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Preface 

The primary goal of these lectures is to introduce a beginner to the finite
dimensional representations of Lie groups and Lie algebras. Since this goal is 
shared by quite a few other books, we should explain in this Preface how our 

approach differs, although the potential reader can probably see this better 

by a quick browse through the book. 
Representation theory is simple to define: it is the study of the ways in 

which a given group may act on vector spaces. It is almost certainly unique, 

however, among such clearly delineated subjects, in the breadth of its interest 

to mathematicians. This is not surprising: group actions are ubiquitous in 20th 
century mathematics, and where the object on which a group acts is not a 

vector space, we have learned to replace it by one that is {e.g., a cohomology 
group, tangent space, etc.}. As a consequence, many mathematicians other 

than specialists in the field {or even those who think they might want to be} 
come in contact with the subject in various ways. It is for such people that 

this text is designed. To put it another way, we intend this as a book for 
beginners to learn from and not as a reference. 

This idea essentially determines the choice of material covered here. As 
simple as is the definition of representation theory given above, it fragments 
considerably when we try to get more specific. For a start, what kind of group 

G are we dealing with-a finite group like the symmetric group 6 n or the 
general linear group over a finite field GLn{lFq }, an infinite discrete group 

like SLn{Z}, a Lie group like SLnC, or possibly a Lie group over a local 

field? Needless to say, each of these settings requires a substantially different 
approach to its representation theory. Likewise, what sort of vector space is 

G acting on: is it over C, JR, 0, or possibly a field of positive characteristic? Is it 
finite dimensional or infinite dimensional, and if the latter, what additional 
structure {such as norm, or inner product} does it carry? Various combinations 
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of answers to these questions lead to areas of intense research activity in 

representation theory, and it is natural for a text intended to prepare students 

for a career in the subject to lead up to one or more of these areas. As a 
corollary, such a book tends to get through the elementary material as quickly 

as possible: if one has a semester to get up to and through Harish-Chandra 
modules, there is little time to dawdle over the representations of 6 4 and 
SL3 C, 

By contrast, the present book focuses exactly on the simplest cases: repre

sentations of finite groups and Lie groups on finite-dimensional real and 

complex vector spaces. This is in some sense the common ground of the 
subject, the area that is the object of most of the interest in representation 

theory coming from outside. 

The intent of this book to serve nonspecialists likewise dictates to some 
degree our approach to the material we do cover. Probably the main feature 

of our presentation is that we concentrate on examples, developing the general 
theory sparingly, and then mainly as a useful and unifying language to describe 

phenomena already encountered in concrete cases. By the same token, we for 
the most part introduce theoretical notions when and where they are useful 

for analyzing concrete situations, postponing as long as possible those notions 
that are used mainly for proving general theorems. 

Finally, our goal of making the book accessible to outsiders accounts in 

part for the style of the writing. These lectures have grown from courses of 
the second author in 1984 and 1987, and we have attempted to keep the 

informal style of these lectures. Thus there is almost no attempt at efficiency: 

where it seems to make sense from a didactic point of view, we work out many 

special cases of an idea by hand before proving the general case; and we 
cheerfully give several proofs of one fact if we think they are illuminating. 

Similarly, while it is common to develop the whole semisimple story from one 

point of view, say that of compact groups, or Lie algebras, or algebraic groups, 
we have avoided this, as efficient as it may be. 

lt is of course not a strikingly original notion that beginners can best learn 
about a subject by working through examples, with general machinery only 

introduced slowly and as the need arises, but it seems particularly appropriate 

here. In most subjects such an approach means one has a few out of an 
unknown infinity of examples which are useful to illuminate the general 

situation. When the subject is the representation theory of complex semisimple 
Lie groups and algebras, however, something special happens: once one has 

worked through all the examples readily at hand-the "classical" cases of the 
special linear, orthogonal, and symplectic groups-one has not just a few 
useful examples, one has all but five "exceptional" cases. 

This is essentially what we do here. We start with a quick tour through 

representation theory of finite groups, with emphasis determined by what is 

useful for Lie groups. In this regard, we include more on the symmetric groups 
than is usual. Then we turn to Lie groups and Lie algebras. After some 
preliminaries and a look at low-dimensional examples, and one lecture with 
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some general notions about semisimplicity, we get to the heart of the course: 

working out the finite-dimensional representations of the classical groups. 

For each series of classical Lie algebras we prove the fundamental existence 

theorem for representations of given highest weight by explicit construction. 

Our object, however, is not just existence, but to see the representations in 

action, to see geometric implications of decompositions of naturally occurring 

representations, and to see the relations among them caused by coincidences 

between the Lie algebras. 

The goal of the last six lectures is to make a bridge between the example

oriented approach of the earlier parts and the general theory. Here we make 

an attempt to interpret what has gone before in abstract terms, trying to make 

connections with modern terminology. We develop the general theory enough 

to see that we have studied all the simple complex Lie algebras with five 

exceptions. Since these are encountered less frequently than the classical series, 

it is probably not reasonable in a first course to work out their representations 

as explicitly, although we do carry this out for one of them. We also prove the 

general Weyl character formula, which can be used to verify and extend many 

of the results we worked out by hand earlier in the book. 

Of course, the point we reach hardly touches the current state of affairs in 

Lie theory, but we hope it is enough to keep the reader's eyes from glazing 

over when confronted with a lecture that begins: "Let G be a semisimple 

Lie group, P a parabolic subgroup, .. . " We might also hope that working 

through this book would prepare some readers to appreciate the elegance (and 

efficiency) of the abstract approach. 

In spirit this book is probably closer to Weyl's classic [Wet] than to others 

written today. Indeed, a secondary goal of our book is to present many of the 

results of Weyl and his predecessors in a form more accessible to modern 

readers. In particular, we include Weyl's constructions of the representations 

of the general and special linear groups by using Young's symmetrizers; and 

we invoke a little invariant theory to do the corresponding result for the 

orthogonal and symplectic groups. We also include Weyl's formulas for the 

characters of these representations in terms of the elementary characters of 

symmetric powers of the standard representations. (Interestingly, Weyl only 

gave the corresponding formulas in terms of the exterior powers for the general 

linear group. The corresponding formulas for the orthogonal and symplectic 

groups were only given recently by D'Hoker, and by Koike and Terada. We 

include a simple new proof of these determinantal formulas.) 

More about individual sections can be found in the introductions to other 
parts of the book. 

Needless to say, a price is paid for the inefficiency and restricted focus of 

these notes. The most obvious is a lot of omitted material: for example, we 

include little on the basic topological, differentiable, or analytic properties of 

Lie groups, as this plays a small role in our story and is well covered in dozens 

of other sources, including many graduate texts on manifolds. Moreover, there 

are no infinite-dimensional representations, no Harish-Chandra or Verma 
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modules, no Stiefel diagrams, no Lie algebra cohomology, no analysis on 
symmetric spaces or groups, no arithmetic groups or automorphic forms, and 

nothing about representations in characteristic p > O. There is no consistent 
attempt to indicate which of our results on Lie groups apply more generally 

to algebraic groups over fields other than IR .or C (e.g., local fields). And there 
is only passing mention of other standard topics, such as universal enveloping 

algebras or Bruhat decompositions, which have become standard tools of 

representation theory. (Experts who saw drafts of this book agreed that some 
topic we omitted must not be left out of a modern book on representation 

theory-but no two experts suggested the same topic.) 
We have not tried to trace the history of the subjects treated, or assign 

credit, or to attribute ideas to original sources-this is far beyond our knowl
edge. When we give references, we have simply tried to send the reader to 

sources that are as readable as possible for one knowing what is written here. 

A good systematic reference for the finite-group material, including proofs of 
the results we leave out, is Serre [Se2]. For Lie groups and Lie algebras, 

Serre [Se3], Adams [Ad], Humphreys [Hut], and Bourbaki [Bour] are 
recommended references, as are the classics Weyl [WeI] and Littlewood 
[Litt]. 

We would like to thank the many people who have contributed ideas and 

suggestions for this manuscript, among them J-F. Burnol, R. Bryant, J. Carrell, 

B. Conrad, P. Diaconis, D. Eisenbud, D. Goldstein, M. Green, P. Griffiths, 
B. Gross, M. Hildebrand, R. Howe, H. Kraft, A. Landman, B. Mazur, 
N. Chriss, D. Petersen, G. Schwartz, J. Towber, and L. Tu. In particular, we 

would like to thank David Mumford, from whom we learned much of what 

we know about the subject, and whose ideas are very much in evidence in this 
book. 

Had this book been written 10 years ago, we would at this point thank the 

people who typed it. That being no longer applicable, perhaps we should 
thank instead the National Science Foundation, the University of Chicago, 

and Harvard University for generously providing the various Macintoshes on 

which this manuscript was produced. Finally, we thank Chan Fulton for 

making the drawings. 

Bill Fulton and Joe Harris 

Note to the corrected .fifth printing: We are grateful to S. BilIey, M. Brion, R. Coleman, B. 

Gross, E. D'Hoker, D. Jaffe, R. Milson, K. Rumelhart, M. Reeder, and J. Willenbring for 

pointing out errors in earlier printings, and to many others for teUing us about misprints. 



Using This Book 

A few words are in order about the practical use of this book. To begin with, 

prerequisites are minimal: we assume only a basic knowledge of standard 

first-year graduate material in algebra and topology, including basic notions 

about manifolds. A good undergraduate background should be more than 

enough for most of the text; some examples and exercises, and some of the 

discussion in Part IV may refer to more advanced topics, but these can readily 

be skipped. Probably the main practical requirement is a good working 

knowledge of multilinear algebra, including tensor, exterior, and symmetric 

products of finite dimensional vector spaces, for which Appendix B may help. 

We have indicated, in introductory remarks to each lecture, when any back

ground beyond this is assumed and how essential it is. 

For a course, this book could be used in two ways. First, there are a number 

of topics that are not logically essential to the rest of the book and that can 

be skimmed or skipped entirely. For example, in a minimal reading one could 

skip §§4, 5, 6, 11.3, 13.4, 15.3-15.5, 17.3, 19.5,20,22.1,22.3,23.3-23.4,25.3, and 

26.2; this might be suitable for a basic one-semester course. On the other hand, 

in a year-long course it should be possible to work through as much of the 

material as background and/or interest suggested. Most of the material in the 

Appendices is relevant only to such a long course. Again, we have tried 

to indicate, in the introductory remarks in each lecture, which topics are 

inessential and may be omitted. 

Another aspect of the book that readers may want to approach in different 

ways is the profusion of examples. These are put in largely for didactic reasons: 

we feel that this is the sort of material that can best be understood by gaining 

some direct hands-on experience with the objects involved. For the most part, 

however, they do not actually develop new ideas; the reader whose tastes run 

more to the abstract and general than the concrete and special may skip many 
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of them without logical consequence. (Of course, such a reader will probably 

wind up burning this book anyway.) 

We include hundreds of exercises, of wildly different purposes and difficulties. 
Some are the usual sorts of variations of the examples in the text or are 

straightforward verifications of facts needed; a student will probably want to 
attempt most of these. Sometimes an exercise is inserted whose solution is a 

special case of something we do in the text later, if we think working on it will 

be useful motivation (again, there is no attempt at "efficiency," and readers 
are encouraged to go back to old exercises from time to time). Many exercises 

are included that indicate some further directions or new topics (or standard 
topics we have omitted); a beginner may best be advised to skim these for 

general information, perhaps working out a few simple cases. In exercises, we 

tried to include topics that may be hard for nonexperts to extract from the 
literature, especially the older literature. In general, much of the theory is in 

the exercises-and most of the examples in the text. 

We have resisted the idea of grading the exercises by (expected) difficulty, 
although a "problem" is probably harder than an "exercise." Many exercises 

are starred: the * is not an indication of difficulty, but means that the reader 

can find some information about it in the section "Hints, Answers, and 
References" at the back of the book. This may be a hint, a statement of the 

answer, a complete solution, a reference to where more can be found, or 
a combination of any of these. We hope these miscellaneous remarks, as 

haphazard and uneven as they are, will be of some use. 



Contents 

Preface v 

Using This Book ix 

Part I: Finite Groups 1 

1. Representations of Finite Groups 3 

§1.1: Definitions 3 
§1.2: Complete Reducibility; Schur's Lemma 5 
§1.3: Examples: Abelian Groups; 6 3 8 

2. Characters 12 

§2.l: Characters 12 
§2.2: The First Projection Formula and Its Consequences 15 
§2.3: Examples: 6 4 and 214 18 
§2.4: More Projection Formulas; More Consequences 21 

3. Examples; Induced Representations; Group Algebras; Real 
Representations 26 

§3.1: Examples: 6 s and 21s 26 

§3.2: Exterior Powers of the Standard Representation of 6 d 31 
§3.3: Induced Representations 32 
§3.4: The Group Algebra 36 
§3.5: Real Representations and Representations over Subfields of C 39 



xii Contents 

4. Representations of 6 d : Young Diagrams and Frobenius's 

Character Formula 44 

§4.1: Statements of the Results 44 

§4.2: Irreducible Representations of 6 d 52 

§4.3: Proof of Frobenius's Fonnula 54 

5. Representations of md and GL2(lFq) 63 

§5.1: Representations of ~d 63 

§5.2: Representations of GL2{lFq) and SL2{lFq ) 67 

6. Weyl's Construction 75 

§6.1: Schur Functors and Their Characters 75 

§6.2: The Proofs 84 

Part D: Lie Groups and Lie Algebras 89 

7. Lie Groups 93 

§7.l: Lie Groups: Definitions 93 

§7.2: Examples of Lie Groups 95 

§7.3: Two Constructions 101 

8. Lie Algebras and Lie Groups 104 

§8.1: Lie Algebras: Motivation and Definition 104 

§8.2: Examples of Lie Algebras 111 

§8.3: The Exponential Map 114 

9. Initial Classification of Lie Algebras 121 

§9.1: Rough Classification of Lie Algebras 121 

§9.2: Engel's Theorem and Lie's Theorem 125 

§9.3: Semisimple Lie Algebras 128 
§9.4: Simple Lie Algebras 131 

10. Lie Algebras in Dimensions One, Two, and Three 133 

§10.1: Dimensions One and Two 133 

§10.2: Dimension Three, Rank 1 136 
§10.3: Dimension Three, Rank 2 139 

§10.4: Dimension Three, Rank 3 141 

11. Representations of 512 C 146 

§11.1: The Irreducible Representations 146 
§ 11.2: A Little Plethysm 151 

§11.3: A Little Geometric Plethysm 153 



Contents xiii 

12. Representations of sI3C, Part I 161 

13. Representations of 5[3 C, Part II: Mainly Lots of Examples 175 

§13.1: Examples 17S 
§13.2: Description of the Irreducible Representations 182 
§13.3: A Little More Plethysm 18S 
§13.4: A Little More Geometric Plethysm 189 

Part In: The Classical Lie Algebras and Their Representations 195 

14. The General Set-up: Analyzing the Structure and Representations 
of an Arbitrary Semisimple Lie Algebra 197 

§14.l: Analyzing Simple Lie Algebras in General 197 
§14.2: About the Killing Form 206 

15. S[4C and s[nC 211 

§IS.1: Analyzing slnC 211 

§IS.2: Representations of sl4C and slnC 217 
§IS.3: Weyt's Construction and Tensor Products 222 
§IS.4: Some More Geometry 227 

§IS.5: Representations of GLnC 231 

16. Symplectic Lie Algebras 238 

§16.l: The Structure of SP2nC and SP2nC 238 
§16.2: Representations of SP4 C 244 

17. sP6CandsP2nC 253 

§17.l: Representations of SP6C 253 

§17.2: Representations of SP2nC in General 259 
§17.3: Weyl's Construction for Symplectic Groups 262 

18. Orthogonal Lie Algebras 267 

§18.l: SOmC and SO.,C 267 
§18.2: Representations of 503C, 504C, and 50s C 273 

19. S06C, S07C, and sOmC 282 

§19.l: Representations ofs06C 282 
§19.2: Representations ofthe Even Orthogonal Algebras 286 

§19.3: Representations of S07C 292 
§19.4: Representations of the Odd Orthogonal Algebras 294 

§19.5: Weyt's Construction for Orthogonal Groups 296 



xiv Contents 

20. Spin Representations of sOme 299 

§20.1: Clifford Algebras and Spin Representations of so .. C 299 
§20.2: The Spin Groups Spin",C and Spin .. 1R 307 
§20.3: SpinsC and Triality 312 

Part IV: Lie Theory 317 

21. The Classification of Complex Simple Lie Algebras 319 

§21.1: Dynkin Diagrams Associated to Semisimple Lie Algebras 319 
§21.2: Classifying Dynkin Diagrams 325 
§21.3: Recovering a Lie Algebra from Its Dynkin Diagram 330 

22. 92 and Other Exceptional Lie Algebras 339 

§22.l: Construction of g2 from Its Dynkin Diagram 339 
§22.2: Verifying That g2 is a Lie Algebra 346 
§22.3: Representations of g2 350 
§22.4: Algebraic Constructions of the Exceptional Lie Algebras 359 

23. Complex Lie Groups; Characters 366 

§23.l: Representations of Complex Simple Groups 366 
§23.2: Representation Rings and Characters 375 
§23.3: Homogeneous Spaces 382 
§23.4: Bruhat Decompositions 395 

24. Weyl Character Formula 399 

§24.l : The Weyl Character Formula 399 
§24.2: Applications to Classical Lie Algebras and Groups 403 

25. More Character Formulas 415 

§25.1: Freudenthal's Multiplicity Formula 415 
§25.2: Proof of (WCF); the Kostant Multiplicity Formula 419 
§25.3: Tensor Products and Restrictions to Subgroups 424 

26. Real Lie Algebras and Lie Groups 430 

§26.l: Classification of Real Simple Lie Algebras and Groups 430 
§26.2: Second Proof of Weyl's Character Formula 440 
§26.3: Real, Complex, and Quatemionic Representations 444 

Appendices 451 

A. On Symmetric Functions 453 

§A.l: Basic Symmetric Polynomials and Relations among Them 453 
§A.2: Proofs of the Determinantal Identities 462 
§A.3: Other Determinantal Identities 465 



Contents xv 

B. On Multilinear Algebra 471 

§B.l: Tensor Products 471 
§B.2: Exterior and Symmetric Powers 472 
§B.3: Duals and Contractions 475 

C. On Semisimplicity 478 

§C.1: The Killing Form and Cartan's Criterion 478 
§C.2: Complete Reducibility and the Jordan Decomposition 481 
§C.3: On Derivations 483 

D. Cartan Subalgebras 487 

§D.l: The Existence of Cartan Subalgebras 487 
§D.2: On the Structure of Semisimple Lie Algebras 489 
§D.3: The Conjugacy of Cartan Subalgebras 491 

§D.4: On the Weyl Group 493 

E. Ado's and Levi's Theorems 499 

§E.1: Levi's Theorem 499 
§E.2: Ado's Theorem 500 

F. Invariant Theory for the Classical Groups 504 

§F.1: The Polynomial Invariants 504 
§F.2: Applications to Symplectic and Orthogonal Groups 511 
§F.3: Proof of Capelli's Identity 514 

Hints, Answers, and References 516 

Bibliography 536 

Index of Symbols 543 

Index 547 



PART I 

FINITE GROUPS 

Given that over three-quarters of this book is devoted to the representation 
theory of Lie groups and Lie algebras, why have a discussion of the represen

tations of finite groups at all? There are certainly valid reasons from a logical 

point of view: many ofthe ideas, concepts, and constructions we will introduce 
here will be applied in the study of Lie groups and algebras. The real reason 

for us, however, is didactic, as we will now try to explain. 
Representation theory is very much a 20th-century subject, in the following 

sense. In the 19th century, when groups were dealt with they were generally 

understood to be subsets of the permutations of a set, or of the automor
phisms GL(V) of a vector space V, closed under composition and inverse. Only 

in the 20th century was the notion of an abstract group given, making it 
possible to make a distinction between properties of the abstract group and 

properties of the particular realization as a subgroup of a permutation group 
or GL(V). To give an analogy, in the 19th century a manifold was always a 

subset oflRn; only in the 20th century did the notion of an abstract Riemannian 
manifold become common. 

In both cases, the introduction of the abstract object made a fundamental 
difference to the subject. In differential geometry, one could make a crucial 
distinction between the intrinsic and extrinsic geometry ofthe manifold: which 
properties were invariants of the metric on the manifold and which were 
properties of the particular embedding in IRn. Questions of existence or non

existence, for example, could be broken up into two parts: did the abstract 
manifold exist, and could it be embedded. Similarly, what would have been 

called in the 19th century simply "group theory" is now factored into two 

parts. First, there is the study of the structure of abstract groups (e.g., the 
classification of simple groups). Second is the companion question: given a 

group G, how can we describe all the ways in which G may be embedded in 
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(or mapped to) a linear group GL(V)? This, of course, is the subject matter 

of representation theory. 

Given this point of view, it makes sense when first introducing representa
tion theory to do so in a context where the nature of the groups G in question 

is itself simple, and relatively well understood. It is largely for this reason that 
we are starting otT with the representation theory of finite groups: for those 

readers who are not already familiar with the motivations and goals of 
representation theory, it seemed better to establish those first in a setting where 

the structure of the groups was not itself an issue. When we analyze, for 

example, the representations of the symmetric and alternating groups on 3, 4, 
and 5 letters, it can be expected that the reader is already familiar with the 

groups and can focus on the basic concepts of representation theory being 
introduced. 

We will spend the first six lectures on the case of finite groups. Many of the 

techniques developed for finite groups will carryover to Lie groups; indeed, 
our choice of topics is in part guided by this. For example, we spend quite a 
bit of time on the symmetric group; this is partly for its own interest, but also 

partly because what we learn here gives one way to study representations of 

the general linear group and its subgroups. There are other topics, such as the 
alternating group m:d, and the groups SL2(lFq) and GL2(lFq) that are studied 

purely for their own interest and do not appear later. (In general, for those 
readers primarily concerned with Lie theory, we have tried to indicate in the 

introductory notes to each lecture which ideas will be useful in the succeeding 

parts of this book.) Nonetheless, this is by no means a comprehensive treat
ment of the representation theory of finite groups; many important topics, 

such as the Artin and Brauer theorems and the whole subject of modular 
representations, are omitted. 



LECTURE 1 

Representations of Finite Groups 

In this lecture we give the basic definitions of representation theory, and prove two of 
the basic results, showing that every representation is a (unique) direct sum of irreduc
ible ones. We work out as examples the case of abelian groups, and the simplest 

nonabelian group, the symmetric group on 3 letters. In the latter case we give an 
analysis that will turn out not to be useful for the study of finite groups, but whose 

main idea is central to the study of the representations of Lie groups. 

§1.1: Definitions 

§1.2: Complete reducibility; Schur's lemma 
§1.3: Examples: Abelian groups; 6 3 

§1.1. Definitions 

A representation of a finite group G on a finite-dimensional complex vector 

space V is a homomorphism p: G -+ GL(V) of G to the group of automor

phisms of V; we say that such a map gives V the structure of a G-module. When 

there is little ambiguity about the map p (and, we're afraid, even sometimes 

when there is) we sometimes call V itself a representation of G; in this vein we 

will often suppress the symbol p and write g . v or gv for p(g)(v}. The dimension 

of V is sometimes called the degree of p. 

A map cp between two representations V and W of G is a vector space map 
cp: V -+ W such that 

V~W 

.\ \. 
V~W 
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commutes for every 9 E G. (We will call this a G-linear map when we want to 

distinguish it from an arbitrary linear map between the vector spaces V and 

W) We can then define Ker cp, 1m cp, and Coker cp, which are also G-modules. 

A subrepresentation of a representation V is a vector subspace W of V which 

is invariant under G. A representation V is called irreducible if there is no 

proper nonzero invariant subspace W of V. 

If Vand Ware representations, the direct sum V EB Wand the tensor product 

V ® Ware also representations, the latter via 

g(v ® w) = gv ® gw. 

For a representation V, the nth tensor power V®n is again a representation of 

G by this rule, and the exterior powers /\"(V) and symmetric powers Symn(V) 
are subrepresentations l of it. The dual V* = Hom(V, C) of V is also a repre

sentation, though not in the most obvious way: we want the two representa

tions of G to respect the natural pairing (denoted (, ») between V* and V, 
so that if p: G --+ GL(V) is a representation and p*: G --+ GL(V*) is the dual, 

we should have 

(p*(g)(v*), p(g)(v) = (v*, v) 

for all 9 E G, v E V, and v* E V*. This in tum forces us to define the dual 
representation by 

for all 9 E G. 

Exercise 1.1. Verify that with this definition of p*, the relation above is 
satisfied. 

Having defined the dual of a representation and the tensor product of two 

representations, it is likewise the case that if Vand Ware representations, then 
Hom(V, W) is also a representation, via the identification Hom(V, W) = 
V* ® W Unraveling this, if we view an element ofHom(V, W) as a linear map 
cp from V to W, we have 

(gcp)(v) = gcp(g-I v) 

for all v E V. In other words, the definition is such that the diagram 

V~W 

.j j. 
V~W 

commutes. Note that the dual representation is, in tum, a special case of this: 

1 For more on exterior and symmetric powers, including descriptions as quotient spaces of tensor 
powers, see Appendix B. 
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when W = C is the trivial representation, i.e., gw = w for all WEe, this makes 
V* into a G-module, with g<p(v) = <p(g-l v), i.e., g<p = I(g-l )qJ. 

Exercise 1.2. Verify that in general the vector space of G-linear maps between 

two representations V and W of G is just the subspace Hom(V, W)G of 
elements of Hom(V, W) fixed under the action of G. This subspace is often 

denoted HomG(V, W). 

We have, in effect, taken the identification Hom(V, W) = V* ® Was the 
definition of the representation Hom(V, W). More generally, the usual iden

tities for vector spaces are also true for representations, e.g., 

and so on. 

V®(U EB W) = (V® U)EB(V® W), 

N(VEB W) = EB NV®Nw, 
a+b=k 

N(v*) = N(V)*, 

Exercise 1.3*. Let p: G -+ GL(V) be any representation of the finite group G 

on an n-dimensional vector space V and suppose that for any g E G, the 
determinant of p(g) is 1. Show that the spaces N V and I\"-k V* are iso

morphic as representations of G. 

If X is any finite set and G acts on the left on X, i.e., G -+ Aut(X) is a 

homomorphism to the permutation group of X, there is an associated per

mutation representation: let V be the vector space with basis {ex: x E X}, and 
let G act on V by 

The regular representation, denoted RG or R, corresponds to the left action of 
G on itself. Alternatively, R is the space of complex-valued functions on G, 
where an element g E G acts on a function a by (ga)(h) = a(g-l h). 

Exercise 1.4*. (a) Verify that these two descriptions of R agree, by identifying 
the element ex with the characteristic function which takes the value 1 on x, 
o on other elements of G. 

(b) The space of functions on G can also be made into a G-module by the 

rule (ga)(h) = a(hg). Show that this is an isomorphic representation. 

§1.2. Complete Reducibility; Schur's Lemma 

As in any study, before we begin our attempt to classify the representations 
of a finite group G in earnest we should try to simplify life by restricting our 

search somewhat. Specifically, we have seen that representations of G can be 
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built up out of other representations by linear algebraic operations, most 

simply by taking the direct sum. We should focus, then, on representations 

that are "atomic" with respect to this operation, i.e., that cannot be expressed 
as a direct sum of others; the usual term for such a representation is inde

composable. Happily, the situation is as nice as it could possibly be: a repre
sentation is atomic in this sense if and only ifit is irreducible (i.e., contains no 

proper subrepresentations); and every representation is the direct sum of 

irreducibles, in a suitable sense uniquely so. The key to all this is 

Proposition 1.5. If W is a subrepresentation of a representation V of a finite 

group G, then there is a complementary invariant subspace W' of V, so that 

V= W$W'. 

PROOF. There are two ways of doing this. One can introduce a (positive 

definite) Hermitian inner product H on V which is preserved by each 9 E G 
(i.e., such that H(gv, gw) = H(v, w) for all v, w E V and 9 E G). Indeed, if Ho is 

any Hermitian product on V, one gets such an H by averaging over G: 

H(v, w) = L Ho(gv, gw). 
geG 

Then the perpendicular subspace W .L is complementary to W in V. Alterna

tively (but similarly), we can simply choose an arbitrary subspace U comple
mentary to W, let no: V -+ W be the projection given by the direct sum 

decomposition V = W $ U, and average the map no over G: that is, take 

n(v) = L g(no(g-l v)). 
,eG 

This will then be a G-linear map from V onto W, which is multiplication by 

IGI on W; its kernel will, therefore, be a subspace of V invariant under G and 

complementary to W. 0 

Corollary 1.6. Any representation is a direct sum of irreducible representations. 

This property is called complete reducibility, or semisimplicity. We will see 

that, for continuous representations, the circle Sl , or any compact group, has 
this property; integration over the group (with respect to an invariant measure 

on the group) plays the role of averaging in the above proof. The (additive) 
group IR does not have this property: the representation 

leaves the x axis fixed, but there is no complementary subspace. We will see 

other Lie groups such as SL"«(:) that are semisimple in this sense. Note also 
that this argument would fail if the vector space V was over a field of finite 

characteristic since it might then be the case that n(v) = 0 for v E W. The failure 
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of complete reducibility is one of the things that makes the subject of modular 

representations, or representations on vector spaces over finite fields, so tricky. 

The extent to which the decomposition of an arbitrary representation into 

a direct sum of irreducible ones is unique is one of the consequences of the 

following: 

Schur's Lemma 1.7. If V and Ware irreducible representations of G and 

q> : V -+ W is a G-module homomorphism, then 

(1) Either q> is an isomorphism. or q> = O. 
(2) If V = W, then q> = A· 1 for some A E C, 1 the identity. 

PROOF. The first claim follows from the fact that Ker q> and 1m q> are invariant 

subspaces. For the second, since C is algebraically closed, q> must have an 

eigenvalue A., i.e., for some A E C, q> - AI has a nonzero kernel. By (1), then, 

we must have q> - AI = 0, so q> = AI. 0 

We can summarize what we have shown so far in 

Proposition 1.8. For any representation V of a finite group G, there is a 

decomposition 

where the J'i are distinct irreducible representations. The decomposition of V 

into a direct sum of the k factors is unique, as are the J'i that occur and their 

multiplicities ai • 

PROOF. It follows from Schur's lemma that if W is another representation of 

G, with a decomposition W = EEl KjE!)b j , and q> : V -+ W is a map of represen

tations, then q> must map the factor J'iE!)ai into that factor KjE!)b j for which 

Kj ~ J'i; when applied to the identity map of V to V, the stated uniqueness 

follows. 0 

In the next lecture we will give a formula for the projection of V onto J'iE!)a i. 
The decomposition of the ith summand into a direct sum of ai copies of J'i is 

not unique if ai > 1, however. 

Occasionally the decomposition is written 

(1.9) 

especially when one is concerned only about the isomorphism classes and 

multiplicities of the J'i. 
One more fact that will be established in the following lecture is that a finite 

group G admits only finitely many irreducible representations J'i up to iso

morphism (in fact, we will say how many). This, then, is the framework of the 

classification of all representations of G: by the above, once we have described 
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the irreducible representations of G, we will be able to describe an arbitrary 

representation as a linear combination of these. Our first goal, in analyzing 

the representations of any group, will therefore be: 

(i) Describe all the irreducible representations of G. 

Once we have done this, there remains the problem of carrying out in practice 

the description of a given representation in these terms. Thus, our second goal 

will be: 

(ii) Find techniques for giving the direct sum decomposition (1.9), and in 

particular determining the multiplicities ai of an arbitrary representation V. 

Finally, it is the case that the representations we will most often be concerned 

with are those arising from simpler ones by the sort of linear- or multilinear

algebraic operations described above. We would like, therefore, to be able to 

describe, in the terms above, the representation we get when we perform these 

operations on a known representation. This is known generally as 

(iii) Plethysm: Describe the decompositions, with multiplicities, of represen

tations derived from a given representation V, such as V ® V, V*, N(V), 

Symk(V), and N(N V). Note that if V decomposes into a sum of two represen

tations, these representations decompose accordingly; e.g., if V = U EB W, then 

Nv= EB Nu®NW, 
i+j=k 

so it is enough to work out this plethysm for irreducible representations. 

Similarly, if V and Ware two irreducible representations, we want to decom

pose V ® W; this is usually known as the Clebsch-Gordan problem. 

§1.3. Examples: Abelian Groups; 6 3 

One obvious place to look for examples is with abelian groups. It does not 

take long, however, to deal with this case. Basically, we may observe in general 

that if V is a representation of the finite group G, abelian or not, each 9 E G 

gives a map p(g): V .... V; but this map is not generally a G-module homomor

phism: for general h E G we will have 

g(h(v)) # h(g(v». 

Indeed, p(g): V .... V will be G-linear for every p if (and only if) 9 is in the center 

Z(G) of G. In particular if G is abelian, and V is an irreducible representation, 

then by Schur's lemma every element g E G acts on V by a scalar multiple of 

the identity. Every subspace of V is thus invariant; so that V must be one 

dimensional. The irreducible representations of an abelian group G are thus 

simply elements of the dual group, that is, homomorphisms 

p: G .... C*. 
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We consider next the simplest nonabelian group, G = 6 3 , To begin with, 

we have (as with any nontrivial symmetric group) two one-dimensional 

representations: we have the trivial representation, which we will denote V, 
and the alternating representation V', defined by setting 

gv = sgn(g)v 

for g E G, v E C. Next, since G comes to us as a permutation group, we have 
a natural permutation representation, in which G acts on (;3 by permuting 

the coordinates. Explicitly, if {e 1 , e2 , e3} is the standard basis, then g' ei = eg(i)' 
or, equivalently, 

g ' (z l' Z2 ' Z3) = (Z9-1(1)' Zg - I(2)' Zg-I(3) ' 

This representation, like any permutation representation, is not irreducible: 

the line spanned by the sum (1, 1, 1) of the basis vectors is invariant, with 

complementary subspace 

V = {(ZI' Z2, Z3) E (;3: ZI + Z2 + Z3 = OJ. 
This two-dimensional representation V is easily seen to be irreducible; we call 

it the standard representation of 6 3 , 

Let us now turn to the problem of describing an arbitrary representation 
of 6 3 , We will see in the next lecture a wonderful tool for doing this, called 

character theory; but, as inefficient as this may be, we would like here to adopt 
a more ad hoc approach. This has some virtues as a didactic technique in the 
present context (admittedly dubious ones, consisting mainly of making the 

point that there are other and far worse ways of doing things than character 

theory). The real reason we are doing it is that it will serve to introduce an 

idea that, while superfluous for analyzing the representations of finite groups 
in general, will prove to be the key to understanding representations of Lie 
groups. 

The idea is a very simple one: since we have just seen that the representation 

theory of a finite abelian group is virtually trivial, we will start our analysis 
of an arbitrary representation W of 6 3 by looking just at the action of the 

abelian subgroup ~3 = 7L/3 C 6 3 on W This yields a very simple decom
position: if we take t to be any generator of ~3 (that is, any three-cycle), the 

space W is spanned by eigenvectors Vi for the action of t , whose eigenvalues 
are of course all powers of a cube root of unity (1) = e21<i/3 . Thus, 

W= EB~, 

where 

Next, we ask how the remaining elements of 6 3 act on W in terms of this 

decomposition. To see how this goes, let (1 be any transposition, so that t and 
(J together generate 6 3 , with the relation (Jt(J = t 2 . We want to know where 

(J sends an eigenvector v for the action of t, say with eigenvalue Wi; to answer 
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this, we look at how t acts on /1(v). We use the basic relation above to write 

t(/1(v)) = /1(t 2 (v)) 

= /1(W2i . v) 

= W 2i . /1(v). 

The conclusion, then, is that if v is an eigenvector for t with eigenvalue Wi, then 

/1(v) is again an eigenvector for t, with eigenvalue w2i. 

Exercise 1.10. Verify that with /1 = (12), t = (123), the standard representation 

has a basis a = (w, 1, ( 2 ), 13 = (I, W, ( 2 ), with 

ta = wa, tP = w2 p, /1a = 13, /113 = a. 

Suppose now that we start with such an eigenvector v for t. If the eigenvalue 
of v is Wi :F 1, then /1(v) is an eigenvector with eigenvalue W 2i :F Wi, and so is 

independent of v; and v and /1(v) together span a two-dimensional subspace 
V' of W invariant under 6 3 • In fact, V' is isomorphic to the standard repre

sentation, which follows from Exercise 1.10. If, on the other hand, the eigen
value of v is 1, then /1(v) mayor may not be independent of v. If it is not, then 

v spans a one-dimensional subrepresentation of W, isomorphic to the trivial 

representation if /1(v) = v and to the alternating representation if /1(v) = - v. 

If /1(v) and v are independent, then v + /1(v) and v - /1(v) span one-dimensional 

representations of W isomorphic to the trivial and alternating representations, 
respectively. 

We have thus accomplished the first two of the goals we have set for 

ourselves above in the case of the group G = 6 3 . First, we see from the above 
that the only three irreducible representations of 6 3 are the trivial, alternating, 

and standard representations U, U' and V. Moreover, for an arbitrary repre
sentation W of 6 3 we can write 

W = uEfJa EB U'EfJb EB V EfJC ; 

and we have a way to determine the multiplicities a, b, and c: c, for example, 

is the number of independent eigenvectors for t with eigenvalue w, whereas 

a + c is the mUltiplicity of 1 as an eigenvalue of /1, and b + c is the multiplicity 
of -1 as an eigenvalue of (f. 

In fact, this approach gives us as well the answer to our third problem, 

finding the decomposition of the symmetric, alternating, or tensor powers of 
a given representation W, since if we know the eigenvalues of t on such a 

representation, we know the eigenvalues of t on the various tensor powers of 

W For example, we can use this method to decompose V ® V, where V is 
the standard two-dimensional representation. For V ® V is spanned by the 

vectors a ® a, a ® 13, 13 ® a, and 13 ® 13; these are eigenvectors for t with 
eigenvalues w 2 , 1, 1, and w, respectively, and /1 interchanges a ® a with 

13 ® 13, and a ® 13 with 13 ® a. Thus a ® a and 13 ® 13 span a subrepresentation 
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isomorphic to V, IX ® f3 + f3 ® IX spans a trivial representation V, and 
(X ® f3 - f3 ® (X spans V', so 

v ® V ~ V Ee V' Ee v. 

Exercise 1.11. Use this approach to find the decomposition of the represen

tations Sym2 Vand Sym3 v. 

Exercise 1.12. (a) Decompose the regular representation R of 6 3 , 

(b) Show that Symk+ 6 V is isomorphic to SymkV Ee R, and compute 
SymkV for all k. 

Exercise 1.13*. Show that Sym2(Sym 3 V) ~ Sym3(Sym2 V). Is 
Symm(Symnv) isomorphic to Symn(Symmv)? 

As we have indicated, the idea of studying a representation V of a group G 
by first restricting the action to an abelian subgroup, getting a decomposition 

of V into one-dimensional invariant subspaces, and then asking how the 

remaining generators of the group act on these subspaces, does not work well 

for finite G in general; for one thing, there will not in general be a convenient 
abelian subgroup to use. This idea will turn out, however, to be the key to 

understanding the representations of Lie groups, with a torus subgroup 
playing the role of the cyclic subgroup in this example. 

Exercise 1.14*. Let V be an irreducible representation of the finite group G. 

Show that, up to scalars, there is a unique Hermitian inner product on V 
preserved by G. 



LECTURE 2 

Characters 

This lecture contains the heart of our treatment of the representation theory of finite 

groups: the definition in §2.1 of the character of a representation, and the main theorem 

(proved in two steps in §2.2 and §2.4) that the characters of the irreducible representa

tions form an orthonormal basis for the space of class functions on G. There wiII be 

more examples and more constructions in the following lectures, but this is what you 

need to know. 

§2.l: Characters 

§2.2: The first projection formula and its consequences 

§2.3: Examples: 6 4 and 214 

§2.4: More projection formulas; more consequences 

§2.1. Characters 

As we indicated in the preceding section, there is a remarkably effective 
tool for understanding the representations of a finite group G, called 
character theory. This is in some ways motivated by the example worked out 

in the last section where we saw that a representation of $3 was determined 
by knowing the eigenvalues of the action of the elements 't and u e $3' For a 

general group G, it is not clear what subgroups and/or elements should play 
the role of ~3 ' 't, and u; but the example certainly suggests that knowing 
all the eigenvalues of each element of G should suffice to describe the 
representation. 

Of course, specifying all the eigenvalues of the action of each element of G 
is somewhat unwieldy; but fortunately it is redundant as well. For example, 
if we know the eigenvalues {Ai} of an element 9 e G , then of course we know 

the eigenvalues {An of gk for each k as well. We can thus use this redundancy 
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to simplify the data we have to specify. The key observation here is it is enough 

to give, for example, just the sum of the eigenvalues of each element of G, since 

knowing the sums L Af of the kth powers of the eigenvalues of a given element 

g EGis equivalent to knowing the eigenvalues {A;} of g themselves. This then 

suggests the following: 

Definition. If V is a representation of G, its character Xv is the complex-valued 

function on the group defined by 

Xv(g) = Tr(glv), 

the trace of g on V. 

In particular, we have 

Xv(hgh- l ) = Xv(g), 

so that Xv is constant on the conjugacy classes of G; such a function is called 

a class function. Note that Xv(1) = dim V. 

Proposition 2.1. Let V and W be representations of G. Then 

XV$W = Xv + Xw, Xv®W = Xv' Xw, 

PROOF. We compute the values of these characters on a fixed element g E G. 

For the action of g, V has eigenvalues {A.;} and W has eigenvalues {J.LJ Then 

{Ai} U {Il}} and {Ai 'Il}} are eigenvalues for ~ ® Wand V ® W, from which the 

first two formulas follow. Similarly {Ail = Ai} are the eigenvalues for g on V*, 

since all eigenvalues are nth roots of unity, with n the order of g. Finally, 

{AjAjli < j} are the eigenvalues for g on N V, and 

~ XX = (L AY - L At. 
k I J 2 ' 

and since g2 has eigenvalues {An, the last formula follows. 

Exercise 2.2. For Sym2 V, verify that 

XSym2v(g) = HXV(g)2 + Xv(g2)]. 

Note that this is compatible with the decomposition 

V®V=Sym 2 V®Nv. 

Exercise 2.3*. Compute the characters of Symk V and N v. 

D 

Exercise 2.4*. Show that if we know the character Xv of a representation V, 
then we know the eigenvalues of each element g of G, in the sense that we 
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know the coefficients of the characteristic polynomial of g: V -+ V. Carry this 
out explicitly for elements g E G of orders 2, 3, and 4, and for a representation 

of G on a vector space of dimension 2, 3, or 4. 

Exercise 2.5. (The original fixed-point formula) . If V is the permutation repre

sentation associated to the action of a group G on a finite set X, show that 

Xv(g) is the number of elements of X fixed by g. 

As we have said, the character of a representation of a group G is really a 
function on the set of conjugacy classes in G. This suggests expressing the basic 

information about the irreducible representations of a group G in the form of 
a character table. This is a table with the conjugacy classes [g] of G listed 

across the top, usually given by a representative g, with (for reasons that will 

become apparent later) the number of elements in each conjugacy class over 
it; the irreducible representations V of G listed on the left; and, in the appro

priate box, the value of the character Xv on the conjugacy class [gJ 

Example 2.6. We compute the character table of 6 3 , This is easy: to begin 
with, the trivial representation takes the values (1, 1, 1) on the three conjugacy 

classes [1], [(12)], and [(123)], whereas the alternating representation has 

values (1, -1, 1). To see the character of the standard representation, note 
that the permutation representation decomposes: 1[3 = V $ V; since the 
character of the permutation representation has, by Exercise 2.5, the values 

(3, 1,0), we have Xv = XC' - Xu = (3, 1,0) - (1, 1, 1) = (2, 0, -1). In sum, 
then, the character table of 6 3 is 

3 2 

6 3 (12) (123) 

trivial U 1 1 

alternating U' 1 -1 1 

standard V 2 0 -1 

This gives us another solution of the basic problem posed in Lecture 1: if 
W is any representation of 6 3 and we decompose W into irreducible repre

sentations W ~ V Efla $ V'Eflb $ VEflc, then Xw = axu + bXu' + CXv' In particu
lar, since the functions Xu, Xu' and Xv are independent, we see that W is 

determined up to isomorphism by its character Xw. 

Consider, for example, V ® v. Its character is (XV)2, which has values 4, 0, 
and 1 on the three conjugacy classes. Since V EEl V $ V' has the same char
acter, this implies that V ® V decomposes into V EEl V EEl U', as we have seen 
directly. Similarly, V ® V' has values 2, 0, and -1, so V ® V' ~ V. 
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Exercise 2.7*. Find the decomposition of the representation V ®· using char

acter theory. 

Characters will be similarly useful for larger groups, although it is rare to 

find simple closed formulas for decomposing tensor products. 

§2.2. The First Projection Formula and 
Its Consequences 

In the last lecture, we asked (among other things) for a way of locating 

explicitly the direct sum factors in the decomposition of a representation into 

irreducible ones. In this section we will start by giving an explicit formula for 

the projection of a representation onto the direct sum of the trivial factors 

in this decomposition; as it will tum out, this formula alone has tremen

dous consequences. 

To start, for any representation V of a group G, we set 

vG = {v E V: gv = v Vg E G}. 

We ask for a way of finding V G explicitly. The idea behind our solution to 

this is already implicit in the previous lecture. We observed there that for any 

representation V of G and any g E G, the endomorphism g: V -+ V is, in 

general, not a G -module homomorphism. On the other hand, if we take the 

average of all these endomorph isms, that is, we set 

1 
cp = fGI JG g E End(V), 

then the endomorphism cp will be G-linear since Lg = 'Ihgh-1 . In fact, we 

have 

Proposition 2.S. The map cp is a projection of V onto VG. 

PROOF. First, suppose v = cp(w) = (l / IGI) 'Igw. Then, for any h E G, 

1 1 
hv = - 'I hgw = - L gw 

IGI IGI ' 

so the image of cp is contained in VG. Conversely, if v E VG, then cp(v) = 
(l / IGI)Lv = v, so V G c Im(cp); and cp 0 cp = cpo D 

We thus have a way of finding explicitly the direct sum of the trivial 

subrepresentations of a given representation, although the formula can be 

hard to use if it does not simplify. If we just want to know the number m of 

copies of the trivial representation appearing in the decomposition of V, we 

can do this numerically, since this number will be just the trace of the 
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projection <p. We have 

m = dim VG = Trace( <p) 

1 1 
= Wi JG Trace(g) = Wi g~G Xv(g)· (2.9) 

In particular, we observe that for an irreducible representation V other than 

the trivial one, the sum over all g E G of the values of the character Xv is zero. 
We can do much more with this idea, however. The key is to use Exercise 

1.2: if Vand Ware representations of G, then with Hom(V, W), the representa

tion defined in Lecture 1, we have 

Hom(V, W)G = {G-module homomorphisms from V to W}. 

If V is irreducible then by Schur's lemma dim Hom(V, W)G is the multiplicity 

of V in W; similarly, if W is irreducible, dim Hom(V, W)G is the multiplicity 

of W in V, and in the case where both V and Ware irreducible, we have 

. {I if V ~ W 
dim HomG(V, W) = 0 if V * W 

But now the character XHom(V.W) of the representation Hom(V, W) = V* ® W 

is given by 

XHom(V. W)(g) = XV<g)· Xw(g)· 

We can now apply formula (2.9) in this case to obtain the striking 

1 ,,- {I if V ~ W 
Wi g~G Xv(g)Xw(g) = 0 if V * W 

To express this, let 

Cclass(G) = {class functions on G} 

and define an Hermitian inner product on Cclass(G) by 

1 ,,-
(a, p) = Wi kG a(g)p(g). 

Formula (2.10) then amounts to 

(2.10) 

(2.11) 

Theorem 2.12. In terms of this inner product, the characters of the irreducible 
representations of G are orthonormal. 

For example, the orthonormality of the three irreducible representations 

of 6 3 can be read from its character table in Example 2.6. The numbers over 

each conjugacy class tell how many times to count entries in that column. 

Corollary 2.13. The number of irreducible representations of G is less than or 
equal to the number of conjugacy classes. 
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We will soon show that there are no nonzero class functions orthogonal 
to the characters, so that equality holds in Corollary 2.13. 

Corollary 2.14. Any representation is determined by its character. 

Indeed if V ~ vtaal $ . . . Ef> V:ak , with the Vi distinct irreducible repre

sentations, then l v = 2: ail Vi' and the l VI are linearly independent. 

Corollary 2.15. A representation V is irreducible if and only if (Xv, Xv) = 1. 

In fact, if V ~ ViE9a, $ ... $ v,.E9a. as above, then (Xv, Xv) = L al· 
The multiplicities ai can be calculated via 

Corollary 2.16. The multiplicity ai of V; in V is the inner product of Xv with Xv" 

i.e., ai = (Xv, Xv')' 

We obtain some further corollaries by applying all this to the regular 

representation R of G. First, by Exercise 2.5 we know the character of R; it is 

simply 

{o ifg#e 
XR(g) = IGI if g = e. 

Thus, we see first of all that R is not irreducible if G # {e} . In fact, if we set 

R = EB V; E9ai , with V; distinct irreducibles, then 

(2.17) 

Corollary 2.1S. Any irreducible representation V of G appears in the regular 

representation dim V times. 

In particular, this proves again that there are only finitely many irreducible 

representations. As a numerical consequence of this we have the formula 

IGI = dim(R) = L dim(V;)2. (2.19) 
i 

Also, applying this to the value of the character of the regular representation 
on an element g E G other than the identity, we have 

o = L (dim V;)' Xv,(g) if g # e. (2.20) 

These two formulas amount to the Fourier inversion formula for finite groups, 

cf. Example 3.32. For example, if all but one of the characters is known, they 

give a formula for the unknown character. 

Exercise 2.21. The orthogonality of the rows of the character table is equiv

alent to an orthogonality for the columns (assuming the fact that there are as 
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many rows as columns). Written out, this says: 

(i) For g E G, 

,, - IGI 
L... X(g)X(g) = -( )' 
x c g 

2. Characters 

where the sum is over all irreducible characters, and c(g) is the number of 

elements in the conjugacy class of g. 

(ii) If g and h are elements of G that are not conjugate, then 

L X(g)X(h) = 0. 
x 

Note that for g = e these reduce to (2.19) and (2.20). 

§2.3. Examples: 6 4 and 214 

To see how the analysis of the characters of a group actually goes in practice, 

we now work out the character table of 6 4 , To start, we list the conjugacy 

classes in 6 4 and the number of elements of 6 4 in each. As with any symmetric 

group 6 d , the conjugacy classes correspond naturally to the partitions of d, 
that is, expressions of d as a sum of positive integers a l , a2 , • • • , ak , where 

the correspondence associates to such a partition the conjugacy class of a 

permutation consisting of disjoint cycles of length a l , a 2 , • .. , ak' Thus, in 6 4 

we have the classes of the identity element 1 (4 = 1 + 1 + 1 + 1), a trans

position such as (12), corresponding to the partition 4 = 2 + 1 + 1; a three

cycle (123) corresponding to 4 = 3 + 1; a four-cycle (1234) (4 = 4); and the 

product of two disjoint transpositions (12)(34) (4 = 2 + 2). 

Exercise 2.22. Show that the number of elements in each of these conjugacy 

classes is, respectively, 1,6,8,6, and 3. 

As for the irreducible representations of 6 4 , we start with the same ones 

that we had in the case of 6 3 : the trivial U, the alternating U', and the 

standard representation V, i.e., the quotient of the permutation representation 

associated to the standard action of 6 4 on a set of four elements by the 

trivial subrepresentation. The character of the trivial representation on the 

five conjugacy classes is of course (1, 1, 1, 1, 1), and that of the alternating 

representation is (1, -1, 1, -1, 1). To find the character of the standard 

representation, we observe that by Exercise 2.5 the character of the permuta

tion representation on C4 is Xc- = (4, 2, 1,0,0) and, correspondingly, 

Xv = Xc' - Xu = (3, 1,0, -1, -1). 

Note that IXvl = 1, so V is irreducible. The character table so far looks like 
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6 8 6 3 

6 4 (12) (123) (1234) (12)(34) 

trivial U 1 1 1 1 1 

alternating U' 1 -1 1 -1 1 

standard V 3 1 0 -1 -1 

Clearly, we are not done yet: since the sum of the squares of the dimensions 

of these three representations is 1 + 1 + 9 = 11, by (2.19) there must be 

additional irreducible representations of 6 4 , the squares of whose dimensions 

add up to 24 - 11 = 13. Since there are by Corollary 2.13 at most two ofthem, 

there must be exactly two, of dimensions 2 and 3. The latter of these is easy 

to locate: if we just tensor the standard representation V with the alternating 

one U', we arrive at a representation V' with character XV' = Xv' Xu' = 

(3, -1,0, 1, -1). We can see that this is irreducible either from its character 

(since IXv.1 = 1) or from the fact that it is the tensor product of an irreducible 

representation with a one-dimensional one; since its character is not equal to 

that of any of the first three, this must be one of the two missing ones. As for 

the remaining representation of degree two, we will for now simply call it W; 

we can determine its character from the orthogonality relations (2.10). We 

obtain then the complete character table for 6 4 : 

6 8 6 3 

6 4 (12) (123) (1234) (12)(34) 

trivial U 

alternating U' 1 -1 1 -1 1 

standard V 3 1 0 -1 -1 

V' = V® U' 3 -1 0 1 -1 

Another W 2 0 -1 0 2 

Exercise 2.23. Verify the last row of this table from (2.10) or (2.20). 

We now get a dividend: we can take the character of the mystery represen

tation W, which we have obtained from general character theory alone, and 

use it to describe the representation Wexplicitly! The key is the 2 in the last 

column for Xw: this says that the action of (12)(34) on the two-dimensional 

vector space W is an involution of trace 2, and so must be the identity. Thus, 

W is really a representation of the quotient group! 

1 If N is a normal subgroup of a group G, a representation p: G -+ GL(V) is trivial on N if and 

only if it factors through the quotient 

G -+ GIN -+ GL(V). 

Representations of GIN can be identified with representations of G that are trivial on N. 



20 2. Characters 

6 4 /{l, (12)(34), (13)(24), (14)(23)} ~ 6 3 , 

[One may see this isomorphism by letting 6 4 act on the elements of the 

conjugacy class of (12)(34); equivalently, if we realize 6 4 as the group of rigid 

motions of a cube (see below), by looking at the action of 6 4 on pairs of 

opposite faces.] W must then be just the standard representation of 6 3 pulled 

back to 6 4 via this quotient. 

Example 2.24. As we said above, the group of rigid motions of a cube is the 

symmetric group on four letters; 6 4 acts on the cube via its action on the four 

long diagonals. It follows, of course, that 6 4 acts as well on the set of faces, 
of edges, of vertices, etc.; and to each of these is associated a permutation 

representation of 6 4 , We may thus ask how these representations decompose; 

we will do here the case of the faces and leave the others as exercises. 

We start, of course, by describing the character X of the permutation 

representation associated to the faces of the cube. Rotation by 1800 about a 
line joining the midpoints of two opposite edges is a transposition in 6 4 and 

fixes no faces, so X(12) = O. Rotation by 1200 about a long diagonal shows 
X(123) = O. Rotation by 900 about a line joining the midpoints of two opposite 
faces shows X(1234) = 2, and rotation by 1800 gives X((12)(34)) = 2. Now 

(X, X) = 3, so X is the sum of three distinct irreducible representations. From 

the table, (X, Xu) = (X, Xv ,) = (X, Xw) = 1, and the inner products with the 
others are zero, so this representation is U EB V' Ef) W In fact, the sums of 

opposite faces span a three-dimensional subrepresentation which contains U 

(spanned by the sum of all faces), so this representation is U Ef) W. The 

differences of opposite faces therefore span V'. 

Exercise 2.25*. Decompose the permutation representation of 6 4 on (i) the 

vertices and (ii) the edges of the cube. 

Exercise 2.26. The alternating group ~4 has four conjugacy classes. Three 

representations U, U', and U" come from the representations of 

~4/{ 1, (12)(34), (13)(24), (14)(23)} ~ 7L/3, 

so there is one more irreducible representation V of dimension 3. Compute 
the character table, with ill = e27Ci/3 : 

4 4 3 

~4 (123) (132) (12)(34) 

U 

U' 1 (J) (J)2 

U" 1 (J)2 (J) 1 

V 3 0 0 -1 
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Exercise 2.27. Consider the representations of 6 4 and their restrictions to \!l4' 

Which are still irreducible when restricted, and which decompose? Which 

pairs of nonisomorphic representations of 6 4 become isomorphic when 
restricted? Which representations of \!l4 arise as restrictions from 6 4 ? 

§2.4. More Projection Formulas; More Consequences 

In this section, we complete the analysis of the characters of the irreducible 
representations of a general finite group begun in §2.2 and give a more general 

formula for the projection of a general representation V onto the direct sum 
of the factors in V isomorphic to a given irreducible representation W The 

main idea for both is a generalization of the "averaging" of the endomorphisms 
g: V -+ V used in §2.2, the point being that instead of simply averaging all the 

g we can ask the question: what linear combinations of the endomorphisms 

g: V -+ V are G-linear endomorphisms? The answer is given by 

Proposition 2.28. Let ilC G -+ C be any function on the group G, and for any 
representation V of G set 

CPa..y = L <x(g)' g: V -+ V. 

Then CPa. . y is a homomorphism of G-modules for all V if and only if <X is a class 
function. 

PROOF. We simply write out the condition that CPa..y be G-linear, and the result 
falls out: we have 

CPa.. y(hv) = L <x(g)' g(hv) 

(substituting hgh-1 for g) 

(if <X is a class function) 

= L <x(hgh-l). hgh-1(hv) 

= h(L <x(hgh-l). g(v)) 

= h(L <x(g)·g(v)) 

Exercise 2.29*. Complete this proof by showing that conversely if <X is not a 

class function, then there exists a representation V of G for which CPa.. y fails to 
be G-linear. 0 

As an immediate consequence of this proposition, we have 
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Proposition 2.30. The number of irreducible representations of G is equal to the 

number of conjugacy classes of G. Equivalently, their characters {Xv} form an 

orthonormal basis for ICclass(G). 

PROOF. Suppose a: G -+ IC is a class function and (a, Xv) = 0 for all irreducible 

representations V; we must show that a = O. Consider the endomorphism 

({Ja.V = L a(g)·g: V -+ V 

as defined above. By Schur's lemma, ({Ja. v = A.. Id; and if n = dim V, then 

1 
A. = -' trace( ({Ja v) n . 

1 
= -' L a(g)Xv(g) 

n 

=0. 

Thus, ({Ja. V = 0, or L a(g)· g = 0 on any representation V of G; in particular, 

this will be true for the regular representation V = R. But in R the elements 

{g E G}, thought of as elements of End(R), are linearly independent. For 

example, the elements {g(e)} are all independent. Thus a(g) = 0 for all g, as 

required. 0 

This proposition completes the description of the characters of a finite 

group in general. We will see in more examples below how we can use this 

information to build up the character table of a given group. For now, we 

mention another way of expressing this proposition, via the representation 
ring of the group G. 

The representation ring R( G) of a group G is easy to define. First, as a group 

we just take R(G) to be the free abelian group generated by all (isomorphism 

classes of) representations of G, and mod out by the subgroup generated by 

elements of the form V + W - (V EEl W). Equivalently, given the statement of 

complete reducibility, we can just take all integral linear combinations L aj ' V; 
ofthe irreducible representations V; of G; elements of R( G) are correspondingly 

called virtual representations. The ring structure is then given simply by tensor 

product, defined on the generators of R(G) and extended by linearity. 

We can express most of what we have learned so far about representations 

of a finite group G in these terms. To begin, the character defines a map 

X: R(G) -+ ICclass(G) 

from R(G) to the ring of complex-valued functions on G; by the basic formulas 

of Proposition 2.1, this map is in fact a ring homomorphism. The statement 

that a representation in determined by its character then says that X is injective; 



§2.4. More Projection Formulas; More Consequences 23 

the images of X are called virtual characters and correspond thereby to virtual 

representations. Finally, our last proposition amounts to the statement that 

X induces an isomorphism 

The virtual characters of G form a lattice A ~ TLC in Cc1ass(G), in which the 
actual characters sit as a cone Ao ~ ~c c 7LC• We can thus think of the 

problem of describing the characters of G as having two parts: first, we have 

to find A, and then the cone Ao c A (once we know Ao, the characters of the 

irreducible representations will be determined). In the following lecture we 

will state theorems of Artin and Brauer characterizing A ® Q and A. 

The argument for Proposition 2.30 also suggests how to obtain a more 

general projection formula. Explicitly, if W is a fixed irreducible representation, 

then for any representation V, look at the weighted sum 

1 ,,-
t/I = fGI g~G Xw(g) · g E End(V). 

By Proposition 2.28, t/I is a G-module homomorphism. Hence, if V is irreduc

ible, we have t/I = A.. Id, and 

For arbitrary V, 

1 
A. = -- Trace t/I 

dim V 

{
I .f 

-- 1 v=w 
= dim V 

o ifV# W 

1 ,, -
t/lv = dim W·- L... Xw(g)·g: V -+ V 

IGI gEG 

(2.31) 

is the projection of V onto the factor consisting of the sum of all copies of W 

appearing in V. In other words, if V = EEl Jt;$Q" then 

1 ,,-
1t; = dim Jt;. fGI g';'-G Xv,(g) · g (2.32) 

is the projection of V onto Jt;$Q,. 

Exercise 2.33*. (a) In terms of representations V and Win R(G), the inner 
product on Cclass( G) takes the simple form 

(V, W) = dim HomG(V, W). 
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(b) If X E Cclass(G) is a virtual character, and (X, X) = 1, then either X or - X 

is the character of an irreducible representation, the plus sign occurring when 

X(l) > 0. If (X, X) = 2, and X(l) > 0, then X is either the sum or the difference 

of two irreducible characters. 

(c) If U, V, and Ware irreducible representations, show that U appears in 

V ® W if and only if W occurs in V* ® U. Deduce that this cannot occur 

unless dim U ~ dim W/dim V. 

We conclude this lecture with some exercises that use characters to work 

out some standard facts about representations. 

Exercise 2.34*. Let V and W be irreducible representations of G, and 

Lo: V -+ W any linear mapping. Define L : V -+ W by 

1 
L(v) = - L g-I. Lo(g· v). 

IGI geG 

Show that L = ° if V and Ware not isomorphic, and that L is multiplication 

by trace(Lo)/dim(V) if V = W 

Exercise 2.35*. Show that, if the irreducible representations of G are represented 

by unitary matrices [cf. Exercise 1.14], the matrix entries of these representa

tions form an orthogonal basis for the space of all functions on G [with inner 

product given by (2.11)]. 

Exercise 2.36*. If GI and G2 are groups, and VI and V2 are representations of 

GI and G2 , then the tensor product VI ® V2 is a representation of GI x G2 , 

by (gl x g2)· (VI ® V2) = gl . VI ® g2 . v2. To distinguish this "external" tensor 
product from the internal tensor product-when GI = G2-this external 

tensor product is sometimes denoted VI [E] V2 • If Xi is the character of V;, then 

the value of the character X of VI [E] V2 is given by the product: 

X(91 x g2) = XI(gl)X2(g2)· 

If VI and V2 are irreducible, show that VI [E] V2 is also irreducible and show 

that every irreducible representation of GI x G2 arises this way. In terms of 
representation rings, 

In these lectures we will often be given a subgroup G of a general linear 

group GL(V), and we will look for other representations inside tensor powers 

of V. The following problem, which is a theorem of Burnside and Molien, 
shows that for a finite group G, all irreducible representations can be found 

this way. 
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Problem 2.37*. Show that if V is a faithful representation of G, i.e., p: G--+ 

GL(V) is injective, then any irreducible representation of G is contained in 

some tensor power V ®n of V. 

Problem 2.38*. Show that the dimension of an irreducible representation of 
G divides the order of G. 

Another challenge: 

Problem 2.39*. Show that the character of any irreducible representation of 
dimension greater than 1 assumes the value 0 on some conjugacy class of the 
group. 



LECTURE 3 

Examples; Induced Representations; 
Group Algebras; Real Representations 

This lecture is something of a grabbag. We start in §3.1 with examples illustrating the 

use of the techniques of the preceding lecture. Section 3.2 is also by way of an example. 

We will see quite a bit more about the representations of the symmetric groups in 

general later; §4 is devoted to this and will certainly subsume this discussion, but this 

should provide at least a sense of how we can go about analyzing representations of 

a class of groups, as opposed to individual groups. In §§3.3 and 3.4 we introduce two 

basic notions in representation theory, induced representations and the group algebra. 

Finally, in §3.5 we show how to classify representations of a finite group on a real 

vector space, given the answer to the corresponding question over C, and say a few 

words about the analogous question for subfields of C other than lIt Everything in this 

lecture is elementary except Exercises 3.9 and 3.32, which involve the notions of Clifford 

algebras and the Fourier transform, respectively (both exercises, of course, can be 
skipped). 

§3.1: Examples: 6 5 and 215 

§3.2: Exterior powers of the standard representation of 6 4 

§3.3: Induced representations 

§3.4: The group algebra 

§3.5: Real representations and representations over subfields of C 

§3.1. Examples: 6 5 and m5 

We have found the representations of the symmetric and alternating groups 

for n ~ 4. Before turning to a more systematic study of symmetric and alter
nating groups, we will work out the next couple of cases. 
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Representations of the Symmetric Group 6 5 

As before, we start by listing the conjugacy classes of6s and giving the number 

of elements of each: we have 10 transpositions, 20 three-cycles, 30 four-cycles 

and 24 five-cycles; in addition, we have 15 elements conjugate to (12)(34) and 
10 elements conjugate to (12)(345). As for the irreducible representations, we 

have, of course, the trivial representation V, the alternating representation V', 
and the standard representation V; also, as in the case of 6 4 we can tensor 
the standard representation V with the alternating one to obtain another 

irreducible representation V' with character XV' = Xv' XU" 

Exercise 3.1. Find the characters of the representations V and V'; deduce in 
particular that V and V' are distinct irreducible representations, 

The first four rows of the character table are thus 

10 20 30 24 15 20 

~s (12) (123) (1234) (12345) (12)(34) (12)(345) 

U 

U' -1 -1 1 1 -1 

V 4 2 0 -1 0 -1 
V' 4 -2 0 -1 0 1 

Clearly, we need three more irreducible representations. Where should we 
look for these? On the basis of our previous experience (and Problem 2.37), a 

natural place would be in the tensor products/powers of the irreducible 
representations we have found so far, in particular in V ® V (the other two 

possible products will yield nothing new: we have V' ® V = V ® V ® V' and 

V' ® V' = V ® V). Of course, V ® V breaks up into N Vand Sym2 V, so we 
look at these separately. To start with, by the formula 

XA2v(g) = t(XV(g)2 - Xv(g2)) 

we calculate the character of Nv: 

XNv = (6,0,0,0,1, -2,0); 

we see from this that it is indeed a fifth irreducible representation (and that 

Nv ® V' = Nv, so we get nothing new that way). 

We can now find the remaining two representations in either of two ways. 

First, if n1 and n2 are their dimensions, we have 

5! = 120 = 12 + 12 + 42 + 42 + 62 + ni + n~, 

so ni + n~ = 50. There are no more one-dimensional representations, since 
these are trivial on normal subgroups whose quotient group is cyclic, and ~5 
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is the only such subgroup. So the only possibility is n l = nz = 5. Let W denote 
one of these five-dimensional representations, and set W' = W ® U· . In the 

table, if the row giving the character of W is 

(5 (Xl (Xz (X3 (X4 (Xs (X6), 

that of W' is (5 -(Xl (Xz -1X3 1X4 (Xs - (X6)' Using the orthogonality 

relations or (2.20), one sees that W' * W; and with a little calculation, up to 
interchanging Wand W', the last two rows are as given: 

10 20 30 24 15 20 

6 s (12) (123) (1234) (12345) (12)(34) (12)(345) 

U 1 1 1 

U' -1 1 -1 1 -1 

V 4 2 1 0 -1 0 -1 

V' 4 -2 1 0 -1 0 1 
Nv 6 0 0 0 1 -2 0 

W 5 1 -1 -1 0 1 
W' 5 -1 -1 1 0 -1 

From the decomposition V $ V = CS, we have also Nv = NC s = V', 
and V* = V. The perfect pairing I 

V x Nv-.Nv= U', 

taking v x (VI 1\ Vz 1\ v3 ) to v 1\ VI 1\ V2 1\ V3 shows that 1\3 V is isomorphic 
to V* ® V' = V'. 

Another way to find the representations Wand W' would be to proceed 

with our original plan, and look at the representation Symzv. We will leave 
this in the form of an exercise: 

Exercise 3.2. (i) Find the character of the representation Sym2 V. 
(ii) Without using any knowledge of the character table of 6 s, use this to 

show that Sym2 V is the direct sum of three distinct irreducible representations. 
(iii) Using our knowledge of the first five rows of the character table, show 

that Sym2 V is the direct sum of the representations U, V, and a third irreduc
ible representation W Complete the character table for 6 s. 

Exercise 3.3. Find the decomposition into irreducibles of the representations 
NW, Sym2 w, and V ® W 

I If V and Ware n-dimensional vector spaces, and U is one dimensional, a perfect pairing is a 

bilinear map {J : V x W -+ U such that no nonzero vector v in V has {J(v, W) = O. Equivalently, 

the map V -+ Hom(W, U) = W· ® u, v ...... (wt-+ {J(v, w» , is an isomorphism. 
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Representations of the Alternating Group ~5 

What happens to the conjugacy classes above if we replace 6 d by 21d? 
Obviously, all the odd conjugacy classes disappear; but at the same time, since 

conjugation by a transposition is now an outer, rather than inner, auto

morphism, some conjugacy classes may break into two. 

Exercise 3.4. Show that the conjugacy class in 6 d of permutations consisting 

of products of disjoint cycles of lengths bl , b2 , ••• will break up into the union 

of two conjugacy classes in 21d if all the bk are odd and distinct; if any bk are 

even or repeated, it remains a single conjugacy class in 21d • (We consider a 

fixed point as a cycle of length 1.) 

In the case of 215 , this means we have the conjugacy class of three-cycles 

(as before, 20 elements), and of products of two disjoint transpositions (15 

elements); the conjugacy class of five-cycles, however, breaks up into the 

conjugacy classes of (12345) and (21345), each having 12 elements. 

As for the representations, the obvious first place to look is at restrictions 

to 215 of the irreducible representations of 6 5 found above. An irreducible 

representation of 6 5 may become reducible when restricted to 215; or two 

distinct representations may become isomorphic, as will be the case with V 

and V', V and V', or Wand W'. In fact, V, V, and W stay irreducible 

since their characters satisfy (X, X) = 1. But the character of N V has values 

(6,0, -2,1,1) on the conjugacy classes listed above, so (X, X) = 2, and NVis 
the sum of two irreducible representations, which we denote by Yand Z. Since 

the sums of the squares ofall the dimensions is 60, (dim y)2 + (dim Z)2 = 18, 

so each must be three dimensional. 

Exercise 3.5*. Use the orthogonality relations to complete the character table 

of 215: 

20 15 12 12 

215 (123) (12)(34) (12345) (21345) 

U 1 1 
V 4 1 0 -1 -1 

W 5 -1 0 0 

y 3 0 -1 
1 +}5 1-}5 

2 2 

Z 3 0 -1 
1-}5 1 +}5 

2 2 

The representations Y and Z may in fact be familiar: 215 can be realized as 

the group of motions of an icosahedron (or, equivalently, of a dodecahedron) 
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and Y is the corresponding representation. Note that the two representations 

~5 ..... GL3(~) corresponding to Y and Z have the same image, but (as you 

can see from the fact that their characters differ only on the conjugacy classes 

of(12345) and (21345» differ by an outer automorphism of~5' 

Note also that Nv does not decompose over Q; we could see this directly 

from the fact that the vertices of a dodecahedron cannot all have rational 

coordinates, which follows from the analogous fact for a regular pentagon in 

the plane. 

Exercise 3.6. Find the decomposition of the permutation representation of~5 

corresponding to the (i) vertices, (ii) faces, and (iii) edges of the icosahedron. 

Exercise 3.7. Consider the dihedral group D2n , defined to be the group of 

isometries of a regular n-gon in the plane. Let r ~ 7l../n c D2• be the subgroup 

of rotations. Use the methods of Lecture 1 (applied there to the case 6 3 ~ D6 ) 

to analyze the representations of D2n: that is, restrict an arbitrary representa

tion of D2• to r, break it up into eigenspaces for the action of r, and ask how 

the remaining generator of D2n acts of these eigenspaces. 

Exercise 3.8. Analyze the representations of the dihedral group D2n using the 

character theory developed in Lecture 2. 

Exercise 3.9. (a) Find the character table of the group of order 8 consisting of 

the quaternions {± 1, ± i, ±j, ± k} under multiplication. This is the case 

m = 3 of a collection of groups of order 2m, which we denote Hm. To describe 

them, let Cm denote the complex Clifford algebra generated by VI' ... , Vm with 

relations vr = -1 and Vi' Vj = - Vj ' Vi' so Cm has a basis VI = Vi, ..••• Vi., as 

I = {ii < ... < i,} varies over subsets of {I, ... , m}. (See §20.1 for notation and 

basic facts about Clifford algebras). Set 

Hm = {±vI : III is even} c (c~ven)*. 

This group is a 2-to-l covering of the abelian 2-group of m x m diagonal 

matrices with ± 1 diagonal entries and determinant 1. The center of Hm is 

{± I} if m is odd and is {± 1, ± V{l, ... ,m}} if m is even. The other conjugacy 

classes consist of pairs of elements {± VI}' The isomorphisms of c!ven with a 

matrix algebra or a product of two matrix algebras give a 2n-dimensional 

"spin" representation S of H 2n+1, and two 2n - 1-dimensional "spin" or "half

spin" representations S+ and S- of H2n . 

(b) Compute the characters of these spin representations and verify that 

they are irreducible. 

(c) Deduce that the spin representations, together with the 2m - 1 one

dimensional representations coming from the abelian group Hm/{ ± I} give a 

complete set of irreducible representations, and compute the character table 

for Hm. 
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For odd m the groups Hm are examples of extra-speciaI2-groups, cf. [Grie], 

[Qu]. 

Exercise 3.10. Find the character table of the group SL2(iE/3). 

Exercise 3.11. Let H(iE/3) be the Heisenberg group of order 27: 

H(Z/3j ~ W ~ ;), ~ b, C E Z/3} cSL,(Z/3j 

Analyze the representations of H(iE/3), first by the methods of Lecture 1 
(restricting in this case to the center 

z~W! ~).bEZ/3}~Z/3 
of H(iE/3», and then by character theory. 

§3.2. Exterior Powers of the Standard 
Representation of 6 d 

How should we go about constructing representations of the symmetric 

groups in general? The answer to this is not immediate; it is a subject that will 

occupy most of the next lecture (where we will produce all the irreducible 

representations of 6 d). For now, as an example of the elementary techniques 

developed so far we will analyze directly one of the obvious candidates: 

Proposition 3.12. Each exterior power Nv of the standard representation Vof 
6 d is irreducible, 0 ~ k ~ d - 1. 

PROOF. From the decomposition ed = V ED U, we see that V is irreducible if 

and only if (XCd, XCd) = 2. Similarly. since 

Ned = (NV® NU)ED(N-1V® NU) = NVEDN-lv, 

it suffices to show that (X, X) = 2, where X is the character of the representation 

Ned. Let A = {I, 2, ... , d} . For a subset B of A with k elements, and 9 E G = 
6 d, let 

if g(B) i= B 

if g(B) = Band glB is an even permutation 

if g(B) = Band glB is odd. 
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Here, if g(B) = B, glB denotes the permutation of the set B determined by g. 

Then X(g) = L: {g}a, and 

(X, X) = d\ L (L: {g}a)2 
·geG B 

1 
= d' L L: L {g}B{g}C 

• geG B C 

1 
= d' L L L (sgn glBHsgn gld, 

• Beg 

where the sums are over subsets Band C of A with k elements, and in the last 

equation, the sum is over those g with g(B) = Band g( C) = C. Such g is given 

by four permutations: one of B II C, one of BI B II C, one of CI B II C, and one 

of A \ B u C. Letting I be the cardinality of B II C, this last sum can be written 

1 ., L: L L L L L (sgn a)2(sgn b)(sgn c) 
d. B C oe 6 , be 6 k - 1 ce 6 k - 1 he 6 d - 2k+1 

= ;, L L: l!(d - 2k + I)! ( L sgn b)( L: sgn c) . 
• B C be 6 k - 1 ce 6 k - 1 

These last sums are zero unless k - I = 0 or 1. The case k = I gives 

1 I (d) d! ~k!(d - k)! = d! k k!(d - k)! = I. 

Similarly, the terms with k - I = 1 also add up to 1, so (X, X) = 2, as required. 

o 

Note by way of contrast that the symmetric powers of the standard repre

sentation of 6 d are almost never irreducible. For example, we already know 

that the representation Sym2 V contains one copy ofthe trivial representation: 

this is just the statement that every irreducible real representation (such as V) 

admits an inner product (unique, up to scalars) invariant under the group 

action; nor is the quotient of Sym2 V by this trivial subrepresentation neces

sarily irreducible, as witness the case of 6 5 , 

§3.3. Induced Representations 

If H eGis a subgroup, any representation V of G restricts to a representation 

of H, denoted ResZ V or simple Res V. In this section, we describe an impor

tant construction which produces representations of G from representations 

of H. Suppose V is a representation of G, and We V is a subspace which is 

H-invariant. For any g in G, the subspace g' W = {g. w: WE W} depends only 

on the left coset gH of g modulo H, since gh' W = g' (h' W) = g' W; for a coset 
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(T in G/H, we write (T' W for this subspace of V. We say that Vis induced by W 

if every element in V can be written uniquely as a sum of elements in such 

translates of W, i.e., 

V= EB (T'W 
aeG/H 

In this case we write V = Ind~ W = Ind W 

Example 3.13. The permutation representation associated to the left action of 

G on G/H is induced from the trivial one-dimensional representation W of H. 

Here V has basis {ea : (T E G/H}, and W = C· eH, with H the trivial coset. 

Example 3.14. The regular representation of G is induced from the regular 

representation of H. Here V has basis reg: g E G}, whereas W has basis 

{eh: hE H}. 

We claim that, given a representation W of H, such V exists and is unique 

up to isomorphism. Although we will later give several fancier ways to see 

this, it is not hard to do it by hand. Choose a representative ga E G for each 

coset (T E G/H, with e representing the trivial coset H. To see the uniqueness, 

note that each element of V has a unique expression v = L ga Wa, for elements 

Wa in W Given g in G, write g' ga = gf' h for some r E G/H and h E H. Then 
we must have 

g' (ga wa) = (g. ga)wa = (g,·h)wa = gf(hwa)· 

This proves the uniqueness and tells us how to construct V = Ind(W) from 

W Take a copy wa of W for each left coset (T E G/ H; for W E W, let ga W denote 

the element of wa corresponding to W in W Let V = EB wa, so every 
aeG/H 

element of V has a unique expression v = L ga Wa for elements Wa in W Given 
g E G, define 

g' (ga wa) = gf(hwa) if g ' ga = g, h. 

To show that this defines as action of G on V, we must verify that g" (g' (ga wa)) 

= (g" g)' (ga wa) for another element g' in G. Now if g" gf = gp . h', then 

g" (g' (ga wa)) = g" (gf(hwa)) = gp(h'(hwa))· 

Since (g,.g)' ga = g"(g'ga) = g"g,h = gp · h'· h, we have 

(g" g)-(gawa) = gp«h', h)wa) = gp(h' , (hwa))' 

as required. 

Example 3.15. If W = EB W;, then Ind W = EB Ind W;. 

The existence of the induced representation follows from Examples 3.14 

and 3.15 since any W is a direct sum of summands of the regular representation. 
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Exercise 3.16. (a) If U is a representation of G and W a representation of H, 

show that (with all tensor products over C) 

U ® Ind W = Ind(Res(U) ® W). 

In particular, Ind(Res(U)) = U ® P, where P is the permutation representa

tion of G on G/H. For a formula for Res(Ind(W)), for W a representation of 

H, see [Se2, p. 58]. 

(b) Like restriction, induction is transitive: if He KeG are subgroups, 

show that 

IndZ(W) = Ind~(Ind~ W). 

Note that Example 3.15 says that the map Ind gives a group homomor

phism between the representation rings R(H) and R(G), in the opposite direc

tion from the ring homomorphism Res: R(G) --+ R(H) given by restriction; 

Exercise 3.16(a) says that this map satisfies a "push-pull" formula ex' Ind(fJ) = 

Ind(Res(ex)' fJ) with respect to the restriction m~p. 

Proposition 3.17. Let W be a representation of H, U a representation of G, and 

suppose V = Ind W Then any H-module homomorphism ({J : W --+ U extends 

uniquely to a G-module homomorphism iP: V --+ U. i.e., 

HomHnV, Res U) = HomG(Ind W, U). 

In particular, this universal property determines Ind W up to canonical 
isomorphism. 

PROOF. With V = EBae GIH (1' • Was before, define iP on (1" W by 

W g;1 W 'P U g. U 
(1" - --, 

which is independent of the representative ga for (1' since ({J is H-linear. 0 

To compute the character of V = Ind W, note that g E G maps (1' W to g(1' W, 
so the trace is calculated from those cosets (1' with g(1' = (1', i.e., s-lgs E H for 

s E (1'. Therefore, 

XlndW(g) = L XW(S-lgS) (s E (1' arbitrary). (3.18) 
g~=(1 

Exercise 3.19. (a) If C is a conjugacy class of G, and C 11 H decomposes into 

conjugacy classes D1 , .. . , Dr of H, (3.18) can be rewritten as: the value of the 
character of Ind W on C is 

XlndW(C) = ~~: it II~II Xw(DJ. 

(b) If W is the trivial representation of H, then 

[G:H] 
Xlnd w(C) = !CI'IC 11 HI. 
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Corollary 3.20 (Frobenius Reciprocity). If W is a representation of H, and Va 

representation of G, then 

PROOF. It suffices by linearity to prove this when Wand V are irreducible. 

The left-hand side is the number of times V appears in Ind W, which is 

the dimension of HomG(Ind W, V). The right-hand side is the dimension of 

HomH(W, Res V). These dimensions are equal by the proposition. 0 

If Wand V are irreducible, Frobenius reciprocity says: the number of times 

V appears in Ind W is the same as the number of times Wappears in Res V. 

Frobenius reciprocity can be used to find characters of G if characters of 

H are known. 

Example 3.21. We compute Ind~ W, when H = 6 2 C G = 6 3 , W = V2 (the 

standard representation) = V2 (the alternating representation). We know the 

irreducible represenatations of 6 3 : V3, V~, V3, which restrict to V2 , V2 = V2 , 

V2 Ei1 V2, respectively. Thus, by Frobenius, Ind V2 = V~ Ei1 V3. 

Example 3.22. Consider next H = 6 3 C G = 6 4 , W = V3 • Again we know the 

irreducible representations, and Res V4 = V3, Res V~ = V~, Res V4 = V3 Ei1 V3 

[the vector 

(1,1,1, -3) E V4 = {(Xl' X2' X 3 , X 4 ): L Xi = O} 

is fixed by H], Res V~ = V~ $ V3, with V3 = V3, and Res W4 = V3 (as one may 

see directly). Hence, Ind V3 = V4 Ei1 V~ $ W4 • (Note that the isomorphism 

Res W4 = V3 actually follows, since one W4 is all that could be added to 

V4 $ V~ to get Ind V3 ') 

Exercise 3.23. Determine the isomorphism classes of the representations of 6 4 

induced by (i) the one-dimensional representation of the group generated by 

(1234) in which (1234)·v = iv, i = J=l; (ii) the one-dimensional representa

tion of the group generated by (123) in which (123)' v = e21<i/3v. 

Exercise 3.24. Let H = ~5 C G = 6 5 , Show that Ind V = V Ei1 V', Ind V = 
V Ei1 V', and Ind W = W Ei1 W', whereas Ind Y = Ind Z = N V 

Exercise 3.25*. Which irreducible representations of 6 d remain irreducible 

when restricted to ~d? Which are induced from ~d? How much does this tell 

you about the irreducible representations of ~d? 

Exercise 3.26*. There is a unique nonabelian group of order 21, which can be 
realized as the group of affine transformations X 1-+ IXX + P of the line over the 

field with seven elements, with IX a cube root of unity in that field. Find the 

irreducible representations and character table for this group. 
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Now that we have introduced the notion of induced representation, we can 

state two important theorems describing the characters of representations of 

a finite group. In the preceding lecture we mentioned the notion of virtual 

character; this is just an element of the image A of the character map 

x: R(G) ~ Cclass(G) 

from the representation ring R(G) of virtual representations. The following 

two theorems both state that in order to generate A ® (]I (resp. A) it is enough 

to consider the simplest kind of induced representations, namely, those induced 

from cyclic (respective elementary) subgroups of G. For the proofs of these 

theorems we refer to [Se2, §9, 10]. We will not need them in these lectures. 

Artin's Theorem 3.27. The characters of induced representations from cyclic 

subgroups of G generate a lattice of finite index in A. 

A subgroup H of G is p-elementary if H = A x B, with A cyclic of order 

prime to p and B a p-group. 

Brauer's Theorem 3.28. The characters of induced representations from elemen

tary subgroups of G generate the lattice A. 

§3.4. The Group Algebra 

There is an important notion that we have already dealt with implicitly but 

not explicitly; this is the group algebra CG associated to a finite group G. This 

is an object that for all intents and purposes can completely replace the group 

G itself; any statement about the representations of G has an exact equivalent 

statement about the group algebra. Indeed, to a large extent the choice of 

language is a matter of taste. 

The underlying vector space of the group algebra of G is the vector space 

with basis reg} corresponding to elements of the group G, that is, the under

lying vector space of the regular representation. We define the algebra struc

ture on this vector space simply by 

eg·eh = egh · 

By a representation of the algebra CG on a vector space V we mean simply 

an algebra homomorphism 

CG~ End(V), 

so that a representation V of CG is the same thing as a left CG-module. Note 

that a representation p: G ~ Aut(V) will extend by linearity to a map p: CG ~ 

End(V), so that representations of CG correspond exactly to representations 

of G; the left CG-module given by CG itself corresponds to the regular 
representation. 
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If {W;} are the irreducible representations of G, then we have seen that the 

regular representation R decomposes 

R = EEl (W;) E9dim(W/). 

We can now refine this statement in terms of the group algebra: we have 

Proposition 3.29. As algebras, 

CG ~ EEl End(W;). 

PROOF. As we have said, for any representation W of G, the map G .... Aut(W) 

extends by linearity to a map CG .... End(W); applying this to each of the 

irreducible representations W; gives us a canonical map 

cp: CG .... EEl End(W;). 

This is injective since the representation on the regular representation is 
faithful. Since both have dimension L (dim W;)2, the map is an isomorphism. 

D 

A few remarks are in order about the isomorphism cp of the proposition. 
First, cp can be interpreted as the Fourier transform, cf. Exercise 3.32. Note 

also that Proposition 2.28 has a natural interpretation in terms of the group 

algebra: it says that the center of CG consists of those L lX(g)eg for which IX is 

a class function. 
Next, we can think of cp as the decomposition ofthe semisimple algebra CG 

into a product of matrix algebras. It implies that the matrix entries of the 
irreducible representations give a basis for the space of all functions on G, cf. 

Exercise 2.35. 
Note in particular that any irreducible representation is isomorphic to a 

(minimal) left ideal in CG. These left ideals are generated by idempotents. In 

fact, we can interpret the projection formulas ofthe last lecture in the language 
of the group algebra: the formulas say simply that the elements 

1 ~-
dim W'-

I 
L... Xw(g) · egECG 

GI geG 

are the idempotents in the group algebra corresponding to the direct sum 

factors in the decomposition of Proposition 3.29. To locate the irreducible 
representations W; of a group G [not just a direct sum of dim(W;) copies], we 
want to find other idempotents of CG. We will see this carried out for the 

symmetric groups in the following lecture. 

The group algebra also gives us another description ofinduced representa
tions: if W is a representation of a subgroup H of G, then the induced 
representation may be constructed simply by 

Ind W = CG ®CH W, 



38 3. Examples; Induced Representations; Group Algebras; Real Representations 

where G acts on the first factor: g' (eg, ® w) = egg' ® w. The isomorphism of 

the reciprocity theorem is then a special case of a general formula for a change 

of rings CH -+ CG: 

HomCH(W, U) = HomcG(CG ®CH W, U). 

Exercise 3.30*. The induced representation Ind(W) can also be realized con

cretely as a space of W-valued functions on G, which can be useful to produce 

matrix realizations, or when trying to decompose Ind(W) into irreducible 

pieces. Show that Ind(W) is isomorphic to 

HomH(CG, W) ~ {f: G -+ W:f(hg) = hf(g), Vh E H, 9 E G}, 

where G acts by (g' . f)(g) = f(gg'). 

Exercise 3.31. If CG is identified with the space of functions on G, the function 

<p corresponding to LgeG <p(g)eg, shrw that the product in CG corresponds 

to the convolution * of functions: 

(<p *I/I)(g) = L <p(h)l/I(h-1g). 
heG 

(With integration replacing summation, this indicates how one may extend 

the notion of regular representation to compact groups.) 

Exercise 3.32*. If p: G -+ GL(~) is a representation, and <p is a function on G, 

define the Fourier transform q,(p) in End(Vp) by the formula 

q,(p) = L <p(g). p(g). 
geG 

A A A 
(a) Show that <p * I/I(p) = <p(p). I/I(p), 

(b) Prove the Fourier inversion formula 

<p(g) = I ~I L dim(Vp)' Trace(p(g-l). q,(p», 

the sum over the irreducible representations p of G. This formula is equivalent 

to formulas (2.19) and (2.20). 

(c) Prove the Plancherel formula for functions <p and 1/1 on G: 

L <p(g-l )I/I(g) = I GIl L dim(~)' Trace(q,(p)tfr(p»· 
geG p 

Our choice ofleft action of a group on a space has been perfectly arbitrary, 

and the entire story is the same if G acts on the right instead. Moreover, there 

is a standard way to change a right action into a left action, and vice versa: 

Given a right action of G on V, define the left action by 

9 E G, v E V. 
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If A = CG is the group algebra, a right action of G on V makes V a right 

A-module. To turn right modules into left modules, we can use the anti

involution at-+a of A defined by (Lageg)" = Lageg-I. A right A-module is 

then turned into a left A-module by setting a ' v = V' a. 

The following exercise will take you back to the origins of representation 

theory in the 19th century, when Frobenius found the characters by factoring 

this determinant. 

Exercise 3.33*. Given a finite group G of order n, take a variable Xg for each 
element gin G, and order the elements of G arbitrarily. Let F be the deter

minant of the n x n matrix whose entry in the row labeled by g and column 

labeled by h is xg . h-I. This is a form of degree n in the n variables xg, which is 

independent of the ordering. Normalize the factors of F to take the value 1 

when Xe = 1 and Xg = 0 for g # e. Show that the irreducible factors of F 

correspond to the irreducible representations of G. Moreover, if Fp is the factor 
corresponding to the representation p, show that the degree of Fp is the degree 

d(p) of the representation p, and that each Fp occurs in F d(p) times. If Xp is 
the character of p, and g # e, show that Xp(g) is the coefficient of xg ' X:(P)-l 

in Fp . 

§3.5. Real Representations and Representations 
over Subfields of C 

If a group G acts on a real vector space Yo, then we say the corresponding 

complex representation of V = Vo ®R C is real. To the extent that we are 
interested in the action of a group G on real rather than complex vector 

spaces, the problem we face is to say which of the complex representations of 

G we have studied are in fact real. 
Our first guess might be that a representation is real if and only if its 

character is real-valued. This turns out not to be the case: the character of a 

real representation is certainly real-valued, but the converse need not be true. 
To find an example, suppose G c SU(2) is a finite, nonabelian subgroup. Then 

G acts on C2 = V with a real-valued character since the trace of any matrix 
in SU(2) is real. If V were a real representation, however, then G would be a 
subgroup ofSO(2) = s1, which is abelian. To produce such a group, note that 

SU(2) can be identified with the unit quaternions. Set G = {± 1, ± i, ±j, ± k}. 
Then G/{ ± I} is abelian, so has four one-dimensional representations, which 
give four one-dimensional representations of G. Thus, G has one irreducible 

two-dimensional representation, whose character is real, but which is not real. 

Exercise 3.34*. Compute the character table for this quaternion group G, and 
compare it with the character table of the dihedral group of order 8. 
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A more successful approach is to note that if V is a real representation of 

G, coming from Vo as above, then one can find a positive definite symmetric 

bilinear form on Vo which is preserved by G. This gives a symmetric bilinear 

form on V which is preserved by G. Not every representation will have such 

a form since degeneracies may arise when one tries to construct one following 

the construction of Proposition 1.5. In fact, 

Lemma 3.35. An irreducible representation Vof G is real if and only if there is 

a nondegenerate symmetric bilinear form B on V preserved by G. 

PROOF. If we have such B, and an arbitrary nondegenerate Hermitian form H, 

also G-invariant, then 

V!. V*! V 

gives a conjugate linear isomorphism cp from V to V: given x E V, there is a 

unique cp(x) E V with B(x, y) = H(cp(x), y), and q> commutes with the action 

of G. Then q>2 = q> 0 cp is a complex linear G-module homomorphism, so 

q>2 = A' Id. Moreover, 

H(q>(x), y) = B(x, y) = B(y, x) = H(q>(y), x) = H(x, cp(y», 

from which it follows that H(cp2(X), y) = H(x, cp2(y», and therefore A. is a 

positive real number. Changing H by a scalar, we may assume A = 1, so 

q>2 = Id. Thus, V is a sum of real eigenspaces V+ and V_ for q> corresponding 

to eigenvalues 1 and - 1. Since q> commutes with G, V+ and V_ are G-invariant 

subspaces. Finally, q>(ix) = -iq>(x), so iV+ = V_, and V = V+ ® c. 0 

Note from the proof that a real representation is also characterized by the 

existence of a conjugate linear endomorphism of V whose square is the 

identity; if V = Vo ®R C, it is given by conjugation: Vo ® A 1-+ VO ® I 
A warning is in order here: an irreducible representation of G on a vector 

space over IR may become reducible when we extend the group field to Co To 

give the simplest example, the representation of ?LIn on 1R2 given by 

p:kl-+ ( 

2nk 
cosn 

. 2nk 
SlO 

n 

. 2nk) -SInn 

2nk 
cos 

n 

is irreducible over IR for n > 2 (no line in 1R2 is fixed by the action of ?LIn), but 

will be reducible over C. Thus, classifying the irreducible representations of G 

over C that are real does not mean that we have classified all the irreducible 

real representations. However, we will see in Exercise 3.39 below how to finish 

the story once we have found the real representations of G that are irreducible 

over C. 
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Suppose V is an irreducible representation of G with Xv real. Then there is 

a G-equivariant isomorphism V ~ V*, i.e., there is a G-equivariant (non

degenerate) bilinear form B on V; but, in general, B need not be symmetric. 
Regarding B in 

and noting the uniqueness of B up to multiplication by scalars, we see that B 

is either symmetric or skew-symmetric. If B is skew-symmetric, proceeding as 
above one can scale so cp2 = - Id. This makes V "quaternionic," with cp 

becoming multiplication2 by j: 

Definition 3.36. A quaternionic representation is a (complex) representation V 

which has a G-invariant homomorphism): V -+ V that is conjugate linear, 

and satisfies )2 = - Id. Thus, a skew-symmetric nondegenerate G-invariant 
B determines a quaternionic structure on V. 

Summarizing the preceding discussion we have the 

Theoem 3.37. An irreducible representation V is one and only one of the 

following: 

(1) Complex: Xv is not real-valued; V does not have a G-invariant non

degenerate bilinear form. 

(2) Real: V = Vo ® C, a real representation; V has a G-invariant symmetric 

nondegenerate bilinear form. 

(3) Quaternionic: Xv is real, but V is not real; V has a G-invariant skew

symmetric nondegeneate bilinear form. 

Exercise 3.38. Show that for V irreducible, 

if V is complex 

if V is real 

if V is quaternionic. 

This verifies that the three cases in the theorem are mutually exclusive. It also 
implies that if the order of G is odd, all nontrivial representations must be 
complex. 

Exercise 3.39. Let Vo be a real vector space on which G acts irreducibly, 

V = Vo ® C the corresponding real representation of G. Show that if V is not 
irreducible, then it has exactly two irreducible factors, and they are conjugate 
complex representations of G. 

2 See §7.2 for more on quaternions and quaternonic representations. 
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Exercise 3.40. Classify the real representations of 214 . 

Exercise 3.41 *. The group algebra IRG is a product of simple IR-algebras corre
sponding to the irreducible representations over lit These simple algebras are 

matrix algebras over 1[, IR, or the quaternions !HI according as the representa
tion is complex, real, or quaternionic. 

Exercise 3.42*. (a) Show that all characters of a group are real if and only if 
every element is conjugate to its inverse. 

(b) Show that an element (1 in a split conjugacy class of 21d is conjugate to 
its inverse if and only if the number of cycles in (1 whose length is congruent 

to 3 modulo 4 is even. 

(c) Show that the only d's for which every character of 2ld is real-valued are 
d = 1,2,5,6, 10, and 14. 

Exercise 3.43*. Show that: (i) the tensor product of two real or two quater

nionic representations is real; (ii) for any V, V* ® V is real; (iii) if V is real, so 
are all Nv; (iv) if V is quaternionic, Nv is real for keven, quaternionic for 

k odd. 

Representations over Subfields of C in General 

We consider next the generalization ofthe preceding problem to more general 

subfields of IC. Unfortunately, our results will not be nearly as strong in 

general, but we can at least express the problem neatly in terms of the 
representation ring of G. 

To begin with, our terminology in this general setting is a little different. 

Let K c I[ be any subfield. We define a K-representation of G to be a vector 
space Vo over K on which G acts; in this case we say that the complex 

representation V = Vo ® I[ is defined over K. 
One way to measure how many of the representations of G are defined over 

a field K is to introduce the representation ring RK(G) of Gover K. This is 

defined just like the ordinary representation ring; that is, it is just the group 
offormallinear combinations of K-representations of G modulo relations of 
the form V + W - (V EB W), with multiplication given by tensor product. 

Exercise 3.44*. Describe the representation ring of Gover IR for some of the 
groups G whose complex representation we have analyzed above. In partic

ular, is the rank of RR(G) always the same as the rank of R(G)? 

Exercise 3.45*. (a) Show that RK ( G) is the sub ring of the ring of class functions 
on G generated (as an additive group) by characters of representations defined 
over K. 
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(b) Show that the characters of irreducible representations over K form an 

orthogonal basis for RK(G). 

(c) Show that a complex representation of G can be defined over K if and 

only if its character belongs to RK(G). 

For more on the relation between RK(G) and R(G), see [Se2]. 



LECTURE 4 

Representations of 6 d : Young Diagrams 
and Frobenius's Character Formula 

In this lecture we get to work. Specifically, we give in §4.1 a complete description of 

the irreducible representations of the symmetric group, that is, a construction of the 

representations (via Young symmetrizers) and a formula (Frobenius' formula) for their 

characters. The proof that the representations constructed in §4.1 are indeed the 

irreducible representations of the symmetric group is given in §4.2; the proof of 

Frobenius' formula, as well as a number of others, in §4.3. Apart from their intrinsic 

interest (and undeniable beauty), these results tum out to be of substantial interest in 

Lie theory: analogs of the Young symmetrizers will give a construction of the irreduc

ible representations of SL. C. At the same time, while the techniques of this lecture are 

completely elementary (we use only a few identities about symmetric polynomials, 

proved in Appendix A), the level of difficulty is clearly higher than in preceding 

lectures. The results in the latter half of §4.3 (from Corollary 4.39 on) in particular are 

quite difficult, and inasmuch as they are not used later in the text may be skipped by 

readers who are not symmetric group enthusiasts. 

§4.l: Statements ofthe results 

§4.2: Irreducible representations of 6 4 

§4.3: Proof of Frobenius's formula 

§4.1. Statements of the Results 

The number of irreducible representaton of 6 d is the number of conjugacy 
classes, which is the number p(d) of partitions 1 of d: d = Al + ... + Ak' 
Al ~ ... ~ At ~ 1. We have 

1 It is sometimes convenient, and sometimes a nuisance, to have partitions that end in one or 

more zeros; if convenient, we allow some of the Ai on the end to be zero. Two sequences define 

the same partition, of course, if they differ only by zeros at the end. 



§4.1. Statements of the Results 45 

d~O p(d)td = J] C ~ tn) 

= (1 + t + t 2 + "')(1 + t 2 + t 4 + ' .. )(1 + t 3 + ... ) .... 

which converges exactly in It I < 1. This partition number is an interesting 

arithmetic function, whose congruences and growth behavior as a function of 
d have been much studied (cf. [Har], [And]). For example, p(d) is asymptoti-

cally equal to (ljexd)eP,fl, with ex = 4}3 and P = 1t.j2;3. 
To a partition ,1,= (,1,1' ... , At) is associated a Young diagram (sometimes 

called a Young frame or Ferrers diagram) 

with Ai boxes in the ith row, the rows of boxes lined up on the left. The 
conjugate partition X = (Xl' .. . , A~) to the partition A is defined by inter

changing rows and columns in the Young diagram, i.e., reflecting the diagram 
in the 45° line. For example, the diagram above is that of the partition 

(3,3,2,1,1), whose conjugate is (5,3,2). (Without reference to the diagram, the 

conjugate partition to A can be defined by saying A; is the number of terms in 

the partition A that are greater than or equal to i.) 
Young diagrams can be used to describe projection operators for the 

regular representation, which will then give the irreducible representations of 

6 4 , For a given Young diagram, number the boxes, say consecutively as 
shown: 

'

23 

4 5 

6 7 

8 

More generally, define a tableau on a given Young diagram to be a numbering 
of the boxes by the integers 1, .. . , d. Given a tableau, say the canonical one 

shown, define two subgroups2 of the symmetric group 

2 If a tableau other than the canonical one were chosen, one would get different groups in place of 

P and Q, and different elements in the group ring. but the representations constructed this way 

will be isomorphic. 
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p = p). = {g E 6 4 : g preserves each row} 

and 

Q = Q). = {g E 6 d : g preserves each column}. 

In the group algebra C6d , we introduce two elements corresponding to these 

subgroups: we set 

a). = L eg and b). = L sgn(g)·eg• (4.1) 
geP geQ 

To see what a). and b). do, observe that if V is any vector space and 6 4 acts 
on the dth tensor power V~M by permuting factors, the image of the element 

a). E C64 -+ End(V®d) is just the subspace 

Im(a).) = Sym).t V ® Sym).2V ® ... ® Sym).kV c V®d, 

where the inclusion on the right is obtained by grouping the factors of V®d 

according to the rows of the Young tableaux. Similarly, the image of b). on 

this tensor power is 

Im(b).) = /V't V ® /V'2V ® ... ® /V'IV c V®d, 

where Jl is the conjugate partition to A.. 
Finally, we set 

(4.2) 

this is called a Young symmetrizer. For example, when A. = (d), C(d) = a(d) = 

Lge 6 d eg, and the image of C(d) on V®4 is Symdv. When A. = (1, ... ,1), 

C(l ..... l) = b(1 ..... 1) = Lge 6 d sgn(g)eg, and the image of C(l ..... l) on V®d is Nv. 
We will eventually see that the image of the symmetrizers c). in V ®4 provide 

essentially all the finite-dimensional irreducible representations of GL(V). 
Here we state the corresponding fact for representations of 6 d : 

Theorem 4.3. Some scalar multiple of c). is idempotent, i.e., eX = n).c)., and the 

image of c). (by right multiplication on C6d) is an irreducible representation 

~ of 6 d. Every irreducible representation of 6 d can be obtained in this 
way for a unique partition. 

We will prove this theorem in the next section. Note that, as a corollary, 

each irreducible representation of 6 4 can be defined over the rational numbers 

since c). is in the rational group algebra iQ6d• Note also that the theorem gives 
a direct correspondence between conjugacy classes in 6 d and irreducible 

representations of 6 d , something which has never been achieved for general 
groups. 

For example, for A. = (d), 

J-(d) = C6d ' L eg = C' L eg 
ge 6 d ge 6 d 
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is the trivial representation V, and when A. = (1 , ... , 1), 

"(1, .. . ,1) = C6d ' L sgn(g)eg = C· L sgn(g)eg 
ge 6 d ge 6 d 

is the alternating representation V'. For A. = (2, 1), 

C(2,l) = (e 1 + e(12»'(e1 - e(13» = 1 + e(12) - e(13) - e(132) 

in C63 , and "(2,1) is spanned by C(2,l) and (13)· C(2,l)' so "(2,1) is the standard 
representation of 6 3 , 

Exercise 4.4*. Set A = C6d, so V). = Ac). = Aa).b).. 

(a) Show that V). ~ Ab).a).. 

(b) Show that V). is the image of the map from Aa). to Ab). given by right 

multiplication by b).. By (a), this is isomorphic to the image of Ab). -+ Aa). given 

by right multiplication by a).o 

(c) Using (a) and the description of V). in the theorem show that 

V). , = V).®V', 

where A.' is the conjugate partition to A. and V'is the alternating representation. 

Examples 4.5. In earlier lectures we described the irreducible representations 

of 6 d for d ~ 5. From the construction of the representation corresponding to 

a Young diagram it is not hard to work out which representations come from 

which diagrams: 

CD trivial 8 alternating 

[ill U trivial § D' alternating 

BJ V standard 

D 

Ef V' EE w 
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6 5 U ~ U' 

EfITI Y f Y' ~ 
1\2y 

[]j W tIP W' 

Exercise 4.6*. Show that for general d, the standard representation V corre

sponds to the partition d = (d - 1) + 1. As a challenge, you can try to prove 
that the exterior powers of the standard representation V are represented by 
a "hook": 

cr A'V 

Note that this recovers our theorem that the Nv are irreducible. 

Next we turn to Frobenius's formula for the character X;. of V;., which 
includes a formula for its dimension. Let Cj denote the conjugacy class in 6 d 

determined by a sequence 

i = (iI' i2 , •• • , id) with L aia = d: 

Cj consists of those permutations that have il 1-cycles, i2 2-cycles, . .. , and id 

d-cycles. 

Introduce independent variables Xl' •.• , Xk' with k at least as large as the 
number of rows in the Young diagram of A. Define the power sums ~(x), 

1 ~ j ~ d, and the discriminant A(x) by 

~(x)= xi + x~ + ... + xl, 

A(x) = Il (Xi - xJ 
(4.7) 

i<j 

If f(x) = f(x 1, ... , Xk) is a formal power series, and (11, ... , Ik ) is a k-tuple 
of non-negative integers, let 

[f(x)] = coefficient of X'······ X'k in f. (4.8) 0 .. .. . ,lk) 1 k 

Given a partition A.: Al ~ ... ~ Ak ~ 0 of d, set 

(4.9) 
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a strictly decreasing sequence of k non-negative integers. The character of VA. 

evaluated on g E Cj is given by the remarkable 

Frobenius Formula 4.10 

For example, if d = 5, A. = (3, 2), and Cj is the conjugacy class of (12)(345), 

i.e., i1 = 0, i2 = 1, i3 = 1, then 

X(3.2)(C j ) = [(Xl - x2 )'(xi + x~)(x~ + X~n4.2) = 1. 

Other entries in our character tables for 6 3 , 6 4 , and 6 5 can be verified as 

easily, verifying the assertions of Examples 4.5. 

In terms of certain symmetric functions SA. called Schur polynomials, Fro

benius's formula can be expressed by 

n ~(X)ij = L X"(Cj)S,,, 
j 

the sum over all partitions A. of d in at most k parts (cf. Proposition 4.37 
and (A.27)). Although we do not use Schur polynomials explicitly in this 
lecture, they play the central role in the algebraic background developed in 

Appendix A. 

Let us use the Frobenius formula to compute the dimension of V". The 

conjugacy class of the identity corresponds to i = (d), so 

dim V" = XAC(d») = [A(x).(x 1 + ... + Xk)d](lI •...• lk )· 

Now A(x) is the Vandermonde determinant: 

1 x k 
k-1 

Xk 

= L (sgn a")x:(l)-l ••••. Xf(k)-l. 

1 Xl 
k-1 

Xl 
aE 6 k 

The other term is 

( d L d! r r r X + ... + x) = X IX 2. • X k 
1 k , ,1 2 ... k' 

r 1 • ..... rk • 

the sum over k-tuples (r1' ... , rk) that sum to d. To find the coefficient of 
X~' ..... X!k in the product, we pair ofT corresponding terms in these two sums, 

getting 

d! 

L sgn(u)' (11 - u(k) + 1)!··· (lk - u(1) + 1)!' 

the sum over those u in 6 k such that lk-i+1 - u(i) + 1 ~ 0 for all 1 ~ i ~ k. 

This sum can be written as 
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d! k 

1' ... 1' L sgn(u) n Ij(lj - 1) · ... ·(lj - u(k - j + 1) + 2) 
1· k·(fE6k J=l 

d! 
1 Ik Ik(lk - 1) 

II! •• ·/k! 
1 II 11(l1 - 1) 

By column reduction this determinant reduces to the Vandermonde deter

minant, so 

dim V ... = I ,~!. I , n (Ii - I), 
1· k· '<J 

(4.11) 

with Ii = Ai + k - i. 
There is another way of expressing the dimensions of the V .... The hook 

length of a box in a Young diagram is the number of squares directly below 

or directly to the right of the box, including the box once. 

In the following diagram, each box is labeled by its hook length: 

Hook Length Formula 4.12. 

F431 

421 

1 

d. d! 
1m V ... = =------

fl (Hook lengths) 

For the above partition 4 + 3 + 1 of 8, the dimension of the corresponding 

representation of 6 8 is therefore 8!f6· 4 . 4· 2· 3 = 70. 

Exercise 4.13*. Deduce the hook length formula from the Frobenius formula 

(4.11). 

Exercise 4.14*. Use the hook length formula to show that the only irreducible 

representations of 6 d of dimension less than d are the trivial and alternating 

representations U and U' of dimension 1, the standard representation V 

and V' = V ® U' of dimension d - 1, and three other examples: the two

dimensional representation of 6 4 corresponding to the partition 4 = 2 + 2, 

and the two five-dimensional representations of 6 6 corresponding to the 

partitions 6 = 3 + 3 and 6 = 2 + 2 + 2. 
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Exercise 4.15*. Using Frobenius's formula or otherwise, show that: 

X(d-l .1)(Cj ) = il - 1; 

X(d-2.1.1)(Cj ) = t(il - 1)(il - 2) - i2 ; 

X(d-2.2)(Cj ) = t(il - l)(il - 2) + i2 - 1. 

Can you continue this list? 
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Exercise 4.16*. If g is a cycle of length din 6 4 , show that X;.(g) is ± 1 if A. is a 

hook, and zero if A. is not a hook: 

( ) _ {( _I)' irA = (d - s, 1, ... , 1), 0 ~ s ~ d - 1 

X;. g - 0 otherwise. 

Exercise 4.17. Frobenius [Frol] used his formula to compute the value of X;. 

on a cycle of length m ~ d. 
(a) Following the procedure that led to (4.11)-which was the case 

m = I-show that 

(4.18) 

where hm = d!/(d - m)!m is the number of cycles of length m (if m > 1), and 

k m 

<p(x) = rI (x - I;), I/J(x) = <p(x - m) rI (x - j + 1). 
i=1 j=l 

The sum in (4.18) can be realized as the coefficient of X-I in the Laurent 

expansion of I/J(x)/<p(x) at x = 00. 

Define the rank r of a partition to be the length of the diagonal of its Young 
diagram, and let ai and hi be the number of boxes below and to the right of 
the ith box of the diagonal, reading from lower right to upper left. Frobenius 

II d ( al a2 ... a,) h h f h . . . 
ca e b1 b2 . .. b, tee aracteristics 0 t e partttton. (Many wnters now use 

a reverse notation for the characteristics, writing (b" ... , b1 1 a" ... , a,) instead.) 
For the partition (to, 9, 9, 4, 4, 4, 1): 

I 

r=4 

I 

J I 
. . (2 3 4 6

9
) 

charactensttcs = 0 6 7 

I I 

'-

Algebraically, r and the characteristics a1 < . . . < a, and b1 < ... < b, are 

determined by requiring the equality of the two sets 
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{/1' ... , Ik' k - 1 - a1, .. . , k - 1 - ar } and 

{O, 1, ... , k - 1, k + b1 , •• • , k + br }. 

(b) Show that tjJ(x)/cp(x) = g(y)/f(y), where y = x - d and 

, 
m n (y - bi) 

f(y) = _, _i=_1 --- g(y) = f(y - m) n (y - j + 1). 

n (y + ai + 1) 
j=1 

i=1 

Deduce that the sum in (4.18) is the coefficient of x-1 in g(x)/f(x). 

(c) When m = 2, use this to prove the formula 

dim VA. r 

X;.((12)) = d(d _ 1) i~ (b;(bi + 1) - ai(ai + 1)). 

Hurwitz [Hur] used this formula of Frobenius to calculate the number of 
ways to write a given permutation as a product of transpositions. From this 

he gave a formula for the number of branched coverings of the Riemann sphere 
with a given number of sheets and given simple branch points. Ingram [In] 
has given other formulas for X;.(g), when g is a somewhat more complicated 

conjugacy class. 

Exercise 4.19*. If V is the standard representation of 6 d, prove the decom
positions into irreducible representations: 

Sym2 V ~ U Ef1 V Ef1 J-(d-2,2)' 

V ® V = Sym2 V Ef1 Nv ~ u Ef1 V Ef1 J-(d-2.2) Ef1 J-(d-2.1.1)· 

Exercise 4.20*. Suppose A is symmetric, i.e., A = A', and let q1 > q2 > ... > 
q, > 0 be the lengths of the symmetric hooks that form the diagram of A; thus, 

q1 = 2A.1 - 1, q2 = 2A2 - 3, .... Show that if 9 is a product of disjoint cycles 

oflengths q1' Q2' ... , q" then 

§4.2. Irreducible Representations of 6 d 

We show next that the representations V;. constructed in the first section are 
exactly the irreducible representations of 6 d • This proof appears in many 

standard texts (e.g. [C-R], [Ja-Ke], [N-S], [WeI]), so we will be a little 
concise. 

Let A = C6d be the group ring of 6 d • For a partition A of d, let P and Q 
be the corresponding subgroups preserving the rows and columns of a Young 

tableau T corresponding to A, let a = a;., b = b;., and let c = c). = ab be 
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the corresponding Young symmetrizer, so V). = Ac). is the corresponding 

representation. (These groups and elements should really be subscripted by 

T to denote dependence on the tableau chosen, but the assertions made 

depend only on the partition, so we usually omit reference to T.) 

Note that P n Q = {I}, so an element of 6 d can be written in at most one 

way as a product p. q, PEP, q E Q. Thus, c is the sum L ± eg , the sum over 

all 9 that can be written as p . q, with coefficient ± 1 being sgn(q); in particular, 

the coefficient of e 1 in c is 1. 

Lemma 4.21. (1) For PEP, p·a = a· p = a. 
(2) For q E Q, (sgn(q)q)· b = b· (sgn(q)q) = b. 

(3) For all PEP, q E Q, p. c . (sgn(q)q) = c, and, up to multiplication by a 
scalar, c is the only such element in A. 

PROOF. Only the last assertion is not obvious. If L ngeg satisfies the condition 

in (3), then npgq = sgn(q)ng for all g, p, q; in particular, npq = sgn(q)n1. Thus, 

it suffices to verify that ng = 0 if 9 ¢ PQ. For such 9 it suffices to find a 

transposition t such that p = t E P and q = g-i tg E Q; for then 9 = pgq, so 

ng = - ng. If T' = gT is the tableau obtained by replacing each entry i of T 
by g(i), the claim is that there is are two distinct integers that appear in the 

same row of T and in the same column of T'; t is then the transposition of 

these two integers. We must verify that if there were no such pair of integers, 

then one could write 9 = p. q for some PEP, q E Q. To do this, first take Pi E P 

and q~ E Q' = gQg-i so that Pi T and q~ T' have the same first row; repeating 

on the rest of the tableau, one gets PEP and q' E Q' so that pT = q'T'. Then 

pT = q'gT, so p = q'g, and therefore 9 = pq, where q = g-l(qTlg E Q, as 

required. 0 

We order partitions lexicographically: 

A > J1. if the first nonvanishing Ai - J1.i is positive. (4.22) 

Lemma 4.23. (1) If A > J1., then for all x E A, a). . x . bl' = O. In particular, if A > J1., 
then c). . cl' = O. 

(2) For all x E A, c).· X· c). is a scalar multiple of c).. In particular, c).· c). = 

n).c). for some n). E C. 

PROOF. For (1), we may take x = 9 E 6 d• Since g. bl'· g-l is the element con

structed from gT', where T' is the tableau used to construct bl" it suffices to 

show that a).· bl' = o. One verifies that A > J1. implies that there are two integers 

in the same row of T and the same column of T'. If t is the transposition of 

these integers, then a). · t = a)., t·bl' = -bl" so a).·bl' = a).·t·t·bl' = -a).·bl" 
as required. Part (2) follows from Lemma 4.21 (3). 0 

Exercise 4.24*. Show that if A # J1., then c). . A . C I' = 0; in particular, c). . C I' = O. 
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Lemma 4.25. (1) Each V). is an irreducible representation of 6 d• 

(2) If A. # jJ., then V. and ~ are not isomorphic. 

PROOF. For (1) note that c). V). c ec). by Lemma 4.23. If We V). is a 

subrepresentation, then c). W is either ec). or O. If the first is true, then 

V). = A · c). c W. Otherwise W ' W cA, c;. W = 0, but this implies W = O. 

Indeed, a projection from A onto W is given by right multiplication by an 

element cP E A with cp = cp2 E W ' W = O. This argument also shows that 

c"V" #0. 
For (2), we may assume}. > jJ.. Then c). V. = ec). # 0, but C;. VII = C;. · ACII = 

0, so they cannot be isomorphic A-modules. 0 

Lemma 4.26. For any A., c). ·C). = n).c)., with n. = d!/dim V).. 

PROOF. Let F be right multiplication by c). on A. Since F is multiplication by 

n;. on V)., and zero on Ker(c).), the trace of F is n). times the dimension of V;., 

But the coefficient of eg in eg ' c). is 1, so trace(F) = 16d l = dL 0 

Since there are as many irreducible representations V). as conjugacy classes 

of 6 d, these must form a complete set of isomorphism classes of irreducible 

representations, which completes the proof of Theorem 4.3. In the next section 

we will prove Frobenius's formula for the character of V;., and, in a series of 
exercises, discuss a little of what else is known about them: how to decompose 

tensor products or induced or restricted representations, how to find a basis 
for V)., etc. 

§4.3. Proof of Frobenius's Formula 

For any partition}. of d, we have a subgroup, often called a Young subgroup, 

6). = 6;., x '" X 6).k ~ 6 d • (4.27) 

Let U). be the representation of 6 d induced from the trivial representation of 

6).. Equivalently, U). = A . a)., with a). as in the preceding section. Let 

t/I). = Xu, = character of U).. (4.28) 

Key to this investigation is the relation between U;. and V). , i.e., between t/l1. 
and the character XI. of VI.' Note first that VI. appears in UI., since there is a 
surjection 

(4.29) 

Alternatively, 
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by Exercise 4.4. For example, we have 

V(d-1.1) ~ J-(d-1.1) $ J-(d) 

which expresses the fact that the permutation representation Cd of 6 d is the 

sum of the standard representation and the trivial representation. Eventually 

we will see that every V). contains V). with multiplicity one, and contains only 

other ~ for fJ. > A. 
The character of V). is easy to compute directly since V). is an induced 

representation, and we do this next. 

For i = (i1, . .. , id) a d-tuple of non-negative integers with L cxia = d, denote 
by 

CiC 6 d 

the conjugacy class consisting of elements made up of i1 I-cycles, i2 2-cycles, 

. " . , id d-cycles. The number of elements in Ci is easily counted to be 

d! 
ICil = IiI " '2i2" ,. "did' , 

'1 ' '2··· · 'd' 

(4.30) 

By the formula for characters of induced representations (Exercise 3.19), 

I 
t/I).(Ci) = IC;! [6d : 6).] 'ICi n 6).1 

lili1! · ... · didid! d! k Ap! 

d' . A ,. . A " L n l'plr ,. d'pdr " . l ' ... k' p=l pl' ••• pd' 

where the sum is over all collections {rpq: I :::;; p :::;; k, 1 :::;; q :::;; d} of non

negative integers satisfying 

iq = r1q + r2q + ... + rkq, 

Ap = rp1 + 2rp2 + .. . + drpd. 

(To count Ci n 6)., write the pth component of an element of 6). as a product 

ofrp1 I-cycles, rp2 2-cycles, .. .. ) Simplifying, 

d • , "n 'q. t/I)'(Ci)=~ " . . " 
q=l r1q ·r2q· ... rkq · 

(4.31 ) 

the sum over the same collections of integers {rpq}. 
This sum is exactly the coefficient of the monomial X). = xtl ..... xtk in the 

power sum symmetric polynomial 

p(i) = (Xl + ... + Xk)i l • (xi + ... + xf)i2 .... . (xt + ... + xt)id • (4.32) 

So we have the formula 

(4.33) 

To prove Frobenius's formula, we need to compare these coefficients with the 

coefficients OJ). (i) defined by 
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w).(i) = [a· P(i)h I = (A.l + k - 1, A.2 + k - 2, ... , A.k). (4.34) 

Our goal, Frobenius's formula, is the assertion that X).(Ci) = w).(i). 

There is a general identity, valid for any symmetric polynomial P, relating 

such coefficients: 

[P] = ~ K [a·P] ). L... I'l (1'1 +k-l.1'2+k- 2 .···.l'k), 
I' 

where the coefficients Kl'l are certain universally defined integers, called 

Kostka numbers. For any partitions A. and JJ. of d, the integer Kl'lmay be defined 

combinatorially as the number of ways to fill the boxes of the Young diagram 

for JJ. with A.l 1 's, A.2 2's, up to A.k k's, in such a way that the entries in each 

row are nondecreasing, and those in each column are strictly increasing; such 

are called semistandard tableaux on JJ. of type A.. In particular, 

K).l = 1, and KI'). = 0 for JJ. < A.. 

The integer KI'). may be also be defined to be the coefficient ofthe monomial 

X). = xt' ..... xtk in the Schur polynomial SI' corresponding to JJ.. For the 

proof that these are equivalent definitions, see (A.9) and (A.19) of Appendix 

A. In the present case, applying Lemma A.26 to the polynomial P = p(i), we 

deduce 

The result of Lemma A.28 can be written, using (4.30), in the form 

~! ~ ICilw;.(i)w,.(i) = bll" (4.36) 

This indicates that the functions w)., regarded as functions on the conjugacy 

classes of 6 4, satisfy the same orthogonality relations as the irreducible 

characters of 6 d • In fact, one can deduce formally from these equations that 

the w). must be the irreducible characters of 6 4, which is what Frobenius 
proved. A little more work is needed to see that w). is actually the character 

of the representation V)., that is, to prove 

Proposition 4.37. Let Xl = Xv. be the character of Vl' Then for any conjugacy 
class Ci of 6 4 , 

PROOF. We have seen in (4.29) that the representation Vl , whose character is 

t/lJ., contains the irreducible representation VJ.. In fact, this is all that we need 

to know about the relation between VJ. and VJ.. It implies that we have 

t/I;. = L n).I'XI" n;.;.;?: 1, all n;.1' ;?: O. (4.38) 
/l 

Consider this equation together with (4.35). We deduce first that each W;. is a 
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virtual character: we can write 

w .. = L m .. pXp' m .. p E 7l.. 

But the w .. , like the x .. , are orthonormal by (4.36), so 

1 = (w .. , w .. ) = L m1p , 

p 
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and hence w .. is ± X for some irreducible character X. (It follows from the hook 
length formula that the plus sign holds here, but we do not need to assume 
this.) 

Fix A, and assume inductively that Xp = wp for all Jl > A, so by (4.35) 

t/! .. = w .. + L Kp .. Xw 
p>" 

Comparing this with (4.38), and using the linear independence of characters, 

the only possibility is that w .. = x... D 

Corollary 4.39 (Young's rule). The integer Kp .. is the multiplicity of the irreduc

ible representation Vp in the induced representation V .. : 

V .. ~ V .. EB EB Kp .. Vp, t/! .. = X .. + L KpA.XW 
p>" p>" 

Note that when A = (1, . . . , 1), V .. is just the regular representation, so 

Kp(l •. ..• l) = dim Vw This shows that the dimension of V .. is the number of 

standard tableaux on A., i.e., the number of ways to fill the Young diagram of 

A with the numbers from 1 to d, such that all rows and columns are increasing. 

The hook length formula gives another combinatorial formula for this dimen
sion. Frame, Robinson, and Thrall proved that these two numbers are equal. 
For a short and purely combinatorial proof, see [G-N-W]. For another proof 

that the dimension of V .. is the number of standard tableaux, see [Jam]. The 
latter leads to a canonical decomposition of the group ring A = C6d as the 

direct sum of left ideals AeT , summing over all standard tableaux, with 

eT = (dim V .. /d!) · cT, and CT the Young symmetrizer corresponding to T, cf. 
Exercises 4.47 and 4.50. This, in turn, leads to explicit calculation of matrices 

of the representations V .. with integer coefficients. 
For another example of Young's rule, we have a decomposition 

Q 

V(d - a.Q) = EB l-(d-i.i) · 
i =O 

In fact, the only Jl whose diagrams can be filled with d - ai's and a 2's, 

non decreasing in rows and strictly increasing in columns, are those with at 
most two rows, with the second row no longer than a; and such a diagram 

has only one such tableau, so there are no multiplicities. 

Exercise 4.40*. The characters t/! .. of 6 d have been defined only when A. is a 
partition of d. Extend the definition to any k-tuple a = (ai' . .. , ak) of integers 
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that add up to d by setting I/Ia = 0 if any of the ai are negative, and otherwise 

I/Ia = 1/1;., where A. is the reordering of ai' ... , ak in descending order. In this 

case I/Ia is the character ofthe representation induced from the trivial represen

tation by the inclusion of 6 al x ... x 6 ak in 6 d • Use (A.5) and (A.9) of 

Appendix A to prove the determinantal formula for the irreducible characters 

X;. in terms of the induced characters 1/11': 

X;. = L sgn(t)I/I(;.I+t(I)-I.;.2+t(2)-2 ..... ;.k+t(k)-k)· 
tE 6 k 

If one writes 1/10 as a formal product I/Ial . 1/102 ... •. I/Iok' the preceding formula 
can be written 

1/1;'1 

1./, I 1/1;'2-1 
X;. = 'I';'i+j-i = 

1/111+1 I/I1 I+k-l 

1/1;'2' . . 

The formal product of the preceding exercise is the character version of an 

"outer product" of representations. Given any non-negative integers d1, •.. , 

dk , and representations V; of 6 d , denote by VI 0 ••• 0 Vk the (isomorphism class 

of the) representation of 6 d , d ,;", L d j , induced from the tensor product repre
sentation V1!Bl"'!Bl Vk of 6 dl x .. , X 6 dk by the inclusion of 6 dl x .. , X 6 dk 

in 6 d (see Exercise 2.36). This product is commutative and associative. It will 

turn out to be useful to have a procedure for decomposing such a representa

tion into its irreducible pieces. For this it is enough to do the case of two 

factors, and with the individual representations V; irreducible. In this case, one 

has, for V;. the representation of 6 d corresponding to the partition A. of d and 

~ the representation of 6 m corresponding to the partition Jl of m, 

(4.41) 

the sum over all partitions v of d + m, with N;.l'v the coefficients given by the 

Littlewood-Richardson rule (A.S) of Appendix A. Indeed, by the exercise, the 

character of V;. 0 VI' is the product of the corresponding determinants, and, by 

(A.S), that is the sum of the characters N;.l'vXv' 

When m = 1 and Jl = (m), VI' is trivial; this gives 

(4.42) 

the sum over all v whose Young diagram is obtained from that of A. by adding 

one box. This formula uses only a simpler form ofthe Littlewood-Richardson 

rule known as Pieri's formula, which is proved in (A.7). 

Exercise 4.43*. Show that the Littlewood-Richardson number N;.l'v is the 

multiplicity of the irreducible representation VA!Bl VI' in the restriction of Vv 

from 6 d+m to 6 4 X 6 m • In particular, taking m = 1, Jl = (1), Pieri's formula 
(A.7) gives 

Res 6d+IV = " V 6 d v L... A' 
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the sum over aU A- obtained from v by removing one box. This is known as 

the "branching theorem," and is useful for inductive proofs and constructions, 

particularly because the decomposition is multiplicity free. For example, you 

can use it to reprove the fact that the multiplicity of V;. in U/J is the number of 

semistandard tableaux on p. oftype A-. It can also be used to prove the assertion 

made in Exercise 4.6 that the representations corresponding to hooks are 

exterior powers of the standard representation. 

Exercise 4.44* (Pieri's rule). Regard 6 4 as a subgroup of 6 4+m as usual. Let A

be a partition of d and v a partition of d + m. Use Exercise 4.40 to show that 

the multiplicity of v" in the induced representation Ind(V;.) is zero unless the 

Young diagram of A- is contained in that of v, and then it is the number of 

ways to number the skew diagram lying between them with the numbers from 

1 to m, increasing in both row and column. By Frobenius reciprocity, this is 

the same as the multiplicity of V;. in Res(v,,). 

When applied to d = 0 (or 1), this implies again that the dimension of v" is 
the number of standard tableaux on the Young diagram of v. 

For a sampling of the many applications of these rules, see [Dia §7, §8]. 

Problem 4.45*. The Murnaghan-Nakayama rule gives an efficient inductive 

method for computing character values: If A- is a partition of d, and g E 6 4 is 

written as a product of an m-cycle and a disjoint permutation h E 6 4 - m , then 

X;.(g) = L (_l)r(/J)xih), 

where the sum is over all partitions p. of d - m that are obtained from A- by 

removing a skew hook of length m, and r(p.) is the number of vertical steps in 

the skew hook, i.e., one less than the number of rows in the hook. A skew hook 

for A- is a connected region of boundary boxes for its Young diagram such 

that removing them leaves a smaller Young diagram; there is a one-to-one 

correspondence between skew hooks and ordinary hooks of the same size, as 

indicated: 

A- = (7,6,5,5,4,4,1,1) 

p. = (7,4,4,3,3,1,1,1) 

hook length = 9, r = 4 

For example, if A- has no hooks oflength m, then X;.(g) = o. 
The Murnaghan-Nakayama rule may be written inductively as follows: If 

g is a written as a product of disjoint cycles of lengths ml, m2, ... , mp , with 

the lengths mi taken in any order, then X;.(g) is the sum L ( _1),('), where the 

sum is over all ways s to decompose the Young diagram of A- by successively 
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removing p skew hooks of lengths m1 , ••• , mp ' and r(s) is the total number of 

vertical steps in the hooks of s. 
(a) Deduce the Murnaghan-Nakayama rule from (4.41) and Exercise 4.16, 

using the Littlewood-Richardson rule. Or: 

(b) With the notation of Exercise 4.40, show that 

Exercise 4.46*. Show that Corollary 4.39 implies the "Snapper conjecture": 

the irreducible representation V" occurs in the induced representation VA if 
and only if 

j j 

L Ai ~ L J.l.i for all j ~ 1. 
i=1 ;=1 

Problem 4.47*. There is a more intrinsic construction of the irreducible 

representation VA' called a Specht module, which does not involve the choice 
of a tableau; it is also useful for studying representations of Sd in positive 
characteristic. Define a tabloid {T} to be an equivalence class of tableaux 

(numberings by the integers 1 to d) on A, two being equivalent if the rows are 
the same up to order. Then Sd acts by permutations on the tabloids, and the 

corresponding representation, with basis the tabloids, is isomorphic to V).. 

For each tableau T, define an element Er in this representation space, by 

Er = br{T} = L sgn(q){qT}, 

the sum over the q that preserve the columns of T. The span of all Er's is 
isomorphic to V)., and the Er's, where T varies over the standard tableaux, 

form a basis. 

Another construction of V). is to take the subspace of the polynomial ring 

C[X1> ... , Xd] spanned by all polynomials Fr , where Fr = n (Xi - X), the 
product over all pairs i < j which occur in the same column in the tableau T. 

Exercise 4.48*. Let V~ be the representation A· b)., which is the representation 
of Sd induced from the tensor product of the alternating representations on 

the subgroup 6" = 6"1 X '" x 6"r' where J.I. = A' is the conjugate partition. 
Show that the decomposition of V~ is 

V~ = L K,,').' VI'" 
/J 

Deduce that V;. is the only irreducible representation that occurs in both V). 
and V~, and it occurs in each with multiplicity one. 

Note, however, that in general A· c). #: A· a). 11 A· b). since A ' c). may not be 
contained in A· a).. 
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Exercise 4.49*. With notation as in (4.41), if U' = l'(1, .... 1) is the alternating 

representation of 6 m , show that Vl 0 l'(l, .... 1) decomposes into a direct sum 

$ V"' the sum over alln whose Young diagram can be obtained from that of 

2 by adding rn boxes, with no two in the same row. 

Exercise 4.50. We have seen that A = C6d is isomorphic to a direct sum of 

rnl copies of Vl = ACl, where rnl = dim Vl is the number of standard tableaux 

on 2. This can be seen explicitly as follows. For each standard tableau Ton 
each 2, let CT be the element of C6d constructed from T. Then A = $A' CT' 

Indeed, an argument like that in Lemma 4.23 shows that CT' CT" = 0 whenever 

T and T' are tableaux on the same diagram and T > T', i.e., the first entry 

(reading from left to right, then top to bottom) where the tableaux differ has 

the entry of T larger than that of T'. From this it follows that the sum I:A . CT 

is direct. A dimension count concludes the proof. (This also gives another 

proof that the dimension of VA is the number of standard tableaux on 2, 
provided one verifies that the sum of the squares of the latter numbers is d!, 
cr. [Boe] or [Ke].) 

Exercise 4.51*. There are several methods for decomposing a tensor product 

of two representations of 6 d , which amounts to finding the coefficients Clp• 

in the decomposition 

Vl ® Vp ~ I:.C;.P' Y", 

for 2, Jl., and v partitions of d. Since one knows how to express Vp in terms 

of the induced representations UV' it suffices to compute V;. ® U., which 

is isomorphic to Ind(Res(V;.», restricting and inducing from the subgroup 

6. = 6., X 6., x ... ; this restriction and induction can be computed by the 

Littlewood-Richardson rule. For d :::;; 5, you can work out these coefficients 

using only restriction to 6 d - 1 and Pieri's formula. 

(a) Prove the following closed-form formula for the coefficients, which 

shows in particular that they are independent of the ordering of the subscripts 

2, Jl., and v: 

the sum over all i = (iI' .. . , id) with I:ai .. = d, and with w;.(i) = Xl(Cj ) and 
z(i) = i1 ! Ii,. i2 !2i, ..... id!did. 

(b) Show that 

C _ {I if Jl. = 2 
lp(d) - 0 otherwise, 

{
I ifJl.=A.' 

C = 
Ap(! ..... I) 0 otherwise. 

Exercise 4.52*. Let Rd = R(6d ) denote the representation ring, and set 

R = EBd"=o Rd' The outer product of (4.41) determines maps 
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which makes R into a commutative, graded l-algebra. Restriction determines 
maps 

Rn+m = R(6n+m) -+ R(6n x 6",) = Rn ® R"" 

which defines a co-product 15: R -+ R ® R. Together, these make R into a 

(graded) Hopf algebra. (This assertion implies many of the formulas we have 

proved in this lecture, as well as some we have not.) 
(a) Show that, as an algebra, 

R ~ l[Hl' ... , Hd, ••• J, 

where Hd is an indeterminate of degree d; Hd corresponds to the trivial 
representation of 6 d• Show that the co-product 15 is determined by 

b(Hn) = Hn ® 1 + Hn- 1 ® HI + .. . + 1 ® Hn. 

If we set A = l[H1 , ••• , Hd , • •• J = EBAd, we can identify Ad with the 
symmetric polynomials of degree d in k ~ d variables. The basic symmetric 

polynomials in Ad defined in Appendix A therefore correspond to virtual 
representations of 6 d • 

(b) Show that Ed corresponds to the alternating representation U', and 

(c) Show that the scalar product < , > defined on Ad in (A. 16) corresponds 
to the scalar product defined on class functions in (2.11). 

(d) Show that the involution [}. of Exercise A.32 corresponds to tensoring 

a representation with the alternating representation U'. 

(e) Show that the inverse map from Rd to Ad takes a representation W to 

~ 1 (i) 
~ - (.)XW(C(i»P , 
i Z I 

where z(i) = i1!li 1 • i2 !2i2 . .... id!d id. 

The (inner) tensor product of representations of 6 d gives a map Rd ® Rd -+ 

Rd which corresponds to an "inner product" on symmetric functions, some

times denoted *. 
(f) Show that 

p(i) * pti) = {O . for j # i 
z(i)Ph) if j = i. 

Since these p(i) form a basis for Ad ® 10, this formula determines the inner 

product. 



LECTURE 5 

Representations of 2{d and GL2 {lFq) 

In this lecture we analyze the representation of two more types of groups: the alternat

ing groups ~d and the linear groups GL2(lFq) and SL2(lFq) over finite fields. In the former 

case, we prove some general results relating the representations of a group to the 

representations of a subgroup of index two, and use what we know about the symmetric 

group; this should be completely straightforward given just the basic ideas of the 

preceding lecture. In the latter case we start essentially from scratch. The two sections 

can be read (or not) independently; neither is logically necessary for the remainder of 

the book. 

§5.l: Representations of~d 

§5.2: Representations of GL2(lFq) and SL2(fq) 

§5.1. Representations of 2ld 

The alternating groups ~d' d ~ 5, form one of the infinite families of simple 
groups. In this section, continuing the discussion of §3.1, we describe their 

irreducible representations. The basic method for analyzing representations 

of ~d is by restricting the representations we know from 6 d • 

In general when H is a subgroup of index two in a group G, there is a close 

relationship between their representations. We will see this phenomenon again 

in Lie theory for the subgroups SO. of the orthogonal groups 0 •. 
Let U and U' denote the trivial and nontrivial representation of G obtained 

from the two representations of G/H. For any representation V of G, let 
V' = V ® U'; the character of V' is the same as the character of V on 

elements of H, but takes opposite values on elements not in H. In particular, 

ResZ V' = ResZ V. 
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If W is any representation of H, there is a conjugate representation defined 
by conjugating by any element t of G that is not in H; if r/J is the character 

of W, the character of the conjugate is h 1-+ r/J(thC 1 ). Since t is unique up to 
multiplication by an element of H, the conjugate representation is unique up 

to isomorphism. 

Proposition 5.1. Let V be an irreducible representation of G, and let W = Res~ V 

be the restriction of V to H. Then exactly one of the following holds: 

(1) V is not isomorphic to V'; W is irreducible and isomorphic to its conjugate; 

Ind~W ~ VEB V'. 

(2) V ~ V'; W = W' EB W", where W' and W" are irreducible and conjugate 

but not isomorphic; Ind~ W' ~ Ind~ W" ~ V. 

Each irreducible representation of H arises uniquely in this way, noting that 

in case (1) V' and V determine the same representation. 

PROOF. Let X be the character of V. We have 

IGI = 21HI = L IX(hW + L Ix(tW· 
hEH r;H 

Since the first sum is an integral multiple of IHI, this multiple must be 1 or 2, 

which are the two cases of the proposition. This shows that W is either 
irreducible or the sum of two distinct irreducible representations W' and W". 

Note that the second case happens when X(t) = 0 for all t ¢ H, which is the 
case when Viis isomorphic to V. In the second case, W' and W" must be 

conjugate since W is self-conjugate, and if W' and W" were self-conjugate V 

would not be irreducible. The other assertions in (1) and (2) follow from the 
isomorphism Ind(Res V) = V ® (U EB U') of Exercise 3.16. Similarly, for any 
representation W of H, Res(Ind W) is the direct sum of Wand its conjugate

as follows say from Exercise 3.l9-from which the last statement follows 
readily. 0 

Most of this discussion extends with little change to the case where H is a 

normal subgroup of arbitrary prime index in G, cf. [B-tD, pp. 293-296]. 

Clifford has extended much ofthis proposition to arbitrary normal subgroups 
of finite index, cr. [Dor, §14]. 

There are two types of conjugacy classes c in H: those that are also 

conjugacy classes in G, and those such that eve' is a conjugacy class in G, 

where c' = tct-l, t ¢ H ; the latter are called split. When W is irreducible, its 
character assumes the same values-those of the character of the representa

tion V of G that restricts to W-on pairs of split conjugacy classes, whereas 

in the other case the characters of W' and W" agree on nonsplit classes, but 

they must disagree on some split classes. If Xw'(c) = Xw,,(c') = x, and Xw'(c /) = 

Xw"(c) = y, we know the sum x + y, since it is the value of the character of 
the representation V that gives rise to W' and W" on c v c'. Often the exact 

values of x and y can be determined from orthogonality considerations. 
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Exercise S.2*. Show that the number of split conjugacy classes is equal to the 

number of irreducible representations V of G that are isomorphic to V', or 

to the number of irreducible representations of H that are not isomorphic 

to their conjugates. Equivalently, the number of nonsplit classes in H is same 

as the number of conjugacy classes of G that are not in H. 

We apply these considerations to the alternating subgroup of the symmetric 

group. Consider restrictions of the representations V). from 6 d to 2ld • Recall 

that if A' is the conjugate partition to A, then 

V)., = V).Q9 U', 

with U' the alternating representation. The two cases of the proposition 

correspond to the cases (1) A' "# A and (2) A' = A. If A' "# A, let W). be the 

restriction of V). to 2ld • If A.' = A, let Wi and Wi' be the two representations 

whose sum is the restriction of V).. We have 

Ind W). = V). EB V)." Res V). = Res V).. = W). when A.' "# A, 

Ind Wi = Ind Wi' = V)., Res V). = Wi EB Wi' when A.' = A. 

Note that 

# {self-conjugate representations of 6 d } 

= # {symmetric Young diagrams} 

= # {split pairs of conjugacy classes in 2ld } 

= # {conjugacy classes in 6 d breaking into two classes in 2ld}' 

Now a conjugacy class of an element written as a product of disjoint cycles 

is split if and only if there is no odd permutation commuting with it, which is 

equivalent to all the cycles having odd length, and no two cycles having the 

same length. So the number of self-conjugate representations is the number 

of partitions of d as a sum of distinct odd numbers. In fact, there is a natural 

correspondence between these two sets: any such partitioQ corresponds to a 

symmetric Young diagram, assembling hooks as indicated: 

I 
I 

r -
I 

--

If A is the partition, the lengths of the cycles in the corresponding split 

conjugacy classes are q! = 2A! - 1, q2 = 2A2 - 3, q3 = 2A3 - 5, . . . . 
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For a self-conjugate partition A, let X~ and XA denote the characters of Wi 
and Wi' , and let c and c' be a pair of split conjugacy classes, consisting of cycles 

of odd lengths ql > q2 > ... > q,. The following proposition of Frobenius 

completes the description of the character table of ~d' 

Proposition 5.3. (1) If c and c' do not correspond to the partition A, then 

X~(c) = X~(c') = XA(C) = XA(C') = tx;.(c u c'). 

(2) If c and c' correspond to A, then 

X~(c) = XA(C') = x, 

with x and y the two numbers 

X~(C') = XA(C) = y, 

1( _1)m ± J( -ltql . . ... q,), 

and m = t(d - r) = t I (q; - 1) == t(TI q; - 1) (mod 2). 

For example, if d = 4 and A = (2, 2), we have r = 2, ql = 3, q2 = 1, and x 

and yare the cube roots of unity; the representations Wi and Wi' are the 

representations labeled U' and U" in the table in §2.3. For d = 5, ..1.= (3, 1, 1), 

r = 1, ql = 5, and we find the representations called Y and Z in §3.1. For 
d ~ 7, there is at most one split pair, so the character table can be derived 

from orthogonality alone. 
Note that since only one pair of character values is not taken care of by 

the first case of Frobenius's formula, the choice of which representation is Wi 
and which Wi' is equivalent to choosing the plus and minus sign in (2). Note 
also that the integer m occurring in (2) is the number of squares above the 

diagonal in the Young diagram of A. 
We outline a proof of the proposition as an exercise: 

Exercise 5.4*. Step 1. Let q = (q 1 > ... > q,) be a sequence of positive odd 

integers adding to d, and let c' = c'(q) and c" = c"(q) be the corresponding 

conjugacy classes in ~d' Let A be a self-conjugate partition of d, and let xl. and 

XA be the corresponding characters of ~d' Assume that xl. and XA take on the 
same values on each element of ~d that is not in c' or c". Let u = X~(c') = 

XA(C") and v = X~(c") = XA(C'). 

(i) Show that u and v are real when m = tI:(q; - 1) is even, and it = v when 
m is odd. 

(ii) Let 9 = X~ - XA' Deduce from the equation (9, 9) = 2 that lu - vl 2 = 
ql ·· ··· q,. 

(iii) Show that A is the partition that corresponds to q and that u + v = 
(-It, and deduce that u and v are the numbers specified in (2) of the 
proposition. 

Step 2. Prove the proposition by induction on d, and for fixed d, look at 
that q which has smallest q 1, and for which some character has values on the 
classes c'(q) and c"(q) other than those prescribed by the proposition. 
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(i) Ifr = 1, so ql = d = 2m + 1, the corresponding self-conjugate partition 

is A. = (m + 1, 1, ... , 1). By induction, Step 1 applies to X~ and X~. 

(ii) If r > 1, consider the imbedding H = ~q, X ~d-q, C G = ~d' and let 
X' and X" be the representations of G induced from the representations 

W; (g) W:Z and W;' (g) W:Z' where W; and W;' are the representations of ~q, 

corresponding to ql' i.e., to the self-conjugate partition (!(ql - 1), 1, ... , 1) of 

ql; W:Z is one ofthe representations Of~d-q, corresponding to (q2'···, qr); and 
(g) denotes the external tensor product (see Exercise 2.36). Show that X' and 

X" are conjugate representations of ~d' and their characters X' and X" take 

equal values on each pair of split conjugacy classes, with the exception of c' (q) 
and c"(q), and compute the values of these characters on c'(q) and c"(q). 

(iii) Let 8 = X' - X", and show that (8, 8) = 2. Decomposing X' and X" 

into their irreducible pieces, deduce that X' = Y EB Wi and X" = Y EB Wi' for 

some self-conjugate representation Y and some self-conjugate partition A. of d. 

(iv) Apply Step 1 to the characters X~ and X~, and conclude the proof. 

Exercise 5.5*. Show that if d > 6, the only irreducible representations of 

~d of dimension less than d are the trivial representation and the (n - 1)

dimensional restriction of the standard representation of 6 d • Find the excep

tions for d :s; 6. 

We have worked out the character tables for all 6 d and ~d for d :s; 5. With 

the formulas of Frobenius, an interested reader can construct the tables for a 

few more d-until the number of partitions of d becomes large. 

The groups GL2(lFq) of invertible 2 x 2 matrices with entries in the finite field 

IFq with q elements, where q is a prime power, form another important series 

of finite groups, as do their subgroups SL2(lFq) consisting of matrices of 

determinant one. The quotient PGL2(lFq) = GL2(lFq)/IF: is the automor
phism group of the finite projective line Pl(lFq). The quotients PSL2(lFq) = 

SL2(lFq)/{ ± 1} are simple groups if q i= 2, 3 (Exercise 5.9). In this section we 

sketch the character theory of these groups. 

We begin with G = GL2(lFq). There are several key subgroups: 

(This "Borel subgroup" B and the group of upper triangular unipotent 

matrices N will reappear when we look at Lie groups.) Since G acts transitively 

on the projective line Pl(lFq), with B the isotropy group of the point (1:0), we 
have 
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We will also need the diagonal subgroup 

D = {(~ ~)} = F* x F*, 

where we write F for IFq. Let IF' = IFq2 be the extension of F of degree two, unique 
up to isomorphism. We can identify GL2(lFq) as the group of all F-Iinear 

invertible endomorphisms of F'. This makes evident a large cyclic subgroup 

K = (F')* of G. At least if q is odd, we may make this isomorphism explicit by 

choosing a generator e for the cyclic group P and choosing a square root Je 
in F'. Then 1 and Je form a basis for IF' as a vector space over IF, so we can 

make the identification: 

K is a cyclic subgroup of G of order q2 - 1. We often make this identification, 

leaving it as an exercise to make the necessary modifications in case q is even. 

The conjugacy classes in G are easily found: 

Representative No. Elements in Class No. Classes 

ax = (~ ~) 1 q-l 

bx = (~ ~) q2 _ 1 q-l 

CX,y=(~ ~). x # Y q2 + q 
(q - l)(q - 2) 

2 

dx,y = G ey) q2 _ q 
q(q - 1) 

x ,y #0 
2 

Here Cx,y and cy,x are conjugate by ( _ ~ ~), and dx,y and dx,_y are conjugate 

by any (a -ec). To count the number of elements in the conjugacy class 
c -a 

of bx , look at the action of G on this class by conjugation; the isotropy group 

is {( ~ !)}, so the number of elements in the class is the index of this group 

in G, which is q2 - 1. Similarly the isotropy group for Cx,y is D, and the isotropy 

group for dx,y is K. To see that the classes are disjoint, consider the eigenvalues 

and the Jordan canonical forms. Since they account for IGI elements, the list 
is complete. 

There are q2 - 1 conjugacy classes, so we must find the same number of 

irreducible representations. Consider first the permutation representation of 

G on 1P'1(1F), which has dimension q + Lit contains the trivial representation; 
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let V be the complementary q-dimensional representation. The values of the 

character X of Von the four types of conjugacy classes are x(ax ) = q, X(bx ) = 0, 

X(cx.y) = 1, X(dx,y) = - 1, which we display as the table: 

V: q 0 1 -1 

Since (X, X) = 1, V is irreducible. 
For each of the q - 1 characters a: IF* -+ C* of IF*, we have a one

dimensional representation V« of G defined by V«(g) = a(det(g)). We also 
have the representations v,. = V ® V«. The values of the characters of these 

representations are 

V«: a(x)a(y) 

v,.: qa(x)2 o a(x)a(y) -a(x2 - ey2) 

Note that if we identify (; ~) with ( = x + yJe in IF', then 

x2 - ey2 = det (; ~) = NormF'/F(O = ( . (q = (q+l . 

The next place to look for representations is at those that are induced 
from large subgroups. For each pair a, p of characters of IF*, there is a character 
of the subgroup B: 

B -+ BIN = D = IF* x IF* -+ C* x C*...:. C*, 

which takes (~ !) to a(a)p(d). Let »-;", be the representation induced from 

B to G by this representation; this is a representation of dimension [G: B] = 
q + 1. By Exercise 3.19 its character values are found to be: 

(q + l)a(x)p(x) a(x)p(x) a(x)p(y) + a(y)p(x) o 

We see from this that »-;", ~ W,,«, that »-;,,« ~ V« $ v,., and that for a #- p 
the representation is irreducible. This gives t(q - l)(q - 2) more irreducible 
representations, of dimension q + 1. 

Comparing with the list of conjugacy classes, we see that there are tq(q - 1) 
irreducible characters left to be found. A natural way to find new characters 

is to induce characters from the cyclic subgroup K. For a representation 

q>: K = (IF')* -+ C*, 

the character values of the induced representation of dimension [G: K] = 
q2 _ 1 are 

Ind(q»: q(q - 1)q>(x) o o 

Here again ( = x + yJe E K = (IF')*. Note that Ind(q>q) ~ Ind(q», so the 
representations Ind(q» for q>q #- q> give tq(q - 1) different representations. 
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However, these represenations are not irreducible: the character X of Ind(tp) 

satisfies (X, X) = q - 1 if tpq i= tp, and otherwise (X, X) = q. We will have to 

work a little harder to get irreducible representations from these Ind(tp). 
Another attempt to find more representations is to look inside tensor 

products of representations we know. We have Ya® Uy = Yay, and w,.,/l® Uy ~ 
w,.y,/ly' so there are no new ones to be found this way. But tensor products of 

the Ya's and w,.,p's are more promising. For example, V ® w,.,1 has character 
values: 

q(q + l)a(x) o a(x) + a(y) o 

We can calculate some inner products of these characters with each other 

to estimate how many irreducible representations each contains, and how 

many they have in common. For example, 

(XV®W.,I' Xw.) = 2, 

(Xlnd(q»'XW.) = 1 if tpi F. = a, 

(XV®W.,I' Xv®w.) = q + 3, 

(XV®W.,I' Xlnd(q») = q if tpl r· = a, 

Comparing with the formula (Xlnd(q»' Xlnd(q») = q - 1, one deduces that 
V ® w,.,1 and Ind(tp) contain many of the same representations. With any 

luck, Ind(tp) and w,.,l should both be contained in V® w,.,l ' This guess is 
easily confirmed; the virtual character 

Xq> = XV®W.,I - XW.,I - Xlnd(q» 

takes values (q - l)a(x), -a(x), 0, and -(tp(O + tp(oq) on the four types of 

conjugacy classes. Therefore, (Xq>' Xq» = 1, and Xq>(l) = q - 1 > 0, so Xq> is, 
in fact, the character of an irreducible subrepresentation of V ® w,.,l of 
dimension q - 1. We denote this representation by Xq>. These tq(q - 1) 
representations, for tp i= tpq, and with Xq> = X'Po, therefore complete the list 

of irreducible representations for GL2 (1F). The character table is 

q2 _ 1 q2 + q q2 _ q 

GL2 (1F,) a =(x 
x 0 ~) bx = (; ~) ex,. = (~ ~) d = (x BY) =, 

x.. Y X 

V. OC(X2) OC(X2) oc(xy) oc(") 

V. qOC(X2) 0 oc(xy) -oc(") 

w.,p (q + l)oc(x)P(x) oc(x)P(x) oc(x)P(y) + oc(y)P(x) 0 

X., (q - l)q>(x) -q>(x) 0 -(q>(0 + q>(,0)) 

Exercise 5.6. Find the multiplicity of each irreducible representation in the 

representations V ® w,.,l and Ind(tp), 
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Exercise 5.7. Find the character table of PGL2 (1F) = GL2 (1F)/iF* . Note that its 

characters are just the characters of GL2 (1F) that take the same values on 

elements equivalent mod IF*. 

We tum next to the subgroup SL2(lFq) of 2 x 2 matrices of determinant 

one, with q odd. The conjugacy classes, together with the number of elements 

in each conjugacy class, and the number of conjugacy classes of each type, are 

Representative No. Elements in Class No. Classes 

(1) e=G ~) 1 

(2) _ (-1 0) -e- O -1 
1 1 

(3) (~ ~) 
q2 _ 1 

2 
1 

(4) G ;) 
q2 _ 1 

1 
2 

(5) (-1 1) 
q2 _ 1 

o -1 2 

(6) (-~ ~1) 
q2 _ 1 

2 
1 

(7) (~ X~I} x =F ± 1 q(q + 1) 
q-3 

2 

(8) c: ~}x =F ±l q(q - 1) 
q-l 

2 

The verifications are very much as we did for GL2 (lFq) . In (7), the classes of 

(~ X~I) and (X~1 ~) are the same. In (8), the classes for (x, y) and (x, - y) 

are the same; as before, a better labeling is by the element, in the cyclic group 

C = g E (IF')*: ,q+l = I}; 

the elements ± 1 are not used, and the classes of, and C 1 are the same. 

The total number of conjugacy classes is q + 4, so we tum to the task of 

finding q + 4 irreducible representations. We first see what we get by restrict

ing representations from GL2 (lFq ) . Since we know the characters, there is no 

problem working this out, and we simply state the results: 

(1) The V« all restrict to the trivial representation V. Hence, if we restrict any 

representation, we will get the same for all tensor products by V«'s. 
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(2) The restriction V of the Ya's is irreducible. 

(3) The restriction w" of w", 1 is irreducible if (X2 0/= 1, and w" ~ Wp when P = (X 

or p = (X-I. These give t(q - 3) irreducible representations of dimension 

q + 1. 
(3 /) Let. denote the character of IF· with .2 = 1,. 0/= 1. The r~striction of W.,1 

is the sum of two distinct irreducible representations, which we denote 

W' and W", 

(4) The restriction of XII' depends only on the restriction of cp to the subgroup 

C, and cp and cp -1 determine the same representation. The representation 

is irreducible if cp2 0/= 1. This gives t(q - 1) irreducible representations of 

dimension q - 1. 

(4/) If 1/1 denotes the character of C with 1/1 2 = 1, 1/1 0/= 1, the restriction of X", 
is the sum of two distinct irreducible representations, which we denote 

X' and X", 

Altogether this list gives q + 4 distinct irreducible representations, and it 

is therefore the complete list. To finish the character table, the problem is to 

describe the four representations W', W", X', and X". Since we know the sum 

of the sq uares of the dimensions of all representations, we can deduce that the 

sum of the squares of these four representations is q2 + 1, which is only 

possible if the first two have dimension t(q + 1) and the other two t(q - 1). 

This is similar to what we saw happens for restrictions of representations to 

subgroups of index two. Although the index here is larger, we can use what 

we know about index two subgroups by finding a subgroup H of index two 

in GLAlFq) that contains SL2(lFq), and analyzing the restrictions of these four 

representations to H. 

For H we take the matrices in GL2(lFq) whose determinant is a square. The 

representatives of the conjugacy classes are the same as those for GL2(lFq), 

including, of course, only those representatives whose determinant is a square, 

but we must add classes represented by the elements (~ :), x E IF·. These 

are conjugate to the elements (~ ~) in GL2(lFq), but not in H. These are the 

q - 1 split conjugacy classes. The procedure of the preceding section can be 

used to work out all the representations of H, but we need only a little ofthis. 

Note that the sign representation V' from G/ H is V., so that W.,1 ~ 
W.,l ® V' and X '" ~ X", ® V'; their restrictions to H split into sums of conju

gate irreducible representations of half their dimensions. This shows these 

representations stay irreducible on restriction from H to SL2 (lFq), so that W' 

and W" are conjugate representations of dimension t(q + 1), and X' and X" 

are conjugate representations of dimension t(q - 1). In addition, we know 

that their character values on all nonsplit conjugacy classes are the same as 

half the characters of the representations W.,l and X"" respectively. This is all 

the information we need to finish the character table. Indeed, the only values 

not covered by this discussion are 
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(~ ~) (~ ;) (-1 1) 
o -1 

(-1 6) 
o -1 

W' s s' t ' 

W" s t ' s' 

X' u V u' v' 

X" V U v' u' 

The first two rows are determined as follows. We know that s + t = 

((1 1)) 1 I dd" . (1 1)-1 (1 -1). . 
XW,.I 0 1 =. n a Ihon, smce 0 1 = 0 1 IS conjugate to 

(~ ~) if q is congruent to 1 modulo 4, and to (~ ;) otherwise, and since 

X(g-l) = X(g) for any character, we conclude that sand t are real if q == 
1 mod(4), and s = Tif q == 3 mod(4). In addition, since -e acts as the identity 

or minus the identity for any irreducible representation (Schur's lemma), 

X( - g) = X(g)' X(I)/X( - e) 

for any irreducible character X. This gives the relations s' = r( -1)s and 

t ' = r( -1)t. Finally, applying the equation (X, X) = 1 to the character of W' 

gives a formula for sf + ts. Solving these equations gives s, t = t ± tJWq, 
where w = r( -1) is 1 or -1 according as q == 1 or 3 mod(4). Similarly one 

computes that u and v are -t ± tJWq. This concludes the computations 

needed to write out the character table. 

Exercise 5.S. By considering the action of SL2(lFq) on the set pi (lFq), show that 

SL2 (1F2 ) ~ 6 3, PSL2 (1F3) ~ 214 , and SL2 (1F4 ) ~ 215 , 

Exercise 5.9*. Use the character table for SL2(lFq) to show that PSL2(lFq) is a 

simple group if q is odd and greater than 3. 

Exercise 5.10. Compute the character table of PSL2(lFq), either by regarding 

it as a quotient ofSL2(lFq), or as a subgroup of index two in PGL2 (lFq). 

Exercise 5.11*. Find the conjugacy classes of GL3(lFq), and compute the char

acters of the permutation representations obtained by the action of GL3(lFq) 

on (i) the projective plane P2(lFq) and (ii) the "flag variety" consisting of a point 

on a line in P2(lFq). Show that the first is irreducible and that the second is a 

sum of the trivial representation, two copies of the first representation, and 

an irreducible representation. 

Although the characters of the above groups were found by the early 
pioneers in representation theory, actually producing the representations in 

a natural way is more difficult. There has been a great deal of work extending 
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this story to GL.(lFq) and SLn(lFq) for n > 2 (cf. [Gr]), and for corresponding 

groups, called finite Chevalley groups, related to other Lie groups. For some 

hints in this direction see [Hu3], as well as [Ti2]. Since all but a finite number 

of finite simple groups are now known to arise this way (or are cyclic or 
alternating groups, whose characters we already know), such representations 

playa fundamental role in group theory. In recent work their Lie-theoretic 

origins have been exploited to produce their representations, but to tell this 

story would go far beyond the scope of these lecture(r)s. 



LECTURE 6 

Weyl's Construction 

In this lecture we introduce and study an important collection offunctors generalizing 

the symmetric powers and exterior powers. These are defined simply in terms of the 

Young symmetrizers C A introduced in §4: given a representation Y of an arbitrary group 

G, we consider the dth tensor power of Y, on which both G and the symmetric group 

on d letters act. We then take the image of the action of cA on y ® 4; this is a~ain a 

representation of G, denoted §A(Y)' This gives us a way of generating new representa

tions, whose main application will be to Lie groups: for example, we will generate all 

representations of SL. C by applying these to the standard representation en of SL. C. 

While it may be easiest to read this material while the definitions of the Young 

symmetrizers are still fresh in the mind, the construction will not be used again until 

§15, so that this lecture can be deferred until then. 

§6.1: Schur functors and their characters 
§6.2: The proofs 

§6.1. Schur Functors and Their Characters 

For any finite-dimensional complex vector space V, we have the canonical 
decom posi tion 

V® V= Sym2 VEBNV. 

The group GL(V) acts on V ® V, and this is, as we shall soon see, the decom

position of V ® V into a direct sum of irreducible GL(V)-representations. For 
the next tensor power, 

V ® V ® V = Sym 3 V (B Nv (B another space. 

We shall see that this other space is a sum of two copies of an irreducible 
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GL(V)-representation. Just as SymdV and Nv are images of symmetrizing 
operators from V®d = V ® V ® ... ® V to itself, so are the other factors. The 

symmetric group 6 d acts on V®d, say on the right, by permuting the factors 

(VI ® ... ® vd). (1 = v,,(1) ® ... ® V,,(d) ' 

This action commutes with the left action of GL(V). For any partition A. of d 

we have from the last lecture a Young symmetrizer CA in C6d • We denote the 

image of CA on V®d by §A V: 

§A V = Im(cAIY®d) 

which is again a representation of GL(V). We call the functor I V rvv+ §A V the 

Schur Junctor or Weyl module, or simply Weyt's construction, corresponding 
to A.. It was Schur who made the correspondence between representations of 

symmetric groups and representations of general linear groups, and Weyl who 
made the construction we give here.2 We will give other descriptions later, cf. 

Exercise 6.14 and §15.5. 

For example, the partition d = d corresponds to the functor V"-"" Symd V, 
and the partition d = 1 + ... + 1 to the functor V "-"" 'Nv. 

We find something new for the partition 3 = 2 + 1. The corresponding 

symmetrizer c;. is 

C(2.!) = 1 + e(12) - e(13) - e(132)' 

so the image of CA is the subspace of V®3 spanned by all vectors 

VI ® V2 ® V3 + V2 ® VI ® V3 - V3 ® V2 ® VI - V3 ® VI ® V2' 

If Nv® Vis embedded in V®3 by mapping 

(VI" v 3 ) ® V21-+V I ® V2 ® V3 - V3 ® V2 ® VI ' 

then the image of C;. is the subspace of Nv ® V spanned by all vectors 

(VI " v 3 ) ® V2 + (V2 " v 3 ) ® VI' 

I t is not hard to verify that these vectors span the kernel of the canonical map 

from Nv® V to Alv, so we have 

§(2.1) V = Ker(J\2V® V ~ J\3 V). 

(This gives the missing factor in the decomposition of V®3.) 

Note that some of the §;. V can be zero if V has small dimension. We will 

see that this is the case precisely when the number of rows in the Young 
diagram of A. is greater than the dimension of V. 

1 The functoriality means simply that a linear map q>: V _ W of vector spaces determines a linear 

map §.(q» : §. V - §. W, with §.(q> 0 t/I) = §.(q» 0 §.(t/I) and §.(Idv) = Ids,v 

2 The notion goes by a variety of names and notations in the literature, depending on the context. 

Constructions differ markedly when not over a field of characteristic zero; and many authors now 

parametrize them by the conjugate partitions. Our choice of notation is guided by the corre

spondence between these functors and Schur polynomials, which we will see are their characters. 
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When G = GL(V), and for important subgroups G c GL(V), these §l V 

give many of the irreducible representations of G; we will come back to this 

later in the book. For now we can use our knowledge of symmetric group 

representations to prove a few facts about them-in particular, we show that 

they decompose the tensor powers V®d, and that they are irreducible repre

sentations ofGL(V). We will also compute their characters; this will eventually 

be seen to be a special case of the Weyl character formula. 
Any endomorphism 9 of V gives rise to an endomorphism of § l V. In order 

to tell what representations we get, we will need to compute the trace of this 

endomorphism on §l V; we denote this trace by X§AV(g). For the computation, 

let XI"'" Xk be the eigenvalues of 9 on V, k = dim V. Two cases are easy. For 
A = (d), 

§(d) V = Symdv, X§(dIV(g) = Hix l , ... , Xl), (6.1) 

where Hd(x I' .. . , Xk) is the complete symmetric polynomial of degree d. The 
definition of these symmetric polynomials is given in (A.l) of Appendix A. 

The truth of (6.1) is evident when 9 is a diagonal matrix, and its truth for the 
dense set of diagonalizable endomorphisms implies it for all endomorphisms; 

or one can see it directly by using the Jordan canonical form of g. For 
A = (1, ... , 1), we have similarly 

§(I ..... I)v=Nv, X§(1. , ,1lv(g) = Ed(XI,· · ·,Xk), (6.2) 

with Eix l , ... , Xk) the elementary symmetric polynomial [see (A.3)]. The 

polynomials Hd and Ed are special cases of the Schur polynomials, which we 

denote by S l = S l (x I' ... , Xk)' As A varies over the partitions of d into at most 
k parts, these polynomials S;., form a basis for the symmetric polynomials of 

degree d in these k variables. Schur polynomials are defined and discussed in 

Appendix A, especially (AA)-(A.6). The above two formulas can be written 

X §AV(g) = S;.,(x I , .. . , Xl) fod = (d) and A = (1, .. . , 1). 

We will show that this equation is valid for all A: 

Theorem 6.3. (I) Let k = dim V. Then §;., V is zero if Ak+1 =f. O. If A = 

(AI ~ ... ~ Ak ~ 0), then 

dim§lV=Sl(I, ... ,l)= n 
I s;i<js;k 

Ai - Aj + j - i 

j-i 

(2) Let m;., be the dimension of the irreducible representation V;., of 6 d 

corresponding to A. Then 

V®d ~ EB§;.,v®mA. 

A 

(3) For any 9 E GL(V), the trace of g on §;., V is the value of the Schur 

polynomial on the eigenvalues Xl' .. . , Xk of 9 on v: 

X§AV(g) = S;.,(X I, .. . , Xk)' 
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(4) Each §,t V is an irreducible representation of GL(V). 

This theorem will be proved in the next section. Other formulas for the 

dimension of §,tV are given in Exercises A.3O and A.31. The following is 

another: 

Exercise 6.4*. Show that 

. m,t n (k - i + j) 
dIm §,t V = -d' n (k - i + j) = h.. ' 

. U 

where the products are over the d pairs (i,j) that number the row and column 

of boxes for A, and hij is the hook number of the corresponding box. 

Exercise 6.5. Show that V®3 ~ Sym3V EEl NVEEl (§(2.1) V) Ell 2, and 

V®4 ~ Sym4V EEl Nv EEl (§(3. t) V) Ell 3 EEl (§(2.2) V) Ell 2 EEl (§(2. t .1) V) Ell 3. 

Compute the dimensions of each of the irreducible factors. 

The proof of the theorem actually gives the following corollary: 

Corollary 6.6. If C E C64, and (C64) ' c = EB,t V,tEllrA as representations of 6 4, 

then there is a corresponding decomposition of GL(V)-spaces: 

V®4· C = EB §,t VEilr A• 

,t 

If Xl' .. . , Xk are the eigenvalues of an endomorphism of V, the trace of the 

induced endomorphism of V®4. cis L r,tS,t(x t , ... , Xk)' 

If A and Jl. are different partitions, each with at most k = dim V parts, the 

irreducible GL(V)-spaces §,t V and §I'V are not isomorphic. Indeed, their 

characters are the Schur polynomials S,t and SI" which are different. More 

generally, at least for those representations of GL(V) which can be decom

posed into a direct sum of copies of the represenations § A V's, the representa

tions are completely determined by their characters. This follows immediately 

from the fact that the Schur polynomials are linearly independent. 

Note, however, that we cannot hope to get all finite-dimensional irreducible 

representations of GL(V) this way, since the duals of these representations 

are not included. We will see in Lecture 15 that this is essentially the only 

omission. Note also that although the operation that takes representations of 

6 4 to representations of GL(V) preserves direct sums, the situation with 

respect to other linear algebra constructions such as tensor products is more 
complicated. 

One important application of Corollary 6.6 is to the decomposition of a 

tensor product §,t V ® §I' V of two Weyl modules, with, say, A a partition of 



§6.1. Schur Functors and Their Characters 79 

d and J1. a partition of m. The result is 

§;,V®§I'V~ EBN;.l'v§vV; (6.7) 

here the sum is over partitions v of d + m, and N;.l'v are numbers determined 
by the Littlewood-Richardson rule. This is a rule that gives N;.l'v as the number 
of ways to expand the Young diagram of A., using J1. in an appropriate way, to 

achieve the Young diagram for v; see (A.8) for the precise formula. Two 
important special cases are easier to use and prove since they involve only the 

simpler Pieri formula (A.7). For J1. = (m), we have 

(6.8) 

the sum over all v whose Young diagram is obtained by adding m boxes to 

the Young diagram of A., with no two in the same column. Similarly for 

J1. = (1, ... , 1), 

(6.9) 

the sum over all partitions 1t whose Young diagram is obtained from that of 

A. by adding m boxes, with no two in the same row. 

To prove these formulas, we need only observe that 

§;.V®§"V= v®n· c;.® v®m· c" 

= v®n® v®m·(c;.®cl') = v®(n+m)·c, 

with c = C;. ® cIt E C6d ® C6m = C(6d X 6 m) c C6d+m • This proves that 
§;. V ® § I' V has a decomposition as in Corollary 6.6, and the coefficients are 

given by knowing the decomposition of the corresponding character. The 

character of a tensor product is the product of the characters of the factors; 
so this amounts to writing the product S;.SI' of Schur polynomials as a linear 

combination of Schur polynomials. This is done in Appendix A, and formulas 
(6.7), (6.8), and (6.9) follow from (A.8), (A.7), and Exercise A.32 (v), respectively. 

For example, from SymdV ® V = Symd+1 V $) §(d.l) V, it follows that 

§(d.l) V = Ker(SymdV ® V -+ Symd+1 V), 

and similarly for the conjugate partition, 

§(2.1 ..... 1) V = Ker(NV ® V -+ N+l V). 

Exercise 6.10*. One can also derive the preceding decompositions of tensor 

products directly from corresponding decompositions of representations of 

symmetric groups. Show that, in fact, §). V ® § I' V corresponds to the "inner 

product" representation V;. 0 VI' of 6 d+m described in (4.41). 

Exercise 6.11*. (a) The Littlewood-Richardson rule also comes into the de
composition of a Schur functor of a direct sum of vector spaces V and W This 
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generalizes the well-known identities 

Symn(V EEl W) = EB (SymQV ® SymbW), 
a+b=,. 

N(VEi1 W) = EB (NV®NW). 
a+b=n 

Prove the general decomposition over GL(V) x GL(W): 

§.(V EB W) = EB N)./-I'(§). V ® §/-I W), 

the sum over all partitions A, Jl such that the sum of the numbers partitioned 

by A and Jl is the number partitioned by v. (To be consistent with Exercise 

2.36 one should use the notation IEl for these "external" tensor products.) 

(b) Similarly prove the formula for the Schur functor of a tensor product: 

§.(V ® W) = EB C)./-I'(§" V ® §/-I W), 

where the coefficients C )./-1' are defined in Exercise 4.51. In particular show that 

Symd(V® W) = EB §). V® §). W, 

the sum over all partitions A of d with at most dim V or dim W rows. Replacing 

W by W*, this gives the decomposition for the space of polynomial functions 

of degree d on the space Hom(V, W) over GL(V) x GL(W). For variations 

on this theme, see [H03J. Similarly, 

N(V® W) = EB §;.V® §;.,w, 

the sum over partitions A of d with at most dim V rows and at most dim W 
columns. 

Exercise 6.12. Regarding 

GLn C = GLn C x {I} c GLn C x GLm C c GLn+m C, 

the preceding exercise shows how the restriction of a representation de
composes: 

Res(§v(Cn+m)) = L (N;.". dim §,,(cm))§).(cn). 

In particular, for m = 1, Pieri's formula gives 

Res(§.(C"+l)) = EB §;,(Cn), 

the sum over all A obtained from v by removing any number of boxes from 

its Young diagram, with no two in any column. 

Exercise 6.13*. Show that for any partition Jl = (Jll' .. . , Jl,) of d, 

N1V®N2V® "' ®N'V~ EBK;.,,§;.' V, 
;. 

where K;." is the Kostka number and X the conjugate of A. 



§6.1. Schur Functors and Their Characters 81 

Exercise 6.14*. Let f.l. = A: be the conjugate partition. Put the factors of the 

dth tensor power V®d in one-to-one correspondence with the squares of the 

Young diagram of A. Show that §). V is the image of this composite map: 

Q9i (;\I'iV) -+ Q9i (®"iV) -+ V®d -+ Q9j (®).W) -+ Q9j (Sym).W), 

the first map being the tensor product of the obvious inclusions, the second 

grouping the factors of V ®d according to the columns of the Young diagram, 

the third grouping the factors according to the rows of the Young diagram, 

and the fourth the obvious quotient map. Alternatively, §). V is the image of 

a composite map 

Q9i (Sym).iV) -+ Q9i (®).iV) -+ V®d -+ Q9j (®"W) -+ Q9j (;\I'W). 

In particular, §). V can be realized as a subspace of tensors in V®d that are 

invariant by automorphisms that preserve the rows of a Young tableau of 

A, or a subspace that is anti-invariant under those that preserve the columns, 

but not both, cf. Exercise 4.48. 

Problem 6.15*. The preceding exercise can be used to describe a basis for the 

space §;. V. Let VI' ••• , Vk be a basis for V. For each semi standard tableau T 
on A, one can use it to write down an element V T in Q9i(;\I'iV); V T is a tensor 

product of wedge products of basis elements, the ith factor in ;\I"Vbeing the 

wedge product (in order) of those basis vectors whose indices occur in the ith 

column of T. The fact to be proved is that the images of these elements V T 

under the first composite map of the preceding exercise form a basis for §;. v. 

At the end of Lecture 15, using more representation theory than we have 

at the moment, we will work out a simple variation of the construction of §;. V 

which will give quick proofs of refinements of the preceding exercise and 

problem. 

Exercise 6.16*. The Pieri formula gives a decomposition 

SymdV ® SymdV = EB §(d+a.d-a) V, 

the sum over 0 ::s; a ::s; d. The left-hand side decomposes into a direct sum of 

Sym2(SymdV) and N(SymdV). Show that, in fact, 

Sym2(SymdV) = §(2d,O) V Et> §(2d-2,2) V Et> §(2d- 4,4) VEt>· ·· , 

N(SymdV) = §(2d-1.I) V EEl §(2d-3,3) V E9 §(2d-S,S) VEt>···. 

Similarly using the dual form of Pieri to decompose Nv ® Nv into the sum 

EB§;. V, the sum over all A = (2, ... ,2, 1, ... ,1) consisting of d - a 2's and 2a 

l's, O::s; a ::s; d, show that Sym2 (NV) is the sum of those factors with a even, 

and N(NV) is the sum of those with a odd. 
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Exercise 6.17*. If land JI. are any partitions, we can form the composite functor 

§,,(§;Y). The original "plethysm" problem-which remains very difficult in 

general-is to decompose these composites: 

§,,(§.Y) = EB M;.".§.V, 
• 

the sum over all partitions v of dm, where A. is a partition of d and JI. is a partition 
of m. The preceding exercise carried out four special cases of this. 

(a) Show that there always exists such a decomposition for some non

negative integers M;.". by constructing an element c in C6dm, depending on 
A. and JI., such that §,,(§;. V) is v®dm. c. 

(b) Compute Sym2(§(2.2) V) and N(§(2.2) V). 

Exercise 6.18* "Hermite reciprocity." Show that if dim V = 2 there are iso
morphisms 

SymP(SymqV) ~ Symq(SymPV) 

of GL(V)-representations, for all p and q. 

Exercise 6.19*. Much of the story about Young diagrams and representations 
of symmetric and general linear groups can be generalized to skew Young 

diagrams, which are the differences of two Young diagrams. If A. and JI. are 

partitions with Jl.i ~ A.i for all i, A.IJI. denotes the complement of the Young 
diagram for JI. in that of A.. For example, if A. = (3, 3, 1) and JI. = (2, 1), A./JI. is 
the numbered part of 

To each A.IJI. we have a skew Schur function S;./", which can be defined by 
any of several generalizations of constructions of ordinary Schur functions. 
Using the notation of Appendix A, the following definitions are equivalent: 

(i) 

(ii) 

(iii) 

S;./" = IH;',-"ri+jl, 

S;./I' = IE;'j_"j-i+jl, 

S -" m x a , • • x ak 
;./" - L... a 1 •.• k' 

where ma is the number of ways to number the boxes of A.IJI. with all's, a2 2's, 
... , at k's, with nondecreasing rows and strictly increasing columns. 

In terms of ordinary Schur polynomials, we have 

(iv) 

where N".;. is the Littlewood-Richardson number. 
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Each Alp. determines elements aAIIl , bAIIl , and Young symmetrizers CA/Il = 
a;'lllbAIIl in A = CSd , d = ~)i - P.i' exactly as in §4.1, and hence a representa

tion denoted V;'11l = AC;'11l of Sd' Equivalently, Vl lll is the image of the map 

AbAl1l -+ AaAl1l given by right multiplication by a;'IIl' or the image of the map 

AaA/1' -+ Ab;'11' given by right multiplication by b;'11'" The decomposition of V;'II' 

into irreducible representations is 

(v) 

Similarly there are skew Schur functors § ;'11" which take a vector space V 

to the image of CAlI' on V®d; equivalently, §;'II' Vis the image of a natural map 

(generalizing that in the Exercise 6.14) 

(vi) Q9i (Ni-l'iV) -+ V®d -+ Q9i (SymArl'J V), 

or 

(vii) 

Given a basis VI"'" vk for V and a standard tableau Ton Np., one can write 

down an element VT in Q9i(N;-I';V); for example, corresponding to the dis

played tableau, VT = V4 ® V2 ® (VI /\ V3)' A key fact, generalizing the result of 

Exercise 6.15, is that the images of these elements under the map (vi) form a 

basis for § ;'11' V. 

The character of §;'II'V is given by the Schur function SAIl': if g is an 

endomorphism of V with eigenvalues Xl' ... , X k, then 

(viii) 

In terms of basic Schur functors, 

(ix) §A/I' V ~ L NI'.;'§. V. 

Exercise 6.20*. (a) Show that if A = (p, q), §(P,q) V is the kernel of the contrac

tion map 

Cp,q: SymPV ® SymqV -+ SymP+l V ® Symq - l V. 

(b) If A = (p, q, r), show that §(P,q,,) V is the intersection of the kernels of 

two contraction maps cp " ® 1, and Ip ® cp ," where Ii denotes the identity map 

on Sym i V. 

In general, for A =(A l , ... , Ak ), §AV c Sym;"V® ' " ®Sym;'kV is the inter

section of the kernels of the k - 1 maps 

!/Ii = 1;., ® ... ® 1;.,_. ® cA,,;'.+. ® 1A.+ 2 ® .. . ® l;'k' 1 ~ i ~ k - 1. 

(c) For A = (p, 1, . ... , 1), show that §;. V is the kernel of the contraction 

map: 

§ V = Ker(SymPV ® N-pv -+ SymP+l V ® N-p-l V). (p,l, . .. ,1) 

In general, for any choice of a between 1 and k - 1, the intersection of 
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the kernels of all I/Ii except I/Ia is §" V @ §, V, where (j = (A'I' ... ,Aa) and 
't = (Aa+l' ... ,Ak ); so § A V is the kernel of a contraction map defined on 

§" V @ §, V. For example, if a is k - 1, and we set r = Ak , Pieri's formula writes 

§"V@Sym'V as a direct sum of §lV and other factors §vV; the general 
assertion in (b) is equivalent to the claim that § 1 V is the only factor that is 

in the kernel of the contraction, ie., 

§ V = Ker(§ V@ SymrV -+ V®(d-,+l) @ Sym,-1 V). 
1 (AI ..... Ak-d 

These results correspond to writing the representations VA C VA of the sym

metric group as the intersection of kernels of maps to VA1 . . .. . A, +l,A,+I-l . ... 'Ak. 

Exercise 6.21. The functorial nature of Weyl's construction has many conse
quences, which are not explored in this book. For example, if E. is a complex 

of vector spaces, the tensor product E:d is also a complex, and the symmetric 

group $d acts on it; when factors in Ep and Eq are transposed past each other, 
the usual sign ( - 1 )pq is inserted. The image of the Young symmetrizer c A is a 

complex §AE.), sometimes called a Schur complex. Show that if E. is the 

complex E-l = V -+ Eo = V, with the boundary map the identity map, and 

A = (d), then §l(E.) is the Koszul complex 

0-+ N -+ N-I @ SI -+ N-2 ® S2 -+ • .. -+ N @ Sd-l -+ Sd -+ 0, 

where N = Nv, and sj = Symjv. 

§6.2. The Proofs 

We need first a small piece of the general story about semisimple algebras, 
which we work out by hand. For the moment G can be any finite group, 

although our application is for the symmetric group. If V is a right module 

over A = eG, let 

B = HomG(V, V) = {<p: V -+ V : <p(v' g) = <p(v)' g, '\;fv E V, g E G}. 

Note that B acts on V on the left, commuting with the right action of A; B is 
called the commutator algebra. If V = EB V/fJn, is an irreducible decomposition 
with Vi nonisomorphic irreducible right A-modules, then by Schur's Lemma 
1.7 

B = EBi HomG(V;,lln" Vi$n ,) = EBi Mn,(C), 

where Mn,(C) is the ring of ni x ni complex matrices. 
If W is any left A-module, the tensor product 

V @A W = V @c W/subspace generated by {va @ w - v @ aw} 

is a left B-module by acting on the first factor: b· (v @ w) = (b· v) @ w. 
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Lemma 6.22. Let V be a finite-dimensional right A-module. 

(i) For any c E A, the canonical map V ®A Ac -+ Vc is an isomorphism of left 

B-modules. 

(ii) If W = Ac is an irreducible left A-module, then V ®A W = Vc is an 

irreducible left B-module. 

(iii) If W; = ACi are the distinct irreducible left A-modules, with mi the 

dimension of W;, then 

V ~ EBi (V ®A W;)al lll ' ~ EBi (Vci)al lll
, 

is the decomposition of V into irreducible left B-modules. 

PROOF. Note first that Ac is a direct summand of A as a left A-module; this is 

a consequence of the semisimplicity of all representations of G (Proposition 

1.5). To prove (i), consider the commutative diagram 

V®AA~ V®AAc c.. V®A A 

I I I 
V ~ V ' c V 

where the vertical maps are the maps v ® a 1-+ v . a; since the left horizontal 

maps are surjective, the right ones injective, and the outside vertical maps are 

isomorphisms, the middle vertical map must be an isomorphism. 

For (ii), consider first the case where V is an irreducible A-module, so 

B = c.1t suffices to show that dim V ®A W:s; 1. For this we use Proposition 

3.29 to identify A with a direct sum EBr=l MIII,C ofr matrix algebras. We can 

identify W with a minimal left ideal of A. Any minimal ideal in the sum of 

matrix algebras is isomorphic to one which consists of r-tuples of matrices 

which are zero except in one factor, and in this factor are all zero except for 

one column. Similarly, V can be identified with the right ideal of r-tuples which 

are zero except in one factor, and in that factor all are zero except in one row. 

Then V ®A W will be zero unless the factor is the same for V and W, in which 

case V ®A W can be identified with the matrices which are zero except in one 

row and column ofthat factor. This completes the proof when V is irreducible. 

For the general case of (ii), decompose V = EBi Vial n, into a sum of irreducible 

right A-modules, so V ®A W = EBi(Vi ®A W)al n, = Calnk for some k, which is 

visibly irreducible over B = EB MniC). 

Part (iii) follows, since the isomorphism A ~ EB W;al lll' determines an iso

morphism 

To prove Theorem 6.3, we will apply Lemma 6.22 to the right CGd-module 

V = V®d. That lemma shows how to decompose V as a B-module, where B 
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is the algebra of all endomorphisms of V that commute with all permuta

tions of the factors. The endomorphisms of V induced by endomorphisms of 

V are certainly in this algebra B. Although B is generally much larger than 

End(V), we have 

Lemma 6.23. The algebra B is spanned as a linear subspace of End(V®d) by 

End(V). A subspace of V®d is a sub-B-module if and only if it is invariant by 

GL(V). 

PROOF. Note that if W is any finite-dimensional vector space, then SymdW is 
the subspace of W®d spanned by all wd = d! w ® ... ® w as w runs through 

W Applying this to W = End(V) = y* ® V proves the first statement, since 
End(V®d) = (y*)®d ® V®d = W®d, with compatible actions of6d• The second 

follows from the fact that GL(V) is dense in End(V). D 

We turn now to the proof of Theorem 6.3. Note that §). V is V c)., so parts 

(2) and (4) follow from Lemmas 6.22 and 6.23. We use the same methods to 
give a rather indirect but short proof of part (3); for a direct approach see 

Exercise 6.28. From Lemma 6.22 we have an isomorphism ofGL(V)-modules: 

(6.24) 

with V). = A· Col. Similarly for Vl = A · aol' and since the image of right multi
plication by al on y®d is the tensor product of symmetric powers, we have 

Symol! V ® Symol2V ® .. . ® SymlkV ~ V®d ®A Vol. (6.25) 

But we have an isomorphism Vl ~ EB/lK/ll ~ of A-modules by Young's rule 
(4.39), so we deduce an isomorphism of GL(V)-modules 

Syml! V ® Symol2V ® ... ® SymlkV ~ EB K/lol§/l V. (6.26) 

By what we saw before the statement of the theorem, the trace of 9 on the 

left-hand side of(6.26) is the product Hl(Xl' ... , x k ) of the complete symmetric 
polynomials Hol,(Xl> ... , Xl). Let §l(g) denote the endomorphism of §ol V 

determined by an endomorphism 9 of V. We therefore have 

H).(x 1 , .•• , xd = f./lK/ll Trace(§/l(g)). 

But these are precisely the relations between the functions Hl and the Schur 
polynomials Sp [see formula (A.9)], and these relations are invertible, since 

the matrix (K/l).) of coefficients is triangular with 1 's on the diagonal. It follows 

that Trace(§ol(g» = S)'(Xl' ... , xk ), which proves part (3). 

Note that if A = (AI' ... , Ad) with d > k and Ak+l :F 0, this same argument 
shows that the trace is Sl(Xl, ... , Xk , 0, .. . ,0), which is zero, for example by 

(A. 6). For g the identity, this shows that §l V = 0 in this case. From part (3) 
we also get 
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dim §;. V = S;.(I, ... , 1), (6.27) 

and computing S;.(I, ... , 1) via Exercise A.30(ii) yields part (1). 0 

Exercise 6.28. If you have given an independent proof of Problem 6.15, part 

(3) of Theorem 6.3 can be seen directly. The basis elements VT for §;. V specified 

in Problem 6.15 are eigenvectors for a diagonal matrix with entries Xl'···' x k , 

with eigenvalue x a = xi'· ... · X;\ where the tableau T has all's, a2 2's, ... , 

ak k's. The trace is therefore LK;'axa, where K).a is the number of ways to 

number the boxes of the Young diagram of.A. with all's, a2 2's, ... , ak k's. This 

is just the expression for S;. obtained in Exercise A.31(a). 

We conclude this lecture with a few of the standard elaborations of these 

ideas, in exercise form; they are not needed in these lectures. 

Exercise 6.29*. Show that, in the context of Lemma 6.22, if V is a faithful 

A-module, then A is the commutator of its commutator B: 

A = {I/J: V ~ V: I/J(bv) = bl/J(v), '<Iv E V, b E B}. 

If V is not faithful, the canonical map from A to its bicommutator is surjective. 

Conclude that, in Theorem 6.3, the algebra of endomorphisms of V®d that 

commute with GL(V) is spanned by the permutations in 6 d • 

Exercise 6.30. Show that, in Lemma 6.22, there is a natural one-to-one cor

respondence between the irreducible right A-modules Vi that occur in V and 

the irreducible left B-modules V;. Show that there is a canonical decomposition 

V = EB (V; ®c VJ 
i 

as a left B-module and as a right A-module. This shows again that the number 

of times V; occurs in V is the dimension of Vi' and dually that the number of 

times Vi occurs is the dimension of V;. Deduce the canonical decomposition 

V®d = EB§;.V®c V;., 

the sum over partitions .A. of d into at most k = dim V parts; this decomposition 

is compatible with the actions of GL(V) and 6 d • In particular, the number of 

times V;. occurs in the representation V®d of 6 d is the dimension of §;. v. 

Exercise 6.31. Let e be an idempotent in the group algebra A = CG, and let 

V = eA be the corresponding right A-module. Let E = eAe, a subalgebra of 

A. The algebra structure in A makes eA a left E-module. Show that this defines 

an isomorphism of C-algebras 

E = eAe ~ HomA(eA, eA) = HomG(V, V) = B. 
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Exercise 6.32. If H is a subgroup of G, and e E CH is an idempotent, corre
sponding to a representation W = CH' e of H, show that CG· e is the induced 
representation Ind~(W). For example, if 8: H -+ C· is a one-dimensional 
representation, then 

1 ,, 
Ind~(8) = CG· ea, where ea = fGI g7<, 8(g)eg. 



PART II 

LIE GROUPS AND 

LIE ALGEBRAS 

From a naive point of view, Lie groups seem to stand at the opposite end of 

the spectrum of groups from finite ones. 1 On the one hand, as abstract groups 
they seem enormously complicated: for example, being of uncountable order, 

there is no question of giving generators and relations. On the other hand, 
they do come with the additional data of a topology and a manifold structure; 

this makes it possible-and, given the apparent hopelessness of approaching 

them purely as algebraic objects, necessary-to use geometric concepts to 
study them. 

Lie groups thus represent a confluence of algebra, topology, and geometry, 
which perhaps accounts in part for their ubiquity in modern mathematics. It 
also makes the subject a potentially intimidating one: to have to understand, 
both individually and collectively, all these aspects of a single object may be 

somewhat daunting. 

Happily,just because the algebra and the geometry/topology of a Lie group 

are so closely entwined, there is an object we can use to approach the study 

of Lie groups that extracts much of the structure of a Lie group (primarily 
its algebraic structure) while seemingly getting rid of the topological com
plexity. This is, of course, the Lie algebra. The Lie algebra is, at least according 
to its definition, a purely algebraic object, consisting simply of a vector space 

with bilinear operation; and so it might appear that in associating to a Lie 
group its Lie algebra we are necessarily giving up a lot of information about 

the group. This is, in fact, not the case: as we shall see in many cases (and 

perhaps all of the most important ones), encoded in the algebraic structure of 

a Lie algebra is almost all of the geometry of the group. In particular, we will 

I In spite of this there are deep, if only partially understood, relations between finite and Lie 

groups, extending even to their simple group classifications. 
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see by the end of Lecture 8 that there is a very close relationship between 
representations of the Lie group we start with and representations of the Lie 

algebra we associate to it; and by the end of the book we will make that 
correspondence exact. 

We said that passing from the Lie group to its Lie algebra represents a 

simplification because it eliminates whatever nontrivial topological structure 

the group may have had; it "flattens out," or "linearizes," the group. This, in 
turn, allows for a further simplification: since a Lie algebra is just a vector 

space with bilinear operation, it makes perfect sense, if we are asked to study 

a real Lie algebra (or one over any subfield of C) to tensor with the complex 
numbers. Thus, we may investigate first the structure and representations of 

complex Lie algebras, and then go back to apply this knowledge to the study 
of real ones. In fact, this turns out to be a feasible approach, in every respect: 

the structure of complex Lie algebras tends to be substantially simpler than 

that of real Lie algebras; and knowing the representations of the complex Lie 

algebra will solve the problem of classifying the representations ofthe real one. 
There is one further reduction to be made: some very elementary Lie 

algebra theory allows us to narrow our focus further to the study of semisimpie 

Lie algebras. This is a subset of Lie algebras analogous to simple groups in 
that they are in some sense atomic objects, but better behaved in a number 

of ways: a semisimple Lie algebra is a direct sum of simple ones; there are easy 
criteria for the semisimplicity of a given Lie algebra; and, most of all, their 

representation theory can be approached in a completely uniform manner. 

Moreover, as in the case of finite groups, there is a complete classification 
theorem for simple Lie algebras. 

We may thus describe our approach to the representation theory of Lie 
groups by the sequence of objects 

Lie group 

~ Lie algebra 

rvv+ complex Lie algebra 

JVV+ semisimple complex Lie algebra. 

We describe this progression in Lectures 7-9. In Lectures 7 and 8 we intro

duce the definitions of and some basic facts about Lie groups and Lie algebras. 
Lecture 8 ends with a description of the exponential map, which allows us to 

establish the close connection between the first two objects above. We then 

do, in Lecture 9, the very elementary classification theory of Lie algebras that 
motivates our focus on semisimple complex Lie algebras, and at least state 

the classification theorem for these. This establishes the fact that the second, 
third, and fourth objects above have essentially the same irreducible repre

sentations. (This lecture may also serve to give a brief taste of some general 
theory, which is mostly postponed to later lectures or appendices.) In Lecture 
10 we discuss examples of Lie algebras in low dimensions. 
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From that point on we will proceed to devote ourselves almost exclusively 
to the study of semisimple complex Lie algebras and their representations. 

We do this, we have to say, in an extremely inefficient manner: we start with 
a couple of very special cases, which occupy us for three lectures (11-13); 

enunciate the general paradigm in Lecture 14; carry this out for the classical 

Lie algebras in Lectures 15-20; and (finally) finish off the general theory in 

Lectures 21-26. Thus, it will not be until the end that we go back and use the 
knowledge we have gained to say something about the original problem. In 

view of this long interlude, it is perhaps a good idea to enunciate one more 

time our basic 
Point of View: The primary objects of interest are Lie groups and their 

representations; these are what actually occur in real life and these are what 

we want to understand. The notion of a complex Lie algebra is introduced 
primarily as a tool in this study; it is an essential tool2 and we should consider 

ourselves incredibly lucky to have such a wonderfully effective one; but in the 
end it is for us a means to an end. 

The special cases worked out in Lectures 11-13 are the Lie algebras of SL2 

and SL3 • Remarkably, most of the structure shared by all semisimple Lie 

algebras can be seen in these examples. We should probably point out that 

much of what we do by hand in these cases could be deduced from the Weyl 

construction we saw in Lecture 6 (as we will do generally in Lecture 15), but 
we mainly ignore this, in order to work from a "Lie algebra" point of view 
and motivate the general story. 

2 Perhaps not logically so; cf. Adams' book [Ad). 



LECTURE 7 

Lie Groups 

In this lecture we introduce the definitions and basic examples of Lie groups and Lie 

algebras. We assume here familiarity with the definition of differentiable manifolds and 

maps between them, but no more; in particular, we do not mention vector fields, 

differential forms, Riemannian metrics, or any other tensors. Section 7.3, which 

discusses maps of Lie groups that are covering space maps of the underlying manifolds, 

may be skimmed and referred back to as needed, though working through it will help 

promote familiarity with basic examples of Lie groups. 

§7.l: Lie groups: definitions 

§7.2: Examples of Lie groups 

§7.3: Two constructions 

§7.1. Lie Groups: Definitions 

You probably already know what a Lie group is; it is just a set endowed 
simultaneously with the compatible structures of a group and a rcoo manifold. 
"Compatible" here means that the multiplication and inverse operations in 
the group structure 

x:GxG~G 

and 

I : G~G 

are actually differentiable maps (logically, this is equivalent to the single 
requirement that the map G x G -+ G sending (x, y) to x· y-l is rcOO). 

A map, or morphism, between two Lie groups G and H is just a map 
p: G ~ H that is both differentiable and a group homomorphism. In general, 
qualifiers applied to Lie groups refer to one or another of the two structures, 
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usually without much ambiguity; thus, abelian refers to the group structure, 

n-dimensional or connected refers to the manifold structure. Sometimes a 

condition on one structure turns out to be equivalent to a condition on the 
other; for example, we will see below that to say that a map of connected Lie 

groups <p: G ---+ H is a surjective map of groups is equivalent to saying that the 

differential d<p is surjective at every point. 

One area where there is some potential confusion is in the definition of a 
Lie subgroup. This is essentially a difficulty inherited directly from manifold 

theory, where we have to make a distinction between a closed submanifold of 

a manifold M, by which we mean a subset X c M that inherits a manifold 
structure from M (i.e., that may be given, locally in M, by setting a subset of 

the local coordinates equal to zero), and an immersed submanifold, by which 
we mean the image of a manifold X under a one-to-one map with injective 

differential everywhere-that is, a map that is an embedding locally in X. 

The distinction is necessary simply because the underlying topological space 
structure of an immersed submanifold may not agree with the topological 

structure induced by the inclusion of X in M. For example, the map from X 
to M could be the immersion of an open interval in ~ into the plane ~2 as a 
figure "6": 

-
Another standard example of this, which is also an example in the category 
of groups, would be to take M to be the two-dimensional real torus ~2 /71.2 = 
SI X SI, and X the image in M of a line V c ~2 having irrational slope: 

/ 
V 

/ 
/ 

/ 
V 

The upshot of this is that we define a Lie subgroup (or closed Lie subgroup, 
if we want to emphasize the point) of a Lie group G to be a subset that is 
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simultaneously a subgroup and a closed submanifold; and we define an 
immersed subgroup to be the image of a Lie group H under an injective 

morphism to G. (That a one-to-one morphism of Lie groups has everywhere 

injective differential will follow from discussions later in this lecture.) 

The definition of a complex Lie group is exactly analogous, the words 
"differentiable manifold" being replaced by "complex manifold" and all 

related notions revised accordingly. Similarly, to define an algebraic group one 
replaces "differentiable manifold" by "algebraic variety" and "differentiable 

map" by "regular morphism." As we will see, the category of complex Lie 

groups is in many ways markedly different from that of real Lie groups (for 
example, there are many fewer complex Lie groups than real ones). Of course, 

the study of algebraic groups in general is quite different from either of these 
since an algebraic group comes with a field of definition that mayor may not 

be a subfield of C (it may, for that matter, have positive characteristic). In 

practice, though, while the two are not the same (we will see examples of this 
in Lecture 10, for example), the category of algebraic groups over C behaves 

very much like the category of complex Lie groups. 

§7.2. Examples of Lie Groups 

The basic example of a Lie group is of course the general linear group GLnlR 

of invertible n x n real matrices; this is an open subset of the vector space of 
all n x n matrices, and gets its manifold structure accordingly (so that the 

entries of the matrix are coordinates on GLnlR). That the multiplication 

map GLnlR x GLnlR ~ GLnlR is differentiable is clear; that the inverse map 

GLn IR ~ GLn IR is follows from Cramer's formula for the inverse. Occasionally 

GLnlR will come to us as the group of automorphisms of an n-dimensional 
real vector space V; when we want to think ofGLnlR in this way (e.g., without 

choosing a basis for V and thereby identifying G with the group of matrices), 
we will write it as GL(V) or Aut(V). A representation of a Lie group G, of 

course, is a morphism from G to GL(V). 
Most other Lie groups are defined initially as subgroups of GLn (though 

they may appear in other contexts as subgroups of other general linear groups, 
which is, of course, the subject matter of these lectures). For the most part, 

such subgroups may be described either by equations on the entries of an 
n x n matrix, or as the subgroup of automorphisms of V ~ IRn preserving some 

structure on ~n. For example, we have: 

the special linear group SLn ~ of automorphisms of IR" preserving the 

volume element; equivalently, n x n matrices A with determinant 1. 

the group Bn of upper-triangular matrices; equivalently, the subgroup of 
automorphisms of IRn preserving the flag! 

1 In general, a flag is a sequence of subspaces of a fixed vector space, each properly contained in 

the next; it is a complete flag if each has one dimension larger than the preceding, and partial 

otherwise. 
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o = Vo C VI C V2 C ... v,,-l C v" = IR', 

where J'i is the span of the standard basis vectors e t, ... , ei' Note that choosing 

a different basis and correspondingly a different flag yields a different sub

group of GL.IR, but one isomorphic to (indeed, conjugate to) B •. Somewhat 

more generally, for any sequence of positive integers ai' ... , ak with sum n we 

can look at the group of block-up per-triangular matrices; this is the subgroup 

of automorphisms of IR' preserving a partial flag 

o = Vo C VI C V2 C ... C ~-l C ~ = IR', 

where the dimension of J'i is at + ... + ai • If the subspace J'i is spanned by the 

first a l + ... + ai basis vectors, the group will be the set of matrices ofthe form 

( 
* * * * 
0 * * * 
0 0 * * 
0 0 0 * 

The group N. of upper-triangular unipotent matrices (that is, upper triangular 

with l's on the diagonal); equivalently, the subgroup of automorphisms of IR' 

preserving the complete flag {J'i} where J'i is the span of the standard basis 

vectors e I' ... , ei , and acting as the identity on the successive quotients J'i+l /J'i. 
As before, we can, for any sequence of positive integers at, ... , ak with sum n, 

look at the group of block-upper-triangular unipotent matrices; this is the 

subgroup of automorphisms of IR' preserving a partial flag and acting as 

the identity on successive quotients, i.e., matrices of the form 

( 
I * * * 
0 I * * 
0 0 I * 
0 0 0 I 

Next, there are the subgroups of GL.IR defined as the group of transforma

tions of V = IR' of determinant 1 preserving some bilinear form Q: V x V ~ IR. 

If the bilinear form Q is symmetric and positive definite, the group we get 

is called the (special) orthogonal group SO.IR (sometimes written SO(n); see 

p. 100). If Q is symmetric and nondegenerate but not definite-e.g., if it has k 
positive eigenvalues and I negative-the group is denoted SOk.,1R or SO(k, I); 

note that SO(k, I) ~ SO(1, k). If Q is skew-symmetric and nondegenerate, the 

group is called the symplectic group and denoted Sp.lR; note that in this case 

n must be even. 

The equations that define the subgroup of G Ln IR preserving a bilinear form 

Q are easy to write down. If we represent Q by a matrix M -that is, we write 

Q(v, w) = tv' M· w 
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for all v, WE IRn-then the condition 

Q(Av, Aw) = Q(v, w) 

translates into the condition that 

for all v and w; this is equivalent to saying that 

'A·M·A=M. 

Thus, for example, if Q is the symmetric form Q(v, w) = IV· w given by the 

identity matrix M = In, the group SOn IR is just the group of n x n real matrices 
A of determinant 1 such that 'A = A-I. 

Exercise 7.1 *. Show that in the case of SP2n IR the requirement that the 
transformations have determinant 1 is redundant; whereas in the case of SOn IR 
if we do not require the transformations to have determinant 1 the group we 

get (denoted 0nlR, or sometimes O(n» is disconnected. 

Exercise 7.2*. Show that SO(k, I) has two connected components if k and I are 
both positive. The connected component containing the identity is often 
denoted SO+(k, I). (Composing with a projection onto IRk or 1R', we may 

associate to an automorphism A E SO(k, I) automorphisms of IRk and 1R'; 
SO+(k, I) will consist of those A E SO(k, I) whose associated automorphisms 

preserve the orientations of IRk and 1R'.) 

Note that if the form Q is degenerate, a transformation preserving Q will 
carry its kernel 

Ker(Q) = {v E V: Q(v, w) = 0 Vw E V} 

into itself; so that the group we get is simply the group of matrices preserving 

the subspace Ker(Q) and preserving the induced nondegenerate form Q on the 
quotient V/Ker(Q). Likewise, if Q is a general bilinear form, that is, neither 

symmetric nor skew-symmetric, a linear transformation preserving Q will 
preserve the symmetric and skew-symmetric parts of Q individually, so we just 

get an intersection of the subgroups encountered already. At any rate, we 
usually limit our attention to nondegenerate forms that are either symmetric 
or skew-symmetric. 

Of course, the group GLnC of complex linear automorphisms of a complex 
vector space V = cn can be viewed as subgroup of the general linear group 

GL2n lR; it is, thus, a real Lie group as well, as is the subgroup SLnC of n x n 
complex matrices of determinant 1. Similarly, the subgroups SOnC c SLnC 
and SP2n C C SL2n C of transformations of a complex vector space preserving 

a symmetric and skew-symmetric nondegenerate bilinear form, respectively, 
are real as well as complex Lie subgroups. Note that since all nondegenerate 

bilinear symmetric forms on a complex vector space are isomorphic (in partic-
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ular, there is no such thing as a signature), there is only one complex 

orthogonal subgroup SOnC c SLnC up to conjugation; there are no analogs 

of the groups SOk,llR. 

Another example we can come up with here is the unitary group Un or U(n), 

defined to be the group of complex linear automorphisms of an n-dimensional 

complex vector space V preserving a positive definite Hermitian inner product 

H on V. (A Hermitian form H is required to be conjugate linear in the 

first 2 factor, and linear in the second: H(AV, Ilw) = IH(v, w)ll, and H(w, v) = 

H(v, w); it is positive definite if H(v, v) > ° for v =f. 0.) 
Just as in the case of the subgroups SO and Sp, it is easy to write down the 

equations for U(n): for some n x n matrix M we can write the form H as 

H(v, w) = 'v, M· w, 't/v, w E cn 

(note that for H to be conjugate symmetric, M must be conjugate symmetric, 

i.e., 'M = M); then the group U(n) is just the group of n x n complex matrices 

A satisfying 

'A-M'A = M . 

In particular, if H is the "standard" Hermitian inner product H(v, w) = 'If. w 

given by the identity matrix, U(n) will be the group of n x n complex matrices 

A such that 'A = A- t . 

Exercise 7.3. Show that if H is a Hermitian form on a complex vector space 

V, then the real part R = Re(H) of H is a symmetric form on the underlying 

real space, and the imaginary part C = Im(H) is a skew-symmetric real 

form; these are related by C(v, w) = R(iv, w). Both Rand C are invariant by 

multiplication by i: R(iv, iw) = R(v, w). Show conversely that any such real 

symmetric R is the real part of a unique Hermitian H. Show that if H is 

standard, so is R, and C corresponds to the matrix J = ( _o/n ~ ). Deduce 

that 

U(n) = 0(2n) () Sp2.1R. 

Note that the determinant of a unitary matrix can be any complex number 

of modulus 1; the special unitary group, SU(n), is the subgroup of U(n) of 

automorphisms with determinant 1. The subgroup of GLnlC preserving an 

indefinite Hermitian inner product with k positive eigenvalues and I negative 

ones is denoted Uk.' or U(k, I); the subgroup of those of determinant 1 is 

denoted SUk., or SU(k, I). 

In a similar vein, the group GLnlHl of quaternionic linear automorphisms 

of an n-dimensional vector space V over the ring H of quaternions is a real 

2 This choice of which factor is linear and which conjugate linear is less common than the other. 

It makes little difference in what follows, but it does have the small advantage of being compatible 

with the natural choice for quatemions. 



§7.2. Examples of Lie Groups 99 

Lie subgroup of the group GL4nlR, as are the further subgroups of IHI-linear 

transformations of V preserving a bilinear form. Since IHI is not commutative, 

care must be taken with the conventions here, and it may be worth a little 

digression to go through this now. We take the vector spaces V to be right 

IHI-modules; IHI n is the space of column vectors with right multiplication by 

scalars. In this way the n x n matrices with entries in IHI act in the usual way 

on !HI" on the left. Scalar multiplication on the left (only) is IHI-linear. 

View IHI = IC EB jlC ~ 1C 2• Then left multiplication by elements of IHI give 

IC-linear endomorphisms of 1C 2, which determines a mapping IHI --+ M2 1C to 

the 2 x 2 complex matrices. In particular, IHI* = GLIIHI c.. GL2 iC. Similarly 

IHIn = en EB jlCn = 1C2n, so we have an embedding GLnlHl c.. GL2n lC. Note that 

a IC-linear mapping cp: !HI" --+ IHIn is IHI-linear exactly when it commutes with 

j: cp(vj) = cp(v)j. If v = VI + jV2' then V' j = - V2 + jVI' so multiplication by 

j takes C:) to (~ ~ I) (:J. It follows that if J is the matrix ofthe preceding 

exercise, then 

GLnlHl = {A E GL2n lC: AJ = JA}. 

Those matrices with real determinant 1 form a subgroup SLnlHl. 

A Hermitian form (or "symplectic scalar product") on a quaternionic vector 

space V is an IR-bilinear form K: V x V --+ IHI that is conjugate IHI-linear in the 

first factor and IHI-linear in the second: K(vA., WJ.l) = IK(v, w)J.l, and satisfies 

K(w, v) = K(v, w). It is positive definite if K(v, v) > 0 for v "# O. (The conjugate 

I of a quaternion A. = a + bi + cj + dk is defined to be a - bi - cj - dk.) The 

standard Hermitian form on IHIn is LV;W;. The group of automorphisms of an 

n-dimensional quaternionic space preserving such a form is called the compact 

symplectic group and denoted Sp(n) or U H(n). The standard Hermitian form on 
IHIn is LV;W;. 

Exercise 7.4. Regarding Vas a complex vector space, show that every quater

nionic Hermitian form K has the form 

K(v, w) = H(v, w) + jQ(v, w), 

where H is a complex Hermitian form and Q is a skew-symmetric complex 

linear form on V, with Hand Q related by Q(v, w) = H(vj, w), and H satisfying 

the condition H(vj, wj) = H(v, w). Conversely, any such Hermitian H is the 

complex part of a unique K. If K is standard, so is H, and Q is given by the 

same matrix as in Exercise 7.3. Deduce that 

Sp(n) = U(2n) ('\ Sp2n iC. 

This shows that the two notions of "symplectic" are compatible. 

More generally, if K is not positive definite, but has signature (p, q), say the 

standard Lf=1 v;w; - Lf:;+1 V;W;, the automorphisms preserving it form a 

group Up,qlHl. Or if the form is a skew Hermitian form (satisfying the same 
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linearity conditions, but with K(w, v) = - K(v, w», the group is denoted 

U:n-o. 

Exercise 7.5. Identify, among all the real Lie groups described above, which 

ones are compact. 

Complex Lie Groups 

So far, all of our examples have been examples of real Lie groups. As for 

complex Lie groups, these are fewer in number. The general linear group GLnC 
is one, and again, all the elementary examples come to us as subgroups of the 

general linear group GLnC. There is, for example, the subgroup SOnC of 
automorphisms of an n-dimensional complex vector space V having deter

minant 1 and preserving a nondegenerate symmetric bilinear form Q (note 

that Q no longer has a signature); and likewise the subgroup SPnC of trans

formations of determinant 1 preserving a skew-symmetric bilinear form. 

Exercise 7.6. Show that the subgroup SU(n) c SLnC is not a complex Lie 

subgroup. (It is not enough to observe that the defining equations given above 

are not holomorphic.) 

Exercise 7.7. Show that none of the complex Lie groups described above is 

compact. 

We should remark here that both of these exercises are immediate con
sequences of the general fact that any compact complex Lie group is abelian; 

we will prove this in the next lecture. A representation of a complex Lie group 

G is a map of complex Lie groups from G to GL(V) = GLnC for an n
dimensional complex vector space V; note that such a map is required to be 
complex analytic. 

Remarks on Notation 

A common convention is to use a notation without subscripts or mention of 
ground field to denote the real groups: 

O(n), SO(n), SO(p, q), U(n), SU(n), SU(p, q), Sp(n) 

and to use subscripts for the algebraic groups GLn, SLn, SOn' and SPn' This, 

of course, introduces some anomalies: for example, SOnlR is SO(n), but SpnlR 
is not Sp(n); but some violation of symmetry seems inevitable in any notation. 

The notations GL(n, IR) or GL(n, C) are often used in place of our GLnlR or 

GLnC, and similarly for SL, SO, and Sp. 

Also, where we have written SPZn, some write SPn' In practice, it seems that 

those most interested in algebraic groups or Lie algebras use the former 
notation, and those interested in compact groups the latter. Other common 

notations are U*(2n) in place of our GLnlHl, Sp(p, q) for our Up,qlHl, and 

0*(2n) for our U:IHI. 
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Exercise 7.8. Find the dimensions of the various real Lie groups GLnlR, SLnlR, 

Bn, Nn, SOnlR, SOk"IR, SP2nlR, U(n), SU(n), GLnC, SLnC, GLnlHl, and Sp(n) 

introduced above. 

§7.3. Two Constructions 

There are two constructions, in some sense inverse to one another, that arise 

frequently in dealing with Lie groups (and that also provide us with further 

examples of Lie groups). They are expressed in the following two statements. 

Proposition 7.9. Let G be a Lie group, H a connected manifold, and cp: H -+ G a 

covering space map.3 Let e' be an element lying over the identity e of G. Then 

there is a unique Lie group structure on H such that e' is the identity and cp is 

a map of Lie groups; and the kernel of cp is in the center of H. 

Proposition 7.10. Let H be a Lie group, and r c Z(H) a discrete subgroup of 

its center. Then there is a unique Lie group structure on the quotient group 

G = Hjr such that the quotient map H -+ G is a Lie group map. 

The proof ofthe second proposition is straightforward. To prove the first, one 

shows that the multiplication on G lifts uniquely to a map H x H -+ H which 

takes (e', e') to e', and verifies that this product satisfies the group axioms. In 

fact, it suffices to do this when H is the universal covering of G, for one can 

then apply the second proposition to intermediate coverings. 0 

Exercise 7.1l *. (a) Show that any discrete normal subgroup of a connected 

Lie group G is in the center Z(G). 

(b) If Z(G) is discrete, show that GjZ(G) has trivial center. 

These two propositions motivate a definition: we say that a Lie group map 

between two Lie groups G and H is an isogeny if it is a covering ' space map 

of the underlying manifolds; and we say two Lie groups G and Hare isogenous 

if there is an isogeny between them (in either direction). Isogeny is not an 

equivalence relation, but generates one; observe that every isogeny equiv

alence class has an initial member (that is, one that maps to every other one 

by an isogeny)-that is, just the universal covering space G of anyone-and, 

if the center of this universal cover is discrete, as will be the case for all our 

semisimple groups, a final object G/Z(G) as well. For any group G in such an 

equivalence class, we will call G the simply connected form of the group G, and 

GjZ(G) (ifit exists) the adjoint form (we will see later a more general definition 

of adjoint form). 

3 This means that f/J is a continuous map with the property that every point of G has a 
neighborhood U such that f/J-I(U) is a disjoint union of open sets each mapping homeomor
phically to U. 



102 7. Lie Groups 

Exercise 7.l2.1f H -+ G is a covering of connected Lie groups, show that Z(G) 

is discrete if and only if Z(H) is discrete, and then H/Z(H) = G/Z(G). There

fore, if Z(G) is discrete, the adjoint form of G exists and is G/Z(G). 

To apply these ideas to some ofthe examples discussed, note that the center 

ofSLn (over IR or q isjust the subgroup of multiples of the identity by an nth 

root of unity; the quotient may be denoted PSLnlR or PSLnC. In the complex 

case, PSLnC is isomorphic to the quotient of GLnC by its center C* of scalar 

matrices, and so one often writes PG Ln C instead of PSLn C. The center of the 

group SOn is the subgroup { ± I} when n is even, and trivial when n is odd; in 

the former case the quotient will be denoted PSOnlR or PSO.c. Finally the 

center of the group SP2n is similarly the subgroup {± I}, and the quotient is 

denoted PSP2nIR or PSP2nC. 

Exercise 7.13*. Realize PGL.C as a matrix group, i.e., find an embedding 

(faithful representation) PGLnC c... GLNC for some N. Do the same for the 

other quotients above. 

In the other direction, whenever we have a Lie group that is not simply 

connected, we can ask what its universal covering space is. This is, for example, 

how the famous spin groups arise: as we will see, the orthogonal groups SOnlR 

and SOnC have fundamental group 7L/2, and so by the above there exist 

connected, two-sheeted covers ofthese groups. These are denoted SpinnlR and 

Spin"C, and will be discussed in Lecture 20; for the time being, the reader may 

find it worthwhile (if frustrating) to try to realize these as matrix groups. The 

last exercises of this section sketch a few steps in this direction which can be 

done now by hand. 

Exercise 7.14. Show that the universal covering of U(n) can be identified 

with the subgroup of the product U(n) x IR consisting of pairs (g, t) with 
det(g) = eni,. 

Exercise 7.15. We have seen in Exercise 7.4 that 

SU(2) = Sp(2) = {q E D-O : qq = 1}. 

Identifying 1R3 with the imaginary quaternions (with basis i, j, k), show that, 

for qq = 1, the map V 1-+ qvq maps 1R3 to itself, and is an isometry. Verify that 

the resulting map 

SU(2) = Sp(2) -+ SO(3) 

is a 2: 1 covering map. Since the equation qq = 1 describes a 3-sphere, SU(2) 

is the universal covering of SO(3); and SO(3) is the adjoint form of SU (2). 

Exercise 7.16. Let M2C = C4 be the space of 2 x 2 matrices, with symmetric 

form Q(A, B) = t Trace(A~), where ~ is the adjoint of the matrix B; the 
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quadratic form associated to Q is the determinant. For g and h in SL2C, the 

mapping A f-+ gAh- 1 is in S04 C. Show that this gives a 2: 1 covering 

SL2 C x SL2 C ~ S04C, 

which, since SL2 C is simply connected, realizes the universal covering of 

S04C. 

Exercise 7.17. Identify C3 with the space of traceless matrices in M2C, so 
g E SL2 C acts by A f-+ gAg-I. Show that this gives a 2 : 1 covering 

SL2 C -+ S03 C, 

which realizes the universal covering of S03 C. 



LECTURE 8 

Lie Algebras and Lie Groups 

In this crucial lecture we introduce the definition ofthe Lie algebra associated to a Lie 

group and its relation to that group. All three sections are logically necessary for what 

follows; §8.l is essential. We use here a little more manifold theory: specifically, the 

differential of a map of manifolds is used in a fundamental way in §8.l, the notion of 

the tangent vector to an arc in a manifold is used in §8.2 and §8.3, and the notion of a 

vector field is introduced in an auxiliary capacity in §8.3. The Campbell-Hausdorff 

formula is introduced only to establish the First and Second Principles of §8.l below; 

if you are willing to take those on faith the formula (and exercises dealing with it) can 

be skimmed. Exercises 8.27-8.29 give alternative descriptions of the Lie algebra 

associated to a Lie group, but can be skipped for now. 

§8.l: Lie algebras: motivation and definition 

§8.2: Examples of Lie algebras 

§8.3: The exponential map 

§8.1. Lie Algebras: Motivation and Definition 

Given that we want to study the representations of a Lie group, how do we 
go about it? As we have said, the notions of generators and relations is hardly 
relevant here. The answer, of course, is that we have to use the continuous 
structure of the group. The first step in doing this is 

Exercise 8.1. Let G be a connected Lie group, and U c G any neighborhood 
of the identity. Show that U generates G. 

This statement implies that any map p: G -+ H between connected Lie 
groups will be determined by what it does on any open set containing the 
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identity in G, i.e., p is determined by its germ at e E G. In fact, we can extend 

this idea a good bit further: later in this lecture we will establish the 

First Principle: Let G and H be Lie groups, with G connected. A map p: G -+ H 

is uniquely determined by its differential dPe: YeG -+ YeH at the identity. 

This is, of course, great news: we can completely describe a homomorphism 
of Lie groups by giving a linear map between two vector spaces. It is not really 

worth that much, however, unless we can give at least some answer to the 

next, obvious question: which maps between these two vector spaces actually 

arise as differentials of group homomorphisms? The answer to this is expressed 
in the Second Principle below, but it will take us a few pages to get there. To 

start, we have to ask ourselves what it means for a map to be a homomor
phism, and in what ways this may be reflected in the differential. 

To begin with, the definition of a homomorphism is simply a rcoo map p 

such that 

p(gh) = p(g) . p(h) 

for all g and h in G. To express this in a more confusing way, we can say that 
a homomorphism respects the action of a group on itself by left or right multi

plication: that is, for any g E G we denote by mg: G -+ G the differentiable map 
given by multiplication by g, and observe that a rcoo map p: G -+ H of Lie 

groups will be a homomorphism if it carries mg to mp(g) in the sense that the 
diagram 

commutes. 

G ------+ H 
p 

The problem with this characterization is that, since the maps mg have no 

fixed points, it is hard to associate to them any operation on the tangent space 

to G at one point. This suggests looking, not at the difIeomorphisms mg, but 
at the automorphisms of G given by conjugation. Explicitly, for any g E G we 
define the map 

by 

('I'g is actually a Lie group map, but that is not relevant for our present 

purposes.) It is now equally the case that a homomorphism p respects the action 

of a group G on itself by conjugation: that is, it will carry 'I'g into 'I'P(g) in the 
sense that the diagram 
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G--+ H 
p 

commutes. We have, in other words, a natural map 

'1': G -+ Aut(G). 

The advantage of working with 'I'g is that it fixes the identity element e E G; 

We can therefore extract some of its structure by looking at its differential at 

e: We set 

(8.2) 

This is a representation 

Ad: G -+ Aut(T.,G) (8.3) 

of the group G on its own tangent space, called the adjoint representation of 

the group. This gives a third characterization 1 : a homomorphism p respects the 

adjoint action of a group G on its tangent space T.,G at the identity. In other 

words, for any g E G the actions of Ad(g) on T.,G and Ad(p(g)) on T.,H must 

commute with the differential (dP)e: TeG -+ T.,H, i.e., the diagram 

T.,G ~ T.,H 

"") j j ",,(0" 

T.,G ~ T.,H 

commutes; equivalently, for any tangent vector v E T.,G, 

dp(Ad(g)(v)) = Ad(p(g))(dp(v)). (8.4) 

This is nice, but does not yet answer our question, for preservation of the 

adjoint representation Ad: G -+ Aut(T.,G) still involves the map p on the group 

G itself, and so is not purely a condition on the differential (dP)e' We have 

instead to go one step further, and take the differential of the map Ad. The 

group Aut(T.,G) being just an open subset of the vector space of endomor

phisms of T.,G, its tangent space at the identity is naturally identified with 

End(T.,G); taking the differential of the map Ad We arrive at a map 

ad: T.,G -+ End(7;;G). (8.5) 

This is essentially a trilinear gadget on the tangent space T.,G; that is, we can 

view the image ad(X)(Y) of a tangent vector Y under the map ad(X) as a 

I "Characterization" is not the right word here (or in the preceding case), since we do not 
mean an equivalent condition, but rather something implied by the condition that p be a 

homomorphism. 
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function of the two variables X and Y, so that we get a bilinear map 

T.G x T.G -+ T.G. 

107 

We use the notation [, ] for this bilinear map; that is, for a pair of tangent 

vectors X and Y to G at e, we write 

[X, Y] ~ ad(X)(Y). (8.6) 

As desired, the map ad involves only the tangent space to the group G at 

e, and so gives us our final characterization: the differential (dP)e of a homo

morphism P on a Lie group G respects the adjoint action of the tangent space 

to G on itself. Explicitly, the fact that P and dPe respect the adjoint represen

tation implies in turn that the diagram 

T.G~ T.H 

."., j j ... ,,,.)) 
T.H 

commutes; i.e., for any pair of tangent vectors X and Y to G at e, 

(8.7) 

or, equivalently, 

(8.8) 

All this may be fairly confusing (if it is not, you probably do not need to 

be reading this book). Two things, however, should be borne in mind. They 

are: 

(i) It is not so bad, in the sense that we can make the bracket operation, 

as defined above, reasonably explicit. We do this first for the general linear 

group G = GLnlR. Note that in this case conjugation extends to the ambient 

linear space E = End(lRn) = MnlR ofGLnlR by the same formula: Ad(g)(M) = 

gMg-1, and this ambient space is identified with the tangent space TeG; 

differentiation in E is usual differentiation of matrices. For any pair of tangent 

vectors X and Y to GLnlR at e, let y: I -+ G be an arc with y(O) = e and tangent 

vector y'(O) = X. Then our definition of [X, Y] is that 

[X, Y] = ad(X)(Y) = :tlt=o (Ad(y(t))(Y)). 

Applying the product rule to Ad(y(t))(Y) = y(t) Yy(t(1, this is 

= y'(O)· y. y(O) + y(O)· y. (_y(0(1. 1"(0)· y(0(1) 

=X·Y- Y·X, 

which, of course, explains the bracket notation. In general, any time a Lie 

group is given as a subgroup ofa general linear group GLnlR, we can view its 
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tangent space T" G at the identity as a subspace of the space of endomorphisms 
of ~n ; and since bracket is preserved by (differentials of) maps of Lie groups, 

the bracket operation on T"G will coincide with the commutator. 
(ii) Even if it were that bad, it would be worth it. This is because it turns out 

that the bracket operation is exactly the answer to the question we raised 
before. Precisely, later in this lecture we will prove the 

Second Principle: Let G and H be Lie groups, with G connected and simply 

connected. A linear map T"G -+ T"H is the differential of a homomorphism 
p: G -+ H if and only if it preserves the bracket operation, in the sense of (8.8) 

above. 

We are now almost done: maps between Lie groups are classified by maps 
between vector spaces preserving the structure of a bilinear map from the 

vector space to itself. We have only one more question to answer: when does 

a vector space with this additional structure actually arise as the tangent space 
at the identity to a Lie group, with the adjoint or bracket product? Happily, 

we have the answer to this as well. First, though it is far from clear from our 
initial definition, it follows from our description of the bracket as a commu

tator that the bracket is skew-symmetric, i.e, [X, Y] = - [Y, X]. Second, it 

likewise follows from the description of [X, Y] as a commutator that it 
satisfies the Jacobi identity: for any three tangent vectors X, Y, and Z, 

[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = o. 

We thus make the 

Definition 8.9. A Lie algebra 9 is a vector space together with a skew-symmetric 
bilinear map 

[, ] : 9 x 9 -+ 9 

satisfying the Jacobi identity. 

We should take a moment out here to make one important point. Why, 

you might ask, do we define the bracket operation in terms of the relatively 
difficult operations Ad and ad, instead of just defining [X, Y] to be the 
commutator X· Y - y. X? The answer is that the "composition" X· Y of 

elements of a Lie algebra is not well defined. Specifically, any time we embed 
a Lie group G in a general linear group GL(V), we get a corresponding 

embedding of its Lie algebra 9 in the space End(V), and can talk about the 

composition X· Y E End(V) of elements of 9 in this context; but it must be 
borne in mind that this composition X . Y will depend on the embedding of 

g, and for that matter need not even be an element of g. Only the commutator 
X· Y - y. X is always an element of g, independent ofthe representation. The 

terminology sometimes heightens the confusion: for example, when we speak 
of embedding a Lie algebra in the algebra End(V) of endomorphisms of V, the 

word algebra may mean two very different things. In general, when we want 
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to refer to the endomorphisms of a vector space V (resp. IRn) as a Lie algebra, 

we will write gl(V) (resp. glnlR) instead of End(V) (resp. MnlR). 

To return to our discussion of Lie algebras, a map of Lie algebras is a linear 

map of vector spaces preserving the bracket, in the sense of (8.8); notions like 

Lie subalgebra are defined accordingly. We note in passing one thing that will 

turn out to be significant: the definition of Lie algebra does not specify the 

field . Thus, we have real Lie algebras, complex Lie algebras, etc., all defined 

in the same way; and in addition, given a real Lie algebra 9 we may associate 

to it a complex Lie algebra, whose underlying vector space is 9 ® C and whose 

bracket operation is just the bracket on 9 extended by linearity. 

Exercise 8.10*. The skew-commutativity and Jacobi identity also follow from 

the naturality of the bracket (8.8), without using an embedding in gl( V): 

(a) Deduce the skew-commutativity [X, X] = 0 from that fact that any X can 

be written the image of a vector by dp. for some homomorphism p: IR -4 G. 
(See §8.3 for the existence of p.) 

(b) Given that the bracket is skew-commutative, verify that the Jacobi identity 

is equivalent to the assertion that 

ad = d(Ad).: 9 -4 End(g) 

preserves the bracket. In particular, ad is a map of Lie algebras. 

To sum up our progress so far: taking for the moment on faith the state

ments made, we have seen that 

(i) the tangent space 9 at the identity to a Lie group G is naturally endowed 

with the structure of a Lie algebra; 

(ii) if G and H are Lie groups with G connected and simply connected, 

the maps from G to H are in one-to-one correspondence with maps of 

the associated Lie algebras, by associating to p: G -4 H its differential 

(dp).: 9 -4 g. 

Of course, we make the 

Definition 8.11. A representation of a Lie algebra 9 on a vector space V is 
simply a map of Lie algebras 

p: 9 -4 gl(V) = End(V), 

i.e., a linear map that preserves brackets, or an action of 9 on V such that 

[X, Y](v) = X(Y(v)) - Y(X(v)). 

Statement (ii) above implies in particular that representations of a connected 

and simply connected Lie group are in one-to-one correspondence with repre-
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sentations of its Lie algebra. This is, then, the first step of the series of 

reductions outlined in the introduction to Part II. 
At this point, a few words are in order about the relation between repre

sentations of a Lie group and the corresponding representations of its Lie 

algebra. The first remark to make is about tensors. Recall that if V and Ware 

representations of a Lie group G, then we define the representation V ® W to 

be the vector space V ® W with the action of G described by 

g(v ® w) = g(v) ® g(w). 

The definition for representations of a Lie algebra, however, is quite different. 

For one thing, if 9 is the Lie algebra of G, so that the representation of G on 

the vector spaces V and W induces representations of 9 on these spaces, we 

want the tensor product of the representations V and W of 9 to be the 
representation induced by the action of G on V ® Wabove. But now suppose 

that {y,} is an arc in G with Yo = e and tangent vector Yo = X E g . Then by 
definition the action of X on V is given by 

X(v) = dd 1 y,(v) 
t ,=0 

and similarly for w E W; it follows that the action of X on the tensor product 

v® w is 

X(v ® w) = dd 1 (y,(v) ® y,(w)) 
t '=0 

= (:tl,=o y,(V)) ® w + v ® (:tl,=o y,(W)), 

so 

X(v ® w) = X(v) ® w + v ® X(w). (8.12) 

This, then, is how we define the action of a Lie algebra 9 on the tensor product 
of two representations of g. This describes as well other tensors: for example, 
if V is a representation of the group G, v E V is any vector and v2 E Sym2 V 

its square, then for any 9 E G, 

g(V2) = g(V)2. 

On the other hand, if V is a representation of the Lie algebra 9 and X Egis 
any element, we have 

X(v 2 ) = 2· V· X(v). (8.13) 

One further example: if p: G ~ GL(V) is a representation of the group G, the 
dual representation p': G ~ GL(V*) is defined by setting 

p'(g) = 'p(g-l): V* ~ V*. 

Differentiating this, we find that if p: 9 ~ g(V) is a representation of a Lie 
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algebra g, the dual representation of 9 on V* will be given by 

p'(X) = 'p( -X) = -'p(X): V* - V*. 
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(8.14) 

A second and related point to be made concerns terminology. Obviously, 

when we speak of the action of a group G on a vector space V preserving some 

extra structure on V, we mean that literally: for example, if we have a quadratic 

form Q on V, to say that G preserves Q means just that 

Q(g(v), g(w» = Q(v, w), \lg E G and v, WE V. 

Equivalently, we mean that the associated action of G on the vector space 

Sym2 V* fixes the element Q E Sym2 V*. But by the above calculation, the 

action of the associated Lie algebra 9 on V satisfies 

Q(v, X(w» + Q(X(v), w) = 0, \IX E 9 and v, WE V (8.15) 

or, equivalently, Q(v, X(v» = ° for all X E 9 and v E V; in other words, the 

induced action on Sym 2 V* kills the element Q. By way of terminology, then, 

we will in general say that the action of a Lie algebra on a vector space preserves 

some structure when a corresponding Lie group action does. 

The next section will be spent in giving examples. In §8.3 we will establish 

the basic relations between Lie groups and their Lie algebras, to the point 

where we can prove the First and Second Principles above. The further 

statement that any Lie algebra is the Lie algebra of some Lie group will follow 

from the statement (see Appendix E) that every Lie algebra may be embedded 

in glnlR. 

Exercise 8.16*. Show that if G is connected the image of Ad: G - GL(g) is the 

adjoint form of the group G when that exists. 

Exercise 8.17*. Let V be a representation of a connected Lie group G and 

p: 9 - End(V) the corresponding map of Lie algebras. Show that a subspace 

W of V is invariant by G if and only if it is carried into itself under the action 

of the Lie algebra g, i.e., p(X)(W) c W for all X in g. Hence, V is irreducible 

over G if and only if it is irreducible over g. 

§8.2. Examples of Lie Algebras 

We start with the Lie algebras associated to each of the groups mentioned in 

Lecture 7. Each of these groups is given as a subgroup ofGL(V) = GLnlR, so 

their Lie algebras will be subspaces of End(V) = glnlR. 

Consider first the special linear group SLnlR. If {A,} is an arc in SLnlR with 

Ao = I and tangent vector A~ = X at t = 0, then by definition we have for 

any basis e l , ••. , en of V = IRn, 
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Taking the derivative and evaluating at t = 0 we have by the product rule 

0= dd I (At(e 1 ) A .. • A At(en» 
t t=O 

= Lei A ... A X(eJ A ... A en 

= Trace(X)' (e 1 A ... A en). 

The tangent vectors to SLn IR are thus all endomorphisms of trace 0; comparing 

dimensions we can see that the Lie algebra sInlR is exactly the vector space of 

traceless n x n matrices. 

The orthogonal and symplectic cases are somewhat simpler. For example, 

the orthogonal group On IR is defined to be the automorphisms A of an 

n-dimensional vector space V preserving a quadratic form Q, so that if {At} 

is an arc in OnlR with Ao = I and Ao = X we have for every pair of vectors v, 

WEV 

Q(At(v), At(w» = Q(v, w). 

Taking derivatives, we see that 

Q(X(v), w) + Q(v, X(w» = 0 (8.18) 

for all v, W E V; this is exactly the condition that describes the orthogonal Lie 

algebra SOn IR = On IR. In coordinates, if the quadratic form Q is given on V = IRn 

as 

Q(v, w) = tV'M'w (8.19) 

for some symmetric n x n matrix M, then as we have seen the condition on 

A E GLnlR to be in OnlR is that 

tA . M . A = M. (8.20) 

Differentiating, the condition on an n x n matrix X to be in the Lie algebra 

SOn IR of the orthogonal group is that 

tX·M + M·X = O. (8.21) 

Note that if M is the identity matrix-i.e., Q is the "standard" quadratic 

form Q(v, w) = tv' w on IRn-then this says that sOnlR is the subspace of skew
symmetric n x n matrices. To put it intrinsically, in terms ofthe identification 

of V with V* given by the quadratic form Q, and the consequent identification 

End(V) = V ® V* = V ® V, the Lie algebra sOnlR c End(V) is just the sub

space 1\2 V c V ® V of skew-symmetric tensors: 

sOnlR = Nv c End(V) = V® v. (8.22) 

All of the above, with the exception of the last paragraph, works equally 

well to describe the Lie algebra SP2n IR of the Lie group SP2n IR of transforma

tions preserving a skew-symmetric bilinear form Q; that is, SP2nIR is the 

subspace of endomorphisms of V satisfying (8.18) for every pair of vectors v, 

WE V, or, if Q is given by a skew-symmetric 2n x 2n matrix M as in (8.19), the 
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space of matrices satisfying (8.21). The one statement that has to be substan

tially modified is the last one of the last paragraph: because Q is skew

symmetric, condition (8.18) is equivalent to saying that 

Q(X(v), w) = Q(X(w), v) 

for all v, WE V; thus, in terms of the identification of V with V* given 

by Q, the Lie algebra sP2nIR C End(V) = V ® V* = V ® V is the subspace 
Sym 2 V c V® V: 

SP2nIR = Sym 2 V c End(V) = V ® v. (8.23) 

Exercise 8.24*. With Q a standard skew form, say of Exercise 7.3, describe 

SP2nIR and its Lie algebra SP2nIR (as subgroup of GL2nIR and subalgebra of 

gI2nlR). Do a corresponding calculation for SOk" IR. 

One more similar example is that of the Lie algebra Un of the unitary group 

U(n); by a similar calculation we find that the Lie algebra of complex linear 

endomorphisms ofe" preserving a Hermitian inner product H is just the space 

of matrices X satisfying 

H(X(v), w) + H(v, X(w)) = 0, "Iv, W E V; 

if H is given by H(v, w) = IV ' w, this amounts to saying that X is conjugate 

skew-symmetric, i.e., that IX = - X. 

Exercise 8.25. Find the Lie algebras of the real Lie groups SLn C and SLn iHJ

the elements in GLniHJ whose real determinant is 1. 

Exercise 8.26. Show that the Lie algebras of the Lie groups Bn and Nn intro

duced in §7.2 are the algebra bnlR of upper triangular n x n matrices and the 

algebra "n IR of strictly upper triangular n x n matrices, respectively. 

If G is a complex Lie group, its Lie algebra is a complex Lie algebra. Just 

as in the real case, we have the complex Lie algebras glnC, slnC, sOmC, and 

SP2nC of the Lie groups GLnC, SLnC, SOmC, and SP2nC, 

Exercise 8.27. Let A be any (real or complex) algebra, not necessarily finite 

dimensional, or even associative. A derivation is a linear map D: A -+ A satis

fying the Leibnitz rule D(ab) = aD (b) + D(a)b. 

(a) Show that the derivations Der(A) form a Lie algebra under the bracket 

[D, E] = DoE - Eo D. If A is finite dimensional, so is Der(A). 

(b) The group of automorphisms of A is a closed subgroup G of the group 

GL(A) of linear automorphisms of A. Show that the Lie algebra of G is 

Der(A). 

(c) If the algebra A is a Lie algebra, the map A -+ Der(A), X H Dx, where 

Dx(Y) = [X, Y], is a map of Lie algebras. 
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Exercise 8.28*. If 9 is a Lie algebra, the Lie algebra automorphisms of 9 form 

a Lie subgroup Aut(g) of the general linear group GL(g). 

(a) Show that the Lie algebra of Aut(g) is Der(g). If G is a simply connected 

Lie group with Lie algebra g, the map Aut(G) ~ Aut(g) by cp H dcp is 

one-to-one and onto, giving Aut(G) the structure of a Lie group with Lie 

algebra Der(g). 
(b) Show that the automorphism group of any connected Lie group is a Lie 

subgroup of the automorphism group of its Lie algebra. 

Exercise 8.29*. For any manifold M, the Cel) vector fields on M form a Lie 

algebra o(M), as follows: a vector field v can be identified with a derivation of 
the ring A of COO functions on M, with v(f) the function whose value at a 

point x of M is the value of the tangent vector Vx on f at x. Show that the 
vector fields on M form a Lie algebra, in fact a Lie subalgebra of the Lie 
algebra Der(A). If a Lie group G acts on M, the G-invariant vector fields form 

a Lie subalgebra oGM of o(M). If the action is transitive, the invariant vector 

fields form a finite-dimensional Lie algebra. 
If G is a Lie group, oG(G) = T.,G becomes a Lie algebra by the above 

process. Show that this bracket agrees with that defined using the adjoint map 
(8.6). This gives another proof that the bracket is skew-symmetric and satisfies 

Jacobi's identity. 

§8.3. The Exponential Map 

The essential ingredient in studying the relationship between a Lie group G 

and its Lie algebra 9 is the exponential map. This may be defined in very 

straightforward fashion, using the notion of one-parameter subgroups, which 
we study next. Suppose that X Egis any element, viewed simply as a tangent 

vector to G at the identity. For any element g E G, denote by mg: G ~ G the 
map of manifolds given by multiplication on the left by g. Then we can define 

a vector field Vx on all of G simply by setting 

vx(g) = (mg)*(X). 

This vector field is clearly invariant under left translation (i.e., it is carried 
into itself under the diffeomorphism mg for aU g); and it is not hard to see that 

this gives an identification of 9 with the space of all left-invariant vector fields 
on G. Under this identification, the bracket operation on the Lie algebra 9 

corresponds to Lie bracket of vector fields; indeed, this may be adopted as the 
definition of the Lie algebra associated to a Lie group (cf. Exercise 8.29). For 
our present purposes, however, all we need to know is that Vx exists and is 

left-invariant. 

Given any vector field v on a manifold M and a point p E M, a basic 
theorem from differential equations allows us to integrate the vector field. This 
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gives a differentiable map cp : I -+ M, defined on some open interval I con

taining 0, with cp(O) = p, whose tangent vector at any point is the vector 

assigned to that point by v, i.e., such that 

cp'(t) = v(cp(t)) 

for all t in I. The map cp is uniquely characterized by these properties. Now 

suppose the manifold in question is a Lie group G, the vector field the field 

Vx associated to an element X E g, and p the identity. We arrive then at a map 

cp : I -+ G; we claim that, at least where cp is defined, it is a homomorphism, i.e., 

cp(s + t) = cp(s)cp(t) whenever s, t, and s + t are in I. To prove this, fix sand 

let t vary; that is, consider the two arcs ex and P given by ex(t) = cp(s) · cp(t) and 

P(t) = cp(s + t). Of course, ex(O) = P(O); and by the in variance of the vector field 

vx, we see that the tangent vectors satisfy ex' (t) = vx(ex(t)) and P'(t) = vx(P(t)) 

for all t. By the uniqueness of the integral curve of a vector field on a manifold, 

we deduce that ex(t) = P(t) for all t. 
From the fact that cp(s + t) = cp(s)cp(t) for all sand t near 0, it follows that 

cp extends uniquely to all of IR, defining a homomorphism 

CPx : IR -+ G 

with CPx(t) = vx(cp Xt) = (m.,(f»).(X) for all t . 

Exercise 8.30. Establish the product rule for derivatives of arcs in a Lie group 

G: if ex and P are arcs in G and y(t) = ex(t) · P(t), then 

y'(t) = dm«(f)(p'(t)) + dn/l(f)(ex'(t)), 

where for any g E G, the map mg (resp. ng): G -+ G is given by left (resp. right) 

multiplication by g. Use this to give another proofthat cp is a homomorphism. 

Exercise 8.31. Show that CPx is uniquely determined by the fact that it is a 

homomorphism of IR to G with tangent vector CPx(O) at the identity equal to 

X. Deduce that if t/I : G -+ H is a map of Lie groups, then cp",.x = t/I 0 CPx' 

The Lie group map CPx: IR -+ G is called the one-parameter subgroup of G 

with tangent vector X at the identity. The construction of these one-parameter 

subgroups for each X amounts to the verification of the Second Principle of 

§8.l for homomorphisms from IR to G. The fact that there exists such a 
one-parameter subgroup of G with any given tangent vector at the identity is 

crucial. For example, it is not hard to see (we will do this in a moment) that 

these one-parameter subgroups fill up a neighborhood of the identity in G, 

which immediately implies the First Principle of §8.1. To carry this out, we 

define the exponential map 

exp: g -+ G 

by 

exp(X) = CPx(l). (8.32) 
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Note that by the uniqueness of l{)x, we have 

l{)().X)(t) = l{)x(At); 

so that the exponential map restricted to the lines through the origin in 9 

gives the one-parameter subgroups of G. Indeed, Exercise 8.31 implies the 

characterization: 

Proposition 8.33. The exponential map is the unique map from 9 to G taking 0 

to e whose differential at the origin 

(exp*)o: Tog = 9 ~ Te G = 9 

is the identity, and whose restrictions to the lines through the origin in 9 are 

one-parameter subgroups of G. 

This in particular implies (cf. Exercise 8.31) that the exponential map is 

natural, in the sense that for any map t/J: G ~ H of Lie groups the diagram 

commutes. 

1/1. 
---+ 

Now, since the differential of the exponential map at the origin in 9 is an 

isomorphism, the image of exp will contain a neighborhood of the identity in 

G. If G is connected, this will generate all of G; from this follows the First 

Principle: if G is connected, then the map t/J is determined by its differential (dt/J)e 

at the identity. 

Using (8.32), we can write down the exponential map very explicitly in the 

case ofGLn~' and hence for any subgroup ofGLn~' We just use the standard 

power series for the function eX, and set, for X E End(V), 

X2 X3 

exp(X) = 1 + X + 2 + 6" + .. .. (8.34) 

Observe that this converges and is invertible, with inverse exp( - X). Clearly, 

the differential of this map from '9 to G at the origin is the identity; and by 

the standard power series computation, the restriction of the map to any line 

through the origin in 9 is a one-parameter subgroup of G. Thus, the map 

coincides with the exponential as defined originally; and by naturality the 

same is true for any subgroup of G. (Note that, as we have pointed out, the 

individual terms in the expression on the right of (8.34) are very much depen

dent of the particular embedding of G in a general linear group GL(V) and 

correspondingly of gin End(V), even though the sum on the right in (8.34) is 
not.) 

This explicit form of the exponential map allows us to give substance to 
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the assertion that "the group structure of G is encoded in the Lie algebra." 
Explicitly, we claim that not only do the exponentials exp(X) generate G, but 

for X and Y in a sufficiently small neighborhood of the origin in g, we can 

write down the product exp(X) ' exp(Y) as an exponential. To do this, we 

introduce first the "inverse" ofthe exponential map: for g e G c GLnlR, we set 

(g - N (g - W 
log(g) = (g-/)- 2 + 3 - " ·eglnlR. 

Of course, this will be defined only for g sufficiently close to the identity in G; 

but where it is defined it will be an inverse to the exponential map. 
Now, we define a new bilinear operation on glnlR: we set 

X * Y = 10g(exp(X)·exp(Y)). 

We have to be careful what we mean by this, of course; we substitute for g in 

the expression above for log (g) the quantity 

exp(X)'exp(Y) = (I + X + ~2 + "'}(I + Y + ~2 + .. . ) 

(
X2 Y2) 

= 1 + (X + Y) + T + X · Y + T + ' '', 

being careful, of course, to preserve the order of the factors in each product. 

Doing this, we arrive at 

( X + y)2 (X2 Y2)) 
X * Y = (X + Y) + 2 + T + X · Y + T + .. . 

= X + Y + HX, Y] + .. .. 

Observe in particular that the terms of degree 2 in X and Y do not in

volve the squares of X and Y or the product X · Y alone, but only the com
mutator. In fact, this is true of each term in the formula, i.e., the quantity 

10g(exp(X) ' exp(Y)) can be expressed purely in terms of X, Y, and the bracket 
operation; the resulting formula is called the Campbell-Hausdorff formula 

(although the actual formula in closed form was given by Dynkin). To degree 
three, it is 

X * Y = X + Y + HX, Y] ± l2[X, [X, Y]] ± l2[Y, [Y, X]] + .... 

Exercise 8.35*. Verify (and find the correct signs in) the cubic term of the 
Campbell-Hausdorff formula. 

Exercise 8.36. Prove the assertion of the last paragraph that the power series 

log( exp(X) ' exp( Y)) can be expressed purely in terms of X, Y, and the bracket 
operation. 

Exercise 8.37. Show that for X and Y sufficiently small, the power series 

10g(exp(X) ' exp(Y)) converges. 
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Exercise 8.38*. (a) Show that there is a constant C such that for X, Y E gIn' 

X * Y = X + Y + [X, Y] + E, where IIEII ;:5; C(IIXII + II YII)3. 

(b) Show that exp(X + Y) = limn .... '" (exp(X I n)' exp( Yln»n. 

(c) Show that 

exp([X, Y]) = !~~ (exp(~}exp(f}exp( - ~}exp( -f))"' 

Exercise 8.39. Show that if G is a subgroup of GLnlR, the elements of its 

Lie algebra are the "infinitesimal transformations" of G in the sense of von 

Neumann, i.e., they are the matrices in glnlR which can be realized as limits 

I. At - I 
Im--, 
t .... O St 

At E G, St > 0, et -+ 0. 

Exercise 8.40. Show that exp is surjective for G = GLnC but not for G = GL; IR 
if n > 1, or for G = SL2 C. 

By the Campbell-Hausdorff formula, we can not only identify all the 

elements of G in a neighborhood of the identity, but we can also say what their 

pairwise products are, thus making precise the sense in which 9 and its bracket 

operation determines G and its group law locally. Of course, we have not 

written a closed-form expression for the Campbell-Hausdorff formula; but, 

as we will see shortly, its very existence is significant. (For such a closed form, 

see [Se1, I§4.8].) 

We now consider another very natural question, namely, when a vector 

subspace I) egis the Lie algebra of (i.e., tangent space at the identity to) an 

immersed subgroup of G. Obviously, a necessary condition is that I) is closed 

under the bracket operation; we claim here that this is sufficient as well: 

Proposition 8.41. Let G be a Lie group, 9 its Lie algebra, and I) ega Lie 

subalgebra. Then the subgroup of the group G generated by exp(l) is an 

immersed subgroup H with tangent space 'reH = I). 

PROOF. Note that the subgroup generated by exp(l) is the same as the sub

group generated by exp(U), where U is any neighborhood of the origin in I). It 
will suffice, then (see Exercise 8.42), to show that the image of I) under the 

exponential map is "locally" closed under multiplication, i.e., that for a suffi

ciently small disc.::1 c g, the product exp(.::1) · exp(.::1) (that is, the set of pairwise 

products exp(X) ' exp(Y) for X, Y E .::1) is contained in the image of I) under 

the exponential map. 

We will do this under the hypothesis that G may be realized as a subgroup 

of a general linear group GLn IR, so that we can use the formula (8.34) for the 

exponential map. This is a harmless assumption, given the statement (to be 

proved in Appendix E) that any finite-dimensional Lie algebra may be 
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embedded in the Lie algebra glnlR: the subgroup of GLnlR generated by 

exp(g) will be a group isogenous to G, and, as the reader can easily check, 

proving the proposition for a group isogenous to G is equivalent to proving 

it for G. 

It thus suffices to prove the assertion in case the group G is GLnlR. But this 

is exactly the content of the Campbell-Hausdorff formula. 0 

When applied to an embedding of a Lie algebra 9 into gIn' we see, in 

particular, that every finite-dimensional Lie algebra is the Lie algebra of a Lie 

group. From what we have seen, this Lie group is unique if we require it to be 

simply connected, and then all others are obtained by dividing this simply 

connected model by a discrete subgroup of its center. 

Exercise 8.42*. Let Go = exp(L1), where L1 is a disk centered at the origin in g, 

and let Ho = exp(L1 n ~). Show that GOl = Go, HOl = Ho, and Ho . Ho n Go = 
Ho. Use this to show that the subgroup H of G generated by Ho is an immersed 

Lie subgroup of G. 

As a fairly easy consequence of this proposition, we can finally give a proof 

of the Second Principle stated in §8.1, which we may restate as 

Second Principle. Let G and H be Lie groups with G simply connected, and let 

9 and ~ be their Lie algebras. A linear map ~ : 9 --+ ~ is the differential of a map 

A: G --+ H of Lie groups if and only if ~ is a map of Lie algebras. 

PROOF. To see this, consider the product G x H. Its Lie algebra is just 9 EB ~. 

Let j c 9 EB ~ be the graph of the map ~. Then the hypothesis that ~ is a map 

of Lie algebras is equivalent to the statement that j is a Lie subalgebra of 9 EB ~; 

and given this, by the proposition there exists an immersed Lie subgroup 

J c G x H with tangent space T"J = j. 
Look now at the map n: J --+ G given by projection on the first factor. By 

hypothesis, the differential of this map dn.: i --+ 9 is an isomorphism, so that 

the map J --+ G is an isogeny; but since G is simply connected it follows that 

n is an isomorphism. The projection '1: G ~ J --+ H on the second factor is then 

a Lie group map whose differential at the identity is ~. 0 

Exercise 8.43*. If 9 --+ g' is a homomorphism of Lie algebras with kernel ~, 

show that the kernel H of the corresponding map of simply connected Lie 

groups G --+ G' is a closed subgroup of G with Lie group ~. This does not 

extend to non-normal subgroups, i.e., to the situation when ~ is not the kernel 

of a homomorphism: give an example of an immersed subgroup of a simply 

connected Lie group G whose image in G is not closed. 

Exercise 8.44. Use the ideas of this lecture to prove the assertion that a 

compact complex connected Lie group G must be abelian: 
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(a) Verify that the map Ad: G -+ Aut(~G) c End(~G) is holomorphic, and, 
therefore (by the maximum principle), constant. 

(b) Deduce that if 'I'g is conjugation by g, then d'l'g is the identity, so 
'I'g(exp(X)) = exp(d'l'g(X)) = exp(X) for all X E ~G, which implies that 

G is abelian. 

(c) Show that the exponential map from ~G to G is surjective, with the kernel 

a lattice A, so G = ~G/A is a complex torus. 



LECTURE 9 

Initial Classification of Lie Algebras 

In this lecture we define various subclasses of Lie algebras: nilpotent, solvable, semi

simple, etc., and prove basic facts about their representations. The discussion is entirely 

elementary (largely because the hard theorems are stated without prooffor now); there 

are no prerequisites beyond linear algebra. Apart from giving these basic definitions, 

the purpose of the lecture is largely to motivate the narrowing of our focus to 

semisimple algebras that will take place in the sequel. In particular, the first part of 
§9.3 is logically the most important for what follows. 

§9.1: Rough classification of Lie algebras 

§9.2: Engel's Theorem and Lie's Theorem 

§9.3: Semisimple Lie algebras 

§9.4: Simple Lie algebras 

§9.1. Rough Classification of Lie Algebras 

We will give, in this section, a preliminary sort of classification of Lie algebras, 

reflecting the degree to which a given Lie algebra 9 fails to be abelian. As we 

have indicated, the goal ultimately is to narrow our focus onto semisimpie Lie 

algebras. 

Before we begin, two definitions, both completely straightforward: First, 

we define the center Z(g) of a Lie algebra 9 to be the subspace of 9 of elements 

X E 9 such that [X, Y] = 0 for all Y E g. Of course, we say 9 is abelian if all 

brackets are zero. 

Exercise 9.1. Let G be a Lie group, 9 its Lie algebra. Show that the subgroup 

of G generated by exponentiating the Lie subalgebra Z(g) is the connected 

component of the identity in the center Z(G) of G. 
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Next, we say that a Lie subalgebra 1) c 9 of a Lie algebra 9 is an ideal if it 

satisfies the condition 

[X, y] E 1) for all X E 1), Y E g. 

Just as connected subgroups of a Lie group correspond to subalgebras of its 

Lie algebra, the notion of ideal in a Lie algebra corresponds to the notion of 

normal subgroup, in the following sense: 

Exercise 9.2. Let G be a connected Lie group, H eGa connected subgroup 

and 9 and 1) their Lie algebras. Show that H is a normal subgroup of G if and 

only if 1) is an ideal of g. 

Observe also that the bracket operation on 9 induces a bracket on the quotient 

space g/1) if and only if 1) is an ideal in g. 

This, in turns, motivates the next bit of terminology: we say that a Lie 

algebra 9 is simple if dim 9 > 1 and it contains no nontrivial ideals. By the last 

exercise, this is equivalent to saying that the adjoint form G of the Lie algebra 

9 has no nontrivial normal Lie subgroups. 

Now, to attempt to classify Lie algebras, we introduce two descending 

chains of subalgebras. The first is the lower central series of subalgebras ~kg, 

defined inductively by 

~lg = [g, g] 

and 

~kg = [g, ~k-lg]. 

Note that the subalgebras ~kg are in fact ideals in g. The other series is called 

the derived series {~kg}; it is defined by 

~lg = [g, g] 

and 

Exercise 9.3. Use the Jacobi identity to show that ~kg is also an ideal in g. 

More generally, if 1) is an ideal in a Lie algebra g, show that [1), 1)] is also an 

ideal in g; hence all ~k1) are ideals in g. 

Observe that we have ~kg c ~kg for all k, with equality when k = 1; we 

often write simply ~g for 2fi1 9 = 2fil 9 and call this the commutator subalgebra. 

We now make the 

Definitions 

(i) We say that 9 is nilpotent if 2fik g = 0 for some k. 

(ii) We say that 9 is solvable if ~kg = 0 for some k. 
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(iii) We say that 9 is perfect if !ZIg = 9 (this is not a concept we will use much). 

(iv) We say that 9 is semisimple if 9 has no nonzero solvable ideals. 

The standard example of a nilpotent Lie algebra is the algebra "nlR of 

strictly upper-triangular n x n matrices; in this case the kth subalgebra ~kg 

in the lower central series will be the subspace "k+1,nlR of matrices A = (aj,i) 

such that aj,i = 0 whenever j S; i + k, i.e., that are zero below the diagonal 

and within a distance k of it in each column or row. (In terms of a complete 

flag {V;} as in §7.2, these are just the endomorphisms that carry V; into V;-k-1') 
It follows also that any subalgebra ofthe Lie algebra "nlR is likewise nilpotent; 

we will show later that any nilpotent Lie algebra is isomorphic to such a 

subalgebra. We will also see that if a Lie algebra 9 is represented on a vector 

space V, such that each element acts as a nilpotent endomorphism, there is a 

basis for V such that, identifying gI(V) with gInlR, 9 maps to the subalgebra 

"n IR c gIn IR. 
Similarly, a standard example of a solvable Lie algebra is the space bn IR of 

upper-triangular n x n matrices; in this Lie algebra the commutator ~bnlR is 

the algebra "nlR and the derived series is, thus, ~kbnlR = "2k-',nlR. Again, it 

follows that any subalgebra of the algebra bnlR is likewise solvable; and we 

will prove later that, conversely, any representation of a solvable Lie algebra 

on a vector space V consists, in terms of a suitable basis, entirely of upper

triangular matrices (i.e., given a solvable Lie subalgebra 9 of gl(V), there exists 

a basis for V such that under the corresponding identification of gI(V) with 

gInlR, the subalgebra 9 is contained in bnlR c glnlR). 

It is clear from the definitions that the properties of being nilpotent or 

solvable are inherited by subalgebras or homomorphic images. We will see 

that the same is true for semisimplicity in the case of homomorphic images, 

though not for subalgebras. 

Note that 9 is solvable if and only if 9 has a sequence of Lie subalgebras 
9 = go :::> g1 :::> ••• :::> gk = 0, such that gi+1 is an ideal in gj and gJgi+1 is 

abelian. Indeed, if this is the case, one sees by induction that ~jg c gj for all 

i. (One may also refine such a sequence to one where each quotient gJgi+1 is 

one dimensional.) It follows from this description that if ~ is an ideal in a Lie 

algebra g, then 9 is solvable if and only if ~ and g/~ are solvable Lie algebras. 
(The analogous assertion for nilpotent Lie algebras is false: the ideal "n is 

nilpotent in the Lie algebra bn of upper-triangular matrices, and the quotient 

is the nilpotent algebra bn of diagonal matrices, but bn is not nilpotent.) If 9 is 

the Lie algebra of a connected Lie group G, then 9 is solvable if and only if 

there is a sequence of connected subgroups, each normal in G (or in the next 

in the sequence), such that the quotients are abelian. 

In particular, the sum of two solvable ideals in a Lie algebra 9 is again 

solvable [note that (a + b)/b ~ a/(a II b)]. It follows that the sum of all solv

able ideals in 9 is a maximal solvable ideal, called the radical of 9 and denoted 
Rad(g). The quotient g/Rad(g) is semisimple. Any Lie algebra 9 thus fits into 

an exact sequence 
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0-+ Rad(g) -+ 9 -+ g/Rad(g) -+ 0 (9.4) 

where the first algebra is solvable and the last is semisimple. With this 

somewhat shaky justification (but see Proposition 9.17), we may say that to 

study the representation theory of an arbitrary Lie algebra, we have to 

understand individually the representation theories of solvable and semi

simple Lie algebras. Of these, the former is relatively easy, at least as regards 
irreducible representations. The basic fact about them-that any irreducible 

representation of a solvable Lie algebra is one dimensional- will be proved 
later in this lecture. The representation theory of semisimple Lie algebras, on 

the other hand, is extraordinarily rich, and it is this subject that will occupy 
us for most of the remainder of the book. 

Another easy consequence of the definitions is the fact that a Lie algebra 

is semisimple if and only if it has no nonzero abelian ideals. Indeed, the last 
nonzero term in the derived sequence of ideals .@kRad(g) would be an abelian 

ideal in 9 (cf. Exercise 9.3). A semisimple Lie algebra can have no center, so 

the adjoint representation of a semisimple Lie algebra is faitliful. 

It is a fact that the sequence (9.4) splits, in the sense that there are sub

algebras of 9 that map isomorphically onto gjRad(g). The existence of such 
a Levi decomposition is part of the general theory we are postponing. To show 
that an arbitrary Lie algebra has a faithful representation (Ado's theorem), one 

starts with a faithful representation of the center, and then builds a represen

tation of the radical step by step, inserting a string of ideals between the center 

and the radical. Then one uses a splitting to get from a faithful representation 
on the radical to some representation on all of g; the sum of this representation 

and the adjoint representation is then a faithful representation. See Appendix 
E for details. 

One reason for the terminology simple/semisimple will become clear later 
in this lecture, when we show that a semisimple Lie algebra is a direct sum of 
simple 'ones. 

Exercise 9.5. Every semisimple Lie algebra is perfect. Show that the Lie group 

of Euclidean motions of 1R3 has a Lie algebra 9 which is perfect, i.e., .@g = g, 

but 9 is not semisimple. More generally, if ~ is semisimple, and V is an 

irreducible representation of 1), the twisted product 

9 = {(v, X)lv E V, X E~} with [(v, X), (w, Y)] = (Xw - Yv, [X, Y]) 

is a Lie algebra with .@g = g, Rad(g) = V abelian, and g/Rad(g) = 1). 

Exercise 9.6. (a) Show that the following are equivalent for a Lie algebra g: (i) 

9 is nilpotent. (ii) There is a chain of ideals 9 = go ~ gl ~ . . . ~ gn = 0 with 

g;/gi+l contained in the center of g/gi+l' (iii) There is an integer n such that 

ad(Xd 0 ad(X2) 0'" 0 ad(XnHY) = [Xl' [X2 , .. . , [Xn' Y] ... ]] = 0 

for all Xl"'" Xn, Yin g. 
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(b) Conclude that a connected Lie group G is nilpotent if and only ifit can 

be realized as a succession of central extensions of abelian Lie groups. 

Exercise 9.7*. If G is connected and nilpotent, show that the exponential map 

exp: 9 .... G is surjective, making 9 the universal covering space of G. 

Exercise 9.8. Show that the following are equivalent for a Lie algebra 9: (i) 9 

is solvable. (ii) There is a chain of ideals 9 = 90 ::> 91 ::> ••• ::> 9n = 0 with 

9;/9i+1 abelian. (iii) There is a chain of subalgebras 9 = 90 ::> 91 ::> ••. ::> 9n = 0 

such that 9i+1 is an ideal in 9i' and 9;/gi+1 is abelian. 

§9.2. Engel's Theorem and Lie's Theorem 

We will now prove the statement made above about representations of solv

able Lie algebras always being upper triangular. This may give the reader an 

idea of how the general theory proceeds, before we go back to the concrete 

examples that are our main concern. The starting point is 

Theorem 9.9 (Engel's Theorem). Let 9 c: gI(V) be any Lie subalgebra such that 

every X E 9 is a nilpotent endomorphism of V. Then there exists a nonzero vector 

v E V such that X(v) = 0 for all X E g. 

Note this implies that there exists a basis for V in terms of which the matrix 

representative of each X Egis strictly upper triangular: since 9 kills v, it will 

act on the quotient V of V by the span of v, and by induction we can find a 

basis V2, ... , vn for V in terms of which this action is strictly upper triangular. 

Lifting Vi to any Vi E V and setting v1 = v then gives a basis for Vas desired. 

PROOF OF THEOREM 9.9. One observation before we start is that if X E 9I(V) 

is any nilpotent element, then the adjoint action ad(X): gI(V) .... gI(V) is nil

potent. This is straightforward: to say that X is nilpotent is to say that 

there exists a flag of subspaces 0 c: V1 c: V2 c: ... c: l-k c: l-k+1 = V such that 

X(V;) c: V;-1; we can then check that for any endomorphism Y of V the 

endomorphism ad(X)m(y) carries V; into V;+k-m. 
We now proceed by induction on the dimension of g. The first step is to 

show that, under the hypotheses of the problem, 9 contains an ideal l) of 

codimension one. In fact, let l) c: 9 be any maximal proper subalgebra; we 

claim that l) has codimension one and is an ideal. To see this, we look at the 

adjoint representation of g; since l) is a subalgebra the adjoint action ad(I)) of 

l) on 9 preserves the subspace l) c: 9 and so acts on gil). Moreover, by our 

observation above, for any X E l) ad(X) acts nil potently on gI(V), hence on g, 

hence on gil). Thus, by induction, there exists a nonzero element Y E g/lJ killed 

by ad (X) for all X E l); equivalently, there exists an element Y E 9 not in l) such 
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that ad(X)(Y) E 1) for all X E 1). But this is to say that the subspace 1)' of 9 

spanned by 1) and Y is a Lie subalgebra of 9, in which 1) sits as an ideal of 

codimension one; by the maximaIity of 1) we have 1)' = 9 and we are done. 

We return now to the representation of 9 on V. We may apply the induction 

hypothesis to the subalgebra 1) of 9 found in the preceding paragraph to 

conclude that there exists a nonzero vector v E V such that X(v) = 0 for all 

X E 1); let W c V be the subspace of all such vectors v E V. Let Y be any 

element of 9 not in 1); since 1) and Y span 9, it will suffice to show that there 

exists a (nonzero) vector v E W such that Y(v) = O. Now for any vector W E W 

and any X E 1), we have 

X(Y(w)) = Y(X(w)) + [X, Y](w). 

The first term on the right is zero because by hypothesis w E W, X E 1) and so 

X(w) = 0; likewise, the second term is zero because [X, Y] = ad(X)(Y) E 1). 
Thus, X(Y(w)) = 0 for all X E 1); we deduce that Y(w) E W. But this means that 

the action of Yon V carries the subspace W into itself; since Y acts nilpotently 

on V, it follows that there exists a vector v E W such that Y(v) = O. 0 

Exercise 9.10*. Show that a Lie algebra 9 is nilpotent if and only if ad(X) is a 

nilpotent endomorphism of 9 for every X E 9. 

Engel's theorem, in turn, allows us to prove the basic statement made 

above that every representation of a solvable Lie group can be put in upper

triangular form. This is implied by 

Theorem 9.11 (Lie's Theorem). Let 9 c gI(V) be a complex solvable Lie algebra. 

Then there exists a nonzero vector v E V that is an eigenvector of X for all X E g. 

Exercise 9.12. Show that this implies the existence of a basis for V in terms of 

which the matrix representative of each X E 9 is upper triangular. 

PROOF OF THEOREM 9.11. Once more, the first step in the argument is to assert 

that 9 contains an ideal 1) of codimension one. This time, since 9 is solvable 

we know that ~9 =I- 9, so that the quotient a = 9/~9 is a nonzero abelian Lie 

algebra; the inverse image in 9 of any codimension one subspace of a will 

then be a codimension one ideal in g. 

Still following the lines of the previous argument, we may by induction 

assume that there is a vector Vo E V that is an eigenvector for all X E 1). Denote 

the eigenvalue of X corresponding to Vo by 2(X). We then consider the 

subspace We V of all vectors satisfying the same relation, i.e., we set 

W = {v E V: X(v) = 2(X)·v 'IX E 1)}. 

Let Y now be any element of 9 not in 1). As before, it will suffice to show that 

Y carries some vector v E W into a multiple of itself, and for this it is enough 
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to show that Y carries W into itself. We prove this in a general context in the 

following lemma. 

Lemma 9.13. Let 1) be an ideal in a Lie algebra g. Let V be a representation of 

g, and A.: 1) --+ C a linear function. Set 

W = {v E V: X(v) = A(X)·V VX E 1)}. 

Then Y(W) c W for all Y E g. 

PROOF. Let w be any nonzero element of W; to test whether Y(w) E W we let 

X be any element of 1) and write 

X(Y(w)) = Y(X(w)) + [X, Y] (w) 

= A(X)· Y(w) + A([X, Y])·w (9.14) 

since [X, Y] E 1). This differs from our previous calculation in that the second 

term on the right is not immediately seen to be zero; indeed, Y(w) will lie in 

W if and only if A([X, Y]) = ° for all X E 1). 
To verify this, we introduce another subspace of V, namely, the span U of 

the images w, Y(w), y 2 (w), ... of w under successive applications of Y. This 

subspace is clearly preserved by Y; we claim that any X E 1) carries U into 

itself as well. It is certainly the case that 1) carries w into a multiple of itself, 

and hence into U, and (9.14) says that 1) carries Y(w) into a linear combination 

of Y(w) and w, and so into U. In general, we can see that 1) carries yk(W) into 

U by induction: for any X E 1) we write 

X(yk(W)) = Y(X(yk-l(W))) + [X, y](yk-l(W)). (9.15) 

Since X(yk- 1(W)) E U by induction the first term on the right is in U, and 

since [X, Y] E 1) the second term is in U as well. 

In fact, we see something more from (9.14) and (9.15): it follows that, in 

terms of the basis w, Y(w), y2(W), ... for U, the action of any X E 1) is upper 

triangular, with diagonal entries all equal to A(X). In particular, for any X E 1) 

the trace of the restriction of X to U is just the dimension of U times A(X). 

On the other hand, for any element X E 1) the commutator [X, Y] acts on U, 

and being the commutator of two endomorphisms of U the trace of this action 

is zero. It follows then that A([X, Y]) = 0, and we are done. 0 

Exercise 9.16. Show that any irreducible representation of a solvable Lie 

algebra 9 is one dimensional, and .@g acts trivially. 

At least for irreducible representations, Lie's theorem implies they will all 

be known for an arbitrary Lie algebra when they are known for the semisimple 

case. In fact, we have: 

Proposition 9.17. Let 9 be a complex Lie algebra, gss = gjRad(g). Every irre

ducible representation of 9 is of the form V = Vo ® L, where Vo is an irreducible 
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representation of g •• [i.e., a representation of 9 that is trivial on Rad(g)], and 

L is a one-dimensional representation. 

PROOF. By Lie's theorem there is a A E (Rad(g))* such that 

W = {v E V: X(v) = A(X)' v VX E Rad(g)} 

is not zero. Apply the preceding lemma, with ~ = Rad(g). Since V is irreduc

ible, we must have W = V. In particular, Tr(X) = dim(V) ' A(X) for X E 

Rad(g), so A vanishes on Rad(g) n [g, g]. Extend A to a linear function on 9 

that vanishes on [g, g], and let L be the one-dimensional representation of 9 

determined by A; in other words, Y(z) = A(Y)' z for all Y E 9 and z E L. Then 

V ® L * is a representation that is trivial on Rad(g), so it comes from a 

representation of g •• , as required. D 

Exercise 9.18. Show that if g' is a subalgebra of 9 that maps isomorphically 
onto gjRad(g), then any irreducible representation of 9 restricts to an irre

ducible representation of g', and any irreducible representation of g' extends 
to a representation of g. 

§9.3. Semisimple Lie Algebras 

As is clear from the above, many of the aspects of the representation theory 

of finite groups that were essential to our approach are no longer valid in the 

context of general Lie algebras and Lie groups. Most obvious of these is 

complete reducibility, which we have seen fails for Lie groups; another is the 

fact that not only can the action of elements of a Lie group or algebra on a 

vector space be nondiagonalizable, the action of some element of a Lie algebra 

may be diagonalizable under one representation and not under another. 

That is the bad news. The good news is that, if we just restrict ourselves to 

semisimple Lie algebras, everything is once more as well behaved as possible. 

For one thing, we have complete reducibility again: 

Theorem 9.19 (Complete Reducibility). Let V be a representation of the semi

simple Lie algebra 9 and W c V a subspace invariant under the action of g. 

Then there exists a subspace W' c V complementary to Wand invariant under g. 

The proof of this basic result will be deferred to Appendix C. 

The other question, the diagonalizability of elements of a Lie algebra under 

a representation, requires a little more discussion. Recall first the statement 

of Jordan decomposition : any endomorphism X of a complex vector space V 

can be uniquely written in the form 

X = X. + X. 
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where Xs is diagonalizable, Xn is nilpotent, and the two commute. Moreover, 

Xs and Xn may be expressed as polynomials in X . 

Now, suppose that 9 is an arbitrary Lie algebra, X E 9 any element, and 

p: 9 -> g[nC any representation. We have seen that the image p(X) need not 

be diagonalizable; we may still ask how p(X) behaves with respect to the 

Jordan decomposition. The answer is that, in general, absolutely nothing need 

be true. For example,just taking 9 = C, we see that under the representation 

P1 : tt-+(t) 

every element is diagonalizable, i.e., p(X). = p(X); under the representation 

P2: tt-+(~ ~) 
every element is nilpotent [i.e., p(X)s = 0]; whereas under the representation 

P3: tt-+(~ ~) 
not only are the images p(X) neither diagonalizable nor nilpotent, the dia

gonalizable and nilpotent parts of p(X) are not even in the image p(g) of the 

representation. 
If we assume the Lie algebra 9 is semisimple, however, the situation is 

radically different. Specifically, we have 

Theorem 9.20 (Preservation of Jordan Decomposition). Let 9 be a semisimpie 

Lie algebra. For any element X E g, there exist Xs and Xn E 9 such that for any 

representation p: 9 -> g[(V) we have 

p(X). = p(Xs) and p(X)n = p(Xn)' 

In other words, if we think of p as injective and 9 accordingly as a Lie 

subalgebra of g[(V), the diagonalizable and nilpotent parts of any element X of 

9 are again in 9 and are independent of the particular representation p. 

The proofs we will give of the last two theorems both involve introducing 

objects that are not essential for the rest of this book, and we therefore relegate 
them to Appendix C. It is worth remarking, however, that another approach 

was used classically by Hermann Weyl; this is the famous unitary trick, which 

we will describe briefly. 

A Digression on "The Unitary Trick" 

Basically, the idea is that the statements above (complete reducibility, pre

servation of Jordan decomposition) can be proved readily for the represen

tations of a compact Lie group. To prove complete reducibility, for example, 
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we can proceed more or less just as in the case of a finite group: if the compact 

group G acts on a vector space, we see that there is a Hermitian metric on V 

invariant under the action of G by taking an arbitrary metric on V and 

averaging its images under the action of G. If G fixes a subspace W c V, it will 

then fix as well its orthogonal complement W.l with respect to this metric. 
(Alternatively, we can choose an arbitrary complement W' to W, not neces

sarily fixed by G, and average over G the projection map to g(W') with kernel 

W; this average will have image invariant under G.) 

How does this help us analyze the representation of a semisimple Lie 

algebra? The key fact here (to be proved in Lecture 26) is that if 9 is any 

complex semisimple Lie algebra, there exists a (unique) real Lie algebra 90 with 

complexification 90 ® e = 9, such that the simply connected form of the Lie 

algebra 90 is a compact Lie group G. Thus, restricting a given representation 

of 9 to 90' we can exponentiate to obtain a representation of G, for which 
complete reducibility holds; and we can deduce from this the complete re

ducibility of the original representation. For example, while it is certainly not 

true that any representation p of the Lie group SLnlR on a vector space V 

admits an invariant Hermitian metric (in fact, it cannot, unless it is the trivial 

representation), we can 

(i) let p' be the corresponding (complex) representation of the Lie algebra 

sInlR; 

(ii) by linearity extend the representation p' of sInlR to a representation p" of 

sIne; 

(iii) restrict to a representation pili of the subalgebra SUn C sIne; 

(iv) exponentiate to obtain a representation p"" of the unitary group SUn. 

We can now argue that 

If a subspace We V is invariant under the action of SLnlR, 

it must be invariant undersInlR; and since sIne = sInlR ® e, it follows that 

it will be invariant under sIne; so of course 

it will be invariant under SUn; and hence 

it will be invariant under SUn. 

Now, since SUn is compact, there will exist a complementary subspace W' 

preserved by SUn; we argue that 

W' will then be invariant under SUn; and since sIne = SUn ® e, it follows 
that 

it will be invariant under sIne. Restricting, we see that 

it will be invariant under sInlR, and exponentiating, 

it will be invariant under SLnlR. 

Similarly, if one wants to know that the diagonal elements of SLnlR act 

semisimply in any representation, or equivalently that the diagonal elements 

of sInlR act semisimply, one goes through the same reasoning, coming down 

to the fact that the group of diagonal elements in SUn is abelian and compact. 
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In general, most of the theorems about the finite-dimensional represen

tation of semisimple Lie algebras admit proofs along two different lines: either 

algebraically, usingjust the structure of the Lie algebra; or by the unitary trick, 

that is, by associating to a representation of such a Lie algebra a representation 

of a compact Lie group and working with that. Which is preferable depends 

very much on taste and context; in this book we will for the most part go with 

the algebraic proofs, though in the case of the Weyl character formula in Part 

IV the proof via compact groups is so much more appealing it has to be 

mentioned. 

The following exercises include a few applications of these two theorems. 

Exercise 9.21 *. Show that a Lie algebra 9 is semisimple if and only if every 

finite-dimensional representation is semisimple, i.e., every invariant subspace 

has a complement. 

Exercise 9.22. Use Weyt's unitary trick to show that, for n > 2, all represen

tations of SOnC are semisimple, so that, in particular, the Lie algebras sOnC 

are semisimple. Do the same for SP2.C and SP2nC, n ~ 1. Where does the 

argument break down for S02 C? 

Exercise 9.23. Show that a real Lie algebra 9 is solvable if and only if the 

complex Lie algebra 9 ® RC is solvable. Similarly for nilpotent and semisimple. 

Exercise 9.24*. If ~ is an ideal in a Lie algebra g, show that 9 is semisimple if 

and only ifl) and gil) are semisimple. Deduce that every semisimple Lie algebra 

is a direct sum of simple Lie algebras. 

Exercise 9.25*. A Lie algebra is called reductive if its radical is equal to its 

center. A Lie group is reductive if its Lie algebra is reductive. For example, 

GLnC is reductive. Show that the following are true for a reductive Lie algebra 

g: (i) ~g is semisimple; (ii) the adjoint representation of 9 is semisimple; (iii) 9 

is a product of a semisimple and an abelian Lie algebra; (iv) 9 has a finite

dimensional faithful semisimple representation. In fact, each of these condi

tions is equivalent to 9 being reductive. 

§9.4. Simple Lie Algebras 

There is one more basic fact about Lie algebras to be stated here; though its 

proof will have to be considerably deferred, it informs our whole approach to 

the subject. This is the complete classification of simple Lie algebras: 

Theorem 9.26. With five exceptions, every simple complex Lie algebra is iso

morphic to either sIne, sOne, or sP2nC for some n. 
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The five exceptions can all be explicitly described, though none is par

ticularly simple except in name; they are denoted 92' f4 , e6, e7, and ea . We 
will give a construction of each later in the book (§22.3). The algebras sIne 

(for n > 1), sOne (for n > 2), and sP2nC are commonly called the classical Lie 
algebras (and the corresponding groups the classical Lie groups); the other five 

algebras are called, naturally enough, the exceptional Lie algebras. 
The nature of the classification theorem for simple Lie algebras creates a 

dilemma as to how we approach the subject: many of the theorems about 
simple Lie algebras can be proved either in the abstract, or by verifying them 

in turn for each of the particular algebras listed in the classification theorem. 
Another alternative is to declare that we are concerned with understanding 

only the representations of the classical algebras sIne, sOnC, and SP2nC, and 
verify any relevant theorems just in these cases. 

Of these three approaches, the last is in many ways the least satisfactory; 

it is, however, the one that we shall for the most part take. Specifically, what 
we will do, starting in Lecture 11, is the following: 

(i) Analyze in Lectures 11-13 a couple of examples, namely, sI2 C and sI3 C, 
on what may appear to be an ad hoc basis. 

(ii) On the basis of these examples, propose in Lecture 14 a general paradigm 
for the study of representations of a simple (or semisimple) Lie algebra. 

(iii) Proceed in Lectures 15- 20 to carry out this analysis for the classical 

algebras slnC, sOnC, and SP2nc' 
(iv) Give in Part IV and the appendices proofs for general simple Lie algebras 

of the facts discovered in the preceding sections for the classical ones (as 
well as one further important result, the Weyl character formula). 

We can at least partially justify this seemingly inefficient approach by 
saying that even if one makes a beeline for the general theorems about the 

structure and representation theory of a simple Lie algebra, to apply these 
results in practice we would still need to carry out the sort of explicit analysis 

of the individual algebras done in Lectures 11 - 20. This is, however, a fairly 

bald rationalization: the fact is, the reason we are doing it this way is that this 

is the only way we have ever been able to understand any of the general results. 



LECTURE 10 

Lie Algebras in Dimensions One, Two, 
and Three 

Just to get a sense of what a Lie algebra is and what groups might be associated to it, 

we will classify here all Lie algebras of dimension three or less. We will work primarily 

with complex Lie algebras and Lie groups, but will mention the real case as well. 

Needless to say, this lecture is logically superfluous; but it is easy, fun, and serves a 

didactic purpose, so why not read it anyway. The analyses of both the Lie algebras 

and the Lie groups are completely elementary, with one exception: the classification 

of the complex Lie groups associated to abelian Lie algebras involves the theory of 

complex tori, and should probably be skipped by anyone not familiar with this subject. 

§10.1: Dimensions one and two 

§10.2: Dimension three, rank one 

§10.3: Dimension three, rank two 

§1O.4: Dimension three, rank three 

§ 1 0.1. Dimensions One and Two 

To begin with, anyone-dimensional Lie algebra 9 is clearly abelian, that is, 
C with all brackets zero. 

The simply connected Lie group with this Lie algebra is just the group C 
under addition; and other connected Lie groups that have 9 as their Lie 
algebra must all be quotients of C by discrete subgroups A c Co If A has rank 

one, then the quotient is just C* under multiplication. If A has rank two, 
however, G may be anyone of a continuously varying family of complex tori 

of dimension one (or Riemann surfaces of genus one, or elliptic curves over C). 
The set of isomorphism classes of such tori is parametrized by the complex 

plane with coordinate j, where the function j on the set of lattices A c C is 
as described in, e.g., [Ahl]. 

Over the real numbers, the situation is completely straightforward: the only 

real Lie algebra of dimension one is again IR with trivial bracket; the simply 
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connected Lie group associated to it is IR under addition; and the only other 

connected real Lie group with this Lie algebra is IR/Z ~ Sl. 

Dimension Two 

Here we have to consider two cases, depending on whether 9 is abelian or not. 

Case 1: 9 abelian. This is very much like the previous case; the simply con
nected two-dimensional abelian complex Lie group is just C2 under addition, 

and the remaining connected Lie groups with Lie algebra 9 are just quotients 
of C2 by discrete subgroups. Such a subgroup A c C2 can have rank 1, 2, 3, 

or 4, and we analyze these possibilities in turn (the reader who has seen enough 
complex tori in the preceding example may wish to skip directly to Case 2 at 
this point). 

If the rank of A is 1, we can complete the generator of A to a basis for C2, 

so that A = 7i.e 1 c Ce l EB Ce2 and G ~ C* x C. If the rank of A is 2, there are 
two possibilities: either A lies in a one-dimensional complex subspace of C2 

or it does not. If it does not, a pair of generators for A will also be a basis 

for C2 over C, so that A = Zel EB Ze2' C2 = Ce l EB Ce2' and G ~ C* x C*. 
If on the other hand A does lie in a complex line in C2 , so that we have 

A = 7i.e 1 EB Zi:el for some t E C\ IR, then G = E x C will be the product of 
the torus C/(Z EB 7i.t) and C; the remarks above apply to the classification of 
these (see Exercise 10.1). 

The cases where A has rank 3 or 4 are a little less clear. To begin with, if 

the rank of A is 3, the main question to ask is whether any rank 2 sublattice 

A' of A lies in a complex line. If it does, then we can assume this sublattice is 
saturated (i.e., a pair of generators for A' can be completed to a set of 

generators for A) and write A = Ze l EB bel EB Ze2, so that we will have 

G = E x C*, where E is a torus as above. 

Exercise 10.1 *. For two one-dimensional complex tori E and E', show that 
the complex Lie groups G = E x C and G' = E' x C are isomorphic if and 

only if E ~ E'. Similarly for E x C* and E' x C*. 

If, on the other hand, no such sublattice of A exists, the situation is much 
more mysterious. One way we can try to represent G is by choosing a generator 
for A and considering the projection of C2 onto the quotient of C2 by the line 

spanned by this generator; thus, if we write A = 7i.el EB Ze2 $ Z(lXel + pe2) 
then (assuming p is not real) we have maps 

expressing G as a bundle over a torus E = C/(Z ffi ZP), with fibers isomorphic 
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to IC*. This expression of G does not, however, help us very much to describe 

the family of all such groups. For one thing, the elliptic curve E is surely not 

determined by the data of G: if we just exchange e1 and e2' for example, we 

replace E by 1C/(7L EEl 7L(X), which, of course, need not even be isogenous to E. 

Indeed, this yields an example of different algebraic groups isomorphic as 

complex Lie groups: expressing G as a IC* bundle in this way gives it the 

structure of an algebraic variety, which, in turn, determines the elliptic curve 

E (for example, the field of rational functions on G will be the field of rational 

functions on E with one variable adjoined). Thus, different expressions of the 

complex Lie group G as a IC* bundle yield nonisomorphic algebraic groups. 

Finally, the case where A has rank 4 remains completely mysterious. 

Among such two-dimensional complex tori are the abelian varieties; these are 

just the tori that may be embedded in complex projective space (and hence 

may be realized as algebraic varieties). For polarized abelian varieties (that is, 

abelian varieties with equivalence class of embedding in projective space) there 

exists a reasonable moduli theory; but the set of abelian varieties forms only 

a countable dense union in the set of all complex tori (indeed, the general 

complex torus possesses no nonconstant meromorphic functions whatsoever). 

No satisfactory theory of moduli is known for these objects. 

Needless to say, the foregoing discussion of the various abelian complex 

Lie groups in dimension two is completely orthogonal to our present pur

poses. We hope to make the point, however, that even in this seemingly trivial 

case there lurk some fairly mysterious phenomena. Of course, none of this 
occurs in the real case, where the two-dimensional abelian simply connected 

real Lie group is just IR x IR and any other connected two-dimensional abelian 

real Lie group is the quotient of this by a sublattice A c IR x IR of rank 1 or 
2, which is to say either IR x Sl or Sl x Sl. 

Case 2: 9 not abelian. Viewing the Lie bracket as a linear map [ , ]: N 9 -+ g, 

we see that ifit is not zero, it must have one-dimensional image. We can thus 

choose a basis {X, Y} for 9 as vector space with X spanning the image of 
[, ]; after multiplying Y by an appropriate scalar we will have [X, Y] = X, 

which of course determines 9 completely. There is thus a unique nonabelian 

two-dimensional Lie algebra 9 over either IR or IC. 

What are the complex Lie groups with Lie algebra g? To find one, we start 

with the adjoint representation of g, which is faithful: we have 

ad(X): XHO, ad(Y): XH -X, 

YHX, 

or in matrix notation, in terms of the basis {X, Y} for g, 

(0 1) (-1 0) ad (X) = 0 0' ad( Y) = 0 0 . 

These generate the algebra 9 = (~ ~) c gI2 1C;we may exponentiate to arrive 

at the adjoint form 
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Topologically this group is homeomorphic to C x C*. To take its universal 

cover, we write a general member of Go as 

( et s) 
o 1 . 

The product of two such matrices is given by 

s + ets') 
1 ' 

so we may realize the universal cover G of Go as the group of pairs (t, s) E 

C X C with group law 

(t, s)· (t', s') = (t + t', s + et s'). 

The center of G is just the subgroup 

Z( G) = {(2nin, O)} ~ 71., 

so that the connected groups with Lie algebra 9 form a partially ordered tower 

G 

! 

! 
Gn = G/n71. = {(a, b) E C* X C; (a, b)· (a', b') = (aa', b + anb')}. 

! 

Exercise 10.2*. Show that for n # m the two groups Gn and Gm are not 

isomorphic. 

Finally, in the real case things are simpler: when we exponentiate the 

adjoint representation as above, the Lie group we arrive at is already simply 

connected, and so is the unique connected real Lie group with this Lie algebra. 

§ 1 0.2. Dimension Three, Rank 1 

As in the case of dimension two, we look at the Lie bracket as a linear map 
from N 9 to 9 and begin our classification by considering the rank of this map 

(that is, the dimension of f»g), which may be either 0, 1,2, or 3. For the case 
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of rank 0, we refer back to the discussion of abelian Lie groups above. We 

begin with the case ofrank 1. 

Here the kernel ofthe map [ , ]: N 9 -+ 9 is two dimensional, which means 

that for some X E 9 it consists of all vectors of the form X 1\ Y with Y ranging 

over all of 9 (X here will just be the vector corresponding to the hyperplane 

ker([ , ]) c Ng under the natural (up to scalars) duality between a three

dimensional vector space and its exterior square). Completing X to a basis 

{X, Y, Z} of g, we can write 9 in the form 

[X, Y] = [X, Z] = 0, 

[Y, Z] = !XX + PY + yZ 

for some !x, p, Y E C. If either p or y is nonzero, we may now rechoose our basis, 

replacing Y by a multiple ofthe linear combination !XX + pY + yZ and either 

leaving Z alone (if P #- 0) or replacing Z by Y (if y #- 0). We will then have 

[X, Y] = [X, Z] = 0, 

[Y, Z] = Y 

from which we see that 9 is just the product of the one-dimensional abelian 

Lie algebra ex with the non-abelian two-dimensional Lie algebra e Y $ ez 
described in the preceding discussion. We may thus ignore this case and 

assume that in fact we have p = y = 0; replacing X by !XX we then have the 
Lie algebra 

[X, Y] = [X, Z] = 0, 

[Y, Z] = x. 

How do we find the Lie groups with this Lie algebra? As before, we need 

to start with a faithful representation of g, but here the adjoint representation 

is useless, since X is in its kernel. We can, however, arrive at a representation 

of 9 by considering the equations defining g: we want to find a pair of 

endomorphisms Y and Z on some vector space that do not commute, but that 

do commute with their commutator X = [Y, Z]; thus, 

Y(YZ - ZY) - (YZ - ZY)Y = y 2Z - 2YZY + Zy2 = 0 

and similarly for [Z, [Y, Z]]. One simple way to find such a pair of endo

morphisms is make all three terms y2 Z, YZ Y, and Z2 Y in the above equation 

zero, e.g., by making Yand Z both have square zero, and to have YZ = 0 

while ZY #- O. For example, on a three-dimensional vector space with basis 

el' e2' and e3 we could take Y to be the map carrying e3 to e2 and killing 

e1 and e2 , and Z the map carrying e2 to e 1 and killing e1 and e3; we then have 

YZ = 0 while ZY sends e3 to e1 . We see then that 9 isjust the Lie algebra "3 
of strictly upper-triangular 3 x 3 matrices. When we exponentiate we arrive 

at the group 
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which is simply connected. Now the center of G is the subgroup 

Z(G)~ {G ! ~)'b€C} ~C, 
so the discrete subgroups of Z(G) are just lattices A ofrank 1 or 2; thus any 

connected group with Lie algebra 9 is either G, G/71., or G/(71. x 71.)-that is, 

an extension of C x C by either C, C*, or a torus E. 

Exercise 10.3. Show that G/A is determined up to isomorphism by the one

dimensional Z(G)/A. 

A similar analysis holds in the real case: just as before, n3 is the unique real 

Lie algebra of dimension three with commutator subalgebra of dimension one; 

its simply connected form is the group G of unipotent 3 x 3 matrices and (the 
center of this group being IR) the only other group with this Lie algebra is the 

quotient H = G/71.. 
Incidentally, the group H represents an interesting example of a group that 

cannot be realized as a matrix group, i.e., that admits no faithful finite

dimensional representations. One way to see this is to argue that in any 
irreducible finite-dimensional representation V the center SI of H, being 

compact and abelian, must be diagonalizable; and so under the corresponding 
representation of the Lie algebra 9 the element X must be carried to a 
diagonalizable endomorphism of V. But now if v E V is any eigenvector for X 

with eigenvalue A., we also have, arguing as in §9.2, 

X(Y(v)) = Y(X(v)) = Y(A.v) = A.Y(v) 

and similarly X(Z(v)) = A.Z(v), i.e., both Y(v) and Z(v) are also eigenvectors 
for X with eigenvalue A.. Since Y and Z generate 9 and the representation V 

is irreducible, it follows that X must act as a scalar multiple A. . I of the identity; 

but since X = [Y, Z] is a commutator and so has trace 0, it follows that A. = O. 

Exercise 10.4*. Show that if G is a simply connected Lie group, and its Lie 
algebra is solvable, then G cannot contain any nontrivial compact subgroup 

(in particular, it contains no elements of finite order). 

The group H does, however, have an important infinite-dimensional repre

sentation. This arises from the representation ofthe Lie algebra 9 on the space 
V of f(/OO functions on the real line IR with coordinate x, in which Y, Z, and X 
are the operators 
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Y: JI-+ nix' J, 

dJ 
Z:JI-+ dx 

139 

and X = [Y, Z] is -ni times the identity. Exponentiating, we see that e'Y acts 

on a function J by multiplying it by the function (cos tx + i' sin tx); e tZ sends 

J to the function Ft where F,(x) = J(t + x), and etX sends J to the scalar 
multiple e-1<it . J. 

§10.3. Dimension Three, Rank 2 

In this case, write the commutator subalgebra ~g c 9 as the span of two 

elements Y and Z . The commutator of Y and Z can then be written 

[Y,Z]=aY+pZ. 

Bllt now the endomorphism ad(Y) of 9 carries 9 into ~g, kills Y, and sends Z 

tp a Y + pZ, and so has trace p; on the other hand, since ad( Y) is a commutator 

.1n End(g), it must have trace O. Thus, p, and similarly a, must be zero; i.e., the 

subalgebra ~g must be abelian. It follows from this that for any element X E 9 

not in ~ g, the map 

ad(X): ~g -+ ~g 

must be an isomorphism. We may now distinguish two possibilities: either 

ad(X) is diagonalizible or it is not. 

(Note that for the first time we see a case where the classification of the 

real Lie algebra will be more complicated than that of the complex: in the real 

case we will have to deal with the third possibility that ad(X) is diagonalizible 

over C but not over IR, i.e., that it has two complex conjugate eigenvalues. 

Though we have not seen it much in these low-dimensional examples, in fact 

it is generally the case that the real picture is substantially more complicated 

than the complex one, for essentially just this reason.) 

Possibility A: ad(X) is diagonalizable. In this case it is natural to use as a basis 

for ~g a pair of eigenvectors Y, Z for ad (X); and by multiplying X by a suitable 

scalar we can assume that one ofthe eigenvalues (both of which are nonzero) 

is 1. We thus have the equations for 9 

[X, Y] = Y, [X, Z] = aZ, [Y, Z] = 0 (10.5) 

for some a E C*. 

Exercise 10.6. Show that two Lie algebras gat' gat' corresponding to two different 
scalars in the structure equations (10,5) are isomorphic if and only if a = a' or 



140 10. Lie Algebras in Dimensions One, Two, and Three 

IX = 1/1X'. Observe that we have for the first time a continuously varying family 

of nonisomorphic complex Lie algebras. 

To find the groups with these Lie algebras we go to the adjoint represen

tation, which here is faithful. Explicitly, ad(Y) carries X to - Y and kills Y 

and Z; ad(Z) carries X to -IXZ and also kills Y and Z; and ad(X) carries Y 

to itself, Z to IXZ, and kills X. A general member aX - bY - cZ of the Lie 

algebra is thus represented (with respect to the basis {Y, Z, X} for g) by the 

matrix 

(
a 0 b) 
o lXa IXC • 

o 0 0 

Exponentiating, we find that a group with Lie algebra 9 is 

G~ m e; :).',","EC} cGL,C 

Here we run across a very interesting circumstance. If the complex number IX 

is not rational, then the exponential map from 9 to G is one-to-one, and hence 

a homeomorphism; thus, in particular, G is simply connected. If, on the other 

hand, IX is rational, G will have nontrivial fundamental group. To see this, 

observe that we always have an exact sequence of groups 

1 -+ B -+ G -+ A -+ 1, 

where 

A~m 
0 

~)"EC} e'" 

0 

and 

B~m 
0 

:)'~"EC } 1 ~Cxc. 

0 

Now when IX ¢ Q, the group A ~ C is simply connected; but when IX E Q

whatever its denominator-we have A ~ C*and correspondingly 7t,(G) = 7L. 

Exercise 10.7. Show that G has no center, and hence when IX #- Q, it is the 

unique connected group with Lie algebra g. For IX E Q, describe the universal 

covering of G and classify all groups with Lie algebra g. 

Observe that in this case, even though we have a continuously varying 

family of Lie algebras g", we have no corresponding continuously varying 
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family of the adjoint (linear) Lie groups; the simply-connected forms do form 
a family, however. 

Possibility B: ad(X) is not diagonalizable. In this case the natural thing to do 

is to choose a basis {Y, Z} of E»g with respect to which ad (X) is in Jordan 
normal form; replacing X by a multiple, we may assume both its eigenvalues 

are 1 so that we will have the Lie algebra 

[X, Y] = Y, [X,Z] = Y + Z, [Y, Z] = o. (10.8) 

With respect to the basis {Y, Z, X} for g, then, the adjoint action of the general 
element aX - bY - cZ of the Lie algebra is represented by the matrix 

(
a a b + C) 
o a c 

000 

and exponentiating we find that the corresponding group is 

{(
e

t 
tet U) } 

G = ~ ~ ~' t, u, VEe . 

Exercise 10.9. Show that this group has no center, and hence is the unique 
connected complex Lie group with its Lie algebra. 

Note that the real Lie groups obtained by exponentiating the adjoint action 

ofthe Lie algebras given by (10.5) and (10.8) are all homeomorphic to 1R3 and 

have no center, and so are the only connected real Lie groups with these Lie 
algebras. 

Exercise 10.10. Complete the analysis of real Lie groups in Case 2 by con

sidering the third possibility mentioned above: that ad(X) acts on E»g with 
distinct complex conjugate eigenvalues. Observe that in this way we arrive 

at our first example of two nonisomorphic real Lie algebras whose tensor 

products with C are isomorphic. 

§ 1 0.4. Dimension Three, Rank 3 

Our analysis of this final case begins, as in the preceding one, by looking for 

eigenvectors of the adjoint action of a suitable element X E g. Specifically, we 

claim that we can find an element H E 9 such that ad(H): 9 -+ 9 has an 
eigenvector with nonzero eigenvalue. To see this, observe first that for any 

nonzero X E g, the rank of ad(X) must be 2; in particular, we must have 
Ker(ad(X» = ex. Now start with any X E g. Either ad(X) has an eigenvector 

with nonzero eigenvalue or it is nilpotent; if it is nilpotent, then there exists a 
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vector Y E g, not in the kernel of ad(X) but in the kernel of ad(X)2-that 

is, such that ad(X)( Y) = IXX for some nonzero IX E Co But then of course 

ad(Y)(X) = -aX, so that X is an eigenvector for ad(Y) with nonzero 

eigenvalue. 

So: choose H and X E 9 so that X is an eigenvector with nonzero eigenvalue 

for ad (H), and write [H, X] = ax' Since HE .@g, ad (H) is a commutator in 

End(g), and so has trace 0; it follows that ad(H) must have a third eigenvector 

Y with eigenvalue -a. To describe the structure of 9 completely it now 

remains to find the commutator of X and Y; but this follows from the Jacobi 

identity. We have 

[H, [X, Y]] = - [X, [Y, H]] - [Y, [H, X]] 

= - [X, IXY] - [Y, aX] 

= 0, 

from which we deduce that [X, Y] must be a multiple of H; since it must be 

a nonzero multiple, we can multiply X or Y by a scalar to make it 1. Similarly 

multiplying H by a scalar we can assume a is 1 or any other nonzero scalar. 

Thus, there is only one possible complex Lie algebra 9 of this type. One could 

look for endomorphisms H, X, and Y whose commutators satisfy these 

relations, as we did before. Or we may simply realize that the three-dimensional 

Lie algebra sl2C has not yet been seen, so it must be this last possibility. In 

fact, a natural basis for sl2 C is 

whose Lie algebra is given by 

[H, X] = 2X, [H, Y] = -2Y, 

Y = (~ ~) 

[X, Y] = H. (to.11) 

What groups other than SL2C have Lie algebra s12C? To begin with, the 

group SL2 C is simply connected: for example, the map SL2 C -+ C2 - {(O, O)} 

sending a matrix to its first row expresses the topological space SL2 C as a 

bundle with fiber Cover C2 - {(O, 0) }. Also, it is not hard to see that the center 

of SL2 C is just the subgroup { ± I} of scalar matrices, so that the only other 

connected group with Lie algebra sl2C is the quotient PSL2C = SI2C/{±I}. 

As in the preceding case, the analysis of real three-dimensional Lie algebras 

9 with .@g = 9 involves one additional possibility. At the outset of the argu

ment above, we started with an arbitrary H E 9 and said that if ad(H) had no 

eigenvector other than H itself, then it would have to be nilpotent. Of course, 

in the real case it is also possible that ad(H) has two distinct complex conjugate 

eigenvalues A and I Since ad(H) is a commutator in End(g) and so has trace 

0, A will have to be purely imaginary in this case; and so multiplying H by a 

real scalar we can assume that its eigenvalues are i and - i. It follows then 

that we can find X, Y E 9 with 
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[B,X] = Y and [B, Y] = -x. 

Using the Jacobi identity as before we may conclude that the commutator of 

X and Y is a multiple of B; after multiplying each of X and Y by a real scalar 

we can assume that it is either B or - B. Finally, if [X, Y] = - B, then 

we observe that we are in the case we considered before: ad(Y) will have 

X + B as an eigenvector with nonzero eigenvalue, and following our previous 

analysis we may conclude that 9 ~ s[21R. Thus, we are left with the sole 

additional possibility that 9 has structure equations 

[B,X] = Y, [B, Y] = -X, [X, Y] = B. (10.12) 

This, finally, we may recognize as the Lie algebra SU2 of the real Lie group 

SU(2) (as you may recall, the isomorphism su2 <8l C ~ s[2C was used in the 
last lecture). 

What are the real Lie groups with Lie algebras sI21R and SU2? To start, the 

center of the group SL21R is again just the scalar matrices {±I}, so the only 

group dominated by SL21R is the quotient PSL21R. On the other hand, unlike 

the complex case SL21R is not simply connected: now the map associating to 

a 2 x 2 matrix its first row expresses SL21R as a bundle with fiber IR over 

1R2 - {(O, O)}, so that 1t1(SL21R) = l. More precisely PSL21R maps to the real 

projective line ~11R, which is homeomorphic to the circle, with fiber homeo

morphic to 1R2, so 1t1 (PSL21R) = l. We thus have a tower of covering spaces of 

PSL21R, consisting of the simply-connected group S with center 7l. and its 

quotients Sn = S/n71. (not all of these are covers of SL21R, despite the diagram 

below). 

A note: In §1O.2 we encountered a real Lie group with no faithful finite

dimensional representations; only its universal cover could be represented as 

a matrix group. Here we find in some sense the opposite phenomenon: the 

groups Sand Sn have no faithful finite-dimensional representations, all finite

dimensional representations factoring through SL21R or PSL21R. This fact will 

be proved as a consequence of our discussion of the representations of the Lie 
algebra s[2C in the next lecture. 

What about groups with Lie algebra SU2? To begin with, there is SU(2), 

which (again via the map sending a matrix to its first row vector) is homeo

morphic to S3 and thus simply connected. The center of this group is again 

{± I}, so that the quotient PSU(2) is the only other group with Lie algebra 
SU2. (Alternatively, we may realize SU(2) as the group of unit quaternions, cf. 
Exercise 7.15.) 

Finally, we remark that there are other representations of the real and 

complex Lie groups discussed above. As we will see, the Lie algebra 503 C is 

isomorphic to 512 C, which induces an isomorphism between the correspond

ing adjoint forms PSL2 C and S03 C (and between the simply-connected forms 

SL2C and the spin group Spin3 e). This in turn suggests two more real forms 

of this group: S031R and SO + (2, 1). In fact, it is not hard to see that S031R ~ 

PSU(2), while SO+(2, 1) ~ PSL21R. Lastly the isomorphism SUi, 1 <8l C ~ 
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SU2 ® C ~ 512 C implies that the real Lie algebra SU 1,l is isomorphic to either 

su2 or sI2 1R; in fact, the latter is the case and this induces an isomorphism of 

groups SU 1 , l ~ SL2 IR, We summarize the isomorphisms mentioned in the 

diagram below: 

S 

I 
SA Spin 3 1R 

I II 
SU(I, 1) = SL2 1R SU(2) = {unit quaternions} 

j I 
PSL2 1R c.......-...... PSL2C ~ PSU(2) = {unit quaternions}/ ± 1 

II II II 
(10.13) 

Note also the coincidences: 

(10.14) 

which follow from the fact that Sp refers to preserving a skew-symmetric 

bilinear form, and for 2 x 2 matrices the determinant is such a form. 

Exercise 10.15. Identify the Lie algebras 503 ' SU2 , SU1, l , 502,1, and verify the 

assertions made about the corresponding Lie groups in the diagram. 

Exercise 10.16. For each of the Lie algebras encountered in this lecture, 

compute the lower central series and the derived series, and say whether the 

algebra is nilpotent, solvable, simple, or semisimple. 

Exercise 10.17. The following are Lie groups of dimension two or three, so 

must appear on our list. Find them: (i) the group of affine transformations of 

the line (x H ax + b, under composition); (ii) the group of upper-triangular 

2 x 2 matrices; (iii) the group of orientation preserving Euclidean transforma

tions of the plane (compositions of translations and rotations). 

Exercise 10.lS. Locate 1R3 with the usual cross-product on our list of Lie 

algebras. More generally, consider the family of Lie algebras parametrized by 

real quadruples (a, b, c, d), each with basis X, Y, Z with bracket given by 

[X, y] = aZ + dY, [Y, Z] = bX, [Z,X]=cY-dZ. 
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Classify this Lie algebra as (a, b, c, d) varies in ~4, showing in particular that 

every three-dimensional Lie algebra can be written in this way. 

Exercise 10.19. Realize the isomorphism of SU(I, 1) with SL2 ~ by identifying 

them with the groups of complex automorphisms of the unit disk and the 

upper half-plane, respectively. 

Exercise 10.20. Classify all Lie algebras of dimension four and rank 1; in 

particular, show that they are all direct sums of Lie algebras described above. 

Exercise 10.21. Show more generally that there exists a Lie algebra of dimen

sion m and rank 1 that is not a direct sum of smaller Lie algebras if and only 

if m is odd; in case m is odd show that this Lie algebra is unique and realize 

it as a Lie subalgebra of sInlC. 



LECTURE 11 

Representations of 512 C 

This is the first of four lectures-§11 - 14- that comprise in some sense the heart of 

the book. In particular, the naive analysis of §11.1, together with the analogous parts 

of §12 and §13, form the paradigm for the study of finite-dimensional representations 

of all semisimple Lie algebras and groups. §11.2 is less central; in it we show how the 

analysis carried out in §11.1 can be used to explicitly describe the tensor products of 

irreducible representations. §11.3 is least important; it indicates how we can interpret 

geometrically some ofthe results of the preceding section. The discussions in §11.1 and 

§ 11.2 are completely elementary (we do use the notion of symmetric powers of a vector 

space, but in a non-threatening way). §11.3 involves a fair amount of classical projective 

geometry, and can be skimmed or skipped by those not already familiar with the 

relevant basic notions from algebraic geometry. 

§11.1: The irreducible representations 

§11.2: A little plethysm 

§11.3: A little geometric plethysm 

§11.1. The Irreducible Representations 

We start our discussion of representations of semisimple Lie algebras with the 

simplest case, that of sI2 C. As we will see, while this case does not exhibit any 

of the complexity of the more general case, the basic idea that informs the 

whole approach is clearly illustrated here. 

This approach is one already mentioned above, in connection with the 

representations of the symmetric group on three letters. The idea in that case 

was that given a representation of our group on a vector space V we first 

restrict the representation to the abelian subgroup generated by a 3-cycle •. 

We obtain a decomposition 
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V=EBv,. 
of V into eigenspaces for the action of 'r; the commutation relations satisfied 

by the remaining elements (1 of the group with respect to 'r implied that such (1 

simply permuted these subs paces v,., so that the representation was in effect 

determined by the collection of eigenvalues of'r. 

Of course, circumstances in the case of Lie algebra representations are quite 
different: to name two, it is no longer the case that the action of an abelian 

object on any vector space admits such a decomposition; and even if such a 

decomposition exists we certainly cannot expect that the remaining elements 

of our Lie algebra will simply permute its summands. Nevertheless, the idea 

remains essentially a good one, as we shall now see. 
To begin with, we choose the basis for the Lie algebra S(21(; from the last 

lecture: 

Y=G ~) 
satisfying 

[H, X] = 2X, [H, Y] = -2Y, [X, Y] = H. (11.1) 

These seem like a perfectly natural basis to choose, but in fact the choice is 

dictated by more than aesthetics; there is, as we will see, a nearly canonical 
way of choosing a basis of a semisimple Lie algebra (up to conjugation), which 

will yield this basis in the present circumstance and which will share many of 
the properties we describe below. 

In any event, let V be an irreducible finite-dimensional representation of 

S(21(;. We start by trotting out one of the facts that we quoted in Lecture 9, 

the preservation of Jordan decomposition; in the present circumstances it 
implies that 

The action of H on V is diagonalizable. (11.2) 

We thus have, as indicated, a decomposition 

V = EB v,., (11.3) 

where the IX run over a collection of complex numbers, such that for any vector 
v E v,. we have 

H(v) = IX' V. 

The next question is obviously how X and Y act on the various spaces 

v,.. We claim that X and Y must each carry the subspaces v,. into other sub
spaces v,.,. In fact, we can be more specific: if we want to know where the 

image of a given vector v E v,. under the action of X sits in relation to the 
decomposition (11.3), we have to know how H acts on X(v); this is given by 
the 
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Fundamental Calculation (first time): 

H(X(v» = X(H(v» + [H, X] (v) 

= X(ex' v) + 2X(v) 

= (ex + 2)' X(v); 

i.e., if v is an eigenvector for H with eigenvalue ex, then X (v) is also an eigenvector 

for H, with eigenvalue ex + 2. In other words, we have 

X: v" -+ v,,+2' 

The action of Yon each v" is similarly calculated; we have y(v,,) c v,,-2' 

Observe that as an immediate consequence of this and the irreducibility of 

V, all the complex numbers ex that appear in the decomposition (11.3) must be 

congruent to one another mod 2: for any exo that actually occurs, the subspace 

EB v"o+2n 
ne Z 

would be invariant under 512 C and hence equal to all of V. Moreover, by the 

same token, the v" that appear must form an unbroken string of numbers of 

the form p, p + 2, ... , P + 2k. We denote by n the last element in this sequence; 

at this point we just know n is a complex number, but we will soon see that 

it must be an integer. 

To proceed with our analysis, we have the following picture of the action 

of 512 C on the vector space V: 

x x x 
~ ~ ~ 

.. V n-4 .. V n_2 .. Vn 
y y y 

U U U 
H H H 

Choose any nonzero vector v E v,,; since v,,+2 = (0), we must have X(v) = o. 
We ask now what happens when we apply the map Y to the vector v. To begin 

with, we have 

Claim 11.4. The vectors {v, Y(v), y 2 (v), ... } span V. 

PROOF. From the irreducibility of V it is enough to show that the subspace 

W c V spanned by these vectors is carried into itself under the action of 512 C. 

Clearly, Y preserves W, since it simply carries the vector ym(v) into ym+l(v). 

Likewise, since the vector ym(v) is in v,,-2m, we have H(ym(v» = (n - 2m)' 

ym(v), so H preserves the subspace W. Thus, it suffices to check that X(W) c 

W, i.e., that for each m, X carries ym(v) into a linear combination of the yi(V). 

We check this in turn for m = 0, 1, 2, etc. 

To begin with, we have X(v) = 0 E W. To see what X does to y(v), we use 



§11.1. The Irreducible Representations 

the commutation relations for 512 C: we have 

Next, we see that 

X(Y(v» = [X, Y](v) + Y(X(v» 

= H(v) + Y(O) 

= n·v. 

X(y2(V)) = [X, Y](Y(v» + Y(X(Y(v))) 

= H(Y(v)) + Y(n· v) 

= (n - 2)· Y(v) + n· Y(v). 
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The pattern now is clear: X carries each vector in the sequence v, Y(v), y 2(v), 

... into a multiple of the previous vector. Explicitly, we have 

x(ym(v)) = (n + (n - 2) + (n - 4) + ... + (n - 2m + 2»· ym-l(v), 

or 

x(ym(v» = m(n - m + 1)· ym-l(v), 

as can readily be verified by induction. 

(11.5) 

o 

There are a number of corollaries of the calculation in the above Claim. 

To begin with, we make the observation that 

all the eigenspaces v,. of H are one dimensional. (11.6) 

Second, since we have in the course of the proof written down a basis for V 

and said exactly where each of H, X, and Y takes each basis vector, the 

representation V is completely determined by the one complex number n that 

we started with; in particular, of course, we have that 

V is determined by the collection of (X occurring in the decomposition 

V = EB v,.. (11.7) 

To complete our analysis, we have to use one more time the finite dimen
sionality of V. This tells us that there is a lower bound on the (X for which 
v,. -# (0) as well as an upper one, so that we must have yk(V) = 0 for sufficiently 

large k. But now if m is the smallest power of Y annihilating v, then from the 
relation (11.5), 

0= x(ym(v» = m(n - m + 1) · ym-l(V), 

and the fact that y m - 1(v) -# 0, we conclude that n - m + 1 = 0; in particular, 
it follows that n is a non-negative integer. The picture is thus that the eigen

values (X of H on V form a string of integers differing by 2 and symmetric about 
the origin in 71.. In sum, then, we see that there is a unique representation v(n) 

for each non-negative integer n; the representation v(n) is (n + I)-dimensional, 

with H having eigenvalues n, n - 2, ... , - n + 2, - n. 
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Note that the existence part of this statement may be deduced by checking 

that the actions of H, X, and Y as given above in terms of the basis v, Yv, 

y 2(v), ... , Y"(v) for V do indeed satisfy all the commutation relations for sI2e. 
Alternatively, we will exhibit them in a moment. Note also that by the 

symmetry of the eigenvalues we may deduce the useful fact that any represen

tation V of sl2C such that the eigenvalues of H all have the same parity and 

occur with multiplicity one is necessarily irreducible; more generally, the number 

of irreducible factors in an arbitrary representation V ofsI2C is exactly the sum 

of the multiplicities of 0 and 1 as eigenvalues of H. 

We can identify in these terms some of the standard representations of 512 e. 
To begin with, the trivial one-dimensional representation C is clearly just VIOl. 

As for the standard representation of sl2C on V = C2, if x and yare the 

standard basis for C2 , then we have H(x) = x and H(y) = - y, so that V = 

C · x EEl C· y = V-I EEl VI is just the representation V(I) above. Similarly, a basis 

for the symmetric square W = Sym2 V = Sym2C2 is given by {x2, xy, y2}, and 

we have 

H(x· x) = x· H(x) + H(x)· x = 2x · x, 

H(x· y) = x · H(y) + H(x)· y = 0, 

H(y· y) = y. H(y) + H(y)· y = -2y· y, 

so the representation W = C· x 2 EEl C· xy EEl C · y2 = W- 2 EEl Wo EEl W2 is the 
representation V(2) above. More generally, the nth symmetric power SymnV 

of V has basis {xn, x n- I y, ... , yn}, and we have 

H(xn- k /) = (n - k)· H(x)· X n- k - I / + k · H(y)· X n- k/- I 

= (n - 2k)· xn-kyk 

so that the eigenvalues of H on Symn V are exactly n, n - 2, ... , - n. By the 

observation above that a representation for which all eigenvalues of H occur 

with multiplicity 1 must be irreducible, it follows that SymnV is irreducible, 

and hence that 

v(n) = Symnv. 

In sum then, we can say simply that 

Any irreducible representation of sl2C is a symmetric power of the 

standard representation V ~ C 2. (11.8) 

Observe that when we exponentiate the image of 512 C under the embedding 

sl2 C --+ sln+1 C corresponding to the representation SymnV, we arrive at the 

group SL2 C when n is odd and PGL2 C when n is even. Thus, the represen

tations of the group PGL2 C are exactly the even powers Sym2n v. 

Exercise 11.9. Use the analysis of the representations of sl2C to prove the 

statement made in the previous lecture that the universal cover S ofSL2 1R has 

no finite-dimensional representations. 
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§11.2. A Little Plethysm 

Clearly, knowing the eigenspace decomposition of given representations tells 

us the eigenspace decomposition of all their tensor, symmetric, and alternating 

products and powers: for example, if V = EB v" and W = EB Wp then V ® W = 

EB{v" ® Wp) and v.. ® Wp is an eigenspace for H with eigenvalue a + p. We 
can use this to describe the decomposition of these products and powers into 

irreducible representations of the algebra 5(2(. 

For example, let V ~ (;2 be the standard representation of 5(2(;; and 

suppose we want to study the representation Sym2 V ® Sym3 V; we ask in 

particular whether if it irreducible and, if not, how it decomposes. We have 

seen that the eigenvalues of Sym2 V are 2, 0, and - 2, and those of Sym3 V are 

3, 1, -1, and - 3. The 12 eigenvalues of the tensor product Sym2 V ® Sym3 V 

are thus 5 and - 5,3 and - 3 (taken twice), and 1 and -1 (taken three times); 

we may represent them by the diagram 

• • 
-5 o 5 

The eigenvector with eigenvalue 5 will generate a subrepresentation of the 
tensor product isomorphic to Sym 5 V, which will account for one occurrence 

of each ofthe eigenvalues 5, 3, 1, -1, - 3, and - 5. Similarly, the complement 

of Sym5 V in the tensor product will have eigenvalues 3 and - 3, and 1 and 
-1 (taken twice), and so will contain a copy of the representation Sym3 v, 
which will account for one occurrence of the eigenvalues 3, 1, -1 and - 3; 

and the complement of these two subrepresentations will be simply a copy of 
V. We have, thus, 

Sym2 V ® Sym3 V ~ Sym 5 V EB Sym3 V EB v. 

Note that the projection map 

Sym2 V® Sym 3 V ~ Sym 5 V 

on the first factor is just multiplication of polynomials; the other two projec
tions do not admit such obvious interpretations. 

Exercise 11.10. Find, in a similar way, the decomposition of the tensor product 
Sym2 V ® Sym5 v. 

Exercise 11.11 *. Show, in general, that for a ~ b we have 

SymOV ® SymbV = SymO+bV EB SymO+b- 2 V EB' " EB Symo-bV 

As indicated, we can also look at symmetric and exterior powers of given 

representations; in many ways this is more interesting. For example, let 
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v ~ C2 be as above the standard representation of SI2C, and let W = Sym2V 
be its symmetric square; i.e., in the notation introduced above, take W = V(2). 

We ask now whether the symmetric square of W is irreducible, and if not what 

its decomposition is. To answer this, observe that W has eigenvalues -2,0, 
and 2, each occurring once, so that the symmetric square of W will have 

eigenvalues the pairwise sums of these numbers-that is, - 4, - 2, ° (occurring 

twice), 2, and 4. We may represent Sym2 V by the diagram: 

• • • • 
-4 -3 -2 -1 o 2 3 4 

From this, it is clear that the representation Sym2 W must decompose into 
one copy of the representation V(4) = Sym4V, plus one copy of the trivial 

(one-dimensional) representation: 

Sym2 (Sym2 V)) = Sym4V EB Sym°v. (11.12) 

Indeed, we can see this directly: we have a natural map 

Sym2 (Sym2 V)) -+ Sym4V 

obtained simply by evaluation; this will have a one-dimensional kernel (if x 
and yare as above the standard basis for V we can write a generator of this 
kernel as (x2). (y2) _ (x' y)2). 

Exercise 11.13. Show that the exterior square N W is isomorphic to W itself. 

Observe that this, together with the above description of Sym2 w, agrees with 

the decomposition of W ® W given in Exercise 11.11 above. 

We can, in a similar way, describe the decomposition of all the symmetric 

powers of the representation W = Sym2 V. For example, the third symmetric 

power Sym3 W has eigenvalues given by the triple sums of the set { - 2,0, 2}; 

these are -6, -4, - 2 (twice), o (twice), 2 (twice),4, and 6; diagrammatically, 

• • • • 
·6 -4 -2 2 4 

Again, there is no ambiguity about the decomposition; this collection of 

eigenspaces can only come from the direct sum ofSym6 V with Sym2 V, so we 
must have 

Sym3(Sym2 V) = Sym6 V EB Sym2 v. 

As before, we can see at least part of this directly: we have a natural evaluation 
map 
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and the eigenspace decomposition tells us that the kernel is the irreducible 

representation Sym2 V 

Exercise 11.14. Use the eigenspace decomposition to establish the formula 

[n/2) 

Symn(Sym2V) = EB Sym2n- 4«V 
«=0 

for all n. 

§11.3. A Little Geometric Plethysm 

We want to give some geometric interpretations of these and similar decom

positions of higher tensor powers of representations of £112 C. One big difference 

is that instead of looking at the action of either the Lie algebra sl21C or the 

groups SL21C or PGL21C on a representation W, we look at the action of the 

group PGL21C on the associated projective space i 1Pw. In this context, it is 

natural to look at various geometric objects associated to the action: for 

example, we look at closures of orbits of the action, which all turn out to be 

algebraic varieties, i.e., definable by polynomial equations. In particular, our 

goal in the following will be to describe the symmetric and exterior powers of 

W in terms of the action of PGL21C on the projective spaces IP Wand various 

loci in 1Pw. 
The main point is that while the action of PG L21C on the projective space 

IPV ~ 1P1 associated to the standard representation V is transitive, its action 

on the spaces IP(SymnV) ~ IPn for n > 1 is not. Rather, the action will preserve 

various orbits whose closures are algebraic subvarieties of lPn-for example, 

the locus of points 

C = {[v ' v· ... · v]: V E V} c IP(SymnV) 

corresponding to nth powers in SymnV will be an algebraic curve in 

IP(Symn V) ~ lPn, called the rational normal curve; and this curve will be carried 

into itself by any element of PGL21C acting on IPn (more about this in a 

moment). Thus, a knowledge ofthe geometry of these subvarieties ofiP>W may 

illuminate the representation W, and vice versa. This approach is particularly 

useful in describing the symmetric powers of W, since these powers can be 

viewed as the vector spaces of homogeneous polynomials on the projective 

space IP(W*) (or, mod scalars, as hypersurfaces in that projective space). 

Decomposing these symmetric powers should therefore correspond to some 

interesting projective geometry. 

1 PW here denotes the projective space oflines through the origin in W. or the quotient space of 

W\{O} by mu[tiplication by nonzero scalars; we write [w] for the point in PW determined by the 

nonzero vector w. For W = C .. +1• [zo • ...• z .. ] is the point in P'" = PW determined by a point 
(zo •...• z .. ) in C .. +1• 
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Digression on Projective Geometry 

First, as we have indicated, we want to describe representations of Lie groups 

in terms of the corresponding actions on projective spaces. The following fact 

from algebraic geometry is therefore of some moral (if not logical) importance: 

Fact 11.15. The group of automorphisms of projective space lPn-either as 

algebraic variety or as complex manifold- is just the group PGLn+1 C. 

For a proof, see [Ha]. (For the Riemann sphere 1P'1 at least, this should be 

a familiar fact from complex analysis.) 

For any vector space W of dimension n + 1, SymkW* is the space of 

homogeneous polynomials of degree k on the projective space IPn = IPW of 

lines in W; dually, SymkW will be the space of homogeneous polynomials of 

degree k on the projective space IP'n = IP(W*) oflines in W*, or of hyperplanes 

in W Thus, the projective space IP(SymkW) is the space of hypersurfaces of 

degree k in IPn = IP'(W*). (Because ofthis duality, we usually work with objects 

in the projective space IP(W*) rather than the dual space IPW in order to derive 

results about symmetric powers SymkW; this may seem initially more con

fusing, but we believe it is ultimately less so.) 

For any vector space V and any positive integer n, we have a natural map, 

called the Veronese embedding 

IPV* c:..1P(SymnV*) 

that maps the line spanned by v E V* to the line spanned by vn E SymnV*. We 

will encounter the Veronese embedding of higher-dimensional vector spaces 

in later lectures; here we are concerned just with the case where V is two 

dimensional, so IP'V* = 1P1. In this case we have a map 

'n: 1P1 c:.. IPn = IP(SymnV*) 

whose image is called the rational normal curve C = Cn of degree n. Choosing 

bases {IX, f3} for V* and { ... [n!/k!(n - k)!]lXkf3n-k ... } for SymnV* and ex

panding out (XIX + yf3)n we see that in coordinates this map may be given as 

[x, Y]H[Xn, xn-ly, xn-2y2, . . . , xyn-l, yn]. 

From the definition, the action of PGL2 C on IPn preserves Cn; conversely, 

since any automorphism of IPn fixing Cn pointwise is the identity, from Fact 

11.15 it follows that the group G of automorphisms of IPn that preserve Cn is 

precisely PGL2 C. (Note that conversely if W is any (n + l)-dimensional 

representation of SL2 C and IPW ~ IP'n contains a rational normal curve of 

degree n preserved by the action of PGL2 C, then we must have W ~ SymnV; 

we leave this as an exercise.2 ) 

When n = 2, C is the plane conic defined by the equation 

2 Note that any confusion between I?W and PW· is relatively harmless for us here, since the 
representations Sym"V are isomorphic to their duals. 
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F(Zo, Z1> Z2) = ZOZ2 - Z; = O. 

For n = 3, C is the twisted cubic curve in p\ and is defined by three quadratic 
polynomials 

ZOZ2 - Z;, ZOZ3 - ZIZ2' and Z1Z3 - Z~ . 

More generally, the rational normal curve is the common zero locus of the 
2 x 2 minors of the matrix 

M = (ZOZI ... Z.-I), 

ZIZ2 ' " Z. 

that is, the locus where the rank of M is 1. 

Back to Plethysm 

We start with Example (11.12). We can interpret the decomposition given 

there (or rather the decomposition of the representation of the corresponding 
Lie group SL2C) geometrically via the Veronese embedding '2 : pI c::..p2. As 
noted, SL2 C acts on p2 = P(Sym2 V*) as the group of motions of p2 carrying 

the conic curve C2 into itself. Its action on the space Sym2(Sym2 V)) of 

quadratic polynomials on p2 thus must preserve the one-dimensional sub

space C· F spanned by the polynomial F above that defines the conic C2 • At 
the same time, we see that pullback via '2 defines a map from the space of 
quadratic polynomials on p2 to the space of quartic polynomials on pi, which 

has kernel C' F; thus, we have an exact sequence 

0-+ C = SymOV -+ Sym2 (Sym 2 V)) -+ Sym4 V -+ 0, 

which implies the decomposition of Sym2(Sym2 V)) described above. 
Note that what comes to us at first glance is not actually the direct sum 

decomposition (11.12) ofSym2(Sym2 V)), but just the exact sequence above. 

The splitting of this sequence of SL2C-modules, guaranteed by the general 

theory, is less obvious. For example, we are saying that given a conic curve C 
in the plane p2, there is a subspace Vc of the space of all conics in p2, 

complementary to the one-dimensional subspace spanned by C itself and 
invariant under the action of the group of motions of the plane p2 carrying 
C into itself. Is there a geometric description of this space? Yes: the following 

proposition gives one. 

Proposition 11.16. The subrepresentation Sym4 V c Sym2(Sym2 V) is the space 

of conics spanned by the family of double lines tangent to the conic C = C2 • 

PROOF. One way to prove this is to simply write out this subspace in coor
dinates: in terms of homogeneous coordinates Zj on p2 as above, the tangent 
line to the conic C at the point [1, IX, 1X2] is the line 
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La = {Z: (X2 Zo - 2(XZI + Z2 = OJ. 
The double line 2La is, thus, the conic with equation 

(X4 Z~ - 4(X3 ZOZI + 2(X2 ZOZ2 + 4(X2 Z; - 4(XZI Z2 + zl = O. 

The subspace these conics generate is thus spanned by ZJ, ZOZI' ZIZ2, zl, 
and ZOZ2 + 2Z;. By construction, this is invariant under the action of SL2 C, 

and it is visibly complementary to the trivial subrepresentation C' F = 

C' (ZOZ2 - Z;). 
For those familiar with some algebraic geometry, it may not be necessary 

to write all this down in coordinates: we could just observe that the map from 

the conic curve C to the projective space IP(Sym2 (Sym2 V)) of conics in 1P2 

sending each point p € C to the square of the tangent line to C at p is the 

restriction to C of the quadratic Veronese map 1P2 ~ IPs, and so has image a 

quartic rational normal curve. This spans a four-dimensional projective sub

space of IP(Sym2(Sym 2 V)), which must correspond to a subrepresentation 

isomorphic to Sym4 v. 0 

We will return to this notion in Exercise 11.26 below. 

We can, in a similar way, describe the decomposition of all the symmetric 

powers of the representation W = Sym2 V; in the general setting, the geo

metric interpretation becomes quite handy. For example, we have seen that 

the third symmetric power decomposes 

Sym3(Sym2 V) = Sym6 V E9 Sym2 v. 

This is immediate from the geometric description: the space of cubics in the 

plane 1P2 naturally decomposes into the space of cubics vanishing on the conic 

C = C2 , plus a complementary space isomorphic (via the pullback map In to 

the space of sextic polynomials on IPI; moreover, since a cubic vanishing on 

C2 factors into the quadratic polynomial F and a linear factor, the space of 

cubics vanishing on the conic curve C c 1P2 may be identified with the space 

oflines in 1P2. 

One more special case: from the general formula (11.14), we have 

Sym4(Sym2V) ~ Sym8 V EB Sym4V EB Sym°v. 

Again, this is easy to see from the geometric picture: the space of quartic 

polynomials on 1P2 consists of the one-dimensional space of quartics spanned 

by the square of the defining equation F of C itself, plus the space of quartics 

vanishing on C modulo multiples of F2, plus the space of quartics modulo 

those vanishing on C. (We use the word "plus," suggesting a direct sum, but 

as before only an exact sequence is apparent). 

Exercise 11.17. Show that, in general, the order of vanishing on C defines a 

filtration on the space of polynomials of degree n in 1P2, whose successive 

quotients are the direct sum factors on the right hand side of the decomposi

tion of Exercise 11.14. 
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We can similarly analyze symmetric powers of the representation U =;= 

Sym 3 V. For example, since U has eigenvalues - 3, -1, 1, and 3, the symmetric 

square of U has eigenvalues -6, -4, -2 (twice), 0 (twice), 2 (twice), 4, and 6; 
diagrammatically, we have 

• • • • 
-6 o 

This implies that 

(11.18) 

We can interpret this in terms of the twisted cubic C = C3 C !p3 as follows: 

the space of quadratic polynomials on !p3 contains, as a subrepresentation, the 

three-dimensional vector space of quadrics containing the curve C itself; and 

the quotient is isomorphic, via the pullback map 't, to the space of sextic 
polynomials on !pl. 

Exercise 11.19*. By the above, the action of SL2 C on the space of quadric 

surfaces containing the twisted cubic curve C is the same as its action on 

!P(Sym2V*) ~ !P2. Make this explicit by associating to every quadric con

taining C a polynomial of degree 2 on !pl , up to scalars. 

Exercise 11.20*. The direct sum decomposition (11.18) says that there is a 

linear space of quadric surfaces in !p3 preserved under the action of SL2 C and 

complementary to the space of quadrics containing C. Describe this space. 

Exercise 11.21. The projection map from Sym2(Sym 3 V) to Sym2V given by 

the decomposition (11.18) above may be viewed as a quadratic map from the 

vector space Sym 3 Vto the vector space Sym2 V. Show that it may be given in 

these terms as the Hessian, that is, by associating to a homogeneous cubic 

polynomial in two variables the determinant of the 2 x 2 matrix of its second 

partials. 

Exercise 11.22. The map in the preceding exercise maybe viewed as associating 

to an unordered triple of points {p, q, r} in !pi an unordered pair of points 

{s, t} c !p 1. Show that this pair of points is the pair of fixed points of the 

automorphism of!p l permuting the three points p, q, and r cyclically. 

Exercise 11.23*. Show that 

Sym3 (Sym 3 V) = Sym9 V Ei1 SymSV $ Sym3 v, 

and interpret this in terms of the geometry of the twisted cubic curve. In 

particular, show that the space of cubic surfaces containing the curve is the 

direct sum of the last two factors, and identify the subspace of cubics corre

sponding to the last factor. 
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Exercise 11.24. Analyze the representation Sym4(Sym3V) similarly. In par

ticular, show that it contains a trivial one-dimensional subrepresentation. 

The trivial subrepresentation of Sym4(Sym 3V) found in the last exercise 

has an interesting interpretation. To say that Sym4(Sym 3 V) has such an 

invariant one-dimensional subspace is to say that there exists a quartic surface 

in 1P'3 preserved under all motions of 1P'3 carrying the rational normal curve 

C = C3 into itself. What is this surface? The answer is simple: it is the tangent 

developable to the twisted cubic, that is, the surface given as the union of the 

tangent lines to C. 

Exercise 11.25*. Show that the representation Sym3 (Sym4V) contains a trivial 

subrepresentation, and interpret this geometrically. 

Problem 11.26. Another way of interpreting the direct sum decomposition of 

Sym2 (Sym 2 V) geometrically is to say that given a conic curve C c 1P'2 and 

given four points on C, we can find a conic C = C(C; PI' . .. ' P4) C 1P'2 

intersecting C in exactly these points, in a way that is preserved by the action 

of the group PGL3 C of all motions of 1P'2 (i.e., for any motion A : 1P'2 -+ 1P'2 of 

the plane, we have A(C(C; PI' ... ' P4)) = C(AC; ApI' . . . ' AP4)). What is a 

description of this process? In particular, show that the cross-ratio of the four 

points Pi on the curve C must be a function of the cross-ratio of the Pi on C, 

and find this function. Observe also that this process gives an endomorphism 

of the pencil 

{Cc 1P'2: PI , . . . ,P4 E C} ~ pi 

of conics passing through any four points Pi E p2. What is the degree of this 

endomorphism? 

The above questions have all dealt with the symmetric powers of Sym" V. 

There are also interesting questions about the exterior powers of Sym"V. 

To start with, consider the exterior square N(Sym 3 V). The eigenvalues ofthis 

representation are just the pairwise sums of distinct elements of {3, 1, -1, - 3}, 

that is, 4,2,0 (twice), -2, and -4; we deduce that 

N(Sym 3 V) ~ Sym4 V $ Sym°v. (11.27) 

Observe in particular that according to this there is a skew-symmetric bilinear 

form on the space V = Sym3 V preserved (up to scalars) by the action ofSL2C. 
What is this form? One way of describing it would be in terms of the twisted 

cubic: the map from C to the dual projective space ([P3)* sending each point 

P E C to the osculating plane to C at P extends to a skew-symmetric linear 
isomorphism of [p3 with ([P3)*. 

Exercise 11.28. Show that a line in [p3 is isotropic for this form if and only if, 

viewed as an element of [P(N V), it lies in the linear span ofthe locus of tangent 

lines to the twisted cubic. 
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Exercise 11.29. Show that the projection on the first factor in the decomposi

tion (11.27) is given explicitly by the map 

FA Gf-+F ·dG - G·dF 

and say precisely what this means. 

Exercise 11.30. Show that, in general, the representation N(Sym"V) has as a 
direct sum factor the representation Sym2"-2v, and that the projection on this 

factor is given as in the preceding exercise. Find the remaining factors of 

N(Sym"V), and interpret them. 

More on Rational Normal Curves 

Exercise 11.31. Analyze in general the representations Sym2(Sym"V); show, 

using eigenvalues, that we have 

Sym2 (Sym"V) = EB Sym2"-4a V. 
a ~ O 

Exercise 11.32*. Interpret the space Sym2(Sym"V) of the preceding exercise 
as the space of quadrics in the projective space !pn, and use the geometry of 

the rational normal curve e = e" c !P" to interpret the decomposition of this 

representation into irreducible factors. In particular, show that direct sum 

EB Sym2n- 4a V 
a~l 

is the space of quadratic polynomials vanishing on the rational normal curve; 
and that the direct sum 

is the space of quadrics containing the tangential developable of the rational 
normal curve, that is, the union of the tangent lines to C. Can you interpret 

the sums for tX ~ k for k > 2? 

Exercise 11.33. Note that by Exercise 11 .11, the tensor power 

Sym"V®Sym"V 

always contains a copy of the trivial representation; and that by Exercises 
11.30 and 11.31, this trivial sub representation will lie in Sym2(Sym"V) if n is 
even and in N(Sym"V) ifn is odd. Show that in either case, the bilinear form 

on Sym"V preserved by SL2 C may be described as the isomorphism of!P" with 
(!P")* carrying each point p of the rational normal curve e c !P" into the 

osculating hyperplane to e at p. 

Comparing Exercises 11.14 and 11.31, we see that Sym2 (Sym"V) ~ 

Sym"(Sym2V); apparently coincidentally. This is in fact a special case of a 
more general theorem (cf. Exercise 6.18): 
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Exercise 11.34. (Hermite Reciprocity). Use the eigenvalues of H to prove the 
isomorphism 

Symk(Sym"V) ~ Sym"(SymkV). 

Can you exhibit explicitly a map between these two? 

Note that in the examples of Hermite reciprocity we have seen, it 

seems completely coincidental: for example, the fact that the representations 

Sym3(Sym4 V) and Sym4 (Sym3 V) both contain a trivial representation cor

responds to the facts that the tangential developable of the twisted cubic in 

[p3 has degree 4, while the chordal variety of the rational normal quartic in 
[p4 has degree 3. 

Exercise 11.35*. Show that ,t\m(Sym"V) ~ Symm(Sym"+l-mV). 

We will see in Lecture 23 that there is a unique closed orbit in [P(W) for any 

irreducible representation W For now, we can do the following special case. 

Exercise 11.36. Show that the unique closed orbit of the action of SL2 C on 

the projectivization of any irreducible representation is isomorphic to [pi 

(these are the rational normal curves introduced above). 



LECTURE 12 

Representations of 513 C, Part I 

This lecture develops results for 513 C analogous to those of § 11.1 (though not in exactly 

the same order). This involves generalizing some of the basic terms of §11 (e.g., the 

notions of eigenvalue and eigenvector have to be redefined), but the basic ideas are in 

some sense already in §11. Certainly no techniques are involved beyond those of§l1.1. 

We come now to a second important stage in the development of the theory: 
in the following, we will take our analysis of the representations of slz C and 

see how it goes over in the next case, the algebra sl3 e. As we will see, a number 

of the basic constructions need to be modified, or at least rethought. There 
are, however, two pieces of good news that should be borne in mind. First, 

we will arrive, by the end of the following lecture, at a classification of the 
representations of sI3 C that is every bit as detailed and explicit as the classifi

cation we arrived at previously for sIze. Second, once we have redone our 

analysis in this context, we will need to introduce no further concepts to carry 

out the classification of the finite-dimensional representations of all remaining 

semisimple Lie algebras. 

We will proceed by analogy with the previous lecture. To begin with, we 

started out our analysis of slz C with the basis {H, X, Y} for the Lie algebra; 
we then proceeded to decompose an arbitrary representation V of sIz C into 
a direct sum of eigenspaces for the action of H. What element of sI3 C in 

particular will play the role of H? The answer-and this is the first and 

perhaps most wrenching change from the previous case-is that no one 
element really allows us to see what is going on.! Instead, we have to replace 

I This is not literally true: as we will see from the following analysis, if H is any diagonal matrix 

whose entries are independent over Q, then the action of H on any representation V of sl3C 

determines the representation (i.e., if we know the eigenvalues of H we know V). But (as we will 

also see) trying to carry this out in practice would be sheer perversity. 
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the single element HE sI2 C with a subspace ~ c sI3C, namely, the two

dimensional subspace of all diagonal matrices. The idea is a basic one; it 

comes down to the observation that commuting diagonalizable matrices are 

simultaneously diagonalizable. This translates in the present circumstances to 

the statement that any finite-dimensional representation V of sI3 C admits a 

decomposition V = EEl v.., where every vector v E v.. is an eigenvector for every 

element H E~. 

At this point some terminology is clearly in order, since we will be dealing 

with the action not of a single matrix H but rather a vector space I) of them. 

To begin with, by an eigenvector for I) we will mean, reasonably enough, a 

vector v E V that is an eigenvector for every H E I). For such a vector v we can 

write 

H(v) = ex(H)' v, (12.1) 

where ex(H) is a scalar depending linearly on H, i.e., ex E ~* . This leads to our 

second notion: by an eigenvalue for the action of I) we will mean an element 

ex E 1)* such that there exists a nonzero element v E V satisfying (12.1); and by 

the eigenspace associated to the eigenvalue ex we will mean the subspace of all 

vectors v E V satisfying (12.1). Thus we may phrase the statement above as 

(12.2) Any finite-dimensional representation V of sI3C has a decomposition 

V = E9v.., 

where v.. is an eigenspace for I) and ex ranges over a finite subset of 1)*. 

This is, in fact, a special case of a more general statement: for any semisimple 

Lie algebra g, we will be able to find an abelian subalgebra I) c g, such that 

the action of I) on any g-module V will be diagonalizable, i.e., we will have a 

direct sum decomposition of V into eigenspaces v.. for I). 
Having decided what the analogue for lOI3C of HE sI2 C is, let us now 

consider what will play the role of X and Y. The key here is to look at the 

commutation relations 

[H, X] = 2X and [H, Y] = -2Y 

in sI2 C. The correct way to interpret these is as saying that X and Yare 

eigenvectors for the adjoint action of H on lOI2 C. In our present circumstances, 

then, we want to look for eigenvectors (in the new sense) for the adjoint action 

ofl) on sI3 C. In other words, we apply (12.2) to the adjoint representation of 

sI3 C to obtain a decomposition 

(12.3) 

where ex ranges over a finite subset of 1)* and I) acts on each space ga by scalar 

multiplication, i.e., for any H E ~ and Y Ega' 

[H, Y] = ad(H)(Y) = ex(H) ' Y. 

This is probably easier to carry out in practice than it is to say; we are being 
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longwinded here because once this process is understood it will be straight

forward to apply it to the other Lie algebras. In any case, to do it in the present 

circumstances, we just observe that multiplication of a matrix M on the left 

by a diagonal matrix D with entries ai multiplies the ith row of M by ai' while 

multiplication on the right multiplies the ith column by ai ; if the entries of M 

are mi.j , the entries of the commutator [D, M] are thus (a i - aj)mi,j' We see 

then that the commutator [D, M] will be a multiple of M for all D if and only 

if all but one entry of M are zero. Thus, if we let Ei,j be the 3 x 3 matrix whose 

(i, j)th entry is 1 and all of whose other entries are 0, we see that the Ei • j exactly 

generate the eigenspaces for the adjoint action of ~ on g. 
Explicitly, we have 

and so we can write 

where 

(
a 1 0 0) 

L j 0 a2 0 = a j • 

o 0 aJ 

The linear functionals oc E ~* appearing in the direct sum decomposition (12.3) 

are thus the six functionals L j - L j ; the space gL;-L, will be generated by the 

element E j • j • To draw a picture 

(12.4) 

The virtue of this decomposition and the corresponding picture is that we 

can read off from it pretty much the entire structure of the Lie algebra. Of 
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course, the action of ~ on 9 is clear from the picture: ~ carries each of the 

subspaces 9,. into itself, acting on each 9,. by scalar multiplication by the linear 

functional represented by the corresponding dot. Beyond that, though, we can 

also see, much as in the case of representations of sI2 C, how the rest of the Lie 

algebra acts. Basically, we let X be any element of 9,. and ask where ad(X} 

sends a given vector Y E 9p; the answer as before comes from knowing how 1) 

acts on ad(X)(Y}. Explicitly, we let H be an arbitrary element of ~ and as on 

page 148 we make the 

Fundamental Calculation (second time): 

[H, [X, Y]] = [X, [H, Y]] + [[H, X], Y] 

= [X, {3(H}' Y] + [ex(H}' X, Y] 

= (ex(H) + (3(H»' [X, YJ. 

In other words, [X, Y] = ad(X)(Y} is again an eigenvector for ~, with eigen

value ex + {3. Thus, 

ad(9,.}: 9// -+ 9,.+//; 

in particular, the action of ad(9,.} preserves the decomposition (12.3) in the 

sense that it carries each eigenspace 9// into another. We can interpret this in 

terms of the diagram (12.4) of eigenspaces by saying that each 9 .. acts, so to 

speak, by "translation"; that is, it carries each space 9// corresponding to a dot 

in the diagram into the subspace 9 .. +// corresponding to that dot translated by 

ex. For example, the action of 9L 1-L3 may be pictured as 

o 

(12.5) 

o 
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i.e., it carries 9L2 -L, into 9L2 -L3 ; 9L3 -L, into ~; ~ into gL,-L3 ' gL3 -L2 into gL,-L2 ' 

and kills 9L2 -L3 , 9L,-L3 , and 9L,-L2 • Of course, not all the data can be read otT 

of the diagram, at least on the basis on what we have said so far. For example, 

we do not at present see from the diagram the kernel of ad(gL,_L') on ~, though 

we will see later how to read this otT as well. We do, however, have at least a 

pretty good idea of who is doing what to whom. 

Pretty much the same picture applies to any representation V of sI3 C: we 

start from the eigenspace decomposition V = EEl Yrz for the action of ~ that we 

saw in (12.2). Next, the commutation relations for sI3 1C tell us exactly how the 

remaining summands of the decomposition (12.3) of sI3 1C act on the space V, 
and again we will see that each of the spaces 9« acts by carrying one eigenspace 

Vp into another. As usual, for any X E g« and v E Vp we can tell where X will 

send v if we know how an arbitrary element H E ~ will act on X(v). This we 

can determine by making the 

Fundamental Calculation (third time): 

H(X(v)) = X(H(v)) + [H, X] (v) 

= X(P(H)· v) + (oc(H)· X)(v) 

= (oc(H) + P(H))· X(v). 

We see from this that X(v) is again an eigenvector for the action of ~, with 

eigenvalue oc + P; in other words, the action of 9« carries Vp to Yrz+p. We can 

thus represent the eigenspaces Yrz of V by dots in a plane diagram so that each 

9« acts again "by translation," as we did for representations of sI2 1C in the 

preceding lecture and the adjoint representation of sI 3 1C above. Just as in the 

case of sI2 1C (page 148), we have 

Observation 12.6. The eigenvalues oc occurring in an irreducible representation 
of sI3 1C differ from one other by integral linear combinations of the vectors 

Li - L j E ~*. 

Note that these vectors Li - Lj generate a lattice in ~*, which we will denote 

by AR , and that all the oc lie in some translate of this lattice. 

At this point, we should begin to introduce some of the terminology that 

appears in this subject. The basic object here, the eigenvalue oc E ~* of the 

action of ~ on a representation V of g, is called a weight of the representation; 

the corresponding eigenvectors in Yrz are called, naturally enough, weight 

vectors and the spaces Yrz themselves weight spaces. Clearly, the weights that 

occur in the adjoint representation are special; these are called the roots of 

the Lie algebra and the corresponding subs paces 9« c 9 root spaces; by 
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convention, zero is not a root. The lattice AR C ~* generated by the roots IX 

is called the root lattice. 

To see what the next step should be, we go back to the analysis of represen

tations of 5[2 C. There, at this stage we continued our analysis by going to an 

extremal eigenspace Ya and taking a vector v E Ya. The point was that since Ya 
was extremal, the operator X, which would carry Ya to Ya+2' would have to 

kill v; so that v would be then both an eigenvector for H and in the kernel of 

X. We then saw that these two facts allowed us to completely describe the 

representation V in terms of images of v. 

What would be the appropriately analogous setup in the case of 5[3 C? To 

start at the beginning, there is the question of what we mean by extremal: in 

the case of 512 C, since we knew that all the eigenvalues were scalars differing 

by integral multiples of 2, there was not much ambiguity about what we meant 

by this. In the present circumstance this does involve a priori a choice (though 

as we shall see the choice does not affect the outcome): we have to choose a 

direction, and look for the farthest ex in that direction appearing in the 

decomposition (12.3). What this means is that we should choose a linear 

functional 

extend it by linearity to a linear functional I: ~* -+ C, and then for any 

representation V we should go to the eigenspace Ya for which the real part of 

I(IX) is maximal.2 Of course, to avoid ambiguity we should choose I to be 

irrational with respect to the lattice A R , that is, to have no kernel. 

What is the point of this? The answer is that, just as in the case of a 

representation V of 5[2 C we found in this way a vector v E V that was 

simultaneously in the kernel of the operator X and an eigenvector for H, in 

the present case what we will find is a vector v E Ya that is an eigenvector for 

~, and at the same time in the kernel of the action of 9p for every p such that 

1({3) > O-that is, that is killed by half the root spaces 9p (specifically, the root 

spaces corresponding to dots in the diagram (12.4) lying in a halCplane). This 

will likewise give us a nearly complete description of the representation V. 

To carry this out explicitly, choose our functional I to be given by 

l(alL! + a2L 2 + a3L 3) = aa l + ba2 + ca3' 

where a + b + c = 0 and a > b > c, so that the spaces 9", c 9 for which we 

have I(IX) > 0 are then exactly 9L,-L3 ' 9Lz-L3 , and 9L,-Lz; they correspond to 
matrices with one nonzero entry above the diagonal. 

2 The real-versus-complex business is a red herring since (it will turn out very shortly) all the 

eigenvalues IX actually occurring in any representation will in fact be in the real (in fact, the 

rational) linear span of I\R' 
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(12.7) 

Thus, for i < j, the matrices Ei,j generate the positive root spaces, and the Ej,i 
generate the negative root spaces. We set 

(12.8) 

Now let V be any irreducible, finite-dimensional representation of 513 1C. 

The upshot of all the above is the 

Lemma 12.9. There is a vector v E V with the properties that 

(i) v is an eigenvector for 1), i.e. v E V. for some ex; and 

(ii) v is killed by El,2> E1,3, and E2 ,3 ' 

For any representation V of sI3C, a vector v E V with these properties is 
called a highest weight vector. 

In the case of s12 C, having found an eigenvector v for H killed by X, we 
argued that the images of v under successive applications of Y generated the 

representation. The situation here is the same: analogous to Claim 11.4 we 
have 

Claim 12.10. Let V be an irreducible representation of s13 C, and v E Va highest 

weight vector. Then V is generated by the images of v under successive applica

tions of the three operators E2 ,1' E3 ,1> and E3,2' 

Before we check the claim, we note three immediate consequences. First, 

it says that all the eigenvalues fJ E 1)* occurring in V lie in a sort of t-plane 
with corner at ex: 
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Second, we see that the dimension of Ya itself is 1, so that v is the unique 

eigenvector with this eigenvalue (up to scalars, of course). (We will see below 

that in fact v is the unique highest weight vector of V up to scalars; see 

Proposition 12.11.) Lastly, it says that the spaces Ya+n(L2-L1 ) and Ya+n(L3-L2) 

are all at most one dimensional, since they must be spanned by (E2 ,1 t(v) and 

(E3,2t(V), respectively. 

PROOF OF CLAIM 12.10. This is formally the same as the proof of the corre
sponding statement for $(z C: we argue that the subspace W of V spanned by 

images of v under the subalgebra ofsl3 C generated by E2, 1' E3,1' and E3,2 is, 
in fact, preserved by all of $(3 C and hence must be all of V. To do this we just 

have to check that E1,2' E2, 3' and E1,3 carry W into itself (in fact it is enough 
to do this for the first two, the third being their commutator), and this is 

straightforward. To begin with, v itself is in the kernel of E1,2, E2 ,3' and E1,3' 

so there is no problem there. Next we check that E 2 ,1 (v) is kept in W : we have 

E 1,z(Ez,I(V» = (E Z,I(El,z(v» + [E 1,z, EZ,I](V) 

= a([E 1,z, EZ,I])'V 

since E1,z(v) = 0 and [E 1,2' EZ,1] E ~; and 

EZ,3(Ez,I(V» = (EZ, I(E2,3(v» + [EZ,3' EZ,I](V) 

=0 

since EZ,3(V) = 0 and [EZ,3' E 2,1] = O. A similar computation shows that 

E 3 ,z(v) is also carried into V by E 1,z and EZ,3' 

More generally, we may argue the claim by a sort of induction: we let Wn 

denote any word of length n or less in the letters E 2 ,1 and E 3 ,z and take w" 
to be the vector space spanned by the vectors wn(v) for all such words; note 

that W is the union ofthe spaces w", since E3,1 is the commutator of E3 , 2 and 

E 2,1' We claim that E1,2 and E Z, 3 carry w" into w,,-1' To see this, we can 
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write Wn as either E2,1 0 Wn- 1 or E3 ,2 0 Wn- 1; in either case wn-1(v) will be an 
eigenvector for 1) with eigenvalue p for some p. In the former case we have 

E1,2(Wn(V)) = E1,2(E2,1(Wn- 1(v))) 

= E2,dEl ,2(Wn- 1(v))) + [E1,2' E2,1](Wn- 1(v)) 

E E2,1(w,,-2) + P([E1,2' E2,1])'Wn- 1(v) 

C w,,-l 

since [E 1, 2' E2 ,1] E 1); and 

E2,3(wn(v)) = E2,3(E2, 1 (Wn- 1 (v))) 

= E2,1 (E2,3(wn- 1 (v))) + [E2, 3' E2,1] (Wn - 1 (v)) 

E E2, 1 (w,,-2) 

C w,,-l 

since [E2 ,3, E2 ,1] = O. Essentially the same calculation covers the latter case 
Wn = E3 ,2 0 Wn- 1 , establishing the claim. 0 

This argument shows a little more; in fact, it proves 

Proposition 12.11. If V is any representation of S13C and v E V is a highest 
weight vector, then the subrepresentation W of V generated by the images 

of v by successive applications of the three operators E2,1' E3 ,1, and E3 ,2 is 
irreducible. 

PROOF. Let C( be the weight of v. The above shows that W is a subrepresenta

tion, and it is clear that ~ is one dimensional. If W were not irreducible, we 
would have W = W' E9 W" for some representations W' and W". But since 

projection to W' and W" commute with the action of 1), we have ~ = 

W; E9 a:'. This shows that one of these spaces is zero, which implies that v 
belongs to W' or W", and hence that W is W' or W". 0 

As a corollary ofthis proposition we see that any irreducible representation 

of S13C has a unique highest weight vector, up to scalars; more generally, the 
set of highest weight vectors in V forms a union of linear subspaces 'I' w 

corresponding to the irreducible subrepresentations Wof V, with the dimen

sion of 'l'w equal to the number of times W appears in the direct sum 
decomposition of V into irreducibles. 

What do we do next? Well, let us continue to look at the border vectors 
(E2,1)k(V). We call these border vectors because they live in (and, as we saw, 

span) a collection of eigenspaces 9«, 9«+L2 -L" 9«+2(L2 -L')' ..• that correspond 
to points on the boundary of the diagram above of possible eigenvalues 
of V. We also know that they span an uninterrupted string of nonzero eigen

spaces 9«+k(L2-L,) ~ C, k = 0, 1, ... , until we get to the first m such that 
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(E2, dm(v) = 0; after that we have 9a+k(L2 -L,) = (0) for all k ~ m. The picture 

is thus: 

(12.12) 

where we have no dots above/to the right of the bold line, and no dots on that 

line other than the ones marked. 

The obvious question now is how long the string of dots along this line is. 

One way to answer this would be to make a calculation analogous to the one 

in the preceding lecture: use the computation made above to say explicitly for 

any k what multiple of(E2.dk -'(v) the image of(E2,d(v) under the map E,,2 

is, and use the fact that (E2"r(v) = 0 to determine m. It will be simpler

and more useful in general-if instead we just use what we have already 

learned about representations of512c' The point is, the elements E,,2 and E2", 

together with their commutator [EI,2, E2,,] = H,,2, span a subalgebra of 513C 

isomorphic to sl2C via an isomorphism carrying EI,2, E2" and H,,2 to the 

elements X, Y and H. We will denote this subalgebra by SL,-L2 (the notation 

may appear awkward, but this is a special case of a general construction). By 

the description we have already given of the action of 513 C on the representa

tion V in terms of the decomposition V = EB v,., we see that the subalgebra 

SL,-L2 will shift eigenspaces Va only in the direction of L2 - L,; in particular, 

the direct sum of the eigenspaces in question, namely the subspace 

w = EB 9a+k(L2 -L,) 
k 

(12.13) 

of V will be preserved by the action of SL,-L2 ' In other words, W is a 

representation of SL,-L2 ~ s12C and we may deduce from this that the eigen

values of HI,2 on Ware integral, and symmetric with respect to zero. Leaving 

aside the integrality for the moment, this says that the string of dots in diagram 

(12.12) must be symmetric with respect to the line <HI,2, L) = 0 in the plane 

l}*. Happily (though by no means coincidentally, as we shall see), this line is 

perpendicular to the line spanned by L, - L2 in the picture we have drawn; 

so we can say simply that the string of dots occurring in diagram (12.12) is 

preserved under reflection in the line <HI,2, L) = O. 

In general, for any i # j the elements Ei,j and Ej,i' together with their 

commutator [Ei,j' Ej,a = Hi,j' span a subalgebra 5Li -Lj of sI3C isomorphic 
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to s12(: via an isomorphism carrying Ei, j' Ej,i' and H i•j to the elements X, Y, 
and H. (Note that Hi,j = - Hj,;.) Analyzing the action of the subalgebra 

SL,-L3 in particular then shows that the string of dots corresponding to the 
eigenspaces 9a+k(L3 - L 2 ) is likewise preserved under reflection in the line 

<H2 , 3' L) = 0 in ~ •. The picture is thus 

Let us now take a look at the last eigenspace in the first string, that is, VII 

where m is as before the smallest integer such that (E2 , dm(v) = 0 and p = 

~ + (m - I)(L2 - Li)' If v' E VII is any vector, then, by definition, we have 
E2,1 (v') = 0; and since there are no eigenspaces Vy corresponding to y above 

the bold line in diagram (12.12), we have as well that E2, 3(V / ) = E i , 3(V / ) = O. 
Thus, v', like v itself, satisfies the statement of Lemma 12.9, except for the 

exchange of the indices 2 and 1; or in other words, if we had chosen the linear 
functional I above differently-precisely, with coefficients b > a > c-then 

the vector whose existence is implied by Lemma 12.9 would have turned out 

to be v' rather than v. If, indeed, we had carried out the above analysis with 

respect to the vector v' instead of v, we would find that all eigenvalues of V 

occur below or to the right of the lines through P in the directions of Li - L2 

and L 3 - L 1 , and that the strings of eigenvalues occurring on these two lines 

were symmetric about the lines <H i ,2' L) = 0 and <H i , 3' L) = 0, respec
tively. The picture now is 

(H 1.3,L > = 0 
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Needless to say, we can continue to play the same game all the way around: 

at the end of the string of eigenvalues {P + k(L3 - L 1 )} we will arrive at a 

vector v" that is an eigenvector for ~ and killed by E3 ,l and E2• 1 , and to which 

therefore the same analysis applies. In sum, then, we see that the set of 

eigenvalues in V will be bounded by a hexagon symmetric with respect to the 

lines (Hi,i' L) = 0 and with one vertex at IX; indeed, this characterizes the 
hexagon as the convex hull of the union of the images of IX under the group 

of isometries of the plane generated by reflections in these three lines. 

(H 1.3' L ) = 0 

(H 2•3, L)=O (12.14) 

We will see in a moment that the set of eigenvalues will include all the points 

congruent to IX modulo the lattice AR generated by the Li - Lj lying on the 

boundary of this hexagon, and that each of these eigenvalues will occur with 
multiplicity one. 

The use ofthe subalgebras SL,-LJ does not stop here. For one thing, observe 

that as an immediate consequence of our analysis of sI2 C, all the eigenvalues 

of the elements Hi,j must be integers; it is not hard to see that this means that 
all the eigenvalues occurring in (12.2) must be integral linear combinations of 

the L j , i.e., in terms of the diagrams above, all dots must lie in the lattice Aw 
of interstices (as indeed we have been drawing them). Thus, we have 

Proposition 12.15. All the eigenvalues of any irreducible finite-dimensional 

representation of 513C must lie in the lattice Aw c ~* generated by the Li and 

be congruent modulo the lattice AR c ~* generated by the Li - Lj • 

This is exactly analogous to he situation of the previous lecture: there we 

saw that the eigenvalues of H in any irreducible, finite-dimensional representa

tion of sI 2 C lay in the lattice Aw ~ 7L oflinear forms on CH integral on H, 

and were congruent to one another modulo the sublattice AR = 2· 7L generated 
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by the eigenvalues of H under the adjoint representation. Note that in the case 

ofsl2 CwehaveAw/AR ~ &':'/2, while in the present case we have Aw/AR ~ &':'/3; 
we will see later how this reflects a general pattern. The lattice Aw is called 
the weight lattice. 

Exercise 12.16. Show that the two conditions that the eigenvalues of V are 

congruent to one another modulo AR and are preserved under reflection in 

the three lines <Hi,i' L) = 0 imply that they all lie in A w, and that, in fact, 
this characterizes Aw. 

To continue, we can go into the interior of the diagram (12.14) of eigen
values of V by observing that the direct sums (12.13) are not the only visible 

subspaces of V preserved under the action of the subalgebras SL,-Lj ; more 
generally, for any p E 1)* appearing in the decomposition (12.2) and any i,j the 
direct sum 

will be a representation of SL;-Lj (not necessarily irreducible, of course); in 

particular it follows that the values of k for which Vp+k(L;-Ljl # (0) form an 
unbroken string of integers. Observing that if P is any of the "extremal" 
eigenvalues pictured in diagram (12.14), then this string will include another; 

so that all eigenvalues congruent to the dots pictured in diagram (12.14) and 

lying in their convex hull must also occur. Thus, the complete diagram of 
eigenvalues will look like 

(12.17) 

We can summarize this description in 

Proposition 12.18. Let V be any irreducible, finite-dimensional representation 

of sl3 Co Then for some IX E Aw C 1)*, the set of eigenvalues occurring in V is 
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exactly the set of linear functionals congruent to r.t. modulo the lattice AR and 

lying in the hexagon with vertices the images of r.t. under the group generated by 

reflections in the lines (Hi,j' L) = O. 

Remark. We did, in the analysis thus far, make one apparently arbitrary choice 

when we defined the notion of "extremal" eigenvalue by choosing a linear 

functional I on f)*. We remark here that, in fact, the choice was not as broad 

as might at first have appeared. Indeed, given the fact that the configuration 
of eigenvalues occurring in any irreducible finite-dimensional representation 

of sl31C is always either a triangle or a hexagon, the "extremal" eigenvalue 
picked out by I will always turn out to be one of the three or six vertices of 

this figure; in other words, if we define the linear functional I to take alL 1 + 
a2L2 + a3L3 to aa 1 + ba2 + ca3, then only the ordering of the three real 
numbers a, b, and c matters. Indeed, in hindsight this choice was completely 

analogous to the choice we made (implicitly) in the case of sl21C in choosing 
one of the two directions along the real line. 

We said at the outset of this lecture that our goal was to arrive at a 

description of representations of sl31C as complete as that for sl21C. We have 
now, certainly, as complete a description of the possible configurations of 

eigenvalues; but clearly much more is needed. Specifically, we should have 

an existence and uniqueness theorem; 
an explicit construction of each representations, analogous to the statement 

that every representation of sI2 1C is a symmetric power of the standard; and 

for the purpose of analyzing tensor products of representations of s131C, we 
need a description not just of the set of eigenvalues, but of the mUltiplicities 
with which they occur. 

(Note that the last question is one that has no analogue in the case of s121C: 
in both cases, any irreducible representation is generated by taking a single 

eigenvector v E V. and pushing it around by elements of 9.; but whereas in the 
previous case there was only one way to get from V. to Vp-that is, by applying 

Y over and over again-in the present circumstance there will be more than 

one way of getting, for example, from V. to V.+L,-L,; and these may yield 
independent eigenvectors.) This has been, however, already too long a lecture, 

and so we will defer these questions, along with all examples, to the next. 



LECTURE 13 

Representations of sI3 C, Part II: 

Mainly Lots of Examples 

In this lecture we complete the analysis of the irreducible representations of s131C, 

culminating in §13.2 with the answers to all three ofthe questions raised at the end of 

the last lecture: we explicitly construct the unique irreducible representation with given 

highest weight, and in particular determine its multiplicities. The latter two sections 

correspond to § 11.2 and § 11.3 in the lecture on s121C. In particular, § 13.4, like § 11.3, 

involves some projective algebraic geometry and may be skipped by those to whom 

this is unfamiliar. 

§13.1: Examples 

§ 13.2: Description of the irreducible representations 

§13.3: A little more plethysm 

§13.4: A little more geometric plethysm 

§13.1. Examples 

This lecture will be largely concerned with studying examples, giving construc

tions and analyzing tensor products of representations of 51 3 1C. We start, 
however, by at least stating the basic existence and uniqueness theorem that 

provides the context for this analysis. 

To state this, recall from the previous lecture than any irreducible, finite
dimensional representation of 513 1C has a vector, unique up to scalars, that is 

simultaneously an eigenvector for the subalgebra 1) and killed by the three 

subspaces 9L,-L
" 

9L,-L3 ' and 9L, -L3 ' We called such a vector a highest weight 

vector of the representation V; its associated eigenvalue will, of course, be 

called the highest weight of V. More generally, in any finite-dimensional 
representation W of 5131C, any vector v E W with these properties will be called 
a highest weight vector; we saw that it will generate an irreducible sub-
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representation V of W Finally, from the description given in the last lecture 

of the possible configurations of eigenvalues for a representation of 513 C, we 

see that any highest weight vector must lie in the (i)-plane described by the 

inequalities <H1,2' L) ~ ° and <H2,3' L) ~ 0, i.e., it must be of the form 
(a + b)L I + bL2 = aLl - bL3 for some pair of non-negative integers a and 
b. We can now state 

Theorem 13.1. For any pair of natural numbers a, b there exists a unique 

irreducible, finite-dimensional representation C,b of sl31C with highest weight 

aLl - bL3. 

We will defer the proof of this theorem until the second section of this 

lecture, not so much because it is in any way difficult but simply because it is 

time to get to some examples. We will remark, however, that whereas in the 

case of sI2 1C the analysis that led to the concept of highest weight vector 
immediately gave the uniqueness part of the analogous theorem, here to 

establish uniqueness we will be forced to resort to a more indirect trick. The 
proof of existence, by contrast, will be very much like that ofthe corresponding 

statement for s121C: we will construct the representations ra,b out of the 
standard representation by multilinear algebra. 

For the time being, though, we would like to apply the analysis of the 

previous lecture to some of the obvious representations of s131C, partly to gain 
some familiarity with what goes on and partly in the hopes of seeing a general 
multilinear-algebraic construction. 

We begin with the standard representation of sl31C on V ~ 1C 3 . Of course, 

the eigenvectors for the action of l) are just the standard basis vectors e1 , e2 , 

and e 3; they have eigenvalues L I, L 2 , and L 3 , respectively. The weight diagram 
for V is thus 

Next, consider the dual representation V*. The eigenvalues of the dual of 

a representation of a Lie algebra are just the negatives of the eigenvalues of 
the original, so the diagram of V* is 
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Alternatively, of course, we can just observe that the dual basis vectors er are 
eigenvectors with eigenvalues - L i • 

Note that while in the case of 512(: the weights of any representation were 

symmetric about the origin, and correspondingly each representation was 
isomorphic to its dual, the same is not true here (that the diagrams for V and 
V* look the same is a reflection of the fact that the two representations are 

carried into one another by an automorphism of 513 (:, namely, the auto
morphism XH _IX). Observe also that V* is also isomorphic to the repre
sentation N V, whose weights are the pairwise sums of the distinct weights of 

V; and that likewise V is isomorphic as representation to Nv*. 
Next, consider the degree 2 tensor products of V and V*. Since the weights 

of the symmetric square of a representation are the pairwise sums of the 

weights of the original, the weight diagram of Sym2 V will look like 

and likewise the symmetric square Sym 2 V* has weights { - 2Li, - Li - Lj } = 
{-2Li - 2Lj , Ld: 
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We see immediately from these diagrams that Sym2 V and Sym2 V· are 

irreducible, since neither collection of weights is the union of two collections 

arising from representations of sl3 C. 

As for the tensor product V ® V*, its weights are just the sums of the 

weights {Lj} ofVwith those {- Lj} of V·, that is, the linear functionalsL j - Lj 

(each occurring once, with weight vector e j ® ej) and 0 (occurring with multi

plicity three, with weight vectors ej ® en We can represent these weights by 

the diagram 

where the triple circle is intended to convey the fact that the weight space Vo 

is three dimensional. By contrast with the last two examples, this representa

tion is not irreducible: there is a linear map 

V® V·~C 

given simply by the contraction 

v ® u·1-+ <v, u*) = u*(v) 
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(or, in terms of the identification V ® V* ~ Hom(V, V), by the trace) that is 

a map of 5[3i1:>modules (with C the trivial representation, of course). The 

kernel of this map is then the subspace of V ® V* of traceless matrices, which 
is just the adjoint representation of the Lie algebra 5[3 C and is irreducible (we 

can see this either from our explicit description of the adjoint representation

for example, £1,3 is the unique weight vector for ~ killed by gL,-L2' gL,-L3 ' 

and gL2 -L3 -or, if we take as known the fact that SL3 C is simple, from the 

fact that a subrepresentation of the adjoint representation is an ideal in a Lie 
algebra, and exponentiates to a normal subgroup, cf. Exercise 8.43.) 

(Physicists call this adjoint representation of 5[3C (or SU(3)) the "eightfold 
way," and relate its decomposition to mesons and baryons. The standard 

representation V is related to "quarks" and V* to "anti quarks." See [S-W], 
[Mack].) 

(We note that, in general, if V is allY faithful representation of a Lie algebra, 
the adjoint representation will appear as a subrepresentation of the tensor 
V® V*.) 

Let us continue now with some of the triple tensor products of V and V*, 

which will be the last specific cases we look at. To begin with, we have the 

symmetric cubes Sym3Vand Sym3V*, with weight diagrams 

and 
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respectively. In general it is clear that, in terms of the description given in 

the preceding lecture of the possible weight diagrams of irreducible repre

sentations of S131C, the symmetric powers of V and V* will be exactly the 

representations with triangular, as opposed to hexagonal, diagrams. 

It also follows from the above description and the fact that the weights of 

the symmetric powers Sym"V occur with multiplicity 1 that Sym"V and 

Sym"V* are all irreducible, i.e., we have, in the notation of Theorem 13.1, 

Sym"V = r".o and Sym"V* = ro,"' 

By way of notation, we will often write Sym"V in place of r",o. 
Consider now the mixed tensor Sym2 V ® V* . Its weights are the sums of 

the weights of Sym2 V- that is, the pairwise sums of the L;-with the weights 

of V*; explicitly, these are L; + L j - Lk and 2L; - Lj (each occurring once) 
and the L; themselves (each occurring three times, as L; + L j - L j ). Dia
grammatically, the representation looks like 

Now, we know right ofT the bat that this is not irreducible: we have a natural 
map 

given again by contraction, that is, by the map 

VW ® u*1-+ <v, u*>' W + <w, u*>' v, 

which is a map of sI3 1C-modules.1 What does the kernel of this map look like? 
Of course, its weight diagram is 

, Another way to see that Sym2 y ® y* is not irreducible is to observe that if a representation 

Wis generated by a highest weight vector v of weight 2L, - L 3 , as Sym2 V ® V· must be ifit is 

irreducible, the eigenvalue L, can be taken with multiplicity at most 2, the corresponding 

eigenspace being generated by E2,1 0 E3,2(V) and E3,2 0 E2,1 (v) . 
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and we know one other thing: certainly any vector in the weight space of 
2L1 - L3-that is to say, of course, any multiple of the vector ei ® 4-is 

killed by gL,-L2 ' gL,-L" and gL2 -L" so that the kernel of 1 will contain an 
irreducible representation r = r 2 , 1 with 2L1 - L3 as its highest weight. Since 
r must then assume every weight of Ker(I), there are exactly two possibilities: 
either Ker(l) = r, which assumes the weights L; with multiplicity 2; or all the 

weights of r occur with multiplicity one and Ker(l) ~ r E9 v. 
How do we settle this issue? There are at least three ways. To begin with, 

we can try to analyze directly the structure of the kernel of I. An alternative 

approach would be to determine a priori with what multiplicities the weights 
of ra,b are taken. Certainly it is clear that a formula giving us the latter 

information will be tremendously valuable-it would for one thing clear up 
the present confusion instantly-and indeed there exist several such, one of 

which, the Weyl character formula, we will prove later in the book. (We will 
also prove the Kostant multiplicity formula, which can be applied to deduce 

directly the independence statement we arrive at below.) As a third possibility, 

we can identify the representations ra,b as Weyl modules and appeal to Lecture 
6. Rather than invoke such general formulas at present, however, we will take 

the first approach here. This is straightforward: in terms of the notation 

we have been using, the highest weight vector for the representation 
r c Sym 2 V ® V* is the vector ei ® 4, and so the eigenspace rL , c r with 

eigenvalue L1 will be spanned by the images of this vector under the two 

compositions E2,1 0 E 3,2 and E 3,2 0 E2,1' These are, respectively, 

and 

E2,1 0 E 3,2(ei ® en = E2,1(E3 ,2(ei) ® et + ei ® E 3 ,2(em 

=E2,1(-ei®en 

= -2(e 1 ' e2) ® et + ei ® ef 

E3,2 0 E 2,1(ei ® en = E 3,2(E2,1(er) ® et + er ® E2,1(em 

= E3,2((2e1'e2)®4) 

= 2(e1 . e3) ® eJ - 2(e1 . e2) ® et· 
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Since these are independent, we conclude that the weight Ll does occur in r 

with multiplicity 2, and hence that the kernel of, is irreducible, i.e., 

SymZV ® V* ~ rZ , l $ v. 

§13.2. Description of the Irreducible Representations 

At this point, rather than go on with more examples we should state some of 

the general principles that have emerged so far. The first and most important 

(though pretty obvious) is the basic 

Observation 13.2. If the representations V and W have highest weight vectors 

v and w with weights (I. and p, respectively, then the vector v ® we V ® W is 

a highest weight vector of weight ex + p. 

Of course, there are numerous generalizations of this: the vector vn e Symn V 

is a highest weight vector of weight nex, etc. Z Just the basic statement above, 

however, enables us to give the 

PROOF OF THEOREM 13.1. First, the existence statement follows immediately 

from the observation: the representation SymG V ® Symb V* will contain an 

irreducible subrepresentation rG,b with highest weight aLl - bL3 • 

The uniqueness part is only slightly harder (if less explicit): Given 

irreducible representations Vand W with highest weight ex, let v e V and w e W 

be highest weight vectors with weight (I. . Then (v, w) is again a highest weight 

vector in the representation V (9 W with highest weight ex; let U c V (9 W 

be the irreducible subrepresentation generated by (v, w). The projection 

maps ttl: U -+ V and ttz: U -+ W, being nonzero maps between irreducible 

representations of S[3 C, must be isomorphisms, and we deduce that V ~ W. 

o 

Exercise 13.3*. Let § l be the Schur functor introduced in Lecture 6. What 

can you say about the highest weight vectors in the representation §l(V) 

obtained by applying it to a given representation V? 

To continue our discussion of tensor products like SymGV ® SymbV* in 

general, as we indicated we would like to make more explicit the construction 

of the representation rG,b' which we know to be lying in SymG V ® Symb V*. 

To begin with, we have in general a contraction map 

'G,b: SymG V ® Symb V* -+ SymG- 1 V ® Symb- 1 V* 

analogous to the map , introduced above; we can describe this map either 

(in fancy language) as the dual of the map from SymG- 1 V ® Symb- 1 V* 

to SymG V ® Symb V* given by multiplication by the identity element in 

2 One slightly less obvious statement is this: if the weights of V are lXI' 1X2' 1X3" • with [(IX I ) > [(1X2) > 
.. . , then N V possesses a highest weight vector weight IX I + .. . , + IX •• Note that since the ordering 

of the lXi may in fact depend on the choice ofl (even with the restriction a > b > c on the coefficients 

of I as above), this may in some cases imply the existence of several subrepresentations of I\" V. 
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v ® V* = Hom(V, V); or, concretely, by sending 

(VI····· Va) ® (Vr· ... · V:) 

1-+ L <Vi' Vj*)(Vl .... 'Vi ' .... Va) ® (Vr····· V;· ... ·vt). 
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Clearly this map is surjective, and, since the target does not have eigenvalue 

aLl - bL3, the subrepresentation ra,b c Syma V ® Symb V* must lie in the 
kernel. In fact, we have, just as in the case of Sym2 V ® V* above, 

Claim 13.4. The kernel of the map la,b is the irreducible representation ra,b' 

We will defer the proof of this for a moment and consider some of its 
consequences. To begin with, we can deduce from this assertion the complete 

decomposition of Syma V ® Symb V*: we must have (if, say, b ~ a) 

b 

Syma V ® Symb V* = EB ra - i •b- i · (13.5) 
i=O 

Since we know, a priori, all the multiplicities ofthe eigenvalues of the tensor 
product Syma V ® Symb V*, this will, in turn, determine (inductively at least) 

all the multiplicities of the representations ra•b • In fact, the answer turns 

out to be very nice. To express it, observe first that if a ~ b, the weight dia

gram of either r a,b or Syma V ® Symb V* looks like a sequence of b shrinking 
concentric (not in general regular) hexagons Hi with vertices at the points 
(a - i)Ll - (b - i)L3 for i = 0, 1, ... , b - 1, followed (after the shorter three 

sides ofthe hexagon have shrunk to points) by a sequence of [(a - b)j3] + 1 

triangles 1j with vertices at the points (a - b - 3j)Ll for j = 0, 1, ... , 

[(a - b)j3] (it will be convenient notationally to refer to To as Hb occasionally). 
Diagram (13.6) shows the picture of the weights of Sym6 V ® Sym2 V*: 

(13.6) 
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(Note that by the decomposition (13.5), the weights of the highest weight 

vectors in SymQ V ® Symb V* will be aLl - bL3, (a - I)Ll - (b - I)L3' . .. , 

(a - b)L 1 , as shown in the diagram.) 
An examination of the representation SymQ V ® Symb V* shows that it has 

multiplicity (i + l)(i + 2)/2 on the hexagon Hi, and then a constant multi
plicity (b + l)(b + 2)/2 on all the triangles 1j; and it follows from the decom

position (13.5), in general, that the representation rQ • b has multiplicity (i + 1) 

on Hi and b + 1 on Tj . In English, the multiplicities of ra,b increase by one 

on each of the concentric hexagons of the eigenvalue diagram and are constant 

on the triangles. Note in particular that the description of r 2, I in the pre

ceding section is a special case of this. 

PROOF OF CLAIM 13.4. We remark first that the claim will be implied by the 
Weyl character formula or by the description via Weyl's construction in 

Lecture 15; so the reader who wishes to can skip the following without dire 

consequences to the logical structure of the book. Otherwise, observe 
first that the claim is equivalent to asserting the decomposition (13.5); 

this, in turn, is equivalent to the statement that the representation 
W = SymQ V ® Symb V* has exactly b + 1 irreducible components (still 

assuming a ~ b). The irreducible factors in a representation correspond 

to the highest weight vectors in the representation up to scalars; so in 
sum the claim is equivalent to the assertion that the eigenspace ~ of 

SymO V ® Symb V* contains a unique highest weight vector (up to scalars) if ex 

is of the form (a - i)Ll - (b - i)L3 for i =:;; b, and none otherwise; this is what 

we shall prove. 
To begin with, the "none otherwise" part of the statement follows (given 

the other) just from looking at the diagram: if, for example, any of the 

eigenspaces ~ corresponding to a point ex on a hexagon Hi (other than the 
vertex (a - i)Ll - (b - i)L3 of Hi) possessed a highest weight vector, the 

multiplicity of ex in W would be strictly greater than of (a - i)Ll - (b - i)L3' 

which we know is not the case; similarly, the fact that the multiplicities of W 

in the triangular part of the eigenvalue diagram are constant implies that there 

can be no highest weight vectors with eigenvalue on a 1j for j ~ 1. Thus, we 
just have to check that the weight spaces ~ for ex = (a - i)Ll - (b - i)L3 

contain only the one highest weight vector we know is there; and we do this 
by explicit calculation. 

To start, for any monomial index I = (iI' i2 , i3) of degree L i1 = i, we denote 
by el E Sym i V the corresponding monomial n (e~ ' ) and define (e*)l E Sym i V* 

similarly. We can then write any element of the weight space »(o-i)L,-(b-i)L3 

of SymO V ® Symb V* as 

In these terms, it is easy to write down the action of the two operators £1 , 2 
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and E 2 ,3' First, E1,2 kills both e l E V and e! E V*, so that we have 

Et ,2((ei-i . el ) ® ((ei)b-i . (e*)/)) 

= i2(ei-i . ell) ® ((ei)b-i . (e*)/) 

. (a-i I) 10. (( *)b-i (e*)/") - II e l . e \(y e3 · , 
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where I' = (il + 1, i2 - 1, i3) and 1" = (il - 1, i2 + 1, i3) (and we adopt the 

convention that el = 0 if iy < 0 for any y). It follows that the vector v above is 
in the kernel of E 1,2 if and only if the coefficients c I satisfy i2 c I = (i I + l)c 6 
and by the analogous calculation that v is in the kernel of E2 •3 if and only if 

i3 c1 = (i2 + I)c) whenever the indices I and J are related by jl = ii' j2 = 
i2 + 1, and j3 = i3 - 1. These conditions are equivalent to saying that the 

numbers i l !i2!i3!C1 are independent of I. We see, in other words, that v is a 

highest weight vector if and only if all the coefficients clare equal to c/i I! i2! i3! 

for some constant c. 0 

§13.3. A Little More Plethysm 

We would like to consider here, as we did in the case of sl2C in Lecture 11, 

how the tensor products and powers ofthe representations we have described 

decompose. We start with one general remark: given our knowledge of the 

eigenvalue diagrams of the irreducible representations of sl3C (with multi

plicities), there can be no possible ambiguity about the decomposition of any 

representation V given as the tensor product of representations whose eigen

value diagrams are known. Indeed, we have an algorithm for determining the 

components of that decomposition, as follows: 

1. Write down the eigenvalue decomposition of V. 

2. Find the eigenvalue ex = aLI - bL3 appearing in this diagram for which 

the value of l(ex) is maximal. 

3. We now know that V will contain a copy of the irreducible representation 

ra = ra,b, i.e., V ~ ra $ V' for some V'. Since we also know the eigenvalue 

diagram of ra , we can thus write down the eigenvalue diagram of V' as well. 

4. Repeat this process for V'. 

To see how this goes in practice, consider some examples of tensor products 

ofthe basic irreducible representations described so far. We have already seen 

how the tensor products of the symmetric powers of the standard represen

tation V of sl3 C and symmetric powers of its dual decompose; let us look now 

at an example of a more general tensor product of irreducible representations: 
say V itself and the representation r2,1' We start by writing down the weights 

of the tensor product: since r2, 1 has weights 2L; - L j , L; + L j - Lk , and L; 
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(taken twice) and V has weights L;, the tensor product will have weights 

3L; - Lj , 2L; + Lj - Lk (taken twice), 2L; (taken four times), and L; + Lj 

(taken five times). The diagram is thus 

(One thing we may deduce from this diagram is that we are soon going to 

need a better system for presenting the data of the weights of a representation. 

In the future, we may simply draw one sector of the plane, and label weights 
with numbers to indicate multiplicities.) 

We know right off the bat that the tensor product V ® rZ• 1 contains a copy 
of the irreducible representation r3,l with highest weight 3L1 - L 3 . By what 

we have said, the weight diagram of r 3 • 1 is 

so the complement of r 3 ,l in the tensor product V ® r Z• 1 will look like 
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One obvious highest weight in this representation is 2Ll + L2 - L3 = 
Ll - 2L3• so that the tensor product will contain a copy of the irreducible 

representation r 1,2 as well; since this has weight diagram 

the remaining part of the tensor product will have weight diagram 
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which we recognize as the weight diagram of the symmetric square Sym2 V = 
r2 ,o of the standard representation. We have, thus, 

(13.7) 

Exercise 13.8*. Find the decomposition into irreducible representations of the 

tensor products V ® rl, 1, V ® r1,2 and V ® r3,l' Can you find a general 
pattern to the outcomes? 

As in the case of sI2 iC, the next thing to look at are the tensor powers
symmetric and exterior-of representations other than the standard; we 

look first at tensors of the symmetric square W = Sym2 V. First, consider 
the symmetric square Sym2 W = Sym2 (Sym2 V». We know the diagram for 

Sym2 W; it is 

Now, there is only one possible decomposition of a representation whose 
eigenvalue diagram looks like this: we must have 
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Sym2(Sym2 V» ~ Sym4 V EB Sym2 V*. 

Indeed, the presence of the Sym4 V factor is clear: there is an obvious map 

qJ: Sym2(Sym2 V» -+ Sym4 V 

obtained simply by multiplying out. The identification of the kernel of this 

map with the representation Sym2 V* is certainly less obvious, but can still be 

made explicit. We can identify V* with N Vas we saw, and then define a map 

't: Sym2(N V) -+ Sym2(Sym2 V» 

by sending the generator (u /\ v) , (w /\ z) E Sym 2(N V) to the element 

(u' w)' (v· z) - (u' z)· (v' w) E Sym2(Sym2 V), which is clearly in the kernel of qJ. 

Exercise 13.9. Verify that this map is well defined and that it extends linearly 

to an isomorphism of Sym2(N V) with Ker(qJ). 

Exercise 13.10. Apply the techniques above to show that the representation 

N(Sym2V) is isomorphic to r2,l' 

Exercise 13.11. Apply the same techniques to determine the irreducible factors 

of the representation N(Sym2 V). Note: we will return to this example in 

Exercise 13.22. 

Exercise 13.12. Find the decomposition into irreducibles of the representa

tions Sym2(Sym3 V) and Sym3(Sym2 V) (observe in particular that Hermite 

reciprocity has bitten the dust). Describe the projection maps to the various 

factors. Note: we will describe these examples further in the following section. 

§13.4. A Little More Geometric Plethysm 

Just as in the case of sI2(:, some of these identifications can also be seen in 

geometric terms. To do this, recall from §11.3 the definition of the Veronese 

embedding: if 1P2 = IPV* is the projective space of one-dimensional subspaces 

of V*, there is then a natural embedding of 1P2 in the projective space IPs = 

IP(Sym2 V*), obtained simply by sending the point [v*] E 1P2 corresponding 

to the vector v* E V* to the point [V*2] E IP(Sym2V*) associated to the vector 

V*2 = v* ' v* E Sym2 V*. The image S c IPs is called the Veronese surface. As 

in the case of the rational normal curves discussed in Lecture 11, it is not hard 

to see that the group of automorphisms of IPs carrying S into itself is exactly 

the group PG L3 (: of automorphisms of S = 1P2. 

Now, a quadratic polynomial in the homogeneous coordinates of the space 

IP(Sym2 V*) ~ IPs will restrict to a quartic polynomial on the Veronese surface 

S = IP V*, which corresponds to the natural evaluation map qJ ofthe preceding 

section; the kernel of this map is thus the vector space of quadratic poly-
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nomials in jp>5 vanishing on the Veronese surface S, on which the group of 

automorphisms of jp>5 carrying S to itself obviously acts. Now, for any pair of 

points P = [u*], Q = [v*] E S, it is not hard to see that the cone over the 

Veronese surface with vertex the line PQ c jp>5 (that is, the union of the 

2-planes PQR as R varies over the surface S) will be a quadric hypersurface 

in jp>5 containing the Veronese surface; sending the generator u*' v* E Sym2 V* 

to this quadric hypersurface will then define an isomorphism of the space of 

such quadrics with the projective space associated to Sym2 V*. 

Exercise 13.13. Verify the statements made in the last paragraph: that the 

union of the PQR is a quadric hypersurface and that this extends to a linear 

isomorphism jp>(Sym2V*) ~ jp>(Ker(rp». Verify also that this isomorphism 

coincides with the one given in Exercise 13.9. 

There is another way of representing the Veronese surface that will shed 

some light on this kernel. If, in terms of some coordinates ej on V*, we think 
ofSym2 V* as the vector space of symmetric 3 x 3 matrices, then the Veronese 

surface is just the locus, in the associated projective space, of rank 1 matrices 

up to scalars, i.e., in terms of homogeneous coordinates Zj,j = ej' ej on jp>5, 

S= {[Z]:rank(~::: ~::: ~:::)= I}. 

ZI,3 Z2,3 Z3,3 

The vector space of quadratic polynomials vanishing on S is then generated 

by the 2 x 2 minors of the matrix (Zi); in particular, for any pair of linear 

combinations of the rows and pair of linear combinations of the columns we 

get a 2 x 2 matrix whose determinant vanishes on S. 

Exercise 13.14. Show that this is exactly the isomorphism Sym2(N V) ~ 

Ker(rp) described above. 

We note in passing that if indeed the space of quadrics containing the 

Veronese surface, with the action of the group PGL3 C of motions of jp>5 

preserving S, is the projectivization ofthe representation Sym2 V*, then it must 

contain its own Veronese surface, i.e., there must be a surface T = jp>(V*) c 

jp>(Ker(rp» invariant under this action. This turns out to be just the set of 

quadrics of rank 3 containing the Veronese, that is, the quadrics whose singular 

locus is a 2-plane. In fact, the 2-plane will be the tangent plane to S at a point, 
giving the identification T = S. 

Let us consider one more example of this type, namely, the symmetric cube 

Sym3 (Sym2 V)). (We promise we will stop after this one.) As before, it is easy 

to write down the eigenvalues of this representation; they are just the triple 

sums of the eigenvalues {2L j , L; + Lj } of Sym2 V. The diagram (we will draw 
here only one-sixth of the plane and indicate multiplicities with numbers 

rather than rings) thus looks like 
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from which we see what the decomposition must be: as representations we 
have 

(13.15) 

As before, the map to the first factor is just the obvious one; it is the identifica
tion of the kernel that is intriguing, and especially the identification of the last 
factor. 

To see what is going on here, we should look again at the geometry of the 
Veronese surface S c IPs = IP(Sym2 V*). The space Sym3(Sym2 V)) is just the 

space of homogeneous cubic polynomials on the ambient space IPs, and as 

before the map to the first factor of the right-hand side of (13.15) is just the 

restriction, so that the last two factors of (13.15) represent the vector space 
J(Sh of cubic polynomials vanishing on S. Note that we could in fact prove 

(13.15) without recourse to eigenvalue diagrams from this: since the ideal of 
the Veronese surface is generated by the vector space J(Sh of quadratic 

polynomials vanishing on it, we have a surjective map 

J(Sh (8) W = Sym2 V* ® Sym2 V -+ J(Sh. 

But we already know how the left hand side decomposes: we have 

Sym2 V* ® Sym2 V = r2,2 Ef) rl, 1 Ef) C, (13.16) 

so that J(Sh must be a partial direct sum of these three irreducible represen
tations; by dimension considerations it can only be r2,2 Ef) c. 

This, in turn, tells us how to make the isomorphism (13.15) explicit (assum
ing we want to): we can define a map 

Sym2(N V) ® Sym2 V -+ Sym3 (Sym2 V) 

by sending 

(u A V)'(W A z)(8)(s·t)t-+«u·w)·(v·z)-(u·z)·(v·w))·(s·t) 
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and then just check that this gives an isomorphism of r 2,2 ED C c 

Sym2 V* ® Sym2 V with the kernel of projection on the first factor of the 

right-hand side of (1l15), 

What is really most interesting in this whole situation, though, is the trivial 

summand in the expression (13.15). To say that there is such a summand is to 

say that there exists a cubic hypersurface X in p 5 preserved under all auto

morphisms of p 5 carrying S to itself. Of course, we have already run into this 

one: it is the determinant of the 3 x 3 matrix (Zi) introduced above. To 

express this more intrinsically, if we think of the Veronese as the set of rank 

I tensors in Sym 2 V*, it is just the set of tensors of rank 2 or less. This, in tum, 
yields another description of X : since a rank 2 tensor is just one that can be 

expressed as a linear combination of two rank I tensors, we see that X is the 

famous chordal variety of the Veronese surface: it is the union of the chords 

to S, and at the same time the union of all the tangent planes to S. 

Exercise 13.17. Show that the only symmetric powers of Sym 2 V that possess 

trivial summands are the powers Sym 3k(Sym 2 V)) divisible by 3, and that the 

unique trivial summand in this is just the kth power of the trivial summand 

of Sym3(Sym2 V)). 

Exercise 13.18. Given the isomorphism of the projectivization of the vector 

space J(Sh-that is, the projective space of quadric hypersurfaces containing 

the Veronese surface-with P(Sym 2 V*), find the unique cubic hypersurface 

in J(Sh invariant under the action of PGL3C, 

Exercise 13.19. Analyze the representation Sym2(Sym 3 V)) of S13c' Interpret 

the direct sum factors in terms of the geometry of the Veronese embedding of 

Pv* = p 2 in P(Sym 3 V*) = p 9 . 

Exercise 13.20*. Show that the representations Sym4(Sym3V)) and 

Sym6 (Sym3 V)) contain trivial summands, and that the representation 
Sym12(Sym3V)) contains two. Interpret these. 

Exercise 13.21. Apply the techniques above to show that the representation 

N(Sym 2 V) is isomorphic to r 2 ,l' 

Exercise 13.22*. Apply the techniques above to analyze the representation 

N(Sym2 V), and in particular to interpret its decomposition into irreducible 
representations. 

Exercise 13.23. If p 5 = P(Sym2V*) is the ambient space of the Veronese 

surface, the Grassmannian G(2, 5) of 2-planes in p 5 naturally embeds in the 

projective space P(N(Sym2 V)). Describe, in terms of the decomposition 
in the preceding exercise, the span of the locus of tangent 2-planes to the 
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Veronese, and the span of the locus of 2-planes in 1Jl>5 spanned by the images 

in S of lines in IJl>V*. 

Exercise 13.24*. Show that the unique closed orbit of the action of SL3C on 

the representation ra,b is either isomorphic to 1Jl>2 (embedded as the Veronese 

surface) if either a or b is zero, or to the incidence correspondence 

L = {(p, I): pEl} c 1P2 X 1Jl>2· 

if neither a or b is zero. 



PART III 

THE CLASSICAL LIE ALGEBRAS 

AND THEIR REPRESENTATIONS 

As we indicated at the outset, the analysis we have just carried out of the 

structure of S[2C and S[3C and their representations carries over to other 

semisimple complex Lie algebras. In Lecture 14 we codify this structure, using 

the pattern of the examples we have worked out so far to give a model for 

the analysis of arbitrary semisimple Lie algebras and stating some of the most 

important facts that are true in general. As usual, we postpone proofs of many 

of these facts until Part IV and the Appendices, the main point here being to 

introduce a unifying approach and language. The facts themselves will all be 

seen explicitly on a case-by-case basis for the classical Lie algebras sInC, SP2nC, 

and sOnC, which are studied in some detail in Lectures 15-20. 

Most of the development follows the outline we developed in Lectures 
11-13, the main goal being to describe the irreducible representations as 

explicitly as we can, and to see the decomposition of naturally occurring 

representations, both algebraically and geometrically. While most of the 

representations are found inside tensor powers of the standard representations, 

for the orthogonal Lie algebras this only gives half of them, and one needs 

new methods to construct the other "spin" representations. This is carried out 

using Clifford algebras in Lecture 20. 

We also make the tie with Weyl's construction ofrepresentations ofGLnC 

from Lecture 6, which arose from the representation theory of the symmetric 

groups. We show in Lecture 15 that these are the irreducible representations 

of sInC; in Lecture 17 we show how to use them to construct the irreducible 

representations of the symplectic Lie algebras, and in Lecture 19 to give the 

nonspin representation of the orthogonal Lie algebras. These give useful 

descriptions of the irreducible representations, and powerful methods for 

decomposing other representations, but they are not necessary for the logical 

progression of the book, and many of these decompositions can also be 

deduced from the Weyl character formula which we will discuss in Part IV. 



LECTURE 14 

The General Setup: Analyzing the 
Structure and Representations of an 
Arbitrary Semisimple Lie Algebra 

This is the last of the four central lectures; in the body of it, §14.1, we extract from the 

examples of § 11-13 the basic algorithm for analyzing a general semisimple Lie algebra 

and its representations. It is this algorithm that we will spend the remainder of Part 

III carrying out for the classical algebras, and the reader who finds the general setup 

confusing may wish to read this lecture in parallel with, for example; Lectures 15 and 

16. In particular, §14.2 is less clearly motivated by what we have worked out so far; 

the reader may wish to skim it for now and defer a more thorough reading until after 

going through some more of the examples of Lectures 15-20. 

§14.l : Analyzing simple Lie algebras in general 

§14.2: About the Killing form 

§14.1. Analyzing Simple Lie Algebras in General 

We said at the outset of Lecture 12 that once the analysis of the representations 
of sI3 C was understood, the analysis of the representations of any semisimple 

Lie algebra would be clear, at least in broad outline. Here we would like to 

indicate how that analysis will go in general, by providing an essentially 
algorithmic procedure for describing the representations of an arbitrary com

plex semisimple Lie algebra g. The process we give here is directly analogous, 
step for step, to that carried out in Lecture 12 for sI3 C; the only difference is 

one change in the order of steps: having seen in the case of sI3 C the importance 

of the "distinguished" subalgebras Sa ~ sI2 C C 9 and the corresponding dis
tinguished elements Ha E Sa C f), we will introduce them earlier here. 

Step O. Verify that your Lie algebra is semisimple; if not, none of the 
following will work (but see Remark 14.3). If your Lie algebra is not semi

simple, pass as indicated in Lecture 9 to its semisimple part; a knowledge of 

the representations of this quotient algebra may not tell you everything about 
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the representations of the original, but it will at least tell you about the 

irreducible representations. 

Step 1. Find an abelian subalgebra I) c g acting diagonally. This is of course 

the analogue of looking at the specific element H in S(2 C and the subalgebra 

I) of diagonal matrices in the case of S(3 C; in general, to serve an analogous 

function it should be an abelian subalgebra that acts diagonally on one faithful 

(and hence, by Theorem 9.20, on any) representation of g. Moreover, in order 

that the restriction of a representation V of g to I) carry the greatest possible 

information about V, I) should clearly be maximal among abelian, diagonali

zable subalgebras; such a subalgebra is called a Cart an subalgebra. 

It may seem that this step is somewhat less than algorithmic; in particular, 

while it is certainly possible to tell when a subalgebra of a given Lie algebra 

is abelian, and when it is diagonalizable, it is not clear how to tell whether it 

is maximal with respect to these properties. This defect will, however, be 

largely cleared up in the next step (see Remark 14.3). 
Step 2. Let I) act on g by the adjoint representation, and decompose g 

accordingly. By the choice of I), its action on any representation of g will be 

diagonalizable; applying this to the adjoint representation we arrive at a direct 

sum decomposition, called a Cartan decomposition, 

(14.1) 

where the action of I) preserves each g", and acts on it by scalar multiplication 

by the linear functional a E 1)*; that is, for any H E I) and X E g", we will have 

ad(H)(X) = a(H)· X. 

The second direct sum in the expression (14.1) is over a finite set of eigenvalues 

a E g*; these eigenvalues-in the language of Lecture 12, the weights of the 

adjoint representation-are called the roots of the Lie algebra and the corre

sponding subspaces g", are called the root spaces. Of course, g itself is just the 

eigenspace for the action of g corresponding to the eigenvalue 0 (see Remark 

14.3 below); so that in some contexts-such as the following paragraph, for 

example-it will be convenient to adopt the convention that go = g; but we 

do not usually count 0 E g* as a root. The set of all roots is usually denoted 

R c g*. 
As in the previous cases, we can picture the structure of the Lie algebra in 

terms of the diagram of its roots: by the fundamental calculation of §1l.1 and 

Lecture 12 (which we will not reproduce here for the fourth time) we see that 

the adjoint action of g. carries the eigenspace gp into another eigenspace g",+p . 

There are a couple ofthings we can anticipate about how the configuration 

of roots (and the corresponding root spaces) will look. We will simply state 

them here as 

Facts 14.2 

(i) each root space g", will be one dimensional. 

(ii) R will generate a lattice AR c g* of rank equal to the dimension of g. 
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(iii) R is symmetric about the origin, i.e., if a E R is a root, then - a E R is 

a root as well. 

These facts will all be proved in general in due course; for the time being, 

they are just things we will observe as we do the analysis of each simple Lie 

algebra in turn. We mention them here simply because some of what follows 

will make sense only given these facts. Note in particular that by (ii), the roots 

all lie in (and span) a real subspace of ~.; all our pictures clearly will be of this 

real subspace. 

Remark 14.3. If indeed 0 does appear as an eigenvalue of the action of ~ on 

g/l), then we may conclude from this that ~ was not maximal to begin with: 

by the above, anything in the O-eigenspace of the action of ~ commutes with 

~ and (given the fact that the ga are one dimensional) acts diagonally on g, so 

that if it not already in ~, then ~ could be enlarged while still retaining the 

properties of being abelian and diagonalizable. Similarly, the assertion in (ii) 

that the roots span ~. follows from the fact that an element of ~ in the 

annihilator of all of them would be in the center of g. 

From what we have done so far, we get our first picture of the structure of 

an arbitrary irreducible finite-dimensional representation V of g. Specifically, 

V will admit a direct sum decomposition 

(14.4) 

where the direct sum runs over a finite set of a E ~. and ~ acts diagonally on 

each v.. by multiplication by the eigenvalue a, i.e., for any H E ~ and v E v.. we 
will have 

H(v) = a(H)· v. 

The eigenvalues a E ~. that appear in this direct sum decomposition are called 

the weights of V; the v.. themselves are called weight spaces; and the dimension 

of a weight space v.. will be called the multiplicity of the weight a in V. We will 

often represent V by drawing a picture of the set of its weights and thinking 

of each dot as representing a subspace; this picture (often with some annota

tion to denote the multiplicity of each weight) is called the weight diagram of V. 

The action of the rest of the Lie algebra on V can be described in these 

terms: for any root p, we have 

g/l: v.. ~ v..+/I' 
so we can think of the action of g/l on Vas a translation in the weight diagram, 

shifting each of the dots over by p and mapping the weight spaces 

correspondingly. 

Observe next that all the weights of an irreducible representation are 
congruent to one another modulo the root lattice AR : otherwise, for any 

weight a of V the subspace 



200 14. The General Set-up: Analyzing the Structure 

would be a proper subrepresentation of V. In particular, in view of Fact 14.2(ii), 

this means that the weights all lie in a translate of the real subspace spanned 

by the roots, so that it is not so unreasonable to draw a picture of them. 

Step 3. Find the distinguished subalgebras sa ~ S(2C C g. As we saw in the 

example of sl3 C, a crucial ingredient in the analysis of an arbitrary irreducible 

finite-dimensional representation is the restriction of the representation to 

certain special copies of the algebra sl2 C contained in g, and the application 

of what we know from Lecture 11 about such representations. To generalize 

this to our arbitrary Lie algebra g, let ga c 9 be a root space, one dimensional 

by (i) of Fact 14.2. Then by (iii) of Fact 14.2, there is another root space g-a C g; 

and their commutator Ega' g-a] must be a subspace of go = ~, of dimension 

at most one. The adjoint action of the commutator Ega, g-a] thus carries each 

of ga and g-a into itself; so that the direct sum 

(14.5) 

is a subalgebra of g. The structure of sa is not hard to describe, given two 

further facts that we will state here, verify in cases, and prove in general in 
Appendix D. 

Facts 14.6. 

(i) Ega' g-a] i= 0; and 

(ii) [[ga' g-a], ga] "# O. 

Given these, it follows that the subalgebra s~ is isomorphic to sI2 c' In 

particular, we can pick a basis X~ E~, y". E g-a, and Ha E Ega' g_~] satisfying 

the standard commutation relations (9.1) for S(2C; X~ and y". are not deter

mined by this, but H~ is, being the unique element of [g~, g_~] having eigen

values 2 and - 2 on g~ and g-a, respectively [i.e., Ha is uniquely characterized 

by the requirements that Ha E Ega' g-a] and a.(Ha) = 2.] 

Step 4. Use the integrality of the eigenvalues of the H~ . The distinguished 

elements Ha E ~ found above are important first of all because, by the analysis 

of the representations of sl2 C carried out in Lecture 9, in any representation 

of s~ -and hence in any representation of g-all eigenvalues of the action of 

Ha must be integers. Thus, every eigenvalue fJ E ~* of every representation of 

9 must assume integer values on all the Ha . We correspondingly let Aw be 

the set of linear functionals fJ E ~* that are integer valued on all the Ha; Aw 

will be a lattice, called the weight lattice of g, with the property that 

all weights of all representations of 9 will lie in Aw. 

Note, in particular, that R c Aw and hence AR cAw; in fact, the root 
lattice will in general be a sublattice of finite index in the weight lattice. 

Step 5. Use the symmetry of the eigenvalues of the Ha. The integrality of the 
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eigenvalues of the Ha under any representation is only half the story; it is also 
true that they are symmetric about the origin in Z. To express this, for any lX 

we introduce the involution »-: on the vector space 1)* with + I-eigenspace 
the hyperplane 

Q .. = {P E 1)*: <Ha , P) = O} (14.7) 

and minus 1 eigenspace the line spanned by lX itself. 1 In English, »-: is the 
reflection in the plane Qa with axis the line spanned by IX: 

2P(Ha) 
»-:(P) = P - IX(Ha) lX = P - P(Ha)lX. (14.8) 

Let ~ be the group generated by these involutions; ~ is called the Weyl group 

of the Lie algebra g. 

Now suppose that V is any representation of g, with eigenspace decomposi

tion V = E8 Vp. The weights P appearing in this decomposition can then be 
broken up into equivalence classes mod IX, and the direct sum 

(14.9) 

of the eigenspaces in a given equivalence class will be a subrepresentation of 

V for Sa. It follows then that the set of weights of V congruent to any given 

P mod lX will be invariant under the involution »-:; in particular, 

The set of weights of any representation of g is invariant under the Weyl 

group. 

To make this more explicit, the string of weights that correspond to nonzero 

summands in (14.9) are, possibly after replacing P by a translate by a multiple 
of IX: 

p, P + lX, P + 21X, ... , P + mlX, with m = -P(H .. ). (14.10) 

(Note that by our analysis of sI2 C this must be an uninterrupted string.) Indeed 

if we choose P and m ~ 0 so that (14.10) is the string corresponding to nonzero 
summands in (14.9), then the string of integers 

P(Ha), (P + IX)(Ha) = P(Ha) + 2, ... , (P + mlX)(Ha) = P(Ha) + 2m 

must be symmetric about zero, so P(Ha) = - m. In particular, 

»-:(P + klX) = P + ( - P(Ha) - k)lX = P + (m - k)lX. 

Note also that by the same analysis the multiplicities of the weights are 
invariant under the Weyl group. 

We should mention one other fact about the Weyl group, whose proof we 
also postpone: 

1 Note that by the nondegeneracy assertion (ii) of Fact 14.6, the line C· ex does not lie in the 

hyperplane n •. Recall that < , > is the pairing between ~ and ~., so <H., P> = P(H.). 
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Fact 14.11. Every element of the Weyl group is induced by an automorphism 

of the Lie algebra 9 carrying ~ to itself. 

We can even say what automorphism of 9 does the trick: to get the involution 

l¥", take the adjoint action of the exponential exp(niV",) E G, where G is any 

group with Lie algebra 9 and Va is a suitable element of the direct sum of the 

root spaces 9a and g-a' To prove that Ad(exp(niV",)) actually does this requires 

more knowledge of 9 than we currently possess; but it would be an excellent 

exercise to verify this assertion directly in each of the cases studied below. 

(For the general case see (23.20) and (26.15).) 

Step 6. Draw the picture (optional). While there is no logical need to do so 

at this point, it will be much easier to think about what is going on in ~* if 

we introduce the appropriate inner product, called the Killing form, on 9 

(hence by restriction on ~, and hence on ~*) . Since the introduction of the 

Killing form is, logically, a digression, we will defer until later in this lecture 

a discussion of its various definitions and properties. It will suffice for now to 

mention the characteristic property of the induced inner product on ~*: up to 

scalars it is the unique inner product on ~* preserved by the Weyl group, i.e., 

in terms of which the Weyl group acts as a group of orthogonal transforma

tions. Equivalently, it is the unique inner product (up to scalars) such that the 

line spanned by each root a E ~* is actually perpendicular to the plane Qa (so 

that the involution l¥" is just a reflection in that hyperplane). Indeed, in 

practice this is most often how we will compute it. In terms of the Killing form, 

then, we can say that the Weyl group is just the group generated by the 

reflections in the hyperplanes perpendicular to the roots of the Lie algebra. 

Step 7. Choose a direction in ~*. By this we mean a real linear functional I 

on the lattice AR irrational with respect to this lattice. This gives us a 

decomposition of the set 

R = R+ U R-, (14.12) 

where R+ = {a: I(a) > O} (the a E R+ are called the positive roots, those in R

negative); this decomposition is called an ordering of the roots. For most 

purposes, the only aspect of I that matters is the associated ordering of the 
roots. 

The point of choosing a direction-and thereby an ordering of the roots 
R = R+ U R- -is, of course, to mimic the notion of highest weight vector that 

was so crucial in the cases of 512 (; and 513 (;. Specifically, we make the 

Definition. Let V be any representation of g. A nonzero vector v E V that is 

both an eigenvector for the action of ~ and in the kernel of g. for alIa E R+ 

is called a highest weight vector of V. 

Just as in the previous cases, we then have 

Proposition 14.13. For any semisimple complex Lie algebra g, 

(i) every finite-dimensional representation V of 9 possesses a highest weight 
vector; 
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(ii) the subspace Wof V generated by the images of a highest weight vector v 

under successive applications of root spaces 9/1 for P E R- is an irreducible 

subrepresentation; 

(iii) an irreducible representation possesses a unique highest weight vector up to 

scalars. 

PROOF. Part (i) is immediate: we just take a to be the weight appearing in V 

for which the value l(a) is maximal and choose v any nonzero vector in the 

weight space JI;.. Since JI;.+/I = (0) for all PER +, such a vector v will necessarily 

be in the kernel of all root spaces 9/1 corresponding to positive roots p. 
Part (ii) may be proved by the same argument as in the two cases we have 

already discussed: we let w,. be the subspace spanned by all w" . v where w" is a 

word of length at most n in elements of 9/1 for negative p. We then claim that 

for any X in any positive root space, X' w,. c w,.. To see this, write a generator 

of w,. in the form y . w, W E w,.-I' and use the commutation relation X . y. w = 

y. X' w + [X, Y]. w; the claim follows by induction, since [X, Y] is always 

in ~ . The subspace We V which is a union of all the w,.'s is thus a sub

representation; to see that it is irreducible; note that if we write W = W' $ WI/, 

then either W' or WI/ will have to contain the one-dimensional weight space 

~,and so will have to equal W 

The uniqueness of the highest weight vector of an irreducible representation 

follows immediately: if v E JI;. and w E V/I were two such, not scalar multiples 

of each other, we would have l(a) > I(P) and vice versa. D 

Exercise 14.14. Show that in (ii) one need only apply those 9/1 for which 

9/1' v * O. (Note: with w,. defined using only these 9/1, and X in any root space, 

the same inductive argument shows that X' w,. C w,.+I' On the other hand, 

if one uses all 9/1 with P negative and primitive, as in Observation 14.16, then 

X' w,. C w,.-l' One cannot combine these, however: V may not be generated 

by successively applying those 9/1 with P negative, primitive, and 9/1' v * 0, e.g., 

the standard representation of 5(3 IC.) 

The weight a of the highest weight vector of an irreducible representation 

will be called, not unreasonably, the highest weight of that representation; the 

term dominant weight is also common. 

We can refine part (ii) of this proposition slightly in another direction; this 

is not crucial but will be useful later on in estimating multiplicities of various 

representations. This refinement is based on 

Exercise 14.15*. (a) Let ai' ... , ak be roots of a semisimple Lie algebra 9 and 

9a, c 9 the corresponding root spaces. Show that the subalgebra of 9 gene

rated by the Cartan subalgebra ~ together with the 9a, is exactly the direct 

sum ~ $ (EB 9a), where the direct sum is over the intersection of the set R of 

roots of 9 with the semigroup f\\J { a l' ... , ak } c l) generated by the ai • 

(b) Similarly, let a l , ... , ak be negative roots of a semisimple Lie algebra 9 

and 9a, c 9 the corresponding root spaces. Show that the subalgebra of 9 gene-
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rated by the g",. is exactly the direct sum EB g"" where the direct sum is over the 

intersection of the set R of roots of 9 with the semigroup N {lXI ' . . . , IXk} C ~ 

generated by the lXi' 

(Note that by the description of the adjoint action of a Lie algebra on itself 

we have an obvious inclusion; the problem here is to show-given the facts 

above-that if IX + PER, then [g"" gp] # 0.) 

From this exercise, it is clear that generating a subrepresentation W of a 

given representation V by successive applications of root spaces gp for P E R

to a highest weight vector v is inefficient; we need only apply the root spaces 

gp corresponding to a set of roots P generating R- as a semigroup. We 

accordingly introduce another piece of terminology: we say that a positive 

(resp., negative) root IX E R is primitive or simple if it cannot be expressed as a 

sum of two positive (resp. negative) roots. (Note that, since there are only 

finitely many roots, every positive root can be written as a sum of primitive 

positive roots.) We then have 

Observation 14.16. Any irreducible representation V is generated by the images 

of its highest weight vector v under successive applications of root spaces gp 

where P ranges over the primitive negative roots. 

We have already seen one example of this in the case of si3 C, where we 

observed (in the proof of Claim 12.10 and in the analysis of Sym2 V ® V* in 

Lecture 13) that any irreducible representation was generated by applying the 

two elements E 2• 1 E gLl-L, and E 3•2 E gL3 -L1 to a highest weight vector. 

To return to our description of the weights of an irreducible representation 

V; we observe next that in fact every vertex of the convex hull of the weights 

of V must be conjugate to IX under the Weyl group. To see this, note that by the 

above the set of weights is contained in the cone IX + C;;, where C;; is the 

positive real cone spanned by the roots P E R- such that gp(v) # O-that is, 

such that IX(Hp) # O. Conversely, the weights of V will contain the string of 

weights 

ex, ex + p, IX + 2P, . .. , ex + ( - ex(Hp»P (14.17) 

for any P E R-. Thus, any vertex of the convex hull of the set of weights of V 

adjacent to ex must be of the form 

ex - ex(Hp)P = Wp(a) 

for some P; applying the same analysis to each successive vertex gives the 

statement. 

From the above, we deduce that the set of weights of V will lie in the convex 

hull of the images of a under the Weyl group. Since, moreover, we know that 

the intersection ofthis set with any set of weights of the form {P + ny} will be 

a connected string, it follows that the set of weights of V will be exactly the 

weights that are congruent to a modulo the root lattice AR and that lie in the 

convex hull of the images of a under the Weyl group. 
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One more bit ofterminology, and then we are done. By what we have seen 
(cf. (14.17)), the highest weight of any representation of V will be a weight IX 

satisfying IX(Hy) ~ 0 for every}' e R +. The locus "III, in the real span of the 
roots, of points satisfying these inequalities-in terms of the Killing form, 

making an acute or right angle with each of the positive roots-is called the 

(closed) Weyl chamber associated to the ordering ofthe roots. A Weyl chamber 

could also be described as the closure of a connected component of the 

complement of the union of the hyperplanes !lll' The Weyl group acts simply 
transitively on the set of Weyl chambers and likewise on the set of orderings 

of the roots. As usual, these statements will be easy to see in the cases we study, 
while the abstract proofs are postponed (to Appendix D). 

Step 8. Classify the irreducible, finite-dimensional representations of g. 

Where all the above is leading should be pretty clear; it is expressed in the 

fundamental existence and uniqueness theorem: 

Theorem 14.18. For any IX in the intersection of the Weyl chamber "H' associated 

to the ordering of the roots with the weight lattice A w , there exists a unique 

irreducible, finite-dimensional representation r ll of 9 with highest weight IX; this 

gives a bijection between "H' n Aw and the set of irreducible representations of 

g. The weights of r ll will consist of those elements of the weight lattice congruent 

to IX modulo the root lattice AR and lying in the convex hull of the set of points 

in ~* conjugate to IX under the Weyl group. 

HALF-PROOF. We will give here just the proof of uniqueness, which is easy. 
The existence part we will demonstrate explicitly in each example in tum; and 

later on we will sketch some of the constructions that can be made in general. 
The uniqueness part is exactly the same as for sl3 C. If V and Ware two 

irreducible, finite-dimensional representations of 9 with highest weight vectors 
v and w, respectively, both having weight IX, then the vector (v, w) e V $ W 

will again be a highest weight vector of weight IX in that representation. Let 

U c V $ W be the subrepresentation generated by (v, w); since U will again 
be irreducible the projection maps 1t 1: U -+ V and 1t 2: U -+ W, being nonzero, 

will have to be isomorphisms. 0 

Another fact which we will see as we go along-and eventually prove in 

general-is that there are always fundamental weights WI' ..• , Wn with the 
property that any dominant weight can be expressed uniquely as a non
negative integral linear combination of them. They can be characterized 

geometrically as the first weights met along the edges of the Weyl cham

ber, or algebraically as those elements Wi in ~* such that wi(HII) = ~i.j' where 
lXI' .. . , IXn are the simple roots (in some order). When we have found them, 

we often write ra, ..... an for the irreducible representation with highest weight 
a1 WI + . .. + anwn; i.e., 

As with most of the material in this section, general proofs will be found in 

Lecture 21 and Appendix D. 
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One basic point we want to repeat here (and that we hope to demonstrate 

in succeeding lectures) is this: that actually carrying out this process in practice 

is completely elementary and straightforward. Any mathematician, stranded 

on a desert island with only these ideas and the definition of a particular Lie 

algebra 9 such as sl.C, so.C, or SV2.C, would in short order have a complete 
description of all the objects defined above in the case of g. We should say as 

well, however, that at the conclusion of this procedure we are left without one 

vital piece of information about the representations of g, without which we 

will be unable to analyze completely, for example, tensor products of known 

representations; this is, of course, a description of the multiplicities of the basic 

representations ra' As we said, we will, in fact, describe and prove such a 

formula (the Weyl character formula); but it is of a much less straight

forward character (our hypothetical shipwrecked mathematician would have 

to have what could only be described as a pretty good day to come up with 

the idea) and will be left until later. For now, we will conclude this lecture with 

the promised introduction to the Killing form. 

§14.2. About the Killing Form 

As we said, the Killing form is an inner product (symmetric bilinear form) on 

the Lie algebra g; abusing our notation, we will denote by B both the Killing 

form and the induced inner products on 1) and 1)*. B can be defined in several 

ways; the most common is by associating to a pair of elements X, Y E 9 the 

trace of the composition of their adjoint actions on g, i.e., 

B(X, Y) = Tr(ad(X) 0 ad(Y): 9 -+ g). (14.19) 

As we will see, the Killing form may be computed in practice either from this 

definition, or (up to scalars) by using its invariance under the group of 

automorphisms of g. We remark that this definition is not as opaque as it may 

seem at first. For one thing, the description of the adjoint action of the root 

space ga as a "translation" of the root diagram-that is, carrying each root 

space gil into ga+ll-tells us immediately that g. is perpendicular to gil for all 

f3 other than -IX; in other words, the decomposition 

(14.20) 

is orthogonal. As for the restriction of B to 1), this is more subtle, but it is not 

hard to write down: if X, Yare in 1), and Za generates ga' then ad(X) 0 ad(Y)(Za) 

= IX(X)IX(Y)Za, so B(X, Y) = ~>(X)IX(Y), the sum over the roots; viewing Big 

as an element of the symmetric square Sym 2 (1)*), we have 

1" 2 Big = ~2 L.... IX . 
aeR 

(14.21) 
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A key fact following from this-one that, if nothing else, makes picturing 

~* with the inner product B involve less eyestrain-is 

(14.22) B is positive definite on the real subspace of ~ spanned by the vectors 

{H«: a E R}. 

Indeed, all roots take on real values on this space (since all a(Hp) E 7L c IR), 

so for H in this real subspace of ~, B(H, H) is non-negative, and is zero only 

when all a(H) = 0, which implies H = 0, since the roots span ~*. 
To see that the Killing form is nondegenerate on all of g, we need the useful 

identity: 

B([X, Y], Z) = B(X, [Y, Z]) 

for all X, Y, Z in g. This follows from the identity 

Trace«.XY - YX,)Z) = Trace(X(YZ - ZY» 

(14.23) 

for any endomorphisms X, Y, Z of a vector space. And this, in turn, follows 
from 

Trace(YXZ - XZY) = Trace([Y, xl]) = o. 

An immediate consequence of (14.23) is that if Q is any ideal in a Lie algebra 

g, then its orthogonal complement Q.l with respect to B is also an ideal. In 

particular, if 9 is simple, the kernel of B is zero (note that the kernel cannot 

be 9 since it does not contain ~). Since the Killing form of a direct sum is the 
sum of the Killing forms of the factors, it follows that the Killing form is 

nondegenerate on a semisimple Lie algebra g. 

One of the reasons the Killing form helps to picture ~* is the fact mentioned 

above: 

Proposition 14.24. With respect to B, the line spanned by each root a is perpen

dicular to the hyperplane !la. 

As we observed, this is equivalent to saying that the involutions w.. above 

are simply reflections in hyperplanes, and in turn to saying that the whole 

Weyl group is orthogonal. Note also that Proposition 14.24 thereby follows 

immediately from the Fact 14.11: from the definition of B above, it is clearly 

invariant under any automorphism of g. Nevertheless, we would prefer not to 

rely on this fact; and anyway giving a direct proof of the proposition is not 

hard, in terms of the picture we have of the adjoint action of 9 on itself. To 

prove the assertion a .l !l«, it suffices to prove the dual assertion that H .l H« 

for all H in the annihilator of a. But now by construction H« is the commutator 

[X«, y"] of an element X« E g« and an element Y" E g-a. Using (14.23) we have 
for any H in ~, 

B(Ha, H) = B([X«, Y,,], H) = B(X«, [Y", H]) 

= B(Xa' a(H) y") = a(H)B(Xa' Y,,), 

which vanishes since a(H) = o. 

(14.25) 
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Note that as a consequence ofthis. we can characterize the Weyl chamber 

associated to an ordering of the roots as exactly those vectors in the real span 

of the roots forming an acute angle with all the positive roots (or. equivalently. 

with all the primitive ones); the Weyl chamber is thus the cone whose faces lie 

in the hyperplanes perpendicular to the primitive positive roots. 

Equation (14.25) leads to a formula for the isomorphism of ~ with ~* 

determined by the Killing form. First note that for H = Ha it gives 

B(Ha• Ha) = 2B(Xa. y,,) # O. 

for if B(Xa• y") were zero we would have B(Ha• H) = 0 for all H. contradicting 

the nondegeneracy of B on I). The element I'a of~ which corresponds to IX E ~* 

by the Killing form is by definition the element of~ that satisfies the condition 

B(I'a, H) = IX(H) for all H E ~. (14.26) 

Looking at (14.25). we see that I'a = Ha/B(Xa, y") = 2Ha/B(Ha' Ha). This 
proves 

Corollary 14.27. The isomorphism of 1)* and I) determined by the Killing form 

B carries IX to I'a = (2/B(Ha• Ha)) ' Ha. 

The Killing form on ~* is defined by B(IX, 13) = B(I'a, Tp). 

Exercise 14.28. Show that the inverse isomorphism from ~ to ~* takes Ha to 
(2jB(IX, IX)) • IX. 

The orthogonality of u-: can be expressed by the formula 

w (13) = 13 _ 2B(f3. IX) 

a B(IX,IX) IX. 

Comparing with (14.8) this says: 

Corollary 14.29. If IX and 13 are roots, then 

2B(f3, IX)/ B(IX. IX) = f3(Ha) 

is an integer. 

By the above identification of 1) with 1)*, (14.22) translates to 

Corollary 14.30. The Killing form B is positive definite on the real vector space 

spanned by the root lattice A R . 

Note that it follows immediately from (14.22) that the Weyl group ID is 

finite, being simultaneously discrete (ID preserves the set R of roots of 9 and 

hence the lattice AR ; it follows that ID can be realized as a subgroup ofGL.Z) 
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and compact (W preserves the Killing form, and hence is a subgroup of the 

orthogonal group OnlR.) Alternatively, W is a subgroup of the permutation 

group of the set of roots. 

As we observed, the Killing form on 1)* is preserved by the Weyl group. In 

fact, in case 9 is simple, the Killing form is, up to scalars, the unique inner 

product preserved by the Weyl group. This will follow from 

Proposition 14.31. The space 1)* is an irreducible representation of the Weyl 

groupW. 

PROOF. Suppose that 3 c 1)* were preserved by the action of W. This means 

that every root (X E 1)* of 9 will either lie in the subspace 3 or be perpendicular 

to it, i.e., for every (X E 3 and P ¢ 3 we will have P(H«) = O. We claim then that 

the subspace g' of 9 spanned by the subalgebras {S«}«E3 will be an ideal in g. 

Clearly it will be a subalgebra; the space spanned by the distinguished sub

algebras Sa corresponding to the set of roots lying in any subspace of 1)* will 

be. To see that it is in fact an ideal, let Y E gp be an element of a root space. 

Then for any (X E 3, we have 

[Y, Z] E ga+p = 0 

since (X + f3 is neither in 3 nor perpendicular to it, and so cannot be a root; and 

Thus, ad(Y) kills g'; since, of course, all of H itself will preserve g', it follows 

that g' is an ideal. Thus, either all the roots lie in 3 and so 3 = 1)*, or all roots 

are perpendicular to 3 and correspondingly 3 = (0). D 

Note that given Fact 14.11, we can also express the last statement by saying 

that (in case 9 is simple) the Killing form on 1) is the unique form preserved 

by every automorphism of the Lie algebra 9 carrying 1) to itself. As we will 

see, in practice this is most often how we will first describe the Killing form. 

Exercise 14.32. Find the Killing form on the Lie algebras sI2 C and SI3C by 

explicit computation, and verify the statements made above in these cases. 

Exercise 14.33*. If a semisimple Lie algebra is a direct sum of simple sub

algebras, then its Killing form is the orthogonal sum of the Killing forms of 

the factors. Show that, conversely, if the roots of a semisimple Lie algebra lie 

in a collection of mutually perpendicular subspaces, then the Lie algebra 

decomposes accordingly. 

Exercise 14.34*. Suppose 9 is a Lie algebra that has an abelian subalgebra 

1) such that 9 has a decomposition (14.1), satisfying the conditions of Facts 

14.2 and 14.6. Show that 9 is semisimple, and 1) is a Cartan subalgebra. 
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The preceding exercise can be used instead of Weyl's unitary trick or any 

abstract theory to verify that the algebras we meet in the next few lectures are 

all semisimple. It is tempting to call such a Lie algebra "visibly semisimple." 

The discussion ofthe geometry ofthe roots of a semisimple Lie algebra will 

be continued in Lecture 21 and completed in Appendix D. The Killing form 

becomes particularly useful in the general theory; for example, solvability and 

semi simplicity can both be characterized by properties of the Killing form (see 

Appendix C). 

Exercise 14.35*. Show that b = l) EB EB" > 0 g" is a maximal solvable subalgebra 

of g; b is called a Borel subalgebra. Show that EB,,> 0 g" is a maximal nilpotent 

subalgebra of g. These will be discussed in Lecture 25. 

Exercise 14.36*. Show that the Killing form on the Lie algebra gIm is given by 

the formula 

B(X, Y) = 2m Tr(X 0 Y) - 2 Tr(X) Tr(Y). 

Find similar formulas for sIm, SOm, and SPm' showing in each case that B(X, Y) 

is a constant multiple of Tr(X 0 Y). 

Exercise 14.37. If G is a real Lie group, the Killing form on its Lie algebra 

9 = T;,G may not be positive definite. When it is, it determines, by left trans

lation, a Riemannian metric on G. Show that the Killing form is positive 

definite for G = SOnlR, but not for SLnlR. 



LECTURE 15 

sI4 C and sIn C 

In this lecture, we will illustrate the general paradigm of the previous lecture by 

applying it to the Lie algebras slnC; this is typical of the analyses of specific Lie algebras 

carried out in this Part. We start in §IS.1 by describing the Cartan subalgebra, 

roots, root spaces, etc., for slnC in general. We then give in §15.2 a detailed account of 

the representations of 51. C, which generalizes directly to sIn C; in particular, we deduce 

the existence part of Theorem 14.18 for sIn C. 

In §IS.3 we give an explicit construction of the irreducible representations of slnC 

using the Weyl construction introduced in Lecture 6; analogous constructions of the 

irreducible representations of the remaining classical Lie algebras will be given in § 17.3 

and §19.S. This section presupposes familiarity with Lecture 6 and Appendix A, but 

can be skipped by those willing to forego §17.3 and 19.5 as well. Section IS.4 requires 

essentially the same degree of knowledge of classical algebraic geometry as §§11.3 and 
13.4 (it does not presuppose §lS.3), but can also be skipped. Finally, §IS.S describes 

representations ofGLnC; this appears to involve the Weyl construction but in fact the 

main statement, Proposition IS.47 (and even its proof) can be understood without the 

preceding two sections. 

§IS.l: Analyzing slnC 

§IS.2: Representations of sl.C and slnC 
§15.3: Weyl's construction and tensor products 

§IS.4: Some more geometry 

§15.S: Representations ofGLnC 

§15.1. Analyzing sIne 

To begin with, we have to locate a Cartan subalgebra, and this is not hard; 
as in the case of S(21[: and S(31[: the subalgebra of diagonal matrices will work 

fine. Writing Hi for the diagonal matrix Ei,i that takes ei to itself and kills ej 
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for j ¥= i, we have 

~ = {alHl + a2H2 + .. . + anHn: a l + a2 + . .. + an = OJ; 

note that H j is not in ~. We can correspondingly write 

~* = C{Ll' L 2 ,···, Ln}/(L 1 + L2 + ... + Ln = 0), 

where Lj(Hj) = Jj,j' We often write Lj for the image of L j in ~*. 
We have already seen how the diagonal matrices act on the space of all 

traceless matrices: if Ej,j is the endomorphism of en carrying ej to ej and killing 

ek for all k ¥= j, then we have 

ad(alHl + a2H2 + ... + anHn)(Ej,j) = (a j - a)· Ej,j; (15.1) 

or, in other words, Ej,j is an eigenvector for the action of ~ with eigenvalue 

L j - Lj; in particular, the roots of sIn C are just the pairwise differences of the L j. 

Before we try to visualize anything taking place in ~ or ~*, let us take a 
moment out and describe the Killing form. To this end, note that the auto
morphism ({J of C' sending ej to ej, ej to - ej and fixing ek for all k ¥= i, j induces 

an automorphism Ad(({J) of the Lie algebra slnC (or even gln(C» that carries 

~ to itself, exchanges H j and Hj , and fixes all the other Hk • Since the Killing 
form on ~ must be invariant under all these automorphisms, it must satisfy 

B(Lj, L;) = B(Lj' L) for all i and j and B(Lj, Lk ) = B(Lj, Lk ) for all i, j and 
k ¥= i, j; it follows that on ~ it must be a linear combination of the forms 

B'(I ajHj, I bjHj) = I ajbj 

and 

B"(I ajHj, I bjH;) = Ij,.j ajbj. 

On the space {L ajHj: I aj = OJ, however, we have 0 = (I aj)(L bj) = 
I ajbj + I ajbj, so in fact these two forms are dependent; and hence we can 
write the Killing form simply as a multiple of B'. Similarly, the Killing form 

on ~* must be a linear combination of the forms B'(IajLj, IbjL j) = Iajbi 
and B"(LajLj, IbjL;) = Ij,.jajbj; the condition that B(IajLj, IbjL j) = 0 
whenever a l = a2 = ... = an or bl = b2 = ... = b. implies that it must be a 
multiple of 

1 
= I ajbj - - I aA 

j n j,j 

(15.2) 

We may, of course, also calculate the Killing form directly from the defini

tion. By (14.21), since the roots of sIn Care {L j - Lj } j,. j' we have 

B(I ajHj, I biH;) = Ii,.j (a j - aj)(bj - bJ) 

= L INj (ajbj + ajbj - ajbj - ajbJ 

Noting that Ij,.jaj = -aj and, similarly, Ij,.jbj = -bj, this simplifies to 
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B(L aiHj, L biHi) = 2n L aibi· (15.3) 

It follows with a little calculation that the dual form on ~* is 

B(L aiLi, L biLi) = (I/2n)(Li aibi - (lIn) Li,j aib). (15.4) 

It is probably simpler just to think of this as the form, unique up to scalars, 

invariant under the symmetric group 6. of permutations of {I, 2, . .. , n}. The 
L i , therefore, all have the same length, and the angles between all pairs are 

the same. To picture the roots in ~*, then, we should think of the points Li as 
situated at the vertices of a regular (n - I)-simplex a, with the origin located 

at the barycenter of that simplex. This picture is easiest to visualize in the 
special case n = 4, where the Li will be located at every other vertex of a unit 

cube centered at the origin: 

(15.5) 

Now, as we said, the roots of slnC are now just the pairwise differences of 

the L i . The root lattice AR they generate can thus be described as 

AR = {L aiLi: ai E Z, L ai = O}/(L Li = 0). 

Both the roots and the root lattice can be drawn in the case of sl4 C: if we think 

of the vectors Li E ~* as four of the vertices of a cube centered at the origin, 
the roots will comprise all the midpoints of the edges of a second cube whose 
linear dimensions are twice the dimensions of the first: 

I 

• I 
I 
I 

(15.6) 
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The next step, finding the distinguished subalgebras Sa' is also very easy. 

The root space 9L,-Lj corresponding to the root L; - Lj is generated by E;,j' 

so the subalgebra SL-L is generated by . , 

E;,j' Ej,;, and [E;,j' Ej,J = H; - Hj. 

The eigenvalue of H; - Hj acting on E;,j is (L; - Lj)(H; - H) = 2, so that the 

corresponding distinguished element HL,-Lj in I) must be just H; - Hj • The 

annihilator, of course, is the hyperplane nL,-Lj = {I a;Lj: a; = aJ; note that 
this is indeed perpendicular to the root L; - Lj with respect to the Killing 

form B as described above. 

Knowing the Ha we know the weight lattice: in order for a linear functional 

I aiL; E 1)* to have integral values on all the distinguished elements, it is 

clearly necessary and sufficient that all the a; be congruent to one another 

modulo lL. Since I L; = 0 in 1)*, this means that the weight lattice is given as 

Aw = 7L{LI ' .. . , Ln}/(L L; = 0). 

In sum, then, the weight lattice of sIne may be realized as the lattice generated 
by the vertices of a regular (n - 1)-simplex A centered at the origin; and the 

roots as the pairwise differences of these vertices. 

While we are at it, having determined AR and Aw we might as well compute 

the quotient Aw/AR' This is pretty easy: since the lattice Aw can be generated 

by AR together with any of the vertices L; of our simplex, the quotient Aw/AR 

will be cyclic, generated by any L;; since, modulo A R , 

o = Ij (L; - L) = nL; - Lj Lj = nL;. 

we see that L; has order dividing n in Aw/AR' 

Exercise 15.7. Show that L j has order exactly n in Aw/AR' so that Aw/AR ~ 
lL/nlL. 

From the above we can also say what the Weyl group is: the reflection in 

the hyperplane perpendicular to the root L; - Lj will exchange L; and Lj E 1)* 

and leave the other Lk alone, so that the Weyl group lID is just the group 6 n , 

acting as the symmetric group on the generators Li of 1)*. Note that we have 

already verified that these automorphisms ofl)* do come from automorphisms 

of the whole Lie algebra sIn e preserving I). 
To continue, let us choose a direction, and describe the corresponding Weyl 

chamber. We can write our linear functional I as 

I(I aiLJ = L cjai 

with IC i = 0; let us suppose that C1 > C2 > ... > cn • The corresponding 

ordering of the roots will then be 

R+ = {Li - Lj: i < j} 

and 
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The primitive negative roots for this ordering are simply the roots L j +1 - L j • 

(Note that the ordering of the roots depends only on the relative sizes of the 

Cj, so that the Weyl group acts simply transitively on the set of orderings.) The 

(closed) Weyl chamber associated to this ordering will then be the set 

1r' = {L ajLj: a1 ~ a2 ~ ... ~ all}' 

One way to describe this geometrically is to say that if we take the barycentric 

subdivision of the faces of the simplex A, the Weyl chamber will be the cone 

over one (n - 2)-simplex of the barycentric subdivision: e.g., in the case n = 4 

It may be easier to visualize the case n = 4 if we introduce the associated cubes: 

in terms of the cube with vertices at the points ±Lj , we can draw the Weyl 

chamber as 

(15.8) 
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Alternatively, in terms of the slightly larger cube with vertices at the points 

± 2Li , we can draw 111 as 

(15.9) 

From the first of these pictures we see that the edges of the Weyl chamber are 

the rays generated by the vectors L" L, + L 2, and L, + L2 + L 3; and that 

the faces of the Weyl chamber are the planes orthogonal to the primitive 

negative roots L2 - L" L3 - L 2, and L4 - L 3 . The picture in general is 

analogous: for slnC, the Weyl chamber will be the cone over an (n - 2)

simplex, with edges generated by the vectors 

L" L,+L2, L,+L2 +L3, ... ,L,+···+Ln-,=-Ln. 

The faces of 111 will thus be the hyperplanes 

ilL -L = {" aL·: a· = a.+,} 
i i+1 ~) J I I 

perpendicular to the primitive negative roots Li+' - L i • 

Note the important phenomenon: the intersection of the closed Weyl 

chamber with the lattice Aw will be a free semigroup f\\jn-' generated by the 

fundamental weights Wi = L, + ... + Li occurring along the edges of the Weyl 

chamber. One aspect of its significance that is immediate is that it allows us 

to index the irreducible representations slnC nicely: for an arbitrary (n - 1)

tuple of natural numbers (Q" ... , an-,) E Nn-' we will denote by rOI •...• On _ , the 
irreducible representation orsInC with highest weight aiL, + a2(L, + L 2) + 

... + an_,(L, + ... + Ln-,) = (a, + '" + Qn-,)L, + (a2 + ... + Qn-,)L2 + 

... + an-, Ln-,: 

This also has the nice consequence that once we have located the irreducible 
representations V(i) with highest weight L, + ... + L i , the general irreducible 
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representation ra\ • ...• an_, with highest weight 2: ai(L l + ... + Li) will occur 
inside the tensor product of symmetric powers 

Sym4, V(l) ® Sym42 V(2) ® ... ® Sym4n-' v(n-l) 

of these representations. Thus, the existence part of the basic Theorem 14.18 
is reduced to finding the basic representations V(i); we will do this in due 

course, though at this point it is probably not too hard an exercise to guess 
what they are. 

§ 15.2. Representations of sI4 C and sIn C 

We begin as usual with the standard representation of 514 <[; on V = <[;4. The 
standard basis vectors ei of <[;4 are eigenvectors for the action of ~, with 

eigenvalues L i , so that the weight diagram looks like 

or, with the reference cube drawn as well, 
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The dual representation V* of course has weights - L j corresponding to the 
vectors of the dual basis et for V*, so that the weight diagram, with its 

reference cube, looks like 

Note that the highest weight for this representation is - L 4 , which lies along 

the bottom edge of the Weyl chamber, as depicted in Diagram (15.8). Note also 
that the weights of the representation NV-the triple sums L1 + L2 + L 3, 

L1 + L2 + L4, L1 + L3 + L4, and L2 + L3 + L4 of distinct weights of V-are 
the same as those of V*, reflecting the isomorphism ofthese two representations. 

This suggests that we look next at the second exterior power N V. This is 

a six-dimensional representation, with weights L j + L j the pairwise sums of 
distinct weights of V; its weight diagram, in its reference cube, looks like 

The diagram shows clearly that N V is irreducible since it is not the nontrivial 
union of two configurations invariant under the Weyl group 6 4 (and all 

weights occur with multiplicity 1). Note also that the weights are symmetric 

about the origin, reflecting the isomorphism of N V with (N V)* = N(v*). 
Note that the highest weight L1 + L2 of the representation Nv is the 

primitive vector along the front edge of the Weyl chamber if" as pictured in 
Diagram (15.8). Now, we have already seen that the intersection of the closed 
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Weyl chamber with the weight lattice is a free semigroup generated by the 
primitive vectors along the three edges of 1Y -that is, every vector in 1Y () Aw 

is a non-negative integral linear combination ofthe three vectors L I, LI + L2, 
and LI + L z + L3. As we remarked at the end of the first section of this 

lecture, it follows that we have proved the existence half of the general existence 

and uniqueness theorem (14.18) in the case of the Lie algebra S[4C, Explicitly, 

since V, Nv, and Nv = V· have highest weight vectors with weights L I , 

L I + L2, and LI + L2 + L3, respectively, it follows that the representation 

SymaV ® Symb(NV) ® SymC(NV) 

contains a highest weight vector with weight aLl + b(L I + L2) + 
C(LI + L2 + L3)' and hence a copy of the irreducible representation ra,b ,c with 
this highest weight. 

Let us continue our examination of representations of S[4 C with a pair of 

tensor products of the three basic representations: V ® N V and V ® N v. 
As for the first of these, its weights are easy to find: they consist of the sums 

2L j + Lj (which occur once, as the sum of L j and L j + Lj ) and L j + Lj + Lk 
(which occur three times). The diagram of these weights looks like 

(We have drawn only the vertices of the convex hull of this diagram, thus 

omitting the weights L j + Lj + Lt ; they are located at the centers of the 
hexagonal faces of this polyhedron.) 

Now, the representation V ® Nv cannot be irreducible, for at least a 
couple of reasons. First ofT, just by looking at weights, we see that the 

irreducible representation W = rl,l , O with highest weight 2LI + Lz can have 
multiplicity at most 2 on the weight LI + L2 + L3: by Observation 14.16, the 
weight space WL1 +L2+L1 is generated by the images ofthe highest weight vector 

v E W2LI+L2 by successive applications of the primitive negative root spaces 

gL2-L1, gL1 -L2' and gL 4-L1 ' But LI + L2 + L3 is uniquely expressible as a sum 
of 2Ll + Lz and the primitive negative roots: 

LI + L2 + L3 = 2Ll + Lz + (Lz - Ld + (L3 - L2); 
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so that VL,+L2+L3 is generated by the subspaces 9L2-L,(9L3-L2(V)) and 
9L3- L2(9L2-L,(V)). We can in fact check that the representation r1,l,O takes 

on the weight Ll + L2 + L3 with multiplicity 2 by writing out these 

generators explicitly and checking that they are independent: for example, we 

have 

9L2-L,(9L3-L2(V)) = C· E2, l(E3,2(e l ® (e 1 /\ e2))) 

= C·E2,l(e l ®(e1 /\ e3)) 

= c· (e2 ® (e1 /\ e3) + e1 ® (e2 /\ e3))· 

This is in fact what is called for in Exercise 15.10. 

Alternatively, forgetting weights entirely, we can see from standard multi

linear algebra that the representation V ® N V cannot be irreducible: we have 

a natural map of representations 

<p : v®Nv-+Nv 

which is obviously surjective. The kernel of this map is a representation with 

the same set of weights as V ® N V (but taking on the weights L; + L j + Lk 
with multiplicity 2 rather than 3), and so must contain the irreducible represen

tation r1,l , O with highest weight 2Ll + L 2 • 

Exercise 15.10. Prove that the kernel of <p is indeed the irreducible represen

tation r1 , l,O . 

Finally, consider the tensor product V ® Nv. This has weights 

2L; + Lk + L, = L; - Lj , each occurring once, and 0, occurring four times. Its 

weight diagrams thus look like 

This we may recognize as simply a direct sum of the adjoint representation 

with a copy of the trivial; this corresponds to the kernel and image of the 

obvious contraction (or trace) map 
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V® Nv = V® V* = Hom(V, V) -+ e. 

(Note that the adjoint representation is the irreducible representation with 

highest weight 2L1 + L2 + L 3, or in other words the representation r 1•0 • d 

Exercise 15.11. Describe the weights of the representations Sym· V, and deduce 
that they are all irreducible. 

Exercise 15.12. Describe the weights of the representations Sym·(N V), and 
deduce that they are not irreducible. Describe maps 

<p.: Sym·(NV) -+ Sym"-2(NV) 

and show that the kernel of <Po is the irreducible representation with highest 

weight n(L1 + L2)' 

Exercise 15.13. The irreducible representation r 1 • 1 • 1 with highest weight 

3L1 + 2L2 + L3 occurs as a subrepresentation of the tensor product 
V ® N V ® N V lying in the kernel of each of the three maps 

v®Nv®Nv-+Nv®Nv 

v®Nv®Nv-+Nv®NV~ Nv 

v®Nv®Nv~ v®Nv*® V* -+ v®Nv* ~ V® V 

obtained by wedging two of the three factors. Is it equal to the intersection of 
these kernels? To test your graphic abilities, draw a diagram of the weights 

(ignoring multiplicities) of this representation. 

Representations of sIn C 

Once the case of 514 e is digested, the case of the special linear group in general 
offers no surprises; the main difference in the general case is just the absence 

of pictures. Of course, the standard representation V of 51. e has highest weight 
L1 , and similarly the exterior power Nv is irreducible with highest weight 

L1 + .. . + Lk • It follows that the irreducible representation rDt ..... D._ t with 
highest weight (a 1 + ... + a.-1 )L1 + ... + a.-1 L.-1 will appear inside the 
tensor product 

SymDt V ® SymD2(N V) ® ... ® SymD.-t (/\"-1 V), 

demonstrating the existence theorem (14.18) for representations of sI.e. 

Exercise 15.14. Verify that the exterior powers of the standard representations 
of sIne are indeed irreducible (though this is not necessary for the truth of the 
last sentence). 



222 

§15.3. Weyl's Construction and Tensor Products 

At the end ofthe preceding section, we saw that the irreducible representation 

ra, ..... an _ ' ofsInCwithhighestweight(a l + ... + an-dL1 + ... + an-1Ln-1 will 
appear as a subspace of the tensor product 

Syma, V ® syma2 (Nv) ® ... ® Syman-' (N-1 V), 

or equivalently as a subspace of the dth tensor power V®d of the standard 

representation V. The natural question is, how can we describe this subspace? 

We have seen the answer in one case already (two cases, if you count the trivial 

answer ra = SymaV in the case n = 2): the representation r ... b of sI3 C can be 

realized as the kernel of the contraction map 

SymaV ® Symb(NV) -. Syma- 1 V ® Symb- 1(NV). 

This raises the question of whether the representation r. can in general be 

described as a subspace of the tensor power ®(Syma'(NV» by intersecting 

kernels of such contraction/wedge product maps. Specifically, for i and j with 

i + j ~ n we can define maps 

Syma, V ® syma2(Nv) ® . .. ® Syman-' (N-l V) 

-. Nv ® Nv ® Syma, V ® ... ® Sym",- 1 (NV) ® ... 

® symar 1(Nv) ® ... ® Syman- I (N-1 V) 

and we have similar maps for i < j with i + j ~ nand i even with 2i ~ n; there 

are likewise analogously defined maps in which we split ofT three or more 

factors. The representation ra, ..... an _, is in the kernel of all such maps; and we 
may ask whether the intersection of all such kernels is equal to r •. 

The answer, it turns out, is no. (It is a worthwhile exercise to find an example 

of a representation r. that cannot be realized in this way.) There is, however, 

another way of describing r. as a subspace of V®d: in fact, we have already 

met these representations in Lecture 6, under the guise of Schur functors or 

Weyl modules. In fact, at the end of this lecture we will see how to describe 

them explicitly as subspaces of the above spaces ®(Syma'(NV)). Recall that 

for V = en an n-dimensional vector space, and any partition 

.A.: A1 ~ A2 ~ . . . ~ An ~ 0, 

we can apply the Schur functor §). to V to obtain a representation 

§).V = §).(en) ofGL(V) = GLn(C). If d = LAi , this was realized as 

§). V = V®d. C). = V®d ®C6d V)., 

where c). is the Young symmetrizer corresponding to A, and V;, is the irreducible 

representation of 6 d corresponding to A. 
We saw in Lecture 6 that §;, V is an irreducible representation of GLniC. It 

follows immediately that §;, V remains irreducible as a representation ofSLn C, 
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since any element of GLnC is a scalar multiple of an element of SLnC. In 
particular, it determines an irreducible representation ofthe Lie algebra sInlC. 

Proposition 15.15. The representation § ,,(cn) is the irreducible representation 

of sInC with highest weight AILI + A2L2 + ... + AnLn. 

In particular, § ,,(en) and §icn) are isomorphic representations of sInC if 

and only if Ai - Ili is constant, independent of i. To relate this to our earlier 

notation, we may say that the irreducible representation ra, ..... an _' of sInC with 
highestweightalLI + a2(L I + L 2) + ... + an-I(L l + ... + Ln_disobtained 
by applying the Schur functor §" to the standard representation V, where 

A = (a l + ... + an- l , a2 + ... + an- l , •• . , an- l , 0). 

(If we want a unique Schur functor for each representation, we can restrict to 
those A with An = 0.) In terms of the Young diagram for A, the coefficients 

ai = Ai - Ai+l are the differences oflengths of rows. For example, if n = 6, 

1 1 1 1 1 
1 1'- a----' 

'-..J 1 a2 

- '-a----' 
4 

is the Young diagram corresponding to r3.2.0.3.1' 

PROOF OF THE PROPOSITION. In Theorem 6.3 we calculated that the trace of a 

diagonal matrix with entries Xl' ... , Xn on §,,(en) is the Schur polynomial 
S)'(XI' .. . , xn). By Equation (A.19), when the Schur polynomial is written out 
it takes the form 

(15.16) 

where M" is the sum of the monomial X" = Xf'X~2 ..... x:n and all distinct 

monomials obtained from it by permuting the variables, and the K"" are 
certain non-negative integers called Kostka numbers. When §,,(en) is 

diagonalized with respect to the group of diagonal matrices in GLn(lC), it 
is also diagonalized with respect to ~ c sIn(lC). There is one monomial in 

the displayed equation for each one-dimensional eigenspace. The weights of 
§ Aen) as a representation of sIn(1C) therefore consist of all 

III LI + 1l2L2 + ... + IlnLn, 

each occurring as often as it does in the monomial X" in the polynomial 
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S;.(X 1 , ••• , x.). Since the sum is over those partitions J1. for which the first 

nonzero Ai - J1.i is positive, the highest weight that appears is AILI + A2L2 + 
... + A.Ln' which concludes the proof. [In fact one can describe an explicit 

basis of eigenvectors for §;.(C") which correspond to the monomials that 

appear in (15.16), cf. Problem 6.15 or Proposition 15.55.] D 

In particular, we have (by Theorem 6.3) formulas for the dimension of the 

representation with given highest weight. Explicitly, one formula says that 

(a i + ... + aj-d + j - i 

j-i 
(15.17) 

As we saw in the proof, this proposition also gives the multiplicities of all 

weight spaces as the integers K;'/l that appear in (15.16), which have a simple 

combinatorial description (p. 456): the dimension of the weight space with 

weight J1. in the representation §;.(C") is the number of ways one can fill the 

Young diagram of A with fll l's, fl2 2's, . . . , fl. n's, in such a way that the entries 

in each row are nondecreasing and those in each column are strictly increasing. 

Exercise 15.18. Use the formula in case n = 4 to calculate the dimensions of 

the irreducible representations r l . I .O and rl,l,l of sI4c' In the former case, 

use this to redo Exercise 15.10; in the latter case, to do Exercise 15.13. 

Exercise 15.19*. Use this formula to show that the dimension ofthe irreducible 

representation ra.b of 513 with highest weight aLl + b(LI + L 2 ) is 

(a + b + l)(a + l)(b + 1)/2. This is the same as the dimension of the kernel 

of the contraction map 

la.b: SymaV ® SymbV* -+ Syma - I V ® Symb- l V*. 

Use this to give another proof of the assertion made inClaim 13.4 that ra•b is 

this kernel. 

Exercise 15.20*. As an application of the above formula, show that if V is the 

standard representation of sIne, then the kernel of the wedge product map 

v®Nv-+N+IV 

is the irreducible representation rl.o ... .. o.l.o.... with highest weight 

2LI + L2 + ... + Lk ; and that the irreducible representation r k - I • I •O •... with 

highest weight k . L I + L2 is the kernel of the product map 

V ® SymkV -+ Symk+1 V. 

Exercise 15.21 *. Show that the only nontrivial irreducible representations of 

slnlC of dimension less than or equal to n are V and V*. 

One important consequence of the fact that the irreducible representations 

of sin IC are obtained by applying Schur functors to the standard representation 
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is that identities among the Schur- Weyl functors give rise to identities among 

representations of GLn (and hence SLn and sin)' as we saw in Lecture 6. For 

example, the representation 

(15.22) 

is a direct sum of representations §A(V) $ EB" K"A§"(V), where K"A is the 

coefficient described above. The particular application of this principle that 

we will use most frequently in the sequel, however, is the consequence that 

one knows the decomposition of a tensor product of any two irreducible represen

tations of sIne: specifically, the tensor power § A(V) ® §,,(V) decomposes into 

a direct sum of irreducible representations 

(15.23) 
v 

where the coefficients NA"v are given by the Littlewood-Richardson rule, which 

is a formula in terms of the number of ways to fill the Young diagram between 

A. and v with J.tl l's, J.t2 2's, ... , J.tn n's, satisfying a certain combinatorial 

condition described in (A.8). 

Exercise 15.24. Use the Littlewood- Richardson rule to show that the 

representation ra(+b(, ... ,on_(+bn_( occurs exactly once in the tensor product 

ro(, .. . ,an_( ® rb( , ... ,bn_(· 

A special case of this is the analogue of Pieri's formula, which allows us 

to decompose the tensor product of an arbitrary irreducible representation 

with either SymkV = rk,o , ... ,o or the fundamental representation Nv = 
ro, ... ,I,o, ... , o, (where the 1 occurs in the kth place): 

Proposition 15.25. (i) The tensor product of rO(, ... ,an_( with SymkV = rk,o, ... ,o 

decomposes into a direct sum: 

ra( , ... ,On_( ® r k, . . . ,0 = EB rb" ... , bn_(' 

the sum over all (bl , •.. , bn- I ) for which there are non-negative integers c I, ..• , Cn 

whose sum is k, with cj +1 ~ aj for 1 ~ i ~ n - 1, and with bj = aj + cj - Ci+1 

for 1 ~ i ~ n - 1. 

(ii) The tensor product of ra(, .... On_( with Nv = rO, ... , O,l,o ... . ,o decomposes 

into a direct sum: 

the sum over all (b l , • .. , bn - I ) for which there is a subset S of {I, .. . , n} of 

cardinality k, such that if i ¢ Sand i + 1 E S, then aj > 0, with 

{ 
aj - 1 if i ¢ Sand i + 1 E S 

bj = a j + 1 if i E Sand i + 1 ¢ S 

a j otherwise. 
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PROOF. This is simply a matter of translating the prescriptions of (6.8) and 

(6.9), which describe the decompositions in terms of adding boxes to the Young 

diagrams. In (i), the Ci are the number of boxes added to the ith row, and in 

(ii), S is the set of rows to which a box is added. 0 

Exercise 15.26. Verify the descriptions in Section 2 of this lecture of V ® N V 

and V ® N V, where V is the standard representation of S[4 iC. 

Exercise 15.27. Use Pieri's formula (with n = 4) twice to find the decomposition 

into irreducibles of V ® N V ® N V, where V is the standard representation 

Ofs[4iC. Use this to redo Exercise 15.13. 

Exercise 15.28. Use Pieri's formula to prove (13.5). You may also want to look 

around in Lecture 13 to see which other of the decompositions found there 

by hand may be deduced from these formulas. 

Exercise 15.29. Verify that the statement of Exercise 15.20 follows directly 
from Pieri's formula. 

In the following exercises, V = Cn is the standard representation of sIn C. 

Exercise 15.30. Consider now tensor products of the form Nv ® Nv, with, 
say, k ~ 1. Show that there is a natural map 

Nv ® Nv -+ N+l V ® N-l V 

given by contraction with the element "trace" (or "identity") in V ® V* = 

End(V). Explicitly, this map may be given by 

(VI 1\ • .• 1\ vk) ® (WI 1\ •.. 1\ w,) 

I 

1-+ L (_l)i(VI 1\ • •. 1\ Vk 1\ w;) ® (WI 1\ • . . 1\ ~ 1\ •.. 1\ w,), 
i=1 

What is the image of this map? Show that the kernel is the irreducible 

representation fO •...• 0 . l.0 •.. .• 0 . 1. 0 •... with highest weight 2Ll + ... + 2L, + 
L ,+1 + ... + Lt. 

Exercise 15.31 *. Carry out an analysis similar to that of the preceding exercise 
for the maps 

SymkV ® Sym'V -+ Symk+ 1V® Syml-lV 

defined analogously. 

Exercise 15.32*. As a special case of Pieri's formula, we see that if V is the 
standard representation of slnC, the tensor product 
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Nv ® Nv = EEl §(2 ..... 2.1 ..... 1.0 .... i V ) 

= EEl rO .... . O.1 .0 ..... 0.1.0 ... . ' 

where in the ith factor the 1 's occur in the (k - i)th and (k + i)th places. At 

the same time, of course, we know that 

Nv ® Nv = Sym2(NV) Ef) N(NV). 

If we denote the ith term on the right-hand side of the first displayed equation 

for Nv ® Nv by 0 i, show that 

Sym2 (NV) = EEl 0 2i and N(NV) = EEl 0 2i+1' 

Exercise 15.33*. As another special case of Pieri's formula, we see that the 

tensor product 

SymkV ® SymkV = EEl §(Hi.k-i)(V) 

= EEl r2i.k-i.O .. . O· 

At the same time, of course, we know that 

SymkV ® SymkV = Sym2(Symk V) EEl N(SymkV). 

Which of the factors appearing in the first decomposition lie in Sym2(SymkV), 

and which in N(SymkV)? 

It follows from the Littlewood-Richardson rule that if A, jI., and v all have 

at most two rows, then the coefficient NJ..l'v is zero or one (and it is easy to 

say which occurs). In particular, for the Lie algebras sI2 C and sI3 C, the 

decomposition of the tensor product of two irreducible representations is 

always multiplicity free. Groups whose representations have this property, 

such as SU(2), SU(3), and SO(3) which are so important in physics, are called 
"simply reducible," cf. [Mack]. 

§15.4. Some More Geometry 

Let V be an n-dimensional vector space, and G(k, n) = G(k, V) = Grassk V the 

Grassmannian of k-planes in V. Grassk V is embedded as a subvariety of the 

projective space IP(NV) by the PlUcker embedding: 

p: Grassk V c:.... IP(NV) 

sending the plane W spanned by vectors V 1 , • • • , Vk to the alternating tensor 

V1 /\ ' " /\ Vk' Equivalently, noting that if W c V is a k-dimensional subspace, 

then Nw is a line in Nv, we may write this simply as 

p: WI--+Nw 
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This embedding is compatible with the action of the general linear group: 

PSL.C = Aut(IP(V» = {u E Aut(IP(NV»: u(G(k, V»= G(k, V)}o. 

This follows from a fact in algebraic geometry ([Ha]): all automorphisms 

of the Grassmannian are induced by automorphisms of V, unless n = 2k, 

in which case we can choose an arbitrary isomorphism of V with V* 

and compose these with the automorphism that takes W to (C·/W)*. Here 

the superscript 0 denotes the connected component of the identity. As in 

previous lectures, if we want symmetric powers to correspond to homo

geneous polynomials on projective space, we should consider the dual situa

tion: G = Grassk V is the Grassmannian of k-dimensional quotient spaces of 

V, and the Plucker embedding embeds G in the projective space IP(NV*) of 

one-dimensional quotients of Nv. 
The space of all homogeneous polynomials of degree m on IP(Nv*) is 

naturally the symmetric power Symm(NV). Let J(G)m denote the subspace of 

those polynomials of degree m on IP(Nv*) that vanish on G. Each J(G)", is a 

representation of sI.C: 

0--+ J(G)m --+ Symm(NV) --+ Wm --+ 0, 

where Wm denotes the restrictions to G of the polynomials of degree m on 

the ambient space IP(Nv*). We shall see later that Wm is the irreducible 

representation r o ..... O•m•o .... with highest weight m(L1 + ... + L k ) (the case 

m = 2 will be dealt with below). In the following discussion, we consider the 

problem of describing the quadratic part J(Gh of the ideal as a representation 

ofsI.e. 

Exercise 15.34. Consider the first case of a Grassmannian that is not a 

projective space, that is, k = 2. The ideal of the Grassmannian G(2, V) of 

2-planes in a vector space is easy to describe: a tensor ({J E N V is decomposable 

if and only if ({J A ({J = 0 (equivalently, if we think of ({J as given by a skew

symmetric n x n matrix, if and only ifthe Pfaffians of symmetric 4 x 4 minors 

all vanish); and indeed the quadratic relations we get in this way generate the 

ideal of the Grassmannian. We, thus, have an isomorphism 

J(Gh ~ Nv 

and correspondingly a decomposition into irreducibles 

Sym 2(NV) ~ Nv EE> rO•2 • 0 • .. .• o, 

where rO• 2 •0 •...• o is, as above, the irreducible representation with highest 

weight 2(Ll + L 2 ), cf. Exercise 15.32. 

Exercise 15.35. When k = 2 and n = 4, G is a quadric hypersurface in IPs, so 

polynomials vanishing on G are simply those divisible the quadratic poly

nomial that defines G. Deduce an isomorphism. 

J(G)m = Symm-2(NV). 
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The first case of a Grassmannian that is not a projective space or of the 
form G(2, V) is, of course, G(3, 6), and this yields an interesting example. 

Exercise 15.36. Let V be six dimensional. By examining weights, show that 
the space I(G}z of quadratic polynomials vanishing on the Grassmannian 

G(3, V) c iP>(NV) is isomorphic to the adjoint representation of s161C, i.e., 

that we have a map 

cp: Sym2(NV)-+ V® V* 

with image the space of traceless matrices. 

Exercise 15.37. Find explicitly the map cp of the preceding exercise. 

Exercise 15.38. Again, let V be six dimensional. Show that the representation 

Sym4(NV) has a trivial direct summand, corresponding to the hypersurface 
in iP>(Nv*) dual to the Grassmannian G = G(3, V) c iP>(NV). 

In general, the ideal I(G) = ffi/(G)m is generated by the famous PlUcker 
equations. These are homogeneous polynomials of degree two, and may be 
written down explicitly, cf. (15.53), [H-P], or [Hal In the following exercises, 
we will give a more intrinsic description of these relations, which will allow 

us to identify the space I(Gh they span as a representation on slnlC (and to 

see the general pattern of which the above are special cases). 

Exercise 15.39. For a given tensor A E Nv, we introduce two associated 
subspaces: 

W = {v E V: v 1\ A = O} c V 

and 

W* = {v* E V*: v* 1\ A* = O} c V*, 

where, abusing notation slightly, A * is the tensor A viewed as an element of 
Nv = N-kv*. Show that the dimensions of Wand W* are at most k and 

n - k, respectively, and that A is decomposable if and only if W has dimension 
k or W* has dimension n - k; and deduce that A is decomposable if and only 
if the annihilator W' of W* is equal to W 

Exercise 15.40. Now let E E N+1 V* = N- t - 1 V. Wedge product gives a map 

IE: Nv -+ /\n-l V = V* . 

Using the preceding exercise, show that A is decomposable if and only if 

1c:(A) 1\ A = 0 E N-l V 

for all E E N+l V*. 
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Exercise 15.41. Observe that in the preceding exercise we construct a map 

N+1V* ® Sym 2(NV) -+ N-lv, 

or, by duality, a map 

N+1 V* ® N-1 V* -+ Sym 2(NV*) (15.42) 

whose image is a vector space of quadrics on IP'(NV) whose common zeros 

are exactly the locus of decomposable vectors, that is, the Grassmannian 
G(k, V). Show that this image is exactly the span of the Plucker relations 
above. 

Exercise 15.43. Show that the map (15.42) of the preceding exercise is just the 

dual of the map constructed in Exercise 15.30, with k = I and restricted to the 

symmetric product. Combining this with the result of Exercise 15.32 (and 
assuming the statement that the Plucker relations do indeed span I(G)z), 

deduce that in terms of the description 

Sym2(NV) = EB e 2i 

of the symmetric square of Nv, we have 

W2 = eo = ro ..... 0 •2 •0 ... . 

(the irreducible representation with highest weight 2(L1 + ... + Lk )), and 

l(Gh = EB e 2i . 
i,,1 

Hard Exercise 15.44. Show that in the last equation the sub-direct sum 

1(1) = EB e 2i 
i,,1 

is just the quadratic part of the ideal of the restricted chordal variety of the 

Grassmannian: that is, the union of the chords LM joining pairs of points 
in G corresponding to pairs of planes Land M meeting in a subspace of 

dimension at least k - 21 + 1. (Question: What is the actual zero locus ofthese 
quadrics?) 

Exercise 15.45. Carry out an analysis similar to the above to relate the 
ideal of a Veronese variety P V* c P(Symk V*) to the decomposition given in 

Exercise 15.33 of Sym2(SymkV). For which k do the quadratic polynomials 

vanishing the Veronese give an irreducible representation? 

Exercise 15.46. (For algebraic geometers and/or commutative algebraists.) 

Just as the group PGLnC acts on the ringS of polynomials on projective space 
IP'N, preserving the ideal of the Veronese variety, so it acts on that space of 
relations on the ideal (that is, inasmuch as the ideal is generated by quadrics, 

the kernel ofthe multiplication map 1x(2) ® S -+ S), and likewise on the entire 

minimal resolution of the ideal of X. Show that this resolution has the form 
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.. . -.. R2 ® S -.. Rl ® S -.. Ix(2) ® S, 

where all the Ri are finite-dimensional representations ofPGLnC, and identify 

the representations R; in the specific cases of 

(i) the rational normal curve in 1P3, 

(ii) the rational normal curve in 1P4 , and 

(iii) the Veronese surface in IPs. 

§15.5. Representations of GLnC 

We have said that there is little difference between representations of GLnC 

and those of the subgroup SLnC of matrices of determinant 1. Our object here 

is to record the difference, which, naturally enough, comes from the deter

minant: if V = en is the standard representation, NV is trivial for SLnC but 

not for GLnC. Similarly, V and N-l V* are isomorphic for SLnC but not 

for GL.C. 

To relate representations ofSLnC and GLnC, we first need to define some 

representations of GLnC. To begin with, let Dk denote the one-dimensional 

representation of GLnC given by the kth power of the determinant. When k 
is non-negative, Dk = (NV)®k; D- k is the dual (Dk)* of Dk. Next, note that the 

irreducible representations ofSLnC may be lifted to representations ofGLnC 

in two ways. First, for any index a = (ai' ... , an) of length n we may take <1>. 
to be the subrepresentation of the tensor product 

Syma , V ® ... ® Syma.-, (N- 1 V) ® Syma·(NV) 

spanned by the highest weight vector with weight a l Ll + a2(L 1 + L2) + 
... + an-I (LI + ... + Ln_d-that is, the vector 

v = (eda,. (e l A e2)a2 ••••• (e l A ... A en)a •. 

This restricts to SLnC to give the representation ra " where a' = (aI' . .. , an-d; 
taking different values of an amounts to tensoring the representation with 

different factors Syma·(NV) = (Nv)®a. = Da •. In particular, we have 

<l>a, ..... a.+k = <l>a, ..... a. ® Dk, 

which allows us to extend the definition of <1>. to indices a with an < 0: we 
simply set 

for large k. 
Alternatively, we may consider the Schur functor § ... applied to the standard 

representation V of GLnC, where 

A. = (a l + ... + an, a2 + ... + an, . .. , an- 1 + an, an)· 

We will denote this representation § ... V of GLnC by'll;.; note that 
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which likewise allows us to define '1'1 for any index A. with ..1.1 ~ ..1.2 ~ ••• ~ A.n , 

even if some of the A.i are negative: we simply take 

'I'l, ..... ln = 'I'll+k ... .. 1n+k®D_1c 

for any sufficiently large k. 
As is not hard to see, the two representations <f). and '1'1 are isomorphic as 

representations of GLn C: by § 15.3 their restrictions to SLn C agree, so it suffices 

to check their restrictions to the center C* c GLnC, where each acts by 
multiplication by zL)., = zLia'). 1t is even clearer that there are no coincidences 

among the <f). (i.e., <f). will be isomorphic to <f)., if and only if a = a'): if 
<f). ~ <f)." we must have ai = a; for i = 1, . .. , n - 1, so the statement follows 

from the nontriviality of Die for k #- O. Thus, to complete our description of the 

irreducible finite-dimensional representations of GLnC, we just have to check 
that we have found them all. We may then express the completed result as 

Proposition 15.47. Every irreducible complex representation of GLnC is iso-
morphic to 'I'l for a unique index A. = AI, .. . , An with AI ~ ..1.2 ~ ••• ~ An (equiv-

alently, to <f). for a unique index a = ai' .. . , an with ai' ... , an- 1 ~ 0). 

PROOF. We start by going back to the corresponding Lie algebras. The scalar 

matrices form a one-dimensional ideal C in gInC, and in fact gInC is a product 
of Lie algebras: 

(15.48) 

In particular, C is the radical of gI"C, and sl"C is the semisimple part. It follows 

from Proposition 9.17 that every irreducible representation of gl"C is a tensor 

product of an irreducible representation of sI" C and a one-dimensional repre
sentation. More precisely, let Wl = § l(C") be the representation of sI"C deter
mined by the partition A. (extended to sInC x C by making the second factor 
act trivially). For WE C, let L(w) be the one-dimensional representation of 

slnC x C which is zero on the first factor and multiplication by w on the 
second; the proof of Proposition 9.17 shows that any irreducible representa

tion of slnC x C is isomorphic to a tensor product W;, ® L(w). The same is 

therefore true for the simply connected I group SL"C x C with this Lie 
algebra. 

We write GL"C as a quotient modulo a discrete subgroup of the center of 

SL"C x C : 

1 -> Ker(p) -> SLnC xC!' GL"C -> 1, (15.49) 

where p(g x z) = eZ • g, so the kernel of p is generated bye" I x (- s), where 

s = 2ni/n. 
Our task is simply to see which of the representations Wl ® L(w) of 

SL"C x C are trivial on the kernel of p. Now eS ' I acts on §;,C" by multi-

I For a proof that SL. C is simply connected, see §23.1. 
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plication by esd, where d = L A. j ; indeed, this is true on the entire representation 

(1C")®d which contains §;. cn. And - s acts on L(w) by multiplication by e-sw, so 

eS ' I x ( - s) acts on the tensor product by multiplication by esd - sw• The tensor 

product is, therefore, trivial on the kernel of p precisely when sd - sw E 2niZ, 
i.e., when 

for some integer k. 

We claim finally that any representation W;. ® L(w) satisfying this condi

tion is the pullback via p of a representation 'I' on GLnC In fact, it is not hard 

to see that it is the pullback of the representation '1';., +k • .. .• ;'n+k: the two clearly 

restrict to the same representation on SLnC, and their restrictions to Care 
just multiplication by e WZ = e(L;. ,+nk)z. D 

Exercise 15.50. Show that the dual of the representation '1';. which is iso

morphic to §;.(V·)is the representation 'I'(-;.n .... . -;.') . 

Exercise 15.51·. Show that if p: GLnC -+ GL(W) is a representation (assumed 

to be holomorphic), then W decomposes into a direct sum of irreducible 

representations. 

Exercise 15.52·. Show that the Hermite reciprocity isomorphism of Exercise 

11.34 is an isomorphism over GL2 C, not just over SL2 C 

More Remarks on Weyl's Construction 

We close out this lecture by looking once more at the Weyl construction of 

these representations ofGL(V). This will include a realization "by generators 

and relations," as well as giving a natural basis for each representation. First, 

it may be illuminating-and it will be useful later-to look more closely at 
how §;. V sits in V®d. We want to realize §;. Vas a subspace of the subspace 

Symak(NV) ® Symak-'(N-l V) ® ... ® Syma,(V) c V®d, 

where aj is the number of columns of the Young diagram of A. of length i (and 

k is the number of rows). This space is embedded in V®d in the natural way: 
from left to right, a factor Syma(NV) is embedded in the corresponding v®ab 

by mapping a symmetric product of exterior products 

(vl,1 " V2•1 " ••• " vb.d·(V 1 .2 " V2.2 " ... " Vb.2) ·· · · 

. (vl,a " v2.a " ... " Vb.a) 

to 

L sgn(q)(vq,(l).P(l) ® ... ® Vq,(b) .P(l» ® ... ® (Vqa(l).p(a) ® ... ® Vqa(b) .p(a», 

the sum over p E 6 a and q = (ql,"" qa) E 6 b X .. . X 6 b. In other words, one 
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first symmetrizes by permuting columns ofthe same length, and then performs 

an alternating symmetrizer on each column. 

Letting a = (a 1 , ••• , ak ), let A "(V) denote this tensor product of symmetric 

powers of exterior powers, i.e., set 

A"V = SymOk(NV) ® SymOk-1(N-1 V) ® ... ® SymOl(V). 

We want to realize §;. V as a subspace of A "V. To do this we use the construc

tion of §;. Vas V®4. c;., where C;. is a Young symmetrizer; to get compatibility 

with the embedding of A"V we have just made, we use the tableau which 

numbers the columns from top to bottom, then left to right. 

1 4 6 8 J 
2 5 7 Q1 

3 Q2 = 2 
~ 

I-ll 1-l2 1-l3 1-l4 
II II II 

322 

We take I'- = A.' = (1'-1 ~ ... ~ 1'-, > 0) to be the conjugate of A.. The symmetrizer 

c;. is a product a;.' b;., where a;. = Lep , the sum over all p in the subgroup 

P = 6;'1 X ••• x 6;'k of 6 4 preserving the rows, b;. = L sgn(q)q, the sum over 

the subgroup Q = 6"1 X .. , X 6", preserving the columns, as described in 

Lecture 4. The symmetrizing by rows can be done in two steps as follows. 

There is a subgroup 

of P, which consists of permutations that move all entries of each column 

to the same position in some column of the same length; in other words, 

permutations in R are determined by permuting columns which have the same 

length. (In the illustration, R = {1, (46)(57) }.) Set 

al = L er in C64 · 
reR 

Now if we define a~ to be Lep , where the sum is over any set of representatives 

in P for the left cosets P/R, then the row symmetrizer a;. is the product of a~ 

and al . So 

§;.(V) = (V®4'aD'a~ ·b;.. 

The point is that, by what we have just seen, 

V®4· al · b;. = A"V. 
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Since V®d. a~ is a subspace of V®d, its image § ,\(V) by a). . b,\ is a subspace of 

A a( V), as we claimed. 

There is a simple way to construct all the representations §,\ V of GL(V) 

at once. In fact, the direct sum of all the representations §,\ V, over all (non

negative) partitions A, can be made into a commutative, graded ring, which 

we denote by §. or §·(V), with simple generators and relations. This is similar 

to the fact that the symmetric algebra Sym·V = EBSymkV and the exterior 

algebra A·V = EBNVare easier to describe than the individual graded pieces, 

and it has some of the similar advantages for studying all the represen

tations at once. This algebra has appeared and reappeared frequently, cf. 

[H-P]; the construction we give is essentially that of Towber [Tow!]. 

To construct §·(V), start with the symmetric algebra on the sum of all the 

positive exterior products of V: se' 

A·(V) = Sym·(V$NV$NV$ ... $ ;\"V) 

EB Sym""(;\"V) ® ... ® Sym"2(NV) ® Sym"'(V), 

the sum over all n-tuples ai' . .. , an of non-negative integers. So A·(V) is the 

direct sum of the A a( V) just considered. The ring §. = §. (V) is defined to be 

the quotient ofthis ring A·(V) modulo the graded, two-sided ideal r generated 

by all elements ("Plucker relations") of the form 

(VI /\ • • • /\ vp)· (WI /\ ... /\ wq) 

p 

- "(v /\ ... /\ v· /\ W /\ v· /\ ... /\ V ). (v · /\ W /\ .•• /\ W ) L.. I .-1 1.+1 p. 2 q 
j=1 

(15.53) 

for all p ~ q ~ 1 and all VI' ••• , vP' WI' . • . , Wq E V. (If p = q, this is an ele
ment of Sym2(NV); if p > q, it is in NV ® NV = Syml(NV) ® Syml(NV). 

Note that the multiplication in §·(V) comes entirely from its being a symmetric 

algebra and does not involve the wedge products in A·V.) 

Exercise 15.54*. Show that r contains all elements of the form 

(VI /\ . • . /\ vp) · (WI /\ • .• /\ wq) 

-"(v /\·· · /\w /\···/\w /\·· · /\v) L.. I I , p 

for all p ~ q ~ r ~ 1 and all VI' ... , vP' WI' . .. , Wq E V, where the sum is over 

all 1 :::;; i l < i2 < .. . < i, :::;; p, and the elements WI' .• • , W, are inserted at the 
corresponding places in VI /\ ... /\ vp-

Remark. You can avoid this exercise by simply taking the elements in the 

exercise as defining generators for the ideal r. When p = q = r, the calcula-
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tion of Exercise 15.54 shows that the relation (VI /\ ... /\ Vp)' (WI /\ . .. /\ Wp ) 

= (WI /\ ... /\ Wp)' (VI /\ •• . /\ vp ) follows from the generating equations for r . 
In particular, this commutativity shows that one could define §·(V) to be the 
full tensor algebra on V EB N V EB ... EB I\" V modulo the ideal generated by 

the same generators. 

The algebra §·(V) is the direcl sum of the images §a(v) of the summands 

A"(V). Let el"'" en be a basis for V. We will construct a basis for §a(v), with 
a basis element eT for every semistandard tableau T on the partition A. which 

corresponds to a. Recall that a semi standard tableau is a numbering of the 
boxes of the Young diagram with the integers 1, ... , n, in such a way that the 

entries in each row are nondecreasing, and the entries in each column are 

strictly increasing. Let T(i,j) be the entry of T in the ith row and the jth 

column. Define eT to be the image in §a(v) of the element 

I n eT(I,J) /\ e T(2,j) /\ .•• /\ eT(I'J,J) E SymQn(I\"V) ® ... ® SymQ,(V), 
j=1 

i.e., wedge together the basis elements corresponding to the entries in the 

columns, and multiply the results in §·(V). 

Proposition 15.55. (1) The projection from Aa(v) to §a(v) maps the subspace 

§;.(V) isomorphically onto §a(v). 

(2) The eT for T a semistandard tableau on A. form a basis for §a(v). 

PROOF. We show first that the elements e T span §a(V). It is clear that the eT 

span if we allow all tableaux T that number the boxes of A. with integers 
between 1 and n with strictly increasing columns, for such elements span before 
dividing by the ideal r. We order such tableaux by listing their entries column 

by column, from left to right and top to bottom, and using the reverse 
lexicographic order: T' > T if the last entry where they differ has a larger entry 

for T' than for T. If T is not semistandard, there will be two successive columns 

of T, say thejth and (j + l)st, in which we have T(r,j) > T(r,j + 1) for some 

r. It suffices to show how to use relations in r to write eT as a linear 

combination of elements eT' with T' > T. For this we use the relation in 

Exercise 15.54, with Vi = eT(i,J) for 1:::; j :::; p = JJ.j, and Wi = eT(i,j+l) for 
1 :::; j ~ q = JJ.j+1' to interchange the first r of the {Wi} with subsets of r of the 
{Vi} ' The terms on the right-hand side of the relation will all correspond to 
tableaux T' in which the r first entries in the (j + 1 )st column of T are replaced 

by r of the enties in the jth column, and are not otherwise changed beyond 

the jth column. All of these are larger than T in the ordering, which proves the 
assertion. 

It is possible to give a direct proof that the eT corresponding to semi
standard tableaux T are linearly independent (see [Tow!]), but we can get by 
with less. Among the semi standard tableaux on A. there is a smallest one To 

whose ith row is filled with the integer i. We need to know that eTo is not zero 
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in § .. This is easy to see directly. In fact, the relations among the eT in 

r n A"(V) are spanned by those obtained by substituting r elements from 

some column of some T to an earlier column, as in the preceding paragraph. 

Such will never involve the generator eTo unless the T that is used is To, and 

in this case, the resulting element of r is zero. Since eT 0 occurs in no nontrivial 
relation, its image in §. cannot vanish. 

Since eTo comes from §;.(V), it follows that the projection from §;.(V) to 
§I(V) is not zero. Since this projection is a mapping of representations of 

SL(V), it follows that §I(V) must contain a copy ofthe irreducible representa

tion §;.(V). We know from Theorem 6.3 and Exercise A.31 that the dimension 
of § ;.(V) is the number of semistandard tableaux on A.. Since we have proved 

that the dimension of §I(V) is at most this number, the projection from § ;.(V) 

to §I(V) must be surjective, and since §;.(V) is irreducible, it must be injective 

as well, and the eT for T a semistandard tableau on A. must form a basis, as 
asserted. 0 

Note that this proposition gives another description ofthe representations 
§;.(V), as the quotient of the space Aa(V) by the subspace generated by the 
"Plucker" relations (15.53). 

Exercise 15.56. Show that, if the factor I\" V is omitted from the construction, 
the resulting algebra is the direct sum of all irreducible representations of 

SL(V) = SLnC. 

It is remarkable that all the representations § ;.(cn) of GLnC were written 

down by Deruyts (following Clebsch) a century ago, before representation 
theory was born, as in the following exercise. 

Exercise 15.57*. Let X = (Xi) be an n x n matrix of indeterminates. The 

group G = GLnC acts on the polynomial ring C[xi,j] by g' Xi,j = L~=l ak,ixk,j 

for 9 = (a i ) E GLnC. For any tableau T on the Young diagram of A. consisting 
of the integers from 1 to n, strictly increasing in the columns, let eT be the 

product of minors constructed from X, one for each column, as follows: if the 

column of T has length J.lj' form the minor using the first J.lj columns, and use 
the rows that are numbered by the entries of the column of T. Let D;. be the 
subspace of C[xi,j] spanned by these eT , where d is the number partitioned 
by A.. Show that: (i) D;. is preserved by GLnC; (ii) the eT , where T is semi
standard, form a basis for D;.; (iii) D;. is isomorphic to §;.(cn). 



LECTURE 16 

Symplectic Lie Algebras 

In this lecture we do for the symplectic Lie algebras exactly what we did for the special 

linear ones in §lS.l and most of §lS.2: we will first describe in general the structure of 

a symplectic Lie algebra (that is, give a Cartan subalgebra, find the roots, describe the 

Killing form, and so on). We will then work out in some detail the representations of 

the specific algebra SP4C, As in the case of the corresponding analysis of the special 

linear Lie algebras, this is completely elementary. 

§16.1: The structure of SP2.C and SP2.C 

§16.2 Representations ofsp4 C 

§16.1. The Structure of SP2nC and SV2nC 

Let V be a 2n-dimensional complex vector space, and 

Q: V x V -+C, 

a nondegenerate, skew-symmetric bilinear form on V. The symplectic Lie 
group SP2nC is then defined to be the group of automorphisms A of V 

preserving Q-that is, such that Q(Av, Aw) = Q(v, w) for all v, WE V-and the 

symplectic Lie algebra sP2nC correspondingly consists of endomorphisms 
A: V -+ V satisfying 

Q(Av, w) + Q(v, Aw) = 0 

for all v and WE V. Clearly, the isomorphism classes of the abstract group and 

Lie algebra do not depend on the particular choice of Q; but in order to be 
able to write down elements of both explicitly we will, for the remainder of 

our discussion, take Q to be the bilinear form given, in terms of a basis e 1, ... , 
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e2n for V, by 

and 

Q(ei' ei+n) = 1, 

Q(ei+n, ei) = - 1, 

Q(ei' ej ) = 0 if j :;6 i ± n. 

The bilinear form Q may be expressed as 

Q(x,y) = 'x'M'y, 

where M is the 2n x 2n matrix given in block form as 

M=( 0 In). 
-In 0 ' 

the group SP2niC is thus the group of 2n x 2n matrices A satisfying 

M='A ' M' A 
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and the Lie algebra SP2n iC correspondingly the space of matrices X satisfying 

the relation 

'X 'M+M'X =0. (16.1) 

Writing a 2n x 2n matrix X in block form as 

X = (~ ~) 
we have 

'X.M = (-'C 'A) 
-'D 'B 

and 

M'X=(:A ~B) 
so that this relation is equivalent to saying that the off-diagonal blocks B and 
C of X are symmetric, and the diagonal blocks A and D of X are negative 
transposes of each other. 

With this said, there is certainly an obvious candidate for Cartan sub

algebra 1) in sP2niC, namely the subalgebra of matrices diagonal in this 

representation; in fact, this works, as we shall see shortly. The subalgebra 1) is 

thus spanned by the n 2n x 2n matrices Hi = Ei,i - En+i,n+i whose action on 

V is to fix ei' send en+i to its negative, and kill all the remaining basis vectors; 

we will correspondingly take as basis for the dual vector space 1)* the dual 

basis Lj , where <Lj , Hi> = bi,j' 

We have already seen how the diagonal matrices act on the algebra of all 

matrices, so that it is easy to describe the action of 1) on g. For example, for 
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1 ~ i, j ~ n the matrix Ei,j E gl2n C is carried into itself under the adjoint action 

of Hi, into minus itself by the action of H j , and to 0 by all the other H k ; and 

the same is true of the matrix En+ j,n+i' The element 

Xi,j = Ei,j - En+j,n+i E SP2nC 

is thus an eigenvector for the action of I), with eigenvalue Li - L j • Similarly, 

for i "# j we see that the matrices Ei,n+ j and Ej,n+i are carried into themselves 

by Hi and H j and killed by all the other H k ; and likewise En+i,j and En+j,i are 

each carried into their negatives by Hi and H j and killed by the others. Thus, 

the elements 

Yi,j = Ei,n+ j + Ej,n+i 

and 

are eigenvectors for the action of I), with eigenvalues Li + Lj and - Li - L j , 

respectively. Finally, when i = j the same calculation shows that Ei,n+i is 

doubled by Hi and killed by all other H j ; and likewise En+i,i is sent to minus 

twice itself by Hi and to 0 by the others. Thus, the elements 

and 

are eigenvectors with eigenvalues 2Li and - 2Li, respectively. In sum, then, 

the roots of the Lie algebra SP2nC are the vectors ±Li ± Lj E 1)*. 

In the first case n = 1, of course we just get the root diagram of sl2 C, which 

is the same algebra as SP2 C. In case n = 2, we have the diagram 

(16.2) 

As in the case of the special linear Lie algebras, probably the easiest way 

to determine the Killing form on sP2nC (at least up to scalars) is to use its 
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invariance under the automorphisms of SP2nC preserving~. For example, we 
have the automorphisms of sP2nC induced by permutations of the basis 

vectors ei of V: for any permutation (J of {I, 2, ... , n} we can define an 

automorphism of V preserving Q by sending ei to ea(i) and en+i to en+a(i)' and 

this induces an automorphism of sP2nC preserving ~ and carrying Hi to Ha(i)' 

Also, for any i we can define an involution of V-and thereby of sP2nC-by 

sending ei to en+i, en+i to - ei, and all the other basis vectors to themselves; 
this will have the effect of sending Hi to - Hi and preserving all the other Hj. 

Now, the Killing form on g must be invariant under these automorphisms; 

from the first batch it follows that for some pair of constants IX and {J we must 
have 

B(H;, H;) = IX 

and 

B(Hi, Hj} = {J for i # j; 

from the second batch it follows that, in fact, {J = O. Thus, B is just a multiple 
ofthe standard quadratic form B(Hi, Hj } = (ji,j' and the dual form correspond

inglya multiple of B(Li, L) = (ji,j; so that the angles in the diagram above are 
correct. 

Also as in the case of slnC, one can also compute the Killing form directly 

from the definition: B(H, H') = L a.(H}a.(H'}, the sum over all roots a.. For 

H = I. aiHi and H' = L biHi, this gives B(H, H'} as a sum 

L (a; + a)(bi + bj) + 2 L (2a;)(2bi) + I. (ai - aj)(bi - b) 
i#j i i#j 

which simplifies to 

B(H, H'} = (4n + 4)(I. aibJ (16.3) 

Our next job is to locate the distinguished copies 5« of s12C, and the 
corresponding elements H« E g. This is completely straightforward. We start 

with the eigenvalues L; - Lj and Lj - Li corresponding to the elements X/,j 

and Xj,i; we have 

[Xi,j, Xj,;] = [Ei,j - En+j,n+i' Ej,i - En+i,n+j] 

= [Ei,j' Ej,;] + [En+j,n+i> En+i,n+j] 

= E;,i - Ej,j + En+j,n+j - En+i,n+i 

= Hi - Hj. 

Thus, the distinguished element HL,-Lj is a multiple of Hi - Hj. To see what 

multiple, recall that HL,-Lj should act on Xi,j by multiplication by 2 and on 
X j ,; by multiplication by - 2; since we have 

ad(Hi - H)(Xi,) = «L; - Lj)(H; - H)}' Xi,j 

= 2Xi ,j, 
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we conclude that 

HL,-LJ = Hi - Hj. 

Next consider the pair of opposite eigenvalues Li + Lj and - Li - Lj, 

corresponding to the eigenvectors li,j and Zi,j' We have 

[li,j' Zi,j] = [Ei.n+j + Ej,n+i> E.+i,j + E.+j,J 

= [Ei,n+j, En+j,J + [Ej,n+i' En+i,j] 

= Ei,i - E.+j,n+j + Ej,j - En+i,n+i 

We calculate then 

ad(Hi + H)(li) = «Li + L)(Hi + H)'li,j 

= 2· li,j' 

so we have 

HL +L = H- + H· ':J • J 

and similarly 

H_L,-Lj = - Hi - Hj. 

Finally, we look at the pair of eigenvalues ±2Li coming from the eigen

vectors Vi and V;. To complete the span of Vi and V; to a copy of sl2 C we add 

[Vi' V;] = [Ei,n+i' En+i,J 

= Ei,i - En+i,n+i 

Since 

= 2'Vi , 

we conclude that the distinguished element H2L, is Hi' and likewise H-2Li = 

-Hi' Thus, the distinguished elements {Ha} C ~ are {±Hi ± Hj , ±HJ; in 

particular, the weight lattice Aw of linear forms on ~ integral on all the H" is 
exactly the lattice of integral linear combinations of the L i • In Diagram (16.2), 

for example, this is just the lattice of intersections of the horizontal and vertical 

lines drawn; observe that for all n the index [Aw : AR ] of the root lattice in the 

weight lattice is just 2. 

Next we consider the group of symmetries of the weights of an arbitrary 

representation of sP 2nc. For each root IX we let w,. be the involution in 

~* fixing the hyperplane (l" given by <H", L) = 0 and acting as -/ on the 

line spanned by IX; we observe in this case that, as we claimed will be true in 

general, the line generated by IX is perpendicular to the hyperplane (la' so that 
the involution is just a reflection in this plane. In the case n = 2, for example, 
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we get the dihedral group generated by reflections around the four lines drawn 

through the origin: 

so that the weight diagram of a representation of SP4C will look like an 

octagon in general, or (in some cases) a square. 

In general, reflection in the plane {llL, given by <Hi, L) = 0 will simply 

reverse the sign of Li while leaving the other Lj fixed; reflection in the plane 

<Hi - Hj, L) = 0 will exchange Li and Lj and leave the remaining Lk alone. 

The Weyl group m acts as the full automorphism group of the lines spanned 

by the Li and fits into a sequence 

1 ~ (Z/2z)n ~ m ~ 6. ~ 1. 

Note that the sequence splits: m is a semidirect product of 6. and (Z/27L.)". 
(This is a special case of a wreath product.) In particular the order ofm is 2·n!' 

We can choose a positive direction as before: 

I(L aiLi) = C1 a l + ... + c.a., 

The positive roots are then 

R+ = {Li + Lj};sju {Li - Lj}i<j, (16.4) 

with primitive positive roots {Li - Li+1} i=l, ... ,.-1 and 2L •. The corresponding 
(closed) Weyl chamber is 

"IY = {alLl + a2L2 + ... + a.L.: at ~ a2 ~ ... ~ an ~ OJ; (16.5) 

note that the walls of this chamber-the cones 

and 

fL aiLi: a l > az > ... > an = O} 

lie in the hyperplanes {lL,-Li+1 and {l2L" perpendicular to the primitive positive 

or negative roots, as expected. 
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§ 16.2. Representations of sp 4 C 

Let us consider now the representations ofthe algebra SP4 C specifically. Recall 

that, with the choice of Weyl chamber as above, there is a unique irreducible 

representation r« of SP4C with highest weight IX for any IX in the intersection 
of the closed Weyl chamber 11' with the weight lattice: that is, for each lattice 

vector in the shaded region in the diagram 

Any such highest weight vector can be written as a non-negative integral 
linear combination of Ll and Ll + L 2 ; for simplicity we will just write 

ra,b for the irreducible representation r aL , +b(L,+L2 ) with highest weight 

aLl + b(Ll + L 2 ) = (a + b)Ll + bL2• 

To begin with, we have the standard representation as the algebra of 

endomorphisms of the four-dimensional vector space V; the four standard 

basis vectors e l , e2' e3 ' and e4 are eigenvectors with eigenvalues L l , L 2, - L l , 

and -L2' respectively, so that the weight diagram of V is 
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V is just the representation r i,o in the notation above. Note that the dual of 

this representation is isomorphic to it, which we can see either from the 

symmetry of the weight diagram, or directly from the fact that the correspond

ing group representation preserves a bilinear form V x V -+ C giving an 

identification of V with V·. 
The next representation to consider is the exterior square N V. The weights 

of N V, the pairwise sums of distinct weights of V, are just the linear forms 

±Li ± L j (each appearing once) and 0 (appearing twice, as Li - Li and 
L2 - L 2), so that its weight diagram looks like 

Clearly this representation is not irreducible. We can see this from the weight 
diagram, using Observation 14.16: there is only one way of getting to the 

weight space 0 from the highest weight Li + L2 by successive applications of 

the primitive negative root spaces 9-L,+L2 (spanned by X 2,l = E2,1 - E3•4 ) 

and 9-2L2 (spanned by V2 = E4 ,2)-that is, by applying first V2 , which takes 
you to the weight space of Li - L 2 , and then X2,l-and so the dimension of 

the zero weight space in the irreducible representation r O,l with highest weight 
Li + L2 must be one. Of course, we know in any event that /\2 V cannot be 
irreducible: the corresponding group action of SP4 C on V by definition 

preserves the skew form Q E Nv· ~ Nv. Either way, we conclude that we 
have a direct sum decomposition 

Nv= WEf)C, 

where W is the irreducible, five-dimensional representation of SP4C with 

highest weight Li + L 2-in our notation, ro,i-and weight diagram 
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Let us consider next some degree 2 tensors in V and W. To begin with, we 

can write down the weight diagram for the representation Sym 2 V; the weights 

being just the pairwise sums of the weights of V, the diagram is 

This looks like the weight diagram of the adjoint representation, and indeed 

that is what it is: in terms of the identification of V and V* given by the skew 

form Q, the relation (16.1) defining the symplectic Lie algebra says that the 

subspace 

SP4C c Hom(V, V) = V® V* = V® V 

is just the subspace Sym 2 V c V ® v. In particular, Sym 2 V is the irreducible 

representation r2 ,o with highest weight 2L 1 • 

Next, consider the symmetric square Sym2W, which has weight diagram 
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To see if this is irreducible we first look at the weight diagram: this time there 

are three ways of getting from the weight space with highest weight 2Ll + 2L2 
to the space of weight 0 by successively applying X 2• 1 = E2 • 1 - E3•4 and 

V2 = E4 •2 , so if we want to proceed by this method we are forced to do a little 
calculation, which we leave as Exercise 16.7. 

Alternatively, we can see directly that Sym2 W decomposes: the natural map 
given by wedge product 

Nv®Nv-+Nv=c 

is symmetric, and so factors to give a map 

Sym2 (NV)) -+ C. 

Moreover, since this map is well defined up to scalars-in particular, it does 

not depend on the choice of skew form Q-it cannot contain the subspace 

Sym2 W c Sym2 (JVV)) in its kernel, so that it restricts to give a surjection 

cp: Sym2 W -+ C. 

This approach would appear to leave two possibilities open: either the 

kernel of this map is irreducible, or it is the direct sum of an irreducible 
representation and a further trivial summand. In fact, however, from the 

principle that an irreducible representation cannot have two independent 
invariant bilinear forms, we see that Sym 2 W can contain at most one trivial 

summand, and so the former alternative must hold, i.e., we have 

(16.6) 

Exercise 16.7*. Prove (16.6) directly, by showing that if v is a highest 

weight vector, then the three vectors X 2 • 1 V2 X 2 • 1 V2 v, X 2 • 1 X 2 • 1 V2 V2 v, and 
J-; X 2.1 X 2.1 V2 v span a two-dimensional subspace of the kernel of cpo 

Exercise 16.8. Verify that Nw ~ Sym2 v, The significance of this isomor

phism will be developed further in Lecture 18. 



248 16. Symplectic Lie Algebras 

Lastly, consider the tensor product V ® w. First, its weight diagram: 

This obviously must contain the irreducible representation rl,l with highest 

weight 2LI + L 2 ; but it cannot be irreducible, for either oftwo reasons. First, 

looking at the weight diagram, we see that rl,l can take on the eigenvalues 

± L; with multiplicity at most 2, so that V ® W must contain at least one copy 

of the representation V. Alternatively, we have a natural map given by wedge 

product 

1\: v®Nv~Nv = V* = V; 

and since this map does not depend on the choice of skew form Q, it must 

restrict to give a nonzero (and hence surjective) map 

q>: V® W ~ v. 

Exercise 16.9. Show that the kernel of this map is irreducible, and hence that 

we have 

V® W = rl,l E£> V. 

What about more general tensors? To begin with, note that we have 

established the existence half of the standard existence and uniqueness theorem 

(14.18) in the case of SP4C: the irreducible representation ra,b may be found 

somewhere in the tensor product Syma V ® Symb W. The question that remains 

is, where? In other words, we would like to be able to say how these tensor 

products decompose. This will be, as it was in the case of sI3C, nearly 

tantamount (modulo the combinatorics needed to count the multiplicity with 

which the tensor product SymaV ® SymbW assumes each of its eigenvalues) 

to specifying the multiplicities of the irreducible representations ra,b' 
Let us start with the simplest case, namely, the representations Symav. 

These have weight diagram a sequence of nested diamonds D; with vertices at 

aLl' (a - 2)LI' etc.: 
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Moreover, it is not hard to calculate the multiplicities of SymaV: the multi

plicity on the outer diamond D1 is one, of course; and then the multiplicities 
will increase by one on successive rings, so that the multiplicity along the 

diamond Di will be i. 

Exercise 16.10. Using the techniques of Lecture 13, show that the representa
tions SymaV are irreducible. 

The next simplest representations, naturally enough, are the symmetric 
powers SymbW of W. These have eigenvalue diagrams in the shape of a 

sequence of squares Si with vertices at b(L1 + L 2 ), (b - I)(L1 + L z), and so 
on: 

.. 

D' 
Here, however, the multiplicities increase in a rather strange way: they grow 

quadratically, but only on every other ring. Explicitly, the multiplicity will be 
one on the outer two rings, then 3 on the next two rings, 6 on the next two; 

in general, it will be i(i + 1)/2 on the (2i - l)st and (2i)th squares S2i-1 and 

S2i· 
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Exercise 16.11. Show that contraction with the skew form cp E Sym2 W* 

introduced in the discussion of Sym2 W above determines a surjection from 
SymbW onto Symb- 2 w, and that the kernel of this map is the irreducible 

representation rO,b with highest weight b(Ll + L2)' Show that the multi

plicities of rO,b are i on the squares SU-l and Su described above. 

We will finish by analyzing, naively and in detail, one example of a represen

tation ra,b with a and b both nonzero, namely, r 2 , l; one thing we may observe 
on the basis of this example is that there is not a similarly simple pattern to 

the multiplicities of the representations ra,b with general a and b. To carry out 
our analysis, we start of course with the product Sym 2 V ® W We can readily 

draw the weight diagram for this representation; drawing only one-eighth of 

the plane and indicating multiplicities by numbers, it is 

We know that the representation Sym 2 V ® W contains a copy of the irreducible 

representation r 2 , l with highest weight 2Ll + (L 1 + L2); and we can see 
immediately from the diagram that it cannot equal this: for example, r 2 ,l can 

take the weight 2Ll with multiplicity at most 2 (if v E r 2• 1 is its highest weight 

vector, the corresponding weight space (r2.1 hL, c r 2,l will be spanned by the 

two vectors X2,1(V2(V» and V2(X2 ,l(V))); since it cannot contain a copy of 

the representation rO•2 (the multiplicity of the weight 2(Ll + L 2 ) being just 
one) it follows that Sym2 V ® W must contain a copy of the representation 

r 2,o = Sym 2 v. 
We can, in this way, narrow down the list of possibilities a good deal. For 

example, r 2•1 cannot have multiplicity just one at each ofthe weights 2Ll and 

Ll + L 2 : if it did, Sym2 V ® W would have to contain two copies of Sym2 V 

and a further two copies of W to make up the multiplicity at Ll + L 2 ; but 

since 0 must appear as a weight of r 2,l ' this would give a total multiplicity of 
at least 7 for the weight 0 in Sym2 V ® W Similarly, r 2 • 1 cannot have multi

plicity 1 at 2Ll and 2 at Ll + L2: we would then have two copies ofSym2 V 

and one of W in Sym2 V ® W; and since the multiplicity of 0 in r 2• 1 will in 
this case be at least 2 (being greater than or equal to the multiplicity of 
Ll + L 2 ), this would again imply a multiplicity of at least 7 for the weight 0 
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in Sym2 V ® w It follows that Sym2 V ® W must contain exactly one copy of 

Sym2 V; and since the multiplicity of Ll + L2 in r 2 ,l is at most 3, it follows 

that Sym 2 V ® W will contain at least one copy of ro, 1 = W as well. 

Exercise 16.12. Prove, independently of the above analysis, that Sym2 V ® W 

must contain a copy of Sym2 V and a copy of W by looking at the map 

qJ : Sym2 V® W -+ V® V 

obtained by sending 

U' v ® (w 1\ Z)H U ® Q(v 1\ W 1\ z) + v ® Q(u 1\ W 1\ z), 

where we are identifying Nv with the dual space V* and denoting by 

Q: V* -+ V the isomorphism induced by the skew form Q on V. Specifically, 

show that the image of this map is complementary to the line spanned by the 

element Q E Nv* = Nv c V® v. 

The above leaves us with exactly two possibilities for the weights of r 2 ,1: 

we know that the multiplicity of 2Ll in r 2 ,l is exactly 2; so either the 

multiplicities of Ll + L2 and 0 in r 2,l are both 3 and we have 

Sym2 V ® W = r2,l ED Sym2 V ED W; 

or the multiplicities of Ll + L2 and 0 in r 2 ,l are both 2 and we have 

Sym2 V® W= r2,l EDSym 2 VED WEIl2. 

Exercise 16.13. Show that the former of these two possibilities actually occurs, 

by 

(a) Showing that if v is the highest weight vector in r 2 ,l c Sym2 V ® w, 
then the images (X2,l)2V2(V), Xu V2X 2,l(V), and V2(X2,d2v are independent; 

and (redundantly) 

(b) Showing that the representation Sym2 V ® W contains only one highest 

weight vector of weight Ll + L 2 . 

The weight diagram of r 2 ,l is therefore 
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We see from all this that, in particular, the weights of the irreducible 

representations of SP4 C are not constant on the rings oftheir weight diagrams. 

Exercise 16.14. Analyze the representation V ® Sym2 W of SP4 C. Find in 

particular the multiplicities of the representation r 1•2 • 

Exercise 16.15. Analyze the representation Sym2 V ® Sym2 W of SP4C, Find 

in particular the multiplicities of the representation r2,2 ' 



LECTURE 17 

SP6 C and SP2nC 

In the first two sections of this lecture we complete our classification of the representa

tions of the symplectic Lie algebras: we describe in detail the example of SP6 C, then 

sketch the representation theory of symplectic Lie algebras in general, in particular 

proving the existence part of Theorem 14.18 for SP2.C. In the final section we describe 

an analog for the symplectic algebras of the construction given in § 15.3 of the irreduc

ible representations of the special linear algebras via Weyl's construction, though we 

postpone giving analogous formulas for the decomposition of tensor products of 

irreducible representations. Sections 17.1 and 17.2 are completely elementary, given 

the by now standard multilinear algebra of Appendix B. Section 17.3, like §15.3, 

requires familiarity with the contents of Lecture 6 and Appendix A; but, like that 

section, it can be skipped without affecting most of the rest of the book. 

§17.l: Representations ofsP6C 

§17.2: Representations of the symplectic Lie algebras in general 

§17.3: Weyl's construction for symplectic groups 

§17.1. Representations of SP6C 

As we have seen, the Cartan algebra ~ of SP6C is three-dimensional, with the 

linear functionals L 1 , L 2 , and L3 forming an orthonormal basis in terms of 

the Killing form; and the roots of SP6C are then the 18 vectors ±L; ± Lj • We 
can draw this in terms of a "reference cube" in ~* with faces centered at the 

points ± L;; the vectors ± L; ± Lj with j :1= j are then the midpoints of edges 
of this reference cube and the vectors ± 2L; the midpoints of the faces of a 

cube twice as large. Alternatively, we can draw a reference octahedron with 

vertices at the vectors ± 2L;; the roots ± L; ± L j with i :1= j will then be the 
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midpoints of the edges of this octahedron: 

or, if we include the reference cube as well, as 

(17.1) 

This last diagram suggests a comparison with the root diagram of s14 C; in 

fact the 12 roots of SP6C of the form ±Li ± L j for i # j are congruent to the 

12 roots of sI4 C. In particular, the Weyl group of SP6C will be generated by 

the Weyl group of sI4 C, plus any of the additional three reflections in the 

planes perpendicular to the Li (i.e., the planes parallel to the faces of the 

reference cube in the root diagram of either Lie algebra). We can indicate 

the planes perpendicular to the roots of SP6C by drawing where they cross 
the visible part of the reference cube: 



§17.1. Representations of 5P6C 255 

We see from this that the effect of the additional reflections in the Weyl 

group of 51'6 C on the Weyl chamber of sl4 C is simply to cut it in half; whereas 
the Weyl chamber ofsI4 C looked like 

the Weyl chamber of sp 6 C will look like just the upper half of this region: 

/" 
/" 

/" 

~---

In terms of the reference octahedron, this is the cone over one part of the 
barycentric subdivision of a face: 
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or, if we rotate 90° around the vertical axis in an attempt to make the picture 

clearer, 

(17.2) 

We should remark before proceeding that the comparison between the root 
systems of the special linear algebra 514 I[ and the symplectic algebra SP6 I[ is 

peculiar to this case; in general, the root systems of sIn+! I[ and sP2nl[ will bear 
no such similarity. 

As we saw in the preceding lecture, the weight lattice of sP61[ consists 
simply of the integral linear combinations of the weights L i • In particular, the 

intersection of the weight lattice with the closed Weyl chamber chosen above 

will consist exactly of integral linear combinations alL l + a2L2 + a3L3 with 
a l ~ a2 ~ a3 ~ O. By our general existence and uniqueness theorem, then, 
for every triple (a, b, c) of non-negative integers there will exist a unique 

irreducible representation of SP61[ with highest weight aLl + b(Ll + L 2) + 
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C(Ll + L2 + L3) = (a + b + C)Ll + (b + C)L2 + cL3; we will denote this rep
resentation by ra,b,c and will demonstrate its existence in the following. 

We start by considering the standard representation of 51'6(; on V = (;6. 

The eigenvectors of the action of ~ on V are just the standard basis vectors 

ei , and these have eigenvalues ± L i , so that the weight diagram of V looks like 
the midpoints of the faces of the reference cube (or the vertices of an 

octahedron one-half the size of the reference octahedron): 

In particular, V is the representation rl ,o,o ' 

Since we are going to want to find a representation with highest weight 

Ll + L2, the natural thing to look at next is the second exterior power Nv 
of the standard representation. This will have weights the pairwise sum of 

distinct weights of V, or in other words the 12 weights ±Li ± L j with i =F j, 
and the weight 0 taken three times. This is not irreducible: by definition the 
action of 51'6(; on the standard representation preserves a skew form, so that 

the representation on N V will have a trivial summand. On the other hand, 

the skew form on V preserved by 51'6(;, and hence that trivial summand of 
N V, is unique; and since all the nonzero weights of N V occur with multi

plicity 1 and are conjugate under the Weyl group, it follows that the comple

ment W of the trivial representation in Nv is irreducible. So W = rO,l,O' 

As in previous examples, we can also see that N V is not irreducible by 

using the fact (Observation 14.16) that the irreducible representation rO,1.0 

with highest weight Ll + L2 will be generated by applying to a single highest 

weight vector v the root spaces gL2 -L" gL3 -L2 , and g-2L3 corresponding to 
primitive negative roots. We can then verify that in the irreducible representa
tion W with highest weight Ll + L 2 , there are only three ways of going from 
the highest weight space to the zero weight space by successive application of 

these roots spaces: we can go 

Ll + Lz -+ Ll + L3 -+ Ll - L3 -+ Ll - Lz 

~ ~ ~ 
Lz + L3 -+ L2 - L3 -+ 0 
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Exercise 17.3. Verify this, and also verify that the lower two routes to the 

zero-weight space in N V yield the same nonzero vector, and that the upper 

route yields an independent element of Nv, so that 0 does indeed occur with 

multiplicity 2 as a weight of ro, I,o . 

To continue, we look next at the third exterior power Nv of the standard 

representation; we know that this will contain a copy of the irreducible 

representation ro,o,l with highest weight LI + L z + L 3 • The weights of Nv 
are of two kinds: we have the eight sums ±L1 ± L2 ± L3, corresponding to 

the vertices of the reference cube and each occurring once; and we have the 

weights ±Li each occurring twice (as ±Li + Lj - Lj and ±Li + Lk - Lk)' 
The weight diagram thus looks like the vertices ofthe reference cube together 
with the midpoints of its faces: 

, ~' " " .... 
': .1 ..... ' ......... , ... ' ..... L 

., •• 1' ......... I 

, r-". . 
.. r ,,".. ,',' 

/.~,-;:-' 

// '. 
Now, the weights ± Li must occur in the representation rO,O.l with highest 

weight LI + L z + L3, since they are congruent to Ll + Lz + L3 modulo the 

root lattice and lie in the convex hull of the translates of Ll + L z + L3 under 
the Weyl group (that is, they lie in the closed reference cube). But they cannot 
occur with multiplicity greater than 1: for example, the only way to get from 

the point LI + L z + L3 to the point LI by translations by the basic vectors 
L z - L 1 , L3 - L z, and - 2L3 pictured in Diagram (17.1) above (while staying 
inside the reference cube) is by translation by - 2L3 first, and then by L3 - L z. 

it follows that the multiplicities of the weights ± Li in ro,o,l are 1. On the 
other hand, we have a natural map 

Nv-+v 

obtained by contracting with the element of Nv· preserved by the action of 

SP6 C, and the kernel of this map, which must contain the representation 

roo 0,1' will have exactly these weights. The kernel of qJ is thus the irreducible 
representation with highest weight LI + L z + L 3 ; we will call this representa
tion U for now. 

At this point, we have established the existence theorem for repre

sentations of SP6C: the irreducible representation ra,b,c with highest weight 
(a + b + c)LI + (a + b)Lz + CL3 will occur inside the representation 

SymaV ® SymbW ® SymcU. 
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For example, suppose we want to find the irreducible representation r 1 ,1,O 

with highest weight 2Ll + L 2 • The weights of this representation will be the 

24 weights ± 2Li ± Lj , each taken with multiplicity 1; the 8 weights ± Ll ± 
L2 ± L 3 , taken with a multiplicity we do not a priori know (but that the reader 

can verify must be either 1 or 2), and the weights ± Li taken with some 

other mUltiplicity. At the same time, the representation V ® W, which contains 

r 1,I,O' will take on these weights, with multiplicities 1,3, and 6, respectively. 
In particular, it follows that V ® W will contain a copy of the irreducible 

representation U with highest weight Ll + L2 + L3 as well; alternatively, we 

can see this directly by observing that the wedge product map 

v®Nv--+Nv 

factors to give a map 

v®W--+U 

and that r 1 ,1,O must lie in the kernel of this map. To say more about the 

location of r 1• 1•0 inside V ® w, and its exact weights, would require either 
explicit calculation or something like the Weyl character formula. We will see 

in Lecture 24 how the latter can be used to solve the problem; for the time 

being we leave this as 

Exercise 17.4. Verify by direct calculation that the multiplicities ofthe weights 

Ofr1•1 ,O are 1,2, and 5, and hence that the kernel of the map cp above is exactly 

the representation r 1,I,O' 

§17.2. Representations of SP2nC in General 

The general picture for representations of the symplectic Lie algebras offers 
no further surprises. As we have seen, the weight lattice consists simply of 

integral linear combinations of the L i . And our typical Weyl chamber is a cone 

over a simplex in n-space, with edges the rays defined by 

The primitive lattice element on the ith ray is the weight Wi = Ll + ... + Li, 
and we may observe that, similarly to the case of the special linear Lie algebras, 

these n fundamental weights generate as a semigroup the intersection of 
the closed Weyl chamber with the lattice. Thus, our basic existence and 

uniqueness theorem asserts that for an arbitrary n-tuple of natural numbers 

(ai' ... , an) E I\\jn there will be a unique irreducible representation with highest 
weight 

= (al + ... + an )Ll + (a2 + ... + an)L2 + ... + anLn· 
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These exhaust all irreducible representations of SP2.c' 

We can find the irreducible representation V(k) = rO .. . . . 1. .. .. o with highest 
weight Ll + . .. + Lk easily enough. Clearly, it will be contained in the kth 

exterior power Nv of the standard representation. Moreover, we have a 

natural contraction map 

defined by 

<l>k(V I 1\ .. . 1\ vk) = L Q(v j , vj )( _l)i+ j-l VI 1\ ... 1\ OJ 1\ ... 1\ OJ 1\ .. . 1\ Vk 
i<j 

(see §B.3 of Appendix B for an intrinsic definition and explanation). Since the 
representation N- 2 v does not have the weight Ll + ... + L k , the irreducible 

representation with this highest weight will have to be contained in the kernel 

of this map. We claim now that conversely 

Theorem 17.5. For 1 ~ k ~ n, the kernel of the map <l>k is exactly the irreducible 

representation V(k) = rO ... .. O.l . 0 •.. .• o with highest weight Ll + ... + L k • 

PROOF. Clearly, it is enough to show that the kernel of <l>k is an irreducible 

representation of SP2nc' We will do this by restricting to a subalgebra of SP2.C 
isomorphic to sI.C, and using what we have learned about representations of 

sI.C. 

To describe this copy of sl.C inside SP2.C, consider the subgroup G c SP2.C 
of transformations ofthe space V = C2n preserving the skew form Q introduced 

in Lecture 16 and preserving as well the decomposition V = C{e 1 , ••• , e.} Ef) 

C{en+l' .. . , e2n} . These can act arbitrarily on the first factor, as long as they 
do the opposite on the second; in coordinates, they are the matrices 

G = {(~ ':-1). X E GLnC}. 

We have, correspondingly, a subalgebra 

s = {(~ -~A). A E SI.C} C SP2.C 

isomorphic to sInC. 

Now, denote by W the standard representation of sI.C. The restriction of 

the representation V of sP2.C to the subalgebra 5 then splits 

V= WEf) W* 

into a direct sum of Wand its dual; and we have, correspondingly, 
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Ny = EEl (I\"W ® NW*). 

a+b=k 

How does the tensor product I\"W ® Nw* decompose as a representation 

of sInC? We know the answer to this from the discussion in Lecture 15 (see 

Exercise 15.30): we have contraction maps 

'Pa•b: I\"W ® Nw* -+ 1\"-1 W ® N-1 W*; 

and the kernel of 'Pa•b is the irreducible representation w(a.b) = 

ro ..... o.1.0 ..... 0.1.0 .... with(if,say, a ~ n - b)highestweight2L 1 + .. . +2La + 
La+1 + ... + L n- b• The restriction of Ny to 5 is thus given by 

and by the same token, 

Ny = EEl w(a.b) 

a+bsk 
a+b",k(2) 

Ker(q>t) = EEl w(a.b). 

a+b=k 

Note that the actual highest weight factor in the summand w(a.b) c Ker( q>t) c 

Ny is the vector 

w(a.b) = e 1 /\ ••• /\ e a /\ e2n-b+1 /\ •. • /\ e 2n 

Exercise 17.6. Show that more generally the highest weight vector in any 
summand w(a.b) c Ny is the vector 

w(a.b) = e 1 /\ ••• /\ e a /\ e2n-k+a+1 /\ • •• /\ e2n /\ Q(k-a-b)/2 

= e1 /\ ... /\ e a /\ e2n-k+a+1 1\ . .• /\ e2n 1\ (L (e j 1\ en+ j ))(k-a-b)/2 . 

By the above, any subspace of Ker(q>k) invariant under SP2nC must be a 

direct sum, over a subset of pairs (a, b) with a + b = k, of subspaces w(a.b). 

But now (supposing for the moment that k < n) we observe that the element 

Za.n-b = E2n - b•a + En+a•n- b E SP2nC 

carries the vector w(a. b) into w(a-1.b+1) and, likewise, 

Y..+1.n-b+1 = Ea+1.2n-b+1 + En- b+1.n+a+1 E sP2nC 

carries w(a.b) to w(a+1 . b-l). In case a + b = k = n, we see similarly that 

Va = En+a•a E SP2nC 

carries the vector w(a. b) into w(a-1.b+1), and 

Ua+1 = Ea+1.n+a+1 E SP2nC 

carries w(a.b) to w(a+1.b-1). Thus, any representation of SP2nC contained in 

Ker(q>k) and containing anyone of the factors w(a.b) will contain them all, and 

we are done. D 
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Exercise 17.7. Another way to conclude this proof would be to remark that, 
inasmuch as all the W(D .b) above are eigenvectors of different weights, any 

highest weight vector for the action of 5P2nC on ker(<pd c Nv would have 
to be (up to scalars) one of the W(D.b). It would thus be sufficient to find, for each 

(a, b) with a + b = k other than (a, b) = (k, 0), a positive root IX such that 
ga(w(D.b)) # O. Do this. 

Note that, having found the irreducible representations V(k) = ro ..... I •. . .• o 
with highest weight LI + ... + L k , any other representation of 5P2nC will 

occur in a tensor product of these; specifically, the irreducible representation 
rD1 .... . D• with highest weight aiL! + ... + an(LI + ... + Ln) will occur in the 
product SymD1 V ® SymD2 V(2) ® .. . ® SymD• v(n). 

One further remark is that there exist geometric interpretations of the 
action of 512nC on the fundamental representations V(k). We have said before 

that the group PSP2nC may be characterized as the subgroup of PGL2nC 
carrying isotropic subspaces of V into isotropic subspaces. At the same time, 

PGL2nC acts on the projective space I?(NV) as the connected component of 
the identity in the group of motions of this space carrying the Grassmannian 

G = G(k, V) c I?(NV) into itself. Now, the subset GL c G of k-dimensional 
isotropic subspaces of V is exactly the intersection of the Grassmannian G 
with the subspace I?( V(k)) associated to the kernel of the map <p above; so that 

PSP2nC will act on I?(V(k)) carrying GL into itself and indeed when 1 < k ~ n 

may be characterized as the connected component ofthe identity in the group 
of motions of I?(V(k)) preserving the variety GL . 

Exercise 17.8. Show that if k > n the contraction <Pk is injective. 

§17.3. Weyl's Construction for Symplectic Groups 

We have just seen how the basic representations for 5P2nC can be obtained 
by taking certain basic representations ofthe larger Lie algebra 512nC-in this 

case, Nv for k ~ n-and intersecting with the kernel of a contraction con

structed from the symplectic form. In fact, all the representations of the 
symplectic Lie algebras can be given a similar conrete realization, by inter
secting certain of the irreducible representations of 512n C with the intersections 
of the kernels of all such contractions. 

Recall from Lectures 6 and 15 that the irreducible representations of 512n C 
are given by Schur functors §A V, where A = (AI ;;:: '" ;;:: A2n ;;:: 0) is a partition 

of some integer d = L Ai, and V = c2n. This representation is realized as the 
image of a corresponding Young symmetrizer C A acting on the d-fold tensor 
product space V®d. For each pair I = {p < q} of integers between 1 and d, 

the symplectic form Q determines a contraction 

cI>r: V®d -+ V®(d-2), 

(17.9) 
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Let V<d) c V®d denote the intersection of the kernels of all these contractions. 

These subspaces is mapped to itself by permutations, so V<d) is a subrepresen

tation of V®d as a representation of the symmetric group 6 d. Now let l 

§<;. )V= V<d)n§;.v' (17.10) 

This space is a representation of the symplectic group SP2n C of Q, since V<d) 

and §;.(V) are subrepresentations of V®d over SP2nC 

Theorem 17.11. The space §<dV) is nonzero if and only if the Young diagram 

of A has at most n rows, i.e., An+! = O. In this case, §<;.)(V) is the irreducible 
representation of SP2nC with highest weight A.ILI + ... + A.nLn. 

In other words, for an n-tuple (aI' . .. , an) of non-negative integers 

ro, ..... o. = § <;. ) V, 

where A is the partition (a l + a2 + . .. + an, a2 + ... + an, . . . , an). 

The proof follows the pattern for the general linear group given in §6.2, but 

we will have to call on a basic result from invariant theory in place of the 

simple Lemma 6.23. We first show how to find a complement to V<d) in V®d. 

For example, if d = 2, then 

V®2 = V <2) EEl C· t/I, 

where t/I is the element of V ® V corresponding to the quadratic form Q. In 

terms of our canonical basis, t/I = L (ei ® en+i - en+i ® eJ In general, for any 

I = {p < q} define 

'1'1: V®(d-2) --+ V®d 

by inserting t/I in the p, q factors. Note that WI 0 '1'1 is multiplication by 
2n = dim Von V®(d-2). We claim that 

(17.12) 

To prove this, put the standard Hermitian metric ( , ) on V = c 2n, using the 

given ei as a basis, so that (aei, be) = t5ijiib. This extends to give a Hermitian 

metric on each V®d. We claim that the displayed equation is a perpendicular 

direct sum. This follows from the following exercise. 

Exercise 17.13. (i) Verify that for v, WE V, (t/I, v ® w) = Q(v, w). 

(ii) Use (i) to show that Ker(w/ ) = Im('I'/).L for each I. 

Now define F: c V®d to be the intersection of the kernels of all r-fold 

contractions WI, 0'" 0 WI., and set 

v.,~lr = L '1'/,0 '" 0 'l'/.(V® <d-2r ». (17.14) 

, This follows a classical notation of using < > for the symplectic group and [ ] for the 

orthogonal group (although we have omitted the corresponding notation { } for the general 
linear group). 
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Lemma 17.15. The tensor power V~M decomposes into a direct sum 

V®d = V <d) EB l'd~i EB l'd~1 EB ... EB l'd~?p, 

with p = [d/2], and, for all r ;;::: 1, 

F: = V<d) EB l'd~i E9 ... EB l'd~ir+z' 

Exercise 17.16. (i) Show as in the preceding exercise that there is a perpendi

cular decomposition 

V®d = Ed li'\ ~ 'P 0'" 0 'P (V®(d-Zr»). 
r WL..,. 11 I" 

(ii) Verify that 'PI(F;-Z) c F;+l' 
(iii) Show by induction that V®d is the sum of the spaces l'd~ir' 
(iv) Finish the proof of the lemma, using (i) and (ii) to deduce that both 

sums are orthogonal splittings. 0 

All the subspaces in these splittings are invariant by the action of the 

symplectic group SPz.lC, as well as the action of the symmetric group 6 d • In 

particular, we see that 

§o. ) V = V<d). C.l. = Im(c.l.: V<d) -+ V<d»). (17.17) 

Exercise 17.18*. (i) Show that if s > n, then NV ® V®(d-S) is contained in 

Lr 'Pr(V®(d-2»), and deduce that § <.l. )(V) = 0 if ..1..+1 is not O. 

(ii) Show that §<.l. )(V) is not zero if ..1..+1 = O. 

For any pair of integers I from {I, ... , d}, define 

8r = 'PI 0 «Ilr : V®d -+ V®d. 

From what we have seen, V<d) is the intersection of the kernels of all these 

endomorphisms. Note that the endomorphism of V®d determined by any 

symplectic automorphism of V not only commutes with all permutations of 

the factors 6 d but also commutes with the operators 8I . We need a fact which 

is proved in Appendix F.2: 

Invariant Theory Fact 17.19. Any endomorphism of V®d that commutes with 

all permutations in 6 d and all the operators 8r is a finite IC-linear combination 

of operators of the form A ® '" ® A, for A E Spz.iC. 

Now let B be the algebra of all endomorph isms of the space V <d) that 

are IC-linear combinations of operators ofthe form A ® ... ® A, for A E Spz.iC. 

Proposition 17.20. The algebra B is precisely the algebra of all endomorphisms 

of V <d) commuting with all permutations in 6 d. 

PROOF. If F is an endomorphism of V<d) commuting with all permutations of 

factors, then the endomorphism F of V®d that is F on the factor V<d) and 
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zero on the complementary summand 1:1 'I'1(V®(d-2») is an endomorphis~ 

that commutes with all permutations and all operators 81. The fact that F 
is a linear combination of operators from the symplectic group (which we 

know from Fact 17.19) implies the same for F. D 

CoroUary 17.21. The representations §(A)(V) are irreducible representations of 

SP2nC 

PROOF. Since B is the commutator algebra to A = C[GdJ acting on the space 
V(d), Lemma 6.22 implies that (V(d»). CA is an irreducible B-module. But we 

have seen that (V(d») · CA = §(A)V, and the proposition shows that being 

irreducible over B is the same as being irreducible over SP2nC D 

Exercise 17.22*. Show that the multiplicity with which §(A)(V) occurs in V(d) 

is the dimension rnA of the corresponding representation VA of Gd. 

As was the case for the Weyl construction over GLnC, there are general 

formulas for decomposing tensor products of these representations, as well as 

restrictions to subgroups SP2n-2 C, and for their dimensions and multiplicities 
of weight spaces. We postpone these questions to Lecture 25, when we will 
have the Weyl character formula at our disposal. 

As we saw in Lecture 15 for GLnC, it is possible to make a commutative 
algebra which we denote by §(.) = §(·)(V) out of the sum of all the irreducible 

representations ofSP2nC, where V = c2n is the standard representation. Prob
ably the simplest way to do this, given what we have proved so far, is to start 

with the ring 

A'(V, n) = Sym'(V $ Nv $ Nv $ . . . $ I\" V) 

= EB SymO.(1\" V) ® ... ® Sym02(NV)® Symo,(V), 
al.· ··. an 

the sum over all n-tuples a = (ai' ... , an) of non-negative integers. Define a 
ring §.(V, n) to be the quotient of A'(V, n) by the ideal generated by the same 
relations as in (15.53). By the argument in §15.5, the ring §.(V, n) is the direct 

sum of all the representations §A(V) ofGL(V), as A. varies over all partitions 

with at most n parts. 
The decomposition V®d = V(d) $ W(d) of (17.12) determines a decom

position V®d. CA = V(d). CA $ W(d). CA' which is a decomposition 

§;.(V) = §(dV) $ J(A)(V) 

of representations of SP2nC We claim that the sum J(') = EBA J().)(V) is an 
ideal in §.(V, n) = EB .. § .. (V). This is easy to see using weights, since J( .. )(V) 

is the sum of all the representations in § A(V) whose highest weight is strictly 

smaller than A.. This implies that the image of J(A)(V) ® §p(V) in §Hp(V) is 
a sum of representations whose highest weights are less than A. + j.l, so they 

must be in J(Hp)(V). 

The quotient ring is, therefore, the ring §(')(V) we were looking for: 
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§<.> = §.(V, n)/J<' > = EB § <.t>(V) . 
.t 

In fact, the ideal J <' > is generated by elements of the form x 1\ 1/1, where x E Nv, 
i .::; n - 2, and 1/1 is the element in N V corresponding to the skew form Q. An 

outline of the proof is sketched at the end of Lecture 25. The calculations, as 

well as other constructions of the ring, can be found in [L-T], where one can 

also find a discussion of functorial properties of the construction. For bases, 

see [DC-P], [L-M-S], and [M-S]. 



LECTURE 18 

Orthogonal Lie Algebras 

In this and the following two lectures we carry out for the orthogonal Lie algebras 

what we have already done in the special linear and symplectic cases. As in those cases, 

we start by working out in general the structure of the orthogonal Lie algebras, 

describing the roots, root spaces, Weyl group, etc., and then go to work on low

dimensional examples. There is one new phenomenon here: as it turns out, all three of 

the Lie algebras we deal with in §18.2 are isomorphic to symplectic or special linear 

Lie algebras we have already analyzed (this will be true of S06 C as well, but of no other 

orthogonal Lie algebra). As in the previous cases, the analysis of the Lie algebras and 

their representation theory will be completely elementary. Algebraic geometry does 

intrude into the discussion, however: we have described the isomorphisms between the 

orthogonal Lie algebras discussed and special linear and symplectic ones in terms of 

projective geometry, since that is what seems to us most natural. This should not be 
a problem; there are many other ways of describing these isomorphisms, and readers 

who disagree with our choice can substitute their own. 

§18.1: SOmC and sOmC 

§18.2: Representations of503 C, 504 C, and 50 5 C 

We will take up now the analysis of the Lie algebras of orthogonal groups. 
Here there is, as we will see very shortly, a very big difference in behavior 

between the so-called "even" orthogonal Lie algebras S02nC and the "odd" 

orthogonal Lie algebras S02n+l Co Interestingly enough, the latter seem at first 
glance to be more complicated, especially in terms of notation; but when we 
analyze their representations we see that in fact they behave more regularly 

than the even ones. In any event, we will try to carry out the analysis in parallel 
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fashion for as long as is feasible; when it becomes necessary to split up into 

cases, we will usually look at the even orthogonal Lie algebras first and then 

consider the odd. 

Let V be a m-dimensional complex vector space, and 

Q: V x V~C 

a nondegenerate, symmetric bilinear form on V. The orthogonal group SOmC 
is then defined to be the group of automorphisms A of V of determinant 1 

preserving Q- that is, such that Q(Av, Aw) = Q(v, w) for all v, w E V-and the 

orthogonal Lie algebra SOm C correspondingly consists of endomorphisms 

A: V ~ V satisfying 

Q(Av, w) + Q(v, Aw) = 0 (18.1 ) 

for all v and w E V. As in the case of the symplectic Lie algebras, to carry out 

our analysis we want to write Q explicitly in terms of a basis for V, and here 

is where the cases of even and odd m first separate. In case m = 2n is even, we 

will choose a basis for V in terms of which the quadratic form Q is given by 

Q(e;, ei+n) = Q(ei+n, e;) = 1 

and 

Q(e;, e) = 0 if j #- i ± n. 

The bilinear form Q may be expressed as 

Q(x, y) = IX ' M . y, 

where M is the 2n x 2n matrix given in block form as 

M=(~ ~} 
the group S02nC is thus the group of2n x 2nmatrices A with det(A) = 1 and 

M='A'M ' A, 

and the Lie algebra s02nC correspondingly the space of matrices X satisfying 

the relation 

'X·M + M · X = O. 

Writing a 2n x 2n matrix X in block form as 

X = (~ ~) 
we have 

'X'M= ( Ie 'A) 
'D 'B 

and 
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M'X=(~ ~) 
so that this relation is equivalent to saying that the off-diagonal blocks Band 

C of X are skew-symmetric, and the diagonal blocks A and D of X are negative 

transposes of each other. 

Exercise 18.2. Show that with this choice of basis, 

and 502C = C. 

The situation in case the dimension m of V is odd is similar, if a little messier. 

To begin with, we will take Q to be expressible, in terms of a basis el , . •• , e2n+ l 

for V, by 

and 

Q(ej, ei+n) = Q(ei+n, ej) = 1 for 1 ::s; i ::s; n; 

Q(e2n+1' e2n+1) = 1; 

Q(ej, ej ) = 0 for all other pairs i, j . 

The bilinear form Q may be expressed as 

Q(x, y) = IX ' M . y, 

where M is the (2n + 1) x (2n + 1) matrix 

(the diagonal blocks here having widths n, n, and 1). The Lie algebra 502n+1 C 
is correspondingly the space of matrices X satisfying the relation 'X , M + 
M· X = 0; if we write X in block form as 

then this is equivalent to saying that, as in the previous case, Band Care 

skew-symmetric and A and D negative transposes of each other; and in addition 

E= -'H,F= -'G,andJ=O. 
With these choices, we may take as Cartan subaJgebra-in both the even 

and odd cases-the subaJgebra of matrices diagonal in this representation. l 

I Note that if we had taken the simpler choice of Q, with M the identity matrix, the Lie algebra 

would have consisted of skew-symmetric matrices, and there would have been no nonzero 

diagonal matrices in the Lie algebra. 
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The subalgebra ~ is thus generated by the n 2n x 2n matrices Hi = Ei,i

E.+i,n+i whose action on V is to fix ei, send en+i to its negative, and kill all the 

remaining basis vectors; note that this is the same whether m = 2n or 2n + 1. 
We will correspondingly take as basis for the dual vector space 1)* the dual 

basis L j , where (Lj , Hi) = bi,j ' 

Given that the Cartan subalgebra of S02. C coincides, as a subspace of sI2n C, 

with the Cartan subalgebra of SP2nC, we can use much of the description of 

the roots of SP2nC to help locate the roots and root spaces of S02.C. For 

example, we saw in Lecture 16 that the endomorphism 

Xi,j = Ei,j - En+j,n+i E SP2nC 

is an eigenvector for the action of I) with eigenvalue Li - Lj. Since Xi,j is also 

an element of S02.C, we see that Li - Lj is likewise a root of S02.C, with root 

space generated by Xi ,j' Less directly but using the same analysis, we find that 

the endomorphisms 

li , j = Ei,.+ j - Ej,n+i 

and 

are eigenvectors for the action of ~, with eigenvalues Li + Lj and - Li - Lj, 

respectively (note that li, j and Zi,j do not coincide with their definitions in 
Lecture 16). In sum, then, the roots of the Lie algebra S02.C are the vectors 

{±Li ± Lj};,.j C 1)*. 

The case of the algebra 502.+1 C is similar; indeed, all the eigenvectors for 

the action of I) found above in S02nC, viewed as endomorph isms of C 2.+1, are 

likewise eigenvectors for the action of I) on S02.+1 C. In addition, we have the 

endomorphisms 

and 

l'; = E.+i,2n+1 - E2.+1,i 

which are eigenvectors with eigenvalues + Li and - Li, respectively. The roots 

of 502.+1 C are thus the roots ± Li ± Lj of S02nC, together with additional 

roots ±Li • 

We note that we could have arrived at these statements without decompos

ing the Lie algebras sOmC: the description (18.1) ofthe orthogonal Lie algebra 

may be interpreted as saying that, in terms of the identification of V with V* 

given by the form Q, 50m C is just the Lie algebra of skew-symmetric endo

morphisms of V (an endomorphism being skew-symmetric if it is equal to 

minus its transpose). That is, the adjoint representation of sOmC is isomorphic 

to the wedge product N v. In the even case m = 2n, since the weights of V are 

± Li (inasmuch as the subalgebras ~ C End(V) coincide, the weights of V must 

likewise be the same for S02.C as for SP2.C), it follows that the roots of S02.C 
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are just the pairwise distinct sums ± L j ± Lj . In the odd case m = 2n + 1, we 

see that eZ.+1 E V is an eigenvector for the action of ~ with eigenvalue 0, so 

that the weights of the standard representation V are {±LJ U {OJ and the 
weights of the adjoint representation correspondingly { ± Lj ± Lj} U { ± Lj}. 

Exercise 18.3. Use a similar analysis to find the roots of SPz. C without explicit 
calculation. 

To make a comparison with the Lie algebra sPz.C, we can say that the root 

diagram of sOz.C looks like that of sPz.C with the roots ±2Lj removed, 
whereas the root diagram of SOZ.+1 C looks like that of sPz.C with the roots 
±2Lj replaced by ±Lj. Note that this immediately tells us what the Weyl 

groups are: first, in the case of sOz.+1 C, the Weyl group is the same as that of 

sPz.C: 

1 -> (Z/2t ~ W 002.+. C ~ 6. ~ 1. 

In the case of sOz.C, the Weyl group is the subgroup of the Weyl group of 

sPz.C generated by reflection in the hyperplanes perpendicular to the roots 
± L j ± Lj , without the additional generator given by reflection in the roots 
± L j • This subgroup still acts as the full symmetric group on the set of 

coordinate axes in 1)*; but the kernel of this action, instead of acting as ± I on 

each of the coordinate axes independently, will consist of transformations of 
determinant 1; i.e., will act as -Ion an even number of axes. (That every such 

transformation is indeed in the Weyl group is easy to see: for example, 

reflection in the plane perpendicular to L j + L j followed by reflection in the 

plane perpendicular to L j - Lj will send L j to - Lj, Lj to - Lj, and Lk to Lk 
for k :f. i, j.) Another way to say this is that the Weyl group is the subgroup 

of the Weyl group of sPz.C consisting of transformations whose determinant 

agrees with the sign ofthe induced permutation of the coordinate axes; so that 
while the Weyl group of sPz.C fits into the exact sequence 

1 ~ (Z/2)· ~ W' P2• C ~ 6. ~ 1, 

the Weyl group of soz.C has instead the sequence 

1 -> (Z/2)·-1 -> W.02• C ~ 6. ~ 1. 

We can likewise describe the Weyl chambers of soz.C and SOZ.+1 C by 
direct comparison with sPZnC To start, to choose an ordering of the roots 

we take as linear functional on ~* a form 1= C1HI + ... + c.Hn' where 
Cl > C2 > ... > c. > O. The positive roots in the case of SOZn+1 C are then 

R+ = {Lj + LjL<ju {L j - LjL<ju {LJj, 

whereas in the case of S02. C we have 

R+ = {L j + Lj};<ju {L j - Lj};<j. 

The primitive positive roots are 
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for S02n+1 IC; 

L1 - L 2, L2 - L 3 , • •• , Ln- 1 - Ln, Ln- 1 + Ln for s02nlC. 

In the first case, the Weyl chamber is exactly the same as for SP2nlC, namely, 

for m = 2n + 1, 

"If" = {I ajLj: a1 ~ a2 ~ ... ~ an ~ O} 

since the roots are the same except for the factor of 2 on some. In the case of 

so2n lC, since there is no root along the line spanned by the L j , the equality 

an = 0 does not describe a face ofthe Weyl chamber; however, since Ln- 1 + Ln 
is still a root (and a positive one) we still have the inequality an- 1 + an ~ 0 in 

"If", so that we can write, for m = 2n, 

"If" = {I ajLj: a1 ~ a2 ~ ••• ~ an- 1 ~ lanl}. 

(Note that in the case of s02nIC we could have chosen our linear functional 

1= c1H1 + ... + cnHn with C1 > C2 > ... > -Cn > 0; the ordering of the 

roots, and consequently the Weyl chamber, would still be the same.) 

As for the Killing form, the same considerations as for the symplectic case 

show that it must be, up to scalars, the standard quadratic form: B(Hj , Hj ) = 
<>j,j' (This was implicit in the above description of the Weyl group.) The explicit 

calculation is no more difficult, and we leave it as an exercise: 

B(I ajHj, I bjH;) = {(4n - 2) I ajbj ~f m = 2n + 1 
(4n - 4) I ajbj lfm = 2n. 

Next, to describe the representations of the orthogonal Lie algebras we 

have to determine the weight lattice in 1)*; and to do this we must, as before, 

locate the copies sa of sI21C corresponding to the root pairs ± IX, and the 

corresponding distinguished elements Ha of I). This is so similar to the case of 

SP2nIC that we will leave the actual calculations as an exercise; we will simply 

state here the results that in sOmlC for any m, 
(i) the distinguished copy SL .-L of sI21C associated to the root L j - LJ• 

• J 

is the span of the root spaces gL,-Lj = IC· Xj,j, g-L,-Lj = IC· Xj,j and their 

commutator [Xj,i' Xj,;] = Ej,j - Ej,j + En+j,n+j - En+j,n+j, with distinguished 

element HL,-Lj = Hj - Hj (this is exactly as in the case of sP2niC); 

(ii) the distinguished copy SL,+LJ of sIllC associated to the root L j + Lj 

is the span of the root spaces gL,+Lj = IC· li,i' g-L,-LJ = IC· Zj,j and their 

commutator [li,i' Zj,j] = -Ej,j + Ej,j - En+j,n+j + En+j,n+j = -Hj - Hj, 
with distinguished element HL+ L = Hj + H). (so that we have also H-L - L. = 

1 'J • ) 

- H j - H); and in the case of S02n+1 IC, 

(iii) the distinguished copy SL of sI21C associated to the root L j is the span 

of the root spaces gL, = IC · Uj, g~L, = IC · V; and their commutator [Uj, V;] = 

[E j,2n+1 - E2n+1..+j, En+j,20+1 - E2n+1,;] = -Hj, with distinguished element 

HL, = 2H;{so that H-L, = -2Hj as well}. 

Exercise 18.4. Verify the computations made here. 
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Again, the configuration of distinguished elements resembles that of SP2nC 

closely; that of S02n+l C differs from it by the substitution of ± 2Hi for ± Hi' 
whereas that of S02nC differs by the removal of the ± Hi ' The effect on the 

weight lattice is the same in either case: for both even and odd orthogonal Lie 

algebras, the weight lattice Aw is the lattice generated by the L; together with 

the element (Ll + .. . + Ln}/2. 

Exercise 18.5. Show that 

Aw/AR = Z/4 ifm = 2n and n is odd { 
Z/2 if m = 2n + 1 

Z/2 $ Z/2 if m = 2n and n is even. 

§18.2. Representations of 503 C, 504 C, and 50sC 

To give some examples, start with the case n = 1. Of course, S02 C ~ C is not 

semisimple. The root system of S03 C, on the other hand, looks like that of sI2 C: 

• • 
o 

This is because, in fact, the two Lie algebras are isomorphic. Indeed, like the 

symplectic group, the quotient PSOmC of the orthogonal group by its center 

can be realized as the motions of the projective space PV preserving isotropic 

subspaces for the quadratic form Q; in particular, this means we can real

ize PSOmC as the group of motions of PV = pm-l carrying the quadric 

hypersurface 

Q = {[v]: Q(v, v) = O} 

into itself. In the first case of this, we see that the group PS03 C is the group 

of motions of the projective plane 11'2 carrying a conic curve C c 11'2 into itself. 

But we have seen before that this group is also PGL2C (the conic curve is 

itself isomorphic to 11'1, and the group acts as its full group of automorphisms), 

giving us the isomorphism S03C ~ sI2t:. One thing to note here is that the 

"standard" representation of S03 C is not the standard representation of sI2 C, 

but rather its symmetric square. In fact, the irreducible representation with 

highest weight tLl is not contained in tensor powers ofthe standard represen

tation of S03 C. This will tum out to be significant: the standard representation 

of sI2C, viewed as a representation of S03C, is the first example of a spin 

representation of an orthogonal Lie algebra. 

The next examples involve two-dimensional Cartan algebras. First we have 

S04 C, whose root diagram looks like 
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Note one thing about this diagram: the roots are located on the union of 

two complementary lines. This says, by Exercise 14.33, that the Lie algebra 

504 C is decomposable, and in fact should be the sum of two algebras each of 

whose root diagrams looks like that of 512 C; explicitly, 504 C is the direct sum 

of the two algebras 5", for (X = Ll + L2 and (X = Ll - L 2. In fact, we can see 
this isomorphism 

(18.6) 

as in the previous example, geometrically. Precisely, we may realize the group 

PS04 C = S04C/{±I} as the connected component of the identity in the 
group of motions of projective three-space p3 carrying a quadric hyper

surface Q into itself. But a quadric hypersurface in p3 has two rulings by 

lines, and these two rulings give an isomorphism ofQ with a product pi x pi 

PS04 C thus acts on the product pi x pi; and since the connected component 

of the identity in the automorphism group of this variety is just the product 

PGL2 C x PGL2 C, we get an inclusion 

PS04 C -+ PGL2 C X PGL2 C. 

Another way of saying this is to remark that PS04 C acts on the variety of 

isotropic 2-planes for the quadratic form Q on V; and this variety is just the 

disjoint union of two copies of pl. To see in this case that the map is an 
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isomorphism, consider the tensor product V = U ® W of the pullbacks to 

sI2 1C x 51zIC of the standard representations of the two factors. Clearly the 

action on P(U ® W) will preserve the points corresponding to decomposable 

tensors (that is, points of the form [u ® w]); but the locus of such points is 

just a quadric hypersurface, giving us the inverse inclusion of PGLzlC x 

PGLzlC in PS04 iC. 

In fact, all of this will fall out of the analysis of the representations of 504 1[;, 

if we just pursue it as usual. To begin with, the Weyl chamber we have selected 

looks like 

Now, the standard representation has, as noted above, weight diagram 

with highest weight Ll (note that the highest weight of the standard represen

tation lies in this case in the interior of the Weyl chamber, something of an 

anomaly). Its second exterior power will have weights ±Ll ± L z and 0 

(occurring with multiplicity 2), i.e., diagram 
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We see one thing about this representation right away, namely, that it cannot 

be irreducible. Indeed, the images of the highest weight Li + L2 under the 

Weyl group consist just of ±(L i + L 2 ), so that the diagram of the irreducible 
representation with this highest weight is 

We see from this that the second exterior power Nv of the standard 
representation of 504 C must be the direct sum of the irreducible represen

tations Wi = rL ,+L2 and W2 = rL ,-L2 with highest weights Li + L2 and 
Li - L2. Since Nv is at the same time the adjoint representation, this says 
that 504 C itself must be a product of Lie algebras with adjoint representations 

rL ,+L2 and rL ,-L2 ' 

One way to derive the picture of the ruling of the quadric in JFP3 from this 

decomposition is to view 504 C as a subalgebra of 514 C, and the action of 
PS04 C on JFP(N V) as a subgroup of the group of motions of JFP2(N V) = JFP5 
preserving the Grassmannian G = G(2, V) oflines in JFP3. In fact, we see from 

the above that the action ofPS04 on JFPs will preserve a pair of complementary 
2-planes JFPWi and JFPW2; it follows that this action must carry into themselves 
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the intersections of these 2-planes with the Grassmannian. These intersections 

are conic curves, corresponding to one-parameter families of lines sweeping 

out a quadric surface (necessarily the same quadric, since the action of S04 C 

on V preserves a unique quadratic form); thus, the two rulings ofthe quadric. 

G = G(2, V) 

Note one more aspect of this example: as in the case of S03 C ~ sI2 C, the 
weights of the standard representation of S04 C do not generate the weight 

lattice, but rather a sublattice Z{Ll' L 2 } of index 2 in Aw. Thus, there is no 
way of constructing all the representations of S04 C by applying linear- or 

multilinear-algebraic constructions to the standard representation; it is only 

after we are aware of the isomorphism S04C ~ sI2 C X sI2 C that we can 

construct, for example, the representation r(L,+L2 )/2 with highest weight 
(Ll + L 2 )/2 (of course, this is just the pullback from the first factor of 
sI2 C x sI2 C of the standard representation of sI2 C). 

We come now to the case of sosC, which is more interesting. The root 
diagram in this case looks like 
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(as in the preceding example, the weight lattice is the lattice of intersections 

of all the lines drawn). The first thing we should notice about this diagram is 

that it is isomorphic to the weight diagram of the Lie algebra SP4C; the 

diagram just appears here rotated through an angle of n/4. Indeed, this is not 

accidental; the two Lie algebras SP4C and sosC are isomorphic, and it is 

not hard to construct this isomorphism explicitly. To see the isomorphism 

geometrically, we simply have to recall the identification, made in Lecture 

14, of the group PSP4C with a group of motions of 1P4. There, we saw 

that the larger group PGL4C could be identified with the automorphisms 

of the projective space IP(N V) = IPs preserving the Grassmannian G = 
G(2,4) c IP(NV). The subgroup PSP4C c PGL4C thus preserves both the 

Grassmannian G, which is a quadric hypersurface in IPs, and the decomposi

tion of Nv into the span C' Q of the skew form Q E Nv* ~ Nv and its 

complement W, and so acts on IPW carrying the intersection GL = G n IPW 

into itself. We thus saw that PSP4 C was a subgroup of the group of motions 

of projective space 1P4 preserving a quadric hypersurface, and asserted that in 

fact it was the whole group. 

(To see the reverse inclusion directly, we can invoke a little algebraic 

geometry, which tells us that the locus of isotropic lines for a quadric in 1P4 is 

isomorphic to 1P3, so that PSOsC acts on 1P3. Moreover, this action preserves 

the subset of pairs of points in 1P3 whose corresponding lines in 1P4 intersect, 

which, for a suitably defined skew-symmetric bilinear form Q, is exactly the 

set of pairs ([v], [w]) such that Q(v, w) = 0, so that we have an inclusion of 

PSOsC in PSp4C.) 

Let us proceed to analyze the representations of sOs C as we would 

ordinarily, bearing in mind the isomorphism with SP4 C. To begin with, we 

draw the Weyl chamber picked out above in ~*: 

As for the representations of sosC, we have to begin with the standard, which 

has weight diagram 
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This we see corresponds to the representation W = (\lV/C· Q of 5P4 iC. Next, 

the second exterior power of the standard representation of 50s C has weights 

This is of course the adjoint representation of 5°5 C; it is the irreducible 
representation with highest weight Ll + L 2 • Note that it corresponds to the 

symmetric square Sym2 V of the standard representation of 5P4 C (see Exercise 
16.8). 

Exercise IS.7. Show that contraction with the quadratic form Q E Sym2 V* 
preserved by the action of 505C induces maps 

qJ: SymaV -. Syma- 2 v. 

Show that the kernel of this contraction is exactly the irreducible representa
tion with highest weight a· L 1 • Compare this with the analysis in Exercise 

16.11. 
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Exercise 18.8. Examine the symmetric power SymQ(N V) of the representation 

Nv. This will contain a copy ofthe irreducible representation rQ (L,+L2); what 

else will it contain? Interpret these other factors in light of the isomorphism 

sOsC ~ sP4 c. 

Exercise 18.9. For an example of a "mixed" tensor, consider the irreducible 

representation r2L , +L2• Show that this is contained in the kernels of the wedge 

product map 

<p: v®Nv-+Nv 

and the composition 

<p': v®Nv-+v*®Nv-+v, 

where the first map is induced by the isomorphism Q: V -+ V* and the second 

is the contraction V* ® N V -+ V. Is it equal to the intersection of these 

kernels? Show that the weight diagram of this representation is 

After you are done with this analysis, compare with the analysis given of the 

corresponding representation in Lecture 16. 

Note that, as in the case of the other orthogonal Lie algebras studied so 

far (and as is the case for all sOme), the weights of the standard representation 

do not generate the weight lattice, but only the sublattice of index two generated 

by the L j • Thus, the tensor algebra of the standard representation will contain 

only one-half of all the irreducible representations of SOs C. Now, we do know 

that there are others, and even something about them-for example, we see 

in the following exercise that the irreducible representation of sosC with 

highest weight (Ll + L 2 )/2 is a sort of "symmetric square root" of the adjoint 

representation: 

Exercise 18.10. Show, using only root and weight diagrams for sosC, that the 

exterior square Nv of the standard representation of sosC is actually the 

symmetric square of an irreducible representation. 
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We can also describe this irreducible representation via the isomorphism 

ofsosC with sP4C: it is just the standard representation ofsP4C on C 4 • We 
do not at this point have, however, a way of constructing this representation 

without invoking the isomorphism. This representation, the representation of 

S03C with highest weight Ltl2, and the representation of S04C with highest 

weight (Ll + L 2 )/2 discussed above are called spin representations of the 

corresponding Lie algebras and will be the subject matter of Lecture 20. 



LECTURE 19 

This lecture is analogous in content (and prerequisites) to Lecture 17: we do some 

more low-dimensional examples and then describe the general picture of the represen

tations of the orthogonal Lie algebras. One difference is that only half the irreducible 

representations of 50m(; lie in the tensor algebra of the standard; to complete the picture 

of the representation theory we have to construct the spin representations, which is 

the subject matter of the following lecture. The first four sections are completely 

elementary (except possibly for the discussion of the isomorphism 506 (; ~ 514(; in 

§19.1); the last section assumes a knowledge of Lecture 6 and §15.3, but can be skipped 

by those who did not read those sections. 

§19.1: Representations of 506 (; 

§19.2: Representations of the even orthogonal algebras 

§19.3: Representations of 507 (; 

§19.4: Representations of the odd orthogonal algebras 

§19.5: Weyt's construction for orthogonal groups 

§19.1. Representations of 506 (: 

We continue our discussion of orthogonal Lie algebras with the example of 
506 1[. First, its root diagram: 
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Once more (and for the last time), we notice a coincidence between this and 

the root diagram of a Lie algebra already studied, namely, 514 Co In fact, the 

two Lie algebras are isomorphic. The isomorphism is one we have already 
observed, in a sense: in the preceding lecture we noted that if V is a four

dimensional vector space, then the group PGL4C may be realized as the 
connected component of the identity in the group of motions of P(NV) = pS 

carrying the Grassmannian G = G(2, 4) c: P(N V) into itself, and PSP4 C c: 

PGL4C the subgroup fixing a hyperplane PW = p 4 c: pS. We used this to 

identify the subgroup PSP4 C with the orthogonal group PSOs C; at the same 
time it gives an identification of the larger group PGL4C with the orthogonal 
group PS06 Co 

Even though 506C is isomorphic to a Lie algebra we have already examined, 
it is worth going through the analysis of its representations for what amounts 

to a second time, partly so as to understand the isomorphism better, but 
mainly because we will see clearly in the case of 506 C a number of phenomena 

that will hold true ofthe even orthogonal groups in general. To start, we draw 
the Weyl chamber in 1)*: 

L 1+ LZf L ) 
- ~2 ~'"''''' ' 

As usual, we begin with the standard representation, which has weights 

± L;, corresponding to the centers of the faces of the cube: 
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Note that the highest weight Ll once more lies on an edge of the Weyl chamber 

(the front edge, in the diagram on the preceding page). Observe that the 

standard representation of S06 C corresponds, as we have already pointed out, 

to the exterior square of the standard representation of S(4 C. 

Next, we look at the exterior square N V of the standard representation 

of S06C. This will have weights ±Lj ± L j (of course, it is the adjoint represen

tation) and so will have weight diagram 

Note that the highest weight vector Ll + L2 of this representation does not 

lie on an edge of the Weyl chamber, but rather in the interior of a face (the 

back face, in the diagram above). In order to generate all the representations, 

we still need to find the irreducible representations with highest weight along 

the remaining two edges of the Weyl chamber. 

We look next at the exterior cube Nv of the standard representation. The 

weights here are the eight weights ±L1 ± L2 ± L 3 , each taken with multi

plicity one, and the six weights ± L j , each taken with multiplicity 2, as in the 
diagram 
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Now, we notice something very interesting: this cannot be an irreducible 
representation, We can see this in a number of ways: the images of the weight 

L 1 + L2 + L3 under the Weyl group, for example, consist of every other vertex 
of the reference cube; in particular, their convex hull does not contain the 

remaining four vertices including Ll + L2 - L3, Equivalently, there is no way 

to go from Ll + L2 + L3 to Ll + L2 - L3 by translation by negative root 
vectors, The representation Nv will thus contain copies of the irreducible 

representations r L , +L2+L3 and rL , +L2-L3 with highest weights Ll + L2 + L3 
and Ll + L2 - L 3 , with weight diagrams 

I 
" I . 

;-=:;--
//" ..... 

.".. 

and 

Since the weight diagram of each of these is a tetrahedron containing the 
weights ±Li , we have accounted for all the weights of NVand so must have 

a direct sum decomposition 

/\3 V = rL ,+L2+L3 EB rL,+L2- L3' 

We can relate this direct sum decomposition to a geometric feature of a 
quadric hypersurface in pS, analogous to the presence of two rulings on a 
quadric in p3. We saw before that the locus of lines lying on a quadric 

surface in p3 turns out to be disconnected, consisting of two components 



286 

each isomorphic to 1P1 (and embedded, via the Plucker embedding of the 

Grassmannian G = G(2, 4) of lines in 1P3 in IP(NC) = IPs, as a pair of conic 

curves lying in complementary 2-planes in 1P 5 ). In a similar fashion, the variety 

of2-planes lying on a quadric hypersurface in IPs turns out to be disconnected, 

consisting of two components that, under the Plucker embedding of G(3, 6) 

in IP(NIC6) = 1P 19, span two complementary 9-planes IPWl and IPW2 ; these 

two planes give the direct sum decomposition of Nv as an s061C-module. 
In fact, if we think of a quadric hypersurface in 1P 5 as the Grassmannian 

G = G(2, 4) of lines in 1P3, we can see explicitly what these two families of 
2-planes are: for every point p E 1P3 the locus oflines passing through p forms 

a 2-plane on G, and for every plane H c 1P3 the locus of lines lying in H is a 

2-plane in G. These are the two families; indeed, in this case we can go two 

steps further. First, we see from this that each of these families is para

metrized by 1P3, so that the connected component PS061C of the identity 
in the group of motions of IPs preserving the Grassmannian acts on IP\ 

giving us the inverse inclusion PS061C c PGL41C. Second, under the Plucker 
embedding each of these families is carried into a copy of the quadratic 
Veronese embedding of 1P3 into 1P9, giving us the identification of the direct 

sum factors of the third exterior power of the standard representation of s061C 

with the symmetric square of the standard representation of sI4iC. 

Exercise 19.1. Verify, without using the isomorphism with s061C and the 
analysis above, that the standard representation V of sI41C satisfies 

N(NV) ~ Sym2 V El1 Sym 2 V*. 

Note that we have now identified, in terms oftensor powers of the standard 

one, irreducible representations of s061C with highest weight vectors L i , 

Li + L2 + L3 and Li + L2 - L3 lying along the edge of the Weyl chamber, 
as well as one with highest weight Li + L2 lying in a face. We can thus find 
irreducible representations with highest weight y, if not for every y in Aw () "If'; 

at least for every weight y in the intersection of "III with a sublattice of index 

2 in Aw. 

§19.2. Representations of the Even 
Orthogonal Algebras 

We will not examine any further representations of s061C per se, leaving it as 
an exercise to do so (and to compare the results to the corresponding analysis 

for sI4 C). Instead, we can now describe the general pattern for representations 

of the even orthogonal Lie algebras S02"iC. The complete story will have to 
wait until the following lecture, since at present we cannot construct all the 
representations of s02"1C (as we have pointed out, we have been able to do so 
in the cases n = 2 and 3 studied so far only by virtue of isomorphisms with 
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other Lie algebras; and there are no more such isomorphisms from this point 

on). We will nonetheless give as much of the picture as we can. 

To begin with, recall that the weight lattice of S02nC is generated by 

L 1, ... , Ln together with the further vector (L 1 + ... + Ln)/2. The Weyl cham
ber, on the other hand, is the cone 

ii' = {L aiL;: a1 ~ a2 ~ ... ~ ian}· 

Note that the Weyl chamber is a simplicial cone, with faces corresponding 

to the n planes a1 = a2, ... , an- 1 = an and an- 1 = - an; the edges of the 
Weyl chamber are thus the rays generated by the vectors L 1 , Ll + L 2, ... , 

Ll + ... + Ln- 2, Ll + ... + Ln and Ll + ... + Ln- 1 - Ln (note that Ll + 
... + Ln- 1 is not on an edge of the Weyl chamber). We see from this that, as 

in every previous case, the intersection of the weight lattice with the closed 

Weyl cone is a free semigroup generated by fundamental weights, in this case 

the vectors L 1 , Ll + L 2, ... , Ll + ... + L n- 2 and the vectors 1 

(X = (L J + ... + Ln)/2 and P = (L J + ... + Ln- 1 - Ln)/2. 

As before, the obvious place to start to look for irreducible representations 

is among the exterior powers of the standard representation. This almost 

works: we have 

Theorem 19.2. (i) The exterior powers Nv of the standard representation Vof 

S02nC are irreducible for k = 1,2, ... , n - 1; and (ii) The exterior power NV 

has exactly two irreducible factors. 

PROOF. The proof will follow the same lines as that of the analogous theorem 

for the symplectic Lie algebras in Lecture 17; in particular, we will start by 

considering the restriction to the same subalgebra as in the case of SP2nC. 
Recall that the group SP2nC C SL2nC of automorphisms preserving 

the skew form Q introduced in Lecture 16 contains the subgroup G of 
automorphisms of the space V = c2n preserving the decomposition 

V = C{e1 , ... , en} EB C{en+1' ... ' e2n}, acting as an arbitrary automorphism 
on the first factor and as the inverse transpose of that automorphism on the 
second factor; in matrices 

In fact, the subgroup S02nC C SL2nC also contains the same subgroup; we 
have, correspondingly a subalgebra 

I To conform to standard conventions, with simple roots (Xi = L, - Li+! for 1 ~ i ~ n - I, and 

(Xn = Ln-! + L n, to have w,(H.,) = Di •i , the fundamental weights W, should be put in the order: 
Wi = L! + .. . + Li for 1 ~ i ~ n - 2, and 

Wn-! = P = (L! + ... + Ln-! - Ln}/2, Wn = (X = (L! + ... + Ln}/2. 
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Denote by W the standard representation of sIn C As in the previous case, 

the restriction of the standard representation V of S02n C to the subalgebra s 
then splits 

V = WEB W* 

into a direct sum of Wand its dual; and we have, correspondingly, 

Nv = EB (NW ® NW*). 
a+b=k 

We also can say how each factor on the right-hand side of this expression 

decomposes as a representation of slnC: we have contraction maps 

'Pa.b: Nw ® Nw* -+ N-l W ® N-l W*; 

and the kernel of 'Pa.b is the irreducible representation w(a.b) with highest 

weight 2Ll + ... + 2La + La+l + ... + Ln- b. The restriction of Nv to s is 
thus given by 

Nv= EB 
a+bsk 

a+b=k(2) 

w(a,b) , 

where the actual highest weight factor in the summand w(a.b) c Nv is the 

vector 

w(a.b) = e1 /\ •.. /\ ea /\ e2n -b+l /\ . .. /\ e2n /\ Q(k-a-b)/2 

= e1 /\ ..• /\ ea /\ e2n - b+l /\ ... /\ e2n /\ (I (ei /\ en+i»(k-a-b)/2. 

Now, all the vectors w(a. b) ha ve distinct weights; and it follows, as in Exercise 

17.7, that any highest weight vector for the action of S02nC on Nv will be a 
scalar multiple of one of the w(a, b). It will thus suffice, in order to show that 

Nv is irreducible as representation of S02nC for k < n, to exhibit for each (a, b) 
with a + b :s; k < n other than (k, 0) a positive root (X such that the image 
9,.(w(a,b» "# O. This is simplest in the case a + b = k < n (so there is no factor 
of Q in w(a.b»: just as in the case of SP2nC we have 

Ya+l,n-b+l (w(a,b» 

= (Ea+l,2n-b+l - En-b+l .n+a+l)(el /\ .. . /\ ea /\ e2n - b+l /\ .. . /\ e2.) 

= w(a+l.b-l) 

and ~ . j is the generator of the positive root space 9L,+Lj ' 

In case a + b < k < n, we observe first that for any i and j 
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li,iQ) = (Ej,n+j - Ej,n+j)(L (ep 1\ en+p )) 

= 2'ej 1\ ej 

so that whenever a < i, j ~ n - b, 

y; .(w(a, bJ) 
' ,J 

= y; .(e 1\ '" 1\ e 1\ e 1\ .. . 1\ e 1\ Q(k-a-bJ/2) 
' ,J 1 a 2n-b+l 2n 

= e1 1\ • •. 1\ ea 1\ e2n-b+1 1\ ... 1\ e2n 1\ li.j((I (ep 1\ en+p ))(k-a-bJ/2) 
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= (k - a - b) ' (e 1 1\ ... 1\ ea 1\ ej 1\ ej 1\ e2.-b+l 1\ .. . 1\ e2n 1\ Q(k-a-b - 2J/2) 

It is always possible to find a pair (i, j) satisfying the conditions a < i, j ~ n - b 

since we are assuming a + b < k < n; this concludes the proof of part (i). 

The proof of part (ii) requires only one further step: we have to check the 

vectors w(a,bJ with a + b = k = n to see if any of them might be highest weight 

vectors for 502n iC. In fact (as the statement of the theorem implies), two of them 
are: It is not hard to check that, in fact, w(n, OJ and w(n-1. 1) are killed by every 

positive root space gL,+LJ ' To see that no other vector w(a,n-aJ is, look at the 

action of Y..+1 ,a+2 E gL.+ 1 +L.+ 2 : we have 

Y..+l.a+ 2 (w(a,n-aJ) 

o 

Remarks. (i) This theorem will be a consequence of the Weyl character 

formula, which will tell us a priori that the dimension of the irreducible 

representation of 502niC with highest weight L l + .. . + Lk has dimension C:) 
if k < n, and half that if k = n. 

(ii) Note also that by the above, NVis the direct sum of the two irreducible 

representations r 2a and r 2 (J with highest weights 21X = Ll + ... + Ln and 

2P = Ll + ... + Ln- 1 - Ln. Indeed, the inclusion r 2a $ r 2 (J c NV can be 

seen just from the weight diagram: NV possesses a highest weight vector with 

highest weight Ll + . .. + L., and so contains a copy of r 2a; but this repre

sentation does not possess the weight 2P, and so NV must contain r 2(J as 

well. (Alternatively, we observed in the preceding lecture that in choos

ing an ordering of the roots we could have chosen our linear functional I = 

c1H1 + ... + cnH. with C1 > C2 > . . . > -Cn > 0 without altering the positive 
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roots or the Weyl chamber; in this case the weight A. of Nv with I(A.) maximal 

would be 2{3, showing that r 2 /1 C NV.) 

(iii) If we want to avoid weight diagrams altogether, we can still see that 

NV must be reducible, because the action of S02ne preserves two bilinear 

forms: first, we have the bilinear form induced on NV by the form Q on V; 
and second we have the wedge product 

<p: Nv x NV -+ J\2nV = e, 

the last map taking e 1 A .•• A e2n to l.1t follows that NVis reducible; indeed, 

if we want to see the direct sum decomposition asserted in the statement of 

the theorem we can look at the composition 

r: Nv -+ Nv* -+ NV, 

where the first map is the isomorphism given by Q and the second is 

the isomorphism given by <p. The square of this map is the identity, and 

decomposing Nv into + 1 and -1 eigenspaces for this map gives two 

subrepresentations. 

Exercise 19.3*. Part (i) of Theorem 19.2 can also be proved by showing that 

for any nonzero vector WE Nv, the linear span of the vectors X(w), for 

X E sOme, is all of Nv. For these purposes take, instead of the basis we have 

been using, an orthonormal basis V1"'" Vm for V = em, m = 2n, so Q(Vi' v) = 
bi,j' The vectors VI = Vi, A ••• A Vik , 1 = {i1 < ... < ik }, form a basis for Nv, 
and sOme has a basis consisting of endomorphisms Vp,q' p < q, which takes 

Vq to v p' vp to -vq, and takes the other Vi to zero. Compute the images Vp,q(VI)' 

and prove the claim, first, when W = VI for some 1, and then by induction on 

the number of nonzero coefficients in the expression W = Lalvl' For (ii) a 

similar argument shows that NVis an irreducible representation ofthe group 

One, and the ideas of§5.1 (cf. §19.5) can be used to see how it decomposes over 

the subgroup SOne of index two. 

We return now to our analysis of the representations of so2nc. By the 

theorem, the exterior powers V, Nv, ... , N- 2 V provide us with the irreduc

ible representations with highest weight the fundamental weight along the first 

n - 2 edges of the Weyl chamber (of course, the exterior power N- 1 V is 

irreducible as well, but as we have observed, L1 + . .. + L n- 1 is not on an edge 

of the Weyl chamber, and so N-1 V is not as useful for our purposes). For the 

remaining two edges, we have found irreducible representations with highest 

weights located there, namely the two direct sum factors of NV; but the 

highest weights of these two representations are not primitive ones; they are 

divisible by 2. Thus, given the theorem above, we see that we have constructed 

exactly one-half the irreducible representations of S02nC, namely, those whose 

highest weight lies in the sublattice Z {L1' •. . , Ln} cAw. Explicitly, any 

weight y in the closed Weyl chamber can be expressed (uniquely) in the form 
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y = alL I + ... + an-2(L I + ... + Ln- 2) 

+ an- l (Ll + ... + Ln- l - Ln}/2 + an(LI + ... + Ln}/2 

with ai E N. If an- l + an is even, with an-I;;:: an we see that the representation 

Syma1 V ® ... ® Syman-2 (N-2 V) ® Syman(N- I V) ® Sym(an-l-anl/2(r2P) 

will contain an irreducible representation ry with highest weight y; whereas if 

an ;;:: an-I' we will find ry inside 

Syma1 V ® ... ® Syman- 2(N- 2 V) ® Syman-1(N- I V) ® Sym(an-an-1l/2(r2",). 

There remains the problem of constructing irreducible representations ry 

whose highest weight y involves an odd number of a's and p's. To do this, we 

clearly have to exhibit irreducible representations r", and rp with highest 

weights a and p. These exist, and are called the spin representations of S02nlC; 

we will study them in detail in the following lecture. We see from the above 

that once we exhibit the two representations r", and r p, we will have con

structed all the representations of s02n iC. The representation ry with highest 

weight y written above will be found in the tensor product 

Syma1 V ® ... ® Syman - 2(N- 2 V) ® Syman-1(rp) ® Sym4n(r",). 

For the time being, we will assume the existence ofthe spin representations 

of S02n IC; there is a good deal we can say about these representations just on 

the basis of their weight diagrams. 

Exercise 19.4*. Find the weights (with multiplicities) of the representations 

Nv, and also of r 2"" r 2P ' r"" and rp. 

Exercise 19.5. Using the above, show that r", and rp are dual to one another 

when n is odd, and that they are self-dual when n is even. 

Exercise 19.6. Give the complete decomposition into irreducible representa

tions ofSym2r", and Nr",. Show that 

r",® r", = r 2"'$N- 2 V$N- 4 V$N- 6 V®···. 

Exercise 19.7. Show that 

r", ® rp = N-Iv $ N- 3 v E9 1\n-5 v $ .... 

Exercise 19.8. Verify directly the above statements in the case of S061C, using 

the isomorphism with S[41C. 

Exercise 19.9. Show that the automorphism of 1C2n that interchanges en and 

e2n , leaving the other ei fixed, determines an automorphism of S02nIC that 

preserves the n - 2 roots LI - L2, ... , Ln - 2 - Ln- 1 and interchanges 

L n- l - L. and L.-l + L •. This automorphism takes the representation V to 

itself, but interchanges r", and rp. 
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§19.3. Representations of 507 C 

While we might reasonably be apprehensive about the prospect of a family of 

Lie algebras even more strangely behaved than the even orthogonal algebras, 
there is some good news: even though the roots systems of the odd Lie algebras 

appear more complicated than those of the even, the representation theory of 

the odd algebras is somewhat tamer. We will describe these representations, 
starting with the example of 507C; we begin, as always, with a picture of the 
root diagram: 

I'. ' 
•••• .' .... ". L)+L 2 

• 1 •• , •• • : ..... : . '-' : :.e L 
..... ,I: .' . "~ ' .. ' .' ) 
", r~'" : 

1, '· . . 

/,L~·;-:-~r:.----.--- .•. 
/' 

As we said, this looks like the root diagram for 5P6C, except that the roots 
±2Lj have been shortened to ±Lj • Unlike the case of 505 C, however, where 

the long and short roots could be confused and the root diagram was corre

spondingly congruent to that of 5P4C, in the present circumstance the root 
diagram is not similar to any other; the Lie algebra 507C, in fact, is not 

isomorphic to any of the others we have studied. Next, the Weyl chamber: 

Again, the Weyl chamber itself looks just like that of SP6C; the difference 
in this picture is in the weight lattice, which contains the additional vector 

(Ll + L2 + L 3 )/2. 
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As usual, we start our study of the representations of S07C with the 

standard representation, whose weights are ± L/ and 0: 

Note that the highest weight Ll of this representation lies along the front edge 

of the Weyl chamber. Next, the weights of the exterior square Nv are 

± Li ± Lj , ± L;, and 0 (taken three times); this, of course, is just the adjoint 

representation. Note that the highest weight Ll + L2 of this representation is 
the same as that of the exterior square ofthe standard representation for S06C, 

but because of the smaller Weyl chamber this weight does indeed lie on an 

edge of the chamber. 
Next, consider the third exterior power N V of the standard. This has 

weights ±Ll ± L2 ± L 3 , ±Li ± Lj , ±Li (with multiplicity 2) and 0 (with 
multiplicity 3), i.e., at the midpoints of all the vertices, edges, and faces of the 

cube: 

It is not obvious, from the weight diagram alone, that this is an irreducible 
representation; it could be that N V contains a copy of the standard represen

tation Vand that the irreducible representation rL1 +L2+L3 thus has multiplicity 

1 on the weights ±Li and multiplicity 2 (or 1) at O. We can rule out this 
possibility by direct calculation: for example, if this were the case, then N V 

would contain a highest weight vector with weight L l . The weight space with 
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eigenvalueL 1 in;\3Visspannedbythetensorse l 1\ e2 1\ esande1 1\ e3 1\ e6, 

however, and if we apply to these the generators Xu = E1,2 - ES,4, 

X 2,3 = E2,3 - E6,s, and U3 = E3,7 - E7,6 of the root spaces corresponding 

to the positive roots Ll - L 2 , L2 - L 3 , and L 3 , we see that 

X 2,3(e1 1\ e3 1\ e6) = e1 1\ e2 1\ e6, 

U3(e1 1\ e3 1\ e6) = e1 1\ e3 1\ e7 "# 0; 

X 2,3(e1 1\ e2 1\ es) = e1 1\ e2 1\ e6, 

U3(e1 1\ e2 1\ es) = O. 

There is thus no linear combination of e1 1\ e2 1\ es and e1 1\ e3 1\ e6 killed 

by both U3 and X 2 , 3 ' showing that ;\3 V has no highest weight vector of weight 

Lt· 

Exercise 19.10. Verify that Nv does not contain the trivial representation. 

We have thus found irreducible representations of 507 C with highest weight 

vectors along the three edges of the Weyl chamber, and as in the case ofs06 C 

we have thereby established the existence of the irreducible representations of 

507 C with highest weight in the sublattice Z{Ll' L 2 , L3}' To complete the 

description, we need to know that the representation r", with highest weight 

IX = (Ll + L2 + L 3 )/2 exists, and what it looks like, and this time there is no 

isomorphism to provide this; we will have to wait until the following lecture. 

In the meantime, we can still have fun playing around both with the represen

tations we do know exist, and also with those whose existence is simply 

asserted. 

Exercise 19.11. Find the decomposition into irreducible representations of the 

tensor product V ® N V; in particular find the multiplicities of the irreducible 

representation r 2L 1 +L2 with highest weight 2Ll + L 2 • 

Exercise 19.12. Show that the symmetric square of the representation r", 
decomposes into a copy of N V and a trivial one-dimensional representation. 

Exercise 1913. Find the decomposition into irreducible representations of 
;\2r", . 

§19.4, Representations of the 
Odd Orthogonal Algebras 

We will now describe as much as we can ofthe general pattern for representa

tions of the odd orthogonal Lie algebras 502"+1 C. As in the case of the even 

orthogonal Lie algebras, the proof of the existence part of the basic theorem 

(14.18) (that is, the construction of the irreducible representation with given 
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highest weight) will not be complete until the following lecture, but we can 

work around this pretty well. 

To begin with, recall that the weight lattice of S02n+! C is, like that of S02nC, 

generated by L 1 , •• • , Ln together with the further vector (Ll + ... + Ln}/2. The 

Weyl chamber, on the other hand, is the cone 

"If" = {I aiLi: a1 ~ a2 ~ .. . ~ an ~ OJ. 

The Weyl chamber is as we have pointed out the same as for SP2nC, that is, 

it is a simplicial cone with faces corresponding to the n planes al = a2, ... , 
an- 1 = an and an = O. The edges of the Weyl chamber are thus the rays 

generated by the vectors L 1 , Ll + L2, ... , Ll + ... + Ln- 1 and Ll + . .. + Ln 

(note that Ll + . . . + Ln-1 is on an edge of the Weyl chamber). Again, the 

intersection ofthe weight lattice with the closed Weyl cone is a free semigroup, 

in this case generated by the fundamental weights WI = L 1, W2 = Ll + L2, 
... , Wn- 1 = Ll + . .. + Ln- 1 and the weight Wn = IX = (Ll + . .. + Ln)/2. 

Moreover, as we saw in the cases of sOsC and S07C, the exterior powers of 

the standard representation do serve to generate all the irreducible representa

tions whose highest weights are in the sublattice Z {Ll' ... , Ln}: in general we 

have the following theorem. 

Theorem 19.14. For k = 1, . . . , n, the exterior power Nv of the standard 

representation V of S02n+!C is the irreducible representation with highest weight 

Ll + ... + Lk • 

PROOF. We will leave this as an exercise; the proof is essentially the same as in 

the case of S02n C, with enough of a difference to make it interesting. 0 

We have thus constructed one-half of the irreducible representations of 

S02n+! C: any weight y in the closed Weyl chamber can be written 

y = a1 Ll + a2(L I + L2) + ... + an-l (Ll + ... + Ln-d + an(LI + ... + Ln}/2 

with ai E N; and if an is even, the representation 

SymO, V ® ... ® SymOn-' (1\"-1 V) ® SYm°.J2(I\"V) 

will contain an irreducible representation ry with highest weight y. We are still 

missing, however, any representation whose weights involve odd multiples of 
IX; to construct these, we clearly have to exhibit an irreducible representation 

ra with highest weight IX. This exists and is called (as in the case of the even 

orthogonal Lie algebras) the spin representation of S02n+! Co We see from the 

above that once we exhibit the spin representation r a, we will have constructed 

all the representations of S02n+! C; for any y as above the tensor 

SymO, V ® . . . ® SymOn-' (N-l V) ® SymOn(ra) 

will contain a copy of r y. 

As in the case of the spin representation ra of the even orthogonal Lie 

algebras, we can say some things about ra even in advance of its explicit 

construction; for example, we can do the following exercises. 
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Exercise 19.15. Find the weights (with multiplicities) of the representations 

Nv, and also of r". 

Exercise 19.16. Give the complete decomposition into irreducible representa

tions ofSym2 r" and Nr". Show that 

r" ® r" = NVEB N- 1 VEB N-2VEB . . . EB NVEB Nv. 

Exercise 19.17. Verify directly the above statements in the case of sOsC, using 

the isomorphism with sP4 c. 

§19.5. Weyl's Construction for Orthogonal Groups 

The same procedure we saw in the symplectic case can be used to construct 

representations of the orthogonal groups, this time generalizing what we saw 

directly for Nv in §§19.2 and 19.4. For the symmetric form Q on V = cm, 
the same formula (17.9) determines contractions from Vl8id to VI8i(d-Z). Denote 

the intersection of the kernels of all these contractions by V[d]. For any 

partition A = (AI ~ .. . ~ Am ~ 0) of d, let 

§P.] V = V[d] n §). V. (19.18) 

As before, this is a representation of the orthogonal group OmC of Q. 

Theorem 19.19. The space §[).] V is an irreducible representation of OmC; §[).] V 

nonzero if and only if the sum of the lengths of the first two columns of the 

Young diagram of A is at most m. 

The tensor power Vl8id decomposes exactly as in Lemma 17.15, with every

thing the same but replacing the symbol <d) by [d]. In particular, 

§[).] V = V[dl. C). = Im(c).: V[d]-+ V[d]). 

Exercise 19.20. Verify that §[).] V is zero when the sum of the lengths of the 
first two columns is greater than m by showing that Nv ® Nv ® v(d-a-b) is 
contained in L I 'I'/(VI8i(d-Z» when a + b > m. Show that §P.] V is not zero 

when the sum of the lengths of the first two columns is at most m. 

Exercise 19.21*. (i) Show that the kernel of the contraction from SymdV to 

Symd-ZV is the irreducible representation §[d] V of sOmC with highest weight 

dL 1 • 

(ii) Show that 

SymdV = §[d] V EB §[d-2] V EB ... EB §[d-2p] V, 

where p is the largest integer s; d/2. 
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The proof of the theorem proceeds exactly as in §17.3. The fundamental 

fact from invariant theory is the same statement as (17.19), with, of course, the 

operators 81 = 'PI 0 «1>1 defined using the given symmetricform, and the group 

SP2nC replaced by OmC (and the same reference to Appendix F.2 for the 

proof). The theorem then follows from Lemma 6.22 in exactly the same way 

as for the symplectic group. 

To find the irreducible representations over SOmC one can proceed as in 

§5.1. Weyl calls two partitions (each with the sum of the first two column 

lengths at most m) associated if the sum of the lengths of their first columns is 

m and the other columns of their Young diagrams have the same lengths. 

Representations of associated partitions restrict to isomorphic representa

tions of SOme. Note that at least one of each pair of associated partitions will 

have a Young diagram with at most tm rows. If m = 2n + 1 is odd, no A is 
associated to itself, but if m = 2n is even, any A with a Young diagram with n 

nonzero rows will be associated to itself, and its restriction will be the sum of 
two conjugate representations ofSOmC of the same dimension. The final result 

is: 

Theorem 190220 (i) If m = 2n + 1, and A = (AI ~ ... ~ An ~ 0), then §[).j V is the 

irreducible representation of sOmC with highest weight Al LI + . .. + AnLn· 
(ii) If m = 2n, and A = (AI ~ .,. ~ An-l ~ 0), then §[).) V is the irreducible 

representation of sOmC with highest weight Al LI + ... + AnLn. 
(iii) If m = 2n, and A = (AI ~ ... ~ An-l ~ An > 0), then §[).j V is the sum of 

two irreducible representations of sOmC with highest weights AILI + ... + AnLn 

and AILI + ... + An-l Ln- l - AnLn· 

Exercise 190230 When m is odd, show that OmC = SOmC x {±I}. Show that 

irA. and Il are associated, then Il = A ® e, where eis the sign of the determinant. 

We postpone to Lecture 25 all discussion of multiplicities of weight spaces, 

or decomposing tensor products or restrictions to subgroups. 

As we saw in Lecture 15 for GLnC and in Lecture 17 for SP2nC, it is possible 
to make a commutative algebra §[OJ = §[OJ(V) out of the sum of all the 

irreducible representations of SOmC, where V = cm is the standard repre

sentation. First suppose m = 2n + 1 is odd. Define the ring §O(v, n) as in §15.5, 

which is a sum of all the representations § ).(V) of GL(V) where A runs over 

all partitions with at most n parts. As in the symplectic case, there is a 

canonical decomposition 

§).(V) = §[).)(V) $ J[).j(V), 

and the direct sum J[Oj = Efh J[).j(V) is an ideal in §O(v, n). The quotient ring 

§[OJ(V) = AO(V, n)/J[O) = EB §[).j(V) 
). 

is a commutative graded ring which contains each irreducible representation 

of S02n+! C once. 
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If m = 2n is even, the above quotient will contain each representation 

§[A.](V) twice if A. has n rows. To cut it down so there is only one of each, one 

can add to J['] relations of the form x - r(x), for x E!\"V, where r : !\"V -+!\"V 

is the isomorphism described in the remark (iii) after the proof of Theorem 

19.2. For a detailed discussion, with explicit generators for the ideas, see [L-T]. 



LECTURE 20 

Spin Representations of SOm C 

In this lecture we complete the picture of the representations of the orthogonal Lie 

algebras by constructing the spin representations S± of sOmC; this also yields a 

description of the spin groups SpinmC. Since the representation-theoretic analysis of 

the spaces S± was carried out in the preceding lecture, we are concerned here primarily 

with the algebra involved in their construction. Thus, §20.1 and §20.2, while elementary, 

involve some fairly serious algebra. Section 20.3, where we briefly sketch the notion of 

triality, may seem mysterious to the reader (this is at least in part because it is so to 

the authors); if so, it may be skipped. Finally, we should say that the subject of the spin 

representations of sOm C is a very rich one, and one that accommodates many different 

points of view; the reader who is interested is encouraged to try some of the other 

approaches that may be found in the literature. 

§20.1: Clifford algebras and spin representations of sOmC 

§20.2: The spin groups SpinmC and SpinmlR 

§20.3: SpinsC and triality 

§20.1. Clifford Algebras and Spin Representations 
ofsomC 

We begin this section by trying to motivate the definition of Clifford algebras. 

We may begin by asking, why were we able to find all the representations of 

SLnlC or SP2nIC inside tensor powers ofthe standard representation, but only 

half the representations ofSOmlC arise this way? One difference that points in 

this direction lies in the topology of these groups: SLnlC and SP2nIC are simply 

connected, while SOmlC has fundamental group 7L/2 for m > 2 (for proofs 

see §23.1). Therefore SOmlC has a double covering, the spin group Spinmc' 
(For m ~ 6, these coverings could also be extracted from our identifications 
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ofthe adjoint group PSOm C with the adjoint group of other simply connected 

groups; e.g. the double cover of S03 C is SL2 C) We will see that the missing 

representations are those representations of Spinm C that do not come from 

representations of SO .. C 
This double covering may be most readily visible, and probably familiar, 

for the case of the real subgroup S031R of rotations: a rotation is specified by 

an axis to rotate about, given by a unit vector u, and an angle of rotation 

about u; the two choices ± u of unit vector give a two-sheeted covering. In 
other words, if D3 is the unit ball in 1R3, there is a double covering 

S3 = D3/oD 3 ~ S031R, 

which sends a vector v in D3 to rotation by the angle 2nllvll about the unit 

vector v/llvll (the origin and the unit sphere aD3 are sent to the identity 
transformation). 

This covering is even easier to see for the entire orthogonal group 031R, 

which is generated by reflections Rv in unit vectors v (with ± v determining 
the same reflection): we can describe the double cover of 031R as the group 

generated by unit vectors v, with relations 

whenever the compositions of the corresponding reflections are equal, i.e., 
whenever 

and also relations 
(-v)·(-w) = v·w 

for all pairs of unit vectors v and w. (Note that if we restricted ourselves to 

products of even numbers of the generators v E oD3 we would get back the 
double cover of the special orthogonal group S03 C) 

How should we generalize this? The answer is not obvious. For one thing, 
for various reasons we will not try to construct directly a group that covers 

the orthogonal group in general. Instead, given a vector space V (real or 
complex) and a quadratic form Q on V, we will first construct an algebra 
Cliff(V, Q), called the Clifford algebra. The algebra Cliff(V, Q) will then turn 
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out to contain in its multiplicative group a subgroup which is a double cover 

of the orthogonal group O(V, Q) of automorphisms of V preserving Q. 

By analogy with the construction of the double cover of S031R, the Clifford 

algebra Cliff(V, Q) associated to the pair (V, Q) is an associative algebra 

containing and generated by V. (When we want to describe the spin group 

inside Cliff(V, Q) we will restrict ourselves to products of even numbers of 

elements of V having a fixed norm Q(v, v); if odd products are allowed as well, 

we get a group called "Pin" which is a double covering of the whole orthogonal 
group.) To motivate the definition, we would like Cliff(V, Q) to be the algebra 

generated by V subject to relations analogous to those above for the double 
cover of the orthogonal group. In particular, for any vector v with Q(v, v) = 1, 

since the reflection Rv in the hyperplane perpendicular to v is an involution, 
we want 

v·v = 1 

in Cliff(V, Q). By polarization, this is the same as imposing the relation 

v·w + w·v = 2Q(v, w) 

for all v and w in V. In particular, w· v = - V· w if v and ware perpendicular. 

In fact, the Clifford algebra 1 will be defined below to be the associative algebra 
generated by V and subject to the equation V· v = Q(v, v). 

Looking ahead, we will see later in this section that each complex Clifford 
algebra contains an orthogonal Lie algebra as a subalgebra. The key theorem 

is then that Cliff(V, Q) is isomorphic either to a matrix algebra or to a sum of two 

matrix algebras. This in turn determines either one or two representations of 

the orthogonal Lie algebras, which turn out to be the representations which 

were needed to complete the story in the last lecture. Just as in the special linear 
and symplectic cases, the corresponding Lie groups are not really needed to 

construct the representations; they can be written down directly from the Lie 
algebra. In this section we do this, using the Clifford algebras to construct 

these representations of sOme directly, and verify that they give the missing 

spin representations. In the second section of this lecture we will show how 

the spin groups sit as subgroups in their multiplicative groups. 

Clifford Algebras 

Given a symmetric bilinear form Q on a vector space V, the Clifford algebra 

C = C(Q) = Cliff(V, Q) is an associative algebra with unit 1, which contains 

and is generated by V, with v· v = Q(v, v) · 1 for all v E V. Equivalently, we have 
the equation 

v·w + w · v = 2Q(v, w), (20.1) 

1 The mathematical world seems to be about evenly divided about the choice of signs here, and 

one must translate from Q to - Q to go from one side to the other. 
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for all v and w in V The Clifford algebra can be defined to be the universal 

algebra with this property: if E is any associative algebra with unit, and a 

linear mapping j: V -+ E is given such that j(V)2 = Q(v. v) · 1 for all v E V, or 

equivalently 

j(v)·j(w) + j(w)·j(v) = 2Q(v. w)·1 (20.2) 

for all v, w E V, then there should be a unique homomorphism of algebras from 

C(Q) to E extending j. The Clifford algebra can be constructed quickly by 

taking the tensor algebra 

T'(V) = EB v®n = C$ VEB(V® V)$(V® V® V)$···. 
n"O 

and setting C(Q) = T·(V)/I(Q). where I(Q) is the two-sided ideal generated by 

all elements of the form v ® v - Q(v. v)· 1. It is automatic that this C(Q) 

satisfies the required universal property. 

The facts that the dimension of C is 2m, where m = dim(V). and that the 

canonical mapping from V to C is an embedding. are part of the following 

lemma: 

Lemma 20.3. If e i • ...• em form a basis for V, then the products er = 
ei , ·ejz · .. . ·ejk • for I = {i i <;2 < ... < ik}' and with e; = 1. form a basis for 
C(Q) = Cliff(V, Q). 

PROOF. From the equations ej· ej + ej· ej = 2Q(ej. e) it follows immediately 

that the elements er generate C(Q). Their independence is not hard to verify 

directly; it also follows by seeing that the images in the matrix algebras under 

the mappings constructed below are independent. For another proof. note 

that when Q == O. the Clifford algebra is just the exterior algebra I\'V In 

general, the Clifford algebra can be filtered by subspaces Fl , consisting of those 

elements which can be written as sums of at most k products of elements in 

V; one checks that the associated graded space Fk/Fk+i is Nv For a third 

proof. one can verify that the Clifford algebra of the direct sum of two 

orthogonal spaces is the skew commutative tensor product of the Clifford 

algebras of the two spaces (cf. Exercise B.9), which reduces one to the trivial 

case where dim V = 1. 0 

Since the ideal I(Q) c T(V) is generated by elements of even degree, the 

Clifford algebra inherits a ll./211. grading: 

C = ceven $ c odd = C+ $ C- • 

with C+· C+ c C+, C+· c- c C-, c-· C+ c C-. C-· c- c C+; C+ is spanned 

by products of an even number of elements in Vand C- is spanned by products 

of an odd number. In particular. ceven is a subalgebra of dimension 2m- i . 

Since C(Q) is an associative algebra. it determines a Lie algebra. with 
bracket [a. b] = a· b - b· a. From now on we assume Q is nondegenerate. The 

new representations of sOmC will be found in two steps: 
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(i) embedding the Lie algebra 50(Q) = 50m C inside the Lie algebra of the even 

part of the Clifford algebra C(Q); 

(ii) identifying the Clifford algebras with one or two copies of matrix algebras. 

To carry out the first step we make explicit the isomorphism of Nv with 

50(Q) that we have discussed before. Recall that 

50(Q) = {X E End(V): Q(Xv, w) + Q(v, Xw) = 0 for all v, w in V} . 

The isomorphism is given by 

NV~50(Q) c End(V), 

for a and b in V, where CPQAb is defined by 

</JQAb(V) = 2(Q(b, v)a - Q(a, v)b). (20.4) 

It is a simple verification that </JQAb is in 50(Q). One sees that the natural bases 

correspond up to scalars, e.g., ei /\ e1l+i maps to 2(Ei,i - E1I+i ,1I+i)' so the map 
is an isomorphism. (The choice of scalar factor is unimportant here; it was 

chosen to simplify later formulas.) One calculates what the bracket on N V 

must be to make this an isomorphism of Lie algebras: 

[</JQAb' CPcAd] (v) = </JQAb 0 </JcAiv) - CPcl\d 0 </JQl\b(V) 

= 2</JQl\b(Q(d, v)c - Q(c, v)d) - 2</JCAiQ(b, v)a - Q(a, v)b) 

= 4Q(d, v)(Q(b, c)a - Q(a, c)b) 

- 4Q(c, v)(Q(b, d)a - Q(a, d)b) 

- 4Q(b, v)(Q(d, a)c - Q(c, a)d) 

+ 4Q(a, v)(Q(d, b)c - Q(c, b)d) 

= 2Q(b, c)</JQl\iv) - 2Q(b, d)</JQl\c(v) 

- 2Q(a, d)CPcl\b(V) + 2Q(a, C)CPdl\b(V). 

This gives an explicit formula for the bracket on Nv: 

[a /\ b, c /\ d] = 2Q(b, c)a /\ d - 2Q(b, d)a /\ c 

- 2Q(a, d)c /\ b + 2Q(a, c)d /\ b. (20.5) 

On the other hand, the bracket in the Clifford algebra satisfies 

[a'b,c'd] = a·b·c·d- c·d·a ·b 

= (2Q(b, c)a' d - a' c· b· d) - (2Q(a, d)c' b - c· a ' d· b) 

= 2Q(b, c)a ' d - (2Q(b, d)a' c - a' c· d· b) 

- 2Q(a, d)c ' b + (2Q(a, c) · d·b - a'c'd'b) 

= 2Q(b, c)a' d - 2Q(b, d)a' c - 2Q(a, d)c' b + 2Q(a, c) · d· b. 
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It follows that the map t/! : Nv -+ ClifT(V, Q) defined by 

t/!(a /\ b) = t(a' b - b · a) = a' b - Q(a, b) (20.6) 

is a map2 of Lie algebras, and by looking at basis elements again one sees that 

it is an embedding. This proves: 

Lemma 20.7. The mapping t/! 0 cp-l : so(Q)-+ C(Q)even embeds so(Q) as a Lie 
subalgebra of C(Q)even. 

Exercise 20.8. Show that the image of t/! is 

F2 11 C(Q)even 11 Ker(trace), 

where F2 is the subspace of C( Q) spanned by products of at most two elements 

of V, and the trace of an element of C(Q) is the trace of left multiplication by 

that element on C(Q). 

We consider first the even case: write V = WEB W', where Wand W' are 

n-dimensional isotropic spaces for Q. (Recall that a space is isotropic when Q 

restricts to the zero form on it.) With our choice of standard Q on V = 1(:2", 

W can be taken to be the space spanned by the first n basis vectors, W' by the 

last n. 

Lemma 20.9. The decomposition V = WEB W' determines an isomorphism of 

algebras 

C(Q) ~ End(I\·W), 

where I\·W = I\ow EB'" EB I\"w 

PROOF. Mapping C(Q) to the algebra E = End(I\·W) is the same as defining 

a linear mapping from V to E, satisfying (20.2). We must construct maps 

I: W -+ E and I': W' -+ E such that 

l(w)2 = 0, 1'(w')2 = 0, (20.10) 

and 

I(w) 0 I'(w') + I'(w') 0 I(w) = 2Q(w, w')J 

for any WE W, W' E W'. For each WE W, let L", E E be left multiplication by 

won the exterior algebra I\·W: 

L",(e) = w /\~, ~ E I\·W 

For f). E W*, let Ds E E be the derivation of I\·W such that Ds(1) = 0, Ds(w) = 

f).(w) E I\ow = I(: for WE W = N W, and 

2 Note that the bilinear form t/! given by (20.6) is alternating since t/!(a 1\ a) = 0, so it defines a 

linear map on IVV. 
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DI!(( 1\ e) = DI!(O 1\ e + (_1)deg('J( 1\ DI!(C). 

Explicitly, DI!(w1 1\ . .. 1\ wr ) = L: (-1)i-l.9(Wi)(Wl 1\ .•• 1\ Wi 1\ •• • 1\ wr ). Now 

set 

l(w) = L w , l'(w') = DI!, (20.11) 

where.9 E W* is defined by the identity .9(w) = 2Q(w, w') for all w E W. The re

quired equations (20.10) are straightforward verifications: one checks directly 

on elements in W = N W, and then that, if they hold on ( and e, they hold 

on ( 1\ e. Finally, one may see that the resulting map is an isomorphism by 

looking at what happens to a basis. D 

Exercise 20.12. The left C(Q)-module J\·W is isomorphic to a left ideal in C(Q). 

Show that if f is a generator for J\"W', then C(Q). f = J\·W· f, and the map 

(1---+ ( . f gives an isomorphism 

J\·W-+J\·W·f = C(Q)'f 

ofleft C(Q)-modules. 

Now we have a decomposition J\·W = NvenWE!) NddW into the sum of 

even and odd exterior powers, and C(w)even respects this splitting. We deduce 

from Lemma 20.9 an isomorphism 

C(Q)even ~ End(NVenw) ffi End(J\oddW). (20.13) 

Combining with Lemma 20.7, we now have an embedding of Lie algebras: 

(20.14) 

and hence we have two representations of so(Q) = 502nC, which we denote by 

S+ = J\_venw and S- = J\oddw. 

Proposition 20.15. The representations S± are the irreducible representations of 

502nC with highest weights ex = !(L1 + .. . + Ln) and P = !(L1 + . .. + Ln- 1 -

Ln). More precisely, 

S+ = r~ and S- = rp if n is even; 

S+ = rp and S- = r~ if n is odd. 

PROOF. We show that the natural basis vectors e1 = ei, 1\ ..• 1\ eik for J\·W 

are weight vectors. Tracing through the isomorphisms established above, we 

see that Hi = Ei,i - En+i,n+i in ~ C 502nC corresponds to !(ei 1\ en+i ) in J\2v, 
which corresponds to !(ei' en+ i - 1) in C(Q), which maps to 

!(Le; 0 DM - J) = Lei 0 DeT - !I E End(J\·W). 

A simple calculation shows that 
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{
el ifieI 

L e, 0 Der(el) = 0 ifi ¢ I. 

Therefore, el spans a weight space with weight t(L;el L; - LUI Lj ). All such 

weights with given III mod 2 are congruent by the Weyl group, so each of 
S+ = Nvenw+ and S- = !\oddW must be an irreducible representation. The 

highest weights are easy to read otT. For example, the highest weight for 

Nven W is t L L; = IX if n is even, while if n is odd, its highest weight is p. D 

These two representations S+ and S- are usually called the half-spin 

representations of S02nC, while their sum S = S+ Ef> S- = !\'W is called the 

spin representation. Frequently, especially when we speak of the even and odd 

cases together, we call them all simply "spin representations." Elements of S 
are called spinors. For other proofs of the proposition see Exercises 20.34 and 
20.35. 

For the odd case, write V = W Ef> w' Ef> U, where Wand W' are n

dimensional isotropic subspaces, and U is a one-dimensional space perpendic
ular to them. For our standard Q on C2n+\ these are spanned by the first n, 
the second n, and the last basis vector. 

Lemma 20,16, The decomposition V = W Ef> w' Ef> U determines an isomor

phism of algebras 

C(Q) ~ End(!\'W) Ef> End(!\'W'). 

PROOF. Proceeding as in the even case, to map V to E = End(!\'W), map we W 

to Lw, w' e W' to DII , where .9(w) = 2Q(w, w') as before. Let Uo be the element 
in U such that Q(uo, uo) = 1, and send Uo to the endomorphism that is the 
identity on Nvenw, and minus the identity on !\oddW Since this involution 

skew commutes with all Lw and D II, the resulting map from V = W Ef> w' Ef> U 
to E determines an algebra homomorphism from C(Q) to E. The map to 

End(!\'W') is defined similarly, reversing the roles of Wand W'. Again one 

checks that the map is an isomorphism by looking at bases. D 

Exercise 20,17*, Find a generator for a left ideal of C(Q) that is isomorphic 
to !\'W 

The subalgebra C(Q)even of C(Q) is mapped isomorphically onto either of 

the factors by the isomorphism of the lemma, so we have an isomorphism in 

the odd case: 
C(Q)even ~ End(!\'W). 

As before, this gives a representation S = !\'W of Lie algebras: 

502n+1 C = 50(Q) C C(Q)cvcn ~ gl(!\'W) = 91(S). 

(20.18) 

(20.19) 
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Proposition 20.20. The representation S = I\·W is the irreducible representation 

of S02"+1 C with highest weight 

(X = t(L I + ... + L"). 

PROOF. Exactly as in the even case, each el is an eigenvector with with weight 

t(LiE1Li - LH1Lj ) . This time all such weights are congruent by the Weyl 

group, so this must be an irreducible representation, and the highest weight 

is clearly t(L l + ... + L"). 0 

As we saw in Lecture 19, the construction of this spin representation S 
finishes the proof of the existence theorem for representations of sOme, and 

hence for all of the classical complex semisimple Lie algebras. 

Exercise 20.21*. Use the above identification of the Clifford algebras with 

matrix algebras (or direct calculation) to compute their centers. In particular, 

show that the intersection of the center of C with the even subalgebra ceven is 

always the one-dimensional space of scalars. Show similarly that if x is in codd 

and x . v = - V· x for all v in V, then x = o. 

Exercise 20.22*. For X E so(Q) and v E V, we have X ' v E V by the standard 

action of so(Q) on V. On the other hand, we have identified so(Q) and Vas 
subspaces of the Clifford algebra C, so we can compute the commutator 

[X, v]. Show that these agree: 

X' v = [X, v] EVe C. 

Problem 20.23*. Let C(p, q) be the real Clifford algebra corresponding to the 

quadratic form with p positive and q negative eigenvalues. Lemmas 20.9 and 

20.16 actually construct isomorphisms of C(n, n) with a real matrix algebra, 

and ofC(n + 1, n) with a product of two real matrix algebras. Compute C(p, q) 

for other p and q. All are products of one or two matrix algebras over IR, e, 

or IHI. 

§20.2. The Spin Groups Spinm C and Spinm ~ 

The Clifford algebra C = C(Q) is generated by the subspace V = em, and C 

has an anti-involution x 1-+ x*, determined by 

(Vi· .. · • v,)* = (-I)'v,. .. . ' VI 

for any VI' ..• , v, in V. This operation *, sometimes called the conjugation, is 
the composite of: 

the main antiautomorphism or reversing map -r : C -+ C determined by 
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r(v i ... . . Vr) = Vr ···· Vi (20.24) 

for Vi' . •. ' vr in V, and 

the main involution tx which is the identity on ceven and minus the identity 

on codd, i.e., 

tx(V i . • ... Vr) = (-l)'Vi ..... Vr. (20.25) 

Note that (X· y)* = y* . x*, which comes from the identities r(x . y) = r(y)· r(x) 
and tx(x . y) = tx(x) · tx(y). 

Exercise 20.26. Use the universal property for C to verify that these are well 

defined: show that tx is a homomorphism from C to C and r is a well-defined 

homomorphism from C to the opposite algebra of C (the algebra with the 

same vector space structure, but with reversed multiplication: x 7y = y . x). 

Instead of defining the spin group as the set of products of certain elements 

of V, it will be convenient to start with a more abstract definition. Set 

Spin(Q) = {x E C(Q)even: x · x· = 1 and x· V' x* c V}. (20.27) 

We see from this definition that Spin(Q) forms a closed subgroup of the group 

of units in the (even) Clifford algebra. Any x in Spin(Q) determines an endo
morphism p(x) of V by 

p(xHv)=x·v·x*, vEV. 

Proposition 20.28. For x E Spin(Q), p(x) is in SO(Q). The mapping 

p: Spin(Q) -. SO(Q) 

is a homomorphism, making Spin(Q) a connected two-sheeted covering of SO(Q). 

The kernel of pis {I, -I}. 

PROOF. We will prove something more. Define a larger subgroup, this time of 
the multiplicative group of C(Q), by 

Pin(Q) = {x E C(Q): X· x* = 1 and X' V' x* c V}, (20.29) 

and define a homomorphism 

p: Pin(Q) -. O(Q), p(x)(V) = tx(x)' V· x*, (20.30) 

where tx: C(Q) -. C(Q) is the main involution. 

To see that p(x) preserves the quadratic form Q, we use the fact that for w 
in V, Q(w, w) = w' w = - W' w*, and calculate: 

Q(p(xHv), p(x)(v» = - tx(x)' V · x*' (tx(x)· V· x*)* 

= - tx(x)' v . x* . x . v* . tx(x)* 
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= -a(x)·v·v*·a(x*) 

= Q(v, v)a(x)· a(x*) 

= Q(v, v)a(x· x*) = Q(v, v). 

309 

We claim next that p is surjective. This follows from the standard fact (see 

Exercise 20.32) that the orthogonal group O(Q) is generated by reflections. 

Indeed, if Rw is the reflection in the hyperplane perpendicular to a vector w, 

normalized so that Q(w, w) = -1, it is easy to see that w is in Pin(Q) and 

p(w) = Rw; in fact, 

w·w* = w ·(-w) = - Q(w, w) = 1, 

and so 

p(w)(w) = a(w) · w · w* = -w · l = -w; 

and if Q(w, v) = 0, 

p(w)(v) = a(w) · v·w* = -w · v·w* = v·w·w* = v. 

The next claim is that the kernel of p on the larger group Pin(Q) is ± 1. 

Suppose x is in the kernel, and write x = Xo + X 1 with Xo E ceven and Xl E Codd• 

Then Xo • v = v· Xo for all v E V, so Xo is in the center of C. And Xl · V = - v . Xl 

for all v E V. By Exercise 20.21, Xo is in C · 1, and Xl = O. So x = Xo is in C and 

x 2 = 1; so x = ± 1. 
It follows that if R E O(Q) is written as a product of reflections Rw, 0 •• • 0 Rwr , 

then the two elements in p -1 (R) are ± W 1 •• •• • wr • In particular, we get another 

description of the spin groups: 

Spin(Q) = Pin(Q) n C(Q)ovcn = p-1(SO(Q)) 

(20.31) 

Since -1 = v· v for any v with Q(v, v) = -1, we see that the spin group 

consists of even products of such elements. 
To complete the proof, we must check that Spin(Q) is connected or, equiva

lently, that the two elements in the kernel of p can be connected by a path. 

We leave this now as an exercise, since much more will be seen shortly. 0 

Exercise 20.32*. Let Q be a nondegenerate symmetric bilinear form on a real 

or complex vector space V. 

(a) Show that if v and ware vectors in V with Q(v, v) = Q(w, w) ~ 0, then 

there is either a reflection or a product of two reflections that takes v into w. 

(b) Deduce that every element of the orthogonal group of Q can be written 

as the product of at most 2·dim(V) reflections. 

Exercise 20.33*. Since Spin(Q) is a subgroup of the multiplicative group of 

C(Q), its Lie algebra is a subalgebra of C(Q) with its usual bracket. Verify that 

this subalgebra is the subalgebra so(Q) that was constructed in §20.1. 
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Exercise 20.34. The fact that !\"W (and !\"W' in the odd case) is an irreducible 

module over C(Q) is equivalent to the fact that it is an irreducible represen

tation of the group Pin(Q) since the linear span of Pin(Q) is dense in C(Q). 

(a) Apply the analysis of §5.1 to the subgroup 

Spin(Q) c Pin(Q) 

of index two. In the odd case, !\"W and !\"W' are conjugate representations, 

so their restrictions to Spin(Q) are isomorphic and irreducible: this is the spin 

representation. In the even case, !\"W is self-conjugate, and its restriction to 

Spin(Q) is a sum of two conjugate irreducible representations, which are the 

two half-spin representations. 

(b) Of the representations of Spin(Q) (i.e., the representations of sOme), 

which induce irreducible representations of Pin( Q) and which are restrictions 

of irreducible representations of Pin(Q)? 

Exercise 20.35. Deduce the irreducibility of the spin and half-spin represen

tations from the fact that their restrictions to the 2-groups of Exercise 3.9 are 

irreducible representations of these finite groups. 

Exercise 20.36*. Show that the center ofSpinm(e) is p-l(l) = {± I} ifm is odd. 

If m is even show that the center is 

p-l(± 1) = {± 1, fro}, 

where, in terms of our standard basis, 

2 

Exercise 20.37*. Show that the spin representation Spin(Q) -+ GL(S) maps 

into the special linear group SL(S). Show that for m = 2n and n even, the 

half-spin representations also map into the special linear groups SL(S+) and 
SL(S-). 

Exercise 20.38*. Construct a nondegenerate bilinear pairing p on the spinor 

space S = !\"W by choosing an isomorphism of NW with C and letting P(s, t) 
be the image of r(s) /\ t E !\"W by the projection to Nw = C, where r is the 

main antiautomorphism). 

(a) When m = 2n, show that P can also be defined by the identity P(s, t)f = 

r(5 ' f). t· f for an appropriate generator f of NW'. Deduce that the action 

of Spin(Q) on S respects the bilinear form p. 
(b) Show that p is symmetric if n is congruent to 0 or 3 modulo 4, and 

skew-symmetric otherwise. So the spin representation is a homomorphism 

Spin2n+l C -+ S02nC if n == 0, 3 (4), 

Spin2n +l C -+ SP2nC if n == 1,2 (4). 
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(c) If m = 2n, the restrictions of p to S+ and S- are zero if n is odd. For n 
even, deduce that the half-spin representations are homomorphisms 

Spin2nC -+ S02"-1 C if n == 0 (4), 

Spin2nC -+ SP2"-1 C if n == 2 (4). 

Note in particular that SpingC has two maps to SOgC in addition to the 

original covering. "Triality," which we discuss in the next section, describes 

the relation among these three homomorphisms. 

Exercise 20.39. Show that the spin and half-spin representations give the 

isomorphisms we have seen before: 

Spin2C ~ GL(S+) = GL 1 C = C·, 

Spin3C ~ SL(S) = SL2C, 

Spin4C ~ SL(S+) x SL(S-) = SL2C x SL2C, 

Spins C ~ Sp(S) = Sp4 C, 

Spin6C ~ SL(S+) = SL4C. 

Exercise 20.40. Let Cm denote the Clifford algebra of the vector space cm with 

our standard quadratic form Qm. 

(a) The embedding ofc2n = W Ef> W' in c 2n+1 = WEt> W' Ef> Vas indicated 

induces an embedding of C2n in C2n+1' and corresponding embedding of 

Spin2nC in Spin2n+1 C and ofS02nC in S02n+1 C. Show that the spin represen
tation S ofSpin2n+1 C restricts to the spin representation S+ Ef> S- ofSpin2nC. 

(b) Similarly there is an embedding of Spin2n+1 C in Spin2n+2C coming 

from an embedding ofC2n+1 = WEt> W' Ef> VinC2n+2 = WEt> W'Ef> VI Ef> V2 ; 

here VI EB V2 = C Et> C with the quadratic form (~ ~), and V = C is 

embedded in VI Ef> V2 by sending 1 to (fi' fi) Show that each of the 

half-spin representations of Spin2n+2 C restricts to the spin representation of 

Spin2n+1 C. 

Very little of the above discussion needs to be changed to construct the real 

spin groups Spinm(IR), which are double coverings of the real orthogonal 

groups SOm(IR). One uses the real Clifford algebra Cliff(lRm, Q) associated to 

the real quadratic form Q = - Qm, where Qm is the standard positive definite 

quadratic form on IRm. If Vi are an orthonormal basis, the products in this 

Clifford algebra are given by 

and Vi · Vi = -1. 
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The same definitions can be given as in the complex case, giving rise to 

coverings Pinm(~) of Om(~) and Spinm(~) of SOm(~). 

Exercise 20.41. Show that Spinm~ is connected by showing that if v and ware 

any two perpendicular elements in V with Q(v, v) = Q(w, w) = -1, the path 

t 1-+ (cos(t)v + sin(t)w)· (cos(t)v - sin(t)w), O:s t :s nl2 

connects - 1 to 1. 

Exercise 20.42. Show that i 1-+ V2 • v3 , j 1-+ V3 • VI' k 1-+ VI· v2 determines an iso
morphism of the quatemions IHI onto the even part of Cliff(~3, -Q3)' such 
that conjugation - in IHI corresponds to the conjugation * in the Clifford 

algebra. Show that this maps Sp(2) = {q E IHIlqq = I} isomorphically onto 

Spin3~' and that this isomorphism is compatible with the map to S03 ~ 
defined in Exercise 7.15. 

More generally, if Q is a quadratic form on ~m with p positive and q negative 
eigenvalues, we get a group Spin+(p, q) in the Clifford algebra C(p, q) = 
Cliff(~m, Q), with double coverings 

Spin+(p, q) -+ SO+(p, q). 

Exercise 20.43*. Show that Spin+(p, q) is connected if p and q are positive, 

except for the case p = q = 1, when it has two components. Show that if in 

the definition of spin groups one relaxes the condition x· x* = 1 to the 
condition x· x* = ± 1, one gets coverings Spin(p, q) of SO(p, q). 

§20.3. Spins C and Triality 

When m is even, there is always an outer automorphism of Spinm(C) that 
interchanges the two spin representations S+ and S-, while preserving the 

basic representation V = Cm (cf. Exercise 19.9). In case m = 8, all three ofthese 
representations V, S+ , and S- are eight dimensional. One basic expression of 

triality is the fact that there are automorphisms of SpinsC or sOsC that 
permute these three representations arbitrarily. (In fact, the group of outer 
automorphisms modulo inner automorphisms is the symmetric group on 
three elements.) We give a brief discussion of this phenomenon in this section, 

in the form of an extended exercise. 
To see where these automorphisms might come from, consider the four 

simple roots: 

0(1 = Ll - L 2 , 0(2 = L2 - L 3, 0(3 = L3 - L 4 , 0(4 = L3 + L 4 • 

Note that 0(1' 0(3' and 0(4 are mutually perpendicular, and that each makes an 
angle of 120° with 0(2: 
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Exercise 20.44·. For each of the six permutations of {cx l , CX 3 , cx4 } find the 

orthogonal automorphism of the root space which fixes CX2 and realizes the 

permutation of (Xl' cx 3 , and CX4 • 

Each automorphism of this exercise corresponds to an automorphism of 

the Cartan subalgebra ~. In the next lecture we will see that such auto

morphisms can be extended (nonuniquely) to automorphisms of the Lie 

algebra 508((:), (For explicit formulas see [Ca2].) 

There is also a purely geometric notion of triality. Recall that an even

dimensional quadric Q can contain linear spaces A of at most half the dimen

sion of Q, and that there are two families of linear spaces of this maximal 

dimension (cf. [G-H], [Ha]). In case Q is six-dimensional, each of these 

families can themselves be realized as six-dimensional quadrics, which we may 

denote by Q+ and Q- (see below). Moreover, there are correspondences that 

assign to a point of anyone of these quadrics a 3-plane in each of the others: 

Point in Q --- 3-plane in Q+ 

/ '" 3-plane in Q- Point in Q- (20.45) 

~ /' 
Point in Q+ --- 3-plane in Q 

Given P E Q, {A E Q+: A contains P} is a 3-plane in Q+, and {A E Q-: A 

contains P} is a 3-plane in Q- . 

Given A E Q+, A itself is a 3-plane in Q, and {r E Q-: rnA is a 2-plane} 

is a 3-plane in Q-. 

Given A E Q- , A itself is a 3-plane in Q, and {r E Q+ : rnA is a 2-plane} 

is a 3-plane in Q+ . 

To relate these two notions of triality, take Q to be our standard quadric 

in p 7 = P(V), with V = W $ W' with our usual quadratic space, and let 
S+ = J\evenW and S- = NddW be the two spin representations. In Exercise 

20.38 we constructed quadratic forms on S+ and S-, by choosing an iso

morphism of Nw with C. This gives us two quadrics Q+ and Q- in P(S+) 
and P(S-). 

To identify Q+ and Q- with the families of 3-planes in Q, recall the action 

of V on S = !\'W = S+ Etl S- which gave rise to the isomorphism of the 

Clifford algebra with End(S) (cf. Lemma 20.9). This in fact maps S+ to S-
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and S- to S+; so we have bilinear maps 

V x S+ ..... S- and V x S- ..... S+ . (20.46) 

Exercise 20.47. Show that for each point in Q+, represented by a vector S E S+ , 
{v E V: V· S = O} is an isotropic 4-plane in V, and hence determines a projective 

3-plane in Q. Similarly, each point in Q- determines a 3-plane in Q. Show that 

every 3-plane in Q arises uniquely in one of these ways. 

Let ( , >v denote the symmetric form corresponding to the quadratic 

form in V, and similarly for S+ and S- . Define a product 

S+ x S- ..... V, S X tl-+ s· t, (20.48) 

by requiring that (v, s· t>v = (v ' s, t)s- for all v E V 

Exercise 20.49. Use this product, together with those in (20.46), to show that 

the other four arrows in the hexagon (20.45) for geometric triality can be 

described as in the preceding exercise. 

This leads to an algebraic version of triality, which we sketch following 

[Ch2]. The above products determine a commutative but nonassociative 

product on the direct sum A = V Ef> S+ EB S-. The operation 

(v, s, t)1-+ (v ' s, t)s-

determines a cubic form on A, which by polarization determines a symmetric 

trilinear form <I> on A. 

Exercise 20.50*. One can construct an automorphism J of A of order three 
that sends V to S+, S+ to S-, and S- to V, preserving their quadratic forms, 

and compatible with the cubic form. The definition of J depends on the 

choice of an element VI E V and Sl E S+ with (VI' VI >v = (Sl, Sl )s+ = 1; set 

tl = VI' SI' so that (t l , tl )s- = 1 as well. The map J is defined to be the 
composite p, 0 v of two involutions p, and v, which are determined by the 

following: 

(i) p, interchanges S+ and S-, and maps V to itself, with p,(s) = VI' S for S E S+; 

p,(v) = 2(v, VI >Vv l - v for v E V 
(ii) v interchanges V and S-, maps S+ to itself, with v(v) = V ' SI for v E V; 

v(s) = 2(s, Sl)S+SI - s for S E S+. 

Show that this J satisfies the asserted properties. 

Exercise 20.51 *. In this algebraic form, triality can be expressed by the asser

tion that there is an automorphism j ofSpinsC of order 3 compatible with J, 
i.e., such that for all x E Spins C, the following diagrams commute: 
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J -
v ---;--+ S+ ---;--+ S- ---;--+ V 
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If j' : $08C -+ $08C is the map induced by j, the fact that j is compatible 

with the trilinear form CI> (cf. Exercise 20.49) translates to the "local triality" 

equation 

CI>(X v, s, t) + CI>(v, Ys, t) + CI>(v, s, Zt) = 0 

for X E $08C, Y = j'(X), Z = j'(Y). 



PART IV 

LIE THEORY 

The purpose of this final part of the book is threefold. 

First of all, we want to complete the program stated in the introduction to 

Part II. We have completed the first two steps of this program, showing in 

Part II how the analysis of representations of Lie groups could be reduced to 

the study of representations of complex Lie algebras, of which the most 

important are the semisimple; and carrying out in Part III such an analysis 

for the classical Lie algebras sInC, sP2nC, and sOme. To finish the story, we 

want now to translate our answers back into the terms ofthe original problem. 

In particular, we want to deal with representations of Lie groups as well as 

Lie algebras, and real groups and algebras as well as complex. The passage 

back to groups is described in Lecture 21, and the analysis of the real case in 

Lecture 26. 

Another goal of this Part is to establish a framework for some of the results 

of the preceding lectures-to describe the general theory of semisimple Lie 

algebras and Lie groups. The key point here is the introduction of the Dynkin 

diagram and its use in classifying all semisimple Lie algebras over e. From 

one point of view, the impact of the classification theorem is not great: it just 

tells us that we have in fact already analyzed all but five of the simple Lie 

algebras in existence. Beyond that, however, it provides a picture and a 

language for the description of the general Lie algebra. This both yields a 

description of the five remaining simple Lie algebras and allows us to give 

uniform descriptions of associated objects: for example, the compact homo

geneous spaces associated to simple Lie groups, or the characters of their 

representations. The classification theory of semisimple Lie algebras is given 

in Lecture 21; the description in these terms of their representations and 

characters is given in Lecture 23. The five exceptional simple Lie algebras, 

whose existence is revealed from the Dynkin diagrams, are studied in Lecture 
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22; we give a fairly detailed account of one of them (g2), with only brief 
descriptions of the others. 

Third, all this general theory makes it possible to answer the main out

standing problem left over from Part III: a description of the multiplicities of 

the weights in the irreducible representations of the simple Lie algebras. We 

give in Lectures 24 and 25 a number of formulas for these mUltiplicities. 

This, it should be said, represents in some ways a shift in style. In the 
previous lectures we would typically analyze special cases first and deduce 

general patterns from these cases; here, for example, the Weyl character 

formula is stated and proved in general, then specialized to the various 
individual cases (this is the approach more often taken in the literature on the 

subject). In some ways, this is a fourth goal of Part IV: to provide a bridge 
between the naive exploration of Lie theory undertaken in Parts II and III, 

and the more general theory readers will find elsewhere when they pursue the 
subject further. 

Finally, we should repeat here the disclaimer made in the Preface. This 

part of the book, to the extent that it is successful, will introduce the reader 
to the rich and varied world of Lie theory; but it certainly undertakes no 

serious exploration of that world. We do not, for example, touch on such 

basic constructions as the universal enveloping algebra, Verma modules, Tits 
buildings; and we do not even hint at the fascinating subject of (infinite

dimensional) unitary representations. The reader is encouraged to sample 
these and other topics, as well as those included here, according to background 
and interest. 



LECTURE 21 

The Classification of Complex Simple 
Lie Algebras 

In the first section of this lecture we introduce the Dynkin diagram associated to a 

semisimple Lie algebra 9. This is an amazingly efficient way of conveying the structure 

of 9: it is a simple diagram that not only determines 9 up to isomorphism in theory, 

but in practice exhibits many of the properties of 9. The main use of Dynkin diagrams 

in this lecture, however, will be to provide a framework for the basic classification 

theorem, which says that with exactly five exceptions the Lie algebras discussed so far 

in these lectures are all the simple Lie algebras. To do this, in §21.2 we show how to 

list all diagrams that arise from semisimple Lie algebras. In §21.3 we show how to 

recover such a Lie algebra from the data of its diagram, completing the proof of the 

classification theorem. All three sections are completely elementary, though §21.3 gets 

a little complicated; it may be useful to read it in conjunction with §22.l, where the 

process described is carried out in detail for the exceptional algebra 92' (Note that 

neither §21.3 or §22.1 is a prerequisite for §22.3, where another description of 92 will 
be given.) 

§21.1 : Dynkin diagrams associated to semisimple Lie algebras 
§21.2: Classifying Dynkin diagrams 

§21.2: Recovering a Lie algebra from its Dynkin diagram 

§21.1. Dynkin Diagrams Associated to Semisimple 
Lie Algebras 

For the following, we will let 9 be a semisimple Lie algebra; as usual, a Cartan 

subalgebra l) of 9 will be fixed throughout. As we have seen, the roots R of 9 

span a real subspace of l)* on which the Killing form is positive definite. We 

denote this Euclidean space here by IE, and the Killing form on IE simply by 
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( , ) instead of B( , ). Tbe geometry of bow R sits in IE is very rigid, as indicated 

by the pictures we have seen for the classical Lie algebras. In this section we 

will classify the possible configurations, up to rotation and multiplication by 

a positive scalar in IE. In the next section we will see that this geometry 

completely determines the Lie algebra. 

The following four properties of the root system are all that are needed: 

(1) R is a finite set spanning IE. 

(2) ex E R ~ - ex E R, but k . ex is not in R if k is any real number other than ± 1. 
(3) For ex E R, the reflection w.. in the hyperplane ex1- maps R to itself. 

(4) For ex, PER, the real number 

is an integer. 

Except perhaps for the second part of (2), these properties have been seen 

in Lecture 14. For example, (4) is Corollary 14.29. Note that npa = P(Ha), and 

(21.1) 

For (2), consider the representation i = EBk 9k. of the Lie algebra Sa ~ s12 C. 

Note that all the nonzero factors but ~ = 90 are one dimensional. We may 

assume ex is the smallest nonzero root that appears in the string. Now, 

decompose i as an Sa-module: 

i = Sa EB i'. 

By the hypothesis that ex is the smallest nonzero root that appears in the string, 

i' is a representation of Sa having no eigenspace with eigenvalue 1 or 2 for Ha . 

lt follows that i' must be trivial, i.e., 9k« = (0) for k # 0 or ± 1. 

Any set R of elements in a Euclidean space IE satisfying conditions (1) to (4) 

may be called an (abstract) root system. 

Property (4) puts very strong restrictions on the geometry of the roots. If 
:) is the angle between ex and p, we have 

In particular, 

IIPII 
npa = 2 cos(:)W' (21.2) 

(21.3) 

is an integer between 0 and 4. The case when this integer is 4 occurs when 

cos(.9) = ± 1, i.e. P = ± ex. Omitting this trivial case, the only possibilities are 

therefore those gjven in the following table. Here we have ordered the two 

roots so that IIPII ~ lIall, or Inpal ~ Inapl. 
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Table 21.4 

cos(.9) J3/2 J"i/2 1/2 0 -1/2 -J"i/2 -J3/2 
.9 rt/6 rt/4 rt/3 rt/2 2rt/3 3rt/4 5rt/6 

np. 3 2 1 0 -1 -2 -3 

n.p 1 1 0 -1 -1 -1 

IIPII 
J3 J"i J"i J3 * IIIX II 

In other words, the relation of any two roots ex and f3 is one of 

./ / 1_" i rt/2 ~3 "~/4 " J!:!..6 
&/6 L:;14li!.3 ~ u.... ~ ~ 
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The dimension n = dim RIE = dime£) is called the rank (of the Lie algebra, 

or the root system), It is easy to find all those of smallest ranks. As we write 

them down, we will label them by the labels (An), (Bn), ' . ' that have become 

standard, 

Rank 1. The only possibility is 

which is the root system of 5J2 iC. 

Rank 2. Note first that by Property (3), the angle between two roots must be 

the same for any pair of adjacent roots in a two-dimensional root system, As 

we will see, any of the four angles n/2, n/3, n/4, and n/6 can occur; once this 

angle is specified the relative lengths of the roots are determined by Property 

(4), except in the case of right angles. Thus, up to scalars there are exactly four 

root systems of dimension two. First we have the case 9 = nf2, 

which is the root system of 512 C X 512 C ~ 504 iC. 

(In general, the orthogonal direct sum of two root systems is a root system; 
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a root system that is not such a sum is called irreducible. Our task will be 
to classify all irreducible root systems.) 

The other root systems of rank 2 are 

(A,) 

* 
the root system of sI3 C; 

(B,) 

the root system of sosC ~ SP4C; and 

(G,) 

Although we have not yet seen a Lie algebra with this root system, we will see 
that there is one. 

Exercise 21.5. Show that these are all the root systems of rank 2. 

Exercise 21.6. Show that a semisimple Lie algebra is simple if and only if its 
root system is irreducible. 

Rank 3. Besides the direct sums of (A 1) with one of those ofrank 2, we have 

the irreducible root systems we have seen; we draw only dots at the ends of 
the vectors, the origins being in the centers of the reference cubes: 
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.L-- __ _ 

---~ 

which is the root system of 514 C ~ 506 C; 

the root system of 507C; 

the root system of 5P6C 

.. ~. 
I": .... ...• :' .. ~ ". 

:' ... 1··:···· : ":, 
•... ::.: ...... ... :.' ..... ::e 

'1'· : ' 

.2<'. :',.:' 
./ -:r;~ 

---¥ .•. 

Exercise 21.7. Show that there are no other root systems of rank 3. 
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We can further reduce the data of a root system by introducing a subset of 
the roots, called the simple roots, First, choose as in Lecture 14 a direction 
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I: IE -+ IR, so that R = R+ U R- is a disjoint union of positive and negative 

roots. Call a positive root simple if it is not the sum oftwo other positive roots. 

For the classical Lie algebras, keeping the notations and conventions of 

Lectures 15-20, the simple roots are 

(An) sln+l C Ll - L 2, L2 - L 3 , . .. , Ln- l - Ln, Ln - Ln+l' 

Ll - L2, L2 - L 3 , ... , L n- l - Ln, Ln, 

L l - L 2 , L2 - L 3 , • • • , L n - l - Ln, 2Ln, 

Ll - L2, L2 - L 3 , ... , L n- l - Ln, L n - l + Ln· 

Exercise 21.8. Verify this list, and find two simple roots for (G2)· 

We next deduce a few consequences of properties (1)-(4), which indicate 

how strong these axioms are. They will be used in the present classification of 

abstract systems, as well as in the following section. 

(5) If a, p are roots with P :f. ± a, then the a-string through p, i.e., the roots of 

the form 

P - pa, P - (p - l)a, .. . , p - a, p, p + a, p + 2a, .. . , p + qa 

has at most four in a string, i.e. p + q ~ 3; in addition, p - q = nplJ' 

Indeed, since ~(P + qa) = p - pa, and 

~(P + qa) = (P - nplJa) - qa, 

we must have p = nplJ + q, which is the second equality. For the first, we may 

take p = 0, and then q = - nplJ , which we have seen is an integer no larger 

than three. As a consequence of(5) we have 

(6) Suppose a, p are roots with p :f. ±a. Then 

(P, a) > ° => a - P is a root; 

(P, a) < ° => a + P is a root. 

If (P, a) = 0, then a - P and a + P are simultaneously roots or nonroots. 

(7) If a and P are distinct simple roots, then a - P and P - a are not roots. 

This follows from the definition of simple, since from the equation 

a = P + (a - p), a - P cannot be in R+, and similarly -(a - P) = P - a 

cannot be in R+ . From (6) and (7) we deduce that (a, P) ~ 0, i.e., 

(8) The angle between two distinct simple roots cannot be acute. 

(9) The simple roots are linearly independent. 

This follows from (8) by 

Exercise 21.9*. If a set of vectors lies on one side of a hyperplane, with all 

mutual angles at least 90°, show that they must be linearly independent. 
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(10) There are precisely n simple roots. Each positive root can be written 
uniquely as a non-negative integral linear combination of simple roots. 

Since R spans IE, the first statement follows from (9), as does the uniqueness 

of the second statement. The fact that any positive root can be written as a 

positive sum of simple roots follows readily from the definition, for if ex were a 

positive root with minimal l(ex) that could not be so written, then ex is not 

simple, so ex = P + y, with p and y positive roots with I(P), l(y) < l(ex). 

Note that as an immediate corollary of (10) it follows that no root is a linear 
combination of the simple roots exi with coefficients of mixed sign. For example, 

(7) is just a special case of this. 

The Dynkin diagram of the root system is drawn by drawing one node 0 

for each simple root and joining two nodes by a number of lines depending 

on the angle 9- between them: 

no lines 0 0 if ~ = 1tI2 

one line 0--0 if ~ = 21t13 

two lines ~ if ~ = 31t14 

three lines 0:$=0 if " = 51t16 . 

When there is one line, the roots have the same length; if two or three lines, 

an arrow is drawn pointing from the longer to the shorter root. 

Exercise 21.10. Show that a root system is irreducible if and only if its Dynkin 

diagram is connected. 

We will see later that the Dynkin diagram of a root system is independent 

of the choice of direction, i.e., of the decomposition of R into R+ and R-. 

§21.2. Classifying Dynkin Diagrams 

The wonderful thing about Dynkin diagrams is that from this very simple 

picture one can reconstruct the entire Lie algebra from which it came. We will 

see this in the following section; for now, we ask the complementary question 

of which diagrams arise from Lie algebras. Our goal is the following classifica
tion theorem, which is a result in pure Euclidean geometry. (The subscripts 

on the labels (An), ... are the number of nodes.) 

Theorem 21.1 1. The Dynkin diagrams of irreducible root systems are precisely: 
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(An) 0----0-- .. .. --0---0 (n ~ 1) 

(B.) 0----0-- . . . . -a:+n (n~2) 

(en) 0----0-- . .. . -a=¢:o (n ~ 3) 

(D.) 0----0-- .. . . -< (n~4) 

( E 6 ) ~ 

( E7 ) ~ 

( F 4) o----a::::;:o--

The first four are those belonging to the classical series we have been 
studying: 

(An) sln+1 C 

(B.) S02.+1 C 

(C.) SP2nC 

(D.) S02.C 

The restrictions on n in these series are to avoid repeats, as well as degenerate 

cases. Indeed, the diagrams can be used to recall all the coincidences we have 

seen: 

When n = 1, all four of the diagrams become one node. The case (D1) is 

degenerate, since S02 C is not semisimple, while the coincidences (C1) = (B 1) = 
(Ad correspond to the isomorphisms 

SP2C ~ 503C 8: S(2C o. 
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For n = 2, (02) = (AI) X (Ad consists of two disjoint nodes, correspond
ing to the isomorphism 

S04C ~ S[2C X S[2C 0 O . 

The coincidence (C2 ) = (B2 ) corresponds to the isomorphism 

SP4C ~ sosC o::¢:n = c:r:+o\. 
For n = 3, the fact that (03) = (A3) reflects the isomorphism 

.o,e '" ,I,e < ~ 0--0---0 . 

PROOF OF THE THEOREM. Our desert-island reader would find this a pleasant 

pastime. For example, if there are two simple roots with angle 5n/6, the plane 

of these roots must contain the G 2 configuration of 12 roots. It is not hard to 

see that one cannot add another root that is not perpendicular to this plane, 

without some ofthe 12 angles and lengths being wrong. This shows that (G2) 

is the only connected diagram containing a triple line. At the risk of spoiling 

your fun, we give the general proof of a slightly stronger result. 

In fact, the angles alone determine the possible diagrams. Such diagrams, 

without the arrows to indicate relative lengths, are often called Coxeter 

diagrams (or Coxeter graphs). Define a diagram of n nodes, with each pair 

connected by 0, 1, 2, or 3 lines, to be admissible if there are n independent unit 

vectors e I, . . . , en in a Euclidean space IE with the angle between e; and ej being 

n/2, 2n/3, 3n/4, or 5n/6, according as the number oflines between correspond

ing nodes is 0, 1, 2, or 3. The claim is that the diagrams of the above Dynkin 

diagrams, ignoring the arrows, are the only connected admissible diagrams. 

Note that 

(e; , ej ) = 0, -1/2, - Ji/2, or - ./3/2, (21.12) 

according as the number of lines between them is 0, 1,2, or 3; equivalently, 

4(e;, ej)2 = number of lines between e; and ej. (21.13) 

The steps of the proof are as follows: 

(i) Any subdiagram of an admissible diagram, obtained by removing some 

nodes and all lines to them, will also be admissible. 

(ii) There are at most n - 1 pairs of nodes that are connected by lines. The 

diagram has no cycles (loops). 

Indeed, if e; and ej are connected, 2(e;, ej) :s; -1, and 

° < (I e;, I e;) = n + 2 I (e;, ej), 
i <j 

which proves the first statement of(ii). The second follows from the first and (i). 
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(iii) No node has more than three lines to it. 

By (i), we may assume that el is connected to each of the other nodes; by 

(ii), no other nodes are connected to each other. We must show that 

LJ= 2 4(e I , ej)2 < 4. Since e 2 , •.. , en are perpendicular unit vectors, and e I is 
not in their span, 

n 

1 = (e l , ed2 > L (e l , eY, 
j=2 

as required. 

(iv) In an admissible diagram, any string of nodes connected to each other 

by one line, with none but the ends of the string connected to any other nodes, 

can be collapsed to one node, and resulting diagram remains admissible: 

0: D 0: 
:0-----0- . . . . --0----0: :0: 

CJ D CJ D 

If e I, .. . , er are the unit vectors corresponding to the string of nodes, then 
e' = e I + . .. + er is a unit vector, since 

(e', e') = r + 2«e l , e2) + (e2 , e3) + ... + (er- l , er» 

= r - (r - 1). 

Moreover, e' satisfies the same conditions with respect to the other vectors 

since (e' , e) is either (e l , ej ) or (e" ej). 

Now we can rule out the other admissible connected diagrams not on our 

list. First, from (iii) we see that the diagram (G 2) has the only triple edge. Next, 
there cannot be two double lines, or we could find a subdiagram of the form: 

and then collapse the middle to get ( ) ( ) ( " contradicting (iii). Similarly 

there can be at most one triple node, i.e., a node with single lines to three other 
nodes, by 

>- .... -< 
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By the same reasoning, there cannot be a triple node together with a double 

line: 

To finish the case with double lines, we must simply verify that 

is not admissible. Consider general vectors v = a l el + a2e2, and w = a3e3 + 
a4e4 + ases. We have 

IIvll2 = ai + a~ - ala2, IIwll2 = a~ + a~ + a; - a3a4 - a4aS' 

and (v, w) = -a2a3/.j2. We want to choose v and w to contradict the 

Cauchy - Schwarz inequality (v, W)2 < Ilv11211w1l2. For this we want la2 1/11vll 
and la31/11wll to be as large as possible. 

Exercise 21.14. Show that these maxima are achieved by taking a2 = 2a l and 

a3 = 3as, a4 = 2as· 

In fact, v = el + 2e2, w = 3e3 + 2e4 + es do give the contradictory 

(v, W)2 = 18, IIvl12 = 3, and IIwll2 = 6. 

Finally, we must show that the strings coming out from a triple node cannot 

be longer that those specified in types (On), (E6 ), (E7), or (Es). First, we rule out 

Consider the three perpendicular unit vectors: 

u = (2e2 + e3)/j3, v = (2e4 + es)/j3, 

Then as in (iii), since e 1 is not in the span of them, 
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1 = IIe l ll 2 > (e l , U)2 + (e l , V)2 + (e l , W)2 = 1/3 + 1/3 + 1/3 = 1, 

a contradiction. 

Exercise 21.15*. Similarly, rule out 

and 

(The last few arguments can be amalgamated, by showing that if the legs from 

a triple node have lengths p, q, and r, then lip + l/q + l/r must be greater 

than 1.) 

This finishes the proof of the theorem. 0 

§21.3. Recovering a Lie Algebra from Its 
Dynkin Diagram 

In this section we will complete the classification theorem for simple Lie 

algebras by showing how one may recover a simple Lie algebra from the data 

of its Dynkin diagram. This will proceed in two stages: first, we will see how 

to reconstruct a root system from its Dynkin diagram (which a priori only 

tells us the configuration of the simple roots). Secondly, we will show how 

to describe the entire Lie algebra in terms of its root system. (In the next 

lecture we will do all this explicitly, by hand, and independently ofthe general 

discussion here, for the simplest exceptional case (G2 ); as we have noted, the 

reader may find it useful to work through §22.1 before or while reading the 

general story described here.) 

To begin with, to recover the root system from the Dynkin diagram, let /Xl' 

.. . , /Xn be the simple roots corresponding to the nodes of a connected Dynkin 

diagram. We must show which non-negative integral linear combinations 

I,mi/Xi are roots. Call I,mi the level ofI,mi/Xi' Those oflevel one are the simple 
roots. For level two, we see from Property (2) that no 2/Xi is a root, and by 
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Property (6) that IXj + IXj is a root precisely when (lXj, IX) < 0, i.e., when the 

corresponding nodes are joined by a line. 

Suppose we know all positive roots of level at most m, and let p = L mjlXj 

be any positive root oflevel m. We next determine for each simple root IX = IXj' 

whether p + IX is also a root. Look at the IX-string through p: 

p - PIX, •.• , p, ... , p + qlX. 

We know p by induction (no root is a linear combination of the simple roots 

IX j with coefficients of mixed sign, so p ~ mj and p - P(1. is a positive root). By 

Property (5), q = p - np«' So p + (1. is a root exactly when 

(P, IX) n 

p> np« = 2-( - ) = .L mjn«i«' 
IX, IX .=1 

In effect, the additional roots we will find in this way are those obtained by 

reflecting a known positive root in the hyperplane perpendicular to a simple 

root (1.j (and filling in the string if necessary). 

To finish the proof, we must show that we get all the positive roots in this 

way. This will follow once from the fact that any positive root of level m + 1 

can be written in at least one way as a sum of a positive root of level m and 

a simple root. If y = L rj(1.j has level m + 1, from 

o < (y, y) = L rj(y, IXj), 

some (y, IXj) must be positive, with 'j > O. By property (6), y - (1.j is a root, as 

required. 
By way of example, consider the rank 2 root systems. In the case of 5(3 C, we 

start with a pair of simple roots IX), (1.2 with n1X1 • 1X2 = -I, i.e., at an angle of 

2n/3; as always, we know that f3 = IX) + 1X2 is a root as well. 

On the other hand, since p - 21X1 = 1X2 - 1X1 is not a root, p + 1X1 cannot be 
either, and likewise p + (1.2 is not; so we have all the positive roots. 

In the case of 5P4 C, we have two simple roots 1X1 and (1.2 at an angle of 3n/4; 
in terms of an orthonormal basis L1 and L2 these may be taken to be L1 and 

L2 - L 1, respectively. 
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We then see that in addition to f3 = !Xl + !Xz, the sum f3 + !Xl = 2!XI + !Xz is a 
root-it is just the reflection of !Xz in the plane perpendicular to !Xl-but 

f3 + !Xz = !Xl + 2!Xz and 3!XI + !Xz are not because !Xl - !Xz and !Xz - !Xl are not 
respectively (alternatively, we could note that they would form inadmissible 
angles with !Xl and !Xz respectively). 

Finally, in the case of (Gz), we have two simple roots !Xl' !Xz at an angle of 
5n/6, which in terms of an orthonormal basis for IE may be taken to be LI and 
(- 3L I + j3Lz)/2 respectively. 

Reflecting!Xz in the plane perpendicular to !Xl yields a string ofroots !Xz + !Xl' 
!Xz + 2!XI and !Xz + 3!Xz. Moreover, reflecting the last of these in the plane 
perpendicular to!Xz yields one more root, 2!Xz + 3!X3 . Finally, these are all the 
positive roots, giving us the root system for the diagram (Gz). 

We state here the results of applying this process to the exceptional 
diagrams (F4 ) , (E6 ), (E7 ), and (Es) (in addition to (Gz». In each case, L I , .. • , 

Ln is an orthogonal basis for IE, the simple roots !X; can be taken to be as follows, 
and the corresponding root systems are given: 

3 j3 
(G z) !Xl = L I, !Xz = -2LI + T Lz; 

R+ = {LI' j3Lz, ±LI + f L z, ±~LI + f Lz}. 

(G z) thus has 6 positive roots. 

In particular, (F 4) has 24 positive roots. 

LI - Lz - L3 - L4 - Ls + j3L6 

!Xl = 2 ' 
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IX3=L2-LI, 

IXs = L4 - L3, 

IX4 = L3 - L2, 

IX6 = Ls - L4; 

R+ = {L; + Lj};<j:S;s U {L; - LjL<;:s;s 

{ ±LI ± L2 ± L3 ± L4 ± Ls + J3L6} 

U 2 number of minus signs even· 

(E6) has 36 positive roots. 

LI - L2 - . . . - L6 + J2L7 
IXI = 2 ' 

IX6 = Ls - L4, IX7 = L6 - Ls; 

R+ = {L; + Lj};<j:S;6 U {L; - Lj}j<;:S;6 U {J2L7} 

{
±LI ± L2 ± .. . ± L6 + J2L7} 

U 2 number of minus signs odd • 

Thus, (E7) has 63 positive roots. 

IX _ LI - L2 - . . . - L7 + Ls 
I - 2 ' 

IX3 = L2 - L I, 

IX6 = Ls - L4, 

IX4 = L3 - L2, 

IX7 = L6 - L s, 

R+ = {L; + Lj};<j:S;s U {L; - Lj}j<;:S;s 

IXs = L4 - L3, 

IXs = L7 - L6· 

{ ±LI ± L2 ± ... ± L7 + Ls} 

u 2 number of minus signs even · 

(Es) has 120 positive roots. 

333 

For (G2) and (F4) the simple roots are listed in order reading from left to 
right in their Dynkin diagrams 

as in the classical series (An)-(Dn). For (Es), the numbering is 
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while those for (E7) and (E6) are obtained by removing the last one or two 

nodes. Note that, given the root system of (Es), we can find the root system 
of (E7) or (E6) by taking the subspace spanned by the first seven or six simple 
roots. 

Exercise 21.16*. (a) Verify the above lists of roots. 

(b) In each case, calculate the corresponding fundamental weights. 

Exercise 21.17*. Show that no two of the root systems of (An)-(Es) are 
isomorphic, and deduce that the Oynkin diagram of a root system is indepen
dent of choice of positive roots. 

A more satisfying reason for the last fact is the observation that any two 

choices of positive roots differ by an element of the Weyl group-the group 

generated by reflections ~ in the simple roots. This can be seen directly for 
each of the diagrams (An)-(Es); for a general proof that two choices differ by 
an element of the Weyl group, see Proposition 0.29. 

We should mention here another way of conveying the data of a Oynkin 

diagram. This is simply the n x n matrix of integers (ni,i = n«j«)' where we 
take ni,i = 2; it is called the Cartan matrix of the Oynkin diagram (or of the 

Lie algebra). Thus, for example, the Cartan matrix of (An) is 

2 -1 

-1 2 

o -1 

o 
o 

o 
o 

o 
-1 0 

2 -1 

o 
o 
o 

-1 2-1 

-1 2 

These matrices pop up remarkably often, in a variety of seemingly unrelated 

areas of mathematics. They will not playa major role in the present text, but 

the reader has probably encountered them already in one form or another, 
and will probably do so again. 

Exercise 21.18*. Compute the Cartan matrix, and its determinant, for each 
Oynkin diagram. 

The next task is to see how the root system determines the Lie algebra. We 
concentrate on the uniqueness, since there are other ways to see the existence; 

indeed, for all but the five exceptions we have already seen the Lie algebras. 

We will describe several approaches to this problem, starting with a straight
forward and computational method and finishing with a slick but abstract 
approach. 
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Assume as before that 9 is a simple Lie algebra, with a chosen Cartan 

subalgebra 1) and decomposition of the roots R into positive and negative 

roots; let 1X1' . . . , IXn be the simple roots. The Dynkin diagram information is 

the knowledge of (<X;, IXj ) for aU i =F j. Let Hi = H", be the corresponding basis 

of 1), defined by the rule we have seen in Lecture 14: if {7;} is the basis 

corresponding via the Killing form to {IX;}, set Hi = 27;/(<xi, <Xi). 

Choose any nonzero element Xi in the root space g,,/, for 1 ~ i ~ n. This 

determines elements Yi in g_,,/ such that [Xi' Yi] = Hi. We claim first that these 

3n elements {Hi, Xi' Yi} generate 9 as a Lie algebra. This follows from 

Claim 21.19. If <x, p, and IX + p are roots, then [g", gil] = g"+II. 

PROOF. Again look at the <x-string through gil' i.e., EBkE z gll+ka- This is an 

irreducible representation of S" ~ sI2 C, since aU the terms are one dimensional 

(this follows from the fact that no p + klX can be zero, given that P =F ± IX). But 

now if [g", gil] = 0, EBk';;O gllH" would be a nontrivial subrepresentation. 0 

For each positive root p, we have seen that can write p as a sum of simple 

roots p = lXi, + .. ' + <Xir such that each of the sums <Xi, + ... + lXi• is a root, 

1 ~ s ~ r. If we choose such a presentation for each p, and set 

XII = [Xir' [Xir_I ,· · ·, [Xi" Xi,] ... ]] 

and 

Yp = [Yir ' [Yir - I , ••• , [Yi" Yi,J ... J], 

then the collection 

(21.20) 

forms a basis for g. Note that if p is not simple, there is no reason to expect 

[XII' Yp] to be the distinguished element HII in 1). 

We want to show that the multiplication table for these basis elements is 

completely determined by the Dynkin diagram. The main difficulty is that the 

ordering of the simple roots in the above expression for p may not be unique. 

For example, suppose 

P = (<Xl + « 2) + 1X3 = (<X2 + «3) + <Xl' 

with <Xl + <X2 and <X2 + 1X3 roots. We must compare [X3' [X2' Xl]] with 

[Xl' [X3' X 2]]. In fact, they must be negatives of each other. For, by Jacobi, 
we have 

[Xl' [X3' X 2]] = -[X3' [X2' Xl]] - [X2' [Xl' X 3]] = -[X3' [X2' Xl]]' 

noting that [Xl' X 3 ] = 0 since <Xl + 1X3 cannot be a root, e.g., by step (ii) of 

the preceding section. 

For any sequence 1= (i l , . .. , ir ), 1 ~ ij ~ n, set 
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XI = [Xi" [Xi,_t' ... , [Xi2 , XiJ ... ]], 

Yj = Pi" [li,-t' ... , [li 2 , lit] ... J]. 

Call I admissible if each partial sum \lit + ... + ai• is a root, 1 ~ s ~ r; note 

that I is admissible exactly when XI is not zero. 

Lemma 21.21. If I and J are two admissible sequences for which aI = a;, then 

there is a nonzero rational number q determined by I, J, and the Dynkin diagram, 

such that XJ = q. XI. 

PROOF. Let k = ir be the last entry in I . If jr = k as well, the result follows by 

induction on r. We reduce the general case to this case, by maneuvering to 

replace jr by k. We have first 

XJ = ql . [Xk, [lk, XJ]]' 

with q 1 a nonzero rational number depending only on J, k, and the Dynkin 

diagram, since aJ - ak = aI - ak is a root; the point is that we know how 

sa. ~ sl2 acts on the ak-string through aJ as soon as we know the length of the 

string, and this is Dynkin diagram information. Next, let s be the largest 

integer such that j. = k. Then 

[lk, XJ] = [Xi,'··· [Xi•H , [lk, [Xk' X K ]]] •.• ], 

where K = (h, ... ,js-!), since [Yk, [Xi, Z]] = [Xi, [Yk, Z]] when i #k. Finally, 

[lk, [Xk' X K ]] = q2 . X K , 

with q2 a nonzero rational number depending only on K, k, and the Dynkin 

diagram, since aK + ak is a root. Combining these three equations, we get 

XJ = qlq2· [Xk' [Xi,' ... [Xi .+ t , X K] ... ]], 

which suffices since the sequence for the term on the right ends in the same 

integer k as I. 0 

Proposition 21.22. The bracket of any two basis elements in (21.20) is a rational 

multiple of another basis element, that multiple determined from the Dynkin 

diagram. 

PROOF. This is clear for brackets of an Hi with any basis element. Lemma 21.21 

handles brackets of the form [Xl' XJ], and those involving only Y's are 

similar. For brackets [Yj, XJ], it suffices inductively to compute [lk, XJ] as 

a rational multiple of some X K, with K shorter than J (or of Hk if J has one 

term); but this was worked out in the proof of the lemma. 0 

Exercise 21.23*. (i) Show that in (G2 ) each positive root can be written in only 

one way as a sum of simple roots, up to the order of the first two roots. 
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(ii) Work out the multiplication table from the Dynkin diagram. (iii) Verify 

that the result is indeed a Lie algebra, which is (visibly) simple. 

This exercise will be worked out in detail to start the next lecture. Of course, 

there is nothing but lack of time to keep us from verifying that the other four 

exceptional Dynkin diagrams do lead, by the same prescription, to honest Lie 

algebras, but doing it by hand gets pretty laborious, and we will describe some 

of the other methods available. 

The fact that the multiplication table can be defined with rational coeffi

cients becomes important when one wants to reduce them modulo prime 

numbers, which we will not discuss here. The fact that they can be taken to 

be real, on the other hand, will come up later, when we discuss real forms of 

complex Lie algebras and groups. 

There is a more general and elegant way to proceed, given by Serre [Se3]. 

Write nij in place of na;aj. Form the free Lie algebra on generators 

i.e., form the free (tensor) algebra with this basis, and divide modulo by the 

relations [A, B] + [B, A] = 0 and the Jacobi relation. Then take this free Lie 

algebra, and divide by the relations 

[Hi' HJ = 0 (all i, j); 

[Hi' XJ = njiXj (all i, j); 

and, for all i "# j, 

[Xi' Y;] = Hi (all i); [Xi' lj] = 0 (i "# j); 

[Xi' Xj] = 0, 

[Xi' [Xi' XJ] = 0, 

[Xi' [Xi' [Xi' Xj]]] = 0, 

[Xi> [Xi' [Xi' [Xi' Xj]]]] = 0, 

[Hi' lj] = - nji lj (all i, j); 

[y;, lj] = 0 ifnij = 0; 

[y;, [y;, lj]] = 0 if nij = -1; 

[Y;,[Y;,[Y;, lj]]] =0 ifnij= -2; 

[y;, [Y;, [y;, [y;, lj]]]] = 0 ifnij = -3. 

Exercise 21.24. Verify that if one starts with a semisimple Lie algebra with a 

given Dynkin diagram, the above equations must hold. 

Serre shows ([Se3, Chap. VI App.], cf. [Hul §l8]) that the resulting Lie 

algebra is a finite-dimensional semisimple Lie algebra, with Cartan subalgebra 

generated by H l' ... , Hn and given root system. In particular, this includes a 

proof of the existence of all the simple Lie algebras. 

Here is a third approach to uniqueness. Suppose 9 and g', with given Cartan 

subalgebras ~ and ~', and choice of positive roots, have isomorphic root 

systems. There is an isomorphism ~ -+ ~', taking corresponding Hi to Hi. 

Choose arbitrarily nonzero vectors Xi and Xi in the root spaces of 9 and g' 

corresponding to the simple roots. 
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Claim 21.25. There is a unique isomorphism from 9 to g' extending the iso

morphism of 1) with I)" and mapping Xi to X; for all i. 

PROOF. The uniqueness of the isomorphism is easy: the resulting map is 

determined on the 1'; by 512 considerations, and the Hi' Xi' and 1'; generate g. 

For the existence of the isomorphism consider the subalgebra 9 of 9 $ g' 

generated by iii = Hi $ H;, Xi = Xi $ X;, and ¥; = 1'; $ 1';'. It suffices to 
prove that the two projections from 9 to 9 and g' are isomorphisms. The kernel 

of the second projection is f $ 0, where f is an ideal in g. Since 9 is simple, f 

is either 0, as required, or f = g. In the latter case, we must have 9 = 9 $ g'. 

To see that this is impossible, consider a maximal positive root p, 
t~ke nonzero vectors XII' Xp in the corresponding root spaces, and set 

Xp = XII $ Xp, a highest weight vector in g. Let W be the subspace of 9 
obtained by successively applying all ¥;'s. Then W is a proper subspace of g, 
since its weight space Wp corresponding to f3 is one dimensional. By the 

argument we have seen several times, 9 preserves W. Now if 9 = 9 $ g', W 

would be an ideal in 9 $ g', and this would force XII $ ° to belong to W, 
making WII two dimensional again. 0 

To finish this story, we should show that the simple Lie algebras corre

sponding to two different Dynkin diagrams cannot be isomorphic, i.e., that 

the two choices made in going from a semisimple Lie algebra to Dynkin 

diagram do not change the answer. The general facts are: 

(1) Any two Cartan subalgebras of a semisimple Lie algebra are conjugate, 

i.e., there is an inner automorphism by an element in the corresponding 

adjoint group, which takes one into the other. 

(2) Any two decompositions of a root system into positive and negative roots 

differ by an element of the Weyl group. 

These are standard facts which are proved in Appendix D. Both statements 

are subsumed in the fact that any two Borel subalgebras of a semisimple Lie 

algebra are conjugate, a Borel subalgebra being the subspace spanned by the 

Cartan subalgebra and the root spaces 9a for positive IX. For those readers 

who crave logical completeness but do not want to go through so much 

general theory, we observe that most possible coincidences can be ruled out 

by such simple considerations as computing dimensions, and others can be 

ruled out by simple ad hoc methods, cf. Exercise 21.17. 

Finally, we must also prove the "existence theorem": that there is a simple 

Lie algebra for each Dynkin diagram. Serre's theorem quoted above gives a 

unified proof of existence. But we have seen and studied the Lie algebras for 

the classical cases (An)-(Dn), and it is more in keeping with the spirit of these 

lectures to at least try to see the five exceptions explicitly. This is the subject 

of the next lecture. 



LECTURE 22 

92 and Other Exceptional Lie Algebras 

This lecture is mainly about 92' with just enough discussion of the algebraic construc

tions of the other exceptional Lie algebras to give the reader a sense of their complexity. 

92' being only 14-dimensional, is different: we can reasonably carry out in practice the 
process described in §21.3 to arrive at an explicit description ofthe algebra by specifying 

a basis and all pairwise products; we do this in §22.1 and verify in §22.2 that the result 

really is a Lie algebra. In §22.3 we analyze the representations of 92' and arrive in 

particular at another description of 92: it is the algebra of endomorphisms of a 

seven-dimensional vector space preserving a general trilinear form. (Note that §22.3 

may be read independently of either §22.1, §21.2, or §21.3.) Finally, in the fourth section 

we will sketch some of the more abstract (i.e., coordinate free) approaches to the 

construction of the five exceptional Lie algebras. While the first two sections are 

completely elementary, the constructions given in §22.4 involve some fairly serious 

algebra. 

§22.1: Construction of 92 from its Dynkin diagram 

§22.2: Verifying that 92 is a Lie algebra 

§22.3: Representation theory of 92 

§22.4: Algebraic constructions of the exceptional Lie algebras 

§22.1. Construction of 92 from Its Dynkin Diagram 

In this section we will carry out explicitly the process described in the preceding 

section for the Dynkin diagram (G2 ), constructing in this way a Lie algebra 

92 with diagram (G2 ) (and in particular proving its existence). 

The first step is to find the root system from the Dynkin diagram. In the 
case of 92 this is immediate; we may draw the root system R c 1)* associated 
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to the diagram Gz as follows: 

112 = (-3{2, -I3(2) 
III = (-I{2,-I3m 

Here the positive roots are denoted (Xi' with (Xl and (Xl the simple roots. The 
coordinate system here has no particular significance (in particular, recall that 

the configuration of roots (Xi and Pi is determined only up to a real scalar), but 
is convenient for calculating inner products. Note that the Weyl group is the 

dihedral group generated by rotation through an angle of n/3 and reflection 

in the horizontal; the Weyl chamber associated to the choice of ordering of 

the roots given is the cone between the roots (X6 and (X4' 

As indicated in the preceding section, we start by letting Xl be any eigen

vector for the action of ~ with eigenvalue (Xl' and Xl any eigenvector for the 
action of~ with eigenvalue (Xl' We similarly let Yl and Yl be eigenvectors with 

eigenvalues Pl and Pl and set 

Hl = [Xl' YlJ and Hl = [Xl' YlJ· 

We can choose Yl and Yl so that the elements Hi E ~ satisfy (Xl (Hd = (Xl(Hl ) = 
2, i.e., 

It follows that 

i.e., Hi, Xi' and Y; span a subalgebra s"'; ~ sIz C, with Hi' Xi' and Y; a normalized 
basis for this copy of sI l C. 

Now, it is clear from the diagram above that there is a unique way of writing 

each positive root (Xi as a sum of simple roots (Xi, + ... + (Xik so that the partial 
sums (Xi, + ... + (Xi, are roots for each I ~ k (modulo exchanging the first two 

terms): we go through the root system by the path 



§22.1. Construction of 92 from Its Dynkin Diagram 

i.e .• we write 

1X4 = 1X1 + 1X3 = 1X1 + 1X1 + 1X2 • 

IXs = 1X1 + 1X4 = 1X1 + 1X1 + 1X1 + 1X2 • 

(X6 = (X2 + (Xs = (X2 + (Xl + (Xl + (Xl + (X2· 

According to the general recipe. this means we now set 

X3 = [Xl' X 2 ]. 

Xs = [XI' X 4 ]. 

X4 = [Xl' X 3 ]. 

X6 = [X2 • X s]. 
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and define Y3 • •. • • Y6 similarly. The elements HI' H2, Xl' .. . , X 6 , Yl , ... , Y6 

then form a basis for the 14-dimensional g2. with HI and H2 a basis for ~. Xi 

a generator of the eigenspace gal' and 1'; a generator of g/l, for i = 1, ... , 6. 
The task at hand now is to write down the multiplication table for g2 in 

terms of this basis. Of course, some products are already known: we know, 

for example, that Hi. Xi' and Yi form a normalized basis for 5(2 C for i = 1, 2, 

and we have the relations defining X 3 , ••• , X6 and Yl , ... , Y6 above. In 

addition, since we know that the product [Xi' Xj] lies in the root space ga,+aJ 

for each i and j, we see immediately that [Xi' Xj] = 0 whenever lXi + IXj is not 

a root. We deduce that 

[Xl' Xs] = [Xl' X 6 ] = [X2' X 3] = [X2 • X4] = [X2' X 6 ] = [X3' XS] 

= [X3' X 6 ] = [X4' XS] = [X4• X6 ] = [XS' X 6 ] = 0, 

and likewise 

[~.~]=[~.~]=[~.~]=[~.~]=[~.~]=[~.~] 

=[~,~]=[~,~]=[~,~]=[~,~]=n 
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Similarly, we know that [X;, lj] = 0 whenever IX; + Pj = IX; - IXj is not a root; 
this tells us as well that 

[XI' Y2 ] = [XI' Y6] = [X2, YI] = [X2' Y4] = [X2' Ys] = [X3 , Ys] 

= [X4' Y2] = [Xs, Y2] = [Xs, Y3 ] = [X6' YI] = O. 

The multiplication table thus far looks like 

H2 Xl YI X2 Y2 X3 Y3 X4 Y4 Xs Ys X6 Y6 

HI 0 2XI -2YI * '" '" '" '" * '" '" '" '" 
H2 * * 2X2 -2Y2 '" * '" * '" '" '" * 
Xl HI X3 0 X4 '" Xs * 0 '" 0 0 

YI 0 Y3 '" Y4 '" Ys '" 0 0 0 

X2 H2 0 '" 0 0 X6 0 0 '" 
Y2 '" 0 0 0 0 Y6 * 0 

X3 '" '" '" 0 0 0 '" 
Y3 '" '" 0 0 '" 0 

X4 '" 0 '" 0 '" 
Y4 '" 0 * 0 

Xs '" 0 '" 
Ys '" 0 

X6 '" 

The next thing to do is to describe the action of HI and H2 on the various 

vectors X; and Y;. This can be done using the inner product on ~, but it is 

perhaps simpler to go back to the basic idea of restriction to the subalgebras 

$<%, and $<%2' For example, if we want to determine the action of HI on the 

various Xi' consider how the algebra 9 = ~ Ef)(9<%i EB 9/1) decomposes as a 
representation of $<%1 : 

-3 

• 

-3 ... ",-

• 

-2 

• 

-1 

• 

-1/ 

• 

1 

• 

\ 1 

• 

2 

• 

, 3 
' . 
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We get two trivial representations (the spans of X6 and Y6, as already noted); 

one copy of the adjoint representation SymlV (the subalgebra sa, itself) 

spanned by XI' YI, and HI; and two copies of the irreducible four-dimensional 
representation Sym3V spanned by X 2 , X3, X4 , and Xs and Ys, Y4 , Y3, and Yl · 

In particular, it follows that Xl' X 3, X 4 , and Xs are eigenvectors for the 
action of HI with eigenvalues of -3, -1,1, and 3, respectively; and likewise 

Ys, Y4 , Y3 , and Yl are eigenvectors with eigenvalues - 3, -1, 1, and 3. In 

similar fashion, we consider the decomposition of 9 under the action of 

sa2 = IC{Hl , Xl' Yl }: diagrammatically, this looks like 

2 

1 / 0/ 

• 
-1 

o 

• 

\ -1 

-1 

-2 

Here we have two trivial representations, spanned by X 4 and Y4 , one adjoint 

(sa2 itself), and four copies of the standard two-dimensional representation V, 

spanned by X6 and X s, X3 and XI' YI and Y3, and Ys and Y6 .1t follows that 
X 6 , X 3 , YI , and Ys are eigenvectors for the action of Hl with eigenvalue 1, 

and likewise X s, XI' Y3 , and Y6 are eigenvectors with eigenvalue -1. 

Including this information, we can fill in the top two rows of the multipli
cation table: 

H2 X, x2 x, Y, x. x, Y, 

H, 0 2X, -2Y, -3X2 3Y2 -x, Y, X. - Y. 3X, -3Y, 0 0 

H2 -x, Y, 2X2 -2Y2 x, - Y, 0 0 -x, Y, x. - Y. 

Decomposing gl according to the action of sa, and sa2 gives us information 
about the action of X I, X z, YI , and Yz on the other basis vectors as well. 

For example, we saw a moment ago that Xs and X6 together span a sub-
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representation of 92 under the action of 5«" with ad(X2) carrying Xs to X6 • 

It follows from this that ad(Y2) must carry X6 back to Xs: we have 

ad(Y2)(X6 ) = ad(Y2) ad(X2)(XS) 

= ad(X2) ad(Y2)(XS ) - ad([X2' Y2 ])(XS ) 

= 0 - ad(H2)(XS) = Xs . 

Similarly, since ad(X2) carries Xl into -X3' which together with Xl spans a 
copy of the standard two-dimensional representation of 5«, ~ 512 C, it follows 

that ad(Y2) will carry -X3 back to Xl' Likewise from the fact that ad(Y2) 
carries Yl to - Y3 we see that ad(Y2)(Y3 ) = - Yl , and since ad(Y2): Ysl-+ Y6 , 

ad(X2): Y6 1-+ Ys. 

We can in the same way use the action of 5". to determine the values of 
ad(X 1) and ad(Y2) on various basis vectors, though because the representation 

of 5". on 92 has larger-dimensional components this is slightly more com
plicated. To begin with, consider the representation of 5". on the subspace 
spanned by X 2 , X 3 , X., and Xs. We know that ad(Xl) carries X2 to X 3 • and 

since X 2 is an eigenvector for the action of the commutator [Xl' Yl ] = HI 

with eigenvalue - 3, it follows that ad( Yt ) must carry X 3 to 3X 2: we have 

ad(Yl)(X3) = ad(Yd ad(Xd(X2) 

= ad(Xl ) ad(Yd(X2) - ad([Xl' Yl ])(X2) 

= 0 - ad(Hl )(X2) = 3X2 . 

Using this, we can next determine the action of Yl on X.: 

ad(Yl)(X.) = ad(Yd ad(Xl)(X3) 

= ad(Xd ad(Yl)(X3) - ad(Hl)(X3) 

= ad(Xd(3X2) + X3 = 4X3 , 

and we calculate likewise that ad(Yd(X 5) = 3X •. Analogously, knowing that 
ad(Yd carries Y2 to Y3 to Y. to Ys yields the information that ad(Xl) must 

carry Y3 , Y., and Ys to 3Y2 , 4Y3 and, 3Y., respectively. Including all this 
information in the chart, the next four rows of our multiplication table are 

H2 Xl YI X 2 Y2 X3 Y3 X 4 Y4 Xs Ys X6 Y6 

Xl HI X3 0 X 4 3Y2 Xs 4Y3 0 3Y4 0 0 
YI 0 Y3 3X2 Y. 4X3 Ys 3X4 0 0 0 
X 2 H2 0 - YI 0 0 X6 0 0 Ys 
Y2 -Xl 0 0 0 0 Y6 Xs 0 

We next have to find the commutators of the basis elements Xi and 1) for 
i, j ~ 3. We cannot do this by looking at the action of the subalgebras 
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generated by Xi and Y;, since for i ~ 3 we do not know the commutator 

[Xi' Y;]. Rather, the way to do this is outlined in the general proof in the 

preceding section: we just use the expression of the Xi and lj as brackets of 

the generators Xl' X 2, Yl, and Y2 to reduce the problem to brackets with these 
generators, which we now know. Thus, for example, the first unknown entry 

in the table at present is the bracket [X3, Y3]. We calculate this by writing X3 

as [Xl' X 2 ] , so that 

ad(X3 )(Y3 ) = ad([Xl , X 2 ])(Y3) 

= ad(Xl) ad(X2 )(Y3 ) - ad(X2 ) ad(Xd(Y3 ) 

= ad(Xd( - Yd - ad(X2 )(3Y2 ) 

= -Hl - 3H2 • 

Likewise, to evaluate [X3 , X 4 ] we have 

ad(X3 )(X4 ) = ad([Xl , X 2 ])(X4 ) 

= ad(Xl ) ad(X2)(X4 ) - ad(X2 ) ad(Xd(X4 ) 

= -ad(X2 )(Xs) = -X6· 

In this way, we can evaluate all brackets with X 3 ; knowing these, we 

can reduce any bracket with X 4 to one involving Xl and X3 by writing 

X 4 = [Xl' X 3 ] , and so on. Continuing in this way, we may complete our 
multiplication table: 

H, Xl YI X, Y, X, Y, X. Y. X, Y, X. Y. 

HI 0 2XI -2YI -3X, 3Y, -X, Y, X. -yo 3X, -3Y, 0 0 

H, -Xl YI 2X, -2Y, X, -Y, 0 0 -X, Y, x. -yo 

Xl HI X, 0 X. 3Y, X, 4Y, 0 3Y. 0 0 

YI 0 Y, 3X, Y. 4X, Y, 3X. 0 0 0 

X, H, 0 -YI 0 0 x. 0 0 Y, 

1'2 -Xl 0 0 0 0 Y. X, 0 

X, 
-HI 

-X. 4YI 0 0 0 3Y. 
-3H, 

Y, 4XI -Yo 0 0 3X. 0 

X. 
8HI 

0 -12YI 0 12Y, 
+12H, 

Y. -12XI 0 12X, 0 

X, 
-36HI 

0 36Y, 
-36H, 

Y, 36X, 0 

X. 
36HI 

+72H, 

Of course, in retrospect we see that the basis we have chosen is far from 
the most symmetric one possible: for example, if we divided X 4 and Y4 by 2 
and X s, X 6 , Ys, and Y6 by 6, and changed the signs of Xs and Y3, the form of 

the table would be 
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Table 22.1 

H, 

H, 

x, 
Y, 

X2 
Y2 

x, 
Y, 

X. 
Y. 
x, 
Y, 

X. 

H, X, Y, X, Y, X, Y, X. Y. x, Y, X. Y. 

0 2X, -2Y, -3X, 3Y, -X, Y, X. -Y. 3X, -3Y, 0 0 

-x, Y, 2X, -2Y, X, - Y, 0 0 -x, Y, X. - Y. 

H, X, 0 2X. -3Y, -3X, -2Y, 0 Y. 0 0 

0 - Y, 3X, -2Y. 2X, 3Y, -x. 0 0 0 

H2 0 Y, 0 0 -x. 0 0 Y, 

-x, 0 0 0 0 Y. -x, 0 

H,+3H2 -3X. 2Y, 0 0 0 Y. 
-2X, 3Y. 0 0 -x. 0 

2H, +3H2 0 -Y, 0 -Y, 

x, 0 X, 0 

H,+H2 0 -Y2 

X2 0 

H,+2H2 

There was another good reason for these changes: now each of the brackets 

[Xi' YiJ will be the distinguished element of ~ corresponding to the root (Xi. If 
we denote this element by Hi' then we read ofT from the table that 

and 

H3 = HI + 3H2 , 

Hs = HI + H2 , 

Hi = [Xi' YiJ, 

for i = 1,2,3,4,5,6. 

H4 = 2Hl + 3H2, 

H6 = HI + 2H2, 

[H;, YiJ = -2Yi, 

§22.2. Verifying That 92 Is a Lie Algebra 

(22.2) 

(22.3) 

The calculation of the preceding section gives a complete description of what 

the Lie algebra 92 must look like, but there is still some work to be done: 

unless we know that there is a Lie algebra with diagram (G2 ), we do not know 

that the above multiplication table defines a Lie algebra, let alone a simple 

one. In fact, the simplicity is not much of a problem (cf. Exercise 14.34), but 

to know that it is a Lie algebra requires knowing that the Jacobi identity is 

valid. One could simply check this from the table for all (134 ) triples of elements 

from the basis, a rather uninviting task. 

There is another way, which gives more structure to the preceding calcula

tions, and which will give a clue for possible constructions of other Lie 

algebras. The root diagram for (G2 ) is made up of two hexagons, one with 

long arrows, the other with short. This suggests that we should find a copy of 

the corresponding Lie algebra sI3C inside 92. The subspace spanned by 1) 

and the root spaces corresponding to the six longer roots is clearly closed 

under brackets, so is the obvious candidate. The long roots are (Xs, (X2' and 

(X6 = (Xs + (X2' and their inverses. So we define 90 to be the subspace spanned 

by the corresponding vectors: 
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90 = C{Hs, H2 , X s, fs, X 2 , f2' X 6 , f6}' 

The mUltiplication table for 90 is read ofT from Table 22.1: 

H2 Xs Ys X 2 Y2 X6 

Hs 0 2Xs -2Ys -X2 Y2 X6 

H2 -Xs Ys 2X2 -2Y2 X6 

Xs Hs X6 0 0 

Ys 0 -Y6 X 2 

X 2 H2 0 

Y2 -Xs 

X6 
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Y6 

-Y6 
- Y6 
- Y2 

0 

Ys 
0 

Hs +H2 

This is exactly the multiplication table for s13 C, with its standard basis (in the 

same order): 

s13 C = C{E l • l - E2• 2 , E2 •2 - E3•3, E l •2 , E2 • 1 , E2 •3 , E3.2 , E 1•3, E3.d· 

So we have determined an isomorphism 

90 ~ s13 C. 

(Note right away that this verifies the Jacobi identity for triples taken from 90') 

The rest of the Lie algebra must be a representation of the subalgebra 

90 ~ s13 C, and we know what this must be: the smaller hexagon is the union of 

the two triangles which are the weight diagrams for the standard representa

tion of s13 and its dual, which we denote here by Wand W*; W is the sum of 

the root spaces for 1X4' PI' and P3' while W* is the sum of those for P4' lXI' 

and 1X3' 

a6 

Sl3 t 

as 

w· 

W 

~2 

~6 

Again, a look at the table shows that the vectors X 4 , Yl , and f3 form a basis 

for W = C3 that corresponds to the standard basis el , e2, and e3' and 
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similarly Y4' Xl' and X3 form a basis for W* = (1[3)* that corresponds to 

the dual basis ei, e~, and e~: we have 

92 = 90 $ W $ W*. 

With these isomorphisms, the brackets 

90 x W -+ Wand 90 x W* -+ W* 

correspond to the standard operations of sI3C on 1[3 and (1[3)*. 

Next we look at brackets of elements in W Note that [w, W] is contained 

in W*, either by weights or by looking at the table. The table is 

or -2e~ 

o 
2e1 

-2er 

Identifying W = 1[3, W* = (1[3)* as above, we see that the bracket W x W-+ 

W* becomes the map 

W x W -+ W* = IV W, v X WI-+ -2 ' V A w. 

Similarly for W*, we have [W*, W*] c W, and the bracket is identified with 

the map 

Finally we must look at brackets of elements of W with those of W*, which 

land in 90 ' Here the table is 

Y4 Xl X3 

X 4 2Hs + H2 3Xs 3X6 

Y, 3Ys H2 -Hs 3X2 
Y3 3Y6 3Y2 -Hs - 2H2 

In terms of the standard bases, [ei, en = 3Ei.i - hi)' Intrinsically, this 
mapping 

[ , ]: W x W* -+ sI3 1[ c gI(W) 

can be described by the formula 

[v, cp] (w) = 3cp(w)v - cp(v)w 

for v, W E Wand cp E W*. 

(22.4) 

Exercise 22.5*. Show that [v, cp] is the element of sI31[ characterized by the 

formula 
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B([v, cp], Z) = 18cp(Z· v) for all Z E 513 C, 

where B is the Killing form on 90 = 513 C. In other words, if we write v * cp for 

the element in 90 = 513 satisfying the identity 

B(v * cp, Z) = cp(Z· v) for all Z E 90 = 513 C, (22.6) 

then the bracket [v, cp] can be written in the form 

[v,cp] = 18·v*cp. (22.7) 

It is now a relatively painless task to verify the Jacobi identity, since, rather 

than having to check it for triples from a basis, it suffices to check it on triples 

of arbitrary elements of the three spaces 90' W, and W* using the above linear 

algebra descriptions for the brackets. We will write out this exercise, since the 

same reasoning will be used later. For example, for three or two elements from 

90' this amounts to the fact that 90 = 513 C is a Lie algebra and Wand W* are 

representations. 

For one element Z in 90' and two elements v and win W, the Jacobi identity 

for these three elements is equivalent to the identity 

z· (v /\ w) = (Z· v) /\ W + V /\ (Z· w), 

which we know for the action of a Lie algebra on an exterior product; and 

similarly for one element in 90 and two in W*. 
The Jacobi identity for Z E 90' v E W, and cp E W* amounts to 

[Z,v*cp] = (Z·v)*cp + v*(Z·cp). 

Applying B(Y, -) to both sides, and using the identity B(Y, [Z, X]) = 

B([Y, Z], X), this becomes 

cp([Y, Z]. v) = cp(y. (Z· v)) + (Z· cp)(y. v). 

Since cp([Y, Zl v) = cp(y. (Z· v)) - cp(Z· (y. v)), this reduces to 

(Z· cp)(w) = - cp(Z· w), 

for w = y. v, which comes from the fact that Wand W* are dual 

representations. 

For triples u, v, w in W, the Jacobi identity is similarly reduced to the identity 

(u /\ v)(Z· w) + (v /\ w)(Z· u) + (w /\ u)(Z· v) = 0 

for all Z E 90' which amounts to 

u /\ V /\ (Z· w) + U /\ (Z· v) /\ W + (Z· u) /\ V /\ W 

= Z·(u /\ V /\ w) = 0 in Nw = C; 

and similarly for triples from W*. 

For v, WE W, and cp E W*, noting that 

[[v, w], cp] = -2·[v /\ w, cp] = -4·(v /\ w) /\ cp = -4·(cp(v)w - cp(w)v), 

the Jacobi identity for these elements reads 
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-4' (tp(v)w - tp(w)v) = -[w, tp](v) + [ v, tp](w). (22.8) 

The right-hand side is 

-[w, tp](v) + [v, tp](w) = -(3tp(v)w - tp(w)v) + (3tp(w)v - tp(v)w), 

which proves this case. (This last line was the only place where we needed to 

use the definition (22.4) in place of the fancier (22.7).) 

The last case is for one element v in Wand two elements tp and I/J in W*. 

This time identity to be proved comes down to 

- 4· (I/J(v)tp - tp(v)I/J) = [v, tp] . I/J - [v, I/J] . tp. 

Applying both sides to an element w in W, this becomes 

-4 ' (I/J (v) tp(w) - tp(v)I/J(w)) = tp([v, I/J] . w) - I/J((v, tp] . w). 

If we apply I/J to the previous case (22.8) we have 

-4 · (tp(v)I/J(w) - tp(w)I/J(v)) = - I/J((w, tp]. v) + I/J((v, tp] . w). 

And these are the same, using the symmetry of the Killing form: 

18· tp([v, I/J] . w) = B([v, I/J], [w, tp]) = B([w, tp], [v, I/J]) = 18I/J([w, tp]. v). 

This completes the proof that the algebra with multiplication table (22.1) 

is a Lie algebra. With the hindsight derived from working all this out, of 

course, we see that there is a quicker way to construct g2' without any 

multiplication table: simply start with sl3 C $ WEB W*, and define products 
according to the above rules. 

§22.3. Representations of 92 

We would now like to use the standard procedure, outlined in Lecture 14 (and 

carried out for the classical Lie algebras in Lectures 15-20) to say something 

about the representations of g2' One nice aspect ofthis is that, working simply 

from the root system of g2 and analyzing its representations, we will arrive at 
what is perhaps the simplest description of the algebra: we will see that g2 is 

the algebra of endomorphisms of a seven-dimensional vector space preserving 

a general trilinear form. 

The first step is to find the weight lattice for g2 ' This is the lattice Aw c 1)* 

dual to the lattice r w c 1) generated by the six distinguished elements Hi' By 

(22.2), r w is generated by HI and H 2 • Since the values of the eigenvalues (Xl 

and (X2 on HI and H2 are given by 

(Xl(Hl ) = 2, 

(X2(Hd = -3, 

(Xl(H2 ) = -1, 

(X2(H2 ) = 2, 

it follows that the weight lattice is generated by the eigenvalues (Xl and (X2 (and 

in particular the weight lattice Aw is equal to the root lattice AR ). The picture 
is thus 
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As in the case of the classical Lie algebras, the intersection of the (closed) 
Weyl chamber 11"" with the weight lattice is a free semigroup on the two 

fundamental weights 

WI = 2(Xl + (Xz and Wz = 3(Xl + 2(Xz · 

Any irreducible representation of g2 will thus have a highest weight vector A. 
which is a non-negative linear combination of these two. As usual, we write 

ra,b for the irreducible representation with highest weight aWl + bwz. 
Let us consider first the representation r1 ,o with highest weight WI ' Trans

lating WI around by the action of the Weyl group, we see that the weight 

diagram of r 1 ,o looks like 
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Since there is only one way of getting from the weight W 1 to the weight 0 by 

subtraction of simple positive roots, the multiplicity of the weight 0 in f 1,o 

must be 1. rl,O is thus a seven-dimensional representation. It is the smallest 
of the representations of 92' and moreover has the property (as we will verify 

below) that every irreducible representation of 92 appears in its tensor algebra; 

we will therefore call it the standard representation of 92 and denote it V. 

The next smallest representation of 92 is the representation f O,l with 
highest weight W2 ; this is just the adjoint representation, with weight diagram 

Note that the multiplicity of 0 as a weight of f O,l is 2, and the dimension of 

f O,l is 14. 
Consider next the exterior square /',? V of the standard representation 

V = f 1,o of 92' Its weight diagram looks like 
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from which we may deduce that 

Nv ~ rO,t ® v. 

In particular, since the adjoint representation r o, I of g2 is contained in N V, 

and the irreducible representation ra,b with highest weight aWl + bW2 is 
contained in the tensor product Syma V ® Symbro, I, we see that every irreduc

ible representation of g2 appears in some tensor power v®m of the standard 

representation, as stated above. 

Next, look at the symmetric square Sym2 V of the standard representation. 
It has weight diagram 
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Clearly, this contains a copy of the irreducible representation r 2,o of g2 

with highest weight 2w l . Depending on the multiplicities of this representa

tion, it may also contain a copy of V itself, of the trivial representation, or 
both; or it may be irreducible. To see which is in fact the case, we need to 

know more about the action of g2 on the standard representation V We 
will do this in two ways, first by direct calculation, and second using the 

decomposition of 92 into 5(3 $ W $ W·. Although the second approach is 
shorter, the first illustrates how one can calculate for the exceptional Lie 

algebras very much as we have been doing in the classical cases. 
To describe V explicitly, start with a highest weight vector for V, i.e., any 

nonzero element V4 ofthe eigenspace V4 c V for the action of~ with eigenvalue 

IX4' The image of V4 under the root vector YI will then be a nonzero element 
of the eigenspace V3 with eigenvalue IX3 (this follows from the fact that the 

direct sum V3 $ V4 , as a representation of the subalgebra 5", c 9, is a copy of 
the standard representation of 5", ~ 512 C). Similarly, the image of V3 under Y2 

is a generator VI of the eigenspace VI with eigenvalue lXI' the image of VI under 
YI is a generator of the eigenspace Vo with eigenvalue 0, and so on. We may 

thus choose as a basis for V the vectors 

and 

u = YI(vd, 

W4 = - YI (W3), 

where Vi (resp. Wi) is an eigenvector with eigenvalue IXi (resp. Pi)' (The signs and 
coefficient t in the definition of WI are there for reasons of symmetry-see 

Exercise 22.10.) Diagrammatically, the action of 92 may be represented by the 
arrows 

Exercise 22.9. (i) Verify that the vectors Vi' Wi> and u, as defined above, are 
indeed generators of the corresponding eigenspaces. (ii) Find, in terms of this 

basis for V, the images of V4 under the elements Y3 , Y4 , Ys, and Y6 • 

Exercise 22.10. Show that the elements Xi and Yi E 92 all carry basis vectors 
Vj and Wj into other basis vectors, up to sign (or to zero, of course), and carry 

u to twice basis vectors, that is, Xiu = 2Vi and Yiu = 2Wi for i = 1,3,4. 
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Now, the representation Sym2 V has, as basis, the pairwise products of 

the basis vectors for V; and the subrepresentation r 2,o is just the subspace 

generated by the images of the highest weight vector v~ under (repeated 

applications of) the generators Y1 , Y2 of the negative root spaces of 92. Thus, 

for example, the eigenspace in Sym2 V with eigenvalue (X4 is the span of the 

products U· v 4 and V3 . VI; the part of this lying in r 2,o will be the span of the 

two vectors Y2 Y1 Y1(vD and Y1 Y2 Y1(d). We calculate: 

and 

Y2 Y1 Yl(V~) = Y2 Y1 (2V3 · V4) = Y2 (2vn 

= -4Vl · V3 

Y1 Y2 Y1 (d) = Y1 Y2 (2v3· V4 ) = - Y1 (2Vl . V4 ) 

= -2Vl ·V3 - 2u· v4 • 

We see, in other words, that r 2 ,o assumes the weight (X4 with multiplicity 2, 

so that in particular Sym2 V does not contain a copy of V. 

Similarly, to see whether or not Sym2 V contains a copy of the trivial 

representation, we have to calculate the multiplicity of the weight 0 in r 2,o. 

Since any path in the weight lattice from the eigenvalue 2(X4 to 0 obtained by 

subtracting (Xl and (X2 must pass through (X4' we can do this by evaluating the 

products of Y1 and Y2 on the generators VI · V3 and u· V4 of the eigenspace with 

eigenvalue (X4: we have 

and 

Y1 Y1 Y2 (V 1 V3) = - Y1 Y1(vi) = - Y1(2u·vd 

= -4Wl . VI - 2u2 ; 

Y1 Y1 Y2 (u· v4 ) = 0; 

Y1 Y2 Y1 (VI v3) = Y1 Y2(u· V3) = - Y1 (u · vd 

Y1 Y2 Y1(U·V4 ) = Y1 Y2 (U·V3 + 2w1 • v4 ) 

= YI(-U · VI + 2w3 · V4 ) 

= -2wl · VI - u2 - 2w4 • V4 + 2W3V3; 

Y2 Y1 YI (VI V3) = Y2 Y1 (u· v3) = Y2(2w1 . V3) 

= - 2Wl • VI + 2W3 . V3; 

Y2 Y1 Y1 (u· v4 ) = Y2 Y1 (u· V3 + 2WI • v4 ) = Y2(4w1 . v3) 

= -4WI . VI + 4W3 . V3. 

We see from this that the O-eigenspace of r 2,o is three dimensional; we thus 

have the decomposition 
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In particular, we deduce that the action of 92 on the standard representation 

V = [:7 preserves a quadratic form; and correspondingly that the subalgebra 

92 c 51(V) = 517[: is actually contained in the algebra 507«::' We will see this 

again in the following section, where we will give alternative descriptions of 

the exceptional Lie algebras, and again in §23.3 where we describe compact 
homogeneous spaces for Lie groups. 

Exercise 22.11. Analyze in general the symmetric powers SymkV of the stan

dard representation V of 92. 

Finally, consider the exterior cube Nv ofthe standard representation. The 

weight diagram is 

and after we remove one copy of the representation r 2 ,o with highest weight 

2Wl (this is the sum of the three highest weights 1X4' 1X3' and 1X1 of V), we are 
left with 
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This, by what we have seen, can only be the direct sum of the standard 
representation V with the trivial representation C. In sum, then, we conclude 
that 

Nv~r2,oE9VEBC. 

Note in particular that, as a corollary, the action of g2 on the standard 

representation preserves a skew-symmetric trilinear form OJ on V. It is not 

hard to write down this form: it is a linear combination of the five vectors 

W3 A U A V3 , V4 A U A W4 , WI A U A VI' VI A V3 A w4 , and WI A W3 A v4 ; and 
the fact that it is preserved by X I and X 2 is enough to determine the coefficients: 
we have 

OJ = W3 A U A V3 + V4 A U A W4 + WI A U A VI 

+ 2vI A V3 A W4 + 2wI A W3 A V4 ' 

The fact that the action of 92 on V preserves the skew-symmetric cubic 
form OJ takes on additional significance when we make a naive dimension 

count. The space N V of all such alternating forms has dimension 35, while 

the algebra 9I(V) of endomorphisms of V has dimension 49; the difference is 
exactly the dimension of the algebra 92' In fact, we can check directly that the 
linear map 

<P: 9I(V) -+ Nv 

sending A E End(V) to A(OJ) is surjective. We deduce that OJ is a general cubic 

alternating form [i.e., an open dense subset of Nv corresponds to forms 
equivalent to OJ under Aut(V)], and hence that 

Proposition 22.12. The algebra 92 is exactly the algebra of endomorphisms of 

a seven-dimensional vector space V preserving a general skew-symmetric cubic 

form OJ on V. 



358 22. 92 and Other Exceptional Lie Algebras 

Exercise 22.13*. Verify that the map q> above is surjective by direct calculation 

of the action of gI( V) on wEN V. 

Exercise 22.14. As an alternative to the preceding exercise, analyze skew

symmetric trilinear forms on Cn to show that for n s 7 there are only finitely 

many such forms, up to the action of GLnC. Verify that the form W above is 

general in Nc7• (In fact, there are only finitely many cubic alternating forms 

on C8' as well, though this is fairly complicated; for n ~ 9 a simple dimension 

count shows that there is a continuously varying family of such forms.) 

Note that the cubic form W preserved by the action of g2 gives us explicitly 

the inclusion 

vc..Nv 

deduced earlier from their weight diagrams: this is just the map V* -+ N V 

given by contraction/wedge product with w, composed with the isomorphism 

of V with V* . 

Exercise 22.15*. Find the algebra of endomorphisms of a six-dimensional 

vector space preserving a general skew-symmetric trilinear form. 

We will see the form w again when we describe g2 in the following section. 

These calculations using the table amount to using all the information 

that can be extracted from the subalgebras Sa ~ S[2C of g2. Using the copy 

of S[3 C that we found in the second section can make some of this more 

transparent. Make the identification 

g2 = go $ W $ W* = S[3C $ W $ W*. 

As a representation of S[3 C, the seven-dimensional representation V must 

be the sum of W; W*, and the trivial representation C. If we make this 

identification, 

V= W$W*$C, 

it is not hard to work out how the rest of g2 acts. This is given in the following 

table: 

W W* C 
w t/! z 

90 X X · w X·t/! 0 
W v -v II W t/!(v) 2z·v 
W* <p <p(w) <pllt/! 2z · <p 

With this identification, we have u = 1 in C, and 
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W3 = e3 in W = 1[:3; 

V3 = e! in W* = (1[:3)*. 

Conversely, it is not hard to verify that the above table defines a representation 

of g2' by checking the various cases of the identity [e, 11] . Y = e· (11 . y) -
11 . (~ . y) for ~, 11 in g2 and y in V. Note that the cubic form (J) becomes 

3 

(J) = L ej " U " er + 2(e 1 " e2 " e3 + eT " e! " en. 
j=1 

This description of V can be used to verify the calculations made earlier, 

and also to study its symmetric and exterior powers. For example, Sym2V 

decomposes over sl3 I[: into 

Sym2We3 Sym2W* e3 Sym2 1[: e3 W® I[: e3 W* ® I[: e3 W® W* 

= Sym2We3 Sym 2 W* e3 I[: EB WEB W* EB sl31[: e3 C. 

To get the weights around the outside ring, the irreducible representation r 2 ,o 

must include Sym2 W, Sym2 W*, and sl3 C. Checking that We g2 maps 

Sym2W* nontriviaUy to W* shows that it must also include Wand W*. To 

finish it suffices to compute the part killed by g2' which must lie in the sum 

of the two components which are trivial for s131[:; checking that this is one 

dimensional, one recovers the decomposition 

Sym2V = r 2,o e3 c. 

Exercise 22.16. Use this method to decompose Nv and Sym3 V. 

§22.4. Algebraic Constructions of the 

Exceptional Lie Algebras 

In this section we will sketch a few of the abstract approaches to the construc

tion of the five exceptional Lie algebras. The constructions are notas easy as 

you might wish: although the exceptional Lie groups and their Lie algebras 

have a remarkable way of showing up unexpectedly in many areas of mathe

matics and physics, they do not have such simple descriptions as the classical 

series. Indeed, they were not discovered until the classification theorem forced 

mathematicians to look for them. 

To begin with, the method we used to construct g2 in the second section 

of this lecture can be generalized to construct other Lie algebras. This is the 

construction of Freudenthal, which we do first. It can be used to construct the 

Lie algebra l's for the diagram (Es). From l's it is possible to construct l'7 and 

l'6 and f4' Then we will present (or at least sketch) several other approaches 

to their construction. Since it is a rather technical subject, probably not really 
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suited for a first course, we will touch on several approaches rather than give 

a detailed discussion of one. 

The construction of 92 as a sum 90 EB WEB W* that we found in the second 

section works more generally, with very little change. Suppose 90 is a semi

simple Lie algebra, and W is a representation of 90; let W* be the dual 
representation, and set 

9 = 90 EEl WEB W*. 

We also need maps 

,,: /VW -. W* and ,,: ;\?W* -. W 

of representations of 90. We assume these are given by trilinear maps of 

90-representations T: N W -. C and T': N W* -. C, which means that 

(u " v)(w) = T(u, v, w) and 8(qJ" 1/1) = T'(qJ, 1/1, 8). 

We can then define a bracket on 9 by the same rules as in the second section. 

To describe it, we let X, Y, Z, . . . denote arbitrary elements of 90' u, v, w, ... 

elements of W, and qJ, 1/1, 8, ... elements of W*. The bracket in 9 is determined 

by setting: 

(i) [X, Y] = [X, Y] 

(ii) [X, v] = X·v 
(iii) [X, qJ] = X·rp 

(iv) [v, w] = a·(v " w) 

(v) [rp,I/I] = b·(rp " 1/1) 
(vi) [v, rp] = c·(v*qJ) 

(the given bracket in 90)' 

(the action of 90 on W), 

(the canonical action of 90 on W*), 

(for a scalar a to be determined), 

(for a scalar b to be determined) 

(for a scalar C to be determined). 

As before, v * qJ is the element of 90 such that 

B(v * rp, Z) = rp(Z· v) for all Z E 90' 

where B is the Killing form on 90. The rules (i)-(vi) determine a bilinear 

product [ , ] on all of 9, and the fact that it is skew follows from the facts 

that [X, X] = 0, [v, v] = 0, and [rp, qJ] = O. 

The argument that we gave showing that 92 satisfies the Jacobi identity 

works in this general case without essential change, except for the last two 

cases, where explicit calculation is needed. For v, WE W, and rp E W*, the 

Jacobi identity is equivalent to the identity 

ab«v " w) " qJ) = c«v * rp). w - (w * qJ). v). (22.17) 

For v E W, qJ, 1/1 E W*, the Jacobi identity amounts to 

(22.18) 

We will see in Exercise 22.20 that (22.17) and (22.18) are equivalent. Again, 

the simplicity ofthe resulting Lie algebra is easy to see, provided all the weight 

spaces are one dimensional, using Exercise 14.34, so we have: 
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Proposition 22.19 (Freudenthal). Given a representation W of a semisimple 

Lie algebra 90 and trilinear forms T and T' inducing maps IV W -+ W* and 

IV W* -+ W, such that (22.17) and (22.18) are satisfied, the above products make 

9 = 90$ WEB W* 

into a Lie algebra. If the weight spaces of Ware all one dimensional, and the 

weights of W, W*, and the roots of 90 are all distinct, and abc #- 0, then 9 is 

semisimple, with the same Cartan subalgebra as 90' 

Exercise 22.20*. (a) Show that the trilinear map T determines a map /\: 

IV W -+ W* of representations if and only if it satisfies the identity 

T(X' u, v, w) + T(u, X' v, w) + T(u, v, X' w) = ° '<IX E 90' 

and similarly for T'. 
(b) Show that each of (22.17) and (22.18) is equivalent to the identity 

ab'(v /\ wHtp /\ t/t) = c·(B(w*t/t, v* tp) - B(w* tp, v* t/t)). 

The Lie algebra es for (Es) can be constructed by this method. This time 

90 is taken to be the Lie algebra sI9C; if V = C9 is the standard representation 

of 519 C, let W = Nv, so W* = Nv*; the trilinear map is the usual wedge 

product 

and similarly for Nv*. We leave the verifications to the reader: 

Exercise 22.21*. (i) Verify the conditions on the roots of 519 and the weights 

of N V and N V*. (ii) Use the fact that B(X, Y) = 18· Tr(XY) for sl9 to show 

that (22.17) holds precisely if c = - 18ab. (iii) Show that the Dynkin diagram 

of the resulting Lie algebra is (Es). 

Note that the dimension of 519 C is 80, and that of Wand W* is 84, so the 

sum has dimension 248, as predicted by the root system of (Es). 

Once the Lie algebra es is constructed, e7 and e6 can be found as sub

algebras, as follows. Note that removing one or two nodes from the long arm 

of the Dynkin diagram of (Es) leads to the Dynkin diagrams (E7) and (E6)' 

In general, if 9 is a simple Lie algebra, with Dynkin diagram D, consider a 

subdiagram DO of D obtained by removing some subset of nodes, together 

with all the lines meeting these nodes. 1 Then we can construct a semisimple 

subalgebra 9° of 9 with DO as its Dynkin diagram. In fact, 9° is the subalgebra 

generated by all the root spaces 9±«, where r:t. is a root in DO. 

I If there are double or triple lines between two nodes, both nodes should be removed or kept 

together. 
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Exercise 22.22. (a) Prove this by verifying that the positive roots of gO are the 

positive roots f3 of g that are sums of the roots in DO, and the Cartan 

subalgebra ~o is spanned by the corresponding vectors Hp E ~. 

(b) Carry this out for e7 and e6 ; in particular, show again that e7 has 63 

positive roots, so dimension 7 + 2(63) = 133, and e6 has 36 positive roots, so 

dimension 6 + 2(36) = 78. 

Exercise 22.23. For each of the simple Lie algebras, find the subalgebras 

obtained by removing one node from an end of its Dynkin diagram. 

The last exceptional Lie algebra f4 can be constructed by taking an in

variant subalgebra of e6 by an involution. This involution corresponds to the 
evident symmetry in the Dynkin diagram: 

In general, an automorphism of a Dynkin diagram arises from an auto

morphism of the corresponding semisimple Lie algebra, as follows from the 
fact that the multiplication table is determined by the Dynkin diagram, cf. 
Proposition 21.22 and Claim 21.25. 

Exercise 22.24*. (a) Show that the invariant subalgebra for the indicated 

involution of e6 is a simple Lie algebra f4 with Dynkin diagram (F4)' 
(b) Find the invariant subalgebra for the involutions of (A,,) and (D,,), and 

for an automorphism of order three of (D4)' 

Exercise 22.25*. For each automorphism of the Dynkin diagrams (An) and 

(D,,), find an explicit automorphism of sl,,+11C and S02nIC that induces it. 

The exceptional Lie algebras can also be realized as the Lie algebras of 
derivations of certain nonassociative algebras. This also gives realizations of 

corresponding Lie groups as groups of automorphism of these algebras (see 
Exercise 8.28). Some examples of this for associative algebras should be 

familiar. The group of automorphisms of the algebra IHl of (real) quaternions 
is 0(3), so the Lie algebra of derivations is S031R. The Lie algebra of derivations 

of the complexification IHl cis s031C ~ sI2 1C. 
The exceptional group G2 can be realized as the group of automorphisms 

of the complexification of the eight-dimensional Cayley algebra, or algebra of 
octonions. Recall that the quaternions IHl = IC Ef> ICj can be constructed as the 

set of pairs (a, b) of complex numbers. In a similar way the Cayley algebra, 
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which we denote by 0, can be constructed as the set of pairs (a, b), with a and 

b quaternions. The addition is componentwise, with multiplication 

(a, b) 0 (c, d) = (ac - db, da + be), 

where - denotes conjugation in IHI. This algebra 0 also has a conjugation, 

which takes (a, b) to (a, -b). It has a basis 1 = (1,0), together with seven 

elements e1 , ••• , e7 : 

(i, 0), (j, 0), (k, 0), (0, 1), (0, i), (O,j), (0, k). 

These satisfy ep 0 ep = -1 and ep 0 eq = - eq 0 ep for p # q, and the conjugate 

e;, of ep is - ep • The multiplication table can be encoded in the diagram: 

(O,i) 

(O,k) ..... ----..:::,. ..... ~--..::a (O,j) 

(i,O) 

Here, if ep , eq , and e, appear on a line in the order shown by the arrow, then 

Note in particular that any two of these basic elements generate a subalgebra 

of 0 isomorphic to IHI. 

Exercise 22.26. Show that the subalgebra of 0 generated by any two elements 

is isomorphic to IR, C, or IHI. Deduce that, although 0 is noncommutative and 

nonassociative, it is "alternative," i.e., it satisfies the identities (x 0 x) 0 y = 

x 0 (x 0 y) and y 0 (x 0 x) = (y 0 x) 0 x. 

A trace and norm can be defined on 0 by 

Tr(x) = t(x + x), N(x) = x 0 x; 

these satisfy the relation X Z - 2 Tr(x) + N(x) = O. Let P(x, y) = t(x 0 y + 
y 0 x) be the bilinear form associated to N; note that the above basis is an 

orthonormal basis for this inner product. 

Let G be the group of algebra automorphisms of the real algebra o. The 

next exercise sketches a proof that the complexification of G is a Lie group of 

type (Gz). 



364 22. g2 and Other Exceptional Lie Algebras 

Exercise 22.27*. The center of 0 is IR ·1, which is preserved by G. Let Y be 

orthogonal space to IR · 1 with respect to the quadratic form N. Then G is 

imbedded in the group SO(Y) of orthogonal transformations of Y. 

(a) Define a "cross product" x on Y by the formula v x w = V· W + P(v, w)· 1. 

Show that G can be identified with the group of orthogonal transforma

tions of Y that preserve the cross product. 

(b) Show that G = Aut(O) acts transitively on the 6-sphere 

S6 = n: riei: L rl = I}, 

and the subgroup K that fixes i = e1 is mapped onto the 5-sphere in et 
by the map g 1-+ g oj. Conclude from this that G is 14-dimensional and 

simply connected. 

(c) Show that {D E Der(O): D(i) = O} is isomorphic to su3 . 

(d) Verify that the Lie algebra of derivations of the complex octonians is the 

simple Lie algebra of type (G2 ). 

Exercise 22.28*. The octonions can also be constructed from the Clifford 

algebra of an eight-dimensional vector space with a nondegenerate quadratic 

form. With V, S+, and S- as in §20.3, with V1 E V, Sl E S+, tl = v1 . Sl E S

chosen so the values ofthe quadratic forms are 1 on each of them as in Exercise 

20.50, define a product V x V -+ V, (v, w) 1-+ Vow by the formula 

Vow = (v· t d . (w . S d. 

Note that v· tl E S+, w· Sl E S-, so their product (v· td· (w· sd is back in V. 

(a) Show that V with this product is isomorphic to the complex octonians 

0, with unit Vl' with the map V 1-+ -p(v1)(v) corresponding to conjugation in 

o. 
Conversely, starting with the complex octonians 0, one can reconstruct 

the algebra of §20.3: define A = 0 $ 0 $ 0, define an automorphism J of 

order 3 of A by J(x, y, z) = (z, x, y), and define a product· from each succes

sion of two factors to the third by the formulas x· y = x 0 y, y. Z = yo z, 

z·x=zox. 
(b) Show that A is isomorphic to the algebra described in §20.3. 

(c) Identifying sosC with the space of skew linear transformations of 0, 
show that for each A in sosC there are unique Band C in sosC such that 

A(x 0 y) = B(x) 0 y + x 0 C(y) 

for all complex octonions x and y. Equivalently, if one defines a trilinear form 

(, , ) on the octonions by (x, y, z) = Tr«x 0 y) 0 z) = Tr(x 0 (y 0 z)), 

(Ax, y, z) + (x, By, z) + (x, y, Cz) = 0 

for all x, y, z. Show that this trilinear form agrees with that defined in Exercise 

20.49, and the mapping A 1-+ B determines the triality automorphismj' of 50s C 

of order three described in Exercise 20.51. 
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Exercise 22.29. Define three homomorphisms from the real Clifford algebra 

C7 = qo, 7) to End R(O) by sending v E!R7 = L !Rei to the maps Lv, Rv, and 

T" defined by L v(x) = v 0 x, Rv(x) = x 0 v, and T,,(x) = v 0 (x 0 v) = (v 0 x) 0 v. 

(a) Show that these do determine maps of the Clifford algebra, and that the 

induced maps 

Spins!R ~ qven = C7 -+ Endn(O) 

are the two spin representations and the standard representation, respectively. 

(b) Verify that T,,(x 0 y) = Lv(x)· L v(y) for all v, x , y, and use this to verify 
the triality formula in (c) of the preceding exercise. 

The algebra f4 can be realized as the derivation algebra ofthe complexifica
tion of a 27 -dimensional Jordan algebra JI . This can be constructed as the set 
of matrices of the form 

(
: ex P) 
ex by , 

7J Y c 

with a, b, c scalars, and ex, p, y in O. The product 0 in JI is given by 

x 0 y = t(xy + yx), 

where the products on the right-hand side are defined by usual matrix multi

plication. This algebra is commutative but not associative, and satisfies the 
identity «x 0 x) 0 y) 0 x = (x 0 x) 0 (y 0 x). In fact, (F4) is the group of auto

morphisms of this 27-dimensional space that preserve the scalar product 
(x, y) = Tr(x 0 y) and the scalar triple product (x, y, z) = Tr«x 0 y) 0 z). The 

kernel of the trace map is an irreducible 26-dimensional representation of f4. 
For details see [Ch-S], [To], [Pos]. 

In addition, there is a cubic form "det" on JI such that the linear auto
morphisms of JI that preserve this form is a group of type (E6). This again 

shows f4 as a subalgebra of 4.'6. 
The other exceptional Lie algebras can also be constructed as derivations 

of appropriate algebras. We refer for this to [Ti2], [Dr], [Fr2], [Jac2], and 
the references found in these sources. Other constructions were given by Witt, 

cf. [Wa]. The simple Lie algebras are also constructed explicitly in [S-K, §1]. 
See also [Ch-S], [Frl], and ESc]. 

What little we will have to say about the representations of the four 

exceptional Lie algebras besides 92 can wait until we have the Weyl character 
formula. 



LECTURE 23 

Complex Lie Groups; Characters 

This lecture serves two functions. First and foremost, we make the transition back 
from Lie algebras to Lie groups: in §23.1 we classify the groups having a given 
semisimple Lie algebra, and say which representations of the Lie algebra, as described 

in the preceding lectures, lift to which groups. Secondly, we introduce in §23.2 the 
notion of character in the context of Lie theory; this gives us another way of describing 

the representations of the classical groups, and also provides a necessary framework 
for the results of the following two lectures. Then in §23.3 we sketch the beautiful 

interrelationships among Dynkin diagrams, compact homogeneous spaces and the 
irreducible representations of a Lie group. The first two sections are elementary 

modulo a little topology needed to calculate the fundamental groups of the classical 
groups in §23.1. The third section, by contrast, may appear impossible: it involves, at 

various points, projective algebraic geometry, holomorphic line bundles, and their 

cohomology. In fact, a good deal of §23.3 can be understood without these notions; 
the reader is encouraged to read as much of the section as seems intelligible. A final 
section §23.4 gives a very brief introduction to the related Bruhat decomposition, which 

is included because of its ubiquity in the literature. 

§23.1: Representations of complex simple groups 

§23.2: Representation rings and characters 
§23.3: Homogeneous spaces 
§23.4: Bruhat decompositions 

§23.1. Representations of Complex Simple Lie Groups 

In Lecture 21 we classified all simple Lie algebras over C. This in tum yields 
a classification of simple complex Lie groups: as we saw in Lecture 7, for any 
Lie algebra 9 there is a unique simply connected group G, and all other 
(connected) complex Lie groups with Lie algebra 9 are quotients of G by 
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discrete subgroups of the center Z(G). In this section, we will first describe the 
groups associated to the classical Lie algebras, and then proceed to describe 

which of the representations of the classical algebras we have described in 
Part III lift to which of the groups. We start with 

Proposition 23.1. For all n ~ 1, the Lie groups SL.C and SP2.C are connected 
and simply connected. For n ~ 1, SOnC is connected, with 7t t (S02C) = 7L, and 

7t t (SO.C) = 7L/2for n ~ 3. 

PROOF. The main tool needed from topology is the long exact homotopy 

sequence of a fibration. If the Lie group G acts transitively on a manifold 

M, and H is the isotropy group of a point Po of M, then G/H = M, and the 
map G .... M by g 1-+ g . Po is a fibration with fiber H. The resulting long exact 

sequence is, assuming the spaces are connected, 

... .... 1t2(M) .... 7t t(H) .... 7t t (G) .... 7t t(M) .... {1}. (23.2) 

(The base points, which are omitted in this notation, can be taken to be the 
identity elements of Hand G, and the point Po in M.) In practice we will know 

M and H are connected, from which it follows that G is also connected. From 
this exact sequence, if M and H are also simply connected, the same follows 
for G. 

To apply the long exact homotopy sequence in our present circumstance 
we argue by induction, noting first that SLt C = SOt C = {1}. Now consider 

the action of G = SL.C on the manifold M = C·\ {O}. The subgroup H 
fixing the vector Po = (1,0, ... ,0) consists of matrices whose first column is 

(1,0, ... ,0) and whose lower right (n - 1) by (n - 1) matrix is in SL._t C; it 
follows that as topological spaces H ~ SL._t C x C·-t. Since M is simply 
connected for n ~ 2 (having the sphere S2.-t as a deformation retract), and H 

has SL._t C as a deformation retract, the claim for SL.C follows from (23.2) 
by induction on n. 

The group S02C is isomorphic to the multiplicative group C*, which has 

the circle as a deformation retract, so 1tt(S02C) = 7L. The group G = SO.C 
acts transitively on M = {v E C'; Q(v, v) = 1}, where Q is the symmetric bi
linear form preserved by G. (The transitivity of the action is more or less 

equivalent to knowing that all nondegenerate symmetric bilinear forms are 
equivalent.) For explicit calculations take the standard Q for which the 
standard basis {e;} of C· is an orthonormal basis. This time the subgroup H 

fixing et is SO._t C. From the following exercise, it follows that M has the 
sphere sn-t as a deformation retract. By (23.2) the map 

7t t (SO.-t C) -+ 7t t (SO.C) 

is an isomorphism for n ~ 4. So it suffices to look at S03C. This could be 
done by looking at the maps in the sme exact sequence, but we saw in Lecture 
10 that S03 C has a two-sheeted covering by SL2 C, which is simply connected 

by the preceding paragraph, so 7t t (S03C) = 7L/2, as required. 
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The group G = SP2nC acts transitively on 

M = {(v, w) E c 2n X C 2n: Q(v, w) = I}, 

where Q is the skew form preserved by G, and the isotropy group is SP2n-2C 

Since SP2 C = SL2 C, the. first case is known. By the following exercise, since 

M is defined in C4 n by a nondegenerate quadratic form, M has s4n-1 as a 

deformation retract, so we conclude again by induction. 0 

Exercise 23.3*. Show that {(Z1, ... ,Z.)Ecn: Lzr = I} is homeomorphic to 

the tangent bundle to the (n - I)-sphere, i.e., to 

Tsn-, = {(u, v) E sn-1 X iRn : U·V = OJ. 
Using the exact sequence {1} -+ SLnC -+ GLnC -+ C* -+ {I} we deduce 

from the proposition and (23.2) that 

1t 1(GLnC) = Z. (23.4) 

Exercise 23.5. Show that for all the above groups G, the second homotopy 

groups 1t2(G) are trivial. 

We digress a moment here to mention a famous fact. Each of the above 

groups G has an associated compact subgroup: SU(n) c SLnC, Sp(n) c SP2nC, 

and SO(n) c SOnC In fact, each of these subgroups is connected, and these 

inclusions induce isomorphisms of their fundamental groups. 

Exercise 23.6. Prove these assertions by finding compatible actions of the 

subgroups on appropriate manifolds. Alternatively, observe that in each case 

the compact subgroup in question is just the subgroup of G preserving a 

Hermitian form on cn or C2n, and use Gram-Schmidt to give a retraction of 

G onto the subgroup. 

Now, by Proposition 23.1 the simply-connected complex Lie groups corre

sponding to the Lie algebras 9 = sInC, SP2nC, and sOmC are 

G = SLnC, SP2nC, and SpinmC 

We also know the center Z(G) of each of these groups. From Lecture 7 we 

also know the other connected groups with these Lie algebras: 

• The complex Lie groups with Lie algebra sI.C are SL.C and quotients of 

SLn C by subgroups of the form {e2"Ii/m. I} I for m dividing n (in particular, 

if n is prime the only such groups are SLnC and PSL.C). 

• The complex Lie groups with Lie algebra SP2nC are SP2nC and PSP2nC 

• The complex Lie groups with Lie algebra S02n+1 Care Spin2n+1 C and 

S02n+1 C 
and 

• The complex Lie groups with Lie algebra S02nC are Spin2.C, S02nC and 

PS02nC; in addition, ifn is even, there are two other groups covered doubly 

by Spin2nC and covering doubly PS02nC [cf. Exercise 20.36]. 
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These are called the classical groups. In the cases where we have observed 

coincidences of Lie algebras, we have the following isomorphisms of groups: 

and 

Spin3C ~ SL2C and S03C ~ PSL2C; 

Spin4C ~ SL2C x SL2C and PS04C ~ PSL2C x PSL2C; 

SpinsC ~ SP4C and SOsC ~ PSP4C; 

Spin6C ~ SL4 C and PS06C ~ PSL4C. 

Note that in the first case n = 4 where there is an intermediate subgroup 

between SLnC and PSLnC, the subgroup in question is interesting: it turns 

out to be S06 C. In general, however, these intermediate groups seldom arise. 

Consider now representations of these classical groups. According to the 

basic result of Lecture 7, representations of a complex Lie algebra 9 will 

correspond exactly to representations of the associated simply connected Lie 

group G: specifically, for any representation 

p: 9 -+ gl(V) 

of g, setting 

p(exp(X» = exp(p(X» 

determines a well-defined homomorphism 

p: G -+ GL(V). 

For any other group with algebra g, given as the quotient GIC of G by a 

subgroup C c Z(G), the representations of G are simply the representations 

of G trivial on C. It is therefore enough to see which of the representations 

of the classical Lie algebras described in Part III are trivial on which sub

groups C c Z(G). 

This turns out to be very straightforward. To begin with, we observe that 

the center of each group G with Lie algebra 9 lies in the image of the chosen 

Cartan subalgebra g c 9 under the exponential map. It will therefore be 

enough to know when exp(p(X» = I for X E g; and since the representations 

p of 9 are particularly simple on g this presents no difficulty. 

What we do have to do first is to describe the restriction of the exponential 

map to g, so that we can say which elements of g exponentiate to elements of 

Z(G). For the groups that are given as matrix groups, this will all be perfectly 

obvious, but for the spin groups we will need to do a little calculation. We 

will also want to describe the Cartan subgroup H of each of the classical groups 

G, which is the connected subgroup whose Lie algebra is the Cartan sub

algebra g of g. For G = SLnC, H is just the diagonal matrices in G, i.e., 

H = {diag(zl' ... , zn): Zl· .. . ·Zn = I}. 

Similarly in SP2nC or S02nC, H = {diag(zl, ... , Zn, z11, ... , Z;;l)}, whereas in 

S02n+1C, H = {diag(zl' . .. ,zn,zI1, .. . ,Z;;I, I)}. In each of these cases the 
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exponential mapping from l) to H is just the usual exponentiation of diagonal 

matrices. 

To calculate the exponential mapping for Spin",C, we need to describe the 
elements in Spin",C that lie over the diagonal matrices in SO",c. This is not 

a difficult task. Calculating as in §20.2, we find that for any nonzero complex 

number Z and any 1 ~ j ~ n, and with m = 2n + 1 or m = 2n, the elements 

(23.7) 

in the Clifford algebra are in fact elements of Spin",C. Moreover, if 

p: Spin",C -+ SO"'C is the covering, the image p(Wj(z» is the diagonal matrix 
whose jth entry is Z2, (n + j)th entry is Z-2, and other diagonal entries are 1. 
These elements Wj(z) also commute with each other, so for any nonzero 

complex numbers Z 1, ... , Z. we can define 

(23.8) 

Then P(W(Zl' ... , z.» = diag(zI, ... , z;, z12, ... , Z;;2) if m = 2n, while if m = 

2n + 1, we get the same diagonal matrix but with a 1 at the end. 

Let Hi = Ei,i - E.+i,.+i' the usual basis for l) c sO"'c. 

Lemma 23.9. For any complex numbers a 1, . •• , a., 

exp(a1H1 + ... + a.H.) = w(eatl2, ... , ea"/2) 

PROOF. Since the map exp: l) -+ Spin",C is determined by the facts that it is 
continuous, it takes 0 to 1, and its composite with P is the exponential for 

SO"'C, this follows from the preceding formulas. 0 

Exercise 23.10*. Show that exp(I,ajHj) = 1 if and only if each aj is in 21tiZ 

and I,aj E 41tiZ. 

We see also that exp(l» contains the center of Spin",C. Indeed, 
-1 = w( -1, 1, .. . , 1), and if m is even, the other central elements are ±(O, 
with (0 = w(i, ... , i), as we calculated in Exercise 20.36. (This, of course, also 

contains the fact that there is a path between 1 and -1, proving again that 
Spin",C is connected.) 

Exercise 23.11*. Verify for all the classical groups G that: (i) H = exp(l» is 
a closed subgroup of G that contains the center of G; (ii) the map of funda

mental groups 1tl (H, e) -+ 1tl (G, e) is surjective; (iii) for any connected covering 
1t: G' -+ G, 1t-1 (H) is connected and is the Cartan subgroup of G'. 

Now let G = ale be a semisimple Lie group with Lie algebra 9 and Cartan 
subalgebra l). Choose an ordering of the roots, and let r .. be the irreducible 

representation of 9 with highest weight A.. The basic fact that we need is 
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Lemma 23.12. The representation r). is a representation of G = Gle if and 

only if 

A(X) E 2niZ whenever exp(X) E C. 

PROOF. The representation r). is a representation of G when g. v = v for all 

gEe, where v is a highest weight vector in r).. Since exp(~) contains e, this 

says exp(X)· v = v for all X E ~ such that exp(X) E C. Now by the naturality 

of the exponential map, and since X . v = A(X)V for X E g, we have exp(X)· v = 
e).(X)v. Hence the condition is that e).(X)v = v, or that eA(X) = 1 if exp(X) E e, 
which is the displayed criterion. D 

Let us work this out explicitly for each of the classical groups. It may help 

to introduce a notation for the irreducible representations which, among other 

virtues, allows some common terminology in the various cases. Note that for 

each of sIn +1 , 5P2n' 502n , and 502n+1 the root space g* is spanned by weights 
we have called L 1 , ••• , L n, so a weight can be written uniquely in form 

AILI + ... + AnLn. We may sometimes write A in place of the weight 

Al Ll + ... + AnLn· In the rest of this lecture at least, we write rA for the 

irreducible representation with highest weight AILI + ... + AnLn. Note that 

by our choice ofWeyl chambers the highest weights A = (AI' ... , An) that arise 
satisfy 

where the Ai are all integers in the first two cases, and for 502n+1 they are either 

all integers or all hjilf-integers; and 

Al ~ A2 ~ ... ~ An- 1 ~ IAnl ~ 0 for 502n, 

with the Ai all integers or all half-integers. 

Proposition 23.13. For each subgroup e of the center of G, the representation 
r). is a representation of Gle precisely under the following conditions: 

(i) ~ = SLn+1 C, e has order m dividing n + 1: L Aj == 0 mod(m). 

(ii) l! = SP2n C, e = {± 1}: L Aj is even. 
(iii) G = Spin2n C or Spin2n+1 C, e = {± 1}: all Ai are integers. 
(iv) ~ = Spin2nC, e = {± 1, ± w}: all Ai are integers, L Aj is even. 
(v) G = Spin2n C, n even, e = {t, w}: LAj is an even integer; and for e = 

{1, -w}: LAj - nl2 is an odd integer. 

In particular, representations of PSLn+1 C are given by partitions A with 

LAj == 0 mod(n + 1), and those for PSP2nC have LAj even. Case (iii) verifies 

what we saw in Lecture 19 about representations of SOme. Representations 

of PSOm C correspond to integral partitions A with L Aj even. 

PROOF. With the preceding lemma and the explicit description of everything 

in sight, the calculations are routine. In case (i), for example, a generator for 
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C is of the form exp(X), with 

X = (2ni/m) ( t Ei,i - nEn+1,n+1)' 
)=1 

and so A.(X) = (2ni/m)(I A.) will be a multiple of 2ni exactly when L A.j is 

divisible by m. For SP2.C, exp(X) = -1 when X = ni(L Hj ), so A.(X) = niL A.i , 

and (ii) follows. The calculations are similar for Spinm C, noting that 

exp(2ni(Hd = -1 and exp(ni(LHj )) = m. 0 

By way of an example, recall that any irreducible representation of sI2C is 

of the form Symkv, where V is the standard two-dimensional representation. 

Any such representation, of course, lifts to the group SL2C; but it lifts 

to PSL2 C ~ S03 C if and only if k is even (in particular, the "standard" 

representation ofS03C on C 3 is the symmetric square Sym2 V). For another 

example, we have seen that any irreducible representation of SP4C may be 
found in a tensor product SymkV ® Sym'w, where V is the standard four

dimensional representation of SP4C and We Nv the complement of the 

trivial one-dimensional representation. All such representations lift to SP4 C, 

but they lift to PSP4C ~ SOsC if and only if k is even-equivalently, if they 

are contained in a representation of the form Sym'W ® Symk(N W), where 

W is the "standard" representation of SOs C. 

Exercise 23.14. Show that each of these semisimple complex Lie groups G has 

a finite-dimensional faithful representation. 

The result of the proposition can be put in a more formal setting, which 

brings out a feature that our alert reader has surely noticed: the center of 

the simply-connected form of 9 is isomorphic to the quotient group Aw/AR 
of the weight lattice modulo the root lattice. We note first that this abelian 

group Aw/AR is finite. We have seen this for the classical Lie algebras. In 
general, we have 

Lemma 23.15. The group Aw/AR is finite, of order equal to the determinant of 
the Cartan matrix. 

PROOF. The simple roots IX form a basis for the root lattice A R • The correspond

ing elements Ha form a basis for 

rR = Z{Hy : Y E R}, 

a lattice in ~; this is proved in Appendix D.4. Since Aw is defined to be the 

lattice of elements of ~* that take integral values on rR , the determinant 

det(IX(Hp)) = det(na/l) 

is the index [Aw : ARJ. o 
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In particular, for the exceptional groups, Aw/AR is trivial for (G2), (F4 ), and 

(Es), and cyclic of order two for (E7) and order three for (E6). 

In fact, the center of the simply-connected group is naturally isomorphic 

to the dual of Aw/AR. To express this, consider the natural dual of this last 

group. The lattice rR defined in the preceding proof is a sublattice ofthe lattice 

rw = {X E~: IX(X) E 7L for all IX E R}. 

Note that Aw was defined to be the lattice of elements of ~* that take integral 

values on rR.1t follows formally from the definitions and the fact that Aw/AR 
is finite that we have a perfect pairing 

(X, IX) 1-+ IX (X). 

The claim is that there is a natural isomorphism from r W/rR to the center 

of G, which is given by the exponential. More precisely, let ea: ~ -+ He G be 

the homomorphism defined by 

ea(X) = exp(21tiX). 

We claim that when G = G is the simply-connected group, Ker(eG) = rR and 

eG(r w) is the center of G, from which it follows that eG induces an isomorphism 

rW/rR ~ Z(G). 

More generally, for any G = G/C, define a lattice r( G) between rR and r w by 

r(G) = Ker(ea)· 

Then ea determines an isomorphism 

We may thus state our result as 

Theorem 23.16. There is a one-to-one correspondence between connected Lie 

groups G with the Lie algebra 9 and lattices A c ~* such that 

AR cAe Aw. 

The correspondence is given by associating to a group G the lattice dual to the 

kernel of the exponential map exp: 9 -+ G; in particular, the largest lattice Aw 
corresponds to the simply-connected group, the smallest AR to the adjoint group 

with no center. In terms of this correspondence, the irreducible representation 

V;. of 9 with highest weight A. E ~* will lift to a representation of the group G 

corresponding to A c ~* if and only if A. E A. 

Note also that 

H = ~/r(G) ~ C* x ... x P, 

with n = dimc~ copies of C*. 
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Exercise 23.17*. Show that these claims follow formally from what we have 

seen: that the image of the exponential map contains the center, and that for 

any weight C( there is a representation V of 9 whose weight space Ya is not zero. 

Show also that eG determines an isomorphism r( G)/rR ;;;;; 1t 1 (G). In diagram 

form, 

Go 

i 
G 

i 
G 

Exercise 23.18. Find the kernels of each of the spin and half-spin representa

tions SpinmC ~ GL(S) and SpinmC -+ GL(Si). 

Exercise 23.19*. Classify the irreducible representations of the fuU orthogonal 

group OmlC. 

Note that by our analysis of the Lie algebra g2 there is a unique group G2 

with this Lie algebra, which is simultaneously the simply-connected and 

adjoint forms; the representations of this group are exactly those of the alge

bra g2 . The same is true for the Lie algebras oftype (F4 ) and (Es), while (E7) 

and (E6) each have two associated groups, an adjoint one with fundamental 

group lL/2 and lL/3, and a simply-connected form with center lL/2 and lL/3 
respectively. 

It may be worth pointing out that each complex simple Lie group G can 

be realized as a closed subgroup defined by polynomial equations in some 

general linear group, i.e., that G is an affine algebraic group. Every irreducible 

representation G ~ GL(V) is also defined by polynomials in appropriate 

coordinates. This explains why the whole subject can be developed from the 

point of view of algebraic groups, as in [Borl] and [Hu2]. 

The Weyl group m, which we defined as a subgroup of Aut(~*), can be 

interpreted in terms of any connected Lie group G with Lie algebra g. Let H 
be the Cartan subgroup corresponding to ~, and let N(H) be the normalizer: 

N(H) = {g E G: gHg- 1 = H}. 

We have homomorphisms: 

N(H) -+ Aut(H) -+ Aut@ -+ Aut(~*), 

the first defined by conjugation, the second by differentiation at the identity, 

and the third using the identification of ~ and ~* via the Killing form. Fact 

14.11 can be sharpened to the claim that this map determines an isomorphism 

N(H)/N~m. (23.20) 

When G is the adjoint form of the Lie algebra, this isomorphism is proved 

in Appendix D. The general case follows, using: 
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Exercise 23.21. Show that if n: G' -+ G is a connected covering, with Cartan 

subgroups H' = n-1(H), then the induced map N(H')/H' -+ N(H)/H is an 

isomorphism. 

Exercise 23.22. For each of the classical groups, and each simple root a, find 

an element in N(H) that maps to the reflection w,. in 2B. 

§23.2. Representation Rings and Characters 

Just as with finite groups, we can form the representation ring R of a semi

simple Lie algebra or Lie group: take the free abelian group on the isomorphism 

classes [V] of finite-dimensional representations V, and divide by the relations 

[V] = [V'] + [V"] whenever V ~ V' Ee V". By the complete reducibility of 

representations, it follows as before that R is a free abelian group on the classes 

[V] of irreducible representations. Again, the tensor product of representa

tions makes R into a ring: [V]· [W] = [V ® w]. Many of our questions 

about decomposing representations and tensor products of representations 

can be nicely encoded by describing R more fully. We do this first for the Lie 

algebras. 

For a semisimple Lie algebra g, let A = Aw be the weight lattice, and let 

Z[A] be the integral group ring on the abelian group A. We write e(A.) for the 

basis element of Z[A] corresponding to the weight A.; for now at least these 

are just formal symbols, having nothing to do with exponentials (but see 

(23.40)). Elements of Z [ A] are expressions of the form L n;. e(A.), i.e., they assign 
an integer n;. to each weight A., with all but a finite number being zero. So Z[A] 

is a natural carrier for the information about multiplicities of representations. 

Define a character homomorphism 

Char: R(g) -+ Z[A] (23.23) 

by the formula Char[V] = L dim(V;.)e(A.), where V;. is the weight space of V 

for the weight A. and dim(V;.) its multiplicity. This is clearly an additive 

homomorphism. 

The first assertion about this character map is that it is injective. This comes 

down to the fact that a representation is determined by the multiplicities of 

its weight spaces, which is something we saw in Lecture 14. 

The product in the group ring Z[A] is determined by e(a)· e(f3) = e(a + 13). 
We claim next that Char is a ring homomorphism. This comes from the familiar 

fact that 

(V® W);. = EB ~® w". 
,,+.=;. 

The Weyl group \!Baets on Z[A], and a third simple claim is that the image 
of Char is contained in the ring of invariants Z [A] !ID. This comes down to the 

fact that, for an irreducible (and hence for any) representation V, the weight 
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spaces obtained by reflecting in walls of the Weyl chambers all have the same 

dimension. 

Let WI' .. . , Wn be a set of fundamental weights; as we have seen, these are 
the first weights along edges of a Weyl chamber, and they are free generators 

for the lattice A. Let r l , ... , rn be the classes in R(g) of the irreducible 

representations with highest weights WI' . . . , Wn . 

Theorem 23.24. (a) The representation ring R(g) is a polynomial ring on the 

variables r l , ... , rn. 

(b) The homomorphism R(g) ~ l[A]nI is an isomorphism. 

In particular, this says that l[A]nI is a polynomial ring on the variables 

Char(rl ), ... , Char(r.). In fact, the theorem is equivalent to this assertion, 

since if we take variables VI' ... , Vn and map the polynomial ring on the Vi 

to R(g) by sending Vi to r i , we have 

l[V" ... , V.] ~ R(g) ~ l[A]nI. 

If the composite is an isomorphism, the second being injective, both must be 

isomorphisms, which is what the theorem says. 

In spite of its fancy appearance, we will see that the theorem follows quite 

easily from what we know about the action of the Weyl group !ill on the 
weights. 

For any P E lEA] let us say that (X is a highest weight for P if the coefficient 

of e«(X) in P is nonzero, and, with a chosen ordering of weights as before, (X is 

the largest such weight. We first observe that if P is invariant under !ill, then 

the highest weight for P is in 11' n A, where 11' is our chosen (closed) Weyl 

chamber. In general, weights in 11' n A are often referred to as dominant 
weights. 

Now suppose {p . .} is any collection of elements in l[A]nI, one for each 

dominant weight 2, such that P). has highest weight 2 and the coefficient of 

e(2) is 1. We claim that the P). form an additive basis for l[A]nI over l. This 

is easy to see and is the same argument used in the theory of symmetric 

polynomials in any algebra text: given P with highest weight 2, ifthe coefficient 

of e(2) is m, then P - mP). is invariant whose highest weight is lower, and one 

continues inductively until one reaches weight zero, i.e., the constants. 

Let Pi = Char(rJ, which has highest weight Wi' and suppose the coefficient 
of e(wi ) is 1. Since any weight 2 E 11' n A can be uniquely expressed in the 

form 2 = L miwi, for some non-negative integers mi , and the highest weight 

of n (PJm, is L miwi, it follows that the monomials n (Pit' in PI' ... , Pn form 
an additive basis for l[A]nI. This says precisely that l[PI , . .. , Pn ] = l[A]nI, 

and completes the proof. 0 

Let us work this out concretely for each of our cases sIn+! C, sPnC, S02n+1 C, 
and s02nC. Each lattice A contains weights we have called L" ... , Ln; in the 

first case we also have Ln+1 with LI + . .. + Ln+! = O. We set 
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Xj = e(LJ, (23.25) 

Note that in case L l , ..• , L. is a basis for A, then 

Z[A] = Z[x l , . . . , x., xli, ... , X,; 1 ] = Z[x l , ... , x., (Xl· ... · x.f l] 

as a subring of the field Q (x l' ... , x.). 

(A.) For 51.+1C, fundamental weights are 

L l , L1 + L2, L1 + L2 + L 3 , ..• , L1 + ... + L., 

corresponding to the irreducible representations V, N V, ... , N V, with 

V = C·+1 the standard representation. The character of N V is L e((X), the sum 

over all (X that are sums of k different LJor 1 ::;; i ::;; n + 1. So Char(N V) = Ak , 

where Ak is the kth elementary symmetric function of Xl' ... , X.+ l . The Weyl 

group is the symmetric group 6.+1, acting by permutation on the indices, so 

the theorem in this case says that 

(23.26) 

Note that Z[A] = Z[xl , ... • x •• x.+1]/(Xl ..... X.+ I - 1). so Z[A] has an 

additive basis consisting of all monomials x«. with (X an n-tuple of non-negative 

integers, but with not all (Xi positive. 

(Cn) For 5P2.C, the lattice A and fundamental weights have the same 

description as in the preceding case. The corresponding irreducible represen

tations are the kernels V(k) of the contraction maps Nv -+ N-2v, with now 

V = C 2• the standard representation, k = 1 •...• n. The character of Nv is 
Le((X). the sum over all (X that are sums of k different ±Lj for 1 ::;; i ::;; n. The 

character Char(NV) is thus the elementary symmetric polynomial Ck in the 

variables Xl' Xli, X2' Xll • ... , x., X';l. The theorem then says that 

= Z[C1, C2 , C3 • ••• , Cnl 
(23.27) 

(Bn) For 502n+1 C. A is spanned by the Li together with t(L l + ... + L.). 
The fundamental representations are V, N V, ... , N- l V, and the spin 

representation S. The character of Nv is the kth elementary symmetric 

function of the 2n + 1 elements Xl' xil • . .. , Xn , X,; I , and 1; denote this by Bk• 

The character of S. which we denote by B, is the sum L X r 1/2 ..... x; 1/2, where 

Xil/2 = e(LJ2), X;1/2 = e( - LJ2). (23.28) 

So B is the nth elementary symmetric polynomial in the variables xil/2 + X;1/2. 

Therefore. 

(23.29) 

(D.) For 502.C, A and Z[A] are the same as in the preceding case. 

The fundamental representations are V, N V, . . . , N- 2 V, and the half-spin 

representations S+ and S-. The character of Nv, denoted Dk , is the kth 

elementary symmetric function of the 2n elements Xl' XI1, ...• X., X;;-l. The 
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character D± of S± is the sum I Xf1/2 ..... X;1/2, where the number of plus 

signs is even or odd according to the sign. We have 

Exercise 23.31 *. (a) Prove the following relation in R(So2n+l C): 

B2 = Bn + ... + Bl + 1, 

corresponding to the isomorphism 

S ® S ~ NVEB ... Efj NVEfj Nv. 

(23.30) 

This describes R(S02n+1 C) as a quadratic extension of the ring Z [B1, .•. , Bnl 
(b) Let D: (respectively, Dn-) be the character of the representation whose 

highest weight is twice that of D+ (resp., D-), so that, for example, the sum of 

the representations D: and D;; is NV. Prove the relations in R(S02nC): 

D+ . D+ = D: + Dn- 2 + Dn- 4 + "', 

D- . D- = Dn- + Dn- 2 + Dn - 4 + "', 

D+ . D- = Dn- 1 + Dn- 3 + Dn- s + .. , . 

We can likewise describe the representation ring for 92' Here, we may take 

as generators for the weight lattice the weights Ll and L2 as pictured in the 

diagram 

and correspondingly write Z[A] as Z[Xl' x1\ X2' X21], where Xi = e(LJ It 
will be a little more symmetric to introduce L3 = - Ll - L2 as pictured and 

X3 = x11 . X2 l = e(L3)' and write 

Z[A] = Z[Xl' X2' X3]/(XlX2X3 - 1). 
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In these terms the Weyl group is the group W generated by the symmetric 

group 6 3 permuting the variables Xi and the involution sending each Xi to xil . 

The standard representation has weights ± L j and 0, and so has character 

A = A(Xl' X2' x 3) = 1 + Xl + xl l + X2 + Xl l + X3 + Xil. 

Similarly, the adjoint representation has weights ± Li, ± (Li - L), and 0 
(taken twice); its character is 

B = A(Xl' X2, x 3) + A(xdx2' X2 /X3, x3/xd. 

The theorem thus implies in this case the equality 

R(g2) = Z[A]'ID = Z[A, B]. (23.32) 

Exercise 23.33. Verify directly the statement that any element ofZ[xl' X2' X3]/ 

(Xl X2X3 - 1) invariant under the group W as described is in fact a polynomial 

in A and B. 

Similarly we can define the representation ring R( G) of a semisimple group 

G. When G is the simply-connected form of its Lie algebra g, R(G) = R(g), 

so R(SLnC), R(SP2nC), R(Spin2n+l C), and R(Spin2nC) are given by (23.26), 
(23.27), (23.29), and (23.30). In general, R(G) is a subring of R(g); we can read 

off which subring by looking at Proposition 23.13. We have, in fact, 

R(S02n+1 C) = Z[Bl' ... , BnJ; 

R(S02nC) = Z[Dl' ... , Dn- l , D;;, D;], 

(23.34) 

(23.35) 

with D;; and D; as in Exercise 23.31. But this time there is one relation: 

(D;; + Dn- 2 + Dn- 4 + ... + I)(D; + Dn- 2 + Dn- 4 + ... + 1) 

= (Dn- l + Dn - 3 + ... + )2. 

Exercise 23.36*. 

(a) Prove (23.34). 

(b) Show that the relation in (23.35) comes from Exercise 23.31 (b). Show that 

R(S02nC) is the polynomial ring in the n + 1 generators shown, modulo 
the ideal generated by the one polynomial indicated. 

(c) Describe the representation rings for the other groups with these simple 

Lie algebras. 

(d) Prove the isomorphism 

R(GLnC) = Z[El' ... , En, E;l], 

where the Ek are the elementary symmetric functions of Xl' ... , X n• 

Exercise 23.37*. (a) Show that the image of R(OmC) in R(SOmC) is the poly

nomial ring Z[Bl' . .. , Bn] ifm = 2n + 1, and Z[Dl' . .. , Dn] ifm = 2n. 
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(b) Show that 

R(02n+l C) = R(S02n+l C) ® R(7l./2) 

= 7l.[Bl' ... , Bn, B2n+l]/«B2n+l)2 - 1) 

and 

R(02nC) = 7l.[D1 ,· · ·, Dn, D2n ]/I, 

where I is the ideal generated by (D2n)2 - 1 and DnD2n - Dn. 

Exercise 23.38*. The mapping that takes a representation V to its dual V* 

induces an involution ofthe representation ring: [V]* = [V*]. The ring 7l.[A] 

has an involution determined by (e(A))* = e( -A). Show that the character 

homomorphism commutes with these involutions. Show that for sIn+l' 

(Ak)* = An+1- k ; for S02n+l C, and SP2nC, and S02nC for n even, the involution is 
the identity; while for S02nC with n odd, (Dk )* = Dk , (D+)* = D-, (D-)* = D+. 

Deduce that all representations of all symplectic and orthogonal groups are 

self-dual. Note that when * is the identity, all representations are self-dual. In 

the other cases, compute the duals of irreducible representations with given 

highest weight. 

The following exercise deals with a special property of the representation 

rings of semisimple Lie groups and algebras. 

Exercise 23..39*. The representation rings R = R(g) and R(G) have another 

important structure: they are A-rings. There are operators 

Ai: R(G) -+ R(G), i = 0, 1,2, . .. , 

determined by Ai([V]) = [NV] for any representation V. 

(a) Show that this determines well-defined maps, satisfying A 0 = 1, A 1 = Id, 

and 

Ai(X + y) = L Ai(X)·Aj(y) 
i+j;k 

for any x and y in R. In fact, R is what is called a special A-ring: there are 
formulas for A i(X· y) and A i(Aj(X)), valid as if x and y could be written as sums 

of one-dimensional representations (see, e.g., [A-T]). 

(b) Show that A i extends to 7l. [A], and use this to verify that R( G) is a special 

A-ring. 

Define Adams operators I/Ik: R -+ R by I/Ik(x) = Pk(A1 x, ... , A nx), where Pk is 

the expression for the kth power sum (cf. Exercise A.32) in terms of the 

elementary symmetric functions, n ~ k. Equivalently, 

I/Ik(x) _l/Ik-l(X)A1(X) + .. . + (_1)kkAk(X) = o. 

(c) Show that, regarding R as the ring of functions on the group G, 

(I/Ikx)(g) = X(gk). Equivalently, I/I k(e(..1.)) = e(kAo). 
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(d) Show that each tjlk is a ring homomorphism, and tjlk 0 tjI' = tjlHI. 

(e) Show that for a representation V, 

Char(Sym2V) = t Char(V)2 + ttjl2(Char(V)), 

Char(NV) = t Char(V)2 - ttjl2(Char(V». 
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Show that Char(SymdV) and Char(NV) can be written as polynomials in 
tjlk(Char(V», 1 :::;; k :::;; d. 

Formal Characters and Actual Characters 

Let G be a Lie group with Lie algebra g. For any representation V of g, the 
image of [V] E R(g) in Z[A] is called the Jormal character of V. As it turns 

out, this formal character can be identified with the honest character of the 

corresponding representation of the group G, restricted to the Cartan sub

group H: 

(23.40) IJChar(V) = L m"e(a) is the Jormal character, and exp(X) is an element 
oj H, then the trace oj exp(X) on V is L m"e"(X). 

This is simply because exp(X) acts on the weight space J-;, by multiplication 
by e/.l(X), as we have seen. In particular, a representation is determined by the 

character of its restriction to a Cartan subgroup. 
Another common notation for this is to set e(X) = exp(2niX), and 

e(z) = exp(2niz). Then the trace of e(X) is Lm"e(a(X». 

Exercise 23.41. As a function on H, the character of a representation is 

invariant under the Weyl group m = N(H)/H. Describe R(G) as a ring of 

m-invariant functions on H . 

This is also compatible with our descriptions of elements of Z[A]W as 
Laurent polynomials in variables Xj or XF2. For SLn+1 C, for example, if the 

character Char(W) of a representation W is P(x 1 , ••. , xn+d, the trace of the 

matrix diag(z 1, ... , Zn+l) on V is P(Z l' ... , Zn+l). Similarly for the other groups, 
using the diagonal matrices described in the first section of this lecture. For 

the spin groups, the element w(z l' ... , zn) defined in (23.8) has trace given 
by substituting Zj for xt/z, and zi1 for xi1/z in the corresponding Laurent 
polynomial. 

Exercise 23.42*. If g1 and g2 are two semisimple Lie algebras, show that 

R(g1 x gz) = R(g1) ® R(gz)· 

Exercise 23.43*. (a) For the natural inclusion sInC c SIn+l C, restriction of 

representations gives a homomorphism R(sIn+l C) -+ R(sInC)' which can be 
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described by saying what happens to the polynomial generators. Since 
N(Cn $ C) = N(Cn ) $ N-l(Cn), this is 

Ai 1-+ At + Ai-I· 

Give the analogous descriptions for the following inclusions: 

slnC c SP2nC, slnC c S02n+l C, slnC c S02nC; 

SP2nC C sl2nC, s02n+! C C SI2n+I C, S02nC C sl2nC. 

(b) The inclusion slnC x slmC c sln+mC determines a restriction homo
morphism R(sIn+mC) ~ R(sInC x sImC) = R(s(nC) ® R(sImC), which takes 

polynomial generators Ai to Ai ® 1 + At- I ® Ai + .. . + 1 ® At. Compute 
analogously for 

Which of these inclusions correspond to removing nodes from the Dynkin 
diagrams? 

Exercise 23.44. Compute the isomorphisms of representation rings corre

sponding to the isomorphisms S(2C ~ S03C, sOsC ~ SP4C, and sI4C ~ S06C. 

§23.3. Homogeneous Spaces 

In this section we will introduce and describe the compact homogeneous 
spaces associated to the classical groups. As we will see, these are classified 

neatly in terms of Dynkin diagrams, and are, in tum, closely related to the 
representation theory of the groups acting on them. Unfortunately, we are 

unable to give here more than the barest outline of this beautiful subject; but 

we will at least try to say what the principal objects are, and what connections 
among them exist. In particular, we give at the end of the section a diagram 

(23.58) depicting these objects and correspondences to which the reader can 
refer while reading this section. 

We begin by introducing the notion of Borel subalgebras and Borel sub
groups. Recall first that a choice of Cartan subalgebra l) in a semisimple Lie 

algebra 9 determines, as we have seen, a decomposition 9 = l) Ee EBaER ga. To 
each choice of ordering of the root system R = R+ U R-, we can associate a 
subalgebra 

called a Borel subalgebra. Note that b is solvable, since §)b c EB ga' 

§)2b C EB g.+/I' etc. In fact, b is a maximal solvable subalgebra (Exercise 
14.35). 
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If G is a Lie group with semisimple Lie algebra g, the connected subgroup 

B of G with Lie algebra b is called a Borel subgroup. 

Claim 23.45. B is a closed subgroup of G, and the quotient G/B is compact. 

PROOF. Consider the adjoint representation of G on g. The action ofthe Borel 

subalgebra b obviously preserves the subspace beg, and, in fact, b is just the 

inverse image of the subalgebra of gl(g) preserving this subspace: if X = LXII. 
is any element of g with XII. E gil. and XII. #- 0 for some ex E R -, we could find an 

element H of~ c b with ad(X)(H) ¢ b-any H not in the annihilator of ex E ~* 

would do. B is thus (the connected component of the identity in) the inverse 

image in G of the subgroup ofGL(g) carrying b into itself. It follows that B is 
closed; and the quotient G/B is contained in a Grassmannian and hence 

compact. (Alternatively, we could consider the action of G on the projective 

space I?(!\m g), where m is the number of positive roots, and observe that B is 
the stabilizer of the point corresponding to the exterior product of the positive 

root spaces.) 

In fact, in the case of the classical groups, it is easy to describe the Borel 

subgroups and the corresponding quotients. 

For G = SLn+1 C, B is the group of all upper-triangular matrices in G, i.e., 

those automorphisms preserving the standard flag. It follows that G/B is the 

usual (complete) flag manifold, i.e., the variety of all flags 

G/B = {O c VI C ... c v" c en+!} 

of subspaces with dim(v,.) = r. 
For G = S02n+! C the orthogonal group of automorphisms of c2n+! pre

serving a quadratic form Q, B is the subgroup of automorphisms which 

preserve a fixed flag VI c ... c v" of isotropic subspaces with dim(v,.) = r. 

All such flags being conjugate, G/B is the variety of all such flags, i.e., 

G/B = {O c VI c · ·· c v" C C2n+!: Q(v", v,,) '= OJ. 

Note that B automatically preserves the flag of orthogonal subspaces, so that 

we could also characterize G/B as the space of complete flags equal to their 

orthogonal complements, i.e., 

G/B = {VI c .,. C V2n C C211+!: Q(V;, V2n+!-i) = OJ. 

The same holds for SP2I1C: the Borel subgroups Be SP2nC are just the 

subgroups preserving a half-flag of isotropic subspaces, or equivalently a full 

flag of pairwise complementary subspaces; and the quotient G/B is corre
spondingly the variety of all such flags. 

For G = S02nC, B fixes an isotropic flag VI c ... C v,,-I, and 

G/B = {O c VI C ... C Vn- I C c2n: Q(v,,-I, v,,-d = OJ. 

Exercise 23.46. With our choice of basis {ei}' let v,. be the subspace spanned 

by the first r basic vectors. If B is defined to be the subgroup that preserves 

v,. for 1 :$ r :$ n, verify that the Lie algebra of B is spanned by the Cartan 

subalgebra and the positive root spaces described in Lectures 17 and 19. 
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We now want to consider more general quotients of a semisimple complex 

group G. To begin with, we say that a (closed, complex analytic, and con

nected 1) subgroup P of G is parabolic if the quotient G / P can be realized as 
the orbit of the action of G on IP( V) for some representation V of G. In 

particular, G / P is a projective algebraic variety. It follows from the proof of 
Claim 23.45 that any Borel subgroup B of G is parabolic. The following two 

claims characterize parabolic subgroups as those containing a Borel sub

group, i.e., the Borel subgroups are exactly the minimal parabolic subgroups. 

Claim 23.47. If B is a Borel subgroup and P a parabolic subgroup of G, then 

there is an x E G with 

Oaim 23.48. If a subgroup P of G contains a Borel subgroup B, then P is 

parabolic. 

The first claim is deduced from a version of Borel's fixed point theorem: if 

B is a connected solvable group, V a representation of B and X C IP V a 
projective variety carried into itself under the action of B on IP V, then B 
must have a fixed point on X. This is straightforward: we observe (by Lie's 

theorem (9.11)) that the action of the solvable group B on V must preserve a 
flag of subspaces 

OcV1C· ·· Cv,,=V 

with dim(l';) = i. We can thus find a subspace J.-i C V fixed by B such that X 

intersects IP J.-i in a finite collection of points, which must then be fixed points 
for the action of B on X. As for Claim 23.48 we will soon see directly how 

G / P is a projective variety whenever P is a subgroup containing B. 

We can now completely classify the parabolic subgroups of a simple group, 
up to conjugacy. By the above, we may assume that P contains a Borel 

subgroup B. Correspondingly, its Lie algebra p is a subspace of g containing 
b and invariant under the action of Bon g; i.e., it is a direct sum 

for some subset T of R that contains all positive roots. Now, in order for p to 
be a subalgebra of g, the subset T must be closed under addition (that is, if 

two roots are in T, then either their sum is in T or is not a root). Since, in 

addition, T contains all the positive roots, we may observe that if Gt, P, and y 
are positive roots with (X = P + y, then we must have 

- (X E T => - PET and - YET 

1 It is a general fact that P must be connected if G / P is a projective variety. 
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Clearly, any such subset T must be generated by R+ together with the 

negatives of a subset L of the set of simple roots. Thus, if for each subset L 
of the set of simple roots we let T(L) consist of all roots which can be written 
as sums of negatives of the roots in L, together with all positive roots, and 

form the subalgebra 

p(L) = ~ $ EB 9." (23.49) 
aeT(I:) 

then p(L) is a parabolic subalgebra, the corresponding Lie group P(L) is a 
parabolic subgroup containing B, and we obtain in this way all the parabolic 
subgroups of G. We can express this as the observation that, up to conjugacy, 
parabolic subgroups of the simple group G are in one-to-one correspondence 

with subsets of the nodes of the Dynkin diagram, i.e., with subsets of the set of 

simple roots. 

Examples. In the case of sI3 C, there is a symmetry in the Dynkin diagram, so 

that there is only one parabolic subgroup other than the Borel, corresponding 
to the diagram 

o • 

This, in turn, gives the subset of the root system 

corresponding to the subgroup 

and the homogeneous space 

GIP = p2. 

In the case of sp 4 C, there are two subdiagrams of the Dynkin diagram: 

• < () and (O)==:1<~::::e • 

these correspond to the subsets of the root system 
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and 

(Here we are using a black dot to indicate an omitted simple root, a white dot 

to indicate an included one.) The corresponding subgroups of SP4 C are those 

preserving the vector e1 , and preserving the subspace spanned by e1 and e2 , 

respectively. The quotients GjB are thus the variety of one-dimensional iso

tropic subspaces (i.e., the variety 1P3 of all the one-dimensional spaces) and 

the variety of two-dimensional isotropic subspaces. 

Exercise 23.50. Interpret the diagrams above as giving rise to parabolic 

subgroups of the group SOs C of automorphisms of C s preserving a symmetric 

bilinear form. Show that the corresponding homogeneous spaces are the 

variety of isotropic planes and lines in CS, respectively. In particular, deduce 

the classical algebraic geometry facts that: 

(i) The variety of isotropic 2-planes for a nondegenerate skew-symmetric 

bilinear form on C4 is isomorphic to a quadric hypersurface in 1P4. 

(ii) The variety of isotropic 2-planes for a nondegenerate symmetric bilinear 

form on C S (equivalently, lines on a smooth quadric hypersurface in 1P4) 

is isomorphic to 1P3. 

In general, it is not hard to see that any parabolic subgroup P in a classical 

group G may be described as the subgroup that preserves a partial flag in 

the standard representation. In particular, a maximal parabolic subgroup, 

corresponding to omitting one node of the Dynkin diagram, may be described 

as the subgroup of G preserving a single subspace. Thus, for G = SLmC, the 

kth node of the Dynkin diagram 

corresponds to the Grassmannian G(k, m) of k-dimensional subspaces of cm. 
(Note that the symmetry of the diagram reflects the isomorphism of the 

Grassmannians G(k, m) and G(m - k, m).) 

For SP2nC, the kth node of the Dynkin diagram 
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corresponds to the Lagrangian Grassmannian of isotropic k-planes, for k = 1, 

2, ... , n. Similarly, for G = S02n+1 C, the kth node of the Dynkin diagram 

corresponds to the orthogonal Grassmannian of isotropic k-planes in c2n+1 . 

Finally, for S02n C,for k = 1,2, ... , n - 2 the kth nodeofthe Dynkin diagram 

yields the orthogonal Grassmannian of isotropic k-planes in C2n, but there is 

one anomaly: either of the last two nodes 

gives one of the two connected components of the Grassmannian of isotropic 

n-planes. 

Exercise 23.51*. Compute p(I:) directly for each of the classical groups, and 

verify the above statements. Why is the orthogonal Grassmannian of isotropic 

(n - I)-planes in Un not included on the list? 

As we saw already in Exercise 23.50, the low-dimensional coincidences 

between Dynkin diagrams can be used to recover some facts we have seen 

before. For example, the coincidence (D2) = (Ad x (AI) identifies the two 

family of lines on a quadratic surface in p3 with two copies of pl. The 

coincidence (A3) = (D3) 

< 
gives rise to two identifications of marked diagrams: we have 

< 
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corresponding to the isomorphism between the Grassmann varieties 

p 3 = G(l, 4), p3 = G(3, 4) and the two components of the family of 2-planes 

on a quadric hypersurface Q in pS; and 

o • 0 

corresponding to the isomorphism of the Grassmannian G(2, 4) with the 
quadric hypersurface Q itself. Finally, an observation that is not quite so 

elementary, but which we saw in §20.3: the identification of the diagrams 

says that either connected component of the variety of 3-planes on a smooth 

quadric hypersurface Q in p7 is isomorphic to the quadric Q itself. 

There is another way to realize the compact homogeneous spaces associated 
to a simple group G. Let V = rA be an irreducible representation of G with 

highest weight A., and consider the action of G on the projective space P V. Let 
p E PV be the point corresponding to the eigenspace with eigenvalue A.. We 

have then 

Claim 23.52. The orbit G . p is the unique closed orbit of the action of G on P V. 

PROOF. The point p is fixed under the Borel subgroup B, so that the stabilizer 

of p is a parabolic subgroup PA; the orbit G/PA is thus compact and hence 
closed. Conversely, by the Borel fixed point theorem, any closed orbit of G 

contains a fixed point for the action of B; but p is the unique point in P V fixed 
byB. 0 

In fact, it is not hard to say which parabolic subgroup PA is, in terms of the 

classification above: it is the parabolic subgroup corresponding to the subset of 

simple roots that are perpendicular to the weight A.. Now, sets l: of simple 
roots correspond to faces of the Weyl chamber, namely, the face that is the 

intersection of all hyperplanes perpendicular to all roots in l:. 

We thus have a correspondence between faces of the Weyl chamber and 
parabolic subgroups P, such that if V = r A is the irreducible representation 
with highest weight A., then the unique closed orbit of the action of G on PV 
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is of the form GjP, where P is the parabolic subgroup corresponding to the 

open face of 11' containing 1. In particular, weights in the interior of the Weyl 

chamber correspond to p;. = B, and so determine the full flag manifold GjB, 
whereas weights on the edges give rise to the quotients of G by maximal 

parabolics. Note that we do obtain in this way all compact homogeneous 
spaces for G. 

For example, we have the representations of SL3 1C : as we have seen, the 
representations SymkV and SymkV*, with highest weights on the boundaries 

ofthe Weyl chamber, have closed orbits {vk}vev and W}lev., isomorphic to 

I?Vand I?V*. By contrast, the adjoint representation-the complement of 
the trivial representation in Hom(V, V) = V ® V*-has as closed orbit the 
variety of traceless rank 1 homomorphisms, which is isomorphic to the flag 

manifold via the map sending a homomorphism <p to the pair (1m <p, Ker <p). 

The picture is 

representations SymkV· 

have closed orbit II' 2 " 

• 

adjoint representation has 
closed orbit the flag manifold 

/ (= hyperplane section of 
/ IPV x IPV· c IP(V ®V.) = f8) 

__ 1 __ 

representations SymkV 

have closed orbit II' 2 

In general, if V is the standard representation of SLnlC, in the representa

tions of SLnlC of the form W = SymkV we saw that the vectors of the form 
{vk}vev formed a closed orbit in I?w, called the Veronese embedding of I?n-l. 

Likewise, in representations of the form W = Nv the decomposable vectors 
{v 1 1\ V2 1\ • •• 1\ Vk} formed a closed orbit in I? W; this is the Plucker embedd
ing of the Grassmannian. 

Similarly, we may identify the closed orbits in representations of SP41C. 

Recall here that the basic representations of SP41C are the standard represen

tation V ~ 1C4 and the complement W of the trivial representation in the 
exterior square j\2V; all other representations are contained in a tensor 

product of symmetric powers of these. Now, Sp41C acts transitively on I?V; 

the closed orbit is all of 1?3. In general, in I?(SymkV) the closed orbit is just 

the set of vectors {vk}ve V ~ 1?3. By contrast, the closed orbit in I?W is just the 
intersection of the hyperplane I?W c I?(N V) with the locus of decomposable 

vectors {v 1\ w}v,weV; this is the variety 
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x = {v " w: Q(v, w) = O} 

of isotropic 2-planes A c V for the skew form Q. 

representation W has 

closed orbit a quadric 
hypersurface in IPW 

• 

____ I ____ 

representations Sym~V 

have closed orbit IP 3 

For the group Spin2n +1 C, the closed orbit of the spin representation S is 

the orthogonal Grassmannian of n-dimensional isotropic subspaces of c2n+l . 

The corresponding subvariety 

G/P c:..1P(S) 

is a variety of dimension (n + 1 )n/2 in lPN, N = 2n - 1, called the spinor variety, 

or the variety of pure spinors. Similarly for Spin2nC, the two spin representa

tions S+ and S- give embeddings of the two components of the orthogonal 

Grassmannian of n-dimensional isotropic subspaces of C2n, one in \Pl(S+), one 

in IP(S-). These spinor varieties have dimension n(n - 1)/2 in projective spaces 

of dimension 2n- 1 - 1. 

Exercise 23.53. Show that the spinor variety for Spin2n-1 C is isomorphic to 

each ofthe spinor varieties for Spin2nC In fact they are projectively equivalent 

as subvarieties of projective space lPN, N = 2n- 1 - 1. 

It follows that, for m ~ 8, the spinor varieties for SpinmC are isomorphic 

to homogeneous spaces we have described by other means. The first new one 

is the lO-dimensional variety in IP IS , which comes from Spin9C or SpinlOC 

It is worth going back to interpret some of the "geometric plethysm" of 

earlier lectures (e.g., Exercises 11.36 and 13.24) in this light. 

Finally, we can describe (at least one of) the compact homogeneous spaces 

for the group G2 in this way. To begin with, G2 has two maximal parabolic 

subgroups, corresponding to the diagrams 

( ) « • and • « () 
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These are the groups whose Lie algebras are the parabolic subalgebras spanned 

by the Cart an subalgebra 1) c 9 together with the root spaces corresponding 

to the roots in the diagrams 

and 

In particular, each of these parabolic subgroups will have dimension 9, so 
that both the corresponding homogeneous spaces will be five-dimensional 

varieties. We can use this to identify one of these spaces: if V is the standard 
seven-dimensional representation of G2 , the closed orbit in JPV ~ JP6 will be 

a hypersurface, which (since it is homogeneous) can only be a quadric hyper

surface. Thus, the homogeneous space for G2 corresponding to the diagram 

• « () 

is a quadric hypersurface in JP6. In particular, we see again that the action of 

G2 on V preserves a nondegenerate bilinear form, i.e., we have an inclusion 

G2 c.. S07C. 

The other homogeneous space Y of 92 is less readily described. One way 
to describe it is to use the fact that the adjoint representation W of 92 is 
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contained in the exterior square Nv of the standard. Since the Grassmannian 

G (1, 7) c IP'(N V) oflines in IP'V is closed and invariant in IP'(N V), it follows 

that Y is contained in the intersection of G with the subspace P W c 1P'(1\2 V). 
In other words, in terms of the skew-symmetric trilinear form w on V preserved 

by the action of G2 , we can say that Y is contained in the locus 

1: = {A c V: w(A, A,') == O} c G(2, V). 

Problem 23.54. Is Y = ~? 

Exercise 23.55. Show that the representation of E6 whose highest weight is 

the first fundamental weight Wi determines a 16-dimensional homogeneous 
space in 1P'26. 

These homogeneous spaces have an amazing way of showing up as extremal 

examples of subvarieties of projective spaces, starting with a discovery of 

Severi that the Veronese surface in p 5 is the only surface in p5 (nonsingular 

and not contained in a hyperplane) whose chords do not fill up iP'5. For recent 

work along these lines, see [L-V dVJ, with its appendix by Zak on interesting 

projective varieties that arise from representation theory. 

Although we have described homogeneous spaces only for semisimple Lie 

groups, this is no real loss of generality: any irreducible representation V of a 

Lie group G comes from a representation of its semisimple quotient, up to 

multiplying by a character (see Proposition 9.17), and this character does not 

change the orbits in IP'(V). 

It is possible to take this whole correspondence one step further and 

use it to give a construction of the irreducible representations of G; this is 

the modern approach to constructing the irreducible representations, due 

primarily to Borel, Weil, Bott, and, in a more general setting, Schmid. We do 

not have the means to do this in detail in the present circumstances, but we 

will sketch the construction. 

The idea is very straightforward. We have just seen that for every irreduc

ible representation V of G there is a unique closed orbit X = G j P of the action 

of G on iP'V. We obtain in this way from Va projective variety X together with 

a line bundle L on X invariant under the action of G (the restriction of the 

universal bundle from IP'V). In fact, we may recover V from this data simply 

as the vector space of holomorphic sections of the line bundle L on X. What 

ties this all together is the fact that this gives us a one-to-one correspondence 

between irreducible representations of G and ample (positive) line bundles on 

compact homogeneous spaces Gj P. More generally, using the projection maps 

GjB -+ GjP, we may pull back all these line bundles to line bundles on GIB. 

This then extends to give an isomorphism between the weight lattice of 9 and 

the group of line bundles on GIB, with the wonderful property that for 

dominant weights A., the space of holomorphic sections of the associated line 

bundle LA is the irreducible representation of G with highest weight A.. 
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The point of all this, apart from its intrinsic beauty, is that we can go 

backward: starting with just the group G, we can construct the homogeneous 

space G/B, and then realize all the irreducible representations of G as co
homology groups ofline bundles on G/B. To carry this out, start with a weight 

A. E ~. for g. We have seen that A. exponentiates to a homomorphism H ..... C·, 

i.e., it gives a one-dimensional representation C.t of H. We want to induce this 

representation from H to G. If H c BeG is a Borel subgroup, the representa

tion extends trivially to B, since B is a semidirect product of H and the 
nilpotent subgroup N whose Lie algebra is the direct sum of those ga for 

positive roots ct. Then we can form 

L.t=GxBC.t 

= (G x C.t)/{(g, v) '" (gx, x-1v), x E B}, 

which, with its natural projection to G/B, is a holomorphic line bundle on the 

projective variety G I B. The cohomology groups of such a line bundle are finite 

dimensional, and since G acts on L.t, these cohomology groups are representa
tions of G. 

We have Bott's theorem for the vanishing of the cohomology of this line 

bundle: 

Claim 23.56. Hi(G/B, LA.} = 0 for i # i(A.), 

where i(A.) is an integer depending on which Weyl chamber A. belongs to. If A. is 

a dominant weight (i.e., belongs to the closure of the positive Weyl chamber 

for the choice of positive roots used in defining B), then i( - A.) = O. In this case 

the sections HO(G/B, L_.t) are a finite-dimensional vector space, on which G 

acts. 

Claim 23.57. For A. a dominant weight, the space of sections HO(G/B, L_;.) is the 
irreducible representation with highest weight A.. 

In this context the Riemann-Roch theorem can be applied to give a for

mula for the dimension ofthe irreducible representation. In fact, the dimension 
part ofWeyl's character formula can be proved this way. More refined analy

sis, using the Woods Hole fixed point theorem, can be used to get the full char
acter formula (cf. [A-B]). For a very readable introduction to this, see [Bot]. 

We conclude this discussion by giving a diagram showing the relationships 

among the various objects associated to an irreducible representation of a semi

simple Lie algebra g. The objects and maps in diagram (23.58) are explained 
next. 

First of all, as we have indicated, the term "Grassmannians" means the 
ordinary Grassmannians in the case of the groups SLnC, and the Lagrangian 

Grassmannians and the orthogonal Grassmannians of isotropic subspaces in 

the cases of SP2nC and SOme, respectively. Likewise, "flag manifolds" refers 
to the spaces parametrizing nested sequences of such subspaces. In the cases 
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of the exceptional Lie algebras, the term "Grassmannian" should just be 

ignored; except for the quotient of G2 by one of its two maximal parabolic sub

groups, the homogeneous spaces for the exceptional groups are not varieties 

with which we are likely to be a priori familiar. 

With this said, we may describe the maps A, B, etc., as follows: 

A, A': the map A associates to a subset of the nodes of the Dynkin diagram 
(equivalently, a subset S of the set of simple roots) the face of the Weyl 

chamber described by 

ifS = {A.: (A., a) > 0, 'Va E S;}, 
(A., a) = 0, 'Va ¢ S 

where (, ) is the Killing form; the inverse is clear. 

B, B': the map B associates to a face ifS of the Weyl chamber the subalgebra 

9s spanned by the Cartan subalgebra~, the positive root spaces 9a' a E R+, 

and the root spaces 9-a corresponding to those positive roots a perpendic

ular to ifS. Equivalently, in terms of the corresponding subset S of the 
simple roots, 9s will be generated by the Borel subalgebra, together with 

the root spaces 9-a for a ¢ S. Again, since every parabolic subalgebra is 
conjugate to one of this form, the inverse map is clear. 

C, C: The map C simply associates to a parabolic subalgebra p c: 9 the 

quotient G/P of G by the corresponding parabolic subgroup Pc: G. In the 
other direction, given the homogeneous space X = G/P, with the action of 

G, the group P is just the stabilizer of a point in X. Note that the connected 
component of the identity in the automorphism group of G/P may be 
strictly larger: for example, p 2n-l is a compact homogeneous space for 

SP2nlC, and we have seen that a quadric hypersurface in p6 is a homoge

neous space for G2 . 

D, D': The map D associates to the irreducible representation V of 9 with 
highest weight A. the open face of the Weyl chamber containing A.. In 

the other direction, given an open face ifS of "11', choose a lattice point 

A. E ifS () Aw and take V = rA• 

E: We send the representation V to the subalgebra or subgroup fixing the 

highest weight vector v E V 

F, F': We associate to the representation V the (unique) closed orbit of the 
corresponding action ofthe group G on the projective space PV Going in 

the other direction, we have to choose an ample line bundle L on the space 

G/P, and then take its vector space of holomorphic sections. 

§23.4. Bruhat Decompositions 

We end this lecture with a brief introduction to the Bruhat decomposition of 
a semisimple complex Lie group G, and the related Bruhat cells in the flag 

manifold G / B. These ideas are not used in this course, but they appear so often 

elsewhere that it may be useful to describe them in the language we have 
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developed in this lecture. We will give the general statements, but verify them 
only for the classical groups. General proofs can be found in [Bor 1] or [Hu2]. 

As we have seen, a choice of positive roots determines a Borel subgroup B 

and Cartan subgroup H, with normalizer N(H), so N(H)/H is identified with 

the Weyl group W. For each WE W fix a representative nw in N(H). The 

double coset B· nw' B is clearly independent of choice of nw, and will be 

denoted B· W ' B. 

Theorem 23.59 (Bruhat Decomposition). The group G is a disjoint union of the 

IWI double cosets B· W' B, as W varies over the Weyl group. 

Let us first see this explicitly for G = SLmC. Here N(H) consists of all 
monomial matrices in SLmC, i.e., matrices with exactly one nonzero entry in 

each row and each column, and W = 6 m; a monomial matrix with nonzero 

entry in the O'(j)th row of the jth column maps to the permutation 0'. To see 
that the double cosets cover G, given 9 E G, use elementary row operations by 

left multiplication by elements in B to get an element b· g-l, with bE B chosen 
so that the total number of zeros appearing at the left in the rows in b· g-l is 

as large as possible. If two rows of b · g-l had the same number of zeros at the 

left, one could increase the total by an elementary row operation. Since all the 
rows of b· g-l start with different numbers of zeros, this matrix can be 

put in upper-triangular form by left multiplication by a monomial matrix; 
therefore, there is a permutation (f so that b' = na' b · g-l is upper triangular, 

i.e., 9 = (bTl. na' b is in B· (f' B. To see that the double cosets are disjoint, 
suppose na , = b'· na . b for some band b' in B. From the equation b = 
(nar 1 • (bTl. na , one sees that b must have nonzero entries in each place where 
(na)-l . na, does, from which it follows that 0" = 0'. 

In fact, this can be strengthened as follows. Let U (resp. U-) be the subgroup 

of G whose Lie algebra is the sum of all root spaces g", for all positive (resp. 

negative) roots ex. For G = SLmC, U (resp. U-) consists of upper- (resp.lower-) 

triangular matrices with l's on the diagonal. For W in the Weyl group, define 

subgroups 

U(W) = Un nw' u- · nwt, 

of U, which are again independent of the choice of representative nw for W. 

Corollary 23.60. Every element in B· W· B can be written U' nw' b for unique 

elements u in U(W) and bin B. 

To see the existence of such an expression, note first that the Lie algebra 
of U(W) is the sum of all root spaces 9", for which ex is positive and W- 1 (ex) is 
negative; and the Lie algebra of U(W)' is the sum of all root spaces g", for 

which ex and W- 1(ex) are positive. One sees from this that U(W) · U(W)" His 
the entire Borel group B. Since H· nw = nw' Hand U(W)" nw = nw ' U, and 

Hand U are subgroups of B, 
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B'nw' B = U(W)· U(W)" H'nw ' B 

= U(W)'U(W)"nw' B 

= U(W)·nw·B. 

397 

To see the uniqueness, suppose that nw = U· nw' b for some U in U(W) and b 

in B. Then n;1 . U· nw is in U- fl B = {I}, so u = 1, as required. 

Note in particular that the dimension of U(W) is the cardinality of R+ fl 

W(R-), where R+ and R- are the positive and negative roots; this is also the 

minimum number I(W) of reflections in simple roots whose product is W, cf. 

Exercise 0.30. It is a general fact, which we will see for the classical groups, 
that U(W) is isomorphic to an affine space C'(W). 

It follows from the Bruhat decomposition that GIB is a disjoint union of 

the cosets Xw = B· nw' BIB,again with W varying over the Weyl group. These 
X ware called Bruhat cells. From the corollary we see that X w is isomorphic 
to the affine space U(W) ~ C'(W). 

For G = SLmC and u in m = 6 m , the group U(u) consists of matrices with 
1 's on the diagonal, and zero entry in the i, j place whenever either i > j or 

u-1(i) < u-1(j), which is an affine space of dimension l(u) = # {(i,j): i > j and 

u(i) < u(j)}. 

Exercise 23.61. Identifying SLmC/B with the space of all flags, show that X" 
consists of those flags 0 C VI C V2 C •.. such that the dimensions of inter

sections with the standard flag are governed by u, in the following sense: for 
each 1 ~ k ~ m, the set of k numbers d such that v,. fl Cd- 1 ~ v,. (l Cd is 

precisely the set {u(I), u(2), ... , u(k)}. 

We will verify the Bruhat decomposition for SP2nC by regarding it as a 

subgroup of SL2nC and using what we have just seen for SL2nC, following 

[Ste2]. Our description of SP2nC in Lecture 16 amounts to saying that it 
is the fixed point set of the automorphism qJ of SL2nC given by qJ(A) = 

M- 1 . tA -1. M, with M = ( ~In ~ ). The Borel subgroup of SP2nC will be the 

intersection of the Borel subgroup B of SL2n C with SP2n C, provided we change 

the order of the basis of C2n to e l' ••• , en, e2 ., ••• , e.+1 , SO that B consists of 

matrices whose upper left block is upper triangular, whose lower left block is 
zero, and whose lower right block is lower triangular. The automorphism qJ 

maps this B to itself, and also preserves the diagonal subgroup H and its 
normalizer N(H), and the groups U and U- . The Weyl group of SP2.C can 

be identified with the permutations in 6 2• such that u(n + i) = u(i) ± n for 

all 1 ~ i ~ n, and it is exactly for these u for which one can choose a monomial 

representative n" in SP2.C. Now if 9 is any element in SP2nC, write 9 = U · n,,' b 
according to the above corollary. Then 

9 = qJ(g) = qJ(u) ' qJ(n,,)' qJ(b), 
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and by uniqueness ofthe decomposition we must have q>(u) = u, q>(nO') = nO" h, 
hE H , and q>(b) = h- 1 . b. It follows that u belongs to the Weyl group ofSp2nC. 

This gives the Bruhat decomposition, and, moreover, a unique decomposition 

of 9 E SP2nC into U ' nO" b, with u in U(u) II Sp2nC. Since this latter is an affine 

space, this shows that the corresponding Bruhat cell in the symplectic flag 

manifold is an affine space. 

Exactly the same idea works for the orthogonal groups SOmC, by realizing 
them as fixed points of automorphisms ofSLmC ofthe form A 1-+ M-1 " A -1. M, 

with M the matrix giving the quadratic form. 
Note finally that if W' is the element in the Weyl group that takes each 

Weyl chamber to its negative, then B· W' . B is a dense open subset of G, a 

fact which is evident for the classical groups by the above discussion. The 

corresponding Bruhat cell X W ' is the image of U- in G / B, which is also a dense 

open set. It follows that a function or section of a line bundle on G/B is 
determined by its values on U-. For treatises developing representation 

theory via functions on U-, see [N-S] or [Zel]. 
The following exercise uses these ideas to sketch a proof of Claim 23.57 

that the sections of the bundle L _). on G/B form the irreducible representation 

with highest weight A.: 

Exercise 23.62*. (a) Show that sections s of L_A. are all of the form s(gB) = 

(g,J(g», where f is a holomorphic function on G satisfying 

f(g . x) = ..1.(x)f(g) for all x E B. 

(b) Let n' E N(H) be a representative of the element W' in the Weyl group 

which takes each element to its negative. Show that f is determined by its 
value at n'. 

(c) Show that any highest weight for f must be A, and conclude that 

HO(G/B, L_A.) is the irreducible representation rA. with highest weight A. 

The hoi om orphic functions f of this exercise are functions on the space 
GjU. In other words, all irreducible representations of G can be found in spaces 

offunctions on G/U. This is one common approach to the study of represent a
tions, especially by the Soviet school, cf. [N-S], [Zel]. 

Functions on G/U form a commutative ring, which indicates how to make 
the sum of all the irreducible representations into a commutative ring. In fact, 
for the classical groups, these rings are the algebras § ., § <. >, and §[.) con

structed in Lectures 15, 17, and 19, cf. [L-T]. They are also coordinate rings 
for natural embeddings of flag manifolds in products of projective spaces. 



LECTURE 24 

Weyl Character Formula 

This lecture is pretty straightforward: we simply state the Weyl character formula in 

§24.1, then show how it may be worked out in specific examples in §24.2. In particular, 

we derive in the case of the classical algebras formulas for the character of a given 

irreducible representation as a polynomial in the characters of certain basic ones (either 

the alternating or the symmetric powers of the standard representation for sl.C and 

their analogues for SP2.C and sOme). The proofs of the formula are deferred to the 

following two lectures. The techniques involved here are elementary, though the 

determinantal formulas are fairly complex, involving all the algebra of Appendix A. 

§24.1: The Weyl character formula 

§24.2: Applications to classical Lie algebras and groups 

§24.1. The Weyl Character Formula 

We have already seen the Weyl character formula in the case of sInC, and it 

is one reason why we were able to calculate so many more representations in 

that case. We saw in Lectures 6 and 15 that for the representation rA = SAcn 

of SLn C with highest weight A. = L A.iLi, the trace of the action of a diagonal 

matrix A E SLnC with entries Xl' ... , Xn is the symmetric function called the 

Schur polynomial S;.(x l , ... , xn). This included a formula for the multiplicities, 

which are the coefficients of the monomials in these variables. 

In order to extend this formula to the other Lie algebras, let us try to rewrite 

this Schur polynomial in a way that may generalize. The Schur polynomial is 

defined to be a quotient of two alternating polynomials: 

Ixi,+n-il 
S;.(xl,···,xn)= Ixj il . 
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These determinants can be expanded as usual as a sum over the symmetric 
group 6 n, which is the Weyl group~. Writing Xj = e(Lj) in Z[A] as in the 

preceding lecture, and writing (-1)w for sgn(W) = det(W) for W in the Weyl 

group, the numerator may be expanded in the form 

= L (_I)w e(W(A + p», 
We'Rl 

where we write A for ~AjLj and we set p = ~(n - i)Lj. Our formula therefore 

takes the form 

The denominator is the discriminant 

A(x 1 ,···, xn) = n (x j - Xj) = n (e(L;) - e(L). 
j<j j<j 

This can be written in terms of the positive roots L j - L j , i < j, as 

A(Xl' ... , Xn) = n (e(t(Lj - Lj) - e( -t(Lj - Lj))). 
i<j 

Note also that 

p = ~(n - i)L j = Ll + (Ll + L 2 ) + ... + (Ll + ... + Ln-d 

1 
= 2 ~ (L j - L), 

which is the sum of the fundamental weights, and half the sum of the positive 

roots. 

These are the formulas that generalize to the other semisimple Lie algebras: 

For any weight p., define All E Z[A] by 

All = L (-1)w e(W(p.». (24.1) 
We'Rl 

Note that All is not invariant by the Weyl group, but is alternating: W(A,,) = 

(_l)W AI' for W E~. The ratio of two alternating polynomials will be 
invariant. 

Theorem 24.2 (Weyl Character Formula). Let p be half the sum of the positive 

roots. Then p is a weight, and Ap # O. The character of the irreducible repre

sentation r;. with highest weight A is 

(WCF) 
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The assertions about p are part of the following lemma and exercise, which 

will also be useful in the applications: 

Lemma 24.3. The denominator Ap of Weyl's formula is 

Ap = n (e(a/2) - e( -a/2)) 
aeR+ 

= e(p) n (1 - e( -a)) 
tlER+ 

= e( - p) n (e(a) - 1). 
lJeR+ 

PROOF. Since e(p) = e(I a/2) = n e(IX/2), the equality of the three displayed 

expressions is evident; denote these expressions temporarily by A. The key 

point is to see that A is alternating. For this, it suffices to see that A changes 

sign when a reflection in a hyperplane perpendicular to one of the simple roots 

is applied to it, since these reflections generate the Weyl group. This follows 

immediately from the first expression for A and (a) in Exercise 24.4 below. 

Now, by the second displayed expression, the highest weight term that 

appears in A is e(p), which is the same as that appearing in Ap. Calculating 

I /A formally as in (24.5) below, we see that Ap/A is a formal sum Lmlle(JL) 

that is invariant by the Weyl group, and, using part (c) of the following exercise, 

it has weight O. As in Theorem 23.24 it follows that Ap/ A is constant; and, since 

A and Ap have the same leading term e(p), we must have Ap = A. 0 

Exercise 24.4*. (a) If W = ~ i is the reflection in the hyperplane perpendicular 

to a simple root ai' show that W(IX;) = -lXi' and W permutes the other positive 
roots. 

(b) With Was in (a), show that W(p) = p - IXi . Deduce that p is the ele

ment in ~* such that p(Ha,) = 2(p, ai)/(aj, a;) = 1 for each simple root ai. 
Equivalently, p is the sum of the fundamental weights. In particular, p is a 

weight. 

(c) For any W"# 1 in the Weyl group, show that p - W(p) is a sum of 

distinct positive roots. Deduce that W(p) is not in the closure of the positive 
Weyl chamber. 

Proofs of the character formula will be given in §25.2 and again in §26.2. 

For now we should at least verify that it is plausible, i.e., that AHP/Ap is in 

Z[A]ID and that the highest weight that occurs is A. Note that since the 

numerator and denominator are alternating, the ratio is invariant. The fact 

that Ap is not zero follows from the second expression in the preceding lemma. 

To see that the ratio is actually in Z[A], however, we must verify that it has 

only a finite number of nonzero coefficients. Write 
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1 00 

- = e( -p) n (1 - e( -oc)fl = e( -p) n L e( -M). (24.5) 
Ap OfER+ Of n=O 

When this is multiplied by A).+p = L( -l)We(W(A. + p», we get a formal sum 

where the highest weight that occurs is the weight A.. This means in particular 

that there are only a finite number of nonzero terms corresponding to weights 

in the fundamental (positive) Weyl chamber 11'. But since the ratio is invariant 

by the Weyl group, the same is true for all Weyl chambers, so AHp/Ap is in 

ilEA] m, and has highest weight A.. It follows in particular that the A).+p/ Ap, as 

A. varies over "III ('\ A, form an additive basis for il [A] m. 

Before considering the proof or any other special cases, we apply (WCF) to 

give a formula for the dimension of r;.: 

Corollary 24.6. The dimension of the irreducible representation f;. is 

d· f - n <A. + p, oc) _ n (A. + p, oc) 
1m ;.- - , 

OfER+ <p, oc) OfER+ (p, oc) 

where <oc, P) = oc(Hp) = 2(oc, P)/(P, P) and ( , ) is the Killing form. 

PROOF. The dimension of f;. is obtained by adding the coefficients of all e(oc) 
in Char(f;.), i.e., computing the image of Char (f).) by the homomorphism from 

ilEA] to C which sends each e(oc) to 1. However, as in the case of the Schur 

polynomial, the denominator vanishes if we try to do this directly. To get 

around this, we factor this homomorphism through the ring of power series: 

'I' 
ileA] -+ C[[t]] -+ C, 

where the second homomorphism sets the variable t equal to zero, i.e., picks 

ofT the constant term of the power series, and the first homomorphism 'P takes 

e(oc) to e(P,Of)t. More generally, for any weight jJ. define a homomorphism 

'P/l: ileA] -C[[t]], 

We claim that 'PiA;.) = 'PiA/l) for all A. and jJ.. This is a simple consequence 

of the invariance of the metric ( , ) under the Weyl group: 

Therefore, 

'PiA).) = L ( -1)w e(/l, W().))t 

= L ( -1)w e(W-'(/l),;')t 

= L (_l)W e(W(/l),).)t 

= 'PiA!,), 

'P(A;.) = 'Pp(A;.) = 'P;.(Ap) 

= n (e()"Of)t/2 - e-()"Of)t/2) 
aeR+ 
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= ( f1 (.l., ex») t#(R+) + terms of higher degree in t. 
CleR+ 

Hence, 

'I'(AHP/Ap) = 'I'(AHp)fI'(Ap) 

f1 (.l. + p, ex) f ·· d . 
= f1 (p, ex) + terms 0 posItIve egree In t, 

which finishes the proof. o 

Exercise 24.7. In the case of sInC, verify that the above corollary gives the 
dimension we found in Lecture 6. 

Exercise 24.8. Verify directly that the right-hand side of the formula for the 

dimension is positive. 

Since X .. = AHp/Ap is the character of a virtual representation which 
takes on a positive value at the identity, as in the case of finite groups, to 
prove that it is the character of an irreducible representation, it suffices to 

show that fG X .. X .. = 1 for an appropriate compact group G. This was the 
original approach of Weyl, which we will describe in the last lecture. Since 

the highest weight appearing is .l., we will know then that this irreducible 
representation must be r ... 

Exercise 24.9. Use Corollary 24.6 to show that if .l. is a dominant weight 

(i.e., in the closure of the positive Weyl chamber), and co is a fundamental 
weight, then the dimension of rH ,., is greater than the dimension of r ... 
Conclude that the nontrivial representations of smallest dimension must be 

among the n representations r,., with co a fundamental weight. 

§24.2. Applications to Classical Lie Algebras 
and Groups 

In the case of the general linear group G Ln C, the character1 of the represen

tation r .. is the Schur polynomial 

I We use the representation of GL.C instead of its restriction to SL.C, since the latter would 

require the product of the variables Xi to be 1. 
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which has several expressions in terms of simpler symmetric functions. Note 

that the character of the dth symmetric power of the standard representa

tion is the dth complete symmetric polynomial Hd in n variables (Appendix 

A.l): 

The first "GiambeIIi" or determinantal formula (A.S) of Appendix A gives 

the character of the representation with highest weight A. = (,1.1 ~ ... ~ A., > 0) 

as an r x r determinant: 

(24.10) 

Equivalently, this expresses a general element r.l. E R(G) of the representation 

ring as a polynomial in the representations Symd(Cn). A second determinantal 

formula, from (A.6), expresses r.l. in terms of the basic representations N(Cn), 

whose characters are the elementary symmetric polynomials 

Ed = Char(N(Cn». 

This formula is, with J1. the conjugate partition to A., 

(24.11) 

In this section we work out the character formula for the other classical 

Lie algebras, including analogues of these determinantal formulas. The ana

logues of the first determinantal formula (24.10) were given by Weyl, but the 

analogues of(24.11) were found only recently ([D'H], [Ko-Te]). We also pay, 

at least by way of exercises, the debts to (WCF) that we owe from earlier 

lectures. 

The Symplectic Case 

The weights for SP2nC are integral linear combinations of L 1 , ••• , Ln. We often 

write J1. = (J1.1' ••• , J1.n) for the weight J1.1 Ll + .. . + J1.n Ln· 

The positive roots are {Li - LjL<j and {Li + LjLsj, from which we find 

P = 2: (n + 1 - i)Li = Ll + (Ll + L 2 ) + ... + (Ll + '" + Ln), (24.12) 

i.e., p = (n, n - 1, .. . ,1). 
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As we saw in Lecture 16, an element in the Weyl group can be written 

uniquely as a product 6U, where U is a permutation of {L" . .. , L,,}, and 

6 = (6" ... ,6,,), with 6j = ± 1. Hence 

All = L(-I)"L(-I)'e(t 6jJljLt1(j)); 
(I t ,=1 

(24.13) 

here the sign ( -1)' is the product of the 6j. Now with Xj = e(L;), this can be 
written 

" 
All = L (-1)" n (x:/i) - x;;cn 

a i=l 

or 

(24.14) 

where la j ) denotes the determinant of the n x n matrix (a j ). In particular, 

Ap = IXj,,-H' - Xj-(,,-H')I . (24.15) 

From (24.14) or Exercise A.52 we have 

Ap = Ll(x, + xl', .. . , x" + x;')·(x, - xl') · ... ·(x" - x;'), (24.16) 

where Ll is the discriminant. 

Exercise 24.17. Show that 

Ap = n (Xj - xj)(xjxj - 1)· n (xr - 1)/(x, ..... x,,)". 
i<j i 

The character of the irreducible representation r l with highest weight 
A = L AjLj, A, ~ ... ~ A" ~ 0, is therefore: 
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Ix~.+n-i+1 _ x:-()·,+n-i+l)1 

Char(r.d = J lxj i+l _ x~ (" i+l)1 

The dimension of r;. is easily worked out from Corollary 24.6: 

dim(r;.) = n (Ii - 'j) . n (Ii + 'j) 
i<j (j - i) is.j (2n + 2 - i - j) 

= n (I; - If) . n l 
i<j (mr - mJ) i m/ 

where Ii = A.i + n - i + 1 and mi = n - i + 1. 

Exercise 24.20. Show that, setting I; = A.i + n - i, 

n (I; -1;)(/; + I; + 2)' n (I; + 1) 

dim(r;.) = i<j (2n _ I)!. (2n _ 3)!' .i" 'I! 

(24.18) 

(24.19) 

These formulas give the dimension of the irreducible representation r at ..... an 

with highest weight a 1 Wi + ... + a"w", where the Wi are the fundamental 

weights, using the relation A.i = ai + ... + a" . 

Exercise 24.21. Use Exercise 24.20 to verify that for A. = Ll + ... + L k , the 

dimension of r;. is 2n if k = I, and (~n) - (k ~ 2) if k ~ 2. Use this to 

give another proof that the kernel of the contraction from Nv to N- 2 v is 
irreducible. 

The first determinantal formula for the symplectic group goes as follows. 
Let 

where Hd is the dth complete symmetric polynomial in 2n variables. In other 

words, Jd is the character of the representation Symd(C2,,) of SP2"C. From 
Proposition A.50 of Appendix A we have 

Proposition 24.22. If A. = (..1.1 ~ •• • ~ A., > 0), the character of r;. is the deter

minant of the r x r matrix whose ith row is 

For example, for A. = (d), i.e., A. = dL 1 , we have Char(r(d» = Jd, which is 
the character of Symd(C2,,). In particular, this verifies that the kth symmetric 

powers Symk(C2") of the standard representation are all irreducible. (This, of 
course, is a special case of the general description given in §17.3, since all the 

contraction maps vanish on the symmetric powers.) 
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Exercise 24.23. (i) Find the character of the representation of sp 4 C with highest 

weight WI + w2 = 2Ll + L 2 , verifying that the multiplicities are as we found 

in §16.2. (ii) Find the character of the representation of SP6C with highest 

weight WI + W 2 , thus verifying the assertion of Exercise 17.4. 

The second Giambelli formula in the symplectic case expresses r;. in terms 

of the basic representations 

rOOk = Ker(N(C2n) -+ N-2(C 2n» 
which are the kernels of the contractions. The character of rOOk is E~, where 

Eo = 1, E'l = El = Xl + ... + xn + XII + .. . + X;l, and 

for k ;:::: 2, where Ek is the kth elementary symmetric polynomial. The formula 

is 

Corollary 24.24. Let Jl. = (Jl.l' ... ,Jl.,) be the conjugate partition to A.. The 
character of r;. is equal to the determinant of the I x I matrix whose ith row is 

(E~i-i+l E~i-i+2 + E~i-j E~i-i+3 + E~ i -j-l .. . E~i-i+' + E~ i- i-I+2)· 

PROOF. This follows from the proposition and Proposition A.44, which 

equates the two determinants before specializing the variables. 0 

There is also a simple formula for the character in terms of the characters 

Ek of N(C 2n), which also follows from Proposition A.44: 

(24.25) 

Note that EnH = En- k (corresponding to the isomorphism ;\"Hc2n ~ 

;\"-kC2n) and E~H = - E~-k+2. In particular, Corollary 24.24 expresses 

Char(r;.) as a polynomial in the characters of the basic representations rOO1' 

... , roo.· 

The Odd Orthogonal Case 

For s02n+! C the weights are LJl.jLj, Jl. = (Jl.l' . . . , Jl.n), with all Jl.i integers or all 

half-integers. The positive roots are {Lj - Lj};<j, {Lj + Lj}j<j, and {LJ, so p 
is t(Ll + ... + Ln) less than in the case for SP2n: 

P = L (n + t - i)Lj, (24.26) 

or 

p = (n - t, n - }, ... , t). 

With xtl = e(±Lj ) and Xj±1/2 = e(±L;/2), we have the same formula as 

before [(24.14)] for All. 
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Exercise 24.27*. Show that 

A = IX~-i+l / 2 _ x:-<n-i+l/2)1 
P J J 

= A(XI + XiI, ... , xn + x,;-I)'(xl/2 - Xil/2)· .. . ·(X;/2 - X,;-I/2). 

If r.l. is the irreducible representation with highest weight A. = L A;L;, 
Al ;:::: . . . ;:::: An ;:::: 0, then the character formula can be written 

Similarly, 

IX/i+n- ;+1/2 _ xj-(.l.,+n-;+1/2)1 

Char(r.l.) = Ixj i+l/2 _ Xj (n i+l/2) 1 

dim(r.l.) = n (I; - Ij ) • n (Ii + I) 
i<j (j - i) ;,;;j (2n + 1 - i - j) 

= n (ll - In . n i 
( 2 2) , 

i < j mi - mj ; mi 

where I; = Ai + n - i + t, and mi = n - i + t. 

Exercise 24.30. Show that, with I; = Ai + n - i, 

n (I; - 1;)(/; + I; + 1)' n (21; + 1) 
dim(r.l.) = i<j i 

(2n - 1)!·(2n - 3)! · .. . ·1! 

(24.28) 

(24.29) 

These formulas give the dimension of the irreducible representation ra, ..... an 

with highest weight a1 WI + ... + anwn, where the Wi are the fundamental 
weights, using the equations 

Exercise 24.31. Use the dimension formula to verify that for A = Ll + .. , + L k , 

the dimension of r.l. is en: 1). Use this to give another proof that Nv is 

irreducible for 1 :s; k :s; n. Verify that the dimension of the spin representation 
is 2n, thus reproving that it is irreducible. 

Exercise 24.32. Use the dimension formula to verify that the kernel of the 
contraction 

Symd(C2n+1) ..... Symd- 2(C2n+1 ) 

is an irreducible representation with highest weight dL l . 

In case the representation is a representation of S02n+1 C, i.e., the A. i are all 
integral, there is a first determinantal formula that expresses r.l. in terms of 
the kernels of the contractions 

Ker(Symd(C2n+1) ..... Symd- 2(C2n+l)). 
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Let Kd denote the character of this kernel, so Ko = 1, K I = Xl + .. . + Xn + 
XII + .. . + X;;-I + 1, and 

where Hd is the dth complete symmetric polynomial. From Proposition A.60 

we have 

Proposition 24.33. If A = (AI ~ . . . ~ Ar > 0), with the Ai integral, then the 

character of r). is the determinant of the r x r matrix whose ith row is 

In particular, for A = (d), the character is K d , which verifies that the kernel 
of Symd(C2n+1) -+ Symd - 2(C2n+1) is irreducible. 

Exercise 24.34. Use the character formula to verify that the multiplicities of 

the representation rZL1 +L2 of sosC are as specified in Exercise 18.9. 

The second determinantal formula for S02n+1 C writes r). in terms of the 
representations N(C 2n+1), whose characters are 

Applying Proposition 24.33 with Corollary A.46, we have 

CoroUary 24.35. Let /l = (/ll ' . . . ,/ll) be the conjugate partition to A. The 

character of r). is equal to the determinant of the I x I matrix whose ith row is 

EIl;-i+l + E Il;-i-I+2)· 

Since En+k = En+1-k (corresponding to the isomorphism N+kC2n+1 ~ 

N+1-kC 2"+1), this expresses Char(r).) as a polynomial in E I ' . . . , E", with 
Ed = Char(NC2"+I). 

The Even Orthogonal Case 

For S02" C the weights are the same as in the preceding case. This time the {L;} 
are not positive roots, however, so p is t(L I + ... + Ln) less than in the case 

of S02"+1 C, or LI + .. . + Ln less than in the case of SP2nC: 

P = L (n - i)Li' (24.36) 

or 

p = (n - 1, n - 2, . . . , 0). 

The calculation of All is similar, but using only those S of positive sign. This 

time 



410 24. Weyl Character Formula 

This leads to 

(24.37) 

Note that the second determinant term vanishes when any Jl.i is zero. In 
particular, 

Ap = !Ixj- i + xj-(n-i'l. (24.38) 

From (24.14) or Exercise A.66, 

Ap = A(xi + Xli, .. . , Xn + X;I). (24.39) 

This gives, with r 1 the irreducible representation with highest weight 

A = Z)iLi, Al ~ ... ~ IAnl ~ 0, 

(24.40) 

where Ii = Ai + n - i. As before, 

dim(r1) = n (Ii - Ij ) • (Ii + IJ 
i < j (j - i) (2n - i - j) 

= n (11-1/) 
( 2 2) ' i<j mi - mj 

(24.41) 

where Ii = Ai + n - i and mi = n - i. Note that, as expected, the two represen

tations with weights (A. I , •• . , An-I' ± An) have the same dimensions. 

Exercise 24.42. Show that 

n (Ii - Ij)(/i + Ij) 

dim(r1) = 2n
-

1 (2n ~~)!. (2n _ 4)!· . . . · 2!' 

These formulas give the dimension of the irreducible representation raJ . ... . a" 

with highest weight a1 WI + '" + anwn , where the Wi are the fundamental 
weights, using the equations 

Ai = ai + .. . + an- 2 + !(an-l + an), I:$; i :$; n - 2, 

Exercise 24.43. Use the dimension formula to verify that for W = Ll + .. . + Lk , 

k < n, the dimension of reo is ekn). so N(C2n) is irreducible. For 

A = Ll + ' " + Ln- 1 ± Ln , the dimension is ~ekn). so J\"(C 2n) is the sum of 

the two corresponding irreducible representations. Verify that the dimension 
of the two spin representations are 2"- 1, proving irreducibility again. 
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Note that the second term in the numerator in (24.40) changes sign when 

A.n is replaced by - A.n; in particular, it vanishes when A.. = O. When A.n = 0, 

the representation r;. is a representation of the orthogonal group 0 2ne. 
When A.n i= 0, the direct sum of the two representations with highest weights 

(,1.1' ... , ± A.n) is an irreducible representation of 0 2ne. (See Exercises 23.19 
and 23.37.) 

Let Ld be the character of Ker(Symd(C 2n ) -+ Symd- 2(C2n)), i.e., 

Ld = HAx 1, • • • , Xn, xII, ... , x;n) - Hd- 2(X 1, ••• , Xn, xli, .. . , x;n). In either 

case, Proposition A.64 applies to give the first determinantal formula: 

Proposition 24.44. Given integers ,1.1 ~ ... ~ A.r > 0, the character of the irreduc

ible representation of 02nC with highest weight A. = (,1.1' ... , A.r ) is the deter
minant of the r x r matrix whose ith row is 

Again, for A. = (d), this verifies that the kernel of the contraction from 
Symd(C2n) to Symd-2(C2n) is irreducible. 

The second determinantal formula is the same as in the odd case, but with 

Ek = Ek(X 1, ••• , Xn, xli, ... , x;n): 

Corollary 24.45. Let Il = (Ill' . .. , Ill) be the conjugate partition to A.. The 
character of r;. is equal to the determinant of the I x I matrix whose ith row is 

Using the fact that EnH = En- k , this expresses Char(r;.) as a polynomial in 

E l' ... , En, with Ed = Char(NC2n). 

Exercise 24.46*. For each of the orthogonal groups OmC, show that the 

character of the irreducible representation with highest weight A. can be written 

in the form 

Char(r;.) = Ih;,,-i+j - h;.,-i-jl, 

where hk is the character of Symk(Cm). Another formula for the dimension of 

r;. is obtained by substituting (~) for hk in this determinant. 

There are other formulas expressing the characters of general representa

tions in terms of simpler ones. Abramsky, Jahn, and King [A-J-K] give one 

that can be expressed by the same formula for the general linear, symplectic, 

and orthogonal groups. The general irreducible representations are given by 

partitions A. or Young diagrams, and in their formula the simpler represen

tations are those corresponding to hooks. To express it, let (a * b) denote 

the hook with horizontal leg of length a + 1 and vertical leg of length 

b + 1, i.e., the partition (a + 1, 1, ... , 1), with b 1 'so More generally, given 

a = (a 1 > ... > ar ~ 0) and b = (b1 > ... > br ~ 0) with ar or br nonzero, let 

(a * b) denote the partition whose Young diagram has legs of these lengths to 
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the right of and below the r diagonal boxes (cf. Frobenius's notation, Exercise 

4.17). Let X(a'lo) denote the character ofthe corresponding irreducible represen

tation. Their formula is 

(24.47) 

Taking the degree of both sides gives new formulas for the dimensions of the 

irreducible representations. These formulas are particularly useful if the rank 

r of the partition is small. 

Exceptional Cases 

We will, as a last example, work out the Weyl character formula for the 

exceptional Lie algebra g2' and thereby verify some of the analysis of its 

representations given in Lecture 22. The remaining four exceptional Lie 
algebras we will leave as exercises. 

To begin with, the value of p is easily seen to be 2Ll + 3L2, in terms of the 
basis L 1 , L2 for the weight lattice introduced in Lecture 22. 

Now, for any weight f1. = pLl + qL2 + rL3' we have 

A - " x p · x q 'x' "x- p ·x-q 'x-' p. - L... a(l) a(2) a(3) - L... all) a(2) a(3) 
t1E63 O'e6 3 
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where we write x for (Xl ' X2' x 3 ) and X-I for (xII, Xii, Xii), L\ is the discrim

inant, and Sp,q" the Schur function. Using the relation n Xi = 1 we can also 
write this as 

= L\(x) · (Sp,q,,(X) - Sm-p,m-q,m-,(x)) 

for any m ~ max(p, q, r). To make this notation agree with the standard 

notation for Schur polynomials from Appendix (A.4), note that Sp,q" is the 

Schur polynomial S(S,I) for the partition (s, t), s ~ t, where s is two less than 
the difference between the largest and smallest of p, q, and r, while t is one less 

than the difference between the second largest and the smallest; if p, q, and r 

are not distinct, Sp,q" = O. Thus, for example, 

Ap = L\(x) ' (S(l,l)(X) - S(1)(x)) 

= L\(x) ' (X l X2 + Xl X3 + X2 X3 - Xl - X2 - x3)· 

Now, any irreducible representation r .. of 92 has highest weight A. = aWl + 
bW2 , where WI = Ll + L2 and £02 = Ll + 2L2 are the two fundamental 
weights, and a and b are non-negative integers. Then A. + p = (a + b + 2)Ll + 
(a + 2b + 3)L2' The Weyl character formula in this case becomes 

Proposition 24.48. The character of the representation of 92 with highest weight 

aWl + bW2 is 

Char(ro,b) = S(o+2b+1,a+b+1) - S(O+2b+1 , b). 

S(l,l) - S(1) 

Exercise 24.49. In the case of the standard representation rl,o, the adjoint 

representation rO,l ' and the representation r 2 ,o, use this formula to verify the 
multiplicities found in Lecture 22. 

We can also work out the dimension formula explicitly in this case. The 

two fundamental weights WI and £02 have inner products 

and 

WI and £02 are among the positive roots of 92' and in terms of these the 
remaining positive roots are 2£0 1 - £02' 3£0 1 - £02, £02 - WI' and 2£02 - 3£0 1 , 

The weight p is the sum of the fundamental weights WI and £0 2 , so that for an 

arbitrary weight A. = aWl + bW2 we have the following table of inner products: 

(' , p) (', l) (· , l+p) 

2w) - w2 1/2 a/2 (a + 1)/2 
3w) - w2 3 3a/2 + 3b/2 3(a + b + 2)/2 

w) 5/2 a + 3b/2 (2a + 3b + 5)/2 

W2 9/2 3a/2 + 3b 3(a + 2b + 3)/2 

-WI + W2 2 a/2 + 3b/2 (a + 3b + 4)/2 

-3w) + 2W2 3/2 3b/2 3(b + 1)/2 
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We conclude that the dimension of the irreducible representation ra,b of 92 with 
highest weight A. = aWl + bW2 is 

dim(r )= (a + 1)(a + b + 2)(2a + 3b + 5)(a + 2b + 3)(a + 3b + 4)(b + 1). 
a,b 120 

We can check this in the cases a = 1, b = 0 and a = 0, b = 1, getting the 

dimensions 7 and 14 of the standard and adjoint representations, respectively. 

In case a = 2, b = 0 we may verify the result of the explicit calculation in 

Lecture 22, finding that 

dim(r2,o) = 27 

and, therefore, deducing that Nv = r 2,o EB V $ C and Sym2 V = r 2 ,o EB c. 

We leave the analogous computations for the remaining four Lie algebras 

as exercises, using the description of the root systems found in Exercise 21.16. 
Since we have not said much about the Weyl group in the exceptional cases 

the formula (WCF) cannot be used directly-not to mention the fact that the 

orders of these Weyl groups are: 27 . 32 = 1152 for f4; 27 .34 . 5 = 51,840 for 

e6, 210 . 34 • 5·7 = 2,903,040 for e7 , and 214 . 35 • 52. 7 = 696,729,600 for es . 

However, the dimension formula is available. 

Exercise 24.51 *. For each of the four remaining exceptional Lie algebras, 

compute p = half the sum of the positive roots. For each of the fundamental 

weights w, at least for f4' compute the dimension of the irreducible represen

tation with highest weight w. In particular, find the nontrivial representation 

of minimal dimension. Use this to verify that (E6) is not isomorphic to (B6) 

or (C6), i.e., that e6 is not isomorphic to S013C or SP12C, 

Exercise 24.52*. List all irreducible representations V of simple Lie algebras 

9 such that dim V ~ dim 9. Note that these include all cases where the corre

sponding group representation has a Zariski dense orbit, or a finite number 

of orbits. 



LECTURE 25 

More Character Formulas 

In this lecture we give two more formulas for the multiplicities of an irreducible 

representation of a semisimple Lie algebra or group. First, Freudenthal's formula 

(§25.l) gives a straightforward way of calculating the multiplicity of a given weight 
once we know the multiplicity of all higher ones. This in turn allows us to prove in 

§25.2 the Weyl character formula, as well as another multiplicity formula due to 
Kostant. Finally, in §25.3 we give Steinberg's formula for the decomposition of the 

tensor product of two arbitrary irreducible representations of a semisimple Lie algebra, 
and also give formulas for some pairs ~ c 9 for the decomposition of the restriction 

to ~ of irreducible representations of g. 

§25.l: Freudenthal's multiplicity formula 
§25.2: Proof of (WSF); the Kostant multiplicity formula 

§25.3: Tensor products and restrictions to subgroups 

§25.1. Freudenthal's Multiplicity Formula 

Freudenthal's formula gives a general way of computing the multiplicities 

of a representation, i.e., the dimensions of its weight spaces, by working 

down successively from the highest weight. The result is similar to (but more 

complicated than) what we did for sl3 C in Lecture 13, where we found the 

multiplicities along successive concentric hexagons in the weight diagram. 

Let r A be the irreducible representation with highest weight A., which will 

be fixed throughout this discussion. Let nil = nll(rA) be the dimension of the 

weight space l of weight J1. in r A, i.e., Char(rA) = L nlle(J1.). Freudenthal gives 

a formula for nil in terms of multiplicities of weights that are higher than J1.. 

1 In the literature, these multiplicities n. are often referred to as "inner multiplicities." 
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Proposition 25.1 (Freudenthal's Multiplicity Formula). With the above 

notation, 

Here IIPII 2 = (P, P),( , ) is the Killing form, and p is halfthe sum ofthe positive 

roots. 

Exercise 25.2*. Verify that C(fl) is positive if fl =F A. and nil > o. 

The proof of Freudenthal's formula uses a Casimir operator, denoted C. 

This is an endomorphism of any representation V of the semisimple Lie 

algebra g, and is constructed as follows. Take any basis UI , ... , Ur for g, and 

let U~, ... , U: be the dual basis with respect to the Killing form on g. Set 

C = Ul U~ + ... + U,U:, 

i.e., for any v E V, C(v) = LUi' (U[· v). 

Exercise 25.3. Verify that C is independent of the choice of basis2• 

The key fact is 

Exercise 25.4*. Show that C commutes with every operation in g, i.e., 

C(X· v) = X· C(v) for all X E g, V E V. 

The idea is to use a special basis for the construction of C, so that each 

term Ui U[ will act as multiplication by a constant on any weight space, and 

this constant can be calculated in terms of multiplicities. Then Schur's lemma 

can be applied to know that, in case V is irreducible, C itself is multiplication 

by a scalar. Taking traces will lead to a relation among multiplicities, and a 

little algebraic manipulation will give Freudenthal's formula. 

The basis for 9 to use is a natural one: Choose the basis H l' ... , Hn for the 

Cart an subalgebra~, where Hi = Ha. corresponds to the simple root ai' and let 

H; be the dual basis for the restricti~n of the Killing form to ~ . For each root 

a, choose a nonzero Xa Ega' The dual basis will then have X~ in g-a' In fact, 

if we let Y" E g-a be the usual element so that Xa, Y", and Ha = [Xa' y"] are 

the canonical basis for the subalgebra Sa ~ sI2 C that they span, then 

X~ = «a, a)/2) Y". (25.5) 

Exercise 25.6*. Verify (25.5) by showing that (Xa, y") = 2/(a, a). 

2 In fancy language, C is an element of the universal enveloping algebra of g, but we do not need 

this. 
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Now we have the Casimir operator 

C = L HiH; + L XaX~, 
.. eR 

and we analyze the action of C on the weight space v,. corresponding to weight 

p. for any representation V. Let nIl = dim(V/l). First we have 

L HiH; acts on v,. by multiplication by (p., p.) = 11p.1I2. (25.7) 

Indeed, HiH; acts by multiplication by p.(H;)p.(HD. If we write p. = Lriwi' 

where the Wi are the fundamental weights, then p.(H;) = ri , and if p. = Lr[wi, 

with wi the dual basis to Wi' then similarly p.(HD = r[. Hence L P.(Hi)P.(HD = 
L rir[ = (p., p.), as asserted. 

Now consider the action of X .. X; = «a, a)/2)X .. y" on v,.. Restricting to the 

subalgebra s .. ~ sl2 and to the subrepresentation EBi V/l+ i" corresponding to 
the a-string through p., we are in a situation which we know very well. Suppose 

this string is 

Vp $ lIP_a $ ... $ Vp- ma , 

so m = P(Ha) [cf. (14.10)], and let k be the integer such that p. = P - ka. We 

assume for now that k :::;; m/2. 
On the first term Vp, Xa Y" acts by multiplication by m = P(Ha) = 

2(P, a)/(a, a), so X .. X~ acts by multiplication by (P, a). In general, on the 

part of VP- ka which is the image of Vp by multiplication by (Y,,)", we know 

[cf. (11.5)] that Xa Y" acts by multiplication by (k + l)(m - k). This gives us 
a subspace of v,. of dimension np on which XaX~ acts by multiplication by 

(k + 1)«P, a) - k(a, a)/2) = (k + 1)«p., a) + k(a, a)/2). 

Now peel ofT the subrepresentation (over sa) of V spanned by Vp, and apply 
the same reasoning to what is left. We have a subspace of VP- a of dimension 

np- a - np to which the same analysis can be made. From this we get a subspace 

of v,. of dimension np-a - np on which XaX; acts by multiplication by 

(k)«p., a) + (k - l)(a, a)/2). 

Continuing to peel ofT subrepresentations, the space V" is decomposed into 

pieces on which XaX~ acts by multiplication by a scalar. The trace of XaX~ 
on V/l is therefore the sum 

np· (k + 1)«p., a) + k(a, a)/2) + (np- a - np)· (k)«p., a) + (k - l)(a, a)/2) 

+ ... + «np-ka - np-(k-l)a)·(I)«p., a) + (O)(a, a)/2). 

Canceling in successive terms, this simplifies to 

k 

Trace(X .. X~lv ) = L (p. + ia, a)n/l+ia · 
" i=O 

(25.8) 

One pleasant fact about this sum is that it may be extended to all i ~ 0, since 

n/l+ ia = 0 for i > k. 
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In case k ~ m12, the computation is similar, peeling off representations from 

the other end, starting with JP-"",. The only difference is that the action of 

X,. 1';. on l'P-m,. is zero. The result is 

(25.9) 

Exercise 25.10. Show that X,.X~ = X_,.X'-,. + «a, a)/2)H,., and deduce (25.9) 

directly from (25.8) by replacing a by -a. 

In fact, (25.8) is valid for all Jl and a, as we see from the identity 

<Xl 

L (Jl + ia, a)np+i,. = O. (25.11) 
i=-co 

Exercise 25.12*. Verify (25.11) by using the symmetry of the a-string through p. 

Now we add the assumption that V is irreducible, so C is multiplication 

by some scalar c. Taking the trace of C on VI' and adding, we get 

cnp = (Jl, Jl)np + L L (Jl + ia, a)np+i,.. (25.13) 
,.eR i~O 

Note that when i = 0 the two terms for a and -a cancel each other, so the 

summation can begin at i = 1 instead. Rewriting this in terms of the positive 

weights, and using (25.11) the sums become 

<Xl 

= np L (Jl, a) + 2 L L (Jl + ia, a)np+i,. · 
l2eR+ ,.eR+ i=l 

Summarizing, and observing that L«eR+ (Jl, a) = (Jl, 2p), we have 

<Xl 

cnp = «Jl, Jl) + (Jl, 2p»np + 2 L L (Jl + irx, rx)np+i«· 
«eR+ i=l 

Note that (Jl, Jl) + (Jl, 2p) = (Jl + p, Jl + p) - (p, p) = IIJl + pll2 - IIp1l2. To 

evaluate the constant we evaluate on the highest weight space VA' where nA = 1 

and nHi« = 0 for i > O. Hence, 

(25.14) 

Combining the preceding two equations yields Freudenthal's formula. 0 

Exercise 25.15. Apply Freudenthal's formula to the representations of 513 C 

considered in §13.2, verifying again that the multiplicities are as prescribed on 
the hexagons and triangles. 
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Exercise 25.16. Use Freudenthal's formula to calculate multiplicities for the 

representations r 1,0, rO,1' and r2,0 of (g2)' 

§25.2. Proof of (WCF); the Kostant 
Multiplicity Formula 

It is not unreasonable to anticipate that Weyl's character formula can be 

deduced from Freudenthal's inductive formula, but some algebraic manip
ulation is certainly required. Let 

X). = Char(r).) = L nl'e(Jl) 

be the character of the irreducible representation with highest weight A.. 

Freudenthal's formula, in form (25.13), reads3 

00 

c· x). = L (Jl, Jl)nl'e(Jl) + L L L (Jl + ia, a)nl'+iae(Jl), 
I' I' aeR i=O 

where c = IIA. + pII2 - IIp112. To get this to look anything like Weyl's formula, 
we must get rid of the inside sums over i. If a is fixed, they will disappear if 
we multiply by e(a) - I, as successive terms cancel: 

00 

(e(a) - I) ' L L (Jl + ia, a)nl'+iae(Jl) = L (14 a)nl'e(Jl + a). 
I' i=O I' 

Let P = naeR (e(a) - 1) = (e(a) - 1)' Pa, where PIJ = nll,olJ(e(p) - 1). The 
preceding two formulas give 

c' p. x). = p. L (Jl, Jl)nl'e(Jl) + L (Jl, a)PlJnl'e(Jl + a). (25.17) 
I' 1',11. 

Note also that 

P=(-IYAp'Ap, 

where r is the number of positive roots, so at least the formula now involves 
the ingredients that go into (WCF). 

We want to prove (WCF): Ap ' X). = AHp' We have seen in §24.l that both 
sides of this equation are alternating, and that both have highest weight term 

e(A. + p), with coefficient 1. On the right-hand side the only terms that appear 
are those of the form ±e(W(A. + p», for W in the Weyl group. To prove 

(WCF), it suffices to prove that the only terms appearing with nonzero 
coefficients in Ap' X). are these same e(W(A. + p», for then the alternating 

property and the knowledge of the coefficient of e(A. + p) determine all the 
coefficients. This can be expressed as: 

3 In this section we work in the ring C[A] of finite sums Im.e(Jl) with complex coefficients m • . 
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Claim. The only terms e(v) occurring in Ap' Xl with nonzero coefficient are 

those with Ilvll = IIA + pli. 

To see that this is equivalent, note that by definition of Ap and lA, the terms 

in Ap' X.l. are all of the form ± e(v), where v = p. + W(p), for p. a weight of r.l. 
and W in the Weyl group. But if lip. + W(p)1I = IIA + plI, since the metric is 

invariant by the Weyl group, this gives II W- 1 (p.) + pll = IIA. + pll. But we saw 
in Exercise 25.2 that this cannot happen unless p. = W(A), as required. 

We are thus reduced to proving the claim. This suggests looking at the 

"Laplacian" operator that maps e(p.) to 1Ip.1I 2e(p.), that is, the map 

A: C[A] -+ C[A] 

defined by 

~(L ml'e(p.» = L (p., p.)ml'e(p.). 

The claim is equivalent to the assertion that F = Ap' X.l. satisfies the "differential 
equation" 

~(F) = IIA + p1l2F. 

From the definition ~(x.l.) = L(P., p.)n"e(p.). And ~(Ap) = IIp1l2Ap. In general, 

since II W(a) II = lIall for all WE W, 

~(A .. ) = L (_I)WII W(a)1I 2e(W(a» = lIaIl 2A ... 

So we would be in good shape if we had a formula for ~ of a product of two 

functions. One expects such a formula to take the form 

~(fg) = ~(f)g + 2(VJ, Vg) + f~(g), (25.18) 

where V is a "gradient," and ( , ) is an "inner product." Taking f = e(p.), 

9 = e(v), we see that we need to have (Ve(p.), Ve(v» = (p., v)e(p. + v). There is 
indeed such a gradient and inner product. Define a homomorphism 

V: C[A] -+ 1)* ® C[A] = Hom(l), C[A]) 

by the formula V(e(p.» = p.. e(p.), and define the bilinear form ( , ) on 

1)* ® C[A] by the formula (ae(p.), f3e(v» = (a, f3)e(p. + v), where (a, 13) is the 
Killing form on 1)*. 

Exercise 25.19. With these definitions, verify that (25.18) is satisfied, as well as 

the Leibnitz rule 

V(fg) = V(f)g + jV(g). 

For example, V(X.l.) = L" n"p.· e(p.), and, by the Leibnitz rule, 

V(P) = L Paa' e(ex) . 
.. eR 

But now look at formula (25.17). This reads 
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c ' PX;, = Pd(X;,) + (VP, VX;,). 

Since, also by the exercise, V(P) = 2( -t)'Ap V(Ap), we may cancel (-t)'Ap 

from each term in the equation, getting 

c· ApX;, = Apd(X;,) + 2(VAp, VX;,). 

By the identity (25.18), the right-hand side of this equation is 

d(ApX;,) - d(Ap)X;, = d(ApX;,) - IlpIl2ApX;,. 

Sincec = 11.1. + pII 2 - IIpll2,thisgives 11.1. + p1I2ApX;, = d(ApX;,), which finishes 
the proof. 0 

We conclude this section with a proof of another general multiplicity 
formula, discovered by Kostant. It gives an elegant closed formula for the 

multiplicities, but at the expense of summing over the entire Weyl group 
(although as we will indicate below, there are many interesting cases where all 

but a few terms of the sum vanish). It also involves a kind of partition counting 

function. For each weight J.L, let P(J.L) be the number of ways to write J.L as a 
sum of positive roots; set P(O) = 1. Equivalently, 

1 
J]+ 1 - e(lX) = ~ P(J.L)e(J.L). (25.20) 

Proposition 25.21. (Kostant's Multiplicity Formula). The multiplicity nll(r;,) of 

weight J.L in the irreducible representation r;, is given by 

nir;,) = I (-I)WP(W(A. + p) - (J.L + p)), 
We'lll 

where p is half the sum of the positive roots. 

PROOF. Write (Ap)-l = e( -p)/n (1 - e( -IX)) = I.P(v)e( -v - pl. By (WCF), 

X;, = A),+p(Apfl = I (-l)w e(W(A. + p)P(v)e( - v - p) 
W.' 

= L (-I)wP(v)e(W(A. + p) - (v + p)) 
W.' 

= L ( - l)wP(W(A. + p) - (J.L + p))e(J.L), 
W.1l 

as seen by writing J.L = W(A. + p) - (v + pl. o 

In fact, the proof shows that Kostant's formula is equivalent to Weyl's 
formula, cf. [Cart]. 

One way to interpret Kostant's formula, at least for weights J.L close to the 
highest weight A. of r;" is as a sort of converse to Proposition 14.13(ii). Recall 

that this says that r;, will be generated by the images of its highest weight 
vector v under successive applications of the generators of the negative root 
spaces; in practice, we used this fact to bound from above the mUltiplicities of 
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various weights Jl close to A. by counting the number of ways of getting from 

A. to Jl by adding negative roots. The problem in making this precise was always 

that we did not know how many relations there were among these images, if 

any. Kostant's formula gives an answer: for example, if the difference A. - Jl is 

small relative to A., we see that the only nonzero term in the sum is the principle 

term, corresponding to W = 1; in this case the answer is that there are no 

relations other than the trivial ones X(Y(v)) - Y(X(v» = [X, Y](v). When Jl 

gets somewhat smaller, other terms appear corresponding to single reflections 

W in the walls of the Weyl chamber for which W(A. + p) is higher than Jl + p; 

we can think ofthese terms, which all appear with sign -1, as correction terms 

indicating the presence of relations. As Jl gets smaller still, of course, more 

terms appear of both signs, and this viewpoint breaks down. 

To see how this works in practice, the reader can for example carry out the 

analysis of the example at the end of§13.l. 

Exercise 25.22* (Kostant). Prove the following formula for the function P, 

which can be used to calculate it inductively: P(O) = 1, and, for Jl =1= 0, 

P(Jl) = - L (-l)Wp(Jl + W(p) - pl. 
W,.l 

Exercise 25.23* (Racah). Deduce from Kostant's formula and the preceding 

exercise the following inductive formula for the multiplicities n,. of Jl in 

r),: n,. = 1 if Jl = A., and if Jl is any other weight of r)" then 

n,.= - L (-l)Wn,.+p_W(p)' 
W,.l 

Show, in fact, that for any weight Jl 

L (-1)w n,.+p-W(p) = L (_I)W', 
Wem r 

where the second sum is over those W' E W such that W'(A. + p) = Jl + p. 

Note that Kostant's formula, more than any of the others, shows us directly 

the pattern of multiplicities in the irreducible representations of s13C. For 

one thing, it is easy to represent the function P diagrammatically: in the 

weight lattice of sl3 C, the function P(Jl) will be a constant 1 on the rays 

{aL2 - aLda~o and {aL3 - aL2}a~O through the origin in the direction of 
the two simple positive roots L2 - Ll and L3 - L 2 • It will have value 2 on 

the translates {aL2 - (a + 3)Lda~-1 and {aL3 - (a - 3)L2}a~2 of these two 
rays by the third positive root L3 - L 1 : for example, the first of these can be 

written as 

aL2 - (a + 3)Ll = (a + 1) ' (L2 - Ld + L3 - Ll 

= (a + 2)'(L2 - Ld + L3 - L 2 ; 

and correspondingly its value will increase by 1 on each successive translate 

of these rays by L3 - L 1• The picture is thus 
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p=) 

Now, the prescription given in the Kostant formula for the multiplicities is to 

take six copies of this function flipped about the origin, translated so that 

the vertex of the outer shell lies at the points w(A. + p) - p and take their 

alternating sum. Superimposing the six pictures we arrive at 

which shows us clearly the hexagonal pattern of the multiplicities. 

Exercise 25.24*. A nonzero dominant weight A. of a simple Lie algebra is called 

minuscule if A.(Ha) = 0 or 1 for each positive root IX. 

(a) Show that if A. is minuscule, then every weight space of r;. is one 

dimensional. 
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(b) Show that A. is minuscule if and only if all the weights of r l are conjugate 

under the Weyl group. 

(c) Show that a minuscule weight must be one of the fundamental weights. 

Find the minuscule weights for each simple Lie algebra. 

§25.3. Tensor Products and Restrictions To Subgroups 

In the case of the general or special linear groups, we saw general formulas 

for .describing how the tensor product r A ® r" of two irreducible representa

tions decomposes: 

rA ® r" = EB N).".r •. 
• 

In these cases the multiplicities Nl ". can be described by a combinatorial 
formula: the Littlewood-Richardson rule. In general, such a decomposition 

is equivalent to writing 

(25.25) 

in Z[A], where 1.). = Char(rl ) denotes the character.4 By Weyl's character 

formula, these multiplicities NA". are determined by the identity 

(25.26) 

This formula gives an effective procedure for calculating the coefficients NA". , 

if one that is tedious in practice: we can peel off highest weights, i.e., successively 

subtract from AHp · A,,+p multiples of Ap· A.+p for the highest v that appears. 
There are some explicit formulas for the other classical groups. R. C. King 

[Ki2] has showed that for both the symplectic or orthogonal groups, the 

multiplicities NA". are given by the formula 

(25.27) 

where the M's denote the Littlewood - Richardson multiplicities, i.e., the corre

sponding numbers for the general linear group, and the sum is over all 
partitions (, a, T. For other formulas for the classical groups, see [Murl], 
[WeI, p. 230]. 

Exercise 25.28*. For 504 C, show that all the nonzero multiplicities NA". are I's, 
and these occur for v in a rectangle with sides making 45° angles to the axes. 
Describe this rectangle. 

4 In the literature these multiplicities NA • • are often caIled "outer multiplicities," and the problem 

of rmding them, or decomposing the tensor product, the "Clebsch-Gordan" problem. 
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Steinberg has also given a general formula for the multiplicities N;'fJv' Since 

it involves a double summation over the Weyl group, using it in a concrete 

situation may be a challenge. 

Proposition 25.29 (Steinberg's Formula). The multiplicity of rv in r;. ® rfJ is 

N;'fJv = L (-1)WW'P(W(A. + p) + W'(Jl + p) - v - 2p), 
W,W' 

where the sum is over pairs W, W' E ~, and P is the counting function appearing 

in Kostant's multiplicity formula. 

Exercise 25.30*. Prove Steinberg's formula by multiplying (25,25) by A p , using 

(WCF) to get X;.AfJ+p = LN;'fJvAv+p. Write out both sides, using Kostant's 

formula for X ... and compute the coefficient of the term e(p + p) on each side, 

for any p. This gives 

L (-l)ww'P(W(A. + p) + W'(Jl + p) - p - 2p) = L (-1)wN;',fJ ,w(f/+P)_P' 
W,W' W 

Show that for p = v all the terms on the right are zero but N;'fJv' 

Exercise 25.31 (Racah). Use the Steinberg and Kostant formulas to show that 

N;'fJv = L (-1)Wnv+p-W(fJ+P)(r;.). 
W 

The following is the generalization of something we have seen several times: 

Exercise 25.32. If A. and Jl are dominant weights, and (X is a simple root with 

A.(H",) and Jl(H",) not zero, show that A. + Jl - (X is a dominant weight and 

r;. ® rfJ contains the irreducible representation r HfJ -", with multiplicity one. 

So 

r;. ® rfJ = rHfJ EB r HfJ-", EB others. 

In case Jl = A., with A.(H",) "# 0, Sym2 (r;.) contains r HfJ , while N(r;.) contains 

r;'+fJ-"" 

Exercise 25.33. If A. + , is a dominant weight for each weight' of r fJ , show 

that the irreducible representations appearing in r;. ® rfJ are exactly the r HC ' 

In fact, with no assumptions, every component ofr;. ® rfJ always has this form. 

One can show that N;'fJV is the dimension of 

{v E (r;')v-fJ: Hf·+l(V) = 0, 1 ~ i ~ n, Ii = Jl(H;)}. 

For this, see [Zel, §131]. 

For other general formulas for the multiplicities N;'fJv see [Kern], [K-N], 

[Li], and [Kum1], [Kum2]. 

We have seen in Exercise 6.12 a formula for decomposing the representa-
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tion r;, of GL C when restricted to the subgroup GLm- 1 C. In this case the 
m • 

multiplicities of the irreducible components again have a simple combma-

torial description. There are similar fonnulas for other classical groups. In the 

literature, such fonnulas are often called "branching fonnulas," or "modifica

tion rules." We will just state the analogues of this fonnula for the symplectic 

and orthogonal cases: 
For S02.C C s02n+l C, and r;, the irreducible representation of S02n+1 C 

given by A = (AI ~ ... ~ An ~ 0), the restriction is 

the sum over all I = (II' ... , I.) with 

Al ~ II ~ A2 ~ Iz ~ ... ~ In-I ~ An ~ IInl, 

with the Ii and Ai simultaneously all integers or all half integers. 

(25.34) 

For S02.-1 C C S02.C, and r;, the irreducible representation of S02nC given 

by A = (AI ~ '" ~ IAnl), 

Res:~~:~IC(r),) = EB r,;:, 
the sum over all I = (II' ... , I._I) with 

Al ~ II ~ A2 ~ I z ~ .. , ~ I._I ~ IAnl, 

with the Ii and Ai simultaneously all integers or all half integers. 

(25.35) 

For SP2.-2 C C SP2.C, and r), the irreducible representation of SPlnC given 

by A = (AI ~ ... ~ An ~ 0), the restriction is 

Res::~:~2dr),) = EBN),J,rJ" (25.36) 

the sum over all I = (II' ... , In-d with II ~ ... ~ In-I ~ 0, and the multi

plicity N),J. is the number of sequences PI' ... , P. of integers satisfying 

and 

PI ~ II ~ pz ... ~ P.-I ~ In-I ~ Pn' 

As in the case of GLnC, these fonnulas are equivalent to identities among 

symmetric polynomials. The reader may enjoy trying to work them out from 

this point of view, cf. Exercise 23.43 and [Boe]. A less computational approach 

is given in [Zel]. 

As we saw in the case of the general linear group, these branching rules can 

be used inductively to compute the dimensions of the weight spaces. For 

example, for sOm C consider the chain 

sOmC ::::> SOm_1 C ::::> SOm_2C ::::> ••• ::::> S03C. 

Decomposing a representation successively from one layer to the next will 

finally write it as a sum of one-dimensional weight spaces, and the dimension 

can be read ofT from the number of "partitions" in chains that start with the 

given A. The representations can be constructed from these chains, as described 

by Gelfand and Zetiin, cf. [Zel, § 1 0]. 
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Similarly, one can ask for formulas for decomposing restrictions for 

other inclusions, such as the natural embeddings: SP2nC C SL2nC, 

SOmC c SLmC, GLmC x GL.C c GLm+nC, GLmC x GLnC c GLmnC, 

SLnC c SP2nC, SLnC c S02n+1 C, SLnC c S02nC, to mention just a few. 
Such formulas are determined in principle by computing what happens 
to generators of the representation rings, which is not hard: one need 

only decompose exterior or symmetric products of standard representations, 

cr. Exercise 23.31. A few closed formulas for decomposing more general 
representations can also be found in the literature. We state what happens 

when the irreducible representations ofGLmC are restricted to the orthogonal 

or symplectic subgroups, referring to [Lit3] for the proofs: 

For OmC c GLmC, withm = 2n or 2n + 1, given A = (AI ~ ~ An ~ 0), 

Resg~cc(r).) = EBN).xrx, (25.37) 

the sum over all I = (I1 ~ ••• ~ In ~ 0), where 

N).x=LN6x)., 
,) 

with N')H the Littlewood-Richardson coefficient, and the sum over all 
l> = (l>1 ~ b2 ~ . . . ) with alibi even. 

Exercise 23.38. Show that the representation r(2,2) of GLmC restricts to the 
direct sum 

[(2,2) Ef) r(2) Ef) rIO) 

over OmC. (This decomposition is important in differential geometry: the 
Riemann-Christoffel tensor has type (2, 2), and the above three components 

of its decomposition are the conformal curvature tensor, the Ricci tensor, and 
the scalar curvature, respectively.) 

Similarly for SP2nC C GL2nC, 

Res~..';:·{(r).) = EBN).xrx, 

the sum over all I = (I1 ~ •• • ~ In ~ 0), where 

N).i. = LN~x)., 
~ 

(25.39) 

N~X). is the Littlewood-Richardson coefficient, and the sum is over all 

" = ("1 = "2 ~ '13 = "4 ~ ... ) with each part occurring an even number of 
times. 

It is perhaps worth pointing out the the decomposition of tensor products 

is a special case of the decomposition of restrictions: the exterior tensor 
product r), [g] r ll of two irreducible representations of G is an irreducible 
representation of G x G, and the restriction ofthis to the diagonal embedding 

of G in G x G is the usual tensor product r), ® rw 
There are also some general formulas, valid whenever 9 is a semisimple Lie 
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subalgebra of a semisimple Lie algebra g. Assume that the Cartan subalgebra 

Ij is a subalgebra of~, so we have a restriction from ~* to Ij*, and we assume 

the half-spaces determining positive roots are compatible. We write ji for 

weights of g, and we write Il! ji to mean that a weight Il of 9 restricts to ji. 

Similarly write W for a typical element of the Weyl group ofg, and p for half 
the sum of its positive weights. If A. (resp. J:) is a dominant weight for 9 

(resp. g), let N;.J. denote the multiplicity with which rJ. appears in the restriction 
of r ... to g, i.e., 

Exercise 25.40*. Show that, for any dominant weight A. of 9 and any weight ji 
ofg, 

Exercise 25.41 * (Klimyk). Show that 

NAJ. = L (_1)w L n,,(r;.). 
W "H+p-W(p) 

Exercise 25.42. Show that if the formula of the preceding exercise is applied 

to the diagonal embedding of 9 in 9 x g, then the Racah formula of Exercise 
25.31 results. 

For additional formulas of a similar vein, as well as discussions of how they 

can be implemented on a computer, there are several articles in SIAM J. Appl. 
Math.25,1973. 

Finally, we note that it is possible, for any semisimple Lie algebra g, to 

make the direct sum of all its irreducible representations into a commutative 

algebra, generalizing constructions we saw in Lectures 15, §17, and §19. Let 

r",., ... , r"'n be the irreducible representations corresponding to the funda

mental weights W l' .. . , w". Let 

A· = Sym·(r",. E!3 ... E!3 r.,J 

This is a commutative graded algebra, the direct sum of pieces 

A a = EB Syma'(r",.) ® ... ® Syman(r",J, 
al.···'an 

where a = (al' ... ,a,,) is an n-tuple of non-negative integers. Then A a is 
the direct sum of the irreducible representation r ... whose highest weight is 

A. = L aiwi, and a sum r of representations whose highest weight is strictly 

smaller. As before, weight considerations show that J. = EB. Ja is an ideal in 
A·, so the quotient 

A·p· = EB r ... 
... 
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is the direct sum of all the irreducible representations. The product 

r;. ®r,..-+ rH ,.. 

in this ring is often called Cartan multiplication; note that the fact that rH ,.. 

occurs once in the tensor product determines such a projection, but only up 

to multiplication by a scalar. 

Using ideas of §25.1, it is possible to give generators for th~ ideal J'. If C is 

the Casimir operator, we know that C acts on all representations and is 

multiplication by the constant C;. = (A., A.) + (2A., p) on the irreducible represen

tation with highest weight A.. Therefore, if A. = L ajWj, the endomorphism 

C - c;.l of A" vanishes on the factor r;., and on each of the representations 

r,.. of lower weight Jl. it is multiplication by c,.. - C;. :I: 0 [cf. (25.2)]. It follows 

that 

Exercise 25.43*. Write C = L UjU; as in§25.1. Show that for VI"'" V", vectors 

in the fundamental weight spaces, with Vj E r«J and L a.j = L ajwj , the element 

(C - C;.l)(VI • V2· •. • • vm) is the sum over all pairs j, k, with 1 :::;; j < k :::;; m, of 

the terms 

(L (Uj(Vj)' U;(Vk) + Ui(Vj)' Uj(vk)) - 2(a.j' a.k)Vj · Vk) ' n V" 
j 1#1k 

From this exercise follows a theorem of Kostant: J" is generated by the 

elements 

L (Uj(v) ' U;(w) + U;(v)· Ui(w)) - 2(a., P)v' w 
i 

for v E r«, WE rp, with a. and P fundamental roots. For the classical Lie 

algebras, this formula can be used to find concrete realizations of the ring. If 
one wants a similar ring for a semisimple Lie group, one has the same ring, 

of course, when the group is simply connected; this leads to the ring described 

in Lectures 15 and 17 for SLII C and SP211 C. For SOm C, little change is needed 

when m is odd, but there is more work for m even. Details can be found in 

[L-T]. 



LECTURE 26 

Real Lie Algebras and Lie Groups 

In this lecture we indicate how to complete the last step in the process outlined at the 

beginning of Part II: to take our knowledge of the classification and representation 

theory of complex algebras and groups and deduce the corresponding statements in 

the real case. We do this in the first section, giving a list ofthe simple classical real Lie 

algebras and saying a few words about the corresponding groups and their (complex) 

representations. The existence of a compact group whose Lie algebra has as complexi

fication a given semisimple complex Lie algebra makes it possible to give another 

(indeed, the original) way to prove the Weyl character formula; we sketch this in §26.2. 

Finally, we can ask in regard to real Lie groups G a question analogous to one asked 

for the representations of finite groups in §3.5: which of the complex representations 

V of G actually come from real ones. We answer this in the most commonly en

countered cases in §26.3. In this final lecture, proofs, when we attempt them, are 

generally only sketched and may require more than the usual fortitude from the reader. 

§26.1: Classification of real simple Lie algebras and groups 

§26.2: Second proof ofWeyl's character formula 

§26.3: Real, complex, and quaternionic representations 

§26.1. Classification of Real Simple Lie Algebras 
and Groups 

Having described the semisimple complex Lie algebras, we now address the 

analogous problem for real Lie algebras. Since the complexification go ®R C 

of a semisimple real Lie algebra go is a semisimple complex Lie algebra and 

we have classified those, we are reduced to the problem of describing the real 
forms of the complex semisimple Lie algebras: that is, for a given complex Lie 

algebra g, finding all real Lie algebras go with 
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We saw many of the real forms of the classical complex Lie groups and 

algebras back in Lectures 7 and 8. In this section we will indicate one way to 

approach the question systematically, but we will only include sketches of 
proofs. 

To get the idea of what to expect, let us work out real forms of 512 C 
in detail. To do this, suppose 90 is any real Lie subalgebra of 512 C, with 

90 ®R C = 512 C. The natural thing to do is to try to carry out our analysis of 
semisimple Lie algebras for the real Lie algebra 90: that is, find an element 

H E 90 such that ad(H) acts semisimply on 90' decompose 90 into eigenspaces, 
and so on. The first part of this presents no problem: since the subset of 512 C 
of non-semis imp Ie matrices is a proper algebraic subvariety, it cannot contain 

the real subspace 90 C 512 C, so that we can certainly find a semisimple HE 90' 

The next thing is to consider the eigenspaces of ad (H) acting on 9. Of 

course, ad (H) has one eigenvalue 0, corresponding to the eigenspace ~o = 
IR . H spanned by H. The remaining two eigenvalues must then sum to zero, 

which leaves just two possibilities: 

(i) ad(H) has eigenvalues A. and - A., for A. a nonzero real number; multi
plying H by a real scalar, we can take A. = 2. In this case we obtain a 

decomposition of the vector space 90 into one-dimensional eigenspaces 

90 = ~o EB 92 EB 9-2' 

We can then choose X E 92 and Y E 9-2; the standard argument then shows 
that the bracket [X, Y] is a nonzero multiple of H, which we may take to be 

1 by rechoosing X and Y. We thus have the real form 5121R, with the basis 

H=(~ _~), X=(~~). Y=(~~). 

(ii) ad (H) has eigenvalues iA. and - iA. for A. some nonzero real number; again, 
adjusting H by a real scalar we may take A. = 1. In this case, of course, there 

are no real eigenvectors for the action of ad(H) on 90; but we can decompose 

90 into the direct sum of ~o and the two-dimensional subspace 9{i,-i} corre
sponding to the pair of eigenvalues i and - i. We may then choose a basis B 
and C for 9 {i, -i} with 

[H, B] = C and [H, C] = -B. 

The commutator [B, C] will then be a nonzero multiple of H, which we may 

take to be either H or -H (we can multiply Band C simultaneously by a 
scalar jJ., which multiplies the commutator [B, C] by jJ.2). In the latter case, we 

see that 90 is isomorphic to 5121R again: these are the relations we get if we 

take as basis for 512 C the three vectors 

( 0 t) (0 1) (1 0) 
H = _ to' B = 1 0' and C = 0 -1 . 
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Finally, if the commutator [R, C] = H, we do get a new example: go is in this 

case isomorphic to the algebra 

SU2 = {A: IX = -A and trace(A) = O} C sI2 C, 

which has as basis 

o ) ( 0 R= 
-i/2 ' -1/2 

1/2) (0 o ' and C = i/2 
i/2) o . 

Exercise 26.1. Carry out this analysis for the real Lie algebras S031R and S02.11R. 

In particular, give an isomorphism of each with either sI2 1R or SU2 · 

This completes our analysis of the real forms of sI2 C. In the general 

case, we can try to apply a similar analysis, and indeed at least one aspect 

generalizes: given a real form go c 9 of the complex semisimple Lie algebra 

g, we can find a real subalgebra 1)0 c go such that 1)0 ® C is a Cartan sub

algebra of 9 = go ® C; this is called a Cartan subalgebra of go. There is a 

further complication in the case of Lie algebras of rank 2 or more: the values 

on 1)0 of a root IX E R of 9 need not be either all real or all purely imaginary. 

We, thus, need to consider the root spaces g«, ga' g_«, and g-a' and the 

subalgebra they generate, at the same time. Moreover, as we saw in the above 

example, whether the values of the roots IX E R of 9 on the real subspace 1)0 

are real, purely imaginary, or neither will in general depend on the choice of 

1)0· 

Exercise 26.2*. In the case of go = sI31R c 9 = sI3 C, suppose we choose as 

Cartan subalgebra 1)0 the space spanned over IR by the elements 

(2 0 0) (0 0 0) 
Hi = 0 - 1 0 and H 2 = 0 0 1 . 

o 0 -1 0 -1 0 
Show that this is indeed a Cartan subalgebra, and find the decomposition of 

9 into eigenspaces for the action of I) = 1)0 ® c. In particular, find the roots 

of 9 as linear functions on I), and describe the corresponding decomposition 

of go. 

Judging from these examples, it is probably prudent to resist the temptation 

to try to carry out an analysis of real semisimple Lie algebras via an analogue 

of the decomposition 9 = I) $ (EEl g«) in this case. Rather, in the present book, 

we will do two things. First, we will give the statement of the classification 

theorem for the real forms of the classical algebras-that is, we will list all 

the simple real Lie algebras whose complexifications are classical algebras. 

Second, we will focus on two distinguished real forms possessed by any real 

semisimple Lie algebra, the split form and the compact form. These are the 

two forms that you see most often; and the existence of the latter in particular 

will be essential in the following section. 
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For the first, it turns out to be enough to work out the complexifications 

go ®R C == go $ i' go of the real Lie algebras go we know. The list is: 

Real Lie algebra 

slnlR 

slnC 

sln~ == gln~/IR 

SOp,qlR 

SOnC 

SP2n IR 

SP2nC 

SUp,q 

Up,q~ 

U:~ 

Complexification 

slnC 

slnC x slnC 

sI2nC 

sOp+qC 

SOnC X SOnC 

SP2nC 

SP2nC X SP2nC 

slp+qC 

SP2(p+q)C 

S02nC 

The last two in the left-hand column are the Lie algebras of the groups Up,q~ 

and Un· ~ of automorphisms of a quaternionic vector space preserving a 

Hermitian form with signature (p, q), and a skew-symmetric Hermitian form, 

respectively. 

We should first verify that the algebras on the right are indeed the complexi

fications of those on the left. Some are obvious, such as the complexification 

(slnlR)c == slnlR $ i' slnlR == slnlC. 

The same goes for SOp,qlR and SP2nlR. 

Next, consider the complexification of 

SUn == {A E slnC: 'A == -A}. 

To see that slnC == SUn $ i· SUn' let M E slnC, and write 

M == t(M - 'M) + t(M + 'M) == tA + tB; 

then A E sUn, iB E SUn' and M == tA - i(i/2)B. 
The general case of SUp,q C slp+qC is similar: if the form is given by (x, y) == 

'xQy, then sUp,q == {A: 'AQ == -QA}. Writing M E slp+qC in the form 

M == t(M - Q.IM·Q) - i·H(iM + iQ·IM·Q)) 

and using Q == 'Q == Q-l == Q, one sees that M E SUp,q $ i' sup,q' 

For the complexification of slmC, embed slmC in slmC x slmC by A 1--+ (A, A). 
Given any pair (B, C), write 

(B, C) == t(B + C, B + C) + t(B - C, - B + C) 

== t(B + C, B + C) - i·H(iB + ie, iB + iC). 

For the quaternionic Lie algebra, from the description of GLn~ we saw in 

Lecture 7, we have 
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with J = ( 0 
-/ 

~). As before, for M E gl2nC, we can write 

M = t(M - J. M .J) - i·(t(iM + iJ ·iM .J)) 

to see that glnlHl ®R C = gl2n(:. 

Exercise 26.3. Verify the rest of the list. 

The theorem, which also goes back to Cartan, is that this includes the 

complete list of simple real Lie algebras associated to the classical complex types 

(An)-(Dn). In fact, there are an additional 17 simple real Lie algebras asso

ciated with the five exceptional Lie algebras. The proof of this theorem is 

rather long, and we refer to the literature (cf. [H-S], [Hel], [Ar]) for it. 

Split Forms and Compact Forms 

Rather than try to classify in general the real forms go of a semisimple Lie 

algebra g, we would like to focus here on two particular forms that are 

possessed by every semisimple Lie algebra and that are by far the most 

commonly dealt with in practice: the split form and the compact form. 

These represent the two extremes of behavior of the decomposition 9 = 

1) ED (EBg,,) with respect to the real subalgebra go c g. To begin with, the split 

form of 9 is a form go such that there exists a Cartan subalgebra 1)0 c go (that 

is, a subalgebra whose complexification 1) = 1)0 ® C c go ® C = 9 is a Cartan 

subalgebra of g) whose action on go has all real eigenvalues-i.e., such that 

all the roots a ERe 1)* of 9 (with respect to the Cartan subalgebra 1) = 

1)0 ® C c g) assume all real values on the subspace 1)0. In this case we have a 

direct sum decomposition 

go = 1)0 Ei1 (EB i,,) 

of go into 1)0 and one-dimensional eigenspaces j" for the action of 1)0 (each j" 

will just be the intersection of the root space g" c 9 with go); each pair j" and 

j-" will generate a subalgebra isomorphic to SI2 R. As we will see momentarily, 

this uniquely characterizes the real form go of g. 
By contrast, in the compact form all the roots a ERe 1)* of g (with respect 

to the Cartan subalgebra 1) = 1)0 ® C c g) assume all purely imaginary values 

on the subspace 1)0. We accordingly have a direct sum decomposition 

go = 1)0 Ei1 (EB I,,) 

of go into 1)0 and two-dimensional spaces on which 1)0 acts by rotation (each 

I" will just be the intersection of the root space g" Ei1 g_" with go); each I" will 
generate a subalgebra isomorphic to su2. 

The existence of the split form of a semisimple complex Lie algebra was 

already established in Lecture 21: one way to construct a real-even rational 



§26.1. Classification of Real Simple Lie Algebras and Groups 435 

-form 90 of a semisimple Lie algebra 9 is by starting with any generator X«, 
for the root space for each positive simple root !Xi' completing it to standard 

basis X«" Y,." and Hi = [X«" Y,.,J for the corresponding s«, = S(2 C, and taking 
90 to be the real subalgebra generated by these elements. Choosing a way to 

write each positive root as a sum of simple roots even determined a basis 

{Hi E I), X« E 9«, Y,. E 9-«} for 90' as in (21.20). The Cartan subalgebra 1)0 of 90 
is the real span ofthese Hi' Note that once I) is fixed for g, the real subalgebra 

1)0 is uniquely determined as the span of the H« for all roots !X. The algebra 90 

is determined up to isomorphism; it is sometimes called the natural real form 

of 9. Note that this also demonstrates the uniqueness of the split form: it is 

the only real form 90 of 9 that has a Cartan subalgebra 1)0 acting on 90 with 

all real eigenvalues. 

As for the compact form of a semisimple Lie algebra, it owes much of its 

significance (as well as its name) to the last condition in 

Proposition 26.4. Suppose 9 is any complex semisimple Lie algebra and 90 c 9 

a real form of 9. Let 1)0 be a Cartan subalgebra of go, I) = 1)0 ® C the corre

sponding Cartan subalgebra of 9. The following are equivalent: 

(i) Each root !X ERe 1)* of g assumes purely imaginary values on 1)0' and 

for each root !X the subalgebra of 90 generated by the intersection (<< of 

(9« ~ 9-«) with 90 is isomorphic to su2 ; 

(ii) The restriction to 90 of the Killing form of 9 is negative definite; 

(iii) The real Lie group Go with Lie algebra 90 is compact. 

In (iii), Go can be taken to be the adjoint form of 90' However, a theorem 

of Weyl ensures that the fundamental group of any such Go is finite, so the 

condition is independent ofthe choice of Go . Note also that, by the equivalence 

with (ii) and (iii), the condition (i) must be independent of the choice of Cart an 

subalgebra 1)0' This is in contrast with the split case, where we require only 

that there exist a Cartan subalgebra whose action on 9 has all real eigenvalues; 

as we saw in the case of S(21R, in the split case a different 1)0 may have imaginary 

eigenvalues. 

PROOF. We start by showing that the first condition implies the second; this 

will follow from direct observation. To begin with, the value of the Killing 

form on H E 1)0 is visibly 

B(H, H) = L (a(H))2 < O. 

Next, the subspaces (<< are orthogonal to one another with respect to B, so it 

remains only to verify B(Z, Z) < 0 for a general member Z E 1«. To do this, 

let X and Y be generators of 9« and 9_« c 9 respectively, chosen so as to form, 

together with their commutator H = [X, Y] a standard basis for S(2 C. By the 

analysis of real forms of sI2 C above, we may take as generators of the algebra 

generated by Ia the elements iH, U = X - Yand V = iX + iY. If we set 

Z = aU + bV= (a + ib)'X + (-a + ib)' Y, 
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then we have 

ad(Z) 0 ad(Z) = (a + ib)2 ad (X) 0 ad (X) 

- (a2 + b2 )(ad(X) 0 ad(Y) + ad(Y) 0 ad (X)) 

+ (a - ib)2 ad(Y) 0 ad(Y). 

Now, ad(X) 0 ad (X) and ad(Y) 0 ad(Y) have no trace, so we can write 

trace(ad(Z) 0 ad(Z)) = - 2· (a 2 + b2 ). trace(ad(X) 0 ad(Y)). (26.5) 

By direct examination, in the representation Sym"V of sI2 C, ad (X) 0 ad(Y) 

acts by multiplication by (n - A.)(n + A. - 2)/4 ~ 0 on the A.-eigenspace for H, 

from which we deduce that the right-hand side of (26.5) is negative. 

Next, we show that the second condition implies the third. This is imme

diate: the adjoint form Go is the connected component of the identity of the 

group Aut(90). In particular, it is a closed subgroup of the adjoint group of 9, 

and it acts faithfully on the real vector space 90' preserving the bilinear form 

B. If B is negative definite it follows that Go is a closed subgroup of the 

orthogonal group SO .. IR, which is compact. 

Finally, if we know that Go is compact, by averaging we can construct a 

positive definite inner product on 90 invariant under the action of Go. For any 

X in 90 ' ad(X) is represented by a skew-symmetric matrix A = (ai) with 
respect to an orthonormal basis of 90 (cf. (14.23)), so B(X, X) = Tr(A 0 A) = 

'D,jai,jaj,i = - ~>L ~ O. In particular, the eigenvalues of ad (X) must be 
purely imaginary. Therefore 1X(I)0) c ilR and a = -IX for any root IX, from 

which (i) follows. 0 

We now claim that every semisimple complex Lie algebra has a unique 

compact form. To see this we need an algebraic notion which is, in fact, crucial 

to the classification theorem mentioned above: that of conjugate linear involu

tion. If 9 = 90 ® n C is the complexification of a real Lie algebra 90' there is a 
map a : 9 -+ 9 which takes x ® z to x ® z for x E 90 and Z E C; it is conjugate 

linear, preserves Lie brackets, and a2 is the identity. The real algebra 90 is the 

fixed subalgebra of a, and conversely, given such a conjugate linear involution 

a of a complex Lie algebra 9, its fixed algebra 9C7 is a real form of 9. To prove the 

claim, we start with the split, or natural form, as constructed in Lecture 21 

and referred to above. With a basis for 9 chosen as in this construction, it is 

not hard to show that there is a unique Lie algebra automorphism cp of 9 that 

takes each element of 1) to its negative and takes each X" to y.. (this follows 

from Claim 21.25). This automorphism cp is a complex linear involution which 

preserves the real subalgebra 90' This automorphism commutes with the 

associated conjugate linear a. The composite acp = cpa is a conjugate linear 

involution, from which it follows that its fixed part gc = gC7tp is another real 

form of g. This has Cart an subalgebra 1)c = 1)C7tp = i · £}o. We have seen that the 

restriction of the Killing form to 1)0 is positive definite. It follows that its 

restriction to 1)c is negative definite, and hence that 9c is a compact form of 9. 

Finally, this construction of 9c from 90 is reversible, and from this one can 

deduce the uniqueness of the compact form. 
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We may see directly from this construction that 

9c = ~c $ EB la, 
aeR+ 
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where la = (ga $ g_a)'"<P is a real plane with la ®R C = ga $ g-a and [~" la] cIa· 

Exercise 26.6. Verify that {A j = i· Hj : 1 ~j ~ n} is a basis for ~c, {Ba = Xa - Yr. , 
Ca = i ' (Xa + Yr.)} is a basis for la, and the action is given by 

[Aj , Ba] = p ' Ca and [Aj' Ca] = - p' Ba, 

where p is the integer a(H). In particular, ~c acts by rotations on the planes la. 

Our classical Lie algebras 9 all came equipped with a natural real form go, 
and with a basis of the above type. These split forms are: 

Complex simple Lie algebra Split form 

sln+1 C s("+1 1R 

S02"+1 C SO"+1." 

SP2"C SP2n IR 
S02nC sOn." 

Exercise 26.7. For each of these split forms, find the corresponding compact 

form gc. 

Exercise 26.8. Let go be a real semisimple Lie algebra. Show that a subalgebra 

~o of go is a Cartan subalgebra if and only if it is a maximal abelian subalgebra 

and the adjoint action on go is semisimple. 

Exercise 26.9*. Starting with a real form go of 9 with associated conjugation 

u, show that one can always find a compact form 9c of 9 such that U(9c) = gt' 
and such that 

go = t$ p, 

where t = ~o = go (\ gt' and P = go (\ (i ' 9c). Such a decomposition is called a 
Cartan decomposition of go. It is unique up to inner automorphism. 

Exercise 26.10*. For any real form go of g, given by a conjugation u, show 

that there is a Cartan subalgebra ~ of 9 that is preserved by u, so go (\ ~ is 

a Cartan subalgebra of go. 

Naturally, the various special isomorphisms between complex Lie algebras 

(s12C ~ S03C ~ SP2C, etc.) give rise to special isomorphisms among their real 

forms. For example, we have already seen that 

sl21R ~ SU 1, 1 ~ S02,1 ~ SP21R, 

while 
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(cf. Exercise 26.1). Similarly, each of the remaining three special isomorphisms 

of complex semisimple Lie algebras gives rise to isomorphisms between their 

real forms, as follows: 

(i) S04C ~ sI2 C X sI2 C 

compact forms: S041R ~ SU2 x 5U2 

split forms: S02,2 ~ sI2 1R x sI21R 

others: 503, 1 ~ 512 C, u!!HI ~ 5U2 x 5121R. 

(ii) 5P4C ~ 50sC 

compact forms: U21H1 ~ 50sIR 

split forms: SP41R ~ S03,2 

other: u 1, 11H1 ~ 504 , l' 

(iii) 514 C ~ 506 C 

compact forms: su4 ~ S061R 

split forms: 5141R ~ 503,3 

others: 5U2,2 ~ 504,2; 5U3,1 ~ uJIHI; 5121H1 ~ SOS,l' 

In addition, the extra automorphism of 50sC coming from triality gives 

rise to an isomorphism u! IHI ~ 5°6,2' 

Exercise 26.11. Verify some of the isomorphisms above. (Of course, in the case 

of compact and split forms, these are implied by the corresponding iso

morphisms of complex Lie algebras, but it is worthwhile to see them directly 

in any case.) 

Real Groups 

We tum now to problem of describing the real Lie groups with these Lie 

algebras. Let G be the adjoint form of the semisimple complex Lie algebra 9. 

If 90 is a real form of g, the associated conjugate linear involution (1 of 9 that 

fixes 90 lifts to an involution a of G. (This follows from the functorial nature 

of the adjoint form, noting that G is regarded now as a real Lie group.) 

The fixed points G" of this involution then form a closed subgroup of G; its 

connected component of the identity Go is a real Lie group whose Lie algebra 

is 90' G is called the complexification of Go. 

We have seen in §23.1 that if r = r w is the lattice of those elements in ~ on 

which all roots take integral values, then 2nir is the kernel of the exponential 

mapping exp: ~ --. G to the adjoint form. If ~o is a Cartan subalgebra of 90' 

T = exp(~o) will be compact precisely when the intersection of ~o with the 

kernel 2nir is a lattice of maximal rank. In this case, T will be a product of n 
copies of the circle Sl, n = dim@, and, since the Killing form on ~o is negative 

definite, the corresponding real group Go will also be compact. Such a Go will 

be a maximal compact subgroup of G. 

When Go c: G is a maximal compact subgroup, they have the same irreduc

ible complex representations. Indeed, for any complex group G', each complex 
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homomorphism from G to G' is the extension of a unique real homomorphism 

from Go to G'. This follows from the corresponding fact for Lie algebras and 

the fact that Go and G have the same fundamental group. This is another 

general fact, which implies the finiteness of the fundamental group of Go; we 

omit the proof, noting only that it can be seen directly in the classical cases: 

Exercise 26.12*. Prove that 7tl (Go) --+ 7tl(G) is an isomorphism for each of the 

classical adjoint groups. 

Exercise 26.13*. The special isomorphisms of real Lie algebras listed above 

give rise to special isomorphisms of real Lie groups. Can you find these? 

It is another general fact that any compact (connected) Lie group is a 

quotient 

(G1 X G2 X ... x G, x T)/Z, 

where the Gj are simple compact Lie groups, T ~ (SI)k is a torus, and Z is a 

discrete subgroup of the center. In particular, its Lie algebra is the direct sum 

of a semisimple compact Lie algebra and an abelian Lie algebra. This provides 

another reason why the classification of irreducible representations in the real 

compact case and the semisimple complex case are essentially the same. 

Representations of Real Lie Algebras 

Finally, we should say a word here about the irreducible representations 

(always here in complex vector spaces!) of simple real Lie algebras. In some 

cases these are easily described in terms of the complex case: for example, the 

irreducible representations of SUm or slmlR are the same as those for slmC, i.e., 

they are the restrictions of the irreducible representations r .. = § .. Cm corre

sponding to partitions or Young diagrams A.. This is the situation in general 

whenever the complexification 9 = 90 ® C of the real Lie algebra 90 is still 

simple: the representations of 90 on complex vector spaces are exactly the 

representations of 9. The situation is slightly different when we have a simple 

real Lie algebra whose complexification is not simple: for example, the irreduc

ible representations of slmC, regarded as a real Lie algebra, are of the form 

r .. ® rll , where rll is the conjugate representation of rll" The situation in 

general is expressed in the following 

Exercise 26.14. Show that if 90 is a simple real Lie algebra whose complexifica

tion 9 is simple, its irreducible representations are the restrictions of (uniquely 

determined) irreducible representations of 9. If 90 is the underlying real algebra 

of a simple complex Lie algebra, show that the irreducible representations of 

90 are of the form V ® W, where V and Ware (uniquely determined) irreduc
ible representations of the complex Lie algebra. 
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§26.2. Second Proof of Weyl's Character Formula 

The title of this section is perhaps inaccurate: what we will give here is actually 

a sketch of the first proof of the Weyl character formula. Weyl, in his original 

proof, used what he called the "unitarian trick," which is to say he introduces 
the compact form of a given semisimple Lie algebra and uses integration on 

the corresponding compact group G. (This trick was already described in §9.3, 

in the context of proving complete reducibility of representations of a semi
simple algebra.) 

Indeed, the main reason for including this section (which is, after all, 
logically unnecessary) is to acquaint the reader with the "classical" treatment 

of Lie groups via their compact forms. This treatment follows very much the 

same lines as the representation theory of finite groups. To begin with, we 

replace the average (l/IGI) LgeG!(g) by the integral fG!(g) dJ1., the volume 

element dJ1. chosen to be translation invariant and such that fG dJ1. = 1. If 
p: G -+ Aut(V) is a finite-dimensional representation, with character 

XV(g) = Trace(p(g», 

then fGP(g) dJ1. E Hom(V, V) is idempotent, and it is the projection onto the 

invariant subspace VG• So fG Xv(g) dJ1. = dim(VG). Applied to Hom(V, W) as 

before, since XHom(V .W) = XvXw, it follows that 

L XvXw dJ1. = dim(HomG(V, W». 

So if V and W are irreducible, 

f {I ifV~ W 

G XvXw dJ1. = 0 otherwise. 

Up to now, everything is completely analogous to the case of finite groups, 

and is proved in exactly the same way. The last general fact, analogous to the 

basic Proposition 2.30, is harder in the compact case: 

Peter-Weyl Theorem. The characters of irreducible representations span a 

dense subspace of the space of continuous class functions. 

It is, moreover, the case that the coordinate functions of the irreducible matrix 

representations span a dense subspace of all continuous (or L2) functions on 
G. For the proof of these statements we refer to [Ad] or [B-tD]. Given the 

fundamental role that (2.30) played in the analysis of representations of finite 
groups, it is not surprising that the Peter-Weyl theorem is the cornerstone of 

most treatments of compact groups, even though it has played no role so far 
in this book. 

We now proceed to indicate how the original proof of the Weyl character 
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formula went in this setting. In this section, G will denote a fixed compact 

group, whose Lie algebra 9 is a real form of the semisimple complex Lie 

algebra 9c = 9 ®R C. We have seen that 

9 = ~ Ef> EB 1«, 
«eR+ 

compatible with the usual decomposition 9c = ~c Ef> EB(9« Ef> 9_«) when com
plexified. The real Cartan algebra ~ acts by rotations on the planes 1«. 

Now let T = exp(~) c: G. As before we have chosen ~ so that it contains 

the lattice 2nir which is the kernel of the exponential map from ~c to the 

simply-connected form of 9c, so T ~ (S1)" is a compact torus. 

In this compact case we can realize the Weyl group on the group level again: 

Claim 26.15. N(T)/T ~ 9:0. 

PROOF. For each pair of roots IX, -IX, we have a subalgebra S« ~ sI2 C c: 9c, 

with a corresponding SU2 c: 9. Exponentiating gives a subgroup SU(2) c: G. 

The element ( _ ~ ~) acts by Ad, taking H to - H, X to Y, and Y to X . It 

is in N(T), and, with B as in the preceding section, ( _ ~ ~) = exp G niB ). 

Then exp G niB) E 9 acts by reflection in the hyperplane IXL c: ~. 0 

Note that 9:0 acting on ~ takes the lattice 2nir to itself, so 9:0 acts on 

T = ~/2n;r by conjugation. 

Theorem 26.16. Every element of G is conjugate to an element of T. A general 

element is conjugate to 19:01 such elements of T. 

Sketch of a proof Note that G acts by left multiplication on the left coset space 

X = G/T. For any Z E G, consider the map f.: X ~ X which takes yT to zyT. 

The claim is that I. must have a fixed point, i.e., there is a y such that 
y-1 zy E T. Since allf. are homotopic, and X is compact, the Lefschetz number 

of f. is the topological Euler characteristic of X . The first statement follows 

from the claim that this Euler characteristic is not zero. This is a good exercise 

for the classical groups; see [Bor2] for a general proof. For another proof see 

Remark 26.20 below. 

For the second assertion, check first that any element that commutes with 

every element of T is in T. Take an "irrational" element x in T so that its 
multiples are dense in T. Then for any y E G, yxy-1 E T <=> yTy-1 = T, and 

yxy-1 = x<=> YET. This gives precisely 19:01 conjugates of x that are in T. 

Corollary 26.17. The class functions on G are the 9:O-invariant functions on T. 
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Suppose G is a real form of the complex semisimple group Gc, i.e., G is a 

real analytic closed subgroup of Gc, and the Lie algebra of Gc is 9c. The 

characters on Gc can be written L n,..eZ•d ,.., the sum over J1. in the weight lattice 

A; they are invariant under the Weyl group. From what we have seen, they 

can be identified with 2l3-invariant functions on the torus T. Let us work this 

out for the classical groups: 

Case (A,,): G = SU(n + 1). The Lie algebra SU,,+1 consists of skew-Hermitian 

matrices, 

~ = SU,,+1 () sl"+11R = {imaginary diagonal matrices of trace O}, 

and T = {diag(eZrti .9I, ... , e2rti.9n+I): L.9j = O}. In this case, the Weyl group 213 

is the symmetric group 6,,+1' represented by permutation matrices (with one 

entry ± 1 on each row and column, other entries 0) modulo T. Let Zi: T --+ SI 
correspond to the ith diagonal entry eZ1<i.9i • So characters on T are symmetric 

polynomials in Z l' ... , Z,,+1 modulo the relation Z 1 ••••• z,,+1 = 1. Therefore, 

characters on SU(n + 1) are symmetric polynomials in Z l' ... , Z,,+I' 

Case (Bit): G = SO(2n + 1). I) consists of matrices with n 2 x 2 blocks of the 

form 

(
cOS(2n.9 j ) 

sin (2n.9;) 

- Sin(2n.9j )) 

cos(2n.9;) 

along the diagonal, and one 1 in the lower right corner. Again we see that 

T = (SI )". This time N(T) will have block permutations to interchange the 

blocks, and also matrices with some blocks (~ ~) in the squares along the 

diagonal, with the other blocks 2 x 2 identity matrices, with a ± 1 in the 

corner to make the determinant positive; these take .9 j to -.9 j for each i where 

a block is (~ ~). This again realizes the Weyl group as a semidirect product 

of 6" and (lL/2f. With Zi identified with eZrtj8i again, we see that the characters 

are the symmetric polynomials in the variables Zj + ziI, i.e., in cos(2n.9d, ... , 

cos(2n.9,,). 

Case (D It): G = SO(2n).1) is as in the preceding case, but with no lower corner. 

Since we have no corner to put a-I in, there can be only an even number of 

blocks of the form (~ ~), reflecting the fact that 213 is a semidirect product 

of(Z/2r-l and 6 n• This time the invariants are symmetric polynomials in the 

Zi + zit, and one additional ni(Zi - zi 1). 

Case (Cit): G = Sp(2n). I) consists of imaginary diagonal matrices, T consists 

of diagonal matrices with entries eZrtj8i. The Weyl group in generated by 



§26.2. Second Proof of Weyl's Character Formula 443 

permutation matrices and diagonal matrices with entries which are l's and 

quaternionic j's: W is a semidirect product of (7L/2f and 6 n • The invariants 

are symmetric polynomials in the Zj + zil. 
The key to Weyl's analysis is to calculate the integral of a class function f 

on G as a suitable integral over the torus T. For this, consider the map 

n: G/T x T~ G, n(xT, y) = xyx-l. 

By what we said earlier, n is a generically finite-sheeted covering, with IWI 
sheets. It follows that 

f f dll = 1';"1 f n*(f)n*dll· 
G .;u) G/Tx T 

Now n*(f)(xT, y) = f(y) since f is a class function. To calculate n*dll, con
sider the induced map on tangent spaces 

n* = dn: g/I) x g ~ g. 

At the point (xo T, Yo) E G/T x T, 

(xoetXT, yoetY ) t-+ xoetXYoetYe-txx(jl. 

We want to calculate 

which is 

xo(xYo + YoY - yoX)X(jl (xoy(jl X(jl) = xo(x + yoyy(jl - yoxy(jl )X(jl. 

Now yoyy(jl = y since Yo E T and y E g. To calculate the determinant of n* 
we can ignore the volume-preserving transformation xo( )X(jl. If we identify 

9 with g/I) x g, the matrix becomes 

(I - Ad(yo) 0) 
o I . 

So the determinant of n* is det(l - Ad(yo)). Now (g/g)c = ffi g", and Ad(yo) 
acts as e27tj,,(yo) on g". Hence 

det(n*) = n (1 - e2"j,,), (26.18) 
"eR 

as a function on T alone, independent of the factor G/T. This gives Weyl's 

integration formula: 

f f dllG = _1_ f f(y) n (1 - e2!tj,,(y») dllT · 

G IWI T "eR 

(26.19) 

Remark 26.20. The same argument gives another proof of the theorem that G 
is covered by conjugates of T. This amounts to the assertion that the map 
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n: G/T x T .... G of compact manifolds is surjective. By what we saw above, 

for a generic point Yo E T there are exactly Iml points in n-1(yo), and at each 

of these the Jacobian determinant is the same (nonzero) number. It follows 

that the topological degree ofthe map n is Iml, so the map must be surjective. 

Now (1 - e2"i«)(1 - e- 2"i«) = (e"i« - e-"iIz)(e"i« - e >ri«), so if we set 

A = n (e"i« - e-"i«), 
aeR+ 

then det(n.) = A~. As we saw in Lemma 24.3, A = Ap , where p is half the sum 

of the positive roots and, for any weight p., 

A/l = L (_I)w e2"iW(/l). 

We'llJ 

Now we can complete the second proof of Weyl's character formula: the 

character of the representation with highest weight A. is AHp/ Ap. Since we saw 

in §24.1 that AHP/Ap has highest weight A. and (see Corollary 24.6) its value 

at the identity is positive, it suffices to show that the integral of fG XX = 1, 

where X = AHP/Ap. By Weyl's integration formula, 

f If - If -
G xx = Iml T xxAA = Iml T AHpAHp 

= _1_ f L (_I)W e2"iW(Hp). L (_I)W e- 2"iW(Hp) = 1, 
Iml T We'llJ We'llJ 

which concludes the proof. 

§26.3. Real, Complex, and Quaternionic 
Representations 

The final topic we want to take up is the classification of irreducible complex 

representations of semisimple Lie groups or algebras into those of real, quatern

ionic, or complex type. To define our terms, given a real semisimple Lie group 

Go or its Lie algebra 90 and a representation of Go or 90 on a complex vector 

space V we say that the representation V is real, or of real type, if it comes 

from a representation of Go or 90 on a real vector space Vo by extension of 

scalars (V = Vo ®R C); this is equivalent to saying that it has a conjugate linear 

endomorphism whose square is the identity. It is quaternionic ifit comes from 

a quaternionic representation by restriction of scalars, or equivalently if it has 

a conjugate linear endomorphism whose square is minus the identity. Finally, 

we say that the representation is complex if it is neither of these. (Compare 

with Theorem 3.37 for finite groups.) 

Having completely classified the irreducible representations of the classical 

complex Lie algebras, and having described all the real forms of these Lie 
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algebras, we have a clear-cut problem: to detemine the type of the restriction 

of each representation to each real form. Rather than try to answer this in 

every case, however, we will instead mention some of the ideas that allow us 
to answer this question, and then focus on the cases of the split forms (where 

the answer is easy) and the compact forms (where the answer is more interest

ing, and where we have more tools to play with). We assume the complexifica

tion g of go is simple, so irreducible representations of go are restrictions of 

unique irreducible representations of g (cf. (26.14»; in particular, we have the 
classification of irreducible representations by dominant weights. 

To begin with, the tensor products of two real, or two quatemionic, or of 
a pair of complex conjugate representations is always real; and exterior powers 

of real and quatemionic representations are equally easy to analyze, as for 

finite groups (see Exercise 3.43). Such tensor and exterior powers may not be 

irreducible, but the following criterion can often be used to describe an 
irreducible component of highest weight that occurs inside them: 

Exercise 26.21 *. Suppose W is a representation of a semisimple group G that 
is real or quaternionic, and suppose W has a highest weight ,1. that occurs 

with multiplicity 1. Show that the irreducible representations r .. with highest 
weight ,1. has the same type as W. 

We may apply this in particular to the tensor product r .. ® r" of the 
irreducible representations of g with highest weights ,1. and p.; since the irreduc

ible representation rH " with highest weight ,1. + P. appears once in this tensor 
product, we deduce 

Exercise 26.22*. (i) If r;. and r" are both real or both quatemionic, then rH " 

is real. (ii) If r;. is real and r" is quaternionic, then rH " is quaternionic. (iii) If 
r;. and r" are complex and conjugate, then rH " is real. 

The last two exercises almost completely answer the question of the repre
sentations of the split forms of the classical groups: we have 

Proposition 26.23. Every irreducible representation of the split forms sIn+1lR, 

SOn+1,nlR, sP2nlR, and sOn,nlR of the classical Lie algebras is real. 

PROOF. In each of these cases, the standard representation V is real, from which 
it follows that the exterior powers Nv are real, from which it follows that the 

symmetric powers Syma"(NV) are real. Now, in the cases ofsln+11R and SP2n IR, 

we have seen that the highest weights w. of the representations Nv for k = 

1, ... , n form a set offundamental weights: that is, every irreducible representa

tion r has highest weight La •. w. for some non-negative integers at, . .. , an' 
It follows that r appears once in the tensor product 

Syma, V ® Syma2(N V) ® ... ® Syman(NV) 
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and so is real. (Alternatively, Weyl's construction produces real representa

tions when applied to real vector spaces.) 

The only difference in the orthogonal case is that some of the exterior 

powers Nv of the standard representation must be replaced in this descrip

tion by the spin representation(s). That the spin representations are real 

follows from the construction in Lecture 20, cr. Exercise 20.23; the result in 

this case then follows as before. 0 

The Compact Case 

We turn now to the compact forms of the classical Lie algebras. In this case, 

the theory behaves very much like that of finite groups, discussed in Lecture 

5. Specifically, any action of a compact group Go on a complex vector space 

V preserves a nondegenerate Hermitian inner product (obtained, for example, 

by choosing one arbitrarily and averaging its translates under the action of Go). 

It follows that the dual of V is isomorphic to its conjugate, so that V will be 

either real or quaternionic exactly when it is isomorphic to its dual V*. (In 

terms of characters, this says that the character Char(V) is invariant under 

the automorphism of Z[A] which takes e(Jl) to e( - Jl); for groups, this says 

the character is real.) More precisely, an irreducible representation of a 

compact group/Lie algebra will be real (resp. quaternionic) if and only if it has 

an invariant nondegenerate symmetric (resp. skew-symmetric) bilinear form. 

In other words, the classification of an irreducible V is determined by whether 

V® V= Sym 2V$NV 

contains the trivial representation, and, if so, in which factor. So determining 

which type a representation belongs to is a very special case of the general 

plethysm problem of decomposing such representations. 

With this said, we consider in turn the algebras SUn' unD-D, and sOmlR. 

Let r;, be the irreducible representation of sine with highest weight A. = 

L a i ' Wi' where Wi = L 1 + ... + L i , i = 1, ... , n - 1 are the fundamental weights 

of sin C. The dual of r will have highest weight L an-i' Wi' so that r will be 

real or quaternionic if and only if ai = a n- i for all i. We now distinguish three 

cases: 

(i) If n is odd, then the sublattice of weights A. = L a i . Wi with ai = a n- i for 

all i is freely generated by the sums Wi + Wn-i for i = 1, . .. , (n - 1)/2. Now, Wi 

is the highest weight of the exterior power Nv, so that the irreducible repre

sentation with highest weight Wi + Wn-i will appear once in the tensor product 

which by Exercise 26.21 above is real. It follows that for any weight 

A. = L ai' Wi with ai = a n- i for all i, the irreducible representation r;, is real. 

(iia) If n = 2k is even, then the sublattice of weights A. = L ai ' Wi with 
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ai = an- i for all i is freely generated by the sums Wi + Wn-i for i = 1, ... , k - 1, 

together with the weight w", As before, the irreducible representations with 

highest weight Wi + Wn - i are all real. Moreover, in case n is divisible by 4 the 

representation NVis real as well, since NVadmits a symmetric bilinear form 

Nv®Nv-+N"v= c 

given by wedge product. It follows then as before that for any weight A. = 
L ai . Wi with ai = an- i for all i, the irreducible representation r .. is real. 

(iib) In case n is congruent to 2 mod 4, the analysis is similar to the last case 

except that wedge product gives a skew-symmetric bilinear pairing on Nv. 
The representation NVis thus quaternionic, and it follows that for any weight 

A. = L ai . Wi with ai = an- i for all i, the irreducible representation r .. is real if 

a" is even, quaternionic if a" is odd. In sum, then, we have 

Proposition 26.24. For any weight A. = L ai' Wi of SUn' the irreducible repre
sentation r .. with highest weight A. is: complex if ai # an-i for any i; real if 
ai = an- i for all i and n is odd, or n = 4k, or n = 4k + 2 and a2Hl is even; and 

quaternionic if ai = an - i for all i and n = 4k + 2 and a2"+1 is odd. 

Next, we consider the case of the compact form unlHl of sP2nc. To begin 

with, we note that since the restriction to Un IHI of the standard representation 

of SP2n C on V ~ c2n is quaternionic, the exterior power N V is real for k even 

and quaternionic for k odd. Since the highest weights w" of Nv for k = 1, ... , n 
form a set of fundamental weights, this completely determines the type of the 

irreducible representations of un IHI: we have 

Proposition 26.25. For any weight A. = L ai' Wi of unlHl, the irreducible repre

sentation r.. with highest weight A. is real if ai is even for all odd i, and 
quaternionic if ai is odd for any odd i. 

Next, we consider the odd orthogonal algebras. Part of this is easy: since 

the restriction to S02n+11R of the standard representation V of S02n+l C is real, 

so are all its exterior powers; and it follows that any representation of S02n+ llR 

whose highest weight lies in the sublattice of index two generated by the 

highest weights of these exterior powers is real. It remains, then, to describe 

the type of the spin representation; the answer, whose verification we leave as 

Exercise 26.28 below, is that the spin representation r .. of S02n+1 C (that 

is, the irreducible representation whose highest weight is one-half the highest 

weight of NV) is real when n == 0 or 3 mod 4, and quaternionic if n == 1 or 

2 mod 4. This yields 

Proposition 26.26. Let Wi be the highest weight of the representation Nv of 

S02n+1 C. For any weight A = a l WI + ... + an- 1 W n- I + anwn/2 of S02n+1lR, the 
irreducible representation r .. with highest weight A is real if an is even, or if n is 
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congruent to 0 or 3 mod 4; if an is odd and n == 1 or 2 mod 4, then r). is 
quaternionic. 

(Note that, in each of the last two cases, the fact that every representation 

is either real or quaternionic follows from the observation that the Weyl group 

action on the Cartan subalgebra ~ c 9 includes multiplication by -1.) 

Finally, we have the even orthogonal Lie algebras. As before, the exterior 

powers of the standard representation V are all real, but we now have two 

spin representations to deal with, with highest vectors (in the notation of 

Lecture 19) a = (Ll + ... + Ln)/2 and P = (Ll + ... + Ln- 1 - Ln)/2. The first 

question is whether these two are self-conjugate or conjugate to each other. In 

case n is even, as in the case of the symplectic and odd orthogonal algebras, 

the Weyl group action on the Cartan subalgebra contains multiplication by 

-1 (the Weyl group contains the automorphism of ~* reversing the sign of 

any even number of the basis elements L j ), so that r .. and r/l will be isomorphic 

to their duals; if n is odd, on the other hand, we see that r .. will have - p as a 

weight, so that r .. and r/l will be complex representations dual to each other. 

We consider these cases in turn. 

(i) Suppose first that n is odd, and say A. is any weight, written as 

A. = a1 WI + ... + an-2wn-2 + a n- 1 P + ana. 

If a n- l :f: an, the representation r). with highest weight A. will not be isomorphic 

to its dual, and so will be complex. On the other hand, r .. +/I appears once in 

r .. ® r/l = End(r .. ), and so is real; thus, if an - 1 = an, the representation r). will 

be real. 

(ii) If, by contrast, n is even then all representations of S02n~ will be either 

real or quaternionic. The half-spin representations r" and r/l are real if n == 0 
(mod 4), quaternionic if n == 2 (mod 4), a fact that we leave as Exercise 26.28. 
It follows that, with A. as above, r). will be real if either n is divisible by 4, or 

if an- 1 + an is even; ifn == 2 mod 4 and an- 1 + an is odd, r). will be quaternionic. 

In sum, then, we have 

Proposition 26.27. The representation r). of S02n~ with highest weight A. = 

a1w l + ... + an-2wn-2 + an-lP + ana will be complex if n is odd and an- 1 :f: 
an; it will be quaternionic if n == 2 mod 4 and an- 1 + an is odd; and it will be 
real otherwise. 

Exercise 26.28*. Verify the statements made above about the types of the 

spin representation r.. of the orthogonal Lie algebras, i.e., that the spin 

representation r .. of $02n+l ~ is real when n == 0 or 3 (mod 4); and quater

nionic if n == 1 or 2 (mod 4), and that the half-spin representations of $02n~ 

are real if n == 0 (mod 4) and quaternionic if n == 2 (mod 4). Show, in fact, that 

the even Clifford algebras c:,ven c Cm = C(O, m) are products of one or two 

copies of matrix algebras over ~, C, or IHI, with ~ occurring for m == 0 or 

± 1 mod 8, C occurring for m == ± 2 mod 8, and IHI for m == ± 3 or 4 mod 8. 
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Exercise 26.29. Show that for a representation V of a compact group G, 

if V is complex 

if Vis real 

if V is quatemionic. 
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Exercise 26.30*. Show that for a representation V of a compact group, the 

number of irreducible real components it contains, minus the number of 
quatemionic representations, is the number of times the trivial representation 

occurs in 1/1 2 V in the representation ring, where 1/1 2 is the Adams operation 

(cf. Exercise 23.39). 



APPENDICES 

These appendices contain proofs of some of the general Lie algebra facts that 

were postponed during the course, as well as some results from algebra and 
invariant theory which were used particularly in the "Weyl construction

Schur functor" descriptions of representations. 
The first appendix is a fairly serious excursion in polynomial algebra. It 

proves some basic facts about symmetric functions, especially the Schur 
polynomials, which occur as characters of representations of G L. or SL", and 
gives determinantal formulas for them in terms of other basic symmetric 

polynomials. The last section of Appendix A includes some new identities 

among symmetric polynomials, which, when the variables are specialized, 

express characters of representations of SP2" and SOm as determinants in the 
characters of basic representations. 

Appendix B gives a short summary of some basic multilinear facts about 

exterior and symmetric powers. The first two sections can be used as a 

reference for the conventions and notations we have followed; the third 
contains a general discussion of constructions such as contractions, many 

special cases of which were discussed in the main text. 
The next three appendices conclude our discussion of the theory of Lie 

algebras, which began in Lectures 9, 14, and 21. Proofs are given, by standard 

methods, of the promised general results on semisimplicity, the theorem on 

conjugacy of Cart an subalgebras, facts about the Weyl group, Ado's theorem 

that every Lie algebra has a faithful representation, and Levi's theorem that 
splits the map from a Lie algebra to its semisimple quotient. 

The last appendix develops just enough classical invariant theory to find 

the polynomial invariants for SLnC, SP2"C, and SOne. This was the key to 
our proofthat Weyt's construction gives the irreducible representations ofthe 
symplectic and orthogonal groups. 



APPENDIX A 

On Symmetric Functions 

§A.l: Basic symmetric polynomials and relations among them 

§A.2: Proofs of the determinantal identities 

§A.3: Other determinantal identities 

§A.l. Basic Symmetric Polynomials and 
Relations among Them 

The vector space of homogeneous symmetric polynomials of degree d in k 

variables x I, . . . , Xk has several important bases, usually indexed by the 

partitions A = (AI ~ A2 ~ . . . ~ At ~ 0) of d into at most k parts, or by Young 
diagrams with at most k rows (see §4.1). We list four of these bases, which 

are all valid for polynomials with integer coefficients, or coefficients in any 

commutative ring. 
First we have the monomials in the complete symmetric polynomials: 

(A.1) 

where Hj is the jth complete symmetric polynomial, i.e., the sum of all distinct 
monomials of degree j; equivalently, 

k 1 00 • n--= L Hjt l . 
i=l 1 - xit j=O 

For example, with three variables, 

H(l . l) = (Xl + X2 + X3)2, 

H(2.0) = xi + x~ + x~ + X 1 X2 + X 1X3 + X2X3 ' 
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Next are the monomial symmetric polynomials: 

MA = Ixa, (A.2) 

the sum over all distinct permutations IX = (IX 1 , ... , IX,,) of (..1. 1 , ••• , A.,,); here 

x a = x~' ..... X:k. For example, 

M(1.1) = X 1X2 + X1 X 3 + X2 X 3, 

M(2.0) = XI + xi + x~. 

The third are the monomials in the elementary symmetric functions. Unlike 

the first two, these are parametrized by partitions Il of d in integers no larger 

than k, i.e., k :?: III :?: ... :?: III :?: O. These are exactly the partitions that are 

conjugate to a partition of d into at most k parts. (The conjugate to a partition 
A. is the partition whose Young diagram is obtained from that of A. by inter

changing rows and columns. We denote the conjugate of A. by A.', although the 

notation 1 is also common.) For such Il set 

EIJ = E IJ , • ElJl • ••.• E IJ" 

where Ej is the jth elementary symmetric polynomial, i.e., 

For example, 

" co 
TI (1 + xit) = L Ejt j . 
i=l j=O 

E(1.1) = (Xl + X 2 + X3)2, 

E(2.0) = X 1X 2 + X 1X 3 + X2 X 3' 

(A.3) 

The fourth are the Schur polynomials, which may be the most important, 

although they are less often met in modern algebra courses: 

IX~j+k-il IX~j+k-il 
S - J - J (A 4) 

A - Ixj" il - A ' . 

where A = TIi<j(Xi - Xj) is the discriminant, and lai.jl denotes the deter
minant of a k x k matrix. For example, 

S(l.l) = X 1X2 + X 1X 3 + X2 X 3, 

S(2.0) = xi + xi + x~ + X 1X2 + X 1X3 + X2 X 3' 

The first task of this appendix is to describe some relations among these 
symmetric polynomials. For example, one sees quickly that 

S(1.1) = E(2.0) = H; - H 2 , 

S(2.0) = H(2 .0) = Ei - E 2, 

S(1.0)· S(1.0) = S(1.1) + S(2.0) · 

These are special cases of three important formulas involving Schur poly

nomials, which we state next. The first two are known as determinantal 
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formulas. The first is also known as the Jacobi- Trudy identity. From geometry, 

the first two are sometimes called Giambelli's formulas, and the third is Pieri's 
formula. The proofs will be given in the next section. 

(A.5) 

H Ak-t+1 ••• HAk 

Note that if A.P+1 = ... = A.t = 0, the determinant on the right is the same as 

the determinant of the upper left p x p comer. The second is 

(A.6) 

E IlI -1+1 • • • EIlI 

where J1. = (J1.1' ••. , J1.,) is the conjugate partition to A.. 

The third "Pieri" formula tells how to mUltiply a Schur polynomial SA by 

a basic Schur polynomial S(m) = H", 1: 

SAS(m) = L Sy, (A.7) 

the sum over all v whose Young diagram can be obtained from that of A. by 

adding a total of m boxes to the rows, but with no two boxes in the same 

column, i.e., those v = (V1' • • • , vA:) with 

V1 ~ A.1 ~ V2 ~ A.2 ~ •.• ~ Vt ~ A.t ~ 0, 

and L Vj = L A.j + m = d + m. For example, the identity 

S(2.1)· S(2) = S(4.1) + S(3 . 2) + S(3.1.1) + S(2.2.1) 

can be seen from the pictures 

One can use the Pieri and determinantal formulas to multiply any two 
Schur polynomials, but there is a more direct formula, which generalizes 

Pieri's formula. This Littlewood-Richardson rule gives a combinatorial formula 

for the coefficients NAllY in the expansion of a product as a linear combination 
of Schur polynomials: 

1 When k is fixed, we often omit zeros at the end of partitions, so (m) denotes the partition 
(m, 0, ... ,0). 
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SA'S/l = L NA/l.S., (A.8) 

Here A is a partition of d, J.l a partition of m, and the sum is over all partitions 

v of d + m (each with at most k parts). The Littlewood-Richardson rule says 

that NA/l. is the number of ways the Young diagram for A. can be expanded 

to the Young diagram for v by a strict J.l-expansion. If J.l = (J.l1' ... , J.lk), a 

J.l-expansion of a Young diagram is obtained by first adding J.l1 boxes, accord
ing to the above description in Pieri's formula, and putting the integer 1 in 

each of these J.l1 boxes; then adding similarly J.l2 boxes with a 2, continuing 
until finally J.lk boxes are added with the integer k. The expansion is called 
strict if, when the integers in the boxes are listed from right to left, starting 

with the top row and working down, and one looks at the first t entries in this 

list (for any t between 1 and J.l1 + ... + J.lk)' each integer p between 1 and k - 1 

occurs at least as many times as the next integer p + 1. 

For example, the equation 

S(2,1)'S(2,1) = S(4,2) + S(4,1,1) + S(3,3) + 2S(3,2,1) 

+ S(3,1,1,1) + S(2,2,2) + S(2,2,1,1) 

can be seen by listing the strict (2, 1 )-expansions of the Young diagram EfJ: 

ffiFill ~ BiliJ ~ 

~ r §E f 
A proof of the Littlewood-Richardson rule can be found in [Mac, §I.9]; for 

the other results of this appendix we can get by without using it. 

Formula (A.7), applied inductively, yields 

HA = S(A,)' S(A2)· ·· ·· SO'k) = L K/lAS/l' (A.9) 

where K/lA is the number of ways one can fill the boxes of the Young diagram 

of J.l with A1 1 's, A2 2's, up to Ak k's, in such a way that the entries in each row 

are nondecreasing, and those in each column are strictly increasing. Such a 

tableau is called a semistandard tableau on J.l of type A.. These integers K/lA are 
all non-negative, with 

Ku= 1 and K /lA = 0 if A. > J.l, (A.lO) 

i.e., if the first nonvanishing A. i - J.li is positive; in addition, K/lA = 0 if A. has 
more nonzero terms than J.l. For example, if k = 3, (K/l A) is given by the matrix 
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ITO 

EP 
§ 

ITOEP§ 
1 1 1 

0 1 2 

0 0 1 

The integers Kp.;' are called Kostka numbers. 

Exercise A.H. Show that Kp.;' is nonzero if and only if 

Al + A2 + ... + Ai :s; J1.1 + J1.2 + ... + J1.i 

for all i ~ 1. 
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When A = (1, 1, ... , 1), Kp.(l ..... l) is the number of standard tableaux on the 
diagram of J1., where a standard tableau is a numbering of the d boxes of a 
Young diagram by the integers 1 through d, increasing in both rows and 

columns. 

We need one more formula involving Schur polynomials, which comes 

from an identity of Cauchy. Let Y 1, ... , Yk be another set of indeterminates, 
and write P(x) and P(y) for the same polynomial P expressed in terms of 

variables Xl' .. . , Xk and YI ' ... , Yk' respectively. The formula we need is 

d I 1 I A(x)A(y) 
et 1 - XiYj = TI (1 - xiY/ 

i.j 

(A.l2) 

The proof is by induction on k. To compute the determinant, first subtract 

the first row from each of the other rows, noting that 

1 1 Xi - Xl. Yj 

1 - x iYj 1 - x1Yj 1 - xIYj 1 - xiYj 

and factor out common factors. Then subtract the first column from each of 
the other columns, this time using the equation 

Yj 

to factor out common factors. One is left with a matrix whose first row is 
(1 0 ... 0), and whose lower right square has the original entries. The formula 
follows by induction (cf. [WeI, p. 202]). 0 

Another form of Cauchy's identity is 
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(A.l3) 

the sum over all partitions A. with at most k terms. To prove this, expand the 

determinant whose i, j entry is (1 - XiYj)-1 = 1 + XiYj + xfyJ + .... One sees 

that for any 11 > ... > 11 the coefficient of y~ly~2 .. . . . y~k is the determinant Ix}'I. 
By symmetry of the x and Y variables we have 

detl 1 1= L Ix}'I ' IYJ'I, (A. 14) 
1 - XiYj I 

Combining (A.I2) with (A.4) gives (A.l3). o 

Expansion of the left-hand side of (A.13) gives 

n (1 ~ ) = n ( f Hm(X)yr) = L Hl(X)Ml(Y)' 
xiYj J m=O l 

i,j 

(A.lS) 

Since the polynomials Hl as well as the Mil form a basis for the symmetric 
polynomials, one can define a bilinear form < , ) on the space of homo
geneous symmetric polynomials of degree d in k variables, by requiring that 

(A.l6) 

where bl ,1l is 1 if A. = J.I. and 0 otherwise. The basic fact here is that the Schur 

polynomials form an orthonormal basis for this pairing: 

(A.l7) 

In particular, this implies that the pairing < , ) is symmetric. Equation 

(A.17) is easily deduced from the preceding equations, as follows. Write 

Sl = LalyHy = LbylMy, for some integer matrices aly and byl ' Then 

<Sl' SIl) = L alybyll' (A.lS) 

In order that 

be equal to LyHy(x)My(Y), which it must by (A. 13) and (A.lS), we must have 

L bplaly = bp,y' 
l 

This is equivalent to the equation LyalybYIl = b;',Il' which by (A.lS) implies 
(A. 17). 

Because of this duality, formula (A.9) is equivalent to the equation 

SI' = L KIl;,Ml · (A.l9) 
l 
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This gives another formula for these Kostka numbers: K/JA is the coefficient 

of x A in S", where X A = xt, ..... xtk. 
The identities (A.9) and (A.l9) for the basic symmetric polynomials allow 

us to relate the coefficients of X A in any symmetric polynomial P with the 

coefficients expanding P as a linear combination of the Schur polynomials. If 
P is any homogeneous symmetric polynomial of degree d in k variables, and 

A is any partition of d into at most k parts, define numbers I/IA(P) and wiP) by 

I/IA(P) = [PJA, 

where [PJA denotes the coefficient of X A = xt,· .. . · xtk in P, and 

WA(P) = [A, PJ" 1= (A1 + k - I, A2 + k - 2, . .. , At); 

(A.20) 

(A.21) 

here A = Oi <j (Xi - X). We want to compare these two collections of numbers, 

as A varies over the partitions. 

The first numbers I/IA(P) are the coefficients in the expression 

P = L I/IA(P)MA (A.22) 

for P as a linear combination of the monomial symmetric polynomials M A• 

The integers wiP) have a similar interpretation in terms of Schur polynomials: 

(A.23) 

Note from the definition that the coefficient of X, in A· SA is I, and that no 

other monomial with strictly decreasing exponents appears in A· SA; from this, 

formula (A.23) is evident. In this terminology we may rewrite (A.19) and 

(A.9) as 

(A.24) 

and 

(A.25) 

Lemma A.26. For any symmetric polynomial P of degree d in k variables, 

I/IiP) = L K/JA ·w/J(P), 
/J 

PROOF. We have 

L I/IA(P)MA = P = L w/J(P)S/J = L W/J(P)K/JJ.MA 
A /J A, /J 

= ~ ( ~ K/JAWiP») M A, 

and the result follows, since the MA are independent. o 

We want to apply the preceding discussion when the polynomial P is a 
product of sums of powers of the variables. Let ~ = xi + ... + x~ , and for 
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i = (iI ' . .. , id), a d-tuple of non-negative integers with L cxi« = d, set 

pi) = p~1 . p12 • • ••• pJd. 

These Newton or power sum polynomials form a basis for the symmetric 

functions with rational coefficients, but not with integer coefficients. Let 

COl (i) = COl(Pi) . 

Equivalently, 

p(i) = L col(i)Sl' (A.27) 

For the proof of Frobenius's formula in Lecture 4 we need a formal lemma 

about these coefficients COl (i): 

Lemma A.28. For partitions A. and JI. of d, 

~ IiI' ,. 1 . did' , col(i)co/l(i) = {OI 
I 11" . . Id• 

irA. = JI. 

otherwise. 

PROOF. We will use Cauchy's formula (A.l3). Note that 

10g(n (1 - X iYT 1) = f ~~(x)~(Y)' 
i,j j=1 ] 

so 

n (1 1 ) = n exp (~~(X)~(Y») 
- xiYj j ] 

Comparing with (A. 13), the conclusion follows. o 

Exercise A.29*. Using the pairing ( , > of (A.16), the coefficients coii) = 
COl(p(i» can be written col(i) = (Sl, p(i». 

(a) Show that the Newton polynomials are orthogonal for this pairing, and 

(PH), p(i) > = 1 ili1 !2i2i2 !· ... · di4id !. 

Equivalently, 

Sl = L Z;i) coii)PI), 

where the sum is over all partitions i = (iI' .. . , id) with Lcxi« = d, and 
z(i) = i1! IiI . i2 !2i2 . . .. . id!did. 

(b) Show that coii) = Lv (Sl' Mv) ' <Hv, pH» . 
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We should remark that we have chosen to write our formulas for a fixed 
number k of variables, since that often simplifies computations when k is small. 

It is more usual to require the number of variables to be large, at least as large 
as the numbers being partitioned-or in the limiting ring with an infinite 

number of variables, cf. Exercise A.32; the formulas for smaller k are then 

recovered by setting the variables Xi = 0 for i > k. For example, if k ~ 2 we 

have S(~) = S(2) + S(I , 1)' which reduces to S(~) = S(2) when k = 1. 
The next two exercises give formulas for the value of the Schur polynomials 

when the variables Xi are all set equal to 1; these numbers are the dimensions 

of the corresponding representations. For a formula for S .. (1, . . . , 1) involving 
hook lengths of the Young diagram of .A, see Exercise 6.4. 

Exercise A.30*. When Xi = Xi-I, the numerators in (A.4) are van der Monde 

determinants, leading to 

(i) S (1 2k-I) k n x";-"j+ j -i - 1 
.. ,X, X , ... , X = X i<j - - x ~ j ~ i - _ - l - ' 

Taking the limit as X -+ 1, one finds 

(ii) S (1 1) = n .Ai - .Aj + j - i 
A. , •• • , • • • 

i<j ] - I 

By (A.5) and (A.6) we have also the following two formulas: 

(1'1' 1') S (1 1) h h" h' 1 .. , ... , = I ";+j-d, were L... jti = (1 _ t)k' 

(iv) S .. (1, ... , 1) = I( k. .)1, where (JlI' . .. , Jl,) = .A'. 
Jli + ] - I 

Exercise A.31 *. (a) Show that 

Sil = L K/UlXa, 

the sum over all monomials xa = xi' ... .. x:K, where, for any k-tuple a of 
non-negative integers, K/Ul is the number of ways to number the boxes of the 

Young diagram of Jl with all 's, a2 2's, ... , ak k's, with nondecreasing rows 
and strictly increasing columns. In particular, the right-hand side is a sym
metric polynomial, a fact which is not obvious from the definition. 

(b) Deduce that SIl(1, .. . , 1) is the number of ways to number the boxes of 
the Young diagram of Jl with integers from 1 to k, with nondecreasing rows 

and strictly increasing columns (i.e., the number of semi standard tableaux). 

Exercise A.32*. The idea of considering symmetric polynomials in an arbi

trarily large number of variables can be formalized by working in the ring 

A = lim A(k), where A(k) denotes the ring of symmetric polynomials in k 
+-

variables. Then 
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A = l[Hl>'" Hk, ... J = l[El , · · · Ek,···J 

is a graded polynomial ring, with Hi and Ei of degree i. A ring homomorphism 

3: A -+ A can be defined by requiring 

3(EJ = Hi for all i. 

(i) Show that 3 is an involution: 32 = 3. Equivalently, 

3(Hi) = E i . 

(ii) If X is the conjugate partition to A., show that 

3(S,d = SA" 

(iii) If P.i = x{ + ". + x, is the jth power sum, show that 

3(P.i) = ( - 1 )j-l P.i, 

(iv) Deduce the formula 

(v) Deduce a dual form of(A.7): 

SA' S(1 ..... 1) = SA' Em = L S", 

the sum over all partitions 1t whose Young diagram can be obtained from 

that of A. by adding m boxes, with no two in any row. 

(vi) Show that 

H = ,,_l_p(i) 
m L.. z(i) , 

where the sums are over all i = (i1' . .. , id) with L (Xi", = d, and 
z(i) = il ! Iii. i2 !2i2 ... .. id!d id• Note that 

§A.2. Proofs of the Determinantal Identities 

To prove the Jacobi-Trudi identity (A.5), note the identities 

xl - El Xr 1 + E2 Xr 1 -'" + (-llEkxrk = 0, 

for any 1 ~ j ~ k, p ~ k. And for any 0 ~ m < k and p ~ k, 

(A.33) 

Hp-m - ElHp-m-l + E2 Hp - m- 2 + ... + (-l)kEkHp-m_k = O. (A.34) 

Both of these follow immediately from the defining power series for the Ej and 

H j • Since these two recursion relations are the same, there are universal 

polynomials A(p, q) in the variables E l' ... , Ek such that 
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xl = A(p, l)x;-1 + A(p, 2)X;-2 + . .. + A(p, k), 
(A.35) 

Hp- m = A(p, I)Ht - m - l + A(p, 2)Hk- m- 2 + ... + A(p, k)H_m • 

For any integers AI' ... , Ak this leads to matrix identities 

(Xf;+k-i)ij = (A(Ai + k - i, r))ir ' (xf-r)rj' 

(Hl;+j-i)ij = (A(Ai + k - i, r))ir'(Hj-r)rj, 
(A.36) 

where ( )pq denotes the k x k matrix whose p, q entry is specified between the 

parentheses. The relations (A.34) also imply: 

Lemma (A.37). The matrices (Hq_p ) and (( -1)q-PEq_p ) are lower-triangular 

matrices with 1 's along the diagonal, and are inverses of each other. 

The identities (A.36) therefore combine to give 

( l;+k-i) _ (H ) .((-l)Q-PE ).( k-q ) (A.38) Xj ij - l;+p-i ip q_p pq Xj qj 

Taking determinants gives (A.5), since the determinant of the matrix in the 

middle is 1. 

Exercise A.39*. Prove the identity 

the sum over all k-tuples (ml' ... , mt ) of non-negative integers with ml ~ 11 > 
m2 ~ ... > mk ~ lk' and deduce Pieri's formula (A.7). 

To complete the proofs of the assertions in §A.l, we show that the two 

determinants appearing in the Giambelli formulas (A.5) and (A.6) are equal, 

i.e., if A = (AI' ... , Ak) and JJ. = (JJ.l' ... , JJ./) are conjugate partitions, then 

IHl,+j-il = IE",+j-d. (A.40) 

Here the Hi and Ei can be any elements (in a commutative ring) satisfying the 

identity (IHiti)'(I( -1)iE/) = 1, with Ho = Eo = 1 and Hi = Ei = 0 for 
i < O. To prove it, we need a combinatorial characterization of the conjugacy 
of partitions: 

Exercise A.41 *. For A = (AI' . .. , At) and JJ. = (JJ.l' ... , JJ./) conjugate partitions, 
show that the sets 

{Ai+n+l-i:l~i~k} and {n+j-JJ.j:l~j~l} 

form a disjoint union ofthe set {I, . .. , k + I}. 

We also need a basic matrix identity which relates minors of a matrix to 

minors of its inverse (or matrix of cofactors). If A = (aiJ is an r x r matrix, 

and S = (SI' .•. , Sk) and T = (t 1, ... , tk ) are two sequences of k distinct integers 
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from {I, ... , r}, let AS.T denote the corresponding minor: AS.T is the deter

minant of the k x k matrix whose i,}' entry is as t. ,. J 

Lemma A.42. Let A and B be r x r matrices whose product is a scalar matrix 

c ·/r. Let (S, S') and (T, T') be permutations of the sequence (1, ... , r), where S 

and T consists of k integers, S' and T' of r - k. Then 

cr - t . As. T = e' det(A)' BT,.s', 

where s is the product of the signs of the two permutations. 

PROOF. By permuting the rows and columns of A, multiplying on the left and 

right by permutation matrices P and Q corresponding to the two permutations 

of (1, ... , r), we may take the (S, T) minor to the upper left corner: 

PAQ = (AI A2), AS.T = det AI' 
A3 A. 

Then 

Now taking determinants in the identity 

( AI A2) . (lt B2) = (AI 0) 
A3 A. 0 B. A3 cIr - k 

gives the equation det(PAQ)' det(B.) = det(A I)' c,-t. Since e is the product of 

the determinants of P and Q, the lemma follows. 0 

PROOF OF (A.40). Apply the lemma to A = (Hq_p) and B = « -1)q-p Eq_p), with 

r = k + I, and 

Then 

Similarly, 

S = (A,I + k, A2 + k - 1, ... , At + 1), 

S' = (k + 1 - Ill' k + 2 - 1l2' .. . , k + 1- Il,), 

T = (k, k - 1, ... ,1), 

T' = (k + 1, k + 2, ' .. , k + I). 

BT,.s' = I( -1)/lJ+ i-jE/lj +i_i l = (-I)L(/lrJ)( -1)LiIE/lj +i- i l 

= (-I)dIE/lj +i _ j l, 

with d = ~>j = LAi' Since e = (_1)4, (A.40) follows. 0 
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§A.3. Other Determinantal Identities 

In this final section we prove some variations of these formulas which are 

useful for calculating characters of symplectic and orthogonal groups. We 

want to compare minors, not of H = (Hi- j ) and E = (( -1)i- j Ei_j ), but of 

matrices H+ and E- constructed from them by the following procedures: 

For an r x r matrix H = (Hi,j)' and a fixed integer k between 1 and r, H+ 

denotes the r x r matrix obtained from H by folding H along the kth column, 

and adding each column to the right of the kth column to the column the 

same distance to the left. That is, 

H.+. = {Hi,j + Hi,2k-j ifj < k 
',J Hi,j ifj ~ k 

(with the convention that Hp,q = 0 if p or q is not between 1 and r). The matrix 

E- is obtained by folding E along its kth row, and subtracting rows above 

this row from those below: 

E-:- . = {Ei,j - E2k - i,j ifi> k 
',J Ei,j if i S; k. 

Lemma A.43. If Hand E are lower-triangular matrices with l's along the 

diagonal, that are inverse to each other, then the same is true for H+ and E-. 

PROOF. This is a straightforward calculation: the i, j entry ofthe matrix H+ . E
is 

k-l , 

L (Hi,p + Hi,2k-p)Ep,j + Hi,kEk,j + L Hi,p(Ep,j - E2k- p) 
p~l p~k+l 

, k-l , 

= L Hi,pEp,j + L Hi,2k-pEp,j - L Hi,qE2k- Q,j' 
p~l p~l Q~k+l 

The first sum is bi,j' and the others cancel term by term. D 

Proposition A.44. Let A. = (A. 1 , ... , At) and Il = (Ill' .. . , Il,) be conjugate parti
tions. Set 

E; = Ei for i S; 1, and E; = Ei - Ei- 2 for i ~ 2. 

Then the determinant of the k x k matrix whose ith row is 

(HAi-i+l H Ai - i+ 2 + H Ai- i HAi -i+3 + H Ai - i- 1 . •• HAi-i+k + HAi- i-k+2) 

is equal to the determinant of the I x I matrix whose ith row is 

(E~ f -i+l E~ i -i+2 + E~ f -i E~ i -i+3 + E~i-i-l ... E~i_i+1 + E~ i -i-I+2) ' 

Each of these determinants is equal to the determinant 
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and to the determinant 

where Hi' = Hi for i :s; 1, and for i :2: 2 

Hi' = Hi + Hi- 2 + Hi- 4 + .. . + {71 

A. On Symmetric Functions 

if i is odd 

if i is even. 

PROOF. With H = (Hi - j ) and E = (( -1)q-PEq_p)we can apply the basiclemma 

(A.42) to the new matrices A = H+ and B = E-, and the same permutations 

(S, S') and (T, T') used in the proof of (A.40). This time 

and 

Similarly, 

with 

AS •T = det(H~H+l-i . k-j+l)' 

H+ _ {HAi-i+ j + HAi-i - j+2 
A, H+1-i, k-j+1 - H 

A,-i+l 

ifj=2, ... ,k 

if j = 1. 

As before, Lemma A.42 implies that the determinant of the first displayed 

matrix of the proposition is equal to that of the third. Noting that 

one can do elementary column operations on the third matrix, subtracting 

the first column from the third, then the second by the fourth, etc., to see that 

the second and third determinants are equal. Since Hi = Hi' - Hi'-2, the same 
argument shows the equality of the first and fourth determinants. 0 

Note that in these four formulas, as in the determinantal formulas for Schur 
polynomials, if a partition has p nonzero terms, only the upper left p x p 

subdeterminant needs to be calculated. We denote by So> the determinant of 
the proposition: 

S(A> = IHAi - i+1 HAi-i+2 + HAi - i .. . HA,-iH + HAi - i-k+21. (A.4S) 

Dually, set Hi = Hi - Hi- 2 and E;' = Ei + Ei- 2 + Ei- 4 + '" . 

Corollary A.46. The following determinants are equal: 

(i) 

(ii) 

IH~i-i+l H~i - i+2 + H~ , -i H~i-i+k + H).i - i-k+21, 
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(iii) 

(iv) 

Define Sp.] to be the determinant of this corollary: 

467 

Sp.] = IH~i-i+l H~i-i+2 + H~i-i ... H~i-i+k + H~i-i-k+21. (A.47) 

Exercise A.48*. Let A be the ring of symmetric polynomials, 9: A -+ A the 
involution of Exercise A.32. Show that 

9(S().») = SIll] 

when A. and J1. are conjugate partitions. 

For applications to symplectic and orthogonal characters we need to 

specialize the variables XI' ••• , X k• First (for the symplectic group SP2.) take 
k = 2n, let Z 1, ... , z. be independent variables, and specialize 

Set 

(A.49) 

in the field Q(z 1, • .. , z.) of rational functions. 

Proposition A.50. Given integers ..1.1 ~ •.• ~ A.. ~ 0, we have 

IZ~i+.-i+l _ z:-().i+.-i+l)1 

J J = IJ I 
I • i+1 - (. i+l)1 ). , 
Zj - Zj 

where J). denotes the n x n matrix whose ith row is 

From Proposition A.44 we obtain three other formulas for the right-hand side, 
e.g., 

Exercise A.52. Calculate the denominator of the left-hand side: 

Izj-i+l - Zj-(·-i+l)1 = A(el' ... , e.)·el · ... ·e., 

where ej = Zj + Zj-l and ej = Zj - Zj-l. 

PROOF OF PROPOSITION A.50. Set 

ej(p) = Z! - Zj-P, 

(A.51) 

(A. 53) 
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By the same argument that proved the Jacobi-Trudy formula (A.5) via (A.38), 

the proposition follows from the following lemma: 

Lemma A.54. For 1 ~ j ~ n and any integer I ;;:: 0, (j(l) is the product of the 

1 x n, n x n, and n x 1 matrices 

PROOF. From (A.37) we can calculate zJ and Zj-I, and subtracting gives 

2. 

(j(l) = I JI _ 2.+PSp, (A.55) 
p=l 

where sp = I;:.p( -1)q-Peq_p(i2n - q). Multiplying (A.33) by Zj-P and sub

tracting we find 

(ip) - e l (ip - 1) + ... + (-l)P-lep(j(l) 

= (-l)p+lep+l (it) + (-1)P+2ep+2(j(2) + .. . + e2.(j(2n - pl. (A.56) 

Note also that 

(-l)pep = (-1)2.- Pe2._p , 

since I( -l)PeptP = n (1 - zi tHl - zilt) = n (1 - ~it + t2). 
and (A.57) follows 

(A.57) 

From (A.56) 

(A.58) 

where rp = I:=p( -t)4-Peq _ p (j(n + 1 - q). Combining (A.55) and (A.58) con

cludes the proof. 0 

Next (for the odd orthogonal groups 02.+1) let k = 2n + 1, and specialize 

the variables Xl' ... , X2• as above, and X2.+1 ~ 1. We introduce variables Z]'2 
and Zj-1/2, square roots of the variables just considered, and we work in the 
field Q(z~/2, ... , z!/2). Set 

Kj = Hj(Zl' ... , Zn' zit, ... , z;;\ 1) 

= Hj(Zl' ... , Zn' zil , . .. , Z;;l, 1) - Hj- 2 (Zl' . .. , z., zit, ... , Z;;l, 1), 
(A.59) 

where Hj is the jth complete symmetric polynomial in 2n + 1 variables. 

Proposition A.60. Given integers A.l ;;:: ... ;;:: A.n ;;:: 0, we have 

IzA;+n-i+1/2 _ z:-(A;+n-i+1/2)1 

J Izj i+1/2 _ z~ (n i+1/2)1 = IKAI, 
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where KA is the n x n matrix whose ith row is 

Corollary A.46 gives three alternative expressions for this determinant, e.g., 

IKAI = IhAi-i+j - hAi-i-jl, 

where hj = Hj(Zl' ... , Zn' zi1, . .. , z;;-1, 1). 

Exercise A.62. Calculate the denominator of the left-hand side: 

Izri+1/2 - Zj-(n-i+1/2) I = L1(~1' ... , ~n)·(lm·"' · (nm . 

(A.61) 

PROOF OF PROPOSITION A.60. We have (j(l) = zJ - Zj-l and ~i/) = zJ + Zj-l in 
Q(zt/2, ... , Z!/2) for I an integer or a half integer. First note that 

~i!) ' (i/) = (j(l + !) + (i l - !). 

Multiplying the numerator and denominator of the left-hand side of 

the statement of the proposition by ~ 1 m ... .. ~nm, the numerator 

becomes "iAi + n - i + 1) + (iAi + n - i)l, and the denominator becomes 

"in - i + 1) + (j(n - ill = "in - i + 1)1. We can, therefore, apply Lemma 
A.54 to calculate the ratio, getting the determinant of a matrix whose entries 

are sums of certain ~'s . Note that by direct calculation K j = ~ + ~-1' so the 
terms can be combined, and the ratio is the determinant of the displayed 

matrix K A• 0 

Finally (for the even orthogonal groups 02n), let k = 2n, and specialize the 

variables x l' ... , X2n as above. Set 

with Hj the complete symmetric polynomial in 2n variables. 

Proposition A.64. Given integers A1 ~ .. . ~ An ~ 0, we have 

Iz!,+n-i + Zj-(Ai+n-i)1 = {!ILAI if An> ° 
Izj i + Zj-(n ill ILAI if An = 0, 

where LA is the n x n matrix whose ith row is 

As before, there are other expressions for these determinants, e.g., 

ILAI = IhAi-i+j - hAi-i-jl, 

where hj = Hj (z1' ... , Zn' zit, . .. , Z;1). 

(A.63) 

(A.65) 



470 A. On Symmetric Functions 

Exercise A.66. Calculate the denominator of the left-hand side: 

I n-i + -(n-i)1 - 2· A(J: J: ) 
Zj Zj - 0 '> l' ... , '>n • 

PROOF OF PROPOSITION A.64. Note that (j' eil) = ei' + 1) - ej(l- 1). Multi
plying the numerator and denominator by (1 ..... (n' the numerator becomes 

"l~'i + n - i + 1) - (lA.i + n - i - 1)1 and the denominator becomes 

"j(n - i + 1) - (j(n - i - 1)1 = 2"j(n - i + 1)1; 

this is seen by noting that the bottom row of the matrix on the left is 

((j(l) - (j( -1)) = (2(i1)), and performing row reductions starting from the 
bottom row. The rest of the proof is the same as in the preceding proposition. 

The only change is when A.n = 0, in which case the bottom row in the numerator 

matrix is the same as that in the denominator. 0 

Exercise A.67*. Find a similar formula for 

Iz/",+n-i _ Zj-(A,+n-i)1 

IZjn i + Zj (n ill 



APPENDIX B 

On Multilinear Algebra 

In this appendix we state the basic facts about tensor products and exterior and 
symmetric powers that are used in the text. It is hoped that a reader with some linear 

algebra background can fill in details of the proofs. 

§B.l: Tensor product 

§B.2: Exterior and symmetric powers 
§B.3: Duals and contractions 

§B.l. Tensor Products 

The tensor product of two vector spaces V and W over a field is a vector space 

V ® W equipped with a bilinear map 

V x W -+ V ® w, v X wt-+ V ® w, 

which is universal: for any bilinear map fJ: V x W -+ U to a vector space U, 

there is a unique linear map from V ® W to U that takes v ® w to fJ(v, w). 

This universal property determines the tensor product up to canonical iso

morphism. If the ground field K needs to be mentioned, the tensor product is 

denoted V ®K W 

If {eJ and {.Ij} are bases for V and W, the elements {ej ® .Ij} form a 

basis for V ® W This can be used to construct V ® W The construction is 

functorial: linear maps V -+ V' and W -+ W' determine a linear map from 

V® Wto V'® W'. 

Similarly one has the tensor product VI ® .. . ® v,. of n vector spaces, with 

its universal multilinear map 

VI x ... x v,. -+ VI ® .. . ® v,., 
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taking VI X ••. X vn to VI ® ... ® Vn . (Recall that a map from the Cartesian 

product to a vector space U is multilinear if, when all but one of the factors ~ 

are fixed, the resulting map from V; to U is linear.) The construction of tensor 

products is commutative: 

V®W~W®v, V® WI-+W ® v; 

distributive: 

and associative: 

(U ® V) ® W ~ U ® (V ® W) ~ U ® V ® w, 

by (u® v) ® WI-+U ®(v® w)I-+U ® v® w. 
In particular, there are tensor powers v®n = V ® ... ® V of a fixed space 

V. By convention, V®o is the ground field. 

If A is an algebra over the ground field, and V is a right A-module, and W 

a left A-module, there is a tensor product denoted V ® ... W, which can be 

constructed as the quotient of V ® W by the subspace generated by all 

(v' a) ® w - v ® (a' w) for all V E V, W E W, and a E A. The resulting map from 

V x W to V ®A W is universal for bilinear maps P from V x W to vector 

spaces U that satisfy the property that P(v' a, w) = P(v, a' w). This tensor 

product is also distributive. 

§B.2. Exterior and Symmetric Powers 

The exterior powers Nv of a vector space V, sometimes denoted Altnv, come 

equipped with an alternating multilinear map 

v x ... x V -NV, VI X .•. X Vn 1-+ VI A .,. A Vn' 

that is universal: for p: V x ... x V - U an alternating multilinear map, there 

is a unique linear map from N V to U which takes V I A .. • A Vn to P( V I' ... , vn). 

Recall that a multilinear map P is alternating if P(VI ' . .. , vn) = 0 whenever two 

of the vectors Vi are equal. This implies that P(v l , •. • , vn) changes sign when 

two of the vectors are interchanged. I It follows that 

P(Va(I)' ... , vain») = sgn(a)p(VI' ... , vn) for all a E 6 n· 

The exterior power can be constructed as the quotient space of v®n by the 

subspace generated by all VI ® ... ® Vn with two of the vectors equal. We let 

n: v®n_Nv, 

I This follows from the standard polarization.: for two factors, P(v + w, v + w) - P(v, v) -

P(w, w) = P(v, w) + P(w, v). 
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denote the projection. If {ei} is a basis for V, then 

{e i1 /\ ei2 1\ ... 1\ ein : i l < iz < ... < in} 

is a basis for NV. Define Nv to be the ground field. 

If V and Ware vector spaces, there is a canonical linear map from 
NV ® Nw to N+b(V Ef) W), which takes (VI 1\ •.• 1\ va) ® (WI 1\ ... 1\ Wb) 

to VI 1\ .. • 1\ Va 1\ WI 1\ •.. 1\ Wb . This determines an isomorphism 

n 

N(V E9 W) ~ EB NV ® N-aW (B.1) 
a=O 

(From this isomorphism the assertion about bases of Nv follows by induction 

on the dimension.) 

The symmetric powers Symnv, sometimes denoted snv, comes with a 

universal symmetric multilinear map 

V x ... x V --+ Symnv, 

Recall that a multilinear map {3: V x ... x V --+ U is symmetric if it is 

unchanged when any two factors are interchanged, or 

{3(Va(I)' •.• , vain») = {3(V I , ..• , vn) for all (J E 6 n. 

The symmetric power can be constructed as the quotient space of v®n by the 

subspace generated by all VI ® ... ® Vn - Va(l) ® ... ® Va(n)' or by those in 

which (J permutes two successive factors. Again we let 

denote the projection~ If {ei} is a basis for V, then 

is a basis for Symn V. So Symn V can be regarded as the space of homogeneous 

polynomials of degree n in the variables ei. Define SymOV to be the ground 

field. As before, there are canonical isomorphisms 

n 

Symn(V E9 W) ~ EB SymaV ® Symn-aW (B.2) 
a=O 

The exterior powers NVand symmetric powers SymnV can also be realized 

as subspaces of v®n, assuming, as we have throughout, that the ground field 

has characteristic O. We will denote the inclusions by I, so we have 

The imbedding ,: Nv --+ v®n is defined by 

I(VI 1\ .•• 1\ vn) = L sgn((J)va(l) ® ... ® vain). (B.3) 
ere 6" 

(This is well defined since the right-hand side is alternating.) The image of I is 

the space of anti-invariants of the right action of 6 n on v®n: 
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(VI ® ... ® v n)· U = Vall) ® . . . ® Vain), Vi E Y, U E 6 n • (B.4) 

(The anti-invariants are the vectors Z E v®n such that z · U = sgn(u)z for all 

u E 6 n .) Moreover, if A = Ion, then (lln!)A is the projection onto this anti

invariant subspace. 2 (Often the coefficient lin! is put in front of the formula 
for I; this makes no essential difference, but leads to awkward formulas for 
contractions.) 

Similarly we have I: SymnV ~ v®n by 

I(VI ••..• vn) = L vall) ® ... ® Vain) ' (B.S) 
tiE 5" 

The image of 1 is the space of invariants of the right action of 6 n on v®n. If 
A = Ion, then (lln!)A is the projection onto this invariant subspace. 

The wedge product /\ determines a product 

(B.6) 

(VI /\ ..• /\ Vm) ® (Vm+1 /\ ••• /\ Vm+n) 1-+ VI /\ ••• /\ Vm /\ Vm+l /\ • • • /\ Vm+n' 

which is associative and skew-commutative. This product is compatible with 
the projection from the tensor powers onto the exterior powers, but care must 

be taken for the inclusion of exterior in tensor powers, since for example V /\ W 

is sent to V ® w - w ® V [not to t(v ® w - w ® v)] by I. In general, the 
diagram 

I\mv ® NV ~ I\m+n V 

commutes when the bottom horizontal map is defined by the formula 

(VI ® ... ® Vm) ® (Vm+1 ® ... ® Vm+n) 

1-+ L sgn(U)Va(l) ® .. . ® Valm) ® Va(m+1) ® .. . ® valm + n)' 

(B.7) 

(B.8) 

the sum over all "shuffies," i.e., permutations u of {I, . .. , m + n} that preserve 

the order of the subsets {I, ... , m} and {m + 1, .. . , m + n}. 
Similarly the symmetric powers have a commutative product (Vi····· Vm) ® 

(Vm+l .••.. Vm+n) 1-+ Vi · ••• · Vm ' Vm+1 ...•• Vm+n' with a similar compatibility. Note 
that v2 E Sym2 V is sent to 2v ® V in V ® Y, vn E SymnV to n!(v ® ... ® v) in 

v®n, and generally one has the analogue of (B.7), changing each "sgn(u)" to 

"1" in formula (B.8). 
All these mappings are compatible with linear maps of vector spaces 

V ~ W, and in particular commute with the left actions of the general linear 

group GL(V) = Aut(V) of automorphisms, or the algebra End(V) = 
Hom(Y, V) of endomorph isms, on v®n, NY, and Symnv. 

2 It is this factor which limits our present discussion to vector spaces over fields of characteristic O. 
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It is sometimes convenient to make algebras out of the direct sum of all of 
the tensor, exterior, or symmetric powers. The tensor algebra TV is the 

sum EBn~o v®n, with product determined by the canonical isomorphism 
v®n ® v®m -+ v®(n+m). The exterior algebra A"V is the sum EBn~o NV, which 

is the quotient of TV by the two-sided ideal generated by all v ® v in 

V®2. The symmetric algebra Sym'V is the sum EBn 2: 0 Symnv, which is the 

quotient of TV by the two-sided ideal generated by all v ® w - w ® v in V®2. 

Exercise B,9, The algebra Sym'V is a commutative, graded algebra, which 

satisfies the universal property that any linear map from V to the first graded 

piece C1 of a commutative graded algebra C' determines a homomorphism 

Sym'V -+ C' of gradt;d algebras. Use this to show that Sym'(V $ W) ~ 

Sym'V ® Sym'w, and deduce the isomorphism (B.2). Prove the analogous 

assertions for A"v, in the category of skew-commutative graded algebras. 

In particular, construct an isomorphism A"(V $ W) ~ ;\'v ® A"w, where ® 
denotes the skew-commutative tensor product: it is the usual tensor product 
additiveiy, but the product has (a ® b)' (c ® d) = (_1)deg(b)de g(C)(a' b) ® (c' d) 

for homogeneous elements a and c in the first algebra, and band d in the 

second. In particular, this proves (B.l). 

§B,3, Duals and Contractions 

Although only a few simple contractions are used in the lectures, and most of 

these are written out by hand where needed, it may be useful to see the general 

picture. 
If V* denotes the dual space to V, there are contraction maps 

cJ: V®P ® (V*)®q -+ V®(p-l) ® (V*)®(q-l), 

for any 1 S; i S; P and 1 S; j S; q, determined by evaluating the jth coordinate 
of (V*)®q on the ith coordinate of V®P: 

(B.lO) 
= IPj(VJVI ® ... ® OJ ® .. . ® vp ® IPI ® .. . ® <Pj ® .. . ® IPq· 

More generally if 1=(i1 , ... , in) and J=(jl, ... ,jn) are two sequences of 

n distinct indices from {1, ... ,p} and {1, ... ,q}, respectively, there is a 
contraction 

d: V®P ® (V*)®q -+ v®(p-n) ® (V*)®(q-n) 

which takes VI 1\ ... 1\ vp ® IPI ® . . . ® IPq to 

n 

(B.ll) 

fl IPjJV jJv 1 ® .. . ® Oi, ® ... ® Vi2 ® ... ® Vp ® IPI ® ... ® <Pit ® ... ® IPq· 
«=1 

For example, if p = q = n and 1= J = (1, . .. , n), this contraction 
v®n ® (V*)®n -+ C identifies (V*)®ft with the dual space of v®n. 
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Now (v®n)* consists of n-multilinear forms on V, and (NV)* consists of 

alternating n multilinear forms on V; in particular, (NV)* is a subspace of 

(V®n)*; this is the inclusion via n*. The composite 

N(V*) -+ (v*)®n -+ (v®n)*, 

where the first map is the inclusion I and the second is the isomorphism of the 

preceding paragraph, maps N(V*) isomorphically onto the subspace (NV)*. 

Explicitly, 

N(V*) ~ (NV)*, 

f/Jl /\ ... /\ f/Jn H [VI /\ ... /\ VnH L sgn(u)f/Ja(1)(V1)····· f/J .. (n)(Vn) 

= det(f/Jj(vi »)]. 

This dual pairing NV ® N(V*) -+ K is often denoted < , ). 
There is a similar isomorphism of Symn(V*) with Symn(V)*, but without 

the signs "sgn(u)." 

Exercise B.12. If e1 , •.• , em is a basis for V, with er the dual basis for V*, 

then {eil /\ ... /\ ein : 1 ::;; il < ... < in ::;; m} is a basis for NV, and 

{e~l ... "e~m: ia ~ 0, Lia = n} is a basis for Symnv. Show that, via the above 

isomorphisms, the dual bases for N(V*) and Symn(V*) are 

{e~ /\ ... /\ et} and {n ~ia!) (enll ..... (e:)im}. 

a 

There are related contractions, sometimes called internal products, and 

denoted ...Jand L, on exterior and symmetric powers. For the exterior powers 
they are maps: 

Nv ® N+q(V*) -+ N(V*), 

N+qv ® N(V*) -+ N(V), 

x®aHx...Ja; 

x®aHxLIX. 
(B. 13) 

These can be defined most simply as transposes of wedge products, i.e., they 

are determined by the identities 

<z, x ...Jex) = <z /\ x, ex) for Z E NV 

and 

<x L ex, p) = <x, ex /\ P) for P E N(V*). 

(The relation of this definition to the contraction maps d above is expressed 

in Exercise B.16.) Note that when q = 0, these contractions reduce to the 

previous duality pairing between NV and N(V*). 

For symmetric powers, the internal products are defined similarly: 

SymPV ® Symp+q(V*) -+ Symq(V*), x ® a H x ...J a; 

Symp+qV ® SymP(V*) -+ Symq(V), x ® ex H x L ex. 
(B.14) 
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Exercise B.15. For v, WE V, and (fJ, t/I E V*, show that 

v ...J «(fJ A t/I) = t/I(V)(fJ - (fJ(v)t/I and (v A w) L (fJ = (fJ(V)W - (fJ(W)V. 

More generally, for if x = Vi A ' " A vp and IX = (fJl A • • • A (fJp+q, with Vi E V 

and (fJj E V*, then 

(i) x ...J IX = L sgn(O')(fJa(q+l)(vd· ... · (fJa(q+p)(vp)' (fJa(l) A ... A (fJa(q)' 

the sum over all permutations 0' of {I, ... , p + q} that preserve the order of 
{I, .. . , q}. If x = Vi A ••• A vp+q and IX = (fJl A ••• A (fJp, then 

(ii) x L IX = L sgn(O')(fJl (va(1»)· ... · (fJp(va(P») ' Va(p+1) A •.. A va(p+q)' 

the sum over all permutations that preserve the order of {p + 1, "., p + q}. 
Verify these formulas and use them to give formulas for these internal products 

in terms of standard bases. State and verify analogous formulas for symmetric 

powers. In particular, for V, WE V, (fJ, t/I E V*, 

V ...J «(fJ' t/I) = t/I(V)(fJ + (fJ(v)t/I and (v' w) L (fJ = (fJ(v)w + (fJ(w)v. 

For example, V ...J«(fJ2) = 2(fJ(v)(fJ and (v2) L (fJ = 2(fJ(v)v. 

Exercise B.16. Using formula (ii) of the preceding exercise, show that the 

contraction map L may be given as l/p!q! times the composition of the maps 

N+qv ® N(V*) -+ V®(p+q) ® (V*)®P -+ v®q -+ NV, 

where the middle map is the contraction map d of (B.11), with I = J = 

{I, . '" p}, and the other maps come from I and n. Prove the same formulas 

(with the same scalar factor) for the other internal products. 

Exercise B.17. In the situation offormula (ii), suppose the Vi are independent, 

and let W be the (p + q)-dimensional subspace of V that they span; suppose 

the (fJi are independent, and let Z be the p-codimensional subspace of V of the 

common zeros of the (fJi' Show that x L IX = 0 if dim(W n Z) > q, and other

wise x L IX = U l A ••• A uq for some vectors U i that span W n Z. 

Exercise B.18. Prove the formulas 

(x A Y)...J IX = X ...J (y ...J IX) and x L (IX A p) = (x L IX) L p. 

State and verify the analogous formulas for symmetric powers. 

For a detailed development of these ideas, see [Bour, Algebra, Chap. 3]. 



APPENDIX C 

On Semisimplicity 

§C.l: The Killing form and Cartan's criterion 
§C.2: Complete reducibility and the Jordan decomposition 

§C.3: On derivations 

§C.1. The Killing Form and Cartan's Criterion 

We recall first the Jordan decomposition of a linear transformation X of a 

finite-dimensional complex vector space V as a sum of its semisimple and 

nilpotent parts: X = X. + X n , where X. is the semisimple part of X, and Xn 
the nilpotent part. It is uniquely characterized by the fact that X. is semisimple 

(diagonalizable), Xn is nilpotent, and X. and Xn commute with each other. In 
fact, X. and Xn can be written as polynomials in X, so any endomorphism 
that commutes with X automatically commutes with Xs and Xn. One case 

of the in variance of Jordan decomposition is an easy calculation: 

Exercise C.l·. For any X E gl(V), the endomorphism ad (X) of gl(V) satisfies 

ad(X). = ad (X.) and ad(X)n = ad(Xn). 

There is a Killing form By defined on gl(V) by the formula 

By(X, Y) = Tr(X 0 Y), (C.2) 

where Tr is the trace and 0 denotes composition of transformations. As in 
(14.23), the identity 

Bv(X, [Y, Z]) = Bv([X, Y], Z) 

holds for all X, Y, Z in gl(V). 

(C.3) 
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The Killing form B on a Lie algebra 9 is that of Exercise C.1 for the adjoint 

representation: B(X, Y) = Bg(ad(X), ad(Y)). This was introduced in Lecture 

14, where a few of its properties were proved. Here we use the Killing form to 

characterize solvability and semisimplicity of the Lie algebra. 

If 9 is solvable, by Lie's theorem its adjoint representation can be put in 
upper-triangular form. It follows that ~g = [g, g] acts by strictly upper

triangular matrices. So if X is in ~g and Yin g, then ad (X) 0 ad(Y) is strictly 
upper triangular; in particular its trace B(X, Y) is zero. Cartan's criterion is 

that this characterizes solvability: 

Proposition C.4. The Lie algebra 9 is solvable if and only if B{g, ~g) = O. 

We will prove something that looks a little weaker, but will turn out to be 

a little stronger. We prove: 

Theorem C.5 (Cartan's criterion). If 9 is a subalgebra of gl(V) and Bv(X, Y) = 0 
for all X and Y in g, then 9 is solvable. 

For this, it suffices to show that every element of ~g is nilpotent, for then 

by Engel's theorem ~g must be a nilpotent ideal, and therefore 9 is solvable. 

So take X E ~g, and let AI" ' " Ar be its eigenvalues (counted with 
multiplicity) for X as an endomorphism of V. We must show the Aj are all 

zero. These eigenvalues satisfy some obvious relations; for example, L AjAj = 
Tr(X 0 X)) = Bv(X, X) = O. What we need to show is 

(e.6) 

To prove this, take a basis for V so that X is in Jordan canonical form, 

with AI' ... , Ar down the diagonal; the semisimple part D = X. of X is this 
diagonal transformation. Let D be the endomorphism of V given by the 

diagonal matrix with II , ... , Ir down the diagonal. Since Tr{D 0 X) = L IjA j, 
it suffices to prove 

Tr(D 0 X) = O. (C.7) 

Since X is a sum of commutators [Y, Z], with Y and Z in g, Tr(D 0 X) is 

a sum of terms of the form Tr(D 0 [Y, Z]) = Tr([D, Y] 0 Z). So we will be 
done if we know that [D, Y] belongs to g, for our hypothesis is that Tr(g 0 g) == 
O. That is, we are reduced to showing 

ad(D){g) c g. (e.8) 

For this it suffices to prove that ad(D) can be written as a polynomial in 
ad (X), for we know that ad{X)k(y) is in 9 if X and Yare in g. Since ad(D) = 

ad (X.) = ad (X). is a polynomial in ad (X), it suffices to show that ad(D) can 
be written as a polynomial in ad (D). This is a simple computation: using the 

usual basis {E jj } for gl{V), ad(D) and ad(D) are complex conjugate diagonal 
matrices, and any such are polynomials in each other. 0 
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We can prove now that if 9 is a Lie algebra for which B(~g, ~g) == 0, then 

9 is solvable, which certainly implies Proposition C.4. By what we just proved, 

the image of ~g by the adjoint representation in gl(g) is solvable. Since the 
kernel of the adjoint map is abelian, this makes ~g solvable (cf. Exercise 9.8), 

and by definition this makes 9 solvable. 0 

Exercise C.9. Show that a Lie algebra 9 is solvable if and only if 

B(ad(X), ad(X» = 0 for all X in g. 

It is easy to deduce from Cartan's criterion a criterion for semisimplicity

part of which we saw in Lecture 14, but there assuming some facts we had not 
proved yet: 

Proposition C.IO. A Lie algebra 9 is semisimple if and only if its Killing form 

B is nondegenerate. 

PROOF. By (C.3) the null-space s = {X E g: B(X, Y) = 0 for all Y E g} is an 
ideal. Suppose 9 is semisimple. By Cartan's criterion, the image ad(s) c gl(g) 

is solvable; as in the preceding proof, s is then solvable, so s = 0 by the 
definition of semisimple. Conversely, if B is nondegenerate, we must show 

that any abelian ideal a in 9 must be zero. If X E a and Y E g, then 
A = ad (X) 0 ad(Y) maps 9 into a and a to 0, so Tr(A) = O. This implies that 

a c s = 0, as required. 0 

Corollary C.ll. A semisimple Lie algebra is a direct product of simple Lie 

algebras. 

PROOF. For any ideal I) of g, the annihilator 

1).1 = {X E g: B(X, Y) = 0 for all Y E I)} 

is an ideal, by (C.3) again. By Cartan's criterion, I) (11).1 is solvable, hence zero, 

so 9 = I) EB 1).1. The decomposition follows by a simple induction. 0 

It follows that 9 = ~g, and that all ideals and images of 9 are semisimple. 
In fact: 

Exercise C.12*. Show that if 9 is a direct product of simple Lie algebras, the 

only ideals in 9 are sums of some of the factors. In particular, the decomposition 

into simple factors is unique (not just up to isomorphism). 

Exercise C.13*. Show that if 9 is semisimple, the adjoint map ad: 9 ~ gl(g) is 
an isomorphism of 9 onto the algebra Der(g) of derivations of g. 

Exercise C.14. Show that if 9 is nilpotent then its Killing form is identically 

zero, and find a counterexample to the converse. 
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We repeat that this section is optional, since the results can be deduced from 

the existence of a compact group such that the complexification of its Lie 

algebra is a given semisimple Lie algebra. We include here the standard 

algebraic approach. A finite-dimensional representation of a Lie algebra 9 will 

be called a g-module, and a g-invariant subspace a submodule. 

Proposition C.tS. Let V be a representation of the semisimple Lie algebra 9 and 

W c V a submodule. Then there exists a submodule W' c V complementary 

to W 

PROOF. Since the image of 9 by the representation is semisimple, we may 

assume 9 c gI(V). We will require a slight generalization of the Casimir 

operator Cy E End(V) which was used in §25.l in the proof of Freudenthal's 

formula. We take a basis Ul , ... , U, for g, and a dual basis Ui, ... , U:, but this 

time with respect to the Killing form By defined in Exercise C.l: By(X, Y) = 

Tr(X 0 Y). (Note by Cartan's criterion that By is nondegenerate.) Then Cy is 

defined by the formula Cy(v) = L U j ' (U[· v). 

As before, a simple calculation shows that Cy is an endomorphism of V 

that commutes with the action of g. Its trace is 

Tr(Cy ) = LTr(Uj 0 Un = L By(Uj , un = dim (g). (C.l6) 

We note also that since Cy maps any submodule W to itself, and since it 

commutes with g, its kernel Ker(Cy ) and image are submodules. 

Note first that all one-dimensional representations of a semisimple 9 are 

trivial, since ~g must act trivially on a one-dimensional representation, and 

9 =~g . 

We proceed to the proof itself. As should be familiar from Lecture 9, the 

basic case to prove is when W c V is an irreducible invariant subspace of 

codimension one. Then Cy maps W into itself, and Cy acts trivially on V/W 

But now by Schur's lemma, since W is irreducible, Cy is multiplication by a 

scalar on W This scalar is not zero, or (C.l6) would be contradicted. Hence 

V = WEB Ker( Cy ), which finishes this special case. 

It follows easily by induction on the dimension that the same is true 

whenever We V has codimension one. For if W is not irreducible, let Z be a 

nonzero submodule, and find a complement to W/Z c VIZ (by induction), say 

Y/Z. Since Y/Z is one dimensional, find (by induction) U so that Y = ZEBU. 
Then V = WEB U. 

By the same argument, it suffices to prove the statement of the theorem 

when W is irreducible. Consider the restriction map 

p: Hom(V, W) ~ Hom(W, W), 
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a homomorphism of g-modules. The second contains the one-dimensional 

submodule Homg(W, W). By the preceding case, there is a one-dimensional 

submoduleofp-l(Homg(W, W» c Hom(V, W)whichmapsontoHomg(W, W) 
by p. Since one-dimensional modules are trivial, this means there is a 

g-invariant t/I in Hom(V, W) such that p(t/I) = 1. But this means that t/I is a 

g-invariant projection of V onto W, so V = W $ Ker(t/I), as required. 0 

We will apply this to prove the invariance of Jordan decomposition 

(Theorem 9.20). The essential point is: 

Proposition C.17. Let 9 be a semisimple Lie subalgebra of gI(V). Then for any 

element X E g, the semisimple part Xs and the nilpotent part Xn are also in g. 

PROOF. The idea is to write 9 as an intersection of Lie subalgebras of gI(V) for 

which the conclusion of the theorem is easy to prove. For example, we know 

9 c sI(V) since 9 = .@g, and clearly Xs and Xn are traceless if X is. Similarly, 

if V is not irreducible, for any submodule W of V, let 

Sw = {Y E gl(V): Y(W) c Wand Tr(Ylw) = OJ. 

Then 9 is also a subalgebra of sw, and Xs and Xn are also in Sw. 

Since [X, g] c g, it follows that [p(X), g] c 9 for any polynomial p(T). 

Hence [Xs, g] c 9 and [Xn, g] c g. In other words, Xs and Xn belong to the 

Lie subalgebra n of gl(V) consisting of those endomorphisms A such that 

[A, g] c g. So n gives us another subalgebra to work with. Now we claim that 

9 is the intersection of n and all the algebras Sw for all submodules W of V. 

This claim, as we saw, will finish the proof. Let g' be the intersection of all 

these Lie algebras. Then 9 is an ideal in g' since g' c n. 

By the complete reducibility theorem we can find a submodule U of g' so 

that g' = 9 $ U. Since [g, g' ] c g, we must have [g, U] = O. To show that U 
is 0, it suffices to show that for any Y E U its restriction to any irreducible 

submodule W of V is zero (noting that Y preserves W since Y E Sw, and that 

V is a sum of irreducible submodules). But since Y commutes with g, Schur's 

lemma implies that the restriction of Y to W is multiplication by a scalar, and 

the assumption that Y E Sw means that Tr(Ylw) = 0, so Ylw = 0, as required. 

o 

Now if 9 is a semisimple algebra, the adjoint representation ad embeds 9 

in gl(g). For any X in 9 the theorem implies that the semisimple and nilpotent 

parts of ad (X) are in g. We write these Xs and Xn. The decomposition 

X = Xs + Xn may be called the absolute Jordan decomposition. Note that 

[Xs, Xn] = O. It follows easily from the definition that if p: 9 -+ g' is a homo

morphism from one semisimple Lie algebra onto another, then p(Xs) = p(X)s 

and p(Xn) = p(X)n. (This follows for example from the fact that g' is obtained 

from 9 by factoring out some of its simple ideals.) In fact, the absolute 

decomposition determines all others: 
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Corollary C.18. If p: 9 -+ gI(V) is any representation of a semisimple Lie algebra 

g, then p(Xs) is the semisimple part of p(X) and p(Xn) is the nilpotent part of 

p(X). 

PROOF. We just saw that p(Xs) and p(Xn) are the semisimple and nilpotent 

parts of p(X) as regarded in the semisimple Lie algebra g' = p(g). Apply the 

theorem to g' c gI(V). 0 

It follows that an element X in a semisimple Lie algebra that is semisimple 

in one faithful representation is semisimple in all representations. 

§C.3. On Derivations 

In this final section we collect a few facts relating the Killing form, solvability, 

and nil potency with derivations of Lie algebras, mainly for use in Appendix 

E. We first prove a couple of lemmas related to the Lie-Engel theory of 

Lecture 9. For these 9 is any Lie algebra, r = Rad(g) denotes its radical, and 

~g = [g, g]. 

Lemma C.19. For any representation p: 9 -+ gI(V), every element of p(~g n r) 
is a nilpotent endomorphism. 

PROOF. It suffices to treat the case where the representation V is irreducible, 

for if W were a proper subrepresentation, we would know the result by 

induction on the dimension for Wand V/W, which implies it for V. We may 

replace 9 by its image, so we may assume p is injective. In this case we show 

that ~g n r = O. We may assume r -# O. Consider the largest integer k such 

that a = ~kr is not zero. This a is an abelian ideal of g. It suffices to show that 

~g n a = 0, for if k > 0, then a c ~g. 

We need three facts: 

(i) If 9 c gI(V) is an irreducible representation and b is any ideal of 9 that 

consists of nilpotent transformations of V, then b = O. (Indeed, by Engel's 

theorem, 

W= {VE V:X(v)=OforallXEb} 

is nonzero, and by Lemma 9.13, W is preserved by g. Since V is irreducible, 

W = V, which says that b = 0 .) 
(ii) A transformation X is nilpotent exactly when Tr(Xn) = 0 for all positive 

integers n. (This is seen by writing X in Jordan canonical form.) 

(iii) Tr([X, y] . Z) = 0 whenever [Y, Z] = O. (This follows from the identity 

(C.3): Tr([X, y]. Z) = Tr(X' [Y, Z]).) 

Next we can see that [g, a] = O. For if X E 9 and YEa, then [X, Y] E a; 

since a is abelian, Y commutes with [X, Y] and hence with powers of [X, Y]. 
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Applying (iii) with Z = [X, YJ,,-l gives Tr([X, YJ") = 0 for n > 0, and (ii) and 

(i) imply that [g, a] = O. 

Finally we show that ~g fl a = O. If X, Y E g and [X, Y] E a, then 

[Y, [X, Y]] = 0 by the preceding step, so again Y commutes with powers of 

[X, YJ, and the same argument shows that Tr([X, YJ") = 0, and (ii) and (i) 

again show that !0g (1 a = O. 0 

Lemma C.20. For any Lie algebra g, [g, r] is nilpotent. 

PROOF. Look at the images g and f of 9 and r by the adjoint representation 

ad: 9 -+ gl(g). By Lemma C.19 and Engel's theorem, [g, r] is a nilpotent ideal 

ofg. Since the kernel of the adjoint representation is the center of g, it follows 

that the quotient of [g, r] by a central ideal is nilpotent, which implies that 

[g, r] itself is nilpotent. 0 

An ideal a of a Lie algebra 9 is called characteristic if any derivation of g 

maps a into itself. Note that an ideal is just a subspace that is preserved by 

all inner derivations Dx = ad (X). It follows from the definitions that if a is any 

ideal in g, then any characteristic ideal in a is automatically an ideal in g. 

The following simple construction is useful for turning questions about 

general derivations into questions about inner derivations. Given any Lie 

algebra 9 and a derivation D of g, let g' = 9 $ C, and define a bracket on g' by 

[(X, A), (Y, Jl)] = ([X, Y] + AD(Y) - JlD(X), 0). 

It is easy to verify that g' is a Lie algebra containing 9 = 9 $ 0 as an ideal, 

and that, setting e = (0, 1), the restriction of D~ = ad(e) to 9 is the given 

derivation D. 

As a simple application of this construction, if B is the Killing form on g, 

we have the identity 

B(D(X), Y) + B(X, D(Y» = 0 (C.2I) 

for any derivation D of g, and any X and Y in g. Indeed, if B' is the Killing 

form on g', (C3) gives B'([e, X], Y) + B'(X, [e, Y]) = 0; since 9 is an ideal in 

g', B is the restriction of B' to g, and (C.21) follows. 

From (C2I) it follows that if a is a characteristic ideal of g, then its 

orthogonal complement with respect to the Killing form is also a characteristic 
ideal of g. 

Proposition C.22. For any Lie algebra g, Rad(g) is the orthogonal complement 

to ~g with respect to the Killing form. 

PROOF. To see that r = Rad(g) is contained in !0gl, i.e., that ~g is perpendic

ular to r, let X, Y E 9 and Z E r. Recalling that B([X, Y], Z) = B(X, [Y, z]), 
it suffices to show that B(X, [Y, Z]) = O. Let l) be the subalgebra of 9 generated 

by rand X. Then [l), l)] c r, so l) is solvable, so by Lie's theorem, under the 
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adjoint action, ~ acts on 9 by upper-triangular matrices. By Lemma C.19, 

[Y, Z] acts on 9 by nilpotent transformations. It follows that X 0 [Y, Z] 
also acts nilpotently on g, from which it follows that B(X, [Y, Z]) = 
Tr(X 0 [Y, Z]) = 0, as required. 

Since ~g is a characteristic ideal, (~g).l is an ideal. It is solvable by Cartan's 

criterion (Proposition C.4), since 

B(~g.l, ~(~g.l» c: B(~g.l , ~g) = 0. 

It follows that ~g.l c: r, which concludes the proof. 

Corollary C.23. If u is an ideal in a Lie algebra g, then 

Rad(u) = Rad(g) fl u. 

o 

PROOF. Since Rad( u) is a characteristic ideal of an ideal, it is an ideal of g. Since 

it is solvable, it must be contained in the radical of g. This shows the inclusion 

c:; the opposition inclusion is clear since Rad(g) fl u is a solvable ideal in u. 

o 

Proposition C.24. If D is a derivation of a Lie algebra g, then D(Rad(g» is 

contained in a nilpotent ideal of g. 

PROOF. Construct g' = 9 $ C as before, with e = (0,1). Since Rad(g) c: 

Rad(g'), we have 

D(Rad(g» = [e, Rad(g)] c: [g', Rad(g')] fl g. 

By Lemma C.20, [g', Rad(g')] is a nilpotent ideal in g', so its intersection with 

9 is also nilpotent. 0 

Just as with the notion of solvability, any Lie algebra 9 contains a largest 

nilpotent ideal, usually called the nil radical of g, and denoted Nil(g) or n. 

Proposition C.24 says that any derivation maps r into n, which includes the 

result of Lemma C.20 that [g, r] c: n. The existence of this ideal follows from: 

Lemma C.25. If u and b are nilpotent ideals in a Lie algebra g, then u + b is also 

a nilpotent ideal. 

PROOF. An ideal u is nilpotent iff there is a positive integer k so that all 

k-fold brackets [Xl' [X2 ' [ ... , [Xk- l ' Xk ] ••• ]]] are zero when each Xi is in 

u. Equivalently, all m-fold brackets of m elements of 9 are zero if at least k of 

them are in u. If k is chosen to work for u and for b, it is easy to verify that 2k 
works for the sum u + b, since any bracket of 2k elements, each from u or from 

b, contains at least k elements from u or from b. 0 

Since Nil(g) c: Rad(g), it follows from Proposition C.24 that Nil(g) is a 

characteristic ideal of g. The same reasoning as in Corollary C.23 gives: 



486 

Corollary C.26. If a is an ideal in a Lie algebra g, then 

Nil(a) = Nil(g) n Q. 

C. On Semisimplicity 

If 9 is a Lie algebra, its universal enveloping algebra U = U (g) is the quotient 

ofthe tensor algebra of 9 modulo the two-sided ideal generated by all X ® Y -

Y ® X - [X, YJ for all X, Yin g. It is an associative algebra, with a map 

I : 9 -+ U such that 

I([X, Y]) = [I (X), I(Y)] = I(X)I(Y) - I(Y)I(X), 

and satisfying the universal property: for any linear map qJ from 9 to an 

associative algebra A such that cp([X, YJ) = [cp(X), qJ(Y)] for all X, Y, there 

is a unique homomorphism of algebras $: U -+ A such that cp = $ 0 I. For 

example, a representation p: 9 -+ gI(V) determines an algebra homomorphism 

jj: U(g) -+ End(V). Conversely, any representation arises in this way. 

We will need the following easy lemma: 

Lemma C.27. For any derivation D of a Lie algebra g, there is a unique 

derivation jj of the associative algebra U(g) such that jj 0 1 = 10 D. 

PROOF. Define an endomorphism of the tensor algebra of 9 which is zero on 

the zeroth tensor power, and on the nth tensor power is 

Xl ®···®X.f-+DX I ®X2 ®···®X. + Xl ®DX2 ® ··· ®X. + ... 

+X I ®X2 ®···®DX • . 

This is well defined, since it is multilinear in each factor, and it is easily checked 

to be a derivation of the tensor algebra; denote it by D'. To see that D' passes 

to the quotient U(g) one checks routinely that it vanishes on generators for 

the ideal of relations. 0 

Exercise C.28. If D is an inner derivation by an element X in g, verify that jj 
is the inner derivation by the element I(X). 

It is a fact that the canonical map 1 embeds 9 in U(g). The Poincare

Birkhoff- Witt theorem asserts that, in fact, if U(g) is filtered with the nth piece 

generated by all products of at most n products of elements of I(g), then the 

associated graded ring is the symmetric algebra on g. Equivalently, if Xl' . .. , 

X, is a basis for g, then the monomials X~I ... .. x;r form a basis for U(g). We 

do not need this theorem, but we will use the fact that these monomials 

generate U (g); this follows by a simple induction, using the equations Xi · Xj -

Xj · Xi = [Xi' Xj] to rearrange the order in products. 



APPENDIX D 

Cart an Subalgebras 

§D.l: The existence of Cartan subalgebras 
§D.2: On the structure of semisimple Lie algebras 

§D.3: The conjugacy of Cartan subalgebras 
§D.4: On the Weyl group 

Our task here is to prove the basic general facts that were stated in Lecture 

14 about the decomposition of a semisimple Lie algebra 9 into a Cartan 

algebra 9 and a sum of root spaces g", including the existence of such 9 and 

its uniqueness up to conjugation. 

§D.1. The Existence of Cartan Subalgebras 

Note that if we have a decomposition as in Lecture 14, and H is any element 

of 9 such that IX(H) #- 0 for all roots IX, then 9 is determined by H: 9 = c(H), 
where 

c(H) = {X E g: [H, X] = O}. (0.1) 

The elements of 9 with this property are called regular. They form a Zariski 

open subset of 9: the complement of the union of the hyperplanes defined by 

the equations IX = O. In particular, regular elements are dense in 9. If H E 9 is 

not regular, then c(H) is larger than 9, since it contains other root spaces. Note 

that all elements of9 are also semisimple, i.e., they are equal to their semisimple 

parts. 

Of course, this discussion depends on knowing the decomposition which 

we are trying to prove. But it suggests one way to construct and characterize 
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Cart an subalgebras: they should be subalgebras of the form c(H) for some 

semisimple element H, that are minimal in some sense. We can measure this 

minimality simply by dimension. 

Definition 0.2. The rank n of a semisimple Lie algebra 9 is the minimum of 

the dimension of c(H) as H varies over all semisimple elements of g. A 

semisimple element H is called regular if c(H) has dimension n. A Cartan 

subalgebra of 9 is an abelian subalgebra all of whose elements are semisimple, 

and that is not contained in any larger such subalgebra. Our first main goal 

is 

Proposition D.3. If H is regular, then c(H) is a Cartan subalgebra. 

For any semisimple element H, 9 decomposes into eigenspaces for the 

adjoint action of H: 

9 = EB g;.(H) = c(H) E9 EB g,\(H), (0.4) 
A '\#0 

where g,\(H) = {X E g: [H, X] = AX}, and c(H) = go (H). There is a similar 

decomposition even if H (or g) is not semisimple, but replacing the eigenspace 

by g,\(H) = {X E g: (ad (H) - A.J)k(X) = 0 for large k}. 

Exercise 0.5. Without assuming that H is semisimple, show that 

[9;.(H), 91'(H)] c: gHI'(H), by proving the identity 

(ad (H) - (A + jt)I)k([X, Y]) 

= jto e) [(ad(H) - A.JY(X), (ad (H) - jtI)k- j(y)] 

Let us (temporarily) call an arbitrary element H E 9 regular if dim(90(H» ~ 

dim(go(X» for all X E 9. 

Lemma 0.6. If H is regular, then go(H) is abelian. 

PROOF. Consider how the Killing form B respects the decomposition (0.4)
again knowing what to expect from Lecture 14. If Y is in g,\(H) with A =F 0, 

then ad(Y) maps each eigenspace to a different eigenspace (by Exercise 0.5), 
as does ad(Y) 0 ad(X) for X E 90(H). The trace of such an endomorphism is 

zero, i.e., B(X, Y) = 0 for such X and Y. 

Because 9 is semisimple, B is nondegenerate. Since we have shown that 

90(H) is perpendicular to the other weight spaces, it follows that the restriction 

of B to 90(H) is nondegenerate. 

Consider the Jordan decomposition X = Xs + Xn of an element X in 90(H). 

Since ad(Xn) = ad(X)n is nilpotent, Xn belongs to go (H), so Xs = X - Xn does 

also. Then ad(Xs) = ad(X). is nilpotent and semisimple on go(H), so it vanishes 

there. But this already shows that ad(X) = ad(Xs) + ad(Xn) is a nilpotent 
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endomorphism of 90(H) for any X E 90(H). Hence, by Engel's theorem, 90(H) 

is nilpotent, so by Lie's theorem 9 has a basis in which the endomorphisms 

ad (X) are upper-triangular for all X E 90(H). It follows that for any elements 

in 90(H), the trace of products of their adjoint actions on 9 is independent of 

the order of composition. In particular, for X, Y, Z E 90(H), the trace of 

ad([X, Y]) 0 ad(Z) on 9 is zero, i.e., B([X, Y], Z]) == O. But since B is non

degenerate on 90(H), [X, y] = 0, so 90(H) is abelian. 0 

It follows immediately that 90(H) is not contained in any larger abelian 

subalgebra, since any element that commutes with H is in 90(H) by defini
tion. To finish the proof ofthe proposition we must prove the following lemma, 

which also shows that the temporary definition of regular agrees with the first 

one: 

Lemma 0.7. If H is regular, then any element of 90(H) is semisimple. 

PROOF. We saw that if X is in 90(H) then Xn is also. Using the same basis as 

in the preceding proof, we see that ad(Xn) has a strictly upper-triangular 

matrix. Hence, B(Xn' Y) = Tr(ad(Xn) 0 ad(Y» = 0 for all Yin 90(H). By the 

nondegeneracy again, Xn = 0, as required. 0 

It follows from Lemma D.6 that if H is regular, and X is in 90(H), then 

90(X) contains 90(H), and they are equal exactly when X is also regular. 

Problem 0.8*. Prove that if H is regular in any Lie algebra, then 90(H) is a 

nilpotent Lie algebra. 

Exercise 0.9. Show that a subalgebra is a Cartan subalgebra if and only if it 

consists entirely of semisimple elements and is contained in no larger sub

algebra with this property. 

§D.2. On the Structure of Semisimple Lie Algebras 

Let 1) be a Cartan subalgebra of a semisimple Lie algebra 9. Under the adjoint 

representation it consists of commuting semisimple endomorphisms. It is then 

a standard linear algebra fact that this action is simultaneously diagonalizable: 

(D.10) 

where the eigenspaces are parametrized by some set of linear forms IX E 1)*, 
including IX = 0, and where 

9« = {X E 9: [H, X] = IX(H)· X for all H E 1)}. 

In particular, 90 is the centralizer of 1) in 9. The nonzero IX are called roots. 
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Lemma 0.11. ~ = 90 . 

PROOF. Since ~ is abelian, ~ is contained in 90. If ~ corresponds to a regular 

element H, i.e., ~ = 90(H), anything that commutes with H must be in~, so 90 

is contained in ~. 0 

If ~ is constructed from the regular element H, then by definition 9iH) is 
the direct sum of those 9,. for which (X(H) = A.. Note that the decomposition 

(D.10) may be finer than (DA), but that if H is chosen to be an element of ~ 

such that the (X(H) are distinct for distinct roots (x, then the decompositions 

coincide. 

Our next task is to study the other eigenspaces 9,. . As before, we have 

[9,., 9/1] C 9,.+/1· It follows that if (X + P ¥- 0, and if X E 9,. and Y E 9/1' then 
ad(X) 0 ad( Y) is nilpotent, so its trace is zero, i.e., 

If (X + P ¥- 0, then B(g.., 9/1) = o. (D.12) 

Now for any root (x, if - (X were not a root, this implies 9,. is perpendicular 

to all 9/1 (including P = 0), which would contradict the nondegeneracy of B. 

So we get one of the facts asserted in Lecture 14: 

If (X is a root, then - (X is also a root. (D.l3) 

Moreover, the pairing B: 9,. x 9-,. -+ C is nondegenerate. Another fact also 

follows easily: 

The roots (X span ~*. (D.l4) 

For if not there would be a nonzero X E ~ with (X(X) = 0 for all roots (x, which 

means that [X, Y] = 0 for all Y in all 9,. . But then X is in the center of 9, 

which is zero by semisimplicity of 9. 

Now let (X be a root, let X E 9,., Y E 9-,., and take any H E ~. Then 

B(H, [X, Y]) = B([H, X], Y) = (X(H)B(X, Y). (D.l5) 

This cannot be zero for all H, X, and Y without contradicting what we have 

just proved. In particular, 

For any root (x, [9,., 9-,.] ¥- O. (D.l6) 

Let 7;. E ~ be the element dual to (X via the pairing B on ~, i.e., characterized 

by the identity B(T,., H) = (X(H) for all H in ~ . We claim next that 

[X, Y] = B(X, Y)7;. for all X E 9,., Y E 9-,.. (D.l7) 

To see it, pair both sides with an arbitrary element H of~. Using (D.15), we 

have 

B(H, B(X, Y)7;.) = B(H, 7;.)B(X, Y) = (X(H)B(X, Y) = B(H, [X, Y]), 

as required. Next we show that 
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1X(7;.) "# 0. (D.18) 

Suppose this were false. Choose X E g .. , Y E g_ .. such that B(X, Y) = c "# 0. 

Then [X, y] = c7;., so X, Y, and 7;. span a Lie sub algebra 5 of g. If 1X(7;.) = 0, 

s is solvable. Since [X, y] E ~s, it follows that ad([X, Y]) is a nilpotent 

endomorphism of g. But then 7;. is nilpotent; but all elements of ~ are semi

simple, so 7;. = 0, a contradiction. This gives another claim from Lecture 14: 

For any root IX, [[9 .. , g_ .. ], g .. ] "# 0. (D.19) 

For with X and Yas above, [[X, Y], X] = c· [7;., X] = c ·1X(7;.)X "# 0. 
The last remaining fact about root spaces left unproved from Lecture 14 is 

For any root IX, 9 .. is one-dimensional. (D.20) 

By what we have seen, we can find X E g .. , Y E g_ .. , so that H = [X, Y] "# 0, 

and IX(H) "# O. Adjusting by scalars, they generate a subalgebra s isomorphic 

to sl2iC, with standard basis H, X, Y, so in particular IX(H) = 2. Consider 

the adjoint action of 5 on the sum V = ~ EB EBgk«' the sum over all nonzero 

complex multiples klX of IX. From what we know about the weights of repre

sentations of 5, the only k that can occur are integral multiples of!. 

Now 5 acts trivially on Ker(lX) C ~ C V. and it acts irreducibly on 5 c V. 

Together these cover the zero weight space 1), since H is not in Ker(IX). So the 

only even weights occurring can be ° and ± 2. In particular, 

21X cannot be a root. (D.21) 

But this implies that !IX cannot be a root, which says that 1 is not a weight 

occurring in V. But then there can be no other representations occurring in 

V. i.e., V = Ker(lX) EB 5, which proves (D.20). 0 

§D.3. The Conjugacy of Cartan Subalgebras 

We show that any two Cartan subalgebras are conjugate by an inner auto

morphism of the adjoint subgroup of Aut(g). Fix one Cartan subalgebra ~, 

and consider the decomposition (D.lO). For any element X in a root space 9 .. , 

ad (X) E gl(g) is nilpotent, as we have seen, so its exponential exp(ad(X)) E 

GL(g) is just a finite polynomial in ad (X). Set 

e(X) = exp(ad(X)). 

Let E@ be the subgroup of Aut(g) generated by all such e(X). We want to 

prove now that this group is independent ofthe choice of1), and that all Cartan 

subalgebras are conjugate by elements in this group. (We will see in the next 

section that E@is the connected component of Aut(g), i.e., that it is the adjoint 

group.) The proof will be a kind of complex algebraic analogue of the corre

sponding argument for compact tori that was sketched in Lecture 26. 
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Theorem D.22. Let ~ and ~' be two Cartan subalgebras of g. Then (i) E(9) = 

E(~'), and (ii) there is an element gEE = E(9) so that g(~) = ~'. 

PROOF. Fix a Cart an subalgebra ~. Let <Xl' ••• , <x, be its roots. Consider the 

mapping 

F: gal X ••• X gar X ~ -+ 9 

defined by F(Xl' ... , X" H) = e(X do··· 0 e(X,)(H). Note that F is a poly

nomial mapping from one complex vector space to another of the same 

dimension. We want to show that not only is the image of F dense, but that, 

if ~reg denotes the set of regular elements in ~, then 

F(gal X •.• X gar X ~re8) contains a Zariski open set, (0.23) 

i.e., it contains the complement of a hypersurface defined by a polynomial 

equation. 

Suppose that this claim is proved. It follows that for any other Cartan 

subalgebra I)', the corresponding image also contains a Zariski open set. But 

two nonempty Zariski open sets always meet. In this case this means E(~)· ~re8 

meets E(~')· ~~eg" That is, there are 9 E E(9), H E ~re8' g' E E(~'), H' E ~~e8 such 
that g(H) = g'(H'). But then since Hand H' are regular, 

g(l)) = g(go(H)) = go(g(H)) = go(g'(H')) = g'(go(H')) = g'(I)'). 

This proves the conjugacy of ~ and ~'. And since 

E(9) = gE(9)g-l = E(g(9)) = E(g'(£)')) = g' E(~')(gTl = E(I)'), 

both statements of the theorem are proved. o 

To prove (0.23), we use a special case of a very general fact from basic 

algebraic geometry: if F: eN -+ eN is a polynomial mapping whose derivative 

dF* Ip is invertible at some point P, then for any nonempty Zariski open set 

U c eN, F(U) contains a nonempty Zariski open set. For the proof we refer 

to any basic algebraic geometry text, e.g., [Ha], or to [Bour, VI, App. A]. So 

it suffices to show that dF* Ip is surjective at a point P = (0, ... , 0, H), where 

H E ~re8 . This is a simple calculation: 

Exercise D.24*. Show that dF*lp(O, .. . , 0, Z) = Z for Z E~, and that 

dF*lp(O, ... ,0, y, 0, ... ,0,0) = ad(Y)(H) = -ad(H)(Y) for Y Ega,. Conclude 

that the image of dF* Ip contains ~ and each root space, so dF* Ip is surjective. 

o 

We remark that although this section, like the preceding appendix, was 

written for complex Lie algebras, a simple "base change" argument shows 

that the results extend to Lie algebras over any algebraically closed field of 

characteristic zero. Some, such as Cartan's criterion, then follow over any field 

of characteristic zero, by extending to an algebraic closure. 
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§D.4. On the Weyl Group 

In this section we complete the proofs of some of the general facts about the 

Weyl group that were stated in Lectures 14 and 21. The notation will be as in 

those sections: IE is the real space generated by the roots R; 'ID is the Weyl 

group, generated by the involutions w" of IE determined by 

w,,(P) = P - p(Ha)a = P - 2 ((p, a)) a, 
a, a 

where (, ) denotes the Killing form (or any inner product invariant for the 

Weyl group). We consider a decomposition 

R = R+ uR-

into positive and negative roots, given by some I: IE -+ IR as in Lecture 14, and 

we let S c R+ be the set of simple roots for this decomposition. Note that for 

any W in the Weyl group, 

R = W(R+) u W(R-) 

is the decomposition into positive and negative roots for the linear map 

loW-I. We want to show that every decomposition arises this way. To prove 

this we need some simple variations of the ideas in §21.1. 

Lemma D.25.If a is a simple root, then w" permutes all the other positive roots, 
i.e., w" maps R + \ {a} to itself. 

PROOF. This follows from the expression of positive roots as sums P = L mjaj, 

with the a j simple, and the mj non-negative integers. If a = a;, w,,(P) differs 

from P only by an integral multiple of aj. If P :f. aj, w,,(P) still has some positive 

coefficients, so it must be a positive root. 0 

Let 'IDo be the subgroup of'ID generated by the w", as a varies over the 

simple roots. (We will soon see that 'IDo = 'ID.) 

Lemma D.26. Any root P can be written in the form P = W(a) for some a E S 

and WE 'IDo. In particular, R = 'ID(S). 

PROOF. It suffices to do this for positive roots, since 'IDo(a) = 'IDo w,,(a) = 
-'IDo(a) for any a E S.1f Pis positive but not simple, write P = Lmjaj as above, 

and induct on the level Lm j • As in the previous lemma, there is a simple root 

y so that J-Yy(P) is a positive root of lower level. By induction, J-Yy(P) = W(a) 
for a E Sand WE 'IDo, so P = J-Yy W(a), as required. 0 

Lemma D.27. The Weyl group is generated by the reflections in the simple roots, 
i.e., 'ID = 'IDo. 
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PROOF. Given a root fl, we must show that Wp is in Woo By the preceding 

lemma, write fl = U(tX) for some U E Wo, tX E S. Then 

Wp = WU(a) = U·~· U-l, 

since both sides act the same on fl and fll.. 

(D.28) 

o 

Proposition D.29. The Weyl group acts simply transitively on the set of decom

positions of R into positive and negative roots. 

PROOF. For the transitivity, suppose R = Q+ U Q- is another decomposition. 

We induct on the number of roots that are in R+ but not in Q+. If this 

number is zero, then R+ = Q+. Otherwise there must be some simple root tX 

that is not in Q+ . It suffices to prove that ~(Q+) has more roots in common 

with R+ than Q+ does, for then by induction we can write ~(Q+) = W(R+) 

for some WE W, so Q+ = ~ W(R+), as required. In fact, we have by Lemma 

D.25, 
~(Q+) n R+ :::> ~(Q+ n R+) u {tX} = ~(Q+ n R+ u { -tX}), 

and this proves the assertion. 

For simple transitivity, we must show that if an element W in the Weyl 

group takes R+ to itself, then it must be the identity. If not, write W as a 

product of reflections in simple roots, 

W = Wi···· · w,., 

with r minimal, with W; the reflection in the simple root fli' Let tX = flr. It 
suffices to show that 

Wi ' ... ' w,. = Wi····· W.-l w.+1 ..... w,.-l 

for some s, 1 ::; s ::; r - 2. Let Us = w.+1 ..... w,.-l' This equation is equivalent 

to the equation W. Us w,. = Us, or Us w,. Us- l = w., or Us(tX) = fls (since by 
(D.28), WU(Il) = U~U-I). 

To finish the proof we must find an s so that Us(tX) = fls. Note that Ur- 2(1X) = 
w,.-l (tX) is a positive root (by Lemma D.25, since flr-l * IX). On the other hand, 
the hypothesis implies that 

Uo(tX) = Wi··· · · w,.-l (IX) = Wi··· · · w,.( -IX) = - W(tX) 

is a negative root. So there must be some s with 1 ::; s ::; r - 2 such that Us(tX) 

is positive and Us- 1 (IX) is negative. This means that W. takes the positive root 

Us(lX) to the negative root US - 1 (tX). But by Lemma D.25 again, this can happen 

only if W. is the reflection in the root Us(IX), i.e., fl. = Us(IX). 0 

The simple roots S for a decomposition R = R+ U R- are called a basis for 

the roots. Since Sand R+ determine each other, the proposition is equivalent 

to the assertion that the Weyl group acts simply transitively on the set of bases. 

Exercise D.30. For WE W, set I(W) = #(R+ n W(R-)). Show that W can be 

written as a product of I(W) reflections in simple roots, but no fewer. 
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If n .. denotes the hyperplane in IE perpendicular to the root a, the (closed) 

Weyl chambers are the closures of the connected components of the comple

ment IE\ Un .. of these hyperplanes. For a decomposition R = R+ U R- with 

simple roots S, the set 

"IY = {P E IE: (P, a) ~ 0, Va E R+} = {P E IE: (P, a) ~ 0, Va E S} 

is one of these Weyl chambers. The fact that every Weyl chamber arises this 

way follows from 

Lemma 0.31. For any P in IE there is some WE W such that (W(P), a) ~ 0 
for all a E S. 

PROOF. Let p be half the sum of the positive roots. It follows from Lemma 

0.25 that J.t;,(p) = p - a for any simple root IX. Take Win W to maximize the 

inner product (W(P), p). Then for all a E S, 

(J.t;,W(P), p) = (W(P), J.t;,p) = (W(P), p - IX) = (W(P), p) - (W(P), a) 

cannot be larger than (W(P), p), so (W(P), IX) ::; O. o 

Thus, the orbit of one Weyl chamber by the Weyl group covers IE, so all 

Weyl chambers are conjugate to each other by the action of the Weyl group. 

So all arise by partitioning R into positive and negative roots. This partition

ing is uniquely determined by the Weyl chamber. In fact, the walls of a Weyl 

chamber are the hyperplanes n .. as IX varies over the n corresponding simple 

roots, n = dim (IE). From the proposition we have: 

Corollary 0.32. The Weyl group acts simply transitively on Weyl chambers. 

Exercise 0.33*. Let (f; be the group of automorphisms of IE that map R to 

itself. 

(i) Show that W is a normal subgroup of (f;. 

(ii) Let 9l be the automorphisms in (f; which map a given set of simple roots 

S to itself. Show that (f; is a semidirect product ofW and 9l. 

(iii) Show that 9l is isomorphic to the group of automorphisms of the Oynkin 

diagram. 

(iv) Compute 9l for each of the simple groups. 

Our next goal is to show that the lattice Z{H .. : IX E R} c ~ has a basis of 

elements H .. where a varies over the simple roots. This is analogous to the 

statement we have proved that the root lattice AR in ~* is generated by simple 

roots. The first statement can be deduced from the second, using the Killing 

form to map ~ to ~*, HI-+(H, -), where ( , ) is the Killing form. We saw in 

Lecture 14 that this map takes H .. to a' = (2/(a, a»a. Given a root system R 

in a Euclidean space IE, to each root a one can define its coroot a' in IE by the 

formula 
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, 2 
r:x. = (r:x., r:x.) r:x.. 

Let R' = {r:x.': r:x. E R} be the set of coroots. For any 0 =f. r:x. E 1), set r:x.' = 

(2/(r:x., r:x.))r:x., and for any r:x., P E 1)*, set npa = 2(P, r:x.)/(r:x., r:x.). Let R = R+ V R- be 

a decomposition of R into positive and negative roots, and let S be the 

corresponding set of simple positive roots. 

Lemma 0.34. (i) The set R' of coroots forms a root system in IE. 

(ii) The set S' = {r:x.': r:x. E S} is a set of simple roots for R'. 

(iii) For r:x., PES, np'a' = nap, 

PROOF. It is a straightforward calculation that nfl'a' = nap, It follows by another 

short calculation that if J¥" denotes the reflection in the hyperplane perpendic

ular to r:x., then J¥" ,(P') = (J¥,,(P»),. The four defining properties of a root system 

specified in §21.1 follow immediately from this. It is clear that if R+ is the 

set of roots in R that are positive for a functional I on IE, then (R+), = 

{r:x.': r:x. E R+} is the corresponding set of positive roots for R'. Roots in R+ are 

those that can be written as a nonnegative linear combinations of roots in 

S, and this property characterizes S. Since r:x.' is a positive multiple of r:x. for any 

r:x., it follows that roots in (R+), are those that can be written as non-negative 

linear combinations of roots in S', which proves (ii). 0 

The root system R' is called the dual of R. 

Exercise 0.35. Find the dual of each type of simple root system. 

Proposition 0.36. (i) The elements Haforr:x. E S generate the lattice Z{Ha: r:x. E R}. 
(ii) If Wa E 1) are defined by the property that wa(Hp) = ha,p, then the elements 

Wa generate the weight lattice Aw. 
(iii) The nonnegative integral linear combinations of the fundamental weights 

wa are precisely the weights in "Ir n Aw , where "Ir is the closed Weyl chamber 
corresponding to R+. 

PROOF. The isomorphism 1) -+ 1)* given by the Killing form takes Ha to the 

coroot r:x.'. By the lemma and the fact that all positive roots are sums of simple 

roots, the set {r:x.': r:x. E S} spans the same lattice as {r:x.': r:x. E R}. This proves (i), 

and it follows that the weights are precisely those elements in 1) that take 

integral values on the set {Ha: r:x. E S}. The rest of the proposition follows, 
noting that 

"Ir = {P E IE: P(Ha) ~ 0 for all r:x. E R+} 

= {P E IE: P(Ha} ~ 0 for all r:x. E S} . o 

If we identify 1) with 1)* by means of the Killing form, we can regard iID as 

a group of automorphisms of 1). By means of this, the reflection J¥" corre-
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sponding to a root a becomes the automorphism of I) which takes an element 

H to H - a(H)· H". We have a last debt (Fact 14.11) to pay about the Weyl 

group: 

Proposition 0.37. Every element of the Weyl group is induced by an auto

morphism of 9 which maps I) to itself. 

PROOF. It suffices to produce the generating involutions w" in this way. The 

claim is that if X" and y" are generators of g" and g_" as usual, then 8" = 
e(X,,)e( - y")e(X,,) is such an automorphism, where, as in the preceding 

section, we write e(X) for exp(ad(X)). We must show that 8,,(H) = H -

a(H)· H" for all H in I). It suffices to do this for H with a(H) = 0, and for 

H = H", since such together span I). If a(H) = 0, then [X"' H] = [Y", H] = 0, 

so 8,,(H) = H, which takes care of this case. For H = H", it suffices to calculate 

on the subalgebras" = C{H", X"' Y,,} ~ s12C, and this is a simple calculation: 

Exercise 0.38. (a) For sl2C with its standard basis, show that 8 = 
e(X)e(Y)e(X) maps H to -H, X to - Y, and Y to -X. 

(b) Show that if G is a Lie group with Lie algebra g, then 8" is induced by 

the element exp(1n(X" - y")) of G. 

We need a refinement of the preceding calculation. For a root a and a 

nonzero complex number t, define two automorphisms of g: 

8,,(t) = e(t· X,,) 0 e( _(t)-l . y") 0 e(t· X,,) 

and 

Lemma 0.39. The automorphism <!lit) is the identity on I), and for any root {J, 
it is multiplication by tP(H.) on gp . 

PROOF. Look first in s12, with X = X"' Y = Y". It is simplest to calculate in 

the covering SL2 C of the adjoint group. Here 8,,(t) lifts to 

exp(tX) · exp(-C1Y)·exp(tX) = (~ ~)( _~-l ~)(~ ~) 

so <!lit) lifts to 

(_~-l ~)(~ -~)=(~ t~l). 
To see how <!lit) acts on g" for {J oF ± IX, it suffices to consider the action of 

the SL2C corresponding to s" = C{H", X"' Y,,} on the a-string through {J, i.e., 
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on EBg/l+k We know that this is an irreducible representation ofSL2 C, and 

the weight of g« is P(H«). It follows that (t °1) acts by multiplication by 
o C 

t/l(H.). Similarly on ~ it acts by multiplication by to = 1. 0 

Putting the preceding results together, we can give a description of the 

automorphism group Aut(g) of g. Let E = E(~) be the subgroup generated by 

elements exp(ad(Z», as Z varies over root spaces g«, (X :F 0, as in §0.3. 

Let G be the adjoint form of g, so we have 

E c G c AutO(g) c Aut(g), 

where Auto(g) is the connected component of the identity. 

Proposition D.40. We have E = G = AutO(g), and Aut(g)/AutO(g) is isomorphic 

to the automorphism group of the Dynkin diagram. 

PROOF. Fix the Cartan algebra ~ and positive roots R+. Let Aut(g), be the 

group of automorphisms of 9 that map ~ to itself, and similarly denote by 

primes the intersections of subgroups with Aut(g),. We leave it to the reader 

to construct a finite subgroup K of Aut(g), which maps isomorphically onto 

the automorphism group of the Oynkin diagram, and which meets G only in 

the identity element (see Exercise 22.25 for a direct case-by-case approach, 

or use (21.25». It then suffices to prove that Aut(g) is a semidirect product of 

E and K, i.e., that Aut(g) = E· K. 
To see this, start with any element (1 in Aut(g). By Theorem 0.22, there is 

a tl E E with (1(~) = t 1@. Then 0"1 = t~I'(1 is in Aut(g),. By Proposition 0.29 

and the proof of Proposition 0.37 there is a t2 E E' so that (12 = t21 • (11 maps 
R+ to R+ . This element may permute the simple roots, but there is some k E K 

so that (13 = (12' k- 1 is the identity on the set of simple roots. Now (13 is the 

identity on ~ and it is multiplication by some nonzero scalar c/I on each g/l' 

By the nonsingularity of the Cartan matrix there is some nonzero complex 
number t and some A. E AR so that cli = tA(H,) for every simple root p. From 

Lemma 0 .39 it follows that there is a t in E' so that t and (13 agree on each 

g/l for each simple root p, and both are the identity on ~. But it then follows 

from the uniqueness theorem (Claim 21.25) that (13 = t. Hence 

(1 = tl • t 2 · (13 ' k E E · K, 

as required. o 

Exercise D.41. Show that any two Borel subalgebras of a semisimple Lie 

algebra are conjugate. 
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Ado's and Levi's Theorems 

§E.l: Levi's theorem 

§E.2: Ado's theorem 

§E.1. Levi's Theorem 

The object of this section is to prove Levi's theorem: 

Theorem E.1. Let 9 be a Lie algebra with radical r. Then there is a subalgebra 

1 of 9 such that 9 = r $ I. 

PROOF. There are several simple reductions. First, we may assume there is no 

nonzero ideal of 9 that is properly contained in r. For if 0 were such an 

ideal, by induction on the dimension of g, g/o would have a subalgebra 
complementary to r/o, and this subalgebra has the form I/o, with I as required. 

In particular, we may assume r is abelian, since otherwise .@r is a proper ideal 
in r which is an ideal in 9 by Corollary C.23. We may also assume that 

[g, r] = r, for if[g, r] = 0 then the adjoint representation factors through g/r, 
and since g/r is semisimple, the submodule reg has a complement, which is 
the required I. 

Now V = gl(g) is a g-module via the adjoint representation: for X E 9 and 
ipEV, 

X'ip = [ad(X), ip] = ad(X) 0 ip - ip 0 ad (X). 

In other words, for X, Y E 9 and ip E V, 

(X, ip)(Y) = [X, ip(Y)] - ip([X, Y]). (E.2) 
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The trick is to consider the following subspaces of V: 

C = {<p E V: <p(g) c r and <pIt is multiplication by a scalar} 

U 

B = {<p E V: lP(g) c rand <p(r) = O} 
U 

A = {ad(X): X E r}. 

These are easily checked to be g-submodules of V, included in each other as 

indicated. And ClB is a trivial g-module of rank 1, i.e. ClB = C, by taking IP 

in C to the scalar A. such that IPlt = A. . I. (Note that ClB :F 0 since one can find 

an endomorphism of the vector space 9 which is the identity on r and zero on 

a vector space complement to r.) We claim also that 

9 . C c Band r . C c A. (E.3) 

To prove these let IP E C, and assume the restriction of IP to r is multiplication 

by the scalar e. If X E 9 and Y E r, then by (E.2), 

(X ' IP)(Y) = [X, eY] - e[X, Y] = 0, 

so X' IP E B; this proves the first inclusion. If X E r, and Y E g, then 

[X, IP(Y)] E [t, r] = 0, so 

(X, <p)(Y) = -<p([X, Y]) = [-eX, Y], 

and X . <p = ad( - eX) is in A, which proves the second inclusion. 

This means that the map CIA -+ CI B = C is a surjection of g/r-modules, 

which must split since g/r is semisimple. In other words, there is an element 

IP in C such that IPlt = idt and g ' <p is contained in A. Now let 

I = {X E g: X ' IP = O} . 

It is easy to check that I is a subalgebra of g. We must verify: (i) I II r = 0; and 

(ii) 9 = I + r. For the first, if X is a nonzero element of the intersection, then, 

as we saw above, X 'IP = ad( - X), so ad(X) = O. Hence [g, X] = 0, so C . X 

is a nonzero ideal in r, contradicting our assumptions. For (ii), let X E g. Then 

X' <p is in A, so X'IP = ad(Y) for some Yin t. We saw that ad(Y) = - y. <p, 

so (X + y) . <p = 0, i.e., X + Y belongs to l. Hence X = (X + Y) - Y is in the 

sum of( and r. D 

This proves the existence of Levi subalgebras I of any Lie algebra. We have 

no need to prove the companion fact that any two Levi subalgebras are 

conjugate, cf. [Bour, I, §6.8]. 

§E.2. Ado's Theorem 

The goal is Ado's theorem that every Lie algebra is linear, i.e., is a subalgebra 

of gl(V) for some vector space V, which is the same as saying it has a 

finite-dimensional faithful representation. As in the previous section, there are 
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some easy steps, and then a clever argument is needed to create an appropriate 

representation. 

We start, of course, with the adjoint representation, which is about the only 

representation we have for an abstract Lie algebra g. Since the kernel of the 

adjoint representation is the center c of g, it suffices to find a representation 

of 9 which is faithful on c. For then the sum of this representation and the 

adjoint representation is a faithful representation of g. 

The abelian Lie algebra c has a faithful representation by nilpotent matrices. 

For example, when c = IC is one dimensional, one can take the representation 

A 1-+ (8 ~); in general a direct sum of such representations will suffice. 

We can choose a sequence of subalgebras 

c = go C gl C ... c gp = n c gp+l c .. . c gq = r c gq+1 = g, 

each an ideal in the next, with n = Nil(g) the largest nilpotent ideal of g, and 

r = Rad(g) the largest solvable ideal; as in §9.1 we may assume dim(g;/gi-1) = 1 
for i :::; q. The plan is to start with a faithful representation of go, and construct 

successively representations of each gi which are faithful on c. The conditions 

we will need to make this step are that gi = gi-1 ED ~i with gi-1 a solvable ideal 

in gi and ~i a subalgebra of gi' We can achieve this by taking ~j to be any 

one-dimensional vector space complementary to gj-1 for i :::; q. Similarly to 

go from r to g, use Levi's theorem to write 9 = r ED ~ for a subalgebra~ . . 

Call a representation p of a Lie algebra 9 a nilrepresentation if p(X) is a 

nilpotent endomorphism for every X in Nil(g). A stronger version of Ado's 

theorem is: 

Theorem E.4. Every Lie algebra has a faithful finite-dimensional 

nilrepresentation. 

The crucial step is: 

Proposition E.S. Let 9 be a Lie algebra which is a direct sum of a solvable ideal 

a and a subalgebra ~ . Let u be a nilrepresentation of a. Then there is a 

representation p of 9 such that 

~ (l Ker(p) c Ker(u). 

IfNil(g) = Nil(a) or Nil (g) = g, then p may be taken to be a nilrepresentation. 

Ado's theorem follows readily from this proposition. Starting with a faithful 

representation Po of c = go by nilpotent matrices, one uses the proposition to 

construct successively nilrepresentations pj of gj. The displayed condition 

assures that they are all faithful on c. Note that if i :::; p, Nil(g;) = gj, while if 

i > P we have Nil(gj) = Nil(gj_1) = n by Corollary C.26, so the hypotheses 

assure that all representations can be taken to be nilrepresentations. 0 

Suppose 9 = a ED ~ is a Lie algebra which is a direct sum of an ideal a and 

a subalgebra ~. Let U = U(a) be the universal enveloping algebra of Q. Any 
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Y in a determines a linear endomorphism Ly of U, which is simply left 

multiplication by the image of Y in U. Any X in 9 determines an inner 

derivation Y 1-+ [X, Y] of a; let Dx be the corresponding derivation of U, cf. 

Lemma C.27. For each X in 9 we define a linear mapping Tx: U -. U by 

writing X = Y + Z with Y in a and Z in 1), and setting 

Tx = Ly + Dz· 

A straightforward calculation shows that 

1(x"X2) = Tx, 0 TX2 - TX20 Tx ,. (E.6) 

If gl(U) denotes the infinite-dimensional Lie algebra of endomorphisms of U, 

with the usual bracket [A, B] = A 0 B - BoA, this means that the mapping 

a -. gI(U), X 1-+ Tx, is a homomorphism of Lie algebras. 

Suppose u: a -. gl(V) is a finite-dimensional representation of a. Let 

if: U -. End(V) be the corresponding homomorphism of algebras, as in §C.3, 

and let I be the kernel of if. The basic step is: 

Lemma E.7. Assume that a is solvable. Suppose I is an ideal of U = U(a) 

satisfying the following two properties: (i) U II is finite dimensional; (ii) the image 

of every element in Nil(a) in UII is nilpotent. Then there is an ideal J c Iof U 

satisfying properties (i) and (ii), and also (iii) for every derivation D of a, the 

corresponding derivation of U maps J into itself. 

Granting this lemma, we prove Proposition E.5 as follows. From the 

representation u we constructed an ideal I in U = U(a), with UII c End(V), 

so condition (i) is satisfied; the fact that u is a nilrepresentation implies that 

condition (ii) also holds. Let J be an ideal whose existence is asserted in the 

lemma. Because of (iii), each of the endomorphisms Tx of U maps J into itself, 

and so determines an endomorphism Tx of U I J. By (E.6), the mapping X 1-+ Tx 

is a homomorphism of Lie algebras from 9 to gI(U IJ). This is the representa

tion p required in the proposition. 

We first verify that Ker(p) n a c Ker(u). Note that if X is in a, then Tx is 

just left mUltiplication by X on UIJ, so if p(X) vanishes, the image of X in U 

must be in J; since J c I, X maps to zero in UII c End(V), so u(X) = 0, as 

required. 

It remains to show that, under either of the additional hypotheses, p is a 

nilrepresentation. Note first that each X in a acts on U jJ by left multiplication, 

and if X is in Nil(a), by (ii) its image in U I J is nilpotent. Thus p(X) is nilpotent 

for every X in Nil(a). In particular, this shows that p is a nilrepresentation 

when Nil(g) = Nil(a). 

In the other case, 9 is nilpotent, so a is also nilpotent, and the preceding 

shows that p(Y) is nilpotent for every Yin a. We need a slightly stronger 

assertion than this. Let A c End(UIJ) be the associative algebra (with unit) 

generated by p(g), and let PeA be the two-sided ideal generated by p(a). The 

claim is that P is a nilpotent ideal, i.e., that p k = p . .... P = 0 for some k. To 
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see this, note that there is a k such that every product of k elements of p(a) is 

zero; this follows from Engel's theorem, putting the action in strictly upper
triangular form. To show that pk = 0, we must show that any product of 
elements in p(g) which contains at'least k members from p(a) is zero. But if x 

is in p(g) and y is in p(a), we have 

X· y = y ' x + [x, y], 

and [x, y] is in p(a), so terms from p(a) can be successively moved to the left 

until the product is a sum of products each beginning with k terms from p( a). 

Now if 9 is nilpotent, for any Z in ~ (or in g), ad(Z) is a nilpotent endo
morphism of g, and hence of a. By the Leibnitz rule for derivations, it follows 

that the corresponding derivation Dz of V is nilpotent on any element, 
although the power required to annihilate an element may be unbounded. 

However, since VjJ is finite dimensional, it follows readily that the induced 

derivation of V /1 is nilpotent. In other words, p(Z) is nilpotent for every Z in 
~ . Given X in g, write X = Y + Z with YEa and Z E~ . Choose k as in 

the preceding paragraph, and choose I so that p(Z)' = o. It follows that 
p(X)kl = (p(Y) + p(Z»kl vanishes, since, when the latter is expanded, each 

summand either has p( Y) occurring at least k times, or else p(Z)' occurs 
somewhere in the product. D 

To finish, we must prove Lemma E.7. Let Q be the two-sided ideal in the 
algebra VjI generated by the image of Nil(a). Since VjI is generated by the 

image of a, the same argument as in the paragraph before last shows that 
Qk = 0 for some k. Write Q = KjI for an ideal K of V, and set J = Kk. Clearly 

J c I, and we claim that J satisfies the conditions (i)-(iii) of the lemma. 

To see that J has finite codimension, let Xl' ••• , Xn be a basis for the image 
of a in V, and choose monic polynomials Pi such that Pi(XJ is in K; this is 

possible since V j K is finite dimensional. Therefore, Pi(XJk is in J, so the images 
ofthe Xi satisfy monic equations in V /1. Since V is generated by the monomials 
X~I . •••• x;', it follows readily that V jJ is spanned by a finite number of these 
elements. 

Property (ii) is clear from the construction, for if x E V is the image of an 
element of Nil(a), some power xPis in I by assumption,so x Pk is in Ik c Kk = J. 

For (iii), if D is a derivation of a, since a is solvable, it follows from 
Proposition C.24 that D maps a into Nil(a). The corresponding derivation of 
V therefore maps V into K, from which it follows that it maps J = Kk to itself. 

o 

As before, the results of this section also apply to real Lie algebras: if 9 is 
real, a faithful representation (complex) representation of 9 ® C is auto

matically a faithful real representation, and embeds g is some gIn IR. 



APPENDIX F 

Invariant Theory for the 

Classical Groups 

The object is to derive just enough invariant theory for the classical groups to verify 

the claims made in the text. We follow a classical, constructive approach, using an 

identity of Capelli. 

§F.l: The polynomial invariants 

§F.2: Applications to symplectic and orthogonal groups 

§F.3: Proof of Capelli's identity 

§F.l. The Polynomial Invariants 

Let V = cn, regarded as the standard representation of GLnC, so of any of 

the subgroups G = SLn C, On C, SOn C, or SPn C (for n even); e 1, ... , en denotes 
a standard basis for V, compatible with one of the standard realizations of G. 

The goal is to find those polynomials F(x(1), ... , x(m») of m variables on V 

which are invariant by G. For example, if Q: V ® V --+ C is the bilinear form 
determining the orthogonal or symplectic group, the polynomials Q(x(i), xu» 

are invariants. In addition, if G is a subgroup of SL(V), the bracket 
[X(1) X(2) ••• x(n)], given by the determinant, 

(F.l) 

is an invariant of G. The first fundamental theorem of invariant theory for 
these groups asserts that any invariant is a polynomial function of these basic 

invariants. This is the goal of this appendix. 
We denote by Sd the homogeneous polynomial functions of degree d on V, 

i.e., Sd = Symd(V*). For an m-tuple d = (d 1 , .•• , dm ) of non-negative integers, 
let Sd = Sd, ® ... ® Sd", be the polynomials on vEilm which are homogeneous of 
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degree d j in the ith variable. Note that 

the sum over all d with di + d2 + ... + dm = k, which identifies elements of 

S· with functions of m-tuples in V. We write F(x(1), ... , x(m» for such a poly

nomial, with usual abbreviations to F(x) for m = 1, F(x, y) for m = 2, F(x, y, z) 

for m = 3. 

When m = 1 we have already found the invariants: for SLne and SPne all 

symmetric powers Sd are irreducible, so there are no invariants unless d = 0; 

for SOne the kernel of the map Sd -+ Sd-2 (contracting with the given quadratic 

form Q) is irreducible, so by induction one sees that there are no invariants if 

d is odd, whereas if d is even, the invariants are scalar multiples of the 

polynomial Q(x, X)d/2. (These results will be proved again below.) 

In theory one could follow procedures outlined in the text to decompose 

the tensor products of the known representations Sd, to find out how the trivial 

representation occurs in S·. Except in small degrees and dimensions, however, 

this is rather impractical. 

To describe the G-invariant polynomials in S·, we will carry out an 

induction, first with respect to the total degree Ld j , then with respect to 

the individual multidegrees ordered antilexicographically: d' < d means that 

either L d; < L dj or L d; = L dj and the largest i for which d; and dj differ 

has d; < dj • 

For integers i and j between 1 and m there is a canonical "polarization" 

map Djj which takes a polynomial F of m variables to the polynomial 

(F.2) 

This operator lowers the jth degree by 1, while it increases the ith degree by 

1, i.e., it maps S· to S·', where d' is the same sequence of multi-indices as d, 

but with d; = dj - 1 and d; = dj + 1; if dj = 0 set S·' = O. When j = i, note 

that by Euler'sformula, Dii is multiplication by d j • Note also that these Dij are 
derivations: 

(F.3) 

These maps may be described intrinsically in terms of the multilinear 

algebra of Appendix B, as follows. Since only two factors are involved, it 

suffices to look at the map D12 when there are only two factors. In this case 

the map 

is defined by 

e 

u i ' ". 'Ud ® WI··"· We 1-+ L U I ' ". 'Ud' Wj ® WI .". '~j"'" We' 
j=1 
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Equivalently, D12 is the composite 

Sd ® se -4 Sd ®(SI ® se-l) = (Sd ® SI) ® se-l -4 Sd+1 ® se-l, 

where the second is determined by the product Sd ® SI -+ Sd+1 of symmetric 

powers, and the first by the dual map se -4 SI ® se-l (which takes F(x) to 

LkXk ® aF/oxk). This shows, if there were any doubt, that the Dij are maps of 

GL(V)-modules, i.e., that they are independent of choice of coordinates. 

Note that Dji 0 Dij maps S· to itself. Explicitly, for d = (d, e), 

D21 0 DdF) = LYk-aa (L X, aaF) 
k X k I y, 

A first idea is that, i( F is an invariant by a group G c GL(V), then Dij(F) will 

also be an invariant, and these invariants will be known by induction if j < j, 
so one can describe the possible Dji 0 Dij(F) that arise. If one also knew the 

second term in the above expression for this, one could determine e' F, which 

suffices to determine F, provided e is not zero. 

In general, it is not evident how to proceed, but in case dim V = 2, and 

d = (d, e), this can idea can be carried through as follows. Some of the terms 

in the second term also occur in the expression 

[Xy] . Q(F) = (Xl Y2 - X2YI)' (a iJ
2

aF - a a
2

aF ). 
Xl Y2 X2 YI 

The rest occur in 2 

de-F = d'(LY, aF) = L XkY'~' 
ay, axkiJy, 

Comparing the preceding three formulas gives the identity 

(d + l)e' F = D21 0 D12(F) + [xy l Q(F). (F.4) 

From this identity it is easy to find all invariants for one of our subgroups 

of GL2C and for functions of two variables. We will do it for G = S02C, as 

it illustrates the ideas of the general case-even though G is not semisimple, 

and the results can be seen directly by identifying G with C*. We assume the 

simple case of functions of one variable has been checked: only multiples of 

Q(x, X)d12 are invariant. Suppose F E Sd ® se is an invariant of G = S02 C, with 

e> O. We claim that F is a polynomial in the bracket function [xy] and the 
polynomials Q(x, Y), Q(x, x), and Q(y, y). Either directly or from the above 

identity one sees that Q(F) is also an S02 C-invariant, and by induction it is 

a polynomial in these basic polynomials. Similarly by the antilexicographic 
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induction we know that D12 (F) is a polynomial in the the basic invariants. It 
therefore suffices to verify that D21 preserves polynomials in the four basic 

invariants. By the derivation property (F.3) it is enough to compute the effect 

of D21 on the basic invariants, and this is easy: 

D21 [xy] = 0, D21 Q(x, y) = Q(y, y), 

D21 Q(x, x) = 2Q(x, y), D21 Q(y, y) = o. 

By (F.4) we conclude that (d + l)e· F is a polynomial in the basic invariants, 

which concludes the proof. 

This plan of attack, in fact, extends to find all polynomial invariants of all 

the classical subgroups of GL(V). What is needed is an appropriate general

ization of the identity (F.4). About a century ago Capelli found such an 

identity. The clue is to write (F.4) in the more suggestive form 

IDII + 1 D12 I (F) = [xy] ·Q(F), 
D21 D22 

where the determinant on the left is evaluated by expanding as usual, but being 

careful to read the composition of operators from left to right, since they do 
not commute. 

This is the formula which generalizes. If F is a function of m variables from 

V, and dim V = m, define, following Cayley, 

amF 
Q(F) = L sgn(a) a (I). . a (m) ; 

ae 15m Xa(l) ••• xa(m) 

in symbols, Q is given by the determinant 

a 
axil) 

a 
ax~1) 

a 
ax(1) 

m 

a 
axi2 ) 

The Capelli identity is the formula: 

Dll + m - 1 D12 

a 
ox(m) 

m 

Dim 

(F.S) 

D21 D22 + m - 2 D2m = [X(I) X(2) •• • x(m)]. Q. (F.6) 

This is an identity of operators acting on functions F = F(x(l), ... , x(m») of m 

variables, with m = n = dim V, and as always the determinant is expanded 



508 F. Invariant Theory for the Classical Groups 

with compositions of operators reading from left to right. Note the important 

corollary: if the number ofvariable~ is greater than the dimension, m > n, then 

DIl + m - 1 D12 DIm 

D21 D22 + m - 2 
D2m (F) = o. (F.7) 

This follows by regarding F as a function on Cm which is independent of the 

last m - n coordinates. Since Q(F) = 0 for such a function, (F.7) follows from 

(F.6). 

We will prove Capelli's identity in §F.3. Now we use it to compute invariants. 

Let K denote the operator on the left-hand side of these Capelli identities. The 

expansion of K has a main diagonal term, the product of the diagonal entries 

Dii + m - i, which are scalars on multihomogeneous functions. Note that in 

any other product of the expansion, the last nondiagonal term which occurs 

is one ofthe Djj with i < j. Since the diagonal terms commute with the others, 

we can group the products that precede a given Djj into one operator, so we can 

write, for FE Sd, 

K(F) = p' F - L PjjDij(F), 
i<j 

where p = (d l + m - 1)' (d2 + m - 2)· . .. · (dm), and each Pij is a linear com

bination of compositions of various Dab' Capelli's identities say that 

p . F = L PijDij(F) ifm > n; (F.8) 
i<j 

p . F = L PijDij(F) + [X(l) ... x(m)] . Q(F) if m = n. (F.9) 
i<j 

Just as in the above special case, if F is an invariant of a group G, each 

Djj(F) is also an invariant in a S·' where we will know all such invariants by 

induction. If G is a subgroup of SL(V), and m = n, then Q(F) is also an 

invariant, as follows from the definition or Capelli's identity. 

Invariants for SLnC. 

Let FE S· be an invariant of the group SLnC. We must show that F can be 

written as a polynomial in the basic bracket polynomials. In particular, if 

m < n, we must verify that there are no invariants except the constants in 

SO = C. This is a simple consequence of the fact that for a dense open set of 

m-tuples of vectors-namely, those which are linearly independent-there is 

an automorphism of SLnC taking them to a fixed m-tuple of independent 

vectors, say el , ••• , em' So an invariant function must take the same value on 

all such m-tuples. By the density, it must be constant. 

For m ~ n, we proceed by induction as indicated above. All DijF are known 

to be invariants (for i < j), as is Q(F), so these are polynomials in the brackets. 
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To complete the proof, by Capelli's identities (F.8) and (F.9), it suffices to see 

that the operators Dab all take brackets to scalar multiples of brackets. This 
is an obvious calculation: Dab takes a bracket [x(itl X(i2 ) ••• x(in)] to zero if b 

does not appear as one of the superscripts, or to the bracket with the variable 
X(b) replaced by x(a) if X(b) does occur; the latter is zero if x(a) also occurs and 

is a bracket otherwise. To avoid repeats, one needs only consider brackets 

where the superscripts are increasing. This completes the proof of 

Proposition F.l0. Polynomial invariants F(x(1), ... , X(M)) of SL.C can be written 

as polynomials in the brackets 

[xli,) X(i2) ••• X(in)], 1:::;; il < i2 < ... < i. :::;; m. 

Exercise F.ll. Show that the only polynomial invariants of GL.C are the 

constants. 

Invariants for SPnC 

Let r = n12, and let Q be the skew form defining the symplectic group SP.C, 

e.g. Q(x, y) = L'i=1 XiYr+i - Xr+iYi in standard coordinates. Note first that the 
brackets are not needed: 

Exercise F.12*. Show that the bracket [x(l) X(2) ••• x(·)] is equal to 

L sgn(a)Q(x(a(I)), X a(2)). Q(x(a(3)), X a(4)) ••••• Q(x(a(.-I)), xa(n)), 

where the sum is over all permutations a of {l, ... , n} such that a(2i - 1) < 
a(2i) for 1 :::;; i :::;; rand O'(i - 1) < a(i) for 2 :::;; i :::;; r. 

Let T"M be the assertion that any SPnC-invariant polynomial in m variables 
from cn can be written as a polynomial in the basic polynomials Q(X(il, xW). 

The antilexicographic induction using the Capelli identities is the same as 

before, and gives the implications 

T"n-l :;. T,,":;. T"M for all m > n. 

The only variation here is to verify that the operators Dab preserve polynomials 
in the basic invariants, and DabQ(x(i), xW) is again zero or another basic 

invariant. 

The situation where m < n is a little more complicated than that for the 
special linear group, however-which is hardly surprising since there are 

nontrivial invariants for SPnC in this range. Note that T"M implies T"M' for 
m' < m, so it suffices to prove T".-I. This is done by induction on r = n12, i.e., 
by proving the implication T"n_-1 :;. T"n-l. To prove this, consider the restric

tion F' of an invariant polynomial F on V = en to the subspace V' = en- 2 

perpendicular to the plane spanned by er and en' This restriction is an invariant 
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of the group SPn-2c' By induction, F' is a polynomial in the basic invariants. 

Since Q(X(i), xU») restricts to the corresponding invariant on V', there is a 

polynomial in these Q(x(i), xUl ) such that F and this polynomial have the same 

restriction to V'. Subtracting, it suffices to prove that if an invariant F restricts 

to zero on V', then F is zero. 

We show first that the restriction of F to the larger subspace W = V' $ Ce, 

must be zero. Fix y(l), .. . , y<m) in V', and consider the function of m complex 

variables. 

The fact that F is invariant by automorphisms in SPnC which fix V' and send 

e, to a . e, and en to a-I. en shows that 

Since h is a polynomial, it must be constant, so h(t l ' . . . , tm) = h(O, . .. , 0) = 0, 

as required. 

Since F is invariant, it follows that the restriction of F to any hyperplane 

of the form g ' W, for any g E Spn C is zero. It is not hard to verify that every 

hyperplane in cn has this form. So any n - 1 vectors lie in such an hyperplane, 

and so F is identically zero. This finishes the proof for the symplectic group: 

Proposition F.13. Polynomial invariants F(X(I), .. . , x(m») ofSpnC can be written 

as polynomials in functions 

Q(x(i), xUl), 1::;; i < j ::;; m. 

Invariants for SOnIC 

This time brackets may be needed, as well as the functions given by the 

symmetric form Q, but products of brackets are not required: 

Exercise F.14. Prove the identity 

[x(l) X(2) •• • x(n)]. [y(l)y<2) ... yIn)] = IQ(x(i), yU»)llsi,Jsn 

for any variables x(1), •• • , x(n), y(1), .•. , yIn). 

Let 1'"m be the assertion that any SOnC-invariant polynomial in m variables 

can be written as a polynomial in the brackets and the invariants Q(x(i), xU»), 

where we take Q(x, y) = L;=l XiYi to be the form determining the orthogonal 

group. The proofs of the implications 1'"n-l ~ 1'"n ~ 1'"m for m > n are exactly 

as in the preceding cases, and require no further comment. As before, it 

remains to prove 1'"n-l, and, by induction on n, it suffices to prove the 
implication 1'"n_l1 ~ 1'"n-l. 
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Let V' = en-I be the orthogonal complement to en. The restriction F' to 

V' of an SOnC-invariant polynomial F is SOn-l C-invariant, and by induction 

we know it is a polynomial in the restrictions of the basic polynomials 
Q(x(i), x(j») and in the bracket [x(l) . . . x(n-l)]. An apparent snag is met here, 

however, since this bracket is not the restriction of an invariant on V. By 

Exercise F.l4, we can write 

F' = A + B· [X(I) •• • x(n-l)], 

where A and B are polynomials in the Q's alone. In particular, A and Bare 

even, i.e., they are invariants of the full orthogonal group 0n-l C. But F' is also 

even, since any element of 0n-l C is the restriction of some element in SOnC 

(mapping en to ± en). Since the bracket is taken to minus itself by auto

morphisms of determinant - 1, we must have F' = A. This means that we can 

subtract a polynomial in the invariants Q(X(i), xW) from F, so we can assume 

F' = O. Therefore, the restriction of F to any hyperplane of the form g. V', 
g E SOnC, is zero. But it is easy to verify that (n - I)-tuples in such hyperplanes 

form an open dense subset of all (n - I)-tuples in cn (the condition is that 

there be an orthogonal vector e with Q(e· e) # 0). This proves: 

Proposition F.lS. Polynomial invariants F(x(l), .. . , x(m») of SOn C can be written 

as polynomials in functions 

Q(x(i), x(j») and [X(il) X(i z) ••. x(in)], 

with 1 :$; i :$; j :$; m, 1 :$; i 1 < i2 < ... < in :$; m. 

Exercise F.16*. Show that the polynomial invariants of OnC can be written 

as polynomials in the functions Q(x(i), xW), 1 :$; i < j :$; m. Show that odd 

polynomial invariants of On C, i.e., polynomials F which are taken to det(g)· F 

by g in OnC, can be written as linear combinations of even invariants times 

brackets. 

§F.2. Applications to Symplectic and 
Orthogonal Groups 

We consider the symplectic group SpnC and the orthogonal group OnC 

together, letting Q denote the corresponding skew or symmetric form. The 

results in the first section, applied to the case d = (1, ... , 1), say that the 

invariants in (v*)®m are all polynomials in the polynomials Q(x(i), xUl), and 

by degree considerations m must be even, and they are all linear combinations 

of products 

(F.17) 
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for permutations u of {I, ... , m} such that u(2i - 1) < u(2i) for 1 ~ i ~ m/2. 
Regarding Q E V* ® V*, these are obtained from the invariant Q ® .. . ® Q 

(m/2 times) by permuting the factors. In other words, one pairs off the m 
components, and inserts Q in the place indicated by each pair. 

The form Q gives an isomorphism of V with V*, which takes v to Q(v, -). 
Using this we can find all invariants of tensor products (V*)®k ® (V)®I, via 

the isomorphism 

(V*)®(H/) = (V*)®k ® (V*)®I ~ (V*)®k ® (V)®I. 

They are linear combinations of the images of the above invariants under this 
identification. To see what they are, we just need to see what happens to Q 
under the isomorphisms V* ® V* ~ V* ® V and V* ® V* ~ V ® V: 

Exercise F.lS. (i) Verify that under the canonical isomorphism 

V* ® V* ~ V* ® V = Hom(V, V) = End(V) 

Q maps to the identity endomorphism. (ii) Let '" be the image of Q under the 
canonical isomorphism V* ® V* ~ V ® v. Verify that 

r 

'" = L ei ® er+i - er+i ® ei for G = SPnC, n = 2r; 
i=1 

n 

'" = L ei ® ej for G = One. 
i=1 

For the applications in Lectures 17 and 19, we need only the case 1= k, 
but we want to reinterpret these invariants by way of the canonical isomorphism 

(V*)®2d ~ (V*)®d ® (V)®d ~ Hom(V®d, V®d) = End(V®d). (F.19) 

In §§17.3 and 19.5 we defined endomorphisms 9/ E End(V®d) for each pair I 

of integers from {I, ... , d}; for I the first pair, 

9Av 1 ® V2 ® V3 ® ... ® vd) = Q(v to v2)· '" ® V3 ® ... ® Vd; 

the case for general I is a permutation of this. We claim that an invariant in 
(V*)®2d ofthe form (F.17) is taken by the isomorphism (F.l9) to a composition 

of operators 91 and permutations u in Sd' This is simply a matter of unraveling 
the definitions, which may be simpler to follow pictorially than notationally. 

The invariant in (F.17) is described by pairing the integers from 1 to 2d. These 

pairs are either from the first d, the last d, or one of each. For example, if d = 5 

the pairings could be as indicated: 
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for the pairs {I, 3}, {S, 9}, {2, 6}, {4, 7}, {5, IO}. Composing before and after 

with permutations, this can be changed to 

o o 

I I I o o 

The corresponding endomorphism of V® 5 becomes .91> I = {l, 2}. The general 

invariant one gets can be expressed in the form 

(1 0.9/ 0.9/ 0'" 0.91 0 t, 
I 2 p 

where (1 and t permute the d factors, and the pairs Ij are the first p pairs: 

Ij = {2j - 1, 2j}. 
Now let A be the subalgebra of the ring End(V®4) generated by all 

9 ® . . . ® 9 for 9 in the group G = SpnC (or onq. By the simplicity of the 
group, we know that A is a semisimple algebra of endomorphisms. We have 
just computed that the ring B of commutators of A is the ring generated by 

all permutations in 6 4 and the operators .9/ . By the general theory of semi
simple algebras, cf. §6.2, A must be the commutator algebra of B. In English, 

any endomorphism of V®4 which commutes with permutations and with the 

operators .9/ must be a finite linear combination of operators of the form 

9 ® ... ® 9 for 9 in G. This is precisely the fact from invariant theory that was 

used in the text. 
We remark that a similar procedure can be used for SLnC, but since in this 

case V and V* are not isomorphic, to do this one must first do some more 

work to compute invariants in tensor products of covariant and contra
variant factors. The idea is simple enough: use the canonical isomorphism 

V;;;;; j\"-l(V*) to turn each V factor into several V* factors. Tracing through 

the invariants by this procedure is rather complicated, however, and we refer 

to [WeI, II.S] for details. We did not need this analysis, because it was easy 
to work the commutator story the other way around, showing that the 

commutator ofC[64] is the algebra generated by all 9 ® .. . ® 9 for gin SLnC 

(or GLnq. This can, in turn, be run backwards: 

Exercise F.20*. Use the fact that the the GLnC-invariants of End(V®4) are 
generated by permutations to show that the GLnC-invariants of(V*)®4 ® V®4 

are obtained by pairing otT the factors and contracting. There are no GLnC
invariants in (V*)®k ® V®I if k :F l. For SLnC-invariants, one also has deter

minant factors when k - I is a multiple of the dimension. 

We also omit any discussion of the second fundamental theorems, which 

describe the relations among the generators of the rings of invariants (but see 
the discussions at the ends of Lectures 17 and 19). These results can also be 

found in [WeI]. 
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§F.3. Proof of Capelli's Identity 

The proof is not essentially different from the case m = 2, once one has a good 
notational scheme to keep track of the algebraic manipulations which come 

about because the basic operators Dij do not commute with each other. A 

convenient way to do this is as follows. For indices ii' ji"'" i p , jp between 1 
and m, define an operator ~i J' ~i-; ••• ~i J' which takes a function F of m 

1 1 u2 p p 

variables X(i), • • • , x(m) to the function 

For p = 1, ~ij is just the operator Dij , but for p > 1, this is not the composition 

of the operators ~ikjk' Note that the order of the terms in the expression 

~ilit .• • ~ipj is unimportant. 
We can form determinants of p x p matrices with entries these ~ij' which 

act on functions by expanding the determinant as usual, with each of the p! 

products operating as above. For example, for the m x m matrix (~ij)' 

l~ijl(F) = L sgn(o')- ~la(1)~2a(2) ... ·~ma(m)(F). 
(IE 6rn 

The matrix (~ij) is a product of matrices (x~))-(a;ox~)), and taking deter
minants gives the 

Lemma F.21. For m = n, l~ijl(F) = [x(1) ... x(m)] 'Q(F). 

To prove Capelli's identity (F.6), then, we must prove the following identity 
of operators on functions F(x(1), ... , X(III)): 

Dll + m - 1 D12 

D2i D22 + m - 2 

DIIIIII 

This is a formal identity, based on the simple identities: 

Dqp 0 Dab = Dqp~ab = ~qp~ab if p -=I a; 

Dqp 0 Dab = ~qp~ab + Dqb if P = a. 

Similarly, if p -=I ak for all k, then 

Dqp 0 ~albl .. . ~a.b. = ~qp~albl ... ~a.b.; 

while if there is just one k with p = ak' then 

(F.22) 

(F.23) 

Dqp 0 ~albl •.. ~a.b. = ~qp~albl ..• ~a.b. + ~albl • • • ~qbk ••. ~a.b. (F.24) 

where in the last term the ~qbk replaces ~a.b.' 
We prove (F.22) by showing inductively that all r x r minors of the two 
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matrices of (F.22) which are taken from the last r columns are equal (as 

operators on functions F as always). This is obvious when r = 1. We suppose 

it has been proved for r = m - p, and show it for r + 1. By induction, we may 

replace the last r columns of the matrix on the left by the last r columns of the 

matrix on the right. The difference of a minor on the left and the corresponding 

minor on the right will then be a maximal minor of the matrix 

Dlp - AlP A 1P+1 AIm 
D2p - A2p A2p+l A2m 

Dpp - App + r ApP+1 Apm 
, 

Dmp - Amp Amp+1 Amm 

so we must show that all maximal minors of this matrix are zero. Suppose the 

minor chosen is that using the qjth rows, for I ::::;; qo < q1 < ... < q, ::::;; m. 
Expanding along the left column, this determinant is 

(F.25) 

where Ek = DqkP - AqkP if qk =F p, and Ek = Dpp - App + r if qk = p, and Mk is 

the corresponding cofactor (r x r) determinant: 

(F.26) 

To show that (F.25) is zero, there are two cases. In the first case, the pth 

row is not included in the minor, i.e., qj =F p for all i. In this case each term 

EjMj is zero, since E j = Dq;p - Aq;p, and all the products in the expansion of 

M j are of the form Aa1b l • • • Aa,.br with all a j =F p, and the assertion follows from 
(F.23). 

In the second case, the pth row is included, i.e., qk = P for some k. As in the 

first case, (Dpp - App)Mk = 0, and since Ek = Dpp - App + r, we have 

EkMk = r· Mk • 

We claim that each ofthe other terms EjMj , for i =F k, is equal to (_I)k-j+l Mk, 

from which it follows that the alternating sum in (F.25) is zero. When M j is 

written out as in (F.26), and it is multiplied by E j = Dq;p - Aq;p' an application 
of (F.24) shows that one gets the same determinant as (F.26), but expanded 

with the qjth row moved between the qk-1 th and the qk+1 th rows. This 
transposition of rows accounts for the sign (_1)k-i+1, yielding EjMj = 
(_I)k-H1 Mb as required. 0 

Exercise F.27. Find a GL(V)-linear surjection from Sd l ® ... ® Sd. onto 
Nv· ® S4 1 -1 ® ... ® Sd.-1 that realizes the map F f-+ [x(l) .. . x(n)] . Q(F). 



Hints, Answers, and References 

Note: Usually answers or references are given only for more theoretical exercises, or 

those which may be referred to elsewhere. 

Lecture 1 

(1.3) The hypotheses ensure that NV is trivial, and the bilinear map I\kV ® N-kV-+ 

NV = C is a perfect pairing, i.e., it makes each space the dual of the other, cr. §B.3. 

(1.4) For (b), take the function (1. to the function (1.', where (1.'(g) = (1.(g-I). 

(1.13) Yes. See Exercise 6.18. 

(1.14) If H is a Hermitian inner product on V, let H: V -+ V· be the conjugate linear 

map given by v ...... H(v, ' ). If H' is another, the composite (HTI 0 H is linear, and a 

G-homomorphism if Hand H' are G-invariant. Apply Schur's lemma. 

Lecture 2 

(2.3) For a general formula expressing complete symmetric polynomials and elemen

tary symmetric polynomials in terms of sums of powers, see Exercise A.32(vi). 

(2.4) Look at the induced action on I\k v. 

(2.7) V®" = U$Q Efl U'$b Efl vee, with a = b = 1<2"-1 + (-1)"), and c = t(2" + (_Ir-l). 

(2.25) Answers: (i) U Efl V Efl U' Efl V'; (ii) U Efl V$2 Efl V' Efl W 

(2.29) The regular representation will do. 

(2.33) For (c) use characters or the isomorphism 
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HomG(V ® w, U) ~ HomG(W, v· ® U). 

(2.34) Schur's lemma applies to L. 

517 

(2.35) Apply the preceding exercise, with Lo given by a matrix of indeterminates. For 

details, see [Se2, §2.2]. 

(2.36) Show that (X, X) = 1, and compute the sum of the squares of these representa

tions. Reference: [Se2, §3.2]. 

(2.37) If qJ is the character of an irreducible representation, and X is the character of 

V, let a. = (qJ, X'), and consider the power series 

00 • 1 00 _ 1 lC!qJ(C) 

.f:o a.t = IGI.f:o ~ IClqJ(C)x(C)'t" = IGI ~ (1 - X(C)t)" 

Here C runs over conjugacy classes. Since X(C) = dim(V) only for C = [e], the right

hand side is a nontrivial rational function; in particular a. cannot be zero for all positive 

n. 

(2.38) This is another theorem of Burnside. If C is a conjugacy class in G, 

qJ = Lgecg: V -+ V is a G-map, so multiplication by a scalar AC' and Ac·dim V = 

Trace(qJ) = IC!· Xv(C)· The Ac are algebraic integers, since the elements Lgeceg, as C 
varies over the conjugacy classes, generate the center of the group ring Z[G], which 

is a finitely generated abelian group. Now 

L ICI· Xv(C)Xv(C) = IGI, 
c 

so IGI/dim V = LcAc· Xv(C) is an algebraic integer. In fact, the dimension of V divides 

the index of the center of G, cf. [Se2, p. 53]. 

(2.39) In case the character X is Z-valued, the equation L Ix(gW = IGI shows that IGI 

is the sum of IGI non-negative integers, one of which, Ix(eW, is greater than 1, so at 

least one must be O. In general, the values of X are algebraic integers, since they are 

sums of roots of unity. Let X I' .. . Xm be the characters obtained from X by the action 

of the Galois group Gal(Q/Q) (or Gal(C/Q» on X; these characters are also char

acters of irreducible representations of G. Now if X(g) '" 0, then fli Xi(g) is a nonzero 

integer, so Ini xi(g)1 2 ~ 1. Since the arithmetic mean is at least the geometric mean, 

L IXi(gW ~ m. Therefore, 
m 

mlGI = L L IXi(gW ~ mlGI, 
i=l geG 

and we must have equality for every 9 E G. In particular, if d is the degree of the 

representation, md 2 = Li IXi(eW = m, so d = 1. 

Lecture 3 

(3.5) Use the fact that 9 = (12345) is conjugate to its inverse, so X(g) = X(g-I) = X(g) 

is real. 

(3.25) See §5.1. 

(3.26) If H eGis the subgroup of order 7, there are three one-dimensional representa

tions from G/H, and two three-dimensional representations induced from H. For 

generalizations, see [Se2, §8.2]. 
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(3.30) W is embedded in the space of W-valued functions on G by sending W E W to 

the function which takes h E H to h· wand all other cosets to zero. Note that if {g,,} 
is a set of coset representatives, the map ff-+ L9" ® f(g;;t) gives an isomorphism from 

HomH(CG, W) to CG ®CH W. 

(3.32) For (b), identify the right-hand side with the trace of an endomorphism of CG. 

For (c), take qJ to be the characteristic function of an element 9 and apply (b). 

(3.33) F is the determinant of left multiplication by the element a = L xgeg E CG on 

the regular representation, and Fp is the determinant of left multiplication by a on the 

irreducible CG-module Vp corresponding to p. The factorization of F follows from the 

decomposition of the regular representation. The irreducibility of Fp follows from the 

irreducibility of a matrix whose entries are indeterminates, using Proposition 3.29. 

Fixing 9 in G, set the variables Xe = 1 and Xh = 0 for h ::I: g; the coefficient of x, in the 

determinant of left multiplication by 1 + x,eg on Vp is Xp(g). 

(3.34) See Exercises 3.8 and 3.9. 

(3.38) V can be replaced by V*; V ® V = Sym 2 V $ N V contains at most one copy 

of the trivial representation. If Sym2 V contains the trivial representation, then 

IGI = L XSym 2 V(g) = t(LXV(g)2 + LXv(g2». 
geG 

Otherwise, the right-hand side is zero; similarly for !\2v. Note that if Xv is real, then 

LXV(g)2 = IGI· 

(3.41) Reference: [Se2, §13.2]. 

(3.42) Reference: [Ja-Ke, p. 12]. 

(3.43) Consider the endomorphism J ® J of V ® w. 

(3.44) For G = 7L./3, the rank of RR(G) is 2, whereas that of R(G) is 3. 

(3.45) See [Se2, §12] for details. 

Lecture 4 

(4.4) Right multiplication by a gives a map Aab -+ Aba, and right multiplication by b 

gives a map back. The composites are multiplications by nonzero scalars. More 

generally, if A = CG is a group algebra, call an element a = L age, Hermitian if d = a, 
i.e., ag_1 = a,. If a and bare idempotents which are Hermitian, then Aab ~ Aba. 

(4.6) A basis for J-(d-I . I) = CGd·CA is V2, ... , Vd, where 

Vj = L e, - L eh· 
g(d)=j h(l)=j 

Note that Vd = CA, VI + . .. + Vd = 0, and g . Vj = Vi if g(j) = i. A basis for V c Cd is V2, 

••• , Vd, where Vj = ej - ej _ l • For the case s > 1, use (4.10) or see (4.43). 

(4.13) Note that the hook lengths of the boxes in the first column are the numbers II, 
... , It· Induct from the diagram obtained by omitting the first column. 
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(4.14) Induct as in the preceding exercise by removing the first column, considering 

separately the cases when the remaining diagram is one of the exceptions. 

(4.1S) Frobenius [Frol] gives these and analogous formulas for A = (d - 3,3), 

(d - 3, 1, 1, 1), (d - 4, 4), . . , . 

(4.16) Using Frobenius's formula, the coefficient of xi' .... . xi" in t\ '(xt + ... + xt)can 

be nonzero only if II = d, so A has the prescribed form; the coefficient OfX~-IX~-2 . .. . . Xt 

in t\(0, X2,"" Xt) is (_l)t-l. 

(4.19) See Exercise 4.S1 for a general procedure for decomposing tensor products. 

(4.20) Use Frobenius's formula as in Exercise 4.16 to show that XA(g) = (-It- I Xp(h), 

where II = (A2 - 1, A3 - 1, . . . , At - 1) and h e 6 4 - q , is the product of cycles of lengths 

Q2, " " q,. 

(4.24) If A. < II use the anti-involution' of A induced by the map gl-+g-l, ge 6 4, 

noting that CA = (aAbAr = bAtiA = bAaA, so (CA' X· Cp)' = Cp' ~. CA = bp' (ap' ~ . bA)' aA = 
O. 

(4.40) Note that the "'A'S are related to the X/s by the same equations as the symmetric 

polynomials H/s to the Schur polynomials S/s, cf. (A.9) in the appendix. The equation 

(A.S) for the S/s in terms of the H/s therefore implies the determinantal formula. 

(4.43) Use Frobenius reciprocity and (4.42) to prove the general formula. To prove 

that Jt(4-•• 1 •.. .• 1) ~ NY, argue by induction on d. Note that the restriction of NV splits 
into a sum of two exterior powers of the standard representation, and from anything 

but a hook one can remove at least three boxes. 

(4.44) The induced representation of VA by the inclusion of 6 4 in 64+m is VA 0 Jt(m) ' 

Use the transitivity of induction, Exercise 3.16(b). 

(4.4S) For (a), see [Jam, pp. 79-83]. For (b), using (4.33), the coefficient of x a in 
(xi + ... + xl)· pO) is the sum of the coefficients of xaxim in pO), summing over those 

j for which ai ~ m. Use the determinantal formula to write XA(g) as a sum 1: ± Xp(h), 

and show that the II which occur are those obtained by removing skew hooks. 

Reference: [80e, pp. 192-196]. 

(4.46) See Exercise A.ll. In fact, this condition is equivalent to the condition that 

KpA :5; Kpp for all p, or to the condition that UA is isomorphic to Up $ W, for some 

representation W, cf. [L-V]. 

(4.47) References: For the first construction see [Jam], [Ja-Ke]; for the second, see 

[Pe2]. 

(4.48) There are several ways to do this: (i) Use the methods of this lecture to show 

that the value of the character of U;, on the class Ci is [.9(p(i)]A" where .9 is the 

involution defined in Exercise A.32. Then apply Lemma A.26. (ii) Show that U;, ® u' 
is isomorphic to UA• and use Corollary 4.39. (iii) Use Exercise 4.40 or 4.44. 

(4.49) Use Exercise A.32(v). 

(4.51) (a) Note that XA = LiWA(i)e(i), and e(i) = (l/z(i»L,w.(i)x .. where e(i) is the 

characteristic function of the conjugacy class C(i) ' Therefore, 

XAXp = L wA(i)wp(i)e(i), 
i 
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from which the required formula follows. For other procedures and tables for small d 
see [Ja-Ke], [Co], and [Ham]. 

(b) V;. ® l'(d) = V;., and V;. ® l'(1. .... I) = V;." which prove the corresponding results 

for Cl.(dW and C).(I, ... , l)W Use (a) to permute the subscripts. 

(4.S2) For (a), the described map from A to R is surjective by the determinantal 

formula of Exercise 4.40; it is an isomorphism since R. and A. are free of the same 

rank. For (f), note that p(i) corresponds to the character L;. X;,(C(i)x;" which by 

Exercise 2.21 is the class function which is zero outside the conjugacy class C(i), and 

whose value on C(i) is z(i). 

For more on this correspondence, see [Bu], [Di2], [Mac]. In [Kn] a A-ring 

structure on this ring is related to representation theory. In [Liu] this Hopf algebra is 

used to derive many of the facts about representations of 6 d from scratch. In [Ze] a 

similar approach is also used for representations of G L.(lFq). 

More about representations of the symmetric groups can also be found in [Foa] 

and [J-L]. 

Lecture 5 

(S.2) Consider the class functions on H which are invariant by conjugation by an 

element not in H. 

(S.4) Step 1. (i) Inverses of elements of e' are conjugate to elements of e' if m is even, 

and to elements of e" if m is odd; X(g-I) = X(g). (ii) (.9, .9) is 

2 2 d' 
-d,(#e"lu - vl2 + #e"'lv - u12) = -d' . ' . lu - v12. 

. . ql ... qr 

(iii) If A corresponded to p oF q, the values of Xl and xl on the corresponding conjugacy 

classes e'(p) and e"(p) would be the same number, say w, and Exercise 4.20 implies that 

2w = ± 1. Since w is an algebraic integer, this is impossible. Therefore, A corresponds 

to q, and now from Exercise 4.20 we get the additional equation u + v = ( -1)'". 

Step 2. (ii) Information about the characters x' and X" of X' and X" is easily 

determined from Exercise 3.19, and the fact that the characters of the factors are known 

by induction. In particular, since e'(q) and e"(q) each decomposes into two conjugacy 

classes in H, we have 

'( '(» el + Je;q; e' + fti' el - Je;q; e' - fti' 
X e q = . + '-~'--=-

2 2 2 2 

e + Jeql· ... ·qr 

2 

where el = (_1)(q,-I)/2, e' = (_1)(d-q ,-r+Il/2, e = el . e', and q' = q2· ... · qr; and similarly 

for the other values. (iv) The character of Y takes equal values on each pair of conjugate 

classes. (Reference: [Fro2], [Boe]). 

(S.5) Reference: [Ja-Ke]. 

(S.9) If N is a normal subgroup properly between {± 1} and SL2 (lFq), one of the 

nontrivial characters X must take the value X(l) identically on N. 

(S.11) Reference: [Ste1]. 
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Lecture 6 

(6.4) Compare (1) of the theorem with formulas (4.11) and (4.12). For a procedure to 

construct a basis of §). V, see Exercise 6.28. 

(6.10) By (4.41), there is an isomorphism of CIS4+m-modules: 

CIS4+m ®C(s., Sm) (V).IBl~) ~ EE\ N).py Y.. 

Tensoring on the left with the right ClSd+ .. -module v®(d+m) = V®d ®c V® .. , and 

noting that qlSd X ISm) = ClSd ® ClSm, 

(V®d ®c V® .. ) ®cs.®csm (V). ® ~) ~ EByN).p.§. V. 

(This also uses the general fact: if A -+ B is a ring homomorphism, N a left A-module, 

and M a right B-module, then M ®B (B ®..t N) ~ M ®..t N.) The left-hand side of the 
displayed equation is 

(V®d ®C6. V).) ®c (V® .. ®csm Vp) ~ §).(V) ® §p(V), 

which concludes the proof. 

(6.11) (a) The key observation is that 

(VEB W)®d = EB(V®·® W®b)®C(6.' e.) qlSd)' 

the sum over all a, b with a + b = d. Tensoring this on the right with the qlSd)-module 

Y. one gets 

(V EB W)®d = EB(V®· ® W®b) ®C(6 •• e.) Res •. b v., 
where Res •. b denotes the restriction to IS. x ISb• Then use Exercise 4.43 to decompose 

this restriction. 

(b) By Frobenius reciprocity, the representation induced by Vy via the diagonal 

embedding of ISd in ISd x ISd is EB C).py v;'1Bl Vp- With A = ClSd, this says 

(A ® A) ®..t Ac. = EBC).p.(Ac). ® Acp). 

Tensor this with the right (A ® A)-module (V ® W)®d = V®d ® W®d. The special case 

follow from Exercise 4.51 (b). 

(6.13) Use Exercise A.32(iv), or write the left side as V®d ® A· b). and use Exercise 4.48. 

(6.14) These come from the realizations of the representation V;. = Ac). as the image 

of the maps Ab). -+ Aa). given by right multiplication by a)., and similarly Aa). -+ Ab). 

by right multiplication by b).. 

(6.15) It is clear that if one allows T to vary over all tableaux with strictly increasing 

columns but no conditions on the rows, then the corresponding VT span the first space 

Q9i(IV"V); to show that the VT for T semistandard span the image the key point is to 

show how to interchange elements in successive rows. Once it is checked that the 

elements span, the independence can be deduced from the fact that the number of 

semistandard tableaux is the same as the dimension. For a direct proof of both 

spanning and independence, see [A-B-W]-but note that their partitions are all the 
conjugates of ours. See also Proposition 15.55. 
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(6.16) Use Exercise 6.14 to realize each §). V which occurs as the image in V®4 ® V®4 

of a symmetrizing map, and check whether this image is invariant or anti-invariant by 

the map which permutes the two factors. 

(6.17) (a) Identifying the dm elements on which 54 .. acts with the set of pairs 

{(i, j)11 .::; i .::; d, 1 .::; j .::; m} determines embeddings of the groups 5 d x . .. X 54 (m 

factors) and 501 in 54 ... Let 

c' = c). ® ... ® c). E C5d ® . .. ® C54 = C(54 X ... x 54) C C54 .. , 

cn = cl' E C5 .. C C54m. 

Then c = c'· en is the required element of C5dm • For a combinatorial description of 
plethysm see [Mac, §I.8]. 

(b) The answers are 

Sym2(§(2.2) V) = §(4.4) V $ §(4.2.2) V $ §(3.3.1. I) V $ §(2.2.2.2) V; 

N(§(2.2) V) = §(4.3.2) V EB §(3.2.2.1) V. 

Reference: [Lit2, p. 278]. 

(6.18) Their characters are the same. In fact, if x and yare eigenvalues of an endo

morphism of V, the trace on the left-hand side is If(k)x l y P4-l, where f(k) is the number 

of partitions of k into at most p integers each at most q. This number is symmetric in 

p and q, by conjugating partitions. 

(6.19) The facts about skew Schur polynomials are straightforward generalizations of 

corresponding facts for regular Schur polynomials given in Appendix A; proofs of 

(i)-(iv) can be found in [Mac]. To see that the two descriptions of V).II' agree see the 

hint for Exercise 4.4(a). Skew Schur functors are discussed in [A-B-W], where the 

construction of a basis is given; from this the character formula (viii) follows. Then (iv) 
implies (v) and (ix). 

(6.20) References, with proofs of similar statements in arbitrary characteristic (where 

the results, however, are weaker), are [Pel] and [Jam]. 

(6.21) References: [A-B-W] and [poW]. 

(6.29) A reference for the general theory of semisimple algebras and its applications 
to group theory is [CoR, §26]. 

Lecture 7 

(7.1) One way to show that a symplectic transformation has determinant 1, cf. [Dil], 

is to show that the group SP2.C is generated by those which fix a hyperplane, i.e., 

transformations of the form v H v + 1Q(v, u)u for some vector u and scalar 1. Another, 

cf. Exercise F.12, is to write the determinant as a polynomial expression in terms of 

the form Q. 

(7.2) Consider the action on the quadric Q(v, v) = 1. 

(7.11) For any y, the image of the map XHXyx-1y- 1 is discrete only if y is central. 

(7.13) PGL.C acts by conjugation on n x n matrices. 
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Lecture 8 

(8.10) (b) ad[X, Y](Z) = [[X, Y] , Z], and [ad X, ad Y](Z) = (ad X 0 ad Y

ad Y o ad X)(Z) = [X, [Y, Z]J - [Y, [X, Z]]. 

(8.16) The kernel of Ad is the center Z(G), cf. Exercise 7.11. 

(8.17) Use statement (ii), noting that W is G-invariant if it is a-invariant, a the 

universal covering of G. 

(8.24) With A, B, C, D n x n matrices, 

Sp2.(~) = {(~ ~) 'AC = 'CA, 'BD = 'DB, 'AD - 'CB = I}. 

SP2.~ = {(~ ~)I'B = B, 'c = C, 'A = -D}. 

(8.28) The automorphisms of G = ajC are the automorphisms of a which preserve C. 

(8.29) The point is that the commutator of two vector fields is again a vector field, 

which can be checked in local coordinates. 

(8.35) Both signs are plus. 

(8.38) Reference: [Hoi]. 

(8.42) For h E H, Ho · h gives a coordinate neighborhood of h. For another approach 

to Proposition 8.41, with more details, see [HeI, §II.2]. 

(8.43) For an example, take any simply connected group which contains a torus of 

dimension greater than one, say SU(3), and take an irrational line in the torus. 

Lecture 9 

(9.7) If H is an abelian subgroup of G, and the claim holds for GjH, show that it holds 

for G. Or, if G is realized as a group of nilpotent matrices, apply Campbell- Hausdorff. 

(9.10) If each ad(X) is nilpotent, the theorem gives a flag 9 = Vo => VI => ••• => v,. = 0, 

with [g, V;] c V;+!, from which it follows that ~ i g c V;. 

(9.21) If 9 had an abelian ideal a, semisimplicity of the adjoint representation would 

mean that there is a surjection 9 --+ a of Lie algebras. But an abelian Lie algebra has 

lots of representations that are not semisimple. 

(9.24) For the last statement, note that the adjoint representation is semisimple. Or 
see Corollary C.ll. 

(9.25) Reference: [Bour, I] for this (as well as for details for many other statements in 
Lecture 9). 

(9.27) the adjoint representation is semisimple. 
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Lecture 10 

(10.1) Any holomorphic map from E to C must be constant. 

(10.2) An isomorphism G. ~ Gm would lift to a map G -+ G; show that this map would 

have to be an isomorphism. 

(10.4) By hypothesis, the Lie algebra 9 of G has an ideal ~ with abelian quotient; 

use the corresponding exact sequence of groups, with the corresponding long exact 

homotopy sequence (cf. §23.1), and an induction on the dimension of G. 

Lecture 11 

(11.11) Verify the combinatorial formula 

(
a) ( b ) a (a+b-2t ) 
i~ X a- 2i j~ X b- 2j = k~O ,~ xa+b-2t-21 . 

Reference: [B-tO, p. 87] 

(11.19) Given two points on C there is a 2-dimensional vector space of quadrics 

containing C and the chord between the points. 

(11.20) Answer: it is the subspace of the space of quadrics spanned by the squares of 

the osculating planes to the twisted cubic curve. 

(11.23) Answer: the cones over the curve, with vertex a varying point in p3. 

(11.25) Look at the chordal variety of the rational normal curve in p4. 

(11.32) The sum for IX ~ k corresponds to the quadrics containing the osculating 

(k - l)-planes to the curve. 

(11.34) See Exercise 6.18. 

(11.35) Reference: [Murl, §15]. 

Lecture 13 

(13.3) For V standard, §(a+b.b) V ~ ra•b. See §15.3 for details. 

(13.8) If a, b > 0, V ® ra•b = r a +l,b ED ra-1.b+l ED r a •b- 1 , cf. §15.3. 

(13.20) Warning: writing out the eigenvalue diagram and performing the algorithm 

above is probably not the way to do this. 

(13.22) The tangent planes to the Veronese surface should span a subrepresentation. 

(13.24) See §23.3 for a general description of these closed orbits. 

More applications of representation theory to geometry can be found in [Don] and 
[Gre]. 
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Lecture 14 

(14.15) The fact that [g., gpJ = g.+p is proved in Claim 21.19. 

(14.33) See the proof of Proposition 14.31. 

525 

(14.34) If Rad(g) n g. i: 0, then Rad(g):::J 5. ~ 512 , which is not solvable. If 
Rad(g) n I) '3 H, and a(H) i: 0, then 9. = [H,9.J c Rad(g). Use the fact that 

[I), Rad(g)] c Rad(g) to conclude that Rad(g) = Rad(g) n I) + I Rad(g) n g. = O. For 

a stronger theorem, see [Va, §4.4]. 

(14.35) Ifb' :::J b, then b' :::J I), so b' is a direct sum ofl) and some root spaces g. for IX E T, 

T ~ R +. Then T contains some -IX together with IX, so b' :::J 5. ~ 512 , which is not 

solvable. 

(14.36) For slmC, B(X, Y) = 2m Tr(X 0 Y). For sOmC, the coefficient is (m - 2), and for 

5PmC, the coefficient is (m + 2). 

Lecture 15 

(15.19) See also Exercise 6.20. 

(15.20) See Pieri's formulas (6.9), (6.8). 

(15.21) Use the dimension formula (15.17). 

(15.31) See Exercise 6.20. 

(15.32) This is Exercise 6.16 in another notation (and restricted to the special linear 

group). 

(15.33) See Exercise 6.16. 

(15.51) Use Weyl's unitary trick with the group U(n). 

(15.52) See Exercise 6.18. 

(15.54) Show by induction on r that r! times the difference is an integral linear 

combination of generators for r. For details see [Tow2]. 

(15.57) The analogue of (15.53) is valid for these products of minors, and that can he 

used as in Proposition 15.55 to show that the eT for semistandard T generate D;.. 

The same eT as in Proposition 15.55 is a highest weight vector. For more on this 
construction, see [vdW]; we learned it from J. Towher. 

For other realizations of the representations of GLftC, see [N-S]. 

Lecture 16 

(16.7) With v = (et A e2)2, calculate as in §13.1; the two vectors X2,1 V2X2,1 V2v and 

X2,1X2,1 V2 V2v are proportional, and V2X2,1X2,1 V2v is independent of them. 
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Lecture 17 

(17.18) (i) Note that 'P{l , 2}: N- 2V -+ NV is surjective if s > n. See Exercise 6.14 for 

the second statement. (ii) This can be done by direct calculation, as in [WeI, p. 155] 

for the harder case of the orthogonal group. Or, show that §). (V) has a highest weight 
vector with weight A., and this cannot occur in any 'P/(V(d-2»). 

(17.22) This follows from the theorem and the corresponding result for the general 

linear groups. Or see Exercise 6.30. 

Lecture 19 

(19.3) 

{
o if {p, q} () 1= 0 or {p, q} c I 

v;,jvI) = ± VI\ {q}u{p} if P ¢ I and q E I 

± VI\ {p}u{q} if q ¢ I and pEl. 

The first assertion follows readily. If W = ~:aIVI' with the fewest number of nonzero 

coefficients, and aJ and aK are nonzero, choose q E J \ K, p ¢ J u K (possible since 

2k < m); then Vp,qh) ~ 0, Vp.iVK) = 0, and so Vp.q(w) is a nonzero vector with fewer 
nonzero coefficients. 

(19.4) The multiplicity of LI + '" + L. - L.-b - .. . - L. in Nv is (~r) if k - a - b = 

2r. For r2• or r2~ the multiplicity is ten if r is positive, by symmetry under replacing 

any rp by - rp. For f. the weights are t(e l LI + .. . + e.L.), with ej = ± 1, and f1 Ej = 1; 

the multiplicities are all one since these are conjugate under the Weyl group; similarly 

for f~ but with f1 Ej = - 1. 

(19.21) For generalizations, see §23.2. 

Lecture 20 

(20.17) Iff spans !\"W', and Uo spans U with Q(uo, uo) = 1, then f'(1 + (-I)·uo) is 
such a generator. See Exercise 20.12. 

(20.21) If x is in the center, take an orthogonal basis {vd, write out x = Lalvl in 

terms of the basis, and look at the equations X· Vj = vj ' x for all j . Note that VI' Vj = 

(-I)I/IV{ VI if j ¢ I, whereas VI' Vj = (-I)I/I-1 Vj ' VI if j E I. Conclude that al = 0 if III 

is odd and there is some j ¢ I c.r iflII is even and there is some j E I . A similar argument 
works if x is odd. Reference [A-B-S, p. 7]. 

(20.22) If X = a 1\ b, [X, v] = t(a-h' V - b ' a ' v - v·a·b + v'b ' a), which is 

t(2Q(b, v)a - a ' V' b - 2Q(a, v)b + b· V · a - 2Q(a, v)b + a' V' b + 2Q(b, v)a - b· V · a) 

= 2Q(b, v)a - 2Q(a, v)b = <PaAb(V). 

(20.23) Reference: [Por], but note that his C(p, q) is our C(q, p). See also [A-B-S]. 
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(20.32) If Q(v - w, v - w) # 0, then Rv-w(v) = w. Otherwise, Rv+w(v) = -w, and 

Rw( - w) = w. For (b) compose a given element of O(Q) with an element constructed 

by (a) to get one fixed on a line, and write, by induction on the dimension, the restriction 

to the perpendicular hyperplane as a product of reflections. 

(20.33) By Exercise 20.22, X' v = [X, v]. See also Exercise 8.24. 

(20.36) If Vj are a basis for V with Q(v;, Vj) = -bj.j, then w = Vi· ... · vm . If m == 2 (4), 

the center is cyclic of order four, while if m == 0 (4), it is the Klein four group. 

(20.37) Show that so(Q) acts by traceless endomorphisms. For example, the trace of 

HjonS+ is the number ofl c {1, ... , n} such that III is even and i E I,minus the number 

with i ¢ I. 

(20.38) For the first statement of (a), choose f spanning I\"W' so that, for the chosen 

generator of A"w, t(f)· e' f = f For the second, when m is even, x(s)f = x' s' f by 

Exercise 20.12, so P(x(s), x(t»f = t(x' s· f). (x' t· f) = t(s' fh(x)' X' (t· f) = t(s' f). 

(t· f) = P(s, t). The odd case can be reduced to the even case by imbedding C(Q) into 

a larger Clifford algebra as in Exercise 20.40. 

(20.43) Reference: [Por]. 

(20.44) For example, the transposition of IXI and 1X4 is achieved by the matrix 

(20.50) Reference: [Ch2, §4.3]. 

[

.1 .1 
2 2 

.1 .! 
2 Z 

! -! 
! -! 

(20.51) Reference: [Ch2, §4.2-4.5], [Jac1]. 

Other references include [L-M], [Cal], [B-tD], [Hus], [P-S]. 

Lecture 21 

(21.9) If lXI' ... , IX, are the vectors, and we have a nontrivial relation 

V = L njlXj = L njlXj' 
jsk J>k 

with non-negative coefficients, then (v, v) = Lj,j njnilXj, IXj) ::; 0, so v = O. But v lies on 

the same side of the hyperplane. 

(21.15) The first is ruled out by considering 

u = ez, v = (3e3 + 2e4 + es)/j6, 

with 1 > (el , U)2 + (e" v)Z + (el' W)2 = 1/4 + 3/8 + 3/8 = 1. For the second, use 

u = ez, v = (2e 3 + e4 )/j3, w = (5e s + 4e6 + 3e7 + 2es + e9)/j15, 

with (e l , u)Z + (el' V)2 + (e l , W)2 = 1/4 + 1/3 + 5/12 = 1. 

(21.16) Using the characterization that w;(H.) = bj,j, one can write the fundamental 

weights Wj in terms of the basis L j. The tables in [Bour, Ch. 6] also express them in 

terms of the simple roots. 
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(E6): 

1- J3 
W2 = 2(L1 + L2 + L3 + L4 + Ls) + T L6' 

.l J3 W3 = 2(-L1 + L2 + L3 + L4 + Ls) + 5T L 6 , 

W4 = L3 + L4 + Ls + J3L6' 

J3 
Ws = L4 + Ls + 2 T L6, 

W6 = Ls + f L6; 

(E7): WI = J2L7' 

W2 = t(L I + L2 + L3 + L4 + Ls + L6) + J2L7' 

.l J2 W3 = 2( -LI + L2 + L3 + L4 + Ls + L6) + 3T L7, 

W4 = L3 + L4 + Ls + L6 + 2J2L7, 

J2 
Ws = L4 + Ls + L6 + 3T L7, 

W6 = Ls + L6 + J2L7' 

J2 
W 7 = L 6 + T L 7 ; 

(Es) WI = 2Ls, 

W2 = t(L I + L2 + L3 + L4 + Ls + L6 + L7 + 5Ls), 

W3 = t( - LI + L2 + L3 + L4 + Ls + L6 + L7 + ?Ls), 

W4 = L3 + L4 + Ls + L6 + L7 + 5Ls , 

Ws = L4 + Ls + L6 + L7 + 4Ls , 

W6 = Ls + L6 + L7 + 3Ls, 

W7 = L6 + L7 + 2Ls, 

Ws = L7 + Ls; 

(F4): WI = LI + L 2 , 

W2 = 2LI + L2 + L3, 

W3 = t(3L I + L2 + L3 + L4), 

W 4 = L 1; 

(G2 ) WI = t(L I + J3L2) = 2a l + a2' 

W2 = J3L2 = 3a l + 2a2o 
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(21.17) The only cases of the same rank that have the same number of roots are (B.) 

and (C.) for all n, and (B6 ), (C6 ), and (E6 ); (B.) has n roots shorter than the others, (C.) 

n roots longer, and in (E6) all the roots are the same length. 

(21.18) For the matrices see [Dour, Ch. 6] or [Hul, p. 59]. The determinants are: 

n + 1 for (A.); 2 for (B.),(C.) and (E7 ); 4 for (D.); 3 for (E6); and 1 for (G2),(F4 ), and (Es). 

(21.23) See Lecture 22. 

The proof of Lemma 21.20 is from [lac1, p. 124], where details can be found. 

For more on Dynkin diagrams and classification, see [Ch3], [Dem] , [Dy-O], 

[LIE], and [Til]. 

Lecture 22 

(22.5) Use the fact that B(Y, z) = 6 Tr(Y 0 Z) on s13C, and the formula [ej, ej] = 

3· E',J - OJ,)' J, giving 

B([e;. en Z) = 6 · Tr((3' Ej,) - OJ,)' J) 0 Z) = 18 · Tr(Ej,) 0 Z) = 18 , ej(Z ' e;). 

(22.13) Hint: use the dihedral group symmetry. 

(22.15) Answer: SI3C x SI3L 

(22.20) For (b), apply'" to both sides of (22.17), and evaluate both sides of (22.18) on 

w. Note that "'((V" w) " cp) = (v " w)(cp " "') = ((cp " "') " v)(w). 

(22.21) For a triple J = {p < q < r} c {I, ... , 9}, let eJ = ep " eq " er and similarly 
for CPJ. For triples J and K the essential calculation (see Exercise 22.5) is to verify that 

e J * CPK is 1/18 times 

o if #J nK S 1; 

±Em,. if K = {p, q, n},J = {p, q, m},m #- n; 

Ep,p + Eq,q + Er,r - tl if K = J = {p, q, r}; 

the sign in front of Em,. is the product of the signs of the permutations that put the 

two sets in order. Verify that (V" w)" cP = 18((w* cp) . v - (v* cp). w), For Freudenthal's 

construction, see [Fr2], [H-S]. 

(22.24) For SI'+1 C, such an involution takes Ej,) to (_l)j-i+l E.+ 2-),.+2-;; the fixed 

algebra is {X: 'XM = -MX}, where M = (mij), with mj) = 0 if i + j #- n + 2, and 

otherwise mj) = (-l)j. This M is symmetric if n is even, skew if n is odd, so the fixed 

subalgebra for (A2 .. ) is the Lie algebra S02 .. +1 C of (B .. ), and that for (A2 .. - 1) is the Lie 

algebra SP2 .. C of(Cm). For (D.), the fixed algebra is S02.-1 C, corresponding to (B.-d, 
while for the rotation of (D4 ), the fixed algebra is 92' For a description of possible 

automorphisms of simple Lie algebras, see [lac1, §IX]. 

(22.25) Answer: For sl.+1 C, X 1-+ -X'. For S02.C, n ~ 5, X 1-+ pxrl, where P is the 

automorphism ofC2• that interchanges e. and e2. and preserves the other basic vectors. 

For the other automorphisms of sosC, see Exercise 20.44. 

(22.27) References: [Her], [lac3, p. 777], [Pos], [Hul, §19.3]. 

(22.38) Reference [Ch2, §4.5], [lac4, p. 131], [lac1], [Lo, p. 104]. 
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Lecture 23 

(23.3) The map takes z = x + iy to (u, v) with u = x/llxll, v = y. 

(23.10) Since p(exp(IajH) = (ea" •. • , eO., e-a" • . . ), to be in the kernel we must have 

aj = 2ni' nj, and then exp(I ajHj ) = ( _1)L'I. 

(23.11) Note that the surjectivity of the fundamental groups is equivalent to the 

connectedness of n- I(H) when n: G ~ G is the universal covering, which is equivalent 

to the Cartan subgroup of G containing the center of G. 

(23.17) Note that r(G) = n1(H) surjects onto nl(G), and there is an exact sequence 

o ~ n l (G) ~ Center(G) -+ Center(G) -+ O. 

(23.19) When m is odd, the representations are the representations of SOmC, and the 

products of those by the one-dimensional alternating (determinant) representation. 

When m = 2n, the representations of SOmC with highest weights (A. I , ... , A.) and 

(AI , . .. , - An) are conjugatt:, so that, if A. #- 0, they correspond to one irreducible 

representation of 02.C, whose underlying space can be identified with I(.!, ..... .!o) $ 

r(.!, ... .. - .(o). If A. = 0, then r. is an irreducible representation of OmC. In either case, 

the representations correspond to partitions A = (AI ~ . . . ~ A. ~ 0). See §19.5 for an 

argument. 

(23.31) See Exercises 19.6, 19.7, and 19.16. 

(23.36) For (b), consider (D+)2 . (D-)2 = (D+ . D-)2. 

(23.37) Reference: [B-tD, VI §7]. 

(23.39) Reference: [Bour, VIII §7, Exer. 11]. 

(23.42) Compute highest weight vectors in the (external) tensor product of two 

irreducible representations, to verify that it is irreducible with highest weight the sum 

of the two weights. 

(23.43) See Exercise 20.40 and Theorems 17.5 and 19.2. 

(23.51) An isotropic (n - I)-plane is automatically contained in an isotropic n-plane. 

These are two-step flag varieties, corresponding to omitting two nodes. 

(23.62) For (b), use the fact that B· n'· B is open in G. For (c), if p. is a weight, 

f(x-Iwy) = p.(x)A(y)f(w) for x and y in B, so with x E Hand w = n', 

Il(x)f(w) = f(x-Iw) = f(wx) = A(x)f(w). 

Other references on homogeneous spaces include [B-G-G], [Hel], and [Hi]. 

Lecture 24 

(24.4) (a) is proved in Lemma D.25, and (b) follows. For (c), note that by the definition 

of p as half the sum of the positive roots, p - W(p) is the sum of those positive p such 

that W(fJ) is negative. 



Hints, Answers, and References 531 

(24.27) This is Exercise A.62. 

(24.46) This follows from formulas (A.61) and (A.65). 

(24.51) In the following the fundamental weights are numbered as in the answer to 

Exercise 21.16: 

p = 8a l + 15a2 + 21a3 + 11a4; 

dim(r.,.), (i = 1, 2, 3,4): 52, 1274, 273, 26. 

p = L2 + 2L3 + 3L4 + 4Ls + 4J3L6 

= 8a, + l1a2 + 15a3 + 21a4 + 15as + 8a6; 

dim(r.,.), (i = 1, .. . ,6): 27, 78, 351, 2925, 351, 27. 

(E7): p = L2 + 2L3 + 3L4 + 4Ls + 5L6 + 17J2/2L7 

= !(34a l + 49a2 + 66a3 + 96a4 + 75as + 52a6 + 27(1.7); 

dim(r.,.), (i = 1, ... ,7): 133, 912, 8645, 365750, 27664, 1539, 56. 

(Es): P = L2 + 2L3 + 3L4 + 4Ls + 5L6 + 6L7 + 23Ls 

= 46a l + 68a2 + 91a3 + 135a4 + llOas + 84(1.6 + 57a7 + 29as; 

dim(r.,,), (i = 1, . .. , 8): 3875, 147250, 6696000, 6899079264, 146325270, 

2450240, 30380, 248. 

(24.52) Using the dimension formula as in Exercise 24.9, it suffices to check which 

fundamental weights correspond to small representations, and then which sums of 

these are still small. The results are: 

(A) n ~ 1; dim G = n2 + 2n; dim r.,. = ('1'); 

the dominant weights whose representations have dimension at most dim G are: 

2w" 2w" of dimension ('i2); 

w, + w" of dimension n2 + 2n; 

W3 for n = 5; W3, W4 for n = 6; W3, Ws for n = 7. 

(8") n ~ 2; dim G = 2n2 + n; dim r.,. = e"t+ l ) for k < n, and dim r.," = 2', giving: 

W" for n = 3, 4, 5, 6; 

2w2 , of dimension 10, for n = 2. 

(C,) n ~ 3; dim G = 2n2 + n; dim r.,. = (~") - (t:'"2), giving: 

2w" of dimension 2n2 + n; 

W3 for n = 3. 
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(D.) n ~ 4; dim G = 2nz - n; dim r",. = (~') for k ~ n - 2, and 

dim r","_. = dim r"," = 2'-1, giving: 

(0.-1, (0. for n = 4, 5, 6, 7. 

(E6) dim G = 78; (01, (Oz, (06' 

(E7) dim G = 133; (01' (07' 

(Eg) dim G = 248; (Og. 

(F4) dim G = 52; (01' (04' 

(Gz) dim G = 14; (01' (Oz· 

For irreducible representations of general Lie groups with this property, see [S-K]. 

Other references with character formulas include [ES-K], [Ki1], [Ki2], [Kl], 

[Mur2], and [Ra]. 

Lecture 25 

(25.2) Changing Jl. by an element of the Weyl group, one can assume Jl. is also 

dominant and A. - Jl. is a sum of positive roots. Then IIA.II > 11Jl.1I, and c(Jl.) = (A., A.) -

(Jl., Jl.) + (A. - Jl., 2p) > O. 

(25.4) A direct calculation gives 

C(X'v) - X·C(v) = L UdU/, X]·v + L CUi> X]· U/·v. 

To see that this is zero, write [Uj , X] = L l1.ij~; then by (14.23), l1.ij = ([Ui, X], UJ) = 
-(CUi, X], UJ, so CUi, X] = - Ll1.ijU/. The terms in the above sums then cancel in 
pairs. 

(25.6) By (14.25), (H., Ha) = I1.(H.)(X., 1:,) = 2(X., 1:,). Use Exercise 14.28. 

(25.12) The symmetry gives 

(P - il1., l1.)n/l-ia + (P - (m - i)l1., l1.)n/l-(m-i). = (2P - rna, l1.)n/l- ia = 0 

since 2(P, a) = m(l1., a), so the terms cancel in pairs. 

(25.22) We have 

L (-1)wp(Jl. + W(p) - p)e(-Jl.) = L(-l)W(e(W(p) - p»/ n (1- e(-I1.», 
W.1l W aeR+ 

and the right-hand side is 1 by Lemma 24.3. 

(25.23) We have 

L (-1)Wnp +p _W(P) = I (-l)ww'P(W'(A. + p) - «Jl. + p - W(p» + p» 
W W.W' 

= I (_l)W' I (-1)Wp«W'(A. + p) - Jl. - p) + W(p) - p), 
W' W 
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and the inner sum is zero unless W'(A. + p) = II + p. Note that if II is a root of rl , this 

happens only if II = A. by Exercise 25.2. 

(25.24) The minuscule weights are: 

(A.): WI' . . . ,00 .. , 

(B.): (01' 

(C.): (0., 

(D.): OJ 1, (0,,-1' (0 .. , 

(E6): (01' (06, 

(E7): (07· 

Reference: [Bour, VIII, §7.3]. 

(25.28) One easy way is to use the isomorphism S04C ~ sI2 C X s12C. 

(25.30) Nlpy is zero by definition when)' is not in the closed positive Weyl chamber 

"IY, and W(v + p) - p is not in "IY if W ~ 1. Reference: [Hu1]. 

(25.40) The weight space of the restriction of r l corresponding to ji is the direct sum 

of the weight spaces of r l corresponding to those II which restrict to ji. 

(25.41) Use the preceding exercise and Exercise 25.23. 

(25.43) Using the action of a Lie algebra on a tensor product, the action of C on 

VI .•.•• Vm is a sum over terms where Uj and Ui act on different elements or the same 

element. Grouping the terms accordingly leads to the displayed formula. See [L-T, I, 
pp.19-20]. 

Lecture 26 

(26.2) In terms of the basis L I , L2 of~* dual to {HI, H2}, eigenvalues are ±iL2 and 

±3LI ± iL2 • 

(26.9) Reference: [Hel, §III.7]. 

(26.10) Constructing ~ = go(H) as in Appendix D, take H so that u(H) = H. 

(26.12) See Exercise 23.6. 

(26.13) Reference: [Hel, §X.6.4]. 

(26.21) If a conjugate linear endomorphism q>: W -+ W did not map r l to itself, there 

would be another factor U of Wand an isomorphism of rl with U*; the highest weight 
of (rl)* cannot be lower than ..t. 

(26.22) See Exercise 3.43 and Exercise 26.21. 

(26.28) References: [A-B-S], [Hus], [Por]. See also Exercise 20.38. 

(26.30) Use the identity t/12[V] = [V ® V] - 2[;\2V]. 

Other references on real forms are [Gil], [B-tO], [Va]. 
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Appendix A 

(i) _ ~ P<i) (A.29) (b) Use P - L.. (H., >M •. 

(A.30) Some of these formulas also follow from Weyl's character formula. 

(A.31) For part (a), when at ;:::: a2 ;:::: ••• ;:::: ak , this is (A.19). The proof of (A.9) shows 

that for any a = (ai, ... , ak ), 

which shows that the K~. are unchanged when the a/s are reordered. For a purely 

combinatorial proof see [Sta, §1O]. 

(A.32) For (i) compare the generating functions E(t) = I Eiti = n (l + Xit) and 

H(t) = I Hi = I/E( - t); (ii) follows from (A.5) and (A.6). For (iii), note that 

P(t) = I P;tj = L xit/(1 - Xit) = tH'(t)/H(t). Exponentiate this to get (vi). For details 

and more on this involution, see [Mac] or [Sta], where it is used to derive basic 

identities among symmetric polynomials. 

(A.39) References: [Mac], [Sta], [Fu, §A.9.4]. 

(A.41) See [Mac, p. 33] or [Fu, p. 420]. 

(A.48) Since 9(E;) = Hi and 8(En = Hi', 

8(S<d = 8(1H~,-i+j - H~,-i-jl) = IE~,_i+j - E~,-i-jl = S[I']. 

(A.67) Answer:!C I ..... C. times the determinant of the matrix whose ith row is 

(J,,-i Jl,-i+1 + Jl,-i-l ... Jl,-i+.-I + J,,-i-.+1). 

More on symmetric polynomials can be found in [Mac], [Sta], [L-S], and 

references listed in these sources. Some of the identities in §A.3 are new, although results 

along these lines can be found in [Wei], [Litl], [Lit2] and [Ko-Te]; other identities 

involving the determinants discussed in §A.3 can be found in [Mac, §I.5]. Discussions 

of Schur functions and representation theory can be found in [Di2] and [Lit2]. 

Appendix C 

(C.l) Take a basis in which X has Jordan canonical form, and compute using the 

corresponding basis Eij for gl(V). 

(C.12) If 9 = EBgi> and 1) is a simple ideal, 1) = [g,1)] = EB[gj, 1)], so 1) is contained 

in some gi. 

(C.13) Since for (j E Der(g) and X E g, ad«(j(X)) = [(j, ad(X)], ad(g) is an ideal in the 

Lie algebra Der(g). Therefore, [ad(g)l., ad (g)] = 0; in particular, if (j E ad(g)l. and X E g, 

then ad«(j(X)) = [(j, ad(X)] = O. So ad(g)l. = 0 and ad(g) = Der(g). 

Appendix D 

(D.8) To show ad(X) is nilpotent on 9o(H) for X in go(H), consider the complex line 

from H to X: set H(z) = (1 - z)H + zX. Then ad(H(z)) preserves each eigenspace 

9l(H). By continuity, for z sufficiently near 0, ad(H(z)) is a nonsingular transformation 
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of gJ.(H) for A. # 0, which implies that go(H(z)) is contained in go (H), and by the 

regularity of H, go(H(z)) = go(H) for small z. 

This means that there is an integer k so that ad(H(z)t(y) = 0 for all Y E gotH) and 
all small z. But ad(H(z)t(Y) is a polynomial function of z, so it must vanish identically. 

Hence, setting z = I, ad(Xt vanishes on go (H), as asserted. 

(D.24) See [Bour, VII, §3] for details. 

(D.33) References: [Se3, §V.lI], [Hul, §12.2]. 

Appendix E 

Proofs of both ofthese theorems can be found, together with many other related results, 
in [Bour I]. See also [Se3], [Pos], [Va], [Jacl]. 

Appendix F 

(F.l2) Check that the right-hand side is multilinear, alternating, and takes the value 

I on a standard basis. Or see [Wei, §VI.1]. 

(F.l6) SOne-invariants can be written in the form A + IAjBj where A and the 
Aj are polynomials in the Q(x(j" xW) and the Bj are brackets. Such is taken to 

A + det(g) I AjBj by g in OnC For an odd (resp. even) invariant the first (resp. the 
second) term must vanish. 

(F.20) Reference: [Wei, 11.6], or [Br, p. 866]. 

There are many elementary references for invariant theory, such as [D-C], [PrJ, 
[Spl], and [H02]; the last contains a proof of Capelli's formula. There are also many 

modern approaches to invariant theory, some which can be found in [DC-P], [Sch] 

and [Vu] and references described therein; some of these also contain some invariant 

theory for exceptional groups. For a more conceptual and representation-theoretic 
approach to Capelli's identity, see [H03]. Weyl's book [Wei] remains an excellent 
reference for invariant theory of the orthogonal and symplectic groups together with 
the related [Br], [We2]. 



Bibliography 

[A-B] 

[A-B-S] 

[A-B-W] 

[Ad] 
[Ahl] 

[A-J-K] 

[And] 

[Ar] 

[A-T] 

[B-G-G] 

[Boe] 

[Borl] 

[Bor2] 

[Bot] 

[Bour] 

M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic 
complexes: II. Applications, Ann. Math. 9 (1968), 451-491. 
M. F . Atiyah, R. Bott, and A. Shapiro, Clifford modules, Topology 3, Supp. 
1 (1964),3-38. 
K. Akin, D. A. Buchsbaum, and 1. Weyman, Schur functors and Schur 
complexes, Adv. Math. 44 (1982),207-278. 
1. F. Adams, Lectures on Lie Groups, W. A. Benjamin, Inc., New York, 1969. 
L. V. Ahlfors, Complex Analysis, Second Edition, McGraw-Hill, New York 
1966. 
Y. J. Abramsky, H. A. Jahn, and R. C. King, Frobenius symbols and the 
groups S., GL(n), O(n), and Sp(n), Can. J. Math. 25 (1973),941-959. 
G. E. Andrews, The Theory of Partitions, Encyclopedia of Mathematics and 
Its Applications, vol. 2, Addison-Wesley, Reading, MA, 1976. 
S. K. Araki, On root systems and an infinitesimal classification of irreducible 
symmetric spaces, J. Math. Osaka City Univ. 13 (1963),1-34. 
M. Atiyah and D. O. Tall, Group representations, A.-rings, and the J
homomorphism, Topology 8 (1969), 253-297. 
I. N. Bernstein, 1 M. Gelfand, and S.l Gelfand, Schubert cells and cohomol
ogy of the spaces GIP, Russ. Math. Surv. 28 (1973), 1-26. 
H. Boerner, Representations of Groups, Elsevier North-Holland, Amsterdam, 
1970. 
A. Borel, Linear Algebraic Groups, W. A. Benjamin, 1969 and (GTM 126), 
Springer-Verlag, New York, 1991. 
A. Borel, Topology of Lie groups and characteristic classes, Bull. Amer. 
Math. Soc. 61 (1955), 397-432. 
R. Bott, On induced representations, in The Mathematical Heritage of 
Hermann Weyl, Proc. Symp. Pure Math Vol. 48, American Mathematical 
Society, Providence, RI 1988, pp. 1-13. 
N. Bourbaki, Lie Groups and Lie Algebras, Chapters 1-3, Springer-Verlag, 
New York, 1989; Groupes et algebres de Lie, Chapitres 4, 5 et 6, Masson, 
Paris, 1981; Groupes et algebres de Lie, Chapitres 7 et 8, Diffusion C.C.L.S., 
Paris, 1975; Algebra 1, Chapter 3, Springer-Verlag, New York, 1989. 



Bibliography 537 

[Br] 

[B-tD] 

[Bu] 

[Cal] 

[Ca2] 

[Cart] 

[ChI] 

[Ch2] 

[Ch3] 

[Ch-S] 

[Co] 

[C-R] 

[D-C] 

[DC-P] 

[Dem] 

[D'H] 

[Dil] 
[Di2] 

[Dia] 

[Don] 

[Dor] 

[Dr] 

[Dy-O] 

[ES-K] 

[Foa] 

[Frl] 

[Fr2] 

R. Brauer, On algebras which are connected with the semisimple continuous 
groups, Ann. Math. 38 (1937),857-872. 
T. Brocker and T. tom Dieck, Representations of Compact Lie Groups, 
Springer-Verlag, New York, 1985. 
1. Burroughs, Operations in Grothendieck rings and the symmetric group, 
Can. J. Math. 26 (1974),543-550. 
E. Cartan, The Theory of Spinors, Hermann, Paris, 1966, and Dover 
Publications, 1981. 
E. Cartan, Le principe de dualite et la theorie des groupes simples et 
semi-simples, Bull. Sci. Math. 49 (1925),361-374. 
P. Cartier, On H. Weyl's character formula, Bull. Amer. Math. Soc. 67 (1961), 
228-230. 
C. Chevalley, Theory of Lie Groups, Princeton University Press, Princeton, 
NJ,1946. 
C. Chevalley, The Algebraic Theory of Spinors, Columbia University Press, 
New York, 1954. 
Seminaire C. Chevalley 1956-1958, Classification des Groupes de Lie 
Algebriques, Secretariat mathematique, Paris, 1958. 
C. Chevalley and R. D. Schafer, The exceptional simple Lie algebras F4 and 
E6 , Proc. Natl. Acad. Sci. USA. 36 (1950),137-141. 
A. J. Coleman, Induced Representations with Applications to S. and GL(n), 
Queens Papers Pure Appl. Math. 4 (1966). 
C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and 
Associative Algebras, Interscience Publishers, New York, 1962. 
J. Dieudonne and J. Carrell, Invariant Theory, Old and New, Academic 
Press, New York, 1971. 

C. De Concini and C. Procesi, A characteristic free approach to invariant 
theory, Adv. Math. 21 (1976), 330-354. 
M. Demazure, A, B, C, D, E, F, etc., Springer Lecture Notes 777, Springer
Verlag, Heidelberg, 1980, pp. 221-227. 

E. D'Hoker, Decompositions of representations into basis representations 
for the classical groups, J. Math. Physics 25 (1984), 1-12. 
J. Dieudonne, Sur les Groupes Classiques, Hermann, Paris, 1967. 
1. Dieudonne, Schur functions and group representations, in Young tableaux 
and Schur functors in algebra and geometry, Asterisque 87-88 (1981),7 -19. 
P. Diaconis, Group Representations in Probability and Statistics, Institute of 
Mathematical Statistics, Hayward, CA, 1988. 
R. Donagi, On the geometry of Grassmannians, Duke Math. J. 44 (1977), 
795-837. 
L. DornholT, Group Representation Theory, Parts A and B, Marcel Dekker, 
New York, 1971, 1972. 
D. Drucker, Exceptional Lie algebras and the structure of hermitian sym
metric spaces, Mem. Amer. Math. Soc. 208 (1978). 
E. B. Dynkin and A. L. Oniscik, Compact global Lie groups, Amer. Math. 
Soc. Transl., Series 2 21 (1962),119-192. 
N. EI Samra and R. C. King, Reduced determinantal forms for characters 
of the classical Lie groups, J. Phys. A: Math. Gen. 12 (1979), 2305-2315. 
D. Foata (ed.), Combinatoire et Representation du Groupe Symetrique, 
Strasbourg 1976, Springer Lecture Notes 579, Springer-Verlag, Heidelberg, 
1977. 
H. Freudenthal, Oktaven, Ausnahmegruppen und Oktavengeometrie, Mathe
matisch Instituut der Rijksuniversiteit te Utrecht, Utrecht, 1951, 1960. 
H. Freudenthal, Lie groups in the foundations of geometry, Adv. Math. 1 
(1964), 145-190. 



538 Bibliography 

[Fr-dV] H. Freudenthal and H. de Vries, Linear Lie Groups, Academic Press, New 
York, 1969. 

[Frol] F. G. Frobenius, Uber die Charaktere der symmetrischen Gruppe, Sitz. 
Konig. Preuss. Akad. Wissen. (1900), 516-534; Gesammelte Abhandlungen 
III, Springer-Verla~} Heidelberg, 1968, pp. 148-166. 

[Fro2] F. G. Frobenius, Uber die Charaktere der alternirenden Gruppe, Sitz. 

[Fu] 
[G-H] 

[Gil] 

Konig. Preuss. Akad. Wissen. (1901), 303- 315; Gesammelte Abhandlungen 
III, Springer-Verlag, Heidelberg, 1968, pp. 167-179. 
W. Fulton, Intersection Theory, Springer-Verlag, New York, 1984. 
P. Griffiths and 1. Harris, Principles of Algebraic Geometry, Wiley
Interscience, New York, 1978. 
R. Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications, 
Wiley, New York, 1974. 

[G-N-W] C. Greene, A. Nijenhuis, and H. S. Wilf, A probabilistic proof of a formula 

[Gr] 

[Gre] 

[Grie] 

[Ha] 
[Ham] 

[Har] 

[HeI] 

[Her] 

[Hi] 
[HoI] 

[Ho2] 

[Ho3] 

[H-P] 

[H-S] 

[Hul] 

[Hu2] 

[Hu3] 

[Hur] 

[Hus] 

[In] 

for the number of Young tableaux of a given shape, Adv. Math. 31 (1979), 
104-109. 
J. A. Green, The characters of the finite general linear group, Trans. Amer. 
Math. Soc. 80 (1955), 402-447. 
M. L. Green, Koszul cohomology and the geometry of projective varieties, 
I, II, J. Diff. Geom. 19 (1984), 125-171; 20 (1984), 279-289. 
R. L. Griess, Automorphisms of extra special groups and nonvanishing 
degree 2 cohomology, Pacific J. Math. 48 (1973), 403-422. 
J. Harris, Algebraic Geometry, Springer-Verlag, New York, to appear. 
M. Hamermesh, Group Theory and its Application to Physical Problems, 
Addison-Wesley, Reading, MA, 1962 and Dover, 1989. 
G. H. Hardy, Ramanujan, Cambridge University Press, Cambridge, MA, 
1940. 
S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, 
Academic Press, New York, 1978. 
R. Hermann, Spinors, Clifford and Cayley Algebras, Interdisciplinary 
Mathematics Volume VII, 1974. 
H. Hiller, Geometry of Coxeter Groups, Pitman, London, 1982. 
R. Howe, Very basic Lie theory, Amer. Math. Monthly 90 (1983),600-623; 
91 (1984), 247. 
R. Howe, The classical groups and invariants of binary forms, Proc. Symp. 
Pure Math. 48 (1988), 133-166. 
R. Howe, Remarks on classical invariant theory, Trans. Amer. Math. Soc. 
313 (1989),539-569. 
W. V. D. Hodge and D. Pedoe, Methods of Algebraic Geometry, vols. 1 and 
2, Cambridge University Press, Cambridge, MA, 1947, 1952; 1968. 
M. Hausner and J. T. Schwarz, Lie groups; Lie algebras, Gordon and 
Breach, New York, 1968. 
J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, 
Springer-Verlag, New York, 1972, 1980. 
J. E. Humphreys, Linear Algebraic Groups, Springer-Verlag, New York, 
1975, 1981. 
J. E. Humphreys, Representations of SL(2, p), Amer. Math. Monthly 82 
(1975),21-39. 
A. Hurwitz, Uber die Anzahl der Riemann'schen Flachen mit gegebenen 
Verzweigungspunkten, Math. Ann. 55 (1902),53-66. 
D. Husemoller, Fibre Bundles, second edition, Springer-Verlag, New York, 
1975. 
R. E. Ingram, Some characters of the symmetric group, Proc. Amer. Math. 
Soc. 1 (1950), 358-369. 



Bibliography 539 

[Iv] 

[Jacl] 
[Jac2] 
[Jac3] 

[Jac4] 

[Ja-Ke] 

[Jam] 

[J-L] 

[Ke] 

[Kern] 

[Kil] 

[Ki2] 

[Kir] 

[Kl] 

[K-N] 

[Kn] 

[Kos] 

[Ko-Te] 

[Ku] 

[Kuml] 

[Kum2] 

[Le] 

[Li] 

[LIE] 

[Litl] 

[Lit2] 

B. Iversen, The geometry of algebraic groups, Adv. Math. 20 (1976), 57-
85. 
N. Jacobson, Lie Algebras, Wiley, New York 1962, and Dover, 1979. 
N. Jacobson, Exceptional Lie Algebras, Marcel Dekker, New York 1971. 
N. Jacobson, Cayley numbers and simple Lie algebras of type G, Duke 
Math. J. 5 (1939), 775-783. 
N. Jacobson, Triality and Lie algebras of type D4 , Rend. Circ. Mat. Palermo 
(2) 13 (1964), 129-153. 
G. James and A. Kerber, The Representation Theory of the Symmetric 
Group, Encyclopedia of Mathematics and Its Applications, vol. 16, Addison
Wesley, Reading, MA, 1981. 

G. D. James, The Representation Theory of the Symmetric Groups, Springer 
Lecture Notes 682, Springer-Verlag, Heidelberg, 1978. 
T. Josefiak and A. Lascoux (eds.), Young Tableaux and Schur Functors in 
Algebra and Geometry, Toruri, Poland 1980, Asterisque 87-88, 1981. 
A. Kerber, Representations of Symmetric Groups I, Springer Lecture Notes 
240, Springer-Verlag, Heidelberg, 1971. 
G. Kempf, Tensor products of representations, Amer. J. Math. 109 (1987), 
401-415. 
R. C. King, The dimensions of irreducible tensor representations of the 
orthogonal and symplectic groups, Can. J. Math. 23 (1971), 176-188. 
R. C. King, Modification rules and products of irreducible representations 
of the unitary, orthogonal and symplectic groups, J. Math. Phys. 12 (1971), 
1588-1598. 
A. A. Kirillov, Elements of the Theory of Representations, Springer-Verlag, 
New York, 1976. 
A. U. Klymyk, Multiplicities of weights of representations and multiplicities 
of representations of semisimple Lie algebras, Sov. Math. Dokl. 8 (1967), 
1531-1534. 
G. Kempf and L. Ness, Tensor products of fundamental representations, 
Can. J. Math. 40 (1988), 633-648. 
D. Knutson, A.-Rings and the Representation Theory of the Symmetric Group, 
Springer Lecture Notes 308, Springer-Verlag, Heidelberg 1973. 
B. Kostant, A formula for the multiplicity of a weight, Trans. Amer. Math. 
Soc. 93 (1959),53-73. 
K. Koike and I. Terada, Young-diagrammatic methods for the representa

tion theory of the classical groups of type B. , C. , and D., J. Algebra 107 
(1987),466-511. 
J. P. S. Kung (ed.), Young Tableaux in Combinatorics, Invariant Theory, and 
Algebra, Academic Press, New York, 1982. 
S. Kumar, Proof of the Parthasarathy-Ranga Rao-Varadarajan conjec
ture, Invent. Math. 93 (1988), 117- 130. 
S. Kumar, A refinement of the PRV conjecture, Invent. Math. 97 (1989), 
305-311. 

W. Ledermann, Introduction to Group Characters, Cambridge University 
Press, Cambridge, MA, 1977. 
P. Littelmann, A Littlewood-Richardson rule for classical groups, C. R. 
Acad. Sci. Paris 306 (1988),299-303. 
Seminaire Sophus ~IE 1954/1955, Theorie des Algebres de Lie, Topologie 
des groupes de Lie, Ecole Normale Superieure, Paris, 1955. 
D. E. Littlewood, The Theory of Group Characters and Matrix Represen
tations of Groups, second ed., Oxford University Press, Oxford, 1950. 
D. E. Littlewood, A University Algebra, William Heinemann Ltd, London, 
1950; second ed., 1958, and Dover, 1970. 



540 

[Lit3] 

[Liu] 

[L-M] 

[L-M-S] 

[Lo] 
[L-S] 

[L-T] 

[L-VdV] 

[L-V] 

[Mac] 

[Mack] 

[M-S] 

[Murl] 

[Mur2] 

[No] 

[N-S] 

[Pel] 

[Pe2] 

[Por] 

[Pos] 
[Pr] 
[P-S] 
[P-W] 

[Qu] 

[Ra] 

[Sc] 

[Sch] 

[Sel] 

Bibliography 

D. E. Littlewood, On invariants under restricted groups, Phi/os. Trans. Roy. 
Soc. A 239 (1944), 387-417. 
A. Liulevicius, Arrows, symmetries and representation rings, J. Pure Appl. 
Algebra 19 (1980), 259-273. 
H. B. Lawson and M.-L. Michelson, Spin Geometry, Princeton University 
Press, Princeton, NJ, 1989. 
V. Lakshmibai, C. Musili, and C. S. Seshadri, Geometry of GIP, Bull. Amer. 
Math. Soc. 1 (1979),432-435. 
Loos, Symmetric Spaces, W. A. Benjamin, New York, 1969. 
A. Lascoux and M. P. Schiitzenherger, Formulaire raisonne de fonctions 
symmetriques, U. E. Maths, Paris VII, L.A. 248, 1985. 
G. Lancaster and J. Towher, Representation-functors and flag-algebras 
for the classical groups I, II, J . Algebra 59 (1979),16-38; 94(1985), 265-316. 
R. Lazarsfeld and A. Van de Yen, Topics in the Geometry of Projective Space, 
DMV Seminar Band 4, Birkhiiuser, Boston, MA, 1984. 
R. A. Liebler and M. R. Vitale, Ordering the partition characters of the 
symmetric group, J. Algebra 25 (1973), 487- 489. 
I. G. Macdonald, Symmetric Functions and Hall Polynomials, Clarendon 
Press, Oxford, 1979. 
G. W. Mackey, Introduction to The Racah- Wigner Algebra in Quantum 
Theory, by L. C. Biedenharn and J. D. Louck, Encyclopedia of Mathematics 
and Its Applications, vol. 9, Addison-Wesley, Reading, MA, 1981. 
G. Musili and C. S. Seshadri , Standard monomial theory, Springer Lecture 
Notes 867 (1981) , 441-476. 
F. D. Murnaghan, The Theory of Group Representations, The Johns 
Hopkins Press, Baltimore, 1938. 
F. D. Murnaghan, The Unitary and Rotation Groups, Spartan Books, 
Washington, DC, 1962. 
K . Nomizu, Lie Groups and Differential Geometry, Mathematics Society of 
Japan, Tokyo, 1956. 
M. A. Naimark and A. I. Stern, Theory of Group Representations, Springer
Verlag, New York, 1982. 
M. H. Peel, Hook representations of symmetric groups, Glasgow Math. J. 
12(1971), 136-149. 
M. H. Peel, Specht modules and the symmetric groups, J. Algebra 36 (1975), 
88- 97. 
I. R. Porteous, Topological Geometry, second edition, Cambridge University 
Press, Cambridge, MA, 1981. 
M. Postnikov, Lie Groups and Lie Algebras, MIR, Moscow 1986. 
C. Procesi, A Primer of Invariant Theory, Brandeis Lecture Notes 1, 1982. 
A. Pressley and G. Segal, Loop Groups, Clarendon Press, Oxford, 1986. 
P. Pragacz and J. Weyman, On the construction of resolutions of deter
minantal ideals: a survey, Springer Lecture Notes 1220 (1986), 73-92. 
D. Quillen, The mod 2 cohomology rings of extra-special 2-groups and the 
spinor groups, Math. Ann. 194 (1971),197- 212. 
G. Racah, Lectures on Lie groups, in Group Theoretical Concepts and 
Methods in Elementary Particle Physics, Gordon and Breach, New York, 
1964,1-36. 
R. D. Schafer, An Introduction to N onassociative Algebras, Academic Press, 
New York, 1966. 
G. W. Schwarz, On classical invariant theory and binary cubics, Ann. Inst. 
Fourier 37 (1987),191-216. 
J-P. Serre, Lie Algebras and Lie Groups, W. A. Benjamin, New York, 1965. 



Bibliography 541 

[Se2] 

[Se3] 

[S-K] 

ESp] 

[Sta] 

[Stel] 

[Ste2] 

[SOW] 

[Til] 

[Ti2] 

[To] 

[Towl] 

[Tow2] 

[Va] 

[vdW] 

[Vu] 

[Wa] 
[WeI] 

[We2] 

[Ze] 

[Zel] 

J-P. Serre, Linear Representations of Finite Groups, Springer-Verlag, New 
York,1977. 
J-P. Serre, Complex Semi-simple Lie Algebras, Springer-Verlag, New York, 
1987. 
M. Sato and T. Kimura, A classification of irreducible prehomogeneous 
vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 
1-155. 
T. A. Springer, Invariant Theory, Springer Lecture Notes 565, Springer
Verlag, Heidelberg, 1977. 
R. P. Stanley, Theory and Application of Plane Partitions, Parts 1 and 2, 
Studies Appl. Math. 1 (1971), 167-188,259-279. 
R. Steinberg, The representations of GL(3, q), GL(4, q), PGL(3, q), and 
PGL(4, q), Can. J. Math. 3 (1951),225-235. 
R. Steinberg, Conjugacy classes in Algebraic Groups, Springer Lecture Notes 
366, Springer-Verlag, Heidelberg, 1974. 
D. H. Sattinger and O. L. Weaver, Lie Groups and Algebras with Applications 
to Physics, Geometry, and Mechanics, Springer-Verlag, New York, 1986. 
J. Tits, Groupes simples et geometries associees, Proc. Intern. Congo Math. 
Stockholm (1962), 197-221. 
J. Tits, Sur les constantes de structure et Ie theoreme d'existence des algebres 
de Lie semi-simples, Publ. Math. I.H.E.S. 31 (1965),21-58. 
M. L. Tomber, Lie algebras of type F, Proc. Amer. Math. Soc. 4 (1953), 
759-768. 
J. Towber, Two new functors from modules to algebras, J. Algebra 47 
(1977),80-104. 
J. Towber, Young symmetry, the flag manifold, and representations of 
GL(n), J. Algebra 61 (1979),414-462. 
V. S. Varadarajan, Lie Groups, Lie Algebras, and Their Representations, 
Springer-Verlag, New York, 1974, 1984. 
B. L. van der Waerden, Reihenentwicklungen und Uberschiebungen in der 
Invariantentheorie, insbesondere im quarternaren Giebiet, Math. Ann. 113 
(1936), 14-35. 

T. Vust, Sur la theorie des invariants des groupes c1assiques, Ann. Inst. 
Fourier 26 (1976),1-31. 
Z-X. Wan, Lie Algebras, Pergamon Press, New York, 1975. 
H. Weyl, Classical Groups, Princeton University Press, Princeton, NJ, 1939; 
second edition, 1946. 
H. Weyl, Uber Algebren, die mit der Komplexgruppe in Zusammenhang 
stehen, und ihre Darstellungen, Math. Zeit. 35 (1932),300-320. 
A. V. Zelevinsky, Representations of Finite Classical Groups, Springer 

Lectur!! Notes 869, Springer-Verlag, Heidelberg 1981. 
D. P. Zelobenko, Compact Lie Groups and Their Representations, Trans
lations of Mathematical Monographs, vol. 40, American Mathematical 
Society, Providence, RI, 1973. 



Index of Symbols 

g'v = gv = p(g)(v) (group action, 

representation), 3 

VEBW,V®W,4 
NV,4 

Sym"V, 4 

V·,4 

< , ),4 
p·,4 
VIEDa, EB ... EB "I:EDak = al VI E9 ... EB 

ak"l: = al VI + ... + ak "1:, 7 
U (trivial rep.), 9 

V (standard rep.), 9 
U' (alternating rep.), 9 

Xv (character of V), 13 
Tr (trace), 13 

[g] (conjugacy class of g), 14 

Cclass(G) (class functions on), 16 

( , ) (inner product), 16 
6 d (symmetric group), 18 

2Id (alternating group), 18 

R(G) (representation ring of G), 22 

IRl (external tensor product), 24 

D2" (dihedral group), 30 

Cm (Clifford algebra), 30 

SL2(Z/3),31 

Res~ V, Res(V) (restriction of 

representation), 32 

Ind~ V, Ind(V) (induced representation), 

33 

CG (group algebra of G), 36 

RK(G) (representation ring over K), 42 

p(d) (number of partitions of d), 44 

A.' (conjugate partition to A.), 45 

PA, QA,46 

aA, bA, 46 
CA (Young symmetrizer), 46 

VA,46 
lj(x) (power sum), 48, 459 

l\(x) (discriminant), 48, 459 

[f(x)]o, ..... Ik )' 48, 459 
Sl (Schur polynomial), 49, 454 

A = C6d (group ring of 6 d ), 52 

6 A,54 

UA,54 

"'A' 54 
pi.!), 55,459-460 

wA(i), 55, 459-460 

X A = xt, ' ... ' x:., 55,459-460 

K"v (Kostka number), 56, 456 

"'a, 58 
VI 0 ... 0 "I: (outer product), 58 

N1". (Littlewood-Richardson number), 

58,79,82,424,427,455-456 

C1"., 61 
GL2(fq), SL2(fq), PGL2(fq), 67 

§A V (Schurfunctor, Weyl module), 76-77 

Xs.v(g),76-77 

SAIl" CAlI" VAIl" §AII" 82-3 



544 

GL.IR, GL(V), Aut(V) = SL.IR, 95 

B., 95 

N.,96 

SO.IR = SO(n), SOulR = SO(k, I), 96 

Sp"IR,96 

O.IR = O(n), 97 

GL.C, SL.C, 97 

SO.C,97 

Sp2.C,97 

U. = U(n), SU(n), Uk.' = U(k, I), 

SUk., = SU(k, 1),98 

GL.n-D,98 

SL.n-D,98-100 

Sp(n) = UH(n),98-100 

Up•q n-D,98-100 

U:(II-B), 98-100 

Z(G) (center of G), 101 

PSL.IR, PSL.C, PGL.C, PSO.IR, 

PSO.C, PSP2.1R, PSP2.C, 102 

Spin.lR, Spin.C, 102 

1'.G (tangent space), 105 

mg (left multiplication by g), 105 
'l'g (conjugation by g), 105 

Ad, ad (adjoint actions), 106-107 

[ , ] (bracket in Lie algebra), 107 

gl(V), gl.1R. 109 

sl.lR, 112 

so.1R = o.lR, 112 

Sl'2.1R, 112 

u.,I13 

b.lR, 113 

".IR, 113 
gl.C, sl.C, 113 

so .. C,113 

Sl'2.C, 113 
CfJx (one-parameter subgroup), 115 

exp (exponential map), 115 

X. Y = 10g(exp(X)' exp(Y)), 117 

Z(g) (center of g), 121 

~lg, ~lg, ~g = [g, g] (commutator 

subalgebra), 122 

Rad(g) (radical of g), 123 

g .. = gjRad(g), 127 

X = X. + X. (Jordan decomposition), 
128,482 

H,147 

X,147 

Y, 147 

v., 147 

Index of Symbols 

PW (projective space oflines in W), 153 

[w],153 

[zo, ... , z .. ], 153 
I.: pi c:...P· (rational normal curve), 154 

~, 162, 198 

~,162, 198 

Ei•j , (weights), 163,212, 239 

Li (weights), 163,212,239 

AR (root lattice), 165-166, 198,213 

I: AR -+ IR, 166, 202, 243 

Aw (weight lattice), 172, 200 

rG• b (irred. rep. of sl3 C with highest weight 

aLi + b(L, + L 2 )), 176,244 

R (the set of roots), 198 

s. (subalgebra ~ Sl2C corresponding 

to root ex), 200 

H., (elts. of s. corresponding to H, X, Y 
in SI2C), 200 

X., (elts. of s. corresponding to H, X, Y 

in sI2C)' 200 
y. (elts. of s. corresponding to H, X, Y 

in sI2C), 200 

W. (reflection on ~. corresponding to 

root ex), 200 

n. (hyperplane in ~. corresponding to 

root ex), 200 

lID (Weyl group), 201 

V(6) (ex-string of P), 201 
R+ (positive roots), R- (negative roots), 

202 

"If" (closed Weyt chamber), 205 

OJ" ... , OJ. (fundamental weights), 

205,306 

rG, ... .. G" (irred. rep. with highest wt. 

alOJ, + ... + a.OJ.), 205 
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S = J\"W (spin representation), 307 
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1\ (trilinear maps), 360 
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o (Octonians, Cayley algebra1362-365 
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Ai (exterior power operator), 380-381 

t/l i (Adams operator), 380-381 

b (Borel subalgebra), 382-383 
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p(:E),385 

Ll (line bundle), 392 
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V, V-, V(W), V(W)" 396 
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p (half the sum of the positive roots), AI" 

400 
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nl' (dimension of weight space), 415 

C (Casimir operator), 416 

P, P~, 419-420 

.1,419-420 

V,419-420 

P(Il) (Kostant's counting function), 421 

N1I,428 
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H .. , Hj (complete symmetric polynomials), 

453 

M .. (monomial symmetric polynomials), 

454 
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polynomials),454 

S .. (Schur polynomials), 454 
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Bv (Killing form on V),478 
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U = U(g) (universal enveloping algebra), 
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c(H),487 

e(X) = exp(ad(X)), 491 
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Adams operators, 380, 449 

adjoint form (of a Lie group), 101 

adjoint representation, 106 

admissible Coxeter diagram, 327 

Ado's theorem, 124,500-503 

algebraic group, 95, 374 

alternating group (representations of) 

213 ,9 
214 ,20 

21s,29 

21d,63-67 

alternating map, 472 

alternating representation, 9 

Artin's theorem, 36 

automorphism group of a Lie algebra, 

498 

averaging, 6, 15,21 

bilinear form, 40, 97 

Borel-Weil-Bott-Schmid theorem, 392-

393 

Borel subalgebra, 210, 338, 382 

Borel subgroup, 67, 383, 4' 8 

Borel's fixed point theorem, 384 

bracket, 107 -1 08, 504 

branching formula, 59,426 

Brauer's theorem, 36 

Bruhat cell and decomposition, 395-398 

Burnside, 24-25 

Campbell-Hausdorff formula, 117 

Capelli's identity, 507-508, 514-515 

Cartan, 434 

Cartan criterion for solvability, 479 

Cartan decomposition, 198,437 

Cartan matrix, 334 

Cartan multiplication, 429 

Cartan subalgebra, 198,338,432, 

478-492 

Cartan subgroup, 369, 373, 381 

Casimir operator, 416, 429, 481 

Cauchy's identity, 457-458 

Cayley algebra, 362-365 

Cayley operator, 507 

center of Lie algebra, 121 

character (ofrepresentation), 13, 22, 375, 

440,442 

character homomorphism, 375 

character table, 14 

of 6 3 ,14 

of 6 4 , 19 
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character table (cont.) 

of 214 , 20 

of 6 5,28 

of 21 5 , 29 

of6d ,49 

of21d,66 

of GL2 (lFq), 70 

of SL2 (lFq), 71-73 

characteristic ideal, 484 

characteristics (of Frobenius), 51 

Chevalley groups, 74 

chordal variety, 192,230 

class function, 13, 22 

classical Lie algebras and groups, 132, 

367-375 

Clebsch,237 

Clebsch-Gordan problem, 8, 424 
Clifford, 64 

Clifford algebras, 30, 299-307, 364-365 

commutator algebra, 84 

commutator subalgebra of Lie algebra, 
122 

compact form, 432-438 

complete reducibility, 6, 128,481-483 

complete symmetric polynomial, 77, 453 

complex Lie algebra, 109 

complex Lie group, 95 

complex representation, 41, 444-449 

complex torus, 120 

complexification, 430, 438 

conjugate linear involution, 436 

conjugate partition, 45, 454 

conjugate representation, 64 

connected Lie group, 94 

contraction maps, 182,224,260-262, 

288,475-477 

convolution, 38 

coroot, 495-496 

Coxeter diagram, 327 

cube, rigid motions of, 20 

degree (of representation), 3 

derivation, 113, 480, 483-486 

derived series, 122 

Deruyts, 237 

determinantal formula, 58, 404, 406-411, 
454-470 

dihedral group, 30, 243 

Index 

dimension of Lie group, 93 

direct sum (of representations), 4 

discriminant, 48, 400, 454 

distinguished subalgebras, 200 

dodecahedron, rigid motions of, 29-30 

dominant weight, 203, 376 

dual (of representation), 4, 110, 233 

dual (of root system), 496 

Dynkin,117 

Dynkin diagrams, 319-338 

eigenspace, 162 

eigenvector, 162 

eightfold way, 179 

elementary subgroup, 36 

elementary symmetric polynomial, 77, 

454 

elliptic curve, 133-135 

Engel's theorem, 125 

exceptional Lie algebras and groups, 132, 

339- 365 

B2,339-359,362-364,391-392 

t6 - ts, 361-362, 392 

f4, 362, 365 

exponential map, 115-120,369-370 

exterior algebra, 475 

exterior powers of representations, 4, 

31-32,472-477 

external tensor product, 24, 427 

extra-special 2-groups, 31 

first fundamental theorem of invariant 

theory, 504-513 

fixed point formula, 14,384,393 

flag (complete and partial), 95-96, 

383-398 

flag manifold, 73, 383-398 

Fourier inversion formula, 17 

Fourier transform, 38 

Freudenthal, 359, 361 

Freudenthal multiplicity formula, 

415-419 

Frobenius character formula, 49, 54-62 

Frobenius reciprocity, 35, 37-38 
fundamental weights, 205, 287, 295, 

376-378,528 
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general linear group, 95, 97, 231-237 

Giambelli's formula, 404-411, 455 

Grassmannian, 192,227-231,276-278, 
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(Lagrangian and orthogonal), 386-

387,390 

group algebra, 36-39 

half-spin representations, 306 

Heisenberg group, 31 

Hermite reciprocity, 82, 160, 189,233 
Hermitian inner product, form, 6, 1I, 16, 

98,99 

Hessian, 157 

highest weight, 175, 203 

highest weight vector, 167, 175, 202 

homogeneous spaces, 382-398 

hook length (formula), 50, 78, 41I-412 

Hopf algebra, 62 

icosahedron, rigid motions of, 29-30 

ideal in Lie algebra, 122 

immersed subgroup, 95 

incidence correspondence, 193 

induced representation, 32-36, 37-38, 

393 

indecomposable representation, 6 

inner multiplicities, 415 

inner product, 16,23,79 

internal products, 476 

invariant polynomials, 504-513 

invariant subspace, 6 

irreducible representation, 4 

isogenous, isogeny, 101 

isotropic, 262, 274, 278, 304, 383-390 

Jacobi identity, 108, 1I4 

Jacobi-Trudy identity, 455 

Jordan algebra, 365 

Jordan decomposition, 128-129,478, 

482- 483 

Killing form, 202, 206- 210, 240-241, 

272,478-479 

King, 41I, 424 

Klimyk,428 

Kostant, 429 
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Kostant multiplicity formula, 419-424 

Kostka numbers, 56-57, 80, 456-457, 

459 

.i.-ring, 380 

level (of a root), 330 

Levi decomposition, subalgebra, 124, 

499-500 

lexicographic ordering of partitions, 53 

Lie algebra, 108 

Lie group, 93 
Lie subalgebra, 109 

Lie subgroup, 94 

Lie's theorem, 126 

Littlewood-Richardson number, 58, 79, 

82-83,424,427,455-456 

Littlewood-Richardson rule, 58, 79, 

225-227, 455-456 

lower central series, 122 

map between representations, 3 
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minuscule weight, 423 

modification rules, 426 

modular representation, 7 

Molien, 24-25 

module (G-module, g-module), 3,481 

monomial symmetric polynomial, 454 

morphism of Lie groups, 93 

multilinear map, 472 

multiplicities, 7,17,199,375 

Murnaghan-Nakayama rule, 59 

natural real form, 435, 437 

Newton polynomials, 460 

nil radical, 485 

nilpotent Lie algebra, 122, 124-125 

nilrepresentation, 501 

octonians, 362-365 
one-parameter subgroup, 1I5 

ordering of roots, 202 
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301, 367, 374 

orthogonal Lie algebras, 268-269 

orthonormal, 16, 17,22 
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pairing, 4 

partition, 18,44-45,421,453 

perfect Lie algebra, 123 

perfect pairing, 28 

permutation representation, 5 

Peter-Weyl theorem, 440 
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Plucker embedding, 227-228, 389 
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power sums, 48, 459-460 

primitive root, 204, 215, 243, 271-272 
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quaternionic representation, 41, 444-449 

Racah,422,425,428 

radical of a Lie algebra, 123,483-481 
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semisimple representation, 131 
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skew hook, 59 
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