics that is also known as
the real world. Despite dozens of centuries of progress, mankind is still sometimes

19.4 Model Compliance 567

at a loss when it comes to explaining physical phenomena, let alone the behavior of
other agents acting in the environment. Consequently, there is even more that might
go wrong if we start the analysis with a completely inadequate physical model. At
the same time, even the best physical model is still just that: a model.

Example 19.2 (Bouncing-ball model monitors). When Quantum tries to devise a
clever monitor to check the continuous physics behind HP (4.24), he discovers even
more challenges than with the controllers. It is quite nontrivial to run a differen-
tial equation for an unspecified nondeterministic amount of time and check whether
the resulting state coincides with the state that has been measured in a run of the
real system implementation experimentally. Granted, the particular double integra-
tor ODE in (4.24) is still of the relatively tame kind, but, for the most part, this only
simplifies the illustration, not the question.

Is there a logical formula characterizing that a physical motion evolving from
position x and velocity v to new position x+ and velocity v+ can be explained by the
differential equation in (4.24)?

Before you read on, see if you can find the answer for yourself.

For just the differential equations x′ = v,v′ = g, a corresponding monitor can
be read off from the invariants (7.10) that we used to prove the bouncing ball:

2g(x+ x) = v2 (v+)2 (19.3)

The change v2 (v+)2 in the squares of the velocities equals 2g times the change
x x+ in positions. This monitor condition can also easily be read off quite directly
from the solutions of the differential equation (expressing the new position x+ and
velocity v+ as a function of the old) by eliminating time t, which is unobservable in
the HP of (4.24):

v+ = v gt
g6=0≡ t = v v+

g

x+ = x+ vt g
2 t2 above≡ x+ = x+ v v v+

g
 g

2
v2 2vv+ (v+)2

g2

≡ 2g(x+ x) = 2v2 2vv+ v2 +2vv+ (v+)2

Indeed, the resulting equation (19.3) is the crucial invariant of the dynamics, but
it does not characterize the system behavior sufficiently, because equation (19.3)
also holds for physically impossible situations such as when the new velocity v+ is
chosen to be bigger than the previous velocity v, which is impossible under gravity
v′ = g. The reason is that (19.3) is an invariant equation that is always true dur-
ing the differential equation but neglects the fact that the differential equation must
evolve forward. So (19.3) holds whether the differential equation evolves forward
or backward in time, because it is unaware of the directionality in the system. Since
g > 0, this directionality is easily expressed by an additional conjunct saying that
the velocity never increases:

2g(x+ x) = v2 (v+)2∧ v+ ≤ v (19.4)

568 19 Verified Models & Verified Runtime Validation

The only challenge remaining to adequately represent all assumptions of the plant
model in the bouncing ball is to add the domain constraint for the initial x ≥ 0 and
final position x+ ≥ 0:

2g(x+ x) = v2 (v+)2∧ v+ ≤ v∧ x≥ 0∧ x+ ≥ 0 (19.5)

Quantum can now validate trial runs of the physical motion in gravity for compat-
ibility with the plant model by testing whether monitor (19.5) evaluates to true. In
particular, if the observed change in the ball’s position and change in velocity while
falling according to gravity are always compatible with (19.5), then this supports
the hypothesis that the differential equation and evolution domain constraints in HP
(4.24) describe the reality of falling balls well.2 The combination into an overall
model monitor respecting the discrete controller and continuous motion is natural
[5], essentially by substituting the plant monitor (19.5) into the controller monitor
(19.2).

19.5 Provably Correct Monitor Synthesis

Reading off the appropriate monitor conditions from the models by an educated
guess as in Sect. 19.4 is one thing. But justifying their correctness rigorously and
making sure that no subtle but critical conditions are left out is another. While the
relationship of controller monitor (19.2) to the discrete control model in (4.24) is
reasonably transparent after suitable transformations of the evolution domains and
tests, it is non-obvious whether (19.5) correctly checks all correctness-critical con-
ditions of the plant model.

Since correctness in CPS is so important, it is also important to get the correct-
ness monitors themselves correct. After all, the controller and model monitors are
supposed to be last-resort mechanisms that, when things do not go according to plan,
avert potential catastrophes by interfering before it is too late. It would not help if the
monitor conditions monitored the wrong expressions and ended up missing critical
safety hazards that they were meant to spot.

The question is: what makes a runtime monitor condition correct? How do we
tell a correct runtime monitor apart from a well-intended but flawed monitor? These
questions are not unlike the ones we asked out for cyber-physical systems them-
selves in Chap. 4. But the big difference is that it is a more narrow problem to ask
whether a runtime monitor adequately represents the conditions of a model, because
we already have both the runtime monitor as well as the model it is supposed to
check compatibility with. Contrast this with Chap. 4 where we were given a model
and were still trying to identify its appropriate safety condition. So when is a runtime
monitor correct?

2 Of course, falling balls cannot deny a certain resemblance to the apples that were falling from
trees in Isaac Newton’s time. So one model might describe two related scenarios.

19.5 Provably Correct Monitor Synthesis 569

Before you read on, see if you can find the answer for yourself.

The specification that correct runtime monitors need to obey is that they imply
that there, indeed, is a run of the model that explains the observed transition of the
previous state to the present state. If the monitor condition evaluates to false, then an
alarm about a possible model violation is raised and a safe fallback action is initiated
(such as applying emergency brakes and cutting power). But if it evaluates to true,
then the monitor had better be right about the fact that the observed behavior fits
to the model. In other words, if the monitor condition is true for the old position x

and new position x+, then there really needs to be a run of the corresponding model
that, indeed, leads from position x to x+ as observed (and accordingly for previous
velocity v to new velocity v+ and other variables).

Solve Exercise 19.1 now to demonstrate that the runtime monitors are correct.

19.5.1 Logical State Relations

Let us call the hybrid program of the relevant model α and let χ(x,x+) be a run-
time monitor formula. The runtime monitor formula χ(x,x+) is a formula in which
the variable (vector) x is meant to refer to the previous position (and velocity or
other relevant state variables) while variable (vector) x+ is meant to refer to the new
position (and velocity).

Definition 19.1 (Correctness of runtime monitors). The runtime monitor

formula χ(x,x+) is called correct for the hybrid program model α with bound
variables BV(α)⊆ {x} iff the following dL formula is valid:

χ(x,x+) → 〈α〉x = x+

If x is a vector of variables (x1, . . . ,xn) and x+, thus, is the vector of variables
(x+1 , . . . ,x

+
n), then the vectorial equation x = x+ means the same as the conjunction

n∧

i=1

xi = x+i

Example 19.3 (Correctness of controller monitor). Continuing Example 19.1, let
χ(x,v,x+,v+) denote the controller monitor formula (19.2) for the discrete con-
troller of (4.24).

χ(x,v,x+,v+)
def≡

x = 0∧ v+ = cv ∨ x > 0∧ v+ = v

)
∧ x+ = x (19.2*)

The correctness of controller monitor (19.2) can be proved in the dL calculus:

570 19 Verified Models & Verified Runtime Validation

∗
χ(x,v,x+,v+) ⊢ (x = 0→ x=x+∧ cv=v+)∨ (x 6= 0→ x=x+∧ v=v+)

〈?〉 χ(x,v,x+,v+) ⊢ 〈?x = 0〉(x=x+∧ cv=v+)∨〈?x 6= 0〉(x=x+∧ v=v+)
〈:=〉χ(x,v,x+,v+) ⊢ 〈?x = 0〉〈v := cv〉(x=x+∧ v=v+)∨〈?x 6= 0〉(x=x+∧ v=v+)
〈;〉 χ(x,v,x+,v+) ⊢ 〈?x = 0;v := cv〉(x=x+∧ v=v+)∨〈?x 6= 0〉(x=x+∧ v=v+)
〈∪〉 χ(x,v,x+,v+) ⊢ 〈?x = 0;v := cv∪ ?x 6= 0〉(x=x+∧ v=v+)

While this simple notion of correctness of runtime monitors is particularly easy
to understand, there are also improved ways of establishing the correctness of con-
troller monitors that additionally guarantee that the controller will never violate the
evolution domain constraints of the plant [5].

Example 19.4 (Correctness of plant monitor). Continuing Example 19.2, this time,
let χ(x,v,x+,v+) denote the differential equation monitor formula (19.4) for the
differential equation of (4.24) without its evolution domain constraint. Because g >
0 holds, this monitor χ(x,v,x+,v+) is correct for the differential equation:

∗
R

g > 0,χ(x,v,x+,v+) ⊢ ∃t≥0(g
2 t2 + vt + x = x+∧ v gt = v+)

〈:=〉
g > 0,χ(x,v,x+,v+) ⊢ ∃t≥0〈x := g

2 t2 + vt + x〉〈v :=v gt〉(x=x+∧ v=v+)
〈′〉

g > 0,χ(x,v,x+,v+) ⊢ 〈x′ = v,v′ = g〉(x=x+∧ v=v+)

In fact, it can even be shown that the differential equation monitor condition (19.4)
is perfect, because it is true if and only if the differential equation can reach position
x+ and velocity v+:

g > 0→

〈x′ = v,v′ = g〉(x = x+∧ v = v+)↔ 2g(x+ x) = v2 (v+)2∧ v+ ≤ v

)

Because this equivalence is provable for g > 0, the differential equation monitor
(19.4) will never raise false alarms. In a similar way (19.5) is a provably correct
runtime monitor for the plant of (4.24) including the evolution domain constraint.
That is, the following dL formula is provable:

g > 0∧2g(x+ x) = v2 (v+)2∧ v+ ≤ v∧ x≥ 0∧ x+ ≥ 0→
〈x′ = v,v′ = g&x≥ 0〉(x = x+∧ v = v+)

Again, we can prove that this plant monitor is perfect because, given g > 0, it is
equivalent to the reachability of x+ and v+ along the continuous plant:

g > 0→

2g(x+ x) = v2 (v+)2∧ v+ ≤ v∧ x≥ 0∧ x+ ≥ 0

↔ 〈x′ = v,v′ = g&x≥ 0〉(x = x+∧ v = v+)
)

19.5 Provably Correct Monitor Synthesis 571

19.5.2 Model Monitors

The above runtime monitors (19.2) for the discrete controller, (19.4) for the differ-
ential equation and (19.5) for the full plant are all useful, but do not cover all details
of the HP model (4.24) of the bouncing ball yet. We can, nevertheless, follow essen-
tially the same approach again for a runtime monitor of the full HP model. The only
tricky part is the need to deal with the loop. The most natural way of monitoring the
correct execution of a control loop, however, is to separately check each round of
the control loop. Consequently, all we need to do is unwind the loop once with the
iteration axiom 〈∗〉 and just find a runtime monitor for the loop body α instead of
for the full loop α∗. Then this runtime monitor can be used for each round of the

control loop in the controller implementation. Such a runtime monitor for just the
loop body is, in fact, also much more useful than a runtime monitor for the full loop
α∗, because it can take quite a while before we finally know whether the entire loop
execution fits the model. We would much prefer to already check during each run of
the loop body whether everything still operates according to the model.

Example 19.5 (Correctness of model monitor). A runtime monitor for the HP’s loop
body can be constructed by substituting the respective monitors into one another:

x+ > 0∧2g(x+ x) = v2 (v+)2∧ v+ ≤ v∧ x≥ 0

∨x+ = 0∧ c22g(x+ x) = c2v2 (v+)2∧ v+ ≥ cv∧ x≥ 0
(19.6)

Correctness of the model monitor (19.6) for one iteration of the full loop body of
the HP model (4.24) can be proved in dL.

Proposition 19.1 (Correct bouncing-ball model monitor). Formula (19.6) is a

correct model monitor for (4.24). That is this dL formula is valid:

g > 0∧1≥ c≥ 0→

x+ > 0∧2g(x+ x) = v2 (v+)2∧ v+ ≤ v∧ x≥ 0

∨ x+ = 0∧ c22g(x+ x) = c2v2 (v+)2∧ v+ ≥ cv∧ x≥ 0

→ 〈{x′ = v,v′ = g&x≥ 0};(?x = 0;v := cv∪ ?x 6= 0)〉(x = x+∧ v = v+)
)

In fact, equivalence instead of implication can again be proved as well, which
demonstrates that the model monitor is exact and does not produce any false alarms.

19.5.3 Correct-by-Construction Synthesis

So far, we have settled for educated guesses to produce runtime monitor formulas
and subsequently proved them correct in the dL proof calculus. That is perfectly
acceptable except that we then always have to get creative to produce the monitor
formulas in the first place.

572 19 Verified Models & Verified Runtime Validation

It would be better if we could construct the runtime monitor formulas system-
atically. In fact, it would be even more helpful if we had a way of constructing the
runtime monitor formulas in a correct-by-construction approach such that we simul-
taneously generate the runtime monitor and a proof of its correctness. Surprisingly,
this is perfectly possible as well. All we need to do is to exploit the rigorous rea-
soning principles of differential dynamic logic for a purpose other than safety ver-
ification. The starting point is one crucial observation. What is the easiest formula
satisfying correctness criterion Definition 19.1?

Before you read on, see if you can find the answer for yourself.

By far the easiest and most obviously correct formula satisfying runtime moni-
toring correctness (Definition 19.1) for model α is the dL formula 〈α〉x = x+ itself.

Of course, when choosing χ(x,x+)
def≡ 〈α〉x = x+, then the correctness condition

is trivially valid because every formula implies itself, even 〈α〉x = x+ does:

χ(x,x+)→ 〈α〉x = x+

True beyond any doubt. What could be wrong with that?

Before you read on, see if you can find the answer for yourself.

Well, nobody can argue against the validity of 〈α〉x = x+ → 〈α〉x = x+. But
we hardly learn anything at all about what constitutes a faithful execution of the
controller model α if this is how we choose χ(x,x+). Indeed, the HP α itself is a
pretty perfect model of what it means to fit to its model. Yet, the problem is that if
α is quite a complicated HP with ample nondeterminism, then it can be rather time-
consuming to exhaustively execute all its different choices just to find out whether
there is one combination that explains the present state transition in the concrete
controller implementation. For that reason, it is better to find a simpler formula that
also implies 〈α〉x = x+ but is easier to evaluate at runtime, for example, a formula
that is pure real arithmetic. How else might we construct such a simpler monitor
formula χ(x,x+) that provably implies 〈α〉x = x+ as well?

Before you read on, see if you can find the answer for yourself.

The idea to construct such a monitor χ(x,x+) implying 〈α〉x = x+ is about as
easy as it is far-reaching. The clou is that we already have a pretty powerful and
rigorously correct transformation technique at our disposal: the axioms and proof
rules of differential dynamic logic from Parts I and II. All we need to do is to apply
them to 〈α〉x = x+ and find out how that simplifies the formula.

Example 19.6 (Synthesis of controller monitor). The controller monitor (19.2) from
Example 19.1 for the bouncing-ball controller (4.24) can also be synthesized sys-
tematically with a correct-by-construction approach. We simply start with a hope-
less attempt to prove 〈ctrl〉(x=x+∧ v=v+) for the bouncing-ball controller ctrl:

19.6 Summary 573

⊢ (x = 0→ x=x+∧ cv=v+)∨ (x 6= 0→ x=x+∧ v=v+)
〈?〉 ⊢ 〈?x = 0〉(x=x+∧ cv=v+)∨〈?x 6= 0〉(x=x+∧ v=v+)
〈:=〉 ⊢ 〈?x = 0〉〈v := cv〉(x=x+∧ v=v+)∨〈?x 6= 0〉(x=x+∧ v=v+)
〈;〉 ⊢ 〈?x = 0;v := cv〉(x=x+∧ v=v+)∨〈?x 6= 0〉(x=x+∧ v=v+)
〈∪〉 ⊢ 〈?x = 0;v := cv∪ ?x 6= 0〉(x=x+∧ v=v+)

This formula cannot possibly be proved because not every value of new positions
x+ and velocities v+ is reachable from every initial position x and velocity v in the
bouncing-ball controller. Fortunately! But the purpose is not to prove the runtime
monitor formula offline once and for all, but instead to check whether it evaluates
to true at runtime and, thereby, to complete the above offline proof at runtime. The
resulting monitor condition is the remaining premise at the top of the proof:

(x = 0→ x=x+∧ cv=v+)∨ (x 6= 0→ x=x+∧ v=v+) (19.7)

While this is syntactically different than the manually constructed controller monitor
(19.2), the two are provably equivalent and can be obtained by minor simplification
when taking into account that the evolution domain constraint guarantees x≥ 0. But
monitor (19.7) has been systematically constructed and is already accompanied by
a correctness proof, because it implies 〈ctrl〉(x=x+∧ v=v+) by the above dL proof.

All dL-generated runtime monitors are correct-by-construction. How conserva-
tive they are can be read off from an inspection of their proofs. If only equivalence
axioms and proof rules have been used, then the runtime monitors are exact. This is
the case in the proof of Example 19.6. Otherwise, when implication axioms or proof
rules are used, then the monitor may be conservative and might cause unnecessary
false alarms, but at least its positive answers are perfectly reliable by proof.

The logical transformation generating correct-by-construction model monitors or
other models involving differential equations and/or loops is slightly more involved
but follows very similar principles [5]. The basic idea is to unroll loops once by
axiom 〈∗〉 and either skip or follow differential equations in a proof for one control
cycle of the appropriate runtime to monitor reaction time.

19.6 Summary

Even if this chapter merely scratched the surface of the technical aspects of syn-
thesizing provably correct runtime monitors [5], it, nevertheless, held particularly
valuable lessons in store for the mindful CPS enthusiast. Meddling with models is
an inevitable part of working out the design of a cyber-physical system. But, as the
name suggests, such models have to include a sufficiently adequate model of the
relevant part of the physical world, which is quite a nontrivial challenge in and of
itself.

Fortunately, the logical foundations of safe model transfer, nevertheless, provide
a way of exploiting differential dynamic logic to generate runtime monitors that are

574 19 Verified Models & Verified Runtime Validation

accompanied by correctness proofs implying that if they evaluate to true, then the
actual system run fits a provably safe CPS model and is, thus, safe itself. Beyond
the high-level ideas behind the ModelPlex approach making this idea reality [5], one
of the most important take-home lessons is that the combination of offline verifica-
tion with runtime monitoring concludes proofs about true CPS runs at runtime. This
approach enables tradeoffs that analyze simpler models offline while safeguarding
them for suitability with ModelPlex monitors at runtime. Except for the fact that
the runtime monitors of overly simplistic models may cause more alarms for dis-
crepancies, such a combination leads to better analysis results for simpler models
without paying the full price that we pay when entirely ignoring important effects
in pure offline models. Of course, even runtime monitors can only provide limited
safety recovery when starting out with models with unbounded errors. When using
a bouncing-ball model to describe the flight of an airplane, one should not be sur-
prised to find a significant discrepancy when trying it out for real. At the very least,
the bounce on the ground won’t proceed as planned.

Exercises

19.1 (Correct bouncing-ball monitors). Prove correctness of the monitors for the
bouncing ball from Sect. 19.4 in dL’s sequent calculus. That is, prove that truth of
the controller monitor (19.2) implies existence of a corresponding execution of the
controller. Show that truth of the plant monitor (19.5) implies existence of a run of
the plant.

19.2 (Ping-pong monitors). Create the controller monitor and model monitor for
the verified ping-pong models of the event-triggered design in Chap. 8 and for
the time-triggered design in Chap. 9. Convince yourself that they are correct, i.e.,
can lead to a corresponding dL proof. Discuss the pragmatic difference between
the monitors resulting from the event-triggered models and those from the time-
triggered designs. Is there a discrepancy that one monitor discovers that the other
one does not?

19.3 (Model monitor correctness). Prove that truth of the model monitor (19.6) for
the bouncing ball implies existence of a corresponding run of its model (4.24).

19.4 (Controller monitor generation). Extract the respective controller monitor
and prove it correct for the models from Exercises 3.9, 4.22, 9.14, and 12.5.

19.5 (*Monitor synthesis). Describe a proof strategy that synthesizes a runtime
monitor for an HP that it receives as input. Is the resulting monitor correct-by-
construction? Is it possible to change the approach such that the proof strategy
synthesizes both a runtime monitor together with a proof of the correctness of the
monitor?

19.6 Summary 575

References

[1] George E. P. Box. Science and statistics. Journal of the American Statistical

Association 71(356) (1976), 791–799. DOI: 10.1080/01621459.1976
.10480949.

[2] Albert Einstein. Die Feldgleichungen der Gravitation. Sitzungsberichte der

Preussischen Akademie der Wissenschaften zu Berlin (1915), 844–847.
[3] Sarah M. Loos. Differential Refinement Logic. PhD thesis. Computer Sci-

ence Department, School of Computer Science, Carnegie Mellon University,
2016.

[4] Sarah M. Loos and André Platzer. Differential refinement logic. In: LICS. Ed.
by Martin Grohe, Eric Koskinen, and Natarajan Shankar. New York: ACM,
2016, 505–514. DOI: 10.1145/2933575.2934555.

[5] Stefan Mitsch and André Platzer. ModelPlex: verified runtime validation of
verified cyber-physical system models. Form. Methods Syst. Des. 49(1-2)
(2016). Special issue of selected papers from RV’14, 33–74. DOI: 10.10
07/s10703-016-0241-z.

[6] John von Neumann. The mathematician. In: Works of the Mind. Ed. by R. B
Haywood. Vol. 1. 1. Chicago: University of Chicago Press, 1947, 186–196.

[7] André Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reas.

41(2) (2008), 143–189. DOI: 10.1007/s10817-008-9103-8.
[8] André Platzer. Logics of dynamical systems. In: LICS. Los Alamitos: IEEE,

2012, 13–24. DOI: 10.1109/LICS.2012.13.
[9] André Platzer. A complete uniform substitution calculus for differential dy-

namic logic. J. Autom. Reas. 59(2) (2017), 219–265. DOI: 10.1007/s108
17-016-9385-1.

[10] Erwin Schrödinger. An undulatory theory of the mechanics of atoms and
molecules. Phys. Rev. 28 (1926), 1049–1070. DOI: 10.1103/PhysRev.2
8.1049.

https://doi.org/10.1080/01621459.1976.10480949
https://doi.org/10.1080/01621459.1976.10480949
https://doi.org/10.1145/2933575.2934555
https://doi.org/10.1007/s10703-016-0241-z
https://doi.org/10.1007/s10703-016-0241-z
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1109/LICS.2012.13
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1103/PhysRev.28.1049
https://doi.org/10.1103/PhysRev.28.1049

Chapter 20

Virtual Substitution & Real Equations

Synopsis This chapter investigates decision procedures for real arithmetic, which
serve as an important technology for proving the arithmetic questions that arise
during cyber-physical systems analysis. The fact that first-order properties of real
arithmetic are even decidable is one of the big miracles of logic on which CPS
analysis depends. While a blackbox use of quantifier elimination often suffices, this
chapter looks under the hood to understand why and how real arithmetic can be
decided. This leads to a better appreciation of the working principles and complexity
challenges in real arithmetic. The focus in this chapter will be on the case of linear
and quadratic equations, which conceptually elegant virtual substitution techniques
handle.

20.1 Introduction

Cyber-physical systems are important technical concepts for building better systems
around us. Their safe design requires careful specification and verification, which
this textbook provides using differential dynamic logic and its proof calculus [29–
31, 33] discussed in Parts I and II. The proof calculus for differential dynamic logic
has a number of powerful axioms and proof rules (especially in Chaps. 5, 6, 11,
and 12). In theory, the only difficult problem in proving hybrid systems safety is
finding their invariants or differential invariants [29, 32, 33] (also see Chap. 16).
In practice, however, the handling of real arithmetic is another challenge that all
CPS verification faces, even though the problem is easier in theory. How arithmetic
interfaces with proofs by way of the proof rule R for real arithmetic has already been
discussed in Sect. 6.5. But how does the handling of real arithmetic by quantifier
elimination really work?

This chapter discusses one technique for deciding interesting formulas of first-
order real arithmetic. Understanding how such techniques for real arithmetic work
is interesting for at least two reasons. First of all, it is important to understand why
this miracle happens at all that something as complicated and expressive as first-

577© Springer International Publishing AG, part of Springer Nature 2018

A. Platzer, Logical Foundations of Cyber-Physical Systems,

https://doi.org/10.1007/978-3-319-63588-0_20

https://doi.org/10.1007/978-3-319-63588-0_20
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63588-0_20&domain=pdf

578 20 Virtual Substitution & Real Equations

order logic of real arithmetic ends up being decidable, so that a computer program
can always tell us whether any real-arithmetic formula we dream up is true or false.
But this chapter is also helpful to get an intuition about how real-arithmetic decision
procedures work. With such an understanding, you are better prepared to identify
the limitations of these techniques, learn when they are likely not to work out in due
time, and get a sense of what you can do to help arithmetic prove more complicated
properties. For complex proofs, it is often very important to use your insights and
intuitions about the system to help a verification tool along to scale your verification
results to more challenging systems in feasible amounts of time. An understanding
of how arithmetic decision procedures work helps to focus such insights on the parts
of the arithmetic analysis that has a big computational impact. Quite substantial
impact has been observed for handling the challenges of real arithmetic [27, 30,
34].

There are a number of different approaches to understanding real arithmetic and
its decision procedures beyond Tarski’s original result from the 1930s [45], which
was a major conceptual breakthrough but algorithmically impractical.1 There is an
algebraic approach using cylindrical algebraic decompositions [6, 7], which leads
to practical procedures, but is highly nontrivial. Simple and elegant model-theoretic
approaches use semantic properties of logic and algebra [22, 38], which are easy to
understand, but do not lead to any particularly useful algorithms. There is a reason-
ably simple Cohen-Hörmander algorithm [5, 21] that, unfortunately, does not gener-
alize well into a practical algorithm even if it works at small scale and has even been
turned into a proof-producing algorithm [25]. Other simple but inefficient decision
procedures are also described elsewhere [14, 24]. Finally, there is virtual substitu-
tion [48], a syntactical approach that fits well the understanding of logic that we
have developed in this textbook and leads to highly efficient algorithms (although
only for formulas with limited degrees). As a good compromise promoting accessi-
bility and practicality, this chapter, thus, focuses on virtual substitution [48]. There
are also approaches that focus on checking polynomial certificates for the validity
of universal real arithmetic without existential quantifiers [19, 34]. These are simple
and in principle capable of proving all valid formulas of the purely universal frag-
ment of real arithmetic [43], but do not have the same generalizable insights that
virtual substitution provides for how to eliminate quantifiers. See, e.g., [1, 2, 28, 34]
for an overview of other techniques for real arithmetic.

The results in this chapter are from the literature [30, 48]. It adds substantial
intuition and motivation that is helpful for following the technical development.
The most important learning goals of this chapter are:

Modeling and Control: This chapter has an indirect impact on CPS models and
controls by informing the reader about the consequences of the analytic com-
plexity resulting from different arithmetical modeling tradeoffs. There is always
more than one way of writing down a model. It becomes easier to find the right

1 The significance of Tarski’s result comes from his proof that real arithmetic is decidable at all
and quantifier elimination even possible. The complexity of his procedure is entirely impractical
compared to decision procedures that were invented later.

20.1 Introduction 579

tradeoffs for expressing a CPS model with some knowledge of and intuition for
the working principles of the workhorse of quantifier elimination that ultimately
handles the resulting arithmetic.

Computational Thinking: The primary purpose of this chapter is to understand
how arithmetical reasoning, which is crucial for CPS, can be done rigorously
and automatically. Developing an intuition for the working principles of real-
arithmetic decision procedures can be very helpful for developing strategies to
verify CPS models at scale. The chapter also serves the purpose of learning to
appreciate the miracle that quantifier elimination in real arithmetic provides by
contrasting it with closely related problems of arithmetic that have fundamen-
tally different challenges. We will also again see a conceptually very important
device in the logical trinity: the flexibility of moving back and forth between
syntax and semantics at will. We have seen this principle in action already in
the case of differential invariants in Chap. 10, where we moved back and forth
between analytic differentiation d

dt
and syntactic differentials (·)′ by way of

the differential lemma (Lemma 10.2) as we saw fit. This time, we leverage the
same conceptual device for real arithmetic (rather than differential arithmetic)
by working with virtual substitutions to bridge the gap between semantic oper-
ations that are inexpressible otherwise in the first-order logic of real arithmetic.
Virtual substitutions will again allow us to move back and forth at will between
syntax and semantics.

CPS Skills: This chapter has an indirect impact on CPS skills, because it gives
some intuition and insights into useful pragmatics of CPS analysis for modeling
and analysis tradeoffs that enable CPS verification at scale.

CT

M&C CPS

rigorous arithmetical reasoning
miracle of quantifier elimination
logical trinity for reals
switch between syntax & semantics at will
virtual substitution lemma
bridge gap between semantics and inexpressibles

analytic complexity
modeling tradeoffs

verifying CPS at scale

580 20 Virtual Substitution & Real Equations

20.2 Framing the Miracle

First-order logic is an expressive logic in which many interesting properties and
concepts can be expressed, analyzed, and proven. It is certainly significantly more
expressive than propositional logic, which is decidable by NP-complete SAT solv-
ing [8], because propositional logic has no quantifiers and not even variables but
only propositional connectives ¬,∧,∨, etc. Propositional logic merely has arity
0 predicate symbols such as p,q,r that express tautologies like p ∧ (q ∨ r) ↔
(p∧q)∨ (p∧ r).

In classical (uninterpreted) first-order logic (FOL), no symbol (except possibly
equality) has a special meaning. There are only predicate symbols p,q,r, . . . and
function symbols f ,g,h, . . . whose meaning is subject to interpretation. And the
domain that quantifiers range over is subject to interpretation, too. In particular, a
formula of first-order logic is only valid if it holds true for all interpretations of
all predicate and function symbols and all domains. Uninterpreted first-order logic
corresponds to the fragment of dL that has propositional connectives and quantifiers
(quantifying over any arbitrary domain, not necessarily the reals) as well as function
and predicate symbols (Chap. 18) but no modalities or arithmetic.

In contrast, first-order logic of real arithmetic (FOLR from Chap. 2) is inter-
preted, because all its symbols have a special fixed interpretation. The only predi-
cate symbols are =,≥,>,≤,<, 6= and they mean exactly equality, greater-or-equals,
greater-than, etc., and the only function symbols are +, , ·, which mean exactly ad-
dition, subtraction, and multiplication of real numbers. Furthermore, the universal
and existential quantifiers quantify over the set R of all real numbers.2

The first special interpretation for symbols that comes to mind may not necessar-
ily be addition and multiplication on real numbers but possibly the natural numbers
N with + for addition and · for multiplication on natural numbers where quantifiers
range over the natural numbers. That gives the first-order logic of natural numbers

(FOLN). Is FOLN easier or harder than FOL? How does FOLN compare to FOLR

where the only difference is that variables and quantifiers range over the reals in-
stead of natural numbers? How do they both compare to FOLQ, the first-order logic
of rational numbers? FOLQ is like FOLR and FOLN, except that all variables and
quantifiers range over the rational numbers Q instead of over R and N, respectively.
How do those subtly different flavors of first-order logic compare? How difficult is
it to prove validity of logical formulas in each case?

Before you read on, see if you can find the answer for yourself.

Brief explanations of the meaning of decidability notions are summarized in Ta-
ble 20.1. Uninterpreted first-order logic FOL is semidecidable, because there is a
(sound and complete [16]) proof procedure that is able to prove all valid formulas
of first-order logic [20]. If this proof procedure produces a proof, the output “yes” is
justified by the soundness of the proof calculus. If it does not produce a proof, then
the algorithm may or may not notice that it cannot ever find a proof, but nonter-

2 Respectively over another real-closed field, but this does not change validity [45].

20.2 Framing the Miracle 581

Table 20.1 Overview of decidability notions (e.g., for the validity problem)

Problem is under the condition that
Decidable There is an algorithm that always terminates and correctly says yes or no
Undecidable There is no correct algorithm that always terminates
Semidecidable There is a correct algorithm that terminates at least for all valid formulas
Cosemidecidable There is a correct algorithm terminating at least for all invalid formulas

mination is acceptable for semidecidable problems if the correct answer would be
“no.” If an input formula is valid then the completeness of the proof procedure will
guarantee that a proof will eventually be found for FOL, so this algorithm always
terminates for input formulas that are valid and will, thus, ultimately say “yes.” Of
course, this is not actually helpful in practice unless the proof procedure is clever
about its proof search.

The natural numbers are more difficult. Actually much more difficult! By Gödel’s
incompleteness theorem [17], first-order logic FOLN of natural numbers does not

have a sound and complete effective axiomatization. FOLN is neither semidecidable
nor cosemidecidable [4]. There is neither an algorithm that can prove all valid for-
mulas of FOLN nor one that can disprove all formulas of FOLN that are not valid.
Whatever algorithm we design for FOLN it must fail to produce a correct answer
for some valid formula as well as for some formula that is not valid. One way of
understanding some of the inherent challenges with the logic of natural numbers in
retrospect is to use the fact that not all questions about programs can be answered
effectively (for example the halting problem of Turing machines is undecidable) [4,
46], in fact “none” can [36]. One can then encode questions about classical pro-
grams into the first-order logic of natural numbers. In such a reduction the natural
number would, e.g., encode the state and tape of a Turing machine, while the FOLN

formula itself encodes the program of the Turing machine. We cannot prove all such
formulas, because we cannot predict all behavior of all Turing machines.

Yet, a miracle happened! Alfred Tarski proved in 1930 that reals are much better
behaved than natural numbers and that FOLR is decidable, even though this seminal
result remained unpublished for many years and only appeared in 1951 [44, 45]. We
will follow a much more recent and simpler development of real arithmetic proving
here than Tarski’s original breakthrough, but will not achieve the same level of com-
pleteness, because virtual substitution only works for limited polynomial degrees.

The first-order logic FOLQ of rational numbers was shown to be undecidable
[39, 40], even though rational numbers may appear to be so close to real numbers.
Rationals are lacking something important: completeness (in the topological sense).
The square root

√
2 of 2 is a witness for ∃x(x2 = 2) but only a real number, not a

rational one. So the formula ∃x(x2 = 2) is valid in FOLR but not valid in FOLQ.
The first-order logic FOLC of complex numbers, though, is again perfectly de-

cidable [3, 45]. See Table 20.2 for a summary of how first-order logic behaves de-
pending on the domain of quantification.

In between, there are a few additional fragments of logic that are better be-
haved and worth a short mention. Linear real arithmetic (i.e., no multiplication)

582 20 Virtual Substitution & Real Equations

Table 20.2 The miracle of reals: overview of FOL validity problems

Logic Domain Validity
FOL uninterpreted semidecidable
FOLN natural numbers not semidecidable or cosemidecidable
FOLQ rational numbers not semidecidable or cosemidecidable
FOLR real numbers decidable
FOLC complex numbers decidable

with just equations, conjunctions, and existential quantifiers is decidable, because
its generalization FOLR is decidable. But the point is that FOLR formulas that are
only formed with +,=,∧,∃ can already be solved by Gaussian elimination, because
they only express the existence of solutions of linear equation systems. Linear real
arithmetic with weak inequalities, conjunctions, and existential quantifiers is decid-
able by Fourier-Motzkin elimination [15], which Joseph Fourier invented in 1826
by generalizing Gaussian elimination with a way of flipping inequalities as needed
when multiplying with negative quantities. The idea was subsequently reinvented by
Dines and again by Motzkin [10, 26] and formed the basis for linear-programming
optimization [13]. Linear real arithmetic is conceptually easier than nonlinear real
arithmetic, because only nonlinear real arithmetic can tell the difference between the
real and the rational numbers: ∃x(x2 = 2) is true over R but false over Q, because
±
√

2 are not rational numbers. It takes nonlinear arithmetic to notice such a differ-
ence, though, because linear real arithmetic (with rational coefficients) always has
rational solutions if it has any solutions at all. The complexity of linear problems is
hard regardless [47].

Presburger arithmetic, which is like FOLN but without multiplication, has been
shown to be decidable independently by Presburger in 1929 and by Skolem in 1931
[35, 42]. While multiplication can certainly be rephrased as repeated additions, there
is no bound on the number of additions needed to represent the multiplication n ·m
and, thus, also no finite formula that expresses n ·m with only addition. In fact, Pres-
burger arithmetic also includes unary predicate symbols that check whether their
argument is divisible by a given constant number, for example, whether a number is
even, whether it is divisible by 3, etc., but that does not change its decidability.

That the validity problem of real-arithmetic FOLR is decidable is a miracle. But it
crucially depends on quantification ranging over real numbers (or other real-closed
fields) and on addition and multiplication being the only arithmetic operations (be-
sides comparison operators, propositional connectives, and quantifiers, or other de-
finable operators such as subtraction). If we were to include the exponential function
ex then decidability is an open problem since Tarski, despite considerable progress
[12]. That explains why we do not allow variable powers xy for variables x and y

but merely natural numbers as powers, because those are definable, for example
x3 for x · x · x. Several other extensions of FOLR are undecidable [37], for example
extensions with the trigonometric function sinx, because its roots characterize an
isomorphic copy of the natural numbers.

20.3 Quantifier Elimination 583

20.3 Quantifier Elimination

Alfred Tarski’s seminal insight for deciding real arithmetic is based on quantifier
elimination, i.e., the successive elimination of quantifiers from formulas so that the
remaining formula is equivalent but structurally significantly easier, because it has
fewer quantifiers. Why does eliminating quantifiers help? When evaluating whether
a logical formula is true or false in a given state (i.e., an assignment of real numbers
to all its free variables), then arithmetic comparisons and polynomial terms are easy,
because all we need to do is plug the numbers in and compute according to their
semantics from Sect. 2.7.2. For example, for a state ω with ω(x) = 2, we can easily
evaluate the logical formula

x2 > 2∧2x < 3∨ x3 < x2

to false by following the semantics, which ultimately plugs in 2 as the value for x:

ω[[x2 > 2∧2x < 3∨ x3 < x2]] = 22 > 2∧2 ·2 < 3∨23 < 22 = false

Similarly, in a state ν with ν(x) = 1, the same formula evaluates to true:

ν [[x2 > 2∧2x < 3∨ x3 < x2]] = (1)2 > 2∧2 · (1)< 3∨ (1)3 < (1)2 = true

But quantifiers are a difficult matter, because they require us to check for all pos-
sible values of a variable (in the case of ∀xF) or to find exactly the right value for
a variable that makes the formula true (in the case of ∃xF). The easiest formulas to
evaluate are the ones that have no free variables (because then their value does not
depend on the state ω by Sect. 5.6.5) and that also have no quantifiers (because then
there are no choices for the values of the quantified variables during the evaluation).
Quantifier elimination can take a logical formula that is closed, i.e., has no free vari-
ables, and equivalently remove its quantifiers, so that it becomes easy to evaluate the
formula to true or false. Quantifier elimination even works when formulas still have
free variables. Then it will eliminate all quantifiers in the formula but the original
free variables will remain free in the resulting formula, unless it is simplified in the
quantifier elimination process.

Definition 6.3 (Quantifier elimination). A first-order logic theory (such as
first-order logic FOLR over the reals) admits quantifier elimination if, for each
formula P, a quantifier-free formula QE(P) can be effectively associated with
P that is equivalent, i.e., P↔ QE(P) is valid.

That is, a first-order theory admits quantifier elimination iff there is a computer
program that outputs a quantifier-free formula QE(P) for any input formula P in
that theory such that the input and output are equivalent (so P↔ QE(P) is valid)
and such that the output QE(P) is quantifier-free (and has no free variables that are
not already free in the input formula P). Tarski’s seminal result shows that quantifier
elimination is computable and first-order real arithmetic is decidable [45]:

584 20 Virtual Substitution & Real Equations

Theorem 6.2 (Tarski’s quantifier elimination). The first-order logic of real

arithmetic admits quantifier elimination and is, thus, decidable.

The operation QE is further assumed to evaluate ground formulas (i.e., those
without variables), yielding a decision procedure for closed formulas of FOLR (i.e.,
formulas without free variables). For a closed formula P, all it takes is to compute its
quantifier-free equivalent QE(P) by quantifier elimination. The formula P is closed,
so has no free variables or other uninterpreted symbols, and neither will QE(P).
Hence, P and its equivalent QE(P) are either equivalent to true or to false. Yet,
QE(P) is quantifier-free, so which case holds can be found out by evaluating the
(variable-free) concrete arithmetic in QE(P) as in the above examples.

Example 20.1. Quantifier elimination uses the special structure of real arithmetic to
express quantified arithmetic formulas equivalently without quantifiers and without
using more free variables. For instance, QE yields the following equivalence:

QE(∃x(2x2 + c≤ 5)) ≡ c≤ 5

In particular, the formula ∃x(2x2 + c ≤ 5) is not valid, but only true if c ≤ 5 holds,
as has been so aptly described by the outcome of the above quantifier elimination
result.

Example 20.2. Quantifier elimination can be used to find out whether a first-order
formula of real arithmetic is valid. Take ∃x(2x2 +c≤ 5), for example. A formula is
valid iff its universal closure is, i.e., the formula obtained by universally quantifying
all free variables. After all, valid means that a formula is true for all interpretations.
Hence, consider the universal closure ∀c∃x(2x2+c≤ 5), which is a closed formula,
because it has no free variables. Quantifier elimination can, for example, lead to

QE(∀c∃x(2x2 + c≤ 5))≡ QE(∀c QE(∃x(2x2 + c≤ 5)))≡ QE(∀c(c≤ 5))≡
 100≤ 5∧5≤ 5∧100≤ 5

The resulting formula still has no free variables but is now quantifier-free, so it can
simply be evaluated arithmetically. Since the conjunct 100≤ 5 evaluates to false, the
universal closure ∀c∃x(2x2 + c≤ 5) is equivalent to false and, hence, the original
formula ∃x(2x2 + c≤ 5) is not valid (although still satisfiable for c = 1).

Geometrically, quantifier elimination corresponds to projection; see Fig. 20.1. Note
that, when using QE, we usually assume it already evaluates ground arithmetic, so
that the only two possible outcomes of applying QE to a closed formula without
free variables are the formula true and the formula false.

Alfred Tarski’s result that quantifier elimination over the reals is possible and that
real arithmetic is decidable was groundbreaking. The only issue is that the complex-
ity of Tarski’s decision procedure is non-elementary, i.e., cannot be bounded by any

tower of exponentials 222...
n

, which makes it completely impractical. Still, it was a
seminal breakthrough because it showed reals to be decidable at all. It took further

20.3 Quantifier Elimination 585

x

y

F ≡ ∃y(y≥ 0∧1 x 1.83x2 +1.66x3 > y)

QE(F)≡ 0.75 < x∧ x < 0.68∨ x > 1.18

QE

Fig. 20.1 The geometric counterpart of quantifier elimination for ∃y is projection onto the x axis

advances [5, 14, 21, 24, 41] and a major breakthrough by George Collins in 1975
[6] before practical procedures were found [6, 7, 48]. The virtual substitution tech-
nique shown in this chapter has been implemented in Redlog [11]. Ideas from SMT
solving are combined with nonlinear real arithmetic [23] in the SMT solver Z3.

20.3.1 Homomorphic Normalization for Quantifier Elimination

The first insight for defining quantifier elimination is to understand that the quan-
tifier elimination operation commutes with almost all logical connectives, so that
QE only needs to be defined for existential quantifiers. Consequently, as soon as
we understand how to eliminate existential quantifiers, universal quantifiers can be
eliminated as well just by double negation, because ∀xA is equivalent to ¬∃x¬A:

QE(A∧B)≡ QE(A)∧QE(B)

QE(A∨B)≡ QE(A)∨QE(B)

QE(¬A)≡ ¬QE(A)

QE(∀xA)≡ QE(¬∃x¬A)

These transformations isolate existential quantifiers for quantifier elimination. In
particular, it is sufficient if quantifier elimination focuses on existentially quantified
variables. When using the QE operation inside out, i.e., when using it repeatedly to
eliminate the innermost quantifier to get a quantifier-free equivalent and then again
eliminating the innermost quantifier, the quantifier elimination is solved if only we
manage to solve it for ∃xA with a quantifier-free formula A. If A is not quantifier-free
yet, its quantifiers can be eliminated from inside out:

586 20 Virtual Substitution & Real Equations

QE(∃xA)≡ QE(∃x QE(A)) if A is not quantifier-free

It is possible, although not necessary and not even necessarily helpful, to simplify
the form of A as well. The following transformations transform the (quantifier-free)
kernel after a quantifier into negation normal form using De Morgan’s equivalences:

QE(∃x(A∨B))≡ QE(∃xA)∨QE(∃xB)

QE(∃x¬(A∧B))≡ QE(∃x(¬A∨¬B))

QE(∃x¬(A∨B))≡ QE(∃x(¬A∧¬B))

QE(∃x¬¬A)≡ QE(∃xA)

This transformation can make matters worse in practice, because conversions be-
tween disjunctive and conjunctive normal forms may have exponential results. We
will make use of it just to reduce the number of cases that still need to be covered.
Distributivity can be used to simplify the form of the quantifier-free kernel A to
disjunctive normal form and split existential quantifiers over disjuncts:

QE(∃x(A∧ (B∨C)))≡ QE(∃x((A∧B)∨ (A∧C)))

QE(∃x((A∨B)∧C))≡ QE(∃x((A∧C)∨ (B∧C)))

The only remaining case to address is the case QE(∃x(A∧B)) where A∧B is a
purely conjunctive formula (yet it can actually have any number of conjuncts, not
just two). Finally, using the following normalizing equivalences,

p = q≡ p q = 0

p≤ q≡ p q≤ 0

p < q≡ p q < 0

p 6= q≡ p q 6= 0

p≥ q≡ q≤ p

p > q≡ q < p

¬(p≤ q)≡ p > q

¬(p < q)≡ p≥ q

¬(p = q)≡ p 6= q

¬(p 6= q)≡ p = q

it is possible to normalize all atomic formulas equivalently to one of the forms
p = 0, p < 0, p≤ 0, p 6= 0 with right-hand side 0. Since p 6= 0 is equivalent to
p < 0∨ p < 0, disequations 6= are unnecessary in theory as well (although they
are quite useful to retain in practice). Now, all that remains to be done is to fo-
cus on the core question of equivalently eliminating existential quantifiers from a
conjunction of these normalized atomic formulas.

20.3 Quantifier Elimination 587

20.3.2 Substitution Base

Virtual substitution is a quantifier elimination technique that is based on substitut-
ing extended terms into formulas virtually, i.e., without the extended terms3 actually
occurring in the resulting constraints. Virtual substitution pretends that the language
has additional constructs, but then replaces them by other equivalents in the substi-
tution process.

Virtual substitution in FOLR essentially leads to an equivalence of the form

∃xF ↔
∨

t∈T

At ∧F t
x (20.1)

for a suitable finite set T of extended terms that depends on the formula F

and that gets substituted into F virtually, i.e., in a way that results in stan-
dard real-arithmetic terms, not extended terms. The additional formulas At are
compatibility conditions that may be necessary to make sure the respective
substitutions are meaningful.

Such an equivalence is how quantifier elimination can work. Certainly if the
right-hand side of (20.1) is true, then t is a witness for ∃xF . The key to establishing
an equivalence of the form (20.1) is to ensure that if F has a solution at all (in the
sense of ∃xF being true), then F must also already hold for one of the cases in the
set T . That is, T must cover all representative cases. There might be many more
solutions, but if there is one at all, one of the possibilities in T must be a solution as

well. If we were to choose all real numbers T
def
= R, then (20.1) would be trivially

valid, but then the right-hand side would not be a formula because it is uncountably
infinitely long, which is even worse than the quantified form on the left-hand side.
But if a finite set T is sufficient for the equivalence (20.1) and the extra formulas At

are quantifier-free, then the right-hand side of (20.1) is structurally simpler than the
left-hand side, even if it may be (sometimes significantly) less compact.

The various ways of virtually substituting various forms of extended reals e into
logical formulas equivalently without having to mention the actual extended reals is
the secret of virtual substitution. The first step is to see that it is enough to define
substitutions only on atomic formulas of the form p = 0, p < 0, p≤ 0 (or, just as
well, on p = 0, p > 0, p≥ 0). If σ denotes such a substitution of term θ for variable
x, then σ lifts to arbitrary first-order formulas homomorphically:

σ(A∧B)≡ σA∧σB

σ(A∨B)≡ σA∨σB

σ(¬A)≡ ¬σA

σ(∀yA)≡ ∀yσA if x 6= y and y 6∈ θ

3 Being an extended real term really means it is not a real term, but somehow closely related. We
will see more concrete extended real terms and how to get rid of them again later.

588 20 Virtual Substitution & Real Equations

σ(∃yA)≡ ∃yσA if x 6= y and y 6∈ θ

σ(p = q)≡ σ(p q = 0)

σ(p < q)≡ σ(p q < 0)

σ(p≤ q)≡ σ(p q≤ 0)

σ(p > q)≡ σ(q p < 0)

σ(p≥ q)≡ σ(q p≤ 0)

σ(p 6= q)≡ σ(¬(p q = 0))

This lifting applies the substitution σ to all subformulas (with minor twists on quan-
tifiers for admissibility to avoid capture of variables) and with normalization of
atomic formulas into the canonical forms p = 0, p < 0, p≤ 0 for which σ has been
assumed to already have been defined.

From now on, all that remains to be done to define a substitution or virtual substi-
tution is to define it on atomic formulas of the remaining forms p = 0, p < 0, p≤ 0
for terms p and the above construction will take care of substituting in any first-
order formulas. Of course, the above construction is only helpful for normalizing
atomic formulas that are not already of one of those forms, so the term q above
can be assumed not to be the term 0, otherwise σ(p < 0) would create a useless
σ(p 0 < 0).

20.3.3 Term Substitutions for Linear Equations

This is as far as we can push quantifier elimination generically without looking more
closely at the shape of the actual polynomials that are involved. Let’s start with an
easy case where one of the formulas in the conjunction in the scope of the existential
quantifier is a linear equation. Consider a formula of the form

∃x(bx+ c = 0∧F) (x 6∈ b,c) (20.2)

where x does not occur in the terms b,c (otherwise bx+ c would not be linear if b

is, say, 5x). Let’s consider what a mathematical solution to this formula might look
like. The only solution that the conjunct bx+ c = 0 has is x = c/b. Hence, the left
conjunct in (20.2) only holds for x = c/b, so formula (20.2) can only be true if
F also holds for that single solution c/b in place of x. That is, formula (20.2)

holds only if F
 c/b
x does. Hence, (20.2) is equivalent to the formula F

 c/b
x , which is

quantifier-free.
So, how can we eliminate the quantifier in (20.2) equivalently?

Before you read on, see if you can find the answer for yourself.

Most certainly, F
 c/b
x is quantifier-free. But it is not exactly always equivalent to

(20.2) and, thus, does not necessarily qualify as its quantifier-eliminated form. Oh

20.3 Quantifier Elimination 589

no! What we wrote down is a good intuitive start, but does not make any sense at all
if b = 0, for then c/b would be an ill-advised division by zero. Performing such
divisions by zero sounds like a fairly shaky start for an equivalence transformation
such as quantifier elimination, and it certainly sounds like a shaky start for anything
that is supposed to ultimately turn into a proof.

Let’s start over. The first conjunct in (20.2) has the solution x = c/b if b 6= 0.

In that case, indeed, (20.2) is equivalent to F
 c/b
x , because the only way for (20.2)

to be true then is exactly when the second conjunct F holds for the only solution of

the first conjunct, i.e., when F
 c/b
x holds. How do we know whether b is zero?

If b were a concrete number such as 5 or a term such as 2+ 4 6 then it is
easy to tell whether b is 0 or not. But if b is a term with other variables, such as
y2 + y 2z, then it is really hard to say whether its value might be zero or not,
because that depends on what values the variables y and z have. Certainly if b is
the zero polynomial, we know for sure that is 0. Or b may be a polynomial that can
never be zero, such as a sum of squares plus a positive constant. In general, we may
have to retain a logical disjunction and have one formula that considers the case
where b 6= 0 and another formula that considers the case where b = 0. After all,
logic is quite good at keeping its options separate with disjunctions or other logical
connectives.

If b = 0, then the first conjunct in (20.2) is independent of x and has all numbers
for x as solutions if c = 0 and, otherwise, has no solution at all if c 6= 0. In the latter
case, b = 0,c 6= 0, (20.2) is false, because its first conjunct is already false. In the
former case, b = c = 0, however, the first conjunct bx+ c = 0 is trivial and does not
impose any constraints on x, nor does it help us to find a quantifier-free equivalent
of (20.2). In that case b = c = 0, the trivial constraint will be dropped, and the
remaining formula F will be considered recursively instead to see, e.g., whether it
contains other linear equations that help identify its solution.

In the non-degenerate case b 6= 0 with x 6∈ b,c, the input formula (20.2) can be
rephrased into a quantifier-free equivalent over R as follows.

Theorem 20.1 (Virtual substitution of linear equations). If x 6∈ FV(b) and

x 6∈ FV(c), then the following equivalence is valid over R:

b 6= 0→

∃x(bx+ c = 0∧F)↔ b 6= 0∧F

 c/b
x

)
(20.3)

All it takes is, thus, the ability to substitute the term c/b for x in the formula

F . The division c/b that will occur in F
 c/b
x for ordinary term substitutions can

cause technical annoyances but at least it is well-defined, because b 6= 0 holds in
any context on which c/b is used. Instead of pursuing the looming question of

how exactly this substitution of a fraction in F
 c/b
x works, we already make the

question more general by moving to the quadratic case right away, because that case
will include an answer for the appropriate logical treatment of fractions as well.

Before proceeding to the quadratic case, first observe that the uniform substitu-
tions from Chap. 18 provide a particularly elegant way of phrasing Theorem 20.1

590 20 Virtual Substitution & Real Equations

axiomatically if divisions are in the term language (suitably guarded to only be used
when the divisor is nonzero).

Lemma 20.1 (Uniform substitution of linear equations). The linear equa-

tion axiom is sound, where b,c are arity 0 function symbols:

∃lin b 6= 0→

∃x(b · x+ c = 0∧q(x))↔ q(c/b)

)

Proof. If the assumption b 6= 0 is true, then, since the value of b is independent of
x, the only value for variable x that satisfies the linear equation b · x+ c = 0 is its
mathematical solution c/b, which is well-defined since b 6= 0. Consequently, the
conjunction b · x+ c = 0∧q(x) is true for some x iff q(c/b) is true, since c/b is
the only solution of b · x+ c = 0. ⊓⊔
Axiom ∃lin uses a unary predicate symbol q and arity 0 function symbols b,c, whose
values, thus, cannot depend on the quantified variable x, so that b ·x+c = 0 is linear.
Recall from Chap. 18, that uniform substitutions would clash if they were to replace
the arity 0 function symbols b or c with terms that mention x in a context where x

is bound by ∃x, which enforces linearity also after uniform substitution. But other
variables can still be used in substitutes for b,c, just not the bound variable x.

Example 20.3. Since the linear cofactor y2 +4 is easily shown to be nonzero (it is a
sum of squares with a strictly positive offset), the following formula

∃x

(y2 +4) · x+(yz 1) = 0∧ x3 + x≥ 0

)

is by axiom ∃lin equivalent to the quantifier-free formula:

(

 yz 1
y2 +4

)3

+

(

 yz 1
y2 +4

)

≥ 0

While the chapter proceeds, can you already envision a way of restating this result-
ing quantifier-free formula equivalently without using fractions or quantifiers?

20.4 Square Root
√· Virtual Substitutions for Quadratics

Next consider quadratic equations in a formula of the form

∃x(ax2 +bx+ c = 0∧F) (x 6∈ FV(a),FV(b),FV(c)) (20.4)

where x does not occur free in the terms a,b,c. Pursuing arguments analogously
to the linear case, we identify the solutions of the quadratic equation and substitute
them into F . The generic solution of its first conjunct is x = (b±

√
b2 4ac)/(2a),

but that, of course, again depends on whether a can be evaluated to zero, in which
case linear solutions may be possible and the division by 2a is most certainly not
well-defined; see Fig. 20.2.

20.4 Square Root
√· Virtual Substitutions for Quadratics 591

x

 x2 + x+1

x

1
2 x2 x+ 1

10

x

0x2 + x+ 1
2

Fig. 20.2 Roots of different quadratic functions p

Whether term a can be zero may again sometimes be hard to say when a is actu-
ally a polynomial term that has roots, but does not always evaluate to 0 either (which
only the zero polynomial would). So let’s be more careful right away this time to
find an equivalent formulation for all possible cases of a,b,c. The cases to consider
are where the first conjunct is either a constant equation (in which case the equation
imposes no interesting constraint on x) or a linear equation (in which case x = c/b

is the solution by Sect. 20.3.3) or a proper quadratic equation with a 6= 0 (in which
case x = (b±

√
b2 4ac)/(2a) are the solutions). The trivial equation 0 = 0 when

a = b = c = 0 is again useless, so another part of F has to be considered in that case,
and the equation c = 0 for a = b = 0,c 6= 0 is again false, so immediately refutes the
existence of a solution of (20.4).

When ax2 +bx = 0 is either a proper linear or a proper quadratic equation, its
respective solutions single out the only points that can solve (20.4), so the only
points in which it remains to be checked whether the second conjunct F also holds.

Theorem 20.2 (Virtual substitution of quadratic equations). For quantifier-

free formula F with x 6∈FV(a),FV(b),FV(c), the following equivalence is valid

over R:

a 6= 0∨b 6= 0∨ c 6= 0→
(

∃x(ax2 +bx+ c = 0∧F)↔

a = 0∧b 6= 0∧F
 c/b
x

∨a 6= 0∧b2 4ac≥ 0∧

F
(b+
√

b2 4ac)/(2a)
x ∨F

(b
√

b2 4ac)/(2a)
x

))

Hold on, we fortunately noticed just in time when writing down the formula
in Theorem 20.2 that (b+

√
b2 4ac)/(2a) only ever makes actual sense in the

reals if b2 4ac≥ 0, because the square root is otherwise imaginary, which is really
rather hard to find in FOLR. A quadratic equation only has a solution in the reals if
its discriminant b2 4ac is nonnegative.

592 20 Virtual Substitution & Real Equations

The resulting formula on the right-hand side of the bi-implication in Theo-
rem 20.2 is quantifier-free and, thus, can be chosen for QE(∃x(ax2+bx+c = 0∧F))
as long as it is not the case that a = b = c = 0.

The important thing to notice is that (b±
√

b2 4ac)/(2a) is not a polyno-
mial term, nor even a rational term, because it involves a square root

√·. Hence,
the equivalence in Theorem 20.2 is not a formula of first-order real arithmetic
unless we do something about its square roots and divisions!

If nonnegative square roots were allowed as expressions, then the same idea as
in Lemma 20.1 would turn Theorem 20.2 into a uniform substitution axiom. Recall
from Chap. 2 that the terms of FOLR are polynomials with rational coefficients in
Q. So 4x2 + 1

7 x 1.41 is a polynomial term of FOLR. But 4x2 + 1
y
x 1.41 is not,

because of the division by variable y, which should make us panic about y possibly
being zero in any case. And 4x2 + 1

7 x
√

2 is not a polynomial term with rational
coefficients either, because of the square root

√
2. And 4x2 +

√
yx 2 is totally off.

Note 82 (Semantic domains versus syntactic expressions) The domains that
the quantifiers ∀ and ∃ of first-order logic FOLR of real arithmetic quantify
over include reals like

√
2. But the terms and logical formulas themselves are

syntactically restricted to be built from polynomials with rational coefficients.
Square roots (and all higher roots) are already part of the semantic domain R,
but not allowed directly in the syntax of FOLR.

Of course, it is still easy to write down a formula such as ∃x(x2 = 5) that indi-
rectly makes sure that x will have to assume the value

√
5, but that formula mentions

a quantifier again, so requires extra effort during quantifier elimination.

20.4.1 Square Root Algebra

Square roots are really not part of real arithmetic. They can be defined by appropriate
quadratures. For example, the positive root x =

√
y can be defined by the formula

x2 = y∧ y≥ 0. Let’s find out how square roots such as (b±
√

b2 4ac)/(2a) can
be substituted into first-order formulas systematically without the need to involve
any square roots in the resulting formula. The first step in understanding how to
virtually substitute expressions of the general shape (a+b

√
c)/d into a formula is

to investigate how to substitute them into the polynomials that occur in the formula.

Definition 20.1 (Square root algebra). A square root expression is an expres-
sion of the form

(a+b
√

c)/d

20.4 Square Root
√· Virtual Substitutions for Quadratics 593

with polynomials a,b,c,d ∈Q[x1, . . . ,xn] with rational coefficients in the vari-
ables x1, . . . ,xn if, for well-definedness, d 6= 0∧ c≥ 0. Square root expressions
with the same

√
c can be added and multiplied symbolically by considering

them as algebraic objects:a

((a+b
√

c)/d)+((a′+b′
√

c)/d′) = ((ad′+da′)+(bd′+db′)
√

c)/(dd′)

((a+b
√

c)/d) · ((a′+b′
√

c)/d′) = ((aa′+bb′c)+(ab′+ba′)
√

c)/(dd′)
(20.5)

a Despite the poor notation, please don’t mistake the primes for derivatives here. The name
a′ is not the derivative of a here but just meant as a name for a polynomial term that happens
to go by the misleading name a′.

Another way of saying this is that square root expressions with the same
√

c pro-
vide an addition and a multiplication operation that leads to square root expressions
in the same

√
c. Substituting (a+b

√
c)/d for a variable x in a polynomial term p,

thus, leads to a square root expression p
(a+b

√
c)/d

x = (ã+ b̃
√

c)/d̃ with the same
√

c,
because the arithmetic resulting from evaluating the polynomial only requires addi-
tion and multiplication using (20.5).4 After all, a polynomial is represented as a term
involving only addition and multiplication (remembering that a b is a+(1) ·b).

Symbolic addition and multiplication makes it possible to substitute a square

root expression for a variable in a polynomial. Yet, the result p
(a+b

√
c)/d

x

is still a square root expression, which cannot be written down directly in
first-order real arithmetic. But, at least, substituting a square root expression
(a+b

√
c)/d into a polynomial p for x leads to some square root expression

p
(a+b

√
c)/d

x = (a′+b′
√

c)/d′ of the same
√

c.

Example 20.4 (Quadratic roots into quadratic polynomials). As a simple exam-
ple, let us substitute the square root expression (b+

√
b2 4ac)/(2a) into the

quadratic polynomial ax2 +bx+ c by the symbolic computation (20.5):

(ax2 +bx+ c)
(b+
√

b2 4ac)/(2a)
x

= a((b+
√

b2 4ac)/(2a))2 +b((b+
√

b2 4ac)/(2a))+ c

= a((b2 +b2 4ac+(b b)
√

b2 4ac)/(4a2))+(b2 +b
√

b2 4ac)/(2a)+ c

= (ab2 +ab2 4a2c+(ab ab)
√

b2 4ac)/(4a2)+(b2 +2ac+b
√

b2 4ac)/(2a)

= ((ab2 +ab2 4a2c)2a+(b2 +2ac)4a2 +((ab ab)2a+b4a2)
√

b2 4ac)/(8a3)

= (2a2b2 + 2a2b2 8a3c + 4a2b2 + 8a3c +(2a2b 2a2b + 4a2b)
√

b2 4ac)/(8a3)

= (0+0
√

b2 4ac)/(8a3) = 0

4 In practice, the polynomial addition and multiplication operations for a polynomial p are per-
formed by Horner’s scheme for dense polynomials p and by repeated squaring for sparse polyno-
mials p. This avoids redundant cases when, e.g., considering x3 and x2.

594 20 Virtual Substitution & Real Equations

The result is the zero expression! How did that happen? Come to think of it, we
could have foreseen this, because the square root expression (b+

√
b2 4ac)/(2a)

we just substituted into the polynomial ax2 +bx+ c is its root and has to yield 0.

The polynomial evaluation resulting from these square root expression computa-
tions will substitute a square root expression into a polynomial. The next step is to
handle the comparison to 0 of the resulting square root expression in atomic formu-
las p∼ 0 for some ∼∈ {=,≤,<}. That works by characterizing it using the square

root expression p
(a+b

√
c)/d

x :

(p∼ 0)(a+b
√

c)/d
x ≡ (p

(a+b
√

c)/d
x ∼ 0)

In order to save some notational effort, suppose the square root expression p
(a+b

√
c)/d

x

is again (a+b
√

c)/d, which is, of course, only accurate for the polynomial p(x) = x,
but cuts down on the number of primes in the symbol names. All that remains to be
done is to rewrite the square root expression comparison (a+b

√
c)/d ∼ 0 to an

equivalent in FOLR in a way that does not use square root expressions anymore.

Definition 20.2 (Square root comparisons). Assume d 6= 0∧ c≥ 0 for well-
definedness. For square-root-free expressions (b = 0) with just divisions, i.e.,
those of the form (a+0

√
c)/d alias a/d, the following equivalences hold:

a/d = 0≡ a = 0

a/d ≤ 0≡ ad ≤ 0

a/d < 0≡ ad < 0

For square root expressions (a+b
√

c)/d with arbitrary polynomial b, the fol-
lowing equivalences hold, assuming d 6= 0∧ c≥ 0 for well-definedness:

(a+b
√

c)/d = 0≡ ab≤ 0∧a2 b2c = 0

(a+b
√

c)/d ≤ 0≡ ad ≤ 0∧a2 b2c≥ 0∨bd ≤ 0∧a2 b2c≤ 0

(a+b
√

c)/d < 0≡ ad < 0∧a2 b2c > 0∨bd ≤ 0∧ (ad < 0∨a2 b2c < 0)

In the cases for b = 0, the sign of ad determines the sign, except that d 6= 0 im-
plies that a = 0 is enough in the first case. The first line for arbitrary b characterizes
that (a+b

√
c)/d = 0 holds iff a,b have different signs (possibly 0) and their squares

cancel, because a2 = b2c, which implies a = b
√

c. The second line characterizes
that ≤ 0 holds iff a2 ≥ b2c so that a will dominate the overall sign, where a has
a different sign than d by ad ≤ 0, or if a2 ≤ b2c so that b

√
c will dominate the

overall sign, where b has a different sign than d (possibly 0) by bd ≤ 0. The square
a2 b2c = a2 b2√c

2 is the square of the absolute value of the involved terms,
which uniquely identifies the truth-values along with the accompanying sign con-
ditions. The third line characterizes that < 0 holds iff a strictly dominates, because
a2 > b2c and the dominant a,d have different nonzero signs or if b,d have differ-

20.4 Square Root
√· Virtual Substitutions for Quadratics 595

ent signs and either a,d have different nonzero signs as well (so a,b have the same
sign or 0 but strictly different than d) or b

√
c strictly dominates the sign because

a2 < b2c. The last case involves extra care for the required sign conditions to avoid
the = 0 case. Essentially, the condition holds when d has strictly opposing sign to
a whose square dominates the square b2c to b

√
c or when d has opposing sign to b

and either d has strictly opposing sign to a or b
√

c dominates a.

20.4.2 Virtual Substitutions of Square Roots

The combination of polynomial evaluation according to Definition 20.1 and subse-
quent square root comparisons by Definition 20.2 defines the substitution of a square
root (a+b

√
c)/d for x into atomic formulas and can be lifted to all first-order logic

formulas as explained in Sect. 20.3.2. The important thing to note is that the result of
this substitution does not introduce square root expressions or divisions even though
the square root expression (a+b

√
c)/d has square root

√
c and division /d. Substi-

tution of a square root (a+b
√

c)/d for x into a (quantifier-free) first-order formula
F then works by virtually substituting into all atomic formulas (Sect. 20.3.2). The

result of such a virtual substitution is denoted by F
(a+b

√
c)/d

x̄
.

It is crucial to note that the virtual substitution of the square root expression

(a+b
√

c)/d for x in F giving F
(a+b

√
c)/d

x̄
is semantically equivalent to the result

F
(a+b

√
c)/d

x of the literal substitution replacing x with (a+b
√

c)/d, but operationally
different, because the virtual substitution never introduces square roots or divisions.
Because of their semantical equivalence, we use almost the same notation. The result

F
(a+b

√
c)/d

x̄
of the virtual substitution is defined by square root comparisons (Defi-

nition 20.2) after polynomial evaluation (Definition 20.1). It is better behaved than

the result of the literal substitution F
(a+b

√
c)/d

x , because it stays within FOLR proper
instead of requiring an extension of the language with square root expressions.

Lemma 20.2 (Virtual substitution lemma for square roots). The result

F
(a+b

√
c)/d

x̄
of the virtual substitution is semantically equivalent to the result

F
(a+b

√
c)/d

x of the literal substitution. A language extension yields this validity:

F
(a+b

√
c)/d

x ↔ F
(a+b

√
c)/d

x̄

Keep in mind, though, that the result F
(a+b

√
c)/d

x̄
of virtual substitution is a proper

formula of FOLR, while the literal substitution F
(a+b

√
c)/d

x can only even be consid-
ered as a formula in an extended logic that allows for a syntactic representation of
divisions and square root expressions within a context in which they are meaningful
(no divisions by zero, no imaginary roots).

A more useful semantical rendition of the virtual substitution lemma shows

596 20 Virtual Substitution & Real Equations

ωr
x ∈ [[F]] iff ω ∈ [[F

(a+b
√

c)/d
x̄

]] where r = (ω[[a]]+ω[[b]]
√

ω[[c]])/ω[[d]] ∈ R

which is an equivalence of the value of the result of a virtual substitution in any
state ω in which the value of F in the semantic modification of the state ω with the
value of the variable x is changed to the (real) value that the expression (a+b

√
c)/d

would have if only it were allowed in FOLR.
Using Lemma 20.2, Theorem 20.2 continues to hold when using the square root

virtual substitutions F
(b±
√

b2 4ac)/(2a)
x̄

that change Theorem 20.2 to produce a
valid formula of first-order real arithmetic, without scary square root expressions. In
particular, since the fraction c/b also is a (somewhat impoverished) square root ex-

pression (c+0
√

0)/b, the FOLR formula F
 c/b
x̄

in Theorem 20.2 can be formed
and rephrased equivalently using the square root virtual substitution as well. Hence,
the quantifier-free right-hand side in Theorem 20.2 does not introduce square roots
or divisions, but happily remains a proper formula in FOLR.

With this virtual substitution, the right-hand side of the bi-implication in The-
orem 20.2 can be chosen as QE(∃x(ax2 +bx+ c = 0∧F)) if it is not the case

that a = b = c = 0. When using square root virtual substitutions, divisions can be
avoided in the quantifier elimination (20.3) for the linear case. Thus, the right-hand
side of (20.3) can be chosen as QE(∃x(bx+ c = 0∧F)) if it is not the case that
b = c = 0.

Example 20.5 (Quadratic curiosity). Using quantifier elimination to check under
which circumstances the quadratic equality from (20.4) evaluates to true requires
a nontrivial number of algebraic and logical computations to handle the virtual sub-
stitution of the respective roots of ax2 +bx+ c = 0 into F .

Just out of curiosity, what would happen if we tried to apply the same virtual
substitution coming from this equation to ax2 +bx+ c = 0 itself instead of to F?
Imagine, for example, that ax2 +bx+ c = 0 shows up a second time in F . Let’s only
consider the case of quadratic solutions, i.e., where a 6= 0. And let’s only consider the
root (b+

√
b2 4ac)/(2a). The other cases are left as an exercise. First virtually

substitute (b+
√

b2 4ac)/(2a) into the polynomial ax2 +bx+ c leading to the
symbolic square root expression arithmetic from Example 20.4:

(ax2 +bx+ c)
(b+
√

b2 4ac)/(2a)
x̄

= (0+0
√

b2 4ac)/1 = 0

So (ax2 +bx+ c)
(b+(8a3)

√
b2 4ac)/(2a)

x̄
is the zero square root expression? That is

actually exactly as expected by construction, because (b±
√

b2 4ac)/(2a) is
supposed to be a root of ax2 +bx+ c in the case where a 6= 0∧ b2 4ac ≥ 0. In
particular, if ax2 +bx+ c occurs again in F as either an equation or inequality, its
virtual substitute in the various cases just ends up being:

20.4 Square Root
√· Virtual Substitutions for Quadratics 597

(ax2 +bx+ c = 0)
(b+
√

b2 4ac)/(2a)
x̄

≡ ((0+0
√

b2 4ac)/1 = 0)≡ (0 = 0)≡ true

(ax2 +bx+ c≤ 0)
(b+
√

b2 4ac)/(2a)
x̄

≡ ((0+0
√

b2 4ac)/1≤ 0)≡ (0 ·1≤ 0)≡ true

(ax2 +bx+ c < 0)
(b+
√

b2 4ac)/(2a)
x̄

≡ ((0+0
√

b2 4ac)/1 < 0)≡ (0 ·1 < 0)≡ false

(ax2 +bx+ c 6= 0)
(b+
√

b2 4ac)/(2a)
x̄

≡ ((0+0
√

b2 4ac)/1 6= 0)≡ (0 6= 0)≡ false

And that makes sense as well. After all, the roots of ax2 +bx+ c = 0 satisfy the
weak inequality ax2 +bx+ c≤ 0 but not the strict inequality ax2 +bx+ c < 0. In
particular, Theorem 20.2 could substitute the roots of ax2 +bx+ c = 0 also into
the full formula ax2 +bx+ c = 0∧F under the quantifier, but the formula result-
ing from the left conjunct ax2 +bx+ c = 0 always simplifies to true so that only the
virtual substitution into F remains, where actual logic with real arithmetic happens.

The above computations are all that is needed for Theorem 20.2 to show the
following quantifier elimination equivalences:

a 6= 0→ (∃x(ax2 +bx+ c = 0∧ax2 +bx+ c = 0)↔ b2 4ac≥ 0∧ true)

a 6= 0→ (∃x(ax2 +bx+ c = 0∧ax2 +bx+ c≤ 0)↔ b2 4ac≥ 0∧ true)

With similar computations for the case (b
√

b2 4ac)/(2a), this also justifies

a 6= 0→ (∃x(ax2 +bx+ c = 0∧ax2 +bx+ c < 0)↔ b2 4ac≥ 0∧ false)

a 6= 0→ (∃x(ax2 +bx+ c = 0∧ax2 +bx+ c 6= 0)↔ b2 4ac≥ 0∧ false)

Consequently, in a context where a 6= 0 is known, for example because it is a term
such as 5 or y2 +1, Theorem 20.2 and simplification yields the following quantifier
elimination results:

QE(∃x(ax2 +bx+ c = 0∧ax2 +bx+ c = 0))≡ b2 4ac≥ 0

QE(∃x(ax2 +bx+ c = 0∧ax2 +bx+ c≤ 0))≡ b2 4ac≥ 0

QE(∃x(ax2 +bx+ c = 0∧ax2 +bx+ c < 0))≡ false

QE(∃x(ax2 +bx+ c = 0∧ax2 +bx+ c 6= 0))≡ false

In a context where a 6= 0 is not known, more cases become possible and the dis-
junctive structure in Theorem 20.2 remains, leading to a case distinction on whether
a = 0 or a 6= 0.

Example 20.6 (Nonnegative roots of quadratic polynomials). Consider the formula

∃x(ax2 +bx+ c = 0∧ x≥ 0) (20.6)

598 20 Virtual Substitution & Real Equations

for the purpose of eliminating quantifiers using Theorem 20.2. For simplicity, again
assume a 6= 0 is known, e.g., because a = 5. Since a 6= 0, Theorem 20.2 will only
consider the square root expression (b+

√
b2 4ac)/(2a) and the corresponding

(b
√

b2 4ac)/(2a) but no linear roots. The first thing that happens during the
virtual substitution of those roots into the remaining formula F ≡ (x≥ 0) is that
the construction in Sect. 20.3.2 will flip x≥ 0 to a base case x≤ 0. In that base
case, the substitution of the square root expression (b+

√
b2 4ac)/(2a) into the

polynomial x leads to the following square root computations by (20.5):

 (b+
√

b2 4ac)/(2a)= ((1+0
√

b2 4ac)/1) ·((b+
√

b2 4ac)/(2a))

= (b
√

b2 4ac)/(2a)

Observe how the unary minus operator expands to multiplication by 1, whose
representation as a square root expression is (1+0

√
b2 4ac)/1 for square root√

b2 4ac. The virtual square root substitution of this square root expression yields

(x≤ 0)(b
√

b2 4ac)/(2a)
x̄

≡ b2a≤ 0∧ b2 (1)2(b2 4ac)≥ 0∨ 1 ·2a≤ 0∧ b2 (1)2(b2 4ac)≤ 0

≡ 2ba≤ 0∧4ac≥ 0∨ 2a≤ 0∧4ac≤ 0

For the second square root expression (b
√

b2 4ac)/(2a), the corresponding
polynomial evaluation leads to

 (b
√

b2 4ac)/(2a)= ((1+0
√

b2 4ac)/1) ·((b
√

b2 4ac)/(2a))

= (b+
√

b2 4ac)/(2a)

The virtual square root substitution of this square root expression, thus, yields

(x≤ 0)(b+
√

b2 4ac)/(2a)
x̄

≡ b2a≤ 0∧ b2 12(b2 4ac)≥ 0∨1 ·2a≤ 0∧ b2 12(b2 4ac)≤ 0

≡ 2ba≤ 0∧4ac≥ 0∨2a≤ 0∧4ac≤ 0

Consequently, since a 6= 0, Theorem 20.2 implies the quantifier elimination equiva-
lence:

a 6= 0→

∃x(ax2 +bx+ c = 0∧ x≥ 0)

↔ b2 4ac≥ 0∧
(2ba≤ 0∧4ac≥ 0∨ 2a≤ 0∧4ac≤ 0∨2ba≤ 0∧4ac≥ 0∨2a≤ 0∧4ac≤ 0)

)

Consequently, in a context where a 6= 0 is known, Theorem 20.2 yields the following
quantifier elimination results:

20.6 Summary 599

QE(∃x(ax2 +bx+ c = 0∧ x≥ 0))

≡ b2 4ac≥ 0∧
(2ba≤ 0∧4ac≥ 0∨ 2a≤ 0∧4ac≤ 0∨ 2ba≤0∧4ac≥0 ∨2a≤ 0∧4ac≤ 0)

≡ b2 4ac≥ 0∧ (ba≤ 0∧ac≥ 0∨a≥ 0∧ac≤ 0∨a≤ 0∧ac≤ 0)

The sign conditions that this formula expresses make sense when considering that
the original quantified formula (20.6) expresses that the quadratic equation has a
nonnegative root, which is only true under some conditions on its parameters.

20.5 Optimizations

Virtual substitutions admit a number of useful optimizations that make them more
practical. When substituting a square root expression (a+b

√
c)/d for a variable x in

a polynomial p, the resulting square root expression p
(a+b

√
c)/d

x̄
= (ã+ b̃

√
c)/d̃ will

end up occurring with a higher power of the form d̃ = dk where k is the degree in p

of variable x. This is easy to see by inspecting the definitions of addition and multi-
plication from (20.5). Such larger powers of d can be avoided using the equivalences
(pq3 ∼ 0)≡ (pq∼ 0) and, if q 6= 0, using (pq2 ∼ 0)≡ (p∼ 0) for arithmetic rela-
tions∼∈ {=,>,≥, 6=,<,≤}. Since d 6= 0 needs to be assumed for well-definedness

of a square root expression (a+b
√

c)/d, the degree of d in the result F
(a+b

√
c)/d

x̄
of

the virtual substitution can, thus, be lowered to either 0 or 1 depending on whether
it ultimately occurs as an even or odd power (Exercise 20.9). If d occurs as an odd
power, its occurrence can be lowered to degree 1. If d occurs as an even power, its
occurrence can be reduced to degree 0, which makes it disappear entirely.

A minor but important optimization to retain a low polynomial degree [48] for
sign comparisons results from the fact that the odd power e2n+1 has the same sign
as e and that an even power e2n has the same sign as e2. In particular if e 6= 0, then
the even power e2n has the same sign as 1.

The significance of lowering degrees does not just come from the conceptual and
computational impact that large degrees have on the problem of quantifier elimina-
tion, but, for the case of virtual substitution, also from the fact that virtual substitu-
tion only works for certain bounded but common degrees.

20.6 Summary

This chapter showed part of the miracle of quantifier elimination and that quantifier
elimination is possible in first-order real arithmetic. This technique works for formu-
las that normalize into an appropriate form as long as the technique can latch on to a
linear or quadratic equation for all quantified variables. There can be higher-degree
or inequality occurrences of the variables as well within the formula F of Theo-

600 20 Virtual Substitution & Real Equations

rem 20.2, but there has to be at least one linear or quadratic equation. Commuting
the formula so that it has the required form is easily done if such an equation is
anywhere at all. What is to be done if there is no quadratic equation but only other
quadratic inequalities is the topic of the next chapter.

It is also foreseeable that the virtual substitution approach will ultimately run into
difficulties for pure high-degree polynomials, because those generally have no radi-
cals to solve the equations. That is where other more algebraic quantifier elimination
techniques come into play that are beyond the scope of this textbook.

Virtual substitution of square root expressions uses symbolic computations:

((a+b
√

c)/d)+((a′+b′
√

c)/d′) = ((ad′+da′)+(bd′+db′)
√

c)/(dd′)

((a+b
√

c)/d) · ((a′+b′
√

c)/d′) = ((aa′+bb′c)+(ab′+ba′)
√

c)/(dd′)

The following expansions were the core of eliminating square root expressions by
virtual substitutions. For square root expressions (a+b

√
c)/d with d 6= 0∧ c≥ 0

for well-definedness, the following equivalences rewrite to eliminate square roots:

(a+b
√

c)/d = 0≡ ab≤ 0∧a2 b2c = 0

(a+b
√

c)/d ≤ 0≡ ad ≤ 0∧a2 b2c≥ 0∨bd ≤ 0∧a2 b2c≤ 0

(a+b
√

c)/d < 0≡ ad < 0∧a2 b2c > 0∨bd ≤ 0∧ (ad < 0∨a2 b2c < 0)

20.7 Appendix: Real Algebraic Geometry

This textbook follows a logical view of cyber-physical systems. It can be helpful
to develop an intuition about what geometric objects the various logical concepts
correspond to. What is most interesting in this context is real algebraic geometry [2]
as it relates to real arithmetic [1]. General algebraic geometry is also very elegant
and beautiful, especially over algebraically closed fields [9, 18].

The geometric counterpart of polynomial equations is real affine algebraic vari-
eties. Every set F of polynomials defines a geometric object, its variety, i.e., the set
of points on which all those polynomials are zero.

Definition 20.3 (Real affine algebraic variety). V ⊆ Rn is an affine variety iff, for
some set F ⊆ R[X1, . . . ,Xn] of polynomials over R

V =V (F) := {x ∈ Rn : f (x) = 0 for all f ∈ F}

Affine varieties are subsets of Rn that are definable by a set of polynomial equations.

The converse construction is that of the vanishing ideal, which describes the set of
all polynomials that are zero on a given set V .

Definition 20.4 (Vanishing ideal). I ⊆ R[X1, . . . ,Xn] is the vanishing ideal of V ⊆
Rn:

20.7 Appendix: Real Algebraic Geometry 601

I(V) := { f ∈ R[X1, . . . ,Xn] : f (x) = 0 for all f ∈V}
i.e., all polynomials that are zero on all of V .

Affine varieties and vanishing ideals are related by

S⊆V (I(S)) for any set S⊆ Rn

V =V (I(V)) if V is an affine variety

F ⊆ G ⇒ V (F)⊇V (G)

Affine varieties and vanishing ideals are intimately related by Hilbert’s Nullstellen-
satz over algebraically closed fields such as C and by Stengle’s Nullstellensatz over
real-closed fields such as R.

The affine varieties corresponding to a number of interesting polynomials are
illustrated in Fig. 20.3.

x

y

x3 = y
x

y

x2 + y2 = 1

x

y

y2 = x2(x+1)

4x3 +4x2y+9xy2 9y3 36x+36y = 0

z = x2 y2

Fig. 20.3 Polynomial equations describe (real) affine (algebraic) varieties

Exercises

20.1. Definition 20.1 defined addition and multiplication of square root expres-
sions. How can subtraction ((a+b

√
c)/d) ((a′+b′

√
c)/d′) and negation ((a+

b
√

c)/d) be defined?

602 20 Virtual Substitution & Real Equations

20.2. Assuming that b 6= 0, construct a quantifier-free equivalent for the existence of
a nonnegative root of the general linear equation. That is, perform linear quantifier
elimination on

∃x(bx+ c = 0∧ x≥ 0)

and state the result without using fractions. What is the result when, instead, assum-
ing b = 0∧ c 6= 0?

20.3. Note 82 stated that the terms and formulas of FOLR can only be built from
polynomials with rational coefficients. Show that it suffices to, indeed, only allow
the numbers 0 and 1 but no other. First assume that a fraction operator / can be used
(at least on terms without variables).

20.4. Example 20.5 showed that ax2 +bx+ c = 0 simplifies to true for the virtual
substitution of the root (b+

√
b2 4ac)/(2a). Show that the same thing happens

for the root (b
√

b2 4ac)/(2a) and, if a = 0, the root (c+0
√

0)/b.

20.5. Example 20.5 argued that the simplification of ax2 +bx+ c = 0 to true for the
virtual substitution of the root (b+

√
b2 4ac)/(2a) is to be expected, because the

real number to which (b+
√

b2 4ac)/(2a) evaluates is a root of ax2 +bx+ c = 0
in the case where a 6= 0∧b2 4ac≥ 0. Yet, what happens in the case where the extra
assumption a 6= 0∧ b2 4ac ≥ 0 does not hold? What is the value of the virtual
substitution in that case? Is that a problem? Discuss carefully!

20.6. Use Theorem 20.2 to eliminate quantifiers in the following formulas, assuming
a 6= 0 is known:

∃x(ax2 +bx+ c = 0∧ x < 1)

∃x(ax2 +bx+ c = 0∧ x3 + x≤ 0)

20.7. How does Example 20.6 change when removing the assumption that a 6= 0?

20.8. Would first-order logic of real arithmetic miss the presence of π? That is, if we
deleted π from the domain and made all quantifiers range only over R\{π}, would
there be any formula that notices by having a different truth-value? If we deleted
3
√

5 from the domain, would FOLR notice?

20.9. Consider the process of substituting a square root expression (a+b
√

c)/d for
a variable x in a polynomial p. Let k be the degree in p of variable x, so that d

occurs as dk with power k in the result p
(a+b

√
c)/d

x̄
= (ã+ b̃

√
c)/d̃. Let δ = 1 when

k is odd and δ = 0 when k is even. Show that the following optimization can be used
for the virtual substitution. Assume d 6= 0∧ c≥ 0 for well-definedness. For square-
root-free expressions (b = 0) with just divisions, i.e., those of the form (a+0

√
c)/d,

the following equivalences hold:

(a+0
√

c)/d = 0≡ a = 0

(a+0
√

c)/d ≤ 0≡ adδ ≤ 0

20.7 Appendix: Real Algebraic Geometry 603

(a+0
√

c)/d < 0≡ adδ < 0

(a+0
√

c)/d 6= 0≡ a 6= 0

Assume d 6= 0 and c≥ 0 for well-definedness. For any square root expression
(a+b

√
c)/d with arbitrary b, the following equivalences hold:

(a+b
√

c)/d = 0≡ ab≤ 0∧a2 b2c = 0

(a+b
√

c)/d ≤ 0≡ adδ ≤ 0∧a2 b2c≥ 0∨bdδ ≤ 0∧a2 b2c≤ 0

(a+b
√

c)/d < 0≡ adδ < 0∧a2 b2c > 0∨bdδ ≤ 0∧ (adδ < 0∨a2 b2c < 0)

(a+b
√

c)/d 6= 0≡ ab > 0∨a2 b2c 6= 0

References

[1] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in Real

Algebraic Geometry. 2nd. Berlin: Springer, 2006. DOI: 10.1007/3-540-
33099-2.

[2] Jacek Bochnak, Michel Coste, and Marie-Francoise Roy. Real Algebraic Ge-

ometry. Vol. 36. Ergeb. Math. Grenzgeb. Berlin: Springer, 1998. DOI: 10.1
007/978-3-662-03718-8.

[3] Claude Chevalley and Henri Cartan. Schémas normaux; morphismes; ensem-
bles constructibles. In: Séminaire Henri Cartan. Vol. 8. 7. Numdam, 1955, 1–
10.

[4] Alonzo Church. A note on the Entscheidungsproblem. J. Symb. Log. 1(1)
(1936), 40–41.

[5] Paul J. Cohen. Decision procedures for real and p-adic fields. Communica-

tions in Pure and Applied Mathematics 22 (1969), 131–151. DOI: 10.1002
/cpa.3160220202.

[6] George E. Collins. Quantifier elimination for real closed fields by cylindrical
algebraic decomposition. In: Automata Theory and Formal Languages. Ed.
by H. Barkhage. Vol. 33. LNCS. Berlin: Springer, 1975, 134–183. DOI: 10
.1007/3-540-07407-4_17.

[7] George E. Collins and Hoon Hong. Partial cylindrical algebraic decomposi-
tion for quantifier elimination. J. Symb. Comput. 12(3) (1991), 299–328. DOI:
10.1016/S0747-7171(08)80152-6.

[8] Stephen A. Cook. The complexity of theorem-proving procedures. In: STOC.
Ed. by Michael A. Harrison, Ranan B. Banerji, and Jeffrey D. Ullman. New
York: ACM, 1971, 151–158. DOI: 10.1145/800157.805047.

[9] David A. Cox, John Little, and Donal O’Shea. Ideals, Varieties and Algo-

rithms: An Introduction to Computational Algebraic Geometry and Commu-

https://doi.org/10.1007/3-540-33099-2
https://doi.org/10.1007/3-540-33099-2
https://doi.org/10.1007/978-3-662-03718-8
https://doi.org/10.1007/978-3-662-03718-8
https://doi.org/10.1002/cpa.3160220202
https://doi.org/10.1002/cpa.3160220202
https://doi.org/10.1007/3-540-07407-4_17
https://doi.org/10.1007/3-540-07407-4_17
https://doi.org/10.1016/S0747-7171(08)80152-6
https://doi.org/10.1145/800157.805047

604 20 Virtual Substitution & Real Equations

tative Algebra. Undergraduate Texts in Mathematics. New York: Springer,
1992.

[10] Lloyd Dines. Systems of linear inequalities. Ann. Math. 20(3) (1919), 191–
199.

[11] Andreas Dolzmann and Thomas Sturm. Redlog: computer algebra meets
computer logic. ACM SIGSAM Bull. 31(2) (1997), 2–9. DOI: 10.1145/26
1320.261324.

[12] Lou van den Dries and Chris Miller. On the real exponential field with re-
stricted analytic functions. Israel J. Math. 85(1-3) (1994), 19–56. DOI: 10.1
007/BF02758635.

[13] Richard J. Duffin. On Fourier’s analysis of linear inequality systems. In: Piv-

oting and Extension: In honor of A.W. Tucker. Ed. by M. L. Balinski. Berlin:
Springer, 1974, 71–95. DOI: 10.1007/BFb0121242.

[14] Erwin Engeler. Foundations of Mathematics: Questions of Analysis, Geome-

try and Algorithmics. Berlin: Springer, 1993. DOI: 10.1007/978-3-642
-78052-3.

[15] Jean-Baptiste Joseph Fourier. Solution d’une question particulière du calcul
des inégalités. Nouveau Bulletin des Sciences par la Société Philomatique de

Paris (1826), 99–100.
[16] Kurt Gödel. Die Vollständigkeit der Axiome des logischen Funktionenkalküls.

Monatshefte Math. Phys. 37 (1930), 349–360. DOI: 10.1007/BF016967
81.

[17] Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica
und verwandter Systeme I. Monatshefte Math. Phys. 38(1) (1931), 173–198.
DOI: 10.1007/BF01700692.

[18] Joe Harris. Algebraic Geometry: A First Course. Graduate Texts in Mathe-
matics. Berlin: Springer, 1995. DOI: 10.1007/978-1-4757-2189-8.

[19] John Harrison. Verifying nonlinear real formulas via sums of squares. In:
TPHOLs. Ed. by Klaus Schneider and Jens Brandt. Vol. 4732. LNCS. Berlin:
Springer, 2007, 102–118. DOI: 10.1007/978-3-540-74591-4_9.

[20] Jacques Herbrand. Recherches sur la théorie de la démonstration. Travaux de

la Société des Sciences et des Lettres de Varsovie, Class III, Sciences Mathé-

matiques et Physiques 33 (1930), 33–160.
[21] Lars Hörmander. The Analysis of Linear Partial Differential Operators II.

Vol. 257. Grundlehren der mathematischen Wissenschaften. Berlin: Springer,
1983.

[22] Nathan Jacobson. Basic Algebra I. 2nd ed. San Francisco: Freeman, 1989.
[23] Dejan Jovanović and Leonardo Mendonça de Moura. Solving non-linear

arithmetic. In: Automated Reasoning - 6th International Joint Conference,

IJCAR 2012, Manchester, UK, June 26-29, 2012. Proceedings. Ed. by Bern-
hard Gramlich, Dale Miller, and Ulrike Sattler. Vol. 7364. LNCS. Berlin:
Springer, 2012, 339–354. DOI: 10.1007/978-3-642-31365-3_27.

[24] Georg Kreisel and Jean-Louis Krivine. Elements of mathematical logic:

Model Theory. 2nd ed. Amsterdam: North-Holland, 1971.

https://doi.org/10.1145/261320.261324
https://doi.org/10.1145/261320.261324
https://doi.org/10.1007/BF02758635
https://doi.org/10.1007/BF02758635
https://doi.org/10.1007/BFb0121242
https://doi.org/10.1007/978-3-642-78052-3
https://doi.org/10.1007/978-3-642-78052-3
https://doi.org/10.1007/BF01696781
https://doi.org/10.1007/BF01696781
https://doi.org/10.1007/BF01700692
https://doi.org/10.1007/978-1-4757-2189-8
https://doi.org/10.1007/978-3-540-74591-4_9
https://doi.org/10.1007/978-3-642-31365-3_27

20.7 Appendix: Real Algebraic Geometry 605

[25] Sean McLaughlin and John Harrison. A proof-producing decision procedure
for real arithmetic. In: CADE. Ed. by Robert Nieuwenhuis. Vol. 3632. LNCS.
Springer, 2005, 295–314. DOI: 10.1007/11532231_22.

[26] Theodore Samuel Motzkin. Beiträge zur Theorie der Linearen Ungleichun-
gen. PhD thesis. Basel, Jerusalem, 1936.

[27] Leonardo Mendonça de Moura and Grant Olney Passmore. The strategy chal-
lenge in SMT solving. In: Automated Reasoning and Mathematics - Essays

in Memory of William W. McCune. Ed. by Maria Paola Bonacina and Mark E.
Stickel. Vol. 7788. LNCS. Berlin: Springer, 2013, 15–44. DOI: 10.1007/9
78-3-642-36675-8_2.

[28] Grant Olney Passmore. Combined Decision Procedures for Nonlinear Arith-
metics, Real and Complex. PhD thesis. School of Informatics, University of
Edinburgh, 2011.

[29] André Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reas.

41(2) (2008), 143–189. DOI: 10.1007/s10817-008-9103-8.
[30] André Platzer. Logical Analysis of Hybrid Systems: Proving Theorems for

Complex Dynamics. Heidelberg: Springer, 2010. DOI: 10.1007/978-3-
642-14509-4.

[31] André Platzer. Logics of dynamical systems. In: LICS. Los Alamitos: IEEE,
2012, 13–24. DOI: 10.1109/LICS.2012.13.

[32] André Platzer. The complete proof theory of hybrid systems. In: LICS. Los
Alamitos: IEEE, 2012, 541–550. DOI: 10.1109/LICS.2012.64.

[33] André Platzer. A complete uniform substitution calculus for differential dy-
namic logic. J. Autom. Reas. 59(2) (2017), 219–265. DOI: 10.1007/s108
17-016-9385-1.

[34] André Platzer, Jan-David Quesel, and Philipp Rümmer. Real world verifi-
cation. In: CADE. Ed. by Renate A. Schmidt. Vol. 5663. LNCS. Berlin:
Springer, 2009, 485–501. DOI: 10.1007/978-3-642-02959-2_35.

[35] Mojżesz Presburger. Über die Vollständigkeit eines gewissen Systems der
Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation
hervortritt. Comptes Rendus du I Congrès de Mathématiciens des Pays Slaves

(1929), 92–101.
[36] H. Gordon Rice. Classes of recursively enumerable sets and their decision

problems. Trans. AMS 74(2) (1953), 358–366. DOI: 10.2307/1990888.
[37] Daniel Richardson. Some undecidable problems involving elementary func-

tions of a real variable. J. Symb. Log. 33(4) (1968), 514–520. DOI: 10.230
7/2271358.

[38] Abraham Robinson. Complete Theories. 2nd ed. Studies in logic and the
foundations of mathematics. North-Holland, 1977, 129.

[39] Julia Robinson. Definability and decision problems in arithmetic. J. Symb.

Log. 14(2) (1949), 98–114. DOI: 10.2307/2266510.
[40] Julia Robinson. The undecidability of algebraic rings and fields. Proc. AMS

10(6) (1959), 950–957. DOI: 10.2307/2033628.
[41] Abraham Seidenberg. A new decision method for elementary algebra. Annals

of Mathematics 60(2) (1954), 365–374. DOI: 10.2307/1969640.

https://doi.org/10.1007/11532231_22
https://doi.org/10.1007/978-3-642-36675-8_2
https://doi.org/10.1007/978-3-642-36675-8_2
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1109/LICS.2012.13
https://doi.org/10.1109/LICS.2012.64
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/978-3-642-02959-2_35
https://doi.org/10.2307/1990888
https://doi.org/10.2307/2271358
https://doi.org/10.2307/2271358
https://doi.org/10.2307/2266510
https://doi.org/10.2307/2033628
https://doi.org/10.2307/1969640

606 20 Virtual Substitution & Real Equations

[42] Thoralf Skolem. Über einige Satzfunktionen in der Arithmetik. Skrifter utgitt

av Det Norske Videnskaps-Akademi i Oslo, I. Matematisk naturvidenskapelig

klasse 7 (1931), 1–28.
[43] Gilbert Stengle. A Nullstellensatz and a Positivstellensatz in semialgebraic

geometry. Math. Ann. 207(2) (1973), 87–97. DOI: 10.1007/BF0136214
9.

[44] Alfred Tarski. Sur les ensembles définissables de nombres réels I. Fundam.

Math. 17(1) (1931), 210–239.
[45] Alfred Tarski. A Decision Method for Elementary Algebra and Geometry.

2nd. Berkeley: University of California Press, 1951.
[46] Alan M. Turing. Computability and λ -definability. J. Symb. Log. 2(4) (1937),

153–163. DOI: 10.2307/2268280.
[47] Volker Weispfenning. The complexity of linear problems in fields. J. Symb.

Comput. 5(1-2) (1988), 3–27. DOI: 10.1016/S0747-7171(88)80003
-8.

[48] Volker Weispfenning. Quantifier elimination for real algebra — the quadratic
case and beyond. Appl. Algebra Eng. Commun. Comput. 8(2) (1997), 85–101.
DOI: 10.1007/s002000050055.

https://doi.org/10.1007/BF01362149
https://doi.org/10.1007/BF01362149
https://doi.org/10.2307/2268280
https://doi.org/10.1016/S0747-7171(88)80003-8
https://doi.org/10.1016/S0747-7171(88)80003-8
https://doi.org/10.1007/s002000050055

Chapter 21

Virtual Substitution & Real Arithmetic

Synopsis This chapter advances the understanding of real arithmetic by generaliz-
ing the ideas from the previous chapter to linear and quadratic inequalities. As in the
previous chapter, the main workhorse will again be virtual substitutions that pretend
to substitute a generalized expression into a logical formula by equivalently rephras-
ing each occurrence. The required virtual substitutions will, however, go beyond
square root substitutions but cover infinities and infinitesimals, instead, in order to
capture the fact that inequalities can also be satisfied without satisfying equality.

21.1 Introduction

Reasoning about cyber-physical systems and hybrid systems requires understanding
and handling their real arithmetic, which can be challenging, because cyber-physical
systems can have complex behavior. Differential dynamic logic and its proof calcu-
lus [6–8] reduce the verification of hybrid systems to real arithmetic. How arithmetic
interfaces with proofs has already been discussed in Chap. 6. How real arithmetic
with linear and quadratic equations can be handled by virtual substitution has been
shown in Chap. 20. This chapter shows how virtual substitution for quantifier elim-
ination in real arithmetic extends to the case of linear and quadratic inequalities.

The results in this chapter are based on the literature [13]. The chapter adds
substantial intuition and motivation that is helpful for following the technical devel-
opment. More information about virtual substitution can be found in the literature
[13]. See, e.g., [1, 2, 5, 9] for an overview of other techniques for real arithmetic.

The most important learning goals of this chapter are:

Modeling and Control: This chapter refines the indirect impact that the previous
chapter had on CPS models and controls by informing the reader about the
consequences of the analytic complexity resulting from different arithmetical
modeling tradeoffs. There are subtle analytic consequences from different arith-
metic formulations of similar questions that can have an impact on finding the
right tradeoffs for expressing a CPS model. In practical terms, a safe distance

607© Springer International Publishing AG, part of Springer Nature 2018

A. Platzer, Logical Foundations of Cyber-Physical Systems,

https://doi.org/10.1007/978-3-319-63588-0_21

https://doi.org/10.1007/978-3-319-63588-0_21
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63588-0_21&domain=pdf

608 21 Virtual Substitution & Real Arithmetic

of car x to a stop light m could equally well be captured as x≤ m or as x < m,
for example, if only we knew the impact of this decision on the resulting real
arithmetic.

Computational Thinking: The primary purpose of this chapter is to understand
how arithmetical reasoning, which is crucial for CPS, can be done rigorously
and automatically not just for the equations considered in Chap. 20 but also for
inequalities. While formulas involving sufficiently many quadratic equations
among other inequalities can be handled with the techniques from Chap. 20,
such extensions are crucial for proving arithmetic formulas that involve only
inequalities, which happens rather frequently in the world of CPS, where many
questions concern inequality bounds on distances. Developing an intuition for
the working principles of real-arithmetic decision procedures can be very help-
ful for developing strategies to verify CPS models at scale. We will again see
the conceptually very important device of the logical trinity: the flexibility of
moving back and forth between syntax and semantics at will. Virtual substitu-
tions will again allow us to move back and forth at will between syntax and
semantics. This time, however, square roots will not be all there is to it, but the
logical trinity will lead us to ideas from nonstandard analysis to bridge the gap
to semantic operations that are inexpressible otherwise in first-order logic of
real arithmetic.

CPS Skills: This chapter has an indirect impact on CPS skills, because it discusses
useful pragmatics of CPS analysis for modeling and analysis tradeoffs that en-
able CPS verification at scale.

CT

M&C CPS

rigorous arithmetical reasoning
miracle of quantifier elimination
logical trinity for reals
switch between syntax & semantics at will
virtual substitution lemma
bridge gap between semantics and inexpressibles
infinities & infinitesimals

analytic complexity
modeling tradeoffs

verifying CPS at scale

21.3 Infinity ∞ Virtual Substitution 609

21.2 Recap: Square Root
√· Virtual Substitutions for Quadratics

Recall the way to handle quantifier elimination for linear or quadratic equations
from Chap. 20 by virtually substituting in its symbolic solutions x = c/b or
x = (b±

√
b2 4ac)/(2a), respectively

Theorem 20.2 (Virtual substitution of quadratic equations). For quantifier-

free formula F with x 6∈FV(a),FV(b),FV(c), the following equivalence is valid

over R:

a 6= 0∨b 6= 0∨ c 6= 0→
(

∃x(ax2 +bx+ c = 0∧F)↔

a = 0∧b 6= 0∧F
 c/b
x

∨a 6= 0∧b2 4ac≥ 0∧

F
(b+
√

b2 4ac)/(2a)
x ∨F

(b
√

b2 4ac)/(2a)
x

))

When using virtual substitutions of square roots from Chap. 20, the resulting for-
mula on the right-hand side of the bi-implication is quantifier-free and can be chosen
for QE(∃x(ax2 +bx+ c = 0∧F)) as long as it is not the case that a = b = c = 0.
In case a = b = c = 0, another formula in F needs to be considered for direct-
ing quantifier elimination by commuting and reassociating ∧, because the equation
ax2 +bx+ c = 0 is noninformative if a = b = c = 0, e.g., when a,b,c are the zero
polynomial or even if they just have a common root.

The equivalent formula on the right-hand side of the bi-implication in Theo-
rem 20.2 is a formula in the first-order logic of real arithmetic when using the virtual
substitution of square root expressions defined in Chap. 20.

21.3 Infinity ∞ Virtual Substitution

Theorem 20.2 addresses the case where the quantified variable occurs in a linear
or quadratic equation, in which case it is efficient to use Theorem 20.2, because
there are at most three symbolic points to consider corresponding to the respective
solutions of the equation. But what do we do if the quantified variable only occurs in
inequalities? Then Theorem 20.2 does not help the slightest bit. Consider a formula
of the form

∃x(ax2 +bx+ c≤ 0∧F) (x 6∈ FV(a),FV(b),FV(c)) (21.1)

where x does not occur in a,b,c. Under the conditions from Theorem 20.2, the possi-
ble solutions c/b,(b+

√
d)/(2a),(b

√
d)/(2a) from Theorem 20.2 continue

to be options for solutions of (21.1), because one way of satisfying the weak in-
equality ax2 +bx+ c≤ 0 is by satisfying the equation ax2 +bx+ c = 0. So if F is

610 21 Virtual Substitution & Real Arithmetic

true for any of those solutions of the quadratic equation (under the auspices of the
additional constraints on a,b,c), then (21.1) holds as well.

Yet, even if those points do not work out, the weak inequality in (21.1) allows
for more possible solutions than the equation does. For example, if a = 0,b > 0,
then sufficiently small values of x would satisfy 0x2 +bx+ c≤ 0. Also, if a < 0,
then sufficiently small values of x would satisfy ax2 +bx+ c≤ 0, because x2 grows
faster than x and, thus the negative ax2 ultimately overcomes any contribution of bx

and c to the value of ax2 +bx+ c. But if we literally substituted each such smaller
value of x into F , that would quickly diverge into the full substitution

∨

t∈T F t
x for

the uninsightful case of all real numbers T
def
= R from Chap. 20. So we have to be

more clever than that.
Now, one possibile way of pursuing this line of thought may be to substitute

smaller and smaller values for x into (21.1) and see if one of those happens to work.
There is a much better way though. The only really small value that has to be substi-
tuted into (21.1) for x to see whether it happens to work is one that is so negative that
it is smaller than all others: ∞, which is the lower limit of all negative real num-
bers. Alternatively, ∞ can be understood as being “always as negative as needed,
i.e., more negative than anything else.” Think of ∞ as being built out of elastic
rubber so that it always ends up being smaller when compared to any actual real
number, because the elastic number ∞ simply shrinks every time it is compared
to any other number. Analogously, ∞ is the upper limit of all real numbers or “al-
ways as positive as needed, i.e., more positive than anything else.” The elastic rubber
version of understanding ∞ is such that ∞ always grows as needed every time it is
compared to any other number.

Let ∞, ∞ be positive and negative infinities, respectively, i.e., choose extra el-
ements ∞, ∞ 6∈ R with ∞ < r < ∞ for all r ∈ R. Formulas of real arithmetic can
be substituted with ±∞ for a variable x in the compactified reals R∪{∞, ∞}. Yet,
just like with square root expressions,±∞ do not actually need to ever truly occur in
the resulting formula, because substitution of infinities into formulas can be defined
differently. For example, (x+5 > 0) ∞

x will be false, while (x+5 < 0) ∞
x is true.

Definition 21.1 (Infinite virtual substitution). Substitution of the infinity ∞

for x into an atomic formula for a polynomial p
def
= ∑

n
i=0 aix

i with polynomials
ai that do not contain x is defined by the following equivalences:

(p = 0) ∞
x̄
≡

n∧

i=0

ai = 0 (21.2)

(p≤ 0) ∞
x̄
≡ (p < 0) ∞

x̄
∨ (p = 0) ∞

x̄
(21.3)

(p < 0) ∞
x̄
≡ p(∞)< 0 (21.4)

(p 6= 0) ∞
x̄
≡

n∨

i=0

ai 6= 0 (21.5)

21.3 Infinity ∞ Virtual Substitution 611

Lines (21.2) and its dual (21.5) use that the only equation of real arithmetic that
infinities ±∞ satisfy is the trivial equation 0 = 0. Line (21.3) uses the equivalence
p≤ 0≡ p < 0∨ p = 0 and is equal to (p < 0∨ p = 0) ∞

x̄
by the substitution base

from Sect. 20.3.2. Line (21.4) uses a simple inductive definition based on the degree,
deg(p), the highest power of the variable x in the polynomial p, to characterize
whether p is ultimately negative at ∞ (or sufficiently negative numbers):

Let p
def
= ∑

n
i=0 aix

i with polynomials ai that do not contain x. Whether p is ulti-
mately negative at ∞, suggestively written p(∞)< 0, is easy to characterize
by induction on the degree of the polynomial:

p(∞)< 0
def≡
{

p < 0 if deg(p)≤0
(1)nan < 0∨ (an = 0∧ (∑n 1

i=0 aix
i)(∞)< 0) if deg(p)>0

p(∞)< 0 is true in a state in which limx→ ∞ p(x)< 0.

The first line captures that the sign of polynomials of degree 0 in the variable x

does not depend on x, so p(∞)< 0 iff the polynomial of degree 0 in x is negative
(which may still depend on the value of other variables in p = a0 but not on x). The
second line captures that the sign at ∞ of a polynomial of degree n = deg(p)> 0
is determined by the degree-modulated sign of its leading coefficient an, because
for x of sufficiently big absolute value, the value of anxn will dominate all lower-
degree values, whatever their coefficients are. For even n > 0, xn > 0 while xn < 0
for odd n at ∞. In case the leading coefficient an evaluates to zero, the value of p

at ∞ depends on the value at ∞ of the remaining polynomial ∑
n 1
i=0 aix

i of lower
degree, which can be determined recursively as (∑n 1

i=0 aix
i)(∞)< 0. Note that the

degree of the 0 polynomial is sometimes considered to be ∞, which explains why
deg(p)≤ 0 is used in line 1 instead of deg(p) = 0.

Substitution of ∞ for x into an atomic formula can be defined similarly, except
that the sign factor (1)n disappears, because xn > 0 at ∞ whatever value n > 0 has.
Substitution of ∞ or of ∞ for x into other first-order formulas is then defined on
this basis as in Sect. 20.3.2.

Example 21.1 (Sign of quadratic polynomials at ∞). Using this principle to check
systematically under which circumstances the quadratic inequality from (21.1) eval-
uates to true yields the answer from our earlier ad-hoc analysis of what happens for
sufficiently small values of x:

(ax2 +bx+ c < 0)
 ∞

x̄
≡ (1)2a < 0∨a = 0∧ ((1)b < 0∨b = 0∧ c < 0)

≡ a < 0∨a = 0∧ (b > 0∨b = 0∧ c < 0)

(ax2 +bx+ c≤ 0)
 ∞

x̄
≡ (ax2 +bx+ c < 0)

 ∞

x̄
∨a = b = c = 0

≡ a < 0∨a = 0∧ (b > 0∨b = 0∧ c < 0)∨a = b = c = 0

One representative example for each of those disjuncts is illustrated in Fig. 21.1. In
the same way, the virtual substitution can be used to see under which circumstances

612 21 Virtual Substitution & Real Arithmetic

x

case a < 0

 x2 + x+1

 ∞
x

case a = 0∧b > 0

x+ 1
2

 ∞
x

case a = b = 0 > c

 1

 ∞

Fig. 21.1 Illustration of the value of different quadratic functions p where p ∞
x̄
≡ true

the remainder formula F from (21.1) also evaluates to true for sufficiently small
values of x, which is the case exactly when F ∞

x̄
evaluates to true.

The crucial thing to note is again that the virtual substitution of infinities ±∞ for
x in F giving F±∞

x̄
from Definition 21.1 is semantically equivalent to the result F±∞

x

of the literal substitution replacing x with ±∞, but operationally different, because
the virtual substitution never introduces actual infinities so remains in proper FOLR.

Lemma 21.1 (Virtual substitution lemma for infinities). The result F ∞
x̄

of

the virtual substitution is semantically equivalent to the result F ∞
x of the literal

substitution. A language extension yields this validity:

F ∞
x ↔ F ∞

x̄

Keep in mind that the result F ∞
x̄

of virtual substitution is a proper formula of
FOLR, while the literal substitution F ∞

x can only be considered a formula in an
extended logic such as FOLR∪{ ∞,∞} that allows for infinite quantities. The same
property holds for F∞

x̄
.

Note that the situation is, in a sense, the converse of Lemma 20.2, where the
square root expressions were already in the semantic domain R, and just had to be
made accessible in the syntactic formulas via virtual substitutions. In Lemma 21.1,
instead, virtual substitutions already know more about infinities ±∞ than the se-
mantic domain R does, which is why the semantic domain needs an extension to
R∪{ ∞,∞} for the alignment in Lemma 21.1.

21.4 Infinitesimal ε Virtual Substitution

Theorem 20.2 addresses the case where the quantified variable occurs in a linear or
quadratic equation and the virtual substitution in Sect. 21.3 adds the case of suffi-
ciently small values of x to handle ax2 +bx+c≤ 0. Consider a formula of the form

∃x(ax2 +bx+ c < 0∧F) (x 6∈ FV(a),FV(b),FV(c)) (21.7)

21.4 Infinitesimal ε Virtual Substitution 613

Expedition 21.1 (Infinite challenges with infinities in extended reals)

The set R∪{ ∞,∞} is seemingly easily written down as a semantic domain
of extended reals. What exactly do we mean by it, though? We mean the set of
reals to which we adjoin two new elements, denoted ∞ and ∞, which are the
minimum and maximum elements of the ordering ≤:

∀x(∞≤ x≤ ∞) (21.6)

This turns R∪ { ∞,∞} into a complete lattice, because every subset has a
supremum and an infimum. The extended reals are a compactification of R. But
where does that leave the other arithmetic properties of R? What is ∞+ 1 or
∞+ x when ∞ is already infinitely big? The compatibility of ≤ with + expects
∞ ≤ ∞+ x at least for all x ≥ 0. By (21.6) also ∞+ x ≤ ∞. Because ∞ is so
infinitely big, the same ∞+ x = ∞ is expected even for all x, except ∞. The
compatibility of ≤ with · expects ∞≤ ∞ · x at least for all x≥ 1. By (21.6) also
∞ · x ≤ ∞. Since ∞ is infinitely big, the same ∞ · x = ∞ is expected even for all
x > 0:

∞+ x = ∞ for all x 6= ∞

 ∞+ x = ∞ for all x 6= ∞

∞ · x = ∞ for all x > 0

∞ · x = ∞ for all x < 0

 ∞ · x = ∞ for all x > 0

 ∞ · x = ∞ for all x < 0

This extension sounds reasonable. But the resulting set R∪{ ∞,∞} is not a
field! Otherwise ∞ would have an additive inverse. But what x would satisfy
∞ + x = 0? One might guess x = ∞, but then one would also expect 0 =
∞+(∞) = ∞+(∞+1) = (∞+(∞))+1 = 0+1 = 1, which is not a good
idea to adopt for proving anything at all in a sound way. Instead, problematic
terms remain explicitly undefined:

∞ ∞ = undefined

0 ·∞ = undefined

±∞/±∞ = undefined

1/0 = undefined

Since these conventions make infinities somewhat subtle, we happily remem-
ber that the only thing we need them for is to make sense of inserting suffi-
ciently negative (or sufficiently positive) numbers into inequalities to satisfy
them. That is still mostly harmless.

614 21 Virtual Substitution & Real Arithmetic

In this case, the roots from Theorem 20.2 will not help, because they satisfy the
equation ax2 +bx+ c = 0 but not the strict inequality ax2 +bx+ c < 0. The virtual
substitution of ∞ for x from Sect. 21.3 still makes sense to consider, because the
arbitrarily small negative numbers that it corresponds to might indeed satisfy F and
ax2 +bx+ c < 0. If ∞ does not work, however, the solution of (21.7) might be
near one of the roots of ax2 +bx+ c = 0, just slightly off so that ax2 +bx+ c < 0 is
actually satisfied rather than the equation ax2 +bx+ c = 0. How far off? Well, say-
ing that exactly is again difficult, because any particular real number might already
be too large in absolute value, depending on the constraints in the remainder of F .
Again, this calls for quantities that are always as small as we need them to be.

Sect. 21.3 used a negative quantity that is so small that it is smaller than all nega-
tive numbers and hence infinitely small (but infinitely large in absolute value). The
negative infinity ∞ is smaller no matter what other number we compare it with.
Analyzing (21.7) needs positive quantities that are infinitely small and hence also
infinitely small in absolute value. Infinitesimals are positive quantities that are al-
ways smaller than all positive real numbers, i.e., “always as small as needed.” Think
of them as built out of elastic rubber so that they always shrink as needed when
compared with any actual positive real number so that the infinitesimals end up be-
ing smaller than positive reals. Of course, the infinitesimals are much bigger than
negative numbers. Another way of looking at infinitesimals is that they are the mul-
tiplicative inverses of ±∞.

A positive infinitesimal ε is positive (∞ > ε > 0) and an extended real that is
infinitesimal, i.e., positive but smaller than all positive real numbers (ε < r for all
r ∈ R with r > 0).

Note 83 (Infinitesimals in polynomials) All nonzero univariate polynomials
p ∈ R[x] with real coefficients satisfy the following cases infinitesimally near
any real point ζ ∈ R:

1. p(ζ + ε) 6= 0
That is, infinitesimals ε are always so small that they never yield roots of
any equation, except the trivial zero polynomial. Whenever it looks like
there might be a root, the infinitesimal just becomes a bit smaller to avoid
satisfying the equation. Nonzero univariate polynomials p(x) only have
finitely many roots, so the infinitesimals will take care to avoid all of them
by becoming just a little smaller.

2. If p(ζ) 6= 0 then p(ζ)p(ζ + ε)> 0.
That is, p has constant sign on infinitesimal neighborhoods of nonroots ζ .
If the neighborhood around ζ is small enough (and for an infinitesimal it
will be), then the polynomial will not change sign on that interval, because
the sign will only change after passing one of the roots.

3. 0=p(ζ)=p′(ζ)=p′′(ζ)=. . .=p(k 1)(ζ)6=p(k)(ζ) then p(k)(ζ)p(ζ+ε)>0.
That is the first nonzero derivative of p at ζ determines the sign of p in
small enough neighborhoods of ζ (infinitesimal neighborhoods will be
small enough), because the sign only changes after passing a root.

21.4 Infinitesimal ε Virtual Substitution 615

Definition 21.2 (Infinitesimal virtual substitution). Substitution of an in-

finitesimal expression e+ ε with a square root expression e = (a+ b
√

c)/d

and a positive infinitesimal ε for x into a polynomial p = ∑
n
i=0 aix

i with poly-
nomials ai that do not contain x is defined by the following equivalences:

(p = 0)e+ε
x̄
≡

n∧

i=0

ai = 0 (21.8)

(p≤ 0)e+ε
x̄
≡ (p < 0)e+ε

x̄
∨ (p = 0)e+ε

x̄
(21.9)

(p < 0)e+ε
x̄
≡ (p+ < 0)

e

x̄
(21.10)

(p 6= 0)e+ε
x̄
≡

n∨

i=0

ai 6= 0 (21.11)

Lines (21.8) and its dual (21.11) use that infinitesimal offsets satisfy no equa-
tion except the trivial equation 0=0 (Case 1 of Note 83), which makes infinitesimals
and infinities behave the same as far as equations go. Line (21.9) again uses the
equivalence p≤ 0≡ p < 0∨ p = 0. Line (21.10) checks whether the sign of p at
the square root expression e is already negative (which will make p inherit the same
negative sign after an infinitesimal offset at e+ ε by Case 2) or will immediately
become negative using a recursive formulation of immediately becoming negative
that uses higher derivatives (which determine the sign by Case 3). The lifting to ar-
bitrary quantifier-free formulas of real arithmetic is again by substitution into all
atomic subformulas and equivalences such as (p > q)≡ (p q > 0) as defined in
Chap. 20. Note that, for the case (p < 0)e+ε

x̄
, the (non-infinitesimal) square root ex-

pression e gets virtually substituted in for x into a formula p+ < 0, which character-
izes whether p becomes negative at or immediately after x (which will be virtually
substituted by the intended square root expression e momentarily).

Whether p is immediately negative at x, i.e., negative itself or 0 and with a
derivative p′ that makes it negative on an infinitesimal interval (x,x+ ε], sug-
gestively written p+ < 0, can be characterized recursively:

p+ < 0
def≡
{

p < 0 if deg(p)≤ 0

p < 0∨ (p = 0∧ (p′)+ < 0) if deg(p)> 0

p+ < 0 is true in a state in which limy→x+ p(x)= limyցx p(x)= lim y>x
y→x

p(x)< 0

holds for the limit of p at x from the right.

The first line captures that the sign of polynomials of degree 0 in the variable x

does not depend on x, so they are negative at x iff the polynomial p = a0 that has
degree 0 in x is negative (which may still depend on the value of other variables in
a0). The second line captures that the sign at x+ ε of a non-constant polynomial is
still negative if it is negative at x (because x+ε is not far enough away from x for any

616 21 Virtual Substitution & Real Arithmetic

sign change by Case 2) or if x is a root of p but its derivative p′ at x is immediately
negative, since the first nonzero derivative at x determines the sign near x by Case 3.

Example 21.2 (Sign of quadratic polynomials after root). Using this principle to
check under which circumstances the quadratic strict inequality from (21.7) eval-
uates to true at the point (b+

√
b2 4ac)/(2a)+ ε , i.e., right after its quadratic

root (b+
√

b2 4ac)/(2a), leads to the following computation:

(ax2 +bx+ c)
+
< 0

≡ ax2 +bx+ c < 0∨ax2 +bx+ c = 0∧ (2ax+b < 0∨2ax+b = 0∧2a < 0)

with successive derivatives to break ties (i.e., 0 signs in previous derivatives). Hence,

(ax2 +bx+ c < 0)
(b+
√

b2 4ac)/(2a)+ε
x̄

≡ ((ax2 +bx+ c)
+
< 0)

(b+
√

b2 4ac)/(2a)

x̄
≡

(ax2 +bx+ c < 0∨ax2 +bx+ c = 0∧ (2ax+b < 0∨2ax+b = 0∧2a < 0))
(b+
√

b2 4ac)/(2a)
x̄

≡ 0 ·1 < 0∨0 = 0∧ ((0 < 0∨4a2 ≤ 0∧ (0 < 0∨ 4a2(b2 4ac)< 0)
︸ ︷︷ ︸

(2ax+b<0)(b+
√

b2 4ac)/(2a)
x̄

)∨ 0 = 0
︸ ︷︷ ︸

(2ax+b=0)...
x̄

∧2a1 < 0
︸ ︷︷ ︸

(2a<0)...
x̄

)

≡ 4a2 ≤ 0∧ 4a2(b2 4ac)< 0∨2a < 0

because the square root virtual substitution of its own root (b+
√

b2 4ac)/(2a)

into ax2 +bx+ c gives (ax2 +bx+ c)
(b+
√

b2 4ac)/(2a)
x̄

= 0 by construction (com-
pare Example 20.5). The virtual substitution into another polynomial 2ax+b gives

(2ax+b)
(b±
√

b2 4ac)/(2a)
x̄

≡ 2a · (b±
√

b2 4ac)/(2a)+b

= (2ab+±2a
√

b2 4ac)/(2a)+b

= (2ab + 2ab +±2a
√

b2 4ac)/(2a)

= (0+±2a
√

b2 4ac)/(2a)

The resulting formula can be further simplified internally to

(ax2 +bx+ c < 0)
(b+
√

b2 4ac)/(2a)+ε
x̄

≡ 4a2 ≤ 0∧ 4a2(b2 4ac)< 0∨2a < 0

≡ 2a < 0

because the first conjunct 4a2 ≤ 0≡ a = 0 and, with a = 0, the second conjunct
simplifies to 4a2(b2 4ac)

0
a = 0(b2)< 0, which is impossible in the reals. This

answer makes sense. Indeed, exactly if 2a < 0 will a quadratic polynomial still eval-
uate to ax2 +bx+ c < 0 right after its second root (b+

√
b2 4ac)/(2a). Fig. 21.2

illustrates how this relates to the parabola pointing downwards, because of 2a < 0.
Formulas such as this one (2a < 0) are the result of a quantifier elimination pro-

cedure. If the formula after quantifier elimination is either true or false, then you
know for sure that the formula is valid (true) or unsatisfiable (false), respectively.

21.4 Infinitesimal ε Virtual Substitution 617

x

case a < 0

 x2 + x+1

x

case a > 0

x2 x 1

x

case a < 0

 1
2 x2 + x 1

10

Fig. 21.2 Illustration of the sign after the second root for quadratic functions p

If the result of quantifier elimination is true, for example, KeYmaera X completes
proof branches (marked by proof rule R in our sequent proofs). However, quanti-
fier elimination can also return other formulas, such as 2a < 0, which are equivalent
to the formula to which quantifier elimination has been applied. In particular, they
identify under exactly which circumstance that corresponding quantified formula
is true. This can be very useful for identifying the missing assumptions to make a
proof work and the corresponding statement true.

Note 84 (Quantifier elimination identifies requirements) If the outcome of
quantifier elimination is the formula true, the corresponding formula is valid. If
it is the formula false, the corresponding formula is not valid (and even unsatis-
fiable). In between, i.e., when quantifier elimination results in a logical formula
that is sometimes false and sometimes true, then this formula identifies exactly
the missing requirements that are needed to make the desired formula true. This
can be useful to synthesize missing requirements. Take care, however, not to
work with universal closures, in which case true and false are the only possible
outcomes.

The crucial thing to note about the process is that the virtual substitution of in-
finitesimal expressions e+ ε for x in F giving Fe+ε

x̄
from Definition 21.2 is seman-

tically equivalent to the result Fe+ε
x of the literal substitution replacing x with e+ ε ,

but operationally different, because it never introduces actual infinitesimals.

Lemma 21.2 (Virtual substitution lemma for infinitesimals). The result

Fe+ε
x̄

of the virtual substitution is semantically equivalent to the result Fe+ε
x

of the literal substitution. A language extension yields this validity:

Fe+ε
x ↔ Fe+ε

x̄

Keep in mind that the result Fe+ε
x̄

of virtual substitution is a proper formula
of FOLR, while the literal substitution Fe+ε

x could only be considered a formula
in an extended logic such as FOLR[ε] that allows for infinitesimal quantities from
nonstandard analysis. Computationally more efficient substitutions of infinitesimals
have been reported elsewhere [3].

618 21 Virtual Substitution & Real Arithmetic

Expedition 21.2 (Nonstandard analysis: infinite challenges with infinitesi-

mal ε)

Infinite quantities in the extended reals R∪{ ∞,∞} already needed some at-
tention to stay away from undefined expressions. Infinitesimals are infinitely
more subtle than infinities. Real numbers are Archimedean, i.e., for every non-
zero x ∈ R, there is an n ∈ N such that

|x+ x+ · · ·+ x
︸ ︷︷ ︸

n times

|> 1

Infinitesimals are non-Archimedean, because it does not matter how often you
add ε , it still won’t sum to one. There is a myriad of ways of making sense
of infinitesimal quantities in nonstandard analysis, including surreal numbers,
superreal numbers, and hyperreals. In a sense, infinitesimal quantities can be
considered to be multiplicative inverses of infinities, but bring up many sub-
tleties. For example, if an infinitesimal ε is added to R, then the following
terms need to denote values and satisfy ordering relations:

ε2 ε x2 + ε (x+ ε)2 x2 +2εx+5ε + ε2

Fortunately, a rather tame version of infinitesimals is enough for the context of
virtual substitution. The crucial properties of infinitesimals we need are [4]:

ε > 0

∀x ∈ R(x > 0→ ε < x)

That is, the infinitesimal ε is positive and smaller than all positive reals.

21.5 Quantifier Elimination by Virtual Substitution for

Quadratics

The following quantifier elimination technique due to Weispfenning [13] works for
formulas with a quantified variable that occurs at most quadratically.

Theorem 21.1 (Virtual substitution of quadratic constraints). Let F be a
quantifier-free formula in which all atomic formulas are of quadratic form

ax2 +bx+ c∼ 0 for polynomials a,b,c that do not mention variable x (that is,
x 6∈ FV(a),FV(b),FV(c)) with some comparison operator ∼ ∈ {=,≤,<, 6=}
and corresponding discriminant d = b2 4ac. Then ∃xF is equivalent over R
to the following quantifier-free formula:

21.5 Quantifier Elimination by Virtual Substitution for Quadratics 619

F ∞
x̄

∨
∨

ax2+bx+c{ =
≤}0∈F

a=0∧b6=0∧F

 c/b
x̄

∨a6=0∧d≥0∧ (F(b+
√

d)/(2a)
x̄

∨F
(b

√
d)/(2a)

x̄
)
)

∨
∨

ax2+bx+c
{
6=
<

}

0∈F

a=0∧b6=0∧F

 c/b+ε
x̄

∨a6=0∧d≥0∧ (F(b+
√

d)/(2a)+ε
x̄

∨F
(b

√
d)/(2a)+ε

x̄
)
)

Proof. The proof is an extended form of the proof reported in the literature [13]. The
proof first considers the literal substitution of square root expressions, infinities, and
infinitesimals and then, as a second step, uses that the virtual substitutions that avoid
square root expressions, infinities, and infinitesimals are equivalent (Lemma 20.2,
21.1 and 21.2). Let G denote the quantifier-free right-hand side so that the validity
of the following formula needs to be shown:

∃xF ↔ G (21.12)

The implication from the quantifier-free formula G to ∃xF in (21.12) is obvious,
because each disjunct of the quantifier-free formula has a conjunct of the form F t

x

for some (extended) term t, even if it may be a square root expression or infinity
or term involving infinitesimals. Whenever a formula of the form F t

x is true, ∃xF

holds with that t as a witness, even when t is a square root expression, infinity, or
infinitesimal.

The converse implication from ∃xF to the quantifier-free formula G in (21.12)
depends on showing that the quantifier-free formula G covers all possible represen-
tative cases and that the accompanying constraints on a,b,c,d are necessary so that
they do not constrain solutions in unjustified ways.

One key insight is that it is enough to prove (21.12) for the case where all vari-
ables in F except x have concrete numeric real values, because the equivalence
(21.12) is valid iff it is true in all states. So considering one concrete state at a
time is enough. By a fundamental property of real arithmetic called o-minimality,
the set

S (F) = {ω(x) ∈ R : ω ∈ [[F]]}
of all real values for x that satisfy F forms a finite union of (pairwise disjoint) inter-
vals, because the polynomials in F only change signs at their roots. There are only
finitely many roots, now that the polynomials have become univariate, i.e., with the
only variable x, since all free variables are evaluated to concrete real numbers in ω .
Without loss of generality (by merging overlapping or adjacent intervals), all those
intervals are assumed to be maximal, i.e., no bigger interval would satisfy F . So F

actually changes its truth-value at most at the lower and upper endpoints of these
intervals (unless the interval is unbounded). Polynomials only change signs at their

roots!

The endpoints of these intervals are of the form c/b,(b+
√

d)/(2a),(b √
d)/(2a) or ∞, ∞ for any of the polynomials ax2 +bx+ c in F , because all poly-

nomials in F are at most quadratic and all roots of those polynomials are of one
of the above forms. In particular, if c/b is an endpoint of an interval of S (F)

620 21 Virtual Substitution & Real Arithmetic

for a polynomial ax2 +bx+ c in F , then a = 0,b 6= 0, because that is the only case
where c/b satisfies F , which has only at most quadratic polynomials. Likewise,
if (b+

√
d)/(2a) and (b

√
d)/(2a) are endpoints of intervals of S (F) for a

polynomial ax2 +bx+ c in F , then both imply that a 6= 0 and discriminant d ≥ 0,
otherwise there is no such solution in the reals. Consequently, all the side conditions
for the roots in the quantifier-free formula G are necessary.

Now consider one interval I ⊆ S (F) (if there is none, ∃xF is false and so
will G be). If I has no lower bound in R, then F ∞

x̄
is true by construction

(by Lemma 21.1, the virtual substitution F ∞
x̄

is equivalent to the literal substi-
tution F ∞

x in ±∞-extended real arithmetic). Otherwise, let α ∈ R be the lower
bound of I. If α ∈ I (i.e., I is closed at the lower bound), then α is of the form
 c/b,(b+

√
d)/(2a),(b

√
d)/(2a) for some equation (ax2 +bx+ c = 0) ∈ F

or some weak inequality (ax2 +bx+ c≤ 0) ∈ F from F . Since the respective extra
conditions on a,b,c,d hold, the quantifier-free formula G evaluates to true. If, other-
wise, α 6∈ I (i.e., I is open at the lower bound α), then α is of the form c/b,(b+√

d)/(2a),(b
√

d)/(2a) for some disequation (ax2 +bx+ c 6= 0) ∈ F or some
strict inequality (ax2 +bx+ c < 0) ∈ F . Hence, the interval I cannot be a single
point. So, one of the infinitesimal increments c/b+ ε,(b+

√
d)/(2a) + ε , or

(b
√

d)/(2a) + ε is in I ⊆ S (F), because infinitesimals are smaller than all
positive real numbers, so smaller than the interval length. Since the respective con-
ditions a,b,c,d hold, the quantifier-free formula G is again true. Hence, in either
case, the quantifier-free formula is equivalent to ∃xF in state ω . Since the state ω
assigning concrete real numbers to all free variables of ∃xF was arbitrary, the same
equivalence holds for all states ω , which means that the quantifier-free formula G is
equivalent to ∃xF . That is G↔∃xF is valid, i.e., � G↔∃xF . ⊓⊔

Fig. 21.3 Illustration of roots e and infinitesimal offsets e+ε checked by virtual substitution along
with ∞ (left). Illustration of roots e and infinitesimal offsets e ε that could be checked along
with +∞ instead (right)

The order of the interval endpoints that the proof of Theorem 21.1 uses in ad-
dition to ∞ is illustrated in Fig. 21.3(left). Observe that exactly one representa-
tive point is placed in each of the regions of interest, ∞, each of the roots r, and
just infinitesimally after the roots at r + ε . Alternatively, Theorem 21.1 could be

21.5 Quantifier Elimination by Virtual Substitution for Quadratics 621

rephrased to work with ∞, at each root r, and always before the roots at r ε; see
Fig. 21.3(right) and Exercise 21.4. The illustrations in Fig. 21.3 show the ordering
situation for a higher-degree polynomial p even if Theorem 21.1 only makes use
of the argument for p = ax2 +bx+ c up to degree 2. Quantifier elimination proce-
dures for higher degrees are still based on this fundamental principle, but require
more subtle algebraic computations. The source of the trouble is Abel-Ruffini’s im-
possibility theorem that there are, generally, no algebraic solutions to polynomial
equations of degree ≥5. That is, the fact that we can characterize the roots of poly-
nomials with roots was specific to degree ≤4 even when admitting nested roots.

Finally note that it is quite possible that the considered polynomial p does not
single out the appropriate root e or off-root e+ ε that satisfies F to witness ∃xF .
Then none of the points illustrated in Fig. 21.3 will satisfy F , because only a point
other than e+ ε in the open interval between two roots will work.

Note 85 (No rejection without mention) The key argument underlying all
quantifier elimination procedures in some way or another is that all parts of F

that are not satisfied for any of the points in Fig. 21.3 that p brings about would
have to mention another polynomial q with different roots ẽ and different off-
roots ẽ+ ε that will then enter the big disjunction in Theorem 21.1.

Example 21.3. The example of nonnegative roots of quadratic polynomials from Ex-
ample 20.6 in Chap. 20 used Theorem 20.2 to construct and justify the quantifier
elimination equivalence

QE(∃x(ax2 +bx+ c = 0∧ x≥ 0))

≡ b2 4ac≥ 0∧ (ba≤ 0∧ac≥ 0∨a≥ 0∧ac≤ 0∨a≤ 0∧ac≤ 0)

under the assumption a 6= 0. Specializing to a case similar to Fig. 21.2 gives

QE(∃x(x2 x+ c = 0∧ x≥ 0))≡ (1)2 4c≥ 0∧ (c≥ 0∨ c≤ 0)≡ 1 4c≥ 0

≡ c≤ 1
4

By Theorem 21.1, the same square root expression substitution as in Example 20.6
in Chap. 20 will happen for the atomic formula x2 x+ c≤ 0 except that the case
of ∞ will be added as well as the root 0 that results from considering the linear
atomic formula x≥ 0:

QE(∃x(x2 x+ c≤ 0∧ x≥ 0))≡

(x2 x+ c≤ 0∧ . . .) ∞

x̄
︸ ︷︷ ︸

false

∨1 4c≥ 0∨ (x2 x+ c≤ 0∧ x≥ 0)
0
x̄

︸ ︷︷ ︸

c≤0∧0≥0

≡ 1 4c≥ 0

Note that the additional disjunction c≤ 0 coming from the root 0 of x is in this
case subsumed by the previous disjunct 1 4c≥ 0. Hence, adding the roots of x

did not modify the answer in this case. When adding a third conjunct x+2 = 0,

622 21 Virtual Substitution & Real Arithmetic

this handling of all roots becomes critical:

QE(∃x(x2 x+ c≤ 0∧ x≥ 0∧ x+2 = 0))

Since the first two polynomials x2 x+ c and x are still the same, the same vir-
tual substitutions will happen as before. Except that they now fail on the new con-
junct x+2 = 0, because the root 0 of the polynomial x from the second con-
junct does not satisfy x+2 = 0 and because the virtual substitution of the roots
(1±

√
1 4c)/2 of the first polynomial x2 x+ c fails:

(x+2=0)(1±
√

1 4c)/2
x̄

≡ ((1+∓1
√

1 4c)/2+2=0)≡ ((3+∓1
√

1 4c)/2=0)

≡∓3≤ 0∧32 (∓1)2(1 4c)= 0≡ 3≤ 0∧32 (1)2(1 4c)= 0≡ 8 4c= 0

The latter is only possible for c = 2, which is ruled out by the discriminant con-
dition 1 4c≥ 0 that precedes it. And, indeed, neither the roots of the quadratic
polynomial illustrated in Fig. 21.2 nor the roots of x nor ∞ are the right points to
consider to satisfy the last conjunct. Of course, the last conjunct expresses that con-
straint by saying x+2 = 0 quite explicitly. Never mind that this is an equation for
now. Either way, the atomic formula clearly reveals that x+2 is the polynomial
that it cares about. So its roots might be of interest and will, indeed, by considered in
the big disjunction of Theorem 21.1 as well. Since x+2 is a visibly linear polyno-
mial, its solution is x = 2/ 1 = 2 which is even kind enough to be a standard real
number so that literal substitution is sufficient and no virtual substitution is needed.
Consequently, the substitution of this root x = 2 of the last conjunct into the full
formula quickly yields

(x2 x+ c≤ 0∧ x≥ 0∧ x+2 = 0)
2
x ≡ 22 2+c≤ 0∧2≥ 0∧0 = 0≡ 2+c≤ 0

This provides an answer that the quadratic polynomial x2 x+ c itself could not
foresee because it depends on the polynomial x+2 to even take this root into
consideration. By Theorem 21.1, the overall result of quantifier elimination, thus, is
the combination of the cases considered separately above:

QE(∃x(x2 x+ c≤ 0∧ x≥ 0∧ x+2 = 0))

≡ (x2 x+ c≤ 0∧ . . .) ∞

x̄
︸ ︷︷ ︸

false

∨1 4c≥ 0∧ (· · ·∧ x+2 = 0)(1±
√

1 4c)/2
x̄

︸ ︷︷ ︸

8 4c=0

∨ 1 6= 0∧ (x2 x+ c≤ 0∧ x≥ 0)
0
x

︸ ︷︷ ︸

c≤0∧0≥0

∧(x+2 = 0)0
x

︸ ︷︷ ︸

2=0

∨ 1 6= 0∧ (x2 x+ c≤ 0∧ x≥ 0∧ x+2 = 0)
2
x

︸ ︷︷ ︸

2+c≤0

≡ 2+ c≤ 0≡ c≤ 2

21.6 Optimizations 623

In this particular case, observe that Theorem 20.2 using x+2 = 0 as the key for-
mula would have been most efficient, because that would have gotten the answer
right away without fruitless disjunctions. This illustrates that it pays off to pay atten-
tion with real arithmetic and always choose the computationally most parsimonious
approach. But the example also illustrates that the same computation would happen
if the third conjunct had been x+2≤ 0, in which case Theorem 20.2 would not
have helped.

21.6 Optimizations

Optimizations are possible for virtual substitutions [13] if there is only one quadratic
occurrence of x, and that occurrence is not in an equation. If that occurrence is in an
equation, Theorem 20.2 already showed what to do. If there is only one occurrence
of a quadratic inequality, the following variation of Theorem 21.1 works, which uses
exclusively linear fractions.

Note 86 ([13]) Let
(

Ax2 +Bx+C
{ ≤

<
6=

}

0
)

∈ F be the only quadratic occur-

rence of x. In that case, ∃xF is equivalent over R to the following quantifier-
free formula:

A = 0∧B 6= 0∧F
 C/B
x̄

∨A 6= 0∧F
 B/(2A)
x̄

∨ F ∞
x̄
∨F∞

x̄

∨
∨

(0x2+bx+c{=≤}0)∈F

b 6= 0∧F

 c/b
x̄

)

∨
∨

(

0x2+bx+c
{
6=
<

}

0
)

∈F

b 6= 0∧ (F c/b+ε

x̄
∨F

 c/b ε
x̄

)
)

The clou in this case is that the extremal values of Ax2 +Bx+C are at the roots
of the derivative

(Ax2 +Bx+C)′ = 2AX +B
!
= 0, i.e., x = B

2A

Since the only quadratic occurrence in Note 86 is not an equation, this extremal
value is the only point of the quadratic polynomial that matters. In this case,

F
 B/(2A)
x̄

will substitute B/(2A) for x in the only quadratic polynomial as follows:

(

Ax2 +Bx+C

{
≤
<

6=

}

0

) B/(2A)

x̄

≡
(

A
(B)2

4A2 +
 B2

2A
+C

{
≤
<

6=

}

0

)

≡
(

 B2

4A
+C

{
≤
<

6=

}

0

)

The formula resulting from Note 86 might be bigger than that of Theorem 21.1 but it

does not increase the polynomial degree, which can be crucial for nested quantifiers.

624 21 Virtual Substitution & Real Arithmetic

Further optimizations are possible if some signs of a,b are known, because
several cases in the quantifier-free expansion then become impossible and can be
simplified to true or false immediately. This helps simplify the formula in The-
orem 21.1, because one of the cases a = 0 versus a 6= 0 might drop. But it also
reduces the number of disjuncts in F ∞

x̄
, see Example 21.1, and in the virtual substi-

tutions of square roots (Chap. 20) and of infinitesimals (Sect. 21.4), which can lead
to significant simplifications.

Theorem 21.1 also applies to polynomials of higher degrees in x if they factor to
polynomials of at most quadratic degree in x [13]. Degree reduction is also possible
by renaming based on the greatest common divisor of all powers of x that occur in
F . If a quantified variable x occurs only with exponents that are multiples of an odd
number d then virtual substitution can use ∃xF(xd)≡ ∃yF(y). If x only occurs with
degrees that are multiples of even number d then ∃xF(xd)≡ ∃y(y≥ 0∧F(y)). It
helps reduce the number of cases in Theorem 21.1 that infinitesimals +ε are only

needed if x occurs in strict inequalities in F . The cases F
(b+±

√
d)/(2a)

x̄
are only

needed if x occurs in equations or weak inequalities.

21.7 Summary

Virtual substitution is one technique for eliminating quantifiers in real arithmetic.
It works for linear and quadratic constraints and can be extended to some cubic
cases [12]. Virtual substitution can be applied repeatedly from inside out to elimi-
nate quantifiers. In each case, however, virtual substitution requires the eliminated
variable to occur with small enough degree only. Even if that was the case initially,
it may no longer be the case after eliminating the innermost quantifier, because the
degrees of the formula resulting from virtual substitution may increase. In that case,
degree optimizations and simplifications may sometimes work. If not, then other
quantifier elimination techniques need to be used, which are based on semialge-
braic geometry or model theory. Virtual substitution alone always works for mixed
quadratic-linear formulas, i.e., those in which all quantified variables occur linearly
except for one variable that occurs quadratically. In practice, however, many other
cases turn out to work well with virtual substitution.

By inspecting Theorem 21.1 and its optimizations, we also observe that it is in-
teresting to look at only closed sets or only open sets, corresponding to formulas
with only≤ and = or formulas with only < and 6= conditions, respectively, because
half of the cases then drop out of the expansion in Theorem 21.1. Furthermore, if the
formula ∃xF only mentions strict inequalities < and disequations 6=, then all virtual
substitutions will involve infinitesimals or infinities. While both are conceptually
more demanding than virtual substitutions with mere square root expressions, the
advantage is that both infinitesimals and infinities rarely satisfy any equations (ex-
cept when they are trivial because all coefficients are zero). In that case, most formu-
las simplify tremendously. That is an indication in the virtual substitution method of

21.8 Appendix: Semialgebraic Geometry 625

a more general phenomenon: existential arithmetic with strict inequalities or, dually,
validity of universal arithmetic with weak inequalities, is computationally easier.

21.8 Appendix: Semialgebraic Geometry

The geometric counterparts of polynomial equations or quantifier-free first-order
formulas with polynomial equations are affine varieties. The geometric counterparts
of first-order formulas of real arithmetic that may mention inequalities are called
semialgebraic sets in real algebraic geometry [1, 2]. By quantifier elimination, the
class of sets definable with quantifiers is the same as the class of sets definable
without quantifiers. Hence, the formulas of first-order real arithmetic exactly define
semialgebraic sets.

Definition 21.3 (Semialgebraic Set). S⊆Rn is an semialgebraic set iff it is defined
by a finite intersection of polynomial equations and inequalities or any finite union
of such sets:

S =
t⋃

i=1

s⋂

j=1

{x ∈ Rn : p(x)∼ 0} where ∼ ∈ {=,≥,>}

The geometric counterpart of the quantifier elimination result is that semialge-
braic sets are closed under projection (the other closure properties are obvious in
logic), which is the Tarski-Seidenberg theorem [10, 11].

Theorem 21.2 (Tarski-Seidenberg). Semialgebraic sets are closed under fi-

nite unions, finite intersections, complements, and projection to linear sub-

spaces.

The semialgebraic sets corresponding to a number of interesting systems of poly-
nomial inequalities are illustrated in Fig. 21.4.

Exercises

21.1. Consider the first-order real-arithmetic formula

∃x(ax2 +bx+ c≤ 0∧F) (21.13)

The virtual substitution of the roots of ax2 +bx+ c = 0 according to Sect. 20.4 as
well as of ∞ according to Sect. 21.3 leads to

626 21 Virtual Substitution & Real Arithmetic

x

y

|y| ≤ |x3|
∧ xy≥ 0

x

y

x2 + y2 ≤ 1

x

y

y2 = x2(x+1)
∧ x≤ 0.44

x

y

|y| ≥ |x3|∧xy≥ 0
∧ |y| ≤ 1.7|x| z≤ x2 y2

∧z≥ x2 y2

Fig. 21.4 Systems of polynomial inequalities describe semialgebraic sets

F ∞
x̄
∨a=0∧b 6=0∧F

 c/b
x̄

∨a 6=0∧b2 4ac≥0∧

F
(b+
√

b2 4ac)/(2a)
x̄

∨F
(b
√

b2 4ac)/(2a)
x̄

)

But when F is ax2 +bx+ c < 0, then none of those cases necessarily works. Does
that mean the result of the virtual substitution is not equivalent to (21.13)? Where is
the catch in this argument?

21.2. Perform quantifier elimination by virtual substitution to compute

QE(∃x(x2 x+ c≤ 0∧ x≥ 0∧ x+2≤ 0))

21.3. Consider the first-order real-arithmetic formula

∃x(ax2 +bx+ c≤ 0∧ax2 +bx+ c = 0)

Compare the results of using Theorem 20.1 and Theorem 21.1 on this formula.
Which theorem is more efficient? What happens in the case of

∃x(ax2 +bx+ c≤ 0∧ax2 +bx+ c = 0∧ x≥ 0)

21.4 (Virtual substitution on the right). Develop and prove a virtual substitution
formula for quadratic polynomials analogous to Theorem 21.1 that uses the points
illustrated in Fig. 21.3(right) instead of Fig. 21.3(left).

21.8 Appendix: Semialgebraic Geometry 627

21.5 (Infinitesimals in polynomials). Use the Taylor series

p(ζ + ε) =
∞

∑
n=0

p(n)(ζ)

n!
(ζ + ε ζ)n =

∞

∑
n=0

p(n)(ζ)

n!
εn =

deg(p)

∑
n=0

p(n)(ζ)

n!
εn

of univariate polynomial p ∈R[x] around ζ ∈R evaluated at ζ + ε (since ε is small
enough to be in the domain of convergence of the Taylor series) to show Note 83.

References

[1] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in Real

Algebraic Geometry. 2nd. Berlin: Springer, 2006. DOI: 10.1007/3-540-
33099-2.

[2] Jacek Bochnak, Michel Coste, and Marie-Francoise Roy. Real Algebraic Ge-

ometry. Vol. 36. Ergeb. Math. Grenzgeb. Berlin: Springer, 1998. DOI: 10.1
007/978-3-662-03718-8.

[3] Christopher W. Brown and James H. Davenport. The complexity of quanti-
fier elimination and cylindrical algebraic decomposition. In: ISSAC. Ed. by
Dongming Wang. New York: ACM, 2007, 54–60. DOI: 10.1145/127754
8.1277557.

[4] Leonardo Mendonça de Moura and Grant Olney Passmore. Computation in
real closed infinitesimal and transcendental extensions of the rationals. In:
Automated Deduction - CADE-24 - 24th International Conference on Auto-

mated Deduction, Lake Placid, NY, USA, June 9-14, 2013. Proceedings. Ed.
by Maria Paola Bonacina. Vol. 7898. LNCS. Berlin: Springer, 2013, 178–
192. DOI: 10.1007/978-3-642-38574-2_12.

[5] Grant Olney Passmore. Combined Decision Procedures for Nonlinear Arith-
metics, Real and Complex. PhD thesis. School of Informatics, University of
Edinburgh, 2011.

[6] André Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reas.

41(2) (2008), 143–189. DOI: 10.1007/s10817-008-9103-8.
[7] André Platzer. Logical Analysis of Hybrid Systems: Proving Theorems for

Complex Dynamics. Heidelberg: Springer, 2010. DOI: 10.1007/978-3-
642-14509-4.

[8] André Platzer. Logics of dynamical systems. In: LICS. Los Alamitos: IEEE,
2012, 13–24. DOI: 10.1109/LICS.2012.13.

[9] André Platzer, Jan-David Quesel, and Philipp Rümmer. Real world verifi-
cation. In: CADE. Ed. by Renate A. Schmidt. Vol. 5663. LNCS. Berlin:
Springer, 2009, 485–501. DOI: 10.1007/978-3-642-02959-2_35.

[10] Abraham Seidenberg. A new decision method for elementary algebra. Annals

of Mathematics 60(2) (1954), 365–374. DOI: 10.2307/1969640.
[11] Alfred Tarski. A Decision Method for Elementary Algebra and Geometry.

2nd. Berkeley: University of California Press, 1951.

https://doi.org/10.1007/3-540-33099-2
https://doi.org/10.1007/3-540-33099-2
https://doi.org/10.1007/978-3-662-03718-8
https://doi.org/10.1007/978-3-662-03718-8
https://doi.org/10.1145/1277548.1277557
https://doi.org/10.1145/1277548.1277557
https://doi.org/10.1007/978-3-642-38574-2_12
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1109/LICS.2012.13
https://doi.org/10.1007/978-3-642-02959-2_35
https://doi.org/10.2307/1969640

628 21 Virtual Substitution & Real Arithmetic

[12] Volker Weispfenning. Quantifier elimination for real algebra — the cubic
case. In: ISSAC. New York: ACM, 1994, 258–263.

[13] Volker Weispfenning. Quantifier elimination for real algebra — the quadratic
case and beyond. Appl. Algebra Eng. Commun. Comput. 8(2) (1997), 85–101.
DOI: 10.1007/s002000050055.

https://doi.org/10.1007/s002000050055

Index

Symbols

[α] 114
[·] 111, 433
〈α〉 114
〈·〉 111, 433
∃ 49, 111, 114, 433
∀ 48, 111, 114, 433
∧ 111, 180, 433
↔ 111
→ 111, 180, 433
¬ 111, 180, 433
∨ 111, 180, 433
?Q 76, 429
(F)′ 329
(e)′ 296
; 76, 429
Fe

x 591

F
c/b
x 589

F ∞
x̄

612
Fe+ε
x̄

617
Fe
x̄

595
[′] 149
[:=]= 204, 368
[?] 151
[∩] 505
[·] 484
[∪] 144
[]∧ 161, 231, 336
[d] 505
[∗] 155, 216
[:=] 147, 536
[;] 153
[∗∗] 240
[×] 505
d
dt

51, 304, 327
∂ f
∂x
(ξ) 300

Γ ⊢dGL P 499

Φ ⊢dL Q 180

· 537
∩ 427
Ck(D,Rn) 54

∪ 76, 429
δα (X) 474
R 195
x :=∗ 390
∃lin 590
⊢dL P 180, 186, 205
⊢dGL P 499, 500
ςn

α (X) 461
∞ 610
〈′〉 487
〈:=〉 486
〈?〉 488
〈∩〉 505
〈·〉 157
〈d〉 491
〈∗〉 493
〈;〉 490
〈∪〉 489
〈×〉 505
S 45, 77
Γ ⊢ ∆ 177
V 45

BV(P) 166
BV(α) 165, 166
FV(P) 165, 167
FV(α) 165, 167
FV(σ) 543

FV(e) 165

MBV(α) 167
V(P) 168
V(α) 168
[[P]] 113, 452

629© Springer International Publishing AG, part of Springer Nature 2018

A. Platzer, Logical Foundations of Cyber-Physical Systems,

https://doi.org/10.1007/978-3-319-63588-0

https://doi.org/10.1007/978-3-319-63588-0

630 Index

[[α]] 79
[[e]] 46
ω |= P 48
σ(α) 537
σ(φ) 537
σ(θ) 537
ςα (X) 474
ε 614
ϕ |= x′ = f (x)∧Q 80
ϕ |= x′ = f (x) 80
c() 533
f (e) 534
p(e) 534
x′ = f (x)&Q 76, 429
x′ = f (x) 76, 429
x :=e 76, 429
:= 76, 429
∗ 76, 429
× 428
d 429
QE 197, 583
i∀ 198
⊢ 177

A

abstraction 70
admissible see substitution, admissible
advance notice 458
adversarial 8, 422
analytic cut see cut
and-operator 52, 123, 443
Angel 426

antecedent 177

arity 533

assignment 76, 147
differential 307, 327
nondeterministic 390

automaton
hybrid 85, 91

autonomous 38
axiom 142–162, 215–217, 301–308,

327–349, 378–380, 484–494, 527

assignment 147, 486, 536

composition 153, 490

determinacy 484

duality 157, 491

iteration 155, 216, 493

modus ponens
modal 161

of choice 144

of game of choice 489

solution 149, 487

test 151, 488

vacuous 162, 231, 536

axiomatics 138
axiomatization 502, 551

B

bi-implication 52, 123, 443
box-modality 123, 443
brackets

semantic 47

C

calculus
axiomatic see axiom
sequent 179

Cauchy-Lipschitz 54
CEL rule 188
CER rule 188
CE rule 188
challenge 430

change
explicit 52, 308

choice
angelic 426

demonic 427

nondeterministic 76, 144
clash 538, 543

closed
formula see formula, closed

closure
universal 196

competition
adversarial 437
analytic 422

complete 502, 551

composition
sequential 76, 153

compositional 138, 298, 455
conclusion 179

condition
intermediate 125
winning 433

conjunction 52, 123, 443
connectives 174

consequence 114

consistent 483

constant 224, 230
context 188, 188
continued

to boundary 53
continuous 8

evolution see differential, equation
Lipschitz see Lipschitz, continuous

Index 631

contract 97–106
invariant 107

contraction 202
control

and modeling 12

event-triggered 261, 245–264
model-predictive 273

time-triggered 280, 267–282
convention

naming 44
counterexample 121

CPS 1
cut 183

differential see differential, cut

D

dA rule 380
DC axiom 349
dC rule 346
DE axiom 307, 327
De Morgan 586
degree 611

Demon 426

derivation 302
operator 317

derivative
partial 300

descriptive power 39
design

iterative 69
determined 483

DG axiom 379
dG rule 380
dGL 433
DI axiom 305, 340
dI rule 309, 331, 340
diamond-modality 123, 443
differential 295, 300, 304, 327

algebra 317
auxiliaries 380

axiomatization 388
constant 317
cut 346, 349
effect 307, 327
equation 32, 28–58, 76, 80, 148–151,

287–415
dual 428

field of quotients 317

formula 329
ghost 379, 380
indeterminates 317
invariant 331, 340
polynomial algebra 317

structure 404
symbol 297, 339
term 296, 300
weakening 327

discrete 8
disjunction 52, 123, 443
distributed 8
dL 111

domain 32

evolution 40, 76, 429

reduction 503
of substitution 537

doubt
Cartesian 123

draw 482

DW axiom 327
dW rule 328
dynamics

adversarial 422

continuous 39–52
discrete 66

E

equation
differential see differential, equation

equilibrium 385

equivalence
contextual 188, 551

equivalent 52, 123, 443
event 251
evolution

continuous see differential, equation
exchange 201
existence

of solution 53
existential quantifier see quantifier,

existential
exists 52
expression

square root 592

expressive
differentially 502, 551

F

filibuster 441
fixpoint 472

for all 52
form

differential 289
game 429

formula
dGL 433

632 Index

dL 111
atomic 183

closed 197, 584
differential game logic 433

differential dynamic logic 111

with interpretation 534
FOL 43

ground 197, 584
modal 110, 433

principal 183
FP× rule 506
FP rule 494

G

Gödel 162, 218
G rule 162, 218
game 424–432

atomic 429

choice 430

compound 430

continuous evolution 429

demonic choice 427
demonic repetition 428
deterministic assignment 429

dual 430

dual test 430

hybrid 8, 429

repeated 430

sequential 430

test 430

generator 316
George Box 561
ghost

arithmetic 390
axiomatic 387

differential see differential, ghost
differential-algebraic 393
discrete 367
substitute 383

graph 53

ground
formula see formula, ground

H

HG 429
hide 202
Hoare

triple 117

homomorphism 542

HP 76
hybrid see system, hybrid

I

I axiom 217
IA rule 367
ideal

vanishing 600

implication 52, 123, 443
implies-operator 52, 123, 443
ind× rule 506
ind rule 219
inductive 221

infinitesimal 614

inflation 473
initial value

problem 32
symbolic 34, 149

instantiation 200
intermediate

condition 125
state 124

interpretation 535

adjoint 546

invariant 221

differential 305, 331, 340
function 319

term 305

K

kernel 48

K axiom 161

L

Leibniz
rule 317

Lie-derivative 319, 339

Lipschitz 54

local 54

logic
differential dynamic 107–115

with interpretation 533–536
differential game 428–439
first-order 42–50, 580

loop
invariant 221
rule 221

M

M rule 163, 220
M[·] rule 163, 220
[]-modality 123, 443
〈〉-modality 123, 443

Index 633

ModelPlex 557–574
model checking

bounded 235
monitor 569

controller 563

model 564

runtime 569

monotone 456, 481

MR rule 237
multi-firing 259
M rule 485
M[·] rule 485

N

negation 52, 123, 443
nilpotent 56

nondeterministic 8, 70

not-operator 52, 123, 443

O

objective 433
Occam 201
ODE see differential, equation
operator

duality 429

modal 110

precedence 77, 113

or-operator 52, 123, 443
ordinal 465

arithmetic 468
limit 465, 467

successor 465, 467

transfinite 466

P

parameter
constant 224, 230
symbolic 119

Peano 53
Picard-Lindelöf 54
postcondition 110

powerset 81, 115

pre-fixpoint 470

precedence
operator 113

premise 179

program
atomic 76

compound 76

continuous 42
hybrid 76, 65–80, 534

proof 179

irrelevance 255
propositional

rule see rule, propositional
proved 180, 499

Q

QE (quantifier elimination) 197, 583
quantifier

elimination 197, 583

equational 591
linear 589
quadratic 618

existential 52, 123, 443
universal 52, 123, 443

Quantum 98
quotient

rule 317

R

reaction 273
reals 43

extended 613
nonstandard 618

region
winning 452, 474

iterated 461

repetition
angelic 426

demonic 428

nondeterministic 76, 155, 216
response 246
rule 162–164, 180–205, 217–223, 327–349,

367, 378–380, 494–495, 538, 552
arithmetic 195
axiomatic 552

derived 192

fixpoint 494

Gödel 162, 218

loop 221
loop 494

monotonicity 163, 220, 485

product 317

proof 179
propositional 175–193

S

satisfaction 48, 114, 453
satisfiable 49
schema

axiom 527

634 Index

rule 551
semantics 113, 138, 535

denotational 298

of dGL 452
of dL 112
of differentials 300
of differential symbols 297
of FOL 47
of games 474
of HPs 77
of terms 45
operational 439
static 164

sequent 177, 179
set

closed 411

open 411

semialgebraic 625

skills
CPS 14

Skolem
function 190

solution 32, 51, 80, 149, 369
soundness

local 552

miracle 500
of axioms 146, 159, 548

of calculus 186, 205

of dL 159
of proof rule 179

of dGL 500
of US 547, 552

state 45, 77, 297, 451

modification 49

set of 45, 77, 451

stochastic 8
strategy 441

winning 433, 433, 441, 474
subgame 429
substitution

admissible 148, 543

uniform 536, 542, 536–547
of rule 552

virtual 590–599, 609–624
infinitesimal 615

infinity 610

square root 595

succedent 177

symbol 531

constant 533

differential 295

function 533

predicate 533

program constant 533

syntax 138
of dGL 433
of dL 110
of FOL 43
of HGs 429
of HPs 75
of terms 42

system
cyber-physical 1
hybrid 6, 8

distributed 8
stochastic 8

multi-dynamical 8, 422

T

tangent 300
Tarski 197, 584
Tarski-Seidenberg 625
term 42, 296, 534

atomic 43

compound 43

differential 295, 300
test 76, 151, 429

dual 428

poor 503

rich 503

theory
proof 399, 502, 551

thinking
computational 13

time 38, 82, 271
divergence of 278

topology 411
transfinite 473
transition

semantics
dL 78

trinity 138
logical 138

U

uncertain 8
uniform substitution see substitution,

uniform
uniqueness

of solution 54
universal quantifier see quantifier, universal
unsatisfiable 49
US rule 538, 547

V

V axiom 162, 231
vacuous 162, 231, 536

Index 635

valid 49, 114, 453, 535

value
of term 46, 535

of term
differential 300

variable 42
bound 164, 166

differential see symbol, differential
free 164, 167

must-bound 167

variant 516

variety
affine 600

velocity

limit 385

V axiom 536

W

ω-semantics 461
weakening 202

differential see differential, weakening

Z

Zeno 278

zero-sum 482

Operators of Differential Dynamic Logic (dL)
dL Operator Meaning
e≥ ẽ greater or equals true if value of e greater-or-equal to ẽ

¬P negation / not true if P is false
P∧Q conjunction / and true if both P and Q are true
P∨Q disjunction / or true if P is true or if Q is true
P→ Q implication / implies true if P is false or Q is true
P↔ Q bi-implication / equivalent true if P and Q are both true or both false
∀xP universal quantifier / for all true if P is true for all values of variable x

∃xP existential quantifier / exist true if P is true for some value of variable x

[α]P [·] modality / box true if P is true after all runs of HP α
〈α〉P 〈·〉 modality / diamond true if P is true after some run of HP α

Statements and effects of Hybrid Programs (HPs)
HP Notation Operation Effect
x :=e discrete assignment assigns current value of term e to variable x

x :=∗ nondet. assignment assigns any real value to variable x

x′ = f (x)&Q continuous evolution follow differential equation x′ = f (x) with-
in evolution domain Q for any duration

?Q state test / check test first-order formula Q at current state
α; β seq. composition HP β starts after HP α finishes
α ∪β nondet. choice choice between alternatives HP α or HP β
α∗ nondet. repetition repeats HP α any n ∈ N times

Semantics of dL formula P is the set of states [[P]]⊆S in which it is true

[[e≥ ẽ]] = {ω ∈S : ω[[e]]≥ ω[[ẽ]]}
[[P∧Q]] = [[P]]∩ [[Q]]
[[P∨Q]] = [[P]]∪ [[Q]]

[[¬P]] = [[P]]∁ = S \ [[P]]
[[〈α〉P]] = [[α]]◦ [[P]] = {ω : ν ∈ [[P]] for some state ν such that (ω,ν) ∈ [[α]]}
[[[α]P]] = [[¬〈α〉¬P]] = {ω : ν ∈ [[P]] for all states ν such that (ω,ν) ∈ [[α]]}
[[∃xP]] = {ω : ν ∈ [[P]] for some state ν that agrees with ω except on x}
[[∀xP]] = {ω : ν ∈ [[P]] for all states ν that agree with ω except on x}

Semantics of HP α is relation [[α]]⊆S×S between initial and final states

[[x :=e]] = {(ω,ν) : ν = ω except that ν [[x]] = ω[[e]]}
[[?Q]] = {(ω,ω) : ω ∈ [[Q]]}
[[x′ = f (x)&Q]] =

{
(ω,ν) : ϕ(0) = ω except at x′ and ϕ(r) = ν for a solution

ϕ:[0,r]→S of any duration r satisfying ϕ |= x′ = f (x)∧Q
}

[[α ∪β]] = [[α]]∪ [[β]]
[[α;β]] = [[α]]◦ [[β]] = {(ω,ν) : (ω,µ) ∈ [[α]],(µ,ν) ∈ [[β]]}
[[α∗]] = [[α]]∗ =

⋃

n∈N
[[αn]] with αn+1 ≡ αn;α and α0 ≡?true

© Springer International Publishing AG, part of Springer Nature 2018

A. Platzer, Logical Foundations of Cyber-Physical Systems,

https://doi.org/10.1007/978-3-319-63588-0

637

Operators & Axioms

https://doi.org/10.1007/978-3-319-63588-0

638 Operators & Axioms

Axiomatization (dL)

〈·〉 〈α〉P↔¬[α]¬P

[:=] [x :=e]p(x)↔ p(e)

[?] [?Q]P↔ (Q→ P)

[′] [x′ = f (x)]p(x)↔∀t≥0 [x :=y(t)]p(x) (y′(t) = f (y))

[∪] [α ∪β]P↔ [α]P∧ [β]P

[;] [α;β]P↔ [α][β]P

[∗] [α∗]P↔ P∧ [α][α∗]P

K [α](P→ Q)→ ([α]P→ [α]Q)

I [α∗]P↔ P∧ [α∗](P→ [α]P)

V p→ [α]p (FV (p)∩BV (α) = /0)

M[·] P→ Q

[α]P→ [α]Q

G
P

[α]P

Differential equation axioms

DW [x′ = f (x)&Q]P↔ [x′ = f (x)&Q](Q→ P)

DI

[x′ = f (x)&Q]P↔ [?Q]P

)
← (Q→ [x′ = f (x)&Q](P)′)

DC

[x′ = f (x)&Q]P↔ [x′ = f (x)&Q∧C]P

)
← [x′ = f (x)&Q]C

DE [x′ = f (x)&Q]P↔ [x′ = f (x)&Q][x′ := f (x)]P

DG [x′ = f (x)&Q]P↔∃y [x′ = f (x),y′ = a(x) · y+b(x)&Q]P

+′ (e+ k)′ = (e)′+(k)′

·′ (e · k)′ = (e)′ · k+ e · (k)′

c′ (c())′ = 0 (for numbers or constants c())

x′ (x)′ = x′ (for variable x ∈ V)

Differential equation proof rules

dW
Q ⊢ P

Γ ⊢ [x′ = f (x)&Q]P,∆
dI

Q ⊢ [x′:= f (x)](F)′

F ⊢ [x′ = f (x)&Q]F

dC
Γ ⊢ [x′ = f (x)&Q]C,∆ Γ ⊢ [x′ = f (x)&(Q∧C)]P,∆

Γ ⊢ [x′ = f (x)&Q]P,∆

Operators & Axioms 639

Sequent calculus proof rules

¬R
Γ ,P ⊢ ∆

Γ ⊢ ¬P,∆

¬L
Γ ⊢ P,∆

Γ ,¬P ⊢ ∆

→R
Γ ,P ⊢ Q,∆

Γ ⊢ P→ Q,∆

→L
Γ ⊢ P,∆ Γ ,Q ⊢ ∆

Γ ,P→ Q ⊢ ∆

∧R
Γ ⊢ P,∆ Γ ⊢ Q,∆

Γ ⊢ P∧Q,∆

∧L
Γ ,P,Q ⊢ ∆

Γ ,P∧Q ⊢ ∆

id
Γ ,P ⊢ P,∆

cut
Γ ⊢ C,∆ Γ ,C ⊢ ∆

Γ ⊢ ∆

∨R
Γ ⊢ P,Q,∆

Γ ⊢ P∨Q,∆

∨L
Γ ,P ⊢ ∆ Γ ,Q ⊢ ∆

Γ ,P∨Q ⊢ ∆

WR
Γ ⊢ ∆

Γ ⊢ P,∆

WL
Γ ⊢ ∆

Γ ,P ⊢ ∆

∀R
Γ ⊢ p(y),∆

Γ ⊢ ∀x p(x),∆
(y 6∈ Γ ,∆ ,∀x p(x))

∀L Γ , p(e) ⊢ ∆

Γ ,∀x p(x) ⊢ ∆
(arbitrary term e)

CER
Γ ⊢ C(Q),∆ ⊢ P↔ Q

Γ ⊢ C(P),∆

CEL
Γ ,C(Q) ⊢ ∆ ⊢ P↔ Q

Γ ,C(P) ⊢ ∆

∃R
Γ ⊢ p(e),∆

Γ ⊢ ∃x p(x),∆
(arbitrary term e)

∃L
Γ , p(y) ⊢ ∆

Γ ,∃x p(x) ⊢ ∆
(y 6∈ Γ ,∆ ,∃x p(x))

=R
Γ ,x = e ⊢ p(e),∆

Γ ,x = e ⊢ p(x),∆

=L
Γ ,x = e, p(e) ⊢ ∆

Γ ,x = e, p(x) ⊢ ∆

Derived axioms and derived rules

∧′ (P∧Q)′↔ (P)′∧ (Q)′

∨′ (P∨Q)′↔ (P)′∧ (Q)′

[]∧ [α](P∧Q)↔ [α]P∧ [α]Q

←
[∗] [α∗]P↔ P∧ [α∗][α]P

[∗∗] [α∗;α∗]P↔ [α∗]P

[:=]=
Γ ,y = e ⊢ p(y),∆

Γ ⊢ [x :=e]p(x),∆
(y new)

iG
Γ ⊢ [y :=e]p,∆

Γ ⊢ p,∆
(y new)

dG
Γ ⊢ ∃y [x′ = f (x),y′ = a(x) · y+b(x)&Q]P,∆

Γ ⊢ [x′ = f (x)&Q]P,∆

dA
⊢ J↔∃yG G ⊢ [x′ = f (x),y′ = a(x) · y+b(x)&Q]G

J ⊢ [x′ = f (x)&Q]J

	Endorsements
	Foreword
	Acknowledgements
	Funding
	Disclaimer
	Contents
	List of Figures
	List of Tables
	List of Expeditions
	List of Theorems
	Chapter 1 Cyber-Physical Systems: Overview
	1.1 Introduction
	1.1.1 Cyber-Physical Systems Analysis by Example
	1.1.2 Application Domains
	1.1.3 Significance
	1.1.4 The Importance of Safety

	1.2 Hybrid Systems Versus Cyber-Physical Systems
	1.3 Multi-dynamical Systems
	1.4 How to Learn About Cyber-Physical Systems
	1.5 Computational Thinking for Cyber-Physical Systems
	1.6 Learning Objectives
	1.7 Structure of This Textbook
	Summary
	References

	Part I Elementary Cyber-Physical Systems
	Chapter 2 Differential Equations & Domains
	2.1 Introduction
	2.2 Differential Equations as Models of Continuous Physical Processes
	2.3 The Meaning of Differential Equations
	2.4 A Tiny Compendium of Differential Equation Examples
	2.5 Domains of Differential Equations
	2.6 Syntax of Continuous Programs
	2.6.1 Continuous Programs
	2.6.2 Terms
	2.6.3 First-Order Formulas

	2.7 Semantics of Continuous Programs
	2.7.1 Terms
	2.7.2 First-Order Formulas
	2.7.3 Continuous Programs

	2.8 Summary
	2.9 Appendix
	2.9.1 Existence Theorems
	2.9.2 Uniqueness Theorems
	2.9.3 Linear Differential Equations with Constant Coefficients
	2.9.4 Continuation and Continuous Dependency

	Exercises
	References

	Chapter 3 Choice & Control
	3.1 Introduction
	3.2 A Gradual Introduction to Hybrid Programs
	3.2.1 Discrete Change in Hybrid Programs
	3.2.2 Compositions of Hybrid Programs
	3.2.3 Decisions in Hybrid Programs
	3.2.4 Choices in Hybrid Programs
	3.2.5 Tests in Hybrid Programs
	3.2.6 Repetitions in Hybrid Programs

	3.3 Hybrid Programs
	3.3.1 Syntax
	3.3.2 Semantics

	3.4 Hybrid Program Design
	3.4.1 To Brake, or Not to Brake, That Is the Question
	3.4.2 A Matter of Choice

	3.5 Summary
	3.6 Appendix: Modeling the Motion of a Robot Around a Bend
	Exercises
	References

	Chapter 4 Safety & Contracts
	4.1 Introduction
	4.2 A Gradual Introduction to CPS Contracts
	4.2.1 The Adventures of Quantum the Bouncing Ball
	4.2.2 How Quantum Discovered a Crack in the Fabric of Time
	4.2.3 How Quantum Learned to Deflate
	4.2.4 Postcondition Contracts for CPS
	4.2.5 Precondition Contracts for CPS

	4.3 Logical Formulas for Hybrid Programs
	4.4 Differential Dynamic Logic
	4.4.1 Syntax of Differential Dynamic Logic
	4.4.2 Semantics of Differential Dynamic Logic

	4.5 CPS Contracts in Logic
	4.6 Identifying Requirements of a CPS
	4.7 Summary
	4.8 Appendix
	4.8.1 Intermediate Conditions for a Proof of Sequential Compositions
	4.8.2 A Proof of Choice
	4.8.3 A Proof of Tests

	Exercises
	References

	Chapter 5 Dynamical Systems & Dynamic Axioms
	5.1 Introduction
	5.2 Intermediate Conditions for CPS
	5.3 Dynamic Axioms for Dynamical Systems
	5.3.1 Dyamic Axioms for Nondeterministic Choices
	5.3.2 Soundness of Axioms
	5.3.3 Dynamic Axioms for Assignments
	5.3.4 Dynamic Axioms for Differential Equations
	5.3.5 Dynamic Axioms for Tests
	5.3.6 Dynamic Axioms for Sequential Compositions
	5.3.7 Dynamic Axioms for Loops
	5.3.8 Axioms for Diamonds

	5.4 A Proof of a Short Bouncing Ball
	5.5 Summary
	5.6 Appendix
	5.6.1 Modal Modus Ponens Has Implications on Boxes
	5.6.2 Vacuous State Change if Nothing Relevant Ever Changes
	5.6.3 Gödel Generalizes Validities into Boxes
	5.6.4 Monotonicity of Postconditions
	5.6.5 Of Free and Bound Variables
	5.6.6 Free and Bound Variable Analysis

	Exercises
	References

	Chapter 6 Truth & Proof
	6.1 Introduction
	6.2 Truth and Proof
	6.2.1 Sequents
	6.2.2 Proofs
	6.2.3 Propositional Proof Rules
	6.2.4 Soundness of Proof Rules
	6.2.5 Proofs with Dynamics
	6.2.6 Quantifier Proof Rules

	6.3 Derived Proof Rules
	6.4 A Sequent Proof for the Single-Hop Bouncing Ball
	6.5 Real Arithmetic
	6.5.1 Real Quantifier Elimination
	6.5.2 Instantiating Real-Arithmetic Quantifiers
	6.5.3 Weakening Real Arithmetic by Removing Assumptions
	6.5.4 Structural Proof Rules in Sequent Calculus
	6.5.5 Substituting Equations into Formulas
	6.5.6 Abbreviating Terms to Reduce Complexity
	6.5.7 Creatively Cutting Real Arithmetic to Transform Questions

	6.6 Summary
	Exercises
	References

	Chapter 7 Control Loops & Invariants
	7.1 Introduction
	7.2 Control Loops
	7.3 Induction for Loops
	7.3.1 Induction Axiom for Loops
	7.3.2 Induction Rule for Loops
	7.3.3 Loop Invariants
	7.3.4 Contextual Soundness Requirements

	7.4 A Proof of a Happily Repetitive Bouncing Ball
	7.5 Splitting Postconditions into Separate Cases
	7.6 Summary
	7.7 Appendix
	7.7.1 Loops of Proofs
	7.7.2 Breaking Loops of Proofs
	7.7.3 Invariant Proofs of Loops
	7.7.4 Alternative Forms of the Induction Axiom

	Exercises
	References

	Chapter 8 Events & Responses
	8.1 Introduction
	8.2 The Need for Control
	8.2.1 Events in Control
	8.2.2 Event Detection
	8.2.3 Dividing Up the World
	8.2.4 Event Firing
	8.2.5 Event-Triggered Verification
	8.2.6 Event-Triggered Control Paradigm
	8.2.7 Physics Versus Control Distinctions

	8.3 Summary
	Exercises
	References

	Chapter 9 Reactions & Delays
	9.1 Introduction
	9.2 Delays in Control
	9.2.1 The Impact of Delays on Event Detection
	9.2.2 Model-Predictive Control Basics
	9.2.3 Design-by-Invariant
	9.2.4 Sequencing and Prioritizing Reactions
	9.2.5 Time-Triggered Verification

	9.3 Summary
	Exercises
	References

	Overview of Part I on Elementary Cyber-Physical Systems

	Part II Differential Equations Analysis
	Chapter 10 Differential Equations & Differential Invariants
	10.1 Introduction
	10.2 A Gradual Introduction to Differential Invariants
	10.2.1 Global Descriptive Power of Local Differential Equations
	10.2.2 Intuition for Differential Invariants
	10.2.3 Deriving Differential Invariants

	10.3 Differentials
	10.3.1 Syntax of Differentials
	10.3.2 Semantics of Differential Symbols
	10.3.3 Semantics of Differential Terms
	10.3.4 Derivation Lemma with Equations of Differentials
	10.3.5 Differential Lemma
	10.3.6 Differential Invariant Term Axiom
	10.3.7 Differential Substitution Lemmas

	10.4 Differential Invariant Terms
	10.5 A Differential Invariant Proof by Generalization
	10.6 Example Proofs
	10.7 Summary
	10.8 Appendix
	10.8.1 Differential Equations Versus Loops
	10.8.2 Differential Invariant Terms and Invariant Functions

	Exercises
	References

	Chapter 11 Differential Equations & Proofs
	11.1 Introduction
	11.2 Recap: Ingredients for Differential Equation Proofs
	11.3 Differential Weakening
	11.4 Operators in Differential Invariants
	11.4.1 Equational Differential Invariants
	11.4.2 Differential Invariant Proof Rule
	11.4.3 Differential Invariant Inequalities
	11.4.4 Disequational Differential Invariants
	11.4.5 Conjunctive Differential Invariants
	11.4.6 Disjunctive Differential Invariants

	11.5 Differential Invariants
	11.6 Example Proofs
	11.7 Assuming Invariants
	11.8 Differential Cuts
	11.9 Differential Weakening Again
	11.10 Differential Invariants for Solvable Differential Equations
	11.11 Summary
	11.12 Appendix: Proving Aerodynamic Bouncing Balls
	Exercises
	References

	Chapter 12 Ghosts & Differential Ghosts
	12.1 Introduction
	12.2 Recap
	12.3 A Gradual Introduction to Ghost Variables
	12.3.1 Discrete Ghosts
	12.3.2 Proving Bouncing Balls with Sneaky Solutions
	12.3.3 Differential Ghosts of Time
	12.3.4 Constructing Differential Ghosts

	12.4 Differential Ghosts
	12.5 Substitute Ghosts
	12.6 Limit Velocity of an Aerodynamic Ball
	12.7 Axiomatic Ghosts
	12.8 Summary
	12.9 Appendix
	12.9.1 Arithmetic Ghosts
	12.9.2 Nondeterministic Assignments & Ghosts of Choice
	12.9.3 Differential-Algebraic Ghosts

	Exercises
	References

	Chapter 13 Differential Invariants & Proof Theory
	13.1 Introduction
	13.2 Recap
	13.3 Comparative Deductive Study: Relativity Theory for Proofs
	13.4 Equivalences of Differential Invariants
	13.5 Differential Invariants & Arithmetic
	13.6 Differential Invariant Equations
	13.7 Equational Incompleteness
	13.8 Strict Differential Invariant Inequalities
	13.9 Differential Invariant Equations as Differential Invariant Inequalities
	13.10 Differential Invariant Atoms
	13.11 Summary
	13.12 Appendix: Curves Playing with Norms and Degrees
	Exercises
	References

	Part III Adversarial Cyber-Physical Systems
	Chapter 14 Hybrid Systems & Games
	14.1 Introduction
	14.2 A Gradual Introduction to Hybrid Games
	14.2.1 Choices & Nondeterminism
	14.2.2 Control & Dual Control
	14.2.3 Demon's Derived Controls

	14.3 Syntax of Differential Game Logic
	14.3.1 Hybrid Games
	14.3.2 Differential Game Logic Formulas
	14.3.3 Examples

	14.4 An Informal Operational Game Tree Semantics
	14.5 Summary
	Exercises
	References

	Chapter 15 Winning Strategies & Regions
	15.1 Introduction
	15.2 Semantics of Differential Game Logic
	15.2.1 Limits of Reachability Relations
	15.2.2 Set-Valued Semantics of Differential Game Logic Formulas
	15.2.3 Winning-Region Semantics of Hybrid Games

	15.3 Semantics of Repetition in Hybrid Games
	15.3.1 Repetitions with Advance Notice
	15.3.2 Repetitions as Infinite Iterations
	15.3.3 Inflationary Semantics of Repetition
	15.3.4 Characterizing Winning Repetitions Implicitly

	15.4 Semantics of Hybrid Games
	15.5 Summary
	Exercises
	References

	Chapter 16 Winning & Proving Hybrid Games
	16.1 Introduction
	16.2 Semantical Considerations
	16.2.1 Monotonicity
	16.2.2 Determinacy

	16.3 Dynamic Axioms for Hybrid Games
	16.3.1 Dynamic Axioms for Determinacy
	16.3.2 Monotonicity
	16.3.3 Dynamic Axioms for Assignments
	16.3.4 Dynamic Axioms for Differential Equations
	16.3.5 Dynamic Axioms for Challenge Games
	16.3.6 Dynamic Axioms for Choice Games
	16.3.7 Dynamic Axioms for Sequential Games
	16.3.8 Dynamic Axioms for Dual Games
	16.3.9 Dynamic Axioms for Repetition Games
	16.3.10 Proof Rules for Repetition Games

	16.4 Example Proofs
	16.5 Axiomatization
	16.5.1 Soundness
	16.5.2 Completeness

	16.6 There and Back Again Game
	16.7 Summary
	Exercises
	References

	Chapter 17 Game Proofs & Separations
	17.1 Introduction
	17.2 Recap: Hybrid Games
	17.3 Separating Axioms
	17.4 Repetitive Diamonds – Convergence Versus Iteration
	17.5 Summary
	17.6 Appendix: Relating Differential Game Logic and Differential Dynamic Logic
	Exercises
	References

	Overview of Part II on Differential Equations Analysis
	Overview of Part III on Adversarial Cyber-Physical Systems

	Part IV Comprehensive CPS Correctness
	Overview of Part IV on Comprehensive CPS Correctness
	Chapter 18 Axioms & Uniform Substitutions
	18.1 Introduction
	18.2 Axioms Versus Axiom Schemata
	18.3 What Axioms Want
	18.4 Differential Dynamic Logic with Interpretations
	18.4.1 Syntax
	18.4.2 Semantics

	18.5 Uniform Substitution
	18.5.1 Uniform Substitution Rule
	18.5.2 Examples
	18.5.3 Uniform Substitution Application
	18.5.4 Uniform Substitution Lemmas
	18.5.5 Soundness

	18.6 Axiomatic Proof Calculus for
	18.7 Differential Axioms
	18.8 Summary
	18.9 Appendix: Uniform Substitution of Rules and Proofs
	Exercises
	References

	Chapter 19 Verified Models & Verified Runtime Validation
	19.1 Introduction
	19.2 Fundamental Challenges with Inevitable Models
	19.3 Runtime Monitors
	19.4 Model Compliance
	19.5 Provably Correct Monitor Synthesis
	19.5.1 Logical State Relations
	19.5.2 Model Monitors
	19.5.3 Correct-by-Construction Synthesis

	19.6 Summary
	Exercises
	References

	Chapter 20 Virtual Substitution & Real Equations
	20.1 Introduction
	20.2 Framing the Miracle
	20.3 Quantifier Elimination
	20.3.1 Homomorphic Normalization for Quantifier Elimination
	20.3.2 Substitution Base
	20.3.3 Term Substitutions for Linear Equations

	20.4 Square Root Virtual Substitutions for Quadratics
	20.4.1 Square Root Algebra
	20.4.2 Virtual Substitutions of Square Roots

	20.5 Optimizations
	20.6 Summary
	20.7 Appendix: Real Algebraic Geometry
	Exercises
	References

	Chapter 21 Virtual Substitution & Real Arithmetic
	21.1 Introduction
	21.2 Recap: Square Root Virtual Substitutions for Quadratics
	21.3 Infinity Virtual Substitution
	21.4 Infinitesimal Virtual Substitution
	21.5 Quantifier Elimination by Virtual Substitution for Quadratics
	21.6 Optimizations
	21.7 Summary
	21.8 Appendix: Semialgebraic Geometry
	Exercises
	References

	Index
	Operators & Axioms

