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Foreword

The present edition of the book differs substantially from the previous one. Over the

period of time since the publication of the previous edition the author has accumu-

lated quite a lot of ideas concerning possible improvements to some chapters of the

book. In addition, some new opportunities were found for an accessible exposition

of new topics that had not appeared in textbooks before but which are of certain

interest for applications and reflect current trends in the development of modern

probability theory. All this led to the need for one more revision of the book. As

a result, many methodological changes were made and a lot of new material was

added, which makes the book more logically coherent and complete. We will list

here only the main changes in the order of their appearance in the text.

• Section 4.4 “Expectations of Sums of a Random Number of Random Variables”

was significantly revised. New sufficient conditions for Wald’s identity were added.

An example is given showing that, when summands are non-identically distributed,

Wald’s identity can fail to hold even in the case when its right-hand side is well-

defined. Later on, Theorem 11.3.2 shows that, for identically distributed summands,

Wald’s identity is always valid whenever its right-hand side is well-defined.

• In Sect. 6.1 a criterion of uniform integrability of random variables is con-

structed, which simplifies the use of this notion. For example, the criterion directly

implies uniform integrability of weighted sums of uniformly integrable random vari-

ables.

• Section 7.2, which is devoted to inversion formulas, was substantially expanded

and now includes assertions useful for proving integro-local theorems in Sect. 8.7.

• In Chap. 8, integro-local limit theorems for sums of identically distributed ran-

dom variables were added (Sects. 8.7 and 8.8). These theorems, being substantially

more precise assertions than the integral limit theorems, do not require additional

conditions and play an important role in investigating large deviation probabilities

in Chap. 9.
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vi Foreword

• A new chapter was written on probabilities of large deviations of sums of ran-

dom variables (Chap. 9). The chapter provides a systematic and rather complete

exposition of the large deviation theory both in the case where the Cramér condition

(rapid decay of distributions at infinity) is satisfied and where it is not. Both integral

and integro-local theorems are obtained. The large deviation principle is established.

• Assertions concerning the case of non-identically distributed random variables

were added in Chap. 10 on “Renewal Processes”. Among them are renewal theo-

rems as well as the law of large numbers and the central limit theorem for renewal

processes. A new section was written to present the theory of generalised renewal

processes.

• An extension of the Kolmogorov strong law of large numbers to the case

of non-identically distributed random variables having the first moment only was

added to Chap. 11. A new subsection on the “Strong law of large numbers for gen-

eralised renewal processes” was written.

• Chapter 12 on “Random walks and factorisation identities” was substantially

revised. A number of new sections were added: on finding factorisation components

in explicit form, on the asymptotic properties of the distribution of the suprema of

cumulated sums and generalised renewal processes, and on the distribution of the

first passage time.

• In Chap. 13, devoted to Markov chains, a section on “The law of large numbers

and central limit theorem for sums of random variables defined on a Markov chain”

was added.

• Three new appendices (6, 7 and 8) were written. They present important aux-

iliary material on the following topics: “The basic properties of regularly varying

functions and subexponential distributions”, “Proofs of theorems on convergence to

stable laws”, and “Upper and lower bounds for the distributions of sums and maxima

of sums of independent random variables”.

As has already been noted, these are just the most significant changes; there are

also many others. A lot of typos and other inaccuracies were fixed. The process of

creating new typos and misprints in the course of one’s work on a book is random

and can be well described mathematically by the Poisson process (for the defini-

tion of Poisson processes, see Chaps 10 and 19). An important characteristic of the

quality of a book is the intensity of this process. Unfortunately, I am afraid that in

the two previous editions (1999 and 2003) this intensity perhaps exceeded a certain

acceptable level. Not renouncing his own responsibility, the author still admits that

this may be due, to some extent, to the fact that the publication of these editions took

place at the time of a certain decline of the publishing industry in Russia related to

the general state of the economy at that time (in the 1972, 1976 and 1986 editions

there were much fewer such defects).



Foreword vii

Before starting to work on the new edition, I asked my colleagues from our lab-

oratory at the Sobolev Institute of Mathematics and from the Chair of Probability

Theory and Mathematical Statistics at Novosibirsk State University to prepare lists

of any typos and other inaccuracies they had spotted in the book, as well as sug-

gested improvements of exposition. I am very grateful to everyone who provided

me with such information. I would like to express special thanks to I.S. Borisov,

V.I. Lotov, A.A. Mogul’sky and S.G. Foss, who also offered a number of method-

ological improvements.

I am also deeply grateful to T.V. Belyaeva for her invaluable assistance in type-

setting the book with its numerous changes. Without that help, the work on the new

edition would have been much more difficult.

A.A. Borovkov



Foreword to the Third and Fourth Editions

This book has been written on the basis of the Russian version (1986) published

by “Nauka” Publishers in Moscow. A number of sections have been substantially

revised and several new chapters have been introduced. The author has striven to

provide a complete and logical exposition and simpler and more illustrative proofs.

The 1986 text was preceded by two earlier editions (1972 and 1976). The first one

appeared as an extended version of lecture notes of the course the author taught

at the Department of Mechanics and Mathematics of Novosibirsk State University.

Each new edition responded to comments by the readers and was completed with

new sections which made the exposition more unified and complete.

The readers are assumed to be familiar with a traditional calculus course. They

would also benefit from knowing elements of measure theory and, in particular,

the notion of integral with respect to a measure on an arbitrary space and its basic

properties. However, provided they are prepared to use a less general version of

some of the assertions, this lack of additional knowledge will not hinder the reader

from successfully mastering the material. It is also possible for the reader to avoid

such complications completely by reading the respective Appendices (located at the

end of the book) which contain all the necessary results.

The first ten chapters of the book are devoted to the basics of probability theory

(including the main limit theorems for cumulative sums of random variables), and it

is best to read them in succession. The remaining chapters deal with more specific

parts of the theory of probability and could be divided into two blocks: random

processes in discrete time (or random sequences, Chaps. 12 and 14–16) and random

processes in continuous time (Chaps. 17–21).

There are also chapters which remain outside the mainstream of the text as indi-

cated above. These include Chap. 11 “Factorisation Identities”. The chapter not only

contains a series of very useful probabilistic results, but also displays interesting re-

lationships between problems on random walks in the presence of boundaries and

boundary problems of complex analysis. Chapter 13 “Information and Entropy” and

Chap. 19 “Functional Limit Theorems” also deviate from the mainstream. The for-

mer deals with problems closely related to probability theory but very rarely treated

in texts on the discipline. The latter presents limit theorems for the convergence

ix
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of processes generated by cumulative sums of random variables to the Wiener and

Poisson processes; as a consequence, the law of the iterated logarithm is established

in that chapter.

The book has incorporated a number of methodological improvements. Some

parts of it are devoted to subjects to be covered in a textbook for the first time (for

example, Chap. 16 on stochastic recursive sequences playing an important role in

applications).

The book can serve as a basis for third year courses for students with a rea-

sonable mathematical background, and also for postgraduates. A one-semester (or

two-trimester) course on probability theory might consist (there could be many vari-

ants) of the following parts: Chaps. 1–2, Sects. 3.1–3.4, 4.1–4.6 (partially), 5.2 and

5.4 (partially), 6.1–6.3 (partially), 7.1, 7.2, 7.4–7.6, 8.1–8.2 and 8.4 (partially), 10.1,

10.3, and the main results of Chap. 12.

For a more detailed exposition of some aspects of Probability Theory and the

Theory of Random Processes, see for example [2, 10, 12–14, 26, 31].

While working on the different versions of the book, I received advice and

help from many of my colleagues and friends. I am grateful to Yu.V. Prokhorov,

V.V. Petrov and B.A. Rogozin for their numerous useful comments which helped

to improve the first variant of the book. I am deeply indebted to A.N. Kolmogorov

whose remarks and valuable recommendations, especially of methodological char-

acter, contributed to improvements in the second version of the book. In regard to

the second and third versions, I am again thankful to V.V Petrov who gave me his

comments, and to P. Franken, with whom I had a lot of useful discussions while the

book was translated into German.

In conclusion I want to express my sincere gratitude to V.V. Yurinskii, A.I. Sakha-

nenko, K.A. Borovkov, and other colleagues of mine who also gave me their com-

ments on the manuscript. I would also like to express my gratitude to all those who

contributed, in one way or another, to the preparation and improvement of the book.

A.A. Borovkov



For the Reader’s Attention

The numeration of formulas, lemmas, theorems and corollaries consists of three

numbers, of which the first two are the numbers of the current chapter and section.

For instance, Theorem 4.3.1 means Theorem 1 from Sect. 3 of Chap. 4. Section 6.2

means Sect. 2 of Chap. 6.

The sections marked with an asterisk may be omitted in the first reading.

The symbol � at the end of a paragraph denotes the end of a proof or an important

argument, when it should be pointed out that the argument has ended.

The symbol :=, systematically used in the book, means that the left-hand side is

defined to be given by the right-hand side. The relation=: has the opposite meaning:

the right-hand side is defined by the left-hand side.

The reader may find it useful to refer to the Index of Basic Notation and Subject

index, which can be found at the end of this book.
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Introduction

1. It is customary to set the origins of Probability Theory at the 17th century and

relate them to combinatorial problems of games of chance. The latter can hardly be

considered a serious occupation. However, it is games of chance that led to prob-

lems which could not be stated and solved within the framework of the then existing

mathematical models, and thereby stimulated the introduction of new concepts, ap-

proaches and ideas. These new elements can already be encountered in writings by

P. Fermat, D. Pascal, C. Huygens and, in a more developed form and somewhat

later, in the works of J. Bernoulli, P.-S. Laplace, C.F. Gauss and others. The above-

mentioned names undoubtedly decorate the genealogy of Probability Theory which,

as we saw, is also related to some extent to the vices of society. Incidentally, as it

soon became clear, it is precisely this last circumstance that can make Probability

Theory more attractive to the reader.

The first text on Probability Theory was Huygens’ treatise De Ratiociniis in Ludo
Alea (“On Ratiocination in Dice Games”, 1657). A bit later in 1663 the book Liber
de Ludo Aleae (“Book on Games of Chance”) by G. Cardano was published (in

fact it was written earlier, in the mid 16th century). The subject of these treatises

was the same as in the writings of Fermat and Pascal: dice and card games (prob-

lems within the framework of Sect. 1.2 of the present book). As if Huygens foresaw

future events, he wrote that if the reader studied the subject closely, he would no-

tice that one was not dealing just with a game here, but rather that the foundations

of a very interesting and deep theory were being laid. Huygens’ treatise, which is

also known as the first text introducing the concept of mathematical expectation,

was later included by J. Bernoulli in his famous book Ars Conjectandi (“The Art

of Conjecturing”; published posthumously in 1713). To this book is related the no-

tion of the so-called Bernoulli scheme (see Sect. 1.3), for which Bernoulli gave a

cumbersome (cf. our Sect. 5.1) but mathematically faultless proof of the first limit

theorem of Probability Theory, the Law of Large Numbers.

By the end of the 19th and the beginning of the 20th centuries, the natural sci-

ences led to the formulation of more serious problems which resulted in the develop-

ment of a large branch of mathematics that is nowadays called Probability Theory.

This subject is still going through a stage of intensive development. To a large extent,

xiii



xiv Introduction

Probability Theory owes its elegance, modern form and a multitude of achievements

to the remarkable Russian mathematicians P.L. Chebyshev, A.A. Markov, A.N. Kol-

mogorov and others.

The fact that increasing our knowledge about nature leads to further demand for

Probability Theory appears, at first glance, paradoxical. Indeed, as the reader might

already know, the main object of the theory is randomness, or uncertainty, which is

due, as a rule, to a lack of knowledge. This is certainly so in the classical example

of coin tossing, where one cannot take into account all the factors influencing the

eventual position of the tossed coin when it lands.

However, this is only an apparent paradox. In fact, there are almost no exact de-

terministic quantitative laws in nature. Thus, for example, the classical law relating

the pressure and temperature in a volume of gas is actually a result of a probabilistic

nature that relates the number of collisions of particles with the vessel walls to their

velocities. The fact is, at typical temperatures and pressures, the number of particles

is so large and their individual contributions are so small that, using conventional

instruments, one simply cannot register the random deviations from the relationship

which actually take place. This is not the case when one studies more sparse flows

of particles—say, cosmic rays—although there is no qualitative difference between

these two examples.

We could move in a somewhat different direction and name here the uncertainty

principle stating that one cannot simultaneously obtain exact measurements of any

two conjugate observables (for example, the position and velocity of an object).

Here randomness is not entailed by a lack of knowledge, but rather appears as a fun-

damental phenomenon reflecting the nature of things. For instance, the lifetime of a

radioactive nucleus is essentially random, and this randomness cannot be eliminated

by increasing our knowledge.

Thus, uncertainty was there at the very beginning of the cognition process, and

it will always accompany us in our quest for knowledge. These are rather general

comments, of course, but it appears that the answer to the question of when one

should use the methods of Probability Theory and when one should not will always

be determined by the relationship between the degree of precision we want to attain

when studying a given phenomenon and what we know about the nature of the latter.

2. In almost all areas of human activity there are situations where some exper-

iments or observations can be repeated a large number of times under the same

conditions. Probability Theory deals with those experiments of which the result (ex-

pressed in one way or another) may vary from trial to trial. The events that refer to

the experiment’s result and which may or may not occur are usually called random
events.

For example, suppose we are tossing a coin. The experiment has only two out-

comes: either heads or tails show up, and before the experiment has been carried

out, it is impossible to say which one will occur. As we have already noted, the rea-

son for this is that we cannot take into account all the factors influencing the final

position of the coin. A similar situation will prevail if you buy a ticket for each lot-

tery draw and try to predict whether it will win or not, or, observing the operation of

a complex machine, you try to determine in advance if it will have failed before or
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Fig. 1 The plot of the

relative frequencies nh/n

corresponding to the outcome

sequence htthtthhhthht in

the coin tossing experiment

after a given time. In such situations, it is very hard to find any laws when consid-

ering the results of individual experiments. Therefore there is little justification for

constructing any theory here.

However, if one turns to a long sequence of repetitions of such an experiment,

an interesting phenomenon becomes apparent. While individual results of the ex-

periments display a highly “irregular” behaviour, the average results demonstrate

stability. Consider, say, a long series of repetitions of our coin tossing experiment

and denote by nh the number of heads in the first n trials. Plot the ratio nh/n ver-

sus the number n of conducted experiments (see Fig. 1; the plot corresponds to the

outcome sequence htthtthhhthh, where h stands for heads and t for tails, respec-

tively).

We will then see that, as n increases, the polygon connecting the consecutive

points (n,nh/n) very quickly approaches the straight line nh/n = 1/2. To verify

this observation, G.L. Leclerc, comte de Buffon,1 tossed a coin 4040 times. The

number of heads was 2048, so that the relative frequency nh/n of heads was 0.5069.

K. Pearson tossed a coin 24,000 times and got 12,012 heads, so that nh/n= 0.5005.

It turns out that this phenomenon is universal: the relative frequency of a certain
outcome in a series of repetitions of an experiment under the same conditions tends
towards a certain number p ∈ [0,1] as the number of repetitions grows. It is an

objective law of nature which forms the foundation of Probability Theory.

It would be natural to define the probability of an experiment outcome to be just

the number p towards which the relative frequency of the outcome tends. How-

ever, such a definition of probability (usually related to the name of R. von Mises)

has proven to be inconvenient. First of all, in reality, each time we will be dealing

not with an infinite sequence of frequencies, but rather with finitely many elements

thereof. Obtaining the entire sequence is unfeasible. Hence the frequency (let it

again be nh/n) of the occurrence of a certain outcome will, as a rule, be different

for each new series of repetitions of the same experiment.

This fact led to intense discussions and a lot of disagreement regarding how one

should define the concept of probability. Fortunately, there was a class of phenomena

that possessed certain “symmetry” (in gambling, coin tossing etc.) for which one

could compute in advance, prior to the experiment, the expected numerical values

1The data is borrowed from [15].
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of the probabilities. Take, for instance, a cube made of a sufficiently homogeneous

material. There are no reasons for the cube to fall on any of its faces more often

than on some other face. It is therefore natural to expect that, when rolling a die a

large number of times, the frequency of each of its faces will be close to 1/6. Based

on these considerations, Laplace believed that the concept of equiprobability is the

fundamental one for Probability Theory. The probability of an event would then be

defined as the ratio of the number of “favourable” outcomes to the total number of

possible outcomes. Thus, the probability of getting an odd number of points (e.g. 1,

3 or 5) when rolling a die once was declared to be 3/6 (i.e. the number of faces with

an odd number of points was divided by the total number of all faces). If the die were

rolled ten times, then one would have 610 in the denominator, as this number gives

the total number of equally likely outcomes and calculating probabilities reduces to

counting the number of “favourable outcomes” (the ones resulting in the occurrence

of a given event).

The development of the mathematical theory of probabilities began from the in-

stance when one started defining probability as the ratio of the number of favourable

outcomes to the total number of equally likely outcomes, and this approach is nowa-

days called “classical” (for more details, see Chap. 1).

Later on, at the beginning of the 20th century, this approach was severely crit-

icised for being too restrictive. The initiator of the critique was R. von Mises. As

we have already noted, his conception was based on postulating stability of the fre-

quencies of events in a long series of experiments. That was a confusion of physical

and mathematical concepts. No passage to the limit can serve as justification for

introducing the notion of “probability”. If, for instance, the values nh/n were to

converge to the limiting value 1/2 in Fig. 1 too slowly, that would mean that no-

body would be able to find the value of that limit in the general (non-classical) case.

So the approach is clearly vulnerable: it would mean that Probability Theory would

be applicable only to those situations where frequencies have a limit. But why fre-

quencies would have a limit remained unexplained and was not even discussed.

In this relation, R. von Mises’ conception has been in turn criticised by many

mathematicians, including A.Ya. Khinchin, S.N. Bernstein, A.N. Kolmogorov and

others. Somewhat later, another approach was suggested that proved to be fruitful

for the development of the mathematical theory of probabilities. Its general features

were outlined by S.N. Bernstein in 1908. In 1933 a rather short book “Foundations

of Probability Theory” by A.N. Kolmogorov appeared that contained a complete

and clear exposition of the axioms of Probability Theory. The general construction

of the concept of probability based on Kolmogorov’s axiomatics removed all the

obstacles for the development of the theory and is nowadays universally accepted.

The creation of an axiomatic Probability Theory provided a solution to the sixth

Hilbert problem (which concerned, in particular, Probability Theory) that had been

formulated by D. Hilbert at the Second International Congress of Mathematicians

in Paris in 1900. The problem was on the axiomatic construction of a number of

physical sciences, Probability Theory being classified as such by Hilbert at that

time.

An axiomatic foundation separates the mathematical aspect from the physical:

one no longer needs to explain how and where the concept of probability comes
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from. The concept simply becomes a primitive one, its properties being described

by axioms (which are essentially the axioms of Measure Theory). However, the

problem of how the probability thus introduced is related (and can be applied) to

the real world remains open. But this problem is mostly removed by the remarkable

fact that, under the axiomatic construction, the desired fundamental property that the

frequencies of the occurrence of an event converge to the probability of the event

does take place and is a precise mathematical result. (For more details, see Chaps. 2

and 5.)2

We will begin by defining probability in a somewhat simplified situation, in the

so-called discrete case.

2Much later, in the 1960s A.N. Kolmogorov attempted to develop a fundamentally different ap-

proach to the notions of probability and randomness. In that approach, the measure of randomness,

say, of a sequence 0,1,0,0,1, . . . consisting of 0s and 1s (or some other symbols) is the complex-

ity of the algorithm describing this sequence. The new approach stimulated the development of a

number of directions in contemporary mathematics, but, mostly due to its complexity, has not yet

become widely accepted.
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Chapter 1

Discrete Spaces of Elementary Events

Abstract Section 1.1 introduces the fundamental concept of probability space,

along with some basic terminology and properties of probability when it is easy

to do, i.e. in the simple case of random experiments with finitely or at most count-

ably many outcomes. The classical scheme of finitely many equally likely outcomes

is discussed in more detail in Sect. 1.2. Then the Bernoulli scheme is introduced and

the properties of the binomial distribution are studied in Sect. 1.3. Sampling without

replacement from a large population is considered, and convergence of the emerging

hypergeometric distributions to the binomial one is formally proved. The inclusion-

exclusion formula for the probabilities of unions of events is derived and illustrated

by some applications in Sect. 1.4.

1.1 Probability Space

To mathematically describe experiments with random outcomes, we will first of all

need the notion of the space of elementary events (or outcomes) corresponding to the

experiment under consideration. We will denote by Ω any set such that each result

of the experiment we are interested in can be uniquely specified by the elements

of Ω .

In the simplest experiments we usually deal with finite spaces of elementary out-

comes. In the coin tossing example we considered above, Ω consists of two ele-

ments, “heads” and “tails”. In the die rolling experiment, the space Ω is also finite

and consists of 6 elements. However, even for tossing a coin (or rolling a die) one

can arrange such experiments for which finite spaces of elementary events will not

suffice. For instance, consider the following experiment: a coin is tossed until heads

shows for the first time, and then the experiment is stopped. If t designates tails in

a toss and h heads, then an “elementary outcome” of the experiment can be repre-

sented by a sequence (t t . . . th). There are infinitely many such sequences, and all

of them are different, so there is no way to describe unambiguously all the outcomes

of the experiment by elements of a finite space.

Consider finite or countably infinite spaces of elementary events Ω . These are

the so-called discrete spaces. We will denote the elements of a space Ω by the letter

ω and call them elementary events (or elementary outcomes).
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2 1 Discrete Spaces of Elementary Events

The notion of the space of elementary events itself is mathematically undefinable:

it is a primitive one, like the notion of a point in geometry. The specific nature of Ω

will, as a rule, be of no interest to us.

Any subset A ⊆ Ω will be called an event (the event A occurs if any of the

elementary outcomes ω ∈A occurs).

The union or sum of two events A and B is the event A∪B (which may also be

denoted by A+ B) consisting of the elementary outcomes which belong to at least

one of the events A and B . The product or intersection AB (which is often denoted

by A∩B as well) is the event consisting of all elementary events belonging to both

A and B . The difference of the events A and B is the set A−B (also often denoted

by A\B) consisting of all elements of A not belonging to B . The set Ω is called the

certain event. The empty set ∅ is called the impossible event. The set A=Ω −A

is called the complementary event of A. Two events A and B are mutually exclusive
if AB =∅.

Let, for instance, our experiment consist in rolling a die twice. Here one can take

the space of elementary events to be the set consisting of 36 elements (i, j), where i

and j run from 1 to 6 and denote the numbers of points that show up in the first and

second roll respectively. The events A= {i + j ≤ 3} and B = {j = 6} are mutually

exclusive. The product of the events A and C = {j is even} is the event (1,2). Note

that if we were interested in the events related to the first roll only, we could consider

a smaller space of elementary events consisting of just 6 elements i = 1,2, . . . ,6.

One says that the probabilities of elementary events are given if a nonnegative

real-valued function P is given on Ω such that
∑

ω∈Ω P(ω)= 1 (one also says that

the function P specifies a probability distribution on Ω).

The probability of an event A is the number

P(A) :=
∑

ω∈A
P(ω).

This definition is consistent, for the series on the right hand side is absolutely con-

vergent.

We note here that specific numerical values of the function P will also be of no

interest to us: this is just an issue of the practical value of the model. For instance,

it is clear that, in the case of a symmetric die, for the outcomes 1,2, . . . ,6 one

should put P(1)= P(2)= · · · = P(6)= 1/6; for a symmetric coin, one has to choose

the values P(h) = P(t) = 1/2 and not any others. In the experiment of tossing a

coin until heads shows for the first time, one should put P(h)= 1/2, P(th)= 1/22,

P(t th) = 1/23, . . . . Since
∑∞

n=1 2−n = 1, the function P given in this way on the

outcomes of the form (t . . . th) will define a probability distribution on Ω . For ex-

ample, to calculate the probability that the experiment stops on an even step (that is,

the probability of the event composed of the outcomes (th), (t t th), . . . ), one should

consider the sum of the corresponding probabilities which is equal to

∞∑

n=1

2−2n = 1

4
× 4

3
= 1

3
.
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In the experiments mentioned in the Introduction, where one had to guess when

a device will break down—before a given time (the event A) or after it, quantita-

tive estimates of the probability P(A) can usually only be based on the results of the

experiments themselves. The methods of estimating unknown probabilities from ob-

servation results are studied in Mathematical Statistics, the subject-matter of which

will be exemplified somewhat later by a problem from this chapter.

Note further that by no means can one construct models with discrete spaces of

elementary events for all experiments. For example, suppose that one is measuring

the energy of particles whose possible values fill the interval [0,V ], V > 0, but the

set of points of this interval (that is, the set of elementary events) is continuous.

Or suppose that the result of an experiment is a patient’s electrocardiogram. In this

case, the result of the experiment is an element of some functional space. In such

cases, more general schemes are needed.

From the above definitions, making use of the absolute convergence of the series∑
ω∈A P(ω), one can easily derive the following properties of probability:

(1) P(∅)= 0, P(Ω)= 1.

(2) P(A + B) =
∑

ω∈A∪B P(ω) =
∑

ω∈A P(ω) +
∑

ω∈B P(ω) −
∑

ω∈A∩B P(ω) =
P(A)+ P(B)− P(AB).

(3) P(A)= 1− P(A).

This entails, in particular, that, for disjoint (mutually exclusive) events A and B ,

P(A+B)= P(A)+ P(B).

This property of the additivity of probability continues to hold for an arbitrary

number of disjoint events A1,A2, . . . : if AiAj =∅ for i 
= j , then

P

( ∞⋃

k=1

Ak

)
=
∞∑

k=1

P(Ak). (1.1.1)

This follows from the equality

P

(
n⋃

k=1

Ak

)
=

n∑

k=1

P(Ak)

and the fact that P(
⋃∞

k=n+1 Ak)→ 0 as n→∞. To prove the last relation, first

enumerate the elementary events. Then we will be dealing with the sequence

ω1,ω2, . . . ;
⋃

ωk = Ω , P(
⋃

k>n ωk) =
∑

k>n P(ωk)→ 0 as n→∞. Denote by

nk the number of events Aj such that ωk ∈ Aj = Ank
; nk = 0 if ωkAj = ∅ for

all j . If nk ≤ N <∞ for all k, then the events Aj with j > N are empty and

the desired relation is obvious. If Ns := maxk≤s nk →∞ as s→∞, then one has⋃
j>n Aj ⊂

⋃
k>s ωk for n > Ns , and therefore

P

(⋃

j>n

Aj

)
≤ P

(⋃

k>s

ωk

)
=
∑

k>s

P(ωk)→ 0 as s→∞.
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The required relation is proved.

For arbitrary A and B , one has P(A+ B) ≤ P(A)+ P(B). A similar inequality

also holds for the sum of an arbitrary number of events:

P

( ∞⋃

k=1

Ak

)
≤
∞∑

k=1

P(Ak).

This follows from (1.1.1) and the representation of
⋃

Ak as the union
⋃

AkBk of

disjoint events AkBk , where Bk =
⋃

j<k Aj . It remains to note that P(AkBk) ≤
P(Ak).

Now we will consider several important special cases.

1.2 The Classical Scheme

Let Ω consist of n elements and all the outcomes be equally likely, that is P(ω)=
1/n for any ω ∈ Ω . In this case, the probability of any event A is defined by the

formula

P(A) := 1

n
{number of elements of A}.

This is the so-called classical definition of probability (the term uniform discrete
distribution is also used).

Let a set {a1, a2, . . . , an} be given, which we will call the general popula-
tion. A sample of size k from the general population is an ordered sequence

(aj1
, aj2

, . . . , ajk
). One can form this sequence as follows: the first element aj1

is

chosen from the whole population. The next element aj2
we choose from the general

population without the element aj1
; the element aj3

is chosen from the general pop-

ulation without the elements aj1
and aj2

, and so on. Samples obtained in such a way

are called samples without replacement. Clearly, one must have k ≤ n in this case.

The number of such samples of size k coincides with the number of arrangements

of k elements from n:

(n)k := n(n− 1)(n− 2) · · · (n− k + 1).

Indeed, according to the sampling process, in the first position we can have any

element of the general population, in the second position any of the remaining

(n− 1) elements, and so on. We could prove this more formally by induction on k.

Assign to each of the samples without replacement the probability 1/(n)k . Such

a sample will be called random. This is clearly the classical scheme.

Calculate the probability that aj1
= a1 and aj2

= a2. Since the remaining k − 2

positions can be occupied by any of the remaining n − 2 elements of the general

population, the number of samples without replacement having elements a1 and a2
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in the first two positions equals (n− 2)k−2. Therefore the probability of that event

is equal to

(n− 2)k−2

(n)k
= 1

n(n− 1)
.

One can think of a sample without replacement as the result of sequential sampling

from a collection of enumerated balls placed in an urn. Sampled balls are not re-

turned back to the urn.

However, one can form a sample in another way as well. One takes a ball out of

the urn and memorises it. Then the ball is returned to the urn, and one again picks

a ball from the urn; this ball is also memorised and put back to the urn, and so on.

The sample obtained in this way is called a sample with replacement. At each step,

one can pick any of the n balls. There are k such steps, so that the total number of

such samples will be nk . If we assign the probability of 1/nk to each sample, this

will also be a classical scheme situation.

Calculate, for instance, the probability that, in a sample with replacement of size

k ≤ n, all the elements will be different. The number of samples of elements without

repetitions is the same as the number of samples without replacement, i.e. (n)k .

Therefore the desired probability is (n)k/nk .

We now return to sampling without replacement for the general population

{a1, a2, . . . , an}. We will be interested in the number of samples of size k ≤ n which

differ from each other in their composition only. The number of samples without

replacement of size k which have the same composition and are only distinguished

by the order of their elements is k! Hence the number of samples of different com-

position equals

(n)k

k! =
(

n

k

)
.

This is the number of combinations of k items chosen from a total of n for 0 ≤
k ≤ n.1 If the initial sample is random, we again get the classical probability scheme,

for the probability of each new sample is

k!
(n)k

= 1(
n
k

) .

Let our urn contain n balls, of which n1 are black and n−n1 white. We sample k

balls without replacement. What is the probability that there will be exactly k1 black

balls in the sample? The total number of samples which differ in the composition

is, as was shown above,
(
n
k

)
. There are

(
n1

k1

)
ways to choose k1 black balls from the

totality of n1 black balls. The remaining k − k1 white balls can be chosen from the

totality of n − n1 white balls in
(
n−n1

k−k1

)
ways. Note that clearly any collection of

black balls can be combined with any collection of white balls. Therefore the total

1In what follows, we put
(
n
k

)
= 0 for k < 0 and k > n.



6 1 Discrete Spaces of Elementary Events

number of samples of size k which differ in composition and contain exactly k1

black balls is
(
n1

k1

)(
n−n1

k−k1

)
. Thus the desired probability is equal to

Pn1,n(k1, k)=
(

n1

k1

)(
n− n1

k − k1

)/(
n

k

)
.

The collection of numbers Pn1,n(0, k), Pn1,n(1, k), . . . ,Pn1,n(k, k) forms the so-

called hypergeometric distribution. From the derived formula it follows, in particu-

lar, that, for any 0 < n1 < n,

k∑

k1=0

(
n1

k1

)(
n− n1

k− k1

)
=
(

n

k

)
.

Example 1.2.1 In the 1980s, a version of a lottery called “Sportloto 6 out of 49”

had became rather popular in Russia. A gambler chooses six from the totality of

49 sports (designated just by numbers). The prize amount is determined by how

many sports he guesses correctly from another group of six sports, to be drawn at

random by a mechanical device in front of the public. What is the probability that

the gambler correctly guesses all six sports? A similar question could be asked about

five sports, and so on.

It is not difficult to see that this is nothing else but a problem on the hypergeo-

metric distribution where the gambler has labelled as “white” six items in a general

population consisting of 49 items. Therefore the probability that, of the six items

chosen at random, k1 will turn out to be “white” (i.e. will coincide with those la-

belled by the gambler) is equal to P6,49(k1, k), where the sample size k equals 6.

For example, the probability of guessing all six sports correctly is

P6,49(6,6)=
(

49

6

)−1

≈ 7.2× 10−8.

In connection with the hypergeometric distribution, one could comment on the

nature of problems in Probability Theory and Mathematical Statistics. Knowing the

composition of the general population, we can use the hypergeometric distribution

to find out what chances different compositions of the sample would have. This

is a typical direct problem of probability theory. However, in the natural sciences

one usually has to solve inverse problems: how to determine the nature of general

populations from the composition of random samples. Generally speaking, such

inverse problems form the subject matter of Mathematical Statistics.

1.3 The Bernoulli Scheme

Suppose one draws a sample with replacement of size r from a general population

consisting of two elements {0,1}. There are 2r such samples. Let p be a number in
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the interval [0,1]. Define a nonnegative function P on the set Ω of all samples in the

following way: if a sample ω contains exactly k ones, then P(ω) = pk(1− p)r−k .

To verify that P is a probability, one has to prove the equality

P(Ω)= 1.

It is easy to see that k ones can be arranged in r places in
(
r
k

)
different ways. There-

fore there is the same number of samples containing exactly k ones. Now we can

compute the probability of Ω :

P(Ω)=
r∑

k=0

(
r

k

)
pk(1− p)r−k =

(
p+ (1− p)

)r = 1.

The second equality here is just the binomial formula. At the same time we have

found that the probability P(k, r) that the sample contains exactly k ones is:

P(k, r)=
(

r

k

)
pk(1− p)r−k.

This is the so-called binomial distribution. It can be considered as the distribution

of the number of “successes” in a series of r trials with two possible outcomes in

each trial: 1 (“success”) and 0 (“failure”). Such a series of trials with probability

P(ω) defined as pk(1− p)r−k , where k is the number of successes in ω, is called

the Bernoulli scheme. It turns out that the trials in the Bernoulli scheme have the

independence property which will be discussed in the next chapter.

It is not difficult to verify that the probability of having 1 at a fixed place in

the sample (say, at position s) equals p. Indeed, having removed the item number s

from the sample, we obtain a sample from the same population, but of size r−1. We

will find the desired probability if we multiply the probabilities of these truncated

samples by p and sum over all “short” samples. Clearly, we will get p. This is why

the number p in the Bernoulli scheme is often called the success probability.

Arguing in the same way, we find that the probability of having 1 at k fixed

positions in the sample equals pk .

Now consider how the probabilities P(k, r) of various outcomes behave as k

varies. Let us look at the ratio

R(k, r) := P(k, r)

P (k − 1, r)
= p

1− p

r − k + 1

k
= p

1− p

(
r + 1

k
− 1

)
.

It clearly monotonically decreases as k increases, the value of the ratio being less

than 1 for k/(r + 1) < p and greater than 1 for k/(r + 1) > p. This means that

the probabilities P(k, r) first increase and then, for k > p(r + 1), decrease as k

increases.

The above enables one to estimate, using the quantities P(k, r), the probabilities

Q(k, r)=
k∑

j=0

P(j, r)
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that the number of successes in the Bernoulli scheme does not exceed k. Namely,

for k < p(r + 1),

Q(k, r)= P(k, r)

(
1+ 1

R(k, r)
+ 1

R(k, r)R(k − 1, r)
+ · · ·

)

≤ P(k, r)
R(k, r)

R(k, r)− 1
= P(k, r)

(r + 1− k)p

(r + 1)p− k
.

It is not difficult to see that this bound will be rather sharp if the numbers k and r

are large and the ratio k/(pr) is not too close to 1. In that case the sum

1+ 1

R(k, r)
+ 1

R(k, r)R(k − 1, r)
+ · · ·

will be close to the sum of the geometric series

∞∑

j=0

R−j (k, r)= R(k, r)

R(k, r)− 1
,

and we will have the approximate equality

Q(k, r)≈ P(k, r)
(r + 1− k)p

(r + 1)p− k
. (1.3.1)

For example, for r = 30, p = 0.7 and k = 16 one has rp = 21 and P(k, r) ≈
0.023. Here the ratio

(r+1−k)p
(r−1)p−1

equals 15 × 0.7/5.7 ≈ 1.84. Hence the right hand

side of (1.3.1) estimating Q(k, r) is approximately equal to 0.023× 1.84≈ 0.042.

The true value of Q(k, r) for the given values of r , p and k is 0.040 (correct to three

decimals).

Formula (1.3.1) will be used in the example in Sect. 5.2.

Now consider a general population composed of n items, of which n1 are of

the first type and n2 = n− n1 of the second type. Draw from it a sample without

replacement of size r .

Theorem 1.3.1 Let n and n1 tend to infinity in such a way that n1/n→ p, where
p is a number from the interval [0,1]. Then the following relation holds true for the
hypergeometric distribution:

Pn1,n(r1, r)→ P(r1, r).

Proof Divide both the numerator and denominator in the formula for Pn1,n(r1, r)

(see Sect. 1.2) by nr . Putting r2 = r − r1 and n2 := n− n1, we get

Pn1,n(r1, r)=
r!(n− r)!

n!
n1!

r1!(n1 − r1)

n2!
r2!(n2 − r2)
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= r!
r1!r2!

n1
n

(
n1
n
− 1

n
)(

n1
n
− 2

n
) · · · (n1

n
− r1−1

n
)

n
n
(1− 1

n
) · · · (1− r−1

n
)

× n2

n

(
n2

n
− 1

n

)
· · ·

(
n2

n
− r2 − 1

n

)

→
(

r

r1

)
pr1(1− p)r2 = P(r1, r)

as n→∞. The theorem is proved. �

For sufficiently large n, Pn1,n(r1, r) is close to P(r1, r) by the above theorem.

Therefore the Bernoulli scheme can be thought of as sampling without replacement

from a very large general population consisting of items of two types, the proportion

of items of the first type being p.

In conclusion we will consider two problems.

Imagine n bins in which we place at random r enumerated particles. Each particle

can be placed in any of the n bins, so that the total number of different allocations of

r particles to n bins will be nr . Allocation of particles to bins can be thought of as

drawing a sample with replacement of size r from a general population of n items.

We will assume that we are dealing with the classical scheme, where the probability

of each outcome is 1/nr .

(1) What is the probability that there are exactly r1 particles in the k-th bin?

The remaining r − r1 particles which did not fall into bin k are allocated to the

remaining n− 1 bins. There are (n− 1)r−r1 different ways in which these r − r1

particles can be placed into n− 1 bins. Of the totality of r particles, one can choose

r − r1 particles which did not fall into bin k in
(

r
r−r1

)
different ways. Therefore the

desired probability is

(
r

r − r1

)
(n− 1)r−r1

nr
=
(

r

r − r1

)
1

n

r1
(

1− 1

n

)r−r1

.

This probability coincides with P(r1, r) in the Bernoulli scheme with p = 1/n.

(2) Now let us compute the probability that at least one bin will be empty. Denote

this event by A. Let Ak mean that the k-th bin is empty, then

A=
n⋃

k=1

Ak.

To find the probability of the event A, we will need a formula for the probability

of a sum (union) of events. We cannot make use of the additivity of probability, for

the events Ak are not disjoint in our case.

1.4 The Probability of the Union of Events. Examples

Let us return to an arbitrary discrete probability space.
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Theorem 1.4.1 Let A1,A2, . . . ,An be events. Then

P

(
n⋃

i=1

Ai

)
=

n∑

i=1

P(Ai)−
∑

i<j

P(AiAj )

+
∑

i<j<k

P(AiAjAk)− · · · + (−1)n−1P(A1 · · ·An).

Proof One has to make use of induction and the property of probability that

P(A+B)= P(A)+ P(B)− P(AB)

which we proved in Sect. 1.1. For n= 2 the assertion of the theorem is true. Suppose

it is true for any n− 1 events A1, . . . ,An−1. Then, setting B =
⋃n−1

i=1 Ai , we get

P

(
n⋃

i=1

Ai

)
= P(B +An)= P(B)+ P(An)− P(AnB).

Substituting here the known values

P(B)= P

(
n−1⋃

i=1

Ai

)
and P(AnB)= P

(
n−1⋃

i=1

(AiAn)

)
,

we obtain the assertion of the theorem. �

Now we will turn to the second problem about bins (see the end of Sect. 1.3) and

find the probability of the event A that at least one bin is empty. We represented A

in the form
⋃n

k=1 Ak , where Ak denotes the event that all the r particles miss the

k-th bin. One has

P(Ak)=
(n− 1)r

nr
=
(

1− 1

n

)r

, k ≤ n.

The event AkAl means that all r particles are allocated to n − 2 bins with labels

differing from k and l, and therefore

P(AkAl)=
(n− 2)r

nr
=
(

1− 2

n

)r

, k, l ≤ n.

Similarly,

P(AkAlAm)= n− 3r

nr
=
(

1− 3

n

)r

, k, l,m≤ n,

and so on. The probability of the event A is equal by Theorem 1.4.1 to

P(A) = n

(
1− 1

n

)r

−
(

n

2

)(
1− 2

n

)r

+ · · ·
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=
n∑

j=1

(−1)j−1

(
n

j

)(
1− j

n

)r

.

Discussion of this problem will be continued in Example 4.1.5.

As an example of the use of Theorem 1.4.1 we consider one more problem having

many varied applications. This is the so-called matching problem.

Suppose n items are arranged in a certain order. They are rearranged at random

(all n! permutations are equally likely). What is the probability that at least one

element retains its position?

There are n! different permutations. Let Ak denote the event that the k-th item

retains its position. This event is composed of (n− 1)! outcomes, so its probability

equals

P(Ak)=
(n− 1)!

n! .

The event AkAl means that the k-th and l-th items retain their positions; hence

P(AkAl)=
(n− 2)!

n! , . . . , P(A1 · · ·Ak)=
(n− (n− 1))!

n! = 1!
n! .

Now
⋃n

k=1 Ak is precisely the event that at least one item retains its position. There-

fore we can make use of Theorem 1.4.1 to obtain

P

(
n⋃

k=1

Ak

)
=
(

n

1

)
(n− 1)!

n! −
(

n

2

)
(n− 2)!

n! +
(

n

3

)
(n− 3)!

n! − · · · + (−1)n−1

n!

= 1− 1

2! +
1

3! − · · · +
(−1)n−1

n!

= 1−
(

1− 1+ 1

2! −
1

3! + · · · +
(−1)n

n!

)
.

The last expression in the parentheses is the first n+ 1 terms of the expansion of

e−1 into a series. Therefore, as n→∞,

P

(
n⋃

k=1

Ak

)
→ 1− e−1.



Chapter 2

An Arbitrary Space of Elementary Events

Abstract The chapter begins with the axiomatic construction of the probability

space in the general case where the number of outcomes of an experiment is not

necessarily countable. The concepts of algebra and sigma-algebra of sets are intro-

duced and discussed in detail. Then the axioms of probability and, more generally,

measure are presented and illustrated by several fundamental examples of measure

spaces. The idea of extension of a measure is discussed, basing on the Carathéodory

theorem (of which the proof is given in Appendix 1). Then the general elementary

properties of probability are discussed in detail in Sect. 2.2. Conditional probability

given an event is introduced along with the concept of independence in Sect. 2.3.

The chapter concludes with Sect. 2.4 presenting the total probability formula and

the Bayes formula, the former illustrated by an example leading to the introduction

of the Poisson process.

2.1 The Axioms of Probability Theory. A Probability Space

So far we have been considering problems in which the set of outcomes had at most

countably many elements. In such a case we defined the probability P(A) using the

probabilities P(ω) of elementary outcomes ω. It proved to be a function defined on

all the subsets A of the space Ω of elementary events having the following proper-

ties:

(1) P(A)≥ 0.

(2) P(Ω)= 1.

(3) For disjoint events A1,A2, . . .

P
(⋃

Aj

)
=
∑

P(Aj ).

However, as we have already noted, one can easily imagine a problem in which

the set of all outcomes is uncountable. For example, choosing a point at random

from the segment [t1, t2] (say, in an experiment involving measurement of tempera-

ture) has a continuum of outcomes, for any point of the segment could be the result

of the experiment. While in experiments with finite or countable sets of outcomes

any collection of outcomes was an event, this is not the case in this example. We will
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encounter serious difficulties if we treat any subset of the segment as an event. Here

one needs to select a special class of subsets which will be treated as events.

Let the space of elementary events Ω be an arbitrary set, and A be a system of

subsets of Ω .

Definition 2.1.1 A is called an algebra if the following conditions are met:

A1. Ω ∈A.

A2. If A ∈A and B ∈A, then

A∪B ∈A, A∩B ∈A.

A3. If A ∈A then A ∈A.

It is not hard to see that in condition A2 it suffices to require that only one of the

given relations holds. The second relation will be satisfied automatically since

A∩B =A∪B.

An algebra A is sometimes called a ring since there are two operations defined

on A (addition and multiplication) which do not lead outside of A. An algebra A is

a ring with identity, for Ω ∈A and AΩ =ΩA=A for any A ∈A.

Definition 2.1.2 A class of sets F is called a sigma-algebra (σ -algebra, or σ -ring,

or Borel field of events) if property A2 is satisfied for any sequences of sets:

A2′. If {An} is a sequence of sets from F, then

∞⋃

n=1

An ∈ F,

∞⋂

n=1

An ∈ F.

Here, as was the case for A2, it suffices to require that only one of the two rela-

tions be satisfied. The second relation will follow from the equality

⋂

n

An =
⋃

n

An.

Thus an algebra is a class of sets which is closed under a finite number of opera-

tions of taking complements, unions and intersections; a σ -algebra is a class of sets

which is closed under a countable number of such operations.

Given a set Ω and an algebra or σ -algebra F of its subsets, one says that we are

given a measurable space 〈Ω,F〉.
For the segment [0,1], all the sets consisting of a finite number of segments or

intervals form an algebra, but not a σ -algebra.
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Consider all the σ -algebras on [0,1] containing all intervals from that segment

(there is at least one such σ -algebra, for the collection of all the subsets of a given

set clearly forms a σ -algebra). It is easy to see that the intersection of all such σ -

algebras (i.e. the collection of all the sets which belong simultaneously to all the σ -

algebras) is again a σ -algebra. It is the smallest σ -algebra containing all intervals
and is called the Borel σ -algebra. Roughly speaking, the Borel σ -algebra could be

thought of as the collection of sets obtained from intervals by taking countably many

unions, intersections and complements. This is a rather rich class of sets which is

certainly sufficient for any practical purposes. The elements of the Borel σ -algebra

are called Borel sets. Everything we have said in this paragraph equally applies to

systems of subsets of the whole real line.

Along with the intervals (a, b), the one-point sets {a} and sets of the form (a, b],
[a, b] and [a, b) (in which a and b can take infinite values) are also Borel sets. This

assertion follows, for example, from the representations of the form

{a} =
∞⋂

n=1

(a − 1/n, a + 1/n), (a, b] =
∞⋂

n=1

(a, b+ 1/n).

Thus all countable sets and countable unions of intervals and segments are also

Borel sets.

For a given class B of subsets of Ω , one can again consider the intersection of

all σ -algebras containing B and obtain in this way the smallest σ -algebra contain-
ing B.

Definition 2.1.3 The smallest σ -algebra containing B is called the σ -algebra gen-
erated by B and is denoted by σ(B).

In this terminology, the Borel σ -algebra in the n-dimensional Euclidean space

R
n is the σ -algebra generated by rectangles or balls. If Ω is countable, then the

σ -algebra generated by the elements ω ∈Ω clearly coincides with the σ -algebra of

all subsets of Ω .

As an exercise, we suggest the reader to describe the algebra and the σ -algebra

of sets in Ω = [0,1] generated by: (a) the intervals (0,1/3) and (1/3,1); (b) the

semi-open intervals (a,1], 0 < a < 1; and (c) individual points.

To formalise a probabilistic problem, one has to find an appropriate measurable

space 〈Ω,F〉 for the corresponding experiment. The symbol Ω denotes the set of

elementary outcomes of the experiment, while the algebra or σ -algebra F specifies a

class of events. All the remaining subsets of Ω which are not elements of F are not
events. Rather often it is convenient to define the class of events F as the σ -algebra

generated by a certain algebra A.

Selecting a specific algebra or σ -algebra F depends, on the one hand, on the

nature of the problem in question and, on the other hand, on that of the set Ω . As

we will see, one cannot always define probability in such a way that it would make

sense for any subset of Ω .
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We have already noted in Chap. 1 that, in probability theory, one uses, along

with the usual set theory terminology, a somewhat different terminology related to

the fact that the subsets of Ω (belonging to F) are interpreted as events. The set Ω

itself is often called the certain event. By axioms A1 and A2, the empty set ∅ also

belongs to F; it is called the impossible event. The event A is called the complement
event or simply the complement of A. If A ∩ B = ∅, then the events A and B are

called mutually exclusive or disjoint.
Now it remains to introduce the notion of probability. Consider a space Ω and a

system A of its subsets which forms an algebra of events.

Definition 2.1.4 A probability on 〈Ω,A〉 is a real-valued function defined on the

sets from A and having the following properties:

P1. P(A)≥ 0 for any A ∈A.

P2. P(Ω)= 1.

P3. If a sequence of events {An} is such that AiAj =∅ for i 
= j and
⋃∞

1 An ∈A,

then

P

( ∞⋃

n=1

An

)
=
∞∑

n=1

P(An). (2.1.1)

These properties can be considered as an axiomatic definition of probability.

An equivalent to axiom P3 is the requirement of additivity (2.1.1) for finite col-
lections of events Aj plus the following continuity axiom.

P3′. Let {Bn} be a sequence of events such that Bn+1 ⊂ Bn and
⋂∞

n=1 Bn = B ∈A.

Then P(Bn)→ P(B) as n→∞.

Proof of the equivalence Assume P3 is satisfied and let Bn+1 ⊂ Bn,
⋂

n Bn =
B ∈ A. Then the sequence of the events B , Ck = BkBk+1, k = 1,2, . . . , consists

of disjoint events and Bn = B +
⋃∞

k=n Ck for any n. Now making use of property

P3 we see that the series P(B1)= P(B)+
∑∞

k=n P(Ck) is convergent, which means

that

P(Bn)= P(B)+
∞∑

k=n

P(Ck)→ P(B)

as n→∞. This is just the property P3′.
Conversely, if An is a sequence of disjoint events, then

P

( ∞⋃

k=1

Ak

)
= P

(
n⋃

k=1

Ak

)
+ P

( ∞⋃

k=n+1

Ak

)

and one has

∞∑

k=1

P(Ak) = lim
n→∞

n∑

k=1

P(Ak)= lim
n→∞

P

(
n⋃

k=1

Ak

)
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= lim
n→∞

{
P

( ∞⋃

k=1

Ak

)
− P

( ∞⋃

k=n+1

Ak

)}
= P

( ∞⋃

k=1

Ak

)
.

The last equality follows from P3′. �

Definition 2.1.5 A triple 〈Ω,A,P〉 is called a wide-sense probability space. If an

algebra F is a σ -algebra (F= σ(F)), then condition
⋃∞

n=1 An ∈ F in axiom P3 (for

a probability on 〈Ω,F〉) will be automatically satisfied.

Definition 2.1.6 A triple 〈Ω,F,P〉, where F is a σ -algebra, is called a probability
space.

A probability P on 〈Ω,F〉 is also sometimes called a probability distribution on

Ω or just a distribution on Ω (on 〈Ω,F〉).
Thus defining a probability space means defining a countably additive nonneg-

ative measure on a measurable space such that the measure of Ω is equal to one.

In this form the axiomatics of Probability Theory was formulated by A.N. Kol-

mogorov. The system of axioms we introduced is incomplete and consistent.

Constructing a probability space 〈Ω,F,P〉 is the basic stage in creating a math-

ematical model (formalisation) of an experiment.

Discussions on what should one understand by probability have a long history

and are related to the desire to connect the definition of probability with its “phys-

ical” nature. However, because of the complexity of the latter, such attempts have

always encountered difficulties not only of mathematical, but also of philosophical

character (see the Introduction). The most important stages in this discussion are re-

lated to the names of Borel, von Mises, Bernstein and Kolmogorov. The emergence

of Kolmogorov’s axiomatics separated, in a sense, the mathematical aspect of the

problem from all the rest. With this approach, the “physical interpretation” of the

notion of probability appears in the form of a theorem (the strong law of large num-

bers, see Chaps. 5 and 7), by virtue of which the relative frequency of the occurrence

of a certain event in an increasingly long series of independent trials approaches (in

a strictly defined sense) the probability of this event.

We now consider examples of the most commonly used measurable and proba-

bility spaces.

1. Discrete measurable spaces. These are spaces 〈Ω,F〉 where Ω is a finite or

countably infinite collection of elements, and the σ -algebra F usually consists of

all the subsets of Ω . Discrete probability spaces constructed on discrete measurable

spaces were studied, with concrete examples, in Chap. 1.

2. The measurable space 〈R,B〉, where R is the real line(or a part of it) and B

is the σ -algebra of Borel sets. The necessity of considering such spaces arises in

situations where the results of observations of interest may assume any values in R.

Example 2.1.1 Consider an experiment consisting of choosing a point “at random”

from the interval [0,1]. By this we will understand the following. The set of elemen-

tary outcomes Ω is the interval [0,1]. The σ -algebra F will be taken to be the class
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of subsets B for which the notion of length (Lebesgue measure) µ(B) is defined—

for example, the σ -algebra B of Borel measurable sets. To “conduct a trial” means

to choose a point ω ∈Ω = [0,1], the probability of the event ω ∈ B being µ(B). All

the axioms are clearly satisfied for the probability space 〈[0,1],B,µ〉. We obtain

the so-called uniform distribution on [0,1].

Why did we take the σ -algebra of Borel sets B to be our F in this example? If we

considered on Ω = [0,1] the σ -algebra generated by “individual” points of the in-

terval, we would get the sets of which the Lebesgue measure is either 0 or 1. In other

words, the obtained sets would be either very “dense” or very “thin” (countable), so

that the intervals (a, b) for 0 < b− a < 1 do not belong to this σ -algebra.

On the other hand, if we considered on Ω = [0,1] the σ -algebra of all subsets of

Ω , it would be impossible to define a probability measure on it in such a way that

P([a, b])= b− a (i.e. to get the uniform distribution).1

Turning back to the uniform distribution P on Ω = [0,1], it is easy to see that

it is impossible to define this distribution using the same approach as we used to

define a probability on a discrete space of elementary events (i.e. by defining the

probabilities of elementary outcomes ω). Since in this example the ωs are individual

points from [0,1], we clearly have P(ω)= 0 for any ω.

3. The measurable space 〈Rn,Bn〉 is used in the cases when observations are

vectors. Here R
n is the n-dimensional Euclidean space(Rn =R1× · · · ×R

n, where

R1, . . . ,Rn are n copies of the real line), Bn is the σ -algebra of Borel sets in R
n,

i.e. the σ -algebra generated by the sets B = B1×· · ·×Bn, where Bi ⊂Ri are Borel

sets on the line. Instead of Rn we could also consider some measurable part Ω ∈Bn

(for example a cube or ball), and instead of Bn the restriction of Bn onto Ω . Thus,

similarly to the last example one can construct a probability space for choosing a

point at random from the cube Ω = [0,1]n. We put here P(ω ∈ B)= µ(B), where

µ(B) is the Lebesgue measure (volume) of the set B . Instead of the cube [0,1]n we

could consider any other cube, for example [a, b]n, but in this case we would have

to put

P(ω ∈ B)= µ(B)/µ(Ω)= µ(B)/(b− a)n.

This is the uniform distribution on a cube.

In Probability Theory one also needs to deal with more complex probability

spaces. What to do if the result of the experiment is an infinite random sequence? In

this case the space 〈R∞,B∞〉 is often the most appropriate one.

4. The measurable space 〈R∞,B∞〉, where

R
∞ =

∞∏

j=1

Rj

1See e.g. [28], p. 80.
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is the space of all sequences (x1, x2, . . .) (the direct product of the spaces Rj ), and

B∞ the σ -algebra generated by the sets of the form

(
N∏

k=1

Bjk

)
×
( ∏

j 
=jk
k≤N

Rj

)
; Bjk

∈Bjk
,

for any N,j1, . . . , jN , where Bj is the σ -algebra of Borel sets from Rj .

5. If an experiment results, say, in a continuous function on the interval [a, b]
(a trajectory of a moving particle, a cardiogram of a patient, etc.), then the probabil-

ity spaces considered above turn out to be inappropriate. In such a case one should

take Ω to be the space C(a, b) of all continuous functions on [a, b] or the space

R
[a,b] of all functions on [a, b]. The problem of choosing a suitable σ -algebra here

becomes somewhat more complicated and we will discuss it later in Chap. 18.

Now let us return to the definition of a probability space.

Let a triple 〈Ω,A,P〉 be a wide-sense probability space (A is an algebra). As

we have already seen, to each algebra A there corresponds a σ -algebra F = σ(A)

generated by A. The following question is of substantial interest: does the proba-

bility measure P on A define a measure on F = σ(A)? And if so, does it define

it in a unique way? In other words, to construct a probability space 〈Ω,A,P〉, is

it sufficient to define the probability just on some algebra A generating F (i.e. to

construct a wide-sense probability space 〈Ω,A,P〉, where σ(A)= F)? An answer

to this important question is given by the Carathéodory theorem.

The measure extension theorem Let 〈Ω,A,P〉 be a wide-sense probability space.

Then there exists a unique probability measure Q defined on F= σ(A) such that

Q(A)= P(A) for all A ∈A.

Corollary 2.1.1 Any wide-sense probability space 〈Ω,A,P〉 automatically defines
a probability space 〈Ω,F,P〉 with F= σ(A).

We will make extensive use of this fact in what follows. In particular, it implies

that to define a probability measure on the measurable space 〈R,B〉, it suffices to

define the probability on intervals.

The proof of the Carathéodory theorem is given in Appendix 1.

In conclusion of this section we will make a general comment. Mathematics dif-

fers qualitatively from such sciences as physics, chemistry, etc. in that it does not

always base its conclusions on empirical data with the help of which a naturalist

tries to answer his questions. Mathematics develops in the framework of an initial

construction or system of axioms with which one describes an object under study.

Thus mathematics and, in particular, Probability Theory, studies the nature of the

phenomena around us in a methodologically different way: one studies not the phe-

nomena themselves, but rather the models of these phenomena that have been cre-

ated based on human experience. The value of a particular model is determined by
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the agreement of the conclusions of the theory with our observations and therefore

depends on the choice of the axioms characterising the object.

In this sense axioms P1, P2, and the additivity of probability look indisputable

and natural (see the remarks in the Introduction on desirable properties of probabil-

ity). Countable additivity of probability and the property A2′ of σ -algebras are more

delicate and less easy to intuit (as incidentally are a lot of other things related to the

notion of infinity). Introducing the last two properties was essentially brought about

by the possibility of constructing a meaningful mathematical theory. Numerous ap-

plications of Probability Theory developed from the system of axioms formulated

in the present section demonstrate its high efficiency and purposefulness.

2.2 Properties of Probability

1. P(∅)= 0. This follows from the equality ∅+Ω =Ω and properties P2 and P3

of probability.

2. P(A)= 1− P(A), since A+A=Ω and A∩A=∅.

3. If A⊂ B , then P(A)≤ P(B). This follows from the relation P(A)+P(AB)=
P(B).

4. P(A)≤ 1 (by properties 3 and P2).

5. P(A∪B)= P(A)+P(B)−P(AB), since A∪B =A+ (B−AB) and P(B−
AB)= P(B)− P(AB).

6. P(A∪B)≤ P(A)+ P(B) follows from the previous property.

7. The formula

P

(
n⋃

j=1

Aj

)
=

n∑

k=1

P(Ak)−
∑

k<l

P(AkAl)

+
∑

k<l<m

P(AkAlAm)− · · · + (−1)n−1P(A1 . . .An)

has already been proved and used for discrete spaces Ω . Here the reader can prove

it in exactly the same way, using induction and property 5.

Denote the sums on the right hand side of the last formula by Z1, Z2, . . . ,Zn,

respectively. Then statement 7 for the event Bn =
⋃n

j=1 Aj can be rewritten as

P(Bn)=
∑n

j=1(−1)j−1Zj .

8. An important addition to property 7 is that the sequence
∑k

j=1(−1)j−1Zj

approximates P(Bn) by turns from above and from below as k grows, i.e.

P(Bn)−
2k−1∑

j=1

(−1)j−1Zj ≤ 0,

P(Bn)−
2k∑

j=1

(−1)j−1Zj ≥ 0, k = 1,2, . . .

(2.2.1)
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This property can also be proved by induction on n. For n = 2 this property is

ascertained in 5. Let (2.2.1) be valid for any events A1, . . . ,An−1 (i.e. for any Bn−1).

Then by 5 we have

P(Bn)= P(Bn−1 ∪An)= P(Bn−1)+ P(An)− P

(
k−1⋃

j=1

AjAn

)
,

where, in view of (2.2.1) for k = 1,

n=1∑

j=1

P(Aj )−
n−1∑

i<j

P(AiAj )≤ P(Bn−1)≤
n−1∑

j=1

P(Aj ),

P

(
n−1⋃

j=1

AjAn

)
≤

n−1∑

j=1

P(AjAn).

Hence, for Bn = Bn−1 ∪An, we get

P(Bn) ≤
n∑

j=1

P(Aj ),

P(Bn) = P(Bn−1)+ P(An)− P(Bn−1An)

≥
n∑

j=1

P(Aj )−
n−1∑

i<j

P(AiAj )−
n−1∑

i=1

P(AiAn)=
n∑

j=1

P(An)−
n∑

i<j

P(AiAj ).

This proves (2.2.1) for k = 1. For k = 2,3, . . . the proof is similar.

9. If An is a monotonically increasing sequence of sets (i.e. An ⊂ An+1) and

A=
⋃∞

n=1 An, then

P(A)= lim
n→∞

P(An). (2.2.2)

This is a different form of the continuity axiom equivalent to P3′.
Indeed, introducing the sets Bn =A−An, we get Bn+1 ⊂ Bn and

⋂∞
n=1 Bn =∅.

Therefore, by the continuity axiom,

P(A−An)= P(A)− P(An)→ 0

as n→∞. The converse assertion that (2.2.2) implies the continuity axiom can be

obtained in a similar way. �

2.3 Conditional Probability. Independence of Events and Trials

We will start with examples. Let an experiment consist of three tosses of a fair

coin. The probability that heads shows up only once, i.e. that one of the elementary
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events htt , tht , or t th occurs, is equal in the classical scheme to 3/8. Denote

this event by A. Now assume that we know in addition that the event B =
{the number of heads is odd} has occurred.

What is the probability of the event A given this additional information? The

event B consists of four elementary outcomes. The event A is constituted by three

outcomes from the event B . In the framework of the classical scheme, it is natural

to define the new probability of the event A to be 3/4.

Consider a more general example. Let a classical scheme with n outcomes be

given. An event A consists of r outcomes, an event B of m outcomes, and let the

event AB have k outcomes. Similarly to the previous example, it is natural to define

the probability of the event A given the event B has occurred as

P(A|B)= k

m
= k/n

m/n
.

The ratio is equal to P(AB)/P(B), for

P(A|B)= k

n
, P(B)= m

n
.

Now we can give a general definition.

Definition 2.3.1 Let 〈Ω,F,P〉 be a probability space and A and B be arbitrary

events. If P(B) > 0, the conditional probability of the event A given B has occurred

is denoted by P(A|B) and is defined by

P(A|B) := P(AB)

P(B)
.

Definition 2.3.2 Events A and B are called independent if

P(AB)= P(A)P(B).

Below we list several properties of independent events.

1. If P(B) > 0, then the independence of A and B is equivalent to the equality

P(A|B)= P(A).

The proof is obvious.

2. If A and B are independent, then A and B are also independent.

Indeed,

P(AB) = P(B −AB)

= P(B)− P(AB)= P(B)
(
1− P(A)

)
= P(A)P(B).

3. Let the events A and B1 and the events A and B2 each be independent, and

assume B1B2 =∅. Then the events A and B1 +B2 are independent.
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Fig. 2.1 Illustration to

Example 2.3.2: the dashed
rectangles represent the

events A and B

The property is proved by the following chain of equalities:

P
(
A(B1 +B2)

)
= P(AB1 +AB2)= P(AB1)+ P(AB2)

= P(A)
(
P(B1)+ P(B2)

)
= P(A)P(B1 +B2).

As we will see below, the requirement B1B2 =∅ is essential here.

Example 2.3.1 Let event A mean that heads shows up in the first of two tosses of a

fair coin, and event B that tails shows up in the second toss. The probability of each

of these events is 1/2. The probability of the intersection AB is

P(AB)= 1

4
= 1

2
· 1

2
= P(A)P(B).

Therefore the events A and B are independent.

Example 2.3.2 Consider the uniform distribution on the square [0,1]2 (see Sect. 2.1).

Let A be the event that a point chosen at random is in the region on the right of an

abscissa a and B the event that the point is in the region above an ordinate b.

Both regions are hatched in Fig. 2.1. The event AB is squared in the figure.

Clearly, P(AB)= P(A)P(B), and hence the events A and B are independent.

It is also easy to verify that if B is the event that the chosen point is inside the

triangle FCD (see Fig. 2.1), then the events A and B will already be dependent.

Definition 2.3.3 Events B1,B2, . . . ,Bn are jointly independent if, for any 1≤ i1 <

i2 < · · ·< ir ≤ n, r = 2,3, . . . , n,

P

(
r⋂

k=1

Bjk

)
=

r∏

k=1

P(Bik ).

Pairwise independence is not sufficient for joint independence of n events, as one

can see from the following example.
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Example 2.3.3 (Bernstein’s example) Consider the following experiment. We roll a

symmetric tetrahedron of which three faces are painted red, blue and green respec-

tively, and the fourth is painted in all three colours. Event R means that when the

tetrahedron stops, the bottom face has the red colour on it, event B that it has the

blue colour, and G the green. Since each of the three colours is present on two faces,

P(R)= P(B)= P(G)= 1/2. For any two of the introduced events, the probability

of the intersection is 1/4, since any two colours are present on one face only. Since
1
4
= 1

2
× 1

2
, this implies the pairwise independence of all three events. However,

P(RGB)= 1

4

= P(R)P(B)P(G)= 1/8. �

Now it is easy to construct an example in which property 3 of independent events

does not hold when B1B2 
=∅.

An example of a sequence of jointly independent events is given by the series of

outcomes of trials in the Bernoulli scheme.

If we assume that each outcome was obtained as a result of a separate trial, then

we will find that any event related to a fixed trial will be independent of any event

related to other trials. In such cases one speaks of a sequence of independent trials.

To give a general definition, consider two arbitrary experiments G1 and G2 and

denote by 〈Ω1,F1,P1〉 and 〈Ω2,F2,P2〉 the respective probability spaces. Consider

also the “compound” experiment G with the probability space 〈Ω,F,P〉, where

Ω =Ω1×Ω2 is the direct product of the spaces Ω1 and Ω2, and the σ -algebra F is

generated by the direct product F1 × F2 (i.e. by the events B = B1 × B2, B1 ∈ F1,

B2 ∈ F2).

Definition 2.3.4 We will say that the trials G1 and G2 are independent if, for any

B = B1 ×B2, B1 ∈ F1, B2 ∈ F2 one has

P(B)= P1(B1)P2(B2)= P(B1 ×Ω2)P(Ω1 ×B2).

Independence of n trials G1, . . . ,Gn is defined in a similar way, using the equal-

ity

P(B)= P1(B1) · · ·Pn(Bn),

where B = B1× · · · ×Bn, Bk ∈ Fk , and 〈Ωk,Fk,Pk〉 is the probability space corre-

sponding to the experiment Gk , k = 1, . . . , n.

In the Bernoulli scheme, the probability of any sequence of outcomes consisting

of r zeros and ones and containing k ones is equal to pk(1− p)r−k . Therefore the

Bernoulli scheme may be considered as a result of r independent trials in each of

which one has 1 (success) with probability p and 0 (failure) with probability 1−p.

Thus, the probability of k successes in r independent trials equals
(
r
k

)
pk(1−p)r−k .

The following assertion, which is in a sense converse to the last one, is also

true: any sequence of identical independent trials with two outcomes makes up a

Bernoulli scheme.

In Chap. 3 several remarks will be given on the relationship between the notions

of independence we introduced here and the common notion of causality.
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2.4 The Total Probability Formula. The Bayes Formula

Let A be an event and B1,B2, . . . ,Bn be mutually exclusive events having positive

probabilities such that

A⊂
n⋃

j=1

Bj .

The sequence of events B1,B2, . . . can be infinite, in which case we put n=∞. The

following total probability formula holds true:

P(B)=
n∑

j=1

P(Bj )P(A|Bj ).

Proof It follows from the assumptions that

A=
n⋃

j=1

BjA.

Moreover, the events AB1, AB2, . . . ,ABn are disjoint, and hence

P(A)=
n∑

j=1

P(ABj )=
n∑

j=1

P(Bj )P(A|Bj ).
�

Example 2.4.1 In experiments with colliding electron-positron beams, the probabil-

ity that during a time unit there will occur j collisions leading to the birth of new

elementary particles is equal to

pj =
e−λλj

j ! , j = 0,1, . . . ,

where λ is a positive parameter (this is the so-called Poisson distribution, to be con-

sidered in more detail in Chaps. 3, 5 and 19). In each collision, different groups of

elementary particles can appear as a result of the interaction, and the probability of

each group is fixed and does not depend on the outcomes of other collisions. Con-

sider one such group, consisting of two µ-mesons, and denote by p the probability

of its appearance in a collision. What is the probability of the event Ak that, during

a time unit, k pairs of µ-mesons will be born?

Assume that the event Bj that there were j collisions during the time unit has

occurred. Given this condition, we will have a sequence of j independent trials, and

the probability of having k pairs of µ-mesons will be
(
j
k

)
pk(1− p)j−k . Therefore

by the total probability formula,

P(Ak) =
∞∑

j=k

P(Bj )P(Ak|Bj )=
∞∑

j=k

e−λλj

j !
j !

k!(j − k)!p
k(1− p)j−k
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= e−λpkλk

k!

∞∑

j=0

(λ(1− p))j

j ! = e−λp(λp)k

k! .

Thus we again obtain a Poisson distribution, but this time with parameter λp.

The solution above was not formalised. A formal solution would first of all

require the construction of a probability space. The space turns out to be rather

complex in this example. Denote by Ωj the space of elementary outcomes in the

Bernoulli scheme corresponding to j trials, and let ωj denote an element of Ωj .

Then one could take Ω to be the collection of all pairs {(j,ωj )}∞j=0, where the

number j indicates the number of collisions, and ωj is a sequence of “successes”

and “failures” of length j (“success” stands for the birth of two µ-mesons). If ωj

contains k “successes”, one has to put

P
(
(j,ωj )

)
= pjp

k(1− p)j−k.

To get P(Ak), it remains to sum up these probabilities over all ωj containing k

successes and all j ≥ k (the idea of the total probability formula is used here tacitly

when splitting Ak into the events (j,ωj )).

The fact that the number of collisions is described here by a Poisson distribution

could be understood from the following circumstances related to the nature of the

physical process. Let Bj (t, u) be the event that there were j collisions during the

time interval [t, t + u). Then it turns out that:

(a) the pairs of events Bj (v, t) and Bk(v + t, u) related to non-overlapping time

intervals are independent for all v, t, u, j , and k;

(b) for small ∆ the probability of a collision during the time ∆ is proportional to ∆:

P
(
B1(t,∆)

)
= λ∆+ o(∆),

and, moreover, P(Bk(t,∆))= o(∆) for k ≥ 2.

Again using the total probability formula with the hypotheses Bj (v, t), we obtain

for the probabilities pk(t)= P(Bk(v, t)) the following relations:

pk(t +∆)=
k∑

j=0

pj (t)P
(
Bk(v, t +∆)

∣∣ Bj (v, t)
)

=
k∑

j=0

pj (t)P
(
Bk−j (v+ t,∆)

)
= o(∆)+ pk−1(t)

(
λ∆+ o(∆)

)

= pk(t)
(
1− λ∆− o(∆)

)
, k ≥ 1;

p0(t +∆)= p0(t)
(
1− λ∆− o(∆)

)
.

Transforming the last equation, we find that

p0(t +∆)− p0(t)

∆
=−λp0(t)+ o(1).
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Therefore the derivative of p0 exists and is given by

p′0(t)=−λp0(t).

In a similar way we establish the existence of

p′k(t)= λpk−1(t)− λpk(t), k ≥ 1. (2.4.1)

Now note that since the functions pk(t) are continuous, one should put p0(0)= 1,

pk(0)= 0 for k ≥ 1. Hence

p0(t)= e−λt .

Using induction and substituting into (2.4.1) the function pk−1(t)= (λt)k−1e−λt

(k−1)! , we

establish (it is convenient to make the substitution pk = e−λtuk , which turns (2.4.1)

into u′k =
λ(λt)k−1

(k−1)! ) that

pk(t)=
(λt)ke−λt

k! , k = 0,1, . . .

This is the Poisson distribution with parameter λt .

To understand the construction of the probability space in this problem, one

should consider the set Ω of all non-decreasing step-functions x(t)≥ 0, t ≥ 0, tak-

ing values 0,1,2, . . . . Any such function can play the role of an elementary out-

come: its jump points indicate the collision times, the value x(t) itself will be the

number of collisions during the time interval (0, t). To avoid a tedious argument re-

lated to introducing an appropriate σ -algebra, for the purposes of our computations

we could treat the probability as given on the algebra A (see Sect. 2.1) generated

by the sets {x(t)= k}, t ≥ 0; k = 0,1, . . . (note that all the events considered in this

problem are just of such form). The above argument shows that one has to put

P
(
x(v+ t)− x(v)= k

)
= (λt)ke−λt

k! .

(See also the treatment of Poisson processes in Chap. 19.) �

By these examples we would like not only to illustrate the application of the total

probability formula, but also to show that the construction of probability spaces in

real problems is not always a simple task.

Of course, for each particular problem, such constructions are by no means nec-

essary, but we would recommend to carry them out until one acquires sufficient

experience.

Assume that events A and B1, . . . ,Bn satisfy the conditions stated at the begin-

ning of this section. If P(A) > 0, then under these conditions the following Bayes’
formula holds true:

P(Bj |A)= P(Bj )P(A|Bj )∑n
k=1 P(Bk)P(A|Bk)

.
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This formula is simply an alternative way of writing the equality

P(Bj |A)= P(BjA)

P(A)
,

where in the numerator one should make use of the definition of conditional prob-

ability, and in the denominator, the total probability formula. In Bayes’ formula we

can take n=∞, just as for the total probability formula.

Example 2.4.2 An item is manufactured by two factories. The production volume

of the first factory is k times the production of the second one. The proportion of

defective items for the first factory is P1, and for the second one P2. Now assume

that the items manufactured by the factories during a certain time interval were

mixed up and then sent to retailers. What is the probability that you have purchased

an item produced by the second factory given the item proved to be defective?

Let B1 be the event that the item you have got came from the first factory, and

B2 from the second. It easy to see that

P(B1)=
1

1+ k
, P(B2)=

k

1+ k
.

These are the so-called prior probabilities of the events B1 and B2. Let A be the

event that the purchased item is defective. We are given conditional probabilities

P(A|B1)= P1 and P(A|B2)= P2. Now, using Bayes’ formula, we can answer the

posed question:

P(B2|A)=
k

1+k
P2

1
1+k

P1 + k
1+k

P2

= kP2

P1 + kP2
.

Similarly, P(B1|A)= P1
P1+kP2

. �

The probabilities P(B1|A) and P(B2|A) are sometimes called posterior proba-

bilities of the events B1 and B2 respectively, after the event A has occurred.

Example 2.4.3 A student is suggested to solve a numerical problem. The answer to

the problem is known to be one of the numbers 1, . . . , k. Solving the problem, the

student can either find the correct way of reasoning or err. The training of the student

is such that he finds a correct way of solving the problem with probability p. In

that case the answer he finds coincides with the right one. With the complementary

probability 1− p the student makes an error. In that case we will assume that the

student can give as an answer any of the numbers 1, . . . , k with equal probabilities

1/k.

We know that the student gave a correct answer. What is the probability that his

solution of the problem was correct?

Let B1 (B2) be the event that the student’s solution was correct (wrong).

Then, by our assumptions, the prior probabilities of these events are P(B1) = p,
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P(B2)= 1− p. If the event A means that the student got a correct answer, then

P(A|B1)= 1, P(A|B2)= 1/k.

By Bayes’ formula the desired posterior probability P(B1|A) is equal to

P(B1|A)= P(B1)P(A|B1)

P(B1)P(A|B1)+ P(B2)P(A|B2)
= p

p+ 1−p
k

= 1

1+ 1−p
kp

.

Clearly, P(B1|A) > P(B1)= p and P(B1|A) is close to 1 for large k.



Chapter 3

Random Variables and Distribution Functions

Abstract Section 3.1 introduces the formal definitions of random variable and its

distribution, illustrated by several examples. The main properties of distribution

functions, including a characterisation theorem for them, are presented in Sect. 3.2.

This is followed by listing and briefly discussing the key univariate distributions.

The second half of the section is devoted to considering the three types of distri-

butions on the real line and the distributions of functions of random variables. In

Sect. 3.3 multivariate random variables (random vectors) and their distributions are

introduced and discussed in detail, including the two key special cases: the multi-

nomial and the normal (Gaussian) distributions. After that, the concepts of indepen-

dence of random variables and that of classes of events are considered in Sect. 3.4,

establishing criteria for independence of random variables of different types. The

theorem on independence of sigma-algebras generated by independent algebras of

events is proved with the help of the probability approximation theorem. Then the

relationships between the introduced notions are extensively discussed. In Sect. 3.5,

the problem of existence of infinite sequences of random variables is solved with

the help of Kolmogorov’s theorem on families of consistent distributions, which is

proved in Appendix 2. Section 3.6 is devoted to discussing the concept of integral in

the context of Probability Theory (a formal introduction to Integration Theory is pre-

sented in Appendix 3). The integrals of functions of random vectors are discussed,

including the derivation of the convolution formulae for sums of independent ran-

dom variables.

3.1 Definitions and Examples

Let 〈Ω,F,P〉 be an arbitrary probability space.

Definition 3.1.1 A random variable ξ is a measurable function ξ = ξ(ω) mapping

〈Ω,F〉 into 〈R,B〉, where R is the set of real numbers and B is the σ -algebra of all

Borel sets, i.e. a function for which the inverse image ξ (−1)(B)= {ω : ξ(ω) ∈ B} of

any Borel set B ∈B is a set from the σ -algebra F.
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For example, when tossing a coin once, Ω consists of two points: heads and tails.

If we put 1 in correspondence to heads and 0 to tails, we will clearly obtain a random

variable.

The number of points showed up on a die will also be a random variable.

The distance between the origin to a point chosen at random in the square [0 ≤
x ≤ 1,0≤ y ≤ 1] will also be a random variable, since the set {(x, y) : x2+ y2 < t}
is measurable. The reader might have already noticed that in these examples it is

very difficult to come up with a non-measurable function of ω which would be re-

lated to any real problem. This is often the case, but not always. In Chap. 18, devoted

to random processes, we will be interested in sets which, generally speaking, are not

events and which require special modifications to be regarded as events.

As we have already mentioned above, it follows from the definition of a random

variable that, for any set B from the σ -algebra B of Borel sets on the real line,

ξ (−1)(B)=
{
ω : ξ(ω) ∈ B

}
∈ F.

Hence one can define a probability Fξ (B) = P(ξ ∈ B) on the measurable space

〈R,B〉 which generates the probability space 〈R,B,Fξ 〉.

Definition 3.1.2 The probability Fξ (B) is called the distribution of the random
variable ξ .

Putting B = (−∞, x) one obtains the function

Fξ (x)= Fξ (−∞, x)= P(ξ < x)

defined on the whole real line which is called the distribution function1 of the ran-
dom variable ξ .

We will see below that the distribution function of a random variable completely

specifies its distribution and is often used to describe the latter.

Where it leads to no confusion, we will write just F, F(x) instead of Fξ , Fξ (x),

respectively. More generally, in what follows, as a rule, we will be using boldface

letters F, G, I, �, K, �, etc. to denote distributions, and the standard font letters F ,

G, I , Φ, . . . to denote the respective distribution functions.

Since a random variable ξ is a mapping of Ω into R, one has P(|ξ | <∞) = 1.

Sometimes, it is also convenient to consider along with such random variables ran-

dom variables which can assume the values ±∞ (they will be measurable map-

pings of Ω into R∪ {±∞}). If P(|ξ | =∞) > 0, we will call such random variables

ξ(ω) improper. Each situation where such random variables appear will be explic-

itly noted.

Example 3.1.1 Consider the Bernoulli scheme with success probability p and sam-

ple size k (see Sect. 3.3). As we know, the set of elementary outcomes Ω in this case

1In the English language literature, the distribution function is conventionally defined as Fξ (x)=
P(ξ ≤ x). The only difference is that, with the latter definition, F will be right-continuous, cf.

property F3 below.
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is the set of all k-tuples of zeros and ones. Take the σ -algebra F to be the system of

all subsets of Ω . Define a random variable on Ω as follows: to each k-tuple of zeros

and ones we relate the number of ones in this tuple.

The probability of r successes is, as we already know,

P(r, k)=
(

k

r

)
pr(1− p)k−r .

Therefore the distribution function F(x) of our random variable will be defined

as

F(x)=
∑

r<x

P(r, k).

Here the summation is over all integers r which are less than x. If x ≤ 0 then

F(x)= 0, and if x > k then F(x)= 1.

Example 3.1.2 Suppose we choose a point at random from the segment [a, b], i.e.

the probability that the chosen point is in a subset of [a, b] is taken to be proportional

to the Lebesgue measure of this subset. Here, Ω is the segment [a, b], the σ -algebra

F is the class of Borel subsets of [a, b]. Define a random variable ξ by

ξ(ω)= ω, ω ∈ [a, b],
i.e. the value of the random variable is equal to the number from [a, b] we have cho-

sen. It is a measurable function. If x ≤ a, then F(x)= P(ξ < x)= 0. Let x ∈ (a, b].
Then {ξ < x} means that the point is in the interval [a, x). The probability of this

event is proportional to the length of the interval, hence

F(x)= P(ξ < x)= x − a

b− a
.

If x > b, then clearly F(x)= 1. Finally, we find that

F(x)=

⎧
⎨
⎩

0, x < a,
x−a
b−a

, a ≤ x ≤ b,

1, x > b.

(3.1.1)

This distribution function defines the so-called uniform distribution on the interval

[a, b].
If µ(B) is the Lebesgue measure on 〈R,B〉, then, as we will see in the next

section, it is not hard to show that in this case Fξ (B)= µ(B ∩ [a, b])/(b− a).

3.2 Properties of Distribution Functions. Examples

3.2.1 The Basic Properties of Distribution Functions

Let F(x) be the distribution function of a random variable ξ . Then F(x) has the

following properties:
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F1. Monotonicity: if x1 < x2, then F(x1)≤ F(x2).

F2. limx→−∞ F(x)= 0 and limx→∞ F(x)= 1.

F3. Left-continuity: limx↑x0
F(x)= F(x0).

Proof Since for x1 ≤ x2 one has {ξ < x1} ⊆ {ξ < x2}, F1 immediately follows from

property 3 of probability (see Sect. 3.2.2).

To prove F2, consider two number sequences {xn} and {yn} such that {xn} is

decreasing and xn→−∞, while {yn} is increasing and yn→∞. Put An = {ξ < xn}
and Bn = {ξ < yn}. Since xn tends monotonically to −∞, the sequence of sets An

decreases monotonically to
⋂

An = ∅. By the continuity axiom (see Sect. 3.2.1),

P(An)→ 0 as n→∞ or, which is the same, limn→∞ F(xn) = 0. This and the

monotonicity of F(x) imply that

lim
x→−∞

F(x)= 0.

Since the sequence {yn} tends monotonically to ∞, the sequence of sets Bn in-

creases to
⋃

Bn = Ω , and hence (see property 9 in Sect. 3.2.2) P(Bn)→ 1. This

implies, as above, that

lim
n→∞

F(yn)= 1, lim
x→∞

F(x)= 1.

Property F3 is proved in a similar way. Let {xn} be an increasing sequence with

xn ↑ x0,

A= {ξ < x0}, An = {ξ < xn}.
The sequence of sets An also increases, and

⋃
An =A. Therefore, P(An)→ P(A).

This means that

lim
x↑x0

F(x)= F(x0). �

It is not hard to see that the function F would be right-continuous if we put

F(x)= P(ξ ≤ x).

With our definition, the function F is generally speaking not right-continuous,

since by the continuity axiom

F(x + 0)− F(x)= lim
n→∞

(
F

(
x + 1

n

)
− F(x)

)

= lim
n→∞

P

(
x ≤ ξ < x + 1

n

)
= P

( ∞⋂

n=1

{
ξ ∈

[
x, x + 1

n

)})

= P(ξ = x).

This means that F(x) is continuous if and only if P(ξ = x) = 0 for any x. Exam-

ples 3.1.1 and 3.1.2 show that both continuous and discontinuous F(x) are quite

common.

From the above relations it also follows that

P(x ≤ ξ ≤ y)= Fξ

(
[x, y]

)
= F(y + 0)− F(x).
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Theorem 3.2.1 If a function F(x) has properties F1, F2 and F3, then there exist a
probability space 〈Ω,F,P〉 and a random variable ξ such that Fξ (x)= F(x).

Proof First we construct a probability space 〈Ω,F,P〉. Take Ω to be the real line R,

F the σ -algebra B of Borel sets. As we already know (see Sect. 3.2.1), to construct

a probability space 〈R,B,P〉 it suffices to define a probability on the algebra A

generated, say, by the semi-intervals of the form [·,·) (then σ(A)=B). An arbitrary

element of the algebra A has the form of a finite union of disjoint semi-intervals:

A=
n⋃

i=1

[ai, bi), ai < bi

(the values of ai and bi can be infinite). We define

P(A)=
n∑

i=1

(
F(bi)− F(ai)

)
.

It is absolutely clear that axioms P1 and P2 are satisfied by virtue of F1 and F2. It

remains to verify the countable additivity, or continuity, of P on the algebra A. Let

Bn ∈ A, Bn+1 ⊂ Bn,
⋂∞

n=1 Bn = B ∈ A. One has to show that P(Bn)→ P(B) as

n→∞ or, which is the same, that P(BnB)→ 0 (BnB ∈A). To this end, it suffices

to prove that, for any fixed N , P(BnBCN )→ 0, where CN = [−N,N). Indeed, for

any given ε > 0, by virtue of F2 we can choose an N such that P(CN ) < ε. Then

P(BnB CN )≤ P(CN ) < ε and

lim sup
n→∞

P(BnB)≤ lim sup
n→∞

P(BnBCN )+ ε.

Since ε is arbitrary, the convergence P(BnBCN )→ 0 as n→∞ implies the re-

quired convergence P(BnB)→ 0. It follows that we can assume that the sets Bn are

bounded (Bn ⊂ [−N,N) for some N <∞). Moreover, we can assume without loss

of generality that B is the empty set.

By the above remarks, Bn admits the representation

Bn =
kn⋃

i=1

[
an
i , bn

i

)
, kn <∞,

where an
i , bn

i are finite. Further note that, for a given ε > 0 and any semi-interval

[a, b), one can always find an embedded interval [a, b − δ), δ > 0, such that

P([a, b− δ))≥ P([a, b))− ε. This follows directly from property F3: F(b− δ)→
F(b) as δ ↓ 0. Hence, for a given ε > 0 and set Bn, there exist δn

i > 0, i = 1, . . . , kn,

such that

B̃n =
kn⋃

i=1

[
an
i , bn

i − δn
i

)
⊂ Bn, P(B̃n) > P(Bn)− ε2−n.
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Now add the right end points of the semi-intervals to the set B̃n and consider the

closed bounded set

Kn =
kn⋃

i=1

[
an
i , bn

i − δn
i

]
.

Clearly,

B̃n ⊂Kn ⊂ Bn, K =
∞⋂

n=1

Kn =∅,

P(Bn −Kn)= P(BnKn)≤ ε2−n.

It follows from the relation K =∅ that Kn =∅ for all sufficiently large n. Indeed,

all the sets Kn belong to the closure [CN ] = [N,−N ] which is compact. The sets

{∆n = [CN ] −Kn}∞n=1 form an open covering of [CN ], since

⋃

n

∆n = [CN ]
(⋃

n

Kn

)
= [CN ]

(⋂

n

Kn

)
= [CN ].

Thus, by the Heine–Borel lemma there exists a finite subcovering {∆n}n0

n=1, n0 <∞,

such that
⋃n0

n=1 ∆n = [CN ] or, which is the same,
⋂n0

n=1 Kn =∅. Therefore

P(Bn0
)= P

(
Bn0

(
n0⋂

n=1

Kn

))
= P

(
Bn0

(
n0⋃

n=1

Kn

))

= P

(
n0⋃

n=1

Bn0
Kn

)
≤ P

(
n0⋃

n=1

BnKn

)
≤

n0∑

n=1

ε2−n < ε.

Thus, for a given ε > 0 we found an n0 (depending on ε) such that P(Bn0
) < ε.

This means that P(Bn)→ 0 as n→∞. We proved that axiom P3 holds.

So we have constructed a probability space. It remains to take ξ to be the identity

mapping of R onto itself. Then

Fξ (x)= P(ξ < x)= P(−∞, x)= F(x). �

The model of the sample probability space based on the assertion just proved is

often used in studies of distribution functions.

Definition 3.2.1 A probability space 〈Ω,F,F〉 is called a sample space for a ran-

dom variable ξ(ω) if Ω is a subset of the real line R and ξ(ω)≡ ω.

The probability F = Fξ is called, in accordance with Definition 3.1.1 from

Sect. 3.1, the distribution of ξ . We will write this as

ξ ⊂= F. (3.2.1)

It is obvious that constructing a sample probability space is always possible. It

suffices to put Ω = R, F = B, F(B) = P(ξ ∈ B). For integer-valued variables
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ξ the space 〈Ω,F〉 can be chosen in a more “economical” way by taking Ω =
{. . . ,−1,0, . . .}.

Since by Theorem 3.2.1 the distribution function F(x) of a random variable ξ

uniquely specifies the distribution F of this random variable, along with (3.2.1) we

will also write ξ ⊂= F .

Now we will give examples of some of the most common distributions.

3.2.2 The Most Common Distributions

1. The degenerate distribution Ia . The distribution Ia is defined by

Ia(B)=
{

0 if a ∈ B,

1 if a /∈ B.

This distribution is concentrated at the point a: if ξ ⊂= Ia , then P(ξ = a) = 1. The

distribution function of Ia has the form

F(x)=
{

0 for x ≤ a,

1 for x > a.

The next two distributions were described in Examples 3.1.1 and 3.1.2 of

Sect. 3.1.

2. The binomial distribution Bn
p . By the definition, ξ ⊂= Bn

p (n > 0 is an integer,

p ∈ (0,1)) if P(ξ = k)=
(
n
k

)
pk(1− p)n−k , 0 ≤ k ≤ n. The distribution B1

p will be

denoted by Bp .

3. The uniform distribution Ua,b . If ξ ⊂=Ua,b , then

P(ξ ∈ B)= µ(B ∩ [a, b])
µ([a, b]) ,

where µ is the Lebesgue measure. We saw that this distribution has distribution

function (3.1.1).

The next distribution plays a special role in probability theory, and we will en-

counter it many times.

4. The normal distribution �α,σ 2 (the normal or Gaussian law). We will write

ξ ⊂=�α,σ 2 if

P(ξ ∈ B)=�α,σ 2(B)= 1

σ
√

2π

∫

B

e−(u−α)2/(2σ 2) du. (3.2.2)

The distribution �α,σ 2 depends on two parameters: α and σ > 0. If α = 0, σ = 1, the

normal distribution is called standard. The distribution function of �0,1 is equal to

Φ(x)=�0,1

(
(−∞, x)

)
= 1√

2π

∫ x

−∞
e−u2/2 du.

The distribution function of �α,σ 2 is obviously equal to Φ((x − α)/σ), so that the

parameters α and σ have the meaning of the “location” and “scale” of the distribu-

tion.
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The fact that formula (3.2.2) defines a distribution follows from Theorem 3.2.1

and the observation that the function Φ(x) (or Φ((x − a)/σ )) satisfies properties

F1–F3, since Φ(−∞)= 0, Φ(∞)= 1, and Φ(x) is continuous and monotone. One

could also directly use the fact that the integral in (3.2.2) is a countably additive set

function (see Sect. 3.6 and Appendix 3).

5. The exponential distribution Ŵα . The relation ξ ⊂=Ŵα means that ξ is nonneg-

ative and

P(ξ ∈ B)= Ŵα(B)= α

∫

B∩(0,∞)

e−αu du.

The distribution function of ξ ⊂= Ŵα clearly has the form

P(ξ < x)=
{

1− e−αx for x ≥ 0,

0 for x < 0.

The exponential distribution is a special case of the gamma distribution Ŵα,λ, to be

considered in more detail in Sect. 7.7.

6. A discrete analogue of the exponential distribution is called the geometric
distribution. It has the form

P(ξ = k)= (1− p)pk, p ∈ (0,1), k = 0,1, . . .

7. The Cauchy distribution Kα,σ . As was the case with the normal distribution,

this distribution depends on two parameters α and σ which are also location and

scale parameters. If ξ ⊂=Kα,σ then

P(ξ ∈ B)= 1

πσ

∫

B

du

1+ ((u− a)/σ )2
.

The distribution function K(x) of K0,1 is

K(x)= 1

π

∫ x

−∞

du

1+ u2
.

The distribution function of Kα,σ is equal to K((x − α)σ). All the remarks made

for the normal distribution continue to hold here.

Example 3.2.1 Suppose that there is a source of radiation at a point (α,σ ), σ > 0,

on the plane. The radiation is registered by a detector whose position coincides with

the x-axis. An emitted particle moves in a random direction distributed uniformly

over the circle. In other words, the angle η between this direction and the vector

(0,−1) has the uniform distribution U−π,π on the interval [−π,π]. Observation

results are the coordinates ξ1, ξ2, . . . of the points on the x-axis where the particles

interacted with the detector. What is the distribution of the random variable ξ = ξ1?

To find this distribution, consider a particle emitted at the point (α,σ ) given

that the particle hit the detector (i.e. given that η ∈ [−π/2,π/2]). It is clear that

the conditional distribution of η given the last event (of which the probability is

P(η ∈ [−π/2,π/2]) = 1/2) coincides with U−π/2,π/2. Since (ξ − α)/σ = tanη,

one obtains that
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P(ξ < x)= P(α + σ tanη < x)

= P

(
η

π
<

1

π
arctan

x − α

σ

)
= 1

2
+ 1

π
arctan

x − α

σ
.

Recalling that (arctanu)′ = 1/(1+ u2), we have

arctanx =
∫ x

0

du

1+ u2
=
∫ x

−∞

du

1+ u2
− π

2
,

P(ξ < x)= 1

π

∫ (x−α)/σ

−∞

du

1+ u2
=K

(
x − α

σ

)
.

Thus the coordinates of the traces on the x-axis of the particles emitted from the

point (α,σ ) have the Cauchy distribution Kα,σ .

8. The Poisson distribution �λ. We will write ξ ⊂=�λ if ξ assumes nonnegative

integer values with probabilities

P(ξ =m)= λm

m! e
−λ, λ > 0, m= 0,1,2, . . .

The distribution function, as in Example 3.1.1, has the form of a sum:

F(x)=
{∑

m<x
λm

m! e
−λ for x > 0,

0 for x ≤ 0.

3.2.3 The Three Distribution Types

All the distributions considered in the above examples can be divided into two types.

I. Discrete Distributions

Definition 3.2.2 The distribution of a random variable ξ is called discrete if ξ can

assume only finitely or countably many values x1, x2, . . . so that

pk = P(ξ = xk) > 0,
∑

pk = 1.

A discrete distribution {pk} can obviously always be defined on a discrete prob-

ability space. It is often convenient to characterise such a distribution by a table:

Values x1 x2 x3 . . .

Probabilities p1 p2 p3 . . .

The distributions Ia , Bn
p , �λ, and the geometric distribution are discrete. The

derivative of the distribution function of such a distribution is equal to zero every-

where except at the points x1, x2, . . . where F(x) is discontinuous, the jumps being

F(xk + 0)− F(xk)= pk.

An important class of discrete distributions is formed by lattice distributions.
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Definition 3.2.3 We say that random variable ξ has a lattice distribution with span

h if there exist a and h such that

∞∑

k=−∞
P(ξ = a + kh)= 1. (3.2.3)

If h is the greatest number satisfying (3.2.3) and the number a lies in the interval

[0, h) then these numbers are called the span and the shift, respectively, of the lattice.

If a = 0 and h= 1 then the distribution is called arithmetic. The same terms will

be used for random variables.

Obviously the greatest common divisor (g.c.d.) of all possible values of an arith-

metic random variable equals 1.

II. Absolutely Continuous Distributions

Definition 3.2.4 The distribution F of a random variable ξ is said to be absolutely
continuous2 if, for any Borel set B ,

F(B)= P(ξ ∈ B)=
∫

B

f (x)dx, (3.2.4)

where f (x)≥ 0,
∫∞
−∞ f (x)dx = 1.

The function f (x) in (3.2.4) is called the density of the distribution.

It is not hard to derive from the proof of Theorem 3.2.1 (to be more precise, from

the theorem on uniqueness of the extension of a measure) that the above definition

of absolute continuity is equivalent to the representation

Fξ (x)=
∫ x

−∞
f (u)du

for all x ∈ R. Distribution functions with this property are also called absolutely

continuous.

2The definition refers to absolute continuity with respect to the Lebesgue measure. Given a measure

µ on 〈R,B〉 (see Appendix 3), a distribution F is called absolutely continuous with respect to µ

if, for any B ∈B, one has

F(B)=
∫

B

f (x)µ(dx).

In this sense discrete distributions are also absolutely continuous, but with respect to the count-

ing measure m. Indeed, if one puts f (xk) = pk , m(B) = {the number of points from the set
(x1, x2, . . .) which are in B}, then

F(B)=
∑

xk∈B
pk =

∑

xk∈B
f (xk)=

∫

B

f (x)m(dx)

(see Appendix 3).
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Fig. 3.1 The plot shows the

result of the first three steps in

the construction of the Cantor

function

The function f (x) is determined by the above equalities up to its values on a set

of Lebesgue measure 0. For this function, the relation f (x)= dF(x)
dx

holds3 almost

everywhere (with respect to the Lebesgue measure).

The distributions Ua,b , �α,σ 2 , Kα,σ and Ŵα are absolutely continuous. The den-

sity of the normal distribution with parameters αand σ is equal to

φα,σ 2(x)= 1√
2πσ

e−(x−α)2/(2σ 2).

From their definitions, one could easily derive the densities of the distributions Ua,b ,

Kα,σ and Ŵα as well. The density of Kα,σ has a shape resembling that of the normal

density, but with “thicker tails” (it vanishes more slowly as |x| →∞).

We will say that a distribution F has an atom at point x1 if F({x1}) > 0. We saw

that any discrete distribution consists of atoms but, for an absolutely continuous

distribution, the probability of hitting a set of zero Lebesgue measure is zero. It

turns out that there exists yet a third class of distributions which is characterised

by the negation of both mentioned properties of discrete and absolutely continuous

distributions.

III. Singular Distributions

Definition 3.2.5 A distribution F is said to be singular (with respect to Lebesgue

measure) if it has no atoms and is concentrated on a set of zero Lebesgue measure.

Because a singular distribution has no atoms, its distribution function is continu-

ous. An example of such a distribution function is given by the famous Cantor func-

tion of which the whole variation is concentrated on the interval [0,1]: F(x) = 0

for x ≤ 0, F(x) = 1 for x ≥ 1. It can be constructed as follows (the construction

process is shown in Fig. 3.1).

3The assertion about the “almost everywhere” uniqueness of the function f follows from the

Radon–Nikodym theorem (see Appendix 3).
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Divide the segment [0,1] into three equal parts [0,1/3], [1/3,2/3], and [2/3,1].
On the inner segment put F(x) = 1/2. The remaining two segments are again di-

vided into three equal parts each, and on the inner parts one sets F(x) to be 1/4 and

3/4, respectively. Each of the remaining segments is divided in turn into three parts,

and F(x) is defined on the inner parts as the arithmetic mean of the two already

defined neighbouring values of F(x), and so on. At the points which do not belong

to such inner segments F(x) is defined by continuity. It is not hard to see that the

total length of such “inner” segments on which F(x) is constant is equal to

1

3
+ 2

9
+ 4

27
+ · · · = 1

3

∞∑

k=0

(
2

3

)k

= 1

3

1

1− 2/3
= 1,

so that the function F(x) grows on a set of measure zero but has no jumps.

From the construction of the Cantor distribution we see that dF(x)/dx = 0 al-

most everywhere.

It turns out that these three types of distribution exhaust all possibilities.

More precisely, there is a theorem belonging to Lebesgue4 stating that any distri-

bution function F(x) can be represented in a unique way as a sum of three compo-

nents: discrete, absolutely continuous, and singular. Hence an arbitrary distribution

function cannot have more than a countable number of jumps (which can also be

observed directly: we will count all the jumps if we first enumerate all the jumps

which are greater than 1/2, then the jumps greater than 1/3, then greater than 1/4,

etc.). This means, in particular, that F(x) is everywhere continuous except perhaps

at a countable or finite set of points.

In conclusion of this section we will list several properties of distribution func-

tions and densities that arise when forming new random variables.

3.2.4 Distributions of Functions of Random Variables

For a given function g(x), to find the distribution of g(ξ) we have to impose some

measurability requirements on the function. The function g(x) is called Borel if the

inverse image

g−1(B)=
{
x : g(x) ∈ B

}

of any Borel set B is again a Borel set. For such a function g the distribution function

of the random variable η= g(ξ) equals

Fg(ξ)(x)= P
(
g(ξ) < x

)
= P

(
ξ ∈ g−1(−∞, x)

)
.

If g(x) is continuous and strictly increasing on an interval (a, b) then, on the

interval (g(a), g(b)), the inverse function y = g(−1)(x) is defined as the solution to

4See Sect. 3.5 in Appendix 3.
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the equation g(y)= x.5 Since g is a monotone mapping we have
{
g(ξ) < x

}
=
{
ξ < g(−1)(x)

}
for x ∈

(
g(a), g(b)

)
.

Thus we get the following representation for Fg(ξ) in terms of Fξ : for x ∈
(g(a), g(b)),

Fg(ξ)(x)= P
(
ξ < g−1(x)

)
= Fξ

(
g−1(x)

)
. (3.2.5)

Putting g = Fξ we obtain, in particular, that if Fξ is continuous and strictly increas-
ing on (a, b) and F(a)= 0, F(b)= 1 (−a and b may be∞) then

Fξ

(
g(−1)(x)

)
≡ x

for x ∈ [0,1] and therefore the random variable η= Fξ (ξ) is uniformly distributed
over [0,1].

Definition 3.2.6 The quantile transform F (−1)(f ) of an arbitrary distribution F

with the distribution function F(x) is the “generalised” inverse of the function F

F (−1)(y) := sup
{
x : F(x) < y

}
for y ∈ (0,1];

F (−1)(0) := inf
{
x : F(x) > 0

}
.

In mathematical statistics, the number F (−1)(y) is called the quantile of order y

of the distribution F. The function F (−1) has a discontinuity of size b− a at a point

y if (a, b) is the interval on which F is constant and such that F(x)= y ∈ [0,1).

Roughly speaking, the plot of the function F (−1) can be obtained from that of the

function F(x) on the (x, y) plane in the following way: rotate the (x, y) plane in

the counter clockwise direction by 90°, so that the x-axis becomes the ordinate axis,

but the y-axis becomes the abscissa axis directed to the left. To switch to normal

coordinates, we have to reverse the direction of the new x-axis.

Further, if x is a point of continuity and a point of growth of the function F (i.e.,

F(x) is a point of continuity of F (−1)) then F (−1)(y) is the unique solution of the

equation F(x)= y and the equality F(F (−1)(y))= y holds.

In some cases the following statement proves to be useful.

Theorem 3.2.2 Let η⊂=U0,1. Then, for any distribution F,

f (−1)(η)⊂= F.

Proof If F(x) > y then F (−1)(y) = sup{v : F(v) < y} < x, and vice versa: if

F(x) < y then F (−1)(y) ≥ x (recall that F(x) is left-continuous). Therefore the

following inclusions are valid for the sets in the (x, y) plane:
{
y < F(x)

}
⊂
{
F (−1)(y) < x

}
⊂
{
y ≤ F(x)

}
.

5For an arbitrary non-decreasing function g, the inverse function g(−1)(x) is defined by the equa-

tion

g(−1)(y) := inf
{
x : g(x)≥ y

}
= sup

{
x : g(x) < y

}
.
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Substituting η ⊂= U0,1 in place of y in these relations yields that, for any x, such

inclusions hold for the respective events, and hence

P
(
F (−1)(η) < x

)
= P

(
η < F(x)

)
= F(x).

The theorem is proved. �

Thus we have obtained an important method for constructing random variables

with prescribed distributions from uniformly distributed random variables. For in-

stance, if η⊂=U0,1 then ξ =−(1/α) lnη⊂=Ŵα .

In another special case, when g(x)= a+ bx, b > 0, from (3.2.5) we get Fg(ξ) =
Fξ ((x − a)/b). We have already used this relation to some extent when considering

the distributions �α,σ 2 and Kα,σ .

If a function g is strictly increasing and differentiable (the inverse function g(−1)

is defined in this case), and ξ has a density f (x), then there exists a density for g(ξ)

which is equal to

fg(ξ)(y)= f
(
g(−1)(y)

)(
g(−1)(y)

)′ = f (x)
dx

dy
,

where x = g(−1)(y), y = g(x). A similar argument for decreasing g leads to the

general formula

fg(ξ)(y)= f (x)

∣∣∣∣
dx

dy

∣∣∣∣.

For g(x)= a + bx, b 
= 0, one obtains

fa+bξ (y)= 1

|b|f
(

y − a

b

)
.

3.3 Multivariate Random Variables

Let ξ1, ξ2, . . . , ξn be random variables given on a common probability space

〈Ω,F,P〉. To each ω, these random variables put into correspondence an n-

dimensional vector ξ(ω)= (ξ1(ω), ξ2(ω), . . . , ξn(ω)).

Definition 3.3.1 A mapping Ω→ R
n given by random variables ξ1, ξ2, . . . , ξn is

called a random vector or multivariate random variable.

Such a mapping Ω→ R
n is a measurable mapping of the space 〈Ω,F〉 into the

space 〈Rn,Bn〉, where Bn is the σ -algebra of Borel sets in R
n. Therefore, for Borel

sets B , the function Pξ (B)= P(ξ ∈ B) is defined.

Definition 3.3.2 The function Fξ (B) is called the distribution of the vector ξ .

The function

Fξ1...ξn(x1, . . . , xn)= P(ξ1 < x1, . . . , ξn < xn)
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is called the distribution function of the random vector (ξ1, . . . , ξn) or joint distri-
bution function of the random variables ξ1, . . . , ξn.

The following properties of the distribution functions of random vectors, analo-

gous to properties F1–F3 in Sect. 3.2, hold true.

FF1. Monotonicity: “Multiple” differences of the values of the function Fξ1...ξn ,

which correspond to probabilities of hitting arbitrary “open at the right” paral-

lelepipeds, are nonnegative. For instance, in the two-dimensional case this means

that, for any x1 < x2, y1 < y2 (the points (x1, y1) and (x2, y2) being the “extreme”

vertices of the parallelepiped),

Fξ1,ξ2
(x2, y2)− Fξ1,ξ2

(x2, y1)−
(
Fξ1,ξ2

(x1, y2)− Fξ1,ξ2
(x1, y1)

)
≥ 0.

This double difference is nothing else but the probability of hitting the “semi-open”

parallelepiped [x1, x2)× [y1, y2) by ξ .

In other words, the differences

Fξ1,ξ2
(t, y2)− Fξ1,ξ2

(t, y1) for y1 < y2

must be monotone in t . (For this to hold, the monotonicity of the function

Fξ1,ξ2
(t, y1) is not sufficient.)

FF2. The second property can be called consistency.

lim
xn→∞

Fξ1...ξn(x1, . . . , xn)= Fξ1...ξn−1
(x1, . . . , xn−1),

lim
xn→−∞

Fξ1...ξn(x1, . . . , xn)= 0.

FF3. Left-continuity:

lim
x′n↑∞

Fξ1...ξn

(
x1, . . . , x

′
n

)
= Fξ1...ξn(x1, . . . , xn).

That the limits in properties FF2 and FF3 are taken in the last variable is inessential,

for one can always renumber the components of the vectors.

One can prove these properties in the same way as in the one-dimensional case.

As above, any function F(x1, . . . , xn) possessing this collection of properties will
be the distribution function of a (multivariate) random variable.

As in the one-dimensional case, when considering random vectors ξ =
(ξ1, . . . , ξn), we can make use of the simplest sample model of the probability space

〈Ω,F,P〉. Namely, let Ω coincide with R
n and F=Bn be the σ -algebra of Borel

sets. We will complete the construction of the required probability space if we put

F(B) = Fξ (B) = P(ξ ∈ B) for any B ∈Bn. It remains to define the random vari-

able as the value of the elementary event itself, i.e. to put ξ(ω) = ω, where ω is a

point in R
n.

It is not hard to see that the distribution function Fξ1...ξn uniquely determines the

distribution Fξ (B). Indeed, Fξ1...ξn defines a probability on the σ -algebra A gener-

ated by rectangles {ai ≤ xi < bi; i = 1, . . . , n}. For example, in the two-dimensional

case
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P(a1 ≤ ξ1 < b1, a2 ≤ ξ2 < b2)

= P(ξ1 < b1, a2 ≤ ξ2 < b2)− P(ξ1 < a1, a2 ≤ ξ2 < b2)

=
[
Fξ1,ξ2

(b1, b2)− Fξ1,ξ2
(b1, a2)

]
−
[
Fξ1,ξ2

(a1, b2)− Fξ1,ξ2
(a1, a2)

]
.

But Bn = σ(A), and it remains to make use of the measure extension theorem (see

Sect. 3.2.1).

Thus from a distribution function Fξ1...ξn = F one can always construct a sample
probability space 〈Rn,Bn,Fξ 〉 and a random variable ξ(ω) ≡ ω on it so that the
latter will have the prescribed distribution Fξ .

As in the one-dimensional case, we say that the distribution of a random vector

is discrete if the random vector assumes at most a countable set of values.

The distribution of a random vector will be absolutely continuous if, for any

Borel set B ⊂R
n,

Fξ (B)= P(ξ ∈ B)=
∫

B

f (x)dx,

where clearly f (x)≥ 0 and
∫
Ω

f (x)dx = 1.

This definition can be replaced with an equivalent one requiring that

Fξ1...ξn(x1, . . . , xn)=
∫ x1

−∞
· · ·

∫ xn

−∞
f (t1, . . . , tn) dt1 · · ·dtn. (3.3.1)

Indeed, if (3.3.1) holds, we define a countably additive set function

Q(B)=
∫

B

f (x)dx

(see properties of integrals in Appendix 3), which will coincide on rectangles

with Fξ . Consequently, Fξ (B)=Q(B).

The function f (x) is called the density of the distribution of ξ or density of the
joint distribution of ξ1, . . . , ξn. The equality

∂n

∂x1 · · · ∂xn

Fξ1...ξn(x1, . . . , xn)= f (x1, . . . , xn)

holds for this function almost everywhere.

If a random vector ξ has density f (x1, . . . , xn), then clearly any “subvector”

(ξk1
. . . ξkn), ki ≤ n, also has a density equal (let for the sake of simplicity ki = i,

i = 1, . . . , s) to

f (x1, . . . , xs)=
∫

f (x1, . . . , xn) dxs+1 · · ·dxn.

Let continuously differentiable functions yi = gi(x1, . . . , xn) be given in a region

A⊂R
n. Suppose they are univalently resolvable for x1, . . . , xn: there exist functions

xi = g
(−1)
i (y1, . . . , yn), and the Jacobian J = |∂xi/∂yi | 
= 0 in A. Denote by B the

image of A in the range of (y1, . . . , yn). Suppose further that a random vector ξ =
(ξ1, . . . , ξn) has a density fξ (x). Then ηi = gi(ξ1, . . . , ξn) will be random variables

with a joint density which, at a point (y1, . . . , yn) ∈ B , is equal to

fn(y1, . . . , yn)= fξ (x1, . . . , xn)|J |; (3.3.2)
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moreover

P(ξ ∈A)=
∫

A

fξ (x1, . . . , xn) dx1 · · ·dxn =
∫

B

fξ (x1, . . . , xn)|J |dy1 · · ·dyn

=
∫

B

fη(y1, . . . , yn) dy1 · · ·dyn = P(η ∈ B). (3.3.3)

This is clearly an extension to the multi-dimensional case of the property of densities

discussed at the end of Sect. 3.2. Formula (3.3.3) for integrals is well-known in

calculus as the change of variables formula and could serve as a proof of (3.3.2).

The distribution Fξ of a random vector ξ is called singular if the distribution has

no atoms (Fξ ({x})= 0 for any x ∈Rn) and is concentrated on a set of zero Lebesgue

measure.

Consider the following two important examples of multivariate distributions (we

continue the list of the most common distribution from Sect. 3.2).

9. The multinomial distribution Bn
p . We use here the same symbol Bn

p as we used

for the binomial distribution. The only difference is that now by p we understand a

vector p = (p1, . . . , pr), pj ≥ 0,
∑r

j=1 pj = 1, which could be interpreted as the

collection of probabilities of disjoint events Aj ,
⋃

Aj =Ω . For an integer-valued

random vector ν = (ν1, . . . , νr ), we will write ν ⊂=B if for k = (k1, . . . , kr), kj ≥ 0,∑r
j=1 kj = n one has

P(ν = k)= n!
k1! · · ·kr !

p
k1

1 · · ·p
kr
r . (3.3.4)

On the right-hand side we have a term from the expansion of the polynomial (p1 +
· · · + pr)

n into powers of p1, . . . , pr . This explains the name of the distribution. If

p is a number, then evidently Bn
p = Bn

(p,1−p), so that the binomial distribution is a

multinomial distribution with r = 2.

The numbers νj could be interpreted as the frequencies of the occurrence of

events Aj in n independent trials, the probability of occurrence of Aj in a trial

being pj . Indeed, the probability of any fixed sequence of outcomes containing

k1, . . . , kr outcomes A1, . . . ,Ar , respectively, is equal to p
k1

1 · · ·p
kr
r , and the number

of different sequences of this kind is equal to n!/k1! · · ·kr ! (of n! permutations we

leave only those which differ by more than merely permutations of elements inside

the groups of k1, . . . , kr elements). The result will be the probability (3.3.4).

Example 3.3.1 The simplest model of a chess tournament with two players could

be as follows. In each game, independently of the outcomes of the past games, the

1st player wins with probability p, loses with probability q , and makes a draw with

probability 1− p − q . In that case the probability that, in n games, the 1st player

wins i and loses j games (i + j ≤ n), is

p(n; i, j)= n!
i!j !(n− i − j)! p

iqj (1− p− q)n−i−j .

Suppose that the tournament goes on until one of the players wins N games (and

thereby wins the tournament). If we denote by η the duration of the tournament (the
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number of games played before its end) then

P(η= n)=
N−1∑

i=0

p(n− 1;N − 1, i)p+
N−1∑

i=0

p(n− 1; i,N − 1)q.

10. The multivariate normal (or Gaussian) distribution �α,σ 2 . Let α = (α1,

. . . , αr) be a vector and σ 2 = ‖σij‖, i, j = 1, . . . , r , a symmetric positive definite

matrix, and A = ‖aij‖ the matrix inverse to σ 2 = A−1. We will say that a vector

ξ = (ξ1, . . . , ξr) has the normal distribution: ξ ⊂=�α,σ 2 , if it has the density

ϕα,σ 2(x)=
√
|A|

(2π)r/2
exp

{
−1

2
(x − α)A(x − α)T

}
.

Here T denotes transposition:

xAxT =
∑

aijxixj .

It is not hard to verify that
∫

ϕα,σ 2(x) dx1 · · ·dxr = 1

(see also Sect. 7.6).

3.4 Independence of Random Variables and Classes of Events

3.4.1 Independence of Random Vectors

Definition 3.4.1 Random variables ξ1, . . . , ξn are said to be independent if

P(ξ1 ∈ B1, . . . , ξn ∈ Bn)= P(ξ1 ∈ B1) · · ·P(ξn ∈ Bn) (3.4.1)

for any Borel sets B1, . . . ,Bn on the real line.

One can introduce the notion of a sequence of independent random variables. The

random variables from the sequence {ξn}∞n=1 given on a probability space 〈Ω,F,P〉,
are independent if (3.4.1) holds for any integer n so that the independence of a

sequence of random variables reduces to that of any finite collection of random

variable from this sequence. As we will see below, for a sequence of independent

random variables, any two events related to disjoint groups of random variables

from the sequence are independent.

Another possible definition of independence of random variables follows from

the assertion below.

Theorem 3.4.1 Random variables ξ1, . . . , ξn are independent if and only if

Fξ1...ξn(x1, . . . , xn)= Fξ1
(x1) · · ·Fξn(xn).

The proof of the theorem is given in the third part of the present section.

An important criterion of independence in the case when the distribution of ξ =
(ξ1, . . . , ξn) is absolutely continuous is given in the following theorem.
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Theorem 3.4.2 Let random variables ξ1, . . . , ξn have densities f1(x), . . . , fn(x),

respectively. Then for the independence of ξ1, . . . , ξn it is necessary and sufficient
that the vector ξ = (ξ1, . . . , ξn) has a density f (x1, . . . , xn) which is equal to

f (x1, . . . , xn)= f1(x1) · · ·fn(xn).

Thus, if it turns out that the density of ξ equals the product of densities of ξj , that

will mean that the random variables ξj are independent.

We leave it to the reader to verify, using this theorem, that the components of a

normal vector (ξ1, . . . , ξn) are independent if and only if aij = 0, σij = 0 for i 
= j .

Proof of Theorem 3.4.2 If the distribution function of the random variable ξi is given

by

Fξi
(xi)=

∫ xi

−∞
fi(ti) dti

and ξi are independent, then the joint distribution function will be defined by the

formula

Fξ1...ξn(x1, . . . , xn)= Fξ1
(x1) · · ·Fξn(xn)

=
∫ x1

−∞
f1(t1) dt1 · · ·

∫ xn

−∞
fn(tn) dtn

=
∫ x1

−∞
· · ·

∫ xn

−∞
f1(t1) · · ·fn(tn) dt1 · · ·dtn.

Conversely, assuming that

Fξ1...ξn(x1, . . . , xn)=
∫ x1

−∞
· · ·

∫ xn

−∞
f1(t1) · · ·fn(tn) dt1 · · ·dtn,

we come to the equality

Fξ1...ξn(x1, . . . , xn)= Fξ1
(x1) · · ·Fξn(xn).

The theorem is proved. �

Now consider the discrete case. Assume for the sake of simplicity that the com-

ponents of ξ may assume only integral values. Then for the independence of ξj it is

necessary and sufficient that, for all k1, . . . , kn,

P(ξ1 = k1, . . . , ξn = kn)= P(ξ1 = k1) · · ·P(ξn = kn).

Verifying this assertion causes no difficulties, and we leave it to the reader.

The notion of independence is very important for Probability Theory and will be

used throughout the entire book. Assume that we are formalising a practical problem

(constructing an appropriate probability model in which various random variables

are to be present). How can one find out whether the random variables (or events)

to appear in the model are independent? In such situations it is a justified rule to
consider events and random variables with no causal connection as independent.
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The detection of “probabilistic” independence in a mathematical model of a

random phenomenon is often connected with a deep understanding of its physical

essence.

Consider some simple examples. For instance, it is known that the probability

of a new-born child to be a boy (event A) has a rather stable value P(A)= 22/43.

If B denotes the condition that the child is born on the day of the conjunction of

Jupiter and Mars, then, under the assumption that the position of the planets does not

determine individual fates of humans, the conditional probability P(A|B) will have

the same value: P(A|B) = 22/43. That is, the actual counting of the frequency of

births of boys under these specific astrological conditions would give just the value

22/43. Although such a counting might never have been carried out at a sufficiently

large scale, we have no grounds to doubt its results.

Nevertheless, one should not treat the connection between “mathematical” and

causal independence as an absolute one. For instance, by Newton’s law of gravita-

tion the flight of a missile undoubtedly influences the simultaneous flight of another

missile. But it is evident that in practice one can ignore this influence. This example

also shows that independence of events and variables in the concrete and relative

meaning of this term does not contradict the principle of the universal interdepen-

dence of all events.

It is also interesting to note that the formal definition of independence of events or

random variables is much wider than the notion of real independence in the sense of

affiliation to causally unrelated phenomena. This follows from the fact that “math-

ematical” independence can take place in such cases when one has no reason for

assuming no causal relation. We illustrate this statement by the following example.

Let η be a random variable uniformly distributed over [0,1]. Then in the expansion

of η into a binary fraction

η= ξ1

2
+ ξ2

4
+ ξ3

8
+ · · ·

the random variables ξk will be independent (see Example 11.3.1), although they all

have a related origin.

One can see that this circumstance only enlarges the area of applicability of all

the assertions we obtain below under the formal condition of independence.6

The notion of independence of random variables is closely connected with that

of independence of σ -algebras.

3.4.2 Independence of Classes of Events

Let 〈Ω,F,P〉 be a probability space and A1 and A2 classes of events from the σ -

algebra F.

6For a more detailed discussion of connections between causal and probabilistic independence, see

[24], from where we borrowed the above examples.
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Definition 3.4.2 The classes of events A1 and A2 are said to be independent if, for

any events A1 and A2 such that A1 ∈A1 and A2 ∈A2, one has

P(A1A2)= P(A1)P(A2).

The following definition introduces the notion of independence of a sequence of

classes of events.

Definition 3.4.3 Classes of events {An}∞n=1 are independent if, for any collection of

integers n1, . . . , nk ,

P

(
k⋂

j=1

Anj

)
=

k∏

j=1

P(Anj
)

for any Anj
∈Anj

.

For instance, in a sequence of independent trials, the sub-σ -algebras of events

related to different trials will be independent. The independence of a sequence of

algebras of events also reduces to the independence of any finite collection of alge-

bras from the sequence. It is clear that subalgebras of events of independent algebras

are also independent.

Theorem 3.4.3 σ -algebras A1 and A2 generated, respectively, by independent al-
gebras of events A1 and A2 are independent.

Before proving this assertion we will obtain an approximation theorem which

will be useful for the sequel. By virtue of the theorem, any event A from the σ -

algebra A generated by an algebra A can, in a sense, be approximated by events

from A. To be more precise, we introduce the “distance” between events defined by

d(A,B)= P(AB ∪AB)= P(AB)+ P(AB)= P(A−B)+ P(B −A).

This distance possesses the following properties:

d(A,B)= d(A,B),

d(A,C)≤ d(A,B)+ d(B,C),

d(AB,CD)≤ d(A,C)+ d(B,D),∣∣P(A)− P(B)
∣∣≤ d(A,B).

(3.4.2)

The first relation is obvious. The triangle inequality follows from the fact that

d(A,C)= P(AC)+ P(AC)= P(ACB)+ P(ACB)+ P(ACB)+ P(ACB)

≤ P(CB)+ P(AB)+ P(AB)+ P(CB)= d(A,B)+ d(B,C).

The third relation in (3.4.2) can be obtained in a similar way by enlarging events

under the probability sign. Finally, the last inequality in (3.4.2) is a consequence of

the relations

P(A)= P(AB)+ P(AB)= P(B)− P(BA)+ P(AB).
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Theorem 3.4.4 (The approximation theorem) Let 〈Ω,F,P〉 be a probability space
and A the σ -algebra generated by an algebra A of events from F. Then, for any
A ∈A, there exists a sequence An ∈A such that

lim
n→∞

d(A,An)= 0. (3.4.3)

By the last inequality from (3.4.2), the assertion of the theorem means that

P(A)= limn→∞ P(An) and that each event A ∈A can be represented, up to a set of

zero probability, as a limit of a sequence of events from the generating algebra A

(see also Appendix 1).

Proof 7 We will call an event A ∈ F approximable if there exists a sequence An ∈A
possessing property (3.4.3), i.e. d(An,A)→ 0.

Since d(A,A) = 0, the class of approximable events A∗ contains A. Therefore

to prove the theorem it suffices to verify that A∗ is a σ -algebra.

The fact that A∗ is an algebra is obvious, for the relations A ∈ A∗ and

B ∈ A∗ imply that A, A ∪ B , A ∩ B ∈ A. (For instance, if d(A,An)→ 0 and

d(B,Bn)→ 0, then by the third inequality in (3.4.2) one has d(AB,AnBn) ≤
d(A,An)+ d(B,Bn)→ 0, so that AB ∈A∗.)

Now let C =
⋂∞

k=1 Ck where Ck ∈ A∗. Since A∗ is an algebra, we have Dn =⋃n
k=1 Ck ∈A∗; moreover,

d(Dn,C)= P(C −Dn)= P(C)− P(Dn)→ 0.

Therefore one can choose An ∈ A so that d(Dn,An) < 1/n, and consequently by

virtue of (3.4.2) we have

d(C,An)≤ d(C,Dn)+ d(Dn,An)→ 0.

Thus C ∈A∗ and hence A∗ forms a σ -algebra. The theorem is proved. �

Proof of Theorem 3.4.3 is now easy. If A1 ∈A1 and A2 ∈A2, then by Theorem 3.4.4

there exist sequences A1n ∈A1 and A2n ∈A2 such that d(Ai,Ain)→ 0 as n→∞,

i = 1,2. Putting B =A1A2 and Bn =A1nA2n, we obtain that

d(B,Bn)≤ d(A1,A1n)+ d(A2,A2n)→ 0

as n→∞ and

P(A1A2)= lim
n→∞

P(Bn)= lim
n→∞

P(A1n)P(A2n)= P(A1)P(A2). �

3.4.3 Relations Between the Introduced Notions

We will need one more definition. Let ξ be a random variable (or vector) given on a

probability space 〈Ω,F,P〉.

7The theorem is also a direct consequence of the lemma from Appendix 1.
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Definition 3.4.4 The class Fξ of events from F of the form A = ξ−1(B) =
{ω : ξ(ω) ∈ B}, where B are Borel sets, is called the σ -algebra generated by the
random variable ξ .

It is evident that Fξ is a σ -algebra since to each operation on sets A there corre-

sponds the same operation on the sets B = ξ(A) forming a σ -algebra.

The σ -algebra Fξ generated by the random variable ξ will also be denoted by

σ(ξ).

Consider, for instance, a probability space 〈Ω,B,P〉, where Ω = R is the real

line and B is the σ -algebra of Borel sets. If

ξ = ξ(ω)=
{

0, ω < 0,

1, ω ≥ 0,

then Fξ clearly consists of four sets: R, ∅, {ω < 0} and {ω ≥ 0}. Such a random

variable ξ cannot distinguish “finer” sets from B. On the other hand, it is obvious

that ξ will be measurable ({ξ ∈ B} ∈B1) with respect to any other “richer” sub-σ -

algebra B1, such that σ(ξ)⊂B1 ⊂B.

If ξ = ξ(ω)= ⌊ω⌋ is the integral part of ω, then Fξ will be the σ -algebra of sets

composed of the events {k ≤ ω < k + 1}, k = . . . ,−1,0,1, . . .

Finally, if ξ(ω) = ϕ(ω) where ϕ is continuous and monotone, ϕ(∞) =∞ and

ϕ(−∞)=−∞, then Fξ coincides with the σ -algebra of Borel sets B.

Lemma 3.4.1 Let ξ and η be two random variables given on 〈Ω,F,P〉, the variable
ξ being measurable with respect to σ(η). Then ξ and η are functionally related, i.e.

there exists a Borel function g such that ξ = g(η).

Proof By assumption,

Ak,n =
{
ξ ∈

[
k

2n
,
k + 1

2n

)}
∈ σ(η).

Denote by Bk,n = {η(ω) : ω ∈Ak,n} the images of the sets Ak,n on the line R under

the mapping η(ω) and put gn(x)= k/2n for x ∈ Bk,n. Then gn(η)= [2nε]/2n and

because Ak,n ∈ σ(η), Bk,n ∈B and gn is a Borel function. Since gn(x) ↑ for any x,

the limit limn→∞ gn(x) = g(x) exists and is also a Borel function. It remains to

observe that ε = limn→∞ gn(η)= g(η) by the very construction. �

Now we formulate an evident proposition relating independence of random vari-

ables and σ -algebras.

Random variables ξ1, . . . , ξn are independent if and only if the σ -algebras
σ(ξ1), . . . , σ (ξn) are independent.

This is a direct consequence of the definitions of independence of random vari-

ables and σ -algebras.

Now we can prove Theorem 3.4.1. First note that finite unions of semi-intervals

[·,·) (perhaps with infinite end points) form a σ -algebra generating the Borel σ -alge-

bra on the line: B= σ(A).
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Proof of Theorem 3.4.1 Since in one direction the assertion of the theorem is ob-

vious, it suffices to verify that the equality F(x1, . . . , xn)= Fξ1
(x1) · · ·Fξn(xn) for

the joint distribution function implies the independence of σ(ξ1), . . . , σ (ξn). Put for

simplicity n = 2 and denote by ∆ and Λ the semi-intervals [x1, x2) and [y1, y2),

respectively. The following equalities hold:

P(ξ1 ∈∆,ξ2 ∈Λ)= P
(
ξ1 ∈ [x1, x2), ξ2 ∈ [y1, y2)

)

= F(x2, y2)F (x1, y2)− F(x2, y1)+ F(x1, y1)

=
(
Fξ1

(x2)− Fξ1
(x1)

)(
Fξ2

(y2)− Fξ2
(y1)

)

= P{ξ1 ∈∆}P{ξ2 ∈Λ}.

Consequently, if ∆i , i = 1, . . . , n, and Λj , j = 1, . . . ,m, are two systems of

disjoint semi-intervals, then

P

(
ξ1 ∈

n⋃

i=1

∆i, ξ2 ∈
m⋃

j=1

Λj

)
=
∑

i,j

P(ξ1 ∈∆i, ξ2 ∈Λj )

=
∑

i,j

P(ξ1 ∈∆i)P(ξ2 ∈Λj )

= P

(
ξ1 ∈

n⋃

i=1

∆i

)
P

(
ξ2 ∈

m⋃

j=1

λj

)
. (3.4.4)

But the class of events {ω : ξ(ω) ∈A} = ξ−1(A), where A ∈A, forms, along with A,

an algebra (we will denote it by α(ξ)), and one has σ(α(ξ)) = σ(ξ). In (3.4.4)

we proved that α(ξ1) and α(ξ2) are independent. Therefore by Theorem 3.4.3 the

σ -algebras σ(ξ1)= σ(α(ξ1)) and σ(ξ2)= σ(α(ξ1)) are also independent. The the-

orem is proved. �

It is convenient to state the following fact as a theorem.

Theorem 3.4.5 Let ϕ1 and ϕ2 be Borel functions and ξ1 and ξ2 be independent
random variables. Then η1 = ϕ1(ξ1) and η2 = ϕ2(ξ2) are also independent random
variables.

Proof We have to verify that, for any Borel sets B1 and B2,

P
(
ϕ1(ξ1) ∈ B1, ϕ2(ξ2) ∈ B2

)
= P

(
ϕ1(ξ1) ∈ B1

)
P
(
ϕ2(ξ2) ∈ B2

)
. (3.4.5)

But the sets {x : ϕi(x) ∈ Bi} = ϕ−1(Bi)= B∗i , i = 1,2, are again Borel sets. There-

fore
{
ω : ϕi(ξi) ∈ Bi

}
=
{
ω : ξi ∈ B∗i

}
,

and the required multiplicativity of probability (3.4.5) follows from the indepen-

dence of ξi . The theorem is proved. �
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Let {ξn}∞n=1 be a sequence of independent random variables. Consider the random

variables ξk, ξk+1, . . . , ξm where k < m≤∞. Denote by σ(ξk, . . . , ξm) (for m=∞
we will write σ(ξk, ξk+1, . . .)) the σ -algebra generated by the events

⋂m
i=k Ai ,

where Ai ∈ σ(ξi).

Definition 3.4.5 The σ -algebra σ(ξk, . . . , ξm) is said to be generated by the random
variables ξk, . . . , ξm.

In the sequel we will need the following proposition.

Theorem 3.4.6 For any k ≥ 1, the σ -algebra σ(ξn+k) is independent of
σ(ξ1, . . . , ξn).

Proof To prove the assertion, we make use of Theorem 3.4.3. To this end we have

to verify that the algebra A generated by sets of the form B =
⋂n

i=1 Ai , where

Ai ∈ σ(ξi), is independent of σ(ξn+k). Let A ∈ σ(ξn+k), then it follows from the

independence of the σ -algebras σ(ξ1), σ (ξ2), . . . , σ (ξn), σ (ξn+k) that

P(AB)= P(A)P(A1) · · ·P(An)= P(A) · P(B).

In a similar way we verify that

P

(
n⋃

i=1

AiA

)
= P

(
n⋃

i=1

Ai

)
P(A)

(one just has to represent
⋃n

i=1 Ai as a union of disjoint events from A). Thus the

algebra A is independent of σ(ξn+k). Hence σ(ξ1, . . . , ξn) and σ(ξn+k) are inde-

pendent. The theorem is proved. �

It is not hard to see that similar conclusions can be made about vector-valued

random variables ξ1, ξ2, . . . defining their independence using the relation

P(ξ1 ∈ B1, . . . , ξn ∈ Bn)=
∏

P(ξj ∈ Bj ),

where Bj are Borel sets in spaces of respective dimensions.

In conclusion of this section note that one can always construct a probability

space 〈Ω,F,P〉 (〈Rn,Bn,Pξ 〉) on which independent random variables ξ1, . . . , ξn

with prescribed distribution functions Fξj
are given whenever these distributions

Fξj
are known. This follows immediately from Sect. 3.3, since in our case the joint

distribution function Fξ (x1, . . . , xn) of the vector ξ = (ξ1, . . . , ξn) is uniquely deter-

mined by the distribution functions Fξj
(x) of the variables ξj :

Fξ (x1, . . . , xn)=
n∏

1

Fξj
(xj ).
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3.5 ∗ On Infinite Sequences of Random Variables

We have already mentioned infinite sequences of random variables. Such sequences

will repeatedly be objects of our studies below. However, there arises the question

of whether one can define an infinite sequence on a probability space in such a way

that its components possess certain prescribed properties (for instance, that they will

be independent and identically distributed).

As we saw, one can always define a finite sequence of independent random vari-

ables by choosing for the “compound” random variable (ξ1, . . . , ξn) the sample

space R1 ×R2 × · · · ×Rn =R
n and σ -algebra B1 ×B1 × · · · ×Bn =Bn gener-

ated by sets of the form B1 × B2 × · · · × Bn ⊂ R
n, Bi being Borel sets. It suffices

to define probability on the algebra of these sets. In the infinite-dimensional case,

however, the situation is more complicated. Theorem 3.2.1 and its extensions to the

multivariate case are insufficient here. One should define probability on an algebra

of events from R
∞ =

∏∞
k=1 Rk so that its closure under countably many operations

∪ and ∩ form the σ -algebra B∞ generated by the products
⋂

Bjk
, Bjk

∈Bjk
.

Let N be a subset of integers. Denote by R
N =

∏
k∈N Rk the direct product of

the spaces Rk over k ∈N , BN =
∏

k∈N Bk . We say that distributions PN ′ and PN ′′

on 〈RN ′ ,BN ′〉 and 〈RN ′′ ,BN ′′〉, respectively, are consistent if the measures induced

by PN ′ and PN ′′ on the intersection R
N =R

N ′ ∩RN ′′ (here N =N ′ ∩N ′′) coincide

with each other. The measures on R
N are said to be the projections of PN ′ and PN ′′ ,

respectively, on R
N . An answer to the above question about the existence of an

infinite sequence of random variables is given by the following theorem (the proof

of which is given in Appendix 2).

Theorem 3.5.1 (Kolmogorov) Specifying a family of consistent distributions PN

on finite-dimensional spaces R
N defines a unique probability measure P∞ on

〈R∞,B∞〉 such that each probability PN is the projection of P∞ onto R
N .

It follows from this theorem, in particular, that one can always define on an appro-

priate space an infinite sequence of arbitrary independent random variables. Indeed,

direct products of measures given on R1,R2, . . . for different products RN ′ and R
N ′′

are always consistent.

3.6 Integrals

3.6.1 Integral with Respect to Measure

As we have already noted, defining a probability space includes specifying a finite

countably additive measure. This enables one to consider integrals with respect to

the measure,
∫

g
(
ξ(ω)

)
P(dω) (3.6.1)
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over the set Ω for a Borel function g and any random variable ξ on 〈Ω,F,P〉 (recall

that g(x) is said to be Borel if, for any t , {x : g(x) < t} is a Borel set on the real

line).

The definition, construction and basic properties of the integral with respect to a

measure are assumed to be familiar to the reader. If the reader feels his or her back-

ground is insufficient in this aspect, we recommend Appendix 3 which contains all

the necessary information. However, the reader could skip this material if he/she is

willing to restrict him/herself to considering only discrete or absolutely continuous

distributions for which integrals with respect to a measure become sums or conven-

tional Riemann integrals. It would also be useful for the sequel to know the Stieltjes

integral; see the comments in the next subsection.

We already know that a random variable ξ(ω) induces a measure Fξ on the real

line which is specified by the equality

Fξ

(
[x, y)

)
= P(x ≤ ξ ≤ y)= Fξ (y)− Fξ (x).

Using this measure, one can write the integral (3.6.1) as
∫

g
(
ξ(ω)

)
P(dω)=

∫
g(x)Fξ (dx).

This is just the result of the substitution x = ξ(ω). It can be proved simply by

writing down the definitions of both integrals. The integral on the right hand side

is called the Lebesgue–Stieltjes integral of the function g(x) with respect to the

measure Pξ and can also be written as
∫

g(x)dFξ (x). (3.6.2)

3.6.2 The Stieltjes Integral

The integral (3.6.2) is often just called the Stieltjes integral, or the Riemann–Stieltjes

integral which is defined in a somewhat different way and for a narrower class of

functions.

If g(x) is a continuous function, then the Lebesgue–Stieltjes integral coincides
with the Riemann–Stieltjes integral which is equal by definition to

∫
g(x)dF (x)= lim

b→∞
a→−∞

lim
N→∞

N∑

k=0

g(̃xk)
[
F(xk+1)− F(xk)

]
, (3.6.3)

where the limit on the right-hand side does not depend on the choice of parti-

tions x0, x1, . . . , xN of the semi-intervals [a, b) and points x̃k ∈ ∆k = [xk, xk+1).

Partitions x0, x1, . . . , xN are different for different N ’s and have the property that

maxk(xk+1 − xk)→ 0 as N→∞.

Indeed, as we know (see Appendix 3), the Lebesgue–Stieltjes integral is
∫

g(x)dF (x)= lim
b→∞

a→−∞
lim

N→∞

∫ b

a

gN (x)Fξ (dx), (3.6.4)
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where gN is any sequence of simple functions (assuming finitely many values) con-

verging monotonically to g(x). We see from these definitions that it suffices to show

that the integrals
∫ b

a
with finite integration limits coincide. Since the Lebesgue–

Stieltjes integral
∫ b

a
g dF of a continuous function g always exists, we could obtain

its value by taking the sequence gN to be any of the two sequences of simple func-

tions g∗N and g∗∗N which are constant on the semi-intervals ∆k and equal on them to

g∗N (xk)= sup
x∈∆k

g(x) and g∗∗N (xk)= inf
x∈∆k

g(x),

respectively. Both sequences in (3.6.4) constructed from g∗N and g∗∗N will clearly

converge monotonically from different sides to the same limit equal to the

Lebesgue–Stieltjes integral

∫ b

a

g(x)dF (x).

But for any x̃k ∈∆k , one has

g∗∗N (xk)≤ g(̃xk)≤ g∗N (xk),

and therefore the integral sum in (3.6.3) will be between the bounds

∫ b

a

g∗∗N dF(x)≤
N∑

k=0

g(X̃k)
[
F(xk+1)− F(xk)

]
≤
∫ b

a

g∗N dF(x).

These inequalities prove the required assertion about the coincidence of the inte-

grals.

It is not hard to verify that (3.6.3) and (3.6.4) will also coincide when F(x) is

continuous and g(x) is a function of bounded variation. In that case,

∫ b

a

g(x)dF (x)= g(x)F (x)|ba −
∫ b

a

F(x)dg(x).

Making use of this fact, we can extend the definition of the Riemann–Stieltjes in-

tegral to the case when g(x) is a function of bounded variation and F(x) is an

arbitrary distribution function. Indeed, let F(x) = Fc(x)+ Fd(x) be a representa-

tion of F(x) as a sum of its continuous and discrete components, and y1, y2, . . . be

the jump points of Fd(x):

pk = Fd(yk + 0)− Fd(yk) > 0.

Then one has to put by definition
∫

g(x)dF (x)=
∑

pkg(yk)+
∫

g(x)dFc(x),

where the Riemann–Stieltjes integral
∫

g dFc(x) can be understood, as we have

already noted, in the sense of definition (3.6.3).

We will say, as is generally accepted, that
∫

g dF exists if the integral
∫
|g|dF

is finite. It is easy to see from the definition of the Stieltjes integral that, for step
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functions F(x) (the distribution is discrete), the integral becomes the sum
∫

g(x)dF (x)=
∑

k

g(xk)
(
F(xk + 0)− F(xk)

)
=
∑

k

g(xk)P(ξ = xk),

where x1, x2, . . . are jump points of F(x). If

F(x)=
∫ x

−∞
p(x)dx

is absolutely continuous and p(x) and g(x) are Riemann integrable, then the Stielt-

jes integral
∫

g(x)dF (x)=
∫

g(x)p(x)dx

becomes a conventional Riemann integral.

We again note that for a reader who is not familiar with Stieltjes integral tech-
niques and integration with respect to measures, it is possible to continue reading
the book keeping in mind only the last two interpretations of the integral. This would

be quite sufficient for an understanding of the exposition. Moreover, most of the

distributions which are important from the practical point of view are just of one of

these types: either discrete or absolutely continuous.

We recall some other properties of the Stieltjes integral (following immediately

from definitions (3.6.4) or (3.6.3) and (3.6.5)):

∫ b

a

dF = F(b)− F(a);
∫ b

a

g dF =
∫ c

a

g dF +
∫ b

c

g dF if g or F is continuous at the point c;
∫

(g1 + g2) dF =
∫

g1 dF +
∫

g2 dF ;
∫

cg dF = c

∫
g dF for c= const;

∫ b

a

g dF = gF |ba −
∫ b

a

F dg

if g is a function of bounded variation.

3.6.3 Integrals of Multivariate Random Variables.

The Distribution of the Sum of Independent

Random Variables

Integrals with respect to measure (3.6.1) make sense for multivariate variables

ξ(ω) = (ξ1(ω), . . . , ξn(ω)) as well (one cannot say the same about Riemann–



60 3 Random Variables and Distribution Functions

Stieltjes integrals (3.6.3)). We mean here the integral
∫

Ω

g
(
ξ1(ω), . . . , ξn(ω)

)
P(dω), (3.6.5)

where g is a measurable function mapping R
n into R, so that g(ξ1(ω), . . . , ξn(ω))

is a measurable mapping of Ω into R.

If 〈Rn,Bn,Fξ 〉 is a sample probability space for ξ , then the integral (3.6.5) can

be written as ∫

Rn

g(x)Fξ (dx), x = (x1, . . . , xn) ∈Rn.

Now turn to the case when the components ξ1, . . . , ξn of the vector ξ are independent

and assume first that n= 2. For sets

B = B1 ×B2 =
{
(x1, x2) : x1 ∈ B1, x2 ∈ B2

}
⊂R

2,

where B1 and B2 are measurable subsets of R, one has the equality

P(ξ ∈ B)= P(ξ1 ∈ B1, ξ2 ∈ B2)= P(ξ1 ∈ B1)P(ξ2 ∈ B2). (3.6.6)

In that case one says that the measure Fξ1,ξ2
(dx1, dx2) = P(ξ1 ∈ dx1, ξ2 ∈ dx2)

on R
2, corresponding to (ξ1, ξ2), is a direct product of the measures

Fξ1
(dx1)= P(ξ1 ∈ dx1) and Fξ2

(dx2)= P(ξ2 ∈ dx2).

As we already know, equality (3.6.6) uniquely specifies a measure on 〈R2,B2〉
from the given distributions of ξ1 and ξ2 on 〈R,B〉. It turns out that the integral

∫
g(x1, x2)Fξ1ξ2

(dx1, dx2) (3.6.7)

with respect to the measure Fξ1,ξ2
can be expressed in terms of integrals with respect

to the measures Fξ1
and Fξ2

. Namely, Fubini’s theorem holds true (for the proof see

Appendix 3 or property 5A in Sect. 4.8).

Theorem 3.6.1 (Theorem on iterated integration) For a Borel function g(x, y)≥ 0

and independent ξ1 and ξ2,
∫

g(x1, x2)Fξ1ξ2
(dx1, dx2)=

∫ [∫
g(x1, x2)Fξ2

(dx2)

]
Fξ1

(dx1). (3.6.8)

If g(x, y) can assume values of different signs, then the existence of the integral
on the left-hand side of (3.6.8) is required for the equality (3.6.8). The order of
integration on the right-hand side of (3.6.8) may be changed.

It is shown in Appendix 3 that the measurability of g(x, y) implies that of the

integrands on the right-hand side of (3.6.8).

Corollary 3.6.1 Let g(x1, x2)= g1(x1)g2(x2). Then, if at least one of the following
three conditions is met:

(1) g1 ≥ 0, g2 ≥ 0,
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(2)
∫

g1(x1)g2(x2)Fξ1ξ2
(dx1, dx2) exists,

(3)
∫

gj (xj )Fξj
(dxj ), j = 1,2, exist,

then
∫

g1(x1)g2(x2)Fξ1ξ2
(dx1, dx2)=

∫
g1(x1)Fξ1

(dx1)

∫
g2(x2)Fξ2

(dx2). (3.6.9)

To avoid trivial complications, we assume that P(gj (ξj )= 0) 
= 1, j = 1,2.

Proof Under any of the first two conditions, the assertion of the corollary follows

immediately from Fubini’s theorem. For arbitrary g1, g2, put gj = g+j −g−j , g±j ≥ 0,

j = 1,2. If
∫

g±j dFξ <∞ (we will use here the abridged notation for integrals),

then
∫

g1g2 dFξ1
dFξ2

=
∫

g+1 g+2 dFξ1
dFξ2

−
∫

g+1 g−2 dFξ1
dFξ2

−
∫

g−1 g+2 dFξ1
dFξ2

+
∫

g−1 g−2 dFξ1
dFξ2

=
∫

g+1 dFξ1

∫
g+2 dFξ2

−
∫

g+1 dFξ1

∫
g+2 dFξ2

−
∫

g−1 dFξ1

∫
g+2 dFξ2

+
∫

g−1 dFξ1

∫
g−2 dFξ2

=
∫

g1 dFξ1

∫
g2 dFξ2

. �

Corollary 3.6.2 In the special case when g(x1, x2) = IB(x1, x2) is the indicator
of a set B ∈B2, we obtain the formula for sequential computation of the measure
of B:

P
(
(ξ1, ξ2) ∈ B

)
=
∫

P
(
(x1, ξ2) ∈ B

)
Fξ1

(dx1).

The probability of the event {(x1, ξ2) ∈ B} could also be written as P(ξ2 ∈ Bx1
)=

Pξ2
(Bx1

) where Bx1
= {x2 : (x1, x2) ∈ B} is the “section” of the set B at the point x1.

If B = {(x1, x2) : x1 + x2 < x}, we get

P
(
(ξ1, ξ2) ∈ B

)
= P(ξ1 + ξ2 < x)≡ Fξ1+ξ2

(x)

=
∫

P(x1 + ξ2 < x)Fξ1
(dx1)

=
∫

Fξ2
(x − x1) dFξ1

(x1). (3.6.10)

We have obtained a formula for the distribution function of the sum of independent

random variables expressing Fξ1+ξ2
in terms of Fξ1

and Fξ2
. The integral on the

right-hand side of (3.6.10) is called the convolution of the distribution functions
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Fξ1
(x) and Fξ2

(x) and is denoted by Fξ1
∗ Fξ2

(x). In the same way one can obtain

the equality

P(ξ1 + ξ2 < x)=
∫ ∞

−∞
Fξ1

(x − t) dFξ2
(t).

Observe that the right-hand side here could also be considered as a result of inte-

grating
∫

dFξ1
(t)Fξ2

(x − t)

by parts.

If at least one of the distribution functions has a density, the convolution also
has a density. This follows immediately from the formulas for convolution. Let, for

instance,

Fξ2
(x)=

∫ x

−∞
fξ2

(u) du.

Then

Fξ1+ξ2
(x)=

∫ ∞

−∞
Fξ1

(dt)

∫ x

−∞
fξ2

(u− t) du

=
∫ x

−∞

(∫ ∞

−∞
Fξ1

(dt)fξ2
(u− t)

)
du,

so that the density of the sum ξ1 + ξ2 equals

fξ1+ξ2
(x)=

∫ ∞

−∞
Fξ1

(dt)fξ2
(x − t)=

∫ ∞

−∞
fξ2

(x − t) dFξ1
(t).

Example 3.6.1 Let ξ1, ξ2, . . . be independent random variables uniformly dis-

tributed over [0,1], i.e. ξ1, ξ2, . . . have the same distribution function with density

f (x)=
{

1, x ∈ [0,1],
0, x /∈ [0,1].

(3.6.11)

Then the density of the sum ξ1 + ξ2 is

fξ1+ξ2
(x)=

∫ 1

0

f (x − t) dt =

⎧
⎨
⎩

0, x /∈ [0,2],
x, x ∈ [0,1],
2− x, x ∈ [1,2].

(3.6.12)

The integral present here is clearly the length of the intersection of the segments

[0,1] and [x − 1, x]. The graph of the density of the sum ξ1 + ξ2 + ξ3 will consist

of three pieces of parabolas:

fξ1+ξ2+ξ3
(x)=

∫ 1

0

fξ1+ξ2
(x − t) dt =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, x /∈ [0,3],
x2

2
, x ∈ [0,1],

1− (2−x)2

2
− (x−1)2

2
, x ∈ [1,2],

(3−x)2

2
, x ∈ [2,3].
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Fig. 3.2 Illustration to Example 3.6.1. The upper row visualizes the computation of the convolu-

tion integral for the density of ξ1 + ξ2 + ξ3. The lower row displays the densities of ξ1, ξ1 + ξ2,

and ξ1 + ξ2 + ξ3, respectively

The computation of this integral is visualised in Fig. 3.2, where the shaded areas

correspond to the values of fξ1+ξ2+ξ3
(x) for different x. The shape of the densities

of ξ1, ξ1+ ξ2 and ξ1+ ξ2+ ξ3 is shown in Fig. 3.2b. The graph of the density of the

sum ξ1 + ξ2 + ξ3 + ξ4 will consist of four pieces of cubic parabolas and so on. If

we shift the origin to the point n/2, then, as n increases, the shape (up to a scaling

transformation) of the density of the sum ξ1 + · · · + ξn will be closer and closer to

that of the function e−x2
. We will see below that this is not due to chance.

In connection with this example we could note that if ξ and η are two independent

random variables, ξ having the distribution function F(x) and η being uniformly

distributed over [0,1], then the density of the sum ξ + η at the point x is equal to

fξ+η(x)=
∫

dF(t)fη(x − t)=
∫ x

x−1

dF(t)= F(x)− F(x − 1).



Chapter 4

Numerical Characteristics of Random Variables

Abstract This chapter opens with Sect. 4.1 introducing the concept of the expec-

tation of random variable as the respective Lebesgue integral and deriving its key

properties, illustrated by a number of examples. Then the concepts of conditional

distribution functions and conditional expectations given an event are presented and

discussed in detail in Sect. 4.2, one of the illustrations introducing the ruin problem

for the simple random walk. In the Sects. 4.3 and 4.4, expectations of independent

random variables and those of sums of random numbers of random variables are

considered. In Sect. 4.5, Kolmogorov–Prokhorov’s theorem is proved for the case

when the number of random terms in the sum is independent of the future, fol-

lowed by the derivation of Wald’s identity. After that, moments of higher orders

are introduced and discussed, starting with the variance in Sect. 4.5 and proceeding

to covariance and correlation coefficient and their key properties in Sect. 4.6. Sec-

tion 4.7 is devoted to the fundamental moment inequalities: Cauchy–Bunjakovsky’s

inequality (a.k.a. Cauchy–Schwarz inequality), Hölder’s and Jensen’s inequalities,

followed by inequalities for probabilities (Markov’s and Chebyshev’s inequalities).

Section 4.8 extends the concept of conditional expectation (given a random variable

or sigma-algebra), starting with the discrete case, then turning to square-integrable

random variables and using projections, and finally considering the general case

basing on the Radon–Nykodim theorem (proved in Appendix 3). The properties of

the conditional expectation are studied, following by introducing the concept of con-

ditional distribution given a random variable and illustrating it by several examples

in Sect. 4.9.

4.1 Expectation

Definition 4.1.1 The (mathematical) expectation, or mean value, of a random vari-

able ξ given on a probability space 〈Ω,F,P〉 is defined as the quantity

Eξ =
∫

Ω

ξ(ω)P(dω).

Let ξ± = max(0,±ξ). The values Eξ± ≥ 0 are always well defined (see Ap-

pendix 3). We will say that Eξ exists if max(Eξ+,Eξ−) <∞.
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We will say that Eξ is well defined if min(Eξ+,Eξ−) <∞. In this case the

difference Eξ+ −Eξ− is always well defined, but Eξ = Eξ+ −Eξ− may be ±∞.

By virtue of the above remarks (see Sect. 3.6) one can also define Eξ as

Eξ :=
∫

xFξ (dx)=
∫

x dF(x), (4.1.1)

where F(x) is the distribution function of ξ . It follows from the definition that Eξ

exists if E|ξ | <∞. It is not hard to see that Eξ does not exist if, for instance,

1− F(x) > 1/x for all sufficiently large x.

We already know that if F(x) is a step function then the Stieltjes integral (4.1.1)

becomes the sum

Eξ :=
∑

k

xkP(ξ = xk).

If F(x) has a density f (x), then

Eξ :=
∫

xf (x)dx,

so that Eξ is the point of the “centre of gravity” of the distribution F of the unit

mass on the real line and corresponds to the natural interpretation of the mean value

of the distribution.

If g(x) is a Borel function, then η= g(ξ) is again a random variable and

Eg(ξ)=
∫

g
(
ξ(ω)

)
P(dω)=

∫
g(x)dF (x)=

∫
x dFg(ξ)(x).

The last equality follows from definition (4.1.1).

The basic properties of expectations coincide with those of the integral:

E1. If a and b are constants, then E(a + bξ)= a + bEξ .

E2. E(ξ1 + ξ2) = E(ξ1) + E(ξ2), if any two of the expectations appearing in the
formula exist.

E3. If a ≤ ξ ≤ b, then a ≤ Eξ ≤ b. The inequality Eξ ≤ E|ξ | always holds.

E4. If ξ ≥ 0 and Eξ = 0, then ξ = 0 with probability 1.

E5. The probability of an event A can be expressed in terms of expectations as

P(A)= EI(A),

where I(A) is the random variable equal to the indicator of the event A:

I(A)= 1 if ω ∈A and I(A)= 0 otherwise.

For further properties of expectations, see Appendix 3.

We consider several examples.

Example 4.1.1 Expectations related to the Bernoulli scheme. Let ξ ⊂= Bp , i.e. ξ

assumes two values: 0 with probability q and 1 with probability p, where p+q = 1.

Then

Eξ = 0× P(ξ = 0)+ 1× P(ξ = 1)= p.
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Now consider a sequence of trials in the Bernoulli scheme until the time of

the first “success”. In other words, consider a sequence of independent variables

ξ1, ξ2, . . . distributed as ξ until the time

η :=min{k ≥ 1 : ξk = 1}.
It is evident that η is a random variable,

P(η= k)= qk−1p, k ≥ 1,

so that η− 1 has the geometric distribution. Consequently,

Eη=
∞∑

k=1

kqk−1p = p

(1− q)2
= 1

p
.

If we put Sn :=
∑n

1 ξk , then clearly ESn = np. Now define, for an integer N ≥ 1,

the random variable η=min{k ≥ 1 : Sk =N} as the “first passage time” of level N

by the sequence Sn. One has

P(η= k)= P(Sk−1 =N − 1)p,

Eη= p

∞∑

N

k

(
k − 1

N − 1

)
pN−1qk−N = pN

(N − 1)!

∞∑

k=N

k(k − 1) · · · (k −N + 1)qk−N .

The sum here is equal to the N -th derivative of the function ψ(z) =
∑∞

0 zk =
1/(1− z) at the point z = q , i.e. it equals N !/pN+1. Thus Eη = N/p. As we will

see below, this equality could be obtained as an obvious consequence of the results

of Sect. 4.4.

Example 4.1.2 If ξ ⊂=�a,σ 2 then

Eξ =
∫

tφa,σ 2(t) dt =
∫

t
1

σ
√

2π
e
− (t−a)2

2σ2 dt

= 1

σ
√

2π

∫
(t − a)e

− (t−a)2

2σ2 dt + a

σ
√

2π

∫
e
− (t−a)2

2σ2 dt

= 1

σ
√

2π

∫
ze
− z2

2σ2 dz+ a = a.

Thus the parameter a of the normal law is equal to the expectation of the latter.

Example 4.1.3 If ξ ⊂=�µ, then Eξ = µ. Indeed,

Eξ =
∞∑

k=0

k
µk

k! e
−µ = µe−µ

∞∑

k=1

µk−1

(k − 1)! = µ.

Example 4.1.4 If ξ ⊂=U0,1, then

Eξ =
∫ 1

0

x dx = 1

2
.
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It follows from property E1 that, for ξ ⊂=Ua,b , one has

Eξ = a + b− a

2
= a + b

2
.

If ξ ⊂= K0,1 then the expectation Eξ does not exist. That follows from the fact

that the integral
∫

x dx

1+x2 diverges.

Example 4.1.5 We now consider an example that is, in a sense, close to Exam-

ple 4.1.1 on the computation of Eη, but which is more complex and corresponds

to computing the mean value of the duration of a chess tournament in a real-life

situation. In Sect. 3.4 we described a simple probabilistic model of a chess tourna-

ment. The first player wins in a given game, independently of the outcomes of the

previous games, with probability p, loses with probability q , p+ q < 1, and makes

a tie with probability 1−p− q . Of course, this is a rather rough first approximation

since in a real-life tournament there is apparently no independence. On the other

hand, it is rather unlikely that, for balanced high level players, the above probabili-

ties would substantially vary from game to game or depend on the outcomes of their

previous results. A more complex model incorporating dependence of p and q of

the outcomes of previous games will be considered in Example 13.4.2.

Assume that the tournament continues until one of the two participants wins N

games (then this player will be declared the winner). For instance, the 1984 individ-

ual World Championship match between A. Karpov and G. Kasparov was organised

just according to this scheme with N = 6. What can one say about the expectation

Eη of the duration η of the tournament?

As was shown in Example 3.3.1,

P(η= n)= p

N−1∑

i=0

p(n− 1;N − 1, i)+ q

N−1∑

i=0

p(n− 1; i,N − 1),

where

p(n; i, j)= n!
i!j !(n− i − j)!p

iqj (1− p− q)n−i−j .

Therefore, under obvious conventions on the summation indices,

Eη= 1

(N − 1)!

N−1∑

i=0

pNq i + piqN

i!

N−1∑

n=0

n(n− 1)× · · ·

× (n− i −N + 1)(1− p− q)n−i−N .

The sum over n was calculated in Example 4.1.1 to be (N + i)!/(p + q)N+i+1.

Consequently,

Eη= N

p+ q

N−1∑

i=0

(pNq i + piqN )(N + i)!
i!N !(p+ q)i+N

= N

p+ q

N−1∑

n=0

(
N + i

i

)[
rN (1− r)i + r i(1− r)N

]
,

where r = p/(p+ q).
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In his interview of 3 March 1985 to the newspaper “Izvestija”, Karpov said

that in qualifying tournaments he would lose, on average, 1 game out of 20, and

that Kasparov’s results were similar. If we put in our simple model p = q = 1/20

(strictly speaking, one cannot make such a conclusion from the given data; the rela-

tion p = q = 1/20 should be considered rather as one of many possible hypotheses)

then, for N = 6, direct calculations show that (r = 1/2)

Eη= 15

8

[
1+ 21

(
1+ 5

8
+ 11

16

)]
≈ 93.

Thus, provided that our simplest model is adequate, the expected duration of

a tournament turns out to be very large. The fact that the match between Karpov

and Kasparov was interrupted by the decision of the chairman of the World Chess

Federation after 48 games because the match had dragged on, might serve as a

confirmation of the correctness of the assumptions we made.

Taking into account the results of the match and consequent games between Kar-

pov and Kasparov could lead to estimates (approximate values) for the quantities p

and q that would differ from 1/20.

For our model, one also has the following simple inequality:

N

p+ q
< Eη <

2N − 1

p+ q
.

It follows from the relation ηN ≤ η ≤ η2N−1, where ηN is the number of games until

the time when the total of the points gained by both players reaches N . By virtue of

Example 4.1.1, EηN =N/(p+ q).

Example 4.1.6 In the problem on cells in Sects. 1.3 and 1.4, we considered the

probability that at least one of the n cells in which r particles are placed at random

is empty. Find the expectation of the number Sn,r of empty cells after r particles

have been placed. If Ak denotes the event that the k-th cell is empty and I(Ak) is the

indicator of this event then

Sn,r =
n∑

1

I(Ak), ESn,r =
n∑

1

P(Ak)= n

(
1− 1

n

)r

.

Note now that ESn,r is close to 0 if (1 − 1/n)r is small compared with 1/n, i.e.

when −r ln(1− 1/n)− lnn is large. For large n,

ln

(
1− 1

n

)
=−1

n
+O

(
1

n2

)
,

and the required relation will hold if (r − n lnn)/n is large. In our case (cf. prop-

erty E4), the smallness of ESn,r will clearly imply that of P(A)= P(Sn,r > 0).
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4.2 Conditional Distribution Functions and Conditional

Expectations

Let 〈Ω,F,P〉 be a probability space and B ∈ F be an event with P(B) > 0. Form a

new probability space 〈Ω,F,PB〉, where PB is defined for A ∈ F by the equality

PB(A) := P(A|B).

It is easy to verify that the probability properties P1, P2 and P3 hold for PB . Let

ξ be a random variable on 〈Ω,F,P〉. It is clearly a random variable on the space

〈Ω,F,PB〉 as well.

Definition 4.2.1 The expectation of ξ in the space 〈Ω,F,PB〉 is called the condi-
tional expectation of ξ given B and is denoted by E(ξ |B):

E(ξ |B)=
∫

Ω

ξ(ω)PB(dω).

By the definition of the measure PB ,

E(ξ |B)=
∫

Ω

ξ(ω)P(dω|B)= 1

P(B)

∫

Ω

ξ(ω)P(dω ∩B)= 1

P(B)

∫

B

ξ(ω)P(dω).

The last integral differs from Eξ in that the integration in it is carried over the set B

only. We will denote this integral by

E(ξ ;B) :=
∫

B

ξ(ω)P(dω),

so that

E(ξ |B)= 1

P(B)
E(ξ ;B).

It is not hard to see that the function

F(x|B) := PB(ξ < x)= P(ξ < x|B)

is the distribution function of the random variable ξ on 〈Ω,F,PB〉.

Definition 4.2.2 The function F(x|B) is called the conditional distribution function
of ξ (in the “conditional” space 〈Ω,F,PB〉) given B .

The quantity E(ξ |B) can evidently be rewritten as
∫

x dF(x|B).

If the σ -algebra σ(ξ) generated by the random variable ξ does not depend on the

event B , then PB(A)= P(A) for any A ∈ σ(ξ). Therefore, in that case

F(x|B)= F(x), E(ξ |B)= Eξ, E(ξ ;B)= P(B)Eξ. (4.2.1)
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Let {Bn} be a (possibly finite) sequence of disjoint events such that
⋃

Bn =Ω and

P(Bn) > 0 for any n. Then

Eξ =
∫

Ω

ξ(ω)P(dω)=
∑

n

∫

Bn

ξ(ω)P(dω)

=
∑

n

E(ξ ;Bn)=
∑

n

P(Bn)E(ξ |Bn). (4.2.2)

We have obtained the total probability formula for expectations. This formula can

be rather useful.

Example 4.2.1 Let the lifetime of a device be a random variable ξ with a distribution

function F(x). We know that the device has already worked for a units of time.

What is the distribution of the residual lifetime? What is the expectation of the

latter?

Clearly, in this problem we have to find P(ξ − a ≥ x|ξ ≥ a) and E(ξ − a|ξ ≥ a).

Of course, it is assumed that

P(a) := P(ξ ≥ a) > 0.

By the above formulae,

P(ξ − a ≥ x|ξ ≥ a)= P(x + a)

P (a)
, E(ξ − a|ξ ≥ a)= 1

P(a)

∫ ∞

0

x dF(x + a).

It is interesting to note the following. In many applied problems, especially when

one deals with the operation of complex devices consisting of a large number of

reliable parts, the distribution of ξ can be assumed to be exponential:

P(x)= P(ξ ≥ x)= e−µx, µ > 0.

(The reason for this will become clear later, when considering the Poisson theorem

and Poisson process. Computers could serve as examples of such devices.) But, for

the exponential distribution, it turns out that the residual lifetime distribution

P(ξ − a ≥ x|ξ ≥ a)= P(x + a)

P (a)
= e−µx = P(x) (4.2.3)

coincides with the lifetime distribution of a new device. In other words, a new de-

vice and a device which has already worked without malfunction for some time

a are, from the viewpoint of their future failure-free operation time distributions,

equivalent.

It is not hard to understand that the exponential distribution (along with its dis-

crete analogue P(ξ = k) = qk(1 − q), k = 0,1, . . .) is the only distribution pos-

sessing the above remarkable property. One can see that, from equality (4.2.3), we

necessarily have

P(x + a)= P(x)P (a).

Example 4.2.2 Assume that n machines are positioned so that the distance between

the i-th and j -th machines is ai,j , 1≤ i, j ≤ n. Each machine requires service from
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time to time (tuning, repair, etc.). Assume that the service is to be done by a single

worker and that the probability that a given new call for service comes from the

j -th machine is pj (
∑n

j=1 pj = 1). If, for instance, the worker has just completed

servicing the i-th machine, then with probability pj (not depending on i) the next

machine to be served will be the j -th machine; the worker will then need to go to it

and cover a distance of aij units. What is the mean length of such a passage?

Let Bi denote the event that the i-th machine was serviced immediately before a

given passage. Then P(Bi)= pi , and the probability that the worker will move from

the i-th machine to the j -th machine, j = 1, . . . , n, is equal to pj . The length ξ of

the passage is aij . Hence

E(ξ |Bi)=
n∑

j=1

pjai,j ,

and by the total probability formula

Eξ =
n∑

i=1

P(Bi)E(ξ |Bi)=
n∑

i,j=1

pjpiaij .

The obtained expression enables one to compare different variants of positioning

machines from the point of view of minimisation of the quantity Eξ under given

restrictions on aij . For instance, if aij ≥ 1 and all the machines are of the same type

(pj = 1/n) then, provided they are positioned along a straight line (with unit steps

between them), one gets aij = |j − i| and1

Eξ = 1

n2

n∑

i,j=1

|j − i| = 2

n2

n−1∑

k=1

k(n− k)= n− 1

3

(
1+ 1

n

)
,

so that, for large n, the value of Eξ is close to n/3. Thus, if there are s calls a day

then the average total distance covered daily by the worker is approximately sn/3.

It is easy to show that positioning machines around a circle would be better but still

not optimal.

Example 4.2.3 As was already noticed, not all random variables (distributions) have

expectations. The respective examples are by no means pathological: for instance,

the Cauchy distribution Kα,σ has this property. Now we will consider a problem on

random walks in which there also arise random variables having no expectations.

This is the problem on the so-called fair game. Two gamblers take part in the game.

The initial capital of the first gambler is z units. This gambler wins or loses each

1To compute the sum, it suffices to note that

n−1∑

k=1

k(k − 1)= 1

3
(n− 2)(n− 1)n

(compare the initial values and increments of the both sides).
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play of the game with probability 1/2 independently of the outcomes of the previous

plays, his capital increasing or decreasing by one unit, respectively. Let z + Sk be

the capital of the first gambler after the k-th play, η(z) is the number of steps until

his ruin in the game versus an infinitely rich adversary, i.e.

η(z)=min{k : z+ Sk = 0}, η(0)= 0.

If infk Sk >−z (i.e. the first gambler is never ruined), we put η(z)=∞.

First we show that η(z) is a proper random variable, i.e. a random variable

assuming finite values with probability 1. For the first gambler, this will mean that

he goes bankrupt with probability 1 whatever his initial capital z is. Here one could

take Ω to be the “sample” space consisting of all possible sequences made up of

1 and −1. Each such sequence ω would describe a “trajectory” of the game. (For

example, −1 in the k-th place means that the first gambler lost the k-th play.) We

leave it to the reader as an exercise to complete the construction of the probability

space 〈Ω,F,P〉. Clearly, one has to do this so that the probability of any first n

outcomes of the game (the first n components of ω are fixed) is equal to 2−n.

Put

u(z) := P
(
η(z) <∞

)
, u(0) := 1,

and denote by B1 the event that the first component of ω is 1 (the gambler won in

the first play) and B2 that this component is −1 (the gambler lost). Noticing that

P(η(z) <∞|B1)= u(z+ 1) (if the first play is won, the capital becomes z+ 1), we

obtain by the total probability formula that, for z≥ 1,

u(z)= P(B1)P
(
η(z) <∞|B1

)
+ P(B2)P

(
η(z) <∞|B2

)

= 1

2
u(z+ 1)+ 1

2
u(z− 1).

Putting δ(z) := u(z + 1) − u(z), z ≥ 0, we conclude from here that δ(z) −
δ(z− 1)= 0, and hence δ(z)= δ = const. Since

u(z+ 1)= u(0)+
z∑

k=1

δ(k)= u(0)+ zδ,

it is evident that δ can be nothing but 0, so that u(z)≡ 1 for all z.

Thus, in a game against an infinitely rich adversary, the gambler will be ruined

with probability 1. This explains, to some extent, the fact that all reckless gamblers

(not stopping “at the right time”; choosing this “right time” is a separate problem)

go bankrupt sooner or later. Even if the game is fair.

We show now that although η(z) is a proper random variable, Eη(z) =∞. As-

sume the contrary:

v(z) := Eη(z) <∞.

Similarly to the previous argument, we notice that E(η(z)|B1)= 1+ v(z+ 1) (the

capital became z + 1, one play has already been played). Therefore by the total

probability formula we find for z≥ 1 that

v(z)= 1

2

(
1+ v(z+ 1)

)
+ 1

2

(
1+ v(z− 1)

)
, v(0)= 0.
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It can be seen from this formula that if v(z) <∞, then v(k) <∞ for all k. Set

∆(z)= v(z+ 1)− v(z). Then the last equality can be written down for z≥ 1 as

−1= 1

2
∆(z)− 1

2
∆(z− 1),

or

∆(z)=∆(z− 1)− 2.

From this equality we find that ∆(z)=∆(0)− 2z. Therefore

v(z)=
z−1∑

k=0

∆(k)= z∆(0)− z(z− 1)= zv(1)− z(z− 1).

It follows that Eη(z) < 0 for sufficiently large z. But η(z) is a positive random

variable and hence Eη(z) ≥ 0. The contradiction shows that the assumption on the

finiteness of the expectation of η(z) is wrong.

4.3 Expectations of Functions of Independent Random Variables

Theorem 4.3.1

1. Let ξ and η be independent random variables and g(x, y) be a Borel function.

Then if g ≥ 0 or Eg(ξ, η) is finite, then

Eg(ξ, η)= E
[
Eg(x, η)|x=ξ

]
. (4.3.1)

2. Let g(x, y) = g1(x)g2(y). If g1(ξ) ≥ 0 and g2(η) ≥ 0, or both Eg1(ξ) and
Eg2(η) exist, then

Eg(ξ, η)= Eg1(ξ)Eg2(η). (4.3.2)

The expectation Eg(ξ, η) exists if and only if both Eg1(ξ) and Eg2(η) exist. (We
exclude here the trivial cases P(g1(ξ) = 0) = 1 and P(g2(η) = 0) = 1 to avoid
trivial complications.)

Proof The first assertion of the theorem is a paraphrase of Fubini’s theorem in terms

of expectations. The first part of the second assertion follows immediately from

Corollary 3.6.1 of Fubini’s theorem. Since |g1(ξ)| ≥ 0 and |g2(η)| ≥ 0 and these

random variables are independent, one has

E
∣∣g1(ξ)g2(η)

∣∣= E
∣∣g1(ξ)

∣∣E
∣∣g2(η)

∣∣.
Now the last assertion of the theorem follows immediately, for one clearly has

E|g1(ξ)| 
= 0, E|g2(η)| 
= 0. �

Remark 4.3.1 Formula (4.3.1) could be considered as the total probability formula

for computing the expectation Eg(ξ, η). Assertion (4.3.2) could be written down

without loss of generality in the form

Eξη= EξEη. (4.3.3)
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To get (4.3.2) from this, one has to take g1(ξ) instead of ξ and g2(η) instead of

η—these will again be independent random variables.

Examples of the use of Theorem 4.3.1 were given in Sect. 3.6 and will be appear-

ing in the sequel.

The converse to (4.3.2) or (4.3.3) does not hold. There exist dependent random

variables ξ and η such that

Eξη= EξEη.

Let, for instance, ζ and ξ be independent and Eξ = Eζ = 0. Put η= ξζ . Then ξ and

η are clearly dependent (excluding some trivial cases when, say, ξ = const), but

Eξη= Eξ2ζ = Eξ2Eζ = 0= EξEη.

4.4 Expectations of Sums of a Random Number of Random

Variables

Assume that a sequence {ξn}∞n=1 of independent random variables (or random vec-

tors) and an integer-valued random variable ν ≥ 0 are given on a probability space

〈Ω,F,P〉.
Property E2 of expectations implies that, for sums Sn =

∑n
i=1 ξi , the following

equality holds:

ESn =
n∑

i=1

Eξi .

In particular, if ak = Eξk = a do not depend on k then ESn = an.

What can be said about the expectation of the sum sν of the random number ν

of random variables ξ1, ξ2, . . .? To answer this question we need to introduce some

new notions.

Let Fk,n := σ(ξk, . . . , ξn) be the σ -algebra generated by the n− k + 1 random

variables ξk, . . . , ξn.

Definition 4.4.1 A random variable ν is said to be independent of the future if the

event {ν ≤ n} does not depend on Fn+1,∞.

Let, further, a family of embedded σ -algebras Fn : Fn ⊂ Fn+1 be given, such that

F1,n = σ(ξ1, . . . , ξn)⊂ Fn.

Definition 4.4.2 A random variable ν is said to be a Markov (or stopping) time with

respect to the family {Fn}, if {ν ≤ n} ∈ Fn.

Often Fn is taken to be F1,n = σ(ξ1, . . . , ξn). We will call a stopping time with re-

spect to F1,n simply a stopping (or Markov) time without indicating the correspond-

ing family of σ -algebras. In this case, knowing the values of ξ1, . . . , ξn enables us

to say whether the event {ν ≤ n} has occurred or not.

If the ξn are independent (the σ -algebras F1,n and Fn+1,∞ are independent) then

the requirement of independence of the future is wider than the Markov property,
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because if ν is a stopping time with respect to {F1,n} then, evidently, the random

variable ν does not depend on the future.

As for a converse statement, one can only assert the following. If ν does not

depend on the future and the ξk are independent then one can construct a family of

embedded σ -algebras {Fn}, Fn ⊃ F1,n, such that ν is a stopping time with respect

to Fn ({ν ≤ n} ⊂ Fn) and Fn does not depend on Fn+1,∞. As Fn, we can take the σ -

algebra generated by F1,n and the events {ν = k} for k ≤ n. For instance, a random

variable ν independent of {ξi} clearly does not depend on the future, but is not a

stopping time. Such ν will be a stopping time only with respect to the family {Fn}
constructed above.

It should be noted that, formally, any random variable can be made a stopping

time using the above construction (but, generally speaking, there will be no inde-

pendence of Fn and Fn1,∞). However, such a construction is unsubstantial and not

particularly useful. In all the examples below the variables ν not depending on the

future are stopping times defined in a rather natural way.

Example 4.4.1 Let ν be the number of the first random variable in the sequence

{ξn}∞n=1 which is greater than or equal to N , i.e. ν = inf{k : ξk ≥N}. Clearly, ν is a

stopping time, since

{ν ≤ n} =
n⋃

k=1

{ξk ≥N} ∈ F1,n.

If ξk are independent, then evidently ν is independent of the future.

The same can be said about the random variable

η(t) :=min{k : Sk ≥N}, Sk =
k∑

j=1

ξj .

Note that the random variables ν and η(t) may be improper (e.g., η(t) is not defined

on the event {S := supSk < N}). The random variable θ :=min{k : Sk = S} is not a

stopping time and depends on the future.

The term “Markov” random variable (or Markov time) will become clearer after

introducing the notion of Markovity in Chap. 13. The term “stopping time” is related

to the nature of a large number of applied problems in which such random variables

arise. As a typical example, the following procedure could be considered. Let ξk be

the number of defective items in the k-th lot produced by a factory. Statistical quality

control is carried out as follows. The whole production is rejected if, in sequential

testing of the lots, it turns out that, for some n, the value of the sum

Sn =
n∑

k=1

ξk

exceeds a given admissible level a + bn. The lot number ν for which this happens,

ν :=min{n : Sn ≥ a + bn},
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is a stopping time for the whole testing procedure. To avoid a lengthy testing, one

also introduces a (literal) stopping time

ν∗ :=min{n : Sn ≤−A+ bn},
where A > 0 is chosen so large as to guarantee, with a high probability, a sufficient

quality level for the whole production (assuming, say, that the ξk are identically dis-

tributed). It is clear that ν and ν∗ both satisfy the definition of a Markov or stopping

time.

Consider the sum Sν = ξ1 + · · · + ξν of a random number of random variables.

This sum is also called a stopped sum in the case when ν is a stopping time.

Theorem 4.4.1 (Kolmogorov–Prokhorov) Let an integer-valued random variable ν

be independent of the future. If
∞∑

k=1

P(ν ≥ k)E|ξk|<∞ (4.4.1)

then

ESν =
∞∑

k=1

P(ν ≥ k)Eξk. (4.4.2)

If ξk ≥ 0 then condition (4.4.1) is superfluous.

Proof The summand ξk is present in the sum Sν if and only if the event {ν ≥ k}
occurs. Thus the following representation holds for the sum Sν :

Sν =
∞∑

k=1

ξkI(ν ≥ k),

where I(B) is the indicator of the event B . Put Sν,n :=
∑n

k=1 ξkI(ν ≥ k). If ξk ≥ n

then Sν,n ↑ Sν for each ω as n→∞, and hence, by the monotone convergence

theorem (see Theorem A3.3.1 in Appendix 3),

ESν = lim
n→∞

ESν,n = lim
n→∞

n∑

k=1

EξkI(ν ≥ k).

But the event {ν ≥ k} complements the event {ν ≤ k − 1} and therefore does not

depend on σ(ξk, ξk+1, . . .) and, in particular, on σ(ξk). Hence, putting ak := Eξk we

get EξkI(ν ≥ k)= akP(ν ≥ k), and

ESν = lim
k→∞

n∑

k=1

akP(νk ≥ k)=
∞∑

k=1

akP(ν ≥ k). (4.4.3)

This proves (4.4.2) for ξk ≥ 0.

Now assume ξk can take values of both signs. Put

ξ∗k := |ξk|, a∗k := Eξ∗k , Zn :=
n∑

k=1

ξ∗k , Zν,n :=
n∑

k=1

ξ∗k I(ν ≥ k).
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Applying (4.4.3), we obtain by virtue of (4.4.1) that

EZν =
∞∑

k=1

a∗k P(ν ≥ k) <∞.

Since |Sν,n| ≤ Zν,n ≤ Zν , by the monotone convergence theorem (see Corol-

lary 6.1.3 or (the Fatou–Lebesgue) Theorem A3.3.2 in Appendix 3) we have

ESν = lim
n→∞

ESν,n =
∑

akP(ν ≥ k),

where the series on the right-hand side absolutely converges by virtue of (4.4.1).

The theorem is proved. �

Put

a∗ :=maxak, a∗ :=minak,

where, as above, ak = Eξk .

Theorem 4.4.2 Let supk E|ξk| <∞ and ν be a random variable which does not
depend on the future. Then the following assertions hold true.

(a) If Eν <∞ (or EZν <∞, where Zn =
∑n

k=1 |ξk|) then ESν exists and

a∗Eν ≤ ESν ≤ a∗Eν. (4.4.4)

(b) If ESν is well defined (and may be ±∞), a∗ > 0 and, for any N ≥ 1,

E(SN − a∗N;ν > N)≤ c,

where c does not depend on N , then (4.4.4) holds true.

(c) If ξk ≥ 0 then (4.4.4) is always valid.

If Sν ≥ const a.s. then condition (c) clearly implies (b).

The case a∗ < 0 in assertions (b)–(c) can be treated in exactly the same way.

If ν does not depend on {ξk}, a∗ = a∗ = a > 0, then E(SN ;ν > N)= aNP(ν >

N) and the condition in (b) holds. But the assumption a∗ = a∗ is inessential here,

and, for independent ν and {ξ}, (4.4.4) is always true, since in this case

ESν =
∑

P(ν = k)ESk ≤ a∗
∑

kP(ν = k)= a∗Eν.

The reverse inequality ESν ≥ a∗Eν is verified in the same way.

Proof of Theorem 4.4.2
(a) First note that

∞∑

k=1

P(ν ≥ k)=
∞∑

k=1

∞∑

i=k

P(ν = i)=
∞∑

i=1

iP(ν = i)= Eν.

Note also that, for E|ξk| ≤ c <∞, the condition Eν <∞ (or EZν <∞) turns into

condition (4.4.1), and assertion (4.4.4) follows from (4.4.2). Therefore, if Eν <∞
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then Theorem 4.4.2 is a direct consequence of Theorem 4.4.1. The same is true in

case (d).

Consider now assertions (b) and (c).

For a fixed N > 0, introduce the random variable

νN :=min(ν,N),

which, together with ν, does not depend on the future. Indeed, if n ≤ N then the

event {νN ≤ n} = {ν ≤ n} does not depend on Fn+1,∞. If n > N then the event

{νN ≤N} is certain and hence it too does not depend on Fn+1,∞.

(b) If Eν <∞ then (4.4.4) is proved. Now let Eν =∞. We have to prove that

ESν =∞. Since EνN <∞, the relations

ESνN
= E(Sν;ν ≤N)+E(SN ;ν > N)≥ a∗

(
E(ν;ν ≤N)+NP(ν > N)

)
(4.4.5)

are valid by (a). Together with the conditions in (b) this implies that

E(Sν;ν ≤N)≥ a∗E(ν;ν ≤N)− c→∞
as N→∞. Since Sν is well defined, we have

E(Sν;ν ≤N)→ ESν

as N→∞ (see Corollary A3.2.1 in Appendix 3). Therefore necessarily ESν =∞.

(c) Here it is again sufficient to show that ESν =∞ in the case when Eν =∞. It

follows from (4.4.5) that

ESν = E(Sν;ν ≤N)+E(Sν;ν > N)

≥ E
[
Sν − (SN − a∗N);ν > N

]
+ a∗E(ν;ν ≤N)≥ a∗E(ν;ν ≤N)− c→∞

as N→∞, and thus ESν =∞.

The theorem is proved. �

Theorem 4.4.2 implies the following famous result.

Theorem 4.4.3 (Wald’s identity) Assume a = Eξk does not depend on k,

supk E|ξk|<∞, and a random variable ν is independent of the future. Then, under
at least one of the conditions (a)–(d) of Theorem 4.4.2 (with a∗ replaced by a),

ESν = aEν. (4.4.6)

If a = 0 and Eν = ∞ then identity (4.4.6) can hold, since there would be an

ambiguity of type 0 ·∞ on the right-hand side of (4.4.6).

Remark 4.4.1 If there is no independence of the future then equality (4.4.6) is, gen-

erally speaking, untrue. Let, for instance, a = Eξk < 0, θ := min{k : Sk = S} and

S := supk Sk (see Example 4.4.1; see Chaps. 10–12 for conditions of finiteness of

ES and Eθ ). Then Sθ = S > 0 and ES > 0, while aEθ < 0. Hence, (4.4.6) cannot

hold true for ν = θ .

We saw that if there is no assumption on the finiteness of Eν then, even in the case

a > 0, in order for (4.4.6) to hold, additional conditions are needed, e.g., conditions
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(b)–(d). Without these conditions identity (4.4.6) is, generally speaking, not valid,

as shown by the following example.

Example 4.4.2 Let the random variables ζk be independent and identically dis-

tributed, and

Eζk = 0, Eζ 2
k = 1, E|ζk|3 = µ <∞,

ξk := 1+
√

2kζk, ν :=min{k : Sk < 0}.
We will show below in Example 20.2.1 that ν is a proper random variable, i.e.

P(ν <∞)= P

( ∞⋃

n=1

{Sn < 0}
)
= 1.

It is also clear that ν is a Markov time independent of the future and Eξk = a = 1.

But one has ESν < 0, while aEν > 0, and hence equality (4.4.6) cannot be valid.

(Here necessarily Eν = ∞, since otherwise condition (a) would be satisfied and

(4.4.6) would hold.)

However, if the ξk are independent and identically distributed and ν is a stop-
ping time then statement (4.4.6) is always valid whenever its right-hand side is well

defined. We will show this below in Theorem 11.3.2 by virtue of the laws of large

numbers.

Conditions (b) and (c) in Theorem 4.4.2 were used in the case Eν =∞. However,

in some problems these conditions can be used to prove the finiteness of Eν. The

following example confirms this observation.

Example 4.4.3 Let ξ1, ξ2, . . . be independent and identically distributed and a =
Eξ1 > 0. For a fixed t ≥ 0, consider, as a stopping time (and a variable independent

of the future), the random variable

ν = η(t) :=min{k : Sk ≥ t}.
Clearly, SN < t on the set η(t) > N and Sη(t) ≥ t . Therefore conditions (b) and (c)

are satisfied, and hence

ESη(t) = aEη(t).

We now show that Eη(t) <∞. In order to do this, we consider the “trimmed”

random variables ξ
(N)
k :=min(N, ξk) and choose N large enough for the inequality

a(N) := Eξ (N) > 0 to hold true. Let S
(N)
K and η(N)(t) be defined similarly to Sk and

η(t), but for the sequence {ξ (N)
j }. Then evidently S

(N)

η(N)(t)
≤ t +N , η(t)≤ η(N)(t),

a(N)Eη(N)(t)≤ t +N, Eη(t)≤ t +N

a(N)
<∞.

If a = 0 then Eη(t)=∞. This can be seen from the fair game example (ξk =±1

with probability 1/2; see Example 4.2.3). In the general case, this will be shown be-

low in Chap. 12. As was noted above, in this case the right-hand side of (4.4.6) turns
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into the indeterminacy 0 ·∞, but the left-hand side may equal any finite number, as

in the case of the fair game where Sη(t) = t .

If we take ν to be the Markov time

ν = µ(t) :=min
{
k : |Sk| ≥ t

}
,

where ξk may assume values of both signs, then, to prove (4.4.6), it is apparently

easier to verify the condition of assertion (a) in Theorem 4.4.2. Let us show that

Eµ(t) <∞. It is clear that, for any given t > 0, there exists an N such that

q :=min
[
P(SN > 2t),P(SN <−2t)

]
> 0.

(N = 1 if the ξk are bounded from below.) For such N ,

inf
|v|≤t

P
(
|v+ SN |> t

)
> 2q.

Hence, in each N steps, the random walk {Sk} has a chance to leave the strip |v| ≤ t

with probability greater than 2q , whatever point v, |v| ≤ t , it starts from. Therefore,

P
(
µ(t) > kN

)
= P

(
max
j≤kN

|Sj |< t
)

< P

(
k⋂

j=1

{
|SjN |< t

}
)

< (1− 2q)k.

This implies that P(µ(t) > kN) decreases exponentially as k grows and that Eµ(t)

is finite.

Example 4.4.4 A chain reaction scheme. Suppose we have a single initial particle

which either disappears with probability q or turns into m similar particles with

probability p = 1− q . Each particle from the new generation behaves in the same

way independently of the fortunes of the other particles. What is the expectation of

the number ζn of particles in the n-th generation?

Consider the “double sequence” {ξ (n)
k }∞k=1,

∞
n=1 of independent identically dis-

tributed random variables assuming the values m and 0 with probabilities p and q ,

respectively. The sequences {ξ (1)
k }∞k=1, {ξ (2)

k }∞k=1, . . . will clearly be mutually inde-

pendent. Using these sequences, one can represent the variables ζn (ζ0 = 1) as

ζ1 = ξ
(1)
ζ0
= ξ

(1)
1 ,

ζ2 = ξ
(2)
1 + · · · + ξ

(2)
ζ1

· · · · · · · · · · · ·
ζn = ξ

(n)
1 + · · · + ξ

(n)
ζn−1

,

where the number of summands in the equation for ζn is ζn−1, the number of “parent

particles”. Since the sequence {ξ (n)
k } is independent of ζn−1,ζ

(n)
k ≥ 0, and Eξ

(n)
k =

pm, by virtue of Wald’s identity we have

Eζn = Eξ
(n)
1 Eζn−1 = pmEζn−1 = (pm)n.
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Example 4.4.5 We return to the fair game of two gamblers described in Exam-

ple 4.2.3, but now assume that the respective capitals z1 > 0 and z2 > 0 of the

gamblers are finite. Introduce random variables ξk representing the gains of the first

gambler in the respective (k-th) play. The variables ξk are obviously independent,

and

ξk =
{

1 with probability 1/2,

−1 with probability 1/2.

The quantity z1 + Sk = z1 +
∑k

j=1 ξj will be the capital of the first gambler and

z2 − Sk the capital of the second gambler after k plays. The quantity

η :=min{k : z1 + Sk = 0 or z2 − Sk = 0}
is the time until the end of the game, i.e. until the ruin of one of the gamblers. The

question is what is the probability Pi that the i-th gambler wins (for i = 1,2)?

Clearly, η is a Markov time, Sη = −z1 with probability P2 and Sη = z2 with

probability P1 = 1− P2. Therefore,

ESη = P1z2 − P2z1.

If Eη <∞, then by Wald’s identity we have

P1z2 − P2z1 = EηEξ1 = 0.

From this we find that Pi = zi/(z1 + z2).

It remains to verify that Eη is finite. Let, for the sake of simplicity, z1 + z2 =
2z be even. With probability 2−min(z1,z2) ≥ 2−z, the game can be completed in

min(z1, z2) ≤ z plays. Since the total capital of both players remains unchanged

during the game,

P(η > z)≤ 1− 2−z, . . . , P(η > Nz)≤
(
1− 2−z

)N
.

This evidently implies the finiteness of

Eη=
∞∑

k=0

P(η > k).

We will now give a less trivial example of a random variable ν which is indepen-

dent of the future, but is not a stopping time.

Example 4.4.6 Consider two mutually independent sequences of independent posi-

tive random variables ξ1, ξ2, . . . and ζ1, ζ2, . . ., such that ξj ⊂=F and ζj ⊂=G. Further,

consider a system consisting of two devices. After starting the system, the first de-

vice operates for a random time ξ1 after which it breaks down. Then the second

device replaces the first one and works for ξ2 time units (over the time interval

(ξ1, ξ1+ ξ2)). Immediately after the first device’s breakdown, one starts repairing it,

and the repair time is ζ2. If ζ2 > ξ2, then at the time ξ1 + ξ2 of the second device’s

failure both devices are faulty and the system fails. If ζ2 ≤ ξ2, then at the time ξ1+ξ2

the first device starts working again and works for ξ3 time units, while the second
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device will be under repair for ζ3 time units. If ζ3 > ξ3, the system fails. If ζ3 ≤ ξ3,

the second device will start working, etc. What is the expectation of the failure-free

operation time τ of the system?

Let ν := min{k ≥ 2 : ζk > ξk}. Then clearly τ = ξ1 + · · · + ξν , where the ξj

are independent and identically distributed and {ν ≤ n} ∈ σ(ξ1, . . . , ξn; ζ1, . . . , ζν).

This means that ν is independent of the future. At the same time, if ζj 
= const, then

{ν ≤ n} /∈ F1,n = σ(ξ1, . . . , ξn) and ν is not a Markov time with respect to F1,n.

Since ξk ≥ 0, by Wald’s identity Eτ = Eν Eξ1. Since

{ν = k} =
k−1⋂

j=2

{ηj ≤ ζj } ∩ {ηk > ζk}, k ≥ 2,

one has P(ν = k)= qk−2(1− q), k ≥ 2, where

q = P(ηk ≤ ζk)=
∫

dF(t)G(t + 0).

Consequently,

Eν =
∞∑

k=2

kqk−2(1− q)= 1+
∞∑

k=1

kqk−1(1− q)= 1+ 1

1− q
,

Eτ = Eξ1
2− q

1− q
.

Wald’s identity has a number of extensions (we will discuss these in more detail

in Sects. 10.3 and 15.2).

4.5 Variance

We introduce one more numerical characteristic for random variables.

Definition 4.5.1 The variance Var(ξ) of a random variable ξ is the quantity

Var(ξ) := E(ξ −Eξ)2.

It is a measure of the “dispersion” or “spread” of the distribution of ξ . The vari-

ance is equal to the inertia moment of the distribution of unit mass along the line.

We have

Var(ξ)= Eξ2 − 2EξEξ + (Eξ)2 = Eξ2 − (Eξ)2. (4.5.1)

The variance could also be defined as mina E(ξ − a)2. Indeed, by that definition

Var(ξ)= Eξ2 +min
a

(
a2 − 2aEξ

)
= Eξ2 − (Eξ)2,

since the minimum of a2−2aEξ is attained at the point a = Eξ . This remark shows

that the quantity a = Eξ is the best mean square estimate (approximation) of the

random variable ξ .

The quantity
√

Var(ξ) is called the standard deviation of ξ .
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Example 4.5.1 Let ξ ⊂=�a,σ 2 . As we saw in Example 4.1.2, a = Eξ . Therefore,

Var(ξ)=
∫

(x − a)2 1

σ
√

2π
e−(x−a)2/2σ 2

dx = σ 2

√
2π

∫
t2e−t2/2 dt.

The last equality was obtained by the variable change (x− a)/σ = t . Integrating by

parts, one gets

Var(ξ)=− σ 2

√
2π

te−t2/2

∣∣∣∣
∞

−∞
+ σ 2

√
2π

∫
e−t2/2 dt = σ 2.

Example 4.5.2 Let ξ⊂=�µ. In Example 4.1.3 we computed the expectation Eξ = µ.

Hence

Var(ξ)= Eξ2 − (Eξ)2 =
∞∑

k=0

k2 µke−µ

k! −µ2

=
∞∑

k=2

k(k − 1)µk

k! e−µ +
∞∑

k=0

kµk

k! e−µ −µ2 = µ2 +µ−µ2 = µ.

Example 4.5.3 For ξ ⊂=U0,1, one has

Eξ2 =
∫ 1

0

x2 dx = 1

3
, Eξ = 1

2
.

By (4.5.1) we obtain Var(ξ)= 1
12

.

Example 4.5.4 For ξ ⊂=Bp , by virtue of the relations ξ2 = ξ and Eξ2 = Eξ = p we

obtain Var(ξ)= p− p2 = p(1− p).

Consider now some properties of the variance.

D1. Var(ξ)≥ 0, with Var(ξ)= 0 if and only if P(ξ = c)= 1, where c is a constant
(not depending on ω).

The first assertion is obvious, for Var(ξ) = E(ξ − Eξ)2 ≥ 0. Let

P(ξ = c)= 1, then (Eξ)2 = Eξ2 = c2 and hence

Var(ξ)= c2 − c2 = 0.

If Var(ξ)= E(ξ −Eξ)2 = 0 then (since (ξ −Eξ)2 ≥ 0) P(ξ −Eξ = 0)= 1, or

P(ξ = Eξ)= 1 (see property E4).

D2. If a and b are constants then

Var(a + bξ)= b2 Var(ξ).

This property follows immediately from the definition of Var(ξ).

D3. If random variables ξ and η are independent then

Var(ξ + η)=Var(ξ)+Var(η).
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Indeed,

Var(ξ + η)= E(ξ + η)2 − (Eξ +Eη)2

= Eξ2 + 2EξEη+Eη2 − (Eξ)2 − (Eη)2 − 2EξEη

= Eξ2 − (Eξ)2 +Eη2 − (Eη)2 =Var(ξ)+Var(η).

It is seen from the computations that the variance will be additive not only for inde-

pendent ξ and η, but also whenever

Eξη= EξEη.

Example 4.5.5 Let ν ≥ 0 be an integer-valued random variable independent of a

sequence {ξj } of independent identically distributed random variables, Eν <∞ and

Eξj = a. Then, as we know, ESν = aEν. What is the variance of Sν?

By the total probability formula,

Var(Sν)= E(Sν −ESν)
2 =

∑
P(ν = k)E(Sk −ESν)

2

=
∑

P(ν = k)
[
E(Sk − ak)2 + (ak − aEν)2

]

=
∑

P(ν = k)k Var(ξ1)+ a2E(ν −Eν)2 =Var(ξ1)Eν + a2 Var(ν).

This equality is equivalent to the relation

E(Sν − νa)2 = Eν ·Var(ξ1).

In this form, the relation remains valid for any stopping time ν (see Chap. 15).

Making use of it, one can find in Example 4.4.5 the expectation of the time η until

the end of the fair game, when the initial capitals z1 and z2 of the players are finite.

Indeed, in that case a = 0, Var(ξ1)= 1 and

ES2
η =Var(ξ1) Eη= z2

1P2 + z2
2P1.

We find from this that Eη= z1z2.

4.6 The Correlation Coefficient and Other Numerical

Characteristics

Two random variables ξ and η could be functionally (deterministically) dependent:

ξ = g(η); they could be dependent, but not in a deterministic way; finally, they could

be independent. The correlation coefficient of random variables is a quantity which

can be used to quantify the degree of dependence of the variables on each other.

All the random variables to appear in the present section are assumed to have

finite non-zero variances.

A random variable ξ is said to be standardised if Eξ = 0 and Var(ξ) = 1. Any

random variable ξ can be reduced by a linear transformation to a standardised one

by putting ξ1 := (ξ − Eξ)/
√

Var(ξ). Let ξ and η be two random variables and ξ1

and η1 the respective standardised random variables.
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Definition 4.6.1 The correlation coefficient of the random variables ξ and η is the

quantity ρ(ξ, η)= Eξ1η1.

Properties of the correlation coefficient.

1. |ρ(ξ, η)| ≤ 1.

Proof Indeed,

0≤Var(ξ1 ± η1)= E(ξ1 ± η1)
2 = 2± 2ρ(ξ, η).

It follows that |ρ(ξ, η)| ≤ 1. �

2. If ξ and η are independent then ρ(ξ, η)= 0.

This follows from the fact that ξ1 and η1 are also independent in this case. �

The converse assertion is not true, of course. In Sect. 4.3 we gave an example of

dependent random variables ξ and η such that Eξ = 0, Eη = 0 and Eξη = 0. The

correlation coefficient of these variables is equal to 0, yet they are dependent. How-

ever, as we will see in Chap. 7, for a normally distributed vector (ξ, η) the equality

ρ(ξ, η)= 0 is necessary and sufficient for the independence of its components.

Another example where the non-correlation of random variables implies their

independence is given by the Bernoulli scheme. Let P(ξ = 1) = p, P(ξ = 0) =
1− p, P(η= 1)= q and P(η= 0)= 1− q . Then

Eξ = p, Eη= p, Var(ξ)= p(1− p), Var(η)= q(1− q),

ρ(ξ, η)= E(ξ − p)(η− q)√
pq(1− p)(1− q)

.

The equality ρ(ξ, η)= 0 means that Eξη= pq , or, which is the same,

P(ξ = 1, η= 1)= P(ξ = 1)P(η= 1),

P(ξ = 1, η= 0)= P(ξ = 1)− P(ξ = 1, η= 1)= p− pq = P(ξ = 1)P(η= 0),

and so on.

One can easily obtain from this that, in the general case, ξ and η are independent

if

ρ
(
f (ξ), g(η)

)
= 0

for any bounded measurable functions f and g. It suffices to take f = I(−∞,x),

g = I(−∞,y), then derive that P(ξ < x,η < y) = P(ξ < x)P(η < y), and make use

of the results of the previous chapter.

3. |ρ(ξ, η)| = 1 if and only if there exist numbers a and b 
= 0 such that P(η =
a + bξ)= 1.

Proof Let P(η= a + bξ)= 1. Set Eξ = α and
√

Var(ξ)= σ ; then

ρ(ξ, η)= E
ξ − α

σ
· a + bξ − a − bα

|b|σ = signb.
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Assume now that |ρ(ξ, η)| = 1. Let, for instance, ρ(ξ, η)= 1. Then

Var(ξ1 − η1)= 2
(
1− ρ(ξ, η)

)
= 0.

By property D1 of the variance, this can be the case if and only if

P(ξ1 − η1 = c)= 1.

If ρ(ξ, η)=−1 then we get Var(ξ1 + η1)= 0, and hence

P(ξ1 + η1 = c)= 1. �

If ρ > 0 then the random variables ξ and η are said to be positively correlated; if

ρ < 0 then ξ and η are said to be negatively correlated.

Example 4.6.1 Consider a transmitting device. A random variable ξ denotes the

magnitude of the transmitted signal. Because of interference, a receiver gets the

variable η= αξ +∆ (α is the amplification coefficient, ∆ is the noise). Assume that

the random variables ∆ and ξ are independent. Let Eξ = a, Var(ξ) = 1, E∆ = 0

and Var(∆)= σ 2. Compute the correlation coefficient of ξ and η:

ρ(ξ, η)= E

(
(ξ − a)

αξ +∆− aα√
α2 + σ 2

)
= α√

α2 + σ 2
.

If σ is a large number compared to the amplification α, then ρ is close to 0 and η

essentially does not depend on ξ . If σ is small compared to α, then ρ is close to 1,

and one can easily reconstruct ξ from η.

We consider some further numerical characteristics of random variables. One

often uses the so-called higher order moments.

Definition 4.6.2 The k-th order moment of a random variable ξ is the quantity Eξ k .

The quantity E(ξ −Eξ)k is called the k-th order central moment, so the variance is

the second central moment of ξ .

Given a random vector (ξ1, . . . , ξn), the quantity Eξ
k1

1 · · · ξ
kn
n is called the mixed

moment of order k1 + · · · + kn. Similarly, E(ξ1 − Eξ1)
k1 · · · (ξn − Eξn)

kn is said to

be the central mixed moment of the same order.

For independent random variables, mixed moments are evidently equal to the

products of the respective usual moments.

4.7 Inequalities

4.7.1 Moment Inequalities

Theorem 4.7.1 (Cauchy–Bunjakovsky’s inequality) If ξ1 and ξ2 are arbitrary ran-
dom variables, then

E|ξ1ξ2| ≤
[
Eξ2

1 Eξ2
2

]1/2
.
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This inequality is also sometimes called the Schwarz inequality.

Proof The required relation follows from the inequality 2|ab| ≤ a2+ b2 if one puts

a2 = ξ2
1 /Eξ2

1 , b2 = ξ2
2 /Eξ2

2 and takes the expectations of the both sides. �

The Cauchy–Bunjakovsky inequality is a special case of more general inequali-

ties.

Theorem 4.7.2 For r > 1, 1
r
+ 1

s
= 1, one has Hölder’s inequality:

E|ξ1ξ2| ≤
[
E|ξ1|r

]1/r[
E|ξ2|s

]1/s
,

and Minkowski’s inequality:

[
E|ξ1 + ξ2|r

]1/r ≤
[
E|ξ1|r

]1/r +
[
E|ξ2|r

]1/r
.

Proof Since xr is, for r > 1, a convex function in the domain x > 0, which at the

point x = 1 is equal to 1 and has derivative equal to r , one has r(x − 1) ≤ xr − 1

for all x > 0. Putting x = (a/b)1/r (a > 0, b > 0), we obtain

a1/rb1−1/r − b ≤ a

r
− b

r
,

or, which is the same, a1/rb1/s ≤ a/r + b/r . If one puts

a := |ξ1|r
E|ξ1|r

, b := |ξ2|s
E|ξ2|s

and takes the expectations, one gets Hölder’s inequality.

To prove Minkowski’s inequality, note that, by the inequality |ξ1 + ξ2| ≤ |ξ1| +
|ξ2|, one has

E|ξ1 + ξ2|r ≤ E|ξ1||ξ1 + ξ2|r−1 +E|ξ2||ξ1 + ξ2|r−1.

Applying Hölder’s inequality to the terms on the right-hand side, we obtain

E|ξ1 + ξ2|r ≤
{[

E|ξ1|r
]1/r +

[
E|ξ2|r

]1/r}[
E|ξ1 + ξ2|(r−1)s

]1/s
.

Since (r − 1)s = r , 1− 1/s = 1/r , and Minkowski’s inequality follows. �

It is obvious that, for r = s = 2, Hölder’s inequality becomes the Schwarz in-

equality.

Theorem 4.7.3 (Jensen’s inequality) If Eξ exists and g(x) is a convex function,

then g(Eξ)≤ Eg(ξ).

Proof If g(x) is convex then for any y there exists a number g1(y) such that, for

all x,

g(x)≥ g(y)+ (x − y)g1(y).
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Putting x = ξ , y = Eξ , and taking the expectations of the both sides of this inequal-

ity, we obtain

Eg(ξ)≥ g(Eξ). �

The following corollary is also often useful.

Corollary 4.7.1 For any 0 < v < u,
[
E|ξ |v

]1/v ≤
[
E|ξ |u

]1/u
. (4.7.1)

This inequality shows, in particular, that if the u-th order moment exists, then the

moments of any order v < u also exist.

Inequality (4.7.1) follows from Hölder’s inequality, if one puts ξ1 := |ξ |v ,

ξ2 := 1, r := u/v, or from Jensen’s inequality with g(x)= |x|u/v and |ξ |v in place

of ξ .

4.7.2 Inequalities for Probabilities

Theorem 4.7.4 Let ξ ≥ 0 with probability 1. Then, for any x > 0,

P(ξ ≥ x)≤ E(ξ ; ξ ≥ x)

x
≤ Eξ

x
. (4.7.2)

If Eξ <∞ then P(ξ ≥ x)= o(1/x) as x→∞.

Proof The inequality is proved by the following relations:

Eξ ≥ E(ξ ; ξ ≥ x)≥ xE(1; ξ ≥ x)= xP(ξ ≥ x).

If Eξ <∞ then E(ξ ; ξ ≥ x)→ 0 as x→∞. This proves the second statement

of the theorem. �

If a function g(x) ≥ 0 is monotonically increasing, then clearly {ξ : g(ξ) ≥
g(ε)} = {ξ : ξ ≥ ε} and, applying Theorem 4.7.4 to the random variable η = g(ξ),

one gets

Corollary 4.7.2 If g(x) ↑, g(x)≥ 0, then

P(ξ ≥ x)≤ E(g(ξ); ξ ≥ x)

g(x)
≤ Eg(ξ)

g(x)
.

In particular, for g(x)= eλx ,

P(ξ ≥ x)≤ e−λxEeλξ , λ > 0.

Corollary 4.7.3 (Chebyshev’s inequality) For an arbitrary random variable ξ with
a finite variance,

P
(
|ξ −Eξ | ≥ x

)
≤ Var(ξ)

x2
. (4.7.3)
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To prove (4.7.3), it suffices to apply Theorem 4.7.4 to the random variable η =
(ξ −Eξ)2 ≥ 0. �

The assertions of Theorem 4.7.4 and Corollary 4.7.2 are also often called Cheby-

shev’s inequalities (or Chebyshev type inequalities), since in regard to their proofs,

they are unessential generalisations of (4.7.3).

Using Chebyshev’s inequality, we can bound probabilities of various deviations

of ξ knowing only Eξ and Var(ξ). As one of the first applications of this inequality,

we will derive the so-called law of large numbers in Chebyshev’s form (the law of

large numbers in a more general form will be obtained in Chap. 8).

Theorem 4.7.5 Let ξ1, ξ2, . . . be independent identically distributed random vari-
ables with expectation Eξj = a and finite variance σ 2 and let Sn =

∑n
j=1 ξj . Then,

for any ε > 0,

P

(∣∣∣∣
Sn

n
− a

∣∣∣∣> ε

)
≤ σ 2

nε2
→ 0

as n→∞.

We will discuss this assertion in Chaps. 5, 6 and 8.

Proof of Theorem 4.7.5 follows from Chebyshev’s inequality, for

E
Sn

n
= a, Var

(
Sn

n

)
= nσ 2

n2
= σ 2

n
. �

Now we will give a computational example of the use of Chebyshev’s inequality.

Example 4.7.1 Assume we decided to measure the diameter of the lunar disk us-

ing photographs made with a telescope. Due to atmospheric interference, measure-

ments of pictures made at different times give different results. Let ξ − a denote

the deviation of the result of a measurement from the true value a, Eξ = a and

σ =
√

Var(ξ)= 1 on a certain scale. Carry out a series of n independent measure-

ments and put ζn := 1
n
(ξ1 + · · · + ξn). Then, as we saw, Eζn = a, Var(ζn)= σ 2/n.

Since the variance of the average of the measurements decreases as the number of

observations increases, it is natural to estimate the quantity a by ζn.

How many observations should be made to ensure |ζn − a| ≤ 0.1 with a proba-

bility greater than 0.99? That is, we must have P(|ζn− a| ≤ 0.1) > 0.99, or P(|ζn−
a| > 0.1) ≤ 0.01. By Chebyshev’s inequality, P(|ζn − a| > 0.1) ≤ σ 2/(n · 0.01).

Therefore, if n is chosen so that σ 2/(n · 0.01) ≤ 0.01 then the required inequality

will be satisfied. Hence we get n≥ 104.

The above example illustrates the possibility of using Chebyshev’s inequality to

bound the probabilities of the deviations of random variables. However, this exam-

ple is an even better illustration of how crude Chebyshev’s inequality is for practical

purposes. If the reader returns to Example 4.7.1 after meeting with the central limit
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theorem in Chap. 8, he/she will easily calculate that, to achieve the required accu-

racy, one actually needs to conduct not 104, but only 670 observations.

4.8 Extension of the Notion of Conditional Expectation

In conclusion to the present chapter, we will introduce a notion which, along with

those we have already discussed, is a useful and important tool in probability theory.

Giving the reader the option to skip this section in the first reading of the book, we

avoid direct use of this notion until Chaps. 13 and 15.

4.8.1 Definition of Conditional Expectation

In Sect. 4.2 we introduced the notion of conditional expectation given an arbitrary

event B with P(B) > 0 that was defined by the equality

E(ξ |B) := E(ξ ;B)

P(B)
, (4.8.1)

where

E(ξ ;B)=
∫

B

ξ dP= Eξ IB ,

IB = IB(ω) being the indicator of the set B . We have already seen and will see many

times in what follows that this is a very useful notion. Definition 4.8.1 introducing

this notion has, however, the deficiency that it makes no sense when P(B)= 0. How

could one overcome this deficiency?

The fact that the condition P(B) > 0 should not play any substantial role could be

illustrated by the following considerations. Assume that ξ and η are independent,

B = {η = x} and P(B) > 0. Then, for any measurable function ϕ(x, y), one has

according to (4.8.1) that

E
[
ϕ(ξ, η)

∣∣η= x
]
= Eϕ(ξ, η)I{η=x}

P(η= x)
= Eϕ(ξ, x)I{η=x}

P(η= x)
= Eϕ(ξ, x). (4.8.2)

The last equality holds because the random variables ϕ(ξ, x) and I{η=x} are inde-

pendent, being functions of ξ and η respectively, and consequently

Eϕ(ξ, η)I{η=x} = Eϕ(ξ, x)P(η= x).

Relations (4.8.2) show that the notion of conditional expectation could also retain

its meaning in the case when the probability of the condition is 0, for the equality

E
[
ϕ(ξ, η)

∣∣η= x
]
= Eϕ(ξ, x)

itself looks quite natural for independent ξ and η and is by no means related to the

assumption that P(η= x) > 0.
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Fig. 4.1 Conditional

expectation as the projection

of ξ onto HA

Let A be a sub-σ -algebra of F. We will now define the notion of the conditional

expectation of a random variable ξ given A, which will be denoted by E(ξ |A). First

we will give the definition in the “discrete” case, but in such a way that it can easily

be extended.

Recall that we call discrete the case when the σ -algebra A is formed (gener-

ated) by an at most countable sequence of disjoint events A1,A2, . . . ,
⋃

j Aj =Ω ,

P(Aj ) > 0. We will write this as A= σ(A1,A2, . . .), which means that the elements

of A are all possible unions of the sets A1,A2, . . . .

Let L2 be the collection of all random variables (all the measurable func-

tions ξ(ω) defined on 〈Ω,F,P〉) for which Eξ2 <∞. In the linear space L2 one

can introduce the inner product (ξ, η) = E(ξη) (whereby L2 becomes a Hilbert

space with the norm ‖ξ‖ = (Eξ2)1/2; we identify two random variables ξ1 and ξ2 if

‖ξ1 − ξ2‖ = 0, see also Remark 6.1.1).

Now consider the linear space HA of all functions of the form

ξ(ω)=
∑

k

ckIAk
(ω),

where IAk
(ω) are indicators of the sets Ak . The space HA is clearly the space of

all A-measurable functions, and one could think of it as the space spanned by the

orthogonal system {IAk
(ω)} in L2.

We now turn to the definition of conditional expectation. We know that the con-

ventional expectation a = Eξ of ξ ∈ L2 can be defined as the unique point at which

the minimum value of the function ϕ(a)= E(ξ−a)2 is attained (see Sect. 4.5). Con-

sider now the problem of minimising the functional ϕ(a)= E(ξ − a(ω))2, ξ ∈ L2,

over all A-measurable functions a(ω) from HA.

Definition 4.8.1 Let ξ ∈ L2. The A-measurable function a(ω) on which the mini-

mum mina∈HA
ϕ(a) is attained is said to be the conditional expectation of ξ given

A and is denoted by E(ξ |A).

Thus, unlike the conventional expectations, the conditional expectation E(ξ |A) is

a random variable. Let us consider it in more detail. It is evident that the minimum

of ϕ(a) is attained when a(ω) is the projection ξ̂ of the element ξ in the space L2

onto HA, i.e. the element ξ̂ ∈HA for which ξ − ξ̂ ⊥HA (see Fig. 4.1). In that case,

for any a ∈HA,
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ξ̂ − a ∈HA, ξ − ξ̂ ⊥ ξ̂ − a,

ϕ(a)= E(ξ − ξ̂ + ξ̂ − a)2 = E(ξ − ξ̂ )2 +E(̂ξ − a)2,

ϕ(a)≥ ϕ(̂ξ),

and ϕ(a)= ϕ(̂ξ) if a = ξ̂ a.s.

Thus, in L2 the conditional expectation operation is just an orthoprojector onto

HA (ξ̂ = E(ξ |A) is the projection of ξ onto HA).

Since, for a discrete σ -algebra A, the element ξ̂ , being an element of HA, has the

form ξ̂ =
∑

ckIAk
, the orthogonality condition ξ − ξ̂ ⊥HA (or, which is the same,

E(ξ − ξ̂ ) IAk
= 0) determines uniquely the coefficients ck :

E(ξ IAk
)= ckP(Ak), ck =

E(ξ ;Ak)

P(Ak)
= E(ξ |Ak),

so that

E(ξ |A)= ξ̂ =
∑

k

E(ξ |Ak)IAk
.

Thus the random variable E(ξ |A) is constant on Ak and, on these sets, is equal
to the average value of ξ on Ak .

If ξ and A are independent (i.e. P(ξ ∈ B; Ak) = P(ξ ∈ B)P(Ak)) then clearly

E(ξ ;Ak)= Eξ P(Ak) and ξ̂ = Eξ . If A= F then F is also discrete, ξ is constant on

the sets Ak and hence ξ̂ = ξ .

Now note the following basic properties of conditional expectation which allow

one to get rid of the two special assumptions (that ξ ∈ L2 and A is discrete), which

were introduced at first to gain a better understanding of the nature of conditional

expectation:

(1) ξ̂ is A-measurable.

(2) For any event A ∈A,

E(̂ξ ;A)= E(ξ ;A).

The former property is obvious. The latter follows from the fact that any event

A ∈A can be represented as A ∈
⋃

k Ajk
, and hence

E(̂ξ ;A)=
∑

k

E(̂ξ ;Ajk
)=

∑

k

cjk
P(Ajk

)=
∑

k

E(ξ ;Ajk
)= E(ξ ;A).

The meaning of this property is rather clear: averaging the variable ξ over the set A

gives the same result as averaging the variable ξ̂ which has already been averaged

over Ajk
.

Lemma 4.8.1 Properties (1) and (2) uniquely determine the conditional expecta-
tion and are equivalent to Definition 4.8.1.

Proof In one direction the assertion of the lemma has already been proved. Assume

now that conditions (1) and (2) hold. A-measurability of ξ̂ means that ξ̂ is constant
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on each set Ak . Denote by ck the value of ξ̂ on Ak . Since Ak ∈ A, it follows from

property (2) that

E(̂ξ ;Ak)= ckP(Ak)= E(ξ ;Ak),

and hence, for ω ∈Ak ,

ξ̂ = ck =
E(ξ ;Ak)

P(Ak)
.

The lemma is proved. �

Now we can give the general definition of conditional expectation.

Definition 4.8.2 Let ξ be a random variable on a probability space 〈Ω,F,P〉 and

A⊂ F an arbitrary sub-σ -algebra of F. The conditional expectation of ξ given A is

a random variable ξ̂ which is denoted by E(ξ |A) and has the following two proper-

ties:

(1) ξ̂ is A-measurable.

(2) For any A ∈A, one has E(ξ̂ ;A)= E(ξ ;A).

In this definition, the random variable ξ can be both scalar and vector-valued.

There immediately arises the question of whether such a random variable exists

and is unique. In the discrete case we saw that the answer to this question is positive.

In the general case, the following assertion holds true.

Theorem 4.8.1 If E|ξ | is finite, then the function ξ̂ = E(ξ |A) in Definition 4.8.2

always exists and is unique up to its values on a set of probability 0.

Proof First assume that ξ is scalar and ξ ≥ 0. Then the set function

Q(A)=
∫

A

ξ dP= E(ξ ;A), A ∈A

will be a measure on 〈Ω,A〉 which is absolutely continuous with respect to P, for

P(A)= 0 implies Q(A)= 0. Therefore, by the Radon–Nykodim theorem (see Ap-

pendix 3), there exists an A-measurable function ξ̂ = E(ξ |A) which is unique up to

its values on a set of measure zero and such that

Q(A)=
∫

A

ξ̂ dP= E(̂ξ ;A).

In the general case we put ξ = ξ+ − ξ−, where ξ+ := max(0, ξ) ≥ 0, ξ− :=
max(0,−ξ) ≥ 0, ξ̂ := ξ̂+ − ξ̂− and ξ̂± are conditional expectations of ξ±. This

proves the existence of the conditional expectation, since ξ̂ satisfies conditions (1)

and (2) of Definition 4.8.2. This will also imply uniqueness, for the assumption

on non-uniqueness of ξ̂ would imply non-uniqueness of ξ̂+ or ξ̂−. The proof for

vector-valued ξ reduces to the one-dimensional case, since the components of ξ̂ will

possess properties (1) and (2) and, for the components, the existence and uniqueness

have already been proved. �
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The essence of the above proof is quite transparent: by condition (2), for any

A ∈A we are given the value

E(̂ξ ;A)=
∫

A

ξ̂ dP,

i.e. the values of the integrals of ξ̂ over all sets A ∈A are given. This clearly should

define an A-measurable function ξ̂ uniquely up to its values on a set of measure

zero.

The meaning of E(ξ |A) remains the same: roughly speaking, this is the result of

averaging of ξ over “indivisible” elements of A.

If A = F then evidently ξ̂ = ξ satisfies properties (1) and (2) and therefore

E(ξ |F)= ξ .

Definition 4.8.3 Let ξ and η be random variables on 〈Ω,F,P〉 and A = σ(η) be

the σ -algebra generated by the random variable η. Then E(ξ |A) is also called the

conditional expectation of ξ given η.

To simplify the notation, we will sometimes write E(ξ |η) instead of E(ξ |σ(η)).

This does not lead to confusion.

Since E(ξ |η) is, by definition, a σ(η)-measurable random variable, this means

(see Sect. 3.5) that there exists a measurable function g(x) for which E(ξ |η) =
g(η). By analogy with the discrete case, one can interpret the quantity g(x) as the

result of averaging ξ over the set {η = x}. (Recall that in the discrete case g(x) =
E(ξ |η= x).)

Definition 4.8.4 If ξ = IC is the indicator of a set C ∈ F, then E(IC |A) is called the

conditional probability P(C|A) of the event C given A. If A = σ(η), we speak of

the conditional probability P(C|η) of the event C given η.

4.8.2 Properties of Conditional Expectations

1. Conditional expectations have the properties of conventional expectations, the
only difference being that they hold almost surely (with probability 1):

(a) E(a + bξ |A)= a + bE(ξ |A).

(b) E(ξ1 + ξ2|A)= E(ξ1|A)+E(ξ2|A).

(c) If ξ1 ≤ ξ2 a.s., then E(ξ1|A)≤ E(ξ2|A) a.s.

To prove, for instance, property (a), one needs to verify, according to Defini-

tion 4.8.2, that

(1) a + bE(ξ |A) is an A-measurable function;

(2) E(a + bξ ;A)= E(a + bE(ξ |A);A) for any A ∈A.
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Here (1) is evident; (2) follows from the linearity of conventional expectation (or

integral).

Property (b) is proved in the same way.

To prove (c), put, for brevity, ξ̂i := E(ξi |A). Then, for any A ∈A,
∫

A

ξ̂1 dP= E(̂ξ1;A)= E(ξ1;A)≤ E(ξ2;A)=
∫

A

ξ̂2 dP,

∫

A

(̂ξ2 − ξ̂1) dP≥ 0.

This implies that ξ̂2 − ξ̂1 ≥ 0 a.s.

2. Chebyshev’s inequality. If ξ ≥ 0, x > 0, then P(ξ ≥ x|A)≤ E(ξ |A)/x.

This property follows from 1(c), since P(ξ ≥ x|A) = E(I{ξ≥x}|A), where IA is

the indicator of the event A, and one has the inequality I{ξ≥x} ≤ ξ/x.

3. If A and σ(η) are independent, then E(ξ |A) = Eξ . Since ξ̂ = Eξ is an A-

measurable function, it remains to verify the second condition from Definition 4.8.2:

for any A ∈A,

E(ξ̂ ;A)= E(ξ ;A).

This equality follows from the independence of the random variables IA and ξ and

the relations E(ξ ;A)= E(ξ IA)= EξEIA = E(̂ξ ;A).

It follows, in particular, that if ξ and η are independent, then E(ξ |η)= Eξ . If the

σ -algebra A is trivial, then clearly one also has E(ξ |A)= Eξ .

4. Convergence theorems that are true for conventional expectations hold for
conditional expectations as well. For instance, the following assertion is true.

Theorem 4.8.2 (Monotone convergence theorem) If 0≤ ξn ↑ ξ a.s. then

E(ξn|A) ↑ E(ξ |A) a.s.

Indeed, it follows from ξn+1 ≥ ξn a.s. that ξ̂n+1 ≥ ξ̂n a.s., where ξ̂n = E(ξn|A).

Therefore there exists an A-measurable random variable ξ̂ such that ξ̂n ↑ ξ̂ a.s. By

the conventional monotone convergence theorem, for any A ∈A,
∫

A

ξ̂n dP→
∫

A

ξ̂ dP,

∫

A

ξn dP→
∫

A

ξ dP.

Since the left-hand sides of these relations coincide, the same holds for the right-

hand sides. This means that ξ̂ = E(ξ |A).

5. If η is an A-measurable scalar random variable, E|ξ |<∞, and E|ξη|<∞,
then

E(ηξ |A)= ηE(ξ |A). (4.8.3)

If ξ ≥ 0 and η ≥ 0 then the moment conditions are superfluous.

In other words, in regard to the conditional expectation operation, A-measurable

random variables behave as constants in conventional expectations (cf. prop-

erty 1(a)).

In order to prove (4.8.3), note that if η = IB (the indicator of a set B ∈ A) then

the assertion holds since, for any A ∈A,
∫

A

E(IBξ |A) dP=
∫

A

IBξ dP=
∫

AB

ξ dP=
∫

AB

E(ξ |A) dP=
∫

A

IBE(ξ |A) dP.
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This together with the linearity of conditional expectations implies that the assertion

holds for all simple functions η.

If ξ ≥ 0 and η ≥ 0 then, taking a sequence of simple functions 0 ≤ ηn ↑ η and

applying the monotone convergence theorem to the equality

E(ηnξ |A)= ηnE(ξ |A),

we obtain (4.8.3). Transition to the case of arbitrary ξ and η is carried out in the

standard way—by considering positive and negative parts of the random variables

ξ and η. In addition, to ensure that the arising differences and sums make sense, we

require the existence of the expectations E|ξ | and E|ξη|.
6. All the basic inequalities for conventional expectations remain true for condi-

tional expectations as well, in particular, Cauchy–Bunjakovsky’s inequality

E
(
|ξ1ξ2|

∣∣A
)
≤
[
E
(
ξ2

1 |A
)
E
(
ξ2

2 |A
)]1/2

and Jensen’s inequality: if E|ξ |<∞ then, for any convex function g,

g
(
E(ξ |A)

)
≤ E

(
g(ξ)|A

)
. (4.8.4)

Cauchy–Bunjakovsky’s inequality can be proved in exactly the same way as for

conventional expectations, for its proof requires no properties of expectations other

than linearity.

Jensen’s inequality is a consequence of the following relation. By convexity of

g(x), for any y, there exists a number g∗(y) such that g(x)≥ g(y)+ (x − y)g∗(y)

(g∗(y)= g′(y) if g is differentiable at the point y). Put x = ξ , y = ξ̂ = E(ξ |A), and

take conditional expectations of the both sides of the inequality. Then, assuming for

the moment that

E
(∣∣(ξ − ξ̂ )g∗(̂ξ )

∣∣)<∞ (4.8.5)

(this can be proved if E|g(ξ)|<∞), we get

E
[
(ξ − ξ̂ )g∗(̂ξ )

∣∣A)
]
= g∗(̂ξ )E(ξ − ξ̂ |A)= 0

by virtue of property 5. Thus we obtain (4.8.4). In the general case note that the

function g∗(y) is nondecreasing. Let (y−N , yN ) be the maximal interval on which

|g∗(y)|< N . Put

gN (y) :=
{

g(y) if y ∈ [y−N , yN ],
g(y±N )± (y − y±N )N if y ≷ y±N .

(y±N can take infinite values if±g∗(y) are bounded as y→∞. Note that the values

of g∗(y) are always bounded from below as y→∞ and from above as y→−∞,

hence g∗(y±N )≷ 0 for N large enough.) The support function g∗N (y) corresponding

to gN (y) has the form

g∗N (y)=max
[
−N,min

(
N,g∗(y)

)]

and, consequently, is bounded for each N . Therefore, condition (4.8.5) is satisfied

for g∗N (y) (recall that E|ξ |<∞) and hence

gN (̂ξ )≤ E
(
gN (ξ)

∣∣A
)
.
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Further, we have gN (y) ↑ g(y) as N→∞ for all y. Therefore the left-hand side

of this inequality converges everywhere to g(̂ξ) as N→∞, but the right-hand side

converges to E(g(ξ)|A) by Theorem 4.8.2. Property 6 is proved. �

7. The total probability formula

Eξ = EE(ξ |A)

follows immediately from property 2 of Definition 4.8.2 with A=Ω .

8. Iterated averaging (an extension of property 7): if A⊂A1 ⊂ F then

E(ξ |A)= E
[
E(ξ |A1)

∣∣A
]
.

Indeed, for any A ∈A, since A ∈A1 one has
∫

A

E
[
E(ξ |A1)

∣∣A
]
dP=

∫

A

E(ξ |A1) dP=
∫

A

ξ dP=
∫

A

E(ξ |A) dP.

The properties 1, 3–5, 7 and 8 clearly hold for both scalar- and vector-valued

random variables ξ . The next property we will single out.

9. For ξ ∈ L2, the minimum of E(ξ − a(ω))2 over all A-measurable functions
a(ω) is attained at a(ω)= E(ξ |A).

Indeed, E(ξ − a(ω))2 = EE((ξ − a(ω))2|A), but a(ω) behaves as a constant in

what concerns the operation E(·|A) (see property 5), so that

E
((

ξ − a(ω)
)2∣∣A

)
= E

((
ξ −E(ξ |A)

)2∣∣A
)
+
(
E(ξ |A)− a(ω)

)2

and the minimum of this expression is attained at a(ω)= E(ξ |A).

This property proves the equivalence of Definitions 4.8.1 and 4.8.2 in the case
when ξ ∈ L2 (in both definitions, conditional expectation is defined up to its values

on a set of measure 0). In this connection note once again that, in L2, the operation

of taking conditional expectations is the projection onto HA (see our comments to

Definition 4.8.1).

Property 9 can be extended to the multivariate case in the following form: for any
nonnegative definite matrix V , the minimum min(ξ − a(ω))V (ξ − a(ω))T over all
A-measurable functions a(ω) is attained at a(ω)= E(ξ |A).

The assertions proved above in the case where ξ ∈ L2 and the σ -algebra A is

countably generated will surely hold true for an arbitrary σ -algebra A, but the sub-

stantiation of this fact requires additional work.

In conclusion we note that property 5 admits, under wide assumptions, the fol-

lowing generalisation:

5A. If η is A-measurable and g(ω,η) is a measurable function of its arguments
ω ∈Ω and η ∈Rk such that E|g(ω,η)|A)|<∞, then

E
(
g(ω,η)

∣∣A
)
= E

(
g(ω,y)

∣∣A
)∣∣

y=η
. (4.8.6)

This implies the double expectation (or total probability) formula.

Eg(ω,η)= E
[
E
(
g(ω,y)

∣∣A
)∣∣

y=η

]
,



4.9 Conditional Distributions 99

which can be considered as an extension of Fubini’s theorem (see Sects. 4.6 and 3.6).

Indeed, if g(ω,y) is independent of A, then

E
(
g(ω,y)

∣∣A
)
= Eg(ω,y), E

(
g(ω,η)

∣∣A
)
= Eg(ω,y)

∣∣
y=η

,

Eg(ω,η)= E
[
Eg(ω,y)

∣∣
y=η

]
.

In regard to its form, this is Fubini’s theorem, but here η is a vector-valued ran-

dom variable, while ω can be of an arbitrary nature.

We will prove property 5A under the simplifying assumption that there exists

a sequence of simple functions ηn such that g(ω,ηn) ↑ g(ω,η) and h(ω,ηn) ↑
h(ω,η) a.s., where h(ω,y) = E(g(ω,y)|A)). Indeed, let ηn = yk for ω ∈ Ak ⊂ A.

Then

g(ω,ηn)=
∑

g(ω,yk)IAk
.

By property 5 it follows that (4.8.6) holds for the functions ηn. It remains to

make use of the monotone convergence theorem (property 4) in the equality

E(g(ω,ηn)|A))= h(ω,ηn).

4.9 Conditional Distributions

Along with conditional expectations, one can consider conditional distributions
given sub-σ -algebras and random variables. In the present section, we turn our at-

tention to the latter.

Let ξ and η be two random variables on 〈Ω,F,P〉 taking values in R
s and R

k ,

respectively, and let Bs be the σ -algebra of Borel sets in R
s .

Definition 4.9.1 A function F(B|y) of two variables y ∈ Rk and B ∈Bs is called

the conditional distribution of ξ given η= y if:

1. For any B , F(B|η) is the conditional probability P(ξ ∈ B|η) of the event

{ξ ∈ B} given η, i.e. F(B|y) is a Borel function of y such that, for any A ∈Bk ,

E
(
F(B|η);η ∈A

)
≡
∫

A

F(B|y)P(η ∈ dy)= P(ξ ∈ B, η ∈A).

2. For any y, F(B|y) is a probability distribution in B .

Sometimes we will write the function F(B|y) in a more “deciphered” form as

F(B|y)= P(ξ ∈ B|η= y).

We know that, for each B ∈Bs , there exists a Borel function gB(y) such that

gB(η) = P(ξ ∈ B|η). Thus, putting P(B|y) := gB(y), we will satisfy condition 1

of Definition 4.9.1. Condition 2, however, does not follow from the properties of

conditional expectations and by no means needs to hold: indeed, since conditional

probability P(ξ ∈ B|η) is defined for each B up to its values on a set NB of zero
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measure (so that there exist many variants of conditional expectation), and this set

can be different for each B . Therefore, if the union

N =
⋃

B∈Bs

NB

has a non-zero probability, it could turn out that, for instance, the equalities

P(ξ ∈ B1 ∪B2|η)= P(ξ ∈ B1|η)+ P(ξ ∈ B2|η)

(additivity of probability) for all disjoint B1 and B2 from Bs hold for no ω ∈N , i.e.

on an ω-set N of positive probability, the function gB(y) will not be a distribution

as a function of B .

However, in the case when ξ is a random variable taking values in R
s with the

σ -algebra Bs of Borel sets, one can always choose gB(η)= P(ξ ∈ B|η) such that
gB(y) will be a conditional distribution.2

As one might expect, conditional probabilities possess the natural property that

conditional expectations can be expressed as integrals with respect to conditional

distributions.

Theorem 4.9.1 For any measurable function g(x) mapping R
s into R such that

E|g(ξ)|<∞, one has

E
(
g(ξ)

∣∣η
)
=
∫

g(x)F(dx|η). (4.9.1)

Proof It suffices to consider the case g(x) ≥ 0. If g(x) = IA(x) is the indicator of

a set A, then formula (4.9.1) clearly holds. Therefore it holds for any simple (i.e.

assuming only finitely many values) function gn(x). It remains to take a sequence

gn ↑ g and make use of the monotonicity of both sides of (4.9.1) and property 4

from Sect. 4.8. �

In real-life problems, to compute conditional distributions one can often use the

following simple rule which we will write in the form

P(ξ ∈ B|η= y)= P(ξ ∈ B,η ∈ dy)

P(η ∈ dy)
. (4.9.2)

Both conditions of Definition 4.9.1 will clearly be formally satisfied.

If ξ and η have a joint density, this equality will have a precise meaning.

Definition 4.9.2 Assume that, for each y, the conditional distribution F(B|y) is

absolutely continuous with respect to some measure µ in R
s :

P(ξ ∈ B|η= y)=
∫

B

f (x|y)µ(dx).

Then the density f (x|y) is said to be the conditional density of ξ (with respect to
the measure µ) given η= y.

2For more details, see e.g. [12, 14, 26].
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In other words, a measurable function f (x|y) of two variables x and y is the

conditional density of ξ given η= y if:

(1) For any Borel sets A⊂R
k and B ⊂R

s ,
∫

y∈A

∫

x∈B
f (x|y)µ(dx)P(η ∈ dy)= P(ξ ∈ B,η ∈A). (4.9.3)

(2) For any y, the function f (x|y) is a probability density.

It follows from Theorem 4.9.1 that if there exists a conditional density, then

E
(
g(ξ)

∣∣η
)
=
∫

g(x)f (x|η)µ(dx).

If we additionally assume that the distribution of η has a density q(y) with re-

spect to some measure λ in R
k , then we can re-write (4.9.3) in the form

∫

y∈A

∫

x∈B
f (x|y)q(y)µ(dx)λ(dy)= P(ξ ∈ B,η ∈A). (4.9.4)

Consider now the direct product of spaces R
s and R

k and the direct product of

measures µ×λ on it (if C = B×A, B ⊂R
s , A⊂R

k then µ×λ(C)= µ(B)λ(A)).

In the product space, relation (4.9.4) evidently means that the joint distribution of ξ

and η in R
s ×R

k has a density with respect to µ× λ which is equal to

f (x, y)= f (x|y)q(y).

The converse assertion is also true.

Theorem 4.9.2 If the joint distribution of ξ and η in R
s ×R

k has a density f (x, y)

with respect to µ× λ, then the function

f (x|y)= f (x, y)

q(y)
, where q(y)=

∫
f (x, y)µ(dx),

is the conditional density of ξ given η= y, and the function q(y) is the density of η

with respect to the measure λ.

Proof The assertion on q(y) is obvious, since
∫

A

q(y)λ(dy)= P(η ∈A).

It remains to observe that f (x|y) = f (x, y)/q(y) satisfies all the conditions from

Definition 4.9.2 of conditional density (equality (4.9.4), which is equivalent to

(4.9.3), clearly holds here). �

Theorem 4.9.2 gives a precise meaning to (4.9.2) when ξ and η have densities.

Example 4.9.1 Let ξ1 and ξ2 be independent random variables, ξ1 ⊂=�λ1
, ξ2 ⊂=�λ2

.

What is the distribution of ξ1 given ξ1 + ξ2 = n? We could easily compute the de-

sired conditional probability P(ξ1 = k|ξ1 + ξ2 = n), k ≤ n, without using Theo-

rem 4.9.2, for ξ1 + ξ2 ⊂=�λ1+λ2
and the probability of the event {ξ1 + ξ2 = n} is
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positive. Retaining this possibility for comparison, we will still make formal use of

Theorem 4.9.2. Here ξ1 and η = ξ1 + ξ2 have densities (equal to the corresponding

probabilities) with respect to the counting measure, so that

f (k,n)= P(ξ1 = k, η= n)= P(ξ1 = k, ξ2 = n− k)= e−λ1−λ2
λk

1λ
n−k
2

k!(n− k)! ,

q(n)= P(η= n)= e−λ1−λ2
(λ1 + λ2)

n

n! .

Therefore the required density (probability) is equal to

f (k|n)= P(ξ1 = k|η= n)= f (k,n)

q(n)
= n!

k!(n− k)!p
k(1− p)n−k,

where p = λ/(λ1 + λ2). Thus the conditional distribution of ξ1 given the fixed sum

ξ1 + ξ2 = n is a binomial distribution. In particular, if ξ1, . . . , ξr are independent,

ξi⊂=�λ, then the conditional distribution of ξ1 given the fixed sum ξ1+· · ·+ ξr = n

will be Bn
1/r , which does not depend on λ.

The next example answers the same question as in Example 4.9.1 but for nor-

mally distributed random variables.

Example 4.9.2 Let �a,σ 2 be the two-dimensional joint normal distribution of ran-

dom variables ξ1 and ξ2, where a = (a1, a2), ai = Eξi , and σ 2 = ‖σi,j‖ is the co-

variance matrix, σij = E(ξi − ai)(ξj − aj ), i, j = 1,2. The determinant of σ 2 is

∣∣σ 2
∣∣= σ11σ22 − σ 2

12 = σ11σ22

(
1− ρ2

)
,

where ρ is the correlation coefficient of ξ1 and ξ2. Thus, if |ρ| 
= 1 then the covari-

ance matrix is non-degenerate and has the inverse

A=
(
σ 2

)−1 = 1

|σ 2|

∥∥∥∥
σ22 −σ12

−σ12 σ11

∥∥∥∥=
1

1− ρ2

∥∥∥∥∥

1
σ11

− ρ√
σ11σ22

− ρ√
σ11σ12

1
σ22

∥∥∥∥∥ .

Therefore the joint density of ξ1 and ξ2 (with respect to Lebesgue measure) is (see

Sect. 3.3)

f (x, y)= 1

2π
√

σ11σ22(1− ρ2)

× exp

{
− 1

2(1− ρ2)

[
(x − a1)

2

σ11
− 2ρ(x − a1)(y − a2)√

σ11σ22
+ (y − a2)

2

σ22

]}
.

(4.9.5)

The one-dimensional densities of ξ1 and ξ2 are, respectively,

f (x)= 1√
2πσ11

e−(x−a1)
2/(2σ11) , q(y)= 1√

2πσ22

e−(y−a2)
2/(2σ22). (4.9.6)

Hence the conditional density of ξ1 given ξ2 = y is
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Fig. 4.2 Illustration to

Example 4.9.4. Positions of

the target’s centre, the first

aimpoint, and the first hit

f (x|y)= f (x, y)

q(y)

= 1√
2πσ11(1− ρ2)

exp

{
− 1

2σ11(1− ρ2)

(
x − a1 − ρ

√
σ11

σ22
(y − a2)

)2}
,

which is the density of the normal distribution with mean a1 + ρ
√

σ11
σ22

(y − a2) and

variance σ11(1− ρ2).

This implies that f (x|y) coincides with the unconditional density of f (x) in

the case ρ = 0 (and hence ξ1 and ξ2 are independent), and that the conditional

expectation of ξ1 given ξ2 is

E(ξ1|ξ2)= a1 + ρ
√

σ11/σ22(ξ2 − a2).

The straight line x = a1 + ρ
√

σ11/σ22(y − a2) is called the regression line of ξ1

on ξ2. It gives the best mean-square approximation for ξ1 given ξ2 = y.

Example 4.9.3 Consider the problem of computing the density of the random vari-

able ξ = ϕ(ζ, η) when ζ and η are independent. It follows from formula (4.9.3)

with A = R
k that the density of the distribution of ξ can be expressed in terms of

the conditional density f (x|y) as

f (x)=
∫

f (x|y)P(η ∈ dy).

In our problem, by f (x|y) one should understand the density of the random variable

ϕ(ζ, y), since P(ξ ∈ B|η= y)= P(ϕ(ζ, y) ∈ B).

Example 4.9.4 Target shooting with adjustment. A gun fires at a target of a known

geometric form. Introduce the polar system of coordinates, of which the origin is

the position of the gun. The distance r (see Fig. 4.2) from the gun to a certain point

which is assumed to be the centre of the target is precisely known to the crew of the

gun, while the azimuth is not. However, there is a spotter who communicates to the

crew after the first trial shoot what the azimuth deviation of the hitting point from

the centre of the target is.

Suppose the scatter of the shells fired by the gun (the deviation (ξ, η) of the hit-

ting point from the aimpoint) is described, in the polar system of coordinates, by the

two-dimensional normal distribution with density (4.9.5) with α = 0. In Sect. 8.4 we

will see why the deviation is normally distributed. Here we will neglect the circum-

stance that the azimuth deviation ξ cannot exceed π while the distance deviation ξ
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cannot assume values in (−∞,−r). (The standard deviations σ1 and σ2 are usually

very small in comparison with r and π , so this fact is insignificant.) If the azimuth β

of the centre of the target were also exactly known along with the distance r , then

the probability of hitting the target would be equal to

∫

B(r,β)

∫
f (x, y) dx dy,

where B(r,β) = {(x, y) : (r + x,β + y) ∈ B} and the set B represents the target.

However, the azimuth is communicated to the crew of the gun by the spotter based

on the result of the trial shot, i.e. the spotter reports it with an error δ distributed

according to the normal law with the density q(y) (see (4.9.6)). What is the proba-

bility of the event A that, in these circumstances, the gun will hit the target from the

second shot? If δ = z, then the azimuth is communicated with the error z and

P(A|δ = z)=
∫

B(r,β)

∫
f (x, y − z) dx dy =: ϕ(z).

Therefore,

P(A)= E
[
P(A| δ)

]
= Eϕ(δ)= 1

σ2

√
2π

∫ ∞

−∞
e−z2/(2σ 2

2 )ϕ(z) dz.

Example 4.9.5 The segment [0,1] is broken “at random” (i.e. with the uniform

distribution of the breaking point) into two parts. Then the larger part is also broken

“at random” into two parts. What is the probability that one can form a triangle from

the three fragments?

The triangle can be formed if there occurs the event B that all the three fragments

have lengths smaller than 1/2. Let ω1 and ω2 be the distances from the points of the

first and second breaks to the origin. Use the complete probability formula

P(B)= EP(B|ω1).

Since ω1 is distributed uniformly over [0,1], one only has to calculate the con-

ditional probability P(B|ω1). If ω1 < 1/2 then ω2 is distributed uniformly over

[ω1,1]. One can construct a triangle provided that 1/2 < ω2 < 1/2+ω1. Therefore

P(B|ω1)= ω1/(1− ω1) on the set {ω1 < 1/2}. We easily find from symmetry that,

for ω1 > 1/2,

P(B|ω1)=
1−ω1

ω1
.

Hence

P(B)= 2

∫ 1/2

0

x

1− x
dx =−1+ 2

∫ 1/2

0

dx

1− x
dx =−1+ 2 ln 2.
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One could also solve this problem using a direct “geometric” method. The den-

sity f (x, y) of the joint distribution of (ω1,ω2) is

f (x, y)=

⎧
⎪⎨
⎪⎩

1
1−x

if x < 1/2, y ∈ [x,1],
1
x

if x ≥ 1/2, y ∈ [0, x],
0 otherwise.

It remains to compute the integral of this function over the domain corresponding

to B .

All the above examples were on conditional expectations given random variables
(not σ -algebras).

The need for conditional expectations given σ -algebras arises where it is diffi-

cult to manage working just with conditional expectations given random variables.

Assume, for instance, that a certain process is described by a sequence of random

variables {ξj }∞j=−∞ which are not independent. Then the most convenient way to

describe the distribution of ξ1 given the whole “history” (i.e. the values ξ0, ξ−1,

ξ−2, . . .) is to take the conditional distribution of ξ1 given σ(ξ0, ξ−1, . . .). It would

be difficult to confine oneself here to conditional distributions given random vari-

ables only. Respective examples are given in Chaps. 13, 15–22.



Chapter 5

Sequences of Independent Trials
with Two Outcomes

Abstract The weak and strong laws of large numbers are established for the

Bernoulli scheme in Sect. 5.1. Then the local limit theorem on approximation of

the binomial probabilities is proved in Sect. 5.2 using Stirling’s formula (covering

both the normal approximation zone and the large deviations zone). The same sec-

tion also contains a refinement of that result, including a bound for the relative error

of the approximation, and an extension of the local limit theorem to polynomial dis-

tributions. This is followed by the derivation of the de Moivre–Laplace theorem and

its refinements in Sect. 5.3. In Sect. 5.4, the coupling method is used to prove the

Poisson theorem for sums of non-identically distributed independent random indica-

tors, together with sharp approximation error bounds for the total variation distance.

The chapter ends with derivation of large deviation inequalities for the Bernoulli

scheme in Sect. 5.5.

5.1 Laws of Large Numbers

Suppose we have a sequence of trials in each of which a certain event A can oc-

cur with probability p independently of the outcomes of other trials. Form a se-

quence of random variables as follows. Put ξk = 1 if the event A has occurred in

the k-th trial, and ξk = 0 otherwise. Then (ξk)
∞
k=1 will be a sequence of indepen-

dent random variables which are identically distributed according to the Bernoulli

law: P(ξk = 1) = p, P(ξk = 0) = q = 1 − p, Eξk = p, Var(ξk) = pq . The sum

Sn = ξ1 + · · · + ξn ⊂= Bn
p is simply the number of occurrences of the event A in the

first n trials. Clearly ESn = np and Var(Sn)= npq .

The following assertion is called the law of large numbers for the Bernoulli

scheme.

Theorem 5.1.1 For any ε > 0

P

(∣∣∣∣
Sn

n
− p

∣∣∣∣> ε

)
→ 0 as n→∞.

This assertion is a direct consequence of Theorem 4.7.5. One can also obtain the

following stronger result:
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Theorem 5.1.2 (The Strong Law of Large Numbers for the Bernoulli Scheme) For
any ε > 0, as n→∞,

P

(
sup
k≥n

∣∣∣∣
Sk

k
− p

∣∣∣∣> ε

)
→ 0.

The interpretation of this result is that the notion of probability which we intro-

duced in Chaps. 1 and 2 corresponds to the intuitive interpretation of probability

as the limiting value of the relative frequency of the occurrence of the event. In-

deed, Sn/n could be considered as the relative frequency of the event A for which

P(A)= p. It turned out that, in a certain sense, Sn/n converges to p.

Proof of Theorem 5.1.2 One has

P

(
sup
k≥n

∣∣∣∣
Sk

k
− p

∣∣∣∣> ε

)
= P

( ∞⋃

k=n

{∣∣∣∣
Sk

k
− p

∣∣∣∣> ε

})

≤
∞∑

k=n

P

(∣∣∣∣
Sk

k
− p

∣∣∣∣> ε

)
≤
∞∑

k=n

E(Sk − kp)4

k4ε4
.

(5.1.1)

Here we again made use of Chebyshev’s inequality but this time for the fourth mo-

ments. Expanding we find that

E(Sk − kp)4 = E

(
k∑

j=1

(ξj − p)

)4

=
k∑

j=1

E(ξj − p)4 + 6
∑

i<j

(ξi − p)2(ξj − p)2

= k
(
pq4 + qp4

)
+ 3k(k − 1)(pq)2 ≤ k + k(k − 1)= k2. (5.1.2)

Thus the probability we want to estimate does not exceed the sum

ε−4
∞∑

k=n

k−2→ 0 as n→∞. �

It is not hard to see that we would not have found the required bound if we used

Chebyshev’s inequality with second moments in (5.1.1).

We could also note that one actually has much stronger bounds for

P(|Sk − kp| > εk) than those that we made use of above. These will be derived

in Sect. 5.5.

Corollary 5.1.1 If f (x) is a continuous function on [0,1] then, as n→∞,

Ef

(
Sn

n

)
→ f (p) (5.1.3)

uniformly in p.
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Proof For any ε > 0,

E

∣∣∣∣f
(

Sn

n

)
− f (p)

∣∣∣∣≤ E

(∣∣∣∣f
(

Sn

n

)
− f (p)

∣∣∣∣;
∣∣∣∣
Sn

n
− p

∣∣∣∣≤ ε

)

+E

(∣∣∣∣f
(

Sn

n

)
− f (p)

∣∣∣∣;
∣∣∣∣
Sn

n
− p

∣∣∣∣> ε

)

≤ sup
|x|≤ε

∣∣f (p+ x)− f (p)
∣∣+ δn(ε),

where the quantity δ(ε) is independent of p by virtue of (5.1.1), (5.1.2), and since

δn(ε)→ 0 as n→∞. �

Corollary 5.1.2 If f (x) is continuous on [0,1], then, as n→∞,

n∑

k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k→ f (x)

uniformly in x ∈ [0,1].

This relation is just a different form of (5.1.3) since

P(Sn = k)=
(

n

k

)
pk(1− p)n−k

(see Chap. 1). This relation implies the well-known Weierstrass theorem on approxi-

mation of continuous functions by polynomials. Moreover, the required polynomials

are given here explicitly—they are Bernstein polynomials.

5.2 The Local Limit Theorem and Its Refinements

5.2.1 The Local Limit Theorem

We know that P(Sn = k)=
(
n
k

)
pkqn−k , q = 1− p. However, this formula becomes

very inconvenient for computations with large n and k, which raises the question

about the asymptotic behaviour of the probability P(Sn = k) as n→∞.

In the sequel, we will write an ∼ bnfor two number sequences {an} and {bn} if

an/bn→ 1 as n→∞. Such sequences {an} and {bn} will be said to be equivalent.
Set

H(x)= x ln
x

p
+ (1− x) ln

1− x

1− p
, p∗ = k

n
. (5.2.1)

Theorem 5.2.1 As k→∞ and n− k→∞,

P(Sn = k)= P

(
Sn

n
= p∗

)
∼ 1√

2πnp∗(1− p∗)
exp

{
−nH

(
p∗

)}
. (5.2.2)
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Proof We will make use of Stirling’s formula according to which n! ∼
√

2πnnne−n

as n→∞. One has

P(Sn = k)=
(

n

k

)
pkqn−k ∼

√
n

2πk(n− k)

nn

kk(n− k)n−k
pk(1− p)n−k

= 1√
2πnp∗(1− p∗)

× exp

{
−k ln

k

n
− (n− k) ln

n− k

n
+ k lnp+ (n− k) ln (1− p)

}

= 1√
2πnp∗(1− p∗)

exp
{
−n

[
p∗ lnp∗ +

(
1− p∗

)
ln
(
1− p∗

)

− p∗ lnp−
(
1− p∗

)
ln(1− p)

]}

= 1√
2πnp∗(1− p∗)

exp
{
nH

(
p∗

)}
. �

If p∗ = k/n is close to p, then one can find another form for the right-hand side

of (5.2.2) which is of significant interest. Note that the function H(x) is analytic on

the interval (0,1). Since

H ′(x)= ln
x

p
− ln

1− x

1− p
, H ′′(x)= 1

p
+ 1

1− x
, (5.2.3)

one has H(p)=H ′(p)= 0 and, as p∗ − p→ 0,1

H
(
p∗

)
= 1

2

(
1

p
+ 1

q

)(
p∗ − p

)2 +O
(∣∣p∗ − p

∣∣3).

Therefore if p∗ ∼ p and n(p∗ − p)3→ 0 then

P(Sn = k)∼ 1√
2πpq

exp

{
− n

2pq

(
p∗ − p

)2
}
.

Putting

∆= 1
√

npq
, ϕ(x)= 1√

2π
e−x2/2,

one obtains the following assertion.

Corollary 5.2.1 If z= n(p∗ − p)= k− np = o(n2/3) then

P(Sn = k)= P(Sn − np = z)∼ ϕ(z∆)∆, (5.2.4)

where ϕ = ϕ0,1(x) is evidently the density of the normal distribution with parame-
ters (0,1).

1According to standard conventions, we will write a(z) = o(b(z)) as z→ z0 if b(z) > 0 and

limz→z0

a(z)
b(z)
= 0, and a(z)=O(b(z)) as z→ z0 if b(z) > 0 and lim supz→z0

|a(z)|
b(z)

<∞.
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This formula also enables one to estimate the probabilities of the events of the

form {Sn < k}.
If p∗ differs substantially from p, then one could estimate the probabilities of

such events using the results of Sect. 1.3.

Example 5.2.1 In a jury consisting of an odd number n= 2m+ 1 of persons, each

member makes a correct decision with probability p = 0.7 independently of the

other members. What is the minimum number of members for which the verdict

rendered by the majority of jury members will be correct with a probability of at

least 0.99?

Put ξk = 1 if the k-th jury member made a correct decision and ξk = 0 otherwise.

We are looking for odd numbers n for which P(Sn ≤ m) ≤ 0.01. It is evident that

such a trustworthy decision can be achieved only for large values of n. In that case,

as we established in Sect. 1.3, the probability P(Sn ≤m) is approximately equal to

(n+ 1−m)p

(n+ 1)p−m
P(Sn =m)≈ p

2p− 1
P(Sn =m).

Using Theorem 5.2.1 and the fact that in our problem

p∗ ≈ 1

2
, H

(
1

2

)
=−1

2
ln 4p(1− p), H ′

(
1

2

)
= ln

(
1− p

p

)
,

we get

P(Sn ≤m)≈ p

2p− 1

√
2

πn
exp

{
−nH

(
1

2
− 1

2n

)}

≈ p

2p− 1

√
2

πn
exp

{
−nH

(
1

2

)
+ 1

2
H ′

(
1

2

)}

≈
√

2π(1− p)

(2p− 1)
√

πn

(√
4p(1− p)

)n ≈ 0.915
1√
n

(0.84)n/2.

On the right-hand side there is a monotonically decreasing function a(n). Solving

the equation a(n)= 0.01 we get the answer n= 33. The same result will be obtained

if one makes use of the explicit formulae.

5.2.2 Refinements of the Local Theorem

It is not hard to bound the error of approximation (5.2.2). If, in Stirling’s formula

n! =
√

2πnnne−n+θ(n), we make use of the well-known inequalities2

1

12n+ 1
< θ(n) <

1

12n
,

then the same argument will give the following refinement of Theorem 5.2.1.

2See, e.g., [12], Sect. 2.9.
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Theorem 5.2.2

P(Sn = k)= 1√
2πnp∗(1− p∗)

exp
{
nH

(
p∗

)
+ θ(k,n)

}
, (5.2.5)

where
∣∣θ(k,n)

∣∣=
∣∣θ(n)− θ(k)θ(n− k)

∣∣< 1

12k
+ 1

12(n− k)
= 1

12np∗(1− p∗)
.

(5.2.6)

Relation (5.2.4) could also be refined as follows.

Theorem 5.2.3 For all k such that |p∗ − p| ≤ 1
2

min(p, q) one has

P(Sn = k)= ϕ(z∆)∆
(
1+ ε(k,n)

)
,

where

1+ ε(k,n)= exp

{
ϑ

( |z|3∆4

3
+
(
|z| + 1

6

)
∆2

)}
, |ϑ |< 1.

As one can easily see from the properties of the Taylor expansion of the func-

tion ex , the order of magnitude of the term ε(k,n) in the above formulae coin-

cides with that of the argument of the exponential. Hence it follows from Theo-

rem 5.2.3 that for z = k − np = o(∆−4/3) or, which is the same, z = o(n2/3), one

still has (5.2.4).

Proof We will make use of Theorem 5.2.2. In addition to formulae (5.2.3) one can

write:

H (k) = (−1)k(k − 2)!
xk−1

+ (k − 2)!
(1− x)k−1

, k ≥ 2,

H
(
p∗

)
= 1

2pq

(
p∗ − p

)2 +R1,

where we can estimate the residual R1 =
∑∞

k=3
H (k)(p)

k! (p∗−p). Taking into account

that

∣∣H (k)(p)
∣∣≤ (k − 2)!

(
1

pk−1
+ 1

qk−1

)
, k ≥ 2,

and letting for brevity |p∗ − p| = δ, we get for δ ≤ 1
2

min(p, q) the bounds

|R1| ≤
∞∑

k=3

(k − 2)!
k!

(
1

pk−1
+ 1

qk−1

)
≤ δ3

6

(
1

p2

1

1− δ
p

+ 1

q2

1

1− δ
q

)

≤ δ

6

(
2

p2
+ 2

q2

)
<

δ3

3(pq)2
.
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From this it follows that

−nH
(
p∗

)
=− (k − np)2

2npq
+ ϑ1|k− np|3

3(npq)2
=−z2∆2

2
+ ϑ1|z|3∆4

3
, |ϑ1|< 1.

(5.2.7)

We now turn to the other factors in equality (5.2.5) and consider the product

p∗(1− p∗). Since −p ≤ 1− p− p∗ ≤ 1− p, we have

∣∣p∗
(
1− p∗

)
− p(1− p)

∣∣=
∣∣(p− p∗

)(
1− p− p∗

)∣∣≤
∣∣p∗ − p

∣∣max(p, q).

This implies in particular that, for |p∗ − p|< 1
2

min(p, q), one has

∣∣p∗
(
1− p∗

)
− pq

∣∣< 1

2
pq, p∗

(
1− p∗

)
>

1

2
pq.

Therefore one can write along with (5.2.6) that, for the values of k indicated in

Theorem 5.2.3,

∣∣θ(k,n)
∣∣< 1

6npq
= ∆2

6
. (5.2.8)

It remains to consider the factor [p∗(1− p∗)]−1/2. Since for |γ |< 1/2

∣∣ln(1+ γ )
∣∣=

∣∣∣∣
∫ 1+γ

1

1

x
dx

∣∣∣∣< 2|γ |,

one has for δ = |p∗ − p|< (1/2)min(p, q) the relations

ln
(
p∗

(
1− p∗

))
= lnpq + ln

(
1+ p∗(1− p∗)− pq

pq

)

= ln(pq)+ ln

(
1− ϑ∗δ

pq

)
,

∣∣ϑ∗
∣∣< max(p, q);

ln

(
1− ϑ∗δ

pq

)
= − 2ϑ2δ

pq
, |ϑ2|< max(p, q),

[
p∗

(
1− p∗

)]−1/2 = [pq]−1/2 exp

{
ϑ2δ

pq

}
.

(5.2.9)

Using representations (5.2.7)–(5.2.9) and the assertion of Theorem 5.2.2 com-

pletes the proof. �

One can see from the above estimates that the bounds for ϑ in the statement

of Theorem 5.2.3 can be narrowed if we consider smaller deviations |p∗ − p|—if

they, say, do not exceed the value α min(p, q) where α < 1/2.

The relations for P(Sn = k) that we found are the so-called local limit theorems
for the Bernoulli scheme and their refinements.
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5.2.3 The Local Limit Theorem for the Polynomial Distributions

The basic asymptotic formula given in Theorem 5.2.1 admits a natural extension

to the polynomial distribution Bn
p , p = (p1, . . . , pr), when, in a sequence of inde-

pendent trials, in each of the trials one has not two but r ≥ 2 possible outcomes

A1, . . . ,Ar of which the probabilities are equal to p1, . . . , pr , respectively. Let S
(j)
n

be the number of occurrences of the event Aj in n trials,

Sn =
(
S(1)

n , . . . , S(r)
n

)
, k = (k1, . . . , kr), p∗ = k

n
,

and put H(x)=
∑

xi ln (xi/pi), x = (x1, . . . , xr). Clearly, Sn ⊂=Bn
p . The following

assertion is a direct extension of Theorem 5.2.1.

Theorem 5.2.4 If each of the r variables k1, . . . , kr is either zero or tends to∞ as
n→∞ then

P(Sn = k)∼ (2πn)(1−r0)/2

(
r∏

j=1
p∗j 
=0

p∗j

)−1/2

exp
{
−nH

(
p∗

)}
,

where r0 is the number of variables k1, . . . , kr which are not equal to zero.

Proof As in the proof of Theorem 5.2.1, we will use Stirling’s formula

n! ∼
√

2πne−nnn

as n→∞. Assuming without loss of generality that all kj →∞, j = 1, . . . , r , we

get

P(Sn = k)∼ (2π)(1−r)/2

(
n∏r

j=1 kj

)1/2 r∏

j=1

(
npj

kj

)kj

= (2πn)(1−r)/2

(
r∏

j=1

p∗j

)−1/2

exp

{
n

r∑

j=1

kj

n
ln

pjn

kj

}
.

�

5.3 The de Moivre–Laplace Theorem and Its Refinements

Let a and b be two fixed numbers and ζn = (Sn − np)/
√

npq . Then

P(a < ζn < b)=
∑

a
√

npq<z<b
√

npq

P(Sn − np = z).

If, instead of P(Sn − np = z), we substitute here the values ϕ(z∆)∆ (see Corol-

lary 5.2.1), we will get an integral sum
∑

a<z∆<b ϕ(z∆)∆ corresponding to the

integral
∫ b

a
ϕ(x)dx.



5.3 The de Moivre–Laplace Theorem and Its Refinements 115

Thus relations (5.2.4) make the equality

lim
n→∞

P(a < ζn < b)=
∫ b

a

ϕ(x)dx =Φ(b)−Φ(a) (5.3.1)

plausible, where Φ(x) is the normal distribution function with parameters (0,1):

Φ(x)= 1√
2π

∫ x

−∞
e−t2/2 dt.

This is the de Moivre–Laplace theorem, which is one of the so-called integral limit
theorems that describe probabilities of the form P(Sn < x). In Chap. 8 we will derive

more general integral theorems from which (5.3.1) will follow as a special case.

Theorem 5.2.3 makes it possible to obtain (5.3.1) together with an error bound

or, in other words, with a bound for the convergence rate.

Let A and B be integers,

a = A− np
√

npq
, b= B − np

√
npq

. (5.3.2)

Theorem 5.3.1 Let b > a, c=max(|a|, |b|), and

ρ = c3 + 3c

3
∆+ ∆2

6
.

If ∆= 1/
√

npq ≤ 1/2 and ρ ≤ 1/2 then

P(A≤ Sn < B)= P(a ≤ ζn < b)=
∫ b

a

ϕ(t) dt (1+ ϑ1∆c)(1+ 2ϑ2ρ), (5.3.3)

where |ϑi | ≤ 1, i = 1,2.

This theorem shows that the left-hand side in (5.3.3) can be equivalent to Φ(b)−
Φ(a) for growing a and b as well. In that case, Φ(b)−Φ(a) can converge to 0, and

knowing the relative error in (5.3.1) is more convenient since its smallness enables

one to establish that of the absolute error as well, but not vice versa.

Proof First we note that, for all k such that |z| = |k − np| < c
√

npq , the con-

ditions of Theorem 5.2.3 will hold. Indeed, to have the inequality |p∗ − p| <
(1/2)min(p, q) it suffices that |k − np| < npq/2 = 1/(2∆2). This inequality will

hold if c < 1/(2∆). But since ρ ≤ 1/2, one has

c(c2 + 3)∆

3
< 1/2, c∆ < 1/2.

Thus, for each k such that a
√

npq ≤ z < b
√

npq , we can make use of Theorem 5.2.3

to conclude that
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P(A≤ Sn < B)

=
∑

a
√

npq≤z<b
√

npq

P(Sn = k)

=
∑

a≤z∆<b

ϕ(z∆)∆

[
1+

(
exp

{
ϑ

( |z|3∆4

3
+
(
|z| + 1

6

)
∆2

)}
− 1

)]
,

(5.3.4)

where |ϑ |< 1. Since, for ρ ≤ 1,
∣∣∣∣
ep − 1

ρ

∣∣∣∣< e− 1 < 2,

the absolute value of the correction term in (5.3.4) does not exceed (substituting

there z∆= c)
∣∣∣∣exp

{
ϑ

(
c3∆

3
+ c∆+ ∆2

6

)}
− 1

∣∣∣∣≤ 2ϑ

(
c3∆

3
+ c∆+ ∆2

6

)
= 2ϑp.

Therefore

P(A≤ Sn < B)=
∑

a≤z∆<b

ϕ(z∆)∆[1+ 2ϑ1ρ], (5.3.5)

where |ϑ1|< 1.

Now we transform the sum on the right-hand side of the last equality. To this end,

note that, for any smooth function ϕ(x),
∣∣∣∣∆ϕ(x)−

∫ x+∆

x

ϕ(t) dt

∣∣∣∣=
∆2

2
max

x≤t≤x+∆

∣∣ϕ′(t)
∣∣. (5.3.6)

But for the function ϕ(x)= (2π)−1/2e−x2/2 one has ϕ′(x)=−xϕ(x) and the max-

imum value of ϕ(t) on the segment [x, x +∆], |x| ≤ c, differs from the minimum

value by not more than the factor exp{c∆+∆2/2}. Therefore, for |x| ≤ c, one has

by virtue of (5.3.6)
∣∣∣∣∆ϕ(x)−

∫ x+∆

x

ϕ(t) dt

∣∣∣∣

≤ ∆2c

2
ec∆+∆2/2 min

x≤t≤x+∆
ϕ(t)≤ ∆c

2
ec∆+∆2/2

∫ x+∆

x

ϕ(t) dt.

Since c∆+∆2/2 < 1/2+ 1/8, ec∆+∆2/2 ≤ 2, we have the representation

∆ϕ(x)=
∫ x+∆

x

ϕ(t) dt (1+ ϑ1∆c), |ϑ1|< 1.

Substituting this into (5.3.5) we obtain the assertion of the theorem. �

Thus by Theorem 5.3.1 the difference
∣∣P(x ≤ ζn < y)−

(
Φ(y)−Φ(x)

)∣∣ (5.3.7)
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can be effectively, yet rather roughly, bounded from above by a quantity of the order

1/
√

npq if x = a, y = b (assuming that a and b are values which can be represented

in the form (k − np)∆, see (5.3.2)). If x and y do not belong to the mentioned

lattice with the span ∆ then the error (5.3.7) will still be of the same order since,

for instance, when y varies, P(x ≤ ζn < y) remains constant on the semi-intervals

of the form (a + k∆,a + (k + 1)∆], while the function Φ(y) − Φ(x) increases

monotonically with a bounded derivative. A similar argument holds for the left end

point x. It is important to note that the error order 1/
√

npq cannot be improved, for

the jumps of the distribution function of ζn are just of this order of magnitude by

Theorem 5.2.2.

Theorem 5.3.1 enables one to use the normal approximation for P(x ≤ ζn < y)

in the so-called large deviations range as well, when both x and y grow in absolute

value and are of the same sign. In that case, both Φ(y)−Φ(x) and the probability

to be approximated tend to zero. Therefore the approximation can be considered

satisfactory only if

P(x ≤ ζn < y)

(Φ(y)−Φ(x))
→ 1. (5.3.8)

As Theorem 5.3.1 shows, this convergence will take place if

c=max
(
|x|, |y|

)
= o

(
∆−1/3

)

or, which is the same, c= o(n1/6). For more details about large deviation probabil-

ities, see Chap. 9.

For larger values of c, as one could verify using Theorem 5.2.1, relation (5.3.8)

will, generally speaking, not hold.

In conclusion we note that since

P
(
|ζn|> b

)
→ 0

as b→∞, it follows immediately from Theorem 5.3.1 that, for any fixed y,

lim
n→∞

P(ζn < y)=Φ(y).

Later we will show that this assertion remains true under much wider assumptions,

when ζn is a scaled sum of arbitrary distributed random variables having finite vari-

ances.

5.4 The Poisson Theorem and Its Refinements

5.4.1 Quantifying the Closeness of Poisson Distributions to Those

of the Sums Sn

As we saw from the bounds in the last section, the de Moivre–Laplace theorem

gives a good approximation to the probabilities of interest if the number npq (the

variance of Sn) is large. This number will grow together with n if p and q are fixed



118 5 Sequences of Independent Trials with Two Outcomes

positive numbers. But what will happen in a problem where, say, p = 0.001 and

n= 1000 so that np = 1? Although n is large here, applying the de Moivre–Laplace

theorem in such a problem would be meaningless. It turns out that in this case the

distribution P(Sn = k) can be well approximated by the Poisson distribution �µ

with an appropriate parameter value µ (see Sect. 5.4.2). Recall that

�µ(B)=
∑

0≤k∈B
e−µ µk

k! .

Put np = µ.

Theorem 5.4.1 For all sets B ,

∣∣P(Sn ∈ B)−�µ(B)
∣∣≤ µ2

n
.

We could prove this assertion in the same way as the local theorem, making use

of the explicit formula for P(Sn = k). However, we can prove it in a simpler and

nicer way which could be called the common probability space method, or coupling
method. The method is often used in research in probability theory and consists,

in our case, of constructing on a common probability space random variables Sn

and S∗n , the latter being as close to Sn as possible and distributed according to the

Poisson distribution.

It is also important that the common probability space method admits, without

any complications, extension to the case of non-identically distributed random vari-

ables, when the probability of getting 1 in a particular trial depends on the number of

the trial. Thus we will now prove a more general assertion of which Theorem 5.4.1

is a special case.

Assume that we are given a sequence of independent random variables ξ1, . . . , ξn,

such that ξj ⊂= Bpj
. Put, as above, Sn =

∑n
j=1 ξj . The theorem we state below is

intended for approximating the probability P(Sn = k) when pj are small and the

number µ=
∑n

j=1 pj is “comparable” with 1.

Theorem 5.4.2 For all sets B ,

∣∣P(Sn ∈ B)−�µ(B)
∣∣≤

n∑

j=1

p2
j .

To prove this theorem we will need an important “stability” property of the Pois-

son distribution.

Lemma 5.4.1 If η1 and η2 are independent, η2 ⊂=�µ1
and η2 ⊂=�µ2

, then3

η1 + η2 ⊂=�µ1+µ2
.

3This fact will also easily follow from the properties of characteristic functions dealt with in

Chap. 7.
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Proof By the total probability formula,

P(η1 + η2 = k)=
k∑

j=0

P(η1 = j)P(η2 = k− j)

=
k∑

j=0

µ
j

1e
−µ1

j ! ·
µ

k−j

2 e−µ2

(k − j)! =
1

k!e
−(µ1+µ2)

k∑

j=0

(
k

j

)
µ

j

1µ
k−j

2

= (µ1 +µ2)
ke−(µ1+µ2)

k! . �

Proof of Theorem 5.4.2 Let ω1, . . . ,ωn be independent random variables, each be-

ing the identity function (ξ(ωk) = ωk) on the unit interval with the uniform dis-

tribution. We can assume that the vector ω = (ω1, . . . ,ωn) is given as the identity

function on the unit n-dimensional cube Ω with the uniform distribution.

Now construct the random variables ξj and ξ∗j on Ω as follows:

ξj (ω)=
{

0 if ωj < 1− pj ,

1 if ωj ≥ 1− pj ,
ξ∗j (ω)=

{
0 if ωj < e−pj ,

k ≥ 1 if ωj ∈ [πk−1,πk),

where πk =
∑

m≤k e−pj
(pj )m

m! , k = 0,1, . . . .

It is evident that the ξj (ω) are independent and ξj (ω) ⊂= Bpj
; ξ∗j (ω) are also

jointly independent with ξ∗j (ω)⊂=�pj
. Now note that since 1− pj ≤ e−pj one has

ξj (ω) 
= ξ∗j (ω) only if ωj ∈ [1− pj , e
−pj ) or ωj ∈ [e−pj + pje

−pj ,1]. Hence

P
(
ξj 
= ξ

j

j

)
=
(
e−pj − 1+ pj

)
+
(
1− e−pj − pj e

−pj
)
= pj

(
1− e−pj

)
≤ p2

j

and

P
(
Sn 
= S∗n

)
≤ P

(⋃

j

∣∣ξj 
= ξ∗j
∣∣
)
≤
∑

p2
j ,

where S∗n =
∑n

j=1 ξ∗j ⊂=�µ.

Now we can write

P(Sn ∈ B)= P
(
Sn ∈ B,Sn = S∗n

)
+ P

(
Sn ∈ B,Sn 
= S∗n

)

= P
(
S∗n ∈ B

)
− P

(
S∗n ∈ B,Sn 
= S∗n

)
+ P

(
Sn ∈ B,Sn 
= S∗n

)
,

so that
∣∣P(Sn ∈ B)− P

(
S∗n ∈ B

)∣∣
≤
∣∣P
(
S∗n ∈ B,Sn 
= S∗n

)
− P

(
Sn ∈ B,Sn 
= S∗n

)∣∣≤ P
(
Sn 
= S∗n

)
. (5.4.1)

The assertion of the theorem follows from this in an obvious way. �

Remark 5.4.1 One can give other common probability space constructions as well.

One of them will be used now to show that there exists a better Poisson approxima-

tion to the distribution of Sn.
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Namely, let ξ∗j (ω) be independent random variables distributed according to the

Poisson laws with parameters rj =− ln(1− pj )≥ pj , so that P(ξ∗j = 0)= e−rj =
1− pj . Then ξj (ω)=min{1, ξ∗j (ω)} ⊂=Bpj

and, moreover,

P

(
n⋃

j=1

{
ξj (ω) 
= ξ∗j (ω)

}
)
≤

n∑

j=1

P
(
ξ∗j (ω)≥ 2

)
=

n∑

j=1

(
1− e−rj − rj e

−rj
)
.

But for r =− ln(1− p) one has the inequality

1− e−r − re−r = p+ (1− p) ln(1− p)≤ p+ (1− p)

(
−p− p2

2

)

= p2

2
(1+ p).

Hence for the new Poisson approximation we have

P
(
S∗n 
= Sn

)
≤ 1

2

n∑

j=1

p2
j (1+ pj ).

Putting λ=−
∑n

j=1 ln(1− pj )≥
∑n

j=1 pj , the same argument as above will lead

to the bound

sup
B

∣∣P(Sn ∈ B)−�λ(B)
∣∣≤ 1

2

n∑

j=1

p2
j (1+ pj ).

This bound of the rate of approximation given by the Poisson distribution with a

“slightly shifted” parameter is better than that obtained in Theorem 5.4.2. Moreover,

one could note that, in the new construction, ξj ≤ ξ∗j , Sn ≤ S∗n , and consequently

P(Sn ≥ k)≤ P
(
S∗n ≥ k

)
=�λ

(
[k,∞)

)
.

5.4.2 The Triangular Array Scheme. The Poisson Theorem

Now we will return back to the case of identically distributed ξk . To obtain from

Theorem 5.4.2 a limit theorem of the type similar to that of the de Moivre–Laplace

theorem (see (5.3.1)), one needs a somewhat different setup. In fact, to ensure

that np remains bounded as n increases, p = P(ξk = 1) needs to converge to zero

which cannot be the case when we consider a fixed sequence of random variables

ξ1, ξ2, . . . .

We introduce a sequence of rows (of growing length) of random variables:

ξ
(1)
1 ;

ξ
(2)
1 , ξ

(2)
2 ;

ξ
(3)
1 , ξ

(3)
2 , ξ

(1)
1 ;

. . . . . . . . . . . . . . .

ξ
(n)
1 , ξ

(n)
2 , ξ

(n)
3 , . . . , ξ

(n)
n .
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This is the so-called triangular array scheme. The superscript denotes the row num-

ber, while the subscript denotes the number of the variable in the row.

Assume that the variables ξ
(n)
k in the n-th row are independent and ξ

(n)
k ⊂= Bpn ,

k = 1, . . . , n.

Corollary 5.4.1 (The Poisson theorem) If npn→ µ > 0 as n→∞ then, for each
fixed k,

P(Sn = k)→�µ

(
{k}

)
, (5.4.2)

where Sn = ξ
(n)
1 + · · · + ξ

(n)
n .

Proof This assertion is an immediate corollary of Theorem 5.4.1. It can also be

obtained directly, by noting that it follows from the equality

P(Sn = k)=
(

n

k

)
pk(1− p)n−k

that

P(Sn = 0)= en ln(1−p) ∼ e−µ,
P(Sn = k + 1)

P(Sn = k)
= n− k

k + 1

p

1− p
∼ µ

k + 1
. �

Theorem 5.4.2 implies an analogue of the Poisson theorem in a more general

case as well, when the ξ
(n)
j are not necessarily identically distributed4 and can take

values different from 0 and 1.

Corollary 5.4.2 Assume that pjn = P(ξ
(n)
j = 1) depend on n and j so that

max
j

pjn→ 0,

n∑

j=1

pjn→ µ > 0, P
(
ξ

(n)
j = 0

)
= 1− pjn + o(pjn).

Then (5.4.2) holds.

Proof To prove the corollary, one has to use Theorem 5.4.2 and the fact that

P

(
n⋃

j=1

{
ξ

(n)
j 
= 0, ξ

(n)
j 
= 1

}
)
≤

n∑

j=1

o(pjn)= o(1),

which means that, with probability tending to 1, all the variables ξ
(n)
j assume the

values 0 and 1 only. �

One can clearly obtain from Theorems 5.4.1 and 5.4.2 somewhat stronger asser-

tions than the above. In particular,

sup
B

∣∣P(Sn ∈ B)−�µ(B)
∣∣→ 0 as n→∞.

4An extension of the de Moivre–Laplace theorem to the case of non-identically distributed random

variables is contained in the central limit theorem from Sect. 8.4.
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Note that under the assumptions of Theorem 5.4.1 this convergence will also

take place in the case where np→∞ but only if np2→ 0. At the same time, the

refinement of the de Moivre–Laplace theorem from Sect. 5.3 shows that the normal

approximation for the distribution of Sn holds if np→∞ (for simplicity we assume

that p ≤ q so that npq ≥ 1
2
np→∞).

Thus there exist sequences p ∈ {p : np→∞, np2 → 0} such that both the
normal and the Poisson approximations are valid. In other words, the domains of

applicability of the normal and Poisson approximations overlap.

We see further from Theorem 5.4.1 that the convergence rate in Corollary 5.4.1

is determined by a quantity of the order of n−1. Since, as n→∞,

P(Sn = 0)−�µ

(
{0}

)
= en ln(1−p) − e−µ ∼ µ2

2π
e−µ,

this estimate cannot be substantially improved. However, for large k (in the large

deviations range, say) such an estimate for the difference

P(Sn = k)−�µ

(
{k}

)

becomes rough. (This is because, in (5.4.1), we neglected not only the different signs

of the correction terms but also the rare events {Sn = k} and {S∗n = k} that appear in

the arguments of the probabilities.) Hence we see, as in Sect. 5.4, the necessity for

having approximations of which both absolute and relative errors are small.

Now we will show that the asymptotic equivalence relations

P(Sn = k)∼�µ

(
{k}

)

remain valid when k and µ grow (along with n) in such a way that

k = o
(
n2/3

)
, µ= o

(
n2/3

)
, |k −µ| = o(

√
n ).

Proof Indeed,

P(Sn = k)=
(

n

k

)
pk(1− p)n−k = n(n− 1) · · · (n− k+ 1)

k! pk(1− p)n−k

= (nk)k

k! e−pn

(
1− 1

n

)
· · ·

(
1− k − 1

n

)
(1− p)n−kepn

=�µ

(
{k}

)
eε(k,n).

Thus we have to prove that, for values of k and µ from the indicated range,

ε(k,n) := ln

[(
1− 1

n

)
· · ·

(
1− k− 1

n

)
(1− p)n−kepn

]
= o(1). (5.4.3)

We will obtain this relation together with the form of the correction term. Namely,

we will show that

ε(k,n)= k − (k −µ)2

2n
+O

(
k3 +µ3

n2

)
, (5.4.4)
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and hence

P(Sn = k)=
(

1+ k − (k −µ)2

2n
+O

(
k3 +µ3

n2

))
�µ

(
{k}

)
.

We make use of the fact that, as α→ 0,

ln(1− α)=−α − α2

2
+O

(
α3
)
.

Then relations (5.4.3) and (5.4.4) will follow from the equalities

k−1∑

j=1

ln

(
1− j

n

)
=−

k−1∑

j=1

j

n
+O

(
k3

n2

)
=−k(k − 1)

2n
+O

(
k3

n2

)
,

(n− k) ln(1− p)+ pn= (n− k)

(
−p− p2

2
+O

(
p3

))
+ pn

=−µ2

2n
+ kµ

n
+O

(
µ3

n2

)
. �

In conclusion we note that the approximate Poisson formula

P(Sn = k)≈ µk

k! e
−µ

is widely used in various applications and has, as experience and the above estimates

show, a rather high accuracy even for moderate values of n.

Now we consider several examples of the use of the de Moivre–Laplace and

Poisson theorems for approximate computations.

Example 5.4.1 Suppose we are given 104 packets of grain. It is known that there are

5000 tagged grains in the packets. What is the probability that, in a particular fixed

packet, there is at least one tagged grain? We can assume that the tagged grains are

distributed to packets at random. Then the probability that a particular tagged grain

will be in the chosen packet is p = 10−4. Since there are 5000 such grains, this

will be the number of trials, i.e. n= 5000. Define a random variable ξk as follows:

ξk = 1 if the k-th grain is in the chosen packet, and ξk = 0 otherwise. Then

S5000 =
5000∑

k=1

ξk

will be the number of tagged grains in our packet. By Theorem 5.4.1, P(S5000 =
0) ≈ e−np = e−0.5 so that the desired probability is approximately equal to 1 −
e−0.5. The accuracy of this relation turns out to be rather high (by Theorem 5.4.1,

the error does not exceed 2−1 × 10−4). If we used the Poisson theorem instead of

Theorem 5.4.1, we would have to imagine a triangular array of Bernoulli random

variables, our ξk constituting the 5000-th row of the array. Moreover, we would

assume that, for the n-th row, one has npn = 0.5. Thus the conditions of the Poisson

theorem would be met and we could make use of the limit theorem to find the

approximate equality we have already obtained.
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Example 5.4.2 A similar argument can be used in the following problem. There are

n dangerous bacteria in a reservoir of capacity V from which we take a sample of

volume v ≪ V . What is the probability that we will find the bacteria in the test

sample?

One usually assumes that the probability p that any given bacterium will be in the

test sample is equal to the ratio v/V . Moreover, it is also assumed that the presence

of a given bacterium in the sample does not depend on whether the remaining n− 1

bacteria are in the test sample or not. In other words, one usually postulates that the

mechanism of bacterial transfer into the test sample is equivalent to a sequence of n

independent trials with “success” probability equal to p = v/V in each trial.

Introducing random variables ξk as above, we obtain a description of the number

of bacteria in the test sample by the sum Sn =
∑n

k=1 ξk in the Bernoulli scheme.

If nv is comparable in magnitude with V then by the Poisson theorem the desired

probability will be equal to

P(Sn > 0)≈ 1− e−nv/V .

Similar models are also used to describe the number of visible stars in a certain

part of the sky far away from the Milky Way. Namely, it is assumed that if there are

n visible stars in a region R then the probability that there are k visible stars in a

subregion r ⊂R is

(
n

k

)
pk(1− p)k,

where p is equal to the ratio S(r)/S(R) of the areas of the regions r and R respec-

tively.

Example 5.4.3 Suppose that the probability that a newborn baby is a boy is constant

and equals 0.512 (see Sect. 3.4.1).

Consider a group of 104 newborn babies and assume that it corresponds to a

series of 104 independent trials of which the outcomes are the events that either a

boy or girl is born. What is the probability that the number of boys among these

newborn babies will be greater than the number of girls by at least 200?

Define random variables as follows: ξk = 1 if the k-th baby is a boy and ξk = 0

otherwise. Then Sn =
∑104

k=1 ξk is the number of boys in the group. The quantity

npq ∼ 2.5× 103 is rather large here, hence applying the integral limit (de Moivre–

Laplace) theorem we obtain for the desired probability the value

P(Sn ≥ 5100)= 1− P

(
Sn − np
√

npq
<

5100− 5120√
2500

)

≈ 1−Φ(−20/50)= 1−Φ(−0.4)≈ 0.66.

To find the numerical values of Φ(x) one usually makes use of suitable statistical

computer packages or calculators.
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In our example, ∆= 1/
√

npq ≈ 1/50, and a satisfactory approximation by the de

Moivre–Laplace formula will certainly be ensured (see Theorem 5.3.1) for c ≤ 2.5.

If, however, we have to estimate the probability that the proportion of boys ex-

ceeds 0.55, we will be dealing with large deviation probabilities when to estimate

P(Sn > 5500) one would rather use the approximate relation obtained in Sect. 1.3

by virtue of which (k = 0.45n, q = 0.488) one has

P(Sn > 5500)≈ (n+ 1− k)q

(n+ 1)q − k
P(Sn = 5500).

Applying Theorem 5.2.1 we find that

P(Sn > 5500)≈ 0.55q

q − 0.45

1√
2πn0.25

e−nH(0.55) ≤ 1

5
e−25 < 10−11.

Thus if we assume for a moment that 100 million babies are born on this planet

each year and group them into batches of 10 thousand, then, to observe a group in

which the proportion of boys exceeds the mean value by just 3.8 % we will have to

wait, on average, 10 million years (see Example 4.1.1 in Sect. 4.1).

It is clear that the normal approximation can be used for numerical evaluation of

probabilities for the problems from Example 5.4.3 provided that the values of np

are large.

5.5 Inequalities for Large Deviation Probabilities in the

Bernoulli Scheme

In conclusion of the present chapter we will derive several useful inequalities for the

Bernoulli scheme. In Sect. 5.2 we introduced the function

H(x)= x ln
x

p
+ (1− x) ln

1− x

1− p
,

which plays an important role in Theorems 5.2.1 and 5.2.2 on the asymptotic be-

haviour of the probability P(Sn = k). We also considered there the basic properties

of this function.

Theorem 5.5.1 For z≥ 0,

P(Sn − np ≥ z)≤ exp
{
−nH(p+ z/n)

}
,

P(Sn − np ≤−z)≤ exp
{
−nH(p− z/n)

}
.

(5.5.1)

Moreover, for all p,

H(p+ x)≥ 2x2, (5.5.2)

so that each of the probabilities in (5.5.1) does not exceed exp{−2z2/n} for any p.
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To compare it with assertion (5.2.2) of Theorem 5.2.1, the first inequality from

Theorem 5.5.1 can be re-written in the form

P

(
Sn

n
≥ p∗

)
≤ exp

{
−nH

(
p∗

)}
.

The inequalities (5.5.1) are close, to some extent, to the de Moivre–Laplace theorem

since, for z= o(n2/3),

−nH

(
p+ z

n

)
=− z2

2npq
+ o(1).

The last assertion, together with (5.5.2), can be interpreted as follows: deviating by

z or more from the mean value np has the maximum probability when p = 1/2.

If z/
√

n→∞, then both probabilities in (5.5.1) converge to zero as n→∞ for

they correspond to large deviations of the sum Sn from the mean np. As we have

already said, they are called large deviation probabilities.

Proof of Theorem 5.5.1 In Corollary 4.7.2 of the previous chapter we established

the inequality

P(ξ ≥ x)≤ e−λxEeλξ .

Applying it to the sum Sn we get

P(Sn ≥ np+ z)≤ e−λ(np+z)EeλSn .

Since EeλSn =
∏n

k=1 Eeλξk and the random variables eλξk are independent,

EeλSn =
n∏

k=1

Eeλξk =
(
peλ + q

)n =
(
1+ p

(
eλ − 1

))n
,

P(Sn ≥ np+ z)≤
[(

1+ p
(
eλ − 1

))
e−λ(p+α)

]n
, α = z/n.

The expression in brackets is equal to

Ee−λ[ξk−(p+α)] = peλ(1−p−α) + (1− p)e−λ(p+α).

Therefore, being the sum of two convex functions, it is a convex function of λ. The

equation for the minimum point λ(α) of the function has the form

−(p− α)
(
1+ p

(
eλ − 1

))
+ peλ = 0,

from which we find that

eλ(α) = (p+ α)q

p(q − α)
,

(
1+ p

(
eλ(α) − 1

))
e−λ(α)(p+α) = q

q − α

[
p(q − α)

(p+ α)q

]p+α

= pp+αqq−α

(p+ α)p+α(q − α)q−α

= exp

{
−(p+ α) ln

p+ α

p
− (q − α) ln

q − α

q

}

= exp
{
−H(p+ α)

}
.
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The first of the inequalities (5.5.1) is proved. The second inequality follows from

the first if we consider the latter as the inequality for the number of zeros.

It follows further from (5.2.1) that H(p)=H ′(p)= 0 and H ′′(x)= 1/x(1− x).

Since the function x(1− x) attains its maximum value on the interval [0,1] at the

point x = 1/2, one has H ′′(x)≥ 4 and hence

H(p+ α)≥ α2

2
· 4= 2α2. �

For analogues of Theorem 5.5.1 for sums of arbitrary random variables, see

Chap. 9 and Appendix 8. Example 9.1.2 shows that the function H(α) is the so-

called deviation function for the Bernoulli scheme. This function is important in

describing large deviation probabilities.



Chapter 6

On Convergence of Random Variables
and Distributions

Abstract In this chapter, several different types of convergence used in Probability

Theory are defined and relationships between them are elucidated. Section 6.1 deals

with convergence in probability and convergence with probability one (the almost

sure convergence), presenting some criteria for them and, in particular, discussing

the concept of Cauchy sequences (in probability and almost surely). Then the conti-

nuity theorem is established (convergence of functions of random variables) and the

concept of uniform integrability is introduced and discussed, together with its con-

sequences (in particular, for convergence in mean of suitable orders). Section 6.2

contains an extensive discussion of weak convergence of distributions. The chap-

ter ends with Sect. 6.3 presenting criteria for weak convergence of distributions,

including the concept of distribution determining classes of functions and that of

tightness.

6.1 Convergence of Random Variables

In previous chapters we have already encountered several assertions which dealt

with convergence, in some sense, of the distributions of random variables or of the

random variables themselves. Now we will give definitions of different types of

convergence and elucidate the relationships between them.

6.1.1 Types of Convergence

Let a sequence of random variables {ξn} and a random variable ξ be given on a prob-

ability space 〈Ω,F,P〉.

Definition 6.1.1 The sequence {ξn} converges in probability1 to ξ if, for any ε > 0,

P
(
|ξn − ξ |> ε

)
→ 0 as n→∞.

1In the set-theoretic terminology, convergence in probability means convergence in measure.
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One writes this as

Sn
p→ ξ as n→∞.

In this notation, the assertion of the law of large numbers for the Bernoulli

scheme could be written as

Sn

n

p→ p,

since Sn/n can be considered as a sequence of random variables given on a common

probability space.

Definition 6.1.2 We will say that the sequence ξn converges to ξ with probability 1

(or almost surely: ξn→ ξ a.s., ξn
a.s.−→ ξ ), if ξn(ω)→ ξ(ω) as n→∞ for all ω ∈Ω

except for ω from a set N ⊂Ω of null probability: P(N)= 0. This convergence can

also be called convergence almost everywhere (a.e.) with respect to the measure P.

Convergence ξn
a.s.−→ ξ implies convergence ξn

p→ ξ . Indeed, if we assume that

the convergence in probability does not take place then there exist ε > 0, δ > 0,

and a sequence nk such that, for the sequence of events Ak = {|ξnk
− ξ | > ε},

we have P(Ak) ≥ δ for all k. Let B consist of all elementary events belonging to

infinitely many Ak , i.e. B =
⋂∞

m=1

⋃∞
k=m Ak . Then, clearly for ω ∈ B , the con-

vergence ξn(ω)→ ξ(ω) is impossible. But B =
⋂∞

m=1 Bm, where Bm =
⋃

k≥m Ak

are decreasing events (Bm+1 ⊂ Bm), P(Bm) ≥ P(Anm) ≥ δ and, by the continuity

axiom, P(Bm)→ P(B) as m→∞. Therefore P(B) ≥ δ and a.s. convergence is

impossible. The obtained contradiction proves the desired statement. �

The converse assertion, that convergence in probability implies a.s. convergence,

is, generally speaking, not true, as we will see below. However in one important

special case such a converse holds true.

Theorem 6.1.1 If ξn is monotonically increasing or decreasing then convergence

ξn
p→ ξ implies that ξn

a.s.−→ ξ .

Proof Assume, without loss of generality, that ξ ≡ 0, ξn ≥ 0, ξn ↓ and ξn
p→ ξ . If

convergence ξn
a.s.−→ ξ did not hold, there would exist an ε > 0 and a set A with

P(A) > δ > 0 such that supk≥n ξk > ε for ω ∈ A and all n. But supk≥n ξk = ξn and

hence we have

P(ξn > ε)≥ P(A) > δ > 0

for all n, which contradicts the assumed convergence ξn
p→ 0. �

Thus convergence in probability is determined by the behaviour of the numerical

sequence P(|ξn − ξ |> ε). Is it possible to characterise convergence with probabil-

ity 1 in a similar way? Set ζn := supk≥n |ξn − ξ |.
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Corollary 6.1.1 ξn
a.s.−→ ξ if and only if ζn

p→ 0, or, which is the same, when, for
any ε > 0,

P
(

sup
k≥n

|ξk − ξ |> ε
)
→ 0 as n→∞. (6.1.1)

Proof Clearly ξn→ ξ a.s. if and only if ζn→ 0 a.s. But the sequence ζn decreases

monotonically and it remains to make use of Theorem 6.1.1, which implies that

ζn
p→ 0 if and only if ζn

a.s.−→ 0. The corollary is proved. �

In the above argument, the random variables ξn and ξ could be improper, where

the random variables ξn and ξ are only defined on a set B and P(B) ∈ (0,1). (These

random variables can take infinite values on Ω \B .) In this case, all the considera-

tions concerning convergence are carried out on the set B ⊂Ω only.

In the introduced terminology, the assertion of the strong law of large numbers

for the Bernoulli scheme (Theorem 5.1.2) can be stated, by virtue of (6.1.1), as

convergence Sn/n→ p with probability 1.

We have already noted that convergence almost surely implies convergence in

probability. Now we will give an example showing that the converse assertion is,

generally speaking, not true. Let 〈Ω,F,P〉 be the unit circle with the σ -algebra of

Borel sets and uniform distribution. Put ξ(ω)≡ 1, ξn(ω)= 2 on the arc [r(n), r(n)+
1/n] and ξn(ω)= 1 outside the arc. Here r(n)=

∑n
k=1

1
k

. It is obvious that ξn
p→ ξ .

At the same time, r(n)→∞ as n→∞, and the set on which ξn converges to ξ is

empty (we can find no ω for which ξn(ω)→ ξ(ω)).

However, if P(|ξn − ξ | > ε) decreases as n→∞ sufficiently fast, then conver-

gence in probability will also become a.s. convergence. In particular, relation (6.1.1)

gives the following sufficient condition for convergence with probability 1.

Theorem 6.1.2 If the series
∑∞

k=1 P(|ξn − ξ | > ε) converges for any ε > 0, then
ξn→ ξ a.s.

Proof This assertion is obvious, for

P

(⋃

k≥n

{
|ξk − ξ |> ε

})
≤
∞∑

k=n

P
(
|ξn − ξ |> ε

)
.

�

It is this criterion that has actually been used in proving the strong law of large

numbers for the Bernoulli scheme.

One cannot deduce a converse assertion about the convergence rate to zero of

the probability P(|ξn − ξ | > ε) from the a.s. convergence. The reader can easily

construct an example where ξn→ ξ a.s., while P(|ξn − ξ | > ε) converges to zero

arbitrarily slowly.

Theorem 6.1.2 implies the following result.

Corollary 6.1.2 If ξn
p→ ξ , then there exists a subsequence {nk} such that ξnk

→ ξ

a.s. as k→∞.
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Proof This assertion is also obvious since it suffices to take nk such that

P(|ξnk
− ξ |> ε)≤ 1/k2 and then make use of Theorem 6.1.2. �

There is one more important special case where convergence in probability

ξn
p→ ξ implies convergence ξn → ξ a.s. This is the case when the ξn are sums

of independent random variables. Namely, the following assertion is true. If ξn =∑n
k=1 ηk , ηk are independent, then convergence of ξn in probability implies conver-

gence with probability 1. This assertion will be proved in Sect. 11.2.

Finally we consider a third type of convergence of random variables.

Definition 6.1.3 We will say that ξn converges to ξ in the r-th order mean (in mean
if r = 1; in mean square if r = 2) if, as n→∞,

E|ξn − ξ |r → 0.

This convergence will be denoted by ξn
(r)−→ ξ .

Clearly, by Chebyshev’s inequality ξn
(r)−→ ξ implies that ξn

p→ ξ . On the other

hand, convergence
(r)−→ does not follow from a.s. convergence (and all the more

from convergence in probability). Thus convergence in probability is the weakest of

the three types of convergence we have introduced.

Note that, under additional conditions, convergence ξn
p→ ξ can imply that

ξn
(r)−→ ξ (see Theorem 6.1.7 below). For example, it will be shown in Corol-

lary 6.1.4 that if ξn
p→ ξ and E|ξn|r+α < c for some α > 0, c <∞ and all n, then

ξn
(r)−→ ξ .

Definition 6.1.4 A sequence ξn is said to be a Cauchy sequence in probability (a.s.,
in mean) if, for any ε > 0,

P
(
|ξn − ξm|> ε

)
→ 0

(
P
(

sup
n≥m
|ξn − ξm|> ε

)
→ 0, E|ξn − ξm|r → 0

)

as n→∞ and m→∞.

Theorem 6.1.3 (Cauchy convergence test) ξn→ ξ in one of the senses
p→,

a.s.−→ or
(r)−→ if and only if ξn is a Cauchy sequence in the respective sense.

Proof That ξn is a Cauchy sequence follows from convergence by virtue of the

inequalities

|ξn − ξm| ≤ |ξn − ξ | + |ξm − ξ |,
sup
n≥m
|ξn − ξm| ≤ sup

n≥m
|ξn − ξ | + |ξm − ξ | ≤ 2 sup

n≥m
|ξn − ξ |,

|ξn − ξm|r ≤ Cr

(
|ξn − ξ |r + |ξm − ξ |r

)

for some Cr .
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Now assume that ξn is a Cauchy sequence in probability. Choose a sequence {nk}
such that

P
(
|ξn − ξm|> 2−k

)
< 2−k

for n≥ nk , m≥ nk . Put

ξ ′k := ξnk
, Ak :=

{
|ξ ′k − ξ ′k+1|> 2−k

}
, η=

∞∑

k=1

I (Ak).

Then P(Ak) ≤ 2−k and Eη =
∑∞

k=1 P(Ak) ≤ 1. This means, of course, that the

number of occurrences of the events Ak is a proper random variable: P(η <∞)= 1,

and hence with probability 1 finitely many events Ak occur. This means that, for any

ω for which η(ω) <∞, there exists a k0(ω) such that |ξ ′k(ω) − ξ ′k+1(ω)| ≤ 2−k

for all k ≥ k0(ω). Therefore one has the inequality |ξ ′k(ω)− ξ ′l(ω)| ≤ 2−k+1 for all

k ≥ k0(ω) and l ≥ k0(ω), which means that ξ ′n(ω) is a numerical Cauchy sequence

and hence there exists a value ξ(ω) such that |ξ ′k(ω)− ξ(ω)| → 0 as k→∞. This

means, in turn, that ξ ′k
a.s.−→ ξ and hence

P
(
|ξn − ξ | ≥ ε

)
≤ P

(
|ξn − ξnk

| ≥ ε

2

)
+ P

(
|ξnk
− ξ |> ε

2

)
→ 0

as n→∞ and k→∞.

Now assume that ξn is a Cauchy sequence in mean. Then, by Chebyshev’s in-

equality, it will be a Cauchy sequence in probability and hence, by Corollary 6.1.2,

there will exist a random variable ξ and a subsequence {nk} such that ξnk

a.s.−→ ξ .

Now we will show that E|ξn − ξ |r → 0. For a given ε > 0, choose an n such that

E|ξk − ξl |r < ε for k ≥ n and l ≥ n. Then, by Fatou’s lemma (see Appendix 3),

E|ξn − ξ |r = E lim
nk→∞

|ξn − ξnk
|r

= E lim inf
nk→∞

|ξn − ξnk
|r ≤ lim inf

nk→∞
E|ξn − ξnk

|r ≤ ε.

This means that E|ξn − ξ |r → 0 as n→∞.

It remains to verify the assertion of the theorem related to a.s. convergence. We

already know that if ξn is a Cauchy sequence in probability (or a.s.) then there exist a

ξ and a subsequence ξnk
such that ξnk

a.s.−→ ξ . Therefore, if we put nk(n) :=min{nk :
nk ≥ n}, then

P
(

sup
k≥n

|ξk − ξ | ≥ ε
)
≤ P

(
sup
k≥n

|ξk − ξnk(n)
| ≥ ε/2

)
+ P

(
|ξnk(n)

− ξ | ≥ ε/2
)
→ 0

as n→∞. The theorem is proved. �

Remark 6.1.1 If we introduce the space Lr of all random variables ξ on 〈Ω,F,P〉
for which E|ξ |r <∞ and the norm ‖ξ‖ = (E|ξ |r)1/r on it (the triangle inequal-

ity ‖ξ1 + ξ2‖ ≤ ‖ξ1‖ + ‖ξ2‖ is then nothing else but Minkowski’s inequality, see

Theorem 4.7.2), then the assertion of Theorem 6.1.3 on convergence
(r)−→ (which
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is convergence in the norm of Lr , for we identify random variables ξ1 and ξ2 if

‖ξ1 − ξ2‖ = 0) means that Lr is complete and hence is a Banach space.

The space of all random variables on 〈Ω,F,P〉 can be metrised so that conver-

gence in the metric will be equivalent to convergence in probability. For instance,

one could put

ρ(ξ1, ξ2) := E
|ξ1 − ξ2|

1+ |ξ1 − ξ2|
.

Since

|x + y|
1+ |x + y| ≤

|x|
1+ |x| +

|y|
1+ |y|

always holds, ρ(ξ1, ξ2) satisfies all the axioms of a metric. It is not difficult to see

that relations ρ(ξ1, ξ2)→ 0 and ξn
p→ 0 are equivalent. The assertion of Theo-

rem 6.1.3 related to convergence
p→ means that the metric space we introduced

is complete.

6.1.2 The Continuity Theorem

Now we will derive the following “continuity theorem”.

Theorem 6.1.4 Let ξn
a.s.−→ ξ (ξn

p→ ξ) and H(s) be a function continuous every-
where with respect to the distribution of the random variable ξ (i.e. H(s) is contin-
uous at each point of a set S such that P(ξ ∈ S)= 1). Then

H(ξn)
a.s.−→H(ξ)

(
H(ξn)

p→H(ξ)
)
.

Proof Let ξn
a.s.−→ ξ . Since the sets A= {ω : ξn(ω)→ ξ(ω)} and B = {ω : ξ(ω) ∈ S}

are both of probability 1, P(AB) = P(A) + P(B) − P(A ∪ B) = 1. But one has

H(ξn)→H(ξ) on the set AB . Convergence with probability 1 is proved.

Now let ξn
p→ ξ . If we assume that convergence H(ξn)

p→ H(ξ) does not take

place then there will exist ε > 0, δ > 0 and a subsequence {n′} such that

P
(∣∣H(ξn′)−H(ξ)

∣∣> ε
)
> δ.

But ξn′
p→ ξ and hence there exists a subsequence {n′′} such that ξn′′

a.s.−→ ξ and

H(ξn′′)
a.s.−→H(ξ). This contradicts the assumption we made, for the latter implies

that

P
(∣∣H(ξn′′)−H(ξ)

∣∣> ε
)
> δ.

The theorem is proved. �

6.1.3 Uniform Integrability and Its Consequences

Now we will consider this question: in what cases does convergence in probability

imply convergence in mean?
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The main condition that ensures the transition from convergence in probability

to convergence in mean is associated with the notion of uniform integrability.

Definition 6.1.5 A sequence {ξn} is said to be uniformly integrable if

sup
n

E
(
|ξn|; |ξn|> N

)
→ 0 as N→∞.

A sequence of independent identically distributed random variables with finite

mean is, clearly, uniformly integrable.

If {ξn} is uniformly integrable then so are {cξn} and {ξn + c}, where c= const.

Let us present some further, less evident, properties of uniform integrability.

U1. If the sequences {ξ ′n} and {ξ ′′n } are uniformly integrable then the sequences
defined by ζn =max(|ξ ′n|, |ξ ′′n |) and ζn = ξ ′n+ ξ ′′n are also uniformly integrable.

Proof Indeed, for ζn =max(|ξ ′n|, |ξ ′′n |) we have

E(ζn; ζn > N)= E
(
ζn; ζn > N,

∣∣ξ ′n
∣∣>

∣∣ξ ′′n
∣∣)+E

(
ζn; ζn > N,

∣∣ξ ′n
∣∣≤

∣∣ξ ′′n
∣∣)

≤ E
(∣∣ξ ′n

∣∣;
∣∣ξ ′n

∣∣> N
)
+E

(∣∣ξ ′′n
∣∣;
∣∣ξ ′′n

∣∣≥N
)
→ 0

as N→∞.

Since
∣∣ξ ′n + ξ ′′n

∣∣≤
∣∣ξ ′n

∣∣+
∣∣ξ ′′n

∣∣≤ 2 max
(∣∣ξ ′n

∣∣,
∣∣ξ ′′n

∣∣),
from the above it follows that the sequence defined by the sum ζn = ξ ′n + ξ ′′n is also

uniformly integrable. �

U2. If {ξn} is uniformly integrable then supn E|ξn| ≤ c <∞.

Proof Indeed, choose N so that

sup
n

E
(
|ξn|; |ξn|> N

)
≤ 1.

Then

sup
n

E|ξn| = sup
n

[
E
(
|ξn|; |ξn| ≤N

)
+E

(
|ξn|; |ξn|> N

)]
≤N + 1. �

The converse assertion is not true. For example, for a sequence

ξn : P(ξn = n)= 1/n= 1− P(ξn = 0)

one has E|ξn| = 1, but the sequence is not uniformly integrable.

If we somewhat strengthen the above statement U2, it becomes “characteristic”

for uniform integrability.

Theorem 6.1.5 For a sequence {ξn} to be uniformly integrable, it is necessary and
sufficient that there exists a function ψ(x) such that

ψ(x)

x
↑∞ as x ↑∞, sup

n
Eψ

(
|ξn|

)
< c <∞. (6.1.2)

In the necessity assertion one can choose a convex function ψ .
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Proof Without loss of generality we can assume that ξi ≥ 0.

The sufficiency is evident, since, putting v(x) := ψ(x)
x

, we get

E(ξn; ξn ≥N)≤ 1

v(N)
E
(
ξnv(ξn); ξn ≥N

)
≤ c

v(N)
.

To prove the necessity, put

ε(N) := sup
n

E(ξn; ξn ≥N).

Then, by virtue of uniform integrability, ε(N) ↓ 0 as N ↑ ∞. Choose a sequence

Nk ↑∞ as k ↑∞ such that

∞∑

k=1

√
ε(Nk) < c1 <∞,

and put

g(x)= x
(
ε(Nk)

)−1/2
for x ∈ [Nk,Nk+1).

Since

g(Nk − 0)

Nk

=
(
ε(Nk−1)

)−1/2 ≤
(
ε(Nk)

)−1/2 = g(Nk)

Nk

,

we have
g(x)
x
↑∞ as x→∞. Further,

Eg(ξn)=
∑

k

E
[
g(ξn); ξn ∈ [Nk,Nk+1)

]

=
∑

k

E
[
ξn

(
ε(Nk)

)−1/2; ξn ∈ [Nk,Nk+1)
]

≤
∑

k

(
ε(Nk)

)−1/2
ε(Nk)=

∑

k

√
ε(Nk) < c1,

where the right-hand side does not depend on n. Therefore, to prove the theorem it

is sufficient to construct a function ψ ≤ g which is convex and such that
ψ(x)

x
↑∞

as x ↑∞.

Define the function ψ(x) as the continuous polygon with nodes (Nk, g(Nk−0)).

Since

g(Nk − 0)

Nk

= ε(Nk−1)
−1/2

monotonically increases as k grows, ψ is a lower envelope curve for the discontinu-

ous function g(x)≥ ψ(x). The monotonicity of
ψ(x)

x
follows from the fact that, on

the interval [Nk,Nk+1), this function can be represented as

ψ(x)

x
= ak,ψ −

bk

x
,
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where bk > 0, because the values ψ(Nk+1−0) and g(Nk+1−0) coincide, while the

angular incline ak,ψ of the function ψ on the interval [Nk,Nk+1) is greater than the

“radial” incline ak,g of the function g:

ak,g =
g(Nk+1 − 0)− g(Nk)

Nk+1 −Nk

<
g(Nk+1 − 0)− g(Nk − 0)

Nk+1 −Nk

= ak,ψ .

It is clear that
ψ(x)

x
increases unboundedly, for

ψ(Nk)

Nk

= g(Nk − 0)

Nk

= ε(Nk−1)
−1/2 ↑∞

as k→∞. The theorem is proved. �

In studying the mean values of sums of random variables, the following theorem

on uniform integrability of average values, following from Theorem 6.1.5, plays an

important role.

Theorem 6.1.6 Let ξ1, ξ2, . . . be an arbitrary uniformly integrable sequence of ran-
dom variables,

pi,n ≥ 0,

n∑

i=1

pi,n = 1, ζn =
n∑

k=1

|ξi |pi,n.

Then the sequence {ζn} is uniformly integrable as well.

Proof Let ψ(x) be the convex function from Theorem 6.1.5 satisfying proper-

ties (6.1.2). Then, by that theorem,

Eψ(ζn)= Eψ

(
n∑

i=1

pi,n|ξi |
)
≤ E

n∑

i=1

pi,nψ
(
|ξi |

)
≤ c.

It remains to make use of Theorem 6.1.5 again. �

Now we will show that convergence in probability together with uniform inte-

grability imply convergence in mean.

Theorem 6.1.7 Let ξn
p→ ξ and {ξn} be uniformly integrable. Then E|ξ | exists and,

as n→∞,

E|ξn − ξ |→ 0.

If, moreover, {|ξ r
n |} is uniformly integrable then ξn

(r)−→ ξ .

Conversely, if, for an r ≥ 1, ξn
(r)−→ ξ and E|ξ |r <∞, then {|ξn|r} is uniformly

integrable.

In the law of large numbers for the Bernoulli scheme (see Theorem 5.1.1) we

proved that the normed sum Sn/n converges to p in probability. Since 0≤ Sn/n≤ 1,
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Sn/n is clearly uniformly integrable and the convergence in mean

E |Sn/n − p|r → 0 holds for any r . This fact can also be established directly.

For a more substantiative example of application of Theorems 6.1.6 and 6.1.7, see

Sect. 8.1.

Proof We show that Eξ exists. By the properties of integrals (see Lemma A3.2.3 in

Appendix 3), if E|ζ |<∞ then E(ζ ;An)→ 0 as P(An)→ 0. Since Eξn <∞, for

any N and ε one has

E min
(
|ξ |,N

)
= lim

n→∞

[
E min

(
|ξ |,N

)
; |ξn − ξ |< ε

]

≤ lim
n→∞

E min
(
|ξ | + ε,N

)
≤ c+ ε.

It follows that E|ξ | ≤ c.

Further, for brevity, put ηn = |ξn − ξ |. Then ηn
p→ 0 and ηn are uniformly inte-

grable together with ξn. For any N and ε, one has

Eηn = E(ηn; ηn ≤ ε)+E(ηn; N ≥ ηn > ε)+E(ηn; ηn ≥N)

≤ ε+NP(ηn ≥ ε)+E(ηn; ηn > N). (6.1.3)

Choose N so that supn E(ηn; ηn > N)≤ ε. Then, for such an N ,

lim sup
n→∞

Eηn ≤ 2ε.

Since ε is arbitrary, Eηn→ 0 as n→∞.

The relation E|ξn − ξ |r → 0 can be proved in the same way as (6.1.3), since

ηr
n = |ξn − ξ |r p→ 0 and ηr

n are uniformly integrable together with |ξn|r .

Now we will prove the converse assertion. Let, for simplicity, r = 1. One has

E
(
|ξn|; |ξn|> N

)
≤ E

(
|ξn − ξ |; |ξn|> N

)
+E

(
|ξ |; |ξn|> N

)

≤ E|ξn − ξ | +E
(
|ξ |; |ξn|> N

)

≤ E|ξn − ξ | +E
(
|ξ |; |ξn − ξ |> 1

)
+E

(
|ξ |; |ξ |> N − 1

)
.

The first term on the right-hand side tends to zero by the assumption, and the second

term, by Lemma A3.2.3 from Appendix 3, which we have just mentioned, and the

fact that P(|ξn − ξ |> 1)→ 0. The last term does not depend on n and can be made

arbitrarily small by choosing N . Theorem 6.1.7 is proved. �

Now we can derive yet another continuity theorem which has the following form.

Theorem 6.1.8 If ξn
p→ ξ , H(s) satisfies the conditions of Theorem 6.1.4, and

H(ξn) is uniformly integrable, then, as n→∞,

E
∣∣H(ξn)−H(ξ)

∣∣→ 0

and, in particular, EH(ξn)→ EH(ξ).
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This assertion follows from Theorems 6.1.4 and 6.1.7, for H(ξn)
p→ H(ξ) by

Theorem 6.1.4.

Sometimes it is convenient to distinguish between left and right uniform integra-

bility. We will say that a sequence {ξn} is right (left) uniformly integrable if

sup E(ξn; ξn ≥N)→ 0
(
sup E

(
|ξn|; ξn ≤−N

)
→ 0

)

as N→∞. It is evident that a sequence {ξn} is uniformly integrable if and only if

it is both right and left uniformly integrable.

Lemma 6.1.1 A sequence {ξn} is right uniform integrable if at least one of the
following conditions is met:

1. For any sequence N(n)→∞ as n→∞, one has

E
(
ξn; ξn > N(n)

)
→ 0.

(This condition is clearly also necessary for uniform integrability.)

2. ξn ≤ η, where Eη <∞.

3. E(ξ+n )1+α < c <∞ for some α > 0 (here x+ =max(0, x)).

4. ξn is left uniformly integrable, ξn
p→ ξ , and Eξn→ Eξ <∞.

Proof

1. If the sequence {ξn} were not right uniformly integrable, there would exist

an ε > 0 and subsequences n′→∞ and N ′ = N ′(n′)→∞ such that E(ξn′;
ξn′ > N ′) > ε. But this contradicts condition 1.

2. E(ξn; ξn > N)≤ E(η; η > N)→ 0 as N→∞.

3. E(ξn; ξn > N)≤ E(ξ1+α
n N−α; ξn > N)≤N−αc→ 0 as N→∞.

4. Without loss of generality, put ξ := 0. Then

E(ξn; ξn > N)= Eξn −E(ξn; ξn <−N)−E
(
ξn; |ξn| ≤N

)
.

The first two terms on the right-hand side vanish as n → ∞ for any N =
N(n)→∞. For the last term, for any ε > 0, one has

∣∣E
(
ξn; |ξn| ≤N

)∣∣≤
∣∣E
(
ξn; |ξn| ≤ ε

)∣∣+
∣∣E
(
ξn; ε < |ξn| ≤N

)∣∣
≤ ε+NP

(
|ξn|> ε

)
.

For any given ε > 0, choose an n(ε) such that, for all n ≥ n(ε), we would have

P(|ξn| > ε) < ε, and put N(ε) := ⌊1/
√

ε⌋. This will mean that, for all n ≥ n(ε)

and N ≤N(ε), one has E(ξn; |ξn| ≤N) < ε+√ε, and therefore condition 1 of the

lemma holds for E(ξn; ξn > N). The lemma is proved. �

Now, based on the above, we can state three useful corollaries.

Corollary 6.1.3 (The dominated convergence theorem) If ξn
p→ ξ , |ξn| < η, and

Eη <∞ then Eξ exists and Eξn→ Eξ .
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Corollary 6.1.4 If ξn
p→ ξ and E|ξn|r+α < c <∞ for some α > 0 then ξn

(r)−→ ξ .

Corollary 6.1.5 If ξn
p→ ξ and H(x) is a continuous bounded function, then

E|H(ξn)−EH(ξ)| → 0 as n→∞.

In conclusion of the present section, we will derive one more auxiliary proposi-

tion that can be useful.

Lemma 6.1.2 (On integrals over sets of small probability) If {ξn} is a uniformly in-
tegrable sequence and {An} is an arbitrary sequence of events such that P(An)→ 0,

then E(|ξn|; An)→ 0 as n→∞.

Proof Put Bn := {|ξn| ≤N}. Then

E
(
|ξn|; An

)
= E

(
|ξn|; AnBn

)
+E

(
|ξn|; AnBn

)

≤NP(An)+E
(
|ξn|; |ξn|> N

)
.

For a given ε > 0, first choose N so that the second summand on the right-hand side

does not exceed ε/2 and then an n such that the first summand does not exceed ε/2.

We obtain that, by choosing n large enough, we can make E(|ξn|; An) less than ε.

The lemma is proved. �

6.2 Convergence of Distributions

In Sect. 6.1 we introduced three types of convergence which can be used to charac-

terise the closeness of random variables given on a common probability space. But

what can one do if random variables are given on different probability spaces (or if

it is not known where they are given) which nevertheless have similar distributions?

(Recall, for instance, the Poisson or de Moivre–Laplace theorems.) In such cases

one should be able to characterise the closeness of the distributions themselves.

Having found an apt definition for such a closeness, in many problems we will be

able to approximate the required but hard to come by distributions by known and,

as a rule, simpler distributions.

Now what distributions should be considered as close? We are clearly looking

for a definition of convergence of a sequence of distribution functions Fn(x) to a

distribution function F(x). It would be natural, for instance, that the distributions

of the variables ξn = ξ + 1/n should converge to that of ξ as n→∞. Therefore

requiring in the definition of convergence that supx |Fn(x)− F(x)| is small would

be unreasonable since this condition is not satisfied for the distributions of ξ + 1/n

and ξ if F(x)= P(ξ < x) has at least one point of discontinuity.

We will define the convergence of Fn to F as that which arises when one consid-

ers convergence in probability.
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Definition 6.2.1 We will say that distribution functions Fn converge weakly to a

distribution function F as n→∞, and denote this by Fn⇒ F if, for any continuous

bounded function f (x),
∫

f (x)dFn(x)→
∫

f (x)dF (x). (6.2.1)

Considering the distributions Fn(B) and F(B) (B are Borel sets) corresponding to

Fn and F , we say that Fn converges weakly to F and write Fn⇒ F. One can clearly

re-write (6.2.1) as
∫

f (x)Fn(dx)→
∫

f (x)F(dx) or Ef (ξn)→ Ef (ξ) (6.2.2)

(cf. Corollary 6.1.5), where ξn ⊂= Fn and ξ ⊂= F.

Another possible definition of weak convergence follows from the next assertion.

Theorem 6.2.1 2 Fn⇒ F if and only if Fn(x)→ F(x) at each point of continuity
x of F .

Proof Let (6.2.1) hold. Consider an ε > 0 and a continuous function fε(t) which is

equal to 1 for t < x and to 0 for t ≥ x + ε, and varies linearly on [x, x + ε]. Since

Fn(x)=
∫ x

−∞
fε(t) dFn(t)≤

∫
fε(t) dFn(t),

by virtue of (6.2.1) one has

lim sup
n→∞

Fn(x)≤
∫

fε(t) dF (t)≤ F(x + ε).

If x is a point of continuity of F then

lim sup
n→∞

Fn(x)≤ F(x)

since ε is arbitrary.

In the same way, using the function f ∗ε (t)= fε(t + ε), we obtain the inequality

lim inf
n→∞

Fn(x)≥ F(x).

We now prove the converse assertion. Let −M and N be points of continuity

of F such that F(−M) < ε/5 and 1 − F(N) < ε/5. Then Fn(−M) < ε/4 and

1−Fn(N) < ε/4 for all sufficiently large n. Therefore, assuming for simplicity that

|f | ≤ 1, we obtain that
∫

f dFn and

∫
f dF (6.2.3)

2In many texts on probability theory the condition of the theorem is given as the definition of weak

convergence. However, the definition in terms of the relation (6.2.2) is apparently more appropriate

for it continues to remain valid for distributions on arbitrary topological spaces (see, e.g. [1, 25]).
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will differ from
∫ N

−M

f dFn and

∫ N

−M

f dF,

respectively, by less than ε/2. Construct on the semi-interval (−M,N ] a step func-

tion fε with jumps at the points of continuity of F which differs from f by less than

ε/2. Outside (−M,N ] we set fε := 0. We can put, for instance,

fε(x) :=
k∑

j=1

f (xj )δj (x),

where x0 = −M < x1 < · · · < xk = N are appropriately chosen points of continu-

ity of F , and δj (x) is the indicator function of the semi-interval (xj−1, xj ]. Then∫
fε dFn and

∫
fε dF will differ from the respective integrals in (6.2.3), for suffi-

ciently large n, by less than ε. At the same time,

∫
fε dFn =

k∑

j=1

f (xj )
[
Fn(xj )− Fn(xj−1)

]
→

∫
fε dF.

Since ε > 0 is arbitrary, the last relation implies (6.2.1). (Indeed, one just has to

make use of the inequality

lim sup

∫
f dFn ≤ ε+ lim sup

∫
fε dFn = ε+

∫
fε dF ≤ 2ε+

∫
f dF

and a similar inequality for lim inf
∫

f dFn.) The theorem is proved. �

For remarks on different and, in a certain sense, simpler proofs of the second

assertion of Theorem 6.2.1, see the end of Sect. 6.3 and Sect. 7.4.

Remark 6.2.1 Repeating with obvious modifications the above-presented proof, we

can get a somewhat different equivalent of convergence (4): convergence of differ-
ences Fn(y)− Fn(x)→ F(y)− F(x) for any points of continuity x and y of F .

Remark 6.2.2 If F(x) is continuous then convergence Fn⇒ F is equivalent to the

uniform convergence supx |Fn(x)− F(x)| → 0.

We leave the proof of the last assertion to the reader. It follows from the fact

that convergence Fn(x)→ F(x) at any x implies, by virtue of the continuity of F ,

uniform convergence on any finite interval. The uniform smallness of Fn(x)−F(x)

on the “tails” is ensured by the smallness of F(x) and 1− F(x).

Remark 6.2.3 If distributions Fn and F are discrete and have jumps at the same

points x1, x2, . . . then Fn⇒ F will clearly be equivalent to the convergence of the

probabilities of the values x1, x2, . . . (Fn(xk + 0)− Fn(xk)→ F(xk + 0)− F(xk)).
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We introduce some notation which will be convenient for the sequel. Let ξn and

ξ be some random variables (given, generally speaking, on different probability

spaces) such that ξn ⊂= Fn and ξ ⊂= F.

Definition 6.2.2 If Fn⇒ F we will say that ξn converges to ξ in distribution and

write ξn⇒ ξ .

We used here the same symbol⇒ as for the weak convergence, but this leads to

no confusion.

It is clear that ξn
p→ ξ implies ξn⇒ ξ , but not vice versa.

At the same time the following assertion holds true.

Lemma 6.2.1 If ξn ⇒ ξ (Fn ⇒ F) then one can construct random variables ξ ′n
and ξ ′ on a common probability space so that P(ξ ′n < x) = P(ξn < x) = Fn(x),

P(ξ ′ < x)= P(ξ < x)= F(x), and

ξ ′n
a.s.−→ ξ ′.

Proof Define the quantile transforms (see Definition 3.2.6) by

F−1
n (t) := sup

{
x : Fn(x)≤ t

}
, F−1(t) := sup

{
x : F(x)≤ t

}
.

(If F(x) is continuous and strictly increasing then F−1(t) coincides with the solu-

tion to the equation F(v)= t .) Let η⊂=U0,1. Put

ξ ′n := F−1
n (η)⊂= Fn, ξ ′ := F−1(η)⊂= F

(cf. Theorem 3.2.2), and show that ξ ′n
a.s.−→ ξ ′. In order to do that, it suffices to prove

that F−1
n (y)→ F−1(y) for almost all y ∈ [0,1].

The functions F and F−1 are monotone and hence each of them has at most

a countable set of discontinuity points. This means that, for all y ∈ [0,1] with the

possible exclusion of the points from a countable set T , the function F−1(y) will

be continuous.

So let y be a point of continuity of F (−1), and F (−1)(y)= x.

For t ≤ y, choose a continuous strictly increasing function G(−1)(t) such that

G(−1)(y)= F (−1)(y), G(−1)(t)≤ F (−1)(t) for t ≤ y.

Denote by G(v), v ≤ x, the function inverse to G(−1)(t). Clearly, G(v) domi-

nates the function F(v) in the domain v ≤ x. By virtue of the continuity and strict

monotonicity of the functions G(−1) and G (in the domain under consideration), for

ε > 0 we have

G(x − ε)= y − δ(ε),

where δ(ε) > 0, δ(ε)→ 0 as ε→ 0. Choose an ε such that x − ε is a point of

continuity of F . Then, for all n large enough,

Fn(x − ε)≤ F(x − ε)+ δ(ε)

2
≤G(x − ε)+ δ(ε)

2
= y − δ(ε)

2
.
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The opposite inequality can be proved in a similar way. Since ε can be arbitrarily

small, we obtain that, for almost all y,

F−1
n (y)→ F (−1)(y) as n→∞.

Hence F
(−1)
n (η)→ F (−1)(η) with probability 1 with respect to the distribution of η.

The lemma is proved. �

Lemma 6.2.1 remains true for vector-valued random variables as well.

Sometimes it is also convenient to have a simple symbol for the relation “the

distribution of ξn converges weakly to F”. We will write this relation as

ξn ⊂⇒ F, (6.2.4)

so that the symbol ⊂⇒expresses the same fact as⇒ but relates objects of a different

nature in the same way as the symbol ⊂= in the relation ξ ⊂= P (on the left-hand

side in (6.2.4) we have random variables, while on the right hand side there is a

distribution).

In these terms, the assertion of the Poisson theorem could be written as Sn⊂⇒�µ,

while the statement of the law of large numbers for the Bernoulli scheme takes the

form Sn/n⊂⇒ Ip .

The coincidence of the distributions of ξ and η will be denoted by ξ
d= η.

Lemma 6.2.2 If ξn⇒ ξ and εn
p→ 0 then ξn + εn⇒ ξ .

If ξn⇒ ξ and γn
p→ 1 then ξnγn⇒ ξ .

Proof Let us prove the first assertion. For any t and δ > 0 such that t and t ± δ are

points of continuity of P(ξ < t), one has

lim sup
n→∞

P(ξn + εn < t)= lim sup
n→∞

P(ξn + εn < t, εn >−δ)

≤ lim sup
n→∞

P(ξn < t + δ)= P(ξ < t + δ).

Similarly,

lim inf
n→∞

P(ξn + εn < t)≥ P(ξ < t − δ).

Since P(ξ < t ± δ) can be chosen arbitrary close to P(ξ < t) by taking a sufficiently

small δ, the required convergence follows.

The second assertion can be proved in the same way. The lemma is proved. �

Now we will give analogues of Theorems 6.1.4 and 6.1.7 in terms of distribu-

tions.

Theorem 6.2.2 If ξn ⇒ ξ and a function H(s) satisfies the conditions of Theo-
rem 6.1.4 then H(ξn)⇒H(ξ).
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Theorem 6.2.3 If ξn⇒ ξ and the sequence {ξn} is uniformly integrable then Eξ

exists and Eξn→ Eξ .

Proof There are two ways of proving these theorems. One of them consists of re-

ducing them to Theorems 6.1.4 and 6.1.7. To this end, one has to construct random

variables ξ ′n = F
(−1)
n (η) and ξ ′ = F (−1)(η), where η⊂=U0,1 and F

(−1)
n and F (−1)

are the quantile transforms of Fn and F , respectively, and prove that ξ ′n
p→ ξ ′ (we

already know that F (−1)(η) ⊂= F; if F is discontinuous or not strictly increasing,

then F (−1) should be defined as in Lemma 6.2.1).

Another approach is to prove the theorems anew using the language of distri-

butions. Under inessential additional assumptions, such proofs are sometimes even

simpler. To illustrate this, assume, for instance, in Theorem 6.2.3 that the function

H is continuous. One has to prove that Eg(H(ξn))→ Eg(H(ξ)) for any continuous

bounded function g. But this is an immediate consequence of (6.2.1) and (6.2.2), for

f = g ◦H (f is the composition of the functions g and H ).

In Theorem 6.2.3 assume that ξn ≥ 0 (this does not restrict the generality). Then,

integrating by parts, we get

Eξn =−
∫ ∞

0

x dP(ξn ≥ x)=
∫ ∞

0

P(ξn ≥ x)dx. (6.2.5)

Since by virtue of uniform integrability

sup
n

∫ ∞

N

P(ξn ≥ x)dx ≤ sup
n

E(ξn; ξn ≥N)→ 0

as N→∞, the integral in (6.2.5) is uniformly convergent. Moreover, P(ξn ≥ x)→
P(ξ ≥ x) a.s., and therefore

lim
n→∞

Eξn = lim
n→∞

∫ ∞

0

P(ξn ≥ x)dx =
∫ ∞

0

P(ξ ≥ x)dx = Eξ. �

Conditions ensuring uniform integrability are contained in Lemma 6.1.1. Now

we will give a modification of assertion 4 of this lemma for the case of weak con-

vergence.

Lemma 6.2.3 If {ξn} is left uniformly integrable, ξn⇒ ξ and Eξn→ Eξ then {ξn}
is uniformly integrable.

We suggest to the reader to construct examples showing that all three conditions

of the lemma are essential.

Lemma 6.2.3 implies, in particular, that if ξn ≥ 0, ξn⇒ ξ and Eξn→ Eξ then
{ξn} is uniformly integrable.

As for Theorems 6.2.2 and 6.2.3, two alternative ways to prove the result are

possible here. One of them consists of using Lemma 6.1.1. We will present here a

different, somewhat simpler, proof.
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Proof of Lemma 6.2.3 For simplicity assume that ξn ≥ 0. Suppose that the lemma

is not valid. Then there exist an ε > 0 and subsequences n′→∞ and N(n′)→∞
such that

E
(
ξn′; ξn′ > N

(
n′
))

> ε.

Since

Eξn′ = E(ξn′; ξn′ ≤N)+E(ξn′; ξn′ > N),

for any N that is a point of continuity of the distribution of ξ , one has

Eξ = lim
n→∞

ξn′ ≥ E(ξ ; ξ ≤N)+ ε.

Choose an N such that the first summand on the right-hand side exceeds Eξ − ε/2.

Then we obtain the contradiction Eξ ≥ Eξ + ε/2, which proves the lemma.

We leave it to the reader to extend the proof to the case of arbitrary left uniformly

integrable {ξn}. �

The following theorem can also be useful.

Theorem 6.2.4 Suppose that ξn ⇒ ξ , H(s) is differentiable at a point a, and
bn→ 0 as n→∞. Then

1

bn

(
H(a + bnξn)−H(a)

)
⇒ ξH ′(a).

If H ′(a)= 0 and H ′′(a) exists then

1

b2
n

(
H(a + bnξn)−H(a)

)
⇒ ξ2

2
H ′′(a).

Proof Consider the function

h(x)=
{

H(a+x)−H(a)
x

if x 
= 0,

H ′(a) if x = 0,

which is continuous at the point x = 0. Since bnξn⇒ 0, by Theorem 6.2.2 one has

h(bnξn)⇒ h(0) = H ′(a). Using the theorem again (this time for two-dimensional

distributions), we get

H(a + bnξn)−H(a)

bn

= h(bnξn)ξn⇒H ′(a)ξ.

The second assertion is proved in the same way. �

A multivariate analogue of this theorem will look somewhat more complicated.

The reader could obtain it himself, following the lines of the argument proving The-

orem 6.2.4.



6.3 Conditions for Weak Convergence 147

6.3 Conditions for Weak Convergence

Now we will return to the concept of weak convergence. We have two criteria for this

convergence: relation (6.2.1) and Theorem 6.2.1. However, from the point of view

of their possible applications (their verification in concrete problems) both these

criteria are inconvenient. For instance, proving, say, convergence Ef (ξn)→ Ef (ξ)

not for all continuous bounded functions f but just for elements f of a certain rather

narrow class of functions that has a simple and clear nature would be much easier.

It is obvious, however, that such a class cannot be very narrow.

Before stating the basic assertions, we will introduce a few concepts.

Extend the class F of all distribution functions to the class G of all functions

G satisfying conditions F1 and F2 from Sect. 3.2 and conditions G(−∞) ≥ 0,

G(∞)≤ 1. Functions G from G could be called generalised distribution functions.

One can think of them as distribution functions of improper random variables as-

suming infinite values with positive probabilities, so that G(−∞) = P(ξ = −∞)

and 1 − G(∞) = P(ξ = ∞). We will write Gn ⇒ G for Gn ∈ G and G ∈ G if

Gn(x)→G(x) at all points of continuity of G(x).

Theorem 6.3.1 (Helly) The class G is compact with respect to convergence ⇒,

i.e. from any sequence {Gn}, Gn ∈ G, one can choose a convergent subsequence
Gnk
⇒G ∈ G.

For the proof of Theorem 6.3.1, see Appendix 4.

Corollary 6.3.1 If each convergent subsequence {Gnk
} of {Gn} with Gn ∈ G con-

verges to G then Gn⇒G.

Proof If Gn �G then there exists a point of continuity x0 of G such that Gn(x0) 
→
G(x0). Since Gn(x0) ∈ [0,1], there exists a convergent subsequence Gnk

such

that Gnk
(x0)→ g 
= G(x0). This, however, is impossible by our assumption, for

Gnk
(x0)→G(x0). �

The reason for extending the class F of all distribution functions is that it is not

compact (in the sense of Theorem 6.3.1) and convergence Fn⇒ G, Fn ∈ F, does

not imply that G ∈ F. For example, the sequence

Fn(x)=

⎧
⎨
⎩

0 if x ≤−n,

1/2 if − n < x ≤ n,

1 if x > n

(6.3.1)

converges everywhere to the function G(x)≡ 1/2 /∈ F corresponding to an improper

random variable taking the values ±∞ with probabilities 1/2.

However, dealing with the class G is also not very convenient. The fact is that

convergence at points of continuity Gn ⇒ G in the class G is not equivalent to

convergence
∫

f dGn→
∫

f dG
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(see example (6.3.1) for f ≡ 1), and the integrals
∫

f dG do not specify G uniquely

(they specify the increments of G, but not the values G(−∞) and G(∞)). Now we

will introduce two concepts that will help to avoid the above-mentioned inconve-

nience.

Definition 6.3.1 A sequence of distributions {Fn} (or distribution functions {Fn})
is said to be tight if, for any ε > 0, there exists an N such that

inf
n

Fn

(
[−N,N ]

)
> 1− ε. (6.3.2)

Definition 6.3.2 A class L of continuous bounded functions is said to be distribu-
tion determining if the equality

∫
f (x)dF (x)=

∫
f (x)dG(x), F ∈ F, G ∈ G,

for all f ∈ L implies that F = G (or, which is the same, if the relation Ef (ξ) =
Ef (η) for all f ∈ L, where one of the random variables ξ and η is proper, implies

that ξ
d= η).

The next theorem is the main result of the present section.

Theorem 6.3.2 Let L be a distribution determining class and {Fn} a sequence of
distributions. For the existence of a distribution F ∈ F such that Fn⇒ F it is nec-
essary and sufficient that:3

(1) the sequence {Fn} is tight; and
(2) limn→∞

∫
f dFn exists for all f ∈L.

Proof The necessary part is obvious.

Sufficiency. By Theorem 6.3.1 there exists a subsequence Fnk
⇒ F ∈ G. But

by condition (1) one has F ∈ F. Indeed, if x ≥ N is a point of continuity of F

then, by Definition 6.3.1, F(x)= limFnk
(x)≥ 1− ε. In a similar way we establish

that for x ≤ −N one has F(x) < ε. Since ε is arbitrary, we have F(−∞)= 0 and

F(∞)= 1.

Further, take another convergent subsequence Fn′k
⇒ G ∈ F. Then, for any

f ∈L, one has

lim

∫
f dFnk

=
∫

f dF, lim

∫
f dFn′k

=
∫

f dG. (6.3.3)

But, by condition (2),
∫

f dF =
∫

f dG, (6.3.4)

and hence F =G. The theorem is proved by virtue of Corollary 6.3.1. �

3In this form the theorem persists for spaces of a more general nature. The role of the segments

[−N,N] in (6.3.2) is played in that case by compact sets (cf. [1, 14, 25, 31]).
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Fig. 6.1 The plot of the

function fa,ε(x) from

Example 6.3.1

If one needs to prove convergence to a “known” distribution F ∈ F, the tightness

condition in Theorem 6.3.2 becomes redundant.

Corollary 6.3.2 Let L be a distribution determining class and
∫

f dFn→
∫

f dF, F ∈ G, (6.3.5)

for any f ∈L. Moreover, assume that at least one of the following three conditions
is met:

(1) the sequence {Fn} is tight;
(2) F ∈ F;

(3) f ≡ 1 ∈L (i.e. (6.3.5) holds for f ≡ 1).

Then F ∈ F and Fn⇒ F .

The proof of the corollary is almost next to obvious. Under condition (1) the as-

sertion follows immediately from Theorem 6.3.2. Condition (3) and convergence

(6.3.5) imply condition (2). If (2) holds, then F ∈ F in relations (6.3.3) and (6.3.4),

and therefore G= F . �

Since, as a rule, at least one of conditions (1)–(3) is satisfied (as we will see

below), the basic task is to verify convergence (6.3.5) for the class L.

Note also that, in the case where one proves convergence to a distribution F ∈ F
“known” in advance, the whole arrangement of the argument can be different and
simpler. One such alternative approach is presented in Sect. 7.4.

Now we will give several examples of distributions determining classes L.

Example 6.3.1 The class L0 of functions having the form

fa,ε(x)=
{

1 if x ≤ a,

0 if x ≥ a + ε.

On the segment [a, a+ ε] the functions fa,ε are defined to be linear and continuous

(a plot of fa,ε(x) is given in Fig. 6.1). It is a two-parameter family of functions.

We show that L0 is a distribution determining class. Let
∫

f dF =
∫

f dG

for all f ∈L0. Then

F(a)≤
∫

fa,ε dF =
∫

fa,ε dG≤G(a + ε),
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and, conversely,

G(a)≤ F(a + ε)

for any ε > 0. Taking a to be a point of continuity of both F and G, we obtain that

F(a)=G(a).

Since this is valid for all points of continuity, we get F =G.

One can easily verify in a similar way that the class L̂0 of “trapezium-shaped”

functions f (x)=min(fa,ε,1− fb,ε), a < b, is also distribution determining.

Example 6.3.2 The class L1 of continuous bounded functions such that, for each

f ∈ L0 (or f ∈ L̂0), there exists a sequence fn ∈ L1, supx |f (x)| < M <∞, for

which limn→∞ fn(x)= f (x) for each x ∈R.

Let ∫
f dF =

∫
f dG

for all f ∈L1. By the dominated convergence theorem,

lim

∫
fn dF =

∫
f dF, lim

∫
fn dG=

∫
f dG, f ∈L0.

Therefore ∫
f dF =

∫
f dG, f ∈L0, F = G

and hence L1 is a distribution determining class.

Example 6.3.3 The class Ck of all bounded functions f (x) having bounded uni-

formly continuous k-th derivatives f (k)(x) (supx |f (k)(x)|<∞), k ≥ 1.

It is evident that Ck is a distribution determining class for it is a special case of

an L1 class.

In the same way one can see that the subclass C0
k ⊂ Ck of functions having fi-

nite support (vanishing outside a finite interval) is also distribution determining.

This follows from the fact that C0
k is an L1-class with respect to the class L̂0 of

trapezium-shaped (and therefore having compact support) functions.

It is clear that the class Ck satisfies condition (3) from Corollary 6.3.2 (f ≡
1 ∈ Ck). Therefore, to prove convergence Fn⇒ F ∈ F it suffices to verify conver-

gence (6.3.5) for f ∈ Ck only.

If one takes L to be the class C0
k of differentiable functions with finite sup-

port then relation (6.3.5) together with condition (2) of Corollary 6.3.2 could be

re-written as ∫
Fnf

′ dx→
∫

Ff ′ dx, F ∈ F. (6.3.6)

(One has to integrate (6.3.5) by parts and use the fact that f ′ also has a finite sup-

port.) The convergence criterion (6.3.6) is sometimes useful. It can be used to show,



6.3 Conditions for Weak Convergence 151

for example, that (6.3.5) follows from convergence Fn(x)→ F(x) at all points of

continuity of F (i.e. almost everywhere), since that convergence and the dominated

convergence theorem imply (6.3.6) which is equivalent to (6.3.5).

Example 6.3.4 One of the most important distribution determining classes is the

one-parameter family of complex-valued functions {eitx}, t ∈R.

The next chapter will be devoted to studying the properties of
∫

eitxdF(x).

After obvious changes, all the material in the present chapter can be extended to

the multivariate case.



Chapter 7

Characteristic Functions

Abstract Section 7.1 begins with formal definitions and contains an extensive dis-

cussion of the basic properties of characteristic functions, including those related to

the nature of the underlying distributions. Section 7.2 presents the proofs of the in-

version formulas for both densities and distribution functions, and also in the space

of square integrable functions. Then the fundamental continuity theorem relating

pointwise convergence of characteristic functions to weak convergence of the re-

spective distributions is proved in Sect. 7.3. The result is illustrated by proving the

Poisson theorem, with a bound for the convergence rate, in Sect. 7.4. After that,

the previously presented theory is extended in Sect. 7.5 to the multivariate case.

Some applications of characteristic functions are discussed in Sect. 7.6, including

the stability properties of the normal and Cauchy distributions and an in-depth dis-

cussion of the gamma distribution and its properties. Section 7.7 introduces the

concept of generating functions and uses it to analyse the asymptotic behaviour

of a simple Markov discrete time branching process. The obtained results include

the formula for the eventual extinction probability, the asymptotic behaviour of the

non-extinction probabilities in the critical case, and convergence in that case of the

conditional distributions of the scaled population size given non-extinction to the

exponential law.

7.1 Definition and Properties of Characteristic Functions

As a preliminary remark, note that together with real-valued random variables ξ(ω)

we could also consider complex-valued random variables, by which we mean func-

tions of the form ξ1(ω) + iξ2(ω), (ξ1, ξ2) being a random vector. It is natural to

put E(ξ1 + iξ2)= Eξ1 + iEξ2. Complex-valued random variables ξ = ξ1 + iξ2 and

η = η1 + iη2 are independent if the σ -algebras σ(ξ1, ξ2) and σ(η1, η2) generated

by the vectors (ξ1, ξ2) and (η1, η2), respectively, are independent. It is not hard to

verify that, for such random variables,

Eξη= EξEη.

Definition 7.1.1 The characteristic function (ch.f.) of a real-valued random variable

ξ is the complex-valued function
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ϕξ (t) := Eeitξ =
∫

eitx dF(x),

where t is real.

If the distribution function F(x) has a density f (x) then the ch.f. is equal to

ϕξ (t)=
∫

eitxf (x)dx

and is just the Fourier transform of the function f (x).1 In the general case, the ch.f.

is the Fourier–Stieltjes transform of the function F(x).

The ch.f. exists for any random variable ξ . This follows immediately from the

relation

∣∣ϕξ (t)
∣∣≤

∫ ∣∣eitx
∣∣dF(x)≤

∫
1dF(x)= 1.

Ch.f.s are a powerful tool for studying properties of the sums of independent random

variables.

7.1.1 Properties of Characteristic Functions

1. For any random variable ξ ,

ϕξ (0)= 1 and
∣∣ϕξ (t)

∣∣≤ 1 for all t.

This property is obvious.

2. For any random variable ξ ,

ϕaξ+b(t)= eitbϕξ (ta).

Indeed,

ϕaξ+b(t)= Eeit (aξ+b) = eitbEeiatξ = eitbϕξ (ta). �

1More precisely, in classical mathematical analysis, the Fourier transform ϕ(t) of a function f (t)

from the space L1 of integrable functions is defined by the equation

ϕ(t)= 1√
2π

∫
eitxf (t) dt

(the difference from ch.f. consists in the factor 1/
√

2π ). Under this definition the inversion formula

has a “symmetric” form: if ϕ ∈ L1 then

f (x)= 1√
2π

∫
e−itxϕ(t) dt.

This representation is more symmetric than the inversion formula for ch.f. (7.2.1) in Sect. 7.2

below.
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3. If ξ1, . . . , ξn are independent random variables then the ch.f. of the sum Sn =
ξ1 + · · · + ξn is equal to

ϕSn(t)= ϕξ1
(t) · · ·ϕξn(t).

Proof This follows from the properties of the expectation of the product of inde-

pendent random variables. Indeed,

ϕSn(t)= Eeit (ξ1+···+ξn) = Eeitξ1eitξ2 · · · eitξn

= Eeitξ1Eeitξ2 · · ·Eeitξn = ϕξ1
(t)ϕξ2

(t) · · ·ϕξn(t). �

Thus to the convolution Fξ1
∗ Fξ2

there corresponds the product ϕξ1
ϕξ2

.

4. The ch.f. ϕξ (t) is a uniformly continuous function.

Indeed, as h→ 0,
∣∣ϕ(t + h)− ϕ(t)

∣∣=
∣∣E
(
ei(t+h)ξ − eitξ

)∣∣≤ E
∣∣eihξ − 1

∣∣→ 0

by the dominated convergence theorem (see Corollary 6.1.2) since |eihξ − 1| p−→ 0

as h→ 0, and |eihξ − 1| ≤ 2. �

5. If the k-th moment exists: E|ξ |k <∞, k ≥ 1, then there exists a continuous k-th
derivative of the function ϕξ (t), and ϕ(k)(0)= ikEξ k .

Proof Indeed, since
∣∣∣∣
∫

ixeitx dF(x)

∣∣∣∣≤
∫
|x|dF(x)= E|ξ |<∞,

the integral
∫

ixeitx dF(x) converges uniformly in t . Therefore one can differentiate

under the integral sign:

ϕ′(t)= i

∫
xeitx dF(x), ϕ′(0)= iEξ.

Further, one can argue by induction. If, for l < k,

ϕ(l)(t)= il
∫

xleitx dF(x),

then

ϕ(l+1)(t)= il+1

∫
xl+1eitx dF(x)

by the uniform convergence of the integral on the right-hand side. Therefore

ϕ(l+1)(0)= il+1Eξ l+1. �
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Property 5 implies that if E|ξ |k <∞ then, in a neighbourhood of the point t = 0,

one has the expansion

ϕ(t)= 1+
k∑

j=1

(it)j

j ! Eξ j + o
(∣∣tk

∣∣). (7.1.1)

The converse assertion is only partially true:

If a derivative of an even order ϕ(2k) exists then

E|ξ |2k <∞, ϕ(2k)(0)= (−1)kEξ2k.

We will prove the property for k = 1 (for k > 1 one can employ induction). It

suffices to verify that E|ξ |2 is finite. One has

−2ϕ(0)− ϕ(2h)− ϕ(−2h)

4h2
= E

(
eihξ − e−ihξ

2h

)2

= E
sin2 hξ

h2
.

Since h−2 sin2 hξ→ ξ2 as h→ 0, by Fatou’s lemma

−ϕ′′(0)= lim
h→0

(
2ϕ(0)− ϕ(2h)− ϕ(−2h)

4h2

)
= lim

h→0
E

sin2 hξ

h2

≥ E lim
h→0

sin2 hξ

h2
= Eξ2. �

6. If ξ ≥ 0 then ϕξ (λ) is defined in the complex plane for Imλ ≥ 0. Moreover,
|ϕξ (λ)| ≤ 1 for such λ, and in the domain Imλ > 0, ϕξ (λ) is analytic and con-
tinuous including on the boundary Imλ= 0.

Proof That ϕ(λ) is analytic follows from the fact that, for Imλ > 0, one can differ-

entiate under the integral sign the right-hand side of

ϕξ (λ)=
∫ ∞

0

eiλx dF(x).

(For Imλ > 0 the integrand decreases exponentially fast as x→∞.) �

Continuity is proved in the same way as in property 4. This means that for non-

negative ξ the ch.f. ϕξ (λ) uniquely determines the function

ψ(s)= ϕξ (is)= Ee−sξ

of real variable s ≥ 0, which is called the Laplace (or Laplace–Stieltjes) transform
of the distribution of ξ .

The converse assertion also follows from properties of analytic functions: the

Laplace transform ψ(s) on the half-line s ≥ 0 uniquely determines the ch.f. ϕξ (λ).

7. ϕξ (t)= ϕξ (−t)= ϕ−ξ (t), where the bar denotes the complex conjugate.
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Proof The relations follow from the equalities

ϕξ (t)= Eeitξ = Eeitξ = Ee−itξ . �

This implies the following property.

7A. If ξ is symmetric (has the same distribution as−ξ ) then its ch.f. is real (ϕξ (t)=
ϕξ (−t)).

One can show that the converse is also true; to this end one has to make use of

the uniqueness theorem to be discussed below.

Now we will find the ch.f.s of the basic probability laws.

Example 7.1.1 If ξ = a with probability 1, i.e. ξ ⊂= Ia , then ϕξ (t)= eita .

Example 7.1.2 If ξ ⊂=Bp then ϕξ (t)= peit + (1− p)= 1+ p(eit − 1).

Example 7.1.3 If ξ ⊂=�0,1 then ϕξ (t)= e−t2/2.

Indeed,

ϕ(t)= ϕξ (t)=
1√
2π

∫ ∞

−∞
eitx−x2/2 dx.

Differentiating with respect to t and integrating by parts (xe−x2/2 dx =−de−x2/2),

we get

ϕ′(t)= 1√
2π

∫
ixeitx−x2/2 dx =− 1√

2π

∫
teitx−x2/2 dx =−tϕ(t),

(
lnϕ(t)

)′ =−t, lnϕ(t)=− t2

2
+ c.

Since ϕ(0)= 1, one has c= 0 and ϕ(t)= e−t2/2. �

Now let η be a normal random variable with parameters (a, σ ). Then it can be

represented as η = σξ + a, where ξ is normally distributed with parameters (0,1).

The ch.f. of η can be found using Property 2:

ϕη(t)= eitae−(tσ )2/2 = eita−t2σ 2/2.

Differentiating ϕη(t) for η ⊂= �0,σ 2 , we will obtain that Eηk = 0 for odd k, and

Eηk = σ k(k − 1)(k − 3) · · ·1 for k = 2,4, . . . .

Example 7.1.4 If ξ ⊂=�µ then

ϕξ (t)= Eeitξ =
∑

k

eitk µk

k! e
−µ = e−µ

∑

k

(µeit )k

k! = e−µeµeit = exp
[
µ
(
eit − 1

)]
.
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Example 7.1.5 If ξ has the exponential distribution Ŵα with density αe−αx for

x ≥ 0, then

ϕξ (t)= α

∫ ∞

0

eitx−αx dx = α

α − it
.

Therefore, if ξ has the “double” exponential distribution with density 1
2
e−|x|,−∞<

x <∞, then

ϕξ (t)=
1

2

(
1

1− it
+ 1

1+ it

)
= 1

1+ t2
.

If ξ has the geometric distribution P(ξ = k)= (1− p)pk , k = 0,1, . . . , then

ϕξ (t)=
1− p

1− peit
.

Example 7.1.6 If ξ ⊂= K0,1 (has the density [π(1+ x2)]−1) then ϕξ (t)= e−|t |. The

reader will easily be able to prove this somewhat later, using the inversion formula

and Example 7.1.5.

Example 7.1.7 If ξ ⊂=U0,1, then

ϕξ (t)=
∫ 1

0

eitx dx = eit − 1

it
.

By virtue of Property 3, the ch.f.s of the sums ξ1 + ξ2, ξ1 + ξ2 + ξ3, . . . that we

considered in Example 3.6.1 will be equal to

ϕξ1+ξ2
(t)=− (eit − 1)2

t2
, ϕξ1+ξ2+ξ3

(t)=− (eit − 1)3

t3
, . . . .

We return to the general case. How can one verify whether one or another func-

tion ϕ is characteristic or not? Sometimes one can do this using the above properties.

We suggest the reader to determine whether the functions (1+ t)−1, 1+ t , sin t , cos t

are characteristic, and if so, to which distributions they correspond.

In the general case the posed question is a difficult one. We state without proof

one of the known results.

Bochner–Khinchin’s Theorem A necessary and sufficient condition for a con-
tinuous function ϕ(t) with ϕ(0) = 1 to be characteristic is that it is nonnegatively
defined, i.e., for any real t1, . . . , tn and complex λ1, . . . , λn, one has

n∑

k,j=1

ϕ(tk − tj )λkλj ≥ 0

(λ is the complex conjugate of λ).
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Note that the necessity of this condition is almost obvious, for if ϕ(t) = Eeitξ

then

n∑

k,j=1

ϕ(tk − tj )λkλj = E

n∑

k,j=1

ei(tk−tj )ξλkλj = E

∣∣∣∣∣

n∑

k=1

λke
itkξ

∣∣∣∣∣

2

≥ 0.

7.1.2 The Properties of Ch.F.s Related to the Structure of the

Distribution of ξ

8. If the distribution of ξ has a density then ϕξ (t)→ 0 as |t | →∞.
This is a direct consequence of the Lebesgue theorem on Fourier transforms. The

converse assertion is false.

In general, the smoother F(x) is the faster ϕξ (t) vanishes as |t | →∞. The for-

mulas in Example 7.1.7 are typical in this respect. If the density f (x) has an inte-

grable k-th derivative then, by integrating by parts, we get

ϕξ (t)=
∫

eitxf (x)dx = 1

it

∫
eitxf ′(x) dx = · · · = 1

(it)k

∫
eitxf (k)(x) dx,

which implies that

ϕξ (t)≤
c

|t |k .

8A. If the distribution of ξ has a density of bounded variation then
∣∣ϕξ (t)

∣∣≤ c

|t | .

This property is also validated by integration by parts:

∣∣ϕξ (t)
∣∣=

∣∣∣∣
1

it

∫
eitx df (x)

∣∣∣∣≤
1

|t |

∫ ∣∣df (x)
∣∣.

9. A random variable ξ has a lattice distribution with span h > 0 (see Defini-

tion 3.2.3) if and only if
∣∣∣∣ϕξ

(
2π

h

)∣∣∣∣= 1,

∣∣∣∣ϕξ

(
v

h

)∣∣∣∣< 1 (7.1.2)

if v is not a multiple of 2π .

Clearly, without loss of generality we can assume h= 1. Moreover, since
∣∣ϕξ−a(t)

∣∣=
∣∣e−itaϕξ (t)

∣∣=
∣∣ϕξ (t)

∣∣,
the properties (7.1.2) are invariant with respect to the shift by a. Thus we can as-

sume the shift a is equal to zero and thus change the lattice distribution condition

in Property 9 to the arithmeticity condition (see Definition 3.2.3). Since ϕξ (t) is a

periodic function, Property 9 can be rewritten in the following equivalent form:
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The distribution of a random variable ξ is arithmetic if and only if

ϕξ (2π)= 1,
∣∣ϕξ (t)

∣∣< 1 for all t ∈ (0,2π). (7.1.3)

Proof If ξ has an arithmetic distribution then

ϕξ (t)=
∑

k

P(ξ = k)eitk = 1

for t = 2π . Now let us prove the second relation in (7.1.3). Assume the contrary:

for some v ∈ (0,2π), we have |ϕξ (v)| = 1 or, which is the same,

ϕξ (v)= eibv

for some real b. The last relation implies that

ϕξ−b(v)= 1= E cosv(ξ − b)+ iE sinv(ξ − b), E
[
1− cosv(ξ − b)

]
= 0.

Hence, by Property E4 in Sect. 4.1, cosv(ξ − b)= 1 and v(ξ − b)= 2πk(ω) with

probability 1, where k(ω) is an integer. Thus ξ − b is a multiple of 2π/v > 1.

This contradicts the assumption that the span of the lattice equals 1, and hence

proves (7.1.3).

Conversely, let (7.1.3) hold. As we saw, the first relation in (7.1.3) implies that

ξ takes only integer values. If we assume that the lattice span equals h > 1 then,

by the first part of the proof and the first relation in (7.1.2), we get |ϕ(2π/h)| = 1,

which contradicts the first relation in (7.1.3). Property 9 is proved. �

The next definition looks like a tautology.

Definition 7.1.2 The distribution of ξ is called non-lattice if it is not a lattice distri-

bution.

10. If the distribution of ξ is non-lattice then
∣∣ϕξ (t)

∣∣< 1 for all t 
= 0.

Proof Indeed, if we assume the contrary, i.e. that |ϕ(u)| = 1 for some u 
= 0, then,

by Property 9, we conclude that the distribution of ξ is a lattice with span h= 2π/u

or with a lesser span. �

11. If the distribution of ξ has an absolutely continuous component of a positive
mass p > 0, then it is clearly non-lattice and, moreover,

lim sup
|t |→∞

∣∣ϕξ (t)
∣∣≤ 1− p.

This assertion follows from Property 8.

Arithmetic distributions occupy an important place in the class of lattice distri-

butions.

For arithmetic distributions, the ch.f. ϕξ (t) is a function of the variable z = eit

and is periodic in t with period 2π . Hence, in this case it is sufficient to know the
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behaviour of the ch.f. on the interval [−π,π] or, which is the same, to know the

behaviour of the function

pξ (z) := Ezξ =
∑

zkP(ξ = k)

on the unit circle |z| = 1.

Definition 7.1.3 The function pξ (z) is called the generating function of the random
variable ξ (or of the distribution of ξ ).

Since pξ (e
it )= ϕξ (t) is a ch.f., all the properties of ch.f.s remain valid for gener-

ating functions, with the only changes corresponding to the change of variable. For

more on applications of generating functions, see Sect. 7.7.

7.2 Inversion Formulas

Thus for any random variable there exists a corresponding ch.f. We will now show

that the set L of functions eitx is a distribution determining class, i.e. that the dis-

tribution can be uniquely reconstructed from its ch.f. This is proved using inversion

formulas.

7.2.1 The Inversion Formula for Densities

Theorem 7.2.1 If the ch.f. ϕ(t) of a random variable ξ is integrable then the distri-
bution of ξ has the bounded density

f (x)= 1

2π

∫
e−itxϕ(t) dt. (7.2.1)

This fact is known from classical Fourier analysis, but we shall give a proof of a

probabilistic character.

Proof First we will establish the following (Parseval’s) identity: for any fixed ε > 0,

pε(t) :=
1

2π

∫
e−ituϕ(u)e−ε2u2/2 du

≡ 1√
2πε

∫
exp

{
− (u− t)2

2ε2

}
F(du), (7.2.2)

where F is the distribution of ξ . We begin with the equality

1√
2π

∫
exp

{
ix

ξ − t

ε
− x2

2

}
dx = exp

{
− (ξ − t)2

2ε2

}
, (7.2.3)
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both sides of which being the value of the ch.f. of the normal distribution with

parameters (0,1) at the point (ξ − t)/ε. After changing the variable x = εu, the

left-hand side of this equality can be rewritten as

ε√
2π

∫
exp

{
iu(ξ − t)− ε2u2

2

}
du.

If we take expectations of both sides of (7.2.3), we obtain

ε√
2π

∫
e−iutϕ(u)e−

ε2u2

2 du=
∫

exp

{
− (u− t)2

2ε2

}
F(du).

This proves (7.2.2).

To prove the theorem first consider the left-hand side of the equality (7.2.2). Since

e−ε2u2/2→ 1 as ε→ 0, |e− ε2u2

2 | ≤ 1 and ϕ(u) is integrable, as ε→ 0 one has

pε(t)→
1

2π

∫
e−ituϕ(u)du= p0(t) (7.2.4)

uniformly in t , because the integral on the left-hand side of (7.2.2) is uniformly

continuous in t . This implies, in particular, that

∫ b

a

pε(t) dt→
∫ b

a

p0(t). (7.2.5)

Now consider the right-hand side of (7.2.2). It represents the density of the sum

ξ + εη, where ξ and η are independent and η⊂=�0,1. Therefore

∫ b

a

pε(t) dt = P(a < ξ + εη ≤ b). (7.2.6)

Since ξ + εη
p→ ξ as ε→ 0 and the limit

∫ b

a
pε(t) dt exists for any fixed a and b by

virtue of (7.2.5), this limit (see (7.2.6)) cannot be anything other than F([a, b)).

Thus, from (7.2.5) and (7.2.6) we get

∫ b

a

p0(t) dt = F
(
[a, b)

)
.

This means that the distribution F has the density p0(t), which is defined by re-

lation (7.2.4). The boundedness of p0(t) evidently follows from the integrability

of ϕ:

p0(t)≤
1

2π

∫ ∣∣ϕ(t)
∣∣dt <∞.

The theorem is proved. �
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7.2.2 The Inversion Formula for Distributions

Theorem 7.2.2 If F(x) is the distribution function of a random variable ξ and ϕ(t)

is its ch.f., then, for any points of continuity x and y of the function F(x),2

F(y)− F(x)= 1

2π
lim
σ→0

∫
e−itx − e−ity

it
ϕ(t)e−t2σ 2

dt. (7.2.7)

If the function ϕ(t)/t is integrable at infinity then the passage to the limit under the
integral sign is justified and one can write

F(y)− F(x)= 1

2π

∫
e−itx − e−ity

it
ϕ(t) dt. (7.2.8)

Proof Suppose first that the ch.f. ϕ(t) is integrable. Then F(x) has a density f (x)

and the assertion of the theorem in the form (7.2.8) follows if we integrate both sides

of Eq. (7.2.1) over the interval with the end points x and y and change the order of

integration (which is valid because of the absolute convergence).3

Now let ϕ(t) be the characteristic function of a random variable ξ with an ar-

bitrary distribution F. On a common probability space with ξ , consider a random

variable η which is independent of ξ and has the normal distribution with parame-

ters (0,2σ 2). As we have already pointed out, the ch.f. of η is e−t2σ 2
.

This means that the ch.f. of ξ+η, being equal to ϕ(t)e−t2σ 2
, is integrable. There-

fore by (7.2.8) one will have

Fξ+η(y)− Fξ+η(x)= 1

2π

∫ ∞

−∞

e−itx − e−ity

it
ϕ(t)e−t2σ 2

dt. (7.2.9)

Since η
p−→ 0 as σ → 0, we have Fξ+η⇒ F (see Chap. 6). Therefore, if x and y are

points of continuity of F, then F(y)− F(x)= limσ→0(Fξ+η(y)− Fξ+η(x)). This,

together with (7.2.9), proves the assertion of the theorem. �

In the proof of Theorem 7.2.2 we used a method which might be called the

“smoothing” of distributions. It is often employed to overcome technical difficul-

ties related to the inversion formula.

Corollary 7.2.1 (Uniqueness Theorem) The ch.f. of a random variable uniquely
determines its distribution function.

2In the literature, the inversion formula is often given in the form

F(y)− F(x)= 1

2π
lim

A→∞

∫ A

−A

e−itx − e−ity

it
ϕ(t) dt

which is equivalent to (7.2.7).

3Formula (7.2.8) can also be obtained from (7.2.1) without integration by noting that

(F (x) − F(y))/(y − x) is the value at zero of the convolution of two densities: f (x) and the

uniform density over the interval [−y,−x] (see also the remark at the end of Sect. 3.6). The ch.f.

of the convolution is equal to e−itx−e−ity

(y−x)it
ϕ(t).
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The proof follows from the inversion formula and the fact that F is uniquely

determined by the differences F(y)− F(x).

For lattice random variables the inversion formula becomes simpler. Let, for the

sake of simplicity, ξ be an integer-valued random variable.

Theorem 7.2.3 If pξ (z) := Ezξ is the generating function of an arithmetic random
variable then

P(ξ = k)= 1

2πi

∫

|z|=1

pξ (z)z
−k−1 dz. (7.2.10)

Proof Turning to the ch.f. ϕξ (t)=
∑

j eitj P(ξ = j) and changing the variables z=
it in (7.2.10) we see that the right-hand side of (7.2.10) equals

1

2π

∫ π

−π

e−itkϕξ (t) dt = 1

2π

∑

j

P(ξ = j)

∫ π

−π

eit (j−k) dt.

Here all the integrals on the right-hand side are equal to zero, except for the integral

with j = k which is equal to 2π . Thus the right-hand side itself equals P(ξ = k).

The theorem is proved. �

Formula (7.2.10) is nothing else but the formula for Fourier coefficients and has

a simple geometric interpretation. The functions {ek = eitk} form an orthonormal

basis in the Hilbert space L2(−π,π) of square integrable complex-valued functions

with the inner product

(f, g)= 1

2π

∫ π

−π

f (t)g(t) dt

(g is the complex conjugate of g). If ϕξ =
∑

ekP(ξ = k) then it immediately follows

from the equality ϕξ =
∑

ek(ξ , ek) that

P(ξ = k)= (ϕξ , ek)=
1

2π

∫ π

−π

e−itkϕξ (t) dt.

7.2.3 The Inversion Formula in L2. The Class of Functions that

Are Both Densities and Ch.F.s

First consider some properties of ch.f.s related to the inversion formula. As a prelim-

inary, note that, in classical Fourier analysis, one also considers the Fourier trans-

forms of functions f from the space L2 of square-integrable functions. Since in this

case a function f is not necessarily integrable, the Fourier transform is defined as
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the integral in the principal value sense:4

ϕ(t) := lim
N→∞

ϕ(N)(t), ϕ(N)(t) :=
∫ N

−N

eitxf (x)dx, (7.2.11)

where the limit is taken in the sense of convergence in L2:
∫ ∣∣ϕ(t)− ϕ(N)(t)

∣∣2 dx→ 0 as N→∞.

Since by Parseval’s equality

‖f ‖L2
= 1

2π
‖ϕ‖L2

, where ‖g‖L2
=
[∫
|g|2(t) dt

]1/2

,

the Fourier transform maps the space L2 into itself (there is no such isometricity

for Fourier transforms in L1). Here the inversion formula (7.2.1) holds true but the
integral in (7.2.1) is understood in the principal value sense.

Denote by F and H the class of all densities and the class of all ch.f.s, respec-

tively, and by H1,+ ⊂ L1 the class of nonnegative real-valued integrable ch.f.s,

so that the elements of H1,+ are in F up to the normalising factors. Further, let

(H1,+)(−1) be the inverse image of the class H1,+ in F for the mapping f → ϕ,

i.e. the class of densities whose ch.f.s lie in H1,+. It is clear that functions f

from (H1,+)(−1) and ϕ from H1,+ are necessarily symmetric (see Property 7A in

Sect. 7.1) and that f (0) ∈ (0,∞). The last relation follows from the fact that, by the

inversion formula for ϕ ∈H1,+, we have

‖ϕ‖ := ‖ϕ‖L1
=
∫

ϕ(t) dt = 2πf (0).

Further, denote by (H1,+)‖·‖ the class of normalised functions
ϕ
‖ϕ‖ , ϕ ∈H1,+, so

that (H1,+)‖·‖ ⊂ F, and denote by F(2,∗) the class of convolutions of symmetric
densities from L2:

F(2,∗) :=
{
f (2)∗(x) : f ∈ L2, f is symmetric

}
,

where

f (2)∗(x)=
∫

f (t)f (x − t) dt.

Theorem 7.2.4 The following relations hold true:

(H1,+)(−1) = (H1,+)‖·‖, F(2,∗) ⊂ (H1,+)‖·‖.

The class (H1,+)‖·‖ may be called the class of densities conjugate to f ∈
(H1,+)(−1). It turns out that this class coincides with the inverse image (H1,+)(−1).

The second statement of the theorem shows that this inverse image is a very rich

4Here we again omit the factor 1√
2π

(cf. the footnote on page 154).
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class and provides sufficient conditions for the density f to have a conjugate. We

will need these conditions in Sect. 8.7.

Proof of Theorem 7.2.4 Let f ∈ (H1,+)(−1). Then the corresponding ch.f. ϕ is in

H1+ and the inversion formula (7.2.1) is applicable. Multiplying its right-hand side

by 2π
‖ϕ‖ , we obtain an expression for the ch.f. (at the point −t) of the density

ϕ
‖ϕ‖

(recall that ϕ ≥ 0 is symmetric if ϕ ∈H1,+). This means that
2πf
‖ϕ‖ is a ch.f. and,

moreover, that f ∈ (H1,+)‖·‖.
Conversely, suppose that f ∗ := ϕ

‖ϕ‖ ∈ (H1,+)‖·‖. Then f ∗ ∈ F is symmetric, and

the inversion formula can be applied to ϕ:

f (x)= 1

2π

∫
e−itxϕ(t) dt = 1

2π

∫
eitxϕ(t) dt,

2πf (t)

‖ϕ‖ =
∫

eitxf ∗(x) dx.

Since the ch.f. ϕ∗(t) := 2πf (t)
‖ϕ‖ belongs to H1,+, one has f ∗ ∈ (H1,+)(−1).

We now prove the second assertion. Suppose that f ∈ L2. Then ϕ ∈ L2 and

ϕ2 ∈ L1. Moreover, by virtue of the symmetry of f and Property 7A in Sect. 7.1,

the function ϕ is real-valued, so ϕ2 ≥ 0. This implies that ϕ2 ∈H1,+. Since ϕ2 is

the ch.f. of the density f (2)∗, we have f (2)∗ ∈ (H1,+)(−1). The theorem is proved. �

Note that any bounded density f belongs to L2. Indeed, since the Lebesgue mea-

sure of {x : f (x)≥ 1} is always less than 1, for f (·)≤N we have

‖f ‖2
L2
=
∫

f 2(x) dx ≤
∫

f (x)<1

f (x)dx +N2

∫

f (x)≥1

dx ≤ 1+N2. �

Thus we have obtained the following result.

Corollary 7.2.2 For any bounded symmetric density f , the convolution f (2)∗ is, up
to a constant factor, the ch.f. of a random variable.

Example 7.2.1 The “triangle” density

g(x)=
{

1− |x| if |x| ≤ 1,

0 if |x|> 1,

being the convolution of the two uniform distributions on [−1/2,1/2] (cf. Exam-

ple 3.6.1) is also a ch.f. We suggest the reader to verify that the preimage of this

ch.f. is the density

f (x)= 1

2π

sin2 x/2

x2

(the density conjugate to g). Conversely, the density g is conjugate to f , and the

functions 8πf (t) and g(t) will be ch.f.s for g and f , respectively.

These assertions will be useful in Sect. 8.7.
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7.3 The Continuity (Convergence) Theorem

Let {ϕn(t)}∞n=1 be a sequence of ch.f.s and {Fn}∞n=1 the sequence of the respective

distribution functions. Recall that the symbol⇒ denotes the weak convergence of

distributions introduced in Chap. 6.

Theorem 7.3.1 (The Continuity Theorem) A necessary and sufficient condition for
the convergence Fn⇒ F as n→∞ is that ϕn(t)→ ϕ(t) for any t , ϕ(t) being the
ch.f. corresponding to F .

The theorem follows in an obvious way from Corollary 6.3.2 (here two of the

three sufficient conditions from Corollary 6.3.2 are satisfied: conditions (2) and (3)).

The proof of the theorem can be obtained in a simpler way as well. This way is

presented in Sect. 7.4 of the previous editions of this book.

In Sect. 7.1, for nonnegative random variables ξ we introduced the notion of

the Laplace transform ψ(s) := Ee−sξ . Let ψn(s) and ψ(s) be Laplace transforms

corresponding to Fn and F . The following analogue of Theorem 7.3.1 holds for

Laplace transforms:

In order that Fn⇒ F as n→∞ it is necessary and sufficient that ψn(s)→ψ(s)

for each s ≥ 0.

Just as in Theorem 7.3.1, this assertion follows from Corollary 6.3.2, since the

class {f (x)= e−sx, s ≥ 0} is (like {eitx}) a distribution determining class (see Prop-

erty 6 in Sect. 7.1) and, moreover, the sufficient conditions (2) and (3) of Corol-

lary 6.3.2 are satisfied.

Theorem 7.3.1 has a deficiency: one needs to know in advance that the func-

tion ϕ(t) to which the ch.f.s converge is a ch.f. itself. However, one could have no

such prior information (see e.g. Sect. 8.8). In this connection there arises a natural

question under what conditions the limiting function ϕ(t) will be characteristic.

The answer to this question is given by the following theorem.

Theorem 7.3.2 Let

ϕn(t)=
∫

eitx dFn(x)

be a sequence of ch.f.s and ϕn(t)→ ϕ(t) as n→∞ for any t .

Then the following three conditions are equivalent:

(a) ϕ(t) is a ch.f.;
(b) ϕ(t) is continuous at t = 0;

(c) the sequence {Fn} is tight.

Thus if we establish that ϕn(t)→ ϕ(t) and one of the above three conditions is

met, then we can assert that there exists a distribution F such that ϕ is the ch.f. of

F and Fn⇒ F .
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Proof The equivalence of conditions (a) and (c) follows from Theorem 6.3.2. That

(a) implies (b) is known. It remains to establish that (c) follows from (b). First we

will show that the following lemma is true. �

Lemma 7.3.1 If ϕ is the ch.f. of ξ then, for any u > 0,

P

(
|ξ |> 2

u

)
≤ 1

u

∫ u

−u

[
1− ϕ(t)

]
dt.

Proof The right-hand side of this inequality is equal to

1

u

∫ u

−u

∫ ∞

−∞

(
1− e−itx

)
dF(x)dt,

where F is the distribution function of ξ . Changing the order of integration and

noting that

∫ u

−u

(
1− e−itx

)
dt =

(
t + e−itx

ix

)∣∣∣∣
u

−u

= 2u

(
1− sinux

ux

)
,

we obtain that

1

u

∫ u

−u

[
1− ϕ(t)

]
dt = 2

∫ ∞

−∞

(
1− sinux

ux

)
dF(x)

≥ 2

∫

|x|>2/u

(
1−

∣∣∣∣
sinux

ux

∣∣∣∣
)

dF(x)

≥ 2

∫

|x|>2/u

(
1− 1

|ux|

)
dF(x)≥

∫

|x|>2/u

dF(x).

The lemma is proved. �

Now suppose that condition (b) is met. By Lemma 7.3.1

lim sup
n→∞

∫

|x|>2/u

dFn(x)≤ lim sup
n→∞

1

u

∫ u

−u

[
1− ϕn(t)

]
dt = 1

u

∫ u

−u

[
1− ϕ(t)

]
dt.

Since ϕ(t) is continuous at 0 and ϕ(0)= 1, the mean value on the right-hand side can

clearly be made arbitrarily small by choosing sufficiently small u. This obviously

means that condition (c) is satisfied. The theorem is proved. �

Using ch.f.s one can not only establish convergence of distribution functions but

also estimate the rate of this convergence in the cases when one can estimate how

fast ϕn − ϕ vanishes. We will encounter respective examples in Sect. 7.5.

We will mostly use the machinery of ch.f.s in Chaps. 8, 12 and 17. In the present

chapter we will also touch upon some applications of ch.f.s, but they will only serve

as illustrations.
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7.4 The Application of Characteristic Functions in the Proof

of the Poisson Theorem

Let ξ1, . . . , ξn be independent integer-valued random variables,

Sn =
k∑

1

ξk, P(ξk = 1)= pk, P(ξk = 0)= 1− pk − qk.

The theorem below is a generalisation of the theorems established in Sect. 5.4.5

Theorem 7.4.1 One has

∣∣P(Sn = k)−�µ

(
{k}

)∣∣≤
n∑

k=1

p2
k + 2

n∑

k=1

qk, where µ=
n∑

k=1

pk.

Thus, if one is given a triangle array ξ1n, ξ2n, . . . , ξnn, n= 1,2, . . . , of indepen-

dent integer-valued random variables,

Sn =
n∑

k=1

ξkn, P(ξkn = 1)= pkn, P(ξkn = 0)= 1− pkn − qkn,

µ=
n∑

k=1

pkn,

then a sufficient condition for convergence of the difference P(Sn = k)−�µ({k})
to zero is that

n∑

k=1

qkn→ 0,

n∑

k=1

p2
kn→ 0.

Since
n∑

k=1

p2
kn ≤ µmax

k≤n
pkn,

the last condition is always met if

max
k≤n

pkn→ 0, µ≤ µ0 = const.

5This extension is not really substantial since close results could be established using Theo-

rem 5.2.2 in which ξk can only take the values 0 and 1. It suffices to observe that the probability of

the event A=
⋃

k{ξk 
= 0, ξk 
= 1} is bounded by the sum
∑

qk and therefore

P(Sn = k)= θ1

∑
qk +

(
1− θ2

∑
qk

)
P(Sn = k|A), θi ≤ 1, i = 1,2,

where P(Sn = k|A)= P(S∗n = k) and S∗n are sums of independent random variables ξ∗k with

P
(
ξ∗k = 1

)
= p∗k =

pk

1− qk

, P
(
ξ∗k = 0

)
= 1− p∗k .
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To prove the theorem we will need two auxiliary assertions.

Lemma 7.4.1 If Reβ ≤ 0 then
∣∣eβ − 1

∣∣≤ |β|,
∣∣eβ − 1− β

∣∣≤ |β|2/2,
∣∣eβ − 1− β − β2/2

∣∣≤ |β|3/6.

Proof The first two inequalities follow from the relations (we use here the change

of variables t = βv and the fact that |es | ≤ 1 for Re s ≤ 0)

∣∣eβ − 1
∣∣=

∣∣∣∣
∫ β

0

et dt

∣∣∣∣=
∣∣∣∣β

∫ 1

0

eβv dv

∣∣∣∣≤ |β|,

∣∣eβ − 1− β
∣∣=

∣∣∣∣
∫ β

0

(
et − 1

)
dt

∣∣∣∣=
∣∣∣∣β

∫ 1

0

(
eβv − 1

)
dv

∣∣∣∣≤ |β|
2

∫ 1

0

v dv =
∣∣β2

∣∣/2.

The last inequality is proved in the same way. �

Lemma 7.4.2 If |ak| ≤ 1, |bk| ≤ 1, k = 1, . . . , n, then
∣∣∣∣∣

n∏

k=1

ak −
n∏

k=1

bk

∣∣∣∣∣≤
n∑

k=1

|ak − bk|.

Thus if ϕk(t) and θk(t) are ch.f.s then, for any t ,
∣∣∣∣∣

n∏

k=1

ϕk(t)−
n∏

k=1

θk(t)

∣∣∣∣∣≤
n∑

k=1

∣∣ϕk(t)− θk(t)
∣∣.

Proof Put An =
∏n

k=1 ak and Bn =
∏n

k=1 bk . Then |An| ≤ 1, |Bn| ≤ 1, and

|An −Bn| = |An−1an −Bn−1bn|
=
∣∣(An−1 −Bn−1)an + (an − bn)Bn−1

∣∣≤ |An−1 −Bn−1| + |an − bn|.

Applying this inequality n times, we obtain the required relation. �

Proof of Theorem 7.4.1 One has

ϕk(t) := Eeitξk = 1+ pk

(
eit − 1

)
+ qk

(
γk(t)− 1

)
,

where γk(t) is the ch.f. of some integer-valued random variable. By independence

of the random variables ξk ,

ϕSn(t)=
n∏

k=1

ϕk(t).

Let further ζ ⊂=�µ. Then

ϕζ (t)= Eeitζ = eµ(eit−1) =
n∏

k=1

θk(t),
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where θk(t)= epk(e
it−1). Therefore the difference between the ch.f.s ϕSn and ϕζ can

be bounded by Lemma 7.4.2 as follows:

∣∣ϕSn(t)− ϕζ (t)
∣∣=

∣∣∣∣∣

n∏

k=1

ϕk −
n∏

k=1

θk

∣∣∣∣∣≤
n∑

k=1

|ϕk − θk|,

where by Lemma 7.4.1 (note that Re(eit − 1)≤ 0)

∣∣θk(t)− 1− pk

(
eit − 1

)∣∣≤ p2
k |eit − 1|2

2
=

p2
k

2

(
sin2 t + (1− cos t)2

)

= p2
k

(
sin2 t

2
+ 2 sin4 t

2

)
, (7.4.1)

n∑

k=1

|ϕk − θk| ≤ 2

n∑

k=1

qk +
n∑

k=1

p2
k

(
sin2 t

2
+ 2 sin4 t

2

)
.

It remains to make use of the inversion formula (7.2.10):

∣∣P(Sn = k)−�µ

(
{k}

)∣∣≤
∣∣∣∣

1

2π

∫ π

−π

e−ikt
(
ϕSn(t)− ϕζ (t)

)
dt

∣∣∣∣

≤ 1

π

∫ π

0

[
2

n∑

k=1

qk +
n∑

k=1

p2
k

(
sin2 t

2
+ 2 sin4 t

2

)]
dt

= 2

n∑

k=1

qk +
n∑

k=1

p2
k ,

for

1

2π

∫ π

0

sin2 t dt = 1

4
,

2

π

∫ π

0

sin4 t

2
dt = 3

4
.

The theorem is proved. �

If one makes use of the inequality |eit − 1| ≤ 2 in (7.4.1), the computations will

be simplified, there will be no need to calculate the last two integrals, but the bounds

will be somewhat worse:
∑
|ϕk − θk| ≤ 2

(∑
qk +

∑
p2

k

)
,

∣∣P(Sn = k)−�µ

(
{k}

)∣∣≤ 2
(∑

qk +
∑

p2
k

)
.

7.5 Characteristic Functions of Multivariate Distributions.

The Multivariate Normal Distribution

Definition 7.5.1 Given a random vector ξ = (ξ1, ξ2, . . . , ξd), its ch.f. (the ch.f. of

its distribution) is defined as the function of the vector variable t = (t1, . . . , td) equal

to
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ϕξ (t) := EeitξT = Eei(t,ξ) = E exp

{
i

d∑

k=1

tkξk

}

=
∫

exp

{
i

d∑

k=1

tkxk

}
Fξ1,...,ξd

(dx1, . . . , dxd),

where ξT is the transpose of ξ (a column vector), and (t, ξ) is the inner product.

The ch.f.s of multivariate distributions possess all the properties (with obvious

amendments of their statements) listed in Sects. 7.1–7.3.

It is clear that ϕξ (0) = 1 and that |ϕξ (t)| ≤ 1 and ϕξ (−t) = ϕξ (t) always hold.

Further, ϕξ (t) is everywhere continuous. If there exists a mixed moment Eξ
k1

1 · · · ξ
kd

d

then ϕξ has the respective derivative of order k1 + · · · + kd :

∂ϕ
k1+···+kd

ξ (t)

∂t
k1

1 . . . ∂t
kd

d

∣∣∣∣
t=0

= ik1+···+kd Eξ
k1

1 · · · ξ
kd

d .

If all the moments of some order exist, then an expansion of the function ϕξ (t)

similar to (7.1.1) is valid in a neighbourhood of the point t = 0.

If ϕξ (t) is known, then the ch.f. of any subcollection of the random variables

(ξk1
, . . . , ξkj

) can obviously be obtained by setting all tk except tk1
, . . . , tkj

to be

equal to 0.

The following theorems are simple extensions of their univariate analogues.

Theorem 7.5.1 (The Inversion Formula) If ∆ is a parallelepiped defined by the
inequalities ak < x < bk , k = 1, . . . , d , and the probability P(ξ ∈∆) is continuous
on the faces of the parallelepiped, then

P(ξ ∈∆)= lim
σ→0

1

(2π)d

∫
· · ·

∫ (
d∏

k=1

e−itkak − e−itkbk

itk
e−t2

k σ 2

)
ϕξ (t) dt1 · · ·dtd .

If the random vector ξ has a density f (x) and its ch.f. ϕξ (t) is integrable, then

the inversion formula can be written in the form

f (x)= 1

(2π)d

∫
e−i(t,x)ϕξ (t) dt.

If a function g(x) is such that its Fourier transform

g̃(t)=
∫

ei(t,x)g(x)dx

is integrable (and this is always the case for sufficiently smooth g(x)) then the Par-

seval equality holds:

Eg(ξ)= E
1

(2π)d

∫
e−i(t,ξ)g̃(t) dt = 1

(2π)d

∫
ϕξ (−t)g̃(t) dt.
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As before, the inversion formula implies the theorem on one-to-one correspon-

dence between ch.f.s and distribution functions and together with it the fact that

{ei(t,x)} is a distribution determining class (cf. Definition 6.3.2).

The weak convergence of distributions Fn(B) in the d-dimensional space to a

distribution F(B) is defined in the same way as in the univariate case: F(n)⇒ F if
∫

f (x)dF(n)(dx)→
∫

f (x)dF(dx)

for any continuous and bounded function f (x).

Denote by ϕn(t) and ϕ(t) the ch.f.s of distributions Fn and F, respectively.

Theorem 7.5.2 (Continuity Theorem) A necessary and sufficient condition for the
weak convergence F(n)⇒ F is that, for any t , ϕn(t)→ ϕ(t) as n→∞.

In the case where one can establish convergence of ϕn(t) to some function ϕ(t),

there arises the question of whether ϕ(t) will be the ch.f. of some distribution, or,

which is the same, whether the sequence F(n) will converge weakly to some distri-

bution F. Answers to these questions are given by the following assertion. Let ∆N

be the cube defined by the inequality maxk |xk|< N .

Theorem 7.5.3 (Continuity Theorem) Suppose a sequence ϕn(t) of ch.f.s converges
as n→∞ to a function ϕ(t) for each t . Then the following three conditions are
equivalent:

(a) ϕ(t) is a ch.f.;
(b) ϕ(t) is continuous at the point t = 0;

(c) lim supn→∞
∫
x /∈∆N

F(n)(dx)→ 0 as N→∞.

All three theorems from this section can be proved in the same way as in the

univariate case.

Example 7.5.1 The multivariate normal distribution is defined as a distribution with

density (see Sect. 3.3)

fξ (x)= |A|
1/2

(2π)d/2
e−Q(x)/2,

where

Q(x)= xAxT =
d∑

i,j=1

aijxixj ,

and |A| is the determinant of a positive definite matrix A= ‖aij‖.
This is a centred normal distribution for which Eξ = 0. The distribution of the

vector ξ + a for any constant vector a is also called normal.

Find the ch.f. of ξ . Show that

ϕξ (t)= exp

{
− tσ 2tT

2

}
, (7.5.1)
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where σ 2 = A−1 is the matrix inverse to A and coinciding with the covariance

matrix ‖σij‖ of ξ :

σij = Eξiξj .

Indeed,

ϕξ (t)=
√
|A|

(2π)d/2

∫ ∞

−∞
· · ·

∫ ∞

−∞
exp

{
itxT − xAxT

2

}
dx1 · · ·dxd . (7.5.2)

Choose an orthogonal matrix C such that CACT = D is a diagonal matrix, and

denote by µ1, . . . ,µn the values of its diagonal elements. Change the variables by

putting x = yC and t = vC. Then

|A| = |D| =
d∏

k=1

µk,

itxT − 1

2
xAxT = ivyT − 1

2
yDyT = i

d∑

k=1

vkyk −
1

2

n∑

k=1

µky
2
k ,

and, by Property 2 of ch.f.s of the univariate normal distributions,

ϕξ (t)=
√
|A|

(2π)d/2

d∏

k=1

∫ ∞

−∞
exp

{
ivkyk −

µky
2
k

2

}
dyk =

√
|A|

d∏

k=1

1
√

µk

exp

{
−

v2
k

2µk

}

= exp

{
−vD−1vT

2

}
= exp

{
− tCT D−1CtT

2

}
= exp

{
− tA−1tT

2

}
.

On the other hand, since all the moments of ξ exist, in a neighbourhood of the point

t = 0 one has

ϕξ (t)= 1− 1

2
tA−1tT + o

(∑
t2
k

)
= 1+ itEξT + 1

2
tσ 2tT + o

(∑
t2
k

)
.

From this it follows that Eξ = 0, A−1 = σ 2.

Formula (7.5.1) that we have just proved implies the following property of nor-

mal distributions: the components of the vector (ξ1, . . . , ξd) are independent if and
only if the correlation coefficients ρ(ξi, ξj ) are zero for all i 
= j . Indeed, if σ 2 is a

diagonal matrix, then A= σ−2 is also diagonal and fξ (x) is equal to the product of

densities. Conversely, if (ξ1, . . . , ξd) are independent, then A is a diagonal matrix,

and hence σ 2 is also diagonal.
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7.6 Other Applications of Characteristic Functions.

The Properties of the Gamma Distribution

7.6.1 Stability of the Distributions �α,σ 2 and Kα,σ

The stability property means, roughly speaking, that the distribution type is pre-

served under summation of random variables (this description of stability is not

exact, for more detail see Sect. 8.8).

The sum of independent normally distributed random variables is also normally

distributed. Indeed, let ξ1 and ξ2 be independent and normally distributed with pa-

rameters (a1, σ
2
1 ) and (a2, σ

2
2 ), respectively. Then the ch.f. of ξ1 + ξ2 is equal to

ϕξ1+ξ2
(t)= ϕξ1

(t)ϕξ2
(t)= exp

{
ita1 −

t2σ 2
1

2

}
exp

{
ita2 −

t2σ 2
2

2

}

= exp

{
it (a1 + a2)−

t2

2

(
σ 2

1 + σ 2
2

)}
.

Thus the sum ξ1 + ξ2 is again a normal random variable, with parameters (a1 +
a2, σ

2
1 + σ 2

2 ).

Normality is also preserved when taking sums of dependent random variables

(components of an arbitrary normally distributed random vector). This immediately

follows from the form of the ch.f. of the multivariate normal law found in Sect. 7.5.

One just has to note that to get the ch.f. of the sum ξ1 + · · · + ξn it suffices to put

t1 = · · · = tn = t in the expression

ϕ(ξ1,...,ξn)(t1, . . . , tn)= E exp{it1ξ1 + · · · + itnξn}.

The sum of independent random variables distributed according to the Poisson

law also has a Poisson distribution. Indeed, consider two independent random vari-

ables ξ1 ⊂=�λ1
and ξ2 ⊂=�λ2

. The ch.f. of their sum is equal to

ϕξ1+ξ2
(t)= exp

{
λ1

(
eit − 1

)}
exp

{
λ2

(
eit − 1

)}
= exp

{
(λ1 + λ2)

(
eit − 1

)}
.

Therefore ξ1 + ξ2 ⊂= �λ1+λ2
.

The sum of independent random variables distributed according to the Cauchy

law also has a Cauchy distribution. Indeed, if ξ1 ⊂=Kα1,σ1
and ξ2 ⊂=Kα2,σ2

, then

ϕξ1+ξ2
(t)= exp

{
iα1t − σ1|t |

}
exp

{
iα2t − σ2|t |

}

= exp
{
i(α1 + α2)t − (σ1 + σ2)|t |

}
;

ξ1 + ξ2 ⊂=Kα1+α2,σ1+σ2
.

The above assertions are closely related to the fact that the normal and Poisson

laws are, as we saw, limiting laws for sums of independent random variables (the

Cauchy distribution has the same property, see Sect. 8.8). Indeed, if S2n/
√

2n con-

verges in distribution to a normal law (where Sk =
∑k

j=1 ξj , ξj are independent

and identically distributed) then it is clear that Sn/
√

n and (S2n − Sn)/
√

n will also
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converge to a normal law so that the sum of two asymptotically normal random

variables also has to be asymptotically normal.

Note, however, that due to its arithmetic structure the random variable ξ ⊂=�λ

(as opposed to ξ ⊂=�a,σ 2 or ξ ⊂=Kα,σ ) cannot be transformed by any normalisation

(linear transformation) into a random variable again having the Poisson distribution

but with another parameter. For this reason the Poisson distribution cannot be stable

in the sense of Definition 8.8.2.

It is not hard to see that the other distributions we have met do not possess the

above-mentioned property of preservation of the distribution type under summa-

tion of random variables. If, for instance, ξ1 and ξ2 are uniformly distributed over

[0,1] and independent then Fξ1
and Fξ1+ξ2

are substantially different functions (see

Example 3.6.1).

7.6.2 The Ŵ-distribution and its properties

In this subsection we will consider one more rather wide-spread type of distribution

closely related to the normal distribution and frequently used in applications. This

is the so-called Pearson gamma distribution Ŵα,λ. We will write ξ ⊂= Ŵα,λ if ξ has

density

f (x;α,λ)=
{

αλ

Γ (λ)
xλ−1e−αx, x ≥ 0,

0, x < 0,

depending on two parameters α > 0 and λ > 0, where Γ (λ) is the gamma function

Γ (λ)=
∫ ∞

0

xλ−1e−x dx, λ > 0.

It follows from this equality that
∫

f (x;α,λ)dx = 1 (one needs to make the variable

change αx = y). If one differentiates the ch.f.

ϕ(t)= ϕ(t;α,λ)= αλ

Γ (λ)

∫ ∞

0

xλ−1eitx−αx dx

with respect to t and then integrates by parts, the result will be

ϕ′(t)= αλ

Γ (λ)

∫ ∞

0

ixλeitx−αx dx = αλ

Γ (λ)

iλ

α− it

∫ ∞

0

xλ−1eitx−αx dx

= iλ

α − it
ϕ(t);

(
lnϕ(t)

)′ =
(
−λ ln(α − it)

)′
, ϕ(t)= c(α − it)−λ.

Since ϕ(0)= 1 one has c= αλ and ϕ(t)= (1− it/α)−λ.

It follows from the form of the ch.f. that the subfamily of distributions Ŵα,λ for

a fixed α also has a certain stability property: if ξ1 ⊂= Ŵα,λ1
and ξ2 ⊂= Ŵα,λ2

are

independent, then ξ1 + ξ2 ⊂= Ŵα,λ1+λ2
.



7.6 Other Applications of Characteristic Functions 177

An example of a particular gamma distribution is given, for instance, by the dis-

tribution of the random variable

χ2
n =

n∑

i=1

ξ2
i ,

where ξi are independent and normally distributed with parameters (0,1). This is the

so-called chi-squared distribution with n degrees of freedom playing an important

role in statistics.

To find the distribution of χ2
n it suffices to note that, by virtue of the equality

P
(
χ2

1 < x
)
= P

(
|ξ1|<

√
x
)
= 2√

2π

∫ √x

0

e−u2/2 du,

the density of χ2
1 is equal to

1√
2π

e−x/2x−1/2 = f (x;1/2,1/2), χ2
1 ⊂= Ŵ1/2,1/2.

This means that the ch.f. of χ2
n is

ϕn(t;1/2,1/2)= (1− 2it)−n/2 = ϕ(t;1/2, n/2)

and corresponds to the density f (t;1/2, n/2).

Another special case of the gamma distribution is the exponential distribution
Ŵα = Ŵα,1 with density

f (x;α,1)= αe−αx, x ≥ 0,

and characteristic function

ϕ(x;α,1)=
(

1− it

α

)−1

.

We leave it to the reader to verify with the help of ch.f.s that if ξj ⊂= Ŵαj
and are

independent, αj 
= αl for j 
= l, then

P

(
n∑

j=1

ξj > x

)
=

n∑

j=1

e−αj x

n∏

l=1
l 
=j

(
1− αj

αl

)−1

.

In various applications (in particular, in queueing theory, cf. Sect. 12.4), the so-

called Erlang distribution is also of importance. This is a distribution with density

f (x;α,λ) for integer λ. The Erlang distribution is clearly a λ-fold convolution of

the exponential distribution with itself.

We find the expectation and variance of a random variable ξ that has the gamma

distribution with parameters (α,λ):

Eξ =−iϕ′(0;α,λ)= λ

α
, Eξ2 =−iϕ′′(0;α,λ)= λ(λ+ 1)

α2
,

Var(ξ)= λ(λ+ 1)

α2
−
(

λ

α

)2

= λ

α2
.
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Distributions from the gamma family, and especially the exponential ones, are

often (and justifiably) used to approximate distributions in various applied problems.

We will present three relevant examples.

Example 7.6.1 Consider a complex device. The failure of at least one of n parts

comprising the device means the breakdown of the whole device. The lifetime dis-

tribution of any of the parts is usually well described by the exponential law. (The

reasons for this could be understood with the help of the Poisson theorem on rare

events. See also Example 2.4.1 and Chap. 19.)

Thus if the lifetimes ξj of the parts are independent, and for the part number j

one has

P(ξj > x)= e−αj x, x > 0,

then the lifetime of the whole device will be equal to ηn =min(ξ1, . . . , ξn) and we

will get

P(ηn > x)= P

(
n⋂

j=1

{ξj > x}
)
=

n∏

j=1

P(ξj > x)= exp

{
−x

n∑

i=1

αi

}
.

This means that ηn will also have the exponential distribution, and since

Eξj = 1/αj ,

the mean failure-free operation time of the device will be equal to

Eηn =
(

n∑

i=1

1

Eξi

)−1

.

Example 7.6.2 Now turn to the distribution of ζn = max(ξ1, . . . , ξn), where ξi are

independent and all have the Ŵ-distribution with parameters (α,λ). We could con-

sider, for instance, a queueing system with n channels. (That could be, say, a mul-

tiprocessor computer solving a problem using the complete enumeration algorithm,

each of the processors of the machine checking a separate variant.) Channel number

i is busy for a random time ξi . After what time will the whole system be free? This

random time will clearly have the same distribution as ζn.

Since the ξi are independent, we have

P(ζn < x)= P

(
n⋂

j=1

{ξj < x}
)
=
[
P(ξ1 < x)

]n
. (7.6.1)

If n is large, then for approximate calculations we could find the limiting distri-

bution of ζn as n→∞. Note that, for any fixed x, P(ζn < x)→ 0 as n→∞.

Assuming for simplicity that α = 1 (the general case can be reduced to this one

by changing the scale), we apply L’Hospital’s rule to see that, as x→∞,

P(ξj < x)=
∫ ∞

x

1

Γ (λ)
yλ−1e−y dy ∼ xλ−1

Γ (λ)
e−x .
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Letting n→∞ and

x = x(n)= ln
[
n(lnn)λ−1/Γ (λ)

]
+ u, u= const,

we get

P(ξj > x)∼ (lnn)λ−1

Γ (λ)

Γ (λ)

n(lnn)λ−1
e−u = e−u

n
.

Therefore for such x and n→∞ we obtain by (7.6.1) that

P(ζn < x)=
(

1− e−u

n

(
1+ o(1)

))n

→ e−e−u

.

Thus we have established the existence of the limit

lim
n→∞

P

(
ζn − ln

[
n(lnn)λ−1

Γ (λ)

]
< u

)
= e−e−u

,

or, which is the same, that

ζn − ln

[
n(lnn)λ−1

Γ (λ)

]
⊂⇒ F0, F0(u)= e−e−u

.

In other words, for large n the variable ζn admits the representation

ζn ≈ ln

[
n(lnn)λ−1

Γ (λ)

]
+ ζ 0, where ζ 0 ⊂= F0.

Example 7.6.3 Let ξ1 and ξ2 be independent with ξ1 ⊂=Ŵα,λ1
and ξ2 ⊂=Ŵα,λ2

. What

is the distribution of ξ1/(ξ1 + ξ2)? We will make use of Theorem 4.9.2. Since the

joint density f (x, y) of ξ1 and η= ξ1 + ξ2 is equal to

f (x, y)= f (x;α,λ1)f (y − x;α,λ2),

the density of η is

q(y)= f (y;α,λ1 + λ2),

and the conditional density f (x | y) of ξ1 given η= y is equal to

f (x | y)= f (x, y)

q(y)
= Γ (λ1 + λ2)

Γ (λ1)Γ (λ2)

xλ1−1(y − x)λ2−1

yλ1+λ2−1
, x ∈ [0, y].

By the formulas from Sect. 3.2 the conditional density of ξ1/y = ξ1/(ξ1+ξ2) (given

the same condition ξ1 + ξ2 = y) is equal to

yf (yx | y)= Γ (λ1 + λ2)

Γ (λ1)Γ (λ2)
xλ1−1(1− x)λ2−1, x ∈ [0,1].

This distribution does not depend on y (nor on α). Hence the conditional density

of ξ1/(ξ1+ ξ2) will have the same property, too. We obtain the so-called beta distri-
bution Bλ1,λ2

with parameters λ1 and λ2 defined on the interval [0,1]. In particular,

for λ1 = λ2 = 1, the distribution is uniform: B1,1 =U0,1.
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7.7 Generating Functions. Application to Branching Processes.

A Problem on Extinction

7.7.1 Generating Functions

We already know that if a random variable ξ is integer-valued, i.e.

P

(⋃

k

{ξ = k}
)
= 1,

then the ch.f. ϕξ (t) will actually be a function of z = eit , and, along with its ch.f.,

the distribution of ξ can be specified by its generating function

pξ (z) := Ezξ =
∑

k

zkP(ξ = k).

The inversion formula can be written here as

P(ξ = k)= 1

2π

∫ π

−π

e−itkϕξ (t) dt = 1

2πi

∫

|z|=1

z−k−1pξ (z) dz. (7.7.1)

As was already noted (see Sect. 7.2), relation (7.7.1) is simply the formula for

Fourier coefficients (since eitk = cos tk+ i sin tk).

If ξ and η are independent random variables, then the distribution of ξ + η will

be given by the convolution of the sequences P(ξ = k) and P(η= k):

P(ξ + η= n)=
∞∑

k=−∞
P(ξ = k)P(η= n− k)

(the total probability formula). To this convolution there corresponds the product of

the generating functions:

pξ+η(z)= pξ (z)pη(z).

It is clear from the examples considered in Sect. 7.1 that the generating functions of

random variables distributed according to the Bernoulli and Poisson laws are

pξ (z)= 1+ p(z− 1), pξ (z)= exp
{
µ(z− 1)

}
,

respectively.

One can see from the definition of the generating function that, for a nonnegative

random variable ξ ≥ 0, the function pξ (z) is defined for |z| ≤ 1 and is analytic in

the domain |z|< 1.

7.7.2 The Simplest Branching Processes

Now we turn to sequences of random variables which describe the so-called branch-
ing processes. We have already encountered a simple example of such a process
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when describing a chain reaction scheme in Example 4.4.4. Consider a more general

scheme of a branching process. Imagine particles that can produce other particles

of the same type; these could be neutrons in chain reactions, bacteria reproducing

according to certain laws etc. Assume that initially there is a single particle (the

“null generation”) that, as a result of a “division” act, transforms with probabilities

fk , k = 0,1,2, . . . , into k particles of the same type,

∞∑

k=0

fk = 1.

The new particles form the “first generation”. Each of the particles from that gen-

eration behaves itself in the same way as the initial particle, independently of what

happened before and of the other particles from that generation. Thus we obtain the

“second generation”, and so on. Denote by ζn the number of particles in the n-th

generation. To describe the sequence ζn, introduce, as we did in Example 4.4.4,

independent sequences of independent identically distributed random variables

{
ξ

(1)
j

}∞
j=1

,
{
ξ

(2)
j

}∞
j=1

, . . . ,

where ξ
(n)
j have the distribution

P
(
ξ

(n)
j = k

)
= fk, k = 0,1, . . . .

Then the sequence ζn can be represented as

ζ0 = 1,

ζ1 = ξ
(1)
1 ,

ζ2 = ξ
(2)
1 + · · · + ξ

(2)
ζ1

,

· · · · · · · · · · · · · · · · · ·
ζn = ξ

(n)
1 + · · · + ξ

(n)
ζn−1

.

These are sums of random numbers of random variables. Since ξ
(n)
1 , ξ

(n)
2 , . . . do not

depend on ζn−1, for the generating function f(n)(z) = Ezζn we obtain by the total

probability formula that

f(n)(z)=
∞∑

k=0

P(ζn−1 = k)Ezξ
(n)
1 +···+ξ

(n)
k

=
∞∑

k=0

P(ζn−1 = k)f k(z)= f(n−1)

(
f (z)

)
, (7.7.2)

where

f (z) := f(1)(z)= Ezξ
(n)
1 =

∞∑

k=0

fkz
k.
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Fig. 7.1 Finding the

extinction probability of a

branching process: it is given

by the smaller of the two

solutions to the equation

z= f (z)

Denote by fn(z) the n-th iterate of the function f (z), i.e. f1(z) = f (z), f2(z) =
f (f (z)), f3(z)= f (f2(z)) and so on. Then we conclude from (7.7.2) by induction

that the generating function of ζn is equal to the n-th iterate of f (z):

Ezζn = f(n)(z).

From this one can easily obtain, by differentiating at the point z= 1, recursive rela-

tions for the moments of ζn.

How can one find the extinction probability of the process? By extinction we will

understand the event that all ζn starting from some n will be equal to 0. (If ζn = 0

then clearly ζn+1 = ζn+2 = · · · = 0, because P(ζn+1 = 0| ζn = 0) = 1. ) Set Ak =
{ζk = 0}. Then extinction is the event

⋃∞
k=1 Ak . Since An ⊂ An+1, the extinction

probability q is equal to q = limn→∞ P(An).

Theorem 7.7.1 The extinction probability q is equal to the smallest nonnegative
solution of the equation q = f (q).

Proof One has P(An)= fn(0)≤ 1, and this sequence is non-increasing. Passing in

the equality

fn+1(0)= f
(
fn(0)

)
(7.7.3)

to the limit as n→∞, we obtain

q = f (q), q ≤ 1.

This is an equation for the extinction probability. Let us analyse its solutions. The

function f (z) is convex (as f ′′(z) ≥ 0) and non-decreasing in the domain z ≥ 0

and f ′(1) = m is the mean number of offspring of a single particle. First assume

that P(ξ
(1)
1 = 1) < 1. If m ≤ 1 then f (z) > z for z < 1 and hence q = 1. If m > 1

then by convexity of f the equation q = f (q) has exactly two solutions on the

interval [0,1]: q1 < 1 and q2 = 1 (see Fig. 7.1). Assume that q = q2 = 1. Then the

sequence δn = 1− fn(0) will monotonically converge to 0, and f (1− δn) < 1− δn

for sufficiently large n. Therefore, for such n,

δn+1 = 1− f (1− δn) > δn,
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which is a contradiction as δn is a decreasing sequence. This means that q = q1 < 1.

Finally, in the case P(ξ
(1)
1 = 1)= f1 = 1 one clearly has f (z) ≡ z and q = 0. The

theorem is proved. �

Now consider in more detail the case m = 1, which is called critical. We know

that in this case the extinction probability q equals 1. Let qn = P(An) = fn(0) be

the probability of extinction by time n. How fast does qn converge to 1? By (7.7.3)

one has qn+1 = f (qn). Therefore the probability pn = 1− qn of non-extinction of

the process by time n satisfies the relation

pn+1 = g(pn), g(x)= 1− f (1− x).

It is also clear that γn = pn − pn+1 is the probability that extinction will occur

on step n.

Theorem 7.7.2 If m = f ′(1) = 1 and 0 < b := f ′′(1) <∞ then γn ∼ 2
bn2 and

pn ∼ 2
bn

as n→∞.

Proof If the second moment of the number of offspring of a single particle is finite

(b <∞) then the derivative g′′(0) = −b exists and therefore, since g(0) = 0 and

g′(0)= f ′(1)= 1, one has

g(x)= x − b

2
x2 + o

(
x2
)
, x→∞.

Putting x = pn→ 0, we find for the sequence an = 1/pn that

an+1 − an =
pn − pn+1

pnpn+1
= bp2

n(1+ o(1))

2p2
n(1− bpn/2+ o(pn))

→ b

2
,

an = a1 +
n−1∑

k=1

(ak+1 − ak)∼
bn

2
, pn ∼

2

bn
.

The theorem is proved. �

Now consider the problem on the distribution of the number ζn of particles given

ζn > 0.

Theorem 7.7.3 Under the assumptions of Theorem 7.7.2, the conditional distribu-
tion of pnξn (or 2ζn/(bn)) given ζn > 0 converges as n→∞ to the exponential
distribution:

P(pnζn > x|ζn > 0)→ e−x, x > 0.

The above statement means, in particular, that given ζn > 0, the number of parti-

cles ζn is of order n as n→∞.
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Proof Consider the Laplace transform (see Property 6 in Sect. 7.1) of the condi-

tional distribution of pnζn (given ζn > 0):

E
(
e−spnζn |ζn > 0

)
= 1

pn

∞∑

k=1

e−skpnP(ζn = k). (7.7.4)

We will make use of the fact that, if we could find an N such that e−spn = 1− pN ,

which is the probability of extinction by time N , then the right-hand side of (7.7.4)

will give, by the total probability formula, the conditional probability of the extinc-

tion of the process by time n+N given its non-extinction at time n. We can evaluate

this probability using Theorem 7.7.2.

Since pn→ 0, for any fixed s > 0 one has

e−spn − 1∼−spn ∼−
2s

bn
.

Clearly, one can always choose N ∼ n/s, sn ∼ s, sn ↓ s such that e−snpn−1=−pN .

Therefore e−snpnk = (1− pN )k and the right-hand side of (7.7.4) can be rewritten

for s = sn as

1

pn

∞∑

k=1

P(ζn = k)(1− pN )k = 1

pn

P(ζn > 0, ζn+N = 0)

= pn−pn+N

pn

= 1−pn+N

pn

∼ 1− n

n+N
= N

n+N
→ 1

1+ s
.

Now note that

E
(
e−spnζn

∣∣ζn > 0
)
−E

(
e−snpnζn

∣∣ζn > 0
)
= E

[
e−spnζn

(
1− e−(sn−s)pnζn

∣∣ζn > 0
)]

.

Since e−α ≤ 1 and 1− e−α ≤ α for α ≥ 0, and Eζn = 1, E(ζn|ζn > 0)= 1/pn, it is

easily seen that the positive (since sn > s) difference of the expectations in the last

formula does not exceed

(sn − s)pnE(ζn|ζn > 0)= sn − s→ 0.

Therefore the Laplace transform (7.7.4) converges, as n→∞, to 1/(1 + s).

Since 1/(1+ s) is the Laplace transform of the exponential distribution:
∫ ∞

0

e−sx−x dx = 1

1+ s
,

we conclude by the continuity theorem (see the remark after Theorem 7.3.1 in

Sect. 7.3) that the conditional distribution of interest converges to the exponential

law.6

In Sect. 15.4 (Example 15.4.1) we will obtain, as consequences of martingale

convergence theorems, assertions about the behaviour of ζn as n→∞ for branching

processes in the case µ > 1 (the so-called supercritical processes). �

6The simple proof of Theorem 7.7.3 that we presented here is due to K.A. Borovkov.



Chapter 8

Sequences of Independent Random Variables.
Limit Theorems

Abstract The chapter opens with proofs of Khintchin’s (weak) Law of Large Num-

bers (Sect. 8.1) and the Central Limit Theorem (Sect. 8.2) the case of independent

identically distributed summands, both using the apparatus of characteristic func-

tions. Section 8.3 establishes general conditions for the Weak Law of Large Num-

bers for general sequences of independent random variables and also conditions for

the respective convergence in mean. Section 8.4 presents the Central Limit Theo-

rem in the triangular array scheme (the Lindeberg–Feller theorem) and its corollar-

ies, illustrated by several insightful examples. After that, in Sect. 8.5 an alternative

method of compositions is introduced and used to prove the Central Limit Theo-

rem in the same situation, establishing an upper bound for the convergence rate for

the uniform distance between the distribution functions in the case of finite third

moments. This is followed by an extension of the above results to the multivariate

case in Sect. 8.6. Section 8.7 presents important material not to be found in other

textbooks: the so-called integro-local limit theorems on convergence to the normal

distribution (the Stone–Shepp and Gnedenko theorems), including versions for sums

of random variables depending on a parameter. These results will be of crucial im-

portance in Chap. 9, when proving theorems on exact asymptotic behaviour of large

deviation probabilities. The chapter concludes with Sect. 8.8 establishing integral,

integro-local and local theorems on convergence of the distributions of scaled sums

on independent identically distributed random variables to non-normal stable laws.

8.1 The Law of Large Numbers

Theorem 8.1.1 (Khintchin’s Law of Large Numbers) Let {ξn}∞n=1 be a sequence
of independent identically distributed random variables having a finite expectation
Eξn = a and let Sn := ξ1 + · · · + ξn. Then

Sn

n

p→ a as n→∞.

The above assertion together with Theorems 6.1.6 and 6.1.7 imply the following.
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Corollary 8.1.1 Under the conditions of Theorem 8.1.1, as well as convergence of
Sn/n in probability, convergence in mean also takes place:

E

∣∣∣∣
Sn

n
− a

∣∣∣∣→ 0 as n→∞.

Note that the condition of independence of ξk and the very assertion of the the-

orem assume that all the random variables ξk are given on a common probability

space.

From the physical point of view, the stated law of large numbers is the sim-

plest ergodic theorem which means, roughly speaking, that for random variables

their “time averages” and “space averages” coincide. This applies to an even greater

extent to the strong law of large numbers, by virtue of which Sn/n→ a with prob-

ability 1.

Under more strict assumptions (existence of variance) Theorem 8.1.1 was ob-

tained in Sect. 4.7 as a consequence of Chebyshev’s inequality.

Proof of Theorem 8.1.1 We have to prove that, for any ε > 0,

P

(∣∣∣∣
Sn

n
− a

∣∣∣∣> ε

)
→ 0

as n→∞. The above relation is equivalent to the weak convergence of distributions

Sn/n⊂=⇒ Ia . Therefore, by the continuity theorem and Example 7.1.1 it suffices to

show that, for any fixed t ,

ϕSn/n(t)→ eiat .

The ch.f. ϕ(t) of the random variable ξk has, in a certain neighbourhood of 0, the

property |ϕ(t)− 1| < 1/2. Therefore for such t one can define the function l(t) =
lnϕ(t) (we take the principal value of the logarithm). Since ξn has finite expectation,

the derivative

l′(0)= ϕ′(0)

ϕ(0)
= ia

exists. For each fixed t and sufficiently large n, the value of l(t/n) is defined and

ϕSn/n(t)= ϕn(t/n)= el(t/n)n.

Since l(0)= 0, one has

el(t/n)n = exp

{
t
l(t/n)− l(0)

t/n

}
→ el′(0)t = eiat

as n→∞. The theorem is proved. �
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8.2 The Central Limit Theorem for Identically Distributed

Random Variables

Let, as before, {ξn} be a sequence of independent identically distributed random

variables. But now we assume, along with the expectation Eξn = a, the existence

of the variance Var ξn = σ 2. We retain the notation Sn = ξ1 + · · · + ξn for sums of

our random variables and Φ(x) for the normal distribution function with parameters

(0,1). Introduce the sequence of random variables

ζn =
Sn − an

σ
√

n
.

Theorem 8.2.1 If 0 < σ 2 <∞, then P(ζn < x)→ Φ(x) uniformly in x (−∞ <

x <∞) as n→∞.

In such a case, the sequence {ζn} is said to be asymptotically normal.
It follows from ζn⇒ ζ ⊂=�0,1, ζ 2

n ≥ 0, Eζ 2
n = Eζ 2 = 1 and from Lemma 6.2.3

that the sequence {ζ 2
n } is uniformly integrable. Therefore, as well as the weak

convergence ζn ⇒ ζ , ζ ⊂= �0,1 (Ef (ζn)→ Ef (ζ ) for any bounded continuous

f ), one also has convergence Ef (ζn)→ Ef (ζ ) for any continuous f such that

|f (x)|< c(1+ x2) (see Theorem 6.2.3).

Proof of Theorem 8.2.1 The uniform convergence is a consequence of the weak

convergence and continuity of Φ(x). Further, we may assume without loss of gen-

erality that a = 0, for otherwise we could consider the sequence {ξ ′n = ξn − a}∞n=1

without changing the sequence {ζn}. Therefore, to prove the required convergence,

it suffices to show that ϕζn(t)→ e−t2/2 when a = 0. We have

ϕζn(t)= ϕn

(
t

σ
√

n

)
, where ϕ(t)= ϕξk

(t).

Since Eξ2
n exists, ϕ′′(t) also exists and, as t→ 0, one has

ϕ(t)= ϕ(0)+ tϕ′(0)+ t2

2
ϕ′′(0)+ o

(
t2
)
= 1− t2σ 2

2
+ o

(
t2
)
. (8.2.1)

Therefore, as n→∞,

lnϕζn(t) = n ln

[
1− σ 2

2

(
t

σ
√

n

)2

+ o

(
t2

n

)]

= n

[
− t2

2n
+ o

(
t2

n

)]
=− t2

2
+ o(1)→− t2

2
.

The theorem is proved. �
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8.3 The Law of Large Numbers for Arbitrary Independent

Random Variables

Now we proceed to elucidating conditions under which the law of large numbers and

the central limit theorem will hold in the case when ξk are independent but not nec-

essarily identically distributed. The problem will not become more complicated if,

from the very beginning, we consider a more general situation where one is given an

arbitrary series ξ1,n, . . . , ξn,n, n= 1,2, . . . of independent random variables, where

the distributions of ξk,n may depend on n. This is the so-called triangular array
scheme.

Put

ζn :=
n∑

k=1

ξk,n.

From the viewpoint of the results to follow, we can assume without loss of generality

that

Eξk,n = 0. (8.3.1)

Assume that the following condition is met: as n→∞,

D1 :=
n∑

k=1

E min
(
|ξk,n|, |ξk,n|2

)
→ 0. [D1]

Theorem 8.3.1 (The Law of Large Numbers) If conditions (8.3.1) and [D1] are

satisfied, then ζn ⊂=⇒ I0 or, which is the same, ζn
p→ 0 as n→∞.

Example 8.3.1 Assume ξk = ξk,n do not depend on n, Eξk = 0 and E|ξk|s ≤ms <

∞ for 1 < s ≤ 2. For such s, there exists a sequence b(n) = o(n) such that n =
o(bs(n)). Since, for ξk,n = ξk/b(n),

E min
(
|ξk,n|, ξ2

k,n

)
= E

[∣∣∣∣
ξk

b(n)

∣∣∣∣
2

; |ξk| ≤ b(n)

]
+E

[ |ξk|
b(n)
; |ξk|> b(n)

]

≤ E

[∣∣∣∣
ξk

b(n)

∣∣∣∣
s

; |ξk| ≤ b(n)

]
+E

[∣∣∣∣
ξk

b(n)

∣∣∣∣
s

; |ξk|> b(n)

]

= msb
−s(n),

we have

D1 ≤ nmsb
−s(n)→ 0,

and hence Sn/b(n)
p→ 0.

A more general sufficient condition (compared to ms <∞) for the law of large

numbers is contained in Theorem 8.3.3 below. Theorem 8.1.1 is an evident corollary

of that theorem.
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Now consider condition [D1] in more detail. It can clearly also be written in the

form

D1 =
n∑

k=1

E
(
|ξk,n|; |ξk,n|> 1

)
+

n∑

k=1

E
(
|ξk,n|2; |ξk,n| ≤ 1

)
→ 0.

Next introduce the condition

M1 :=
n∑

k=1

E|ξk,n| ≤ c <∞ (8.3.2)

and the condition

M1(τ ) :=
n∑

k=1

E
(
|ξk,n|; |ξk,n|> τ

)
→ 0 [M1]

for any τ > 0 as n→∞. Condition [M1] could be called a Lindeberg type condition

(the Lindeberg condition [M2] will be introduced in Sect. 8.4).

The following lemma explains the relationship between the introduced condi-

tions.

Lemma 8.3.1 1. {[M1] ∩ (3.2)} ⊂ [D1]. 2. [D1] ⊂ [M1].

That is, conditions [M1] and (8.3.2) imply [D1], and condition [D1] implies

[M1].
It follows from Lemma 8.3.1 that under condition (8.3.2), conditions [D1] and

[M1] are equivalent.

Proof of Lemma 8.3.1 1. Let conditions (8.3.2) and [M1] be met. Then, for

τ ≤ 1, g1(x)=min
(
|x|, |x|2

)
,

one has

D1 =
n∑

k=1

Eg1(ξk,n)≤
n∑

k=1

E
(
|ξk,n|; |ξk,n|> τ

)
+

n∑

k=1

E
(
|ξk,n|2; |ξk,n| ≤ τ

)

≤M1(τ )+ τ

n∑

k=1

E
(
|ξk,n|; |ξk,n| ≤ τ

)
≤M1(τ )+ τM1(0). (8.3.3)

Since M1(0)=M1 ≤ c and τ can be arbitrary small, we have D1→ 0 as n→∞.

2. Conversely, let condition [D1] be met. Then, for τ ≤ 1,

M1(τ ) ≤
n∑

k=1

E
(
|ξk,n|; |ξk,n|> 1

)
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+ τ−1
n∑

k=1

E
(
|ξk,n|2; τ < |ξk,n| ≤ 1

)
≤ τ−1D1→ 0 (8.3.4)

as n→∞ for any τ > 0. The lemma is proved. �

Let us show that condition [M1] (as well as [D1]) is essential for the law of large

numbers to hold.

Consider the random variables

ξk,n =
{

1− 1
n

with probability 1
n
,

− 1
n

with probability 1− 1
n
.

For them, Eξk,n = 0, E|ξk,n| = 2(n−1)

n2 ∼ 2
n

, M1 ≤ 2, condition (8.3.2) is met, but

M1(τ )= n−1
n

> 1
2

for n > 2, τ < 1/2, and thus condition [M1] is not satisfied. Here

the number νn of positive ξk,n, 1 ≤ k ≤ n, converges in distribution to a random

variable ν having the Poisson distribution with parameter λ = 1. The sum of the

remaining ξk,ns is equal to − (n−νn)
n

p−→−1. Therefore, ζn + 1⊂=⇒�1 and the law

of large numbers does not hold.

Each of the conditions [D1] and [M1] imply the uniform smallness of E|ξk,n|:

max
1≤k≤n

E|ξk,n| → 0 as n→∞. (8.3.5)

Indeed, equation [M1] means that there exists a sufficiently slowly decreasing se-

quence τn→ 0 such that M1(τn)→ 0. Therefore

max
k≤n

E|ξk,n| ≤max
k≤n

[
τn +E

(
|ξk,n|; |ξk,n|> τn

)]
≤ τn +M1(τn)→ 0. (8.3.6)

In particular, (8.3.5) implies the negligibility of the summands ξk,n.

We will say that ξk,n are negligible, or, equivalently, have property [S], if, for any

ε > 0,

max
k≤n

P
(
|ξk,n|> ε

)
→ 0 as n→∞. [S]

Property [S] could also be called uniform convergence of ξk,n in probability to
zero. Property [S] follows immediately from (8.3.5) and Chebyshev’s inequality. It

also follows from stronger relations implied by [M1]:

P
(

max
k≤n
|ξk,n|> ε

)
= P

(⋃

k≤n

{
|ξk,n|> ε

})

≤
∑

k≤n

P
(
|ξk,n|> ε

)
≤ ε−1

∑

k≤n

E
(
|ξk,n|; |ξk,n|> ε

)
→ 0. [S1]

We now turn to proving the law of large numbers. We will give two versions of

the proof. The first one illustrates the classical method of characteristic functions.
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The second version is based on elementary inequalities and leads to a stronger as-

sertion about convergence in mean.1

Here is the first version.

Proof of Theorem 8.3.12 Put

ϕk,n(t) := Eeitξk,n , ∆k(t) := ϕk,n(t)− 1.

One has to prove that, for each t ,

ϕζn(t)= Eeitζn =
n∏

k=1

ϕk,n(t)→ 1,

as n→∞. By Lemma 7.4.2

∣∣ϕζn(t)− 1
∣∣ =

∣∣∣∣∣

n∏

k=1

ϕk,n(t)−
n∏

k=1

1

∣∣∣∣∣≤
n∑

k=1

|∆k(t)|

=
n∑

k=1

∣∣Eeitξk,n − 1
∣∣=

n∑

k=1

∣∣E
(
eitξk,n − 1− itξk,n

)∣∣.

By Lemma 7.4.1 we have (for g1(x)=min(|x|, x2))

∣∣eitx − 1− itx
∣∣≤min

(
2|tx|, t2x2/2

)
≤ 2g1(tx)≤ 2h(t)g1(t),

where h(t)=max(|t |, |t |2). Therefore

∣∣ϕζn(t)− 1
∣∣≤ 2h(t)

n∑

k=1

Eg1(ξk,n)= 2h(t)D1→ 0.

The theorem is proved. �

The last inequality shows that |ϕζn(t) − 1| admits a bound in terms of D1. It

turns out that E|ζn| also admits a bound in terms of D1. Now we will give the

second version of the proof that actually leads to a stronger variant of the law of

large numbers.

Theorem 8.3.2 Under conditions (8.3.1) and [D1] one has E|ζn| → 0 (i.e.

ζn
(1)−→ 0).

1The second version was communicated to us by A.I. Sakhanenko.

2There exists an alternative “direct” proof of Theorem 8.3.1 using not ch.f.s but the so-called

truncated random variables and estimates of their variances. However, because of what follows, it

is more convenient for us to use here the machinery of ch.f.s.
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The assertion of Theorem 8.3.2 clearly means the uniform integrability of {ζn};
it implies Theorem 8.3.1, for

P
(
|ζn|> ε

)
≤ E|ζn|/ε→ 0 as n→∞.

Proof of Theorem 8.3.2 Put

ξ ′k,n :=
{

ξk,n if |ξk,n| ≤ 1,

0 otherwise,

and ξ ′′k,n := ξk,n − ξ ′k,n. Then ξk,n = ξ ′k,n + ξ ′′k,n and ζn = ζ ′n + ζ ′′n with an obvious

convention for the notations ζ ′n, ζ ′′n . By the Cauchy–Bunjakovsky inequality,

E|ζn| ≤ E
∣∣ζ ′n −Eζ ′n

∣∣+E
∣∣ζ ′′n −Eζ ′′n

∣∣≤
√

E
(
ζ ′n −Eζ ′n

)2 +E
∣∣ζ ′′n

∣∣+
∣∣Eζ ′′n

∣∣

≤
√∑

Var
(
ξ ′k,n

)
+ 2

∑
E
∣∣ξ ′′k,n

∣∣≤
√∑

E
(
ξ ′k,n

)2 + 2
∑

E
∣∣ξ ′′k,n

∣∣

=
[∑

E
(
ξ2
k,n; |ξk,n| ≤ 1

)]1/2

+ 2
∑

E
(
|ξk,n|; |ξk,n|> 1

)
≤
√

D1 + 2D1→ 0,

if D1→ 0. The theorem is proved. �

Remark 8.3.1 It can be seen from the proof of Theorem 8.3.2 that the argument will

remain valid if we replace the independence of ξk,n by the weaker condition that

ξ ′k,n are non-correlated. It will also be valid if ξ ′k,n are only weakly correlated so that

E
(
ζ ′n −Eζ ′n

)2 ≤ c
∑

Var
(
ξ ′k,n

)
, c <∞.

If {ξk} is a given fixed (not dependent on n) sequence of independent random

variables, Sn =
∑n

k=1 ξk and Eξk = ak , then one looks at the applicability of the law

of large numbers to the sequences

ξk,n =
ξk − ak

b(n)
, ζn =

∑
ξk,n =

1

b(n)

(
Sn −

n∑

k=1

ak

)
, (8.3.7)

where ξk,n satisfy (8.3.1), and b(n) is an unboundedly increasing sequence. In some

cases it is natural to take b(n) =
∑n

k=1 E|ξk| if this sum increases unboundedly.

Without loss of generality we can set ak = 0. The next assertion follows from The-

orem 8.3.2.

Corollary 8.3.1 If, as n→∞,

D1 :=
1

b(n)

∑
E min

(
|ξk|, ξ2

k /b(n)
)
→ 0
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or, for any τ > 0,

M1(τ )= 1

b(n)

∑
E
(
|ξk|; |ξk|> τb(n)

)
→ 0, b(n)=

n∑

k=1

E|ξk| →∞, (8.3.8)

then ζn
(1)−→ 0.

Now we will present an important sufficient condition for the law of large num-

bers that is very close to condition (8.3.8) and which explains to some extent its

essence. In addition, in many cases this condition is easier to check. Let bk = E|ξk|,
bn =maxk≤n bk , and, as before,

Sn =
n∑

k=1

ξk, b(n)=
n∑

k=1

bk.

The following assertion is a direct generalisation of Theorem 8.1.1 and Corol-

lary 8.1.1.

Theorem 8.3.3 Let Eξk = 0, the sequence of normalised random variables ξk/bk

be uniformly integrable and bn = o(b(n)) as n→∞. Then

Sn

b(n)

(1)−→ 0.

If bn ≤ b <∞ then b(n)≤ bn and Sn

n

(1)−→ 0.

Proof Since

E
(
|ξk|; |ξk|> τb(n)

)
≤ bkE

(∣∣∣∣
ξk

bk

∣∣∣∣;
∣∣∣∣
ξk

bk

∣∣∣∣> τ
b(n)

bn

)
(8.3.9)

and b(n)

bn
→∞, the uniform integrability of { ξk

bk
} implies that the right-hand side

of (8.3.9) is o(bk) uniformly in k (i.e. it admits a bound ε(n)bk , where ε(n)→ 0 as

n→∞ and does not depend on k). Therefore

M1(τ )= 1

b(n)

n∑

k=1

E
(
|ξk|; |ξk|> τb(n)

)
→ 0

as n→∞, and condition (8.3.8) is met. The theorem is proved. �

Remark 8.3.2 If, in the context of the law of large numbers, we are interested in

convergence in probability, only then can we generalise Theorem 8.3.3. In particular,

convergence

Sn

b(n)

p→ 0
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will still hold if a finite number of the summands ξk (e.g., for k ≤ l, l being fixed)

are completely arbitrary (they can even fail to have expectations) and the sequence
ξ∗k = ξk+l , k ≥ 1, satisfies the conditions of Theorem 8.3.3, where b(n) is defined for

the variables ξ∗k and has the property b(n−1)
b(n)

→ 1 as n→∞.

This assertion follows from the fact that

Sn

b(n)
= Sl

b(n)
+ Sn − Sl

b(n− l)
· b(n− l)

b(n)
,

Sl

b(n)

p−→ 0,
b(n− l)

b(n)
→ 1,

and by Theorem 8.3.3

Sn − Sl

b(n− l)

p−→ 0 as n→∞.

Now we will show that the uniform integrability condition in Theorem 8.3.3

(as well as condition M1(τ )→ 0) is essential for convergence ζn
p→ 0. Consider a

sequence of random variables

ξj =
{

2s − 1 with probability 2−s,

−1 with probability 1− 2−s

for j ∈ Is := (2s−1,2s], s = 1,2, . . . ; ξ1 = 0. Then Eξj = 0, E|ξj | = 2(1− 2−s) for

j ∈ Is , and, for n= 2k , one has

b(n)=
k∑

s=1

2
(
1− 2−s

)
|Is |,

where |Is | = 2s − 2s−1 = 2s−1 is the number of points in Ik . Hence, as k→∞,

b(n) ∼ 2
[(

1− 2−k
)
2k−1 +

(
1− 2−k+1

)
2k−2 + · · ·

]

∼ 2k + 2k−1 + . . .∼ 2k+1 = 2n.

Observe that the uniform integrability condition is clearly not met here. The distri-

bution of the number ν(s) of jumps of magnitude 2s−1 on the interval Is converges,

as s→∞, to the Poisson distribution with parameter 1/2= lims→∞ 2−s |Is |, while

the distribution of 2−s(S2s − S2s−1) converges to the distribution of ν − 1/2, where

ν⊂=�1/2. Hence, assuming that n= 2k , and partitioning the segment [2, n] into the

intervals (2s−1,2s], s = 1, . . . , k, we obtain that the distribution of Sn/n converges,

as k→∞, to the distribution of

Sn

n
= 2−k

k∑

s=1

S2s − S2s−1

2s
2s⇒

∞∑

l=0

(νl − 1/2)2−l =: ζ,
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where νl , l = 0,1, . . . , are independent copies of ν. Clearly, ζ 
≡ 0, and so conver-

gence Sn

n

p→ 0 fails to take place.

Let us return to arbitrary ξk,n. In order for [D1] to hold it suffices that the follow-

ing condition is met: for some s, 2≥ s > 1,

n∑

k=1

E|ξk,n|s→ 0. [Ls]

This assertion is evident, since g1(x) ≤ |x|s for 2 ≥ s > 1. Conditions [Ls] could

be called the modified Lyapunov conditions (cf. the Lyapunov condition [Ls] in

Sect. 8.4).

To prove Theorem 8.3.2, we used the so-called “truncated versions” ξ ′k,n of the

random variables ξk,n. Now we will consider yet another variant of the law of large

numbers, in which conditions are expressed in terms of truncated random variables.

Denote by ξ (N) the result of truncation of the random variable ξ at level N :

ξ (N) =max
[
−N,min(N, ξ)

]
.

Theorem 8.3.4 Let the sequence of random variables {ξk} in (8.3.7) satisfy the
following condition: for any given ε > 0, there exist Nk such that

1

b(n)

n∑

k=1

E
∣∣ξk − ξ

(Nk)
k

∣∣< ε,
1

b(n)

n∑

k=1

Nk < N <∞.

Then the sequence {ζn} converges to zero in mean: ζn
(1)−→ 0.

Proof Clearly a
(Nk)
k := Eξ

(Nk)
k → ak as Nk →∞ and |a(Nk)

k | ≤ Nk . Further, we

have

E|ζn| =
1

b(n)
E

∣∣∣
∑

(ξk − ak)

∣∣∣ ≤ 1

b(n)

∑
E
∣∣ξk − ξ

(Nk)
k

∣∣

+E

∣∣∣∣
∑ ξ

(Nk)
k − a

(Nk)
k

b(n)

∣∣∣∣+
1

b(n)

∑∣∣a(Nk)
k − ak

∣∣.

Here the second term on the right-hand side converges to zero, since the sum under

the expectation satisfies the conditions of Theorem 8.3.1 and is bounded. But the

first and the last terms do not exceed ε. Since the left-hand side does not depend on

ε, we have E|ζn| → 0 as n→∞. �

Corollary 8.3.2 If b(n)= n and, for sufficiently large N and all k ≤ n,

E
∣∣ξk − ξ

(N)
k

∣∣< ε,

then ζn
(1)−→ 0.
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The corollary follows from Theorem 8.3.4, since the conditions of the corollary

clearly imply the conditions of Theorem 8.3.4.

It is obvious that, for identically distributed ξk , the conditions of Corollary 8.3.2

are always met, and we again obtain a generalisation of Theorem 8.1.1 and Corol-

lary 8.1.1.

If E|ξk|r <∞ for r ≥ 1, then we can also establish in a similar way that

Sn

n

(r)−→ a.

Remark 8.3.3 Condition [D1] (or [M1]) is not necessary for convergence ζn
p→ 0

even when (8.3.2) and (8.3.5) hold, as the following example demonstrates. Let ξk,n

assume the values −n, 0, and n with probabilities 1/n2, 1 − 2/n2, and 1/n2, re-

spectively. Here ζn
p→ 0, since P(ζn 
= 0)≤ P(

⋃
{ξk,n 
= 0})≤ 2/n→ 0, E|ξk,n| =

2/n→ 0 and M1 =
∑

E|ξk,n| = 2 <∞. At the same time,
∑

E(|ξk,n|; |ξk,n| ≥
1)= 2 
→∞, so that conditions [D1] and [M1] are not satisfied.

However, if we require that

ξk,n ≥−εk,n, εk,n ≥ 0,

max
k≤n

εk,n→ 0,

n∑

k=1

εk,n ≤ c <∞,
(8.3.10)

then condition [D1] will become necessary for convergence ζn
p→ 0.

Before proving that assertion we will establish several auxiliary relations that

will be useful in the sequel. As above, put ∆k(t) := ϕk,n(t)− 1.

Lemma 8.3.2 One has
n∑

k=1

∣∣∆k(t)
∣∣≤ |t |M1.

If condition [S] holds, then for each t , as n→∞,

max
k≤n

∣∣∆k(t)
∣∣→ 0.

If a random variable ξ with Eξ = 0 is bounded from the left: ξ >−c, c > 0, then
E|ξ | ≤ 2c.

Proof By Lemma 7.4.1,

∣∣∆k(t)
∣∣≤ E

∣∣eitξk,n − 1
∣∣≤ |t |E|ξk,n|,

∑∣∣∆k(t)
∣∣≤ |t |M1.

Further,
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∣∣∆k(t)
∣∣≤ E

(∣∣eitξk,n − 1
∣∣; |ξk,n| ≤ ε

)
+E

(∣∣eitξk,n − 1
∣∣; |ξk,n|> ε

)

≤ |t |ε+ 2P
(
|ξk,n|> ε

)
.

Since ε is arbitrary here, the second assertion of the lemma now follows from con-

dition [S].
Put

ξ+ :=max(0; ξ)≥ 0, ξ− := −
(
ξ − ξ+

)
≥ 0.

Then Eξ = Eξ+ − Eξ− = 0 and E|ξ | = Eξ+ + Eξ− = 2Eξ− ≤ 2c. The lemma is

proved. �

From the last assertion of the lemma it follows that (8.3.10) implies (8.3.2) and

(8.3.5).

Lemma 8.3.3 Let conditions [S] and (8.3.2) be satisfied. A necessary and sufficient
condition for convergence ϕζn(t)→ ϕ(t) is that

n∑

k=1

∆k(t)→ lnϕ(t).

Proof Observe that

Re∆k(t)= Re
(
ϕk,n(t)− 1

)
≤ 0,

∣∣e∆k(t)
∣∣≤ 1,

and therefore, by Lemma 7.4.2,

∣∣ϕzn(t)− e
∑

∆k(t)
∣∣ =

∣∣∣∣∣

n∏

k=1

ϕk,n(t)−
n∏

k=1

e∆k(t)

∣∣∣∣∣

≤
n∑

k=1

∣∣ϕk,n(t)− e∆k(t)
∣∣=

n∑

k=1

∣∣e∆k(t) − 1−∆k(t)
∣∣

≤ 1

2

n∑

k=1

∆2
k(t)≤

1

2
max

k

∣∣∆k(t)
∣∣

n∑

k=1

∣∣∆k(t)
∣∣.

By Lemma 8.3.2 and conditions [S] and (8.3.2), the expression on the left-hand side

converges to 0 as n→∞. Therefore, if ϕzn(t)→ ϕ(t) then exp{
∑

∆k(t)}→ ϕ(t),

and vice versa. The lemma is proved. �

The next assertion complements Theorem 8.3.1.
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Theorem 8.3.5 Assume that relations (8.3.1) and (8.3.10) hold. Then condition
[D1] (or condition [M1]) is necessary for the law of large numbers.

Proof If the law of large numbers holds then ϕzn(t)→ 1 and, hence by Lemma 8.3.3

(recall that (8.3.10) implies (8.3.2), (8.3.5) and [S])

n∑

k=1

∆k(t)=
n∑

k=1

E
(
eitξk,n − 1− itξk,n

)
→ 0.

Moreover, by Lemma 7.4.1

n∑

k=1

E
(∣∣eitξk,n − 1− itξk,n

∣∣; |ξk,n| ≤ εk,n

)

≤ 1

2

n∑

k=1

E
(
|xik,n|2; |ξk,n| ≤ εk,n

)
≤

n∑

k=1

ε2
k,n ≤max

k
εk,n

n∑

k=1

εk,n→ 0.

Therefore, if the law of large numbers holds, then by virtue of (8.3.10)

n∑

k=1

E
(
eitξk,n − 1− itξk,n; ξk,n > εk,n

)
→ 0.

Consider the function α(x)= (eix − 1)/ix. It is not hard to see that the inequality

|α(x)| ≤ 1 proved in Lemma 7.4.1 is strict for x > ε > 0, and hence there exists a

δ(τ ) > 0 for τ > 0 such that Re(1− α(x)) ≥ δ(τ ) for x > τ . This is equivalent to

Im(1+ ix − eix)≥ δ(τ )x, so that

x ≤ 1

δ(τ )
Im

(
1+ ix − eix

)
for x > τ.

From this we find that

E1(τ ) =
n∑

k=1

E
(
|ξk,n|; |ξk,n|> τ

)
=

n∑

k=1

E(ξk,n; ξk,n > τ)

≤ 1

δ(τ )
Im

n∑

k=1

E
(
1+ iξk,n − eiξk,n; ξk,n > εk,n

)
→ 0.

Thus condition [M1] holds. Together with relation (8.3.2), that follows from

(8.3.10), this condition implies [D1]. The theorem is proved. �
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There seem to exist some conditions that are wider than (8.3.10) and under which

condition [D1] is necessary for convergence ζn
(1)−→ 0 in mean (condition (8.3.10) is

too restrictive).

8.4 The Central Limit Theorem for Sums of Arbitrary

Independent Random Variables

As in Sect. 8.3, we consider here a triangular array of random variables ξ1,n, . . . , ξn,n

and their sums

ζn =
n∑

k=1

ξk,n. (8.4.1)

We will assume that ξk,n have finite second moments:

σ 2
k,n :=Var(ξk,n) <∞,

and suppose, without loss of generality, that

Eξk,n = 0,

n∑

k=1

σ 2
k,n =Var(ζn)= 1. (8.4.2)

We introduce the following condition: for some s > 2,

D2 :=
n∑

k=1

E min
(
ξ2
k,n, |ξk,n|s

)
→ 0 as n→∞, [D2]

which is to play an important role in what follows. Our arguments related to condi-

tion [D2] and also to conditions [M2] and [Ls] to be introduced below will be quite

similar to the ones from Sect. 8.3 that were related to conditions [D1], [M1] and

[Ls].
We also introduce the Lindeberg condition: for any τ > 0, as n→∞,

M2(τ ) :=
n∑

k=1

E
(
|ξk,n|2; |ξk,n|> τ

)
→ 0. [M2]

The following assertion is an analogue of Lemma 8.3.1.

Lemma 8.4.1 1. {[M2] ∩ (4.2)} ⊂ [D2]. 2. [D2] ⊂ [M2].

That is, conditions [M2] and (8.4.2) imply [D2], and condition [D2] implies

[M2].
From Lemma 8.4.1 it follows that, under condition (8.4.2), conditions [D2] and

[M2] are equivalent.
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Proof of Lemma 8.4.1 1. Let conditions [M2] and (8.4.2) be met. Put

g2(x) :=min
(
x2, |x|s

)
, s > 2.

Then (cf. (8.3.3), (8.3.4); τ ≤ 1)

D2 =
n∑

k=1

Eg2(ξk,n)≤
n∑

k=1

E
(
ξ2
k,n; |ξk,n|> τ

)
+

n∑

k=1

E
(
|ξk,n|s; |ξk,n| ≤ τ

)

≤M2(τ )+ τ s−2M2(0)=M2(τ )+ τ s−2.

Since τ is arbitrary, we have D2→ 0 as n→∞.

2. Conversely, suppose that [D2] holds. Then

M2(τ )≤
n∑

k=1

E
(
ξ2
k,n; |ξk,n|> 1

)
+ 1

τ s−2

n∑

k=1

(
|ξk,n|s; τ < |ξk,n| ≤ 1

)
≤ 1

τ s−2
D2→ 0

for any τ > 0, as n→∞. The lemma is proved. �

Lemma 8.4.1 also implies that if (8.4.2) holds, then condition [D2] is “invariant”
with respect to s > 2.

Condition [D2] can be stated in a more general form:

n∑

k=1

Eξ2
k,nh

(
|ξk,n|

)
→ 0,

where h(x) is any function for which h(x) > 0 for x > 0, h(x) ↑, h(x)→ 0 as

x→ 0, and h(x)→ c <∞ as x→∞. All the key properties of condition [D2] will

then be preserved. The Lindeberg condition clarifies the meaning of condition [D2]
from a somewhat different point of view. In Lindeberg’s condition, h(x) = I(τ,∞),

τ ∈ (0,1). A similar remark may be made with regard to conditions [D1] and [M1]
in Sect. 8.3.

In a way similar to what we did in Sect. 8.3 when discussing condition [M1], one

can easily verify that condition [M2] implies convergence (see (8.3.6))

max
k≤n

Var(ξk,n)→ 0 (8.4.3)

and the negligibility of ξk,n (property [S]). Moreover, one obviously has the inequal-

ity

M1(τ )≤ 1

τ
M2(τ ).

For a given fixed (independent of n) sequence {ξk} of independent random vari-

ables,

Sn =
∞∑

k=1

ξk, Eξk = ak, Var(ξk)= σ 2
k , (8.4.4)
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one considers the asymptotic behaviour of the normed sums

ζn =
1

Bn

(
Sn −

∞∑

k=1

ak

)
, B2

n =
∞∑

k=1

σ 2
k , (8.4.5)

that are clearly also of the form (8.4.1) with ξk,n = (ξk − ak)/Bn.

Conditions [D1] and [M2] for ξk will take the form

D2 =
1

B2
n

∞∑

k=1

E min

(
(ξk − ak)

2,
|ξk − ak|s

Bs−2
n

)
→ 0, s > 2;

M2(τ )= 1

B2
n

∞∑

k=1

E
(
(ξk − ak)

2; |ξk − ak|> τBn

)
→ 0, τ > 0.

(8.4.6)

Theorem 8.4.1 (The Central Limit Theorem) If the sequences of random vari-
ables {ξk,n}∞k=1, n= 1,2, . . . , satisfy conditions (8.4.2) and [D2] (or [M2]) then, as
n→∞, P(ζn < x)→Φ(x) uniformly in x.

Proof It suffices to verify that

ϕζn(t)=
∞∏

k=1

ϕk,n(t)→ e−t2/2.

By Lemma 7.4.2,

∣∣ϕζn(t)− e−t2/2
∣∣ =

∣∣∣∣∣

n∏

k=1

ϕk,n(t)−
n∏

k=1

e
−t2σ 2

k,n/2

∣∣∣∣∣

≤
n∑

k=1

∣∣ϕk,n(t)− e
−t2σ 2

k,n/2
∣∣

≤
n∑

k=1

∣∣∣∣ϕk,n(t)− 1+ 1

2
t2σ 2

k,n

∣∣∣∣

+
n∑

k=1

∣∣∣∣e
−t2σ 2

k,n/2 − 1+ 1

2
t2σ 2

k,n

∣∣∣∣. (8.4.7)

Since by Lemma 7.4.1, for s ≤ 3,

∣∣∣∣e
ix − 1− ix + x2

2

∣∣∣∣≤min

(
x2,
|x3|

6

)
≤ g2(x)
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(see the definition of the function g2 in the beginning of the proof of Lemma 8.4.1),

the first sum on the right-hand side of (8.4.7) does not exceed

∞∑

k=1

∣∣∣∣E
(

eitξk,n − 1− itξk,n +
1

2
t2ξ2

k,n

)∣∣∣∣

≤
∞∑

k=1

Eg2

(
|tξk,n|

)
≤ h(t)

∞∑

k=1

Eg2

(
|ξk,n|

)
≤ h(t)D2→ 0,

where h(t) = max(t2, |t |3). The last sum in (8.4.7) (again by Lemma 7.4.1) does

not exceed (see (8.4.2) and (8.4.3))

t4

8

n∑

k=1

σ 4
k,n ≤

t4

8
max

k
σ 2

k,n

n∑

k=1

σ 2
k,n ≤

t4

8
max

k
σ 2

k,n→ 0 as n→∞.

The theorem is proved. �

If we change the second relation in (8.4.2) to Eζn→ σ 2 > 0, then, introducing

the new random variables ξ ′k,n = ξk,n/
√

Var ζn and using continuity theorems, it is

not hard to obtain from Theorem 8.4.1 (see e.g. Lemma 6.2.2), the following asser-

tion, which sometimes proves to be more useful in applications than Theorem 8.4.1.

Corollary 8.4.1 Assume that Eξk,n = 0, Var(ζn)→ σ 2 > 0, and condition [D2] (or
[M2]) is satisfied. Then ζn ⊂=⇒�0,σ2

.

Remark 8.4.1 A sufficient condition for [D2] and [M2] is provided by the more re-

strictive Lyapunov condition, the verification of which is sometimes easier. Assume

that (8.4.2) holds. For s > 2, the quantity

Ls :=
n∑

k=1

E|ξk,n|2

is called the Lyapunov fraction of the s-th order. The condition

Ls→ 0 as n→∞ [Ls]

is called the Lyapunov condition.

The quantity Ls is called a fraction since for ξk,n = (ξk−a)/Bn (where ak = Eξk ,

B2
n =

∑n
k=1 Var(ξk) and ξk do not depend on n), it has the form

Ls =
1

Bs
n

n∑

k=1

E|ξk − ak|s .
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If the ξk are identically distributed, ak = a, Var(ξk)= σ 2, and E|ξk − a|s = µ <∞,

then

Ls =
µ

σ sn(s−2)/2
→ 0.

The sufficiency of the Lyapunov condition follows from the obvious inequalities

g2(x)≤ |x|s for any s, D2 ≤ Ls .

In the case of (8.4.4) and (8.4.5) we can give a sufficient condition for the in-

tegral limit theorem that is very close to the Lindeberg condition [M2]; the former

condition elucidates to some extent the essence of the latter (cf. Theorem 8.3.3), and

in many cases it is easier to verify. Put σ n =maxk≤n σk . Theorem 8.4.1 implies the

following assertion which is a direct extension of Theorem 8.2.1

Theorem 8.4.2 Let conditions (8.4.4) and (8.4.5) be satisfied, the sequence of
normalised random variables ξ2

k /σ 2
k be uniformly integrable and σ n = o(Bn) as

n→∞. Then ζn ⊂⇒ �0,1.

Proof of Theorem 8.4.2 repeats, to some extent, the proof of Theorem 8.3.3. For

simplicity assume that ak = 0. Then

E
(
ξ2
k ; |ξk|> τBn

)
≤ σ 2

k E

(
ξ2
k

σ 2
k

;
∣∣∣∣
ξk

σk

∣∣∣∣> τ
Bn

σ n

)
, (8.4.8)

where Bn/σ n→∞. Hence, it follows from the uniform integrability of { ξ
2
k

σ 2
k

} that

the right-hand side of (8.4.8) is o(σ 2
k ) uniformly in k. This means that

M2(τ )= 1

B2
n

n∑

k=1

E
(
ξ2
k ; |ξk|> τBn

)
→ 0

as n→∞ and condition (8.4.6) (or condition [M2]) is satisfied. The theorem is

proved. �

Remark 8.4.2 We can generalise the assertion of Theorem 8.4.2 (cf. Remark 8.3.3).

In particular, convergence ζn⊂=⇒�0,1 still takes place if a finite number of summands
ξk (e.g., for k ≤ l, l being fixed) are completely arbitrary, and the sequence ξ∗k :=
ξk+l , k ≥ 1, satisfies the conditions of Theorem 8.4.2, in which we put σ 2

k =Var(ξ∗k ),

B2
n =

∑n
k=1 σ 2

k , and it is also assumed that Bn−1

Bn
→ 1 as n→∞.

This assertion follows from the fact that

Sn

Bn

= Sl

Bn

+ Sn − Sl

Bn−l

· Bn−l

Bn

,

where Sl

Bn

p→ 0,
Bn−l

Bn
→ 1 and, by Theorem 8.4.2, Sn−Sl

Bn−l
⊂=⇒�0,1 as n→∞.
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Remark 8.4.3 The uniform integrability condition that was used in Theorem 8.4.2

can be used for the triangular array scheme as well. In this more general case the

uniform integrability should mean the following: the sequences η1,n, . . . , ηn,n, n=
1,2, . . . , in the triangular array scheme are uniformly integrable if there exists a
function ε(N) ↓ 0 as N ↑∞ such that, for all n,

max
j≤n

E
(
|ηj,n|; |ηj,n|> N

)
≤ ε(N).

It is not hard to see that, with such an interpretation of uniform integrability,

the assertion of Theorem 8.4.2 holds true for the triangular array scheme as well

provided that the sequence { ξ
2
j,n

σ 2
j,n

} is uniformly integrable and maxj≤n σj,n = o(1) as

n→∞.

Example 8.4.1 We will clarify the difference between the Lindeberg condition and

uniform integrability of { ξ
2
k

σ 2
k

} in the following example. Let ηk be independent

bounded identically distributed random variables, Eηk = 0, Dηk = 1 and g(k) >
√

2

be an arbitrary function. Put

ξk :=
{

ηk with probability 1− 2g−2(k),

±g(k) with probability g−2(k).

Then clearly Eξk = 0, σ 2
k := Dξk = 3 − 2g−2(k) ∈ (2,3) and B2

n ∈ (2n,3n). The

uniform integrability of { ξ
2
k

σ 2
k

}, or the uniform integrability of {ξ2
k } which means the

same in our case, excludes the case where g(k)→∞ as k→∞. The Lindeberg

condition is wider and allows the growth of g(k), except for the case where g(k) >

c
√

k. If g(k) = o(
√

k), then the Lindeberg condition is satisfied because, for any

fixed τ > 0,

E
(
ξ2; |ξk|> τ

√
k
)
= 0

for all large enough k.

Remark 8.4.4 Let us show that condition [M2] (or [D2]) is essential for the central

limit theorem. Consider random variables

ξk,n =
{
± 1√

2
with probability 1

n
,

0 with probability 1− 2
n
.

They satisfy conditions (8.4.2), [S], but not the Lindeberg condition as M2(τ )= 1

for τ < 1√
2

. The number νk of non-zero summands converges in distribution to

a random variable ν having the Poisson distribution with parameter 2. Therefore, ζn

will clearly converge in distribution not to the normal law, but to
∑ν

j=1 γj , where

γj are independent and take values ±1 with probability 1/2.
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Note also that conditions [D2] or [M2] are not necessary for convergence of

the distributions of ζn to the normal distribution. Indeed, consider the following

example: ξ1,n ⊂= �0,1, ξ2,n = · · · = ξn,n = 0. Conditions (8.4.2) are clearly met,

P(ζn < x) = Φ(x), but the variables ξk,n are not negligible and therefore do not

satisfy conditions [D2] and [M2].
If, however, as well as convergence ζn ⊂=⇒�0,1 we require that the ξk,n are neg-

ligible, then conditions [D2] and [M2] become necessary.

Theorem 8.4.3 Suppose that the sequences of independent random variables
{ξk,n}nk=1 satisfy conditions (8.4.2) and [S]. Then condition [D1] (or [M2]) is neces-
sary and sufficient for convergence ζn ⊂=⇒�0,1.

First note that the assertions of Lemmas 8.3.2 and 8.3.3 remain true, up to some

inessential modifications, if we substitute conditions (8.3.2) and [S] with (8.4.2)

and [S].

Lemma 8.4.2 Let conditions (8.4.2) and [S] hold. Then (∆k(t)= ϕk,n(t)− 1)

max
k≤n

∣∣∆k(t)
∣∣→ 0,

∑∣∣∆k(t)
∣∣≤ t2

2
,

and the assertion of Lemma 8.3.3, that the convergence (8.3.10) is necessary and
sufficient for convergence ϕζn(t)→ ϕ(t), remain completely true.

Proof We can retain all the arguments in the proofs of Lemmas 8.3.2 and 8.3.3

except for one place where
∑
|∆k(t)| is bounded. Under the new conditions, by

Lemma 7.4.1, we have

∣∣∆k(t)
∣∣=

∣∣ϕk,n(t)− 1− itEξk,n

∣∣≤ E
∣∣eitξk,n − 1− itξk,n

∣∣≤ t2

2
E ξ2

k,n,

so that

∑∣∣∆k(t)
∣∣≤ t2

2
.

No other changes in the proofs of Lemmas 8.3.2 and 8.3.3 are needed. �

Proof of Theorem 8.4.3 Sufficiency is already proved. To prove necessity, we make

use of Lemma 8.4.1. If ϕζn(t)→ e−t2/2, then by virtue of that lemma, for ∆k(t)=
ϕk,n(t)− 1, one has

n∑

k=1

∆k(t)→ lnϕ(t)=− t2

2
.

For t = 1 the above relation can be written in the form

Rn :=
n∑

k=1

E

(
eiξk,n − 1− iξk,n +

1

2
ξ2
k,n

)
→ 0. (8.4.9)
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Put α(x) := (eix − 1− ix)/x2. It is not hard to see that the inequality |α(x)| ≤ 1/2

proved in Lemma 7.4.1 is strict for x 
= 0, and

sup
|x|≥τ

∣∣α(x)
∣∣< 1

2
− δ(τ ),

where δ(τ ) > 0 for τ > 0. This means that, for |x| ≥ τ > 0,

Re

[
α(x)+ 1

2

]
≥ δ(τ ) > 0, x2 ≤ 1

δ(τ )
Re

(
eix − 1− ix + x2

2

)
,

E
(
ξ2
k,n; |ξk,n|> τ

)
≤ 1

δ(τ )
Re E

(
eiξk,n − 1− iξk,n +

ξ2
k,n

2

)
,

and hence by virtue of (8.4.9), for any τ > 0,

M2(τ )≤ 1

δ(τ )
|Rn|→ 0

as n→∞. The theorem is proved. �

Corollary 8.4.2 Assume that (8.4.2) holds and

max
k≤n

Var(ξk,n)→ 0. (8.4.10)

Then a necessary and sufficient condition for convergence ζn ⊂=⇒�0,1 is that

ηn :=
n∑

k=1

ξ2
k,n ⊂=⇒ I1

(or that ηn
p→ 1).

Proof Let ηn ⊂=⇒ I1. The random variables ξ ′k,n = ξ2
k,n − σ 2

k,n satisfy, by virtue of

(8.4.10), condition (8.3.10) and satisfy the law of large numbers:

n∑

k=1

ξ ′k,n = ηn − 1
p→ 0.

Therefore, by Theorem 8.3.5, the ξ ′k,n satisfy condition [M1]: for any τ > 0,

n∑

k=1

E
(∣∣ξ2

k,n − σ 2
k,n

∣∣;
∣∣ξ2

k,n − σ 2
k,n

∣∣> τ
)
→ 0. (8.4.11)

But by (8.4.10) this condition is clearly equivalent to condition [M2] for ξk,n, and

hence ζn ⊂=⇒�0,1.
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Conversely, if ζn⊂=⇒�0,1, then [M2] holds for ξk,n which implies (8.4.11). Since,

moreover,

n∑

k=1

E
∣∣ξ ′k,n

∣∣≤ 2

n∑

k=1

Var(ξk,n)= 2,

relation (8.3.2) holds for ξ ′k,n, and by Theorem 8.3.1

n∑

k=1

ξ ′k,n = ηn − 1
p→ 0.

The corollary is proved. �

Example 8.4.2 Let ξk , k = 1,2, . . . , be independent random variables with distribu-

tions

P
(
ξk = kα

)
= P

(
ξk =−kα

)
= 1

2
.

Evidently, ξk can be represented as ξk = kαηk , where ηk
d= η are independent,

P(η= 1)= P(η=−1)= 1

2
, Var(η)= 1, σ 2

k =Var(ξk)= k2α.

Let us show that, for all α ≥ −1/2, the random variables Sn/Bn are asymptoti-

cally normal. Since

ξ2
k

σ 2
k

d= η2

are uniformly integrable, by Theorem 8.4.2 it suffices to verify the condition

σ n =max
k≤n

σk = o(Bn).

In our case σ n =max(1, n2α) and, for α >−1/2,

B2
n =

n∑

k=1

k2α ∼
∫ n

0

x2αdα = n2α+1

2α + 1
.

For α =−1/2, one has

B2
n =

n∑

k=1

k−1 ∼ lnn.

Clearly, in these cases σ n = o(Bn) and the asymptotical normality of Sn/n holds.

If α < −1/2 then the sequence Bn converges, condition σ n = 1 = o(Bn) is not

satisfied and the asymptotical normality of Sn/Bn fails to take place.
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Note that, for α =−1/2, the random variable

Sn =
n∑

k=1

ηk√
k

will be “comparable” with
√

lnn with a high probability, while the sums

n∑

k=1

(−1)k√
k

converge to a constant.

A rather graphical and well-known illustration of the above theorems is the scat-

tering of shells when shooting at a target. The fact is that the trajectory of a shell is

influenced by a large number of independent factors of which the individual effects

are small. These are deviations in the amount of gun powder, in the weight and size

of a shell, variations in the humidity and temperature of the air, wind direction and

velocities at different altitudes and so on. As a result, the deviation of a shell from

the aiming point is described by the normal law with an amazing accuracy.

Similar observations could be made about errors in measurements when their

accuracy is affected by many “small” factors. (There even exists a theory of errors

of which the crucial element is the central limit theorem.)

On the whole, the central limit theorem has a lot of applications in various areas.

This is due to its universality and robustness under small deviations from the as-

sumptions of the theorem, and its relatively high accuracy even for moderate values

of n. The first two noted qualities mean that:

(1) the theorem is applicable to variables ξk,n with any distributions so long as

the variances of ξk,n exist and are “negligible”;

(2) the presence of a “moderate” dependence3 between ξk,n does not change the

normality of the limiting distribution.

To illustrate the accuracy of the normal approximation, consider the following

example. Let Fn(x)= P(Sn/
√

n < x) be the distribution function of the normalised

sum Sn of independent variables ξk uniformly distributed over [−
√

3,
√

3], so that

Var(ξk)= 1. Then it turns out that already for n= 5 (!) the maximum of |Fn(x)−
Φ(x)| over the whole axis of x-values does not exceed 0.006 (the maximum is

attained near the points x =±0.7).

And still, despite the above circumstances, one has to be careful when applying

the central limit theorem. For instance, one cannot expect high accuracy from the

normal approximation when estimating probabilities of rare events, say when study-

ing large deviation probabilities (this issue has already been discussed in Sect. 5.3).

3There exist several conditions characterising admissible dependence of ξk,n. Such considerations

are beyond the scope of the present book, but can be found in the special literature. See e.g. [20].
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After all, the theorem only ensures the smallness of the difference

∣∣Φ(x)− P(ζ < x)
∣∣ (8.4.12)

for large n. Suppose we want to use the normal approximation to find an x0 such

that the event {ζn > x0} would occur on average once in 1000 trials (a problem

of this sort could be encountered by an experimenter who wants to ensure that, in

a single experiment, such an event will not occur). Even if the difference (8.4.12)

does not exceed 0.02 (which can be a good approximation) then, using the normal

approximation, we risk making a serious error. It can turn out, say, that 1−Φ(x0)=
10−3 while P(ζ < x) ≈ 0.02, and then the event {ζn > x0} will occur much more

often (on average, once in each 50 trials).

In Chap. 9 we will consider the problem of large deviation probabilities that

enables one to handle such situations. In that case one looks for a function P(n,x)

such that P(ζ < x)/P (n, x)→ 1 as n→∞, x→∞. The function P(n,x) turns

out to be, generally speaking, different from 1−Φ(x). We should note however that

using the approximation P(n,x) requires more restrictive conditions on {ξk,n}.
In Sect. 8.7 we will consider the so-called integro-local and local limit theorems

that establish convergence of the density of ζn to that of the normal law and enables

one to estimate probabilities of rare events of another sort—say, of the form {a <

ζn < b} where a and b are close to each other.

8.5* Another Approach to Proving Limit Theorems. Estimating

Approximation Rates

The approach to proving the principal limit theorems for the distributions of sums of

random variables that we considered in Sects. 8.1–8.4 was based on the use of ch.f.s.

However, this is by far not the only method of proof of such assertions. Nowadays

there exist several rather simple proofs of both the laws of large numbers and the

central limit theorem that do not use the apparatus of ch.f.s. (This, however, does not

belittle that powerful, well-developed, and rather universal tool.) Moreover, these

proofs sometimes enable one to obtain more general results. As an illustration, we

will give below a proof of the central limit theorem that extends, in a certain sense,

Theorems 8.4.1 and 8.4.3 and provides an estimate of the convergence rate (although

not the best one).

Along with the random variables ξk,n in the triangular array scheme under as-

sumption (8.4.2), consider mutually independent and independent of the sequence

{ξk,n}nk=1 random variables ηk,n ⊂=�0,σ 2
k,n

, σk,n :=Var(ξk,n), so that

ηn :=
n∑

k=1

ηk,n ⊂=�0,1.
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Set4

µk,n := E|ξk,n|3, νk,n := E|ηk,n|3 = c3σ
3
k,n ≤ c3µk,n,

µ0
k,n :=

∫
|x|3

∣∣d
(
Fk,n(x)−Φk,n(x)

)∣∣≤ µk,n + νk,n,

L3 :=
n∑

k=1

µk,n, N3 :=
n∑

k=1

νk,n, L0
3 :=

n∑

k=1

µ0
k,n ≤ L3 +N3 ≤ (1+ c3)L3.

Here Fk,n and Φk,n are the distribution functions of ξk,n and ηk,n, respectively. The

quantities L3 and N3 are the third order Lyapunov fractions for the sequences {ξk,n}
and {ηk,n}. The quantities µ0

k,n are called the third order pseudomoments and L0
s

the Lyapunov fractions for pseudomoments. Clearly, N3 ≤ c3L3→ 0, provided that

the Lyapunov condition holds. As we have already noted, for ξk,n = (ξk − ak)/Bn,

where ak = Eξk , B2
n =

∑n
1 Var(ξk), and ξk do not depend on n, one has

L3 =
1

B3
n

n∑

k=1

µk, µk = E|ξk − ak|3.

If, moreover, ξk are identically distributed, then

L3 =
µ1

σ 3
√

n
.

Our first task here is to estimate the closeness of Ef (ζn) to Ef (ηn) for suffi-

ciently smooth f . This problem could be of independent interest. Assume that f

belongs to the class C3 of all bounded functions with uniformly continuous and

bounded third derivatives: supx |f (3)(x)| ≤ f3.

Theorem 8.5.1 If f ∈ C3 then

∣∣Ef (ζn)−Ef (ηn)
∣∣≤ f3L

0
3

6
≤ f3

6
(L3 +N3). (8.5.1)

Proof Put, for 1 < l ≤ n,

Xl := ξ1,n + · · · + ξl−1,n + ηl,n + · · · + ηn,n,

Zl := ξ1,n + · · · + ξl−1,n + ηl+1,n + · · · + ηn,n,

X1 := ηn, Xn+1 = ζn.

Then

Xl+1 = Zl + ξl,n, Xl = Zl + ηl,n, (8.5.2)

4If η⊂=�0,1 then c3 = E|η|3 = 2√
2π

∫∞
0

x3e−x2/2dx = 4√
2π

∫∞
0

te−tdt = 4√
2π

.
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f (ζn)− f (ηn)=
n∑

l=1

[
f (Xl+1)− f (Xl)

]
. (8.5.3)

Now we will make use of the following lemma.

Lemma 8.5.1 Let f ∈ C3 and Z, ξ and η be independent random variables with

Eξ = Eη= a, Eξ2 = Eη2 = σ 2, µ0 =
∫
|x3|

∣∣d
(
Fξ (x)− Fη(x)

)∣∣<∞.

Then

∣∣Ef (Z + ξ)−Ef (Z + η)
∣∣≤ f3µ

0

6
. (8.5.4)

Applying this lemma to (8.5.3), we get

∣∣E
[
f (Xl+1)− f (X1)

]∣∣≤ f3µ
0

6

which after summation gives (8.5.1). The theorem is proved. �

Thus to complete the argument proving Theorem 8.5.1 it remains to prove

Lemma 8.5.1.

Proof of Lemma 8.5.1 Set g(x) := Ef (Z + x). It is evident that g, being the result

of the averaging of f , has all the smoothness properties of f and, in particular,

|g′′′(x)| ≤ f3. By virtue of the independence of Z, ξ and η, we have

Ef (Z + ξ)−Ef (Z + η)=
∫

g(x)d
(
Fξ (x)− Fη(x)

)
. (8.5.5)

For the integrand, we make use of the expansion

g(x)= g(0)+ xg′(0)+ x2

2
g′′(0)+ x3

6
g′′′(θx), θx ∈ [0, x].

Since the first and second moments of ξ coincide with those of η, we obtain for the

right-hand side of (8.5.5) the bound

∣∣∣∣
1

6
x3g′′′(θx) d

(
Fξ (x)− Fη(x)

)∣∣∣∣≤
f3µ

0

6
.

The lemma is proved. �

Remark 8.5.1 In exactly the same way one can establish the representation

∣∣Ef (ζn)−Ef (ηn)
∣∣≤ g′′′(0)

6

n∑

k=1

E
(
ξ3
k,n − η3

k,n

)
+

f4L
0
4

24
, (8.5.6)
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under obvious conventions for the notations f4 and L0
4. This bound can improve

upon (8.5.1) if the differences E(ξ3
k,n − η3

k,n) are small. If, for instance, ξk,n =
(ξk − a)/(σ

√
n), ξk are identically distributed, and the third moments of ξk,n and

ηk,n coincide, then on the right-hand side of (8.5.6) we will have a quantity of the

order 1/n.

Theorem 8.5.1 extends Theorem 8.4.1 in the case when s = 3. The extension

is that, to establish convergence ζn ⊂=⇒�0,1, one no longer needs the negligibility

of ξk,n. If, for example, ξ1,n ⊂= �0,1/2 (in that case µ0
1,n = 0) and L0

3 → 0, then

Ef (ζn)→ Ef (η), η⊂=�0,1, for any f from the class C3. Since C3 is a distribution

determining class (see Chap. 6), it remains to make use of Corollary 6.3.2.

We can strengthen the above assertion.

Theorem 8.5.2 For any x ∈R,

∣∣P(ζn < x)−Φ(x)
∣∣≤ c

(
L0

3

)1/4
, (8.5.7)

where c is an absolute constant.

Proof Take an arbitrary function h ∈ C3, 0 ≤ h ≤ 1, such that h(x) = 1 for x ≤ 0

and h(x)= 0 for x ≥ 1, and put h3 = supx |h′′′(x)|. Then, for the function f (x)=
h((x − t)/ε), we will have f3 = supx |f ′′′(x)| ≤ h3/ε

3, and by Theorem 8.5.1

P(ζn < t) ≤ Ef (ζn)≤ Ef (η)+
f3L

0
3

6

≤ P(η < t + ε)+
h3L

0
3

6ε3
≤ P(η < t)+ ε√

2π
+

h3L
0
3

6ε3
.

The last inequality holds since the maximum of the derivative of the normal distri-

bution function Φ(t)= P(η < t) is equal to 1/
√

2π . Establishing in the same way

the converse inequality and putting ε = (L0
3)

1/4, we arrive at (8.5.7). The theorem

is proved. �

The bound in Theorem 8.5.2 is, of course, not the best one. And yet inequality

(8.5.7) shows that we will have a good normal approximation for P(ζn < x) in the

large deviations range (i.e. for |x| →∞) as well—at least for those x for which

(
1−Φ

(
|x|

))(
L0

3

)−1/4→∞ (8.5.8)

as n→∞. Indeed, in that case, say, for x = |x|> 0,

∣∣∣∣
P(ζn ≥ x)

1−Φ(x)
− 1

∣∣∣∣≤
c(L0

3)
1/4

1−Φ(x)
→ 0.
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Since by L’Hospital’s rule

1−Φ(x)= 1√
2π

∫ ∞

x

e−t2/2 dt ∼ 1√
2πx

e−x2/2 as x→∞,

(8.5.8) holds for |x|< c1

√
− lnL0

3 with an appropriately chosen constant c1.

In Chap. 20 we will obtain an extension of Theorems 8.5.1 and 8.5.2.

The problem of refinements and approximation rate bounds in the central limit

theorem and other limit theorems is one of the most important in probability theory,

because solving it will tell us how precise and efficient the applications of these

theorems to practical problems will be. First of all, one has to find the true order of

the decay of

∆n = sup
x

∣∣P(ζn < x)−Φ(x)
∣∣

in n (or, say, in L3 in the case of non-identically distributed variables). There ex-

ist at least two approaches to finding sharp bounds for ∆n. The first one, the so-

called method of characteristic functions, is based on the unimprovable bound for

the closeness of the ch.f.s

∣∣∣∣lnϕζn(t)+
t2

2

∣∣∣∣< cL3

that the reader can obtain by him/herself, using Lemma 7.4.1 and somewhat modify-

ing the argument in the proof of Theorem 8.4.1. The principal technical difficulties

here are in deriving, using the inversion formula, the same order of smallness for ∆n.

The second approach, the so-called method of compositions, has been illustrated

in the present section in Theorem 8.5.1 (the idea of the method is expressed, to a

certain extent, by relation (8.5.3)). It will be using just that method that we will

prove in Appendix 5 the following general result (Cramér–Berry–Esseen):

Theorem 8.5.3 If ξk,n = (ξk − ak)/Bn, where ξk do not depend on n, then

sup
x

∣∣P(ζn < x)−Φ(x)
∣∣≤ cL3,

where c is an absolute constant.

In the case of identically distributed ξk the right-hand side of the above inequality

becomes cµ1/(σ
3
√

n). It was established that in this case (2π)−1/2 < c < 0.4774,

while in the case of non-identically distributed summands c < 0.5591.5

One should keep in mind that the above theorems and the bounds for the constant

c are universal and therefore hold under the most unfavourable conditions (from

the point of view of the approximation). In real problems, the convergence rate is

usually much better.

5See [33].
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8.6 The Law of Large Numbers and the Central Limit Theorem

in the Multivariate Case

In this section we assume that ξ1,n, . . . , ξn,n are random vectors in the triangular

array scheme,

Eξk,n = 0, ζn =
n∑

k=1

ξk,n.

The law of large numbers ζn
p→ 0 follows immediately from Theorem 8.3.1, if

we assume that the components of ξk,n satisfy the conditions of that theorem. Thus

we can assume that Theorem 8.3.1 was formulated and proved for vectors.

Dealing with the central limit theorem is somewhat more complicated. Here we

will assume that E|ξk,n|2 <∞, where |x|2 = (x, x) is square of the norm of x. Let

σ 2
k,n := E ξT

k,nξk,n, σ 2
n :=

n∑

k=1

σ 2
k,n

(the superscript T denotes transposition, so that ξT
k,n is a column vector).

Introduce the condition

n∑

k=1

E min
(
|ξk,n|2, |ξk,n|s

)
→ 0, s > 2, [D2]

and the Lindeberg condition

n∑

k=1

E
(
|ξk,n|2; |ξk,n|> τ

)
→ 0 [M2]

as n→∞ for any τ > 0. As in the univariate case, we can easily verify that condi-

tions [D2] and [M2] are equivalent provided that trσ 2
n :=

∑d
j=1(σ

2
n )jj < c <∞.

Theorem 8.6.1 If σ 2
n → σ 2, where σ 2 is a positive definite matrix, and condition

[D2] (or [M2]) is met, then

ζn ⊂=⇒�0,σ 2 .

Corollary 8.6.1 (“The conventional” central limit theorem) If ξ1, ξ2, . . . is a se-
quence of independent identically distributed random vectors, Eξk = 0, σ 2 =
E ξT

k ξk and Sn =
∑n

k=1 ξk then, as n→∞,

Sn√
n
⊂=⇒�0,σ 2 .
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This assertion is a consequence of Theorem 8.6.1, since the random variables

ξk,n = ξk/
√

n satisfy its conditions.

Proof of Theorem 8.6.1 Consider the characteristic functions

ϕk,n(t) := Eei(t,ξk,n), ϕn(t) := Eei(t,ζn) =
n∏

k=1

ϕk,n(t).

In order to prove the theorem we have to verify that, for any t , as n→∞,

ϕn(t)→ exp

{
−1

2
tσ 2tT

}
.

We make use of Theorem 8.4.1. We can interpret ϕk,n(t) and ϕn(t) as the ch.f.s

ϕθ
k,n(v)= E exp

(
ivξ θ

k,n

)
, ϕθ

n(v)= E exp
(
ivζ θ

n

)

of the random variables ξ θ
k,n = (ξk,n, θ), ζ θ

n = (ζn, θ), where θ = t/|t |, v = |t |. Let

us show that the scalar random variables ξ θ
k,n satisfy the conditions of Theorem 8.4.1

(or Corollary 8.4.1) for the univariate case. Clearly,

E ξ θ
k,n = 0,

n∑

k=1

E
(
ξ θ
k,n

)2 =
n∑

k=1

E(ξk,n, θ)2 = θσ 2
n θT → θσ 2θT > 0.

That condition [D2] is satisfied follows from the obvious inequalities

(ξk,n, θ)2 =
∣∣ξ θ

k,n

∣∣2 ≤ |ξk,n|2,
n∑

k=1

Eg2

(
ξ θ
k,n

)
≤

n∑

k=1

Eg2

(
|ξk,n|

)
,

where g2(x)=min(x2, |x|s), s > 2. Thus, for any v and θ (i.e., for any t), by Corol-

lary 8.4.1 of Theorem 8.4.1

ϕn(t)= E exp
{
ivζ θ

n

}
→ exp

{
−1

2
v2θσ 2θT

}
= exp

{
−1

2
tσ 2tT

}
.

The theorem is proved. �

Theorem 8.6.1 does not cover the case where the entries of the matrix σ 2
n grow

unboundedly or behave in such away that the rank of the limiting matrix σ 2 becomes

less than the dimension of the vectors ξk,n. This can happen when the variances of

different components of ξk,n have different orders of decay (or growth). In such a

case, one should consider the transformed sums ζ ′n = ζnσ
−1
n instead of ζn. Theo-

rem 8.6.1 is actually a consequence of the following more general assertion which,

in turn, follows from Theorem 8.6.1.

Theorem 8.6.2 If the random variables ξ ′k,n = ξk,nσ
−1
n satisfy condition [D2] (or

[M2]) then ζ ′n ⊂=⇒�0,E , where E is the identity matrix.
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8.7 Integro-Local and Local Limit Theorems for Sums of

Identically Distributed Random Variables with Finite

Variance

Theorem 8.2.1 from Sect. 8.2 is called the integral limit theorem. To understand

the reasons for using such a name, one should compare this assertion with (more

accurate) limit theorems of another type, that describe the asymptotic behaviour of

the densities of the distributions of Sn (if any) or the asymptotics of the probabilities

of sums Sn hitting a fixed interval. It is natural to call the theorems for densities local
theorems. Theorems similar to Theorem 8.2.1 can be obtained from the local ones

(if the densities exist) by integrating, and it is natural to call them integral theorems.

Assertions about the asymptotics of the probabilities of Sn hitting an interval are

“intermediate” between the local and integral theorems, and it is natural to call them

integro-local theorems. In the literature, such statements are often also referred to

as local, apparently because they describe the probability of the localisation of the

sum Sn in a given interval.

8.7.1 Integro-Local Theorems

Integro-local theorems describe the asymptotics of

P
(
Sn ∈ [x, x +∆)

)

as n→∞ for a fixed ∆ > 0. Probabilities of this type for increasing ∆ (or for

∆ =∞) can clearly be obtained by summing the corresponding probabilities for

fixed ∆.

We will derive integro-local and local theorems with the inversion formulas from

Sect. 8.7.2.

For the sake of brevity, put

∆[x)= [x, x +∆)

and denote by φ(x)= φ0,1(x) the density of the standard normal distribution. Below

we will restrict ourselves to the investigation of the sums Sn = ξ1 + · · · + ξn of

independent identically distributed random variables ξk
d= ξ .

Theorem 8.7.1 (The Stone–Shepp integro-local theorem) Let ξ be a non-lattice
random variable, E ξ = 0 and E ξ2 = σ 2 < ∞. Then, for any fixed ∆ > 0, as
n→∞,

P
(
Sn ∈∆[x)

)
= ∆

σ
√

n
φ

(
x

σ
√

n

)
+ o

(
1√
n

)
, (8.7.1)

where the remainder term o(1/
√

n) is uniform in x.
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Remark 8.7.1 Since relation (8.7.1) is valid for any fixed ∆, it will also be valid

when ∆ = ∆n→ 0 slowly enough as n→∞. If ∆ = ∆n grows then the asymp-

totics of P(Sn ∈∆[x)) can be obtained by summing the right-hand sides of (8.7.1)

for, say, ∆ = 1 (if ∆n→∞ is integer-valued). Thus the integral theorem follows

from the integro-local one but not vice versa.

Remark 8.7.2 By virtue of the properties of densities (see Sect. 3.2), the right-hand

side of representation (8.7.1) has the same form as if the random variable ζn =
Sn/(σ

√
n) had the density φ(v)+ o(1), although the existence of the density of Sn

(or ζn) is not assumed in the theorem.

Proof of Theorem 8.7.1 First prove the theorem under the simplifying assumption

that condition

lim sup
|t |→∞

∣∣ϕ(t)
∣∣< 1 (8.7.2)

is satisfied (the Cramér condition on the ch.f.). Property 11 of ch.f.s (see Sect. 8.7.1)

implies that this condition is always met if the distribution of the sum Sm, for some

m≥ 1, has a positive absolutely continuous component. The proof of Theorem 8.7.1

in its general form is more complicated and will be given at the end of this section,

in Sect. 8.7.3.

In order to use the inversion formula (7.2.8), we employ the “smoothing method”

and consider, along with Sn, the sums

Zn = Sn + ηδ, (8.7.3)

where ηδ ⊂=U−δ,0. Since the ch.f. ϕηδ (t) of the random variable ηδ , being equal to

ϕηδ (t)=
1− e−itδ

itδ
, (8.7.4)

possesses the property that the function ϕηδ (t)/t is integrable at infinity, for the

increments of the distribution function Gn(x) of the random variable Zn (its ch.f.

divided by t is integrable, too) we can use formula (7.2.8):

Gn(x +∆)−Gn(x)= P
(
Zn ∈∆[x)

)
= 1

2π

∫
e−itx 1− e−it∆

it
ϕn(t)ϕηδ (t) dt

= ∆

2π

∫
e−itxϕn(t)ϕ̂(t) dt, (8.7.5)

where ϕ̂(t)= ϕηδ (t)ϕη∆(t) (cf. (7.2.8)) is the ch.f. of the sum of independent random

variables ηδ and η∆. We obtain that the difference Gn(x +∆)−Gn(x), up to the

factor ∆, is nothing else but the value of the density of the random variable Sn +
ηδ + η∆ at the point x.

Split the integral on the right-hand side of (8.7.5) into the two subintegrals: one

over the domain |t | < γ for some γ < 1, and the other—over the complementary
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domain. Put x = v
√

n and consider first

I1 :=
∫

|t |<γ

e−itv
√

nϕn(t)ϕ̂(t) dt = 1√
n

∫

|u|<γ
√

n

e−iuvϕn

(
u√
n

)
ϕ̂

(
u√
n

)
du.

Without loss of generality we can assume σ = 1, and by (8.2.1) obtain that

1− ϕ(t) = t2

2
+ o

(
t2
)
,

lnϕ(t) = ln
[
1−

(
1− ϕ(t)

)]
=− t2

2
+ o

(
t2
)

as t→ 0. (8.7.6)

Hence

n lnϕ

(
u√
n

)
=−u2

2
+ hn(u), (8.7.7)

where hn(u)→ 0 for any fixed u as n→∞. Moreover, for γ small enough, in the

domain |u|< γ
√

n we have

∣∣hn(u)
∣∣≤ u2

6
,

so the right-hand side of (8.7.7) does not exceed −u2/3. Now we can rewrite I1 in

the form

I1 =
1√
n

∫

|u|<γ
√

n

exp

{
−iuv − u2

2
+ hn(u)

}
ϕ̂

(
u√
n

)
du, (8.7.8)

where |ϕ̂(u/
√

n)| ≤ 1 and ϕ̂(u/
√

n )→ 1 for any fixed u as n→∞. Therefore, by

virtue of the dominated convergence theorem,

√
nI1→

∫
exp

{
−iuv− u2

2

}
du (8.7.9)

uniformly in v, since the integral on the right-hand side of (8.7.8) is uniformly con-

tinuous in v. But the integral on the right-hand side of (8.7.9) is simply (up to the

factor 1/(2π)) the result of applying the inversion formula to the ch.f. of the normal

distribution, so that

lim
n→∞

√
nI1 =

√
2π e−v2/2. (8.7.10)

It remains to consider the integral

I2 :=
∫

|t |≥γ

e−itv
√

nϕn(t)ϕ̂(t) dt.
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By virtue of (8.7.2) and non-latticeness of the distribution of ξ ,

q := sup
|t |≥γ

∣∣ϕ(t)
∣∣< 1 (8.7.11)

and therefore

|I2| ≤ qn

∫

|t |≥γ

∣∣ϕ̂(t)
∣∣dt ≤ qnc(∆, δ), lim

n→∞
√

nI2 = 0 (8.7.12)

uniformly in v, where c(∆, δ) depends on ∆ and δ only. We have established that,

for x = v
√

n, as n→∞, the relations

I1 + I2 =
√

2π

n
e−v2/2 + o

(
1√
n

)
,

P
(
Zn ∈∆[x)

)
= ∆√

2πn
e−x2/(2n) + o

(
1√
n

) (8.7.13)

hold uniformly in v (see (8.7.5)). This means that representation (8.7.13) holds uni-

formly for all x.

Further, by (8.7.3),

{
Zn ∈ [x, x +∆− δ)

}
⊂
{
Sn ∈∆[x)

}
⊂
{
Zn ∈ [x − δ, x +∆)

}
(8.7.14)

and, so, in particular,

P
(
Sn ∈∆[x)

)
≤ ∆+ δ√

2πn
e−(x−δ)2/(2n) + o

(
1√
n

)
= ∆+ δ√

2πn
e−x2/(2n) + o

(
1√
n

)
.

By (8.7.14) an analogous converse inequality also holds. Since δ is arbitrary, this

is possible only if

P
(
Sn ∈∆[x)

)
= ∆√

2πn
e−x2/(2n) + o

(
1√
n

)
. (8.7.15)

The theorem is proved. �

8.7.2 Local Theorems

If the distribution of Sn has a density than we can obtain local theorems on the

asymptotics of this density.

Theorem 8.7.2 Let E ξ = 0, E ξ2 = σ 2 <∞ and suppose there exists an m ≥ 1

such that at least one of the following three conditions is met:

(a) the distribution of Sm has a bounded density;
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(b) the distribution of Sm has a density from L2;

(c) the ch.f. ϕm(t) of the sum Sm is integrable.

Then, for n≥m, the distribution of the sum Sn has density fSn(x) for which the
representation

fSn(x)= 1√
2πnσ

exp

{
− x2

2nσ 2

}
+ o

(
1√
n

)
(8.7.16)

holds uniformly in x as n→∞.

Conditions (a)–(c) are equivalent to each other (possibly with different values
of m).

Proof We first establish the equivalence of (a)–(c). The fact that a bounded density

belongs to L2 was proved in Sect. 7.2.3. Conversely, if f ∈ L2 then

∣∣f (2)∗(t)
∣∣ =

∣∣∣∣
∫

f (u)f (t − u)du

∣∣∣∣

≤
[∫

f 2(u) du×
∫

f 2(t − u)du

]1/2

=
∫

f 2(u) du <∞.

Hence the relationship fSm ∈ L2 implies the boundedness of fS2m
, and thus (a) and

(b) are equivalent.

If ϕm is integrable then by Theorem 7.2.2 the density fSm exists and is bounded.

Conversely, if fSm is bounded then fSm ∈ L2, ϕSm ∈ L2 and ϕS2m
∈ L1 (see

Sect. 8.7.2). This proves the equivalence of (a) and (c).

We will now prove (8.7.16). By the inversion formula (7.2.1),

fSn(x)= 1

2π

∫
e−itxϕn(t) dt.

Here the integral on the right-hand side does not “qualitatively” differ from the

integral on the right-hand side of (8.7.5), we only have to put ϕ̂(t) ≡ 1 in the part

I1 of the integral (8.7.5) (the integral over the set |t |< γ ), and, in the part I2 (over

the set |t | ≥ γ ), to replace the integrable function ϕ̂(t) with the integrable function

ϕm(t) and to replace the function ϕn(t) with ϕn−m(t). After these changes the whole

argument in the proof of relation (8.7.13) remains valid, and therefore the same

relation (up to the factor ∆) will hold for

fSn(x)= 1√
2πnσ

exp

{
− x2

2nσ 2

}
+ o

(
1√
n

)
.

The theorem is proved. �

Theorem 8.7.2 implies that the density fζn of the random variable ζn = Sn

σ
√

n

converges to the density φ of the standard normal law:

fζn(v)→ φ(v)

uniformly in v as n→∞.
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For instance, the density of the uniform distribution over [−1,1] satisfies the

conditions of this theorem, and hence the density of Sn at the point x = vσ
√

n

(σ 2 = 1/3) will behave as 1

σ
√

2πn
e−v2/(2σ 2) (cf. the remark to Example 3.6.1).

In the arithmetic case, where the random variable ξ is integer-valued and the

greatest common divisor of all possible values of ξ equals 1 (see Sect. 7.1), it is the

asymptotics of the probabilities P(Sn = x) for integer x that become the subject of

interest for local theorems. In this case we cannot assume without loss of generality

that Eξ = 0.

Theorem 8.7.3 (Gnedenko) Let E ξ = a, E ξ2 = σ 2 <∞ and ξ have an arithmetic
distribution. Then, uniformly over all integers x, as n→∞,

P(Sn = x)= 1√
2πnσ

exp

{
(x − an)2

2nσ 2

}
+ o

(
1√
n

)
. (8.7.17)

Proof When proving limit theorems for arithmetic ξ , it is more convenient to use

the generating functions (see Sects. 7.1, 7.7)

p(z)≡ pξ (z) := E zξ , |z| = 1,

so that p(eit )= ϕ(t), where ϕ is the ch.f. of ξ .

In this case the inversion formulas take the following form (see (7.2.10)): for

integer x,

P(ξ = x) = 1

2πi

∫

|z|=1

z−x−1p(z) dz,

P(Sn = x) = 1

2πi

∫

|z|=1

z−x−1pn(z) dz= 1

2π

∫ π

−π

e−itxϕn(t) dt.

As in the proof of Theorem 8.7.1, here we split the integral on the right-hand side

into two subintegrals: over the domain |t |< γ and over the complementary set. The

treatment of the first subintegral

I1 :=
∫

|t |<γ

e−itxϕn(t) dt =
∫

|t |<γ

e−ity
[
e−itaϕ(t)

]n
dt

for y = x − an differs from the considerations for I1 in Theorem 8.7.1 only in that

it is simpler and yields (see (8.7.10))

I1 =
√

2π

σ
√

n
exp

{
− y2

2πσ 2

}
+ o

(
1√
n

)
.

Similarly, the treatment of the second subintegral differs from that of I2 in Theo-

rem 8.7.1 in that it becomes simpler, since the range of integration here is compact



222 8 Sequences of Independent Random Variables. Limit Theorems

and on that one has
∣∣ϕ(t)

∣∣≤ q(γ ) < 1. (8.7.18)

Therefore, as in Theorem 8.7.1,

I2 = o

(
1√
n

)
, P(Sn = x)= 1√

2πnσ
exp

{
− y2

2nσ 2

}
+ o

(
1√
n

)
.

The theorem is proved. �

Evidently, for the values of y of order
√

n Theorem 8.7.3 is a generalisation of

the local limit theorem for the Bernoulli scheme (see Corollary 5.2.1).

8.7.3 The Proof of Theorem 8.7.1 in the General Case

To prove Theorem 8.7.1 in the general case we will use the same approach as in

Sect. 7.1. We will again employ the smoothing method, but now, when specifying

the random variable Zn in (8.7.3), we will take θη instead of ηδ , where θ = const,

η is a random variable with the ch.f. from Example 7.2.1 (see the end of Sect. 7.2)

equal to

ϕη(t)=
{

1− |t |, |t | ≤ 1;
0, |t |> 1,

so that for Zn = Sn + θη, similarly to (8.7.5), we have

P
(
Zn ∈∆[x)

)
= ∆

2π

∫

|t |≤ 1
θ

e−itxϕn(t)ϕη∆(t)ϕθη(t) dt, (8.7.19)

where ϕθη(t) = max(0,1 − θ |t |). As in Sect. 8.7.1, split the integral on the right-

hand side of (8.7.19) into two subintegrals: I1 over the domain |t |< γ and I2 over

the domain γ ≤ |t | ≤ 1/θ . The asymptotic behaviour of these integrals is investi-

gated in almost the same way as in Sect. 8.7.1, but is somewhat simpler, since the

domain of integration in I2 is compact, and so, by the non-latticeness of ξ , one has

on it the upper bound

q := sup
γ≤|t |≤1/θ

∣∣ϕ(t)
∣∣< 1. (8.7.20)

Therefore, to bound I2 we no longer need condition (8.7.2).

Thus we have established, as above, relation (8.7.13).

To derive from this fact the required relation (8.7.15) we will need the following.

Lemma 8.7.1 Let f (y) be a bounded uniformly continuous function, η an arbitrary
proper random variable independent of Sn and b(n)→∞ as n→∞. If, for any
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fixed ∆ > 0 and θ > 0, as n→∞, we have

P
(
Sn + θη ∈∆[x)

)
= ∆

b(n)

[
f

(
x

b(n)

)
+ o(1)

]
, (8.7.21)

then

P
(
Sn ∈∆[x)

)
= ∆

b(n)

[
f

(
x

b(n)

)
+ o(1)

]
. (8.7.22)

In this assertion we can take Sn to be any sequence of random variables satisfying

(8.7.21). In this section we will set b(n) to be equal to
√

n, but later (see the proof

of Theorem A7.2.1 in Appendix 7) we will need some other sequences as well.

Proof Put θ := δ2∆, where δ > 0 will be chosen later, ∆±:=(1±2δ)∆, ∆±[x) :=
[x, x +∆±) and f0 :=maxf (y). We first obtain an upper bound for P(Sn ∈∆[x)).

We have

P
(
Zn ∈∆+[x −∆δ)

)
≥ P

(
Zn ∈∆+[x −∆δ); |η|< 1/δ

)
.

On the event |η|< 1/δ one has −δ∆ < θη < δ∆, and hence on this event

{
Zn ∈∆+[x −∆δ)

}
⊃
{
Sn ∈∆[x)

}
.

Thus, by independence of η and Sn,

P
(
Zn ∈∆+[x −∆δ)

)
≥ P

(
Sn ∈∆[x); |η|< 1/δ

)
= P

(
Sn ∈∆[x)

)(
1− h(δ)

)
,

where h(δ) := P(|η| ≥ 1/δ)→ 0 as δ→ 0. By condition (8.7.21) and the uniform

integrability of f we obtain

P
(
Sn ∈∆[x)

)
≤ P

(
Zn ∈∆+[x −∆δ)

)(
1− h(δ)

)−1

≤
[

∆

b(n)
f

(
x

b(n)

)
+ 2δ∆f0

b(n)
+ o

(
1

b(n)

)](
1− h(δ)

)−1
.

(8.7.23)

If, for a given ε > 0, we choose δ > 0 such that

(
1− h(δ)

)−1 ≤ 1+ ε∆

3
, 2δf0 ≤

ε

3
,

then we derive from (8.7.23) that, for all n large enough and ε small enough,

P
(
Sn ∈∆[x)

)
≤ ∆

b(n)

(
f

(
x

b(n)

)
+ ε

)
. (8.7.24)
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This implies, in particular, that for all x,

P
(
Sn ∈∆[x)

)
≤ ∆

b(n)
(f0 + ε). (8.7.25)

Now we will obtain a lower bound for P(Sn ∈∆[x)). For the event

A :=
{
Zn ∈∆−[x +∆δ)

}

we have

P(A)= P
(
A; |η|< 1/δ

)
+ P

(
A; |η| ≥ 1/δ

)
. (8.7.26)

On the event |η|< 1/δ we have

{
Zn ∈∆−[x +∆δ)

}
⊂
{
Sn ∈∆[x)

}
,

and hence

P
(
A; |η|< 1/δ

)
≤ P

(
Sn ∈∆[x)

)
. (8.7.27)

Further, by independence of η and Sn and inequality (8.7.25),

P
(
A; |η| ≥ 1/δ

)
= E

[
P(A | η); |η| ≥ 1/δ

]

= E
[
P
(
Sn ∈∆−[x + θη+∆δ) | η

)
; |η| ≥ 1/δ

]

≤ ∆

b(n)
(f0 + ε)h(δ).

Therefore, combining (8.7.26), (8.7.27) and (8.7.21), we get

P
(
Sn ∈∆[x)

)
≥ ∆

b(n)
f

(
x

b(n)

)
− 2δ∆f0

b(n)
+ o

(
1

b(n)

)
− ∆

b(n)
(f0 + ε)h(δ).

In addition, choosing δ such that

f0h(δ) <
ε

3
, 2δf0 <

ε

3
,

we obtain that, for all n large enough and ε small enough,

P
(
Sn ∈∆[x)

)
≥ ∆

b(n)

(
f

(
x

b(n)

)
− ε

)
. (8.7.28)

Since ε is arbitrarily small, inequalities (8.7.24) and (8.7.28) prove the required

relation (8.7.22). The lemma is proved. �

To prove the theorem it remains to apply Lemma 8.7.1 in the case (see (8.7.13))

where f = φ and b(n)=√n. Theorem 8.7.1 is proved. �
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8.7.4 Uniform Versions of Theorems 8.7.1–8.7.3 for Random

Variables Depending on a Parameter

In the next chapter, we will need uniform versions of Theorems 8.7.1–8.7.3, where

the summands ξk depend on a parameter λ. Denote such summands by ξ(λ)k , the

corresponding distributions by F(λ), and put

S(λ)n :=
n∑

k=1

ξ(λ)k,

where ξ(λ)k are independent copies of ξ(λ) ⊂= F(λ). If λ is only determined by the

number of summands n then we will be dealing with the triangular array scheme

considered in Sects. 8.3–8.6 (the summands there were denoted by ξk,n). In the

general case we will take the segment [0, λ1] for some λ1 > 0 as the parametric set,

keeping in mind that λ ∈ [0, λ1] may depend on n (in the triangular array scheme

one can put λ= 1/n).

We will be interested in what conditions must be imposed on a family of dis-

tributions F(λ) for the assertions of Theorems 8.7.1–8.7.3 to hold uniformly in

λ ∈ [0, λ1]. We introduce the following notation:

a(λ)= Eξ(λ), σ 2(λ)=Var(ξ(λ)), ϕ(λ)(t)= Eeitξ(λ) .

The next assertion is an analogue of Theorem 8.7.1.

Theorem 8.7.1A Let the distributions F(λ) satisfy the following properties: 0 <

σ1 < σ(λ) < σ2 <∞, where σ1 and σ2 do not depend on λ:

(a) the relation

ϕ(λ)(t)− 1− ia(λ)t + t2m2(λ)

2
= o

(
t2
)
, m2(λ) := E ξ2

(λ), (8.7.29)

holds uniformly in λ ∈ [0, λ1] as t→ 0, i.e. there exist a t0 > 0 and a function
ε(t)→ 0 as t → 0, independent of λ, such that, for all |t | ≤ t0, the absolute
value of the left-hand side of (8.7.29) does not exceed ε(t)t2;

(b) for any fixed 0 < θ1 < θ2 <∞,

q(λ) := sup
θ1≤|t |≤θ2

∣∣ϕ(λ)(t)
∣∣≤ q < 1, (8.7.30)

where q does not depend on λ.

Then, for each fixed ∆ > 0,

P
(
S(λ)n − na(λ) ∈∆[x)

)
= ∆

σ(λ)
√

n
φ

(
x

σ(λ)
√

n

)
+ o

(
1√
n

)
, (8.7.31)

where the remainder term o(1/
√

n) is uniform in x and λ ∈ [0, λ1].
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Proof Going through the proof of Theorem 8.7.1 in its general form (see Sect. 7.3),

we see that, to ensure the validity of all the proofs of the intermediate assertions in

their uniform forms, it suffices to have uniformity in the following two places:

(a) the uniformity in λ of the estimate o(t2) as t→ 0 in relation (8.7.6) for the

expansion of the ch.f. of the random variable ξ = ξ(λ)−a(λ)

σ (λ)
;

(b) the uniformity in relation (8.7.20) for the same ch.f.

We verify the uniformity in (8.7.6). For ϕ(t)= E eitξ , we have by (8.7.29)

lnϕ(t) = − ita(λ)

σ (λ)
+ lnϕ(λ)

(
t

σ (λ)

)

= − t2(m2(λ)− a2(λ))

2σ 2(λ)
+ o

(
t2
)
=− t2

2
+ o

(
t2
)
,

where the remainder term is uniform in λ.

The uniformity in relation (8.7.20) clearly follows from condition b), since σ(λ)

is uniformly separated from both 0 and∞. The theorem is proved. �

Remark 8.7.3 Conditions (a) and (b) of Theorem 8.7.1A are essential for (8.7.31)

to hold. To see this, consider random variables ξ and η with fixed distributions,

E ξ = Eη = 0 and Eξ2 = Eη2 = 1. Let λ ∈ [0,1] and the random variable ξ(λ) be

defined by

ξ(λ) :=
{

ξ with probability 1− λ,
η√
λ

with probability λ,
(8.7.32)

so that E ξ(λ) = 0 and Var(ξ(λ))= 2− λ (in the case of the triangular array scheme

one can put λ= 1/n). Then, under the obvious notational conventions, for λ= t2,

t→ 0, we have

ϕ(λ)(t)= (1− λ)ϕξ (t)+ λϕη

(
t√
λ

)
= 1− 3t2

2
+ o

(
t2
)
+ t2ϕη(1).

This implies that (8.7.29) does not hold and hence condition a) is not met for the

values of λ in the vicinity of zero. At the same time, the uniform versions of relation

(8.7.31) and the central limit theorem will fail to hold. Indeed, putting λ= 1/n, we

obtain the triangular array scheme, in which the number νn of the summands of the

form ηi/
√

λ in the sum S(λ)n =
∑n

i=1 ξ(λ)i converges in distribution to ν ⊂=�1 and

1√
n(2− λ)

S(λ)n
d= Sn−νn√

2n− 1
+ Hνn√

2− 1/n
, where Hk =

k∑

i=1

ηi .

The first term on the right-hand side weakly converges in distribution to ζ ⊂=�0,1/2,

while the second term converges to Hν/
√

2. Clearly, the sum of these independent

summands is, generally speaking, not distributed normally with parameters (0,1).
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To see that condition (b) is also essential, consider an arithmetic random variable

ξ with E ξ = 0 and Var(ξ) = 1, take η to be a random variable with the uniform

distribution U−1,1, and put

ξ(λ) :=
{

ξ with probability 1− λ,

η with probability λ.

Here the random variable ξ(λ) is non-lattice (its distribution has an absolutely con-

tinuous component), but

ϕ(λ)(2π)= (1− λ)+ λϕη(2π), q(λ) ≥ 1− 2λ.

Again putting λ= 1/n, we get the triangular array scheme for which condition (b)

is not met. Relation (8.7.31) does not hold either, since, in the previous notation, the

sum S(λ)n is integer-valued with probability P(νn = 0)= e−1, so that its distribution

will have atoms at integer points with probabilities comparable, by Theorem 8.7.3,

with the right-hand side of (8.7.31). This clearly contradicts (8.7.31).

If we put λ = 1/n2 then the sum S(λ)n will be integer-valued with probability

(1− 1/n2)n→ 1, and the failure of relation (8.7.31) becomes even more evident.

Uniform versions of the local Theorems 8.7.2 and 8.7.3 are established in a com-

pletely analogous way.

Theorem 8.7.2A Let the distributions F(λ) satisfy the conditions of Theorem 8.7.1A

with θ2 =∞ and the conditions of Theorem 8.7.2, in which conditions (a)–(c) are
understood in the uniform sense (i.e., maxx fS(λ)m

(x) or the norm of fS(λ)m
in L2 or∫

|ϕm
(λ)(t)|dt are bounded uniformly in λ ∈ [0, λ1]).

Then representation (8.7.16) holds for fS(λ)n
(x) uniformly in x and λ, provided

that on its right-hand side we replace σ by σ(λ).

Proof The conditions of Theorem 8.7.2A are such that they enable one to obtain

the proof of the uniform version without any noticeable changes in the arguments

proving Theorems 8.7.1A and 8.7.2. �

The following assertion is established in the same way.

Theorem 8.7.3A Let the arithmetic distributions F(λ) satisfy the conditions of The-
orem 8.7.1A for θ2 = π . Then representation (8.7.17) holds uniformly in x and λ,

provided that a and σ on its right-hand side are replaced with a(λ) and σ(λ), re-
spectively.

Remark 8.7.3 applies to Theorems 8.7.2A and 8.7.3A as well.

8.8 Convergence to Other Limiting Laws

As we saw in previous sections, the normal law occupies a special place among all

distributions—it is the limiting law for normed sums of arbitrary distributed random
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variables. There arises the natural question of whether there exist any other limiting

laws for sums of independent random variables.

It is clear from the proof of Theorem 8.2.1 for identically distributed random

variables that the character of the limiting law is determined by the behaviour of the

ch.f. of the summands in the vicinity of 0. If Eξ = 0 and Eξ2 = σ 2 =−ϕ′′(0) exist,

then

ϕ

(
1√
n

)
= 1+ ϕ′′(0)t2

2n
+ o

(
1

n

)
,

and this determines the asymptotic behaviour of the ch.f. of Sn/
√

n, equal to

ϕn(t
√

n), which leads to the normal limiting law. Therefore, if one is looking for

different limiting laws for the sums Sn = ξ1 + · · · + ξn, it is necessary to renounce

the condition that the variance is finite or, which is the same, that ϕ′′(0) exists. In

this case, however, we will have to impose some conditions on the regular variation

of the functions F+(x) = P(ξ ≥ x) and/or F−(x) = P(ξ < −x) as x→∞, which

we will call the right and the left tail of the distribution of ξ , respectively. We will

need the following concepts.

Definition 8.8.1 A positive (Lebesgue) measurable function L(t) is called a slowly
varying function (s.v.f.) as t→∞, if, for any fixed v > 0,

L(vt)

L(t)
→ 1 as t→∞. (8.8.1)

A function V (t) is called a regularly varying function (r.v.f.) (of index −β) as t→
∞ if it can be represented as

V (t)= t−βL(t), (8.8.2)

where L(t) is an s.v.f. as t→∞.

One can easily see that, similarly to (8.8.1), the characteristic property of regu-

larly varying functions is the convergence

V (vt)

V (t)
→ v−β as t→∞ (8.8.3)

for any fixed v > 0. Thus an s.v.f. is an r.v.f. of index zero.

Among typical representatives the class of s.v.f.s are the logarithmic function and

its powers lnγ t , γ ∈R, linear combinations thereof, multiple logarithms, functions

with the property that L(t)→ L = const 
= 0 as t →∞ etc. As an example of a
bounded oscillating s.v.f. we mention

L0(t)= 2+ sin(ln ln t), t > 1.

The main properties of r.v.f.s are given in Appendix 6.
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As has already been noted, for Sn/b(n) to converge to a “nondegenerate” limiting

law under a suitable normalisation b(n), we will have to impose conditions on the

regular variation of the distribution tails of ξ . More precisely, we will need a regular

variation of the “two-sided tail”

F0(t)= F−(t)+ F+(t)= P
(
ξ /∈ [−t, t)

)
.

We will assume that the following condition is satisfied for some β ∈ (0,2],
ρ ∈ [−1,1]:
[Rβ,ρ] The two-sided tail F0(x) = F−(x)+ F+(x) is an r.v.f. as x→∞, i.e. it

can be represented as

F0(x)= t−βLF0
(x), β ∈ (0,2], (8.8.4)

where LF0
(x) is an s.v.f., and the following limit exists

ρ+ := lim
x→∞

F+(x)

F0(x)
∈ [0,1], ρ := 2ρ+ − 1. (8.8.5)

If ρ+ > 0, then clearly the right tail F+(x) is an r.v.f. like F0(x), i.e. it can be

represented as

F+(x)= V (x) := x−βL(x), β ∈ (0,2], L(x)∼ ρ+LF0
(x).

(Here, and likewise in Appendix 6, we use the symbol V to denote an r.v.f.) If

ρ+ = 0, then the right tail F+(x)= o(F0(x)) is not assumed to be regularly varying.

Relation (8.8.5) implies that the following limit also exists

ρ− := lim
x→∞

F−(x)

F0(x)
= 1− ρ+.

If ρ− > 0, then, similarly to the case of the right tail, the left tail F−(x) can be

represented as

F−(x)=W(x) := x−βLW (x), β ∈ (0,2], LW (x)∼ ρ−LF0
(x).

If ρ− = 0, then the left tail F−(x)= o(F0(x)) is not assumed to be regularly varying.

The parameters ρ± are related to the parameter ρ in the notation [Rβ,ρ] through

the equalities

ρ = ρ+ − ρ− = 2ρ+ − 1 ∈ [−1,1].
Clearly, in the case β < 2 we have Eξ2 =∞, so that the representation

ϕ(t)= 1− t2σ 2

2
+ o

(
t2
)

as t→ 0

no longer holds, and the central limit theorem is not applicable. If Eξ exists and is

finite then everywhere in what follows it will be assumed without loss of generality
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that

Eξ = 0.

Since F0(x) is non-increasing, there always exists the “generalised” inverse function

F
(−1)
0 (u) understood as

F
(−1)
0 (u) := inf

{
x : F0(x) < u

}
.

If the function F0 is strictly monotone and continuous then b = F
(−1)
0 (u) is the

unique solution to the equation

F0(b)= u, u ∈ (0,1).

Set

ζn :=
Sn

b(n)
,

wherein the case β > 2 we define the normalising factor b(n) by

b(n) := F
(−1)
0 (1/n). (8.8.6)

For β = 2 put

b(n) := Y (−1)(1/n), (8.8.7)

where

Y(x) := 2x−2

∫ x

0

yF0(y) dy = 2x−2

[∫ x

0

yF+(y) dy +
∫ x

0

yF−(y) dy

]

= x−2E
(
ξ2; −x ≤ ξ < x

)
= x−2LY (x), (8.8.8)

LY is an s.v.f. (see Theorem A6.2.1(iv) in Appendix 6). It follows from Theo-

rem A6.2.1(v) in Appendix 6 that, under condition (8.8.4), we have

b(n)= n1/βLb(n), β ≤ 2,

where Lb is an s.v.f.

We introduce the functions

VI (x)=
∫ x

0

V (y)dy, V I (x)=
∫ ∞

x

V (y)dy.

8.8.1 The Integral Theorem

Theorem 8.8.1 Let condition [Rβ,ρ] be satisfied. Then the following assertions hold
true.
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(i) For β ∈ (0,2), β 
= 1 and the normalising factor (8.8.6), as n→∞,

ζn⇒ ζ (β,ρ). (8.8.9)

The distribution Fβ,ρof the random variable ζ (β,ρ) depends on parameters β

and ρ only and has a ch.f. ϕ(β,ρ)(t), given by

ϕ(β,ρ)(t) := Eeitζ (β,ρ) = exp
{
|t |βB(β,ρ,ϑ)

}
, (8.8.10)

where ϑ = sign t ,

B(β,ρ,ϑ)= Γ (1− β)

[
iρϑ sin

βπ

2
− cos

βπ

2

]
(8.8.11)

and, for β ∈ (1,2), we put Γ (1− β)= Γ (2− β)/(1− β).

(ii) When β = 1, for the sequence ζn with the normalising factor (8.8.6) to con-
verge to a limiting law, the former, generally speaking, needs to be centred.

More precisely, as n→∞, the following convergence takes place:

ζn −An⇒ ζ (1,ρ), (8.8.12)

where

An =
n

b(n)

[
VI

(
b(n)

)
−WI

(
b(n)

)]
− ρ C, (8.8.13)

C ≈ 0.5772 is the Euler constant, and

ϕ(1,ρ)(t)= Eeitζ (1,ρ) = exp

{
−π |t |

2
− iρt ln |t |

}
. (8.8.14)

If n[VI (b(n))−WI (b(n))] = o(b(n)), then ρ = 0 and we can put An = 0.

If Eξ exists and equals zero then

An =
n

b(n)

[
W I

(
b(n)

)
− V I

(
b(n)

)]
− ρ C.

If Eξ = 0 and ρ 
= 0 then ρAn→−∞ as n→∞.

(iii) For β = 2 and the normalising factor (8.8.7), as n→∞,

ζn⇒ ζ (2,ρ), ϕ(2,ρ)(t) := Eeitζ (2,ρ) = e−t2/2,

so that ζ (2,ρ) has the standard normal distribution that is independent of ρ.

The Proof of Theorem 8.8.1 is based on the same considerations as the proof of

Theorem 8.2.1, i.e. on using the asymptotic behaviour of the ch.f. ϕ(t) in the vicinity

of zero. But here it will be somewhat more difficult from the technical viewpoint.

This is why the proof of Theorem 8.8.1 appears in Appendix 7. �
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Remark 8.8.1 The last assertion of the theorem (for β = 2) shows that the limiting

distribution may be normal even in the case of infinite variance of ξ .

Besides with the normal distribution, we also note “extreme” limit distributions,

corresponding to the ρ =±1 where the ch.f. ϕ(β,ρ) (or the respective Laplace trans-

form) takes a very simple form. Let, for example, ρ =−1. Since eiπϑ/2 = ϑi, then,

for β 
= 1,2,

B(β,−1, ϑ) = −Γ (1− β)

[
i sin

βπϑ

2
+ cos

βπϑ

2

]

= −Γ (1− β)eiβπϑ/2 =−Γ (1− β)(iϑ)β ,

ϕ(β,−1)(t) = exp
{
−Γ (1− β)(it)β

}
,

E eλζ (β,−1) = exp
{
−Γ (1− β)λβ

}
, Reλ≥ 0.

Similarly, for β = 1, by (8.8.14) and the equalities −πϑ
2
= i iπϑ

2
= i ln iϑ we have

lnϕ(1,−1)(t) = −πϑt

2
+ it ln |t | = it ln iϑ + it ln |t | = it ln it,

E eλζ (1,−1) = exp{λ lnλ}, Reλ≥ 0.

A similar formula is valid for ρ = 1.

Remark 8.8.2 If β < 2, then by virtue of the properties of s.v.f.s (see Theo-

rem A6.2.1(iv) in Appendix 6), as x→∞,

∫ x

0

yF0(y) dy =
∫ x

0

y1−βLF0
(y) dy ∼ 1

2− β
x2−βLF0

(x)= 1

2− β
x2F0(x).

Therefore, for β < 2, we have Y(x)∼ 2(2− β)−1F0(x),

Y (−1)(1/n)∼ F
(−1)
0

(
2− β

2n

)
∼
(

2

2− β

)1/β

F
(−1)
0 (1/n)

(cf. (8.8.6)). On the other hand, for β = 2 and σ 2 := Eξ2 <∞ one has

Y(x)∼ x−2σ 2, b(n)= Y (−1)(1/n)∼
√

σn.

Thus normalisation (8.8.7) is “transitional” from normalisation (8.8.6) (up to the

constant factor (2/(2 − β))1/β ) to the standard normalisation σ
√

n in the cen-

tral limit theorem in the case where Eξ2 <∞. This also means that normalisa-

tion (8.8.7) is “universal” and can be used for all β ≤ 2 (as it is done in many

textbooks on probability theory). However, as we will see below, in the case β < 2

normalisation (8.8.6) is easier and simpler to deal with, and therefore we will use

that scaling.
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Recall that Fβ,ρ denotes the distribution of the random variable ζ (β,ρ). The pa-

rameter β takes values in the interval (0,2], the parameter ρ = ρ+−ρ− can assume

any value from [−1,1]. The role of the parameters β and ρ will be clarified below.

Theorem 8.8.1 implies that each of the laws Fβ,ρ , 0 < β ≤ 2 and −1≤ ρ ≤ 1 is

limiting for the distributions of suitably normalised sums of independent identically

distributed random variables. It follows from the law of large numbers that the de-

generate distribution Ia concentrated at the point a is also a limiting one. Denote the

set of all such distributions by S0. Furthermore, it is not hard to see that if F is a dis-

tribution from the class S0 then the law that differs from F by scaling and shifting,

i.e. the distribution F{a,b} defined, for some fixed b > 0 and a, by the relation

F{a,b}(B) := F

(
B − a

b

)
, where

B − a

b
= {u ∈R : ub+ a ∈ B},

is also limiting for the distributions of sums of random variables (Sn − an)/bn as

n→∞ for appropriate {an} and {bn}.
It turns out that the class of distributions S obtained by the above extension from

S0 exhausts all the limiting laws for sums of identically distributed independent
random variables.

Another characterisation of the class of limiting laws S is also possible.

Definition 8.8.2 We call a distribution F stable if, for any a1, a2, b1 > 0, b2 > 0,

there exist a and b > 0 such that

F{a1,b1} ∗ F{a2,b2} = F{a,b}.

This definition means that the convolution of a stable distribution F with itself

again yields the same distribution F, up to a scaling and shift (or, which is the

same, for independent random variables ξi ⊂= F we have (ξ1 + ξ2 − a)/b ⊂= F for

appropriate a and b).

In terms of the ch.f. ϕ, the stability property has the following form: for any

b1 > 0 and b2 > 0, there exist a and b > 0 such that

ϕ(tb1)ϕ(tb2)= eitaϕ(tb), t ∈R. (8.8.15)

Denote the class of all stable laws by SS . The remarkable fact is that the class of all
limiting laws S (for (Sn − an)/bn for some an and bn) and the class of all stable
laws SS coincide.

If, under a suitable normalisation, as n→∞,

ζn⇒ ζ (β,ρ),

then one says that the distribution F of the summands ξ belongs to the domain of
attraction of the stable law Fβ,ρ .

Theorem 8.8.1 means that, if F satisfies condition [Rβ,ρ], then F belongs to the

domain of attraction of the stable law Fβ,ρ .
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One can prove the converse assertion (see e.g. Chap. XVII, § 5 in [30]): if F

belongs to the domain of attraction of a stable law Fβ,ρ for β < 2, then [Rβ,ρ] is

satisfied.

As for the role of the parameters β and ρ, note the following. The parameter β

characterises the rate of convergence to zero as x→∞ for the functions

Fβ,ρ,−(x) := Fβ,ρ

(
(−∞,−x)

)
and Fβ,ρ,+(x) := Fβ,ρ

(
[x,∞)

)
.

One can prove that, for ρ+ > 0, as t→∞,

Fβ,ρ,+(t)∼ ρ+t−β , (8.8.16)

and, for ρ− > 0, as t→∞,

Fβ,ρ,−(t)∼ ρ−t−β . (8.8.17)

Note that, for ξ ⊂= Fβ,ρ , the asymptotic relations in Theorem 8.8.1 turn into pre-

cise equalities provided that we replace in them b(n) with bn := n1/β . In particular,

P

(
Sn

bn

≥ t

)
= Fβ,ρ,+(t). (8.8.18)

This follows from the fact that [ϕ(β,ρ)(t/bn)]n coincides with ϕ(β,ρ)(t) (see (8.8.10))

and hence the distribution of the normalised sum Sn/bn coincides with the distribu-

tion of the random variable ξ .

The parameter ρ taking values in [−1,1] is the measure of asymmetry of the dis-

tribution Fβ,ρ . If, for instance, ρ = 1 (ρ− = 0), then, for β < 1, the distribution Fβ,1

is concentrated entirely on the positive half-line. This is evident from the fact that in

this case Fβ,1 can be considered as the limiting distribution for the normalised sums

of independent identically distributed random variables ξk ≥ 0 (with F−(0) = 0).

Since all the prelimit distributions are concentrated on the positive half-line, so is

the limiting distribution.

Similarly, for ρ =−1 and β < 1, the distribution Fβ,−1 is entirely concentrated

on the negative half-line. For ρ = 0 (ρ+ = ρ− = 1/2) the ch.f. of the distribution

Fβ,0 will be real, and the distribution Fβ,0 itself is symmetric.

As we saw above, the ch.f.s ϕ(β,ρ)(t) of stable laws Fβ,ρ admit closed-form rep-

resentations. They are clearly integrable over R, and the same is true for the func-

tions tkϕ(β,ρ)(t) for any k ≥ 1. Therefore all the stable distributions have densities

that are differentiable arbitrarily many times (see e.g. the inversion formula (7.2.1)).

As for explicit forms of these densities, they are only known for a few laws. Among

them are:
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1. The normal law F2,ρ (which does not depend on ρ).

2. The Cauchy distribution F1,0 with density 2/(π2+4x2), −∞< x <∞. Scal-

ing the x-axis with a factor of π/2 transforms this density into the form 1/π(1+x2)

corresponding to K0,1.

3. The Lévy distribution. This law can be obtained from the explicit form for

the distribution of the maximum of the Wiener process. This will be the distribution

F1/2,1 with parameters 1/2,1 and density (up to scaling; cf. (8.8.16))

f (1/2,1)(x)= 1√
2πx3/2

e−1/(2x), x > 0

(this density has a first hitting time of level 1 by the standard Wiener process, see

Theorem 19.2.2).

8.8.2 The Integro-Local and Local Theorems

Under the conditions of this section we can also obtain integro-local and local the-

orems in the same way as in Sect. 8.7 in the case of convergence to the normal law.

As in Sect. 8.7, integro-local theorems deal here with the asymptotics of

P
(
Sn ∈∆[x)

)
, ∆[x)= [x, x +∆)

as n→∞ for a fixed ∆ > 0.

As we can see from Theorem 8.8.1, the ch.f. ϕ(β,ρ)(t) of the stable law Fβ,ρ is

integrable, and hence, by the inversion formula, there exists a uniformly continuous

density f (β,ρ)of the distribution Fβ,ρ . (As has already been noted, it is not difficult

to show that f (β,ρ) is differentiable arbitrarily many times, see Sect. 7.2.)

Theorem 8.8.2 (The Stone integro-local theorem) Let ξ be a non-lattice random
variable and the conditions of Theorem 8.8.1 be met. Then, for any fixed ∆ > 0, as
n→∞,

P
(
Sn ∈∆[x)

)
= ∆

b(n)
f (β,ρ)

(
x

b(n)

)
+ o

(
1

b(n)

)
, (8.8.19)

where the remainder term o( 1
b(n)

) is uniform over x.

If β = 1 and E|ξ | does not exist then, on the right-hand side of (8.8.20), we must
replace f (β,ρ)( x

b(n)
) with f (β,ρ)( x

b(n)
−An), where An is defined in (8.8.13).

All the remarks to the integro-local Theorem 8.7.1 hold true here as well, with

evident changes.

If the distribution of Sn has a density then we can find the asymptotics of that

density.



236 8 Sequences of Independent Random Variables. Limit Theorems

Theorem 8.8.3 Let there exist an m≥ 1 such that at least one of conditions (a)–(c)

of Theorem 8.7.2 is satisfied. Moreover, let the conditions of Theorem 8.8.1 be met.
Then for the density fSn(x) of the distribution of Sn one has the representation

fSn(x)= 1

b(n)
f (β,ρ)

(
x

b(n)

)
+ o

(
1

b(n)

)
(8.8.20)

which holds uniformly in x as n→∞.

If β = 1 and E|ξ | does not exist then, on the right-hand side of (8.8.20), we must
replace f (β,ρ)( x

b(n)
) with f (β,ρ)( x

b(n)
−An), where An is defined in (8.8.13).

The assertion of Theorem 8.8.3 can be rewritten for ζn = Sn

b(n)
−An as

fζn(v)→ f (β,ρ)(v)

for any v as n→∞.

For integer-valued ξk the following theorem holds true.

Theorem 8.8.4 Let the distribution of ξ be arithmetic and the conditions of Theo-
rem 8.8.1 be met. Then, uniformly for all integers x, as n→∞,

P(Sn = x)= 1

b(n)
f (β,ρ)

(
x − an

b(n)

)
+ o

(
1√
n

)
, (8.8.21)

where a = E ξ if E |ξ | exists and a = 0 if E |ξ | does not exist, β 
= 1. If β = 1

and E|ξ | does not exist then, on the right-hand side of (8.8.21), we must replace
f (β,ρ)( x−an

b(n)
) with f (β,ρ)( x

b(n)
−An).

The proofs of Theorems 8.8.2–8.8.4 mostly repeat those of Theorems 8.7.1–8.7.3

and can be found in Appendix 7.

8.8.3 An Example

In conclusion we will consider an example.

In Sect. 12.8 we will see that in the fair game considered in Example 4.2.3 the

ruin time η(z) of a gambler with an initial capital of z units satisfies the relation

P(η(z)≥ n)∼ z
√

2/πn as n→∞. In particular, for z= 1,

P
(
η(1)≥ n

)
∼
√

2/πn. (8.8.22)

It is not hard to see (for more detail, see also Chap. 12) that η(z) has the same

distribution as η1+η2+· · ·+ηz, where ηj are independent and distributed as η(1).
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Thus for studying the distribution of η(z) when z is large, by virtue of (8.8.22), one

can make use of Theorem 8.8.4 (with β = 1/2, b(n)= 2n2/π ), by which

lim
z→∞

P

(
2πη(x)

z2
< x

)
= F1/2,1(x) (8.8.23)

is the Lévy stable law with parameters β = 1/2 and ρ = 1. Moreover, for integer x

and z→∞,

P
(
η(z)= x

)
= π

2z2
f (1/2,1)

(
xπ

2z2

)
+ o

(
1

z2

)
.

These assertions enable one to obtain the limiting distribution for the number of

crossings of an arbitrary strip [u,v] by the trajectory S1, . . . , Sn in the case where

P(ξk =−1)= P(ξk =−1)= 1/2.

Indeed, let for simplicity u= 0. By the first positive crossing of the strip [0, v] we

will mean the Markov time

η+ :=min{k : Sk = v}.

The first negative crossing of the strip is then defined as the time η+ + η−, where

η− :=min{k : Sη++k = 0}.

The time η1 = η++ η− will also be the time of the “double crossing” of [0, v]. The

variables η± are distributed as η(v) and are independent, so that η1 has the same

distribution as η(2v). The variable Hk = η1(2v)+ · · · + ηk(2v), where ηi(2v) have

the same distribution as η(2v) and are independent, is the time of the k-th double

crossing. Therefore

ν(n) :=max{k :Hk ≤ n} =min{k :Hk > n} − 1

is the number of double crossings of the strip [0, v] by time n. Now we can prove

the following assertion:

lim
n→∞

P

(
ν(n)√

n
≥ x

)
= F1/2,1

(
π

2v2x2

)
. (8.8.24)

To prove it, we will make use of the following relation (which will play, in its

more general form, an important role in Chap. 10):

{
ν(n)≥ k

}
= {Hk ≤ n},

where Hk is distributed as η(2vk). If n/k2 → s2 as n→∞, then by virtue of

(8.8.23)

P(Hk ≤ n)= P

(
2πHk

(2vk)2
≤ 2πn

(2vk)2

)
→ F1/2,1

(
πs2

2v2

)
,
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and therefore

P

(
ν(n)√

n
≥ x

)
= P

(
ν(n)≥ x

√
n
)
= P(H⌊x√n⌋ ≤ n)→ F1/2,1

(
π

2v2x2

)
.

(Here for k = ⌊x√n⌋ one has n/k2→ s2 = 1/x2.) Relation (8.8.24) is proved. �

Assertion (8.8.24) will clearly remain true for the number of crossings of the

strip [u,v], u 
= 0; one just has to replace v with v − u on the right-hand side of

(8.8.24). It is also clear that (8.8.24) enables one to find the limiting distribution of

the number of “simple” (not double) crossings of [u,v] since the latter is equal to

2ν(n) or 2ν(n)+1.



Chapter 9

Large Deviation Probabilities for Sums
of Independent Random Variables

Abstract The material presented in this chapter is unique to the present text. After

an introductory discussion of the concept and importance of large deviation prob-

abilities, Cramér’s condition is introduced and the main properties of the Cramér

and Laplace transforms are discussed in Sect. 9.1. A separate subsection is devoted

to an in-depth analysis of the key properties of the large deviation rate function,

followed by Sect. 9.2 establishing the fundamental relationship between large devi-

ation probabilities for sums of random variables and those for sums of their Cramér

transforms, and discussing the probabilistic meaning of the rate function. Then the

logarithmic Large Deviations Principle is established. Section 9.3 presents integro-

local, integral and local theorems on the exact asymptotic behaviour of the large

deviation probabilities in the so-called Cramér range of deviations. Section 9.4 is de-

voted to analysing various types of the asymptotic behaviours of the large deviation

probabilities for deviations at the boundary of the Cramér range that emerge under

different assumptions on the distributions of the random summands. In Sect. 9.5,

the behaviour of the large deviation probabilities is found in the case of heavy-tailed

distributions, namely, when the distributions tails are regularly varying at infinity.

These results are used in Sect. 9.6 to find the asymptotics of the large deviation

probabilities beyond the Cramér range of deviations, under special assumptions on

the distribution tails of the summands.

Let ξ, ξ1, ξ2, . . . be a sequence of independent identically distributed random vari-

ables,

Eξk = 0, Eξ2
k = σ 2 <∞, Sn =

n∑

k=1

ξk.

Suppose that we have to evaluate the probability P(Sn ≥ x). If x ∼ v
√

n as n→∞,

v = const, then by the integral limit theorem

P(Sn ≥ x)∼ 1−Φ

(
v

σ

)
(9.0.1)

as n→∞. But if x ≫ √n, then the integral limit theorem enables one only to

conclude that P(Sn ≥ x)→ 0 as n→∞, which in fact contains no quantitative
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information on the probability we are after. Essentially the same can happen for

fixed but “relatively” large values of v/σ . For example, for v/σ ≥ 3 and the values

of n around 100, the relative accuracy of the approximation in (9.0.1) becomes, gen-

erally speaking, bad (the true value of the left-hand side can be several times greater

or smaller than that of the right-hand side). Studying the asymptotic behaviour of

P(Sn ≥ x) for x ≫√n as n→∞, which is not known to us yet, could fill these

gaps. This problem is highly relevant since questions of just this kind arise in many

problems of mathematical statistics, insurance theory, the theory of queueing sys-

tems, etc. For instance, in mathematical statistics, finding small probabilities of er-

rors of the first and second kind of statistical tests when the sample size n is large

leads to such problems (e.g. see [7]). In these problems, we have to find explicit

functions P(n,x) such that

P(Sn ≥ x)= P(n,x)
(
1+ o(1)

)
(9.0.2)

as n→∞. Thus, unlike the case of normal approximation (9.0.1), here we are

looking for approximations P(n,x) with a relatively small error rather than an ab-
solutely small error. If P(n,x)→ 0 in (9.0.2) as n→∞, then we will speak of the

probabilities of rare events, or of the probabilities of large deviations of sums Sn.

Deviations of the order
√

n are called normal deviations.

In order to study large deviation probabilities, we will need some notions and

assertions.

9.1 Laplace’s and Cramér’s Transforms. The Rate Function

9.1.1 The Cramér Condition. Laplace’s and Cramér’s Transforms

In all the sections of this chapter, except for Sect. 9.5, the following Cramér condi-
tion will play an important role.

[C] There exists a λ 
= 0 such that

Eeλξ =
∫

eλyF(dy) <∞. (9.1.1)

We will say that the right-side (left-side) Cramér condition holds if λ > 0 (λ < 0)

in (9.1.1). If (9.1.1) is valid for some negative and positive λ (i.e. in a neighbour-

hood of the point λ= 0), then we will say that the two-sided Cramér’s condition is

satisfied.

The Cramér condition can be interpreted as characterising a fast (at least expo-

nentially fast) rate of decay of the tails F±(t) of the distribution F. If, for instance,

we have (9.1.1) for λ > 0, then by Chebyshev’s inequality, for t > 0,

F+(t) := P(ξ ≥ t)≤ e−λtEeλξ ,
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i.e. F+(t) decreases at least exponentially fast. Conversely, if, for some µ > 0, one

has F+(t)≤ ce−µt , t > 0, then, for λ ∈ (0,µ),

∫ ∞

0

eλyF(dy) = −
∫ ∞

0

eλy dF+(y)= F+(0)+ λ

∫ ∞

0

eλyF+(y) dy

≤ F+(0)+ cλ

∫ ∞

0

e(λ−µ)ydy = F+(0)+ cλ

µ− λ
<∞.

Since the integral
∫ 0
−∞ eλyF(dy) is finite for any λ > 0, we have Eeλξ <∞ for

λ ∈ (0,µ).

The situation is similar for the left tail F−(t) := P(ξ <−t) provided that (9.1.1)

holds for some λ < 0.

Set

λ+ := sup
{
λ : Eeλξ <∞

}
, λ− := inf

{
λ : Eeλξ <∞

}
.

Condition [C] is equivalent to λ+ > λ−. The right-side Cramér condition means

that λ+ > 0; the two-sided condition means that λ+ > 0 > λ−. Clearly, the ch.f.

ϕ(t)= Eeitξ is analytic in the complex plane in the strip −λ+ < Im t <−λ−. This

follows from the differentiability of ϕ(t) in this region of the complex plane, since

the integral
∫
|yeity |F(dy) for the said values of Im t converges uniformly in Re t .

Here and henceforth by the Laplace transform (Laplace–Stieltjes or Laplace–

Lebesgue) of the distribution F of the random variable ξ we shall mean the function

ψ(λ) := Eeλξ = ϕ(−iλ),

which conflicts with Sect. 7.1.1 (and the terminology of mathematical analysis),

according to which the term Laplace’s transform refers to the function Ee−λξ =
ϕ(iλ). The reason for such a slight inconsistency in terminology (only the sign of

the argument differs, this changes almost nothing) is our reluctance to introduce new

notation or to complicate the old notation. Nowhere below will it cause confusion.1

As well as condition [C], we will also assume that the random variable ξ is

nondegenerate, i.e. ξ 
≡ const or, which is the same, Var ξ > 0.

The main properties of Laplace’s transform.

As was already noted in Sect. 7.1.1, Laplace’s transform, like the ch.f., uniquely

characterises the distribution F. Moreover, it has the following properties, which

are similar to the corresponding properties of ch.f.s (see Sect. 7.1). Under obvious

conventions of notation,

(Ψ 1) ψa+bξ (λ)= eλaψξ (bλ), if a and b are constant.

1In the literature, the function Eeλξ is sometimes called the “moment generating function”.
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(Ψ 2) If ξ1, . . . , ξn are independent and Sn =
∑n

j=1 ξj , then

ψSn(λ)=
n∏

j=1

ψξj
(λ).

(Ψ 3) If E|ξ |k <∞ and the right-side Cramér condition is satisfied then the func-
tion ψξ is k-times right differentiable at the point λ= 0,

ψ
(k)
ξ (0)= Eξ k =:mk

and, as λ ↓ 0,

ψξ (λ)= 1+
k∑

j=1

λj

j !mj + o
(
λk
)
.

This also implies that, as λ ↓ 0, the representation

lnψξ (λ)=
k∑

j=1

γjλ
j

j ! + o
(
λk
)
, (9.1.2)

holds, where γj are the so-called semi-invariants (or cumulants) of order j of the

random variable ξ . One can easily verify that

γ1 =m1, γ2 =m0
2 = σ 2, γ3 =m0

3, . . . , (9.1.3)

where m0
k = E(ξ −m1)

k is the central moment of order k.

Definition 9.1.1 Let condition [C] be met. The Cramér transform at the point λ of
the distribution F is the distribution2

F(λ)(dy)= eλyF(dy)

ψ(λ)
. (9.1.4)

2In some publications the transform (9.1.4) is also called the Esscher transform. However, the

systematic use of transform (9.1.4) for the study of large deviations was first done by Cramér.

If we study the probabilities of large deviations of sums of random variables using the inver-

sion formula, similarly to what was done for normal deviations in Chap. 8, then we will necessarily

come to employ the so-called saddle-point method, which consists of moving the contour of inte-

gration so that it passes through the so-called saddle point, at which the exponent in the integrand

function, as we move along the imaginary axis, attains its minimum (and, along the real axis, at-

tains its maximum; this explains the name “saddle point”). Cramér’s transform does essentially

the same, making such a translation of the contour of integration even before applying the inver-

sion formula, and reduces the large deviation problem to the normal deviation problem, where the

inversion formula is not needed if we use the results of Chap. 8. It is this technique that we will

follow in the present chapter.
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Clearly, the distributions F and F(λ) are mutually absolutely continuous (see

Sect. 3.5 of Appendix 3) with density

F(λ)(dy)

F(dy)
= eλy

ψ(λ)
.

Denote a random variable with distribution F(λ) by ξ(λ).

The Laplace transform of the distribution F(λ) is obviously equal to

Eeµξ(λ) = ψ(λ+µ)

ψ(λ)
. (9.1.5)

Clearly,

Eξ(λ) =
ψ ′(λ)

ψ(λ)
=
(
lnψ(λ)

)′
, Eξ2

(λ) =
ψ ′′(λ)

ψ(λ)
,

Var(ξ(λ)) =
ψ ′′(λ)

ψ(λ)
−
(

ψ ′(λ)

ψ(λ

)2

=
(
lnψ(λ)

)′′
.

Since ψ ′′(λ) > 0 and Var(ξ(λ)) > 0, the foregoing implies one more important prop-

erty of the Laplace transform.

(Ψ 4) The functions ψ(λ) and lnψ(λ) are strictly convex, and

Eξ(λ) =
ψ ′(λ)

ψ(λ)

strictly increases on (λ−, λ+).

The analyticity of ψ(λ) in the strip Reλ ∈ (λ−, λ+) can be supplemented by

the following “extended” continuity property on the segment [λ−, λ+] (in the strip

Reλ ∈ [λ−, λ+]).

(Ψ 5) The function ψ(λ) is continuous “inside” [λ−, λ+], i.e. ψ(λ±∓ 0)=ψ(λ±)

(where the cases ψ(λ±)=∞ are not excluded).

Outside the segment [λ−, λ+] such continuity, generally speaking, does not

hold as, for example, is the case when ψ(λ+) <∞ and ψ(λ+ + 0) =∞, which

takes place, say, for the distribution F with density f (x) = cx−3e−λ+x for x ≥ 1,

c= const.

9.1.2 The Large Deviation Rate Function

Under condition [C], the large deviation rate function will play the determining role

in the description of asymptotics of probabilities P(Sn ≥ x).
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Definition 9.1.2 The large deviation rate function (or, for brevity, simply the rate
function) Λ of a random variable ξ is defined by

Λ(α) := sup
λ

(
αλ− lnψ(λ)

)
. (9.1.6)

The meaning of the name will become clear later. In classical analysis, the right-

hand side of (9.1.6) is known as the Legendre transform of the function lnψ(λ).

Consider the function A(α,λ) = αλ − lnψ(λ) of the supremum appearing

in (9.1.6). The function− lnψ(λ) is strictly concave (see property (Ψ 4)), and hence

so is the function A(α,λ) (note also that A(α,λ) = − lnψα(λ), where ψα(λ) =
e−λαψ(λ) is the Laplace transform of the distribution of the random variable ξ − α

and, therefore, from the “qualitative point of view”, A(α,λ) possesses all the prop-

erties of the function − lnψ(λ)). The foregoing implies that there always exists a

unique point λ= λ(α) (on the “extended” real line [−∞,∞]) at which the supre-

mum in (9.1.6) is attained. As α grows, the value of A(α,λ) for λ > 0 increases

(proportionally to λ), and for λ < 0 it decreases. Therefore, the graph of A(α,λ) as

the function of λ will, roughly speaking, “roll over” to the right as α grows. This

means that the maximum point λ(α) will also move to the right (or stay at the same

place if λ(α)= λ+).

We now turn to more precise formulations. On the interval [λ−, λ+], there exists

the derivative (respectively, the right and the left derivative at the endpoints λ±)

A′λ(α,λ)= α − ψ ′(λ)

ψ(λ)
. (9.1.7)

The parameters

α± =
ψ ′(λ± ∓ 0)

ψ(λ± ∓ 0)
, α− < α+, (9.1.8)

will play an important role in what follows. The value of α+ determines the angle at

which the curve lnψ(λ) “sticks” into the point (λ+, lnψ(λ+)). The quantity α− has

a similar meaning. If α ∈ [α−, α+] then the equation A′λ(α,λ)=0, or (see (9.1.7))

ψ ′(λ)

ψ(λ)
= α, (9.1.9)

always has a unique solution λ(α) on the segment [λ−, λ+] (λ± can be infinite).

This solution λ(α), being the inverse of an analytical and strictly increasing function
ψ ′(λ)
ψ(λ)

on (λ−, λ+) (see (9.1.9)), is also analytical and strictly increasing on (α−, α+),

λ(α) ↑ λ+ as α ↑ α+; λ(α) ↓ λ− as α ↓ α−. (9.1.10)

The equalities

Λ(α)= αλ(α)− lnψ
(
λ(α)

)
,

ψ ′(λ(α))

ψ(λ(α))
= α (9.1.11)
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yield

Λ′(α)= λ(α)+ αλ′(α)− ψ ′(λ(α))

ψ(λ(α))
λ′(α)= λ(α).

Recalling that

ψ ′(0)

ψ(0)
=m1 = Eξ, 0 ∈ [λ−, λ+], m1 ∈ [α−, α+],

we obtain the following representation for the function Λ:

(Λ1) If α0 ∈ [α−, α+], α ∈ [α−, α+] then

Λ(α)=Λ(α0)+
∫ α

α0

λ(v)dv. (9.1.12)

Since λ(m1)=Λ(m1)= 0 (this follows from (9.1.9) and (9.1.11)), we obtain,
in particular, for α0 =m1, that

Λ(α)=
∫ α

m1

λ(v)dv. (9.1.13)

The functions λ(α) and Λ(α) are analytic on (α−, α+).

Now consider what happens outside the segment [α−, α+]. Assume for definite-

ness that λ+ > 0. We will study the behaviour of the functions λ(α) and Λ(α) near

the point α+ and for α > α+. Similar results hold true in the vicinity of the point α−
in the case λ− < 0.

First let λ+ = ∞, i.e. the function lnψ(λ) is analytic on the whole semiaxis

λ > 0, and the tail F+(t) decays as t →∞ faster than any exponential function.

Denote by

s± =± sup
{
t : F±(t) > 0

}

the boundaries of the support of F. Without loss of generality, we will assume that

s+ > 0, s− < 0. (9.1.14)

This can always be achieved by shifting the random variable, similarly to our as-

suming, without loss of generality, Eξ = 0 in many theorems of Chap. 8, where we

used the fact that the problem of studying the distribution of Sn is “invariant” with

respect to a shift. (We can also note that Λξ−a(α − a)=Λξ (α), see property (Λ4)

below, and that (9.1.14) always holds provided that Eξ = 0.)

(Λ2) (i) If λ+ =∞ then α+ = s+.

Hence, for s+ =∞, we always have α+ =∞ and so for any α ≥ α− we are

dealing with the already considered “regular” case, where (9.1.12) and (9.1.13) hold

true.
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(ii) If s+ <∞ then λ+ =∞, α+ = s+,

Λ(α+)=− ln P(ξ = s+), Λ(α)=∞ for α > α+.

Similar assertions hold true for s−, α−, λ−.

Proof (i) First let s+ <∞. Then the asymptotics of ψ(λ) and ψ ′(λ) as λ→∞ is

determined by the integrals in a neighbourhood of the point s+: for any fixed ε > 0,

ψ(λ)∼ E
(
eλξ ; ξ > s+ − ε

)
, ψ ′(λ)∼ E

(
ξeλξ ; ξ > s+ − ε

)

as λ→∞. Hence

α+ = lim
λ→∞

ψ ′(λ)

ψ(λ)
= lim

λ→∞
E(ξeλξ ; ξ > s+ − ε)

E(eλξ ; ξ > s+ − ε)
= s+.

If s+ =∞, then lnψ(λ) grows as λ→∞ faster than any linear function and

therefore the derivative (lnψ(λ))′ increases unboundedly, α+ =∞.

(ii) The first two assertions are obvious. Further, let p+ = P(ξ = s+) > 0. Then

ψ(λ)∼ p+eλs+ ,

αλ− lnψ(λ)= αλ− lnp+ − λs+ + o(1)= (α − α+)λ− lnp+ + o(1)

as λ→∞. This and (9.1.11) imply that

Λ(α)=
{
− lnp+ for α = α+,

∞ for α > α+.

If p+ = 0, then the relation ψ(λ)= o(eλs+) as λ→∞ similarly implies Λ(α+)=∞.

Property (Λ2) is proved. �

Now let 0 < λ+ <∞. If α+ <∞, then necessarily ψ(λ+) <∞, ψ(λ++0)=∞
and ψ ′(λ+) <∞ (here we mean the left derivative). If we assume that ψ(λ+)=∞,

then lnψ(λ+)=∞, (lnψ(λ))′→∞ as λ ↑ λ+ and α+ =∞, which contradicts the

assumption α+ <∞. Since ψ(λ)=∞ for λ > λ+, the point λ(α), having reached

the value λ+ as α grows, will stop at that point. So, for α ≥ α+, we have

λ(α)= λ+, Λ(α)= αλ+ − lnψ(λ+)=Λ(α+)+ λ+(α − α+). (9.1.15)

Thus, in this case, for α ≥ α+ the function λ(α) remains constant, while Λ(α) grows

linearly. Relations (9.1.12) and (9.1.13) remain true.

If α+ =∞, then α < α+ for all finite α ≥ α−, and we again deal with the “regu-

lar” case that we considered earlier (see (9.1.12) and (9.1.13)). Since λ(α) does not

decrease, these relations imply the convexity of Λ(α).

In summary, we can formulate the following property.
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(Λ3) The functions λ(α) and Λ(α) can only be discontinuous at the points s±
and under the condition P(ξ = s±) > 0. These points separate the domain
(s−, s+) where the function Λ is finite and continuous (in the extended sense)

from the domain α /∈ [s−, s+] where Λ(α) =∞. In the domain [s−, s+] the
function Λ is convex. (If we define convexity in the “extended” sense, i.e.
including infinite values as well, then Λ is convex on the entire real line.)

The function Λ is analytic in the interval (α−, α+). If λ+ <∞ and α+ <∞,

then on the half-line (α+,∞) the function Λ(α) is linear with slope λ+; at the
boundary point α+ the continuity of the first derivatives persists. If λ+ =∞,

then Λ(α)=∞ on (α+,∞). The function Λ(α) possesses a similar property
on (−∞, α−).

If λ− = 0, then α− =m1 and λ(α)=Λ(α)= 0 for α ≤m1.

Indeed, since λ(m1) = 0 and ψ(λ) =∞ for λ < λ− = 0 = λ(m1), as the value

of α decreases to α− = m1, the point λ(α), having reached the value 0, will stop,

and λ(α)= 0 for α ≤ α− =m1. This and the first identity in (9.1.11) also imply that

Λ(α)= 0 for α ≤m1.

If λ− = λ+ = 0 (condition [C] is not met), then λ(α)=Λ(α)≡ 0 for all α. This

is obvious, since the value of the function under the sup sign in (9.1.6) equals −∞
for all λ 
= 0. In this case the limit theorems presented in the forthcoming sections

will be of little substance.

We will also need the following properties of the function Λ.

(Λ4) Under obvious notational conventions, for independent random variables ξ

and η, we have

Λξ+η(α) = sup
λ

(
αλ− lnψξ (λ)− lnψη(λ)

)
= inf

γ

(
Λξ (γ )+Λη(α − γ )

)
,

Λcξ+b(α) = sup
λ

(
αλ− λb− lnψξ (λc)

)
=Λξ

(
α − b

c

)
.

Clearly, infγ in the former relation is attained at the point γ at which λξ (γ ) =
λη(α − γ ). If ξ and η are identically distributed then γ = α/2 and therefore

Λξ+η(α)=Λξ

(
α

2

)
+Λη

(
α

2

)
= 2Λξ

(
α

2

)
.

(Λ5) The function Λ(α) attains its minimal value 0 at the point α = Eξ =m1. For
definiteness, assume that α+ > 0. If m1 = 0 and E|ξ k|<∞, then

λ(0)=Λ(0)=Λ′(0)= 0, Λ′′(0)= 1

γ2
, Λ′′′(0)=− γ3

γ 2
2

, . . .

(9.1.16)

(In the case α− = 0 the right derivatives are intended.) As α ↓ 0, one has the
representation
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Λ(α)=
k∑

j=2

Λ(j)(0)

j ! αj + o
(
αk
)
. (9.1.17)

The semi-invariants γj were defined in (9.1.2) and (9.1.3).

If the two-sided Cramér condition is satisfied then the series expansion (9.1.17)

of the function Λ(α) holds for k =∞. This series is called the Cramér series.

Verifying properties (Λ4) and (Λ5) is not difficult, and is left to the reader.

(Λ6) The following inversion formula is valid: for λ ∈ (λ−, λ+),

lnψ(λ)= sup
α

(
αλ−Λ(α)

)
. (9.1.18)

This means that the rate function uniquely determines the Laplace transform ψ(λ)

and hence the distribution F as well. Formula (9.1.18) also means that subsequent

double applications of the Legendre transform to the convex function lnψ(λ) leads

to the same original function.

Proof We denote by T (λ) the right-hand side of (9.1.18) and show that T (λ) =
lnψ(λ) for λ ∈ (λ−, λ+). If, in order to find the supremum in (9.1.18), we equate

to zero the derivative in α of the function under the sup sign, then we will get the

equation

λ=Λ′(α)= λ(α). (9.1.19)

Since λ(α), α ∈ (α−, α+), is the function inverse to (lnψ(λ))′ (see (9.1.9)), for

λ ∈ (λ−, λ+) Eq. (9.1.19) clearly has the solution

α = a(λ) :=
(
lnψ(λ)

)′
. (9.1.20)

Taking into account the fact that λ(a(λ))≡ λ, we obtain

T (λ) = λa(λ)−Λ
(
a(λ)

)
,

T ′(λ) = a(λ)+ λa′(λ)− λ
(
a(λ)

)
a′(λ)= a(λ).

Since a(0)=m1 and T (0)=−Λ(m1)= 0, we have

T (λ)=
∫ λ

0

a(u)du= lnψ(λ). (9.1.21)

The assertion is proved, and so is yet another inversion formula (the last equality

in (9.1.21), which expresses lnψ(λ) as the integral of the function a(λ) inverse to

λ(α)). �

(Λ7) The exponential Chebyshev inequality. For α ≥m1, we have

P(Sn ≥ αn)≤ e−nΛ(α).
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Proof If α ≥m1, then λ(α)≥ 0. For λ= λ(α)≥ 0, we have

ψn(λ) ≥ E
(
eλSn; Sn ≥ αn

)
≥ eλαnP(Sn ≥ αn);

P(Sn ≥ αn) ≤ e−αnλ(α)+n lnψ(λ(α)) = e−nΛ(α). �

We now consider a few examples, where the values of λ±, α±, and the functions

ψ(λ), λ(α), Λ(α) can be calculated in an explicit form.

Example 9.1.1 If ξ ⊂=�0,1, then

ψ(λ)= eλ2/2, |λ±| = |α±| =∞, λ(α)= α, Λ(α)= α2

2
.

Example 9.1.2 For the Bernoulli scheme ξ ⊂=Bp , we have

ψ(λ) = peλ + q, |λ±| =∞, α+ = 1, α− = 0, m1 = Eξ = p,

λ(α) = ln
α(1− p)

p(1− α)
, Λ(α)= α ln

α

p
+ (1− α) ln

1− α

1− p
for α ∈ (0,1),

Λ(0) = − ln(1− p), Λ(1)=− lnp, Λ(α)=∞ for α /∈ [0,1].

Thus the function H(α) =Λ(α), which described large deviation probabilities for

Sn in the local Theorem 5.2.1 for the Bernoulli scheme, is nothing else but the rate

function. Below, in Sect. 9.3, we will obtain generalisations of Theorem 5.2.1 for

arbitrary arithmetic distributions.

Example 9.1.3 For the exponential distribution Ŵβ , we have

ψ(λ) = β

β − λ
, λ+ = β, λ− =−∞, α+ =∞, α− = 0, m1 =

1

β
,

λ(α) = β − 1

α
, Λ(α)= αβ − 1− lnαβ for α > 0.

Example 9.1.4 For the centred Poisson distribution with parameter β , we have

ψ(λ) = exp
{
β
[
eλ − 1− λ

]}
, |λ±| =∞, α− =−β, α+ =∞, m1 = 0,

λ(α) = ln
β + α

β
, Λ(α)= (α + β) ln

α + β

β
− α for α >−β.
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9.2 A Relationship Between Large Deviation Probabilities for

Sums of Random Variables and Those for Sums of Their

Cramér Transforms. The Probabilistic Meaning of the Rate

Function

9.2.1 A Relationship Between Large Deviation Probabilities for

Sums of Random Variables and Those for Sums of Their

Cramér Transforms

Consider the Cramér transform of F at the point λ = λ(α) for α ∈ [α−, α+] and

introduce the notation ξ (α) := ξ(λ(α)),

S(α)
n :=

n∑

i=1

ξ
(α)
i ,

where ξ
(α)
i are independent copies of ξ (α). The distribution F(α) := F(λ(α)) of the

random variable ξ (α) is called the Cramér transform of F with parameter α. The

random variables ξ (α) are also called Cramér transforms, but of the original random

variable ξ . The relationship between the distributions of Sn and S
(α)
n is established

in the following assertion.

Theorem 9.2.1 For x = nα, α ∈ (α−, α+), and any t > 0, one has

P
(
Sn ∈ [x, x + t)

)
= e−nΛ(α)

∫ t

0

e−λ(α)zP
(
S(α)

n − αn ∈ dz
)
. (9.2.1)

Proof The Laplace transform of the distribution of the sum S
(α)
n is clearly equal to

EeµS
(α)
n =

[
ψ(µ+ λ(α))

ψ(λ(α))

]n

(9.2.2)

(see (9.1.5)). On the other hand, consider the Cramér transform (Sn)(λ(α)) of Sn at

the point λ(α). Applying (9.1.5) to the distribution of Sn, we obtain

Eeµ(Sn)(λ(α)) = ψn(µ+ λ(α))

ψn(λ(α))
.

Since this expression coincides with (9.2.2), the Cramér transform of Sn at the
point λ(α) coincides in distribution with the sum S

(α)
n of the transforms ξ

(α)
i . In

other words,

P(Sn ∈ dv)eλ(α)v

ψn(λ(α))
= P

(
S(α)

n ∈ dv
)

(9.2.3)
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or, which is the same,

P(Sn ∈ dv) = e−λ(α)v+n lnψ(λ(α))P
(
S(α)

n ∈ dv
)
= e−nΛ(α)+λ(α)(nα−v)P

(
S(α)

n ∈ dv
)
.

Integrating this equality in ν from x to x+ t , letting x := nα and making the change

of variables v − nα = z, we get

P
(
Sn ∈ [x, x + t)

)
= e−nΛ(α)

∫ x+t

x

eλ(α)(nα−v)P
(
S(α)

n ∈ dv
)

= e−nΛ(α)

∫ t

0

e−λ(α)zP
(
S(α)

n − αn ∈ dz
)
.

The theorem is proved. �

Since for α ∈ [α−, α+] we have

Eξ (α) = ψ ′(λ(α))

ψ(λ(α))
= α

(see (9.1.11)), one has E(S
(α)
n − αn)= 0 and so for t ≤ c

√
n we have probabilities

of normal deviations of S
(α)
n −αn on the right-hand side of (9.2.1). This allows us to

reduce the problem on large deviations of Sn to the problem on normal deviations
of S

(α)
n . If α > α+, then formula (9.2.1) is still rather useful, as will be shown in

Sects. 9.4 and 9.5.

9.2.2 The Probabilistic Meaning of the Rate Function

In this section we will prove the following assertion, which clarifies the probabilistic

meaning of the function Λ(α).

Denote by ∆[α) := [α,α + ∆) the interval of length ∆ with the left end at

the point α. The notation ∆n[α), where ∆n depends on n, will have a similar mean-

ing.

Theorem 9.2.2 For each fixed α and all sequences ∆n converging to 0 as n→∞
slowly enough, one has

Λ(α)=− lim
n→∞

1

n
ln P

(
Sn

n
∈∆n[α)

)
. (9.2.4)

This relation can also be written as

P

(
Sn

n
∈∆n[α)

)
= e−nΛ(α)+o(n).
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Proof of Theorem 9.2.2 First let α ∈ (α−, α+). Then

Eξ (α) = α, Var ξ (α) =
(
lnψ(λ)

)′′
λ=λ(α)

<∞

and hence, as n→∞ and ∆n→ 0 slowly enough (e.g., for ∆n ≥ n−1/3), by the

central limit theorem we have

P
(
S(α)

n − αn ∈ [0,∆nn)
)
→ 1/2.

Therefore, by Theorem 9.2.1 for t =∆nn, x = αn and by the mean value theorem,

P
(
Sn ∈ [x, x + t)

)
=
(

1

2
+ o(1)

)
e−nΛ(α)−λ(α)∆nnθ , θ ∈ (0,1);

1

n
ln P

(
Sn ∈ [x, x + t)

)
= −Λ(α)− λ(α)θ∆n + o(1)=−Λ(α)+ o(1)

as n→∞. This proves (9.2.4) for α ∈ (α−, α+).

The further proof is divided into three stages.

(1) The upper bound in the general case. Now let α be arbitrary and |λ(α)|<∞.

By Theorem 9.2.1 for t = n∆n, we have

P

(
Sn

n
∈∆n[α)

)
≤ exp

{
−nΛ(α)+max

(∣∣λ(0)
∣∣,
∣∣λ(α)

∣∣)n∆n

}
.

If ∆n→ 0 then

lim sup
n→∞

1

n
ln P

(
Sn

n
∈∆n[α)

)
≤−Λ(α). (9.2.5)

(This inequality can also be obtained from the exponential Chebyshev’s inequal-

ity (Λ7).)

(2) The lower bound in the general case. Let |λ(α)| <∞ and |s±| = ∞. Intro-

duce “truncated” random variables (N)ξ with the distribution

P
(
(N)ξ ∈ B

)
= P(ξ ∈ B; |ξ |< N)

P(|ξ |< N)
= P

(
ξ ∈ B

∣∣ |ξ |< N
)

and endow all the symbols that correspond to (N)ξ with the left superscript (N).

Then clearly, for each λ,

E
(
eλξ ; |ξ |< N

)
↑ψ(λ), P

(
|ξ |< N

)
↑ 1

as N→∞, so that

(N)ψ(λ)= E(eλξ ; |ξ |< N)

P(|ξ |< N)
→ψ(λ).
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The functions (N)Λ(α) and Λ(α) are the upper bounds for the concave functions

αλ− ln (N)ψ(λ) and αλ− lnψ(λ), respectively. Therefore for each α we also have

convergence (N)Λ(α)→Λ(α) as N→∞.

Further,

P

(
Sn

n
∈∆n[α)

)
≥ P

(
Sn

n
∈∆n[α); |ξj |< N,j = 1, . . . ,N

)

= Pn
(
|ξ |< N

)
P

(
(N)Sn

n
∈∆n[α)

)
.

Since s± = ±∞, one has (N)α± = ±N and, for N large enough, we have α ∈
((N)α−, (N)α+). Hence we can apply the first part of the proof of the theorem by

virtue of which, as ∆n→ 0,

1

n
ln P

(
(N)Sn

n
∈∆n[α)

)
= −(N)Λ(α)+ o(1),

1

n
ln P

(
Sn

n
∈∆n[α)

)
≥ −(N)Λ(α)+ o(1)+ ln P

(
|ξ |< N

)
.

The right-hand side of the last inequality can be made arbitrarily close to −Λ(α) by

choosing a suitable N . Since the left-hand side of this inequality does not depend

on N , we have

lim inf
n→∞

1

n
ln P

(
Sn

n
∈∆n[α)

)
≥−Λ(α). (9.2.6)

Together with (9.2.5), this proves (9.2.4).

(3) It remains to remove the restrictions stated at the beginning of stages (1) and

(2) of the proof, i.e. to consider the cases |λ(α)| = ∞ and min |s±| <∞. These

two relations are connected with each other since, for instance, the equality λ(α)=
λ+ = ∞ can only hold if α ≥ α+ = s+ <∞ (see property (Λ2)). For α > s+,

relation (9.2.4) is evident, since P(Sn/n ∈ ∆n[α)) = 0 and Λ(α) = ∞. For α =
α+ = s+ and p+ = P(ξ = s+), we have, for any ∆ > 0,

P

(
Sn

n
∈∆[α+)

)
= P(Sn = nα+)= pn

+. (9.2.7)

Since in this case Λ(α+)=− lnp+ (see (Λ2)), the equality (9.2.4) holds true.

The case λ(α)= λ− =−∞ with s− >−∞ is considered in a similar way. How-

ever, due to the asymmetry of the interval ∆[α) with respect to the point α, there

are small differences. Instead of an equality in (9.2.7) we only have the inequality

P

(
Sn

n
∈∆n[α−)

)
≥ P(Sn = nα−)= pn

−, p− = P(ξ = α−). (9.2.8)
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Therefore we also have to use the exponential Chebyshev’s inequality (see (Λ7))

applying it to −Sn for s− = α− < 0:

P

(
Sn

n
∈∆n[α−)

)
≤ P

(
Sn

n
< α− +∆n

)
≤ e−nΛ(α−+∆n). (9.2.9)

Relations (9.2.8), (9.2.9), the equality Λ(α−)=− lnp−, and the right continuity of

Λ(α) at the point α− imply (9.2.4) for α = α−. The theorem is proved. �

9.2.3 The Large Deviations Principle

It is not hard to derive from Theorem 9.2.2 a corollary on the asymptotics of the

probabilities of Sn/n hitting an arbitrary Borel set. Denote by (B) and [B] the

interior and the closure of B , respectively ((B) is the union of all open intervals

contained in B). Put

Λ(B) := inf
α∈B

Λ(α).

Theorem 9.2.3 For any Borel set B , the following inequalities hold:

lim inf
n→∞

1

n
ln P

(
Sn

n
∈ B

)
≥ −Λ

(
(B)

)
, (9.2.10)

lim sup
n→∞

1

n
ln P

(
Sn

n
∈ B

)
≤ −Λ

(
[B]

)
. (9.2.11)

If Λ((B))=Λ([B]), then the following limit exists:

lim
n→∞

1

n
ln P

(
Sn

n
∈ B

)
=−Λ(B). (9.2.12)

This assertion is called the large deviation principle. It is one of the so-called

“rough” (“logarithmic”) limit theorems that describe the asymptotic behaviour of

ln P(Sn/n ∈ B). It is usually impossible to derive from this assertion the asymp-

totics of the probability P(Sn/n ∈ B) itself. (In the equality P(Sn/n ∈ B) =
exp{−nΛ(B)+ o(n)}, the term o(n) may grow in absolute value.)

Proof Without losing generality, we can assume that B ⊂ [s−, s+] (since Λ(α)=∞
outside that domain).

We first prove (9.2.10). Let α(B) be such that

Λ
(
(B)

)
≡ inf

α∈(B)
Λ(α)=Λ(α(B))

(recall that Λ(α) is continuous on [s−, s+]). Then there exist a sequence of points

αk and a sequence of intervals (αk − δk, αk + δk), where δk→ 0, lying in (B) and
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converging to the point α(B), such that

Λ
(
(B)

)
= inf

k
Λ
(
(αk − δk, αk + δk)

)
.

Here clearly

inf
k

Λ
(
(αk − δk, αk + δk)

)
= inf

k
Λ(αk),

and for a given ε > 0, there exists a k = K such that Λ(αK) < Λ((B)) + ε.

Since ∆n[αk)⊂ (αk − δk, αk + δk) for large enough n (here ∆n[αk) is from Theo-

rem 9.2.2), we have by Theorem 9.2.2 that, as n→∞,

1

n
ln P

(
Sn

n
∈ B

)
≥ 1

n
ln P

(
Sn

n
∈ (B)

)

≥ 1

n
ln P

(
Sn

n
∈ (αK − δK , αK + δK)

)

≥ 1

n
ln P

(
Sn

n
∈∆n[αK)

)
≥−Λ(αK)+ o(1)

≥ −Λ
(
(B)

)
− ε+ o(1).

As the left-hand side of this inequality does not depend on ε, inequality (9.2.10) is

proved.

We now prove inequality (9.2.11). Denote by α[B] the point at which

infα∈[B]Λ(α) = Λ(α[B]) is attained (this point always belongs to [B] since [B]
is closed). If Λ(α[B])= 0, then the inequality is evident. Now let Λ(α[B]) > 0. By

convexity of Λ the equation Λ(α)=Λ(α[B]) can have a second solution α′[B]. As-

sume it exists and, for definiteness, α′[B] < α[B]. The relation Λ([B]) = Λ(α[B])
means that the set [B] does not intersect with (α′[B], α[B]) and

P

(
Sn

n
∈ B

)
≤ P

(
Sn

n
∈ [B]

)
≤ P

(
Sn

n
≤ α′[B]

)
+ P

(
Sn

n
≥ α[B]

)
. (9.2.13)

Moreover, in this case m1 ∈ (α′[B], α[B]) and each of the probabilities on the right-

hand side of (9.2.13) can be bounded using the exponential Chebyshev’s inequality

(see (Λ7)) by the value e−nΛ(α[B]). This implies (9.2.11).

If the second solution α′[B] does not exist, then one of the summands on the right-

hand side of (9.2.13) equals zero, and we obtain the same result.

The second assertion of the theorem (Eq. (9.2.12)) is evident.

The theorem is proved. �

Using Theorem 9.2.3, we can complement Theorem 9.2.2 with the following

assertion.
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Corollary 9.2.1 The following limit always exists

lim
∆→0

lim
n→∞

1

n
ln P

(
Sn

n
∈∆[α)

)
=−Λ(α). (9.2.14)

Proof Take the set B in Theorem 9.2.3 to be the interval B =∆[α). If α /∈ [s−, s+]
then the assertion is obvious (since both sides of (9.2.14) are equal to −∞). If

α = s± then (9.2.14) is already proved in (9.2.7), (9.2.8) and (9.2.9).

It remains to consider points α ∈ (s−, s+). For such α, the function Λ(α) is con-

tinuous and α+∆ is also a point of continuity of Λ for ∆ small enough, and hence

Λ
(
(B)

)
=Λ

(
[B]

)
→Λ(α)

as ∆→ 0. Therefore by Theorem 9.2.3 the inner limit in (9.2.14) exists and con-

verges to −Λ(α) as ∆→ 0.

The corollary is proved. �

Note that the assertions of Theorems 9.2.2 and 9.2.3 and their corollaries are

“universal”—they contain no restrictions on the distribution F.

9.3 Integro-Local, Integral and Local Theorems on Large

Deviation Probabilities in the Cramér Range

9.3.1 Integro-Local and Integral Theorems

In this subsection, under the assumption that the Cramér condition λ+ > 0 is met,

we will find the asymptotics of probabilities P(Sn ∈∆[x)) for scaled deviations α =
x/n from the so-called Cramér (or regular) range, i.e. for the range α ∈ (α−, α+)

in which the rate function Λ(α) is analytic.

In the non-lattice case, in addition to the condition λ+ > 0, we will assume with-

out loss of generality that Eξ = 0. In this case necessarily

α− ≤ 0, α+ =
ψ ′(λ+)

ψ(λ+)
> 0, λ(0)= 0.

The length ∆ of the interval may depend on n in some cases. In such cases, we will

write ∆n instead of ∆, as we did earlier. The value

σ 2
α =

ψ ′′(λ(α))

ψ(λ(α))
− α2 (9.3.1)

is clearly equal to Var(ξ (α)) (see (9.1.5) and the definition of ξ (α) in Sect. 9.2).
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Theorem 9.3.1 Let λ+ > 0, α ∈ [0, α+), ξ be a non-lattice random variable,

Eξ = 0 and Eξ2 <∞. If ∆n→ 0 slowly enough as n→∞, then

P
(
Sn ∈∆n[x)

)
= ∆n

σα

√
2πn

e−nΛ(α)
(
1+ o(1)

)
, (9.3.2)

where α = x/n, and, for each fixed α1 ∈ (0, α+), the remainder term o(1) is uniform
in α ∈ [0, α1] for any fixed α1 ∈ (0, α+).

A similar assertion is valid in the case when λ− < 0 and α ∈ (α−,0].

Proof The proof is based on Theorems 9.2.1 and 8.7.1A. Since the conditions of

Theorem 9.2.1 are satisfied, we have

P
(
Sn ∈∆n[x)

)
= e−nΛ(α)

∫ ∆n

0

e−λ(α)zP
(
S(α)

n − αn ∈ dz
)
.

As λ(α) ≤ λ(α+ − ε) < ∞ and ∆n → 0, one has e−λ(α)z → 1 uniformly in

z ∈∆n[0) and hence, as n→∞,

P
(
Sn ∈∆n[x)

)
= e−nΛ(α)P

(
S(α)

n − αn ∈∆n[0)
)(

1+ o(1)
)

(9.3.3)

uniformly in α ∈ [0, α+ − ε].
We now show that Theorem 8.7.1A is applicable to the random variables ξ (α) =

ξ(λ(α)). That σα = σ(λ(α)) is bounded away from 0 and from∞ for α ∈ [0, α1] is

evident. (The same is true of all the theorems in this section.) Therefore, it remains

to verify whether conditions (a) and (b) of Theorem 8.7.1A are met for λ= λ(α) ∈
[0, λ1], λ1 := λ(α1) < λ+ and ϕ(λ)(t)= ψ(λ+it)

ψ(λ)
(see (9.1.5)). We have

ψ(λ+ it)=ψ(λ)+ itψ ′(λ)− t2

2
ψ ′′(λ)+ o

(
t2
)

as t → 0, where the remainder term is uniform in λ if the function ψ ′′(λ+ iu) is

uniformly continuous in u. The required uniform continuity can easily be proved

by imitating the corresponding result for ch.f.s (see property 4 in Sect. 7.1). This

proves condition (a) in Theorem 8.7.1A with

a(λ)= ψ ′(λ)

ψ(λ)
, m2(λ)= ψ ′′(λ)

ψ(λ)
.

Now we will verify condition (b) in Theorem 8.7.1A. Assume the contrary: there

exists a sequence λk ∈ [0, λ1] such that

qλk
:= sup

θ1≤|t |≤θ2

|ψ(λk + it)|
ψ(λk)

→ 1
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as k →∞. By the uniform continuity of ψ in that domain, there exist points

tk ∈ [θ1, θ2] such that, as k→∞,

ψ(λk + itk)

ψ(λk)
→ 1.

Since the region λ ∈ [0, λ1], |t | ∈ [θ1, θ2] is compact, there exists a subsequence

(λk′ , tk′)→ (λ0, t0) as k′→∞. Again using the continuity of ψ , we obtain the

equality

|ψ(λ0 + it0)|
ψ(λ0)

= 1, (9.3.4)

which contradicts the non-latticeness of ξ(λ0). Property (b) is proved.

Thus we can now apply Theorem 8.7.1A to the probability on the right-hand side

of (9.3.3). Since Eξ (α) = α and E(ξ (α))2 = ψ ′′(λ(α))
ψ(λ(α))

, this yields

P
(
Sn ∈∆n[x)

)
= e−nΛ(α)

(
∆n

σα

√
n
φ(0)+ o

(
1√
n

))

= ∆n

σα

√
2πn

e−nΛ(α)
(
1+ o(1)

)
(9.3.5)

uniformly in α ∈ [0, α1] (or in x ∈ [0, α1n]), where the values of

σ 2
α = E

(
ξ (α) − α

)2 = ψ ′′(λ(α))

ψ(λ(α))
− α2

are bounded away from 0 and from∞. The theorem is proved. �

From Theorem 9.3.1 we can now derive integro-local theorems and integral the-

orems for fixed or growing ∆. Since in the normal deviation range (when x is com-

parable with
√

n) we have already obtained such results, to simplify the exposition

we will consider here large deviations only, when x ≫√n or, which is the same,

α = x/n≫ 1/
√

n. To be more precise, we will assume that there exists a function

N(n)→∞, N(n)= o(
√

n) as n→∞, such that x ≥N(n)
√

n (α ≥N(n)/
√

n).

Theorem 9.3.2 Let λ+ > 0, α ∈ [0, α+), ξ be non-lattice, Eξ = 0 and Eξ2 <∞.

Then, for any ∆≥∆0 > 0, x ≥N(n)= o(
√

n ), N(n)→∞ as n→∞, one has

P
(
Sn ∈∆[x)

)
= e−nΛ(α)

σαλ(α)
√

2πn

(
1− e−λ(α)∆

)(
1+ o(1)

)
, (9.3.6)

o(1) being uniform in α = x/n ∈ [N(n)/
√

n,α1] and ∆ ≥ ∆0 for each fixed
α1 ∈ (0, α+).

In particular (for ∆=∞),

P(Sn ≥ x)= e−nΛ(α)

σαλ(α)
√

2πn

(
1+ o(1)

)
. (9.3.7)
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Proof Partition the interval ∆[x) into subintervals ∆n[x + k∆n), k = 0, . . . ,

∆/∆n − 1, where ∆n→ 0 and, for simplicity, we assume that M = ∆/∆n is an

integer. Then, by Theorem 9.2.1, as ∆n→ 0,

P
(
Sn ∈∆n[x + k∆n)

)

= P
(
Sn ∈

[
x, x + (k + 1)∆n

))
− P

(
Sn ∈ [x, x + k∆n)

)

= e−nΛ(α)

∫ (k+1)∆n

k∆n

e−λ(α)zP
(
S(α)

n − αn ∈ dz
)

= e−nΛ(α)−λ(α)k∆nP
(
S(α)

n − αn ∈∆n[k∆n)
)(

1+ o(1)
)

(9.3.8)

uniformly in α ∈ [0, α1]. Here, similarly to (9.3.5), by Theorem 8.7.1A we have

P
(
S(α)

n − αn ∈∆n[k∆n)
)
= ∆n

σα

√
n
φ

(
k∆n

σα

√
n

)
+ o

(
1√
n

)
(9.3.9)

uniformly in k and α. Since

P
(
Sn ∈∆[x)

)
=

M−1∑

k=0

P
(
Sn ∈∆n[x + k∆)

)
,

substituting the values (9.3.8) and (9.3.9) into the right-hand side of the last equality,

we obtain

P
(
Sn ∈∆[x)

)
= e−nΛ(α)

σα

√
n

M−1∑

k=0

∆ne
−λ(α)k∆n

(
φ

(
k∆n

σα

√
n

)
+ o(1)

)

= e−nΛ(α)

σα

√
n

∫ ∆−∆n

0

e−λ(α)z

(
φ

(
z

σα

√
n

)
+ o(1)

)
dz.

(9.3.10)

After the variable change λ(α)z= u, the right-hand side can be rewritten as

e−nλ(α)

σαλ(α)
√

n

∫ (∆−∆n)λ(α)

0

e−u

(
φ

(
u

σαλ(α)
√

n

)
+ o(1)

)
du, (9.3.11)

where the remainder term o(1) is uniform in α ∈ [0, α1], ∆ ≥ ∆0, and u from the

integration range. Since λ(α) ∼ α/σ 2 for small α (see (9.1.12) and (9.1.16)), for

α ≥N(n)/
√

n we have

λ(α) >
N(n)

σ 2
√

n

(
1+ o(1)

)
, σαλ(α)

√
n >

σαN(n)

σ 2
→∞.

Therefore, for any fixed u, one has

φ

(
u

σαλ(α)
√

n

)
→ φ(0)= 1√

2π
.
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Moreover, φ(v)≤ 1/
√

2π for all v. Hence, by (9.3.10) and (9.3.11),

P
(
Sn ∈∆[x)

)
= e−nΛ(α)

σαλ(α)
√

2πn

∫ λ(α)∆

0

e−udu
(
1+ o(1)

)

= e−nΛ(α)

σαλ(α)
√

2πn

(
1− e−λ(α)∆

)(
1+ o(1)

)

uniformly in α ∈ [0, α1] and ∆ ≥∆0. Relation (9.3.7) clearly follows from (9.3.6)

with ∆=∞. The theorem is proved. �

Note that if E|ξ |k <∞ (for λ+ > 0 this is a restriction on the rate of decay of the

left tails P(ξ <−t), t > 0), then expansion (9.1.17) is valid and, for deviations x =
o(n) (α = o(1)) such that nαk = xk/nk−1 ≤ c= const, we can change the exponent

nΛ(α) in (9.3.6) and (9.3.7) to

nΛ(α)= n

k∑

j=2

Λ(j)(0)

j ! αj + o
(
nαk

)
, (9.3.12)

where Λ(j)(0) are found in (9.1.16). For k = 3, the foregoing implies the following.

Corollary 9.3.1 Let λ+ > 0, E|ξ |3 <∞, ξ be non-lattice, Eξ = 0, Eξ2 = σ 2,

x≫√n and x = o(n2/3) as n→∞. Then

P(Sn ≥ x)∼ σ
√

n

x
√

2π
exp

{
− x2

2nσ 2

}
∼Φ

(
− x

σ
√

n

)
. (9.3.13)

In the last relation we used the symmetry of the standard normal law, i.e. the

equality 1−Φ(t) = Φ(−t). Assertion (9.3.13) shows that in the case λ+ > 0 and

E|ξ |3 <∞ the asymptotic equivalence

P(Sn ≥ x)∼Φ

(
− x

σ
√

n

)

persists outside the range of normal deviations as well, up to the values

x = o(n2/3). If Eξ3 = 0 and Eξ4 <∞, then this equivalence holds true up to the

values x = o(n3/4). For larger x this equivalence, generally speaking, no longer

holds.

Proof of Corollary 9.3.1 The first relation in (9.3.13) follows from Theorem 9.3.2

and (9.3.12). The second follows from the asymptotic equivalence

∫ ∞

x

e−
u2

2 du∼ e−x2/2

x
,

which is easy to establish, using, for example, l’Hospital’s rule. �
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9.3.2 Local Theorems

In this subsection we will obtain analogues of the local Theorems 8.7.2 and 8.7.3 for

large deviations in the Cramér range. To simplify the exposition, we will formulate

the theorem for densities, assuming that the following condition is satisfied:

[D] The distribution F has a bounded density f (x) such that

f (x) = e−λ+x+o(x) as x→∞, if λ+ <∞; (9.3.14)

f (x) ≤ ce−λx for any fixed λ > 0, c= c(λ), if λ+ =∞. (9.3.15)

Since inequalities of the form (9.3.14) and (9.3.15) always hold, by the exponen-

tial Chebyshev inequality, for the right tails

F+(x)=
∫ ∞

x

f (u)du,

condition [D] is not too restrictive. It only eliminates sharp “bursts” of f (x) as

x→∞.

Denote by fn(x) the density of the distribution of Sn.

Theorem 9.3.3 Let

Eξ = 0, Eξ2 <∞, λ+ > 0, α = x

n
∈ [0, α+),

and condition [D] be met. Then

fn(x)= e−nΛ(α)

σα

√
2π n

(
1+ o(1)

)
,

where the remainder term o(1) is uniform in α ∈ [0, α1] for any fixed α1 ∈ (0, α+).

Proof The proof is based on Theorems 9.2.1 and 8.7.2A. Denote by f
(α)
n (x) the

density of the distribution of S
(α)
n . Relation (9.2.3) implies that, for x = αn, α ∈

[α−, α+], we have

fn(x)= e−λ(α)xψn
(
λ(α)

)
f (α)

n (x)= e−nΛ(α)f (α)
n (x). (9.3.16)

Since Eξ (α) = α, we see that E(S
(α)
n − x) = 0 and the density value f

(α)
n (x)

coincides with the density of the distribution of the sum S
(α)
n − αn at the point 0. In

order to use Theorems 8.7.1A and 8.7.2A, we have to verify conditions (a) and (b)

for θ2 =∞ in these theorems and also the uniform boundedness in α ∈ [0, α1] of

∫ ∣∣ϕ(λ(α))(t)
∣∣mdt (9.3.17)



262 9 Large Deviation Probabilities for Sums of Independent Random Variables

for some integer m ≥ 1, where ϕ(λ(α)) is the ch.f. of ξ (α) (the uniform version of

condition (c) in Theorem 8.7.2). By condition [D] the density

f (α)(v)= eλ(α)vf (v)

ψ(λ(α))

in bounded uniformly in α ∈ [0, α1] (for such α one has λ(α) ∈ [0, λ1], λ1 =
λ(α1) < λ+). Hence the integral

∫ (
f (α)(v)

)2
dv

is also uniformly bounded, and so, by virtue of Parseval’s identity (see Sect. 7.2), is

the integral
∫ ∣∣ϕ(λ(α))(t)

∣∣2dt.

This means that the required uniform boundedness of integral (9.3.17) is proved

for m= 2.

Conditions (a) and (b) for θ2 <∞ were verified in the proof of Theorem 9.3.1. It

remains to extend the verification of condition (b) to the case θ2 =∞. This can be

done by following an argument very similar to the one used in the proof of Theo-

rem 9.3.1 in the case of finite θ2. Let θ2 =∞. If we assume that there exist sequences

λk ∈ [0, λ+,ε] and |tk| ≥ θ1 such that

|ψ(λk + itk)|
ψ(λk)

→ 1,

then, by compactness of [0, λ+,ε], there will exist sequences λ′k → λ0 ∈ [0, λ+,ε]
and t ′k such that

|ψ(λ′k + it ′k)|
ψ(λ0)

→ 1. (9.3.18)

But by virtue of condition [D] the family of functions ψ(λ+ it), t ∈R, is equicon-

tinuous in λ ∈ [0, λ+,ε]. Therefore, along with (9.3.18), we also have convergence

|ψ(λ0 + it ′k)|
ψ(λ0)

→ 1, |tk| ≥ θ1 > 0,

which contradicts the inequality

sup
|t |≥θ1

|ψ(λ0 + it)|
ψ(λ0)

< 1

that follows from the existence of density.
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Thus property (b) is proved for θ2 =∞, and we can use Theorem 8.7.2A, which

implies that

f (α)
n (x)= 1

σ(λ(α))
√

2π n

(
1+ o(1)

)
.

This, together with (9.3.16), proves Theorem 9.3.3. �

Remark 9.3.1 We can see from the proof that, in Theorem 9.3.3, as a more gen-

eral condition instead of condition [D] one could also consider the integrability of

ψm(λ+ it) for any fixed λ ∈ [0, λ1], λ1 < λ+, or condition [D] imposed on Sm for

some m≥ 1.

For arithmetic distributions we cannot assume without loss of generality that

m1 = Eξ = 0, but that does not change much in the formulations of the assertions.

If λ+ > 0, then α+ = ψ ′(λ+)/ψ(λ+) > m1 and the scaled deviations α = x/n for

the Cramér range must lie in the region [m1, α+).

Theorem 9.3.4 Let λ+ > 0, Eξ2 <∞ and the distribution of ξ be arithmetic. Then,

for integer x,

P(Sn = x)= e−nΛ(α)

σα

√
2πn

(
1+ o(1)

)
,

where the remainder term o(1) is uniform in α = x/n ∈ [m1, α1] for any fixed α1 ∈
(m1, α+).

A similar assertion is valid in the case when λ− < 0 and α ∈ (α−,m1].

Proof The proof does not differ much from that of Theorem 9.3.1. By (9.2.3),

P(Sn = x)= e−λ(α)xψ−n
(
λ(α)

)
P
(
S(α)

n = x
)
= e−nΛ(α)P

(
S(α)

n = x
)
,

where Eξ (α) = α for α ∈ [m1, α+). In order to compute P(S
(α)
n = x) we have to

use Theorem 8.7.3A. The verification of conditions (a) and (b) of Theorem 8.7.1A,

which are assumed to hold in Theorem 8.7.3A, is done in the same way as in the

proof of Theorem 9.3.1, the only difference being that relation (9.3.4) for t0 ∈ [θ1,π]
will contradict the arithmeticity of the distribution of ξ . Since a(λ(α))= Eξ (α) = α,

by Theorem 8.7.3A we have

P
(
S(α)

n = x
)
= 1

σα

√
2πn

(
1+ o(1)

)

uniformly in α = x/n ∈ [m1, α1]. The theorem is proved. �
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9.4 Integro-Local Theorems at the Boundary of the Cramér

Range

9.4.1 Introduction

In this section we again assume that Cramér’s condition λ+ > 0 is met. If α+ =∞
then the theorems of Sect. 9.3 describe the large deviation probabilities for any

α = x/n. But if α+ <∞ then the approaches of Sect. 9.3 do not enable one to

find the asymptotics of probabilities of large deviations of Sn for scaled deviations

α = x/n in the vicinity of the point α+.

In this section we consider the case α+ <∞. If in this case λ+ =∞, then, by

property (Λ2)(i), we have α+ = s+ = sup{t : F+(t) > 0}, and therefore the ran-

dom variables ξk are bounded from above by the value α+, P(Sn ≥ x) = 0 for

α = x/n > α+. We will not consider this case in what follows. Thus we will study

the case α+ <∞, λ+ <∞.

In the present and the next sections, we will confine ourselves to considering

integro-local theorems in the non-lattice case with ∆=∆n→ 0 since, as we saw in

the previous section, local theorems differ from the integro-local theorems only in

that they are simpler. As in Sect. 9.3, the integral theorems can be easily obtained

from the integro-local theorems.

9.4.2 The Probabilities of Large Deviations of Sn in an

o(n)-Vicinity of the Point α+n; the Case ψ ′′(λ+) < ∞

In this subsection we will study the asymptotics of P(Sn ∈∆[x)), x = αn, when α

lies in the vicinity of the point α+ <∞ and, moreover, ψ ′′(λ+) <∞. (The case of

distributions F, for which λ+ <∞, α+ <∞ and ψ ′′(λ+) <∞, will be illustrated

later, in Lemma 9.4.1.) Under the above-mentioned conditions, the Cramér trans-

form F(λ+) is well defined at the point λ+, and the random variable ξ (α+) with the

distribution F(λ+) has mean α+ and a finite variance:

Eξ (α+) = ψ ′(λ+)

ψ(λ+)
= α+, Var

(
ξ (α+)

)
= σ 2

α+ =
ψ ′′(λ+)

ψ(λ+)
− α2

+ (9.4.1)

(cf. (9.3.1)).

Theorem 9.4.1 Let ξ be a non-lattice random variable,

λ+ ∈ (0,∞), ψ ′′(λ+) <∞, y = x − α+n= o(n).

If ∆n→ 0 slowly enough as n→∞ then

P
(
Sn ∈∆n[x)

)
= ∆n

σα+
√

2πn
e−nΛ(α+)−λ+y

(
exp

{
− y2

σ 2
α+n

}
+ o(1)

)
,
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where

α = x

n
, σ 2

α+ =
ψ ′′(λ+)

ψ(λ+)
− α2

+,

and the remainder term o(1) is uniform in y.

Proof As in the proof of Theorem 9.3.1, we use the Cramér transform, but now at

the fixed point λ+, so there will be no triangular array scheme when analysing the

sums S
(α+)
n . In this case the following analogue of Theorem 9.2.1 holds true.

Theorem 9.2.1A Let λ+ ∈ (0,∞), α+ <∞ and y = x − nα+. Then, for x = nα

and any fixed ∆ > 0, the following representation is valid:

P
(
Sn ∈∆[x)

)
= e−nΛ(α+)−λ+y

∫ ∆

0

e−λ+zP
(
S

(α+)
n − αn ∈ dz

)
. (9.4.2)

Proof of Theorem 9.2.1A repeats that of Theorem 9.2.1 the only difference being

that, as was already noted, the Cramér transform is now applied at the fixed point λ+
which does not depend on α = x/n. In this case, by (9.2.3),

P(Sn ∈ dv)= e−λ+v+n lnψ(λ+)P
(
S

(α+)
n ∈ dv

)
= e−nΛ(α+)+λ+(α+n−v)P

(
S

(α+)
n ∈ dv

)
.

Integrating this equality in v from x to x +∆, changing the variable v = x + z

(x = nα), and noting that α+n− v =−y − z, we obtain (9.4.2).

The theorem is proved. �

Let us return to the proof of Theorem 9.4.1. Assuming that ∆ = ∆n → 0, we

obtain, by Theorem 9.2.1A, that

P
(
Sn ∈∆n[x)

)
= e−nΛ(α+)−λ+y P

(
S

(α+)
n − α+n ∈∆n[y)

)(
1+ o(1)

)
. (9.4.3)

By virtue of (9.4.1), we can apply Theorem 8.7.1 to evaluate the probability on

the right-hand side of (9.4.3). This theorem implies that, as ∆n→ 0 slowly enough,

P
(
S

(α+)
n − α+n ∈∆n[y)

)
= ∆n

σα+
√

n
φ

(
y

σα+
√

n

)
+ o

(
1√
n

)

= ∆n

σα+
√

2πn
exp

{
− y2

σ 2
α+n

}
+ o

(
1√
n

)

uniformly in y. This, together with (9.4.3), proves Theorem 9.4.1. �
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9.4.3 The Class of Distributions ER. The Probability of Large

Deviations of Sn in an o(n)-Vicinity of the Point α+n for

Distributions F from the Class ER in Case ψ ′′(λ+)=∞

When studying the asymptotics of P(Sn ≥ αn) (or P(Sn ∈∆[αn))) in the case where

ψ ′′(λ+) = ∞ and α is in the vicinity of the point α+ <∞, we have to impose

additional conditions on the distribution F similarly to what was done in Sect. 8.8

when studying convergence to stable laws.

To formulate these additional conditions it will be convenient to introduce certain

classes of distributions. If λ+ <∞, then it is natural to represent the right tails F+(t)

as

F+(t)= e−λ+tV (t), (9.4.4)

where, by the exponential Chebyshev inequality, V (t)= eo(t) as t→∞.

Definition 9.4.1 We will say that the distribution F of a random variable ξ (or the

random variable ξ itself) belongs to the class R if its right tail F+(t) is a regularly

varying function, i.e. can be represented as

F+(t)= t−βL(t), (9.4.5)

where L is a slowly varying function as t→∞ (see also Sect. 8.8 and Appendix 6).

We will say that the distribution F (or the random variable ξ ) belongs to the

class ER if, in the representation (9.4.4), the function V is regularly varying (which

will also be denoted as V ∈R).

Distributions from the class R have already appeared in Sect. 8.8.

The following assertion explains which distributions from ER correspond to the

cases α+ =∞, α+ <∞, ψ ′′(λ+)=∞ and ψ ′′(λ+) <∞.

Lemma 9.4.1 Let F ∈ ER. For α+ to be finite it is necessary and sufficient that

∫ ∞

1

tV (t) dt <∞.

For ψ ′′(λ+) to be finite, it is necessary and sufficient that

∫ ∞

1

t2V (t) dt <∞.

The assertion of the lemma means that α+ <∞ if β > 2 in the representation

V (t)= t−βL(t), where L is an s.v.f. and α+ =∞ if β < 2. For β = 2, the finiteness

of α+ is equivalent to the finiteness of
∫∞

1 t−1L(t) dt . The same is true for the

finiteness of ψ ′′(λ+).
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Proof of Lemma 9.4.1 We first prove the assertion concerning α+. Since

α+ =
ψ ′(λ+)

ψ(λ+)
,

we have to estimate the values of ψ ′(λ+) and ψ(λ+). The finiteness of ψ ′(λ+) is

equivalent to that of

−
∫ ∞

1

teλ+tdF+(t)=
∫ ∞

1

t
(
λ+V (t) dt − dV (t)

)
, (9.4.6)

where, for V (t)= o(1/t),

−
∫ ∞

1

t dV (t)= V (1)+
∫ ∞

1

V (t) dt.

Hence the finiteness of the integral on the left-hand side of (9.4.6) is equivalent to

that of the sum

λ+

∫ ∞

1

tV (t) dt +
∫ ∞

1

V (t) dt

or, which is the same, to the finiteness of the integral
∫∞

1 tV (t) dt . Similarly we see

that the finiteness of ψ(λ+) is equivalent to that of
∫∞

1
V (t) dt . This implies the

assertion of the lemma in the case
∫∞

1 V (t) dt <∞, where one has V (t)= o(1/t).

If
∫∞

1 V (t) dt =∞, then ψ(λ+) =∞, lnψ(λ)→∞ as λ ↑ λ+ and hence α+ =
limλ↑λ+(lnψ(λ))′ =∞.

The assertion concerning ψ ′′(λ+) can be proved in exactly the same way. The

lemma is proved. �

The lemma implies the following:

(a) If β < 2 or β = 2 and
∫∞

1 t−1L(t)=∞, then α+ =∞ and the theorems of the

previous section are applicable to P(Sn ≥ x).

(b) If β > 3 or β = 3 and
∫∞

1 t−1L(t) dt <∞, then α+ <∞, ψ ′′(λ+) <∞ and

we can apply Theorem 9.4.1.

It remains to consider the case

(c) β ∈ [2,3], where the integral
∫∞

1 t−1L(t) dt is finite for β = 2 and is infinite for

β = 3.

It is obvious that in case (c) we have α+ <∞ and ψ ′′(λ+)=∞.

Put

V+(t) := λ+tV (t)

βψ(λ+)
, b(n) := V

(−1)
+

(
1

n

)
,

where V
(−1)
+ (1/n) is the value of the function inverse to V+ at the point 1/n.
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Theorem 9.4.2 Let ξ be a non-lattice random variable, F ∈ ER and condition (c)

hold. If ∆n→ 0 slowly enough as n→∞, then, for y = x−α+n= o(n),

P
(
Sn ∈∆n[x)

)
= ∆ne

−nΛ(α+)−λ+y

b(n)

(
f (β−1,1)

(
y

b(n)

)
+ o(1)

)
,

where f (β−1,1) is the density of the stable law F(β−1,1) with parameters β − 1,1,

and the remainder term o(1) is uniform in y.

We will see from the proof of the theorem that studying the probabilities of large

deviations in the case where α+ <∞ and ψ ′′(λ+) = ∞ is basically impossible

outside the class ER, since it is impossible to find theorems on the limiting distribu-

tion of Sn in the case Var(ξ)=∞ without the conditions [Rγ,ρ] of Sect. 8.8 being

satisfied.

Proof of Theorem 9.4.2 Condition (c) implies that α+ = Eξ (α+) < ∞ and

Var(ξ (α+))=∞. We will use Theorem 9.2.1A. For ∆n→ 0 slowly enough we will

obtain, as in the proof of Theorem 9.4.1, that relation (9.4.3) holds true. But now,

in contrast to Theorem 9.4.1, in order to calculate the probability on the right-hand

side of (9.4.3), we have to employ the integro-local Theorem 8.8.3 on convergence

to a stable law. In our case, by the properties of r.v.f.s, one has

P
(
ξ (α+) ≥ t

)
= − 1

ψ(λ+)

∫ ∞

t

eλ+udF+(u)= 1

ψ(λ+)

∫ ∞

t

(
λ+V (u)du− dV (u)

)

= λ+
βψ(λ+)

t−β+1L+(t)∼ V+(t), (9.4.7)

where L+(t)∼ L(t) is a slowly varying function. Moreover, the left tail of the distri-

bution F(α+) decays at least exponentially fast. By virtue of the results of Sect. 8.8,

this means that, for b(n) = V
(−1)
+ (1/n), we have convergence of the distributions

of
S

(α+)
n −α+n

b(n)
to the stable law Fβ−1,1 with parameters β − 1 ∈ [1,2] and 1. It re-

mains to use representation (9.4.3) and Theorem 8.8.3 which implies that, provided

∆n→ 0 slowly enough, one has

P
(
S

(α+)
n − α+n ∈∆n[y)

)
= ∆n

b(n)
f (β−1,1)

(
y

b(n)

)
+ o

(
1

b(n)

)

uniformly in y. The theorem is proved. �

Theorem 9.4.2 concludes the study of probabilities of large deviations of Sn/n

in the vicinity of the point α+ for distributions from the class ER.



9.5 Integral and Integro-Local Theorems on Large Deviation Probabilities 269

9.4.4 On the Large Deviation Probabilities in the Range α > α+

for Distributions from the Class ER

Now assume that the deviations x of Sn are such that α = x/n > α+, and y = x −
α+n grows fast enough (faster than

√
n under the conditions of Theorem 9.4.1 and

faster than b(n) under the conditions of Theorem 9.4.2). Then, for the probability

P
(
S(α+) − α+n ∈∆n[y)

)
, (9.4.8)

the deviations y (see representation (9.4.3)) will belong to the zone of large devi-

ations, so applying Theorems 8.7.1 and 8.8.3 to evaluate such probabilities does

not make much sense. Relation (9.4.7) implies that, in the case F ∈ ER, we have

F(α+) ∈R. Therefore, we will know the asymptotics of the probability (9.4.8) (and

hence also of the probability P(Sn ∈∆n[x)), see (9.4.3)) if we obtain integro-local

theorems for the probabilities of large deviations of the sums Sn, in the case where

the summands belong to the class R. Such theorems are also of independent inter-

est in the present chapter, and the next section will be devoted to them. After that,

in Sect. 9.6 we will return to the problem on large deviation probabilities in the

class ER mentioned in the title of this section.

9.5 Integral and Integro-Local Theorems on Large Deviation

Probabilities for Sums Sn when the Cramér Condition Is not

Met

If Eξ = 0 and the right-side Cramér condition is not met (λ+ = 0), then the rate

function Λ(α) degenerates on the right semiaxis: Λ(α)= λ(α)= 0 for α ≥ 0, and

the results of Sects. 9.1–9.4 on the probabilities of large deviations of Sn are of little

substance. In this case, in order to find the asymptotics of P(Sn ≥ x) and P(Sn ∈
∆[x)), we need completely different approaches, while finding these asymptotics is

only possible under additional conditions on the behaviour of the tail F+(t) of the

distribution F, similarly to what happened in Sect. 8.8 when studying convergence

to stable laws.

The above-mentioned additional conditions consist of the assumption that the tail

F+(t) behaves regularly enough. In this section we will assume that F+(t)= V (t) ∈
R, where R is the class of regularly varying functions introduced in the previous

section (see also Appendix 6). To make the exposition more homogeneous, we will

confine ourselves to the case β > 2, Var(ξ) <∞, where −β is the power exponent

in the function V ∈R (see (9.4.5)). Studying the case β ∈ [1,2] (Var(ξ)=∞) does

not differ much from the exposition below, but it would significantly increase the

volume of the exposition and complicate the text, and therefore is omitted. Results

for the case β ∈ (0,2] can be found in [8, Chap. 3].
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9.5.1 Integral Theorems

Integral theorems for probabilities of large deviations of Sn and maxima Sn =
maxk≤n Sk in the case Eξ = 0, Var(ξ) <∞, F ∈R, β > 2, follow immediately from

the bounds obtained in Appendix 8. In particular, Corollaries A8.2.1 and A8.3.1 of

Appendix 8 imply the following result.

Theorem 9.5.1 Let Eξ = 0, Var(ξ) <∞, F ∈R and β > 2. Then, for x≫
√

n lnn,

P(Sn ≥ x)∼ P(Sn ≥ x)∼ nV (x). (9.5.1)

Under an additional condition [D0] to be introduced below, the assertion of this

theorem will also follow from the integro-local Theorem 9.5.2 (see below).

Comparing Theorem 9.5.1 with the results of Sects. 9.2–9.4 shows that the nature

of the large deviation probabilities is completely different here. Under the Cramér

condition and for α = x/n ∈ (0, α+), the large deviations of Sn are, roughly speak-

ing, “equally contributed to by all the summands” ξk , k ≤ n. This is confirmed by

the fact that, for a fixed α, the limiting conditional distribution of ξk , k ≤ n, given

that Sn ∈∆[x) (or Sn ≥ x) for x = αn, ∆= 1, as n→∞ coincides with the distri-

bution F(α) of the random variable ξ (α). The reader can verify this himself/herself

using Theorem 9.3.2. In other words, the conditions {Sn ∈ ∆[x)} (or {Sn ≥ x}),
x = αn, change equally (from F to F(α)) the distributions of all the summands.

However, if the Cramér condition is not met, then under the conditions of The-

orem 9.5.1 the large deviations of Sn are essentially due to one large (comparable

with x) jump. This is seen from the fact that the value of nV (x) on the right-hand

side of (9.5.1) is nothing else but the main term of the asymptotics for P(ξn ≥ x),

where ξn =maxk≤n ξk . Indeed, if nV (x)→ 0 then

P(ξn < x) =
(
1− V (x)

)n = 1− nV (x)+O
((

nV (x)
)2)

,

P(ξn ≥ x) = nV (x)+O
((

nV (x)
)2)∼ nV (x).

In other words, the probabilities of large deviations of Sn, Sn and ξn are asymp-

totically the same. The fact that the probabilities of the events {ξj ≥ y} for y ∼ x

play the determining role in finding the asymptotics of P(Sn ≥ x) can easily be

discovered in the bounds from Appendix 8.

Thus, while the asymptotics of P(Sn ≥ x) for x = αn≫√n in the Cramér case

is determined by “the whole distribution F” (as the rate function Λ(α) depends on

the “the whole distribution F”), these asymptotics in the case F ∈R are determined

by the right tail F+(t) = V (t) only and do not depend on the “remaining part” of

the distribution F (for the fixed value of Eξ = 0).
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9.5.2 Integro-Local Theorems

In this section we will study the asymptotics of P(Sn ∈∆[x)) in the case where

Eξ = 0, Var ξ2 <∞, F ∈R, β > 2, x≫
√

n lnn. (9.5.2)

These asymptotics are of independent interest and are also useful, for example, in

finding the asymptotics of integrals of type E(g(Sn); Sn ≥ x) for x ≫
√

n lnn for

a wide class of functions g. As was already noted (see Subsection 4.4), in the next

section we will use the results from the present section to obtain integro-local theo-

rems under the Cramér condition (for summands from the class ER) for deviations

outside the Cramér zone.

In order to obtain integro-local theorems in this section, we will need additional

conditions. Besides condition F ∈R, we will also assume that the following holds:

Condition [D0] For each fixed ∆, as t→∞,

V (t)− V (t +∆)= v(t)
(
∆+ o(1)

)
, v(t)= βV (t)

t
.

It is clear that if the function L(t) in representation (9.4.5) (or the function V (t))

is differentiable for t large enough and L′(t)= o(L(t)/t) as t→∞ (all sufficiently

smooth s.v.f.s possess this property; cf. e.g., polynomials of ln t etc.), then condi-

tion [D0] will be satisfied, and the derivative −V ′(t)∼ v(t) will play the role of the

function v(t).

Theorem 9.5.2 Let conditions (9.5.2) and [D0] be met. Then

P
(
Sn ∈∆[x)

)
=∆nv(x)

(
1+ o(1)

)
, v(x)= βV (x)

x
,

where the remainder term o(1) is uniform in x ≥ N
√

n lnn and ∆ ∈ [∆1,∆2] for
any fixed ∆2 > ∆1 > 0 and any fixed sequence N→∞.

Note that in Theorems 9.5.1 and 9.5.2 we do not assume that n→∞. The as-

sumption that x→∞ is contained in (9.5.2).

Proof For y < x, introduce the events

Gn :=
{
Sn ∈∆[x)

}
, Bj := {ξj < y}, B :=

n⋂

j=1

Bj . (9.5.3)

Then

P(Gn)= P(GnB)+ P(GnB), B =
n⋃

j=1

Bj , (9.5.4)
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where

n∑

j=1

P(GnBj )≥ P(GnB)≥
n∑

j=1

P(GnBj )−
∑

i<j≤n

P(GnBiBj ) (9.5.5)

(see property 8 in Sect. 9.2.2).

The proof is divided into three stages: the bounding of P(GnB), that of

P(GnB iBj ), i 
= j , and the evaluation of P(GnBj ).

(1) A bound on P(GnB). We will make use of the rough inequality

P(GnB)≤ P(Sn ≥ x;B) (9.5.6)

and Theorem A8.2.1 of Appendix 8 which implies that, for x = ry with a fixed

r > 2, any δ > 0, and x ≥N
√

n lnn, N→∞, we have

P(Sn ≥ x;B)≤
(
nV (y)

)r−δ
. (9.5.7)

Here we can always choose r such that

(
nV (x)

)r−δ≪ n∆v(x) (9.5.8)

for x≫√n. Indeed, putting n := x2 and comparing the powers of x on the right-

hand and left-hand sides of (9.5.8), we obtain that for (9.5.8) to hold it suffices to

choose r such that

(2− β)(r − δ) < 1− β,

which is equivalent, for β > 2, to the inequality.

r >
β − 1

β − 2
.

For such r , we will have that, by (9.5.6)–(9.5.8),

P(GnB)= o
(
n∆v(x)

)
. (9.5.9)

Since r − δ > 1, we see that, for n≪ x2, relations (9.5.8) and (9.5.9) will hold true

all the more.

(2) A bound for P(GnB iBj ). It is sufficient to bound P(GnBn−1Bn). Set

δ := 1

r
<

1

2
, Hk :=

{
v : v < (1− kδ)x +∆

}
, k = 1,2.

Then

P(GnBn−1Bn) =
∫

H2

P(Sn−2 ∈ dz)
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×
∫

H1

P(z+ ξ ∈ dv, ξ ≥ δx)P
(
v+ ξ ∈∆[x), ξ ≥ δx

)
.

(9.5.10)

Since in the domain H1 we have x − v > δx −∆, the last factor on the right-hand

side of (9.5.10) has, by condition [D0], the form ∆v(x − v)(1+ o(1))≤ c∆v(x) as

x→∞, so the integral over H1 in (9.5.10), for x large enough, does not exceed

c∆v(x)P(z+ ξ ∈H1; ξ ≥ δx)≤ c∆v(x)V (δx).

The integral over the domain H2 in (9.5.10) evidently allows a similar bound. Since

nV (x)→ 0, we obtain that

∑

i<j≤n

P(GnBiBj )≤ c1∆n2v(x)V (x)= o
(
∆nv(x)

)
. (9.5.11)

(3) The evaluation of P(GnBj ) is based on the relation

P(GnBn)=
∫

H1

P(Sn−1 ∈ dz)P
(
ξ ∈∆[x − z), ξ ≥ δx

)

≤
∫

H1

P(Sn−1 ∈ dz)P
(
ξ ∈∆[x − z)

)

=∆

∫

H1

P(Sn−1 ∈ dz)v(x − z)
(
1+ o(1)

)
, (9.5.12)

which yields

P(GnBn) ≤ ∆E
[
v(x − Sn−1);Sn−1 < (1− δ)x +∆

](
1+ o(1)

)

= ∆v(x)
(
1+ o(1)

)
. (9.5.13)

The last relation is valid for x ≫√n, since, by Chebyshev’s inequality, E[v(x −
Sn−1); |Sn−1| ≤M

√
n] ∼ v(x) as M→∞, M

√
n = o(x) and, moreover, the fol-

lowing evident bounds hold:

E
[
v(x − Sn−1);Sn−1 ∈

(
M
√

n, (1− δ)x +∆
)]
= o

(
v(x)

)
,

E
[
v(x − Sn−1); Sn−1 ∈ (−∞,−M

√
n )
]
= o

(
v(x)

)

as M→∞.

Similarly, by (virtue of (9.5.12)) we get

P(GnBn)≥
∫ (1−δ)x

−∞
P(Sn−1 ∈ dz)P

(
ξ ∈∆[x − z)

)
∼∆v(x). (9.5.14)



274 9 Large Deviation Probabilities for Sums of Independent Random Variables

From (9.5.13) and (9.5.14) we obtain that

P(GnBn)=∆v(x)
(
1+ o(1)

)
.

This, together with (9.5.4), (9.5.9) and (9.5.11), yields the representation

P(Gn)=∆nv(x)
(
1+ o(1)

)
.

The required uniformity of the term o(1) clearly follows from the preceding argu-

ment. The theorem is proved. �

Theorem 9.5.2 implies the following

Corollary 9.5.1 Let the conditions of Theorem 9.5.2 be satisfied. Then there exists
a fixed sequence ∆N converging to zero slowly enough as N →∞ such that the
assertion of Theorem 9.5.2 remains true when the segment [∆1,∆2] is replaced in
it with [∆N ,∆2].

9.6 Integro-Local Theorems on the Probabilities of Large

Deviations of Sn Outside the Cramér Range (Under the

Cramér Condition)

We return to the case where the Cramér condition is met. In Sects. 9.3 and 9.4

we obtained integro-local theorems for deviations inside and on the boundary of

the Cramér range. It remains to study the asymptotics of P(Sn ∈ ∆[x)) outside

the Cramér range, i.e. for α = x/n > α+. Preliminary observations concerning this

problem were made in Sect. 9.4.4 where it was reduced to integro-local theorems

for the sums Sn when Cramér’s condition is not satisfied. Recall that in that case we

had to restrict ourselves to considering distributions from the class ER defined in

Sect. 9.4.3 (see (9.4.4)).

Theorem 9.6.1 Let F ∈ ER, β > 3, α = x/n > α+ and y = x − α+n≫√n. Then
there exists a fixed sequence ∆N converging to zero slowly enough as N→∞, such
that

P
(
Sn ∈∆N [x)

)
= e−nΛ(α+)−λ+yn∆Nv+(y)

(
1+ o(1)

)

= e−nΛ(α)n∆Nv+(y)
(
1+ o(1)

)
,

where v+(y)= λ+V (y)/ψ(λ+), the remainder term o(1) is uniform in x and n such
that y≫N

√
n lnn, N being an arbitrary fixed sequence tending to∞.

Proof By Theorem 9.2.1A there exists a sequence ∆N converging to zero slowly

enough such that (cf. (9.4.3))

P
(
Sn ∈∆N [x)

)
= e−nΛ(α+)−λ+y P

(
S

(α+)
n − α+n ∈∆N [y)

)
. (9.6.1)
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Since by properties (Λ1) and (Λ2) the function Λ(α) is linear for α > α+:

Λ(α)=Λ(α+)+ (α − α+)λ+,

the exponent in (9.6.1) can be rewritten as

−nΛ(α+)− λ+y =−nΛ(α).

The right tail of the distribution of ξ (α+) has the form (see (9.4.7))

P
(
ξ (α+) ≥ t

)
= λ+

ψ(λ+)

∫ ∞

t

V (u)du+ V (t).

By the properties of regularly varying functions (see Appendix 6),

V (t)− V (t − u)= o(
(
V (t)

)

as t→∞ for any fixed u. This implies that condition [D0] of Sect. 9.5 is satisfied

for the distribution of ξ (α+).

This means that, in order to calculate the probability on the right-hand side

of (9.6.1), we can use Theorem 9.5.2 and Corollary 9.5.1, by virtue of which, as

∆N → 0 slowly enough,

P
(
S

(α+)
n − α+n ∈∆N [y)

)
= n∆Nv+(y)

(
1+ o(1)

)
,

where the remainder term o(1) is uniform in all x and n such that y ≫ N
√

n lnn,

N→∞.

The theorem is proved. �

Since P(Sn ∈ ∆N [x)) decreases exponentially fast as x (or y) grows (note the

factor e−λ+y in (9.6.1)), Theorem 9.6.1 immediately implies the following integral

theorem.

Corollary 9.6.1 Under the conditions of Theorem 9.6.1,

P(Sn ≥ x)= e−nΛ(α) nV (y)

ψ(λ+)

(
1+ o(1)

)
.

Proof Represent the probability P(Sn ≥ x) as the sum

P(Sn ≥ x) =
∞∑

k=0

P
(
Sn ∈∆N [x + k∆N )

)

∼ e−nΛ(α) nλ+
ψ(λ+)

∞∑

k=0

∆NV (y +∆Nk)e−λ+∆N k.
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Here the series on the right-hand side is asymptotically equivalent, as N →∞, to

the integral

V (y)

∫ ∞

0

e−λ+tdt = V (y)

λ+
.

The corollary is proved. �

Note that a similar corollary (i.e. the integral theorem) can be obtained under the

conditions of Theorem 9.4.2 as well.

In the range of deviations α = x
n

> α+, only the case F ∈ ER, β ∈ [2,3] (recall

that α+ =∞ for β < 2) has not been considered in this text. As we have already

said, it could also be considered, but that would significantly increase the length and

complexity of the exposition. Results dealing with this case can be found in [8]; one

can also find there a more complete study of large deviation probabilities.



Chapter 10

Renewal Processes

Abstract This is the first chapter in the book to deal with random processes in con-

tinuous time, namely, with the so-called renewal processes. Section 10.1 establishes

the basic terminology and proves the integral renewal theorem in the case of non-

identically distributed random variables. The classical Key Renewal Theorem in the

arithmetic case is proved in Sect. 10.2, including its extension to the case where

random variables can assume negative values. The limiting behaviour of the excess

and defect of a random walk at a growing level is established in Sect. 10.3. Then

these results are extended to the non-arithmetic case in Sect. 10.4. Section 10.5 is

devoted to the Law of Large Numbers and the Central Limit Theorem for renewal

processes. It also contains the proofs of these laws for the maxima of sums of in-

dependent non-identically distributed random variables that can take values of both

signs, and a local limit theorem for the first hitting time of a growing level. The chap-

ter ends with Sect. 10.6 introducing generalised (compound) renewal processes and

establishing for them the Central Limit Theorem, in both integral and integro-local

forms.

10.1 Renewal Processes. Renewal Functions

10.1.1 Introduction

The sequence of sums of random variables {Sn}, considered in previous chapters, is

often called a random walk. It can be considered as the simplest random process in
discrete time n. The further study of such processes is contained in Chaps. 11, 12

and 20.

In this chapter we consider the simplest processes in continuous time t that are

also entirely determined by a sequence of independent random variables and do

not require, for their construction, any special structures (in the general case such

constructions will be needed; see Chap. 18).

Let τ1, {τj }∞j=2 be a sequence of independent random variables given on a prob-

ability space 〈Ω,F,P〉 (here we change our conventional notations ξj to τj for rea-

sons that will become clear in Sect. 10.6, where ξj appear again). For the random

variables τ2, τ3, . . . we will usually assume some homogeneity property: proximity
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of the expectations or identical distributions. The random variable τ1 can be arbi-

trary.

Definition 10.1.1 A renewal process is a collection of random variables η(t) de-

pending on a parameter t and defined on 〈Ω,F,P〉 by the equality

η(t) :=min{k ≥ 0 : Tk > t}, t ≥ 0, (10.1.1)

where

Tk :=
k∑

j=1

τj , T0 := 0.

The variables η(t) are not completely defined yet. We do not know what η(t) is

for ω such that the level t is never reached by the sequence of sums Tk . In that case

it is natural to put

η(t) :=∞ if all Tk ≤ t. (10.1.2)

Clearly, η(t) is a stopping time (see Sect. 4.4).

Usually the random variables τ2, τ3, . . . are assumed to be identically distributed

with a finite expectation. The distribution of the random variable τ1 can be arbitrary.

We assume first that all the random variables τj are positive. Then definition

(10.1.1) allows us to consider η(t) as a random function that can be described

as follows. If we plot the points T0 = 0, T1, T2, . . . on the real line, then one has

η(t)= 0 on the semi-axis (−∞,0), η(t)= 1 on the semi-interval [0, T1), η(t)= 2

on the semi-interval [T1, T2) and so on.

The sequence {Tk}∞k=0 is also often called a renewal process. Sometimes we will

call the sequence {Tk} a random walk. The quantity η(t) can also be called the first

passage time of the level t by the random walk {Tk}∞k=0.

If, based on the sequence {Tk}, we construct a random walk T (x) in continuous

time:

T (x) := Tk for x ∈ [k, k + 1), k ≥ 0,

then the renewal process η(t) will be the generalised inverse of T (x):

η(t)= inf
{
x ≥ 0 : T (x) > t

}
.

The term “renewal process” is related to the fact that the function η(t) and the

sequence {Tk} are often used to describe the operation of various physical devices

comprising replaceable components. If, say, τj is the failure-free operating time

of such a component, after which the latter requires either replacement or repair

(“renewal”, which is supposed to happen immediately), then Tk will denote the time

of the k-th “renewal” of the component, while η(t) will be equal to the number of

“renewals” which have occurred by the time t .
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Remark 10.1.1 If the j -th renewal of the component does not happen immediately

but requires a time τ ′j ≥ 0, then, introducing the random variables

τ ∗j := τj + τ ′j , T ∗k :=
k∑

j=1

τ ∗j , η∗(t) :=min
{
k : T ∗k > t

}
,

we get an object of the same nature as before, with nearly the same physical mean-

ing. For such an object, a number of additional results can be obtained, see e.g.,

Remark 10.3.1.

Renewal processes are also quite often used in probabilistic research per se, and

also when studying other processes for which there exist so-called “regeneration

times” after which the evolution of the process starts anew. Below we will encounter

examples of such use of renewal processes.

Now we return to the general case where τj may assume both positive and nega-

tive values.

Definition 10.1.2 The function

H(t) := Eη(t), t ≥ 0,

is called the renewal function for the sequence {Tk}∞k=0.

In the existing literature, another definition is used more frequently.

Definition 10.1.2A The renewal function for the sequence {Tk}∞k=0 is defined by

U(t) :=
∞∑

j=0

P(Tj ≤ t).

The values of H(u) and T (u) can be infinite.

If τj ≥ 0 then the above definitions are equivalent. Indeed, for t ≥ 0, consider

the random variable

ν(t) :=max{k : Tk ≤ t} = η(t)− 1.

Then clearly

∞∑

j=0

I(Tj ≤ t)= 1+ ν(t),

where I(A) is the indicator of the event A, and

U(t)= 1+Eν(t)= Eη(t)=H(t).

The value U(t)= Eν(t)+ 1 is the mean time spent by the trajectory {Tj }∞j=0 in the

interval [0, t].
If τj can take values of different signs then clearly ν(t) ≥ η(t) and, with a pos-

itive probability, ν(t) > η(t) (the trajectory {Tj }, after crossing the level t , can re-

turn to the region (−∞, t]). Therefore in that case U(t) > H(t). Thus for τj taking
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values of different signs we have two versions of the renewal function given in Def-

initions 10.1.2 and 10.1.2A. We will call them the first and the second versions,

respectively. In the present chapter we will consider the first version only (Defini-

tion 10.1.2). The second version is discussed in Appendix 9.

Note that, for τj assuming values of both signs and t < 0, we have H(t) = 0,

U(t) > 0, so the function H(t) has a jump of magnitude 1 at the point t = 0.

Note also that the functions H(t) and U(t) we defined above are right-
continuous. In the existing literature, one often considers left-continuous versions

of renewal functions defined respectively as

H(t − 0)= E min{k : Sk ≥ t) and U(t − 0)=
∞∑

j=0

P(Sj < t).

If all τj are identically distributed and F ∗k(t) is the k-fold convolution of the dis-

tribution function F(t)= P(ξj < t), then the second left-continuous version of the

renewal function can also be represented in the form

∞∑

k=0

F ∗k(t),

where F ∗0 corresponds to the distribution degenerate at zero.

From the point of view of the exposition below, it makes no difference which

version of continuity is chosen. For several reasons, in the present chapter it will be

more convenient for us to deal with right-continuous renewal functions. Everything

below will equally apply to left-continuous renewal functions as well.

10.1.2 The Integral Renewal Theorem for Non-identically

Distributed Summands

In the case where τj , j ≥ 2, are not necessarily identically distributed and do not

possess other homogeneity properties, singling out the random variable τ1 makes

little sense.

Theorem 10.1.1 Let τj , j ≥ 1, be uniformly integrable from the right, E|TN |<∞
for any fixed N and ak = Eτk→ a > 0 as k→∞. Then the following limit exists

lim
t→∞

H(t)

t
= 1

a
. (10.1.3)

Proof We will need the following definition.

Definition 10.1.3 The random variable

χ(t)= Tη(t) − t > 0

is said to be the excess of the level t (or overshoot over the level t) for the random

walk {Tj }.
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Lemma 10.1.1 If ak ∈ [a∗, a∗], a∗ > 0, then

Eη(t) >
t

a∗
, lim sup

t→∞

Eη(t)

t
≤ 1

a∗
. (10.1.4)

Proof By Theorem 4.4.2 (see also Example 4.4.3)

ETη(t) = t +Eχ(t)≤ a∗Eη(t).

This implies the first inequality in (10.1.4). Now introduce truncated random vari-

ables τ
(s)
j :=min(τj , s). By virtue of the uniform integrability, one can choose an s

such that, for a given ε ∈ (0, a∗), we would have

aj,s := Eτ
(s)
j ≥ a∗ − ε.

Then, by Theorem 4.4.2,

t + s ≥ ET
(s)

η(s)(t)
≥ (a∗ − ε)Eη(s),

where

T (s)
n :=

n∑

j=1

τ
(s)
j , η(s)(t) :=min

{
k : T (s)

k > t
}
.

Since η(t)≤ η(s)(t), one has

H(t)= Eη(t)≤ Eη(s)(t)≤ t + s

a∗ − ε
. (10.1.5)

As ε > 0 can be chosen arbitrarily, we obtain that

lim sup
t→∞

H(t)

t
≤ 1

a∗
.

The lemma is proved. �

We return to the proof of Theorem 10.1.1. For a given ε > 0, find an N such

that ak ∈ [a − ε, a + ε] for all k > N and denote by HN (t) the renewal function

corresponding to the sequence {τN+k}∞k=1. Then

H(t)= E
(
η(t);TN > t

)
+
∫ t

−∞
P(TN ∈ du)

[
N +HN (t − u)

]

= E
[
HN (t − TN ); TN ≤ t

]
+ rN , (10.1.6)

where

rN := E
(
η(t); TN > t

)
+NP(TN ≤ t)≤NP(TN > t)+NP(TN ≤ t)=N.

Relation (10.1.5) implies that there exist constants c1, c2, such that, for all t ,

HN (t)≤ c1 + c2t.

Therefore, for fixed N and M ,
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RN,M := E
[
HN (t − TN ); |TN | ≥M,TN ≤ t

]

≤ (c1 + c2t)P
(
|TN | ≥M,TN ≤ t

)
+ c2E|TN |.

Choose an M such that c2P(|TN | ≥M) < ε. Then

lim sup
t→∞

rN +RN,M

t
≤ ε. (10.1.7)

To bound H(t) in (10.1.6) it remains to consider, for the chosen N and M , the

function

HN,M(t) := E
[
HN (t − TN ); |TN |< M

]
.

By Lemma 10.1.1,

lim sup
t→∞

HN,M(t)

t
≤ 1

a − ε
,

lim inf
t→∞

HN,M(t)

t
≥ P(|TN |< M)

a + ε
≥ 1+ ε/c1

a + ε
.

This together with (10.1.6) and (10.1.7) yields

lim sup
t→∞

H(t)

t
≤ ε+ 1

a − ε
, lim inf

t→∞
H(t)

t
≥ (1− ε/c2)

a + ε
.

Since ε is arbitrary, the foregoing implies (10.1.3).

The theorem is proved. �

Remark 10.1.2 One can obtain the following generalisation of Theorem 10.1.1, in

which no restrictions on τ1 ≥ 0 are imposed. Let τ1 be an arbitrary nonnegative
random variable, and τ ∗j := τ1+j satisfy the conditions of Theorem 10.1.1. Then
(10.1.3) still holds true.

This assertion follows from the relations

H(t)= P(τ1 > t)+
∫ t

0

P(τ1 ∈ dv)H ∗(t − v), (10.1.8)

where H ∗(t) corresponds to the sequence {τ ∗j } and, for each fixed N and v ≤N ,

H ∗(t − v)

t
= H ∗(t − v)

t − v
· t − v

t
→ 1

a

as t→∞. Therefore

1

t

∫ N

0

P(τ1 ∈ dv)H ∗(t − v)→ P(τ1 ≤N)

a
.

For the remaining part of the integral in (10.1.8), we have

lim sup
t→∞

1

t

∫ t

N

P(τ1 ∈ dv)H ∗(t − v)≤ lim sup
t→∞

H ∗(t)

t
P(τ1 > N)= P(τ1 > N)

a
.

Since the probability P(τ1 > N) can be made arbitrarily small by the choice of N ,

the assertion is proved. �
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It is not difficult to verify that the condition τ1 ≥ 0 can be relaxed to the condition

E min(0, τ1) >−∞. However, if E min(0, τ1)=−∞, then H(t)=∞ and relation

(10.1.3) does not hold.

Obtaining an analogue of Theorem 10.1.1 for the second version U(t) of the

renewal function in the case of uniformly integrable τj taking values of both signs is

accompanied by greater technical difficulties and additional conditions. For a fixed

ε > 0, split the series U(t)=
∑∞

n=0 P(Tn ≤ t) into the three parts
∑

1
=

∑

n<
t (1−ε)

a

,
∑

2
=

∑

|n− t
a
|≤ tε

a

,
∑

3
=

∑

n>
t (1+ε)

a

.

By the law of large numbers (see Corollary 8.3.2),

Tn

n

p→ a.

Therefore, for n <
t (1−ε)

a
,

P(Tn ≤ t)≥ P

(
Tn ≤

na

1− ε

)
→ 1

and hence

1

t

∑
1
→ 1− ε

a
.

The second sum allows the trivial bound

1

t

∑
2
<

2ε

a
,

where the right-hand side can be made arbitrarily small by the choice of ε.

The main difficulties are related to estimating
∑

3. To illustrate the problems

arising here we confine ourselves to the case of identically distributed τj
d= τ . In

this case the required estimate for
∑

3 can only be obtained under the condition

E(τ−)2 <∞, τ− :=max(0,−τ). Assume without losing generality that Eτ 2<∞.

(If E(τ+)2 = ∞, τ+ := max(0, τ ), then introducing truncated random variables

τ
(s)
j =min(s, τj ), we obtain, using obvious conventions concerning notations, that

P(Tn ≤ t)≤ P(T
(s)
n ≤ t), U(t)≤U (s)(t) and

∑
3 ≤

∑(s)
3 , where E(τ (s))2 <∞ and

the value of Eτ (s) can be made arbitrarily close to a by the choice of s.) In the

case Eτ 2 <∞ we can use Theorem 9.5.1 by virtue of which, for a regularly vary-

ing left tail W(t) = P(τ < −t) = t−βL(t) (L(t) is a slowly varying function) and

n > t
a
(1+ ε), we have

P(Tn ≤ t)= P
(
Tn − an≤−(an− t)

)
∼ nW(an− t).

By the properties of slowly varying functions (see Appendix 6), for the values

u= n/t comparable to 1, n > t
a
(1+ ε) and t→∞, we have

W(an− t)

W(εt)
∼
(

au− 1

ε

)−β

.
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Thus for β > 2, as t→∞,

∑
3
=

∑

n>
(1+ε)t

a

P(Tn ≤ t)∼
∫

v>
(1+ε)t

a

vW(av− t) dv

∼ t2W(εt)

∫ ∞
1+ε
a

u

[
au− 1

ε

]−β

du∼ c(ε)t2W(t)= o(1).

Summarising, we have obtained that

lim
t→∞

U(t)

t
= 1

a
.

Now if E(τ−)2 =∞ then U(t)=∞ for all t . In this case, instead of U(t) one

studies the “local” renewal function

U(t,h)=
∑

n

P
(
Tn ∈ (t, t + h]

)

which is always finite provided that a > 0 and has all the properties of the increment

H(t + h)−H(t) to be studied below (see e.g. [12]).

In view of the foregoing and since the function H(t) will be of principal interest

to us, in what follows we will restrict ourselves to studying the first version of the

renewal function, as was noted above. We will mainly pay attention to the asymp-

totic behaviour of the increments H(t + h) − H(t) as t →∞. To this is closely

related a more general problem that often appears in applications: the problem on

the asymptotic behaviour as t→∞ of integrals (see e.g. Chap. 13)

∫ t

0

g(t − y)dH(y) (10.1.9)

for functions g(v) such that
∫ ∞

0

g(v) dv <∞.

Theorems describing the asymptotic behaviour of (10.1.9) will be called the key
renewal theorems. The next sections and Appendix 9 will be devoted to these theo-

rems. Due to the technical complexity of the mentioned problems, we will confine

ourselves to considering only the case where τj , j ≥ 2, are identically distributed.

Note that in some special cases the above problems can be solved in a very simple

way, since the renewal function H(t) can be found there explicitly. To do this, as it

follows from Wald’s identity used above, it suffices to find Eχ(t) in explicit form.

If, for instance, τj are integer-valued, P(τj = 1) > 0 and P(τj ≥ 2) = 0, for all

j ≥ 1, then χ(t)≡ 1 and Wald’s identity yields H(t)= (t+1)/a. Similar equalities

will hold if P(τj > t)= ce−γ t for t > 0 and γ > 0 (if τj are integer-valued, then t

takes only integer values in this formula). In that case the distribution of χ(t) will

be exponential and will not depend on t (for more details, see the exposition below

and also Chap. 15).
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10.2 The Key Renewal Theorem in the Arithmetic Case

We will distinguish between two distribution types for τj : arithmetic in an extended
sense (when the lattice span is not necessary 1; for the definition of arithmetic distri-

butions see Sect. 7.1) and all other distributions that we will call non-arithmetic. It is

clear that, say, a random variable taking values 1 and
√

2 with positive probabilities

cannot be arithmetic.

In the present section, we will consider the arithmetic case. Without loss of gener-

ality, we will assume that the lattice span is 1. Then the functions P(τj < t) and H(t)

will be completely determined by their values at integer points t = k, k = 0,1,2 . . . .

First we consider the case where the τj are positive, τj
d= τ for j ≥ 2. In that

case, the difference

h(k) :=H(k)−H(k − 1)=
∞∑

j=0

P(Tj = k), k ≥ 1,

is equal to the expectation of the number of visits of the point k by the walk {Tj }.
Put

qk := P(τ1 = k), pk := P(τ = k).

Definition 10.2.1 A renewal process η(t) will be called homogeneous and denoted

by η0(t) if

qk =
1

a

∞∑

k

pj , k = 1,2, . . . , a = Eτ,

(
so that

∞∑

k=1

qk = 1

)
. (10.2.1)

If we denote by p(z) the generating function

p(z)= Ezτ =
∞∑

k=1

pkz
k,

then the generating function q(z)= Ezξ1 =
∑∞

k=1 qkz
k will be equal to

q(z)= 1

a

∞∑

k=1

zk

∞∑

j=k

pj =
z

a

∞∑

j=1

pj

j−1∑

k=0

zk = z

a

∞∑

j=1

pj

1− zj

1− z
= z(1− p(z))

a(1− z)
.

As we will see below, the term “homogeneous” for the process η0(t) is quite justi-

fied. One of the reasons for its use is the following exact (non-asymptotic) equality.

Theorem 10.2.1 For a homogeneous renewal process η0(t), one has

H0(k) := Eη0(k)= 1+ k

a
.

Proof Consider the generating function r(z) for the sequence h0(k) = H0(k) −
H0(k − 1):
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r(z)=
∞∑

1

zkh0(k)=
∞∑

j=1

∞∑

k=1

zkP(Tj = k)

=
∞∑

j=1

EzTj = q(z)

∞∑

j=0

pj (z)= q(z)

1− p(z)
= z

a(1− z)
.

This implies that h0(k) = 1/a. Since H0(0) = 1, one has H0(k) = 1 + k/a. The

theorem is proved. �

Sometimes the process η0(t) is also called stationary. As we will see below,

it would be more appropriate to call it a process with stationary increments (see

Sect. 22.1).

The asymptotic regular behaviour of the function h(k) as k→∞ persists in the

case of arbitrary τ1 as well.

Denote by d the greatest common divisor (g.c.d.) of the possible values of τ :

d := g.c.d.{k : pk > 0},

and let g(k), k = 0,1, . . . , be an arbitrary sequence such that

∞∑

k=0

∣∣g(k)
∣∣<∞.

Theorem 10.2.2 (The key renewal theorem) If d = 1, τ1 is an arbitrary integer-

valued random variable and τj
d= τ > 0 for j ≥ 2, then, as k→∞,

h(k) :=H(k)−H(k − 1)→ 1

a
,

k∑

l=1

h(l)g(k − l)→ 1

a

∞∑

m=0

g(m).

These two relations are equivalent.

The first assertion of the theorem is also called the local renewal theorem.

To prove the theorem we will need two auxiliary assertions.

Lemma 10.2.1 Let all τj be identically distributed and ν ≥ 1 be a Markov
time with respect to the collection of σ -algebras {Fn}, where Fn is independent
of σ(τn+1, τn+2, . . .). Then the σ -algebra generated by the random variables ν,

τ1, . . . , τν , and the σ -algebra σ {τν+1, τν+2, . . .} are independent. The sequence
{τν+1, τν+2, . . .} has the same distribution as {τ1, τ2, . . .}.

Thus, in spite of their random numbers, the elements of the sequence τν+j are

distributed as τj .

Proof For given Borel sets B1,B2, . . . , C1,C2, . . . put

A := {ν ∈N, τ1 ∈ B1, . . . , τν ∈ Bν}, Dν := {τν+1 ∈ C1, . . . , τν+k ∈ Ck},
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where N is a given set of integers and k is arbitrary. Since P(Dj )= P(D0) and the

events Dj and {ν = j} are independent, the total probability formula yields

P(Dν)=
∞∑

j=1

P(ν = j,Dj )=
∞∑

j=1

P(ν = j)P(Dj )= P(D0).

Therefore, by Theorem 3.4.3, in order to prove the required independence of the

σ -algebras, it suffices to show that P(DνA)= P(D0)P(A).

By the total probability formula,

P(DνA)=
∑

j∈N

P
(
DνA{ν = j}

)
=
∑

j∈N

P
(
DjA{ν = j}

)
.

But the event A{ν = j} belongs to Fj , whereas Dj ∈ σ(τj+1, . . . , τj+k). Therefore

Dj and A{ν = j} are independent events and

P
(
Dj A{ν = j}

)
= P(Dj )P

(
A{ν = j}

)
= P(D0)P

(
A{ν = j}

)
, j ≥ 1.

From here it clearly follows that P(DνA)= P(D0)P(A). The lemma is proved. �

Lemma 10.2.2 Let ζ1, ζ2, . . . be independent arithmetic identically and symmet-
rically distributed random variables with zero expectation Eζj = 0. Put Zn :=∑n

j=1 ζj . Then, for any integer k,

νk :=min{n : Zn = k}
is a proper random variable: P(νk <∞)= 1.

The proof of the lemma is given in Sect. 13.3 (see Corollary 13.3.1).

Proof of Theorem 10.2.2 Consider two independent sequences of random vari-

ables (we assume that they are given on a common probability space): a sequence

τ1, τ2, . . . , where τ1 has an arbitrary distribution, and a sequence τ ′1, τ
′
2, . . . , where

P(τ ′1 = k)= qk (see (10.2.1)), and P(τ ′j = k)= P(τj = k)= pk for j ≥ 2 (so that

τ ′j
d= τj for j ≥ 2; the process η′(t) constructed from the sums T ′k =

∑k
j=1 τ ′j is

homogeneous (see Definition 10.2.1)).

Set ν := min{n ≥ 1 : Tn = T ′n}. It is clearly a Markov time with respect to the

sequence {τj , τ
′
j }. We show that P(ν <∞)= 1. Put

Zn :=
n∑

j=2

(
τj − τ ′j

)
for n≥ 2, Z1 := 0, Z0 := τ1 − τ ′1.

Then

ν =min{n≥ 1 :Zn =−Z0}.
By Lemma 10.2.2 (ζj = τj − τ ′j have a symmetric distribution for j ≥ 2), for each

integer k the variable νk = min{n ≥ 1 : Zn = k} is proper. Since Zn for n ≥ 1 and

Z′1 are independent, we have

P(ν <∞)=
∑

k

P(Z0 =−k)P(νk <∞)= 1.



288 10 Renewal Processes

Now we will “glue together” (“couple”) the sequences {Tn} and {T ′n}. Since

Tν = T ′ν and ν is a Markov time, by Lemma 10.2.1 one can replace τν+1, τν+2, . . .

with τ ′ν+1, τ
′
ν+2, . . . (and thereby replace Tν+1, Tν+2 with T ′ν+1, T

′
ν+2, . . .) without

changing the distribution of the sequence {Tn}.
Therefore, on the set {Tν < k} one has η(t)= η′(t) for t ≥ k − 1 and hence

h(k)= E
(
η(k)− η(k − 1)

)

= E
[
η′(k)− η′(k − 1); Tν < k

]
+E

[
η(k)− η(k− 1); Tν ≥ k

]

= 1

a
−E

[
η′(k)− η′(k − 1); Tν ≥ k

]
+E

[
η(k)− η(k − 1); Tν ≥ k

]
.

Since |η(k)− η(k − 1)| ≤ 1, we have∣∣∣∣h(k)− 1

a

∣∣∣∣≤ P(Tν ≥ k)→ 0

as k→∞. The first assertion of Theorem 10.2.2 is proved.

Since h(k)≤ 1, we can make the value of
∣∣∣∣∣

k−N∑

l=1

h(l)g(k − l)

∣∣∣∣∣≤
k−1∑

l=N+1

∣∣g(l)
∣∣≤

∞∑

l=N+1

∣∣g(l)
∣∣

arbitrarily small by choosing an appropriate N . Moreover, by virtue of the first as-

sertion, for any fixed N ,

k∑

l=k−N

h(l)g(k − l)→ 1

a

N∑

l=0

g(l) as k→∞.

This implies the second assertion of the theorem. �

Remark 10.2.1 The coupling of {Tn} and {T ′n} in the proof of Theorem 10.2.2 could

be done earlier, at the time γ :=min{n≥ 1 : Tn ∈ T ′}, where T ′ is the set of points

T ′ = {T ′1, T ′2, . . .}.

Theorem 10.2.3 The assertion of Theorem 10.2.2 remains true for arbitrary (as-
suming values of different signs) τj .

Proof We will reduce the problem to the case τj > 0. First let all τj be identi-

cally distributed. Consider the random variable χ1 = χ(0) that we will call the first
positive sum. We will show in Chap. 12 (see Corollary 12.2.3) that Eχ1 <∞ if

a = Eτj <∞. According to Lemma 10.2.1, the sequence τη(0)+1, τη(0)+2, . . . will

have the same distribution as τ1, τ2, . . . . Therefore the “second positive sum” χ2 or,

which is the same, the first positive sum of the variables τη(0)+1, τη(0)+2, . . . will

have the same distribution as χ1 and will be independent of it. The same will be true

for the subsequent “overshoots” over the already achieved levels χ1, χ1 + χ2, . . . .

Now consider the random walk {
Hk =

k∑

i=1

χi

}∞

k=1
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and put

η∗(t) :=min{k :Hk > t}, χ∗(t) :=Hη∗(t) − t, H ∗(t) := Eη∗(t).

Since χk > 0, Theorem 10.2.2 is applicable, and therefore by Wald’s identity

H ∗(k)−H ∗(k − 1)= 1

Eχ1

(
1+Eχ∗(k)−Eχ∗(k − 1)

)
→ 1

Eχ1
,

Eχ∗(k)−Eχ∗(k − 1)→ 0.

Note now that the distributions of the random variables χ(t) (see Definition 10.1.3)

and χ∗(t) coincide. Therefore

H(k)−H(k − 1)= 1

a

(
1+Eχ(k)−Eχ(k − 1)

)

= 1

a

(
1+Eχ∗(k)−Eχ∗(k − 1)

)
→ 1

a
.

Now let the distributions of τ1 and τj , j ≥ 2, be different. Then the renewal

function H1(t) for such a walk will be equal to

H1(k)= 1+
k∑

i=−∞
P(τ1 = i)

[
H(k − i)+ 1

]
= 1+

k∑

i=−∞
P(τ1 = i)H(k − i),

h1(k)=H1(k)−H1(k − 1)=
k∑

i=−∞
P(τ1 = i)h(k − i), k ≥ 0,

where H1(−1)= 0, h(0)=H(0) and the function H(t) corresponds to identically

distributed τj . If we had h(k) < c <∞ for all k, that would imply convergence

h1(k)→ 1/a and thus complete the proof of the theorem.

The required inequality h(k) < c actually follows from the following gen-

eral proposition which is true for arbitrary (not necessarily lattice) random vari-

ables τj . �

Lemma 10.2.3 If all τj are identically distributed then, for all t and u,

H(t + u)−H(t)≤H(u)≤ c1 + c2u.

Proof The difference η(t + u)− η(t) is the number of jumps of the trajectory {T̃k}
that started at the point t + χ(t) > t until the first passage of the level t + u, where

the sequence {T̃k} has the same distribution as {Tk} and is independent of it (see

Lemma 10.2.1). In other words, η(t + u)− η(u) has the same distribution as η̃(t −
χ(t)) ≤ η̃(t), where η̃ corresponds to {T̃k} if χ(t) ≤ u and to η(t + u)− η(t) = 0

if χ(t) > u. Therefore H(t + u)−H(t) ≤H(u). The inequality for H(u) follows

from Theorem 10.2.1. The lemma is proved. �

Theorem 10.2.3 is proved. �
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10.3 The Excess and Defect of a Random Walk. Their Limiting

Distribution in the Arithmetic Case

Along with the excess χ(t) = Tη(t) − t we introduce one more random variable

closely related to χ(t).

Definition 10.3.1 The random variable

γ (t) := t − Tη(t)−1 = t − Tν(t)

is called the defect (or undershoot) of the level t in the walk {Tn}.

The quantity χ(t) may be thought of as the time during which the component

that was working at time t will continue working after that time, while γ (t) is the

time for which the component has already been working by that time.

One should not think that the sum χ(t)+ γ (t) has the same distribution as τj —

this sum is actually equal to the value of a τ with the random subscript η(t). In

particular, as we will see below, it may turn out that Eχ(t) > Eτj for large t . The

following apparent paradox is related to this fact. A passenger coming to a bus stop

at which buses arrive with inter-arrival times τ1 > 0, τ2 > 0, . . . (Eτj = a), will wait

for the arrival of the next bus for a random time χ of which the mean Eχ could

prove to be greater than a.

One of the principal facts of renewal theory is the assertion that, under broad

assumptions, the joint distribution of χ(t) and γ (t) has a limit as t →∞, so that

for large t the distribution of χ(t) does not depend on t any more and becomes

stationary. Denote this limiting distribution of χ(t) by G and its distribution function

by G:

G(x)= lim
t→∞

P
(
χ(t) < x

)
. (10.3.1)

If we take the distribution of τ1 to be G then, for such process, by its very construc-

tion the distribution of the variable χ(t) will be independent of t . Indeed, in that

case we can think of the positive elements of {Tj } as the renewal times for a process

which is constructed from the sequence {τj } and of which the start is shifted to a

point −N , where N is very large. Since by virtue of (10.3.1) we can assume that

the distributions of χ(N) and χ(N + t) coincide with each other, the distribution of

the variable χ(t) (which can be identified with χ(N + t)) is independent of t and

coincides with that of τ1. A formal proof of this fact is omitted, since it will not be

used in what follows. However, the reader could carry it out using the explicit form

of G(x) from (10.3.1) to be derived below.

In the arithmetic case, the distribution G is just the law (10.2.1) used to construct

the homogeneous renewal process η0(t). We will prove this in our next theorem.

It follows from the fact that, for the process η0(t), the distribution of χ(t) does

not depend on t and coincides with that of τ1, that the distribution of η0(t + u)−
η0(t) coincides with that of η0(u) and hence is also independent of t . It is this

property that establishes the stationarity of the increments of the renewal process;

we called this property homogeneity. It means that the distribution of the number of
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renewals over a time interval of length u does not depend on when we start counting,

and therefore depends on u only.

Theorems on the limiting distribution of χ(t) and γ (t) are of interest not only

from the point of view of their applications. We will need them for a variety of other

problems. Again we consider first the case when the variables τj > 0 are arithmetic.

In that case the “time” can also be assumed discrete and we will denote it, as before,

by the letters n and k. Let, as before, τj
d= τ for j ≥ 2 and pk = P(τ = k).

Theorem 10.3.1 Let the random variable τ > 0 be arithmetic, Eτ = a exist, τ1 be
an arbitrary integer random variable, and the g.c.d. of the possible values of τ be
equal to 1. Then the following limit exists

lim
k→∞

P
(
γ (k)= i, χ(k)= j

)
= pi+j

a
, i ≥ 0, j > 0. (10.3.2)

It follows from Theorem 10.3.1 that

lim
k→∞

P
(
χ(k)= i

)
= 1

a

∞∑

j=i

pj , i > 0;

lim
k→∞

P
(
γ (k)= i

)
= 1

a

∞∑

j=i+1

pj , j ≥ 0.

(10.3.3)

Proof of Theorem 10.3.1 By the renewal theorem (see Theorem 10.2.2), for k > i,

P
(
γ (k)= i, χ(k)= j

)
=
∞∑

l=1

P(Tl = k − i, τl+1 = i + j)

=
∞∑

l=1

P(Tl = k − i)P(τ = i + j)= h(k − i)pi+j →
pi+j

a

as k→∞. The theorem is proved. �

If Eτ 2 =m2 <∞, then Theorem 10.3.1 allows a refinement of Theorem 10.2.2

(see Theorem 10.3.2 below).

Corollary 10.3.1 If m2 <∞, then the random variables χ(k) are uniformly inte-
grable and

Eχ(k)→ 1

a

∞∑

i=0

i

∞∑

j=i

pj =
m2 + a

2a
as k→∞. (10.3.4)

Proof The uniform integrability follows from the inequalities h(k)≤ 1,

P
(
χ(k)= j

)
=

k∑

i=0

h(k − i)pi+j ≤
∞∑

i=j

pi .

This implies (10.3.4) (see Sect. 6.1). �
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Now we can state a refined version of the integral theorem that implies Theo-

rem 10.2.2.

Theorem 10.3.2 If all τj are identically distributed and Eτ 2 =m2 <∞, then

H(k)= k

a
+ m2 + a

2a2
+ o(1)

as k→∞.

The Proof immediately follows from the Wald identity

H(k)= Eη(k)= k+Eχ(k)

a

and Corollary 10.3.1. �

Remark 10.3.1 For the process η∗(t) corresponding to nonzero times τ ′j required

for components’ renewals (mentioned in Remark 10.1.1), the reader can easily find,

similarly to Theorem 10.3.1, not only the asymptotic value pi+j/a
∗ of the proba-

bility that at time k→∞ the current component has already worked for time i and

will still work for time j , but also the asymptotics of the probability that the com-

ponent has been “under repair” for time i and will stay in that state for time j , that

is given by p′i+j/a
∗, where p′i = P(τ ′j = i), a∗ = E(τj + τ ′j )= Eτ ∗j .

Now consider the question of under what circumstances the distribution of the

random variable τ1 for the homogeneous process (i.e. the distribution of what one

could denote by χ(∞)) will coincide with that of τj for j ≥ 2. Such a coincidence

is equivalent to the equality

pi =
1

a

∞∑

j=i

pj

for i = 1,2, . . . , or, which is the same, to

a(pi − pi−1)=−pi−1, pi =
a − 1

a
pi−1, pi =

1

a − 1

(
a − 1

a

)i

.

This means that the renewal process generated by the sequence of independent iden-

tically distributed random variables τ1, τ2, . . . is homogeneous if and only if τj (or,

more precisely, τj−1) have the geometric distribution.

Denote by γ and χ the random variables having distribution (10.3.2). Using

(10.3.1), it is not hard to show that γ and χ are independent also only in the case

when τj , j ≥ 2, have the geometric distribution. When all τj , j ≥ 1, have such a

distribution, γ (n) and χ(n) are also independent, and χ(n)
d= τ1. These facts can be

proved in exactly the same way as for the exponential distribution (see Sect. 10.4).

We now return to the general case and recall that if Eτ 2 <∞ then (see Corol-

lary 10.3.1)

Eχ = Eτ 2

2a
+ 1

2
.
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This means, in particular, that if the distribution of τ is such that Eτ 2 > 2a2 − a,

then, for large n, the excess mean value Eχ(n) will become greater than Eτ = a.

10.4 The Renewal Theorem and the Limiting Behaviour

of the Excess and Defect in the Non-arithmetic Case

Recall that in this chapter by the non-arithmetic case we mean that there exists no

h > 0 such that P(
⋃

k{τ = kh}) = 1, where k runs over all integers. To state the

key renewal theorem in that case, we will need the notion of a directly integrable
function.

Definition 10.4.1 A function g(u) defined on [0,∞) is said to be directly integrable
if:

(1) the function g is Riemann integrable1 over any finite interval [0,N]; and

(2)
∑

k g(k) <∞, where gk =maxk≤u≤k+1 |g(u)|.
It is evident that any monotonically decreasing function g(t) ↓ 0 having a finite

Lebesgue integral
∫ ∞

0

g(t) dt <∞

is directly integrable. This also holds for differences of such functions.

The notion of directly integrable functions introduced in [12] differs somewhat

from the one just defined, although it essentially coincides with it. It will be more

convenient for us to use Definition 10.4.1, since it allows us to simplify to some

extent the exposition and to avoid auxiliary arguments (see Appendix 9).

Theorem 10.4.1 (The key renewal theorem) Let τj
d= τ ≥ 0 for j ≥ 2 and g be a

directly integrable function. If the random variable τ is non-arithmetic, there exists
Eτ = a > 0, and the distribution of τ1 is arbitrary, then, as t→∞,

∫ t

0

g(t − u)dH(u)→ 1

a

∫ ∞

0

g(u)du. (10.4.1)

There is a measure H on [0,∞) associated with H that is defined by H((x, y]) :=
H(y)−H(x). The integral

∫ t

0

g(t − u)dH(u)

1That is, the sums n−1
∑

k g
k

and n−1
∑

k gk have the same limits as n→∞, where g
k
=

minu∈∆k
g(u), gk = maxu∈∆k

g(u), ∆k = [k∆, (k + 1)∆), and ∆ = N/n. The usual definition

of Riemann integrability over [0,∞) assumes that condition (1) of Definition 10.4.1 is satisfied

and the limit of
∫ N

0 g(u)du as N →∞ exists. This approach covers a wider class of functions

than in Definition 10.4.1, allowing, for example, the existence of a sequence tk →∞ such that

g(tk)→∞.
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in (10.4.1) can also be written as
∫ t

0

g(t − u)H(du).

It follows from (10.4.1), in particular, that, for any fixed u,

H(t)−H(t − u)→ u

a
. (10.4.2)

It is not hard to see that this relation, which is called the local renewal theorem, is

equivalent to (10.4.1).

The proof of Theorem 10.4.1 is technically rather difficult, so we have placed

it in Appendix 9. One can also find there refinements of Theorem 10.4.1 and its

analogue in the case where τ has a density.

The other assertions of Sects. 10.2 and 10.3 can also be extended to the non-

arithmetic case without any difficulties. Let all τj be nonnegative.

Definition 10.4.2 In the non-arithmetic case, a renewal process η(t) is called ho-
mogeneous (and is denoted by η0(t)) if the distribution of the first jump has the

form

P(τ1 > x)= 1

a

∫ ∞

x

P(τ > t) dt.

The ch.f. of τ1 equals

ϕτ1
(λ) := Eeiλτ1 = 1

a

∫ ∞

0

eiλxP(τ > x)dx.

Since here we are integrating over x > 0, the integral exists (as well as the func-

tion ϕ(λ)= ϕτ (λ) := Eeiλτ ) for all λ with Imλ > 0 (for λ= iα+ v, −∞< v <∞,

α ≥ 0, the factor eiλx is equal to e−αxeivx ; see property 6 of ch.f.s). Therefore, for

Imλ≥ 0,

ϕτ1
(λ)=− 1

iλa

[
1+

∫ ∞

0

eiλx dP(τ > x)

]
= ϕ(λ)− 1

iλa
.

Theorem 10.4.2 For a homogeneous renewal process,

H0(t)≡ Eη0(t)= 1+ t

a
, t ≥ 0.

Proof This theorem can be proved in the same way as Theorem 10.2.1. Consider

the Fourier–Stieltjes transform of the function H0(t):

r(λ) :=
∫ ∞

0

eiλx dH0(x).

Note that this transform exists for Imλ > 0 and the uniqueness theorem established

for ch.f.s remains true for it, since ϕ∗(v) := r(iα+v)/r(iα),−∞< v <∞ (we put

λ= iα + v for a fixed α > 0) can be considered as the ch.f. of a certain distribution

being the “Cramér transform” (see Chap. 9) of H0(t).
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Since τj ≥ 0, one has

H0(x)=
∞∑

j=0

P(Tj ≤ x).

As H0(t) has a unit jump at t = 0, we obtain

r(λ)=
∫ ∞

0

eiλx dH0(x)= 1+
∞∑

j=0

ϕτ1
(λ)ϕj (λ)= 1+ ϕ(λ)− 1

iλa

1

1− ϕ(λ)

= 1− 1

iλa
.

It is evident that this transform corresponds to the function H0(t) = 1+ t/a. The

theorem is proved. �

In the non-arithmetic case, one has the same connections between the homoge-

neous renewal process η0(t) and the limiting distribution of χ(t) and γ (t) as we

had in the arithmetic case. In the same way as in Sect. 10.3, we can derive from the

renewal theorem the following.

Theorem 10.4.3 If τ ≥ 0 is non-arithmetic, Eτ = a, and the distribution of τ1 ≥ 0

is arbitrary, then the following limit exists

lim
t→∞

P
(
γ (t) > u, χ(t) > v

)
= 1

a

∫ ∞

u+v

P(τ > x)dx. (10.4.3)

Proof For t > u, by the total probability formula,

P
(
γ (t) > u,χ(t) > v

)

= P(τ1 > t + v)+
∞∑

j=1

∫ t−u

0

P
(
η(t)= j + 1, Tj ∈ dx, γ (t) > u,χ(t) > v

)

= P(τ1 > t + v)+
∞∑

j=1

∫ t−u

0

P(Tj ∈ dx, τj+1 > t − x + v)

= P(τ1 > t + v)− P(τ > t + v)+
∫ t−u

0

dH(x)P(τ > t − x + v). (10.4.4)

Here the first two summands on the right-hand side converge to 0 as t →∞. By

the renewal theorem for g(x) = P(τ > x + u + v) (see (10.4.1)), the last integral

converges to

1

a

∫ ∞

0

P(τ > x + u+ v)dx.

The theorem is proved. �

As was the case in the previous section (see Theorem 10.3.2), in the case

Eτ 2 =m2 <∞ Theorem 10.4.3 allows us to refine the key renewal theorem.
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Theorem 10.4.4 If all τj
d= τ ≥ 0 are identically distributed and Eτ 2 =m2 <∞,

then, as t→∞,

H(t)= t

a
+ m2

2a2
+ o(1).

Proof From (10.4.4) for u= 0 and Lemma 10.2.3 it follows that χ(t) are uniformly

integrable, for

P
(
χ(t) > v

)
=
∫ t

0

dH(x)P(τ > t − x + v) < (c1 + c2)
∑

k≥0

P(τ > k + v),

(10.4.5)

and therefore by (4.4.3)

Eχ(t)→ 1

a

∫ ∞

0

∫ ∞

v

P(τ > u)dudv = m2

2a
. (10.4.6)

It remains to make use of Wald’s identity. The theorem is proved. �

One can add to relation (10.4.6) that, under the conditions of Theorem 10.4.4,

one has

Eχ2(t)= o(t) (10.4.7)

as t→∞. Indeed, (10.4.5) and Lemma 10.2.3 imply

P
(
χ(t) > v

)
< (c1 + c2)

∑

k≤t

P(τ > k+ v) < c

∫ t

0

P(τ > z+ v)dz.

Further, integrating by parts, we obtain

Eχ2(t)=−
∫ ∞

0

v2 dP
(
χ(t) > v

)

= 2

∫ ∞

0

vP
(
χ(t) > v

)
dv < 2c

∫ t

0

∫ ∞

0

vP(τ > z+ v)dv dz,

(10.4.8)

where the inner integral converges to zero as z→∞:

∫ ∞

0

vP(τ > z+ v)dv = 1

2

∫ ∞

0

v2 dP(τ < z+ v) <
1

2
E
(
τ 2; τ > z

)
→ 0.

This and (10.4.8) imply (10.4.7).

Note also that if only Eτ exists, then, by Theorem 10.1.1, we have Eχ(t)= o(t)

and, by Theorem 10.4.1 (or 10.4.3),

P
(
χ(t) > v

)
→ 1

a

∫ ∞

0

P(τ > u+ v)du.
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Now let, as before, γ and χ denote random variables distributed according to the

limiting distribution (10.4.3). Similarly to the above, it is not hard to establish that

if Eτ k <∞, k ≥ 1, then, as t→∞,

Eχk−1(t)→ Eχk−1 <∞, Eχk(t)= o(t).

Further, it is seen from Theorem 10.4.3 that each of the random variables γ and

χ has density equal to a−1P(τ > x). The joint distribution of γ and χ may have no

density. If τ has density f (x) then there exists a joint density of γ and χ equal to

a−1f (x + y). It also follows from Theorem 10.4.3 that γ and χ are independent if

and only if
∫ ∞

x

P(τ > u)du= 1

α
e−αx

for some α > 0, i.e. independence takes place only for the exponential distribution

τ ⊂=Ŵα .

Moreover, for homogeneous renewal processes the coincidence of P(τ1 > x)

and P(τ > x) takes place only when τ ⊂= Ŵα . In other words, the renewal pro-

cess generated by a sequence of identically distributed random variables τ1, τ, . . .

will be homogeneous if and only if τj ⊂= Ŵα . In that case η0(t) is called (see also

Sect. 19.4) a Poisson process. This is because for such a process, for each t , the

variable η(t)= η0(t) has the Poisson distribution with parameter t/α.

The Poisson process has some other remarkable properties as well (see also

Sect. 19.4). Clearly, one has χ(t)⊂= Ŵα for such a process, and moreover, the vari-

ables γ (t) and χ(t) are independent. Indeed, by (10.4.4), taking into account that

H(x) has a jump of magnitude 1 at the point x = 0, we obtain for u < t that

P
(
γ (t) > u,χ(t) > v

)
= e−α(t+v) + α

∫ t−u

0

e−α(t−x+v) dx

= e−α(u+v) = P
(
γ (t) > u

)
P
(
χ(t) > v

)
;

P
(
γ (t)= t, χ(t) > v

)
= P(τ1 > t + v)= e−α(t+v) = P

(
γ (t)= t

)
P
(
χ(t) > v

)
;

P
(
γ (t) > t

)
= 0.

These relations also imply that the random variable τη(t) = γ (t) + χ(t) has the

same distribution as min(t, τ1)+ τ2, where τj ⊂= Ŵα , j = 1,2, are independent so

that τη(t) ⊂⇒Ŵα,2 as t→∞.

The fact that γ (t) and χ(t) are independent of each other deserves attention

from the point of view of its interpretation. It means the following. The residual

lifetime of the component operating at a given time t has the same distribution as

the lifetime of a new component (recall that τj⊂=Ŵα) and is independent of how long

this component has already been working (which at first glance is a paradox). Since

the lifetime distributions of devices consisting of large numbers of reliable elements

are close to the exponential law (see Theorem 20.3.2), the above-mentioned fact is

of significant practical interest.

If τi can assume negative values as well, the problems related to the distributions

of γ (t) and χ(t) become much more complicated. To some extent such problems
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can be reduced to the case of nonnegative variables, since the distribution of χ(t)

coincides with that of the variable χ∗(t) constructed from a sequence {τ ∗j ≥ 0},
where τ ∗j have the same distribution as χ(0). The distribution of χ(0) can be found

using the methods of Chap. 12.

In particular, for random variables τ1, τ2, . . . taking values of both signs, Theo-

rems 10.4.1 and 10.4.3 imply the following assertion.

Corollary 10.4.1 Let τ1, τ2, . . . be non-arithmetic independent and identically dis-
tributed and Eτ1 = a. Then the following limit exists

lim
t→∞

P
(
χ(t) > v

)
= 1

Eχ(0)

∫ ∞

v

P
(
χ(0) > t

)
dt, v > 0.

For arithmetic τj ,

lim
k→∞

P
(
χ(k)= i

)
= 1

Eχ(0)
P
(
χ(0) > i

)
, i > 0.

10.5 The Law of Large Numbers and the Central Limit

Theorem for Renewal Processes

In this section we return to the general case where τj are not necessarily identically

distributed (cf. Sect. 10.1).

10.5.1 The Law of Large Numbers

First assume that τj ≥ 0 and put

ak := Eτk, An :=
n∑

k=1

ak.

Theorem 10.5.1 Let τk ≥ 0 be independent, τk − ak uniformly integrable, and
n−1An→ a > 0 as n→∞. Then, as t→∞,

η(t)

t

p→ 1

a
.

Proof The basic relation we shall use is the equality
{
η(t) > n

}
= {Tn ≤ t}, (10.5.1)

which implies

P

(
η(t)

t
− 1

a
> ε

)
= P

(
η(t) >

t

a
(+ε)

)
= P(Tn ≤ t),
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where for simplicity we assume that n= t
a
(1+ ε) is an integer. Further,

P(Tn ≤ t)= P

(
Tn

n
≤ a

1+ ε

)

= P

(
Tn −An

n
≤ a

1+ ε
− An

n

)
≤ P

(
Tn −An

n
≤−aε

2

)

for n large enough and ε small enough. Applying the law of large numbers to the

right-hand side of this relation (Theorem 8.3.3), we obtain that, for any ε > 0, as

t→∞,

P

(
η(t)

t
− 1

a
>

ε

a

)
→ 0.

The probability P(
η(t)
t
− 1

a
<− ε

a
) can be bounded in the same way. The theorem

is proved. �

10.5.2 The Central Limit Theorem

Put

σ 2
k := E(τk − ak)

2 =Var τk, B2
n :=

n∑

k=1

σ 2
k .

Theorem 10.5.2 Let τk ≥ 0 and the random variables τk − ak satisfy the Lindeberg
condition: for any δ > 0 and n→∞,

n∑

k=1

E
(
|τk − ak|2; |τk − ak|> δBn

)
= o

(
B2

n

)
.

Let, moreover, there exist a > 0 and σ > 0 such that, as n→∞,

An :=
n∑

k=1

ak = an+ o(
√

n), B2
n = σ 2n+ o(n). (10.5.2)

Then
η(t)− t/a

σ
√

t/a3
⊂⇒�0,1. (10.5.3)

Proof From (10.5.1) we have

P
(
η(t) > n

)
= P(Tn ≤ t)= P

(
Tn −An

Bn

≤ t −An

Bn

)
. (10.5.4)

Let n vary as t→∞ so that

t −An

Bn

→ v
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for a fixed v. To find such an n, solve for n the equation

t − an

σ
√

n
= v.

This is a quadratic equation in n, and its solution has the form

n= t

a
± vσ

a2

√
at

(
1+O

(
1√
t

))
. (10.5.5)

For such n, by (10.5.2),

t −An

Bn

=
[
∓vσ

a

√
at + o(

√
t )

]
(1+ o(1))

σ
√

t/a
=∓v+ o(1).

This equality means that we have to choose the minus sign in (10.5.5). Therefore,

by (10.5.4) and the central limit theorem,

P
(
η(t) > n

)
= P

(
η(t)− t/a

σ
√

t/a3
>−v+ o(1)

)
→Φ(v)= 1−Φ(−v).

Changing −v to u, by the continuity theorems (see Lemma 6.2.2) we get

P

(
η(t)− t/a

σ
√

ta−3
< u

)
→Φ(u).

The theorem is proved. �

Remark 10.5.1 In Theorems 10.5.1 and 10.5.2 we considered the case where An

grows asymptotically linearly as n→∞. Then the centring parameter t/a for η(t)

changes asymptotically linearly as well. However, nothing prevents us from consid-

ering a more general case where, say, An ∼ cnα , α > 0. Then the centring parameter

for η(t) will be the solution to the equation cnα = t , i.e. the function (t/c)1/α (under

the conditions of Theorem 10.5.2, in this case we have to assume that Bn = o(An)).

The asymptotics of the renewal function will have the same form.

In order to extend the assertions of Theorems 10.5.1 and 10.5.2 to τj assuming

values of both signs, we need some auxiliary assertions that are also of independent

interest.

10.5.3 A Theorem on the Finiteness of the Infimum of the

Cumulative Sums

In this subsection we will consider identically distributed independent random vari-

ables τ1, τ2, . . . . We first state the following simple assertion in the form of a lemma.

Lemma 10.5.1 One has E|τ |<∞ if and only if
∞∑

j=1

P
(
|τ |> j

)
<∞.
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The Proof follows in an obvious way from the equality

E|τ | =
∫ ∞

0

P
(
|τ |> x

)
dx

and the inequalities

∞∑

j=1

P
(
|τ |> j

)
≤
∫ ∞

0

P
(
|τ |> x

)
dx ≤ 1+

∞∑

j=1

P
(
|τ |> j

)
.

�

Let, as before,

Tn =
n∑

j=1

τj .

Theorem 10.5.3 If τj
d= τ are identically distributed and independent and Eτ > 0,

then the random variable Z := infk≥0 Tk is proper (finite with probability 1).

Proof Let η1 = η(1) be the number of the first sum Tk to exceed level 1. Consider

the sequence {τ ∗k = τη1+k} that, by Lemma 10.2.1, has the same distribution as {τk}
and is independent of η1, τ1, . . . , τη1

. For this sequence, denote by η2 the subscript

k for which the sum T ∗k =
∑k

j=1 τ ∗j first exceeds level 1. It is clear that the random

variables η1 and η2 are identically distributed and independent. Next, construct for

the sequence {τ ∗∗k = τη1+η2+k} the random variable η3 following the same rule,

and so on. As a result we will obtain a sequence of Markov times η1, η2, . . . that

determine the times of “renewals” of the original sequence {Tk}, associated with

attaining level 1.

Now set

Z1 := min
k<η1

Tk, Z2 := min
k<η2

T ∗k , . . .

Clearly, the Zj are identically distributed and

Z = inf{Z1, Tη1
+Z2, Tη1+η2

+Z3, . . .},
where by definition Tη1

> 1, Tη1+η2
> 2 and so on. Hence

{Z <−N} =
∞⋃

k=0

{Zk+1 + Tη1+···+ηk
<−N} ⊂

∞⋃

k=0

{Zk + k <−N},

P(Z <−N)≤
∞∑

k=1

P(Zk + k <−N)=
∞∑

j=N+1

P(Z1 <−j).

This expression tends to 0 as N→∞ provided that E|Z1|<∞ (see Lemma 10.5.1).

It remains to verify the finiteness of EZ1, which follows from the finiteness of

Eη1 = Eη(1)=H(1) < c (see Example 4.4.5) and the relations

E|Z1| ≤ E

η1∑

j=1

|τj | = Eη1E|τ1|<∞

(see Theorem 4.4.2). �
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10.5.4 Stochastic Inequalities. The Law of Large Numbers and the

Central Limit Theorem for the Maximum of Sums of

Non-identically Distributed Random Variables Taking

Values of Both Signs

In this subsection we extend the assertions of some theorems of Chap. 8 to maxima

of sums of random variables with a positive “mean drift”. To do this we will have to

introduce some additions restrictions that are always satisfied when the summands

are identically distributed. Here we will need the notion of stochastic inequalities

(or inequalities in distribution). Let ξ and ζ be given random variables.

Definition 10.5.1 We will say that ζ majorises (minorises) ξ in distributionand de-

note this by ξ
d
≤ ζ (ξ

d
≥ ζ ) if, for all t ,

P(ξ ≥ t)≤ P(ζ ≥ t)
(
P(ξ ≥ t)≥ P(ζ ≥ t)

)
.

Clearly, if ξ
d
≤ ζ then −ξ

d
≥ −ζ . We show that stochastic inequalities possess

some other properties of ordinary inequalities.

Lemma 10.5.2 If {ξk}∞k=1 and {ζ }∞k=1 are sequences of independent (in each se-

quence) random variables and ξk

d
≤ ζk , then, for all n,

Sn

d
≤ Zn, Sn

d
≤Zn,

where

Sn =
n∑

k=1

ξk, Zn =
n∑

k=1

ζk, Sn =max
k≤n

Sk, Zn =max
k≤n

Zk.

Similarly, if ξk

d
≥ ζk , then mink≤n Sk

d
≥mink≤n Zk .

Proof Let Fk(t) := P(ξk < t) and Gk(t) := P(ζk < t). Using quantile transforma-

tions F
(−1)
k and G

(−1)
k (see Definition 3.2.4) and a sequence of independent random

variables {ωk}∞k=1, ωk ⊂=U0,1, we can construct on a common probability space the

sequences ξ∗k = F
(−1)
k (ωk) and ζ ∗k =G

(−1)
k (ωk) such that ξ∗k

d= ξk and ζ ∗k
d= ζk (the

distributions of ξ∗k and ξk and of ζ ∗k and ζ ∗k coincide). Moreover, ξ∗k ≤ ζ ∗k , which is

a direct consequence of the inequality Fk(t) ≥Gk(t) for all t . Endowing with the

superscript ∗ all the notations for sums and maximum of sums of random variables

with asterisks, we obviously obtain that

Sn
d= S∗n ≤ Z∗n

d= Zn, Sn
d= S
∗
n ≤Z

∗
n

d= Zn.

The last assertion of the lemma follows from the previous ones. The lemma is

proved. �

Below we will need the following corollary of Theorem 10.5.3.
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Lemma 10.5.3 Let ξk be independent, ξk

d
≥ ζ for all k and Eζ > 0. Then, for all n,

the random variable

Dn := Sn − Sn ≥ 0

is majorised in distribution by the random variable −Z: Dn

d
≤ −Z, where Z :=

infZk , Zk :=
∑k

j=1 ζj and ζj are independent copies of ζ .

Proof We have

Sn =max(0, S1, . . . , Sn)= Sn +max(0,−ξn,−ξn − ξn−1, . . . ,−Sn)

= Sn −min(0, ξn, ξn + ξn−1, . . . , Sn),

where, by the last assertion of Lemma 10.5.2,

−Dn ≡min(0, ξn, ξn + ξn−1, . . . , Sn)
d
≥min

k≤n
Zk ≥ Z, Dn

d
≤−Z.

The fact that Z is a proper random variable follows from Theorem 10.5.3 on the

finiteness of the infimum of partial sums. The lemma is proved. �

If ξk
d= ξ are identically distributed and a = Eξ > 0, then we can put ξ = ζ . The

above reasoning shows that in this case the limit distribution of Sn − Sn as n→∞
exists and coincides with the distribution of the random variable Z (the random

variables Sn − Sn themselves do not have a limit, and, by the way, neither do the

variables Sn−an√
n

in the central limit theorem).

Lemma 10.5.3 shows that, for ξk

d
≥ ζ and Eζ > 0, the random variables Sn and

Sn differ from each other by a proper random variable only. This makes the limit

theorems for Sn and Sn essentially the same.

We proceed to the law of large numbers and the central limit theorem for Sn.

Theorem 10.5.4 Let ak = Eξk > 0, An =
∑n

k=1 ak and An ∼ an as n→∞, a > 0.

Let, moreover, ξk − ak be uniformly integrable for all k and ξk

d
≥ ζ with Eζ > 0.

Then, as n→∞,

Sn

n

p−→ a.

Note that the left uniform integrability of ξk − ak follows from the inequalities

ξk

d
≥ ζ .

Proof By Lemma 10.5.3,

Sn = Sn +Dn, where Dn ≥ 0, Dn

d
≤−Z. (10.5.6)
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Therefore,

Sn

n
= Sn −An

n
+ An

n
+ Dn

n
,

where by Theorem 8.3.3, as n→∞,

Sn −An

n

p−→ 0.

It is also clear that

An

n
→ a,

Dn

n

p−→ 0.

The theorem is proved. �

In addition to the notation from Theorem 10.5.3, put

σ 2
k := E(ξk − ak)

2, B2
n :=

n∑

k=1

σ 2
k .

Theorem 10.5.5 Let, for some a > 0 and σ > 0,

An = an+ o(
√

n ), B2
n = σ 2n+ o(n),

and let the random variables ξk − ak satisfy the Lindeberg condition, ξk

d
≥ ζ with

Eζ > 0. Then

Sn − an

σ
√

n
⊂⇒�0,1. (10.5.7)

Proof By virtue of (10.5.6),

Sn − an

σ
√

n
= Sn −An

Bn

· Bn

σ
√

n
+ An − an

σ
√

n
+ Dn

σ
√

n
, (10.5.8)

where, by the central limit theorem,

Sn −An

Bn

⊂⇒�0,1.

Moreover,

Bn

σ
√

n

p−→ 1,
An − an

σ
√

n
→ 0,

Dn

σ
√

n

p−→ 0.

This and (10.5.8) imply (10.5.7). The theorem is proved. �

10.5.5 Extension of Theorems 10.5.1 and 10.5.2 to Random

Variables Assuming Values of Both Signs

We return to renewal processes and limit theorems for them. In Theorems 10.5.1

and 10.5.2 we obtained the law of large numbers and the central limit theorem for
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the renewal process η(t) defined in (10.1.1) with jumps τk ≥ 0. Now we drop the

last assumption and assume that τj can take values of both signs.

Theorem 10.5.6 Let the conditions of Theorem 10.5.1 be met, the condition τk ≥ 0

being replaced with the condition τk

d
≥ ζ with Eζ > 0. Then

η(t)

t

p−→ 1

a
. (10.5.9)

If τk
d= τ are identically distributed and Eτ > 0, then we can put ζ = τ . There-

fore Theorem 10.5.6 implies the following result.

Corollary 10.5.1 If τk are independent and identically distributed and Eτ = a > 0,

then (10.5.9) holds true.

Proof of Theorem 10.5.6 Here instead of (10.5.1) we should use the relation

{
η(t) > n

}
= {T n ≤ t}, T n =max

k≤n
Tk, Tk =

k∑

j=1

τj . (10.5.10)

Then we repeat the argument from the proof of Theorem 10.5.1, changing in it Tn

to T n and using Theorem 10.5.4, which implies that T n and Tn satisfy the law of

large numbers. The theorem is proved. �

Theorem 10.5.7 Let the conditions of Theorem 10.5.2 be met, the condition τk ≥ 0

being replaced with the condition τk

d
≥ ζ with Eζ > 0. Then (10.5.3) holds true.

Proof Here we again have to use (10.5.10), instead of (10.5.1), and then repeat the

argument proving Theorem 10.5.2 using Theorem 10.5.5, which implies that the

distribution of T n−an

σ
√

n
, as well as the distribution of Tn−an

σ
√

n
, converges to the standard

normal law �0,1. The theorem is proved. �

Remark 10.5.2 (An analogue of Remarks 8.3.3, 8.4.1 and 10.1.1) The assertions of

Theorems 10.5.6 and 10.5.7 can be generalised as follows. Let τ1 be an arbitrary
random variable and random variables τ ∗k := τ1+k , k ≥ 1, satisfy the conditions
of Theorem 10.5.6 (Theorem 10.5.7). Then convergence (10.5.9) (10.5.3) still takes

place.

Consider, for example, Theorem 10.5.7. Denote by Ax the event

Ax :=
{

η(t)− a/t

σ
√

t/a3
< x

}
.

Then the foregoing assertion follows from the relations

P(Ax)= E
[
P(Ax |τ1); |τ1| ≤N

]
+ rN ,
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where rN ≤ P(|τ1|> N) can be made arbitrarily small by the choice of N , and by

Theorem 10.5.7

P(Ax |τ1)= P

(
η∗(t − τ1)− t−τ1

a

σ
√

(t − τ1)/a3
+O

(
1√
t

)
< x

)
→�(x)

as t→∞ for each fixed τ1, |τ1| ≤N . Here η∗(t) is the renewal process that corre-

sponds to the sequence {τ ∗k }. �

10.5.6 The Local Limit Theorem

If we again narrow our assumptions and return to identically distributed τk
d= τ ≥ 0

then we can derive local theorems more precise than Theorem 10.5.2. In this sub-

section we will find an asymptotic representation for P(η(t) = n) as t →∞. We

know from Theorem 10.5.2 what range of values of n the bulk of the distribution

of η(t) is concentrated in. Therefore we will from the start consider not arbitrary n,

but the values of n that can be represented as

n=
[

t

a
+ vσ

√
t

a3

]
, σ 2 =Var(τ ), (10.5.11)

for “proper” values of v ([s] in (10.5.11) is the integer part of s), so that

(t − an)

σ
√

n
= v+O

(
1√
t

)
(10.5.12)

(see (10.5.5)). For the proof, it will be more convenient to consider the probabilities

P(η(t)= n+ 1). Changing n+ 1 to n amends nothing in the argument below.

Theorem 10.5.8 If τ ≥ 0 is either non-lattice or arithmetic and Var(τ )= σ 2 <∞,

then, for the values of n defined in (10.5.11), as t→∞,

P
(
η(t)= n+ 1

)
∼ a3/2

σ
√

2πt
e−v2/2, (10.5.13)

where in the arithmetic case t is assumed to be integer.

Proof First let, for simplicity, τ have a density and satisfy the conditions of the local

limit Theorem 8.7.2. Then

P
(
η(t)= n+ 1

)
=
∫ t

0

P(Tn ∈ du)P(τ > t − u), (10.5.14)

where by Theorem 8.7.2, as n→∞,

P
(
Tn − na ∈ d(u− na)

)
= du

σ
√

2πn

[
exp

{
− (u− na)2

2nσ 2

}
+ o(1)

]
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uniformly in u. Change the variable u = t − z. Since for the values of n we are

dealing with one has (10.5.12), the exponential

exp

{
− (u− na)2

2nσ 2

}
= exp

{
−1

2

(
v− z

σ
√

n

)2}

remains “almost constant” and asymptotically equivalent to e−v2/2 for |z| < N ,

N→∞, N = o(
√

n). Hence the integral in (10.5.14) is asymptotically equivalent

to

1

σ
√

2πn
e−v2/2

∫ N

0

P(τ > z)dz∼ a

σ
√

2πn
ev2/2.

Since n∼ t/a as t→∞, we obtain (10.5.13).

If τ has no density, but is non-lattice, then we should use the integro-local Theo-

rem 8.7.1 for small ∆ and, in a quite similar fashion, bound the integral in (10.5.14)

(with t , which is a multiple of ∆) from above and from below by the sums

t/∆−1∑

k=0

P
(
Tn ∈∆[k∆)

)
P
(
τ > t − (k + 1)∆

)

and

t/∆−1∑

k=0

P
(
Tn ∈∆[k∆)

)
P(τ > t − k∆),

respectively. For small ∆ both bounds will be close to the right-hand side

of (10.5.13).

If τ has an arithmetic distribution then we have to replace integral (10.5.14) with

the corresponding sum and, for integer u and t , make use of Theorem 8.7.3.

The theorem is proved. �

If examine the arguments in the proof concerning the behaviour of the correction

term, then, in addition to (10.5.13), we can also obtain the representation

P
(
η(t)= n

)
= a3/2

σ
√

2πt
e−v2/2 + o

(
1√
t

)
(10.5.15)

uniformly in v (or in n).

10.6 Generalised Renewal Processes

10.6.1 Definition and Some Properties

Let, instead of the sequence {τj }∞j=1, there be given a sequence of two-dimensional

independent vectors (τj , ξj ), τj ≥ 0, having the same distribution as (τ, ξ). Let, as

before,
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Sk =
k∑

j=1

ξj , Tk =
k∑

j=1

τj , S0 = T0 = 0,

η(t)=min{k : Tk > t}, ν(t)=max{k : Tk ≤ t} = η(t)− 1.

Definition 10.6.1 The process

S(ν)(t)= qt + Sν(t)

is called a generalised renewal process with linear drift q .

The process S(ν)(t), as well as ν(t), is right-continuous. Clearly, S(ν)(t)= qt for

t < τ1. At time t = τ1 the first jump in the process S(ν)(t) occurs, which is of size ξ1:

S(ν)(τ1 − 0)= qτ1, S(ν)(τ1)= qτ1 + ξ1.

After that, on the interval [T1, T2) the value of S(ν)(t) varies linearly with slope q .

At the point T2, the second jump occurs, which is of size ξ2, and so on.

Generalised renewal processes are evidently a generalisation of random walks Sk

(for τj ≡ 1, q = 0) and renewal processes η(t)= ν(t)+ 1 (for ξj ≡ 1, q = 0). They

are widespread in applications, as mathematical models of various physical systems.

Along with the process S(ν)(t), we will consider generalised renewal processes

of the form

S(t)= qt + Sη(t) = S(ν)(t)+ ξη(t),

that are in a certain sense more convenient to analyse since η(t) is a Markov time

with respect to Fn = σ(τ1, . . . , τn; ξ1, . . . , ξn) and has already been well studied.

The fact that the asymptotic properties of the processes S(t) and S(ν)(t), as

t→∞, (the law of large numbers, the central limit theorem) are identical follows

from the next assertion, which shows that the difference S(t)− S(ν)(t) has a proper

limiting distribution.

Lemma 10.6.1 If Eτ <∞, then the following limiting distribution exists

lim
t→∞

P(ξη(t) < v)= E(τ ; ξ < v)

Eτ
.

The lemma implies that ξη(t)/b(t)
p−→ 0 for any function b(t)→∞ as t→∞.

Proof By virtue of the key renewal theorem,

P(ξη(t) < v)=
∞∑

k=0

∫ t

0

P(Tk ∈ du)P(τ > t − u, ξ < v)

=
∫ t

0

dH(t)P(τ > t − u, ξ < v)→ 1

Eτ

∫ ∞

0

P(τ > u, ξ < v)du

= E(τ ; ξ < v)

Eτ
.

The lemma is proved. �
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As was already noted, η(t) is a stopping time with respect to

Fn = σ(τ1, . . . , τn; ξ1, . . . , ξn).

Therefore, if (τj , ξj ) are identically distributed, then by the Wald identity (see The-

orem 4.4.2 and Example 4.4.5)

ES(t)= qt + aξ Eη(t)∼ qt + aξ t

a
(10.6.1)

as t→∞, where aξ = Eξ and a = Eτ . The second moments of S(t) will be found

in Sect. 15.2. The laws of large numbers for S(t) will be established in Sect. 11.5.

10.6.2 The Central Limit Theorem

In order to simplify the exposition, we first assume that the components τj and ξj of

the vectors (τj , ξj )
d= (τ, ξ) are independent. Moreover, without losing generality,

we assume that q = 0.

Theorem 10.6.1 Let there exist σ 2 = Var τ <∞, σ 2
ξ = Var(ξ) <∞ with σ +

σξ > 0. If the coordinates τ and ξ are independent then, as t→∞,

S(t)− rt

σS

√
t
⊂⇒�0,1,

where r = aξ/a and σ 2
S = a−1(σ 2

ξ + r2σ 2)= a−1 Var(ξ − rτ ). The same assertion
holds true for S(ν)(t) as well.

Proof If one of the values of σ and σξ is zero, then the assertion of the theorem

follows from Theorems 8.2.1 and 10.5.2. Therefore we can assume that σ > 0 and

σξ > 0. Denote by G= σ(τ1, τ2, . . .) the σ -algebra generated by the sequence {τj }
and by At ⊂G the set

At =
{∣∣η(t)− t/a

∣∣< t1/2+ε
}
, ε ∈ (0,1/2).

Since by the central limit theorem P(At )→ 1 as t →∞, for any trajectory η(·)
in At we have η(t)→∞ as t→∞, and the random variables

Z(t)= S(t)− aξη(t)

σξ

√
η(t)

are asymptotically normal with parameters (0,1) by the independence of {ξj }
and {τj }. In other words, on the sets At ,

E
(
eiλZ(t)

∣∣G
)
→ e−λ2/2 as t→∞.

Since

η(t)= t

a
+ σ
√

t

a3/2
ζt , ζt ⊂⇒�0,1, and η(t)∼ t

a
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on the sets At ∈G, we also have on the sets At the relation

E

(
exp

{
iλ(S(t)− rt − aξ σ

√
t

a3/2 ζt )

σξ

√
t/a

}∣∣∣G
)
→ e−λ2/2.

Since the random variables ζt and η(t) are measurable with respect to G, the corre-

sponding factor can be taken outside of the conditional expectation, so that

E

(
exp

{
iλ(S(t)− rt)

σξ

√
t/a

}∣∣∣G
)
∼ exp

{
−λ2

2
+ iλrσ

σξ

ζt

}
.

Hence

E exp

{
iλ(S(t)− rt)

σξ

√
t/a

}
= o(1)+E

(
exp

{
−λ2

2
+ iλσ

σξ

ζt

}
; At

)

= o(1)+ exp

{
−λ2

2

[
1+

(
rσ

σξ

)2]}
.

This means that

1√
t

(
S(t)− taξ

a

)
⊂⇒�0,σ 2

S
,

where

σ 2
S =

σ 2
ξ

a

[
1+

(
rσ

σξ

)2]
= a−1

[
σ 2

ξ + r2σ 2
]
.

The assertion corresponding to S(ν)(t) follows from Lemma 10.6.1. The theorem

is proved. �

Note that Theorems 8.2.1 and 10.5.2 are special cases of Theorem 10.6.1. If

aξ = 0, then S(t) is distributed identically to S[t/a] and is independent of σ .

Now consider the general case where τ and ξ are, generally speaking, dependent.

Since Tη(t) = t + χ(t), we have the representation

S(t)− rt = Zη(t) + rχ(t), (10.6.2)

where

Zn =
n∑

j=1

ζj , ζj = ξj − rτj , Eζj = 0,
χ(t)√

t

p−→ 0

as t →∞ (χ(t) has a proper limiting distribution as t →∞). Moreover, we will

use yet another Wald identity

EZ2
η(t) = d2Eη(t), d2 = Eζ 2, ζ = ξ − rτ, (10.6.3)

that is derived below in Sect. 15.2.



10.6 Generalised Renewal Processes 311

Theorem 10.6.2 Let (τj , ξj )
d= (τ, ξ) be independent identically distributed and

such that σ 2 =Var(τ ) <∞ and σ 2
ξ =Var(ξ) <∞ exist. Then

S(t)− rt

σS

√
t
⊂⇒�0,1,

where r = aξ/a and σ 2
S = a−1d2. The random variables

S(ν)(t)−rt

σS

√
t

and
Zη(t)

σS

√
t

have

the same limiting distribution.

Proof It is seen from (10.6.2) that it suffices to prove that

Zη(t)

σS

√
t
⊂⇒�0,1.

The main contribution to Zη(t) comes from Zm with m = [ t
a
− 2N

√
t], N →∞,

N = o(
√

t ), where
√

a Zm

d
√

t
= Zm

d
√

m

√
ma

t
⊂⇒�0,1.

The remainder Zη(t) −Zm, for each fixed

Tm ∈ IN := [t − 3aN
√

t, t − aN
√

t ], P(Tm ∈ IN )→ 1,

has the same distribution as Zη(t−Tm), and its variance (see (10.6.3)) is equal to

d2Eη(t − Tm)∼ d2 t − Tm

a
< 3d2N

√
t = o(t).

Since EZη(t−Tm) = 0, we have

Zη(t−Tm)√
t

p−→ 0 (10.6.4)

as t→∞. The theorem is proved. �

Note that, for N →∞ slowly enough, relation (10.6.4) can be derived using

not (10.6.3), but the law of large numbers for generalised renewal processes that

was obtained in Sect. 11.5.

Theorem 10.6.1 could be proved in a somewhat different way—with the help

of the local Theorem 10.5.3. We will illustrate this approach by the proof of the

integro-local theorem for S(t).

10.6.3 The Integro-Local Theorem

In this section we will obtain the integro-local theorem for S(t) in the case of non-

lattice ξ . In a quite similar way we can obtain local theorems for densities (if they

exist) and for the probability P(S(t)= k) for q = 0 for arithmetic ξj .
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Theorem 10.6.3 Let the conditions of Theorem 10.6.1 hold and, moreover, ξ be
non-lattice. Then, for any fixed ∆ > 0, as t→∞,

P
(
S(t)− rt ∈∆[x)

)
= ∆

σS

√
t
φ

(
x

σS

√
t

)
+ o

(
1√
t

)
, (10.6.5)

where the remainder term o(1/
√

t) is uniform in x.

Proof Since ξ is non-lattice, one has σξ > 0. If σ = 0 then the assertion of the

theorem follows from Theorem 8.7.1. Therefore we will assume that σ > 0. By the

independence of {ξj } and {τj },

P
(
S(t)− rt ∈∆[x)

)
=
∞∑

n=1

P
(
η(t)= n

)
P
(
Sn − rt ∈∆[x)

)
=

∑

n∈Mt

+
∑

n/∈Mt

,

where Mt = {n : |n− t/a|< t1/2N(t)}, N(t)→∞, N(t)= o(
√

t) as t→∞. We

know the asymptotics of both factors of the terms in the sum from Theorems 8.7.1

and 10.5.8 (see also (10.5.15)). It remains to do the summation, which is unfortu-

nately somewhat cumbersome. At the same time, it presents no substantial difficul-

ties, so we will sketch this part of the proof. If we put an− t =: u,

P1(t) :=
∆

σξ

√
2πn

exp

{
− (x − ru)2

2nσ 2
ξ

}
, P2(t) :=

a3/2

σ
√

2πt
exp

{
− u2

2σ 2n

}
,

then

P
(
Sn − rt ∈∆[x)

)
= P1(t)+ o

(
1√
n

)
.

Furthermore,

P
(
η(t)= n

)
= P2(t)+ o

(
1√
t

)

for n ∈Mt and N(t)→∞ slowly enough as t→∞. Clearly,

∑

n/∈Mt

= o

(
1√
t

)
.

Since the sums of P1(t) and P2(t) are bounded in n by a constant, we have

∑

n∈Mt

= o

(
1√
t

)
+

∑

n∈Mt

P1(t)P2(t).

The exponent in the product P1(t)P2(t), taken with the negative sign, is equal to

1

2n

[
(x − ru)2

σ 2
ξ

+ u2

σ 2

]
∼ a

2t

[
(d2u− rxσ 2)2

d2σ 2σ 2
ξ

+ x2

d2

]
,

where d2 = r2σ 2 + σ 2
ξ . Since, for x = o(

√
t N(t)),

∑

n∈At

a3/2d√
2πtσσξ

exp

{
−a(d2u− rxσ 2)2

2td2σ 2σ 2
ξ

}
→ 1
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as t→∞ and this sum does not exceed 1+ o(1) for all x (this is an integral sum

that corresponds to the integral of the density of the normal law), it is easy to de-

rive (10.6.5) from the foregoing. �

We will continue the study of generalised renewal processes in Sect. 11.5.



Chapter 11

Properties of the Trajectories of Random Walks.
Zero-One Laws

Abstract The chapter begins with Sect. 11.1 establishing the Borel–Cantelli and

Kolmogorov zero-one laws, and also the zero-one law for exchangeable sequences.

The concepts of lower and upper functions are introduced. Section 11.2 contains

the first Kolmogorov inequality and several theorems on convergence of random se-

ries. Section 11.3 presents Kolmogorov’s Strong Law of Large Numbers and Wald’s

identity for stopping times. Sections 11.4 and 11.5 are devoted to the Strong Law of

Large Numbers for independent non-identically distributed random variables, and to

the Strong Law of Large Numbers for generalised renewal processes, respectively.

11.1 Zero-One Laws. Upper and Lower Functions

Let, as before, Sn =
∑n

j=1 ξj be the sums of independent random variables

ξ1, ξ2, . . . . In this chapter we will consider properties of the “whole” trajectories
of random walks {Sn}.

The first limit theorem we proved for the distribution of the sums of independent

identically distributed random variables was the law of large numbers: Sn/n
p→ Eξ .

One could ask whether the whole trajectory Sn/n,Sn+1/(n+ 1), . . . , starting from

some n, will be close to Eξ with a high probability. That is, whether, for any ε > 0,

we will have

lim
n→∞

P

(
sup
k≥n

∣∣∣∣
Sk

k
−Eξ

∣∣∣∣< ε

)
= 1. (11.1.1)

This is clearly a problem on almost sure convergence, or convergence with probabil-

ity 1. A similar question arises concerning generalised renewal processes discussed

in Sect. 10.6.

Assertion (11.1.1), which is called the strong law of large numbers and is to be

proved in this chapter, is a special case of the so-called zero-one laws. As the first

such law, we will now present the Borel–Cantelli zero-one law.

11.1.1 Zero-One Laws

Theorem 11.1.1 Let {An}∞n=1 be a sequence of events on a probability space
〈Ω,F,P〉, and let A be the event that infinitely many events Ak occur, i.e.
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A=
⋂∞

n=1

⋃∞
k=n Ak (the event A consists of those ω that belong to infinitely many

Ak).

If
∑∞

k=1 P(Ak) <∞, then P(A)= 0. If
∑∞

k=1 P(Ak)=∞ and the events Ak are
independent, then P(A)= 1.

Proof Assume that
∑∞

k=1 P(Ak) <∞. Denote by η =
∑∞

k=1 I(Ak) the number of

occurrences of events Ak . Then Eη=
∑∞

k=1 P(Ak) <∞ which certainly means that

η is a proper random variable: P(η <∞)= 1− P(A)= 1.

If Ak are independent and
∑∞

k=1 P(Ak)=∞, then, since Ak =Ω \Ak are also

independent, we have

P(A)= lim
n→∞

P

( ∞⋃

k=n

Ak

)
= lim

n→∞
P

(
Ω −

∞⋂

k=n

Ak

)

= 1− lim
n→∞

P

( ∞⋂

k=n

Ak

)
= 1− lim

n→∞
lim

m→∞
P

(
m⋂

k=n

Ak

)

= 1− lim
n→∞

∞∏

k=n

(
1− P(Ak)

)
.

Using the inequality ln(1− x)≤−x we obtain that

∞∏

k=n

(
1− P(Ak)

)
≤ exp

{
−
∞∑

k=n

P(Ak)

}
.

Hence

∞∏

k=n

(
1− P(Ak)

)
≤ e−∞ = 0, P(A)= 1.

The theorem is proved. �

Remark 11.1.1 It follows from Theorem 11.1.1 that, for independent events Ak ,

the assertions that Eη <∞ and that P(η <∞) = 1 are equivalent to each other.

Although in one direction this relationship is obvious, in the opposite direction it

is quite meaningful. It implies, in particular, that if η <∞ with probability 1, but

Eη=∞, then Ak are necessarily dependent.

Note also that the argument proving the first part of the theorem has already been

used for the same purpose in the proof of Theorem 6.1.1.

Assume that {ξn}∞n=1 is a sequence of independent random variables given on

〈Ω,F,P〉. Denote, as before, by σ(ξ1, . . . , ξn) the σ -algebra generated by the first

n random variables ξ1, . . . , ξn, and by σ(ξn, . . .) the σ -algebra generated by the

random variables ξn, ξn+1, ξn+2, . . . .

Definition 11.1.1 An event A is said to be a tail event if A ∈ σ(ξn, . . .) for any

n > 0.
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For example, the event

A=
∞⋂

n=1

∞⋃

k=n

{ξk > N}

meaning that there occurred infinitely many events {ξk > N} is clearly a tail event.

Theorem 11.1.2 (Kolmogorov zero-one law) If A is a tail event, then either
P(A)= 0 or P(A)= 1.

Proof Since A is a tail event, A ∈ σ(ξn+1, . . .), n ≥ 0. Therefore the event A is

independent of the σ -algebra σ(ξ1, . . . , ξn) for any n. Hence (see Theorem 3.4.3)

the event A is independent of the σ -algebra σ(ξ1, . . .). Since A ∈ σ(ξ1, . . .), it is

independent of itself:

P(A)= P(AA)= P(A)P(A).

But this is only possible if P(A)= 0 or 1. The theorem is proved. �

Put S = sup{0, S1, S2, . . .}, where Sn =
∑n

k=1 ξk . An example of an application

of the above theorem is given by the following

Corollary 11.1.1 If ξk , k = 1,2, . . . , are independent, then either P(S =∞) = 1

or P(S <∞)= 1.

The Proof follows from the fact that {S =∞} is a tail event. Indeed, for any n

{S =∞}=
{
sup(Sn−1, Sn, . . .)=∞

}

=
{
sup(0, Sn − Sn−1, . . .)=∞

}
∈ σ(ξn, . . .). �

Further examples of tail events can be obtained if we consider, for a sequence

of independent variables ξ1, ξ2, . . . , the event {the series
∑∞

1 ξk is convergent}.

Theorem 11.1.2 means that the probability of that event can only be 0 or 1.

If we consider the power series
∑∞

k=0 zkξk where ξk are independent, we will

see that the convergence radius ρ = lim supk→∞ |ξk|−1/k of this series is a random

variable measurable with respect to the σ -algebra σ(ξn, . . .) for any n ({ρ < x} ∈
σ(ξn, . . .), 0 ≤ x ≤ ∞). Such random variables are also called tail random vari-
ables. Since by the foregoing one has Fρ(x) = P(ρ < x) = 0 or 1, this implies

that ρ, as well as any other tail random variable, must be equal to a constant with

probability 1.

Under the assumption that the elements of the sequence {ξk}∞k=1 are not only in-

dependent but also identically distributed, Kolmogorov’s zero-one law was extended

by Hewitt and Savage to a wider class of events.

Let ω = (x1, x2, . . .) be an element of the sample space 〈R∞,B∞,P〉 for the

sequence ξ = (ξ1, ξ2, . . .) (R∞ is a countable direct product of the real lines Rk ,

k = 1,2, . . . , B∞ = σ(ξ1, . . .) is generated by the sets
∏N

k=1 Bk ∈ σ(ξ1, . . . , ξN ),

where Bk ∈ σ(ξk) are Borel sets on the lines Rk).
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Definition 11.1.2 An event A ∈B∞ is said to be exchangeable if

(x1, x2, . . . , xn−1, xn, xn+1 . . .) ∈A

implies that (xn, x2, . . . , xn−1, x1, xn+1 . . .) ∈ A for every n ≥ 1. It is evident that

this condition of membership automatically extends to any permutations of finitely

many components. Examples of exchangeable events are given by tail events.

Theorem 11.1.3 (Zero-one law for exchangeable events) If ξk are independent and
identically distributed and A is an exchangeable event, then either P(A) = 0 or
P(A)= 1.

Proof By the approximation theorem (Sect. 3.5), for any A ∈B∞ there exists a

sequence of events An ∈ σ(ξ1, . . . , ξn) such that

P(AnA∪AAn)→ 0

as n→∞.

Introduce the transformation

Tnω= Tn(x1, x2, . . .)= (xn+1, . . . , x2n, x1, . . . , xn, x2n+1 . . .)

and put Bn = TnAn. If A is exchangeable, then TnA=A and, for any B ∈B∞, one

has P(TnB)= P(B) since ξj are independent and identically distributed. Therefore

P(BnA) = P(TnAnA) = P(AnA), and hence Bn will also approximate A, which

obviously implies that Cn = AnBn will have the same approximation property. By

independence of An and Bn, this means that

P(A)= lim
n→∞

P(AnBn)= lim
n→∞

P2(An)= P2(A).

The theorem is proved. �

11.1.2 Lower and Upper Functions

Theorem 11.1.3 implies the following interesting fact, the statement of which re-

quires the next definition.

Definition 11.1.3 For a sequence of random variables {ηn}∞n=1, a numerical se-

quence {an}∞n=1 is said to be an upper sequence (function) if, with probability 1,

there occur only finitely many events {ηn > an}. A sequence {an}∞n=1 is said to be a

lower sequence (function) if, with probability 1, there occur infinitely many events

{ηn > an}.

Corollary 11.1.2 If ξk are independent and identically distributed, then any se-
quence {an} is either upper or lower for the sequence of sums {Sn}∞n=1 with
Sn =

∑n
k=1 ξk .
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In other words, one cannot find an “intermediate” sequence {an} such that the

probability of the event A= {Sn > an infinitely often} would be equal, say, to 1/2.

Proof To prove the corollary, it suffices to notice that the event A is exchangeable,

because swapping ξ1 and ξn in the realisation (ξ1, ξ2, . . .) influences the behaviour

of the first n sums S1, . . . , Sn only. �

A similar fact holds, of course, for the sequence of random variables {ξn}∞n=1

itself, but, unlike the above corollary, that assertion can be proved more easily, since

B = {ξn > a infinitely often} is a tail event.

Remark 11.1.2 In regard to the properties of upper and lower sequences for sums

{Sn} we also note here the following. If P(ξk = c) 
= 1, and {an} is an upper (lower)

sequence for {Sn}, then, for any fixed k ≥ 0 and v, the sequence {bn = an+k+ v}∞n=1

is also upper (lower) for {Sn}. This is a consequence of the following relations. Let

v1 > v2 be such that

P(ξ > v1) > 0, P(ξ < v2) > 0.

Then, for the upper sequence {an} and the event A= {Sn > aninfinitely many times},
we have

0= P(A)≥ P(ξ1 > v1)P(A|ξ1 > v1)

≥ P(ξ1 > v1)P(Sn > an+1 − v1 infinitely many times).

This implies that the second factor on the right-hand side equals 0, and hence the

sequence {an+1 − v1} is also an upper sequence. On the other hand, if ξ ′
d= ξ is

independent of ξ then

0= P(A)≥ P
(
ξ ′ + Sn > ξ ′ + an infinitely many times; ξ ′ < v2

)

≥ P(ξ < v2)P(Sn+1 > an + v2 infinitely many times)

= P(ξ < v2)P(Sn > an−1 + v2 infinitely many times).

Here the second factor on the right-hand side equals 0, and hence the sequence

{an−1 + v2} is also upper. Combining these assertions as many times as necessary,

we find that the sequence {an+k + v} is upper for any given k and v. �

From the above remark it follows, in particular, that the quantities lim supn→∞ Sn

and lim infn→∞ Sn cannot both be finite for a sequence of sums of independent

identically distributed random variables that are not zeros with probability 1. Indeed,

the event B = {lim supn→∞ Sn ∈ (a, b)} is exchangeable and therefore P(B)= 0 or

P(B)= 1 by virtue of the zero-one law. If P(B) were equal to 1, (b, b, . . .) would be

an upper sequence for {Sn}. But, by our remark, (a, a, . . .) would then be an upper

sequence as well, which would mean that

P
(

lim sup
n→∞

Sn ≤ a
)
= 1,



320 11 Properties of the Trajectories of Random Walks. Zero-One Laws

which contradicts the assumption P(B)= 1. �

The reader can also derive from Theorem 11.1.3 that, for any sequences {an}
and {bn}, the random variables

lim sup
n→∞

Sn − an

bn

and lim inf
n→∞

Sn − an

bn

are constant with probability 1.

11.2 Convergence of Series of Independent Random Variables

In the present section we will discuss in more detail convergence of series of inde-

pendent random variables. We already know that such series converge with proba-

bility 1 or 0. We are interested in conditions ensuring convergence.

First of all we answer the following interesting question. It is well known that the

series
∑∞

n=1 n−α is divergent for α ≤ 1, while the alternating series
∑∞

n=1(−1)nn−α

converges for any α > 0 (the difference between neighbouring elements is of order

αn−α−1). What can be said about the behaviour of the series
∑∞

n=1 δnn
−α , where

δn are identically distributed and independent with Eδn = 0 (for instance, δn =±1

with probabilities 1/2)?

One of the main approaches to studying such problems is based on elucidat-

ing the relationship between a.s. convergence and the simpler notion of conver-

gence in probability. It is known that, generally speaking, convergence in prob-

ability ξn
p→ ξ does not imply a.s. convergence. However, in our situation when

ζn = Sn :=
∑n

k=1 ξk , ξk being independent, this is not the case. The main assertion

of the present section is the following.

Theorem 11.2.1 If ξk are independent and Sn =
∑n

k=1 ξk , then convergence of Sn

in probability implies a.s. convergence of Sn.

We will prove that Sn is a Cauchy sequence. To do this, we will need the follow-

ing inequality.

Lemma 11.2.1 (The First Kolmogorov inequality) If ξj are independent and, for
some b > 0 and all j ≤ n,

P
(
|Sn − Sj | ≥ b

)
≤ p < 1,

then

P
(

max
j≤n
|Sj | ≥ x

)
≤ 1

1− p
P
(
|Sn|> x − b

)
. (11.2.1)

Corollary 11.2.1 If Eξj = 0 then

P
(

max
j≤n
|Sj | ≥ x

)
≤ 2P

(
|Sn|> x −

√
2 Var(Sn)

)
.
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Kolmogorov actually established this last inequality (Lemma 11.2.1 is an in-

significant extension of it). It follows from (11.2.1) with p = 1/2, since by the

Chebyshev inequality

P
(
|Sn − Sj | ≥

√
2 Var(Sn)

)
≤ Var(Sn − Sj )

2 Var(Sn)
≤ 1

2
.

Proof of Lemma 11.2.1 Let

η :=
{
mink ≥ 1 : |Sk| ≥ x

}
.

Put Aj := {η= j}, j = 1,2, . . . . Clearly, Aj are disjoint events and hence

P
(
|Sn|> x − b

)
≥

n∑

j=1

P
(
|Sn|> x − b; Aj

)
≥

n∑

j=1

P
(
|Sn − Sj |< b; Aj

)
.

(The last inequality holds because the event {|Sn − Sj | < b}Aj implies {|Sn| >
x−b}Aj .) But Aj ∈ σ(ξ1, . . . , ξj ) and {|Sn−Sj |< b} ∈ σ(ξj+1, . . . , ξn). Therefore

these two events are independent and

P
(
|Sn|> x − b

)
≥

n∑

j=1

P(Aj )P
(
|Sn − Sj |< b

)

≥ (1− p)

n∑

1

P(Aj )= (1− p)P
(

max
j≤n
|Sj | ≥ x

)
.

The lemma is proved. �

Proof of Theorem 11.2.1 It suffices to prove that {Sn} is a.s. a Cauchy sequence, i.e.

that, for any ε > 0,

P
(

sup
n≥m
|Sn − Sm|> 2ε

)
→ 0 (11.2.2)

as m→∞. Let

Aε
n,m :=

{
|Sn − Sm|> ε

}
, Aε

m :=
⋃

n≥m

Aε
n,m.

Then relation (11.2.2) can be written as

P
(
A2ε

m

)
→ 0 (11.2.3)

as m→∞.

Since {Sn} is a Cauchy sequence in probability, one has

pm,M := sup
m≤n≤M

P
(
Aε

n,M

)
→ 0

as m→∞ and M→∞, so that pm,M < 1/2 for all m and M large enough. For

such m and M we have by Lemma 11.2.1, for a = ε and x = 2ε, that
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P
(

sup
m≤n≤M

|Sn − Sm|> 2ε
)
= P

(
M⋃

n=m+1

A2ε
m,n

)

≤ 1

1− pm,M

P
(
Aε

M,m

)
≤ 2P

(
Aε

M,m

)
.

By the properties of probability,

P
(
A2ε

m

)
= lim

M→∞
P

(
M⋃

n=m+1

A2ε
m,n

)
≤ 2 lim sup

M→∞
P
(
Aε

M,m

)
. (11.2.4)

Denote by S the limit (in probability) of the sequence Sn, and

Bε
n :=

{
|Sn − S|> ε

}
.

Then P(Bε
n)→ 0 as n→∞, Aε

M,m ⊂ B
ε/2
M ∪B

ε/2
m , and by (11.2.4)

P
(
A2ε

m

)
≤ 2P

(
B

ε/2
m

)
→ 0 as m→∞.

Relation (11.2.3), and hence the assertion of the theorem, are proved. �

Corollary 11.2.2 If Eξk = 0 and
∑∞

1 Var(ξk) <∞, then Sn converges a.s.

Proof The assertion follows immediately from Theorem 11.2.1 and the fact that

{Sn} is a Cauchy sequence in mean quadratic (E(Sn−Sm)2 =
∑n

k=m+1 Var(ξk)→ 0

as m→∞ and n→∞) and hence in probability.

It turns out that if Eξk = 0 and |ξk| < c for all k, then the condition∑
Var(ξk) <∞ is necessary and sufficient for a.s. convergence of Sn.1

Corollary 11.2.2 also contains an answer to the question posed at the beginning

of the section about convergence of
∑

δnn
−α , where δn are independent and identi-

cally distributed and Eδn = 0.

Corollary 11.2.3 The series
∑

δnan converges with probability 1 if Var(δk) =
σ 2 <∞ and

∑
a2
n <∞.

Thus we obtain that the series
∑

δnn
−α , where δn =±1 with probabilities 1/2,

is convergent if and only if α > 1/2.

An extension of Corollary 11.2.2 is given by the following.

Corollary 11.2.4 (The two series theorem) A sufficient condition for a.s. conver-
gence of the series

∑
ξn is that the series

∑
Eξn and

∑
Var(ξn) are convergent.

The Proof is obvious, for the sequences
∑n

k=1 Eξk and
∑n

k=1(ξk−Eξk) converge

a.s. by Corollary 11.2.2. �

1For more detail, see e.g. [31].
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11.3 The Strong Law of Large Numbers

It is not hard to see that, using the terminology of Sect. 11.1, the strong law of large

numbers (11.1.1) means that, for any ε > 0, the sequence {εn}∞n=1 is an upper one

for both sequences {Sn} and {−Sn} only if Eξ1 = 0.

We will derive the strong law of large numbers as a corollary of Theorem 10.5.3

on finiteness of the infimum of sums of random variables.

Let, as before, ξ1, ξ2, . . . be independent and identically distributed, ξ
d= ξk .

Theorem 11.3.1 (Kolmogorov’s Strong Law of Large Numbers) A necessary and

sufficient condition for Sn/n
a.s.−→ a is that there exists Eξk = a.

Proof Sufficiency. Assume, without loss of generality, that Eξk = 0. Then it follows

from Theorem 10.5.3 that the random variable Z(ε) = infk>0(Sk + εk) is proper

for any ε > 0 (Sk + εk is a sum of random variables ξk + ε with E(ξk + ε) > 0).

Therefore,

P

(
inf
k≥n

Sk

k
<−2ε

)
≤ P

(⋃

k≥n

{Sk + εk <−εn}
)
≤ P

(
Z(ε) <−εn

)
→ 0

as n→∞. In a similar way we find that

P

(
sup
k≥n

Sk

k
> 2ε

)
→ 0 as n→∞.

Since P(supk≥n |Sk/k| > 2ε) does not exceed the sum of the above two probabili-

ties, we obtain that Sn/n
a.s.−→ 0.

Necessity. Note that

ξn

n
= Sn

n
− n− 1

n

Sn−1

n− 1

a.s.−→ 0,

so that the event {|ξn/n|> 1} occurs finitely often with probability 1. By the Borel–

Cantelli zero-one law, this means that
∑∞

n=1 P(|ξn/n| > 1) <∞ or, which is the

same,
∑

P(|ξ |> n) <∞. Therefore, by Lemma 10.5.1, Eξ <∞ and with necessity

Eξ = a. The theorem is proved. �

Thus the condition Eξ = 0 is necessary and sufficient for {εn}∞n=1 to be an upper

sequence for both sequences {Sn} and {−Sn}. In the next chapter, we will derive

necessary and sufficient conditions for {εn} to be an upper sequence for each of

the trajectories {Sn} and {−Sn} separately. Of course, such a condition, say, for the

sequence {Sn} will be broader than just Eξk = 0.

We saw that the above proof of the strong law of large numbers was based on

Theorem 10.5.3 on the finiteness of infSk which is based, in turn, on Wald’s iden-

tity stated as Theorem 4.4.3. There exist other approaches to the proof that are unre-

lated to Theorem 4.4.3 (see below, e.g. Theorems 11.4.2 and 12.3.1). Now we will
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show that, using the strong law of large numbers, one can prove Wald’s identity

for stopping times without any additional restrictions (see e.g. conditions (a)–(d) in

Theorem 4.4.3). Furthermore, in our opinion, the proof below better elucidates the

nature of the phenomenon we are dealing with.

Consider stopping times ν with respect to a family of σ -algebras of a special

kind. In particular, we assume that a sequence {ζj }∞j=1 of independent identically

distributed random vectors ζj = (ξj , τj ) is given (where τj can also be vectors) and

Fn := σ(ζ1, . . . , ζn). (11.3.1)

Theorem 11.3.2 (Wald’s identity for stopping times) Let ν be a stopping time with
respect to the family of σ -algebras Fn and assume one of the following conditions
hold: (a) Eν <∞; or (b) a := Eξj 
= 0.

Then

ESν = aEν. (11.3.2)

The assertion of the theorem means that Wald’s identity is true whenever the

right-hand side is defined, i.e. only the indefinite case 0 · ∞ is excluded. Roughly

speaking, identity (11.3.2) is valid whenever it makes sense.

This identity implies that, when Eν <∞, the condition a 
= 0 is superfluous

and that, for a 
= 0, the finiteness of ESν implies that of Eν. If a = 0 then the last

assertion is not true. The reader can easily illustrate this fact using the fair game

discussed in Sect. 4.2.

Proof of Theorem 11.3.2 By the strong law of large numbers, for all large k, the ratio

Sk/k lies in the vicinity of the point a. (Here and in what follows, we leave more

precise formulations to the reader.) By Lemma 11.2.1, the sequence {ζν+k}∞k=1 has

the same distribution as the original sequence {ζk}∞k=1. For this “shifted” sequence,

consider the stopping time ν2 defined the same way as ν for the original sequence.

Put ν1 := ν and consider the sequence {ζν1+ν2+k}∞k=1 which is again distributed

as {ζk}∞k=1 (for ν1 + ν2 is again a stopping time). For the new sequence, define

the stopping time ν3, and so on. Clearly, the νk are independent and identically

distributed, and so are the differences

SNk
− SNk−1

, k ≥ 1, S0 = 0, where Nk :=
n∑

j=1

νj .

By virtue of the strong law of large numbers, SNk
/Nk also lie in the vicinity of the

point a for all large k (or Nk).

If Eν <∞ then Nk/k lie in the vicinity of the point Eν as k→∞. Since

SNk

Nk

= SNk

k
· k

Nk

, (11.3.3)

SNk
/k is necessarily in a neighbourhood of the point aEν for all large k. This means

that the expectation ESν = aEν exists.



11.3 The Strong Law of Large Numbers 325

If Eν =∞ then, for a > 0, the assumption that the expectation ESν exists and

is finite, together with equality (11.3.3) and the previous argument, leads to a con-

tradiction, since the limit of the left-hand side of (11.3.3) equals a > 0, but that of

the right-hand side is zero. The contradiction vanishes only if ESν =∞. The case

a < 0 is dealt with in the same way. The theorem is proved. �

We now return to the strong law of large numbers and illustrate it by the following

example.

Example 11.3.1 Let ω = (ω1,ω2, . . .) be a sequence of independent random vari-

ables taking the values 1 and 0 with probabilities p and q = 1− p, respectively. To

each such sequence, we put into correspondence the number

ξ = ξ(ω)=
∞∑

k=1

ωk2−k,

so that ω is the binary expansion of ξ . It is evident that the possible values of ξ fill

the interval [0,1].
We show that if p = q = 1/2 then the distribution of ξ is uniform. But if p 
= 1/2,

then ξ has a singular distribution. Indeed, if x =
∑∞

k=1 δk2−k , where δk assume the

values 0 or 1, then

{ξ < x} = {ε1 < δ1} ∪ {ω1 = δ1,ω2 < δ2} ∪ {ω1 = δ1,ω2 = δ2,ω3 < δ3} ∪ · · · .
Since the events in this union are disjoint, for p = 1/2 we have

P(ξ < x)=
∞∑

k=0

P(ω1 = δ1, . . . ,ωk = δk, ωk+1 < δk+1)

=
∞∑

k=0

2−kP(ωk+1 < δk+1)=
∞∑

k=0

2−k−1δk+1 = x.

This means that the distribution of ξ is uniform, i.e. for any Borel set B ⊂ [0,1], the

probability P(ξ ∈ B)=mesB is equal to the Lebesgue measure of B . Put

Dn :=
n∑

k=1

δk, Ωn :=
n∑

k=1

ωk.

Then the set {x : limn→∞Dn/n= p} is Borel measurable and hence

mes

{
x : lim

n→∞
Dn

n
= 1

2

}
= P

(
lim

n→∞
Ωn

n
= 1

2

)
.

Since by the strong law of large numbers the right-hand side here is equal to one,

mes

{
x : lim

n→∞
Dn

n
= 1

2

}
= 1.

In other words, for almost all x ∈ [0,1], the proportion of ones in the binary expan-

sion of x is equal to 1/2.
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Now let p 
= 1/2. Then

P

(
lim

n→∞
Ωn

n
= p

)
= 1,

although, as we saw above,

mes

{
x : lim

n→∞
Dn

n
= p

}
= 0,

so that the probability measure is concentrated on a subset of [0,1] of Lebesgue

measure zero. On the other hand, the distribution of the random variable ξ is con-

tinuous. This follows from the fact that

{ξ = x} =
∞⋂

k=1

{ωk = δk},

if x is binary-irrational.

If ξ is binary-rational, i.e. if, for some r <∞, either δk = 0 for all k ≥ r or δk = 1

for all k ≥ r , the continuity follows from the inclusion

{ξ = x} ⊂
∞⋂

k=r

{ωk = 0} +
∞⋂

k=r

{ωk = 1},

since the probabilities of the two events on the right-hand side are clearly equal to

zero. The singularity of Fξ (x) for p 
= 1/2 is proved. �

We suggest the reader to plot the distribution function of ξ .

11.4 The Strong Law of Large Numbers for Arbitrary

Independent Variables

Finding necessary and sufficient conditions for convergence

Sn/bn
a.s.−→ a

when bn ↑∞ and the summands ξ1, ξ2, . . . are not identically distributed is a diffi-

cult task. We first prove the following theorem.

Theorem 11.4.1 (Kolmogorov’s test for almost everywhere convergence) Assume
that ξk , k = 1,2, . . . , are independent, Eξk = 0, Var(ξk)= σ 2

k <∞ and, moreover,

∞∑

k=1

σ 2
k

b2
k

<∞. (11.4.1)

Then Sn/bn
a.s.−→ 0 as n→∞.
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Proof It follows from the conditions of Theorem 11.4.1 that (see Corollary 11.2.2)

the series
∑∞

k=1 ξk/bk is convergent with probability 1. Therefore the assertion of

Theorem 11.4.1 is a consequence of the following well-known lemma from calcu-

lus. �

Lemma 11.4.1 Let bn ↑ ∞ and a sequence x1, x2, . . . be such that the series∑∞
k=1 xk is convergent. Then, as n→∞,

1

bn

∞∑

k=1

bkxk→ 0.

Proof Put Xn :=
∑∞

k=n+1 xk so that Xn → 0 as n → ∞, and X :=
maxn≥0 |Xn|<∞. Using the Abel transform, we obtain that

n∑

k=1

bkxk =
n∑

k=1

bk(Xk−1 −Xk)=
n−1∑

k=0

bk+1Xk −
n∑

k=1

bkXk

=
n−1∑

k=1

(bk+1 − bk)Xk + b1X0 − bnXn,

lim sup
n→∞

1

bn

n∑

k=1

bkxk ≤ lim sup
n→∞

1

bn

n−1∑

k=1

(bk+1 − bk)Xk. (11.4.2)

Here, for a given ε > 0, we can choose an N such that |Xk|< ε for k ≥N . Therefore

n−1∑

k=1

(bk+1 − bk)Xk ≤
N−1∑

k=1

(bk+1 − bk)X+ ε

n−1∑

k=N

(bk+1 − bk)

=X(bN − b1)+ ε(bn − bN ).

From here and (11.4.2) it follows that

lim sup
n→∞

1

bn

n∑

k=1

bkxk ≤ ε.

Since a similar inequality holds for lim inf, the lemma is proved. �

We could also prove Theorem 11.4.1 directly, using the Kolmogorov inequality,

in a way similar to the argument in Theorem 11.2.1.

Example 11.4.1 Assume that ξk , k = 1,2, . . . , are independent random variables

taking the values ξk = ±kα with probabilities 1/2. As we saw in Example 8.4.1,

for α > −1/2, the sums Sn of these variables are asymptotically normal with the

appropriate normalising factor n−α−1/2. Since Var(ξk)= σ 2
k = k2α , we see that, for
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β > α+ 1/2, n−βSn satisfies the strong law of large numbers because, for bk = kβ ,

the series
∞∑

k=1

k2αb−2
k =

∞∑

k=1

k2α−2β

converges. The “usual” strong law of large numbers (with the normalising factor

n−1) holds if the value β = 1 is admissible, i.e. when α < 1/2.

Now we will derive the “usual” strong law of large numbers (with scaling factor

1/n) under conditions which do not assume the existence of the variances Var(ξk)

and are, in a certain sense, minimal. The following generalisation of the “sufficiency

part” of Theorem 11.1.3 is valid.

Theorem 11.4.2 Let Eξk = 0 and the tails P(|ξk|> t) admit a common integrable
majorant:

P
(
|ξk|> t

)
≤ g(t),

∫ ∞

0

g(t) dt <∞. (11.4.3)

Then, as n→∞,

Sn

n

a.s.−→ 0. (11.4.4)

Note that condition (11.4.3) can also be rewritten as |ξk|
d
≤ ζ , Eζ < ∞. To

see this, it suffices to consider a random variable ζ ≥ 0 for which P(ζ > t) =
min(1, g(t)). Here, without loss of generality, we can assume that g(t) is non-

increasing (we can take the minimal majorant g(t) := supk P(|ξk|> t) ↓).

Condition (11.4.3) clearly implies the uniform integrability of ξk . The latter was

sufficient for the law of large numbers, but is insufficient for the strong law of large

numbers. This is shown by the following example.

Example 11.4.2 Let ξk be such that, for t > 0 and k > 1,

P(ξk ≥ t)=
{

g(t)+ 1
k lnk

if t ≤ k,

g(t) if t > k,

P(ξk <−t)≤ g(t),

where g(t) is integrable so that the ξk has a positive atom of size 1/(k ln k) at the

point k. Evidently, the ξk are uniformly integrable. Now suppose that Sn/n
a.s−→ 0.

Since
∞∑

k=2

P(ξk ≥ k)≥
∞∑

k=2

1

k ln k
=∞,

it follows by the Borel–Cantelli lemma that infinitely many events {ξk ≥ k} occur

with probability 1. Since, for any ε < 1/2 and all k large enough, |Sk| < εk with

probability 1, the events Sk+1 = Sk + ξk+1 > k(1 − ε) occur infinitely often. We

have obtained a contradiction. �
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Proof of Theorem 11.4.2 Represent the random variables ξk in the form

ξk = ξ∗k + ξ∗∗k , ξ∗k := ξkI
(
|ξk|< k

)
, ξ∗∗k := ξkI

(
|ξk| ≥ k

)
,

and denote by S∗n and S∗∗n the respective sums of random variables ξ∗k and ξ∗∗k . Then

the sum Sn can be written as

Sn =
(
S∗n −ES∗n

)
+ S∗∗n −ES∗∗n . (11.4.5)

Now we will evaluate the three summands on the right-hand side of (11.4.5).

1. Since ξk are uniformly integrable, we have

Eξ∗∗k = o(1) as k→∞,

ES∗∗n = o(n),
ES∗∗n

n
→ 0 as n→∞.

(11.4.6)

2. Since ∑
P
(
|ξk|> k

)
≤
∑

g(k) <∞,

we obtain from Theorem 11.1.1 that, with probability 1, only a finite number of

random variables ξ∗∗k are nonzero and hence, as n→∞,

S∗∗n
n

a.s.−→ 0. (11.4.7)

3. To bound the first summand on the right-hand side of (11.4.5) we make use of

Theorem 11.4.1. Since

Var
(
ξ∗k
)
≤ E

(
ξ∗k
)2 = 2

∫ k

0

uP
(
|ξ∗k | ≥ u

)
du≤ 2

∫ k

o

ug(u)du,

we see that the series in (11.4.1) for ξ∗k −Eξ∗k and bk = k admits the upper bound

2

∞∑

k=1

1

k2

∫ k

0

ug(u)du. (11.4.8)

The last series converges if the integral
∫ ∞

1

1

t2

(∫ t

0

ug(u)du

)
dt

converges. Integrating by parts, we obtain

−1

t

∫ t

0

ug(u)du

∣∣∣∣
∞

1

+
∫ ∞

1

g(t) dt. (11.4.9)

The last summand here is clearly finite. Since g(u) is integrable and monotone, one

has

ug(u)= o(1) as u→∞,

∫ t

0

ug(u)du= o(t) as t→∞,

and hence the value of the first summand in (11.4.9) is zero at t = ∞. We have

established that series (11.4.8) converges, and hence, by Theorem 11.4.1, as n→∞,

S∗n −ES∗n
n

a.s.−→ 0. (11.4.10)



330 11 Properties of the Trajectories of Random Walks. Zero-One Laws

Combining (11.4.5)–(11.4.7) and (11.4.10), we obtain (11.4.4). The theorem is

proved. �

11.5 The Strong Law of Large Numbers for Generalised

Renewal Processes

11.5.1 The Strong Law of Large Numbers for Renewal Processes

Let {τj } be a sequence of independent identically distributed variables, Tn :=∑n
j=1 τj and η(t) :=min{k : Tk > t}.

Theorem 11.5.1 If τj
d= τ and Eτ = a > 0 exists then, as t→∞,

η(t)

t

a.s.−→ 1

a
, (11.5.1)

i.e., for any ε > 0,

P

(∣∣∣∣
η(u)

u
− 1

a

∣∣∣∣< ε for all u≥ t

)
→ 1 (11.5.2)

as t→∞.

Proof First let τ ≥ 0. Set

An :=
{∣∣∣∣

Tk

k
− a

∣∣∣∣< ε for all k ≥ n

}
.

The strong law of large numbers for {Tk} means that P(An)→ 1 as n→∞.

Consider the function T (v) := T⌊v⌋, where ⌊v⌋ is the integer part of v. As was

noted in Sect. 10.1, η(t) is the generalised inverse function to T (v). In other words,

if we plot the graph of the function T (v) as a continuous line (including “vertical”

segments corresponding to jumps) then η(t) can be regarded as the abscissa of the

point of intersection of the graph of T (v) with level t (see Fig. 11.1); for the values

of t coinciding with Tk , the intersection will be a segment of length 1, and η(t) is

then to be taken equal to the right end point of the segment.

Therefore the event that T (v) lies within the limits v/(a ± ε) for all sufficiently

large v coincides with the event that η(t) lies within the limits t(a ± ε) for all suffi-

ciently large t . More precisely,

An ⊂ Bn :=
{

u

a − ε
> η(u) >

u

a + ε
for all u≥ n(a + ε)

}
.

This means that

P(Bn)→ 1 as n→∞.

This relation is clearly equivalent to (11.5.2).
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Fig. 11.1 The relative

positions of a trajectory of

T (v) and the levels v(a ± ε)

(see the proof of

Theorem 11.5.1)

Now suppose τ can also assume negative values. Then η(t) :=min{k : T k > t},
where T k = maxk≤n Tk , so that η(t) is the generalised inverse function

of T (v) := T [v]. Moreover, it is clear that, if T (v) lies within the limits v(a ± ε)

for all sufficiently large v, then the same is true for the function T (v). It remains to

repeat the above argument applying it to the processes T (v) and η(t). The theorem

is proved. �

Remark 11.5.1 (An analogue of Remarks 8.3.3, 8.4.1, 10.1.1 and 10.5.1) Conver-

gence (11.5.1) persists if we remove all the restrictions on the random variable τ1.

Namely, the following assertion generalising Theorem 11.5.1 is valid. Let τ1 be an

arbitrary random variable and the variables τ ∗k = τk+1
d= τ , k ≥ 1, satisfy the con-

ditions of Theorem 11.5.1. Then (11.5.1) holds true.

The Proof of this assertion is quite similar to the proofs of the corresponding

assertions in the above mentioned remarks, and we leave it to the reader. �

These assertions show that replacement of one or several terms in the consid-

ered sequences of random variables with arbitrary variables changes nothing in the

established convergence relations. (The exception is Theorem 11.1.1, in which the

condition E min(0, τ1) > −∞ is essential.) This fact will be used in Chap. 13 de-

voted to Markov chains.

11.5.2 The Strong Law of Large Numbers for Generalised

Renewal Processes

Now let a sequence of independent identically distributed random vectors (τj , ξj )
d=

(τ, ξ) be given and Sn =
∑n

j=1 ξj . Our goal is to obtain an analogue of Theo-

rem 11.5.1 for generalised renewal processes S(t)= Sη(t) (see Sect. 10.6).
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Theorem 11.5.2 If τ > 0 and there exist a := Eτ and aξ := Eξ then

S(t)

t

a.s.−→ aξ

a
as t→∞.

The Proof of the theorem is almost obvious. It follows from the representation

S(t)

t
= Sη(t)

η(t)
· η(t)

t

and the a.s. convergence relations

Sn

n

a.s.−→ aξ ,
η(t)

t

a.s.−→ 1

a
. �

Note that the independence of the components τ and ξ is not assumed here.



Chapter 12

Random Walks and Factorisation Identities

Abstract In this chapter, several remarkable and rather useful relations establishing

interconnections between different characteristics of random walks (the so-called

boundary functionals) are derived, and the arising problems are related to the sim-

plest boundary problems of Complex Analysis. Section 12.1 introduces the concept

of factorisation identity and derives two fundamental identities of that kind. Some

consequences of these identities, including the trichotomy theorem on the oscilla-

tory behaviour of random walks and a one-sided version of the Strong Law of Large

Numbers are presented in Sect. 12.2. Pollaczek–Spitzer’s identity and an identity

for the global maximum of the random walk are derived in Sect. 12.3, followed

by illustrating these results by examples from the ruin theory and the theory of

queueing systems in Sect. 12.4. Sections 12.5 and 12.6 are devoted to studying the

cases where factorisation components can be obtained in explicit form and so closed

form expressions are available for the distributions of a number of important bound-

ary functionals. Sections 12.7 and 12.8 employ factorisation identities to derive the

asymptotic properties of the distribution of the excess of a random walk of a high

level and that of the global maximum of the walk, and also to analyse the distribution

of the first passage time.

In the present chapter we derive several remarkable and rather useful relations es-

tablishing interconnections between different characteristics of random walks (the

so-called boundary functionals) and also relate the arising problems with the sim-

plest boundary problems of complex analysis.

12.1 Factorisation Identities

12.1.1 Factorisation

On the plane of a complex variable λ, denote by Π the real axis Imλ= 0 and by Π+
(Π−) the half-plane Imλ > 0 (Imλ < 0). Let f(λ) be a continuous function defined

on Π .

Definition 12.1.1 If there exists a representation

f(λ)= f+(λ)f−(λ), λ ∈Π, (12.1.1)
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where f± are analytic in the domains Π± and continuous on Π± ∪Π , then we will

say that the function f allows factorisation. The functions f± are called factorisation
components (positive and negative, respectively).

Further, denote by K the class of functions f defined on Π that are continuous

and such that

sup
λ∈Π

∣∣f(λ)
∣∣<∞, inf

λ∈Π

∣∣f(λ)
∣∣> 0. (12.1.2)

Similarly we define the classes K± of functions analytic in Π± and continuous

on Π± ∪Π , such that

sup
λ∈Π±

∣∣f±(λ)
∣∣<∞, inf

λ∈Π±

∣∣f±(λ)
∣∣> 0. (12.1.3)

Definition 12.1.2 If, for an f ∈ K, there exists a representation (12.1.1), where

f± ∈K±, then we will say that the function f allows canonical factorisation.

Representations of the form

f(λ)= f+(λ)f−(λ)f0, f(λ)= f+(λ)f0

f−(λ)
, λ ∈Π,

where f0 = const and f± ∈K±, are also called canonical factorisations.

Lemma 12.1.1 The components f± of a canonical factorisation of a function f ∈K
are defined uniquely up to a constant factor.

Proof Together with the canonical factorisation (12.1.1), let there exist another

canonical factorisation

f(λ)= g+(λ)g−(λ), λ ∈Π.

Then

f+(λ)f−(λ)= g+(λ)g−(λ), λ ∈Π,

and, by (12.1.2), we can divide both sides of the inequality by g+(λ)f−(λ). We get

f+(λ)

g+(λ)
= g−(λ)

f−(λ)
,

where, by virtue of (12.1.2), the function
f+(λ)
g+(λ)

(
g−(λ)
f−(λ)

) belongs to the class K+

(K−). We have obtained that the function
f+(λ)
g+(λ)

, analytical in Π+, can be analyti-

cally continued over the line Π onto the half-plane Π− (to the function
g−(λ)
f−(λ)

). After

such a continuation, in view of (12.1.3), this function remains bounded on the whole

complex plane. By Liouville’s theorem, bounded entire functions must be constant,

i.e. there exists a constant c, such that, on the whole plane

f+(λ)

g+(λ)
= g−(λ)

f−(λ)
= c,

holds, so f+(λ)= cg+(λ), f−(λ)= c−1g−(λ). The lemma is proved. �
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The factorisation problem consists in finding conditions under which a given

function f admits a factorisation, and in finding the components of the factorisation.

This problem has a number of important applications to solving integral equations

and is a version of the well-known Cauchy–Riemann boundary-value problem in

complex function theory. We will see later that factorisation is also an important

tool for studying the so-called boundary problems in probability theory.

12.1.2 The Canonical Factorisation of the Function

fz(λ) = 1 − zϕ(λ)

Let (Ω,F,P) be a probability space on which a sequence {ξk}∞k=1 of indepen-

dent identically distributed (ξk
d= ξ ) random variables is given. Put, as before,

Sn :=
∑n

k=1 ξk and S0 = 0. The sequence {Sk}∞k=0 forms a random walk.

First of all, note that the function

fz(λ) := 1− zϕ(λ), ϕ(λ) := Eeiλξ , λ ∈Π,

belongs to K, for all z with |z| < 1 (here z is a complex-valued parameter). This

follows from the inequalities |ϕ(λ)| ≤ 1 for λ ∈Π and |zϕ(λ)|< |z|< 1.

Theorem 12.1.1 (The first factorisation identity) For |z| < 1, the function fz(λ)

admits the canonical factorisation

fz(λ)= fz+(λ)C(z)fz−(λ), λ ∈Π, (12.1.4)

where

f+(λ)= exp

{
−
∞∑

k=1

zk

k
E
(
eiλSk ; Sk > 0

)
}
∈K+,

fz−(λ)= exp

{
−
∞∑

k=1

zk

k
E
(
eiλSk ; Sk < 0

)
}
∈K−, (12.1.5)

C(z)= exp

{
−
∞∑

k=1

zk

k
P(Sk = 0)

}
.

Proof Since |z|< 1, ln(1− zϕ(λ)) exists, understood in the principal value sense.

The following equalities give the desired decomposition:

fz(λ)= eln(1−zϕ(λ)) = exp

{
−
∞∑

k=1

zkϕk(λ)

k

}
= exp

{
−
∞∑

k=1

zk

k
EeiλSk

}

= exp

{
−
∞∑

k=1

zk

k
E
(
eiλSk ; Sk > 0

)
}

exp

{
−
∞∑

k=1

zk

k
P(Sk = 0)

}

× exp

{
−
∞∑

k=1

zk

k
E
(
eiλSk ; Sk < 0

)
}

.
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Show that fz+(λ) ∈K+. Indeed, the function E(eiλSk ; Sk > 0), for every k and λ ∈
Π+∪Π , does not exceed 1 in the absolute value, is analytic in Π+, and is continuous

on Π+ ∪ Π . Analyticity follows from the differentiability of this function at any

point λ ∈Π+ (see also Property 6 of ch.f.s in Sect. 7.1). The function ln fz+(λ) is

a uniformly converging series of functions analytic in Π+, and hence possesses the

same properties together with the function fz+(λ). The same can be said about the

continuity on Π ∪Π+.

That fz−(λ) ∈K− is established in a similar way. The theorem is proved. �

12.1.3 The Second Factorisation Identity

The second factorisation identity is associated with the so-called boundary function-

als of the random walk {Sk}. On the main probability space (Ω,F,P) we define,

together with {ξk}, the random variable

η0
+ :=min{k ≥ 1; Sk ≥ 0}.

This is the first-passage time to zero level. For the elementary events such that all

Sk < 0, k ≥ 1, we put η0
+ := ∞. Like the random variable η(0) in Sect. 10.1, the

variable η0
+ is a Markov time.

The random variable χ0
+ := Sη0

+
is called the first nonnegative sum. It is defined

on the set {η0
+ <∞} only.

The first passing time of zero from the right

η0
− :=min{k ≥ 1; Sk ≤ 0}

possesses quite similar properties, and so does the first nonpositive sum χ0
− := Sη0

−
.

Studying the properties of the introduced random variables, which are called

boundary functionals of the random walk {Sk}, is of significant independent interest.

For instance, the variable η0
+ is a stopping time, and understanding its nature is

essential for studying stopping times in many more complex problems (see e.g.

the problems of the renewal theory in Chap. 10, the problems of statistical control

described in Sect. 4.4 and so on). Moreover, the variables η0
+ and χ0

+ will be needed

to describe the extrema

ζ := sup(S1, S2, . . .) and γ := inf(S1, S2, . . .),

which are also termed boundary functionals and play an important role in the prob-

lems of mathematical statistics, queueing theory (see Sect. 12.4), etc.

Put, as before, ϕ(λ) := ϕξ (λ)= Eeiλξ .

Theorem 12.1.2 (The second factorisation identity) For the ch.f. of the joint distri-
butions of the introduced random variables, for |z|< 1 and Imλ= 0, the canonical
factorisation
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fz(λ) := 1− zϕ(λ)

=
[
1−E

(
eiλχ0

+zη0
+; η0

+ <∞
)]

D−1(z)
[
1−E

(
eiλχ0

−zη0
−; η0

− <∞
)]

,

of fz(λ) holds true, where

D(z) := 1−E
(
zη0
+; χ0

+ = 0, η0
+ <∞

)
= 1−E

(
zη0
−; χ0

− = 0, η0
− <∞

)
.

Proof Set ζn :=max{S1, . . . , Sn}. We have

ϕn(λ)= EeiλSn =
n∑

k=1

E
(
eiλSn; η0

+ = k
)
+E

(
eiλSn; ζn < 0

)

=
n∑

k=1

E
(
eiλ(Sn−Sk)eiλSk I

(
η0
+ = k

))
+Mn, (12.1.6)

where Mn = E(eiλSn; ζn < 0) and I(A) is the indicator of the event A. For each

fixed k, the random variables Sn− Sk and SkI(η0
+ = k)= χ0

+I(η0
+ = k) are indepen-

dent. Hence,

ϕn(λ)=
n∑

k=1

ϕn−k(λ)E
(
eiλχ0

+; η0
+ = k

)
+Mn.

Now multiply both sides by zn, n= 0,1, . . . , and then sum up over n. We will use

the convention that, for n= 0,
n∑

k=1

= 0, Mn = 1.

For the convolution of two sequences cn =
∑n

k=1 akbn−k , we have

∞∑

n=0

cnz
n =

∞∑

n=1

anz
n

∞∑

n=0

bnz
n,

provided that the series in this equality converges absolutely. Since |z| < 1 and

|ϕ(λ)| ≤ 1 for Imλ= 0, one has

∞∑

n=0

znϕn(λ)= 1

1− zϕ(λ)
=
∞∑

n=0

zn

n∑

k=1

ϕn−k(λ)E
(
eiλχ0

+; η0
+ = k

)
+
∞∑

n=0

znMn

=
∞∑

k=1

zkE
(
eiλχ0

+; η0
+ = k

) ∞∑

n=0

znϕn(λ)+
∞∑

n=0

znMn

= 1

1− zϕ(λ)
E
(
eiλχ0

+zη0
+; η0

+ <∞
)
+
∞∑

n=0

znMn,

or, which is the same,

fz(λ)= 1− zϕ(λ)= 1−E(eiλχ0
+zη0

+; η0
+ <∞)∑∞

n=0 znE(eiλSn; ζn < 0)
= az+(λ)

az−(λ)
, (12.1.7)

where az±(λ) denote the numerator and denominator of the ratio obtained for fz(λ).
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It is easy to see that, if we put

γn :=min(S1, . . . , Sn)

then, repeating the above arguments, we will arrive at the equality

fz(λ)= 1−E(eiλχ0
−zη0

−; η0
− <∞)∑∞

n=0 znE(eiλSn; γn > 0)
= bz−(λ)

bz+(λ)
, (12.1.8)

where, similarly to the above, bz∓(λ), respectively, denote the numerator and de-

nominator in relation (12.1.8).

Now we show that az±(λ) ∈K and bz±(λ) ∈K for |z| < 1. Indeed, for |z| < 1

and Imλ= 0,

∣∣E
(
eiλχ0

+zη0
+; η0

+ <∞
)∣∣≤ E

(
|z|η0

+; η0
+ <∞

)
< 1

and therefore

sup
λ∈Π

∣∣az+(λ)
∣∣<∞, inf

λ∈Π

∣∣az+(λ)
∣∣> 0.

Since fz(λ) ∈K, this also implies that az−(λ) ∈K. In the same way we obtain that

bz∓(λ) ∈K. By equating the right-hand sides of (12.1.7) and (12.1.8) and multiply-

ing them by az−(λ)bz+(λ), we get

az+(λ)bz+(λ)= az−(λ)bz−(λ), λ ∈Π. (12.1.9)

Further, the functions az+(λ) and bz+(λ) are bounded and analytic in Π+ for the

same reasons as the function fz+(λ) (see the proof of Theorem 12.1.1). Similarly,

az−(λ) and bz−(λ) are bounded and analytic in Π−. We obtain that the function

az+(λ)bz+(λ) is bounded and analytic in Π+ and, by (12.1.9), has an entire bounded

analytic continuation over the boundary Π to the whole complex plane. This means

that this function necessarily equals a constant c, and bz+(λ) = ca−1
z+(λ) ∈ K+,

az−(λ)= cb−1
z−(λ) ∈K−, so relations (12.1.7) and (12.1.8) deliver a canonical fac-

torisation of fz(λ).

Further, eiλx→ 0 as Im λ→−∞, x < 0, and therefore

bz−(−i∞)= 1−E
(
zη0
−; χ0

− = 0, η0
− <∞

)
, az−(−i∞)= 1,

az−(λ)bz−(λ)= az−(−i∞)bz−(−i∞)= 1−E
(
zη0
−; χ0

− = 0, η0
− <∞

)
=D(z).

Substituting into (12.1.7) the value az−(λ)=D(z)/bz−(λ) derived from this equal-

ity, we obtain the assertion of the theorem. The second relation for D(z) follows

from the equality D(z)= az+(i∞)bz+(i∞). The theorem is proved. �

In the proof of Theorem 12.1.2 we used, in formula (12.1.6), a decomposition of

EeiλSn into summands corresponding to the disjoint events
{

n⋃

k=1

{
η0
+ = k

}
}
= {ζn ≥ 0} and {ζn < 0}.
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But the scheme of the proof will still work if we consider the partition of Ω into the

events {ζn > 0} and {ζn ≤ 0}. In order to do this, we introduce the random variables

η+ :=min{k : Sk > 0}
(η+ =∞ if ζ ≤ 0; note that η+ = η(0) in the notation of Sect. 10.1),

χ+ := Sη+ ,

η− :=min{k : Sk < 0} (η− =∞ if γ ≥ 0),

χ− := Sη− .

The variable η+ (η−) is called the time of the first positive (negative) sum χ+
(χ−). Now we can write, together with equalities (12.1.7) and (12.1.8), the relations

fz(λ)= 1− zϕ(λ)= 1−E(eiλχ+zη+; η+ <∞)∑∞
n=0 znE(eiλSn; ζn ≤ 0)

= 1−E(eiλχ−zη−; η− <∞)∑∞
n=0 znE(eiλSn; γn ≥ 0)

. (12.1.10)

Combining these relations with (12.1.7) and (12.1.8), we will use below the same

argument as above to prove the following assertion.

Theorem 12.1.3

1−E
(
eiλχ0

+zη0
+; η0

+ <∞
)
=D(z)

[
1−E

(
eiλχ+zη+; η+ <∞

)]
,

1−E
(
eiλχ0

−zη0
−; η0

− <∞
)
=D(z)

[
1−E

(
eiλχ−zη−; η− <∞

)]
.

(12.1.11)

Here the function D(z) defined in Theorem 12.1.2 also satisfies the relations

D−1(z)=
∞∑

n=0

znP(Sn = 0, ζn ≤ 0)=
∞∑

n=0

znP(Sn = 0, γn ≥ 0). (12.1.12)

Clearly, from Theorem 12.1.3 one can obtain some other versions of the factori-

sation identity. For instance, one has

fz(λ)=
[
1−E

(
eiλχ+zη+; η+ <∞

)][
1−E

(
eiλχ0

−zη0
−; η0

− <∞
)]

. (12.1.13)

Representations (12.1.12) for D(z) imply, in particular, that

P(Sn = 0, ζn ≤ 0)= P(Sn = 0, γn ≥ 0)

and that D(z)≡ 1 if P(Sn = 0)= 0 for all n≥ 1.

Proof of Theorem 12.1.3 Let us derive the first relation in (12.1.11). Comparing

(12.1.8) with (12.1.10) we find, as above, that
[
1−E

(
eiλχ+zη+; η+ <∞

)]
bz+(λ)= const= 1, (12.1.14)

since the product equals 1 for λ= i∞. Therefore we obtain (12.1.13) by virtue of

(12.1.8). It remains to compare (12.1.13) with the identity of Theorem 12.1.2.
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Expressions (12.1.12) for D(z) follow if we recall (see (12.1.8) and (12.1.10))

that the left-hand side of (12.1.14) equals
[ ∞∑

n=0

znE
(
eiλSn; ζn ≤ 0

)
]
[
1−E

(
eiλχ0

−zη0
−; η0

− <∞
)]

.

Since this product also equals 1, letting λ = −i∞ here and in the second identity

of (12.1.11) we get the first equality in (12.1.12). The second equality is proved in

a similar way. �

Remark 12.1.1 It is important to note that Theorems 12.1.2 and 12.1.3, as well as

proving the existence of the identities, also provide a means of finding the charac-

teristic function of the joint distribution of χ and η. That is, if we manage some-

how to get a representation for fz(λ)= 1− zϕ(λ) of the form hz+(λ)hz−(λ), where

hz±(λ) ∈K±, then by uniqueness of the canonical factorisation we can, for instance,

claim that, up to a constant factor, the function 1 − E(eiλχ+zη+; η+) coincides

with hz+(λ). For examples of how such arguments can be used, see Sects. 12.5

and 12.6.

12.2 Some Consequences of Theorems 12.1.1–12.1.3

12.2.1 Direct Consequences

Theorems 12.1.1–12.1.3 (and also their modifications of the form (12.1.13)) and

the uniqueness of the canonical factorisation (see Lemma 12.1.1) directly imply the

next result.

Corollary 12.2.1 In the notation of Theorems 12.1.1 and 12.1.2 one has the follow-
ing equalities.

1−E
(
eiλχ+zη+; η+ <∞

)
= fz+(λ);

D(z)= C(z);
1−E

(
eiλχ−zη−; η− <∞

)
= fz−(λ).

Now we will obtain, as corollaries of Theorems 12.1.1–12.1.3, some further iden-

tities in which the parameter z is fixed and equal to 1.

Corollary 12.2.2 Letting z→ 1 in (12.1.13) we obtain

f1(λ) := 1− ϕ(λ)=
[
1−E

(
eiλχ+; η+ <∞

)][
1−E

(
eiλχ0

−; η0
− <∞

)]
. (12.2.1)

It is obvious that one can similarly write other identities of such type correspond-

ing to the identities that can be derived from Theorems 12.1.1–12.1.3.

Clearly, identity (12.2.1) delivers a factorisation of the function f1(λ)= 1−ϕ(λ),

but this factorisation is not canonical since f1(0)= 0 and f1(λ) /∈K.
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Corollary 12.2.3 If there exists Eξ = a < 0 then P(η0
− <∞)= 1, Eχ0

− exists, and
P(ζ ≤ 0)= a/Eχ0

− > 0.

Proof The first relation follows from the law of large numbers, because

P
(
η0
− > n

)
< P(Sn > 0)→ 0

as n→∞. Therefore, in the case under consideration, one has

E
(
eiλχ0

−;η0
− <∞

)
= Eeiλχ0

− .

The existence of Eχ0
− follows from Wald’s identity Eχ0

− = aEη0
− and the theorems

of Chap. 10, which imply that Eη0
− ≤ Eη− <∞, since Eη− is the value of the

corresponding renewal function at 0.

Finally, dividing both sides of the identity in Corollary 12.2.2 by λ and taking

the limit as λ→ 0, we obtain

a =
(
1− P(η+ <∞)

)
Eχ0
− = P(ζ ≤ 0)Eχ0

−. �

It is interesting to note that, as a consequence of this assertion, we can obtain the

strong law of large numbers. Indeed, since {ζ <∞} is a tail event and P(ζ <∞)≥
P(ζ ≤ 0), Corollary 12.2.3 implies that P(ζ<∞)= 1 for a < 0. This means that the

assertion of Theorem 10.5.3 holds, and it was this assertion that the strong law of

large numbers was derived from.

Based on factorisation identities, we will obtain below a generalisation of this

law.

In the remaining part of this chapter, to avoid trivial complications, we will be

assuming that ξ takes, with positive probability, both positive and negative values.

Corollary 12.2.4 If a = Eξ = 0 then P(η+ <∞)= P(η0
− <∞)= 1, so that

1− ϕ(λ)=
(
1−Eeiλχ+

)(
1−E eiλχ0

−
)
. (12.2.2)

If, moreover, Eξ2 = σ 2 <∞ then there exist Eχ+ and Eχ0
−, and

Eχ+Eχ0
− =−

σ 2

2
.

Proof Consider the sequence ξ̃k = ξk − ε, ε > 0. Denoting by ζ̃ , χ̃0
− and ã the cor-

responding characteristics for the newly introduced sequence, we obtain by Corol-

lary 12.2.3 that

P(ζ ≤ 0) < P(̃ζ ≤ 0)= ã

Eχ̃0
−
=− ε

χ̃0
−

,

where

Eχ̃0
− ≤ E(ξ̃1; ξ̃1 ≤ 0)= E(ξ − ε; ξ ≤ ε)≤ E(ξ ; ξ ≤ 0) < 0.
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So we can make the probability P(ζ ≤ 0) arbitrarily small by choosing an appropri-

ate ε, and thus P(ζ ≤ 0) = P(η+ =∞) = 0. Similarly, we find that P(γ ≥ 0) = 0

and hence

P
(
η0
− =∞

)
≤ P(η− =∞)= P(γ ≥ 0)= 0.

The obtained relations and Corollary 12.2.2 yield identity (12.2.2).

In order to prove the second assertion of the corollary, divide both sides of iden-

tity (12.2.2) by λ2 =−(iλ)2 and let λ ∈Π tend to zero. Then the limit of the left-

hand side will be equal to σ 2/2 (see (7.1.1)), whereas that of the right-hand side will

be equal to −Eχ+Eχ0
−, where Eχ+ > 0, |Eχ0

−|> 0. The corollary is proved. �

Corollary 12.2.5

1. We always have
∑ P(Sk=0)

k
<∞.

2. The following three conditions are equivalent:

(a) P(ζ <∞)= 1;

(b) P(ζ ≤ 0)= P(η+ =∞) > 0;

(c)
∑∞

k=1
P(Sk>0)

k
<∞ or

∑∞
k=1

P(Sk≥0)
k

<∞.

Proof To obtain the first assertion, one should let z→ 1 in the second equality in

Corollary 12.2.1 and recall that

D(1)= 1− P
(
χ0
+ = 0, η0

+ <∞
)
> P(ξ > 0) > 0.

The equivalence of (b) and (c) follows from the equality

1− P(η+ <∞)= P(ζ ≤ 0)= exp

{
−
∞∑

k=1

P(Sk > 0

k

}
,

which is derived by putting λ = 0 and letting z→ 1 in the first identity of Corol-

lary 12.2.1.

Now we will establish the equivalence of (b) and (c). If P(ζ ≤ 0) > 0 then P(ζ <

∞) > 0 and hence P(ζ <∞)= 1, since {ζ <∞} is a tail event. Conversely, let ζ

be a proper random variable. Choose an N such that P(ζ ≤N) > 0, and b > 0 such

that k =N/b is an integer and P(ξ <−b) > 0. Then

{ζ ≤ 0} ⊃
{
ξ1 <−b, . . . , ξk <−b, sup

j≥1

(−bk+ ξk+1 + · · · + ξk+j )≤ 0
}
.

Since the sequence ξk+1, ξk+2, . . . is distributed identically to ξ1, ξ2, . . . , one has

P(ζ ≤ 0)≥
[
P(ξ <−b)

]k
P(ζ ≤ bk) > 0. �

Corollary 12.2.6

1. P(ζ <∞, γ >−∞)= 0.
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2. If there exists Eξ = a < 0 then

P(η+ <∞) < 1, P(ζ <∞, γ =−∞)= 1,( ∞∑

k=1

P(Sk > 0)

k
<∞,

∞∑

k=1

P(Sk < 0)

k
=∞

)
.

3. If there exists Eξ = a = 0 then

P(ζ =∞, γ =−∞)= 1,( ∞∑

k=1

P(Sk > 0)

k
=∞,

∞∑

k=1

P(Sk < 0)

k
=∞

)
.

Here we do not consider the case a > 0 since it is “symmetric” to the case a < 0.

Proof The first assertion follows from the fact that at least one of the two series∑∞
k=1

P(Sk<0)
k

and
∑∞

k=1
P(Sk≥0)

k
diverges. Therefore, by Corollary 12.2.5 either

P(γ =−∞)= 1 or P(ζ =∞)= 1.

The second and third assertions follow from Corollaries 12.2.3–12.2.5 in an ob-

vious way. �

12.2.2 A Generalisation of the Strong Law of Large Numbers

The above mentioned generalisation of the strong law of large numbers consists of

the following.

Theorem 12.2.1 (The one-sided law of large numbers) Convergence of the series

∞∑

k=1

P(Sk > εk)

k

for every ε > 0 is a necessary and sufficient condition for

P

(
lim sup
n→∞

Sn

n
≤ 0

)
= 1. (12.2.3)

Proof Sufficiency. If the series converges then by Corollary 12.2.5 we have

P
(

sup
k

{Sk − εk}<∞
)
= 1.

Hence {εn} is an upper sequence for {Sn} and

P

(
lim sup
k→∞

Sk

k
≤ ε

)
= 1.



344 12 Random Walks and Factorisation Identities

But since ε is arbitrary, we see that

P

(
lim sup
k→∞

Sk

k
≤ 0

)
= 1.

Necessity. Conversely, if equality (12.2.3) holds then, for any ε > 0, with proba-

bility 1 we have Sn/n < ε for all n large enough. This means that

supk(Sk − εk) <∞ with probability 1, and hence by Corollary 12.2.5 the series∑∞
k=1

P(Sk>εk)
k

converges. The theorem is proved. �

Corollary 12.2.7 With probability 1 we have

lim sup
n→∞

Sn

n
= α,

where

α = inf

{
b :

∑ P(Sk > bk)

k
<∞

}
.

Proof For any b > α, the series in the definition of the number α converges. Since

{lim supn→∞ Sn/n ≤ b} is a tail event and S′n = Sn − bn again form a sequence

of sums of independent identically distributed random variables, Theorem 12.2.1

immediately implies that

P

(
lim sup

Sn

n
≤ b

)
= 1,

P

(
lim sup

Sn

n
≤ α

)
= P

( ∞⋂

k=1

{
lim sup

Sn

n
≤ α + 1

k

})
= 1.

If we assume that P(lim sup Sn/n≤ α∗)= 1 for α∗ < α then, for ξ∗k = ξk − α∗ and

S∗k =
∑k

j=1 ξ∗j , we will have lim sup
S∗n
n
≤ 0, and

∞∑

k=1

P(Sk > (α∗ + ε) k)

k
<∞

for any ε > 0, which contradicts the definition of α. The corollary is proved. �

In order to derive the conventional law of large numbers from Theorem 12.2.1 it

suffices to use Corollary 12.2.7 and assertion 2 of Corollary 12.2.6. We obtain that in

the case Eξ = 0 the value of α in Corollary 12.2.7 is 0 and hence lim sup Sn/n= 0

with probability 1. One can establish in the same way that lim inf Sn/n= 0. �

12.3 Pollaczek–Spitzer’s Identity. An Identity for S = supk≥0 Sk

It is important to note that, besides Theorems 12.1.1 and 12.1.2, there exist a number

of factorisation identities that give explicit representations (in terms of factorisation
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components) for ch.f.s of the so-called boundary functionals of the trajectory of

the random walk {Sk}, i.e. functionals associated with the crossing by the trajectory

of {Sk} of certain levels (not just the zero level, as in Theorems 12.1.1–12.1.3). The

functionals

Sn =max
k≤n

Sk, θn =min{k : Sk = Sn}

and some others are also among the boundary functionals. For instance, for the triple

transform of the joint distribution of (Sn, θn), the following representation is valid.

For |z|< 1, |ρ|< 1/|z| and Imλ≥ 0, one has

(1− z)

∞∑

n=0

znE
(
ρθneiλSn

)
= fz+(0)

fzρ+(λ)
.

(For more detail on factorisation identities, see [3].)

Among many consequences of this identity we will highlight two results that can

also be established using the already available Theorems 12.1.1–12.1.3.

12.3.1 Pollaczek–Spitzer’s Identity

So far we have obtained several factorisation identities as relations for numerators

in representations (12.1.7), (12.1.8) and (12.1.9). Now we turn to the denomina-

tors. We will obtain one more identity playing an important role in studying the

distributions of

Sn =max(0, ζn)=max(0, S1, . . . , Sn).

This is the so-called Pollaczek–Spitzer identity relating the ch.f.s of Sn, n= 1,2, . . . ,

with those of max(0, Sn), n= 1,2, . . . .

Theorem 12.3.1 For |z|< 1 and Imλ≥ 0,

∞∑

n=0

znEeiλSn = exp

{ ∞∑

n=0

zk

k
Eeiλmax(0,Sk)

}
.

Using the notation of Theorem 12.1.1, one could write the right-hand side of this

identity as

fz+(0)

(1− z)fz+(λ)

(see the last relation in the proof of the theorem).

Proof Theorems 12.1.1–12.1.3 (as well as their modifications of the form (12.1.13))

and the uniqueness of the canonical factorisation imply that

∞∑

k=0

znE
(
eiλSn; ζn < 0

)
=
[
1−E

(
eiλχ−zη−; η− <∞

)]−1 = f−1
z−(λ),
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where we assume that E(eiλS0; ζ0 < 0)= 1, so all the functions in the above relation

turn into 1 at λ=−i∞. Set

S∗k := Sn−k − Sn, θ∗n :=min
{
k : S∗k = S

∗
n :=max

(
0, S∗1 , . . . , S∗n

)}

(θ∗n is time of the first maximum in the sequence 0, S∗1 , . . . , S∗n ). Then the event

{Sn ∈ dx, ζn < 0} can be rewritten as {S∗n ∈−dx, θ∗n = n}. This implies that

E
(
eiλSn; ζn < 0

)
= E

(
e−iλS∗n ; θ∗n = n

)
,

∞∑

n=0

znE
(
eiλS∗n ; θ∗n = n

)
= f−1

z−(−λ).
(12.3.1)

But the sequence S∗1 , . . . , S∗n is distributed identically to the sequence of sums

ξ∗1 , ξ∗1 + ξ∗2 , . . . , ξ∗1 + · · · + ξ∗n , where ξ∗k =−ξk . If we put θn := min{k : Sk = Sn}
then identity (12.3.1) can be equivalently rewritten as

∞∑

n=0

znE
(
eiλSn; θn = n

)
=
(
f∗z−(−λ)

)−1
,

where f∗z−(λ) is the negative factorisation component of the function 1− zϕ∗(λ)=
1− zϕ(−λ) corresponding to the random variable −ξ . Since

1− zϕ(−λ)= fz+(−λ)C(z)fz−(−λ)

and the function fz+(−λ) possesses all the properties of the negative component

f∗z−(λ) of the factorisation of 1 − zϕ∗(λ), while the function fz−(−λ) has all

the properties of a positive component, we see that f∗z−(λ)= fz+(−λ) and

∞∑

n=0

znE
(
eiλSn; θn = n

)
= 1

fz+(λ)
.

Now we note that

EeiλSn =
n∑

k=0

E
(
eiλSn; θn = k

)

=
n∑

k=0

E
(
eiλSk ; θk = k, Sk+1 − Sk ≤ 0, . . . , Sn − Sk ≤ 0

)

=
n∑

k=0

E
(
eiλSk ; θk = k

)
P(Sn−k = 0).

Since the right-hand side is the convolution of two sequences, we obtain that
∞∑

n=0

znE eiλSn =
∞∑

n=0

znP(Sn = 0)
1

fz+(λ)
.

Putting λ= 0 we get

1

1− z
=
∞∑

n=0

znP(Sn = 0)
1

fz+(0)
.
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Therefore,

∞∑

n=0

znE eiλSn = fz+(0)

(1− z)fz+(λ)

= exp

{
− ln(1− z)+

∞∑

k=1

zk

k
E
(
eiλSk ; Sk > 0

)
−
∞∑

k=1

zk

k
P(Sk > 0)

}

= exp

{ ∞∑

k=1

zk

k
E
(
eiλSk ; Sk > 0

)
+
∞∑

k=1

zk

k
P(Sk ≤ 0)

}

= exp

{ ∞∑

k=1

zk

k
E
(
eiλmax(0,Sk)

)
}

.

The theorem is proved. �

12.3.2 An Identity for S = supk≥0 Sk

The second useful identity to be discussed in this subsection is associated with the

distribution of the random variable S = supk≥0 Sk =max(0, ζ ) (of course, we deal

here with the cases when P(S <∞) = 1). This distribution is of interest in many

applications. Two such illustrative applications will be discussed in the next subsec-

tion.

We will establish the relationship of the distribution of S with that of the vector

(χ+, η+) and with the factorisation components of the function 1− zϕ(λ).

First of all, note that the random variable η+ is a Markov time. For such variables,

one can easily see (cf. Lemma 10.2.1) that the sequence ξ∗1 = ξη++1, ξ
∗
2 = ξη++2, . . .

on the set {ω : η+ < ∞} (or given that η+ < ∞) is distributed identically to

ξ1, ξ2, . . . and does not depend on (η+, ξ1, . . . , ξη+). Indeed,

P
(
ξ∗1 ∈ B1, . . . , ξ

∗
k ∈ Bk

∣∣ η+ = j, ξ1 ∈A1, . . . , ξη+ ∈Aη+
)

= P(ξj+1 ∈ B1, . . . , ξj+k ∈ Bk | ξ1 ∈A1, . . . , ξj ∈Aj ; η+ = j)

= P(ξ1 ∈ B1, . . . , ξk ∈ Bk).

Considering the new sequence {ξ∗k }∞k=1 we note that it will exceed level 0 (the

level χ+ for the original sequence) with probability p = P(η+ <∞), and that the

distribution of ζ ∗ = supk≥1(ξ
∗
1 + · · · + ξ∗k ) coincides with the distribution of ζ =

supk≥1 Sk .

Thus, with S∗ :=max(0, ζ ∗), we have

S = S(ω)=
{

0 on {ω : η+ =∞},
Sη+ + S∗ = χ+ + S∗ on {ω : η+ <∞}.

Since, as has already been noted, S∗ does not depend on χ+ and η+, and the distri-

bution of S∗ coincides with that of S, we have
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EeiλS = P(η+ =∞)+E
(
eiλ(χ++S∗); η+ <∞

)

= (1− p)+EeiλSE
(
eiλχ+; η+ <∞

)
.

This implies the following result.

Theorem 12.3.2 If
∑ P(Sk>0)

k
<∞ or, which is the same, p = P(η+ <∞) < 1,

then

EeiλS = 1− p

1−E(eiλχ+ , η+ <∞)
= 1− p

f1+(λ)
.

In exactly the same way we can obtain the relation

EeiλS = 1− p0

1−E(eiλχ0
+ , η0

+ <∞)
, (12.3.2)

where p0 = P(η0
+ <∞) < 1.

In this case, one can write a factorisation identity in following form:

1− ϕ(λ)= (1− p0)(1−Eeiλχ−)

EeiλS
= (1− p)(1−Eeiλχ0

−)

EeiλS
. (12.3.3)

In Sects. 12.5–12.7 we will discuss the possibility of finding the explicit form

and the asymptotic properties of the distribution of S.

12.4 The Distribution of S in Insurance Problems and Queueing

Theory

In this section we show that the need to analyse the distribution of the variable S

considered in Sect. 12.3 arises in insurance problems and also when studying queue-

ing systems.

12.4.1 Random Walks in Risk Theory

Consider the following simplified model of an insurance business operation. De-

note by x the initial surplus of the company and consider the daily dynamics of

the surplus. During the k-th day the company receives insurance premiums at the

rate ξ+k ≥ 0 and pays out claims made by insured persons at the rate ξ−k ≥ 0 (in

case of a fire, a traffic accident, and so on). The amounts ξk = ξ−k − ξ+k are ran-

dom since they depend on the number of newly insured persons, the size of pre-

miums, claim amounts and so on. For a foreseeable “homogeneous” time period,

the amount ξk can be assumed to be independent and identically distributed. If we

put Sn :=
∑n

k=1 ξk then the company’s surplus after n days will be Zn = x − Sn,

provided that we allow it to be negative. But if we assume that the company ruins at
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the time when Zn first becomes negative, then the probability of no ruin during the

first n days equals

P
(

min
k≤n

Zk ≥ 0
)
= P(Sn ≤ x),

where, as above, Sn =maxk≤n Sk . Accordingly, the probability of ruin within n days

is equal to P(Sn > x), and the probability of ruin in the long run can be identified

with P(S > x). It follows that, for the probability of ruin to be less than 1, it is nec-

essary that Eξk < 0 or, which is the same, that Eξ−k < Eξ+k . When this condition is

satisfied, in order to make the probability of ruin small enough, one has to make the

initial surplus x large enough. In this connection it is of interest to find the explicit

form of the distribution of S, or at least the asymptotic behaviour of P(S > x) as

x→∞. Sections 12.5–12.7 will be focused on this.

12.4.2 Queueing Systems

Imagine that “customers” who are to be served by a certain system arrive with time

intervals τ1, τ2, . . . between successive arrivals. These could be phone calls, planes

landing at an airport, clients in a shop, messages to be processed by a computer,

etc. Assume that serving the k-th customer (the first customer arrived at time 0, the

second at time τ1, and so on) requires time sk , k = 1,2, . . . If, at the time of the k-

th customer’s arrival, the system was busy serving one of the preceding customers,

the newly arrived customer joins the “queue” and waits for service which starts

immediately after the system has finished serving all the preceding customers. The

problem is to find the distribution of the waiting time wn of the n-th customer—the

time spent waiting for the service.

Let us find out how the quantities wn+1 and wn are related to each other. The

(n+ 1)-th customer arrived τn time units after the n-th customer, but will have to

wait for an extra sn time units during the service of the n-th customer. Therefore,

wn+1 =wn − τn + sn,

only if wn − τn + sn ≥ 0. If wn − τn + sn < 0 then clearly wn+1 = 0. Thus, if we

put ξn+1 := sn − τn, then

wn+1 =max(0,wn + ξn+1), n≥ 1, (12.4.1)

with the initial value of w1 ≥ 0. Let us find the solution to this recurrence equa-

tion. Let, as above, Sn =
∑n

k=1 ξk . Denote by θ(n) the time when the trajectory of

0, S1, . . . , Sn first attains its minimum:

θ(n) :=min{k : Sk = S n}, S n := min
0≤j≤n

Sj .

Then clearly (for w0 :=w1)

wn+1 =w1 + Sn if wθ(n) =w1 + S n > 0 (12.4.2)
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(since in this case the right-hand side of (12.4.1) does not vanish and wk+1 =wk+ξk

for all k ≤ n), and

wn+1 = Sn − Sθ(n) if w1 + S n ≤ 0 (12.4.3)

(wθ(n) = 0 and wk+1 =wk + ξk for all k ≥ θ(n)). Put

Sn,j :=
n∑

k=n−j+1

ξk, Sn,n := max
0≤j≤n

Sn,j ,

so that

Sn,0 = 0, Sn,n = Sn.

Then

Sn − Sθ(n) = Sn − S n = max
0≤j≤n

(Sn − Sj )= Sn,n,

so that w1 + S n = w1 + Sn − Sn,n and the inequality w1 + Sn ≤ 0 in (12.4.3) is

equivalent to the inequality Sn,n = Sn − Sθ(n) ≥ w1 + Sn. Therefore (12.4.2) and

(12.4.3) can be rewritten as

wn+1 =max(Sn,n,w1 + Sn). (12.4.4)

This implies that, for each fixed x > 0,

P(wn+1 > x)= P(Sn,n > x)+ P(Sn,n ≤ x, w1 + Sn > x).

Now assume that ξk
d= ξ are independent and identically distributed with Eξ < 0.

Then Sn,n
d= Sn and, as n→∞, we have Sn

a.s.−→−∞, P(w1 + Sn > x)→ 0 and

P(Sn > x) ↑ P(S > x). We conclude that, for any initial value w1, the following

limit exists

lim
n→∞

P(wn > x)= P(S > x).

This distribution is called the stationary waiting time distribution. We already

know that it will be proper if Eξ = Es1 −Eτ1 < 0. As in the previous section, here

arises the problem of finding the distribution of S. If, on the other hand, Es1 > E τ1

or Es1 = Eτ1 and s1 
≡ τ1 then the “stationary” waiting time will be infinite.

12.4.3 Stochastic Models in Continuous Time

In the theory of queueing systems and risk theory one can equally well employ

stochastic models in continuous time, when, instead of random walks {Sn}, one uses

generalised renewal processes Z(t) as described in Sect. 10.6. For a given sequence

of independent identically distributed random vectors (τj , ζj ), the process Z(t) is

defined by the equality

Z(t) := Zν(t),
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where

Zn :=
n∑

j=1

ζj , ν(t) :=max{k : Tk ≤ t}, Tk :=
k∑

j=1

τj .

For instance, in risk theory, the capital inflow during time t that comes from

regular premium payments can be described by the function qt , q > 0. The insurer

covers claims of sizes ζ1, ζ2, . . . with time intervals τ1, τ2, . . . between them (the

first claim is covered at time τ1). Thus, if the initial surplus is x, then the surplus at

time t will be

x + qt −Zν(t) = x + qt −Z(t).

The insurer ruins if inft (x + qt −Z(t)) < 0 or, which is the same,

sup
t

(
Z(t)− qt

)
> x.

It is not hard to see that

sup
t

(Zν(t) − qt)= sup
k≥0

Sk =: S,

where Sk =
∑k

j=1 ξj , ξj = ζj − qτj . Thus the continuous-time version of the ruin

problem for an insurance company also reduces to finding the distribution of the

maximums of the cumulative sums.

12.5 Cases Where Factorisation Components Can Be Found in

an Explicit Form. The Non-lattice Case

As was already noted, the boundary functionals of random walks that were consid-

ered in Sects. 12.1–12.3 appear in many applied problems (see e.g., Sect. 12.4). This

raises the question: in what cases can one find, in an explicit form, the factorisation

components and hence the explicit form of the boundary functionals distributions

we need? Here we will deal with factorisation of the function 1− ϕ(λ) and will be

interested in the boundary functionals χ± and S.

12.5.1 Preliminary Notes on the Uniqueness of Factorisation

As was already mentioned, the factorisation of the function 1 − ϕ(λ) obtained in

Corollaries 12.2.2 and 12.2.4 is not canonical since that function vanishes at λ= 0.

In this connection arises the question of whether a factorisation is unique. In other

words, if, say, in the case Eξ < 0, we obtained a factorisation

1− ϕ(λ)= f+(λ)f−(λ),
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where f± are analytic on Π± and continuous on Π±∪Π , then under what conditions

can we state that

EeiλS = f+(0)

f+(λ)

(cf. Theorem 12.3.2)? In order to answer this question, in contrast to the above, we

will have to introduce here restrictions on the distribution of ξ .

1. We will assume that Eξ exists, and in the case Eξ = 0 that Eξ2 also exists.

2. Regarding the structure of the distribution of ξ we will assume that either

(a) the distribution F is non-lattice and the Cramér condition on ch.f. holds:

lim sup
|λ|→∞
Imλ=0

∣∣ϕ(λ)
∣∣< 1, (12.5.1)

or

(b) the distribution F is arithmetic.

Condition (12.5.1) always holds once the distribution F has a nonzero absolutely

continuous component. Indeed, if F= Fa + Fs + Fd is the decomposition of F into

the absolutely continuous, singular and discrete components then, by the Lebesgue

theorem,
∫

eiλxFa(dx)→ 0 as |λ| →∞ on Im λ= 0, and so

lim sup
|λ|→∞

∣∣ϕ(λ)
∣∣≤ Fs

(
(−∞,∞)

)
+ Fd

(
(−∞,∞)

)
< 1.

For lattice distributions concentrated at the points a + hk, k being an inte-

ger, condition (12.5.1) is evidently not satisfied since, for λ = 2πj/h, we have

|ϕ(λ)| = |ei2πa/h| = 1 for all integers j . The condition is also not met for any dis-

crete distribution, since any “part” of such a distribution, concentrated on a finite

number of points, can be approximated arbitrarily well by a lattice distribution. For

singular distributions, condition (12.5.1) can yet be satisfied.

Since, for non-lattice distributions, |ϕ(λ)|< 1 for λ 
= 0, under condition (12.5.1)

one has

sup
|λ|>ε

∣∣ϕ(λ)
∣∣< 1 (12.5.2)

for any ε > 0. This means that the function f(λ)= 1− ϕ(λ) has no zeros on the real

line Π (completed by the points ±∞) except at the point λ= 0.

In case (b), when the distribution of F is arithmetic, one can consider the ch.f.

ϕ(λ) on the segment [0,2π] only or, which is the same, consider the generating

function p(z)= Ezξ , in which case we will be interested in the factorisation of the

function 1− p(z) on the unit circle |z| = 1.

Under the aforementioned conditions, we can “tweak” the function 1− ϕ(λ) so

that it allows canonical factorisation.

In this section we will confine ourselves to the non-lattice case. The arithmetic

case will be considered in Sect. 12.6.

Lemma 12.5.1 Let the distribution F be non-lattice and condition (12.5.1) hold.

Then:
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1. If Eξ < 0 then the function

v(λ) := 1− ϕ(λ)

iλ
(iλ+ 1) (12.5.3)

belongs to K and allows a unique canonical factorisation

v(λ)= v+(λ)v−(λ),

where

v+(λ) := 1−E
(
eiλχ+; η+ <∞

)
= 1− p

EeiλS
, (12.5.4)

v−(λ) := 1−Eeiλχ0
−

iλ
(iλ+ 1). (12.5.5)

2. If Eξ = 0 and Eξ2 <∞ then the function

v0(λ) := 1− ϕ(λ)

λ2

(
λ2 + 1

)
(12.5.6)

belongs to K and allows a unique canonical factorisation

v0(λ)= v0
+(λ)v0

−(λ),

where

v0
+(λ) := 1−Eeiλχ+

iλ
(iλ− 1),

v0
−(λ) := 1−Eeiλχ0

−

iλ
(iλ+ 1)

(12.5.7)

(cf. Corollaries 12.2.2 and 12.2.4).

Here we do not consider the case Eξ > 0 since it is “symmetric” to the case

Eξ < 0 and the corresponding assertion can be derived from the assertion 1 of the

lemma by applying it to the random variables −ξk (or by changing λ to −λ in the

identities), so that in the case Eξ > 0, the function
1−ϕ(λ)

iλ
(iλ − 1) will allow a

unique canonical factorisation.

The uniqueness of the canonical factorisation immediately implies the following

result.

Corollary 12.5.1 If, for Eξ < 0, we have a canonical factorisation

v(λ)=w+(λ)w−(λ),

then

EeiλS = w+(0)

w+(λ)
. (12.5.8)

Proof of Lemma 12.5.1 Let Eξ < 0. Since

1− ϕ(λ)

iλ
→−Eξ > 0
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as λ→ 0 and (12.5.1) is satisfied, we see that v(λ) is bounded and continuous on Π

and is bounded away from zero. This means that v(λ) ∈K.

Further, by Corollary 12.2.2 (see (12.2.1))

v(λ)= (1−Eeiλχ0
−)(iλ+ 1)

iλ

[
1−E

(
eiλχ+; η+ <∞

)]
,

where Eχ0
− ∈ (−∞,0). Therefore, similarly to the above, we find that

v−(λ) := (1−Eeiλχ0
−)(iλ+ 1)

iλ
∈K.

Furthermore, v−(λ) ∈ K− (the factor iλ + 1 has a zero at the point λ = i ∈ Π+).

Evidently, we also have

v+(λ)= 1−E
(
eiλχ+; η+ <∞

)
∈K∩K+.

This proves the first assertion of the lemma. The last equality in (12.5.4) follows

from Theorem 12.3.2. The uniqueness follows from Lemma 12.1.1.

The second assertion is proved in a similar way using Corollary 12.2.5, which

implies that Eχ+ ∈ (0,∞), Eχ0
− ∈ (−∞,0), and

v0(λ)=
[
(1−Eeiλχ+)(iλ− 1)

iλ

][
(1−Eeiλχ0

−)(iλ+ 1)

iλ

]
, (12.5.9)

where, as before, we can show that v0(λ) ∈K and the factors on the right-hand side

of (12.5.9) belong to K∩K±, correspondingly. The lemma is proved. �

12.5.2 Classes of Distributions on the Positive Half-Line with

Rational Ch.F.s

As we saw in Example 7.1.5, the ch.f. of the exponential distribution with density

βe−βx on (0,∞) is β/(β − iλ). The j -th power of this ch.f. ocrresponds to the

gamma-distribution Ŵβ,j (the j -th convolution of the exponential distribution) with

density (see Sect. 7.7)

βkxj−1e−βx

(j − 1)! , x ≥ 0.

This means that a density of the form

K∑

k=1

lk∑

j=1

akjx
j−1e−βkx (12.5.10)

on (0,∞) (where all βk > 0 are different) can then be considered as a mixture

of gamma-distributions and its ch.f. will be a rational function Pm(λ)/Qn(λ), where
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Pm and Qn are polynomials of degrees m and n, respectively (for definiteness, we

can put)

Qn(λ)=
K∏

k=1

(βk − iλ)lk , (12.5.11)

and necessarily m < n (see Property 7.1.8) with n=
∑K

k=1 lk . Here all the zeros of

the polynomial Qn are real. But not only densities of the form (12.5.10) can have

rational ch.f.s. Clearly, the Fourier transform of the function e−βx cosγ x, which can

be rewritten as

1

2
e−βx

(
eiγ x + e−iγ x

)
, (12.5.12)

will also be a rational function. Complex-valued functions of this kind will have

poles that are symmetric with respect to the imaginary line (in our case, at the points

λ = −iβ ± γ ). Convolutions of functions of the form (12.5.12) will have a more

complex form but will not go beyond representation (12.5.10), where βk are “sym-

metric” complex numbers. Clearly, densities of the form (12.5.10), where βk are

either real and positive or complex and symmetric, Reβk > 0, exhaust all the dis-

tributions with rational ch.f.s (the coefficients of the “conjugate” complex-valued

exponentials must coincide to avoid the presence of irremovable complex terms).

It is obvious that the converse is also true: rational ch.f.s Pm(λ)/Qn(λ) corre-

spond to densities of the form (12.5.10). In order to show this it suffices to decom-

pose Pm(λ)/Qn(λ) into partial fractions, for which the inverse Fourier transforms

are known.

We will call densities of the form (12.5.10) on (0,∞) exponential polynomials
with exponents βk . We will call the number lk the multiplicity of the exponent βk

— it corresponds to the multiplicity of the pole of the Fourier transform at the point

λ=−iβk (recall that Qn(λ)=
∏K

k=1(βk − iλ)lk ). One can approximate an arbitrary

distribution on (0,∞) by exponential polynomials (for more details, see [3]).

12.5.3 Explicit Canonical Factorisation of the Function v(λ) in

the Case when the Right Tail of the Distribution F Is an

Exponential Polynomial

Consider a distribution F on the whole real line (−∞,∞) with Eξ < 0 and such

that, for x > 0, the distribution has a density that is an exponential polynomial

(12.5.10). Denote by EP the class of all such distributions. The ch.f. of a distri-

bution F ∈ EP can be represented as

ϕ(λ)= ϕ+(λ)+ ϕ−(λ),

where the function

ϕ−(λ)= E
(
eiλξ ; ξ ≤ 0

)
, ξ ⊂= F,
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is analytic on Π− and continuous on Π− ∪Π , and ϕ+(λ) is a rational function

ϕ+(λ)= Pm(λ)

Qn(λ)
, m < n, (12.5.13)

analytic on Π+. Here ϕ+(λ) is a ch.f. up to the factor P(ξ > 0) > 0.

It is important to note that, for real µ, the equality

ψ+(µ) := ϕ+(−iµ)= E
(
eµξ ; ξ > 0

)
= Pm(−iµ)

Qn(−iµ)
(12.5.14)

only makes sense for µ < β1, where β1 is the minimal zero of the polynomial

Qn(−iµ) (i.e. the pole of ψ+(λ)). It is necessarily a simple and real root since

the function ψ+(µ) is real and monotonically increasing. Further, ψ+(µ) = ∞
for µ ≥ β1. Therefore the function E(eiλξ ; ξ > 0) is undefined for Re iλ ≥ β1

(Imλ≤−β1). However, the right-hand side of (12.5.14) (and hence ϕ+(λ)) can be

analytically continued onto the lower half-plane Im λ ≤ −β1 to a function defined

on the whole complex plane. In what follows, when we will be discussing zeros of

the function 1− ϕ(λ) on Π−, we will mean zeros of this analytical continuation,

i.e. of the function ϕ−(λ)+ Pm(λ)/Qn(λ).

Further, note that, for distributions from the class EP, the Cramér condition

(12.5.1) on ch.f.s always holds, since ϕ+(λ)→ 0 as |λ| →∞, and

lim sup
|λ|→∞, λ∈Π

∣∣ϕ(λ)
∣∣= lim sup

|λ|→∞, λ∈Π

∣∣ϕ−(λ)
∣∣≤ P(ξ ≤ 0) < 1.

For a distribution F ∈ EP, the canonical factorisation of the functions v(λ) and

v0(λ) (see (12.5.3) and (12.5.6)) can be obtained in explicit form expressed in terms

of the zeros of the function 1− ϕ(λ).

Theorem 12.5.1 Let there exist Eξ < 0. In order for the positive component w+(λ)

of a canonical factorisation

v(λ)=w+(λ)w−(λ), w± ∈K± ∩K,

to be a rational function, it is necessary and sufficient that the function

ϕ+(λ)= E
(
eiλξ ; ξ > 0

)

is rational.
If ϕ+ = Pm/Qn is an uncancellable ratio of polynomials Pm and Qn of degrees

m and n, respectively, m < n, then the function 1− ϕ(λ) has precisely n zeros on
Π− (we denote them by −iµ1, . . . ,−iµn), and

w+(λ)=
∏n

k=1(µk − iλ)

Qn(λ)
, (12.5.15)

where Qn(−iµk) 
= 0 (i.e. ratio (12.5.15) is uncancellable).

If all zeros −iµk are arranged in descending order of their imaginary parts:

Reµ1 ≤ Reµ2 ≤ · · · ≤ Reµn,

then the zero −iµ1 will be simple and purely imaginary, µ1 < min(Reµ2, β1),

where β1 is the minimal zero of Qn(−iµ).
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The theorem implies that the component w−(λ) can also be found in an explicit

form:

w−(λ)= (1− ϕ(λ))(iλ+ 1)Qn(λ)

iλ
∏n

k=1(µk − iλ)
.

From Corollary 12.5.1 we obtain the following assertion.

Corollary 12.5.2 If Eξ < 0 and ϕ = Pm/Qm then

EeiλS = w+(0)

w+(λ)
= Qn(λ)∏n

k=1(µk − iλ)

∏n
k=1 µk

Qn(0)
.

By Theorem 12.5.1 and (12.3.3) we also have

Eeiλχ0
− = 1− (1− ϕ(λ))

1− p

Qn(λ)∏∞
k=1(µk − iλ)

∏n
k=1 µk

Qn(0)
,

E
(
eiλχ+; η+ <∞

)
= 1− (1− p)

∏n
k=1(µk − iλ)Qn(0)

Qn(λ)
∏n

k=1 µk

.

(12.5.16)

Proof of Theorem 12.5.1 The proof of sufficiency will be divided into several stages.

1. In the vicinity of the point λ= 0 on the line Π , the value of

v(λ)= (1− ϕ(λ))(iλ+ 1)

iλ

lies in the vicinity of the point −Eξ > 0. By virtue of (12.5.2), outside a neighbour-

hood of zero one has

arg
(
1− ϕ(λ)

)
∈
(
−π

2
,
π

2

)
, arg

iλ+ 1

iλ
∈
(
−π

2
,
π

2

)
, (12.5.17)

where, for a complex number z= |z|eiγ , arg z denotes the exponent γ . In (12.5.17)

arg z means the principal value of the argument from (−π,π]. Clearly, arg z1z2 =
arg z1 + arg z2. This implies that, when λ changes from −T to T for large T , the

values of argv(λ) do not leave the interval (−π,π) and do not come close to its

boundaries. Moreover, the initial and final values of v(λ) lie in the sector arg z ∈
(−π

2
, π

2
). This means that, for any T , the following relation is valid for the index of

the function v on [−T ,T ]:

indT v := 1

2π

∫ T

−T

d
(
argv(λ)

)
∈
(
−b

2
,
b

2

)
, b < 1. (12.5.18)

(If the distribution F has a density on (−∞,0] as well then ϕ(±T )→ 0 and

indT v→ 0 as T →∞.)

2. Represent the function v as the product v(λ)= v1(λ)v2(λ), where

v1(λ)= (iλ+ 1)n

Qn(λ)
,

v2(λ)= Qn(λ)(1− ϕ(λ))

iλ(iλ+ 1)n−1
= Qn(λ)− Pm(λ)−Qn(λ)ϕ−(λ)

iλ(iλ+ 1)n−1
.

(12.5.19)
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We show that

|n+ indT v2|<
1

2
. (12.5.20)

In order to do this, we first note that the function v1 is analytic on Π+ and has there

a zero of multiplicity n at the point λ = i. Consider a closed contour T+T consist-

ing of the segment [−T ,T ] and the semicircle |λ| = T lying in Π+. According to

the argument principle in complex function theory, the number of zeros of the func-

tion v1 inside TT equals the increment of the argument of v1(λ) divided by 2π when

moving along the contour T+T in the positive direction, i.e.

1

2π

∫

T
+
T

d argv1(λ)= n.

As, moreover, v1(λ)→ (−1)n = const as |λ| →∞ (see (12.5.11) and (12.5.19)),

we see that the increment of argv1 on the semicircle tends to 0 as T →∞, and

hence

indT v1→ indv1 :=
1

2π

∫ ∞

−∞
d argv1(λ)= n.

It remains to note that indT v= indT v1 + indT v2 and make use of (12.5.18).

3. We show that 1− ϕ(λ) has precisely n zeros in Π−. To this end, we first show

that the function v2(λ), which is analytic in Π− and continuous on Π− ∪Π , has n

zeros in Π−. Consider the positively oriented closed contour T−T consisting of the

segment [−T ,T ] (traversed in the negative direction) and the lower half of the circle

|λ| = T , and compute

1

2

∫

T
−
T

d argv2(λ). (12.5.21)

Since v2(λ) ∼ (−1)n(1 − ϕ−(λ)) (see (12.5.11) and (12.5.19)), |ϕ−(λ)| < 1 as

|λ| → ∞, Imλ ≤ 0, for large T the part of integral (12.5.21) over the semicircle

will be less than 1/2 in absolute value. Comparing this with (12.5.20) we obtain

that integral (12.5.21), being an integer, is necessarily equal to n. This means that

v2(λ) has exactly n zeros in Π−, which we will denote by −iµ1, . . . ,−iµn. Since

Qn(−iµk) 
= 0 (otherwise we would have, by (12.5.19), Pm(−iµk) = 0, which

would mean cancellability of the fraction Pm/Qn), the function 1−ϕ(λ) has in Π−
the same zeros as v2(λ) (see (12.5.19)).

4. It remains to put

w+(λ)=
∏n

k=1(µk − iλ)

Qn(λ)
,

w−(λ)= (Qn(λ)− Pm(λ)−Qn(λ)ϕ−(λ))(iλ+ 1)

iλ
∏n

k=1(µk − iλ)

and note that w± ∈K± ∩K.

The last assertion of the theorem follows from the fact that the real func-

tion ψ(µ) = ϕ(−iµ) for Im µ = 0 is convex on [0, β1), ψ ′(0) = Eξ < 0 and
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ψ(µ)→∞ as µ→ β1. Therefore on [0, β1) there exists a unique real solution

to the equation ψ(µ)= 1. There are no complex zeros in the half-plane Reµ≤ µ1

since in this region, for Im µ 
= 0, one has
∣∣ψ(µ)

∣∣< ψ(Reµ)≤ψ(µ1)= 1

because of the presence of an absolutely continuous component.

Necessity. Now let w+(λ) be rational. This means that

w+(λ)= c1 +
∫ ∞

0

eiλxg(x)dx,

where c1 = w+(i∞) and g(x) is an exponential polynomial. It follows from the

equality (see (12.5.5))

1− ϕ(λ)=w+(λ)
w−(λ)iλ

iλ+ 1
= c2w+(λ)

(
1−Eeiλχ0

−
)

= c2

(
c1 +

∫ ∞

0

eiλxg(x)dx

)∫ 0

−∞
eiλx dW(x),

where W(x) = −P(χ0
− < x) for x < 0, c2 = const, that ξ has a density for x > 0

that is equal to
∫ 0

−∞
dW(t) g(x − t).

Since the integral

∫ 0

−∞
dW(t) (x − t)ke−β(x−t) = e−βx

k∑

j=0

(−1)j
(

k

j

)
xj ckj ,

ckj =
∫ 0

−∞
dW(t) tk−jeβt ,

is an exponential polynomial, the integral
∫ 0
−∞ dW(t) g(x − t) is also an exponen-

tial polynomial, which implies the rationality of E(eiλξ ; ξ > 0). The theorem is

proved. �

Example 12.5.1 Let the distribution F be exponential on the positive half-line:

P(ξ > x)= qe−βx, β > 0, q < 1.

Then ϕ+(λ) = qβ/(β − iλ) and we can put m = 0, n = 1, P0(λ) = qβ , Q1(λ) =
β− iλ. The equation ψ(µ) := Eeµξ1 = 1 has, in the half-plane Reµ > 0, the unique

solution µ1,

w+(λ)= µ1 − iλ

Q1(λ)

(see (12.5.15)). By Corollary 12.5.2,

EeiλS = µ1

Q1(0)

Q1(λ)

(µ1 − iλ)
= µ1(β − iλ)

β(µ1 − iλ)
= µ1

β
+ β −µ1

β

µ1

µ1 − iλ
.
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This yields P(S = 0)= µ1/β ,

P(S ∈ dx)

dx
=
(

1− µ1

β

)
µ1e

−µ1x for x > 0,

i.e. the distribution of S is exponential on (0,∞) with parameter µ1 and has a

positive atom at zero.

Example 12.5.2 (A generalisation of Example 12.5.1) Let F have, on the positive

half-line, the density
∑n

k=1 ake
−βkx (a sum of exponentials), where 0 < β1 < β2 <

· · ·< βn, ak > 0. Then

Qn(λ)=
n∏

k=1

(βk − iλ).

As was already noted in Theorem 12.5.1, the equation ψ(µ) := ϕ(−iλ)= 1 has, on

the interval (0, β1), a unique zero µ1. The function ψ−(µ) := ϕ−(−iµ) is continu-

ous, positive, and bounded for µ > 0. On each interval (βk, βk+1), k = 1, . . . , n− 1,

the function

ψ+(µ) := ϕ+(−iµ)=
n∑

k=1

akβk

(βk −µ)

is continuous and changes from −∞ to ∞. Therefore, on each of these inter-

vals, there exists at least one root µk+1 of the equation ψ(µ) = 1. Since by The-

orem 12.5.1 there are only n roots of this equation in Reµ > 0, we obtain that µk+1

is the unique root in (βk, βk+1) and

w+(λ)=
∏n

k=1(µk − iλ)

Qn(λ)
, E eiλS =

n∏

k=1

(βk − iλ)µk

(µk − iλ)βk

. (12.5.22)

This means that 1− p := P(S = 0)=
∏n

k=1
µk

βk
, and

P(S ∈ dx)

dx
=

n∑

k=1

bke
−µkx for x > 0,

where µk ∈ (βk−1, βk), k = 1, . . . , n, β0 = 0, and the coefficients bk are defined by

the decomposition of (12.5.22) into partial fractions.

By (12.5.16),

E
(
eiλχ+; η+ <∞

)
= 1− 1− p

EeiλS
= 1−

n∏

k=1

(µk − iλ)

(βk − iλ)
, (12.5.23)

so the conditional distribution of χ+ given χ+ <∞ has a density which is equal to

n∑

k=1

cke
−βkx, (12.5.24)

where the coefficients ck , similarly to the above, are defined by the expansion

of the right-hand side of (12.5.23) into partial fractions. Relation (12.5.24) means
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that the density of χ+ has the same “structure” as the density of ξ does for x > 0,

but differs in coefficients of the exponentials only. By (12.5.16) this property of the

density of χ+ holds in the general case as well.

12.5.4 Explicit Factorisation of the Function v(λ) when the Left

Tail of the Distribution F Is an Exponential Polynomial

Now consider the case where the left tail of the distribution F has a density which is

an exponential polynomial (belongs to the class EP). In this case,

ϕ−(λ)= E
(
eiλξ ; ξ < 0

)
= Pm(λ)

Qn(λ)
,

where

Qn(λ)=
K∏

k=1

(βk − iλ)lk , n=
K∑

k=1

lk, Reβk < 0, m < n.

Theorem 12.5.2 Let there exist Eξ < 0. For the positive component of the canonical
factorisation v(λ)=w+(λ)w−(λ) of the function

v(λ)= (1− ϕ(λ))(iλ+ 1)

iλ

to be representable as

w+(λ)=
(
1− ϕ(λ)

)
R(λ),

where R(λ) is a rational function, it is necessary and sufficient that the func-
tion ϕ−(λ) is rational. If ϕ−(λ) = Pm(λ)/Qn(λ) then the function 1 − ϕ(λ)

has precisely n − 1 zeros in the half-plane on Imλ > 0 which we denote by
−iµ1, . . . ,−iµn−1, and

R(λ)= Qn(λ)

iλ
∏n−1

k=1(µk − iλ)
.

Theorem 12.5.2, Corollary 12.5.1 and (12.3.3) imply the following assertion.

Corollary 12.5.3 If Eξ < 0 and ϕ−(λ)= Pm(λ)/Qn(λ) then

EeiλS = w+(0)

w+(λ)
=−EξQn(0)iλ

∏n−1
k=1(µk − iλ)

(1− ϕ(λ))Qn(λ)
∏n−1

k=1 µk

,

Eeiλχ− = 1+ (1− p0)EξQn(0)iλ
∏n−1

k=1(µk − iλ)
∏n−1

k=1 µkQn(λ)
.
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Here the density of χ− has the same “structure” as the density of ξ does for

x <∞.

Proof of Theorem 12.5.2 The proof is close to that of Theorem 12.5.1, but unfortu-

nately is not its direct consequence. We present here a brief proof of Theorem 12.5.2

under the simplifying assumption that the distribution F is absolutely continuous.

Using the scheme of the proof of Theorem 12.5.1, the reader can easily reconstruct

the argument in the general case.

Sufficiency. As in Theorem 12.5.1, we verify that the trajectory of v(λ), −∞<

λ <∞, does not intersect the ray argv=−π , so in our case there exists

ind v := lim
T→∞

indT v= 0.

Put v := v1v2, where

v1 :=
Qn − Pm −Qnϕ

+

iλ(iλ− 1)n−1
, v2 :=

(iλ+ 1)(iλ− 1)n−1

Qn

.

Clearly, v2 ∈K− ∩K and has exactly n− 1 zeros in Π−. Hence, by the argument

principle, ind v2 =−(n− 1), and

ind v1 =− ind v2 = n− 1.

Since v1 ∈K+ ∩K, again using the argument principle we obtain that v1, as well

as 1− ϕ, has exactly n− 1 zeros −iµ1, . . . ,−iµn−1 in Π+. Putting

w+ :=
(1− ϕ)Qn

iλ
∏n−1

k=1(µk − iλ)
, w− :=

(iλ+ 1)
∏n−1

k=1(µk − iλ)

Qn

,

we obtain a canonical factorisation.

Necessity. Similarly to the preceding arguments, the necessity follows from the

factorisation identity

1− ϕ(λ)= c1

(
1−E

(
eiλχ+; η+ <∞

))
w−(λ)

= c1

∫ ∞

0

eiλx dV (x)

(
c2 +

∫ 0

−∞
eiλxg(x)dx

)
,

where V (x)= P(χ+ > x; η+ <∞) for x > 0, ci = const and g(x) is an exponential

polynomial. The theorem is proved. �

As in Sect. 12.5.1, we do not consider the case Eξ > 0 since it reduces to apply-

ing the aforementioned argument to the random variable −ξ .

12.5.5 Explicit Canonical Factorisation for the Function v0(λ)

The goal of this subsection, as it was in Sects. 12.5.3 and 12.5.4, is to find an ex-

plicit form of the components w0
±(λ) in the canonical factorisation of the function
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v0(λ) = 1−ϕ(λ)

λ2 (λ2 + 1) in (12.5.6) in terms of the zeros of the function 1− ϕ(λ)

in the case where Eξ = 0 and either ϕ+(λ) or ϕ−(λ) is a rational function. When

Eξ = 0, it is sufficient to consider the case where ϕ+(λ) is rational, i.e. the distribu-

tion F has on the positive half-line a density which is an exponential polynomial, so

that

ϕ+(λ)= Pm(λ)

Qn(λ)
, Qn(λ)=

K∏

k=1

(βk − iλ)lk , n=
K∑

k=1

lk.

The case where it is the function ϕ−(λ) that is rational is treated by switching to

random variable −ξ .

Theorem 12.5.3 Let Eξ = 0 and Eξ2 = σ 2 < ∞. For the positive compo-
nent w0

+(λ) of the canonical factorisation

v0(λ)=w0
+(λ)w0

−(λ), w± ∈K± ∩K,

to be a rational function it is necessary and sufficient that the function ϕ+(λ) =
E(eiλξ ; ξ > 0) is rational. If ϕ+(λ) = Pm(λ)/Qn(λ) is an uncancellable ratio
of polynomials of degrees m and n, respectively, m < n, then the function 1− ϕ(λ)

has exactly n− 1 zeros in Π− which we denote by −iµ1, . . . ,−iµn−1, and

w0
+(λ)=

∏n−1
k=1(µk − iλ)(iλ− 1)

Qn(λ)
, w0

−(λ)= (1− ϕ(λ))(iλ+ 1)Qn(λ)

λ2
∏n−1

k=1(µk − iλ)
.

(12.5.25)

Relation (12.5.3) and the uniqueness of canonical factorisation imply the follow-

ing representation.

Corollary 12.5.4 Under the conditions of Theorem 12.5.3,

Eeiλχ+ = 1−
iλEχ+Qn(0)

∏n−1
k=1(1− iλ

µk
)

Qn(λ)
.

Proof The corollary follows from (12.5.7), (12.5.25), the uniqueness of canonical

factorisation and the equalities

v0
+(0)= Eχ+, v0

+(λ)= w0
+(λ)Eχ+
w0
+(0)

,

1−Eeiλχ+ = v0
+(λ)iλ

iλ− 1
= iλEχ+Qn(0)

∏n−1
k=1(µk − iλ)

Qn(λ)
∏n−1

k=1 µk

.

Thus, here the “structure” of the density of χ+ again repeats the structure of the

density of ξ for x > 0. �

Proof of Theorem 12.5.3 The proof is similar to that of Theorem 12.5.1.

Sufficiency.

1. In the vicinity of the point λ= 0, λ ∈Π , the value of v0(λ) lies in the vicinity

of the point σ 2/2 > 0 by Property 7.1.5 of ch.f.s. Outside of a neighbourhood of
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zero, similarly to (12.5.17), we have

arg
(
1− ϕ(λ)

)
∈
(
−π

2
,
π

2

)
, arg

λ2 + 1

λ2
= 0.

This, analogously to (12.5.18), implies

indT v0 := 1

2π

∫ T

−T

d
(
argv0(λ)

)
∈ (−b/2, b/2), b < 1.

2. Represent v0 as v0 = v1v2, where

v1 :=
(iλ+ 1)n

Qn

,

v2 :=
(1− ϕ)(1− iλ)Qn

λ2(iλ+ 1)n−1
= (Qn − Pm −Qnϕ

−)(1− iλ)

λ2(iλ+ 1)n−1
.

(12.5.26)

Then, similarly to (12.5.20), we find that

indT v1→ n as T →∞, |n+ indT v2|<
1

2
.

3. We show that 1− ϕ(λ) has exactly n− 1 zeros in Π−. To this end, note that

the function v2, which is analytic in Π− and continuous on Π− ∪Π has exactly n

zeros in Π−. As in the proof of Theorem 12.5.1, consider the contour T−T . In the

same way as in the argument in this proof, we obtain that

1

2π

∫

T
−
T

d
(
argv2(λ)

)
= n,

so that v2 has exactly n zeros in Π−. Further, by (12.5.26) we have v2 = v3v4,

where the function v3 = (1− iλ)/(iλ+ 1) has one zero in Π− at the point λ=−i.

Therefore the function

v4 =
(Qn − Pm −Qnϕ

−)

λ2(iλ+ 1)n−2
,

which is analytic in Π−, has n−1 zeros there. Since the zeros of 1−ϕ(λ) and those

of v4(λ) in Π− coincide, the assertion concerning the zeros of 1− ϕ(λ) is proved.

4. It remains to put

w0
+(λ) :=

∏n−1
k=1(µk − iλ)(1− iλ)

Qn(λ)
, w0

−(λ) := (1− ϕ(λ))(iλ+ 1)Qn(λ)

λ2
∏n−1

k=1(µk − iλ)

and note that w0
± ∈K± ∩K.

Necessity is proved in exactly the same way as in Theorems 12.5.1 and 12.5.2.

The theorem is proved. �

12.6 Explicit Form of Factorisation in the Arithmetic Case

The content of this section is similar to that of Sect. 12.5 and has the same structure,

but there are also some significant differences.
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12.6.1 Preliminary Remarks on the Uniqueness of Factorisation

As was already noted in Sect. 12.5, for arithmetic distributions defined by collec-

tions of probabilities pk = P(ξ = k), we should use, instead of the ch.f.s ϕ(λ), the

generating functions

p(z)= Ezξ =
∞∑

k=−∞
zkpk

defined on the unit circle |z| = 1, which will be denoted by Π , as the axis Imλ= 0

was in Sect. 12.5. The symbols Π+ (Π−) will denote the interior (exterior) of Π .

For arithmetic distributions we will discuss the factorisation

1− p(z)= f+(z)f−(z)

on the unit circle, where f± are analytic on Π± and continuous including the bound-

ary Π . Similarly to the non-lattice case, the classes of such functions, that, more-

over, are bounded and bounded away from zero on Π±, we will denote by K±.

Continuous bounded functions on Π , which are also bounded away from zero, form

the class K. The notion of canonical factorisation on Π is introduced in exactly the

same way as above. Factorisation components must belong to the classes K±. The

uniqueness of factorisation components (up to a constant factor) is proved in the

same way as in Lemma 12.1.1.

We now show that if, similarly to the above, we “tweak” the function 1− p(z)

then it will admit a canonical factorisation. We will denote the tweaked function and

its factorisation components by the same symbols as in Sect. 12.5. This will not lead

to any confusion.

Lemma 12.6.1 1. If Eξ < 0 then the function

v(z) := (1− p(z))z

1− z

belongs to K and admits a unique canonical factorisation

v(z)= v+(z)v−(z),

where

v+(z) := 1−E
(
zχ+; η+ <∞

)
= 1− p

EzS
, p := P(η+ <∞),

v−(z) := (1−Ezχ0
−)z

1− z
.

2. If Eξ = 0 and Eξ2 <∞ then the function

v0(z) := (1− p(z))z

(1− z)2

belongs to K and admits a unique canonical factorisation

v0(z)= v0
+(z)v0

−(z),
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where

v0
+ :=

1−Ezχ+

1− z
, v0

− :=
(1−Ezχ0

−)z

1− z
.

Here we do not discuss the case Eξ > 0 since it reduces to the case Eξ < 0. We

will also not present an analogue of Corollary 12.5.1 in view of its obviousness.

Proof of Lemma 12.6.1 Let Eξ < 0. Since

(1− p(z))z

1− z
→−Eξ > 0

as z→ 1, p(z) is continuous on the compact Π and, furthermore, |p(z)| < 1 for

z 
= 1, we see that v(z) is bounded away from zero on Π and bounded, and hence

belongs to K. Further, by Corollary 12.2.2 (see (12.2.1) for iλ= z),

v(z)= (1−Ezχ0
−)z

1− z

[
1−E

(
zχ+; η+ <∞

)]
,

where Eχ0
− ∈ (−∞,0). Therefore, similarly to the above, we get

v−(z)= (1−Ezχ0
−)z

1− z
∈K.

Moreover, it is obvious that v−(z) ∈K−. In the same way as above, we obtain that

v+(z)= 1−E
(
zχ+; η+ <∞

)
∈K+ ∩K.

This proves the first assertion of the lemma.

The second assertion is proved similarly by using Corollary 12.2.4, by which

v0(z)= 1−Ezχ+

1− z
· (1−Ezχ0

−)z

1− z
.

Next, as before, we establish that v0 ∈K and that the factors on the right-hand side,

denoted by v0
±(z), belong to K± ∩K. The lemma is proved. �

12.6.2 The Classes of Distributions on the Positive Half-Line with

Rational Generating Functions

The content of Sect. 12.5.2 is mostly preserved here. Now by exponential polyno-

mials we mean the sequences

px =
K∑

k=1

lk∑

j=1

akjx
j−1qx

k , x = 1,2, . . . , (12.6.1)
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where qk < 1 are different (cf. (12.5.10)). To probabilities px of such type will

correspond rational functions

p+(z)= E
(
zξ ; ξ > 0

)
=
∞∑

x=1

zxpx =
Pm(z)

Qn(z)
,

where 1≤m < n, n=
∑K

k=1 lk , and, for definiteness, we put

Qn(z)=
K∏

k=1

(1− qkz)
lk . (12.6.2)

Here a significant difference from the non-lattice case is that, for p+(z) to be

rational, we do not need (12.6.1) to be valid for all x > 0. It is sufficient that (12.6.1)

holds for all x, starting from some r+1≥ 1. The first r probabilities p1, . . . , pr can

be arbitrary. In this case p+(z) will have the form

p+(z)= Pm(z)

Qn(z)
+ Tr(z)=

PM(z)

Qn(z)
, (12.6.3)

where Tr is a polynomial of degree r (for r = 0 we put T0 = 0), so that p+ is again

a rational function, but now the degree of the polynomial PM

M =
{

m, if r = 0,

n+ r, if r ≥ 1
(12.6.4)

in the numerator can be greater than the degree n of the polynomial in the denom-

inator. In what follows, we only assume that n+ r > 0, so that the value n = 0 is
allowed (in this case there will be no exponential part in (12.6.1)). In that case we

will assume that Q0 = 1 and Pm = 0. The distributions corresponding to (12.6.3)

will also be called exponential polynomials.

12.6.3 Explicit Canonical Factorisation of the Function v(z) in

the Case when the Right Tail of the Distribution F Is an

Exponential Polynomial

Consider an arithmetic distribution F on the whole real line (−∞,∞), Eξ < 0,

which is an exponential polynomial on the half-line x > 0. As before, denote the

class of all such distributions by EP. The generating function p(z) of the distribution

F ∈ EP can be represented as

p(z)= p+(z)+ p−(z),

where the function

p−(z)= E
(
zξ ; ξ ≤ 0

)
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is analytic in Π− and continuous including the boundary Π , and p+(z) is a rational

function

p+(z)= E
(
zξ ; ξ > 0

)
= PM (z)

Qn(z)

analytic in Π+.

As above, in this case the canonical factorisation of the function

v(z)= (1− p(z))z

1− z

can be found in explicit form in terms of the zeros of the function 1− p(z).

Theorem 12.6.1 Let there exist Eξ < 0. For the positive component w+(z) of the
canonical factorisation

v(z)=w+(z)w−(z), w± ∈K± ∩K,

to be a rational function it is necessary and sufficient that p+(z)= E(zξ ; ξ > 0) is
a rational function.

If p+ = PM/Qn, where M is defined in (12.6.4), is an uncancellable ratio of
polynomials then the function 1−p(z) has in Π− exactly n+ r zeros, which will be
denoted by z1, . . . , zn+r , and

w+(z)=
∏n+r

k=1(zk − z)

Qn(z)
,

where Qn(zk) 
= 0.

If we arrange the zeros {zk} according to the values of |zk| in ascending order,
then the point z1 > 1 is a simple real zero.

The theorem implies that

w−(z)= (1− p(z))zQn(z)

(1− z)
∏n+r

k=1(zk − z)
.

By Lemma 12.6.1, from Theorem 12.6.1 we obtain the following representation.

Corollary 12.6.1 If Eξ < 0 and p+ = PM/Qn then

EzS = w+(1)

w+(z)
= Qn(z)

∏n+r
k=1(zk − 1)

Qn(1)
∏n+r

k=1(zk − z)
.

Similarly to (12.5.16), we can also write down the explicit form of Ezχ0
− and

E(zχ+; η+ <∞) as well.

Proof of Theorem 12.6.1 The proof is similar to that of Theorem 12.5.1.

Sufficiency.

1. In the vicinity of the point z= 1 in Π the value of −v(z) lies in the vicinity of

the point −Eξ > 0. Outside a neighbourhood of the point z= 1 we have for z ∈Π ,
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arg
(
1− p(z)

)
∈
(
−π

2
,
π

2

)
, arg

(
z

z− 1

)
=− arg

(
1− 1

z

)
∈
(
−π

2
,
π

2

)
.

This implies that, for z ∈Π ,

arg
(
−v(z)

)
∈ (−π,π),

and hence the trajectory of −v(z), z ∈Π , never intersects the ray argv=−π ,

ind v := 1

2π

∫ 2π

0

d
(
argv

(
eiλ

))
= 0.

2. Represent the function v as v= v1v2, where

v1(z) :=
zn+r

Qn(z)
, v2(z) :=

Qn(z)− PM(z)− p−(z)Qn(z)

(1− z)zn+r−1
.

We show that

ind v2 =−n− r. (12.6.5)

In order to do this, we first note that the function v1 is analytic in Π+ and has there

a zero of multiplicity n+ r . Hence by the argument principle ind v1 = n+ r . Since

0= ind v= ind v1 + ind v2, we obtain the desired relation.

3. We show that 1− p(z) has exactly n+ r zeros in Π−. The function v2(z) is

analytic on Π− and continuous including the boundary Π . The positively oriented

contour Π , which contains Π+, corresponds to the negatively oriented contour with

respect to Π−. By (12.6.5) this means that v2(z) has precisely n+ r zeros on Π−
while the point z=∞ is not a zero since the numerator and the denominator of v(z)

grow as |z|n+r as |z| →∞.

4. Denote the zeros of v2 by z1, . . . , zn+r and put

w+(z) :=
∏n+r

k=1(zk − z)

Qn(z)
, w−(z) := Qn(z)(1− p(z))z

(1− z)
∏n+r

k=1(zk − z)
.

It is easy to see that w± ∈K± ∩K. The fact that Qn(zk) 
= 0 and z1 is a simple real

zero of 1− p(z) is proved in the same way as in Theorem 12.5.1.

Necessity is also established in the same fashion as in Theorem 12.5.1. The the-

orem is proved. �

Clearly, in the arithmetic case we have complete analogues of Examples 12.5.1

and 12.5.2. In particular, if

P(ξ = k)= cqk−1, c < (1− q), k = 1,2, . . . ,

then

w+(z)= z1 − z

1− qz
, EzS = (1− qz)(z1 − 1)

(z1 − z)(1− q)
,

P(S = 0)=
1− z−1

1

1− q
, P(S = k)=

(z−1
1 − q)(z1 − 1)zk

1

1− q
, k ≥ 1.

In contrast to Sect. 12.5, here one can give another example where the distribution

of S is geometric.
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Example 12.6.1 Let P(ξ = 1) = p1 > 0 and P(ξ ≥ 2) = 0. In this case χ+ ≡ 1 on

the set {η+ <∞}, and to find the distribution of S there is no need to use Theo-

rem 12.6.1. Indeed, P(S = 0)= 1−p = P(η+ =∞). If η+ <∞ then the trajectory

ξη++1, ξη+=2, . . . is distributed identically to ξ1, ξ2, . . . and hence

S =
{

0 with probability 1− p,

χ+ + S(1) with probability p,

where the variable S(1) is distributed identically to S, χ+ ≡ 1. This yields

EzS = (1− p)+ pzEzS, EzS = 1− p

1− pz
,

P(S = k)= (1− p)pk, k = 0,1, . . .

By virtue of identity (12.3.3) (for eiλ = z) the point z1 = p−1 is necessarily a zero

of the function 1− p(z).

12.6.4 Explicit Canonical Factorisation of the Function v(z) when

the Left Tail of the Distribution F Is an Exponential

Polynomial

We now consider the case where the distribution F on the negative half-line can be

represented as an exponential polynomial, up to the values of P(ξ =−k) at finitely

many points 0,−1,−2, . . . ,−r . In this case, the value of p−(z) is derived similarly

to that of p+(z) in (12.6.3) by replacing z with z−1:

p−(z)= E
(
zξ ; ξ < 0

)
= zn−MPM (z)

Qn(z)
,

where Qn and PM are polynomials (which differ from (12.6.3)),

M =
{

m, if r = 0,

n+ r, if r ≥ 1,
Qn(z)=

K∏

k=1

(z− qk)
lk ,

and all qk < 1 are distinct.

Theorem 12.6.2 Let there exist Eξ < 0. For the positive component of the canonical
factorisation

v(z)=w+(z)w−(z)

to be representable as

w+(z)=
(
1− p(z)

)
R(z),

where R(z) is a rational function, it is necessary and sufficient that p−(z) is a
rational function. If

p−(z)= zn−MPM(z)

Qn(z)
,
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where PM and Qn are defined in (12.6.2) and (12.6.3), then the function 1− p(z)

has in Π+ exactly n+ r − 1 zeros that we denote by z1, . . . , zn+r−1, and

R(z) := Qn(z)

(1− z)
∏n+r−1

k=1 (z− zk)
.

Proof The proof is very close to that of Theorems 12.5.2 and 12.6.1. Therefore we

will only present a brief proof of sufficiency.

1. As in Theorem 12.6.1, one can verify that

ind v= 0.

2. Represent v(z) as v= v1v2, where

v1 :=
(Qn(z)− zn−MPM(z)− p+(z)Qn(z))z

r

(1− z)
, v2(z) :=

z1−r

Qn(z)
.

The function v2 is analytic in Π−, continuous including the boundary Π , and has a

zero at z=∞ of multiplicity n+ r − 1, so that

ind v2 = n+ r − 1.

The function v1 is analytic in Π+ and, by the argument principle, has there n+ r−1

zeros z1, . . . , zn+r−1. The function 1− p(z) has the same zeros.

3. By putting

w+(z) := (1− p(z))Qn(z)

(1− z)
∏n+r−1

k=1 (z− zk)
, w−(z) := z

∏n+r−1
k=1 (z− zk)

Qn(z)

we obtain w± ∈K± ∩K. The theorem is proved. �

12.6.5 Explicit Factorisation of the Function v0(z)

By virtue of the remarks at the beginning of Sect. 12.5.5 it is sufficient to consider

factorisation of the function

v0(z) := (1− p(z))z

(1− z)2

for Eξ = 0 and Eξ2 <∞ just in the case when the function

p+(z)= E
(
zξ ; ξ > 0

)
= PM (z)

Qn(z)

is rational, where Qn(z)=
∏K

k=1(1− qkz)
lk , n=

∑K
k=1 lk (see (12.6.2), (12.6.3)).

Theorem 12.6.3 Let Eξ = 0 and Eξ2 = σ 2 < ∞. For the positive component
w0
+(z) of the canonical factorisation

v0(z)=w0
+(z)w0

−(z), w± ∈K± ∩K,
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to be rational, it is necessary and sufficient that the function p+(z) is rational. If
p+(z)= PM(z)/Qn(z), where M is defined in (12.6.4), is an uncancellable ratio of
polynomials then the function 1− p(z) has in Π− exactly n+ r − 1 zeros that we
denote by z1, . . . , zn+r−1, and

w0
+(z)=

∏n+r−1
k=1 (zk − z)

Qn(z)
, w0

−(z)= (1− p(z))zQn(z)

(1− z)2
∏n+r−1

k=1 (zk − z)
.

Corollaries similar to Corollary 12.5.4 hold true here as well.

Proof of Theorem 12.6.3 The proof is similar to those of Theorems 12.5.3, 12.6.1

and 12.6.2. Therefore, as in the previous theorem, we restrict ourselves to the key

elements of the proof of sufficiency.

1. In the vicinity of the point z= 1 in Π , the value of −v0(z) lies in the vicinity

of the point σ 2/2 > 0. Outside of a neighbourhood of the point z= 1, for z ∈Π we

have

arg
(
1− p(z)

)
∈
(
−π

2
,
π

2

)
,

arg
−z

(1− z)2
=− arg

(
(1− z)

(
1− 1

z

))
=− arg

(
2− z− 1

z

)
= 0.

Hence

ind v0 := 1

2π

∫ 2π

0

d
(
argv0

(
eiλ

))
= 0.

2. Represent the function v0(z) as

v0(z)= v1(z)v2(z),

where

v1(z) :=
zn+r−1

Qn(z)
, v2(z) :=

Qn − PM − p−(z)Qn

(1− z)2zn+r−2
.

As before, we show that indv1 = n+ r − 1 and that 1− p(z) has, on Π−, exactly

n+ r − 1 zeros, which are denoted by z1, . . . , zn+r−1. It remains to put

w0
+(z)=

∏n+r−1
k=1 (zk − z)

Qn(z)
, w0

−(z)= Qn(z)(1− p(z))z

(1− z)2
∏n+r−1

k=1 (zk − z)
.

The theorem is proved. �

12.7 Asymptotic Properties of the Distributions of χ± and S

We saw in the previous sections that one can find the distributions of the variables S

and χ± in explicit form only in some special cases. Meanwhile, in applied problems
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of, say, risk theory (see Sect. 12.4) one is interested in the values of P(S > x) for

large x (corresponding to small ruin probabilities). In this connection there arises

the problem on the asymptotic behaviour of P(S > x) as x→∞, as well as related

problems on the asymptotics of P(|χ±|> x). It turns out that these problems can be

solved under rather broad conditions.

12.7.1 The Asymptotics of P(χ+ > x |η+ < ∞) and P(χ0
− < −x)

in the Case Eξ ≤ 0

We introduce some classes of functions that will be used below.

Definition 12.7.1 A function G(t) is called (asymptotically) locally constant (l.c.)

if, for any fixed v,

G(t + v)

G(t)
→ 1 as t→∞. (12.7.1)

It is not hard to see that, say, the functions G(t)= tα[ln(1+ t)]γ , t > 0, are l.c.

We denote the class of all l.c. functions by L. The properties of functions from L

are studied in Appendix 6. In particular, it is established that (12.7.1) holds uni-

formly in v on any fixed segment, and that G(t) = eo(t) and G(t) = o(GI (t)) as

t→∞, where

GI (t) :=
∫ ∞

t

G(u)du. (12.7.2)

Denote by E the class of distributions satisfying the right-hand side Cramér con-

dition (the exponential class). The class E∗ ⊂ E of distributions G whose “tails”

G(t)=G((t,∞)) satisfy, for any fixed v > 0, the relation

G(t + v)

G(t)
→ 0 as t→∞, (12.7.3)

could be called the “superexponential” class. For example, the normal distribution

belongs to E∗. In the arithmetic case, one has to put v = 1 in (12.7.3) and consider

integer-valued t .

In the case Eξ ≤ 0 it is convenient to introduce a random variable χ with the

distribution

P(χ ∈ dv)= P(χ+ ∈ dv |η+ <∞)= P(χ+ ∈ dv; η+ <∞)

p
, p = P(η+ <∞).

If Eξ = 0 then the distributions of χ and χ+ coincide. In the sequel we will confine

ourselves to non-lattice ξ (then χ± will also be non-lattice). In the arithmetic case

everything will look quite similar.

Denote by F+(t) the right “tail” of the distribution F: F+(t) := F((t,∞)) and

put

F I
+(t) :=

∫ ∞

t

F+(u) du.
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Theorem 12.7.1 Let there exist Eξ ≤ 0 and, in the case E ξ = 0, assume Eξ2 <∞
holds.

1. If F+(t)= o(F I
+(t)) as t→∞ then, as x→∞,

P(χ > x)∼−
F I
+(x)

pEχ0
−

. (12.7.4)

2. If F+(t)= V (t)e−βt , β > 0, V ∈L then

P(χ > x)∼ F+(x)

p(1−Eeβχ0
−)

. (12.7.5)

3. If F+ ∈ E∗ then

P(χ > x)∼ F+(x)

pP(χ0
− < 0)

. (12.7.6)

Proof The proof is based on identity (12.2.1) of Corollary 12.2.2, which can be

rewritten as

1− pEeiλχ = 1− ϕ(λ)

1− ϕ0
−(λ)

, ϕ0
−(λ) := Eeiλχ0

− . (12.7.7)

Introduce the renewal function H−(t) corresponding to the random variable χ0
− ≤ 0:

H−(t)=
∞∑

k=0

P(Hk ≥ t), Hk = χ
(1)
− + · · · + χ

(k)
− ,

where χ
(k)
− are independent copies of χ0

−, a− := Eχ0
− > −∞. As was noted in

Sect. 10.1, the function 1/(1− ϕ0
−(λ)) can be represented as

1

1− ϕ0
−(λ)

=−
∫ 0

−∞
eiλt dH−(t)

(the function H−(t) decreases). Therefore, for x > 0 and any N > 0, we obtain from

(12.7.7) that

pP(χ > x)=−
∫ 0

−∞
dH−(t)F+(x − t)=−

∫ 0

−N

−
∫ −N

−∞
. (12.7.8)

Here, by the condition of assertion 1,

−
∫ 0

−N

≤ F+(x)
[
H−(−N)−H−(0)

]
= o

(
F I
+(x)

)
as x→∞.

Evidently, this relation will still be true when N →∞ slowly enough as x→∞.

Furthermore, by the local renewal theorem, as N→∞,

−
∫ −N

−∞
dH−(t)F+(x − t)∼

∫ −N

−∞
F+(x − t)

dt

|a−|
=

F I
+(x +N)

|a−|
. (12.7.9)

For a formal justification of this relation, the interval (−∞,−N ] should be divided

into small intervals (−Nk+1,−Nk], k = 0,1, . . . , N0 = N , Nk+1 > Nk , on each of
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which we use the local renewal theorem, so that

F+(x −Nk)(Nk+1 −Nk)

|a−|
(
1+ o(1)

)
≤−

∫ −Nk

−Nk+1

dH−(t)F+(x − t)

≤ F+(x −Nk+1)(Nk+1 −Nk)

|a−|
(
1+ o(1)

)
.

From here it is not difficult to obtain the required bounds for the left-hand side

of (12.7.9) that are asymptotically equivalent to the right-hand side. Since, for N

growing slowly enough,

F I
+(x)− F I

+(x +N)=
∫ x+N

x

F+(u) du < F+(x)N = o
(
F I
+(x)

)

one has F I
+(x +N)∼ F I

+(x), and we finally obtain the relation

pP(χ > x)∼
F I
+(x +N)

|a−|
.

This proves (12.7.4).

If F+(t)= V (t)e−βt , V ∈L, then we find from (12.7.8) that

pP(χ > x)∼−V (x)e−βx

∫ 0

−∞
dH−(t) etβ = F+(x)

1−Eeβχ0
−

.

This proves (12.7.5).

Now let F+ ∈ E∗. If we denote by h0 > 0 the jump of the function H−(t) at the

point 0 then, clearly,

−
∫ 0

−∞
dH−(t)

F+(x − t)

F+(x)
→ h0 as x→∞,

and hence

pP(χ > x)∼ F+(x)h0.

If we put q := P(χ0
− = 0) then h0, being the average time spent by the random

walk {Hk} at the point 0, equals

h0 =
∞∑

k=0

qk = 1

1− q
.

The theorem is proved. �

Now consider the asymptotics of P(χ0
− <−x) as x→∞.

Put F−(t) := F((−∞,−t))= P(ξ <−t).

Theorem 12.7.2 Let Eξ < 0.

1. If F− ∈L then, as x→∞,

P
(
χ0
− <−x

)
∼ F−(x)

1− p
.
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2. If F−(t)= e−γ tV (t), V (t) ∈L, then

P
(
χ0
− <−x

)
∼ Ee−γ SF−(x)

1− p
.

3. If F− ∈ E∗ then

P
(
χ0
− <−x

)
∼ F−(x)P(S = 0)

1− p
.

Proof Making use of identity (12.3.3):

1− ϕ0
−(λ)= (1− ϕ(λ))E eiλS

1− p
, ϕ0

−(λ)= Eeiλχ0
− .

This implies that P(χ0
− <−x) is the weighted mean of the value F−(x+ t) with the

weight function P(S ∈ dt)/(1− p):

P
(
χ0
− <−x

)
= 1

1− p

∫ ∞

0

P(S ∈ dt)F−(x + t).

From here the assertions of the theorem follow in an obvious way. �

If Eξ = 0 then the asymptotics of P(χ0
− <−x) will be different.

12.7.2 The Asymptotics of P(S > x)

We will study the asymptotics of P(S > x) in the two non-overlapping and mutually

complementary cases where F+ ∈ E (the Cramér condition holds) and where F I
+

belongs to the class S of subexponential functions.

Definition 12.7.2 A distribution G on [0,∞) with the tail G(t) := G([t,∞)) be-

longs to the class S+ of subexponential distributions on the positive half-line if

G2∗(t)∼ 2G(t) as t→∞. (12.7.10)

A distribution G on the whole real line belongs to the class S of subexponential
distributions if the distribution G+ of the positive part ζ+ =max{0, ζ } of a random

variable ζ ⊂= G belongs to S+. A random variable is called subexponential if its

distribution is subexponential.

As we will see later (see Theorem A6.4.3 in Appendix 6), the subexponentiality

distribution G is in essence a property of the asymptotics of the tail of G(t) as

t→∞. Therefore we can also talk about subexponential functions. A nonincreasing

function G1(t) on (0,∞) is called subexponential if the distribution G with a tail

G(t) such that G(t) ∼ cG1(t) as t →∞ for some c > 0 is subexponential. (For

example, distributions with tails G1(t)/G1(0) or min(1,G1(t)) if G1(0) > 1.)

The properties of subexponential distributions are studied in Appendix 6. In par-

ticular, it is established that S⊂L, R⊂ S (R is the class of regularly varying func-

tions) and that G(t)= o(GI (t)) if GI ∈ S.
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Theorem 12.7.3 If F I
+(t) ∈ S and a = Eξ < 0, then, as x→∞,

P(S > x)∼ 1

|a|F
I
+(x). (12.7.11)

Proof Making use of the identity from Theorem 12.3.2:

EeiλS = 1− p

1− pϕχ (λ)
, ϕχ (λ) := Eeiλχ , (12.7.12)

it follows that

EeiλS = (1− p)

∞∑

k=0

pkϕk
χ (λ),

and hence, for x > 0,

P(S > x)= (1− p)

∞∑

k=1

pkP(Hk > x), Hk :=
k∑

j=1

χj , (12.7.13)

where χj are independent copies of χ . By assertion 1 of Theorem 12.7.1 the distri-

bution of χ is subexponential, while by Theorem A6.4.3 of Appendix 6, as x→∞,

for each fixed k one has

P(Hk > x)∼ kP(χ > x). (12.7.14)

Moreover, again by Theorem A6.4.3 of Appendix 6, for any ε > 0, there exists a

b= b(ε) such that, for all x and k ≥ 2,

P(Hk > x)

P(χ > x)
< b(1+ ε)k.

Therefore, for (1+ ε)p < 1, the series

∞∑

k=1

pk P(Hk > x)

P(χ > x)

converges uniformly in x. Passing to the limit as x→∞, by virtue of (12.7.14) we

obtain that

lim
x→∞

P(S > x)

P(χ > x)
= (1− p)

∞∑

k=1

kpk = p

1− p

or, which is the same, that

P(S > x)∼ pP(χ > x)

1− p
as x→∞,

where, by Theorem 12.7.1,

P(χ > x)∼−
F I
+(x)

pEχ0
−

.
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Since, by Corollary 12.2.3,

(1− p)Eχ0
− = Eξ,

we obtain (12.7.11). The theorem is proved. �

Now consider the case when F satisfies the right-hand side Cramér condition

(F+ ∈ E). For definiteness, we will again assume that the distribution F is non-

lattice. Furthermore, we will assume that there exists an µ1 > 0 such that

ψ(µ1) := Eeµ1ξ = 1, b := Eξeµ1ξ =ψ ′(µ1) <∞. (12.7.15)

In this case the Cramér transform of the distribution of F at the point µ1 will be of

the form

F(µ1)(dt)= eµ1tF(dt)

ψ(µ1)
= eµ1tF(dt). (12.7.16)

A random variable ξ(µ1) with the distribution F(µ1) has, by (12.7.15), a finite expec-

tation equal to b. Denote the size of the first overshoot of the level x by a random

walk with jumps ξ(µ1) by χ(µ1)(x). By Corollary 10.4.1, the distribution of χ(µ1)(x)

converges, as x→∞, to the limiting distribution: χ(µ1)(x)⇒ χ(µ1), so that

Ee−µ1χ(µ1)(x)→ Ee−µ1χ(µ1) . (12.7.17)

Theorem 12.7.4 Let F+ ∈ E and (12.7.15) be satisfied. Then, as x→∞,

P(S > x)∼ ce−µ1x, (12.7.18)

where c= Ee−µ1χ(µ1) < 1.

There is a somewhat different interpretation of the constant c in Remark 15.2.3.

Exact upper and lower bounds for eµ1xP(S > x) are contained in Theorem 15.3.5.

Note that the finiteness of Eξ < 0 is not assumed in Theorem 12.7.4. In the

arithmetic case, we have to consider only integer x.

Proof Put η(x) :=min{n≥ 1 : Sn > x}, Xn := x1+· · ·+xn and Xn :=maxk≤n Xk .

Then

P(S > x)= P
(
η(x) <∞

)
=
∞∑

n=1

P
(
η(x)= n

)
, (12.7.19)

where

P
(
η(x)= n

)
=
∫

. . .

∫

︸ ︷︷ ︸
n

F(dx1) . . .F(dxn) I(Xn−1 ≤ x,Xn > x)

=
∫

. . .

∫

︸ ︷︷ ︸
n

F(µ1)(dx1) . . .F(µ1)(dxn)e
−µ1Xn I(Xn−1 ≤ x,Xn > x)

= E(µ1)e
−µ1Sn I

(
η(x)= n

)
. (12.7.20)
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Here E(µ1) denotes the expectation when taken assuming that the distribution of the

summands ξi is F(µ1). By the convexity of the function ψ(µ)= Eeµξ ,

E(µ1)ξ =
∫

xeµ1xF(dx)=ψ ′(µ1)= b > 0,

and hence

P(µ1)

(
η(x) <∞

)
= 1.

Therefore, returning to (12.7.19), we obtain

P(S > x)= E(µ1)

∞∑

k=1

e−µ1Sn I
(
η(x)= n

)
= E(µ1)e

−µ1Sη(x) , (12.7.21)

where Sη(x) = x + χ(µ1)(x) and, by (12.7.17),

eµ1xP(S > x)→ c= Ee−µ1χ(µ1) < 1.

This proves (12.7.18). For arithmetic ξ the proof is the same. We only have to re-

place F(dt) in (12.7.15) and (12.7.16) by pk = P(ξ = k), as well as integration by

summation. The theorem is proved. �

Corollary 12.7.1 If, in the arithmetic case, Eξ < 0, p1 = P(ξ = 1) > 0, P(ξ ≥ 2)=
0 then the conditions of Theorem 12.7.4 are satisfied and one has

P(S > x)= e−µ1(k+1), k ≥ 0.

Proof The proof follows immediately from (12.7.21) if we note that, in the case

under consideration, χ(µ1)(x)≡ 1 and Sη(x) = x+1. This assertion repeats the result

of Example 12.6.1. �

Remark 12.7.1 The asymptotics (12.7.18), obtained by a probabilistic argument,

admits a simple analytic interpretation. From (12.7.18) it follows that, as µ ↑ µ1,

we have

EeµS ∼ cµ1

µ1 −µ
.

But that EeµS has precisely this form follows from identity (12.3.3):

EeµS = (1− p)(1−Eeµχ0
−)

1−ψ(µ)
.

Indeed, since, by assumption, ψ(µ)= Eeµξ is left-differentiable at the point µ1 and

ψ(µ)= 1− b(µ1 −µ)+ o
(
(µ1 −µ)

)
, (12.7.22)

one has

EeµS ∼ (1− p)(1−Eeµ1χ
0
−)

b(µ1 −µ)
(12.7.23)
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as µ ↑ µ1. This implies, in particular, yet another representation for the constant c

in (12.7.18):

c= (1− p)(1−Eeµ1χ
0
−)

b
.

Since

EeµS = w+(0)

w+(λ)

and w+(λ) has a zero at the point µ1, we can obtain representations similar to

(12.7.22) and (12.7.23) in terms of the values of w+(0) and w′(µ1).

We should also note that the proof of asymptotics (12.7.18) with the help of

relations of the form (12.7.23) is based on certain facts from mathematical analysis

and is relatively simple only under the additional condition (12.5.1).

There are other ways to prove (12.7.18), but they also involve additional restric-

tions. For instance, (12.3.3) implies

EeiλS = (1− p)

∞∑

k=0

[
ϕk(λ)− ϕk(λ)E eiλχ0

−
]
,

P(S > x)= (1− p)

∞∑

k=0

[
P(Sk > x)− P

(
Sk + χ0

− > x
)]

= (1− p)

∫ ∞

0

P
(
χ0
− ∈ dt

) ∞∑

k=0

P
(
Sk ∈ (x, x + t]

)
,

and the problem now reduces to integro-local theorems for large deviations of Sk

(see Chap. 9) or to local theorems for the renewal function in the region where the

function converges to zero.

12.7.3 The Distribution of the Maximal Values of Generalised

Renewal Processes

Let {(τi, ζi)}∞j=1 be a sequence of independent identically distributed random vec-

tors,

Z(t)= Zν(t),

where

Zn :=
n∑

j=1

ζj , ν(t) :=max{k : Tk ≤ t}, Tk :=
k∑

j=1

τj .

In Sect. 12.4.3 we reduced the problem of finding the distribution of supt (Z(t)−qt)

to that of the distribution of S := supk≥0 Sk , Sk :=
∑k

j=1 ξj , ξj := ζj − qτj in the

case q > 0, ζk ≥ 0. We show that such a reduction takes place in the general case

as well. If q ≥ 0 and the ζk can take values of both signs, then the reduction is the
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same as in Sect. 12.4.3. Now if q < 0 then

sup
t

(Zν(t) − qt)= sup(−qT1,Z1 − qT2,Z2 − qT3, . . .)

=−qτ1 + sup
k≥1

[
Zk−1 − q(Tk − τ1)

] d= S − qτ,

where the random variables τ1 and S are independent.

12.8 On the Distribution of the First Passage Time

12.8.1 The Properties of the Distributions of the Times η±

In this section we will establish a number of relations between the random vari-

ables η± and the time θ when the global maximum S = supSk is attained for the

first time:

θ :=min{k : Sk = S} (if S <∞ a.s.).

Put

P(z) :=
∞∑

k=0

zkP
(
η0
− > k

)
, q(z) := E

(
zη+

∣∣η+ <∞
)
,

D+ :=
∞∑

k=1

P(Sk > 0)

k
.

Further, let η be a random variable with the distribution

P(η= k)= P(η+ = k | η+ <∞)

(and the generating function q(z)), η1, η2, . . . be independent copies of η,

Hk := η1 + · · · + ηk, H0 = 0,

and ν be a random variable independent of {ηk} with the geometric distribution

P(ν = k)= (1− p)pk , k ≥ 0.

Theorem 12.8.1 If p = P(η+ <∞) < 1 then

1. 1− p = 1

Eη0
−
= e−D+ . (12.8.1)

2. P(z)= 1

1− pq(z)
= Ezθ

1− p
. (12.8.2)

3. P
(
η0
− > n

)
= (1− p)P(Hν = n) > P(η+ = n) (12.8.3)

for all n≥ 0.

Recall that, for the condition p < 1 to hold, it is sufficient that Eξ < 0 (see

Corollary 12.2.6).
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The second assertion of the theorem implies that the distributions of η0
−, η+ and θ

uniquely determine each other, so that if at least one of them is known then, to find

the other two, it is not necessary to know the original distribution F. In particular,

P(θ = n)= (1− p)P(χ0
− > n).

Proof of Theorem 12.8.1 The arguments in this subsection are based on the follow-

ing identities which follow from Theorems 12.1.1–12.1.3 if we put there λ= 0 and

|z|< 1:

1− z=
[
1−Ezη0

−
][

1−E
(
zη+; η+ <∞

)]
, (12.8.4)

1−Ezη0
− = exp

{
−
∞∑

k=1

zk

k
P(Sk ≤ 0)

}
, (12.8.5)

1−E
(
zη+; η+ <∞

)
= exp

{
−
∞∑

k=1

zk

k
P(Sk > 0)

}
. (12.8.6)

Since

1−Ezη0
−

1− z
= P(z), P (1)= Eη0

−

we obtain from (12.8.4) the first equalities in (12.8.1) and (12.8.2). The second

equality in (12.8.1) follows from (12.8.6).

To prove the second equality in (12.8.2), we make use of the relation

θ =
{

0 on {ω : η+ =∞},
η+ + θ∗ on {ω : η+ <∞},

where θ∗ is distributed on {η+ <∞} identically to θ and does not depend on η+. It

follows that

Ezθ = (1− p)+Ezθ E
(
zη+; η+ <∞

)
.

This implies the second equality in (12.8.2). The last assertion of the theorem fol-

lows from the first equality in (12.8.2), which implies

P(z)=
∞∑

k=0

pkqk(z)= (1− p)

∞∑

k=0

P(ν = k)

∞∑

n=0

P(Hk = n)zn

= (1− p)

∞∑

n=0

znP(Hν = n).

The theorem is proved. �

The second equality in (12.8.2) and identity (12.7.12) mean that the representa-

tions

θ = η1 + · · · + ην and S = χ1 + · · · + χν,

respectively, hold true, where ν has the geometric distribution P(ν = k) =
(1− p)pk , k ≥ 0, and does not depend on {ηj }, {χj }.
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Note that the probabilities P(Sk > 0) = P(Sk − ak > −ak) on the right-hand

sides of (12.8.5) and (12.8.6) are, for large k and a = Eξ < 0, the probabilities of

large deviations that were studied in Chap. 9. The results of that chapter on the

asymptotics of these probabilities together with relations (12.8.5) and (12.8.6) give

us an opportunity to find the asymptotics of P(η+ = n) and P(η0
− = n) as n→∞

(see [8]).

Now consider the case where the both random variables η0
− and η+ are proper.

That is always the case if Eξ = 0 (see Corollary 12.2.6). Here identities (12.8.4)–

(12.8.6) hold true (with P(η+ <∞) = 1). As before, (12.8.4) implies that the dis-

tributions of η0
− and η+ uniquely determine each other.

Let η1, η2, . . . be independent copies of η+, Hk = η1+ · · · + ηk and H0 = 0. For

the sums Hk , define the local renewal function

hn :=
∞∑

n=0

P(Hk = n).

Theorem 12.8.2 If P(η0
− <∞)= P(η+ <∞)= 1 then:

1. Eη0
− = Eη+ =∞.

2. P(η0
− > n)= hn.

Proof From (12.8.4) it follows that

P(z)= 1−Ezη0
−

1− z
= 1

1−Ezη+
→∞ (12.8.7)

as z→ 1. Since P(z)→ Eη0
− as z→ 1, we have proved that Eη0

− is infinite. That

Eη+ is also infinite is shown in the same way. The second assertion also follows

from (12.8.7) since the right-hand side of (12.8.7) is
∑∞

n=0 znhn. The theorem is

proved. �

Now we turn to the important class of symmetric distributions. We will say that

the distribution of a random variable ξ is symmetric if it coincides with the distribu-

tion of −ξ , and will call the distribution of ξ continuous if the distribution function

of ξ is continuous. For such random variables, Eξ = 0 (if Eξ exists), the distribu-

tions of Sn are also symmetric continuous for all n, and

P(Sn > 0)= P(Sn < 0)= 1

2
, P(Sn = 0)= 0,

and hence D(z)≡ 1, P(χ0
+ = 0)= 0, and η+ = η0

+, χ+ = χ0
+ with probability 1.

Theorem 12.8.3 If the distribution of ξ is symmetric and continuous then

P(η+ = n)= P
(
η0
− = n

)
= (2n)!

(2n− 1)(n!)222n
∼ 1

2
√

π n3/2
,

P(γn > 0)= P(ζn < 0)∼ 1√
πn

(12.8.8)

as n→∞ (γn and ζn are defined in Section 12.1.3).
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Proof Since Ezη0
− = Ezη+ , by virtue of (12.8.4) one has

1−Ezη+ =
√

1− z.

Expanding
√

1− z into a series, we obtain the second equality in (12.8.8). The

asymptotic equivalence follows from Stirling’s formula.

The second assertion of the theorem follows from the first one and the equality

P(ζn < 0)=
∞∑

k=n+1

P(η+ = k).

The assertions concerning η0
− and γn follow by symmetry.

The theorem is proved. �

Note that, under the conditions of Theorem 12.8.3, the distributions of the vari-

ables η+, η−, γn, ζn do not depend on the distribution of ξ . Also note that the

asymptotics

P(η+ = n)∼ 1

2
√

π n3/2

persists in the case of non-symmetric distributions as well provided that Eξ = 0 and

Eξ2 <∞ (see [8]).

12.8.2 The Distribution of the First Passage Time of an Arbitrary

Level x by Arithmetic Skip-Free Walks

The main object in this section is the time

η(x)=min{k : Sk ≥ x}
of the first passage of the level x by the random walk {Sk}. Below we will consider

the class of arithmetic random walks for which χ+ ≡ 1.

By an arithmetic skip-free walk we will call a sequence {Sk}∞k=0, where the dis-

tribution of ξ is arithmetic and maxω ξ(ω) = 1 (i.e. p1 > 0 and pk = 0 for k ≥ 2,

where pk = P(ξ = k)). The term “skip-free walk” appears due to the fact that the

walk {Sk}, k = 0,1, . . . , cannot skip any integer level x > 0: if Sn > x then neces-

sarily there is a k < n such that Sk = x.

As we already know from Example 12.6.1, for skip-free walks with Eξ < 0 the

distribution of S is geometric:

P(S = k)= (1− p)pk, k = 0,1, . . . ,

where p = P(η+ <∞) and z1 = p−1 is the zero of the function 1 − p(z) with

p(z)=
∑

k pkz
k .

It turns out that one can find many other explicit formulas for skip-free

walks. In this section we will be interested in the distribution of the maximum
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Sn = max(0, S1, . . . , Sn); as we already noted, knowing the distribution is impor-

tant for many problems of mathematical statistics, queueing theory, etc. Note that

finding the distribution of Sn is the same as finding the distribution of η(x), since

{Sn < x} =
{
η(x) > n

}
. (12.8.9)

Here we put η(x) :=∞ if S < x.

The Pollaczek–Spitzer identity (see Theorem 12.3.1) provides the double trans-

form of the distribution of Sn. Analysing this identity shows that the distribution of

Sn (or η(x)) itself typically cannot be expressed in terms of the distribution of ξk in

explicit form. However, for discrete skip-free walks one has remarkable “duality”

relations which we will now prove with the help of Pollaczek–Spitzer’s identity.

Theorem 12.8.4 If ξ is integer-valued then P(ξk ≥ 2)= 0 is a necessary and suffi-
cient condition for

nP
(
η(x)= n

)
= xP(Sn = x), x ≥ 1. (12.8.10)

Using the Wald identity, it is also not hard to verify that if the expectation Eξ1 =
a > 0 exists then the walk {Sn} will be skip-free if and only if Eη(x)= x/a. (Note

that the definition of η(x) in this section somewhat differs from that in Chap. 10.

One obtains it by changing x to x+1 on the right-hand side of the definition of η(x)

from Chap. 10.)

The asymptotics of the local probabilities P(Sn = x) was studied in Chap. 9 (see

e.g., Theorem 9.3.4). This together with (12.8.10) enables us to find the asymptotics

of P(η(x)= n).

Proof of Theorem 12.8.4 Set

rx := P
(
η(x)=∞

)
= P(S < x), qx,n := P

(
η(x)= n

)
,

Qx,n := P
(
η(x) > n

)
=

∞∑

k=n+1

qx,k + rx .

Since for each y, 0≤ y ≤ x,

{
η(x)= n

}
⊂

n⋃

k=0

{
η(y)= k

}
,

using the fact that the walk is skip-free, by the total probability formula one has

qx,n =
n∑

k=0

qy,kqx−y,n−k,

where q0,0 = 1, and qy,0 = 0 for y > 0. Hence for |z| ≤ 1 using convolution we have

qx(z) :=
∞∑

k=0

qx,nz
n = E

(
zη(x); η(x) <∞

)
= qy(z)qx−y(z).
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Putting y = 1 and q0(z)= 1, we obtain

qx(z)= q(z)qx−1(z)= qx(z), x ≥ 0.

From here one can find the generating function Qx(z) of the sequence Qx,n:

Qx(z) :=
∞∑

n=0

zn

(
rx +

∞∑

k=n+1

qx,k

)
= rx

1− z
+
∞∑

n=1

qx,n

n−1∑

k=0

zk

= rx

1− z
+
∞∑

n=1

qx,n

1− zn

1− z
= rx

1− z
+ qx(1)− qx(z)

1− z
= 1− qx(z)

1− z
.

Note that here the quantity qx(1)= P(η(x) <∞)= P(S ≥ x) can be less than 1.

Using (12.8.9) we obtain that

P(Sn = x)= P
(
η(x + 1) > n

)
− P

(
η(x) > n

)
,

∞∑

n=0

znP(Sn = x)= (1− qx+1(z))− (1− qx(z))

1− z
= qx(z)(1− q(z))

1− z
.

Finally, making use of the absolute summability of the series below, we find that,

for |v|< 1 and |z|< 1,

∞∑

n=0

znEvSn =
∞∑

x=0

vx

∞∑

n=0

znP(Sn = x)= 1− q(z)

(1− z)(1− vq(z))
.

Turning now to the Pollaczek–Spitzer formula, we can write that

∞∑

n=1

zn

n
Evmax(0,Sn) = ln

1− q(z)

1− z
− ln

(
1− vq(z)

)
= ln

1− q(z)

1− z
+
∞∑

x=1

(vq(z))x

x
.

Comparing the coefficients of vx , x ≥ 1, we obtain

∞∑

n=1

zn

n
P(Sn = x)= qx(z)

x
, x ≥ 1. (12.8.11)

Taking into account that qx(z)= qx(z) and comparing the coefficients of zn, n≥ 1,

in (12.8.11) we get

1

n
P(Sn = x)= 1

x
P(ηx = n), x ≥ 1, n≥ 1.

Sufficiency is proved.

The necessity of the condition P(ξ ≥ 2)= 0 follows from equality (12.8.10) for

x = n= 1:

p1 = q1,1 =
∞∑

k=1

pk,

∞∑

k=2

pk = P(ξ ≥ 2)= 0.

The theorem is proved. �
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Using the obtained formulas one can, for instance, find in Example 4.2.3 the

distribution of the time to ruin in a game with an infinitely rich adversary (the total

capital being infinite). If the initial capital of the first player is x then, for the time

η(x) of his ruin, we obtain

P
(
η(x)= n

)
= x

n
P(Sn = x),

where

Sn =
n∑

j=1

ξj ; P(ξj = 1)= q, P(ξj =−1)= p

(p is the probability for the first player to win in a single play). Therefore, if n and

x are both either odd or even then

P
(
η(x)= n

)
= x

n

(
n

(n− x)/2

)
q(n+x)/2p(n−x)/2, (12.8.12)

and P(η(x)= n)= 0 otherwise.

It is interesting to ask how fast P(η(x) > n) decreases as n grows in the case

when the player will be ruined with probability 1, i.e. when P(η(x) <∞)= 1. As

we already know, this happens if and only if p ≤ q . (The assertion also follows from

the results of Sect. 13.3.)

Applying Stirling’s formula, as was done when proving the local limit theorem

for the Bernoulli scheme, it is not difficult to obtain from (12.8.12) that, for each

fixed x, as n→∞ (n and x having the same parity), for p ≤ q ,

P
(
η(x)= n

)
∼ x

n3/2

√
2

π
(4pq)n/2

(
q

p

)x/2

;

P
(
η(x)≥ n

)
∼ x

n3/2(p− q)2

√
2

π
(4pq)n/2

(
q

p

)x/2

for p < q

and

P
(
η(x)≥ n

)
∼ x

√
2

πn
for p = q.

The last relation allowed us, under the conditions of Sect. 8.8, to obtain the lim-

iting distribution for the number of intersections of the trajectory S1, . . . , Sn with

the strip [u,v] (see (8.8.24)). Up to the normalising constants, this assertion also

remains true for arbitrary random walks such that Eξk = 0 and Eξ2
k <∞. However,

even in the case of a skip-free walk, the proof of this assertion requires additional

efforts, despite the fact that, for such walks, an upward intersection of the line x = 0

by the trajectory {Sn} divides the trajectory, as in Sect. 8.8, into independent identi-

cally distributed cycles.



Chapter 13

Sequences of Dependent Trials. Markov Chains

Abstract The chapter opens with in Sect. 13.1 presenting the key definitions and

first examples of countable Markov chains. The section also contains the classifica-

tion of states of the chain. Section 13.2 contains necessary and sufficient conditions

for recurrence of states, the Solidarity Theorem for irreducible Markov chains and

a theorem on the structure of a periodic Markov chain. Key theorems on random

walks on lattices are presented in Sect. 13.3, along with those for a general sym-

metric random walk on the real line. The ergodic theorem for general countable

homogeneous chains is established in Sect. 13.4, along with its special case for fi-

nite Markov chains and the Law of Large Numbers and the Central Limit Theorem

for the number of visits to a given state. This is followed by a short Sect. 13.5 de-

tailing the behaviour of transition probabilities for reducible chains. The last three

sections are devoted to Markov chains with arbitrary state spaces. First the ergod-

icity of such chains possessing a positive atom is proved in Sect. 13.6, then the

concept of Harris Markov chains is introduced and conditions of ergodicity of such

chains are established in Sect. 13.7. Finally, the Laws of Large Numbers and the

Central Limit Theorem for sums of random variables defined on a Markov chain are

obtained in Sect. 13.8.

13.1 Countable Markov Chains. Definitions and Examples.

Classification of States

13.1.1 Definition and Examples

So far we have studied sequences of independent trials. Now we will consider the

simplest variant of a sequence of dependent trials.

Let G be an experiment having a finite or countable set of outcomes {E1,E2, . . .}.
Suppose we keep repeating the experiment G. Denote by Xn the number of the

outcome of the n-th experiment.

In general, the probabilities of different values of EXn can depend on what events

occurred in the previous n−1 trials. If this probability, given a fixed outcome EXn−1

of the (n−1)-st trial, does not depend on the outcomes of the preceding n−2 trials,

then one says that this sequence of trials forms a Markov chain.

A.A. Borovkov, Probability Theory, Universitext,
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To give a precise definition of a Markov chain, consider a sequence of integer-

valued random variables {Xn}∞n=0. If the n-th trial resulted in outcome Ej , we set

Xn := j .

Definition 13.1.1 A sequence {Xn}∞0 forms a Markov chain if

P(Xn = j |X0 = k0,X1 = k1, . . . ,Xn−2 = kn−2,Xn−1 = i)

P(Xn = j |Xn−1 = i)=: p(n)
ij . (13.1.1)

These are the so-called countable (or discrete) Markov chains, i.e. Markov chains

with countable state spaces.

Thus, a Markov chain may be thought of as a system with possible states

{E1,E2, . . .}. Some “initial” distribution of the variable X0 is given:

P(X0 = j)= p0
j ,

∑
p0

j = 1.

Next, at integer time epochs the system changes its state, the conditional probability

of being at state Ej at time n given the previous history of the system only being

dependent on the state of the system at time n− 1. One can briefly characterise this

property as follows: given the present, the future and the past of the sequence Xn

are independent.
For example, the branching process {ζn} described in Sect. 7.7, where ζn was the

number of particles in the n-th generation, is a Markov chain with possible states

{0,1,2, . . .}.
In terms of conditional expectations or conditional probabilities (see Sect. 4.8),

the Markov property (as we shall call property (13.1.1)) can also be written as

P
(
Xn = j

∣∣ σ(X0, . . . ,Xn−1)
)
= P

(
Xn

∣∣ σ(Xn−1)
)
,

where σ(·) is the σ -algebra generated by random variables appearing in the argu-

ment, or, which is the same,

P(Xn = j
∣∣X0, . . . ,Xn−1)= P(Xn |Xn−1).

This definition allows immediate extension to the case of a Markov chain with a

more general state space (see Sects. 13.6 and 13.7).

The problem of the existence of a sequence {Xn}∞0 which is a Markov chain

with given transition probabilities p
(n)
ij (p

(n)
ij ≥ 0,

∑
j p

(n)
ij = 1) and a given “initial”

distribution {p0
k} of the variable X0 can be solved in the same way as for independent

random variables. It suffices to apply the Kolmogorov theorem (see Appendix 2) and

specify consistent joint distributions by

P(X0 = k0,X1 = k1, . . . ,Xn = kn) := p0
k0

p
(1)
k0k1

p
(2)
k1k2
· · ·p(n)

kn−1kn
,

which are easily seen to satisfy the Markov property (13.1.1).
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Definition 13.1.2 A Markov chain {Xn}∞0 is said to be homogeneous if the proba-

bilities p
(n)
ij do not depend on n.

We consider several examples.

Example 13.1.1 (Walks with absorption and reflection) Let a > 1 be an integer.

Consider a walk of a particle over integers between 0 and a. If 0 < k < a, then from

the point k with probabilities 1/2 the particle goes to k−1 or k+1. If k is equal to 0

or a, then the particle remains at the point k with probability 1. This is the so-called

walk with absorption. If Xn is a random variable which is equal to the coordinate

of the particle at time n, then the sequence {Xn} forms a Markov chain, since the

conditional expectation of the random variable Xn given X0,X1, . . . ,Xn−1 depends

only on the value of Xn−1. It is easy to see that this chain is homogeneous.

This walk can be used to describe a fair game (see Example 4.2.3) in the case

when the total capital of both gamblers equals a. Reaching the point a means the

ruin of the second gambler.

On the other hand, if the particle goes from the point 0 to the point 1 with prob-

ability 1, and from the point a to the point a − 1 with probability 1, then we have a

walk with reflection. It is clear that in this case the positions Xn of the particle also

form a homogeneous Markov chain.

Example 13.1.2 Let {ξk}∞k=0 be a sequence of independent integer-valued random

variables and d > 0 be an integer. The random variables Xn :=
∑n

k=0 ξk (mod d)

obtained by adding ξk modulo d (Xn =
∑n

k=0 ξk − jd , where j is such that 0 ≤
Xn < d) form a Markov chain. Indeed, we have Xn = Xn−1 + ξn (mod d), and

therefore the conditional distribution of Xn given X1,X2, . . . ,Xn−1 depends only

on Xn−1.

If, in addition, {ξk} are identically distributed, then this chain is homogeneous.

Of course, all the aforesaid also holds when d = ∞, i.e. for the conventional

summation. The only difference is that the set of possible states of the system is in

this case infinite.

From the definition of a homogeneous Markov chain it follows that the probabil-

ities p
(n)
ij of transition from state Ei to state Ej on the n-th step do not depend on n.

Denote these probabilities by pij . They form the transition matrix P = ‖pij‖ with

the properties

pij ≥ 0,
∑

j

pij = 1.

The second property is a consequence of the fact that the system, upon leaving the

state Ei , enters with probability 1 one of the states E1,E2, . . . .

Matrices with the above properties are said to be stochastic.

The matrix P completely describes the law of change of the state of the system
after one step. Now consider the change of the state of the system after k steps. We
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introduce the notation pij (k) := P(Xk = j |X0 = i). For k > 1, the total probability

formula yields

pij (k)=
∑

s

P(Xk−1 = s|X0 = i)psj =
∑

s

pis(k − 1)psj .

Summation here is carried out over all states. If we denote by P(k) := ‖pij (k)‖ the

matrix of transition probabilities pij (k), then the above equality means that P(k)=
P(k − 1)P or, which is the same, that P(k) = P k . Thus the matrix P uniquely
determines transition probabilities for any number of steps. It should be added here

that, for a homogeneous chain,

P(Xn+k = j |Xn = i)= P(Xk = j |X0 = i)= pij (k).

We see from the aforesaid that the “distribution” of a chain will be completely de-

termined by the matrix P and the initial distribution p0
k = P(X0 = k).

We leave it to the reader as an exercise to verify that, for an arbitrary k ≥ 1 and

sets B1, . . . ,Bn−k ,

P(Xn = j |Xn−k = i;Xn−k−1 ∈ B1, . . . ,X0 ∈ Bn−k)= pij (k).

To prove this relation one can first verify it for k = 1 and then make use of induction.

It is obvious that a sequence of independent integer-valued identically distributed

random variables Xn forms a Markov chain with pij = pj = P(Xn = j). Here one

has P(k)= P k = P .

13.1.2 Classification of States1

Definition 13.1.3

K1. A state Ei is called inessential if there exist a state Ej and an integer t0 > 0

such that pij (t0) > 0 and pji(t)= 0 for every integer t .

Otherwise the state Ei is called essential.
K2. Essential states Ei and Ej are called communicating if there exist such integers

t > 0 and s > 0 that pij (t) > 0 and pji(s) > 0.

Example 13.1.3 Assume a system can be in one of the four states {E1,E2,E2,E4}
and has the transition matrix

P =

⎛
⎜⎜⎝

0 1/2 1/2 0

1/2 0 0 1/2

0 0 1/2 1/2

0 0 1/2 1/2

⎞
⎟⎟⎠ .

1Here and in Sect. 12.2 we shall essentially follow the paper by A.N. Kolmogorov [23].
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Fig. 13.1 Possible transitions

and their probabilities in

Example 13.1.3

In Fig. 13.1 the states are depicted by dots, transitions from state to state by

arrows, numbers being the corresponding probabilities. In this chain, the states E1

and E2 are inessential while E3 and E4 are essential and communicating.

In the walk with absorption described in Example 13.1.1, the states 1,2, . . . ,

a−1 are inessential. The states 0 and a are essential but non-communicating, and it

is natural to call them absorbing. In the walk with reflection, all states are essential

and communicating.

Let {Xn}∞n=0 be a homogeneous Markov chain. We distinguish the class S0 of

all inessential states. Let Ei be an essential state. Denote by SEi
the class of states

comprising Ei and all states communicating with it. If Ej ∈ SEi
, then Ej is essential

and communicating with Ei , and Ei ∈ SEj
. Hence SEi

= SEj
. Thus, the whole set

of essential states can be decomposed into disjoint classes of communicating states

which will be denoted by S1, S2, . . .

Definition 13.1.4 If the class SEi
consists of the single state Ei , then this state is

called absorbing.

It is clear that after a system has hit an essential state Ei , it can never leave

the class SEi
.

Definition 13.1.5 A Markov chain consisting of a single class of essential com-

municating states is said to be irreducible. A Markov chain is called reducible if it

contains more than one such class.

If we enumerate states so that the states from S0 come first, next come states

from S1 and so on, then the matrix of transition probabilities will have the form

shown in Fig. 13.2. Here the submatrices marked by zeros have only zero entries.

The cross-hatched submatrices are stochastic.

Each such submatrix corresponds to some irreducible chain. If, at some time, the

system is at a state of such an irreducible chain, then the system will never leave this

chain in the future. Hence, to study the dynamics of an arbitrary Markov chain, it

is sufficient to study the dynamics of irreducible chains. Therefore one of the basic

objects of study in the theory of Markov chains is irreducible Markov chains. We

will consider them now.
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Fig. 13.2 The structure of

the matrix of transition

probabilities of a general

Markov chain. The class S0

consists of all inessential

states, whereas S1, S2, . . . are

closed classes of

communicating states

We introduce the following notation:

fj (n) := P(Xn = j,Xn−1 
= j, . . . ,X1 
= j |X0 = j), Fj :=
∞∑

n=1

fj (n);

fj (n) is the probability that the system leaving the j -th state will return to it for the

first time after n steps. The probability that the system leaving the j -th state will

eventually return to it is equal to Fj .

Definition 13.1.6

K3. A state Ej is said to be recurrent (or persistent) if Fj = 1, and transient if

Fj < 1.

K4. A state Ej is called null if pjj (n)→ 0 as n→∞, and positive otherwise.

K5. A state Ej is called periodic with period dj if the recurrence with this state has

a positive probability only when the number of steps is a multiple of dj > 1,

and dj is the maximum number having such property.

In other words, dj > 1 is the greatest common divisor (g.c.d.) of the set of num-

bers {n : fj (n) > 0}. Note that one can always choose from this set a finite subset

{n1, . . . , nk} such that dj is the greatest common divisor of these numbers. It is also

clear that pjj (n)= fj (n)= 0 if n 
= 0 (mod dj ).

Example 13.1.4 Consider a walk of a particle over integer points on the real line

defined as follows. The particle either takes one step to the right or remains on

the spot with probabilities 1/2. Here fj (1)= 1/2, and if n > 1 then fj (n)= 0 for

any point j . Therefore Fj < 1 and all the states are transient. It is easily seen that

pjj (n)= 1/2n→ 0 as n→∞ and hence every state is null.

On the other hand, if the particle jumps to the right with probability 1/2 and with

the same probability jumps to the left, then we have a chain with period 2, since

recurrence to any particular state is only possible in an even number of steps.
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13.2 Necessary and Sufficient Conditions for Recurrence of

States. Types of States in an Irreducible Chain. The

Structure of a Periodic Chain

Recall that the function

a(z)=
∞∑

n=0

anz
n

is called the generating function of the sequence {an}∞n=0. Here z is a complex vari-

able. If the sequence {an} is bounded, then this series converges for |z|< 1.

Theorem 13.2.1 A state Ej is recurrent if and only if Pj =
∑∞

n=1 pjj (n)=∞. For
a transient Ej ,

Fj =
Pj

1+ Pj

. (13.2.1)

The assertion of this theorem is a kind of expansion of the Borel–Cantelli lemma

to the case of dependent events An = {Xn = j}. With probability 1 there occur

infinitely many events An if and only if

∞∑

n=1

P(An)= Pj =∞.

Proof By the total probability formula we have

pjj (n)= fj (1)pjj (n− 1)+ fj (2)pjj (n− 2)+ · · · + fj (n− 1)pjj (1)+ fj (n) · 1.

Introduce the generating functions of the sequences {pjj (n)}∞n=0 and {fj (n)}∞n=0:

Pj (z) :=
∞∑

n=1

pjj (n)zn, Fj (z) :=
∞∑

n=1

fj (n)zn.

Both series converge inside the unit circle and represent analytic functions. The

above formula for pjj (n), after multiplying both sides by zn and summing up over

n, leads (by the rule of convolution) to the equality

Pj (z)= zf1(1)
(
1+ Pj (z)

)
+ z2f1(2)

(
1+ Pj (z)

)
+ · · · =

(
1+ Pj (z)

)
Fj (z).

Thus

Fj (z)=
Pj (z)

1+ Pj (z)
, Pj (z)=

Fj (z)

1+ Fj (z)
.

Assume that Pj =∞. Then Pj (z)→∞ as z ↑ 1 and therefore Fj (z)→ 1. Since

Fj (z) < Fj for real z < 1, we have Fj = 1 and hence Ej is recurrent.
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Now suppose that Fj = 1. Then Fj (z)→ 1 as z ↑ 1, and so Pj (z)→∞. There-

fore Pj (z)=∞.

If Ej is transient, it follows from the above that Pj (z) <∞, and setting z := 1

we obtain equality (13.2.1). �

The quantity Pj =
∑∞

n=1 pjj (n) can be interpreted as the mean number of visits

to the state Ej , provided that the initial state is also Ej . It follows from the fact that

the number of visits to the state Ej can be represented as
∑∞

n=1 I (Xn = j), where,

as before, I (A) is the indicator of the event A. Therefore the expectation of this

number is equal to

E

∞∑

n=1

I (Xn = j)=
∞∑

n=1

EI (Xn = j)=
∞∑

n=1

pjj (n)= Pj .

Theorem 13.2.1 implies the following result.

Corollary 13.2.1 A transient state is always null.

This is obvious, since it immediately follows from the convergence of the series∑
pjj (n) <∞ that pjj (n)→ 0.

Thus, based on definitions K3–K5, we could distinguish, in an irreducible chain,

8 possible types of states (each of the three properties can either be present or not).

But in reality there are only 6 possible types since transient states are automatically

null, and positive states are recurrent. These six types are generated by:

1) Classification by the asymptotic properties of the probabilities pjj (n) (tran-

sient, recurrent null and positive states).

2) Classification by the arithmetic properties of the probabilities pjj (n) or fj (n)

(periodic or aperiodic).

Theorem 13.2.2 (Solidarity Theorem) In an irreducible homogeneous Markov
chain all states are of the same type: if one is recurrent then all are recurrent, if
one is null then all are null, if one state is periodic with period d then all states are
periodic with the same period d .

Proof Let Ek and Ej be two different states. There exist numbers N and M such

that

pkj (N) > 0, pjk(M) > 0.

The total probability formula

pkk(N +M + n)=
∑

l,s

pkl(N)pls(n)psk(M)

implies the inequality

pkk(N +M + n)≥ pkj (N)pjj (n)pjk(M)= αβpjj (n).
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Here n > 0 is an arbitrary integer, α = pjj (N) > 0, and β = pjj (M) > 0. In the

same way one can obtain the inequality

pjj (N +M + n)≥ αβpkk(n).

Hence

1

αβ
pkk(N +M + n)≥ pkk(n)≥ αβpkk(n−M −N). (13.2.2)

We see from these inequalities that the asymptotic properties of pkk(n) and

pjj (n) are the same. If Ek is null, then pkk(n)→ 0, therefore pjj (n)→ 0 and

Ej is also null. If Ek is recurrent or, which is equivalent, Pk =
∑∞

n=1 pkk(n)=∞,

then

∞∑

n=M+N+1

pjj (n)≥ αβ

∞∑

n=M+N+1

pkk(n−M −N)=∞,

and Ej is also recurrent.

Suppose now that Ek is a periodic state with period dk . If pkk(n) > 0, then dk

divides n. We will write this as dk | n. Since pkk(M + N) ≥ αβ > 0, then dk |
(M +N).

We now show that the state Ej is also periodic and its period dj is equal to dk .

Indeed, if pjj (n) > 0 for some n, then by virtue of (13.2.2), pkk(n+M +N) > 0.

Therefore dk | (n+M +N), and since dk | (M +N), dk | n and hence dk ≤ dj . In

a similar way one can prove that dj ≤ dk . Thus dj = dk . �

If the states of an irreducible Markov chain are periodic with period d > 1, then

the chain is called periodic.

We will now show that the study of periodic chains can essentially be reduced to

the study of aperiodic chains.

Theorem 13.2.3 If a Markov chain is periodic with period d , then the set of states
can be split into d subclasses Ψ0,Ψ1, . . . ,Ψd−1 such that, with probability 1, in one
step the system passes from Ψk to Ψk+1, and from Ψd−1 the system passes to Ψ0.

Proof Choose some state, say, E1. Based on this we will construct the subclasses

Ψ0,Ψ1, . . . ,Ψd−1 in the following way: Ei ∈ Ψα , 0 ≤ α ≤ d − 1, if there exists an

integer k > 0 such that p1i(kd + α) > 0.

We show that no state can belong to two subclasses simultaneously. To this end

it suffices to prove that if Ei ∈ Ψα and p1i(s) > 0 for some s, then s = α (mod d).

Indeed, there exists a number t1 > 0 such that pi1(t1) > 0. So, by the definition

of Ψα , we have p11(kd + α + t1) > 0. Moreover, p11(s + t1) > 0. Hence d | (kd +
α + t1) and d | (s + t1). This implies α = s (mod d).

Since starting from the state E1 it is possible with positive probability to enter

any state Ei , the union
⋃

α Ψα contains all the states.
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Fig. 13.3 The structure of

the matrix of transition

probabilities of a periodic

Markov chain: an illustration

to the proof of

Theorem 13.2.3

We now prove that in one step the system goes from Ψα with probability 1 to

Ψα+1 (here the sum α + 1 is modulo d). We have to show that, for Ei ∈ Ψα ,

∑

Ej∈Ψα+1

pij = 1.

To do this, it suffices to prove that pij = 0 when Ei ∈ Ψα , Ej /∈ Ψα+1.

If we assume the opposite (pij > 0) then, taking into account the inequality

p1i(kd + α) > 0, we have p1j (kd + α + 1) > 0 and consequently Ej ∈ Ψα+1. This

contradiction completes the proof of the theorem. �

We see from the theorem that the matrix of a periodic chain has the form shown

in Fig. 13.3 where non-zero entries can only be in the shaded cells.

From a periodic Markov chain with period d one can construct d new Markov

chains. The states from the subset Ψα will be the states of the α-th chain. Transition

probabilities are given by

pα
ij := pij (d).

By virtue of Theorem 13.2.3,
∑

Ej∈Ψα
pα

ij = 1. The new chains, to which one can

reduce in a certain sense the original one, will have no subclasses.

13.3 Theorems on Random Walks on a Lattice

1. A random walk on integer points on the line. Imagine a particle moving on

integer points of the real line. Transitions from one point to another occur in equal

time intervals. In one step, from point k the particle goes with a positive probability

p to the point k + 1, and with positive probability q = 1− p it moves to the point

k − 1. As was already mentioned, to this physical system there corresponds the

following Markov chain:

Xn =Xn−1 + ξn =X0 + Sn,

where ξn takes values 1 and −1 with probabilities p and q , respectively, and Sn =∑n
k=1 ξk . The states of the chain are integer points on the line.
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It is easy to see that returning to a given point with a positive probability is only

possible after an even number of steps, and f0(2)= 2pq > 0. Therefore this chain

is periodic with period 2.

We now establish conditions under which the random walk forms a recurrent

chain.

Theorem 13.3.1 The random walk {Xn} forms a recurrent Markov chain if and only
if p = q = 1/2.

Proof Since 0 < p < 1, the random walk is an irreducible Markov chain. Therefore

by Theorem 13.2.2 it suffices to examine the type of any given point, for example,

zero.

We will make use of Theorem 13.2.1. In order to do this, we have to investigate

the convergence of the series
∑∞

n=1 p00(n). Since our chain is periodic with period

2, one has p00(2k + 1)= 0. So it remains to compute
∑∞

1 p00(2k). The sum Sn is

the coordinate of the walking particle after n steps (X0 = 0). Therefore p00(2k)=
P(S2k = 0). The equality S2k = 0 holds if k of the random variables ξj are equal

to 1 and the other k are equal to −1 (k steps to the right and k steps to the left).

Therefore, by Theorem 5.2.1,

P(S2k = 0)∼ 1√
πk

e−2kH(1/2) = 1√
πk

(4pq)k.

We now elucidate the behaviour of the function β(p)= 4pq = 4p(1−p) on the

interval [0,1]. At the point p = 1/2 the function β(p) attains its only extremum,

β(1/2) = 1. At all the other points of [0,1], β(p) < 1. Therefore 4pq < 1 for

p 
= 1/2, which implies convergence of the series
∑∞

k=1 p00(2k) and hence the tran-

sience of the Markov chain. But if p = 1/2 then p00(2k) ∼ 1/
√

πk and the series∑∞
k=1 p00(2k) diverges, which implies, in turn, that all the states of the chain are

recurrent. The theorem is proved. �

Theorem 13.3.1 allows us to make the following remark. If p 
= 1/2, then the

mean number of recurrences to 0 is finite, as it is equal to
∑∞

k=1 p00(2k). This

means that, after a certain time, the particle will never return to zero. The particle

will “drift” to the right or to the left depending on whether p is greater than 1/2 or

less. This can easily be obtained from the law of large numbers.

If p = 1/2, then the mean number of recurrences to 0 is infinite; the particle

has no “drift”. It is interesting to note that the increase in the mean number of re-

currences is not proportional to the number of steps. Indeed, the mean number of

recurrences over the first 2n steps is equal to
∑n

k=1 p00(2k). From the proof of The-

orem 13.3.1 we know that p00(2k)∼ 1/
√

πk. Therefore, as n→∞,

n∑

k=1

p00(2k)∼
n∑

k=1

1√
πk
∼ 2
√

n√
π

.
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Thus, in the fair game considered in Example 4.2.2, the proportion of ties rapidly

decreases as the number of steps increases, and deviations are growing both in mag-

nitude and duration.

13.3.1 Symmetric Random Walks in R
k , k ≥ 2

Consider the following random walk model in the k-dimensional Euclidean space

R
k . If the walking particle is at point (m1, . . . ,mk), then it can move with prob-

abilities 1/2k to any of the 2k vertices of the cube |xj − mj | = 1, i.e. the points

with coordinates (m1 ± 1, . . . ,mk ± 1). It is natural to call this walk symmetric.

Denoting by Xn the position of the particle after the n-th jump, we have, as before,

a sequence of k-dimensional random variables forming a homogeneous irreducible

Markov chain. We shall show that all states of the walk on the plane are, as in the

one-dimensional case, recurrent. In the three-dimensional space, the states will turn

out to be transient. Thus we shall prove the following assertion.

Theorem 13.3.2 The symmetric random walk is recurrent in spaces of one and two
dimensions and transient in spaces of three or more dimensions.

In this context, W. Feller made the sharp comment that the proverb “all roads

lead to Rome” is true only for two-dimensional surfaces. The assertion of Theo-

rem 13.3.2 is adjacent to the famous theorem of Pólya on the transience of sym-

metric walks in R
k for k > 2 when the particle jumps to neighbouring points along

the coordinate axes (so that ξj assumes 2k values with probabilities 1/2k each). We

now turn to the proof of Theorem 13.3.2.

Proof of Theorem 13.3.2 Let k = 2. It is not difficult to see that our walk Xn can be

represented as a sum of two independent components

Xn =
(
X−1

n ,0
)
+
(
0,X2

n

)
,

(
X1

0,X
2
0

)
=X0,

where Xi
n, i = 1,2, . . . , are scalar (one-dimensional) sequences describing symmet-

ric independent random walks on the respective lines (axes). This is obvious, for the

two-dimensional sequence admits the representation

Xn+1 =Xn + ξn, (13.3.1)

where ξn assumes 4 values (±1,0) + (0,±1) = (±1,±1) with probabilities 1/4

each.

With the help of representation (13.3.1) we can investigate the asymptotic be-

haviour of the transition probabilities pij (n). Let X0 coincide with the origin (0,0).

Then

p00(2n) = P
(
X2n = (0,0)|X0 = (0,0)

)
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= P
(
X1

2n = 0|X1
0 = 0

)
P
(
X2

2n = 0|X2
0 = 0

)
∼ (1/

√
πn)2 = 1/(πn).

From this it follows that the series
∑∞

n=0 p00(n) diverges and so all the states of our

chain are recurrent.

The case k = 3 should be treated in a similar way. Represent the sequence Xn as

a sum of three independent components

Xn =
(
X1

n,0,0
)
+
(
0,X2

n,0
)
+
(
0,0,X3

n

)
,

where the Xi
n are, as before, symmetric random walks on the real line. If we set

X0 = (0,0,0), then

p00(2n)=
(
P
(
X1

2n = 0|X1
0 = 0

))3 ∼ 1/(πn)3/2.

The series
∑∞

n=1 p00(n) is convergent here, and hence the states of the chain are

transient. In contrast to the straight line and plane cases, a particle leaving the origin

will, with a positive probability, never come back.

It is evident that a similar situation takes place for walks in k-dimensional space

with k ≥ 3, since
∑∞

n=1(πn)−k/2 <∞ for k ≥ 3. The theorem is proved. �

13.3.2 Arbitrary Symmetric Random Walks on the Line

Let, as before,

Xn =X0 +
n∑

1

ξj , (13.3.2)

but now ξj are arbitrary independent identically distributed integer-valued random

variables. Theorem 13.3.1 may be generalised in the following way:

Theorem 13.3.3 If the ξj are symmetric and the expectation Eξj exists (and hence
Eξj = 0) then the random walk Xn forms a recurrent Markov chain with null states.

Proof It suffices to verify that

∞∑

n=1

P(Sn = 0)=∞,

where Sn =
∑n

1 ξj , and that P(Sn = 0)→ 0 as n→∞. Put

p(z) := Ezξ1 =
∞∑

k=−∞
zkP(ξ1 = k).
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Then the generating function of Sn will be equal to EzSn = pn(z), and by the inver-

sion formula (see Sect. 7.7)

P(Sn = 0)= 1

2πi

∫

|z|=1

pnz−1dz, (13.3.3)

∞∑

n=0

P(Sn = 0)= 1

2πi

∫

|z|=1

dz

z(1− p(z))
= 1

π

∫ π

0

dt

1− p(eit )
.

The last equality holds since the real function p(r) is even and is obtained by sub-

stituting z= eit .

Since Eξ1 = 0, one has 1− p(eit )= o(t) as t→ 0 and, for sufficiently small δ

and 0≤ t < δ,

0≤ 1− p
(
eit

)
< t

(the function p(eit ) is real by virtue of the symmetry of ξ1). This implies

∫ π

0

dt

1− p(eit )
≥
∫ δ

0

dt

t
=∞.

Convergence P(Sn = 0)→ 0 is a consequence of (13.3.3) since, for all z on the

circle |z| = 1, with the possible exclusion of finitely many points, one has p(z) < 1

and hence pn(z)→ 0 as n→∞. The theorem is proved. �

Theorem 13.3.3 can be supplemented by the following assertion.

Theorem 13.3.4 Under the conditions of Theorem 13.3.3, if the g.c.d. of the possi-
ble values of ξj equals 1 then the set of values of {Xn} constitutes a single class of
essential communicating states. This class coincides with the set of all integers.

The assertion of the theorem follows from the next lemma.

Lemma 13.3.1 If the g.c.d. of integers a1 > 0, . . . , ar > 0 is equal to 1, then there
exists a number K such that every natural k ≥K can be represented as

k = n1a1 + · · · + nrar ,

where ni ≥ 0 are some integers.

Proof Consider the function L(n) = n1a1 + · · · + nrar , where n = (n1, . . . , nr) is

a vector with integer (possibly negative) components. Let d > 0 be the minimal

natural number for which there exists a vector n0 such that

d = L
(
n0
)
.
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We show that every natural number that can be represented as L(n) is divisible by d .

Suppose that this is not true. Then there exist n, k and 0 < α < d such that

L(n)= kd + α.

But since the function L(n) is linear,

L
(
n− kx0

)
= kd + α − kd = α < d,

which contradicts the minimality of d in the set of positive integer values of L(n).

The numbers a1, . . . , ar are also the values of the function L(n), so they are

divisible by d . The greatest common divisor of these numbers is by assumption

equal to one, so that d = 1.

Let k be an arbitrary natural number. Denoting by θ < A the remainder after

dividing k by A := a1 + · · · + ar , we can write

k = m(a1 + · · · + ar)+ θ =m(a1 + · · · + ar)+ θL
(
n0
)

= a1

(
m+ θn0

1

)
+ a2

(
m+ θn0

2

)
+ · · · + ar

(
m+ θn0

r

)
,

where ni :=m+ θn0
i > 0, i = 1, . . . , r , for sufficiently large k (or m).

The lemma is proved. �

Proof of Theorem 13.3.4 Put qj := P(ξ = aj ) > 0. Then, for each k ≥ K , there

exists an n such that nj ≥ 0,
∑r

j=1 ajnj = k, and hence, for n=
∑r

j=1 nj , we have

p0k(n)≥ q
n1

1 · · ·q
nr
r > 0.

In other words, all the states k ≥ K are reachable from 0. Similarly, all the states

k ≤ −K are reachable from 0. The states k ∈ [−K,K] are reachable from the

point −2K (which is reachable from 0). The theorem is proved. �

Corollary 13.3.1 If the conditions of Theorems 13.3.3 and 13.3.4 are satisfied, then
the chain (13.3.2) with an arbitrary initial state X0 visits every state k infinitely
many times with probability 1. In particular, for any X0 and k, the random variable
ν =min{n :Xn = k} will be proper.

If we are interested in investigating the periodicity of the chain (13.3.2), then

more detailed information on the set of possible values of ξj is needed. We leave

it to the reader to verify that, for example, if this set is of the form {a + akd},
k = 1,2, . . . , d ≥ 1, g.c.d. (a1, a2, . . .)= 1, g.c.d. (a, d)= 1, then the chain will be

periodic with period d .
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13.4 Limit Theorems for Countable Homogeneous Chains

13.4.1 Ergodic Theorems

Now we return to arbitrary countable homogeneous Markov chains. We will need

the following conditions:

(I) There exists a state E0 such that the recurrence time τ (s) to Es (P(τ (s) = n)=
fs(n)) has finite expectation Eτ (s) <∞.

(II) The chain is irreducible.

(III) The chain is aperiodic.

We introduce the so-called “taboo probabilities” Pi(n, j) of transition from Ei

to Ej in n steps without visiting the “forbidden” state Ei :

Pi(n, j) := P(Xn = j ;X1 
= i, . . . ,Xn−1 
= i |X0 = i).

Theorem 13.4.1 (The ergodic theorem) Conditions (I)–(III) are necessary and suf-
ficient for the existence, for all i and j , of the positive limits

lim
n→∞

pij (n)= πj > 0, i, j = 0,1,2, . . . . (13.4.1)

The sequence of values {πj } is the unique solution of the system

{∑∞
j=0 πj = 1,

πj =
∑∞

k=0 πkpkj , j = 0,1,2, . . . ,
(13.4.2)

in the class of absolutely convergent series.

Moreover, Eτ (j) <∞ for all j , and the quantities πj = (Eτ (j))−1 admit the
representation

πj =
(
Eτ (j)

)−1 =
(
Eτ (s)

)−1
∞∑

k=1

Ps(k, j) (13.4.3)

for any s.

Definition 13.4.1 A chain possessing property (13.4.1) is called ergodic.

The numbers πj are essentially the probabilities that the system will be in the

respective states Ej after a long period of time has passed. It turns out that these

probabilities lose dependence on the initial state of the system. The system “forgets”

where it began its motion. The distribution {πj } is called stationary or invariant.
Property (13.4.2) expresses the invariance of the distribution with respect to the

transition probabilities pij . In other words, if P(Xn = k)= πk , then P(Xn+1 = k)=∑
πjpjk is also equal to πk .
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Proof of Theorem 13.4.1 Sufficiency in the first assertion of the theorem. Consider

the “trajectory” of the Markov chain starting at a fixed state Es . Let τ1 ≥ 1, τ2 ≥ 1,

. . . be the time intervals between successive returns of the system to Es . Since after

each return the evolution of the system begins anew from the same state, by the

Markov property the durations τk of the cycles (as well as the cycles themselves)

are independent and identically distributed, τk
d= τ (s). Moreover, it is obvious that

P(τk = n)= P
(
τ (s) = n

)
= fs(n).

Recurrence of Es means that the τk are proper random variables. Aperiodicity

of Es means that the g.c.d. of all possible values of τk is equal to 1. Since

pss(n)= P
(
γ (n)= 0

)
,

where γ (n) is the defect of level n for the renewal process {Tk},

Tk =
k∑

i=1

τi,

by Theorem 10.3.1 the following limit exists

lim
n→∞

pss(n)= lim
n→∞

P
(
γ (n)= 0

)
= 1

Eτ1
> 0. (13.4.4)

Now prove the existence of limn→∞ psj (n) for j 
= s. If γ (n) is the defect of level

n for the walk {Tk} then, by the total probability formula,

psj (n)=
n∑

k=1

P
(
γ (n)= k

)
P
(
Xn = j |X0 = s, γ (n)= k

)
. (13.4.5)

Note that the second factors in the terms on the right-hand side of this formula do

not depend on n by the Markov property:

P
(
Xn = j |X0 = s,γ (n)= k

)

= P(Xn = j |X0 = s,Xn−1 
= s, . . . ,Xn−k+1 
= s,Xn−k = s)

= P(Xk = j |X0 = s,X1 
= s, . . . ,Xk−1 
= s)= Ps(k, j)

P(τ1 ≥ k)
,

(13.4.6)

since, for a fixed X0 = s,

P(Xk = j |X1 
= s, . . . ,Xk−1 
= s) = P(Xk = j,X1 
= s, . . . ,Xk−1 
= s)

P(X1 
= s, . . . ,Xk−1 
= s)

= Ps(k, j)

P(τ (s) ≥ k)
.
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For the sake of brevity, put P(τ1 > k) = Pk . The first factors in (13.4.5) converge,

as n→∞, to Pk−1/Eτ1 and, by virtue of the equality

P
(
γ (n)= k

)
= P

(
γ (n− k)= 0

)
Pk−1 ≤ Pk−1, (13.4.7)

are dominated by the convergent sequence Pk−1. Therefore, by the dominated con-

vergence theorem, the following limit exists

lim
n→∞

psj (n)=
∞∑

k=1

Pk−1

Eτ1

Ps(k, j)

P(τ1 ≥ k)
= 1

Eτ1

∞∑

k=1

Ps(k, j)=: πj , (13.4.8)

and we have, by (13.4.5)–(13.4.7),

psj (n)≤
n∑

k=1

Ps(k, j)≤
∞∑

k=1

Ps(k, j)= πj Eτ1. (13.4.9)

To establish that, for any i,

lim
n→∞

pij (n)= πj > 0,

we first show that the system departing from Ei will, with probability 1, eventually

reach Es .

In other words, if fis(n) is the probability that the system, upon leaving Ei , hits

Es for the first time on the n-th step then

∞∑

n=1

fis(n)= 1.

Indeed, both states Ei and Es are recurrent. Consider the cycles formed by sub-

sequent visits of the system to the state Ei . Denote by Ak the event that the system

is in the state Es at least once during the k-th cycle. By the Markov property the

events Ak are independent and P(Ak) > 0 does not depend on k. Therefore, by the

Borel–Cantelli zero–one law (see Sect. 11.1), with probability 1 there will occur

infinitely many events Ak and hence P(
⋃

Ak)= 1.

By the total probability formula,

pij (n)=
n∑

k=1

fis(k)psj (n− k),

and the dominated convergence theorem yields

lim
n→∞

pij (n)=
∞∑

n=1

fis(k)πj = πj .

Representation (13.4.3) follows from (13.4.8).
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Now we will prove the necessity in the first assertion of the theorem. That con-

ditions (II)–(III) are necessary is obvious, since pij (n) > 0 for every i and j if n

is large enough. The necessity of condition (I) follows from the fact that equalities

(13.4.4) are valid for Es . The first part of the theorem is proved.

It remains to prove the second part of the theorem. Since

∑
psj (n)= 1,

one has
∑

j πj ≤ 1. By virtue of the inequalities psj (n) ≤ πj Eτ1 (see (13.4.9)),

we can use the dominated convergence theorem both in the last equality and in the

equality psj (n+ 1)=
∑∞

k=0 psk(n)pkj which yields

∑
πj = 1, πj =

∞∑

k=0

πkpkj .

It remains to show that the system has a unique solution. Let the numbers {qj } also

satisfy (13.4.2) and assume the series
∑
|qj | converges. Then, changing the order

of summation, we obtain that

qj =
∑

k

qkpkj =
∑

k

pkj

(∑

l

plkql

)
=
∑

l

ql

∑

k

plkpkj =
∑

l

qlplj (2)

=
∑

l

plj (2)

(∑

m

pmlqm

)
=
∑

m

qmpmj (3)= · · · =
∑

k

qkpkj (n)

for any n. Since
∑

qk = 1, passing to the limit as n→∞ gives

qj =
∑

k

qkπj = πj .

The theorem is proved. �

If a Markov chain is periodic with period d , then pij (t)= 0 for t 
= kd and every

pair of states Ei and Ej belonging to the same subclass (see Theorem 13.2.3). But

if t = kd , then from the theorem just proved and Theorem 13.2.3 it follows that the

limit limk→∞ pij (kd)= πj > 0 exists and does not depend on i.

Verifying conditions (II)–(III) of Theorem 13.4.1 usually presents no serious dif-

ficulties. The main difficulties would be related to verifying condition (I). For finite

Markov chains, this condition is always met.

Theorem 13.4.2 Let a Markov chain have finitely many states and satisfy conditions
(II)–(III). Then there exist c > 0 and q < 1 such that, for the recurrence time τ to
an arbitrary fixed state, one has

P(τ > n) < cqn, n≥ 1. (13.4.10)
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These equalities clearly mean that condition (I) is always met for finite chains
and hence the ergodic theorem for them holds if and only if conditions (II)–(III) are
satisfied.

Proof Consider a state Es and put

rj (n) := P(Xk 
= s, k = 1,2, . . . , n|X0 = j).

Then, if the chain has m states one has rj (m) < 1 for any j . Indeed, rj (n) does

not grow as n increases. Let N be the smallest number satisfying rj (N) < 1. This

means that there exists a sequence of states Ej , Ej1
, . . . ,EjN

such that EjN
= Es

and the probability of this sequence pjj1
· · ·pjN−1jN

is positive. But it is easy to

see that N ≤m, since otherwise this sequence would contain at least two identical

states. Therefore the cycle contained between these states could be removed from

the sequence which could only increase its probability. Thus

rj (m) < 1, r(m)=max
j

rj (m) < 1.

Moreover, rj (n1 + n2)≤ rj (n1)r(n2)≤ r(n1)r(n2).

It remains to note that if τ is the recurrence time to Es , then P(τ > nm) =
rs(nm)≤ r(m)n. The statement of the theorem follows. �

Remark 13.4.1 Condition (13.4.10) implies the exponential rate of convergence of

the differences |pij (n) − πj | to zero. One can verify this by making use of the

analyticity of the function

Fs(z)=
∞∑

n=1

fs(n)zn

in the domain |z|< q−1, q−1 > 1, and of the equality

Ps(z)=
∑

pss(n)zn = 1

1− Fs(z)
− 1 (13.4.11)

(see Theorem 13.2.1; we assume that the τ in condition (13.4.10) refers to the state

Es , so that fs(n)= P(τ = n)). Since F ′s(1)= Eτ = 1/πs , one has

Fs(z)= 1+ (z− 1)

πs

+ · · · ,

and from (13.4.11) it follows that the function

Ps(z)−
zπs

1− z
=
∞∑

n=1

(
pss(n)− πs

)
zn

is analytic in the disk |z| ≤ 1+ ε, ε > 0. It evidently follows from this that

|pss(n)− πs |< c(1+ ε)−n, c= const.
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Now we will give two examples of finite Markov chains.

Example 13.4.1 Suppose that the behaviour of two chess players A and B playing

in a multi-player tournament can be described as follows. Independently of the out-

comes of the previous games, player A wins every new game with probability p,

loses with probability q , and makes a tie with probability r = 1−p−q . Player B is

less balanced. He wins a game with probabilities p+ ε, p and p− ε, respectively, if

he won, made a tie, or lost in the previous one. The probability that he loses behaves

in a similar way: in the above three cases, it equals q − ε, q and q + ε, respectively.

Which of the players A and B will score more points in a long tournament?

To answer this question, we will need to compute the stationary probabilities

π1, π2, π3 of the states E1, E2, E3 which represent a win, tie, and loss in a game,

respectively (cf. the law of large numbers at the end of this section).

For player A, the Markov chain with states E1,E2,E3 describing his perfor-

mance in the tournament will have the matrix of transition probabilities

PA =

⎛
⎝

p r q

p r q

p r q

⎞
⎠ .

It is obvious that π1 = p, π2 = r , π3 = q here.

For player B , the matrix of transition probabilities is equal to

PB =

⎛
⎝

p+ ε r q − ε

p r q

p− ε r q + ε

⎞
⎠ .

Equations for stationary probabilities in this case have the form

π1(p+ ε)+ π2p+ π3(p− ε) = π1,

π1r + π2r + π3r = π2,

π1 + π2 + π3 = 1.

Solving this system we find that

π2 − r = 0, π1 − p = ε
p− q

1− 2ε
.

Thus, the long run proportions of ties will be the same for both players, and B will

have a greater proportion of wins if ε > 0, p > q or ε < 0, p < q . If p = q , then the

stationary distributions will be the same for both A and B .

Example 13.4.2 Consider the summation of independent integer-valued random

variables ξ1, ξ2, . . . modulo some d > 1 (see Example 13.1.2). Set X0 := 0, X1 :=
ξ1 − ⌊ξ1/d⌋d , X2 :=X1 + ξ2 − ⌊(X1 + ξ2)/d⌋d etc. (here ⌊x⌋ denotes the integral
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part of x), so that Xn is the remainder of the division of Xn−1+ ξn by d . Such sum-

mation is sometimes also called summation on a circle (points 0 and d are glued

together in a single point). Without loss of generality, we can evidently suppose that

ξk takes the values 0,1, . . . , d − 1 only. If P(ξk = j)= pj then

pij = P(Xn = j |Xn−1 = i)=
{

pj−i if j ≥ i,

pd+j−i if j < i.

Assume that the set of all indices k with pk > 0 has a g.c.d. equal to 1. Then it is

clear that the chain {Xn} has a single class of essential states without subclasses,

and there will exist the limits

lim
n→∞

pij (n)= πj

satisfying the system
∑

i πipij = πj ,
∑

πj = 1, j = 0, . . . , d − 1. Now note that

the stochastic matrix of transition probabilities ‖pij‖ has in this case the following

property:
∑

i

pij =
∑

j

pij = 1.

Such matrices are called doubly stochastic. Stationary distributions for them are

always uniform, since πj = 1/d satisfy the system for final probabilities.

Thus summation of arbitrary random variables on a circle leads to the uniform
limit distribution. The rate of convergence of pij (k) to the stationary distribution is

exponential.

It is not difficult to see that the convolution of two uniform distributions under

addition modulo d is also uniform. The uniform distribution is in this sense stable.

Moreover, the convolution of an arbitrary distribution with the uniform distribution

will also be uniform. Indeed, if η is uniformly distributed and independent of ξ1

then (addition and subtraction are modulo d , pj = P(ξ1 = j))

P(ξ1 + η= k)=
d−1∑

j=0

pj P(η= k − j)=
d−1∑

j=0

pj

1

d
= 1

d
.

Thus, if one transmits a certain signal taking d possible values (for example,

letters) and (uniform) “random” noise is superimposed on it, then the received signal

will also have the uniform distribution and therefore will contain no information

about the transmitted signal. This fact is widely used in cryptography.

This example also deserves attention as a simple illustration of laws that appear

when summing random variables taking values not in the real line but in some group

(the set of numbers 0,1, . . . , d − 1 with addition modulo d forms a finite Abelian

group). It turns out that the phenomenon discovered in the example—the uniformity

of the limit distribution—holds for a much broader class of groups.

We return to arbitrary countable chains. We have already mentioned that the main

difficulties when verifying the conditions of Theorem 13.4.1 are usually related to
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condition (I). We consider this problem in Sect. 13.7 in more detail for a wider

class of chains (see Theorems 13.7.2–13.7.3 and corollaries thereafter). Sometimes

condition (I) can easily be verified using the results of Chaps. 10 and 12.

Example 13.4.3 We saw in Sect. 12.5 that waiting times in the queueing system

satisfy the relationships

Xn+1 =max(Xn + ξn+1,0), w1 = 0,

where the ξn are independent and identically distributed. Clearly, Xn form a ho-

mogeneous Markov chain with the state space {0,1, . . .}, provided that the ξk are

integer-valued. The sequence Xn may be interpreted as a walk with a delaying
screen at the point 0. If Eξk < 0 then it is not hard to derive from the theorems

of Chap. 10 (see also Sect. 13.7) that the recurrence time to 0 has finite expectation.

Thus, applying the ergodic theorem we can, independently of Sect. 11.4, come to

the conclusion that there exists a limiting (stationary) distribution for Xn as n→∞
(or, taking into account what we said in Sect. 11.4, conclude that supk≥0 Sk is finite,

where Sk =
∑k

j=1 ξj , which is essentially the assertion of Theorem 10.2.1).

Now we will make several remarks allowing us to state one more criterion for

ergodicity which is related to the existence of a solution to Eq. (13.4.2).

First of all, note that Theorem 13.2.2 (the solidarity theorem) can now be com-

plemented as follows. A state Ej is said to be ergodic if, for any i, pij (n)→ πj > 0

as n→∞. A state Ej is said to be positive recurrent if it is recurrent and non-null

(in that case, the recurrence time τ (j) to Ej has finite expectation Eτ (j) <∞). It

follows from Theorem 13.4.1 that, for an irreducible aperiodic chain, a state Ej is
ergodic if and only if it is positive recurrent. If at least one state is ergodic, all states
are.

Theorem 13.4.3 Suppose a chain is irreducible and aperiodic (satisfies conditions
(II)–(III)). Then only one of the following two alternatives can take place: either all
the states are null or they are all ergodic. The existence of an absolutely convergent
solution to system (13.4.2) is necessary and sufficient for the chain to be ergodic.

Proof The first assertion of the theorem follows from the fact that, by the local

renewal Theorem 10.2.2 for the random walk generated by the times of the chain’s

hitting the state Ej , the limit limn→∞ pjj (n) always exists and equals (Eτ (j))−1.

Therefore, to prove sufficiency in the second assertion (the necessity follows

from Theorem 13.4.1) we have, in the case of the existence of an absolutely con-

vergent solution {πj }, to exclude the existence of null states. Assume the contrary,

pij (n)→ 0. Choose j such that πj > 0. Then

0 < πj =
∑

πipij (n)→ 0

as n→∞ by dominated convergence. This contradiction completes the proof of the

theorem. �
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13.4.2 The Law of Large Numbers and the Central Limit Theorem

for the Number of Visits to a Given State

In conclusion of this section we will give two assertions about the limiting be-

haviour, as n→∞, of the number mj (n) of visits of the system to a fixed state

Ej by the time n. Let τ (j) be the recurrence time to the state Ej .

Theorem 13.4.4 Let the chain be ergodic and, at the initial time epoch, be at an
arbitrary state Es . Then, as n→∞,

Emj (n)

n
→ πj ,

mj (n)

n

a.s.−→ πj .

If additionally Var(τ (j))= σ 2
j <∞ then

P

(
mj (n)− nπj

σj

√
nπ3

j

< x|X0 = s

)
→Φ(x)

as n→∞, where Φ(x) is, as before, the distribution function of the normal law
with parameters (0,1).

Proof Note that the sequence mj (n)+ 1 coincides with the renewal process formed

by the random variables τ1, τ2, τ3, . . . , where τ1 is the time of the first visit to the

state Ej by the system which starts at Es and τk
d= τ (j) for k ≥ 2. Clearly, by the

Markov property all τj are independent. Since τ1 ≥ 0 is a proper random variable,

Theorem 13.4.4 is a simple consequence of the generalisations of Theorems 10.1.1,

11.5.1, and 10.5.2 that were stated in Remarks 10.1.1, 11.5.1 and 10.5.1, respec-

tively.

The theorem is proved. �

Summarising the contents of this section, one can note that studying the se-

quences of dependent trials forming homogeneous Markov chains with discrete sets

of states can essentially be carried out with the help of results obtained for sequences

of independent random variables. Studying other types of dependent trials requires,

as a rule, other approaches.

13.5* The Behaviour of Transition Probabilities for Reducible

Chains

Now consider a finite Markov chain of the general type. As we saw, its state space

consists of the class of inessential states S0 and several classes S1, . . . , Sl of es-

sential states. To clarify the nature of the asymptotic behaviour of pij (n) for such
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Fig. 13.4 The structure of

the matrix of transition

probabilities of a periodic

Markov chain with the class

S0 of inessential states: an

illustration to the proof of

Theorem 13.2.3

chains, it suffices to consider the case where essential states constitute a single class

without subclasses (l = 1). Here, the matrix of transition probabilities pij (n) has

the form depicted in Fig. 13.4.

By virtue of the ergodic theorem, the entries of the submatrix L have positive

limits πj . Thus it remains to analyse the behaviour of the entries in the upper part

of the matrix.

Theorem 13.5.1 Let Ei ∈ S0. Then

lim
t→∞

pij (t)=
{

0, if Ej ∈ S0,

πj > 0, if Ej ∈ S1.

Proof Let Ej ∈ S0. Set

Aj (t) := max
Ei∈S0

pij (t).

For any essential state Er there exists an integer tr such that pir(tr ) > 0. Since

transition probabilities in L are all positive starting from some step, there exists an s

such that pil(s) > 0 for Ei ∈ S0 and all El ∈ S1. Therefore, for sufficiently large t ,

pij (t)=
∑

Ek∈S0

pik(s)pkj (t − s)≤Aj (t − s)
∑

Ek∈S0

pik(s),

where

q(i) :=
∑

Ek∈S0

pik(s)= 1−
∑

Ek∈S1

pik(s) < 1.

If we put q :=maxEi∈S0 q(i), then the displayed inequality implies that

Aj (t)≤ qAj (t − s)≤ · · · ≤ q[t/s].

Thus limt→∞ pij (t)≤ limt→∞Aj (t)= 0.

Now let Ei ∈ S0 and Ej ∈ S1. One has

pij (t + s)=
∑

k

pik(t)pkj (s)=
∑

Ek∈S0

pik(t)pkj (s)+
∑

Ek∈S1

pik(t)pkj (s).
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Letting t and s go to infinity, we see that the first sum in the last expression is o(1).

In the second sum,

∑

E∈S1

pik(t)= 1+ o(1); pkj (t)= πj + o(1).

Therefore

pij (t + s)= πj

∑

Ek∈S
pik(t)+ o(t)= πj + o(1)

as t , s→∞. The theorem is proved. �

Using Theorem 13.5.1, it is not difficult to see that the existence of the limit

lim
t→∞

pij (n)= πj ≥ 0

is a necessary and sufficient condition for the chain to have two classes S0 and S1,

of which S1 contains no subclasses.

13.6 Markov Chains with Arbitrary State Spaces. Ergodicity of

Chains with Positive Atoms

13.6.1 Markov Chains with Arbitrary State Spaces

The Markov chains X = {Xn} considered so far have taken values in the count-

able sets {1,2, . . .} or {0,1, . . .}; such chains are called countable (denumerable)

or discrete. Now we will consider Markov chains with values in an arbitrary set of

states X endowed with a σ -algebra BX of subsets of X. The pair (X,BX) forms

a (measurable) state space of the chain {Xn}. Further let (Ω,F,P) be the underly-

ing probability space. A measurable mapping Y of the space (Ω,F) into (X,BX) is

called an X-valued random element. If X=R and BX is the σ -algebra of Borel sets

on the line, then Y will be a conventional random variable. The mapping Y could

be the identity, in which case (Ω,F)= (X,BX) is also called a sample space.

Consider a sequence {Xn} of X-valued random elements and denote by Fk,m,

m ≥ k, the σ -algebra generated by the elements Xk, . . . ,Xm (i.e. by events of

the form {Xk ∈ Bk}, . . . , {Xm ∈ Bm}, Bi ∈ BX, i = k, . . . ,m). It is evident that

Fn := F0,n form a non-decreasing sequence F0 ⊂ F1 . . . ⊂ Fn . . . . The conditional

expectation E(ξ |Fk,m) will sometimes also be denoted by E(ξ |Xk, . . . ,Xm).

Definition 13.6.1 An X-valued Markov chain is a sequence of X-valued elements

Xn such that, for any B ∈BX,

P(Xn+1 ∈ B | Fn)= P(Xn+1 ∈ B |Xn) a.s. (13.6.1)
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In the sequel, the words “almost surely” will, as a rule, be omitted.

By the properties of conditional expectations, relation (13.6.1) is clearly equiva-

lent to the condition: for any measurable function f :X→R, one has

E
(
f (Xn+1) | Fn

)
= E

(
f (Xn+1) |Xn

)
. (13.6.2)

Definition 13.6.1 is equivalent to the following.

Definition 13.6.2 A sequence X = {Xn} forms a Markov chain if, for any A ∈
Fn+1,∞,

P(A|Fn)= P(A|Xn) (13.6.3)

or, which is the same, for any Fn+1,∞-measurable function f (ω),

E
(
f (ω)|Fn

)
= E

(
f (ω)|Xn

)
. (13.6.4)

Proof of equivalence We have to show that (13.6.2) implies (13.6.3). First take any

B1,B2 ∈BX and let A := {Xn+1 ∈ B1,Xn+2 ∈ B2}. Then, by virtue of (13.6.2),

P(A|Fn) = E
[
I(Xn+1 ∈ B1)P(Xn+2 ∈ B2|Fn+1)|Fn

]

= E
[
I(Xn+1 ∈ B1)P(Xn+2 ∈ B2|Xn+1)|Fn

]

= E(A|Xn).

This implies inequality (13.6.3) for any A ∈ An+1,n+2, where Ak,m is the algebra

generated by sets {Xk ∈ Bk, . . . , Xm ∈ Bm}. It is clear that An+1,n+2 generates

Fn+1,n+2. Now let A ∈ Fn+1,n+2. Then, by the approximation theorem, there exist

Ak ∈ An+1,n+2 such that d(A,Ak)→ 0 (see Sect. 3.4). From this it follows that

I(Ak)
p→ I(A) and, by the properties of conditional expectations (see Sect. 4.8.2),

P
(
Ak|F∗

) p→ P
(
A|F∗

)
,

where F∗ ⊂ F is some σ -algebra. Put PA = PA(ω) := P(A|Xn). We know that, for

Ak ∈An+1,n+2,

E(PAk
;B)= P(AkB) (13.6.5)

for any B ∈ Fn (this just means that PAk
(ω) = P(Ak|Fn)). Again making use of

the properties of conditional expectations (the dominated convergence theorem, see

Sect. 4.8.2) and passing to the limit in (13.6.5), we obtain that E(PA; B)= P(AB).

This proves (13.6.3) for A ∈ Fn+1,n+2.

Repeating the above argument m times, we prove (13.6.3) for A ∈ Fn+1,m. Using

a similar scheme, we can proceed to the case of A ∈ Fn+1,∞. �

Note that (13.6.3) can easily be extended to events A ∈ Fn,∞. In the above proof

of equivalence, one could work from the very beginning with A ∈ Fn,∞ (first with

A ∈An,n+2, and so on).

We will give one more equivalent definition of the Markov property.
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Definition 13.6.3 A sequence {Xn} forms a Markov chain if, for any events A ∈ Fn

and B ∈ Fn,∞,

P(AB|Xn)= P(A|Xn)P(B|Xn). (13.6.6)

This property means that the future is conditionally independent of the past given

the present (conditional independence of Fn and Fn,∞ given Xn).

Proof of the equivalence Assume that (13.6.4) holds. Then, for A ∈ Fn and B ∈
Fn,∞,

P(AB|Xn) = E
[
E(IAIB |Fn)|Xn

]
= E

[
IAE(IB |Fn)|Xn

]

= E
[
IAE(IB |Xn)|Xn

]
= E(IB |Xn)E(IA|Xn),

where IA is the indicator of the event A.

Conversely, let (13.6.6) hold. Then

P(AB) = EP(AB|Xn)= EP(A|Xn)P(B|Xn)

= EE[IAP(B|Xn)|Xn] = EIAP(B|Xn).
(13.6.7)

On the other hand,

P(AB)= EIAIB = EIA P(B|Fn). (13.6.8)

Since (13.6.7) and (13.6.8) hold for any A ∈ Fn, this means that

P(B|Xn)= P(B|Fn). �

Thus, let {Xn} be an X-valued Markov chain. Then, by the properties of condi-

tional expectations,

P(Xn+1 ∈ B|Xn)= P(n)(Xn,B),

where the function Pn(x,B) is, for each B ∈BX, measurable in x with respect to

the σ -algebra BX. In what follows, we will assume that the functions P(n)(x,B)

are conditional distributions (see Definition 4.9.1), i.e., for each x ∈ X, P(n)(x,B)

is a probability distribution in B . Conditional distributions P(n)(x,B) always exist

if the σ -algebra BX is countably-generated, i.e. generated by a countable collec-

tion of subsets of X (see [27]). This condition is always met if X = R
k and BX

is the σ -algebra of Borel sets. In our case, there is an additional problem that the

“null probability” sets N ⊂ X, on which one can arbitrarily vary P(n)(x,B), can

depend on the distribution of Xn, since the “null probability” is with respect to the

distribution of Xn.

Definition 13.6.4 A Markov chain X = {Xn} is called homogeneous if there ex-

ist conditional distributions P(n)(x,B) = P(x,B) independent of n and the initial

value X0 (or the distributions of Xn). The function P(x,B) is called the transition
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probability (or transition function) of the homogeneous Markov chain. It can be

graphically written as

P(x,B)= P(X1 ∈ B|X0 = x). (13.6.9)

If the Markov chain is countable, X= {1,2, . . .}, then, in the notation of Sect. 13.1,

one has P(i, {j})= pij = pij (1).

The transition probability and initial distribution (of X0) completely determine

the joint distribution of X0, . . . ,Xn for any n. Indeed, by the total probability for-

mula and the Markov property

P(X0 ∈ B0, . . . ,Xn ∈ Bn)

=
∫

y0∈B0

· · ·
∫

yn∈Bn

P(X0 ∈ dy0)P (y0, dy1) · · ·P(yn−1, dyn).

(13.6.10)

A Markov chain with the initial value X0 = x will be denoted by {Xn(x)}.
In applications, Markov chains are usually given by their conditional distribu-

tions P(x,B) or—in a “stronger form”—by explicit formulas expressing Xn+1

in terms Xn and certain “control” elements (see Examples 13.4.2, 13.4.3, 13.6.1,

13.6.2, 13.7.1–13.7.3) which enable one to immediately write down transition

probabilities. In such cases, as we already mentioned, the joint distribution of

(X0, . . . ,Xn) can be defined in terms of the initial distribution of X0 and the transi-

tion function P(x,B) by formula (13.6.10). It is easily seen that the sequence {Xn}
with so defined joint distributions satisfy all the definitions of a Markov chain and

has transition function P(x,B). In what follows, wherever it is needed, we will as-

sume condition (13.6.10) is satisfied. It can be considered as one more definition of

a Markov chain, but a stronger one than Definitions 13.6.2–13.6.4, for it explicitly

gives (or uses) the transition function P(x,B).

One of the main objects of study will be the asymptotic behaviour of the n step

transition probability:

P (x,n,B) := P
(
Xn(x) ∈ B

)
= P(Xn ∈ B|X0 = x).

The following recursive relation, which follows from the total probability formula

(or from (13.6.10)), holds for this function:

P(Xn+1 ∈ B)= EE
(
I(Xn+1 ∈ B)|Fn

)
=
∫

P(Xn ∈ dy)P (y,B),

P (x,n+ 1,B)=
∫

P(x,n, dy)P (y,B). (13.6.11)

Now note that the Markov property (13.6.3) of homogeneous chains can also be

written in the form

P(Xn+k ∈ Bk|Fn)= P (Xn, k,Bk),
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or, more generally,

P(Xn+1 ∈ B1, . . . ,Xn+k ∈ Bk|Fn)= P
(
Xnew

1 (Xn) ∈ B1, . . . ,X
new
k (Xn) ∈ Bk

)
,

(13.6.12)

where {Xnew
k (x)} is a Markov chain independent of {Xn} and having the same tran-

sition function as {Xn} and the initial value x. Property (13.6.12) can be extended

to a random time n. Recall the definition of a stopping time.

Definition 13.6.5 A random variable ν ≥ 0 is called a Markov or stopping time with

respect to {Fn} if {ν ≤ n} ∈ Fn. In other words, that the event {ν ≤ n} occurred or

not is completely determined by the trajectory segment X0,X1, . . . ,Xn.

Note that, in Definition 13.6.5, by Fn one often understands wider σ -algebras,

the essential requirements being the relations {ν ≤ n} ∈ Fn and measurability of

X0, . . . ,Xn with respect to Fn.

Denote by Fν the σ -algebra of events B such that B ∩ {ν = k} ∈ Fk . In other

words, Fν can be thought of as the σ -algebra generated by the sets {ν = k}Bk ,

Bk ∈ Fk , i.e. by the trajectory of {Xn} until time ν.

Lemma 13.6.1 (The Strong Markov Property) For any k ≥ 1 and B1, . . . ,Bk ∈BX ,

P(Xν+1 ∈ B1, . . . ,Xν+k ∈ Bk|Fν)= P
(
Xnew

1 (Xν) ∈ B1, . . . ,X
new
k (Xν) ∈ Bk

)
,

where the process {Xnew
k } is defined in (13.6.12).

Thus, after a random stopping time ν, the trajectory Xν+1, Xν+2, . . . will evolve

according to the same laws as X1,X2, . . . , but with the initial condition Xν . This

property is called the strong Markov property. It will be used below for the first

hitting times ν = τV of certain sets V ⊂ X by {Xn}. We have already used this

property tacitly in Sect. 13.4, when the set V coincided with a point, which allowed

us to cut the trajectory of {Xn} into independent cycles.

Proof of Lemma 13.6.1 For the sake of simplicity, consider one-dimensional distri-

butions. We have to prove that

P(Xν+1 ∈ B1|Fν)= P(Xν,B1).

For any A ∈ Fν ,

E
(
P(Xν,B1);A

)
=
∑

n

E
(
P(Xn,B1);A{ν = n}

)

=
∑

n

EE
(
I
(
A{ν = n}{Xn+1 ∈ B1}

)
|Fn

)

=
∑

n

P
(
A{ν = n}{Xn+1 ∈ B1}

)
= P

(
A{Xν+1 ∈ B1}

)
.
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But this just means that P(Xν,B1) is the required conditional expectation. The case

of multi-dimensional distributions is dealt with in the same way, and we leave it to

the reader. �

Now we turn to consider the asymptotic properties of distributions P(x,n,B) as

n→∞.

Definition 13.6.6 A distribution π(·) on (X,BX) is called invariant if it satisfies

the equation

π(B)=
∫

π(dy)P (y,B), B ∈BX . (13.6.13)

It follows from (13.6.11) that if Xn ⊂= π , then Xn+1 ⊂= π . The distribution π is

also called stationary.

For Markov chains in arbitrary state spaces X, a simple and complete classifica-

tion similar to the one carried out for countable chains in Sect. 13.1 is not possible,

although some notions can be extended to the general case.

Such natural and important notions for countable chains as, say, irreducibility of

a chain, take in the general case another form.

Example 13.6.1 Let Xn+1 = Xn + ξn (mod 1) (Xn+1 is the fractional part of

Xn+ ξn), ξn be independent and identically distributed and take with positive prob-

abilities the two values 0 and
√

2. In this example, the chain “splits”, according

to the initial state x, into a continual set of “subchains” with state spaces of the

form Mx = {x + k
√

2 (mod 1), k = 0,1,2 . . .}. It is evident that if x1 − x2 is not a

multiple of
√

2 (mod 1), then Mx1
and Mx2

are disjoint, P(Xn(x1) ∈Mx2
)= 0 and

P(Xn(x2) ∈Mx1
)= 0 for all n. Thus the chain is clearly reducible. Nevertheless, it

turns out that the chain is ergodic in the following sense: for any x, Xn(x)⊂=⇒U0,1

(P(x,n, [0, t])→ t) as n→∞ (see, e.g., [6], [18]). For the most commonly used

irreducibility conditions, see Sect. 13.7.

Definition 13.6.7 A chain is called periodic if there exist an integer d ≥ 2 and a

set X1 ⊂ X such that, for x ∈ X1, one has P(x,n,X1) = P(Xn(x) ∈ X1) = 1 for

n= kd , k = 1,2, . . . , and P(x,n,X1)= 0 for n 
= kd .

Periodicity means that the whole set of states X is decomposed into subclasses

X1, . . . ,Xd , such that P(X1(x) ∈ Xk+1)= 1 for x ∈ Xk , k = 1, . . . , d , Xd+1 = X1.

In the absence of such a property, the chain will be called aperiodic.

A state x0 ∈X is called an atom of the chain X if, for any x ∈X,

P

( ∞⋃

n=1

{
Xn(x)= x0

}
)
= 1.

Example 13.6.2 Let X0 ≥ 0 and, for n≥ 0,

Xn+1 =
{

(Xn + ξn+1)
+ if Xn > 0,

ηn+1 if Xn = 0,



420 13 Sequences of Dependent Trials. Markov Chains

where ξn and ηn ≥ 0, n= 1,2, . . . , are two sequences of independent random vari-

ables, identically distributed in each sequence. It is clear that {Xn} is a Markov chain

and, for Eξk < 0, by the strong law of large numbers, this chain has an atom at the

point x0 = 0:

P

( ∞⋃

n=1

{
Xn(x)= 0

}
)
= P

(
inf
k

Sk ≤−x
)
= 1,

where Sk =
∑k

j=1 ξj . This chain is a generalisation of the Markov chain from Ex-

ample 13.4.3.

Markov chains in an arbitrary state space X are rather difficult to study. However,

if a chain has an atom, the situation may become much simpler, and the ergodic

theorem on the asymptotic behaviour of P(x,n,B) as n→∞ can be proved using

the approaches considered in the previous sections.

13.6.2 Markov Chains Having a Positive Atom

Let x0 be an atom of a chain {Xn}. Set

τ :=min
{
k > 0 :Xk(x0)= x0

}
.

This is a proper random variable (P(τ <∞)= 1).

Definition 13.6.8 The atom x0 is said to be positive if Eτ <∞.

In the terminology of Sect. 13.4, x0 is a recurrent non-null (positive) state.

To characterise convergence of distributions in arbitrary spaces, we will need the

notions of the total variation distance and convergence in total variation. If P and Q

are two distributions on (X,BX), then the total variation distance between them is

defined by

‖P−Q‖ = 2 sup
B∈BX

∣∣P(B)−Q(B)
∣∣.

One says that a sequence of distributions Pn on (X,BX) converges in total variation

to P (Pn
T V−→ P) if ‖Pn − P‖→ 0 as n→∞. For more details, see Sect. 3.6.2 of

Appendix 3.

As in Sect. 13.4, denote by Px0
(k,B) the “taboo probability”

Px0
(k,B) := P

(
Xk(x0) ∈ B,X1(x0) 
= x0, . . . ,Xk−1(x0) 
= x0

)

of transition from x0 into B in k steps without visiting the “forbidden” state x0.

Theorem 13.6.1 If the chain {Xn} has a positive atom and the g.c.d. of the possible
values of τ is 1, then the chain is ergodic in the convergence in total variation sense:
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there exists a unique invariant distribution π such that, for any x ∈X, as n→∞,

∥∥P(x,n, ·)− π(·)
∥∥→ 0. (13.6.14)

Moreover, for any B ∈BX,

π(B)= 1

Eτ

∞∑

k=1

Px0
(k,B). (13.6.15)

If we denote by Xn(μ0) a Markov chain with the initial distribution μ0 (X0⊂=μ0)

and put

P(μ0, n,B) := P
(
Xn(μ0) ∈ B

)
=
∫

μ0(dx)P (x,n,B),

then, as well as (13.6.14), we will also have that, as n→∞,

∥∥P(μ0, n, ·)− π(·)
∥∥→ 0 (13.6.16)

for any initial distribution μ0.

The condition that there exists a positive atom is an analogue of conditions (I)

and (II) of Theorem 13.4.1. A number of conditions sufficient for the finiteness of

Eτ can be found in Sect. 13.7. The condition on the g.c.d. of possible values of τ is

the aperiodicity condition.

Proof We will effectively repeat the proof of Theorem 13.4.1. First let X0 = x0. As

in Theorem 13.4.1 (we keep the notation of that theorem), we find that

P(x0, n,B)

=
n∑

k=1

P
(
γ (n)= k

)
P(Xn ∈ B|Xn−k = x0,Xn−k+1 
= x0, . . . ,Xn−1 
= x0)

=
n∑

k=1

P(γ (n)= k)

P(τ ≥ k)
P(τ ≥ k)P(Xk ∈ B|X0 = x0,X1 
= x0, . . . ,Xk−1 
= x0)

=
n∑

k=1

P(γ (n)= k)

P(τ ≥ k)
Px0

(k,B).

For the measure π defined in (13.6.15) one has

P(x0, n,B)− π(B)

=
n∑

k=1

(
P(γ (n)= k)

P(τ ≥ k)
− 1

Eτ

)
Px0

(k,B)− 1

Eτ

∑

k>n

Px0
(k,B).
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Since P(γ (n) = k) ≤ P(τ ≥ k) and Px0
(k,B) ≤ P(τ ≥ k) (see the proof of Theo-

rem 13.4.1), one has, for any N ,

sup
B

∣∣P (x0, n,B)− π(B)
∣∣≤

N∑

k=1

(
P(γ (n)= k)

P(τ ≥ k)
− 1

Eτ

)
+ 2

∑

k>N

P(τ ≥ k).

(13.6.17)

Further, since

P
(
γ (n)= k

)
→ P(τ ≥ k)/Eτ,

∞∑

k=1

P(τ ≥ k)= Eτ <∞,

the right-hand side of (13.6.17) can be made arbitrarily small by choosing N and

then n. Therefore,

lim
n→∞

sup
B

∣∣P(x0, n,B)− π(B)
∣∣= 0.

Now consider an arbitrary initial state x ∈X, x 
= x0. Since x0 is an atom, for the

probabilities

F(x, k, x0) := P
(
Xk(x)= x0, X1 
= x0, . . . ,Xk−1 
= x0

)

of hitting x0 for the first time on the k-th step, one has

∑

k

F(x, k, x0)= 1, P (x,n,B)=
n∑

k=1

F(x, k, x0)P (x0, n− k,B),

∥∥P(x,n, ·)− π(·)
∥∥

≤
∑

k≤n/2

F(x, k, x0)
∥∥P(x0, n− k, ·)− π(·)

∥∥+ 2
∑

k>n/2

F(x, k, x0)→ 0

as n→∞.

Relation (13.6.16) follows from the fact that

∥∥P(μ0, n, ·)− π(·)
∥∥≤

∫
μ0(dx)

∥∥P(x,n, ·)− π(·)
∥∥→ 0

by the dominated convergence theorem.

Further, from the convergence of P(x,n, ·) in total variation it follows that

∫
P(x,n, dy)P (y,B)→

∫
π(dy)P (y,B).

Since the left hand-side of this relation is equal to P(x,n + 1,B) by virtue of

(13.6.11) and converges to π(B), one has (13.6.13), and hence π is an invariant

measure.
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Now assume that π1 is another invariant distribution. Then

π1(·)= P(π1, n, ·) T V−→ π(·), π1 = π .

The theorem is proved. �

Returning to Example 13.6.2, we show that the conditions of Theorem 13.6.1 are

met provided that Eξk < 0 and Eηk <∞. Indeed, put

η(−x) :=min

{
k ≥ 1 : Sk =

k∑

j=1

ξj ≤−x

}
.

By the renewal Theorem 10.1.1,

H(x)= Eη(−x)∼ x

|Eξ1|
as x→∞

for Eξ1 < 0, and therefore there exist constants c1 and c2 such that H(x) < c1+ c2x

for all x ≥ 0. Hence, for the atom x0 = 0, we obtain that

Eτ =
∫ ∞

0

P(η1 ∈ dx)H(x)≤ c1 + c2

∫ ∞

0

xP(η1 ∈ dx)= c1 + c2Eη1 <∞.

13.7* Ergodicity of Harris Markov Chains

13.7.1 The Ergodic Theorem

In this section we will consider the problem of establishing ergodicity of Markov

chains in arbitrary state spaces (X,BX). A lot of research has been done on this

problem, the most important advancements being associated with the names of

W. Döblin, J.L. Doob, T.E. Harris and E. Omey. Until recently, this research area

had been considered as a rather difficult one, and not without reason. However, the

construction of an artificial atom suggested by K.B. Athreya, P.E. Ney and E. Num-

melin (see, e.g. [6, 27, 29]) greatly simplified considerations and allowed the proof

of ergodicity by reducing the general case to the special case discussed in the last

section.

In what follows, the notion of a “Harris chain” will play an important role. For a

fixed set V ∈BX, define the random variable

τV (x)=min
{
k ≥ 1 :Xk(x) ∈ V

}
,

the time of the first hitting of V by the chain starting from the state x (we put

τV (x)=∞ if all Xk(x) /∈ V ).
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Definition 13.7.1 A Markov chain X = {Xn} in (X,BX) is said to be a Harris
chain (or Harris irreducible) if there exists a set V ∈BX, a probability measure μ

on (X,BX), and numbers n0 ≥ 1, p ∈ (0,1) such that

(I0) P(τV (x) <∞)= 1 for all x ∈X; and

(II) P(x,n0,B)≥ pμ(B) for all x ∈ V , B ∈BX.

Condition (I0) plays the role of an irreducibility condition: starting from any

point x ∈ X, the trajectory of Xn will sooner or later visit the set V . Condition (II)

guarantees that, after n0 steps since hitting V , the distribution of the walking particle

will be minorised by a common “distribution” pμ(·). This condition is sometimes

called a “mixing condition”; it ensures a “partial loss of memory” about the trajec-

tory’s past. This is not the case for the chain from Example 13.6.1 for which con-

dition (II) does not hold for any V , μ or n0 (P (x, ·) form a collection of mutually

singular distributions which are singular with respect to Lebesgue measure).

If a chain has an atom x0, then conditions (I0) and (II) are always satisfied for

V = {x0}, n0 = 1, p = 1, and μ(·)= P(x0, ·), so that such a chain is a Harris chain.

The set V is usually chosen to be a “compact” set (if X=R
k , it will be a bounded

set), for otherwise one cannot, as a rule, obtain inequalities in (II). If the space X

is “compact” itself (a finite or bounded subset of R
k), condition (II) can be met

for V = X (condition (I0) then always holds). For example, if {Xn} is a finite, ir-

reducible and aperiodic chain, then by Theorem 13.4.2 there exists an n0 such that

P (i, n0, j)≥ p > 0 for all i and j . Therefore condition (II) holds for V =X if one

takes μ to be a uniform distribution on X.

One could interpret condition (II) as that of the presence, in all distributions

P (x,n0, ·) for x ∈ V , of a component which is absolutely continuous with respect

to the measure μ:

inf
x∈V

P (x,n0, dy)

μ(dy)
≥ p > 0.

We will also need a condition of “positivity” (positive recurrence) of the set V

(or that of “positivity” of the chain):

(I) supx∈V EτV (x) <∞,

and the aperiodicity condition which will be written in the following form. Let

Xk(μ) be a Markov chain with an initial value X0 ⊂= μ, where μ is from condi-

tion (II). Put

τV (μ) :=min
{
k ≥:Xk(μ) ∈ V

}
.

It is evident that τV (μ) is, by virtue of (I0), a proper random variable. Denote by

n1, n2, . . . the possible values of τV (μ), i.e. the values for which

P
(
τV (μ)= nk

)
> 0, k = 1,2, . . . .

Then the aperiodicity condition will have the following form.
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(III) There exists a k ≥ 1 such that

g.c.d.{n0 + n1, n0 + n2, . . . , n0 + nk} = 1,

where n0 is from condition (II).

Condition (III) is always satisfied if (II) holds for n0 = 1 and μ(V ) > 0 (then

n1 = 0, n0 + n1 = 1).

Verifying condition (I) usually requires deriving bounds for EτV (x) for x /∈ V

which would automatically imply (I0) (see the examples below).

Theorem 13.7.1 Suppose conditions (I0), (I), (II) and (III) are satisfied for a
Markov chain X, i.e. the chain is an aperiodic positive Harris chain. Then there
exists a unique invariant distribution π such that, for any initial distribution μ0, as
n→∞,

∥∥P(μ0, n, ·)− π(·)
∥∥→ 0. (13.7.1)

The proof is based on the use of the above-mentioned construction of an “arti-

ficial atom” and reduction of the problem to Theorem 13.6.1. This allows one to

obtain, in the course of the proof, a representation for the invariant measure π simi-

lar to (13.6.15) (see (13.7.5)).

A remarkable fact is that the conditions of Theorem 13.7.1 are necessary for

convergence (13.7.1) (for more details, see [6]).

Proof of Theorem 13.7.1 For simplicity’s sake, assume that n0 = 1. First we will

construct an “extended” Markov chain X∗ = {X∗n} = {X̃n,ω(n)}, ω(n) being a se-

quence of independent identically distributed random variables with

P
(
ω(n)= 1

)
= p, P

(
ω(n)= 0

)
= 1− p.

The joint distribution of (X̃(n),ω(n)) in the state space

X∗ :=X× {0,1} =
{
x∗ = (x, δ) : x ∈X; δ = 0,1

}

and the transition function P ∗ of the chain X∗ are defined as follows (the notation

X∗n(x
∗) has the same meaning as Xn(x)):

P
(
X∗1

(
x∗
)
∈ (B, δ)

)
=: P ∗

(
x∗, (B, δ)

)
= P(x,B) P

(
ω(1)= δ

)
for x /∈ V

(i.e., for X̃n /∈ V , the components of X∗n+1 are “chosen at random” indepen-

dently with the respective marginal distributions). But if x ∈ V , the distribution of

X∗(x∗,1) is given by

P(X∗1
(
(x,1) ∈ (B, δ)

)
= P ∗

(
(x,1), (B, δ)

)
= μ(B)P

(
ω(1)= δ

)
,

P(X∗1
(
(x,0) ∈ (B, δ)

)
= P ∗

(
(x,0), (B, δ)

)
=Q(x,B)P

(
ω(1)= δ

)
,
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where

Q(x,B) :=
(
P(x,B)− pμ(B)

)
/(1− p),

so that, for any B ∈BX,

pμ(B)+ (1− p)Q(x,B)= P(x,B). (13.7.2)

Thus P(ω(n+ 1) = 1|X∗n) = p for any values of X∗n. However, when “choosing”

the value X̃n+1 there occurs (only when X̃n ∈ V ) a partial randomisation (or split-

ting): for X̃n ∈ V , we let P(X̃n+1 ∈ B|X∗n) be equal to the value μ(B) (not depend-

ing on X̃n ∈ V !) provided that ω(n)= 1. If ω(n)= 0, then the value of the probabil-

ity is taken to be Q(X̃n,B). It is evident that, by virtue of condition (II) (for n0 = 1),

μ(B) and Q(x,B) are probability distributions, and by equality (13.7.2) the first

component X̃n of the process X∗n has the property P(X̃n+1 ∈ B| X̃n) = P(X̃n,B),

and therefore the distributions of the sequences X and X̃ coincide.

As we have already noted, the “extended” process X∗(n) possesses the fol-

lowing property: the conditional distribution P(X∗n+1 ∈ (B, δ)|X∗n) does not de-

pend on X∗(n) on the set X∗n ∈ V ∗ := (V ,1) and is there the known distribution

μ(B)P(ω(1) = δ). This just means that visits of the chain X∗ to the set V ∗ divide

the trajectory of X∗ into independent cycles, in the same way as it happens in the

presence of a positive atom.

We described above how one constructs the distribution of X∗ from that of X.

Now we will give obvious relations reconstructing the distribution of X from that

of the chain X∗:

P
(
Xn(x) ∈ B

)
= p P(X∗n

(
(x,1) ∈ B∗

)
+ (1− p)P

(
X∗n(x,0) ∈ B∗

)
, (13.7.3)

where B∗ := (B,0)∪ (B,1). Note also that, if we consider Xn = X̃n as a component

of X∗n, we need to write it as a function Xn(x
∗) of the initial value x∗ ∈X∗.

Put

τ ∗ :=min
{
k ≥ 1 :X∗k

(
x∗
)
∈ V ∗

}
, x∗ ∈ V ∗ = (V ,1).

It is obvious that τ ∗ does not depend on the value x∗ = (x,1), since X1(x
∗) has

the distribution μ for any x ∈ V . This property allows one to identify the set V ∗

with a single point. In other words, one needs to consider one more state space X∗∗

which is obtained from X∗ if we replace the set V ∗ = (V ,1) by a point to be denoted

by x0. In the new state space, we construct a chain X∗∗ equivalent to X∗ using the

obvious relations for the transition probability P ∗∗:

P ∗∗
(
x∗, (B, δ)

)
:= P ∗

(
x∗, (B, δ)

)
for x∗ 
= (V ,1)= V ∗, (B, d) 
= V ∗,

P ∗∗
(
x0, (B, δ)

)
:= pμ(B), P ∗∗

(
x∗, x0

)
:= P ∗

(
x∗,V ∗

)
.

Thus we have constructed a chain X∗∗ with the transition function P ∗∗, and this

chain has atom x0. Clearly, τ ∗ =min{k ≥ 1 :X∗∗k (x0)= x0}. We now prove that this

atom is positive. Put

E := sup
x∈V

EτV (x).
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Lemma 13.7.1 Eτ ∗ ≤ 2
p
E.

Proof Consider the evolution of the first component Xk(x
∗) of the process X∗k (x

∗),
x∗ ∈ V ∗. Partition the time axis k ≥ 0 into intervals by hitting the set V by Xk(x

∗).

Let τ1 ≥ 1 be the first such hitting time (recall that X1(x
∗)

d= X0(μ) has the dis-

tribution μ, so that τ1 = 1 if μ(V ) = 1). Prior to time τ1 (in the case τ1 > 1)

transitions of Xk(x
∗), k ≥ 2, were governed by the transition function P(y,B),

y ∈ V c = X \ V . At time τ1, according to the definition of X∗, one carries out a

Bernoulli trial independent of the past history of the process with success (which

is the event ω(τ1)= 1) probability p. If ω(τ1)= 1 then τ ∗ = τ1. If ω(τ1)= 0 then

the transition from Xτ1
(x∗) to Xτ1+1(x

∗) is governed by the transition function

Q(y,B)= (P (y,B)− pμ(B))/(1− p), y ∈ V . The further evolution of the chain

is similar: if τ1 + τ2 is the time of the second visit of X(x∗, k) to V (in the case

ω(τ1)= 0) then in the time interval [τ1+1, τ2] transitions of X(x∗, k) occur accord-

ing to the transition function P(y,B), y ∈ V c. At time τ1+ τ2 one carries out a new

Bernoulli trial with the outcome ω(τ1 + τ2). If ω(τ1 + τ2)= 1, then τ ∗ = τ1 + τ2.

If ω(τ1 + τ2)= 0, then the transition from X(x∗, τ1 + τ2) to X(x∗, τ1 + τ2 + 1) is

governed by Q(y,B), and so on.

In other words, the evolution of the component Xk(x
∗) of the process X∗k (x

∗) is

as follows. Let X̃ = {X̃k}, k = 1,2, . . . , be a Markov chain with the distribution μ

at time k = 1 and transition probability Q(x,B) at times k ≥ 2,

Q(x,B)=
{

(P (x,B)− pμ(B))/(1− p) if x ∈ V,

P (x,B) if x ∈ V c.

Define Ti as follows:

T0 := 0, T1 = τ1 =min{k ≥ 1 : X̃k ∈ V },

Ti := τ1 + · · · + τi =min{k > Ti−1 : X̃k ∈ V }, i ≥ 2.

Let, further, ν be a random variable independent of X̃ and having the geometric

distribution

P(ν = k)= (1− p)k−1p, k ≥ 1, ν =min
{
k ≥ 1 : ω(Tk)= 1

}
. (13.7.4)

Then it follows from the aforesaid that the distribution of X1(x
∗), . . . ,Xτ∗(x

∗) co-

incides with that of X̃1, . . . , X̃ν ; in particular, τ ∗ = Tν , and

Eτ ∗ =
∞∑

k=1

p(1− p)k−1ETk.

Further, since μ(B)≤ P(x,B)/p for x ∈ V , then, for any x ∈ V ,

Eτ1 = μ(V )+
∫

V c

μ(du)
(
1+EτV (u)

)
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≤ 1

p

[
P(x,V )+

∫

V c

P(x, du)
(
1+EτV (u)

)]
= EτV (x)

p
≤ E

p
.

To bound Eτi for i ≥ 2, we note that Q(x,B) ≤ (1 − p)−1P(x,B) for x ∈ V .

Therefore, if we denote by F(i) the σ -algebra generated by {X̃k, ω(τk)} for k ≤ Ti ,

then

E(τi |F(i−1)) ≤ sup
x∈V

[
Q(x,V )+

∫

V c

Q(x,du)
(
1+EτV (u)

)]

≤ 1

1− p
sup
x∈V

[
P(x,V )+

∫

V c

P(x, du)
(
1+EτV (u)

)]

= (1− p)−1 sup
x∈V

EτV (x)=E(1− p)−1.

This implies the inequality ETk ≤E(1/p+ (k−1)/(1−p)), from which we obtain

that

Eτ ∗ ≤E

(
1/p+ p

∞∑

k=1

(k − 1)(1− p)k−2

)
= 2E/p.

The lemma is proved. �

We return to the proof of the theorem. To make use of Theorem 13.6.1, we now

have to show that P(τ ∗(x∗) <∞)= 1 for any x∗ ∈X∗, where

τ ∗
(
x∗
)
:=min

{
k ≥ 1 :X∗k

(
x∗
)
∈ V ∗

}
.

But the chain X visits V with probability 1. After ν visits to V (ν was defined in

(13.7.4)), the process X∗ = (X(n),ω(n)) will be in the set V ∗.
The aperiodicity condition for n0 = 1 will be met if μ(V ) > 0. In that case we

obtain by virtue of Theorem 13.6.1 that there exists a unique invariant measure π∗

such that, for any x∗ ∈X∗,

∥∥P ∗
(
x∗, n, ·

)
− π∗(·)

∥∥→ 0, π∗
(
(B, δ)

)
= 1

Eτ ∗

∞∑

k=1

P ∗V ∗
(
k, (B,d)

)
,

P ∗V ∗
(
k, (B, δ)

)
= P

(
X∗k

(
x∗
)
∈ (B, δ),X∗1

(
x∗
)

/∈ V ∗, . . . ,X∗k−1

(
x∗
)

/∈ V ∗
)
.

(13.7.5)

In the last equality, we can take any point x∗ ∈ V ∗; the probability does not depend

on the choice of x∗ ∈ V ∗.
From this and the “inversion formula” (13.7.3) we obtain assertion (13.7.1) and

a representation for the invariant measure π of the process X.

The proof of the convergence ‖P(μ0, n, ·) − π(·)‖ → 0 and uniqueness of the

invariant measure is exactly the same as in Theorem 13.6.1 (these facts also follow

from the respective assertions for X∗).
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Verifying the conditions of Theorem 13.6.1 in the case where n0 > 1 or μ(V )= 0

causes no additional difficulties and we leave it to the reader.

The theorem is proved. �

Note that in a way similar to that in the proof of Theorem 13.4.1, one could also

establish the uniqueness of the solution to the integral equation for the invariant

measure (see Definition 13.6.6) in a wider class of signed finite measures.

The main and most difficult to verify conditions of Theorem 13.7.1 are undoubt-

edly conditions (I) and (II). Condition (I0) is usually obtained “automatically”, in

the course of verifying condition (I), for the latter requires bounding EτV (x) for

all x. Verifying the aperiodicity condition (III) usually causes no difficulties. If, say,

recurrence to the set V is possible in m1 and m2 steps and g.c.d. (m1,m2)= 1, then

the chain is aperiodic.

13.7.2 On Conditions (I) and (II)

Now we consider in more detail the main conditions (I) and (II). Condition (II) is

expressed directly in terms of local characteristics of the chain (transition probabili-

ties in one or a fixed number of steps n0 > 1), and in this sense it could be treated as

a “final” one. One only needs to “guess” the most appropriate set V and measure μ

(of course, if there are any). For example, for multi-dimensional Markov chains in

X=R
d , condition (II) will be satisfied if at least one of the following two conditions

is met.

(IIa) The distribution of Xn0
(x) has, for some n0 and N > 0 and all x ∈ VN :=

{y : |y| ≤N}, a component which is absolutely continuous with respect to Lebesgue
measure (or to the sum of the Lebesgue measures on R

d and its “coordinate” sub-
spaces) and is “uniformly” positive on the set VM for some M > 0. In this case, one

can take μ to be the uniform distribution on VM .

(IIl) X = Z
d is the integer lattice in R

d . In this case the chain is countable and

everything simplifies (see Sect. 13.4).

We have already noted that, in the cases when a chain has a positive atom, which

is the case in Example 13.6.2, no assumptions about the structure (smoothness) of

the distribution of Xn0
(x) are needed.

The “positivity” condition (I) is different. It is given in terms of rather compli-

cated characteristics EτV (x) requiring additional analysis and a search for condi-

tions in terms of local characteristics which would ensure (I). The rest of the section

will mostly be devoted to this task.

First of all, we will give an “intermediate” assertion which will be useful for the

sequel. We have already made use of such an assertion in Example 13.6.2.

Theorem 13.7.2 Suppose there exists a nonnegative measurable function
g :X→R such that the following conditions (Ig) are met:

(Ig)1 EτV (x)≤ c1 + c2g(x) for x ∈ V c =X \ V , c1, c2 = const.
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(Ig)2 supx∈V Eg(X1(x)) <∞.

Then conditions (I0) and (I) are satisfied.

The function g from Theorem 13.7.2 is often called the test, or Lyapunov, func-
tion. For brevity’s sake, put τV (x) := τ(x).

Proof If (Ig) holds then, for x ∈ V ,

Eτ(x) ≤ 1+E
[
τ
(
X1(x)

)
;X1(x) ∈ V c

]

≤ 1+E
(
E
[
τ
(
X1(x)

)
|X1(x)

]
;X1(x) ∈ V c

)

≤ 1+E
(
c1 + c2g

(
X1(x)

)
;X1(x) ∈ V c

)

≤ 1+ c1 + c2 sup
x∈V

Eg
(
X1(x)

)
<∞.

The theorem is proved. �

Note that condition (Ig)2, like condition (II), refers to “local” characteristics of

the system, and in that sense it can also be treated as a “final” condition (up to the

choice of function g).

We now consider conditions ensuring (Ig)1. The processes

{Xn} =
{
Xn(x)

}
, X0(x)= x,

to be considered below (for instance, in Theorem 13.7.3) do not need to be Marko-

vian. We will only use those properties of the processes which will be stated in

conditions of assertions.

We will again make use of nonnegative trial functions g :X→ R and consider a

set V “induced” by the function g and a set U which in most cases will be a bounded

interval of the real line:

V := g−1(U)=
{
x ∈X : g(x) ∈U

}
.

The notation τ(x)= τU (x) will retain its meaning:

τ(x) :=min
{
k ≥ 1 : g

(
Xk(x)

)
∈U

}
=min

{
k ≥ 1 :Xk(x) ∈ V

}
.

The next assertion is an essential element of Lyapunov’s (or the test functions)

approach to the proof of positive recurrence of a Markov chain.

Theorem 13.7.3 If {Xn} is a Markov chain and, for x ∈ V c ,

Eg
(
X1(x)

)
− g(x)≤−ε, (13.7.6)

then Eτ(x)≤ g(x)/ε and therefore (Ig)1 holds.

To prove the theorem we need
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Lemma 13.7.2 If, for some ε > 0, all n= 0,1,2, . . . , and any x ∈ V c,

E
(
g(Xn+1)− g(Xn)|τ(x) > n

)
≤−ε, (13.7.7)

then

Eτ(x)≤ g(x)

ε
, x ∈ V c,

and therefore (Ig)1 holds.

Proof Put τ(x) := τ for brevity and set

τ(N) :=min(τ,N), ∆(n) := g(Xn+1)− g(Xn).

We have

−g(x)=−Eg(X0)≤ E
(
g(Xτ(N)

)− g(X0)
)

= E

τ(N)−1∑

n=0

∆(n)=
N∑

n=0

E∆(n)I (τ > n)

=
N∑

n=0

P(τ > n)E
(
∆(n)|τ > n

)
≤−ε

N∑

n=0

P(τ > n).

This implies that, for any N ,

N∑

n=0

P(τ > n)≤ g(x)

ε
.

Therefore this inequality will also hold for N =∞, so that Eτ ≤ g(x)/ε. The lemma

is proved. �

Proof of Theorem 13.7.3 The proof follows in an obvious way from the fact that, by

(13.7.6) and the homogeneity of the chain, E(g(Xn+1)−g(Xn)|Xn)≤−ε holds on

{Xn ∈ V c}, and from inclusion {τ > n} ⊂ {Xn ∈ V c}, so that

E
(
g(Xn+1)−g(Xn); τ > n

)
= E

[
E
(
g(Xn+1)−g(Xn)|Xn

)
; τ > n

]
≤−εP(τ > n).

The theorem is proved. �

Theorem 13.7.3 is a modification of the positive recurrence criterion known as

the Foster–Moustafa–Tweedy criterion (see, e.g., [6, 27]).

Consider some applications of the obtained results. Let X be a Markov chain on

the real half-axis R+ = [0,∞). For brevity’s sake, put ξ(x) := X1(x)− x. This is

the one-step increment of the chain starting at the point x; we could also define ξ(x)

as a random variable with the distribution

P
(
ξ(x) ∈ B

)
= P(x,B − x)

(
B − x = {y ∈X : y + x ∈ B}

)
.
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Corollary 13.7.1 If, for some N ≥ 0 and ε > 0,

sup
x≤N

Eξ(x) <∞, sup
x>N

Eξ(x)≤−ε, (13.7.8)

then conditions (I0) and (I) hold for V = [0,N ].

Proof Make use of Theorems 13.7.2, 13.7.3 and Corollary 13.3.1 with g(x) ≡ x,

V = [0,N ]. Conditions (Ig)2 and (13.7.6) are clearly satisfied. �

Thus the presence of a “negative drift” in the region x > N guarantees positivity

of the chain. However, that condition (I) is met could also be ensured when the

“drift” Eξ(x) vanishes as x→∞.

Corollary 13.7.2 Let supx Eξ2(x) <∞ and

Eξ2(x)≤ β, Eξ(x)≤− c

x
for x > N.

If 2c > β then conditions (I0) and (I) hold for V = [0,N].

Proof We again make use of Theorems 13.7.2 and 13.7.3, but with g(x)= x2. We

have for x > N :

Eg
(
X1(x)

)
− g(x)= E

(
2xξ(x)+ ξ2(x)

)
≤−2c+ β < 0. �

Before proceeding to examples related to ergodicity we note the following. The

“larger” the set V the easier it is to verify condition (I), and the “smaller” that set,

the easier it is to verify condition (II). In this connection there arises the question

of when one can consider two sets: a “small” set W and a “large” set V ⊃W such

that if (I) holds for V and (II) holds for W then both (I) and (II) would hold for W .

Under conditions of Sect. 13.6 one can take W to be a “one-point” atom x0.

Lemma 13.7.3 Let sets V and W be such that the condition

(IV ) E := sup
x∈V

EτV (x) <∞

holds and there exists an m such that

inf
x∈V

P

(
m⋃

j=1

{
Xj (x) ∈W

}
)
≥ q > 0.

Then the following condition is also met:

(IW ) sup
x∈W

EτW (x)≤ sup
x∈V

EτW (x)≤ mE

q
.
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Thus, under the assumptions of Lemma 13.7.3, if condition (I) holds for V and

condition (II) holds for W , then conditions (I) and (II) hold for W .

To prove Lemma 13.7.3, we will need the following assertion extending (in the

form of an inequality) the well-known Wald identity.

Assume we are given a sequence of nonnegative random variables τ1, τ2, . . .

which are measurable with respect to σ -algebras U1 ⊂ U2 ⊂ · · · , respectively, and

let Tn := τ1 + · · · + τn. Furthermore, let ν be a given stopping time with respect to

{Un}: {ν ≤ n} ∈ Un.

Lemma 13.7.4 If E(τn|Un−1)≤ a then ETν ≤ aEν.

Proof We can assume without loss of generality that Eν <∞ (otherwise the in-

equality is trivial). The proof essentially repeats that of Theorem 4.4.1. One has

Eτν =
∞∑

k=1

E(Tk;ν = k)=
∞∑

k=1

E(τk, ν ≥ k). (13.7.9)

Changing the summation order here is well-justified, for the summands are nonneg-

ative. Further, {ν ≤ k − 1} ∈ Uk−1 and hence {ν ≥ k} ∈ Uk−1. Therefore

E(τk;ν ≥ k)= EI(ν ≥ k)E(τk|Uk−1)≤ aP(ν ≥ k).

Comparing this with (13.7.9) we get

ETν ≤ a

∞∑

k=1

P(ν ≥ k)= aEnu.

The lemma is proved. �

Proof of Lemma 13.7.3 Suppose the chain starts at a point x ∈ V . Consider the

times T1, T2, . . . of successive visits of X to V , T0 = 0. Put Y0 := x, Yk :=XTk
(x),

k = 1,2, . . . . Then, by virtue of the strong Markov property, the sequence (Yk, Tk)

will form a Markov chain. Set Uk := σ(T1, . . . , Tk;Y1, . . . , Yk), τk := Tk − Tk−1,

k = 1,2 . . . . Then ν :=min{k : Yk ∈W } is a stopping time with respect to {Uk}. It is

evident that E(τk|Uk−1)≤E. Bound Eν. We have

pk := P(ν ≥ km)≤ P

(
Tkm⋂

j=1

{Xj /∈W }
)

= EI

( T(k−1)m⋂

j=1

{Xj /∈W }
)

E

(
I

(
Tkm⋂

j=T(k−1)m+1

{Xj /∈W }
)∣∣∣U(k−1)m

)
.
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Since τj ≥ 1, the last factor, by the assumptions of the lemma and the strong

Markov property, does not exceed

P

(
m⋂

j=1

{
Xnew

j (XT(k−1)m
) /∈W

}
)
≤ (1− q),

where, as before, Xnew
k (x) is a chain with the same distribution as Xk(x) but in-

dependent of the latter chain. Thus pk ≤ (1− q)pk−1 ≤ (1− q)k , Eν ≤ m/q , and

by Lemma 13.7.4 we have ETν ≤Em/q . It remains to notice that τW (x)= Tν . The

lemma is proved. �

Example 13.7.1 A random walk with reflection. Let ξ1, ξ2, . . . be independent iden-

tically distributed random variables,

Xn+1 := |Xn + ξn+1|, n= 0,1, . . . . (13.7.10)

If the ξk and hence the Xk are non-arithmetic, then the chain X has, generally

speaking, no atoms. If, for instance, ξk have a density f (t) with respect to Lebesgue

measure then P(Xk(x)= y)= 0 for any x, y, k ≥ 1. We will assume that a broader

condition (A) holds:

(A). In the decomposition

P(ξk < t)= pa Fa(t)+ pc Fc(t)

of the distribution of ξk into the absolutely continuous (Fa) and singular (Fc) (in-
cluding discrete) components, one has pa > 0.

Corollary 13.7.3 If condition (A) holds, a = Eξk < 0, and E|ξk| <∞, then the
Markov chain defined in (13.7.10) satisfies the conditions of Theorem 13.7.2 and
therefore is ergodic in the sense of convergence in total variation.

Proof We first verify that the chain satisfies the conditions of Corollary 13.7.1.

Since in our case |X1(x) − x| ≤ |ξ1|, the first of conditions (13.7.8) is satisfied.

Further,

Eξ(x)= E|x + ξ1| − x = E(ξ1; ξ1 ≥−x)−E(2x + ξ1; ξ1 <−x)→ Eξ1

as x→∞, since

xP(ξ1 <−x)≤ E
(
|ξ1|, |ξ1|> x

)
→ 0.

Hence there exists an N such that Eξ(x) ≤ a/2 < 0 for x ≥ N . This proves that

conditions (I0) and (I) hold for V = [0,N ].
Now verify that condition (II) holds for the set W = [0, h] with some h. Let f (t)

be the density of the distribution Fa from condition (A). There exist an f0 > 0 and

a segment [t1, t2], t2 > t1, such that f (t) > f0 for t ∈ [t1, t2]. The density of x + ξ1
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will clearly be greater than f0 on [x + t1, x + t2]. Put h := (t2 − t1)/2. Then, for

0≤ x ≤ h, one will have [t2 − h, t2] ⊂ [x + t1, x + t2].
Suppose first that t2 > 0. The aforesaid will then mean that the density of x + ξ1

will be greater than f0 on [(t2 − h)+, t2] for all x ≤ h and, therefore,

inf
x≤h

P
(
X1(x) ∈ B

)
≥ p1

∫

B

f0(t) dt,

where

f0(t)=
{

f0 ift ∈ [(t2 − h)+, t2],
0 otherwise.

This means that condition (II) is satisfied on the set W = [0, h]. The case t2 ≤ 0 can

be considered in a similar way.

It remains to make use of Lemma 13.7.3 which implies that condition (I) will

hold for the set W . The condition of Lemma 13.7.3 is clearly satisfied (for suffi-

ciently large m, the distribution of Xm(x), x ≤N , will have an absolutely continu-

ous component which is positive on W ). For the same reason, the chain X cannot be

periodic. Thus all conditions of Theorem 13.7.2 are met. The corollary is proved. �

Example 13.7.2 An oscillating random walk. Suppose we are given two indepen-

dent sequences ξ1, ξ2, . . . and η1, η2, . . . of independent random variables, identi-

cally distributed in each of the sequences. Put

Xn+1 :=
{

Xn + ξn+1 if Xn ≥ 0,

Xn + ηn+1 if Xn < 0.
(13.7.11)

Such a random walk is called oscillating. It clearly forms a Markov chain in the

state space X= (−∞,∞).

Corollary 13.7.4 If at least one of the distributions of ξk or ηk satisfies condition
(A) and −∞ < Eξk < 0, ∞ > Eηk > 0, then the chain (13.7.11) will satisfy the
conditions of Theorem 13.7.2 and therefore will be ergodic.

Proof The argument is quite similar to the proof of Corollary 13.7.3. One just needs

to take, in order to verify condition (I), g(x)= |x| and V = [−N,N ]. After that it

remains to make use of Lemma 13.7.3 with W = [0, h] if condition (A) is satisfied

for ξk (and with W = [−h,0) if it is met for ηk). �

Note that condition (A) in Examples 13.7.1 and 13.7.2 can be relaxed to that of

the existence of an absolutely continuous component for the distribution of the sum∑m
j=1 ξj (or

∑m
j=1 ηj ) for some m. On the other hand, if the distributions of these

sums are singular for all m, then convergence of distributions P(x,n, ·) in total vari-

ation cannot take place. If, for instance, one has P(ξk =−
√

2)= P(ξk = 1)= 1/2 in

Example 13.7.1, then Eξk < 0 and condition (I) will be met, while condition (II) will
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not. Convergence of P(x,n, ·) in total variation to the limiting distribution π is also

impossible. Indeed, it follows from the equation for the invariant distribution π that

this distribution is necessarily continuous. On the other hand, say, the distributions

P(0, n, ·) are concentrated on the countable set N of the numbers | − k
√

2 + l|;
k, l = 1,2, . . . . Therefore P(0, n,N) = 1 for all n, π(N) = 0. Hence only weak

convergence of the distributions P(x,n, ·) to π(·) may take place. And although this

convergence does not raise any doubts, we know no reasonably simple proof of this

fact.

Example 13.7.3 (continuation of Examples 13.4.2 and 13.6.1) Let X = [0,1],
ξ1, ξ2, . . . be independent and identically distributed, and Xn+1 := Xn + ξn+1

(mod 1) or, which is the same, Xn+1 := {Xn + ξn+1}, where {x} denotes the frac-

tional part of x. Here, condition (I) is clearly met for V =X= [0,1]. If the ξk satisfy

condition (A) then, as was the case in Example 13.7.1, condition (II) will be met for

the set W = [0, h] with some h > 0, which, together with Lemma 13.7.3, will mean,

as before, that the conditions of Theorem 13.7.2 are satisfied. The invariant distri-

bution π will in this example be uniform on [0,1]. For simplicity’s sake, we can

assume that the distribution of ξk has a density f (t), and without loss of generality

we can suppose that ξk ∈ [0,1] (f (t)= 0 for t /∈ [0,1]). Then the density p(x)≡ 1

of the invariant measure π will satisfy the equation for the invariant measure:

p(x)= 1=
∫ x

0

dy f (x − y)+
∫ 1

x

dy f (x − y + 1)=
∫ 1

0

f (y)dy.

Since the stationary distribution is unique, one has π = U0,1. Moreover, by The-

orem A3.4.1 of Appendix 3, along with convergence of P(x,n, ·) to U0,1 in total

variation, convergence of the densities P(x,n, dt)/dt to 1 in (Lebesgue) measure

will take place.

The fact that the invariant distribution is uniform remains true for arbitrary

non-lattice distributions of ξk . However, as we have already mentioned in Exam-

ple 13.6.1, in the general case (without condition (A)) only weak convergence of

the distributions P(x,n, ·) to the uniform distribution is possible (see [6, 18]).

13.8 Laws of Large Numbers and the Central Limit Theorem for

Sums of Random Variables Defined on a Markov Chain

13.8.1 Random Variables Defined on a Markov Chain

Let, as before, X = {Xn} be a Markov Chain in an arbitrary measurable state space

〈X ,BX 〉 defined in Sect. 13.6, and let a measurable function f : X → R be given

on 〈X ,BX 〉. The sequence of sums

Sn :=
n∑

k=1

f (Xk) (13.8.1)
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is a generalisation of the random walks that were studied in Chaps. 8 and 11. One

can consider an even more general problem on the behaviour of sums of random
variables defined on a Markov chain. Namely, we will assume that a collection

of distributions {Fx} is given which depend on the parameter x ∈ X . If F
(−1)
x (t)

is the quantile transform of Fx and ω ⊂= U0,1, then ξx := F
(−1)
x (ω) will have the

distribution Fx (see Sect. 3.2.4).

The mapping Fx of the space X into the set of distributions is assumed to be such

that the function ξx(t)= F
(−1)
x (t) is measurable on X ×R with respect to BX ×B,

where B is the σ -algebra of Borel sets on the real line. In this case, ξx(ω) will be a

random variable such that the moments

Eξ s
x =

∫ ∞

−∞
vsdFx(v)=

∫ 1

0

[
F (−1)

x (u)
]s

du

are measurable with respect to BX (and hence will be random variables themselves

if we set a distribution on 〈X ,BX 〉).

Definition 13.8.1 If ωi ⊂=U0,1 are independent then the sequence

ξXn := F
(−1)
Xn

(ωn), n= 0,1, . . . ,

is called a sequence of random variables defined on the Markov chain {Xn}.
The basic objects of study in this section are the asymptotic properties of the

distributions of the sums

Sn :=
n∑

k=0

ξXk
. (13.8.2)

If the distribution Fx is degenerate and concentrated at the point f (x) then

(13.8.2) turns into the sum (13.8.1). If the chain X is countable with states

E0,E1, . . . and f (x) = I(Ej ) then Sn = mj (n) is the number of visits to the state

Ej by the time n considered in Theorem 13.4.4.

13.8.2 Laws of Large Numbers

In this and the next subsection we will confine ourselves to Markov chains satis-

fying the ergodicity conditions from Sects. 13.6 and 13.7. As was already noticed,

ergodicity conditions for Harris chains mean, in essence, the existence of a positive

atom (possibly in the extended state space). Therefore, for the sake of simplicity, we

will assume from the outset that the chain X has a positive atom at a point x0 and

put, as before,

τ(x) :=min
{
k ≥ 0 :Xk(x)= x0

}
, τ (x0)= τ.

Summing up the conditions sufficient for (I0) and (I) to hold (the finiteness of τ(x)

and Eτ ) studied in Sect. 13.7, we obtain the following assertion in our case.
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Corollary 13.8.1 Let there exist a set V ∈ BX such that, for the stopping time
τV (x) :=min{k :Xk(x) ∈ V }, we have

E := sup
x∈V

EτV (x) <∞. (13.8.3)

Furthermore, let there exist an m≥ 1 such that

inf
x∈V

P

(
m⋃

j=1

{
Xj (x)= x0

}
)
≥ q > 0.

Then

Eτ ≤ mE

q
.

This assertion follows from Lemma 13.7.2. One can justify conditions (I0) and

(13.8.3) by the following assertion.

Corollary 13.8.2 Let there exist an ε > 0 and a nonnegative measurable function
g :X →R such that

sup
x∈V

Eg
(
X1(x)

)
<∞

and, for x ∈ V c,

Eg
(
X1(x)

)
− g(x)≤−ε.

Then conditions (I0) and (13.8.3) are met.

In order to formulate and prove the law of large numbers for the sums (13.8.2), we

will use the notion of the increment of the sums (13.8.2) on a cycle between conse-

quent visits of the chain to the atom x0. Divide the trajectory X0,X1,X2, . . . ,Xn of

the chain X on the time interval [0, n] into segments of lengths τ1 := τ(x), τ2, τ3, . . .

(τj
d= τ for j ≥ 2) corresponding to the visits of the chain to the atom x0. Denote

the increment of the sum Sn on the k-th cycle (on (Tk−1, Tk]) by ζk :

ζ1 :=
τ1∑

j=0

ξXj
,

ζk :=
Tk∑

j=Tk−1+1

ξXj
, k ≥ 2, where Tk :=

k∑

j=1

τj , k ≥ 1, T0 = 0.

(13.8.4)

The vectors (τk, ζk), k ≥ 2, are clearly independent and identically distributed. For

brevity, the index k will sometimes be omitted: (τk, ζk)
d= (τ, ζ ) for k ≥ 2.

Now we can state the law of large numbers for the sums (13.8.2).
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Theorem 13.8.1 Let P(τ (x) <∞)= 1 for all x, Eτ <∞, E|ζ |<∞, and the g.c.d.

of all possible values of τ equal 1. Then

Sn

n
= 1

n

n∑

k=1

ξXk

p→ Eζ

Eτ
as n→∞.

Proof Put

ν(n) :=max{k : Tk ≤ n}.
Then the sum Sn can be represented as

Sn = ζ1 +Zν(n) + zn, (13.8.5)

where

Zk :=
k∑

j=2

ζj , zn :=
n∑

j=Tν(n)+1

ξXj
.

Since τ1 and ζ1 are proper random variables, we have, as n→∞,

ζ1

n

a.s.−→ 0. (13.8.6)

The sum zn consists of γ (n) := n− Tν(n) summands. Theorem 10.3.1 implies that

the distribution of γ (n) converges to a proper limiting distribution, and the same is

true for zn. Hence, as n→∞,

zn

n

p→ 0. (13.8.7)

The sums Zν(n), being the main part of (13.8.5), are nothing else but a generalised

renewal process corresponding to the vectors (τ, ζ ) (see Sect. 10.6).

Since Eτ <∞, by Theorem 11.5.2, as n→∞,

Zν(n)

n

p→ Eζ

Eτ
. (13.8.8)

Together with (13.8.6) and (13.8.7) this means that

Sn

n

p→ Eζ

Eτ
. (13.8.9)

The theorem is proved. �

As was already noted, sufficient conditions for P(τ (x) <∞)= 1 and Eτ <∞ to

hold are contained in Corollaries 13.8.1 and 13.8.2. It is more difficult to find con-

ditions sufficient for Eζ <∞ that would be adequate for the nature of the problem.

Below we will obtain certain relations which clarify, to some extent, the con-

nection between the distributions of ζ and τ and the stationary distribution of the

chain X.
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Theorem 13.8.2 (A generalisation of the Wald identity) Assume Eτ <∞, the g.c.d.

of all possible values of τ be 1, π be the stationary distribution of the chain X, and

Eπ E|ξx | :=
∫

E|ξx |π(dx) <∞. (13.8.10)

Then

Eζ = EτEπ Eξx . (13.8.11)

The value of Eπ Eξx is the “doubly averaged” value of the random variable ξx :

over the distribution Fx and over the stationary distribution π .

Theorem 13.8.2 implies that the condition supx E|ξx | <∞ is sufficient for the

finiteness of E|ζ |.

Proof [of Theorem 13.8.2] First of all, we show that condition (13.8.10) implies

the finiteness of E|ζ |. If ξx ≥ 0 then Eζ is always well-defined. If we assume that

Eζ =∞ then, repeating the proof of Theorem 13.8.1, we would easily obtain that,

in this case, Sn/n
p→∞, and hence necessarily ESn/n→∞ as n→∞. But

ESn =
n∑

j=0

EξXj
=

n∑

j=0

∫
(Eξx)P(Xj ∈ dx),

where the distribution P(Xj ∈ ·) converges in total variation to π(·) as j→∞,

∫
(Eξx)P(Xj ∈ dx)→

∫
(Eξx)π(dx),

and hence

1

n
ESn→ Eπ Eξx <∞. (13.8.12)

This contradicts the above assumption, and therefore Eζ <∞. Applying the above

argument to the random variables |ξx |, we conclude that condition (13.8.10) implies

E|ζ |<∞.

Let, as above, η(n) := ν(n)+ 1=min{k : Tk > n}. We will need the following.

Lemma 13.8.5 If E|ζ |<∞ then

Eζη(n) = o(n). (13.8.13)

If Eζ 2 <∞ then

Eζ 2
η(n) = o(n) (13.8.14)

as n→∞.
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Proof Without losing generality, assume that ξx ≥ 0 and ζ ≥ 0. Since τj ≥ 1, we

have

h(k) :=
k∑

j=0

P(Tj = k)≤ 1 for all k.

Therefore,

P(ζη(n) > v)=
n∑

k=0

h(k)P(ζ > v, τ > n− k)≤
n∑

k=0

P(ζ > v, τ > k).

If Eζ <∞ then

Eζη(n) ≤
n∑

k=0

∫ ∞

0

P(ζ > v; τ > k)dv =
n∑

k=0

E(ζ ; τ > k), (13.8.15)

where E(ζ ; τ > k)→ 0 as k →∞. This follows from Lemma A3.2.3 of Ap-

pendix 3. Together with (13.8.15) this proves (13.8.13).

Similarly, for Eζ 2 <∞,

Eζ 2
η(n) ≤ 2

n∑

k=0

∫ ∞

0

vP(ζ > v, τ > k)dv =
n∑

k=0

E
(
ζ 2, τ > k

)
= o(n).

The lemma is proved. �

Now we continue the proof of Theorem 13.8.2. Consider representation (13.8.5)

for X0 = x0 and assume again that ξx ≥ 0. Then ζ1 = ξx0
,

Sn = ζ1 +Zη(n) + zn − ζη(n),

where by the Wald identity

EZη(n) = Eη(n)Eζ ∼ n
Eζ

Eτ
.

Since π({x0}) = 1/Eτ > 0, we have, by (13.8.10), E|ξx0
| < ∞. Moreover, for

ξx ≥ 0,

|ζη(n) − zn|< ζη(n).

Hence, by Lemma 13.8.5,

ESn = n
Eζ

Eτ
+ o(n). (13.8.16)

Combining this with (13.8.12), we obtain the assertion of the theorem.

It remains to consider the case where ξx can take values of both signs. Introduce

new random variables ξ∗x on the chain X, defined by the equalities ξ∗x := |ξx |, and
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endow with the superscript ∗ all already used notations that will correspond to the

new random variables. Since all ξ∗x ≥ 0, by condition (13.8.10) we can apply to them

all the above assertions and, in particular, obtain that

Eζ ∗ <∞, Eζ ∗η(n) = o(n). (13.8.17)

Since

|ζ | ≤ ζ ∗, |ζη(n)| ≤ ζ ∗η(n), |ζη(n) − zn|< ζ ∗η(n),

it follows from (13.8.17) that

E|ζ |<∞, E|ζη(n) − zn| = o(n)

and relation (13.8.16) is valid along with identity (13.8.11).

The theorem is proved. �

Now we will prove the strong law of large numbers.

Theorem 13.8.3 Let the conditions of Theorem 13.8.1 be satisfied. Then

Sn

n

a.s.−→ Eπ Eξx as n→∞.

Proof Since in representation (13.8.5) one has ζ1/n
a.s.−→ 0 as n→∞, we can ne-

glect this term in (13.8.5).

The strong laws of large numbers for {Zk} and {Tk} mean that, for a given ε > 0,

the trajectory of {STk
} will lie within the boundaries kEζ(1± ε) and

Eζ
Eτ

Tk(1± 2ε)

for all k ≥ n and n large enough. (We leave a more formal formulation of this to the

reader.)

We will prove the theorem if we verify that the probability of the event that, be-

tween the times Tk , k ≥ n, the trajectory of Sj will cross at least once the boundaries

rj (1± 3ε), where r = Eζ

Eτ
, tends to zero as n→∞. Since

max
Tk−1<j≤Tk

|Sj − STk
| ≤ ζ ∗k (13.8.18)

(in the notation of the proof of Theorem 13.8.1), it is sufficient to verify that

P(An)→ 0 as n→∞, where An :=
⋃∞

k=n{ζ ∗k > εrTk}. But

P(An)= P(AnBn)+ P(AnBn), (13.8.19)

where

Bn =
∞⋂

k=n

{
Tk > kEτ(1− ε)

}
, P(Bn)→ 0 as n→∞,
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so the second summand in (13.8.19) tends to zero. The first summand on the right-

hand side of (13.8.19) does not exceed (for c= ε(1− ε)Eζ )

P

( ∞⋃

k=n

{
ζ ∗k > εEζk(1− ε)

}
)
≤
∞∑

k=n

P
(
ζ ∗k > ck

)
→ 0

as n→∞, since Eζ ∗ <∞ (see (13.8.17)). The theorem is proved. �

13.8.3 The Central Limit Theorem

As in Theorem 13.8.1, first we will prove the main assertion under certain condi-

tions on the moments of ζ and τ , and then we will establish a connection of these

conditions to the stationary distribution of the chain X. Below we retain the notation

of the previous section.

Theorem 13.8.4 Let P(τ (x) <∞)= 1 for any x, Eτ 2 <∞, the g.c.d. of all possi-
ble values of τ is 1, and Eζ 2 <∞. Then, as n→∞,

Sn − rn

d
√

n/a
⊂=⇒�0,1,

where r := aζ /a, aζ := Eζ , a := Eτ and d2 :=D(ζ − rτ ).

Proof We again make use of representation (13.8.5), where clearly

ζ1√
n

p→ 0,
zn√
n

p→ 0

(see the proof of Theorem 13.8.1). This means that the problem reduces to that of

finding the limiting distribution of Zν(n) = Zη(n) − ζη(n), where by Lemma 10.6.1

ζη(n) has a proper limiting distribution, and so ζη(n)/
√

n
p→ 0 as n→∞. Further-

more, by Theorem 10.6.3,

Zη(n)

σS

√
n
⊂=⇒�0,1,

where σ 2
S := a−1D(ζ − rτ ), r = Eζ

Eτ
. The theorem is proved. �

Now we will establish relations between the moment characteristics used for

normalising Sn and the stationary distribution π . The answer for the number r was

given in Theorem 13.8.2: r = Eπ Eξx . For the number σ 2
S we have the following

result.
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Theorem 13.8.5 Let

σ 2 :=
∫

Dξxπ(dx)+ 2

∞∑

j=1

E(ξX0
− r)(ξXj

− r)

be well-defined and finite, where X0 ⊂= π . Then

σ 2
S := a−1d2 = σ 2.

Note that here the expectation under the sum sign is a “triple averaging”: over

the distribution π(dy)P(y, j, dz) and the distributions of ξy and ξz.

Proof We have

E(Sn − rn)2 = E

[
n∑

k=0

(ξXk
− r)

]2

=
n∑

k=0

E(ξXk
− r)2 + 2

∑

k<j

E(ξXk
− r)(ξXj

− r), (13.8.20)

where

n∑

k=0

E(ξXk
− r)2 =

n∑

k=0

E(ξXk
−EξXk

)2 +
n∑

k=0

(EξXk
− r)2. (13.8.21)

The summands in the first sum on the right-hand side of (13.8.21) converge to σ 2
ξ :=∫

Dξxπ(dx), the summands in the second sum converging to zero. Therefore, the

left-hand side of (13.8.21) is asymptotically equivalent to nσ 2
ξ .

Further,

∑

k<j

E(ξXk
− r)(ξXj

− r)=
n∑

k=0

∑

j≥k+1

E(ξXk
− r)(ξXj

− r), (13.8.22)

where the distribution of Xk converges in total variation to the stationary distribu-

tion π of the chain. Hence the inner sums on the right-hand side of (13.8.22), for

large k and n− k (say, for
√

n < k < n−√n when n→∞), will be close to

E :=
∞∑

j=1

E(ξX0
− r)(ξXj

− r),

where X0 = π and the whole sum on the right-hand side of (13.8.22) is asymptoti-

cally equivalent, as n→∞, to nE (or will be o(n) if E = 0).

Thus

1

n
E(Sn − rn)2 ∼ σ 2

ξ + 2E. (13.8.23)
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We now show that the existence of σ 2
ξ and E implies the finiteness of d2 = E(ζ −

rτ )2.

Consider the truncated random variables

ξ (N)
x :=

⎧
⎨
⎩

ξx if ξx ∈ [−N,N ],
N if ξx > N,

−N if ξx <−N.

Since σ 2
ξ <∞, we have Eξ2

x <∞ (a.e. with respect to the measure π ) and

r(N)→ r,
(
σ

(N)
ξ

)2→ σ 2
ξ , E(N)→E as N→∞,

where the superscript (N) means that the notation corresponds to the truncated ran-

dom variables. By virtue of Theorem 13.8.4,

lim inf
n→∞

1

n
E
(
S(N)

n − r(N)
)2 ≥ a−1

(
d(N)

)2
.

If we assume that d =∞ then we will get that the lim inf on the left-hand side of this

relation is infinite. But this contradicts relation (13.8.23), by which the above lim inf

equals (σ
(N)
ξ )2 + 2E(N) and remains bounded. We have obtained a contradiction,

which shows that d <∞.

On the other hand, for d <∞, Eζ 2 <∞ and, for the initial value x0, by (13.8.5)

we have

E(Sn − rn)2 = E(Zν(n) + zn − rn)2

= E(Zη(n) − rn)2 + 2E(Zη(n) − rn)(zn − ζη(n))+E(zn − ζη(n))
2,

(13.8.24)

where n= Tη(n) − χ(n). Therefore, putting Yn := Zn − rTn =
∑n

k=1(ζk − rτk), we

obtain

E(Zη(n) − rn)2 = EY 2
η(n) − 2EYη(n)χ(n)+Eχ2(n).

By virtue of (10.4.7), Eχ2(n)= o(n). By (10.6.4) (with a somewhat different nota-

tion),

EY 2
η(n) = d2Eη(n),

where d2 := D(ζ − rτ ), Eη(n) ∼ n/a and a = Eτ . Hence, applying the Cauchy–

Bunjakovsky inequality, we get

∣∣EYη(n)χ(n)
∣∣= o(n), E(Zη(n) − rn)2 ∼ nd2a−1. (13.8.25)

It remains to estimate the last two terms on the right-hand side of (13.8.24). But

∣∣ζη(n) − zn

∣∣≤ ζ ∗η(n),
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where ζ ∗ corresponds to the summands ξ∗Xk
= |ξXk

| and where, by Lemma 13.8.5

applied to ξ∗x = |ξx |, we have

E
(
ζ ∗η(n)

)2 = o(n).

Therefore E(ζη(n) − zn) = o(n) and, by the Cauchy–Bunjakovsky inequality and

relation (13.8.25), the same relation is valid for the shifted moment in (13.8.24).

Thus,

E(Sn − rn)2 ∼ a−1d2n.

Combining this relation with (13.8.23), we obtain the assertion of the theorem. �



Chapter 14

Information and Entropy

Abstract Section 14.1 presents the definitions and key properties of information

and entropy. Section 14.2 discusses the entropy of a (stationary) finite Markov chain.

The Law of Large Numbers is proved for the amount of information contained in

a message that is a long sequence of successive states of a Markov chain, and the

asymptotic behaviour of the number of the most common states in a sequence of

successive values of the chain is established. Applications of this result to coding

are discussed.

14.1 The Definitions and Properties of Information and Entropy

Suppose one conducts an experiment whose outcome is not predetermined. The

term “experiment” will have a broad meaning. It may be a test of a new device, a

satellite launch, a football match, a referendum and so on. If, in a football match,

the first team is stronger than the second, then the occurrence of the event A that the

first team won carries little significant information. On the contrary, the occurrence

of the complementary event A contains a lot of information. The event B that a

leading player of the first team was injured does contain information concerning the

event A. But if it was the first team’s doctor who was injured then that would hardly

affect the match outcome, so such an event B carries no significant information

about the event A.

The following quantitative measure of information is conventionally adopted. Let

A and B be events from some probability space 〈Ω,F,P〉.

Definition 14.1.1 The amount of information about the event A contained in the
event (message) B is the quantity

I (A|B) := log
P(A|B)

P(A)
.

The notions of the “amount of information” and “entropy” were introduced by C.E. Shannon in

1948. For some special situations the notion of amount of information had also been considered in

earlier papers (e.g., by R.V.L. Hartley, 1928). The exposition in Sect. 14.2 of this chapter is

substantially based on the paper of A.Ya. Khinchin [21].
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The occurrence of the event B = A may be interpreted as the message that A

took place.

Definition 14.1.2 The number I (A) := I (A|A) is called the amount of information
contained in the message A:

I (A) := I (A|A)=− log P(A).

We see from this definition that the larger the probability of the event A, the

smaller I (A). As a rule, the logarithm to the base 2 is used in the definition of infor-

mation. Thus, say, the message that a boy (or girl) was born in a family carries a unit

of information (it is supposed that these events are equiprobable, and − log2 p = 1

for p = 1/2). Throughout this chapter, we will write just logx for log2 x.

If the events A and B are independent, then I (A|B) = 0. This means that the

event B does not carry any information about A, and vice versa. It is worth noting

that we always have

I (A|B)= I (B|A).

It is easy to see that if the events A and B are independent, then

I (AB)= I (A)+ I (B). (14.1.1)

Consider an example. Let a chessman be placed at random on one of the squares

of a chessboard. The information that the chessman is on square number k (the

event A) is equal to I (A)= log 64= 6. Let B1 be the event that the chessman is in

the i-th row, and B2 that the chessman is in the j -th column. The message A can be

transmitted by transmitting B1 first and then B2. We have

I (B1)= log 8= 3= I (B2).

Therefore

I (B1)+ I (B2)= 6= I (A),

so that transmitting the message A “by parts” requires communicating the same

amount of information (which is equal to 6) as transmitting A itself. One could

give other examples showing that the introduced numerical characteristics are quite

natural.

Let G be an experiment with outcomes E1, . . . ,EN occurring with probabilities

p1, . . . , pN .

The information resulting from the experiment G is a random variable

JG = JG(ω) assuming the value − logpj on the set Ej , j = 1, . . . ,N .

Thus, if in the probability space 〈Ω,F,P〉 corresponding to the experiment G,

Ω coincides with the set (E1, . . . ,EN ), then JG(ω)= I (ω).

Definition 14.1.3 The expectation of the information obtained in the experiment G,

EJG =−
∑

pj logpj , is called the entropy of the experiment. We shall denote it by

Hp =H(G) := −
N∑

j=1

pj logpj ,
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Fig. 14.1 The plot of the

entropy f (p) of a random

experiment with two

outcomes

where p= (p1, . . . , pN ). For pj = 0, by continuity we set pj logpj to be equal to

zero.

The entropy of an experiment is, in a sense, a measure of its uncertainty. Let,

for example, our experiment have two outcomes A and B with probabilities p and

q = 1− p, respectively. The entropy of the experiment is equal to

Hp =−p logp− (1− p) log(1− p)= f (p).

The graph of this function is depicted in Fig. 14.1.

The only maximum of f (p) equals log 2= 1 and is attained at the point p = 1/2.

This is the case of maximum uncertainty. If p decreases, then the uncertainty also

decreases together with Hp, and Hp = 0 for p= (0,1) or (0,1).

The same properties can easily be seen in the general case as well.

The properties of entropy.

1. H(G)= 0 if and only if there exists a j , 1≤ j ≤N , such that pj = P(Ej )= 1.

2. H(G) attains its maximum when pj = 1/N for all j .

Proof The second derivative of the function β(x) = x logx is positive on [0,1],
so that β(x) is convex. Therefore, for any qi ≥ 0 such that

∑N
i=1 qi = 1, and any

xi ≥ 0, one has the inequality

β

(
N∑

i=1

qixi

)
≤

N∑

i=1

qiβ(xi).

If we take qi = 1/N , xi = pi , then

(
1

N

N∑

i=1

pi

)
log

(
1

N

N∑

i=1

pi

)
≤

N∑

i=1

1

N
pi logpi .

Setting u := ( 1
N

, . . . , 1
N

) we obtain from this that

− log
1

N
= logN =Hu ≥−

N∑

i=1

pi logpi =Hp. �

Note that if the entropy H(G) equals its maximum value H(G) = logN , then

JG(ω)= logN with probability 1, i.e. the information JG(ω) becomes constant.
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3. Let G1 and G2 be two independent experiments. We write down the outcomes

and their probabilities in these experiments in the following way:

G1 =
(

E1, . . . ,EN

p1, . . . , pN

)
, G2 =

(
A1, . . . ,AM

q1, . . . , qM

)
.

Combining the outcomes of these two experiments we obtain a new experiment

G=G1 ×G2 =
(

E1A1,E1A2, . . . ,ENAM

p1q1,p1q2, . . . , pNqM

)
.

The information JG obtained as a result of this experiment is a random variable

taking values − logpiqj with probabilities piqj , i = 1, . . . ,N ; j = 1, . . . ,M . But

the sum JG1
+ JG2

of two independent random variables equal to the amounts of

information obtained in the experiments G1 and G2, respectively, clearly has the

same distribution. Thus the information obtained in a sequence of independent ex-
periments is equal to the sum of the information from these experiments. Since in

that case clearly

EJG = EJG1
+EJG2

,

we have that for independent G1 and G2 the entropy of the experiment G is equal
to the sum of the entropies of the experiments G1 and G2:

H(G)=H(G1)+H(G2).

4. If the experiments G1 and G2 are dependent, then the experiment G can be

represented as

G=
(

E1A1,E1A2, . . . ,ENAM

q11, q12, . . . , qNM

)

with qij = pipij , where pij is the conditional probability of the event Aj

given Ei , so that

M∑

j=1

qij = pi = P(Ei), i = 1, . . . ,N;

N∑

j=1

qij = qj = P(Ai), j = 1, . . . ,M.

In this case the equality JG = JG1
+ JG2

, generally speaking, does not hold. In-

troduce a random variable J ∗2 which is equal to − logpij on the set EiAj . Then

evidently JG = JG1
+ J ∗2 . Since

P(A|Ei)= pij ,

the quantity J ∗2 for a fixed i can be considered as the information from the experi-

ment G2 given the event Ei occurred. We will call the quantity

E
(
J ∗2 |Ei

)
=−

M∑

j=1

pij logpij
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the conditional entropy H(G2|E1) of the experiment G2 given Ei , and the quantity

EJ ∗2 =−
∑

i,j

qij logpij =
∑

i

piH(G2|E1)

the conditional entropy H(G2|G1) of the experiment G2 given G1. In this notation,

we obviously have

H(G)=H(G1)+H(G2|G1).

We will prove that in this equality we always have

H(G2|G1)≤H(G2),

i.e. for two experiments G1 and G2 the entropy H(G) never exceeds the sum of the
entropies H(G1) and H(G2):

H(G)=H(G1 ×G2)≤H(G1)+H(G2).

Equality takes place here only when qij = piqj , i.e. when G1 and G2 are indepen-
dent.

Proof First note that, for any two distributions (u1, . . . , un) and (v1, . . . , vn), one

has the inequality

−
∑

i

ui logui ≤−
∑

i

ui logvi, (14.1.2)

equality being possible here only if vi = ui , i = 1, . . . , n. This follows from the

concavity of the function logx, since it implies that, for any ai > 0,

∑

i

ui logai ≤ log

(∑

i

uiai

)
,

equality being possible only if a1 = a2 = · · · = an. Putting ai = vi/ui , we obtain

relation (14.1.2).

Next we have

H(G1)+H(G2)=−
∑

i,j

qij (logpi + logqj )=−
∑

i,j

qij logpiqj ,

and because {piqj } is obviously a distribution, by virtue of (14.1.2)

−
∑

qij logpiqj ≥−
∑

qij logqij =H(G)

holds, and equality is possible here only if qij = piqj . �

5. As we saw when considering property 3, the information obtained as a result of

the experiment Gn
1 consisting of n independent repetitions of the experiment G1

is equal to

JGn
1
=−

N∑

j=1

νj logpj ,
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where νj is the number of occurrences of the outcome Ej . By the law of large

numbers, νj/n
p→ pj as n→∞, and hence

1

n
JGn

1

p→H(G1)=Hp.

To conclude this section, we note that the measure of the amount of information

resulting from an experiment we considered here can be derived as the only possible

one (up to a constant multiplier) if one starts with a few simple requirements that

are natural to impose on such a quantity.1

It is also interesting to note the connections between the above-introduced no-

tions and large deviation probabilities. As one can see from Theorems 5.1.2 and

5.2.4, the difference between the “biased” entropy −
∑

p∗j lnpj and the entropy

−
∑

p∗j lnp∗j (p∗j = νj/n are the relative frequencies of the outcomes Ej ) is an

analogue of the deviation function (see Sect. 8.8) in the multi-dimensional case.

14.2 The Entropy of a Finite Markov Chain. A Theorem on the

Asymptotic Behaviour of the Information Contained in a

Long Message; Its Applications

14.2.1 The Entropy of a Sequence of Trials Forming a Stationary

Markov Chain

Let {Xk}∞k=1 be a stationary finite Markov chain with one class of essential states

without subclasses, E1, . . . ,EN being its states. Stationarity of the chain means that

P(X1 = j)= πj coincide with the stationary probabilities. It is clear that

P(X2 = j)=
∑

k

πkpkj = πj , P(X3 = j)= πj , and so on.

Let Gk be an experiment determining the value of Xk (i.e. the state the system

entered on the k-th step). If Xk−1 = i, then the entropy of the k-th step equals

H(Gk|Xk−1 = i)=−
∑

j

pij logpij .

By definition, the entropy of a stationary Markov chain is equal to

H = EH(Gk|Xk−1)=H(Gk|Gk−1)=−
∑

i

πi

∑

j

pij logpij .

Consider the first n steps X1, . . . ,Xn of the Markov chain. By the Markov prop-

erty, the entropy of this composite experiment G(n) =G1 × · · · ×Gn is equal to

1See, e.g., [11].
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H
(
G(n)

)
=H(G1)+H(G2|G1)+ · · · +H(Gn|Gn−1)

=−
∑

πj logπj + (n− 1)H ∼ nH

as n→∞. If Xk were independent then, as we saw, we would have exact equality

here.

14.2.2 The Law of Large Numbers for the Amount of Information

Contained in a Message

Now consider a finite sequence (X1, . . . ,Xn) as a message (event) Cn and denote,

as before, by I (Cn) = − log P(Cn) the amount of information contained in Cn.

The value of I (Cn) is a function on the space of elementary outcomes equal to

the information JG(n) contained in the experiment G(n). We now show that, with

probability close to 1, this information behaves asymptotically as nH , as was the

case for independent Xk . Therefore H is essentially the average information per

trial in the sequence {Xk}∞k=1.

Theorem 14.2.1 As n→∞,

I (Cn)

n
= − log P(Cn)

n

a.s.−→H.

This means that, for any δ > 0, the set of all messages Cn can be decomposed into

two classes. For the first class, |I (Cn)/n−H |< δ, and the sum of the probabilities

of the elements of the second class tends to 0 as n→∞.

Proof Construct from the given Markov chain a new one {Yk}∞k=1 by setting Yk :=
(Xk,Xk+1). The states of the new chain are pairs of states (Ei,Ej ) of the chain

{Xk} with pij > 0. The transition probabilities are obviously given by

p(i,j)(k,l) =
{

0, j 
= k,

pkl, j = k.

Note that one can easily prove by induction that

p(i,j)(k,l)(n)= pjk(n− 1)pkl . (14.2.1)

From the definition of {Yk} it follows that the ergodic theorem holds for this chain.

This can also be seen directly from (14.2.1), the stationary probabilities being

lim
n→∞

p(i,j)(k,l)(n)= πkpkl .

Now we will need the law of large numbers for the number of visits m(k,l)(n)

of the chain {Yk}∞k=1 to state (k, l) over time n. By virtue of this law (see Theo-

rem 13.4.4),

m(k,l)(n)

n

a.s.−→ πkpkl as n→∞.
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Consider the random variable P(Cn):

P(Cn)= P(EX1
EX2
· · ·EXn)= P(EX1

)P(EX2
|EX1

) · · ·P(EXn |EXn−1
)

= πX1
pX1X2

· · ·pXn−1Xn = πX1

∏

(k,l)

p
m(k,l)(n−1)

kl .

The product here is taken over all pairs (k, l). Therefore (πi = P(X1 = i))

log P(Cn)= logπX1
+
∑

k,l

m(k,l)(n− 1) logpkl,

1

n
log P(Cn)

p→
∑

k,l

πkpkl logpkl =−H.
�

14.2.3 The Asymptotic Behaviour of the Number of the Most

Common Outcomes in a Sequence of Trials

Theorem 14.2.1 has an important corollary. Rank all the messages (words) Cn of

length n according to the values of their probabilities in descending order. Next pick

the most probable words one by one until the sum of their probabilities exceeds a

prescribed level α, 0 < α < 1. Denote the number (and also the set) of the selected

words by Mα(n).

Theorem 14.2.2 For each 0 < α < 1, there exists one and the same limit

lim
n→∞

logMα(n)

n
=H.

Proof Let δ > 0 be a number, which can be arbitrarily small. We will say that Cn

falls into category K1 if its probability P(Cn) > 2−n(H−δ), and into category K2 if

2−n(H+δ) < P(Cn)≤ 2−n(H−δ).

Finally, Cn belongs to the third category K3 if

P(Cn)≤ 2−n(H+δ).

Since, by Theorem 14.2.1, P(Cn ∈K1∪K3)→ 0 as n→∞, the set Mα(n) contains

only the words from K1 and K2, and the last word from Mα(n) (i.e. having the

smallest probability)—we denote it by Cα,n—belongs to K2. This means that

Mα(n)2−n(H+δ) <
∑

Cn∈Mα(n)

P(Cn) < α + P(Cα,n) < α + 2−n(H−δ).

This implies

logMα(n)

n
<

(α + 2−n(H−δ))

n
+H + δ.
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Since δ is arbitrary, we have

lim sup
n→∞

logMα(n)

n
≤H.

On the other hand, the words from K2 belonging to Mα(n) have total probability

≥ α − P(K1). If M
(2)
α (n) is the number of these messages then

M(2)
α (n)2−n(H−δ) ≥ α− P(K1),

and, consequently,

Mα(n)2−n(H−δ) ≥ α − P(K1).

Since P(K1)→ 0 as n→∞, for sufficiently large n one has

logMα(n)

n
≥H − δ + 1

n
log

α

2
.

It follows that

lim sup
n→∞

logMα(n)

n
≥H.

The theorem is proved. �

Now one can obtain a useful interpretation of this theorem. Let N be the number

of the chain states. Suppose for simplicity’s sake that N = 2m. Then the number of

different words of length n (chains Cn) will be equal to Nn = 2nm. Suppose, further,

that these words are transmitted using a binary code, so that m binary symbols

are used to code every state. Thus, with such transmission method—we will call it

direct coding—the length of the messages will be equal to nm. (For example, one

can use Markov chains to model the Russian language and take N = 32, m = 5.)

The assertion of Theorem 14.2.2 means that, for large n, with probability 1 − ε,

ε > 0, only 2nH of the totality of 2nm words will be transmitted. The probability

of transmitting all the remaining words will be small if ε is small. From this it is

easy to establish the existence of another more economical code requiring, with a

large probability, a smaller number of digits to transmit a word. Indeed, one can

enumerate the selected 2nH most likely words using, say, a binary code again, and

then transmit only the number of the word. This clearly requires only nH digits.

Since we always have H ≤ logN =m, the length of the message will be m/H ≥ 1

times smaller.

This is a special case of the so-called basic coding theorem for Markov chains:

for large n, there exists a code for which, with a high probability, the original mes-

sage Cn can be transmitted by a sequence of signals which is m/H times shorter

than in the case of the direct coding.

The above coding method is rather an oversimplified example than a recipe for

efficiently compressing the messages. It should be noted that finding a really ef-

ficient coding method is a rather difficult task. For example, in Morse code it is

reasonable to encode more frequent letters by shorter sequences of dots and dashes.
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However, the text reduction by m/H times would not be achieved. Certain compres-

sion techniques have been used in this book as well. For example, we replaced the

frequently encountered words “characteristic function” by “ch.f.” We could achieve

better results if, say, shorthand was used. The structure of a code with a high com-

pression coefficient will certainly be very complicated. The theorems of the present

chapter give an upper bound for the results we can achieve.

Since H =
∑

1
n

logN = m, for a sequence of independent equiprobable sym-

bols, such a text is incontractible. This is why the proximity of “new” messages

(encoded using a new alphabet) to a sequence of equiprobable symbols could serve

as a criterion for constructing new codes.

It should be taken into account, however, that the text “redundancy” we are

“fighting” with is in many cases a useful and helpful phenomenon. Without such

redundancy, it would be impossible to detect misprints or reconstruct omissions as

easily as we, say, restore the letter “r” in the word “info ·mation”.

The reader might know how difficult it is to read a highly abridged and formalised

mathematical text. While working with an ideal code no errors would be admissible

(even if we could find any), since it is impossible to reconstruct an omitted or dis-

torted symbol in a sequence of equiprobable digits. In this connection, there arises

one of the basic problems of information theory: to find a code with the smallest

“redundancy” which still allows one to eliminate the transmission noise.



Chapter 15

Martingales

Abstract The definitions, simplest properties and first examples of martingales and

sub/super-martingales are given in Sect. 15.1. Stopping (Markov) times are intro-

duced in Sect. 15.2, which also contains Doob’s theorem on random change of time

and Wald’s identity together with a number of its applications to boundary crossing

problems and elsewhere. This is followed by Sect. 15.3 presenting fundamental mar-

tingale inequalities, including Doob’s inequality with a number of its consequences,

and an inequality for the number of strip crossings. Section 15.4 begins with Doob’s

martingale convergence theorem and also presents Lévy’s theorem and an applica-

tion to branching processes. Section 15.5 derives several important inequalities for

the moments of stochastic sequences.

15.1 Definitions, Simplest Properties, and Examples

In Chap. 13 we considered sequences of dependent random variables X0,X1, . . .

forming Markov chains. Dependence was described there in terms of transition

probabilities determining the distribution of Xn+1 given Xn. That enabled us to

investigate rather completely the properties of Markov chains.

In this chapter we consider another type of sequence of dependent random vari-

ables. Now dependence will be characterised only by the mean value of Xn+1 given

the whole “history” X0, . . . ,Xn. It turns out that one can also obtain rather general

results for such sequences.

Let a probability space 〈Ω,F,P〉 be given together with a sequence of random

variables X0,X1, . . . defined on it and an increasing family (or flow) of σ -algebras

{Fn}n≥0: F0 ⊆ F1 ⊆ · · · ⊆ Fn ⊆ · · · ⊆ F.

Definition 15.1.1 A sequence of pairs {Xn,Fn; n ≥ 0} is called a stochastic se-
quence if, for each n ≥ 0, Xn is Fn-measurable. A stochastic sequence is said to

be a martingale (one also says that {Xn} is a martingale with respect to the flow of
σ -algebras {Fn}) if, for every n≥ 0,

(1)

E|Xn|<∞, (15.1.1)
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(2) Xn is measurable with respect to Fn,

(3)

E(Xn+1 | Fn)=Xn. (15.1.2)

A stochastic sequence {Xn,Fn; n ≥ 0} is called a submartingale (supermartin-
gale) if conditions (1)–(3) hold with the sign “=” replaced in (15.1.2) with “≥”

(“≤”, respectively).

We will say that a sequence {Xn} forms a martingale (submartingale, super-
martingale) if, for Fn = σ(X0, . . . ,Xn), the pairs {Xn,Fn} form a sequence with

the same name. Submartingales and supermartingales are often called semimartin-
gales.

It is evident that relation (15.1.2) persists if we replace Xn+1 on its left-hand side

with Xm for any m > n. Indeed, by virtue of the properties of conditional expecta-

tions,

E(Xm|Fn)= E
[
E(Xm|Fm−1)

∣∣Fn

]
= E(Xm−1|Fn)= · · · =Xn.

A similar assertion holds for semimartingales.

If {Xn} is a martingale, then E(Xn+1|σ(X0, . . . ,Xn))= Xn, and, by a property

of conditional expectations,

E
(
Xn+1

∣∣σ(Xn)
)
= E

[
E
(
Xn+1

∣∣σ(X0, . . . ,Xn)
)∣∣σ(Xn)

]
= E

(
Xn

∣∣σ(Xn)
)
=Xn.

So, for martingales, as for Markov chains, we have

E
(
Xn+1

∣∣σ(X0, . . . ,Xn)
)
= E

(
Xn+1

∣∣σ(Xn)
)
.

The similarity, however, is limited to this relation, because for a martingale, the

equality does not hold for distributions, but the additional condition

E
(
Xn+1

∣∣σ(Xn)
)
=Xn

is imposed.

Example 15.1.1 Let ξn, n ≥ 0 be independent. Then Xn = ξ1 + · · · + ξn form a

martingale (submartingale, supermartingale) if Eξn = 0 (Eξn ≥ 0, Eξn ≤ 0). It is

obvious that Xn also form a Markov chain. The same is true of Xn =
∏n

k=0 ξk if

Eξn = 1.

Example 15.1.2 Let ξn, n≥ 0, be independent. Then

Xn =
n∑

k=1

ξk−1ξk, n≥ 1, X0 = ξ0,

form a martingale if Eξn = 0, because

E
(
Xn+1

∣∣σ(X0, . . . ,Xn)
)
=Xn +E

(
ξnξn+1

∣∣σ(ξn)
)
=Xn.
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Clearly, {Xn} is not a Markov chain here. An example of a sequence which is a

Markov chain but not a martingale can be obtained, say, if we consider a random

walk on a segment with reflection at the endpoints (see Example 13.1.1).

As well as {0,1, . . .} we will use other sets of indices for Xn, for example,

{−∞ < n <∞} or {n ≤ −1}, and also sets of integers including infinite values

±∞, say, {0 ≤ n ≤ ∞}. We will denote these sets by a common symbol N and

write martingales (semimartingales) as {Xn,Fn; n ∈ N}. By F−∞ we will under-

stand the σ -algebra
⋂

n∈N Fn, and by F∞ the σ -algebra σ(
⋃

n∈N Fn) generated by⋃
n∈N Fn, so that F−∞ ⊆ Fn ⊆ F∞ ⊆ F for any n ∈N.

Definition 15.1.2 A stochastic sequence {Xn,Fn; n ∈ N} is called a martingale
(submartingale, supermartingale), if the conditions of Definition 15.1.1 hold for

any n ∈N.

If {Xn,F; n ∈N} is a martingale and the left boundary n0 of N is finite (for ex-

ample, N= {0,1, . . .}), then the martingale {Xn,Fn} can be always extended “to the

whole axis” by setting Fn := Fn0
and Xn :=Xn0

for n < n0. The same holds for the

right boundary as well. Therefore if a martingale (semimartingale) {Xn,Fn; n ∈N}
is given, then without loss of generality we can always assume that one is actually

given a martingale (semimartingale) {Xn,Fn; −∞≤ n≤∞}.

Example 15.1.3 Let {Fn, −∞ ≤ n ≤ ∞} be a given sequence of increasing

σ -algebras, and ξ a random variable on 〈Ω,F,P〉, E|ξ | < ∞. Then {Xn,Fn;
−∞≤ n≤∞} with Xn = E(ξ |Fn) forms a martingale.

Indeed, by the property of conditional expectations, for any m≤∞ and m > n,

E(Xm|Fn)= E
[
E(ξ |Fm)

∣∣Fn

]
= E(ξ |Fn)=Xn.

Definition 15.1.3 The martingale of Example 15.1.3 is called a martingale gener-
ated by the random variable ξ (and the family {Fn}).

Definition 15.1.4 A set N+ is called the right closure of N if:

(1) N+ =N when the maximal element of N is finite;

(2) N+ =N ∪ {∞} if N is not bounded from the right.

If N = N+ then we say that N is right closed. A martingale (semimartingale)

{Xn,F; n ∈N} is said to be right closed if N is right closed.

Lemma 15.1.1 A martingale {Xn,F; n ∈N} is generated by a random variable if
and only if it is right closed.

The Proof of the lemma is trivial. In one direction it follows from Example 15.1.3,

and in the other from the equality

E(XN |Fn)=Xn, N = sup{k; k ∈N},
which implies that {Xn,F} is generated by XN . The lemma is proved. �
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Now we consider an interesting and more concrete example of a martingale gen-

erated by a random variable.

Example 15.1.4 Let ξ1, ξ2, . . . be independent and identically distributed and as-

sume E|ξ1|<∞. Set

Sn = ξ1 + · · · + ξn, X−n = Sn/n, F−n = σ(Sn, Sn+1, . . .)= σ(Sn, ξn+1, . . .).

Then F−n ⊂ F−n+1 and, for any 1≤ k ≤ n, by symmetry

E(ξk|F−n)= E(ξ1|F−n).

From this it follows that

Sn = E(Sn|F−n)=
n∑

k=1

E(ξk|F−n)= nE(ξ1|F−n),
Sn

n
= E(ξ1|F−n).

This means that {Xn,Fn; n≤ 1} forms a martingale generated by ξ1.

We will now obtain a series of auxiliary assertions giving the simplest properties

of martingales and semimartingales. When considering semimartingales, we will

confine ourselves to submartingales only, since the corresponding properties of su-

permartingales will follow immediately if one considers the sequence Yn = −Xn,

where {Xn} is a submartingale.

Lemma 15.1.2

(1) The property that {Xn,Fn; n ∈N} is a martingale is equivalent to invariability
in m≥ n of the set functions (integrals)

E(Xm; A)= E(Xn;A) (15.1.3)

for any A ∈ Fn. In particular, EXm = const.

(2) The property that {Xn,Fn; n ∈N} is a submartingale is equivalent to the mono-
tone increase in m≥ n of the set functions

E(Xm;A)≥ E(Xn;A) (15.1.4)

for every A ∈ Fn. In particular, EXm ↑.

The Proof follows immediately from the definitions. If (15.1.3) holds then, by the

definition of conditional expectation, Xn = E(Xm|Fn), and vice versa. Now let

(15.1.4) hold. Put Yn = E(Xm|Fn). Then (15.1.4) implies that E(Yn;A)≥ E(Xn;A)

and E(Yn−Xn;A)≥ 0 for any A ∈ Fn. From this it follows that Yn = E(Xm|Fn)≥
Xn with probability 1. The converse assertion can be obtained as easily as the direct

one. The lemma is proved. �

Lemma 15.1.3 Let {Xn,Fn; n ∈ N} be a martingale, g(x) be a convex function,

and E|g(Xn)|<∞. Then {g(Xn),Fn; n ∈N} is a submartingale.

If, in addition, g(x) is nondecreasing, then the assertion of the theorem remains
true when {Xn,Fn; n ∈N} is a submartingale.
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The Proof of both assertions follows immediately from Jensen’s inequality

E
(
g(Xn+1)

∣∣Fn

)
≥ g

(
E(Xn+1|Fn)

)
≥ g

(
E(Xn|Fn)

)
. �

Clearly, the function g(x) = |x|p for p ≥ 1 satisfies the conditions of the first

part of the lemma, and the function g(x) = eλx for λ > 0 meets the conditions of

the second part of the lemma.

Lemma 15.1.4 Let {Xn,Fn; n ∈ N} be a right closed submartingale. Then, for
Xn(a)=max{Xn, a} and any a, {Xn(a),Fn; n ∈N} is a uniformly integrable sub-
martingale.

If {Xn,Fn; n ∈N} is a right closed martingale, then it is uniformly integrable.

Proof Let N := sup{k : k ∈ N}. Then, by Lemma 15.1.3, {Xn(a),Fn; n ∈ N} is

a submartingale. Hence, for any c > 0,

cP
(
Xn(a) > c

)
≤ E

(
Xn(a); Xn(a) > c

)
≤ E

(
XN (a); Xn(a) > c

)
≤ EX+N (a)

(here X+ =max(0,X)) and so

P
(
Xn(a) > c

)
≤ 1

c
E
(
X+N (a)

)
→ 0,

uniformly in n as c→∞. Therefore we get the required uniform integrability:

sup
n

E
(
Xn(a); Xn(a) > c

)
≤ sup

n
E
(
XN (a); Xn(a) > c

)
→ 0,

since supn P(Xn(a) > c)→ 0 as c→∞ (see Lemma A3.2.3 in Appendix 3; by

truncating at the level a we avoided estimating the “negative tails”).

If {Xn,Fn; n ∈N} is a martingale, then its uniform integrability will follow from

the first assertion of the lemma applied to the submartingale {|Xn|,Fn; n ∈ N}.
The lemma is proved. �

The nature of martingales can be clarified to some extent by the following exam-

ple.

Example 15.1.5 Let ξ1, ξ2, . . . be an arbitrary sequence of random variables,

E|ξk|<∞, Fn = σ(ξ1, . . . , ξn) for n≥ 1, F0 = (∅,Ω) (the trivial σ -algebra),

Sn =
n∑

k=1

ξk, Zn =
n∑

k=1

E(ξk|Fk−1), Xn = Sn −Zn.

Then {Xn,Fn; n≥ 1} is a martingale. This is a consequence of the fact that

E(Sn+1 −Zn+1|Fn)= E
(
Xn + ξn+1 −E(ξn+1|Fn)

∣∣Fn

)
=Xn.

In other words, for an arbitrary sequence {ξn}, the sequence Sn can be “com-

pensated” by a so-called “predictable” (in the sense that its value is determined by

S1, . . . , Sn−1) sequence Zn so that Sn −Zn will be a martingale.
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15.2 The Martingale Property and Random Change of Time.

Wald’s Identity

Throughout this section we assume that N= {n≥ 0}. Recall the definition of a stop-

ping time.

Definition 15.2.1 A random variable ν will be called a stopping time or a Markov
time (with respect to an increasing family of σ -algebras {Fn; n ≥ 0}) if, for any

n≥ 0, {ν ≤ n} ∈ Fn.

It is obvious that a constant ν ≡ m is a stopping time. If ν is a stopping time,

then, for any fixed m, ν(m) = min(ν,m), is also a stopping time, since for n ≥ m

we have

ν(m)≤m≤ n,
{
ν(m)≤ n

}
=Ω ∈ Fn,

and if n < m then
{
ν(m)≤ n

}
= {ν ≤ n} ∈ Fn.

If ν is a stopping time, then

{ν = n} = {ν ≤ n} − {ν ≤ n− 1} ∈ Fn, {ν ≥ n} =Ω − {ν ≤ n− 1} ∈ Fn−1.

Conversely, if {ν = n} ∈ Fn, then {ν ≤ n} ∈ Fn and therefore ν is a stopping time.

Let a martingale {Xn,Fn; n≥ 0} be given. A typical example of a stopping time

is the time ν at which Xn first hits a given measurable set B:

ν = inf{n≥ 0 :Xn ∈ B}

(ν =∞ if all Xn /∈ B). Indeed,

{ν = n} = {X0 /∈ B, . . . ,Xn−1 /∈ B, Xn ∈ B} ∈ Fn.

If ν is a proper stopping time (P(ν <∞) = 1), then Xν is a random variable,

since

Xν =
∞∑

n=0

XnI{ν=n}.

By Fν we will denote the σ -algebra of sets A ∈ F such that A ∩ {ν = n} ∈ Fn,

n = 0,1, . . . This σ -algebra can be thought of as being generated by the events

{ν ≤ n} ∩ Bn, n = 0,1, . . ., where Bn ∈ Fn. Clearly, ν and Xν are Fν -measurable.

If ν1 and ν2 are two stopping times, then {ν2 ≥ ν1} ∈ Fν1
and {ν2 ≥ ν1} ∈ Fν2

, since

{ν2 ≥ ν1} =
⋃

n[{ν2 = n} ∩ {ν1 ≤ n}].
We already know that if {Xn,Fn} is a martingale then EXn is constant for all n.

Will this property remain valid for EXν if ν is a stopping time? From Wald’s identity

we know that this is the case for the martingale from Example 15.1.1. In the general

case one has the following.
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Theorem 15.2.1 (Doob) Let {Xn,Fn; n≥ 0} be a martingale (submartingale) and
ν1, ν2 be stopping times such that

E|Xνi
|<∞, i = 1,2, (15.2.1)

lim inf
n→∞

E
(
|Xn|; ν2 ≥ n

)
= 0. (15.2.2)

Then, on the set {ν2 ≥ ν1},
E(Xν2

|Fν1
)=Xν1

(≥Xν1
). (15.2.3)

This theorem extends the martingale (submartingale) property to random time.

Corollary 15.2.1 If ν2 = ν ≥ 0 is an arbitrary stopping time, then putting ν1 = n

(also a stopping time) we have that, on the set ν ≥ n,

E(Xν |Fn)=Xn, EXν = EX0,

or, which is the same, for any A ∈ Fn ∩ {ν ≥ n},
E(Xν; A)= E(Xn; A).

For submartingales substitute “=” by “≥”.

Proof of Theorem 15.2.1 To prove (15.2.3) it suffices to show that, for any A ∈ Fν1
,

E
(
Xν2
; A∩ {ν2 ≥ ν1}

)
= E

(
Xν1
; A∩ {ν2 ≥ ν1}

)
. (15.2.4)

Since the random variables νi are discrete, we just have to establish (15.2.4) for sets

An =A∩ {ν1 = n} ∈ Fn, n= 0,1, . . . , i.e. to establish the equality

E
(
Xν2
; An ∩ {ν2 ≥ n}

)
= E

(
Xn; An ∩ {ν2 ≥ n}

)
. (15.2.5)

Thus the proof is reduced to the case ν1 = n. We have

E
(
Xn; An ∩ {ν2 ≥ n}

)
= E

(
Xn; An ∩ {ν2 = n}

)
+E

(
Xn; An ∩ {ν2 ≥ n+ 1}

)

= E
(
Xν2
; An ∩ {ν2 = n}

)
+E

(
Xn+1; An ∩ {ν2 ≥ n+ 1}

)
.

Here we used the fact that {ν2 ≥ n1} ∈ Fn and the martingale property (15.1.3).

Applying this equality m− n times we obtain that

E
(
Xν2
; An ∩ {n≤ ν2 < m}

)

= E
(
Xn; An ∩ {ν2 ≥ n}

)
−E

(
Xm; An ∩ {ν2 ≥m}

)
. (15.2.6)

By (15.2.2) the last expression converges to zero for some sequence m→∞.

Since

An,m :=An ∩ {n≤ ν2 < m} ↑ Bn =An ∩ {n≤ ν2},
by the property of integrals and by virtue of (15.2.6),

E
(
Xν2
; An ∩ {n≤ ν2}

)
= lim

m→∞
E(Xν2

; An,m)= E
(
Xn; An ∩ {ν2 ≥ n}

)
.
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Thus we proved equality (15.2.5) and hence Theorem 15.2.1 for martingales. The

proof for submartingales can be obtained by simply changing the equality signs in

certain places to inequalities. The theorem is proved. �

The conditions of Theorem 15.2.1 are far from always being met, even in rather

simple cases. Consider, for instance, a fair game (see Examples 4.2.3 and 4.4.5)

versus an infinitely rich adversary, in which z+ Sn is the fortune of the first gam-

bler after n plays (given he has not been ruined yet). Here z > 0, Sn =
∑n

k=1 ξk ,

P(ξk = ±1) = 1/2, η(z) = min{k : Sk = −z} is obviously a Markov (stopping)

time, and the sequence {Sn; n≥ 0}, S0 = 0, is a martingale, but Sη(z) =−z. Hence

ESη(z) =−z 
= ESn = 0, and equality (15.2.5) does not hold for ν1 = 0, ν2 = η(z),

z > 0, n > 0. In this example, this means that condition (15.2.2) is not satisfied (this

is related to the fact that Eη(z)=∞).

Conditions (15.2.1) and (15.2.2) of Theorem 15.2.1 can, generally speaking, be

rather hard to verify. Therefore the following statements are useful in applications.

Put for brevity

ξn :=Xn −Xn−1, ξ0 :=X0, Yn :=
n∑

k=0

|ξk|, n= 0,1, . . .

Lemma 15.2.1 The condition

EYν <∞ (15.2.7)

is sufficient for (15.2.1) and (15.2.2) (with νi = ν).

The Proof is almost evident since |Xν | ≤ Yν and

E(|Xn|; ν > n)≤ E(Yν; ν > n).

Because P(ν > n)→ 0 and EYν <∞, it remains to use the property of integrals by

which E(η; An)→ 0 if E|η|<∞ and P(An)→ 0. �

We introduce the following notation:

an := E
(
|ξn|

∣∣Fn−1

)
, σ 2

n := E
(
ξ2
n

∣∣Fn−1

)
, n= 0,1,2, . . . ,

where F−1 can be taken to be the trivial σ -algebra.

Theorem 15.2.2 Let {Xn; n≥ 0} be a martingale (submartingale) and ν be a stop-
ping time (with respect to {Fn = σ(X0, . . . ,Xn)}).
(1) If

Eν <∞ (15.2.8)

and, for all n≥ 0, on the set {ν ≥ n} ∈ Fn−1 one has

an ≤ c= const, (15.2.9)

then

E|Xν |<∞, EXν = EX0 (≥ EX0). (15.2.10)
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(2) If, in addition, Eσ 2
n = Eξ2

n <∞ then

EX2
ν = E

ν∑

k=1

σ 2
k . (15.2.11)

Proof By virtue of Theorem 15.2.1, Corollary 15.2.1 and Lemma 15.2.1, to prove

(15.2.10) it suffices to verify that conditions (15.2.8) and (15.2.9) imply (15.2.7).

Quite similarly to the proof of Theorem 4.4.1, we have

E|Yν | =
∞∑

n=0

(
n∑

k=0

E
(
|ξk|; ν = n

)
)
=
∞∑

k=0

∞∑

n=k

E
(
|ξk|; ν = n

)
=
∞∑

k=0

E
(
|ξk|; ν ≥ k

)
.

Here {ν ≥ k} =Ω \ {ν ≤ k − 1} ∈ Fk−1. Therefore, by condition (15.2.9),

E(|ξk|; ν ≥ k)= E
(
E
(
|ξk|

∣∣Fk−1

)
; ν ≥ k

)
≤ c P(ν ≥ k).

This means that

EYν ≤ c

∞∑

k=0

P(ν ≥ k)= c Eν <∞.

Now we will prove (15.2.11). Set Zn :=X2
n−

∑n
0 σ 2

k . One can easily see that Zn

is a martingale, since

E
(
X2

n+1 −X2
n − σ 2

n+1

∣∣Fn

)
= E

(
2Xnξn+1 + ξ2

n+1 − σ 2
n+1

∣∣Fn

)
= 0.

It is also clear that E|Zn|<∞ and ν(n)=min(ν, n) is a stopping time. By virtue of

Lemma 15.2.1, conditions (15.2.1) and (15.2.2) always hold for the pair {Zk}, ν(n).

Therefore, by the first part of the theorem,

EZν(n) = 0, EX2
ν(n) = E

ν(n)∑

k=1

σ 2
k . (15.2.12)

It remains to verify that

lim
n→∞

EX2
ν(n) = EX2

ν , lim
n→∞

E

ν(n)∑

k=1

σ 2
k = E

ν∑

k=1

σ 2
k . (15.2.13)

The second equality follows from the monotone convergence theorem (ν(n) ↑ ν,

σ 2
k ≥ 0). That theorem implies the former equality as well, for X2

ν(n)

a.s.−→ X2
ν and

X2
ν(n)↑. To verify the latter claim, note that {X2

n,Fn; n ≥ 0} is a martingale, and

therefore, for any A ∈ Fn,

E
(
X2

ν(n); A
)
= E

(
X2

ν; A∩ {ν ≤ n}
)
+E

(
X2

n; A∩ {ν > n}
)

≤ E
(
X2

ν; A∩ {ν ≤ n}
)
+E

(
E
(
X2

n+1

∣∣Fn

)
; A∩ {ν > n}

)

= E
(
X2

ν; A∩ {ν < n+ 1}
)
+E

(
X2

n+1; A∩ {ν ≥ n+ 1}
)

= E
(
X2

ν(n+1); A
)
.
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Thus (15.2.12) and (15.2.13) imply (15.2.11), and the theorem is completely

proved. �

The main assertion of Theorem 15.2.2 for martingales (submartingales):

EXν = EX0 (≥ EX0) (15.2.14)

was obtained as a consequence of Theorem 15.2.1. However, we could get it directly

from some rather transparent relations which, moreover, enable one to extend it to

improper stopping times ν.

A stopping time ν is called improper if 0 < P(ν <∞) = 1 − P(ν =∞) < 1.

To give an example of an improper stopping time, consider independent identically

distributed random variables ξk , a = Eξk < 0, Xn =
∑n

k=1 ξk , and put

ν = η(x) :=min{k ≥ 1 :Xk > x}, x ≥ 0.

Here ν is finite only for such trajectories {Xk} that supk Xk > x. If the last inequality

does not hold, we put ν =∞. Clearly,

P(ν =∞)= P
(

sup
k

Xk ≤ x
)

> 0.

Thus, for an arbitrary (possibly improper) stopping time, we have

E(Xν; ν <∞)=
∞∑

k=0

E(Xk; ν = k)=
∞∑

k=0

[
E(Xk; ν ≥ k)−E(Xk; ν ≥ k+ 1)

]
.

(15.2.15)

Assume now that changing the order of summation is justified here. Then, by virtue

of the relation {ν ≥ k+ 1} ∈ Fk , we get

E(Xν; ν <∞)= EX0 +
∞∑

k=0

E(Xk+1 −Xk; ν ≥ k + 1)

= EX0 +
∞∑

k=0

EI(ν ≥ k + 1)E(Xk+1 −Xk|Fk). (15.2.16)

Since for martingales (submartingales) the factors E(Xk+1 −Xk|Fk)= 0 (≥ 0), we

obtain the following.

Theorem 15.2.3 If the change of the order of summation in (15.2.15) and (15.2.16)

is legitimate then, for martingales (submartingales),

E(Xν; ν <∞)= EX0 (≥ EX0). (15.2.17)

Assumptions (15.2.8) and (15.2.9) of Theorem 15.2.2 are nothing else but con-

ditions ensuring the absolute convergence of the series in (15.2.15) (see the proof of

Theorem 15.2.2) and (15.2.16), because the sum of the absolute values of the terms

in (15.2.16) is dominated by

∞∑

k=1

akP(ν ≥ k+ 1)≤ aEν <∞,
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where, as before, ak = E(|ξk| | Fk−1) with ξk =Xk−Xk−1. This justifies the change

of the order of summation.

There is still another way of proving (15.2.17) based on (15.2.15) specifying a

simple condition ensuring the required justification. First note that identity (15.2.17)

assumes that the expectation E(Xν; ν <∞) exists, i.e. both values E(X±ν ; ν <∞)

are finite, where x± =max(±x,0).

Theorem 15.2.4 1. Let {Xn,Fn} be a martingale. Then the condition

lim
n→∞

E(Xn; ν > n)= 0 (15.2.18)

is necessary and sufficient for the relation

lim
n→∞

E(Xn; ν ≤ n)= EX0. (15.2.19)

A necessary and sufficient condition for (15.2.17) is that (15.2.18) holds and at
least one of the values E(X±ν ; ν <∞) is finite.

2. If {Xn,Fn} is a supermartingale and

lim inf
n→∞

E(Xn; ν > n)≥ 0, (15.2.20)

then

lim sup
n→∞

E(Xn; ν ≤ n)≤ EX0.

If, in addition, at least one of the values E(X±ν ; ν <∞) is finite then

E(Xν; ν <∞)≤ EX0.

3. If, in conditions (15.2.18) and (15.2.20), we replace the quantity E(Xn; ν > n)

with E(Xn; ν ≥ n), the first two assertions of the theorem will remain true.

The corresponding symmetric assertions hold for submartingales.

Proof As we have already mentioned, for martingales, E(ξk; ν ≥ k)= 0. Therefore,

by virtue of (15.2.18)

EX0 = lim
n→∞

[
EX0 +

n∑

k=1

E(ξk; ν ≥ k)−E(Xn, ν ≥ n+ 1)

]
.

Here

n∑

k=1

E(ξk; ν ≥ k)=
n∑

k=1

E(Xk; ν ≥ k)−
n∑

k=1

E(Xk−1; ν ≥ k)

=
n∑

k=1

E(Xk; ν ≥ k)−
n−1∑

k=1

E(Xk; ν ≥ k+ 1).

Hence
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EX0 = lim
n→∞

n∑

k=0

[
E(Xk; ν ≥ k)−E(Xk; ν ≥ k+ 1)

]

= lim
n→∞

n∑

k=0

E(Xk; ν = k)= lim
n→∞

E(Xν; ν ≤ n).

These equalities also imply the necessity of condition (15.2.18).

If at least one of the values E(X±ν ; ν <∞) is finite, then by the monotone con-

vergence theorem

lim
n→∞

E(Xn; ν ≤ n)= lim
n→∞

E
(
X+n ; ν ≤ n

)
− lim

n→∞
E
(
X−n ; ν ≤ n

)

= E
(
X+ν ; ν <∞

)
−E

(
X−ν ; ν <∞

)
= E(Xν; ν <∞).

The third assertion of the theorem follows from the fact that the stopping time

ν(n)=min(ν, n) satisfies the conditions of the first part of the theorem (or those of

Theorems 15.2.1 and 15.2.3), and therefore, for the martingale {Xn},
EX0 = EXν(n) = E(Xν; ν < n)+E(Xν; ν ≥ n),

so that (15.2.19) implies the convergence E(Xn; ν ≥ n)→ 0 and vice versa.

The proof for semimartingales is similar. The theorem is proved. �

That assertions (15.2.17) and (15.2.19) are, generally speaking, not equivalent

even when (15.2.18) holds (i.e., limn→∞E(Xν;ν ≤ n) = E(Xν;ν <∞) is not al-

ways the case), can be illustrated by the following example. Let ξk be independent

random variables with

P
(
ξk = 3k

)
= P

(
ξk =−3k

)
= 1/2,

ν be independent of {ξk}, and P(ν = k) = 2−k , k = 1,2, . . . . Then X0 = 0, Xk =
Xk−1 + ξk for k ≥ 1 is a martingale,

EXn = 0, P(ν <∞)= 1, E(Xn; ν > n)= EXnP(ν > n)= 0

by independence, and condition (15.2.18) is satisfied. By virtue of (15.2.19), this

means that limn→∞ P(Xν; ν ≤ n) = 0 (one can also verify this directly). On the

other hand, the expectation E(Xν; ν <∞) = EXν is not defined, since EX+ν =
EX−ν =∞. Indeed, clearly

Xk−1 ≥−
3k − 3

2
,

{
ξk = 3k

}
⊂
{
Xk ≥

3k + 3

2

}
, P

(
Xk ≥

3k + 3

2

)
≥ 1

2
,

EX+k ≥
3k + 3

4
, EX+ν =

∞∑

k=1

2−kEX+k ≥
∞∑

k=1

2−k−23k =∞.

By symmetry, we also have EX−ν =∞.

Corollary 15.2.2 1. If {Xn,Fn} is a nonnegative martingale, then condition
(15.2.18) is necessary and sufficient for (15.2.17).
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2. If {Xn,Fn} is a nonnegative supermartingale and ν is an arbitrary stopping
time, then

E(Xν; ν <∞)≤ EX0. (15.2.21)

Proof The assertion follows in an obvious way from Theorem 15.2.4 since one has

E(X−ν ; ν <∞)= 0. �

Theorem 15.2.2 implies the already known Wald’s identity (see Theorem 4.4.3)

supplemented with another useful statement.

Theorem 15.2.5 (Wald’s identity) Let ζ1, ζ2, . . . be independent identically dis-
tributed random variables, Sn = ζ1 + · · · + ζn, S0 = 0, and assume Eζ1 = a. Let,
further, ν be a stopping time with Eν <∞. Then

ESν = aEν. (15.2.22)

If, moreover, σ 2 =Var ζk <∞, then

E[Sν − νa]2 = σ 2Eν. (15.2.23)

Proof It is clear that Xn = Sn − na forms a martingale and conditions (15.2.8) and

(15.2.9) are met. Therefore EXν = EX0 = 0, which is equivalent to (15.2.22), and

EX2
ν = Eνσ 2, which is equivalent to (15.2.23). �

Example 15.2.1 Consider a generalised renewal process (see Sect. 10.6) S(t) =
Sη(t), where Sn =

∑n
j=1 ξj (in this example we follow the notation of Chap. 10

and change the meaning of the notation Sn from the above), η(t)=min{k : Tk > t},
Tn =

∑n
j=1 τj and (τj , ξj ) are independent vectors distributed as (τ, ξ), τ > 0. Set

aξ = Eξ , a = Eτ , σ 2
ξ =Var ξ and σ 2 =Var τ . As we know from Wald’s identity in

Sect. 4.4,

Eη(t)= t +Eχ(t)

a
, ES(t)= aξ Eη(t),

where Eχ(t) = o(t) as t →∞ (see Theorem 10.1.1) and, in the non-lattice case,

Eχ(t)→ σ 2+a2

2a2 if σ 2 <∞ (see Theorem 10.4.3).

We now find Varη(t) and VarS(t). Omitting for brevity’s sake the argument t ,

we can write

a2 Varη(t)= a2 Varη= E(aη− aEη)2 = E(aη− Tη + Tη − aEη)2

= E(Tη − aη)2 +E(Tη − aEη)2 − 2E(Tη − aη)(Tη − aEη).

The first summand on the right-hand side is equal to

σ 2Eη= σ 2t

a
+O(1)

by Theorem 15.2.3. The second summand equals, by (10.4.8) (χ(t)= Tη(t) − t),

E
(
t + χ(t)− aEη

)2 = E
(
χ(t)−Eχ(t)

)2 ≤ Eχ2(t)= o(t).
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The last summand, by the Cauchy–Bunjakovsky inequality, is also o(t). Finally, we

get

Varη(t)= σ 2t

a3
+ o(t).

Consider now (with r = aξ/a; ζj = ξj − rτj , Eζj = 0)

VarS(t)= E(Sη − aξ Eη)2 = E
[
Sη − rTη + r(Tη − aEη)

]2

= E

(
η∑

j=1

ζj

)2

+ r2E(Tη − aEη)2 + 2rE

(
η∑

j=1

ζj

)
(Tη − aEη).

The first term on the right-hand side is equal to

Eη Var ζ = t Var ζ

a
+O(1)

by Theorem 15.2.3. The second term has already been estimated above. Therefore,

as before, the sum of the last two terms is o(t). Thus

VarS(t)= t

a
E(ξ − rτ )2 + o(t).

This corresponds to the scaling used in Theorem 10.6.2.

Example 15.2.2 Examples 4.4.4 and 4.5.5 referring to the fair game situation with

P(ζk = ±1) = 1/2 and ν = min{k : Sk = z2 or Sk = −z1} (z1 and z2 being the

capitals of the gamblers) can also illustrate the use of Theorem 15.2.5.

Now consider the case p = P(ζk = 1) 
= 1/2. The sequence Xn = (q/p)Sn ,

n≥ 0, q = 1− p is a martingale, since

E(q/p)ζk = p(q/p)+ q(p/q)= 1.

By Theorem 15.2.5 (the probabilities P1 and P2 were defined in Example 4.4.5),

EXν = EX0 = 1, P1(q/p)z2 + P2(q/p)z1 = 1.

From this relation and equality P1 + P2 = 1 we have

P1 =
(q/p)z1 − 1

(q/p)z1 − (q/p)z2
, P2 = 1− P1.

Using Wald’s identity again, we also obtain that

Eν = ESν

Eζ1
= P1z2 − P2z1

p− q
.

Note that these equalities could have been obtained by elementary methods1 but this

would require lengthy calculations.

1See, e.g., [12].
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In the cases when the nature of Sν is simple enough, the assertions of the type

of Theorems 15.2.1–15.2.2 enable one to obtain (or estimate) the distribution of the

random variable ν itself. In such situations, the following assertion is rather helpful.

Suppose that the conditions of Theorem 15.2.5 are met, but, instead of conditions

on the moments of ζn, the Cramér condition (cf. Chap. 9) is assumed to be satisfied:

ψ(λ) := Eeλζ <∞

for some λ 
= 0.

In other words, if

λ+ := sup
(
λ :ψ(λ) <∞

)
≥ 0, λ− := inf

(
λ :ψ(λ) <∞

)
≤ 0,

then λ+ − λ− > 0. Everywhere in what follows we will only consider the values

λ ∈ B :=
{
ψ(λ) <∞

}
⊆ [λ−, λ+]

for which ψ ′(λ) <∞. For such λ, the positive martingale

Xn =
eλSn

ψn(λ)
, X0 = 1,

is well-defined so that EXn = 1.

Theorem 15.2.6 Let ν be an arbitrary stopping time and λ ∈ B . Then

E

(
eλSν

ψ(λ)ν
; ν <∞

)
≤ 1 (15.2.24)

and, for any s > 1 and r > 1 such that 1/r + 1/s = 1,

E
(
eλSν ; ν <∞

)
≤
{
E
[
ψ rν/s(λs); ν <∞

]}1/r
. (15.2.25)

A necessary and sufficient condition for

E

(
eλSν

ψ(λ)ν
; ν <∞

)
= 1 (15.2.26)

is that

lim
n→∞

E

(
eλSn

ψ(λ)n
; ν > n

)
= 0. (15.2.27)

Remark 15.2.1 Relation (15.2.26) is known as the fundamental Wald identity. In the

literature it is usually considered for a.s. finite ν (when P(ν <∞)= 1) being in that

case an extension of the obvious equality EeλSn = ψn(λ) to the case of random ν.

Originally, identity (15.2.26) was established by A. Wald in the special case where

ν is the exit time of the sequence {Sn} from a finite interval (see Corollary 15.2.3),

and was accompanied by rather restrictive conditions. Later, these conditions were

removed (see e.g. [13]). Below we will obtain a more general assertion for the prob-

lem on the first exit of the trajectory {Sn} from a strip with curvilinear boundaries.
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Remark 15.2.2 The fundamental Wald identity shows that, although the nature of

a stopping time could be quite general, there exists a stiff functional constraint

(15.2.26) on the joint distribution of ν and Sν (the distribution of ζk is assumed

to be known). In the cases where one of these variables can somehow be “com-

puted” or “eliminated” (see Examples 15.2.2–15.2.4) Wald’s identity turns into an

explicit formula for the Laplace transform of the distribution of the other variable.

If ν and Sν prove to be independent (which rarely happens), then (15.2.26) gives the

relationship

EeλSν =
[
Eψ(λ)−ν

]−1

between the Laplace transforms of the distributions of ν and Sν .

Proof of Theorem 15.2.6 As we have already noted, for

Xn = eλSnψ−n(λ), Fn = σ(ζ1, . . . , ζn),

{Xn,Fn; n≥ 0} is a positive martingale with X0 = 1 and EXn = 1. Corollary 15.2.2

immediately implies (15.2.24).

Inequality (15.2.25) is a consequence of Hölder’s inequality and (15.2.24):

E
(
e(λ/s)Sν ;ν <∞

)
= E

[(
eλSν

ψν(λ)

)1/s

ψν/s(λ);ν <∞
]

≤
[
E
(
ψνr/s(λ); ν <∞

)]1/r
.

The last assertion of the theorem (concerning the identity (15.2.26)) follows from

Theorem 15.2.4. �

We now consider several important special cases. Note that ψ(λ) is a convex

function (ψ ′′(λ) > 0), ψ(0) = 1, and therefore there exists a unique point λ0 at

which ψ(λ) attains its minimum value ψ(λ0)≤ 1 (see also Sect. 9.1).

Corollary 15.2.3 Assume that we are given a sequence g(n) such that

g+(n) :=max
(
0, g(n)

)
= o(n) as n→∞.

If Sn ≤ g(n) holds on the set {ν > n}, then (15.2.26) holds for λ ∈ (λ0, λ+] ∩ B ,

B = {λ :ψ(λ) <∞}.

The random variable ν = νg = inf{k ≥ 1 : Sk > g(k)} for g(k)= o(k) obviously

satisfies the conditions of Corollary 15.2.3. For stopping times νg one could also

consider the case g(n)/n→ c ≥ 0 as n→∞, which can be reduced to the case

g(n)= o(n) by introducing the random variables

ζ ∗k := ζk − c, S∗k :=
k∑

j=1

ζ ∗j ,

for which νg = inf{k ≥ 1 : S∗k > g(k)− ck}.
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Proof of Corollary 15.2.3 For λ > λ0, λ ∈ B , we have

E

(
eλSn

ψn(λ)
;ν > n

)
≤ ψ−n(λ)E

(
eλSn;Sn ≤ g(n)

)

=ψ−n(λ)E
(
e(λ−λ0)Sn · eλ0Sn;Sn ≤ g(n)

)

≤ ψ−n(λ)e(λ−λ0)g(n)E
(
eλ0Sn;Sn ≤ g(n)

)

≤ ψ−n(λ)e(λ−λ0)g
+(n)Eeλ0Sn =

(
ψ(λ0)

ψ(λ)

)n

e(λ−λ0)g
+(n)→ 0

as n→∞, because (λ− λ0)g
+(n)= o(n). It remains to use Theorem 15.2.6. The

corollary is proved. �

We now return to Theorem 15.2.6 for arbitrary stopping times. It turns out that,

based on the Cramér transform introduced in Sect. 9.1, one can complement its

assertions without using any martingale techniques.

Together with the original distribution P of the sequence {ζk}∞k=1 we introduce the

family of distributions Pλ of this sequence in 〈R∞,B∞〉 (see Sect. 5.5) generated

by the finite-dimensional distributions

Pλ(ζk ∈ dxk)=
eλxk

ψ(λ)
P(ζk ∈ dxk),

Pλ(ζk ∈ dx1, . . . , ζn ∈ dxn)=
n∏

k=1

Pλ(ζk ∈ dxk).

This is the Cramér transform of the distribution P.

Theorem 15.2.7 Let ν be an arbitrary stopping time. Then, for any λ ∈ B ,

E

(
eλSν

ψν(λ)
;ν <∞

)
= Pλ(ν <∞). (15.2.28)

Proof Since {ν = n} ∈ σ(ζ1, . . . , ζn), there exists a Borel set Dn ⊂R
n, such that

{ν = n} =
{
(ζ1, . . . , ζn) ∈Dn

}
.

Further,

E

(
eλSν

ψν(λ)
;ν <∞

)
=
∞∑

n=0

E

(
eλSn

ψn(λ)
;ν = n

)
,

where

E

(
eλSn

ψn(λ)
;ν = n

)
=
∫

(x1,...,xn)∈Dn

eλ(x1+···+xn)

ψn(λ)
P(ζ1 ∈ dx1, . . . , ζn ∈ dx)

=
∫

(x1,...,xn)∈Dn

Pλ(ζ1 ∈ dx1, . . . , ζn ∈ dxn)= Pλ(ν = n).

This proves the theorem. �
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For a given function g(n), consider now the stopping time

ν = νg = inf
{
k : Sk ≥ g(k)

}

(cf. Corollary 15.2.3). The assertion of Theorem 15.2.7 can be obtained in that case

in the following way. Denote by Eλ the expectation with respect to the distribu-

tion Pλ.

Corollary 15.2.4 1. If g+(n) = max(0, g(n)) = o(n) as n → ∞ and λ ∈
(λ0, λ+] ∩B , then one has Pλ(νg <∞)= 1 in relation (15.2.28).

2. If g(n)≥ 0 and λ < λ0, then Pλ(νg <∞) < 1.

3. For λ= λ0, the distribution Pλ0
of the variable ν can either be proper (when

one has Pλ0
(νg <∞) = 1) or improper (Pλ0

(νg <∞) < 1). If λ0 ∈ (λ−, λ+),

g(n) < (1 − ε)σ (2 log logn)1/2 for all n ≥ n0, starting from some n0, and σ 2 =
Eλ0

ζ 2
1 , then Pλ(νg <∞)= 1.

But if λ ∈ (λ−, λ+), g(n) ≥ 0, and g(n) ≥ (1 + ε)σ (2 log logn)1/2 for n ≥ n0,

then Pλ(νg <∞) < 1 (we exclude the trivial case ζk ≡ 0).

Proof Since Eλζk = ψ ′(λ)
ψ(λ)

, the expectation Eλζk is of the same sign as the differ-

ence λ− λ0, and Eλ0
ζk = 0 (ψ ′(λ0)= 0 if λ0 ∈ (λ−, λ+)). Hence the first assertion

follows from the relations

Pλ(ν =∞)= Pλ

(
Xn < g(n) for all n

)
< P

(
Xn < g+(n)

)
→ 0

as n→∞ by the law of large numbers for the sums Xn =
∑n

k=1 ζk , since Eλζk > 0.

The second assertion is a consequence of the strong law of large numbers since

Eλζk < 0 and hence Pλ(ν =∞)= P(supn Xn ≤ 0) > 0.

The last assertion of the corollary follows from the law of the iterated logarithm

which we prove in Sect. 20.2. The corollary is proved. �

The condition g(n)≥ 0 of part 2 of the corollary can clearly be weakened to the

condition g(n)= o(n), P(ν > n) > 0 for any n > 0. The same is true for part 3.

An assertion similar to Corollary 15.2.4 is also true for the (stopping) time νg−,g+
of the first passage of one of the two boundaries g±(n)= o(n):

νg−,g+ := inf
{
k ≥ 1 : Sk ≥ g+(k) or Sk ≤ g−(k)

}
.

Corollary 15.2.5 For λ ∈ B\{λ0}, we have Pλ(νg−,g+ <∞)= 1.

If λ = λ0 ∈ (λ−, λ+), then the Pλ-distribution of ν may be either proper or im-
proper.

If, for some n0 > 2,

g±(n) ≶±(1− ε)σ
√

2 ln lnn

for n≥ n0 then Pλ0
(νg−,g+ <∞)= 1.

If g±(n)≷ 0 and, additionally,

g±(n) ≷±(1+ ε)σ
√

2 ln lnn

for n≥ n0 then Pλ0
(νg−,g+ <∞) < 1.
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Proof The first assertion follows from Corollary 15.2.4 applied to the sequences

{±Xn}. The second is a consequence of the law of the iterated logarithm from

Sect. 20.2. �

We now consider several relations following from Corollaries 15.2.3, 15.2.4

and 15.2.5 (from identity (15.2.26)) for the random variables ν = νg and ν = νg−,g+ .

Let a < 0 and ψ(λ+)≥ 1. Since ψ ′(0)= a < 0 and the function ψ(λ) is convex,

the equation ψ(λ)= 1 will have a unique root µ > 0 in the domain λ > 0. Setting

λ= µ in (15.2.26) we obtain the following.

Corollary 15.2.6 If a < 0 and ψ(λ+) ≥ 1 then, for the stopping times ν = νg and
ν = νg−,g+ , we have the equality

E
(
eµSν ; ν <∞

)
= 1.

Remark 15.2.3 For an x > 0, put (as in Chap. 10) η(x) := inf{k : Sk > 0}. Since

Sη(x) = x+χ(x), where χ(x) := Sη(x)−x is the value of overshoot over the level x,

Corollary 15.2.6 implies

E
(
eµ(x+χ(x)); η(x) <∞

)
= 1. (15.2.29)

Note that P(η(x) < ∞) = P(S > x), where S = supk≥0 Sk . Therefore, Theo-

rem 12.7.4 and (15.2.29) imply that, as x→∞,

eµxP
(
η(x) <∞

)
=
[
E
(
eµχ(x)

∣∣η(x) <∞
)]−1→ c. (15.2.30)

The last convergence relation corresponds to the fact that the limiting condi-

tional distribution (as x →∞) G of χ(x) exists given η(x) <∞. If we denote

by χ a random variable with the distribution G then (15.2.30) will mean that

c= [E eµχ ]−1 < 1. This provides an interpretation of the constant c that is different

from the one in Theorem 12.7.4.

In Corollary 15.2.6 we “eliminated” the “component” ψν(λ) in identity (15.2.26).

“Elimination” of the other component eλSν is possible only in some special cases of

random walks, such as the so-called skip-free walks (see Sect. 12.8) or walks with

exponentially (or geometrically) distributed ζ+k =max(0, ζk) or ζ−k =−min(0, ζk).

We will illustrate this with two examples.

Example 15.2.3 We return to the ruin problem discussed in Example 15.2.2. In that

case, Corollary 15.2.4 gives, for g−(n) := −z1 and g+(n)= z2, that

eλz2E
(
ψ(λ)−ν; Sν = z2

)
+ e−λz1 E

(
ψ(λ)−ν; Sν =−z1

)
= 1.

In particular, for z1 = z2 = z and p = 1/2, we have by symmetry that

E
(
ψ(λ)−ν; Sν = z

)
= 1

eλz + e−λz
, E

(
ψ(λ)−ν

)
= 2

eλz + e−λz
. (15.2.31)
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Let λ(s) be the unique positive solution of the equation sψ(λ)= 1, s ∈ (0,1). Since

here ψ(λ)= 1
2
(eλ + e−λ), solving the quadratic equation yields

eλ(s) = 1+
√

1− s2

s
.

Identity (15.2.31) now gives

Esν = 2
(
eλ(s)z + e−λ(s)z

)
.

We obtain an explicit form of the generating function of the random variable ν,

which enables us to find the probabilities P(ν = n), n= 1,2, . . . by expanding ele-

mentary functions into series.

Example 15.2.4 Simple explicit formulas can also be obtained from Wald’s identity

in the problem with one boundary, where ν = νg , g(n)= z. In that case, the class of

distributions of ζk could be wider than in Example 15.2.3. Suppose that one of the

two following conditions holds (cf. Sect. 12.8).

1. The transform walk is arithmetic and skip-free, i.e. ζk are integers, P(ξk = 1) > 0

and P(ζk ≥ 2)= 0.

2. The walk is right exponential, i.e.

P(ζk > t)= ce−αt (15.2.32)

either for all t > 0 or for t = 0,1,2, . . . if the walk is integer-valued (the geo-
metric distribution).

The random variable νg will be proper if and only if Eξk = ψ ′(0) ≥ 0 (see

Chaps. 9 and 12). For skip-free random walks, Wald’s identity (15.2.26) yields

(g(n)= z > 0, Sν = z)

eλzEψ−ν(λ)= 1, λ > λ0. (15.2.33)

For s ≤ 1, the equation ψ(λ)= s−1 (cf. Example 15.2.3) has in the domain λ > λ0

a unique solution λ(s). Therefore identity (15.2.33) can be written as

Esν = e−zλ(s). (15.2.34)

This statement implies a series of results from Chaps. 9 and 12. Many properties

of the distribution of ν := νz can be derived from this identity, in particular, the

asymptotics of P(νz = n) as z→∞, n→∞. We already know one of the ways to

find this asymptotics. It consists of using Theorem 12.8.4, which implies

P(νz = n)= x

n
P(Sn = z), (15.2.35)

and the local Theorem 9.3.4 providing the asymptotics of P(Sn = z). Using rela-

tion (15.2.34) and the inversion formula is an alternative approach to studying the

asymptotics of P(νz = n). If we use the inversion formula, there will arise an integral

of the form ∫

|s|=1

s−ne−zµ(s) ds, (15.2.36)
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where the integrand s−ne−zµ(s), after the change of variable µ(s)=λ (or s =
ψ(λ)−1), takes the form

exp−
{
zλ− n lnψ(λ)

}
.

The integrand in the inversion formula for the probability P(Sn = z) has the same

form. This probability has already been studied quite well (see Theorem 9.3.4); its

exponential part has the form e−nΛ(α), where α = z/n, Λ(α)= supλ(αλ− lnψ(λ))

is the large deviation rate function (see Sect. 9.1 and the footnote for Defini-

tion 9.1.1). A more detailed study of the inversion formula (15.2.36) allows us to

obtain (15.2.35).

Similar relations can be obtained for random walks with exponential right dis-

tribution tails. Let, for example, (15.2.32) hold for all t > 0. Then the conditional

distribution P(Sν > t |ν = n,Sn−1 = x) coincides with the distribution

P(ζn > z− x + t |ζn > z− x)= e−αt

and clearly depends neither on n nor on x. This means that ν and Sν are independent,

Sν = z+ γ , γ ⊂=Ŵα ,

Eψ(λ)−ν = 1

Ee(z+γ )λ
= e−λz α − λ

α
, λ0 < λ < α; Esν = e−zλ(s) α − λ(s)

α
,

where λ(s) is, as before, the only solution to the equation ψ(λ)= s−1 in the domain

λ > λ0. This implies the same results as (15.2.34).

If P(ζk > t)= c1e
−αt and P(ζk <−t)= c2e

−βt , t > 0, then, in the problem with

two boundaries, we obtain for ν = νg−,g+ , g+(n)= z2 and g−(n)=−z1 in exactly

the same way from (15.2.26) that

αeλz2

α − λ
E
(
ψ−ν(λ); Sν ≥ z2

)
+ βe−λz1

β + λ
E
(
ψ−ν(λ); Sν ≤−z1

)
= 1, λ ∈ (−β,α).

15.3 Inequalities

15.3.1 Inequalities for Martingales

First of all we note that the property EXn ≤ 1 of the sequence Xn = eλSnψ0(λ)−n

forming a supermartingale for an appropriate function ψ0(λ) remains true when we

replace n with a stopping time ν (an analogue of inequality (15.2.24)) in a much

more general case than that of Theorem 15.2.6. Namely, ζk may be dependent.

Let, as before, {Fn} be an increasing sequence of σ -algebras, and ζn be

Fn-measurable random variables. Suppose that a.s.

E
(
eλζn

∣∣Fn−1

)
≤ψ0(λ). (15.3.1)

This condition is always met if a.s.

P(ζn ≥ x|Fn−1)≤G(x), ψ0(λ)=−
∫

eλx dG(x) <∞.
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In that case the sequence Xn = eλSnψ−n
0 (λ) forms a supermartingale:

E(Xn|Fn−1)≤Xn−1, EXn ≤ 1.

Theorem 15.3.1 Let (15.3.1) hold and ν be a stopping time. Then inequalities
(15.2.24) and (15.2.25) will hold true with ψ replaced by ψ0.

The Proof of the theorem repeats almost verbatim that of Theorem 15.2.6. �

Now we will obtain inequalities for the distribution of

Xn =max
k≤n

Xk and X∗n =max
k≤n
|Xk|,

Xn being an arbitrary submartingale.

Theorem 15.3.2 (Doob) Let {Xn,Fn; n ≥ 0} be a nonnegative submartingale.

Then, for all x ≥ 0 and n≥ 0,

P(Xn > x)≤ 1

x
EXn.

Proof Let

ν = η(x) := inf{k ≥ 0 : Xk > x}, ν(n) :=min(ν, n).

It is obvious that n and ν(n) are stopping times, ν(n)≤ n, and therefore, by Theo-

rem 15.2.1 (see (15.2.3) for ν2 = n, ν1 = ν(n)),

EXn ≥ EXν(n).

Observing that {Xn > x} = {Xν(n) > x}, we have from Chebyshev’s inequality that

P(Xn > x)= P(Xν(n) > x)≤ 1

x
EXν(n) ≤

1

x
EXn.

The theorem is proved. �

Theorem 15.3.2 implies the following.

Theorem 15.3.3 (The second Kolmogorov inequality) Let {Xn,Fn; n ≥ 0} be a
martingale with a finite second moment EX2

n. Then {X2
n,Fn; n≥ 0} is a submartin-

gale and by Theorem 15.3.2

P
(
X∗n > x

)
≤ 1

x2
EX2

n.

Originally A.N. Kolmogorov established this inequality for sums Xn = ξ1 +
· · ·+ξn of independent random variables ξn. Theorem 15.3.3 extends Kolmogorov’s

proof to the case of submartingales and refines Chebyshev’s inequality.

The following generalisation of Theorem 15.3.3 is also valid.
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Theorem 15.3.4 If {Xn,Fn; n≥ 0} is a martingale and E|Xn|p <∞, p ≥ 1, then
{|Xn|p,Fn; n≥ 0} forms a nonnegative submartingale and, for all x > 0,

P
(
X∗n ≥ x

)
≤ 1

xp
E|Xn|p.

If {Xn,Fn; n≥ 0} is a submartingale, EeλXn <∞, λ > 0, then {eλXn,Fn; n≥ 0}
also forms a nonnegative submartingale,

P(Xn ≥ x)≤ e−λxEeλXn .

Both Theorem 15.3.4 and Theorem 15.3.3 immediately follow from Lem-

ma 15.1.3 and Theorem 15.3.2.

If Xn = Sn =
∑n

k=1 ζk , where ζk are independent, identically distributed and

satisfy the Cramér condition: λ+ = sup{λ : ψ(λ) <∞}> 0, then, with the help of

the fundamental Wald identity, one can obtain sharper inequalities for P(Xn > x) in

the case a = Eξk < 0.

Recall that, in the case a = ψ ′(0) < 0, the function ψ(λ)= Eeλζk decreases in a

neighbourhood of λ= 0, and, provided that ψ(λ+)≥ 1, the equation ψ(λ)= 1 has

a unique solution µ in the domain λ > 0.

Let ζ be a random variable having the same distribution as ζk . Put

ψ+ := sup
t>0

E
(
eµ(ζ−t)

∣∣ζ > t
)
, ψ− := inf

t>0
E
(
eµ(ζ−t)

∣∣ζ > t
)
.

If, for instance, P(ζ > t) = ce−αt for t > 0 (in this case necessarily α > µ in

(15.2.32)), then

P(ζ − t > v|ζ > t)= P(ζ > t + v)

P(ζ > t)
= e−αv, ψ+ =ψ− =

α

α −µ
.

A similar equality holds for integer-valued ξ with a geometric distribution.

For other distributions, one has ψ+ > ψ−.

Under the above conditions, one has the following assertion which supplements

Theorem 12.7.4 for the distribution of the random variable S = supk Sk .

Theorem 15.3.5 If a = Eζ < 0 then

ψ−1
+ e−µx ≤ P(S > x)≤ψ−1

− e−µx, x > 0. (15.3.2)

This theorem implies that, in the case of exponential right tails of the distribution

of ζ (see (15.2.32)), inequalities (15.3.2) become the exact equality

P(S > x)= α −µ

α
e−µx .

(The same result was obtained in Example 12.5.1.) This means that inequalities

(15.3.2) are unimprovable. Since Sn = maxk≤n Sk ≤ S, relation (15.3.2) implies

that, for any n,

P(Sn > x)≤ψ−1
− e−µx .
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Proof of Theorem 15.3.5 Set ν := ∞ if S = supk≥0 Sk ≤ x, and put ν := η(x) =
min{k : Sk > x} otherwise. Further, let χ(x) := Sη(x) − x be the excess of the

level x. We have

P
(
χ(x) > v; ν <∞

)
=
∞∑

k=1

∫ x

−∞
P(Sk−1 ≤ x, Sk−1 ∈ du, ζk > x − u+ v)

=
∞∑

k=1

∫ x

−∞
P(Sk−1 ≤ x, Sk−1 ∈ du, ζk > x − u)

× P(ζk > x − u+ v|ζk > x − u),

E
(
eµχ(x); ν <∞

)
≤
∞∑

k=1

∫ x

−∞
P(Sk−1 ≤ x, Sk−1 ∈ du, ζk > x − u)ψ+

=ψ+

∞∑

k=1

P(ν = k)=ψ+P(ν <∞).

Similarly,

E
(
eµχ(x); ν <∞

)
≥ψ−P(ν <∞).

Next, by Corollary 15.2.6,

1= E
(
eµSν ; ν <∞

)
= eµxE

(
eµχ(x); ν <∞

)
≤ eµxψ+ P(ν <∞).

Because P(ν < ∞) = P(S > x), we get from this the right inequality of The-

orem 15.3.5. The left inequality is obtained in the same way. The theorem is

proved. �

Remark 15.3.1 We proved Theorem 15.3.5 with the help of the fundamental Wald

identity. But there is a direct proof based on the following relations:

ψn(λ)= EeλSn ≥
n∑

k=1

E
(
e(Sk+Sn−Sk)λ; ν = k

)

=
n∑

k=1

E
(
e(x+χ(x))λe(Sn−Sk)λ; ν = k

)
. (15.3.3)

Here the random variables eλχ(x)I(ν = k) and Sn − Sk are independent and, as be-

fore,

E
(
eλχ(x); ν = k

)
≥ψ− P(ν = k).

Therefore, for all λ such that ψ(λ)≤ 1,

ψn(λ)≥ eλxψ−

n∑

k=1

ψn−k(λ)P(ν = k)≥ψ−eλxψn(λ)P(ν ≤ n).

Hence we obtain

P(Sn > x)= P(ν ≤ n)≤ψ−1
− e−λx .
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Since the right-hand side does not depend on n, the same inequality also holds for

P(S > x). The lower bound is obtained in a similar way. One just has to show that,

in the original equality (cf. (15.3.3))

ψn(λ)=
n∑

k=1

E
(
eλSn; ν = k

)
+E

(
eλSn; ν > n

)
,

one has E(eλSn; ν > n)= o(1) as n→∞ for λ= µ, which we did in Sect. 15.2.

15.3.2 Inequalities for the Number of Crossings of a Strip

We now return to arbitrary submartingales Xn and prove an inequality that will be

necessary for the convergence theorems of the next section. It concerns the number

of crossings of a strip by the sequence Xn. Let a < b be given numbers. Set ν0 = 0,

ν1 :=min{n > 0 :Xn ≤ a}, ν2 :=min{n > ν1 :Xn ≥ b},
. . . . . . . . . . . . . . . . . . . . . .

ν2k−1 :=min{n > ν2k−2 :Xn ≤ a}, ν2k :=min{n > ν2k−1 :Xn ≥ b}.
We put νm := ∞ if the path {Xn} for n ≥ νm−1 never crosses the corresponding

level. Using this notation, one can define the number of upcrossings of the strip

(interval) [a, b] by the trajectory X0, . . . ,Xn as the random variable

ν(a, b;n) :=
{

max{k : ν2k ≤ n} if ν2 ≤ n,

0 if ν2 > n.

Set (a)+ =max(0, a).

Theorem 15.3.6 (Doob) Let {Xn,Fn; n≥ 0} be a submartingale. Then, for all n,

Eν(a, b;n)≤ E(Xn − a)+

b− a
. (15.3.4)

It is clear that inequality (15.3.4) assumes by itself that only the submartingale

{Xn,Fn;0≤ k ≤ n} is given.

Proof The random variable ν(a, b; n) coincides with the number of upcrossings of

the interval [0, b − a] by the sequence (Xn − a)+. Now {(Xn − a)+,Fn; n ≥ 0}
is a nonnegative submartingale (see Example 15.1.4) and therefore, without loss of

generality, one can assume that a = 0 and Xn ≥ 0, and aim to prove that

Eν(0, b; n)≤ EXn

b
.

Let

ηj :=
{

1 if νk < j ≤ νk+1 for some odd k,

0 if νk < j ≤ νk+1 for some even k.
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Fig. 15.1 Illustration to the

proof of Theorem 15.3.6

showing the locations of the

random times ν1, ν2, and ν3

(here a = 0)

In Fig. 15.1, ν1 = 2, ν2 = 5, ν3 = 8; ηj = 0 for j ≤ 2, ηj = 1 for 3≤ j ≤ 5 etc.

It is not hard to see (using the Abel transform) that (with X0 = 0, η0 = 1)

η0X0 +
n∑

1

ηj (Xj −Xj−1)=
n−1∑

0

Xj (ηj − ηj+1)+ ηnXn ≥ bν(0, b;n).

Moreover (here N1 denotes the set of odd numbers),

{ηj = 1} =
⋃

k∈N1

{νk < j ≤ νk+1} =
⋃

k∈N1

[
{νk ≤ j − 1} − {νk+1 ≤ j − 1}

]
∈ Fj−1.

Therefore, by virtue of the relation E(Xj |Fj−1)−Xj−1 ≥ 0, we obtain

bEν(0, b; n)≤ E

n∑

1

ηj (Xj −Xj−1)=
n∑

1

E(Xj −Xj−1; ηj = 1)

=
n∑

1

E
[
E(Xj −Xj−1|Fj−1); ηj = 1

]
=

n∑

1

E
[
E(Xj |Fj−1)−Xj−1; ηj = 1

]

≤
n∑

1

E
[
E(Xj |Fj−1)−Xj−1

]
=

n∑

1

E(Xj −Xj−1)= EXn.

The theorem is proved. �

15.4 Convergence Theorems

Theorem 15.4.1 (Doob’s martingale convergence theorem) Let

{Xn,Fn; −∞< n <∞}

be a submartingale. Then

(1) The limit X−∞ := limn→−∞Xn exists a.s., EX+−∞ < ∞, and the process
{Xn,Fn; −∞≤ n <∞} is a submartingale.

(2) If supn EX+n <∞ then X∞ := limn→∞Xn exists a.s. and EX+∞ <∞. If, more-
over, supn E|Xn|<∞ then E|X∞|<∞.

(3) The random sequence {Xn,Fn; −∞ ≤ n ≤∞} forms a submartingale if and
only if the sequence {X+n } is uniformly integrable.
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Proof (1) Since

{lim supXn > lim infXn} =
⋃

rational
a,b

{lim supXn > b > a > lim infXn}

(here the limits are taken as n→−∞), the assumption on divergence with positive

probability

P(lim supXn > lim infXn) > 0

means that there exist rational numbers a < b such that

P(lim supXn > b > a > lim infXn) > 0. (15.4.1)

Let ν(a, b; m) be the number of upcrossings of the interval [a, b] by the sequence

Y1 =X−m, . . . , Ym =X−1 and ν(a, b)= limm→∞ ν(a, b;m). Then (15.4.1) means

that

P
(
ν(a, b)=∞

)
> 0. (15.4.2)

By Theorem 15.3.6 (applied to the sequence Y1, . . . , Ym),

Eν(a, b; m)≤ E(X−1 − a)+

b− a
≤

EX+−1 + |a|
b− a

, (15.4.3)

Eν(a, b)≤
EX+−1 + |a|

b− a
. (15.4.4)

Inequality (15.4.4) contradicts (15.4.2) and hence proves that

P(lim supXn = lim infXn)= 1.

Moreover, by the Fatou–Lebesgue theorem (X+−∞ := lim infX+n ),

EX+−∞ ≤ lim infX+n ≤ EX+−1 <∞. (15.4.5)

Here the second inequality follows from the fact that {X+n ,Fn} is also a submartin-

gale (see Lemma 15.1.3) and therefore EX+n ↑.

By Lemma 15.1.2, to prove that {Xn,Fn; −∞ ≤ n <∞} is a submartingale, it

suffices to verify that, for any A ∈ F−∞ ⊂ F,

E(X−∞; A)≤ E(Xn; A). (15.4.6)

Set Xn(a) := max(Xn, a). By Lemma 15.1.4, {Xn(a),Fn; n ≤ 0} is a uniformly

integrable submartingale. Therefore, for any −∞< k < n,

E
(
Xk(a); A

)
≤ E

(
Xn(a); A

)
,

E
(
X−∞(a); A

)
= lim

k→−∞
E
(
Xk(a); A

)
≤ E

(
Xn(a); A

)
.

(15.4.7)

Letting a→−∞ we obtain (15.4.6) from the monotone convergence theorem.

(2) The second assertion of the theorem is proved in the same way. One just has

to replace the right-hand sides of (15.4.3) and (15.4.4) with EX+n and supn EX+n ,

respectively. Instead of (15.4.5) we get (the limits here are as n→∞)

EX+∞ ≤ lim inf EX+n <∞,
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and if supn E|Xn|<∞ then

E|X∞| ≤ lim inf E|Xn|<∞.

(3) The last assertion of the theorem is proved in exactly the same way as the

first one—the uniform integrability enables us to deduce along with (15.4.7) that,

for any A ∈ Fn,

E
(
X∞(a); A

)
= lim

k→∞
E
(
Xk(a); A

)
≥ E

(
Xn(a); A

)
.

The converse part of the third assertion of the theorem follows from Lemma 15.1.4.

The theorem is proved. �

Now we will obtain some consequences of Theorem 15.4.1.

So far (see Sect. 4.8), while studying convergence of conditional expectations,

we dealt with expectations of the form E(Xn|F). Now we can obtain from Theo-

rem 15.4.1 a useful theorem on convergence of conditional expectations of another

type.

Theorem 15.4.2 (Lévy) Let a nondecreasing family F1 ⊆ F2 ⊆ · · · ⊆ F of σ -
algebras and a random variable ξ , with E|ξ |<∞, be given on a probability space
〈Ω,F,P〉. Let, as before, F∞ := σ(

⋃
n Fn) be the σ -algebra generated by events

from F1,F2, . . . . Then, as n→∞,

E(ξ |Fn)
a.s.−→ E(ξ |F∞). (15.4.8)

Proof Set Xn := E(ξ |Fn). We already know (see Example 15.1.3) that the sequence

{Xn,Fn; 1 < n ≤∞} is a martingale and therefore, by Theorem 15.4.1, the limit

limn→∞Xn =X(∞) exists a.s. It remains to prove that X(∞) = E(ξ |F∞) (i.e., that

X(∞) = X∞). Since {Xn,Fn; 1 ≤ n ≤∞} is by Lemma 15.1.4 a uniformly inte-

grable martingale,

E(X(∞); A)= lim
n→∞

E(Xn; A)= lim
n→∞

E
(
E(ξ |Fn); A

)
= E(ξ ; A)

for A ∈ Fk and any k = 1,2, . . . This means that the left- and right-hand sides of

the last relation, being finite measures, coincide on the algebra
⋃∞

n=1 Fn. By the

theorem on extension of a measure (see Appendix 1), they will coincide for all

A ∈ σ(
⋃∞

n=1 Fn)= F∞. Therefore, by the definition of conditional expectation,

X(∞) = E(ξ |F∞)=X∞.

The theorem is proved. �

We could also note that the uniform integrability of {Xn,Fn; 1≤ n≤∞} implies

that
a.s.−→ in (47) can be replaced by

(1)−→.

Theorem 15.4.1 implies the strong law of large numbers. Indeed, turn to our Ex-

ample 15.1.4. By Theorem 15.4.1, the limit X−∞ = limn→−∞Xn = limn→∞ n−1Sn

exists a.s. and is measurable with respect to the tail (trivial) σ -algebra, and therefore

it is constant with probability 1. Since EX−∞ = Eξ1, we have n−1Sn
a.s.−→ Eξ1.
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One can also obtain some extensions of the theorems on series convergence of

Chap. 11 to the case of dependent variables. Let

Xn = Sn =
n∑

k=1

ξk

and Xn form a submartingale (E(ξn+1|Fn) ≥ 0). Let, moreover, E|Xn| < c for all

n and for some c <∞. Then the limit S∞ = limn→∞ Sn exists a.s. (As well as

Theorem 15.4.1, this assertion is a generalisation of the monotone convergence the-

orem. The crucial role is played here by the condition that E|Xn| is bounded.) In

particular, if ξk are independent, Eξk = 0, and the variances σ 2
k of ξk are such that∑∞

k=1 σ 2
k < σ 2 <∞, then

E|Xn| ≤
(
EX2

n

)1/2 ≤
(

n∑

k=1

σ 2
k

)1/2

≤ σ <∞,

and therefore Sn
a.s.−→ S∞. Thus we obtain, as a consequence, the Kolmogorov theo-

rem on series convergence.

Example 15.4.1 Consider a branching process {Zn} (see Sect. 7.7). We know that

Zn admits a representation

Zn = ζ1 + · · · + ζZn−1
,

where the ζk are identically distributed integer-valued random variables independent

of each other and of Zn−1, ζk being the number of descendants of the k-th particle

from the (n − 1)-th generation. Assuming that Z0 = 1 and setting µ := Eζk , we

obtain

E(Zn|Zn−1)= µZn−1, EZn = µEZn−1 = µn.

This implies that Xn = Zn/µ
n is a martingale, because

E(Xn|Xn−1)= µ1−nZn−1 =Xn−1.

For branching processes we have the following.

Theorem 15.4.3 The sequence Xn = µ−nZn converges almost surely to a proper
random variable X with EX <∞. The ch.f. ϕ(λ) of the random variable X satisfies
the equation

ϕ(µλ)= p
(
ϕ(λ)

)
,

where p(v)= Evζk .

Theorem 15.4.3 means that µ−nZn has a proper limiting distribution as n→∞.

Proof Since Xn ≥ 0 and EXn = 1, the first assertion follows immediately from

Theorem 15.4.1.
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Since EzZn is equal to the n-th iteration of the function f (z), for the ch.f. of Zn

we have (ϕη(λ) := Eeiλη)

ϕZn(λ)= p
(
ϕZn−1

(λ)
)
,

ϕXn(λ)= ϕZn

(
µ−nλ

)
= p

(
ϕZn−1

(
µ−nλ

))
= p

(
ϕXn−1

(
λ

µ

))
.

Because Xn⇒X and the function p is continuous, from this we obtain the equation

for the ch.f. of the limiting distribution X:

ϕ(λ)= p

(
ϕ

(
λ

µ

))
.

The theorem is proved. �

In Sect. 7.7 we established that in the case µ≤ 1 the process Zn becomes extinct

with probability 1 and therefore P(X = 0)= 1. We verify now that, for µ > 1, the

distribution of X is nondegenerate (not concentrated at zero). It suffices to prove

that {Xn,0≤ n≤∞} forms a martingale and consequently

EX = EXn 
= 0.

By Theorem 15.4.1, it suffices to verify that the sequence Xn is uniformly integrable.

To simplify the reasoning, we suppose that Var(ζk) = σ 2 <∞ and show that then

EX2
n < c <∞ (this certainly implies the required uniform integrability of Xn, see

Sect. 6.1). One can directly verify the identity

Z2
n −µ2n =

n∑

k=1

[
Z2

k − (µZk−1)
2
]
µ2n−2k.

Since E[Z2
k − (µZk−1)

2|Zk−1] = σ 2Zk−1 (recall that Var(η)= E(η2− (Eη)2)), we

have

Var(Zn)= E
(
Z2

n −µ2n
)
=

n∑

k=1

µ2n−2kσ 2EZk−1

= µ2nσ 2
n∑

k=1

µ−k−1 = σ 2µn(µn − 1)

µ(µ− 1)
,

EX2
n = µ−2nEZ2

n = 1+ σ 2(1−µ−n)

µ(µ− 1)
≤ 1+ σ 2

µ(µ− 1)
.

Thus we have proved that X is a nondegenerate random variable,

EX = 1, Var(Xn)→
σ 2

µ(µ− 1)
.

From the last relation one can easily obtain that Var(X)= σ 2

µ(µ−1)
. To this end one

can, say, prove that Xn is a Cauchy sequence in mean quadratic and hence (see

Theorem 6.1.3) Xn
(2)−→X.
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15.5 Boundedness of the Moments of Stochastic Sequences

When one uses convergence theorems for martingales, conditions ensuring bound-

edness of the moments of stochastic sequences {Xn,Fn} are of significant interest

(recall that the boundedness of EXn is one of the crucial conditions for convergence

of submartingales). The boundedness of the moments, in turn, ensures that Xn is

stochastically bounded, i.e., that supn P(Xn > N)→ 0 as N→∞. The last bound-

edness is also of independent interest in the cases where one is not able to prove, for

the sequence {Xn}, convergence or any other ergodic properties.

For simplicity’s sake, we confine ourselves to considering nonnegative sequences

Xn ≥ 0. Of course, if we could prove convergence of the distributions of Xn to a

limiting distribution, as was the case for Markov chains or submartingales in The-

orem 15.4.1, then we would have a more detailed description of the asymptotic

behaviour of Xn as n→∞. This convergence, however, requires that the sequence

Xn satisfies stronger constraints than will be used below.

The basic and rather natural elements of the boundedness conditions to be con-

sidered below are: the boundedness of the moments of ξn = Xn −Xn−1 of the re-

spective orders and the presence of a negative “drift” E(ξn|Fn−1) in the domain

Xn−1 > N for sufficiently large N . Such a property has already been utilised for

Markov chains; see Corollary 13.7.1 (otherwise the trajectory of Xn may go to∞).

Let us begin with exponential moments. The simplest conditions ensuring the

boundedness of supn EeλXn for some λ > 0 are as follows: for all n ≥ 1 and some
λ > 0 and N <∞,

E
(
eλξn

∣∣Fn−1

)
I(Xn−1 > N)≤ β(λ) < 1, (15.5.1)

E
(
eλξn

∣∣Fn−1

)
I(Xn−1 ≥N)≤ψ(λ) <∞. (15.5.2)

Theorem 15.5.1 If conditions (15.5.1) and (15.5.2) hold then

E
(
eλXn

∣∣F0

)
≤ β(λ)eλX0 + ψ(λ) eλN

1− β(λ)
. (15.5.3)

Proof Denote by An the left-hand side of (15.5.3). Then, by virtue of (15.5.1) and

(15.5.2), we obtain

An = E
{
E
[
eλXn

(
I(Xn−1 > N)+ I(Xn−1 ≤N)

)∣∣Fn−1

]∣∣F0

}

≤ E
[
eλXn−1

(
β(λ) I(Xn−1 > N)+ψ(λ) I(Xn−1 ≤N)

)∣∣F0

]

≤ β(λ)An−1 + eλNψ(λ).

This immediately implies that

An ≤A0β
n(λ)+ eλNψ(λ)

n−1∑

k=0

βk(λ)≤A0β
n(λ)+ eλNψ(λ)

1− β(λ)
.

The theorem is proved. �
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The conditions

E(ξn|Fn−1)≤−ε < 0 on the ω-set {Xn−1 > N}, (15.5.4)

E
(
eλ|ξn|∣∣Fn−1

)
≤ψ1(λ) <∞ for some λ > 0 (15.5.5)

are sufficient for (15.5.1) and (15.5.2).

The first condition means that Yn := (Xn + εn) I(Xn−1 > N) is a supermartin-

gale.

We now prove sufficiency of (15.5.4) and (15.5.5). That (15.5.2) holds is clear.

Further, make use of the inequality

ex ≤ 1+ x + x2

2
e|x|,

which follows from the Taylor formula for ex with the remainder in the Cauchy

form:

ex = 1+ x + x2

2
eθx, θ ∈ [0,1].

Then, on the set {Xn−1 > N}, one has

E
(
eλξn

∣∣Fn−1

)
≤ 1− λε+ λ2

2
E
(
ξ2
neλ|ξn|∣∣Fn−1

)
.

Since x2 < eλx/2 for sufficiently large x, by the Hölder inequality it follows that,

together with (15.5.5), we will have

E
(
ξ2
neλ|ξn|/2

∣∣Fn−1

)
≤ψ2(λ) <∞.

This implies that, for sufficiently small λ, one has on the set {Xn−1 > N} the in-

equality

E
(
eλξn

∣∣Fn−1

)
≤ 1− λε+ λ2

2
ψ2(λ)=: β(λ)≤ 1− λε

2
< 1.

This proves (15.5.1). �

Corollary 15.5.1 If, in addition to the conditions of Theorem 15.5.1, the distribution
of Xn converges to a limiting distribution: P(Xn < t)⇒ P(X < t), then

EeλX ≤ eλNψ(λ)

1− β(λ)
.

The corollary follows from the Fatou–Lebesgue theorem (see also Lemma 6.1.1):

EeλX ≤ lim inf
n→∞

EeλXn . �

We now obtain bounds for “conventional” moments. Set

M l(n) := EXl
n,

m(0) := 1, m(1) := sup
n≥1

sup
ω∈{Xn−1>N}

E(ξn|Fn−1),

m(l) := sup
n≥1

sup
ω

E
(
|ξn|l

∣∣Fn−1

)
, l > 1.
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Theorem 15.5.2 Assume that EXs
0 <∞ for some s > 1 and there exist N ≥ 0 and

ε > 0 such that

m(1)≤−ε, (15.5.6)

m(s) < c <∞. (15.5.7)

Then

lim inf
n→∞

Ms−1(n) <∞. (15.5.8)

If, moreover,

Ms(n+ 1) > Ms(n)− c1 (15.5.9)

for some c1 > 0, then

sup
n

Ms−1(n) <∞. (15.5.10)

Corollary 15.5.2 If conditions (15.5.6) and (15.5.7) are met and the distribution
of Xn converges weakly to a limiting distribution: P(Xn < t)⇒ P(X < t), then
EXs−1 <∞.

This assertion follows from the Fatou–Lebesgue theorem (see also Lemma 6.1.1),

which implies

EXs−1 ≤ lim inf
n→∞

EXs−1
n . �

The assertion of Corollary 15.5.2 is unimprovable. One can see this from the

example of the sequence Xn = (Xn−1 + ζn)
+, where ζk

d= ζ are independent and

identically distributed. If Eζk < 0 then the limiting distribution of Xn coincides with

the distribution of S = supk Sk (see Sect. 12.4). From factorisation identities one can

derive that ESs−1 is finite if and only if E(ζ+)s <∞. An outline of the proof is as

follows. Theorem 12.3.2 implies that ESk = c E(χk
+; η+ <∞), c = const <∞. It

follows from Corollary 12.2.2 that

1−E
(
eiλχ+; η+ <∞

)
=
(
1−Eeiλζ

)∫ ∞

0

e−iλx dH(x),

where H(x) is the renewal function for the random variable −χ0
− ≥ 0. Since

a1 + b1x ≤H(x)≤ a2 + b2x

(see Theorem 10.1.1 and Lemma 10.1.1; ai , bi are constants), integrating the con-

volution

P(χ+ > x, η+ <∞)=
∫ ∞

0

P(ζ > v+ x)dH(v)

by parts we verify that, as x→∞, the left-hand side has the same order of magni-

tude as
∫∞

0 P(ζ > v+ x)dv. Hence the required statement follows.
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We now return to Theorem 15.5.2. Note that in all of the most popular problems

the sequence Ms−1(n) behaves “regularly”: either it is bounded or Ms−1(n)→∞.

Assertion (15.5.8) means that, under the conditions of Theorem 15.5.2, the sec-

ond possibility is excluded. Condition (15.5.9) ensuring (15.5.10) is also rather

broad.

Proof of Theorem 15.5.2 Let for simplicity’s sake s > 1 be an integer. We have

E
(
Xs

n; Xn−1 > N
)
=
∫ ∞

N

E
(
(x + ξn)

s; Xn−1 ∈ dx
)

=
s∑

l=0

(
s

l

)∫ ∞

N

xlE
(
ξ s−l
n ; Xn−1 ∈ dx

)
.

If we replace ξ s−l
n for s − l ≥ 2 with |ξn|s−l then the right-hand side can only in-

crease. Therefore,

E
(
Xs

n; Xn−1 > N
)
≤

s∑

l=0

(
s

l

)
m(s − l)M l

N (n− 1),

where

M l
N (n)= E

(
Xl

n; Xn > N
)
.

The moments Ms(n)= EXs
n satisfy the inequalities

Ms(n)≤ E
[(

N + |ξn|
)s; Xn−1 ≤N

]
+

s∑

l=0

(
s

l

)
m(s − l)M l

N (n− 1)

≤ 2s
[
N s + c

]
+

s∑

l=0

(
s

l

)
m(s − l)M l

N (n− 1). (15.5.11)

Suppose now that (15.5.8) does not hold: Ms−1(n) → ∞. Then all the more

Ms(n)→∞ and there exists a subsequence n′ such that Ms(n′) > Ms(n′ − 1).

Since M l(n)≤ [M l+1(n)]l/ l+1, we obtain from (15.5.6) and (15.5.11) that

Ms
(
n′
)
≤ const+Ms

(
n′ − 1

)
+ sMs−1

(
n′ − 1

)
m(1)+ o

(
Ms−1

(
n′ − 1

))

≤Ms
(
n′ − 1

)
− 1

2
sεMs−1

(
n′ − 1

)

for sufficiently large n′. This contradicts the assumption that Ms(n)→∞ and hence

proves (15.5.8).

We now prove (15.5.10). If this relation is not true then there exists a sequence

n′ such that Ms−1(n′)→∞ and Ms(n′) > Ms(n′− 1)− c1. It remains to make use

of the above argument.

We leave the proof for a non-integer s > 1 to the reader (the changes are elemen-

tary). The theorem is proved. �
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Remark 15.5.1 (1) The assertions of Theorems 15.5.1 and 15.5.2 will remain valid

if one requires inequalities (15.5.4) or E(ξn+ ε|Fn−1) I(Xn−1 > N)≤ 0 to hold not

for all n, but only for n≥ n0 for some n0 > 1.

(2) As in Theorem 15.5.1, condition (15.5.6) means that the sequence of random

variables (Xn + εn) I(Xn−1 > N) forms a supermartingale.

(3) The conditions of Theorems 15.5.1 and 15.5.2 may be weakened by replac-

ing them with “averaged” conditions. Consider, for instance, condition (15.5.1). By

integrating it over the set {Xn−1 > x > N} we obtain

E
(
eλξn; Xn−1 > x

)
≤ β(λ)P(Xn−1 > x)

or, which is the same,

E
(
eλξn

∣∣Xn−1 > x
)
≤ β(λ). (15.5.12)

The converse assertion that (15.5.12) for all x > N implies relation (15.5.1) is obvi-

ously false, so that condition (15.5.12) is weaker than (15.5.1). A similar remark is

true for condition (15.5.4).

One has the following generalisations of Theorems 15.5.1 and 15.5.2 to the case

of “averaged conditions”.

Theorem 15.5.1A Let, for some λ > 0, N > 0 and all x ≥N ,

E
(
eλξn

∣∣Xn−1 > x
)
≤ β(λ) < 1, E

(
eλξn; Xn−1 ≤N

)
≤ψ(λ) <∞.

Then

EeλXn ≤ βn(λ)EeλX(0) + eλNψ(λ)

1− β(λ)
.

Put

m(1) := sup
n≥1

sup
x≥N

E(ξn|Xn−1 > x),

m(l) := sup
n≥1

sup
x≥N

E
(
|ξn|l

∣∣X(n) > x
)
, l > 1.

Theorem 15.5.2A Let EXs
0 <∞ and there exist N ≥ 0 and ε > 0 such that

m(1)≤−ε, m(s) <∞, E
(
|ξn|s; Xn−1 ≤N

)
< c <∞.

Then (15.5.8) holds true. If, in addition, (15.5.9) is valid, then (15.5.10) is true.

The proofs of Theorems 15.5.1A and 15.5.2A are quite similar to those of Theo-

rems 15.5.1 and 15.5.2. The only additional element in both cases is integration by

parts. We will illustrate this with the proof of Theorem 15.5.1A. Consider
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E
(
eλXn; Xn−1 > N

)
=
∫ ∞

N

eλxE
(
eλξn; Xn−1 ∈ dx

)

= E
(
eλ(N+ξn); Xn−1 > N

)
+
∫ ∞

N

λeλxE
(
eλξn; Xn−1 > x

)
dx

≤ E
(
eλ(N+ξn); Xn−1 > N + β(λ)

)∫ ∞

N

λeλxP(Xn−1 > x)dx

= eλN E
(
eλξn − β(λ); Xn−1 > N

)
+ β(λ)

∫ ∞

N

eλxP(Xn−1 ∈ dx)

≤ β(λ)E
(
eλXn−1; Xn−1 > N

)
.

From this we find that

βn(λ) := EeλXn ≤ E
(
eλ(Xn−1+ξn); Xn−1 ≤N

)
+E

(
eλXn;Xn−1 > N

)

≤ eλNψ(λ)+ β(λ)E
(
eλXn−1; Xn−1 > N

)

≤ eλNψ(λ)− P(Xn−1 ≤N)β(λ)+ β(λ)βn(λ);

βn(λ) ≤ βn(λ)β0(λ)+ eλNψ(λ)

1− β(λ)
. �

Note that Theorem 13.7.2 and Corollary 13.7.1 on “positive recurrence” can also

be referred to as theorems on boundedness of stochastic sequences.



Chapter 16

Stationary Sequences

Abstract Section 16.1 contains the definitions and a discussion of the concepts

of strictly stationary sequences and measure preserving transformations. It also

presents Poincaré’s theorem on the number of visits to a given set by a stationary se-

quence. Section 16.2 discusses invariance, ergodicity, mixing and weak dependence.

The Birkhoff–Khintchin ergodic theorem is stated and proved in Sect. 16.3.

16.1 Basic Notions

Let 〈Ω,F,P〉 be a probability space and ξ = (ξ0, ξ1, . . .) an infinite sequence of

random variables given on it.

Definition 16.1.1 A sequence ξ is said to be strictly stationary if, for any k, the

distribution of the vector (ξn, . . . , ξn+k) does not depend on n, n≥ 0.

Along with the sequence ξ , consider the sequence (ξn, ξn+1, . . .). Since the finite-

dimensional distributions of these sequences (i.e. the distributions of the vectors

(ξm, . . . , ξm+k)) coincide, the distributions of the sequences will also coincide (one

has to make use of the measure extension theorem (see Appendix 1) or the Kol-

mogorov theorem (see Sect. 3.5). In other words, for a stationary sequence ξ , for

any n and B ∈B∞ (for notation see Sect. 3.5), one has

P(ξ ∈ B)= P
(
(ξn, ξn+1, . . .) ∈ B

)
.

The simplest example of a stationary sequence is given by a sequence of inde-

pendent identically distributed random variables ζ = (ζ0, ζ1, . . .). It is evident that

the sequence ξk = α0ζk + · · · + αsζk+s , k = 0,1,2, . . . , will also be stationary, but

the variables ξk will no longer be independent. The same holds for sequences of the

form

ξk =
∞∑

j=0

αj ζk+j ,

provided that E|ζj |<∞,
∑
|αj |<∞, or if Eζk = 0, Var(ζk) <∞,

∑
α2

j <∞ (the

latter ensures a.s. convergence of the series of random variables, see Sect. 10.2). In a
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similar way one can consider stationary sequences ξk = g(ζk, ζk+1, . . .) “generated”

by ζ , where g(x) is an arbitrary measurable functional R∞ #→R.

Another example is given by stationary Markov chains. If {Xn} is a real-valued

Markov chain with invariant measure π and transition probability P(·, ·) then the

chain {Xn} with X⊂= π will form a stationary sequence, because the distribution

P(Xn ∈ B0, . . . ,Xn+k ∈ Bk)=
∫

B0

π(dx0)

∫

B1

P(x0, dx1) · · ·
∫

Bk

P(xk−1, dxk)

will not depend on n.

Any stationary sequence ξ = (ξ0, ξ1, . . .) can always be extended to a stationary

sequence ξ = (. . . ξ−1, ξ0, ξ1, . . .) given on the “whole axis”.

Indeed, for any n, −∞ < n <∞, and k ≥ 0 define the joint distributions of

(ξn, . . . , ξn+k) as those of (ξ0, . . . , ξk). These distributions will clearly be consistent

(see Sect. 3.5) and by the Kolmogorov theorem there will exist a unique probabil-

ity distribution on R
∞
−∞ =

∏∞
k=−∞Rk with the respective σ -algebra such that any

finite-dimensional distribution is a projection of that distribution on the correspond-

ing subspace. It remains to take the random element ξ to be the identity mapping

of R∞−∞ onto itself.

In some of the subsequent sections it will be convenient for us to use stationary

sequences given on the whole axis.

Let ξ be such a sequence. Define a transformation θ of the space R∞−∞ onto itself

with the help of the relations

(θx)k = (x)k+1 = xk+1, (16.1.1)

where (x)k is the k-th component of the vector x ∈R∞−∞,−∞< k <∞. The trans-

formation θ clearly has the following properties:

1. It is a one-to-one mapping, θ−1 is defined by

(
θ−1x

)
k
= xk−1.

2. The sequence θξ is also stationary, its distribution coinciding with that of ξ :

P(θξ ∈ B)= P(ξ ∈ B).

It is natural to call the last property of the transformation θ the “measure preserv-

ing” property.

The above remarks explain to some extent why historically exploring the prop-

erties of stationary sequences followed the route of studying measure preserving

transforms. Studies in that area constitute a substantial part of the modern analysis.

In what follows, we will relate the construction of stationary sequences to measure

preserving transformations, and it will be more convenient to regard the latter as

“primary” objects.

Definition 16.1.2 Let 〈Ω,F,P〉 be the basic probability space. A transformation T

of Ω into itself is said to be measure preserving if:
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(1) T is measurable, i.e. T −1A= {ω : T ω ∈A} ∈ F for any A ∈ F; and

(2) T preserves the measure: P(T −1A)= P(A) for any A ∈ F.

Let T be a measure preserving transformation, T n its n-th iteration and ξ = ξ(ω)

be a random variable. Put Uξ(ω)= ξ(T ω), so that U is a transformation of random
variables, and U kξ(ω)= ξ(T kω). Then

ξ =
{
Unξ(ω)

}∞
0
=
{
ξ
(
T nω

)}∞
0

(16.1.2)

is a stationary sequence of random variables.

Proof Indeed, let A= {ω; ξ ∈ B}, B ∈B∞ and A1 = {ω : θξ ∈ B}. We have

ξ =
(
ξ(ω), ξ(T ω), . . .

)
, θξ =

(
ξ(T ω), ξ

(
T 2ω

)
, . . .

)
.

Therefore ω ∈ A1 if and only if T ω ∈ A, i.e. when A1 = T −1A. But P(T −1A) =
P(A) and hence P(A1)= P(A), so that P(An)= P(A) for any n≥ 1 as well, where

An = {ω : θnξ ∈ B}. �

Stationary sequences defined by (16.1.2) will be referred to as sequences gener-
ated by the transformation T .

To be able to construct stationary sequences on the whole axis, we will need mea-

sure preserving transformations acting both in “positive” and “negative” directions.

Definition 16.1.3 A transformation T is said to be bidirectional measure preserving
if:

(1) T is a one-to-one transformation, the domain and range of T coincide with the

whole Ω ;

(2) the transformations T and T −1 are measurable, i.e.

T −1A= {ω : T ω ∈A} ∈ F, T A= {T ω : ω ∈A} ∈ F

for any A ∈ F;

(3) the transformation T preserves the measure: P(T −1A) = P(A), and therefore

P(A)= P(T A) for any A ∈ F.

For such transformations we can, as before, construct stationary sequences ξ

defined on the whole axis:

ξ =
{
Unξ(ω)

}∞
−∞ =

{
ξ
(
T nω

)}∞
−∞.

The argument before Definition 16.1.2 shows that this approach “exhausts” all

stationary sequences given on 〈Ω,F,P〉, i.e. to any stationary sequence ξ we can

relate a measure preserving transformation T and a random variable ξ = ξ0 such

that ξk(ω) = ξ0(T
kω). In this construction, we consider the “sample probability

space” 〈R∞,B∞,P〉 for which ξ(ω)= ω, θ = T . The transformation θ = T (that is,
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transformation (16.1.1)) will be called the pathwise shift transformation. It always

exists and “generates” any stationary sequence.

Now we will give some simpler examples of (bidirectional) measure preserving

transformations.

Example 16.1.1 Let Ω = {ω1, . . . ,ωd}, d ≥ 2, be a finite set, F be the σ -algebra of

all its subsets, T ωi = ωi+1, 1 ≤ i ≤ d − 1 and T ωd = ω1. If P(ωi) = 1/d then T

and T −1 are measure preserving transformations.

Example 16.1.2 Let Ω = [0,1), F be the σ -algebra of Borel sets, P the Lebesgue

measure and s a fixed number. Then T ω= ω+ s (mod 1) is a bidirectional measure

preserving transformation.

In these examples, the spaces Ω are rather small, which allows one to construct

on them only stationary sequences with deterministic or almost deterministic de-

pendence between their elements. If we choose in Example 16.1.1 the variable ξ so

that all ξ(ωi) are different, then the value ξk(ω)= ξ(T kω) will uniquely determine

T kω and thereby T k+1ω and ξk+1(ω). The same can be said of Example 16.1.2 in

the case when ξ(ω), ω ∈ [0,1), is a monotone function of ω.

As our argument at the beginning of the section shows, the space Ω = R
∞ is

large enough to construct on it any stationary sequence.

Thus, we see that the concept of a measure preserving transformation arises in

a natural way when studying stationary processes. But not only in that case. It also

arises, for instance, while studying the dynamics of some physical systems. Indeed,

the whole above argument remains valid if we consider on 〈Ω,F〉 an arbitrary mea-

sure μ instead of the probability P. For example, for Ω = R
∞, the value μ(A),

A ∈ F, could be the Lebesgue measure (volume) of the set A. The measure preserv-

ing property of the transformation T will mean that any set A, after the transform T

has acted on it (which, say, corresponds to the change of the physical system’s state

in one unit of time), will retain its volume. This property is rather natural for incom-

pressible liquids. Many laws to be established below will be equally applicable to

such physical systems.

Returning to probabilistic models, i.e. to the case when the measure is a proba-

bility distribution, it turns out that, in that case, for any set A with P(A) > 0, the

“trajectory” T nω will visit A infinitely often for almost all (with respect to the mea-

sure P) ω ∈A.

Theorem 16.1.1 (Poincaré) Let T be a measure preserving transformation and
A ∈ F. Then, for almost all ω ∈ A, the relation T nω ∈ A holds for infinitely many
n≥ 1.

Proof Put N := {ω ∈ A : T nω /∈ A for all n ≥ 1}. Because {ω : T nω ∈ A} ∈ F, it is

not hard to see that N ∈ F. Clearly, N ∩ T −nN = ∅ for any n ≥ 1, and T −mN ∩
T −(m+n)N = T −m(N ∩ T −nN)=∅. This means that we have infinitely many sets

T −nN , n = 0,1,2, . . . , which are disjoint and have one and the same probability.

This evidently implies that P(N)= 0.
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Thus, for each ω ∈ A \N , there exists an n1 = n1(ω) such that T n1ω ∈ A. Now

we apply this assertion to the measure preserving mapping Tk = T k , k ≥ 1. Then, for

each ω ∈A \Nk , P(Nk)= 0, there exists an nk = nk(ω)≥ 1 such that (T k)nkω ∈A.

Since knk ≥ k, the theorem is proved. �

Corollary 16.1.1 Let ξ(ω)≥ 0 and A= {ω : ξ(ω) > 0}. Then, for almost all ω ∈A,

∞∑

n=0

ξ
(
T nω

)
=∞.

Proof Put Ak = {ω : ξ(ω) ≥ 1/k} ⊂ A. Then by Theorem 16.1.1 the above series

diverges for almost all ω ∈Ak . It remains to notice that A=
⋃

k Ak . �

Remark 16.1.1 Formally, one does not need condition P(A) > 0 in Theorem 16.1.1

and Corollary 16.1.1. However, in the absence of that condition, the assertions may

become meaningless, since the set A\N in the proof of Theorem 16.1.1 can turn out

to be empty. Suppose, for example, that in the conditions of Example 16.1.2, A is a

one-point set: A= {ω}, ω ∈ [0,1). If s is irrational, then T kω will never be in A for

k ≥ 1. Indeed, if we assume the contrary, then we will infer that there exist integers

k and m such that ω + sk − m = ω, s = m/k, which contradicts the irrationality

of s.

16.2 Ergodicity (Metric Transitivity), Mixing and Weak

Dependence

Definition 16.2.1 A set A ∈ F is said to be invariant (with respect to a measure

preserving transformation T ) if T −1A = A. A set A ∈ F is said to be almost in-
variant if the sets T −1A and A differ from each other by a set of probability zero:

P(A⊕ T −1A)= 0, where A⊕B =AB ∪AB is the symmetric difference.

It is evident that the class of all invariant (almost invariant) sets forms a σ -algebra

which will be denoted by I (I∗).

Lemma 16.2.1 If A is an almost invariant set then there exists an invariant set B

such that P(A⊕B)= 0.

Proof Put B = lim supn→∞ T −nA (recall that lim supn→∞An =
⋂∞

n=1

⋃∞
k=n Ak is

the set of all points which belong to infinitely many sets Ak). Then

T −1B = lim sup
n→∞

T −(n+1)A= B,
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i.e. B ∈ I. It is not hard to see that

A⊕B ⊂
∞⋃

k=0

(
T −kA⊕ T −(k+1)A

)
.

Since

P
(
T −kA⊕ T −(k+1)A

)
= P

(
A⊕ T −1A

)
= 0,

we have P(A⊕B)= 0. The lemma is proved. �

Definition 16.2.2 A measure preserving transformation T is said to be ergodic (or

metric transitive) if each invariant set has probability zero or one.

A stationary sequence {ξk} associated with such T (i.e. the sequence which gen-

erated T or was generated by T ) is also said to be ergodic (metric transitive).

Lemma 16.2.2 A transformation T is ergodic if and only if each almost invariant
set has probability 0 or 1.

Proof Let T be ergodic and A ∈ I∗. Then by Lemma 16.2.1 there exists an invariant

set B such that P(A⊕B)= 0. Because P(B)= 0 or 1, the probability P(A)= 0 or 1.

The converse assertion is obvious. �

Definition 16.2.3 A random variable ζ = ζ(ω) is said to be invariant (almost in-
variant) if ζ(ω)= ζ(T ω) for all ω ∈Ω (for almost all ω ∈Ω).

Theorem 16.2.1 Let T be a measure preserving transformation. The following
three conditions are equivalent:

(1) T is ergodic;

(2) each almost invariant random variable is a.s. constant;
(3) each invariant random variable is a.s. constant.

Proof (1) ⇒ (2). Assume that T is ergodic and ξ is almost invariant, i.e. ξ(ω) =
ξ(T ω) a.s. Then, for any v ∈ R, we have Av := {ω : ξ(ω) ≤ v} ∈ I∗ and, by

Lemma 16.2.2, P(Av) equals 0 or 1. Put V := sup{v : P(Av)= 0}. Since Av ↑Ω as

v ↑∞ and Av ↓∅ as v ↓ −∞, one has |V |<∞ and

P
(
ξ(ω) < V

)
= P

( ∞⋃

n=1

{
ξ(ω) < V − 1

n

})
= 0.

Similarly, P(ξ(ω) > V )= 0. Therefore P(ξ(ω)= V )= 1.

(2)⇒ (3). Obvious.

(3) ⇒ (1). Let A ∈ I. Then the indicator function IA is an invariant random

variable, and since it is constant, one has either IA = 0 or IA = 1 a.s. This implies

that P(A) equals 0 or 1. The theorem is proved. �
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The assertion of the theorem clearly remains valid if one considers in (3) only

bounded random variables. Moreover, if ξ is invariant, then the truncated variable

ξ(N) =min(ξ,N) is also invariant.

Returning to Examples 16.1.1 and 16.1.2, in Example 16.1.1,

Ω = (ω1, . . . ,ωd), T ωi = ωi+1 (mod d), P(ωi)= 1/d.

The transformation T is obviously metric transitive.

In Example 16.1.2, Ω = [0,1), T ω = ω + s (mod 1), and P is the Lebesgue

measure. We will now show that T is ergodic if and only if s is irrational.
Consider a square integrable random variable ξ = ξ(ω) : Eξ2(ω) <∞. Then by

the Parseval equality, the Fourier series

ξ(ω)=
∞∑

n=0

ane
2πinω

for this function has the property
∑∞

n=0 |c2
n|<∞. Assume that s is irrational, while

ξ is invariant. Then

an = Eξ(ω)e−2πinω = Eξ(T ω)e−2πinT ω

= e−2πinsEξ(T ω)e−2πinω = e−2πinsEξ(ω)e−2πinω = e−2πinsan.

For irrational s, this equality is only possible when an = 0, n≥ 1, and ξ(ω)= a0 =
const. By Theorem 16.2.1 this means that T is ergodic.

Now let s =m/n be rational (m and n are integers). Then the set

A=
n−1⋃

k=0

{
ω : 2k

2n
≤ ω <

2k+ 1

2n

}

will be invariant and P(A)= 1/2. This means that T is not ergodic. �

Definition 16.2.4 A measure preserving transformation T is called mixing if, for

any A1,A2 ∈ F, as n→∞,

P
(
A1 ∩ T −nA2

)
→ P(A1)P(A2). (16.2.1)

Now consider the stationary sequence ξ = (ξ0, ξ1, . . .) generated by the transfor-

mation T : ξk(ω)= ξ0(T
kω).

Definition 16.2.5 A stationary sequence ξ is said to be weakly dependent if ξk and

ξk+n are asymptotically independent as n→∞, i.e. for any B1,B2 ∈B

P(ξk ∈ B1, ξk+n ∈ B2)→ P(ξ0 ∈ B1)P(ξ0 ∈ B2). (16.2.2)

Theorem 16.2.2 A measure preserving transformation T is mixing if and only if
any stationary sequence ξ generated by T is weakly dependent.
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Proof Let T be mixing. Put Ai := ξ−1
0 (Bi), i = 1,2, and set k = 0 in (16.2.2). Then

P(ξ0 ∈ B1, ξn ∈ B2)= P
(
A1 ∩ T −nA2

)
→ P(A1)P(A2).

Now assume any sequence generated by T is weakly dependent. For any given

A1,A2 ∈ F, define the random variable

ξ(ω)=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 if ω /∈A1 ∪A2;
1 if ω ∈A1A2;
2 if ω ∈A1A2;
3 if ω ∈A1A2;

and put ξk(ω) := ξ(T kω). Then, as n→∞,

P
(
A1 ∩ T −nA2

)
= P(0 < ξ0 < 3, ξn > 2)→ P(0 < ξ0 < 3)P(ξ0 > 2)

= P(A1)P(A2).

The theorem is proved. �

Let {Xn} be a stationary real-valued Markov chain with an invariant distribution

π that satisfies the conditions of the ergodic theorem, i.e. such that, for any B ∈B
and x ∈R, as n→∞,

P(Xn ∈ B |X0 = x)→ π(B).

Then {Xn} is weakly dependent, and therefore, by Theorem 16.2.2, the respective

transformation T is mixing. Indeed,

P(X0 ∈ B1,Xn ∈ B2)= EI(X0 ∈ B1)P(Xn ∈ B2 |X0),

where the last factor converges to π(B2) for each X0. Therefore the above proba-

bility tends to π(B2)π(B1).

Further characterisations of the mixing property will be given in Theorems 16.2.4

and 16.2.5.

Now we will introduce some notions that are somewhat broader than those from

Definitions 16.2.4 and 16.2.5.

Definition 16.2.6 A transformation T is called mixing on the average if, as n→∞,

1

n

n∑

k=1

P
(
A1 ∩ T −kA2

)
→ P(A1)P(A2). (16.2.3)

A stationary sequence ξ is said to be weakly dependent on the average if

1

n

n∑

k=1

P(ξ0 ∈ B1, ξk ∈ B2)→ P(ξ0 ∈ B1)P(ξ0 ∈ B2). (16.2.4)
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Theorem 16.2.3 A measure preserving transformation T is mixing on the average
if and only if any stationary sequence ξ generated by T is weakly dependent on the
average.

The Proof is the same as for Theorem 16.2.2, and is left to the reader. �

If {Xn} is a periodic real-valued Markov chain with period d such that each

of the embedded sub-chains {Xi+nd}∞n=0, i = 0, . . . , d − 1, satisfies the ergodicity

conditions with invariant distributions π (i) on disjoint sets X0, . . . ,Xd−1, then the

“common” invariant distribution π will be equal to d−1
∑d−1

i=0 π (i), and the chain

{Xn} will be weakly dependent on the average. At the same time, it will clearly not

be weakly dependent for d > 1.

Theorem 16.2.4 A measure preserving transformation T is ergodic if and only if it
is mixing on the average.

Proof Let T be mixing on the average, and A1 ∈ F, A2 ∈ I. Then A2 = T −kA2

and hence P(A1 ∩ T −kA2)= P(A1A2) for all k ≥ 1. Therefore, (16.2.3) means that

P(A1A2)= P(A1)P(A2). For A1 = A2 we get P(A2)= P2(A2), and consequently

P(A2) equals 0 or 1.

We postpone the proof of the converse assertion until the next section. �

Now we will give one more important property of ergodic transforms.

Theorem 16.2.5 A measure preserving transformation T is ergodic if and only if,
for any A ∈ F with P(A) > 0, one has

P

( ∞⋃

n=0

T −nA

)
= 1. (16.2.5)

Note that property (16.2.5) means that the sets T −nA, n = 0,1, . . . , “exhaust”

the whole space Ω , which associates well with the term “mixing”.

Proof Let T be ergodic. Put B :=
⋃∞

n=0 T −nA. Then T −1B ⊂ B . Because T is

measure preserving, one also has that P(T −1B) = P(B). From this it follows that

T −1B = B up to a set of measure 0 and therefore B is almost invariant. Since T is

ergodic, P(B) equals 0 or 1. But P(B)≥ P(A) > 0, and hence P(B)= 1.

Conversely, if T is not ergodic, then there exists an invariant set A such that

0 < P(A) < 1 and, therefore, for this set T −nA=A holds and

P(B)= P(A) < 1.

The theorem is proved. �
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Remark 16.2.1 In Sects. 16.1 and 16.2 we tacitly or explicitly assumed (mainly for

the sake of simplicity of the exposition) that the components ξk of the stationary

sequence ξ are real. However, we never actually used this, and so we could, as

we did while studying Markov chains, assume that the state space X , in which

ξk take their values, is an arbitrary measurable space. In the next section we will

substantially use the fact that ξk are real- or vector-valued.

16.3 The Ergodic Theorem

For a sequence ξ1, ξ2, . . . of independent identically distributed random variables

we proved in Chap. 11 the strong law of large numbers:

Sn

n

a.s.−→ Eξ1, where Sn =
n−1∑

k=0

ξk.

Now we will prove the same assertion under much broader assumptions—for sta-

tionary ergodic sequences, i.e. for sequences that are weakly dependent on the aver-

age.

Let {ξk} be an arbitrary strictly stationary sequence, T be the associated measure

preserving transformation, and I be the σ -algebra of invariant sets.

Theorem 16.3.1 (Birkhoff–Khintchin) If E|ξ0|<∞ then

1

n

n−1∑

k=0

ξk
a.s.−→ E(ξ0 | I). (16.3.1)

If the sequence {ξk} (or transformation T ) is ergodic, then

1

n

n−1∑

k=0

ξk
a.s.−→ Eξ0. (16.3.2)

Below we will be using the representation ξk = ξ(T kω) for ξ = ξ0. We will need

the following auxiliary result.

Lemma 16.3.1 Set

Sn(ω) :=
n−1∑

k=0

ξ
(
T kω

)
, Mk(ω) :=max

{
0, S1(ω), . . . , Sk(ω)

}
.

Then, under the conditions of Theorem 16.3.1,

E
[
ξ(ω)I{Mn>0}(ω)

]
≥ 0

for any n≥ 1.
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Proof For all k ≤ n, one has Sk(T ω)≤Mn(T ω), and hence

ξ(ω)+Mn(T ω)≥ ξ(ω)+ Sk(T ω)= Sk+1(ω).

Because ξ(ω)≥ S1(ω)−Mn(T ω), we have

ξ(ω)≥max
{
max(S1(ω), . . . , Sn(ω)

}
−Mn(T ω).

Further, since

{
Mn(ω) > 0

}
=
{
max

(
S1(ω), . . . , Sn(ω)

)
> 0

}
,

we obtain that

E
[
ξ(ω)I{Mn>0}(ω)

]
≥ E

(
max

(
S1(ω), . . . , Sn(ω)

)
−Mn(T ω)

)
I{Mn>0}(ω)

≥ E
(
Mn(ω)−Mn(T ω)

)
I{Mn>0}(ω)

≥ E
(
Mn(ω)−Mn(T ω)

)
= 0.

The lemma is proved. �

Proof of Theorem 16.3.1 Assertion (16.3.2) is an evident consequence of (16.3.1),

because, for ergodic T , the σ -algebra I is trivial and E(ξ |I) = Eξ a.s. Hence, it

suffices to prove (16.3.1).

Without loss of generality, we can assume that E(ξ |I) = 0, for one can always

consider ξ −E(ξ |I) instead of ξ .

Let S := lim supn→∞ n−1Sn and S := lim infn→∞ n−1Sn. To prove the theorem,

it suffices to establish that

0≤ S ≤ S ≤ 0 a.s. (16.3.3)

Since S(ω)= S(T ω), the random variable S is invariant and hence the set A− ε =
{S(ω) > ε} is also invariant for any ε > 0. Introduce the variables

ξ∗(ω) :=
(
ξ(ω)− ε

)
IAε (ω),

S∗k (ω) := ξ∗(ω)+ · · · + ξ∗
(
T k−1ω

)
,

M∗k (ω) :=max
(
0, S∗1 , . . . , S∗k

)
.

Then, by Lemma 16.3.1, for any n≥ 1, one has

Eξ∗I{M∗n>0} ≥ 0.

But, as n→∞,

{
M∗n > 0

}
=
{

max
1≤k≤n

S∗k > 0
}
↑
{

sup
k≥1

S∗k > 0
}
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=
{

sup
k≥1

S∗k
k

> 0

}
=
{

sup
k≥1

Sk

k
> ε

}
∩Aε =Aε.

The last equality follows from the observation that

Aε = {S > ε} ⊂
{

sup
k≥1

Sk

k
> ε

}
.

Further, E|ξ∗| ≤ E|ξ | + ε. Hence, by the dominated convergence theorem,

0≤ Eξ∗I{M∗n>0}→ Eξ∗IAε .

Consequently,

0≤ Eξ∗IAε = E(ξ − ε)IAε = Eξ IAε − εP(Aε)

= EIAε E(ξ | I)− εP(Aε)=−εP(Aε).

This implies that P(Aε)= 0 for any ε > 0, and therefore P(S ≤ 0)= 1.

In a similar way, considering the variables −ξ instead of ξ , we obtain that

lim sup
n→∞

(
−Sn

n

)
=− lim inf

n→∞
Sn

n
=−S,

and P(−S ≤ 0)= 1, P(S ≥ 0)= 1. The required inequalities (16.3.3), and therefore

the theorem itself, are proved. �

Now we can complete the

Proof of Theorem 16.2.4 It remains to show that the ergodicity of T implies mixing

on the average. Indeed, let T be ergodic and A1,A2 ∈ F. Then, by Theorem 16.3.1,

we have

ζn =
1

n

n∑

k=1

I
(
T −kA2

) a.s.−→ P(A2), I(A1)ζn
a.s.−→ I(A1)P(A2).

Since ζnI(A1) are bounded, one also has the convergence

EζnI(A1)→ P(A2) · P(A1).

Therefore

1

n

n∑

k=1

P
(
A1 ∩ T −kA2

)
= EI(A1)ζn→ P(A1)P(A2).

The theorem is proved. �

Now we will show that convergence in mean also holds in (16.3.1) and (16.3.2).
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Theorem 16.3.2 Under the assumptions of Theorem 16.3.1, one has along with
(16.3.1) and (16.3.2) that, respectively,

E

∣∣∣∣
1

n

n−1∑

k=0

ξk −E(ξ0|I)

∣∣∣∣→ 0 (16.3.4)

and

E

∣∣∣∣
1

n

n−1∑

k=0

ξk −Eξ0

∣∣∣∣→ 0 (16.3.5)

as n→∞.

Proof The assertion of the theorem follows in an obvious way from Theo-

rems 16.3.1, 6.1.7 and the uniform integrability of the sums

1

n

n−1∑

k=0

ξk,

which follows from Theorem 6.1.6. �

Corollary 16.3.1 If {ξk} is a stationary metric transitive sequence and a = Eξk < 0,

then S(ω)= supk≥0 Sk(ω) is a proper random variable.

The proof is obvious since, for 0 < ε < −a, one has Sk < (a + ε)k < 0 for all

k ≥ n(ω) <∞. �

An unusual feature of Theorem 16.3.1 when compared with the strong law of

large numbers from Chap. 11 is that the limit of

1

n

n−1∑

k=0

ξk

can be a random variable. For instance, let T ωk := ωk+2 and d = 2l be even in the

situation of Example 16.1.1. Then the transformation T will not be ergodic, since

the set A= {ω1,ω3, . . . ,ωd−1} will be invariant, while P(A)= 1/2.

On the other hand, it is evident that, for any function ξ(ω), the sum

1

n

n−1∑

k=0

ξ
(
T kω

)

will converge with probability 1/2 to

2

d

l−1∑

j=0

ξ(ω2j+1)
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(if ω= ωi and i is odd) and with probability 1/2 to

2

d

l∑

j=1

ξ(ω2j )

(if ω= ωi and i is even). This limiting distribution is just the distribution of E(ξ |I).



Chapter 17

Stochastic Recursive Sequences

Abstract The chapter begins with introducing the concept of stochastic random se-

quences in Sect. 17.1. The idea of renovating events together with the key results

on ergodicity of stochastic random sequences and the boundedness thereof is pre-

sented in Sect. 17.2, whereas the Loynes ergodic theorem for the case of monotone

functions specifying the recursion is proved in Sect. 17.3. Section 17.4 establishes

ergodicity conditions for contracting in mean Lipschitz transformations.

17.1 Basic Concepts

Consider two measurable state spaces 〈X,BX〉 and 〈Y,BY〉, and let {ξn} be a

sequence of random elements taking values in Y. If 〈Ω,F,P〉 is the underlying

probability space, then {ω : ξk ∈ B} ∈ F for any B ∈ BY . Assume, moreover,

that a measurable function f : X × Y → X is given on the measurable space

〈X × Y,BX ×BY 〉, where BX ×BY denotes the σ -algebra generated by sets

A×B with A ∈BX and B ∈BY .

For simplicity’s sake, by X and Y we can understand the real line R, and by BX,

BY the σ -algebras of Borel sets.

Definition 17.1.1 A sequence {Xn}, n= 0,1, . . . , taking values in 〈X,BX〉 is said

to be a stochastic recursive sequence (s.r.s.) driven by the sequence {ξn} if Xn satis-

fies the relation

Xn+1 = f (Xn, ξn) (17.1.1)

for all n ≥ 0. For simplicity’s sake we will assume that the initial state X0 is inde-

pendent of {ξn}.

The distribution of the sequence {Xn, ξn} on 〈(X × Y)∞, (BX ×BY )∞〉 can be

constructed in an obvious way from finite-dimensional distributions similarly to the

manner in which we constructed on 〈X∞,B∞
X
〉 the distribution of a Markov chain X

with values in 〈X,BX〉 from its transition function P(x,B)= P(X1(x) ∈ B). The

finite-dimensional distributions of {(X0, ξ0), . . . , (Xk, ξk)} for the s.r.s. are given by

the relations

A.A. Borovkov, Probability Theory, Universitext,
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P(Xl ∈Al, ξl ∈ Bl; l = 0, . . . , k)

=
∫

B0

· · ·
∫

Bk

P(ξl ∈ dyl, l = 0, . . . , k)

k∏

l=1

I
(
fl(X0, y0, . . . , yl) ∈Al

)
,

where f1(x, y0) := f (x, y0), fl(x, y0, . . . , yl) := f (fl−1(x, y0, . . . , yl−1), yl).

Without loss of generality, the sequence {ξn} can be assumed to be given for all

−∞ < n <∞ (as we noted in Sect. 16.1, for a stationary sequence, the required

extension to n < 0 can always be achieved with the help of Kolmogorov’s theorem).

A stochastic recursive sequence is a more general object than a Markov chain. It

is evident that if ξk are independent, then the Xn form a Markov chain. A stronger

assertion is true as well: under broad assumptions about the space 〈X ,BX 〉, for any

Markov chain {Xn} in 〈X,BX〉 one can construct a function f and a sequence of

independent identically distributed random variables {ξn} such that (17.1.1) holds.

We will elucidate this statement in the simplest case when both X and Y coincide

with the real line R. Let P(x,B), B ∈B, be the transition function of the chain

{Xn}, and Fx(t)= P(x, (−∞, t)) the distribution function of X1(x) (X0 = x). Then

if F−1
x (t) is the function inverse (in t) to Fx(t) and α ⊂=U0,1 is a random variable,

then, as we saw before (see e.g. Sect. 6.2), the random variable F−1
x (α) will have the

distribution function Fx(t). Therefore, if {αn} is a sequence of independent random

variables uniformly distributed over [0,1], then the sequence Xn+1 = F−1
Xn

(αn) will

have the same distribution as the original chain {Xn}. Thus the Markov chain is an

s.r.s. with the function f (x, y)= F−1
x (y) and driving sequence {αn}, αn ⊂=U0,1.

For more general state spaces X , a similar construction is possible if the σ -

algebra BX is countably-generated (i.e. is generated by a countable collection of

sets from X ). This is always the case for Borel σ -algebras in X = R
d , d ≥ 1 (see

[22]).

One can always consider f (·, ξn) as a sequence of random mappings of the space

X into itself. The principal problem we will be interested in is again (as in Chap. 13)

that of the existence of the limiting distribution of Xn as n→∞.

In the following sections we will consider three basic approaches to this problem.

17.2 Ergodicity and Renovating Events. Boundedness

Conditions

17.2.1 Ergodicity of Stochastic Recursive Sequences

We introduce the σ -algebras

F
ξ
l,n := σ {ξk; l ≤ k ≤ n},

Fξ
n := σ {ξk; k ≤ n} = F

ξ
−∞,n,
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Fξ := σ {ξk;−∞< k <∞}= F
ξ
−∞,∞.

In the sequel, for the sake of definiteness and simplicity, we will assume the initial

value X0 to be constant unless otherwise stated.

Definition 17.2.1 An event A ∈ Fξ
n+m, m≥ 0, is said to be renovating for the s.r.s.

{Xn} on the segment [n,n+m] if there exists a measurable function g : Ym+1→X

such that, on the set A (i.e. for ω ∈A),

Xn+m+1 = g(ξn, . . . , ξn+m). (17.2.1)

It is evident that, for ω ∈A, relations of the form Xn+m+k+1 = gk(ξn, . . . , ξn+m+k)

will hold for all k ≥ 0, where gk is a function depending on its arguments only and

determined by the event A.

The sequence of events {An}, An ∈ F
ξ
n+m, where the integer m is fixed, is said

to be renovating for the s.r.s. {Xn} if there exists an integer n0 ≥ 0 such that, for

n≥ n0, one has relation (17.2.1) for ω ∈An, the function g being common for all n.

We will be mainly interested in “positive” renovating events, i.e. renovating

events having positive probabilities P(An) > 0.

The simplest example of a renovating event is the hitting by the sequence Xn of

a fixed point x0 : An = {Xn = x0} (here m= 0), although such an event could be of

zero probability. Below we will consider a more interesting example.

The motivation behind the introduction of renovating events is as follows. After

the trajectory {Xk, ξk}, k ≤ n+m, has entered a renovating set A ∈ Fξ
n+m, the future

evolution of the process will not depend on the values {Xk}, k ≤ n+m, but will be

determined by the values of ξk, ξk+1, . . . only. It is not a complete “regeneration” of

the process which we dealt with in Chap. 13 while studying Markov chains (first of

all, because the ξk are now, generally speaking, dependent), but it still enables us

to establish ergodicity of the sequence Xn (in approximately the same sense as in

Chap. 13).

Note that, generally speaking, the event A and hence the function g may depend

on the initial value X0. If X0 is random then a renovating event is to be taken from

the σ -algebra F
ξ
n+m × σ(X0).

In what follows it will be assumed that the sequence {ξn} is stationary. The sym-

bol U will denote the measure preserving shift transformation of Fξ -measurable ran-

dom variables generated by {ξn}, so that Uξn = ξn+1, and the symbol T will denote

the shift transformation of sets (events) from the σ -algebra Fξ : ξn+1(ω)= ξn(T ω).

The symbols Un and T n, n≥ 0, will denote the powers (iterations) of these transfor-

mations respectively (so that U1 =U , T 1 = T ; U0 and T 0 are identity transforma-

tions), while U−n and T −n are transformations inverse to Un and T n, respectively.

A sequence of events {Ak} is said to be stationary if Ak = T kA0 for all k.

Example 17.2.1 Consider a real-valued sequence

Xn+1 = (Xn + ξn)
+, X0 = const ≥ 0, n≥ 0, (17.2.2)
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where x+ = max(0, x) and {ξn} is a stationary metric transitive sequence. As we

already know from Sect. 12.4, the sequence {Xn} describes the dynamics of waiting

times for customers in a single-channel service system. The difference is that in

Sect. 12.4 the initial value has subscript 1 rather than 0, and that now the sequence

{ξn} has a more general nature. Furthermore, it was established in Sect. 12.4 that

Eq. (17.2.2) has the solution

Xn+1 =max(Sn,n,X0 + Sn), (17.2.3)

where

Sn :=
n∑

k=0

ξk, Sn,k := max
−1≤j≤k

Sn,j , Sn,j :=
n∑

k=n−j

ξk, Sn,−1 := 0

(17.2.4)

(certain changes in the subscripts in comparison to (17.2.4) are caused by different

indexing of the initial values). From representation (17.2.3) one can see that the

event

Bn := {X0 + Sn ≤ 0, Sn,n = 0} ∈ Fξ
n

implies the event {Xn+1 = 0} and so is renovating for m= 0, g(y)≡ 0. If Xn+1 = 0

then

Xn+2 = g1(ξn, ξn+1) := ξ+n+1, Xn+3 = g2(ξn, ξn+1, ξn+2) :=
(
ξ+n+1 + ξn+2

)+
,

and so on do not depend on X0.

Now consider, for some n0 > 1 and any n≥ n0, the narrower event

An :=
{
X0 + sup

j≥n0

Sn,j ≤ 0, Sn,∞ := sup
j≥−1

Sn,j = 0
}

(we assume that the sequence {ξn} is defined on the whole axis). Clearly, An ⊂ Bn ⊂
{Xn+1 = 0}, so An is a renovating event as well. But, unlike Bn, the renovating

event An is stationary: An = T nA0.

We assume now that Eξ0 < 0 and show that in this case P(A0) > 0 for sufficiently

large n0. In order to do this, we first establish that P(S0,∞ = 0) > 0. Since, by the

ergodic theorem, S0,j
a.s.−→−∞ as j →∞, we see that S0,∞ is a proper random

variable and there exists a v such that P(S0,∞ < v) > 0. By the total probability

formula,

0 < P(S0,∞ < v)=
∞∑

j=0

P
(
S0,j−1 < S0,j < v, sup

k≥j

(S0,k − S0,j )= 0
)
.

Therefore there exists a j such that

P
(

sup
k≥j

(S0,k − S0,j )= 0
)

> 0.



17.2 Ergodicity and Renovating Events. Boundedness Conditions 511

But the supremum in the last expression has the same distribution as S0,∞. This

proves that p := P(S0,∞ = 0) > 0. Next, since S0,j
a.s.−→ −∞, one also has

supj≥k S0,j
a.s.−→−∞ as k→∞. Therefore, P(supj≥k S0,j <−X0)→ 1 as k→∞,

and hence there exists an n0 such that

P
(

sup
j≥n0

S0,j <−X0

)
> 1− p

2
.

Since P(AB)≥ P(A)+P(B)− 1 for any events A and B , the aforesaid implies that

P(A0)≥ p/2 > 0.

In the assertions below, we will use the existence of stationary renovating events

An with P(A0) > 0 as a condition insuring convergence of the s.r.s. Xn to a station-

ary sequence. However, in the last example such convergence can be established

directly. Let Eξ0 < 0. Then by (17.2.3), for any fixed v,

P(Xn+1 > v)= P(Sn,n > v)+ P(Sn,n ≤ v,X0 + Sn > v),

where evidently

P(X0 + Sn > v)→ 0, P(Sn,n > v) ↑ P(S0,∞ > v)

as n→∞. Hence the following limit exists

lim
n→∞

P(Xn > v)= P(S0,∞ > v). (17.2.5)

Recall that in the above example the sequence of events An becomes renovating

for n ≥ n0. But we can define other renovating events Cn along with a number m

and function g : Rm+1→R as follows:

m := n0, Cn := T mAn, g(y0, . . . , ym) := 0.

The events Cn ∈ F
ξ
n+m are renovating for {Xn} on the segment [n,n + m] for all

n≥ 0, so in this case the n0 in the definition of a renovating sequence will be equal

to 0.

A similar argument can also be used in the general case for arbitrary renovat-

ing events. Therefore we will assume in the sequel that the number n0 from the

definition of renovating events is equal to zero.

In the general case, the following assertion is valid.

Theorem 17.2.1 Let {ξn} be an arbitrary stationary sequence and for the s.r.s. {Xn}
there exists a sequence of renovating events {An} such that

P

(
n⋃

j=1

AjT
−sAj+s

)
→ 1 as n→∞ (17.2.6)
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uniformly in s ≥ 1. Then one can define, on a common probability space with {Xn},
a stationary sequence {Xn := UnX0} satisfying the equations Xn+1 = f (Xn, ξn)

and such that

P
{
Xk =Xk for all k ≥ n

}
→ 1 as n→∞. (17.2.7)

If the sequence {ξn} is metric transitive and the events An are stationary, then the
relations P(A0) > 0 and P(

⋃∞
n=0 An) = 1 are equivalent and imply (17.2.6) and

(17.2.7).

Note also that if we introduce the measure π(B) = P(X0 ∈ B) (as we did in

Chap. 13), then (17.2.7) will imply convergence in total variation:

sup
B∈BX

∣∣P(Xn ∈ B)− π(B)
∣∣→ 0 as n→∞.

Proof of Theorem 17.2.1 First we show that (17.2.6) implies that

P

( ∞⋂

k=0

{
Xn+k 
=U−sXn+k+s

}
)
→ 0 as n→∞ (17.2.8)

uniformly in s ≥ 0. For a fixed s ≥ 1, consider the sequence Xs
j = U−sXs+j . It is

defined forj ≥−s, and

Xs
−s =X0, Xs

−s+1 = f
(
Xs
−s, ξ−s

)
= f (X0, ξ−s)

and so on. It is clear that the event

{
Xj =Xs

j for some j ∈ [0, n]
}

implies the event
{
X+ n+ k =Xs

n+k for all k ≥ 0
}
.

We show that

P

(
n⋃

j=1

{
Xj =Xs

j

}
)
→ 1 as n→∞.

For simplicity’s sake put m= 0. Then, for the event Xj+1 =Xs
j+1 to occur, it suf-

fices that the events Aj and T −sAj+s occur simultaneously. In other words,

n−1⋃

j=0

AjT
−sAj+s ⊂

n⋃

j=1

{
Xj =Xs

j

}
⊂
∞⋂

k=0

{
Xn+k =Xs

n+k

}
.

Therefore (17.2.6) implies (17.2.8) and convergence

P
(
Xn

k 
=Xn+s
k

)
→ 0 as n→∞
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uniformly in k ≥ 0 and s ≥ 0. If we introduce the metric ρ putting ρ(x, y) := 1 for

x 
= y, ρ(x, x)= 0, then the aforesaid means that, for any δ > 0, there exists an N

such that

P
(
ρ
(
Xn

k ,Xn+s
k

)
> δ

)
= P

(
ρ
(
Xn

k ,Xn+s
k

)

= 0

)
< δ

for n≥N and any k ≥ 0, s ≥ 0, i.e. Xn
k is a Cauchy sequence with respect to conver-

gence in probability for each k. Because any space X is complete with such a metric,

there exists a random variable Xk such that Xn
k

p−→Xk as n→∞ (see Lemma 4.2).

Due to the specific nature of the metric ρ this means that

P
(
Xn

k 
=Xk
)
→ 0 as n→∞. (17.2.9)

The sequence Xk is stationary. Indeed, as n→∞,

P
(
Xk+1 
=UXk

)
= P

(
Xn

k+1 
=UXn
k

)
+ o(1)= P

(
Xn

k+1 
=Xn−1
k+1

)
+ o(1)= o(1).

Since the probability P(Xk+1 
=UXk) does not depend on n, Xk+1 =UXk a.s.

Further, Xn+k+1 = f (Xn+k, ξn+k), and therefore

Xn
k+1 =U−nf (Xn+k, ξn+k)= f

(
Xn

k , ξk

)
. (17.2.10)

The left and right-hand sides here converge in probability to Xk+1 and f (Xk, ξk),

respectively. This means that Xk+1 = f (Xk, ξk).

To prove convergence (17.2.7) it suffices to note that, by virtue of (17.2.10), the

values Xn
k and Xk , after having become equal for some k, will never be different for

greater values of k. Therefore, as well as (17.2.9) one has the relation

P

(⋃

k≥0

{
Xn

k 
=Xk
}
)
= P

(⋃

k≥0

{
Xk+n 
=Xk+n

}
)
→ 0 as n→∞,

which is equivalent to (17.2.7).

The last assertion of the theorem follows from Theorem 16.2.5. The theorem is

proved. �

Remark 17.2.1 It turns out that condition (17.2.6) is also a necessary one for con-

vergence (17.2.7) (see [6]). For more details on convergence of stochastic recursive

sequences and their generalisations, and also on the relationship between (17.2.6)

and conditions (I) and (II) from Chap. 13, see [6].

In Example 17.2.1 the sequence Xk was actually found in an explicit form (see

(17.2.3) and (17.2.5)):

Xk = Sk,−∞ = sup
j≥0

S
j

k−1. (17.2.11)
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These random variables are proper by Corollary 16.3.1. It is not hard to also see

that, for X0 = 0, one has (see (17.2.3))

U−1Xn+k ↑Xk. (17.2.12)

17.2.2 Boundedness of Random Sequences

Consider now conditions of boundedness of an s.r.s. in spaces X = [0,∞) and

X = (−∞,∞). Assertions about boundedness will be stated in terms of existence

of stationary majorants, i.e. stationary sequences Mn such that

Xn ≤Mn for all n.

Results of this kind will be useful for constructing stationary renovating sequences.

Majorants will be constructed for a class of random sequences more general than

stochastic recursive sequences. Namely, we will consider the class of random se-

quences satisfying the inequalities

Xn+1 ≤
(
Xn + h(Xn, ξn)

)+
, (17.2.13)

where the measurable function h will in turn be bounded by rather simple functions

of Xn and ξn. The sequence {ξn} will be assumed given on the whole axis.

Theorem 17.2.2 Assume that there exist a number N > 0 and a measurable func-
tion g1 with Eg1(ξn) < 0 such that (17.2.13) holds with

h(x, y)≤
{

g1(y) for x > N,

g1(y)+N − x for x ≤N.
(17.2.14)

If X0 ≤M <∞, then the stationary sequence

Mn =max(M,N)+ sup
j≥−1

Sn−1,j , (17.2.15)

where Sn,−1 = 0 and Sk,j = g1(ξk)+· · ·+g1(ξk−j ) for j ≥ 0, is a majorant for Xn.

Proof For brevity’s sake, put ζi := g1(ξi), Z := max(M,N), and Zn := Xn − Z.

Then Zn will satisfy the following inequalities:

Zn+1 ≤
{

(Zn +Z+ ζn)
+ −Z ≤ (Zn + ζn)

+ for Zn > N −Z,

(N + ζn)
+ −Z ≤ ζ+n for Zn ≤N −Z.

Consider now a sequence {Yn} defined by the relations Y0 = 0 and

Yn+1 = (Yn + ζn)
+.
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Assume that Zn ≤ Yn. If Zn > N −Z then

Zn+1 ≤ (Zn + ζn)
+ ≤ (Yn + ζn)

+ = Yn+1.

If Zn ≤N −Z then

Zn+1 ≤ ζ+n ≤ (Yn + ζn)
+ = Yn+1.

Because Z0 ≤ 0= Y0, it is evident that Zn ≤ Yn for all n. But we know the solution

of the equation for Yn and, by virtue of (17.2.11) and (17.2.13),

Xn −Z ≤ sup
j≥−1

Sn−1,j .

The theorem is proved. �

Theorem 17.2.2A Assume that there exist a number N > 0 and measurable func-
tions g1 and g2 such that

Eg1(ξn) < 0, Eg2(ξn) < 0 (17.2.16)

and

h(x, y)≤
{

g1(y) for x > N,

g1(y)+ g2(y) for x ≤N.
(17.2.17)

If Z0 ≤M <∞, then the conditions of Theorem 17.2.2 are satisfied (possibly for
other N and g1) and for Xn there exists a stationary majorant of the form (17.2.15).

Proof We set g := −Eg1(ξn) > 0 and find L > 0 such that E(g2(ξn); g2(ξn) > L)≤
g/2. Introduce the function

g∗1(y) := g1(y)+ g2(y)I
(
g2(y) > L

)
.

Then Eg∗1(ξn)≤−g/2 < 0 and

h(x, y)≤ g1(y)+ g2(y)I(x ≤N)

≤ g∗1(y)+ g2(y)I(x ≤N)− g2(y)I
(
g2(y) > L

)

≤ g∗1(y)+LI(x ≤N)≤ g∗1(y)+ (L+N − x)I(x ≤N)

≤ g∗1(y)+ (L+N − x)I(x ≤ L+N).

This means that inequalities (17.2.14) hold with N replaced with N∗ = N + L.

The theorem is proved. �

Note again that in Theorems 17.2.2 and 17.2.2A we did not assume that {Xn} is

an s.r.s.
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The reader will notice the similarity of the conditions of Theorems 17.2.2 and

17.2.2A to the boundedness condition in Sect. 15.5, Theorem 13.7.3 and Corol-

lary 13.7.1.

The form of the assertions of Theorems 17.2.2 and 17.2.2A enables one to con-

struct stationary renovating events for a rather wide class of nonnegative stochastic

recursive sequences (so that X = [0,∞)) having, say, a “positive atom” at 0. It is

convenient to write such sequences in the form

Xn+1 =
(
Xn + h(Xn, ξn)

)+
. (17.2.18)

Example 17.2.2 Let an s.r.s. (see (17.1.1)) be described by Eq. (17.2.18) and satisfy

conditions (17.2.14) or (17.2.17), where the function h is sufficiently “regular” to

ensure that

Bn,T =
⋂

t≤T

{
h(t, ξn)≤−t

}

is an event for any T . (For instance, it is enough to require h(t, v) to have at most

a countable set of discontinuity points t . Then the set Bn,T can be expressed as

the intersection of countably many events
⋂

k{h(tk, ξn) ≤ −tk}, where {tk} form

a countable set dense on [0, T ].) Furthermore, let there exist an L > 0 such that

P(Mn < L,Bn,L) > 0 (17.2.19)

(Mn was defined in (17.2.15)). Then the event An = {Mn < L}Bn,L is clearly a

positive stationary renovating event with the function g(y) = (h(0, y))+, m = 0.

(On the set An ∈ Fξ
n we have Xn+1 = 0, Xn+2 = h(0, ξn+1)

+ and so on.) Therefore,

an s.r.s. satisfying (17.2.18) satisfies the conditions of Theorem 17.2.1 and is ergodic

in the sense of assertion (17.2.7).

It can happen that, from a point t ≤ L, it would be impossible to reach the

point 0 in one step, but it could be done in m > 1 steps. If B is the set of sequences

(ξn, . . . , ξn+m) that effect such a transition, and P(Mn < L), then An = {Mn < L}B
will also be stationary renovating events.

17.3 Ergodicity Conditions Related to the Monotonicity of f

Now we consider ergodicity conditions for stochastic recursive sequences that are

related to the analytic properties of the function f from (17.1.1). As we already

noted, the sequence f (x, ξk), k = 1,2, . . . , may be considered as a sequence of

random transformations of the space X . Relation (17.1.1) shows that Xn+1 is the

result of the application of n+ 1 random transformations f (·, ξk), k = 0,1, . . . , n,

to the initial value X0 = x ∈X . Denoting by ξn+k
n the vector ξn+k

n = (ξn, . . . , ξn+k)
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and by fk the k-th iteration of the function f : f1(x, y1)= f (x, y1), f2(x, y1, y2)=
f (f (x, y1), y2) and so on, we can re-write (17.1.1) for X0 = x in the form

Xn+1 =Xn+1(x)= fn+1

(
x, ξn

0

)
,

so that the “forward” and “backward” equations hold true:

fn+1

(
x, ξn

0

)
= f

(
fn

(
x, ξn−1

0

)
, ξn

)
= fn

(
f (x, ξ0), ξ

n
1

)
. (17.3.1)

In the present section we will be studying stochastic recursive sequences for

which the function f from representation (17.1.1) is monotone in the first argu-

ment. To this end, we need to assume that a partial order relation “≥” is defined

in the space X . In the space X = R
d of vectors x = (x(1), . . . , x(d)) (or its sub-

spaces) the order relation can be introduced in a natural way by putting x1 ≥ x2 if

x1(k)≥ x2(k) for all k.

Furthermore, we will assume that, for each non-decreasing sequence x1 ≤ x2 ≤
· · · ≤ xn ≤ . . . , there exists a limit x ∈X , i.e. the smallest element x ∈X for which

xk ≤ x for all k. In that case we will write xk ↑ x or limk→∞ xk = x. In X = R
d

such convergence will mean conventional convergence. To facilitate this, we will

need to complete the space R
d by adding points with infinite components.

Theorem 17.3.1 (Loynes) Suppose that the transformation f = f (x, y) and space
X satisfy the following conditions:

(1) there exists an x0 ∈X such that f (x0, y)≥ x0 for all y ∈ Y ;

(2) the function f is monotone in the first argument: f (x1, y)≥ f (x2, y) if x1 ≥ x2;

(3) the function f is continuous in the first argument with respect to the above
convergence: f (xn, y) ↑ f (x, y) if xn ↑ x.

Then there exists a stationary random sequence {Xn} satisfying Eq. (17.1.1):

Xn+1 =UXn = f (Xn, ξn), such that

U−nXn+s(x)) ↑Xs as n→∞, (17.3.2)

where convergence takes place for all elementary outcomes.

Since the distributions of Xn and U−nXn coincide, in the case where conver-

gence of random variables ηn ↑ η means convergence (in a certain sense) of their

distributions (as is the case when X = R
d ), Theorem 17.2.1 also implies conver-

gence of the distributions of Xn to that of X0 as n→∞.

Remark 17.3.1 A substantial drawback of this theorem is that it holds only for a

single initial value X0 = x0. This drawback disappears if the point x0 is accessible

with probability 1 from any x ∈X , and ξk are independent. In that case x0 is likely

to be a positive atom, and Theorem 13.6.1 for Markov chains is also applicable.
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The limiting sequence Xs in (17.3.2) can be “improper” (in spaces X = R
d it

may assume infinite values). The sequence Xs will be proper if the s.r.s. Xn satisfies,

say, the conditions of the theorems of Sect. 15.5 or the conditions of Theorem 17.2.2.

Proof of Theorem 17.3.1 Put

v−k
s := fk+s

(
x0, ξ

s−1
−k

)
=U−kfk+s

(
x0, ξ

s+k−1
0

)
=U−kXk+s(x0).

Here the superscript−k indicates the number of the element of the driving sequence

{ξn}∞n=−∞ such that the elements of this sequence starting from that number are used

for constructing the s.r.s. The subscript s is the “time epoch” at which we observe

the value of the s.r.s. From the “backward” equation in (17.3.1) we get that

v−k−1
s = fk+s

(
f (x0, ξ−k−1), ξ

s−1
−k

)
≥ fk+s

(
x0, ξ

s−1
−k

)
= v−k

s .

This means that the sequence v−k
s increases as k grows, and therefore there exists a

random variable Xs ∈X such that

v−k
s =U−kXk+s(x0) ↑Xs as k→∞.

Further, v−k
s is a function of ξ s−1

−k . Therefore, Xs is a function of ξ s−1
−∞ :

Xs =G
(
ξ s−1
−∞

)
.

Hence

UXs =UG
(
ξ s−1
−∞

)
=G

(
ξ s
−∞

)
=Xs+1,

which means that {Xs} is stationary. Using the “forward” equation from (17.3.1),

we obtain that

v−k−1
s = f

(
fk+s

(
x0, ξ

s−2
−k−1

)
, ξs−1

)
= f

(
v−k−1
s−1 , ξs−1

)
.

Passing to the limit as k→∞ gives, since f is continuous, that

Xs = f
(
Xs−1, ξs−1

)
.

The theorem is proved. �

Example 17.2.1 clearly satisfies all the conditions of Theorem 17.3.1 with X =
[0,∞), x0 = 0, and f (x, y)= (x + y)+.

17.4 Ergodicity Conditions for Contracting in Mean Lipschitz

Transformations

In this section we will assume that X is a complete separable metric space with

metric ρ. Consider the following conditions on the iterations Xk(x)= fk(x, ξ k−1
0 ).
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Condition (B) (boundedness). For some x0 ∈ X and any δ > 0, there exists an
N =Nδ such that, for all n≥ 1,

P
(
ρ
(
x0,Xn(x0) > N

))
= P

(
ρ
(
x0, fn

(
x0, ξ

n−1
0

))
> N

)
< δ.

It is not hard to see that condition (B) holds (possibly with a different N ) as soon as

we can establish that, for some m≥ 1, the above inequality holds for all n≥m.

Condition (B) is clearly met for stochastic random sequences satisfying the con-

ditions of Theorems 17.2.2 and 17.2.2A or the theorems of Sect. 15.5.

Condition (C) (contraction in mean). The function f is continuous in the first
argument and there exist m≥ 1, β > 0 and a measurable function q :Rm→R such
that, for any x1 and x2,

ρ
(
fm

(
x1, ξ

m−1
0

)
, fm

(
x2, ξ

m−1
0

))
≤ q

(
ξm−1

0

)
ρ(x1, x2),

m−1E lnq
(
ξm−1

0

)
≤−β < 0.

Observe that conditions (B) and (C) are, generally speaking, not related to each

other. Let, for instance, X = R, X0 ≥ 0, ξn ≥ 0, ρ(x, y) = |x − y|, and f (x, y) =
bx + y, so that

Xn+1 = bXn + ξn.

Then condition (C) is clearly satisfied for 0 < b < 1, since

∣∣f (x1, y)− f (x2, y)
∣∣= b|x1 − x2|.

At the same time, condition (B) will be satisfied if and only if E ln ξ0 <∞. Indeed, if

E ln ξ0 =∞, then the event {ln ξk >−2k lnb} occurs infinitely often a.s. But Xn+1

has the same distribution as

bn+1X0 +
n∑

k=0

bkξk = bn+1X0 +
n∑

k=0

exp{k lnb+ ln ξk},

where, in the sum on the right-hand side, the number of terms exceeding exp{−k lnb}
increases unboundedly as n grows. This means that X(n+ 1)

p→∞ as n→∞. The

case E ln ξ0 <∞ is treated in a similar way. The fact that (B), generally speaking,

does not imply (C) is obvious.

As before, we will assume that the “driving” stationary sequence {ξn}∞n=−∞ is

given on the whole axis. Denote by U the respective distribution preserving shift

operator.

Convergence in probability and a.s. of a sequence of X -valued random vari-

ables ηn ∈ X (ηn
p−→ η, ηn

a.s.−→ η) is defined in the natural way by the rela-

tions P(ρ(ηn, η) > δ)→ 0 as n→∞ and P(ρ(ηk, η) > δ for some k ≥ n)→ 0

as n→∞ for any δ > 0, respectively.
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Theorem 17.4.1 Assume that conditions (B) and (C) are met. Then there exists a
stationary sequence {Xn} satisfying (17.1.1):

Xn+1 =UXn = f
(
Xn, ξn

)

such that, for any fixed x,

U−nXn+s(x)
a.s.−→Xs as n→∞. (17.4.1)

This convergence is uniform in x over any bounded subset of X .

Theorem 17.2.2 implies the weak convergence, as n→∞, of the distributions

of Xn(x) to that of X0. Condition (B) is clearly necessary for ergodicity. As the

example of a generalised autoregressive process below shows, condition (C) is also

necessary in some cases.

Set Yn :=UnXn(x0), where x0 is from condition (B). We will need the following

auxiliary result.

Lemma 17.4.1 Assume that conditions (B) and (C) are met and the stationary se-
quence {q(ξ km+m−1

km )}∞k=−∞ is ergodic. Then, for any δ > 0, there exists an nδ such
that, for all k ≥ 0,

sup
k≥0

P
(
ρ(Yn+k, Yn) < δ for all n≥ nδ

)
≥ 1− δ. (17.4.2)

For ergodicity of {q(ξ km+m−1)}∞k=−∞ it suffices that the transformation T m is met-
ric transitive.

The lemma means that, with probability 1, the distance ρ(Yn+k, Yn) tends to zero

uniformly in k as n→∞. Relation (17.4.2) can also be written as P(Aδ)≤ δ, where

Aδ :=
⋃

n≥nδ

{
ρ(Yn+k, Yn)≥ δ

}
.

Proof of Lemma 17.4.1 By virtue of condition (B), there exists an N = Nδ such

that, for all k ≥ 1,

P
(
ρ
(
x0,Xk(x0)

)
> N

)
≤ δ

4
.

Hence

P(Aδ)≤ δ/3+ P
(
Aδ;ρ(x0, θn,k)≤N

)
.

The random variable θn,k := U−n−kXk(x0) has the same distribution as Xk(x0).

Next, by virtue of (C),

ρ(Yn+k, Yn)≤ ρ
(
fn+k

(
x0, ξ

−1
−n−k

)
, fn

(
x0, ξ

−1
−n

))
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≤ q
(
ξ−1
−m

)
ρ
(
fn+k−m

(
x0, ξ

−m−1
−n−k

)
, fn−m

(
x0, ξ

−m−1
−n

))

= q
(
ξ−1
−m

)
ρ
(
U−n−kXn+k−m(x0),U

−nXn−m(x0)
)
. (17.4.3)

Denote by Bs the set of numbers n of the form n = lm + s, l = 0,1,2, . . . ,

0≤ s < m, and put

λj := lnq
(
ξ
−jm+m−1
−jm

)
, j = 1,2, . . . .

Then, for n ∈ Bs , we obtain from (17.4.3) and similar relations that

ρ(Yn+k, Yn)≤ exp

{
l∑

j=1

λj

}
ρ
(
U−n−kXk+s(x0),U

−nXs(x0)
)
, (17.4.4)

where the last factor (denote it just by ρ) is bounded from above:

ρ ≤ ρ
(
x0,U

−n−kXk+s(x0)
)
+ ρ

(
x0,U

−nXs(x0)
)
.

The random variables U−nXj (x0) have the same distribution as Xj (x0). By virtue

of (B), there exists an N =Nδ such that, for all j ≥ 1,

P
(
ρ
(
x0,Xj (x0)

)
> N

)
≤ δ

4m
.

Hence, for all n, k and s, we have P(ρ > 2N) < δ/(2m), and the right-hand side

of (17.4.4) does not exceed 2N exp{
∑l

j=1 λj } on the complement set {ρ ≤ 2N}.
Because Eλj ≤ −mβ < 0 and the sequence {λj } is metric transitive, by the er-

godic Theorem 16.3.1 we have

l∑

j=1

λj <−mβl/2

for all l ≥ l(ω), where l(ω) is a proper random variable. Choose l1 and l2 so that the

inequalities

−mβl1

2
< ln δ − ln 2N, P

(
l(ω) > l2

)
<

δ

2

hold. Then, putting

lδ :=max(l1, l2), nδ :=mlδ, As
δ :=

⋃

n≥nδ, n∈Bs

{
ρ(Yn+k, Yn)≥ δ

}
,

we obtain that

P
(
As

δ

)
≤ P(ρ > 2N)+P

(
As

δ;ρ ≤N
)
≤ δ

2m
+P

(⋃

l≥lδ

{
2N exp

{
−

l∑

j=0

λj

}
≥ δ

})
.
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But the intersection of the events from the term with {lδ ≥ l(ω)} is empty. Therefore,

the former event is a subset of the event {l(ω) > lδ}, and

P
(
As

δ

)
≤ δ

m
, P(Aδ)≤

m−1∑

s=0

P
(
As

δ

)
≤ δ.

The lemma is proved. �

Lemma 17.4.2 (Completeness of X with respect to convergence in probability) Let
X be a complete metric space. If a sequence of X -valued random elements ηn is
such that, for any δ > 0,

Pn := sup
k≥0

P
(
ρ(ηn+k, ηn) > δ

)
→ 0

as n→∞, then there exists a random element η ∈ X such that η
p→ η (that is,

P(ρ(ηn, η) > δ)→ 0 as n→∞).

Proof For given ε and δ choose nk , k = 0,1, . . . , such that

sup
s

P
(
ρ(ηnk+s, ηnk

) > 2−kδ
)
< ε2−k,

and, for the sake of brevity, put ζk := ηnk
. Consider the set

D :=
∞⋂

k=0

Dk, Dk :=
{
ω ρ(ζk+1, ζk)≤ 2−kδ

}
.

Then P(D) > 1− 2ε and, for any ω ∈ D, one has ρ(ζk+s(ω), ζk(ω)) < δ2k−1 for

all s ≥ 1. Hence ζk(ω) is a Cauchy sequence in X and there exists an η= η(ω) ∈X
such that ζk(ω)→ η(ω). Since ε is arbitrary, this means that ζk

a.s.−→ η as k→∞,

and

P
(
ρ(ζ0, η) > 2δ

)
≤ P

( ∞⋃

k=0

ρ(ζk+1, ζk) > 2−kδ

)

≤
∞∑

k=0

P
(
ρ(ζk+1, ζk) > 2−kδ

)
≤ 2ε.

Therefore, for any n≥ n0,

P
(
ρ(ηn, η) > 3δ

)
≤ P

(
ρ(ηn, ηn0

) > δ
)
+ P

(
ρ(ζ0, η) > 2δ

)
≤ 3ε.

Since ε and δ are arbitrary, the lemma is proved. �
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Proof of Theorem 17.4.1 From Lemma 17.4.1 it follows that

sup
k

P
(
ρ(Yn+k, Yn) > δ

)
→ 0 as n→∞.

This means that Yn is a Cauchy sequence with respect to convergence in probability,

and by Lemma 17.4.2 there exists a random variable X0 such that

Yn
p−→X0,

U−nXn+s(x0)=U s
(
U−n−sXn+s(x0)

)
=U sYn+s→U sX0 ≡Xs .

(17.4.5)

By continuity of f ,

U−nXn+s+1(x0)=U−nf
(
Xn+s(x0), ξn+s

)

= f
(
U−nXn+s(x0), ξs

) p−→ f
(
Xs, ξs

)
=Xs+1.

We proved the required convergence for a fixed initial value x0. For an arbitrary

x ∈ Cn = {z : ρ(x0, z)≤N}, one has

ρ
(
U−nXn(x),X0

)
≤ ρ

(
U−nXn(x),U−nXn(x0)

)
+ ρ

(
U−nXn(x0),X

0
)
, (17.4.6)

where the first term on the right-hand side converges in probability to 0 uniformly

in x ∈ CN . For n= lm this follows from the inequality (see condition (C))

ρ
(
U−nXn(x),U−nXn(x0)

)
≤N exp

{
l∑

j=1

λj

}
(17.4.7)

and the above argument. Similar relations hold for n = lm + s, m > s > 0. This,

together with (17.4.5) and (17.4.6), implies that

U−nXn+s(x)
p−→Xs =U sX0

uniformly in x ∈ CN . This proves the assertion of the theorem in regard to conver-

gence in probability.

We now prove convergence with probability 1. To this end, one should repeat

the argument proving Lemma 17.4.1, but bounding ρ(X0,U−nXn(x)) rather than

ρ(Yn+k, Yn). Assuming for simplicity’s sake that s = 0 (n is a multiple of m), we

get (similarly to (17.4.4)) that, for any x,

ρ
(
X0,U−nXn(x)

)
≤ ρ

(
x,U−nX0

)
exp

{
l∑

j=1

λj

}
. (17.4.8)

The rest of the argument of Lemma 17.4.1 remains unchanged. This implies that,

for any δ > 0 and sufficiently large nδ ,

P

(⋃

n≥nδ

{
ρ
(
X0,U−nXn(x)

)
> δ

})
< δ.
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Theorem 17.4.1 is proved. �

Example 17.4.1 (Generalised autoregression) Let X =R. A generalised autoregres-

sion process is defined by the relations

Xn+1 =G
(
ζnF(Xn)+ ηn

)
, (17.4.9)

where F and G are functions mapping R #→ R and ξn = (ζn, ηn) is a stationary

ergodic driving sequence, so that {Xn} is an s.r.s. with the function

f (x, y)=G
(
y1,F (x)+ y2

)
, y = (y1, y2) ∈ Y =R

2.

If the functions F and G are nondecreasing and left continuous, G(x)≥ 0 for all

x ∈ R, and the elements ζn are nonnegative, then the process (17.4.9) satisfies the

condition of Theorem 17.3.1, and therefore U−n+sXn(0) ↑Xs with probability 1 (as

n→∞). To establish convergence to a proper stationary sequence Xs , one has to

prove uniform boundedness in probability (in n) of the sequence Xn(0) (see below).

Now we will establish under what conditions the sequence (17.4.9) will satisfy

the conditions of Theorem 17.4.1. Suppose that the functions F and G satisfy the

Lipschitz condition:

∣∣G(x1)−G(x2)
∣∣≤ cG|x1 − x2|,

∣∣F(x1)− F(x2)
∣∣≤ cF |x1 − x2|.

Then

∣∣f (x1, ξ0)− f (x2, ξ0)
∣∣≤ cG

∣∣ζ0

(
F(x1)− F(x2)

)∣∣≤ cF cG|ζ0||x1 − x2|. (17.4.10)

Theorem 17.4.2 Under the above assumptions, the sequence (17.4.9) will satisfy
condition (C) if

ln cGcF +E ln |ζ0|< 0. (17.4.11)

The sequence (17.4.9) will satisfy condition (B) if (17.4.11) holds and, moreover,

E
(
ln |η0|

)+
<∞. (17.4.12)

When (17.4.11) and (17.4.12) hold, the sequence (17.4.9) has a stationary majorant,
i.e. there exists a stationary sequence Mn (depending on X0) such that |Xn| ≤Mn

for all n.

Proof That condition (C) for ρ(x1, x2)= |x1 − x2| follows from (17.4.10) is obvi-

ous. We prove (B). To do this, we will construct a stationary majorant for |Xn|. One

could do this using Theorems 17.2.2 and 17.2.2A. In our case, it is simpler to prove

it directly, making use of the inequalities

∣∣G(x)
∣∣≤

∣∣G(0)
∣∣+ cG|x|,

∣∣F(x)
∣∣≤

∣∣F(0)
∣∣+ cF |x|,
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where we assume, for simplicity’s sake, that G(0) and F(0) are finite. Then

|Xn+1| ≤
∣∣G(0)

∣∣+ cG|ζn| ·
∣∣F(Xn)

∣∣+ cG|ηn|

≤
∣∣G(0)

∣∣+ cGcF |ζn| · |Xn| + cG|ζn| ·
∣∣F(0)

∣∣+ cG|ηn| = βn

∣∣X(n)
∣∣+ γn,

where

βn := cGcF |ζn| ≥ 0, γn :=
∣∣G(0)

∣∣+ cG|ζn| ·
∣∣F(0)

∣∣+ cG|ηn|

E lnβn < 0, E(lnγn)
+ <∞.

From this we get that, for X0 = x,

|Xn+1| ≤ |x|
n∏

j=0

βj +
n−1∑

l=0

(
n∏

j=n−l

βj

)
γn−l−1 + γn,

U−n|Xn+1| ≤ |x|
0∏

j=−n

βj +
∞∑

l=0

(
0∏

j=−l

βj

)
γ−l−1 + γ0.

(17.4.13)

Put

αi := lnβj , Sl :=
0∑

j=−l

αj .

By the strong law of large numbers, there are only finitely many positive values

Sl − al, where 2a = Eαj < 0. Therefore, for all l except for those with Sl − al > 0,

0∏

j=−l

βj < eal .

On the other hand, γ−l−1 exceeds the level l only finitely often. This means that the

series in (17.4.13) (denote it by R) converges with probability 1. Moreover,

S = sup
k≥0

Sk ≥ Sn

is a proper random variable. As result, we obtain that, for all n,

U−n|Xn+1| ≤ |x|eS +R + γ0,

where all the terms on the right-hand side are proper random variables. The required

majorant

Mn :=Un−1
(
|x|eS +R + γ0

)

is constructed. This implies that (B) is met. The theorem is proved. �
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The assertion of Theorem 17.4.2 can be extended to the multivariable case

X =R
d , d > 1, as well (see [6]).

Note that conditions (17.4.11) and (17.4.12) are, in a certain sense, necessary not

only for convergence U−n+sXn(x)→ Xs , but also for the boundedness of Xn(x)

(or of X0) only. This fact can be best illustrated in the case when F(t)≡G(t)≡ t .

In that case, U−nXn+s+1(x) and Xs+1 admit explicit representations

U−nXn+s+1(x)= x

s∏

j=−n

ζj +
n+s∑

l=0

s∏

j=s−l

ζjηs−l−1 + ηs,

Xs+1 =
∞∑

l=0

s∏

j=s−l

ζjηs−l−1 + ηs .

Assume that E ln ζ ≥ 0, η≡ 1, and put

s := 0, zj := ln ζj , Zl :=
0∑

j=−l

zj .

Then

X1 = 1+
∞∑

l=0

eZl , where

∞∑

l=0

I(Zl ≥ 0)=∞

with probability 1, and consequently X1 =∞ and Xn→∞ with probability 1.

If E[lnη]+ =∞ and ζ = b < 1 then

X1 = η0 + b

∞∑

l=0

exp{y−l−1 + l lnb},

where yj = lnηj ; the event {y−l−1 >−l lnb} occurs infinitely often with probabil-

ity 1. This means that X1 =∞ and Xn→∞ with probability 1.



Chapter 18

Continuous Time Random Processes

Abstract This chapter presents elements of the general theory of continuous time

processes. Section 18.1 introduces the key concepts of random processes, sample

paths, cylinder sets and finite-dimensional distributions, the spaces of continuous

functions and functions without discontinuities of the second kind, and equivalence

of random processes. Section 18.2 presents the fundamental results on regularity

of processes: Kolmogorov’s theorem on existence of a continuous modification and

Kolmogorov–Chentsov’s theorem on existence of an equivalent process with trajec-

tories without discontinuities of the second kind. The section also contains discus-

sions of the notions of separability, stochastic continuity and continuity in mean.

18.1 General Definitions

Definition 18.1.1 A random process1 is a family of random variables ξ(t)= ξ(t,ω)

given on a common probability space 〈Ω,F,P〉 and depending on a parameter t

taking values in some set T .

A random process will be written as {ξ(t), t ∈ T }.
The sequences of random variables ξ1, ξ2, . . . considered in the previous sec-

tions are random processes for which T = {1,2,3, . . .}. The same is true of the

sums S1, S2, . . . of ξ1, ξ2, . . . Markov chains {Xn, n = 0,1, . . .}, martingales {Xn;
n ∈N}, stationary and stochastic recursive sequences described in previous chapters

are also random processes. The processes for which the set T can be identified with

the whole sequence {. . . ,−1,0,1, . . .} or a part thereof are usually called random
processes in discrete time, or random sequences.

If T coincides with a certain real interval T = [a, b] (this may be the whole real

line −∞< t <∞ or the half-line t ≥ 0), then the collection {ξ(t), t ∈ T } is said to

be a process in continuous time.

Simple examples of such objects are renewal processes {η(t), t ≥ 0} described

in Chap. 10.

1As well as the term “random process” one also often uses the terms “stochastic” or “probabilistic”

processes.

A.A. Borovkov, Probability Theory, Universitext,

DOI 10.1007/978-1-4471-5201-9_18, © Springer-Verlag London 2013

527

http://dx.doi.org/10.1007/978-1-4471-5201-9_18
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In the present chapter we will be considering continuous time processes only.

Interpretation of the parameter t as time is, of course, not imperative. It appeared

historically because in most problems from the natural sciences which led to the

concept of random process the parameter t had the meaning of time, and the value

ξ(t) was what one would observe at time t .

The movement of a gas molecule as time passes, the storage level in a water

reservoir, oscillations of an airplane’s wing etc could be viewed as examples of real

world random processes.

The random function

ξ(t)=
∞∑

k=1

2−kξk sinkt, t ∈ [0,2π],

where the ξk are independent and identically distributed, is also an example of a

random process.

Consider a random process {ξ(t), t ∈ T }. If ω ∈Ω is fixed, we obtain a func-

tion ξ(t), t ∈ T , which is often called a sample function, trajectory or path of the

process. Thus, the random values here are functions. As before, we could consider

here a sample probability space, which can be constructed for example as follows.

Consider the space X of functions x(t), t ∈ T , to which the trajectories ξ(t) belong.

Let, further, BT
X

be the σ -algebra of subsets of X generated by the sets of the form

C =
{
x ∈X : x(t1) ∈ B1, . . . , x(tn) ∈ Bn

}
(18.1.1)

for any n, any t1, . . . , tn from T , and any Borel sets B1, . . . ,Bn. Sets of this form

are called cylinders; various finite unions of cylinder sets form an algebra generat-

ing BT
X

. If a process ξ(t,ω) is given, it defines a measurable mapping of 〈Ω,F〉
into 〈X,BT

X
〉, since clearly ξ−1(C)= {ω : ξ(·,ω) ∈ C} ∈ F for any cylinder C, and

therefore ξ−1(B) ∈ F for any B ∈BT
X

. This mapping induces a distribution Pξ on

〈X,BT
X
〉 defined by the equalities Pξ (B)= P(ξ−1(B)). The triplet 〈X,BT

X
,Pξ 〉 is

called the sample probability space. In that space, an elementary outcome ω is

identified with the trajectory of the process, and the measure Pξ is said to be the

distribution of the process ξ .

Now if, considering the process {ξ(t)}, we fix the time epochs t1, t2, . . . , tn, we

will get a multi-dimensional random variable (ξ(t1,ω), . . . , ξ(tn,ω)). The distri-

butions of such variables are said to be the finite-dimensional distributions of the

process.

The following function spaces are most often considered as spaces X in the the-

ory of random processes with continual sets T .

1. The set of all functions on T :

X=R
T =

∏

t∈T
Rt ,

where Rt are copies of the real line (−∞,∞). This space is usually considered with

the σ -algebra BT
R

of subsets of RT generated by cylinders.
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2. The space C(T ) of continuous functions on T (we will write C(a, b) if

T = [a, b]). In this space, along with the σ -algebra BT
C generated by cylinder sub-

sets of C(T ) (this σ -algebra is smaller that the similar σ -algebra in R
T ), one also

often considers the σ -algebra BC(T ) (the Borel σ -algebra) generated by the sets

open with respect to the uniform distance

ρ(x, y) := sup
t∈T

∣∣y(t)− x(t)
∣∣, x, y ∈ C(T ).

It turns out that, in the space C(T ), we always have BC(T ) =BT
C (see, e.g., [14]).

3. The space D(T ) of functions having left and right limits x(t − 0) and x(t + 0)

at each point t , the value x(t) being equal either to x(t − 0) or to x(t + 0). If

T = [a, b], it is also assumed that x(a)= x(a+ 0) and x(b)= x(b− 0). This space

is often called the space of functions without discontinuities of the second kind.2 The

space of functions for which at all other points x(t) = x(t − 0) (x(b) = x(t + 0))

will be denoted by D−(T ) (D+(T )). The space D+(T ) (D−(T )) will be called the

space of right-continuous (left-continuous) functions. For example, the trajectories

of the renewal processes discussed in Chap. 10 belong to D+(0,∞).

In the space D(T ) one can also construct the Borel σ -algebra with respect to

an appropriate metric, but we will restrict ourselves to using the σ -algebra BT
D

of cylindric subsets of D(T ).

Now we can formulate the following equivalent definition of a random process.

Let X be a given function space, and G be the σ -algebra of its subsets containing

the σ -algebra BT
X

of cylinders.

Definition 18.1.2 A random process ξ(t)= ξ(t,ω) is a measurable (in ω) mapping

of 〈Ω,F,P〉 into 〈X,G,Pξ 〉 (to each ω one puts into correspondence a function

ξ(t)= ξ(t,ω) so that ξ−1(G)= {ω : ξ(·) ∈G} ∈ F for G ∈G). The distribution Pξ

is said to be the distribution of the process.

The condition BT
X
⊂ G is needed to ensure that the probabilities of cylinder

sets and, in particular, the probabilities P(ξ(t) ∈ B), B ∈BT
X

are correctly defined,

which means that ξ(t) are random variables.

So far we have tacitly assumed that the process is given and it is known that

its trajectories lie in X. However, this is rarely the case. More often one tries to

describe the process ξ(t) in terms of some characteristics of its distribution. One

could, for example, specify the finite-dimensional distributions of the process. From

Kolmogorov’s theorem on consistent distributions3 (see Appendix 2), it follows that

2A discontinuity of the second kind is associated with either non-fading oscillations of increasing

frequency or escape to infinity.

3Recall the definition of consistent distributions. Let Rt , t ∈ T , be real lines and Bt the σ -algebras

of Borel subsets of Rt . Let Tn = {t1, . . . , tn} be a finite subset of T . The finite-dimensional dis-

tribution of (ξ(t1,ω), . . . , ξ(tn,ω)) is the distribution PTn on (RTn ,BTn ), where R
Tn =

∏
t∈Tn

Rt

and BTn =
∏

t∈Tn
Bt . Let two finite subsets T ′ and T ′′ of T be given, and (R′,B′) and (R′′,B′′)

be the respective subspaces of (RT ,BT ). The distributions PT ′ and PT ′′ on (R′,B′) and (R′′,B′′)



530 18 Continuous Time Random Processes

finite-dimensional distributions uniquely specify the distribution Pξ of the process

on the space 〈RT ,BT
R
〉. That theorem can be considered as the existence theorem

for random processes in 〈RT ,BT
R
〉 with prescribed finite-dimensional distributions.

The space 〈RT ,BT
R
〉 is, however, not quite convenient for studying random pro-

cesses. The fact is that by no means all relations frequently used in analysis gener-

ate events, i.e. the sets which belong to the σ -algebra BT
R

and whose probabilities

are defined. Based on the definition, we can be sure that only the elements of the

σ -algebra generated by {ξ(t) ∈ B}, t ∈ T , B being Borel sets, are events. The set

{supt∈T ξ(t) < c}, for instance, does not have to be an event, for we only know its

representation in the form
⋂

t∈T {ξ(t) < c}, which is the intersection of an uncount-
able collection of measurable sets when T is an interval on the real line.

Another inconvenience occurs as well: the distribution Pξ on 〈RT ,BT
R
〉 does not

uniquely specify the properties of the trajectories of ξ(t). The reason is that the

space RT is very rich, and if we know that x(·) belongs to a set of the form (18.1.1),

this gives us no information about the behaviour of x(t) at points t different from

t1, . . . , tn. The same is true of arbitrary sets A from BT
R

: roughly speaking, the

relation x(·) ∈ A can determine the values of x(t) at most at a countable set of

points. We will see below that even such a set as {x(t)≡ 0} does not belong to BT
R

.

To specify the behaviour of the entire trajectory of the process, it is not sufficient to

give a distribution on BT
R

—one has to extend this σ -algebra.

Prior to presenting the respective example, we will give the following definition.

Definition 18.1.3 Processes ξ(t) and η(t) are said to be equivalent (or stochasti-
cally equivalent) if P(ξ(t) = η(t)) = 1 for all t ∈ T . In this case the process η is

called a modification of ξ .

Finite-dimensional distributions of equivalent process clearly coincide, and

therefore the distributions Pξ and Pη on 〈RT ,BT
R
〉 coincide, too.

Example 18.1.1 Put

xa(t) :=
{

0 if t 
= a,

1 if t = a,

and complete BT
R

with the elements xa(t), a ∈ [0,1], and the element x0(t) ≡ 0.

Let γ ⊂= U0,1. Consider two random processes ξ0(t) and ξ1(t) defined as follows:

ξ0(t)≡ x0(t), ξ1(t)= xγ (t). Then clearly

P
(
ξ0(t)= ξ1(t)

)
= P(γ 
= t)= 1,

the processes ξ0 and ξ1 are equivalent, and hence their distributions on 〈RT ,BT
R
〉

coincide. However, we see that the trajectories of the processes are substantially

different.

are said to be consistent if their projections on the common part of subspaces R
′ and R

′′ (if it

exists) coincide.
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It is easy to see from the above example that the set of all continuous functions

C(T ), the set {supt∈[0,1] x(t) < x}, the one-point set {x(t) ≡ 0} and many others

do not belong to BT
R

. Indeed, if we assume the contrary—say, that C(T ) ∈BT
R

—

then we would get from the equivalence of ξ0 and ξ1 that P(ξ0 ∈ C(0,1))= P(ξ1 ∈
C(0,1)), while the former of these probabilities is 1 and the latter is 0.

The simplest way of overcoming the above difficulties and inconveniences is to

define the processes in the spaces C(T ) or D(T ) when it is possible. If, for example,

ξ(t) ∈ C(T ) and η(t) ∈ C(T ), and they are equivalent, then the trajectories of the

processes will completely coincide with probability 1, since in that case
⋂

rational t

{
ξ(t)= η(t)

}
=
⋂

t∈T

{
ξ(t)= η(t)

}
=
{
ξ(t)= η(t) for all t ∈ T

}
,

where the probability of the event on the left-hand side is defined (this is the prob-

ability of the intersection of a countable collection of sets) and equals 1. Similarly,

the probabilities, say, of the events
{

sup
t∈T

ξ(t) < c
}
=
⋂

t∈T

{
ξ(t) < c

}

are also defined.

The same argument holds for the spaces D(T ), because each element x(·) of D

is uniquely determined by its values x(t) on a countable everywhere dense set of t

values (for example, on the set of rationals).

Now assume that we have somehow established that the original process ξ(t) (let

it be given on 〈RT ,BT
R
〉) has a continuous modification, i.e. an equivalent process

η(t) such that its trajectories are continuous with probability 1 (or belong to the

space D(T )). The above means, first of all, that we have somehow extended the

σ -algebra BT
R

—adding, say, the set C(T )—and now consider the distribution of ξ

on the σ -algebra B̃T = σ(BT
R
,C(T )) (otherwise the above would not make sense).

But the extension of the distribution of ξ from 〈RT ,BT
R
〉 to 〈RT , B̃T 〉 may not be

unique. (We saw this in Example 18.1.1; the extension can be given by, say, putting

P(ξ ∈ C(T ))= 0.) What we said above about the process η means that there exists

an extension Pη such that Pη(C(T ))= P(η ∈ C(T ))= 1.

Further, it is often better not to deal with the inconvenient space 〈RT ,BT
R
〉 at all.

To avoid it, one can define the distribution of the process η on the restricted space

〈C(T ),BT
C〉. It is clear that

BT
C ⊂ B̃T = σ

(
BT

R
,C(T )

)
, BT

C = B̃T ∩C(T )

(the former σ -algebra is generated by sets of the form (18.1.1) intersected with

C(T )). Therefore, considering the distribution of η concentrated on C(T ), we can

deal with the restriction of the space 〈RT , B̃T 〉 to 〈C(T ),BT
C〉 and define the proba-

bility on the latter as Pη(A)= P(η ∈A), A ∈BT
C ⊂ B̃T . Thus we have constructed

a process η with continuous trajectories which is equivalent to the original process
ξ (if we consider their distributions in 〈RT ,BT

R
〉).

To realise this construction, one has now to learn how to find from the distribution

of a process ξ whether it has a continuous modification η or not.
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Before stating and proving the respective theorems, note once again that the

above-mentioned difficulties are mainly of a mathematical character, i.e. related

to the mathematical model of the random process. In real life problems, it is usually

clear in advance whether the process under consideration is continuous or not. If it

is “physically” continuous, and we want to construct an adequate model, then, of

course, of all modifications of the process we have to take the continuous one.

The same argument remains valid if, instead of continuous trajectories, one con-

siders trajectories from D(T ). The problem essentially remains the same: the diffi-

culties are eliminated if one can describe the entire trajectory of the process ξ(·) by

the values ξ(t) on some countable set of t values. Processes possessing this property

will be called regular.

18.2 Criteria of Regularity of Processes

First we will find conditions under which a process has a continuous modification.

Without loss of generality, we will assume that T is the segment T = [0,1].
A very simple criterion for the existence of a continuous modification is based

on the knowledge of two-dimensional distributions of ξ(t) only.

Theorem 18.2.1 (Kolmogorov) Let ξ(t) be a random process given on 〈RT ,BT
R
〉

with T = [0,1]. If there exist a > 0, b > 0 and c <∞ such that, for all t and t + h

from the segment [0,1],
E
∣∣ξ(t + h)− ξ(t)

∣∣a ≤ c|h|1+b, (18.2.1)

then ξ(·) has a continuous modification.

We will obtain this assertion as a consequence of a more general theorem, of

which the conditions are somewhat more difficult to comprehend, but have essen-

tially the same meaning as (18.2.1).

Theorem 18.2.2 Let for all t , t + h ∈ [0,1],
P
(∣∣ξ(t + h)− ξ(t)

∣∣> ε(h)
)
≤ q(h),

where ε(h) and q(h) are decreasing even functions of h such that
∞∑

n=1

ε
(
2−n

)
<∞,

∞∑

n=1

2nq
(
2−n

)
<∞.

Then ξ(·) has a continuous modification.

Proof We will make use of approximations of ξ(t) by continuous processes. Put

tn,r := r2−n, r = 0,1, . . . ,2n,

ξn(t) := ξ(tn,r )+ 2n(t − tn,r)
[
ξ(tn,r+1)− ξ(tn,r )

]
for t ∈ [tn,r , tn,r+1].
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Fig. 18.1 Illustration to the

proof of Theorem 18.2.2:

construction of piece-wise

linear approximations to the

process ξ(t)

From Fig. 18.1 we see that

∣∣ξn+1(t)− ξn(t)
∣∣≤

∣∣∣∣ξ(tn+1,2r+1)−
1

2

[
ξ(tn+1,2r )+ ξ(tn+1,2r+2)

]∣∣∣∣≤
1

2
(α + β),

where α := |ξ(tn+1,2r+1)− ξ(tn+1,2r )|, β := |ξ(tn+1,2r+1)− ξ(tn+1,2r+2)|. This im-

plies that

Zn := max
t∈[tn,r ,tn,r+1]

∣∣ξn+1(t)− ξn(t)
∣∣≤ 1

2
(α + β),

P
(
Zn > ε

(
2−n

))
≤ P

(
α > ε

(
2−n

))
+ P

(
β > ε

(
2−n

))
≤ 2q

(
2−n

)

(note that since the trajectories of ξn(t) are continuous, {Zn > ε(2−n)} ∈BT
R , which

is not the case in the general situation). Since here we have altogether 2n segments

of the form [tn,r , tn,r+1], r = 0,1, . . . ,2n − 1, one has

P
(

max
t∈[0,1]

∣∣ξn+1(t)− ξn(t)
∣∣> ε(2−n)

)
≤ 2n+1q(2−n).

Because
∑∞

n=1 2nq(2−n) <∞, by the Borel–Cantelli criterion, for almost all ω (i.e.

for ω ∈A, P(A)= 1), there exists an n(ω) such that, for all n≥ n(ω),

max
t∈[0,1]

∣∣ξn+1(t)− ξn(t)
∣∣≡ ρ(ξn+1, ξn) < ε

(
2−n

)
.

From this it follows that ξn is a Cauchy sequence a.s., since

ρ(ξn, ξm)≤ εn :=
∞∑

n

ε(2−k)→ 0

as n→∞ for all m > n, ω ∈ A. Therefore, for ω ∈ A, there exists the limit

η(t)= limn→∞ ξn(t), and |ξn(t)− η(t)| ≤ εn, so that convergence ξn(t)→ η(t) is

uniform. Together with continuity of ξn(t) this implies that η(t) is also continuous

(this argument actually shows that the space C(0,1) is complete).

It remains to verify that ξ and η are equivalent. For t = tn,r one has ξn+k(t) =
ξ(t) for all k ≥ 0, so that η(t)= ξ(t). If t 
= tn,r for all n and r , then there exists a

sequence rn such that tt,rn → t and 0 < t − tt,rn < 2−n, and hence

P
(∣∣ξ(tt,rn)− ξ(t)

∣∣> ε(t − tt,rn)
)
≤ q(t − tt,rn),

P
(∣∣ξ(tt,rn)− ξ(t)

∣∣> ε(2−n)
)
≤ q

(
2−n

)
.

By the Borel–Cantelli criterion this means that ξn,rn → ξ with probability 1. At

the same time, by virtue of the continuity of η(t) one has η(tt,rn)→ η(t). Because

ξ(tt,rn)= η(tt,rn), we have ξ(t)= η(t) with probability 1.

The theorem is proved. �
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Corollary 18.2.1 If

E
∣∣ξ(t + h)− ξ(t)

∣∣a ≤ c|h|
| log |h||1+b

(18.2.2)

for some b > a > 0 and c <∞, then the conditions of Theorem 18.2.2 are satisfied
and hence ξ(t) has a continuous modification.

Condition (18.2.2) will certainly be satisfied if (18.2.1) holds, so that Kol-

mogorov’s theorem is a consequence of Theorem 18.2.2.

Proof of Corollary 18.2.1 Put ε(h) := | log2 |h||−β , 1 < β < b/a. Then

∞∑

n=1

ε
(
2−n

)
=
∞∑

n=1

n−β <∞,

and from Chebyshev’s inequality we have

P
(∣∣ξ(t + a)− ξ(t)

∣∣> ε(h)
)
≤ c|h|
| log2 |h||1+b

(
ε(h)

)−a = c|h|
| log2 |h||1+δ

=: q(h),

where δ = b− aβ > 0. It remains to note that

∞∑

n=1

2nq
(
2−n

)
=
∞∑

n=1

∣∣log2 2−n
∣∣−1−δ

<∞.

The corollary is proved. �

The criterion for ξ(t) to have a modification belonging to the space D(T ) is more

complicated to formulate and prove, and is related to weaker conditions imposed on

the process. We confine ourselves here to simply stating the following assertion.

Theorem 18.2.3 (Kolmogorov–Chentsov) If, for some α ≥ 0, β ≥ 0, b > 0, and all
t , h1 ≤ t ≤ 1− h2, h1 ≥ 0, h2 ≥ 0,

E
∣∣ξ(t)− ξ(t − h1)

∣∣α∣∣ξ(t + h2)− ξ(t)β
∣∣< ch1+b, h= h1 + h2, (18.2.3)

then there exists a modification of ξ(t) in D(0,1).4

Condition (18.2.3) admits the following extension:

P
(∣∣ξ(t + h2)− ξ(t)

∣∣ ·
∣∣ξ(t)− ξ(t − h1)

∣∣≥ ε(h)
)
≤ q(h), (18.2.4)

where ε(h) and q(h) have the same meaning as in Theorem 18.2.2. Under condition

(18.2.4) the assertion of the theorem remains valid.

The following two examples illustrate, to a certain extent, the character of the

conditions of Theorems 18.2.1–18.2.3.

4For more details, see, e.g., [9].
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Example 18.2.1 Assume that a random process ξ(t) has the form

ξ(t)=
r∑

k=1

ξkϕk(t),

where ϕk(t) satisfy the Hölder condition
∣∣ϕk(t + h)− ϕk(t)

∣∣≤ c |h|α,

α > 0, and (ξ1, . . . , ξr) is an arbitrary random vector such that all E|ξk|l are finite

for some l > 1/α. Then the process ξ(t) (which is clearly continuous) satisfies con-

dition (18.2.1). Indeed,

E
∣∣ξ(t + h)− ξ(t)

∣∣l ≤ c1

r∑

k=1

E|ξk|lcl |h|αl ≤ c2|hαl |, al > 1.

Example 18.2.2 Let γ ⊂=U0,1, ξ(t)= 0 for t < γ , and ξ(t)= 1 for t ≥ γ . Then

E
∣∣ξ(t + h)− ξ(t)

∣∣l = P
(
γ ∈ (t, t + h)

)
= h

for any l > 0. Here condition (18.2.1) is not satisfied, although |ξ(t+h)−ξ(t)| p→ 0

as h→ 0. Condition (18.2.3) is clearly met, for

E
∣∣ξ(t)− ξ(t − h1)

∣∣ ·
∣∣ξ(t + h2)− ξ(t)

∣∣= 0. (18.2.5)

We will get similar results if we take ξ(t) to be the renewal process for a sequence

γ1, γ2, . . . , where the distribution of γj has a density. In that case, instead of (18.2.5)

one will obtain the relation

E
∣∣ξ(t)− ξ(t − h1)

∣∣ ·
∣∣ξ(t + h2)− ξ(t)

∣∣≤ ch1h2 ≤ ch2.

In the general case, when we do not have data for constructing modifications

of the process ξ in the spaces C(T ) or D(T ), one can overcome the difficulties

mentioned in Sect. 18.1 with the help of the notion of separability.

Definition 18.2.1 A process ξ(t) is said to be separable if there exists a countable

set S which is everywhere dense in T and

P
(

lim sup
u→t
u∈S

ξ(u)≥ ξ(t)≥ lim inf
u→t
u∈S

ξ(u) for all t ∈ T
)
= 1. (18.2.6)

This is equivalent to the property that, for any interval I ⊂ T ,

P
(

sup
u∈l∩S

ξ(u)= sup
u∈I

ξ(u); inf
u∈l∩S

ξ(u)= inf
u∈I

ξ(u)
)
= 1.

It is known (Doob’s theorem5) that any random process has a separable modifi-
cation.

5See [14, 26].
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Constructing a separable modification of a process, as well as constructing mod-

ifications in spaces C(T ) and D(T ), means extending the σ -algebra BT
R

, to which

one adds uncountable intersections of the form

A=
⋂

u∈I

{
ξ(u) ∈ [a, b]

}
=
{

sup
u∈I

ξ(u)≤ b, inf
u∈I

ξ(u)≥ a
}
,

and extending the measure P to the extended σ -algebra using the equalities

P(A)= P

( ⋂

u∈I∩S

{ξ(u) ∈ [a, b]
)

,

where in the probability on the right-hand side we already have an element of BT
R

.

For separable processes, such sets as the set of all nondecreasing functions, the

sets C(T ), D(T ) and so on, are events. Processes from C(T ) or D(T ) are automat-

ically separable. And vice versa, if a process is separable and admits a continuous

modification (modification from D(T )) then it will be continuous (belong to D(T ))

itself. Indeed, if η is a continuous modification of ξ then

P
(
ξ(t)= η(t) for all t ∈ S

)
= 1.

From this and (18.2.6) we obtain

P
(

lim sup
u→t
u∈S

η(u)≥ ξ(t)≥ lim inf
u→t
u∈S

η(u) for all t ∈ T
)
= 1.

Since lim supu→t η(u)= lim infu→t η(u)= η(t), one has

P
(
ξ(t)= η(t) for all t ∈ T

)
= 1.

In Example 18.1.1, the process ξ1(t) is clearly not separable. The process ξ0(t)

is a separable modification of ξ1(t).

As well as pathwise continuity, there is one more way of characterising the con-

tinuity of a random process.

Definition 18.2.2 A random process ξ(t) is said to be stochastically continuous if,

for all t ∈ T , as h→ 0,

ξ(t + h)
p→ ξ(t)

(
P
(∣∣ξ(t + h)− ξ(t)

∣∣> ε
)
→ 0

)
.

Here we deal with the two-dimensional distributions of ξ(t) only.

It is clear that all processes with continuous trajectories are stochastically con-

tinuous. But not only them. The discontinuous processes from Examples 18.1.1

and 18.2.2 are also stochastically continuous. A discontinuous process is not

stochastically continuous if, for a (random) discontinuity point τ (ξ(τ + 0) 
=
ξ(τ − 0)), the probability P(τ = t0) is positive for some fixed point t0.

Definition 18.2.3 A process ξ(t) is said to be continuous in mean of order r (in
mean when r = 1; in mean quadratic when r = 2) if, for all t ∈ T , as h→ 0,

ξ(t + h)
(r)−→ ξ(t) or, which is the same, E

∣∣ξ(t + h)− ξ(t)
∣∣r → 0.
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The discontinuous process ξ(t) from Example 18.2.2 is continuous in mean of

any order. Therefore the continuity in mean and stochastic continuity do not say

much about the pathwise properties (they only say that a jump in a neighbour-

hood of any fixed point t is unlikely). As Kolmogorov’s theorem shows, in or-

der to characterise the properties of trajectories, one needs quantitative bounds for

E|ξ(t + h)− ξ(t)|r or for P(|ξ(t + h)− ξ(t)|> ε).

Continuity theorems for moments imply that, for a stochastically continuous pro-
cess ξ(t) and any continuous bounded function g(x), the function Eg(ξ(t)) is con-
tinuous. This assertion remains valid if we replace the boundedness of g(x) with the

condition that

sup
t

E
∣∣g
(
ξ(t)

)∣∣α <∞ for some α > 1.

The consequent Chaps. 19, 21 and 22 will be devoted to studying random pro-

cesses which can be given by specifying the explicit form of their finite-dimensional

distributions. To this class belong:

1. Processes with independent increments.

2. Markov processes.

3. Gaussian processes.

In Chap. 22 we will also consider some problems of the theory of processes with

finite second moments. Chapter 20 contains limit theorems for random processes

generated by partial sums of independent random variables.



Chapter 19

Processes with Independent Increments

Abstract Section 19.1 introduces the fundamental concept of infinitely divisible

distributions and contains the key theorem on relationship of such processes to

processes with independent homogeneous increments. Section 19.2 begins with a

definition of the Wiener process based on its finite-dimensional distributions and

establishes existence of a continuous modification of the process. It also derives the

distribution of the maximum of the Wiener process on a finite interval. The Laws

of the Iterated Logarithm for the Wiener process are established in Sect. 19.3. Sec-

tion 19.4 is devoted to the Poisson processes, while Sect. 19.5 presents a character-

isation of the class of processes with independent increments (the Lévy–Khintchin

theorem).

19.1 General Properties

Definition 19.1.1 A process {ξ(t), t ∈ [a, b]} given on the interval [a, b] is said

to be a process with independent increments if, for any n and t0 < t1 < · · · < tn,

a ≤ t0, tn ≤ b, the random variables ξ(t0), ξ(t1) − ξ(t0), . . . , ξ(tn) − ξ(tn−1) are

independent.

A process with independent increments is called homogeneous if the distribu-

tion of ξ(t1)− ξ(t0) is determined by the length of the interval t1 − t0 only and is

independent of t0.

In what follows, we will everywhere assume for simplicity’s sake that a = 0,

ξ(0)= 0 and b= 1 or b=∞.

Definition 19.1.2 The distribution of a random variable ξ is called infinitely di-
visible (cf. Sect. 8.8) if, for any n, the variable ξ can be represented as a sum of

independent identically distributed random variables: ξ = ξ1,n + · · · + ξn,n. If ϕ(λ)

is the ch.f. of ξ , then this is equivalent to the property that ϕ1/n is a ch.f. for any n.

It is clear from the above definitions that, for a homogeneous process with

independent increments, the distribution of ξ(t) is infinitely divisible, because

ξ = ξ1,n + · · · + ξn,n, where ξk,n = ξ(kt/n) − ξ((k − 1)t/n) are independent and

distributed as ξ(t/n).
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Theorem 19.1.1

(1) Let {ξ(t), t ≥ 0} be a stochastically continuous homogeneous process with in-
dependent increments, and let ϕt (λ) = Eeiλξ(t) be the ch.f. of ξ(t), ϕ(λ) :=
ϕ1(λ). Then

ϕt (λ)= ϕt (λ), (19.1.1)

ϕ(λ) 
= 0 for any λ.

(2) Let ϕ(λ) be the ch.f. of an infinitely divisible distribution. Then there exists a
random process {ξ(t), t ≥ 0} satisfying the conditions of (1) and such that

Eeiλξ(1) = ϕ(λ).

Note that in the theorem the power ϕt (λ) of the complex number ϕ(λ) is under-

stood as |ϕ(λ)|teiα(λ)t , where α(λ)= argϕ(λ) (ϕ(λ)= |ϕ(λ)|eiα(λ)). But α(λ) is a

multi-valued function, which is defined up to the term 2πk with integer k. There-

fore, for non-integer t , the function ϕt (λ) will be multi-valued as well. Since any

ch.f. is continuous, after crossing the level 2πk by α(k) (while changing the value of

λ from zero, α(0)= 0), we are to take the “nearest” branch of α(k) so as to ensure

continuity of the function ϕt (λ). For example, for the degenerate distribution I1 we

have ϕ(λ)= eiλ (α(λ)= λ), so for small t > 0, ε > 0 and for λ= 2π + ε we are to

set ϕt (λ)= ei(2π+ε)t rather than ϕt (λ)= eiεt (although ϕ(λ)= eiε).

Denote by L the class of ch.f.s of all infinitely divisible distributions and by

L1 the class of the ch.f.s of the distributions of ξ(t) for stochastically continuous

homogeneous processes with independent increments. Then it follows from Theo-

rem 19.1.1 that L=L1. The class L will be characterised in Sect. 19.5.

Proof (1) Let ξ(t) satisfy the conditions of part (1) of the theorem. Then ξ(t) can

be represented as a sum of independent increments

ξ(t)=
n∑

j=1

[
ξ(tj )− ξ(tj−1)

]
, t0 = 0, tn = t, tj > tj−1.

From this it follows, in particular, that for tj = j/n, t = 1,

ϕ(λ)=
[
ϕ1/n(λ)

]n
, ϕ1/n(λ)= ϕ1/n(λ).

Raising both sides of the last equality to an integer power k, we obtain that, for any

rational r = k/n, one has

ϕk/n(λ)= ϕk/n(λ),

which proves (19.1.1) for t = r . Now let t be irrational and rn := ⌊tn⌋/n. Since ξ(t)

is a stochastically continuous process, one has ξ(rn)
p→ ξ(t) as n→∞, and hence

the corresponding ch.f.s converge: for any λ,

ϕrn(λ)→ ϕt (λ).

But ϕrn(λ)= ϕrn(λ)→ ϕt (λ). Therefore (19.1.1) necessarily holds true.
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Further, by stochastic continuity of ξ(·), we have ϕt (λ) = ϕt (λ)→ 1 as t → 0

for any λ. This implies that ϕ(λ) 
= 0 for any λ. This completes the proof of the first

assertion of the theorem.

(2) Observe first that if ϕ ∈L then, for any t > 0, ϕt is again a ch.f. Indeed,

ϕt (λ)= lim
n→∞

ϕ⌊tn⌋/n(λ),

so that ϕt (λ) is a limit of ch.f.s which is continuous at the point λ = 0. By the

continuity theorem for ch.f.s, this is again a ch.f.

Now we will construct a random process ξ(t) with independent increments by

specifying its finite-dimensional distributions. Put

0= t0 < t1 < · · ·< tk, ∆j := ξ(tj )− ξ(tj−1), δj := tj − tj−1,

and observe that

k∑

j=1

λj ξ(tj )=
k∑

j=1

λj

j∑

l=1

∆l =
k∑

j=1

∆j

k∑

l=j

λl .

Define the ch.f. of the joint distribution of ξ(t1), . . . , ξ(tk) by the equality (postulat-

ing independence of ∆j )

E exp

{
i

k∑

1

λj ξ(tj )

}
:= E exp

{
i

k∑

j=1

∆j

j∑

l=j

λl

}
=

k∏

j=1

ϕ

(
k∑

l=j

λl

)δj

.

Thus, we have used ϕ to define the finite-dimensional distributions of ξ(t) in

〈RT ,BT
R
〉 with T = [0,∞) which, as one can easily see, are consistent. By

Kolmogorov’s theorem, there exists a distribution of a random process ξ(t) in

〈RT ,BT
R
〉. That process is by definition a homogeneous processes with indepen-

dent increments.

To prove stochastic continuity of ξ(t), note that, as h→ 0,

Eeiλ(ξ(t+h)−ξ(t)) = ϕh(λ)→ ϕ0(λ),

where

ϕ0(λ)=
{

1 if ϕ(λ) 
= 0,

0 if ϕ(λ)= 0.

Thus the limiting function ϕ0(λ) can assume only two values: 0 and 1. But it is

bound to be a ch.f. since it is continuous at the point λ = 0 (ϕ(λ) 
= 0 in a neigh-

bourhood of the point λ= 0) and is a limit of ch.f.s. Therefore ϕ0(λ) is continuous,

ϕ0(λ)≡ 1, ϕh(λ)→ 1, and

ξ(t + h)− ξ(t)
p→ 0 as h→ 0.

The theorem is proved. �

Corollary 19.1.1 Let the conditions of part (1) of Theorem 19.1.1 be met. If, for
all t , E|ξ(t)|<∞ then

Eξ(t)= tEξ(1).
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If E(ξ(1))2 <∞ then

Var ξ(t)= t Var ξ(1).

Proof For the sake of brevity, put a := Eξ(1). Then, differentiating (19.1.1) in λ at

the point λ= 0, we obtain

Eξ(t)=−iϕ′t (0)=−itϕt−1ϕ′(0)= at,

Eξ2(t)=−ϕ′′t (0)=−t (t − 1)ϕt−2(0)
(
ϕ′(0)

)2 − tϕt−1(0)ϕ′′(0)

= t (t − 1)a2 + tEξ2(1),

Var ξ(t)= t
(
Eξ2(1)− a2

)
= t Var ξ(1).

The corollary is proved. �

In the next theorem we put, as before, T = [0,1] or T = [0,∞).

Theorem 19.1.2 Homogeneous stochastically continuous processes with indepen-
dent increments {ξ(t), t ∈ T } have modifications in the space D(T ), i.e. the process
ξ(t) can be given in 〈D(T ),BT

D〉 and hence have no discontinuities of the second
type.

Proof To simplify the argument, assume that Eξ2(1) exists, or, which is the same,

that the second derivative ϕ′′(λ) exists. Then

E
(
ξ(t)− ξ(t − h)

)2 = ϕ′′h(0)=−h(h− 1)
[
ϕ′(0)

]2 − hϕ′′(0)≤ c|h|,

E
(∣∣ξ(t + h2)− ξ(t)

∣∣2∣∣ξ(t)− ξ(t − h1)
∣∣2)≤ c2h1h2 ≤ c2(h1 + h2),

and the assertion follows from the second criterion of Theorem 18.2.3. The theorem

is proved. �

In the general case, the proof is more complicated: one has to make use of crite-

rion (18.2.4) and bounds for P(ξ(t)− ξ(t − h)|> ε).

Now we will consider the two most important processes with independent incre-

ments: the so-called Wiener and Poisson processes.

19.2 Wiener Processes. The Properties of Trajectories

Definition 19.2.1 The Wiener process is a homogeneous process with independent

increments for which the distribution of ξ(1) is normal.

In other words, this is a process for which

ϕ(λ)= eiλα−σ 2λ2/2, ϕt (λ)= ϕt (λ)= eiλtα−σ 2λ2t/2
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for some α and σ 2 ≥ 0. The second equality means that the increments ξ(t + u)−
ξ(u) are normally distributed with parameters (αt, σ 2t). All joint distributions of

ξ(t1), . . . , ξ(tn) are clearly also normal.

The numbers α and σ are called the shift and diffusion coefficients, respectively.

Introducing the process ξ0(t) := (ξ(t)− αt)/σ which is obtained from ξ(t) by an

affine transformation, we obtain that its ch.f. equals

Eeiλξ0(t) = e−iλαt/σ ϕt (λ/σ )= e−λ2t/2.

Such a process with parameters (0, t) is often called the standard Wiener process.

We consider it in more detail.

Theorem 19.2.1 The Wiener process has a continuous modification.

This means, as we know, that the Wiener process {ξ(t), t ∈ [0,1]} can be consid-

ered as given on the measurable space 〈C(0,1),B
[0,1]
C 〉 of continuous functions.

Proof We have ξ(t+h)−ξ(t)⊂=�0,h and h−1/2(ξ(t+h)−ξ(t))⊂=�0,1. Therefore

E
(
ξ(t + h)− ξ(t)

)4 = h2Eξ(1)4 = 3h2.

This means that the conditions of Theorem 18.2.1 are satisfied. �

Thus we can assume that ξ(·) ∈ C(0,1). The standard Wiener process with con-
tinuous trajectories will be denoted by {w(t), t ∈ T }.

Now note that the trajectories of the Wiener process w(t), being continuous, are
not differentiable with probability 1 at any given point t .

By virtue of the homogeneity of the process, it suffices to prove its nondifferen-

tiability at the point 0. If, with a positive probability, i.e. on an event set A⊂Ω with

P(A) > 0, there existed the derivative

w′(0)=w′(0,ω)= lim
t→0

w(t)

t
,

then, on the same event, there would exist the limit

lim
k→∞

w(2−k+1)−w(2−k)

2−k
= lim

k→∞
2w(2−k+1)

2−k+1
− lim

k→∞
w(2−k)

2−k

= 2w′(0)−w′(0)=w′(0).

But this is impossible for the following reason. The independent differences

w(2−k+1) − w(2−k) have the same distribution as w(2−k), and with the positive

probability p = 1 − Φ(1) they exceed the value
√

2−k . That is, the independent

events Bk = {w(2−k+1) − w(2−k) >
√

2−k} have the property
∑∞

k=1 P(Bk) =∞.

By the Borel–Cantelli criterion, this means that with probability 1 there occur in-

finitely many events Bk , so that

P

(
lim sup
k→∞

w(2−k+1)−w(2−k)√
2−k

> 1

)
= 1.



544 19 Processes with Independent Increments

In the same way we find that

P

(
lim inf
k→∞

w(2−k+1)−w(2−k)

2−k
<−1

)
= 1.

This implies that, with probability 1,

lim sup
k→∞

w(2−k+1)−w(2−k)

2−k
=∞, lim inf

k→∞
w(2−k+1)−w(2−k)

2−k
=−∞,

and therefore the process w(t) is nondifferentiable at any given point t with proba-

bility 1.

A stronger assertion also takes place: with probability 1 there exists no point t

at which the trajectory of the process w(t) would have a derivative. In other words,

the Wiener process is nowhere differentiable with probability 1. The proof of this

fact is much more complicated and lies beyond the scope of the book.

The reader can easily verify that w(t) has, in a certain sense, a parabola property.

Namely, for any c > 0, the process w∗(t)= c−1/2w(ct) is again a Wiener process.

The properties of continuity of trajectories and independence of increments for

the Wiener process allow us to find, in an explicit form, the distributions of

w(t)= max
u∈[0,t]

w(u)

and of the time of the first passage of a given level which is defined, for a given

x > 0, by

η(x) := inf
{
t :w(t)≥ x

}
= inf

{
t :w(t)= x

}
.

Theorem 19.2.2

P
(
w(t) > x

)
= 2P

(
w(t) > x

)
= 2

(
1−Φ

(
x√
t

))
. (19.2.1)

The distribution of η(1) is stable and has the density

1√
2π t3/2

e−
1
2t , t > 0. (19.2.2)

Distribution (19.2.1) is sometimes called the double normal tail law, while the

distribution with density (19.2.2) is called the Lévy distribution (see Sect. 8.8).

Proof Since

{
η(x)= v

}
=
∞⋂

n=1

{
w(v − 1/n) < x,w(v)= x

}
∈ Fv := σ

{
w(u); u≤ v

}

and w(t)−w(v)
d=w(t − v) for t > v does not depend on Fv , we have

P
(
w(t) > x

)
=
∫ t

0

P
(
η(x) ∈ dv

)
P
(
w(t − v) > 0

)

= 1

2

∫ t

0

P
(
η(x) ∈ dv

)
= 1

2
P
(
w(t)≥ x

)
.

This implies the first assertion of the theorem.
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The same equalities imply that

P
(
η(x) < v

)
= P

(
w(v) > x

)
= 2

(
1−Φ

(
x√
v

))
= 2√

2π

∫ ∞

x/
√

v

e−s2/2 ds,

which yields, for the density fη of the variable η := η(1),

fη(v)= e−
1

2v

√
2π v3/2

.

In order to prove that this distribution is stable, note that

η(n)= η1 + · · · + ηn,

where ηi are distributed as η and are independent (since the path of w(t) first attains

level 1; then level 2, starting at a point with ordinate 1; then level 3, and so on).

Using the same argument as above, we obtain that

P
(
η(n) < v

)
= P

(
w(v) > n

)
= P

(
w
(
vn−2

)
> 1

)
= P

(
η < vn−2

)
,

so the distributions of η and η(n) coincide up to a scale transformation. This implies

the stability of the distribution of η (see Sect. 8.8). Since η ≥ 0 and P(η > x)∼
√

2
πx

as x→∞, we obtain that it is, up to a scale transformation, the distribution F1/2,1

with parameters β = 1/2, ρ = 1 (cf. Sect. 8.8). The theorem is proved. �

19.3 The Laws of the Iterated Logarithm

Using an argument similar to that employed at the end of the previous section, one

can establish a much stronger assertion: the trajectory of w(t) in the neighbourhood

of the point t = 0, graphically speaking, “completely shades” the interior of the

domain bounded by the two curves

y =±
√

2t ln ln
1

t
.

The exterior of this domain remains untouched. This is the so-called law of the
iterated logarithm.

Theorem 19.3.1

P

(
lim sup

t→0

w(t)√
2t ln ln 1

t

= 1

)
= 1,

P

(
lim inf

t→0

w(t)√
2t ln ln 1

t

=−1

)
= 1.
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Thus, if we consider the sequence of random variables w(tn), tn ↓ 0, then, for

any ε > 0,

(1± ε)

√
2tn ln ln

1

tn

will be upper and lower sequences, respectively, for that sequence.

For processes, we could introduce in a natural way the notions of upper and

lower functions. If, for example, a process ξ(t) belongs to C(0,∞) or D(0,∞) (or

is separable on (0,∞)), then the respective definition for the case t →∞ has the

following form.

Definition 19.3.1 A function a(t) is said to be upper (lower) for the process ξ(t)

if, for some sequence tn ↑ ∞, the events An = {supu≥tn
(ξ(t) − a(t)) > 0} occur

finitely (infinitely) often with probability 1.

Along with Theorem 19.3.1, we will obtain here the conventional law of the

iterated logarithm. The proofs of the both assertions are essentially identical. We

will prove the latter and derive the former as a consequence.

Theorem 19.3.2 (The Law of the Iterated Logarithm)

P

(
lim sup
t→∞

w(t)√
2t ln ln t

= 1

)
= 1,

P

(
lim inf
t→∞

w(t)√
2t ln ln t

=−1

)
= 1.

Thus, for any ε > 0, the functions (1± ε)
√

2t ln ln t are, respectively, upper and

lower for w(t) as t→∞.

Proof of Theorem 19.3.2 First observe that, by L’Hospital’s rule,

P
(
w(t) > x

)
= 1√

2πt

∫ ∞

x

e−u2/2t du

= 1√
2πt

∫ ∞

x/
√

t

e−u2/2t du∼
√

t√
2πx

e−x2/2t (19.3.1)

as x/
√

t→∞.

Let a > 1 and xk :=
√

2ak ln lnak . We have to show that, for any ε > 0,

P

(
lim sup
t→∞

w(t)√
2t ln ln t

< 1+ ε

)
= 1, (19.3.2)

i.e. that, with probability 1, for all sufficiently large t ,

w(t) < (1+ ε)
√

2t ln ln t .
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Fig. 19.1 Illustration to the

proof of Theorem 19.3.2:

replacing the curvilinear

boundary with a step function

To this end it suffices to establish that, with probability 1, there occur only finitely

many events

Bk :=
{

sup
ak−1<u≤ak

w(u) > (1+ ε)xk−1

}
.

Consider the events

Ak =
{

sup
u≤ak

w(u) > (1+ ε)xk−1

}
⊃ Bk

(see Fig. 19.1). Because xk/
√

ak→∞ as k→∞, by Theorem 19.2.2 one has

P(Ak)= 2P
(
w
(
ak
)
> (1+ ε)xk−1

)

∼
√

2

π

√
ak

(1+ ε)xk−1
exp

{
−2(1+ ε)ak−1 ln lnak−1

2ak

}

= 1

(1+ ε)

√
1

πa ln lnak−1

1

(lnak−1)(1+ε)2/a

= c(a, ε)
1

√
(ln(k − 1)+ ln lna)(k − 1)(1+ε)2/a

.

Put a := 1+ ε > 1. Then clearly

P(Ak)∼
c(ε)

k1+ε
√

lnk

as k→∞.

In the above formulas, c(a, ε) and c(ε) are some constants depending on the in-

dicated parameters. The obtained relation implies that
∑∞

k=1 P(Ak) <∞ and hence∑∞
k=1 P(Bk) <∞ (for Bk ⊂ Ak), so that by the Borel–Cantelli criterion (Theo-

rem 11.1.1) with probability 1 the events Bk occur only finitely often.

We now prove that, for an arbitrary ε > 0,

P

(
lim sup
t→∞

w(t)√
2t ln ln t

> 1− ε

)
= 1. (19.3.3)

It is evident that, together with (19.3.2), this will mean that the first assertion of the

theorem is true.
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Consider for a > 1 independent increments w(ak)−w(ak−1) and denote by Bk

the event

Bk :=
{
w
(
ak
)
−w

(
ak−1

)
> (1− ε/2)rxk

}
.

Since w(ak)−w(ak−1) is distributed as w(ak(1− a−1)), by virtue of (19.3.1) we

find, as before, that

P(Bk)∼
√

ak(1− a−1)√
2π(1− ε/2)xk

exp

{
− (1− ε/2)22ak ln lna−k

2ak(1− a−1)

}

∼ c1(a, ε)√
ln k

k−(1−ε/2)2/(1−a−1).

This implies that, for a ≥ 2/ε, the series
∑∞

k=1 P(Bk) diverges, and hence by the

Borel–Cantelli criterion the events Bk occur infinitely often, with probability 1.

Further, by the symmetry of the process w(t), it follows from relation (19.3.2)

that, for all k large enough and any δ > 0,

w
(
ak
)
>−(1+ δ)xk.

Together with the preceding argument this shows that the event

w
(
ak−1

)
+
[
w
(
ak
)
−w

(
ak−1

)]
=w

(
ak
)
>−(1+ δ)xk−1 + (1− ε/2)xk

will occur infinitely often. But the right hand-side of the above inequality can be

made greater than (1− ε)xk by choosing an appropriate a. Indeed,

−(1+ δ)xk−1 +
ε

2
xk > 0

once

(1+ δ)

√
ln lnak−1

a ln lnak
<

ε

2
,

which, in turn, can easily be achieved by taking a large enough. Thus relation

(19.3.3) is proved.

The second assertion of the theorem clearly follows from the first by virtue of the

symmetry of the distribution of w(t). �

Now we can obtain as a consequence the local law of the iterated logarithm for

the case where t→ 0.

Proof of Theorem 19.3.1 Consider the process {W(u) := uw(1/u), u ≥ 0}, where

we put W(0) := 0. The remarkable fact is that the process {W(u), u≥ 0} is also the
standard Wiener process. Indeed, for t > u,

E exp
{
iλ
(
W(t)−W(u)

)}
= E exp

{
iλ

[
tw

(
1

t

)
− uw

(
1

u

)]}

= E exp

(
iλ

[
w

(
1

t

)
(t − u)− u

(
w

(
1

u

)
−w

(
1

t

))])
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= exp

{
−λ2

2
(t − u)2 1

t
− λ2u2

2

(
1

u
− 1

t

)}

= exp

{
−λ2

2
(t − u)

}
.

The independence of increments is easiest to prove by establishing their noncor-

relatedness. Indeed,

E
[
W(u)

(
W(t)−W(u)

)]
= E

[
uw

(
1

u

)(
tw

(
1

t

)
− uw

(
1

u

))]

= E

[
uw

(
1

t

)
tw

(
1

t

)
− u2w2

(
1

u

)]
= u− u= 0.

To complete the proof of the theorem, it remains to observe that

lim sup
t→∞

w(t)√
2t ln ln t

= lim sup
u→0

uw(1/u)√
2u ln ln 1

u

= lim sup
u→0

W(u)√
2u ln ln 1

u

.

The theorem is proved. �

We could also prove the theorem by repeating the argument from the proof of

Theorem 19.3.2 with a < 1.

In conclusion we note that Wiener processes play an important role in many

theoretical probabilistic considerations and serve as models for describing various

real-life processes. For example, they provide a good model for the movement of

a diffusing particle. In this connection, the Wiener processes are also often called

Brownian motion processes.

Wiener processes prove to be, in a certain sense, the limiting processes for ran-

dom polygons constructed on the vertices (k/n,Sk/
√

n), where Sk are sums of ran-

dom variables ξj with Eξj = 0 and Var(ξj )= 1. We will discuss this in more detail

in Chap. 20. The concept of the stochastic integral and many other constructions

and results are also closely related to the Wiener process.

19.4 The Poisson Process

Definition 19.4.1 A homogeneous process ξ(t) with independent increments is said

to be the Poisson process if ξ(t)− ξ(0) has the Poisson distribution.

For simplicity’s sake put ξ(0)= 0. If ξ(1)⊂=Πµ, then

ϕ(λ) := Eeiλξ(1) = exp
{
µ
(
eiλ − 1

)}

and, as we know,

ϕt (λ)= Eeiλξ(t) = ϕt (λ)= exp
{
µt
(
eiλ − 1

)}
,
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so that ξ(t)⊂=Πµt . We consider the properties of the Poisson process. First of all,

for each t , ξ(t) takes only integer values 0,1,2, . . . . Divide the interval [0, t) into

segments [0, t1), [t1, t2), . . . , [tn−1, tn) of lengths ∆i = ti − ti−1, i = 1, . . . , n. For

small ∆i the distributions of the increments ξ(ti)− ξ(ti−1) will have the property

that

P
(
ξ(t)− ξ(ti−1)= 0

)
= P

(
ξ(∆i)= 0

)
= e−mu∆i = 1−µ∆i +O

(
∆2

i

)
,

P
(
ξ(t)− ξ(ti−1)= 1

)
= µ∆ie

−µ∆i = µ∆i +O
(
∆2

i

)
,

P
(
ξ(t)− ξ(ti−1)≥ 2

)
=O

(
∆2

i

)
.

(19.4.1)

Consider “embedded” rational partitions R(n)= {t1, . . . , tn} of the interval [0, t]
such that R(n)⊂R(n+ 1) and

⋃
R(n)=R1 is the set of all rationals in [0, t].

Note the following three properties.

(1) Let ν(n) be the number of intervals in the partition R(n) on which the incre-

ments of the process ξ are non-zero. For each ω, ν(n) is non-decreasing as n→∞.

Furthermore, the number ν(n) can be represented as a sum of independent random

variables which are equal to 1 if there is an increment on the i-th interval and 0

otherwise. Therefore, by (19.4.1)

P
(
ν(n) 
= ξ(t)

)
= P

( ⋃

ti∈R(n)

{
ξ(ti)− ξ(ti−1)≥ 2

}
∪
{
ξ(t)− ξ(tn)≥ 1

})

=O

(
n∑

j=1

∆2
j + (t − tn)

)
,

where
∑n

j=1 ∆2
j ≤ t max∆j → 0 as n→∞, so that a.s.

ν(n) ↑ ξ(t)⊂=Πµt

as the partitions refine.

(2) Because the maximum length of the intervals ∆j tends to 0 as n→∞, the

total length of the intervals containing jumps converges to 0.

Therefore, taking the unions of the remaining adjacent intervals ∆j (i.e. where

there are no increments of ξ ), for each ω we obtain in the limit, as n→∞, ξ(t)+ 1

intervals (0, T1), (T1, T2), . . . , (Tν, t) on which the increments of ξ are null.

(3) Finally, by (19.4.1) the probability that at least one of the increments on the

intervals ∆j exceeds one is
∑

j O(∆2
j ) = o(1) as n→∞, so that, with probabil-

ity 1, the jumps at the points Tk are equal to 1.

Thus we have shown that, on the segment [0, t], for each ω there exists a finite

number ξ(t) of points T1, . . . , Tξ(t) such that ξ(u) takes at the rational points of the

intervals (Tk, Tk+1) one and the same constant value equal to k. This means that one

can extend the trajectories of the process ξ(u), say, by continuity from the right so

that ξ(u)= k for all u ∈ [Tk, Tk+1).

Thus, for the original process ξ(t) we have constructed a modification ξ(t) with
trajectories in D+(T ). The equivalence of ξ and ξ follows from the very construc-

tion since, by virtue of (1),

P
(
ξ(t)= ξ(t)

)
= P

(
lim

n→∞
ν(n)= ξ(t)

)
= 1.
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One usually considers just such right (or left) continuous modifications of the

Poisson process. We have already dealt with processes of this kind in Chap. 10

where more general objects—renewal processes—were defined from scratch using

trajectories. That the Poisson process is a renewal process is seen from the following

considerations. It is easy to establish from relations (19.4.1) that the distributions of

the random variables T1, T2 − T1, T3 − T2, . . . coincide and that these variables are

independent. Indeed, the difference Tj − Tj−1, j ≥ 1, T0 = 0, can be approximated

by the sum (γj − γj−1)∆ of the lengths of identical intervals of size ∆i =∆, where

γj is the number of the interval in which the j -th non-zero increment of ξ occurred.

Since the process ξ(t) is homogeneous with independent increments, we have

P
(
(γj − γj−1)∆ > u

)
= P

(
γ1 >

u

∆

)
=
(
e−µ∆

)⌊u/∆⌋→ e−µu,

P
(
(γj − γj−1)∆ > u

)
→ P(Tj − Tj−1 > u)

as ∆→ 0. Hence the variables τj := Tj − Tj−1, j = 1,2,3, . . . , have the exponen-

tial distribution, and the value ξ(t)+ 1 can be considered as the first crossing time

of the level t by the sums Tj :

ξ(t)=max{k : Tk ≤ t}, ξ(t)+ 1=min{k : Tk > t}.
Thus we obtain that the Poisson process ξ(t) coincides with the renewal process η(t)

(see Chap. 10) for exponentially distributed variables τ1, τ2, . . . with P(τj>u) =
e−µu.

The above and the properties of the Poisson process also imply the following

remarkable property of exponentially distributed random variables. The numbers of

jump points (i.e. sums Tk) which fall into disjoint time intervals δj are independent,

these numbers being distributed according to the Poisson laws with parameters µδj .

Using the last fact, one can construct a more general model of a pure jump ho-

mogeneous process with independent increments. Consider an arbitrary sequence

of independent identically distributed random variables ζ1, ζ2, . . . that have a ch.f.

β(λ) and are independent of the σ -algebra generated by the process ξ(t). Construct

now a new process ζ(t) as follows. To each ω we put into correspondence a new

trajectory obtained from the trajectory ξ(t) by replacing the first unit jump with the

variable ζ1, the second one with the variable ζ2, and so on. It is easy to see that ζ(t)

will also be a process with independent increments. The value ζ(t) will be equal to

the sum

ζ(t)= ζ1 + · · · + ζξ(t) (19.4.2)

of the random number ξ(t) of random variables ζ1, ζ2, . . . , where ξ(t) is indepen-

dent of {ζk} by construction.

Hence, by the total probability formula,

Eeiλζ(t) =
∞∑

k=0

P
(
ξ(t)= k

)
Eeiλ(ζ1+···+ζk)

=
∞∑

k=0

(µt)k

k! e−µt
(
β(λ)

)k = e−µt+µtβ(λ) = eµt(β(λ)−1). (19.4.3)
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Definition 19.4.2 The process ζ(t) defined by formula (6) or ch.f. (7) is called a

compound Poisson process. It is evidently a special case of the generalised renewal

process (see Sect. 10.6).

As we have already noted, it is again a homogeneous process with independent

increments. In formula (19.4.3), the parameter µ determines the jumps’ intensity

in the process ζ(t), while the ch.f. β(λ) specifies their distribution. If we add a

constant “drift” qt to the process ζ(t), then ζ̃ (t) = ζ(t) + qt will clearly also be

a homogeneous process with independent increments having the ch.f. Eeiλ̃ζ (t) =
et (iλq+µ(β(λ)−1)).

Finally, if a Wiener process w(t) with zero drift and diffusion coefficient σ is

given on the same probability space and is independent of ζ̃ (t), and to each ω we

put into correspondence a trajectory of ζ̃ (t)+w(t), we again obtain a process with

independent increments, with ch.f. exp{t (iλq +µ(β(λ)− 1)− λ2σ 2/2)}.
One should note, however, that these constructions by no means exhaust the

whole class of processes with independent increments (and therefore the class of

infinitely divisible distributions).

A description of the entire class will be given in the next section.

The Poisson processes, as well as Wiener processes, are often used as mathemat-

ical models in various applications. For example, the process of counts of cosmic

particles of certain energy registered by a sensor in a given volume, or of collisions

of elementary particles in an accelerator are described by the Poisson process. The

same is true of the process of incoming telephone calls at a switchboard and many

other processes.

Due to representation (19.4.2), the study of compound Poisson processes re-

duces, in many aspects, to the study of the properties of sums of independent random

variables.

19.5 Description of the Class of Processes with Independent

Increments

We saw in Theorem 19.1.1 that, to describe the class of distributions of stochasti-

cally continuous processes with independent increments, it suffices to describe the

class of all infinitely divisible distributions. Let, as before, L be the class of the

ch.f.s of infinitely divisible distributions.

Lemma 19.5.1 The class L is closed with respect to the operations of multiplication
and passage to the limit (when the limit is again a ch.f.).

Proof (1) Let ϕ1 ∈L and ϕ2 ∈L. Then ϕ1ϕ2 = (ϕ
1/n

1 · ϕ1/n

2 )n, where ϕ
1/n

1 · ϕ1/n

2 is

a ch.f.

(2) Let ϕn ∈ L, ϕn → ϕ, and ϕ be a ch.f. Then, for any m, ϕ
1/m
n → ϕ1/m

as n→∞, where ϕ1/m is continuous at zero and hence is a ch.f. The lemma is

proved. �
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Denote by LΠ ⊂L the class of ch.f.s whose logarithms have the form

lnϕ(λ)= iλq +
∑

k

ck

(
eiλbk − 1

)
, ck ≥ 0,

∑

k

ck <∞.

We will call this the Poisson class. We already know that it corresponds to com-

pound Poisson processes with drift q and intensities ck of jumps of size bk (note

that
∑

k ck(e
iλbk − 1) = (

∑
k ck)E(eiλξ − 1), where ζ assumes the values bk with

probabilities ck/
∑

j cj ).

Lemma 19.5.2 A ch.f. ϕ belongs to L if and only if ϕ = limn→∞ ϕn, ϕn ∈LΠ .

Proof Sufficiency. Let

lnϕn =
∑

k

(
iλqk,n + ck,n

(
eiλbk,n − 1

))
,

and ϕ = limϕn be a ch.f. It is evident that ϕ
1/m
n ∈ LΠ ⊂ L and ϕ

1/m
n → ϕ1/m.

Therefore ϕ1/m, being a limit of a sequence of ch.f.s which is continuous at zero, is

a ch.f. itself, so that ϕ ∈L.

Necessity. Let ϕ ∈ L. Then ϕ(λ) 
= 0 and there exists β := lnϕ with n(ϕ1/n −
1)→ β , and

ϕ1/n − 1=
∫ (

eiλx − 1
)
dFn(x).

The integral of the continuous function on the right-hand side can be viewed as a

Riemann–Stieltjes integral. This means that for Fn there exists a partition of the real

axis into intervals ∆nk such that, for xnk ∈∆nk and rn < cn−2,
∫ (

eiλx − 1
)
dFn(x)=

∑

k

∫ (
eiλx − 1

)
Pn(∆nk)+ rn

(Pn(∆) is the probability of hitting the interval ∆ corresponding to Fn). We obtain

β = limn
(
ϕ1/n − 1

)
= lim

n→∞

[
n
∑

k

(
eiλxnk − 1

)
Pn(∆nk)

]
.

The lemma is proved. �

Theorem 19.5.1 (Lévy–Khintchin) A ch.f. ϕ belongs to L if and only if the function
β := lnϕ admits a representation of the form

β = β(λ;a,Ψ )= iλq +
∫ (

eiλx − 1− iλx

1+ x2

)
1+ x2

x2
dΨ (x), (19.5.1)

where Ψ is a non-decreasing function of bounded variation (i.e., a distribution func-
tion up to a constant factor), the integrand being assumed equal to −λ2/2 at the
point x = 0 (by continuity).
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Proof Assume that β has the form (19.5.1). Then β(λ) is a continuous function,

since it is (up to a continuous additive term iλa) a uniformly convergent integral of

a continuous bounded function. Further, let xnk 
= 0, k = 1, . . . , n, be points of refin-

ing partitions of intervals [−√n,
√

n ). Then β0(λ)= β(λ)− iλq can be represented

as β0 = limβn with

βn(λ) :=
n∑

k=1

[
iλqkn + ckn

(
eiλbkn − 1

)]
∈LΠ ,

where, under a natural notational convention, one should put

ckn =
1+ x2

kn

x2
kn

Ψ
(
[xkn, xk+1,n)

)
, qkn =

1

xkn

Ψ
(
[xkn, xk+1,n)

)
, bkn = xkn,

Ψ being used to denote the measure Ψ (A)=
∫
A

dΨ (x). We obtain that ϕ is a limit

of the sequence of ch.f.s ϕn ∈LΠ . It remains to make use of Lemma 19.5.2.

Now let ϕ ∈L. Then

β = limn
(
ϕ1/n − 1

)
= lim

∫ (
eiλx − 1

)
ndFn(x)

= lim

[
iλ

∫
nx

1+ x2
dFn(x)

+
∫ (

eiλx − 1− iλx

1+ x2

)
1+ x2

x2

nx2

1+ x2
dFn(x)

]
. (19.5.2)

If we put

qn :=
∫

nx

1+ x2
dFn(x), Ψn(x) := nx2

1+ x2
dFn(x), (19.5.3)

then on the right-hand side of (19.5.2) we will have limβn, βn = β(λ;qn,Ψn).

Now assume for a moment that the following continuity theorem holds for func-

tions from L.

Lemma 19.5.3 If βn = β(λ;qn,Ψn)→ β and β is continuous at the point λ = 0,

then β(λ) has the form β(λ;q,Ψ ), qn→ q and Ψn⇒ Ψ .

The symbol ⇒ in the lemma means convergence at the points of continuity of

the limiting function (as in the case of distribution functions) and that Ψn(±∞)→
Ψ (±∞).

If the lemma is true, the required assertion of the theorem will follow in an obvi-

ous way from (19.5.2) and (19.5.3). It remains to prove the lemma.

Proof of Lemma 19.5.3 Observe first that the correspondence β(λ;q,Ψ )↔ (q,Ψ )

is one-to-one. Since in one direction it is obvious, we only have to verify that β

uniquely determines q and Ψ . To each β we put into correspondence the function
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γ (λ)=
∫ 1

0

[
β(λ)− 1

2

(
β(λ+ h)− β(λ− h)

)]
dh

=
∫ 1

0

∫ (
eiλx − 1

2

(
ei(λ+h)x − ei(λ−h)x

))1+ x2

x2
dΨ (x)dh,

where

1

2

(
ei(λ+h)x − ei(λ−h)x

)
= eiλx coshx,

∫ 1

0

eiλx(1− coshx)dh= eiλx

(
1− sinx

x

)
,

0 < c1 <

(
1− sinx

x

)
1+ x2

x2
< c2 <∞.

Therefore

γ (λ)=
∫

eiλx dΓ (x),

where

Γ (x)=
∫ x

−∞

(
1− sinu

u

)
1+ u2

u2
dΨ (u)

is (up to a constant multiplier) a distribution function, for which γ (λ) plays the role

of its ch.f. Clearly,

Ψ (x)=
∫ x

−∞

1+ u2

u2

(
1− sinu

u

)−1

dΓ (u),

so that we obtained a chain of univalent correspondences β→ γ → Γ → Ψ which

proves the assertion.

We return to the proof of Lemma 19.5.3. Because eβn → eβ , eβn is a ch.f., and

eβ is continuous at the point λ= 0, we see that eβ is a ch.f. and hence a continuous

function. This means that the convergence ϕn→ ϕ is uniform on any interval,

γn(λ) =
∫ 1

0

[
βn(λ)− 1

2

(
βn(λ+ h)+ βn(λ− h)

)]
dh

→
∫ 1

0

[
β(λ)− 1

1

(
β(λ+ h)+ β(λ− h)

)]
dh=: γ (λ),

and the function γ (u) is continuous. By the continuity theorem for ch.f.s, this means

that γ (u) is a ch.f. (of a finite measure Γ ), Γn⇒ Γ (where Γn is the preimage of

γn), Ψn⇒ Ψ , and qn→ q . Thus we establish that

β = limβn = lim

[
iλqn +

∫ (
eiλx − 1− iλx

1+ x2

)
dΨn(x)

]

= iλq +
∫ (

eiλx − 1− iλx

1+ x2

)
dΨ (x)= β(λ;q,Ψ ).

Lemma 19.5.3 is proved. �
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Theorem 19.5.1 is proved. �

Now we will make several remarks in regard to the structure of the process ξ(t)

and its relationship to representation (19.5.1). The function Ψ in (19.5.1) corre-

sponds to the so-called spectral measure of the process ξ(t) (recall that we agreed

to use the same symbol Ψ for the measure itself: Ψ (A) =
∫
A

dΨ (x)). It can be

represented in the form µΨ1(x), where µ= Ψ (∞)− Ψ (−∞) and Ψ1(x) is a dis-

tribution function.

(1) The spectral measure of the Wiener process is concentrated at the point 0. If

Ψ ({0})= σ 2, then ξ(1)⊂=�q,σ 2 .

(2) The spectral measure Ψ of a compound Poisson process has the property
∫
|x|−2 dΨ (x) <∞.

In that case

G(x)=
∫ x

−∞

1+ u2

u2
dΨ (u)

possesses the properties of a distribution function, and ψ(λ;q,Ψ ) may be written

in the form

iλq1 +
∫ (

eiλx − 1
)
dG(x),

where

q1 = q −
∫

x−1 dΨ (x).

(3) Consider now the general case, but under the condition that Ψ ({0})= 0. As

we know, the function ψ can be approximated for small ∆ by expressions of the

form (we put ∆k = [(k − 1)∆, k∆))

iλq +
∞∑

k=−∞
k 
=0

[
− iλ

k∆
Ψ (∆k)+

(
eiλk∆ − 1

)1+ (k∆)2

(k∆)2
Ψ (∆k)

]
,

which corresponds to the sum of Poisson processes with jumps of sizes k∆ of the

respective intensities

1+ (k∆)2

(k∆)2
Ψ (∆k).

If, say,
∫ ∞

+0

dΨ (x)

x2
=∞,

then for any ε > 0 the total intensity of these processes with jumps from the interval

(0, ε) will increase to infinity as ∆→ 0. This means that, with probability 1, on any

time interval δ there will be at least one jump of size smaller than any given ε > 0,
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so that the trajectories of ξ(t) will be everywhere discontinuous. To “compensate”

these jumps, a drift of size Ψ (∆k)/k∆ is added, the “total value” of such drifts being

possibly unbounded (if
∫∞
+0 x−1dΨ (x)=∞).

(4) For stable processes (see Sect. 8.8) the functions Ψ (x) have power “branches”,

smooth on the half-axes, possessing the property c1Ψ
′(x)= Ψ ′(c2x) for appropriate

c1 and c2.



Chapter 20

Functional Limit Theorems

Abstract The chapter begins with Sect. 20.1 presenting the classical Functional

Central Limit Theorem in the triangular array scheme. It establishes not only con-

vergence of the distributions of the scaled trajectories of random walks to that of

the Wiener process, but also convergence rates for Lipshchitz sets and distribution

functions of Lipshchitz functionals in the case of finite third moments when the

Lyapunov condition is met. Section 20.2 uses the Law of the Iterated Logarithm for

the Wiener process to establish such a low for the trajectory of a random walk with

independent non-identically distributed jumps. Section 20.3 is devoted to proving

convergence to the Poisson process of the processes of cumulative sums of indepen-

dent random indicators with low success probabilities and also that of the so-called

thinning renewal processes.

20.1 Convergence to the Wiener Process

We have already pointed out in Sect. 19.2 that the Wiener processes are, in a certain

sense, limiting to random polygons with vertices at the points (k/n,Sk/
√

n), where

Sk = ξ1 + · · · + ξk are partial sums of independent identically distributed random

variables ξ1, ξ2, . . . with zero means and finite variances. Now we will give a more

precise and general meaning to this statement.

Let

ξ1,n, . . . , ξn,n (20.1.1)

be independent random variables in the triangular array scheme (see Sects. 8.3, 8.4),

ζk,n :=
k∑

j=1

ξj,n, Eξk,n = 0, Eξ2
k,n = σ 2

k,n,

that have finite third moments E|ξk,n|3 = µk,n <∞.

We will assume without loss of generality (see Sect. 8.4) that

Var(ζn,n)=
n∑

j=1

σ 2
j,n = 1.
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Fig. 20.1 The random

polygon sn(t) constructed

from the random walk

ζ0, ζ1, ζ2, . . .

Put

tk,n :=
k∑

j=1

σ 2
j,n,

so that t0,n = 0, tn,n = 1, and consider a random polygon with vertices at the points

(tk, ζk), where we suppress the second subscript n for brevity’s sake: tk = tk,n,

ζk = ζk,n.

We obtain a random process on [0,1] with continuous trajectories, which will

be denoted by sn = sn(t) (see Fig. 20.1). The functional limit theorem (or invari-

ance principle; the motivation behind this second name will be commented on be-

low) states that for any functional f given on the space C(0,1) and continuous in

the uniform metric, the distribution of f (sn) converges weakly to that of f (w) as

n→∞:

f (sn)'⇒ f (w), (20.1.2)

where w =w(t) is the standard Wiener process. The conventional central limit the-

orem is a special case of this statement (one should take f (x) to be x(1)).

The above assertion is equivalent to each of the following two statements:

1. For any bounded continuous functional f ,

Ef (sn)→ Ef (w), n→∞. (20.1.3)

2. For any set G from the σ -algebra BC(0,1) of Borel sets in the space

C(0,1) (BC(0,1) is generated by open balls in the metric space C(0,1) endowed

with the uniform distance ρ; as we already noted, BC(0,1) = B
[0,1]
C ) such that

P(w ∈ ∂G)= 0, where ∂G is the boundary of the set G, one has

P(sn ∈G)→ P(w ∈G), n→∞. (20.1.4)

Relations (20.1.3) and (20.1.4) are equivalent definitions of weak convergence of

the distributions Pn of the processes sn to the distribution W of the Wiener process

w in the space 〈C(0,1),BC(0,1)〉. More details can be found in Appendix 3 and in

[1] and [14].

The main results of the present section are the following theorems.

As before, put L3 :=
∑n

k=1 µk,n.

Theorem 20.1.1 Let L3→ 0 as n→∞ (the Lyapunov condition). Then the con-
vergence relations (20.1.2)–(20.1.4) hold true.
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Remark 20.1.1 The condition L3→ 0 can be relaxed here to the Lindeberg condi-

tion. In this version the above convergence theorem is known under the name of the

Donsker–Prokhorov invariance principle.

Along with Theorem 20.1.1 we will obtain a more precise assertion.

Definition 20.1.1 A set G is said to be Lipschitz if W(G(ε))−W(G)≤ cε for some

c <∞, where G(ε) is the ε-neighbourhood of G and W is the measure correspond-

ing to the Wiener process.

In the sequel we will denote by the letter c (with or without subscripts) absolute

constants, possibly having different values.

Theorem 20.1.2 If G is a Lipschitz set, then
∣∣P(sn ∈G)− P(w ∈G)

∣∣< cL
1/4
3 . (20.1.5)

In the case when ξk,n = ξk/
√

n, where the ξk do not depend on n and are iden-

tically distributed with Eξk = 0 and Var(ξk) = 1, the right-hand side of (20.1.5)

becomes cn−1/8.

A similar bound can be obtained for functionals. A functional on C(0,1) is said

to be Lipschitz if the following two conditions are met:

(1) |f (x)− f (y)|< cρ(x, y);

(2) the distribution of f (w) has a bounded density.

Corollary 20.1.1 If f is a Lipschitz functional, then Gv := {f (x) < v} is a Lips-
chitz set (with one and the same constant for all v), so that by Theorem 20.1.2

sup
v

∣∣P
(
f (w) < v

)
− P

(
f (sn) < v

)∣∣≤ cL
1/4
3 .

The above theorems are consequences of Theorem 20.1.3 to be stated below.

Let

η1,n, . . . , ηn,n (20.1.6)

be any other sequence of independent identically distributed random variables in the

triangular array scheme with the same two first moments Eηk,n = 0, Eη2
k,n = σ 4

k.n,

and finite third moments. Denote by Fk,n and Φk,n the distribution functions of ξk,n

and ηk,n, respectively, and put

νk,n := E|ηk,n|3 <∞, N3 :=
n∑

k=1

νk,n,

µ0
k,n :=

∫
|x|3

∣∣d
(
Fk,n(x)−Φk,n(x)

)∣∣≤ µk,n + νk,n,

L0
3 :=

n∑

k=1

µ0
k,n ≤ L3 +N3.
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Denote by s′n(t) the random process constructed in the same way as sn(t) but using

the sequence {ηk,n}.

Theorem 20.1.3 For any A ∈BC(0,1) and any ε > 0,

P(sn ∈A)≤ P
(
s′n ∈A(2ε)

)
+

cL0
3

ε3
.

In order to prove Theorem 20.1.3, we will first obtain its finite-dimensional

analogue. Denote by ζ and η the vectors ζ = (ζ1, . . . , ζn) and η = (η1, . . . , η2)

respectively, where ζk :=
∑k

j=1 ζj,n and ηk :=
∑k

j=1 ηj,n, and by B(ε) the ε-

neighbourhood of a set B ∈Rn:

B(ε) :=
⋃

x∈B
|v|≤ε

(x + v),

where x = (x1, . . . , xn), v = (v1, . . . , vn), and |v| =maxk |vk|.

Lemma 20.1.1 Let B be an arbitrary Borel subset of Rn. Then, for any ε > 0,

P(ζ ∈ B)≤ P
(
η ∈ B(2ε)

)
+

cL0
3

ε3
.

Proof1 Introduce a collection of nested neighbourhoods

B(ε)(k) :=
⋃

x∈B
|v|≤ε

(x1, . . . , xk, xk+1 + vk+1, . . . , xn + vn), k = 0, . . . , n,

B := B(ε)(n)⊂ B(ε)(n− 1)⊂ · · · ⊂ B(ε)(1)⊂ B(ε)(0)= B(ε)

and denote by ek the vector (0, . . . ,0,1,0, . . . ,0), where 1 stands in the k-th posi-

tion. It is obvious that if x ∈ B(ε)(k), then

x + ekvk ∈ B(ε)(k − 1) if |vk| ≤ ε. (20.1.7)

Further, together with arrays (20.1.1) and (20.1.6), consider the collection of

“transitional” arrays

ξ1,n, . . . , ξk,n, ηk+1,n, . . . , ηn,n, k = 0, . . . , n. (20.1.8)

Denote by ζ(k)= (ζ1(k), . . . , ζn(k)) the vectors formed by the cumulative sums of

random variables from the k-th row (20.1.8), so that

ζj (k)=
{

ζj for j ≤ k,

ζk + ηk+1,n + · · · + ηj,n for j > k.

To continue the proof of Lemma 20.1.1 we need the following.

1The extension of the approach to proving the central limit theorem used in Sect. 8.5, which is

used in this demonstration, was suggested by A.V. Sakhanenko.
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Lemma 20.1.2 For any random variable δ such that P(|δ| ≤ ε)= 1, one has

P(ζ ∈ B)≤ P
(
η ∈ B(2ε)

)
+

n∑

k=1

∆k, (20.1.9)

where

∆k = P
(
ζ(k)+ δe(k − 1) ∈ B(ε)(k − 1)

)
− P

(
ζ(k − 1)+ δe(k − 1) ∈ B(ε)(k − 1)

)
,

e(r)=
n∑

j=r+1

ej = (0, . . . ,0,1, . . . ,1).

Proof Indeed, by virtue of (20.1.7),

P(ζ ∈ B)= P
(
ζ(n) ∈ B(ε)(n)

)
≤ P

(
ζ(n)+ e(n− 1)δ ∈ B(ε)(n− 1)

)

≡ P
(
ζ(n− 1)+ e(n− 1)δ ∈ B(ε)(n− 1)

)
+∆n.

Reapplying the same calculations to the right-hand side, we obtain that

P
(
ζ(n− 1)+ e(n− 1)δ ∈ B(ε)(n− 1)

)

≤ P
(
ζ(n− 1)+ e(n− 1)δ + en−1δ ∈ B(ε)(n− 2)

)

= P
(
ζ(n− 1)+ e(n− 2)δ ∈ B(ε)(n− 2)

)

≡ P
(
ζ(n− 2)+ e(n− 2)δ ∈ B(ε)(n− 2)

)
+∆n−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P
(
ζ(1)+ e(1)δ ∈ B(ε)(1)

)
≤ P

(
ζ(1)+ e(1)δ + e1δ ∈ B(ε)(0)

)

= P
(
ζ(1)+ e(0)δ ∈ B(ε)(0)

)
≡ P

(
ζ(0)+ e(0)δ ∈ B(ε)(0)

)
+∆1.

Since ζ(0) = η and P(η + e(0)δ ∈ B(ε)) ≤ P(η ∈ B(2ε)), inequality (20.1.9) is

proved. Lemma 20.1.2 is proved. �

To obtain Lemma 20.1.1, we now have to estimate ∆k . It will be convenient to

consider, along with (20.1.8), the sequences

ξ1,n, . . . , ξk−1,n, y, ηk+1,n, . . . , ηn,n

and denote by ζ(k, y)= (ζ1(k, y), . . . , ζn(k, y)) the respective vectors of cumulative

sums, so that

ζ(k, ξk,n)= ζ(k)= ζ(k,0)+ ξk,ne(k−1),

ζ(k, ηk,n)= ζ(k − 1)= ζ(k,0)+ ηk,ne(k−1).

Then ∆k can be written in the form

∆k = P
(
ζ(k,0)+ (δ + ξk,n)e(k − 1) ∈ B(ε)(k − 1)

)

− P
(
ζ(k,0)+ (δ + ηk,n)e(k − 1) ∈ B(ε)(k − 1)

)
. (20.1.10)
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Take δ to be a random variable independent of ζ and η. Then it will be convenient

to use conditional expectation to estimate the probabilities participating in (20.1.10),

because, for instance, in the equality

P
(
ζ(k,0)+ (δ + ξk,n)e(k − 1) ∈ B(ε)(k − 1)

)

= EP
(
(δ + ξk,n)e(k − 1) ∈ B(ε)(k − 1)− ζ(k,0)

∣∣ ζ(k,0)
)

(20.1.11)

the set C = B(ε)(k − 1)− ζ(k,0) may be assumed fixed (see the properties of con-

ditional expectations; here δ and ξk,n are independent of ζ(k,0)). Denote by D the

set of all ys for which y e(k − 1) ∈ C. We have to bound the difference

P(δ + ξk,n ∈D)− P(δ + ηk,n ∈D). (20.1.12)

We make use of Lemma 8.5.1. To transform (20.1.12) to a form convenient for

applying the lemma, take δ to be a random variable having a thrice continuously

differentiable density g(t) and put for brevity ξk,n = ξ and ηk,n = η. Then δ + ξ

will have a density equal to
∫

dFξ (t)g(y − t)= Eg(y − ξ),

so that

P(δ + ξ ∈D)=
∫

D

Eg(y − ξ) dy = E

∫

D

g(y − ξ) dy.

Now putting

h(x) :=
∫

D

g(y − x)dy,

we have

P(δ + ξ ∈D)= Eh(ξ),

where h is a thrice continuously differentiable function,

∣∣h′′′(x)
∣∣≤

∫ ∣∣g′′′(y)
∣∣dy =: h3.

Applying now Lemma 8.5.1 we obtain that

∣∣P(δ + ξ ∈D)− P(δ + η ∈D)
∣∣=

∣∣E
(
h(ξ)− h(η)

)∣∣≤ h3

6
µ0

k,n,

µ0
k,n =

∫ ∣∣x3
∣∣∣∣d

(
Fk,n(x)−Φk,n(x)

)∣∣.

Because the right-hand side here does not depend on ξ(k,0) and D in any way, we

get, returning to (20.1.10) and (20.1.11), the estimate

|∆k| ≤
h3

6
µ0

n,k. (20.1.13)

Now let g1(x) be a smooth density concentrated on [−1,1]. Then, putting

g(x) := g1

(
x

ε

)
1

ε
,
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we obtain that

h3 =
∫

1

ε4

∣∣∣∣g
′′′
1

(
y

ε

)∣∣∣∣dy = 1

ε3

∫ ∣∣g′′′1 (y)
∣∣dy = c1

ε3
, c1 = const. (20.1.14)

The assertion of Lemma 20.1.1 now follows from (20.1.9), (20.1.13) and

(20.1.14). �

Proof of Theorem 20.1.3 This theorem is a consequence of Lemma 20.1.1. Indeed,

let B ∈ Rn be such that the events {sn ∈ A} and {ζ ∈ B} are equivalent (sn is com-

pletely determined by ζ ). Then clearly {sn ∈A(ε)} = {ζ ∈ B(ε)} and the assertion of

Theorem 20.1.3 repeats that of Lemma 20.1.1. Theorem 20.1.3 is proved. �

Proof of Theorem 20.1.1 Let w(t) be the standard Wiener process. Put ηk,n :=
w(tk,n)−w(tk−1,n). Then the sequence η1,n, . . . , ηn,n satisfies all the required con-

ditions, for

Eηk,n = 0, Eη2
k,n = σ 2

k,n, νk,n = E|ξk,n|3 = c3σ
3
k,n <∞.

Note also that

σ 3
k,n =

(
E|ξk,n|2

)3/2 ≤ E|ξk,n|3 = µk,n,

so that

N3 =
n∑

k=1

νk,n = c3

n∑

k=1

σ 3
k,n ≤ c3L3→ 0.

We will need the following

Lemma 20.1.3 P(ρ(w, s′n) > ε)≤ cN3/ε
3.

Proof The event {ρ(w, s′n) > ε} is equal to
⋃

k Ak , where

Ak :=
{

sup
t∈Ik

∣∣w(t)− s′(t)
∣∣> ε

}
⊂
{

sup
t∈Ik

∣∣w(t)
∣∣> ε

2

}
, Ik := [tk−1, tk].

Therefore, recalling that tk − tk−1 = σ 2
k,n and w(t)

d= σw(t/σ 2), we have

P(Ak)≤ P

(
sup

t∈[0,1)

∣∣w(t)
∣∣> ε

2σk,n

)
≤ 2

(
1−Φ

(
ε

2σk,n

))
.

The function (1−Φ(t)) vanishes as t→∞ much faster than t−3. Hence

2

(
1−Φ

(
ε

2σk,n

))
≤ c

σ 3
k,n

ε3
, P

(⋃

k

Ak

)
≤ cN3

ε3
.

Lemma 20.1.3 is proved. �

We see from the proof that the bound stated by Lemma 20.1.3 is rather crude.
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We return to the proof of Theorem 20.1.1. Because

P
(
s′n ∈G

)
= P

(
s′n ∈G,ρ

(
w, s′n

)
≤ ε

)
+ P

(
s′n ∈G,ρ

(
w, s′n

)
> ε

)
,

we have

P
(
s′n ∈G

)
≤ P

(
w ∈G(ε)

)
+ cN3

ε3
(20.1.15)

and, by Theorem 20.1.3,

P(sn ∈G)≤ P
(
w ∈G(3ε)

)
+

c(L0
3 +N3)

ε3
.

Now we prove the converse inequality. Introduce the set G(−ε) :=G− (∂G)(ε).

Then [G(−ε)](ε) =:G0 ⊂G. Swapping sn and s′n in Theorem 20.1.3 and applying

the latter to the set G(2ε), we obtain

P
(
sn ∈G0

)
≥ P

(
s′n ∈G(−2ε)

)
−

c(L0
3 +N3)

ε3
. (20.1.16)

Swapping w and s′n in (20.1.15) and applying that relation to G(−3ε), we find that

P
(
s′n ∈G(−2ε)

)
≥ P

(
w ∈G(−3ε)

)
− cN3

ε3
.

This and (20.1.16) imply that

P(sn ∈G)≥ P
(
sn ∈G0

)
≥ P

(
w ∈G(−3ε)

)
−

c(L0
3 +N3)

ε3
.

Setting

P
(
w ∈G(ε)

)
− P(w ∈G)=W

(
G(ε)

)
−W(G)=:WG(ε)

and taking into account that N3 ≤ cL3 and L0
3 ≤ L3 +N3, we will obtain that

−WG(−3ε)+ cL3

ε3
≤ P(sn ∈G)−W(G)≤WG(3ε)+ cL3

ε3
. (20.1.17)

If W(∂G)= 0 then clearly

W
(
G(3ε)

)
−W

(
G(−3ε)

)
→ 0

as ε→ 0, and WG(±3ε)→ 0. From this and (20.1.17) it is easy to derive that

P(sn ∈G)→ P(w ∈G), n→∞.

Convergence f (sn)'⇒ f (w) for continuous functionals follows from (20.1.4),

since if v is a point of continuity of the distribution of f (w) then the set Gv = {x ∈
C(0,1) : f (x) < v} has the property

W(∂Gv)= P
(
f (w)= v

)
= 0

and therefore

P
(
f (sn) < v

)
→ P

(
f (w) ∈ v

)
.

Theorem 20.1.1 is proved. �
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Proof of Theorem 20.1.2 If G is a Lipschitz set, then
∣∣∆WG(±3ε)

∣∣< cε,

and by (20.1.17)

∣∣P(sn ∈G)−W(G)
∣∣< c

(
ε+ L3

ε3

)
.

Putting ε := L
1/4
3 we obtain the required assertion. Theorem 20.1.2 is proved. �

The reason for the name “invariance principle” used to refer to the main asser-

tions of this section is best illustrated by Theorem 20.1.3. By virtue of the theorem,

one can approximate the value of P(sn ∈ A) by P(s′n ∈ A) for any other sequence

(20.1.6) having the same first two moments as (20.1.1). In that sense, the asymp-

totics of P(sn ∈ A) are invariant with respect to particular distributions of the un-

derlying sequences with fixed first two moments. For example, the calculation of

P(sn ∈ G) or P(w(t) ∈ G) can be replaced with that of P(s′n ∈ G) for a Bernoulli

sequence, which is convenient for various numerical methods. On the other hand, the

probabilities P(w ∈G) for a whole class of regions G were found in explicit form

(see e.g. [32]). We know, for example, that P(supt∈[0,1]w(t) > y) = 2(1−Φ(y)).

(This implies, in particular, that G = {x ∈ C(0,1) supt∈[0,1] x(t) > y} is a Lips-

chitz set.) Hence for the distribution of the maximum Sn =maxk≤n Sk of the sums

Sk =
∑k

j=1 ξj , when Eξk = 0 and Var ξk = σ 2, we have

P(Sn > xσ
√

n )→ 2
(
1−Φ(x)

)
, n→∞,

and one can use this relation for the approximate calculation of the distribution of

Sn which is, as we saw in Chap. 12, of substantial interest in applications.

In the same way we can approximate the joint distribution of Sn, Sn, and Sn :=
mink≤n Sk (i.e. the probabilities of the form P(Sn < x

√
n, Sn > y

√
n, Sn ∈ B))

using the respective formulas for the Wiener process given in Skorokhod (1991).

Remark 20.1.2 In conclusion of this section note that all the above assertions will

remain true if, instead of sn(t), we consider in them the step function s∗n(t) = ζk,n

for t ∈ [tk, tk+1). One can verify this by repeating anew all the arguments for s∗.
Another way to obtain, say, Theorems 20.1.1 and 20.1.2 for s∗n is to make use of the

already obtained results and bound the distance ρ(sn, s
∗
n). Because

{
ρ
(
sn, s

∗
n

)
> ε

}
⊂

n⋃

k=1

{
|ξk,n|> ε

}
,

one has

P
(
ρ
(
sn, s

∗
n

)
> ε

)
≤

n∑

k=1

P
(
|ξk,n|> ε

)
≤

n∑

k=1

µk,n

ε3
= L3

ε3
.

Recall that a similar bound was obtained for ρ(s′n,w), and this allowed us to

replace, where it was needed, the process s′n with w. Therefore, using the same
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argument, one can replace sn with s∗n . In that case, we can consider convergence

of the distributions of functionals f (s∗n) defined on D(0,1) (and continuous in the

uniform metric ρ). Sometimes the use of s∗n is more convenient than that of sn. This

is the case, for example, when one has to find the limiting distribution of

n∑

k=1

g(ζk,n)= n

∫
g
(
s∗n(t)

)
dt

(ξk,n are identically distributed). It follows from the above representation that

1

n

n∑

k=1

g(ζk,n)'⇒
∫

g
(
w(t)

)
dt, n→∞.

20.2 The Law of the Iterated Logarithm

Let ξ1, ξ2, . . . be a sequence of independent random variables,

Eξk = 0, Eξ2
k = σ 2

k , E|ξk|3 = µk,

Sn =
n∑

k=1

ξk, B2
n =

n∑

k=1

σ 2
k , Mn =

n∑

k=1

µk.

In this notation, the Lyapunov ratio is equal to

L3 = L3,n =
Mn

B3
n

.

In the present section, we will show that the law of the iterated logarithm for the

Wiener process and Theorem 20.1.2 imply the following.

Theorem 20.2.1 (The law of the iterated logarithm for sums of random variables)

If Bn→∞ as n→∞ and L3,n < c/ lnBn for some c <∞, then

P

(
lim

n→∞
Sn

Bn

√
2 ln lnBn

= 1

)
= 1, (20.2.1)

P

(
lim

n→∞

Sn

Bn

√
2 ln lnBn

=−1

)
= 1. (20.2.2)

Thus all the sequences which lie above

(1+ ε)Bn

√
2 ln lnBn

will be upper for the sequence of sums Sn, while all the sequences below

(1− ε)Bn

√
2 ln lnBn

will be lower.
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The conditions of the theorem will clearly be satisfied for identically distributed

ξk , for in that case B2
n = σ 2

1 n, L3,n = µ1/(σ
3
1

√
n ).

Proof We turn to the proof of the law of the iterated logarithm in Theorem 19.3.2

and apply it to the sequence Sn. We will not need to introduce any essential changes.

One just has to consider Snk
instead of w(ak), where nk = min{n : B2

n ≥ ak}, and

replace ak with B2
nk

where it is needed. By the Lyapunov condition, maxk≤n σ 2
k =

o(B2
n), so that B2

nk−1 ∼ B2
nk
∼ ak as k→∞.

The key point in the proof of Theorem 19.3.2 is the proof of convergence (for

any ε > 0) of the series

∑

k

P
(

sup
u≤ak

w(u) > (1+ ε)xk−1

)
(20.2.3)

and divergence of the series

∑

k

P

(
w
(
ak
)
−w

(
ak−1

)
>

(
1− ε

2

)
xk

)
, (20.2.4)

where

xk =
√

2ak ln lnak, w
(
ak
)
−w

(
ak−1

) p=w
(
ak
(
1− a−1

))
.

In our case, if one follows the same argument, one has to prove the convergence of

the series
∑

k

P
(
Snk

> (1+ ε) yk−1

)
(20.2.5)

and divergence of the series

∑

k

P

(
Snk
− Snk−1

>

(
1− ε

2

)
yk

)
, (20.2.6)

where yk =
√

2B2
nk

ln lnB2
nk
∼ xk . But the asymptotic behaviour of the probabilities

of the events in (20.2.3), (20.2.5) and (20.2.4), (20.2.6) under the conditions L3,n <

c/ lnBn will essentially be the same. To establish this, we will make use of the

inequality
∣∣∣∣P
(

sn

Bn

∈G

)
− P

(
w ∈G(±δ)

)∣∣∣∣<
cL3,n

δ3
, (20.2.7)

which follows from the proof of Theorem 20.1.3. By this inequality,

P

(
Sn

Bn

> (1+ 3ε)x

)
≤ P

(
sup
u≤1

w(u) > (1+ 2ε) x
)
+ cL3,n

(εx)3

= P
(

sup
u≤B2

n

w(u) > (1+ 2ε)xBn

)
+ cL3,n

(εx)3
.
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Therefore (see (20.2.5)), putting n := nk and x := yk−1/Bn, we obtain

P
(
Snk

> (1+ 3ε)yk−1

)
≤ P

(
sup

u≤B2
nk

w(u) > (1+ 2ε) yk−1

)
+ cL3,nk

ε3(ln lnB2
nk

)3/2
.

Here

yk−1 ∼ xk−1, B2
nk
≥ ak, ln lnB2

nk
∼ ln lnak ∼ lnk,

L3,nk
≤ c

lnBnk

∼ c

lnak
∼ c1

k
.

Consequently, for all sufficiently large k (recall that the letter c denotes different

constants),

P
(
Snk

> (1+ 3ε)yk−1

)
≤ P

(
sup
u≤ak

w(u) > (1+ ε)xk−1

)
+ c

ε3k(ln k)3/2
.

Since

∞∑

k=1

1

k(ln k)3/2
<∞, (20.2.8)

the above inequality means that the convergence of series (20.2.3) implies that of se-

ries (20.2.5). The first part of the theorem is proved.

The second part is proved in a similar way. Consider series (20.2.6). By (20.2.7),

P
(
Snk
− Snk−1

> (1− 3ε)yk

)

= P

(
snk

(1)− snk
(rk) > (1− 3ε)

yk

Bnk

)

≥ P

(
w(1)−w(rk) > (1− 2ε)

yk

Bnk

)
− cL3,nk

ε3

(
ln lnB2

nk

)−3/2
, (20.2.9)

where rk = B2
nk−1

B−2
nk
→ a−1 due to the fact that

B2
nk
= ak + θkσ

2
nk

, 0≤ θk ≤ 1, σ 2
nk
= o

(
B2

nk

)
.

The first term on the right-hand side of (20.2.9) is equal to

P

(
w(1− rk) > (1− 2ε)

yk

Bnk

)
≥ P

(
w
(
ak(1− rk)

)
> (1− ε)xk

)

= P

(
w
(
ak
(
1− a−1

))
> (1− ε)xk

√
1− a−1

1− rk

)

≥ P

(
w
(
ak
)
−w

(
ak−1

)
>

(
1− ε

2

)
xk

)
.

As before, the series consisting of the second terms on the right-hand side of (20.2.9)

converges by virtue of (20.2.8). Therefore the established inequalities mean that

the divergence of series (20.2.4) implies that of series (20.2.6). The theorem is

proved. �
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Now we will present an example that we need to complete the proof in Re-

mark 4.4.1.

Example 20.2.1 Let ζk be independent and identically distributed, Eζk = 0,

Eζ 2
k = 1, E|ζk|3 = µ <∞ and ξk =

√
2k ζk . Here we have B2

n = n2(1 + 1/n).

In Remark 4.4.1 we used the assertion that (in a somewhat different notation)

P

( ∞⋃

n=1

{Sn <−n}
)
= 1

or, which is the same (as the sign of Sn is inessential),

P

( ∞⋃

n=1

{Sn > n}
)
= P

( ∞⋃

n=1

{
Sn > Bn

(
1+O

(
1

n

))})
= 1. (20.2.10)

To verify it, we will show that any sequence of the form B ′n = Bn(1+O(1/n)) is

lower for {Sk}. In our case,

Mn =
n∑

k=1

(2k)3/2µ∼ cn5/2, L3.n =
Mn

B3
n

∼ cn−1/2≪ 1

lnBn

.

This means that the conditions of Theorem 20.2.1 are met, and hence any sequence

which lies lower than (1−ε)n
√

2 ln lnn (in particular, the sequence B ′n = n) is lower

for {Sk}. This proves (20.2.10). �

Let us return to Theorem 20.2.1. As we saw in Sect. 19.3, the proof of the law

of the iterated logarithm is based on the asymptotics (the rate of decrease) of the

function 1−Φ(x) as x→∞. Therefore, the conditions for the law of the iterated

logarithm for the sums Sn are related to the width of the range of x values for which

the probabilities

Pn±(x) := P

(
± Sn

Bn

> x

)

are approximated by the normal law (i.e. by the function 1− Φ(x)). Here we en-

counter the problem of large deviations (see Chap. 9). If

Pn±(x)

1−Φ(x)
→ 1 (20.2.11)

as n→∞ for all

x ≤
√

2 ln lnBn(1− ε) (20.2.12)

and some ε > 0 then the proof of the law of the iterated logarithm for the Wiener

process given in Sect. 19.3 can easily be extended to the sums Sn/Bn (to estimate

P(Sn/Bn > x) one has to use the Kolmogorov inequality; see Corollary 11.2.1).

One way to establish (20.2.11) and (20.2.12) is to use estimates for the rate

of convergence in the central limit theorem. This approach was employed in the

proof of Theorem 20.2.1, where we used Theorem 20.1.3. However, to ensure that
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(20.2.11) and (20.2.12) hold one can use weaker assertions than Theorem 20.1.3. To

some extent, this fact is illustrated by the following assertion (see [32]):

Theorem 20.2.2 If Bn→∞ and Bn+1/Bn→ 1 as n→∞, and

sup
x

∣∣∣∣P
(

Sn

Bn

< x

)
−Φ(x)

∣∣∣∣≤ c(lnBn)
−1−δ

for some δ > 0 and c <∞, then the law of the iterated logarithm holds.

If ξk
d= ξ are identically distributed then Theorem 20.2.1 implies that the law of

the iterated logarithm is valid whenever E|ξ |3 exists. In fact, however, for identically

distributed ξk , the law of the iterated logarithm always holds in the case of a finite

second moment, without any additional conditions.

Theorem 20.2.3 (Hartman–Wintner, [32]) If the ξk are identically distributed,

Eξk = 0, and Eξ2
k = 1, then (20.2.1) and (20.2.2) hold with B2

n replaced with n.

Every point from the segment [−1,1] is a limiting one for the sequence

Sn√
2n ln lnn

, n≥ 1.

The last assertion of the theorem means that, for each t ∈ [−1,1] and any ε > 0,

the interval (t − ε, t + ε) contains, with probability 1, infinitely many elements of

the sequence

Sn√
2n ln lnn

.

20.3 Convergence to the Poisson Process

20.3.1 Convergence of the Processes of Cumulative Sums

The theorems of Sects. 20.1 and 20.2 show that the Wiener process describes rather

well the evolution of the cumulative sums when summing “conventional” random

variables ξk,n satisfying the Lyapunov condition. It turns out that the Poisson process

describes in a similar way the evolution of the cumulative sums when the random

variables ξk,n correspond to the occurrence of rare events.

As in Sect. 5.4, first we will not consider the triangular array scheme, but obtain

precise inequalities describing the proximity of the processes under study. Consider

independent random variables ξ1, . . . , ξn with Bernoulli distributions:

P(ξk = 1)= pk, P(ξk = 0)= 1− pk,

n∑

k=1

pk = µ.
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We will assume that p := maxk≤n pk is small and the number µ is “comparable

with 1”. Put

q0 := 0, qk :=
pk

µ
, Qk :=

k∑

j=0

qj , k ≥ 0,

and form a random function sn(t) on [0,1] in the following way. Put sn(0) := 0,

sn(t) := Sk =
k∑

j=1

ξj for t ∈ (Qk−1,Qk], k = 1, . . . , n.

Here it is more convenient to use a step function rather than a continuous trajectory

sn(t) (cf. Remark 20.1.2). The assertions to be obtained in this section are similar to

the invariance principle and state that the process sn(t) converges in a certain sense

to the Poisson process ξ(t) with intensity µ on [0,1]. This convergence could of

course be treated as weak convergence of distributions in the metric space D(0,1).

But in the framework of the present book, it is apparently inexpedient for at least

two reasons:

1. To do that, we would have to introduce a metric in D(0,1) and study its prop-

erties, which is somewhat complicated by itself.

2. The trajectories of the processes sn(t) and ξ(t) are of a simple form, and

characterising their closeness can be done in a simpler and more precise way without

using more general concepts. Indeed, as we saw, the trajectory of ξ(t) on [0,1] is

completely determined by the collection of random variables (π(1); T1, . . . , Tπ(1)),

where Tk is the epoch of the k-th jump of the process, Tk+1 − Tk ⊂= Ŵµ. A similar

characterisation is valid for the trajectories of sn(t): they are determined by the

vector (sn(1), θ1, . . . , θsn(1)), where θk =Qγk
, γ1, γ2, . . . are the values j for which

ξj = 1. We will say that the distributions of sn(t) and π(t) are close to each other if

the distributions of the above vectors are close. This convention will correspond to

convergence of the processes in a rather strong and natural sense.

It is not hard to see from what we said before about the Poisson processes (see

Sect. 19.4) that the introduced convergence of the distributions of the jump points of

the process sn(t) is equivalent to convergence of the finite-dimensional distributions

of sn(t) to those of π(t) (we know that the trajectories of sn(t) are step functions).

Theorem 20.3.1 The processes sn(t) and π(t) can be constructed on a common
probability space so that

P
(
sn(1)= π(1); θk − qγk

≤ Tk < θk, k = 1, . . . , π(1)
)
≥ 1−

n∑

j=1

p2
j .

(20.3.1)

Since
∑n

j=1 p2
j ≤ µp, the smallness of p means that, with probability close to 1,

the values of sn(1) and π(1) coincide (cf. Theorem 5.4.2) and the positions of the

respective points of jumps of the processes sn(t) and π(t) do not differ much.
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Put q = p/µ and, for a fixed k ≥ 1, denote by B(ε) the ε-neighbourhood of the

orthant set B := {(x1, . . . , xk) : xj < vj , j ≤ k} for some vj > 0. Theorem 20.3.1

implies the following.

Corollary 20.3.1 For any k = 1, . . . , n,

P
(
sn(1)= k, (θ1, . . . , θk) ∈ B

)
≤ P

(
π(1)= k, (T1, . . . , Tk) ∈ B

)
+

n∑

j=1

p2
j ;

P
(
π(1)= k, (T1, . . . , Tk) ∈ B

)
≤ P

(
sn(1)= k, (θ1, . . . , θk) ∈ B(q)

)
+

n∑

j=1

p2
j .

Proof Let An denote the event appearing on the left-hand side of (20.3.1),

Dn :=
{
sn(1)= k, (θ1, . . . , θk) ∈ B

}
,

Cn :=
{
π(1)= k, (T1, . . . , Tk) ∈ B

}
.

Then, by virtue of (20.3.1),

P(Dn)≤ P(DnAn)+
n∑

j=1

p2
j

≤ P
(
Dn,π(1)= k, (T1, . . . , Tk) ∈ B

)
+

n∑

j=1

p2
j

≤ P
(
π(1)= k, (T1, . . . , Tk) ∈ B

)
+

n∑

j=1

p2
j .

The converse inequality is established similarly. The corollary is proved. �

Proof of Theorem 20.3.1 Let ηk := π(Qk)− π(Qk−1), k = 1, . . . , n. The theorem

will be proved if we construct {ξk} and {ηk} on a common probability space so that

P

(
n⋃

k=1

{ξk 
= ηk}
)
≤

n∑

j=1

p2
j . (20.3.2)

A construction leading to (20.3.2) has essentially already been used in Theo-

rem 5.4.2. The required construction will be obtained if we consider independent

random variables ω1, . . . ,ωn; ωk ⊂=U0,1, and put

ξk :=
{

0 if ωk < 1− pk,

1 if ωk ≥ 1− pk,
ηk :=

{
0 if ωk < e−pk =: π0,k,

j ≥ 1 if ωk ∈ [πj−1,k,πj,k),

where πj,k =�pk
([0, j)), j = 0,1, . . . . Then ηk ⊂=�pk

,
∑n

k=1 ηk ⊂=�µ,

{ξk 
= ηk} =
{
ωk ∈ [1− pk, e

−pk )∪
[
e−pk + pke

−pk ,1
]}

.
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Therefore,

P(ξk 
= ηk)≤ p2
k

and we get (20.3.2). The theorem is proved. �

If we now consider the triangular array scheme ξ1,n, . . . , ξn,n, for which

P(ξk,n = 1)= pk,n, P(ξk,n = 0)= 1− pk,n,
n∑

k=1

pk,n =: µn→ µ, pn =max
k≤n

pk,n→ 0

as n→∞, then Theorem 20.3.1 easily implies convergence of the finite-dimensional
distributions of the processes sn(t) to π(t), where sn(t) is constructed as before

and π(t) is the Poisson process with parameter µ. Consider, for example, the two-

dimensional distributions P(sn(t) ≥ j, sn(1) = k) for t ∈ (0,1), j ≤ k. In the no-

tation of Theorem 20.3.1 (to be precise, we have to add the subscript n where

appropriate; e.g., the Poisson processes with parameters µn and µ will be denoted

by πn(t) and π(t), respectively), we obtain

P
(
sn(t)≥ j, sn(1)= k

)
= P

(
sn(1)= k, θj < t

)
.

By Corollary 20.3.1 the right-hand side does not exceed

P
(
πn(1)= k, Tj < t

)
+

n∑

l=1

p2
l,n,

where, as is easy to see,

P
(
πn(1)= k, Tj < t

)
= P

(
πn(1)= k, πn(t)≥ j

)

=
k∑

l=j

P
(
πn(t)= l

)
P
(
πn(1− t)= k − l

)

→ P
(
π(1)= k, π(t)≥ j

)

as n→∞, so that

P
(
sn(t)≥ j, sn(1)= k

)
≤ P

(
π(t)≥ j, π(1)= k

)
+ o(1).

The converse inequality is established in a similar way (by using the convergence

qn→ 0 as n→∞). The required convergence of the finite-dimensional distribu-

tions is proved. �

20.3.2 Convergence of Sums of Thinning Renewal Processes

The Poisson process can appear as a limiting one in a somewhat different set-up—as

a limit for the sum of a large number of homogeneous “slow” renewal processes.
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We formulate the setting of the problem more precisely. Let ηi(t), i = 1,2, . . . , n,

be mutually independent arbitrary homogeneous renewal processes in the “triangu-

lar array scheme” (i.e. they depend on n) generated by sequences {τ (i)
k }∞k=1 for which

(see Chap. 10; τ
(i)
k

d= τ (i) for k ≥ 2)

Eηi(t)=
t

ai

, ai := ai,n = Eτ (i)→∞,

n∑

i=1

1

ai

→ µ

for a fixed µ, and

Fi(t) := P
(
τ (i) < t

)
≤ rt,n→ 0

and for any fixed t as n→∞, where rt,n does not depend on i.

Theorem 20.3.2 Under the above conditions, the finite-dimensional distributions
of the process

ζn(t) :=
n∑

i=1

ηi(t)

converge as n→∞ to those of the Poisson process π(t) with the parameter µ: for
any l ≥ 1, 0≤ k1 ≤ k2 ≤ · · · ≤ kl ,

P
(
ζn(t1)= k1, . . . , ζn(tl)= kl

)
→ P

(
π(t1)= k1, . . . , π(tl)= kl

)
.

(On convergence to the Poisson process, see the remark preceding Theo-

rem 20.3.1.)

Proof First we will prove convergence of the distributions of the increments

ζn(t + u)− ζn(u)

to the Poisson distribution with parameter µt . Put ∆i := ηi(t + u) − ηi(u),

pi := t/ai . We have (χi(u) is the excess for the process ηi ; see Sects. 10.2, 10.4)

E∆i = pi,

P(∆i ≥ l)≤ P
(
χi(u) < t

)[
P
(
ξ

(1)
2

)
< t

]l−1

≤ 1

ai

∫ t

0

P
(
ξ

(1)
2 > z

)
dz · Fi(t)

l−1 ≤ t

ai

(rt,n)
l−1 = pir

l−1
t,n .

This implies that

E∆i = pi =
∞∑

1

lP(∆i = l)= P(δi = 1)+ o(pi),

P(∆i = 1)= pi + o(pi), P(∆i = 0)= 1− pi + o(pi).

(20.3.3)

Therefore the conditions of Corollary 5.4.2 are met, which implies that

ζn(t + u)− ζn(u)=
n∑

i=1

∆i ⊂⇒�µt . (20.3.4)
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It remains to prove the asymptotic independence of the increments. For simplic-

ity’s sake, consider only two increments, on the intervals (u,0) and (u,u+ t), and

assume that ζn(u)= k. Moreover, suppose that the following event A occurred: the

renewals occurred in the processes with numbers i1, . . . , ik . It suffices to verify that,

given this condition, (20.3.4) will still remain true. Let B be the event that there

again were renewals on the interval (u,u + t) in the processes with the numbers

i1, . . . , ik . Evidently,

P(B |A)≤
k∑

l=1

P
(
τ (il) < t + u

)
≤ krt+u,n→ 0.

Thus the contribution of the processes ηil , l = 1, . . . , k, to the sum (20.3.4) given

condition A is negligibly small. Consider the remaining n− k processes. For them,

P(∆i ≥ 1 |A)= P(χi(0) ∈ (u,u+ t))

P(χi(0) > u)

= 1

ai

∫ u+t

u

(
1− Fi(z)

)
da

[
1− 1

ai

∫ u

0

(
1− Fi(z)

)
dz

]−1

= pi + o(pi). (20.3.5)

Since relation (20.3.3) remains true for conditional distributions of ∆i (given A

and for i 
= il , l = 1, . . . , k), we obtain, similarly to the above argument (using now

instead of the equality
∑∞

i=1 lP(∆i = l) = pi the relation
∑∞

i=1 lP(∆i = l |A) =
pi + o(pi) which follows from (20.3.5)) that

P(∆i = 1 |A)= pi + o(pi), P(∆i = 0 |A)= 1− pi + o(pi).

It remains to once again make use of Corollary 5.4.2. �



Chapter 21

Markov Processes

Abstract This chapter presents the fundamentals of the theory of general Markov

processes in continuous time. Section 21.1 contains the definitions and a discus-

sion of the Markov property and transition functions, and derives the Chapman–

Kolmogorov equation. Section 21.2 studies Markov processes in countable state

spaces, deriving systems of backward and forward differential equations for tran-

sition probabilities. It also establishes the ergodic theorem and contains examples

illustrating the presented theory. Section 21.3 deals with continuous time branch-

ing processes. Then the elements of the general theory of semi-Markov processes

are presented in Sect. 21.4, including the ergodic theorem and some other related

results for such processes. Section 21.5 discusses the so-called regenerative pro-

cesses, establishing their ergodicity and the Laws of Large Numbers and Central

Limit Theorem for integrals of functions of their trajectories. Section 21.6 is devoted

to diffusion processes. It begins with the classical definition of diffusion, derives the

forward and backward Kolmogorov equations for the transition probability function

of a diffusion process, and gives a couple of examples of using the equations to

compute important characteristics of the respective processes.

21.1 Definitions and General Properties

Markov processes in discrete time (Markov chains) were considered in Chap. 13.

Recall that their main property was independence of the “future” of the process of

its “past” given its “present” is fixed. The same principle underlies the definition of

Markov processes in the general case.

21.1.1 Definition and Basic Properties

Let 〈Ω,F,P〉 be a probability space and {ξ(t) = ξ(t,ω), t ≥ 0} a random process

given on it. Set

F1 := σ
(
ξ(u); u≤ t

)
, F[t,∞) := σ

(
ξ(u); u≥ t

)
,
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so that the variable ξ(u) is Ft -measurable for u≤ t and F[t,∞)-measurable for u≥ t .

The σ -algebra σ(Ft ,F[t,∞)) is generated by the variables ξ(u) for all u and may

coincide with F in the case of the sample probability space.

Definition 21.1.1 We say that ξ(t) is a Markov process if, for any t , A ∈ Ft , and

B ∈ F[t,∞), we have

P
(
AB

∣∣ξ(t)
)
= P

(
A
∣∣ξ(t)

)
P
(
B
∣∣ξ(t)

)
. (21.1.1)

This expresses precisely the fact that the future is independent of the past when the

present is fixed (conditional independence of Ft and F[t,∞) given ξ(t)).

We will now show that the above definition is equivalent to the following.

Definition 21.1.2 We say that ξ(t) is a Markov process if, for any bounded F[t,∞)-

measurable random variable η,

E(η|Ft )= E
(
η
∣∣ξ(t)

)
. (21.1.2)

It suffices to take η to be functions of the form η= f (ξ(s)) for s ≥ t .

Proof of the equivalence Let (21.1.1) hold. By the monotone convergence theorem

it suffices to prove (21.1.2) for simple functions η. To this end it suffices, in turn,

to prove (21.1.2) for η = IB , the indicator of the set B ∈ F[t,∞). Let A ∈ Ft . Then,

by (21.1.1),

P(AB)= EP
(
AB

∣∣ξ(t)
)
= E

[
P
(
A
∣∣ξ(t)

)
P
(
B
∣∣ξ(t)

)]

= EE
[
IAP

(
B
∣∣ξ(t)

)∣∣ξ(t)
]
= E

[
IAP

(
B
∣∣ξ(t)

)]
. (21.1.3)

On the other hand,

P(AB)= E[IAIB ] = E
[
IAP(B|Ft )

]
. (21.1.4)

Because (21.1.3) and (21.1.4) hold for any A ∈ Ft , this means that P(B|Ft ) =
P(B|ξ(t)).

Conversely, let (21.1.2) hold. Then, for A ∈ Ft and B ∈ F[t,∞), we have

P
(
AB

∣∣ξ(t)
)
= E

[
E(IAIB |Ft )

∣∣ξ(t)
]
= E

[
IAE(IB |Ft )

∣∣ξ(t)
]

= E
[
IAE

(
IB
∣∣ξ(t)

)∣∣ξ(t)
]
= P

(
B
∣∣ξ(t)

)
P
(
A
∣∣ξ(t)

)
. �

It remains to verify that it suffices to take η= f (ξ(s)), s ≥ t , in (21.1.2). In order

to do this, we need one more equivalent definition of a Markov process.

Definition 21.1.3 We say that ξ(t) is a Markov process if, for any bounded function

f and any t1 < t2 < · · ·< tn ≤ t ,

E
(
f
(
ξ(t)

)∣∣ξ(t1), . . . , ξ(tn)
)
= E

(
f
(
ξ(t)

∣∣ξ(tn)
))

. (21.1.5)
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Proof of the equivalence Relation (21.1.5) follows in an obvious way from (21.1.2).

Now assume that (21.1.5) holds. Then, for any A ∈ σ(ξ(t1), . . . , ξ(tn)),

E
(
f
(
ξ(t)

)
; A

)
= E

[
E
(
f
(
ξ(t)

)∣∣ξ(tn)
)
; A

]
. (21.1.6)

Both parts of (21.1.6) are measures coinciding on the algebra of cylinder sets. There-

fore, by the theorem on uniqueness of extension of a measure, they coincide on the

σ -algebra generated by these sets, i.e. on Ftn . In other words, (21.1.6) holds for any

A ∈ Ftn , which is equivalent to the equality

E
[
f
(
ξ(t)

)∣∣Ftn

]
= E

[
f
(
ξ(t)

)∣∣ξ(tn)
]

for any tn ≤ t . Relation (21.1.2) for η= f (ξ(t)) is proved. �

We now prove that in (21.1.2) it suffices to take η= f (ξ(s)), s ≥ t . Let t ≤ u1 <

· · ·< un. We prove that then (21.1.2) is true for

η=
n∏

i=1

fi

(
ξ(ui)

)
. (21.1.7)

We will make use of induction and assume that equality (21.1.2) holds for the

functions

γ =
n−1∏

i=1

fi

(
ξ(ui)

)

(for n= 1 relation (21.1.2) is true). Then, putting g(un−1) := E[fn(ξ(un))|ξ(un−1)],
we obtain

E(η|Ft )= E
[
E(η|Fun−1

)
∣∣Ft

]
= E

[
γ E

(
fn

(
ξ(un)

)∣∣Fun−1

)∣∣Ft

]

= E
[
γ E

(
fn

(
ξ(un)

)∣∣ξ(un−1)
)∣∣Ft

]
= E

[
γg

(
ξ(un−1)

)∣∣Ft

]
.

By the induction hypothesis this implies that

E(η|Ft )= E
[
γg

(
ξ(un−1)

)∣∣ξ(t)
]

and, therefore, that E(η|Ft ) is σ(ξ(t))-measurable and

E
(
η
∣∣ξ(t)

)
= E

(
E(η|Ft )

∣∣ξ(t)
)
= E(η|Ft ).

We proved that (21.1.2) holds for σ(ξ(u1), . . . , ξ(un))-measurable functions of

the form (21.1.7). By passing to the limit we establish first that (21.1.2) holds for

simple functions, and then that it holds for any F[t,∞)-measurable functions. �

21.1.2 Transition Probability

We saw that, for a Markov process ξ(t), the conditional probability

P
(
ξ(t) ∈ B

∣∣Fs

)
= P

(
ξ(t) ∈ B

∣∣ξ(s)
)

for t > s
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is a Borel function of ξ(s) which we will denote by

P
(
s, ξ(s); t,B

)
:= P

(
ξ(t) ∈ B

∣∣ξ(s)
)
.

One can say that P(s, x; t,B) as a function of B and x is the conditional distribution

(see Sect. 4.9) of ξ(t) given that ξ(s) = x. By the Markov property, it satisfies the

relation (s < u < t)

P (s, x; t,B)=
∫

P(s, x;u,dy)P (u, y; t,B), (21.1.8)

which follows from the equality

P
(
ξ(t) ∈ B

∣∣ξ(s)= x
)

= E
[
P
(
ξ(t) ∈ B

∣∣Fu

)∣∣ξ(s)= x
]
= E

[
P
(
u, ξ(u); t,B

)∣∣ξ(s)= x
]
.

Equation (21.1.8) is called the Chapman–Kolmogorov equation.

The function P(s, x; t,B) can be used in an analytic definition of a Markov pro-

cess. First we need to clarify what properties a function Px,B(s, t) should possess in

order that there exists a Markov process ξ(t) for which

Px,B(s, t)= P(s, x; t,B).

Let 〈X,BX〉 be a measurable space.

Definition 21.1.4 A function Px,B(s, t) is said to be a transition function on
〈X,BX〉 if it satisfies the following conditions:

(1) As a function of B , Px,B(s, t) is a probability distribution for each s ≤ t , x ∈X.

(2) Px,B(s, t) is measurable in x for each s ≤ t and B ∈BX.

(3) For 0≤ s < u < t and all x and B ,

Px,B(s, t)=
∫

Px,dy(s, u)Py,B(u, t)

(the Chapman–Kolmogorov equation).

(4) Px,B(s, t)= IB(x) for s = t .

Here properties (1) and (2) ensure that Px,B(s, t) can be a conditional distribution

(cf. Sect. 4.9).

Now define, with the help of Px,B(s, t), the finite-dimensional distributions of a

process ξ(t) with the initial condition ξ(0)= a by the formula

P
(
ξ(t) ∈ dy1, . . . , ξ(tn) ∈ dyn

)

= Pa,dy1
(0, t1)Py1,dy2

(t1, t2) · · ·Pyn−1,dyn(tn−1, tn). (21.1.9)

By virtue of properties (3) and (4), these distributions are consistent and therefore

by the Kolmogorov theorem define a process ξ(t) in 〈RT ,BT
R〉, where T = [0,∞).
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By formula (21.1.9) and rule (21.1.5),

P
(
ξ(tn) ∈ Bn

∣∣(ξ(t1), . . . , ξ(tn−1)
)
= (y1, . . . , yn−1)

)

= Pyn−1,Bn(tn−1, tn)= P
(
ξ(tn) ∈ Bn

∣∣ξ(tn−1)= yn−1

)

= P(tn−1, yn−1; tn,Bn).

We could also verify this equality in a more formal way using the fact that the

integrals of both sides over the set {ξ(t1) ∈ B1, . . . , ξ(tn−1) ∈ Bn−1} coincide.

Thus, by virtue of Definition 21.1.3, we have constructed a Markov process ξ(t)

for which

P(s, x; t,B)= Px,B(s, t).

This function will also be called the transition function (or transition probability) of
the process ξ(t).

Definition 21.1.5 A Markov process ξ(t) is said to be homogeneous if P(s, x; t,B),

as a function of s and t , depends on the difference t − s only:

P(s, x; t,B)= P(t − s;x,B).

This is the probability of transition during a time interval of length t − s from x

to B . If

P(u; t,B)=
∫

B

p(u; t, y) dy

then the function p(u;x, y) is said to be a transition density.

It is not hard to see that the Wiener and Poisson processes are both homogeneous

Markov processes. For example, for the Wiener process,

P(u;x, y)= 1√
2πu

e−(x−y)2/2u.

21.2 Markov Processes with Countable State Spaces. Examples

21.2.1 Basic Properties of the Process

Assume without loss of generality that the “discrete state space” X coincides with

the set of integers {0,1,2, . . .}. For simplicity’s sake we will only consider homo-

geneous Markov processes.

The transition function of such a process is determined by the collection of

functions P(t; i, j)= pij (t) which form a stochastic matrix P(t)= ‖pij (t)‖ (with

pij (t)≥ 0,
∑

j pij (t)= 1). Chapman–Kolmogorov’s equation now takes the form

pij (t + s)=
∑

k

pik(t)pkj (s),
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or, which is the same, in the matrix form,

P(t + s)= P(t)P (s)= P(s)P (t). (21.2.1)

In what follows, we consider only stochastically continuous processes for which

ξ(t + s)
p→ ξ(t) as s→ 0, which is equivalent in the case under consideration to

each of the following three relations:

P
(
ξ(t + s) 
= ξ(t)

)
→ 0, P (t + s)→ P(t), P (s)→ P(0)≡E (21.2.2)

as s→ 0 (component-wise; E is the unit matrix).

We will also assume that convergence in (21.2.2) is uniform (for a finite X this is

always the case).

According to the separability requirement, we will assume that ξ(t) cannot

change its state in “zero time” more than once (thus excluding the effects illus-

trated in Example 18.1.1, i.e. assuming that if ξ(t) = j then, with probability 1,

ξ(t + s)= j for s ∈ [0, τ ), τ = τ(ω) > 0). In that case, the trajectories of the pro-

cesses will be piece-wise constant (right-continuous for definiteness), i.e. the time

axis is divided into half-intervals [0, τ1), [τ1, τ1+τ2), . . . , on which ξ(t) is constant.

Put

qj (t) := P
(
ξ(u)= j, 0≤ u < t

∣∣ξ(0)= j
)
= P(τ1 ≥ t).

Theorem 21.2.1 Under the above assumptions (stochastic continuity and separa-
bility),

qi(t)= e−qi t ,

where qi <∞; moreover, qi > 0 if pii(t) 
≡ 1. There exist the limits

lim
t→0

1− pii(t)

t
= qi, lim

t→0

pij (t)

t
= qij , i 
= j, (21.2.3)

where
∑

j :j 
=i qij = qi .

Proof By the Markov property,

qi(t + s)= qi(t)qi(s),

and qi(t) ↓. Therefore there exists a unique solution qi(t)= e−qi t of this equation,

where qi <∞, since P(τ1 > 0)= 1 and qi > 0, because qi(t) < 1 when pii(t) 
≡ 1.

Let further 0 < t0 < t1 · · ·< tn < t . Since the events
{
ξ(u)= i for u≤ tr , ξ(tr+1)= j

}
, r = 0, . . . , n− 1; j 
= i,

are disjoint,

pii(t)= qi(t)+
n−1∑

r=0

∑

j :j 
=i

qi(tr)pij (tr+1 − tr)pji(t − tr+1). (21.2.4)

Here, by condition (21.2.2), pji(t − tr+1) < εt for all j 
= i, and εt → 0 as t→ 0,

so that the sum in (21.2.4) does not exceed
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εt

n−1∑

r=0

∑

j :j 
=i

qi(tr )pij (tr+1 − tr)= εtP

(
n⋃

r=1

{
ξ(tr ) 
= i

}∣∣ξ(0)= i

)
< εt

(
1− qi(t)

)
,

pii(t)≤ qi(t)+ εt

(
1− qi(t)

)
.

Together with the obvious inequality pii(t)≥ qi(t) this gives

1− qi(t)≥ 1− pii(t)≥
(
1− qi(t)

)
(1+ εt )

(i.e. the asymptotic behaviour of 1− qi(t) and 1− pii(t) as t →∞ is identical).

This implies the second assertion of the theorem (i.e., the first relation in (21.2.3)).

Now let tr := rt/n. Consider the transition probabilities

pij (t)≥
n−1∑

r=0

qi(tr )pij (t/n)qj (t − tr+1)

≥ (1− εt )pij (t/n)

n−1∑

r=0

e−qirt/n ≥ (1− εt )pij (t/n)
(1− e−qi t )n

qi t
.

This implies that

pij (t)≥ (1− εt )

(
1− e−qi t

qi

)
lim sup

δ→0

pij (δ)

δ
,

and that the upper limit on the right-hand side is bounded. Passing to the limit as

t→ 0, we obtain

lim inf
t→0

pij (t)

t
≥ lim sup

δ→0

pij (δ)

δ
.

Since
∑

j :j 
=i pij (t) = 1 − pii(t), we have
∑

j :j 
=i qij = qi . The theorem is

proved. �

The theorem shows that the quantities

pij =
qij

qi

, j 
= i, pii = 0

form a stochastic matrix and give the probabilities of transition from i to j during

an infinitesimal time interval ∆ given the process ξ(t) left the state i during that

time interval:

P
(
ξ(t +∆)= j

∣∣ξ(t)= i, ξ(t +∆) 
= i
)
= pij (∆)

1− pii(∆)
→ qij

qi

as ∆→ 0.

Thus the evolution of ξ(t) can be thought of as follows. If ξ(0)=X0, then ξ(t)

stays at X0 for a random time τ1 ⊂= ŴqX0
. Then ξ(t) passes to a state X1 with prob-

ability pX0X1
. Further, ξ(t) = X1 over the time interval [τ1, τ1 + τ2), τ2 ⊂= ŴqX1

,

after which the system changes its state to X2 and so on. It is clear that X0,X1, . . .

is a homogeneous Markov chain with the transition matrix ‖pij‖. Therefore the
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further study of ξ(t) can be reduced in many aspects to that of the Markov chain

{Xn; n≥ 0}, which was carried out in detail in Chap. 13.

We see that the evolution of ξ(t) is completely specified by the quantities qij and

qi forming the matrix

Q= ‖qij‖ = lim
t→0

P(t)− P(0)

t
, (21.2.5)

where we put qii := −qi , so that
∑

j qij = 0. We can also justify this claim using

an analytical approach. To simplify the technical side of the exposition, we will

assume, where it is needed, that the entries of the matrix Q are bounded and con-

vergence in (21.2.3) is uniform in i.

Denote by eA the matrix-valued function

eA =E +
∞∑

k=1

1

k!A
k.

Theorem 21.2.2 The transition probabilities pij (t) satisfy the systems of differen-
tial equations

P ′(t)= P(t)Q, (21.2.6)

P ′(t)=QP(t). (21.2.7)

Each of the systems (21.2.6) and (21.2.7) has a unique solution

P(t)= eQt .

It is clear that the solution can be obtained immediately by formally integrating

equation (21.2.6).

Proof By virtue of (21.2.1), (21.2.2) and (21.2.5),

P ′(t)= lim
s→0

P(t + s)− P(t)

s
= lim

s→0
P(t)

P (s)−E

s
= P(t)Q. (21.2.8)

In the same way we obtain, from the equality

P(t + s)− P(t)=
(
P(s)−E

)
P(t),

the second equation in (21.2.7). The passage to the limit is justified by the assump-

tions we made.

Further, it follows from (21.2.6) that the function P(t) is infinitely differentiable,

and

P (k)(t)= P(t)Qk,

P (t)− P(0)=
∞∑

k=1

P (k)(0)
tk

k! =
∞∑

k=1

Qktk

k! ,

P (t)= P(0)eQt .

The theorem is proved. �
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Because of the derivation method, (21.2.6) is called the backward Kolmogorov
equation, and (21.2.7) is known as the forward Kolmogorov equation (the time in-

crement is taken after or before the basic time interval).

The difference between these equations becomes even more graphical in the case

of inhomogeneous Markov processes, when the transition probabilities

P
(
ξ(t)= j

∣∣ξ(s)= i
)
= pij (s, t), s ≤ t,

depend on two time arguments: s and t . In that case, (21.2.1) becomes the equality

P(s, t + u)= P(s, t)P (t, t + u), and the backward and forward equations have the

form

∂P (s, t)

∂s
= P(s, t)Q(s),

∂P (s, t)

∂t
=Q(t)P (s, t),

respectively, where

Q(t)= lim
u→0

P(t, t + u)−E

u
.

The reader can derive these relations independently.

What are the general conditions for existence of a stationary limiting distribu-

tion? We can use here an approach similar to that employed in Chap. 13.

Let ξ (i)(t) be a process with the initial value ξ (i)(0) = i and right-continuous

trajectories. For a given i0, put

ν(i) :=min
{
t ≥ 0 : ξ (i)(t)= i0

}
=: ν0,

νk :=min
{
t ≥ νk−1 + 1 : ξ (i)(t)= i0

}
, k = 1,2, . . . .

Here in the second formula we consider the values t ≥ νk−1 + 1, since for t ≥ νk−1

we would have νk ≡ νk−1. Clearly, P(νk − νk−1 = 1) > 0, and P(νk − νk−1 ∈
(t, t + h)) > 0 for any t ≥ 1 and h > 0 provided that pi0i0(t) 
≡ 1.

Note also that the variables νk , k = 0,1, . . . , are not defined for all elementary

outcomes. We put ν0 =∞ if ξ (i)(t) 
= i0 for all t ≥ 0. A similar convention is used

for νk , k ≥ 1. The following ergodic theorem holds.

Theorem 21.2.3 Let there exist a state i0 such that Eν1 <∞ and P(ν(i) <∞)= 1

for all i ∈X0 ⊂X. Then there exist the limits

lim
t→∞

pij (t)= pj (21.2.9)

which are independent of i ∈X0.

Proof As was the case for Markov chains, the epochs ν1, ν2, . . . divide the time axis

into independent cycles of the same nature, each of them being completed when

the system returns for the first time (after one time unit) to the state i0. Consider

the renewal process generated by the sums νk , k = 0,1, . . . , of independent random

variables ν0, νk − νk−1, k = 1,2, . . . . Let

η(t) :=min{k : νk > t}, γ (t) := t − νη(t)−1, H(t) :=
∞∑

k=0

P(νk < t).
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The event Adv := {γ (t) ∈ [v, v + dv)} can be represented as the intersection of the

events

Bdv :=
⋃

k≥0

{
νk ∈ (t − v− dv, t − v]

}
∈ F1−v

and Cv := {ξ(u) 
= i0 for u ∈ [t − v + 1, t]} ∈ F[t−v,∞). We have

pij (t)=
∫ t

0

P
(
ξ (i)(t)= j, γ (t) ∈ [v, v+ dv)

)
=
∫ t

0

P
(
ξ (i) = j, BdvCv

)

=
∫ t

0

E
[
IBdv

P
(
ξ (i)(t)= j, Cv

∣∣Ft−v

)]

=
∫ t

0

E
[
IBdv

P
(
ξ (i)(t)= j,Cv

∣∣ξ(t − v)
)]

.

On the set Bdv , one has ξ(t − v) = i0, and hence the probability inside the last

integral is equal to

P
(
ξ (i0)(v)= j, ξ(u) 
= i0 for u ∈ [1, v]

)
=: g(v)

and is independent of t and i. Since P(Bdv)= dH(t − v), one has

pij (t)=
∫ t

0

g(v)P(Bdv)=
∫ t

0

g(v) dH(t − v).

By the key renewal theorem, as t→∞, this integral converges to

1

Eν1

∫ ∞

0

g(v) dv.

The existence of the last integral follows from the inequality g(v)≤ P(ν1 > v). The

theorem is proved. �

Theorem 21.2.4 If the stationary distribution

P = lim
t→∞

P(t)

exists with all the rows of the matrix P being identical, then it is a unique solution
of the equation

PQ= 0. (21.2.10)

It is evident that Eq. (21.2.10) is obtained by setting P ′(t)= 0 in (21.2.6). Equa-

tion (21.2.7) gives the trivial equality QP = 0.

Proof Equation (21.2.10) is obtained by passing to the limit in (21.2.8) first as

t →∞ and then as s → 0. Now assume that P1 is a solution of (21.2.10), i.e.

P1Q= 0. Then P1P(t)= P1 for t < 1, since

P1

(
P(t)− P(0)

)
= P1

∞∑

k=1

Qktk

k! = 0.
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Further, P1 = P1P
k(t) = P1P(kt), P(kt) → P as k → ∞, and hence P1 =

P1P = P . The theorem is proved. �

Now consider a Markov chain {Xn} in discrete time with transition probabil-

ities pij = qij/qi , i 
= j , pii = 0. Suppose that this chain is ergodic (see Theo-

rem 13.4.1). Then its stationary probabilities {πj } satisfy Eqs. (13.4.2). Now note

that Eq. (21.2.10) can be written in the form

pj qj =
∑

k

pkqkpkj

which has an obvious solution pj = cπj/qj , c= const. Therefore, if

∑ πj

qj

<∞ (21.2.11)

then there exists a solution to (21.2.10) given by

pj =
πj

qj

(∑ πj

qj

)−1

. (21.2.12)

In Sects. 21.4 and 21.5 we will derive the ergodic theorem for processes of a more

general form than the one in the present section. That theorem will imply, in partic-

ular, that ergodicity of {Xn} and convergence (21.2.11) imply (21.2.9). Recall that,

for ergodicity of {Xn}, it suffices, in turn, that Eqs. (13.4.2) have a solution {πj }.
Thus the existence of solution (21.2.12) implies the ergodicity of ξ(t).

21.2.2 Examples

Example 21.2.1 The Poisson process ξ(t) with parameter λ is a Markov process for

which qi = λ, qi,i+1 = λ, and pi,i+1 = 1, i = 1,0, . . . . For this process, the station-

ary distribution p = (p0,p1, . . .) does not exist (each trajectory goes to infinity).

Example 21.2.2 Birth-and-death processes. These are processes for which, for

i ≥ 1,

pij (∆)=

⎧
⎨
⎩

λi∆+ o(∆) for j = i + 1,

µi∆+ o(∆) for j = i − 1,

o(∆) for |j − i| ≥ 2,

so that

pij =
{

λi

λi+µi
for j = i + 1,

µi

λi+µi
for j = i − 1

are probabilities of birth and death, respectively, of a particle in a certain population

given that the population consisted of i particles and changed its composition. For
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i = 0 one should put µ0 := 0. Establishing conditions for the existence of a station-

ary regime is a rather difficult problem (related mainly to finding conditions under

which the trajectory escapes to infinity). If the stationary regime exists, then accord-

ing to Theorem 21.2.4 the stationary probabilities pj can be uniquely determined

from the recursive relations (see Eq. (21.2.10), in our case qii =−qi =−(λi +µi))

−p0λ0 + p1µ1 = 0,

p0λ0 − p1(λ1 +µ1)+ p2µ2 = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pk−1λk−1 − pk(λk +µk)+ pk+1µk+1 = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(21.2.13)

and condition
∑

pj = 1.

Example 21.2.3 The telephone lines problem from queueing theory. Suppose we

are given a system consisting of infinitely many communication channels which

are used for telephone conversations. The probability that, for a busy channel, the

transmitted conversation terminates during a small time interval (t, t +∆) is equal

to λ∆ + o(∆). The probability that a request for a new conversation (a new call)

arrives during the same time interval is µ∆+ o(∆). Thus the “arrival flow” of calls

is nothing else but the Poisson process with parameter λ, and the number ξ(t) of

busy channels at time t is the value of the birth-and-death process for which λi = λ

and µi = iµ.

In that case, it is not hard to verify with the help of Theorem 21.2.3 that there

always exists a stationary limiting distribution, for which Eqs. (21.2.13) have the

form

λp0 = µp1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(λ+µk)pk = λpk−1 + (k + 1)µpk+1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(21.2.14)

From this we get that

p1 = p0
λ

µ
, p2 =

p0

2

(
λ

µ

)2

, . . . , pk =
(

λ

µ

)k
p0

k! , (21.2.15)

so that p0 = e−λ/µ, and the limiting distribution will be the Poisson law with pa-

rameter λ/µ.

If the number of channels n is finite, the calls which find all the lines busy will

be rejected, and in (21.2.13) one has to put λn = 0, pn+1 = pn+2 = · · · = 0. In

that case, the last equation in (21.2.14) will have the form µnpn = λpn−1. Since

the formulas (21.2.15) will remain true for k ≤ n, we obtain the so-called Erlang

formulas for the stationary distribution:

pk =
(

λ

µ

)k
1

k!

[
n∑

j=0

1

j !

(
λ

µ

)j
]−1

(the truncated Poisson distribution).
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The next example will be considered in a separate section.

21.3 Branching Processes

The essence of the mathematical model describing a branching process remains

roughly the same as in Sect. 7.7.2. A continuous time branching process can be

defined as follows. Let ξ (i)(t) denote the number of particles at time t with the

initial condition ξ (i)(0)= i. Each particle, independently of all others, splits during

the time interval (t, t+∆) with probability µ∆+o(∆) into a random number η 
= 1

of particles (if η= 0, we say that the particle dies). Thus,

ξ (i)(t)= ξ
(1)
1 (t)+ · · · + ξ

(1)
i (t), (21.3.1)

where ξ
(1)
k (t) are independent and distributed as ξ (1)(t). Moreover,

pij (∆)= iµ∆hj−i+1 + o(∆), j 
= i; hk = P(η= k); h1 = 0;
pii(∆)= 1− iµ∆+ o(∆), (21.3.2)

so that here qij = iµhj−i+1, qii =−iµ.

By formula (21.3.2), iµ∆ is the principal part of the probability that at least

one particle will split. Clearly, the state 0 is absorbing. It will not be absorbing any

more if one considers processes with immigration when a Poisson process (with

intensity λ) of “outside” particles is added to the process ξ (i)(t). Then

pij (∆)= iµ∆hj−i+1 + o(∆) for j − i 
= 0,1,

pi,i+1(∆)=∆(iµh2 + λ)+ o(∆).

We return to the branching process (21.3.1), (21.3.2). By (21.3.1) we have

r(i)(t, z) := Ezξ (i)(t) =
[
Ezξ (1)(t)

]i = r i(t, z)=
∞∑

k=0

zkpik(t),

where

r(t, z) := Ezξ (1)(t) =
∞∑

k=0

zkp1k(t). (21.3.3)

Equation (21.2.7) implies

p′1k(t)=
∞∑

l=0

q1lplk(t).

Therefore, differentiating (21.3.3) with respect to t , we find that

r ′t (t, z)=
∞∑

k=0

zkp′1k(t)=
∞∑

k=0

∞∑

l=0

q1lplk(t)z
k

=
∞∑

l=0

q1l

∞∑

k=0

zkplk(t)=
∞∑

l=0

q1lr
l(t, z). (21.3.4)
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Fig. 21.1 The form of the

plot of the function f1. The

smaller root of the equation

f1(q)= q gives the

probability of the eventual

extinction of the branching

process

But q1l = µpl for l 
= 1, q11 =−µ, and putting

f (s) :=
∞∑

l=0

q1ls
l = µ

(
Esη − s

)
= µ

( ∞∑

l=0

hls
l − s

)
,

we can write (21.3.4) in the form

r ′t (t, z)= f
(
r(t, z)

)
.

We have obtained a differential equation for r = r(t, z) (equivalent to (21.3.2))

which is more convenient to write in the form

dr

f (r)
= dt, t =

∫ r(t,z)

r(0,z)

dy

f (y)
=
∫ r(t,z)

z

dy

f (y)
.

Consider the behaviour of the function f1(y) = Eyη − y on [0,1]. Clearly,

f1(0)= P(η= 0), f1(1)= 0, and

f ′1(1)= Eη− 1, f ′′1 (y)= Eη(η− 1)yη−2 > 0.

Consequently, the function f1(y) is convex and has no zeros in (0,1) if Eη ≤ 1.

When Eη > 1, there exists a point q ∈ (0,1) such that f1(q) = 0, f ′1(q) < 0 (see

Fig. 21.1), and f1(y)= (y − q)f ′1(q)+O((y − q)2) in the vicinity of this point.

Thus if Eη > 1, z < q and r ↑ q , then, by virtue of the representation

1

f1(y)
= 1

(y − q)f ′1(q)
+O(1),

we obtain

t =
∫ r

z

dy

f (y)
= 1

µf ′1(q)
ln

(
r − q

z− q

)
+O(1).

This implies that, as t→∞,

r(t, z)− q = (z− q)eµtf ′1(q)+O(1) ∼ (z− q)eµtf ′1(q),

r(t, z)= q +O
(
e−αt

)
, α =−µf ′1(q) > 0.

(21.3.5)

In particular, the extinction probability

p10(t)= r(t,0)= q +O
(
e−αt

)

converges exponentially fast to q , p10(∞) = q . Comparing our results with those

from Sect. 7.7, the reader can see that the extinction probability for a discrete time



21.4 Semi-Markov Processes 593

branching process had the same value (we could also come to this conclusion di-

rectly). Since pk0(t)= [p10(t)]k , one has pk0(∞)= qk .

It follows from (21.3.5) that the remaining “probability mass” of the distribution

of ξ(t) quickly moves to infinity as t→∞.

If Eη < 1, the above argument remains valid with q replaced with 1, so that the

extinction probability is p10(∞)= pk0(∞)= 1.

If Eη= 1, then

f1(y)= (y − 1)2

2
f ′′1 (1)+O

(
(y − 1)3

)
,

t =
∫ r

z

dy

f (y)
∼− 2

µf ′′1 (1)
· 1

r − 1
, r(t, z)− 1∼− 2

µtf ′′1 (1)
.

Thus the extinction probability r(t,0)= p10(t) also tends to 1 in this case.

21.4 Semi-Markov Processes

21.4.1 Semi-Markov Processes on the States of a Chain

Semi-Markov processes can be described as follows. Let an aperiodic discrete time

irreducible Markov chain {Xn} with the state space X = {0,1,2, . . .} be given. To

each state i we put into correspondence the distribution Fi(t) of a positive random

variable ζ (i):

Fi(t)= P
(
ζ (i) < t

)
.

Consider independent of the chain {Xn} and of each other the sequences ζ
(i)
1 ,

ζ
(i)
2 , . . . ; ζ

(i)
j

d= ζ (i), of independent random variables with the distribution Fi . Let,

moreover, the distribution of the initial random vector (X0, ζ0), X0 ∈ X, ζ0 ≥ 0, be

given. The evolution of the semi-Markov process ξ(u) is described as follows:

ξ(u)=X0 for 0≤ u < ζ0,

ξ(u)=X1 for ζ0 ≤ u < ζ0 + ζ
(X1)
1 ,

ξ(u)=X2 for ζ0 + ζ
(X1)
1 ≤ u < ζ0 + ζ

(X1)
1 + ζ

(X2)
2 ,

· · · ,
ξ(u)=Xn for Zn−1 ≤ u < Zn, Zn = ζ0 + ζ

(X1)
1 + · · · + ζ (Xn)

n ,

(21.4.1)

and so on. Thus, upon entering state Xn = j , the trajectory of ξ(u) remains in that

state for a random time ζ
(Xn)
n = ζ

(j)
n , then switches to state Xn+1 and so on. It

is evident that such a process is, generally speaking, not Markovian. It will be a

Markov process only if

1− Fi(t)= e−qi t , qi > 0,

and will then coincide with the process described in Sect. 21.2.
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Fig. 21.2 The trajectories of the semi-Markov process ξ(t) and of the residual sojourn time pro-

cess χ(t)

If the distribution Fi is not exponential, then, given the value ξ(t)= i, the time

between t and the next jump epoch will depend on the epoch of the preceding jump

of ξ(·), because

P
(
ζ (i) > v+ u

∣∣ζ (i) > v
)
= 1− Fi(v+ u)

1− Fi(v)

for non-exponential Fi depends on v. It is this property that means that the process

is non-Markovian, for fixing the “present” (i.e. the value of ξ(t)) does not make the

“future” of the process ξ(u) independent of the “past” (i.e. of the trajectory of ξ(u)

for u < t).

The process ξ(t) can be “complemented” to a Markov one by adding to it the

component χ(t) of which the value gives the time u for which the trajectory ξ(t+u),

u ≥ 0, will remain in the current state ξ(t). In other words, χ(t) is the excess of

level t for the random walk Z0,Z1, . . . (see Fig. 21.2):

χ(t)= Zν(t)+1 − t, ν(t)=max{k : Zk ≤ t}.
The process χ(t) is Markovian and has “saw-like” trajectories deterministic in-

side the intervals (Zk,Zk+1). The process X(t)= (ξ(t),χ(t)) is obviously Marko-

vian, since the value of X(t) uniquely determines the law of evolution of the process

X(t + u) for u≥ 0 whatever the “history” X(v), v < t , is. Similarly, we could con-

sider the Markov process Y(t)= (ξ(t), γ (t)), where γ (t) is the defect of level t for

the walk Z0,Z1, . . . :

γ (t)= t −Zν(t).

21.4.2 The Ergodic Theorem

In the sequel, we will distinguish between the following two cases.
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(A) The arithmetic case when the possible values of ζ (i), i = 0,1, . . ., are mul-

tiples of a certain value h which can be assumed without loss of generality to be

equal to 1. In that case we will also assume that the g.c.d. of the possible values of

the sums of the variables ζ (i) is also equal to h = 1. This is clearly equivalent to

assuming that the g.c.d. of the possible values of recurrence times θ (i) of ξ(t) to the

state i is equal to 1 for any fixed i.

(NA) The non-arithmetic case, when condition (A) does not hold.

Put ai := Eζ (i).

Theorem 21.4.1 Let the Markov chain {Xn} be ergodic (satisfy the conditions of
Theorem 13.4.1) and {πj } be the stationary distribution of that chain. Then, in the
non-arithmetic case (NA), for any initial distribution (ζ0,X0) there exists the limit

lim
t→∞

P
(
ξ(t)= i, χ(t) > v

)
= πi∑

πjaj

∫ ∞

v

P
(
ζ (i) > u

)
du. (21.4.2)

In the arithmetic case (A), (21.4.2) holds for integer-valued v (the integral be-
comes a sum in that case). It follows from (21.4.2) that the following limit exists

lim
t→∞

P
(
ξ(t)= i

)
= πiai∑

πjaj

.

Proof For definiteness we restrict ourselves to the non-arithmetic case (NA). In

Sect. 13.4 we considered the times τ (i) between consecutive visits of {Xn} to state i.

These times could be called “embedded”, as well as the chain {Xn} itself in regard

to the process ξ(t). Along with the times τ (i), we will need the “real” times θ (i)

between the visits of the process ξ(t) to the state i. Let, for instance, X1 = 1. Then

θ (1) d= ζ
(X1)
1 + ζ

(X2)
2 + · · · + ζ (Xτ )

τ ,

where τ = τ (1). For definiteness and to reduce notation, we fix for the moment the

value i = 1 and put θ (1) =: θ . Let first

ζ0
d= ζ (1), X0 = 1. (21.4.3)

Then the whole trajectory of the process X(t) for t ≥ 0 will be divided into iden-

tically distributed independent cycles by the epochs when the process hits the state

ξ(t)= 1. We denote the lengths of these cycles by θ1, θ2 . . . ; they are independent

and identically distributed. We show that

Eθ = 1

π1

∑
ajπj . (21.4.4)

Denote by θ(n) the “real” time spent on n transitions of the governing

chain {Xn}. Then

θ1 + · · · + θη(n)−1 ≤ θ(n)≤ θ1 + · · · + θη(n), (21.4.5)

where η(n) := min{k : Tk > n}, Tk =
∑k

j=1 τj , τj are independent and distributed

as τ . We prove that, as n→∞,

Eθ(n)∼ nπ1Eθ. (21.4.6)
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By Wald’s identity and (21.4.5),

Eθ(n)≤ EθEη(n), (21.4.7)

where Eη(n)∼ n/Eτ = nπ1.

Now we bound from below the expectation Eθ(n). Put m := ⌊nπ1 − εn⌋, Θn :=∑n
j=1 θj . Then

Eθ(n)≥ E
(
θ(n); η(n) > m

)

≥ E
(
Θm; η(n) > m

)
=mEθ −E

(
Θm; η(n)≤m

)
. (21.4.8)

Here the random variable Θm/m≥ 0 possesses the properties

Θm/m
p→ Eθ as m→∞, E(Θm/m)= Eθ.

Therefore it satisfies the conditions of part 4 of Lemma 6.1.1 and is uniformly in-

tegrable. This, in turn, by Lemma 6.1.2 and convergence P(η(n) ≤m)→ 0 means

that the last term on the right-hand side of (21.4.8) is o(m). By virtue of (21.4.8),

since ε > 0 is arbitrary, we obtain that

lim inf
n→∞

n−1Eθ(n)≥ π1Eθ.

This together with (21.4.7) proves (21.4.6).

Now we will calculate the value of Eθ(n) using another approach. The variable

θ(n) admits the representation

θ(n)=
∑

j

(
ζ

(j)

1 + · · · + ζ
(j)

N(j,n)

)
,

where N(j,n) is the number of visits of the trajectory of {Xk} to the state j during

the first n steps. Since {ζ (j)

k }∞k=1 and N(j,n) are independent for each j , we have

Eθ(n)=
∑

j

aj EN(j,n), EN(j,n)=
n∑

k=1

p1j (k).

Because p1j (k)→ πj as k→∞, one has

lim
n→∞

n−1EN(j,n)= πj .

Moreover,

πj =
∑

πlplj (k)≥ π1p1j (k)

and, therefore,

p1j (k)≤ πj/π1.

Hence

n−1EN(j,n)≤ πj/π1,
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and in the case when
∑

j ajπj <∞, the series
∑

j ajn
−1EN(j,n) converges uni-

formly in n. Consequently, the following limit exists

lim
n→∞

n−1Eθ(n)=
∑

j

ajπj .

Comparing this with (21.4.6) we obtain (21.4.4). If Eθ = ∞ then clearly

Eθ(n)=∞ and
∑

j ajπj =∞, and vice versa, if
∑

j ajπj =∞ then Eθ =∞.

Consider now the random walk {Θk}. To the k-th cycle there correspond Tk tran-

sitions. Therefore, by the total probability formula,

P
(
ξ(t)= 1, χ(t) > v

)
=
∞∑

k=1

∫ t

0

P
(
Θk ∈ du, ζ

(1)
Tk+1 > t − u+ v

)
,

where ζ
(1)
Tk+1

is independent of Θk and distributed as ζ (1) (see Lemma 11.2.1 or

the strong Markov property). Therefore, denoting by Hθ (u) :=
∑∞

k=1 P(Θk < u)

the renewal function for the sequence {Θk}, we obtain for the non-arithmetic case

(NA), by virtue of the renewal theorem (see Theorem 10.4.1 and (10.4.2)), that, as

t→∞,

P
(
ξ(t)= 1, χ(t) > v

)

=
∫ t

0

dHθ (u)P
(
ζ (1) > t − u+ v

)

→ 1

Eθ

∫ ∞

0

P
(
ζ (1) > u+ v

)
dv = 1

Eθ

∫ ∞

v

P
(
ζ (1) > u

)
du. (21.4.9)

We have proved assertion (21.4.2) for i = 1 and initial conditions (21.4.3). The

transition to arbitrary initial conditions is quite obvious and is done in exactly the

same way as in the proof of the ergodic theorems of Chap. 13.

If
∑

aiπi =∞ then, as we have already observed, Eθ =∞ and, by the renewal

theorem and (21.4.9), one has P(ξ(t)= 1, χ(t) > v)→ 0 as t→∞. It remains to

note that instead of i = 1 we can fix any other value of i. The theorem is proved. �

In the same way we could also prove that

lim
t→∞

P
(
ξ(t)= i, γ (t) > v

)
= πi∑

ajπj

∫ ∞

v

P
(
ζ (i) > y

)
dy,

lim
t→∞

P
(
ξ(t)= i, χ(t) > u, γ (t) > v

)
= πi∑

ajπj

∫ ∞

u+v

P
(
ζ (i) > y

)
dy

(see Theorem 10.4.3).

21.4.3 Semi-Markov Processes on Chain Transitions

Along with the semi-Markov processes ξ(t) described at the beginning of the

present section, one sometimes considers semi-Markov processes “given on the
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transitions” of the chain {Xn}. In that case, the distributions Fij of random variables

ζ (ij) > 0 are given and, similarly to (21.4.1), for the initial condition (X0,X1, ζ0)

one puts

ξ(u) := (X0,X1) for 0≤ u < ζ0

ξ(u) := (X1,X2) for ζ0 ≤ u < ζ0 + ζ
(X0,X1)
1

ξ(u) := (X2,X3) for ζ0 + ζ
(X0,X1)
1 ≤ u < ζ0 + ζ

(X0,X1)
1 + ζ

(X1,X2)
2 ,

(21.4.10)

and so on. Although at first glance this is a very general model, it can be com-

pletely reduced to the semi-Markov processes (21.4.1). To that end, one has to notice

that the “two-dimensional” sequence Yn = (Xn,Xn+1), n = 0,1, . . . , also forms a

Markov chain. Its transition probabilities have the form

p(ij)(kl) =
{

pj l for k = j,

0 for k 
= j,

p(ij)(kl)(n)= pjk(n)pkl for n > 1,

so that if the chain {Xn} is ergodic, then {Yn} is also ergodic and

p(ij)(kl)(n)→ πkpkl .

This enables one to restate Theorem 21.4.1 easily for the semi-Markov pro-

cesses (21.4.10) given on the transitions of the Markov chain {Xn}, since the process

(21.4.10) will be an ordinary semi-Markov process given on the chain {Yn}.

Corollary 21.4.1 If the chain {Xn} is ergodic then, in the non-arithmetic case,

lim
t→∞

P
(
ξ(t)= (i, j), χ(t) > v

)

= πipij∑
k,l aklπkpkl

∫ ∞

v

P
(
ζ (ij) > u

)
du, akl = Eζ (kl).

In the arithmetic case v must be a multiple of the lattice span.

We will make one more remark which could be helpful when studying semi-

Markov processes and which concerns the so-called semi-Markov renewal functions

Hij (t). Denote by Tij (n) the epoch (in the “real time”) of the n-th jump of the

process ξ(t) from state i to j . Put

Hij (t) :=
∞∑

n=1

P
(
Tij (n) < t

)
.

If νij (t) is the number of jumps from state i to j during the time interval [0, t),

then clearly Hij (t)= Eνij (t).

Set ∆f (t) := f (t +∆)− f (t), ∆ > 0.

Corollary 21.4.2 In the non-arithmetic case,

lim
t→∞

∆Hij (t)=
πipij∆∑

l alπl

. (21.4.11)

In the arithmetic case v must be a multiple of the lattice span.
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Proof Denote by ν
(k)
ij (u) the number of transitions of the process ξ(t) from i to j

during the time interval (0, u) given the initial condition (k,0). Then, by the total

probability formula,

E∆νij (t)=
∫ ∆

0

∞∑

k=0

P
(
ξ(t)= k, χ(t) ∈ du

)
Eν

(k)
ij (∆− u).

Since ν
(k)
ij (u)≤ ν

(i)
ij (u), by Theorem 21.4.1 one has

hij (∆) := lim
t→∞

E∆νij (t)=
1∑

l alπl

∞∑

k=0

πk

∫ ∆

0

P
(
ζ (k) > u

)
Eν

(k)
ij (∆− u)du.

(21.4.12)

Further,

P
(
ζ (i) < ∆− u

)
≤ Fi(∆)→ 0

as ∆→ 0, and

P
(
ν

(k)
ij (∆− u)= s

)
≤
(
pijFi(∆)

)s
, k 
= i,

P
(
ν

(i)
ij (∆− u)= s + 1

)
≤
(
pijFi(∆)

)s
, s ≥ 1,

P
(
ν

(i)
ij (∆− u)= 1

)
= pij + o

(
Fi(∆)

)
.

It follows from the aforesaid that

Eν
(k)
ij (∆− u)= o

(
Fi(∆)

)
, Eν

(i)
ij (∆− u)= pij + o

(
Fi(∆)

)
.

Therefore,

hij (∆)= πipij∆∑
l alπl

+ o(∆). (21.4.13)

Further, from the equality

Hij (t + 2∆)−Hij (t)=∆Hij (t)+∆Hij (t +∆)

we obtain that hij (2∆)= 2hij (∆), which means that hij (∆) is linear. Together with

(21.4.13) this proves (21.4.11). The corollary is proved. �

The class of processes for which one can prove ergodicity using the same meth-

ods as the one used for semi-Markov processes and also in Chap. 13, can be some-

what extended. For this broader class of processes we will prove in the next section

the ergodic theorem, and also the laws of large numbers and the central limit theo-

rem for integrals of such processes.
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21.5 Regenerative Processes

21.5.1 Regenerative Processes. The Ergodic Theorem

Let X(t) and X0(t); t ≥ 0, be processes given in the space D(0,∞) of functions

without discontinuities of the second type (the state space of these processes could

be any metric space, not necessarily the real line). The process X(t) is said to be

regenerative if it possesses the following properties:

(1) There exists a state x0 which is visited by the process X with probability 1.

After each such visit, the evolution of the process starts anew as if it were the original

process X(t) starting at the state X(0) = x0. We will denote this new process by

X0(t) where X0(0) = x0. To state this property more precisely, we introduce the

time τ0 of the first visit to x0 by X:

τ0 := inf
{
t ≥ 0 :X(t)= x0

}
.

However, it is not clear from this definition whether τ0 is a random variable. For

definiteness, assume that the process X is such that for τ0 one has

{τ0 > t} =
⋃

n

⋂

tk∈S

{∣∣X(tk)− x0

∣∣> 1/n
}
,

where S is a countable set everywhere dense in [0, t]. In that case the set {τ0 > t}
is clearly an event and τ0 is a random variable. The above stated property means

that τ0 is a proper random variable: P(τ0 <∞) = 1, and that the distribution of

X(τ0+u), u≥ 0, coincides with that of X0(u), u≥ 0, whatever the “history” of the

process X(t), t ≤ τ0.

(2) The recurrence time τ of the state x0 has finite expectation Eτ < ∞,

τ := inf{t :X0(t)= x0}.
The aforesaid means that the evolution of the process is split into independent

identically distributed cycles by its visits to the state x0. The visit times to x0 are

called regeneration times. The behaviour of the process inside the cycles may be

arbitrary, and no further conditions, including Markovity, are imposed.

We introduce the so-called “taboo probability”

P(t,B) := P
(
X0(t) ∈ B, τ > t

)
.

We will assume that, as a function of t , P(t,B) is measurable and Riemann inte-

grable.

Theorem 21.5.1 Let X(t) be a regenerative process and the random variable τ be
non-lattice. Then, for any Borel set B , as t→∞,

P
(
X(t) ∈ B

)
→ π(B)= 1

Eτ

∫ ∞

0

P(u,B)du.

If τ is a lattice variable (which is the case for processes X(t) in discrete time), the
assertion holds true with the following obvious changes: t →∞ along the lattice
and the integral is replaced with a sum.
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Proof Let T0 := 0, Tk := τ1 + · · · + τk be the epoch of the k-th regeneration of the

process X0(t), and

H(u) :=
∞∑

k=0

P(τk < u)

(τk
d= τ are independent). Then, using the total probability formula and the key

renewal theorem, we obtain, as t→∞,

P
(
X0(t) ∈ B

)
=
∞∑

k=0

∫ t

0

P(Tk ∈ du)P (t − u,B)

=
∫ t

0

dH(u)P (t − u,B)→ 1

Eτ

∫ ∞

0

P(u,B)du= π(B).

For the process X(t) one gets

P
(
X(t) ∈ B

)
=
∫ t

0

P(t0 ∈ du)P
(
X0(t − u) ∈ B

)
→ π(B).

The theorem is proved. �

21.5.2 The Laws of Large Numbers and Central Limit Theorem

for Integrals of Regenerative Processes

Consider a measurable mapping f : X→ R of the state space X of a process X(t)

to the real line R. As in Sect. 21.4.2, for the sake of simplicity, we can assume that

X = R and the trajectories of X(t) lie in the space D(0,∞) of functions without

discontinuities of the second kind. In this case the paths f (X(u)), u ≥ 0, will be

measurable functions, for which the integral

S(t)=
∫ t

0

f
(
X(u)

)
du

is well defined. For such integrals we have the following law of large numbers. Set

ζ :=
∫ τ

0

f
(
X0(u)

)
du, a := Eτ.

Theorem 21.5.2 Let the conditions of Theorem 21.5.1 be satisfied and there exist
aζ := Eζ . Then, as t→∞,

S(t)

t

p→ aζ

a
.

For conditions of existence of Eζ , see Theorem 21.5.4 below.
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Proof The proof of the theorem largely repeats that of the similar assertion (The-

orem 13.8.1) for sums of random variables defined on a Markov chain. Divide the

domain u≥ 0 into half-intervals

(0, T0], (Tk−1, Tk], k ≥ 1, T0 = τ0,

where Tk are the epochs of hitting the state x0 by the process X(t), τk = Tk − Tk−1

for k ≥ 1 are independent and distributed as τ . Then the random variables

ζk =
∫ Tk

Tk−1

f
(
X(u)

)
du, k ≥ 1

are independent, distributed as ζ , and have finite expectation aζ . The integral S(t)

can be represented as

S(t)= z0 +
ν(t)∑

k=1

ζk + zt ,

where

ν(t) :=max{k : Tk ≤ t}, z0 :=
∫ T0

0

f
(
X(u)

)
du, zt :=

∫ t

Tν(t)

f
(
X(u)

)
du.

Since τ0 is a proper random variable, z0 is a proper random variable as well, and

hence z0/t
a.s.−→ 0 as t→∞. Further,

zt
d=
∫ γ (t)

0

f
(
X0(u)

)
du,

where γ (t)= t − Tν(t) has a proper limiting distribution as t→∞ (see Chap. 10),

so zt/t
p→ 0 as t→∞. The sum Sν(t) =

∑ν(t)
k=1 ζk is nothing else but the generalised

renewal process studied in Chaps. 10 and 11. By Theorem 11.5.2, as t→∞,

Sν(t)

t

p→ aζ

a
.

The theorem is proved. �

In order to prove the strong law of large numbers we need a somewhat more

restrictive condition than that in Theorem 21.5.2. Put

ζ ∗ :=
∫ τ

0

∣∣f
(
X0(u)

)∣∣du.

Theorem 21.5.3 Let the conditions of Theorem 21.5.1 be satisfied and Eζ ∗ <∞.

Then

S(t)

t

a.s.−→ aζ

a
.



21.6 Diffusion Processes 603

The proof essentially repeats (as was the case for Theorem 21.5.2) that of the law

of large numbers for sums of random variables defined on a Markov chain (see

Theorem 13.8.3). One only needs to use, instead of (13.8.18), the relation

sup
Tk≤u≤Tk+1

∣∣∣∣
∫ u

Tk

f
(
X(v)

)
dv

∣∣∣∣≤ ζ ∗k =
∫ Tk+1

Tk

∣∣f
(
X(v)

)∣∣dv

and the fact that E ζ ∗k <∞. The theorem is proved. �

Here an analogue of Theorem 13.8.2, in which the conditions of existence of

E ζ ∗ and Eζ are elucidated, is the following.

Theorem 21.5.4 (Generalisation of Wald’s identity) Let the conditions of Theo-
rem 21.5.1 be met and there exist

E
∣∣f
(
X(∞)

)∣∣=
∫ ∣∣f (x)

∣∣π(dx),

where X(∞) is a random variable with the stationary distribution π . Then there
exist

Eζ ∗ = EτE
∣∣f
(
X(∞)

)∣∣, Eζ = EτEf
(
X(∞)

)
.

The proof of Theorem 21.5.4 repeats, with obvious changes, that of The-

orem 13.8.2. �

Theorem 21.5.5 (The central limit theorem) Let the conditions of Theorem 21.5.1

be met and Eτ 2 <∞, Eζ 2 <∞. Then

S(t)− rt

d
√

t/a
⊂⇒�0,1, t→∞,

where r = aζ /a, d2 =D(ζ − rτ ).

The proof, as in the case of Theorems 21.5.2–21.5.4, repeats, up to evident

changes, that of Theorem 13.8.4. �

Here an analogue of Theorem 13.8.5 (on the conditions of existence of variance

and on an identity for a−1d2) looks more complicated than under the conditions of

Sect. 13.8 and is omitted.

21.6 Diffusion Processes

Now we will consider an important class of Markov processes with continuous tra-

jectories.

Definition 21.6.1 A homogeneous Markov process ξ(t) with state space 〈R,B〉
and the transition function P(t, x,B) is said to be a diffusion process if, for some

finite functions a(x) and b2(x) > 0,
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(1) lim∆→0
1
∆

∫
(y − x)P (∆,x, dy)= a(x),

(2) lim∆→0
1
∆

∫
(y − x)2P(∆,x, dy)= b2(x),

(3) for some δ > 0 and c <∞,∫
|y − x|2+δP(∆,x, dy) < c∆1+δ/2.

Put ∆ξ(t) := ξ(t +∆)− ξ(t). Then the above conditions can be written in the

form:

E
[
∆ξ(t)

∣∣ξ(t)= x
]
∼ a(x)∆,

E
[(

∆ξ(t)
)2∣∣ξ(t)= x

]
∼ b2(x)∆,

E
[∣∣∆ξ(t)

∣∣2+δ∣∣ξ(t)= x
]
< c∆1+δ/2 as ∆→ 0.

The coefficients a(x) and b(x) are called the shift and diffusion coefficients, re-

spectively. Condition (3) is an analogue of the Lyapunov condition. It could be re-

placed with a Lindeberg type condition:

(3a) E[(∆ξ(t))2; |∆ξ(t)|> ε] = o(∆) for any ε > 0 as ∆→ 0.

It follows immediately from condition (3) and the Kolmogorov theorem that a

diffusion process ξ(t) can be thought of as a process with continuous trajectories.

The standard Wiener process w(t) is a diffusion process, since in that case

P(t;x,B)= 1√
2πt

∫

B

e−(x−y)2/(2t) dy,

E∆w(t)= 0, E
[
∆w(t)

]2 =∆, E
[
∆w(t)

]4 = 3∆2.

Therefore the Wiener process has zero shift and a constant diffusion coefficient.

Clearly, the process w(t)+ at will have shift a and the same diffusion coefficient.

We saw in Sect. 21.2 that the “local” characteristic Q of a Markov process ξ(t)

with a discrete state space X specifies uniquely the evolution law of the process.

A similar situation takes place for diffusion processes: the distribution of the process
is determined uniquely by the coefficients a(x) and b(x). The way to establishing

this fact again lies via the Chapman–Kolmogorov equation.

Theorem 21.6.1 If the transition probability P(t;x,B) of a diffusion process is
twice continuously differentiable with respect to x, then P(t;x,B) is differentiable
with respect to t and satisfies the equation

∂P

∂t
= a

∂P

∂x
+ b2

2

∂2P

∂x2
(21.6.1)

with the initial condition

P(0;x,B)= IB(x). (21.6.2)

Remark 21.6.1 The conditions of the theorem on smoothness of the transition func-

tion P can actually be proved under the assumption that a and b are continuous,

b ≥ b0 > 0, |a| ≤ c(|x| + 1) and b2 ≤ c(|x| + 1).
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Proof of Theorem 21.6.1 For brevity’s sake denote by P ′t , P ′x , and P ′′x the partial

derivatives ∂P
∂t

, ∂P
∂x

and ∂2P

∂x2 , respectively, and make use of the relation

P(t;y,B)− P(t;x,B)

= (y − x)P ′x +
(y − x)2

2
P ′′x +

(y − x)2

2

[
P ′′x (t;yx,B)− P ′′x (t;x,B)

]
,

yx ∈ (x, y). (21.6.3)

Then by the Chapman–Kolmogorov equation

P(t +∆;x,B)− P(t;x,B)=
∫

P(∆;x, dy)
[
P(t;y,B)− P(t;x,B)

]

= a(x)P ′x∆+
b2(x)

2
P ′′x ∆+ o(∆)+R, (21.6.4)

where

R =
∫

(y − x)2

2

[
P ′′x (t;yx,B)− P ′′x (t;x,B)

]
P(∆;x, dy)=

∫

|y−x|≤ε

+
∫

|y−x|>ε

.

The first integral, by virtue of the continuity of P ′′x , does not exceed

δ(ε)

[
b2(x)

2
∆+ o(∆)

]
,

where δ(ε)→ 0 as ε→ 0; the second integral is o(∆) by condition (3a). Since ε is

arbitrary, one has R = o(∆) and it follows from the above that

P ′t = lim
∆→0

P(t +∆;x,B)− P(t;x,B)

∆
= a(x)P ′x +

b2(x)

2
P ′′x .

This proves (21.6.1). The theorem is proved. �

It is known from the theory of differential equations that, under wide assumptions

about the coefficients a and b and for B = (−∞, z), the Cauchy problem (21.6.1)–

(21.6.2) has a unique solution P which is infinitely many times differentiable with

respect to t , x and z. From this it follows that P(t;x,B) has a density p(t;x, z)

which is the fundamental solution of (21.6.1).

It is also not difficult to derive from Theorem 21.6.1 that, along with P(t;x,B),

the function

u(t, x)=
∫

g(z)P (t;x, dz)= E
[
g
(
ξ (x)(t)

)]

will also satisfy Eq. (21.6.1) for any smooth function g with a compact support,

ξ (x)(t) being the diffusion process with the initial value ξ (x)(0)= x.

In the proof of Theorem 21.6.1 we considered (see (21.6.4)) the time increment

∆ preceding the main time interval. In this connection Eqs. (21.6.1) are called back-
ward Kolmogorov equations. Forward equations can be derived in a similar way.
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Theorem 21.6.2 (Forward Kolmogorov equations) Let the transition density
p(t;x, y) be such that the derivatives

∂

∂y

[
a(y)p(t;x, y)

]
and

∂2

∂y2

[
b2(y)p(t;x, y)

]

exist and are continuous. Then p(t, x, y) satisfies the equation

Dp := ∂p

∂t
+ ∂

∂y

[
a(y)p(t;x, y)

]
− 1

2

∂2

∂y2

[
b2(y)p(t;x, y)

]
= 0. (21.6.5)

Proof Let g(y) be a smooth function with a bounded support,

u(t, x) := Eg
(
ξ (x)(t)

)
=
∫

g(y)p(x; t, y) dy.

Then

u(t +∆,x)− u(t, x)

=
∫

p(t;x, z)

[
p(∆; z, y)g(y) dy −

∫
p(∆,z, y)g(z) dy

]
dz. (21.6.6)

Expanding the difference g(y)− g(z) into a series, we obtain in the same way as in

the proof of Theorem 21.4.1 that, by virtue of properties (1)–(3), the expression in

the brackets is
[
a(z)g′(z)+ b2(z)

2
g′′(z)

]
∆+ o(∆).

This implies that there exists the derivative

∂u

∂t
=
∫

p(t;x, z)

[
a(z)g′(z) dz+ 1

2

b2(z)

2
g′′(z)

]
dz.

Integrating by parts we get

∂u

∂t
=
∫ {
− ∂

∂z

[
a(z)p(t;x, z)

]
+ 1

2

∂

∂z2

[
b2(z)p(t;x, z)

]}
g(z) dz= 0

or, which is the same,
∫

Dp(t;x, z)g(z) dz= 0.

Since g is arbitrary, (21.6.5) follows. The theorem is proved. �

As in the case of discrete X, the difference between the forward and backward

Kolmogorov equations becomes more graphical for non-homogeneous diffusion

processes, when the transition probabilities P(s, x; t,B) depend on two time vari-

ables, while a and b in conditions (1)–(3) are functions of s and x. Then the back-

ward Kolmogorov equation (for densities) will relate the derivatives of the transition

densities p(s, x; t, y) with respect to the first two variables, while the forward equa-

tion will hold for the derivatives with respect to the last two variables.
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We return to homogeneous diffusion processes. One can study conditions ensur-

ing the existence of the limiting stationary distribution of ξ (x)(t) as t→∞ which

is independent of x using the same approach as in Sect. 21.2. Theorem 21.2.3 will

remain valid (one simply has to replace i0 in it with x0, in agreement with the no-

tation of the present section). The proof of Theorem 21.2.3 also remains valid, but

will need a somewhat more precise argument (in the new situation, on the event Bdv

one has ξ(t − v) ∈ dx0 instead of ξ(t − v)= x0).

If the stationary distribution density

lim
t→∞

p(t;x, y)= p(y) (21.6.7)

exists, how could one find it? Since the dependence of p(t;x, y) of t and x van-

ishes as t→∞, the backward Kolmogorov equations turn into the identity 0= 0 as

t→∞. Turning to the forward equations and passing in (21.6.6) to the limit first as

t→∞ and then as ∆→ 0, we come, using the same argument as in the proof of

Theorem 21.2.3, to the following conclusion.

Corollary 21.6.1 If (21.6.7) and the conditions of Theorem 21.6.2 hold, then the
stationary density p(y) satisfies the equation

−
[
a(y)p(y)

]′ + 1

2

[
b2(y)p(y)

]′′ = 0

(which is obtained from (21.6.5) if we put ∂p
∂t
= 0).

Example 21.6.1 The Ornstein–Uhlenbeck process

ξ (x)(t)= xeat + σeatw

(
1− e−2at

2a

)
,

where w(u) is the standard Wiener process, is a homogeneous diffusion process

with the transition density

p(t;x, y)= 1√
2πσ(t)

exp

{
− (y − xeat )2

2σ 2(t)

}
, σ 2(t)= σ 2

2a

(
e2at − 1

)
.

(21.6.8)

We leave it to the reader to verify that this process has coefficients a(x) = ax,

b(x) = σ = const, and that function (21.6.8) satisfies the forward and backward

equations. For a < 0, there exists a stationary process (the definition is given in the

next chapter)

ξ(t)= σeatw

(
e−2at

2a

)
,

of which the density (which does not depend on t) is equal to

p(y)= lim
t→∞

p(x; t, y)= 1√
2πσ(∞)

exp

{
− y2

2σ 2(∞)

}
, σ (∞)=−σ 2

2a
.
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In conclusion of this section we will consider the problem, important for various

applications, of finding the probability that the trajectory of a diffusion process will

not leave a given strip. For simplicity’s sake we confine ourselves to considering

this problem for the Wiener process. Let c > 0 and d < 0.

Put

U(t;x,B) := P
(
w(x)(u) ∈ (d, c) for all u ∈ [0, t]; w(x)(t) ∈ B

)

= P
(

sup
u≤t

w(x)(u) < c, inf
u≤t

w(x)(u) > d, w(x)(t) ∈ B
)
.

Leaving out the verification of the fact that the function U is twice continuously

differentiable, we will only prove the following proposition.

Theorem 21.6.3 The function U satisfies Eq. (21.6.1) with the initial condition

U(0;x,B)= IB(x) (21.6.9)

and boundary conditions

U(t; c,B)=U(t;d,B)= 0. (21.6.10)

Proof First of all note that the function U(t;x,B) for x ∈ (d, c) satisfies conditions

(1)–(3) imposed on the transition function P(t;x,B). Indeed, consider, for instance,

property (1).

We have to verify that
∫ c

d

(y − x)U(∆;x, dy)=∆a(x)+ o(∆) (21.6.11)

(with a(x)= 0 in our case). But U(t, x,B)= P(t;x,B)− V (t;x,B), where

V (t;x,B)= P
({

sup
u≤t

w(x)(u)≥ c or inf
u≤t

w(x)(u)≤ d
}
∩
{
w(x)(t) ∈ B

})
,

and
∫ c

d

(y − x)V (∆;x, dy)

≤max(c,−d)
[
P
(

sup
u≤∆

w(x)(u)≥ c
)
+ P

(
inf
u≤∆

w(x)(u)≤ d
)]

.

The first probability in the brackets is given, as we know (see (20.2.1) and Theo-

rem 19.2.2), by the value

2P
(
w(x)(∆) > c

)
= 2P

(
w(1) >

c− x√
∆

)
∼ 2√

2πz
e−z2/2, z= c− x√

∆
.

For any x < c and k > 0, it is o(∆k). The same holds for the second probability.

Therefore (21.6.11) is proved. In the same way one can verify properties (2) and (3).

Further, because by the total probability formula, for x ∈ (d, c),

U(t +∆;x,B)=
∫ c

d

U(∆;x, dy)U(t;y,B),
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using an expansion of the form (21.6.3) for the function U , we obtain in the same

way as in (21.6.4) that

U(t +∆;x,B)−U(t;x,B)=
∫

U(∆;x, dy)
[
U(t;y,B)−U(t;x,B)

]

= a(x)
∂U

∂x
∆+ b2(x)

2

∂2U

∂x2
∆+ o(∆).

This implies that ∂U
∂t

exists and that Eq. (21.6.1) holds for the function U .

That the boundary and initial conditions are met is obvious. The theorem is

proved. �

The reader can verify that the function

u(t;x, y) := ∂

∂y
U
(
t;x, (−∞, y)

)
, y ∈ (d, c),

playing the role of the fundamental solution to the boundary problem (21.6.9)–

(21.6.10) (the function u satisfies (21.6.1) with the boundary conditions (21.6.10)

and the initial conditions degenerating into the δ-function), is equal to

u(t;x, y)= 1√
2πt

[ ∞∑

k=−∞
exp

{
−[y + 2k(c− d)]2

2t

}

−
∞∑

k=0

exp

{
−[y − 2c− 2k(c− d)]2

2t

}

−
∞∑

k=0

exp

{
−[y − 2d − 2k(c− d)]2

2t

}]
.

This expression can also be obtained directly from probabilistic considerations (see,

e.g., [32]).



Chapter 22

Processes with Finite Second Moments.
Gaussian Processes

Abstract The chapter is devoted to the classical “second-order theory” of time-

homogeneous processes with finite second moments. Section 22.1 explores the re-

lationships between the covariance function properties and those of the process itself

and proves the ergodic theorem (in quadratic mean) for processes with covariance

functions vanishing at the infinity. Section 22.2 is devoted to the special case of

Gaussian processes, while Sect. 22.3 solves the best linear prediction problem.

22.1 Processes with Finite Second Moments

Let {ξ(t), −∞ < t <∞} be a random process for which there exist the moments

a(t)= Eξ(t) and R(t, u)= Eξ(t)ξ(u). Since it is always possible to study the pro-

cess ξ(t) − a(t) instead of ξ(t), we can assume without loss of generality that

a(t)≡ 0.

Definition 22.1.1 The function R(t, u) is said to be the covariance function of the

process ξ(t).

Definition 22.1.2 A function R(t, u) is said to be nonnegative (positive) definite if,

for any k; u1, . . . , uk ; a1, . . . , ak 
= 0,
∑

i,j

aiajR(ui, uj )≥ 0 (> 0).

It is evident that the covariance function R(t, u) is nonnegative definite, because

∑

i,j

aiajR(ui, uj )= E

(∑

i,j

aj ξ(ui)

)2

≥ 0.

Definition 22.1.3 A process ξ(t) is said to be unpredictable if no linear combination

of the variables ξ(u1), . . . , ξ(uk) is zero with probability 1, i.e. if there exist no

u1, . . . , uk ; a1, . . . , ak such that

P

(∑

i

aiξ(ui)= 0

)
= 1.

A.A. Borovkov, Probability Theory, Universitext,

DOI 10.1007/978-1-4471-5201-9_22, © Springer-Verlag London 2013

611

http://dx.doi.org/10.1007/978-1-4471-5201-9_22


612 22 Processes with Finite Second Moments. Gaussian Processes

If R(t, u) is the covariance function of an unpredictable process, then R(t, u)

is positive definite. We will see below that the converse assertion is also true in a

certain sense.

Unpredictability means that we cannot represent ξ(tk) as a linear combination of

ξ(tj ), j < k.

Example 22.1.1 The process ξ(t) =
∑N

k=1 ξkgk(t), where gk(t) are linearly inde-

pendent and ξk are independent, is not unpredictable, because from ξ(t1), . . . , ξ(tN )

we can determine the values ξ(t) for all other t .

Consider the Hilbert space L2 of all random variables η on 〈Ω,F,P〉 having

finite second moments, Eη = 0, endowed with the inner product (η1, η2) = Eη1η2

corresponding to the distance ‖η1 − η2‖ = [E(η1 − η2)
2]1/2. Convergence in L2 is

obviously convergence in mean quadratic.

A random process ξ(t) may be thought of as a curve in L2.

Definition 22.1.4 A random process ξ(t) is said to be wide sense stationary if the

function R(t, u) =: R(t − u) depends on the difference t − u only. The function

R(s) is called nonnegative (positive) definite if the function R(t, t + s) is of the re-

spective type. For brevity, we will often call wide sense stationary processes simply

stationary.

For the Wiener process, R(t, u) = Ew(t)w(u) = min(t, u), so that w(t) cannot

be stationary. But the process ξ(t)=w(t + 1)−w(t) will already be stationary.

It is obvious that, for a stationary process, the function R(s) is even and Eξ2(t)=
R(0) = const. For simplicity’s sake, put R(0) = 1. Then, by the Cauchy–Bunja-

kovsky inequality,
∣∣R(s)

∣∣=
∣∣Eξ(t)ξ(t + s)

∣∣≤
[
Eξ2(t)Eξ2(t + s)

]1/2 =R(0)= 1.

Theorem 22.1.1

(1) A process ξ(t) is continuous in mean quadratic (ξ(t +∆)
(2)−→ ξ(t) as ∆→ 0)

if and only if the function R(u) is continuous at zero.

(2) If the function R(u) is continuous at zero, then it is continuous everywhere.

Proof

(1)
∥∥ξ(t +∆)− ξ(t)

∥∥2 = E
(
ξ(t +∆)− ξ(t)

)2 = 2R(0)− 2R(∆).

(2) R(t +∆)−R(t)= E
(
ξ(t +∆)ξ(0)− ξ(t)ξ(0)

)

=
(
ξ(0), ξ(t +∆)− ξ(t)

)
≤
∥∥ξ(t +∆)− ξ(t)

∥∥

=
√

2
(
R(0)−R(∆)

)
. (22.1.1)

The theorem is proved. �

A process ξ(t) continuous in mean quadratic will be stochastically continuous,

as we can see from Chaps. 6 and 18. The continuity in mean quadratic does not,
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however, imply path-wise continuity. The reader can verify this by considering the

example of the process

ξ(t)= η(t + 1)− η(t)− 1,

where η(t) is the Poisson process with parameter 1. For that process, the covariance

function

R(t)=
{

0 for t ≥ 1,

1− t for 0≤ t ≤ 1

is continuous, although the trajectories of ξ(t) are not. If
∣∣R(∆)−R(0)

∣∣< c∆1+ε (22.1.2)

for some ε > 0 then, by the Kolmogorov theorem (see Theorem 18.2.1), ξ(t) has

a continuous modification. From this it follows, in particular, that if R(t) is twice

differentiable at the point t = 0, then the trajectories of ξ(t) may be assumed con-

tinuous. Indeed, in that case, since R(t) is even, one has

R′(0)= 0 and R(∆)−R(0)∼ 1

2
R′′(0)∆2.

As a whole, the smoother the covariance function is at zero, the smoother the

trajectories of ξ(t) are.

Assume that the trajectories of ξ(t) are measurable (for example, belong to the

space D).

Theorem 22.1.2 (The simplest ergodic theorem) If

R(s)→ 0 as s→∞, (22.1.3)

then

ζT :=
1

T

∫ T

0

ξ(t) dt
(2)−→ 0.

Proof Clearly,

‖ζT ‖2 = 1

T 2

∫ T

0

∫ T

0

R(t − u)dt du.

Since R(s) is even,

J :=
∫ T

0

∫ T

0

R(t − u)dt du= 2

∫ T

0

∫ T

u

R(t − u)dt du.

Making the orthogonal change of variables v = (t − u)/
√

2, s = (t + u)/
√

2, we

obtain

J ≤ 2

∫ T/
√

2

s=0

∫ T/
√

2

v=0

R(v
√

2) dv ds ≤ 2T

∫ T

0

R(v)dv,

‖ζT ‖2 ≤ 2

T

∫ T

0

R(v)dv→ 0.

The theorem is proved. �
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Example 22.1.2 The stationary white noise process ξ(t) is defined as a process

with independent values, i.e. a process such that, for any t1, . . . , tn, the variables

ξ(t1), . . . , ξ(tn) are independent. For such a process,

R(t)=
{

1 for t = 0,

0 for t 
= 0,

and thus condition (22.1.3) is met. However, one cannot apply Theorem 22.1.2 here,

for the trajectories of ξ(t) will be non-measurable with probability 1 (for example,

the set B = {t : ξ(t) > 0} is non-measurable with probability 1).

Definition 22.1.5 A process ξ(t) is said to be strict sense stationary if, for any

t1, . . . , tk , the distribution of (ξ(t1 + u), ξ(t2 + u), . . . , ξ(tk + u)) is independent

of u.

It is obvious that if ξ(t) is a strict sense stationary process then

Eξ(t)ξ(u)= Eξ(t − u)ξ(0)=R(t − u),

and ξ(t) will be wide sense stationary. The converse is, of course, not true. However,

there exists a class of processes for which both concepts of stationarity coincide.

22.2 Gaussian Processes

Definition 22.2.1 A process ξ(t) is said to be Gaussian if its finite-dimensional

distributions are normal.

We again assume that Eξ(t)= 0 and R(t, u)= Eξ(t)ξ(u).

The finite-dimensional distributions are completely determined by the ch.f.s (λ=
(λ1, . . . , λk), ξ = (ξ(t1), . . . , ξ(tk)))

Eei(λ,ξ) = Ee
i
∑

j λj ξ(tj ) = e−
1
2 λRλT

,

where R = ‖R(ti, tj )‖ and the superscript T stands for transposition, so that

λRλT =
∑

i,j

λiλjR(ti, tj ).

Thus for a Gaussian process the finite-dimensional distributions are completely

determined by the covariance function R(t, u).

We saw that for an unpredictable process ξ(t), the function R(t, u) is positive

definite. A converse assertion may be stated in the following form.

Theorem 22.2.1 If the function R(t, u) is positive definite, then there exists an un-
predictable Gaussian process with the covariance function R(t, u).
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Proof For arbitrary t1, . . . , tk , define the finite-dimensional distribution of the vector

ξ(t1), . . . , ξ(tk) via the density

pt1,...,tk (x1, . . . , xk)=
√
|A|

(2π)k/2
exp

{
−1

2
xAxT

}
,

where A is the matrix inverse to the covariance matrix R = ‖R(ti, tj )‖ (see

Sect. 7.6) and |A| is the determinant of A. These distributions will clearly

be consistent, because the covariance matrices are consistent (the matrix for

ξ(t1), . . . , ξ(tk−1) is a submatrix of R). It remains to make use of the Kolmogorov

theorem. The theorem is proved. �

Example 22.2.1 Let w(t) be the standard Wiener process. The process

w0(t)=w(t)− tw(1), t ∈ [0,1],

is called the Brownian bridge (its “ends are fixed”: w0(0) = w0(1) = 0). The co-

variance function of w0(t) is equal to

R(t, u)= E
(
w(t)− tw(1)

)(
w(u)− uw(1)

)
= t (1− u)

for u≥ t .

A Gaussian wide sense stationary process ξ(t) is strict sense stationary. This

immediately follows from the fact that for R(t, u)=R(t−u) the finite-dimensional

distributions of ξ(t) become invariant with respect to time shift:

pt1,...,tk (x1, . . . , xk)= pt1+u,...,tk+u(x1, . . . , xk)

since ‖R(ti + u, tj + u)‖ = ‖R(ti, tj )‖.
If ξ(t) is a Gaussian process, then conditions ensuring the smoothness of its

trajectories can be substantially relaxed in comparison with (22.1.2).

Let for simplicity’s sake the Gaussian process ξ(t) be stationary.

Theorem 22.2.2 If, for h < 1,

∣∣R(h)−R (0)
∣∣< c

(
log

1

h

)−α

, α > 3, c <∞,

then the trajectories of ξ(t) can be assumed continuous.

Proof We make use of Theorem 18.2.2 and put ε(h) = (log 1
h
)−β for 1 < β <

(α − 1)/2 (we take logarithms to the base 2). Then

∞∑

n=1

ε
(
2−n

)
=
∞∑

n=1

n−β <∞,

and, by (22.1.1),
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P
(∣∣ξ(t + h)− ξ(t)

∣∣> ε(h)
)
= 2

[
1−Φ

(
ε(h)√

2(1−R(h))

)]

≤ 2

[
1−Φ

(
cε(h)

(
log

1

h

)α/2)]
= 2

[
1−Φ

(
c

(
log

1

h

)α/2−β)]
.

(22.2.1)

Since the argument of Φ increases unboundedly as h→ 0, γ = α − 2β > 1, and

by (19.3.1)

1−Φ(x)∼ 1√
2πx

e−x2/2 as x→∞,

we see that the right-hand side of (22.2.1) does not exceed

q(h) := c1

(
log

1

h

)β−α/2

exp

{
−c2

(
log

1

h

)α−2β}
,

so that

∞∑

n=1

2nq
(
2−n

)
= c1

∞∑

n=1

n−γ /2 exp
{
−c2n

γ + n ln 2
}

<∞,

because c2 > 0 and γ > 1. The conditions of Theorem 18.2.2 are met, and so The-

orem 22.2.2 is proved. �

22.3 Prediction Problem

Suppose the distribution of a process ξ(t) is known, and one is given the trajectory of

ξ(t) on a set B ⊂ (−∞, t], B being either an interval or a finite collection of points.

What could be said about the value ξ(t + u)? Our aim will be to find a random

variable ζ , which is FB = σ(ξ(v), v ∈ B)-measurable (and called a prediction) and

such that E(ξ(t + u)− ζ )2 assumes the smallest possible value. The answer to that

problem is actually known (see Sect. 4.8):

ζ = E
(
ξ(t + u)

∣∣FB

)
.

Let ξ(t) be a Gaussian process, B = {t1, . . . , tk}, t1 < t2 < · · ·< tk < t0 = t + u,

A = (σ 2)−1 = ‖aij‖ and σ 2 = ‖Eξ (ti) ξ (tj )‖i,j=1,...,k,0. Then the distribution of

the vector (ξ(t1), . . . , ξ(t0)) has the density

f (x1, . . . , xk, x0)=
√
|A|

(2π)(k+1)/2
exp

{
−1

2

∑

i,j

xixjaij

}
,

and the conditional distribution of ξ(t0) given ξ(t1), . . . , ξ(tk) has density equal to

the ratio

f (x1, . . . , xk, x0)∫∞
−∞ f (x1, . . . , xk, x0) dx0

.
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The exponential part of this ratio has the form

exp

{
−

a00x
2
0

2
−

k∑

j=1

x0xjaj0

}
.

This means that the conditional distribution under consideration is the normal

law �α,d2 , where

α =−
∑

j

xjaj0

a00
, d2 = 1

a00
.

Thus, in our case the best prediction ζ is equal to

ζ =−
k∑

j=1

ξ(tj )a0j

a00
.

The mean quadratic error of this prediction equals
√

1/a00.

We have obtained a linear prediction. In the general case, the linearity property

is usually violated.

Consider now the problem of the best linear prediction in the case of an arbitrary

process ξ(t) with finite second moments. For simplicity’s sake we assume again that

B = {t1, . . . , tk}.
Denote by H(ξ) the subspace of L2 generated by the random variables ξ(t),

−∞ < t <∞, and by HB(ξ) the subspace of H(ξ) generated (or spanned by)

ξ(t1), . . . , ξ(tk). Elements of HB(ξ) have the form

k∑

j=1

aj ξ(tj ).

The existence and the form of the best linear prediction in this case are estab-

lished by the following assertion.

Theorem 22.3.1 There exists a unique point ζ ∈HB(ξ) (the projection of ξ(t + u)

onto HB(ξ), see Fig. 22.1) such that

ξ(t + u)− ζ ⊥HB(ξ). (22.3.1)

Relation (22.3.1) is equivalent to
∥∥ξ(t + u)− ζ

∥∥= min
θ∈HB (ξ)

∥∥ξ(t + u)− θ
∥∥. (22.3.2)

Explicit formulas for the coefficients aj in the representation ζ =
∑

aj ξ(tj ) are
given in the proof.

Proof Relation (22.3.1) is equivalent to the equations
(
ξ(t + u)− ζ, ξ(tj )

)
= 0, j = 1, . . . , k.
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Fig. 22.1 Illustration to

Theorem 22.3.1: the point ζ

is the projection of ξ(t + u)

onto HB (ξ)

Substituting here

ζ =
k∑

l=1

alξ(tl) ∈HB(ξ),

we obtain

R(t + u, tj )=
k∑

l=1

alR(tj , tl), j = 1, . . . , k, (22.3.3)

or, in vector form, Rt+u = aR, where

a = (a1, . . . , ak),

Rt+u =
(
R(t + u, t1), . . . ,R(t + u, tk)

)
, R =

∥∥R(ti, tj )
∥∥.

If the process ξ(t) is unpredictable, then the matrix R is non-degenerate and

Eq. (22.3.3) has a unique solution:

a =Rt+uR
−1. (22.3.4)

If ξ(t) is not unpredictable, then either R−1 still exists and then (22.3.4) holds, or

R is degenerate. In that case, one has to choose from the collection ξ(t1), . . . , ξ(tk)

only l < k linearly independent elements for which all the above remains true after

replacing k with l.

The equivalence of (22.3.1) and (22.3.2) follows from the following considera-

tions. Let θ be any other element of HB(ξ). Then

η := θ − ζ ∈HB(ξ), η⊥ ξ(t + u)− ζ,

so that
∥∥ξ(t + u)− θ

∥∥=
∥∥ξ(t + u)− ζ

∥∥+ ‖η‖ ≥
∥∥ξ(t + u)− ζ

∥∥.
The theorem is proved. �

Remark 22.3.1 It can happen (in the case where the process ξ(t) is not unpre-

dictable) that ξ(t + u) ∈ HB(ξ). Then the error of the prediction ζ will be equal

to zero.



Appendix 1

Extension of a Probability Measure

In this appendix we will prove Carathéodory’s theorem, which was used in Sect. 2.1.

Let A be an algebra of subsets of Ω on which a probability measure P, i.e., a real-

valued function satisfying conditions P1–P3 of Chap. 2, is given. Let P denote the

class of all subsets of Ω . For any A ∈ P, there always exists a sequence {An}∞n=1

of disjoint sets from A such that
⋃∞

n=1 An ⊃ A (it suffices to take A1 = Ω and

An =∅, n ≥ 2). Denote by γ (A) the class of all such sequences and introduce on

P the real-valued function

P∗(A) := inf

{ ∞∑

n=1

P(An); {An} ∈ γ (A)

}
.

This function (the outer measure on P induced by the measure P on A) has the

following properties:

(1) P∗(A)≤ P∗(B)≤ 1 if A⊂ B .

(2) P∗(
⋃∞

n=1 An)=
∑∞

n=1 P(An) if the sets An ∈A, n= 1,2, . . . , are disjoint.

(3) P∗(
⋃∞

n=1 An)≤
∑∞

n=1 P∗(An) for any A1,A2, . . . ∈ P.

Property (1) is obvious. Property (2) is established by the following argument.

Let {Bn} be any sequence from γ (A), where A=
⋃∞

n=1 An. Since
⋃∞

m=1 AnBm =
An ∈A, one has P(An)=

∑∞
m=1 P(AnBm). Therefore,

∞∑

n=1

P(An)=
∑

n

∑

m

P(AnBm)=
∞∑

m=1

∞∑

n=1

P(AnBm).

But, for each N <∞,

N∑

n=1

P(AnBm)≤ P(Bm).

A.A. Borovkov, Probability Theory, Universitext,

DOI 10.1007/978-1-4471-5201-9, © Springer-Verlag London 2013

619

http://dx.doi.org/10.1007/978-1-4471-5201-9


620 1 Extension of a Probability Measure

Hence this equality holds for N =∞ as well and, for any sequence {Bm}∞m=1∈γ (A),

N∑

n=1

P(An)≤ P(Bm).

This implies that P∗(A)≥
∑∞

n=1 P(An). Because the converse inequality is obvious,

we have P∗(A)=
∑∞

n=1 P(An).

Proof of property (3) Consider, for some ε > 0, sequences {Ank}∞k=1 ∈ γ (An) such

that

∞∑

k=1

P(Ank)≤ P∗(An)+
ε

2n
.

The sequence of sets {Ank}∞n,k=1 clearly contains
⋃

An and therefore

P∗
(⋃

An

)
≤
∑

n

∑

k

P(Ank)≤
∞∑

n=1

P∗(An)+ ε.

Since ε is arbitrary, property (3) is proved. �

Introduce now the binary operation of symmetric difference ⊕ on arbitrary sets

A and B from P by means of the equality

A⊕B :=AB ∪AB.

It is not hard to see that

A⊕B = B ⊕A=A⊕B ⊂A∪B, A⊕A=∅,

A⊕∅=A, (A⊕B)⊕C =A⊕ (B ⊕C).

With the help of this operation and the function P∗, we introduce on P a distance ρ

by putting, for any A,B ∈ P,

ρ(A,B) := P∗(A⊕B).

This construction is quite similar to the one used in Sect. 3.4 (we considered there

the distance d(A,B)= P(A⊕B) between measurable sets A and B). The properties

of the distance ρ are the same as in (3.4.2). We will need the following properties:

(1) ρ(A,B)= ρ(B,A)≥ 0, ρ(A,A)= 0,

(2) ρ(A,B)= ρ(A,B),

(3) ρ(AB,CD)≤ ρ(A,C)+ ρ(B,D),

(4) ρ(
⋃

Ak,
⋃

Bk)≤
∑

k ρ(Ak,Bk).

We also note that
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(5) |P∗(A) − P∗(B)| ≤ ρ(A,B), and therefore P∗(·) is a uniformly continuous

function with respect to ρ.

Properties (1)–(3) were listed in (3.4.2); in the present context, they are proved in

exactly the same way based on the properties of the measure P∗. Property (4) follows

from property (3) of the measure P∗ and the relation (we put here A =
⋃

An and

B =
⋃

Bn)

A⊕B ⊂
⋃

(An ⊕Bn),

because

A⊕B =
[(⋃

An

)
∩
(⋂

Bn

)]
∪
[(⋂

An

)
∩
(⋃

Bn

)]

⊂
[⋃

AnBn

]
∪
[⋃

BnAn

]
=
⋃

(AnBn ∪AnBn)=
⋃

(An ⊕Bn).

Property (5) follows from the fact that

A⊂ B ∪ (A⊕B), B ⊂A∪ (A⊕B) (A1.1)

and therefore

P∗(A)− P∗(B)≤ P∗(A⊕B)= ρ(A,B),

P∗(B)− P∗(A)≤ P∗(A⊕B)= ρ(A,B).

Similarly to the terminology adopted in Sect. 3.4 we call a set A ∈ P approximable
if there exists a sequence An ∈ A for which ρ(A,An)→ 0. The totality of all ap-

proximable sets we denote by A. This is clearly the closure of A with respect to ρ.

Lemma A1.1 A is a σ -algebra.

Proof We verify that A satisfies properties A1, A2′ and A3 of σ -algebras of Chap. 2.

Property A1: Ω ∈ A is obvious, for A ∈ A. Property A3 (A ∈ A if A ∈ A) follows

from the fact that, for A ∈A, there exist An ∈A such that, as n→∞,

ρ(A,An)→ 0, ρ(A,An)= ρ(A,An)→ 0.

Finally, consider property A2′. We show first that if An ∈A, then A=
⋃

An ∈A.

Indeed, we can assume without loss of generality that the An are disjoint. Then,

by virtue of the properties of the measure P∗, for any ε > 0,

∑
P(Ak)≤ P∗(Ω)= 1,

ρ

(
A,

n⋃

k=1

Ak

)
= P∗

( ∞⋃

k=n+1

Ak

)
=

∞∑

k=n+1

P(Ak) < ε

for n large enough.
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Now let An ∈A. We have to show that

A=
∞⋃

n=1

An ∈A.

Let {Bn} be a sequence of sets from A such that ρ(An,Bn) < ε/2n. Then one has

B =
⋃

Bn ∈A and, by property (4) of the distance ρ,

ρ(A,B)≤
∞∑

n=1

ρ(An,Bn) < ε.

The lemma is proved. �

Now we can prove the main assertion.1

Theorem A1.1 The probability P can be extended from the algebra A to some
probability P given on the σ -algebra A.

Proof For A ∈A, put

P(A) := P∗(A).

It is evident that P(A) = P(A) for A ∈ A, and P(Ω) = 1. To verify that P is a

probability we just have to prove the countable additivity of P. We first prove the

finite additivity. It suffices to prove it for two sets:

P∗(A∪B)= P∗(A)+ P∗(B), (A1.2)

where A,B ∈A and A∩B =∅. Let An ∈A and Bn ∈A be such that ρ(A,An)→ 0

and ρ(B,Bn)→ 0 as n→∞. Then

∣∣P∗(A∪B)− P∗(An ∪Bn)
∣∣≤ ρ(A∪B,An ∪Bn)≤ ρ(A,An)+ ρ(B,Bn)→ 0,

P∗(An ∪Bn)= P(An ∪Bn)= P(An)+ P(Bn)− P(AnBn). (A1.3)

Here

P(An)→ P∗(A), P(Bn)→ P∗(B),

1The theorem on the extension of a measure to the minimum σ -algebra containing A was obtained

by C. Carathéodory. The metrisation of normed Boolean algebras A by the distance ρ(A,B) =
P(A ⊕ B) was used by many authors (see, e.g., the talk by A.N. Kolmogorov at the 6th Polish

Mathematical Congress in 1948 and Halmos [19]).

It was L.Ya. Savel’ev who suggested the use of the continuity properties of the measure with

respect to the distance ρ(A,B)= P∗(A⊕B) in order to extend it.
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P(AnBn) ≤ P∗(AnB)+ P∗(BnB)

≤ P∗(AnA)+ P∗(BnB)≤ ρ(A,An)+ ρ(B,Bn)→ 0.

Hence (A1.3) implies (A1.2).

We now prove countable additivity. Let An ∈A be disjoint. Then, putting

A=
∞⋃

n=1

An,

we obtain from the finite additivity of P that

P(A)=
n∑

k=1

P(Ak)+ P

( ∞⋃

k=n+1

Ak

)
.

Therefore

P(A)≥
∞∑

k=1

P(Ak).

On the other hand,

P(A)= P∗(A)≤
∞∑

k=1

P∗(Ak)=
∞∑

k=1

P(Ak).

The theorem is proved. �

Theorem A1.2 The extension of the probability P from the algebra A to the σ -
algebra A is unique.

Proof Assume that there exists another probability P1 on A, which coincides with

P on A and is such that, for some A ∈A,

P1(A) 
= P(A).

Suppose first that ε = P1(A)− P(A) > 0. Consider a sequence {Bn} ∈ γ (A) such

that

∞∑

n=1

P(Bn)− P(A) <
ε

2
.

Then

P1(A)= P(A)+ ε ≥
∞∑

n=1

P(Bn)+ ε/2
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which contradicts the assumption that A⊂
⋃∞

n=1 Bn. Therefore

P1(A)≤ P(A), A ∈A.

Since P is ρ-continuous at the point ∅, it follows that P1 is also ρ-continuous at the

point ∅, and hence at any “point” A ∈A. Indeed, by virtue of (A1.1),

∣∣P1(A)− P1(B)
∣∣≤ P1(A⊕B)≤ P(A⊕B)→ 0

if only ρ(A,B)= P(A⊕B)→ 0. Hence, for A ∈A,

P(A)= lim
B→A
B∈A

P(B)= lim
B→A
B∈A

P1(B)= P1(A).

The theorem is proved. �

Let A∗ = σ(A) be the σ -algebra generated by A. Since A⊂A, we have A∗ ∈A,

and the next statement follows in an obvious way from the above assertions.

Corollary A1.1 The probability P can be uniquely extended from the algebra A to
the σ -algebra A∗ generated by A.

Remark A1.1 The σ -algebra A defined above as the closure of the algebra A with

respect to the introduced distance ρ is in many cases wider than the σ -algebra A∗ =
σ(A) generated by A. This fact is closely related to the concept of the completion of

a measure. To explain the concept, we assume from the very beginning that A= F

is a σ -algebra. Then the measure P can be constructed in a rather simple way. To

do this we extend the measure P from 〈Ω,F〉 to a σ -algebra which is wider than F

and is constructed as follows. We will say that a subset N of Ω belongs to the class

N if there exists an A=A(N) ∈ F such that N ⊂A and P(A)= 0. It is not hard to

see that the class of all sets of the form B ∪N , where B ∈ F and N ∈N, also forms

a σ -algebra. Denote it by FN. Putting P(B ∪N) := P(B) we obtain an extension of

P to 〈Ω,FN〉. Such a measure is said to be complete, and the above operation itself

is called the completion of the measure P.

Now we can say that the measure P constructed in Theorem A1.1 is complete,

and the σ -algebra A coincides with FN.

If, for example, Ω = [0,1] and A is the algebra generated by the intervals, then

A∗ = σ(A) will, as we already know, be the Borel σ -algebra, and A will be the

Lebesgue extension of A∗ consisting of all “Lebesgue measurable” sets.



Appendix 2

Kolmogorov’s Theorem on Consistent
Distributions

In this appendix we will prove the Kolmogorov theorem asserting that consistent

distributions define a unique probability measure such that the consistent distribu-

tions are its projections. We used this theorem in Sect. 5.5 and in some other places,

where distributions on infinite-dimensional spaces were considered.

Let T be an index set and, for each t ∈ T , Rt be the real line (−∞,∞). Let

N ∈ T be a finite subset of T . Then the product space

∏

t∈T
Rt =R

N

is a Euclidean space of dimension equal to the number n of elements in N , spanned

on n axes of the space

R
T =

∏

t∈T
Rt .

Assume that, for any finite subset N ⊂ T , a probability measure PN is given on

〈RN ,BN 〉, where BN is the σ -algebra of Borel subsets of RN . Thereby a family of

measures is given on R
T . The family is said to be consistent if, for any L⊂N and

any Borel set B from R
L,

PL(B)= PN

(
B ×R

N−L
)
.

The measure PL is said to be the projection of PN onto R
L. A set from R

T that

can be represented in the form B ×R
T−N , where B ∈BN and N is a finite set, is

called a cylinder set in R
T . The set B is said to be the base of the cylinder.

Denote by BT the σ -algebra of sets from R
T generated by all cylinder sets.

Theorem A2.1 (Kolmogorov) If a consistent family of probability measures is given
on R

T , then there exists a unique probability measure P on 〈RT ,BT 〉 such that, for
any N , the measure PN coincides with the projection of P onto R

N .
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Proof The cylinder subsets of RT form an algebra. We show that, for B ∈BN , the

relations

P
(
B ×R

T−N
)
= PN (B) (A2.1)

define a measure on this algebra. First of all, by consistency of the measures PN ,

this definition of probability on cylinder sets is consistent (we mean the cases when

B = B1 ×R
N−L for B1 ∈BL; then the left-hand side of (A2.1) will also be equal

to P(B1×R
T−L)). Further, the thus defined probability is additive. Indeed, let B1×

R
T−N1 and B2 ×R

T−N2 be two disjoint cylinder sets. Then, putting N =N1 ∪N2,

we will have

P
((

B1 ×R
T−N1

)
∪
(
B2 ×R

T−N2
))

= P
({(

B1 ×R
N−N1

)
∪
(
B2 ×R

N−N2
)}
×R

T−N
)

= PN

({(
B1 ×R

N−N1
)
∪
(
B2 ×R

N−N2
)})

= PN

(
B1 ×R

N−N1
)
+ PN

(
B2 ×R

N−N2
)

= P
(
B1 ×R

T−N1
)
+ P

(
B2 ×R

T−N2
)
.

To verify that P is countably additive, we make use of the equivalence of prop-

erties P3 and P3′ (see Chap. 2). By this equivalence, it suffices to show that if Bn,

n = 1,2, . . . , is a decreasing sequence of cylinder sets and, for some ε > 0, we

have P(B) > ε, n = 1,2, . . . , then B =
⋂∞

n=1 Bn is not empty. Since the Bn are

enclosed in all the preceding sets, in the representation Bn = Bn ×R
T−Nn one has

Nn ⊂Nn+1 and Bn+1 ∩R
Nn ⊂ Bn. Without loss of generality, we will assume that

the number of elements in the set Nn = {t1, . . . , tn} is equal to n, and denote by xi

(with various superscripts) the coordinates in the space Rti .

Thus, let

P(Bn)= PNn(Bn)≥ ε > 0.

We prove that the intersection

B=
∞⋂

n=1

Bn

is non-empty. For any Borel set Bn ⊂R
Nn , there exists a compactum Kn such that

Kn ⊂ Bn, PNn(Bn −Kn) <
ε

2n+1
.

Setting Kn :=Kn ×R
T−Nn , we obtain

P(Bn −Kn)= PNn(Bn −Kn) <
ε

2n+1
.
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Introduce the sets Dn :=
⋂n

k=1 Kk . It is easy to see that Dn ⊂Bn are also cylinders.

Because

Bn −
n⋂

k=1

Kk ⊂
n⋂

k=1

(Bk −Kk),

we have

P(Bn −Dn)≤ P

(
n⋂

k=1

(Bk −Kk)

)
≤

n∑

k=1

P(Bk −Kk)≤
ε

2
;

P(Dn)≥ P(Bn)−
ε

2
≥ ε

2
.

It follows that Dn is a decreasing sequence of non-empty cylinder sets. Denote by

Xn = (xn
1 , xn

2 , . . . , xn
n) an arbitrary point of the base

Dn =
n⋂

k=1

Kk ×R
Nn−Nk

of the cylinder Dn. The point specifies a cylinder subset X of RT . Since the sets Dn

decrease, we have (xn+r
1 , xn+r

2 , . . . , xn+r
n ) ∈ Kn for any r ≥ 0. By compactness of

Kn, we can choose a subsequence n1k such that x
n1k

1 → x1 as k→∞. From this

subsequence, one can choose a subsequence n2k such that x
n2k

2 → x2, and so on.

Now consider the diagonal sequence of the points (or, more precisely, cylinder

sets) Xnkk = (x
nkk

1 , x
nkk

2 , . . . , x
nkk
nkk

). It is clear that

Xnkk →X = (x1, x2, . . .)

(component-wise) as k→∞, and that

(
x

nkk

1 , x
nkk

2 , . . . , xnkk
m

)
→ (x1, . . . , xm) ∈Km

for any m. This means that, for the set X corresponding to the point X, one has

X :=
{
y(t) ∈RT : y(t1)= x1, y(t2)= x2, . . .

}
⊂Km ⊂Bm

for any m, and therefore

X⊂
∞⋂

m=1

Bm.

Thus B is non-empty, and the countable additivity of P on the algebra of cylinder

sets is proved. Hence P is a measure, and it remains to make use of the theorem

on the extension of a measure from an algebra to the σ -algebra generated by that

algebra.

The theorem is proved. �



Appendix 3

Elements of Measure Theory and Integration

In this appendix, the properties of integrals with respect to a measure are presented

in more detail than in Chaps. 4 and 6. We also prove the basic theorems on decom-

position of measure and on convergence of sequences of measures.

3.1 Measure Spaces

Let 〈Ω,F〉 be a measurable space. We will say that a measure space 〈Ω,F,μ〉 is

given if μ is a nonnegative countably additive set function on F, i.e. a function

having the following properties:

(1) μ(
⋃

j Aj ) =
∑

j μ(Aj ) for any countable collection of disjoint sets Aj ∈ F

(σ -additivity);

(2) μ(A)≥ 0 for any A ∈ F;

(3) μ(∅)= 0, where ∅ is the empty set.

The value μ(A) is called the measure of the set A. We will only consider finite
and σ -finite measures. In the former case one assumes that μ(Ω) <∞. In the latter

case there exists a partition of Ω into countably many sets Aj such that μ(Aj ) <∞.

A probability space is an example of a space with a finite (unit) measure. The

space 〈R,B,μ〉, where R is the real line, B is the σ -algebra of Borel sets, and μ is

the Lebesgue measure, is an example of a space with a σ -finite measure.

We can also consider such set functions μ(A) that satisfy conditions (1) and (3)

only, but are not necessarily nonnegative. Such functions are called signed measures.

Any finite signed measure (i.e., such that supA μ(A) <∞ and infA μ(A) > −∞)

can be represented as a difference of two nonnegative measures (the Hahn decompo-

sition theorem, see Sect. 3.5 of the present appendix). We will need signed measures

in Sect. 3.5 only. Everywhere else, unless otherwise specified, by measures we will

understand set functions possessing properties (1)–(3).

In the same manner as when establishing the simplest properties of probability,

one easily establishes the following properties of measures:
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(1) μ(A)≤ μ(B) if A⊂ B ,

(2) μ(
⋃

j Aj )≤
∑

j μ(Aj ) for any Aj ,

(3) if An ⊂An+1 and
⋃

n An =A then μ(An)→ μ(A), or, which is the same,

(3′) if An ⊃An+1,
⋂

n An =A, and μ(A1) <∞ then μ(An)→ μ(A).

Consider further measurable functions on 〈Ω,F〉, i.e., functions ξ(ω) having the

property {ω : ξ(ω) ∈ B} ∈ F for any Borel subset B of the real line.

The notions of convergence in measure and convergence almost everywhere are

introduced similarly to the case of probability measure.

We will say that a sequence of measurable functions ξn converges to ξ almost

everywhere (a.e.): ξn
a.e.−→ ξ as n→∞ if ξn(ω)→ ξ(ω) for all ω except from a set

of measure 0.

We will say that the ξn converge to ξ in measure: ξn
µ−→ ξ if, for any ε > 0, as

n→∞,

μ
({
|ξn − ξ |> ε

})
→ 0.

Now we turn to the construction of integrals and the study of their properties.

First we consider finite measures assuming them without loss of generality to be

probability measures. In that case we will write P(A) instead of μ(A). We will turn

to integrals with respect to arbitrary measures in Sect. 3.4.

3.2 The Integral with Respect to a Probability Measure

3.2.1 The Integrals of a Simple Function

A measurable function ξ(ω) is said to be simple if its range is finite. The indicator
of a set F ∈ F is the simple function

IF (ω)=
{

1, if ω ∈ F,

0, if ω /∈ F.

Clearly, any simple function ξ(ω) can be written in the form

ξ(ω)=
n∑

k=1

xkIFk
(ω),

where xk , k = 1,2, . . . , n, are values assumed by ξ , and Fk = {ω : ξ(ω)= xk}. The

sets Fk ∈ F are disjoint, and
⋃n

k=1 Fk =Ω . The integral of the simple function ξ(ω)

with respect to a measure P is defined as the quantity

∫
ξ dP=

∫
ξ(ω)dP(ω)=

n∑

k=1

xkP(Fk)= Eξ.
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The integral of the simple function ξ(ω) over a set A ∈ F is defined as

∫

A

ξ dP=
∫

ξ(ω)IA(ω)dP(ω).

That these definitions are consistent (the partitions into sets Fk may be different)

can be verified in an obvious way.

3.2.2 The Integrals of an Arbitrary Function

Lemma A3.2.1 Let ξ(ω) > 0. There exists a sequence ξn(ω) of simple functions
such that ξn(ω) ↑ ξ(ω) as n→∞ for all ω ∈Ω .

Proof Partition the segment [0, n] into n2n equal intervals. Let

x0 = 0, x1 = 2−n, . . . , xn2n = n,

denote the partition points, so that xi+1 − xi = 2−n. Put

Fi :=
{
ω : xi ≤ ξ(ω) < xi+1

}
, i = 1,2, . . . , n2n − 1;

F0 :=
{
0≤ ξ(ω) < x1

}
∪
{
ξ(ω)≥ n

}
, ξn(ω) :=

n2n−1∑

i=0

xiIFi
(ω)≤ ξ(ω).

The function ξn(ω) is clearly simple, ξn(ω)≤ ξn+1(ω)≤ ξ(ω) for all ω, and has the

property that if n > ξ(ω) at a point ω ∈Ω then

0≤ ξ(ω)− ξn(ω)≤ 1

2n
.

The lemma is proved. �

Lemma A3.2.2 Let ξn ↑ ξ ≥ 0 and ηn ↑ ξ ≥ 0 be sequences of simple functions.

Then

lim
n→∞

∫
ξn dP= lim

n→∞

∫
ηn dP.

Proof We verify that, for any m,

∫
ξm dP≤ lim

n→∞

∫
ηn dP.

The function ξn is simple. Therefore it is bounded by some constant: ξm ≤ cm.

Hence, for any integer n and ε > 0,

ξm − ηn ≤ cm · I{ξm≥ηn+ε} + ε.
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This implies that

Eξm ≤ cmP{ξm ≥ ηn + ε} + ε+Eηn.

The probability on the right-hand side vanishes as n→∞:

P{ξm ≥ ηn + ε} ≤ P{ξ ≥ ηn + ε}→ 0,

because ηn converges almost surely (and hence in probability) to ξ . Therefore

Eξm ≤ ε+ limn→∞Eηn. Since ε is arbitrary,

lim
n→∞

Eξn ≤ lim
n→∞

Eηn.

Swapping {ξn} and {ηn}, we obtain the converse inequality.

The lemma is proved. �

The assertions of Lemmas A3.2.1 and A3.2.2 make the following definitions

consistent.

The integral of a nonnegative measurable function ξ(ω) (with respect to measure

P) is the quantity
∫

ξ dP= lim
n→∞

∫
ξn dP, (A3.2.1)

where ξn is a sequence of simple functions such that ξn ↑ ξ as n→∞.

The integral
∫

ξ dP will also be denoted by Eξ . We will say that the integral∫
ξ dP exists and ξ is integrable if Eξ <∞.

The integral of an arbitrary function (assuming values of both signs) ξ(ω) (with

respect to measure P) is the quantity

Eξ = Eξ+ −Eξ−, ξ± :=max(0,±ξ),

which is defined when at least one of the values Eξ± is finite. Otherwise Eξ is

undefined. The integral Eξ exists if and only if E|ξ |<∞ exists (for |ξ | = ξ++ ξ−).

If Eξ exists then

E(ξ ;A) :=
∫

A

ξ dP= Eξ IA

exists for any A ∈ F as well.

Lemma A3.2.3 If Eξ exists and Bn ∈ F is a sequence of sets such that P(Bn)→ 0

as n→∞, then

E(ξ ;Bn)→ 0.

Proof For any sequence |ξm| ↑ |ξ | of simple functions and Am := {|ξ | ≤m} one has

E|ξ | ≥ lim
m→∞

E|ξ |IAm ≥ lim
m→∞

E|ξm|IAm = E|ξ |,
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since |ξm|IAm ↑ |ξ |. This implies that

E|ξ | = lim
m→∞

E|ξ |IAm = lim
m→∞

E
(
|ξ |; |ξ | ≤m

)
,

and hence, for any ε > 0, there exists an m(ε) such that

E|ξ | −E
(
|ξ |; |ξ | ≤m

)
< ε

for m > m(ε). Consequently, for such m, one has

E
(
|ξ |;Bn

)
= E

(
|ξ |;

{
|ξ | ≤m

}
Bn

)
+E

(
|ξ |;

{
|ξ |> m

}
Bn

)
≤mP(Bn)+ ε,

and hence

lim sup
n→∞

E
(
|ξ |;Bn

)
≤ ε.

The lemma is proved. �

Note that Lemma 6.1.2 somewhat extends Lemma A3.2.3.

Corollary A3.2.1 If Eξ is well-defined (the values ±∞ not being excluded) and
Bn ∈ F is a sequence of sets such that P(Bn)→ 1 as n→∞, then

E(ξ ;Bn)→ Eξ.

Proof If Eξ exists then the required assertion follows from Lemma A3.2.3.

Now let Eξ =∞. Then Eξ− <∞ and Eξ+ =∞, where ξ± = max(0,±ξ). It

follows that E(ξ−;Bn)→ Eξ− as n→∞. We show that

E
(
ξ+;Bn

)
→∞. (A3.2.2)

Let Ak := {ξ ∈ [2k−1,2k)}, k = 1,2, . . . ; pk := P(Ak). We can assume with-

out loss of generality that all pk > 0 (if this is not the case we can consider a

subsequence kj such that all pkj
> 0). Since Eξ+ ≤ 1 +

∑∞
k=1 2kpk , we have∑∞

k=1 2kpk =∞. For a given N > 1, choose n large enough such that P(BnAk) >

pk/2 for all k ≤N . Then

E
(
ξ+;Bn

)
≥

N∑

k=1

2k−2pk,

where the right-hand side can be made arbitrarily large by an appropriate choice

of N . This proves (A3.2.2). Since ξ = ξ+− ξ−, the required convergence is proved.

The case Eξ =−∞ can be dealt with in the same way. The corollary is proved. �
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3.2.3 Properties of Integrals

I1. If sets Aj ∈ F are disjoint and
⋃

j Aj =Ω then

∫
ξ dP=

∑

j

∫

Aj

ξ dP. (A3.2.3)

Proof It suffices to prove this relation for ξ(ω) ≥ 0. For simple functions equal-

ity (A3.2.3) is obvious, because

∫
ξ dP=

∑

k

xkP(ξ = xk)=
∑

j

∑

k

xkP(ξ = xk;Aj ).

In the general case, using definition (A3.2.1) one gets

∫
ξ dP= lim

n→∞

∫
ξn dP = lim

n→∞

∑

j

∫

Aj

ξn dP

=
∑

j

lim
n→∞

∫

Aj

ξn dP=
∑

j

∫

Aj

ξ dP. (A3.2.4)

Swapping summation and passage to the limit is justified here, for by Lemma A3.2.3

∞∑

j=N

∫

Aj

ξn dP= E

(
ξn;

∞⋃

j=N

Aj

)
≤ E

(
ξ ;
∞⋃

j=N

Aj

)
→ 0

as N→∞ uniformly in n. �

I2. ∫
(ξ + η)dP=

∫
ξ dP+

∫
η dP.

Proof For simple functions this property is obvious. Hence, for ξ ≥ 0 and η ≥ 0,

this property follows from the additivity of the limit.

In the general case we have (ξ± and η± are defined here as before)

∫
(ξ + η)dP=

∫ (
ξ+ + η+

)
dP−

∫ (
ξ− + η−

)
dP

=
∫

ξ+ dP−
∫

ξ− dP+
∫

η+ dP−
∫

η− dP=
∫

ξ dP+
∫

η dP. �

I3. If c is an arbitrary constant, then
∫

cξ dP= c

∫
ξ dP.
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I4. If ξ ≤ η, then
∫

ξ dP≤
∫

η dP.

The proof of properties I3 and I4 is obvious. Since

∫
ξ dP= Eξ,

we can write down properties I1–I4 in terms of expectations as follows:

I1. Eξ =
∑

j E(ξ ;Aj ) if Aj are disjoint and
⋃

j Aj =Ω .

I2. E(ξ + η)= Eξ +Eη.

I3. Eaξ = aEξ .

I4. Eξ ≤ Eη, if ξ ≤ η.

Note also the following properties of integrals which easily follow from I1–I4.

I5. |Eξ | ≤ E|ξ |.
I6. If c1 ≤ ξ ≤ c2, then c1 ≤ Eξ ≤ c2.

I7. If ξ ≥ 0 and Eξ = 0, then P(ξ = 0)= 1.

This property follows from the Chebyshev inequality: P(ξ ≥ ε)≤ Eξ/ε = 0 for

any ε > 0.

I8. If P(ξ = η)= 1 and Eξ exists then Eξ = Eη.

Indeed,

Eη= lim
n→∞

E
(
η; |η| ≤ n

)
= lim

n→∞
E
(
ξ ; |ξ | ≤ n

)
= Eξ.

3.3 Further Properties of Integrals

3.3.1 Convergence Theorems

A number of convergence theorems were proved in Sect. 6.1. One of them was the

dominated convergence theorem (Corollary 6.1.3):

If ξn
p−→ ξ as n→∞ and |ξn| ≤ η, Eη <∞, then the expectation Eξ exists and

Eξn→ Eξ .

Now we will present some further useful assertions concerning convergence of

integrals.

Theorem A3.3.1 (Monotone convergence) If 0≤ ξn ↑ ξ , then Eξ = limn→∞Eξn.

Proof In addition to Corollary 6.1.3, here we only need to prove that Eξn →∞
if Eξ =∞. Put ξN

n :=min(ξn,N) and ξN :=min(ξ,N). Then clearly ξN
n ↑ ξN as

n→∞, and EξN
n ↑ EξN . Therefore the value EξN

n ≤ Eξn can be made arbitrarily

large by choosing appropriate n and N . The theorem is proved. �
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These theorems can be generalised in the following way. To make the extension

of the convergence theorems to the case of integrals with respect to signed measures

in Sect. 3.4 more convenient, we will now write Eξ in the form of the integral∫
ξ dP.

Theorem A3.3.2 (Fatou–Lebesgue) Let η and ζ be integrable. If ξn ≤ η then

lim sup
n→∞

∫
ξn dP≤

∫
lim sup
n→∞

ξn dP. (A3.3.1)

If ξn ≥ ζ then

lim inf
n→∞

∫
ξn dP≥

∫
lim inf
n→∞

ξn dP. (A3.3.2)

If ξn ↑ ξ and ξn ≥ ζ , or ξn
a.e.−→ ξ and ζ ≤ ξn ≤ η, then

lim
n→∞

∫
ξn dP=

∫
ξ dP. (A3.3.3)

Proof We prove for instance (A3.3.2). Assume without loss of generality that ζ ≡ 0.

In this case, as n→∞,

ξ ≥ ηn := inf
k≥n

ξk ↑ lim inf
k→∞

ξk, ηn ≥ 0,

and by the monotone convergence theorem

lim inf
n→∞

∫
ξn dP≥ lim

n→∞

∫
ηn dP=

∫
lim inf
n→∞

ξn dP.

Applying (A3.3.2) to the sequence η−ξn we obtain (A3.3.1); (A3.3.3) follows from

the previous theorems. The theorem is proved. �

3.3.2 Connection to Integration with Respect to a Measure on the

Real Line

Let g(x) be a Borel function given on the real line R (if B is the σ -algebra of Borel

sets on the line and B ∈B, then {x : g(x) ∈ B} ∈B). If ξ is a random variable

then η := g(ξ(ω)) will clearly also be a random variable. As we saw in Sect. 3.2,

a random variable ξ induces the probability space 〈R,B,Fξ 〉 with measure Fξ on

the line such that Fξ (B)= P(ξ ∈ B). Therefore one can speak about integrals with

respect to that measure.

Theorem A3.3.3 If η= g(ξ(ω)) and Eη exists, then

Eη=
∫

Ω

η dP=
∫

R

g(x)Fξ (dx)

(on the right-hand side we used a somewhat different notation for
∫

g dFξ ).
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Proof Let first g(x)= IB(x) be the indicator of a set B ∈B. Then η = g(ξ(ω))=
I{ξ∈B}(ω) and Eη= P(ξ ∈ B). Therefore

∫
g(x)Fξ (dx)=

∫
IB(x)Fξ (dx)= Fξ (B)= P(ξ ∈ B)= Eη.

Using the properties of the integral it is easy to establish that the assertion of the

theorem holds for simple functions g. Passing to the limit extends that assertion to

bounded functions. Now let g ≥ 0. If the function g(ξ)IB(ξ) = η(ω)I{ξ∈B}(ω) is

bounded, then
∫

B

g(x)Fξ (dx)= E(η; ξ ∈ B).

Therefore
∫

{g≤n}
g dFξ = E(η;η ≤ n).

Passing to the limit as n→∞ we get the assertion of the theorem. Considering the

case when g takes values of both signs does not create any difficulties. The theorem

is proved. �

Introducing the notation

Fξ (x)= P(ξ < x),

we can also consider, along with the integral just discussed,

∫

R

g(x)Fξ (dx), (A3.3.4)

the Riemann–Stieltjes integral

∫
g(x)dFξ (x), (A3.3.5)

the definition of which was given in Sect. 3.6. It was also shown there that, for con-
tinuous functions g(x), these integrals coincide. Moreover, we discussed in Sect. 3.6

some other conditions for these integrals to coincide.

Also recall that if

Fξ (x)=
∫ x

−∞
fξ (t) dt

and the functions g(x) and fξ (x) are Riemann integrable, then integrals (A3.3.4)

and (A3.3.5) coincide with the Riemann integral

∫
g(x)fξ (x) dx.



638 3 Elements of Measure Theory and Integration

3.3.3 Product Measures and Iterated Integrals

Consider a two-dimensional random variable ζ = (ξ, η) given on 〈Ω,F,P〉. The

random variables ξ and η induce a sample probability space 〈R2,B2,Fξ,η〉 with the

measure Fξ,η given on elements of the σ -algebra B2 of Borel sets on the plane (the

σ -algebra generated by rectangles) and such that

Fξ,η(A×B)= P(ξ ∈A,η ∈ B).

Here A× B is the set of points (x, y) for which x ∈ A and y ∈ B . If g(x, y) is a

Borel function ({(x, y) : g(x, y) ∈ B} ∈B2 for each B ∈B), then it easily follows

from the above that

Eg(ξ, η)=
∫

R2
g(x, y)Fξ,η(dx dy), (A3.3.6)

since both integrals are equal to
∫
R

xFθ (dx) for θ = g(ξ, η).

Now let ξ and η be independent random variables, i.e.

P(ξ ∈A, η ∈ B)= P(ξ ∈A)P(η ∈ B)

for any A,B ∈B.

Theorem A3.3.4 (Fubini’s theorem on iterated integrals) If g(x, y) ≥ 0 is a Borel
function and ξ and η are independent, then

Eg(ξ, η)= E
[
Eg(x, η)|x=ξ

]
.

For arbitrary Borel functions g(x, y) the above equality holds if Eg(ξ, η) exists.

This very assertion we stated in Chap. 3 in the form

∫
g(x, y)Fξ,η(dx dy)=

∫ [∫
g(x, y)Fη(dy)

]
Fξ (dx). (A3.3.7)

We will need the following.

Lemma A3.3.1 1. The section

Bx :=
{
y : (x, y) ∈ B

}

of any set B ∈B2 is measurable: Bx ∈B.

2. The section gx(y) = g(x, y) of any Borel function g (B2-measurable) is a
Borel function.

3. The integral
∫

g(x, y)Fη(dy) (A3.3.8)

of a Borel function g is a Borel function of x.
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Proof 1. Let K1 be the class of all sets from B2 of which all x-sections are measur-

able. It is evident that K1 contains all rectangles B = B(1) × B(2), where B(1) ∈B
and B(2) ∈B. Moreover, K1 is a σ -algebra. Indeed, consider for example the set

B =
⋃

k B(k) where B(k) ∈K1. The operation
⋃

on the sets B(k) leads to the same

operation on their sections, so that Bx =
⋃

k B
(k)
x ∈ B. For the other operations

(∩ and taking complements) the situation is similar. Thus, K1 is a σ -algebra con-

taining all rectangles. This means that B2 ⊂K1.

2. For B ∈B, one has

g−1
x (B) =

{
y : gx(y) ∈ B

}
=
{
y : g(x, y) ∈ B

}

=
{
y : (x, y) ∈ g−1(B)

}
=
[
g−1(B)

]
x
∈B.

3. Integral (A3.3.8) is, as a function of x, the result of passing to the limit in

a sequence of measurable functions, and hence is measurable itself. The lemma is

proved. �

Proof of Theorem A3.3.4 First we prove (A3.3.7) in the case where g(x, y) =
IB(x, y), so that the theorem turns into the formula for consecutive computation

of the measure of the set B ∈B2:

P
(
(ξ, η) ∈ B

)
=
∫

Fη

(
(x, y) ∈ B

)
Fξ (dx)=

∫
Fη(Bx)Fξ (dx). (A3.3.9)

We introduce the set function

Q(B) :=
∫

Fη(Bx)Fξ (dx).

Clearly, Q(B) ≥ 0 and Q(∅) = 0. Further, if B =
⋃

k B(k) and B(k) are disjoint,

then Bx =
⋃

k B
(k)
x and B

(k)
x are also disjoint, and

Q(B)=
∫

Fη

(⋃

k

B(k)
x

)
Fξ (dx)=

∑

k

∫
Fη

(
B(k)

x

)
Fξ (dx)=

∑

k

Q
(
B(k)

)
.

This means that Q(B) is a measure.

The measure Q(B) coincides with Fξ,η(B) = P((ξ, η) ∈ B) on rectangles B =
B(1) ×B(2). Indeed, for rectangles,

Bx =
{

B(2) for x ∈ B(1),

∅ for x /∈ B(1),

and

P
(
(ξ, η) ∈ B

)
= Fξ (B(1))Fη(B(2))

=
∫

B(1)

Fη(B(2))Fξ (dx)=
∫

Fη(Bx)Fξ (dx)=Q(B).
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This means that the measures Q and Fξ,η coincide on the algebra generated by

rectangles. By the measure extension theorem we obtain that Q= Fξ,η .

We have proved (A3.3.9). This implies that Fubini’s theorem holds for simple

functions gN =
∑N

j=1 cj IAj
, because

EgN (ξ, η) =
N∑

j=1

cj EIAj
(ξ, η)

=
N∑

j=1

cj

∫
EIAj

(x, η)Fξ (dx)=
∫

EgN (x, η)Fξ (dx).(A3.3.10)

Now if g ≥ 0 is an arbitrary Borel function then there exists a sequence of simple

functions gN ↑ g and, as in (A3.2.1), it remains to pass to the limit:

Eg(ξ, η) = lim
N→∞

EgN (ξ, η)

= lim
N→∞

∫
EgN (ξ, η)Fξ (dx)=

∫
EgN (ξ, η)Fξ (dx).

For an arbitrary function g one has to use the representation g = g+ − g−, g+ ≥ 0,

g− ≥ 0. The theorem is proved. �

Remark A3.1 We see from the proof of the theorem that the random variables ξ and

η do not need to be scalar. The assertion remains true in a more general form (see

property 5A in Sect. 4.8) and, in particular, for vector-valued ξ and η.

3.4 The Integral with Respect to an Arbitrary Measure

If µ is a finite measure on 〈Ω,F〉, μ(Ω) <∞, then the definition of the integral∫
ξ dμ with respect to the measure μ does not differ from that of the integral with

respect to a probability measure (one could just put
∫
A

ξ dμ= μ(Ω)
∫
A

ξ dP, where

P(B)= μ(B)/μ(Ω) is a probability distribution). If μ is σ -finite and μ(Ω)=∞,

then the situation is somewhat more complicated, although it can still be reduced to

the already used constructions. First we will make several preliminary remarks.

Let 〈Ω,F,P〉 be a probability space and f = f (ω)≥ 0 an a.e. finite nonnegative

measurable function (i.e., a random variable). Consider the set function

μ(A) :=
∫

A

f dP. (A3.4.1)

If f is integrable (μ(Ω) <∞) then μ(A) is a finite σ -additive measure (see prop-

erty I1) satisfying conditions (1)–(3) of Sect. 3.1 of the present appendix. In other
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words, μ is a finite measure on 〈Ω,F〉. But if f is not integrable, then μ is a σ -finite

measure, which immediately follows from the representation

μ(A)=
∞∑

k=1

∫

A∩{k−1≤f <k}
f dP

(the integrals in the sum that are equal to
∫
A

f I(k−1≤f <k) dP are clearly finite mea-

sures).

Thus, the integral of the form (A3.4.1) is a measure for any distribution P and

function f ≥ 0. It turns out that the following assertion, converse in a certain sense

to the above, also holds.

Lemma A3.4.1 For any measure μ on 〈Ω,F〉, there exists a distribution P on that
space and a measurable function f > 0 such that representation (A3.4.1) holds.

Thus, any measure can be represented as an integral with respect to a probability

measure (i.e., in the form E(f ;A) for the respective function f and distribution P).

Proof Let μ be a σ -finite measure on 〈Ω,F〉, and sets Bj ∈ F, j = 1,2, . . . , possess

the properties
⋃∞

j=1 Bj =Ω , BiBj =∅ for i 
= j , and μ(Bj ) <∞. Put

P(A) :=
∞∑

k=1

μ(ABk)

2kμ(Bk)
. (A3.4.2)

Obviously, P(Ω)= 1 and P is a measure. Further, if A⊂ Bk then

μ(A)= 2kμ(Bk)P(A).

This means that we should put f (ω) := 2kμ(Bk) for ω ∈ Bk . Then the set function

λ(A) :=
∫

A

f dP=
∫

Ω

f IA dP

will coincide with μ(A):

λ(A)=
∞∑

k=1

2kμ(Bk)P(ABk)

=
∞∑

k=1

2kμ(Bk)

∞∑

j=1

μ(ABkBj )

2jμ(Bj )
=
∞∑

k=1

μ(ABk)= μ(A).

The lemma is proved. �

Besides the required assertion, we also obtain that in representation (A3.4.1) the

range of values of the function f can be assumed without loss of generality to be

countable.



642 3 Elements of Measure Theory and Integration

The function f for which equality (A3.4.1) holds is called the density of the

measure μ with respect to P (or Radon–Nikodym derivative of the measure μ with

respect to P) and is denoted by dμ/dP. It is evident that alteration of the function

f = dμ/dP on a set of zero P-measure leaves the equality (A3.4.1) unchanged.

Now let μ and P be two given arbitrary measures. The question of under what

conditions these two measures μ and P could be related by (A3.4.1) and whether

the function f is determined uniquely thereby (up to values on a set of zero P-

measure) is rather important for probability theory. (We stress that, in the preceding

considerations, the measure P was constructed in a special way from the measure

μ, or vice versa.) Answers to these questions are given by the Radon–Nikodym

theorem to be discussed in the next section.

Now, using the simple assertion of Lemma A3.4.1 we have just proved, we will

give the definition of the integral with respect to an arbitrary measure μ.

Let μ be an arbitrary σ -finite measure on 〈Ω,F〉 and ξ ≥ 0 a F-measurable

function.

The integral
∫
A

ξ dμ over a set A ∈ F of the function ξ ≥ 0 with respect to the

measure μ is the integral

∫

A

ξ dμ=
∫

A

(
ξ
dμ

dP

)
dP (A3.4.3)

with respect to any distribution P satisfying equality (A3.4.1) (for example, with

respect to measure (A3.4.2)).

This definition is consistent because it does not depend on the choice of P. In-

deed, for simple functions ξ (ξ(ω)= xk for ω ∈ Fk),

∫

A

ξ dμ=
∑

k

xk

∫

A

dμ

d P
IBk

dP=
∑

k

xk

∫

ABk

dμ

d P
d P=

∑

k

xkμ(ABk).

If now ξ ≥ 0 is an arbitrary function, then by the monotone convergence theorem

the integral
∫
A

ξ dμ is equal to

lim
n→∞

∫

A

ξ (n) dμ

dP
dP= lim

n→∞

∫

A

ξ (n)dμ,

where ξ (n) ↑ ξ is a sequence of simple functions which converge monotonically to

ξ (see Lemma A3.2.1). In both cases, the result does not depend on the choice of P.

The integral
∫

A

ξ dμ

of an arbitrary measurable function ξ is defined by

∫

A

ξ dμ=
∫

A

ξ+dμ−
∫

A

ξ−dμ,
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when both expressions on the right-hand side are finite. (In that case one says

that the integral
∫
A

ξ dμ exists.) Here, as before, ξ+ = max(0, ξ) ≥ 0 and ξ− =
max(0,−ξ)≥ 0, so that ξ = ξ+ − ξ−.

Thus we see that the above definition of the integral with respect to an arbitrary

measure is essentially equivalent to the construction used in Sect. 3.2 of the present

appendix. However, the definition in the form (A3.4.3) saves us from the necessity

of repeating what we have already done (and now in a more complex setting) and

enables one to transfer all the properties of the integrals
∫

ξ dP to the general case.

We will list the basic properties preserving the existing numeration.

I1.
∫

ξ dμ=
∑

j

∫
Aj

ξ dμ if Aj are disjoint and
⋃

j Aj =Ω .

I2.
∫
(ξ + η)dμ=

∫
ξ dμ+

∫
η dμ.

I3.
∫

aξ dμ= a
∫

ξ dμ.

I4. ξ dμ≤
∫

η dμ if ξ ≤ η.

I5. |
∫

ξ dμ| ≤
∫
|ξ |dμ.

I6. If c1 ≤ ξ(ω)≤ c2 for ω ∈A, then c1μ(A)≤
∫
A

ξ dμ≤ c2μ(A).

I7. If ξ ≥ 0 and
∫

ξ dμ= 0, then μ(ξ > 0)= 0.

I8. If μ(ξ 
= η)= 0, then
∫

ξ dμ=
∫

η dμ.

It is clear that all the convergence theorems remain valid as well.

Theorem A3.4.1 (The dominated convergence theorem) Let |ξn| ≤ η and
∫

η dμ

exist. If ξn
μ−→ or ξn→ ξ a.e. as n→∞ then

∫
ξn dμ→

∫
ξ dμ.

Theorem A3.4.2 (The monotone convergence theorem) If 0 ≤ ξn ↑ ξ as n→∞
then ∫

ξn dμ→
∫

ξ dμ.

Theorem A3.4.3 (Fatou–Lebesgue) The statement and proof of this theorem is ob-
tained from those of Theorem A3.3.2 by replacing P with μ.

In conclusion we note that if Ω = R = (−∞,∞), F =B is the σ -algebra of

Borel sets, μ is the Lebesgue measure, and the function g(x) is continuous, then

the integral
∫
[a,b] g(x)dμ(x) coincides with the Riemann integral

∫ b

a
g(x)dx. This

follows from the preceding remarks in part 2 of Sect. 3.3 of this appendix.

3.5 The Lebesgue Decomposition Theorem and the

Radon–Nikodym Theorem

We return to a question that has already been asked in the previous section. Un-

der what conditions on measures μ and λ given on 〈Ω,F〉 can the measure μ be
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represented as

μ(A)=
∫

A

f dλ?

We do not assume here that λ is a probability measure.

Definition A3.5.1 A measure μ is said to be absolutely continuous with respect to

a measure λ (we write μ≺ λ) if, for any A such that λ(A)= 0, one has μ(A)= 0.

Definition A3.5.2 A set Nμ is said to be a support1 of measure μ if

μ(Ω −Nμ)= 0.

Definition A3.5.2 specifies a rather wide class of sets which can be called the

support of the measure μ when μ is concentrated on a part of the space Ω . If Ω =R

is the real line (and in some other cases as well), one can use another definition

which specifies a unique set for each measure. Consider the collection of all intervals

(a, b) ⊂ R with rational endpoints a and b. This collection is countable. Remove

from Ω =R all such intervals for which μ((a, b))= 0. The remaining set (which is

measurable) is called the support of the measure μ.

Definition A3.5.3 One says that a measure μ is singularwith respect to λ if there

exists a support Nλ of the measure λ such that μ(Nλ)= 0. Or, which is the same, if

there exists a support Nμ of the measure μ such that λ(Nμ)= 0.

The last definition, in contrast to Definition A3.5.1, is symmetric, so one can

speak about mutually singular measures μ and λ (this relation is often written as

μ⊥ λ).

Theorem A3.5.1 (Radon–Nikodym) A necessary and sufficient condition for
the absolute continuity μ ≺ λ is that there exists a function f unique up to λ-
equivalence (i.e., up to values on a set of zero λ-measure) such that2

μ(A)=
∫

A

f dλ.

As we have already noted, the function f is called the Radon–Nikodym derivative
dμ/dλ of the measure μ with respect to λ (or density of μ with respect to λ).

Since sufficiency in the assertion of the theorem is obvious, we will obtain the

Radon–Nikodym theorem as a consequence of the following Lebesgue decomposi-

tion theorem.

1The conventional definition of support refers to the case when Ω is a topological space. Then the

support of μ is the smallest closed set such that its complement is of μ-measure zero.

2This equality is sometimes adopted as a definition of absolute continuity.
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Theorem A3.5.2 (Lebesgue) Let μ and λ be two σ -finite measures given on 〈Ω,F〉.
There exists a unique decomposition of the measure μ into two components μa and
μs such that

μa ≺ λ, μs ⊥ λ.

Moreover, there exists a function f , unique up to λ-equivalence, such that

μa(A)=
∫

A

f dλ.

It is obvious that if μ ≺ λ then μs = 0, and the Lebesgue theorem then implies

the Radon–Nikodym theorem.

Proof Since μ and λ are σ -finite, there exist increasing sequences of sets Ω
μ
n

and Ωλ
n such that

μ
(
Ωμ

n

)
<∞, λ

(
Ωλ

n

)
<∞,

⋃

n

Ωμ
n =Ω,

⋃

n

Ωλ
n =Ω.

Putting Ωn :=Ω
μ
n ∩Ωλ

n we obtain a sequence of sets increasing to Ω for which

μ(Ωn) <∞, λ(Ωn) <∞.

If we prove the decomposition theorem for restrictions of the measures μ and λ

to 〈Bn,Fn〉, where Bn =Ωn+1 −Ωn and Fn is formed by sets BnA, A ∈ F, we will

thereby prove it for the whole Ω . It will suffice to take μa and μs to be the sums of

the respective components for each of the restrictions. This remark means that we

can consider the case of finite measures only.

Thus let μ and λ be finite measures.

(a) Let F be the class of functions f ≥ 0 such that

∫

A

f dλ≤ μ(A) for all A ∈ F (A3.5.1)

(the class F is non-empty, for the function f = 0 belongs to F). Set

α := sup
f∈F

∫

Ω

f dλ≤ μ(Ω) <∞

and choose a sequence fn such that, as n→∞,

∫
fn dλ→ α.

Put f̂n := max(f1, . . . , fn). Then clearly f̂n ↑ f̂ := supfn and by the monotone

convergence theorem
∫

A

f̂n dλ→
∫

A

f̂ dλ. (A3.5.2)
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We now show that f̂ ∈ F, i.e., that (A3.5.1) holds for f̂ . To this end, it suffices

by virtue of (A3.5.2) to notice that f̂n ∈ F. Let Ak , k = 1, . . . , n be disjoint sets on

which f̂n = fk . Then
⋃n

k=1 Ak =Ω and

∫

A

f̂n dλ=
n∑

k=1

∫

AAk

fk dλ≤
n∑

k=1

μ(AAk)= μ(A).

Thus, for the “maximum” element f ′ of F, (A3.5.1) also holds.

(b) Putting

μa(A) :=
∫

A

f̂ dλ, μs = μ−μa (A3.5.3)

we prove that μs is singular with respect to λ. We will need the following asser-

tion about the decomposition of an arbitrary signed measure (for the definition, see

Sect. 3.3.1 of this appendix).

Theorem A3.5.3 (The Hahn theorem on decomposition of a measure) For any
signed finite measure γ , there exist disjoint sets D+ ∈ F and D− ∈ F such that, for
any A ∈ F,

γ
(
AD+

)
≥ 0, γ

(
AD−

)
≤ 0.

Proof We first prove that there exists a set D ∈ F on which γ (A) attains its upper

bound.

Let Bn ∈ F be a sequence such that γ (Bn)→ Γ = supA γ (A) as n→ ∞.

Put B :=
⋃

k Bk and consider, for a fixed n, the decomposition of T into 2n sets

Bn,m, m= 1, . . . ,2n, of the form
⋂n

k=1 B ′k , where B ′k = Bk or B − Bk , k ≤ n. For

n < N , each Bn,m is a finite union of sets BN,M , 1 ≤M ≤ 2N . Denote by Dn the

sum of all Bn,m for which γ (Bn,m)≥ 0. Then γ (Bn)≤ γ (Dn).

On the other hand, for N > n, each BN,M either belongs to Dn or is disjoint with

it. Therefore

γ (Dn)≤ γ (Dn +Dn+1 + · · · +DN ).

This implies that, for the set D = lim
⋃∞

k=n Dk , one has γ (Bn) ≤ γ (D), Γ ≤
γ (D). Recalling the definition of Γ , we obtain that γ (D)= Γ .

Thus we have proved the existence of a set D on which γ (D) attains its max-

imum. We now show that, for any A ∈ F, one has γ (AD) ≥ 0 and γ (AD) ≤ 0,

where D =Ω −D. Indeed, assuming, for instance, that γ (AD) < 0, we come to a

contradiction, for in that case

γ (D −AD)= γ (D)− γ (AD) > γ (D).

Similarly, assuming that γ (AD) > 0, we would get

γ (D +AD)= γ (D)+ γ (AD) > γ (D).

It remains to put D+ :=D, D− :=D. The theorem is proved. �
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Corollary A3.5.1 Any finite signed measure γ can be represented as γ = γ+−γ−,

where γ± are finite nonnegative measures.

To prove the corollary, it suffices to put

γ±(A) := ±γ
(
A∩D±

)
,

where D± are the sets from the Hahn decomposition theorem. �

We return to the proof of the fact that the measure μs in equality (A3.5.3) is

singular. Let D+n be the set in the Hahn decomposition of the signed measure

νn = μs −
1

n
λ.

Put N =
⋂

n D−n . Then N =
⋃

n D+n and, for all n and A ∈ F,

0≤ μs(AN)≤ 1

n
λ(AN).

From here, letting n→∞, we obtain μs(AN) = 0 and hence μs(A) = μs(AN).

That is, the set N is a support of the measure μs .

Further, because

μa(A)= μ(A)−μs(AN)≤ μ(A)−μs

(
AD+n

)
,

we have

∫

A

(
f̂ + 1

n
ID+n

)
dλ= μa(A)+ 1

n
λ
(
AD+n

)
≤ μ(A)− νn

(
AD+n

)
≤ μ(A).

This means that f̂ + 1

n
ID+n ∈ F and hence

α ≥
∫ (

f̂ + 1

n
ID+n

)
dλ= α + 1

n
λ
(
D+n

)
.

This implies λ(D+n )= 0 and λ(N)= 0, so that μs is singular with respect to λ since

N is a support of μs . �

Uniqueness of the decomposition μ = μa + μs can be established as follows.

Assume that μ= μ′a+μ′s is another decomposition. Then γ := μ′a−μa = μs−μ′s .

By singularity, there exist sets N and N ′ such that μs(N)= 0, λ(N)= 0, μ′s(N
′
)=

0, and λ(N ′)= 0. Clearly, λ(D)= 0, where D = N ∪N ′. If we assumed that γ =
μ′a − μa = μs − μ′s 
= 0, then there would exist an A ∈ F such that γ (A) 
= 0.

Therefore, either γ (AD) 
= 0 or γ (AD) 
= 0. However, the former is impossible,

for λ(D)= 0 implies μ′a(D)= μa(D)= 0. The latter is also impossible, since D =
N N

′
and hence μs(D)= μ′s(D)= 0.



648 3 Elements of Measure Theory and Integration

Uniqueness of the function f (up to λ-equivalence) follows from the observation

that the equalities

μa(A)=
∫

A

f dλ=
∫

A

f ′dλ,

∫

A

(
f − f ′

)
dλ= 0

for all A imply the equality f − f ′ = 0 a.e. Assuming, say, that λ(A) > 0 for

A= {ω : f − f ′ > ε} would yield for such A the relation
∫
A
(f − f ′) dλ > 0. The

theorem is proved. �

One of the most important applications of the Radon–Nikodym theorem is the

proof of existence and uniqueness of conditional expectations.

Proof Let F0 be a σ -subalgebra of F and ξ a random variable on 〈Ω,F,P〉 such

that Eξ exists. In Sect. 4.8 we defined the conditional expectation E(ξ |F0) of the

variable ξ given F0 as an F0-measurable random variable η for which

E(η;B)= E(ξ ;B) (A3.5.4)

for any B ∈ F. We can assume without loss of generality that ξ ≥ 0 (an arbitrary

function ξ can be represented as a difference of two positive functions). Then

the right-hand side of (A3.5.4) will be a measure on 〈Ω,F0〉. Since E(ξ ;B) = 0

if P(B) = 0, this measure will be absolutely continuous with respect to P. This

implies, by the Radon–Nikodym theorem, the existence of a unique (up to P-

equivalence) measurable function η on 〈Ω,F0〉 such that, for any B ∈ F0,

E(ξ ;B)=
∫

B

η dP.

This relation is clearly equivalent to (A3.5.4). It establishes the required existence

and uniqueness of the conditional expectation. �

Another consequence of the assertions proved in the present section was men-

tioned in Sect. 3.6 and is related to the Lebesgue theorem stating that any distribu-

tion P on the real line R= (−∞,∞) (or the respective distribution function) has a

unique representation as a sum of the three components P= Pa + Ps + P∂ , where

the component Pa is absolutely continuous with respect to Lebesgue measure:

Pa(A)=
∫

A

f (x)dx;

P∂ is the discrete component concentrated on an at most countable set of points

x1, x2, . . . such that P({xk}) > 0, and the component Ps has a support of Lebesgue

measure zero and a continuous distribution function. This is an immediate conse-

quence of the Lebesgue decomposition theorem. One just has to extract the dis-

crete part from the singular (with respect to Lebesgue measure λ) component of P,

first removing all the points x for which P({x}) ≥ 1/2, then all points x for which
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P({x})≥ 1/3, and so on. It is clear that in this way we will get at most a countable

set of xs, and that this process determines uniquely the discrete component P∂ .

All the aforesaid clearly also applies to distributions in n-dimensional Euclidean

spaces Rn.

3.6 Weak Convergence and Convergence in Total Variation of

Distributions in Arbitrary Spaces

3.6.1 Weak Convergence

In Sects. 6.2 and 7.6 we studied weak convergence of distributions of random vari-

ables and vectors, i.e., weak convergence of distributions in R
k , k ≥ 1. Now we

want to introduce the notion of weak convergence in more general spaces X. As the

definitions given in Sect. 6.2 show, we will need continuous functions f (x) on X.

This is possible only if the space X is endowed with a topology. For simplicity’s

sake, we restrict ourselves to the case where the space X is endowed with a met-

ric ρ(x, y). Thus, assume we are given a measurable space 〈X,B〉 with a metric ρ

which is “consistent” with the σ -algebra B, i.e., all open (with respect to the met-

ric ρ) sets from X belong to B (cf. Sect. 16.1), so that any continuous (with respect

to ρ) functional will be B-measurable. This means that if a distribution Q is given

on 〈X,B〉 (i.e., a probability space 〈X,B,Q〉 is given), then {x : f (x) < t} ∈B for

any t , and the probabilities of these sets are defined.

Now let 〈Ω,F,P〉 be the basic probability space. A measurable mapping

ξ = ξ(ω) of the space 〈Ω,F〉 to 〈X,B〉 is called an X-valued random element.
If 〈Ω,F〉 = 〈X,B〉, the mapping ξ may be the identity mapping. The space 〈X,B〉
is said to be the sample or state space of the random element ξ . When a functional

f is continuous, f (ξ) is a random variable in 〈R,B〉.

Definition A3.6.1 Let a distribution P and a sequence of distributions Pn be given

on the space 〈X,B〉. The sequence Pn is said to converge weakly to P: Pn⇒ P as

n→∞ if, for any bounded continuous functional f (f ∈ Cb(X)),

∫
f (x)dPn(x)→

∫
f (x)dP(x). (A3.6.1)

If ξn and ξ are random elements having the distributions Pn and P, respectively,

then (A3.6.1) is equivalent to

Ef (ξn)→ Ef (ξ). (A3.6.2)

This, in turn, for any continuous functional f (f ∈ C(X)), is equivalent to

f (ξn)⇒ f (ξ). (A3.6.3)
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Indeed, (A3.6.3) means that, for any bounded continuous function g (g ∈ Cb(R)),

Eg
(
f (ξn)

)
→ Eg

(
f (ξ)

)
, (A3.6.4)

which is equivalent to (A3.6.2).

If X=X(T ) is the space of real-valued functions x(t), t ∈ T , given on a paramet-

ric set T , and a measurable mapping ξ(ω) of the basic probability space 〈Ω,F,P〉
into 〈X,B〉 is given, then the random element ξ(ω)= ξ(ω, t) will be a random pro-
cess (see Sect. 18.1) if {x : x(t) < u} ∈B for all t, u. In that case (A3.6.1)–(A3.6.4)

will refer to the weak convergence of the distributions of random processes which

has already been studied in Chap. 20.

In the metric space X, for any A ∈X, one can define its boundary

∂A= [A] − (A),

where [A] is the closure of A, (A) being its interior ((A)=X− [A], where A is the

complement of A).

Definition A3.6.2 A set A is said to be a continuity set of the distribution P (or

P-continuous set) if P(∂A) = 0. We will denote the class of all P-continuous sets

by DP .

The following criterion of weak convergence of distributions holds true.

Theorem A3.6.1 The following four conditions are equivalent:

(i) Pn⇒ P,

(ii) limn→∞ Pn(A)= P(A) for all A ∈DP ,

(iii) lim supn→∞ Pn(F )≤ P(F ) for all closed F ⊂X,

(iv) lim infn→∞ Pn(G)≥ P(G) for all open G⊂X.

Observe that if Pn ⇒ P, then convergence (A3.6.1)–(A3.6.3) takes place for

a wider class of functionals than Cb(X) (C(X)), namely, for the so-called P-

continuous functionals (or functionals continuous with P-probability 1). We will

call so the functionals f for which f (xn)→ f (x) as ρ(xn, x)→ 0 not for all x ∈X,

but only for x ∈A, P(A)= 1. The class of P-continuous functionals will be denoted

by CP (X).

The classes DP and CP (X), and also the classes of all closed and open sets par-

ticipating in Theorem A3.6.1, are very wide which makes verifying the conditions

of Theorem A3.6.1 rather difficult and cumbersome. These classes can be substan-

tially restricted if we consider not arbitrary but only relatively compact sequences

Pn (from any subsequence P′n one can choose a convergent subsequence; this ap-

proach was already used in Sect. 6.3).

Definition A3.6.3 A class D of sets from B is said to determine the measure P if,

for a measure Q, the equalities P(A)=Q(A) for all A ∈DDP imply Q= P.
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A class D determines the measure P if D is an algebra and σ(DDP ) = BX

(condition σ(D)=BX is insufficient (see e.g. [4])).

In a similar way we introduce the class F of functionals f determining the distri-

bution P of a random element ξ = ξP : for any Q, the coincidence of the distributions

of f (ξP ) and f (ξQ) for all f ∈ FCP (X) implies P=Q.

Theorem A3.6.2 A necessary and sufficient condition for convergence Pn⇒ P is
that:

(1) the sequence Pn is relatively compact; and
(2) there exists a class of sets D ⊂BX determining the measure P and such that

Pn(A)→ P(A) for any A ∈DDP .

An alternative to condition (2) is the existence of a class of functionals F which

determines the measure P and is such that P(f (ξn) < t)⇒ P(f (ξ) < t) for all

f ∈ FCP (X).

The following notion of tightness plays an important role in establishing the com-

pactness of {Pn}.

Definition A3.6.4 A family of distributions {Pn} on 〈X,B〉 is said to be tight if,

for any ε > 0, there exists a compact set K =Kε ⊂ X such that Pn(K) > 1− ε for

all n.

Theorem A3.6.3 (Prokhorov) If {Pn} is a tight family of distributions then it is
relatively compact. If X is a complete separable space, the converse assertion is
also true.

Since, for many functional spaces (in particular, for spaces C(0, T ) and D(0, T )),

there exist simple explicit criteria for compactness of sets, one can now establish

conditions ensuring convergence Pn⇒ P in these spaces. It is well known, for ex-

ample, that in the above-mentioned spaces compacta are, roughly speaking, of the

form {x : ω△(x) ≤ ε(△)}, where ω△(x) is the so-called “modulus of continuity”

(in the space C or D, respectively) of the element x, and ε(△) ≥ 0 is an arbitrary

function vanishing as △↓ 0.

The proofs of Theorems A3.6.1–A3.6.3 can be found, for example, in [1]. We do

not present them here as they are somewhat beyond the scope of this book and, on

the other hand, the theorems themselves are not used in the body of the text. We use

only the special cases of these theorems given in Sects. 6.2 and 6.3.

The invariance principle of Sect. 20.1 is a theorem about weak convergence of

distributions in the space C(0,1). In order to use Theorems A3.6.2 and A3.6.3 to

prove this result, one has to choose the class D to be the class of cylinder sets.

Convergence of Pn to P on sets from this class D is the convergence of finite-

dimensional distributions of processes sn(t) generated by sums of random vari-

ables (see Sect. 20.1). Since the increments of sn(t) are essentially independent,

the demonstration of that part of the theorem reduces to proving asymptotic normal-

ity of these increments, which follows immediately from the central limit theorem.
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The condition of compactness of the family of distributions in C(0,1) requires, ac-

cording to Theorem A3.6.3, a proof that the modulus of continuity of the trajectory

sn(t) converges to zero in probability (for more details, see e.g. [1]). This could be

proved using the Kolmogorov inequality from Corollary 11.2.1.

3.6.2 Convergence in Total Variation

So, to consider weak convergence of distributions in spaces 〈X,B〉 of a general

nature, one has to introduce a topology in the space, which is not always convenient

and feasible. There exists another type of convergence of distributions on 〈X,B〉
which does not require the introduction of topologies. This is convergence in total

variation.

Definition A3.6.5 Let γ be a finite signed measure on 〈X,B〉. The total variation

of γ (or the total variation norm ‖γ ‖) is the quantity

‖γ ‖ = sup
f :|f |≤1

∣∣∣∣
∫

f (x)dγ (x)

∣∣∣∣, (A3.6.5)

where the supremum is taken over the class of all B-measurable functions f (x)

such that |f (x)| ≤ 1 for all x ∈X.

The supremum in (A3.6.5) is clearly attained on such functions f for which,

roughly speaking, f (x) = 1 at points x such that dγ (x) > 0, and f (x) = −1 at

points x for which dγ (x) < 0. Therefore (A3.6.5) can be written in the form

‖γ ‖ =
∫ ∣∣dγ (x)

∣∣. (A3.6.6)

An exact meaning to this expression can be given using the Hahn decomposition

theorem (see Corollary A3.5.1), which implies

‖γ ‖ = γ+(X)+ γ−(X). (A3.6.7)

The right-hand side of this equality may be taken as a definition of
∫
|dγ (x)|.

Lemma A3.6.2 If γ (X)= 0, then ‖γ ‖ = 2 supB∈B γ (B).

Proof From (A3.6.5) it follows that, for any B (B is the complement of B , γ (B)∪
γ (B)=0),

‖γ ‖ ≥
∣∣γ (B)

∣∣+
∣∣γ (B)

∣∣= 2
∣∣γ (B)

∣∣.
Therefore ‖γ ‖ ≥ 2 supB∈B |γ (B)|.
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To obtain the converse inequality, we will make use of Corollary A3.5.1 of the

Hahn decomposition theorem. As we have already noted, according to that theorem

(for the definition of the set D± see the Hahn theorem),

‖γ ‖ = γ+(X)+ γ−(X)= γ+
(
D+

)
+ γ−

(
D+

)

= γ
(
D+

)
− γ

(
D+

)
= 2γ

(
D+

)
≤ 2 sup

B∈B
γ (B).

The lemma is proved. �

Definition A3.6.6 Let P be a distribution and Pn, n= 1,2, . . . , a sequence of dis-

tributions given on 〈X,B〉. We will say that Pn converges to P in total variation:

Pn
T V−→ P, if ‖Pn − P‖→ 0 as n→∞.

Convergence in total variation is a very strong form of convergence. If 〈X,B〉 is

a metric space and Pn
T V−→ P, then Pn⇒ P. Indeed, since any functional f ∈ Cb(X)

is bounded: |f (x)|< b, we have

∣∣∣∣
∫

f (dPn − dP)

∣∣∣∣≤ b

∫ ∣∣d(Pn − P)
∣∣= b‖Pn − P‖→ 0.

Thus in that case ∫
f dPn→

∫
f dP

even without assuming the continuity of f .

The converse assertion about convergence Pn
T V−→ P if Pn ⇒ P is not true.

Let, for example, X = [0,1], Pn be the uniform distribution on the set of n + 1

points {0,1/n, . . . , n/n}, and P = U0,1. It is clear that all Pn are concentrated on

the countable set N of all rational numbers. Therefore Pn(N) = 1, P(N) = 0, and

‖Pn − P‖ = Pn(N)+ P(X \N)= 2. At the same time, clearly Pn⇒ P.

Now let the distribution P have a density p with respect to a measure μ (one

could take, in particular, μ= P, in which case p(x)≡ 1). Denote by pn the density

(with respect to μ) of the absolutely continuous (with respect to μ) component Pa
n

of the distribution Pn.

Theorem A3.6.4 A necessary and sufficient condition for convergence Pn
T V−→ P is

that pn converges to p in measure μ, i.e., for any ε > 0,

μ
{
x :

∣∣pn(x)− p(x)
∣∣> ε

}
→ 0 as n→∞.

Proof We have

∫ ∣∣d(Pn − P)
∣∣=

∫ ∣∣pn(x)− p(x)
∣∣μ(dx)+

∥∥Ps
n

∥∥,

where Ps
n is the singular component of Pn with respect to the measure μ.
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Let ‖Pn − P‖→ 0. Then

∫
|pn − p|dμ→ 0, (A3.6.8)

and hence

μ
{
x :

∣∣pn(x)− p(x)
∣∣> ε

}
≤ ε−1

∫
|pn − p|dμ→ 0.

Now let pn
μ−→ p. Put

Bε =
{
x : p(x)≥ ε

}
, An,ε =

{
x :

∣∣pn(x)− p(x)
∣∣≤ ε2

}
.

Then

1≥
∫

Bε

p dμ≥ εμ(Bε), μ(Bε)≤
1

ε
.

Consider ∫
|pn − p|dμ=

∫

BεAn,ε

+
∫

BεAn,ε

. (A3.6.9)

Here the first integral on the right-hand side does not exceed ε. Since

lim
ε→0

∫

Bε

p dμ→ 1,

we will have, for a given δ > 0 and sufficiently small ε, the inequality

∫

Bε

p dμ > 1− δ

and, for n large enough,

∫

BεAn,ε

p dμ > 1− 2δ,

∫

BnAn,ε

pn dμ > 1− 3δ. (A3.6.10)

It follows from these two inequalities that the second integral in (A3.6.9) does not

exceed 5δ, which proves (A3.6.8). Furthermore, (A3.6.10) implies that ‖Pa
n‖> 1−

3δ and ‖Ps
n‖< 3δ. The theorem is proved. �

The theorem implies that if Pn
T V−→ P then the absolutely continuous with respect

to μ= P component Pa
n of the distribution Pn has a density pn(x)

p→ 1, Pa
n(X)→ 1.



Appendix 4

The Helly and Arzelà–Ascoli Theorems

In this appendix we will prove Helly’s theorem and the Arzelà–Ascoli theorem. The

former theorem was used in Sect. 6.3, and both theorems will be used in the proof

of the main theorem of Appendix 9.

Let F be the class of all distribution functions, and G the class of functions G

possessing properties F1 and F2 from Sect. 3.2 (monotonicity and left continuity),

and the properties G(−∞)≥ 0 and G(∞)≤ 1. We will write Gn⇒G as n→∞,

G ∈ G, if Gn(x)→G(x) at all points of continuity of the function G.

Theorem A4.1 (Helly) Any sequence Fn ∈ F contains a convergent subsequence
Fnn⇒ F ∈ G.

We will need the following.

Lemma A4.1 A sufficient condition for convergence Fn⇒ F ∈ G is that

Fn(x)→ F(x), x ∈D,

as n→∞ on some everywhere dense set D of the reals.

Proof Let x be an arbitrary point of continuity of F(x). For arbitrary x′, x′′ ∈ D

such that x′ ≤ x ≤ x′′, one has

Fn

(
x′
)
≤ Fn(x)≤ Fn

(
x′′
)
.

Consequently,

lim
n→∞

Fn

(
x′
)
≤ lim inf

n→∞
Fn(x)≤ lim sup

n→∞
Fn(x)≤ lim

n→∞
Fn

(
x′′
)
.

From here and the conditions of the lemma we obtain

F
(
x′
)
≤ lim inf

n→∞
Fn(x)≤ lim sup

n→∞
Fn(x)≤ F

(
x′′
)
.
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Letting x′ ↑ x and x′′ ↓ x along the set D and taking into account that x is a point

of continuity of F , we get

lim
n→∞

Fn(x)= F(x).

The lemma is proved. �

Proof of Theorem A4.1 Let D = {xn} be an arbitrary countable everywhere dense

set of real numbers. The numerical sequence {Fn(x1)} is bounded and hence con-

tains a convergent sequence {F1n(x1)}. Denote the limit of this sequence by F(x1).

Consider now the numerical sequence {F1n(x2)}. It also contains a convergent sub-

sequence {F2n(x2)} with a limit F(x2). Moreover,

lim
n→∞

F2n(x1)= F(x1).

Continuing this process, we will obtain, for any number k, k sequences

{
Fkn(xi)

}
, i = 1, . . . , k,

such that limn→∞ Fkn(xi)= F(xi).

Consider the diagonal sequence of the distribution functions {Fnn(x)}. For any

xk ∈ D, only k − 1 first elements of the numerical sequence {Fnn(xk)} may not

belong to the sequence Fkn(xk). Therefore

lim
n→∞

Fnn(xk)= F(xk).

It is clear that F(x) is a non-decreasing bounded function given on D. It can

easily be extended by continuity from the left to a non-decreasing function on the

whole real line. Now we see that the sequence {Fnn} and the function F satisfy the

conditions of Lemma A4.1. The theorem is proved. �

The conditions of Helly’s theorem can be weakened. Namely, instead of F we

could consider a wider class H of non-decreasing left continuous (i.e., satisfy-

ing properties F1 and F3) functions H majorised by a fixed function: for any x,

|H(x)| ≤ N(x) <∞, where N is a given function characterising the class H. We

do not exclude the case when |H(x)| (or N(x)) grow unboundedly as |x| →∞. The

following generalised version of Helly’s theorem is true.

Theorem A4.2 (Generalised Helly theorem) Any sequence Hn ∈ F contains a sub-
sequence Hnn which converges to a function H ∈ H at each point of continuity
of H .

The Proof repeats the above proof of Helly’s theorem. �

To each function Hn ∈H we can associate a measure μn by putting

μn

(
[a, b)

)
=Hn(b)−Hn(a).
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The generalised Helly theorem will then mean that, for any sequence of measures μn

generated by functions from H, there exists a subsequence μnn converging weakly

on each finite interval of which the endpoints are not atoms of the limiting mea-

sure μn.

We give one more analogue of Helly’s theorem which refers to a collection of

equicontinuous functions gn. Recall that a sequence of functions {gn} is said to be

equicontinuous if, for any ε > 0, there exists a δ > 0 such that |x1− x2|< δ implies

|gn(x1)− gn(x2)|< ε for all n.

Theorem A4.3 (Arzelà–Ascoli) Let {gn} be a sequence of uniformly bounded and
equicontinuous functions of a real variable. Then there exists a subsequence gnk

converging to a continuous limit g uniformly on each finite interval.

Proof Choose again a countable everywhere dense subset {xn} of the real line, and

a subsequence {gnk
} converging at the points x1, x2, . . . Denote its limit at the point

xj by g(xj ). We have

∣∣gnk
(x)− gnr (x)

∣∣ ≤
∣∣gnk

(x)− gnk
(xj )

∣∣+
∣∣gnr (x)− gnr (xj )

∣∣

+
∣∣gnk

(xj )− gnr (xj )
∣∣. (A4.1)

By assumption, the last term on the right-hand side tends to 0 as nk→∞, nr →∞.

By virtue of equicontinuity, for any point x there exists a point xj such that, for

all n,
∣∣gn(x)− gn(xj )

∣∣< ε. (A4.2)

In any given finite interval I there exists a finite collection of points xj such that

(A4.2) will hold for all points xj ∈ I . This implies that the right-hand side of (A4.1)

will be less than 3ε for all sufficiently large nk , nr uniformly over xj ∈ I . Thus there

exists the limit g(x)= limgnk
(x), for which by (A4.2) we have |g(x)− g(xj )| ≤ ε,

which implies that g is continuous. The theorem is proved. �



Appendix 5

The Proof of the Berry–Esseen Theorem

In this appendix we prove the following assertion stated in Sect. 8.5.

Theorem A5.1 (Berry–Esseen) Let ξk be independent identically distributed ran-
dom variables,

Eξk = 0, Var(ξk)= 1, µ= E|ξk|3 <∞, Sn =
n∑

k=1

ξk, ζn =
Sn√
n
.

Then, for all n,

∆n := sup
x

∣∣P(ζn < x)−Φ(x)
∣∣< cµ√

n
,

where Φ is the standard normal distribution function and c is an absolute constant.

Proof We will make use of the composition method. As in Sect. 8.5, we will bound

∆n based on estimates of smallness of Eg(ζn) − Eg(η), η ⊂=�0,1, for smooth g.

To get a bound for ∆n in Sect. 8.5, we chose g to be a function constant outside a

small interval. The next lemma shows that such a choice is not obligatory. Let G be

a distribution function and γ ⊂=G be independent of ζn and η. Put

g(z) :=G

(
x − z

ε

)
,

so that

Eg(ζn)= EG

(
x − ζn

ε

)
= P

(
γ <

x − ζn

ε

)
= P(ζn + εγ < x),

Eg(η)= P(η+ εγ < x).

Set

∆n,ε := sup
x

∣∣∣∣EG

(
x − ζn

ε

)
−EG

(
x − η

ε

)∣∣∣∣
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= sup
x

∣∣P(ζn + εγ < x)− P(η+ εγ < x)
∣∣

= sup
x

∣∣∣∣
∫

dG(y)
[
P(ζn < x − εy)− P(η < x − εy)

]∣∣∣∣.

Clearly, ∆n,ε ≤∆n. Our aim will be to obtain a converse inequality for ∆n.

Lemma A5.1 Let v > 0 be such that G(v)−G(−v)≥ 3/4. Then, for any ε > 0,

∆n ≤ 2∆n,ε +
3vε√

2π
.

Proof Assume that the supx in the definition of ∆n is attained on a positive value

∆n(x) := Fn(x)−Φ(x) (the case of a negative value ∆n(x) is similar) and that, for

a given δ > 0, the value xδ is such that

∆n(xδ)= Fn(xδ)−Φ(xδ)≥∆n − δ,

where Fn is the distribution function of ζn. When the argument increases, the value

of ∆n(xδ) varies little in the following sense. Let |y|< v. Then v− y > 0 and

∆n

(
xδ + ε(v − y)

)
= Fn

(
xδ + ε(v− y)

)
−Φ

(
xδ + ε(v− y)

)

≥ Fn(xδ)−Φ(xδ)−
[
Φ
(
xδ + ε(v− y)

)
−Φ(xδ)

]
.

Here the difference in the brackets does not exceed ε(v− y)Φ ′(0)≤ 2vε/
√

2π , and

hence

∆n

(
xδ + ε(v − y)

)
≥∆n − δ− 2vε√

2π
.

Therefore

∆n,ε ≥
∫

dG(y)∆n(xδ + εv− εy)=
∫

|y|<v

+
∫

|y|≥v

≥ 3

4

(
∆n − δ − 2vε√

2π

)
− 1

4
∆n =

∆n

2
− 3

4

(
δ + 2vε√

2π

)
.

Since δ is arbitrary, the assertion of the lemma follows. �

Corollary A5.1 For G=Φ(γ ⊂=�0,1) the value v = 6/5 satisfies the condition of
Lemma A5.1, and

∆n ≤ 2(∆n,ε + ε). (A5.1)

At the next stage of the proof we bound ∆n,ε , and it is at that stage where the

composition method will be used. Put

u(n) :=max
k≤n

∆k

√
k

µ
, α2 := ε2n.
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By letters c (with or without indices) we will denote absolute constants, not neces-

sarily the same ones.

Lemma A5.2 For α ≥ 1,

∆n,ε ≤ cµ

(
1√
n
+ µu(n− 1)

α
√

n

)
. (A5.2)

Proof Set Hn :=
∑n

k=1 ηk , where ηk ⊂=�0,1 are independent of each other and of

Hn and γ . The composition method is based on the following identity (cf. Theo-

rem 8.5.1 and identity (8.5.3), η ∈�0,1):

P(ζn + εγ < x)− P(η+ εγ < x)= P(Sn + αγ < x
√

n )− P(Hn + αγ < x
√

n )

=
n∑

m=1

[
P
(
Sm−1 + (Hn −Hm)+ ξm + αγ < x

√
n
)

− P
(
Sm−1 + (Hn −Hm)+ ηm + αγ < x

√
n
)]

.

Since for γ ⊂=�0,1 one has Hn −Hm + αγ ⊂=�0,n−m+α2 , the last sum is equal to∑n
m=1 Dm, where

Dm := E

[
Φ

(
x
√

n− Sm−1 − ξm

dm

)
−Φ

(
x
√

n− Sm−1 − ηm

dm

)]

= E

[
Φ

(
Tm −

ξm

dm

)
−Φ

(
Tm −

ηm

dm

)]
,

d2
m := n−m+ α2, Tm :=

x
√

n− Sm−1

dm

.

To bound Dm we will adopt the same approach as in Lemma 8.5.1. Because the

first two moments of ξm and ηm coincide, expanding Φ into a series yields

|Dm| ≤
2µ

d3
m

sup
t

Eφ′′(Tm + t),

where φ(x)=Φ ′(x) and φ′′ =Φ ′′′. Since the function φ′′ is bounded,

|Dm| ≤
cµ

d3
m

. (A5.3)

We will also need another bound for Dm. To obtain it, consider the quantity

Rm := sup
t

∣∣Eφ′′(Tm + t)
∣∣

≤ sup
t

∣∣E
[
φ′′(Tm + t)− φ′′(Vm + t)

]∣∣+ sup
t

∣∣Eφ′′(Vm + t)
∣∣, (A5.4)
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where Vm is defined in the same way as Tm but with Sm−1 replaced by Hm−1.

Integrating by parts yields

∣∣E
[
φ′′(Tm + t)− φ′′(Vm + t)

]∣∣ =
∣∣∣∣
∫

φ′′(u+ t) d
[
P(Tm < u)− P(Vm < u)

]∣∣∣∣

=
∣∣∣∣
∫

φ′′′(u+ t)
[
P(Tm < u)− P(Vm < u)

]
du

∣∣∣∣

≤ ∆m−1

∫ ∣∣φ′′′(u)
∣∣du= c∆m−1,

since |P(Tm < u) − P(Vm < u)| ≤ ∆m−1 (the variables Tm and Vm are obtained

from Sm−1/
√

m− 1 and Hm−1/
√

m− 1, respectively, by one and the same linear

transformation).

To bound the second summand on the right-hand side of (A5.4), note that

Eφ′′(Vm + t)=
∫

φ′′(u+ t)
1

rm
φ

(
u− am

rm

)
du, (A5.5)

where

am = x

√
n

dm

, rm =
√

m− 1

n−m+ α2
,

so that 1
rm

φ(
u− am

rm
) is the density of Vm = (x

√
n−Hm−1)

dm
. Integrating the right-hand

side of (A5.5) twice by parts, we obtain

∣∣Eφ′′(Vm + t)
∣∣= 1

r3
m

∣∣∣∣
∫

φ(u+ t)φ′′
(

u− am

rm

)
du

∣∣∣∣≤
c

r3
m

.

Thus,

Rm ≤ c

(
∆m−1 +

1

r3
m

)
, Dm ≤ cµ

(
∆m−1

d3
m

+ 1

(m− 1)3/2

)
.

The bounds derived for Dm do not depend on x. Therefore, using the bound just

obtained for m > n/2, and bound (A5.3) for m≤ n/2 (the latter bound implies then

that |Dm| ≤ cµ/n3/2), we get

∆n,ε ≤ cµ

[ ∑

m≤n/2

n−3/2 +
n∑

m>n/2

∆m−1

d3
m

+
n∑

m>n/2

1

(m− 1)3/2

]
. (A5.6)

Here the first sum does not exceed (n/2)n−3/2 = 1/(2
√

n ) and the last sum does

not exceed
∫ n

n/2−1

ds

s3/2
≤ c√

n
.
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It remains to bound the middle sum. Setting (u(n) :=maxk≤n (∆k

√
k )/µ), we have

n∑

m>n/2

∆m−1

d3
m

≤ µu(n− 1)

√
2

n

n∑

m>n/2

1

(n−m+ α2)3/2
.

The last sum does not exceed

∞∑

k=0

1

(k + α2)3/2
≤ 1

α3
+
∫ ∞

0

dt

(t + α2)3/2
= 1

α3
+ 1

2α
≤ 3

2α
,

provided that α ≥ 1. Collecting (A5.6) and the above estimates together, we obtain

the assertion of the lemma. �

We now turn directly to the proof of the theorem. By virtue of (A5.1) and (A5.2),

v(n) := ∆n

√
n

µ
≤ 2

µ

√
n∆n,ε +

2α

µ
≤ 2c+ 2cµu(n− 1)

α
+ 2α

µ
.

Put here α :=max(4 cµ,1). Then (µ≥ 1)

v(n)≤ c1 +
u(n+ 1)

2
.

This implies that u(n) ≤ 2c1 for all n. To verify this, we make use of induction.

Clearly, u(1) = v(1) ≤ 1 ≤ 2c1. Let u(n− 1) ≤ 2c1. Then v(n) ≤ 2c1 and u(n) =
max(v(n),u(n− 1))≤ 2c1. The theorem is proved. �



Appendix 6

The Basic Properties of Regularly Varying
Functions and Subexponential Distributions

The properties of regularly varying functions and subexponential distributions were

used in Sects. 8.8, 9.4–9.6 and 12.7 and will be used in Appendices 7 and 8.

6.1 General Properties of Regularly Varying Functions

Definition A6.1.1 A positive measurable function L(t) is called a slowly varying
function (s.v.f.) as t→∞ if, for any fixed v > 0,

L(vt)

L(t)
→ 1 as t→∞. (A6.1.1)

A function V (t) is called a regularly varying function (r.v.f.) (with exponent

−β ∈R) as t→∞ if it can be represented as

V (t)= t−βL(t), (A6.1.2)

where L(t) is an s.v.f. as t→∞. We will denote the class of all r.v.f.s by R.

The definitions of an s.v.f. and r.v.f. as t ↓ 0 are quite similar. In what follows,

the term s.v.f. (r.v.f.) will (unless specified otherwise) always refer to a slowly (reg-

ularly) varying function at infinity.

It is easy to see that, similarly to (A6.1.1), a characteristic property of regularly

varying functions is the convergence, for any fixed v > 0,

V (vt)

V (t)
→ v−β as t→∞. (A6.1.3)

Thus, an s.v.f. is an r.v.f. with exponent zero.

Typical representatives of the class of s.v.f.s are the logarithmic function and its

powers lnγ t , γ ∈ R, their linear combinations, multiple logarithms, functions with
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the property L(t)→ L = const 
= 0 as t →∞, etc. As an example of a bounded
oscillating s.v.f. one can give

L0(t)= 2+ sin(ln ln t), t > 1.

We will need the following two basic properties of s.v.f.s.

Theorem A6.1.1 (Uniform convergence theorem) If L(t) is an s.v.f. as t →∞
then convergence (A6.1.1) holds uniformly in v on any segment [v1, v2], 0 < v1 <

v2 <∞.

The theorem implies that the uniform convergence (A6.1.1) on the segment

[1/M,M] also takes place in the case when, as t →∞, the quantity M =M(t)

grows unboundedly slowly enough.

Theorem A6.1.2 (Integral representation) A function L(t) is an s.v.f. as t→∞ if
and only if, for some t0 > 0, one has

L(t)= c(t) exp

{∫ t

t0

ε(u)

u
du

}
, t ≥ t0, (A6.1.4)

where the functions c(t) and ε(t) are measurable and such that c(t)→ c ∈ (0,∞)

and ε(t)→ 0 as t→∞.

For instance, for L(t)= ln t representation (A6.1.4) is valid with c(t)= 1, t0 = e

and ε(t)= (ln t)−1.

Proof of Theorem A6.1.1 Put

h(x) := lnL
(
ex
)
. (A6.1.5)

Then property (A6.1.1) of s.v.f.s is equivalent, for each u ∈R, to the condition that

the convergence

h(x + u)− h(x)→ 0 (A6.1.6)

takes place as x→∞. To prove the theorem, we need to show that this convergence

is uniform in u ∈ [u1, u2] for any fixed ui ∈ R. In order to do that, it suffices to

verify that convergence (A6.1.6) is uniform on the segment [0,1]. Indeed, from the

obvious inequality
∣∣h(x + u1 + u2)− h(x)

∣∣≤
∣∣h(x + u1 + u2)− h(x + u1)

∣∣+
∣∣h(x + u1)− h(x)

∣∣

(A6.1.7)

we have
∣∣h(x + u)− h(x)

∣∣≤ (u2 − u1 + 1) sup
y∈[0,1]

∣∣h(x + y)− h(x)
∣∣, u ∈ [u1, u2].
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For a given ε ∈ (0,1) and an x > 0, set Ix := [x, x + 2],

I ∗x :=
{
u ∈ Ix :

∣∣h(u)−h(x)
∣∣≥ ε/2

}
, I ∗0,x :=

{
u ∈ I0 :

∣∣h(x+ u)−h(x)
∣∣≥ ε/2

}
.

Clearly, the sets I ∗x and I ∗0,x are measurable and differ from each other by a transla-

tion by x, so that μ(I ∗x )= μ(I ∗0,x), where μ is the Lebesgue measure. By (A6.1.6)

the indicator function of the set I ∗0,x converges, at each point u ∈ I0, to 0 as x→∞.

Therefore, by the dominated convergence theorem, the integral of this function, be-

ing equal to μ(I ∗0,x), converges to 0, so that μ(I ∗x ) < ε/2 for x ≥ x0, where x0 is

large enough.

Further, for s ∈ [0,1], the segment Ix ∩Ix+s = [x+s, x+2] has length 2−s ≥ 1,

so that, for x ≥ x0, the set

(Ix ∩ Ix+s) \
(
I ∗x ∪ I ∗x+s

)

has measure ≥ 1 − ε > 0 and hence is non-empty. Let y be a point from this set.

Then

∣∣h(x + s)− h(x)
∣∣≤

∣∣h(x + s)− h(y)
∣∣+

∣∣h(y)− h(x)
∣∣< ε/2+ ε/2= ε

for x ≥ x0, which proves the required uniformity on [0,1] and hence on any fixed

segment. The theorem is proved. �

Proof of Theorem A6.1.2 The fact that the right-hand side of (A6.1.4) is an s.v.f. is

almost obvious: for any fixed v 
= 1,

L(vt)

L(t)
= c(vt)

c(t)
exp

{∫ vt

t

ε(u)

u
du

}
, (A6.1.8)

where c(vt)/c(t)→ c/c= 1 and, as t→∞,

∫ vt

t

ε(u)

u
du= o

(∫ vt

t

du

u

)
= o(lnv)= o(1). (A6.1.9)

We now prove that any s.v.f. admits the representation (A6.1.4). The required rep-

resentation in terms of the function (A6.1.5) is equivalent (after substituting t = ex )

to the relation

h(x)= d(x)+
∫ x

x0

δ(y) dy, (A6.1.10)

where d(x) = ln c(ex)→ d ∈ R and δ(x) = ε(ex)→ 0 as x →∞, x0 = ln t0.

Therefore it suffices to establish representation (A6.1.10) for the function h(x).

First of all note that h(x) (as well as L(t)) is a “locally bounded” function. In-

deed, Theorem A6.1.1 implies that, for x0 large enough and all x ≥ x0,

sup
0≤y≤1

∣∣h(x + y)− h(x)
∣∣< 1.
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Hence, for any x > x0, we have by virtue of (A6.1.7) the bound

∣∣h(x)− h(x0)
∣∣≤ x − x0 + 1.

Further, the local boundedness and measurability of the function h mean that it is

locally integrable on [x0,∞) and hence can be represented for x ≥ x0 as

h(x)=
∫ x0+1

x0

h(y)dy +
∫ 1

0

(
h(x)− h(x + y)

)
dy +

∫ x

x0

(
h(y + 1)− h(y)

)
dy.

(A6.1.11)

The first integral in (A6.1.11) is a constant, which will be denoted by d . The second

integral, by virtue of Theorem A6.1.1, converges to zero as x→∞, so that

d(x) := d +
∫ 1

0

(
h(x)− h(x + y)

)
dy→ d, x→∞.

As for the third integral in (A6.1.11), by the definition of an s.v.f., the integrand

satisfies

δ(y) := h(y + 1)− h(y)→ 0

as y→∞, which completes the proof of representation (A6.1.10). �

6.2 The Basic Asymptotic Properties

In this section we will obtain a number of consequences of Theorems A6.1.1 and

A6.1.2 that are related to the asymptotic behaviour of s.v.f.s and r.v.f.s.

Theorem A6.2.1 (i) If L1 and L2 are s.v.f.s then L1 + L2, L1L2, Lb
1 and L(t) :=

L1(at + b), where a ≥ 0 and b ∈R, are also s.v.f.s
(ii) If L is an s.v.f. then, for any δ > 0, there exists a tδ > 0 such that

t−δ ≤ L(t)≤ tδ for all t ≥ tδ. (A6.2.1)

In other words, L(t)= to(1) as t→∞.

(iii) If L is an s.v.f. then, for any δ > 0 and v0 > 1, there exists a tδ > 0 such that,
for all v ≥ v0 and t ≥ tδ ,

v−δ ≤ L(vt)

L(t)
≤ vδ. (A6.2.2)

(iv) (Karamata’s theorem) If an r.v.f. V in (A6.1.2) has exponent−β , β > 1, then

V I (t) :=
∫ ∞

t

V (u)du∼ tV (t)

β − 1
as t→∞. (A6.2.3)
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If β < 1 then

VI (t) :=
∫ t

0

V (u)du∼ tV (t)

1− β
as t→∞. (A6.2.4)

If β = 1 then

VI (t)= tV (t)L1(t) (A6.2.5)

and

V I (t)= tV (t)L2(t) if

∫ ∞

0

V (u)du <∞, (A6.2.6)

where Li(t)→∞ as t→∞, i = 1,2, are s.v.f.s.

(v) For an r.v.f. V with exponent −β < 0, put

b(t) := V (−1)(1/t)= inf
{
u : V (u) < 1/t

}
.

Then b(t) is an r.v.f. with exponent 1/β:

b(t)= t1/βLb(t), (A6.2.7)

where Lb is an s.v.f. If the function L possesses the property

L
(
tL1/β(t)

)
∼ L(t) (A6.2.8)

as t→∞ then

Lb(t)∼ L1/β
(
t1/β

)
. (A6.2.9)

Similar assertions hold for functions slowly/regularly varying as t ↓ 0.

Note that Theorem A6.1.1 and inequality (A6.2.2) imply the following property

of s.v.f.s: for any δ > 0 there exists a tδ > 0 such that, for all t and v satisfying the
inequalities t ≥ tδ and vt ≥ tδ , we have

(1− δ)min
{
vδ, v−δ

}
≤ L(vt)

L(t)
≤ (1+ δ)max

{
vδ, v−δ

}
. (A6.2.10)

Proof of Theorem A6.2.1 Assertion (i) is evident (just note that, in order to prove

the last part of (i), one needs Theorem A6.1.1).

(ii) This property follows immediately from representation (A6.1.4) and the

bound
∣∣∣∣
∫ t

t0

ε(u)

u
du

∣∣∣∣=
∣∣∣∣
∫ ln t

t0

+
∫ t

ln t

∣∣∣∣=O

(∫ ln t

t0

du

u

)
+ o

(∫ t

ln t

du

u

)
= o(ln t)

as t→∞.

(iii) In order to prove this property, notice that on the right-hand side of (A6.1.8),

for any fixed δ > 0 and v0 > 1 and all t large enough, we have

v−δ/2 ≤ v
−δ/2
0 ≤ c(vt)

c(t)
≤ v

δ/2
0 ≤ vδ/2, v ≥ v0,
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and ∣∣∣∣
∫ vt

t

ε(u)

u
du

∣∣∣∣≤
δ

2
lnv

(by virtue of (A6.1.9)). This implies (A6.2.2).

(iv) By the dominated convergence theorem, we can choose an M =M(t)→∞
as t →∞ such that the convergence in (A6.1.1) will be uniform in v ∈ [1,M].
Changing the variable u= vt , we obtain

V I (t)= t−β+1L(t)

∫ ∞

1

v−β L(vt)

L(t)
dv = t−β+1L(t)

[∫ M

1

+
∫ ∞

M

]
. (A6.2.11)

If β > 1 then, as t→∞,

∫ M

1

∼
∫ M

1

v−β dv→ 1

β − 1
,

whereas by property (iii), for δ = (β − 1)/2, we have

∫ ∞

M

<

∫ ∞

M

v−β+δ dv =
∫ ∞

M

v−(β+1)/2 dv→ 0.

These relations together imply

V I (t)∼ t−β+1

β − 1
L(t)= tV (t)

β − 1
.

The case β < 1 can be treated quite similarly, but taking into account the uniform

in v ∈ [1/M,1] convergence in (A6.1.1) and the equality

∫ 1

0

v−βdv = 1

1− β
.

If β = 1 then the first integral on the right-hand side of (A6.2.11) is

∫ M

1

∼
∫ M

1

v−1 dv = lnM,

so that if
∫ ∞

0

V (u)du <∞ (A6.2.12)

then

V I (t)≥
(
1+ o(1)

)
L(t) lnM≫ L(t) (A6.2.13)

and hence

L2(t) :=
V I (t)

tV (t)
= V I (t)

L(t)
→∞ as t→∞.
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Note now that, by property (i), the function L2 will be an s.v.f. whenever V I (t) is

an s.v.f. But, for v > 1,

V I (t)= V I (vt)+
∫ vt

t

V (u)du,

where the last integral clearly does not exceed (v− 1)L(t)(1+ o(1)). By (A6.2.13)

this implies that V I (vt)/V I (t) → 1 as t → ∞, which completes the proof

of (A6.2.6).

That relation (A6.2.5) is true in the subcase when (A6.2.12) holds is almost ob-

vious, since

VI (t)= tV (t)L1(t)= L(t)L1(t)=
∫ t

0

V (u)du→
∫ ∞

0

V (u)du,

so that, firstly, L1 is an s.v.f. by property (i) and, secondly, L1(t)→∞ because

L(t)→ 0 by (A6.2.13).

Now let β = 1 and
∫∞

0 V (u)du=∞. Then, as M =M(t)→∞ slowly enough,

similarly to (A6.2.11) and (A6.2.13), by the uniform convergence theorem we have

VI (t)=
∫ 1

0

v−1L(vt) dv ≥
∫ 1

1/M

v−1L(vt) dv ∼ L(t) lnM≫ L(t).

Therefore L1(t) := VI (t)/L(t)→ ∞ as t → ∞. Further, also similarly to the

above, we have, as v ∈ (0,1),

VI (t)= VI (vt)+
∫ t

vt

V (u)du,

where the last integral does not exceed (1−v)L(t)(1+o(1))≪ VI (t), so that VI (t)

(as well as L1(t) by virtue of property (i)) is an s.v.f. This completes the proof of

property (iv).

(v) Clearly, by the uniform convergence theorem the quantity b= b(t) is a solu-

tion to the “asymptotic equation”

V (b)∼ 1

t
as t→∞ (A6.2.14)

(where the symbol ∼ can be replaced by the equality sign if the function V is

continuous and monotonically decreasing). Substituting t1/βLb(t) for b, we obtain

an equivalent relation

L
−β
b L

(
t1/βLb

)
∼ 1, (A6.2.15)

where clearly

t1/βLb→∞ as t→∞. (A6.2.16)
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Fix an arbitrary v > 0. Substituting vt for t in (A6.2.15) and setting, for brevity’s

sake, L2 = L2(t) := Lb(vt), we get the relation

L
−β

2 L
(
t1/βL2

)
∼ 1, (A6.2.17)

since L(v1/β t1/βL2) ∼ L(t1/βL2) by virtue of (A6.2.16) (with Lb replaced

with L2). Now we will show by contradiction that (A6.2.15)–(A6.2.17) imply that

Lb ∼ L2 as t→∞, which obviously means that Lb is an s.v.f.

Indeed, the contrary assumption means that there exist v0 > 1 and a sequence

tn→∞ such that

un := L2(tn)/Lb(tn) > v0, n= 1,2, . . . (A6.2.18)

(the possible alternative case can be dealt with in the same way). Clearly, t∗n :=
t
1/β
n Lb(tn)→∞ by (A6.2.16), so we obtain from (A6.2.15)–(A6.2.16) and property

(iii) with δ = β/2 that

1∼
L
−β

2 (tn)L(t
1/β
n L2(tn))

L
−β
b (tn)L(t

1/β
n Lb(tn))

= u−β
n

L(unt
∗
n )

L(t∗n )
≤ u

−β/2
n < v

−β/2
0 < 1.

We get a contradiction.

Note that the above argument proves the uniqueness (up to asymptotic equiva-

lence) of the solution to Eq. (A6.2.14).

Finally, relation (A6.2.9) can be proved by a direct verification of (A6.2.14) for

b := t1/βL1/β(t1/β): using (A6.2.8), we have

V (b)= b−βL(b)= L(t1/βL1/β(t1/β))

tL(t1/β)
∼ L(t1/β)

tL(t1/β)
= 1

t
.

The required assertion follows now by the aforementioned uniqueness of the solu-

tion to the asymptotic equation (A6.2.14). Theorem A6.2.1 is proved. �

6.3 The Asymptotic Properties of the Transforms of R.V.F.s

(Abel-Type Theorems)

For an r.v.f. V (t), its Laplace transform

ψ(λ) :=
∫ ∞

0

e−λtV (t) dt <∞

is defined for all λ > 0. The following asymptotic relations hold true for the trans-

form.

Theorem A6.3.1 Assume that V (t) ∈R (i.e. V (t) has the form (A6.1.2)).
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(i) If β ∈ [0,1) then

ψ(λ)∼ Γ (1− β)

λ
V (1/λ) as λ ↓ 0. (A6.3.1)

(ii) If β = 1 and
∫∞

0 V (t) dt =∞ then

ψ(λ)∼ VI (1/λ) as λ ↓ 0, (A6.3.2)

where VI (t)=
∫ t

0 V (u)du→∞ is an s.v.f. such that VI (t)≫ L(t) as t→∞.

(iii) In any case, ψ(λ) ↑ VI (∞)=
∫∞

0 V (t) dt ≤∞ as λ ↓ 0.

Assertions (i) and (ii) are called Abelian theorems.

If we resolve relation (A6.3.1) for V then we obtain

V (t)∼ ψ(1/t)

tΓ (1− β)
as t→∞.

Relations of this type will also be valid in the case when, instead of the regularity

of the function V , one requires the monotonicity of V and assumes that ψ(λ) is an

r.v.f. as λ ↓ 0. Statements of such type are called Tauberian theorems. We will not

need these theorems and so will not dwell on them.

Proof of Theorem A6.3.1 (i) For any fixed ε > 0 we have

ψ(λ)=
∫ ε/λ

0

+
∫ ∞

ε/λ

,

where, for the first integral on the right-hand side, for β < 1, by virtue of (A6.2.4)

we have the following relation

∫ ε/λ

0

e−λtV (t) dt ≤
∫ ε/λ

0

V (t) dt ∼ εV (ε/λ)

λ(1− β)
as λ ↓ 0. (A6.3.3)

Changing the variable λt = u, we can rewrite the second integral in the above rep-

resentation for ψ(λ) as

∫ ∞

ε/λ

= V (1/λ)

λ

∫ ∞

ε

e−uu−β L(u/λ)

L(1/λ)
du= V (1/λ)

λ

[∫ 2

ε

+
∫ ∞

2

]
. (A6.3.4)

Each of the integrals on the right-hand side converges, as λ ↓ 0, to the corresponding

integral of e−uu−β : the former integral converges by the uniform convergence the-

orem (the convergence L(u/λ)/L(1/λ)→ 1 is uniform in u ∈ [ε,2]), and the latter

converges by virtue of (A6.1.1) and the dominated convergence theorem, since by

Theorem A6.2.1(iii), for all λ small enough, we have L(u/λ)/L(1/λ) < u for u≥ 2.

Therefore,
∫ ∞

ε/λ

∼ V (1/λ)

λ

∫ ∞

ε

u−βe−u du. (A6.3.5)
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Now note that, as λ ↓ 0,

εV (ε/λ)

λ

/
V (1/λ)

λ
= ε1−β L(ε/λ)

L(1/λ)
→ ε1−β .

Since ε > 0 can be chosen arbitrarily small, this relation together with (A6.3.3) and

(A6.3.5) completes the proof of (A6.3.1).

(ii) Integrating by parts and changing the variable λt = u, we obtain, for β = 1

and M > 0, that

ψ(λ)=
∫ ∞

0

e−λtdVI (t)=−
∫ ∞

0

VI (t) de−λt

=
∫ ∞

0

VI (u/λ)e−udu=
∫ 1/M

0

+
∫ M

1/M

+
∫ ∞

M

. (A6.3.6)

By Theorem A6.2.1(iv), VI (t)≫ L(t) is an s.v.f. as t →∞. Therefore, by the

uniform convergence theorem, for M =M(λ)→∞ slowly enough as λ→ 0, the

middle integral on the right-hand side of (A6.3.6) is

VI (1/λ)

∫ M

1/M

VI (u/λ)

VI (1/λ)
e−udu∼ VI (1/λ)

∫ M

1/M

e−udu∼ VI (1/λ).

The remaining two integrals are negligibly small: since VI (t) is an increasing func-

tion, the first integral does not exceed VI (1/λM)/M = o(VI (1/λ)), while for the

last integral we have by Theorem A6.2.1(iii) that

VI (1/λ)

∫ ∞

M

VI (u/λ)

VI (1/λ)
e−udu≤ VI (1/λ)

∫ ∞

M

ue−udu= o
(
VI (1/λ)

)
.

Hence (ii) is proved. Assertion (iii) is evident. �

6.4 Subexponential Distributions and Their Properties

Let ξ, ξ1, ξ2, . . . be independent identically distributed random variables with distri-

bution F, and let the right tail of this distribution

F+(t) := F
(
[t,∞)

)
= P(ξ ≥ t), t ∈R,

be an r.v.f. as t→∞ of the form (A6.1.2), which we will denote by V (t). Recall

that we denoted the class of all such distributions by R.

In this section we will introduce one more class of distributions, which is sub-

stantially wider than R.

Let ζ ∈ R be a random variable with distribution G: G(B) = P(ζ ∈ B) for any

Borel set B (recall that in this case we write ζ ⊂=G). Denote by G(t) the right tail

of the distribution of the random variable ζ :

G(t) := P(ζ ≥ t), t ∈R.
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The convolution of tails G1(t) and G2(t) is the function

G1 ∗G2(t) := −
∫

G(t − y)dG2(y)=
∫

G1(t − y)G2(dy)= P(Z2 ≥ t),

where Z2 = ζ1 + ζ2 is the sum of independent random variables ζi ⊂=Gi , i = 1,2.

Clearly, G1 ∗G2(t)=G2 ∗G1(t). Denote by G2∗(t) :=G ∗G(t) the convolution

of the tail G(t) with itself and put G(n+1)∗(t) :=G ∗Gn∗(t), n≥ 2.

Definition A6.4.1 A distribution G on [0,∞) belongs to the class S+ of subexpo-
nential distributions on the positive half-line if

G2∗(t)∼ 2G(t) as t→∞. (A6.4.1)

A distribution G on the whole line (−∞,∞) belongs to the class S of subexponen-
tial distributions if the distribution G+ of the positive part ζ+ = max{0, ζ } of the

random variable ζ ⊂=G belongs to S+. A random variable is called subexponential

if its distribution is subexponential.

As we will see below (Theorem A6.4.3), the subexponentiality property of a dis-

tribution G is essentially the property of the asymptotics of the tail G(t) as t→∞.

Therefore we can also speak about subexponential functions.

A nondecreasing function G1(t) on (0,∞) is called subexponential if a distri-

bution G with the tail G(t) ∼ cG1(t) as t →∞ with some c > 0 is subexpo-

nential. (For example, distributions with the tails G(t) = G1(t)/G1(0) or G(t) =
min(1,G1(t))).

Remark A6.4.1 Since we obviously always have

(
G+

)2∗
(t)= P

(
ζ+1 + ζ+2 ≥ t

)
≥ P

({
ζ+1 ≥ t

}
∪
{
ζ+2 ≥ t

})

= P(ζ1 ≥ t)+ P(ζ2 ≥ t)− P(ζ1 ≥ t, ζ2 ≥ t)

= 2G(t)−G2(t)= 2G+(t)
(
1+ o(1)

)

as t→∞, subexponentiality is equivalent to the following property:

lim sup
t→∞

(G+)2∗(t)

G+(t)
≤ 2. (A6.4.2)

Note also that, since relation (A6.4.1) makes sense only when G(t) > 0 for all t ∈R,

the support of any subexponential distribution is unbounded from the right.

We show that regularly varying distributions are subexponential, i.e., that R⊂ S.

Let F ∈R and P(ξ ≥ t)= V (t) be r.v.f.s. We need to show that

P(ξ1 + ξ2 ≥ x) = V 2∗(x) := V ∗ V (x)

= −
∫ ∞

−∞
V (x − t) dV (t)∼ 2V (x). (A6.4.3)
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In order to do that, we introduce events A := {ξ1 + ξ2 ≥ x} and Bi := {ξi < x/2},
i = 1,2. Clearly,

P(A)= P(AB1)+ P(AB2)− P(AB1B2)+ P(AB1B2),

where P(AB1B2) = 0, P(AB1B2) = P(B1B2) = V 2(x/2) (here and in what fol-

lows, B denotes the event complementary to B) and

P(AB1)= P(AB2)=
∫ x/2

−∞
V (x − t)F(dt).

Therefore

V 2∗(x)= 2

∫ x/2

−∞
V (x − t)F(dt)+ V 2(x/2). (A6.4.4)

(The same result can be obtained by integrating the convolution in (A6.4.3) by

parts.) It remains to note that V 2(x/2)= o(V (x)) and

∫ x/2

−∞
V (x − t)F(dt)=

∫ −M

−∞
+
∫ M

−M

+
∫ x/2

M

, (A6.4.5)

where, as one can easily see, for any M =M(x)→∞ as x→∞ such that M =
o(x), we have

∫ M

−M

∼ V (x) and

∫ −M

−∞
+
∫ x/2

M

= o
(
V (x)

)
,

which proves (A6.4.3).

The same argument is valid for distributions with a right tail of the form

F+(t)= e−tβL(t), β ∈ (0,1), (A6.4.6)

where L(t) is an s.v.f. as t →∞ satisfying a certain smoothness condition (for

instance, that L is differentiable with L′(t)= o(L(t)/t) as t→∞).

One of the basic properties of subexponential distributions G is that their tails

G(t) are asymptotically locally constant in the following sense.

Definition A6.4.2 We will call a function G(t) > 0 (asymptotically) locally con-
stant (l.c.) if, for any fixed v,

G(t + v)

G(t)
→ 1 as t→∞. (A6.4.7)

In the literature, distributions with l.c. tails are often referred to as long-tailed

distributions; however, we feel that the term “locally constant function” better re-

flects the meaning of the concept. Denote the class of all distributions G with l.c.

tails G(t) by L.

For future reference, we will state the basic properties of l.c. functions as a sepa-

rate theorem.
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Theorem A6.4.1 (i) For an l.c. function G(t) the convergence in (A6.4.7) is uni-
form in v on any fixed finite interval.

(ii) A function G(t) is l.c. if and only if, for some t0 > 0, it admits a representation
of the form

G(t)= c(t) exp

{∫ t

t0

ε(u)du

}
, t ≥ t0, (A6.4.8)

where the functions c(t) and ε(t) are measurable and such that c(t)→ c ∈ (0,∞)

and ε(t)→ 0 as t→∞.

(iii) If G1(t) and G2(t) are l.c. functions then G1(t)+G2(t), G1(t)G2(t), G
b
1(t),

and G(t) :=G1(at + b), where a ≥ 0 and b ∈R, are also l.c.

(iv) If G(t) is an l.c. function then, for any ε > 0,

eεtG(t)→∞ as t→∞.

In other words, any l.c. function G(t) can be represented as

G(t)= e−l(t), l(t)= o(t) as t→∞. (A6.4.9)

(v) Let

GI (t) :=
∫ ∞

t

G(u)du <∞

and at least one of the following conditions be satisfied:

(a) G(t) is an l.c. function; or
(b) GI (t) is an l.c. function and G(t) is monotone.

Then

G(t)= o
(
GI (t)

)
as t→∞. (A6.4.10)

(vi) If G ∈L then G2∗(t)∼ (G+)2∗(t) as t→∞.

Remark A6.4.2 Assertion (i) of the theorem implies that the uniform convergence

in (A6.4.7) on the interval [−M,M] persists in the case when, as t→∞, M =M(t)

grows unboundedly slowly enough.

Proof of Theorem A6.4.1, (i)–(iii) It is clear from Definitions A6.4.1 and A6.4.2

that G(t) is l.c. if and only if L(t) :=G(ln t) is an s.v.f. Having made this observa-

tion, assertion (i) follows directly from Theorem A6.1.1 (on uniform convergence

of s.v.f.s), while assertions (ii) and (iii) follow from Theorems A6.1.2 and A6.2.1(i),

respectively.

Assertion (iv) follows from the integral representation (A6.4.8).

(v) If (a) holds then, for any M > 0 and all t large enough,

GI (t) >

∫ t+M

t

G(u)du >
1

2
MG(t).
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Since M is arbitrary, GI (t)≫G(t). Further, if (b) holds then

G(t)

GI (t)
≤ 1

GI (t)

∫ t

t−1

G(u)du= GI (t − 1)

GI (t)
− 1→ 0

as t→∞.

(vi) Let ζ1 and ζ2 be independent copies of a random variable ζ , Z2 := ζ1 + ζ2,

Z
(+)
2 := ζ+1 + ζ+2 . Clearly, ζi ≤ ζ+i , so that

G2∗(t)= P(Z2 ≥ t)≤ P
(
Z

(+)
2 ≥ t

)
=
(
G+

)2∗
(t). (A6.4.11)

On the other hand, for any M > 0,

G2∗(t)≥ P(Z2 ≥ t, ζ1 > 0, ζ2 > 0)+
2∑

i=1

P
(
Z2 ≥ t, ζi ∈ [−M,0]

)
,

where the first term on the right-hand side is equal to P(Z
(+)
2 ≥ t, ζ+1 > 0, ζ+2 > 0),

and the last two terms can be bounded as follows: since G ∈ L, then, for any ε > 0

and M and t large enough,

P
(
Z2 ≥ t, ζ1 ∈ [−M,0]

)
≥ P

(
ζ2 ≥ t +M, ζ1 ∈ [−M,0]

)

=G(t)
G(t +M)

G(t)

[
P(ζ1 ≤ 0)− P(ζ1 <−M)

]

≥ (1− ε)G(t)P
(
ζ+1 = 0

)
= (1− ε)P

(
Z

(+)
2 ≥ t, ζ+1 = 0

)
.

Thus we obtain for G2∗(t) the lower bound

G2∗(t)≥ P
(
Z

(+)
2 ≥ t, ζ+1 > 0, ζ+2 > 0

)
+ (1− ε)

2∑

i=1

P
(
Z

(+)
2 ≥ t, ζ+i = 0

)

≥ (1− ε)P
(
Z

(+)
2 ≥ t

)
= (1− ε)

(
G∗

)2∗
(t).

Therefore (vi) is proved, as ε can be arbitrarily small. The theorem is proved. �

We return now to our discussion of subexponential distributions. First of all, we

turn to the relationship between the classes S and L.

Theorem A6.4.2 We have S⊂ L, and hence all the assertions of Theorem A6.4.1

are valid for subexponential distributions as well.

Remark A6.4.3 The coinage of the term “subexponential distribution” was appar-

ently due mostly to the fact that the tail of such a distribution decreases as t→∞
slower than any exponential function e−εt , as shown in Theorems A6.4.1(iv) and

A6.4.2.
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Remark A6.4.4 In the case when the distribution G is not concentrated on [0,∞),

the tails’ additivity condition (A6.4.1) alone is not sufficient for the function G(t)

to be l.c. (and hence for ensuring the “subexponential decay” of the distribution tail,

cf. Remark A6.4.3). This explains the necessity of defining subexponentiality in the

general case in terms of condition (A6.4.1) on the distribution G+ of the random

variable ζ+. Actually, as we will see below (Corollary A6.4.1), the subexponential-

ity of a distribution G on R is equivalent to the combination of conditions (A6.4.1)

(on G itself) and G ∈L.

The next example shows that, for random variables assuming values of both
signs, condition (A6.4.1), generally speaking, does not imply the subexponential

behaviour of G(t).

Example A6.4.1 Let µ > 0 be fixed and the right tail of the distribution G have the

form

G(t)= e−µtV (t), (A6.4.12)

where V (t) is an r.v.f. vanishing as t→∞ and such that

g(µ) :=
∫ ∞

−∞
eµyG(dy) <∞.

Similarly to (A6.4.4) and (A6.4.5), we have

G2∗(t)= 2

∫ t/2

−∞
G(t − y)G(dy)+G2(t/2),

where

∫ t/2

−∞
G(t − y)G(dy) = e−µt

∫ t/2

−∞
eµyV (t − y)G(dy)

= e−µt

[∫ −M

−∞
+
∫ M

−M

+
∫ t/2

M

]
.

One can easily see that, for M =M(t)→∞ slowly enough as t→∞, we have

∫ M

−M

eµyV (t − y)G(dy)∼ g(µ)V (t),

∫ −M

−∞
+
∫ t/2

M

= o
(
G(t)

)
,

while

G2(t/2)= e−µtV 2(t/2)≤ ce−µtV 2(t)= o
(
G(t)

)
.

Thus, we obtain

G2∗(t)∼ 2g(µ)e−µtV (t)= 2g(µ)G(t), (A6.4.13)

and it is clear that we can always find a distribution G (with a negative mean) such

that g(µ)= 1. In that case relation (A6.4.1) from the definition of subexponentiality
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will be satisfied, although G(t) decreases exponentially fast and hence is not an l.c.

function.

On the other hand, note that the class of distributions satisfying relation (A6.4.1)

only is an extension of the class S. Distributions in the former class possess many

of the properties of distributions from S.

Proof of Theorem A6.4.2 We have to prove that S⊂L. Since the definitions of both

classes are given in terms of the right distribution tails, we can assume without loss

of generality, that G ∈ S+ (or just consider the distribution G+). For independent

(nonnegative) ζi ⊂=G we have, for t > 0,

G2∗(t)= P(ζ1 + ζ2 ≥ t)= P(ζ1 ≥ t)+ P(ζ1 + ζ2 ≥ t, ζ1 < t)

=G(t)+
∫ t

0

G(t − y)G(dy). (A6.4.14)

Since G(t) is non-increasing and G(0)= 1, it follows that, for t > v > 0,

G2∗(t)

G(t)
= 1+

∫ v

0

G(t − y)

G(t)
G(dy)+

∫ t

v

G(t − y)

G(t)
G(dy)

≥ 1+
[
1−G(v)

]
+ G(t − v)

G(t)

[
G(v)−G(t)

]
.

Therefore, for t large enough (such that G(v)−G(t) > 0),

1≤ G(t − v)

G(t)
≤ 1

G(v)−G(t)

[
G2∗(t)

G(t)
− 2+G(v)

]
.

Since G ∈ S+, the right-hand side of the last formula converges as t →∞ to the

quantity G(v)/G(v)= 1 and hence G ∈L. The theorem is proved. �

The next theorem contains several important properties of subexponential distri-

butions.

Theorem A6.4.3 Let G ∈ S.

(i) If Gi(t)/G(t)→ ci as t→∞, ci ≥ 0, i = 1,2, c1 + c2 > 0, then

G1 ∗G2(t)∼G1(t)+G2(t)∼ (c1 + c2)G(t).

(ii) If G0(t)∼ cG(t) as t→∞, c > 0, then G0 ∈ S.

(iii) For any fixed n≥ 2,

Gn∗(t)∼ nG(t) as t→∞. (A6.4.15)

(iv) For any ε > 0 there exists a b= b(ε) <∞ such that

Gn∗(t)

G(t)
≤ b(1+ ε)n

for all n≥ 2 and t .
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In addition to assertions (i) and (ii) of the theorem, we can also show that if G ∈ S
and the function m(t) ∈L possesses the property

0 < m1 ≤m(t)≤m2 <∞

then G1(t)=m(t)G(t) ∈ S.

Theorems A6.4.1(vi), A6.4.2 and A6.4.3(iii) imply the following simple state-

ment elucidating the subexponentiality condition for random variables taking values

of both signs.

Corollary A6.4.1 A distribution G belongs to S if and only if G ∈L and G2∗(t)∼
2G(t) as t→∞.

Remark A6.4.5 Evidently the asymptotic relation G1(t) ∼ G2(t) as t →∞ is an

equivalence relation on the set of distributions on R. Theorem A6.4.3(ii) means

that the class S is closed with respect to that equivalence. One can easily see that in

each of the equivalence subclasses of the class S with respect to this relation there
is always a distribution with an arbitrarily smooth tail G(t).

Indeed, let p(t) be an infinitely differentiable probability density on R vanishing

outside [0,1] (we can take, e.g., p(x)= c · e−1/(x(1−x)) if x ∈ (0,1) and p(x)= 0

if x /∈ (0,1)). Now we “smooth” the function l(t) := − lnG(t), G ∈ S, putting

l0(t) :=
∫

p(t − u)l(u) du, and let G0(t) := e−l0(t). (A6.4.16)

Clearly, G0(t) is an infinitely differentiable function and, since l(t) is nondecreasing

and we actually integrate over [t − 1, t] only, one has l(t − 1) ≤ l0(t) ≤ l(t) and

hence by Theorem A6.4.2

1≤ G0(t)

G(t)
≤ G(t − 1)

G(t)
→ 1 as t→∞.

Thus, the distribution G0 is equivalent to the original G. A simpler smoothing pro-

cedure leading to a less smooth asymptotically equivalent tail consists of replacing

the function l(t) with its linear interpolation with nodes at points (k, l(k)), k being

an integer.

Therefore, up to a summand o(1), we can always assume the function l(t) =
− lnG(t), G ∈ S, to be arbitrarily smooth.

The aforesaid is clearly applicable to the class L as well: it is also closed with

respect to the introduced equivalence, and each of its equivalence subclass contains

arbitrarily smooth representatives.

Remark A6.4.6 Theorem A6.4.3(ii) and (iii) immediately implies that if G ∈ S then

also Gn∗ ∈ S, n = 2,3, . . . . Moreover, if we denote by Gn∨ the distribution of the
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maximum of independent identically distributed random variables ζ1, . . . , ζn ⊂=G,

then the evident relation

Gn∨(t)= 1−
(
1−G(t)

)n ∼ nG(t) as t→∞ (A6.4.17)

and Theorem A6.4.3(ii) imply that Gn∨ also belongs to S.

Relations (A6.4.17) and (A6.4.15) show that, in the case of a subexponential

G, the tail Gn∗(t) of the distribution of the sum of a fixed number n of indepen-

dent identically distributed random variables ζi ⊂= G is asymptotically equivalent

(as t→∞) to the tail Gn∨(t) of the maximum of these random variables, i.e., the

“large” values of this sum are mainly due to by the presence of one “large” term ζi

in the sum. It is easy to see that this property is characteristic of subexponentiality.

Remark A6.4.7 Note also that an assertion converse to what was stated at the be-

ginning of Remark A6.4.6 is also valid: if Gn∗ ∈ S for some n ≥ 2 then G ∈ S

as well. That Gn∨ ∈ S implies G ∈ S evidently follows from (A6.4.17) and Theo-

rem A6.4.3(ii).

Proof of Theorem A6.4.3 (i) First assume that c1c2 > 0 and that both distributions

Gi are concentrated on [0,∞). Fix an arbitrary ε > 0 and choose M large enough

to have Gi(M) < ε, i = 1,2, and G(M) < ε, and such that, for t > M ,

(1− ε)ci <
Gi(t)

G(t)
< (1+ ε)ci, i = 1,2, 1− ε <

G(t −M)

G(t)
< 1+ ε

(A6.4.18)

(the last inequality holds by virtue of Theorem A6.4.2).

Let ζ ⊂= G and ζi ⊂= Gi , i = 1,2, be independent random variables. Then, for

t > 2M , we have the representation

G1 ∗G2(t)= P1 + P2 + P3 + P4, (A6.4.19)

where

P1 := P
(
ζ1 ≥ t − ζ2, ζ2 ∈ [0,M)

)
,

P2 := P
(
ζ2 ≥ t − ζ1, ζ1 ∈ [0,M)

)
,

P3 := P
(
ζ2 ≥ t − ζ1, ζ1 ∈ [M, t −M)

)
,

P4 := P(ζ2 ≥M,ζ1 ≥ t −M)

(see Fig. A.1).

We show that the first two terms on the right-hand side of (A6.4.19) are asymp-

totically equivalent to c1G(t) and c2G(t), respectively, while the last two terms are

negligibly small compared with G(t). Indeed, for P1 we have the obvious two-sided

bounds
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Fig. A.1 Illustration to the

proof of Theorem A6.4.3,

showing the regions Pi ,

i = 1,2,3,4

(1− ε)2c1G(t) < G1(t)
(
1−G2(M)

)
= P

(
ζ1 ≥ t, ζ2 ∈ [0,M)

)

≤ P1 ≤ P(ζ1 ≥ t −M)=G1(t −M)≤ (1+ ε)2c1G(t)

by (A6.4.18); the term P2 can be bounded in a similar way. Further,

P4 = P(ζ2 ≥M, ζ1 ≥ t −M)=G2(M)G1(t −M) < ε(1+ ε)2c2G(t).

It remains to estimate P3 (note that it is here that we will need the condition G ∈ S;

so far we have only used the fact that G ∈L). We have

P3 =
∫

[M,t−M)

G2(t − y)G1(dy)≤ (1+ ε)c2

∫

[M,t−M)

G(t − y)G1(dy),

(A6.4.20)

where it is clear that, by (A6.4.18), the last integral is equal to

P
(
ζ + ζ1 ≥ t, ζ1 ∈ [M, t −M)

)

= P
(
ζ ≥ t −M, ζ1 ∈ [M, t −M)

)
+ P

(
ζ + ζ1 ≥ t, ζ ∈ [M, t −M)

)

=G(t −M)G1

(
[M, t −M)

)
+
∫

[M,t−M)

G1(t − y)G(dy)

≤ ε(1+ ε)G(t)+ (1+ ε)c1

∫

[M,t−M)

G(t − y)G(dy). (A6.4.21)

Now note that similarly to the above argument we can easily obtain (setting

G1 =G2 =G) that

G2∗(t)= (1+ θ1ε)2G(t)+
∫

[M,t−M)

G(t − y)G(dy)+ ε(1+ θ2ε)G(t),

where |θi | ≤ 1, i = 1,2. Since G2∗(t) ∼ 2G(t) by virtue of G ∈ S+, this equality

means that the integral on the right-hand side is o(G(t)). Now (A6.4.21) immedi-

ately implies that also P3 = o(G(t)), and hence the required assertion is established

for the case G ∈ S+.
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To extend the desired result to the case of distributions Gi on R, it suffices to

repeat the argument from the proof of Theorem A6.4.1(vi).

The case when one of the ci can be zero can be reduced to the case c1c2 > 0,

which has already been considered. If, say, c1 = 0 and c2 > 0, then we can introduce

the distribution G̃1 := (G1 +G)/2, for which clearly G̃1(t)/G(t)→ c̃1 = 1/2, and

hence by the already proved assertion, as t→∞,

1

2
+ c2 ∼

G̃1 ∗G2(t)

G(t)
= G1 ∗G2(t)+G ∗G2(t)

2G(t)

= G1 ∗G2(t)

2G(t)
+
(
1+ o(1)

)1+ c2

2
,

so that G1 ∗G2(t)/G(t)→ c2 = c1 + c2.

(ii) Denote by G+0 the distribution of the random variable ζ+0 , where ζ0 ⊂=G0.

Since G+0 (t)=G0(t) for t > 0, it follows immediately from (i) with G1 =G2 =G+0
that (G+0 )2∗(t)∼ 2G+0 (t), i.e. G0 ∈ S.

(iii) If G ∈ S then by Theorems A6.4.1(vi) and A6.4.2 we have, as t→∞,

G2∗(t)∼
(
G+

)2∗
(t)∼ 2G(t).

Now relation (A6.4.15) follows immediately from (i) by induction.

(iv) Similarly to (A6.4.11), we have Gn∗(t)≤Gn∗
+ (t), n≥ 1. Therefore it is clear

that it suffices to consider the case G ∈ S+. Put

αn := sup
t≥0

Gn∗(t)

G(t)
.

Similarly to (A6.4.14), for n≥ 2, we have

Gn∗(t)=G(t)+
∫ t

0

G(n−1)∗(t − y)G(dy),

and hence, for each M > 0,

αn ≤ 1+ sup
0≤t≤M

∫ t

0

G(n−1)∗(t − y)

G(t)
G(dy)

+ sup
t>M

∫ t

0

G(n−1)∗(t − y)

G(t − y)

G(t − y)

G(t)
G(dy)

≤ 1+ 1

G(M)
+ αn−1 sup

t>M

G2∗(t)−G(t)

G(t)
.

Since G ∈ S, for any ε > 0 there exists an M =M(ε) such that

sup
t>M

G2∗(t)−G(t)

G(t)
< 1+ ε



6.4 Subexponential Distributions and Their Properties 685

and hence

αn ≤ b0 + αn−1(1+ ε), b0 := 1+ 1/G(M), α1 = 1.

This recurrently implies

αn ≤ b0 + b0(1+ ε)+ αn−2(1+ ε)2 ≤ · · · ≤ b0

n−1∑

j=0

(1+ ε)j ≤ b0

ε
(1+ ε)n.

The theorem is proved. �



Appendix 7

The Proofs of Theorems on Convergence
to Stable Laws

In this appendix we will prove Theorems 8.8.1–8.8.4.

7.1 The Integral Limit Theorem

In this section we will prove Theorem 8.8.1 on convergence of the distributions of

normalised sums Sn =
∑n

k=1 ξk to stable laws. Recall the basic notation:

F+(t) := P(ξ ≥ t), F−(t) := P(ξ <−t),

F0(t) := F+(t)+ F−(t)= P
(
ξ /∈ [−t, t)

)
.

The main condition used in the theorem has this form:

[Rβ,ρ] The total tail F0(x) = F−(x)+ F+(x) is a r.v.f. as x→∞, i.e., can be
represented as

F0(x)= t−βLF0
(x), β ∈ (0,2], (A7.1.1)

where LF0
(x) is an s.v.f., and there exists the limit

ρ+ := lim
x→∞

F+(x)

F0(x)
∈ [0,1], ρ := 2ρ+ − 1. (A7.1.2)

In the case β < 2 we put

b(n) := F
(−1)
0 (1/n), (A7.1.3)

while for β = 2 we set

b(n) := Y (−1)(1/n), (A7.1.4)

where

Y(t) := 2t−2

∫ t

0

yF0(y) dy = t−2E
(
ξ2;−t ≤ ξ < t

)
= t−2LY (t), (A7.1.5)
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LY (t) is an s.v.f., so that (see Theorem A6.2.1(v) of Appendix 6)

b(n)= n1/αLb(n), Lb is an s.v.f.

In the case when F+(t) and F−(t) are regularly varying functions (for instance,

when condition [Rβ,ρ] is satisfied and ρ = 0), we will denote these functions

by V (t) and W(t), respectively, and put

VI (t) :=
∫ t

0

V (y)dy, V I (t) :=
∫ ∞

t

V (y)dy;

the same notational convention will be used for W .

If F+(t) = o(F0(t)) as t→∞ (ρ = −1), then F+(t) is not necessarily a regu-

larly varying function, but everything we say below regarding the sums V (t)+W(t)

and V I (t)+W I (t) remains valid if we understand by their first summands quantities

negligibly small compared to the second summands (the first summands can also be

replaced by zeros). This is also true for the sums VI (t)+WI (t), except for the case

when E max(0, ξ) exists and VI (t) has to be replaced by E(ξ ; ξ ≥ 0)+ o(1).

Theorem A7.1.1 Let condition [Rβ,ρ] be satisfied and ζn := Sn

b(n)
.

(i) For β ∈ (0,2), β 
= 1, and scaling factor (A7.1.3), as n→∞,

ζn⇒ ζ (β,ρ), (A7.1.6)

where the distribution Fβ,ρ of the random variable ζ (β,ρ) depends on the parameters
β and ρ only and has ch.f.

ϕ(β,ρ)(t) := Eeitζ (β,ρ) = exp
{
|t |βB(β,ρ,ϑ)

}
, (A7.1.7)

where ϑ := sign t ,

B(β,ρ,ϑ) := Γ (1− β)

[
iρϑ sin

βπ

2
− cos

βπ

2

]
(A7.1.8)

and, for β ∈ (1,2), we assume that Γ (1− β)= Γ (2− β)/(1− β).

(ii) When β = 1, for the sequence ζn with scaling factor (A7.1.3) to converge to
a limiting law the former, generally speaking, needs to be centred. More precisely,

we have, as n→∞,

ζn −An⇒ ζ (1,ρ), (A7.1.9)

where

An :=
n

b(n)

[
VI

(
b(n)

)
−WI

(
b(n)

)]
− ρC, (A7.1.10)

C ≈ 0.5772 is the Euler constant, and

ϕ(1,ρ)(t) := Eeitζ (1,ρ) = exp

{
−π |t |

2
− iρt ln |t |

}
. (A7.1.11)
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If n[VI (b(n))−WI (b(n))] = o(b(n)), then ρ = 0 and we can put An = 0.

If there exists Eξ = 0 then

An =
n

b(n)

[
W I

(
b(n)

)
− V I

(
b(n)

)]
− ρC.

If Eξ = 0 and ρ 
= 0 then ρAn→−∞ as n→∞.

(iii) For β = 2 and scaling factor (A7.1.4), as n→∞,

ζn⇒ ζ (2,ρ), ϕ(2,ρ)(t) := Eeitζ = e−t2/2,

so that ζ (2,ρ) has the standard normal distribution which does not depend on ρ.

Proof We will use the same approach as in the proof of the central limit theorem

using relation (8.8.1). We will study the asymptotic properties of the ch.f. ϕ(t) =
Eeitξ in the vicinity of zero (more precisely, the asymptotics of

ϕ

(
µ

b(n)

)
− 1→ 0

as b(n)→∞) and show that, under condition [Rβ,ρ], for each µ ∈R, we have

n

(
ϕ

(
µ

b(n)

)
− 1

)
→ lnϕ(β,ρ)(µ) as n→∞ (A7.1.12)

(or some modification of this relation, see (A7.1.48)). This will imply that, for ζn =
S(n)/b(n), as n→∞, there holds the relation (cf. Lemma 8.3.2)

ϕζn(µ)→ ϕ(β,ρ)(µ). (A7.1.13)

Indeed,

ϕζn(µ)= ϕn

(
µ

b(n)

)
.

Since ϕ(t)→ 1 as t→ 0, one has

lnϕζn(µ)= n lnϕ

(
µ

b(n)

)

= n ln

[
1+

(
ϕ

(
µ

b(n)

)
− 1

)]
= n

[
ϕ

(
µ

b(n)

)
− 1

]
+Rn,

where |Rn| ≤ n|ϕ(µ/b(n))−1|2 for all n large enough, and hence Rn→ 0 by virtue

of (A7.1.12). It follows that (A7.1.12) implies (A7.1.13).

So first we will study the asymptotics of ϕ(t) as t → 0 and then estab-

lish (A7.1.12).
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(i) First let β ∈ (0,1). We have

ϕ(t)=−
∫ ∞

0

eitx dV (x)−
∫ ∞

0

e−itx dW(x). (A7.1.14)

Consider the former integral

−
∫ ∞

0

eitx dV (x)= V (0)+ it

∫ ∞

0

eitxV (x)dx, (A7.1.15)

where the substitution |t |x = y, |t | = 1/m yields

I+(t) := it

∫ ∞

0

eitxV (x)dx = iϑ

∫ ∞

0

eiϑyV (my)dy, (A7.1.16)

ϑ = sign t (we will henceforth exclude the trivial case t = 0).

Assume for the present that ρ+ > 0. Then V (x) is an r.v.f. as x→∞ and, for

each y, by virtue of the properties of s.v.f.s we have, as |m| → 0,

V (my)∼ y−βV (m).

Therefore it is natural to expect that, as |t | → 0,

I+(t)∼ iϑV (m)

∫ ∞

0

eiϑyy−β dy = iϑV (m)A(β,ϑ), (A7.1.17)

where

A(β,ϑ) :=
∫ ∞

0

eiϑyy−β dy. (A7.1.18)

Assume that relation (A7.1.17) holds and similarly (in the case when ρ− > 0)

−
∫ ∞

0

e−itx dW(x)=W(0)+ I−(t), (A7.1.19)

where

I−(t) := −it

∫ ∞

0

e−itxW(x)dx ∼−iϑW(m)

∫ ∞

0

e−iϑyy−β dy

=−iϑW(m)A(β,−ϑ). (A7.1.20)

Since V (0)+W(0)= 1, relations (A7.1.14)–(A7.1.20) mean that, as t→ 0,

ϕ(t)= 1+ F0(m)iϑ
[
ρ+A(β,ϑ)− ρ−A(β,−ϑ)

](
1+ o(1)

)
. (A7.1.21)

We can find an explicit form of the integral A(β,ϑ). Observe that the integral

along the boundary of the positive quadrant (closed as a contour) in the complex
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plane of the function eizz−β , which, as |t | → 0, is equal to zero. From this it is not

hard to obtain that

A(β,ϑ)= Γ (1− β)eiϑ(1−β)π/2, β > 0. (A7.1.22)

(Note also that (A7.1.18) is a table integral and its value can be found in handbooks,

see, e.g., integrals 3.761.4 and 3.761.9 in [18].)

Thus, in (A7.1.21) one has

iϑ
[
ρ+A(β,ϑ)− ρ−A(β,−ϑ)

]
= iϑ Γ (1− β)

[
ρ+ cos

(1− β)π

2

+ iϑρ+ sin
(1− β)π

2
− ρ− cos

(1− β)π

2
+ iϑρ− sin

(1− β)π

2

]

= Γ (1− β)

[
iϑ(ρ+ − ρ−) cos

(1− β)π

2
− sin

(1− β)π

2

]

= Γ (1− β)

[
iϑρ sin

βπ

2
− cos

βπ

2

]
= B(β,ρ,ϑ),

where B(β,ρ,ϑ) is defined in (A7.1.8). Hence, as t→ 0,

ϕ(t)− 1= F0(m)B(β,ρ,ϑ)
(
1+ o(1)

)
. (A7.1.23)

Putting t = µ/b(n) (so that m= b(n)/|µ|), where b(n) is defined in (A7.1.3), and

taking into account that F0(b(n))∼ 1/n, we obtain

n

[
ϕ

(
µ

b(n)

)
− 1

]
= nF0

(
b(n)

|µ|

)
B(β,ρ,ϑ)

(
1+ o(1)

)
∼ |µ|βB(β,ρ,ϑ).

(A7.1.24)

We have established the validity of (A7.1.12) and therefore that of assertion (i) of

the theorem in the case β < 1, ρ+ > 0.

If ρ+ = 0 (ρ− = 0) then, as was already mentioned, the above argument remains

valid if we replace V (m) (W(m)) by zero. This follows from the fact that in this

case F+(t) (F−(t)) admits a regularly varying majorant V ∗(t)= o(W(t)) (W ∗(t)=
o(V (t))).

It remains only to justify the asymptotic equivalence in (A7.1.17). To do that, it

is sufficient to verify that the integrals

∫ ε

0

eiϑyV (my)dy,

∫ ∞

M

eiϑyV (my)dy (A7.1.25)

can be made arbitrarily small compared to V (m) by choosing appropriate ε and M .

Note first that by Theorem A6.2.1(iii) of Appendix 6 (see (A6.1.2) in Appendix 6),

for any δ > 0, there exists an xδ > 0 such that, for all v ≤ 1 and vx ≥ xδ , we have

V (vx)

V (x)
≤ (1+ δ)v−β−δ.
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Therefore, for δ < 1− β and x > xδ ,

∫ x

0

V (u)du ≤ xδ +
∫ x

xδ

V (u)du= xδ + xV (x)

∫ 1

xδ/x

V (vx)

V (x)
dv

≤ xδ + xV (x)(1+ δ)

∫ 1

0

v−β−δdv

= xδ +
xV (x)(1+ δ)

1− β − δ
≤ cxV (x) (A7.1.26)

since xV (x)→∞ as x→∞. It follows that

∣∣∣∣
∫ ε

0

eiϑyV (my)dy

∣∣∣∣≤
1

m

∫ εm

0

V (u)du≤ cεV (εm)∼ cε1−βV (m).

Since ε1−β → 0 as ε→ 0, the first assertion in (A7.1.25) is proved. The second

integral in (A7.1.25) is equal to

∫ ∞

M

eiϑyV (my)dy = 1

iϑ
eiϑyV (my)

∣∣∣∣
∞

M

− 1

iϑ

∫ ∞

M

eiϑydV (my)

= − 1

iϑ
eiϑMV (mM)− 1

iϑ

∫ ∞

mM

eiϑu/mdV (u),

so its absolute value does not exceed

2V (mM)∼ 2M−βV (m) (A7.1.27)

as m→∞. Hence the value of the second integral in (A7.1.25) can also be made ar-

bitrarily small compared to V (m) by choosing an appropriate M . Relation (A7.1.17)

together with the assertion of the theorem in the case β < 1 are proved.

Let now β ∈ (1,2) and hence there exist a finite expectation Eξ which, according

to our condition, will be assumed to be equal to zero. In this case,

ϕ(t)− 1= ϑ

∫ |t |

0

ϕ′(ϑu)du, ϑ = sign t, (A7.1.28)

and we have to find the asymptotic behaviour of

ϕ′(t)=−i

∫ ∞

0

xeitxdV (x)+ i

∫ ∞

0

xe−itxdW(x)=: I (1)
+ (t)+ I

(1)
− (t) (A7.1.29)

as t→ 0. Since x dV (x)= d(xV (x))− V (x)dx, integration by parts yields

I
(1)
+ (t) := −i

∫ ∞

0

xeitxdV (x)=−i

∫ ∞

0

eitxd
(
xV (x)

)
+ i

∫ ∞

0

eitxV (x)dx

= −t

∫ ∞

0

xV (x)eitx dx + iV I (0)− t

∫ ∞

0

V I (x)eitx dx
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= iV I (0)− t

∫ ∞

0

Ṽ (x)eitx dx, (A7.1.30)

where, by Theorem A6.2.1(iv) of Appendix 6, both functions

V I (x) :=
∫ ∞

x

V (u)du∼ xV (x)

β − 1
as x→∞, V I (0) <∞,

and

Ṽ (x) := xV (x)+ V I (x)∼ βxV (x)

β − 1

are regularly varying.

Letting, as before, m= 1/|t |, m→∞ (cf. (A7.1.16), (A7.1.17)), we get

−t

∫ ∞

0

Ṽ (x)eitx dx = −ϑṼ (m)

∫ ∞

0

Ṽ (my)eiϑy dy

∼ −ϑ

∫ ∞

0

y−β+1eiϑy dy =− βV (m)

t (β − 1)
A(β − 1, ϑ),

I
(1)
+ (t)= iV I (0)− βρ+F0(m)

t (β − 1)
A(β − 1, ϑ)

(
1+ o(1)

)
, (A7.1.31)

where the function A(β,ϑ) defined in (A7.1.18) is equal to (A7.1.22).

Similarly,

I
(1)
− (t) := i

∫ ∞

0

te−itx dW(x)

= −t

∫ ∞

0

xW(x)e−itx dx − iW I (0)− t

∫ ∞

0

W I (x)e−itx dx

= −iW I (0)− t

∫ ∞

0

W̃ (x)e−itx dx,

where

W I (x) :=
∫ ∞

x

W(u)du, W̃ (x) := xW(x)+W I (x)∼ βxW(x)

β − 1
,

and

−t

∫ ∞

0

W̃ (x) e−itx dx ∼− βW(m)

t (β − 1)
A(β − 1,−ϑ).

Therefore

I
(1)
− (t)= iW I (0)− βρ−F0(m)

t (β − 1)
A(β − 1,−ϑ)

(
1+ o(1)

)
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and hence, by virtue of (A7.1.29), (A7.1.31), and the equality V I (0) −W I (0) =
Eξ = 0, we have

ϕ′(t)=− βF0(m)

t (β − 1)

[
ρ+A(β − 1, ϑ)+ ρ−A(β − 1,−ϑ)

](
1+ o(1)

)
.

We return now to relation (A7.1.28). Since

∫ |t |

0

u−1 F0

(
u−1

)
du∼ β−1F0

(
|t |−1

)
= β−1F0(m)

(see Theorem A6.2.1(iii) of Appendix 6), we obtain, again using (A7.1.22) and an

argument similar to the one in the proof for the case β < 1, that

ϕ(t)− 1 = − 1

β − 1
F0(m)

[
ρ+A(β − 1, ϑ)+ ρ−A(β − 1,−ϑ)

](
1+ o(1)

)

= −Γ (2− β)

β − 1
F0(m)

[
ρ+

(
cos

(2− β)π

2
+ iϑ sin

(2− β)π

2

)

+ ρ−

(
cos

(2− β)π

2
− iϑ sin

(2− β)π

2

)](
1+ o(1)

)

= Γ (2− β)

β − 1
F0(m)

[
cos

βπ

2
− iϑρ sin

βπ

2

](
1+ o(1)

)

= F0(m)B(β,ρ,ϑ)
(
1+ o(1)

)
. (A7.1.32)

We arrive once again at relation (A7.1.23) which, by virtue of (A7.1.24), implies the

assertion of the theorem for β ∈ (1,2).

(ii) Case β = 1. In this case, the computation is somewhat more complicated. We

again follow relations (A7.1.14)–(A7.1.16), according to which

ϕ(t)= 1+ I+(t)+ I−(t). (A7.1.33)

Rewrite expression (A7.1.16) for I+(t) as

I+(x)= iϑ

∫ ∞

0

eiϑyV (my)dy = iϑ

∫ ∞

0

V (my) cosy dy −
∫ ∞

0

V (my) siny dy,

(A7.1.34)

where the first integral on the right-hand side can be represented as the sum of two

integrals:

∫ 1

0

V (my)dy +
∫ ∞

0

g(y)V (my)dy, (A7.1.35)

g(y)=
{

cosy − 1 if y ≤ 1,

cosy if y > 1.
(A7.1.36)
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Note that (see, e.g., integral 3.782 in [18]) the value of the integral

−
∫ ∞

0

g(y)y−1 dy = C ≈ 0.5772 (A7.1.37)

is the Euler constant. Since V (ym)/V (m)→ y−1 as m→∞, similarly to the above

argument we obtain for the second integral in (A7.1.35) the relation

∫ ∞

0

g(y)V (my)dy ∼−CV (m). (A7.1.38)

Consider now the first integral in (A7.1.35):

∫ 1

0

V (my)dy =m−1

∫ m

0

V (u)du=m−1VI (m), (A7.1.39)

where

VI (x) :=
∫ t

0

V (u)du (A7.1.40)

can easily be seen to be an s.v.f. in the case β = 1 (see Theorem A6.2.1(iv) of

Appendix 6). Here if E|ξ | =∞ then VI (x)→∞ as x→∞, and if E|ξ |<∞ then

VI (x)→ VI (∞) <∞.

Thus, for the first term on the right-hand side of (A7.1.34) we have

Im I+(t)= ϑ
(
−CV (m)+m−1VI (m)

)
+ o

(
V (m)

)
. (A7.1.41)

Now we will determine how VI (vx) depends on v as x→∞. For any fixed v > 0,

VI (vx)= VI (x)+
∫ vx

x

V (u)du= VI (x)+ xV (x)

∫ v

1

V (yx)

V (x)
dy.

By Theorem A6.2.1 of Appendix 6,

∫ v

1

V (yx)

V (x)
dy ∼

∫ v

1

dy

y
= lnv,

so that

VI (vx)= VI (x)+
(
1+ o(1)

)
xV (x) lnv =:AV (v, x)+ xV (x) lnv, (A7.1.42)

where evidently

AV (v, x)= VI (x)+ o
(
xV (x)

)
as x→∞ (A7.1.43)

and VI (x)≫ xV (x) by Theorem A6.2.1(iv) of Appendix 6.
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Therefore, for t = µ/b(n) (so that m= b(n)/|µ| and hence V (m) ∼ ρ+|µ|/n),

we obtain from (A7.1.41) and (A7.1.42) (where one has to put x = b(n), v = 1/|µ|)
that the following representation is valid as n→∞:

Im I+(t) = −C
ρ+µ

n
+ µ

b(n)

[
AV

(
|µ|−1, b(n)

)
− ρ+µ

n
ln |µ|

]
+ o

(
n−1

)

= µ

b(n)
AV

(
|µ|−1, b(n)

)
− ρ+µ

n

(
C + ln |µ|

)
+ o

(
n−1

)
. (A7.1.44)

For the second term on the right-hand side of (A7.1.34) we have

Re I+(t)=−
∫ ∞

0

V (my) siny dy ∼−V (m)

∫ ∞

0

y−1 siny dy.

Because siny ∼ y as y→ 0, the last integral converges. Since Γ (γ )∼ 1/γ as γ →
0, the value of this integral can be found to be (see (A7.1.22) and (A7.1.22))

lim
γ→0

Γ (γ ) sin
γπ

2
= π

2
. (A7.1.45)

Thus, for t = µ/b(n),

Re I+(t)=−π |µ|
2n
+ o

(
n−1

)
. (A7.1.46)

In a similar way we can find an asymptotic representation for the integral I−(t)

(see (A7.1.14)–(A7.1.20)):

I−(t) := −iϑ

∫ ∞

0

W(my)e−iϑy dy

= −iϑ

∫ ∞

0

W(my) cosy dy −
∫ ∞

0

W(my) siny dy.

Comparing this with (A7.1.34) and the subsequent computation of I+(t), we can

immediately conclude that, for t = µ/b(n) (cf. (A7.1.44), (A7.1.46)),

Im I−(t) = −−µAW (|µ|−1, b(n))

b(n)
+ ρ−µ

n

(
C + ln |µ|

)
+ o

(
n−1

)
,

Re I−(t) = −π |µ|ρ−
2n

+ o
(
n−1

)
.

(A7.1.47)

Thus we obtain from (A7.1.33), (A7.1.44) and (A7.1.46) that (A7.1.47) imply

ϕ

(
µ

b(n)

)
− 1=−π |µ|

n
− iρµ

n

(
C + ln |µ|

)

+ iµ

b(n)

[
AV

(
|µ|−1, b(n)

)
−AW

(
|µ|−1, b(n)

)]
+ o

(
n−1

)
.
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It follows from (A7.1.43) that the penultimate term here is equal to

iµ

b(n)

[
VI

(
b(n)

)
−WI

(
b(n)

)]
+ o

(
n−1

)
,

so that finally,

ϕ

(
µ

b(n)

)
− 1=−π |µ|

2n
− iρµ

n
ln |µ| + iµ

An

n
+ o

(
n−1

)
, (A7.1.48)

where

An =
n

b(n)

[
VI

(
b(n)

)
−WI

(
b(n)

)]
− ρC.

Therefore, similarly to (A7.1.12) and (A7.1.13), we obtain

ϕζn−An(µ) = e−iµAnϕ n

(
µ

b(n)

)
= exp

{
−iµAn + n ln

[
1+

(
ϕ

(
µ

b(n)

)
− 1

)]}

= exp

{
−iµAn + n

(
ϕ

(
µ

b(n)

)
− 1

)
+ nO

(∣∣∣∣ϕ
(

µ

b(n)

)
− 1

∣∣∣∣
2)}

.

As, for β = 1, by Theorem A6.2.1(iv) of Appendix 6, the functions VI and WI are

slowly varying, by (A7.1.48) one has

n

∣∣∣∣ϕ
(

µ

b(n)

)
−1

∣∣∣∣
2

≤ c

(
1

n
+ A2

n

n

)
≤ c1

(
1

n
+ 1

b(n)

[
VI

(
b(n)

)2+WI

(
b(n)

)2]
)
→ 0.

Since clearly

−iµAn + n

(
ϕ

(
µ

b(n)

)
− 1

)
→−π |µ|

2
− iρµ ln |µ|,

we have

ϕζn−An(µ)→ exp

{
−π |µ|

2
− iρµ ln |µ|

}
,

so relation (A7.1.9) is proved. The subsequent assertions regarding the centring se-

quence {An} are evident. �

(iii) It remains to consider the case β = 2. We will follow representations

(A7.1.28)–(A7.1.30), according to which we have to find, as m = 1/|t | →∞, the

asymptotics of

ϕ′(t)= I
(1)
+ (t)+ I

(1)
− (t), (A7.1.49)

where

I
(1)
+ (t) := iV I (0)− t

∫ ∞

0

Ṽ (x)eitx dx = iV I (0)− ϑ

∫ ∞

0

Ṽ (my)eiϑy dy

(A7.1.50)
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and, by Theorem A6.2.1(iv) of Appendix 6,

V I (x)=
∫ ∞

x

V (y)dy ∼ xV (x), Ṽ (x)= xV (x)+ V I (x)∼ 2xV (x) (A7.1.51)

as x→∞. Further,

∫ ∞

0

Ṽ (my) eiϑydy =
∫ ∞

0

Ṽ (my) cosy dy + ϑ

∫ ∞

0

Ṽ (my) siny dy. (A7.1.52)

Here the second integral on the right-hand side is asymptotically equivalent, as

m→∞, to (see (A7.1.45))

Ṽ (m)

∫ ∞

0

y−1 siny dy = π

2
Ṽ (m).

The first integral on the right-hand side of (A7.1.52) is equal to

∫ 1

0

Ṽ (my)dy +
∫ ∞

0

g(y)Ṽ (my)dy,

where the function g(y) was defined in (A7.1.35), and

∫ 1

0

Ṽ (my)dy = 1

m

∫ m

0

Ṽ (u) du= 1

m
ṼI (m),

ṼI (x) :=
∫ x

0 Ṽ (u) du being an s.v.f. by (A7.1.51). Since

∫ x

0

uV (u)du = x2V (x)

2
− 1

2

∫ x

0

u2dV (u),

∫ x

0

V I (u) du = xV I (x)+
∫ x

0

uV (u)du

and V I (x)∼ xV (x), we have

ṼI (x) =
∫ x

0

(
uV (u)+ V I (u)

)
du

= xV I (x)+ x2V (x)−
∫ x

0

u2 dV (u)

= −
∫ x

0

u2 dV (y)+O
(
x2V (x)

)
, (A7.1.53)

where the last term is negligibly small, because

∫ x

0

uV (u)du≫ x2V (x)

(see Theorem A6.2.1(iv) of Appendix 6).
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It is also clear that, as x→∞,

ṼI (x)→ ṼI (∞)= E
(
ξ2; ξ > 0

)
∈ (0,∞].

As a result, we obtain (see also (A7.1.38))

I
(1)
+ (t) = iV I (0)− iπ

2
Ṽ (m)− t ṼI (m)+ ϑCṼ (m)+ o

(
Ṽ (m)

)

= iV I (0)− t ṼI (m)
(
1+ o(1)

)

since ṼI (x)≫ t Ṽ (x).

Quite similarly we get

I
(1)
− (t)=−iW I (0)− tW̃I (m)

(
1+ o(1)

)
,

where W̃I is an s.v.f. which is obtained from the function W in the same way as ṼI

from V . Since V I (0)=W I (0), relation (A7.1.49) now yields that

ϕ′(t)=−t
[
ṼI (m)+ W̃I (m)

](
1+ o(1)

)
.

Hence from (A7.1.28) we obtain the representation

ϕ(t)− 1 = ϑ

∫ 1/m

0

ϕ′(ϑu)du=−
∫ 1/m

0

u
[
ṼI (1/u)+ W̃I (1/u)

]
du

∼ − 1

2m2

[
ṼI (m)+ W̃I (m)

]
∼− 1

2m2
E
(
ξ2; −m≤ ξ < m

)

by virtue of (A7.1.53) and a similar relation for W̃I . Turning now to the definition

of the function Y(x)= x−2LY (x) in (A7.1.5) and putting

b(n) := Y (−1)(1/n), t = µ/b(n),

we get

n
(
ϕ(t)− 1

)
∼−n

2
Y
(
b(n)/|µ|

)
∼−nµ2

2
Y
(
b(n)

)
→−µ2

2
.

The theorem is proved. �

7.2 The Integro-Local and Local Limit Theorems

In this section we will prove Theorems 8.8.2–8.8.4. We will begin with the integro-

local theorem.
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Theorem A7.2.1 (Integro-local Stone’s theorem) Let ξ be a non-lattice random
variable and the conditions of Theorem A7.1.1 be satisfied. Then, for each fixed
∆ > 0,

P
(
Sn ∈∆[x)

)
= ∆

b(n)
f (β,ρ)

(
x

b(n)

)
+ o

(
1

b(n)

)
as n→∞,

where the remainder term o( 1
b(n)

) is uniform in x.

Proof of Theorem A7.2.1 The Proof is analogous to the proof of Theorem 8.7.1. We

will again use the smoothing approach and consider, along with the sums Sn, the

sums

Zn = Sn + θη,

where θ = const and η is chosen so that its ch.f. is equal to 0 outside a fi-

nite interval. For instance, we can choose η as in Sect. 8.7.3, i.e., with the ch.f.

ϕη(t)=max(0, 1− |t |). Then equality (8.7.19) will still be valid with the same de-

composition of the integral on its right-hand side into the subintegral I1 over the

domain |t | < γ and I2 over the domain γ ≤ |t | ≤ 1/θ . Here estimating I2 can be

done in the same way as in Theorem 8.7.1.

For the sake of brevity, put ϕ̂(t) := ϕη∆(t)ϕθη(t). Then, for the integral I1 with

x = vb(n), we have

I1 =
∫

|t |<γ

e−itxϕn(t)ϕ̂(t) dt = 1

b(n)

∫

|u|<γb(n)

e−iuvϕn

(
u

b(n)

)
ϕ̂

(
u

b(n)

)
du.

(A7.2.1)

As was shown in the proof of Theorem 8.1.1, for each u we have

ϕn

(
u

b(n)

)
→ ϕ(β,ρ)(u) as n→∞,

and, moreover, for some c > 0 and γ > 0 small enough, by, virtue of, say, (A7.1.23)

and (A7.1.32), we have

Re
(
ϕ(t)− 1

)
≤−cF0

(
1

|t |

)
,

and, for any ε > 0 and all n large enough,

nRe

(
ϕ

(
u

b(n)

)
− 1

)
≤−cnF0

(
b(n)

|u|

)
≤−c |u|β−ε.

Here we used the properties of the r.v.f. F0. Moreover,

ϕ̂

(
u

b(n)

)
→ 1 as n→∞,

∣∣ϕ̂(u)/b(n)
∣∣≤ 1.
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The above also implies that, for all u such that |u|< γb(n),

∣∣∣∣ϕ
n

(
u

b(n)

)∣∣∣∣≤ e−c |u|β−ε

. (A7.2.2)

The obtained relations mean that we can use the dominated convergence theorem

in (A7.2.1) which implies

lim
n→∞

b(n)I1 =
∫

e−iuvϕ(β,ρ)(u) du (A7.2.3)

uniformly in v, since the right-hand side of (A7.2.1) is uniformly continuous in v.

On the right-hand side of (A7.2.3) is the result of the application of the inversion

formula (up to the factor 1/2π ) to the ch.f. ϕ(α,ρ). This means that

lim
n→∞

b(n)I1 = 2πf (β,ρ)(v).

We have established that, for x = vb(n), as n→∞,

P
(
Zn ∈∆[x)

)
= ∆

b(n)
f (β,ρ)

(
x

b(n)

)
+ o

(
1

b(n)

)

uniformly in v (and hence in x).

To prove the theorem it remains to use Lemma 8.7.1.

The theorem is proved. �

The proofs of the local Theorems 8.8.3 and 8.8.4 can be obtained by an obvious

similar modification of the proofs of Theorems 8.7.2 and 8.7.3 under the conditions

of Theorem 8.8.1.



Appendix 8

Upper and Lower Bounds for the Distributions
of the Sums and the Maxima of the Sums
of Independent Random Variables

Let ξ, ξ1, ξ2, . . . be independent identically distributed random variables,

Sn =
n∑

i=1

ξi, Sn = max
1≤k≤n

Sk.

The main goal of this appendix is to obtain upper and lower bounds for the proba-

bilities P(Sn ≥ x) and P(Sn ≥ x). These bounds were used in Sect. 9.5 to find the

asymptotics of the probabilities of large deviations for Sn and Sn.

8.1 Upper Bounds Under the Cramér Condition

In this section we will assume that the following one-sided Cramér condition is met:

[C] There exists a λ > 0 such that

ψ(λ)= Eeλξ <∞. (A8.1.1)

The following analogue of the exponential Chebyshev inequality holds true for

P(Sn ≥ x).

Theorem A8.1.1 For all n≥ 1, x ≥ 0 and λ≥ 0, we have

P(Sn ≥ x)≤ e−λx max
(
1,ψn(λ)

)
. (A8.1.2)

Proof As η(x) := inf{k ≥ 1 : Sk ≥ x} ≤∞ is a Markov time, the event {η(x)= k}
is independent of the random variables Sn − Sk . Therefore

ψn(λ) = E eλSn ≥
n∑

k=1

E
(
eλSn;η(x)= k

)
≥

n∑

k=1

E
(
eλ(x+Sn−Sk);η(x)= k

)
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= eλx

n∑

k=1

ψn−k(λ)P
(
η(x)= k

)
≥ eλx min

(
1,ψn(λ)

)
P(Sn ≥ x).

This immediately implies (A8.1.2). The theorem is proved. �

If ψ(λ) ≥ 1 for λ ≥ 0 (this is always the case if there exists E ξ ≥ 0) then the

right-hand side of (A8.1.2) is equal to e−λxψn(λ), and the equality (A8.1.2) itself

can also be obtained as a consequence of the well-known Kolmogorov–Doob in-

equality for submartingales (see Theorem 15.3.4, where one has to put Xn := Sn).

Thus, if Eξ ≥ 0 then

P(Sn ≥ x)≤ e−λx+n lnψ(λ).

Choosing the best possible value of λ we obtain the following inequality.

Corollary A8.1.1 If Eξ ≥ 0 then, for all n≥ 1 and x ≥ 0, we have

P(Sn ≥ x)≤ e−nΛ(α),

where

α := x

n
, Λ(α) := sup

λ

(
λα− lnψ(λ)

)
.

The function Λ(α) is the rate function introduced in Sect. 9.1. Its basic proper-

ties were stated in that section. In particular, for E ξ = 0 and E ξ2 = σ 2 <∞, the

asymptotic equivalence Λ(α) ∼ α2

2σ 2 as α→ 0 takes place, which yields that, for

x = o(n),

P(Sn ≥ x)≤ exp

{
− x2

2nσ 2

(
1+ o(1)

)}
. (A8.1.3)

8.2 Upper Bounds when the Cramér Condition Is Not Met

In this section we will assume that

Eξ = 0, Eξ2 = σ 2 <∞. (A8.2.1)

For simplicity’s sake, without losing generality, in what follows we will put σ = 1.

The bounds will be obtained for the deviation zone x >
√

n which is adjacent to the

zone of “normal deviations” where

P(Sn ≥ x)∼ 1−Φ

(
x√
n

)
(A8.2.2)
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(uniformly in x ∈ (0,Nn

√
n), where Nn →∞ slowly enough as n→ ∞; see

Sect. 8.2). Moreover, it was established in Sect. 19.1 that, in the normal deviations

zone,

P(Sn ≥ x)∼ 2

(
1−Φ

(
x√
n

))
. (A8.2.3)

To derive upper bounds in the zone x >
√

n when the Cramér condition [C]

is not met, we will need additional conditions on the behaviour of the right tail

F+(t)= P(ξ ≥ t) of the distribution F.

Namely, we will assume that the following condition is satisfied.

[<] For the right tail F+(t) = P(ξ ≥ t) there exists a regularly varying (see
Appendix 6) majorant V (t):

F+(t)≤ V (t) := t−βL(t) for all t > 0,

where β > 2 and L is a slowly varying function (s.v.f., see Appendix 6).

By virtue of (A8.2.2) and (A8.2.3), for deviations x < Nn

√
n, n→∞, it would

be natural to expect upper bounds with an exponential right-hand side e−x2/(2n)

(cf. (A8.1.3)). On the other hand, Theorem A6.4.3(iii) of Appendix 6 implies that,

for F+(t)= V (t) ∈R and any fixed n we have, as x→∞,

P(Sn ≥ x)∼ nV (x). (A8.2.4)

This relation clearly holds true if n→∞ slowly enough (as x→∞).

The asymptotics (A8.2.2) and (A8.2.4) merge with each other remarkably as

follows:

P(Sn ≥ x)∼
(

1−Φ

(
x√
n

))
+ nV (x) (A8.2.5)

as n→∞ for all x >
√

n (for more details see, e.g., [8] and the bibliography

therein). Relation (A8.2.5) allows us to “guess” the threshold values of x = b(n)

for which asymptotics (A8.2.2) changes to asymptotics (A8.2.4). To find such x it

suffices to equate the logarithms of the right-hand sides of (A8.2.2) and (A8.2.4):

−x2

2n
= lnnV (x)= lnn− β lnx + o(lnx).

The main part b(n) of the solution to this equation, as it is not hard to see, has the

form

b(n)=
√

(β − 2)n lnn

(we exclude the trivial case n= 1).

In what follows, we will represent deviations x as x = sb(n). Based on the above,

it is natural to expect (and it can be easily verified) that the first term will dominate
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on the right-hand side of (A8.2.5) if s < 1, while the second will dominate if s > 1.

Accordingly, for small s (but such that x >
√

n), we will have the above-mentioned

exponential bounds for P(Sn ≥ x), while for large s there will hold bounds of the

form nV (x) (note that nV (x)→ 0 for x > b(n) and β > 2).

The above claim is confirmed by the assertions below. Along with x introduce

deviations

y = x

r
,

where r ≥ 1 is fixed, and put

Bj := {ξj < y}, B :=
n⋂

j=1

Bj .

Theorem A8.2.1 Let conditions (A8.2.1) and [<] be satisfied.

(1) For any fixed h > 1, s0 > 0, x = sb(n), s ≥ s0 and all Π := nV (x) small
enough, we have

P := P(Sn ≥ x;B)≤ er

(
Π(y)

r

)r−θ

, (A8.2.6)

where

Π(y) := nV (y), θ := hr2

4s2

(
1+ b

ln s

lnn

)
, b := 2β

β − 2
.

(2) For any fixed h > 1, τ > 0, for x = sb(n) >
√

n, s2 < (h− τ)/2, and all n

large enough, we have

P ≤ e−x2/(2nh). (A8.2.7)

Corollary A8.2.1 (a) If s→∞ then

P(Sn ≥ x)≤ nV (x)
(
1+ o(1)

)
. (A8.2.8)

(b) If s2 ≥ s2
0 for some fixed s0 > 1 then, for all nV (x) small enough,

P(Sn ≥ x)≤ cnV (x), c= const. (A8.2.9)

(c) For any fixed h > 1, τ > 0, for s2 < (h− τ )/2, x >
√

n, and all n large
enough,

P(Sn ≥ x)≤ e−x2/(2nh). (A8.2.10)

Remark A8.2.1 It is not hard to verify (see the proofs of Theorem A8.2.1 and Corol-

lary A8.2.1) that there exists a function ε(t) ↓ 0 as t ↑∞ such that one has, along
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with (A8.2.8), the relation

sup
x:s≥t

P(Sn > x)

nV (x)
≤ 1+ ε(t).

Proof of Corollary A8.2.1 The proof is based on the inequality

P(Sn > x)≤ P(B)+ P(Sn ≥ x; B)≤ nV (y)+ P. (A8.2.11)

Since θ→ 0 as s→∞, we see that, for any fixed ε > 0 and all Π = nV (x) small

enough, we have P ≤ c(nV (y))r−ε . Putting r := 1+ 2ε, we obtain from (A8.2.11)

and (A8.2.6) that

P(Sn ≥ x)≤ nV (y)+ c
(
nV (y)

)1+ε ∼ n(1+ 2ε)−βV (x).

Since the left-hand side of this inequality does not depend on ε, relation (A8.2.8)

follows.

We now prove (b). If s →∞ then (b) follows from (a). If s is bounded then

necessarily n→∞ (since nV (x)→ 0) and hence

r − θ = r − hr2

4s2

(
1+ b

ln s

lnn

)
=ψ(r, s)+ o(1),

where the function

ψ(r, s) := r − hr2

4s2

attains its maximum ψ(r0, s)= s2/h in r at the point r0 = 2s2/h. Moreover, ψ(r, s)

strictly decreases in s. Therefore, for r0 = 2s2/h, we obtain

ψ(r0, s) =
s2

h
, (A8.2.12)

r0 − θ ≥ s2

h
+ o(1) as n→∞. (A8.2.13)

Choose h so close to 1 and τ > 0 so small that h + τ ≤ s2
0 . Putting r := r0, for

s2 ≥ s2
0 ≥ h+ τ and as n→∞, we get from (A8.2.6), (A8.2.12) and (A8.2.13) that

P(Sn ≥ x)≤ nV (y)+ c
(
nV (y)

)1+τ/2 ∼ nV

(
x

r0

)
∼ r

β

0 nV (x).

This proves (b).

Relation (c) for y = x follows from the inequality (see (A8.2.7) and (A8.2.11))

P(Sn ≥ x)≤ nV (x)+ e−x2/(2nh), (A8.2.14)
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where, for s2 < (h− τ )/2,

e−x2(2nh) > exp

{
− (h− τ)

2

(β − 2)n lnn

2nh

}
> n−(β−2)/4.

On the other hand, we have x >
√

n,

nV (x)≤ nV (
√

n)= n−(β−2)/2L∗(n),

where L∗ is a s.v.f. Therefore the second term dominates on the right-hand side

of (A8.2.14). Slightly changing h if necessary, we obtain (c). Corollary A8.2.1 is

proved. �

Remark A8.2.2 One can see from the proof of the corollary that the main contribu-

tion to the bound for the probability P(Sn ≥ x) under the conditions of assertions

(a) and (b) comes from the event B = {maxj≤n ξj ≥ y} with y close to x, so that

the most probable trajectory of {Sk}nk=1 that reaches the level x contains at least one

jump ξj of size comparable to x.

Proof of Theorem A8.2.1 In our case, the Cramér condition [C] is not met. In order

to use Theorem A8.1.1 in such a situation, we introduce “truncated” random vari-

ables with distributions that coincide with the conditional distribution of ξ given

{ξ < y} for some level y the choice of which will be at our disposal. Namely, we

introduce independent identically distributed random variables ξ
(y)
j , j = 1,2, . . . ,

with the distribution function

P
(
ξ

(y)

j < t
)
= P(ξ < t | ξ < y)= P(ξ < t)

P(ξ < y)
, t ≤ y,

and put

S
(y)
n :=

n∑

j=1

ξ
(y)

j , S
(y)

n :=max
k≤n

S
(y)

k .

Then

P = P(Sn ≥ x,B)=
(
P(ξ < y)

)n
P
(
S

(y)

n ≥ x
)
. (A8.2.15)

Applying Theorem A8.1.1 to the variables ξ
(y)
j , we obtain that, for any λ≥ 0,

P
(
S

(y)

n ≥ x
)
≤ e−λx

[
max

{
1,E eλξ (y)}]n

.

Since

Eeλξ (y) = R(λ,y)

F (y)
, where R(λ,y) :=

∫ y

∞
eλtF(dt),

we arrive at the following basic inequality. For x, y, λ≥ 0,

P = P(Sn ≥ x,B) ≤ e−λx
[
max

{
P(ξ < y),R(λ, y)

}]n
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≤ e−λx max
{
1,Rn(λ, y)

}
. (A8.2.16)

Thus, the main problem is to bound the integral R(λ,y). Put

M(v) := v

λ

and represent R(λ,y) as

R(λ,y)= I1 + I2,

where, for a fixed ε > 0,

I1 :=
∫ M(ε)

−∞
eλtF(dt)=

∫ M(ε)

−∞

(
1+ λ t + λ2t2

2
eλθ(t)

)
F(dt), 0≤ θ(t)

t
≤ 1.

(A8.2.17)

Here

∫ M(ε)

−∞
F(dt) = 1− V

(
M(ε)

)
≤ 1,

∫ M(ε)

−∞
tF(dt) = −

∫ ∞

M(ε)

tF(dt)≤ 0, (A8.2.18)

∫ M(ε)

−∞
t2eλθ(t)F(dt) ≤ eε

∫ M(ε)

−∞
t2F(dt)≤ eε =: h. (A8.2.19)

Therefore,

I1 ≤ 1+ λ2h

2
. (A8.2.20)

Estimate now

I2 := −
∫ y

M(ε)

eλt dF+(t)≤ V
(
M(ε)

)
eε + λ

∫ y

M(ε)

V (t)eλt dt. (A8.2.21)

First consider, for M(ε) < M(2β) < y, the subintegral

I2,1 := λ

∫ M(2β)

M(ε)

V (t)eλt dt.

For t = v/λ, as λ→ 0, we have

V (t)eλt = V

(
v

λ

)
ev ∼ V

(
1

λ

)
f (v), (A8.2.22)

where the function

f (v) := v−βev
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is convex on (0,∞). Therefore

I2,1 ≤
λ

2

(
M(2β)−M(ε)

)
V

(
1

λ

)(
f (ε)+f (2β)

)(
1+o(1)

)
≤ cV

(
1

λ

)
. (A8.2.23)

We now proceed to estimating the remaining subintegral

I2,2 := λ

∫ y

M(2β)

V (t)eλt dt.

For brevity’s sake, put M(2β)=:M . We will choose λ so that

µ= λy→∞ (y≫ 1/λ) (A8.2.24)

as x→∞. Substituting the variable (y − t)λ=: u we obtain

λI2,2 = eλyV (y)

∫ (y−M)λ

0

V

(
y − u

λ

)
V −1(y)e−u du. (A8.2.25)

Consider the integral on the right-hand side of (A8.2.25). Since 1/λ≪ y, the inte-

grand

ry,λ(u) := V (y − u/λ)

V (y)

converges to 1 for each fixed u. In order to use the dominated convergence theorem

which implies that the integral on the right-hand side of (A8.2.25) converges, as

y→∞, to
∫ ∞

0

e−u du= 1, (A8.2.26)

it remains to estimate the growth rate of the function ry,λ(u) as u increases. By the

properties of r.v.f.s (see Theorem A6.2.1(iii) in Appendix 6), for all λ small enough

(or M large enough; recall that y−u/λ≥M in the integrand in (A8.2.25)), we have

ry,λ(u)≤
(

1− u

λy

)−2β/2

=: g(u).

Since g(0)= 1 and λy − u≥Mλ= 2β , in this domain

(
lng(u)

)′ = 3β

2(λy − u)
≤ 3β

4β
= 3

4
,

lng(u) ≤ 3u

4
, ry,λ(u)≤ e3u/4.

This means that the integrand in (A8.2.25) is dominated by the exponential e−u/4,

and the use of the dominated convergence theorem is justified. Therefore, due to the
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convergence of the integral in (A8.2.25) to the limit (A8.2.26), we obtain

λI2,2 ∼ eλyV (y)

∫ ∞

0

eu du= eµV (y),

and it is not hard to find a function ε(µ) ↓ 0 as µ ↑∞ such that

λI2,2 ≤ eλyV (y)
(
1+ ε(µ)

)
. (A8.2.27)

Summarising (A8.2.20)–(A8.2.23) and (A8.2.27), we obtain

R(λ,y) ≤ 1+ λ2h

2
+ cV

(
1

λ

)
+ V (y)eλy

(
1+ ε(µ)

)
, (A8.2.28)

Rn(λ, y) ≤ exp

{
nλ2h

2
+ cnV

(
1

λ

)
+ nV (y)eλy

(
1+ ε(µ)

)}
. (A8.2.29)

First take λ to be the value

λ= 1

y
lnT

that “almost minimises” the function −λx + nV (y)eλy , where T := r
nV (y)

, so

that µ = lnT . Note that, for such a choice of µ (or of λ = y−1 ln(r/Π(y))), for

Π(y)→ 0 we have that µ= λy ∼− lnΠ(y)→∞ and hence that the assumption

y≫ 1/λ we made in (A8.2.24) holds true. For such λ,

Rn(λ, y)≤ exp

{
nλ2h

2
+ cnV

(
1

λ

)
+ r

(
1+ ε(µ)

)}
, (A8.2.30)

where, by the properties of r.v.f.s,

nV

(
1

µ

)
∼ nV

(
y

lnT

)
∼ cnV

(
y

| lnnV (y)|

)
≤ cnV (y)

∣∣lnnV (y)
∣∣β+δ→ 0,

δ > 0, (A8.2.31)

as nV (y)→ 0. Therefore

lnP ≤ −r lnT + r + nh

2y2
ln2 T + ε1(T )

=
[
−r + nh

2y2
lnT

]
lnT + r + ε1(T ), (A8.2.32)

where ε1(T ) ↓ 0 as T ↑∞. If x = sb(n), b(n) =
√

(β − 2)n lnn, and nV (x)→ 0

then

lnT = − lnnV (x)+O(1)=− lnn+ β ln s + β

2
lnn+O

(
lnL

(
sσ (n)

))
+O(1)
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= β − 2

2
lnn

[
1+ b

ln s

lnn

](
1+ o(1)

)
, (A8.2.33)

where b= 2β
β−2

(the term o(1) in the last equality appears because in our case either

n→∞ or s→∞.) Hence, by (A8.2.32),

nh

2y2
lnT = hr2

4s2

[
1+ b

ln s

lnn

](
1+ o(1)

)
,

lnP ≤ r −
[
r − h′r2

4s2

(
1+ b

ln s

lnn

)]
lnT

for any h′ > h > 1 and nV (x) small enough. This proves the first assertion of the

theorem.

We now prove the second assertion of the theorem for “small” values of s such

that, for some τ > 0,

s2 <
h− τ

2
.

Since we always assume that x >
√

n, we also have

s = x

b(n)
>

1√
(β − 2) lnn

and we can assume that s2 ≥ n−γ for some γ > 0 to be chosen below. This corre-

sponds to the following domain of the values of x2:

cn1−γ lnn < x2 <
(h− τ)(β − 2)

2
n lnn. (A8.2.34)

For such x, as will be shown below, the main contribution to the exponent on the

right-hand side of (A8.2.29) comes from the quadratic term nλ2h/2, and we will set

λ := x

nh
.

Then, for y = x (r = 1, µ= x2/(nh)),

lnP ≤ −λx + nλ2h

2
+ cnV

(
1

λ

)
+ nV (y)eλy

(
1+ ε(µ)

)

= − x2

2nh
+ cnV

(
nh

x

)
+ nV (x)e

x2

nh
(
1+ ε(µ)

)
. (A8.2.35)

We show that the last two terms on the right-hand side are negligibly small as

n→∞. Indeed, by the second inequality in (A8.2.34),

nV

(
nh

x

)
≤ cnV

(√
n

lnn

)
→ 0 as n→∞.
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Further, by the first inequality in (A8.2.34),

nV (x)≤ n(2−β)/2+γ ′ ,

where we can choose γ ′. Moreover, by (A8.2.34),

x2

nh
≤ (h− τ)(β − 2) lnn

2h
=
[
β − 2

2
− τ(β − 2)

2h

]
lnn.

Therefore

nV (x)ex2/(nh) ≤ n−τ(β−2)/(2h)+γ ′→ 0

for γ ′ < τ(β−2)
2h

as n→∞.

Thus,

lnP ≤− x2

2nh
+ o(1).

Since x2/n > 1, the term o(1) in the last relation can be omitted by slightly chang-

ing h > 1. (Formally, we proved that, for any h > 1 and all n large enough, inequal-

ity (A8.2.7) is valid with the h on its right-hand side replaced with h′ > h, where we

can take, for instance, h′ = h+ (h− 1)/2. Since h′ > 1 can also be made arbitrarily

close to 1 by the choice of h, the obtained relation is equivalent to the one from

Theorem A8.2.1.) This proves (A8.2.7).

The theorem is proved. �

Comparing the assertions of Theorem A8.2.1 and Corollary A8.1.1, we see that,

roughly speaking, for s < 1/2 and for s > 1 one can obtain quite satisfactory and, in

a certain sense, unimprovable upper bounds for the probabilities P and P(Sn > x).

8.3 Lower Bounds

In this section we will again assume that conditions (A8.2.1) are satisfied. The lower

bounds for P(Sn ≥ x) (they will clearly hold for P(Sn≥x) as well) can be obtained

in a much simpler way than the upper bounds and need essentially no assumptions.

Theorem A8.3.1 Let E ξj = 0 and Eξ2
j = 1. Then, for y = x + t

√
n− 1,

P(Sn ≥ x)≥ nF+(y)

[
1− t−2 − n− 1

2
F+(y)

]
. (A8.3.1)

Proof Put Gn := {Sn ≥ x} and Bj := {ξj < y}. Then

P(Sn ≥ x) ≥ P

(
Gn;

n⋃

j=1

Bj

)
≥

n∑

j=1

P(GnBj )−
∑

i<j≤n

P(GnBiBj )



714 8 Bounds for Sums and Maximum of Sums

≥
n∑

j=1

P(GnBj )−
n(n− 1)

2
F 2
+(y).

Here, for y = x + t
√

n− 1,

P(GnBj ) =
∫ ∞

y

P(Sn−1 ≥ x − u)F(du)≥ P(Sn−1 ≥ x − y)F+(y)

= P(Sn−1 ≥−t
√

n− 1 )F+(y)=
(
1− P(Sn−1 <−t

√
n− 1 )

)
F+(t),

where, by the Chebyshev inequality,

P(Sn−1 <−t
√

n− 1 )≤ t−2.

As a result we get

P(Sn ≥ x)≥ nF+(t)
(
1− t−2

)
− n(n− 1)

2
F 2
+(t),

which is equivalent to (A8.3.1).

The theorem is proved. �

Corollary A8.3.1 If x→∞ and x≫√n then, as t→∞,

P(Sn ≥ x)≥ nF+(y)
(
1+ o(1)

)
. (A8.3.2)

If, moreover, F+(u)≥ V (u) ∈R then

P(Sn ≥ x)≥ nV (x)
(
1+ o(1)

)
.

Proof Since y ≥ x, we have

nF+(y)≪ ny−2 < nx−2 = o(1).

This together with (A8.3.1) implies the first assertion of the corollary as t→∞. To

obtain the second one, in (A8.3.2) one should take t→∞ such that t = o(x/
√

n).

Then y ∼ x and V (y)∼ V (x).

The corollary is proved. �



Appendix 9

Renewal Theorems

The main goal of the present section is to prove Theorem 10.4.1, the key renewal

theorem in the non-arithmetic case (in the terminology of Chap. 10). We will also

consider some refinements and extensions of the theorem.

First consider positive independent identically distributed random variables

τj
d= τ with distribution function F and finite mean a := Eτ <∞. Here it will be

more convenient to understand by the renewal function its left-continuous version

H(t) :=
∞∑

k=0

F ∗k(t), t ≥ 0,

where F ∗k is the k-fold convolution of the distribution F with itself, which is the

distribution function of the sum Tk = τ1+ · · ·+ τk . We first prove the following key

assertion.

Theorem A9.1 If g is a directly integrable function and τj are non-arithmetic (see
Chap. 10) then, as t→∞,

∫ t

0

g(t − u)dH(u)→ 1

a

∫ ∞

0

g(u)du.

The proof of the theorem mostly follows the argument suggested in [13] and will

need several auxiliary assertions.

Lemma A9.1 Let g be a bounded measurable function. The integral

G(t)=
∫ t

0

g(t − u)dH(u)=: g ∗H(t) (A9.1)

is the unique solution of the equation
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DOI 10.1007/978-1-4471-5201-9, © Springer-Verlag London 2013

715

http://dx.doi.org/10.1007/978-1-4471-5201-9


716 9 Renewal Theorems

G(t)= g(t)+
∫ t

0

G(t − u)dF (u)= g(t)+G ∗ F(t) (A9.2)

in the class of functions bounded on finite intervals.

The function G=H is the solution of (A9.2) when g ≡ 1. The function G≡ 1 is
the solution of (A9.2) when g = 1− F .

Equation (A9.2) is called the renewal equation.

As we already noted in Theorem 10.4.1, one can associate, in an obvious way,

measures H and F with the functions H and F , and write the integrals in (A9.1) and

(A9.2) as integrals with respect to the measures:

∫ t

0

g(t − u)H(du) and

∫ t

0

G(t − u)F(du),

respectively.

Proof of Lemma A9.1 Put

Hn(t) :=
n∑

k=0

F ∗k(t).

The functions Gn = g ∗Hn satisfy the equation Gn+1 = g +Gn ∗ F and form an

increasing sequence Gn ↑ which is bounded by Lemma 10.2.3. Therefore Gn ↑G,

and passing to the limit in the equation for Gn we obtain that G satisfies (A9.1).

To prove uniqueness note that the difference V =G(1)−G(2) of two solutions G(1)

and G(2) must satisfy the homogeneous equation V = V ∗ F and therefore also the

relations V = V ∗ (F k∗) or, which is the same,

V (t)=
∫ t

0

V (t − u)dF ∗k(u).

But F ∗k(u)→ 0 as k→∞ for u ∈ [0, t]. Since by the assumption |V (u)| < c on

[0, t], we have V (t)→ 0 as k→∞. But V does not depend on k, so that V (t)≡ 0.

The last assertion of the lemma can be verified directly. The lemma is proved. �

Note that if we considered functions g of bounded variation, the assertion of

Lemma A9.1 would immediately follow from the equation for the Laplace–Stieltjes

transform G̃(λ)=
∫∞

0 e−λt dG(t) of G which follows from (A9.2):

G̃(λ)= g̃(λ)+ G̃(λ)ψ(λ), (A9.3)

where

g̃(λ) :=
∫ ∞

0

e−λt dg(t), ψ(λ) :=
∫ ∞

0

e−λt dF(t).
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Indeed, it follows from (A9.3) that

G̃(λ)= g̃(λ)

1−ψ(λ)
,

which is equivalent to (A9.1).

A point t is said to be a point of growth of the distribution function F provided

that F(t + ε)− F(t) > 0 for any ε > 0.

Lemma A9.2 Let the distribution F be non-arithmetic and Z be the set of all points
of growth of H , i.e. points of growth of the functions F,F ∗2,F ∗3, . . . . Then Z is
“asymptotically dense at infinity”, i.e., for any given ε > 0 and all x large enough,

the intersection (x, x + ε)∩Z is non-empty.

Proof Observe first that if t1 is a point of growth of the distribution F1 of a random

variable τ , and t2 is a point of growth of the distribution F2 of a random variable ζ

which is independent of τ , then t = t1 + t2 will be a point of growth of the distribu-

tion F1 ∗ F2 of the variable τ + ζ . Indeed,

P(t ≤ τ + ζ < t + ε)≥ P

(
t1 ≤ τ < t1 +

ε

2

)
P

(
t2 ≤ ζ < t2 +

ε

2

)
.

Let, further, x < y be two points of the set Z, and ∆ := y − x. The following

alternative takes place: either

(1) for any ε > 0 there exist x and y such that ∆ < ε, or

(2) there exists a δ > 0 such that ∆≥ δ for all x and y from Z.

Put In := [xn,yn]. If n∆ > x then that interval contains [nx, (n + 1)x] as a

subset, and therefore any point v > v0 = x2/∆ belongs to at least one of the intervals

I1, I2, . . . .

By virtue of the above observation, the n+1 points nx+k∆= (n−k)x+ky, k =
0, . . . , n, belong to Z and divide In into n subintervals of length ∆. This means that,

for any point v > v0, the distance between v and the points from Z is at most ∆/2.

This implies the assertion of the lemma when (1) holds.

If (2) is true, we can assume that x and y are chosen so that ∆ < 2δ. Then the

points of the form nx + k∆ exhaust all the points from Z lying inside In. Since the

point (n + 1)x is among these points, the value x is a multiple of ∆, and all the

points of Z lying inside In are multiples of ∆. Now let z be an arbitrary point of

growth of F . For sufficiently large n, the interval In contains a point of the form

z+ k∆, and since the latter belongs to Z, the value z is also a multiple of ∆. Thus

F is an arithmetic distribution, so that case (2) cannot take place. The lemma is

proved. �

Lemma A9.3 Let q(x) be a bounded uniformly continuous function given on
(−∞,∞) such that, for all x, q(x)≤ q(0) for all x, and

q(x)=
∫ ∞

0

q(x − y)dF (y). (A9.4)

Then q(x)≡ q(0).
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Proof Equation (A9.4) means that q = q ∗ F = · · · = q ∗ F ∗k for all k ≥ 1. The

right-hand side of (A9.4) does not exceed q(0), and hence, for x = 0, the equality

(A9.4) is only possible if q(−y)= q(0) for all y ∈ Zk , where Zk is the set of points

of growth of F ∗k , and therefore q(−y)= q(0) for all y ∈ Z. By Lemma A9.2 and

the uniform continuity of q this means that q(−y)→ q(0) as y →∞. Further,

for an arbitrarily large N we can choose k such that q(x) will be arbitrarily close

to
∫∞
N

q(x − y)dF ∗k(y), since F ∗k(N)→ 0 as k→∞. This means, in turn, that

q(x) will be close to q(0). Since q(x) depends neither on N nor on k, we have

q(x)= q(0). The lemma is proved. �

Lemma A9.4 Let g be a continuous function vanishing outside segment [0, b]. Then
the solution G of the renewal equation (A9.2) is uniformly continuous and, for
any u,

G(x + u)−G(x)→ 0 (A9.5)

as x→∞.

Proof By virtue of Lemma 10.2.3,

∣∣G(x + δ)−G(x)
∣∣ =

∣∣∣∣
∫ x+δ

x−b

(
g(x + δ− y)− g(x − y)

)
dH(y)

∣∣∣∣

≤ max
0≤x≤b+δ

∣∣g(x + δ)− g(x)
∣∣(c1 + c2(b+ δ)

)
. (A9.6)

This means that the uniform continuity of g implies that of G.

Now assume that g has a continuous derivative g′. Then G′ exists and satisfies

the renewal equation

G′(x)= g′(x)+
∫ x

0

G′(x − y)dF (y).

Therefore the derivative G′ is bounded and uniformly continuous. Let

lim sup
x→∞

G′(x)= s.

Choose a sequence tn→∞ such that G′(tn)→ s. The family of functions qn de-

fined by the equalities

qn(x)=G′(tn + x)

is equicontinuous, and

qn(x)= g′(tn+ x)+
∫ x+tn

0

qn(x− y)dF (y)= g′(tn+ x)+
∫ ∞

0

qn(x− y)dF (y).

(A9.7)
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By the Arzelà–Ascoli theorem (see Appendix 4) there exists a subsequence tnr

such that qnr converges to a limit q . From (A9.7) it follows that this limit satis-

fies the conditions of Lemma A9.3, and therefore q(x) = q(0) = s for all x. Thus

G′(tnr+x)→ s for all x, and hence

G(tnr + x)−G(tnr )→ sx.

Since the last relation holds for any x and the function g is bounded, we get s = 0.

We have proved the lemma for continuously differentiable g. But an arbitrary

continuous function g vanishing outside [0, b] can be approximated by a continu-

ously differentiable function g1 which also vanishes outside that interval. Let G1

be the solution of the renewal equation corresponding to the function g1. Then

|g−g1|< ε implies |G−G1|< cε, c= c1+c2b (see Lemma 10.2.3), and therefore

∣∣G(x + u)−G(x)
∣∣< (2c+ 1)ε

for all sufficiently large x. This proves (A9.5) for arbitrary continuous functions g.

The lemma is proved. �

Proof of Theorem A9.1 Consider an arbitrary sequence tn→∞ and the measures

μn generated by the functions

H(n)(u)=H(tn + u)−H(tn)
(
μn

(
[u,v)

)
=H(n)(v)−H(n)(u)).

These functions satisfy the conditions of the generalised Helly theorem (see Ap-

pendix 4). Therefore there exists a subsequence tnn, the respective subsequence of

measures μnn, and the limiting measure μ such that μnn converges weakly to μ on

any finite interval as n→∞.

Now let g be a continuous function vanishing outside [0, b]. Then

G(tnn + x)=
∫ 0

−b

g(−u)dH(tnn + x + u)

=
∫ 0

−b

g(−u)d
(
H(tnn + x + u)−H(tnn)

)
→

∫ b

0

g(u)μ(x + du).

By Lemma A9.4, the sequence G(tnn+ y) will have the same limit. This means that

the measure μ(x+du) does not depend on x, and therefore μ([u,v)) is proportional

to the length of the interval (u, v):

μ
(
(u, v)

)
= c(v − u), μ(du)= c du.

Thus, we have proved that

G(tnn + x)→ c

∫ ∞

0

g(u)du (A9.8)
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for any continuous function g vanishing outside [0, b]. But for any Riemann inte-

grable function g on [0, b] and given ε > 0 there exist continuous functions g1 and

g2, g1 < g < g2, which are equal to 0 outside [0, b+ 1] and such that

∫ b

0

(g2 − g1) du < ε.

This means that convergence (A9.8) also holds for any Riemann integrable function

vanishing outside [0, b].
Now consider an arbitrary directly integrable function g. By property (2) of such

functions (see Definition 10.4.1) one can choose a b > 0 such that for the function

g(b)(u)=
{

g(u) if u≤ b,

0 if u > b,

the left- and right-hand sides of (A9.8) will be arbitrarily close to the respective

expressions corresponding to the original function g (for the right-hand side it is

obvious, while for the left-hand side it follows from the convergence

∣∣∣∣
∫ t

0

g(t − s) dH(s)−
∫

g(b)(t − s) dH(s)

∣∣∣∣

=
∣∣∣∣
∫ t−b

0

g(t − s) dH(s)

∣∣∣∣≤
∑

k>b−1

(c1 + c2)gk→ 0

as b→∞ (see Lemma 10.2.3)). Therefore (A9.8) is proved for any directly inte-

grable function g. Putting g := 1− F we obtain from Lemma A9.1

1= c

∫ ∞

0

(
1− F(u)

)
du= ac, c= 1

a
.

Thus the limit in (A9.8) is one and the same for any initial sequence tn. From this it

follows that, as t→∞,

G(t)→ 1

a

∫ ∞

0

g(u)du.

The theorem is proved. �

Theorem 10.4.1 is a simple consequence of Theorem A9.1 and the argument

used in the proof of Theorem 10.2.3 that extends the key renewal theorem in the

arithmetic case was extended to the setting where τj , j ≥ 2, can assume values

of different signs, while τ1 is arbitrary. We will leave it to the reader to apply the

argument in the non-arithmetic case.

Now we will give several further consequences of Theorem A9.1. In Sect. 10.4

we obtained a refinement of the renewal theorem in the case when m2 :=
Eτ 2

j <∞. Approaches developed while proving Theorem A9.1 enable one to obtain

an alternative proof of the following assertion coinciding with Theorem 10.4.4.
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Theorem A9.2 Let the conditions of Theorem A9.1 be met and m2 <∞. Then

0≤H(t)− t

a
→ m2

2a2
as t→∞.

Proof The function G(t) := H(t) − t/a is the solution of the renewal equation

(A9.2) corresponding to the function

g(t) := 1

a

∫ ∞

t

(
1− F(u)

)
du.

Since g is directly integrable, we have

G(t)→ 1

a

∫ ∞

0

∫ ∞

v

(
1− F(u)

)
dudv = m2

2a2
.

The theorem is proved. �

Theorem A9.3 (The local renewal theorem for densities) Assume that F has a den-
sity f = F ′ and this density is directly integrable. Then H has a density h = H ′,
and

h(t)→ 1

a
as t→∞.

Proof Denote by fn(x) the density of the sum Tn = τ1 + · · · + τn. We have

h(t)=H ′(t)=
∞∑

n=1

fn(t)= f (t)+
∫

h(t − u)f (u)du= f (t)+ h ∗ F(t).

This means that h(t) satisfies the renewal equation with the function g = f . There-

fore by Theorem A9.1,

h(t)→ 1

a

∫ ∞

0

f (u)du= 1

a
.

The theorem is proved. �

Consider now some extensions of Theorem A9.1. A function g given on the

whole line (−∞,∞) is said to be directly integrable if both functions g(t) and

g(−t), t ≥ 0, are directly integrable.

Theorem A9.4 If the conditions of Theorem A9.1 are met and g is directly inte-
grable, then

G(t)=
∫ ∞

0

g(t − u)H(du)→ 1

a

∫ ∞

−∞
g(u)du as t→∞.



722 9 Renewal Theorems

The Proof can be obtained by making several small and quite obvious modifica-

tions to the argument in the demonstration of Theorem A9.1. The main change is

that instead of functions g vanishing outside [0, b] one should now consider func-

tions vanishing outside [−b, b].
Another extension refers to the second version of the renewal function

U(t) :=
∞∑

k=0

F ∗k(t), −∞< t <∞,

in the case when τj can assume values of different signs.

Theorem A9.5 If g is directly integrable and Eτj = a > 0, then

G(t)=
∫ ∞

−∞
g(t − u)U(du)→ 1

a

∫ ∞

−∞
g(u)du as t→∞,

and, for any fixed u, U(t + u)−U(t)→ 0 as t→∞.

The proof is also obtained by modifying the argument proving Theorem A9.1

(see [13]).
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Index of Basic Notation

Spaces and σ -algebras
F—a σ -algebra, 14

〈Ω,F〉—a measurable space, 14

R—the real line, 17

R
n—n-dimensional Euclidean space, 18

B—the σ -algebra of Borel-measurable subsets of R, 17

Bn—the σ -algebra of Borel-measurable subsets of Rn, 18

〈Ω,F,P〉—the probability space, 17

(Note that Ω and F can take specific values, i.e. R and B, respectively.)

Distributions1

Fξ , F—the distribution of the random variable ξ , 32, 32

Ia—the degenerate distribution (concentrated at the point a), 37

Ua,b—the uniform distribution on [a, b], 37

Bp , Bn
p—the binomial distributions, 37

multinomial distributions, 47

�α,σ 2—the normal (Gaussian) distribution with parameters (α,σ 2), 37, 48

φα,σ 2(x)—the density of the normal law with parameters (α,σ 2), 41

Fβ,ρ—the stable distribution with parameters β , ρ, 231, 233

f (β,ρ)(x)—the density of the stable distribution with parameters Fβ,ρ , 235

ϕ(β,ρ)(t)—the characteristic function of distribution Fβ,ρ , 231

Kα,σ—the Cauchy distribution with parameters (α,σ ), 38

Ŵα—the exponential distribution with parameter α, 38, 177

Ŵα,λ—the gamma-distribution with parameters (α,λ), 176

�λ—the Poisson distribution with parameter λ, 39

χ2—the χ2-distribution, 177

Λ(α)—the large deviation rate function, 244

1(All distributions and measures are denoted by bold letters).
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726 Index of Basic Notation

Relations
:= means that the left-hand side is defined by the right-hand side, xi

=: means that the right-hand side is defined by the left-hand side, xi

∼ notation an ∼ bn (a(x)∼ b(x)) means that limn→∞
an

bn
= 1 (limx→∞

a(x)
b(x)
= 1),

109
p→—convergence of random variables in probability, 129
a.s.−→—almost sure convergence of random variables, 130
(r)−→—convergence of random variables in the mean, 132
d=—notation ξ

d= η means that the distributions of ξ and η coincide, 144
d
≤—relation ξ

d
≤ γ means that P(ξ ≥ t)≤ P(γ ≥ t) for all t , 302

d
>—relation ξ >

d
η means that P(ξ > t)≥ P(η > t) for all t , 302

⊂=—notation ξn ⊂= F means that ξ has the distribution F, 36

ξn ⊂=⇒ F means that the distribution of ξn converges weakly to F, 144

⇒—relation Fn⇒ F means weak convergence of the distributions Fn to F, 141,

for random variables ξn⇒ ξ means that Fn⇒ F, where ξn⊂=Fn, ξ ⊂=F, 143

Conditions
[C]—the Cramér condition, 240

[Rβ,ρ]—conditions of convergence to the stable law Fβ,ρ , 229



Subject Index

A

Abelian theorem, 673

Absolutely continuous distribution, 40

Absorbing state, 393

Absorption, 391

Algebra, 14

Almost invariant

random variable, 498

set, 497

Amount of information, 448

Aperiodic Markov chain, 419

Arithmetic distribution, 40

Arzelà–Ascoli theorem, 657

Asymptotically normal sequence, 187

Atom, 419

positive, 420

B

Basic coding theorem, 455

Bayes formula, 27

Bernoulli scheme, local limit theorems for, 113

Bernstein polynomial, 109

Berry–Esseen theorem, 659

Beta distribution, 179

Binomial distribution, 37

Bochner–Khinchin theorem, 158

Borel

σ -algebra, 15

set, 15

Branching process, 180, 591

extinction of, 182

Brownian motion process, 549

C

Carathéodory theorem, 19, 622

Cauchy sequence, 132

Cauchy–Bunjakovsky inequality, 87, 97

Central limit theorem, 187

for renewal processes, 299

Central moment, 87

Chain, Markov, 390, 414

Chapman–Kolmogorov equation, 582

Characteristic function, 153

for multivariate distribution, 171

Chebyshev inequality, 89, 96

exponential, 248

Chi-squared distribution, 177

Class

of distributions

exponential, 373

superexponential, 373

of functions, distribution determining, 148

Coefficient

diffusion, 604

shift, 604

Common probability space method, 118

Communicating states, 392

Complement, 16

Completion of measure, 624

Component, factorisation, 334

Compound Poisson process, 552

Condition

Cramér, 240, 703

Cramér on ch.f., 217

[D1], 188

(D2), 199

Lyapunov, 202, 560

[Rβ,ρ ], 229, 687

Conditional

density, 100

distribution, 99

distribution function, 70

entropy, 451

expectation, 70, 92, 94, 95
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728 Subject Index

Conditional (cont.)
probability, 22, 95

Consistent distributions, 530

Continuity axiom, 16

Continuity theorem, 134, 167, 173

Converge

in measure, 630

Convergence

almost everywhere, 630

almost surely, with probability 1, 130

in distribution, 143

in measure, 630

in probability, 129

in the mean, 132

in total variation, 653

weak, 141, 173, 649

Correlation coefficient, 86

Coupling method, 118

Covariance function, 611

Cramér

condition, 240, 703

on ch.f., 217

range, 256

series, 248

transform, 473

Crossing times, 237

Cumulant, 242

Cylinder, 528

D

Defect, 290

Degenerate distribution, 37

De Moivre–Laplace theorem, 115, 124

Density

conditional, 100

of distribution, 40

of measure, 642

transition, 583

Derivative, Radon–Nikodym, 644

Deviation, standard, 83

Diffusion

coefficient, 604

process, 603

Directly integrable function, 293

Distance, total variation, 420

Distribution, 17

absolutely continuous, 40

arithmetic, 40

beta, 179

binomial, 37

chi-squared, 177

conditional, 99

consistent, 530

degenerate, 37

Erlang, 177

exponential, 38, 71, 177

finite-dimensional, 528

function, 32

conditional, 70

properties, 33

gamma, 176

Gaussian, 37

geometric, 38

infinitely divisible, 539

invariant, 404, 419

lattice, 40

Levy, 235

multinomial, 47

multivariate normal (Gaussian), 48, 173

non-lattice, 160

normal, 37

of process, 528

of random process, 529

of random variable, 32

Poisson, 26, 39

singular, 41, 325

stable, 233

stationary, 404, 419

of waiting time, 350

subexponential, 376, 675

tail of, 228

uniform, 18, 37, 325

uniform on a cube, 18

Dominated convergence theorem, 139

Donsker–Prokhorov invariance principle, 561

Doubly stochastic matrix, 410

E

Element

random, 649

Entropy, 448

conditional, 451

Equality

Parseval, 161

Equation

backward (forward) Kolmogorov, 587, 605

Chapman–Kolmogorov, 582

renewal, 716

Equivalent

processes, 530

sequences, 109

Ergodic

Markov chain, 404

sequence, 498

state, 411

transformation, 498

Erlang distribution, 177

Essential state, 392
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Event, 2

certain, 16

impossible, 16

random, xiv

renovating, 509

tail, 316

Events

disjoint (mutually exclusive), 16

independent, 22

Excess, 280

Existence

of expectation, 65

of integral, 643

Expectation, 65

conditional, 70, 92, 94, 95

existence of, 65

Exponential

Chebyshev inequality, 248

class of distributions, 373

distribution, 38, 177

polynomial, 355, 366

Extinction of branching process, 182

F

Factorisation, 334

component, 334

Fair game, 72

Finite-dimensional distribution, 528

First nonnegative sum, 336

First passage time, 278

Flow of σ -algebras, 457

Formula

Bayes, 27

total probability, 25

Function

covariance, 611

directly integrable, 293

distribution, 32

properties, 33

large deviation rate, 244

locally constant, 373

lower, 546

rate, 244

regularly varying, 266, 665

renewal, 279

sample, 528

slowly varying, 228, 665

subexponential, 376

test (Lyapunov), 430

transition, 582, 583

upper, 546

G

Gamma distribution, 176

Gaussian

distribution, 37

process, 614

Generating function, 161

Geometric distribution, 38

Gnedenko local limit theorem, 221

H

Hahn’s theorem on decomposition of measure,

646

Harris (irreducible) Markov chain, 424

Helly theorem, 655

Hölder inequality, 88

Homogeneous

Markov chain, 391, 416

Markov process, 583

process, 539

renewal process, 285

I

Identity

Pollaczek–Spitzer, 345

Wald, 469

Immigration, 591

Improper random variable, 32

Independent

classes of events, 51

events, 22

random variables, 153

trials, 24

Indicator of event, 66

Inequality

Cauchy–Bunjakovsky, 87, 97

Chebyshev, 89, 96

Chebyshev exponential, 248

Hölder, 88

Jensen, 88, 97

Kolmogorov, 478

Minkowski, 88, 133

Schwarz, 88

Inessential state, 392

Infinitely divisible distribution, 539

Information, 448

amount of, 448

Integrability, uniform, 135

Integral, 630, 632, 642

of a nonnegative measurable function, 632

over a set, 631

Integro-local theorems, 216

Invariance principle, 567

Invariant

distribution, 419

random variable, 498

set, 497



730 Subject Index

Irreducible Markov chain, 393

Iterated logarithm, law of, 545, 546, 568

J

Jensen inequality, 88, 97

K

Karamata theorem, 668

Kolmogorov

equation, backward (forward), 587, 605

inequality, 478

theorem on consistent distributions, 56, 625

L

Laplace transform, 156, 241

Large deviation

probabilities, 126

rate function, 244

Large numbers, law of, 107, 188

for renewal processes, 298

strong, 108

Lattice distribution, 40

Law

of iterated logarithm, 545, 546, 568

of large numbers, 90, 107, 188

for renewal processes, 298

strong, 108

Lebesgue theorem, 644

Legendre transform, 244

Levy distribution, 235

Limit theorems, local for Bernoulli scheme,

113

Linear prediction, 617

Local limit theorem, 219

Locally constant function, 373

Lower

function, 546

sequence, 318

Lyapunov condition, 202, 560

M

Markov

chain, 390, 414, 585

aperiodic, 419

ergodic, 404

Harris (irreducible), 424

homogeneous, 391, 416

periodic, 397, 419

reducible (irreducible), 393

process, 580

homogeneous, 583

property, 390

strong, 418

time, 75

Martingale, 457, 459

Matrix

doubly stochastic, 410

stochastic, 391

transition, 391

Mean value, 65

Measurable space, 14

Measure, 629

density of, 642

extension, 19, 622

theorem, 19, 622

outer, 619

signed, 629

singular, 644

space, 629

Measure preserving transformation, 494

Measure Space, 629

Metric transitive

sequence, 498

transformation, 498

Minkowski inequality, 88

Mixed moment, 87

Mixing transformation, 499

Modification of process, 530

Moment

central, 87

k-th order, 87

mixed, 87

Multinomial distribution, 47

Multivariate normal (Gaussian) distribution,

48, 173

N

Negatively correlated random variables, 87

Non-lattice distribution, 160

Normal distribution, 37

Null state, 394

O

Oscillating random walk, 435

Outer measure, 619

Overshoot, 280

P

Parseval equality, 161

Passage time, 336

Path, 528

Pathwise shift transformation, 496

Periodic

Markov chain, 397, 419

state of Markov chain, 394

Persistent state, 394

Poisson

distribution, 26, 39
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Poisson (cont.)
process, 297, 549

theorem, 121

Pollaczek–Spitzer identity, 345

Polynomial

Bernstein, 109

exponential, 355, 366

Positive atom, 420

Positive state, 394, 411

Positively correlated random variables, 87

Posterior probability, 28

Prediction, 616

linear, 617

Prior probability, 28

Probability, 16

conditional, 22, 95

distribution, 17

posterior, 28

prior, 28

properties of, 20

space, 17

sample, 528

wide-sense, 17

transition, 583

Process

branching, 180, 591

Brownian motion, 549

compound Poisson, 552

continuous in mean, 536

diffusion, 603

distribution of, 528, 529

Gaussian, 614

homogeneous, 539

Markov, 580

modification of, 530

Poisson, 297, 549

random (stochastic), 527, 529

regenerative, 600

regular, 532

renewal, 278

homogeneous (stationary), 285

semi-Markov, 593

separable, 535

stochastically continuous, 536, 584

strict sense stationary, 614

unpredictable, 611

Wiener, 542

with immigration, 591

with independent increments, 539

Prokhorov theorem, 651

Proper random variable, 73

Property, strong Markov, 418

Pseudomoment, 210

Q

Quantile, 43

transform, 43

R

Radon–Nikodym derivative, 642, 644

Radon–Nikodym theorem, 644

Random

element, 414, 649

event, xiv

process, 527, 529

sequence, 527

variable, 31

almost invariant, 498

complex-valued, 153

defined on Markov chain, 437

distribution of, 32

improper, 32

independent of the future, 75

invariant, 498

proper, 73

standardised, 85

subexponential, 376, 675

symmetric, 157

tail, 317

variables

independent, 153

positively (negatively) correlated, 87

vector, 44

walk, 277, 278, 335

oscillating, 435

skip-free, 384

symmetric, 400, 401

with reflection, 434

Range, Cramér, 256

Rate function, 244

Recurrent state, 394

Reflection, 391, 434

Regeneration time, 600

Regenerative process, 600

Regression line, 103

Regular process, 532

Regularly varying function, 266, 665

Renewal

equation, 716

function, 279

integral theorem, 280

local theorem, 294

process, 278

Renovating

event, 509

sequence of events, 509

Right closed martingale (semimartingale), 459

Ring, 14



732 Subject Index

S

Sample

function, 528

probability space, 528

space, 414, 649

Schwarz inequality, 88

Semi-invariant, 242

Semi-Markov process, 593

Semimartingale, 458

Separable process, 535

Sequence

asymptotically normal, 187

Cauchy (in probability, a.s., in the mean),

132

ergodic, 498

generated by transformation, 495

lower, 318

metric transitive, 498

renovating, 509

stationary, 493

stochastic, 457

stochastic recursive, 507

tight, 148

uniformly integrable, 135

upper, 318

weakly dependent, 499

Series, Cramér, 248

Set

almost invariant, 497

invariant, 497

Shift coefficient, 604

σ -algebra, 14

Signed measure, 629

Singular

distribution, 41, 325

measure, 644

Skip-free walk, 384

Slowly varying function, 228, 665

Space

measurable, 14

measure, 629

of functions without discontinuities of the

second kind, 529

probability, 17

sample, 414, 649

sample probability, 528

Spectral measure, 556

Stable distribution, 233

Standard deviation, 83

Standardised random variable, 85

State

absorbing, 393

ergodic, 411

essential, 392

inessential, 392

periodic, 394

persistent, 394

positive, 411

recurrent, 394

transient, 394

State, null, 394

State, positive, 394

Stationary

distribution, 404, 419

of waiting time, 350

process, 614

sequence, 493

of events, 509

Stochastic

matrix, 391

process, 527, 529

recursive sequence, 507

sequence, 457

Stochastically continuous process, 536, 584

Stone–Shepp integro-local theorem, 216

Stopping time, 75, 462

improper, 466

Strong law of large numbers, 108

Strong Markov property, 418

Subexponential

distribution, 376, 675

function, 376

random variable, 376, 675

Submartingale, 458, 459

Sum, first nonnegative, 336

Superexponential class of distributions, 373

Supermartingale, 458, 459

Symmetric

random variable, 157

random walk, 401

T

Tail

event, 316

of distribution, 228

random variable, 317

Tauberian theorem, 673

Test function, 430

Theorem

Abelian, 673

Arzelà–Ascoli, 657

basic coding, 455

Berry–Esseen, 659

Bochner–Khinchin, 158

Carathéodory (measure extension), 19, 622

central limit, 187

central limit for renewal processes, 299

continuity, 134, 167, 173



Subject Index 733

Theorem (cont.)
de Moivre–Laplace, 115, 124

dominated convergence, 139

Gnedenko local limit, 221

Hahn’s on decomposition of a measure, 646

Helly, 655

integral renewal, 280

integro-local, 216

Karamata, 668

Kolmogorov, on consistent distributions,

56, 625

Lebesgue, 644

local limit, 219

local renewal, 294

measure extension, 19, 622

Poisson, 121

Prokhorov, 651

Radon–Nikodym, 644

Stone–Shepp integro-local, 216

Tauberian, 673

two series, 322

Weierstrass, 109

Tight family of distributions, 651

Tight sequence, 148

Time

first passage, 278

Markov, 75

passage, 336

regeneration, 600

stopping, 75

waiting, 349

Total probability formula, 25, 71, 98

Total variation, 652

convergence in, 653

distance, 420

Trajectory, 528

Transform

Cramér, 473

Laplace, 156, 241

Legendre, 244

quantile, 43

Transformation

bidirectional preserving measure, 495

ergodic, 498

metric transitive, 498

mixing, 499

pathwise shift, 496

preserving measure, 494

Transient state, 394

Transition

density, 583

function, 582, 583

matrix, 391

probability, 583

Triangular array scheme, 121, 188

Two series theorem, 322

U

Undershoot, 290

Uniform distribution, 18, 37, 325

Uniform integrability, 135

right (left), 139

Unpredictable process, 611

Upper

function, 546

sequence, 318

V

Variable, random, 31

Variance, 83

Vector, random, 44

W

Waiting time, 349

stationary distribution of, 350

Wald identity, 469

fundamental, 471

Walk, random, 277, 278, 335

Weak convergence, 141, 173, 649

Weakly dependent sequence, 499

Weierstrass theorem, 109

Wiener process, 542
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